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P REFACE

In each chapter, there are five problem types:

= Exercises

= Problems

= Advanced Problems

= Design Problems/Continuous Design Problem

= Computer Problems

In total, there are over 850 problems. The abundance of problems of in-
creasing complexity gives students confidence in their problem-solving
ability as they work their way from the exercises to the design and
computer-based problems.

It is assumed that instructors (and students) have access to MATLAB,
the Control System Toolbox or the LabVIEW and MathScript. All of the
comptuer solutions in this Solution Manual were developed and tested on
a Window XP platform using MATLAB 7.3 Release 2006b and the Control
System Toolbox Version 7.1 and LabVIEW 8.2. It is not possible to verify
each solution on all the available computer platforms that are compatible
with MATLAB and LabVIEW MathScript. Please forward any incompati-
bilities you encounter with the scripts to Prof. Bishop at the email address
given below.

The authors and the staff at Prentice Hall would like to establish an
open line of communication with the instructors using Modern Control
Systems. We encourage you to contact Prentice Hall with comments and
suggestions for this and future editions.

Robert H. Bishop  rhbishop@mail.utexas.edu

This material is protected by Copyright and written permission should be obtained from the publisher prior to any prohibited reproduction, storage in a
retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording, or likewise.
For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.



TABLE-OF-CONTENTS

1. Introduction to Control Systems ............ .. ... .. 1
2. Mathematical Models of Systems ............ .. ... ... 20
3. State Variable Models ......... ... . i 79
4. Feedback Control System Characteristics ....................... 126
5. The Performance of Feedback Control Systems ................. 166
6. The Stability of Linear Feedback Systems ...................... 216
7. The Root Locus Method ......... ... o i 257
8. Frequency Response Methods ............ ... ... ... ... ... 359
9. Stability in the Frequency Domain ............................. 420
10. The Design of Feedback Control Systems ....................... 492
11. The Design of State Variable Feedback Systems ................ 574
12. Robust Control Systems ......... ... 633
13. Digital Control Systems ...........coiiiiiiiiiiiii i 691

This material is protected by Copyright and written permission should be obtained from the publisher prior to any prohibited reproduction, storage in a
retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording, or likewise.
For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.



www.TagheDanesh.ir www.TagheDanesh.com

CHAPTER 1

Introduction to Control Systems

There are, in general, no unique solutions to the following exercises and
problems. Other equally valid block diagrams may be submitted by the

student.

Exercises

E1.1 A microprocessor controlled laser system:

Controller Process
Desired Error Micro- Currenti(t) Laser Power
power - processor out
output
Measurement
Measured Power
power Sensor

E1.2 A driver controlled cruise control system:

Controller Process
Foot pedal
Desired Driver car ?nd hetual
speed - Engine aU‘Od
spee
Measurement
Visual indication of speed Speedometer

E1.3 Although the principle of conservation of momentum explains much of
the process of fly-casting, there does not exist a comprehensive scientific
explanation of how a fly-fisher uses the small backward and forward mo-
tion of the fly rod to cast an almost weightless fly lure long distances (the

1
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2 CHAPTER 1 Introduction to Control Systems

current world-record is 236 ft). The fly lure is attached to a short invisible
leader about 15-ft long, which is in turn attached to a longer and thicker
Dacron line. The objective is cast the fly lure to a distant spot with dead-
eye accuracy so that the thicker part of the line touches the water first
and then the fly gently settles on the water just as an insect might.

Wind
Fly-fisher controller disturbance orocess
Desired {})Algd a?dh ~$_. ROd, Iine, Actual
positionof ¥~ ﬂo ﬁyr? the and cast i
the fly y-fisher

Measurement

Vision of

Visual indication =
of the position of the ﬂy fisher

the fly

E1.4 An autofocus camera control system:

One-way trip time for the beam

_________________ Conversion factor
r i K 1 (speed of light or
I I sound)
I Emitter/ I L @ I Distance to subject
I Receiver B e — Sub I

Beam return ubject

I I Lens focusing
| | motor
- - - - - - i

Lens
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Exercises 3

E1.5 Tacking a sailboat as the wind shifts:

Controller Actuators Wind Process
Desired Error | Rudd d ,l\
esire Sailor uF ran 9, Sailboat Actual
sailboat - sal ac?Justment sailboat
direction direction

Measurement

Measured sailboat direction

Gyro compass

E1.6 An automated highway control system merging two lanes of traffic:

Controller Actuators Process
Desired Error Embedded *  Brakes,gasor [ Active » Actual
a - -t i a
gap computer steering vehicle gap
Measurement
Measured gap
Radar

E1.7 Using the speedometer, the driver calculates the difference between the
measured speed and the desired speed. The driver throotle knob or the
brakes as necessary to adjust the speed. If the current speed is not too
much over the desired speed, the driver may let friction and gravity slow
the motorcycle down.

Controller Actuators Process
Error
Desired Driver Throttle or ™ Motorcycle > Actual
speed - Y motorcycle
brakes speed

Measurement

Visual indication of speed

Speedometer
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4 CHAPTER 1

Introduction to Control Systems

E1.8 Human biofeedback control system:
Controller Process
to
blood vessels
Desired Hypothalumus » Actual
body - Human body body
temp temp
Measurement
Visual indication of
body temperature TV dlsplay Body sensor
E1.9 E-enabled aircraft with ground-based flight path control:
Corrections to the Controller Aircraft
. flight path .
Desired —( "l Gels) " Gls) > Flight
Flight B Path
Path Meteorological Health Location
data Parameters and speed
Optimal y %
flight path
Ground-Based Computer Network
Optimal ) .
flight path Y Location
and speed
Meteorological Health
data Parameters
| —
Desired —( " Ge(s) G( > Flight
. Corrections to the cls s)
Flight flight path Path
Path Controller Aircraft

E1.10 Unmanned aerial vehicle used for crop monitoring in an autonomous

mode:
Trajectory Controller UAV
'f' d error .
Spea ied —( )—v_ Gc(s) G(s) > Fllght
Flight Trajectory
Trajectory
Location with M Ground Sensor
respect to the ground ap photo
Correlation [+ Camera [*
Algorithm
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Exercises 5

E1.11 An inverted pendulum control system using an optical encoder to measure
the angle of the pendulum and a motor producing a control torque:

Actuator Process
) Error Voltage Torque
Desired Controller Motor Pendulum > Angle
angle -
Measurement
Measured Optical
angle encoder

E1.12 In the video game, the player can serve as both the controller and the sen-
sor. The objective of the game might be to drive a car along a prescribed
path. The player controls the car trajectory using the joystick using the
visual queues from the game displayed on the computer monitor.

Controller Actuator Process

Desired Error Pl G
esire ayer > : > \/i » Game
Desir - y Joystick Video game objective
objective

Measurement

Player
(eyesight, tactile, etc.)
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6 CHAPTER 1 Introduction to Control Systems

Problems

P1.1 An automobile interior cabin temperature control system block diagram:

Controller Process
Desired Error Thermostat and Aurmeb”e Automobile
temperature  § = air conditioning cabin cabin temperature
set by the unit
driver
Measurement
Measured temperature
P Temperature -
sensor

P1.2 A human operator controlled valve system:

Controller Process
Error *
Desired T Fluid
nk ui
fluid - Valve a output
output *
Measurement
Visual indication
of fluid output *

Meter

* = operator functions

P1.3 A chemical composition control block diagram:

Controller Process
Error
Desired . » Chemical
chemical - Valve Mixer tube composition
composition
Measurement
Measured chemical
Composition Infrared analyzer
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Problems 7

P1.4 A nuclear reactor control block diagram:

Controller Process
Error
Desired Motor and Reactor Output
ower level - .
p ampllﬁer and rods power level
Measurement
Measured chemical .
composition lonization chamber

P1.5 A light seeking control system to track the sun:

Measurement Controller
Desired Controller Process
Dual Ligh carriage e Motor
ua intensit i position rror inputs
Light —{ Y ;‘[ajeaory O Motor, » Photocell
source Photocells anner - K carriage, carriage
and gears position

P1.6 If you assume that increasing worker’s wages results in increased prices,
then by delaying or falsifying cost-of-living data you could reduce or elim-
inate the pressure to increase worker’s wages, thus stabilizing prices. This
would work only if there were no other factors forcing the cost-of-living
up. Government price and wage economic guidelines would take the place
of additional “controllers” in the block diagram, as shown in the block

diagram.
Process Controller
Market-based prices
Initial Government Prices
wages - IndUStry price
guidelines
Controller
Government [« K4
Wage increases wage Cost-of-living
guidelines
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8 CHAPTER 1 Introduction to Control Systems

P1.7 Assume that the cannon fires initially at exactly 5:00 p.m.. We have a
positive feedback system. Denote by At the time lost per day, and the
net time error by Ep. Then the follwoing relationships hold:

At = 4/3 min. + 3 min. = 13/3 min.
and
Er =12 days x 13/3 min./day .
Therefore, the net time error after 15 days is
Ep = 52 min.

P1.8 The student-teacher learning process:

Controller Process

Error Lectures

Desired > Knowledge
knowledge - Teacher Student

Measurement

Exams
Measured knowledge

P1.9 A human arm control system:

Controller Process
" u N :
Er:"ed a Brain Nerve signals Arm 8|( Qr:;(ion
location misees
y
z
Measurement
Pressure
Visual |nd.|cat|on of Eyes and -
arm location
pressure
receptors
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Problems 9

P1.10 An aircraft flight path control system using GPS:

Controller Actuators Process
Error .

Desired Compu'ter Ailerons, elevators, —  aircraft Flight
flight path - Auto-pilot rudder, and path
from air traffic engine power
controllers

Measurement

Measured flight path Global Positioning |«
System

P1.11 The accuracy of the clock is dependent upon a constant flow from the
orifice; the flow is dependent upon the height of the water in the float
tank. The height of the water is controlled by the float. The control system
controls only the height of the water. Any errors due to enlargement of
the orifice or evaporation of the water in the lower tank is not accounted
for. The control system can be seen as:

Controller Process
EeeISiLetdof Float level Flow from » Actual
b upper tank height
in float tank to float tank

P1.12 Assume that the turret and fantail are at 90°, if 6,, # 6p-90°. The fantail
operates on the error signal 8, - O, and as the fantail turns, it drives the
turret to turn.

) gqw =Wind angle
Wind gr = Fantail angle
qr = Turret angle

Controller Process
Error Torque

qw i q
aw - Fantail Gears & turret 4

Turret

Fantail

ar
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10 CHAPTER 1 Introduction to Control Systems

P1.13 This scheme assumes the person adjusts the hot water for temperature
control, and then adjusts the cold water for flow rate control.

Controller Process
Error
Desired water —O Valve adjust Hot water e
temperature - system water
3
( }——— Actual
water temperature
and flow rate
Desired water Valve adjust Cold water
flow rate - system Cold
water

Measurement

Measured water flow

Human: visual
Measured water temperature | gnd touch

P1.14 If the rewards in a specific trade is greater than the average reward, there
is a positive influx of workers, since

q(t) = fi(c(t) — (1))

If an influx of workers occurs, then reward in specific trade decreases,
since

c(t) = —f2(q(t)).

Controller Process

Average - Eror fl(C(t)-l’(l‘)) 4@ fz ( Q(t)) Total of

rewards rewards

(t) o)

P1.15 A computer controlled fuel injection system:

Controller Process
Desired Electronic ‘ High Pressure Fuel Fuel
Fuel - Control Unit Supply P}-‘mp and Pressure
Pressure Electronic Fuel
Measurement InJectors
Measured fuel pressure
Fuel Pressure

Sensor
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Problems 11

P1.16 With the onset of a fever, the body thermostat is turned up. The body
adjusts by shivering and less blood flows to the skin surface. Aspirin acts
to lowers the thermal set-point in the brain.

Controller Process
Desired temperature Adjustments » Body
or set-point from body - within the Body temperature
thermostat in the brain body

Measurement

Measured body temperature

Internal sensor

P1.17 Hitting a baseball is arguably one of the most difficult feats in all of sports.
Given that pitchers may throw the ball at speeds of 90 mph (or higher!),
batters have only about 0.1 second to make the decision to swing—with
bat speeds aproaching 90 mph. The key to hitting a baseball a long dis-
tance is to make contact with the ball with a high bat velocity. This is
more important than the bat’s weight, which is usually around 33 ounces
(compared to Ty Cobb’s bat which was 41 ounces!). Since the pitcher can
throw a variety of pitches (fast ball, curve ball, slider, etc.), a batter must
decide if the ball is going to enter the strike zone and if possible, decide
the type of pitch. The batter uses his/her vision as the sensor in the feed-
back loop. A high degree of eye-hand coordination is key to success—that
is, an accurate feedback control system.

P1.18 Define the following variables: p = output pressure, f; = spring force
= Kz, f; = diaphragm force = Ap, and f, = valve force = f; - fy4.
The motion of the valve is described by § = f,/m where m is the valve
mass. The output pressure is proportional to the valve displacement, thus
p = cy , where c is the constant of proportionality.

Spring Constant of
proportionality

Valve position
Screw  —n K Valve > Output
displacement - y ¢ pressure
x(®) P

Diaphragm area

Ja

A <
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12 CHAPTER 1 Introduction to Control Systems

P1.19 A control system to keep a car at a given relative position offset from a

lead car:
Position of
Throttl
rottle Follower follower
car

Position 3
Fuel ——  Lead car [ orreag—C)
throttle of lead
(fuel)

Video camera

position| & processing
algorithms le———— Reference
photo

= Relative

Actuator T Controller

Desired relative position

P1.20 A control system for a high-performance car with an adjustable wing:

Process
Controller Actuator
Road —
Adjustable conditions
Desired Computer [ % Race Car » Road
road - wing adhesion
adhesion
Measurement
- K Tire internal
Measured road adhesion strain gauges

P1.21 A control system for a twin-lift helicopter system:

Measurement
Measured separation
distance Radar
Controller Process
Desired separation _;O—p Separation distance
ditence Helicopter
Pilot P
Desired altitude —O—b » Altitude
Measurement
Measured altitude
Altimeter
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Problems 13

P1.22 The desired building deflection would not necessarily be zero. Rather it
would be prescribed so that the building is allowed moderate movement
up to a point, and then active control is applied if the movement is larger
than some predetermined amount.

Process
Controller

Desired HydraUIlc > Bu”dmg Deflection
deflection - stiffeners
Measurement
- K Strain gauges
Measured deflection on truss structure

P1.23 The human-like face of the robot might have micro-actuators placed at
strategic points on the interior of the malleable facial structure. Coopera-
tive control of the micro-actuators would then enable the robot to achieve
various facial expressions.

Controller Process
Error
Desired X Voltage Electro- ) , Actuator
actuator - Amplifier mechanical position
position actuator
Measurement
Position
Measured position sensor

P1.24 We might envision a sensor embedded in a “gutter” at the base of the
windshield which measures water levels—higher water levels corresponds
to higher intensity rain. This information would be used to modulate the
wiper blade speed.

Controller Process
Desired Electronic N nger blade Wiper
wiper speed  § - Control Unit and motor blade
speed
Measurement
K Water depth
Measured water level sensor
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14 CHAPTER 1 Introduction to Control Systems

P1.25 A feedback control system for the space traffic control:

Controller Actuator Process
Error . i
Desired Control e | Reaction Applied satellit Actual
orbit position 1= law commands control jets forces atellite orbit position

Measurement

Measured orbit position

Radar or GPS “

P1.26 Earth-based control of a microrover to point the camera:

Microrover

Camera position Controller

Receiver/ command
- > G(s) » Camera » Camera
Transmitter Gc(s) Rover ne
position Position
G
)
2
Measured camera
position
Sensor
P1.27 Control of a methanol fuel cell:
Recharging
Controller System Methanol water Fuel Cell
Desired solution Charge
Charge - GC(S) GR(S) G(S) Level
Level
Sensor
Measured charge level
H(s) |«
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Advanced Problems 15

Advanced Problems

AP1.1 Control of a robotic microsurgical device:

Microsurgical
Controller robotic manipulator
Gels) 66 e
Sensor
H(s) |«

STRUCTURAL DESIGN OF THE TOWER
ELECTRICAL AND POWER SYSTEMS

SENSORS
Rotor rotational sensor
Wind speed and direction sensor CONTROL SYSTEM DESIGN AND ANALYSIS
ACTUATORS . . . ELECTRICAL SYSTEM DESIGN AND ANALYSIS
Motors for manipulatiing the propeller pitch Physical System Modeling POWER GENERATION AND STORAGE

Sensors and Actuators

Signals and Systems

Computers and
Logic Systems

Software and
Data Acquisition

CONTROLLER ALGORITHMS COMPUTER EQUIPMENT FOR CONTROLLING THE SYSTEM
DATA ACQUISTION: WIND SPEED AND DIRECTION SAFETY MONITORING SYSTEMS

ROTOR ANGULAR SPEED
PROPELLOR PITCH ANGLE

AP1.3 The automatic parallel parking system might use multiple ultrasound
sensors to measure distances to the parked automobiles and the curb.
The sensor measurements would be processed by an on-board computer
to determine the steering wheel, accelerator, and brake inputs to avoid
collision and to properly align the vehicle in the desired space.
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16 CHAPTER 1 Introduction to Control Systems

Even though the sensors may accurately measure the distance between
the two parked vehicles, there will be a problem if the available space is
not big enough to accommodate the parking car.

Controller Actuators Process

E .
Desired mor | On-board ,| Steering wheel, |, Automobile » Actual
automobile  § = computer accelerator, and automobile
position brake position

Measurement

Position of automobile

relative to parked cars Ultrasound

and curb

AP1.4 There are various control methods that can be considered, including plac-
ing the controller in the feedforward loop (as in Figure 1.3). The adaptive
optics block diagram below shows the controller in the feedback loop, as
an alternative control system architecture.

Astronomical Process
object
‘ .
e I‘;Jnf‘:o‘;npensafed »| Astronomical Compensated
y 9 telescope image
N mirror
Measurement
Wavefront | Wavefront Wavefront
corrector reconstructor sensor

Actuator & controller
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Design Problems 17

Design Problems

CDP1.1 The machine tool with the movable table in a feedback control configu-

ration:
Controller Actuator EreEs

Error X T .
Desired Amplifier Positioning Machine Actual
position - motor tool with position

! table x
Measurement
Measured position Position sensor

DP1.1 Use the stereo system and amplifiers to cancel out the noise by emitting
signals 180° out of phase with the noise.

Controller Process
Noise
Desired sonal | Shift phase Positioning Machine Noise
noise =0 - by 180 deg motor tool with cabin
table
Measurement
Microphone

DP1.2 An automobile cruise control system:

Desired Controller Process
shaft Bl .
Desired —¥ 1/K speed meoctgllc —H Valve Automobile K > Actual
speed - . d
Fanto and engine sheed.
set by
driver
Measurement
Shaft speed
Measured shaft speed sensor Drive shaf t speed
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DP1.3 An automoted cow milking system:

Measurement

Vision system

Cow location

Controller

Motor and

Desired cup
location

gears

Actuator

Robot arm and
cup gripper

Location
of cup

Process

Measurement

Measured cup location

Vision system

DP1.4 A feedback control system for a robot welder:

Desired
position

DP1.5 A control system for one wheel of a traction

Controller Process
Voltage
Eror | Computer and ° Motor and
amplifier arm
Measurement

Measured position

Cow and
milker

—> Milk

Weld

Vision camera

Sensor

= Radius of wheel

Sensor

Engine torque Antislip
controller
Wheel
T+ Wheel speed
& a dynamics
+
Actual slip -
1Ry | Ru
Vehicle
dynamics Vehicle speed
Antiskid
Brake torque controller

top

position

— Measured

slip

control system:
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Design Problems 19

DP1.6 A vibration damping system for the Hubble Space Telescope:

Controller Actuators Process
E Signalto
Desired rror Computer Gyro and cancel the jitter Spacec!’aft Jitter of
jitter=0 - reaction wheels dynamics vibration
Measurement
Rate gyro a
Measurement of 0.05 Hz jitter sensor

DP1.7 A control system for a nanorobot:

Controller Actuators Process
Desired Error Bio- Plane surfaces Nanorobot » Actual
nanorobot - computer d i nanorobot
position and propellers position

Measurement

External beacons

Many concepts from underwater robotics can be applied to nanorobotics
within the bloodstream. For example, plane surfaces and propellers can
provide the required actuation with screw drives providing the propul-
sion. The nanorobots can use signals from beacons located outside the
skin as sensors to determine their position. The nanorobots use energy
from the chemical reaction of oxygen and glucose available in the human
body. The control system requires a bio-computer—an innovation that is
not yet available.

For further reading, see A. Cavalcanti, L. Rosen, L. C. Kretly, M. Rosen-
feld, and S. Einav, “Nanorobotic Challenges n Biomedical Application,
Design, and Control,” IFEE ICECS Intl Conf. on FElectronics, Circuits
and Systems, Tel-Aviv, Israel, December 2004.
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Mathematical Models of Systems

Exercises

E2.1 We have for the open-loop

and for the closed-loop

e=r—y and y=e>.
So,e=r—e?and e’ +e—r=0.
16
14 -
12 8
s : 8
> 8} i
6 open-loop .
W |
2F closed-loop: —
0 L L L L L L
0 0.5 1 1.5 2 25 3 35 4
r
FIGURE E2.1

Plot of open-loop versus closed-loop.

For example, if 7 = 1, then e? + e — 1 = 0 implies that e = 0.618. Thus,
y = 0.382. A plot y versus r is shown in Figure E2.1.

20
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E2.2 Define

f(T) —R= Roe_o'lT

and
AR=f(T)— f(Tp) , AT =T -1y .
Then,
of
AR = {(T) - [(To) = = AT+ ...
or T=T()=20°
where
of —0.1T;
— = —0.1Rge” "% = —135,
or T=TH=20° ’

when Ry = 10,000€2. Thus, the linear approximation is computed by
considering only the first-order terms in the Taylor series expansion, and
is given by

AR = —135AT .

E2.3 The spring constant for the equilibrium point is found graphically by
estimating the slope of a line tangent to the force versus displacement
curve at the point y = 0.5cm, see Figure E2.3. The slope of the line is

K~1.
2
1.5 .
1L Spring breaks |
05F .
O . -
G
g 05 .
2
-1+ -
1.5 .
2+ -
251 Spring compresses b
-3 i i i i i i i i i
-2 -1.5 -1 -0.5 0 0.5 1 1.5 2 25 3
y=Displacement (cm)
FIGURE E2.3

Spring force as a function of displacement.
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22 CHAPTER 2 Mathematical Models of Systems

E2.4 Since
1
R(S) = ;
we have
4(s + 50)
Y(s) = .
() s(s+20)(s + 10)

The partial fraction expansion of Y(s) is given by

. Al A2 A3

Y
=<+ T 5710

where
Ai=1, Ay =06and A3=—-16.
Using the Laplace transform table, we find that
y(t) =1 +0.6e720F — 1,671 .

The final value is computed using the final value theorem:

. . 4(s + 50)
A yt) = iy s | e 0s + 200)

E2.5 The circuit diagram is shown in Figure E2.5.

R,
NN
v
AL o §R1
o + +
+
Vin VO

i|-o

FIGURE E2.5
Noninverting op-amp circuit.
With an ideal op-amp, we have

Vo = A(vip, —v7),
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where A is very large. We have the relationship

N Ri+ R» o

Therefore,

Ry

o:A in — 5 . Yo
v (U R1+RQU

);

and solving for v, yields

A

= ARy
L+ 7255

Vo Vin-

Sinc.e A .>> 1, it follows that 1 + R?f;b s Rffl}%g' Then the expression for
v, simplifies to

vo=2t%,
Ry
E2.6 Given
y=flx)=2"?
and the operating point
xo=1/2,

we have the linear approximation
Ay = KAx
where

dl‘ To=1/2 2 zo=1/2 \/5

K

E2.7 The block diagram is shown in Figure E2.7.

+ E3(s)
R(s) Gy(s) |—f Gy(s) > 1(s)

I
=
n
<

7 Y

FIGURE E2.7
Block diagram model.
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24 CHAPTER 2 Mathematical Models of Systems

Starting at the output we obtain
I(s) = G1(s)Ga(s)E(s).
But E(s) = R(s) — H(s)I(s), so
I(s) = G1(s)Ga(s) [R(s) — H(s)I(s)]-
Solving for I(s) yields the closed-loop transfer function

I(s) _ G1(s)Ga(s)
R(s) 14 Gi(s)Ga(s)H(s)

E2.8 The block diagram is shown in Figure E2.8.

FIGURE E2.8
Block diagram model.

Starting at the output we obtain
1 1
Y(s) = gZ(s) = ;Gg(s)A(s).

But A(s) = G1(s)[—H2(s)Z(s) — Hs(s)A(s) + W(s)] and Z(s) = sY(s),

Y (s) = —G1(s)Ga(s)Ha(s)Y (s) — G1(s)Hs(s)Y (s) + %Gl(s)Gg(s)W(s).
Substituting W (s) = KE(s) — Hi(s)Z(s) into the above equation yields

Y(s) = —G1(s)Ga(s)Ha(s)Y (s) — G1(s)Hs(s)Y (s)
+ Gi()G(s) [KE(s) — Hi()2(s)
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and with F(s) = R(s) — Y (s) and Z(s) = sY(s) this reduces to
Y(s) = [=G1(s)Ga(s) (Ha(s) + Hi(s)) — Gi(s)Hs(s)
S GUG)KTY (5) + G (5)Gals) K R(s).

Solving for Y'(s) yields the transfer function

B KG1(s)Ga(s)/s
N 1+ Gl (S)GQ(S) [(HQ(S) + Hl(s)] + Gl (S)Hg(s) + KGl (S)GQ(S)/S.

E2.9 From Figure E2.9, we observe that

T(s)

Fy(s) = Ga(s)U(s)
and
Fr(s) = Gs(s)U(s) .

Then, solving for U(s) yields

1
U(S) = GQ(S) Ff(s)
and it follows that
Fals) = G2U(6)

Again, considering the block diagram in Figure E2.9 we determine
Fy(s) = G1(s)Ga(s)[R(s) — Ha(s)Fy(s) — Ha(s)FRr(s)] -
But, from the previous result, we substitute for Fr(s) resulting in
Fy(s) = G1(s)Ga(s)R(s)—=G1(s)G2(s) Ha(s) Fr (s)—=G1(s) Ha(s)Gs(s) Fy(s) -
Solving for F(s) yields

_ G1(s)Ga(s)
1+ G1(s)Ga(s)Ha(s) + G1(s)Gs(s)Ha(s)

Fy(s) R(s) .
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26 CHAPTER 2 Mathematical Models of Systems

Hy(s)

UGs) Go(s) >F (s)

R(s) —HO— Gy(s)

Uis) L—» G3(s) » FR(s)

Hy(s)

FIGURE E2.9
Block diagram model.

E2.10 The shock absorber block diagram is shown in Figure E2.10. The closed-
loop transfer function model is

Ge(s)Gp(5)G(s)

T(s) = .
1+ H(s)Ge(s)Gp(s)G(s)
PI
Controller Gear Motor Pis:;??;:;?n
+
R(s) G(s) M Gpls) » G > Y(s)
Desired piston - Piston
travel travel
Sensor
H(s)
Piston travel

measurement

FIGURE E2.10
Shock absorber block diagram.

E2.11 Let f denote the spring force (n) and x denote the deflection (m). Then
Af
= Ay
Computing the slope from the graph yields:
(a) o =—0.14m — K = Af/Az =10n / 0.04 m = 250 n/m
(b) 2o =0m — K =Af/Az =10n / 0.05 m = 200 n/m
(¢) 2o =0.3m — K =Af/Az =3n / 0.05 m = 60 n/m
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E2.12 The signal flow graph is shown in Fig. E2.12. Find Y (s) when R(s) = 0.

Y (s)

FIGURE E2.12
Signal flow graph.

The transfer function from Ty(s) to Y(s) is

G(S)Td(s) - KlKQG(S)Td(S) o G(S)(l - KlKg)Td(S) ‘

Y(s) = 1 — (—K2G(5)) - 1+ KaG(s)

KiKy=1,

then Y (s) = 0 for any Ty(s).

E2.13 Since we want to compute the transfer function from Rs(s) to Yi(s), we
can assume that R; = 0 (application of the principle of superposition).
Then, starting at the output Y;(s) we obtain

I
=
—
wn
-
A

FIGURE E2.13
Block diagram model.
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E2.14

E2.15

CHAPTER 2 Mathematical Models of Systems

Yi(s) = Ga(s) [-Hi(s)Y1(s) + G2(s)Gs(s)W (s) + Go(s)W (s)],
[1+ G3(s)Hi(s)] Yi(s) = [Gs(s)Ga(s)Gs(s)W (s) + Ga(s)Go(s)] W (s)-
Considering the signal W (s) (see Figure E2.13), we determine that
W(s) = Gs(s) [Ga(s) Ra(s) — Ha(s)W (s)],
[1+ Gs(s)Ha(s)] W (s) = Gs(s)Ga(s)Ra(s).

Substituting the expression for W (s) into the above equation for Yi(s)
yields

Yi(s) _ Ga(s)G3(s)Ga(s)G5(s)Gs(s) + Gs(s)Ga(s)G5(s)Go(s)
1

Ro(s) 1+ Gs(s)Hy(s) + Gs(s)Ha(s) + G3(s)G5(s)Hy(s)Ha(s)"
For loop 1, we have
Ryiy + L1% + L /(il —i2)dt + Ro(i1 —i2) = v(?) .
at
And for loop 2, we have
C% /i2dt+ Lg% + Roliy — 1) + Cil /(2'2 i)t =0
The transfer function from R(s) to P(s) is
P(s) 4.2

R(s) 83 +2s2+4s+42"°

The block diagram is shown in Figure E2.15a. The corresponding signal
flow graph is shown in Figure E2.15b for

49
PO/ES) = 397 ras v a2
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V‘] (S) VZ(S) 06 q(S) 1
R(s > > g I e— > P
) - 7 s §2+25+4 ()
(@)
06 !
V1 Vz T 2 +2s+4
R(s) ! 4 P(s)
(b)
FIGURE E2.15

(a) Block diagram, (b) Signal flow graph.

E2.16 A linear approximation for f is given by

Af = g—i Az = 4k Az = 4kAx

where z, =1, Af = f(x) — f(z,), and Az =z — x,,.
E2.17 The linear approximation is given by

Ay = mAx
where
m = @
B 8x T=xo ‘

(a) When z, = 1, we find that y, = 2.4, and y, = 13.2 when z, = 2.

(b) The slope m is computed as follows:

Jy

ox

=1+4.222.

Therefore, m = 5.2 at z, = 1, and m = 18.8 at z, = 2.

E2.18 The output (with a step input) is

10(s + 2)

YO = e
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30 CHAPTER 2 Mathematical Models of Systems

The partial fraction expansion is

4 5 1 1

Y(s) = — 4+ = — .
(5) 3s+3s+3 s+5

Taking the inverse Laplace transform yields

4 5
y(t) = 3 + §6_3t — 370,
E2.19 The input-output relationship is
Vo A(K—1)
V 1+ AK
where
Ko _ 4
Z1+ Zs

Assume A > 1. Then,

where

R1 R2

== d Zy=—"7——.
! RiCis+1 a 2 RoChs +1
Therefore,

VO(S) o Rg(Rlcls + 1) 2(8 + 1) ‘

V(s)  Ri(RaCos+1) s+2
E2.20 The equation of motion of the mass m, is
medp + (bg + bs)Ep + kaxp = badin, + kaZin -
Taking the Laplace transform with zero initial conditions yields
[mes? + (ba + bs)s + ka] Xp(s) = [bas + ka) Xin(s) -
So, the transfer function is

X, (s) bas + kq 0.7s + 2

Xin(s)  mes? + (bg +bs)s + kg T s24+28s+2°

E2.21 The rotational velocity is

2.5(s 4+ 2) 1

)= GBI I
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Expanding in a partial fraction expansion yields

025 n 0.0234  0.1562  0.2734
s s+5  (s+1)2 s+1

w(s)
Taking the inverse Laplace transform yields

w(t) = 0.25 + 0.0234e " — 0.1562te™" — 0.2734e~" .

The closed-loop transfer function is

Y(s)
R(s)

KK,
52 4 (K1 + Ky K3 + KlKg)S + K1 Ko K3 '

= T(s) =

The closed-loop tranfser function is

Y(s) .. 10
Re) T = @10

Let = 0.6 and y = 0.8. Then, with y = az3, we have
0.8 = a(0.6)% .
Solving for a yields a = 3.704. A linear approximation is
Y — Yo = 3axy(z — o)
or y = 4x — 1.6, where y, = 0.8 and z, = 0.6.
The equations of motion are
mii + k(xy —x9) = F
modo + k(xe —x1) =0 .

Taking the Laplace transform (with zero initial conditions) and solving
for Xy(s) yields

k

Xols) = (mos? + k)(mys2 + k) — k2

F(s) .
Then, with m; = my = k = 1, we have

Xa(s)/P() = g -

The transfer function from Ty(s) to Y(s) is

Y ()/Tals) = 1 g;(gzg(s) |

This material is protected by Copyright and written permission should be obtained from the publisher prior to any prohibited reproduction, storage in a
retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording, or likewise.
For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.



32 CHAPTER 2 Mathematical Models of Systems

E2.27 The transfer function is

Vo(s) R2R4Cs RoRy
V(s)  Rs RiR3

=24s+ 144 .

E2.28 (a) If

1

— — and H(s)=2s+15
2+ 155+50 O (5)=2s+15,

G(s)

then the closed-loop transfer function of Figure E2.28(a) and (b) (in
Dorf & Bishop) are equivalent.

(b) The closed-loop transfer function is

1
T(s)= .
() s2+17s + 65
E2.29 (a) The closed-loop transfer function is
G(s) 10 10
T(s)= = h G(s) = 55— .
&) =156H) " Zrzsr e GO =55
(b) The output Y (s) (when R(s) =1/s) is
0.12 0.24 0.12
Y(s) = - .
&= 0 Tara
Step Response
08
07
06
o 0'5 ............................
El
Z 04r
S
< 03
02
0.1
0 . . . .
0 1 2 3 4 5 6
Time (sec)
FIGURE E2.29

Step response.
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(¢) The plot of y(t) is shown in Figure E2.29. The output is given by
y(t) =0.12 — 0.24¢~ 10 + 0.12¢=20¢

E2.30 The partial fraction expansion is

a b
_|_
S+ p1 S+ p2

V(s) =

where p1 =4 — 19.65 and po = 4 + 19.65. Then, the residues are
a=-10.25 b=10.25.
The inverse Laplace transform is

o(t) = —10.25e 41960t 4 10 25747196008 — 90 4674 5in 19.6¢ .
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Problems

P2.1

P2.2

P2.3

CHAPTER 2 Mathematical Models of Systems

The integrodifferential equations, obtained by Kirchoff’s voltage law to
each loop, are as follows:

d(iy —i2)

gt Ry(iy —i2) = v(t) (loop 1)

1
Ryi1 + a /ildt + L

and

d(ie — 1)

7 =0 (loop2).

1
Rsio + R /igdt + Ro(ia —i1) + Ly
2

The differential equations describing the system can be obtained by using
a free-body diagram analysis of each mass. For mass 1 and 2 we have
Mgy + ki2(yr — y2) + byn + kayr = F(1)
Maijs + ki2(y2 — 1) = 0.

Using a force-current analogy, the analagous electric circuit is shown in
Figure P2.2, where C; — M; , Ly — 1/ky , L1o — 1/k12 , and R — 1/b..

F() D C, — R

FIGURE P2.2
Analagous electric circuit.

The differential equations describing the system can be obtained by using
a free-body diagram analysis of each mass. For mass 1 and 2 we have

Mz + kxq —I—k‘(l‘l —.1'2) = F(t)
Mo+ k(zg — 1) + bie =0 .

Using a force-current analogy, the analagous electric circuit is shown in
Figure P2.3, where

C—M L—1/k R—1/b.
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ro(D L3 L. ==c §R

FIGURE P2.3
Analagous electric circuit.

P2.4 (a) The linear approximation around v;, = 0 is v, = 0v;,, see Fig-
ure P2.4(a).
(b) The linear approximation around vy, = 1 is v, = 2v;, — 1, see Fig-
ure P2.4(b).
(a) (b)
0.4 T T T 4 T T
35 :
03} .
3r 7
02t 1 /
/
25 P
/
01f 4 /
2t / .
/
7
e o - e — S 15¢f 4 :
linear approximation
‘I - -
_0‘| = .
05 7% 1
/
02 | . f
of / i
/
03 F . /
-05 , linear approximation -
/
04 ; ; ; p / ;
-1 -0.5 0 05 1 -1 0 1 2
vin vin
FIGURE P2.4

Nonlinear functions and approximations.
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P2.5 Given
Q=K(P —P)Y?.

Let 0P = P, — P, and 0P, = operating point. Using a Taylor series
expansion of (), we have

oQ

Q=0Q, + —— OP —6P,) + ---
O6P | rar, )
where
oQ K___
Qo= KoP, an 9P |,y 2000

Define AQ = Q — Q, and AP = §P — §P,. Then, dropping higher-order
terms in the Taylor series expansion yields

AQ = mAP
where
K
BT

P2.6 From P2.1 we have

d(iy —i2)

I + Rg(il — ig) = v(t)

1
Ryi + a/ildt + L

and

d(ie — 1)

7 =0.

1
Rsio + E /’igdt + Rg(ig — il) + L
2

Taking the Laplace transform and using the fact that the initial voltage
across (Y is 10v yields

1
[Rl + m + Lis+ RQ][l(S) + [_R2 B LlS]IQ(S) =0
1

and

1 10
[—RQ — Lls]ll(é’) + [Llé’ + R3 + ——+ R2]12(3) = -
(s s

Rewriting in matrix form we have

Ry + &= + Lis + Ry —Ry — Lys
—Ry — L1s L1$+R3+CL2S+R2
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Solving for Iy yields

n(s) \ 1| Lis+Rs+ g5+ Ry Ry + Lys 0
I(s) A Ry + Lis Ri+ &~ + Lis+ R ~10/s
or
—10(R; +1/Cis+ Lis+ R
hs) = et et )
where

1 1
A= (R +——+Lis+ Ry)(L1s+ R3 + — + Ry) — (Ry + Lys)* .
Cis Css

P2.7 Consider the differentiating op-amp circuit in Figure P2.7. For an ideal
op-amp, the voltage gain (as a function of frequency) is

ZQ(S)
Va(s) = —
2(s) Zl(s)Vl(S),
where
Ry
] = —
" 14 R Cs

and Zy = Ry are the respective circuit impedances. Therefore, we obtain

Ry(1+ R1C's
vagz—fiLﬁf;lb«g
4
1 22
C R,
+ R1 ——O +
Vi(s) V,(s)
O _L O

FIGURE P2.7
Differentiating op-amp circuit.
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P2.8 Let
Go+Cs —C's -Gy
A= —C's G1+2Cs —C's
-Gy —C's Cs+ Gy
Then,
Aj Vs Aph/A
= I — =2

Vi NG or orvl Anh/A

Therefore, the transfer function is

—Cs 20s+ Gy
Vs A —Go —Cs
1 11 2Cs + Gy —C's
—C's Cs+ Gy
Pole-zero map (x:poles and o:zeros)
3 T T T
2r o il
1+ i
3
o) or x X il
£
_’| - -
2k o —
-3 i i i i i i i
-8 -7 -6 -5 -4 3 2 -1 0
Real Axis
FIGURE P2.8

Pole-zero map.
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B C2R1R252+2CR1$+ 1
 C2R1R2s? + (2R + Ry)Cs + 1

Using Ry = 0.5, Ry = 1, and C = 0.5, we have

s +4s+8  (s+2+25)(s+2—2j)
s2+85+8  (s+4+V8)(s+4—8)

T(s) =
The pole-zero map is shown in Figure P2.8.
P2.9 From P2.3 we have

Mz + kxq —|—k7($1 — 1‘2) = F(t)
Mi’g—kk‘(l’g—wl)—kbi’g =0.

Taking the Laplace transform of both equations and writing the result in
matrix form, it follows that

Ms? 4 2k —k X1(s) F(s)
—k Ms? 4 bs + k Xo(s) 0

Pole zero map

0.4 T
x
03 - nl
0.2 - (6} 4
x
0.1 nl
@
<
o o n
&
£
-0.1 nl
x
-0.2 - © .
-03 nl
x
04 I I I I I
-0.03 -0.025 -0.02 -0.015 -0.01 -0.005 0
Real Axis
FIGURE P2.9

Pole-zero map.
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(v )=
Xo(s) A

where A = (Ms? + bs + k)(Ms? + 2k) — k? . So,

or

Ms?+bs+k k
k Ms? + 2k

8

~ Xi(s) Ms*+bs+k
G = Frgy = A '

When b/k =1, M =1, b>/Mk = 0.04, we have

52 +0.04s + 0.04

G(s) = .
(8) = ST 70.045% 7 0.1252 7 0.00325 F 0.0016

The pole-zero map is shown in Figure P2.9.

P2.10 From P2.2 we have

Mgy + ki2(y1 — y2) + byn + kwyr = F(t)
Moyijs + k12(y2 —y1) =0 .

Taking the Laplace transform of both equations and writing the result in
matrix form, it follows that

M,s? 4+ bs + k1 + k1o —k19 ( Yi(s) ) B ( F(s) )
[ —k12 Mss? + kio Ya(s) a 0
or
Yi(s) \ 1 Mss? + ko k12 F(s)
(Yg(s) ) A R Mis?tbs+E R ( 0 )
where

A= (M282 + k12)(M182 +bs+ k1 + ki2) — k‘%z .
So, when f(t) = asinw,t, we have that Y7(s) is given by

aM2w0(32 + ]{712/M2)
(s? +w3)A(s)

For motionless response (in the steady-state), set the zero of the transfer
function so that

Yi(s) =

o k1o
(0]

k
2, Fi2y o 9 _
(3+?‘2) s*+w, or w; L
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P2.11 The transfer functions from V,(s) to Vy(s) and from Vy(s) to 6(s) are:

K1K>
(Lgs + Ry)(Les + Re)
Ko
(Js2+ f8)((La+ La)s + Ry + Ry) + K3Kpps

The block diagram for 6(s)/V,(s) is shown in Figure P2.11, where

N 9(3) Vd(s) N KlKQKm
POV =y e T A

Va(s)/Ve(s) =

,and

0(s)/Va(s) =

where

A(s) = s(Les+ Re)(Lgs+ Rq)((Js+b)((Lag+ La)s + Ra+ Ry) + K K3) .

le \% Iq Vd lg T w
Vel Lol Ky ;4 = K3 —i@—» 1 m
c L cs+Re L s+Rq (L oL Js+Ra+Ra [ Km [ s > —==d

wa
K3

nl=

%)

A

FIGURE P2.11
Block diagram.

P2.12 The open-loop transfer function is

Y(s) K
R(s) s+10°
With R(s) =1/s, we have
K
Yis) = s(s+10)

The partial fraction expansion is

K /1 1
Vis)= = (2
(5) 10<s s+10)’

and the inverse Laplace transform is

vt = 16 (1= ).

As t — oo, it follows that y(t) — K/10. So we choose K = 100 so that

This material is protected by Copyright and written permission should be obtained from the publisher prior to any prohibited reproduction, storage in a
retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording, or likewise.
For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.
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y(t) approaches 10. Alternatively we can use the final value theorem to
obtain

K
—=10.
10

Y(t)i—oo = lim sY(s) =

s—0

It follows that choosing K = 100 leads to y(t) — 10 as t — oc.
P2.13 The motor torque is given by

T (5) = (Jin8® 4 byms)0m(s) + (Jps* + brs)nfr(s)
n((Jps® + bys)/n* + Jps? +brs)0L(s)

where
n=0r(s)/0n(s) = gear ratio .
But
Tin(s) = Kmlg(s)

and

1,(5) = 1 V(o)

(Lg + Lf)s + Ry, + Ry

and

Vile) = K Iy(s) = 7 Vi)

Combining the above expressions yields

HL(S) N KgKm
Vi(s)  nii(s)As(s)
where
2
m bm
Ay(s) = Jps* +brs+ %
and

As(5) = (Lys + Lys + Ry + Rp)(Ry + Lys)
P2.14 For a field-controlled de electric motor we have

wls)/Vyls) = Sl B
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With a step input of Vi(s) = 80/s, the final value of w(t) is

e 80K, Km
W(t) oo = ;111(1) sw(s) = Rb 24 or R~ 0.03 .

Solving for w(t) yields

80K, 1 S0K.
t) = mﬁ‘l{ }: M o=/ Ity 9 g(1_ /Ity
w0 =R Sero S T R e ) = A

At t=1/2, w(t) =1, so
w(1/2) =241 —e /I =1 implies b/J = 1.08 sec .

Therefore,

0.0324

w(s)/Vy(s) = S11.08°

P2.15 Summing the forces in the vertical direction and using Newton’s Second
Law we obtain

i+ —x=0.
m
The system has no damping and no external inputs. Taking the Laplace

transform yields

oS

X = 2k m

)

where we used the fact that z(0) = 9 and #(0) = 0. Then taking the
inverse Laplace transform yields

| k
t) = —t.
x(t) = xo cos -

P2.16 Using Cramer’s rule, we have

)

or
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where A = 4(1) — 2(1.5) = 1 . Therefore,

4(6) —11.5(11) ) Ir 1(11)

The signal flow graph is shown in Figure P2.16.

T = =—-1.

FIGURE P2.16
Signal flow graph.
So,

6(1) — 1.5(4
$1:%=7-5 and x9 =
1

P2.17 (a) For mass 1 and 2, we have

Mz + Kl(wl — 1’2) + bl(ig — j}l) =0
MoZo + Kg(wg — wg) + bz(w'g — 562) + Kl(wg — xl) =0.

(b) Taking the Laplace transform yields

(M1$2 + b18 + Kl)Xl(S) — KlXQ(S) = blng(S)
—K1X1(s) + (M232 + bys + Ky + K2)Xo(s) = (bes + K2)X3(s) .

(c) Let

where
p(s) = 82M2 + Sf2 + K1+ K
and

q(s) = $2My + sfi+ Ky .
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The signal flow graph is shown in Figure P2.17.

FIGURE P2.17
Signal flow graph.

(d) The transfer function from X3(s) to Xq(s) is

Xi1(s) _ K1G1(s)Ga2(s)G3(s) + Ga(s)Gs(s)
Xg(s) 1-— K%Gg(s)Gg(s) '

P2.18 The signal flow graph is shown in Figure P2.18.

1 a a
v z, Y, z,
1 Y1 P
Y -Z, v,

FIGURE P2.18
Signal flow graph.

The transfer function is

Va(s) Y12,Y37,4
Vi(s) 14+ Y1Zo + Y320 + Y324+ Y1 222,Y5

P2.19 For a noninerting op-amp circuit, depicted in Figure P2.19a, the voltage
gain (as a function of frequency) is

Z1(8) + Za(s)

Vo(s) = 70

Vin(s),

where Z;(s) and Zs(s) are the impedances of the respective circuits. In
the case of the voltage follower circuit, shown in Figure P2.19b, we have
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(a)

FIGURE P2.19
(a) Noninverting op-amp circuit. (b) Voltage follower circuit.

Z1 = oo (open circuit) and Zy = 0. Therefore, the transfer function is

N 4
‘/;n(s) N Z -

P2.20 (a) Assume R, > Ry and R; > Ry. Then Ry = R; + Ry = Ry, and

Vgs = VUin — Vo ,

where we neglect i;,, since Ry > R,. At node S, we have

Vo gmlls

Yo ( V) Or
— = gmVgs = gm(Vin — =
Rs gm gs gm wm o /U“,L 1 + ngs
(b) With g,, Rs = 20, we have
Vo 20
—=—=095.
Vin 21

(¢) The block diagram is shown in Figure P2.20.

Vin(s) 8mRs > v(s)
FIGURE P2.20
Block diagram model.
P2.21 From the geometry we find that
lh—1 l
Az =k=——2(z—y)— 7y
l l
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The flow rate balance yields

A% = pAz which implies Y(s) = ———=

By combining the above results it follows that

v(s) = k(B2 (X9 - Y(5)) - 2Y ()

Therefore, the signal flow graph is shown in Figure P2.21. Using Mason’s

FIGURE P2.21
Signal flow graph.

gain formula we find that the transfer function is given by

(ORI ¢
X(S) 1+lﬁ§s+k(llll;Al§)p S+K2+K1’
where
k(ll — lg)p ZZP
K=" d Ky=-—-="-.
! LA P B2

P2.22 (a) The equations of motion for the two masses are

o5 L\? L
ML"6, + MgL6y + k 3 (91—92):§f(t)

2
ML*0y + MgL6y + k <§> (63 —60,)=0.

With 91 = w1 and 92 = wy, we have

. (g9 Kk k Q)
a=—(F+ 1) o+ e+ oav

) k g k
= g (24 5 e, .
2= <L+4M>92
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a <+
F - Wi a9
—> 1ML | Vs | s
A
-
(@) b |<
w
s |—2 5| s 92 >
a -
Imag(s)
1 9. k
/+J C oM
9, k
(b) TINL M ™~
(0]
<~ )7
- = Re(s)

FIGURE P2.22
(a) Block diagram. (b) Pole-zero map.
(b) Define a = g/L + k/4M and b = k/4M. Then

Oi(s) 1 s> +a
F(s) 2ML(s?2+a)?2—b2 "

(c) The block diagram and pole-zero map are shown in Figure P2.22.
P2.23 The input-output ratio, V./Vip, is found to be

Vee  B(R—1)+hiRy
‘/i B _ﬂhre+hie(_hoe+Rf) .

P2.24 (a) The voltage gain is given by

Vo RpB152(R1 + Ra)

Vin  (R1+4 R2)(Rg + hie1) + Ri(R1 + R2)(1+ 1) + RiRL1 P2
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(b) The current gain is found to be
1
<= =815, .
b1

(¢) The input impedance is

Vin _ (R1 + RQ)(RQ + hiel) + Rl(R1 + RQ)(l + 51) + R1R,(1 02

1 R+ R» ’

and when 135 is very large, we have the approximation

vin __ RpR1f1052
ip1 Ri+Ry

P2.25 The transfer function from R(s) and Ty(s) to Y (s) is given by

(G(s)R(s) + Td(s))) +Ty(s) + Gs)R(s)

Also, we have that

when R(s) = 0. Therefore, the effect of the disturbance, Ty(s), is elimi-
nated.

P2.26 The equations of motion for the two mass model of the robot are

Mz +b(& —9) + k(x —y) = F(t)
my+by—2)+kly—xz)=0.

Taking the Laplace transform and writing the result in matrix form yields

Ms? +bs+k  —(bs+k) X(s) F(s)
—(bs+k) ms®+bs+k Y (s) 0
Solving for Y (s) we find that

F(s)  s2s24 (14 2) (%er %)] .
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P2.27 The describing equation of motion is

2

. 1
mZ=mg—k— .

z

Defining

2
f(z>i) = _ki

mz2

leads to

Z = f(z,i) .

The equilibrium condition for i, and z,, found by solving the equation of
motion when

2=2=0,
is
2
k:zo_ 9
— =2z
mg

We linearize the equation of motion using a Taylor series approximation.
With the definitions

Az=2z—2, and Ai=1—1i,,

we have Az = z and Az = . Therefore,

AZ = f(Z,’L) = f(Zoa'L.o) + % ij{‘)’ Az + % ;zzj A1 —+ .-
But f(z0,i,) = 0, and neglecting higher-order terms in the expansion
yields
o 2ki? 2ki,
Ay = Llop, Zlop,
mz3 mz2

Using the equilibrium condition which relates z, to i,, we determine that

. 2

Ar=In—ZAi.

Zo 1o

Taking the Laplace transform yields the transfer function (valid around
the equilibrium point)

AZ(s) _ —9/io

Al(s) s2—2g/z,
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P2.28 The signal flow graph is shown in Figure P2.28.

FIGURE P2.28
Signal flow graph.

(a) The PGBDP loop gain is equal to -abed. This is a negative transmis-
sion since the population produces garbage which increases bacteria
and leads to diseases, thus reducing the population.

(b) The PMCP loop gain is equal to +efg. This is a positive transmis-
sion since the population leads to modernization which encourages
immigration, thus increasing the population.

(¢) The PMSDP loop gain is equal to +ehkd. This is a positive trans-
mission since the population leads to modernization and an increase
in sanitation facilities which reduces diseases, thus reducing the rate
of decreasing population.

(d) The PMSBDP loop gain is equal to +ehmed. This is a positive
transmission by similar argument as in (3).

P2.29 Assume the motor torque is proportional to the input current
T = ki .
Then, the equation of motion of the beam is
Jb=ki,

where J is the moment of inertia of the beam and shaft (neglecting the
inertia of the ball). We assume that forces acting on the ball are due to
gravity and friction. Hence, the motion of the ball is described by

mx = mgeop — bt
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where m is the mass of the ball, b is the coefficient of friction, and we
have assumed small angles, so that sin ¢ = ¢. Taking the Laplace transfor
of both equations of motion and solving for X(s) yields

X(s)/1(s) = 32(%% .
P2.30 Given

k
75+ 1

H(s) =

where 7 = 4us = 4 x 107% seconds and 0.999 < k < 1.001. The step
response is

k 1k k

T Ts+1 s s s+1/7°

Y(s)

Taking the inverse Laplace transform yields
y(t) =k — ke /T = k(1 — 7).

The final value is k. The time it takes to reach 98% of the final value is
t = 15.6us independent of k.
P2.31 The closed-loop transfer function is

500K (0.5s + 1)
(0.55 + 1)(s + 1)(s + 10) + 500K

T(s) =

The final value due to a step input of R(s) = A/s is

o#) 500K
- A——
500K + 10

If we want the final value of the output to be as close to 50 m/s as possible,
we will need to select K as large so that v(t) — A = 50. However, to keep
the percent overshoot to less than 9%, we need to limit the magnitude of
K. As a trade-off we can let K = 0.0178 and select the magnitude of the
input to be A = 106. The inverse Laplace transform of the closed-loop
response with R(s) = 106/s is

v(t) = 50 + 9.47e 102! _ 59 38¢ 7138 ¢05 1.33t + 11.1e~ 138 sin 1.33t

The result is P.O. = 9% and the steady-state value of the output is
approximately 50 m/s, as desired.
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P2.32 From the block diagram we have

Y1(s) = Ga(s)[G1(s)E1(s) + G3(s) Ex(s)]
= Ga(s)G1(s)[Ri(s) — Hi(s)Y1(s)] + G2(s)G3(s)Ea(s) .
Therefore,
_ G1(s)Ga(s) Ga(s)G3(s)
e = T amGeEE ) T T a0 G e His) 2

And, computing Fs(s) (with Ra(s) = 0) we find

Ez(S) = HQ(S)YQ(S) = Hy(s)Gg(s) G4(S)

or

G4(8)G6 (S)HQ(S)

Es(s) = Go(s)(1 — G5(s)Gg(s)Ha(s))

Substituting Fs(s) into equation for Yj(s) yields

N Gl(S)GQ(S)
M= 156 e e )
G3(S)G4(S)G6(S)HQ(S)

+ (1+ Gi(s)Ga(s)H1(s))(1 — G5(3)G6(S)H2(s))yl(s) .

Finally, solving for Yj(s) yields

Y1 (S) = T1 (S)Rl (8)

G1(s)G2(s)(1 — G5(s)Ge(s)Ha(s))
(1+G1(s)G2(s)H1(s))(1 — G5(s)Ge(s)Ha(s)) — G3(s)Ga(s)Ge(s)Ha(s)

Similarly, for Y2(s) we obtain
YQ(S) = TQ(S)Rl(S) .
where

TQ(S) =
Gl(S)G4(S)G6(S)
(1+G1(s)G2(s)H1(s))(1 — G5(s)Ge(s)Ha(s)) — G3(5)Ga(s)Ge(s)Ha(s)
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P2.33 The signal flow graph shows three loops:

Ly = —-G1G3G4Hy

Ly = —G2G5GeHy

Ly = —H1G8G6G2G7G4H2G1 .
The transfer function Y2/R; is found to be

Ya(s) _ G1GsGeA1 — GaG5GeAa
Ri(s)  1—(Ly+ Lo+ L3)+ (L1Ly) ’

where for path 1
A =1
and for path 2
Ag=1—-17.

Since we want Y3 to be independent of Ry, we need Y5/R; = 0. Therefore,
we require

G1GgGs — G2G5Ge(1 + G1G3G4H2) =0 .
P2.34 The closed-loop transfer function is

Yis) _ G3(5)G1(5)(Ga(s) + K5 Ke)
R(s) 1—Gs(s)(Hi(s) + Ke) + G3(s)G1(s)(Ga(s) + K5 Ke)(Ha(s) + Kq) -

P2.35 The equations of motion are
maj1 +b(gr — Y2) + k1(y1 — y2) =0
maijo + b(J2 — 91) + k1(y2 — y1) + kay2 = kow
Taking the Laplace transform yields

(m15% + bs + k1)Y1(s) — (bs + k1) Ya(s) =0
(mas® 4+ bs + ki + ko) Ya(s) — (bs + k1)Y1(s) = ko X (s)
Therefore, after solving for Y7(s)/X(s), we have

YQ(S) B kz(bs + kl)
X(s)  (mys®+bs+ki)(mas®+bs+ ki + ka) — (bs+ k)2

P2.36 (a) We can redraw the block diagram as shown in Figure P2.36. Then,

K1/8(8+1) . Kl

T(s) = - .
&) = TR (1K) sl 7 1)~ 2+ (4 KaK1)s + K
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(b) The signal flow graph reveals two loops (both touching):

-K —Ki1 K
Ly=—"1  and Ly=—12
s(s+1) s+1
Therefore,
K 1 K
T(s) 1/s(s+1) 1

T K s+ D) A KKy /(s + 1) 2+ (14 KoKq)s + Ky
(¢) We want to choose K7 and K3 such that
s+ (1 4+ KyKy)s + K1 = s 4 205 4 100 = (s + 10)% .

Therefore, K1 = 100 and 1 4+ Ko K7 = 20 or Ko = 0.19.
(d) The step response is shown in Figure P2.36.

K
R(s) —m= 1 =Y (s)
) + s (s+1)
1+Kys
;
0.9
08} ,
07 , . . , ; |
06 i<-—-— time to 90% = 0.39 sec i
£ osf |
04 1
03 : : i ; ! ]
02F : ! : : ! ]
01f |
0 L i L L L L L L L
0 02 04 06 08 1 12 14 16 18 2
time(sec)
FIGURE P2.36

The equivalent block diagram and the system step response.

P2.37 (a) Given R(s) = 1/s%, the partial fraction expansion is

Y(s) = 12 2 2/3 14 1 19/12
8_32(8—|—1)(8—|—3)(S—|—4)_8+1 s+3 s+4 s? s
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Therefore, using the Laplace transform table, we determine that the
ramp response is

2 1
y(t):2e_t—§e_3t+ze_4t—|—t—ﬁ, t>0.

(b) For the ramp input, y(t) ~ 0.36 at t = 1.5 seconds (see Figure P2.37a).
(c) Given R(s) =1, the partial fraction expansion is
12 2 6 4

H R P [P T P AR S A

Therefore, using the Laplace transform table, we determine that the
impulse response is

y(t) =2 —6e 3 44 t>0.

(d) For the impulse input, y(t) ~ 0.39 at ¢ = 1.5 seconds (see Fig-

ure P2.37b).
(a) Ramp input (b) Impulse input
1.6 T T 0‘7 T T
14 06 i
1.2 1
0.5
s
0.4
= = ‘
3 0.8 = |
|
0.3 i
06 !
|
|
0.2 f
04 I
|
| |
| b
o2 b ‘ 0.1 |
| |
| |
0 l i o i l i
0 1 2 3 0 1 2 3
Time (sec) Time (sec)
FIGURE P2.37

(a) Ramp input response. (b) Impulse input response.
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P2.38 The equations of motion are

d? d?
mld—tf = —(k1 + ko)x + koy and mgﬁ‘g =ko(z—y)+tu.

When m; =msg =1 and k1 = ko = 1, we have

d’x d?y
W:—%c—l—y and W:x—y—l—u.
P2.39 The equation of motion for the system is
sze —I—bd/t9 + k=0
dt2 " dt -

where k is the rotational spring constant and b is the viscous friction
coefficient. The initial conditions are §(0) = 6, and 6(0) = 0. Taking the
Laplace transform yields

J(5%0(s) — s0,) + b(s0(s) — 0,) + kb(s) =0 .
Therefore,

(5+300) _  (s+2¢wa)bo
(2+2s+8) 2+ 20wus +wd

0(s) =

Neglecting the mass of the rod, the moment of inertia is detemined to be
J=2Mr*=0.5kg-m? .

Also,

k b
Wy, = \/;: 0.02rad/s and (= T 0.01 .

Solving for 6(t), we find that

0(t) = \/197i—<2 e rtsin(wy /1 — C2 t+ @)

where tan ¢ = \/1 — (2/(). Therefore, the envelope decay is

96 == HO—E_CWnt .

-0

So, with Cw, = 2 x 107%, 6, = 4000° and 0y = 10°, the elapsed time is
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computed as
t= 1 n o
 Cwn I-Cy

P2.40 When t < 0, we have the steady-state conditions

= 8.32 hours .

i1(0) =14 , v,(0) =2V and v.(0) =5V,
where v.(0) is associated with the 1F capacitor. After ¢ > 0, we have

»
2% + 2y + Ay — in) = 10e~ 2

and
/igdt-i- 1029 +4(i2 - il) —11=0.

Taking the Laplace transform (using the initial conditions) yields

. 10 s+ 7
2(sl1 — 201 +411 —4]5 = —— I — 21 =
(sI1 —1i1(0)) +21 +41; 2 =T33 O (s+3)11(s) 2(s) R

and
1
[g[g—UC(O)]+1OIQ+4([2—11) = Il(s) or —bsli(s)+(14s+1)I5(s) = 5s.

Solving for I5(s) yields

_ 5s(s?+6s+13)

I, =
27 T14(s + 2)A(s)
where
s+3 —2
A(s) = =145 +33s +3 .
—bs 1l4s+1
Then,

Vo(s) = 101a(s) .
P2.41 The equations of motion are
J10y = K(0 — 61) —b(0; —03) +T and  Jofy = b(6; — 6s) .
Taking the Laplace transform yields

(J18% 4 bs + K)01(s) — bsOa(s) = KOy(s) + T(s)
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and
(Jos% 4 bs)Ba(s) — bsby(s) =0 .
Solving for 6;(s) and 62(s), we find that

(K02(s) +T(s))(Jas +b)
A(s)

01(s) = and  fa(s) =

where
A(s) = JiJos® + b(Jy + Jo)s® + JoKs + bK .

P2.42 Assume that the only external torques acting on the rocket are control
torques, T, and disturbance torques, Ty, and assume small angles, 6(¢).
Using the small angle approximation, we have

h=V6
JO=T.+1T,,

where J is the moment of inertia of the rocket and V' is the rocket velocity
(assumed constant). Now, suppose that the control torque is proportional
to the lateral displacement, as

T.(s) = —KH(s) ,

where the negative sign denotes a negative feedback system. The corre-
sponding block diagram is shown in Figure P2.42.

H gesired0 4:?‘ K

FIGURE P2.42
Block diagram.

+%
3
[V, =Y
N
n<<

= H(s)

P2.43 (a) The equation of motion of the motor is

dw
JE—Tm—bw,

where J = 0.1, b = 0.06, and T;,, is the motor input torque.
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(b) Given T),(s) = 1/s, and w(0) = 0.7, we take the Laplace transform
of the equation of motion yielding

sw(s) —w(0) + 0.6w(s) = 10T,

or
(s) 0.7s + 10
w(s)=——+.

s(s+0.6)
Then, computing the partial fraction expansion, we find that

A, B 1667 1597
s s+06 s 5+0.6

w(s) =

The step response, determined by taking the inverse Laplace trans-
form, is

w(t) = 16.67 — 15.97¢7 %6 t>0.
P2.44 The work done by each gear is equal to that of the other, therefore
10 =T105 .
Also, the travel distance is the same for each gear, so
710, = o6, .

The number of teeth on each gear is proportional to the radius, or

r1Ny = raNy .
So,
Om _ 2 _ N2
0, N’
and
N16,, = Nabp,
0 = %Hm = nb, ,
where
n = N1/No
Finally,
T, 0, N
T, 0w N
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P2.45 The inertia of the load is

npLr?

Jr = 5

Also, from the dynamics we have

Ty = Jrwa + brwe

and
Ty =nTy = n(Jrwa + brwa) .
So,
Ty = n?(Jpen +brwi) ,
since

w9y = nwi .
Therefore, the torque at the motor shaft is
T =T+ Ty =n?(Jpin +brwi) + S + bpwr

P2.46 Let U(s) denote the human input and F(s) the load input. The transfer
function is
G(s) + KGi(s)
A(s)

G.(s) + KG1(s)
A(s)

P(s) = U(s) + F(s),

where
A=1+GH(s)+Gi1KBH(s)+ G.E(s) + G1KE(s) .

P2.47 Consider the application of Newton’s law (3 F' = ma). From the mass
m, we obtain

myiy = F — ki(z1 — x2) — b1 (&1 — &2).
Taking the Laplace transform, and solving for X (s) yields

)+ ),

where

Aq = mvs2 + b1s+ k.
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From the mass m; we obtain
mylo = —koxo — bado + kl(xl — (L'Q) + bl(ﬁﬂl — 3&2).
Taking the Laplace transform, and solving for Xs(s) yields

Xo(s) = %)ﬁ(s),

where
Ag :=mys” + (b1 + ba)s + k1 + ka.

Substituting X»(s) above into the relationship fpr X;(s) yields the trans-
fer function

Xi(s) _ As(s)

F(s)  Aq1(s)Aa(s) — (b1s + k1)

P2.48 Using the following relationships

h(t) = / (1.66(t) — h(t))dt
w(t) = 6(t)
To(t) = Kpmia(t)
va(t) = 50v; (t) = 10i4(t) + vp(t)
9 = Kvb

we find the differential equation is

d3h ( K,, )d2h K,, dh 8K,
— 1+ ) — + — = v;
dt3 10JK ) dt2 = 10JK dt J

P2.49 (a) The transfer function is

VQ(S) (1 + SRlcl)(l + SRQCQ) ‘

Vl(s) R1Cys

(b) When Ry = 100 k2, Ry =200 k2, C; =1 puF and Cy = 0.1 pF, we
have

Va(s)  0.2(s +10)(s + 50)

Vi(s) s ’

P2.50 (a) The closed-loop transfer function is

 G(s) 6205
1+ G(s) s34 1352 4 1281s + 6205

T(s)
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Amplitude

0 0.2 0.4 0.6 0.8 1 1.2 14 16 1.8 2

Time (secs)

FIGURE P2.50
Step response.

(b) The poles of T'(s) are s; = —5 and sg3 = —4 £ 535.

(c) The partial fraction expansion (with a step input) is

- 10122 0.0061 +0.07165 | 0.0061 —0.0716;

Y(s)=1
(5) s+5 T st1dt4% s+4—j35

(d) The step response is shown in Figure P2.50. The real and complex
roots are close together and by looking at the poles in the s-plane we
have difficulty deciding which is dominant. However, the residue at
the real pole is much larger and thus dominates the response.

P2.51 (a) The closed-loop transfer function is

B 14000
~ §3 44552 4 3100s + 14500

T(s)

(b) The poles of T'(s) are s; = —5 and sg 3 = —20 £ 550.
(c) The partial fraction expansion (with a step input) is

1.0275 N 0.0310 4+ 0.03905  0.0310 — 0.0390;
s+5 s+ 20 + 750 s+20— 450

Y (s) = 0.9655 —
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Amplitude

0 0.2 0.4 0.6 0.8 1 1.2 14 1.6 1.8 2

Time (secs)

FIGURE P2.51
Step response.

(d) The step response is shown in Figure P2.51. The real root dominates
the response.

(e) The final value of y(t) is
Yss = liI%Y(S) = lir%T(s) =0.97 .
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Advanced Problems

AP2.1 The transfer function from V (s) to w(s) has the form

w(s) K,
V(s) Tms+1'

In the steady-state,

o =l [ 55| S = 5K
So,
K, =70/5=14.
Also,

w(t) = Vi K (1 — e7t/™m)
where V (s) = V,,,/s. Solving for 7,,, yields

—t
In(1 — w(t)/wss)

Tm =

When t = 2, we have
-2
m=—————— = 3.57 .
m = Tn(1 — 30/70)
Therefore, the transfer function is
w(s) 14
V(s) 357s+1°

AP2.2 The closed-loop transfer function form R;(s) to Ya(s) is

Yg(s) . G1G4G5(S) + G1G2G3G4G6(8)
Ri(s) A

where
A =[1+ G3G4Hy(s)][1 + G1G2H3(s)] .
If we select
G5(s) = —G2G3Gg(9)

then the numerator is zero, and Y3(s)/Ri(s) = 0. The system is now
decoupled.
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AP2.3 (a) Computing the closed-loop transfer function:

G(s)Ge(s)
1+ Ge(s)G(s)H(s)

Then, with E(s) = R(s) — Y (s) we obtain
_ [14+Gel(s)G(s)(H(s) — 1)
20 = [ S et ) M-

If we require that E(s) = 0 for any input, we need 1+ G.(s)G(s)(H(s) —
1)=0or

Y(s) = [ } R(s) .

Ge(s)G(s) =1  n(s)

H) == m6E " ~ d

Since we require H(s) to be a causal system, the order of the numerator
polynomial, n(s), must be less than or equal to the order of the denom-
inator polynomial, d(s). This will be true, in general, only if both G.(s)
and G(s) are proper rational functions (that is, the numerator and de-
nominator polynomials have the same order). Therefore, making £ = 0
for any input R(s) is possible only in certain circumstances.

(b) The transfer function from Ty(s) to Y (s) is

B Ga(s)G(s)
Yis) = [1 n GC(S)G(S)H(S)} Ta(s) -

With H(s) as in part (a) we have

Y(s) = [gdg } Ty(s) .

(¢) No. Since

T Guls)G(s)
V() = [1 T Gu(5)G ) H(3)

} Tu(s) = T(s)Tu(s) ,

the only way to have Y (s) = 0 for any Ty(s) is for the transfer function
T'(s) = 0 which is not possible in general (since G(s) # 0).

AP2.4 (a) With ¢(s) = 1/s we obtain

T(s) = SRV I
Define
a:zw and (:=1/Cy .

Ci
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Then, it follows that
1 —
B L_=Bla Bl

s+a s S+« S

T(s) =

Taking the inverse Laplace transform yields

T(t) = %ﬁe_at + g = g[l —e ],

(b) As t — o0, 7(t) = & = 5.

(c) To increase the speed of response, you want to choose Cy, @, S and
R such that

o Qs+ 1/R
=G

is ”large.”
AP2.5 Considering the motion of each mass, we have
M3Zs + bss + ksxs = us + b3y + kzxo
Myio + (bg + bg)ﬁtz + (kQ + kg)xg = uy + bsxs + ksxs + bax1 + koxq
Mia1 + (bl + bg)il + (]{71 + kz)xl = w1 + boZg + koxo

In matrix form the three equations can be written as

M, O 0 T i b1 + b —by 0 T1
0 My, 0 Ty | + —by  by+0b3 —b3 To
0 0 DMs T3 0 —bs b3 T3

I N w

+ —ko ko4 ks —ks o | = | us

0 —ks ks T3 u3
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Design Problems

CDP2.1

DP2.1

DP2.2

The model of the traction drive, capstan roller, and linear slide follows
closely the armature-controlled dc motor model depicted in Figure 2.18
in Dorf and Bishop. The transfer function is

T(s) rK,,
s) = ,
S[(Lms + Rp)(Jrs + b)) + Kp K|
where
Jp = Jop +12(Ms + M) .
v, Lmls(J'l"Rm g JTslbm e I e I e T
K »
Back EMF b

The closed-loop transfer function is

Y(S) _ Gl(S)GQ(S)
R(s) 1+ Gy(s)Hy(s) — Go(s)Ha(s)

When G1Hy = G2Hy and G1Gy = 1, then Y (s)/R(s) = 1. Therefore,
select
1 o GQ(S)HQ(S)

= an S)=——FF— = 2 S s) .
- GQ(S) d Hl( ) Gl(S) G2( )HQ( )

Gi(s)
At the lower node we have

1 1 .
U(Z—l-g‘l-G)-l-QZg—QO—O.

Also, we have v = 24 and i5 = Gv . So

1 1
’U<Z—|—§+G>+2GU—20:O
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and

C20-v(3+3) 1

DP2.3 Taking the Laplace transform of
1 3 1
1) = t_ - =2t __ ° ¢
y(t) =e™" — e 173
yields
1 1 3 1
Y(s) = — -+ —.
() s+1 4(s+2) d4s * 252

Similarly, taking the Laplace transform of the ramp input yields

Therefore

R(s) (s+1)(s+2)°
DP2.4 For an ideal op-amp, at node a we have

Vin — VUq Vo — Vq
+ —0,
Ry Ry

and at node b
Vin — Vb

R2 Uy

from it follows that

1 1
— 4+ Cs| Vo= —Vip .
{Rz - s} "Ry "

Also, for an ideal op-amp, V; — V,, = 0. Then solving for V}, in the above
equation and substituting the result into the node a equation for V yields

Vo 2

Vo _ 2 [1 m+Cs

Ry 2

or

Vo(s) _ ReCs—1
Vm(S) N RyCs+1 '
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For v, (t) = At, we have Vj,(s) = A/s%, therefore

vo(t) = A [%e‘ﬁt +1— %}

where § = 1/RsC.
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Computer Problems

CP2.1 The m-file script is shown in Figure CP2.1.

p=[15 41; q=[1 10J; / 1 15 54 40
% Part (a) / pP=

pg=conv(p,q) -4

% Part (b) / -1

P=roots(p), Z=roots(q) | Z=
% Part (c) -10
value=polyval(p,-1) —— value =
0
FIGURE CP2.1

Script for various polynomial evaluations.

CP2.2 The m-file script and step response is shown in Figure CP2.2.

numc = [1]; denc = [1 1]; sysc = tf(humc,denc)
numg = [1 2]; deng = [1 3]; sysg = tf(hnumg,deng)
% part (a)

sys_s = series(sysc,sysg);

sys_cl = feedback(sys_s,[1
oy (sys_s[1) Transfer function:

% part (b)
step(sys_cl); grid on > s+2
sA2+5s545
Step Response
s From: U(1)
Time (sec.)
FIGURE CP2.2

Step response.
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CP2.3 Given
y+4y+4y =u
with y(0) =y =0 and U(s) = 1/s, we obtain (via Laplace transform)
1 1

- s(s2+4s+4)  s(s+2)(s+2)°

Y(s)

Expanding in a partial fraction expansion yields

025 025 05
s s+2 (s+2)2°

Y(s)

Taking the inverse Laplace transform we obtain the solution
y(t) = 0.25 — 0.25¢"% — 0.5te 2

The m-file script and step response is shown in Figure CP2.3.

Step Response

0.25 ‘ ‘ .
02 .
e 0.15 ¢ n=[1];d=[1 4 4]; sys = tf(n,d); ]
2 t=[0:0.01:5];
2 y = step(sys,t);
< o1 ya=0.25-0.25%exp(-2*t)-0.5*t.*exp(-2*t); |
plot(t,y,t,ya); grid;
title('Step Response’);
xlabel('Time (sec)');
0.05 ylabel('Amplitude'); T
0 Il Il Il
0 1 2 3 4 5
Time (sec)
FIGURE CP2.3

Step response.

This material is protected by Copyright and written permission should be obtained from the publisher prior to any prohibited reproduction, storage in a
retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording, or likewise.
For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.



www.TagheDanesh.ir www.TagheDanesh.com

Computer Problems 73

CP2.4 The mass-spring-damper system is represented by
mi+ bt +kx=f.

Taking the Laplace transform (with zero initial conditions) yields the
transfer function

B 1/m

824 bs/m+k/m

X(s)/F(s)

The m-file script and step response is shown in Figure CP2.4.

m=10; k=1; b=0.5;
num=[1/m]; den=[1 b/m k/m]J;
sys = tf(num,den);
t=[0:0.1:150];

step(sys,t)

Step Response
From: U(1)

Amplitude

0.8 [~

06

04

0.2

To:Y(1)

Time (sec.)

FIGURE CP2.4
Step response.

CP2.5 The spacecraft simulations are shown in Figure CP2.5. We see that as J
is decreased, the time to settle down decreases. Also, the overhoot from
10° decreases as J decreases. Thus, the performance seems to get better
(in some sense) as J decreases.
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Nominal (solid); Off-nominal 80% (dashed); Off-nominal 50% (dotted)

A\

16 /
1ab

Spacecraft attitude (deg)

0 10 20 30 40 50 60 70 80 920 100

Time (sec)

%Part (a)

a=1; b=8; k=10.8e+08; J=10.8e+08;
num=k*[1 a];

den=J*[1 b 0 0]; sys=tf(num,den);
sys_cl=feedback(sys,[1]);

%

% Part (b) and (c)

t=[0:0.1:100];

%

% Nominal case

f=10*pi/180; sysf=sys_cl*f;
y=step(sysf,t);

%

% Off-nominal case 80%

J=10.8e+08%0.8; den=J*[1 b 0 0];
sys=tf(num,den); sys_cl=feedback(sys,[1]);
sysf=sys_cl*f;

y1=step(sysf,t);

%

% Off-nominal case 50%

J=10.8e+08*0.5; den=J*[1 b 0 0];
sys=tf(num,den); sys_cl=feedback(sys,[1]);
sysf=sys_cl*f;

y2=step(sysf,t);

%
plot(t,y*180/pi,t,y1*180/pi,'--',t,y2*180/pi,""),grid
xlabel('Time (sec)")

ylabel('Spacecraft attitude (deg)')
title('Nominal (solid); Off-nominal 80% (dashed); Off-nominal 50% (dotted)')

FIGURE CP2.5
Step responses for the nominal and off-nominal spacecraft parameters.
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CP2.6 The closed-loop transfer function is

455 + 855 + 4s® + 565° + 11252 + 56

T(s
) AGs) ’
p =
num1=[4]; den1=[1]; sys1 = tf(num1,den1); 7.0709
num2=[1]; den2=[1 1]; sys2 = tf(hum2,den2); -7.0713 )
num3=[1 0]; den3=[1 0 2]; sys3 = tf(hum3,den3); 1.2051 + 2.0863i
num4=[1]; den4=[1 0 0]; sys4 = tf(num4,den4); 1.2051 - 2.0863i
num5=[4 2]; den5=[1 2 1]; sys5 = tf(hum5,den5); 0.1219 + 1.8374i
num6=[50]; den6=[1]; sys6 = tf(numé,dené); 0.1219 - 1.8374i

num7=[1 0 2]; den7=[1 0 0 14]; sys7 = tf(hum7,den7); -2.3933

sysa = feedback(sys4,sys6,+1); / -2.3333

sysb = series(sys2,sys3); -0.4635 + 0.1997i
sysc = feedback(sysb,sys5); o e i
e sertestoysenreny 0.4635 - 0.1997i
syse = feedback(sysd,sys7);

sys = series(sys1,syse) zZ=

% poles 0

pzmap(sys) 1.2051 + 2.0872i
% 1.2051 - 2.0872i
p=pole(sys) -2.4101
z=zero(sys) » -1.0000 + 0.0000i

-1.0000 - 0.0000i

Polezero map

Imag Axis
o
T
X
®
o
o
X
Il

Real Axis

FIGURE CP2.6
Pole-zero map.
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76 CHAPTER 2 Mathematical Models of Systems

where
A(s) = 104 357 — 4558 — 12557 — 2005° — 11775°
— 23445 — 348553 — 766852 — 5598s — 1400 .

CP2.7 The m-file script and plot of the pendulum angle is shown in Figure CP2.7.
With the initial conditions, the Laplace transform of the linear system is

908
s2+g/L°

To use the step function with the m-file, we can multiply the transfer
function as follows:

0(s) =

82 90
b(s) = s2+g/L's’

which is equivalent to the original transfer function except that we can
use the step function input with magnitude 6y. The nonlinear response
is shown as the solid line and the linear response is shown as the dashed
line. The difference between the two responses is not great since the initial
condition of §y = 30° is not that large.

30
L=0.5;m=1;9=9.8;

theta0=30;

% Linear simulation

sys=tf([100],[1 0 g/L]);

I~ [y,tl=step(theta0*sys,[0:0.01:10]);

% Nonlinear simulation
[tynl]=ode45(@pend,t,[theta0*pi/180 0]);
plot(t,ynl(:1)*180/pi,ty,"--);

xlabel('Time (s)')

ylabel('\theta (deg)")

0 (deg)
o

¥

function [yd]=pend(ty)
L=0.5;9=9.8;
yd(1)=y(2);
yd(2)=-(g/L)*sin(y(1));
yd=yd";

-20

-30

FIGURE CP2.7
Plot of 0 versus =t when 0y = 30°.
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The system step responses for z = 3,6, and 12 are shown in Figure CP2.8.

z=3 (solid), z=6 (dashed), z=12 (dotted)
1.8 T T T T T T T T T

|
0 0.5 1 1.5 2 25 3 35 4 4.5 5
Time (sec)

FIGURE CP2.8
The system response.

(a,b) Computing the closed-loop transfer function yields

2425 +1
T(s) = G(s) _ 54241
1+ G(s)H(s) s*+4s+3
The poles are s = —3, —1 and the zeros are s = —1, —1.

(c) Yes, there is one pole-zero cancellation. The transfer function (after
pole-zero cancellation) is

s+1
s+3°

T(s)=

(d) Only after all pole-zero cancellations have occurred is the transfer
function of minimal complexity obtained.
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Pole?Zero Map

1 T T T T T

08 - 1

06 - 1

02 =1

Imaginary Axi s
o
K
®
1

202 A

204 B

208 A

21 1 1 1 1 1
7-3 7-2.5 7-2 15 ?-1 7-0.5 0
Real Axi s

>>
Transfer function:
ng=[11]; dg=[1 2]; sysg = tf(ng,dg); SA2 42541
nh=[1]; dh=[1 1]; sysh =tf(nh,ab), |
sys=feedback(sysg,sysh) SA2 +45+3

%
pzmap(sys)
% poles p=
pole(sys) »

zero(sys) -3

\

zZeros

-1
-1

FIGURE CP2.9
Pole-zero map.
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State Variable Models

Exercises

E3.1 One possible set of state variables is
(a) the current iz, through Lo,
(b) the voltage v, across Ca, and
(c) the current iz, through L.
We can also choose v, , the voltage across C; as the third state variable,

in place of the current through L.

E3.2 We know that the velocity is the derivative of the position, therefore we

have
W _,
dt
and from the problem statement
dv .
a = —k‘l’U(t) — k‘gy(t) + k‘g’L(t) .

This can be written in matrix form as

d [y 0 1 Y 0
dt v — k‘Q — k‘l v ]{73

Define v = 4, and let k1 = ko = 1. Then,

x=Ax+ Bu
where
0 1 0 Y
A= , B= ,and x =
-1 -1 kg (Y

79
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80 CHAPTER 3 State Variable Models

E3.3 The charactersitic roots, denoted by A, are the solutions of det(A\I— A) =
0. For this problem we have

([ A -1
det(AI — A) = det
1 (A+1)

):/\(/\+1)+1:A2+A+1:0.

Therefore, the characteristic roots are

1 V3 1 V3

A 5 Ti5 an A2 5~ J

E3.4 The system in phase variable form is

x = Ax + Bu
y=Cx
where
0o 1 0 0
A=l 0o o 1|, B=|o|. c=[100]
-8 —6 —4 20

E3.5 From the block diagram we determine that the state equations are

Z9 = —(fk+d)x1 + ax1 + fu
71 = —kxo+u

and the output equation is

y =bxs .
Therefore,
x =Ax+ Bu
y=Cx+ Du,
where
0 —k 1
A= B= . C=[0 b|and D=
a —(fk+d) f

E3.6 (a) The state transition matrix is

1
tI’(t):eAt:I+At+§A2t2+---
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But A2 =0, thus A2 =A% =... = 0. So,

SRR

(b) The state at any time ¢t > 0 is given by

and since x1(0) = 22(0) = 1, we determine that

Xl(t) = Xl(O) + tXQ(O) =14t
Xg(t) = XQ(O) =1.

E3.7 The state equations are

:i'l = X9
29 = —100x1 — 2022 + u

or, in matrix form

0
1

X +

_ 0 1
X =
—100 20

So, the characteristic equation is determined to be

-1
100 A+ 20

det(AI—A):det[ = A2 420\ +100=(A+10)2=0.

Thus, the roots of the characteristic equation are
Al =X =-10.

E3.8 The characteristic equation is

A -1 0
detONI—A)=det | 0 X -1 | =M\ +2\+5)=0.
0 5 A+2

Thus, the roots of the characteristic equation are

AM=0, X=-14+j2and Ag=-1—72.
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82 CHAPTER 3 State Variable Models

E3.9 Analyzing the block diagram yields
. 1
T = —$1+§SE2+T
To = XT1 — 5%2 -Tr

=1 — -T2 —T.
Y 1 22

In state-variable form we have
1

|13 3
x:{ . _g _1}7‘, y:{l —i]x—l—[_l}r.

The characteristic equation is

5 1
82+§S+1:(s+2)(3+§)20.

E3.10 (a) The characteristic equation is

A —6

= AA+5)+6 = (A+2)(A+3) =0.
1 (A +5)

det[A\I— A] = det [

So, the roots are Ay = —2 and \y = —3.
(b) We note that
s —6 1
(s+2)(s+3)

B(s)=[sI-A]"t = [

1 s+5 -1 s

s+5 6]

Taking the inverse Laplace transform yields the transition matrix
3e72 — 273t Ge2t — Ge 3t
®(t) =
—e 2 p 3t _2e72 4 35t

E3.11 A state variable representation is

x = Ax -+ Br
y=Cx
where
0 1 0
A= , B= , 02{12 4}.
—-12 -8 1
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The equation of motion is

di .
L— + Ri+wv. = v
dt
where
1 / .
Vo= — [ 1 dt.
C
Unit step response
1.6 T
1.4+ 8
x1: capacitor voltage
3
c
o
o
g
[
5]
&
: x2: inductor current
ot e - S S|
-0.2 i i i i i
0 0.05 0.1 0.15 0.2 0.25 0.3
Time(sec)
FIGURE E3.12

State variable time history for a unit step input.

Selecting the state variables x1 = v, and x5 = 7, we have

. 1
T1 = =%
1= 512
1

——T9 — —=X1 + —Vin -

=07 L L

This can be written in matrix form as

0o 1/C 0
~1/L -R/L
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When C' = 0.001F, R =48, and L = 0.1H, we have

_ 0 1000 0
X = X + Vin, -

—-10 —40 10

The step response is shown in Figure E3.12.

E3.13 (a) Select the state variables as ;1 = y and 23 = w.

(b) The corresponding state equation is

T1 = —x1 — axg + 2u

(tg :bxl —4u

or, in matrix form

. -1 —a 2 T
X = x + u and x=
b 0 —4 X9

(¢) The characteristic equation is

A1 a 9
det[AI — A] = det =XN+A+ab=0.
-b A

So, the roots are

1 1
E3.14 Assume that the mass decay is proportional to the mass present, so that
M = —qM + Ku

where ¢ is the constant of proportionality. Select the state variable, z, to
be the mass, M. Then, the state equation is

T =—qr+ Ku .
E3.15 The equations of motion are

mi+kxr+ki(x—q)+bi =0
m§+kq+bg+ki(g—2x)=0.
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In state variable form we have

0 1 0 0

_(ktk1) b k1 0
)’(: m m m x

0 0 0 1

k (k+k1) b
B

where 1 = x,29 = 2,23 = ¢ and x4 = q.
E3.16 The governing equations of motion are
miZ + ki(x —q) + bi( — q) = u(t)
ma§ + kog + b2g+b1(¢d — %) + k1(¢ —x) =0

Let z1 = x,290 = &,23 = ¢ and x4 = ¢. Then,

0 1 0 0 0
_k b k1 b1 1
k — mi mi mi mi X + mi u(t) .
0 0 0 1 0
kr b (kitks)  (b1tb2) 0
ma ma ma ma

Since the output is y(t) = ¢(t), then

y:[OOIOX-

E3.17 At node 1 we have

. Vg — V1 V2 — U1
Cion = R
and at node 2 we have
. Up — V2 U1 — V2
Covg = R + 7 .
Let
r1 = U1
and
Tro = Vg .
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Then, in matrix form we have

(=Ll 4 1 1 1
(R101 + RQCl) R2cl Rlcl O Ua
1

X =
1 1 1
_RQCQ B (RSCQ + R202) 0 RSC2 Ub

E3.18 The governing equations of motion are

E3.19

E3.20

. di
Ru+hgf+v:%
di
LQd—tQ‘I‘U:’Ub
. . . dv
ZL:zl—sz:CE.

Let 1 = 11,29 = 19,23 = v,u1 = v, and us = v,. Then,

R 1 1
-, 0 - z; Y
X=1 0 0 —£ |x+| 0 £ |u
1 1
c ¢ O 0 0
y=10 0 1]x+[0]u.
First, compute the matrix
-1
sl —A =
3 s+4
Then, ®(s) is
1 s+4 1
P(s) = (sI - A)™L =
A(S) _3 s
where A(s) = s? + 4s + 3, and
s+4 1 0 10
— Als)  A(s) -
Gs)=[10 o] | 20 20 B e e
A(s)  A(s)

The linearized equation can be derived from the observation that sin 6 ~ 6
when 6 ~ 0. In this case, the linearized equations are

99yt

~0=0.
L m
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Let x1 = 60 and 20 = 0. Then in state variable form we have

x = Ax
y=Cx
where
0 1 6(0)
A = , C:[lo}, and x(0)=| .
—g/L —k/m 6(0)
E3.21 The transfer function is
-1
— ~A"'B+D=——— .
Gls) = Clsl ] * s2+2s+1

The unit step response is

y(t) = —1+et4+tet.
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Problems

P3.1 The loop equation, derived from Kirchoff’s voltage law, is
di 1 R 1

=—V——=1— =

dt L L L

1
’UC:E/Zdt

(a) Select the state variables as 1 = i and z2 = v,.

where

(b) The corresponding state equations are

(¢) Let the input v = v. Then, in matrix form, we have

, ~R/L —1/L 1/L
X = X + U .

1/C 0 0

FIGURE P3.1
Signal flow graph.

P3.2 Let
-2 u —2R1 Ry
a = s = s
"7 (R, + Ry)C 7 (Ri+ Ry)L
1 Ry
W TR Ry T 27 (R + Ry)L

The corresponding block diagram is shown in Figure P3.2.
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PY

2/(R1+R2)C

Vi—* 1/(R1+R2)C >( f—>| 1/s > X,

\/
x

v | 1RI+R2C ' s i

2R1R2/(R1+R2)C

(b)

FIGURE P3.2
(a) Block diagram. (b) Signal flow graph.

P3.3 Using Kirchoff’s voltage law around the outer loop, we have

dif,

=L
dt

— V.4 v —v; =0.

Then, using Kirchoff’s current law at the node, we determine that

dv
C dtc = —ir +1iR,

where ip is the current through the resistor R. Considering the right loop
we have

Ve V2

iRR_U2+Uc:0 or ZR:—E E
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Thus,
dve _ _ ve _iL b2
d¢  RC C ' RC

In matrix form, the state equations are

di L Ve U1 (%)

(tl 0 1/L Il n 1/L —1/L V1
i’g —1/0 —1/RC X9 0 I/RC V2

where x1 = i7, and x9 = v.. The signal flow graph is shown in Figure P3.3.

FIGURE P3.3
Signal flow graph.

P3.4 (a) The block diagram model for phase variable form is shown in Fig-
ure P3.4a. The phase variable form is given by

0 1 0 0
X = 0O 0 1 |x+]|0]|"r
-10 -3 -2 1

y=|5 2 1]x.

(b) The block diagram in input feedforward form is shown in Figure P3.4b.
The input feedforward form is given by

-2 10 1
X = -3 0 1 |x+ |27
—-10 0 0 5

y=|10 0]x.
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Y(s)

> Y(s)

R(s)

FIGURE P3.4
(a)Block diagram model for phase variable form. (b) Block diagram model for input feedforward form.

P3.5 (a) The closed-loop transfer function is

s+ 1
T = .
(5) s34+ 552 —bhs+1

(b) A matrix differential equation is

x = Ax+ Bu
y=Cx
where
01 0 0
A=| o0 1|.B=|0|. Cc=[110]
-1 5 =5 1

The block diagram is shown in Figure P3.5.
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FIGURE P3.5
Block diagram model.

P3.6 The node equations are

dvi . vi—wu
. 25— — =
0.00025 7 + iy 1000
dvy . v
00005@ — 7 + m — 13 =0
di
0.0022E 4 4y — 0y =0

dt

Define the state variables

Tr1 =0V X9 ="y wgziL.

Then,
x=Ax+ Bu
where
-1 0 —4000 1 0
A= 0 —2 2000 |, B=1]0 2000
500 —500 0 0 0
P3.7 Given K =1, we have
1 (s+1)?
KG(s) —=—-—+—"—.
() s s(s?2+1)

We then compute the closed-loop transfer function as

s2+2s+1 sTh4 25724573

T — = A
(5) 353 +5524+55+1 3455145572453
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(a) The state variable model is

0 1 0 0
% = 0 0 1|x+| o |r
~1/3 -5/3 —5/3 1/3

y=|12 1]|x.
(b) We check the roots of the characteristic equation

5 5 1
det[sT — A] = s + 252 + o5 + = =
et[s ] s+35+33+3 0,

to find

s1 = —0.2551 and s23 = —0.7058 £0.89915 .

All roots lie in the left hand-plane, therefore, the system is stable.

P3.8 The state-space equations are

Ir1 = X9

. ku

Tro = — —
x3

$'3:’LL

This is a set of nonlinear equations.

P3.9 (a) The closed-loop transfer function is

T(s) = 10 B 1053
~ Js3+ (b+10J)s2 +10bs + 10K; 1+ 10.1s71 + 572 4 5573

where K1 =0.5, J =1, and b= 0.1.
(b) A state-space model is

0 1 0 0
X = 0 0 1 [x+]| 0 |7
-5 -1 -10.1 10

w=[10 0]x.
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94 CHAPTER 3 State Variable Models

(¢) The characteristic equation is
s —1 0
det[sI— A]=det | 0 s -1 =52 4+101s2+s5+5=0.
5 1 s+10.1
The roots of the characteristic equation are
s1 = —10.05 and s23= —0.0250 £ 0.7049; .

All roots lie in the left hand-plane, therefore, the system is stable.

P3.10 (a) From the signal flow diagram, we determine that a state-space model

is given by
) i -Ki K K, —K, T
X = X+
L —-Ki —Ky K, Ko T2
7 10
y = = X .
L Y2 01

(b) The characteristic equation is
det[sT — A] = s* + (K3 + K})s + 2K1 Ky =0 .
(¢) When K; = Ky =1, then

-1 1
-1 -1

A=

The state transition matrix associated with A is

cost sint
@=L {[sT- A} =
—sgint cost

P3.11 The state transition matrix is

(2t —1)e™? —2te!

d(t) =
2te! (=2t +1)e™!

So, when x(0) = x2(0) = 10, we have
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or

z1(t) = 10e™"
zo(t) = 10e”*

P3.12 (a) The phase variable representation is

0 1 0 0
X = 0 0 1 |x+]|0 |7
—48 —44 —12 1
y=1[40 8 0O]x .

(b) The canonical representation is

-2 0 0 —0.5728
z= 0 -4 0 |z+ | 41307 |r
0 0 -6 4.5638

y=[-5.2372 —0.4842 —0.2191]z

(¢) The state transition matrix is

D(t) = | By(t):Do(t):Ds(t) |

where
e—Gt _ 36—4t 4 36_2t %6—615 _ 26_4t 4 %e—%
Dy(t) = | —6e7 0 +12e 4 — 6% Do(t) = | —5Je 60 +8e 4 — 272
360" — 484 4 122 270t — 32¢4 4 52
%e—m }16—4t 4 L2t
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P3.13 (a) The RLC circuit state variable representation is

) —10 —4 4
X = X + u .
6 0 0

The characteristic equation is
s +10s+24=0.

All roots of the characteristic equation (that is, s; = —4 and so = —6)
are in the left half-plane; therefore the system is stable.

(b) The state transition matrix is

370t — 94 96t 4 9p—4t
(1) = . .
—3e76 4 3e74 270 4 U
(c) Given
21(0)=0.1, z2(0) =0 and e(t)=0,

we have

i(t) = x1(t) = 0.3¢7% — 0.2~
ve(t) = zo(t) = —0.3¢7% +0.3e74 .

(d) When x(0) = 0 and u(t) = E, we have
x(t) = /O "®(t— 1)Bu(r)dr |

where

4F
Bu(t)

Integrating yields

z1(t) = (—2e7% + 27 E
To(t) = (1 +2e7% — 3¢ " E .

P3.14 A state space representation is

%X =Ax+ Br , y=0Cx
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where
0 1 0 0 0
0 0 1 0 0
A= , B= , C=[10 10 0].
0 0 0 1 0
-4 =34 -23 —12 1
P3.15 A state variable representation is
0 1 0 0
X = 0 0 1 |x+]0]|"
—-20 —31 -10 1
y=1[20 5 O]x .
The block diagram is shown in Figure P3.15.
20 5% Y(s)
FIGURE P3.15
Block diagram model.
P3.16 (a) The state and output equations are
$.1 )
$.2 = I3
2g3 = —500z; — 50z — 1523 + 5007
Y=
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98 CHAPTER 3 State Variable Models

or, in matrix form

0 1 0 0
X = 0 0 1 | xX+ 0 r
—-500 —-50 -—15 500

y=|10 0]x

(b) The unit step response (shown in Figure P3.16) is stable and settles
out in under 10 seconds.

08 4

Amplitude

0.6 , ; 4

0.2 - B B -

Time (secs)

FIGURE P3.16
Unit step response.

(¢) The characteristic equation is
§% 4 1552 + 505 4 500 = 0
and the roots are

s1 = —13.9816
893 = —0.5092 + 5.9584; .

All the poles lie in the left half-plane—the system is stable.
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P3.17 (a) The characteristic equation is

s -1 0
det(sI — A) =det | 0.0071 s+0.111 —0.12
0 -0.07 s+0.3

= s34+ 0.4115% + 0.032s + 0.00213 = 0 .

The roots are
s1 = —0.3343 and sp3 = —0.0383 £0.07005 .
All the poles lie in the left half-plane, therefore, the system is stable.
(b) The solution of the system to a step of magnitude 0.285° is given by

z1(t) = —2.66 — 0.11e033 4 ¢70-938 (2 77 ¢0s 0.07¢ + 0.99 sin 0.07¢)
T9(t) = 0.037e70-338 — 70938 (0,037 cos 0.07¢ 4 0.23 sin 0.071)
z3(t) = 0.069 — 0.075¢ 233 4 70938 (0.006 cos 0.07t — 0.06'5in 0.07¢)

x1 - solid; x2 - dotted; x3 - dashed

Step response)

-3.5 ‘
0 20 40 60 80 100

Time (s)

FIGURE P3.17
Step response of magnitude 0.285°.
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P3.18

P3.19

P3.20

CHAPTER 3 State Variable Models

The transfer function is

G(s)=C(sI-A)"'B=

Define the state variables as

4s — 44
53 — 1452 +37s+20

T =¢1— P2
w1
Tro = —
Wo
w2
r3 — — .
Wo
Then, the state equations of the robot are
T1 = WoTo — WeT3
. —Jow, b m .
To = Tl — —T2+ —x3+ 7
T AL R T,
T3 = T1 + iw — —=x
LA A
or, in matrix form
0 1 -1 0
X=wo| a—1 —by by | x+ | d ?
a bg —bg 0
where
Ji b b K,
= T~ > 1= 5 bg = and d=
(J1+ J2) J1wo 2Wo J1wo
The state equation is given by
) 0 1
X = X
-2 -3

where x1(0) =1 and x2(0) =

2O=|

The system response is

wl(t) =

2e~t

(—e_Zt + 26_t) T

—1. The state transition matrix is

—e % p et

26_2t _ e—t

1(0) + (—e_Zt + e_t> x2(0)
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xo(t) = (26_2t - 2e_t) x1(0) + (26_2t - e_t) x2(0) .

The state response is shown in Figure P3.20.

1
08 b
X
0sf N .
04 . : : : 1
g o02r b
g of S TTmEEe
g -
% -0.2 o - T
04 F e /\ : 1
’ X
06 | ’ N
/
/
0.8 [ 7 4
/
-1 L L L L L
0 1 2 3 4 5 6
Time (s)
FIGURE P3.20
Response with z1(0) =1 and z2(0) = —1.
P3.21 The state equation is given by
_ e 0.3 x 10%6
X = ‘ oeos | X where x(0) = ”
-1 =% 7 x 10
The state transition matrix is
0103433t 0

®(t) =
35.5786(6_0'103433t _ 6_0‘0753261t) 6_0'075326t

The system response is

x1 (t) — 6_0'103433tw1 (0)

29(t) = 35.5786 [6—0.10343& . 6—0.0753261t} 21(0) + 6—0.075326tw2(0) _

The state response is shown in Figure P3.21.
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L i — X=Xenon 135
5 -—- I=lodine 135

Nucleide densities in atoms per unit volume

0 10 20 30 40 50
Time (hours)

FIGURE P3.21
Nuclear reactor state response to initial conditions.

P3.22 From the flow graph we obtain

T1 =29+ hiu

To = hot — a1To — apxq

Yy=x .
In matrix form we have
0 1 h1
X = X + U
—Go —ai ho
y=1[1 0]x.

The transfer function is

Gis) = C(I—A)B=[ o | T ]| ™

B[ =

—a, S ho
where

A(s) =s*+as +a, .
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Therefore,

b1s + b,
G(s) = (hi(s+a1) + ho)/A(s) = m :

So, the vector differential equation does represent the flow graph model.

P3.23 The governing equations are

di
L— =
it~
d’U1 1 1
1 4 —(0y — )+ = (01— v2) =0
o + R (v —v) + RQ(vl v2)
dvg 1 . U2
Co— + —(vo2 — —=0.
b +R2(v2 1)1)+z+R3
Let u =v,21 = 1,29 = v1 and x3 = vy. Then,
0 0 1 0
v — 1(1 1 1 1
k= 0 —L(&+d) oy X+ meor
1 1 1 1
e R2C2 o (RQCQ + R302) 0
y=1[0 0 1]x.
P3.24 (a) The phase variable representation is
0 1 0 0
X = 0 0 1 {x+]0|r
-30 —-31 -10 1
y=1[10 0O)x.
(b) The input feedforward representation is
—-10 1 0 0
x=|-31 0 1|x+]|0|r
—-30 0 O 1
y=1[10 0)x.
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(¢) The physical variable representation is

-3 1 0 0
X = 0 -2 1 |x+(0 |7
0 0 =5 1
y=1[10 O)x.

(d) The decoupled representation is

3 0 o 1
x=| 0 -2 o0|x+|1]r
0 0 -5 1
111
=153 3/

P3.25 The matrix representation of the state equations is

. 30 11 (75}
X = +
0 2 01 (75)

When u1 =0 and us = d = 1, we have

0
1

x + d .

T1 = 3x1 + us

To = 29 + 2u9

So we see that we have two independent equations for z1 and xo. With
Us(s) = 1/s and zero initial conditions, the solution for z; is found to be

2(t) = £ {X (s)} = £ {ﬁ}

_ 1 1 1 1
= {5+ m 3 ()

and the solution for w9 is

rat) = €7 (o)) = £ g b= e S g f = et

P3.26 Since ®(s) = (sI — A)~!, we have

s+1 0 5+3 0

P(s) =

>

(s)

-2 s+3 2 s+ 1

This material is protected by Copyright and written permission should be obtained from the publisher prior to any prohibited reproduction, storage in a
retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording, or likewise.
For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.



www.TagheDanesh.ir www.TagheDanesh.com

Problems 105

where A(s) = (s + 1)(s + 3). The state transition matrix is
B(t) = L7 H®(s)} =

P3.27 The state variable differential equation is

) 0 1 0
X = X + r
—25 —6 25
y=[1 0]x.
and
s+6 1 1
B(s)=(sI-A)"! =

25 s | Als)

where A(s) = s% + 65 + 25.

P3.28 Equating the change in angular momentum to the sum of the external
torques yields

JO — Hwcos® = —bh — kb

where b is the damping coefficient, k is the spring constant, and J is the
wheel moment of inertia. Defining the state variables 1 = 6 and xo = &
and the input v = w, we can write the equations of motion as

ilzwg

. b +H
Ty =——x] — =Ty + —UCOST
2 g ety 1

With a small angle assumption (that is, cosz1 ~ 1) we have
0 1 0
X+
—k/J —=b/J H/J
y==0= [ 10 } X .
P3.29 The governing equations of motion are

miy1 + k(y1 — y2) +by1 = u
maya + k(y2 —y1) + by =0
y=1y2.
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Let r1 =Yi1,T2 = 91,1’3 = Y2 and T4 = yg. Then

Y

0 0

1 0 0 ] |
_mil mil ! X+
0 0 1

0 -5 —m ] |
1o]x.

P3.30 The equations of motion are

Let 1 = q1, x2 = ¢1, T3 = @2, and x4 = ¢ and linearize the equations
using small angle assumptions (i.e. sing; ~ ¢1). Then, we have

I§y + MgLsings + k(g1 —q2) =0
Jir — k(g1 —q2) = u .

1:1 = X9
x __Mng —E(x — x3)
2 = 7 g 3
T3 = T4
= ) 5
Ty = 7 il T3 J’LL .
P3.31 Using Kirchoff’s current law, we find that
Cd;tc =19 + i3

where i3 = current in R3. Let i; = current in R;. Using Kirchoff’s voltage
law, we have

Lﬁ—f =v; — Rty
and
Rii1 4+ Rois + v, = v .
But
ig =11 —iL ,
SO

(R1 + Rg)il = v — v, + Roiy, .
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Using Kirchoff’s voltage law once again, we calculate i3 as

V2 — Ve

i3 =
R3

Utilizing the above equations, we can solve for diy/dt and dv./dt, as

follows:
diL R2 + Rl R1R2
- — v Ve — (3
dt L(Ri+Ry) ' L(E1+Ra) © L(Ri+ Ry~
Ve U1 Ve Ve Ryig, )
dt C(Rl —I—Rg) C(R1 —|—R2) CR3 C(R1 —I—Rg) CR3
Define the state variables 1 = v. and x5 = i;. Then, in matrix form we
have
_ (Ri+R2+R3) Ry 1 1 vy
% = CR3(R1+R2) C(R1+R2) X + C(R1+R2) R3
Ry __ RiRo Ro 0 v
L(R1+R2) L(R1+h2) L(R1+Ry) 2
U1
i 1 R 1
y=n= " (Ri1+R2) _(R1+132) ]x+ [ (R1+R2) 0 } ( vy
P3.32 A state variable representation is
) 0 1 0
X = X + U .
-3 —4 30
The state transition matrix can be computed as follows:
1 s+4 1
@=L {[sT- A} =L
A(S) _3 s
B et _ le=3t  Le—t_ 1.3t
—Set 4 et —let 4 2
where
A(s)=5>+4s+3=(s+1)(s+3).
P3.33 A state variable representation is

my = —kimi+r
mo = kimy — kamo
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where k1 and ko are constants of proportionality. In matrix form, we have

. —kq 0 1
x=Ax+ Br= X+ T

k1 —ko 0

where 21 = m; and x5 = mg. Let k; = ko = 1 and assume that r(t) =0
and 1 = 1 and x5 = 0. Then

The simulation is shown in Figure P3.33.

0.4

035 :

03r :

state history, x(t)

0.15 :

0.1 .

0.05 :

t=0
10 0 0.5 1

time (sec) x1

FIGURE P3.33
Actual versus approximate state response.

P3.34 The system (including the feedback) is described by

. 0 1
-1/2 -1
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The charactersitic equation is

A -1 ) 1
det[A\I — A] = det =AX+A+=-=0.
1/2 A41 2

The roots of the characteristic equation are

1 1
Moo= —=+j- .
1,2 B J B
The system response is
e 2 cost 4+ et ?sin L 2e~t/% sin L
x(t) = eAx(0) = 2 ’ ’ x(0)
—e t2gint e 2 cost — et 2gint
2 2 2
.
_ 12 2sin 5
cos % —sin %
where 1(0) = 0 and x2(0) = 1.
P3.35 (a) The state space representation is
0 1 0 0
X = 0 0 1 [x+] 0|7
-8 —-14 -7 1
y=1[8 0 0] x.
(b) The element ¢11(t) of the state transition matrix is
—4t o 8
$11(t) = 3™ — 277 + 3¢
P3.36 The state equations are
1 8
=21 = —0[809 — 50h] = —x1 + 51’2
0= ig =W =23
b B Kwky KK, 353 25000
ST R, JR, ' 307" 3
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In state variable form, we have

8
-1 8 0 0
Xx=|10 0 1 |[x+| 0 |w.
353 25000
0 0 -3 0
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Advanced Problems

AP3.1 With the state variables are defined as

the nonlinear equations of motion are

21 22

: — _ K (Io+23)2

22 9—m Xot21)Z )
. 1

Z3 7 (v — Rz3)

where the control is the voltage v. We assume that z; = x is measurable.
The linearized equations of motion are

z = Az + Bv
y=Cz
where
0 1 0 0
A= %)1{_%0_%% , B=| 0|, and C:[IOO}
R 1
o 0 -7 I

The transfer function is
G(s) =C(sI—A)"'B .

With the constants

R =232

L =0.508

m = 1.75
K=29x10""*
I, =1.06

X, =436 x 1073
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the transfer function is

—36.38

G(s) = .
() = 57 45.6752 1 44935 1+ 205195

AP3.2 The differential equation describing the motion of y is
my + by + ky = bu + ku .

Taking Laplace tranforms (with zero initial conditions) yields the transfer
function

Y(s) _ (bfm)s+ (k/m)
U(s) 82+ (b/m)s+ (k/m)

In state space form, we have

. 0 1 0
X = X+ U
—k/m —b/m 1
y= [ kE/m b/m } X .
AP3.3 The transfer function is
Y(s) = 2s*+6s+5
R(s) s3+4s2+5s5+2°
In (nearly) diagonal form, we have
—1 1 0 0
A=| 0 -1 0|, B=|1|,and C=]11 1].
0 0 -2 1

The matrix A is not exactly diagonal due to the repeated roots in the
denominator of the transfer function.

AP3.4 The differential equations describing the motion of y and ¢ are

mi + koy + ki1(y — q)
—bg + ki(y — q)

where k1 = 2 and ko = 1. Assume the mass m = 1. Then with the state
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T
variables defined as z = { Yy U q } , we have the state variable model

0 1 0 0
z=| -3 0 2 |z+ 1 f
2/b 0 —2/b —1/b

y=|10 0]z

If we model a large bump at high speeds as an impulse and a small bump
at low speeds as a step, then b = 0.8 provides good performance. In both
cases, the ride settles out completely in about 10 seconds.

AP3.5 The differential equations describing the motion of x and 6 are
(M +m)i + MLcos8 — MLsin 06> = —kzx
gsin + cosbi + LH =0
Assuming 0 and 6 are small, it follows that

(M +m)# + MLO = —kz
i+ L0=—g0

. T
Define the state variables as z = [ r & 0 6 } . Then, the state vari-
able model is

I 0 1 0 0 ]
. | —k/m 0 gM/m 0
o0 o 0 .
| k/(Lm) 0 —g(M +m)/(Lm) 0 |

AP3.6
AP3.7 Computing the closed-loop system yields

-1 1
Ky Ky

A—BK:[ , B=

(1)} , and C:{2 1}.

The characteristic polynomial is
sT — (A — BK)| = 5% + (Ky + 1)s + K, + Ky = 0.

The roots are in the left-half plane whenever Ko+1 > 0 and K7+ K9 > 0.
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Design Problems

CDP3.1 The transfer model of the traction drive, capstan roller, and linear slide
was given in CDP2.1 as
X(S) rKp,
Va(s)  s[(Lms + Rp)(J7s + b)) + Ko K] '

where
Jr = Jm + 13 (Ms + M) .

Define z1 = x, xo = %, and x3 = Z. Then, a state variable representation

1S
x = Ax + By,
y=Cx
where
0 1 0 0
A=1|0 0 1 , B= 0
0 _ Bmbmt+KKm  Lmbm+RmJr Ky
L'nLJT LnLJT L'nLJT
c=[10 0]

DP3.1 (a) The equation of motion of the spring-mass-damper is
my+by+ky=u

or
b k1
j=-—9—-—y+—u.

m m m

Select the state variables
r1=y and a2 =1 .
Then, we have

x = Ax+ Bu
y=Cx
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where

0
A= ., B= , 02[1 o}
20 -9 1

—_
o

A is the system matrix. The characteristic equation is

s -1
det[A\I — A] = det =524+95+20=0.
20 s+9
The roots of the characteristic equation are s1 = —4 and sy = —5,

and the transistion matrix is

5e—4t _ 4e—bt —4t -5t
o(t) =
—20e~* +20e 5 —4e=* 4 55t

(b) Assume the initial conditions are z1(0) = 1 and 22(0) = 2. The zero-
input response is shown in Figure DP3.1.

(¢) Suppose we redesign the system by choosing b and & to quickly damp
out xo and x1. We can select b and k to achieve critical damping.

b/m=9, k/m=20 Critical damping: b/m=20, k/m=100

2 T T

I
w»

State response, x
o
State response, x

o
%

2 i i i 4 i i i
0 0.5 1 15 2 0 0.5 1 1.5 2

Time(sec) Time(sec)

FIGURE DP3.1
Zero input state response.
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If we desire the characteristic polynomial to be py(s) = (s + 10)? =
52+ 20s + 100, then we need b = 20 and k = 100.

DP3.2 The desired transfer function is

Y(s) 10
U(s) s2+4s+3°

The transfer function derived from the phase variable representation is

Y(s) d
U(s) s2+bs+a’

Therefore, we select d = 10, a = 3 and b = 4.

DP3.3 Assume the aircraft lands precisely on the centerline. The linearized equa-
tions of motion are

msis + Kpisg + Ko(zg —x2) =0

molZo + Kg(l’g — 1’3) + Kl(l’g — wl) =0
2
mii = ——=Ko(z; —
v =5 2(w1 — a2)
where 21(0) = z2(0) = #2(0) = @3 = 0 and #;(0) = 60. The system
response is shown in Figure DP3.3 where Kp = 215. The aircraft settles
out at 30 m, although initially it overshoots by about 10 m at 1 second.

45

Amplitude

Time (secs)

FIGURE DP3.3
Aircraft arresting gear response.
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DP3.4 We can model the bungi cord system as a mass-spring-damper. This is
actually an over-simplification because the bungi cord cannot “push” the
jumper down as a spring would—it can only exert a restoring force when
the cord is stretched (that is, when the jumper exceeds the length, L, of
the cord). The problem is nonlinear! When the distance of the jumper
from the platform is less than L we should model the cord spring constant
and damping as K = 0 and b = 0, respectively. Only gravity acts on the
jumper. Also, when & (the jumper velocity) is negative (where we define
positive towards the ground), then we should model b = 0. A reasonable
set of equations of motion are

j}l:l’g

. K b
T9 = ——21 — —X2+¢g
m m

where x1 is the distance measured from the top of the platform and x-
is the jumper velocity. For the initial conditions we have x1(0) = 10
and x2(0) = 0. A reasonable set of parameters for the bungi cord are
L =40 m, K = 40 N/m and b = 20 kg/m. The system response is
shown in Figure DP3.4 for a person with m = 100 kg. The accelerations
experienced by the jumper never exceed 1.5 g.

global MASS GRAVITY LENGTH K b
MASS=100; HEIGHT=100; GRAVITY=9.806;
LENGTH=40; SPRINGCONSTANT=40; SPRINGDAMPING=20;
x0=[10;01;
t=0; dt=0.1;
n=round(120/dt);
fori=1:n;
if xO(1)<LENGTH
K=0; b=0;
elseif x0(2)<0
b=0;
else
K=SPRINGCONSTANT; b=SPRINGDAMPING;
end
tf=t+dt; function [xdot] = bungi(t,x)
[Tx] = odea5('bungit[t tf],x0);  ———#= 908 WA SRAVITYLENGTHED
xs(i,;)=x(length(x),:); t=tf; xdot(2)=-(K/MASS)*(x(1)-
x0=x(length(x),:); ts(i)=tf; LENGTH)-(b/MASS)*x(2)+GRAVITY;
end xdot=xdot';
plot(ts,HEIGHT-xs(:,1)), grid

FIGURE DP3.4
(a) Bungi cord system response m-file script.
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90

80 [ q

70 . . B

60 [ q

Distance (m)
w
o
T
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N

o
T
I
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FIGURE DP3.4
CONTINUED: Bungi cord system time history response.

DP3.5 Computing the closed-loop system yields

0 1 0
A - BK = , B= , and 0:[1 o}.
—2—-K; 3—K> 1
The characteristic polynomial is

|sT — (A —BK)| = s> + (Ky —3)s + K; +2=0.

Suppose that the desired poles are in the left-half plane and are denoted
by —p1 and —ps. Then the desired characteristic polynomial is

(s+p1)(s+p2) = s>+ (p1 + p2)s + pip2 = 0.
Equating coefficients and solving for K = [K; K»] yields

Ky =pipy —2
Ky =p1 +p2+ 3.
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Computer Problems

CP3.1 The m-file script to compute the state-space models using the ss function
is shown in Figure CP3.1.

% Part(a)
num = [1];den =[1 25]; a=
a= sys = tf(num,den); X1 -25
X1 x2 Sys_ss = ss(sys)
X1 -8-25 % Part(b) b=
x2 2 0 - . _ . ul
num =[3103];den=[185];

b= sys = tf(num,den);

ul —~ Sys_ss = ss(sys)
x1 4 % Part(c) x1
x2 0 num =[110];den=[1331]; y1 1
sys = tf(num,den);

x1 x2 sys_ss = ss(sys)
yl 35 -15 L 10

d=

Y

ul
y1 3 a=

x1 x2 x3

x1 -3 -1.5-0.25
2 0 0

x3 0 2 O

x2 0
x3 0

c=
x1 x2 x3
yl 0025125

d=
ul
y1 0

FIGURE CP3.1
Script to compute state-space models from transfer functions.

For example, in part (c) the state-space model is

x=Ax+ Bu
y = Cx+ Du ,

This material is protected by Copyright and written permission should be obtained from the publisher prior to any prohibited reproduction, storage in a
retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording, or likewise.
For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.



120 CHAPTER 3 State Variable Models

where D = [0] and

3 —15 025 2
A=| 92 ¢ o|. B=|o|. c=[0 025 1.2 |
0 2 0 0

CP3.2 The m-file script to compute the transfer function models using the tf
function is shown in Figure CP3.2.

% Part (a)
A:[O 1;2 4]; B=[0;1];C=[1 O]; D:[O]; Transfer function:
sys_ss=ss(A,B,C,D); o
sys_tf =tf(sys_ss) = $N2-45-2

% Part (b)
- A=[110;-204;6 2 10];B=[-1;0;1]; C=[0 1 0]; D=[0];
Tranfs)ie_r:gnctlon: SYS_SS=SS(A,B,C,D)}

----------------------- sys_tf = tf(sys_ss)
sA3-115A2+45-36 % Part (c)

A=[0 1;-1 -2];B=[0;1]; C=[-2 1]; D=[0]; Transfer function:
sys_ss=ss(A,B,C,D); -2

sys_tf = tf(sys_ss) ———————— | sA2425+1

FIGURE CP3.2
Script to compute transfer function models from the state-space models.

CP3.3 For an ideal op-amp, the voltage gain (as a function of frequency) is

Zs(s)
‘/O S)=— ‘/zn S),
(5) =~ Vinls)
where
1
Zl = Rl + 0—18
Ry
g = —"
271 + RoCas

are the respective circuit impedances. Therefore, we obtain

RgCls
(1 + RlCls)(l + RQCQS)

Vols) = — Vin(s)-

The m-file script and step response is shown in Figure CP3.3.
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a=
x1 x2
x1 -3.00000 -1.00000
R1=1000; R2=10000; C1=0.0005; C2=0.0001; X2 2.00000 0
numg=[R2*C1 0]; b=
deng=conv([R1*C1 1],[R2*C2 1]); ul
sys_tf=tf(numg,deng) x1  4.00000
% Part (a) X2 0
% c=
sys_ss=ss(sys_tf) x1 x2
% Part (b) y1 250000 0
% d=
step(sys_ss) > ul
plsy: v 0
Continuous-time system.

Step Response

Amplitude

0 I | I | I
0 1 2 3 4 5 6

Time (sec.)

FIGURE CP3.3
The m-file script using the step function to determine the step response.

CP3.4 The m-file script and state history is shown in Figure CP3.4. The transfer
function equivalent is
1

G(s) = .
(5) s34+ 552 4+25+3

The computed state vector at ¢ = 10 is the same using the simulation and
the state transition matrix.
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x1 solid; x2 dotted; x3 dashed
1 T T T T

x(t)

time (sec)

a=[010;001;-3-2-5];
b=[0;0;1];

c=[100];

d=[0];

%

% Part (a)

% Transfer function:
sys_ss = ss(a,b,c,d) 1

sys_tf = tf(sys_ss) -
%

% Part (b)

%
x0=[0-11];
t=1[0:0.1:10];
u=0*;
[y,t,x] = Isim(sys_ss,u,t,x0); xf_sim =
plot(tx(:,1),tx(,2)1tx(,3)-); N
xlabel('time (sec)'), ylabel('x(t)"), grid -0.2545
title('x1 - solid; x2 - dotted; x3 - dashed') 0.0418
xf_sim = x(length(t),:)' 0.1500
%

% Part (c)
% xf_phi=
dt=10;
Phi = expm(a*dt); -0.2545
xf_phi = Phi*x0' - 00418
0.1500

SA3+5sA2+2s+3

FIGURE CP3.4
The m-file script using the Isim function to determine the step response.
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CP3.5 The two state-space models represent the same transfer function, as shown
in Figure CP3.5. The transfer function in both cases is

G(s) :

348524+ 5s+4
We see that a state-space representation of a transfer function is not
unique.

al1=[010;001;-4-5-8];

b1=[0;0;4];

c1=[100];

d1=[0];

%

% Part (a)

% Transfer function:

sys_ss =ss(al,b1,c1,d1); 4

sys_tf = tf(sys_ss)

% SA3+8sA2+5s5+4

% Part (b)

%

a2=[0.5000 0.5000 0.7071;
-0.5000 -0.5000 0.7071;
-6.3640 -0.7071 -8.0000];

b2=[0;0;4];

€2=[0.7071-0.7071 0}; Transfer function:
d2=[0]; 4
sys_ss=ss(a2,b2,c2,d2); | | e
sys_tf = tf(sys_ss) | SA3+8sA2+5s5+4

FIGURE CP3.5
Comparison of the transfer functions of two state-space models.

CP3.6 The m-file script and impulse response are shown in Figure CP3.6. The
controller state-space representation is

T=—2r+u

y=x

and the plant state-space representation is

, -2 =2 0.5
X = X + U

2 0 0
y=10 1]x

The closed-loop system state variable representation is

x=Ax+ Bu
y = Cx+ Du ,
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where D = [0] and

—2 -2 05 0
A=| 2 o0 of|, B=]|o ,C=[010}
0 —1 -2 1

numc=[1]; denc=[1 2J; sys_tfc = tf(numc,denc)
numg=[1]; deng=[1 2 4]; sys_tfg = tf(numg,deng)

%

% Part (a)

%

sys_ssc = ss(sys_tfc)

%

% Part (b)

%

sys_ssg = ss(sys_tfg)

%

% Part (c)

%

sys_s = series(sys_ssc,sys_ssg);
sys_cl = feedback(sys_s,[1]);

impulse(sys_cl)

Impulse Response
From: U(1)

01 ;

Amplitude
To: Y(1)

Time (sec.)

FIGURE CP3.6
Computing the state-space representations and the impulse response.
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CP3.7 The m-file script and system response is shown in Figure CP3.7.

a=[0 1;-2 -3]; b=[0;1]; c=[1 0J; d=[0];
sys = ss(a,b,c,d);

x0=[1;0];

t=[0:0.1:10]; u=0*t;
ly,t.x]=Isim(sys,u,t,x0);
plot(t,x(;,1),t,x(;2),--"

xlabel('Time (sec)")

ylabel('State Response’)
legend('x1,x2}-1)

grid

x1

0.5 . . 4

State Response

-0.5

Time (sec)

FIGURE CP3.7
Using the Isim function to compute the zero input response.
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CHAPTER 4

Feedback Control System
Characteristics

Exercises

E4.1 (a) The system sensitivity to 7 is given by

ST = §Es¢ .
In this case, we have
o _ 1 B 1 3s+1
“T14+GH(s) 1+4%  3s+101
and
a —T5 —3s

Ts+1 3s+1°
where 7 = 3. Therefore,

—3s
Sr—_ ==
T 3s+ 101

(b) The closed-loop transfer function is

G(s) 100  100/101  0.99

T(s) = — — —
() 1+GH(s) 3s+101 3rs+1 7es+1°

where the time-constant 7. = 3/101 = 0.0297 second.
E4.2 (a) The system sensitivity to Ky is

OT Ko 1
OKo T 1+ K Ko '

T _
Sk, =
126
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(b) The transfer function from Ty(s) to V,(s) is

Ko Tu(s) .

) = TR

(¢) We would select K7 > 1, so that the transfer function from Tjy(s) to
Vo(s) is small.

E4.3 (a) The tracking error, E(s) = R(s) — Y (s), is given by

_ R(s) _ Als
1+G(s) 1+K/(s+4)?

E(s)

The steady-state error (computed using the final value theorem) is

. . A A
ess—gl_r%sE(S)—llg(l] 1+ﬁz =TT K16

(b) A disturbance would be the wind shaking the robot arm.
E4.4 (a) The tracking error, E(s) = R(s) — Y (s), is given by

R(s)

B = xawm)

The steady-state position error is computed (using the final value
theorem) to be

I [ Als } A 0
ess = lims | ————| = =0.
R 1+ KG(S) s—0 [ 1+ S(%I—il)
(b) The ramp input of 0.1 m/sec is given by
0.1
R(s) = — .
(5) =5
Then, using the final value theorem, we have
I 0.1/ i 0.1 ]
€ss = M S | ———5p— | = M ——51 >
S - c=ny N Kl g

or
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128 CHAPTER 4 Feedback Control System Characteristics

We desire egs < 0.0001 m, so

0.01
> ——— =100 .
— 0.0001 00

E4.5 The light bounces off the surface of the slide and into a detector. If the
light fails to hit the detector dead center, the unbalanced electric signal
causes the motor to adjust the position of the light source, and simulta-
neously the lens.

E4.6 The closed-loop transfer function is

 5(s+2)
)= S 10

The step response is shown in Figure E4.6.

Step Response

Amplitude

Time (sec. )

FIGURE E4.6
Step response.

E4.7 (a) The closed-loop transfer function is

KK,
T(s)= .
(8) S+K1(K+K2)
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(b) The sensitivities are

ST N 8T/T B 8—|—K1K2
K7 OK/K — s+ Ki(K + Ka)

and

T S

SK1 N S+K1(K+K2) '

(¢) The transfer function from Ty(s) to Y (s) is

Y (s) -1

Td(s) N S+K1(K2+K) '

Therefore, since E(s) = —KY (s) (when R(s) = 0), we have
K

E(s) = T,
©) = T mn T r )
and
K
s = lim sFE(s) = ———— .
€ sl—%s (S) Kl(K+ KQ)
(d) With K = Ky =1, we have
K,
T(s) = ——— .
(S) s+ 2K,
Then,
K 1
Y(s)= L =
(s) s+ 2K s
and
_ 1 —2K it
y(t) = 5 [1 = (),

where u(t) is the unit step function. Therefore, select K7 = 10 for the
fastest response.

The closed-loop transfer function is

46.24K (s + 50)(s + 425)
(s +200)(s + 425)(s% + 16.7s + 72.9) + 19652K (s + 50)

T(s) =

The steady-state error is determined to be

6.3
6.3+ K

1
€ss = liné sE(s) = liH(l) s(l—T(s)); = 1—111%T(s) =1-T7(0) =
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The plots of the steady-state error versus K and the percent overshoot
P.O. versus K are shown in Figure E4.8 for 40 < K < 400.

0.14 45
012 wl
041}
= 35¢
I
s =
S 008 8
7 5
i £ 30
¢ 3
3 0.06 =
S S
Z o
g 25¢
0.04
0.02 201
0 ; ; ; 15 ; ; ;
0 100 200 300 400 0 100 200 300 400
K K
FIGURE E4.8

(a) Steady-state error. (b) Percent overshoot.

E4.9 (a) The closed-loop transfer function is
T(s) = G(s) B K(s* 4 5s+6)
1+ G(s)H(s)  s3+ 1582+ 565 + 60 + 14K
(b) With E(s) = R(s) — Y (s) we obtain
L G0y~ LG - H)
1+ G(s)H(s) 1+ G(s)H(s)

s34+ (15 — K)s% + (56 — 5K)s + (60 + 8K) 1
83 4+ 1552 + 565 4+ 60 + 14K 5

E(s)=|1

R(s)

Then, using the final value theorem we find

. (60 + 8K)
lim sE(s) = o)
limysE(s) = G0+ 14K

(c¢) The transfer function from the disturbance T,(s) to the output is

1 s3 + 1552 + 565 + 60

Y e = .
) = TG a1 = 1552 + 565 1 60 1 12k L)
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The steady-state error to a unit step disturbance is

lim Y (s) = lim ¢ s3 + 15s% + 565 + 60 1 60
50 50 $34+ 15824+ 565s+60+ 14K s 60+ 14K

(d) The sensitivity is

r OTK 0T 9GK

KT OKT T 9GOKT
B 1 ( K > 1+G(s)H(s) 1
- (1+G(s)H(s))2 \s+ 10 G(s) 1+ G(s)H(s)
E4.10 (a) The closed-loop transfer function is
G.(s)G(s) 100K (s +5)

T(s)

T 1+ G.(s)G(s)H(s) 52+ 1055 + (500 + 100K, K3)
The steady-state tracking error is
1 — Ge(s)G(s)(1 — H(s))
1+ G.(s)G(s)H(s)
52 + (105 — 100K7)s + 500 — 100K (5 — K»)
52 + 1055 + 500 4+ 100K, K>

E(s)=R(s)—Y(s) = R(s)

1
s

and

) 5 - Ki(5— K»)
lmsBG) = 5T Rm
(b) The transfer function from the noise disturbance N(s) to the output

Y(s) is

—Gc(s)G(s)H (s) —100K1 K>

Yo = [ memam) ¥ = [mrim T g ok V)

The steady-state error to a unit step N(s) = 1/s is

[ —100K; Ko } 1 —K Ky

lim sY () = i .y
i sY(s) = s | 5055 7 (500 100K, Ky) | 5~ 5% Kuka

s—0

(¢) The design trade-off would be to make KKy as large as possible

to improve tracking performance while keeping KK, as small as
possible to reject the noise.

E4.11 The closed-loop transfer function is

K

T(s) = ——~
)= Froms Tk
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The sensitivity is

s OT/T  s*+25s

SE = = .
K™ OK/K ~ 24255+ K

E4.12 (a) The closed-loop transfer function is

B G.(s)G(s) B K
1+ G(s)G(s)H(s) 2+ Kis+ K

T(s)

The sensitivity is

ST - 8T/T _ SKl
Kl_aKl/Kl_ 82+K13+K.

(b) You would make K as large as possible to reduce the sensitivity to
changes in K. But the design trade-off would be to keep K as small
as possible to reject measurement noise.

E4.13 (a) The closed-loop transfer function is

T(s) = G.(s)G(s) B 120
14+ G(s)G(s)H(s)  s2+10s+120

The steady-state tracking error is

- 52+ 10s 1
T 2410s+120 s
and
lii% sE(s)=0.

(b) The transfer function from the disturbance Ty(s) to the output Y (s)
is
Y(s) = | oigs | T
~ s+ 105 +120) "

The steady-state error to a unit step Ty(s) = 1/s is

1 11
lim sY(s) = lims || .= = — .
lim s¥(s) S%SL?HOHMO] s 120
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Problems

P4.1 The tank level control block diagram is shown in Figure P4.1.

dH

+
DmJE Gils) | ~ DH
- +
K

FIGURE P4.1
Tank level control block diagram.

(a) For the open-loop system the transfer function is

R

G = gpesr1
Thus,

Glzﬁ.izil
R OR G; RCs+1°

For the closed-loop system, the transfer function is

G R

T(s) = - .
(5) 1+KG, RCs+1+KR
Thus,
ST_a_T.E_ 1
ETOR T RCOs+1+KR'
and
gr_ T K _ KR
K79K T RCs+1+KR'

(b) For the open-loop system

AH(s)
SH(s)

All disturbances show up directly in the output, thus the open-loop
system has no capability to reject disturbances. On the other hand,
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134 CHAPTER 4 Feedback Control System Characteristics

for the closed-loop system we have

AH(s) 1 RCOs+1
§H(s) 1+ KGi(s) RCs+1+KR'

By selecting K large, we reduce the effects of any disturbances. For
example, consider a step disturbance. The steady-state error due to
the disturbance is

—(RCs+1) > A A

sszl. = T 5
© slms(RCs+1+KR s 1+KR

—0

As K gets larger, the steady-state error magnitude gets smaller, as
desired.

(c¢) Consider the step input

AQl(S) = é .

S

Then, for the open-loop system we have

esszlin(l)s(l—Gl)éz(l—R)A.

The steady-state error is zero when R = 1, but is sensitive to changes
in R. For the closed-loop system we have

—1'ms<71 )é—iA
Cs = I \15-KG,)s 1+KR-

By selecting K large, the effect of the disturbance is reduced and is
relatively insensitive to changes in R.

P4.2 (a) The open-loop transfer function is
T(s) = K,G(s) .
Therefore, 511;1 is undefined and
Sk, =1.
The closed-loop transfer function is

B K,G(s)
) = T RmGH)

Therefore,

Bu7 oK, T — 1+ KK G(s)
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and

A —
Ke ™1 4 KIK.G(s)
(b) The tracking error, E(s) = 64(s) —0(s) = —0(s), since 04(s) = 0. The
transfer function from the wave disturbance to the output 6(s) is

G(s)

) = T ’KK.Go)

Ty(s) .

Consider a step disturbance input for the open- and closed-loop sys-
tems. For the open-loop system, we have

ess = — lim sG(s)é =—-A.

s—0

Thus, we see that the open-loop system does not have the capability
to reduce the effect of disturbances. For the closed-loop system, we
have

€ss = lim s
S

—0

( ~G(s) )A — Aw?

1+ K1 K.G(s)) s 1+ K Kqw?

We see that the larger we make K K,, that smaller the effect of the
wave disturbance on the output in steady-state.

P4.3 (a) The open-loop transfer function is

K
75+ 1

G(s) =
where K = k1k,FEy. Then, computing the sensitivity yields
SG=1.

The closed-loop system transfer function is

K

T(s)=————— .
(s) s+ KK + 1

Similarly, computing the sensitivity yields

T 1 Ts+1

Sk = = .
=y K, G(s) 7s+ 14+ KKy,

(b) For the closed-loop system

1/(ts+1)

_ T
ST KK a4 1) )

() ~ KK,
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136 CHAPTER 4 Feedback Control System Characteristics

when KKy, > 1. So, by choosing KKy, large, we can reduce the
effect of the disturbance. This cannot be done with the open-loop
system.

(c¢) Consider the step input

A
Edes(s) = ; .

The tracking error for the open-loop system is
E(s) = Eges(s) — 7 (s) .

Thus,

K A
esszlims{l— ]<—>:(1—K)A.
5—0 Ts+1] \'s

So, ess = 0 when K = 1, but is sensitive to changes in K. The tracking
error for the closed-loop system is

s+ 1+ K(Ky, —1)
s+ 1+ KKy,

E(s) = Ees(s)

and

(TS—|—1+K(Kth_1)) é - A+ KKy, — 1)) .

— lim sE(s) = li
ess = limysB(s) = limys | — =70 — ) 5 1+ KKy,

s—0
Selecting Ky, = 1 and K > 1 reduces the steady-state error.
P4.4 (a) The overall transfer function is

Y (s) _ MG(s) +UQG(s)

T(s) = R(s) 1+ QG(s)

(b) From Eq. (4.16) in Dorf & Bishop, we have
St =8N -5 .

In our case, we find that

SN =1,
and
D _ QG(S)
T 14+QG(s)
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Thus,

QG(s) 1

T _ 1 _ _
S¢ =106 T T3 0G6)

(c) The sensitivity does not depend upon U(s) or M (s).

P4.5 The closed-loop transfer function is

. GlG(S)
T =1rGa6

(a) The sensitivity of T'(s) to changes in k, is

1
T _
S%_1+@G@'

(b) The transfer function from Ty(s) to 6(s) is

G(s)

0(s) = ———=—Tuls) .
)= 15660 )
Since we want 6(s) due to a disturbance, E(s) = —0(s) and
. L —G(s) 10  —10
%S_EEfE“)_E%S<1+G¢xg)s T ke

Since our maximum desired error magnitude is

0.10° - 7
= = 0.001745 rad |
© 180 e

we select
kq > 5730 .
(c) The open-loop transfer function is
0(s) = G(s)Tq(s) .
So,

ess = — lim sG(s) <E> — 00 .

s—0 S
P4.6 The closed-loop transfer function is

_ GiG(s)
T =1 aaem
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138 CHAPTER 4 Feedback Control System Characteristics

(a) The sensitivity is

o _ 1 _ (T1s+ 1)(Tes + 1) .
Ke 1+ G1G(s) (ms+1)(res+ 1)+ K1 K,

(b) The speed is affected by the load torque through the transfer function

 —KyG(s)
V) = T 0)

(c) Let R(s) =30/s , and K.K; > 1. When the car stalls, V(s) = 0.
Using the final value theorem, we find

lim <7_KQG(S) >& + lim (7G1G(S) )§
3 1+GGi(s)) s 05 ® 1+ GGi(s)) s

— _Ad (M) n <ﬂ)
14+ K. Ky 1+ KiK.

ATy(s) .

Since K.K7 > 1, we have

When V,; = 0, we have

30K,
Ad =
Ky
Thus, if
Ky
=9 _9
Ky ’

then Ad = 15 percent grade ( i.e. Ad = 15 ft rise per 100 ft horizon-
tally) will stall the car.

P4.7 (a) Let

k
Gi(s) =k, Ga(s)= s(Tz—l—l) , and  H(s) = ks + kys .

Then the transfer function from 77.(s) to Y (s) is

_ GQ(S) _ ]{72
1+G1G2H(8) S(TS+ 1) —|—k‘1k‘2(k‘3—|—k‘48)

Y(S) = TL(S) == TL(S) .

(b) The sensitivity of the closed-loop system to kg is

A —
b2 T L GIGyH (s)
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where T'(s) is the closed loop transfer function

G1Go(s) k1ko

T(s) = 1+G1GoH(s)  s(ts+ 1) + kika(ks + kys)

(¢) The error is given by

With
1
R(S) - g ’

we have

€ss = lims(l—T(s))l =1-1T(0) —1—i

5550 S N N kg )

P4.8 (a) The sensitivity is
. 1 B (0.1s 4 1)(s? 4 20s + 200)

Sy = = .
K714 G1G(s) — (0.1s +1)(s2 + 20s + 200) + 200K
(b) The transfer function from Ty(s) to Y(s) is

_ G(s) () 200(0.1s + 1)
T 14+ GIG(s) M T (015 + 1)(s2 + 20s + 200) + 200K

Y (s) Ta(s) -

P4.9 (a) Computing the derivative of R with respect to 7 yields

dR —0.201R

di (i —0.005)3/2
When vy, = 35 volts, we have

. 35
~ 5000

= Tma .

At the operating point i = 7 ma, we find from Figure P4.9(b) in Dorf
& Bishop that R ~ 20K (note: If we use the given formula, we find
that R ~ 8.2K when ¢ = 7 ma, thus we see that the formula is just
an approximation to the plot). Using R = 20K, we have

dR  —0.402 x 10*

E = W = —45 kohms/ma .
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140 CHAPTER 4 Feedback Control System Characteristics

The transfer function (valid around the operating point) is

T(S) _ V;)ut(s) _ K
Vin(s)  (s7+1) + K (421)
K
T ST+ 149K1

The photosensor block diagram is shown in Figure P4.9.

V|n4>+ tS+1 B Vout
45| =

FIGURE P4.9
Photosensor block diagram.

ull=

(b) The sensitivity of the system to changes in K is

T Ts+1
K™ rs+1+9KI

P4.10 (a) and (b) The paper tension control block diagram is shown in Fig-

ure P4.10.
DT(s)
+ V1 +DVq(s)
Eo9) N Wo(s) S 1 .
R(s) —= ‘ K'm - 2 3 = T(s)
+5p + [ +
2
K 2
? v | K
FIGURE P4.10

Paper tension control block diagram.
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Problems

(¢) The closed-loop transfer function, T, is given by

2K77L
T (8) . T(S) . s(Ts+1) o 2K,
e(s) = = = .
R(s) 1+ 7kff({:;]f1) 782+ s+ —41{,5]“2
The sensitivity of T, to changes in K, is
T 1 s(ts+1)
S[{C'm = 1 AK ko - 2 4K mko -
+ Fis(rs+1) TS+ S+ kL

(d) The transfer function from AVi(s) to T'(s) is

-1
=1 —1

T(s) = 1o ARk n mek2 AVy(s) = T ARk AVi(s) .
kis(ts+1) ki(rs+1)

When AVi(s) = A/s, we have

—(rs+1) A
T(s) = —.
)= et hmbs 5
and
. . —Aky
Aim T(t) = Ty sT(s) = e

(a) The closed-loop transfer function is

G.G(s) K K

T = = = .
) =5 6GH) " Qs D@t DK 202 11235+ 11 K

(b) The sensitivity S% is
;T K 1 1

K=K T 14 G.00)

K
Lt mosm@s
(c) Define E(s) = R(s) — Y (s). Then

R(s) 2052 + 125 + 1

E(s) = - .
) =1Tcem ~ w21 k1| T

With

we have
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(d) We want [e(t)| < 0.024 as t — oo . So,

0.024 >
T K+1

implies
K >49.
P4.12 (a) The two transfer functions are

Y(S) K1K2

T = =
)= R T T 009E K,

and
Y(S) K1K2

Ty(s) = R(s)  (1+0.09K,)(1+ 0.09K;) -

(b) When K; = K9 = 100 , then

(100)?
Ty(s) = =100
1(s) = 7570.0099(100)2
and
(100)2
Ty(s) = =100 .
() = 5 0.00(100))2
(¢) The sensitivity SfT{ll is
o, K, 1
Sk =t == =0.01
v 79K, Ty 14 0.0099K; Ko ’

when K7 = K5 = 100. The sensitivity 5[1;21 is

oy, K, 1
Rt R —— |
Kx 7oK, T, 1+ 0.09K; ’

when K7 = 100. Thus,

K10
P4.13 (a) Let N(s) = G1(s) + kGa(s) and Ty(s) = G3(s) + kG4(s). Then
r ON k 0D k _ Gok Gk

S

E= 9k N 9k D G+ kGs Gs+ kG,
k(GaGs — G1GY)
(G1—|—k‘G2)(G3+k‘G4) ’
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(b) The closed-loop transfer function is

T(s) = MG T RUG(s) _ Ga(s) + +Ga(s)
T 14 kGH(s)  Gs(s)+ kGa(s)

Then using result from (a), we have

k(UG(s) — MG*H(s))

S = (IG() + hUGE) 11 hGHE) |

P4.14 The closed-loop transfer function is
G(s)  N(s) 12(s +5)

T(s) =7 +G(s)  Tu(s) s(s+a)(s+1)+10(s+6)
Then
Sa =82 =52,
but
SN=o0.
Let
_ p(s)
e
where p(s) = 12(s +5) and ¢(s) = s(s +1). Then
_ Gl _ p(s)
T(s) = 1+G(s)  q(s)(s+a)+p(s)’
and
_ _gp_ _4D a _ —aq(s) __ 5ia
Sa =5 = da D q(s)(s+a)+p(s) 1+E(s) '

P4.15 (a) The closed-loop transfer function for the disturbance to the output is

Yi(s)  G(s)
Td(s) - 1 —I—KG(S) ’

with R = 0. The steady-state deviation is

I
+ 5

Yss = lim s
S—>

0 s 1+KGO) 1+K°

So, with K = 5 we have yss = 1/6, and with K = 25 we have
Yss = 1/26
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(b) Considering the rudder input, we have

G(s)Ty(s) + KG(s)R(s) _ G(s)(Ty(s) + KR(s))
14+ KG(s) 1+ KG(s) )

Y(s) =

Setting R(s) = —TdT(S) yields Y(s) = 0.
P4.16 (a) Let

o 1 o Gl(s)
G = i D r . 04 G2 =755
Then
~ Ga(s) G2Ge(s)
Tos) =13 Glch(s)T"(s) T +2GzGc(s) bals) -

(b) We can equivalently consider the case of a step input, Toy = A/s,
T, = 0, and zero initial conditions. Thus,
GGy 5 A
To(s) — — 272 p e
2(8) = TG 2 T 50057 4 605+ 6 5

where G¢(s) = 500. The transient response is shown in the Fig-
ure P4.16 for a unit step input (A =1).

Unit step response, A=1
1 T T .

09+ ; . : 4

0.8+ i ‘ 1

07} ! } .
Tp=34.3 sec '

0.6 p:0.=12.8% Ts=66.7 sec 8

05+ ~ : .

T2

03} ‘ , » :

02r .

O 1 1 1 1 1 1 1 1 1
0 10 20 30 40 50 60 70 80 90 100

time (sec)

FIGURE P4.16
Two tank temperature control system response.
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(¢) With

we have
E(s) = Toq(s) — M(s)T54(s)
where
(s) = GaGe(s) .
1+ G2Ge(s)
Then
€a = lim 5(1 — M(s))é — (1= M)A = (1— %)A - % .

P4.17 (a) The closed-loop transfer function is

0(s) 600 B 6000
Ba(s)  0.1s2+s+600 52+ 10s + 6000 °

The solution for a step input is
0(t) = 1 — 1.0021e 5034 5in (77.2962¢ + 1.5058).

(b) The transfer function from the disturbance to the output is

0(s) -1
Ty(s)  0.1s2 + s+ 600

Thus,
A
fss = —limsf(s) = — .
timy 0(s) = g
Therefore, the disturbance input magnitude reduced by 600 at the
output.
(c) Using the final value theorem we have (for 64(s) = 1/s% )

€ss = SI% sE(s) = lim s(1 — T'(s))8a(s)

S—

i 0.1s2 + s 1 1
= 11m s —_ = .
0.1s2 4+ s+600/ s2 600
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Advanced Problems

AP4.1 The plant transfer function is

R
“l8) = Ros g1

The closed-loop output is given by

1 GGp(s)

H(s) = H—GiGp(s)Q?’(s) + T1GG,(s) a(s) -

Therefore, with E(s) = Hy(s) — H(s), we have

—1

E(s) = —————
)= 1766, @)
since Hy(s) = 0.
(a) When G(s) = K, we have
— lim sE(s) = —
ess = lim sE(s) = ;0 -

(b) When G(s) = K/s, we have
€ss = lin(l]sE(s) =0.

AP4.2 Define

Gls) = K.,G.(s)
 8(Las + Ra)(Js + f) + K KpGe(s)
Then,
B nG(s)

0(s)/0a(s) = 175 nG(s)
and

E(s) = ————4(s)

VT TG (s)
So,
. . A A AK,
ess = s B(s) = iy sy e S S = T mG0)  Kyan
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When 6,4(s) = 0 and Ty(s) = M/s, we have

_ n(Las + Ra)
9(3)/Td(3) = S(Las T Ra)(JS + f) + Kme + Kchn ’

If G.(s) = K, then

—nMR,
K. (K 4+ nK)

€ss =

and if G¢(s) = K/s, we determine that ess = 0.
AP4.3 (a) The input R(s) is

and the disturbance is Ty(s) = 0. So,

_1
ess = lim s——R(s) = lim —— 5 = —0.8750 .
=0 14 G(s) s—0 1 4 1708((288j54))
(b) The error plot is shown in Figure AP4.3a.
2
1.5 1
1t -
2 os ]
or i
7-057¢ T
?7-1 :
0 2 4 6 8 10
Time (sec)
FIGURE AP4.3

(a) Error plot with d(t)=0.
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0
2051 -\ e : : : o : 1
\‘qi‘; ?-1 .
?2-1.5 1

-2 : 5 5 :
0 2 4 6 8 10
Time (sec)
FIGURE AP4.3

CONTINUED: (b) Error plot with r(t)=0.

(c) The transfer function from Ty(s) to Y (s) (with R(s) =0 ) is

=70

Y(s)/Ty(s) = c5—— .
(9)/Ta®) = 733 555 7 40

The steady-state error due to a disturbance Ty(s) = 1/s is

—70 1
€55 = lim =—-1.75.

20 75% + 555 + 40 5
(d) The error e(t) is shown in Figure AP4.3b.
AP4.4 (a) The closed-loop transfer function is

Km

w(s)/V(s) = RoJs® + KyKps + KKK,

With v(t) = ¢, we have V(s) = 1/s%, and Ty(s) = 0. Using the final
value theorem yields

. . 1 K,
ess = lim sE(s) = lim oae =—=
s—0 s—0 g + 7RQJ8+I¥;KI,

E
7
We desire that

0.1
€ss — f <0.1.
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Therefore, we should select K > 1. For example, we can take K = 8.

(b) The transfer function from Ty(s) to w(s) is given by

w(s) —10s
Ty(s)  s2+10s+100

The error plot is shown in Figure AP4.4, where e(s) = —w(s) (V(s) =
0.)

0.2

0.18 : :

0.16 :

012 :

0.08 4

0.06 H : .

0.04 .

0.02 : 4

Time (sec)

FIGURE AP4.4
Error plot with a ramp disturbance input.

AP4.5 (a) The transfer function from the disturbance Ty(s) to the output Y'(s)
is
Y(s) -5
Ty(s) s34+4s2+4s+ K

The steady-state error (when Ty(s) = 1/s) is

S 1
Css 3%883+482+48—|—K«9
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(b) The closed-loop transfer function is

Y (s) K

R(s) T P44 45+ K

The steady-state error (when R(s) = 1/5?) is

s34+ 452 + 45

1
€ss = lir%s(l —T(s))— = lim

s2 s—=0s(s34+4s2 +4s+ K)

(¢) Let K = 8. Then,

Y(s) —s

Ty(s) 3 +4s2+4s+8

The error plot is shown in Figure AP4.5, for r(t) = 0.

0.15

4
-

0.1

0.05

-0.05

-0.1 i i i i i i

0 2 4 6 8 10 12

Time (sec)

FIGURE AP4.5
Error plot with a step disturbance input and K=8.

AP4.6 (a) The transfer function is

Vo(s) 1+ RCs

V(s) 2+RCs’

20
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(b) The system sensitivity is defined as

§ =507
Therefore, the sensitivity is determined to be
Sg _ RC's _ 1 '
(2+ RCs)(1+ RC's) (1 + chs) (1 + ﬁ)

(c) Let V(s) =1/s. Then
1+RCs1 05  0.5RC

Vo(s)_2+RCs;_ s +RCs+2'

Taking the inverse Laplace transform yields
Uo(t) = 0.5(1 4 e~ 2/FC Yy (t)

where wu(t) is the unit step function. A plot of v,(t) versus t/RC is
shown in Figure AP4.6.

0.95

0.9

0.85

0.8

0.75

Vo

0.7

0.65

0.6

0.55

0.5

FIGURE AP4.6
Step response.
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(a) The transfer function from Ty(s) to Y(s) is
Y (s) 2s

Tu(s)  s(s+2)+2K

AP4.7

(b) The transfer function from N(s) to Y (s) is

Y(s) 2K
N(s)  s(s+2)+2K

(c) Let Ty(s) = A/s and N(s) = B/s. Then,
ss = e = G s(s +2)+2K s  s-0 s(s+2)+2K s

So, K has no effect on the steady-state errors. However, choosing
K = 100 will minimize the effects of the disturbance Ty(s) during the

transient period.

AP4.8 (a) The closed-loop transfer function is
Kb

T(s) = — ="
)= TRp i1

(b) The sensitivity is determined to be

ST:aT/T: s+1 .
b7 ob/b s+ Kb+1

(c¢) The transfer function from Ty(s) to Y (s) is
Y(s) b

Tu(s) s+Kb+1"

So, choose K as large as possible, to make Y (s)/T4(s) as “small” as

possible. Thus, select
K =50.

This also minimizes Sg at low frequencies.
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Design Problems

CDP4.1 The model of the traction drive, capstan roller, and linear slide was de-
veloped in CDP2.1:

9(8) o Km
Va(s) ~ s[(Lms + Rm)(Jrs + bm) + K K]

The step response for the closed-loop system (with the tachometer not in
the loop) and various values of the controller gain K, is shown below.

% System parameters

Ms=5.693; Mb=6.96; Jm=10.91e-03; r=31.75e-03;
bm=0.268; Km=0.8379; Kb=0.838; Rm=1.36; Lm=3.6e-03; Lm=0;
% Controller gain

Ka=100;

% Motor and slide model

Jt=Jm+rA2*(Ms+Mb);

num=[Km];

den=[Lm*Jt Rm*Jt+Lm*bm Kb*Km+Rm*bm 0];
sys=tf(num,den);

%Closed-loop tf and step response
sys_cl=feedback(Ka*sys,[1]);

step(sys_cl)
15 T T T T
E— Ka=2
- - - Ka=5
| ——  Ka=10
- Ka=100
g -7
c -
o -
Q. Vs
] -
= Ve
oy ,
@ /
S /
2 /
= /
05 / |
/
/
/
/
/
/
/
/
[/
0 j j j j
0 0.2 0.4 0.6 0.8 1

Time (sec)
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154 CHAPTER 4 Feedback Control System Characteristics

DP4.1 (a) The transfer function from the load disturbance to the output speed
is
w(s) —G(s) —s

Ty(s) 1+G.G(s) 2+4s+K°

Thus, the effect on w(s) (of a unit step disturbance) at steady-state
is

. . —S 1
Jim w(t) = liny s (m) s

We see that the load disturbance has no effect on the output at steady-
state.

(b) The system response for 10 < K < 25 is shown in Figure DP4.1.

K=10,12,16,18,20,23,25
100.04 T T

100.02

100

99.98

99.96

< 99.94

99.92

99.88

99.86

99.84 L - L - L
0 0.5 1 1.5 2 2.5 3
Time(sec)

FIGURE DP4.1
Speed control system response.

For example , if we select K = 16, then w, = 4,( = %, and the
response due to a unit step disturbance is

w(s)__is(l)__—l
2445 +16 \s/)  (s+2)2+12°

Hence, if we are originally at w(t) = 100 for ¢t < 7, we have

1
w(t) =100 — ——e ?!sinV12t t> 7.

V12
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DP4.2 With 0; = 0, we have
i Ta(s) .

_ G(s) Ty(s) =
1+ G(s)EE A B 4+ 95+ KK, °

s

0(s)

For T; = A/s, we have

A
8344524+ 95+ KKy

0(s)

The system response to a unit step disturbance for various values of K Ky
are shown in Figure DP4.2. From the plot we see that when K K7 is small
the response is slow but not oscillatory. On the other hand, when K Kj
is large the response is fast but highly oscillatory. In fact, if KKy > 35,
the system is unstable. Thus, we might select K K; = 10 as a reasonable
trade-off between fast performance and stability.

Unit step response for KK;=1,5,10,15,20,25
0.12 T T T : :

0.1

0.08

0.06

0.04

0.02

-0.02

-0.04

-0.06 i i i i i i i i i
0
time(sec)

FIGURE DP4.2
Aircraft roll angle control system response to a disturbance.

DP4.3 (a) The closed-loop transfer function is

w(s) K
wa(s)  s2+5s+ KK

T(s) =
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Then,
s2+5s+ K(K1—1)1
Es)=(1-T = -
(S) ( (S))Wd(s) 32 + 53 + KKl s
So, if
0.99 < K4 <1.01,
then

less| < 0.01 .

(b) The transfer function from Ty(s) to w(s) is

= Ty(s) .

wis) = s2 4+ 55+ KK, d

So, with E(s) = —w(s) and Ty(s) = 2/s, we have

. 2
lli%sE(s) = KK

Therefore, we select K K1 > 20 to obtain egs < 0.1.
DP4.4 The steady-state error for a step input command is zero for any Kj. The
transfer function from Ty(s) to Y(s) is
Y(s)  G(s) 2
Ty(s) 1+ KG(s) s3+5s2+4s+2K

Thus, the output at steady-state due to a step disturbance Ty(s) = A/s
is

- A
llir(l] sY (s) = I

We want to maximize K to reduce the effect of the disturbance. As we will
see in Chapter 6, we cannot select K too high or the system will become
unstable. That is why the problem statement suggests a maximum gain
of K = 10. For the design we choose

K=10.
DP4.5 The transfer function from V'(s) to V,(s) is

ks
sS+a

Vo(s)/V(s) =
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where
- Ry + R3 1

and a=—— .

k
RQ Rl C

Computing the step response, we find that
Vo(t) = ke~ = 51000

Solving for Ry, Ro, R3 and C yields

R1C =0.01 and e =4 .
R

DP4.6 (a) The closed-loop transfer function is

K/J
=———0 .
(5) = g7 0)
Since J > 0, the system is unstable when K < 0 and marginally
stable when K > 0.

(b) Since the system is marginally stable, the system response does not
have a steady-state value—it oscillates indefinitely.

(¢) The closed-loop transfer function is
KDS + Kp
0(s) = .
(8) J82+KDS+KP d(s)
The system is stable for all Kp > 0 and Kp > 0, given that J > 0.
(d) The tracking error E(s) = 64(s) — 0(s) is

Js?

E(s) = .
(S) J82+KDS+KP

Therefore, using the final value theorem we obtain the steady-state
value
Js? 1

gIL%SE(S) :l%SJS2+KDS+KP s =0
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Computer Problems

CP4.1 The transfer function is

5

G(s) = ————.
(5) 52+ 25+ 20

An m-file script which generates the step response is shown in Figure CP4.1.
The step response is also shown in Figure CP4.1.

Step Response

0.4

num=[5]; den=[1 2 20]; 035 -
sys = tf(num,den);
axis([06 0 1]); 03 f
t=[0:0.01:6];
step(sys,t) 025 -
y = step(sys,1);

yss = y(length(t))

02

Amplitude

01
yss =

0.2496

Time (sec)

FIGURE CP4.1
Step response.

The step response is generated using the step function. In the script, the
transfer function numerator is represented by num and the denominator
is represented by den. The steady-state value is yss = 0.2 and the desired
value is 1.0. Therefore, the steady-state error is

ess = 0.8 .

CP4.2 The step response and an m-file script which generates the step response
is shown in Figure CP4.2. The closed-loop transfer function is determined
to be

75

T(s)= —2
(5) 52 4+ 25+ 85

The percent overshoot is P.O. = 71% and the steady-state error is ezs =
0.12.
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Step Response

System: sys_cl

Peak amplitude: 1.51
Overshoot (%): 71
At time (sec): 0.343

num = [75];den =[1210]; .
sys = tf(num,den);

sys_cl = feedback(sys,[1])
step(sys_cl)

y = step(sys_cl); 06|

Amplitude

04

0.2

Time (sec)

FIGURE CP4.2
Step response.

CP4.3 The step responses and the m-file script which generates the step re-
sponses is shown in Figure CP4.3.

7
— K=10
— — — K=200
6l K=500
{
i \
K=[10,200,500]; L
t=[0:0.01:7]; “
fori=1:3 4l
num=5*K(i); den=[1 15 K(i)]; |
sys = tf(num,den) :
y(:i)= step(sys,b); o
end |
plot(ty(;1),ty(,2),~-'ty(;3),") 2
legend('’K=10','K=200',K=500',-1) “
1 il
i
0 ‘
0 1 2 3 4 5 6 7

FIGURE CP4.3
Step responses for K = 10, 100, 500.
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CP4.4

CHAPTER 4 Feedback Control System Characteristics

The step response and the m-file script which generates the step response
is shown in Figure CP4.4. The closed-loop transfer function is determined
to be

10

T(s) = — —
(8)= Z 375110

Using the m-file script, a trial-and-error search on k yields
k=3.7.

The percent overshoot P.O. = 10% and the steady-state value is 1, as
expected.

k =3.7; % Final value of k=3.7
numcg = [10]; dencg = [1 k 0];
sys_o = tf(numcg,dencg);

sys_cl = feedback(sys_o,[1]) s

t=[0:0.1:5];

[y,t] = step(sys_cl,t); sl |
plot(t,y,[0 51,[1.1 1.1],--); grid A

xlabel('Time (sec)"); ylabel('y(t)"); =

Transfer function:
10

sA2+3.7s+10

FIGURE CP4.4
Step response.

CP4.5

06 - -
i 04 -

02 - . -

I
0 0.5 1 15 2 25 3 35 4 45 5
Time (sec)

The closed-loop transfer function is

K
T(s):s—a—i-K

where K = 2. When a =1 and R(s) = 1/s, the final value is

. . K
21_)1% sT(s)R(s) = ?_1)1(1) T(s) = = 2

The output is within 2% of the final value at around ¢ = 4.6 seconds. The
plot of the step responses for a = 1,0.5,2,5 is shown in Figure CP4.5.
The output is unstable for a > 2.
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K=2; t=[0:0.1:5];

num=K*[1];

a=[10.525];

fori=1:4

den=[1-a(i)]; sys = tf(num,den);
sys_cl = feedback(sys,[1]);
y(;,i)=step(sys_cl,t);

end

plot(t,y(, 1)ty(.2),5ty(3), - ty(.4),-))
axis([0 50 5]);

xlabel('Time (sec)"), ylabel('y(t)")
title('a=1 (solid); a=0.5 (dotted); a=2 (dashed); a=5 (dashdot)')

a=1 (solid); a=0.5 (dotted); a=2 (dashed); a=5 (dashdot)
T T

T T
/

5 T

45 -
/

35 !

y(t)
o
[

T

051 /4

L
2 25 3 35 4 4.5
Time (sec)

FIGURE CP4.5
Step response for a=1, 0.5, 2, and 5.

CP4.6 The transfer function from the disturbance to the output is

B G(s) B 1
T(s) = 1+ KoG(s) Js2+bs+k+ Ko

The disturbance response is shown in Figure CP4.6. The compensated
system response is significantly reduced from the uncompensated system
response. The compensated system output is about 11 times less than the
uncompensated system output. So, closed-loop feedback has the advan-
tage of reducing the effect of unwanted disturbances on the output.
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J=1; k=5; c=0.9;

num=[1/J]; den=[1 c/J k/J];

sys = tf(num,den);

t=[0:0.1:10];

%

yu=step(sys,t); % Part (a)

K0=50;

numk=[KO0]; denk=[1]; sysk = tf(numk,denk);
sys_cl = feedback(sys,sysk);
yc=step(sys_cl,t); % Part (b)
plot(t,yu,tyc,--"

xlabel('Time (sec)"), ylabel('\theta')
title('Uncompensated response (solid) & Compensated response (dashed)')

Uncompensated response (solid) & Compensated response (dashed)
0.35 T T T T T T T

03 B

0.25 - q

0.15 - 7

0.05 - q

FIGURE CP4.6
Disturbance responses for both the uncompensated and compensated systems.

CP4.7 The step responses for the proportional and PI controller are shown in
Figure CP4.7. The steady-state tracking error for the proportional con-
troller is

ess = 0.33 .

Increasing the complexity of the controller from a proportional controller
to a proportional plus integral (PI) controller allows the closed-loop sys-
tem to track the unit step response with zero steady-state error. The cost
is controller complexity, which translates into higher costs ($).
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numg=[10]; deng=[1 10]; sysg = tf(numg,deng);
1=[0:0.001:0.5];

% Part (a)

numc=[2]; denc=[1]; sysc = tf(numc,denc);
sys_o = series(sysc,sysg);

sys_cl = feedback(sys_o,[1]);

yk=step(sys_cl,t);

% Part (b)

numc=[2 20]; denc=[1 0]; sysc = tf(humc,denc);
sys_o = series(sysc,sysg);

sys_cl = feedback(sys_o,[1]);

yp=step(sys_cl,t);

%

plot(tyk,typ,-)

xlabel('Time (sec)"),ylabel('y(t)")
title('Proportional controller (solid) & Pl controller (dashed)’)

Proportional controller (solid) & Pl controller (dashed)
1 T T = = == =T T

09 4 1

08 , 4

0.7 / -

04r- ! -

03 B

02 *

0.1 i

0 Il Il Il Il Il Il Il Il Il
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 04 0.45 0.5
Time (sec)

FIGURE CP4.7
Step response for proportional controller and Pl controller.

CP4.8 (a) The closed-loop transfer function is

G(s) 10s? + 500s
T(s) = — 2\°) _
) = TG aE % = 3 200 1 5000

R(s) .

The step response is shown in Figure CP4.8a.
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(b) The response of the system to the sinusoidal disturbance

10

N(s) = =100

is shown in Figure CP4.8b.

(¢) In the steady-state, the magnitude of the peak response is 0.0095 and
the frequency is 10 rad/sec (see Figure CP4.8b).

% Part (a)
ng=10*[1 0]; dg=[1 100]; sysg=tf(ng,dg); >>
nh=[5]; dh=[1 50]; sysh=tf(nh,dh); Transfer function:
sys=feedback(sysg,sysh) > 10sA2+500s
figure(t) | e
step(sys) sA2+200 s+ 5000
\ Step Response
% Part (b) 10 - - -
sysn=-feedback(sysg*sysh,1)
% This is the sinusoidal input 8
syss=tf([10],[1 0 100]);
figure(2)
t=[0:0.001:7];
step(syss*sysn,t)

ot
l Step Response

Amplitude

0.01
0 R R n
0 0.02 0.04 0.06 0.08 0.1 0.12
Time (sec)
0.005
@)
Q
T
2
= 0
£
<
-0.005
0,01 R R R " R R
0 1 2 3 4 5 6 7
Time (sec)
(b)
FIGURE CP4.8

(a) Unit step response. (b) Response to sinusoidal noise input at w = 10 rad/sec.

CP4.9 (a) The closed-loop transfer function is

 Ge(s)G(s)
) = G096 ()

K(s+1)

R(s) = (s+15)(s2+5+6.5) + K(s+ 1)

R(s) .

(b) The step responses are shown in Figure CP4.9a.
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(¢) The unit disturbance response of the system is shown in Figure CP4.9b.
The steady-state value is 0.14.

Step Response

0.7
K=5 -
- — —K=10 ¢
061 K=50 0418
0.16 -
System: syscl
0.5 Final Value: 0.14
0.14 ]
[
2 04r o 012 B
2 E
& ES
o g o 1
go03 <
a 0.08 1
7N
02r / \ 0.06 i
! \
! \ 0.04 1
01p! \ P
I \ ’ 0.02 1
-
I
0 . 0 . . . . . .
0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

Time (s) Time (sec)

(@) (b)

FIGURE CP4.9
(a) Unit step responses for K = [5, 10, 50]. (b) Disturbance unit step response.

CP4.10 The m-file is shown in Figure CP4.10a and the step responses in Fig-
ure CP4.10b.

° — K=10
- — —K=12
K=15
K=[10,12,15];
t=[0:0.1:20];

ng=[20]; dg=[1 4.5 64]; sysg=tf(ng,dg);
nh=[1];dh=[1 1]; sysh=tf(nh,dh);
for i=1:length(K)
sys=K(i)*sysg;
syscl=feedback(sys,sysh)
y(:.i)= step(syscl,t);
end
plot(ty(;,1),ty(,2), - ty(3),")
xlabel('Time (s)')
ylabel('Step response’)
legend('’K=10',K=12',K=15'-1) -2r

Step response

0 5 10 15 20
Time (s)

(a) (b)

FIGURE CP4.10
(a) M-file script. (b) Unit step responses for K = [10, 12, 15].
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CHAPTER 5

The Performance of Feedback
Control Systems

Exercises

E5.1 For a zero steady-state error, when the input is a step we need one inte-
gration, or a type 1 system. A type 2 system is required for egs = 0 for a
ramp input.

E5.2 (a) The closed-loop transfer function is

_Y(s)  G(s) 100 B 100
R(s) 14+G(s) (s+2)(s+5)+100 52+ 2(wps + w2’

The steady-state error is given by

o A
Ss T 1 —’—KP Y
where R(s) = A/s and
. 100
Therefore,
€ss — ﬁ .

(b) The closed-loop system is a second-order system with natural fre-
quency

wy, = V110 ,

166
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and damping ratio

7
= ——=0334.
¢ 24110
Since the steady-state value of the output is 0.909, we must modify the
percent overshoot formula which implicitly assumes that the steady-
state value is 1. This requires that we scale the formula by 0.909. The
percent overshoot is thus computed to be

P.O. = 0.909(100e~™¢/V1=C) = 29% .
E5.3 The closed-loop transfer function is

Y (s) G(s) K K

I(s) 1+G(s) s(s+14)+K +4s+K

Utilizing Table 5.6 in Dorf & Bishop, we find that the optimum coefficients
are given by

8% + Ldw,s + w2 .
We have
2+ 14s + K,

so equating coefficients yields w, = 10 and K = w? = 100 . We can also
compute the damping ratio as

14

=—=0.7.

¢ 2wy,

Then, using Figure 5.8 in Dorf & Bishop, we find that P.O. ~ 5%.

E5.4 (a) The closed-loop transfer function is
G(s) 2(s +8)

(s) = 1+G(s) s2+6s+16 "

(b) We can expand Y'(s) in a partial fraction expansion as

2(s+8) A 1 s+4
— = A(-— .
(s2+6s+16) s

Y(s) =

s  s246s5+16

Taking the inverse Laplace transform (using the Laplace transform
tables), we find

y(t) = A[l — 1.07e 3 sin(V/7t 4+ 1.21)] .
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168 CHAPTER 5 The Performance of Feedback Control Systems

(¢) Using the closed-loop transfer function, we compute ¢ = 0.75 and
wy, = 4. Thus,

a 8
— = - =267
(w, 3 ’

where a = 8. From Figure 5.13(a) in Dorf & Bishop, we find (approx-
imately) that P.O. = 4% .

(d) Thisis a type 1 system, thus the steady-state error is zero and y(t) —
Aast — oc.

E5.5 (a) The closed-loop transfer function is

Y(s)  G(s) 100
R(s) 1+GH(s) 24 100Ks+ 100’

T(s)=

where H(s) = 1+ Ks and G(s) = 100/s2. The steady-state error is
computed as follows:

. . A
€ss = ll_)IHOS[R(S) - Y(S)] = 21_)1%3[1 - T(S)]S—2

= lim |1 — =
s—0 1—|—%(1+KS)

100
A
57 Z_KA.
S

(b) From the closed-loop transfer function, T'(s), we determine that w,, =
10 and

100K
= =5K .
¢ 2010) ~°

We want to choose K so that the system is critically damped, or
¢ = 1.0. Thus,

1
K=-=020.
5

The closed-loop system has no zeros and the poles are at

51,2 = —50K + 10\/ 25K2 —1.

The percent overshoot to a step input is

—5 K

P.O.=100evi-25x2 for 0 < K < 0.2

and P.O. =0 for K > 0.2.
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E5.6 The closed-loop transfer function is

Y(s)  KG(s) K(s+2) B K(s+2)

) =R “TTRGH) 6D+ K6+ 2+s(K+1) 12K

Therefore, w, = V2K and ( = 2[\{/‘%. So,

a 4
Cw, K+1°

From Figure 5.13a in Dorf & Bishop, we determine that

a
— =15
Cwn
when ¢ = 0.707. Thus, solving for K yields
4
—— =15
K+1
or
K =1.67.

E5.7 The pole-zero map is shown in Figure E5.7. Since the dominant poles

Polezero map

0.8 - b

04 B

02 b

Imag Axis
o
T
O
X
L

-02 B

-06 - 4

-08 I 4

Real Axis

FIGURE E5.7
(a) Pole-zero map.
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170 CHAPTER 5 The Performance of Feedback Control Systems

Step Response
From: U(1)

03 A

025 -

Amplitude
To:Y(1)

0.1 A

0 I I I
0 1.6 32 4.8 6.4 8

Time (sec.)

FIGURE E5.7
CONTINUED: (b) Unit step response.

are real, you do not expect to have a large overshoot, as shown in Fig-
ure E5.7b.

E5.8 (a) The closed-loop transfer function is

K
2+ V2Ks+ K

T(s) =

The damping ratio is

and the natural frequency is w, = v K. Therefore, we compute the
percent overshoot to be

P.O. = 100e™/V1=¢* — 4.3%

for ¢ = 0.707. The settling time is estimated via

n_ 4 __8
T Cwn V2K

(b) The settling time is less than 1 second whenever K > 32.
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E5.9 The second-order closed-loop transfer function is given by
wy

82 + 20wps + w2

T(s) =
From the percent overshoot specification, we determine that
P.O.<5% implies (¢ >0.69 .
From the settling time specification, we find that
T, <4 implies w,(>1.
And finally, from the peak time specification we have

T, <1 implies wp\/1—C2>7.

The constraints imposed on ¢ and w,, by the performance specifications
define the permissible area for the poles of T'(s), as shown in Figure E5.9.

Im(s)
N
w AN
nV1-z2=P ~—— 2 =069
AN \
N \
AN
i el o
N
desired N |
region ° AN

46 \\

for poles I Re(s)

—- = Re(s
‘/
-
WoV 1-22=-p // |
\ _ |
. - - - - s
v [
- |

Ve
7

e /
_ zwn=—1 '

FIGURE E5.9
Permissible area for poles of T'(s).

E5.10 The system is a type 1. The error constants are
K,=00 and K,=10.
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172 CHAPTER 5 The Performance of Feedback Control Systems

Therefore, the steady-state error to a step input is 0; the steady-state
error to a ramp input is 1.04p, where Ay is the magnitude (slope) of the

ramp input.
E5.11 (a) The tracking error is given by

(s) = R(s) _ (s+9)(s+2)(s+4) R(s)
14+ G:G(s)  (s+9)(s+2)(s+4)+ K(s+6) '

The steady-state tracking error (with R(s) = 1/s) is

72

lim sE(s) = o6 -

We require egs < 0.05, so solving for K yields K > 228.
(b) The tracking error due to the disturbance is

(5) = ~G(s) (5) = —(s+9)(s +6)
T11GGE) N T s+ 9(s+2)(s+4) + K(s+6)

Ty(s) .

The tracking error is shown in Figure E5.11.

Amplitude

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Time (secs)

FIGURE E5.11
Tracking error due a step disturbance.

E5.12 The system is a type 0. The error constants are K, = 0.2 and K, = 0.
The steady-state error to a ramp input is co. The steady-state error to a
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173
step input is
= ! = 0.833
€es = T K, 083
E5.13 (a) The tracking error is given by

E(s) = [L = T(s)] R(s)

The steady-state tracking error (with R(s) = 1/s) is

€ss = lir%s [1—T(s)]R(s) = liH(l] [1—-T(s)]=1-T(0)
The closed-loop transfer function is

K(s+0.1)
T =
) = TG ) T Ke13)
and 7'(0) = 0.033. Therefore, ess =1 —T(0) = 0.967.

(b) Use G)p(s) = 30. Then,
€ss = lim s

[1—T(s)Gp(s)] R(s) = l—lir% T(s)Gp(s) =1-30T(0) =0.
E5.14 The plot of y(t) is shown in Figure E5.14.

1.4
1.2 b
1 AL =
7/
/
/
/
08 , 8
= /
= /
/
0.6 [~ /
/
/
/
0.4 /
/
!
/
0.2 / b
/
/
/
0 1 1 1 1 1 1 1 1 1
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
Time (sec)
FIGURE E5.14

Plot of y(t) with T'(s) (solid line) and approximate T, (s) (dashed line).
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174 CHAPTER 5 The Performance of Feedback Control Systems

Using the dominant poles, the approximate closed-loop transfer function

is
50
T, ==
«(8) = T 105 7 50
The actual transfer function is
500

T(s)=

(s +10)(s% + 10s + 50) °
E5.15 The partial fraction expansion is

_0GoD) o 10EZ8) sy g

y(t) = 72 562

The plot of y(t) for z = 2,4,6 is shown in Figure E5.15.

z=2 (solid) & z=4 (dashed) & z=6 (dotted)

0 i i i i i i
0 1 2 3 4 5 6

Time (sec)

FIGURE E5.15
Plot of y(t) for z=2, 4, 6.

E5.16 The desired pole locations for the 5 different cases are shown in Fig-
ure E5.16.
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Im(s)
desired
region
for poles

= Re(s)

(a) 0.6 < z<0.8and w,<10

desired
region
for poles

= Re(s)

AN Im(s)

desired
region
for poles

Re(s)

(c) 0.5< zand5< w,<10

FIGURE E5.16
Desired pole locations.
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N Im(s)
desired
region
for poles
Re(s)
Re(s)
desired
region
for poles
(e) 0.6 < zand w,y<6
FIGURE E5.16
CONTINUED: Desired pole locations.
E5.17 The output is given by
G(s)
Y(s)=T(s)R(s) = K—————R(s) .
(5) = TR(s) = K s )

When K =1, the steady-state error is
ess = 0.2
which implies that

lim sY(s) =0.8 .

s—0
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Since we want egs = 0, it follows that

limsY(s) =1,

5s—0
or

08K =1.
Therefore, K = 1.25.
E5.18 (a) The characteristic equation is
2 =2wps+wl=5>4+317s+7=0,

from which it follows that

317

wn =VT=265 (=

Therefore, we compute the percent overshoot and the estimated set-
tling time to be

4
P.O.=100e ™/V1=¢* = 953% and T, = o= 25s.
Wn

(b) The unit step response is shown in Figure E5.18.

Step Response

14 T
System: sys
Peak amplitude: 1.1
12k Overshoot (%): 9.53 d
At time (sec): 1.47 System: sys
********** ! Settling Time (sec): 2.25
],7777777777777777 —_— T
,,,,,,, B A
| |
L)
g 08 [ | | b
= | |
£
< [ [
06 [ b
| |
| |
04 | | b
| |
02 | | 1
| |
| |
0 I I I I I
0 0.5 1 15 2 25 3
Time (sec)
FIGURE Eb5.18

Unit step response.
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178 CHAPTER 5 The Performance of Feedback Control Systems

E5.19 (a) The closed-loop transfer function is

K
2+ V2Ks+ K

T(s) =

The damping ratio is

and the natural frequency is w, = v K. Therefore, we compute the
percent overshoot to be

P.O. = 100e™/V1=¢* — 4 3%

for ¢ = 0.707. The settling time is estimated via
4 8

T (wn VK

(b) The settling time is less than 1 second whenever K > 32.
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Problems

Problems
P5.1 (a) The system error is

B(s) = — 4 R(s)

1 $Tm+1
where
9250
R(s) = 25%/sec
S
So,
25
lim €(t) = ;%SE(S) = m .

t—0

(b) If we desire egs < 1°/sec, then

2 [0
_ s <1°/sec,
1+ K, K,
and solving for K,K,, yields
K, K,, > 24 .

(¢) The closed-loop transfer function is
 Vi(s) KoK,

T(s) Vo(s)  stm+ 1+ KoK
=A)is

The step response of the system (i.e. v.(t)
AK K —(KaKm+1)
i = A () tgmn
1+ K. K,

So, at settling time, we have

*(1+KaKm)t

l—e ™ > 0.98 ,

where 7, = 0.4. Setting ¢ = 0.03 and solving for K,K,, yields

KoK, > 52 .

P5.2 (a) The settling time specification

4
T,= — <0.
o <06
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180 CHAPTER 5 The Performance of Feedback Control Systems

is used to determine that (w, > 6.67. The P.O. < 20% requirement
is used to determine

¢ < 0.45 which implies 6 < 63°
and the P.O. > 10% requirement is used to determine
¢ > 0.60 which implies 6 > 53°,

since cosf = (. The desired region for the poles is shown in Fig-
ure P5.2.

desired
region
for poles

-

= Re(s)

FIGURE P5.2
Desired region for pole placement.

(b) The third root should be at least 10 times farther in the left half-
plane, so

rs| > 10[Cwy| = 66.7 .

(¢) We select the third pole such that r3 = —66.7. Then, with {( = 0.45
and (w, = 6.67, we determine that w, = 14.8. So, the closed-loop
transfer function is

T(s) = 66.7(219.7)

(s +66.7)(s2 + 13.35 + 219.7) '

where the gain K = (66.7)(219.7) is chosen so that the steady-state

This material is protected by Copyright and written permission should be obtained from the publisher prior to any prohibited reproduction, storage in a
retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording, or likewise.
For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.



www.TagheDanesh.ir www.TagheDanesh.com

Problems 181

tracking error due to a step input is zero. Then,

__G(s)
T(s)= TG(S) )
T(s)
G =17
P5.3 Given the input
R(s) =

we compute the steady-state error as

. ( 1 > 1 . < 1 ) . 1 1
ess =lms|—— | - =lim | —— | = lim =—.
S 1+ G(s) $3 s—0 32G(s) s—0 | g2 ( ) K
Since we require that egs < 0.5 cm, we determine

K>2.

P5.4 (a) The closed-loop transfer function is

_ G(s) K B w2
1+ G(s)  s2+425s+ K 82+ 20wpst w2

T(s)
Thus,
wp=VK and ¢=1/w,=1/VK .

Our percent overshoot requirement of 5% implies that ¢ = 1/v/2 ,
which in turn implies that w, = /2. However, the corresponding
time to peak would be
4.4
T,=—==3.15.

P B
Our desired 7T}, = 1.1-—we cannot meet both specification simultane-
ously.

(b) Let T, = 1.1A and P.O. = 0.05A, where A is the relaxation factor
to be determined. We have that K = w2 and (w, = 1, so

1
“TVUR
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Thus,
P.O. = e V1=C _ —r/VE-T
Also,
T, = % ~ LIA .

Therefore, from the proceeding two equations we determine that
P.O.=0.05A = M4
Solving for A yields
f(A)=InA+1In(0.05) + 1.L1A =0

The plot of f(A) versus A is shown in Figure P5.4. From the plot we

FIGURE P5.4
Solving for the zeros of .

see that A = 2.07 results in f(A) = 0. Thus,

P.O.=0.05A =10%
T, =1.1A = 2.3 sec.

This material is protected by Copyright and written permission should be obtained from the publisher prior to any prohibited reproduction, storage in a
retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording, or likewise.
For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.



www.TagheDanesh.ir www.TagheDanesh.com

Problems 183

So, we can meet the specifications if they are relaxed by a factor of
about 2 (i.e. A =2.07).

P5.5 (a) The closed-loop transfer function is

(8) _ KlKQ(S + 1)
52 + K1 Kys + K1 Ko '

A percent overshoot less than 5% implies ¢ > 0.69. So, choose { =
0.69. Then set 2¢w, = K1 K> and w,% = K1 K5. Then

2(0.69)w, = w? ;
and solving for w,, yields
wp, = 1.38 .

Therefore K1Ky = w? = 1.9. When K K> > 1.9 it follows that
¢ > 0.69.

(b) We have a type 2 system, so the steady-state tracking error to both
a step and ramp input is zero.

(c¢) For a step input, the optimum ITAE characteristic equation is
s? + 1.4w,s —I—wz =0.
For a ramp input, the optimum ITAE characteristic equation is
s? + 3.2wp, s —I—wz =0.
Thus, K1 Ky = w2 = 3.2w,. So, w, = 3.2 and K1 K, = 10.24.
P5.6 We have a ramp input, r(t) = t. So

. . 75(s + 1) 75
K, = lim sG(s) = 1 =2 =075,
i sGls) = s | s+ 20)) ~ 100

and
R 1

L=t o 33
Cs = g T oms %3

P5.7 (a) The closed-loop transfer function is

T(s) = USELLE
N 1s? + K1K2K38 + K1K2 '

The steady-state tracking error for a ramp input is

. . . 1
ss = lliﬂo sE(s) = 21_1% s(1=T(s))R(s) = lliﬂo s(1— T(s))s—2
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184 CHAPTER 5 The Performance of Feedback Control Systems

lim IS+K1K2K3 - K
5—0 152 + K1K2K38 + K1K2 -0

But we desire ezs = 0.01 m, so K3 = 0.01.
(b) For P.O. = 10%, we have ¢ = 0.6. Also,

0.01K71 K9
2 ="
Cwn o
and
Wy, = .
25

Thus, solving for K1 K yields K; K> = 36 x 10%.
P5.8 (a) The closed-loop transfer function is

_ P(s) _ G(s)/s _ 20
R(s) 1+ G(s)H(s)/s s(s+30)"

Therefore, the closed-loop system time constant is 7 = 1/30 sec.
(b) The transfer function from Ty(s) to the output P(s) is

P(s) —G(s) —20

Tu(s)  1+G(s)H(s)/s s+30°

The response to a unit step disturbance is

2
p(t) = —z(1—e?").
3
At settling time, p(t) = 0.98pss = —0.65. Thus, solving for (= Tj)
we determine that T = 0.13 sec.

P5.9 We need to track at the rate

16000
v 5500 1.78 x 1073 radians/sec .

The desired steady-state tracking error is
1 -2
Ess < 10 degree = 0.1754 x 107“ rad .

Therefore, with
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we compute K, as

1.78 x 1073

K,=———~ "
Y 0.1754 x 102

=1.02.

This assumes that the system is type 1.
P5.10 (a) The armature controlled DC motorblock diagram is shown in Fig-

ure P5.10.
amplihier
Km 1 - W,
K » = "(s)
R(s) A RatLas Js+b
Kb
back emf

FIGURE P5.10
Armature controlled DC motor block diagram.

(b) The closed-loop transfer function is

w(s) KG(s)

Te) = RG) " TERRGH)
where
K’I’TL
G = R L) st )
Thus,
T(s) = 5

s24+2s+14+ K’

where R, = L, = J = b= K, = K,, = 1. The steady-state tracking
error is

cus =ty s(R(s) — Y (5)) = iy s (5) (1= 7()
— AL -T(0)) = (1 - H%) 4

14K

(¢) For a percent overshoot of 15%, we determine that ¢ = 0.5. From
our characteristic polynomial we have 2(w, = 2 and w, = V1 + K.
Solving for w,, yields w, = 2, thus K = 3.
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186 CHAPTER 5 The Performance of Feedback Control Systems

P5.11 (a) The closed-loop transfer function is

Y(s) K
" R(s) s+ K

To include the initial condition, we obtain the differential equation:
y(t) + Ky(t) = Kr(t) .

Taking the Laplace transform yields:

sY(s) —y(ty) + KY(s) = K (é) ,

where y(t,) = Q. Computing the inverse Laplace transform, L={Y (s)}
yields

y(t) = A(1 — e 5 4 Qe K.
Also, the tracking error is given by
e(t)=A—yt)=e "(A-Q).
Thus, the performance index, I is determined to be (for K > 0)
- /0 (A—Q)2e 2Ktdt — (A— Q)2 (ﬁ) e—th’ZO
(A-Q)?

2K

(b) The minimum I is obtained when K = oo, which is not practical.

(c) Set K at the maximum value allowable such that the process does not
saturate. For example, if K = 50, then

(A-Q)°

=<

100
P5.12 The optimum ITAE transfer function for a ramp input is

B 3.25w2s + w3
83+ 1.75wy,s + 3.25w2s + w3

T(s)

The steady-state tracking error, e;s = 0, for a ramp input. The step
response is shown in Figure P5.12 for w,, = 10. The percent overshoot is
P.O. = 39%, and the settling time is T, = 0.72 s .
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14
PO=39%
12 1
Ts=0.72s
1]
08 - =
g
06 =
04 R
02 - -
0 I I I I I I I I I
0 0.2 04 0.6 0.8 1 1.2 14 1.6 18 2
time (sec)
FIGURE P5.12

Step input system response.

P5.13 The step responses for the actual system and the approximate system
are shown in Figure P5.13. It can be seen that the responses are nearly
identical.

09 - B

07+ , i
06 - / e

Zos | 8

03 B
o2r / B

01/ 4

0 1 1 1 1 1 1 1 1 1
0 0.5 1 15 2 25 3 3.5 4 4.5 5

Time (sec)

FIGURE P5.13
Closed-loop system step response: Actual T(s) (solid line) and second-order approximation
(dashed line).
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188 CHAPTER 5 The Performance of Feedback Control Systems

P5.14 Consider

2(618 + 1)

L(s) = 5T
&) = D+ 2
After cancellation of like factors, we compute H(s)/L(s),

H(s) $3+7s? + 245 + 24
L(s)  (s+3)(s+4)2(cis+1)

Therefore,

M(s) = s>+ 7s* +24s+24 , and
A(s) = 2[e18° + (Tep + 1)s% + (12¢1 + 7)s 4+ 12] .

Then, following the procedure outlined in Section 5.10, we have

M°(0) =24, M'(0) =24, M?*0)=14, M?>(0)=6, and

A%0) =24, AL (0) = (12¢1 +7)2, A%(0) =2(2-(Te; +1)), A3(0) = 12¢; .
For ¢ =1:

My =240, and
Ay = 4[144¢% +25] .

Then, equating Ay and Mo, we find ¢y,
Cc1 = 0.493 .
So,

L(s) = 2(0.493s +1)  0.986s+2  0.986(s + 2.028)
s+ D(s+2)  s243s+2 (s+D(s+2)

P5.15 The open-loop transfer function is

G(s) = 10

(s +1)(50Cs + 1) °

Define 7 = 50C'. Then, the closed-loop transfer function is

Vo(s) 10 10/7

Vin () (s+1)(m+1)+1o:32+(TT+1)3+11 '

With
, 11 1 7+1

= — d = —— =
“nT o ¢ V2 21w,
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we can solve for 7, yielding
2207 +1=0.

Therefore, 7 = 19.95 and 0.05. For each value of 7 we determine C as
follows: 7 = 19.95 = 50C, implies C' = 0.399F, and 7 = 0.05 = 50C,
implies C' = 1mF.

P5.16 (a) The closed-loop transfer function is

_ Y(s) 12K
R(s) s2+12s+ 12K °

The percent overshoot specification P.O. < 10% implies { > 0.59.
From the characteristic equation we find that

w2=12K and (w,=6.
Solving for K yields
2(0.59)V 12K =12 which implies that K = 8.6 .

So, any gain in the interval 0 < K < 8.6 is valid. The settling time is
Ts = 4/Cw, = 4/6 seconds and satisfies the requirement. Notice that
T, is not a function of K.

(b) The sensitivity is

1 s(s+12)

T _ _
Sk = 17 GH) ~ 2+ 125 + 120

when K = 10.
(c¢) The sensitivity at DC (s = 0) is

SEoy=o0.
(d) In this case, s = j27 -1 beat/sec = j27. So, the sensitivity at s = 27j
is
85.1084
T/ -

27)| = =0.77 .

1Sk (2m) = T 31
P5.17 We select L(s) as
1
L =

() as+1"
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190 CHAPTER 5 The Performance of Feedback Control Systems

then

H(s) 6as + 6
L(s) s3+6s24+11s+6

Therefore,
M(s) = 6as+6 ,
and M°(0) = 6, M*(0) = 6, M?(0) = 0. Also,
A(s) = 53 + 65>+ 115 4+ 6,

and A°(0) = 6 , AY(0) = 11 , A%(0) = 12. So, computing M, and A,
yields

M, = 36a%, and

Ay =49 .
Finally, equating My = A, yields 36a2 = 49 , or
a=1.167.

Thus,

- 1 _0.857
 1.167s+1 s+0.857

L(s)

P5.18 (a) The closed-loop transfer function is

8

T(s) = .
()= 362 112578

(b) The second-order approximation is

1

L(s) = —F———
(S) d282 +dis+1 ’

where d; and ds are to be determined using the methods of Section
5.10 in Dorf & Bishop. Given

M(s) = 8dys* 4 8dys + 8
A(s) = s® + 65 + 125 + 8

we determine that

My = —128dy + 64d2

This material is protected by Copyright and written permission should be obtained from the publisher prior to any prohibited reproduction, storage in a
retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording, or likewise.
For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.



www.TagheDanesh.ir www.TagheDanesh.com

Problems 191
1
09 -
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FIGURE P5.18

Closed-loop system step response: Actual T'(s) (solid line) and second-order approximation
(dashed line).

My = 64d3
Ay =48
Ay =18.

Equating My = Ay and My = A4, and solving for dy and ds yields
d1 =1.35 and d2 =0.53 .

Thus, the second-order approximation is

1
0535241355 +1

L(s)

(¢) The plot of the step response for the actual system and the approxi-
mate system is shown in Figure P5.18.

P5.19 The steady-state error is

. (s+10)(s+12)+ K(1 - K;) 120+ K(1 - K;)
e — 111m e
50 (s+10)(s+12) + K 120 + K
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192 CHAPTER 5 The Performance of Feedback Control Systems

To achieve a zero steady-state tracking error, select K7 as follows:

120
Ki=1+—.
1 + K
P5.20 The closed-loop transfer function is
s+a

T(s) = .
) = Sy kv as 120k T 1

(a) If R(s) = 1/s, we have the tracking error
E(s) = R(s) = Y(s) = [1 = T(s)| R(s)

2+ (2k+a—-1)s+2ak+1—a 1
s2+ (2k + a)s + 2ak + 1 s

E(s) =

From the final value theorem we obtain

. 2ak+1—a
ess = MmsE(s) = =027~

Selecting k = (a — 1)/(2a) leads to a zero steady-state error due to a
unit step input.

(b) To meet the percent overshoot specification we desire ¢ > 0.69. From
T(s) we find w? = 2ak + 1 and 2¢w,, = 2k + a. Therefore, solving for
a and k yields

a=15978 and k=0.1871

when we select ( = 0.78. We select ( > 0.69 to account for the zero
in the closed-loop transfer function which will impact the percent
overshoot. With a and k, as chosen, we have

5+ 1.598

T(s) —
(5) = 519725 + 1.598

and the step response yields P.O. ~ 4%.
P5.21 The closed-loop transfer function is

2(2s 4+ 1)
(s +02K)(2s +71)+4

T(s) =

(a) If R(s) =1/s, we have the unit step response

2(2s + 7) 1

Yis) = (s+02K)(2s +7)+4s
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From the final value theorem we obtain
. 2T
Yoo = Iy s¥(s) = Gopr 71

Selecting K = 10—20/7 leads to yss = 1 and a zero steady-state error
due to a unit step input.

(b) The characteristic equation is
(s +0.2K)(25 +7)+4 =252+ (04K +7)s + 02K7+4 =0 .
So, with K = 10 — 20/7, the natural frequency and damping ratio
are:
2447 -8
ATV2+ 1

The settling time and percent overshoot are found using the standard
design formulas

wp=vV2+7 and (=

T,— 2 and PO.=100e<VIC
Cwn

with w, and ¢ given above (as a function of 7). Since the closed-loop
system has a zero at s = —7/2, the formulas for 75 and P.O. will
only be approximate. Also, note that for the closed-loop system poles
to be in the left half-plane (that is, all the poles have negative real
parts), we require that 7 > 2v/3 — 2 &~ 1.4642. As seen in the next
chapter, this is the condition for stability. Having 7 > 21/3 — 2 insures
that the damping ratio ( is positive.
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Advanced Problems

AP5.1 (a) The steady-state error is

. - - 96(3)
ess—l%s(l—T(s))R(s)—l—T(O)—l—@—0.

(b) Assume the complex poles are dominant. Then, we compute
a
— =0.75,
Cwn,

since a = 3, ( = 0.67 and w,, = 6. Using Figure 5.13 in Dorf & Bishop,
we estimate the settling time and percent overshoot to be

4
PO.=45% and T, = CT =1 second .

(¢) The step response is shown in Figure AP5.1. The actual settling time
and percent overshoot are

PO.=33% and Ty = 0.94 second .

14

1.2 : :

0.8+ .

Amplitude

06+ : :

02r : .

0 i i i i i i i i i
0 0.2 0.4 0.6 0.8 1 1.2 14 1.6 1.8 2

Time (secs)

FIGURE AP5.1
Closed-loop system step response.
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Advanced Problems

AP5.2 The closed-loop transfer function is

T(s) = 5440(7,s + 1)
83+ 2852 + (432 + 54407, )s + 5440

The closed-loop step responses are shown in Figure AP5.2. The perfor-
mance results are summarized in Table AP5.2.

tau=0 (solid) & tau=0.05 (dashed) & tau=0.1 (dotted) & tau=0.5 (dot-dash)
14 T T T T T T

|
0.8 r y 1
= Y
= | |
o6 ! e
: I
! 1
I
[
04 -
i
! i
b
0.2 N
I
|1
!
0 1 1 1
0 02 04 06 08 1 12 14 16
Time (sec)
FIGURE AP5.2
Closed-loop system step responses.
T, T, T, P.O. closed-loop poles

0 0.16 | 0.89 | 32.7% | p=—20, —4+ 16
0.05 | 0.14 | 039 | 45% | p=—10.4, —8.77 + 21.06)
0.1 | 0.10 | 0.49 0% | p=—6.5, —10.74 + 26.84j

0.5 0.04 1.05 29.2% | p=-1.75, —13.12+54.16j

TABLE AP5.2 Performance summary.

As 7, increases from 0 to 0.1, the P.O. decreases and the response is faster
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196 CHAPTER 5 The Performance of Feedback Control Systems
and more stable. However, as 7, is increased beyond 0.1, the P.O. and T
increase, although 7. continues to decrease.

AP5.3 The closed-loop transfer function is
1

T(s) = .
o) = STt 2 725 1

The closed-loop step responses for 7, = 0,0.5,2,5 are shown in Fig-
ure AP5.3. The performance results are summarized in Table AP5.3.

tau=>5 (solid) & tau=2 (dotted) & tau=0.5 (dashed) & tau=0 (dot-dash)
1.5 T T T T
1+ /i/ e N L — ——
!
//
/
= 1
> /l
/I
l:
o5 -
)
i1
1"
I
I[‘
11
|
0 /l 1 1
0 5 10 15 20 25 30 35 40 45 50
Time (sec)
FIGURE AP5.3
Closed-loop system step responses.
Tp T, T P.O. closed-loop poles
0 4 5.8 0% p=-1, -1
05 | 36 | 74 | 4.75% | p=—2.84, —0.58 £ 0.6
2 4.6 22.4 27.7% p=—2.14, —0.18 £ 0.45j
5 6 45.8 46% p=—2.05, —0.07+0.35

TABLE AP5.3 Performance summary.
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As 7, increases, the P.O., T, and T also increase; adding the pole makes
the system less stable with more overshoot.

AP5.4 The system transfer function is

15K 15

YO = o s F

G5+ 7+ Bk )

When considering the input response, we set T;(s) = 0, and similarly,
when considering the disturbance response, we set R(s) = 0. The closed-
loop step input and disturbance responses for K = 1,10, 100 are shown in
Figure AP5.4. The performance results are summarized in Table AP5.4.

Unit step input response Unit step distrubance response
16 T T T T 0.35 T T T T
hh
h
I
141 1 7 03} i
[
I
I
1S -
| | | 025 T
o ! ~
FLon AN q
1 o /N _ T~ o~
[ N,
oYy 0.2 7
oY
L08r -l b <
[
[ 0.15 - f
| i
osf, g
|
I 0.1 F 4
04 ! 1
I
I
! 005 [ -
0.2 1t 1
|
I 2 P U R —
0 L L L L 0 - L L L L
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
Time (sec) Time (sec)

Closed-loop system input and disturbance responses (K=1: solid line, K=10: dotted line,
and K=100:dashed line).

K €ss T, PO. | ly/dlmas
1 07 | 045 | 0% 0.3
10 | 019 | 06 | 17.3% 0.1

100 | 0.023 | 0.59 | 60.0% 0.01

TABLE AP5.4 Performance summary.
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The best value of the gain is K = 10, which is compromise between (i)
percent overshoot, and (ii) disturbance rejection and tracking error.

AP5.5 The system transfer function is

50(s + a)(s +2)

YO G 8 ) 500 )5+ 2

50s(s + 2
. (s +2)

s(s+3)(s+4)+50(s + a)(s + 2)

R(s)

Td(s) .

Disturbance response: alpha=0 (solid) & alpha=10 (dashed) & alpha=100 (dotted)
10 T T T T

0 0.05 0.1 0.15 0.2 0.25
Time (sec)

FIGURE AP5.5
Closed-loop system disturbance response.

When considering the input response, we set T;(s) = 0, and similarly,
when considering the disturbance response, we set R(s) = 0. The steady-
state tracking error is

Iy L 50(s + o) (s + 2)
€ss = limys(1 = T'(s)) R(s) = lim 1 — s(5+3)(s+4)+50(s +a)s+2)

When a = 0, we have

100

:1—7:
Css 100 + 12

0.11 ,
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and, for o # 0
ess = 0.

The closed-loop step input and disturbance responses for o = 0, 10, 100
are shown in Figure AP5.5. For disturbance rejection and steady-state
tracking error the best value of the parameter is

a =100 .

However, when considering both the disturbance and input response we
would select the parameter

a =10,

since it offers a good compromise between input response overshoot (about
5% for o = 10) and disturbance rejection/tracking error.

AP5.6 (a) The closed-loop transfer function is

KK,

T(s) = .
) = Bl T 505 + K5 1 000)

The steady-state tracking error for a ramp input R(s) = 1/s? is

€ss = limo s(1—=T(s))R(s)
s+ K, K, + 0.01

— ]
20 Koy + 5(s + KKy + 0.01)
KKy +0.01
N KK,, '
(b) With
K,, =10
and
Ky, =0.05 ,
we have

KKy +0.01  10(0.05) +0.01

1.
KK, 10K

Solving for K yields

K =10.051.
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200 CHAPTER 5 The Performance of Feedback Control Systems

(¢) The plot of the step and ramp responses are shown in Figure AP5.6.
The responses are acceptable.

Step input response

14 T T T
121 nl
1
_ 08 nl
B3
0.6 [~ ' nl
04 |- nl
0.2 n
0 I I I I I I I I I
0 2 4 6 8 10 12 14 16 18 20
Time (sec)
Ramp input response
20
15
=
5k
0
0 2 4 6 8 10 12 14 16 18 20
Time (sec)
FIGURE AP5.6

Closed-loop system step and ramp responses.

AP5.7 The performance is summarized in Table AP5.7 and shown in graphical

form in Fig. AP5.7.

K Estimated Percent Overshoot Actual Percent Overshoot
1000 8.8 % 8.5 %
2000 321 % 30.2 %
3000 50.0 % 46.6 %
4000 64.4 % 59.4 %
5000 76.4 % 69.9 %

TABLE AP5.7 Performance summary.
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FIGURE AP5.7
Percent overshoot versus K.

The closed-loop transfer function is

T(s) = - 100K

(s 4 50)(s + 100) + 100K

The impact of the third pole is more evident as K gets larger as the
estimated and actual percent overshoot deviate in the range 0.3% at K =
1000 to 6.5% at K = 5000.

AP5.8 The closed-loop transfer function is

K s%24120s+ 110
T(s) = 5
1+ K s?2+as+b

where a = (5 4+ 120K)/(1 + K) and b = (6 + 110K)/(1 + K). Setting
b= w2 and a = 2(w, yields

5+120K
1+ K

[6+110K
2 1+ K
For the closed-loop transfer function to have complex roots, we require
a? — 4b < 0. This occurs when —0.0513 < K < —0.0014. When K =
—0.0417, we have ¢ = 0, hence minimized. At this point, the system has

roots on the imaginary axis and is marginally stable. When —0.0513 <
K < —0.0417, the system is unstable.
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Design Problems

CDP5.1 The plant model with parameters given in Table CDP2.1 in Dorf and
Bishop is given by:

6(s) 26.035

Va(s)  s(s+33.142) ’

where we neglect the motor inductance L,,. The closed-loop transfer func-
tion from the disturbance to the output is

0(s) 26.035
Ty(s) s+ 33.142s + 26.035K,

For a unit step disturbance input the steady-state response is

Therefore, we want to use the maximum K, while keeping the percent
overshoot less than 5%. The step response for the closed-loop system (with
the tachometer not in the loop) and K, = 22 is shown below. Values of
K, greater than 22 lead to overshoots greater than 5%.

Step response

14 T T
1.2 |
s
< 08 [~ -
=
T 06| i
04+ B
0.2 i
0 I I I I I I I I I
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Time (sec)
Unit disturbance response
0.05 T T T
0.04 - |
0.03 - B
5
0.02 - B
0.01 - |
0 I I I I I I I I I
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Time (sec)
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DP5.1 (a) The closed-loop transfer function is

o(s) 12.2K B 122K
ba(s)  s(s+22)(s+7)+ 122K  s349.252 4 1545 + 12.2K

(b) For K = 0.7, we have the characteristic equation
$3 4925241545+ 854 =0,

with roots s; = —7.23 and sp3 = —0.98 £ 0.465. For K = 3, we have
the characteristic equation

$3 49254+ 15.45 +36.6 =0 ,

with roots s1 = —7.83 and sy 3 = —0.68 £ 2.05j. And for K = 6, we
have the characteristic equation

$3 492524+ 1545 +73.2=0,

with roots sy = —8.4 and sy 3 = —0.4 + 2.9;.

(¢) Assuming the complex conjugate pair are the dominant roots, we
expect the following:

(i) for K =0.7: P.O.=0.13% and T}, = 6.8 sec

(ii) for K = 3: P.0.=35.0% and T,, = 1.5 sec

(iii) for K = 6: P.O.=65.2% and T, = 1.1 sec
(d),(e) We select

K=1T71

to have a P.O. = 16% and T, = 2.18sec. All four cases (K =
0.7,3,6,1.71) are shown in Figure DP5.1. In each case, the approxi-
mate transfer function is derived by neglecting the non-dominant real
pole and adjusting the gain for zero steady-state error. The approxi-
mate transfer functions are

Ti—on(s) = 1.18 _ 0.7908 |
: s24+1.965s + 1.18 (s + 0.98 + 0.465)(s + 0.98 — 0.465)
Tios(s) = 4.67 _ 3.299
s2+1.37s +4.67 (s + 0.68 + 2.055)(s + 0.68 — 2.055)
Tees(s) = 8.71 _ 6.399
5§24+ 0.796s +8.71 (s + 0.4+ 2.95)(s + 0.4 — 2.95)
Tism(s) = 2.77 1.458

s2+1.679s +2.77 (s + 0.83 + 1.435)(s + 0.83 — 1.43))
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K=0.7 K=3
1.5 15
1 1
= <
o o
0.5 0.5
0 0
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15 s~ = - =
1
= £
[ [
0.5
0.5
0 0
0 5 10 0 5 10
time (sec) time (sec)

FIGURE DP5.1
Step responses (actual response:solid lines; approximate response: dotted lines).

DP5.2 The closed-loop transfer function is

K 2
T(s) “n

SR w2s+ Kw? '’

where ¢ = 0.2. From the second-order system approximation, we have
T

wn/1—C2

So, with ¢ = 0.2 given, we should select w,, “large” to make 7}, “small.”
Also, from the problem hint, let

1, =

0.1 < K/w, <0.3 .

As a first attempt, we can select w, = 20. See Figure DP5.2 for various
values of K /wy. Our final selection is

K=4 and w,=20.

This results in P.O. = 2% and T, = 0.9 second.
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205
12 -
K/wn=0.3
al |
08 - |
= K/wn=0.1
06 - K/wn=0.2 B
04 -
02 [ 4
00 0.‘2 0.‘4 0.‘6 0.‘8 1‘ 1 .‘2 1 .‘4 1 .‘6 1 .‘8 2
time (sec)
FIGURE DP5.2
Closed-loop system response.
DP5.3 The closed-loop transfer function is
K
T(s) = - -
s*+qs+ K
From the ITAE specification, we desire
2
w
T(s) N
But

T 2+ LAwns + w2’

2(w, = 14w, which implies (=0.7 .
Since we want T < 0.5, we require (w, > 8. So,

8
— =114
0.7

Wp =

We can select w,, = 12. Then,

T(s) 144

T 2+ 16.8s + 144
Therefore, K = 144 and ¢ = 16.8. The predicted percent overshoot is
P.O. =4.5%.
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206 CHAPTER 5 The Performance of Feedback Control Systems

DP5.4 The open-loop transfer function is

- 10K B 10K/70
GGl = TG+ 3617 0+ D6 +3)e 1T

The second-order approximation is obtained by neglecting the fastest first-
order pole. Thus,
K/7

GG.(s) =~ GI3GTT

The closed-loop transfer function is

K7
$2+10s+21+ K/7

T(s) =
When ¢ > 0.52, we have less than 15% overshoot. So, we have
2Cwn, =10

and

wn =1/21+ K/7.

Eliminating w,, and solving for K (with P.O. < 15%) yields

K <500.19 .
Also,
. K
Ko I 0040 s
and
1 1
ss = < 0.12
CTITK, 1+ L
implies
K > 1078 .

Therefore, we have an inconsistency. We require 1078 < K to meet the
steady-state requirement and K < 500.18 to meet the percent overshoot
requirement. It is not possible to meet both specifications.

DP5.5 The closed-loop characteristic equation is

K1 2K2
14+ K K =1 - B
+ K1G1(s) + K2G1Ga(s) = 1+ s(s+1) s(s+1)(s+2) !
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or
34352 + (2+ K1)s +2(K, — Ky) =0 .
Assuming that K7 > 0 and K5 > 0, the range of the gains for stability is
0< Ky <K;.

DP5.6 The closed-loop transfer function is

K,
s2 4+ (K1K2 + 1)8 + K3 '

T(s) =

The percent overshoot specification (P.O. < 4%) is satisfied when ¢ >
0.715. The peak time specification ( 7}, = 0.2 sec) is satisfied when w, =
22.47 and ¢ = 0.715. So, given

Ki=w? and K Ko+1=2w,,
we determine that the specifications are satisfied when
K7 =504.81

and

Ky =0.0617 .
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Computer Problems

CP5.1 With the impulse input we have R(s) = 1. The transfer function is

6 6
Y(s)=—————R(s) = ——+—— .
O = e e+ = Grae )
Therefore, taking the inverse Laplace transforms yields the output re-

sponse:
y(t) = 673 — 64 .

The impulse response and the analytic response is shown in Figure CP5.1.

n=6;d=[1712];

t=[0:0.1:6];

ya=6*exp(-3.*t)-6*exp(-4.*t);

sys = tf(n,d)

y=impulse(sys,t);

plot(t,y,tya,'o")

xlabel('Time (sec)'), ylabel('y(t)"), legend('Computer','Analytic',-1)

0.7

Computer
O Analytic

05 1

0.4 [ 1

y(t)

0.3 1

0.1 1

0 1 2 3 4 5 6
Time (sec)

FIGURE CP5.1
Impulse responses.
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CP5.2 The ramp response

€55 — OO.

n=[17];d=[11000];
t=[0:0.1:25];

sys=tf(n,d);

sys_cl = feedback(sys,[1]);

Amplitude

h(

To:

2000

1800

1600

1400

1200

1000

www.TagheDanesh.com
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is shown in Figure CP5.2. The error as t — oo is

Linear Simulation Results

u=t;
Isim(sys,u,t);

400

Time (sec.)

FIGURE CP5.2
Ramp responses.

CP5.3 The m-file script and the four plots are shown in Figure CP5.3. The plots
can be compared to Figure 5.17 in Dorf & Bishop.

wn=2, zeta=0 wn=2, zeta=0.1

2 2
‘| ,
O L ,
_‘| . ,
2 L L _2 L L L
0 5 10 15 20 0 5 10 15 20
1 ‘ wn:1,‘zeta:0 ‘ 1 ‘ wn:1,z‘eta:0.2‘
0.5 H
0.5H B
0 |- -
0 |
_05 - -
-1 L - -0.5 I L
0 5 10 15 20 0 5 10 15 20

FIGURE CP5.3
Impulse responses.
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FIGURE CP5.3

CHAPTER 5 The Performance of Feedback Control Systems

w1=2;z1=0;

w2=2;22=0.1;

w3=1; z3=0;

w4=1;z4=0.2;

t=[0:0.1:20];

%

num1=[w1A2]; den1=[1 2*z1*w1 w1A2];
sys1 =tf(num1,den1);
[y1,x1]=impulse(sys1,t);

%

num2=[w2A2]; den2=[1 2*z2*w2 w2A2];
sys2 = tf(num2,den2);
[y2,x2]=impulse(sys2,t);

%

num3=[w3A2]; den3=[1 2*z3*w3 w3A2];
sys3 = tf(num3,den3);
[y3,x3]=impulse(sys3,t);

%

num4=[w4A2]; dend=[1 2*z4*w4 waN2];
sys4 = tf(num4,den4);
[y4,x4]=impulse(sys4,t);

%

cf
subplot
subplot
subplot
subplot

221),plot(t,y1) title('wn=2, zeta=0")
222),plot(t,y2) title('wn=2, zeta=0.1")
223),plot(t,y3) title('wn=1, zeta=0")
224),plot(t,y4) title('wn=1, zeta=0.2")

)title(
) title(
)title(
)title(

CONTINUED: Impulse response m-file script.

CP5.4 The closed-loop system is

21

T(s)= —r
(5) s2 4+ 25+ 21

Therefore, the natural frequency is
wm = V21 = 4.58

and the damping ratio is computed as

20wy, =2,
which implies

¢(=0.218 .
The percent overshoot is estimated to be

P.O. = 100e~$7/V1=¢ — 50% .

since ( = 0.218. The actual overshoot is shown in Figure CP5.4.
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Step Response
From: U(1)

numc=[21]; denc=[1 0J; =
sysc = tf(numc,denc);
numg=[1]; deng=[1 2];

sysg = tf(numg,deng);
Sys_o = series(sysc,sysq);
sys_cl =feedback(sys_o,[1])
step(sys_cl)

Amplitude
To:Y(1)

0 I I I I
0 1 2 3 4 5 6

Time (sec)

FIGURE CP5.4
Impulse responses.

CP5.5 The unit step response is shown in Figure CP5.5. The performance num-
bers are as follows: M, = 1.04, T}, = 0.63, and Ts = 0.84.

Step Response
From: U(1)

numg=[50]; deng=[1 10 0];
sys = tf(numg,deng);
sys_cl =feedback(sys,[1]);
t=[0:0.01:2]; 06 -
step(sys_cl,t);

Amplitude
To: Y(1)

Time (sec.)

FIGURE CP5.5
Closed-loop system step response m-file script.
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CP5.6 The m-file script and the simulations are shown in Figure CP5.6.

% Part (a)

numc=[2]; denc=[1]; sys_c = tf(numc,denc);
nums=[-10]; dens=[1 10]; sys_s = tf(nums,dens);
numg=[-1 -5]; deng=[1 3.5 6 0]; sys_g = tf(humg,deng);
sysa = series(sys_c,sys_s);

sysb = series(sysa,sys_g);

sys = feedback(sysb,[1]);

f=0.5*pi/180; % Convert to rad/sec

t=[0:0.1:10]; u=f*t;

[y, x]=lIsim(sys,u,t);(y(length(t),1)-u(1,length(t)))*180/pi
subplot(211)

plot(t,y*180/pi,t,u*180/pi,--"), grid

xlabel('Time (sec)"),ylabel('theta’)

title('Constant gain C(s) = 2: theta (solid) & input (dashed)')
% Part (b)

numc=[2 1]; denc=[1 0]; sys_c = tf(numc,denc);
[numa,denal=series(numc,denc,nums,dens);

sysa = series(sys_c,sys_s);

sysb = series(sysa,sys_g);

sys = feedback(sysb,[1]);

[y, x]=lIsim(sys,u,t);(y(length(t),1)-u(1,length(t)))*180/pi
subplot(212), plot(t,y*180/pi,t,u*180/pi,--"), grid
xlabel('Time (sec)"),ylabel('theta’)

title('Pl controller C(s) = 2 + 1/s: theta (solid) & input (dashed)’)

Constant gain C(s) = 2: theta (solid) & input (dashed)
5 T T T T T

theta

Time (sec)

Pl controller C(s) = 2 + 1/s: theta (solid) & input (dashed)
6 T T T T T T

theta
w
T

Time (sec)

FIGURE CP5.6
Closed-loop system response to a ramp input for two controllers.

For the constant gain controller, the attitude error after 10 seconds is
ess = —0.3 deg. On the other hand, the PI controller has a zero steady-
state error egs = 0 deg. So, we can decrease the steady-state error by
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using a more sophisticated controller, in this case a PI controller versus a
constant gain controller.

CP5.7 The closed-loop characteristic equation is
§% 4125 + 6105 + 500 = (s + 0.8324) (s + 11.16765s + 600.7027) = 0 .

The natural frequency and damping ratio of the complex roots are w, =
24.5 and ¢ = 0.23. From this we predict M, = 1.48, Ty = 0.72, and
T, = 0.13. The actual response is shown in Figure CP5.7. The differences

Step Response
From: U(1)

14 T

numg=[100 100]; deng=[1 2 100];
sysg = tf(numg,deng);

numc=[0.1 5]; denc=[1 0];

sysc = tf(numc,denc);

sys_o = series(sysg,sysc);

sys_cl = feedback(sys_o,[1])
t=[0:0.01:3];

step(sys_cl,t);

ylabel('theta dot')

theta dot
To:Y(1)

0 1 1 1 1 1
0 0.5 1 15 2 25 3

Time (sec.)

FIGURE CP5.7
Missile rate loop autopilot simulation.

can be explained by realizing that the system is not a second-order system.
The closed-loop system actually has two zeros, one real pole, and two
complex-conjugate poles:

(s +50)(s + 1)
(s + 0.8324)(s2 + 11.1676s + 600.7027)

T(s) =

The effect of the pole at s = —0.8324 is diminished by the zero at s = —1.
The third pole and the zeros affect the overall response such that the
analytic formulas for second-order systems are not exact predictors of the
transient response.
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CP5.8 Figure CP5.8 shows an m-file to compute the closed-loop transfer function
and to simulate and plot the step response.

Step Response

0.9 | Peakamplitude: 0979
Overshoot (%): 95.7
0g I Attime (sec):0.533
numg=[10]; deng=[1 10]; sysg = tf(numg,deng); ‘
numh=[0.5]; denh=[10 0.5]; sysh = tf(numh,denh); 07
sys = feedback(sysg,sysh) |
s 06 System: sys
step(sys); s | Settling Time (sec): 39.1
* 5 0.5 ‘: D I P ‘, e
Transfer function: 04 |
100s+5 | |
_____________________ 03 | |
10sA2+4+100.5s+ 10 ol |
I I
01 f I
I ‘ 3
OO 10 20 30 40 50 60

Time (sec)

FIGURE CP5.8
M-file to compute the transfer function and to simulate the step response.

CP5.9 Figure CP5.9 shows an m-file to compute the closed-loop transfer function
and to simulate and plot the ramp response. The steady-state error is 7.5.

Linear Simulation Results

numg=[10]; deng=[1 20 75 0];
sysg = tf(numg,deng);

sys = feedback(sysg, 1)
t=[0:0.1:100];

u=t; % Unit ramp input 40F
Isim(sys,u,t);

Amplitude

0 L L L L L L L L L
0 10 20 30 40 50 60 70 80 90 100
Time (sec)

FIGURE CP5.9
M-file to compute the transfer function and to simulate the ramp response.
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Computer Problems
CP5.10 Figure CP5.10 shows an m-file to compute the closed-loop transfer func-

tion and to simulate and plot the impulse, step, and ramp responses.
Notice that the closed-loop system is unstable.

Impulse Response

%
s o /_\/\_/\/
numg=[1];deng=[1 2 0]; sysg = tf(numg,deng); <
numc=[0.5 2]; denc=[1 0]; sysc = tf(numc,denc); 10 - - - - L L L L L
SySS:SerieS(SySg SySC)' 0 2 4 6 8 ) 10 12 14 16 18 20
sys = feedback(syss, 1) sidfRESEse
t=[0:0.1:20]; 3 10 T T T T T T T T T
subplot(311) 2
. Q. 4
impulse(sys,t); g 0 /\—/_\_/_\
SUbPIOt(312) L L L L L L L L L
step(syst); % 2 4 6 8 10 12 14 16 18 20
SUbPIOtB 1 3) Linear SirriuTJFaﬁgﬁ)Resulls
u=t; % Unit ramp input o
Isim(sys,u,t); 2
El 20
<
o . ! ! . .
0 2 4 6 8 10 12 14 16 18 20

Time (sec)

FIGURE CP5.10
M-file to compute the transfer function and to simulate the ramp response.

CP5.11 For the original system, we find Ts = 2.28 and P.O. = 80.6%. For the
2nd-order approximation we find T, = 2.16 and P.O. = 101%

2.5

/ 2nd order approximation
ok ]

3rd order system response

num=77*[1 2];den=conv([1 7],[1 4 22]);

sys = tf(num,den) | \
na=(77/7)*[1 2];da=[1 4 22]; sysa=tf(na,da); § B \

t=[0:0.01:5]; g \

y=step(sys,t); qi ‘ '

ya=step(sysa,t); & 1 \\ T

plot(ty,tya,-) I N
xlabel('Time (s)'), ylabel('Step response’) | -

05t

. .
0 1 2 3 4 5
Time (s)

FIGURE CP5.11
Step response.
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CHAPTER 6

The Stability of Linear Feedback
Systems

Exercises

E6.1 The Routh array is

s3 1 K+2
s? | 3K 5
st b 0
s° 4
where
p_ BK(K+2) -5
3K

For stability, we require K > 0 and b > 0. Therefore, using the condition
that b > 0, we obtain

3K?+6K —5>0,

and solving for K yields K > 0.63 and K < —2.63. We select K > 0.53,
since we also have the condition that K > 0.

E6.2 The Routh array is

3 1 2
52 9 24
st ] -2/3 0
s° 24

The system is unstable since the first column shows two sign changes.

216
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E6.3 The Routh array is

st 1 45.7 10
53 9.5 20

s? | 43.59 10

st ] 17.82

59 10

By the Routh-Hurwitz criterion, the system is stable (i.e., all the numbers
in the first column are positive).

E6.4 The closed-loop transfer function is

B —K(s—1)
T(s) = 34352 +(2—-K)s+ K

Therefore, the characteristic equation is
$$+35°+(2-K)s+K=0.

The corresponding Routh array is given by

31 1 (2—-K)
s2 1 3 K

st b 0

s° K

where

,_32-K) K 64K
B 3 -3

For stability we require K > 0 and b > 0 . Thus, the range of K for
stability is 0 < K < 1.5.

E6.5 The closed-loop transfer function is

K
34102 4+27s+ 18+ K

T(s)
When K = 20, the roots of the characteristic polynomial are

S12 = —1.56 :]:jl.76
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218 CHAPTER 6 The Stability of Linear Feedback Systems

and
S3 = —6.88 .

E6.6 When K = 252, the roots of the characteristic equation are on the imag-
inary axis. The roots are

s512==%75.2 and s3=-10.
E6.7 (a) The closed-loop system characteristic equation is

K(s+2)

1+GH(s) =1+ S5 =1)

=0,
or

2+ (K —1)s+2K =0.

We have the relationships w,, = V2K and 2w, = K — 1, where

¢ =0.707. Thus,

2 (%) V2K =K -1,
or

() ()
and

K?2—6K+1=0.

Solving for K yields K = 5.83 and K = 0.17. However, for stability
we require K > 1 (from the Routh array), so we select K = 5.83.

(b) The two roots on the imaginary axis when K = 1 are s12 = 4j/2.

E6.8 The closed-loop system characteristic equation is
3 42052 + (100 + K)s + 20K =0 .

The corresponding Routh array is

83 1 (100 + K)
52 20 20K

st b 0

s° 20K
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where

20(100 + K) — 20K 20(100)
b 20 20 00

Therefore, the system is stable for all K > 0.

E6.9 The characteristic equation is
S 4+28%+ (K+1)s+6=0,

and the Routh array is given by

s3 1 K+1
52 2 6
st b 0
s° 46
where
2K +1) —
p— 2 +2) 0k -2

Setting b = 0, yields
K—-2=0 or K>2.

E6.10 Stable with your eyes open and (generally) unstable with your eyes closed.

E6.11 The system is unstable. The poles are s; = —5.66, so = —0.90 and s34 =
0.28 4+ 50.714.

E6.12 The characteristic equation associated with the system matrix is
s°+3s°+55+6=0.

The roots of the characteristic equation are s; = —2 and s9 3 = —541.66.
The system is stable.

E6.13 The roots of g(s) are s; = —4, sp = —3, s34 = —1 £ j2 and s56 = £50.5.
The system is marginally stable. The Routh array is
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220 CHAPTER 6 The Stability of Linear Feedback Systems

58 1 3125  67.75 15
0 9 61.25  14.75

st 2444 66.11 15

s3 | 31909  9.2273 0

52 60 15
st 0 0
SO

The auxillary equation is

60s> +15=0.

Solving the auxillary equation yields two roots at s1o = £50.5. After
accounting for the row of zeros, the completed Routh array verifies that
the system has no poles in the right half-plane.

E6.14 The Routh array is

s2 | 35.33 50
st | 74.26 0
s° 50

The system is stable. The roots of ¢(s) are s;2 = —3 £ j4, s3 = —2 and
S4 = —1.

E6.15 The characteristic equation is

$3+6s2+11ls+6=0.

The system is stable. The roots of the characteristic equation are s; = —1,
so = —2 and s3 = —3.

E6.16 Theroots of g(s) are s; = —20 and sg 3 = £2.24. The system is marginally
stable. The Routh array is
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21 5
s2 | 20 100
st 0 0
SO

The auxillary equation is
20s% + 100 =0 .

The roots are s = £52.24. So, the system has roots at s = £;2.24.
Completing the Routh array (after accounting for the row of zeros) verifies
that no poles lie in the right half-plane.

E6.17 (a) Unstable.
(b) Unstable.
(c) Stable.

E6.18 (a) The roots are s;2 = —2 and s3 = —1.
(b) The roots are s123 = —3.

E6.19 The characteristic equation is
(50, —2)® +10(s, — 2)* +29(s, —2) + K =0
or
s34 452 +5,—26+ K =0.

The Routh array is

s3 1 1

52 4 K —26
1 30—K

s 0K 0

s° K — 26

If K = 30, then the auxillary equation is 4s2 +4 = 0 or s, = =4j.
Therefore, s = s, — 2 implies s = —2 + j.

E6.20 This system is not stable. The output response to a step input is a ramp
y(t) = kt.

E6.21 The characteristic polynomial is

243824+ ks+6=0.
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222 CHAPTER 6 The Stability of Linear Feedback Systems

The Routh array is

s3 1 k

52 3 6
1 3k—6

$ 3

s° 6

So, k > 2 for stability.
E6.22 The transfer function is

G(s)=C(sI-A)"'B+D

s —1 0 0
=[1 0 0]l0 s -1 0
k k s+k 1
s4+ks+k s+k 1 0
1
— o 2
[1 0 0] k s24+ks s 0 AG)
—ks —ks —k s2 1

where A(s) = s® + ks? + ks + k. Thus, the transfer function is

1
3+ ks2+ks+k

G(s) =

The Routh array is

3 1 k
52 k k
st ] k-1

5 k

For stability k£ > 1.
E6.23 The closed-loop transfer function is

Ks+1

T(s) = .
() s2(s+p)+Ks+1

Therefore, the characteristic equation is

S +ps?+Ks+1=0.
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The Routh array is

3 1 K
52 P 1
st | (pK —1)/p

59 1

We see that the system is stable for any value of p > 0 and pK — 1 > 0.
E6.24 The closed-loop transfer function is

(s) 10

T 2524 (K —20)s+10

Therefore, the characteristic equation is
252 + (K —20)s +10=0 .

The Routh array is

52 2 10
st | K—20
s° 10

We see that the system is stable for any value of K > 20.
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Problems

P6.1

CHAPTER 6 The Stability of Linear Feedback Systems

(a)

Given
$?2+5s+2,
we have the Routh array
211 2
st 15 0
s | 2

Each element in the first column is positive, thus the system is stable.

Given
34452+ 8544,

we have the Routh array

211 8
214 4
st 1700
s | 4

Each element in the first column is positive, thus the system is stable.

Given
s34+ 252 —4s+20,

we determine by inspection that the system is unstable, since it is
necessary that all coefficients have the same sign. There are two roots
in the right half-plane.

Given
st s +252+10s+ 8,

we have the Routh array

st 1 2 8
3| 1 10 0
21 -8 8 0
st |11 0

s° 8
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There are two sign changes in the first column, thus the system is
unstable with two roots in the right half-plane.

(e) Given
84—|—S3—|—382+28—|—K,

we have the Routh array

st 1 3 K
s3 1 2 0
52 1 K
st | 2—-K 0
s K
Examining the first column, we determine that the system is stable
for 0 < K < 2.
(f) Given

S+t +283 546,

we know the system is unstable since the coefficient of the s term is
missing. There are two roots in the right half-plane.

(g) Given
S+t 42+ 5+ K,

we have the Routh array

80 1 2 1
s 1 1 K
53 1 1-K

2| K K

st -K 0

s° K

Examining the first column, we determine that for stability we need
K > 0 and K < 0. Therefore the system is unstable for all K.

P6.2 (a) The closed-loop characteristic polynomial is

s+ 27.885% + 366.4s% + 15005 + 1500k, = O .

The Routh array is
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226 CHAPTER 6 The Stability of Linear Feedback Systems

st 1 366.4 1500k,
s3 | 27.88 1500

s? | 3126 1500k,

st b

59 | 1500k,

where
b = 1500 — 133.78k,, .

Examining the first column of the Routh array, we find that b > 0
and 1500k, > 0 for stability. Thus,

0<k,<11.21.
(b) With
4
T,=15=—,
Cwn
we determine that
Cwp = 2.67 .

So, shift the axis by s = s, — 2.67, and

(50 —2.67)" +27.88(s, — 2.67)% + 366.4(s, — 2.67)% 4 1500(s, — 2.67) +
1500kq = s34+ 17.253 + 185.85s2 + 63.55s, — 1872.8 + 1500k, .

The Routh array is

st 1 185.85 1500k,-1872.8
83 17.2 63.55

52 182.16 1500k,-1872.8

st b

5% | 1500k,-1872.8

where
b = 240.38 — 141.63k,, .

Examining the first column of the Routh array, we find that b6 > 0
and 1500k, — 1872.8 > 0. Thus, 1.25 < k, < 1.69.
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P6.3 (a) Given

K
) = GG+ 055 £1)
and
1
H(s) = Goms 71

the closed-loop transfer function is

B K(0.005s + 1)
©0.00255% + 0.512583 +2.5252 +4.01s + 2+ K

T(s)

Therefore, the characteristic equation is
0.0025s + 0.5125s% + 2.525% + 4.01s + (2+ K) =0 .

The Routh array is given by

st 0.0025 2.52 2+ K
s3 0.5125 4.01 0
52 2.50 2+ K

st | 3.6 -0.205K 0

s° 2+ K

Examining the first column, we determine that for stability we require
—-2<K<176.
(b) Using K =9, the roots of the characteristic equation are
s1=—200, s93=-0334+£2235, and s4=-435.

Assuming the complex roots are dominant, we compute the damping
ratio ¢ = 0.15. Therefore, we estimate the percent overshoot as

P.O. = 100e~ ™/ V1-¢* — 2% .

The actual overshoot is 27%, so we see that assuming that the complex
poles are dominant does not lead to accurate predictions of the system
response.

P6.4 (a) The closed-loop characteristic equation is

B K (s +40) B
LHGHE) =1+ G20~ O
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228 CHAPTER 6 The Stability of Linear Feedback Systems

or
s3 +30s% +200s + Ks + 40K =0 .

The Routh array is

83 1 200 + K
52 30 40K
1 K
st | 200- & 0
s° 40K

Therefore, for stability we require 200 — K/3 > 0 and 40K > 0. So,
the range of K for stability is

0 < K <600 .
(b) At K = 600, the auxilary equation is
30s% +40(600) =0 or s> +800=0.
The roots of the auxiliary equation are
s =+£528.3 .

(¢) Let K = 600/2 = 300. Then, to the shift the axis, first define s, =
s + 1. Substituting s = s, — 1 into the characteristic equation yields

(50—1)+30(s0—1)24+500(5,—1)+12000 = 534275244435, +11529 .

The Routh array is

3 1 443

s 27 11529

st 16 0

s? | 11529
All the elements of the first column are positive, therefore all the
roots lie to left of s = —1. We repeat the procedure for s = s, — 2
and obtain

s34 2452 + 3925, + 10992 = 0 .

The Routh array is
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s 1 392
s? 24 10992
st -66 0
s° | 10992
There are two sign changes in the first column indicating two roots
to right of s = —2. Combining the results, we determine that there
are two roots located between s = —1 and s = —2. The roots of the

characteristic equation are
s1 = —27.6250 and s93 = —1.1875 £ 20.8082; .

We see that indeed the two roots sg 3 = —1.1875+20.80825 lie between
-1 and -2.

P6.5 (a) Given the characteristic equation,
s7 435 +4s+2=0,

we compute the roots s; = —1, and s93 = —1 & j.

(b) The roots of the characteristic equation
st 4+ 95% + 305 + 425 +20 =0

are s1 = —1,89 = —2, and s34 = —3 £ j1.

(¢) The roots of the characteristic equation
5% 4+19s% + 110s + 200 = 0

are s1 = —4,s9 = —b, and s3 = —10.

P6.6 (a) The characteristic equation is
1+G(s) =0,
or
s7+ 52 +10s+2=0.

The roots are: s; = —0.2033, and s3 3 = —0.3984 & j3.1112.

(b) The characteristic equation is
4 3 2 _
5% 4+ 105" +355° +50s +24 =0 .

The roots are s; = —1, 89 = —2, 53 = —3, and s4 = —4.
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230 CHAPTER 6 The Stability of Linear Feedback Systems

(¢) The characteristic equation is
s°+ 115 +2954+6 =0 .

The roots are s1 = —0.2258, so = —3.8206 and s3 = —6.9536.

P6.7 (a) The closed-loop characteristic equation is
s +101s% + (100 + 10K K,)s + 100K K, =0 .

The Routh array is

s 1 100 + 10K K,
52 101 100K K,
st b
s° | 100K K,
where
b:lOO+%KKa>O.

Thus, examing the first column, we determine that KK, > 0 stabi-
lizes the system.

(b) The tracking error is
100 100

e(s) = gl_r% s(1— T(s))? = KK,

We require E(s) < 1° = 0.01745. So,

100
KKo> 0.01745

When KK, = 5729, the roots of the characteristic polynomial are

= 5729 .

s1 = —10.15 and sp3 = —45.43 + j233.25 .

P6.8 (a) The closed-loop characteristic equation is

N K
(0.5s + 1) (s +1)(3s +1)

)

or
§8+ 75 +14s +8(1+ K)=0.

The Routh array is
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83 1 14
52 7 8(1+ K)
st b
s | 8(1+ K)
where

,_ 7(14) ~8(1 + K)
- .

For stability, we require b > 0 and 8(1+ K) > 0. Therefore, the range
of K for stability is

-1 < K <11.25.

(b) Let K =11.25/3 = 3.75. Then, the closed-loop transfer function is

B 3.37
34724+ 145438

T(s)

The settling time to a step input is T ~ 6 seconds.

(¢) We want Ts = 4 sec, so

4
Ts=4= C— implies (w, =1.

n

Our desired characteristic polynomial is
(5 +0)(5% + 20wns +w?2) = s34+ (2 + b)s® + (w2 + 2b)s + bw?

where we have used the fact that (w, = 1 and w,, and b are to be
determined. Our actual characteristic polynomial is

34752 +14s +8(1+ K)=0.

Comparing the coefficients of the actual and desired characteristic
polynomials, we find the following relationships:

2+b=7
w2 +2b=14
bw? =8(1+K) .

Solving these three equations yields
b=5, w,=2 and K=1.5.

The actual settling time is Ty = 4.17 sec. This is not exactly our
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desired T, since we have the contribution of the additional pole at
s = —b. The closed-loop poles are

s1=—5 and sp3=—-1=£1.735.

P6.9 (a) The closed-loop characteristic equation is

10K
(s + 100)(s + 20)2

1+GH(s) =1+
or
$3 4 140s% + 4400s + 40000 + 10K =0 .

The Routh array is

3 1 4400

52 140 40000 + 10K
st b

5° | 40000 4 10K

where

- 140(4400) — (40000 + 10K)
- 140 '

Examining the first column and requiring all the terms to be positive,
we determine that the system is stable if

—4000 < K < 57600 .
(b) The desired characteristic polynomial is
(54+b)(s* +1.38wys +w?) = 53+ (1.38wy, +b)s? + (w2 +1.38w,b) s + bw?

where we have used the fact that { = 0.69 to achieve a 5% over-
shoot, and w,, and b are to be determined. The actual characteristic
polynomial is

s3 4 140s% + 4400s + 40000 + 10K =0 .

Equating the coefficients of the actual and desired characteristic poly-
nomials, and solving for K, b, and w, yields

b=1042, w, =259 and K =3003.

So, a suitable gain is K = 3003.
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P6.10 (a) The closed-loop characteristic equation is
s+ 753 +20s2 + (244 K)s + 10K =0 .

The Routh array is

st 1 20 10K
s 7 24+ K 0
s? | UEE 0K

81

s° 10K

where

(UK (24 4 K) - TOK

(%)

b=

Setting b > 0 yields

2784 — 398K — K* >0,
which holds when

—404.88 < K < 6.876 .

Examining the first column, we also find that K < 116 and K > 0
for stability. Combining all the stability regions, we determine that
for stability

0< K <6.876 .
(b) When K = 6.876, the roots are
s12=—-35%x1.635, and s34=42.1j.
P6.11  Given
s+ (1+K)s>+10s+ (54 15K) =0,

the Routh array is

53 1 10

52 1+ K 5+ 15K
st b

s° | 5+ 15K
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where
b — (1+K)10 - (5+15K) 5—-5K
- 1+ K 1+ K
Given that K > 0, we determine that the system is stable when 5—5K > 0
or
O<K<1.

When K = 1, the s? row yields the auxilary equation
25 +20=0.

The roots are s = £5+v/10. So, the system frequency of oscillation is v/10
rads/sec.

P6.12 The system has the roots
s12==%752, s3a=+j2, s5=-3, and sg=—-2.

Therefore, the system is not stable since there are repeated roots on the
Jjw-axis.

P6.13 (a) Neglecting the zeros and poles, we have the characteristic equation
s* 4305 + 3255 + 25005 + K =0 .

The Routh array is
s 1 325 K
3 30 2500 0
s2 | 241.67 K
st b

s° K

where

~604166.67 — 30K
n 241.67
Therefore, the system is stable for 0 < K < 20139.

(b) Without neglecting the zeros and poles, the closed-loop characteristic
equation is

b

% 49055 + 552551 + 124005% + (1255000 + K)s?
+ (8500000 + 30K)s + 1125K =0 .
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This is stable for
0 < K <61818 .

We see that the additional poles and zero makes the system stable
for a much larger gain K.

P6.14 (a) The Routh array is

s$ 11 5
52 5 6
st ] 3.8
5 6

Examining the first column of the Routh array, we see no sign changes.
So, the system is stable.

(b) The roots of the system are s; = —0.3246 and sp3 = —2.3377 +
3.60807.

(c) The step response is shown in Figure P6.14.

Step Response
0.18 T T -

0.16 | 1

0.14 1

0.1 f 1

0.08 | 1

Amplitude

0.06 1

0.04 1

0.02 1

0 . . .
0 5 10 15

Time (sec)

FIGURE P6.14
Unit step response.

P6.15 The closed-loop transfer function is

B K+1
34352435+ K +1°

T(s)
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The Routh array is

s3 1 3

52 3 K+1
1 8—K

$ 3

s° K+1

So, for stability we require —1 < K < 8.

P6.16 The system characteristic equation is
s>+ (h—k)s+ab—kh=0.

For stability we require h > k and ab > kh. If k > h, the system is
unstable.

P6.17 (a) The characteristic equation is
s34+ 952 + (K —10)s +2K =0 .

The Routh array is

53 1 K —10
52 9 2K
1 7TK—-90
S 9
s° 2K
For stability
K >90/7.

(b) When K =90/7, the system is marginally stable. The roots are

8172 = :]:j 20/7 s

at the jw-axis crossing.

P6.18 The closed-loop characteristic equation is
q(s) = 8%+ s* +45° +4Ks* + 2Ks + K .
The range of stability for the vertical-liftoff vehicle is
0.5361 < K < 0.9326 .

Therefore, for K = 1, the system is unstable.
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P6.19 The state transition matrix is

1 (k‘g _ p1)e_p1t _ (k2 _ pz)e_mt e—P1t _ o—p2t

b2 —n1 —kpe Pt 4 fqe P2t —pre Pt 4 poe P2t

d(t,0) =

where p1ps = k1 and p; + p2 = ko. We assume that p; # po. In the case
when p; = po, the state transition matrix will change, but the factors e=P1¢
and e P2! will remain. The eigenvalues of A are given by the solution to

det (NI — Al =A%+ ko) + k1 =0.

Therefore, the eigenvalues are \j o = —k/2 + \/ k% — 4k, If ko > 0 and
k1 > 0, then the eigenvalues are in the left half-plane, and the system is
stable. The transfer function is given by

s—1

Gl =ClI- A B= G

Therefore the characteristic equation is s* 4+ kos + k; = 0 and the poles
are 512 = —ko/2 £ 1/k‘§ — 4ky. If k9 > 0 and k1 > 0, then the poles are in
the left half-plane, and the system is stable. Notice that the values of A 2
and sp 2 are the same. Also, the eigenvalues are the same as the values of
—p1 and —po. So, if the eigenvalues are negative, then the elements of the
state transition matrix will decay exponentially.

This material is protected by Copyright and written permission should be obtained from the publisher prior to any prohibited reproduction, storage in a
retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording, or likewise.
For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.



238 CHAPTER 6 The Stability of Linear Feedback Systems

Advanced Problems

AP6.1 The Routh array is

s 1 Ky K
s3 20 4

st b 0

s° K

where

20K — 4 — 100K,

b
5K —1

For stability, we require Ko > 0, K1 > 0.2, and b > 0. Therefore, using
the condition that b > 0, we obtain

Ky < 0.2K; —0.04 .

The stability region is shown in Figure APG6.1.

0.4

0.35 - . : q

0.3 : : R

0.25 - b

0.2 q

K2

0.1 1

0.05 - q
STABLE REGION

FIGURE AP6.1
Stability region.
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AP6.2 The Routh array is

st 1 31 0.5K

s 9 K—-14

s | BEE 05K

st b 0

5 0.5K
where

- (320 — K)(K —41) — 40.5K .
320 - K

Therefore, using the condition that b > 0, we obtain the stability range
for K:

48.178 < K < 272.32 .
AP6.3 (a) The steady-state tracking error to a step input is
€ss = gi_r%s(l —T(s)R(s)=1-T0)=1—-«.
We want
|1 —af <0.05.
This yields the bounds for «
0.95 <a<1.05.

(b) The Routh array is

s° 1
where

b_a2+a—1

N 14+«

Therefore, using the condition that b > 0, we obtain the stability
range for a:

a > 0.618 .
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240 CHAPTER 6 The Stability of Linear Feedback Systems

(¢) Choosing o = 1 satisfies both the steady-state tracking requirement
and the stability requirement.

AP6.4 The closed-loop transfer function is

K

T(s) = .
Sy I I NI e

The Routh array is

52 1+p K
st b 0

s° K
where
y_ P Hp—K
1+p

Therefore, using the condition that b > 0, we obtain the the relationship
K<p’+p.

The plot of K as a function of p is shown in Figure AP6.4.

120

100+ q

801 . B : : 4

40} .
STABLE REGION

20} « ‘ « , : .

FIGURE APG6.4
Stability region.
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APG6.5 The closed-loop transfer function is

30K Ko

T(s) = .
) = T ) (s 1025 + KoKy — 4 5 30K K,

The Routh array is

312 a
52 b ¢
st | d 0
s | ¢

where a = —9K, K3 +16+ KlKQK?? —24K1 K3, b=2K1 K3+ Ko K3 —22,
and ¢ = —10K3K3 + 40 — 10K K3 K3 + 40K, K3 and d = (ab — 2¢)/b .
The conditions for stability are

2K\ K3+ Ko K3 —22>0
—10K3K3 + 40 — 10K, Ko K3 + 40K K3 > 0
—2(—10K9K3 + 40 — 10K Ko K2 + 40K, K3) + (9K K3
+16 + K1 Ko K2 — 24K, K3) (2K K3 + Ko K3 — 22) > 0

Valid values for the various gains are: Ky = 50, Ky = 30, K3 = 1, and
K4 = 0.3. The step response is shown in Figure AP6.5.

Step Response

350

300

250

200

Amplitude

150

100

50

. . . . .
0 5 10 15 20 25 30
Time (sec)

FIGURE AP6.5
Stability region.
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Design Problems

CDP6.1 The plant model with parameters given in Table CDP2.1 in Dorf and
Bishop is given by:

0(s)  26.035
Va(s)  s(s+33.142) °

In the above transfer function we have neglected the motor inductance
L,,,. The closed-loop transfer function from the input to the output is

0(s) 26.035K,
R(s) 52 +33.142s + 26.035K,

The Routh array is

52 1 26.035K,
st 33.142 0
s% | 26.035K,

Stability is achieved for any 0 < K, < oc.

DP6.1 The closed-loop characteristic polynomial is
3 9 1 1 1
s°+s (5—|—p+gK)—|—s(ng—|—gK—|—5p)—I—K:().
(i) When p = 2, we have
3 9 1 3

The Routh array is

s 1 10+ 2K
2| T+ % K

st b

5¢ K

where

(7+ K/5)(10 + 3K/5) — K

b= :
T+iK

When —32.98 < K < —17.69, we find that b > 0. Examining the
other terms in the first column of the array, we find that the system
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is stable for any K > 0.
(ii) When p = 0, we have

1 1
3+ 525+ -K)+s(zK)+ K=0.

5 5
The Routh array is
53 1 %K
s | b+iK K
st b
5° K

where

B+ iK)iK-K = K2/2

(5 + K/5) 5+ K/5)

Again, examination of the first column reveals that any K > 0 results
in a stable system. So, we just need to select any K > 0; e.g. K = 10.

DP6.2 (a) The closed-loop characteristic equation is

10(Ks+1)

=0
s2(s + 10) '

or
3 +10s> +10Ks+10=0 .

The Routh array is

3| 1 10K
s2 | 10 10
st b
s° 1
where
10K —1
b=—7—

For stability, we require K > 0.1.

(b) The desired characteristic polynomial is
(s> +as+b)(s+5) =5+ s*(a+5) +s(5a+b)+5b=0.

Equating coefficients with the actual characteristic equation we can
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solve for a,b and K, yielding b =2, a = 5, and

_da+b 27

K 10 10

(¢) The remaining two poles are s; = —4.56 and sy = —0.438.

(d) The step response is shown in Figure DP6.2.

09 7

038 n

0.7 - 7

0.6 - .

04 .

03 .

02 - a

0 1 1 1 1 1 1 1 1 1
0 2 4 6 8 10 12 14 16 18 20

time (sec)

FIGURE DP6.2
Mars guided vehicle step response.

DP6.3 (a) The closed-loop characteristic equation is
2783 + (1 +2)s> + (K + 1)s +2K =0 .

The Routh array is
s3 2r  K+1
2| 7+2 2K
st b

s° 2K

where

(T +2)(K +1) —4K7

b= (1 +2)
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Examining the first column of the Routh array, we determine that for
stability 7 > 0, K > 0 and setting b > 0 yields the relationships:

T+ 2
3r—2

2
(1) K < When7'>§ (2) K>0 when0< 71 <

[SSRN )

The plot of 7 versus K is shown in Figure DP6.3a.

tau

STABLE REGION

0'5 i i i i i i
0 1 2 3 4 5 6 7

FIGURE DP6.3
(a) The plot of 7 versus K.

(b) The steady-state error is

A
esszf, where K, = 2K .

v
So,

€ss 1
A 2K
We require that ezs < 0.25A, therefore
K>2.

One solution is to select 7 = 0.5, then we remain within the stable
region.

(¢) The step response is shown in Figure DP6.3b. The percent overshoot
is P.O. = 57%.
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1.6 T T T

P0O.=56.77 %

0.8+ : : : . o

y(t)

06 :!

02r ; ; . ‘ i

time (sec)

FIGURE DP6.3
CONTINUED: (b) Closed-loop system step response.

DP6.4 (a) The closed-loop characteristic polynomial is
S+ K2+ [(2+m)K —1)]s+2mK =0 .

The Routh array is

53 1 2K +mK —1
52 K 2mK

st b

s° 2mK

Examining the first column of the Routh array, we see that for sta-
bility we require m > 0, K > 0, and b > 0, where

(2K + mK — 1)K — 2mK

b= %

=2+m)K—(1+2m)>0,

or

1+ 2m
24m

K >

The plot of K vs m is shown in Figure DP6.4a.
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STABLE REGION

0.8

0.6

0.4

FIGURE DP6.4
(a) The plot of K versus m.

18 T T
P.O.=64.3208 %

y(t)

0.8 - 1

0.6 [~ H 1

04 b

0.2 B

0 1 1 1 1 1 1 1 1 1
0 1 2 3 4 5 6 7 8 9 10

time (sec)

FIGURE DP6.4
CONTINUED: (b) Shuttle attitude control step response.

(b) The steady-state error is

|
Cos _ — —_~ <01
1K, ami 200
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or mK > 5. For example, we can select m = 0.5 and K = 2.
(c) See Figure DP6.4b for the step response where P.O. = 64.3%.
DP6.5 The closed-loop transfer function is

B K
3410524205+ K

T(s)

The range of K for stability is 0 < K < 200. If we let K = K,,,/N where
K,, = 200, then N = 6.25 results in a step response with P.O. = 15.7%
and T = 1.96 seconds.

DP6.6 The closed-loop system is given by

' 0 1 0
X = X + r
2—-K; —-2—-Ky 1

The characteristic polynomial is 52+ (24 K3)s+ K1 —2 = 0. So the system
is stable for K7 > 2 and Ky > —2. Selecting K = [ 10 2 } results in

closed-loop eigenvalues at s = —2 =+ 2j. The closed-loop step response has
a settling time of 2.11 s and a percent overshoot of 4.32%.

Im(s)

N

sinl ¢ = sin! 0.69=43.63°

- = Re(s)

desired
region
for eigenvalues

Lo, =-1

FIGURE DP6.6
Performance region.
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DP6.7 (a) The inner loop closed-loop transfer function is

Y(s) 205
U(s) s34+ 10s2+20s + 20K,

The Routh array is

s3 1 20

52 w 20K
1 200—20K

S o

s° 20K1

For stability 0 < K7 < 10.
(b) The fastest response (that is, the quickest settling time) occurs when
Ky =22
(¢) With K7 = 2.2, the closed-loop transfer function is
Y (s) 20K >s
R(s) s+ 1052+ (20 + 20K3)s + 44 °

The Routh array is

53 1 20(Ky + 1)
52 10 44
31 200K2+156
10
s° 44

For stability, we require
200K5 +156 > 0 .

Therefore, Ko > —0.78.
DP6.8 The closed-loop characteristic equation is

s+ 4Kps +4(Kp +1) = 0.

So, it is possible to find Kp and Kp to stabilize the system. For example,
any Kp > 0 and Kp > 0 leads to stability. Choosing Kp > 9 results in a
steady-state tracking error less than 0.1 due to a unit step input. Then,
the damping ratio ¢ = v/2/2 is achieved by selecting

V2vVEp +1

Kn —
b 2
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Computer Problems

CP6.1 The m-file script is shown in Figure CP6.1.

ans =
-2.1795
-0.4102 + 1.7445i
-0.4102 - 1.7445i

ans =

N -1.8868 + 1.1412i
Epa=[1 3 5 7]; roots(pa) 1.8868 - 1.1412i

Epb=[13 4 4 10]; roots(pb) ——» 0.3868 + 1.3810i
Epc=[1021]; roots(pc) 0.3868 - 1.3810i

\ ans =

0.2267 + 1.4677i
0.2267 - 1.4677i
-0.4534

FIGURE CP6.1
Computing the polynomial roots with the rootsfunction.

CP6.2 The m-file script is shown in Figure CP6.2.

K1=1;K2=2;K3=5; den=[1 2 1];
num1=K1*[1 -1 2I;num2=K2*[1 -1 2];num3=K3*[1 -1 2];
sys1 = tf(num1,den); sys2 = tf(hnum2,den); sys3 = tf(num3,den);
sys1_cl=feedback(sys1,[1]);
sys2_cl=feedback(sys2,[1]);
sys3_cl=feedback(sys3,[1]);
p1 = pole(sys1_cl), p2 = pole(sys2_cl), p3 = pole(sys3_cl)
|

ans =
2.5000e-01 + 1.3307e+00i

ans = 2.5000e-01 - 1.3307e+00i

ans =
-2.5000e-01 + 1.1990e+00i 0 + 1.29106+00i
-2.5000e-01 - 1.1990e+00i 0 - 1.2610+00i
FIGURE CP6.2

K =1 is stable; K = 2 is marginally stable; and K =5 is unstable.
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CP6.3 The closed-loop transfer function and the roots of the characteristic equa-
tion are shown in Figure CP6.3.

Transfer function:
numg=[1 1]; deng=[1 4 6 10]; s+ 1
sysg = tf(numg,deng); | | e
sys = feedback(sysg,[1]) B SA3+45A2+7 s+ 11
r=pole(sys)
\‘ r=
™ .2.8946
-0.5527 + 1.8694i
-0.5527 - 1.8694i

FIGURE CP6.3

Closed-loop transfer function and roots.

CP6.4 There are no poles in the right half-plane, but the system is unstable
since there are multiple poles on the jw-axis at s = +j and s = +j (see
Figure CP6.4).

Step Response
From: U(1)
T

25

20

num=[1]; den=[12241 2]; 151 1
sys = tf(num,den);
pole(sys) or |
t =0:0.1:100;
step(sys,t) o T |
ans = 5 % ° |
<
-2.0000 i 1

0.0000 + 1.0000i
0.0000 - 1.0000i
-0.0000 + 1.0000i ]
-0.0000 - 1.0000i

0 10 20 30 40 50 60 70 80 90 100

Time (sec.)

FIGURE CP6.4
Unstable system step response.
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CP6.5 The closed-loop system poles for the slow/fast pilots are shown in Fig-
ure CP6.5. The maximum allowable time delay is 0.4776 seconds. At the
maximum allowable time delay, the system has roots on the jw-axis at

s = £2.15. The slow pilot destabilizes the aircraft.

nume=[-10]; dene=[1 10]; syse = tf(hume,dene);
numg=[-1 -5]; deng=[1 3.5 6 0]; sysg = tf(humg,deng);
%

% Fast pilot

%

tau=0.25; tau1=2; K=1; tau2=0.5;
nump=-K*[taul*tau tau-2*taul -2];
denp=[tau2*tau tau+2*tau2 2];

sysp = tf(nump,denp);

sysa = series(sysp,syse);

sysb = series(sysa, sysg);

sys = feedback(sysb,[1]);

fast_pilot=pole(sys)

closed-loop
system poles

E
fast_pilot =

-9.3293 + 2.3290i
-9.3293 - 2.3290i

o -4.0580

%

% Slow pilot

%

tau=0.50; tau1=2; K=1; tau2=0.5;
nump=-K*[taul*tau tau-2*taul -2];
denp=[tau2*tau tau+2*tau2 2];
sysp = tf(nump,denp);

sysa = series(sysp,syse);

sysb = series(sysa, sysg);

sys = feedback(sysb,[1]);
slow_pilot = pole(sys)

-0.2102 + 2.4146i
-0.2102 - 2.4146i
-0.3629

slow_pilot =

-8.9844

-5.0848 + 1.3632i
-5.0848 - 1.3632i
0.0138 + 2.0742i

%

% Maximum pilot time delay, tau = 0.4776 sec
%

tau=0.4776; tau1=2; K=1; tau2=0.5;
nump=-K*[taul*tau tau-2*taul -2];
denp=[tau2*tau tau+2*tau2 2];
sysp = tf(nump,denp);

sysa = series(sysp,syse);

sysb = series(sysa, sysg);

sys = feedback(sysb,[1]);
max_pilot_delay=pole(sys)

-
0.0138 - 2.0742i

-0.3734

max_pilot_delay =

-8.9054

-5.2049 + 1.2269i
-5.2049 - 1.2269i
0.0000 + 2.1012i
0.0000 - 2.1012i

FIGURE CP6.5
Closed-loop system poles for an aircraft with a pilot in-the-loop.

CP6.6 The closed-loop transfer function is

y

-0.3725

1
8345824+ (K—3)s+K+1°

T(s)
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Utilizing the Routh-Hurwitz approach, for stability we determine that
K>4.
When K = 4, the roots of the characteristic equation are
s1=—5 and sg93 =47 .

The m-file script which generates a plot of the roots of the characteristic
equation as a function of K is shown in Figure CP6.6.

K=[0:0.1:5];

n=length(K);

fori=1:n

numg=[1]; deng=[1 5 K(i)-3 K(i)];

sys_o = tf(numg,deng);

sys_cl = feedback(sys_o,[1]);

p(:i)=pole(sys_cl);

end

plot(real(p),imag(p),x"), grid

text(-0.9,0.95,K=4 -->"); text(-0.2,1.3,K=5"); text(0,0.2,K=0")
% From a Routh-Hurwitz analysis we find that

% minimum K for stability is K=4

Kmax=4;

numg=[1]; deng=[1 5 Kmax-3 Kmax]; sysg = tf(humg,deng);
sys_cl = feedback(sysg,[1]); pole(sys_cl)

1.5
K=5
1 K=4 --> 1
0.5 b
K=0
0F - oemmemssse 4
-05 1
bk 4
15 I I I I I I
-6 5 4 -3 2 1 0 1
FIGURE CP6.6

Roots of the characteristic equation as a function of K, where 0 < K < 5.
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254 CHAPTER 6 The Stability of Linear Feedback Systems

CP6.7 The characteristic equation is

p(s) = s® +10s* + 155 + 10 .

A=[010;00 1;-10-15-10]; b=[0;0;10];c=[1 1 0]; d=[0];
sys =ss(A,b,cd);
%
% Part (a)
OA) E —
p=poly(A) -"
% 1.0000 10.0000 15.0000 10.0000
% Part (b)
OA) o _
roots(p) =r=
% -8.3464
% Part (c) -0.8268 + 0.7173i
% -0.8268 - 0.7173i
step(sys)
Step Response
From: U(1)
1.4
12 |
1 |
v 08 - |
-
3 =
£ IS
06 - b
04 - B
02 b
0 Il Il Il Il
0 14 28 4.2 5.6 7
Time (sec.)

FIGURE CP6.7
Characteristic equation from the state-space representation using the poly function.

The roots of the characteristic equation are

s1 = —8.3464 and sp3 = —0.8268 £0.71735 .
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Computer Problems

The system is stable since all roots of the characteristic equation are in
the left half-plane. The unit step response and associated m-file script are
shown in Figure CP6.7.

The characteristic equation is
s +10s* + 10s + 5K =0 .

(a) The Routh array is

s3 1 10

52 10 5K,
1 100—5K

s o

s° 5K1

From the Routh-Hurwitz criterion, we obtain the limits 0 < K; < 20
for stability.

(b) The plot of the pole locations is 0 < K; < 30 is shown in Fig-
ure CP6.8. As seen in Figure CP6.8, when K7 > 20, the pole locations
move into the right half-plane.

Root Locus
4 - - - - - -

k=20

Imaginary Axi s
o

221 1

-4 L L L L L L
7-12 ?-10 ?-8 -6 -4 ?7-2 0 2
Real Axi s

FIGURE CP6.8
Pole locations for 0 < K7 < 30.

(a) The characteristic equation is

$34+22+s+k—-4=0.
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256 CHAPTER 6 The Stability of Linear Feedback Systems

The Routh array is

s3 1 1

52 2 k—4
1 6—k

$ 2

s° k—4

For stability, we obtain 4 < k£ < 6.

(b) The pole locations for 0 < k < 10 are shown in Figure CP6.9. We see
that for 0 < k < 4 the system is unstable. Similarly, for 6 < & < 10,
the system is unstable.

Root Locus
2 : .
pole locations when k=0
1.5 f
Tr 1 .
pole location when k=0
= 05
x
< k=10
> /
E 0 RO
g
g 205} ~
= )
2§
1t &
&
$
215} =
?,2 1 1 1
-3 -2 -1 0 1
Real Axi s
FIGURE CP6.9

Pole locations for 0 < k < 10.
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The Root Locus Method

Exercises

E7.1 (a) For the characteristic equation

s(s+4)

1+ K28
+ 52 4+2s+2

)

the root locus is shown in Figure E7.1.

Imag Axis
o -_—
T T
] T
L L

_2 [ -
.3 [ -
_4 [ -
-4 -3 -2 -1 0 1 2 3 4
Real Axis
FIGURE E7.1
Root locus for 1+ K-S+ _

s242s54+2 — ¢
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258 CHAPTER 7 The Root Locus Method

(b) The system characteristic equation can be written as
(1+K)s*>+(2+4K)s+2=0.
Solving for s yields
(1+2K)  /(2+4K)2—-8(1+K)

(1+K) 2(1+ K)

When

(2+4K)?-8(1+K)=0,
then we have two roots at 519 = — (1112;{( ). Solving for K yields K =
0.31.

(¢) When K = 0.31, the roots are
—(1+0.62
S$12 = 7( +0.62) =-—-1.24.

(1.31)
(d) When K = 0.31, the characterisitc equation is
s2 424725 +1.528 = (s +1.24)2 =0 .

Thus, w, = 1.24 and { = 1, the system is critically damped. The
settling time is Ty &~ 4 sec.

E7.2 (a) The root locus is shown in Figure E7.2. When K = 6.5, the roots of
the characteristic equation are

81,2 = —2.65 :|:j123 and 83’4 = —0.35 :|:]08 .

The real part of the dominant root is 8 times smaller than the other
two roots.

(b) The dominant roots are
(5 +0.35 4 j0.8)(s + 0.35 — j0.8) = 52 + 0.7s + 0.7625 .

From this we determine that
0.7

= 0.873 d =——=0.40.
“n and 6 = 20 .873)
Thus, the settling time is
4 4
Te=——=——==1143 .
S~ Com 035 see

The percent overshoot is P.O. = e~/ V 1-¢* — 95.4%.
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5 o .
E
-1k -
2+ -
-3F -
-4
-4 -3 3 4
Real Axis
FIGURE E7.2
Root locus fOl’ 1 =+ Km =0.
E7.3 The root locus is shown in Figure E7.3. The roots are s; = —8.7, so3 =

—1.3+j2.2 when K = 7.35 and ¢ = 0.5.

4
3k zeta=0.5 i
2F i
10 J
é
g 0 1
£
_‘I . -
_27 -
_37 -
_4 L L L L I L
-10 8 6 -4 2 0 2 4
Real Axis
FIGURE E7.3 )
Root locus for 1 + K St4st8 —

s2(s+4)
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260 CHAPTER 7 The Root Locus Method

E7.4 The root locus is shown in Figure E7.4.

150 1
‘I, ,
0.5 1
.<>(‘L<’
o 0 i
©
£
_0.57 4
_‘| |- 4
_1.57 4
-2 L
4 35 3 25 2 -15 1 0.5 0 0.5 1
Real Axis
FIGURE E7.4
Root locus for 1 + K —3tL _ —¢

s2+4+4s+5 ¢

The departure angles and entry points are
0, = 225° , —225°

and

op=—24.

E7.5 (a) The root locus is in Figure E7.5. The breakaway points are
op = —13.0, opy = —5.89 .
(b) The asymptote centroid is
Ocent = —18 ,
and
Pasym = £90° .

(¢) The gains are K7 = 1.57 and Ko = 2.14 at the breakaway points.
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40 1
|
|
of ! B
|
|
|
20 | T
|
|
|
10 | b
|
£ | //__o
E\ of ¥ M 7
£ I
|
-10 : < asymptdte B
|
|
20 F | B
|
|
|
300, |
|
|
40 ! I | | L
-15 -10 -5 0 5
Real Axis
FIGURE E7.5 X
s“4+2s+10 _
Root locus for 1 +- K(s4+3853+51552+29505+6000) =0.

E7.6 The system is unstable for K > 100.

Root Locus

30
20+
10+
3
)
©
£ 0 T
g \
£ \
_10l
ool
20 ‘ ‘ ‘ ‘ i )
=50 -40 -30 -20 -10 0 10 20
Real Axis
FIGURE E7.6
20K —
Root locus for 1+ K75(52+205+100) =0.
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262 CHAPTER 7 The Root Locus Method

E7.7 The root locus is shown in Figure E7.7. The characteristic equation has

Root Locus

101 asymptote ———> -

System: sys

. Gain: 25.2 4
Pole: ~1.59 + 1.19i

Damping: 0.8

) Overshoot (%): 1.53
2 /, Frequency (rad/sec): 1.98
g o 4
g N
E — N
N
AN
N
A
L \ 4
AN
\,
N\
\
N\
N\
-10- \ -
N\
\
\
N\
\
N\
15~ \ Bl
\
\
\
N\
\
20 L L L L N
-25 20 -15 -10 0 10
Real Axis
FIGURE E7.7
s+10
Root locus for 1 K—t———— =0.
T A ST 100 (578)

4 poles and 1 zero. The asymptote angles are ¢ = +60°, —60°, —180°
centered at oeepr = —3. When K = 25.2 then ¢ = 0.8 for the complex
roots.

E7.8 The characteristic equation is

4 K (s+1)
S

B S
2(s+9) ’

or
34952+ Ks+ K=0.
For all the roots to be equal and real, we require
(s+7r)2=54+3rs> +3r%s+1r3=0.

Equating terms and solving for K yields K = 27. All three roots are equal
at s = —3, when K = 27. The root locus is shown in Figure E7.8.
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8
6 i
4r ]
2+ i
£ 3 roots at s=-3
< ol |
e
E
_2 . |
_4 [ -
_6 . |
_8 1 L i
-15 -10 -5 0 5
Real Axis
FIGURE E7.8
Root locus for 1 + K%ﬁg) =0.
E7.9 The characteristic equation is
1
1+ K— =0

s(s?2 4+ 2s+5)

or
2 4+922+55+K=0.

(a) The system has three poles at s = 0 and —1 + j2. The number of
asymptotes is n, — n, = 3 centered at ocent = —2/3, and the angles
are Qqsymp at £60°,180°.

(b) The angle of departure, 84, is 90°+604+116.6° = 180° , so 64 = —26.6°.
(¢) The Routh array is

s$ 1 1 5
52 2 K
st b
s | K

where b = 5 — K/2. So, when K = 10 the roots lie on the imaginary
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264 CHAPTER 7 The Root Locus Method

axis. The auxilary equation is
252410 =0 which implies 19 = +jV/5 .

(d) The root locus is shown in Figure E7.9.

4
3k i
20 i
s i
“ asymptote ---> ./
< g
> 0 ,
£
_‘I L B
2r i
_3 L -
-4 : ‘ ‘ ‘
-4 -3 2 2 3 4
Real Axis
FIGURE E7.9
Root locus for 1 + KS(STM =0.
E7.10 (a) The characteristic equation is
K(s+2
1+ Kls+2) =0.
s(s+1)
Therefore,
B (52 + 5)
o (s+2)7
and

%__32+4s+2_0
ds  (s+2)2

Solving s2+4s5+2 = 0 yields s = —0.586 and —3.414. Thus, the system
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breakaway and entry points are at s = —0.586 and s = —3.414.
(b) The desired characteristic polynomial is
(s+24aj)(s+2—aj)=s>+4s+44+a*>=0,
where a is not specified. The actual characteristic polynomial is
2+ (14+K)s+2K=0.

Equating coefficients and solving for K yields K = 3 and a = /2.
Thus, when K = 3, the roots are s19 = —2 + v/2j.

(¢) The root locus is shown in Figure E7.10.

15 K=3, s=-2+1.414] i

Imag Axis
o

Real Axis

FIGURE E7.10

Root locus for 1 + Ks(ss'fl) = 0.

E7.11 The root locus is shown in Figure E7.11 for the characteristic equation

. K (s +2.5) .
(s2+2s+2)(s2+4s+5)

From the root locus we see that we can only achieve { = 0.707 when
K =0.
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266 CHAPTER 7 The Root Locus Method

1 <---- zeta=0.707 & K=0 b

Imag Axis
o
L

Real Axis

FIGURE E7.11

Root locus for 1 + <82+2K(s+2.5)

s+2)(s2+4s+5) =0.

E7.12 (a) Theroot locus is shown in Figure E7.12 for the characteristic equation

K(s+1)
L e
i s(s? + 6s + 18)

(b) The roots of the characteristic equation are
(i) K =10: 512 = —2.8064 - 4.2368;j and s3 = —0.3872
(ii) K = 20: 510 = —2.7134 + 5.2466/ and s3 = —0.5732

(c) The step response performance of the system is summarized in Ta-
ble E7.12.

K 10 20
T, (sec) | 9.0 | 5.5
P.O. 0 0

T, (sec) | 4.8 | 2.6
TABLE E7.12 System performance when K = 10 and K = 20.
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Root Locus
15
101 1
5 J
Q
x
X
>
g
=) or = .
[+
E
5t J
_10k J
15 ‘ ‘ ‘ ‘ ‘ ‘ ‘
35 -3 25 -2 -15 -1 -05 0 0.5
Real Axis
FIGURE E7.12
Root locus for 1 + K(s+1) 0.

s(s2+6s+18) =

E7.13 (a) The characteristic equation is
s(s+1)(s+3)+4s+42=0.

Rewriting with z as the parameter of interest yields

4
=0
s(s+1)(s+3)+4s

142
The root locus is shown in Figure E7.13a.
(b) The root locations for
z=06, 2.0, and 4.0

are shown in Figure E7.13a. When z = 0.6, we have ( = 0.76 and
wy, = 2.33. Therefore, the predicted step response is

PO.=24% and Ts=23sec ((=0.6).

When z = 2.0, we have ( = 0.42 and w,, = 1.79. Therefore, the
predicted step response is

P.O.=23% and Ts=53sec ((=20).
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N

1l

o
coo

N

T
+0 *
N N

Rl

Imag Axis
o

0 1 2 3 4

IS
.

&b

N

Real Axis

FIGURE E7.13
(a) Root locus for 1+ zm =0.

Finally, when z = 4.0, we have ( = 0.15 and w,, = 2.19. Therefore,
the predicted step response is P.O. = 62% and T, = 12 sec.

(c) The actual step responses are shown in Figure E7.13b.

1.6
14 - _z=06 b
---2=20
=
12+ RN e 2=4.0 B
! \
// \
LS N T T e e e
| <
1
Soal ! i
<08 |
I
I
06 b
I
1
1
04 b
1
1
02+ 4
0 L L L L L L L
0 2 4 6 8 10 12 14 16
time (sec)
FIGURE E7.13

CONTINUED: (b) Step Responses for z = 0.6, 2.0, and 4.0.
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E7.14 (a) Theroot locus is shown in Figure E7.14 for the characteristic equation

K(s+ 10)

s(s+5) =0

1+

The breakaway point is s, = —2.93; the entry point is s, = —17.1.

K=5, s=-5+5j

Imag Axis
o

210 I I I i
-20 -15 -10 -5 0 5

Real Axis

FIGURE E7.14

Root locus for 1 + E(s+10) _ 0.

s(s+5)

(b) We desire ¢ = 1/v/2 = 0.707. So, the desired characteristic polyno-
mial is

1
82—|—2(—)wn8—|—w220.

V2

Comparing the desired characteristic polynomial to the actual we find
the relationships

w2 =10K and V2w,=5+K .

Solving for K and w, yields K = 5 and w, = 7.07. The roots are
51,2 = —5 % j5 when K = 5.
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E7.15 (a) The characteristic equation

(s+10)(s +2)

14+ K =0
$3
has the root locus in Figure E7.15.
Root Locus
15 . . . , .
10 f 1
o o K=1.67
x
<
P
© 0 © 1
C
S
©
LY 1
10t 1
715 : . . . .
7-25 7-20 7-15 ?-10 -5 0 5
Real Axi s

FIGURE E7.15
Root locus for 1 +

K(s+1(g’)(s+2) -0

(b) The Routh array is

s 1 12K
s | K 20K
st b

s° 20K

when b = 12K — 20. For stability, we require all elements in the first
column to be positive. Therefore,

K > 1.67.

(¢) When K > 3/4, we have

=0.

ess = lim sE(s) = lim s; 1o lim 5
557550 T 50 1—|—GH(S) 32_S—>083+K(S+1)(8+3)
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E7.16 The expansion for e 7% is
T 2
ST () M

2!

If (T's) << 1, then
€_TS%1—T$: a+ bs 7
c+ds

where a,b,c and d are constants to be determined. Using long division,

40

30+ B

Sl K=21 |

Imag Axis
o
T

-20+- -

-40 I I I i I I I I I
-40 -30 -20 -10 0 10 20 30 40 50 60

Real Axis

FIGURE E7.16

Root locus for 1+ % —=0.

we expand (a+bs)/(c+ds) and match as many coefficients as possible. In
this case, we determine that a = ¢ = (2/7) and also that b = —d = —1.
In this case, with T'= 0.1, we have

~Ts 20 — s —(8—20)

20+s  (s+20)

So, the characteristic equation is

—K(s— 20)

1+(s—|—1)(s—|—20) ’

and the root locus is shown in Figure E7.16. Using a Routh-Hurwitz
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272 CHAPTER 7 The Root Locus Method

analysis with the characteristic polynomial
52+ (21 — K)s +20 + 20K =0 ,
we determine that the system is stable for —1 < K < 21.
E7.17 (a) The root locus is in Figure E7.17a.

15F B

‘I |- .

0.5 i

o of o« 4
©
£

-0.5 q

_'| . 4

-1.5F- q

_2 1 1 1 I L L
-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
Real Axis
FIGURE E7.17

(a) Root locus for 1 + S(S—Iil) =0.

The root locus is always in the right half-plane; the system is unstable
for K > 0.

(b) The characteristic equation is
K(s+2)
s(s —1)(s+20)

=0,

and the root locus is shown in Figure E7.17b. The system is stable
for K > 22.3 and when K = 22.3, the roots are

s1,2==+71.53 and s3=-19.
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oL k=223 .

Imag Axis
o
T
i

o
[
o

-30 -25 -20 -15 -10 -5

Real Axis

FIGURE E7.17

CONTINUED: (b) Root locus for 1+ s it2l o — 0.

E7.18 The root locus is shown in Figure E7.18.

é -
E
g 4 2 0 2 4 6
Real Axis
FIGURE E7.18
Root locus for 1 + WIM =0.

When K = 8.15, the roots are s12 = +51.095 and s34 = —2.5 £ 50.74.
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E7.19 The characteristic equation is

K
=0,
* s(s+3)(s% + 6s + 64)
and the root locus is shown in Figure E7.19. When K = 1292.5, the roots

are
51,2 = :|:]462 and 534 = —4.49 :|:]636 .
15
100 .
5r K=1292.5 1
E
_5, i
,]0, i
-15 i
215 10 5 0 5 10 15
Real Axis
FIGURE E7.19
K _
Root locus for 1 + ST (2165 760) — 0.
E7.20 The characteristic equation is
K(s+1)

s(s—1)(s+4) =0

and the root locus is shown in Figure E7.20. The system is stable for
K>6.
The maximum damping ratio of the stable complex roots is

C=02.
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max zeta=0.2

Imag Axis
o
T

Real Axis

FIGURE E7.20

Root locus for 1+ —X6+D _ _

s(s—1)(s+4) =

E7.21 The gain is K = 10.8 when the complex roots have ¢ = 0.66.

< o ]
E
_5, B
of ]
-10 5 10
Real Axis
FIGURE E7.21
Root locus for 1 + M{% =0.
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E7.22 The root locus is shown in Figure E7.22. The characteristic equation is

K(s?+20)(s+ 1)

L (s2 —2)(s + 10) =0
5 T T T T T T
Ak i
3t i
2F -
1r -
£

Al i
a2t i
sl i
al i
5 ! ! ! ! ! I

10 8 P 4 2 0 2

Real Axis
FIGURE E7.22

2
Root locus for 1 + % -0

E7.23 The characteristic equation is
552 +as+4=0,

which can rewritten as
as

1+ ——=0.
+582—1—4

The roots locus (with a as the parameter) is shown in Figure E7.23.
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15F A

0.5 A

Imag Axis
o
L

-0.5 0 1.5

Real Axis

FIGURE E7.23

as _
Root locus for 1 + 55271 = 0.

The transfer function is

G(s) =C(sI—A)"'B+D
—1
s -1 0
=[1 0]
2 s+ k 1
- 1
24 ks+2°

Therefore, the characteristic equation is

?+ks+2=0,
or
s
1+k————=0.
* s2+2

The root locus for 0 < k < oo is shown in Figure E7.24. The closed-loop
system is stable for all 0 < k& < oo.
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Root Locus
15
‘I - -
w 05Ff |
=
<<
>
< 0 D
£
e
E o5t 1
,’I F N
1.5 : : : :
25 2 -1.5 -1 -0.5 0
Real Axi s
FIGURE E7.24
Root locus for 1 + kﬁ =0.
E7.25 The characteristic equation is
10
1+ K——=0.
s(s +25)

The root locus shown in Figure E7.25 is stable for all 0 < K < oo.

Root Locus

15

10r b

Imaginary Axis

_15 I I I I . i
-30 -25 -20 -15 -10 -5 0 5
Real Axis

FIGURE E7.25

Root locus for 1 + Kﬁ —0.
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E7.26 The characteristic polynomial is

s -1
det =0
s+ K -3 s+ K+2
or
s+1
1+ K———=0
+ s24+25—3

The root locus shown in Figure E7.26 is stable for all 0 < K < 3.

Root Locus

0.8

0.6 1

0.4 b

Imaginary Axis

—0.2F il

—04F} il

-0.6 1

~0.8 | | | | | i
-12 -10 -8 -6 -4 -2 0 2
Real Axis

FIGURE E7.26

s+1 —
Root locus for 1+ K 35— = 0.

E7.27 The characteristic equation is

s
l4p—"" 9
+19824—43—1—40

The root locus shown in Figure E7.25 is stable for all 0 < p < oo.
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Root Locus

Imaginary Axis

2+ il

-4+ il

-12 -10 -8 -6 -4 -2 0 2
Real Axis

FIGURE E7.27

Root locus for 1+ p 0.

S —
s244s4+40
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Pr7.1
Root Locus
30
20
10
2
2
>
g
5 0
E
10+
20k
~30 I I I I I I
-50 -40 -30 -20 -10 0 10 20
Real Axis
Root Locus
5
4k
3k
P
2
Y
>
g
£ 0
E
-1 *
ok
3L
a4k
5 . . . . . . i .
-7 -6 -5 -4 -3 -2 -1 0 1 2
Real Axis
FIGURE P7.1

(a) Root locus for 1 + 0, and (b) 1+ G 0.

___ K K @ _
s(s+10)(s+8) — 24+254+2)(s+1) —
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Root Locus

20 T T T T T T
|
|
15+ | —
\
10 \\ 7
\
\
° 5F .
2
g
£ 0 0 —
<
E
5l ]
_10k ]
_15) ]
_20 . . . . . | . i
-8 -7 -6 -5 - -3 -2 -1 0 1
Real Axis
Root Locus
25 T T T T T T T
oL ]
15F .
1k ]
%X 05f .
g
£ 0 ]
©
E |
-0.5 | )
|
1t | b
/
/
_15) / q
-2 G\/ )
o5 . . . . . .
“14 -12 -10 -8 -6 -4 -2 0 2
Real Axis
FIGURE P7.1 )
CONTINUED: (c) Root locus for 1+ —GF5)__ — () and (d)1 4+ Kl +4s48) _

s(s+2)(s+7) s2(s+7)

The root locus is shown in Figure P7.2 for the characteristic equation

L M0K(s+10)
s(s+1)(s + 100)

The damping ratio is ( = 0.6 when K, = 0.8, 135 and 648. The roots of
the characteristic equation are:

(a) K, =0.8:s =—99.9,503 = —0.54 & j0.71
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(b) K, =135: 5, = —85.9, 803 = —7.5 % j10
(c) Ky =048 :s; = —11.7,593 = —44.6 £ j59.5

30

Imag Axis
o
T
L

-100 -80 -60 -40 -20 0

Real Axis

FIGURE P7.2

Root locus for 1 + 10Ky (s+10)

s(s+1)(s+100) 0.

P7.3 (a) The breakaway point is s = —0.88 at K = 4.06.

(b) The characteristic equation can be written as
s(s+2)(s+5)+K=0.

The Routh array is

s 1 10

52 7 K

st b 0

s | K
where

- 70 - K
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284 CHAPTER 7 The Root Locus Method

When K = 70, the system has roots on jw-axis at s = £5+/10.
(c) When K = 6, the roots are s; 2 = —0.83 =+ j0.66, s3 = —5.34.
(d) The characteristic equation

K
TG r2G19)

has the root locus shown in Figure P7.3.

Imag Axis
o

-4 -
6 B
8 B
210 | | | | |
G0 -8 -6 4 6 8 10
Real Axis
FIGURE P7.3
Root locus for 1 + S(STIM =0.
P7.4 The characteristic equation for the large antenna is
100k,
OO =1t Gy ads 1100y
or
1000k
1+ a =0

(s + 10)(s2 + 14.4s + 100)

The root locus is shown in Figure P7.4. Using Routh’s criteria, we find
that the system is stable for

1<k, <483.
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20

Imag Axis
o
L

-20 -15 -10 -5 0 5 10 15 20
Real Axis

FIGURE P7.4
Root locus for 1 + G

1000k, —0
2114.145+100)(s+10) _

When k, = 4.83, we have s12 = £515.53.

P7.5 (a) The characteristic equation for hands-off control is

25K5(s +0.03)(s + 1)
1+ =0
(s + 0.4)(s2 — 0.365s + 0.16)(s + 9)

The root locus is shown in Figure P7.5a. The damping ratio is ( =
0.707 when K9 = 1.6 or Ko = 0.74.

(b) The transfer function from Ty(s) to Y(s) is

 Ga(s)Tu(s)
V) = 16,056,0)
where
Gy(s) = % :

Using the final value theorem, we determine that

e lim s G2() 1 11.7

=071+ Ga(5)Gr(s) s 14117 (52)

=38,
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—-K=0.74

Imag Axis
o
T

5 . . . . i . .
-10 -8 -6 -4 -2 0 2 4

Real Axis

FIGURE P7.5

(a) Root locus for 1 + (S+925K2(s+0.03)(s+1)

)(52—0.365+0.16)(s+0.4)

0.

20
15F |
10F |
il |
i 07 *—=o0 1
E
-5+ i
-0 |
15} |
-20 : ‘ ‘
220 15 -10 -5 20
Real Axis
FIGURE P7.5 25K 1 (540.03)(s49)
. S ; 5 -
CONTINUED: (b) Root locus for 1 + (S+0.045)(52+12511L1)(s+1.33)(52+7.665+29.78) =0.

where we have selected Ko = 1.6. For Ky = 0.74, we find that yss =
5.96.
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(¢) The closed-loop characteristic equation with the pilot loop added is

25K (s + 0.03)(s + 9)
1+ _ 0
(s + 0.045)(s + 1.33)(s2 + 7.665 + 29.78)(s% + 125 + 1)

The root locus is shown in Figure P7.5b.
(d) Using K; = 2, we determine that

ess = 0.44 .
P7.6 (a) The characteristic equation is

K(s+0.20)(s? + 4s + 6.25)
(s+0.9)(s—0.6)(s—0.1)(s+4)

The root locus is shown in Figure P7.6.

zeta=0.5

zeta*wn=-1/3

Imag Axis
o

-6 -5 -4 -3 -2 -1 0 1 2
Real Axis

FIGURE P7.6

2
Root locus for 1 + T K (5+0.2)(s +45+6.25) 0.

5+0.9)(s—0.6)(5—0.1)(s+4)

(b) For Ts < 12 sec, we require (w, > 1/3. Also, we want ¢ > 0.5. So,
we seek roots for a stable system with (w, > 1/3 and ¢ > 0.5. This
occurs when K > 4.
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P7.7 (a) The characteristic equation for the speed control system is

K
14— %5——=0,
(s+4)2(s+9)
where
0.004 0.75
7 an 1000 0.0001875

The root locus is shown in Figure P7.7. At ( = 0.6, we have K = 19.1,

Imag Axis
o

Real Axis

FIGURE P7.7
K —
Root locus for 1 + GTDT(F1875e=00) — 0.

therefore
R =0.00021 .
When K = 19.1 the roots are
s12=—11+351.43 and s3=-580.

(b) The steady-state error is

255 + 1)?
lim sAw(s) = lim s (0255 + 1)

AL
5—0 s—0 (0.25s +1)2(Js+b) +1/R (s)
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1

= — AL~ ALR
b+1/R ’
when R < 0.1.

P7.8 (a) The characteristic equation for the speed control system with the
hydroturbine is

" K(—-s+1) _0.
(s+4)(s+2)(s+0)
where
0.002 0.75
K= — d 0 =——=0.0001875 .
r 4000 0018

The root locus is shown in Figure P7.8. At ( = 0.6, we have K = 2.85,

15+ ,

o5l K=2.85 -->

Imag Axis
o

Real Axis

FIGURE P7.8

K(—s+1) —
Root locus for 1 + GG 10 0

therefore
R =0.0007 .

When K = 2.85 the roots are —0.45 + 50.60, and -5.1.
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(b) The steady-state error is
(0.255 +1)(0.55 + 1)

lim sAw(s) = I AL
i sAw(s) = I s G T 055 T s + 1)+ (s TR
1
=—— AL~ALR,
FLI/R
when R < 0.1.

The characteristic equation is

L+ K (5 +0.5)(s + 0.1)(s? 4 25 + 289) 0
s(s+30)2(s — 0.4)(s + 0.8)(s2 + 1.45s + 361)

where K = K1 K>5. The root locus is shown in Figure P7.9. When

K = 4000 ,
the roots are

s12=—0.82 =% 519.4

50 T T T T T T T T T

40+ P 4

Imag Axis
o
|

-10 ~ -

_50 | | | | | | | 1 |
-35 -30 -25 -20 -15 -10 -5 0 5
Real Axis

FIGURE P7.9

= 2
Root locus for 1 -+ K (s40.5)(s+0.1)(s*+2s4289)

5(5+30)2(5—0.4)(s+0.8) (s> +1.455+361) 0.
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s3 = —39.8
sq = —14.9
s5 = —5.0
S = —0.38
s7=—0.14 .

P7.10 (a) The characteristic equation is

KlKQ(S + 2)2
1+ =0
(s +10)(s +100)(s? + 1.5s + 6.25)

The root locus is shown in Figure P7.10.

Imag Axis
=)
T
L

h
'
;
-8+ h 4
h
'

210 . . . . . !
-120 -100 -80 -60 -40 -20 0

Real Axis

FIGURE P7.10

2
Root locus for 1 + 0 Ko K3 (s +2)

5+10)(5+100)(s2+1.5516.25) 0.

(b) The gain
KKy =1620
when ¢ = 0.707. Therefore,

Ko = 81000 ,
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292 CHAPTER 7 The Root Locus Method
since K1 = 0.02 at medium weight cruise condition.
(c) At lightweight cruise condition
Ki=02.
Using Ko = 81000, we find the roots are

s1,2 = —54 + 7119
$34 = -2 :|:j0.6 .

The roots s34 become negligible and the roots at s; > become highly
oscillatory. Hence, in this case

¢ =041 .
P7.11 (a) The closed-loop characteristic equation is

20K (s 4+ 5 4 0.02)

1+ =0
s(s+1)%(s2+2s+0.8) ’
where
Ky =10.
Then, the root locus is shown in Figure P7.11a.
3
2,
‘I,
Ka=0.035 -
2
E
-1+
2
-3 L
-3 2 1 2 3
Real Axis
FIGURE P7.11 )
(a) Root locus for 1+ K,——295 420404 — ) \where Ky = 10.

s(s+1)2(s2+2s+0.8)
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(b) When
K, <0.035

all the roots have a damping greater than or equal to 0.60.
(c) Select

K, =10.035 .
Then, the characteristic equation with K5 as the parameter is

0.07(s% + s)
1+ K. -0
e T 5853 1 3.652 1 0.85 4 0.014

The root locus is shown in Figure P7.11b.

Ka=0.035
2+ ,
i ,
S 0 » 1
E
-1+ -
2+ -
3 . . i . .
-3 2 -1 0 1 2 3
Real Axis
FIGURE P7.11
CONTINUED: (b) Root locus for 1+ Ko S(S+1)2&3152(55i&)8)+0.014 =0, where K, = 0.035.

P7.12 (a) The closed-loop transfer function is

B Ko Kp(s+25)(s +15)
1.852(5 4+ 2) + KoK (s +25)(s +15) + 1.6K,,5(s +2)

T(s)

So, with E(s) = R(s) — Y (s), we have E(s) = (1 —T(s))R(s) and

€ss = lin%)sE(s) =1-T(0)=0.
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Therefore, when the system is stable, it has zero steady-state error.

(b) The characteristic equation is
§2 4 (3.6 + K,)s> 4 (3.2 + 40K,)s + 375K, .

The Routh array is

3 1 3.2 + 40K,
s | 3.6 +K, 375K,
st b

5° 375K

Solving for b > 0 leads to 0 < K, < 0.05 or K, > 5.64 for stability.

(c) The characteristic equation can be written as

Ko(s+25)(s + 15)

ss+2(s+16)

The root locus is shown in Figure P7.12.
(d) When

K > 40,

40

30 1

Imag Axis
o

-30+ i

-40 I I I I I I i
-70 -60 -50 -40 -30 -20 -10 0 10

Real Axis

FIGURE P7.12

Root locus for 1 + Ka% =0, where K;, = 1.8.
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the roots are
s1 = —123 and s93=—15.6£731.2.

From the step response we find

P.O.=5%
T, = 0.67 sec
T, =0.25 sec .

P7.13 (a) The characteristic equation is

K
1 =0
i s(s+3)(s% +4s + 7.84)

The root locus is shown in Figure P7.13. The breakaway point is
s=—1.09 at K =9.72.

(b) When K = 13.5, the roots are

51,2 = —0.84 :|:j0.84
s34 = —2.66 £ j1.55 .

Imag Axis

Real Axis

FIGURE P7.13

Root locus for 1 + 0.

K _
s(s+3)(s2+4s+7.84) —
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(¢) The roots
s = —0.84 £ j0.84

are dominant roots.

(d) For the dominant roots, we determine that ( = 0.7 and w,, = 1.19.
Therefore, the settling time is

4
T =——=4.8 sec.
Cwn

P7.14 The characteristic equation is

K(s+2)(s+3) B
b s2(s+1)(s +10)(s + 50) 0

The root locus is shown in Figure P7.14. When K = 15609, the roots are

s§1 = —55.7 so = —3.39 s3 = —1.92 S45 = £716.07 .
When K = 370, the roots are

s1 = —50.17 s9 = —9.42 s3=—141 845 = £71.82.

100

80 b

60 b

40 8

Imag Axis
o
I

_-I 00 1 1 1 1 1 1 1 1
-100 -80 -60 -40 -20 0 20 40 60 80 100

Real Axis

FIGURE P7.14

Root locus for 1 + K (542)(s+3) 0.

S2(s+1)(s+10)(s+50)
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The crossover points are
s ==£4516.07 and s= 475182 .
Therefore, the system is stable for
370 < K < 15609 .
P7.15 The characteristic equation is

N K (s? + 30s + 625)
s(s +20)(s? + 20s + 200)(s2 + 60s + 3400) -

The root locus is shown in Figure P7.15. When K = 30000, the roots are
51 = —18.5, s9 = —1.69, s34 = —9.8+78.9, and s56 = —30.1£549.9. The
real root near the origin dominates, and the step response is overdamped.

100

80+

60 -

40

Imag Axis
o
T
Il

Real Axis

FIGURE P7.15

5243054625 _
Root locus for 1 + K Sroatyrs7 7305 +200) (s2 7605 73400) — O-
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298 CHAPTER 7 The Root Locus Method

P7.16 (a) Let 7 = 0. Then, first reduce the motor and rolls to an equivalent
G(s) as follows:

0.25
Gls) = sGH) 0.25 __ 02
1+ % s(s+1)+025 (s+0.5)2

The loop transfer function is then

(o) 205 +05)K(025) 0.5K,
) = 12 +05)? ~ sGT 126105

The characteristic equation is

0.5
1+ K =0.
T T 1205+ 0)

The root locus is shown in Figure P7.16.

Imag Axis

Real Axis

FIGURE P7.16

Root locus for 1 + 0.5k, 0.

s(s+1)2(s+0.5)

(b) When K = 0.123, the roots of the characteristic equation are

s19 = —1.14;0.27
s34 = —0.15 % j0.15 .
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The roots at s = —0.15 4 j0.15 have a damping ratio of ( = 0.707.

(¢) When 7 becomes nonnegligible, the root locus will have an additional
pole, and the root locus will change accordingly.

P7.17 The characteristic equation is
(M1$2 + bs + k1 + le)(MQSQ + k12) — k%Q =0.

If we let M1 = k; = b =1, and assume k1o < 1 so that k%, is negligible
and k1 + k12 &~ k1, then the characteristic equation is

k
(s + s+ 1)(Mys® + ki2) =0 or 1+S—2:O,

where

ko

kE=—2.
My

The root locus is shown in Figure P7.17. All the roots lie on the jw axis.

If we select
@ —w
M, o

then we cancel the vibration.

root locus -->

Imag Axis
o
T
Il

Real Axis

FIGURE P7.17
Root locus for 1 + s% =0.
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P7.18 The characteristic equation is
Bs®+ (1+20)s> + (2+4a)s +4=0.

When g = 0 we have

4as
1+ ————=0
+32+23+4

The root locus for § = 0 is shown in Figure P7.18.

<--zeta=0.6 beta=0

L |
E
-1k i
2 i
-3 1 1 L 1 1
-3 2 1 0 1 2 3
Real Axis
FIGURE P7.18
Root locus for 1 4+ a——22— = 0, where 68 =0.

s242s+4

For a = 0.3, the poles are
s=—-16+7512.
Then, we have

Bls +2)s*
2+ (2+4a)s+4

When 8 = 0.121

s12=—151+% 5151
s3=—"7.24.
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Thus,
¢=0.707 and C(w,=1.5.

So, the performance specs are met. Also,

~03s+1  2.48(s+3.33)
C0.121s+1  (s+8.26)

Ge(s)

P7.19 The characteristic equation is

Ku(s* +3.6s + 81)

Y i1
The root locus is shown in Figure P7.19.
10/
8- ]
6 ]
af ]
L ]
£ |
4l ]
6l ]
8l ]
% 8 6 4 2 0 2 4
Real Axis
FIGURE P7.19 ,
Root locus for 1 + K, S 36s18L —

s(s+1)(s+5) —

When K, = 0.0265, the roots are

51,2 = —0.45 :|:j0.45
s3=—5.11 .

Thus, the complex roots have a damping ratio of ( = 0.707.
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P7.20 The characteristic equation is

1 2 4
s3+(2+—)32+(—+K)s+B:0,

B B
where
4o
K=— a=0.3 6 =0.121 .
B
The root sensitivity to changes in K is found to be
A?“l
Sl = 1.18/—149.75° .
K™ AK/K
The root sensitivity to changes in the pole at s = —2 is found to be
T ATl 0 .
SA = A—/2 = 1.65/—137° , where the pole is s + 2 + A.

P7.21 (a) Let the pole be (s +4 + A) and neglect A% terms. Then, the charac-
teristic equation is

252 + (8 +20)s + 8§

1+ A =0
s3+ (84 0)s2 + (16 + 80)s + 165 + K
where 0 = 0.000788 and K = 19.1.
3
2k i
1 i
£
_'I . 4
,2, 4
_3 L L L L L
210 -8 -6 -4 2 0 2
Real Axis
FIGURE P7.21 )
Root locus for 1 + A83+(8+258)S;F_‘(_8(T62_i)83588i166+[( =0, (6 =0.000788 and K = 19.1).
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The root sensitivity is determined to be

ATl
N —— =3.314/-132° .
SN = 57y =33 3
(b) Let R = R, + AR, where R = 0.00021. Then,
ATl
S =1.31 /—107° .
R~ AR/R

P7.22 The characteristic equation is
34282+ s+ K,

where K = 0.24 for ¢ = 0.707. The root sensitivity to changes in the pole
at s = —1 is found to be

A
ST = % — 0.95/-126°

where the pole is s + 1 + A.
P7.23 The characteristic equation is
s34+ 552+ (6 + K)s+ K ,

where K = 6.3 for ¢ = 0.707. The root sensitivity to changes in the pole

at s = —2 is found to be
A?“l
N~ —1.25/-169.4°
SA A2 9.4° ,

where the pole is s +2 4+ A. The root sensitivity to changes in the zero at
s = —1 is found to be

A
ST % — 0.55/34.4° ,

where the zero is s +1 + A.

P7.24 The root locus for each of the four cases shown is shown in Figure P7.24.
The four open-loop transfer functions are

s24+7s+8.25

KF(s) =2 8702

(a) (5) 3 + 652 + 5s

s+ 8
b)) KF(s)=
(b) (8) = 53057 1 29657 7 117052 7 15755

1 s2 + 6s+6.75
KF(s)= ———+—— d KF(§)="—— "~
(c) )= 59572 @ ()= 352 s
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5 \(a) 10 : (b)
5 [ -
z AR z
[o)] 0 o U 7 [o)) 0 —
© ©
E N E
_5 [ _
_ | i -10 | i
-10 -5 0 -20 -10 0
Real Axis Real Axis
2 5 (d)
‘I [
g g N
_‘I r
2 i 5 |
-2 0 2 -10 -5
Real Axis Real Axis
FIGURE P7.24
Root locus for the four cases.
P7.25 The characteristic equation is
1+ KG.(s)G(s) =0,
therefore,
KG.(s)G(s) =—1.

CHAPTER 7 The Root Locus Method

Squaring both sides yields K2G?(s)G?(s) = 1 and
1 - K2G%(5)G%*(s) =0 .

The root locus with 0 < K2 < oo is shown in Figure P7.25. The value of
K? for which the locus crosses the imaginary axis is

K*=2/3,

therefore K = /2/3 = 0.8165 corresponds to the jw-axis crossing (at
s = 0). You can check that 1 + KG.(s)G(s) = 0 for K = 0.8165 and
s =0.
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Imag Axis
o

_2 = -
_3 = |
| | | 1 | | |
-3 -2 -1 0 1 2 3
Real Axis
FIGURE P7.25

Root locus for the equation 1 — K2G2(s)G?(s) = 0.

P7.26 (a) The characteristic equation is

K(s+2)?
s(s* +1)(s +8)

The root locus is shown in Figure P7.26.

(b) Using Routh’s criteria, we determine that
K> 14

for stability.

(c) From the Routh array, we determine that for K = 14, we have two
purely imaginary poles at

s=4jV8.

(d) When K > 50, the real part of the complex roots is approximately
equal to the real part of the two real roots and therefore the complex
roots are not dominant roots.
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10 b

Imag Axis
o
T
I

-5 F -

_‘]0 = |

-15 -10 -5 0 5 10 15
Real Axis

FIGURE P7.26

2
Root locus for 1 + K% =0

P7.27 The characteristic equation is

K (s? 4+ 0.105625)

=0.
s(s2+1)

The root locus is shown in Figure P7.27a. The locus enters the axis at

s = —0.67
and leaves the axis at
s=—0.48 .
Define
—(s3+s
plo) = K = =0 )

52 +0.105625

Then, a plot of p(s) vs s is shown in Figure P7.27b, where it can be seen
that p(s) has two inflection points at

s=—0.67 and s=-048.
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0.5 B

Imag Axis
o

-0.5 R
_‘| . -
1.5+ R
_2 1 1 1 1 I L L
-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4
Real Axis
1.76

1.758

1.756

1.754

p(s)

1.752

1.75

1.748

1.746 i i i i i i i
-0.8 -0.75 -0.7 -0.65 -0.6 -0.55 -0.5 -0.45 -04

FIGURE P7.27

2 3
(a) Root locus for 1 + K% = 0. (b) Plot of p(s) = —52;&% versus s.

P7.28 The characteristic equation is

K(s? +12s + 20)
L = 1 =
L+ L) =14+ 5 02 7 ams "
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The root locus is shown in Figure P7.28. The breakaway point is s = —5.0

Imag Axis
o
O
|

6 | | |
-20 -15 -10 -5 0
Real Axis

FIGURE P7.28

Root locus for 1 + K (s4+125420) _ )

s3+10s2+25s

and the entry point is s = —15.6. When K = 2, the roots are

S1 = —1.07
893 = —5.46 £ j2.75 .

When K = 2, the roots are

S1 — —1.07
5§23 = —4.36 :|:j1.68 .
The predicted step response when K = 2 is Ty = 9 sec and PO =~ 0%.
P7.29 The characteristic equation is

52+ 85425

1+ K =0.
* s$2(s+4) 0

The root locus is shown in Figure P7.29. When ¢ = 0.707, the necessary
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gain is K = 18.285. The corresponding roots are s; = —14.285 and sg 3 =

—4 + j4.
System: sys
Ra Gain: 18.2
Pole: -4 + 4i
5 - Damping: 0.707 —_—
Overshoot (%): 4.34
Frequency (rad/sec): 5.66
4r | | B
3 & q
2| 4
2
< 1 1
2
g
g 0 8
154
E
1k 4
ot 4
-3+ 4
4+ 4
-5 I I I I | I I i
-8 -7 -6 -5 -4 -3 -2 -1 0 1
Real Axis
FIGURE P7.29 ,
s“+8s+25 __
Root locus for 1+ K732(s+4) =0.

P7.30 The transfer function is

Z(s) = LCRs?+ Ls B Rs? + s
 LCs?+CRs+1 s2+Rs+1°
So,
1
R RZ 2
=—— ——1
R
Thus, the nominal r;, = —%. Simultaneously,
R RZ 2
=——-[—-1
2T < 1
Thus, the nominal ry, = —2. We see that there is a difference by a factor
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of 4. Also,

r_ 0N
5 IR

1
R, R?[R? 205
R;RO—‘TI(—‘) B

where R, = 2.5. And

S}‘g:%

1
R, R:(R2 \® —10
B ()

. 2 4

So, the magnitude of |S}7| = 4[S7|.
P7.31 The characteristic equation is

s+4
1+ K =0
* s(s 4 0.16)(s% + 14.6s + 148.999)

The root locus is shown in Figure P7.31. When K = 1350, the roots are

S12 = :]:jg.ﬁ
s34=—T.44j1.9.

20

15+

101
(+) K=326 >

Imag Axis
o

-20 I I I

-20 -15 -10 -5 10 15 20

Real Axis

FIGURE P7.31

s+4 _
Root locus for 1 + Ks(s+0.16)(s2+14.Gs+148.999) =0.
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When K = 326, the roots are
8172 = —6.5 :]:j8.7 3374 =-0.9 :]:]3.2 .

P7.32 The characteristic equation is

K(s+1)(s+5)
s(s+ 1.5)(s + 2)

=0.

4
3 i
2t i
1F i
E
Bl i
2F i
3t i
4 //,
10 8 6 -4 2 0 2 4
Real Axis
FIGURE P7.32
Root locus for 1 + K% =0.
K ¢ Ts (sec) | P.O. (%)
1.57 0.707 0.98 1.4
3.48 0.707 1.1 5.8
2.35 0.69 1.3 4.0

TABLE P7.32 Step Response Results for K = 1.57, K = 3.48, and K = 2.35.

(a) The breakaway point is s = —1.73; the entry point is s = —8.62.
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312 CHAPTER 7 The Root Locus Method

(b) The damping ratio ¢ = 0.707 when K = 1.57 and again when K =
3.46.

(¢) The minimum damping ratio ¢ = 0.69 is achieved when K = 2.35.

(d) The results are summarized in Table P7.32.The best choice of gain is
K =1.57.

P7.33 (a) The root locus for the V-22 is shown in Figure P7.33a. The system is

1.5F b

Imag Axis
o

Real Axis

FIGURE P7.33

>+1.5540.5 —
(2) Root locus for 1+ K g5y yos rhy0sarD = O

stable when 0 < K < 0.48 and K > 136.5.

(b) The unit step input response (for K = 280) is shown in Figure P7.33b.
The step response has a P.O. = 90% and T ~ 50 sec.

(¢) The plot of y(t) for a unit step disturbance is shown in Figure P7.33b.
The response to the disturbance is oscillatory, but the maximum value
of oscillation is about 0.003; so it is negligible.

(d) The effect of adding a prefilter can be seen in Figure P7.33b. With
the prefilter we find PO = 7% and T = 40 sec.
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(i) Unit step input response

2 T T T
y(t) w/o prefilter .... (dotted line)
15 y(t) with prefilter (solid line) B
=1 1
0.5 b
O Il Il Il Il Il Il Il
0 10 20 30 40 50 60 70 80
Time (sec)
x10 -3 (i) Unit step disturbance response
4 T T T
3 -
5 i
3
] i
0 -
_-I | | | | | | |
0 10 20 30 40 50 60 70 80
Time (sec)

FIGURE P7.33
CONTINUED: (b) (i) Unit step input response with and without prefilter; (i) Unit step disturbance response.

P7.34 The characteristic equation is

K(s+2) B
L+ (s+1)(s+2.5)(s +4)(s +10) 0

The root locus is shown in Figure P7.34a. The roots, predicted and ac-
tual percent overshoot for K = 400,500, and 600 are summarized in
Table P7.34. The actual unit step input responses are shown in Fig-

ure P7.34b.
K roots ¢ predicted P.O. (%) | actual P.O. (%)
400 -13.5,-1.00 £ 5.71j,-1.98 0.173 57.6 51.6
500 -14.0,-0.75 £ 6.24j,-1.98 0.120 68.4 61.2
600 -14.4,-0.53 £ 6.71j,-1.98 0.079 77.9 69.6

TABLE P7.34 Summary for K = 400, 500, 600.
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Root Locus
20
15
10
2 5r
4
<
>
g
g 0
©
E
5L
10k
15k
—20 I I I I I i I
-30 -25 -20 -15 -10 -5 0 5 10
Real Axis
1.6
1.4F " K=400 .... (dotted line)
I K=500 --- (dashed line)
I
121} | K=600 ___(solid line)
A
FE |
"
1k
I \} l\ ’/ \\ 5
AR " - —~ —_— T e e = = = = = — = = =
TR ‘
= R
= 0.8 | ‘ ‘}
i
K
0.6 “1
0.4
0.2
0 . . . . . . . . .
0 2 4 6 8 10 12 14 16 18 20

Time (sec)

FIGURE P7.34

(a) Root locus for 1 + K(S+1)(S+2.§))+(2S+4)(8+10) = 0. (b) Unit step input responses for
K = 400, 500, 600.

P7.35 (a) The characteristic equation is

K(s—l—l)2 B

1 =0.
i s(s?2+1)
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The root locus is shown in Figure P7.35.

3
2 | -
'I | -
é
g O T
E
_‘I [ -
_2 . -
_3 L
-5 -4 3 -2 -1 0 1
Real Axis
FIGURE P7.35
(s+1)? _
Root locus for 1 + Km =0.

(b) When K = 4.52, the roots are

s1 = —0.58
s93 = —1.96 + j1.96 .

The complex roots have ¢ = 0.707.
(¢) The entry point is s = —3.38 when K = 7.41.
(d) The predicted P.O. = 4.5% ({ = 0.707) and the actual P.O. = 17%.
P7.36 The characteristic equation is

K(s+1)(s+2)(s+3)
s3(s—1)

1+ =0.

(a) The root locus is shown in Figure P7.36.
(b) When K = 2.96, the roots are

51,2 = :|:j4.08
s34 = —0.98 £ 50.33 .
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Imag Axis
o
L

_8 L L L L
-10 -8 -6 -4 -2

o+
N

Real Axis

FIGURE P7.36

Root locus for 1 + KW =0.

(¢) When K = 20, the roots are

S1 — —1.46
59 —1.07
834 = —8.23 :]:j2.99 .

When K = 100, the roots are

51 = —92.65
S9 = —3.51
s3 = —1.82
sq = —1.01.

(d) When K = 20, the damping ratio is ¢ = 0.94. Therefore, the predicted
P.O. = 0.02%. The actual overshoot is P.O. = 23%.

P7.37 Since we know that ess = 0 for a step input, we know that a = 0 or b = 0.
Select a = 0. Also, w,, = 27/T = 20 rad/sec. The desired characteristic
polynomial is

(s +71)(s 4 520)(s — j20) = s° 4 7152 + 4005 + 400r; =0 .
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The actual characteristic polynomial is

2K
TG (s + 40)

=0, or s+ (40+0b)s®+40bs +2K =0 .

Comparing the coefficients in the desired and actual characteristic poly-
nomials, we determine that b = 10, r; = 50, and K = 10000.

P7.38 (a) The characteristic equation is

K(s+1)

The system is stable for K > 3. When K = 3, the roots are s = £3j+/3.
(b) The root locus is shown in Figure P7.38a.

Imag Axis
o
L

4+ 4

-6 -4 -2 0 2 4 6
Real Axis

FIGURE P7.38

(a) Root locus for 1 + Ks(sj_g) =0.

(¢) When K = 10 , the roots are

31:—2
82:—5.

Since both roots are real and stable, we expect that there will be
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zero overshoot. The actual response has a 40% overshoot, as seen in
Figure P7.38b.

(]

e

2

2

£

<

Time (secs)
FIGURE P7.38
CONTINUED: (b) Unit step response.
P7.39 The loop transfer function is
22K

G.(s)G(s) = .
)G = D+ 85 1 22)

When K = 0.529, the closed-loop poles are s;o = —3.34 £ 1.835 and

s3 = —2.32 and have the maximum damping ¢ = 0.877. The root locus is

shown in Figure P7.39a. The step respose is shown in Figure P7.39b.
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Root Locus

10

Imaginary Axis

_lo 1 Il Il Il Il Il 1
-14 -12 -10 -8 -6 -4 -2 0 2
Real Axis

Step Response

0.35 5

0.3 .

0.25F .

Amplitude

0.15F .

0.1F .

0.05F .

1
0 0.5 1 1.5 2 2.5 3 35
Time (sec)

FIGURE P7.39

(a) Root locus for 0. (b) Unit step response.

22K _
(s+1)(s2+8s+22) —
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Advanced Problems

AP7.1 The characteristic equation is

5s+6
1+ K =0
T G T D2 £ 45+ 8)

The root locus is shown in Figure AP7.1. The gain at maximum ( is

10 b

Imag Axis
o
<>

-5+ )
101 |
-10 -5 0 3 10
Real Axis
FIGURE AP7.1
Root locus for 1 + KSSSFSQ% =0

The roots at K = 3.7 are
51 = —3.6424 s93 = —1.3395 £ +1.3553) s4 = —1.6786 .

Using Figure 5.13 in Dorf & Bishop, the predicted percent overshoot and
settling time are

PO.=5% and T, =3 sec,
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since ¢ = 0.7 and

a 6
—=—— =45
wn¢  1.9(0.7)

The actual percent overshoot and settling time are
PO.=1% and Ty = 2.8 sec.

AP7.2 The characteristic equation is

(s+1)(s+3)

-+ 18)

1+ K

The root locus is shown in Figure AP7.2a. The selected gain is K = 48.

3 o
E
5t b
10+ |
15 ‘ i ‘ ‘ ]
15 -10 0 5 10 15
Real Axis
FIGURE AP7.2 (s41)(s43)
s+1)(s+ —
(a) Root locus for 1 + Km =0.

Using Figure 5.13 in Dorf & Bishop, the predicted percent overshoot is
P.O.=30% .
The actual percent overshoot (see Figure AP7.2b) is

P.O.=45% .
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Amplitude
o
[o.]
T
L

06 R

04} .

0.2 B

0 0.5 1 15 2 25 3

Time (secs)

FIGURE AP7.2
CONTINUED: (b) Step response for K = 48.
AP7.3 The characteristic equation (with p as the parameter) is

s(s+1)

14p S8t
TPE Ly 2110

The root locus is shown in Figure AP7.3.

Imag Axis
o
i

Real Axis
FIGURE AP7.3
Root locus for 1 —&—p% —0.
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When
p=21
the dominant roots have a damping ratio of ¢ = 0.707.
AP7.4 The characteristic equation (with o as the parameter) is

s(s+1)

l1+a———+—"— =
s34+ 5241

The root locus is shown in Figure AP7.4a.

Imag Axis
o
f 0\.
L

-2+ 4
3 | | i | |
-3 2 -1 0 1 2 3
Real Axis
FIGURE AP7.4 (s41)
s(s+ _
(a) Root locus for 1+ pz-57q5 = 0.
The steady-state error is
lim sE(s) = lim —— |
ess = limsKE(s) =lim —— =1—« .
587 550 s—0 1+ G(S)

To meet the steady-state error specification, we require
09<a<ll.

The step responses for a = 0.9,1 and 1.1 are shown in Figure AP7.4b.
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alpha=0.9 (solid); alpha=1.0 (dashed); alpha=1.1 (dotted)

Amplitude

08 L - 1

04 1

0 5 10 15 20 25 30 35 40 45 50

Time (sec)

FIGURE AP7.4
CONTINUED: (b) Step responses for « = 0.9,1 and 1.1.

AP7.5 Theroot locusis shown in Figure AP7.5. When K = 20.45, { = 0.707. The

Imag Axis
o

-5 . /!
-15 -10 -5

Real Axis

FIGURE AP7.5

Root locus for 1 + K =5

1 —_
247s—18 0.

root sensitivity is Sj} =2 Ary/(AK/20.45) = 3.15/87.76°. When K = 88,
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the complex roots lie on the jw-axis—a 330% increase in the gain.

AP7.6 A gain of K = 10 provides an acceptable response (see the root locus in
Figure AP7.6).

Root Locus
25 - - -

Imaginary Axi s
o

25 . . .
-2 -1.5 -1 -0.5 0

Real Axi s

FIGURE AP7.6

s242s+5
Root locus for 1 + K z35 52 = 0.

AP7.7 The root locus for the positive feedback system is shown in Figure AP7.7.

3

o 0

£
-5+ 4
-10+ 4
7157 L L L L L L L i

-15 -10 -5 0 5 10 15
Real Axis
FIGURE AP7.7

s = 0
s2+12s5+32 —

Root locus for 1 + K
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AP7.8 The closed-loop characteristic equation is

120s _0
s3 +19s2 + 34s + 120

The root locus is shown in Figure AP7.8a. When k = 0.448, all the roots
of the characteristic equation are real—the step response is shown in
Figure AP7.8b.

1+k

30

Imag Axis
o
T

-30
-30

10 20 30

Real Axis

0.9 B

08+ 1

0.6 - B

05 1

Amplitude

04| .

0.2+ 1

0.1+ 1

0 0.5 1 1.5 2 2.5 3
Time (secs)

FIGURE AP7.8

(a) Root locus for 1 + k% = 0. (b) Step response with k = 0.448.
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AP7.9 The root locus for each controller is shown in Figure AP7.9.

() (b)
5 5
2 k%)
x x
< <
by by
g g
£ ofF—x £ 0 )
I I
E E
-5 -5
-15 -10 -5 0 5 -15 -10 -5 0 5
Real Axis Real Axis
(©) (d)
15 5
X4 10 o
< 2
> 0 2
g g
= 0 [CaS = 0 O—x 0%
© I
E -5 E
-10
-15 -5
-15 -10 -5 0 5 -15 -10 -5 0 5
Real Axis Real Axis
FIGURE AP7.9

Root locus for the various controllers.

AP7.10 The characteristic equation (with K as the parameter) is

2
s+ 7s + 20
1+ K— =0
* s(s? + 7s+10)
The root locus is shown in Figure AP7.10. The steady-state value of the
step response for any K is 0.5. With K = 15 the closed-loop transfer

function is

T(s) = 10s + 150
C$3 422524+ 1155+ 300

The step response has the following characteristics:

PO.=48% and T, = 2 seconds .
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Imag Axis
o
1

’1 0 L L L L L L L L L
-10 -8 -6 -4 -2 0 2 4 6 8 10
Real Axis

FIGURE AP7.10

52+7s+20 _
Root locus fOI’ 1 + Km =0.

APT7.11 The root locus is shown in Figure AP7.11a. A suitable gain is K = 1525.
The step response is shown in Figure AP7.11b.

20

Imag Axis
o

-20 1 1 1 1 1 1
-30 -25 -20 -15 -10 -5 0 5

Real Axis

FIGURE AP7.11

2
(a) Root locus for 1 + K (s+1)

5(51+8)(5+20) (s +3.25+3.56) 0.
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Amplitude
o
()
T
i

04 . . : : . il

Time (secs)

FIGURE AP7.11
CONTINUED: (b) Step response with K = 1525.

AP7.12 The root locus is shown in Figure AP7.12a.

Imag Axis
o
Il

| | | 1 |
2 -1 0 1 2

-7 -6 -5 -4 -3 -
Real Axis

FIGURE AP7.12

+0.2
(a) Root locus for 1 + Kpm =0.
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Step Response
From: U(1)

08 -

Amplitude
To: Y(1)

06

04 -

02—

Time (sec.)

FIGURE AP7.12
CONTINUED: (b) Step response with Kj = 5.54.

The PI controller can be written as
K K
Ge(s) = 7193: !

and setting K7 = 0.2K, the characteristic equation can be weitten as

(s +0.2)
1+ Ky—————= =
* Ps(s2+ 7s + 10) 0

A suitable gain is K, = 5.55. The step response is shown in Figure AP7.12b.
AP7.13 The characteristic equation is
1+ KlKQ; = 0.
(s+5)(s—1)

The root locus is shown in Figure AP7.12a. The fastest expected settling
time is Ty = 4/w,,( = 2 seconds since maximum |w,(| = 2.
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Root Locus
4
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FIGURE AP7.13
Root locus for 1+ KlKQWM =0.
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Design Problems

CDP7.1 The closed-loop transfer function from the input to the output is
0(s) 26.035K,

R(s)  s2+(33.1415 + 26.035K,K1)s + 26.035K,, ’

where we consider for the first time the tachometer feedback (see Figure
CDP4.1 in Dorf and Bishop). The characteristic equation is

26.035K s

1+ K —0
M 3314155 1 26.035K,

The root locus is shown below. In accordance with the discussion in Chap-

30

Imag Axis
o
o}
|

-30 I I ! I I
-30 -20 -10 0 10 20 30

Real Axis

ter 5, we continue to use K, = 22. This allows us to meet the overshoot
specification (P.O. < 5%) without the tachometer feedback and to pro-
vides good steady-state tracking errors to a step input. To meet the design
specifications of both P.O. and Ts we want the closed-loop poles to the
left of —(w = —4/0.3 = —13.33 and ¢ > 0.69. A reasonable selection is
K71 =0.012. This places the closed-loop poles at s = —20 + j13.

DP7.1 (a) The characteristic equation is

18K (s + 0.015)(s + 0.45)
(52 +1.25 + 12)(s2 + 0.01s + 0.0025)
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Since we want a negative feedback system, we have G.(s) = —K.
When w,, > 2 and ¢ = 0.15, the gain K = 0.12. The root locus is
shown in Figure DP7.1a.

é
g 0 1
£

2 4
_4 |- -
_6 I L
-4 3.5 3 -2.5 2 1.5 1 0 0.5 1
Real Axis
FIGURE DP7.1
18(540.015)(5+0.45) 0

(a) Root locus for 1+ K g 515757 10.01570.0055) —

(b) The unit step response is shown in Figure DP7.1b. The percent over-
shoot is

P.O.=100% .

(¢) The characteristic equation with the anticipatory controller is

L+ 18K (s +2)(s+0.015)(s +0.45) 0
(s2 +1.25 + 12)(s2 + 0.01s + 0.002s)

The root locus is shown in Figure DP7.1c. If we select
K =9.2/18 ,
then the complex roots have a damping ¢ = 0.90. The roots are at
s1 = —0.253

sg = —0.019
834 = —5.07 £ j2.50 .

This material is protected by Copyright and written permission should be obtained from the publisher prior to any prohibited reproduction, storage in a
retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording, or likewise.
For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.



334 CHAPTER 7 The Root Locus Method

L
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FIGURE DP7.1

CONTINUED: (b) Unit step response for gain controller.

Imag Axis
o

Real Axis

FIGURE DP7.1 et 0015 st
i s+ s+0. s+0.45 _
CONTINUED: (c) Root locus for 1 + K(S2+1_28+12)(82+0.018+0_0025) =0.

(d) The unit step response for the system with the anticipatory controller
is shown in Figure DP7.1d.
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0.6 |- B

05 b

Amplitude

0.4+ B

0.2 b

0.1+ B

0 20 40 60 80 100 120 140 160 180 200
Time (secs)

FIGURE DP7.1
CONTINUED: (d) Unit step response for anticipatory controller.

DP7.2 The characteristic equation is

10K (s + 1)

=0.
s(s?2 +4.55+9)

(a) The root locus is shown in Figure DP7.2a. When K = 0.435, we have
¢ = 0.6 and the roots are

s1 = —0.368
So3 = —2.1452.75 .

(b) The response to a step input is shown in Figure DP7.2b. The per-
formance results are

P.O.=0%
T = 10 sec
ess = 0.

(¢) We have ¢ = 0.41 when K = 1.51. The step response is shown in
Figure DP7.2b. The performance results to the step input are

PO.=0%
Ts =4 sec
ess =0 .
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Imag Axis
o
T

Real Axis

FIGURE DP7.2

(a) Root locus for 1 + K% —0.

0,9 . ’\’ \\\\ /,// .
08+ K=0.435 (solid line) i
07+ K=1.510 ---- (dashed line) |

06 | ,

Amplitude

04r! 1

03} ]

01y ,

Time (sec)

FIGURE DP7.2
CONTINUED: (b) Unit step responses for K = 0.425, 1.51.
DP7.3 The characteristic equation is

K(s?+6.5s + 12)
s(s+1)(s+2)

1+ =0.
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(a) The root locus is shown in Figure DP7.3.

Imag Axis
o
Il

-6 -5 -4 -3 -2 -1 0 1

Real Axis
FIGURE DP7.3 )
Root locus for 1 + K% = 0.

When K = 41, the roots are s; = —37.12 and sp3 = —3.44 £ j1.19 .
(b) The percent overshoot is P.O. ~ 1% when ( = 0.82 at K = 0.062.
(c) Select K > 300.

DP7.4 The characteristic equation is

10(0.01s + 1)

1+ K
* s(s? +10s + 10K7)

=0.

If we choose K71 = 2.5, then the root locus will start at s = 0, —5 and
-5. This is shown in Figure DP7.4. The root locus then has a nice shape
so that we can select K to place the complex poles where desired and
the one real root will be farther in the left half-plane; thus the notion
of dominant poles will be valid. So, if we desire a P.O. < 5%, we want
¢ > 0.69. This occurs when K = 3. Thus, our design is

Ki=25 and K=3.

The unit step response is shown in Figure DP7.4. The settling time is less

than 3.5 sec and the PO < 4%. The response to a unit step disturbance
is also shown in Figure DP7.4. The steady-state error magnitude to the
disturbance is 0.33.
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(a) Root locus for 1 + KS(52+108+25) = 0. (b) System response to step input and distur-

bance.

DP7.5 The characteristic equation is

s+1
14+ K —0
TR G ) (& + 105 1 41)

The root locus is shown in Figure DP7.5a.
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Imag Axis
o

Real Axis
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FIGURE DP7.5
(a) Root locus for 1 + KWM = 0. (b) Step response with K = 140.

The system is stable for

58.6 < K < 222.1 .

The step response with K = 140 is shown in Figure DP7.5b. The percent
overshoot and settling time are P.O. = 131% and Ts = 9.9 seconds; the
aircraft response is highly oscillatory.
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DP7.6 The characteristic equation is

s+2
1+ K =0
LR PEST)) [Py

The maximum damping is ¢ = 0.46 at K = 55. The root locus is shown in
Figure DP7.6a; the step response is shown in Figure DP7.6b. The percent
overshoot and settling time are P.O. = 61.3% and Ty = 2 seconds.
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FIGURE DP7.6

(a) Root locus for 1 + KW)Q(S_D = 0. (b) Step response with K = 55.
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DP7.7 The closed-loop transfer function is

Vs Gls)
TO) = vy = T kGG -

The dc gain is
G(0) 1

T =1TTkem ~ &

The root locus is shown in Figure DP7.7. The maximum value of K for

x107

15 A

Imag Axis
=
L

Real Axis x107

FIGURE DP7.7

17
Root locus for 1 + K 244251 x10____

(5+3142)(s+107)

stability is
K =0.062 .
Therefore, the minimum dc gain is about 1/0.062=16. Selecting
K=005 and R =10 K
yields
Ry =19R; =190 K .
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342 CHAPTER 7 The Root Locus Method

DP7.8 The closed-loop transfer function (with G,(s) =1 and K =1) is

B 253 + 652 + 14s + 10
st 465341352+ 265 +6

T(s)

So, if we select G,(s) = 1/T(0) = 0.6, the step response (with K = 1)
will have a zero steady-state tracking error. The root locus is shown in
Figure DP7.8a. The step responses for K = 1,1.5 and 2.85 are shown in
Figure DP7.8b. For K = 1, we have P.O. = 0%, T, = 7.8 and T, = 13.9;
for K = 1.5, we have P.O. = 0%, T,, = 5.4 and T, = 9.6; and for K = 2.85,

Imag Axis
o
i

-8 . . . i . . .
-8 -6 -4 -2 0 2 4 6 8

Real Axis

K=1 (solid); K=1.5 (dashed); K=2.85 (dotted)

3
%_
£
<
0 ‘
0 2 4 6 8 10 12 14 16 18 20
Time (sec)
FIGURE DP7.8
(a) Root locus for 1 + K% = 0. (b) Step responses with K =1,1.5,2.85.
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we have P.O. = 5.2%, T, = 0.5 and Ty = 7.3. The best gain selection is
K = 2.85.

DP7.9 A suitable selection of the various parameters is
(=05 and ¢=3/5.

With ¢ = 3/5, the open-loop zeros are real and equal. Then, it follows
that

The root locus is shown in Figure DP7.9. A reasonable choice of gain is
K =30.

The resulting step response is extremely fast with no overshoot. The
closed-loop transfer function is approximately given by

1923
(5) v —228_
s+ 1923
6l |
4 |
2 |
I |
E
2f |
_47 -
6 |
6 4 2 0 2 4 6
Real Axis
FIGURE DP7.9 )
Root locus for 1 + K ——4s +dstl

0.062553+0.2552+s
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344 CHAPTER 7 The Root Locus Method

DP7.10 The characteristic equation (with K as the parameter) is

10(s? + 10)
1+ K————~ =0
+ s3 + 20s

The root locus is shown in Figure DP7.10a. To maximize the closed-loop

5 T T

Imag Axis
o
i

5 I I I I
-2 -1.5 -1 -0.5 0 0.5 1

Real Axis
Step Response

From: U(1)
14 T

Amplitude
To:Y(1)

I I I
0 1 2 3 4 5 6

Time (sec.)

FIGURE DP7.10

2
(a) Root locus for 1 + K% = 0. (b) Step response with K = 0.513.
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system damping we choose K = 0.513. The step response is shown in
Figure DP7.10b.

DP7.11 The characteristic equation is

s+ 1.5
L R e T 9+ 10)

The root locus is shown in Figure DP7.11a.

Imag Axis
o
I
i

-15 -10 -5 0 5
Real Axis

K=100 (solid); K=300 (dashed); K=600 (dotted)

o8 |\ S T T ]

Amplitude

06} ! E
04l i

02 |

Time (sec)

FIGURE DP7.11

(a) Root locus for 1 + K(S+1)(S+527)L(1si4)(5+10) = 0. (b) Step response with K =
100, 300, 600.
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346 CHAPTER 7 The Root Locus Method

The closed-loop system roots are:

K =100: s =-11.38 s33=—2.09£3.105 s4=—1.45
K =300: s1=-1294 s33=-129£510j s4=—1.48
K =600 : S1 = —14.44 523 = —0.53 672] S4 = —1.49

The step responses are shown in Figure DP7.11b.
DP7.12 The closed-loop transfer function is

34+ 2+ Ko Kos + K,

T(s)
A suitable choice of gains is
K,=052 and Koy=3.

The step response is shown in Figure DP7.12.

0.6 B

Amplitude

04r 1

Time (secs)

FIGURE DP7.12
Step response with K, = 0.52 and Ko = 3.

DP7.13 The characteristic equation is

s +10Kps +10(Kp —1) =0 .
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In the Evans form we have

10(s +7)

1+ K
THD s2 —10

=0.

The root locus is shown in Figure DP7.13 for 7 = 6. When 0 < 7 < /10,

Root Locus
6
4k d
2l d
Q2
x
<
2
g
£ 0 o i
©
E
ok d
—al d
, I I I | i
-25 -20 -15 -10 -5 0 5
Real Axis

FIGURE DP7.13
Root locus when 7 = 6.

the closed-loop poles are both real numbers. The “loop” in Figure DP7.13
disappears. A viable controller is Kp = 36 and Kp = 6.
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348 CHAPTER 7 The Root Locus Method

Computer Problems

CP7.1 The root locus for parts (a)-(d) are shown in Figures CP7.1a - CP7.1d.

num=[10]; den=[1 14 43 30]; rlocus(sys)
20 . . :

Imaginary Axi s
o
i

5F 4
-10 1
-15 4
220 L L L

-30 -20 -10 0 10

Real Axis
num=[1 20]; den=[1 5 20J; sys=tf(num,den); rlocus(sys)

20 T T T T T T

15 h

10 - h

sk i

£

5 B
-10 h
-15 h
20 I I I I I I I I I I I

-45 -40 -35 -30 -25 -20 -15 -10 -5 0 5
Real Axis
FIGURE CP7.1
S || R _s4+20
(a) Root locus for 1 + kszqym2ms30 = 0- (b) Root locus for 1+ k3= = 0.
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num=[1 1 1]; den=[1 5 10 0]; rlocus(sys)
2 . . . .

Imaginary Axi s
o

Real Axis
num=[146864]; den=[1221110 1]; sys=tf(num,den); rlocus(sys)
T

| F ~
| [
" b\ |
as b U i

Imag Axis

% 5 4 3 2 R 0 1 2
Real Axis
FIGURE CP7.1 )
CONTINUED: (c) Root locus for 1 + k#ﬁ_ﬂlm = 0. (d) Root locus for 1 +
55+4s4+653+852+65+4 =0.

s64+2554+25%+534+3524+10s5+1
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350 CHAPTER 7 The Root Locus Method

CP7.2 The maximum value of the gain for stability is k& = 0.791. The m-file
script and root locus is shown in Figure CP7.2.

Select a point in the graphics window

num=[1 -2 2]; den=[1 3 2 0]; sys = tf(num,den); selected_point =

rlocus(sys) -0.0025 + 0.6550i
rlocfind(sys) -
ans =
0.8008
1

08| ]

06 ]

04 )

02t )

£

-02 -

-0.4

-3 -2.5 -2 -1.5 -1 -0.5 0 0.5 1 15 2
Real Axis

FIGURE CP7.2
Using the rlocfind function.

The value of k£ = 0.8008 selected by the rlocfind function is not exact
since you cannot select the jw-axis crossing precisely. The actual value is
determined using Routh-Hurwitz analysis.

CP7.3 The partial fraction expansion of Y (s) is

¥ (s) s+2 0.15 0.25 n 0.4
S) = = — —
s(s% + 6s + 6) s+5 s+1 s

The m-file script and output is shown in Figure CP7.3.
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num=[1 2]; den=[16 5 0]; -5
[r,p,k]=residue(num,den) L

FIGURE CP7.3
Using the residue function.

CP7.4 The characteristic equation is

s—1
1+p5———=0
P +45+6
The root locus is shown in Figure CP7.4. The closed-loop system is stable
for
O0<p<b6.
num=[1 1]; den=[1 4 6]; sys=tf(num,den); rlocus(sys)
1.5 T T T
. i
05 1
E
05 - b
1+ -
15 I I I I I
4 -3 -2 -1 0 1 2
Real Axis
FIGURE CP7.4

0.

Root locus for 1 + p% =
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352 CHAPTER 7 The Root Locus Method

CP7.5 The characteristic equation is

1
14k 0.
S

The root locus is shown in Figure CP7.5. For k = 2 we obtain sy =
—1+ 7, that is, we have {( = 0.707.

num=[1 1]; den=[1 0 0]; sys = tf(num,den);
hold off, clf

rlocus(sys);

hold on

plot([0 -2],[0 2*tan(acos(0.707))],--")
plot([0 -2],[0 -2*tan(acos(0.707))],--")
plot([-1-11,[1 -11,*)

2.5

05

£
05 |- E
.‘] - -
15 F E
_2 - -
_25 Il Il Il Il Il Il Il
-3 -2.5 -2 -1.5 -1 0.5 0 0.5 1
Real Axis
FIGURE CP7.5
Root locus for 1 + k££L = 0.

s2

CP7.6 The m-file script to generate the root locus for each controller in parts
(a)-(c) is shown in Figure CP7.6. The performance region is indicated on
each root locus in Figures CP7.6b - CP7.6d. For part (a), the controller
gain is found to be G.(s) = 11.3920. The integral controller in part (b)
is determined to be

Guls) = 4.093 ‘

S
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numg=[1]; deng=[1 5 6]; sysg = tf(numg,deng);

t=[0:0.1:15];

%

% Part (a)

% ESelect a point in the graphics window
sys1 =sysg;

rlocus(sys1), grid selected_point =

hold on -

plot([-0.4 -0.4],[-6 6],--...
[0 -6*tan(36.2*pi/180)],[0 6],--...
[0 -6*tan(36.2*pi/180)],[0 -6],--)

-2.5030 + 3.3380i

hold off ans=

l[)j(p,poles] =rlocfind(sys1) > 13920
0

% Part (b)

%

numc=[1]; denc=[1 0]; sysc = tf(humc,denc);
sys2 = series(sysc,sysq);

figure

rlocus(sys2), grid

hold on

plot([-0.4 -0.4],[-6 6],--...

[0 -6*tan(36.2*pi/180)],[0 6],--'...

[0 -6*tan(36.2*pi/180)],[0 -6],--)

Select a point in the graphics window
selected_point =

-0.6690 + 0.8210i

ans =
hold off
[ki,poles] = rlocfind(sys2) = 40930
%
% Part (c)
Z:;ure Plot performance region boundaries on graph.
numc=[1 1]; denc=[1 0]; sysc = tf(numc,denc);
sys3 = series(sysc,sysg); Select a point in the graphics window
rlocus(sys3), grid
hold on selected_point =
plot([-0.4 -0.4],[-6 6],--... .
[0 -6*tan(36.2*pi/180)],[0 6],--... -2.0695+ 2.7387i
[0 -6*tan(36.2*pi/180)],[0 -6],--")
hold off ans =
[kpi,poles] = rlocfind(sys3) >
% 9.2516
% Part (d)
%
figure

sys1_o = kp*sys1; sys1_cl = feedback(sys1_o,[1]);

sys2_o = ki*sys2; sys2_cl = feedback(sys2_o,[1]);

sys3_o = kpi*sys3; sys3_cl = feedback(sys3_o,[1]);
[y1,t]=step(sys1_cl,t);

[y2,t]=step(sys2_cl,t);

[y3,t]=step(sys3_cl,t);

plot(t,y1,ty2,--ty3,:),grid

xlabel('time [sec]’),ylabel('y(t)")

title('Ge(s): proportional (solid), integral (dashed) & PI (dotted)’)

FIGURE CP7.6
(a) Script to generate the root locus for each controller.

The proportional integral (PI) controller in part (c) is

. 1
Go(s) = 9.2516(s +1) -

S
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CONTINUED: (b) Root locus for proportional controller with selected K = 11.3920.

Imag Axis
o

-4 -3 -2 -1 0 1 2
Real Axis

FIGURE CP7.6
CONTINUED: (c) Root locus for integral controller with selected K = 4.0930.

The proportional controller is stable for all K > 0 but has a significant
steady-state error. The integral controller has no steady-state error,
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Imag Axis
)
T

-4 -3 -2 -1 0 1 2
Real Axis

FIGURE CP7.6
CONTINUED: (d) Root locus for Pl controller with selected K = 9.2516.

but is stable only for K < 30. The PI controller has zero steady-state
error and is stable for all K > 0. Additionally, the PI controller has a
fast transient response. The step responses for each controller is shown in
Figure CP7.6e.

Gc(s): proportional (solid), integral (dashed) & PI (dotted)
T T

y(t)

0.6 - 1

04 / E

time [sec]

FIGURE CP7.6
CONTINUED: (e) Step responses for each controller.
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CP7.7 The loop transfer function can be written as

- K+ Kss - s+5
G.(s)G(s) = S Ky 2
where
Ky = Ky/J .

The parameter of interest for the root locus is K5. The root locus is shown
in Figure CP7.7. The selected value of

Ky =17.1075 .
Therefore,
K, K,
— =7.1075 d — =35.5375.
7 e
num=[1 5]; den=[1 0 0]; sys=tf(num,den); rlocus(sys); rlocfind(sys)
10 — — ; ;
8 | ]

2
x
< -
o
©
£
8+ 1: i
-10 i i i i : i i i i i
-10 -8 -6 -4 -2 0 2 4 6 8 10
Real Axis
FIGURE CP7.7

Root locus to determine K.
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CP7.8 The value of K that results in a damping ratio of ( = 0.707 is K = 5.2.
The root locus is shown in Figure CP7.8.

Root Locus

4+ 4
5L ,
2r s =-0.68 + 0.68] / 1
" \ [
e ) ,
<<
el
g |
g\ Oﬁﬂ
= | s=-663 P )
s =-0.68-0.68]
5L ,
3t ,
4+ 4
,5 L 1
-10 -5 0 5
Real Axis
FIGURE CP7.8

1 _
Root locus for 1+ K g g5:97 = 0.

CP7.9 (a) The characteristic equation is
S+ (2+k)s+55+1=0.

(b) The Routh array is

$3 1 5

2| 24k 1
1 5k+9

S 2k

s° 1

For stability we require
24k>0 or k>-2
and

5k+9>0 or k>-9/5.
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358 CHAPTER 7 The Root Locus Method

Therefore, the stability region is defined by
k>—-18.

(c) Rearranging the characteristic equation yields

52

s34+2524+55+1=0.

1+k

The root locus is shown in Figure CP7.9. We see that the system is
stable for all k£ > 0.

Root Locus
2 - - - -

05 1

Imaginary Axi s
o
@

0.5 1

2-15 ¢t 1
-2 L L L L
?-25 ?-2 ?-15 ?-1 ?-0.5 0
Real Axi s
FIGURE CP7.9

S —
Root locus for 1+ k zssrsry =
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CHAPTER 8

Frequency Response Methods

Exercises

E8.1 Given the loop transfer function

we determine that

|L(jw)| = and ¢(w) = —2tan"tw .

1+o?)

The polar plot is shown in Figure E8.1.

3
g
£
-3 1 L 1 L L L 1 1
05 0 0.5 1 15 2 25 3 35 4
Real Axis
FIGURE ES8.1
Polar plot for L(s) = ﬁ.
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360 CHAPTER 8 Frequency Response Methods

The magnitude and phase angle for w = 0,0.5,1,2,4, 0o are summarized
in Table E8.1.

IG.GGw)| | 4 | 32| 2 | 08 | 023 | o0

¢ (deg) 0 -53 -90 -127 | -152 -180

TABLE E8.1 Magpnitude and phase for G.(s)G(s) = ﬁg.

E8.2 The transfer function is

Gls) = 2572

52 + 386s + 15,434

The frequency response plot is shown in Figure E8.2. The phase angle is
computed from

w
= —tan ' —— —tan"' — .
0= —tan g T gy

The phase angles for w = 10,45,100,341 and 1000 are summarized in
Table E8.2.

w 10 45 100 341 1000

¢ (deg) | 141 | 523 | -82.0 | -127.5 | -158.6
TABLE E8.2 Phase angle for G(s) = orrgseoorsi37-
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0 T T T T
o
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©
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0
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©
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_200 | I B B | Y B | Y B | Y
100 107 102 103 104
Frequency (rad/sec)
FIGURE E8.2
Frequency response for G(s) = %.
E8.3 The loop transfer function is
300(s + 100)
Ge(s)G(s) =

s(s+10)(s +40)

The phase angle is computed via

p(w) = —90° — tan~! % — tan™! 4% + tan ™! 100 -

At w = 28.3, we determine that
¢ =—90° — 70.5° — 35.3° + 15.8° = 180° .

Computing the magnitude yields

‘GCG(jw)’ =
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Then, the magnitude in dB is
w W9
100 10) )

4%)2) —20loggw = —2.5 dB ,

201og o |GeG| = 201og;4(75) + 101log;o(1 + (—=)?) — 101log (1 + (

— 10 loglo(l + (

at w = 28.3.
E8.4 The transfer function is

Gls) = Ks

(s+a)(s+10)2 °

Note that ¢ = 0° at w = 3, and that

¢ = +90° — tan~* Y _otan '
a 10
Substituting w = 3 and solving for a yields
a=2.
Similarly, from the magnitude relationship we determine that

K =400 .

E8.5 The lower portion for w < 2 is
K
20log — =0dB ,
w
at w = 8. Therefore,
K
which occurs when

K=8.

We have a zero at w = 2 and another zero at w = 4. The zero at w = 4
yields

a=0.25.

We also have a pole at w = 8, and a second pole at w = 24. The pole at
w = 24 yields

b=1/24 .
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Therefore,

G(s) = 8(1+s/2)(1+ s/4)
~s(1+s/8)(1 4 s/24)(1 + 5/36)

E8.6 The loop transfer function is

L(s)

- 10
~ s(s/6+1)(s/100 4+ 1)

The Bode diagram is shown in Figure E8.6. When 20log;, |L| = 0 dB, we

have
w = 6.7 rad/sec .
Bode Diagram
50
0
g
> 50
°
2
S -100
©
=
-150
-200
-90
-135
>
[}
=
o -180
1%}
©
=)
o
-225
-270k i i i i
10" 10° 10" 10° 10° 10"
Frequency (rad/sec)
FIGURE E8.6

Bode Diagram for L(S) = m

E8.7 The transfer function is
4

T(s) = (s2+5s+1)(s2+04s+4)

(a) The frequency response magnitude is shown in Figure E8.7.
The frequency response has two resonant peaks at

wr, = 0.8 rad/sec and w,, = 1.9 rad/sec .
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10
o
°
£ 7
©
U]
_'IO L L L L L
10 100 101
Frequency (rad/sec)
1.5
g
2
5
< 05¢ J
0 L L L L L L L L L
0 2 4 6 8 10 12 14 16 18 20
Time (secs)
FIGURE E8.7

(a) Bode Diagram for T'(s)

= (32+8+1)(§2+0-48+4)' (b) Unit step response.

(b) The percent overshoot is
P.O.=35%,
and the settling time is
Ts ~ 16 sec .

(c) The step response is shown in Figure E8.7.

E8.8 (a) The break frequencies are
wy = 1 rad/sec, wy = b5 rad/sec, and ws = 20 rad/sec .

(b) The slope of the asymptotic plot at low frequencies is 0 dB/decade.
And at high frequencies the slope of the asymptotic plot is -20 dB/decade.

(c) The Bode plot is shown in Figure ES8.8.
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Bode Diagram

20

Magnitude (dB)

-30
180

135

90 -

45

Phase (deg)

45}

—golk i I i i
10 107 10° 10" 10 10
Frequency (rad/sec)

FIGURE ES8.8

Bode Diagram for G¢(s)G(s) = %.

E8.9 The Bode diagram for G(s) is shown in Figure E8.9.

40 T T T T

Gain dB
o
<

-40 L L L R
107 100 107 102 103

Frequency (rad/sec)

o
5
107 e o BT TS
Frequency (rad/sec])
FIGURE E8.9
Bode Diagram for G(s) = (5/541)(s/2041)

(s+1)(s/80+1) -
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E8.10 The frequency response has two peaks; the first peak at f ~ 1.8 and the
second peak at f a2 3.1. One possible G(jw) is

. 1
G(jw) = N N2\
o0 (1 (@) () (1 () o (5T)
where
1
T 2m(02)

=015 wy, =27(1.8 x 10*) (= 0.15;  wy, = 27(3.1 x 10%) .

The damping ratios are estimated using Figure 8.10 in Dorf & Bishop.

E8.11 The Bode plot is shown in Figure E8.11. The frequency when 201log, |GcG(jw)| =
0is w = 9.9 rad/sec.

Bode Diagram

—40F

—60}

Magnitude (dB)

-80}

-100 -

Phase (deg)
,L
w
o

I
10 10 10* 10 10°
Frequency (rad/sec)

FIGURE ES8.11

Bode Diagram for G¢(s)G(s) = %-

E8.12 (a) The transfer function is

—5(s — 1)

_ _ -1 - 7
G(s)=C(sI-A)""B+D Ry

(b) The Bode plot is shown in Figure E8.12.
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Bode Diagram
10 ¢ - ; . -
©
z
[}
e
2
‘e
()]
©
=
D 270 |
z
g
8 180 |
a
90 1 1 4
107 10" 10° 10' 10°
Frequency (rad/sec)
FIGURE E8.12 .
Bode Diagram for G(s) = %

E8.13 The closed-loop transfer function is

B 100
341182+ 20s + 110 °

T(s)

The Bode plot of T'(s) is shown in Figure E8.13, where wp = 4.9 rad/sec.

Bode Diagram

50
) 0.
R
[}
S sof
'c
g
= -100
,45 F
§’ -90 |
jg‘ -135
S -180 f
a
225
-270 - : :
1 0 1 2 3
10 10 10 10 10
Frequency (rad/sec)
FIGURE E8.13
. 100
Bode Diagram for T'(s) = FTITs2 12057110
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E8.14 The loop transfer function is

L(s) = 20

(s24+1.4s+1)(s+10) -

The Bode plot of L(s) is shown in Figure E8.14. The frequency when
20log g |L(yw)| = 0 is w = 1.32 rad/sec.

Bode Diagram

50

oF i
[
s
Q
S -sof 1
z
(=2
©
=
-100 i
-150
0 T !
-45} i
S -90f |
[}
S
@ 135} i
1%}
B
o -1801 1
-225+ i
—270k i ‘ ' '
107 10" 10° 10" 10° 10°
Frequency (rad/sec)
FIGURE E8.14
. _ 20
Bode Diagram for L(s) = (CESwTESyIe=SHR

E8.15 The closed-loop transfer function is

3s
T S22+ K45
The bandwidth as a function of K is shown in Figure E8.15. The band-
width as a function of K is:
(a) K =1 and wp = 2.77 rad/sec.
(b) K =2 and wy, = 3.63 rad/sec.
(¢) K =10 and wy, = 9.66 rad/sec.

The bandwidth increases as K increases.

T(s)
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18
g
e
% é 4‘1 é é fo 12 14 16 18 20
K
FIGURE E8.15
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Problems

P8.1 (a) The transfer function is

1
Ge(s)G(s) = (14 0.5s)(1 +2s)
and
GG(jw) = 1

(1 —w?)+j25w

The polar plot is shown in Figure P8.1a. A summary of the magni-
tude and phase angles for w = 0,0.5,1,2,5 and oo can be found in
Table P8.1a.

0.8

04l ,

02t/ ]

Imag Axis
o
T

Real Axis

FIGURE P8.1

(a) Polar plot for G¢(s)G(s) = m.

w 0| 05 1 2 5 0
IGH(jw)| | 1 | 068 | 040 | 0.172 0.037 0
d(deg) | 0° | —59° | —90° | —121° | —152.6° | —180°

TABLE P8.1 (a) Magnitudes and phase angles for G.(s)G(s) = m
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(b) The transfer function is

10(s? 4 1.4s + 1)

Ge(s)G(s) = ==

and

10 ((1 — w?) + 1. 4jw)

GeGUw) = =3 —2ju

The polar plot is shown in Figure P8.1b. A summary of the magnitude
and phase angles for w = 0,0.25,0.5,1,2,8,16 and oo can be found in
Table P8.1b.

Nyquist Diagram

ol
ol
Al
g
g’ 0
£
Ll
Ll
ol
ol
,lo L L L Il L L L L
-8 -6 -4 -2 0 2 4 6 8 10
Real Axis
FIGURE P8.1 ,
CONTINUED: (b) Polar plot for Ge(s)G(s) = W
w 0 | 025 0.5 1 2 8 16 00
IGH(jw)| | 10 | 94 8.2 7 8.2 9.8 9.96 | 10
d(deg) 0° | 48.5° | 96.2° | 180° | —96.2° | —24.3° | —12.2° | 0°

2
TABLE P8.1 CONTINUED: (b) Magnitudes and phase angles for G.(s)G(s) = %.
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372 CHAPTER 8 Frequency Response Methods

(¢) The transfer function is

(s —10)

G.(5)G(s) = ———7—— .
(5)G(s) (s + 6s + 10)

We have complex poles at w, = /10 and ¢ = %. The polar plot

is shown in Figure P8.1c. A summary of the magnitude and phase

angles for
w=20,1, 2,3, 4,5, 6, c©

can be found in Table P&.1c.

Nyquist Diagrams

From: U(1)
0.8 1 T

0.6 [~

04

02 B

Imaginary Axis
To: Y(1)
o
T
L

04 4

-06

0.8 1 1 1
-1 -0.8 -0.6 -0.4 -0.2 0 0.2 04

Real Axis

FIGURE P8.1
CONTINUED: (c) Polar plot for Ge(s)G(s) = wr25a01g-

w 0 1 2 3 4 5 6 0
IGH (jw)| 1 0.93 076 | 058 | 044 | 033 | 0.26 0
d(deg) | 180° | 140.6° | 105.3° | 76.5° | 54.2° | 36.9° | 23.2° | —90°

TABLE P8.1 CONTINUED: (c) Magnitudes and phase angles for G.(s)G(s) = %.
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Problems

(d) The transfer function is

_ 30(s+8)
Ge(s)G(s) = SGreLd

The polar plot is shown in Figure P8.1d. A summary of the magnitude
and phase angles for

w=1, 0.1, 0.8, 1.6, 3.2, 12.8, o0
can be found in Table P&.1d.

20
15F 8
10 1
57 4
2 o - |
£
-5+ i
-10+ i
-15+ i
-20 L L L i
-20 -15 -10 -5 0 5
Real Axis
FIGURE P8.1 .
CONTINUED: (d) Polar plot for G¢(s)G(s) = %.
w 0 0.1 0.8 1.6 3.2 12.8 00
|GH (jw)] 00 299.6 34.3 13.9 4.4 0.20 0
o(deg) —-90° —93.6° —117.4° —139.1° —163.8° —185.8° —180°
TABLE P8.1 CONTINUED: (d) Magnitudes and phase angles for G¢(s)G(s) = %.
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P8.2 (a) The Bode plot is shown in Figure P8.2a. A summary of the magnitude
and phase angles for

w=025 05,1, 2, 4, 8, 16

can be found in Table P&.2a.

Gain dB

-50 L L L
102 1077 100 107

Frequency (rad/sec)

0 T T T

50}

Phase deg
)
o
T

-150

-200 Lol Lo I
102 107 100 107
Frequency (rad/sec)

FIGURE P8.2

(a) Bode plot for Ge(s)G(s) = m.

w 0.25 0.5 1.0 2.0 4.0 8.0 16.0
IGH(jw)| dB | -1.03 | -3.27 | -80 | -153 | -251 | -364 | -482
d(deg) —34° | —59° | —90° | —121° | —146° | —162° | —171°

TABLE P8.2 (a) Magnitudes and phase angles for G.(s)G(s) = WM.

(b) The transfer function is

~ 1+0.5s

Gc(s)G(s) 5

S

The Bode plot is shown in Figure P8.2b. A summary of the magnitude
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and phase angles for
w=0.25 05, 1, 2, 4, 8, 16

can be found in Table P&.2b.

40 T —

20+ 1

Gain dB
o
T

-40 L L
107 100 107

Frequency (rad/sec)

-100 T

Phase deg

2180 L L
107 100 101

Frequency (rad/sec)

FIGURE P8.2
CONTINUED: (b) Bode plot for G¢(s)G(s) = 1+502.55_

w 0.25 0.5 1.0 2.0 4.0 8.0 16.0
|GH(jw)| dB | 24.1 12.3 0.98 9.02 | -171 | -23.9 | -30.2
d(deg) —173° | —166° | —153° | —135° | —117° | —104° | —97°

TABLE P8.2 CONTINUED: (b) Magnitudes and phase angles for G.(s)G(s) = #

(¢) The transfer function is

(s —10)

Gel$)G(8) = 7165+ 10) -

The Bode plot is shown in Figure P8.2c. A summary of the magnitude
and phase angles for w = 0.6, 1, 2, 3, 4, 5, 6, oo can be found in
Table P8.2c.
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Bode Diagrams

From: U(1)

Phase (deg); Magnitude (dB)

Frequency (rad/sec)

FIGURE P8.2
. _ s—10
CONTINUED: (c) Bode plot for Ge(s)G(s) = 535770
w 0.6 1 2 3 4 5 6 00
|GH(jw)| dB -0.23 -0.64 -2.38 -4.74 -7.22 -9.54 -11.61 —120
¢(deg) 156.1° 140.6° 105.6° 76.5° 54.2° 36.9° 23.2° -90°

TABLE P8.2 CONTINUED: (c) Magnitudes and phase angles for Gc(s)G(s) = 5075
(d) A summary of the magnitude and phase angles for
w=20.2, 0.8, 3.2, 6.4, 12.8, 25.6, 51.2

can be found in Table P8.2d. The Bode plot is shown in Figure P8.2d.

w 0.2 0.8 3.2 6.4 12.8 25.6 51.2
|GH(jw)| dB | 435 30.7 12.4 0.5 -13.8 -26.5 -38.8
é(deg) —97.1° | —117.4° | —163.8° | —182° | —185.8° | —184° | —182.2°

TABLE P8.2 CONTINUED: (d) Magnitudes and phase angles for G.(s)G(s) = %.
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50

Gain dB

50}

,100 L L I S S L L T N 1 1 I S
107 100 107 102

Frequency (rad/sec)

-50

Phase deg

2200 ; I i R R I i S
107 100 10! 102

Frequency (rad/sec)

FIGURE P8.2

CONTINUED: (d) Bode plot for G (s)G(s) = %

P8.3 (a) The bridged-T network we found has zeros at
s = tjwn,

and poles at

5= —% +wny/1/02 — 1.

The frequency response is shown in Figure P8.3 for () = 10.

(b) For the twin-T network, we evaluate the magnitude at
w=1.1lw,
or 10% from the center frequency (see Example 8.4 in Dorf & Bishop).
This yields

0.1
~ 2.1 — 1.1 =0.05 .
|G| X (3'9) X
Similarly, for the bridged-T network

0.1

The bridged-T network possesses a narrower band than the twin-T
network.
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20+ 4

Gain dB

40 L L
101 100 101

w/wn

100 T

Phase deg
19,
o o

&
S

-100 T i
10 100 101

w/wn

FIGURE P8.3
Bode plot for G(s) =

82+wi

P Gl e where ( =1/Q = 0.1.

P8.4 The transfer function is

Gls) = G.GyH(s) H

s
30000(2s + 1)
s(s +10)(s + 20)(s2 + 15s + 150)

A summary of the magnitude and phase angles can be found in Table P8.4.
The Bode plot is shown in Figure P8.4.

w 1 3 ) 8 10 15 24
|G(jw| dB 6.95 5.78 5.08 3.38 1.59 -5.01 -17.56
o(deg) —40.89° —52.39° —77.28° —118.41° —145.99° —203.52° —258.57°

-~ 30000(2s+1)
~ s(s+10)(s+20)(s2+15s+150) *

TABLE P8.4 Magnitudes and phase angles for GH(s)
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Bode Diagram

50
o orf
z
(]
S ot
c
Q
= -100 r
-150
0
—~ 90
(o))
3
< -180 |
o
£ 270 |
,360 L 1 1 4 1
-2 -1 0 1 2 3
10 10 10 10 10 10
Frequency (rad/sec)
FIGURE P8.4
Bode plot for GH(s) = 30000(2s+1)
P = S(5+10)(s+20)(s2+155+150) -

P8.5 The Bode plot is shown in Figure P8.5.

Bode Diagram

50

-50

Magnitude (dB)

-100

-90

Phase (deg)
}L
for]
o

-270

_3p0L I I L =
10 10 10 10 10
Frequency (rad/sec)

FIGURE P8.5
Bode plot for G(s)

— 10
~ (s/5+1)(s+1)(s/15+1)(s/75+1) "
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P8.6 (a) The transfer function is

| 3.98(1+ /1)
GH(s) = 571072

We have a zero at w = 1 and two poles at w = 10.0. The low frequency
approximation is K /s and at w = 1 we have

K
20 log <—> = 12dB .
w

Therefore,

K =398

at w = 1 (an approximation). The phase plot is shown in Figure P8.6a.

Phase deg

-180 2 1 [ 1 2
10° 10° 10 10 10

Phase deg

-100 1 0 1
10° 10 10 10

Frequency (rad/sec)

FIGURE P8.6 5 08(e /101
Phase plots for (a) G(s) = %. (b) G(s) = m.

(b) The transfer function is

(1+ s/10)(1 + 5/50) °

GH(s) =

The poles are located by noting that the slope is £20 dB/dec. The
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low frequency approximation is Ks, so
20log Kw = 0dB .
At w = 1 we determine that
K=1.

The phase plot is shown in Figure P8.6b.
P8.7 The loop transfer function is

K,
M= G

(a) Set K, = 2m. The Bode plot is shown in Figure P8.7a.

[2a]
©
£
©
(U]
- 0 1 1 1 1 1 T 1 1 1 1 1 T
107! 100 107
Frequency (rad/sec)
-80
-100
e
- -120
2
2 -140
o
-160
-180 i i
107 100 107
Frequency (rad/sec)
FIGURE P8.7

(a) Bode plot for L(s) = % where Ky = 27.

(b) The logarithmic magnitude versus the phase angle is shown in Fig-
ure P8.7b.
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40
30 .
20+ 8
o
hel
c 10r 7
©
U]
0, -
-10+ .
-20 i i i i i i i
-170 -160 -150 -140 -130 -120 -110 -100 -90
Phase deg
FIGURE P8.7

CONTINUED: (b) Log-magnitude-phase curve for L(jw).

P8.8 The transfer function is

K

T(s) = ——~
&) =i r

(a) When P.O. = 10%, we determine that ¢ = 0.59 by solving
0.10 = e~ ™¢/V1=¢*
So, 2¢w,, = 7 implies that w, = 5.93, hence K = w2 = 35.12. Also,
My, = (2¢/1 —¢2)7 1 =1.05 .
(b) For second-order systems we have

Wy = wpy/1 —2¢%2 = 0.55w, = 3.27

when ¢ = 0.59 and w,, = 5.93.

(c) We estimate wp to be
wp ~ (—1.19¢ + 1.85)w,, = 1.14w,, = 6.8 rad/s .

P8.9 The log-magnitude phase curves are shown in Figure P8.9.
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(b)

Gain dB
Gain dB

-45 i i i -30 i i i
-200  -150 -100 -50 0 -180  -160  -140 -120 -100

Phase deg Phase deg

FIGURE P8.9
Log-magnitude-phase curve for (a) Ge(s)G(s)

1+0.5s
s2

= arosaaTey and (b) Ge(s)G(s) =

P8.10 The governing equations of motion are

F(s) = Ky¢ls(s) and If(s)= Rfvii(zls .
Without loss of generality we can let Ky = 1.0. Also, we have
F(s) = (Ms* +bs + K)Y(s) .
Therefore, the transfer function is
GH(s) = (Ry + Lfs)fyj\?:sf2 Tbs+K) (s+ 0.5)?gj{+ 25 +4)

This is a type 0 system, therefore K, = 25K.

(a) If we allow a 1% error , we have egs = |R|/(1 + K},) = 0.01|R|. Thus
K, = 25K =99. Select

K=41.

(b) The Bode plot is shown in Figure P8.10a.
(¢) The log-magnitude phase curve is shown in Figure P8.10b.
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FIGURE P8.10

(a) Bode plOt for GH(S) = W
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FIGURE P8.10

CONTINUED: (b) Log-magnitude-phase curve for GH(s) = W

(d) The closed-loop transfer function Bode plot is shown in Figure P8.10c.
We determine from the plot that M, = 1.6,w, = 4.4 and wp = 6.8.
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FIGURE P8.10
CONTINUED: (c) Bode plot for closed-loop T'(s) = Y(s)/R(s).

P8.11 The Bode plot is shown in Figure P8.11.
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FIGURE P8.11

0.164(540.2)(—s+0.32
Bode plot for G(s) = 82(8(_?8'_25))((5_?009) ).
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P8.12 The three transfer functions are

1

Gi(s) =10  Ga(s) = S/06+1D)

Gs(s) =3s .

(a) When G3(s) is out of the loop, the characteristic equation is

10
1 =1+——-=0
FG(s) =14 e
or 524 0.6s + 6 = 0. Thus, ¢ = 0.6/(2/6) = 0.12.

(b) With Gs(s), the characteristic equation is

6 1.85

=1
1 —|—G1G2(S) +G2G3(3) + S(S+06) t 3(3—|—06)

=0,
or

§2 4245 +6=0.
Thus, ¢ = 2.4/(2v/6) = 0.49.

P8.13 By inspection of the frequency response, we determine

K
~ 5(s/100 + 1)(s/1000 + 1)2
For small w, we have 20log K /w = 40 dB at w = 10. So, K = 1000.
P8.14 The data we have are R; = Ry = 100012, ¢; = 10~7 farad and ¢y = 107°

farad. The governing equations are

Vas) o
Vi(s)  Ri+ C%s ’

L(s) = Gc(s)G(s)H(s)

and
Vo(s) KRy
Va(s) Ry + CL2S '

So
Vo(s) KRyCss 10%s

Vl(S) (RlCls + 1)(R2028 + 1) (8 + 107)(8 + 1000) '
(a) The Bode plot is shown in Figure P8.14.
(b) The mid-band gain is = 40 dB.
(c) The -3 dB points are (rad/sec): Wiy ~ 7 and  wpign ~ 1.5 x 107 .

This material is protected by Copyright and written permission should be obtained from the publisher prior to any prohibited reproduction, storage in a
retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording, or likewise.
For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.



www.TagheDanesh.ir www.TagheDanesh.com

Problems 387
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FIGURE P8.14

9
Bode plot for G(s) = MW-

P8.15 The data are plotted in Figure P8.15, denoted by an asterisk (*).
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FIGURE P8.15

Bode plot for G(s) = m; tabular data is indicated by an asterick (*).

The low frequency slope is -20 dB/dec and the initial low frequency ¢ is
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—90°, so we have an integrator of the form K/s. The initial phase is —90°
and the final phase —270°, so we have a minimum phase G(s). Now, |G|
is 0.97 at w = 8 and w = 10 indicating two complex poles. We postulate
a transfer function of the form

K
G(s) = 2(3 .
s(&+ %2 41)
The phase angle ¢ = —180° at w = w,. Then, from Figure 8.10 in Dorf &
Bishop, we determine that w, = 12.7. At w = 8§, = 0.63 and ¢, due to

the complex poles is —30° (subtract —90° due to the integrator). Again,
from Figure 8.10 in Dorf & Bishop, we estimate ¢ = 0.25. To determine
K, note that when - - < 0.1, the effect of the complex poles on magnitude
is negligible, so at w =1 we have

K

5

G(s) = 5.02 B 809.7
N S - 2 .
s (g + 9 +1) (7 +6.355+161.3)

[

G| = 5.02

So K = 5.02. Therefore,

P8.16 (a) The unit step input response is shown in Figure P8.16. The closed-

Step Response
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0.5

Amplitude

041
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0.2

0.11

0 I I I I I I I I I
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Time (sec)

FIGURE P8.16

Unit step input response for T'(s) = 53.5

s2+14.1s+53.5"
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loop transfer function is

(b) The system bandwidth is wp = 4.95 rad/sec.
P8.17 The transfer function is

B 4(0.5s + 1)
Gel8)G() = s T (s2/6d + 5/20 7 1) °

(a) The Bode plot is shown in Figure P8.17.
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FIGURE P8.17

4(0.5541
Bode plot for Gis(s)G(s) = s(28+1)((327§4—1:-.)9/20+1)'

(b) When the magnitude is 0 dB, we have
w1 = 1.6 rad/sec
and when ¢ = —180°, we have
we = 7.7 rad/sec .

P8.18 The transfer function is

L 12(s+05) 02(2s+1)
GC(S)G(S) - (8+3)(3+10) B (3/3+1)(S/10+1) '
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The Bode plot is shown in Figure P8.18. Near 0 dB, the frequency is
w = 5.4 rad/sec.

o
©
£
©
U]
107 100 101 102
Frequency (rad/sec)
jo)]
CD
©
&
E -100 - : B : : L : . : .
o
-150F : 1
200 L M R N 6 A W B
107 100 10 102
Frequency (rad/sec)
FIGURE P8.18 ( )
_ 12(s+0.5
Bode plot for Ge(s)G(s) = 7135130

P8.19 Examining the frequency response, we postulate a second-order transfer
function

0(s) w?

n

I(s) 82+ 2(wys+w?

From the data we see that ¢ = —90° at w = 2. Using Figure 8.10 in Dorf
& Bishop, we determine that w,, = w = 2. We also estimate ¢ = 0.4 from
Figure 8.10. Thus,

0(s) 4
I(s) 824+ 1.6s+4"

P8.20 The transfer function is

781(s + 10)
Gel)G) = 5 o9 v asa -
The Bode plot is shown in Figure P8.20. The maximum value of 20log, |G.G| =
31.85 dB occurs at w = 21.08 rad/sec and the corresponding phase is
¢ = —20.5°.
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Bode Diagrams

From: U(1)
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FIGURE P8.20
781(s+10
Bode pIOt for GC(S)G(S) = m

P8.21 The Bode plot is shown in Figure P8.21. The gain is 24 dB when ¢ =
—180°
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FIGURE P8.21

_ 2
Bode plot for G¢(s)G(s) = %-
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P8.22 The transfer function is

~10000(s + 1)(s + 80)
Gs) = S5+ 300) (s + 9000)

P8.23 The transfer function is

Gls) = 100(s + 20)(s + 8000)

(s +1)(s+80)(s +500)

The system is type 0 and the steady-state error to a unit step input is

= 0.0025

€ss =

1+ K,
since
K, = llir(l] G(s) =400 .
P8.24 (a) From the Bode plot we see that
20log g Mp, = 12

or My, = 3.981. For a second-order system we know that

My, = (2¢/1—¢2)7 L.

Solving for ¢ (with M, = 3.981) yields ¢ = 0.12. Also, from the Bode
plot,

wy = 0.9rad/sec .

So,

Wy
V1—2C2

Therefore, the second-order approximate transfer function is

=091.

Wnp =

w2 0.83

n —

T 2+ 20wps + w2 24 0.225+0.83

T(s)

(b) The predicted overshoot and settling time are P.O. = 68% and T =
37 sec.

P8.25 The transfer function is

~100(s + 10)
G) = 25+ 100) -
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P8.26 The transfer function is

- V;)(S) - 1+R1/R2
) =95 ~ T3 Rros

Substituting R = 10kQ), C' = 1uF', Ry = 9k€), and Ry = 1k yields

10

T(s) = —— .
(8) = 10018

The frequency response is shown in Figure P8.26.

Bode Diagrams
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FIGURE P8.26 /
_ 1+R1/Ro
Bode p|0t for T(S) = 1F¥RCs

P8.27 The frequency response is shown in Figure P8.27.

K 0.75 1 10
L(jw)ljo_g» dB | 352 | 12.04 | 26.02
wp, rad/s 8.3 14.0 334
we, Tad/s 3.5 8.7 22.9

TABLE P8.27 System performance as K varies.
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Bode Diagram
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FIGURE P8.27
Bode plot for K =1
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Advanced Problems

APS8.1 The spring-mass-damper system is described by
mi+ b +kr=p.
Taking the Laplace transform (with zero initial conditions) yields

X(s) 1

P(s)  ms2+bs+k’

From Figure AP8.1(b) in Dorf & Bishop, we determine that

X (50) 1
201 =20log |—| = —26dB .
Oog‘Pum‘ Oog‘k