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Preface

Preface to second edition

The original first edition intentionally avoided the topic of eddy-resolving, computer
simulation. The crucial role of numerics in turbulence simulation is why we shied away
from the topic. One cannot properly introduce direct numerical simulation or large eddy
simulation without discussing discretization schemes.

However, large eddy simulation and detached eddy simulation are now increasingly
seen as partners to Reynolds averaged modeling. This revised second edition contains a
new Part IV on direct numerical simulation, large eddy simulation, and detached eddy
simulation. In keeping with our original perspective, it is not encyclopedic. We address
some of the key issues, with sufficient technical content for the reader to acquire concrete
understanding. For example, dissipative and dispersive errors are defined in order to
understand why central schemes are preferred. The notion of energy-conserving schemes
is reviewed. Our discussion of filtering is brief compared to the development of large
eddy simulation in other books. Given our concise treatment, we chose instead to focus
on the nature of subgrid models. Although the material on simulation was appended at
the end of the text as Part IV, it fits just as well before Part II.

Transition modeling is currently seen as a critical complement to turbulence modeling.
The original text described the manner in which turbulence models switch from laminar
to turbulent solutions, but that is not transition modeling. The research community has
moved in the direction of adding either an intermittency equation or an equation for
fluctuations in laminar regions. This revised edition discusses these approaches.

Other, smaller, revisions have been made elsewhere in the text.

Ames, Iowa, 2010

Preface to first edition

This book evolved out of lecture notes for a course taught in the Mechanical Engineering
department at Stanford University. The students were at M.S. and Ph.D. level. The course
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served as an introduction to turbulence and to turbulence modeling. Its scope was single-
point statistical theory, phenomenology, and Reynolds averaged closure. In preparing the
present book the purview was extended to include two-point, homogeneous turbulence
theory. This has been done to provide sufficient breadth for a complete introductory
course on turbulence.

Further topics in modeling also have been added to the scope of the original notes;
these include both practical aspects, and more advanced mathematical analyses of models.
The advanced material was placed into a separate chapter so that it can be circumvented
if desired. Similarly, two-point, homogeneous turbulence theory is contained in Part III
and could be avoided in an M.S. level engineering course, for instance.

No attempt has been made at an encyclopedic survey of turbulence closure models.
The particular models discussed are those that today seem to have proved effective in
computational fluid dynamics applications. Certainly, there are others that could be cited,
and many more in the making. By reviewing the motives and methods of those selected,
we hope to have laid a groundwork for the reader to understand these others. A number
of examples of Reynolds averaged computation are included.

It is inevitable in a book of the present nature that authors will put their own slant
on the contents. The large number of papers on closure schemes and their applications
demands that we exercise judgement. To boil them down to a text requires that boundaries
on the scope be set and adhered to. Our ambition has been to expound the subject, not
to survey the literature. Many researchers will be disappointed that their work has not
been included. We hope they will understand our desire to make the subject accessible
to students, and to make it attractive to new researchers.

An attempt has been made to allow a lecturer to use this book as a guideline, while
putting his or her personal slant on the material. While single-point modeling is decidedly
the main theme, it occupies less than half of the pages. Considerable scope exists to choose
where emphasis is placed.

Motivation

It is unquestionably the case that closure models for turbulence transport are finding
an increasing number of applications, in increasingly complex flows. Computerized fluid
dynamical analysis is becoming an integral part of the design process in a growing number
of industries: increasing computer speeds are fueling that growth. For instance, computer
analysis has reduced the development costs in the aerospace industry by decreasing the
number of wind tunnel tests needed in the conceptual and design phases.

As the utility of turbulence models for computational fluid dynamics (CFD) has
increased, more sophisticated models have been needed to simulate the range of phenom-
ena that arise. Increasingly complex closure schemes raise a need for computationalists to
understand the origins of the models. Their mathematical properties and predictive accu-
racy must be assessed to determine whether a particular model is suited to computing
given flow phenomena. Experimenters are being called on increasingly to provide data
for testing turbulence models and CFD codes. A text that provides a solid background
for those working in the field seems timely.

The problems that arise in turbulence closure modeling are as fundamental as those in
any area of fluid dynamics. A grounding is needed in physical concepts and mathematical
techniques. A student, first confronted with the literature on turbulence modeling, is bound
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to be baffled by equations seemingly pulled from thin air; to wonder whether constants are
derived from principles, or obtained from data; to question what is fundamental and what
is peculiar to a given model. We learned this subject by ferreting around the literature,
pondering just such questions. Some of that experience motivated this book.

Epitome

The prerequisite for this text is a basic knowledge of fluid mechanics, including viscous
flow. The book is divided into three major parts.

Part I provides background on turbulence phenomenology, Reynolds averaged
equations, and mathematical methods. The focus is on material pertinent to single-point,
statistical analysis, but a chapter on eddy structures is also included.

Part II is on turbulence modeling. It starts with the basics of engineering closure
modeling, then proceeds to increasingly advanced topics. The scope ranges from inte-
grated equations to second-moment transport. The nature of this subject is such that even
the most advanced topics are not rarefied; they should pique the interest of the applied
mathematician, but should also make the R&D engineer ponder the potential impact of
this material on her or his work.

Part III introduces Fourier spectral representations for homogeneous turbulence the-
ory. It covers energy transfer in spectral space and the formalities of the energy cascade.
Finally rapid distortion theory is described in the last section. Part III is intended to round
out the scope of a basic turbulence course. It does not address the intricacies of two-point
closure, or include advanced topics.

A first course on turbulence for engineering students might cover Part I, excluding
the section on tensor representations, most of Part II, excluding Chapter 8, and a brief
mention of selected material from Part III. A first course for more mathematical students
might place greater emphasis on the latter part of Chapter 2 in Part I, cover a limited
portion of Part II – emphasizing Chapter 7 and some of Chapter 8 – and include most
of Part III. Advanced material is intended for prospective researchers.

Acknowledgements

Finally, we would like to thank those who have provided encouragement for us to write
this book. Doubts over whether to write it at all were dispelled by Cinian Zheng-Durbin;
she was a source of support throughout the endeavor.
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FUNDAMENTALS OF
TURBULENCE





1

Introduction

Where under this beautiful chaos can there lie a simple numerical structure?
– Jacob Bronowski

Turbulence is a ubiquitous phenomenon in the dynamics of fluid flow. For decades,
comprehending and modeling turbulent fluid motion has stimulated the creativity of
scientists, engineers, and applied mathematicians. Often the aim is to develop meth-
ods to predict the flow fields of practical devices. To that end, analytical models are
devised that can be solved in computational fluid dynamics codes. At the heart of this
endeavor is a broad body of research, spanning a range from experimental measurement
to mathematical analysis. The intent of this text is to introduce some of the basic concepts
and theories that have proved productive in research on turbulent flow.

Advances in computer speed are leading to an increase in the number of applications
of turbulent flow prediction. Computerized fluid flow analysis is becoming an integral part
of the design process in many industries. As the use of turbulence models in computa-
tional fluid dynamics increases, more sophisticated models will be needed to simulate the
range of phenomena that arise. The increasing complexity of the applications will require
creative research in engineering turbulence modeling. We have endeavored in writing
this book both to provide an introduction to the subject of turbulence closure modeling,
and to bring the reader up to the state of the art in this field. The scope of this book is
certainly not restricted to closure modeling, but the bias is decidedly in that direction.

To flesh out the subject, the spectral theory of homogeneous turbulence is reviewed
in Part III and eddy simulation is the topic of Part IV. In this way an endeavor has
been made to provide a complete course on turbulent flow. We start with a perspective
on the problem of turbulence that is pertinent to this text. Readers not very familiar

Statistical Theory and Modeling for Turbulent Flows, Second Edition P. A. Durbin and B. A. Pettersson Reif
 2011 John Wiley & Sons, Ltd
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with the subject might find some of the terminology unfamiliar; it will be explicated in
due course.

1.1 The turbulence problem

The turbulence problem is an age-old topic of discussion among fluid dynamicists. It
is not a problem of physical law; it is a problem of description. Turbulence is a state
of fluid motion, governed by known dynamical laws – the Navier–Stokes equations in
cases of interest here. In principle, turbulence is simply a solution to those equations.
The turbulent state of motion is defined by the complexity of such hypothetical solutions.
The challenge of description lies in the complexity: How can this intriguing behavior of
fluid motion be represented in a manner suited to the needs of science and engineering?

Turbulent motion is fascinating to watch: it is made visible by smoke billows in
the atmosphere, by surface deformations in the wakes of boats, and by many laboratory
techniques involving smoke, bubbles, dyes, etc. Computer simulation and digital image
processing show intricate details of the flow. But engineers need numbers as well as
pictures, and scientists need equations as well as impressions. How can the complexity
be fathomed? That is the turbulence problem.

Two characteristic features of turbulent motion are its ability to stir a fluid and its
ability to dissipate kinetic energy. The former mixes heat or material introduced into the
flow. Without turbulence, these substances would be carried along streamlines of the flow
and slowly diffuse by molecular transport; with turbulence they rapidly disperse across
the flow. Energy dissipation by turbulent eddies increases resistance to flow through pipes
and it increases the drag on objects in the flow. Turbulent motion is highly dissipative
because it contains small eddies that have large velocity gradients, upon which viscosity
acts. In fact, another characteristic of turbulence is its continuous range of scales. The
largest size eddies carry the greatest kinetic energy. They spawn smaller eddies via
nonlinear processes. The smaller eddies spawn smaller eddies, and so on in a cascade
of energy to smaller and smaller scales. The smallest eddies are dissipated by viscosity.
The grinding down to smaller and smaller scales is referred to as the energy cascade. It
is a central concept in our understanding of stirring and dissipation in turbulent flow.

The energy that cascades is first produced from orderly, mean motion. Small pertur-
bations extract energy from the mean flow and produce irregular, turbulent fluctuations.
These are able to maintain themselves, and to propagate by further extraction of energy.
This is referred to as production and transport of turbulence. A detailed understand-
ing of such phenomena does not exist. Certainly these phenomena are highly complex
and serve to emphasize that the true problem of turbulence is one of analyzing an
intricate phenomenon.

The term “eddy” may have invoked an image of swirling motion round a vortex. In
some cases that may be a suitable mental picture. However, the term is usually meant to
be more ambiguous. Velocity contours in a plane mixing layer display both large- and
small-scale irregularities. Figure 1.1 illustrates an organization into large-scale features
with smaller-scale random motion superimposed. The picture consists of contours of a
passive scalar introduced into a mixing layer. Very often the image behind the term
“eddy” is this sort of perspective on scales of motion. Instead of vortical whorls, eddies
are an impression of features seen in a contour plot. Large eddies are the large lumps
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Figure 1.1 Turbulent eddies in a plane mixing layer subjected to periodic forcing. From
Rogers and Moser (1994), reproduced with permission.

seen in the figure, and small eddies are the grainy background. Further examples of large
eddies are discussed in Chapter 5 of this book on coherent and vortical structures.

A simple method to produce turbulence is by placing a grid normal to the flow
in a wind tunnel. Figure 1.2 contains a smoke visualization of the turbulence down-
stream of the bars of a grid. The upper portion of the figure contains velocity contours
from a numerical simulation of grid turbulence. In both cases the impression is made
that, on average, the scale of the irregular velocity fluctuations increases with distance
downstream. In this sense the average size of eddies grows larger with distance from
the grid.

Analyses of turbulent flow inevitably invoke a statistical description. Individual eddies
occur randomly in space and time and consist of irregular regions of velocity or vor-
ticity. At the statistical level, turbulent phenomena become reproducible and subject to
systematic study. Statistics, like the averaged velocity, or its variance, are orderly and
develop regularly in space and time. They provide a basis for theoretical descriptions and
for a diversity of prediction methods. However, exact equations for the statistics do not
exist. The objective of research in this field has been to develop mathematical models
and physical concepts to stand in place of exact laws of motion. Statistical theory is a
way to fathom the complexity. Mathematical modeling is a way to predict flows. Hence
the title of this book: “Statistical theory and modeling for turbulent flows.”

The alternative to modeling would be to solve the three-dimensional, time-dependent
Navier–Stokes equations to obtain the chaotic flow field, and then to average the solutions
in order to obtain statistics. Such an approach is referred to as direct numerical simula-
tion (DNS). Direct numerical simulation is not practicable in most flows of engineering
interest. Engineering models are meant to bypass the chaotic details and to predict statis-
tics of turbulent flows directly. A great demand is placed on these engineering closure
models: they must predict the averaged properties of the flow without requiring access to
the random field; they must do so in complex geometries for which detailed experimental
data do not exist; they must be tractable numerically; and they must not require excessive
computing time. These challenges make statistical turbulence modeling an exciting field.

The goal of turbulence theories and models is to describe turbulent motion by analyt-
ical methods. The particular methods that have been adopted depend on the objectives:
whether it is to understand how chaotic motion follows from the governing equations, to
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U
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Figure 1.2 (a) Grid turbulence schematic, showing contours of streamwise velocity
from a numerical simulation. (b) Turbulence produced by flow through a grid. The bars
of the grid would be to the left of the picture, and flow is from left to right. Visualization
by smoke wire of laboratory flow. Courtesy of T. Corke and H. Nagib.

construct phenomenological analogs of turbulent motion, to deduce statistical properties
of the random motion, or to develop semi-empirical calculational tools. The latter two
are the subject of this book.

The first step in statistical theory is to greatly compress the information content
from that of a random field of eddies to that of a field of statistics. In particular, the
turbulent velocity consists of a three-component field (u1, u2, u3) as a function of four
independent variables (x1, x2, x3, t). This is a rapidly varying, irregular flow field, such
as might be seen embedded in the billows of a smoke stack, the eddying motion of the
jet in Figure 1.3, or the more explosive example of Figure 1.4. In virtually all cases of
engineering interest, this is more information than could be used, even if complete data
were available. It must be reduced to a few useful numbers, or functions, by averaging.
The picture to the right of Figure 1.4 has been blurred to suggest the reduced information
in an averaged representation. The small-scale structure is smoothed by averaging. A true
average in this case would require repeating the explosion many times and summing the
images; even the largest eddies would be lost to smoothing. A stationary flow can be



THE TURBULENCE PROBLEM 7

Figure 1.3 Instantaneous and time-averaged views of a jet in cross flow. The jet exits
from the wall at left into a stream flowing from bottom to top (Su and Mungal 1999).

Figure 1.4 Large- and small-scale structure in a plume. The picture at the right is
blurred to suggest the effect of ensemble averaging.

averaged in time, as illustrated by the time-lapse photograph on the right of Figure 1.3.
Again, all semblance of eddying motion is lost in the averaged view.

An example of the greatly simplified representation invoked by statistical theory is
provided by grid turbulence. When air flows through a grid of bars, the fluid velocity
produced is a complex, essentially random, three-component, three-dimensional, time-
dependent field that defies analytical description (Figure 1.2). This velocity field might
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be described statistically by its variance, q2, as a function of distance downwind of the
grid; q2 is the average value of u2

1 + u2
2 + u2

3 over planes perpendicular to the flow.
This statistic provides a smooth function that characterizes the complex field. In fact,
the dependence of q2 on distance downstream of the grid is usually represented to good
approximation by a power law: q2 ∝ x−n where n is about 1. The average length scale
of the eddies grows like L ∝ x1−n/2. This provides a simple formula that agrees with the
impression created by Figure 1.2 of eddy size increasing with x.

The catch to the simplification that a statistical description seems to offer is that it is
only a simplification if the statistics somehow can be obtained without having first to solve
for the whole, complex velocity field and then compute averages. The task is to predict
the smooth jet at the right of Figure 1.3 without access to the eddying motion at the left.
Unfortunately, there are no exact governing equations for the averaged flow, and empir-
ical modeling becomes necessary. One might imagine that an equation for the average
velocity could be obtained by averaging the equation for the instantaneous velocity. That
would only be the case if the equations were linear, which the Navier–Stokes equations
are not.

The role of nonlinearity can be explained quite simply. Consider a random process
generated by flipping a coin, assigning the value 1 to heads and 0 to tails. Denote this value
by ξ . The average value of ξ is 1/2. Let a velocity, u, be related to ξ by the linear equation

u = ξ − 1. (1.1.1)

The average of u is the average of ξ − 1. Since ξ − 1 has probability 1/2 of
being 0 and probability 1/2 of being −1, the average of u is −1/2. Denote this
average by u. The equation for u can be obtained by averaging the exact equation:
u = ξ − 1 = 1/2 − 1 = −1/2. But if u satisfies a nonlinear equation

u2 + 2u = ξ − 1, (1.1.2)

then the averaged equation is

u2 + 2u = ξ − 1 = −1/2. (1.1.3)

This is not a closed∗ equation for u because it contains u2: squaring, then averaging,
is not equal to averaging, then squaring, that is, u2 �= u2. In this example, averaging
produces a single equation with two dependent variables, u and u2. The example is con-
trived so that it first can be solved, then averaged: its solution is u = √

ξ − 1; the average
is then u = 1

2 (
√

1 − 1) + 1
2 (

√
0 − 1) = −1/2. Similarly u2 = 1/2, but this could not be

known without first solving the random equation, then computing the average. In the case
of the Navier–Stokes equations, one cannot resort to solving, then averaging. As in this
simple illustration, the average of the Navier–Stokes equations are equations for u that
contain u2. Unclosed equations are inescapable.

∗ The terms “closure problem” and “closure model” are ubiquitous in the literature. Mathematically, this
means that there are more unknowns than equations. A closure model simply provides extra equations to
complete the unclosed set.
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1.2 Closure modeling

Statistical theories of turbulence attempt to obtain statistical information either by
systematic approximations to the averaged, unclosed governing equations, or by intuition
and analogy. Usually, the latter has been the more successful: the Kolmogoroff theory
of the inertial subrange and the log law for boundary layers are famous examples
of intuition.

Engineering closure models are in this same vein of invoking systematic analysis in
combination with intuition and analogy to close the equations. For example, Prandtl drew
an analogy between the turbulent transport of averaged momentum by turbulent eddies
and the kinetic theory of gases when he proposed his “mixing length” model. Thereby
he obtained a useful model for predicting turbulent boundary layers.

The allusion to “engineering flows” implies that the flow arises in a configuration
that has technological application. Interest might be in the pressure drop in flow through
a bundle of heat-exchanger tubes or across a channel lined with ribs. The turbulence
dissipates energy and increases the pressure drop. Alternatively, the concern might be
with heat transfer to a cooling jet. The turbulence in the jet scours an impingement surface,
enhancing the cooling. Much of the physics in these flows is retained in the averaged
Navier–Stokes equations. The general features of the flow against the surface, or the
separated flow behind the tubes, will be produced by these equations if the dissipative
and transport effects of the turbulence are represented by a model. The model must also
close the set of equations – the number of unknowns must equal the number of equations.

In order to obtain closed equations, the extra dependent variables that are introduced
by averaging, such as u2 in the above example, must be related to the primary variables,
such as u. For instance, if u2 in Eq. (1.1.3) were modeled by u2 = au2, the equation
would be au2 + 2u = −1/2, where a is an “empirical” constant. In this case a = 2 gives
the correct answer u = −1/2.

Predicting an averaged flow field, such as that suggested by the time-averaged view
in Figure 1.3, is not so easy. Conceptually, the averaged field is strongly affected by
the irregular motion, which is no longer present in the blurred view. The influence of
this irregular, turbulent motion must be represented if the mean flow is to be accurately
predicted. The representation must be constructed in a manner that permits a wide range
of applications. In unsteady flows, like Figure 1.4, it is unreasonable to repeat the exper-
iment over and over to obtain statistics; nevertheless, there is no conceptual difficulty in
developing a statistical prediction method. The subject of turbulence modeling is certainly
ambitious in its goals.

Models for such general purposes are usually phrased in terms of differential
equations. For instance, a widely used model for computing engineering flows, the k–ε

model, consists of differential transport equations for the turbulent energy, k, and its rate
of dissipation, ε. From their solution, an eddy viscosity is created for the purpose of
predicting the mean flow. Other models represent turbulent influences by a stress tensor,
the Reynolds stress. Transport models, or algebraic formulas, are developed for these
stresses. The perspective here is analogous to constitutive modeling of material stresses,
although there is a difference. Macroscopic material stresses are caused by molecular
motion and by molecular interactions. Reynolds stresses are not a material property:
they are a property of fluid motion; they are an averaged representation of random
convection. When modeling Reynolds stresses, the concern is to represent properties of
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the flow field, not properties of a material. For that reason, the analogy to constitutive
modeling should be tempered by some understanding of the aspects of turbulent motion
that models are meant to represent. The various topics covered in this book are intended
to provide a tempered introduction to turbulence modeling.

In practical situations, closure relations are not exact or derivable. They invoke
empiricism. Consequently, any closure model has a limited range of use, implicitly cir-
cumscribed by its empirical content. In the course of time, a number of very useful
semi-empirical models has been developed to calculate engineering flows. However, this
continues to be an active and productive area of research. As computing power increases,
more elaborate and more flexible models become feasible. A variety of models, their moti-
vations, range of applicability, and some of their properties, are discussed in this book;
but this is not meant to be a comprehensive survey of models. Many variations on a
few basic types have been explored in the literature. Often the variation is simply to add
parametric dependences to empirical coefficients. Such variants affect the predictions of
the models, but they do not alter their basic analytical form. The theme in this book is
the essence of the models and their mathematical properties.

1.3 Categories of turbulent flow

Broad categories can be delineated for the purpose of organizing an exposition on
turbulent flow. The categorization presented in this section is suited to the aims of this
book on theory and modeling. An experimenter, for instance, might survey the range of
possibilities differently.

The broadest distinction is between homogeneous and non-homogeneous flows.
The definition of spatial homogeneity is that statistics are not functions of position.
Homogeneity in time is called stationarity. The statistics of homogeneous turbulence
are unaffected by an arbitrary positioning of the origin of the coordinate system;
ideal homogeneity implies an unbounded flow. In a laboratory, only approximate
homogeneity can be established. For instance, the smoke puffs in Figure 1.2 are
statistically homogeneous in the y direction: their average size is independent of y.
Their size increases with x, so x is not a direction of homogeneity.

Idealized flows are used to formulate theories and models. The archetypal idealization
is homogeneous , isotropic turbulence. Its high degree of statistical symmetry facilitates
analysis. Isotropy means there is no directional preference. If one were to imagine run-
ning a grid every which way through a big tank of water, the resulting turbulence would
have no directional preference, much as illustrated by Figure 1.5. This figure shows the
instantaneous vorticity field in a box of homogeneous isotropic turbulence, simulated on
a computer. At any point and at any time, a velocity fluctuation in the x1 direction would
be as likely as a fluctuation in the x2, or any other, direction. Great mathematical simpli-
fications follow. The basic concepts of homogeneous, isotropic turbulence are covered in
this book. A vast amount of theoretical research has focused on this idealized state; we
will only scratch the surface. A number of relevant monographs exist (McComb 1990)
as well as the comprehensive survey by Monin and Yaglom (1975).

The next level of complexity is homogeneous , anisotropic turbulence. In this case, the
intensity of the velocity fluctuations is not the same in all directions. Strictly, it could be
either the velocity, the length scale, or both that have directional dependence – usually it
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Figure 1.5 Vorticity magnitude in a box of isotropic turbulence. The light regions are
high vorticity. Courtesy of J. Jiménez (Jimenez 1999).

Figure 1.6 Schematic suggesting eddies distorted by a uniform straining flow.

is both. Anisotropy can be produced by a mean rate of strain, as suggested by Figure 1.6.
Figure 1.6 shows schematically how a homogeneous rate of strain will distort turbulent
eddies. Eddies are stretched in the direction of positive rate of strain and compressed in
the direction of negative strain. In this illustration, it is best to think of the eddies as
vortices that are distorted by the mean flow. Their elongated shapes are symptomatic of
both velocity and length scale anisotropy.

To preserve homogeneity, the rate of strain must be uniform in space. In general,
homogeneity requires that the mean flow have a constant gradient; that is, the velocity
should be of the form Ui = Aijxj + Bi , where Aij and Bi are independent of position
(but are allowed to be functions of time).† The mean flow gradients impose rates of

† The convention of summation over repeated indices is used herein: Aijxj ≡∑3
j=1 Aijxj , or, in vector

notation, U = A · x + B.
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rotation and strain on the turbulence, but these distortions are independent of position,
so the turbulence remains homogeneous.

Throughout this book, the mean, or average, of a quantity will be denoted by a capital
letter and the fluctuation from this mean by a lower-case letter; the process of averaging
is signified by an overbar. The total random quantity is represented as the sum of its
average plus a fluctuation. This prescription is to write U + u for the velocity, with U

being the average and u the fluctuation. In a previous illustration, the velocity was ξ − 1,
with ξ given by coin toss; thus, U + u = ξ − 1. Averaging the right-hand side shows
that U = −1/2. Then u = ξ − 1 − U = ξ − 1/2. By definition, the fluctuation has zero
average: in the present notation, u = 0.

A way to categorize non-homogeneous turbulent flows is by their mean velocity. A
turbulent shear flow, such as a boundary layer or a jet, is so named because it has a
mean shear. In a separated flow, the mean streamlines separate from the surface. The
turbulence always has shear and the flow around eddies near to walls will commonly
include separation; so these names would be ambiguous unless they referred only to the
mean flow.

The simplest non-homogeneous flows are parallel or self-similar shear flows. The
term “parallel” means that the velocity is not a function of the coordinate parallel to its
direction. The flow in a pipe, well downstream of its entrance, is a parallel flow, U(r).
The mean flow is in the x direction and it is a function of the perpendicular direction, r .
All statistics are functions of r only. Self-similar flows are analogous to parallel flow, but
they are not strictly parallel. Self-similar flows include jets, wakes, and mixing layers. For
instance, the width, δ(x), of a mixing layer spreads with downstream distance. But if the
cross-stream coordinate, y, is normalized by δ, the velocity becomes parallel in the new
variable: U as a function of y/δ ≡ η is independent of x. Again, there is dependence on
only one coordinate, η; the dependence on downstream distance is parameterized by δ(x).
Parallel and self-similar shear flows are also categorized as “fully developed.” Figure 1.7
shows the transition of the flow in a jet from a laminar state, at the left, to the turbulent
state. Whether it is a laminar jet undergoing transition, or a turbulent flow evolving into
a jet, the upstream region contains a central core into which turbulence will penetrate as
the flow evolves downstream. A fully developed state is reached only after the turbulence
has permeated the jet.

Shear flows away from walls, or free-shear flows, often contain some suggestion
of large-scale eddying motion with more erratic small-scale motions superimposed; an
example is the turbulent wake illustrated by Figure 1.8. All of these scales of irregular
motion constitute the turbulence. The distribution of fluctuating velocity over the range

Figure 1.7 Transition from a laminar to a turbulent jet via computer simulation. The
regular pattern of disturbances at the left evolves into the disorderly pattern at the right.
Courtesy of B. J. Boersma.
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lower Reynolds number higher Reynolds number

Turbulent wake behind a bullet, visualized by Schlireren photography (Corrsin and Kisler, 1954).
Flow is from left to right.

Figure 1.8 Schematic suggesting large- and small-scale structure of a free-shear layer
versus Reynolds number. The large scales are insensitive to Reynolds number; the small-
est scales become smaller as Re increases.

of scales is called the spectrum of the turbulence. Fully turbulent flow has a continuous
spectrum, ranging from the largest, most energetic scales, that cause the main indentations
in Figure 1.8, to the smallest eddies, nibbling at the edges. An extreme case is provided
by the dust cloud of an explosion in Figure 1.4. A wide range of scales can be seen in
the plume rising from the surface. The more recognizable large eddies have acquired the
name “coherent structures.”

Boundary layers, like free-shear flows, also contain a spectrum of eddying motion.
However, the large scales appear less coherent than in the free-shear layers. The larger
eddies in boundary layers are described as “horseshoe” or “hairpin” vortices (Figure 5.9,
page 99). In free-shear layers, large eddies might be “rolls” lying across the flow and
“rib” vortices, sloping in the streamwise direction (Figure 5.3, page 94). In all cases
a background of irregular motion is present, as in Figure 1.8. Despite endeavors to
identify recognizable eddies, the dominant feature of turbulent flow is its highly irregular,
chaotic nature.

A category of “complex flows” is invariably included in a discussion of turbulence.
This might mean relatively complex, including pressure-gradient effects on thin shear
layers, boundary layers subject to curvature or transverse strain, three-dimensional thin
shear layers, and the like. Alternatively, it might mean quite complex, and run the whole
gamut. From a theoretician’s standpoint, complex flows are those in which statistics
depend on more than one coordinate, and possibly on time. These include perturbations to
basic shear layers, and constitute the case of relatively complex turbulence. The category
quite complex flows includes real engineering flows: impinging jets, separated boundary
layers, flow around obstacles, and so on. For present purposes, it will suffice to lump quite
and relatively complex flows into one category of complex turbulent flows . The models
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discussed in Chapters 6 and 7 are intended for computing such flows. However, the
emphasis in this book is on describing the underlying principles and the processes of
model development, rather than on surveying applications. The basic forms of practical
models have been developed by reference to simple, canonical flows; fundamental data
are integrated into the model to create a robust prediction method for more complex appli-
cations. A wealth of computational studies can be found in the literature: many archival
journals contain examples of the use of turbulence models in engineering problems.

Exercises

Exercise 1.1. Origin of the closure problem. The closure problem arises in any nonlin-
ear system for which one attempts to derive an equation for the average value. Let ξ

correspond to the result of coin tossing, as in the text, and let

u3 + 3u2 + 3u = (u + 1)3 − 1 = 7ξ.

Show that, if u3 = u3 and u2 = u2 were correct, then the mean value of u would be
u = (9/2)1/3 − 1. By contrast, show that the correct value is u = 1/2. Explain why these
differ, and how this illustrates the “closure problem.”

Exercise 1.2. Eddies. Identify what you would consider to be large- and small-scale
eddies in the photographic portions of Figures 1.4 and 1.8.

Exercise 1.3. Turbulence in practice. Discuss practical situations where turbulent flows
might be unwanted or even an advantage. Why do you think golf balls have dimples?
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Mathematical and statistical
background

To understand God’s thoughts we must study statistics, for these are the measure
of his purpose

– Florence Nightingale

While the primary purpose of this chapter is to introduce the mathematical tools that
are used in single-point statistical analysis and modeling of turbulence, it also serves
to introduce some important concepts in turbulence theory. Examples from turbulence
theory are used to illustrate the particular mathematical and statistical material.

2.1 Dimensional analysis

One of the most important mathematical tools in turbulence theory and modeling is
dimensional analysis. The primary principles of dimensional analysis are simply that all
terms in an equation must have the same dimensions and that the arguments of functions
can only be non-dimensional parameters: the Reynolds number UL/ν is an example of a
non-dimensional parameter. This might seem trivial, but dimensional analysis, combined
with fluid dynamical and statistical insight, has produced one of the most useful results
in turbulence theory: the Kolmogoroff −5/3 law. The reasoning behind the −5/3 law is
an archetype for turbulence scale analysis.

The insight comes in choosing the relevant dimensional quantities. Kolmogoroff’s
insight originates in the idea of a turbulent energy cascade. This is a central conception
in the current understanding of turbulent flow. The notion of the turbulent energy cascade
pre-dates Kolmogoroff’s work (Kolmogoroff, 1941); the origin of the cascade as an
analytical theory is usually attributed to Richardson (1922).

Statistical Theory and Modeling for Turbulent Flows, Second Edition P. A. Durbin and B. A. Pettersson Reif
 2011 John Wiley & Sons, Ltd
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Consider a fully developed turbulent shear layer, such as illustrated by Figure 1.8.
The largest-scale eddies are on the order of the thickness, δ, of the layer; δ can be used
as a unit of length. The size of the smallest eddies is determined by viscosity, ν. If the
eddies are very small, they are quickly diffused by viscosity, so viscous action sets a
lower bound on eddy size. Another view is that the Reynolds number of the small eddies,
uη/ν, is small compared to that of the large eddies, uδ/ν, so small scales are the most
affected by viscous dissipation. For the time being, it will simply be supposed that there
is a length scale η associated with the small eddies and that η � δ.

The largest eddies are produced by the mean shear – which is why their length scale
is comparable to the thickness of the shear layer. Thus we have the situation that the
large scales are being generated by shear and the small scales are being dissipated by
viscosity. There must be a mechanism by which the energy produced at large scales is
transferred to small scales and then dissipated. Kolmogoroff reasoned that this requires
an intermediate range of scales across which the energy is transferred, without being
produced or dissipated. In equilibrium, the energy flux through this range must equal the
rate at which energy is dissipated at small scales. This intermediate range is called the
inertial subrange. The transfer of energy across this range is called the energy cascade.
Energy cascades from large scale to small scale, across the inertial range. The physical
mechanism of the energy cascade is somewhat nebulous. It may be a sort of instability
process, whereby larger-scale regions of shear develop smaller-scale irregularities; or it
might be nonlinear distortion and stretching of large-scale vorticity.

As already alluded to, the rate of transfer across the inertial range, from the large
scales to the small, must equal the rate of energy dissipation at small scale. Denote the
rate of dissipation per unit volume by ρε, where ρ is the density, and ε is the rate
of energy dissipation per unit mass. The latter has dimensions of �2/t3, which follows
because the kinetic energy per unit mass, k ≡ 1

2 (u2
1 + u2

2 + u2
3) has dimensions of �2/t2,

and its rate of change has another factor of t in the denominator. The rate ε plays a dual
role: it is the rate of energy dissipation, and it is the rate at which energy cascades across
the inertial range. These two are strictly equivalent only in equilibrium. In practice, an
assumption of local equilibrium in the inertial and dissipation ranges is usually invoked.
Even though the large scales of turbulence might depart from equilibrium, the small scales
are assumed to adapt almost instantaneously to them. The validity of this assumption is
sometimes challenged, but it has provided powerful guidance to theories and models
of turbulence.

Now the application of dimensional reasoning: we want to infer how energy is dis-
tributed within the inertial range as a function of eddy size, E(r). The inertial range is
an overlap between the large-scale, energetic range and the small-scale dissipative range.
It is shared by both. Large scales are not directly affected by molecular dissipation.
Because the inertial range is common to the large scales, it cannot depend on molecular
viscosity ν. The small scales are assumed to be of universal form, not depending on the
particulars of the large-scale flow geometry. Because the inertial range is common to the
small scales, it cannot depend on the flow width δ. All that remains is the rate of energy
cascade, ε.

Consider an eddy of characteristic size r lying in this intermediate range. Based on
the reasoning of the previous paragraph, on dimensional grounds its energy is of order
(εr)2/3. This is the essence of Kolmogoroff’s law: in the inertial subrange the energy of
the eddies increases with their size to the 2/3 power.
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Figure 2.1 Experimental spectra measured by Saddoughi and Veeravalli (1994) in the
boundary layer of the NASA Ames 80 × 100 foot wind tunnel. This enormous wind
tunnel gives a very high Reynolds number, so that the −5/3 law can be verified over
several decades. In this figure, κη � 10−3 is the energetic range and κη � 0.1 is the
dissipation range.

This 2/3 law becomes a −5/3 law in Fourier space; that is how it is more commonly
known. One motive for the transformation is to obtain the most obvious form in which to
verify Kolmogoroff’s theory by experimental measurements. The distribution of energy
across the scales of eddies in physical space is the inverse Fourier transform of the
spectral energy density in Fourier space. This is a loose definition of the energy spectral
density, E(κ). The energy spectral density is readily measured. It is illustrated by the
log–log plot in Figure 2.1.

Equating the inertial-range energy to the inverse transform of the inertial-range energy
spectrum (cf. Section 2.2.2.2):

(εr)2/3 ∝
∫

E(κ)[1 − cos(κr)] dκ. (2.1.1)

Assume that E(κ) ∝ ε2/3κn in (2.1.1). Then

r2/3 ∝
∫

κn[1 − cos(κr)] dκ = r−n−1
∫

(rκ)n[1 − cos(κr)] d(rκ)

= r−n−1
∫

xn[1 − cos(x)] dx. (2.1.2)

Here, κ has dimensions of 1/�, so the integrand of the second expression is non-
dimensional. The final integral is just some number, independent of r . Equating the
exponents on both sides of (2.1.2) gives n + 1 = −2/3 or n = −5/3. The more famous
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statement of Kolmogoroff’s result is the “−5/3 law”

E(κ) ∝ ε2/3κ−5/3. (2.1.3)

Note that E(κ) has dimensions (�2/t3)2/3�5/3 = �3/t2. Here, E(κ) is the energy density
per unit wavenumber (per unit mass), so E(κ) dκ has dimensions of velocity squared.
Because κ ∼ 1/�, large scales correspond to small κ and vice versa. Hence, the spectrum
in Figure 2.1 shows how the energy declines as the eddies grow smaller.

These ideas about scaling turbulent spectra expand to a general approach to con-
structing length and time-scales for turbulent motion. Such scaling is essential both to
turbulence modeling for engineering computation, and to more basic theories of fluid
dynamical turbulence.

2.1.1 Scales of turbulence

The notion of large and small scales, with an intervening inertial range, begs the question:
How are “large” and “small” defined? If the turbulent energy k is being dissipated at a
rate ε, then a time-scale for energy dissipation is T = k/ε. In order of magnitude this
is the time it would take to dissipate the existing energy. This time-scale is sometimes
referred to as the eddy lifetime, or integral time-scale. Since it is formed from the overall
energy and its rate of dissipation, T is a scale of the larger, more energetic eddies.

Formula (2.1.3) and Figure 2.1 show that the large scales make the biggest contribution
to k. The very small scales of motion have little energy, so it would not be appropriate to
use k to infer a time-scale for these eddies. They are diffused by viscosity, so it is more
appropriate to form a time-scale from ν and ε: Tη = √

ν/ε has the right dimensions.
The dual role that ε plays has already been commented on; here it is functioning as a
property of the small-scale eddies. This scaling applies to the dissipation subrange. The
time-scale Tη is often referred to as the “Kolmogoroff” time-scale and the small eddies to
which it applies are Kolmogoroff scale eddies. However, this is a bit confusing because
Kolmogoroff’s −5/3 law applies at scales large compared to the dissipation scales, so
here Tη will simply be called the dissipative time-scale.

The time-scales of the large and small eddies are in the ratio

T /Tη =
√

k2/εν. (2.1.4)

A turbulent Reynolds number can be defined as

RT ≡ k2/εν, (2.1.5)

so (2.1.4) becomes T /Tη = R
1/2
T . This can be written in a more familiar form,

RT = uL/ν, by noting that u = √
k is a velocity scale, and by defining the large eddy

length scale to be L = T
√

k = k3/2/ε (this length scale is sometimes denoted Lε).
The ratio Tη/T varies as R

−1/2
T : the time-scale of small eddies, relative to that of the

dissipative eddies, decreases with Reynolds number. At high Reynolds number the small
eddies die much more quickly than the large ones. This is the conclusion of dimensional
analysis, tempered by physical intuition. Figure 1.8 illustrates that the small scales become
smaller as RT increases, so the dimensional analysis is physically sensible.
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The same dimensional reasoning can be applied to length scales. The large scale is
L = k3/2/ε. The small scale that can be formed from ε and ν is

η = (ν3/ε)1/4. (2.1.6)

This is the dissipative length scale. In defining these scales it has been assumed that they
are disparate: that is, L/η 	 1, or R

3/4
T 	 1 is required.

The inertial subrange lies between the large, energetic scales and the small, dissipative
scales. As RT increases so does the separation between these scales and, hence, so does the
length of the inertial subrange. To see the −5/3 region of the energy spectrum clearly, the
Reynolds number must be quite high. Measurements at high Reynolds number were made
by Saddoughi and Veeravalli (1994) in a very large wind tunnel at NASA Ames; these are
the data shown in Figure 2.1. These data confirm Kolmogoroff’s law very nicely. In the
figure, the wave number κ is normalized by η, so that the dissipation range is where κη =
O(1). The energetic range is where κη = O(η/L). The present dimensional analysis
predicts that the lower end of the −5/3 range will decrease as R

−3/4
T (see Exercise 2.1).

In the experiments, the spatial spectrum E(κ) was not measured; this would require
measurements with two probes that have variable separation. In practice, a single, sta-
tionary probe was used and the frequency spectrum E(ω) of eddies convected past the
probe was measured. If an eddy of size r is convected by a velocity Uc, then it will pass
by in time t = O(r/Uc). Hence the r2/3 law becomes (Uct)

2/3. When this is Fourier-
transformed in t , the inertial-range spectrum (2.1.3) becomes E(ω) ∼ (ω/Uc)

−5/3. The
spectra in Figure 2.1 are frequency spectra that were plotted by equating κ to ω/Uc,
where Uc is the mean velocity at the position of the probe. This use of a convection
velocity to convert from temporal to spatial spectra is referred to as Taylor’s hypothesis .
It is an accurate approximation if the time required to pass the probe is short compared
to the eddy time-scale. For the large scales, this requires the turbulent intensity to be low,
by the following reasoning:

L/Uc � T ⇒ L/T Uc ∼
√

k/Uc � 1.

Turbulent intensity is usually defined as
√

2k/3/Uc.
For small scales, the probe resolution is usually a greater limit on accuracy than is

Taylor’s hypothesis. The latter only requires

η/Uc � Tη ⇒ η

TηUc
∼ (νε)1/4/Uc ∼ R

−1/4
T

√
k/Uc � 1.

The former requires the probe size to be of order η. These inequalities illustrate the use
of scale analysis to assess the instrumentation required to measure turbulent flow.

2.2 Statistical tools

2.2.1 Averages and probability density functions

Averages of a random variable have already been used, but it is instructive to look at the
process of averaging more formally. Consider a set of independent samples of a random
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variable {x1, x2, . . . , xN }. To be concrete, these could be the results of a set of coin tosses
with x = 1 for heads and x = 0 for tails. Their average is

xav = 1

N

N∑
i=1

xi. (2.2.1)

The mean x is defined formally as the limit as N → ∞ of the average. Unfortunately,
the average converges to the mean rather slowly, as 1/

√
N (see Section 2.2.2), so exper-

imental estimates of the mean could be inaccurate if N is not very large.
If the random process is statistically stationary , the above ensemble of samples can

be obtained by measuring x at various times, {x(t1), x(t2), . . . , x(tN )}. The ensemble
average can then be obtained by time averaging. Rather than adding up measurements,
the time average can be computed by integration

x = lim
t→∞

1

t

∫ t

0
x(t ′) dt ′. (2.2.2)

The caveat of statistical stationarity means that the statistics are independent of the time
origin; in other words, x(t) and x(t + t0) have the same statistical properties for any t0.
For instance, suppose one is measuring the turbulent velocity in a wind tunnel. If the
tunnel has been brought up to speed and that speed is maintained constant, then it does
not matter whether the mean is measured starting now and averaging for a minute, or if
the measurements start ten minutes from now and average for a minute: expectations are
that the averages will be the same to within experimental uncertainty. In other words,
x(t) = x(t + t0). Stationarity can be described as translational invariance in time of the
statistics. Time averaging is only equivalent to ensemble averaging if the random process
is statistically stationary. The failure to recognize this caveat is surprisingly common. One
instance where this mistake has been made is in the turbulent flow behind a bluff body.
A deterministic oscillation at the Strouhal shedding frequency is usually detectable in
the wake. This deterministic time dependence means that the flow is not stationary – the
statistics vary periodically with time at the oscillation frequency. Hence the statistical
averaging invoked by the Reynolds averaged Navier–Stokes equations is not synonymous
with time averaging. The statistical average can be measured by taking samples at a fixed
phase of the oscillation.

In the case of (2.2.2) the difference between a finite-time average and the mean
decreases like

√
T /t as t → ∞, where T is the integral time-scale of the turbulence

and t is the averaging time. The reasoning is analogous to (2.2.9) in Section 2.2.2: the
integral can be written as

x = 1

N

∑
i

xi where xi =
∫ iT

(i−1)T

x dt/T , i = 1, 2, 3, . . . , N

with N = t/T . The xi can be thought of as independent samples to which the estimate
(2.2.9) applies.

From here on, mean values simply will be denoted by an overbar, it being understood
that this implies an operation like (2.2.2) or (2.2.1) in the limit N → ∞. Ensemble
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averaging is a linear operation, and hence

(a) x + y = x + y,

(b) ax = ax,

(c) x = x, (2.2.3)

(d) x − x = 0,

where a is a non-random constant. These follow from (2.2.1). For example

lim
N→∞

[
1

N

N∑
i=1

xi + yi = 1

N

N∑
i=1

xi + 1

N

N∑
i=1

yi

]

proves the first of (2.2.3). These properties motivate the decomposition of the velocity
into its mean plus a fluctuation. This decomposition is U = U + u. Averaging both sides
of this using (2.2.3a,c) gives

U = U + u = U + u = U + u,

so u = 0. The decomposition of U is into its mean plus a part that has zero average.
It is essential to recognize that in general

xy �= x y.

Again, this follows from (2.2.1):

1

N

N∑
i=1

xiyi �=
(

1

N

N∑
i=1

xi

)
×
(

1

N

N∑
i=1

yi

)
.

For instance, try N = 2.
The above is often a sufficient understanding of averaging for turbulence modeling.

However, another approach is to relate averaging to an underlying probability density.
That approach is widely used in models designed for turbulent combustion.

When one computes an average like (2.2.1) for a variable with a finite number of
possible values (like heads or tails), the mean can be computed as the sum of each value
times its probability of occurrence. That probability is estimated by the fraction of the N

samples that have the particular value. If the possible values of x are {a1, a2, . . . , aJ },
then, as N → ∞,

x = 1

N

N∑
i=1

xi =
J∑

j=1

Nj

N
aj =

J∑
j=1

pjaj , (2.2.4)

where Nj is the number of times the value aj appears in the sample {xj }. Here pj is the
probability of the value aj occurring. This probability is defined to be limN→∞ Nj/N .
The aj are simply a deterministic set of numbers; for example, for the roll of a die, they
would be the numbers 1 to 6. The set {x1, x2, . . . , xN } are random samples that are being
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averaged: for instance, one might roll a die 104 times and record the outcomes as the xi ,
with N1 being the number of these for which xi = 1, and so on.

If x has a continuous range of possible values, then the summation in (2.2.4) must be
replaced by an integral over this range. The probability pj that x = aj must be replaced
by the probability P(a) da that x lies between a − 1

2 da and a + 1
2 da. The average is

then x = ∫ aP (a) da, where the range of integration includes all possible values of a.
Common practice is to use the same variable name in the integral and write

x =
∫

x′P(x′) dx′, (2.2.5)

but one should be careful to distinguish conceptually between the random variable x and
the integration variable x′. The former can be sampled and can vary erratically from
sample to sample; the latter is a dummy variable that ranges over the possible values
of x. In Eq. (2.2.5), P(x) is simply a suitable function, called the probability density
function (PDF). An example is the Gaussian, P(x) = e−x2/σ 2

/σ
√

π . The PDF is largest
at the most likely values of x and is small for unlikely values.

The interpretation of the probability density as a frequency of occurrence of an event
is illustrated by Figure 2.2. For a time-dependent random process, P(x′) dx′ can be
described as the average fraction of time that x(t) lies in the interval (x′ − 1

2 dx′, x′ +
1
2 dx′). In the figure, the fraction of time that this event occurs is

∑
i dti/T ; and P(x′) dx′

is the limit of this ratio as T → ∞. According to this definition, there is no need for
the curve in Figure 2.2 to be random; any smooth function of time has a PDF, P(x′) =∑

i (dti/dx)/T , but the interest here is in random fluid motion.
Instead of averaging x, any function of x can be averaged as in (2.2.5):

f (x) =
∫

f (x′)P (x′) dx′. (2.2.6)

As a special case, if f (x) = 1 for all x, then
∫

P(x′) dx′ = 1, so the PDF must be a
function that integrates to unity. The PDF also is non-negative, P(x) ≥ 0. The PDF is

P(x ′)dx ′ = Lim
T → ∞

T

x ′ dx
′

dt1 dt2 dt3

Σ dti /T

Figure 2.2 Illustration of the definition of the PDF: it is the fraction of time that the
random function lies in the interval (x′ − 1

2 dx′, x′ + 1
2 dx′).
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used in statistical sampling theory, but here the interest is only in averaging. Its utility is
illustrated by an intriguing application to non-premixed turbulent combustion.

2.2.1.1 Application to reacting turbulent flow

Suppose two chemical species, A and B, react very rapidly. Initially they are unmixed, but
as the turbulence stirs them together, they react instantly to form product. The schematic
Figure 2.3 suggests the contorted interface between the reactants. The reaction is so fast
that A and B can never exist simultaneously in a fluid element; they immediately react
to consume whichever has the lower concentration. Any fluid element can contain either
A or B plus product (and inert diluent).

Let the reactant concentrations be γA and γB. Then the variable m ≡ γA − γB will
equal γA whenever it is positive (since γB cannot be present with γA) and it equals −γB

when it is negative. Furthermore, if one mole of A reacts with one mole of B, then the
reaction decreasing γA by one will also decrease γB by one and m will be unchanged
by the reaction. Hence the variable m behaves as a non-reactive scalar field, and m will
be affected by turbulent stirring: for instance, regions of positive and negative m will
be mixed together to form intermediate concentrations. In fact m can be thought of as a
substance, like dye, that is stirred by the turbulent fluid motion. At any point in the fluid,
that substance will have a concentration that varies randomly in time and has a PDF that
can be constructed as in Figure 2.2.

The mean concentration of A is just the average of m over positive values

γA =
∫ ∞

0
mP(m) dm. (2.2.7)

When m> 0 it equals γA, so it is readily verified that

γA =
∫ ∞

0
mP(m) dm =

∫ ∞

0
γ ′

AP(γ ′
A) dγ ′

A.

A  (m > 0)

B  (m < 0)

B

A

B

Figure 2.3 A statistically homogeneous mixture of reactants. An infinitely fast reaction
is assumed to be taking place at the interface between the zones of A and B. Turbulence
contorts the interface and stirs the reactants. Product forms as the reaction proceeds and
the concentrations of A and B decrease.
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In the literature on turbulent combustion, Eq. (2.2.7) is referred to as Toor’s analogy.
If the evolution of P(m) in turbulent flow can be modeled, then this provides a nice
theory for turbulent reactions. But P(m) is a property of a non-reactive contaminant. The
intriguing aspect of this analysis is that the mean rate of chemical reactant consumption
can be inferred from an analysis of how a non-reacting contaminant is mixed.

Let us see, qualitatively, how P(m) evolves with mixing. Suppose the initial state
is unmixed patches of concentration γ 0

A and γ 0
B. Then initially m takes the values of

either γ 0
A or −γ 0

B; these are the only two possible concentrations. The corresponding ini-
tial probability density consists of two spikes, P(m) = 1

2 [δ(m − γ 0
A) + δ(m + γ 0

B)]. The
spikes are of equal probability if there are equal amounts of A and B. However, turbulent
stirring and molecular diffusion will immediately produce intermediate concentrations.
The PDF fills in, as shown by the solid curve in Figure 2.4. As time progresses, the
concentration becomes increasingly uniform; the PDF starts to peak around the mid-
point m = 1

2 (γ 0
A − γ 0

B). Ultimately the contaminant will be uniformly mixed and the only
possible concentration will be this average value; in other words, the PDF collapses to
a spike at the average concentration P(m) → δ[m − 1

2 (γ 0
A − γ 0

B)]. In a sense this is a
process of reversed diffusion in concentration space: instead of spreading with time, the
PDF contracts into an increasingly narrow band around the mean concentration.

One approach to modeling this evolution of the PDF is to assume that P(m) has the
“beta” form described in Exercise 2.6. The β distribution has two parameters, a and b,
that are related to the mean and variance by

a − b

a + b
= m,

1 + (a + b)m2

a + b + 1
= m2.

These formulas can be derived from the PDF defined in Exercise 2.6. As a and b vary,
PDFs representative of scalar mixing are obtained. Figure 2.5 is a comparison between

m

P
(m

)

−g0
B 1/2(g0

A − g0
B) g0

A

Figure 2.4 Evolution of the probability density of a non-reactive scalar. Initially, either
m = γ 0

A or −γ 0
B and the corresponding PDF consists of two spikes. With time, interme-

diate concentrations are produced by mixing and the PDF evolves toward a spike at the
average concentration.
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DNS data Beta distribution

p.
d.

f

m m

Figure 2.5 Comparison of profiles of the PDF of m obtained by direct numerical sim-
ulations to the β PDF: m = −0.9 ( ), −0.5 ( ), 0.0 ( ), 0.5 ( ), and
0.9 ( ). The data were obtained in a turbulent flame front. From Mantel and Bilger
(1994).

the β distribution and data from a numerical simulation of a turbulent flame. Each curve
corresponds to different values of m and m2. It can be seen that the functional form of
the β PDF does a reasonable job of mimicking the data.

Once the shape of P(m) has been assumed, the problem of reaction in turbulent flow
reduces to modeling how m and m2 evolve in consequence of turbulent mixing. That
is a problem in single-point, moment closure, which is the topic of the second part of
this book.

Toor’s analogy, with this assumed form for the PDF, permits reactant consumption to
be computed via (2.2.7): this is called the “assumed PDF method.” The simplifications
consequent to Toor’s analogy with an assumed PDF reduce reacting flow to a problem
in turbulent dispersion. However, it should be emphasized that this is only true when
the reaction rate can be considered to be infinitely fast compared to the rate of turbulent
mixing. The ratio of turbulent time-scale to chemical time-scale is called the Dahmköhler
number. Toor’s analogy is a large Dahmköhler number approximation. It serves as a
nice, although brief, introduction to concepts of turbulent combustion. Pope (1985) is a
comprehensive reference on this application of probability densities.

2.2.2 Correlations

Correlations between random variables play a central role in turbulence modeling. The
random variables in fluid flow are fields, such as the velocity field. The correlations are
also fields, although they are statistics, and hence are deterministic. Correlations can be
functions of position and time, or of relative position in the case of two-point corre-
lations. The type of models used in engineering computational fluid dynamics are for
single-point correlations. It will become apparent in Chapter 3 on the Reynolds aver-
aged Navier–Stokes equation why prediction methods for engineering flows are based
solely on single-point correlations. For now, it can be rationalized by noting that, in
a three-dimensional geometry, single-point correlations are functions of the three space
dimensions, while two-point correlations are functions of all pairs of points, or three
plus three dimensions – imagine having to construct a computational grid in six dimen-
sions! However, this section does discuss two time correlations, and two spatial point
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correlations are quite important in the theory of homogeneous turbulence described
in Part III.

If the total, instantaneous turbulent velocity is denoted ũ and the mean velocity, U ,
is defined as U ≡ ũ, then the fluctuating velocity, u, is defined by u = ũ − U ; in other
words, the total velocity is decomposed into its mean and a fluctuation, ũ = U + u, with
u = 0. The fluctuation u is usually referred to as the turbulence and U as the mean flow.
Of course, the velocity is a vector with components ui , i = 1, 2, 3, so ũi = Ui + ui for
each component.

The average of the products of the fluctuation velocity components is a second-
order tensor, or a matrix in any particular coordinate system (see Section 2.3), with
components uiuj :  u1u1 u1u2 u1u3

u2u1 u2u2 u2u3

u3u1 u3u2 u3u3

 . (2.2.8)

This is a rather important matrix in engineering turbulence modeling. It is called
the Reynolds stress tensor . The Reynolds stress tensor is symmetric, with six unique
components, since u1u3 = u3u1 etc.

The average of the product of two random variables is called their covariance. If the
covariance is normalized by the variances, it becomes a correlation coefficient ,

rij = uiuj

/√
u2

i u2
j

(where there is no summation on i and j ). The correlation coefficient is not
a tensor. Tensors will be defined in Section 2.3. At present it is sufficient to
note that, if this were a tensor, then the convention of summation on repeated
indices would be in effect on the right-hand side – but it is not. The definition
of rij requires a qualification that there is no summation implied. For instance,

r12 = u1u2
/√

u2
1 u2

2.

The Schwartz inequality |rij | ≤ 1 follows from (x ± y)2 ≥ 0 upon setting

x = ui

/√
u2

i and y = uj

/√
u2

j . The uiuj obtained from a turbulence model usually are
not the average of a random variable; they are computed from an evolution equation
for the statistic, uiuj , itself. Then the condition |rij | ≤ 1 might not be met by the
model. If the model is such that the condition is always met, it is said to be realizable.
In a broader sense, a realizable model is one that predicts statistics that could be
those of a random process; in a narrower sense, it is one that ensures Schwartz’s
inequality.

As its name implies, the correlation coefficient is a measure of how closely related
two random variables are. If they are equal, that is, ui = uj , then rij = 1. It was noted
below Eq. (2.2.3) that generally uiuj �= ui uj . If, for some reason, such as a sym-
metry condition, this were an equality, then the two random variables ui and uj are
described as uncorrelated . In such a case uiuj = ui uj = 0 so rij = 0, using the fact
that ui = 0.

As an example, it will be shown that the average (2.2.1) converges to the mean like
1/

√
N , as N → ∞, if the xi are uncorrelated samples. Consider the mean-squared error
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in estimating the true mean, x, by the average:

(xav − x)2 =
[(

1

N

N∑
i=1

xi

)
− x

]2

= 1

N

N∑
i=1

(xi − x) × 1

N

N∑
j=1

(xj − x)

= 1

N2

N∑
i=1

N∑
j=1

(xi − x)(xj − x) (2.2.9)

= 1

N2

N∑
i=1

(xi − x)(xi − x) = (x − x)2

N
.

The step from the second line to the third uses the fact that the samples are uncorrelated,
in the form (xi − x)(xj − x) = 0, i �= j . The j sum contributes only when i = j . The
factor (x − x)2 is the variance of the random process. Denoting it by σ 2 gives the

root-mean-square error
√

(xav − x)2 = σ/
√

N . So the average converges to the mean
as 1/

√
N .

The covariance uiuj is the average product of two components of the velocity fluctu-
ation. Another interesting covariance is between a velocity component and itself at two
different times, u(t + �t)u(t) – this is called an autocovariance, for obvious reasons.
The turbulent velocity is not a random variable like a coin toss; it is a stochastic process
that evolves continuously in time, so the velocity at any time is related to that at any
previous time. If the separation between these times is very small, the velocities will
be essentially the same: lim�t→0 u(t + �t) = u(t), so lim�t→0 u(t + �t)u(t) = u(t)2. If
the turbulence is stationary (Section 2.2.1), such as in a wind tunnel in steady operation,
then u2 is independent of time. Furthermore, a statistically stationary process has the
property that the correlation u(t + �t)u(t) is a function only of the magnitude of the
time separation |�t | but not of time itself. This follows from the definition of station-
arity as translational invariance in time. A shift in the time origin, t → t + t0, leaves
statistics unchanged:

u(t + �t)u(t) = u(t + t0 + �t)u(t + t0).

Setting t0 = −t shows that the correlation is a function only of �t ; setting t0 = −t − �t

shows it to be only a function of |�t |. If the above covariance is normalized by u2 it
becomes a correlation function . This function will be denoted R(�t): it is defined by

R(�t) ≡ u(t + �t)u(t)

u2
.

The following example illustrates properties of stationarity via a basic stochastic process.
It also provides a framework for some important concepts in turbulence modeling.

2.2.2.1 Lagrangian theory for turbulent mixing

Taylor (1921) first introduced the mathematical concept of a correlation function in con-
nection with his famous study of turbulent dispersion (“turbulent dispersion” refers to
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mixing of a scalar, such as concentration or heat). In his paper, Taylor described a simple,
instructive model for the random velocity of a fluid element. His study is the starting
point for many recent developments in stochastic modeling of particle dispersion by
turbulence.

Consider a discrete random process that represents the fluid velocity at time intervals
of �t :

u(t + �t) = ru(t) + sξ(t). (2.2.10)

Here r and s are coefficients to be determined. This might be considered the velocity of a
fluid element; in that sense it is a Lagrangian description of turbulence.∗ In this stochastic
model, ξ is a random variable. It has zero mean and unit variance (ξ = 0, ξ 2 = 1), and
its successive values {ξ(t), ξ(t + �t), ξ(t + 2�t), . . .} are chosen independently of one
another. It could be a set of coin tosses, but in practice it would be synthesized by
a computer random number generator. At each time, u(t) is known, ξ(t) is selected
independently of this value, and the next u(t + �t) is computed by (2.2.10). Since ξ(t)

is chosen completely independent of u(t), they are uncorrelated: ξ(t)u(t) = ξ(t) u(t)

= 0 × 0. This property of independent increments makes (2.2.10) an example of a Markov
chain. We want to find the correlation function,

R(τ) ≡ u(t + τ)u(t)/u2, (2.2.11)

for this stochastic process.
First consider how to choose the coefficients r and s in (2.2.10). If u(t) is a statistically

stationary process, then its variance should not depend on time; in particular u(t + �t)2 =
u(t)2 = u2. Squaring both sides of (2.2.10) and averaging gives

u(t + �t)2 = r2u(t)2 + s2ξ 2 + 2rs u(t)ξ(t). (2.2.12)

The last term is zero, as already explained, so the conditions u(t + �t)2 = u(t)2 = u2

and ξ 2 = 1 give

s =
√

(1 − r2)u2.

If (2.2.10) is multiplied by u(t) and averaged, an equation for the autocovariance at
the small time separation �t is obtained:

u(t + �t)u(t) = ru2. (2.2.13)

It can be seen from this that r is the correlation coefficient of u with itself at two
times. If u(t) is statistically stationary, then the correlation between times t and t + �t

should not depend on the time, t , at which the correlation is measured; hence, in (2.2.13)
r is only a function of �t . The precise form of R(τ) is determined by the function
chosen for r .

∗ The Lagrangian approach is to describe fluid motion in a frame moving with fluid elements; the more
familiar Eulerian approach adopts a fixed frame.
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We would like Eq. (2.2.10) to become a differential equation as the time increment
becomes infinitesimal, �t → dt . If r(�t) is expanded in a Taylor series, it has the form

r = 1 + r ′(0)�t + · · · (2.2.14)

(see Exercise 2.7). In this expansion, r ′(0) has dimensions of t−1, so it defines a corre-
lation time-scale, r ′(0) ≡ 1/TL. We will choose r in (2.2.14) to be

r = 1 − dt/TL (2.2.15)

as �t → dt . Correspondingly, s =
√

(1 − r2)u2 ≈
√

2 dt u2/TL.
If (2.2.10) with this expression for r is multiplied by† u(t − τ) it becomes

u(t + dt)u(t − τ) = (1 − dt/TL)u(t)u(t − τ)

or
R(dt + τ) = (1 − dt/TL)R(τ)

(recall that, for a stationary process, u(t)u(t ′) = u2R(|t − t ′|)). As dt → 0 this becomes

dR(τ)

dτ
= −R(τ)

TL
. (2.2.16)

Finally, solving this with R(0) = 1 gives the autocorrelation for the random process
(2.2.10):

R(t) = e−|τ |/TL

as was sought. TL can also be defined as an integral time-scale

TL =
∫ ∞

0
R(t ′) dt ′. (2.2.17)

In the theory of turbulent dispersion, this is called the Lagrangian integral time-scale
because (2.2.10) is considered to be the velocity of fluid elements.

This example can be used to introduce the idea of an eddy diffusivity. In fact, the
concepts used here to derive the eddy diffusivity are the essence of all attempts to sys-
tematically justify eddy transport coefficients, whether they are for material (diffusivity)
or momentum (viscosity). Eddy viscosity is the basic idea for many practical mean flow
prediction methods.

Consider a particle that is convected by the velocity (2.2.10). Its position, X(t), is
found by integrating dtX = u(t) with the initial condition X(0) = 0:

X(t) =
∫ t

0
u(t ′) dt ′. (2.2.18)

† A subtlety: it is necessary to multiply by u(t − τ) because that is uncorrelated with the future random
variable ξ(t), so u(t − τ)ξ(t) = 0. If u(t + τ) were used, this correlation would not be 0.
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t /TL

x
/u

′T
L

0 5 10 15 20
−20

−10

0

 10

 20

Figure 2.6 Some trajectories and the root-mean-square spreading described by the

Langevin equation:
√

X2 ( ) and 2
√

X2 ( ).

This is a random trajectory for a given random function u(t). An ensemble of u values
generates an ensemble of X values, each of which starts at X = 0. A set of such
trajectories is illustrated in Figure 2.6 These solutions for X(t) were obtained quite
simply by numerically simulating the random equation (2.2.10) along with X(t + �t) =
X(t) + u(t)�t . The dashed and dotted curves show an exact solution for

√
X2

and 2
√

X2.
At any given time, the trajectories constitute a set of random positions, {X(i)(t)}.

These have an associated probability distribution at that time. Suppose that the PDF of
X evolves in time according to the diffusion equation

∂tP (x; t) = αT ∂2
xP (x; t), (2.2.19)

where αT is called the eddy diffusivity . Now, X2 is defined as
∫∞
−∞ P(x)x2 dx, so an

evolution equation for X2 can be obtained by multiplying both sides of (2.2.19) by x2

and integrating. The right-hand side is integrated by parts assuming that P(x) → 0 as
x → ±∞. This gives

dX2

dt
= 2αT. (2.2.20)

This result shows that the diffusivity is one-half the rate of mean-square spreading of
a set of fluid trajectories that start at a common origin. A connection to the correlation
function can now be drawn.

Since

αT = 1

2
dtX(t)2 = X(t)dtX(t) = u(t)X(t),
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Eq. (2.2.18) multiplied by u and averaged gives

αT = u(t)

∫ t

0
u(t ′) dt ′ =

∫ t

0
u(t)u(t ′) dt ′

= u2

∫ t

0
R(t − t ′) dt ′ = u2

∫ t

0
R(τ) dτ

= u2

∫ t

0
e−τ/TL dτ = u2TL(1 − e−t/TL). (2.2.21)

The second line is valid for any R(τ); the third was evaluated with the present model.
The variance, X2, is a simple consequence of (2.2.21): substituting (2.2.21) into (2.2.20)
and integrating gives

X2 = 2u2T 2
L (t/TL − 1 + e−t/TL).

As t/TL → 0 this becomes X2 = t2u2; that is obviously the correct behavior, because at
short times X ≈ u(0)t so X2 = (ut)2 = t2u2.

As t → ∞, (2.2.21) asymptotes to

αT = u2TL. (2.2.22)

This is a very useful formula for turbulence modeling: it is a formula for representing
turbulent transport by an effective diffusion coefficient. Its elements are a mean-square
turbulent velocity and a correlation time-scale. To use this formula, an operational defini-
tion of u2 and TL must be selected, and a model developed for their prediction in general
flows. For instance, the k–ε model (Section 6.2) selects k for the velocity scale and k/ε

for the time-scale.
The limit t 	 TL, in which the eddy diffusion approximation applies, is called the

Markov limit. Eddy diffusion is formally a Markovian approximation for the random
trajectory of fluid elements. In a non-homogeneous turbulent flow, this rationale is trans-
lated into a criterion that the scale of non-homogeneity, say δ, should be large compared
to the integral scale of the turbulence, δ 	 L. In practical applications, this is not usu-
ally satisfied, but eddy transport coefficients can still be effective representations of
turbulent mixing.

The concept of the dispersive property of turbulence being represented by an eddy
diffusivity dates to the late 19th century; in one form or another, it remains the most
widely used turbulence model. The dashed lines in Figure 2.6 show how the eddy diffu-
sivity represents the averaged effect of the turbulence, not the instantaneous trajectories.
The subject of turbulence modeling must be understood in this ensemble-averaged sense.
For instance, when alluding to T as an “eddy” time-scale, loose terminology is being
used. This is not really an allusion to the instantaneous eddying motion. It is more correct
to describe T as a correlation time-scale for two-time statistics. Instantaneous turbulent
eddies have only a tangential connection to the idea of an eddy diffusivity; it actually rep-
resents the average tendency of material to be dispersed by random, turbulent convection.
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We conclude this section with a brief mention of the relation of this material to
the subject of stochastic differential equations. Equation (2.2.10) becomes a differen-
tial equation upon substituting r = 1 − dt/TL, s =

√
(1 − r2)σ ≈ √

2 dtσ , and letting
�t → dt :

u(t + dt) = (1 − dt/TL)u(t) + σ

√
2 dt

TL
ξ(t)

from (2.2.10). This can be rewritten in terms of differentials by setting du = u(t + dt)

− u(t):

du(t) = −u(t)dt

TL
+
√

2u2

TL
dW(t), (2.2.23)

where dW(t) ≡ √
dt ξ(t). It is standard practice not to divide this by dt and write the left-

hand side as du/dt , because dW/dt is infinite (with probability 1). In the above, dW(t)

is a white-noise process, which can be understood simply to mean that it represents
a continuous function having the properties of a set of independent random variables
chosen at intervals of dt and having variance dt . It is formally defined as the limit of
this when dt → 0. Since its variance tends to zero, it is a continuous function; but since√

dW 2/dt tends to infinity, it is non-differentiable at any time. Equation (2.2.23) is a
simple case of an Ito-type stochastic differential equation. It is often referred to as the
Langevin equation. A general theory of such equations can be found in texts on stochastic
differential equations.

2.2.2.2 Spectrum of the correlation function

The idea of the energy spectrum has already been met in Section 2.1. The spectrum
is formally the Fourier transform of the correlation function. So if the discussion in
Section 2.1 seemed a bit vague, now that the correlation function has been defined, that
discussion can be made more formal. However, the material in this section is still quite
basic. The spectrum of turbulence plays a central role in Part III of this book.

In (2.1.1) the spatial wavenumber κ was used to characterize the length scale of
turbulent eddies. As mentioned previously, the term “eddies” is being used in a loose
sense, to refer to properties of the statistical correlation function. The formal definition of
the spectrum will be applied to the Lagrangian correlation function (2.2.11). Its spectrum,
S(ω), is defined by

S(ω) ≡ 1

π

∫ ∞

0
u(t + τ)u(t) cos(ωτ) dτ = u2

2π

∫ ∞

−∞
R(τ)e−iωτ dτ. (2.2.24)

In the special case ω = 0 this gives

S(0) = 1

π

∫ ∞

0
u2R(τ) dτ = u2TL/π.

Hence, the integral time-scale is related to the spectrum at zero frequency by
TL = πS(0)/u2.
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The Lagrangian spectrum (2.2.24) has the dimensions S ∼ �2/t . Invoking
Kolmogoroff’s reasoning about inertial subrange scaling, the spectrum should follow a
−2 law: S ∝ εω−2. This should not be confused with the Eulerian frequency spectrum,
measured with a fixed probe: that corresponds to a spatial spectrum through Taylor’s
hypothesis (Section 2.1.1) and hence has the inertial-range behavior ε2/3ω−5/3.

For the stochastic process described previously in this section, R(τ) = e−τ/TL. Its
spectrum is

S(ω) = u2

π

∫ ∞

0
e−τ/TL cos(ωτ) dτ = u2TL

π(1 + ω2T 2
L )

.

The relation πS(0) = u2TL is satisfied by this example, as it must be. At large ω,
S → u2/πTLω2. Comparing this to the inertial-range scaling shows that u2/TL ∝ ε. This
gives a theoretical justification for the observation that k/ε is a suitable estimate of the
turbulence time-scale. To this end the velocity scale u2 ∼ k can be used to conclude
that Taylor’s integral time-scale and Kolmogoroff’s inertial-range scaling are consistent
if TL ∝ k/ε. Many of the closure models described in Part II of this book invoke k/ε as
a time-scale.

Inverting the relation (2.2.24) shows that the correlation function is the transform of
the spectrum:

u2R(τ) =
∫ ∞

−∞
S(ω) cos(ωτ) dω. (2.2.25)

For τ = 0 this becomes u2 = ∫∞
−∞ S(ω) dω, where S(ω)dω represents the portion of the

variance lying in the differential frequency band between ω + 1
2 dω and ω − 1

2 dω; so
actually, S(ω) is the spectral energy density .

We are now in a position to explain the representation (2.1.1) more formally. The
velocity of a fluid element consists of contributions from large and small scales. Consider
two particles separated by a small distance. A large eddy will convect the two particles
with approximately the same velocity. It causes very little relative motion. Small-scale
eddies, on the other hand, do contribute a relative velocity. The contribution of small-
scale eddies is isolated by evaluating the velocity difference between two points separated
by a small distance: usmall-scale = u(x + r) − u(x) when r � L. The small-scale intensity
is represented by

1
2 [u(x + r) − u(x)]2 = 1

2 [u(x + r)2 + u(x)2] − u(x + r)u(x) = u2[1 − R(r)],

using homogeneity to substitute u(x + r)2 = u(x)2 = u2. By analogy to (2.2.25)

u2 − u2R(r) =
∫ ∞

−∞
E(κ) dκ −

∫ ∞

−∞
E(κ) cos(κr) dκ = 2

∫ ∞

0
E(κ)[1 − cos(κr)] dκ.

This was used in (2.1.1). Again, it can be seen that allusions to small-scale eddies are
actually a loose reference to a statistical property of the turbulence. In this case it is the
mean square of the velocity difference between two nearby points. When the separation
is in the inertial range, [u(x + r) − u(x)]2 ∝ ε1/3r2/3 according to inertial-range scaling.
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2.3 Cartesian tensors

Various levels of constitutive modeling are used in turbulent flow. The simplest is to
assume that the stress tensor is proportional to the rate-of-strain tensor. This is the linear
eddy viscosity model; more correctly, it is a tensorally linear relation. Mathematically,
if τij is the stress and Sij is the rate of strain, then the linear constitutive model is
τij − 1

3δij τkk = νTSij , where νT is the eddy viscosity. Tensoral linearity means the free
indices, i, j , on the right-hand side are subscripts of a single tensor, not of a matrix
product. The functional dependence of the coefficient of eddy viscosity might require a
solution of highly nonlinear equations, or it might be a function of the magnitude of the
rate of strain: the stress–strain relation would still be referred to as (tensorally) linear.
As long as it is only Sij and not SikSkj on the right, this is a linear constitutive model.

The convention of implied summation on repeated indices is used throughout this
book. For instance, SikSkj is understood to equal

∑3
k=1 SikSkj , which is the index form

of the matrix product S · S. Any time an index is repeated in a product it is understood
to be summed. By this convention SijSji is summed on both i and j :

SijSji ≡
3∑

j=1

3∑
i=1

SijSji .

This is the index form for the trace of the product: SijSji = trace[S · S].
Tensor analysis provides a mathematical framework for constitutive modeling and for

other aspects of single-point closure modeling. Indeed, the matrix of velocity correlations,
given in (2.2.8), has already been alluded to as the Reynolds stress tensor. The full power
of tensor analysis is described in the literature on continuum mechanics (Eringen, 1980).
There it is used to develop constitutive relations for material properties. A turbulence
model represents properties of the fluid motion , not material properties of the fluid. In
the present application, tensor analysis is used to restrict the possible forms of the model,
rather than to develop mechanical laws. It is an analytical tool. The governing laws are
the Navier–Stokes equations.

A tensor consists of an indexed array and a coordinate system. Although the indexed
array, such as uiuj , is usually referred to as a tensor, the elements of this array are
actually the components of the tensor in a particular coordinate system.

Consider a set of unit vectors, e(i), that point along the axes of a Cartesian coordinate
system. For example, the standard x,y,z coordinate system is described by the unit vectors
e(1) = (1, 0, 0), e(2) = (0, 1, 0), and e(3) = (0, 0, 1). The superscripts are in brackets to
indicate that they denote a member of the set of vectors, not the exponentiation of e.
Then a second-order tensor in three dimensions is defined by

T =
3∑

j=1

3∑
i=1

Tije
(i)e(j) ≡ Tije

(i)e(j). (2.3.1)

The complete expression (2.3.1) defines the tensor. This illustrates the respect in which
Tij is simply the i,j component of the tensor, and the respect in which a complete
characterization requires both the components and the coordinate system to be stated.

A zeroth-order tensor, or a scalar, does not depend on the coordinate system; an
example is pressure, which has no associated direction. The contraction (or trace) of
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q

Figure 2.7 The components of a fixed vector in two different coordinate systems.

a second order tensor is also a scalar; an example is Tii = T11 + T22 + T33. Tensors
whose components do not depend on the coordinate system are termed invariant tensors;
their components are invariant under coordinate transformations. Zeroth-order tensors are
always invariant. A vector is a first-order tensor, V = Vie

(i). Its components depend on
the coordinate system (see Figure 2.7).

In (2.3.1) T is the tensor, but it is common to allude to the component notation Tij

as a second-order tensor. The order corresponds to the number of free subscripts. The
tensor itself is the same in all coordinate systems, but its components will be different in
different coordinate systems. This is illustrated in Figure 2.7 for the case of a first-order
tensor. The figure shows how the coordinates of a fixed vector change relative to two
coordinate systems at an angle of θ to one another. If the vector has components (V1, V2)

in the first system, then it has components (V ′
1, V

′
2) = (V1 cos θ + V2 sin θ, V2 cos θ −

V1 sin θ) in the rotated system. That is the transformation that keeps V (the arrow in the
figure) unchanged; the tensor, V , is independent of the coordinate system; its components
are not.

To put this algebraically, consider a unit vector in each of the two frames, e and ẽ.
The two coordinate frames are related by a linear transformation: e(i) = Eij ẽ

(j), where
E is the rotation matrix:

E(θ) =
 cos θ − sin θ 0

sin θ cos θ 0
0 0 1

 . (2.3.2)

The components of the vector can be found in these coordinate systems by applying
the transformation V = Vie

(i) = ViEij ẽ
(j). Hence Ṽj = ViEij are the components of the

given vector in the ∼ coordinate system.
Since E represents rotation through an angle, θ , the inverse of E(θ) is rotation

through the angle −θ , E(−θ). But (2.3.2) shows that E(−θ) is just the transpose of E(θ):
Eij (−θ) = Eji(θ). Thus Eij (θ)Ejk(−θ) = Eij (θ)Ekj (θ) = δik where δik represents the
components of the identity matrix:

δik = 1, if i = k; δik = 0, if i �= k.

In other words, Vi = Eij (EkjVk) = δikVk = Vi represents rotation through an angle θ ,
then back through −θ , leaving Vi unchanged.
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A similar transformation rule applies to a general tensor. For instance, a second-order
tensor transforms according to

T = Tije
(i)e(j) = TijEikEjl ẽ

(k)ẽ(l), (2.3.3)

so the components of T change to T̃ij = TklEkiElj in the ∼ coordinate system. (Note that
i, j, k, l are dummy indices, so this expression is identical to T̃kl = TijEikEjl .) This is
the transformation rule for second-order Cartesian tensors. The requirement that the com-
ponents of the tensor change in a prescribed way under coordinate transformation is an
embodiment of the condition that the tensor itself be independent of the coordinate system.

The laws of physics are the same in any coordinate system, so it is a sensible principle
to require that any model for turbulent statistics should comply with the requirement of
coordinate independence. A corollary is that the model should be of a tensorally correct
form. To pursue this further requires discussion of tensor functions of tensors, which will
be provided shortly.

2.3.1 Isotropic tensors

The notion of isotropy plays a major role in turbulence theory. Isotropic turbulence is the
idealized state of turbulent motion in which the statistics are independent of the coordinate
orientation. Although exactly isotropic turbulence cannot be produced in an experiment,
it is approximated by the turbulence downstream of a grid placed into a uniform stream
(Figure 1.2, page 6); exactly isotropic turbulence can be simulated on a computer.

Isotropic tensors have the exceptional property that their components are the same
in all coordinate systems. Figure 2.7 makes it clear that there is no such thing as an
isotropic vector; the components of V change with the angle θ . However, any multiple
of δij is an isotropic second-order tensor because of the transformation law (2.3.3) for the
second-order tensors. Transforming δ gives δ̃ij = δklEkiElj = EliElj = δij ; the identity
tensor is unchanged by coordinate transformation. An obvious corollary is that Aδij , for
any scalar A, is isotropic.

The physical interpretation of an isotropic tensor is that it describes a process that
has no directional preferences, and hence its components are unchanged when viewed
in a rotated system of coordinate axes. For instance, rotation through 90◦ transforms
x → y and y → −x. Velocities are transformed correspondingly: u → v and v → −u.
The velocity covariance uv is thereby transformed to −vu. Thus, invariance of statistics
under 90◦ rotation demands that −vu = uv. Adding uv to both sides of this shows
that uv = 0 if the turbulence is isotropic. Similarly, u2 = v2. Following this argument
for rotations about other axes leads to the conclusion that the isotropic Reynolds stress
tensor (2.2.8) must be proportional to the identity tensor, δ.

Since there is no such thing as an isotropic vector, the correlation between pressure,
which is a zeroth-order tensor, and the velocity vector must vanish: pui = 0 for all i.
For instance, a rotation through 180◦ transforms u to −u, so isotropy would require that
pu = −pu = 0.

In turbulence theory it is common to add the condition that the components of an
isotropic tensor are unchanged by reflections,‡ as well as by rotations. If this additional

‡ The transformation matrix for reflection in the y –z plane is E = diag[−1, 1, 1].
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requirement is made, then there are no isotropic third-order tensors. To see why, suppose
there were an isotropic tensor

I = Iijke
(i)e(j)e(k).

Reflection in a coordinate plane transforms e(α) to −e(α), where α is the direction normal
to the plane of reflection. This transformation gives Ĩαjk = −Iαjk if j, k �= α or if both
j and k equal α. For such components, isotropy, Ĩαjk = Iαjk , then requires that Iαjk =
−Iαjk; hence, such components must vanish. This reflection would not prevent a non-
zero component Iααk if k �= α. However, reflection in the plane perpendicular to the k

direction demands that this component vanish as well. It follows that there are no odd-
order tensors that are invariant under reflection. So the only tensors with reflectionally
invariant components are of even order.§

Isotropy of the fourth-order tensor

I = Iijkle
(i)e(j)e(k)e(l)

requires that the only non-zero components of Iijkl be those for which the indices are
pairwise equal. This is expressed by the δij tensor as

Iijkl = Aδij δkl + Bδikδjl + Cδilδjk. (2.3.4)

In general, even-order isotropic tensors consist of a sum of all distinct combinations of
the δij that give the requisite number of indices (Goodbody, 1982).

An exchange of directions, such as x ↔ y, is a combination of rotation and reflection.
An isotropic tensor must be unchanged by such exchanges: for example, I1122 = I1133 =
I2233 = · · ·. In the representation (2.3.4), these are all equal to A. There is no need for
I1122 to equal I1212; but I1212 = I1313 = I2323 = · · ·, all of which equal B in (2.3.4).

2.3.2 Tensor functions of tensors; Cayley–Hamilton theorem

Second-moment closure modeling requires that certain unknown tensors be represented
by functions of anisotropy and identity tensors. In constitutive modeling and in equi-
librium analysis, the Reynolds stress is a tensor function of the rate-of-strain and rate-
of-rotation tensors. In other words, tensor-valued functions of tensor arguments arise:
φij = Fij (akl, δkl) and τij = Gij (Skl, �kl). Tensoral consistency demands that the free
indices be i, j on both sides of these equations.

The question that arises is this: What constraints can be placed on possible forms of
the functions Fij and Gij ? The simple answer is that, if there are no hidden arguments,
then they must be isotropic functions of their arguments. A hidden argument might
be a preferential direction, such as that of gravity. In such cases, it is only necessary
that the distinguished direction be made explicit; then the function must be isotropic in
its arguments.

The definition of an isotropic Cartesian tensor function is that it is covariant with
rotation. For a second-order tensor this is expressed by

F̃ij = Fij (ãkl , δkl); (2.3.5)

§ If the reflection invariance is not added, then the skew symmetric tensor εijk is isotropic. This tensor is
defined by εijk = 0 if any of i, j, k are equal, εijk = −εjik and ε123 = 1.
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or, in terms of the transformation matrix, by

EikEjlFkl(akl, δkl) = Fij (EkmElnamn, δkl).

This is the mathematical statement that the functional form must be the same in any
coordinate system: for example, if F = Ca2, then F̃ = Cã2. The requirement (2.3.5) is
that the laws of physics be independent of coordinate orientation.

Note that any matrix product of the a satisfies (2.3.5). For instance, if F(a) = a2, or
in component form Fij (akl) = ainanj , then

F̃ij (a) = EikEjlFkl = EikakmamlEjl

= EikakmEnmEnpaplEjl = (EikEnmakm) (EnpEjlapl)

= ãinãnj = Fij (ã),

where EnmEnp = δmp was used in the second line. The same reasoning applies to any
power of a. This suggests that an isotropic function of a tensor might be written as a
linear combination of products of powers of aij and δij . As an example

F̃ij = Aaij + Ba2
ij + ca4

ij (2.3.6)

would qualify. Here a4
ij is shorthand for the matrix product aikaklalmamj . A combination

of all powers of a provides the most general tensor function, with the qualification that
coefficients like A, B, and C in the above equation can be functions of the invariants of
the tensor a – invariants will be defined shortly. Fortunately, this power series terminates
after a few terms because higher powers of a can be written as linear combinations of
lower powers: that is the content of the Cayley–Hamilton theorem.

The Cayley–Hamilton theorem (Goodbody, 1982) says that, in n dimensions, an
ij is

a linear combination of lower powers of a. In three dimensions, the explicit formula is

a3
ij = IIIaδij − IIaaij + Iaa

2
ij , (2.3.7)

where III a , II a , and Ia are the invariants of a. Note that, if (2.3.7) is multiplied by a

and then used to eliminate a3, a formula relating a4 to a2, a, and δ is obtained:

a4 = IIIaa − IIaa
2 + Iaa

3 = IIIaa − IIaa
2 + Ia(IIIaδ − IIaa + Iaa

2).

The same reasoning applies to all powers higher than 3; hence it follows from (2.3.7)
that the most general form of (2.3.6) is a linear combination of multiples of δij , aij , and
a2

ij , with no higher powers of a:

F̃ij = Aδkl + Baij + Ca2
ij . (2.3.8)

This represents the most general tensoral dependence for an isotropic second-order func-
tion of a second-order tensor. The coefficients of the sum can be arbitrary functions of
scalar parameters, such as the invariants of a.

As another corollary to (2.3.7), the inverse of the matrix a is given by

a−1
ij = (a2

ij + IIaδij − Iaaij )/IIIa.

This is proved by multiplying (2.3.7) by a−1.



CARTESIAN TENSORS 39

To prove (2.3.7), assume that the matrix a has three independent eigenvectors with
eigenvalues λ1, λ2, and λ3. Then any vector x can be written as a linear combination of
the three eigenvectors x = aξ1 + bξ 2 + cξ 3. It follows from this that the product

(a − λ1δ) · (a − λ2δ) · (a − λ3δ) · x = 0

vanishes for any x because one of the bracketed terms annihilates each of the ξ i . Because
this is true for an arbitrary vector, the product of matrices itself must vanish:

(a − λ1δ) · (a − λ2δ) · (a − λ3δ) = 0.

Expanding this product gives

a3
ij = IIIaδij − IIaaij + Iaa

2
ij

in index notation, where III a = λ1λ2λ3, II a = λ1λ2 + λ1λ3 + λ2λ3, and Ia = λ1 +
λ2 + λ3. This proves (2.3.7).

Note that Ia = akk because the sum of the eigenvalues equals the trace of the matrix.
The other invariants can also be related to matrix traces. Taking the trace of Eq. (2.3.7)
shows that 3III a = a3

kk + II aIa − a2
kkIa . Expanding the equation (λ1 + λ2 + λ3)

2 = I 2
a

shows that 2II a = I 2
a − a2

kk, after noting that the sum of squares of the eigenvalues
equals the trace of the matrix squared: a2

kk = λ2
1 + λ2

2 + λ2
3. So the invariants of a can be

written directly in terms of traces of powers of the matrix as:

Ia = akk, IIa = − 1
2 (a2

kk − I 2
a ), (a3

kk + IIaIa − a2
kkIa). (2.3.9)

The Ia , II a , and III a are called the first, second, and third principal invariants of the
matrix. As the name implies, they are the same in any coordinate system.

The special case of (2.3.7) for a trace-free matrix, b, arises in second-moment closure
modeling. The trace-free condition is Ib = 0 so

b3 = 1
3 b3

kkδ + 1
2 b2

kkb, (2.3.10)

where the principal invariants II b = − 1
2 b2

kk and III b = 1
3 b3

kk have been substituted.
A quite useful observation is that the Cayley–Hamilton theorem is a device to solve

matrix equations (Pope, 1975). The approach can be illustrated by considering the problem
of solving an equation for a tensor function of a given tensor, S. Let the dependent variable
be aij and suppose we are asked to solve the equation

a = a · S + S · a + S (2.3.11)

for a. The right-hand side of this equation contains both left and right matrix multiplica-
tions, so it cannot be solved directly by matrix inversion. The Cayley–Hamilton theorem
proves that the most general function a(S) is of the form a = Aδ + BS + CS2, where
A, B, and C are functions of the invariants of S. Substituting this form into the example
(2.3.11) gives

Aδ + BS + CS2 = 2(AS + BS2 + CS3) + S

= 2[AS + BS2 + C(IIIsδ − IIsS + IsS
2)] + S,
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where (2.3.7) was applied to S3. Equating separately the coefficients of S, S2, and δ on
both sides of this equation gives

A = 2IIIsC, B = 2A − 2IIsC + 1, C = 2B/(1 − 2Is).

Solving for A, B, and C gives

a = 4IIIsδ + (1 − 2Is)S + 2S2

1 − 2Is − 8IIIs + 4IIs

as the solution to (2.3.11) – provided the solvability condition 1 − 2Is − 8III s + 4II s �= 0
is met. The solvability condition is analogous to the determinant condition for
matrix inversion.

2.3.2.1 Tensor functions of two tensors

In constitutive modeling the stress tensor can be a function of two tensors, S and �,
in addition to δ. The principle of material frame indifference demands that material
properties are independent of the rate-of-rotation tensor �, but turbulent stresses are
most definitely affected by rotation. This is because they are not material properties, but
are properties of the flow.

The development of representation theorems in three dimensions is quite cumbersome,
so we will first address the two-dimensional case. Although it is not obvious at this point,
the two-dimensional formulas are useful in three-dimensional turbulent flow; indeed,
they are far more helpful than are the three-dimensional formulas. The two-dimensional
Cayley–Hamilton theorem is

a2
ij = Iaaij − IIaδij , (2.3.12)

where Ia = akk and II a = − 1
2 (a2

kk − I 2
a ), with i = 1, 2 and j = 1, 2. It follows that the

square of a trace-free tensor is proportional to the identity:

a2 = 1
2 a2

kkδ (2.3.13)

if Ia = 0.
Let a tensor be a function of two trace-free tensors: τ = F(A,B). By the

Cayley–Hamilton theorem (2.3.12), the most general isotropic function can depend
tensorally on A, B, and A2 (and their transposes), where the last is used in place of the
identity, in accord with (2.3.13). However, it can also depend on products of these. It
can be shown that the most general such dependence is on only A · B. To show this,
it must be demonstrated that higher products, such as A · B · A · B, can be reduced
to products of at most two tensors. The number of tensors in the product is called its
extension; so the claim is that the most general tensor product is of extension 2 or less.
The proof is by constructing a sequence of products of increasing extension. At each
level any tensor of lower extension can be ignored because it has already been included.

Substituting a = A + B into (2.3.13) and using the fact that both A and B satisfy
(2.3.13) gives

B · A + A · B = (AkjBjk)δ.
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Since δ is a product of extension 1, this can be stated as

B · A = −A · B + l.o.e., (2.3.14)

where “l.o.e.” stands for lower-order extension. All possible tensors of extension 2 are:
A2, B2, A · B, and B · A. The first two are proportional to δ and so are of extension
1, while the last is proportional to the third, plus a lower-order extension, by (2.3.14).
Hence A · B is the only unique tensor of extension 2.

A tensor of extension 3 cannot contain A2 or B2, because those can be replaced by
the identity, so it must be something like A · B · A, which equals

−A · A · B + l.o.e. = IIAB + l.o.e. = l.o.e.

by (2.3.14) and (2.3.13); in other words, it is not a tensor of extension 3. By this reasoning,
all products of more than two tensors can be seen to be reducible to extensions of order 2
or lower. Essentially, this is because (2.3.14) permits permutation of the tensors (+ l.o.e.)
and thereby a reduction of the extension.

The complete set of independent tensors (A,B,A · B,A2) is termed the integrity
basis (Spencer and Rivlin, 1959). Even though only one of A · B or B · A is needed, the
representation theorem for a symmetric tensor is usually written as

τ = c1A + c2B + c3[A · B − B · A] + c4A
2. (2.3.15)

Symmetry means τij = τji . This form shows that the c3 term vanishes if A and B are
symmetric. But the case of interest here is where A is symmetric (the rate of strain,
S) and B is antisymmetric (the rate of rotation, �); then c2 must be zero. The use of
representation (2.3.15) in solving tensor equations is illustrated by Exercise 2.11.

In constitutive modeling for three-dimensional turbulent stresses in a two-dimensional
mean flow, (2.3.15) represents stresses in the plane of the flow. The third dimension is
added to the stress tensor by including the three-dimensional identity tensor:

τ = a1S + a2[S · � − � · S] + a3S
2 + a4δ. (2.3.16)

This idea will be developed in context later in the book (Section 8.3).
A three-dimensional analog to (2.3.15) can be developed by the same method of

examining successive extensions and finding those that are unique up to l.o.e. However,
the three-dimensional formula is less useful to turbulence modeling than is (2.3.15). A
derivation of the requisite representation theorems can be found in Spencer and Rivlin
(1959); we simply quote the result for the case of interest here. If S is symmetric and �

is antisymmetric, then the most general symmetric isotropic tensor function is

τ = c0δ + c1S + c2S
2 + c3�

2 + c4(S� − �S) + c5(S
2� − �S2)

+ c6(S�2 + �2S) + c7(�
2S2 + S2�2) + c8(S�S2 − S2�S)

+ c9(�S�2 − �2S�) + c10(�S2�2 − �2S2�) (2.3.17)

in three dimensions. Each term of this sum was formed by adding an element of the
integrity basis to its transpose, eliminating any that result in l.o.e. The irreducible repre-
sentation has 11 terms. The reason why (2.3.17) is of limited use in turbulence modeling
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is because of its length and nonlinearity. When used in numerical computations, such a
constitutive model would be expensive to evaluate and would cause numerical stiffness.
Sometimes truncated versions of (2.3.17) have been proposed as constitutive models.

Exercises

Exercise 2.1. Dissipation-range scaling. In the legend of Figure 2.1 Rλ is the Reynolds
number based on Taylor’s microscale (see Exercise 2.5). Let Rλ =R

1/2
T . Assuming that the

energetic range begins where the data leave the −5/3 line, do these data roughly confirm
the RT scaling of η/L? (Note that the scaling and estimates give proportionalities, not
equalities.)

Exercise 2.2. DNS. One application of dimensional analysis is to estimating the com-
puter requirements for direct numerical simulation of turbulence. The computational mesh
must be fine enough to resolve the smallest eddies, and the computational domain large
enough to resolve the largest. Explain why this implies that the number of grid points,
N , scales as N ∝ (L/η)3 in three dimensions. Obtain the exponent in N ∼ Rn

T. Estimate
the number of grid points needed when RT = 104.

Exercise 2.3. Relative dispersion. The inertial-range velocity (εr)1/3 can be described
as the velocity at which two fluid elements that are separated by distance r move apart
(provided their separation is in the inertial range, η � r � L). Deduce the power law
for the time dependence of the mean-square separation r2(t). Use dimensional analysis.
Also infer the result by integrating an ordinary differential equation. The scaling v2 ∝ r2/3

is often called Richardson’s 2/3 law.

Exercise 2.4. Averaging via PDFs. Let the PDF of a random variable be given by the
function

P(x) = Ax2e−x, for ∞>x ≥ 0,

P (x) = 0, for x < 0.

What is the value of the normalization constant A? Evaluate sin(ax) where a is a constant.

Exercise 2.5. Taylor microscale. Let u be a statistically homogeneous function of x.
A microscale, λ, is defined by

lim
ξ→0

d2
ξ

[
u(x)u(x + ξ)

]
= −u2

λ2
,

if the correlation function is twice differentiable. Show that u2/λ2 = (dxu)2. Assume that
(dxu)2 follows dissipation-range scaling and obtain the RT dependence of λ/L.

Exercise 2.6. Toor’s analogy, Eq. (2.2.7). To what does the term “analogy” refer?
The PDF

P(m) = (1 + m)a−1(1 − m)b−1/B(a, b), −1 < m < 1,

P (m) = 0, |m| ≥ 1,
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is referred to as the “beta” probability density. The normalization coefficient is B(a, b) =
2a+b−1�(a)�(b)/�(a + b), where � is the factorial function �(a) = (a − 1)!, extended
to non-integer arguments.

The beta distribution is a popular model for the mixture fraction PDF in reacting flows.
Given that �(1/2) = √

π , evaluate γA for a = b = 1/2, a = b = 2, and a = b = 4. Plot
the β distribution for these same three cases. Based on these cases, describe how the
PDF evolves as mixing and reaction proceed.

Exercise 2.7. Langevin equation. Why does the expansion (2.2.14) begin with 1 and
why is the next term negative?

In (2.2.10) and subsequent equations let s2 = (1 − r2)σ 2. Derive the equation

1
2 dt u2 = −u2

TL
+ σ 2

TL

from (2.2.12). Solve for u2(t) with initial condition u2(0) = 0, σ and TL being constants.
Is u a statistically stationary random variable? The exact solution for the variance that is
derived here will be used to test a Monte Carlo simulation in the next exercise.

Exercise 2.8. More on stochastic processes. Most computer libraries have a random
number algorithm that generates values in the range {0, 1} with equal probability, that is,
P(ũ) = 1, 0 ≤ ũ≤ 1.

Show that ũ = 1
2 and that u2 = 1

12 , where u is the fluctuation ũ − ũ. Deduce that

ξ ≡
√

12 (ũ − 1
2 )

has ξ = 0 and ξ 2 = 1, as is needed in the model (2.2.10). A Gaussian random variable
can be approximated by summing N values ξi and normalizing by

√
N . For N = 16,

ξg = 1

4

16∑
1

ξi.

Program this and verify by averaging a large number (10 000 say) of values that ξg ≈ 0
and ξ 2

g ≈ 1. Let s in (2.2.10) be as in the previous exercise. Normalize t by TL and u

by σ and solve (2.2.10) numerically, starting with u = 0 and integrating to t/TL = 10
by steps of 0.05. Compute u2(t) by averaging 100 such solutions, by averaging 1000
such solutions, and by averaging 4000 such solutions. Plot these estimates of u2 versus
t and compare to the exact result found in Exercise 2.7. Does it look as if the average is
converging like 1/

√
N?

Exercise 2.9. Isotropy. Verify that (2.3.4) is the most general fourth-order, isotropic
tensor.

Exercise 2.10. Solving equations via Cayley–Hamilton. Use the Cayley–Hamilton
theorem to solve

bij = Sikbkj − 1
3 δij Sklblk + Sij ,

in which S is a given, trace-free matrix (Skk = 0) and b is the unknown. Why is b also
trace-free? Your solution is only valid if S is such that the solution is not infinite. What
is this solvability criterion?
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Exercise 2.11. Solving equations via generalized Cayley–Hamilton. Suppose that τ is
the solution to

τ = τ · � − � · τ + Trace(S · τ )δ − S

in which S is a given symmetric, trace-free tensor and � is a given antisymmetric,
trace-free tensor. Show that τ is symmetric. Use (2.3.15) to solve this equation in two
dimensions for τ (S,�).
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Reynolds averaged
Navier–Stokes equations

The labours of others have raised for us an immense reservoir of important facts. We
merely lay them on, and communicate them, in a clear and gentle stream . . .

– Charles Dickens

Turbulent flow is governed by the Navier–Stokes momentum equations, the continuity
equation, and, in compressible flow, energy and state equations. Here we consider only
incompressible, constant-density flow. Derivations of the Navier–Stokes equations can
be found in many books on viscous flow, such as Batchelor (1967) or White (1991).
The reader is assumed to have familiarity with laminar viscous flow, or should consult
such references.

The turbulence problem, as presently formulated, is to describe the statistics of the
velocity field, without access to realizations of the random flow. It seems sensible to
start by attempting to derive equations for statistics. Toward this end, averages of the
Navier–Stokes equations can be formed, in hopes of finding equations that govern the
mean velocity, the Reynolds stresses, and so on. Regrettably, the averaged equations are
unclosed. In that sense they fall short of any ambition to arrive at governing laws for
statistics. However, the Reynolds averaged equations give an insight into the factors that
govern the evolution of mean flow and Reynolds stresses. In the present chapter, we will
be contented with physical interpretations of terms in the unclosed equations; how to
close the equations is the subject of Part II of the book.

Statistical Theory and Modeling for Turbulent Flows, Second Edition P. A. Durbin and B. A. Pettersson Reif
 2011 John Wiley & Sons, Ltd
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3.1 Background to the equations

The equations governing viscous incompressible flow, whether turbulent or laminar, are

∂t ũi + ũj ∂j ũi = − 1

ρ
∂ip̃ + ν∇2ũi ,

∂i ũi = 0. (3.1.1)

The first expresses conservation of momentum. The second expresses the incompress-
ibility of fluid volumes, which is equivalent to mass conservation in the present case.
Throughout this text the shorthand ∂i is used for the partial derivative ∂/∂xi , and
(u1, u2, u3) = (u, v, w); for example, ∂1u2 = ∂v/∂x.

Stokes showed that Poiseuille pipe flow is a solution to these equations. Poiseuille’s
formula for the pressure drop versus flow rate agreed with experiments up to some speed,
after which the flow rate was underpredicted. Stokes argued that Eqs. (3.1.1) were not
at fault. He knew that the fluid motion developed unsteadiness at high speeds. He sug-
gested that the equations remained valid, but that an unsteady solution was needed. In
1883 Osborne Reynolds performed an experiment to illustrate that the drop in flow rate
(or increase in drag coefficient) did indeed correspond to the occurrence of unsteadi-
ness. He injected a thin stream of dyed water into a clear pipe through which the
main stream flowed. As long as the dye filament remained thin through the length
of the pipe, Poiseuille’s law was valid. When the drag began to increase above the
laminar, Poiseuille value, the dye filaments showed undulations, eventually leading to
erratic motion that dispersed the filament into a puff of dyed fluid. Figure 3.1 is his
schematic of this process. A transition was occurring from flow in lamina, to more
disorderly flow.

While Reynolds’ observations confirmed Stokes’ conjecture concerning unsteadiness,
they did not prove that Eqs. (3.1.1) describe the unsteady flow. To support that conjecture,
Reynolds invented what is now called “Reynolds averaging.” Methods to solve the full,
unsteady equations did not exist in his time, so he considered the equations, averaged so
as to remove the unsteadiness. He showed that, above a certain value of the Reynolds
number,∗ a finite-amplitude, unsteady motion was consistent with the averaged, governing
equations. Actually, his investigation was the forerunner of energy stability theory, but
the idea of studying averaged equations laid the foundation for the statistical theory
of turbulence.

Nowadays, we would say that the pipe flow in Reynolds’ experiment became
unstable and made a transition to turbulence above a critical Reynolds number (Figure
3.2). Stokes and Reynolds were contending that this process was within the province
of the Navier–Stokes equations. As a result of years of research, including computer
simulations of turbulence, it has been convincingly proved that Eqs. (3.1.1) are the
equations of turbulent fluid flow. The only doubts that have arisen were over whether
large accelerations could occur that would violate the linear stress–strain rate relation for
Newtonian fluids, or even violate the continuum assumption. Those doubts have been laid
to rest.

∗ The terminology “Reynolds number” was not introduced until 1908, 25 years after Reynolds’ famous
publication.
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The general results were as follows :-

 (1.) When the velocities were sufficiently low, the streak of colour extended in
a beautiful straight line through the tube, fig 3.

 (2.) If the water in the tank had not quite settled to rest, at sufficiently low
velocities, the streak would shift-about the tube, but there was no appearance
of sinuosity.

 (3.) As the velocity was increased by small stages, at some point in the tube,
always at a considerable distance from the trumpet or intake, the colour band
would all at once mix up with the surrounding water, and fill the rest of the tube
with a mass of coloured water, as in fig. 4.

Fig. 3.

Fig. 4.

Fig. 5.

 Any increase in the velocity caused the point of break down to approach the
trumpet, but with no velocities that were tried did it reach this.

 On viewing the tube by the light of an electric spark, the mass of colour
resolved itself into a mass of more or less distinct curls, showing eddies,
as in fig. 5.

Figure 3.1 Schematic of a dye filament in a flow undergoing transition to turbulence,
as drawn by Reynolds (1883).
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Figure 3.2 Friction coefficient versus momentum thickness Reynolds number (U∞θ/ν)
in laminar–turbulent transition. The skin friction is normalized in two ways, by ρU 2∞/2
( ), and by µU∞/θ ( ). Some experimental data are shown by crosses and
full circles.
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3.2 Reynolds averaged equations

The Navier–Stokes equations (3.1.1) govern fluid turbulence. If that were the solution
to the “problem of turbulence,” there would be no need for this book. The snag is that
the phenomenon of turbulence is the complete solution to these equations – a chaotic,
spatially, and temporally complex solution. Such solutions are not easily obtained, even
on massively parallel supercomputers. A much simpler level of description is needed:
this calls for a statistical approach. There are no closed equations for the statistics of
turbulent flow. The equations obtained by averaging the exact laws (3.1.1) contain more
unknowns than the number of equations, as will be seen.

In Section 2.2.2 the total velocity was decomposed into a sum of its mean and a
fluctuation, ũ(x, t) = U(x, t) + u(x, t), where U ≡ ũ. If this decomposition is substituted
into (3.1.1) they become

∂t (Ui + ui) + (Uj + uj ) ∂j (Ui + ui) = − 1

ρ
∂i(P + p) + ν∇2(Ui + ui),

∂i(Ui + ui) = 0.

(3.2.1)

The average of these equations is obtained by drawing a bar over each term, noting the
rules U = U and u = 0 (see Eq. 2.2.3):

∂tUi + Uj ∂jUi = − 1

ρ
∂iP + ν∇2Ui −∂jujui︸ ︷︷ ︸,

∂iUi = 0.

(3.2.2)

These are the Reynolds averaged Navier–Stokes (RANS) equations. Equations (3.2.2) for
the mean velocity are the same as Eqs. (3.1.1) for the total instantaneous velocity, except
for the last term of the momentum equation, highlighted with the brace. This term is a
derivative of the Reynolds stress tensor (2.2.8). It comes from the convective derivative,
after invoking continuity, to write ui ∂iuj = ∂i(uiuj ). So, strictly, the Reynolds stresses
are not stresses at all – they are the averaged effect of turbulent convection. But we know
from the example of the Langevin equation, Section 2.2.2, especially Eq. (2.2.20), that
the ensemble-averaged effect of convection can be diffusive; here it is momentum that is
being diffused. At the molecular level, momentum is diffused by viscosity, and appears
in the governing equations as the viscous stress; the analogous diffusive nature of uiuj

is the origin of it being termed the “Reynolds stress.” This also helps to explain why
Reynolds stresses are often modeled by an eddy viscosity: −uiuj ≈ νT[∂jUi + ∂iUj ].

The mean flow equations (3.2.2) are unclosed because they are a set of four equations
(i = 1, 2, 3) with 10 unknowns (P ; Ui, i = 1, 2, 3; and uiuj , i = 1, 2, 3, j ≤ i). The
extra six unknowns are the components of the Reynolds stress tensor. The statistical prob-
lem (3.2.2) for the mean, or first moment, requires knowledge of the covariance, or second
moment. This is because the Navier–Stokes equations have a quadratic nonlinearity. Any
nonlinearity causes moment equations to be unclosed; here the first-moment equation con-
tains second moments, the second-moment equation will contain third moments, and so
on up the hierarchy. Only the second level of the hierarchy is considered in this book.
That is the highest level used directly in single-point moment closure modeling.
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Dynamical equations for the Reynolds stress tensor can be derived from the equation
for the fluctuating velocity. After subtracting (3.2.2) from (3.2.1), the result

∂tui + Uk ∂kui + uk ∂kUi + ∂k(ukui − ukui) = − 1

ρ
∂ip + ν∇2ui (3.2.3)

is obtained. Multiplying this by uj , averaging and adding the result to the same equation
with i and j reversed gives the equations for the Reynolds stress tensor. It is left for the
reader to work through the details (Exercise 3.1). We obtain

∂tuiuj + Uk ∂kuiuj = − 1

ρ
(uj ∂ip + ui ∂jp)︸ ︷︷ ︸

redistribution

− 2ν ∂kui ∂kuj︸ ︷︷ ︸
dissipation

− ∂kukuiuj︸ ︷︷ ︸
turbulent transport

− ujuk ∂kUi − uiuk ∂kUj︸ ︷︷ ︸
production

+ν∇2uiuj .

(3.2.4)

The cumbersome equation (3.2.4) is referred to as the Reynolds stress transport equation .
Obviously, it is not a closed equation for the second moment. The usual terminology for
the various terms on the right is indicated; it will be discussed below. The final term is
not annotated: it is simply the molecular viscous transport; this and production are closed
terms because they contain only the dependent variable uiuj and mean flow gradients.

The turbulent kinetic energy equation, for the present case of constant-density flow,
is one-half of the trace (set i = j and sum over i) of (3.2.4):

∂tk + Uk ∂kk = − 1

ρ
∂iuip︸ ︷︷ ︸

pressure-diffusion

− ν ∂kui ∂kui︸ ︷︷ ︸
dissipation

− 1

2
∂kukuiui︸ ︷︷ ︸

turbulent transport

− uiuk ∂kUi︸ ︷︷ ︸
production

+ν∇2k,

(3.2.5)

where k ≡ 1
2uiui is actually the kinetic energy per unit mass. The change in terminology

from “redistribution” in (3.2.4) to “pressure-diffusion” in (3.2.5) will be explained in
due course.

3.3 Terms of kinetic energy and Reynolds stress budgets

The annotations in Eqs. (3.2.4) and (3.2.5) indicate physical interpretations of the individ-
ual terms. The term marked “dissipation” is preceded by a negative sign and represents
decay of turbulence. It is usually represented as εij ≡ 2ν ∂kui ∂kuj . One half of the trace
of the dissipation, ν ∂kui ∂kui = ν |∇u|2, is usually denoted succinctly as ε; ε is the rate
of dissipation of turbulent kinetic energy. Clearly ε ≥ 0. The components of εij permit
each component of the Reynolds stress tensor to dissipate at a different rate; εij is a
positive definite matrix.
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The “transport” term is so termed because it redistributes energy in space without
creating or destroying it. In other words, the transport term is conservative. Conservative
terms are of the form of the divergence of a flux. By the divergence theorem, the integral
of such terms over a fluid volume equals the flux through the surface of the volume:∫

V

∂kukuiui dV =
∫

S

n̂k ukuiui dS,

showing mathematically that this term neither produces nor destroys energy within the
volume. The “pressure-diffusion” term is so-called because it too is of conservative form.
However, this is a rather peculiar terminology because pressure effects are nonlocal
and instantaneous (in incompressible flow), while diffusion occurs slowly, down local
gradients. Fortunately the pressure-diffusion term is usually small compared to the others
in Eq. (3.2.5).

The physical effect of transport terms is to spread the Reynolds stresses in space. It is
generally assumed that they drive the spatial distribution toward uniformity, in analogy
to gradient diffusion by molecular processes. While that is not necessarily true, it is a
good understanding in the vast majority of flows.

The rate of turbulent energy production is P = −uiuk∂kUi . Note that the negative
sign is included in the definition of P. Despite its name, this term does not represent net
production of energy. It represents the rate at which energy is transferred from mean flow
to turbulent fluctuations. An equal and opposite term appears in the mean flow energy
equation (Exercise 3.2). A turbulence model must respect the conservation of net energy.
This is easy to check: the equation for total energy, 1

2 |U |2 + k, should not contain a
production term.

In most cases turbulent energy is generated from mean shear. This might be thought
of as an instability process, such as illustrated in Figure 3.1, that takes place continually
within the flow. An additional process is that the turbulent vortices are stretched and
intensified by the mean rate of strain (Figure 1.6). Equation (3.2.5) alludes only to the
averaged effect of such processes. Intuitively one expects the averaged flow of energy to
be from the orderly mean flow to the disorderly turbulence. However, there is no guarantee
that P ≥ 0: in fact, P can be negative in flows subject to strongly stabilizing forces, such
as centrifugal acceleration. But in most fully turbulent flows it is non-negative.

To see why this is so, consider the following “mixing length” type of argument
(Figure 3.3). Let the mean flow be a parallel shear layer, U(y), in the x direction.
The only non-zero mean velocity gradient is ∂2U1 = ∂yU , so P = −uv ∂yU . A fluid
element initially located at y = Y0 will be convected by the turbulent velocity, and at
time t it will end up at the cross-stream position Y (t) = Y0 + ∫ t

0 v(t ′) dt ′. Suppose that

x

y

U(y )

U(Y0)

v

~u(y, t ) = U(Y0)

t0

t

Figure 3.3 Schematic of the mixing length rationale.
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it retains its initial x velocity U(Y0), ignoring u in comparison to U . When it arrives
at Y (t) = y, the instantaneous velocity will be the particle’s velocity ũ = U(Y0). Since
Y0 = y − ∫ t

0 v(t ′) dt ′, this velocity is equivalent to ũ = U(y − ∫ t

0 v(t ′) dt ′). By definition,
the velocity fluctuation is u = ũ − U . In the present line of reasoning, u equals

u = U

(
y −
∫ t

0
v(t ′) dt ′

)
− U(y) ≈ −

∫ t

0
v(t ′) dt ′ ∂yU. (3.3.1)

The first term in a Taylor series was used for the approximation. This approximation is
formally justified if the displacement, �m ≡ ∫ t

0 v(t ′) dt ′, is small compared to the scale of
mean flow variation, δ, say,† so that higher derivatives in the Taylor series can be neglected.

The Reynolds shear stress , uv, is found by multiplying (3.3.1) by v(t) and averaging:

uv = −
∫ t

0
v(t)v(t ′) dt ′ ∂yU. (3.3.2)

We have already come across this integral in (2.2.21): there it was the eddy diffusivity;
here it is an “eddy viscosity.” Thus

uv = −νT ∂yU. (3.3.3)

It is now clear why a negative sign was included in the definition of production:

P = −uv ∂yU = νT(∂yU)2 (3.3.4)

is non-negative if the eddy viscosity νT is non-negative. In situations where P < 0,
the eddy viscosity model (3.3.3) would not be valid because negative viscosity is
not acceptable.

If ∂yU > 0 then (3.3.1) shows that a positive v correlates with a negative u. This is
an intuitive understanding of why uv tends to have the opposite sign of the mean flow
gradient in parallel shear flow, independent of a specific eddy viscosity assumption.
Upward motion carries fluid parcels with lower mean velocity into a region of higher
velocity, where they are a negative u fluctuation. The general tendency for uv to be
negative (if ∂yU > 0) in shear flow is why P tends to be positive.

The derivation of (3.3.3) assumed that the fluid element conserves its initial value of
U(Y0). That assumption is better justified when applied to the concentration of a passive
contaminant, c̃ = C + c, such as a small amount of heat or dye (Exercise 3.3). In the
absence of molecular diffusion, concentration is carried by fluid elements, Dt (C + c) = 0,
so the only approximations needed are c � C and �m � δ. By contrast, momentum is
affected by pressure gradients, ρDt ũ = −∇p̃. The mixing length reasoning has been
called into question on the ground that it neglects pressure gradients, but as an empirical
model the eddy viscosity formula (3.3.3) is often not bad.

A consequence of the caveat that pressure gradients affect momentum transport is
that the eddy viscosity will not equal the eddy diffusivity in general, even though the
derivations (2.2.21) and (3.3.2) make them identical. The ratio νT/αT is called the turbu-
lent Prandtl number ; see Section 4.4. Experimental measurements suggest that a value

† Usually the strict condition �m � δ is not satisfied, but this mixing length formalism is a reasonable
conceptual model.
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of PrT = 0.9 can be used in boundary layers while PrT = 0.7 is often more suitable in
free-shear flows. It should be emphasized, however, that PrT is not a material property
and it can depend on many factors that influence the flow field. Turbulent transport of
momentum and concentration is a complicated process; eddy viscosities and turbulent
Prandtl numbers represent pragmatic simplifications that do not always work!

The distribution of the terms in (3.2.5) across a boundary layer is plotted in
Figure 3.4. The wall is at y = 0 and δ is the 99% thickness of the boundary layer. These
data are from a direct numerical simulation (DNS) at Rδ = 5300, which is a rather
low Reynolds number compared to most experiments. The virtue of data generated by
computer simulation is that all terms in the budget are known accurately. It is very
difficult to measure pressure-diffusion in the laboratory. The DNS data confirm that it
is tiny.

Figure 3.4 shows how production, P, and dissipation, ε, are approximately equal over
most of the flow. However, they attain their largest magnitude and are unequal near to
the wall. The production becomes large at small y/δ because the shear, dU/dy, is large
near the wall. A velocity profile, U(y/δ), is included to the right of the figure so that the
distribution of shear can be seen. The velocity rises steeply from the wall to y/δ ≈ 0.15.
This is the region of maximum production.

The no-slip boundary condition at y = 0 requires that ui = 0, so P must vanish at the
wall. However, ε = ν ∂yui ∂yui at y = 0, which need not vanish (near-wall asymptotics
are covered in Section 7.3.3). Indeed, ε has a sharp maximum at the wall.

The terms of the Reynolds stress budget (3.2.4) have similar interpretations to those
of the kinetic energy budget (3.2.5). The production tensor, from (3.2.4), is

Pij = −ujuk∂kUi − uiuk∂kUj . (3.3.5)

In parallel shear flow the velocity is U1(x2) in tensor notation. Using this in (3.3.5) gives
P11 = −2u1u2∂2U1 = −2uv ∂yU . This is twice (3.3.4). Energy flows from the mean
shear into the streamwise u2

1 component. On the other hand, P22 = 0 = P33 in parallel

shear flow; there is no production of u2
2 or u2

3. The only way energy can get to these
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Figure 3.4 Turbulent kinetic energy budget in a boundary layer; the curves are DNS
data from Spalart (1988). The mean velocity profile is shown at the right.
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components is for it to be fed from the streamwise component into the other normal
stress components.

The only new term in the Reynolds stress budget (3.2.4) is that denoted “redistribu-
tion.” It plays precisely the role of feeding variance from one Reynolds stress component
into others. The terminology, redistribution , implies that variance is shifted between
components of uiuj without altering the total energy, 1

2ukuk . The qualitative effect of
redistribution is usually to shift energy from the larger components of the Reynolds
stress tensor into the smaller components. Strictly speaking, if redistribution occurs with
no generation of net energy, the trace of the redistribution term should vanish. The trace
of the term denoted “redistribution” in (3.2.4) does not quite vanish; hence it does not
exactly define the redistribution tensor. It might be more accurate to simply call it the
velocity–pressure gradient correlation. It will be denoted by the symbol φij :

φij ≡ 1

ρ

(
uj ∂ip + ui ∂jp

)
. (3.3.6)

This has trace φkk = (2/ρ)∂kukp, which is only strictly zero if the turbulence is homoge-
neous in space. (Recall that homogeneity means that statistics are independent of position
in space; homogeneity in a direction, xk, implies that derivatives of statistics vanish in
that direction, ∂k = 0.)

The formula

�ij = φij − 1
3φkkδij (3.3.7)

is a more proper definition of the redistribution tensor. This trace-free tensor is (3.3.6)
minus 1/3 of its trace times the identity tensor. Another commonly used approach is to
avoid an aggregate redistribution term, but to write

−uj ∂ip − ui ∂jp = −(∂iujp + ∂juip) + p(∂iuj + ∂jui)

and to refer to the first term on the right as “pressure-diffusion” and the second as
“pressure–strain.” Pressure–strain is redistributive because it has zero trace. To a large
extent, the difference between separating out pressure–strain, or retaining a redistribution
tensor, is a matter of semantics. It has little bearing on closure modeling, except in near-
wall treatments (Section 7.3.4); in that context it is preferable to retain �ij because this
vanishes at no-slip walls. In homogeneous turbulence, pressure–strain and redistribution
are identical.

Some insight into the operation of the redistribution term is gained by anticipating
the isotropization of production (IP) model of Section 7.1.4. Let φij be represented by
the formula

φij = C(Pij − 2

3
δijP),

where C is a constant, equal to 3/5 in the IP model. Technically, this is a “rapid” redistri-
bution model. In parallel shear flow φ11 = 4

3CP and φ22 = φ33 = − 2
3CP; φ11 is positive

and the other two are negative. They sum to zero, which makes them redistributive:
energy is drawn from u2

1 into u2
2 and u2

3. That is the mandatory behavior of redistribution
in parallel shear flow.
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To conclude this section, and for future reference, the kinetic energy and Reynolds
stress transport equations for homogeneous turbulence will be cited. Again, homogeneity
implies that spatial derivatives of all fluctuation statistics are zero. However, derivatives of
the mean flow, ∂jUi , need not be zero; they need only be independent of position, x. That
is because homogeneity requires that the coefficients in equations for uiuj be constant,
and those coefficients involve derivatives of U , but not U itself. Thus, the general mean
flow for which the turbulence can be homogeneous is of the form U(x,t) = Aij (t)xj +
Bi(t). Here A is a matrix that determines the mean rate of strain and rate of rotation:

Sij ≡ 1
2 (∂iUj + ∂jUi) = 1

2 (Aji + Aij ),

�ij ≡ 1
2 (∂iUj − ∂jUi) = 1

2 (Aji − Aij ).
(3.3.8)

The equations of homogeneous turbulence are obtained by setting the spatial
derivatives of statistics to zero in (3.2.4) and (3.2.5). The turbulent kinetic energy
equation becomes

∂tk = P − ε. (3.3.9)

Note that ε is not zero in homogeneous turbulence; it is a statistic of derivatives, not a
derivative of statistics. Turbulent kinetic energy, k, evolves by (3.3.9) in consequence of
imbalance between production, P = 1

2Pkk , and dissipation, ε.
Setting spatial derivatives to zero in (3.2.4) gives

∂tuiuj = −φij + Pij − εij (3.3.10)

in notation introduced previously for the redistribution, production, and dissipation ten-
sors. The mean flow gradient appears in the definition of Pij , which is why the turbulence
cannot be homogeneous unless the velocity gradients are independent of position.

3.4 Passive contaminant transport

Turbulence transports passive contaminants in much the same way as it transports momen-
tum. A passive contaminant is defined as a transported substance, c, that does not affect
the dynamical equation (3.1.1). The mean flow field can be analyzed without regard
to the passive scalar field. The scalar field can subsequently be computed a posteriori .
The contaminant may be a species concentration in a reacting flow, or a pollutant in the
atmosphere. In many instances, heat can be regarded as a passive scalar; exceptions occur
when buoyancy forces are significant, or when temperature variations cause fluid prop-
erties, such as viscosity or density, to vary noticeably. In those cases, the contaminant is
referred to as “active” and the set of governing equations are fully coupled.

The Reynolds averaged equations governing the concentration, c, of a passive con-
taminant can be developed in the same manner as in the previous sections. The starting
point is the convection–diffusion equation for the concentration of a scalar:

∂t c̃ + ũj ∂j c̃ = α∇2c̃. (3.4.1)
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Decomposing the concentration as c̃(x, t) = C(x, t) + c(x, t) and averaging results in the
equation

∂tC + Uj ∂jC = α∇2C − ∂icui (3.4.2)

for the mean scalar concentration C. The last term on the right-hand side comes from
the convective derivative uj ∂j c by invoking the continuity constraint ∂juj = 0. The new
term, cui , referred to as the scalar flux , is unknown a priori and needs to be modeled
in order to close the set of governing equations.

The equation for the scalar flux is obtained analogously to the transport equations
governing the kinematic Reynolds stress tensor (3.2.4): subtract (3.4.2) from (3.4.1),
then multiply by ui , and add the result to the i component of the momentum equation,
multiplied by c. The result is the transport equation for the Reynolds flux :

∂tcui + Uj ∂j cui

= − 1

ρ
c ∂ip + 1

2
(α − ν) ∂j (ui ∂j c − c ∂jui) + 1

2
(ν + α)∇2cui

− (α + ν) ∂jui ∂j c︸ ︷︷ ︸
dissipation

− ∂kukuic︸ ︷︷ ︸
transport

− uiuj ∂jC − cuj ∂jUi︸ ︷︷ ︸
production

. (3.4.3)

The terms on the left-hand side correspond to the time rate of change and advection of
turbulent flux. The scalar pressure-gradient correlation −(1/ρ)c ∂ip plays a redistributive
role, although the trace-free constraint is not applicable because this is an equation for
a vector. The last two terms on the second line in (3.4.3) can alternatively be expressed
as ∂j (α ui ∂j c + ν c ∂jui) and represent diffusion. The first term on the last line is the
rate of dissipation of turbulent fluxes, whereas the second redistributes fluxes in space.
The terms −cuj ∂jUi and −uiuj ∂jC are the rate of turbulence flux production due to
mean flow and scalar gradients, respectively. The Reynolds flux equation contains four
unknown terms that need to be modeled.

The convection–diffusion equation (3.4.1) is a linear equation for the passive scalar
concentration. Hence the superposition principle applies. For instance, if c(x; z1) ≡ c1

is the concentration field produced by a source located at z1 and c(x; z2) ≡ c2 is the
concentration field produced by a source at z2, then c1 + c2, is the concentration produced
by both sources being turned on simultaneously. The concentration fields simply add
together. Since averaging is a linear operation, this superposition method applies to C

and cui as well. Any closure model should preserve the superposition property of the
mean field and of the scalar flux, cui .

Models that introduce the variance c2 into the equation for the mean concentration of
a passive scalar violate superposition and must be avoided. The variance due to a single
source is c2

1; the variance due to a pair of sources is (c1 + c2)2 = c2
1 + c2

2 + 2c1c2. Hence
the variance of two sources is not simply the sum of the variances of the individual
sources. Superposition does not apply to the square, or to any other nonlinear function
of the concentration.
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Exercises

Exercise 3.1. Derivation of Reynolds stress transport equation. This exercise may seem
laborious, but it is a good introduction to the use of Reynolds averaging, and to the
Reynolds averaged Navier–Stokes (RANS) equations.

Derive (3.2.3) from (3.2.2) and (3.2.1) and then obtain (3.2.4). Symbolically the
steps are

RSij = uj [NS(U + u)i − NS(U + u)i] + ui[NS(U + u)j − NS(U + u)j ],

where “NS” represents the Navier–Stokes equations. How many equations and how many
unknowns are there? Why not also average the product of ui with the continuity equation?

Exercise 3.2. Production of k. Using (3.2.2) show that the rate at which mean energy (per
unit mass) 1

2UiUi is lost to the turbulence is uiuk ∂kUi = −P. (Conservation terms are
not an “energy loss.”) This demonstrates that the term “production” is actually referring
to the transfer of energy from the mean flow to the turbulence, and not to a net source
of energy.

Exercise 3.3. The mixing length rationale. Consider the mean concentration C(xi) of a
passive quantity that is convected by a turbulent velocity vector uj (t). Derive an eddy
diffusion formula analogous to (3.3.3). The eddy diffusivity should come out as a second-
order tensor, that is, a matrix of components. Is this tensor symmetric in general? Does
the answer change when the turbulence is statistically stationary?

Exercise 3.4. Anisotropy equation. The Reynolds stress anisotropy tensor is defined as
bij = uiuj/k − 2

3δij . Using (3.3.9) and (3.3.10) derive the evolution equation for bij in
homogeneous turbulence. The equation should involve bij , ∂jUi , φij , εij , and k, with no
explicit or implicit dependence on uiuj .

“Isotropy” means complete lack of any directional preference. Hence the identity
matrix [δij ] is isotropic because all the diagonal components are equal; or more cor-
rectly, because if the coordinate system were rotated, the identity matrix would remain
unchanged. The tensor bij measures the departure of uiuj from isotropy.



4

Parallel and self-similar
shear flows

Science is the century-old endeavor to bring together by means of systematic thought
the perceptible phenomena of this world into as thorough-going an association
as possible.

– Albert Einstein

This chapter is devoted to a description of prototypical building blocks of turbulent flows.
Often we attempt to understand a complex flow field by identifying certain of these ele-
ments. The full flow field might include boundary layers on non-planar walls, mixing
layers separating from edges, wakes behind bodies, and so on. An understanding can be
gained by identifying such elements and studying them in isolation. In a practical appli-
cation, they are not likely to be isolated; they are components of the overall flow. For
instance, consider a jet impinging onto a plane wall. Prior to impingement, the generic
flow element is an unconfined jet. This jet is known to entrain ambient fluid and to spread
at rates that can be accurately measured in a controlled laboratory environment. After
impingement, a transition from an unconfined to a wall jet takes place. This element too
can be studied in a carefully controlled laboratory experiment. Certainly, the transition
between these elements is not a generic flow; indeed, a driving motive to develop turbu-
lence models is the need to analyze the entire flow, including the non-generic elements.
However, the features that can be isolated and carefully studied provide a framework on
which the general-purpose models can be anchored.

Practical applications invariably involve a multitude of complicating peculiarities.
These might be vortices that form at the juncture between a plane wall and an appendage,
or a pressure gradient transverse to the flow that skews the flow direction, or a large variety
of other geometrical and fluid dynamical intricacies. Not all of them can be decomposed

Statistical Theory and Modeling for Turbulent Flows, Second Edition P. A. Durbin and B. A. Pettersson Reif
 2011 John Wiley & Sons, Ltd
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into simpler elements. The present chapter is meant to introduce some of the widely used
building blocks that often can be identified.

4.1 Plane channel flow

The simplest, non-homogeneous turbulent shear flow is fully developed plane channel
flow. The geometry is illustrated by Figure 4.1. The turbulence is non-homogeneous in
the y direction only. The choice of where the origin of x, z or t is located is immaterial;
hence, derivatives of statistical quantities with respect to these directions and with respect
to time are zero. The mean pressure gradient is not zero in the x direction; it drives the
flow through the channel.

After dropping x and z derivatives and invoking the two-dimensional (2D) parallel
flow assumption that U is a function only of y, the mean flow equations (3.2.2) simplify to

− 1

ρ
∂xP = ∂y(uv − ν ∂yU),

− 1

ρ
∂yP = ∂yv2. (4.1.1)

But ∂xv2 = 0, so differentiating the second of these with respect to x shows that
∂y ∂xP = 0, or that ∂xP is constant, independent of y. This constant pressure gradient
can be related to the skin friction via the overall momentum balance: integrating the
first of (4.1.1) from 0 to 2H gives

−2H

ρ
∂xP = 2ν ∂yU(0) ≡ 2

τw

ρ
≡ 2u2

∗. (4.1.2)

The no-slip boundary condition has been used to set uv(0) = 0 = uv(2H). In (4.1.2) τw

is the frictional force acting per unit area on the surface; u∗ ≡ √|τw/ρ| is referred to
as the friction velocity .

Before proceeding, let us consider the symmetry of the flow upon reflection across the
centerline y = H . Reflection in y = H is equivalent to the replacements y → 2H − y

and x → x. Differentiating these and dividing by dt gives the corresponding replace-
ments v → −v and u → u. Thus, the requirements of symmetry under reflection are
U(y) = U(2H − y), uv(y) = −uv(2H − y), and dyU(y) = −dyU(2H − y). Thus,
U(y) is symmetric, as shown in Figure 4.1, and dyU(y) and uv are antisymmetric. By
the latter antisymmetry, at y = H , uv(H) = −uv(H) and hence the Reynolds stress
vanishes at the channel centerline, uv(H) = 0.

y = 0

y = 2H

x

y

z
U

Figure 4.1 Schematic of channel geometry and flow.



PLANE CHANNEL FLOW 59

Substituting (4.1.2) into (4.1.1) gives

u2
∗ = H ∂y(uv − ν ∂yU). (4.1.3)

This is to be solved subject to the no-slip condition U(0) = 0 = uv(0) and the symmetry
condition dyU(H) = 0 = uv(H). Non-dimensional variables, referred to as “plus units,”
are introduced by

y+ = yu∗/ν, U+ = U/u∗, uv+ = uv/u2
∗, and Rτ = u∗H/ν.

Integrating (4.1.3) with respect to y, subject to the boundary conditions, and introducing
these non-dimensional variables gives

dy+U+ − uv+ = 1 − y+
Rτ

. (4.1.4)

The left-hand side is just the sum of the viscous and Reynolds shear stresses. This total
stress varies linearly with y+. At any but the very lowest Reynolds numbers, the viscous
term, dy+U+, is only important near to boundaries – say when y+ < 40. The relative
contributions of viscous and Reynolds stresses to the total is illustrated in Figure 4.2.
The viscous contribution is practically zero over most of the channel.

Present interest is in high Reynolds number, turbulent flow with Rτ 	 1: turbulence
cannot be maintained when Rτ � 100. We will first consider (4.1.4) for small y+, then
move on to the log region at larger y+.

By its definition, y+ falls in the range 0 ≤ y+ ≤ 2Rτ . Near to the lower wall, y+ takes
values of order one. In this region, called the viscous sublayer , y+/Rτ is small, given that
Rτ 	 1 and y+ = O(1). Hence, (4.1.4) is approximately dy+U+ − uv+ = 1; in dimen-
sional terms, the total stress is approximately constant and equal to the surface stress τw.

The channel geometry enters only through Rτ , so within the constant-stress region
there is no explicit dependence on the geometry. For this reason the constant-stress layer

y +

τ

0 500 1000 1500 2000

0

−1.0

−0.5

0.5

1.0
Total
viscous
−uv

Figure 4.2 Viscous and Reynolds shear stresses in plane channel flow: turbulent ( ),
viscous ( ), and total ( ). The illustration shows that viscous stress is only
important near to boundaries.
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is referred to as a “universal equilibrium” layer, meaning that it is relatively insensitive
to the details of the flow farther from the wall. A corollary to universality is that the
present considerations are applicable to boundary layers, pipe flow, and other situations
in which the region proximate to the boundary can be treated as a quasi-equilibrium,
constant-stress layer. The term quasi -equilibrium is used because the outer flow is not
irrelevant; it influences the viscous sublayer indirectly by determining the value of u∗.
The wall stress is a function of Reynolds number and hence of the geometry of the flow.

The no-slip conditions u = w = 0 at y = 0 suggest that u, w → O(y) as y → 0.
From continuity, ∂yv = −∂xu − ∂zw. It follows that v → O(y2) and hence that
uv+ → O(y3

+) right next to the wall. Then, integrating (4.1.4),

U+ = y+ + O(y4
+) + O(R−1

τ ). (4.1.5)

Thus, U varies linearly in a region adjacent to the wall. In dimensional units, the linear
profile is U = τwy/µ. Although the present reasoning suggests that U+ varies linearly
only when y+ < 1, Figure 4.4 shows that this is a good approximation up to y+ ≈ 5. In
other flows, that often remains a good rule of thumb.

Farther from the wall, but still in the constant-stress region, y+ � Rτ , the turbulent
stresses start to become important. The rate of energy production P+ = −uv+dy+U+ (see
Section 3.3) equals −uv+(1 + uv+), if (4.1.4) is used to substitute dy+U+ ≈ uv+ + 1.
Hence P+ has a maximum value of 1

4 when −uv+ = 1
2 = dy+U+. The equality of −uv+

and dy+U+ means that, at this point of maximum production, the Reynolds shear stress
is equal to the viscous stress. Experiments and numerical simulations give a value of
y+ ≈ 10–15 for the position of maximum production. Beyond this distance from the
wall, the turbulent stress rapidly becomes larger than the viscous stress. By y+ ≈ 40 the
so-called logarithmic layer is entered. The log layer is discussed in the next section.

Figure 4.3 shows the distribution of uiuj across a channel at a relatively modest
Reynolds number Rτ = 590. Beyond the near-wall region, the viscous shear stress is
small and −uv ≈ 1 − y+/Rτ . The streamwise intensity, u2, is produced by mean shear
(Eq. (3.3.5)) and has a peak where P peaks, at about y+ = 15. Other normal stress

y+

u i
u j

0 200 400 600
0

2

4

6

8

u2

v 2

w 2

−uv

Figure 4.3 Reynolds stress distribution across a channel at Rτ = 590. Direct numerical
simulation data of Moser et al. (1999). y+ = 590 represents the center of the channel.
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components are fed by redistribution of intensity from u2 (see Chapter 3); hence, they fall
below u2. An enlarged plot in the region y+ < 5 would show the behaviors u2 ∼ O(y2

+),
w2 ∼ O(y2

+), v2 ∼ O(y4
+), and uv ∼ O(y3

+), which follow from no-slip and continuity,
as described above and in Section 7.3.3.

4.1.1 Logarithmic layer

The log layer and log law are somewhat analogous to the inertial subrange and
Kolmogoroff −5/3 law that were discussed in Section 2.1. As in that case, there is an
inner viscous region, and an outer region that is affected by geometry. The two are
connected by an intermediate region whose form is found by dimensional reasoning.
The inner viscous region was discussed in the preceding section. The length scale
for that region is �+ = ν/u∗, which defines “plus units.” Toward the central region
of the channel the length scale �H = H becomes relevant. In a boundary layer, the
corresponding scale would be the overall boundary-layer thickness, δ.

The mean momentum is highest in the central region of the channel. In the near-
wall, viscous region, momentum is diffused to the wall and lost by viscous action. At
high Reynolds number, there must be an intermediate region in which momentum is
transferred toward the wall, but in which viscous stresses are not directly important. This
is analogous to the reasoning in Section 2.1 that energy flows from large to small scales
across an inertial subrange.

When 1 � y+ � Rτ the viscous term in (4.1.1) will be small. Then, from Eq. (4.1.4),
−uv+ ≈ 1, or −uv ≈ u2∗ in dimensional form. We can continue the analogy to the iner-
tial subrange. In the intermediate region neither �+ nor H can be the appropriate length
scale. The former is unsuitable because in this region y/�+ → ∞; the latter is unsuit-
able because y/H → 0 (this follows because the assumption y+ � Rτ is equivalent to
y/H � 1). In either scaling, the non-dimensionalized distance y becomes a constant,
while we want it to be an independent variable. As there are no remaining parameters
with dimension of length, the coordinate y itself is the only relevant length scale. From
this, it will be inferred that the mean velocity must vary logarithmically. There are a vari-
ety of ways to deduce the log law; since the eddy viscosity has already been discussed
in Chapters 2 and 3, that route will be taken.

The eddy viscosity has dimensions of �2/t . In the constant-stress layer an appropriate
velocity scale is u∗. Using y for the length gives νT = κu∗y. Here κ is a coefficient of
proportionality called the Von Karman constant, after Theodore Von Karman, who first
deduced the log law. It is considered to be a fundamental constant – though certainly
not a constant of nature. Substituting this νT into (3.3.3) with −uv = u2∗ gives the
famous result:

dyU = u∗
κy

. (4.1.6)

This is a statement of the log law. That terminology makes sense after this is integrated to

U = u∗
κ

log(y+) + Bu∗, (4.1.7)

where B is an integration constant. Here and elsewhere log is the natural logarithm.
From experiments, the constants are found to be κ ≈ 0.41 and B ≈ 5.1. The dashed



62 PARALLEL AND SELF-SIMILAR SHEAR FLOWS
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Figure 4.4 Mean velocity in log–linear coordinates. The dashed lines show the near-
wall asymptote U → y+ and the log law.

lines in Figure 4.4 show this formula and the near-wall behavior (4.1.5). The two
formulas intersect at y+ ≈ 11. The portion of the velocity profile that interpolates
between the viscous sublayer and the log layer is often referred to as the buffer layer .
This is usually about 5 < y+ < 40.

It might seem that there is a sleight of hand here because y was made non-dimensional
by �+ = ν/u∗ in (4.1.7), while it had previously been argued that the viscous scale should
be irrelevant in this intermediate layer. However, the scaling of the eddy viscosity and
of (4.1.6) was consistent, so it is better to regard the necessary reappearance of �+ in
(4.1.7) as a theoretical deduction, rather than as an inconsistency. A consequence of this
deduction is that (4.1.7) should be regarded as an approximation that is formally justified
for large log(Rτ ). This will be explained shortly.

First, let us turn the apparent inconsistency to our advantage. One way to circumvent
the ambiguity would be to make it irrelevant whether �+ or H is used in the argument
of the logarithm. With y normalized by H , Eq. (4.1.7) becomes

U(y) = u∗
κ

[log(y/H) + log(Rτ )] + Bu∗.

Let us devise a solution that is valid across the central region of the channel and that
reduces to this in the log layer. Symmetry suggests using an eddy viscosity of the form
κu∗y(1 − y/2H), which extends across the central region and varies linearly in the log
layer near either wall. The solution to νT∂yU = u2

∗(1 − y/H) (see Eq. (4.1.4)) for the
mean velocity is then

U(y) = u∗
κ

{log[(y/H)(1 − y/2H)] + log(Rτ )} + Bu∗. (4.1.8)

This becomes the log-layer formula near either wall, when y/2H � 1 or when
1 − y/2H � 1. Evaluating (4.1.8) at y = H shows that u∗ and the centerline mean
velocity, U(H), are related by

u∗ = U(H)κ

log(Rτ /2) + Bκ
. (4.1.9)
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Instead of working with u∗, let the non-dimensional skin friction coefficient be defined by

Cf ≡ 2u2
∗

U 2
H

. (4.1.10)

Equation (4.1.9) can be written as the implicit equation√
2

Cf
= 1

κ
log

(
RH

2

√
Cf

2

)
+ B (4.1.11)

for the friction coefficient – note that (4.1.11) is an implicit relation for Cf. The
Reynolds number based on centerline velocity is RH = U(H)H/ν.

So a rather interesting result has come out of pursuing the dilemma: the friction
velocity is related to the centerline velocity by a logarithmic drag law. The attempt
to resolve the apparent inconsistency in the rationale behind the logarithmic velocity
profile has led to a formula that requires the friction velocity to depend on log(RH ).
The reasoning is more subtle than first appears. At the outset u∗ and ν were taken as
independent parameters. Now, it seems that u∗ depends on ν and H through Eq. (4.1.9).
However, the whole theory can be shown to be formally consistent at high Reynolds
number. Typically Cf = O(10−3), so u∗/UH = O(10−1) or smaller (see Exercise 4.2). By
Eq. (4.1.9), u∗ becomes small like 1/ log Rτ at high Reynolds number. Such observations
lead to an asymptotic justification of the log-layer theory (Lundgren, 2007).

Formula (4.1.11) is an example of a semi-theoretical turbulent drag law. Various
other empirical formulas for skin friction as a function of RH have been proposed for
channel flow and boundary layers (Schlichting, 1968). Some will be met later in this book.
Figure 3.2 on page 47 shows the variation of Cf with momentum thickness Reynolds
number in a zero pressure-gradient boundary layer. The slow decrease of Cf with Rθ

on the turbulent part of the solid curve is qualitatively consistent with (4.1.9) because
the logarithmic dependence represents a mildly decreasing function. On the laminar part
of that curve, Cf ∝ R−1

θ can be derived from the Blasius profile; this has slope −1
on the log–log plot. As can be seen, in the transitional region of Figure 3.2 there is
considerable sensitivity of Cf to Rθ . However, the turbulent Cf is considerably less
sensitive to Reynolds number. This weak sensitivity to Reynolds number is characteristic
of fully developed turbulence. The turbulent friction coefficient is often fit explicitly by
Cf ∝ R

−1/4
θ (see Eq. (4.2.8)) instead of by an implicit expression like (4.1.11).

4.1.2 Roughness

Surface roughness can have a profound effect on the transfer of momentum or heat
between the fluid and wall. The viscous sublayer adjacent to a smooth wall presents a
high impedance to transport to and from the surface; protrusions that penetrate the viscous
layer increase transfer rates between the surface and the fluid. They do so by generating
irregular, turbulent motion and by extending the surface into the flow.

Intuitively, asperities on the surface will increase the drag force exerted by the wall on
the flow. In a channel flow with given pressure drop, the increased drag would decrease
the mass flux and the centerline velocity. The additive constant, B, in (4.1.7) should
therefore be decreased. Let r be a scale for the size of the roughness. Assume that it is
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of the random, sand grain, variety. The log law can be rewritten with y normalized by r

and with r+ defined as ru∗/ν:

U = u∗
[

1

κ
log(y/r) + 1

κ
log(r+) + Br(r+)

]
= u∗
[

1

κ
log(y/r) + B

]
. (4.1.12)

The function Br(r+) represents the alteration of the additive constant by roughness.
The new additive term B ≡ (1/κ) log(r+) + Br(r+) has been measured experimen-

tally. Ligrani and Moffat (1986) fit the curve

Br = B, r+ < 2.25,

Br = ξ [8.5 − log(r+)/κ − B] + B, 2.25 ≤ r+ ≤ 90,

Br = 8.5 − (1/κ) log(r+), r+ > 90,

(4.1.13)

through such measurements. This formula is broken into three regions: effectively smooth,
transitionally rough, and fully rough. The interpolation function ξ in (4.1.13) is

ξ = sin

[
1
2π log(r+/2.25)

log(90/2.25)

]
,

which increases from 0 to 1 through the transitionally rough range 2.25 ≤ r+ ≤ 90.
The rough-wall law (4.1.12) is sometimes represented by

U = u∗
κ

log(y/z0),

where z0 ≡ re−κB can be called the hydrodynamic roughness length. In the fully rough
regime, r+ > 90, Eqs. (4.1.13) become B = 8.5, giving z0 = 0.031r . The hydrodynamic
roughness length is a small fraction of the geometrical roughness size. In the smooth-wall
regime, r+ < 2.5, z0 = e−κBν/u∗, which recovers the original formula (4.1.7).

If the roughness elements are not random, or are not densely placed, the formula
(4.1.13) alters its form. The changes are primarily in the intermediate range of r+. The
particular functional form for Br(r+) depends on the nature of the roughness. Ligrani and
Moffat (1986) provide a formula for close-packed hemispherical elements, in addition to
the formula (4.1.13) for sand grain roughness.

Sometimes two-dimensional, spanwise ribs appended to the wall are referred to as
roughness elements. The terminology “d-type” roughness is used for closely placed ribs,
while more widely spaced ribs are of “k-type.” The k-type behave like the random,
three-dimensional roughness treated above. If the rib spacing is less than approximately
its height, the d-type roughness can trap pockets of fluid between the ribs, lowering the
drag on the surface compared to k-type behavior. Rib roughness is especially important to
heat-transfer applications. Often, it is best treated as flow over a deterministic geometry,
and not lumped with the random roughness considered here. In other words, in a numerical
analysis, the features of the geometry should be resolved by the computational grid.
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4.2 Boundary layer

Ideas concerning the log law and the viscous wall region are equally applicable to bound-
ary layers. The relevance is illustrated by experimental data plotted in Figure 4.5. Near
the wall the boundary-layer profiles in log–linear coordinates, and “plus” variables, are
similar to those for channel flow: adjacent to the surface U+ ∝ y+, and when y+ > 40,
the form U+ ∝ log y+ is again seen.

However, there is a difference farther from the surface. The mean boundary-layer
velocity must become constant in the free stream, U → U∞ as y → ∞. For some pur-
poses the profile might be cut off at y = δ99 (defined as the elevation where U = 0.99U∞)
to make the flow analogous to that in half of a channel. However, the boundary-layer
profile has a tendency to rise above the logarithmic line, especially in the adverse pressure-
gradient (APG) data of Figure 4.5. This area where the profile rises above the log line
is called the “law-of-the-wake” region. Thus boundary-layer structure can be separated
into two regions: the law-of-the-wall region lies near the surface, where the velocity falls
below the log line in Figure 4.5; the law-of-the-wake region lies in the outer part of the
flow, where the velocity usually rises above the log line. The log line itself is the common
asymptote of the two regions and is considered to be part of both zones. These regions
are labelled and demarcated by cross-hatching in the left-hand side plot of Figure 4.5.

In a zero pressure-gradient boundary layer, the law of the wall occupies the interval
0 < y � 0.2δ99; the log layer occupies the portion 40ν/u∗ � y � 0.2δ99; and the law of
the wake occupies 40ν/u∗ � y < ∞. Of course the upper limit for the wall region and the
lower limit for the wake region could have been selected anywhere within the log layer;

U / U∞
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Figure 4.5 Mean velocity in zero and adverse pressure-gradient boundary layers. The
log–linear plot illustrates the law-of-the-wall and the law-of-the-wake regions. The APG
data illustrate how the wake region grows when the boundary layer is retarded. The
linear plot at the right shows how the APG erodes the boundary-layer profile. This
figure also shows the log region 40ν/u∗ < y < 0.2δ99 by a solid curve. The symbols are
experimental data.
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the above values simply include the entire log layer in both the inner and the outer regions.
The specific values 40ν/u∗ and 0.2δ99 should be treated as representative, not rigorous.

It is instructive to show the log layer on a linear plot. That is done at the right of
Figure 4.5. In linear coordinates the log line appears rather mundane. It is a short region
lying above the layer of steep shear adjacent to the surface.

The law-of-the-wake region is analogous to the outer region in the channel flow if
δ99 is used in place of H for the length scale. There are two ways to represent the
mean velocity in this region, corresponding to the log–linear and linear–linear plots in
Figure 4.5. Corresponding to the linear–linear plot, the velocity profile is written in the
defect form

U = U∞ − u∗f (y/δ99). (4.2.1)

In this formula, u∗f (y/δ99) equals the departure of U from its free-stream value; it
is the amount by which U(y) lies to the left of U∞ in the right half of Figure 4.5.
Asymptotically U → U∞ at large y and f → 0.

This representation of the wake function will be used to illustrate how the overlap
requirement leads to a drag law. Various functions have been proposed for f (y/δ99).
Irrespective of its behavior at arbitrary y, when y � δ99 it must tend to a logarithmic
form. The form

f (y/δ99) = − 1

κ
log(y/δ99) + C

can be assumed when y � δ99eκC , where C is a constant that depends on the flow.
C ≈ 2.3 is the experimental value for the zero pressure-gradient boundary layer; lower
values are found for channel flow because it has a smaller law-of-the-wake defect.

If it is required that, as y/δ99 → 0, the wake form (4.2.1) matches to the wall form
(4.1.7), then

U∞ + u∗
κ

log(y/δ99) − Cu∗ = u∗
κ

log(yu∗/ν) + Bu∗

in their region of common validity. This gives the skin friction law

U∞
u∗

= 1

κ
log(δ99u∗/ν) + B + C. (4.2.2)

For instance, given the free-stream velocity and the Reynolds number, this is a formula
to predict the friction velocity u∗.

Corresponding to the log–linear plot on the left-hand side of Figure 4.5, the wake
law is written as

U

u∗
= 1

κ
log(yu∗/ν) + B + �

κ
w(y/δ99) (4.2.3)

instead of (4.2.1). The wake parameter, �, depends on the imposed pressure gradient.
Comparing (4.2.3) to (4.1.7), �w(y/δ99)/κ is just the amount by which the velocity rises
above the log law in Figure 4.5. The letter w stands for “wake” function. Coles (see Kline
et al., 1968) defined w(1) to be 2, so that 2�/κ is defined as the velocity excess above
the log law at y = δ99. It is readily evaluated from log–linear plots of experimental data.
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The wake parameter, �, must increase with increasingly adverse pressure gradient in
order to mimic the effect seen in Figure 4.5. An empirical formula that has been fit to
data is

� = 0.8(β + 0.5)3/4, (4.2.4)

where the pressure-gradient parameter is defined as β = (δ∗/τw)dxP∞. This formula
ceases to be valid when β = −0.5; for stronger favorable pressure gradients � becomes
negative. Coles used the form w(y/δ99) = 2 sin2(πy/2δ99) as an estimate of the wake
function. This is constrained by w(1) = 2 and w(0) = 0, with the derivative with respect
to y vanishing at both endpoints. The effect of pressure gradient on skin friction can be
inferred from (4.2.3) as in Exercise 4.6.

In addition to δ99, other measures of boundary-layer thickness are the momentum
thickness θ , and displacement thickness δ∗, defined by

U 2
∞θ =

∫ ∞

0
U(y)[U∞ − U(y)] dy,

U∞δ∗ =
∫ ∞

0
U∞ − U(y) dy. (4.2.5)

These measure the momentum and mass flux deficits from the free-stream flow caused by
the presence of the boundary layer. The ratio H = δ∗/θ is called the “form factor.” In a
zero pressure-gradient layer it is typically 1.4–1.3, decreasing with increasing Reynolds
number. The corresponding value for a laminar, Blasius boundary layer is 2.5.

The form factor H characterizes the fullness of the profile. As the deficit fills in, H

decreases toward 1; H would be almost unity for the nearly flat profile, U(y) ≈ U∞ for
most y. Turbulent eddies stir high-velocity fluid toward the wall, filling out the profile and
decreasing H below its laminar value. The zero pressure-gradient profile in Figure 4.5
displays this filled-out form. It has a very steep shear near the wall: that is why Cf is
much larger than it would be in a laminar boundary layer at the same Reynolds number.

An adverse pressure gradient increases H and decreases Cf. A sufficiently persis-
tent decelerating pressure gradient will cause the boundary layer to separate when H

reaches about 3. These integrated properties provide some insight into the development
of turbulent boundary layers. They will be discussed below and in Section 6.1.1.

The boundary-layer approximation (White, 1991) is to neglect the x derivative of
viscous and Reynolds stresses in comparison to y derivatives. Also, the mean pressure
gradient is that imposed by the free stream. This is a valid approximation for any thin shear
layer. In the boundary layer the Reynolds averaged mean flow equations (3.2.2) become

U ∂xU + V ∂yU = −∂xP∞ + ∂y(ν ∂yU − uv),

∂xU + ∂yV = 0. (4.2.6)

The pressure gradient can be eliminated by letting y tend to the free stream. In the free
stream, viscous and turbulent stresses are negligible and so is the y derivative. Hence
(4.2.6) asymptotes to ∂xP∞ = −U∞ ∂xU∞. After substituting this, the first of (4.2.6)
can be rearranged to

∂x[U(U − U∞)] + ∂y[V (U − U∞)] + (U − U∞) ∂xU∞ = ∂y(ν∂yU − uv).
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Integrating this equation with respect to y, from the wall to ∞, gives the boundary-layer
momentum integral equation (Exercise 4.5). In the case, ∂xU∞ = 0, of zero pressure
gradient, the momentum integral equation is

U 2
∞ dxθ = τw/ρ ≡ u2

∗, (4.2.7)

which is a rather simple formula for the growth of the boundary layer. It can also be
written as dxθ = Cf/2. Since Cf = O(10−3), Eq. (4.2.7) shows that the boundary-layer
thickness grows very slowly. Note that (4.2.7) is valid in laminar or turbulent flow; but
the rate of boundary-layer growth is greater in turbulent flow. What is the difference?
The difference arises because (4.2.7) is an unclosed equation. A relation between τw
and the mean flow is needed to close the equation. That relation is rather different in
laminar or turbulent flow.

Equation (4.2.7) can be converted into a closed equation for boundary-layer growth
if a functional dependence of the form Cf(Rθ ) is prescribed. The previously mentioned
data correlation

Cf = aR
−1/4
θ (4.2.8)

can be used in turbulent flow, where a is a constant found in experiments to be approxi-
mately equal to 0.025. With this formula for Cf, the momentum integral (4.2.7) becomes

dxθ = a

2

(
ν

U∞θ

)1/4

(4.2.9)

and has solution

θ

x
=
(

5a

8

)4/5 (
U∞x

ν

)−1/5

. (4.2.10)

The thickness grows a bit less than linearly, as x to the power 4/5, with the slope
decreasing as the x Reynolds number to the power −1/5. This can be compared to the
laminar boundary layer, for which the exponent on the right-hand side of (4.2.10) is
(U∞x/ν)−1/2 and θ grows as x1/2. The slope of the turbulent boundary-layer thickness
is closer to linear than that of the laminar layer.

How pressure gradients alter the profiles of Reynolds stresses can be deduced from
their effect on the mean flow. Consider velocity profiles like those in Figure 4.5. The
adverse pressure gradient reduces the wall stress and generates shear farther out in the
boundary layer. This alteration to the mean flow will move the production of turbulence
away from the wall, into the central portion of the layer. The near-wall peak of turbulent
kinetic energy then diminishes and a broad maximum develops in the outer part of the
boundary layer. This is a generic behavior observed in adverse pressure-gradient boundary
layers. Experimental data and a Reynolds stress computation in Figure 4.6 illustrate the
evolution of turbulent stresses upon moving into an increasingly adverse pressure gradient.
The computation was carried out with one of the closure models developed in Chapter 7.
Measurements near the wall are difficult. The diminution of the k peak is not evident in
the data; it is illustrated clearly by the computation.
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Figure 4.6 The evolution of Reynolds stresses in an adverse pressure gradient. Top,
experimental data from Samuel and Joubert (1974): initial, zero pressure gradient ( );
downstream, adverse pressure gradient ( ); farther downstream ( ). Bottom, a calculation
with a Reynolds stress model: zero pressure gradient ( ); downstream ( ); farther
downstream ( ).

4.2.1 Entrainment

As the boundary layer grows in thickness, more fluid becomes turbulent. In this sense,
the boundary layer is entraining free-stream, laminar fluid. The rate of entrainment is
analyzed as follows. At the top of the boundary layer, the mean velocity is approximately
U∞ in the x direction and V99 in the y direction, the non-zero value of V being the
displacement effect of the growing boundary layer. Hence, the velocity vector is U 99 =
(U∞, V99), to an accuracy of O(dδ99/dx)2. Taking the 99% thickness, δ99(x), as a measure
of the “edge” of the boundary layer, the outward normal to this edge is n̂ = (−dxδ99, 1),
to the same order of accuracy. The entrainment velocity is defined as the velocity normal
to the edge. It is taken as positive into the boundary layer, so it is given by VE =
−n̂ · U 99, or

VE = U∞ dxδ99 − V99.
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Integrating the continuity equation of (4.2.6) across the boundary layer gives

V99 = −
∫ δ99

0
∂xU dy =

∫ δ99

0
∂x(U∞ − U) dy − δ99 dxU∞

≈ dx

∫ ∞

0
(U∞ − U) dy − δ99 dxU∞ = dx(U∞δ∗) − δ99dxU∞.

Substituting this into the expression for VE gives

VE = dx[U∞(δ99 − δ∗)] (4.2.11)

for the velocity with which free-stream fluid enters the boundary layer. For the purposes
of description, entering the boundary layer is defined here as crossing the 99% thickness.
This quantifies the notion of entrainment of free-stream fluid by the boundary layer.

Typically δ99/δ
∗ might be about 6–8, so (4.2.11) represents a velocity into the bound-

ary layer of about 6 dx(U∞δ∗). If U∞ and the form factor H are constant, then this
can be written VE/U∞ ≈ 6H dxθ = 3HCf. Inserting typical values of H = 1.35 and
Cf = 3 × 10−3 gives the order-of-magnitude estimate VE/U∞ ∼ 10−2.

Entrainment is considered to be associated with large eddies inside the boundary
layer engulfing irrotational, free-stream fluid. Coherent, large eddies are the subject of
Chapter 5. Smaller eddies are ultimately responsible for mixing the irrotational fluid into
the vortical, turbulent region. Figure 5.11 (on page 101) shows an experimental view of
this process.

4.3 Free-shear layers

Turbulent shear layers that are not adjacent to boundaries are referred to as free-shear
layers. Examples are wakes, jets, and mixing layers. These are illustrated in Figures 1.8,
1.7, and 4.7. Such flows are characterized by a distinct vortical region, with a

U U

U−∞ U−∞

Figure 4.7 Schematic of a two-stream mixing layer.
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Figure 4.8 Illustration of evolving jet profiles and collapse of the data by plotting
U/�U(x) versus y/δ(x).

characteristic thickness, say δ. As the shear layer proceeds downstream, the thickness
of the vortical region grows via entrainment. If the profiles of velocity (and Reynolds
stresses) at different distances can be collapsed by rescaling the velocity and transverse
coordinate, then the flow is self-similar . The reference scale with which the coordinate
is non-dimensionalized is the local shear-layer thickness, δ(x). The reference velocity is
a characteristic difference, �U(x). The left portion of the schematic in Figure 4.8 shows
how a turbulent jet spreads and how its centerline velocity diminishes with downstream
distance. But if the y coordinates of these synthetic data are divided by the jet thickness,
δ(x), defined here as the point where U is half of its centerline value, and if the velocity
data are divided by the centerline value, �U = UCL(x), then these data collapse onto a
single curve as shown to the right of the figure.

Velocity profiles and turbulence data from experiments on self-similar mixing layers
and wakes are shown in Figures 4.9 and 4.10. They have been collapsed by the appropriate
similarity scaling. The appropriate scaling will be developed below.

In most engineering applications, shear layers are not self-similar. For example, imme-
diately after a round jet exits a nozzle, it consists of a “potential core” surrounded by a
shear layer, the latter being the downstream continuation of the boundary layer inside the
nozzle. The free-shear layers spread, eventually merging in the center at about five jet
diameters downstream. Only after about 15 diameters does the jet become self-similar. In
aeroacoustic applications, the non-similar potential core region is where noise is produced;
in impingement cooling applications the jets rarely, if ever, attain self-similarity before
they reach the surface. Nevertheless, our basic understanding of turbulent shear layers
comes from studying fully developed flows because they are amenable to theoretical
attack and can be studied by generic experiments.

The two-dimensional, thin-layer equations (4.2.6) apply to free-shear layers as well as
to boundary layers. In high Reynolds number flow, away from any surface, the viscous
term can be dropped – this is because it is not needed for imposing the no-slip condi-
tion. We will also consider only flows without a free-stream pressure gradient. Then the
streamwise momentum and continuity equations become

U ∂xU + V ∂yU = −∂yuv,

∂xU + ∂yV = 0. (4.3.1)
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In order to derive a momentum integral for the two-dimensional jet, the continuity
equation is used to rewrite the first of (4.3.1) as

∂x(UU) + ∂y(V U) = −∂yuv.

Integrating this between y = ±∞, with U → 0 as y → ±∞, gives

dx

∫ ∞

−∞
U 2 dy = 0.

When the self-similarity assumption U = �Uf (y/δ) is substituted, this becomes

dx

[
δ�U 2

∫ ∞

−∞
f 2(y/δ) d(y/δ)

]
= 0.

The term
∫∞
−∞ f 2(y/δ) d(y/δ) is a number that is independent of x. It depends on the

velocity profile, f , but that is assumed to be of a universal, self-similar form. Here,
“universal” means that it does not depend on the particularities of the nozzle from which
the jet emerged. It follows that

δ�U 2 = constant. (4.3.2)

and hence that �U ∝ 1/
√

δ. This is the relation between the decay of the centerline
velocity and the spread of the jet in Figure 4.8. Equation (4.3.2) expresses the constancy
of the momentum flux in the jet; the constant on the right-hand side has dimensions
of �3/t2. The momentum flux must be constant because there are no forces that would
change it acting on the free jet.

For an axisymmetric jet the momentum and continuity equations are

∂xUU + 1

r
∂rrV U = −1

r
∂r ruv,

∂xU + 1

r
∂r rV = 0. (4.3.3)

The momentum integral is now

dx(δ
2�U 2)

∫ ∞

0
f 2(r/δ)(r/δ) d(r/δ) = 0,

showing that

δ2�U 2 = constant. (4.3.2a)

Hence �U ∝ 1/δ in axisymmetric flow.
The two other generic free-shear flows are wakes and mixing layers. The mixing layer

has a high-speed side, with velocity U∞, and a low-speed side, with velocity U−∞, as
in Figure 4.7. A point of terminology: when U−∞ = 0, this is referred to as a “single-
stream” mixing layer; if U−∞ > 0, it is a “two-stream” mixing layer. A scaled mean flow
profile is shown in Figure 4.9. The velocity scale

�U = U∞ − U−∞

is independent of x.
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Figure 4.9 Mean velocity and turbulent energy profiles in a mixing layer. Velocities
are scaled as indicated. The y coordinate is scaled on the thickness obtained by fitting an
error function curve through the mean flow data; the Erf fit is shown by the solid curve.
Experiments of Bell and Mehta (1990).

For the 2D, or plane, wake with a uniform free-stream velocity, the momentum
equation is written as

∂x[U(U − U∞)] + ∂y[V (U − U∞)] = −∂yuv. (4.3.4)

The wake velocity profile is of the form U∞ − �Uf (y/δ). The scaled profile, f (y/δ),
is plotted in Figure 4.10. A formal analysis shows that the wake cannot be strictly self-
similar. Loosely speaking, this is because U∞ is independent of x while �U decreases
as the wake spreads, so there are two velocity scales with different x dependence. That
prevents self-similarity. For the same reason, a jet in co-flow cannot be self-similar.
Such flows can only be approximately self-similar. The approximately self-similar state
is reached when �U � U∞. This means that the self-similar region is far downstream
of the body that produces the wake.

The momentum integral of (4.3.4) is

dx

∫ ∞

−∞
U(U − U∞) dy = dx

{
δ�U

∫ ∞

−∞
[U∞ − �Uf (y/δ)]f (y/δ) d(y/δ)

}
= 0,

(4.3.5)

assuming that the profile of U can be represented by U∞ − �Uf (y/δ). This integral
is not just a number: it is of the form AU∞ + B�U , which depends on x. Again, this
suggests that the wake is not self-similar unless U∞ 	 �U . In that limit the integrand
of (4.3.5) reduces to U∞f (y/δ) so that

δ�UU∞ = constant. (4.3.6)
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Figure 4.10 Wake defect, turbulent energy, and shear stress in a plane wake. The
y coordinate is scaled on the half-width of the wake. Experiments of Weygandt and
Mehta (1995).

In this limit the momentum deficit is constant and is convected with velocity U∞, so the
momentum equation would simply be U∞ ∂xU = −∂yuv. In the axisymmetric case

δ2�UU∞ = constant. (4.3.6a)

The constant in (4.3.6) or (4.3.6a) is proportional to the drag on the body that produced the
wake. A self-propelled body produces a zero-momentum deficit wake because the propul-
sive thrust must equal the resistive drag. The constants in (4.3.6) and (4.3.6a) are then zero
and other considerations are required to obtain the self-similar scaling (Exercise 4.10).

Equations (4.3.2), (4.3.2a), (4.3.6), and (4.3.6a) relate the reference velocity to the
thickness of the shear layer for jets and wakes. In summary

�U = UCL ∝ 1/
√

δ, 2D jet,
�U = UCL ∝ 1/δ, axisymmetric jet,
�U ∝ 1/δ, 2D wake,

�U ∝ 1/δ2, axisymmetric wake,
�U = U∞ − U−∞, mixing layer.

(4.3.7)

But how do these shear layers grow with x? This can be answered by dimensional
reasoning and the dispersion formula (2.2.20). (A more formal approach is described in
Exercise 4.9.)
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Equation (2.2.20), page 30, can be applied to dispersion in the y direction across thin
shear layers:

DY 2

Dt
= 2αT. (4.3.8)

Although dispersion is not the present topic, the qualitative reasoning behind that formula
suits the present purpose of simple scaling analysis. To this end, DY 2/Dt can be regarded
as proportional to Uc dxδ

2, where Uc is a convection velocity. This uses the idea that Y 2

is a measure of shear-layer thickness, and introduces a scaling estimate for the convection
velocity. For the jet, an appropriate velocity scale is the centerline velocity; for the small-
deficit wake, it is U∞; for the mixing layer, is it the average velocity 1

2 (U∞ + U−∞).
Using these and the replacement DY 2/Dt → Uc dxδ

2 in (4.3.8) gives

UCL dxδ ∝ αT/δ, jet,

U∞ dxδ ∝ αT/δ, wake,
1
2 (U∞ + U−∞) dxδ ∝ αT/δ, mixing layer.

(4.3.9)

An estimate for αT is needed to obtain the growth rate of δ with x.
The diffusivity αT has dimensions �2/t . The relevant length scale for the large eddies,

that do most of the mixing, is δ. Their velocity scale is �U because they are produced
by the mean shear. Hence, αT ∝ δ�U : in fact this scaling is demanded if the flow is to
be self-similar. An estimate that the constant of proportionality is O(10−2) is provided
by Exercise 4.11. Substituting αT/δ ∝ �U into (4.3.9) and then using (4.3.7) produces
equations for dδ/dx. They integrate to

δ ∝ x, jet,

δ ∝ x1/2, 2D wake,

δ ∝ x1/3, axisymmetric wake,

δ ∝ U∞ − U−∞
U∞ + U−∞

x, mixing layer.

(4.3.10)

Note that jets and mixing layers spread linearly. The wakes do not: in a wake, the mean
vorticity is convected downstream at the constant speed U∞, but it is spread by an
increasingly less intense turbulence. In the jet, both the convection speed and turbulence
intensity diminish with downstream distance, leading to linear growth. The mixing-layer
growth rate scales on the parameter (U∞ − U−∞)/(U∞ + U−∞), which is a measure of
the strength of the mean shear.

Self-similarity can be applied to the Reynolds stresses as well as to the mean flow.
For instance, the turbulent kinetic energy assumes the form k = �U 2h(y/δ). A formal
approach to similarity analysis is developed in Exercise 4.9. The equations given in that
exercise show that the turbulent stresses must collapse if strict similarity is obeyed. The
experimental data for k provided in Figure 4.9 do indeed collapse, as do the wake data
on k and uv provided in Figure 4.10.
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4.3.1 Spreading rates

The mixing-layer thickness is defined by fitting the measured velocity profile to

U − 1
2 (U∞ + U−∞)

U∞ − U−∞
= 1

2 Erf(y/δ(x)).

The error function fit is shown in Figure 4.9. At y = δ the scaled velocity equals
1
2 Erf(1) = 0.42. In a two-stream mixing layer, with the velocity ratio U−∞/U∞ = 0.6,
Bell and Mehta (1990) measured dδ/dx = 0.02. The mixing-layer spreading rate is some-
times quoted as twice this, corresponding to the distance between the scaled velocity
equaling ±0.42. The reproducibility of this spreading rate is on the order of 10%. It is
rather more difficult to obtain a self-similar state in a single-stream mixing layer; conse-
quently the spreading rates are less reproducible than in two-stream layers. A reasonable
fit to data on spreading rate as a function of velocity ratio is

dδ

dx
= 0.084

1 − U−∞/U∞
1 + U−∞/U∞

. (4.3.11)

Let the thickness of the round jet be defined as the radius at which the velocity is
one-half of the centerline value: U = 1

2UCL at y = δ(x). Hussein et al. (1994) obtained
dδ1/2/dx = 0.094. They observed that previous measurements were lower due to wind
tunnel confinement of the jet; a discrepancy of 10% was cited. Additionally, stationary
hot wire measurements were high by 10% due to errors in measuring flow angles. The
lessons to learn from this are that spreading rates are not likely to be accurate to more
than 10%, even in carefully controlled experiments – and that the ideal jet exhausting
into still air is not likely to be met in practical applications.

The plane jet spreading rate is also about dδ1/2/dx = 0.1. Many turbulence models
predict unequal rates of spreading for round and plane jets. The k–ε model (Section 6.2)
predicts the round jet to spread about 9% faster than the plane jet. This has been called
the “round jet–plane jet anomaly,” alluding to the erroneous model prediction, not to a
physical anomaly.

A plane wake conserves the momentum flux deficit

U 2
∞� =

∫ ∞

−∞
U(U∞ − U) dy,

where � is a constant determined by the drag on the body that produces the wake.
A thickness can be defined by the half-width, [U∞ − U(y)]/(U∞ − UCL) = 1

2 when
y = ±δ(x). Approximate similarity in the far wake implies that

δ = c
√

x�. (4.3.12)

The constant of proportionality has been measured to be c = 0.29 for a wide variety of
wake generators by Wygnanski et al. (1986). The value of c shows a variability of about
±0.02 for bluff-body wakes.

4.3.2 Remarks on self-similar boundary layers

The two-layer (law of the wall, law of the wake) structure of boundary layers precludes
complete self-similarity. To obtain similarity there must be a single length scale in the
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problem. This means that the wall region scale ν/u∗ has to be proportional to the wake
region scale δ, independently of x. But the ratio of scales, u∗δ/ν, is a Reynolds number
that increases with x: using the previous estimate (4.2.10), δ ∝ x4/5, and

u∗/U∞ ∝
√

Cf ∝
√

R
−1/4
θ

gives u∗δ/ν ∝ x7/10 in the zero pressure-gradient boundary layer. That x dependence
prevents similarity in the boundary layer as a whole. Similarity also demands there to be
a single velocity scale, which means that U∞/u∗ should be independent of x, and this is
not satisfied either.

However, the wake region is only weakly affected by the wall region through the
log layer. To a first approximation, similarity can be assumed independently in each
of the two regions, ignoring the coupling across their overlap layer. The nature of the
approximation is determined by the matching condition on the mean velocity. Matching
was employed to derive (4.2.2). That formula implies that the error is due to an x

dependence of order log(u∗δ/ν) ∼ log(x) in the wake region. This is a very mild x

dependence. Regional self-similarity seems a reasonable approximation, and it is indeed
found to be so in experiments.

The region-by-region similarity has already been covered, in essence, in Section 4.2.
The law-of-the-wall scaling collapses the inner region and the law-of-the-wake collapses
the outer.

Clauser (1956) showed experimentally that a family of self-similar law-of-the-wake
functions could be produced in boundary layers subject to pressure gradients. His fam-
ily is analogous to the Falkner–Skan profiles in laminar boundary layers. In turbulent
flow, the criterion for a self-similar wake region is that the pressure-gradient parameter
β = (δ∗/τw) dxP∞ should be constant, independently of x. This can be seen by reference
to (4.2.3). Subtracting that formula evaluated at y = δ99 from the same formula at y gives

U = U99 + u∗
κ

{�(β)[w(y/δ99) − w(1)] + 1/κ log(y/δ99)}.

This is of the self-similar wake form, U = U∞ − u∗f (y/δ), provided that U∞/u∗ and
β are (approximately) independent of x. Clauser devised an experiment in which suction
through the upper wall of his wind tunnel could be adjusted to produce a pressure
gradient with constant β; this is a non-trivial problem because β depends on the flow
field through the factor δ∗/τw. With some ingenuity, he was able to succeed, producing
several instances of self-similar turbulent boundary layers.

4.4 Heat and mass transfer

Consider the transport of a passive contaminant by a turbulent flow. Once introduced,
the contaminant is mixed by fluid motions. Large-scale convective mixing is affected
by the turbulence and is not immediately a function of the particular material being
mixed. Hence, this is a problem in turbulent convection: the ability of turbulent motion
to mix a passive contaminant is a property of the flow field, not of the contaminant.
Representations of turbulent mixing are, therefore, independent of molecular Prandtl
number, to a first approximation.
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However, the molecular Prandtl number is not irrelevant to heat and mass transfer.
It is only the turbulent part of the mixing that, to a suitable degree of approximation, is
independent of molecular properties. Concentration is also diffused by molecular motion.
Some dependence of heat and mass transfer on molecular Prandtl number is to be expected
due to the presence of these two modes of mixing. At low Reynolds number, the molecular
mode becomes substantial. In wall-bounded flow, molecular effects become important in
the near-wall region rather than at low Reynolds number per se. The near-wall region is
the origin of the dependence of heat and mass transfer on molecular properties.

For the sake of correctness, the qualification that only large-scale mixing is under
consideration in this section should be reiterated. Molecular diffusion is always important
at small scales. A more diffusive contaminant will erase fine structure created by turbulent
eddies; a less diffusive contaminant will develop fine-grained structure. Such influences
of molecular diffusion are relevant to the spectrum of concentration fluctuations; we are
concerned here only with the mean concentration.

4.4.1 Parallel flow and boundary layers

The view that passive contaminant dispersion is affected by turbulence, independently
of the specific identity of the contaminant, suggests that a prediction method might be
construed as a relationship between a turbulent scalar flux and the Reynolds stresses
responsible for that flux. The simplest model for contaminant transport is to assume it to
be analogous to momentum transport. There are two versions of this analogy, one called
the turbulent Prandtl number, the other called Reynolds analogy. The turbulent Prandtl
number is a constant of proportionality between an eddy diffusivity and eddy viscosity,
as was mentioned in Section 3.3.2. The Reynolds analogy is an equivalence between
momentum and concentration profiles.

The equation governing the mean concentration of a convected scalar is (3.4.2). In
parallel flow, the left-hand side of that equation is zero. If the flow is planar, parallel to a
wall at y = 0, the mean concentration equation simplifies to α ∂2C/∂y2 − ∂vc/∂y = 0 or

α
∂C

∂y
− vc = Qw, (4.4.1)

where Qw is an integration constant, equal to the flux to or from the wall. A good
deal of insight can be obtained by invoking an eddy diffusion model, −vc ≈ αT ∂C/∂y.
Then Eq. (4.4.1) can be rearranged to

C − C0 =
∫ y

0

Qw

α + αT(y′)
dy′. (4.4.2)

If, for instance, C represents temperature, and a channel is heated to temperature CH on
the upper wall, and held at temperature C0 on the lower wall, then

Qw = CH − C0∫ H

0 [1/(α + αT)] dy′
.

The denominator highlights the role of 1/αT as an impedance to heat transfer. Under
typical turbulent conditions, α � αT outside of the viscous wall layer. Hence, regions
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where αT is low make the largest contribution to the integral. They thereby control the
magnitude of heat flux, Qw.

The usual region of low αT is adjacent to no-slip walls, at which αT tends to zero.
The near-wall layer exerts disproportionate control on heat transfer to the underlying
surface. The behavior of turbulence in the viscous zone proximate to a wall is discussed
at length in Section 7.3.3. It is sufficient to note that, as y → 0, v → O(y2). As a
constant-temperature boundary is approached, c tends to zero in proportion to y, giving
vc = O(y3). The eddy viscosity also tends to zero as y3. In this zone |vc| � |α ∂yC|, or
with an eddy diffusion approximation, αT � α. Not only does the near-wall layer exert a
disproportionate influence on heat transfer, it also introduces a dependence on molecular
properties through the value of α.

Since the eddy viscosity is a property of the turbulent velocity, not of the contaminant
concentration, it is appropriate to normalize it on the molecular viscosity. Hence the
viscous region scaling cited above can be written as αT ∼ νy3+ as y+ → 0. Then the
region where molecular diffusion dominates turbulent transport is νy3+ � α, or

y+ � Pr−1/3, (4.4.3)

where Pr = ν/α is the molecular Prandtl number. This inequality assumes that y+ is in the
viscous layer y+ � 5. For fluids with high Prandtl number, that is, with low diffusivity,
turbulent transport dominates in most of the viscous layer, according to the estimate
(4.4.3). Molecular diffusion is unable to make up for the suppression of turbulence by
the wall, and a high-impedance region exists. For fluids with low Prandtl number, the
high diffusivity compensates for reduced turbulent transport near the wall. In fact, in
the limit of very large α, as occurs for liquid metals, the contaminant transport is by
molecular diffusion throughout the fluid.

Section 4.2 presented ideas about the mean velocity profile. It is of interest to develop
analogous results for the mean scalar profile. A useful approach is to derive the scalar
profile from that of the velocity. Both profiles are heavily influenced by turbulent mixing,
so they might be expected to be somewhat similar if their boundary conditions are
analogous. In order to compare the two profiles, they must be non-dimensionalized. To
this end, q∗ = Qw/u∗ defines a friction scale for the contaminant concentration. The
comparison will be developed in “plus” units. The difference between the scalar and
velocity profiles in a constant-stress layer can be evaluated using Eq. (4.4.2) as

C − C0

q∗
− U

u∗
=
∫ y+

0

1

Pr−1 + α+
T

dy′
+ −
∫ y+

0

1

1 + ν+
T

dy′
+, (4.4.4)

where α+
T = αT/ν. If α = ν and αT = νT, then the right-hand side is zero and C − C0 =

q∗U/u∗. This is an embodiment of the Reynolds analogy between contaminant and
momentum transport. When suitably normalized, the two have the same profile.

Reynolds analogy is more often stated in terms of surface transfer coefficients. The
Stanton number is defined as a normalized surface heat flux

St = Qw

(C∞ − C0)U∞
.
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A corollary to the analogy C − C0 = q∗U/u∗ is that

St = α

U∞
∂yC(0)

(C∞ − C0)
= ν

U∞
∂yU(0)

U∞
= u2∗

U 2∞
= 1

2
Cf,

again under the condition α = ν, or Pr = 1. The strict equality St = 1
2Cf does not apply

if Pr �= 1. The ratio 2 St/Cf is sometimes termed the Reynolds analogy factor. Measured
values often are near to, but not equal to, unity; for heat transfer in air, it has been
measured to be about 1.2 in fully turbulent boundary layers. The Reynolds analogy only
makes sense if the transport of the contaminant is primarily a consequence of the ambient
turbulence, and is only weakly a function of the contaminant diffusivity.

A turbulent Prandtl number can be defined by PrT = νT/αT. In a parallel shear flow,
the Reynolds shear stress is modeled by uv = −νT ∂yU , according to formula (3.3.3) on
page 51. Similarly, the Reynolds flux of a contaminant is modeled as vc = −αT ∂yC.
The turbulent Prandtl number can be found experimentally by measuring terms in these
definitions. It is obtained directly by measuring the ratio on the right-hand side of

PrT = νT

αT
= uv

∂yU

∂yC

vc
.

In a boundary layer, the empirical value PrT = 0.85 is a good estimate of available data
(Kays, 1994).

Inserting PrT in front of U in Eq. (4.4.4) and substituting αT = νT/PrT give

C − C0

q∗
− PrT

U

u∗
=
∫ y+

0

PrT

PrT Pr−1 + ν+
T

− PrT

1 + ν+
T

dy′
+. (4.4.5)

In the log layer, ν+
T 	 1 (Figure 6.7). If PrT/Pr is O(1), so that ν+

T 	 PrT Pr−1 as well,
then the integrand of Eq. (4.4.5) is vanishingly small in the log layer. Then for large y+
the range of integration can be taken from 0 to ∞, so that the temperature and velocity
profiles are related by

C − C0

q∗
= PrT

U

u∗
+ BC(Pr, PrT), (4.4.6)

where

BC =
∫ ∞

0

PrT

PrT Pr−1 + ν+
T

− PrT

1 + ν+
T

dy′
+.

BC is an additive coefficient for the temperature profile. It is clear that this coeffi-
cient depends on the molecular Prandtl number. With expression (4.1.7) for the velocity,
Eq. (4.4.6) becomes the log law for concentration,

C − C0

q∗
= PrT

κ
log(y+) + PrTB + BC. (4.4.7)

Kader (1981) found that the formula

PrTB + BC = (3.85 Pr1/3 − 1.3)2 + 2.12 log(Pr) (4.4.8)
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fit boundary-layer data over the range 6 × 10−3 < Pr < 4 × 104. He also gave the value
PrT/κ = 2.12: with a Von Karman constant of κ = 0.41, this implies a value PrT = 0.87.

Further insight into the Prandtl number dependence of the additive coefficient, BC ,
can be gained by a heuristic argument proposed by Kays and Crawford (1994). If Pr is
not extremely small, then next to the surface there is a high-impedance layer in which
α >αT. Define a top to that layer at y = yh. Conceptually, the flow might be broken into
two zones: where y+ < yh

+, turbulent transport is negligible; where y+ >yh
+, turbulent

transport dominates. Then Eq. (4.4.2) can be approximated as

C − C0

q∗
= yh

+Pr +
∫ y+

yh+

PrT dy′+
ν+

T

, (4.4.9)

when y+ > yh+. For moderate Prandtl numbers, the inequality (4.4.3) is motivation to
select yh+ = aPr−1/3, where a is a constant. In the log region, ν+

T = κy+ and the estimate
(4.4.9) becomes

C − C0

q∗
= PrT

κ
log(y+) − PrT

κ
log(aPr−1/3) + aPr2/3. (4.4.10)

This is of the same form as (4.4.7). The empirical formula (4.4.8) should be used in
practice, rather than the above heuristic estimate of BC .

The additive term, BC , shifts the intercept of the log–linear plot of C versus log(y+)

with respect to the C axis. The dependence of this shift on molecular Prandtl number
originates in the high-impedance layer: the thinner the layer, the larger is C at the
intercept, and hence the greater is the shift. In other words, the smaller α is in comparison
to ν, the thinner is the layer. Another way to see this is to consider a hot stream and a
cold wall. The smaller is α, the closer will the hot fluid approach the wall; hence, the
higher will the temperature be in the log layer.

A heat-transfer formula analogous to the skin friction formula (4.1.11) can be found
from (4.4.6). Assume the latter equation to be valid to the edge of the boundary layer.
Then as y → ∞, it becomes

C∞ − C0

q∗
= PrT

U∞
u∗

+ BC(Pr, PrT).

Substituting the definitions q∗ = Qw/u∗, St = Qw/(C∞ − C0)U∞, and Cf = 2u2∗/U 2∞
gives

2 St

Cf
= 1

PrT + BC(Pr, PrT)
√

Cf/2
(4.4.11)

after some rearrangement. Equation (4.4.11) can be used in conjunction with the skin
friction formulas in Chapters 4 or 6 to estimate heat-transfer rates.

For a turbulent boundary layer in air, Pr = 0.71, and using B = 5.0 in formula (4.4.8)
gives BC = −0.42. With PrT = 0.85, the Reynolds analogy factor is 2 St/Cf = 1.18/

(1 − 0.5
√

Cf/2 ). For a typical value of 1
2Cf ∼ 10−3, this factor is 1.2. Heat is transported

a bit more effectively than momentum, to the extent that St > 1
2Cf. This might be due

to a tendency of fluctuating pressure gradients to reduce momentum transport.
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Pursuing further the parallel between momentum and concentration boundary layers, a
thickness of the concentration boundary layer can be defined by analogy to the momentum
thickness:

� =
∫ ∞

0

U

U∞
C − C0

C∞ − C0
dy. (4.4.12)

When C represents heat, this is called the enthalpy thickness. Kays and Crawford (1993)
suggest that formula (4.4.11) for the Stanton number can be approximated by the simpler
data correlation St = 0.0125R−0.25

� Pr−0.5 when 0.5 < Pr < 1.0 and when Rθ is in the
range 103 to 8 × 103. Here Rθ and R� are the Reynolds numbers based on momentum
and enthalpy thickness.

The equations governing momentum and contaminant transport would be the same if
α = ν in Eq. (3.4.2), provided the turbulent fluxes of momentum and concentration were
proportionate and provided ∂iP = 0 in Eq. (3.2.2). This last condition implies that any
analogy between heat and momentum transfer will break down in flows with non-zero
pressure gradient. For example, an accelerating free stream can reduce the turbulence in
a boundary layer, decreasing St. If the reduction of the turbulence is not too great, then
the tendency for Cf to increase in an accelerated flow will not be reversed. Then St can
fall, while Cf rises. As another example, Cf must vanish at a stagnation point, while St
need not.

Although the use of an overall analogy between heat transfer and skin friction becomes
problematic in most flows of practical interest, the proportionality between νT and αT, as
embodied in the turbulent Prandtl number, remains a useful assumption. Kays (1994) cites
data which suggest that pressure gradients might affect the value of PrT, but concludes
that such effects are small. In many practical flows, heat transfer can be predicted with
the eddy viscosity closure models discussed in Chapter 6 and with a turbulent Prandtl
number of 0.85. Complex flow effects are assumed to be embodied in the predictions of
eddy viscosity that those models make.

4.4.2 Dispersion from elevated sources

Transport to surfaces is not always the motivation to study turbulent mixing. Various
applications involve mixing of a contaminant with ambient fluid internally to the flow.
An example is the dispersion of pollutants in the atmosphere.

Consider a source of contaminant that is well away from any boundary. The ratio of
convective to molecular transport is characterized by the Peclet number, Pe = UL/κ . If
both the Peclet and Reynolds numbers are high, then to a first approximation it should
be possible to neglect molecular diffusion in the equation for the mean concentration.
(Note that molecular diffusion cannot be ignored in the equation for the concentration
variance, because it is the origin of dissipation.) Let the source of contaminant have
a characteristic scale L, and let the scale for both the turbulent velocity and the mean
velocity variations be û. Non-dimensionalizing Eq. (3.4.2) with these scales gives

∂tC + Uj ∂jC = Pe−1∇2C − ∂icui,

where Pe = ûL/α is the turbulent Peclet number. For Pe 	 1,

∂tC + Uj∂jC = −∂icui .
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This is the Reynolds average of the random convection equation

∂t c̃ + ũj ∂j c̃ = 0. (4.4.13)

The present convention of using a tilde to denote the total of mean plus fluctuation
should be recalled. Equation (4.4.13) provides a simple view of mean scalar transport at
high Peclet number: mixing can be regarded as the ensemble-averaged effect of random
convection alone. Again, it should be warned that the simplification (4.4.13) would be
quite erroneous for scalar variance: dissipation of scalar variance by molecular diffusion
cannot be neglected, even at high Peclet number.

Consider a convected fluid particle. Its trajectory solves the nonlinear equation
dtXi = ũi (X) with initial position Xi = x0i

. If the initial scalar profile is a given
function C0(x), then the solution to Eq. (4.4.13) is

c̃(X) = C0(x0)

because c̃ is constant along trajectories and equal to its initial value. This is a Lagrangian
solution because it is phrased in terms of the fluid trajectories. It can be termed the
“formula for forward dispersion.” Often reversed dispersion provides a more intuitive
perspective; indeed, the mixing length argument of Section 3.2 was phrased in terms of
reversed dispersion.

The reversed view is obtained by restricting attention to particles with the current
position X = x and following their trajectory back in time. The initial position of such
particles is x0 = X−1(t, x): in other words, they are found by tracing trajectories back-
ward from a given final position, x, through the field of turbulence, to a random initial
position, x0. The solution now is written

c̃(x) = C0(x0(t, x)).

Since x0 is random, its probability density can be introduced for use in averaging. The
transition probability for a particle at x, at time t , to have originated at x0 is denoted
P(x, t; x0). With this, the average concentration is found to be

C(x, t) =
∫∫∫

C0(x0)P (x, t; x0) d3x0, (4.4.14)

invoking the definition (2.2.5) of an average.
A case that arises in atmospheric dispersion is the concentrated source. Assume that

C0 = Q/V is constant in a small region of volume V around the origin, and is zero
elsewhere. Then formula (4.4.14) is approximately

C(x) = QP(x, t; 0).

For this initial condition, the PDF gives the scalar concentration directly. For example,
if the PDF is Gaussian, then, in principal axes of the XiXj correlation,

C = Q√
(2π)3X2 Y 2 Z2

exp

[
x2

2X2
+ y2

2Y 2
+ z2

2Z2

]
. (4.4.15)
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The analysis of dispersion reduces to obtaining XiXj in the case of a Gaussian cloud.
This will be illustrated by a discussion of the phenomenon of shear dispersion.

An insight into the interaction between turbulent dispersion and a mean shear is
gained by simplifying the analysis to two dimensions, corresponding to a “line source.”
Also the mean flow is in the x direction, so that ũ = U + u and ṽ = v. We invoke a thin-
layer approximation and neglect u in comparison to U , so that the trajectory equations
are simply

dtX = U(Y ),

dt Y = v,

with X(0) = 0 and Y (0) = 0. Furthermore, it will be assumed that the turbulence can be
treated as stationary, despite the mean shear. The virtue of these various assumptions is
that they lead to explicit formulas, illustrating the phenomenon of shear dispersion.

From Y = ∫ t

0 v dt , the mean of Y is seen to be zero because v = 0. If v is statistically
stationary, the variance of Y is

Y 2 =
∫ t

0
v(t ′) dt ′

∫ t

0
v(t ′′) dt ′′ =

∫ t

0

∫ t

0
v(t ′)v(t ′′) dt ′′ dt ′

= v2

∫ t

0

∫ t

0
R(t ′′ − t ′) dt ′′ dt ′ = 2v2

∫ t

0

∫ t ′

0
R(t ′′ − t ′) dt ′′ dt ′

= 2v2

∫ t

0

∫ t ′

0
R(τ) dτ dt ′ = 2v2

∫ t

0
(t − τ)R(τ) dτ

by analogy to Eq. (2.2.21). For an exponential correlation function, the value of the
integral is given below Eq. (2.2.21):

Y 2 = 2v2 T 2
L (t/TL − 1 + e−t/TL). (4.4.16)

where TL denotes the Lagrangian integral time scale. A new element, termed shear
dispersion , arises when the variance of X is computed. The mean of X could in general be
computed from the PDF of y, invoking dtX = ∫ P(y, t)U(y) dy. However, the essential
elements of shear dispersion are present in the simple, homogeneous shear, U = SY ,
where S is a constant rate of shear. The mean of dtX equals SY , which is zero. Thus,
without loss of generality, X = 0. The variance is

X2 = 2S2
∫ t

0

∫ t ′

0
Y (t ′)Y (t ′′) dt ′′ dt ′. (4.4.17)

This is not zero, even though no turbulence was included in the x direction: that is the
essence of shear dispersion, as will be explained shortly.

Evaluation of X2 requires two-time statistics of Y . Note that Y is not statistically
stationary; in fact, its variance has the time dependence (4.4.16). The two-time correlation
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is given by

Y (t ′)Y (t ′′) =
∫ t ′

0

∫ t ′′

0
v(s′)v(s′′) ds′′ ds′

= v2

∫ t ′

0

∫ t ′′

0
R(s′ − s′′) ds′′ ds′. (4.4.18)

For the exponential correlation function, R(τ) = e−|τ |/TL , straightforward integration
gives

Y (t ′)Y (t ′′) = v2 T 2
L

(
e−t ′/TL + e−t ′′/TL − e−(t ′−t ′′)/TL − 1 + 2t ′′

TL

)
when t ′′ < t ′. Substituting this into Eq. (4.4.17) and integrating gives

X2 = 2v2S2T 4
L

[
1 − t2

2T 2
L

+ t3

3T 3
L

−
(

1 + t

TL

)
e−t/TL

]
. (4.4.19)

The short-time behavior, X2 → 1
4v2S2t4, is readily seen to be correct. It is a consequence

of Y → vt ; for then dtX = SY = vSt , so that X = 1
2vSt2 and X2 = 1

4v2S2t4.
The long-time behavior of expression (4.4.19) is its most interesting aspect. The third

term in the bracket dominates, giving X2 → 2
3v2S2TLt3 as t/TL → ∞; this can also be

found directly by substituting the long-time behavior

Y (t ′′)Y (t ′) → 2TLv2 min(t ′, t ′′)

into the integral (4.4.17). The streamwise variance grows like t3, in contrast to the t

growth of Y 2. At long times, the streamwise dispersion is substantially greater than the
cross-stream dispersion, even though it is affected by turbulence in the latter direction.
This is an intriguing conclusion, and obviously of some practical importance.

The mechanism of streamwise shear dispersion was first explored by Taylor (1954).
Consider a strip of contaminant that is initially vertical. The strip will be sheared by the
mean flow, producing a gradient in the y direction (Figure 4.11). Shearing the strip does
not cause mixing with the ambient fluid. However, when the gradient caused by mean
shear is acted on by the v component of turbulence, as in Figure 4.11, concentration is
mixed into the ambient, producing a dispersed profile in the x direction.

Note that the covariance tensor (
X2 XY

XY Y 2

)
is not diagonal. The off-diagonal term is found to be

XY = S
∫ t

0
Y (t)Y (t ′) dt ′ = v2ST 2

L t

(
t

2TL
− 1 + e−t/TL

)
, (4.4.20)



86 PARALLEL AND SELF-SIMILAR SHEAR FLOWS

Mean flow

turbulent
velocity Concentration strip

streamwise dispersion

 y

x

Figure 4.11 The combination of turbulent mixing in y and mean shear in x causes
dispersion in the streamwise direction.

again, for an exponential velocity autocorrelation. This off-diagonal correlation causes
the constant-probability contours of the Gaussian to be ellipses with principal axes angled
relative to the x, y axes. For a two-dimensional, Gaussian cloud, the centerline concen-
tration varies as one over the determinant of the dispersion tensor (see Eq. (4.4.15)).
Specifically,

C(0, 0) = Q

2π( X2 Y 2 − XY
2
)
.

As t → ∞ the denominator becomes O(t4); hence, the centerline concentration falls as
t−4 in consequence of shear dispersion. Without shear, turbulent dispersion in x and
y would cause C(0, 0) to fall only as t−2. The presence of shear can promote mixing
quite dramatically.

Exercises

Exercise 4.1. Turbulent kinetic energy equation in the channel. Write the form of the
turbulent kinetic energy equation (3.2.5) for the special case of parallel flow: U(y),
homogeneity in x, z, and stationarity in t . Show that∫ 2H

0
P dy =

∫ 2H

0
ε dy.

What boundary condition on k did you use, and why? Recall that P is the rate at which
turbulent energy is produced from the mean shear. This exercise suggests that, in shear
layers, production and dissipation are similar in magnitude.

Exercise 4.2. Magnitude of Cf. Let the channel half-height Reynolds number be
RH = 104. Use formula (4.1.11) to estimate the value of Cf.

Exercise 4.3. Pressure drop across a channel. Because of the favorable pressure gra-
dient, the log law can be considered valid practically to the center of a fully developed,
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plane channel flow. The centerline velocity, UCL, and volume flux, Q, are related by

Q ≈ 0.87UCLA,

where A is the cross-sectional area of the channel. Its height is 2H . The channel is long
and narrow, so the sidewalls can be ignored.

A certain volume flux, Q, of airflow is desired. Write a formula that can be used to
estimate the necessary pressure drop across a channel of length L – do not try to solve
it for �P ; that could be done numerically.

Exercise 4.4. Zones of the boundary layer. Make a sketch of the mean velocity distri-
bution, U(y), as in Figure 4.5. Indicate the law-of-the-wall and law-of-the-wake regions
in both log–linear and linear–linear coordinates. In zero pressure gradient, what is the
approximate magnitude of U/U∞ at the top of the log layer? What is it for the adverse
pressure-gradient data?

Exercise 4.5. The momentum integral. Derive the momentum integral equation anal-
ogous to (4.2.7) for the case where dxU∞ �= 0. Substitute δ∗ = Hθ . Will a favorable
pressure gradient (dxU∞ > 0 and dxP < 0) increase or decrease the growth rate of θ?
Answer the same question for an adverse pressure gradient.

Exercise 4.6. Law of the wake. Infer a drag law by evaluating (4.2.3) at y = δ99. Use
Coles’ wake function for w(y). Set U99 = U∞ and compare this to (4.2.2). Comment on
the effect of pressure gradient on skin friction.

Exercise 4.7. Drag law. The power-law form U = Ud(y/d)a , y < d , is sometimes
used to fit the mean flow profile in the outer region; d is the boundary-layer edge,
so Ud = U∞. Above the boundary layer, U = U∞, y ≥ d . The exponent a is a small
number, about 1/7, although it varies with Reynolds number, as you will show. Calculate
θ , δ∗, and H = δ∗/θ for this profile. For small a, (y/d)a = ea log(y/d) ≈ 1 + a log(y/d).
If this is matched to the log law (4.1.7), how is a related to u∗/U∞? What is the corre-
sponding skin friction law, written like (4.1.11) in terms of friction coefficient, Cf, and
momentum thickness Reynolds number, Rθ = Udθ/ν?

Exercise 4.8. Measurement of friction velocity. Measurements in a particular turbulent
boundary layer give a thickness δ99 = 3.2 cm. The velocity U is measured at three heights
with the results: U = 40.1 m s−1 at y = 2.05 cm, U = 34.7 m s−1 at y = 0.59 cm, and
U = 30.7 m s−1 at y = 0.22 cm.

(i) Estimate the friction velocity u∗.

(ii) Let the fluid be air with ν = 0.15 cm2 s−1. Is this an adverse or favorable pressure-
gradient boundary layer?

Exercise 4.9. Governing equations for self-similar flow. Substitute the assumed forms

U = �U(x)f (y/δ(x)), V = �U(x)g(y/δ(x)), uv = �U 2h(y/δ)

for the case of a 2D jet into (4.3.1). Use (4.3.7) but ignore (4.3.10). Let ζ = y/δ. Rewrite
the equations that you derived as ordinary differential equations involving f (ζ ), g(ζ ),
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and h(ζ ). In order for the independent variable to be ζ alone, the coefficients in this
equation cannot be functions of x or y – if they were, then the solution would be of the
form f (ζ, x) or f (ζ, y), which are not self-similar. What condition must be imposed on
�U and dxδ for the equations to permit self-similarity? Do you think that all the results
(4.3.10) can be derived by this approach?

Exercise 4.10. The momentumless wake. For a zero momentum-deficit, plane wake, the
small-deficit approximation implies U∞

∫∞
−∞(U − U∞) dy = 0. Hence, the constant in

(4.3.6) is zero and the similarity analysis for wakes does not hold.
Use the eddy viscosity approximation −uv = νT ∂yU . Assume νT to be constant, use

the small-defect approximation for the convection velocity, and form the second moment
of (4.3.4) with respect to y2, after making these approximations. Thus, find the similarity
scaling in this case. (“Form the second moment” means multiply by y2, then integrate
between ±∞.)

Exercise 4.11. Plane self-similar jet via eddy viscosity. For a plane jet, Eqs. (4.3.10) and
(4.3.7) can be written δ = ax and UCL = b/

√
x, where a and b are constants. Generally,

the eddy viscosity (3.3.3) will depend on y, but a reasonable estimate of self-similar
profiles can be obtained by setting νT = cUCLδ, where c is an empirical constant. Show that
the 2D, thin shear-layer equations have a self-similar solution of the form U = UCLf (η),
V = UCLg(η), with η = y/δ. Solve for f . [Hint: The form of the solution is the same as
in laminar flow.]

Let a be defined by the 50% thickness of the jet: in other words f (1) = 0.5. Find
the constant of proportionality between the “Reynolds number” UCLδ/νT = 1/c and the
spreading rate dδ/dx = a. Use a = 0.05 to obtain an estimate of the model constant c.
This exercise illustrates how the turbulent viscosity controls the jet spreading rate. Con-
versely, an experimental measurement of a permits the model constant to be calibrated.

Exercise 4.12. Enthalpy thickness. Show that the enthalpy thickness evolves accord-
ing to

d�

dx
= St

in analogy to the evolution equation (4.2.7) for momentum thickness. Compare the evo-
lution of �(x) to that of �(x) for a zero pressure-gradient boundary layer in air over the
range 103 < Rθ < 104. The comparison can be in the form of computed curves using a
data correlation for Cf.

Exercise 4.13. Reflected plume model. Because the equation of a passive scalar is linear,
superposition is applicable. The mean concentration of a sum of sources is the sum of
their individual mean concentrations. The Gaussian cloud

C = Q√
(2π)2X2 Y 2

exp

[
− x2

2X2
− (y − ys)

2

2Y 2

]

is the mean concentration of a line source located at x = 0, y = ys. If a no-flux wall exists
at y = 0, a fictitious source can be added at y = −ys to satisfy the boundary condition
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∂yC = 0 on y = 0. Write the concentration distribution for this “reflected plume” model.
Show that the concentration integrated across the physical domain, which is y > 0, −∞ <

x < ∞, is constant in time.
There is no mean flow, just turbulence, so dtX = u and dt Y = v. The height of the

plume centerline is defined as

YL(t) =
∫ ∞

−∞

∫ ∞

0
yC(y) dy dx

/∫ ∞

−∞

∫ ∞

0
C(y) dy dx.

Show that this increases with time, even though there is no mean velocity in the y

direction. For the exponential correlation analyzed in the text, find the “Lagrangian mean
velocity,” dtYL when ys = 0. Why is the Lagrangian mean velocity not zero, even though
there is no Eulerian mean velocity?
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Vorticity and vortical structures

Big whorls have little whorls,
which feed on their velocity;

and little whorls have smaller whorls,
and so on to viscosity (in the molecular sense).

– Lewis Fry Richardson

The above is an oft-quoted rhyme from Richardson’s prophetic book on numerical
weather prediction (Richardson, 1922). In a 1937 paper, G. I. Taylor wrote, in prose:
“ . . . They represent the fundamental processes in turbulent flow, namely the grinding
down of eddies produced by solid obstructions (and on a scale comparable with these
obstructions) into smaller and smaller eddies until these eddies are of so small a scale
that they die away owing to viscosity . . . ” (Taylor and Green, 1937). This chapter is an
interlude on “whorls” and “eddies.” Some of the material originates in the 1920s and
1930s with Richardson and Taylor; some is more recent vintage; all of it fills in between
the lines of this poetry and prose.

The bulk of this text uses the term “eddy” as a vague conception of the fluid motions
that are ultimately responsible for mixing and dissipative properties of turbulence. The
precise definition of an eddy is largely irrelevant. As long as the complexity of the fluid
motions admits a statistical description, only ensemble averages of the random flow field
arise. Sometimes it is informative to look behind the statistics, to get a sense of the instan-
taneous eddying motion. High Reynolds number turbulence is certainly disorderly, but
identifiable vortical structures embedded in the irregular flow are occasionally glimpsed.
The purpose of the present chapter is to introduce the concept of coherent and vortical
structures. It also serves as a bridge to some of the material in Parts II, III, and IV.

Cases arise in which notions of eddy structure have been put to use. Some ideas on
how to control turbulence have been based on enhancing or destroying the recognizable
structure: breaking up long-lived, large eddies can reduce drag by shortening the range
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over which momentum is stirred. Aeroacoustic noise is associated with large structures
that form on the jet potential core. Fine-scale mixing of chemical reactants is increased
when large structures disintegrate into highly three-dimensional eddies.

However, the most intense vorticity in turbulent flows is associated with the smallest
scales of motion. This small-scale vorticity is thought to be nearly isotropic in its structure.
The reasoning is that, as large eddies become distorted by other eddies and by instabilities,
they spawn smaller, less oriented eddies, which in turn spawn smaller eddies, and so
on, with the smallest scales having lost all directional preference.∗ This is the usual
conception of the energy cascade, discussed in Section 2.1, in Chapter 10, and in the
above quotations of Richardson and Taylor. The concept of universality at small scale
could be interpreted as a statement that the smallest scales are nondescript. Such is not
the case for the largest eddies. Coherence, if it exists, is to be found in the large scales.

The largest eddies do have directional preferences, and their shapes are characteristic
of the particular mean flow. For instance, an axisymmetric jet may show evidence of
vortex rings, while a mixing layer may show evidence of long rolls (see Figures 5.1
and 5.3). These recognizable eddies are called “coherent structures.” The allusion is to
human ability to recognize the forms, rather than to statistical concepts of coherence.
This section on coherent structures is a taxonomy of eddy shapes. In some cases there is
debate over the nature of the dominant structures in a particular flow. The present chapter
is meant as an initial exposure to this topic, not as an exhaustive compilation.

Figure 5.1 Jets undergoing transition to turbulence, visualized via a scalar concentration
field. From numerical simulations by Steiner and Busche (1998) (left) and Danaila and
Boersma (1998) (right).

∗ Actually, the extent to which the smallest scales are isotropic and unaffected by mean straining remains
a subject of debate and investigation.
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5.1 Structures

Coherent structures are features of the turbulence field. The meaning of the word “struc-
ture” depends on how they are visualized. Often, smoke or particle displacements are
used to visualize the velocity field. Structures are then flow patterns, recognized atop
the more disorderly motions. In numerical simulations, contours of vorticity or stream-
lines might be utilized. Structures are then patterns seen in level sets of the quantity
being plotted.

The basic concept is that a coherent structure is a recognizable form seen amidst
the disorderly motion. Its value is to give an insight into properties of turbulence via
concepts like vortex kinematics and dynamics. It associates a concrete form to the term
“eddy.” However, the extent to which recognizable forms can be identified, and the value
of doing so, have been a subject of debate. Ideas about coherent structures have not had
a substantial impact on statistical turbulence modeling, but they have contributed to the
general understanding of turbulent shear flows.

Large eddies are associated with energetic scales of motion. The designation “large
eddy” includes coherent vortices, but it also includes less definitive patterns of fluid
movement. The issue is clouded even further by the fact that coherent eddies occur irreg-
ularly in space and time, so they often can be considered as just a part of the spectrum
of random turbulent motions. Attempts to distinguish coherent structures from the sea of
large eddies have included pattern recognition (Mumford, 1982) and education (Hussain,
1978) techniques. The first approach is to objectively seek recurring flow patterns, irre-
spective of where they occur; the second is to stimulate the pattern with external forcing,
so that it occurs at a fixed location.

The structures that occur in fully turbulent free-shear flow are generally thought to
be qualitatively the same as those seen in the late stages of transition. Many of the
illustrations in this chapter are from transitional flow, where the structures are seen
clearly. In fully developed turbulence, they are obscured by small scales and by intensely
irregular flow; indeed, some of the structures may cease to be present in high Reynolds
number turbulence.

5.1.1 Free-shear layers

The mixing layer is a generic element of many shear flows. A provocative study of
coherent structures in mixing layers by Brown and Roshko (1974) served as a stimulus
to research on coherent structures in the 1970s.

Mixing-layer coherent eddies consist of spanwise rolls, with streamwise ribs super-
imposed (Figures 5.2 and 5.3). The spanwise rolls correspond to the vortices seen in
two-dimensional Kelvin–Helmholtz instability. The gap between the rolls is called the
“braid region.” The dominant structures in the braid region are termed “ribs.” Ribs are the
legs of vortex loops that span the gap between successive rolls, as in Figure 5.3. Hence
they occur as alternating positive and negative streamwise vortices. Intense straining in
the braid region amplifies the streamwise vorticity.

In a mixing layer streamwise-oriented vortices make a large contribution to entrain-
ment into the layer; they are probably synonymous with what Townsend (1976) called
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Figure 5.2 Left: schematic of ribs wrapping around and distorting rolls. Right: ribs in

a transitional mixing layer, as seen via contours of
√

ω2
x + ω2

y ; reproduced from Moser

and Rogers (1991), with permission.
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Figure 5.3 Rolls and ribs in a transitional mixing layer: contours of streamwise vortic-
ity, ωx . The gray and black streamwise contours, seen between the rolls, are the edges
of positive and negative vortices of the braid region. Figure courtesy of P. Comte and
P. Bégou (Comte et al. 1998).

entrainment eddies. In fully turbulent flow, the braid region contains a good deal of
small-scale turbulence. The ribs are far less pronounced than the clear-cut structure that
is seen in the transitional mixing layer of Figure 5.3.

Townsend and co-workers in the 1950s inferred a vortical structure from measure-
ments of two-point correlations (Townsend, 1976). The structure is common to many
shear layers. The term “double roller” was used to describe its form: Figure 5.4 shows
this conception. The method of inference was to construct a pattern of eddies that was
consistent with measured correlation functions. Mumford (1982) subsequently obtained
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Figure 5.4 Double rollers in free-shear flows, after Townsend (1976).

evidence that this pattern was representative of an actual geometry. He developed a sta-
tistical pattern recognition method to extract a representative form from instantaneous
velocity fields. In this body of research, rollers were inferred to be present in planar jets,
wakes, and mixing layers. They align at ∼ 40◦ to the shear, irrespective of its direction.
The schematic Figure 5.4 shows their alignment in a mixing layer. In a plane jet, two
sets of rollers are inferred, forming a horizontal “V” shape, such that each set is aligned
to the shear in the upper and lower parts of the flow.

Streamwise rib vortices distort the spanwise rolls (Figure 5.2), producing corrugations
and secondary instabilities. Likewise, the rolls stretch and distort the streamwise vortices.
Rolls contribute to mixing-layer growth in the transitional stage, but it should not be
thought that two-dimensional vortices are the coherent structures of fully turbulent mixing
layers. Streamwise, sloping entrainment eddies, as in Figure 5.4, are probably more
important to turbulent mixing-layer dynamics. However, external forcing can be used to
stimulate rolls, as illustrated by Figure 5.5.

The upper panel of Figure 5.5 is a natural mixing layer. It shows little evidence
of rolls. The other panels show the development of forced mixing layers, as simulated
numerically by Rogers and Moser (1994). When the shear layer is stimulated by periodic
forcing of suitable frequency, spanwise structure coagulates. Toward the middle of the
lowest panel, two structures are seen in the act of pairing. As time evolves, they roll
around each other and amalgamate into a larger feature. The outcome is an increased
mixing-layer thickness. External forcing can increase the growth rate of a mixing layer
by the mechanism of vortex pairing.

One engineering significance of turbulent coherent eddies is that they entrain free-
stream fluid into a growing shear layer. Shear-layer entrainment in an averaged sense was
discussed in conjunction with Eq. (4.2.11). An instantaneous view is that the external fluid
is engulfed into the shear layer by swirling round large entrainment eddies. The engulfed
fluid then acquires vortical turbulence as it is mixed by smaller-scale eddies. This is the
origin of the term “entrainment eddies,” which has been applied to the double roller.
Evidence is that double rollers are a statistical view of real eddies; but instantaneous
structures are not very distinct in high Reynolds number shear layers.

Another reason that ideas about coherent structures are of engineering interest is that
they are concrete flow patterns that might be controlled if they are stimulated by peri-
odic forcing, as in the numerical simulation of Figure 5.5. In physical experiments, the
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Figure 5.5 Contours of a passive tracer delineate mixing-layer eddies. Top: a natural
mixing layer; middle: a mixing layer subject to moderate, periodic forcing; bottom:
a mixing layer with strong forcing. From Rogers and Moser (1994); reproduced with
permission.

spanwise rolls in a mixing layer can be locked into step by forcing them with a loud-
speaker or vibrating vane. This may be a mechanism for controlling the development of
a shear layer – but turbulence control is a topic outside our present scope.

Processes similar to those of the plane mixing layer occur in the early stages of
turbulent jet development (Figure 5.1). In this case the large vortices are ring-shaped.
They can become corrugated and also can move off-axis to produce a field of eddies
that occur irregularly in space and time. In both the plane mixing layer and circular jet,
the vortices can intersect and join one another. This can be an amalgamation of eddies,
referred to as vortex pairing (as in the lower part of Figure 5.5); or it can be local
joining, referred to as cut and connect (Figure 5.6). Cut and connect is a topological
change. Vortex segments with opposite signed vorticity merge, the vorticity of opposite
signs diffuse together and cancel, and a new configuration of vortex lines emerges.

A jet nozzle has a sharp edge at which the flow separates. The fixed, circular separa-
tion line tends to impose axisymmetry on the initial large-scale eddies. This suggests
that the axisymmetry can be broken by corrugating the lip of the nozzle, which is
the case. The corrugations hasten the breakup of axisymmetric vortices into smaller,
irregular eddies. This can occur through fission of vortex rings into smaller rings, as illus-
trated in Figure 5.6. Small-scale mixing can be promoted by encouraging the breakup of
large structures.

While a similarity might be expected between the coherent eddies in the wake of a
sphere and those downstream of the exit of a jet, that is not the case. Even though the
mean flow is axisymmetric, the sphere does not shed vortex rings. Flow measurements
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The two original tubes merge in the circled region, then fission to create two new tubes
at a different orientation, as at right.

At left, circular vortices in a jet break up to form smaller eddies via the cut-and-connect process.
At right, hairpin vortices can pinch off a ring.

Figure 5.6 Reorganization of vortices: cut and reconnection of vortex tubes, following
Hussain (1978).

in the wake of a sphere have long been known to suggest a helical structure in the
wake. The helix can be left- or right-handed, either of which destroys the cylindrical
symmetry. The way to restore axisymmetry on the average is for the helix to vary
randomly between left and right polarization; indeed, this is what is observed. It took a
long time before the structure of the helix was successfully visualized, first in experiments,
then in numerical simulations. It consists of loops of vorticity that are shed from the
sphere at locations that circle the perimeter of the sphere, creating a helical signature in
the wake (Figure 5.7). It should be emphasized that this “coherent” structure of the sphere
wake is rather hard to detect in high Reynolds number experiments or computations. Hot
wire anemometers separated by 180◦ around the circumference show strong coherence,
evidencing the presence of some orderliness, but laboratory visualizations have been only
at laminar or transitional Reynolds numbers.

5.1.2 Boundary layers

The coherent eddies of a flat-plate boundary layer may also be in the form of vortex
loops, in this case alluded to as “horseshoe” or “hairpin” vortices. However, analysis of
two-point correlations and pattern recognition programs often show only the legs of the
hairpin vortices. This has led to the boundary-layer coherent structure being described
as “double cones” aligned at about 45◦ to the wall and nearly attached to the surface
(Townsend, 1976). Figure 5.8 is a schematic of the form of attached eddies that was
inferred by statistical analysis of eddy structure.

Smoke visualizations of the instantaneous flow field in a turbulent boundary layer by
Head and Bandyopadhyay (1981) showed evidence of the upper loop of hairpin vortices.
The attached eddies may well be the lower portion of such vortices. At very high Reynolds
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Figure 5.7 Vortical structures downstream of a sphere. The surfaces enclose regions
where rate of rotation is greater than rate of strain. The loops rotate direction to create a
helical signature. From Johnson and Patel (1999), reproduced with permission.
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Figure 5.8 Attached, conical eddies in a boundary layer, as proposed by Townsend
(1976).

numbers, the hairpin vortices might occur in the outer region of the boundary layer and
not be seen as attached to the wall; a precise image does not currently exist. There is
evidence that sometimes the hairpins occur as a packet of several vortices, forming a
sort of tunnel. Figure 5.9 was constructed by Zhou et al. (1999) from low Reynolds
number direct numerical simulation (DNS) data. It shows a sequence of vortex loops.
These horseshoe-shaped loops are only seen at low Reynolds number; at higher Reynolds
number the legs are straighter, as sketched in the lower part of Figure 5.11. The low
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Tertiary hairpin Quasi-streamwise vortex

Secondary hairpin
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Figure 5.9 Hairpin eddies in low Reynolds number channel flow. Courtesy of R. Adrian,
J. Zhou, and S. Balachandar, reproduced with permission.

Reynolds number simulation in Figure 5.9 suggests a process by which self-generation
of vortex loops might lead to a packet. As loops lift from the surface, they are stretched
by the mean shear, ultimately becoming hairpins, with long, nearly straight legs, lying
at ∼ 45◦ to the flow. These legs induce a distortion in the underlying boundary layer
that locally intensifies the spanwise vorticity. The local patch of high vorticity becomes
kinked into another horseshoe, which lifts from the surface. This process has been termed
“burst and sweep,” the lift-up being called the burst and the regeneration being initiated
by the sweep (Offen and Kline 1975).

In a parallel shear layer the rate-of-strain tensor is[
0 1

2 ∂yU
1
2 ∂yU 0

]
.

This has eigenvectors proportional to (1, 1) and (−1, 1). These are vectors at ±45◦ to
the wall. The ∼ 45◦ orientation of attached eddies tends to align them with the principal
directions of strain. This suggests that these large eddies efficiently extract energy from the
mean flow. The circulation round vortices lying at 45◦ to the flow lies in a plane at −45◦
to the flow. That orientation produces an anticorrelation between u and v, consistently
with the Reynolds shear stress uv being negative.

The angled alignment of structures requires a balance of forces. Mean shear would
rotate a material line until it became parallel to the wall. However, a horseshoe vortex has
a self-induced velocity that lifts it away from the wall. To achieve an orientation of ≈ 45◦,
an approximate balance between rotation by the mean shear and self-induced lifting is
required. This would suggest that only structures with sufficiently large circulation can
maintain themselves.
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As the horseshoe vortex lifts away from the wall, the mean rate of strain will inten-
sify the vorticity in its legs, making them a dominant feature of the flow. The legs of
lifted vortices may be the origin of the conical eddy structure (Figure 5.8) inferred from
statistical correlations.

Between the conical eddies, low-speed streaks are seen near the surface, as portrayed
in Figure 5.8. This means that the instantaneous velocity ũ is less than the average
velocity U in these regions. The flow between the eddies is upward from the surface,
so it convects low-momentum fluid away from the surface to produce these low-speed
streaks. The appeal here is to a qualitative “mixing length” argument, according to
which u momentum is conserved during a displacement. That is a reasonable concept if
the displaced fluid is long in the x direction. In that case ∂xp is small for the displaced
element and u momentum is approximately conserved. It is probably not coincidental
that the streaks are indeed elongated in the x direction. Consisting of predominantly u

velocity, and being elongated in x, gives streaks a jet-like character. A theoretical reason
for this is discussed in Chapter 11.

Typically the streaks are spaced about 100ν/u∗ apart in the spanwise, z direction; in
other words, �z+ ≈ 100 on average. The streaks themselves have a width of �z+ ≈ 30
and a length that can be more than �x+ ≈ 2000. The elongation is consistent with
evidence from pattern recognition analysis.

The legs of the horseshoe vortices in Figure 5.9 curve up from the surface. The portion
along the surface might be considered to produce the highly elongated, low-speed streaks
(see Figure 5.8). However, there is a different perspective, discussed in Chapter 11,
by which the streaks are streamwise-elongated, jet-like disturbances that are selectively
amplified by mean shear. Then the long vortices near the surface might simply be the
boundaries of the jet-like structure.

On the outside of the pair of conical eddies, high-speed streaks are seen. They are
produced by convection of high-momentum fluid toward the wall. High-speed streamwise
velocity contours are shorter than the low-speed streaks and can also be seen as patches of
high surface shear stress. The concept of high- and low-speed streaks evolved through the
analysis of many flow visualizations, and is well substantiated. Instantaneous snapshots
of turbulent boundary layers give an unambiguous impression of the streaky structure, but
it is certainly not as clear-cut as the cartoon in Figure 5.8 implies; the cartoon represents
a conditionally averaged flow structure. An instantaneous velocity field in a plane parallel
to the wall is contained in Figure 5.10. A long streak of negative u can be identified
in the middle of the figure. The connection between attached eddies and the elongated
velocity contours in Figure 5.10 is not entirely certain. To the extent that the present
discussion of coherent structure is a taxonomy, there is no need to provide a definitive
connection between the various features that have been observed in boundary layers. At
the present time it is not clearly understood.

The upper edge of the boundary layer, sometimes called the superlayer, shows large-
scale undulations. Their length is of order 1–2 times the boundary-layer thickness and
they convect downstream at about 0.85U∞ (Cantwell, 1981). Smaller irregularities in the
interface may be caused by the upper portion of the hairpin vortices, as well as by the
general, disorderly turbulent motion. The photograph at the top of Figure 5.11 provides
a clear impression that the interface is perturbed by small vortices. It has been proposed
that large bulges are sometimes created by an envelope of hairpin vortices.
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Figure 5.10 Streaks in a turbulent boundary layer (Jacobs and Durbin, 2000). These
are contours of the instantaneous u component in a plane near the wall. Light regions
are u < 0, dark are u> 0. A long streak of negative u is seen spanning the middle of the
figure. White lines are overlaid to show the u = 0 contours.

Packet of hairpin
vortices

Entrainment interface
at top of boundary layer

Figure 5.11 Upper: Smoke wire visualization of the instantaneous eddying motion in
a turbulent boundary layer. Courtesy of T. Corke and H. Nagib. Lower: Schematic of
hairpin vortices and entrainment interface. After Head and Bandyopadhyay (1981).

Entrainment occurs via engulfing into the bulges, in conjunction with mixing by small
eddies. Deep intrusions of laminar fluid are seen between turbulent zones in Figure 5.11.
The smaller eddies along the entrainment interface ingest portions of laminar fluid. This
two-fold process advances the interface between the turbulent boundary layer and the
free stream.

Three types of structure seen in boundary layers are widely accepted: very long,
narrow, low-speed streaks near the surface; hairpin vortices, or conical eddies, in the
central portion; and an undular interface with the free stream. These form the basis
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Figure 5.12 Vorticity contours behind a triangular cylinder in a channel show unsteady
vortex shedding. This illustrates that the ensemble-averaged, mean flow can be unsteady;
nevertheless, these are contours of averaged vorticity and not of the instantaneous,
random flow.

for a qualitative understanding of mixing, entrainment, pressure fluctuations, and other
properties of turbulent boundary layers.

5.1.3 Non-random vortices

Many other characteristic structures have been seen in various turbulent shear flows.
Quite often they are reminiscent of vortices seen more clearly in laminar flow. Examples
are streamwise eddies on concave walls or swept wings, associated with Görtler and
cross-flow vortices, and toroidal eddies in circular Couette flow, corresponding to Taylor
vortices. These will not be discussed here, since these and other examples are best dealt
with in the context of hydrodynamic stability.

Vortex streets, reminiscent of the laminar Von Karman vortex street, can usually
be detected behind bluff bodies even in a fully turbulent regime. This is illustrated in
Figure 5.12 by an unsteady Reynolds averaged computation using a turbulence model. If
truly non-random eddies exist, they should be distinguished from the turbulent motions.
In an experiment the non-random, periodic shedding appears as a spike in the frequency
spectrum that is clearly distinguished from the broadband, random background. The
decomposition into mean and fluctuation, ũ = U + u, used in Chapter 3, includes the
periodic component in the mean flow U(t). The decomposition could be extended by
dividing U into time-averaged and periodic parts, U(t) = U + U ′(t). However, this divi-
sion is not at all useful in the context of unsteady Reynolds averaged computation. U(t)

is the ensemble-averaged velocity that appears in the equations of Chapter 3; when it is
time-dependent due to vortex shedding, ensemble averaging cannot be replaced by time
averaging. In an experiment, averages can be computed at a fixed phase of the oscillation
and along a direction of homogeneity. Randomness and ensemble averaging cause the
vortex street to decay rather more rapidly than in laminar flow. This example is discussed
further in Section 7.4.2.

5.2 Vorticity and dissipation

Vortical structures occur in the large, energetic scales of motion. Although large structures
are vortical, the small-scale vorticity is far more intense. At high Reynolds number,
coherent structures can be difficult to distinguish in plots of vorticity contours because
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the most pronounced feature is small-scale irregularity. The dominance of small-scale
vorticity can be deduced by applying the scaling arguments outlined in Section 2.1.

The length scale of the large eddies is denoted L and is on the order of the shear-layer
thickness δ; their velocity scale is on the order of the turbulent intensity

√
k. The length

scale of the smallest eddies is the dissipative scale η = (ν3/ε)1/4; their velocity is of
order (εν)1/4. In the inertial range, the size of the eddies is r , the distance between two
points; their velocity is of order (εr)1/3. Vorticity has dimensions of velocity/length. The
scalings of length, velocity, and, consequently, vorticity are summarized in Table 5.1.
Within the inertial range, as r → 0 the energy decreases, but the vorticity increases;
vorticity is dominated by small eddies, velocity is dominated by large scales.

The requirement that the inertial subrange matches to the energetic range as r → L,
and to the dissipation range as r → η, has an instructive consequence. Consider the
vorticity scaling in Table 5.1: matching the inertial-range formula to the energetic range
formula as r → L gives (ε/r2)1/3 → √

k/L. This can be restated as (ε/L2)1/3 ∼ √
k/L,

or as

ε ∼ k3/2/L. (5.2.1)

This estimate for the rate of dissipation is the basis of the k–� turbulence model discussed
in Section 6.2.2.2.

Similarly, the requirement that the inertial-range formula matches to the dissipation-
range formula as r → η is (ε/r2)1/3 → (εν)1/2. This simply recovers the scaling
η ∼ (ν3/ε)1/4. The interesting perspective given by this asymptotic analysis is that
expression (5.2.1) and the formula for η are requisites for the inertial range to interpolate
between the energetic and dissipative scales.

Comparing the relative magnitudes of vorticity in Table 5.1:

ωenergetic

ωinertial
=
(

r

L

)2/3

,
ωenergetic

ωdissipation
=
(

η

L

)2/3

,

where Eq. (5.2.1) has been invoked. In the inertial range η � r � L, so the relative
magnitudes of vorticity are ωe � ωi � ωd. In fact ωe/ωd is of order R

−1/2
T , where

RT = √
kL/ν, as in Section 2.1. This shows that at high Reynolds number the small-scale

vorticity is much more intense than the large-scale vorticity. The reason is essentially
that the velocity gradient is inversely proportional to the length scale, so the small scales
are associated with large velocity gradients.

As the vorticity is most intense at small scales, it might seem intuitively that vorticity
has some connection to the rate of turbulent energy dissipation. The vorticity vector is

Table 5.1 Scalings of length, velocity, and vorticity.

Range Energetic Inertial Dissipative
r ∼ L η � r � L r ∼ η

length L r (ν3/ε)1/4

velocity
√

k (εr)1/3 (εν)1/4

vorticity
√

k/L (ε/r2)1/3 (ε/ν)1/2
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defined as† ωi = εijk ∂juk. The mean-square magnitude of the vorticity is therefore

ω2 = ωi ωi = εijk ∂jukεilm ∂lum = (δjlδkm − δjmδkl) ∂juk ∂lum

= ∂juk ∂juk − ∂juk ∂kuj .

The dissipation rate is defined by ε = ν ∂juk ∂juk. For incompressible flow ∂juj = 0 and
the above formula for ω2 can be rewritten as

ν ω2 = ε − ν ∂j∂kukuj . (5.2.2)

The last term of this equation vanishes in homogeneous turbulence, in which case ε =
ν ω2. Usually the small scales are approximately homogeneous and this relation between
mean-squared vorticity and dissipation holds to a good degree of accuracy (Exercise 5.2).

5.2.1 Vortex stretching and relative dispersion

The question of how vorticity accumulates at small sizes, and what sets that size, can be
answered by considering the dynamics of vorticity. The essential elements are stretching
and diffusion.

A notable property of turbulence is its ability to mix contaminants. A concentra-
tion blob will be distorted into a filamentary shape by the turbulence, as illustrated in
Figure 5.13. When molecular diffusion comes into play, the filaments will ultimately
mix with the surrounding fluid. But the stirring by fluid turbulence is the first and more
important step.

Consider two points, A and B, in the dye blob (Figure 5.13). A corollary to the
observation that turbulence mixes the dye is that on average these marked elements will
separate; this is Richardson’s idea of relative dispersion (Exercise 2.3). There is nothing
special about the particle pairs being in the dye: any pair of particles tends to separate
in consequence of random convection. If the particle pairs are connected by a vortex
tube, then a corollary to relative dispersion is that vortex tubes tend to be stretched. As

A
B

A
B

t = 0

t > 0

AB0

 ABt

Figure 5.13 Schematic of blob dispersion and implied vortex stretching. Turbulent
dispersion of particle pairs lies behind mixing of contaminants and elongation of
vortex tubes.

† The skew symmetric tensor can be defined by εijk = 1 if ijk are any three successive integers in 123123
and εijk = −1 if ijk are any three successive integers in 132132.
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a vortex tube is stretched, its vorticity increases. This provides an understanding of how
the small-scale vorticity is maintained: turbulent convection tends to stretch vortex lines.

Consider a cylindrical vortex tube of cross-sectional area A0 and initial length �AB0 .
Its volume is A0�AB0. If the flow is incompressible, the volume of fluid elements must
be constant. At a later time, A/A0 = �AB0/�AB. By definition, the circulation ωA around
a vortex tube is constant, so

ω = ω0
A0

A = ω0
�AB

�AB0

. (5.2.3)

As two fluid particles separate, the length of the material line connecting them grows and
the vorticity increases in proportion to the length of the material line. The cross-section
grows smaller, and the vorticity amplifies; hence vorticity intensifies at small scale.

Ultimately, the vorticity amplification by stretching will be counteracted by molecular
diffusion. An exact solution to the Navier–Stokes equations that illustrates the balance
between stretching and diffusion is the Burgers vortex, illustrated by Figure 5.14. The
axial component of the steady, axisymmetric vorticity equation is

Ur ∂rωx = ωx ∂xUx + ν

r
∂rr ∂rωx. (5.2.4)

If the x and r components of velocity are given by Ux = αx and Ur = − 1
2αr , then

the flow is an incompressible, axisymmetric rate of strain along the axis of the vortex.
Substituting this into (5.2.4) gives

− 1
2α ∂r(r

2ωx) = ν ∂rr ∂rωx.

A solution to this equation is

ωx = ωCL e−αr2/4ν, (5.2.5)

where ωCL is a constant. The solution (5.2.5) is a steady vorticity distribution, for which
axial stretching and radial diffusion balance exactly. The thickness of the vortex is
O(

√
ν/α). The circulation of the vortex, � = ∫∞

0 ω d(πr2), is constant during the stretch-
ing and equal to 4πνωCL/α.

w

U = ax

Vr = −1/2 ar

Figure 5.14 Straining flow and vorticity configuration for a cylindrical Burgers
vortex.
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Suppose there is a number Nb/A of Burgers vortices per unit area of fluid. Then the
averaged rate of energy dissipation is

ε = Nb

A
ν

∫ ∞

0
ω2 d(πr2) = Nbα�2

8πA

(see Eq. (5.2.2)). This illustrates that the balance between stretching and diffusion results
in a dissipation rate that is independent of molecular viscosity. The Burgers vortex is
suggestive of the idea that at high Reynolds number ε is independent of ν, even though
dissipation is a viscous process.

Recall the estimate (5.2.1), ε ∼ k3/2/L, that relates dissipation to the energetic scales
of motion. It might have seemed curious that this estimate is independent of molecular
viscosity. The physical justification is that just given; that at high Reynolds number the
balance between stretching and diffusion of small-scale vorticity causes the rate of energy
dissipation to be independent of viscosity. The length scale of the vortices for which this
balance is achieved is

√
ν/α ∼ (ν3/ε)1/4 = η if the rate of strain, α, is of order

√
ε/ν.

Intensification of small-scale eddies by self-straining stops when the Kolmogoroff scale
is reached and a balance with viscous diffusion is struck.

5.2.2 Mean-squared vorticity equation

The concepts illustrated by the Burgers vortex are manifested in the full vorticity equation.
A transport equation for the mean-squared vorticity can be derived by the same procedure
as was used to derive the kinetic energy equation in Chapter 3: the equation for the
fluctuating vorticity vector is multiplied by the vorticity vector and averaged. The result
for |ω|2 ≡ ωiωi is

∂t |ω|2 + Uj ∂j |ω|2 = −2ujωi ∂j�i − ∂jujωiωi + 2ωiωj ∂jUi

+ 2�j ∂iωiuj + ν∇2|ω|2 + 2ωiωj ∂jui − 2ν ∂jωi ∂jωi,

where � is the mean vorticity. On restriction to homogeneous turbulence, the simpler
equation

1
2 ∂t |ω|2 = ωiωj ∂jUi + ωiωj ∂jui − ν ∂jωi ∂jωi (5.2.6)

is obtained. Oftentimes, |ω|2 is referred to as the fluctuating enstrophy.
It has already been deduced that the largest contribution to the vorticity is from the

dissipative range, where ω ∼ (ε/ν)1/2. For the purpose of order-of-magnitude estimation,
assume that production and dissipation are comparable. Then −uiuj ∂jUi ∼ ε ∼ k3/2/L.
With the order-of-magnitude scaling uiuj ∼ k, this gives the mean flow gradient magni-
tude of k1/2/L. Turbulent gradients are of order ω. Consider the relative magnitudes of
the terms in Eq. (5.2.6): for instance

ωiωj ∂jui

ωiωj ∂jUi

∼ ωL

k1/2
∼
√

εL2

νk
∼
√

k1/2L

ν
= R

1/2
T .
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This type of reasoning shows that, at high turbulent Reynolds number, the terms con-
taining only turbulent quantities dominate (5.2.6). The lowest-order balance is between
the last two terms

ωiωj ∂jui ≈ ν ∂jωi ∂jωi (5.2.7)

(see Exercise 5.3). This represents a balance between stretching of turbulent vorticity by
the turbulent velocity gradients and dissipation of mean-squared vorticity by molecular
diffusion. The Burgers vortex described in the previous section is a model for this balance
if α represents the small-scale rate of strain.

The self-stretching can be related to a product of velocity derivatives. It can be
shown that

2ωiωj ∂jui = ∂i∂j ∂k(uiujuk) − 2∂kui ∂kuj ∂iuj − 3∂j (uj ∂kui ∂iuk).

If the turbulence is homogeneous, averaging this formula gives

ωiωj ∂jui = −∂kui ∂kuj ∂iuj .

Vortex stretching occurs when the covariance on the right-hand side is not zero. For a
Gaussian random variable, third moments vanish and so would this self-stretching term.
Non-Gaussianity in the small-scale statistics is critical to the maintenance of turbulence.

The third moment defines the skewness of a probability distribution. The velocity
derivative skewness is defined by

Sd ≡ −∂kui ∂kuj ∂iuj /(∂jui ∂jui)
3/2.

In isotropic turbulence this can be shown (Batchelor and Townsend, 1947) to be equal to

Sd = − 7

6
√

15

(∂1u1)
3

(∂1u1)2
3/2

.

The gradient ∂1u1 is something that can be measured by a fixed probe in a wind tunnel,
upon invoking Taylor’s hypothesis (Section 2.1.1) to relate ∂/∂x1 to ∂/∂t . The velocity
derivative skewness is indeed measured to be non-zero (Mydlarski and Warhaft, 1996);
experimental values are in the range 0.5–1.0.

Usually Sd is defined as (∂1u1)
3/(∂1u1)

2
3/2

, without the numerical factor, but the
above definition suits the present purpose. It follows from the skewness formulas and
(5.2.2) that (5.2.6) can be written as

1
2 ∂t |ω|2 = ωiωj ∂jUi + Sd(|ω|2)3/2 − ν ∂jωi ∂jωi. (5.2.8)

In order for there to be self-stretching of the vorticity, Sd must be non-zero. In the
absence of viscosity and mean flow gradients, only the middle term on the right-hand
side of (5.2.8) remains. Then it can formally be integrated to

|ω|2 =
(

|ω|0
1 − |ω|0

∫ t

0 Sd dt

)2

,
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where the subscript 0 denotes the initial value. The fact that the denominator could vanish
at some time raises the possibility that the vorticity could become infinite in a finite time.
The time to singularity would seem to be O(1/|ω|0Sd). The matter is actually more subtle,
since it depends on the vorticity remaining aligned with the straining. There is ongoing
debate among mathematicians over whether or not the inviscid equations do produce
a finite-time singularity. Even if it does occur in an ideal fluid, molecular viscosity
will prevent this singularity. However, it can be seen that self-stretching is a powerful
vorticity amplifier.

Exercises

Exercise 5.1. Useful mathematical relation. Prove that

εilpεjnp = (δij δln − δinδlj ).

The brute force approach is to write out all 81 components. However, all but 12 are zero.
Use this identity to show that ν|ω|2 = ε in homogeneous, incompressible turbulence. The
vorticity vector is ωi = εijk ∂juk .

Exercise 5.2. Vorticity and dissipation. Suppose that the scale of non-homogeneity is
δ ∼ L. Show that the magnitude of the first term on the right-hand side of (5.2.2) relative
to the second is O(RT).

Exercise 5.3. The balance between stretching and diffusion. Show by dimensional
analysis of the stretching (ωj ∂jui) and diffusion (ν∇2ωi) terms of the vorticity equation
that a balance is reached when the vortex radius is O(η). Note that the rate of strain is
of order

√
ε/ν at small scales.

Exercise 5.4. Introduction to rapid distortion theory. Find a solution of the form

ω3 = A(t) ei(k1(t)x1+k2x2)

to the inviscid vorticity equation if the velocity is of the form u3 = αx3, u2 = v2, and
u1 = v1 − αx1, and ∇ · v = 0. The initial condition is ω3(0) = ω0 ei(κ1x1+κ2x2). Because v

is the velocity generated by the vorticity, it too is proportional to ei[k1(t)x1+k2x2]. [Hint:
Don’t forget the continuity equation.]

Exercise 5.5. Burgers vortex. Solve the two-dimensional vorticity equation, correspond-
ing to (5.2.4), for ωx(y) when the straining flow is U = αx and V = −αy. What is
W(y)? Why is this an exact solution to the Navier–Stokes equations?
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Models with scalar variables

The pictures and vocabulary are the key to physical intuition, and the intuition makes
possible the sudden leaps of insight . . . mathematics, of course is the ultimate arbiter;
only it can say whether the leaps of insight are correct.

– Richard Price and Kip Thorn

The equations for the statistics of turbulent flow are fewer in number than the unknowns
appearing in them: they do not form a closed set of predictive equations. The purpose
of closure modeling is to formulate further equations such that a soluble set is obtained.
When the purpose is to predict non-homogeneous flow, possibly in complex engineering
geometries, then these closure equations must contain empiricism. It is generally prefer-
able for empiricism to enter via a fairly small number of experimentally determined model
constants. However, sometimes functions are introduced to fit experimental curves: this
is especially true in the simplest models, such as integral closure or mixing lengths. By
adopting functional forms, it is implicitly assumed that turbulent flows exhibit a universal
behavior of some sort. Unfortunately, universality does not apply to complex engineering
flows – flows that closure models are formulated to predict. The more elaborate, trans-
port equation models solve partial differential equations in order to minimize the need to
specify functional forms.

Consider the problem of predicting the mean flow field. The four equations (3.2.2) for
the mean contain 10 unknowns: Ui , P , and uiuj , with i = 1–3, j = 1–3. To close these
equations, a semi-empirical formulation to predict the uiuj is needed. For instance, the
Reynolds stress might be explicitly related to the mean flow by a Newtonian constitutive
equation with an eddy viscosity: uiuj = −2νTSij + 2

3 δij k. The term “semi-empirical”
means that aspects of the model are obtained from a combination of analysis, fluid
dynamics, and experimental data. We have already seen examples of this: to obtain the
log law, the relation −uv = u∗κy ∂yU was deduced as a closure formula by dimensional
reasoning, but the constant κ had to be determined from experiments.

Statistical Theory and Modeling for Turbulent Flows, Second Edition P. A. Durbin and B. A. Pettersson Reif
 2011 John Wiley & Sons, Ltd
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It has sometimes mistakenly been thought that empirical coefficients are a bane of
turbulence modeling. Actually, the opposite is true. Closure models enable one to predict
statistics of the very complex phenomenon of turbulent flow by solving a remarkably sim-
ple set of equations (at least for the majority of models, such as those discussed herein).
If no empirical constants were required, the implication would be that the closure rep-
resented either exact laws of fluid dynamics, or a systematically derived approximation.
That degree of exactitude is impossible in predictive models for engineering flows. The
alternative is to use equations that are not systematically derived and that have an empir-
ical component. The model then becomes a method to use data measured in simple flows
that can be studied in reproducible experiments, and therefrom to predict far more com-
plex flows. The creation and analysis of these models proves to be a challenging field of
practical, applied mathematics.

Having pondered the problem of predicting the mean, Ui , and recognized that its exact
evolution equation contains uiuj , one might think to derive the exact equation for uiuj

(which is Eq. (3.2.4)) in hopes of achieving closure. To one’s dismay, the problem has
got worse: not only has a further moment uiujuk

arisen, but a velocity–pressure gradient
correlation, ui ∂jp, also appears. There are now two sources for the lack of closure: non-
linearity and nonlocality. Quadratic nonlinearity in the Navier–Stokes equations results
in a moment hierarchy in which the nth-moment equation contains the (n + 1)th veloc-
ity moment. The formation of successively higher moment equations does not achieve
closure, and rapidly becomes impracticable. The second lack of closure arises from two
(or more) point statistics entering the single-point moment equations. Pressure is a non-
local effect of turbulent velocity fluctuations (pressure is governed by an elliptic, or
nonlocal , Poisson equation); the velocity–pressure gradient correlation ui ∂jp implicitly
introduces the two-point velocity correlation. In this case one could consider a hierarchy
of multi-point correlations, but already at two points it has become impracticable. In a
three-dimensional geometry, the two-point correlation ui(x)uj (x ′) is a function of six
coordinates, (x, x ′). Modeling in three dimensions is already a challenge; it would be
very difficult to make a case for modeling in six spatial dimensions. Only models for
single-point, first- or second-moment statistics are of interest here.

The type of modeling discussed in this book is that widely used in Reynolds averaged
computational fluid dynamics (CFD). This is the type of CFD that is used in virtually
all industrial applications of turbulent flow computation. The models have a strong moti-
vation of filling the needs of computer-aided analysis. But the emphasis here is not on
pragmatics; the intent is to cover how models are developed: Where does mathematics
guide the process? Where does empiricism enter?

This book is not a survey of the many models that can be found in the literature.
However, it does cover the range of approaches, from the simplest, integral closure, to the
complex Reynolds stress transport methods. The material selected for this text is meant to
cover fundamental techniques of modeling and the particulars of a few models. Thereby
the groundwork is laid for the full range of models that can be found in the literature.

6.1 Boundary-layer methods

The evolution of the field of turbulence modeling has been heavily influenced by advances
in computer technology. The earliest models were for boundary-layer flows because
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parabolic, boundary-layer equations could be solved on the computing equipment of
that time. In fact, the earliest computationally tractable models were integral closures,
which only require integration of ordinary differential equations (for 2D boundary layers).
Closure models for boundary-layer flow are still of some value, but the state of computer
technology has enabled full Reynolds averaged Navier–Stokes (RANS) computations to
be performed routinely. For such applications, general-purpose models are needed – they
are the subject of later sections; we commence with the more limited methods.

6.1.1 Integral boundary-layer methods

Integral boundary-layer methods were an early approach to turbulent flow prediction, one
that has been replaced by more elaborate methods in most applied computational fluid
dynamics computer codes. These methods were developed to estimate boundary-layer
effects in streamlined flow. Although integrated equations are no longer an active area
of research in turbulence modeling, they are still sometimes an effective level of closure.
In some applications, such as to aerodynamics, the primary concern is with streamlined,
potential flow around a body. If boundary layers are thin and attached, the role of the
closure model may be to estimate the skin friction, or to compute a small displacement
effect that modifies the potential flow, or to assess whether the boundary layer is likely
to remain attached under a particular potential flow. Integral models may be adequate for
such purposes. They have the advantage of being extremely simple and computationally
inexpensive, requiring only the solution of ordinary differential equations.

In the boundary-layer approximation, the free-stream velocity is found by an inde-
pendent potential flow computation. Given U∞(x) from such a computation, predictions
of momentum thickness, θ , skin friction, Cf, and displacement thickness, δ∗, are wanted.
The integral of the boundary-layer momentum equation (4.2.7), on page 68, is unclosed
because it contains three unknowns: θ , δ∗, and Cf. The coefficient of δ∗ vanishes in zero
pressure gradient. In that case the empirical formula Cf = aR

−1/4
θ was used in (4.2.10) to

close the differential equation. This is a simple example of an integral equation method.
The momentum integral can be written

dxθ + (δ∗ + 2θ)
dxU∞
U∞

= Cf

2
(6.1.1)

when there is a free-stream pressure gradient, as was derived in Exercise 4.5. A common
practice is to compute δ∗ from the entrainment law (4.2.11)

dx[U∞(δ99 − δ∗)] = VE. (6.1.2)

Equations (6.1.1) and (6.1.2) are a pair of evolution equations for δ∗ and θ that contain five
unknowns. They can be closed by prescribing three functions of the form Cf = F(Rθ ,H),
δ99 = δ∗G(H), and VE = U∞E(H), where H ≡ δ∗/θ . This brings the total number of
equations to five. The role of the form factor, H , is to incorporate effects of pressure
gradient. The definition

H = U∞
∫∞

0 U∞ − U(y) dy∫∞
0 U(y)[U∞ − U(y)] dy
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shows that H > 1 if U(y)/U∞ is monotonically increasing. The larger the region where
U/U∞ is on the order of 1

2 , the larger H will be. Adverse pressure gradients produce
substantial deficits in the velocity profile, which increase H . So a role of the form factor,
H , is to parameterize the impact of pressure gradient on the velocity profile. As H – and
hence the velocity deficit – increases, the skin friction decreases. This effect will enter
the empirical function for Cf if its arguments include both Rθ and H .

The non-dimensional ratios δ99/δ
∗ and VE/U∞ are outer region properties. At high

Reynolds number they are assumed to be mildly influenced by viscosity, and to first
approximation independent of Reynolds number. Therefore they are represented as func-
tions of H alone.

A set of semi-empirical formulas that has been used by some investigators is

Cf = 0.246R−0.268
θ 10−0.678H ,

VE = 0.031U∞
[0.15 + 1.72/(H − 1) − 0.01(H − 1)2]0.617

, (6.1.3)

δ99 − δ∗ = θ

[
3.15 + 1.72

H − 1
− 0.01(H − 1)2

]
.

The constants and exponents in (6.1.3) were obtained simply by fitting formulas to exper-
imental data. Closure via a formula for VE is called Head’s entrainment method. Other
sorts of integral closure can be found in Kline et al. (1968) and Bradshaw (1976).

The formula in (6.1.3) for Cf is the Ludwig-Tillman data correlation. It does not
permit Cf to reach zero and hence does not apply near a point of separation. An alternative
formula, such as

Cf = min[0.246 × 10−0.678H , 0.046 log(3/H)]R−0.268
θ , H ≤ 3, (6.1.3a)

would permit the skin friction to reach zero. This assumes H = 3 to be the separation
criterion. The boundary-layer equations cannot be solved beyond separation, so there is
really no need for the modification (6.1.3a); a computation using the Ludwig–Tillman
correlation (6.1.3) can simply be stopped when H = 3, with a declaration that separation
has occurred.

In conjunction, (6.1.1), (6.1.2), and (6.1.3) constitute five equations in five unknowns.
Substituting the first of (6.1.3) on the right-hand side of (6.1.1) and the second on the
right-hand side of (6.1.2) gives a pair of ordinary differential equations that can be solved
for the boundary-layer growth. If the third equation is used to replace δ99 − δ∗ in (6.1.2),
a pair of equations for H and θ is obtained. The specifics of (6.1.3) are not important; the
gist is to close integrated balance equations by semi-empirical drag and entrainment laws.

In a decelerated boundary layer, dxU∞ < 0 and H increases with x (Exercise 4.5).
The first of (6.1.3) shows that the effect of increasing H is to cause Cf to fall more
rapidly than in a zero pressure-gradient boundary layer. In a strong pressure gradient
Cf can fall to zero as the boundary layer separates. This is illustrated by Figure 6.1,
which shows how the adverse pressure gradient also produces a rapid thickening of the
boundary layer. This figure was computed with (6.1.1), (6.1.2), and (6.1.3).

Although a sufficiently decelerating pressure gradient can drive the skin friction to
zero and cause the boundary layer to separate, turbulent boundary layers are far more
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Figure 6.1 Skin friction coefficient beneath zero and adverse pressure-gradient bound-
ary layers: zero pressure gradient ( ); adverse pressure gradient ( ); and laminar,
adverse pressure gradient ( ).

resistant to separation than are laminar layers. A laminar curve is included in Figure 6.1. In
the given pressure gradient, the laminar layer separates, while the turbulent layer does not.
The mechanism of separation is a competition between the decelerating pressure gradient
promoting flow reversal near the surface and transport processes resisting it by carrying
forward momentum from the free stream toward the surface. Turbulent entrainment and
Reynolds stresses are more efficient mean momentum transporters than is molecular
viscosity. Hence they are more able to resist the tendency toward flow reversal.

An intriguing example of the ability of turbulence to delay separation is the “drag
crisis.” If the boundary layer on a cylinder or sphere is laminar, it will separate shortly
before the topmost point. But if the boundary layer is turbulent, the flow will remain
attached beyond the top and separate to the rear of the object. Momentum transport by
turbulent mixing resists the tendency to separate. The pressure drag on the cylinder is
due to separation: on the front of the cylinder the pressure is high due to stagnation;
in the separated zone on the rear it is low. As the separation point moves to the rear,
less surface area is in the separated zone, so there is less drag. Starting with a laminar
boundary layer, as the Reynolds number is increased beyond a critical value (Ud/ν ≈ 105

for a cylinder), the boundary layer will make a transition to turbulence (see Figures 3.2
and 3.1), at which point the separation shifts rearward and the drag suddenly decreases .
Figure 6.2 illustrates aspects of the drag crisis. Beyond the critical Reynolds number the
drag starts to increase slowly with Reynolds number, as the adverse pressure gradient
becomes more effective relative to the eddy viscosity.

6.1.2 Mixing length model

Prandtl introduced the mixing length model in 1925 as an analogy to the kinetic theory
of gases. The analogy is quite loose and does not bear scrutiny. Kinetic theory relates
macroscopic transport coefficients to molecular motion. There is a great disparity in
length scales that justifies a weak non-equilibrium approximation. By contrast, the length
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Figure 6.2 The drag crisis in flow round a sphere. At Rd = Ud/ν ≈ 105, the drag
coefficient, CD, suddenly drops as the boundary layer on the sphere becomes turbulent.

scale of eddying turbulent motion is not disparate to the scale of mean flow variation.
In kinetic theory, transport coefficients are derived in the transformation from a statis-
tical mechanical to a thermodynamic description. In turbulent flow, the transformation
is from fluctuating fluid dynamics to averaged fluid dynamics; the change is not from
fine-grained to coarse-grained description. The analogy to kinetic theory is not justifiable,
but the mixing length concept has proved a quite useful empirical model, irrespective of
its rationale.

Here is a quite heuristic rationalization that follows from (3.3.1). In many thin shear
layers, it is found experimentally that

−uv ≈ 0.3k sign(∂yU). (6.1.4)

A formula relating Reynolds shear stress to the mean flow can be obtained by estimating
the turbulent kinetic energy, k. Assume that turbulent fluctuations are produced by dis-
placing mean momentum. This idea was developed below Eq. (3.3.1). If �′ is a random
y displacement, the velocity fluctuation it causes is u = U(y − �′) − U(y) ≈ −�′ ∂yU .
This can be used to estimate the turbulent energy,

k = 1
2 uiui ∝ �′2 |∂yU |2. (6.1.5)

Letting �2
m = �′2, Eq. (6.1.4) becomes the mixing length model

−uv = �2
m|∂yU |∂yU. (6.1.6)

Here �m is regarded as an empirical length scale and constants of proportionality are
simply absorbed into its definition. A formula to prescribe �m as a function of distance
to the wall – and maybe of other parameters – must be provided, as discussed below and
in Exercise 6.3.

An early criticism of Prandtl’s mixing length reasoning was that it ignored pressure
gradients. The reasoning around Eq. (3.3.1) is equivalent to assuming that the streamwise
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momentum equation can be approximated by Dt (U + u) = 0. Then tracking a Lagrangian
trajectory back from y to a random initial position y0 gives

u(y) = U(y0) − U(y)

if the initial velocity fluctuation vanishes, u(y0) = 0. Squaring and averaging over the
random initial position gives

u2(y) = [U(y0) − U(y)]2.

The mixing length could be defined by �m ∝ [U(y0) − U(y)]2
1/2

/∂yU . It is a length
scale for momentum dispersion.

There is a possible counter to the criticism that Prandtl’s rationale ignores the term
∂xp in the fluctuation streamwise momentum equation. It is found theoretically, and
observed experimentally, that strong shear amplifies eddying motion, causing u to become
approximately independent of x. For instance, near to a wall in a turbulent boundary
layer, streamwise streaks are observed in flow visualizations. These are seen in smoke or
hydrogen bubble visualizations. The turbulence is organized into jet-like motions, parallel
to the surface. Numerical simulations show the same pattern in contours of u(x, z) in a
plane near the wall (Figure 5.10, page 101). Streaky, jet-like motion, with small ∂xu, also
has small ∂xp. Displacement of momentum therefore is approximately a valid concept for
such structures. This rationale is of comfort, even if it has no immediate bearing on the
model. The mixing length is rather an operational method, based on selecting formulas
for �m(y) to produce velocity profiles that agree with experimental data.

Equation (6.1.6) can be written in eddy viscosity form, −uv = νT ∂yU with

νT = �2
m|∂yU |. (6.1.7)

Using this, the boundary-layer momentum equation (4.2.6) with (6.1.6) becomes the
closed equation

U ∂xU + V ∂yU = −∂xP∞ + ∂y[(ν + �2
m|∂yU |) ∂yU ] (6.1.8)

for U . The mean flow evolution can be computed by solving this, instead of its integrated
form (6.1.1). Formulas for �m relate it to the wall-normal coordinate, y, pressure gradient,
transpiration, and so on (Kays and Crawford, 1993). A variety of such formulations have
been devised in the course of time. We will consider only the most basic formulation
in terms of the inner and outer structure of turbulent boundary layers. This aspect is
common to all mixing length models.

The two asymptotic zones of the turbulent boundary layer are the law-of-the-wall and
law-of-the-wake regions (Section 4.2). Dimensional analysis gives the functional forms

�m = ν/u∗F(yu∗/ν), law of wall, y � 0.2δ99,

�m = δ99G(y/δ99), law of wake, y � 40ν/u∗.
(6.1.9)

In the logarithmic overlap region, these must be equal. From the first of (6.1.9), �m cannot
depend on δ99 in the overlap region; from the second it cannot depend on ν/u∗. So all
that is left is for �m to be proportional to y. More formally, let R = u∗δ99/ν and let
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Y = y/δ99. Then in the logarithmic region both of the forms (6.1.9) are simultaneously
valid. Equating them gives

G(Y ) = F(RY)

R
.

The only way for the functional dependences to be equivalent is F = cRY and G = cY ,
where c is a constant that is readily shown to be the Von Karman constant. It follows
because in the log layer νT = u∗κy and |∂yU | = u∗/κy. Then from Eq. (6.1.7), �m = κy.
So �m varies linearly in the overlap region, but its behavior in the rest of the inner and
outer regions remains to be specified.

Van Driest suggested an extension of the mixing length to the wall. His approach
is referred to as a “viscous damping function.” He multiplied κy by an exponential
damping function to obtain a formula for the inner region. Van Driest’s argument
was that viscous friction would reduce turbulent mixing near the wall. A more
important effect is that the mixing normal to the wall is suppressed because the wall is
impermeable. Although Van Driest justified an exponential damping function by appeal
to the oscillatory Stokes boundary layer, in practice it is simply a convenient form. Thus
the inner region formula is

�m = κy(1 − e−y+/A+). (6.1.10)

The empirical constant A+ is determined by the additive constant B in the log-layer
velocity profile (4.1.7): the value A+ = 26 gives B = 5.3. As usual, κ = 0.41 is the
value for the Von Karman constant.

In the outer part of the boundary layer the mixing length is usually made propor-
tional to the boundary-layer thickness; stated otherwise, G(y/δ99) = constant in (6.1.9).
Assuming that the outer region begins at 0.2δ99 and patching on to the linear variation
in the log layer gives

�m = κy, y < 0.2δ99,

�m = 0.2κδ99, y ≥ 0.2δ99.
(6.1.11)

Note that δ99 (as well as δ∗ and θ ) can be evaluated when (6.1.8) is solved for U(y), so no
model like (6.1.3) is needed. In this method the shape and evolution of the boundary-layer
profile U(y; x) are computed via the partial differential equation (6.1.8).

But, as Figure 6.3 shows, the constant mixing length is not in agreement with data
in the outer region. A much better approximation is to use a constant eddy viscosity,

νT = 0.2κu∗δ99, y ≥ 0.2δ99. (6.1.12)

Figure 6.3 also shows the formula (6.1.12) for a boundary layer with Rθ = 1410 along
with DNS data of Spalart (1988). Higher Reynolds number laboratory data (DeGraaff
and Eaton, 2000) are also shown. The data are plotted in inner layer variables. Formula
(6.1.10) for the inner region is valid at all Reynolds numbers in this scaling, and agrees
with all of the data.

In inner variables, Eq. (6.1.12) is ν+
T = 0.2κδ+

99. In these variables the outer eddy
viscosity increases with Rθ ; only the case Rθ = 1440 is included in the figure. At higher
Reynolds number the horizontal line shifts upward, mimicking the data. Often the eddy
viscosity is multiplied by an “intermittency factor” 1/[1 + 5.5(0.3y/δ99)

6] to make it
taper off in the free stream, the way the data does.
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Figure 6.3 Eddy viscosity as predicted by the mixing length model, and determined
from data. Symbols are DNS and experimental data. The solid curve is the inner region
formula. The dotted curve is obtained with a constant mixing length in the outer region,
and the dashed line is a constant outer region eddy viscosity, both for Rθ = 1440. Data
at Rθ = 1440 ( ), 2900 ( ), and 13 310 ( ).

If the boundary layer flows along a curvilinear wall, the normal and tangential direc-
tions vary with position. Then the dominant velocity derivative will vary with position;
it will not always be ∂yU . A coordinate-independent form must replace the velocity gra-
dient, ∂yU (see Section 8.1.1.1). It can be either the rate-of-strain or the rate-of-rotation
invariant. These are |S|2 = SijSji and |�|2 = −�ij�ji = 1

2 |ω|2, where

Sij = 1
2 [∂iUj + ∂jUi], �ij = 1

2 [∂iUj − ∂jUi] = 1
2 εijkωk

and ω is the vorticity vector. In parallel shear flow, 2|S|2 = |ω|2 = |∂yU |2, so the mixing
length model could be generalized either as νT = √

2 �2
m|S| or as νT = �2

m|ω|; both reduce
to �2

m|∂yU | in parallel shear flow.
The second statement, νT = �2

m|ω|, was adopted by Baldwin and Lomax (1978). In
their form, the mixing length idea became a mainstay of computational aerodynam-
ics. In early implementations, this model was used in conjunction with the thin-layer
Navier–Stokes equations (Tannehill et al., 1997).

Flows over airfoils have a large, irrotational free stream. The use of |ω| ensures that
the eddy viscosity vanishes in the free stream. However, in rotating flows, such as occur
in turbomachinery or in stirring tanks, a spurious eddy viscosity can occur. This is so
because |�|2 must be replaced by the absolute vorticity invariant |�A|2 in a rotating
frame of reference in order to preserve the frame invariance of the model: this issue
is discussed in detail in Section 8.1.1.1. In such cases, |S| would be a more suitable
invariant of the velocity gradient to use when defining νT.
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The mixing length model also becomes questionable in separated flow; for instance,
this model may well predict attached flow when the real flow is separated. Indeed, it
was largely the failure to predict trailing edge separation and stall that initially led to
the use of more advanced models in the field of computational aerodynamics. How-
ever, the Baldwin–Lomax model can be put to good use, as long as these limitations
are recognized.

With some elaboration, the mixing length type of model can be used for mildly
separated boundary layers. Thus it is rather more flexible than integral equation models,
but that flexibility is achieved at the expense of having to solve a partial differential
equation, rather than an ordinary differential equation, for the mean flow. An obvious
limitation to this approach is that prescription of the mixing length becomes problematic
in flows that are not approximately parallel, thin shear layers. For instance, if two shear
layers intersect at some angle, how should δ99 be defined? What should 0.99U∞ be
when there is significant streamline curvature (so that velocity gradients exist in the free
stream)? What about highly non-parallel flows? Flow over a backward-facing step is a
common example of a modestly complex flow (Figure 6.4). A shear layer detaches from
an upstream step and reattaches to the surface about six step heights downstream. In
such a flow, there are two shear layers at any x within the separated region, the detached
mixing layer and the bottom-wall boundary layer. It is not clear how �m(x) would be
prescribed in such a flow.

With such questions in mind, Baldwin and Lomax (1978) proposed a length scale
estimate that has more flexibility than δ99, so that mixing lengths could be used in mildly
complex geometries. They proposed the outer region viscosity

νT = 0.1312 min(dmaxFmax;�U 2dmax/Fmax) (6.1.13)

instead of (6.1.12). Here

F(d) ≡ κd(1 − e−d+/26)|ω| and Fmax = max
d

F (d) = F(dmax),

where d is the shortest distance from the wall and �U 2 = | maxd U(d) − mind U(d)|2.
In a flat-plate boundary layer, dmax ≈ δ95 and formula (6.1.13) is very close to (6.1.12).

In a detached shear layer, dmax → ∞ and the second term in (6.1.13) comes into play:
if ωmax ≡ Fmax/dmax, then, as dmax → ∞, νT → 0.1312�U 2/ωmax. The transition from

Figure 6.4 Streamlines of flow over a backward-facing step. This is a widely used test
case for turbulence models. It illustrates the need for a model that can be applied to
non-parallel flows, including separated regions.
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the eddy viscosity (6.1.7) with (6.1.10) to the formula (6.1.13) takes place at the value
of d where they are equal.

A fundamental difficulty here is that the only natural length scales are ν/u∗ and the
distance to the wall, d , which either is used directly or weighted by vorticity. However,
the viscous length scale is only dominant near the surface, d+ � 40, and the wall distance
does not characterize turbulent eddies far from the surface. Similarly, the only clearly
defined velocity scale for the turbulence is the friction velocity, u∗, and this is only valid
near the surface. Using a mean velocity difference, �U in Eq. (6.1.13), requires a search
along an arbitrary direction: in a thin-layer Navier–Stokes code it would be along a grid
line, which introduces an inexorable grid dependence into all computations.

These considerations suggest that it would be better to obtain turbulence scales by
solving differential equations that govern their evolution and spatial distribution, rather
than trying to prescribe them a priori . Then the eddy viscosity can be computed at each
point of a general geometry grid and will adapt to the particular flow configuration. This
is the motivation for turbulent transport models.

6.2 The k–ε model

The k–ε model is the most widely used general-purpose turbulence transport model. The
current form was initially developed by Jones and Launder (1972). What is now called
the “standard” k–ε model is the Jones–Launder form, without wall damping functions,
and with the empirical constants given by Launder and Sharma (1974). Although an
enormous number of variations on the k–ε model have been proposed, the standard
model is still the basis for most applications, with the caveat that some form of fix is
needed near to solid boundaries, as will be discussed later. In part, the popularity of k–ε

is for historical reasons: it was the first two-equation model used in applied computational
fluid dynamics. Other models may be more accurate, or more computationally robust in
certain applications, but k–ε is the most widely used.

As the applications of computational fluid dynamics have grown, various other models
have been developed or adapted to their particular needs. It is not the purpose of this book
to compile a handbook of models and their most propitious applications. The general
concepts of scalar transport models can be developed by a detailed look at k–ε as
a prototype.

The purpose of models of the k–ε type is to predict an eddy viscosity. The connection
of turbulent kinetic energy and its dissipation to eddy viscosity could be rationalized as
follows. At high Reynolds number the rate of dissipation and production are of simi-
lar order of magnitude (see Figure 3.4). Thus, we estimate ε ≈ P. Multiplying this by
νT gives

νTε ≈ νTP = νT(−uv ∂yU) = (uv)2 ≈ 0.09k2, (6.2.1)

using −uv = νT ∂yU . The last, approximate, equality stems from the experimental obser-
vation that the stress-intensity ratio uv/k ≈ 0.3 in the log layer (see (6.1.4)). Rearranging
(6.2.1), νT ≈ 0.09k2/ε. This formula is usually written

νT = Cµk2/ε, (6.2.2)

and the standard value of Cµ is 0.09.
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Alternatively, it can simply be argued by dimensional analysis that the turbulence
correlation time-scale is T ∼ k/ε and the velocity scale squared is k. Then by analogy to
(2.2.22), νT ∼ u2T = Cµk2/ε. By either rationale, one sees that formulas to parameterize
turbulent mixing can be evaluated from a model that predicts k and ε.

The mean flow is computed from the scalar eddy viscosity and the constitutive relation

−uiuj = 2νTSij − 2
3 kδij , (6.2.3)

where Sij is the mean rate-of-strain tensor (3.3.8). The constitutive equation (6.2.3) is a
linear stress–strain relation, as for a Newtonian fluid. It inherently assumes an equilibrium
between Reynolds stress and mean rate of strain. This may be violated in some flows,
such as strongly three-dimensional boundary layers, where the Reynolds stress is not
proportional to the mean rate of strain, but it works surprisingly well in a wide variety
of flows. The problem addressed in the k–ε transport model is how to robustly predict
νT. The formula (6.2.2) reduces this to predicting the spatial and temporal distribution of
k and ε.

Equation (3.2.5), page 49, is the exact, but unclosed, evolution equation for k. To
“close” it, the transport and pressure-diffusion terms together are replaced by a gradient
transport model:

−∂j

(
1

2
ujuiui − 1

ρ
ujp

)
≈ ∂j (νT ∂j k). (6.2.4)

This closure preserves the conservation form of the unclosed term on the left. It is based
on the notion that the third velocity moment represents random convection of turbulent
kinetic energy and this can be modeled by diffusion. Invoking the notation in (3.3.9), the
transport equation for k with (6.2.4) substituted is

∂tk + Uj ∂jk = P − ε + ∂j ((ν + νT) ∂j k). (6.2.5)

It is common to add a parameter σk as a denominator of νT, analogously to σε in (6.2.6);
but the usual value is σk = 1. Note that P ≡ −uiuj ∂jUi is related to Sij by (6.2.3):

P = 2νTSij ∂jUi − 2
3 k ∂iUi = 2νTSijSji − 2

3 k ∂iUi = 2νT|S|2 − 2
3 k∇ · U .

For incompressible flow this reduces to P = 2νT|S|2.
The modeled transport equation for ε cannot be derived systematically. Essentially it

is a dimensionally consistent analogy to the above k equation:

∂tε + Uj ∂j ε = Cε1P − Cε2ε

T
+ ∂j

((
ν + νT

σε

)
∂j ε

)
. (6.2.6)

The time-scale T = k/ε makes this dimensionally consistent. Equation (6.2.6) is analo-
gous to (6.2.5), except that empirical constants Cε1, Cε2, and σε have been added because
the ε equation is just an assumed form. The terms on the right-hand side can be referred to
as “production of dissipation,” “dissipation of dissipation,” and “diffusion of dissipation.”
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The empirical coefficients are chosen in order to impose certain experimental constraints.
These will be discussed subsequently. The “standard” values for the constants are

Cµ = 0.09, Cε1 = 1.44, Cε2 = 1.92, σε = 1.3. (6.2.7)

These constants were chosen some time ago. More recent data suggest that slightly
different values might be suitable, but the standard constants give reasonable engineering
results in many situations. It is not likely that minor adjustments would significantly
affect the predictive accuracy.

Substituting the constitutive model (6.2.3) closes (3.2.2):

∂tUi + Uj ∂jUi = − 1

ρ
∂i

(
P + 2

3
ρk

)
+ ∂j [(ν + νT)(∂jUi + ∂iUj )]. (6.2.8)

This is solved with (6.2.5), (6.2.6), and (6.2.2) in general geometries, provided suitable
boundary conditions can be formulated, which is not a trivial issue. Before discussing
that issue, some properties of this model will be explored.

6.2.1 Analytical solutions to the k–ε model

It should be possible to determine the empirical constants of the k–ε model from simple
measurements that isolate each term. If the model were exact, then a set of four suitable
measurements would give the values (6.2.7). In practice, these are not constants of nature,
so their values would depend somewhat on the particular data used to evaluate them.
Nevertheless, it is informative to consider how closed-form solutions to (6.2.5) and (6.2.6)
enable estimates of these constants. The following are three such solutions.

6.2.1.1 Decaying homogeneous, isotropic turbulence

The simplest turbulent flow is homogeneous isotropic turbulence – which can be approx-
imated by grid-generated turbulence, as in Figure 1.2 on page 6. The simplifications in
homogeneous turbulence were already discussed in Section 3.3; all gradients of statistics
vanish and hence so do all transport terms. For isotropic turbulence there are no mean
flow gradients either, so P = 0. Equations (6.2.5) and (6.2.6) simplify to

dt k = −ε,

dt ε = −Cε2
ε

T
.

We seek a power-law solution

k = k0

(t/t0 + 1)n
.

The first equation then shows that

ε = nk0

t0(t/t0 + 1)n+1
.
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With T = k/ε = (t + t0)/n, the ε equation becomes n + 1 = nCε2 or

Cε2 = n + 1

n
. (6.2.9)

The decay exponent, n, can be found by fitting the curve k = k0(x/x0 + 1)−n through
measurements of grid turbulence in a wind tunnel. Experimental data tend to fall in the
range n = 1.3 ± 0.2. A typical value of n = 1.2 would give Cε2 = 1.83; the standard
value in (6.2.7) corresponds to a low decay exponent, n = 1.09. While this suggests
that the standard value of Cε2 should be revised, when the rest of the model was
correspondingly recalibrated, its predictions in practical flows would be impercepti-
bly altered.

6.2.1.2 Homogeneous shear flow

The next constant to be related to basic experimental data is Cε1. This is a rather
important constant. For given values of Cµ = 0.09 and Cε2 = 1.92 – which we have
related to very fundamental, reproducible data – the value of Cε1 controls the spread-
ing rate of free-shear layers. The standard value was chosen so that the basic model
would give a reasonable value for the spreading rate dxδ in a plane mixing layer
(Section 4.3). Numerical computations are required to obtain a prediction of this spread-
ing rate. For a plane, two-stream mixing layer with a velocity ratio of 0.1, the spreading
rates are dxδ = 0.094 for Cε1 = 1.44, dxδ = 0.074 for Cε1 = 1.54, and dxδ = 0.119 for
Cε1 = 1.34. This might seem to evidence a high degree of sensitivity to the value of Cε1:
a 7% change causes a 20% change in dxδ. However, it is more appropriate to quote the
corresponding values of Cε2 − Cε1, which are 0.48, 0.38, and 0.58. The spreading rate
varies almost proportionately to these numbers. The following analysis explains why the
difference between Cε2 and Cε1 is a suitable measure of the model constants.

The closed-form solution that sheds light on the evaluation of Cε1 is for homogeneous
shear flow (although, again, this it is not how the standard value was obtained). In parallel
shear flow, (6.2.3) gives −uv = Cµ(k2/ε) ∂yU . If the shear is homogeneous, then ∂yU

is a constant, which will be denoted S. In this case the k–ε model becomes

dt k = CµS2 k2

ε
− ε,

dt ε =
(

Cε1CµS2 k2

ε
− Cε2ε

)
ε

k
.

(6.2.10)

A solution is sought in the form k = k0 eλSt , ε = ε0 eλSt . Substituting this assumption
into (6.2.10) and solving gives

λ = Cε2 − Cε1√
(Cε2 − 1)(Cε1 − 1)/Cµ

,

P
ε

= Cµ

(Sk

ε

)2

= Cε2 − 1

Cε1 − 1
,

(6.2.11)
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for the exponential growth rate, λ, and ratio of production to dissipation. The growth rate
is determined by the excess of production to dissipation:

P
ε

− 1 = Cε2 − Cε1

Cε1 − 1
.

It is now clear why Cε2 − Cε1 controls the mixing layer spreading rate.
This solution could be used to evaluate Cε1 from measured growth rates of homoge-

neously sheared turbulence, given values of the other coefficients. Experimental values
of P/ε are around 1.6 ± 0.2 (Tavoularis and Karnik 1989). Substituting the standard con-
stants (6.2.7) into (6.2.11) gives a too high value of P/ε = 0.92/0.44 = 2.1. The upper
limit of the experimental uncertainty would give Cε1 = 1.51 if Cε2 = 1.92. As mentioned
previously, the value Cε1 = 1.44 of (6.2.7) was selected to produce a reasonable dδ/dx

in mixing layers.
This analysis makes clear the reason why the values of Cε2 and Cε1 are usually quoted

to three decimal places: the leading “1” cancels out of Cε2 − Cε1 and of Cε1 − 1; the
differences have only two significant decimal places.

The Cε1 calibration illustrates a dilemma with which one is sometimes confronted: the
constants of the model do not have unique values that can be determined from a single
calibration experiment. This is in contrast to the material properties, like the molecular
viscosity, ν, which can be measured in any viscometric experiment. The model constants
are not material properties; in some respects they represent statistical properties of the
flow. In principle, a closure model is only applicable to a subset of turbulent flows,
determined by its mathematical formulation and by the particular calibration of the model
coefficients. However, this nebulous subset can only be defined in broad terms.

6.2.1.3 The logarithmic layer

A third closed-form solution is that for the log layer. This solution provides the value
of σε, given the previous values for the other constants. Recall that the log layer is a
constant-stress layer, −uv = u2∗, and that the log law can be stated as ∂yU = u∗/κy.
Also, molecular viscosity is small in this layer: ν � νT. On dimensional grounds k is
constant; the reasoning is based on u∗ and y being the only dimensional parameters and
hence k/u2∗ = constant. If k is constant, all derivatives in (6.2.5) are zero and it becomes

P = ε; (6.2.12)

production and dissipation are locally in balance. But then

P = −uv ∂yU = u3
∗/(κy) = ε (6.2.13)

has to be the solution for ε. The eddy viscosity is given by νT ≡ −uv/∂yU = κu∗y. The
k–ε model equates this to Cµk2/ε. With the solution just given for ε, this implies that
κu∗y = Cµk2κy/u3∗ or

k = u2∗√
Cµ

,
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and equivalently Cµ = (uv/k)2. The stress-intensity ratio, |uv/k|, is found experimen-
tally to be about 0.3 in many shear flows (Townsend, 1976). Hence Cµ = 0.09 as
in (6.2.7).

Substituting ε = u3∗/(κy) and νT = κu∗y into (6.2.6) gives

κ2 = (Cε2 − Cε1)σε

√
Cµ , (6.2.14)

after some algebra. This can be used to evaluate σε from experimental measurements of
the Von Karman constant, κ . Those measurements are mostly in the range 0.41 ± 0.2. The
value κ = 0.43 and the previous values of Cε2, Cε1, and Cµ give the standard coefficient
σε = 1.3.

The law-of-the-wall, law-of-the-wake, and logarithmic overlap structure of the mean
flow is considered to be established above Rθ ≈ 3000 (Purtell et al., 1981). Unfortunately,
turbulent stresses do not so readily adopt this structure. An inference from the log-layer
scaling is that the Reynolds stress tensor uiuj

+ should be constant in this layer. The
k–ε solution reproduces this. Experiments do show a plateau of turbulent intensity in
the region 40 � y+ � 0.2δ+

99, but it requires a rather higher Rθ than 3000 (Figure 6.5).
The classic boundary-layer experiments did not show a clear plateau; however, the value
of k+ near y+ ≈ 200 had the value of about 3.3 corresponding to Cµ = 0.09. Models
have largely been calibrated with these older data.

Recent experiments by DeGraaff and Eaton (2000) question the correctness of the

older data. Figure 6.5 shows their measured behavior of u2+
1/2

profiles for various Rθ .
Maybe by Rθ ≈ 8000 the Reynolds stresses are in agreement with the full log-layer
scaling, but even then the level of the plateau is not completely insensitive to Rθ .

It is a curious property of high Reynolds boundary layers that the normal component
of turbulent intensity v2 develops a plateau at a much lower Reynolds number than the
tangential component u2. This is illustrated by Figure 6.6. There, Rθ = 3000 seems to
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Figure 6.5 Profiles of u′ ≡
√

u2+ in a turbulent boundary layer. Hot wire data from
DeGraaff and Eaton (2000).
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Figure 6.6 Profiles of u2+ and v2+ in a turbulent boundary layer. Laser Doppler velocime-
try data from DeGraaff and Eaton (2000).

be high enough for a region with log-layer scaling to be seen in v2. The fact that both
v2 and U achieve high Reynolds number scaling before u2 suggests that a model might
be based on v2 instead of k (Durbin, 1991).

The usual estimate

w2 ≈ 1

2
(u2 + v2) or k ≈ 3

4
(u2 + v2)
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applied to the DeGraaff and Eaton (2000) data gives a high Reynolds number value of
k+ ≈ 5.4. This would give Cµ = 1/5.42 = 0.034; indeed DeGraaff and Eaton suggest that
1/k2+ might continue to fall, like C−1

f , as the Reynolds number increases. The standard
k–ε model does not predict the correct high Reynolds number behavior of k for this
reason. That is of some concern, but it is not devastating: the log-layer eddy viscosity
is predicted to be u∗κy, which is correct at high Reynolds number. Therefore, mean
flow predictions do not fail. Introducing Reynolds number dependence into Cµ might
seem necessary, but other constants would have to counteract it to preserve the known
Reynolds number independence of the Von Karman constant, κ .

6.2.2 Boundary conditions and near-wall modifications

The boundary conditions to the k–ε model at a no-slip wall are quite natural, but the
near-wall behavior of the model is not. This is rather a serious issue; in many applica-
tions the region near the wall is crucial. Turbulent mixing is suppressed by the proximate
boundary, causing a great reduction of transport across this layer (Section 4.4). Repre-
senting the suppression of mixing is critical to accurate predictions of skin friction and
heat transfer. Unfortunately, the k–ε model does not represent this effect and it breaks
down catastrophically below the log layer. A variety of patches have been proposed in
the course of time.

To start, consider the boundary conditions. At a no-slip surface u = 0, so k = 1
2 |u|2

has a quadratic zero. Hence both k and its normal derivative vanish. The natural boundary
condition is

k = 0 ∂nk = 0, (6.2.15)

where ∂n ≡ n̂·∇ is the derivative in the normal direction. For expository purposes, a
coordinate system with y in the normal direction will be used in the rest of this section.
But it should be recognized that the considerations apply in general geometries if n̂ is
considered to be the unit normal to the wall and y to be the minimum distance to a point
on the wall.

Equation (6.2.15) specifies two conditions on k and none on ε. That suffices to solve
the coupled k–ε system. However, when the model is implemented into CFD codes, it
is common practice to convert these into k = 0 and a condition on ε. As the wall is
approached, P → 0 and νT → 0, so that (6.2.5) has the limiting behavior

εw = ν ∂2
y k. (6.2.16)

The wall value of dissipation, εw, is not zero. Indeed, from its definition, ε = ν ∂iuj ∂iuj ,
and from u = 0 on y = 0, it follows that εw = ν[(∂yu)2 + (∂yw)2] �= 0. (Note that
∂yv = 0 by continuity and the no-slip condition.) Integrating (6.2.16) gives

k → A + By + εwy2

2ν
,

where A and B are integration constants. By (6.2.15), A = B = 0. So the wall value of
dissipation is

εw = lim
y→0

2νk

y2
. (6.2.17)
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In CFD codes, this or something equivalent often is used as a means to impose the
no-slip condition (6.2.15). The right-hand side of (6.2.17) might be evaluated at the first
computational node above the wall.

Unfortunately, deriving the correct no-slip boundary conditions is neither the only, nor
the most important, issue in near-wall modeling. A second need is to prevent a singularity
in the ε equation (6.2.6). If the time-scale T = k/ε is used, then T → O(y2) as y → 0
and the right-hand side of (6.2.6) becomes singular like ε2/k. In fact this would preclude
the behavior ε = O(1) at the wall. The fault is that the correlation time-scale should not
vanish at the wall. Wall scaling, and evidence from DNS (Antonia and Kim 1994), show
that the Kolmogoroff scale,

√
ν/ε, is appropriate near the surface. The formula

T = max(k/ε, 6
√

ν/ε) (6.2.18)

was proposed by Durbin (1991). The coefficient of 6 in formula (6.2.18) is an empirical
constant obtained by matching DNS data. This can be written more generally as

T =
√

ν/ε F (
√

k2/νε). (6.2.19)

The argument of the function F is the square root of the turbulent Reynolds number, so
this is sometimes alluded to as a low Reynolds number correction. However, Kolmogoroff
scaling only applies to the viscous region of high Reynolds flow, so the terminology “low
Reynolds number” is misleading: it is more correct to understand this as a near-wall
modification. For instance, this scaling does not apply to very weak turbulence, or to
turbulence in its final period of decay.

The function F(x) in (6.2.19) is arbitrary except for the limiting behaviors F(0) =
O(1) and F(x) → x as x → ∞. It could be specified from experimental data, but the
previous formula, F = max(

√
k2/νε, 6) suffices for most purposes. Several other methods

to avoid a singularity in the ε equation are discussed in Patel et al. (1984).
But the near-wall dilemma goes further, beyond just preventing the singularity and

imposing a boundary condition. The formula νT = Cµk2/ε gives an erroneous profile
of eddy viscosity even if exact values of k(y) and ε(y) are known. The solid line in
Figure 6.7 is the viscosity constructed from DNS data (Moser et al., 1999) by evaluating
the exact definition ν+

T = −uv/ν dyU . It is compared to curves constructed by substituting
the exact∗ k and ε into the k–ε formula (6.2.2). The model formula is seen to be grossly
in error below y+ ≈ 50. To emphasize that the failure is near the wall, a curve has been
plotted with Cµ = 0.08 to improve agreement with the exact data farther from the wall.
The region of failure is where turbulent transport is low; hence it is the high-impedance
region. Overpredicting the eddy viscosity in this region will greatly overpredict skin
friction on the surface.

A physical understanding of the failure illustrated in Figure 6.7 is that k is the wrong
velocity scale for transport to and from the wall. Near the surface, the kinetic energy is
dominated by the tangential components of intensity, k ≈ 1

2 (u2 + w2). However, turbulent
transport to or from the surface is more closely related to the normal component v2.
Figure 6.6 is consistent with this observation. If k controlled surface stress, then the data
below y+ ≈ 100 would collapse when normalized as k+ ≡ k/u2∗. They do not, but the
v2+ data do.

∗ This is often referred to as “a priori testing.”
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Figure 6.7 Exact eddy viscosity compared to the k–ε formula in channel flow at
Rτ = 590: curves were computed from DNS data of Moser et al. (1999).

One device to fix (6.2.2) consists of damping the viscosity, as in the Van Driest
mixing length formula. To this end it is replaced by

νT = fµCµk2/ε. (6.2.20)

A damping function , fµ, has been inserted. In the literature, this has been made a func-
tion of yk/ν, or of k2/εν, depending on the model. For example, Launder and Sharma
(1974) use

fµ = exp

[ −3.4

(1 + RT/50)2

]
, RT = k2/νε.

While the argument of fµ also could be yu∗/ν, that form is of limited use because
u∗ vanishes at a separation point. The friction velocity u∗ is usually replaced by k by
invoking the log-layer solution u∗ → C

1/4
µ k1/2.

Some of the bewildering array of wall damping schemes that have been proposed
in the course of time are summarized in Patel et al. (1984). One could simply fit fµ to
the ratio of the exact to the k–ε curves in Figure 6.7 – invoking the definition that the
damping function is the ratio of “what you want to what you have.” However, it has been
found that damping functions that are fitted to zero pressure-gradient data fail to predict
flows with adverse pressure gradient (Hanjalic and Launder 1980). The large number
of damping schemes that have been proposed is testimony to the ineffectiveness of this
approach. It also tends to suffer from numerical stiffness. The reader might consult Patel
et al. (1984) or Chen and Jaw (1998) for tabulations of various “low Reynolds number
k–ε” formulations.

It is not sufficient simply to damp the eddy viscosity. All low Reynolds number k–ε

models also modify the ε equation in one way or another. As an example, Launder and
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Sharma (1974) replace it with

∂t ε̃ + Uj ∂j ε̃ = ε̃

k
(Cε1P − f2Cε2ε̃) + ∂j

((
ν + νT

σε

)
∂j ε̃

)
+ 2ννT

(
∂2U

∂y2

)2

. (6.2.21)

The last term on the right-hand side is not coordinate-independent, but it is only important
near the surface, so ŷ can be considered the wall normal direction. The dependent variable
ε̃ is defined as ε − ν|∇k|2/2k. This is a device to cause ε̃ to be zero at the wall. The
blending function f2 = 1 − 0.3 exp(−R2

t ) also was inserted, on the supposition that the
decay exponent, n, should be about 2.5 near the wall. Actually n = 2.5 applies to grid
turbulence in its final period of decay, not to the wall region of high Reynolds number
boundary layers. (The final period of decay is discussed in Section 10.2.3.)

The benefits of adopting low Reynolds number k–ε models in practical situations
seem limited, given the apparent arbitrariness of the formulations, their numerical stiff-
ness, and their inaccurate predictions in flows with significant pressure gradient. This
formulation has little to recommend it and will not be described further.

6.2.2.1 Wall functions

Another method to circumvent the erroneous predictions in the near-wall region is to
abandon the k–ε equations in a zone next to the wall and impose boundary conditions
at the top of that zone. Within the zone the turbulence and mean velocity are assumed
to follow prescribed profiles. This is the “wall function” method. Conceptually, the wall
function is used in the law-of-the-wall region and the k–ε model predicts the flow
field farther from the surface. The two are patched in the logarithmic overlap layer.
Let yp be the distance from the wall at which the patching is done. At that point the
log-layer functions dU/dy = u∗/κyp, k = u2∗/

√
Cµ, and ε = u3∗/κyp are assumed to be

valid. These are an exact solution to the standard k–ε model in a constant-stress layer, so
smooth matching is possible in principle; in practice, wall functions are used even when
they are not mathematically justified, such as in a separating flow. At a two-dimensional
separation point, u∗ = 0. To avoid problems as u∗ changes sign, the boundary conditions
are expressed in terms of uk ≡ (k

√
Cµ)1/2. They assume the form

dU

dy
= u∗

κyp
, ε = u3

k

κyp
,

dk

dy
= 0. (6.2.22)

In practice, the conditions (6.2.22) are applied at the grid point closest to the solid
boundary, y(1); this point should be located above y+ ≈ 40 and below y ≈ 0.2δ99. The
skin friction is found from the logarithmic drag law applied at this point by solving
U(1) = u∗[log(y(1)u∗/ν)/κ + B] for u∗, given a computed U(1). The tangential surface
shear stress is assumed to be parallel to the direction of the mean velocity.

The wall function procedure is rationalized by appeal to the two-layer (law of the
wall, law of the wake) boundary-layer structure (Section 4.2). The law of the wall is
assumed to be of a universal form, unaffected by pressure gradients or flow geometry.
The meaning of universality is that the flow in this region can be prescribed once and for
all. Its large y+ asymptote, (6.2.22), is its only connection to the non-universal part of
the flow field. Through this, the skin friction can respond to external forces. However, in
highly perturbed flows, including boundary layers with separation, reattachment, strong
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curvature, or strong lateral pressure gradients, the assumption of a universal wall layer
is not consistent with experiments. These sorts of distortions upset the assumed state of
quasi-equilibrium that lies behind the use of wall functions. Predictions made with wall
functions then deteriorate.

As a practical matter, it is sometimes impossible to ensure that the first point of a
computational grid lies in the log layer, if a log layer exists at all. The definition of y+
requires u∗, but this is computed as part of a flow solution. It is not possible a priori
to generate a computational mesh that will ensure that the first computational node is
neither too close nor too far from the wall. If the first node lies too close to the wall, then
the k–ε model will be used in the region at small y+ in Figure 6.7, in which it severely
overpredicts νT. In boundary-layer flows, the tendency will then be to overpredict surface
skin friction. Accurate computation may require a posteriori modification of the mesh to
achieve a suitable y+.

In complex flows, it is likely that the wall function will be used beyond its range of
justifiability. On the other hand, wall functions can significantly reduce the cost of a CFD
analysis. The steepest gradient of turbulent energy occurs near the wall (y+ � 10). By
starting the solution above this region, the computational stiffness is reduced. Because
of this stiffness, the near-wall region requires a disproportionate number of grid points;
avoiding it with a wall function reduces grid requirements. Wall functions therefore are
widely used for engineering prediction. However, almost all commercial CFD codes either
warn the user if the y+ criteria are not met, or enable the user to monitor y+ values.

An alternative to the standard wall function, described above, is the non-equilibrium
wall function . This approach partly obviates a major shortcoming of the standard formula-
tion by introducing a mild dependence on pressure gradients. This improves performance
in complex flow computations. The flow is assumed to consist of two zones: a viscous
sublayer, y+ < yv+; and a fully developed turbulent layer, y+ >yv+; typically yv+ ≈ 12. If
y+ < yv+, the following boundary conditions are applied:

k =
(

y

yv

)2

kp, ε = 2νk

y2
. (6.2.23)

If y+ >yv+, the standard conditions (6.2.22) on k and ε are used. In addition to the
more elaborate treatment of turbulent quantities, the drag law is also modified to include
pressure-gradient effects, as was discussed in Section 4.2.

In summary, the wall function method is used in industrial CFD computations mainly
because it reduces computational cost by not requiring a near-wall grid. However, regard-
less of specific formulation, the wall function method assumes that a universal wall law
exists. This assumption can fail severely in complex flows. While the method works
reasonably well when boundary layers are attached, with limited influence of pressure
gradients, it is less reliable in cases that depart from this state. Reliable computations of
industrial flows require proper representation of wall boundary conditions; an alternative
approach is desirable.

6.2.2.2 Two-layer models

A compromise between the assertion of a universal wall layer, as made by wall function
methods, and a full simulation of the wall adjacent region, is to formulate a simplified
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model for that layer and patch it onto the full k–ε model. The full model is solved in
the outer region. The k–� formulation has been used to this end, in an approach called
the “two-layer k–ε model” (Chen and Patel, 1988).

The k–� model uses the k equation (6.2.5), but replaces the ε equation (6.2.6) by the
algebraic formula

ε = k3/2/�ε. (6.2.24)

The dissipation length �ε must be prescribed. Most simply, it can be made analogous to
the mixing length (6.1.10)

�ε = C�y(1 − e−y
√

k/νAε ). (6.2.25)

The limiting form (6.2.16) of the k equation near a no-slip surface now becomes

ν ∂2
y k = ε = k3/2

�ε

.

Substituting expression (6.2.25) and letting y → 0 gives

ν ∂2
y k → νAεk

C�y2
.

The correct behavior k ∝ y2, as follows from (6.2.15), is obtained if

Aε = 2C�. (6.2.26)

The eddy viscosity (6.2.2) will not have the right damping if (6.2.24) is substituted.
Doing so would give νT = √

k �ε. Therefore a separate length is used in the formula

νT = Cµ

√
k �ν. (6.2.27)

Again, the exponential Van Driest form

�ν = C�y(1 − e−y
√

k/νAν ) (6.2.28)

proves convenient and effective. Substituting the log-layer solution k+ = 1/
√

Cµ and
ν+

T = κy+ along with (6.2.28) into (6.2.27) results in

C� = κ/C3/4
µ (6.2.29)

when the limit y
√

k/ν 	 1 is invoked. Given the Von Karman constant κ = 0.41 and
given that Cµ retains its value 0.09, the only new empirical constant is Aν . This can be
found by selecting a value that produces B ≈ 5 for the additive constant in the log law,
as was done with the mixing length (6.1.10). A similar method of calibration is to select
the value of Aν that most closely reproduces the curve of skin friction versus Reynolds
number in a flat-plate boundary layer. This is illustrated in Figure 6.8, where calibration
of the above two-layer k–ε model consists of selecting the value of Aν that best agrees
with experiment. The value Aν = 62.5 gives a good fit.

It should be emphasized that the value of Aν depends on the specific equations of the
model. The two-layer k–ε model that is calibrated in Figure 6.8 consists of the above
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Figure 6.8 Calibration of the constant Aν in the two-layer k–ε model.

k–� model near the wall and the standard k–ε model farther away. The two models
were patched at the value of y at which 1 − e−y

√
k/νAν reaches 0.95; this occurs at

ysw = log(20)Aνν/
√

k(ysw).
Succinctly, the two-layer model solves the k equation (6.2.5) at all points in the flow,

but instead of (6.2.6) the ε equation is represented by

L[ε] = S. (6.2.30)

The operator L and source S are defined as

L =

 ∂t + Uj ∂j − ∂j

(
ν + νT

σε

)
∂j , y > ysw,

1, y ≤ ysw,

(6.2.31)

and

S =


Cε1P − Cε2ε

T
, y >ysw,

k3/2

�ε

, y ≤ ysw.

(6.2.32)

This two-layer formulation has proved quite effective in practical computations
(Rodi, 1991) and usually gives better predictions than wall functions. But it does require
a fine grid near to walls, and so is more expensive computationally than wall functions.
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6.2.3 Weak solution at edges of free-shear flow; free-stream sensitivity

It was remarked by Cole (see Kline et al., 1968) that such equations can develop propa-
gating front solutions. An equation of the form

∂tνT = ∂y(νT ∂yνT)

has a ramp solution νT = A(ct − y) for y < ct and νT = 0 for y > ct . Substitution into the
above equation gives the front speed c = A. The front develops because νT spreads by dif-
fusion and the diffusion coefficient tends to zero at the front. The solution cannot diffuse
beyond the point where νT vanishes; it becomes identically zero from there onward.

The k–ε model behaves similarly to this simple nonlinear diffusion equation
(Cazalbou et al., 1994). We will ignore molecular viscosity and consider a time-evolving
solution. It will be supposed that, near the front, production and dissipation can be
dropped to lowest order of approximation. That will be justified after the solution is
obtained. The model equations that describe the propagating front are

∂tk = ∂y(νT ∂yk),

∂t ε = ∂y

(
νT

σε

∂yε

)
,

νT = Cµk2/ε.

(6.2.33)

The possibility for a front to form exists if a consistent solution has the property νT → 0
as k, ε → 0. Then the solution will not be able to diffuse past the point where this occurs.
That such behavior is possible is verified by seeking a solution in the form

k = Ak(ct − y)m, ε = Aε(ct − y)2m−1, νT = Cµ

A2
k

Aε

(ct − y)

for y < ct , and k = ε = νT = 0 for y > ct . Substituting these into the governing equations
(6.2.33) shows that

m = 1

2 − σε

and c = CµA2
k

Aε(2 − σε)
.

The standard value σε = 1.3 gives k ∼ (ct − y)1.43 as y approaches ct from below.
Therefore, k approaches 0 with a singular second derivative. This propagating front
solution is found near the edge of free-shear flows. It requires a very fine grid to resolve
the singular solution in a computer calculation. Either numerical or molecular diffusion
will smooth it.

In retrospect, it can be verified that the terms retained in (6.2.33) are of order
(ct − y)0.43 while ε ∼ (ct − y)1.86 and P is of the same size (Exercise 6.9). Hence it
is consistent to drop production and dissipation in the local analysis of the weak solution
near shear-layer edges.

It was argued by Cazalbou et al. (1994) that the front is a desirable property of the
k–ε model that prevents spurious sensitivity to free-stream conditions. If σε < 2 then
c > 0 and the turbulent layer propagates toward the free stream. The supposition is that
the shear layer is then not unduly influenced by external disturbances. The k–ω model
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(Section 6.3) corresponds to using σε = 2, which precludes the above solution. That model
was found by Menter (1994) to have a debilitating sensitivity to free-stream conditions,
which makes its predictions of free-shear layers somewhat unreliable. It might seem that
reducing σε (actually σω) to a value less than 2 would solve this problem, according to
the above edge analysis. That is not the case: reducing σε does not remove the spurious
sensitivity displayed by k–ω solutions. The matter of free-stream sensitivity is quite
important to turbulence modeling, but its cause is not well understood mathematically.
Perhaps that is because the front solution is a possible local behavior that might not
arise in a complete solution. In practice, free-stream sensitivity is checked by numerical
calculation of free-shear layers.

6.3 The k–ω model

Since the ε equation is primarily a dimensionally consistent analog to the k equation,
and the variable ε is in part used to define a time-scale T = k/ε, one might instead
consider combining the k equation directly with a time-scale equation. In homogeneous
turbulence, it is largely irrelevant to do so: the evolution equation for T ≡ k/ε, derived
from the standard k and ε equations, is

dt T = dt k

ε
− k dt ε

ε2
= (Cε2 − 1) − 2Cµ(Cε1 − 1)|S|2T 2

= 0.92 − 0.88Cµ|S|2T 2.

(6.3.1)

Solving this and k is exactly the same as solving ε and k.
In non-homogeneous flow, a turbulent diffusion term must be added; now there is

a basis of distinction. If T is assumed to diffuse, that term is ∂y(νT/σT ∂yT ). Consider
steady flow in a constant-stress, log layer. Because P/ε = 2Cµ|S|2T 2 = 1 in the log
layer, the homogeneous contribution to the T equation (6.3.1) is 0.92–0.44, which is
positive. The left-hand side of (6.3.1) is zero in steady state. Hence, the diffusion term
must be negative to achieve a balance. This means that T is not a good quantity to work
with because the simplest model requires negative diffusion, and negative diffusion is
mathematically ill-posed and computationally unstable. Instead, 1/T , or ω, can be used.
This quantity is found, by the above line of reasoning, to require a positive diffusion
coefficient. Replacement of the ε equation by an ω equation is, indeed, viable.

Wilcox (1993) elected to define ω as ε/Cµk. His k–ω model can be written

∂tk + Uj ∂jk = 2νT|S|2 − Cµkω + ∂j

((
ν + νT

σk

)
∂j k

)
,

∂tω + Uj ∂jω = 2Cω1|S|2 − Cω2ω
2 + ∂j

((
ν + νT

σω

)
∂jω

)
,

νT = k/ω.

(6.3.2)

The k equation is altered only by changing ε to Cµkω. The ω equation is quite analogous
to the ε equation. The standard constants are Cω1 = 5/9, Cω2 = 3/40, σω = σk = 2, and
Cµ = 0.09. The calibration of constants is the same as for the k–ε model: for instance,
Cµ/Cω2 = 1.2 is the decay exponent for grid turbulence, and the constants are related
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to κ by the log-layer solution κ2 = (Cω2/Cµ − Cω1) σω

√
Cµ. The properties of the k–ω

model model are discussed at length in Wilcox (1993).
Near a no-slip surface the dominant balance of terms in this model is

∂2
y+k+ = Cµk+ω+ and ∂2

y+ω+ = Cω2ω
2
+

in non-dimensional units. The solution is ω+ = 6/(Cω2y
2+) and k ∝ ym+ with m = 1

2 +√
149/20 = 3.23. This shows that ω is singular at no-slip boundaries and that k does

not behave as y2. Despite these apparent drawbacks, Wilcox (1993) has shown this
model to be usable near boundaries, without a requirement for wall functions, or for
wall damping – that is its remarkable property. The reason for this favorable attribute
is that extra dissipation is produced near walls. The source of extra dissipation can be
understood by rewriting the ω equation as an ε equation.

The rate of dissipation in the k equation is Cµkω = ε. Forming the evolution equation
for this product from (6.3.2) gives

∂tε + Uj ∂j ε = Cε1P − Cε2ε

T
+ ∂j

((
ν + νT

σε

)
∂j ε

)
+ Sω, (6.3.3)

with T = 1/ω, Cε1 = 1 + Cω1, Cε2 = 1 + Cω2/Cµ, and σε = σω. This reproduces the
standard ε model (6.2.6) with an additional term Sω. The source term

Sω = 2

T

(
ν + νT

σω

)[ |∇k|2
k

− ∇k · ∇ε

ε

]
largely distinguishes between the k–ω and k–ε models. In the viscous sublayer, k

increases with wall distance, while ε decreases; hence Sω > 0. The extra term is a source,
not a sink, of dissipation. Consequently, a larger ε is produced.

Figure 6.9 shows a solution to the k–ω model model in plane channel flow at
Rτ = 590. The profile of ε = Cµkω has been multiplied by 50 for display. The region of
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Figure 6.9 Plane channel flow at Rτ = 590. The full curves are solutions to the k–ω

model. DNS data for U ( ); 2k ( ); and 50ε ( ).
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interest is the law-of-the-wall layer, between y+ = 0 and y+ ≈ 40. That region is critical
to transfer of heat or momentum between the fluid and the surface. In the wall layer, the
k–ω predictions of k and ε are at odds with the data: ε erroneously goes to zero at the
surface and has a spurious peak near y+ = 10. The consequence of the spurious peak is
that k is excessively dissipated near the wall. The DNS data (Moser et al., 1999) for k

have a sharp maximum at y+ ≈ 10; that peak is entirely missing in the k–ω prediction.
While this grossly erroneous prediction of k might at first be disconcerting, in fact the
underestimation of k and overestimation of ε are exactly what are needed to counter
the overprediction of νT displayed by the formula Cµk2/ε in Figure 6.7. Both of these
features, not just the deletion of the peak from the k profile, are critical to obtaining a
reasonable distribution of νT. Indeed, the U predictions in Figure 6.9 agree quite well
with data, given that no wall corrections have been made to the model. Unfortunately,
difficulties with k–ω arise in free-shear flows.

Menter (1994) noted two failings of the basic k–ω model, one minor and one major.
The former is that it overpredicts the level of shear stress in adverse pressure-gradient
boundary layers. The latter is its spurious sensitivity to free-stream conditions, discussed
in Section 6.2.3. Just about any spreading rate can be obtained for free-shear flows,
depending on the free-stream value of ω. The model is not reliable in flows with detached
shear layers.

To overcome the shortcomings of the basic k–ω model, Menter (1994) proposed the
“shear-stress transport” (SST) model. This variant of k–ω has been found to be quite
effective in predicting many aeronautical flows. The SST model is developed in two
stages. The first is meant to improve predictions in adverse pressure-gradient boundary
layers; the second to solve the problem of free-stream sensitivity.

The tendency to overestimate the shear stress is fixed by imposing a bound on the
stress-intensity ratio, |uv|/k. This ratio is often denoted a1. Although in many flows
a1 ≈ 0.3, lower values are observed in adverse pressure gradients (Cutler and Johnston,
1989). Invoking the formula −uv = k ∂yU/ω for parallel shear flow gives

P
ε

= uv2ω

kε
= 1

Cµ

∣∣∣∣uv

k

∣∣∣∣2
or a1 = √Cµ

√P/ε = 0.3
√P/ε. In the outer part of an adverse pressure-gradient bound-

ary layer, P/ε can be significantly greater than unity. Instead of decreasing, a1 is predicted
to increase. To prevent an increase of the stress-intensity ratio, Menter (1994) introduced
the bound

νT = min

[
k

ω
,

√
Cµk

|2�|

]
. (6.3.4)

In parallel shear flow, the magnitude of the mean flow rotation tensor is |�| = 1
2 |∂yU |;

hence expression (6.3.4) gives

|uv|
k

= min

[ |∂yU |
ω

,
√

Cµ

]
= min

[ |∂yU |
ω

, 0.3

]
. (6.3.5)

The min function is sometimes called a limiter. The above limiter improves prediction
of adverse pressure gradient and separated flow.
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It is not unusual that a fix for one problem will introduce another. In this case, it is
not so much that a problem is introduced by formula (6.3.4), but that it is an unwanted
constraint in free-shear flow. To confine the limiter to the boundary layer, Menter (1994)
introduced the blending function

F2 = tanh(arg2
2),

arg2 = max

[
2
√

k

Cµωy
,

500ν

ωy2

]
.

(6.3.6)

The limiting behavior ω → 6ν/(Cω2y
2), k → O(y3.23) as y → 0 shows that arg2 →

25/4 near the wall. As y → ∞, arg2 → 0. The blending function (6.3.6) is devised so
that F2 is nearly unity in most of the boundary layer, dropping to zero near the top and
in the free stream. The second term in the min function of Eq. (6.3.4) is divided by F2.

To rectify the spurious free-stream sensitivity of the original k–ω model, Menter
(1994) developed a two-zone formulation that uses k–ω near the wall and k–ε for the
rest of the flow. The switch between these forms is by a smooth interpolation. Now the
blending function is

F1 = tanh(arg4
1),

arg1 = min

[
max

( √
k

Cµωy
,

500ν

ωy2

)
,

2kω

y2 max(∇k · ∇ω, 10−20)

]
.

(6.3.7)

This seemingly intricate function is simply an operational device to interpolate between
the k–ω and k–ε models. It is devised to be near unity in the inner half of the boundary
layer and to decrease through the outer half, dropping to zero slightly inside its top edge.
The extra term Sω in (6.3.3) is faded out via F1:

∂tε + Uj ∂j ε = Cε1P − Cε2ε

T
+ ∂j

((
ν + νT

σε

)
∂j ε

)
+ F1Sω. (6.3.8)

Thereby, a transition between the ε and ω equations typically is brought about across the
middle of the boundary layer. To complete the interpolation, the model constants also
are interpolated as

Cε1 = 1 + (1 − F1)0.44 + F1Cω1 and Cε2 = 1 + (1 − F1)0.92 + F1Cω2/Cµ.

These provide the k–ε values when F1 = 0 and the k–ω values when F1 = 1. The
coefficients σk and σε are interpolated similarly.

6.4 Stagnation-point anomaly

The two equation models have been calibrated in boundary-free flows and in shear flows
parallel to boundaries. Turn the flow around and let it impinge on the wall and an embar-
rassing phenomenon occurs – the stagnation-point anomaly (Durbin, 1996). The allusion
is to a growth of k and νT to excessive levels near the stagnation point. The anomaly can
be seen in impinging jets and near the leading edge of airfoils, as in Figure 6.10(b). Three



140 MODELS WITH SCALAR VARIABLES

(b)

(a)

Figure 6.10 The stagnation-point anomaly in flow round a leading edge. The figures
show k contours (a) with a bound and (b) without a bound on the turbulent time-scale.

explanations of this behavior can be offered. In all of them the eddy viscosity formula
P = 2νT|S|2 is seen to give rise to too large levels of production near the stagnation point.

The exact formula P = −uiujSij becomes P = A(u2 − v2) in the uniform strain-
ing flow U = −Ax, V = Ay. This represents the flow toward an obstacle at x = 0, as
in Figure 6.10. The linear constitutive model uiuj = −2νTSij + 2

3kδij gives u2 − v2 =
4νTA and P = 4νTA2 in this flow. Increasing A always increases P. Straining of turbu-
lent vorticity is analyzed in Chapter 11: the plane strain presently under consideration is
shown to amplify u2 relative to v2. If initially u2 < v2, then at first P will be decreased
by straining, while the eddy viscosity formula only permits it to increase. In this expla-
nation of the stagnation-point anomaly, it is a deficient representation of normal stress
anisotropy by the eddy viscosity formula that is the culprit.

In the airfoil flow, vortex stretching around the leading edge (illustrated by
Figure 11.3, page 289), of incident isotropic turbulence, will amplify u2 and increase
P. Hence, the eddy viscosity formula is qualitatively correct. Its fault is a quantitative
overestimate of the level of P: at large rates of strain, production should grow linearly
with rate of strain (Section 11.2.1) instead of quadratically, as in the formula 2νT|S|2.
A second perspective on the origin of the anomaly is that P should only grow as |S| not
as |S|2.

A third perspective on the origin of the anomaly is that dissipation does not keep up
with production. Consider the time evolution of ε, subject to a sudden increase of P. Let
P and T be constant in

dt ε = 1

T
(Cε1P − Cε2ε).

Then

ε = ε(0) e−Cε2t/T + Cε1P/Cε2(1 − e−Cε2t/T ).

If ε(0) � P, then ε will be small compared to P until t > T . A large T permits k to
grow large before dissipation becomes significant. Indeed, even in the limit t 	 T , the
dissipation becomes ε = Cε1P/Cε2, so the smaller is Cε1/Cε2, the larger is the imbalance
between production and dissipation, and the more can k grow in large strains.
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Several proposals to alleviate the stagnation-point anomaly have evolved from the
preceding considerations on its origin. If the problem is an excessive production of k in
irrotational strain, then replacing 2νT|S|2 by 2νT|S||�| (Launder and Kato, 1993) will
eliminate the problem; indeed, this equates production to zero in irrotational flow. Two
obvious difficulties with this scheme are that production is not actually zero in pure
straining flow and that a spurious production will occur in rotating frames of reference.
Coordinate independence requires that |�| be understood as the absolute vorticity in an
inertial frame. If �F is the rate of frame rotation, then, for pure straining in a rotat-
ing frame, the production will be 2νT|S||�F|. The faster the rotation, the faster k will
grow. Frame rotation does not cause such an effect; in fact, rapid frame rotation can
suppress turbulence.

A less obvious difficulty is that this approach violates energy conservation. As noted
in Section 3.3.4, the equation for 1

2 |U |2 should contain −P (see Exercise 3.2). The eddy
viscous term ∂j (2νTSij ) in the equation for Ui , times Ui , contributes −2νT|S|2 to the
equation for 1

2 |U |2. It is not consistent to use 2νT|S||�| for production in the k equation.
Another proposal for eliminating the anomaly is to impose a “realizability”

bound – see Durbin (1996) and Exercise 6.8. The eigenvalues of uiuj are bounded from
below by zero and above by 2k. When the lower bound is imposed on the formula
uiuj = −2νTSij + 2

3δij k, the constraint
2νTλS

max ≤ 2
3k (6.4.1)

emerges. The upper bound is automatically satisfied if this lower bound is. In this inequal-
ity, λS

max is the maximum eigenvalue of the rate-of-strain tensor. It can be shown that
λS

max <
√

2|S|2/3. Therefore, any method to impose the bound

νT ≤ k√
6 |S|

ensures realizability. A corollary to this bound is the limit P ≤ k|S|/√6 on production.
No more than linear growth of P is allowed at large rates of strain. A limiter like

νT = min(Cµk2/ε, αk/|S|) (6.4.2)

with α ≤ 1/
√

6 would affect the bound. This is the method used in part Figure 6.10(a).
Introducing a formula like νT = CµkT shows that (6.4.2) also can be written as an upper
bound on the time-scale. When that is used in the ε equation, it helps dissipation keep
step with the rate of production.

6.5 The question of transition

The transition from laminar to turbulent flow in a boundary layer is preceded by velocity
fluctuations within the laminar layer. Early ideas were built upon linear stability theory
in which the fluctuations are instability waves. At sufficient Reynolds number, the shear
layer becomes unstable: the instability takes the form of waves that grow exponentially
with downstream distance. These growing waves are two-dimensional, possibly with their
crests at an oblique angle to the flow. Two-dimensional waves cannot develop directly
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into turbulence. Turbulence requires a three-dimensional field of vorticity, which can
develop complexity.

Secondary instabilities grow atop the primary instability wave. They develop into
horseshoe vortices, much like those described in Chapter 5. Local patches of turbulence
develop where these horseshoe vortices lift away from the wall. The patches are called
turbulent spots . Spots occur sporadically in space and time. Initially they are very sparse;
most of the boundary layer is laminar. Progressing downstream, they grow in size and
increase in frequency until the shear flow becomes fully turbulent. The fraction of time
that the flow at any point is turbulent is called the intermittency . In laminar flow, the
intermittency is zero; in fully turbulent flow, it is unity.

Thus, transition develops in three stages: unsteady precursors develop in the laminar
flow; spots form intermittently; and the spots grow and merge to form the fully turbulent
boundary layer. Figure 6.11 illustrates how an instability wave breaks into turbulence.
The amplitude of the oscillations grows slowly with x. Around Rx ≈ 4.7 × 105, a sharp
spike appears, after which the skin friction rises rapidly to turbulent levels. The chain-
dotted line is the time-averaged skin friction coefficient. The instability wave makes
little change to the average, laminar skin friction. In the intermittent region, between
Rx ≈ 4.7 × 105 and Rx ≈ 5.1 × 105, the average skin friction increases until it reaches
the turbulent level. In fact, Cf overshoots the curve for turbulent skin friction. The latter
is a data correlation for high Reynolds number, turbulent boundary layers.

The first stage might develop as we have described: primary then secondary instability.
That is called the orderly route. Or it can follow an alternative route, that is called bypass
transition. Bypass occurs when a boundary layer is subjected to free-stream turbulence
of greater than about 0.5% intensity; that is, u′/U > 0.005. In this case, the first stage
consists of jet-like disturbances within the boundary layer. They are jet-like in the sense
that the dominant velocity component is u and the disturbance is long in the streamwise
direction. They are reminiscent of the “streaks” discussed in Chapter 5. These disturbances
lift away from the wall as they move downstream. Then secondary instabilities occur
(Jacobs and Durbin, 2000). They break down locally to form intermittent turbulent spots.
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Figure 6.11 Skin friction coefficient in orderly transition. The solid curve shows the
evolution of the instability wave. The chain curve is its time average. The dashed curves
are laminar and turbulent levels.
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The top portion of Figure 6.12 is a plan view of the jets, observed in contours of
the u component of perturbation velocity. These streaky features, seen at the left-hand
side of the u contours, are often called Klebanoff modes. Spots are seen clearly in the
lower portion of the figure, on the contours of v. A spot is located around x = 290.
To either side of it, the flow remains laminar. The spots grow and merge to produce a
fully turbulent boundary layer at the rightmost edge of the picture. The time-averaged
skin friction coefficient, shown in Figure 6.13, starts at the laminar level and rises with
downstream distance to the turbulent level. In between these two states, Cf is an average
of the turbulent level inside spots and the laminar level around them.

Bypass transition occurs at lower Reynolds number than orderly transition. It domi-
nates when an attached boundary layer is subjected to free-stream disturbances. Orderly
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Figure 6.12 Contours of u (top) and v (bottom) in a plane near the wall under conditions
of bypass transition.
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Figure 6.13 Skin friction versus distance in bypass transition. Symbols are experimental
data (Roach and Brierley, 1990).
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transition is seen under a stream with low levels of perturbation. Instability waves also
dominate in separated flow, and transition often occurs rapidly after separation.

Transition in attached flow has presented a great challenge to modelers. Three
approaches have been devised: rely on the closure model to transition from laminar to
turbulent solutions; use a data correlation to decide when to switch from laminar to
turbulent flow; or devise additional model equations to represent transition. In this last
category, two approaches have been pursued. The first is to develop an equation for the
intermittency function, γ (x, t); the second is to develop an equation for the energy of
fluctuations that occur in the laminar region upstream of transition.

6.5.1 Reliance on the turbulence model

Can turbulence models describe transition from laminar to turbulent flow? They are
developed for fully turbulent conditions and calibrated with turbulence data; the answer
would seem to be “no.” However, most transport equation models do converge to a
laminar solution at low Reynolds number and to a turbulent solution at sufficiently high
Reynolds number; the model equations do evidence a transition between laminar and
turbulent solution branches. This behavior is illustrated by the calculations of plane
channel flow at various Reynolds numbers shown in Figure 6.14. Each point represents a
separate computation. When the Reynolds number is low, the models converge to laminar
flow; when it is high, they converge to turbulence. The figure contains one model that has
not yet been encountered: the isotropization of production (IP) model is a second-moment
closure that will be described in Section 7.1.4.

The two solid lines are theoretical and semi-empirical curves of Cf versus
Re = UCLH/ν for laminar and turbulent flow. The transition between them is set to be
Re = 975, which is a typical experimental value. No attempt has been made to smoothly
characterize the transition region. All models, except the two-layer k–ε, display some
form of transition from the laminar line to the turbulent line as Reynolds number
increases. In all cases it occurs prior to the experimental critical Reynolds number.
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Figure 6.14 Friction coefficient in a plane channel versus Reynolds number based on
centerline velocity and channel half-width. Many turbulence models display a transition
from laminar to turbulent solutions as Re increases.
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A fully turbulent state is ingrained in the two-layer model through the Van Driest
formula for �. This seems to preclude a plausible laminar solution. The other models
obtain length scales from a transport equation. That feature influences their ability to
emulate transition, although the precise mathematical origin of that capability is not well
understood. The behavior evidenced in Figure 6.14 clearly is a property of the model
equations, not of fluid dynamical mechanisms.

It is not uncommon to encounter regions of purely laminar, or buffeted laminar,
flow in applications. For instance, turbine blades often operate at low enough Reynolds
numbers to encounter significant portions of laminar flow on their surface–the blades are
subjected to external turbulence, so their boundary layers are better described as buffeted
laminar layers. In such instances, the bulk of the flow may be turbulent and the overall
flow calculation must be done with a turbulence model. By what rationale, then, can
turbulence models be applied when laminar regions exist?

Bypass transition is stochastic by nature. Turbulent spots are highly localized, irregu-
lar motions inside the boundary layer. So this lies within the province of statistical fluid
dynamics. Turbulence models are not entirely irrelevant; but neither are they entirely
justified. Very often the models are solved without revision, depending on behavior anal-
ogous to Figure 6.14 to accommodate the buffeted laminar regions. But when accurate
predictions of the laminar and transitional regions are needed, the turbulence model must
be supplemented explicitly by a method to predict transition.

One approach is to switch from a laminar to a turbulent computation at a prescribed
transition point. For boundary layers under free-stream turbulence, the data correlation

Rθ tr = 163 + e6.91−Tu (6.5.1)

was proposed by Abu-Gannam and Shaw (1980) for zero pressure-gradient boundary

layers. Tu is the turbulence intensity in percentage, 100
√

u2/U , measured in the free
stream. Transition is specified to occur where the local momentum thickness Reynolds
number exceeds the above critical value.

Another approach is to modulate either the eddy viscosity or the production term in
the k equation to increase it from zero to its full value across a transition zone. The basic
idea is to introduce an intermittency function, γ , that increases from zero to unity, and to
replace the eddy viscosity by γ νT. It is not clear in general how to predict the transition
location, aside from specifications such as (6.5.1). If the transition has been predicted to
occur at xtr, formulas like

γ = 1 − e−(x−xtr)
2/�2

tr , x ≥ xtr, (6.5.2)

have been used to ramp the eddy viscosity. Here �tr is a transition length, which has
been estimated to be about 126 times the momentum thickness (�tr = 126θ ) in zero
pressure-gradient boundary layers.

6.5.2 Intermittency equation

The intermittency formula (6.5.2) can be developed into a transport equation. Note that

dγ

dx
= 2

x − xtr

�2
tr

e−(x−xtr)
2/�2

tr = 2(γ − 1)

�tr

[− log(1 − γ )
]1/2
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for x >xtr. If x is regarded as the streamwise direction, this can be generalized to

u · ∇γ = |u|2(γ − 1)

�tr

[− log(1 − γ )
]1/2

.

If γ is small,
√− log(1 − γ ) ≈ √

γ . Adding a diffusion term provides a transport
equation

Dt γ = 2(γ − 1)
√

γ
|u|
�tr

+ ∇ · [(ν + νT)∇γ ]. (6.5.3)

This is a starting point for more elaborate formulations. Steelant and Dick initiated this
approach (see Menter et al., 2004). The transport equation controls the rise of γ from
zero in laminar flow to unity in turbulent flow. The onset of transition is still determined
by a data correlation like (6.5.1).

An alternative statement of the source term in (6.5.3) is (Menter et al., 2004)

Dt γ = 2|S|(γ − 1)
√

γfonset flength + ∇ · [(ν + νT)∇γ ]. (6.5.4)

This recognizes that the factor |u|/�tr in the previous transport equation determines the
length of transition. Here |S| is the magnitude of the rate-of-strain tensor: |S|2 = SijSji .
It is introduced for dimensional consistency and because turbulence is produced by mean
straining. In (6.5.4), fonset implements a criterion to initiate transition.

The functions fonset and flength are empirical. Suluksna et al. (2009) have provided
concrete formulas by fitting experimental data. They suggest

flength = min[0.1 e−0.022Rθ tr+12 + 0.45, 300].

This decreases from 300 at low Reynolds number to 0.45 at high Reynolds number, and
is unity at Rθ tr ≈ 500 – which by (6.5.1) occurs for a turbulent intensity of about 1%.

The onset function is rather more convoluted:

fonset = max[fonset2 − fonset3, 0],

fonset2 = min[max[R1, R
4
1], 2],

fonset3 = max[1 − (νT/2.5ν)3, 0],

(6.5.5)

where

R1 = Rν

Rθc
.

Suluksna et al. (2009), and others, replace the dependence of transition on momentum
thickness with dependence on a local parameter

Rν = |S|d2

2.193ν
,

where d is distance from the wall. In the Blasius boundary layer, maxy Rν = Rθ . In
the laminar region, νT � ν and R1 < 1. Then fonset = R1. So transition begins where
Rν ∼ Rθc. In order to match data, the critical Reynolds number Rθc is less than the
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transition Reynolds number Rθ tr. A formula is provided in Suluksna et al. (2009). For
low transition Reynolds numbers Rθc ≈ 0.8Rθ tr.

Both the transition and critical Reynolds numbers depend on pressure gradient and
ambient fluctuations. Correlations can be found in the cited literature. Adverse pressure
gradient promotes transition and favorable pressure gradient delays it.

The intermittency function suppresses the eddy viscosity where γ < 1. For this
approach to work, the eddy viscosity model must predict early transition; then νT will
reach turbulent levels and γ νT can increase from 0 to νT under the control of γ . For-
tunately, most eddy viscosity closure models predict early transition. The SST model
(page 138) was used by Menter et al. (2004).

The critical Reynolds number is not predicted by the γ equation. It is provided
externally by a data correlation. Hence, the same model has been applied to orderly and
to bypass transition. In each case, a suitable transition function is prescribed.

6.5.3 Laminar fluctuations

A second approach has closer connection to the phenomenology of transition. It postulates
a transport equation for the energy of fluctuations in the laminar boundary layer – be they
Klebanoff modes or instability waves.

These fluctuations grow and produce turbulent kinetic energy. The key elements of
the equation for laminar fluctuations are production and transfer to turbulence. Walters
and Cokaljat (2008) propose the form

Dt kL = 2νT�|S|2 − R − DL + ∇ · (ν∇kL), (6.5.6)

in which 2νT�|S|2 is the rate of production of laminar fluctuations, DL is a dissipative
term, and R will be described below. To accommodate both bypass and orderly transition,
νT� has two components,

νT� = νBP + νord,

associated with large-scale eddies and with instability.
Initially, the large-scale eddies are contained in free-stream turbulence. Klebanoff

modes are spawned by these large-length-scale motions. The model is motivated by this
phenomenology. Walters and Cokaljat (2008) write

νBP = 3.4 × 10−6 fτ�

�λ2
eff

ν

√
kT�λeff, (6.5.7)

with
λeff = min[2.495d,

√
k/ω]

providing a length scale; and

kT� = k

[
1 −
(

λeff

L

)2/3
]

,

where L = √
k/ω, representing the large-scale component of the turbulent kinetic energy.

The laminar fluctuation equation (6.5.6) is conjoined with the k–ω model.
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In (6.5.7), � is the magnitude of the vorticity vector; and fτ� is the damping function

fτ� = 1 − exp

[
−4360

kT�

2λ2
eff|S|2

]
.

The numerical coefficients were adjusted to fit data. They control the onset of transition
similarly to functions like fonset in intermittency models. The component νBP becomes
small where d is large and where d is small. This mimics the experimental observation
that Klebanoff modes develop in the central part of the boundary layer.

Orderly transition is incorporated by

νord = 10−10βL
�d2

ν
�d2,

with

βL =
{

0, R� < 1000,

1 − e−(0.005R�−5), R� > 1000,
(6.5.8)

where R� = �d2/ν. This acts analogously to an instability criterion. In a Blasius bound-
ary layer, maxy R� = 2.193Rθ . Thus the instability criterion is Rθ > 456 (which is higher
than the value of 200 from linear stability theory).

The term R in Eq. (6.5.6) represents breakdown of laminar fluctuations into turbu-
lence. The same term, with a positive sign, is added to the turbulent energy equation:
Dt k = P + R − ε · · ·. Its form is

R = 0.21BL
KL

τT
,

where τT = λeff/
√

k. As the turbulent energy grows, τ decreases, draining energy from
the laminar fluctuations. The coefficient BL controls the onset of transition:

BL =
{

0, Rk < 35,

1 − e−(Rk−35)/8, Rk > 35,
(6.5.9)

where Rk = √
k d/ν. The transition criterion is based on the Reynolds number Rk , which

contains wall distance as well as turbulent energy. Thus breakdown initiates well above
the wall, as occurs in experiments.

Walters and Cokaljat (2008) also modify R for orderly transition, and introduce other
limiting and interpolation functions to improve agreement with data.

6.6 Eddy viscosity transport models

Two equation models construct an eddy viscosity from velocity and time-scales. It might
seem prudent to formulate a transport equation directly for the eddy viscosity. That idea
has been proposed several times in the past. The most recent incarnation, initiated by
Baldwin and Barth (1990), has proved quite effective. Flaws to the initial formulation
were rectified by Spalart and Allmaras (1992), to produce the model described here. The
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Spalart–Allmaras (SA) model has enjoyed great success in predicting aerodynamic flows
(Bardina et al., 1997).

Assume a priori that an effective viscosity, ν̃, satisfies a prototype transport equation

∂t ν̃ + U · ∇ν̃ = Pν − εν + 1

σν

[∇((ν + ν̃)∇ν̃) + cb2|∇ν̃|2] . (6.6.1)

Aside from the term multiplying cb2, this is analogous to the k, ε, or ω equations: the
right-hand side consists of production, destruction, and transport. The cb2 term is added to
control the evolution of free-shear layers. This equation has a propagating front solution
(Section 6.2.3), with the propagation speed depending on cb2. Spalart and Allmaras (1992)
argue that the front speed influences shear-layer development, and choose cb2 = 0.622,
in conjunction with σν = 2/3, to obtain a good representation of the velocity profiles in
wakes and mixing layers.

The cleverness in developing an equation for an effective viscosity, rather than the
actual eddy viscosity, is that a numerical amenity can be added. Baldwin and Barth (1990)
proposed to make ν̃ vary linearly throughout the law-of-the-wall layer; in particular, to
retain nearly the log-layer dependence ν̃ = κu∗y all the way to the wall. A nearly linear
function can be discretized very accurately.

For production, choose the dimensionally consistent form

Pν = cb1Sν̃.

Spalart and Allmaras (1992) selected the constant to be cb1 = 0.1355, which gave a good
spreading rate of free-shear layers. They chose S to be the magnitude of the mean vor-
ticity. In a boundary layer, this is equivalent to S = |∂yU |, but the potential for spurious
production to occur in applications with rotating surfaces exists – see the discussion in
Section 6.4.

The wall distance y is used for a length scale in the destruction term

εν = cw1fw

(
ν̃

y

)2

.

The function fw will be specified below. It is required to be unity in the region where
ν̃ ∝ y. Hence, in an equilibrium constant-stress layer, the model reduces to

0 = cb1S̃ν̃ − cw1

(
ν̃

y

)2

+ 1

σν

[∇((ν + ν̃)∇ν̃) + cb2|∇ν̃|2] . (6.6.2)

The need to introduce an effective vorticity, S̃, as done in this equation, will be described
shortly. The log-layer solution should be ν̃ = u∗κy and S̃ = u∗/κy (see Section 4.1.1).
Substitution into Eq. (6.6.2) shows that these constraints require

cw1 = cb1κ
−2 + (1 + cb2)/σν. (6.6.3)

Now the intriguing part: as already mentioned, numerical amenability is one of the
guiding principles to this model – it is a good principle for all practical closure modeling.
To that end, ν̃ is contrived to vary nearly linearly all the way to the wall: in particular,
the solution ν̃ = u∗κy is nearly retained. Substituting ν̃ = u∗κy into Eq. (6.6.2) shows
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that the effective vorticity must also follow its log-layer form S̃ = u∗/κy. Assume that
the modified and unmodified mean vorticities are related by

S̃ = S + F(ν̃, y). (6.6.4)

A form for F is now sought.
In a constant-stress layer

(νT + ν)S = u2
∗.

The friction velocity, u∗, is eliminated by equating it to ν̃/κy; then the above becomes

(νT + ν)S = ν̃2/(κy)2. (6.6.5)

The same substitution is made in the desired behavior, S̃ = u∗/κy: by (6.6.4)

S + F(ν̃, y) = ν̃/(κy)2.

After S is eliminated via (6.6.5), the function becomes

F(ν̃, y) = ν̃

(κy)2
− ν̃2

(νT + ν)(κy)2
.

Combining this with (6.6.4) gives

S̃ = S − ν̃2

(νT + ν)(κy)2
+ ν̃

(κy)2
(6.6.6)

for the additive term in (6.6.4). Next to a wall, the second factor on the right-hand side
cancels S and the third provides the desired S̃.

A formulation with a nearly linear solution near the wall is attractive; but the real eddy
viscosity is not linear near the wall. This is rectified by a nonlinear transformation: let

νT = ν̃fν(ν̃/ν)

define the actual eddy viscosity. The argument of the function is a turbulent Reynolds
number, so this is a bit like the damping function (6.2.20), but different in spirit. The
transformation function

fν(ν̃/ν) = (ν̃/ν)3

(ν̃/ν)3 + 7.13
(6.6.7)

was borrowed by Spalart and Allmaras (1992) from an earlier algebraic model of Mellor
and Herring (1973).

The model is almost complete. It is

∂t ν̃ + U · ∇ν̃ = S̃ν̃ − cw1fw

(
ν̃

d

)2

+ 1

σν

[∇((ν + ν̃)∇ν̃) + cb2|∇ν̃|2] , (6.6.8)

with (6.6.6) to define the effective vorticity and (6.6.7) to transform to the true eddy
viscosity. The coordinate y has been replaced by the minimum distance to a wall, d .
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The only remaining element is to specify the function fw in front of the destruction
term. That function implements a constraint that the wall distance should drop out of
the model far from the surface. Near to the wall, fw is required to be unity, so that the
linear solution obtains; far from the wall f → 0. Spalart and Allmaras (1992) make fw
a function of r ≡ ν̃/S̃(κd)2. The particular function has an arbitrary appearance. It is

fw(r) = g

[
65

g6 + 64

]1/6

, with g = r + 0.3(r6 − r). (6.6.9)

In addition to the constraints fw(1) = 1 and fw(0) = 0, this function was selected to
provide accurate agreement with the skin friction curve (Figure 6.8) beneath a flat-plate
boundary layer.

An application of the SA model to the flow in a transonic turbine passage is illustrated
in Figure 6.15. Flow is from bottom to top, angled 64◦ to the left at the inlet. The view is
down the axis of a blade that is attached to a wall. The contours lie on the endwall. They
show the distribution of non-dimensional heat-transfer coefficient. The flow accelerates as
it runs between the blades, causing a heat-transfer maximum in the passage. The high heat
transfer near the blunt leading edge of the blade is due to a vortex that wraps around it.

The performance of the model is quite good, given the complexity of the flow. It
is especially gratifying to know that basic considerations about zero pressure-gradient
boundary layers and simple free-shear layers can produce a model that functions well
so far from its roots. Generally, turbulence models can be considered to be elaborate
schemes to predict complex flows by incorporating data from much simpler flows. That
is both the intellectual attraction and the practical value of this field.

SA model
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Figure 6.15 Heat transfer in a transonic turbine passage: contours of Stanton number
by SA model and experimental data courtesy of P. Giel (Giel et al., 1998). Inflow is from
bottom to top, angled 64◦ to the left. Calculation by G. Iaccarino and G. Kalitzin.
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Exercises

Exercise 6.1. Integral equation closure. Write a program to solve the model (6.1.1)
through (6.1.3).

Plot solutions for θ(x/a), H(x/a), and Cf(x/a) with U∞/U0 = (1 − x/a), where a

is a characteristic length and U0 a characteristic velocity. Start with Cf(0) = 3 × 10−3,
H(0) = 1.35, and Ra = 105. (What is θ(0)/a?) Stop the computation when the boundary
layer separates. At what x/a does separation occur?

Also plot these variables with U∞/U0 = (1 + x/a) in the range 0 ≤ x/a ≤ 0.5. Dis-
cuss the effect of favorable and adverse pressure gradients on Cf and H .

Exercise 6.2. Golf ball revisited. In Chapter 1, Exercise 1.3 asked why golf balls have
dimples. An extension to Figure 6.2 provides an answer: the dimples promote transition.
Provide a qualitative explanation of the figure given below.
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Exercise 6.3. The mixing length model. Show that, if �m = κy, then the mixing length
formula (6.1.6) gives a log law for U in the constant-stress layer (−uv = u2∗). Johnson and
King (1985) suggested using νT = u∗�m, which gives the same result in a constant-stress
layer. Compare the mean velocity obtained from these two formulations in a linear-stress
layer, −uv = u2∗ + αy.

Exercise 6.4. The Stratford boundary layer. Further to Exercise 6.3, Stratford proposed
a clever idea for reducing skin friction. He suggested that a carefully designed adverse
pressure gradient could reduce u2∗ almost to zero along a substantial length of the bound-
ary. The limiting case u2∗ = 0 is called the Stratford boundary layer . The total stress then
varies linearly, τ ∝ y, near the wall. What mean flow profile does the mixing length
model predict in this case?

Exercise 6.5. Mixing length model with Van Driest damping. The log law applies
in the region 40 � y+ � 0.2δ+

99. To extend the mixing length model all the way to
y = 0, Van Driest suggested that κy should be multiplied by an exponential “damping
function.” Thus

�m = κy(1 − e−y+/A+),

where κ = 0.41. Apply this to the constant total stress layer, −uv + ν ∂yU = u2∗ to find
a formula for ∂yU . Integrate this numerically and make a log–linear plot of U+ versus
y+. What is the additive constant B that you obtain for the log law if A+ = 26? What
value of A+ gives B = 5.5?
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Exercise 6.6. A shortcoming to the k–ε model. Show that in incompressible flow the
eddy viscosity constitutive formula (6.2.3) gives the rate of turbulent energy production as

P = 2νTSij Sji ≡ 2νTS2
ii

irrespective of �ij (see Eq. (3.3.8)). When turbulence is rotated, the centrifugal acceler-
ation can affect the turbulent energy. Discuss whether the k–ε model can predict such
effects. There is an analogy between rotation and streamline curvature, so your conclu-
sions apply to the limited ability of eddy viscosity to represent effects of curvature on
the turbulence as well.

Exercise 6.7. Realizability of k–ε. Consider the k–ε model (6.2.5) and (6.2.6) for the
case of homogeneous turbulence. Prove that, if k and ε are greater than zero initially,
they cannot subsequently become negative.

Exercise 6.8. Bounds on production. Show that

|P| ≤ 2k|λmax|,
where |λmax| is the eigenvalue of the rate-of-strain tensor S with maximum absolute
value. This suggests that eddy viscosity models should be constrained by

2νT|S|2 ≤ 2k|λmax|.
Let the eigenvalues of S be λ1, λ2, and λ3. For incompressible flow, λ1 + λ2 + λ3 = 0.

If λ3 = 0, show that
|λmax|2 = |S|2/2

and generally that
|S|2 ≥ 3|λmax|2/2,

where |λmax| is the maximum eigenvalue of S. Hence conclude that the eddy viscosity
ought to satisfy

νT ≤ 2k

3|λmax| .

For the k–ε model, Cµ ≤ 2ε/(3k|λmax|) could be imposed.

Exercise 6.9. Front solution. Show that the mean shear at the propagating front solution
corresponding to (6.2.33) is ∂yU ∼ (ct − y)(σε−1)/(2−σε), for y < ct .

Exercise 6.10. Calibrate an eddy viscosity transport model. Eddy viscosity transport
models, like SA, are an alternative to the k–ε model for full-blown CFD analysis. They
solve a single equation for the dependent variable νT. Consider the model equation

Dt νT = C1|S|νT − (∂iνT)(∂iνT) + ∂i

[(
νT

σν

+ ν

)
∂iνT

]
or, in vector notation,

Dt νT = C1|S|νT − |∇νT|2 + ∇ ·
[(

νT

σν

+ ν

)
∇νT

]
.

Note that 2|S|2 = |∂yU |2 in parallel shear flow.
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Here C1 and σν are empirical constants. Use log-layer analysis to obtain a formula
relating C1 and σν to the Von Karman constant, κ . What second experimental datum
might be used to determine empirical values for C1 and σν?

Exercise 6.11. Channel flow by k–ε. Use the velocity and length scales u∗ and H to set
up the non-dimensional k–ε equations that must be solved in conjunction with (4.1.4) for
fully developed channel flow. Non-dimensionalize the wall-function boundary conditions
(6.2.22). [The U boundary condition simplifies to U+(y+ = 40) = log(40)/κ + B in this
non-dimensionalization.] Solve the resulting problem numerically for steady channel flow
with Rτ = 10 000. Plot your solution for U+ and k+.

In the region y+ < 40 use the profile computed in Exercise 6.5 and plot U+ versus
y+ all the way to the wall.

Note that you are solving a pair of nonlinear diffusion equations; standard methods for
that type of equation can be used. One simple approach is to retain the time derivative and
use an Euler implicit time integration to steady state (Crank–Nicholson can be slow to
converge). Central differencing in y with tridiagonal, matrix inversion is quite effective.
With this method, it helps if ε is made implicit in the k equation, either by using a block
tridiagonal solver, or by solving the ε equation before the k equation.

Exercise 6.12. Channel flow by the two-layer approach. Repeat the previous exercise for
the two-layer k–ε model.

Exercise 6.13. Turbulent dispersion. Stochastic models provide a concrete physical rep-
resentation of the ensemble-averaged smoothing effect of random convection. The fol-
lowing is simpler than Taylor’s model. The position of a convected fluid element is
given by

Y (t + dt) = Y (t) +
√

α(t) dt ξ(t),

in which ξ(t) is the random process defined below Eq. (2.2.10).

(i) Show that α(t) = 2KT, where KT is the eddy diffusivity.

(ii) Use the k–ε formula KT = Cµk2/ε to show that, in decaying grid turbulence,

Y 2 ∝ (t + t0)
(2Cε2 −3)/(Cε2 −1).

Exercise 6.14. Non-existence of 1/2 power law. In a linear-stress layer the total shear
stress varies as τ = αy, with α being a constant that has dimensions �/t2. By dimensional
reasoning, U ∝ (αy)1/2 and

k ∝ αy, ε ∝ α3/2y1/2, ω ∝ (α/y)1/2

(see Exercise 6.4). Show that the k–ε and k–ω models do not admit a power-law solution
of this form.
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Models with tensor variables

Try a new system or a different approach.
–Fortune Cookie

7.1 Second-moment transport

The limitations to the k–ε model stem largely from the turbulence being represented
by its kinetic energy, which is a scalar, and from the eddy viscosity assumption (6.2.3).
The former does not correctly represent turbulence anisotropy. The latter assumes an
instantaneous equilibrium between the Reynolds stress tensor and the mean rate of strain.

A shortcoming to representing the turbulent velocity fluctuations solely by the scalar
magnitude k is that sometimes an external force acts on one component more strongly than
on others, producing very different component energies, u2 �= v2 �= w2. This is referred to
as “normal stress anisotropy,” alluding to the departure of the diagonal components of the
Reynolds stress tensor from their isotropic form uiuj = 2

3kδij . For example, stable density
stratification in the y direction will suppress v2; similarly, stable streamline curvature will
suppress the component directed toward the center of curvature.

Anisotropy exists in all real flows. In parallel shear flows, the dominant anisotropy
is the shear stress. Eddy viscosity models are designed to represent shear stress; they
are not designed to represent normal stress anisotropy. Second-moment closure (SMC)∗
incorporates many of these effects because it is based on the Reynolds stress transport
equations (Chapter 3). For instance, curvature effects enter these equations through the
production tensor Pij . The price paid for the increased physical content of the model
is that more equations must be solved. The mathematics also become more intricate.
Hanjalic (1994) discusses further pros and cons to developing models for the transport
of Reynolds stresses.

∗ Also called second-order closure, Reynolds stress modeling (RSM), or Reynolds stress transport (RST).

Statistical Theory and Modeling for Turbulent Flows, Second Edition P. A. Durbin and B. A. Pettersson Reif
 2011 John Wiley & Sons, Ltd
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Another shortcoming to the eddy viscosity representation is that it causes the Reynolds
stresses to change instantaneously when the mean rate of strain changes. Disequilibrium
should come into play in rapidly changing flow conditions. Algebraic constitutive models,
in general, assume an instantaneous equilibrium between turbulent stress and mean rate
of strain–and mean rate of rotation in some cases, as formula (2.3.16). A frequently
cited example of misalignment between stress and rate of strain is the three-dimensional
boundary layer. As the boundary layer progresses downstream, the direction of the mean
flow veers. This might be caused by an obstruction or by a pressure gradient transverse to
the flow. The angle of the horizontal mean shear from the x direction is tan−1(∂yW/∂yU).
The angle of the horizontal Reynolds shear stress, tan−1( wv/uv), also veers, but it lags
behind the direction of the mean shear. Equation (6.2.3) predicts −uv = νT ∂yU and
−vw = νT ∂yW , so these two angles are assumed to be equal: the linear eddy viscosity
formula does not account for the lag.

7.1.1 A simple illustration

We start by illustrating the ability of SMC to introduce disequilibrium between stress
and mean rate of strain; for instance, to allow for the lag in three-dimensional boundary
layers. Suppose that, instead of imposing the eddy viscosity constitutive relation (6.2.3),
the Reynolds stresses were allowed to relax to that relation on the time-scale T . The
linear relaxation of a variable X to an equilibrium Xeq is described by

dtX + C1X

T
= C1Xeq

T
.

Writing the eddy viscosity as νT = CµkT and introducing relaxation into (6.2.3) suggests
the evolution equation

dt [ uiuj − 2
3δij k] + C1

[ uiuj − 2
3δij k]

T
= −2CµC1kSij . (7.1.1)

The bracketed expression is the dependent variable; it is just the departure of uiuj from
its isotropic value. C1 is an empirical constant that was introduced so that the relaxation
time-scale is proportional to T instead of exactly equaling it. The constant C1 is usually
referred to as the “Rotta constant” after a pioneering paper by J. C. Rotta. It is readily
verified that, in the steady state, where dt [ uiuj − 2

3δij k] = 0, Eq. (7.1.1) reduces to
(6.2.3). Contracting the subscripts and using the incompressibility constraint, Sii = 0,
verifies that (7.1.1) preserves the identity uiui = 2k.

If isotropic turbulence with initial state ( uiuj )0 = 2
3δij k0 were subjected to a sudden

mean rate of strain, (6.2.3) predicts that the Reynolds stresses would change instantly
to uiuj = 2

3δij k − 2νTSij . The non-equilibrium model (7.1.1) allows them to adjust with
time. The first two terms of a Taylor series expansion in time give the solution

uiuj = 2
3δij k0 − 2CµC1k0Sij t.

The off-diagonal stresses grow linearly with time; for example, −u1u2 = 2CµC1k0S12t .
This is of the eddy viscosity form, but the time-scale is C1t instead of T . Thus if the
direction of the mean rate of strain veers, as in a three-dimensional boundary layer,
the direction of the Reynolds stress will follow, but now with a time lag.
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The simplistic evolution equation (7.1.1) introduces the basic idea of incorporating
temporal relaxation effects into the constitutive relation between stress and rate of strain.
However, there are other physics that are as desirable. For instance, the model should
respond to streamline curvature and system rotation, as well as to skewing of the flow
direction. A systematic approach is to develop the model from the exact, but unclosed,
Reynolds stress transport equations. That is the topic of this chapter.

7.1.2 Closing the Reynolds stress transport equation

The essence of second-moment closure modeling can be described by reference to homo-
geneous turbulence. Our discussion begins there. Under the condition of homogeneity,
the exact transport equation is (3.3.10), page 54:

∂tuiuj = Pij + ( 2
3εδij − φij − εij )︸ ︷︷ ︸− 2

3εδij . (7.1.2)

Note that ε is the dissipation rate of k so that ε ≡ 1
2εii . Indeed, the trace of (7.1.2) is

two times the k equation. In that sense, SMC modeling can be looked on as unfolding
the k–ε model to recover a better representation of stress anisotropy.

The dependent variable in (7.1.2) is uiuj (t). The underbrace indicates the only new
unclosed term. It is assumed that the ε equation is retained as (6.2.6), or something similar,
so that the last term of (7.1.2) has already been closed. The mean flow gradients must be
spatially constant in homogeneous turbulence, and therefore can be considered as given;
they prescribe the type of flow, such as homogeneous shear, strain, and so on. The explicit
form for the production tensor is stated in (3.3.5) to be Pij = −ujuk ∂kUi − uiuk ∂kUj ,
which involves the dependent variable uiuj and the given flow gradients; hence, it is a
closed term.

Modeling involves developing formulas and equations to relate the unclosed term
to the mean flow gradients and to the dependent variable, uiuj . Denote the unclosed
term by

℘ij = −(φij + εij − 2
3εδij ). (7.1.3)

This will be referred to as the redistribution tensor. In Section 3.3, φij alone was called
redistribution. For the purpose of modeling, dissipation anisotropy has been lumped in
as well. Then (7.1.2) can be written compactly as

∂tuiuj = Pij + ℘ij − 2
3εδij . (7.1.4)

In order to close this evolution equation, the unknown term ℘ij must be modeled in terms
of already known quantities. Standard practice is to develop the closure as a sum of a
“slow” contribution and a “rapid” contribution. The basic slow model is given by (7.1.8),
and the linear, rapid model is either (7.1.32), or its alternative statement as (7.1.33).
Operationally, those formulas replace ℘ij in (7.1.4) to provide a closed equation. At this
point the reader might want to write out the closed equation for uiuj as motivation for
what follows. The theory behind these models will now be developed.

What is needed is a function of the form

℘ij = Fij ( uiuj , ∂jUi; k, ε, δij ).
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This ought to be written in a dimensionally consistent manner. The redistribution tensor
℘ has the same dimensions as the rate of dissipation, ε, which can be used to scale Fij .
The mean velocity gradient ∂jUi has dimensions of 1/t , so it can be non-dimensionalized
as k∂jUi/ε. It is common to non-dimensionalize uiuj by k and subtract 2

3δij to form a
trace-free tensor called the anisotropy tensor

bij ≡ uiuj

k
− 2

3
δij (7.1.5)

(see Exercise 3.4). It can be verified that bii = 0. With these non-dimensionalizations,
the functional dependence of ℘ij is written more appropriately as

℘ij = εFij [bij , k/ε∂jUi, δij ]. (7.1.6)

As an example, the relaxation term in (7.1.1) can be written C1bij ε, which corresponds
to Fij = −C1bij . A high Reynolds number assumption is implicit in (7.1.6): dependence
on molecular viscosity could be added through the turbulent Reynolds number k2/εν.
Again, that parameter is important in near-wall modeling, but it is of secondary interest
in homogeneous flows.

There is an implicit assumption of locality in (7.1.6): in the present case of homo-
geneous flow, it is locality in time. In particular, F could be a functional of bij (t

′),
t ′ ≤ t . However, all SMC models currently in use invoke a temporally local redistribu-
tion model; all variables in (7.1.6) are evaluated at the same time t . History effects are
present, but only through the evolution equation (7.1.4).

Common practice is to separate ℘ into slow and rapid contributions, ℘slow + ℘rapid,
and to model their functional dependence, F slow + F rapid, separately. Terms that do
not depend on ∂jUi are referred to as the slow terms of the redistribution model. The
rapid terms depend on velocity gradients; they are usually tensorally linear in ∂jUi .
The terminology “rapid” and “slow” originated in the idea that only the former terms
alter instantaneously with mean flow changes. The division into slow and rapid parts is
addressed in the next two sections.

It is sometimes desirable to let the anisotropy tensor, bij , be the dependent variable
rather than uiuj . Equation (7.1.4) can be rearranged as the evolution equation

∂tbij = −bik ∂kUj − bjk ∂kUi − 4

3
Sij −

(
bij + 2

3
δij

) P
k

+ bij

ε

k
+ Fij

T
(7.1.7)

for bij . As previously, Sij is the rate-of-strain tensor. This form invokes the production
tensor as a function of bij :

Pij

k
= −bik ∂kUj − bjk ∂kUi − 4

3
Sij .

The evolution equation (7.1.7) must preserve the condition that bii = 0: to ensure this, the
constraint Fii = 0 must be imposed. Equation (7.1.7) must also preserve the symmetry
condition bij = bji , so Fij = Fj i is a further constraint. Various other constraints on the
form of closure can be identified. These will be discussed in due course.
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7.1.3 Models for the slow part

The slow term is associated with the problem of return to isotropy . To isolate slow
terms, consider the case ∂jUi = 0. Then there is no directional preference imposed on
the turbulence and hence no driving force toward anisotropy. Removing the mean shear
also means that there is no turbulence production. In that case, (7.1.6) becomes ℘ij =
εFij [b, δ]. The most commonly used form for the slow redistribution is the Rotta model:

℘slow
ij = −C1εbij . (7.1.8)

This is just a linear relaxation of the anisotropy tensor bij toward 0, or similarly of uiuj

toward 2
3kδij . For that reason it is called a return-to-isotropy model. Typical empirical

values of C1 are in the range 1.5–2.0. As a word of caution, sometimes q2 = 2k is used
to scale the Reynolds stress and T is defined as q2/ε. Then the Rotta constant will be
doubled to 3.0–4.0. This warning should be taken broadly: if there is confusion over a
factor of 2 in the constants, check whether k or q2 is used as the intensity scale.

The Rotta model is usually quite effective. However, the representation theorem
(2.3.8) derived in Section 2.3.2 shows that the most general functional dependence of the
slow redistribution model is

℘slow
ij = −εC1bij + εCn

1 (b2
ij − 1

3b2
kkδij ). (7.1.9)

Recall that b2
ij is defined as the matrix times itself: b2

ij = bikbkj and that b2
kk = bkmbkm

is its trace. The term containing δij makes formula (7.1.9) consistent with the
trace-free constraint ℘kk = 0. The coefficients C1 and Cn

1 can be functions of the
invariants IIb = − 1

2b2
kk and III b = 1

3b3
kk , defined below Eq. (2.3.10). The Rotta model

is C1 = constant and Cn
1 = 0.

While there are grounds for including the Cn
1 term, as a practical matter it should

be noted that the nonlinearity can adversely affect numerical convergence when SMC
models are used in complex geometries. For instance, the SSG (Speziale–Sarkar–Gatski)
model (Speziale et al., 1991) suffers from stiffness unless Cn

1 is set to zero; doing so has
a negligible effect on predictions in wall-bounded flow. Given that caveat, it is instructive
to consider the more general form (7.1.9).

In the absence of mean flow gradients, the evolution equation (7.1.7) with (7.1.9)
becomes

dtbij = (1 − C1)
bij

T
+ Cn

1

(b2
ij − 1

3b2
kkδij )

T
. (7.1.10)

The isotropic state bij = 0 is a solution. The condition that this should be a stable
equilibrium is C1 > 1 (see Exercise 7.3). It is an intuitive notion that turbulent scrambling
should drive the flow toward isotropy in the absence of external forcing. Experiments on
homogeneous turbulence have been performed, in which initially anisotropic turbulence
was observed to relax toward isotropy (Townsend, 1976).

A coordinate system can be chosen in which bij is diagonal because it is a symmetric
tensor. This is called the system of principal axes. With mean flow gradients, the direction
of the principal axes would rotate in time. However, for (7.1.10) that does not happen
because when i �= j that equation gives dt bij = 0 if bij = 0 initially: no off-diagonal
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components are generated and b remains diagonal. The trace-free condition bkk = 0 shows
the anisotropy tensor to be of the form

b =
∣∣∣∣∣∣
b11 0 0
0 b22 0
0 0 −(b11 + b22)

∣∣∣∣∣∣ . (7.1.11)

Note that b2
kk = 2(b2

11 + b2
22 + b11b22) and let dτ = dt/T . Then the evolution equations

become

dτ b11 = (1 − C1)b11 + Cn
1 [ 1

3b2
11 − 2

3 (b2
22 + b11b22)],

dτ b22 = (1 − C1)b22 + Cn
1 [ 1

3b2
22 − 2

3 (b2
11 + b11b22)]. (7.1.12)

If Cn
1 = 0 and C1 > 1 this represents exponential decay toward isotropy. Before continu-

ing, some properties of the anisotropy tensor warrant discussion. They are embodied in
the curvilinear triangle plotted in Figure 7.1, which is explained in the following.

The one-component, two-component, and axisymmetric states are signposts for char-
acterizing anisotropy. From b11 = u2

1/k − 2
3 and 0 ≤ u2

1/k ≤ 2 it follows that b11 falls

between − 2
3 and 4

3 . When b11 = − 2
3 the turbulence has two non-zero components, u2

2

and u2
3; when b11 = 4

3 it has only one, u2
3 = u2

2 = 0 and u2
1 = 2k. These define the one-

and two-component states.
The other special state is the axisymmetric condition b11 = b22; then b has the form

b =
∣∣∣∣∣∣
b11 0 0
0 b11 0
0 0 −2b11

∣∣∣∣∣∣ .
If b11 < 0 then u2

1 and u2
2 are less than 2

3k and u2
3 is greater. This is called the case of

axisymmetric expansion . Such anisotropy could be produced by expansion in the plane
normal to the x3 axis and compression along that axis. The turbulence can be thought of

IIIb

−I
I b

0 0.2 0.4 0.6
0

0.5

1.0

2 component

axis
ym

metric
 exp

ansio
n

axisymmetric
contraction

Figure 7.1 Anisotropy-invariant triangle: C1 = 1.7, Cn
1 = 1.05 ( ), and II b ∝

(III b)
2/3 ( ). All the trajectories flow toward the origin.
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as having been squashed along x3 and stretched along x1 and x2. Stretching the vorticity
along x1 and x2 amplifies the u2

3 component of turbulence. The opposite case b11 > 0 is
of axisymmetric contraction along x1 and x2, with stretching along x3.

Now consider the boundaries to the triangle in Figure 7.1 (sometimes called
the Lumley triangle). The state of turbulence can be characterized by the invariants
(Section 2.3.2) II b = − 1

2b2
kk and III b = 1

3b3
kk . From (7.1.11)

IIb = −(b2
11 + b2

22 + b11b22),

IIIb = −(b2
11b22 + b11b

2
22) = b11IIb + b3

11. (7.1.13)

In the axisymmetric state, b11 = b22, so II b = −3b2
11 and III b = −2b3

11. Eliminating b11

between these gives

IIIb = ±2(|IIb|/3)3/2.

The “+” sign corresponds to axisymmetric expansion, the “−” sign to axisymmetric
contraction. In the two-component state, b11 = − 2

3 , and the last equality of Eqs. (7.1.13)
becomes

IIIb = − 2
3IIb − 8

27 .

The boundaries of the triangle have been found.
The minimum of the second invariant is at b22 = − 1

2b11 and equals − 3
4b2

11. This
is seen by minimizing the expression (7.1.13) with respect to b22 for fixed b11. Since
b11 ≤ 4

3 , the range of II b is 0 ≤ −II b ≤ 4
3 . Rearranging the last of (7.1.13) as

−IIb = |IIb| = b2
11 − IIIb/b11

enables the range of III b to be identified. For a given III b, the minimum of |II b| occurs
at b11 = −(III b/2)1/3 and equals 3(III b/2)2/3. Since b11 >− 2

3 , the maximum of |II b|
is 4

9 + 3
2 III b. The upshot is that the range of realizable values of III b all fall inside the

curvilinear triangle

max

[
−2(|IIb|/3)3/2,

2

3
|IIb| − 8

27

]
≤ IIIb ≤ 2(|IIb|/3)3/2, 0 ≤ −IIb ≤ 4

3

displayed in Figure 7.1 (Lumley, 1978). The max on the left becomes the straight line
2
3 |II b| − 8

27 when |II b|> 1
3 . This straight line is the two-component state. The curvilinear

sides of the triangle are the axisymmetric states.
We now return from the diversion, to consider the evolution (7.1.12) of anisotropy.

Return to isotropy in the II b –III b plane of Figure 7.1 consists of a trajectory starting
inside the triangle and moving toward the origin. Four such trajectories are shown in the
figure. The dashed lines are for the linear, Rotta model. It is readily shown (Exercise
7.4) that the linear model produces the trajectory III b = III 0(II b/II 0)

3/2 originating at
(III 0, II 0) and flowing to (0, 0). The solid lines are for a quadratic nonlinear model, with
the constants

C1 = 1.7 and Cn
1 = 1.05
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used by Speziale et al. (1991). Speziale et al. also revised the Rotta coefficient to

C1 = 1.7 + 0.9P/ε

in shear flows.
The tendency of the nonlinear model to swerve toward the axisymmetric expansion

agrees qualitatively with data of Choi and Lumley (1984), but it has been questioned
whether return to isotropy can be described by a function of b alone–for instance, the
anisotropy of dissipation (εij − 2

3εδij ) might need to be included.
If an eigenvalue of uiuj becomes zero, the turbulence reaches a two-component state.

It would then lie on the top line of the triangle in Figure 7.1. Any further decrease will
produce the unphysical condition that one of the component energies, say u2

1, becomes

negative; the trajectory would exit the top of the triangle. Negative u2
1 is called an unreal-

izable state because no real statistic can have a negative variance. Hence, any violation of
realizability will occur by a trajectory crossing through the two-component state; that is,
exiting through the upper boundary of the triangle in Figure 7.1. This particular feature of
Lumley’s triangle can be used as a consistency check for numerical, or experimental, data.

If u2
1 < 0 the corresponding component of the anisotropy tensor is less than − 2

3 . In
general, a turbulence model will not ensure that b11 ≥ − 2

3 unconditionally. A constraint
that does guarantee this is called a realizability condition. Clearly, b11 will not drop below
− 2

3 if dt b11 > 0 when b11 = − 2
3 . In the case of (7.1.12), when b11 = − 2

3 ,

dτ b11 = − 2
3 [(1 − C1) + Cn

1 (b2
22 − 2

3b22 − 2
9 )].

The right-hand side has a minimum value of 2
3 [C1 − 1 − 2

3Cn
1 ] when b22 = 4

3 . Requiring
this to be positive gives the realizability constraint

Cn
1 < 3

2 (C1 − 1). (7.1.14)

The marginal value Cn
1 = 3

2 (C1 − 1) was used in Figure 7.1. When Cn
1 = 0 the condition

C1 > 1 is recovered.

7.1.4 Models for the rapid part

The rapid part of the ℘ij model is defined as the portion of the model that explicitly
involves the tensor components ∂jUi . A good deal of research on SMC has focused on
the rapid pressure–strain model for homogeneous turbulence. The relevant theory will
be developed in the present section. Outside the vicinity of walls, quasi-homogeneity
may be a reasonable approximation even when the flow is not strictly homogeneous; so
modeling concepts developed by reference to homogeneous flow are of broad interest.
However, in some regions, such as the immediate vicinity of walls, the assumptions are
strongly violated and most models fail. The subject of wall effects will be covered in
Section 7.3; the present section is restricted to homogeneity.

The pressure contribution to the redistribution term is

φij = ( uj ∂ip + ui ∂jp)/ρ.

In homogeneous turbulence, this equals minus the pressure–strain correlation,

φij = −p(∂iuj + ∂jui)/ρ



SECOND-MOMENT TRANSPORT 163

(see Section 3.3). A closure model relating this to the Reynolds stress tensor is needed.
A first step is to relate pressure to velocity.

In incompressible flow, the pressure satisfies the Poisson equation

∇2p̃ = −ρ ∂kũl ∂l ũk,

as is found by taking the divergence of the Navier–Stokes equations, and invoking
continuity. Recall that ũ = U + u is the total velocity. The fluctuating pressure equation
is found by subtracting its average from the right-hand side:

∇2p = −ρ(∂kul ∂luk − ∂kul ∂luk) − 2ρ ∂lUk ∂kul. (7.1.15)

The form of the right-hand side is the motivation for decomposing redistribution into
a sum of rapid and slow contributions: the first term does not depend explicitly on the
mean velocity and so is associated with the “slow” part of the redistribution; the last
term is the “rapid part.” A better terminology might be “linear” and “nonlinear” parts,
alluding to the nature of the dependence on u. The rapid, or linear, part is also linear in
the mean velocity gradient. That term is the subject of the following.

The equation

∇2p = −2ρ ∂lUk ∂kul (7.1.16)

has the formal solution

p(x) = 1

4π

∫ ∞∫
−∞

∫
2ρ ∂lUk ∂ ′

kul(x
′)

|x − x ′| d3x′ (7.1.17)

in unbounded space. This solution is obtained with the free-space Green function
1/4π |x − x′| for Laplace’s equation (Copson, 1975).

Differentiating (7.1.17) with respect to xi and integrating by parts give

∂ip(x) = 1

2π

∫ ∞∫
−∞

∫
ρ ∂lUk ∂ ′

kul(x
′)

∂

∂xi

1

|x − x′| d3x′

= − 1

2π

∫ ∞∫
−∞

∫
ρ ∂lUk ∂ ′

kul(x
′)

∂

∂x′
i

1

|x − x′| d3x′

= ρ ∂lUk

1

2π

∫ ∞∫
−∞

∫
∂ ′
i∂

′
kul(x

′)
1

|x − x ′| d3x ′,

where the fact that ρ ∂lUk is constant in homogeneous flow has been used to move it
outside the integral. Note that a sign change occurred on switching from an x derivative
to an x′ derivative.
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Next form the velocity–pressure gradient correlation

−ρφij = −uj ∂ip − ui ∂jp

= −ρ ∂lUk

2π

∫ ∞∫
−∞

∫ [
uj (x) ∂ ′

i∂
′
kul(x ′) + ui(x) ∂ ′

j ∂
′
kul(x ′)

] 1

|x − x′| d3x′.

(7.1.18)

Although the quantity on the left-hand side is a single-point correlation, the integrand on
the right-hand side contains two-point correlations. This substantiates the observation that
the Reynolds stress transport equations are unclosed because they depend on nonlocal
effects: single-point equations contain two-point correlations. This nonlocality is due to
pressure forces acting at a distance. The Green function diminishes the distant pressure
fluctuations, but the fall-off is slow, like 1/r .

In homogeneous turbulence, two-point correlations are a function only of the differ-
ence between the points, cf. also Chapter 9. A correlation of the form a(x)b(x′) is a
function ab(x − x′). The derivative with respect to x′ is distinguished from that with
respect to x, so a(x) ∂x′b(x′) = ∂x′(a(x)b(x′)); the x′ derivative does not operate on
a(x). Owing to the latter, the bracketed term of (7.1.18), uj (x) ∂ ′

i∂
′
kul(x′) is equivalent

to ∂ ′
i∂

′
k

[
uj (x)ul(x′)

]
; and owing to the former, this is equivalent to ∂i∂kujul(ξ ) with

ξ = x − x′. The derivative is with respect to the relative position vector ξ . With these
substitutions the formula (7.1.18) becomes

−φij = −∂lUk

2π

∫ ∞∫
−∞

∫ [
∂i∂kujul + ∂j ∂kuiul

]
(ξ )

1

|ξ | d3ξ

= 2∂lUk

[
(∇2

ξ )−1∂i∂kujul(ξ ) + (∇2
ξ )−1∂j ∂kuiul(ξ )

]
(7.1.19)

= Mijkl ∂lUk,

where (∇2
ξ )−1 represents the convolution integral symbolically: that is, it is simply a

shorthand for integration over the function −1/4π |x − x′|. The significance of the rep-
resentation (7.1.19) is that the right-hand side of the first line is a definite integral, so the
components of M are constants.

The fourth-order tensor Mijkl is defined as

Mijkl = 2
[
(∇2

ξ )−1∂i∂kujul(ξ ) + (∇2
ξ )−1∂j ∂kuiul(ξ )

]
. (7.1.20)

A normalization of M follows from contracting on j and k in (7.1.20):

Mijjl = 2
[
(∇2

ξ )−1∂i∂jujul(ξ ) + (∇2
ξ )−1∇2uiul(ξ )

]
= 2
[
(∇2

ξ )−1∂i∂jujul(ξ ) + uiul

] = 2 uiul, (7.1.21)

upon noting that the inverse Laplacian of the Laplacian is the identity,

(∇2)−1∇2 = 1
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and invoking continuity to set ∂i∂jujul = 0. This last step is based on previous reasoning
about homogeneous correlation functions, applied in reverse:

∂i∂jujul(ξ ) = ∂ ′
i∂

′
jujul(x

′ − x) = ∂ ′
i∂

′
juj (x ′)ul(x)

= ∂ ′
i∂

′
juj (x ′)ul(x) = ∂ ′

i∇ · u(x ′)ul(x) = 0.

In addition to the normalization, M must preserve the symmetry in i, j and the trace-
free property of contracting on i = j that are built into the anisotropy tensor, b. In short,
the following constraints are imposed upon M:

Mijkl = Mjikl, Miikl = 0, Mijj l = 2 uiul. (7.1.22)

The first implements the symmetry in i and j ; the second preserves bii = 0; and the
third normalizes M . It is sometimes argued that the further condition Mijkk = 0 should
be imposed on the basis of continuity. While this seems attractive, and follows from
(7.1.20), it actually is not compelling. It would be incorrect to characterize Mijkk = 0 as
an incompressibility condition because the single-point Reynolds stress tensor gives no
direct information on compressibility of the turbulence. Only the two-point correlation
can satisfy a divergence-free condition, ∂ ′

juj (x ′)ul(x) = 0. In the rapid redistribution
term Mijkl ∂lUk , the last two indices of M are contracted. The only constraints apparent
to the Reynolds stress evolution are those on the first two indices. To impose Mijkk = 0
would overly constrain the model, without cause.

Based on (7.1.19), the rapid contribution to (7.1.6) is represented as

℘
rapid
ij = εFrapid

ij = Mijkl ∂lUk, (7.1.23)

where Mijkl is an unspecified tensor that is constrained by (7.1.22). There is still con-
siderable freedom in how to select it. The following section develops one possible form.
The method is a systematic expansion in powers of anisotropy.

7.1.4.1 Expansion of Mijkl in powers of bij

The dependence of (7.1.6) on mean gradients is expressed by the form (7.1.23). The
remaining arguments of Fij show that Mijkl is a function of bij and δij . A technique
that has been employed to develop closure formulas is expansion in powers of bij . The
first term in this expansion is the zeroth power, which means that it involves δij alone;
the next involves bij to the first power. According to the Cayley–Hamilton theorem (Eq.
(2.3.7)), the tensoral expansion would stop at order b2

ij . However, we will stop at the
first power, thereby deriving the general linear model. The coefficients in the tensoral
expansion could be functions of the invariants. In that case the model derived at first order
would be called the general quasi-linear model. In principle, the expansion in powers of
anisotropy should include expansion of the coefficients. For instance, this was done by
Speziale et al. (1991).

Since four subscripts are needed, the first term in the power series consists of products
of two δ. The most general form is obtained by a linear combination of all possible,
distinct products:

M0
ijkl = Aδij δkl + Bδikδjl + Cδilδjk. (7.1.24)
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Symmetry in the i, j indices, the first of (7.1.22), requires that B = C. The second of
(7.1.22) then requires that

Aδiiδkl + B(δikδil + δilδik) = 0. (7.1.25)

But δ is just the identity matrix, so δii = 3 and δikδil = δkl . Thus the above equation is
(3A + 2B)δkl = 0, or 3A = −2B.

Finally, the last of (7.1.22) can be written

Mijjl = 2k(bil + 2
3δil). (7.1.26)

Expression (7.1.24) is the first term in the expansion in powers of bil . Only the δil term
of Eq. (7.1.26) contributes at this order; so this constraint on (7.1.25) with A = − 2

3B

reduces to

M0
ijj l = (− 2

3B + 4B)δil = 2k( 2
3δil). (7.1.27)

Thus B = 2
5k, A = − 4

15k, and

M0
ijkl = 1

15 (6δikδjl + 6δilδjk − 4δij δkl)k, (7.1.28)

which has no empirical constants! Substituting this into (7.1.23) and using incompress-
ibility, ∂iUi = 0, gives

℘
rapid 0
ij = 2

5k(∂jUi + ∂iUj ). (7.1.29)

This leading-order perturbation of isotropy is sometimes referred to as the Crow constraint
(Crow, 1968).

The general linear model (GLM) is obtained by carrying the expansion in powers of
bij to the linear term. By analogy with (7.1.24), the next term is of the form

M1
ijkl = Abij δkl + C3(bikδjl + bjkδil − 2

3δij bkl)

+C2(bilδjk + bjlδik − 2
3δij bkl), (7.1.30)

where the first two of (7.1.22) have already been imposed. The last constraint is M1
ijj l =

2kbil , so

A + 10
3 C2 + 1

3C3 = 2k.

However, substituting M1
ijkl into (7.1.23) gives

℘
rapid 1
ij = kC2(bik ∂kUj + bjk ∂kUi − 2

3δij bkl ∂kUl)

+kC3(bik ∂jUk + bjk ∂iUk − 2
3δij bkl ∂kUl),

so the value of A, and hence the normalization constraint, is irrelevant. The two free
constants C3 and C2 can be chosen empirically.
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Adding ℘rapid 1 to ℘rapid 0 gives the GLM:

℘
rapid
ij = 2

5k(∂jUi + ∂iUj ) + kC2(bik ∂kUj + bjk ∂kUi − 2
3δij bkl ∂kUl)

+ kC3(bik ∂jUk + bjk ∂iUk − 2
3δij bkl ∂kUl). (7.1.31)

Special cases of (7.1.31) are the LRR (Launder–Reece–Rodi) model (Launder et al.,
1975) and the IP (isotropization of production) model (Launder, 1989). An example of
the general quasi-linear model is the SSG (Speziale–Sarkar–Gatski) model (Speziale
et al., 1991).

The formula (7.1.31) can be rearranged into other forms that appear in the literature.
These express it in terms of the production tensor as

℘
rapid
ij = [ 2

5 − 2
3 (C2 + C3)]k(∂jUi + ∂iUj )

− C2(Pij − 2
3δijP) − C3(Dij − 2

3δijP), (7.1.32)

which is obtained by substituting bij = uiuj /k − 2
3δij , Pij = −uiuk ∂kUj − ujuk ∂kUi ,

and P = 1
2Pkk, and defining

Dij = −uiuk ∂jUk − ujuk ∂iUk.

Alternatively, it can be expressed in terms of rate of strain and rate of rotation as

℘
rapid
ij = 4

5kSij + k(C2 + C3)(bikSkj + bjkSki − 2
3δij bklSlk)

+ k(C2 − C3)(bik�kj + bjk�ki), (7.1.33)

which is obtained by substituting ∂iUj = Sij + �ij , Sij = Sji , and �ij = −�ji (see
Eq. (3.3.8)).

At this point the reader might want to pause and take stock of what has been accom-
plished. The evolution equation (7.1.4) for the Reynolds stresses

∂tuiuj = Pij + ℘
rapid
ij + ℘slow

ij − 2
3εδij

has now been closed. The explicit closure is simply to replace ℘rapid with (7.1.32) and
℘slow with (7.1.8), and invoke the ε equation (6.2.6).

The form (7.1.32) was introduced by Launder et al. (1975), who imposed the addi-
tional constraint Mijkk = 0 to eliminate one of the empirical constants. As discussed
above, this is not necessary, and was not used in the other models. In the LRR model,

C2 = (c + 8)/11 and C3 = (8c − 2)/11,

where c is an empirical constant, for which the value 0.4 was selected. The IP model uses

C2 = 3/5 and C3 = 0,

so that

℘
rapid
ij = − 3

5 (Pij − 2
3δijP). (7.1.34)

This provides a simple, commonly used SMC model.
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The form (7.1.33) was invoked by Speziale et al. (1991) with C2 = 0.4125 and
C3 = 0.2125. They also added the term

−C∗
s

√
IIb kSij (7.1.35)

with C∗
s = 0.65 to Eq. (7.1.33). Adding such a term is consistent with the expansion

to first order in anisotropy. (Note that Speziale et al. (1991) used 2k to scale turbulent
intensity, so the anisotropy tensor in their paper is defined as uiuj/2k − 1

3δij , which
equals our bij /2.)

The relative importance of the rapid and slow redistribution models depends somewhat
on flow conditions. The split between them for the IP and SSG models is shown in
Figure 7.2 for plane channel flow. The specifics vary with the model, but both rapid and
slow components make a significant contribution throughout the flow. Both contributions
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Figure 7.2 Contributions of the rapid and slow redistribution model in plane channel
flow, for SSG and IP models.
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to the streamwise component, ℘11, are negative, and both contributions to the wall normal
component, ℘22, are positive. These correspond to redistribution from u2 into v2.

One should be warned that the predictions of these models are not correct in
the region y+ � 80. The large negative peak in the SSG rapid model for ℘12 is a
notable instance of this failure: ℘12 should be positive near the wall. DNS data for
this term can be found later in Figure 7.9. The erroneous behavior comes from D12

in Eq. (7.1.32), which contains u2∂yU . Near the wall both ∂yU and u2 become large
(Figure 6.6, page 127). The behavior of Dij near the wall can produce quite anomalous
predictions by the redistribution model. Methods to correct the near-wall behavior of
quasi-homogeneous models are discussed in Section 7.3.2.

Note that P12 contains ∂yU in the form −v2 ∂yU . Near the wall v2 is small. The IP
model (7.1.34) is better behaved than the SSG model near the wall because it contains
only P12, not D12. This model is quite intuitive: the isotropization of production rapid
model counteracts the production tensor. Near the wall, production of uv is suppressed
and the IP model follows that behavior.

7.2 Analytic solutions to SMC models

This section describes some analytical solutions. They have several motivations: the
solution in homogeneous shear flow is used to calibrate the empirical constants, and
it illustrates how SMC predicts normal stress anisotropy; and the analysis of curvature
illustrates how the influence of external forces is captured by the production tensor.
Further solutions can be found in Section 8.3.

To start, the complete general linear model (GLM) will be assembled. Substituting
the rapid (7.1.31) and slow (7.1.8) models into the evolution equation (7.1.7), in which
Fij = ℘ij /ε, gives the closed equation

dt bij = (1 − C1)bij

ε

k
− bik ∂kUj − bjk ∂kUi − (bij + 2

3δij )
P
k

− 8
15Sij

+C2(bik ∂kUj + bjk ∂kUi − 2
3δij bkl ∂kUl)

+C3(bik ∂jUk + bjk ∂iUk − 2
3δij bkl ∂kUl) (7.2.1)

for the anisotropy tensor. It is assumed that k and ε are found from their own evolution
equations. For the present case of homogeneous turbulence, the complete model is a
set of ordinary differential equations. They could be solved numerically by standard
Runge–Kutta methods, but analytical solutions are instructive and give valuable insight
into the model.

7.2.1 Homogeneous shear flow

Parallel and self-similar shear layers are discernible elements of many complex engineer-
ing flow fields. It is a long-standing tradition to calibrate model constants with data from
simple shear flow. A closed-form solution to the GLM that relates its constants to readily
measurable quantities is developed in this section.

Homogeneous, parallel shear flow has the mean velocity Uj = Sxiδi2δj1, or
U(y) = Sy. The velocity gradient and rate-of-strain tensors are ∂iUj = Sδi2δj1 and
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Sij = 1
2S(δi1δj2 + δi2δj1). Explicitly, ∂2U1 = S and S12 = S21 = 1

2S, with all other
components equal to zero.

The equilibrium solution to the k–ε model was given in Section 6.2.1: it was k and
ε ∝ eλt . Define the ratio of production to dissipation by

P/ε ≡ PR.

The equilibrium value of PR is given by the second of Eqs. (6.2.11) on page 124:

PR = Cε2 − 1

Cε1 − 1
.

This remains valid for the present solution; the new element is that the anisotropy
tensor is determined by the evolution equation (7.2.1) instead of by the constitutive
equation (6.2.3). The latter gives

b12 = −CµS
k

ε
, b11 = b22 = b33 = 0, (7.2.2)

in parallel shear flow. The first of these is reasonable; the second is certainly erroneous.
This illustrates that the linear, eddy viscosity constitutive relation is likely to predict
erroneous normal stresses (u2

i ). Second-moment closures should be able to do better.
The concept of moving equilibrium is used to good effect when analyzing turbulent

flows. Moving equilibrium means that k and uiuj evolve in time such that bij remains
constant. In particular, the equilibrium solutions for k and uiuj both grow with the same
exponential rate, so that their ratio is time-independent. Mathematically, dt ( uiuj /k) =
dt bij = 0 is the condition of moving equilibrium. Another way to state this is
(Rodi, 1976)

dt uiuj = uiuj

k
dt k.

Thus the rate of change of all the components of the Reynolds stress tensor are propor-
tional to the rate of change of k.

This moving equilibrium solution will be sought. After setting dt bij = 0 in (7.2.1)
and substituting ∂jUi = Sδi1δj2 and Sij = 1

2S(δi1δj2 + δi2δj1), it becomes

0 = (1 − C1)bij − bi2
Sk

ε
δj1 − bj2

Sk

ε
δi1 −

(
bij + 2

3
δij

)
PR

− 4

15

Sk

ε
(δi1δj2 + δi2δj1)

+ C2

(
bi2

Sk

ε
δj1 + bj2

Sk

ε
δi1 + 2

3
δijPR

)
+ C3

(
bi1

Sk

ε
δj2 + bj1

Sk

ε
δi2 + 2

3
δijPR

)
. (7.2.3)
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In component form, Eqs. (7.2.3) can be solved as

Gb11 = 2
3 (2 − 2C2 + C3),

Gb22 = 2
3 (C2 − 2C3 − 1),

Gb33 = 2
3 (C2 + C3 − 1),

(Gb12)
2 = 4

15G + 2C2
3 − 2

3 (1 + 2C3 − C2)
2 (7.2.4)

where G ≡ (C1 − 1)/PR + 1. The exact formula for the ratio of production to dissipation
−b12Sk/ε = PR was used to eliminate Sk/ε in the process of finding this solution.
Formulas (7.2.4) can be employed either to determine the constants of a model from
experimental measurements of bij , or to assess the accuracy of a given set of constants.
Usually the constants are a compromise between these and other data.

Tavoularis and Karnik (1989) summarize experimental measurements of bij and PR.
Early experiments on homogeneous shear flow did not reach equilibrium. The data cited
here are from experiments in which St was large enough for bij to equilibrate. An average
of data in table 2 of Tavoularis and Karnik (1989) gives PR = 1.6 ± 0.2. They cite

{bij } =
 0.36 ± 0.08 −0.32 ± 0.02 0

−0.32 ± 0.02 −0.22 ± 0.05 0
0 0 −0.14 ± 0.06

 (7.2.5)

for the anisotropy tensor.
Energy is fed from the mean shear to u2

1 and then redistributed to u2
2 and u2

3, so
one expects b11 to be greater than zero and b22 to be less than zero. This is found
experimentally to be true. From the first of (7.2.4), b11 > 0 only if 2 − 2C2 + C3 > 0.
This is satisfied by both the IP and LRR models (the latter uses C2 = 8.4/11 and
C3 = 1.2/11). The IP model has C2 = 3/5 and C3 = 0. With C3 = 0, expression (7.2.4)
shows that b22 = b33 = −2b11. This is a fault of the IP model; the experimental data
show that b22 < b33, although b22 ≈ b33 is not too bad an approximation. In order
to calibrate a model to fit (7.2.5), three model constants must be available; IP has
only one.

Substituting model constants, the IP model, with PR = 1.6 and C1 = 1.8, predicts

{bij } =
 0.356 −0.361 0

−0.361 −0.178 0
0 0 −0.178

 .

The value C1 = 1.7 was selected by the developers of the SSG model. With PR = 1.6
that model gives

{bij } =
 0.433 −0.328 0

−0.328 −0.282 0
0 0 −0.151

 .

It should be noted that the SSG model was calibrated using older data than (7.2.5), with
which it agreed more closely.
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Figure 7.3 Evolution of the anisotropy tensor in homogeneous shear flow. The IP model
is used for illustration.

The approach of the model to equilibrium can be obtained by numerically integrat-
ing (7.2.1). Figure 7.3 illustrates the evolution of anisotropy for the IP model. The initial
condition is isotropy, bij = 0 at t = 0. Equilibrium is reached at St ∼ 6. Using the exper-
imental values in Sk/ε = −PR/b12 gives Sk/ε = 5 in equilibrium. Hence, equilibrium
is attained when t ∼ k/ε = T . This is consistent with intuitive interpretations of scaling
analysis. The integral correlation time-scale is regarded as that on which the turbulence
equilibrates and is of order k/ε.

A final remark on solving more complex models is needed. The constants, Ci , in
the general quasi-linear model can depend on invariants of b. In that case, closed-form
solutions can still be found; further equations are simply added. For instance, the SSG
model contains a dependence on II b as in (7.1.35): in that case (7.2.1) contains the
additional term −C∗

s

√
II bSij and the last of (7.2.4) has an extra term − 1

2GC∗
s

√
II b.

Substituting (7.2.4) into

IIb = b2
11 + b2

22 + b22b11 + b2
12

provides an additional equation that determines II b implicitly (see Exercise 7.5).

7.2.2 Curved shear flow

The topic in this section is not so much a solution as it is an analysis of the physical
content of such models. One of the motivations for second-moment closure is their greater
adherence to fluid dynamical physics than scalar models, such as k–ε. The intent of this
example is to illustrate that.

Surface curvature can suppress or amplify turbulence, depending on whether it is
convex or concave curvature. The turbulence in a boundary layer entering a convex
curve is diminished by the centrifugal acceleration; the turbulence in one entering
a concave curve is amplified. Figure 7.4 illustrates this configuration. The shear is



ANALYTIC SOLUTIONS TO SMC MODELS 173

Ω < 0

convex
   curvature

Ω ↔ − U∞/R

Ω > 0

concave
   curvature

Ω ↔ U∞/R

Figure 7.4 Schematic of boundary layers on curved surfaces and the analogy between
rotation and curvature. Convex curvature is stabilizing and concave is destabilizing.

toward the center of curvature in the destabilizing case and outward from it in the
stabilizing case.

Curvature is analogous to rotation. A parallel shear layer placed into rotation will be
destabilized if the rotation is contrary in sign to the mean vorticity. In Figure 7.4 this
correspondence between concave curvature and rotation is noted. A lengthy analysis of
rotation can be found in Sections 8.3.2 and 8.3.3.

The origin of these effects of curvature and rotation can also be understood by an
examination of the Reynolds stress production tensor. They are most clear-cut in cylin-
drical coordinates, with x1 = Rθ and x2 = r . Then the shear flow in Figure 7.4 is in
the x1 direction, U = U(r)e1 where e1 is a unit vector in the circumferential direc-
tion, e1 = (− sin θ, cos θ). The unit vector in the radial direction is e2 = (cos θ, sin θ).
Note that ∂x1e1 = 1/R ∂θ (− sin θ, cos θ) = −e2/R. Then the velocity gradient tensor has
components

e1 ∂1(U(r)e1) = e1U(r) ∂1e1 = −e1e2
U(r)

R
,

e2 ∂2(U(r)e1) = e2e1 ∂rU(r)

or

{∂iUj } =
 0 −U/R 0

∂rU 0 0
0 0 0

 .

With the above velocity gradient, the non-zero components of the production tensor
(3.3.5) become

P11 =−2u1u2∂2U1 =−2uv∂rU,

P22 =−2u2u1∂1U2 = 2uv U/R,

P12 =−u2u2∂2U1 − u1u1 ∂1U2 =−v2∂rU + u2 U/R,

P= 1
2 (P11 + P22) =−uv(∂rU − U/R).

(7.2.6)
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On a convex wall the velocity increases in the radial direction; hence ∂rU > 0. The two
terms of P are opposite in sign and the curvature acts to diminish the production of
turbulent kinetic energy by the mean shear.

Curvature effects increase as the radius of curvature, R, decreases. The relative mag-
nitude of curvature and shear can be estimated as

U/R

∂rU
= νTU/R

νT ∂rU
∼ νTU/R

u2∗
∼ δ∗U

Ru∗

in a turbulent boundary layer. The formula u∗δ∗ (see expressions (6.1.12)) was used as
an order-of-magnitude estimate for νT, and the turbulent Reynolds stress, νT∂rU , was
estimated to be on the order of the surface kinematic stress. It follows that curvature
effects become important when

δ∗
R

� u∗
U

. (7.2.7)

The right-hand side is typically of order 1/20. This leads to the characterization of “strong
curvature” as that for which δ∗/R � 0.05 (Bradshaw, 1976); that is, if the radius of
curvature is less than 20 times the displacement thickness, curvature exerts a profound
influence. Without the above order-of-magnitude analysis, this association of such a small
ratio with a strong effect would be puzzling.

The qualitative effect of curvature is also apparent in the rate of shear stress production
P12. In practice, the dominant influence of curvature on a turbulent flow is through this
term. The estimates that gave (7.2.7) now give

δ∗
R

� u∗v2

Uu2
.

The ratio v2/u2 is less than unity in the vicinity of a wall, so curvature plays a corre-
spondingly larger role in the uv equation than in the k equation.

On a concave wall, ∂rU < 0. The two terms on the right-hand side of equations
(7.2.6) that contribute to P12 and P then have the same sign. In this case, curvature sup-
plements the production by mean shear. Concave curvature is destabilizing and amplifies
the turbulence. Its physical effects are embodied in the production tensor.

If the eddy viscosity formula −uv = νT ∂rU is adopted, then P11 ∝ (∂rU)2 > 0 in
Eq. (7.2.6). Similarly P22 ∝ −U ∂rU/R. On a concave wall, U/R and ∂rU are of opposite
sign (Figure 7.4) and P22 > 0: the wall normal component of intensity is amplified.
Conversely, the wall normal component is suppressed on a convex wall. The normal
stress is responsible for the shear production of −uv in (7.2.6). Increased v2 on the
concave wall will increase the magnitude of −uv because v2 enters that formula with a
negative sign.

The effects of convex and concave curvature are illustrated in Figures 7.5 and 7.6.
These shows Reynolds shear stress and skin friction in a boundary layer that starts on a
flat wall, then enters either a convex or a concave bend. The symbols are experimental
data; the lines were computed with a Reynolds stress model.

The −uv data on the convex wall illustrate how centrifugal acceleration suppresses the
turbulence. The turbulent kinetic energy, not shown in the figures, is similarly suppressed.



ANALYTIC SOLUTIONS TO SMC MODELS 175

−uv

y/
d

99

0 0
0

 .25

 .50

 .75

1.00

−uv

y/
d

99

0 0 0 0 0
0

0.5

1.0

1.5

Reynolds shear stress in a boundary layer that starts on a flat plate, then enters a convex
curve. The leftmost profile is on the flat section; the right is 21° around the bend.

The same, but for a concave curve. The leftmost profile is on the flat section; the others
are at 15°, 30°, 45°, 60° around the bend.

Figure 7.5 Reynolds shear stress in curved wall boundary layers. Experimental data are
from Johnson and Johnston (1989), Barlow and Johnston (1988) and Gillis et al. (1980);
lines are SMC computations.

A curious feature illustrated by the upper pane of Figure 7.5 is that the shear stress actually
becomes positive in the outer region of the boundary layer at the location 21◦ around
the bend. At that location, ∂rU > 0, so the eddy viscosity model −uv = νT ∂rU gives
the incorrect sign for uv. This is referred to as a region of counter-gradient transport.
Counter-gradient transport can occur under the influence of strong stabilizing curvature (or
stratification). Whether this has a practical impact is uncertain. When solving a Reynolds
stress transport model, it is not an issue: the computations in Figure 7.5 demonstrate that
the turbulent shear stress can have the same sign as the mean shear in computations that
use Reynolds stress transport models.

The −uv data on the concave wall, in the lower pane of Figure 7.5, develop a bulge
around 0.25 < y/δ99 < 0.75. This is not predicted by the model. The bulge is proba-
bly associated with the “Görtler vortices” that form on concave walls. These are long,
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Figure 7.6 Skin friction coefficient on curved walls. The wall is flat for x < 0, then
enters a convex section (left) in which the skin friction is reduced, or a concave section
(right) in which it increases. Symbols are experimental data; the lines are SMC compu-
tations, the dashed line being a solution for a flat wall.

quasi-steady vortices aligned in the x1 direction. They are a manifestation of centrifugal
instability. They occur in laminar flows as well; in that case they are truly steady and
rather more coherent. When deterministic eddies, like Görtler vortices, occur in a flow,
one cannot expect the statistical turbulence model to represent them. If those vortices con-
tribute significantly to transport phenomena, then they must be computed as part of the
mean flow field. The issue of computing deterministic flow structures will be discussed
in Section 7.4.2.3.

The Reynolds shear stress −uv is responsible for turbulent transport of mean momen-
tum (see Eq. (4.2.6)). Hence, when −uv is increased or reduced by curvature, the mean
momentum transport from the free stream, through the boundary layer, to the underly-
ing surface will also be enhanced or suppressed. At the surface, this momentum flux is
balanced by viscous skin friction. Curvature effects on the turbulent shear stress will be
manifested in the surface skin friction. It follows that convex curvature will diminish the
skin friction coefficient and concave curvature will enhance it. This is verified by the
experimental data and SMC computations in Figure 7.6.

7.2.3 Algebraic stress approximation and nonlinear eddy viscosity

In the early days of Reynolds stress transport modeling, the computational expense of
solving five additional transport equations was daunting. Even now these models can be
computationally stiff and present many other challenges. Such considerations lead Rodi
(1976) to propose an approximation to reduce them from partial differential equations to a
set of algebraic equations. Thus a foundation was laid for nonlinear constitutive modeling.

If the transport terms in (3.2.4) are added to (7.1.4), the result can be written sym-
bolically as

Dtuiuj − Tij − ν∇2uiuj = Pij + ℘ij − 2
3εδij , (7.2.8)

where Tij is the term marked “turbulent transport” in (3.2.4). In the algebraic approxima-
tion, the transport terms are assumed to be proportional to the Reynolds stress tensor times
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a scalar. That scalar is the transport of kinetic energy. Specifically, the approximation is

Dtuiuj − Tij − ν∇2uiuj ≈ uiuj

k
(Dt k − T − ν∇2k), (7.2.9)

where T = 1
2Tkk. The kinetic energy transport equation is

Dt k − T − ν∇2k = P − ε.

This and the approximation (7.2.9) reduce (7.2.8) to the algebraic equation

uiuj

k
(P − ε) = Pij + ℘ij − 2

3
εδij . (7.2.10)

If closure models for ℘ij and the definition of the production tensor Pij are substituted,
this becomes a set of algebraic equations for the unknown uiuj . Transport equations are
solved for k and ε; in particular, k and ε are treated as known quantities. That is the
essence of the algebraic stress model.

For the general linear model, the algebraic approximation is identical to the evolu-
tion equation (7.2.1) with the left-hand side set to zero. Hence, it is equivalent to an
equilibrium assumption for the anisotropy tensor.

A broader view is that algebraic stress models (ASM) are a type of constitutive
relation. Formula (7.1.33) expresses redistribution as a function of rate of strain S and
rate of rotation �; thus (7.2.10) is an implicit relation between stress, rate of strain,
and rate of rotation. A formula relating stress to rates of strain and rotation is called a
constitutive relation; so (7.2.10) is the implicit statement of a constitutive relation. An
explicit solution – an explicit algebraic stress model (EASM)–can be derived for the
linear and the quasi-linear redistribution models, as will be seen on page 229. We will
leave those mathematics to the next chapter and proceed more informally with the idea
of a nonlinear constitutive model.

The general functional form of a nonlinear constitutive model is

uiuj = Fij (S,�; k, ε).

Note that the functional dependence can include the non-dimensional magnitudes |S|k/ε

and |�|k/ε, where |�|2 = �ij�ij and similarly for |S|. For the k–ω model, the ratio
k/ε is replaced by 1/ω.

The linear eddy-viscosity model is the special case

uiuj = −c1Sij + 2
3δij k,

with c1 = 2νT = 2Cµk2/ε. The quasi-linear form Cµ = f (|S|k/ε, |�|k/ε) can be intro-
duced as an ad hoc extension. The term quasi-linear refers to the tensoral dependence
being linear in the rate of strain, but the coefficient introduces nonlinear dependence on
the magnitude of rate of strain and rotation. As an example, Shih et al. (1995) invoked
a realizability constraint and postulated that

c1 ∼ α0

α1 + k/ε(|S|2 + |�|2)1/2
. (7.2.11)
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This is often called the “realizable” k–ε model. One of the failures of the strictly linear
form is that it is insensitive to rotation. This formula introduces a dependence on rotation.
Strong rotation can stabilize the turbulence; this formula does not correct that flaw, but
other quasi-linear formulations have that motive.

The starting point for a fully nonlinear constitutive relation is the material in Section
2.3.2 on representation theorems for tensor functions of two tensors. There are a large
number of nonlinear eddy viscosity models in the literature; the majority retain only
quadratic terms

uiuj − 2
3δij k = −c1Sij + c2(SikSkj − 1

3 |S|2δij ) + c3(�ikSkj + �jkSki)

+ c4(�ik�jk − 1
3 |�|2δij ). (7.2.12)

Craft et al. (1996) provide a brief overview of various quadratic models. Let us consider
how the coefficients might be prescribed.

Often models retain c4 �= 0. However, they behave erroneously in rotating isotropic
flow; more importantly, c4 �= 0 causes the model to violate realizability quite dramatically.
It is desirable to take c4 = 0. Note that this term does not appear in the strictly two-
dimensional representation (2.3.16).

For parallel shear flow, U(y) = Sy. We have seen (Eq. (7.2.2)) that the linear model
incorrectly predicts

u2 = v2 = w2 = 2
3k.

With the definitions (3.3.8) of rate of strain and rotation, the nonlinear model (7.2.12)
predicts

u2 − 2
3k = 1

12c2S2 + 1
2c3S2, v2 − 2

3k = 1
12c2S2 − 1

2c3S2,

w2 − 2
3k = − 1

6c2S2, uv = − 1
2c1S. (7.2.13)

The coefficient c2 creates anisotropy. The shear stress retains the linear eddy viscosity
form.

For a general 2D incompressible flow, the components of the mean rate of strain and
mean vorticity tensors are given by

S =
λ 0 0

0 −λ 0
0 0 0

 , � =
 0 ω 0

−ω 0 0
0 0 0


in principal axes of S. We have |S|2 = 2λ2 and |�|2 = 2ω2. Using (7.2.12), with c4 = 0,
the non-zero components of the Reynolds stress tensor are

u2 − 2
3k =−c1λ + 1

3c2λ
2, v2 − 2

3k = c1λ + 1
3c2λ

2,

w2 − 2
3k =− 2

3c2λ
2, u1u2 = 2c3λω.

(7.2.14)

The coefficients ci can be functions of the mean deformation rate. However, the
functional dependence is a priori unknown, so it would be beneficial to impose con-
straints. One such constraint is realizability (discussed in Section 8.1.2). The realizability
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constraints are equivalent to the Schwartz inequality ( uiuj )2 ≤ u2
i u2

j :

4
3 ≥ bij ≥ − 2

3 , b12 ≤ b11b22 − 2
3b33 + 4

9 . (7.2.15)

The first insists on the variances being positive. Imposing these constraints on (7.2.14)
gives

c1 ≤ c2λ
2 − 4

3λ
, c2 ≤ 1

λ2
, c3 ≤ 9(c1λ)2 − (c2λ

2)2 − 4c2λ
2 − 4

9λω
.

These inequalities sometimes serve as constraints to derive an allowable mathematical
form of the model coefficients.

Craft et al. (1996) noted that, while modest improvements could be made using the
simple quadratic expansion, a cubic constitutive equation was needed to account for
streamline curvature. They proposed

bij = b2D
ij + c5Skl(�lj Ski + �liSkj ) + c7Sij (|S|2 − |�|2), (7.2.16)

where b2D
ij denotes the quadratic expansion (7.2.12). Optimization over a wide range of

flows determined the linear coefficient:

c1 ∼ [1 + max(|S|2, |�|2)3/2]−1
. (7.2.17)

7.3 Non-homogeneity

All real flows are non-homogeneous. This does not mean that the material in Section 7.1
is irrelevant. It should be understood as development of the quasi-homogeneous por-
tion of SMC models. Quasi-homogeneous means that the equations were developed for
homogeneous conditions, but they can be applied to situations in which all variables are
functions of position but do not vary rapidly. Truly non-homogeneous effects must be
added explicitly to the model. These additional terms may control the spreading rate of
shear layers, the skin friction in boundary layers, or the strength of mean flow vortices.

There are two critical effects of non-homogeneity on the mathematical modeling:
the turbulent transport terms in the Reynolds stress budget do not vanish; and the steps
to derive the velocity–pressure gradient correlation (7.1.19) from Eq. (7.1.17) are not
correct. In the former case, turbulent transport terms play a role in all inhomogeneous
flows of engineering relevance. The latter failing is critical in the vicinity of walls,
although starting well above the viscous sublayer.

A turbulence model must also be capable of satisfying suitable boundary conditions
at the wall. The non-homogeneous parts of the model permit this. In addition to these
modifications of the turbulence closure by non-homogeneity, molecular transport becomes
dominant within viscous wall layers. However, the molecular terms are exact and need
simply be added to the equations.

Transport terms will be discussed first, then the more difficult topic of wall effects
on the redistribution model is covered.
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7.3.1 Turbulent transport

The Reynolds stress budget (3.2.4), page 49, contains both turbulent and molecular trans-
port on its right-hand side. The relevant terms are

−∂kukuiuj + ν∇2uiuj .

The second term, molecular transport, is closed because it involves only the dependent
variable uiuj . Often, modeling turbulent transport is characterized as representing ukuiuj

as a tensor function of uiuj . That philosophy leads to rather complex formulas because
the symmetry in i, j, k should be respected. However, the term being modeled, ∂kukuiuj ,
is only symmetric in i, j . The three-fold symmetry is not apparent in the Reynolds stress
transport equation. Hence, there is little motive to constrain the model to satisfy the hidden
symmetry–especially when it causes a great deal of added complexity. The inviolable
constraints are that the model must preserve the conservation form and be symmetric in
i and j .

The notion that the third velocity moment represents random convection by turbu-
lence, cited below (6.2.4), is again invoked. The Markovian assumption, that this can be
modeled by gradient diffusion, is made in most engineering models. An exception occurs
in buoyantly driven flows, where third-moment transport models occasionally have been
found necessary. The most common closure is the Daly and Harlow (1970) formula. This
is a gradient transport model with a tensor eddy viscosity:

−∂kukuiuj = ∂k(CsT ukul ∂luiuj ). (7.3.1)

Here the eddy viscosity tensor is CsT ukul ≡ νTkl
. A typical value for Cs is 0.22 (Laun-

der, 1989). Near to a wall, the dominant component of the gradient is in the wall normal
direction, y. Then (7.3.1) is approximately ∂y(CsT v2 ∂yuiuj ). The dominant eddy vis-
cosity is νT = CsT v2. One influence of a wall is to suppress v2 relative to the other
intensities. This is due, in part, to the impenetrability of the boundary; but also, a strong
shear, ∂yU , will reduce v2/k, even without a direct boundary influence. Both of these phe-
nomena will reduce the effective eddy viscosity near a wall beneath a boundary layer.
If the closure model is able to capture the correct near-wall behavior of v2, then the
Daly–Harlow transport model is able to represent the suppression of wall normal turbu-
lent diffusion. With the caveat that the model must be able to predict v2 correctly, (7.3.1)
proves to be more accurate than a simpler model proposed by Mellor and Herring (1973):

−∂kukuiuj = ∂k(CsT k ∂kuiuj ).

The eddy viscosity CsT k does not capture wall damping, as was seen in Figure 6.7 on
page 130.

A technicality should be mentioned. Equation (3.3.7) defined the trace-free redistri-
bution tensor

ρ�ij = uj ∂ip + ui ∂jp − 2
3∂kukp δij .

When this is used in the Reynolds stress transport equation (3.2.4), “pressure-diffusion”
is usually absorbed into gradient transport so that the model (7.3.1) is presumed to be

−∂k( ukuiuj − 2
3ukp δij /ρ) = ∂k(CsT ukul ∂luiuj ).
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Evidence is that pressure-diffusion has a similar spatial distribution to turbulent self-
transport, but has an opposite sign. Hence its inclusion is reflected in the value of the
empirical coefficient Cs . For example, the model constant obtained from data without
including pressure-diffusion is about 20% greater than 0.22, but it is reduced when the
pressure contribution is included.

The closed Reynolds stress transport equation with (7.3.1) is

∂tuiuj + Uk ∂kuiuj = ℘ij − 2
3δij ε + ∂k(CsT ukul ∂luiuj )

− ujuk ∂kUi − uiuk ∂kUj + ν∇2uiuj . (7.3.2)

Only the turbulent stresses uiuj and dissipation rate ε appear as dependent variables if
one of the previous algebraic formulas in Section 7.1.3 and subsequent pages is used
for ℘ij : closure has been achieved. This closure can be used to predict free-shear flows.
But near to walls the algebraic formulas for ℘ij can be rather erroneous, as will be seen
in connection with Figure 7.8. Either walls must be avoided, or the subject of near-wall
second-moment modeling must be broached.

To skirt the problem, wall function boundary conditions can be applied in the log layer;
in lieu of a suitable model, practical computations often resort to this. The approach
is quite similar to the method discussed in connection with the k–ε model. The wall
function consists of adding uiuj to Eqs. (6.2.22) by prescribing anisotropy ratios bij ,
such as (7.2.5), to give a uiuj boundary condition. The procedure is self-evident (Exercise
7.10); the intent is to circumvent the SMC model in the region where it fails. Although
there is no need to discuss wall functions further, one should be aware that their use in
computations often is tacit.

Wall function boundary conditions for uiuj are harder to justify than is the logarithmic
specification for U . The data in Figure 6.6, page 127, show that the constant-stress
assumption can be quite inaccurate for uiuj . Pressure gradients can make a constant-
stress layer even harder to locate. The subject of near-wall second-moment modeling
therefore warrants scrutiny.

7.3.2 Near-wall modeling

In an equilibrium boundary layer, the near-wall region refers to the zone between the
log layer and the wall. It includes the viscous dominated region next to the surface
and the strongly inhomogeneous region above it. Generally it is a region in which non-
homogeneity and viscosity play dominant roles. The near-wall region is one of “high
impedance” to turbulent transport, in the sense that the wall suppresses the normal compo-
nent of turbulence–as discussed in the previous subsection and in Section 4.4. This means
that the layer adjacent to the wall controls skin friction and heat transfer disproportion-
ately, making it critical to engineering applications. It is also of great interest to turbulence
theory because it is the region of high shear and large rates of turbulence production.

The primary mathematical issues in near-wall modeling are boundary conditions and
nonlocal wall effects on redistribution. The issue of nonlocal influences of the wall
upon the redistribution model presents rather a challenge to an analytical model. These
wall influences can have pronounced effects. Various methods have been developed to
represent nonlocal wall influences. The two discussed in Section 7.3.4 are wall-echo and
elliptic relaxation.
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Asymptotic ordering of Reynolds stress components is the subject of the next sub-
section. Often a model cannot satisfy the exact asymptotic scaling near a wall. That may
or may not be important: the exact behaviors described in the next section might not
be as significant as obtaining correct orders of magnitude, and relative strengths, of the
Reynolds stress components.

7.3.3 No-slip condition

It might seem that the boundary condition at a no-slip wall for the Reynolds stress
tensor is simply uiuj = 0. While that is correct, the power of y with which the zero
value is approached is often of importance. Models should be designed such that their
near-wall asymptotic behavior is reasonable. We will examine the consequences of the
no-slip boundary condition on the asymptotic behavior of turbulence statistics near a
wall, determining the power of y with which various quantities vary as y → 0.

Let the no-slip wall be the plane y = 0. The no-slip condition is that all components
of velocity vanish: u = 0. Even if the wall is moving, all components of the turbulent
velocity vanish, provided that the wall motion is not random. If the velocity is a smooth
function of y, it can be expanded in a Taylor series,

ui = ai + biy + ciy
2 + · · · ,

where ai , bi , and ci are functions of x and z. The no-slip condition requires that ai = 0.
Thus the tangential components satisfy u = O(y) and w = O(y) as y → 0. However, the
continuity equation, ∂yv = −∂xu − ∂zw, shows that b2 = 0 and thus v = O(y2). From
these limits of the fluctuating velocity, the Reynolds stresses are found to behave like

u2 =O(y2), v2 =O(y4), w2 = O(y2),

uv =O(y3), uw =O(y2), vw = O(y3),
(7.3.3)

as y → 0. The solution to a Reynolds stress model should in principle be consistent with
these. However, in practice, it may be sufficient to ensure that −uv and v2 are small
compared to u2 when y+ � 1 (Figure 6.6, page 127). This implements the suppres-
sion of normal transport in the immediate vicinity of the wall. The formality y+ � 1
can be taken with a grain of salt; the powers (7.3.3) are satisfied by experimental
data when y+ � 5.

Derivatives of velocity in the plane of the wall are O(y). For instance,

∂xu = lim
�x→0

(u(x + �x) − u(x))/�x = O(y)

because u(x + �x) and u(x) are both O(y). Derivatives of the tangential velocity in
the normal direction are seen to be O(1). Thus the limiting behavior of the dissipation
rate is

ε = ν[ ∂iuj ∂iuj ] → ν[(∂yu)2 + (∂yw)2] + O(y2), y → 0. (7.3.4)

This is O(1) at the surface: see Figure 3.4 on page 52. The components of the dissipation
rate tensor, εij = 2ν( ∂iuj ∂iuk), behave as

ε11 = O(1), ε22 =O(y2), ε33 =O(1),

ε12 = O(y), ε13 =O(1), ε23 =O(y).
(7.3.5)
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These are derived by considerations such as ε12 → 2ν( ∂yu ∂yv) = O(y), using the near-
wall behavior of the fluctuation velocity cited above. Note that εij = O( uiuj/k) as
y → 0. This proves to be a useful observation about near-wall scaling.

A consideration of the various contributions to the Reynolds stress budget (3.2.4)
shows that the dominant balance near a surface is between dissipation, molecular diffu-
sion, and the pressure term. The budget reduces simply to

ν ∂2
yuiuj = εij (7.3.6)

if i and j do not equal 2, and to

ν ∂2
yuiuj = ui ∂jp + uj ∂ip + εij

if i or j equal 2. The first recovers the limit found previously,

εij → 2ν uiuj /y
2 = uiuj ε/k,

if i, j �= 2–here, use was made of the fact that k → εy2/2ν as y → 0. The second shows
that εij is of the same order in y as uiuj/k, although not exactly equal to it.

Asymptotic considerations have motivated some researchers to define the redistribu-
tion tensor as

℘ij = −(�ij + εij − uiuj ε/k), (7.3.7)

instead of ℘ij = −(�ij + εij − 2
3δij ε). The previous observation that εij → uiuj ε/k

shows that all components of this ℘ij vanish at the wall. The Reynolds stress transport
equation now becomes

∂tuiuj + Uk ∂kuiuj = ℘ij − uiuj ε/k + ∂k(CsT ukul ∂luiuj )

− ujuk ∂kUi − uiuk ∂kUj + ν∇2uiuj . (7.3.8)

If the homogeneous redistribution models developed in Section 7.1 are denoted ℘h
ij , then

the revised definition (7.3.7) for non-homogeneous flow is

℘ij = ℘h
ij + εbij . (7.3.9)

This transformation is accomplished quite simply by subtracting 1 from the Rotta constant,
C1. While that would seem to have no effect on (7.3.8), the redefinition can become non-
trivial when the redistribution model is revised for nonlocal wall effects. Revisions are
made to ℘h in the wall-echo method and to ℘ in elliptic relaxation. These methods are
our next topic.
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7.3.4 Nonlocal wall effects

The elliptic nature of wall effects was recognized early in the literature on turbulence
modeling (Chou, 1945) and has continued to influence thoughts about how to incorporate
nonlocal influences of boundaries (Launder et al., 1975; Durbin, 1993; Manceau et al.,
1999). In the literature on closure modeling, the nonlocal effect is often referred to as
“pressure reflection” or “pressure echo” because it originates with the surface boundary
condition imposed on the Poisson equation (7.1.15) for the perturbation pressure, p. The
boundary condition at a wall, y = 0 say, is found from the Navier–Stokes equations
to be ∂yp̃ = µ∂2

y ṽ. However, this is usually taken to be ∂yp̃ = 0, ignoring the small
viscous contribution. The boundary condition influences the pressure interior to the fluid
through the solution to (7.1.15). Mathematically this is quite simple: the solution to the
linear equation (7.1.15) consists of a particular part, forced by the right-hand side, and a
homogeneous part, forced by the boundary condition. The fact that the boundary condition
adds to the solution interior to the fluid can be described as a nonlocal, kinematic effect.

For the case of a plane boundary with ∂yp = 0 on the surface, (7.1.15) can be solved
by the method of images (Figure 7.7). A source equal to that in the fluid is imagined to lie
in the wall at the negative y coordinate, such that its pressure field is superposed on that
in the fluid. By symmetry, the normal derivative is then zero at the wall. Mathematically,
the solution (7.1.17) is modified to

p(x) = 1

2π

∫ ∞∫
−∞

∫ ∞

0

ρ ∂lUk ∂ ′
kul(x

′)
[(x − x′)2 + (z − z′)2 + (y − y′)2]1/2

dy′ dx′ dz′

+ 1

2π

∫ ∞∫
−∞

∫ ∞

0

ρ ∂lUk ∂ ′
kul(x

′)
[(x − x′)2 + (z − z′)2 + (y + y′)2]1/2

dy′ dx′ dz′. (7.3.10a)

The second integral is the image term–note that y + y′ appears in its denominator. It can
be verified that ∂yp = 0 at y = 0. This solution can be combined into a single integral
by extending the source symmetrically into the wall:

p(x) = 1

2π

∫ ∞∫
−∞

∫
ρ ∂lUk ∂ ′

kul(x
′, z′, |y′|)

|x − x ′| d3x′. (7.3.10b)

The two forms (7.3.10a) and (7.3.10b) represent two ways to think about wall influences
on the redistribution term. The first is an additive correction. The second is more dif-
ficult to summarize, but, essentially, it is a modified operator on the source of pressure
fluctuations.

Figure 7.7 schematizes nonlocality in the Poisson equation as a reflected pressure
wave; however, for incompressible turbulent fluctuations, the wall effect is instantaneous,
though nonlocal. The two integrals in (7.3.10a) are represented by the direct and reflected
waves in the figure. Either the equation, or the figure, illustrate that wall reflection
enhances pressure fluctuations: the “reflected” pressure has the same sign as the “incident”
pressure and enhances it. As a corollary, Manceau et al. (1999) showed that pressure
reflection can increase the redistribution of Reynolds stress anisotropy. The notion that the
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Image VorticityPressure Reflection

Figure 7.7 Schematic representations of nonlocal wall influences. Pressure reflection
is characterized by a reflected pressure wave at the left. At the right, image vorticity
characterizes the blocking effect of a solid wall.

redistribution is increased by wall reflection is contrary to many second-moment closure
(SMC) models: they represent pressure echo as a reduction of the redistribution term.

The association of inviscid wall effects with pressure reflection is natural because
the pressure enters the Reynolds stress transport equation through the velocity–pressure
gradient correlation. Suppression of the normal component of pressure gradient by the
wall should have an effect on the rate of redistribution of variance between components of
the Reynolds stress tensor that contain the normal velocity component. This effect should
enter the evolution equation for the Reynolds stress (3.2.4). However, there is another
notion about how the anisotropy of the Reynolds stress tensor is altered nonlocally by
the presence of a wall – one that is not so easily identified in the transport equations. The
inviscid boundary condition on the normal component of velocity is the no-flux condition
u · n̂ = 0. The normal component is suppressed within an extended neighborhood of the
wall. As in the case of pressure reflection, the wall boundary condition alters the flow
interior to the fluid through nonlocal kinematics. This perspective on ellipticity is often
referred to as “kinematic blocking” (Hunt and Graham 1978). It explains why, intuitively,
one feels that wall effects should suppress transfer of energy into the normal component of
intensity. At a plane boundary, this can be termed the “image vorticity” effect (Figure 7.7).

Kinematic blocking is not an alteration of the redistribution tensor. It cannot be
directly identified in the Reynolds stress transport equations. Blocking is a continu-
ity effect. Suppose that a field of homogeneous turbulence u∞ exists, and instanta-
neously a wall is inserted at y = 0. Then the velocity will instantaneously be altered to
u = u∞ − ∇φ, where ∇φ is a potential flow caused by the wall. The no-penetration
boundary condition, u · n̂ = 0 requires that n̂ · ∇φ = u∞ · n̂ on y = 0. Incompressibil-
ity applied to the entire velocity ∇ · u = 0 and to the turbulent velocity far above the
wall ∇ · u∞ = 0 implies that ∇2φ = 0. This problem will be solved in Section 11.2.2.
The analysis is purely kinematic: solve Laplace’s equation with n̂ · ∇φ = u∞ · n̂ on the
wall; there is no role for Reynolds stress dynamics. Indeed, without invoking a conti-
nuity equation, it is difficult to locate kinematic blocking. The Reynolds stress transport
equations are moments of the momentum equations alone; continuity does not add extra
single-point moment equations. Hence, continuity is not invoked and the blocking effect
has no direct representation in single-point models. However, the physical concept of
blocking does guide the development of near-wall modifications.
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The concept is that nonlocal, elliptic wall effects originate in exact kinematics; but
the practical question of how to incorporate nonlocality into single-point moment clo-
sures is somewhat elusive. Exact expressions derived from kinematics–Eqs. (7.3.10) are
an example–are unclosed because single-point statistics, such as ui ∂jp, are found to be
functions of two-point correlations. It is not possible to include the exact elliptic formu-
lations in a Reynolds stress transport model. Research in this area has sought circuitous
methods to represent wall influences. Two approaches will be described: wall-echo and
elliptic relaxation.

The need for near-wall corrections is illustrated by Figure 7.8. This shows the wall
normal component of the redistribution tensor in plane channel flow. The symbols are
DNS data and the lines are models. The IP and SSG models both grossly overpredict
℘22 near the surface. The definition (7.3.7) was used in Figure 7.8. This definition causes
℘ij to be zero at the wall. Without the redefinition of ℘, the quasi-homogeneous model
would be even more at odds with the data.

The IP and SSG models include the slow term in the form of Eq. (7.1.10). In that
form, Eq. (6.2.18), page 129, was used for the time-scale so that the Rotta slow model is

℘slow
22 = −(C1 − 1)

v2 − 2
3k

T

(recall that the definition (7.3.9) reduces C1 by 1). The time-scale (6.2.18) goes to the
finite limit 6

√
ν/ε at the wall, while k and v2 go to zero, so that the slow term vanishes

as it should when (7.3.9) is used. Note that, if only T = k/ε were used, the time-scale
would vanish and ℘22 would not correctly go to zero. Even with this, Figure 7.8 shows
that when y+ < 100 the models are sorely in need of fixing. It was seen in Figure 7.2
that the rapid and slow contributions to ℘22 are comparable for the IP model while the
slow term dominates in SSG. In general, it is the whole redistribution formula that is
in error. Let us consider this problem from the perspective that the quasi-homogeneous
approximation for redistribution has failed.

y+

℘
22+

0 100 200

0

0.05

0.10

0.15   SSG formula

  IP formula

DNS data

Figure 7.8 The SSG and IP formulas for the homogeneous redistribution model ℘h
22 in

plane channel flow with Rτ = 395. The models are erroneous near the wall; DNS data
show the correct profile.
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7.3.4.1 Wall echo

The velocity–pressure gradient correlation corresponding to (7.1.19) can be rederived for
the pressure (7.3.10a). The derivation is a matter of formal manipulation. It suffices to
state the result symbolically as

−φij = (∇2
ξ )−1

+ Sij (x
′) + (∇2

ξ )−1
− Sij (x

′),

where Sij is the source term 2 ∂i∂kujul(x) ∂lUk(x) plus its transpose, as in (7.1.19).
The notation (∇2

ξ )−1
± is used to represent the two integrations in (7.3.10a). The “+”

subscript is the integral with y − y′ in the denominator and the “−” has y + y′ in the
denominator. For the purposes of modeling, this form of φij suggests a decomposition of
the redistribution formula into a homogeneous model, plus an additive wall correction

℘ij = ℘h
ij + ℘w

ij , (7.3.11)

corresponding to the direct contribution (∇2
ξ )−1

+ and the image contribution (∇2
ξ )−1

− ,
respectively. The ℘h

ij term represents one of the models developed in Section 7.1, such
as the IP formula (7.4.2.6) (see Exercise 7.7) plus the Rotta return to isotropy (7.1.8).

The additive wall correction ℘w
ij is often referred to as the wall-echo contribution. It

is modeled as a function of the unit wall normal n̂ and of the shortest distance to the wall,
d . The wall normal is used interior to the fluid, where it is ill-defined: it is usually chosen
as the wall normal at the nearest point on the wall. With this choice, n̂ is discontinuous
at a sharp corner; it changes abruptly at a surface in the fluid, across which the nearest
point moves from one side of the corner to the other.

A simple example of a wall-echo term is the formula

℘w
ij = −Cw

1
ε

k
[ uium n̂mn̂j + ujum n̂mn̂i − 2

3umul n̂mn̂lδij ]
L

d

− Cw
2 [℘rapid

im n̂mn̂j + ℘
rapid
jm n̂mn̂i − 2

3℘
rapid
ml n̂mn̂lδij ]

L

d
(7.3.12)

proposed by Gibson and Launder (1978). Here L = k3/2/ε and the n̂i are components
of the unit wall normal vector. The factor of L/d causes this correction to vanish far
from the surface. The idea is that wall effects decay at a distance on the order of the
correlation scale of the turbulent eddies. Gibson and Launder (1978) used (7.3.12) in
conjunction with the IP model for ℘rapid. The model constants Cw

1 = 0.3 and Cw
2 = 0.18

were suggested.
The dependence on wall distance in (7.3.12) is somewhat arbitrary. The log-layer

solution k ∼ constant and ε ∼ 1/d lead to L/d ∼ constant. This means that the wall-
echo term does not vanish in the log region. It has an influence on the Reynolds stresses
up to some height in the outer portion of the boundary layer. Whether or not it is
physically correct to include wall-echo contributions in the log layer has been a matter
of debate. However, since the wall correction does play a role in the log layer, its
empirical constants can be selected to improve the agreement between the model and
measurements of uiuj . This has been done in the case of (7.3.12) and in Launder and
Shima (1989).
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If the wall normal is the x2 direction, then the rapid contribution to (7.3.12) is

℘w
22 = −4

3
Cw

2 ℘
rapid
22

L

x2

for the wall normal intensity. In shear flow parallel to the wall, energy is redistributed
from u2 into v2 so ℘

rapid
22 < 0. With ℘

rapid
22 < 0, the wall correction is negative. This is

consistent with the idea that blocking suppresses the wall normal component of intensity.
However, in a flow toward the wall, the velocity has a component V (y). On the

stagnation streamline, the mean rate of strain ∂yV will produce v2 and energy will be
redistributed out of this component: ℘

rapid
22 < 0. The above wall correction is then positive.

It therefore has the erroneous effect of enhancing the normal component of intensity (Craft
et al., 1993). Clearly (7.3.12) is not a generally suitable model of wall-echo and blocking.

The formula (7.3.12) illustrates that wall corrections are tensoral operators that act
on the Reynolds stress tensor. The n̂i dependence of these operators has to be adjusted
to properly damp each component of uiuj . Equation (7.3.12) is designed to suppress the
component of intensity normal to the wall if the flow is parallel to the wall. However,
when the flow impinges perpendicularly to the wall, it erroneously amplifies the normal
component of intensity. It is no easy matter to enforce blocking correctly. The formula
for the correction function, φw

ij , has to be readjusted in a suitable manner for each homo-
geneous redistribution model to which it is applied. For instance, we have seen that the
relative magnitudes of the rapid and slow contributions to ℘ij differ between the IP and
SSG models. This demands that wall-echo be adapted differently in each instance (Lai
and So 1990). Such complications have led to the additive wall-echo methodology being
largely abandoned by the research community.

7.3.4.2 Elliptic relaxation

Elliptic relaxation (Durbin, 1993) is a rather different approach to wall effects. It is based
on the second perspective on the pressure boundary condition, Eq. (7.3.10b). Effectively,
instead of adding a wall-echo term, the integral operator is changed. In practice, the
integrated form (7.3.10b) is not used; rather, a non-homogeneous, elliptic equation is
derived. Contact with homogeneous redistribution models, such as those described in
Section 7.1, is made via the source term in the elliptic equation. One is truly building
on the foundation developed earlier in this chapter; but the outcome can be a significant
revision to the redistribution tensor, as will be seen.

The elliptic relaxation method can be developed by a modification to the usual ratio-
nale for pressure–strain modeling. The analysis is rather informal; it is in the vein of
formulating a template for elliptic relaxation, rather than being a derivation per se.

For simplicity, write (7.3.10b) as

p(x) = 1

4π

∫ ∞∫
−∞

∫
S(x ′)

|x − x′| d3x′. (7.3.13)
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The redistribution term in the exact, unclosed second-moment closure equations includes
the velocity–pressure gradient correlation,

ui ∂jp(x) = 1

4π

∫ ∞∫
−∞

∫
ui(x) ∂jS(x ′)

|x − x′| d3x ′. (7.3.14)

When the turbulence is homogeneous, the nonlocal closure problem is masked by trans-
lational invariance of two-point statistics. The analyses for homogeneous turbulence in
Section 7.1.4 noted at this point in the derivation that ui(x) ∂jS(x ′) is a function of
x − x′ alone, so that the integral in (7.3.14) became a product of a constant fourth-order
tensor, Mijkl , and the velocity gradient, as in Eq. (7.1.19).

On the other hand, if the turbulence is not homogeneous, then (7.1.19) is not appli-
cable, and the role of non-homogeneity in (7.3.14) must be examined. This requires
a representation of the spatial correlation function in the integrand. To this end, an
exponential function will be used as a device to introduce the correlation length of the
turbulence into the formulation (Manceau et al., 1999). Assuming the representation
ui(x) ∂jS(x ′) = Qij (x

′) e−|x−x′|/L and substituting it into (7.3.14) gives

ui ∂jp(x) =
∫ ∞∫
−∞

∫
Qij (x

′)
e−|x−x ′|/L

4π |x − x′| d3x′. (7.3.15)

The function Q is simply a placemarker for a source term; interest is in the kernel of
the integral. The representation of nonlocality in this formula can be described as both
geometrical and statistical. The exponential term in the integrand is caused by statistical
decorrelation between distant eddies. The denominator is the deterministic fall-off with
distance of the pressure field of a point source:∫∫∫

Qij (x
′) e−|x−x′|/L︸ ︷︷ ︸

statistical decorrelation

/
4π |x − x′|︸ ︷︷ ︸

geometrical spreading

d3x′.

The kernel in (7.3.15) is the Green function for the modified Helmholtz equation. In
other words, if L is constant, then (7.3.15) is the solution to

∇2ui ∂jp − ui ∂jp

L2
= −Qij . (7.3.16)

Ultimately, the motivation for the elliptic relaxation method is to enable boundary condi-
tions and anisotropic wall effects to be introduced into the second-moment closure model
in a flexible and geometry-independent manner. In applications, L is not constant and
the boundaries are not plane. Formulation (7.3.16) is used, not (7.3.15).

The derivation of (7.3.16) is a justification for using the modified† Helmholtz form
of the equation

L2∇2fij − fij = −℘h
ij + εbij

k
≡ −℘

qh
ij

k
(7.3.17)

† The modified Helmholtz equation is ∇2φ − k2φ = 0; the unmodified equation has a + sign.
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to represent nonlocal wall effects in general geometries. On the right-hand side, the form
(7.3.9) is adopted for the source term. The superscript “qh” acknowledges that this is
the quasi-homogeneous model. The solution to (7.3.17) provides the non-homogeneous
model. In the above equation, fij is an intermediate variable, related to the redistribution
tensor by ℘ij = kfij . The turbulent kinetic energy, k, is used as a factor in order to enforce
the correct behavior, ℘ij → 0, at a no-slip boundary (Section 7.3.3). The anisotropic
influence of the wall on Reynolds stresses interior to the fluid arises by imposing suitable
boundary conditions on the components of the uiuj − fij system. Boundary conditions
are described in the next subsection. The wall normal now enters only into the wall
boundary condition.

The length scale in (7.3.17) is prescribed by analogy to (6.2.18) as

L = max

{
cL

k3/2

ε
, cη

(
ν3

ε

)1/4
}

. (7.3.18)

In fully turbulent flow, it has been found that Kolmogoroff scaling collapses near-wall
data quite effectively. Hence the Kolmogoroff scale is used for the lower bound in
(7.3.18). Although all implementations of elliptic relaxation to date have used these
simple formulas for L and T , they are not crucial to the approach. The only important
feature is that L and T do not vanish at no-slip surfaces. If they vanished, then the
equations would become singular.

The precise form of elliptic relaxation models can be found in Durbin (1993), Wiz-
man et al. (1996) or Pettersson and Andersson (1997). The elliptic relaxation procedure
(7.3.17) accepts a homogeneous redistribution model on its right-hand side and operates
on it with a Helmholtz type of Green function, imposing suitable wall conditions. The
net result can be a substantial alteration of the near-wall behavior from that of the origi-
nal redistribution model. Figure 7.9 illustrates how elliptic relaxation modifies the SSG
homogeneous redistribution model. The flow is plane channel flow, with a friction veloc-
ity Reynolds number of Rτ = 395. The dashed lines in this figure are the ℘

qh
ij , computed

from the original model. When the quasi-homogeneous model is used as the source term
in (7.3.17), the black solid line is obtained as solution. The circles are DNS data for the
exact redistribution term (Mansour et al., 1988). Solutions are shown for the uv, v2, and
u2 components.

The elliptic relaxation solution alters the redistribution term rather dramatically when
y+ � 80. The magnitude and sign of ℘

qh
12 are quite wrong; however, ℘12 predicted by

elliptic relaxation agrees quite well with the data. How can such a large alteration occur?
Equation (7.3.17) is linear, so its general solution can be written as a particular part,
forced by the source, plus a homogeneous part, that satisfies the boundary condition. The
particular part would tend to have the same sign as the source and could not cause the
sign reversal shown by the solution for ℘12. It is the homogeneous part of the general
solution that causes the sign of ℘12 to be opposite to ℘

qh
12 near the wall, and brings ℘12

into agreement with the DNS data.
A similar reduction in magnitude, and drastic improvement in agreement with the

data, is seen also for ℘11 and ℘22. Near the wall, the homogeneous model shows too
large transfer out of u2 and into v2 (and w2). The elliptic relaxation procedure greatly
improves agreement with the data. This includes creation of a very small negative lobe
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Figure 7.9 The effect of elliptic relaxation on the SSG formula for ℘
qh
ij . Computation

of plane channel flow with Rτ = 395: solution for ℘ij by elliptic relaxation ( );

formula for ℘
qh
ij ( ); and DNS data ( ).

near the wall in the ℘22 profile, corresponding with the data. The negative lobe is required
if v2 is to be non-negative (see (7.3.20)).

Elliptic relaxation is not a panacea, but it has intriguing properties. Other avenues
to geometry-independent near-wall modeling have been proposed. Tensorally nonlinear
representations is one such approach (Launder and Li 1994). We will not delve into
that topic.

7.3.4.3 Elliptic relaxation with Reynolds stress transport

The near-wall behavior of turbulence models must be analyzed by considering the limit
as y → 0 of the solution. The combination of elliptic relaxation with the Reynolds stress
transport equations serves to illustrate the general manner in which turbulence models
can be analyzed. Such considerations play a role in the development of closure schemes
for the near-wall region.

The complete set of closed Reynolds stress transport and redistribution equations that
have been used in most elliptic relaxation models to date are

Dtuiuj + ε
uiuj

k
= Pij + ℘ij + ∂k[νTkl

∂luiuj ] + ν∇2uiuj ,

L2∇2fij − fij = −℘h
ij

k
− bij

T
, (7.3.19)
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where ℘ij = kfij . A variety of closures, additional to IP and SSG, have been inserted
for ℘h (Pettersson and Andersson 1997).

If the turbulence is homogeneous, then fij is constant and ∇2fij = 0. Then the
solution to the second of Eqs. (7.3.19) is simply

℘ij = ℘h
ij + ε

(
uiuj

k
− 2

3δij

)
.

When this is inserted into the first of Eqs. (7.3.19), the aggregate effect is to replace
℘ij by ℘h

ij on the right-hand side and εuiuj /k by 2
3εδij on the left. This recovers the

quasi-homogeneous model far from the wall.
The mathematical motive for inserting εuiuj /k on the left-hand side of (7.3.19) is

to ensure that all components of uiuj go to zero at least as fast as k as the wall is
approached. In particular, the tangential components of uiuj are O(y2) as y → 0. The
normal component becomes O(y4) if the boundary condition

fnn = −5 lim
y→0

[
εunun

k2

]
(7.3.20)

is imposed on y = 0 (n indicates normal direction: there is no summation over n). This
condition is derived by noting that, as y → 0, the dominant balance for the normal stress
in (7.3.19) is

ε
unun

k
= ℘nn + ν ∂2

yunun.

Assuming unun ∼ y4 gives

ε
unun

k
− 12ν

unun

y2
= ℘nn = kfnn.

But k → εy2/2ν, so the left-hand side is −5 εunun/k, giving (7.3.20). (Recall that the
asymptote k → εy2/2ν follows from the limiting behavior of the k equation ε = ν ∂2

y k

upon integrating twice with the no-slip condition k = ∂yk = 0 on y = 0.) It can be shown
that all components containing the normal, fni , have the above behavior.

The dominant balance for the tangential intensity is

ε
utut

k
= ν ∂2

yutut + O(y2)

if ftt = O(1), so that ℘tt = O(y2); the viscous and dissipation terms balance to lowest
order. After substituting k/ε = y2/2ν, the above equation is found to have the solution
utut = 1

2Ay2. Here A is an arbitrary constant; it equals εtt (0)/ν. Hence the correct
asymptote utut ∼ O(y2), given in (7.3.3), is satisfied. Indeed, the term εuiui/k was
used to ensure this behavior.

The tangential components fti tj are only required to be O(1) as y → 0. Demuren
and Wilson (1995) use the condition ft1t1 = ft2t2 = −1/2fnn on the diagonalized tensor
to ensure that ℘ij is trace-free. The correct tangential boundary conditions are somewhat
of an open issue, although these usually suffice.
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7.3.4.4 The v2 –f model

Reynolds stress transport equations can add to the complexity of computing fluid flow. It is
not simply that the number of equations to be solved is increased, but coupling between
the individual equations through production and redistribution can impede numerical
convergence. Simpler models are used in most practical computations.

Elliptic relaxation adds further differential equations to be solved. A simplified variant
of the approach is desirable, and this is provided by the v2 –f model (Durbin, 1995;
Parneix, et al., 1998). The system of equations for the Reynolds stress tensor is replaced
by a transport equation for a velocity scalar v2 and an elliptic equation is introduced for
a function f . This function is analogous to a redistribution term. The objective of this
model is to retain a characterization of near-wall stress anisotropy, but to embed it in
a more computationally tractable formulation. Accurate prediction of heat transfer, skin
friction, and boundary-layer separation in turbulent flows depends crucially on anisotropy;
suppression of the normal component of turbulence relative to the tangential components
impedes heat, mass, and momentum transport. The v2 –f formulation attempts to capture
these important processes.

The equations of the model are

∂tv
2 + Uj ∂jv

2 + ε
v2

k
= kf + ∂k[νT ∂kv

2] + ν∇2v2

L2∇2f − f = −c2
P
k

+ c1

T

(
v2

k
− 2

3

)
. (7.3.21)

The source on the right-hand side of the f equation is analogous to the IP form of
closure. The constants are

c2 = 0.3 and c1 = 0.4,

which differ from the IP values for homogeneous turbulence. (Actually, the corresponding
constants in the IP model would be C2 = 3

2c2 and C1 = c1 + 1.)
The boundary condition to (7.3.21) is that of Eq. (7.3.20) for the normal component

of Reynolds stress:

f = −5 lim
y→0

[
εv2

k2

]
= −20ν2 lim

y→0

[
v2

εy4

]
(7.3.22)

on a wall, y = 0. This ensures that v2 → O(y4) as y → 0. The mean flow is computed
with the eddy viscosity

νT = cµv2T . (7.3.23)

This formula is found to agree well with the DNS curve in Figure 7.10. Comparison to
Figure 6.7 shows the advantage of working with v2 as the velocity scale.

The essential desire of this model is to represent the tendency of the wall to suppress
transport in the normal direction without resort to a full second-moment closure. Repre-
senting this physical effect eliminates the need to patch the model, or to damp the eddy
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Figure 7.10 Exact eddy viscosity ( ) compared to the v2 –f formula ( ). Both
curves were computed from the DNS channel flow data of Moser et al. (1999).

viscosity. It should be realized, however, that v2 is a scalar, not the normal component of
a tensor. The boundary condition on f just makes v2 behave like u2

n near to solid walls.
This is more explicit in a variant of v2 –f by Hanjalic et al. (2005) called the ζ –f model.
It replaces v2 by ζ ≡ v2/k, where ζ is a scalar measure of anisotropy. The operational
motive for this variation is to change the wall boundary condition to f = −2νζ/y2 in
the interest of numerical robustness.

Equations (7.3.21) require values of k and ε. They are determined by Eqs. (6.2.5) and
(6.2.6), the only revision being to replace Cε1 either by 1.4[1 + 0.045(k/v2 )1/2] or by
1.3 + 0.25/[1 + (0.15d/L)2]4 (Parneix et al., 1998). Either of these increases dissipation
near the wall and improves the predictions of k. The first formula avoids reference to
the wall distance, d . The second is a simple blending function that interpolates between
Cε1 = 1.55 as d → 0 and Cε1 = 1.3 as d → ∞. This embodies one of the fundamental
dilemmas in turbulence modeling: model constants are not physical constants. The
constant Cε1 controls the growth rate of shear layers. The value of 1.55 is obtained
from boundary-layer data; the value 1.3 agrees with mixing-layer data. Interpolation
seems the only method to produce a flexible model that can predict both attached and
free-shear layers.

7.4 Reynolds averaged computation

Closure models are ultimately meant to be used in computational fluid dynamics (CFD)
codes for the purpose of predicting mean flow fields, and possibly the Reynolds stress
components. The only information that they can provide is these low-order statistics.
Any deterministic structures in the flow, such as a Von Karman vortex street, or Görtler
vortices, must be computed as part of the flow; it is erroneous to assume that they are
represented by the turbulence closure. On the other hand, it must be assumed that any
stochastic feature of the flow is represented on a statistical level by the closure.

Random eddying motion cannot be computed correctly if a full Reynolds averaged
closure is being used. When the complete randomness is computed, no model is used:
this is called direct numerical simulation (DNS). A properly resolved DNS is an exact,
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albeit numerical, solution to the Navier–Stokes equations; it is quite analogous to a
laboratory experiment. Turbulence simulation is the topic of Chapter IV. We mention it
in advance to avoid confusion between Reynolds averaged CFD (referred to as RANS)
and turbulence simulation.

Even though flows that are not statistically stationary may require a time-dependent
RANS computation, that is not synonymous with large eddy simulation (LES). The
output from a RANS computation is the mean flow, with no averaging needed. The
output from DNS or LES is a random field that must be ensemble-averaged. The average
flow calculated by DNS can be used as data to test RANS models. Examples of this have
already been seen; further examples occur below in Section 7.4.2.

Standard discretization methods (finite-difference, finite-volume, or finite-element)
can be applied to turbulent transport equations, such as those for k, ε, or uiuj . Techniques
of computational fluid dynamics are addressed in texts on the subject (Fletcher, 1991;
Tannehill et al., 1997). Those references should be consulted on matters of numerical
analysis. The following is a brief mention of a few peculiarities that might lie outside
the scope of many CFD books.

7.4.1 Numerical issues

Virtually all practical engineering computations are done with some variety of eddy
viscosity formulation (Chapter 6). Second-moment closures (Chapter 7) promise greater
fidelity to turbulence physics, provided that the closure retains the virtues of the Reynolds
stress transport equations. However, the computational difficulties they present are man-
ifold. The absence of numerically stabilizing eddy viscous terms in the mean flow
equations, the strong coupling between Reynolds stress components via production and
redistribution, the increased number of equations, and other computationally adverse
properties lead to slow, tenuous convergence. Special methods to overcome this have
been explored; the work of Lien and Leschziner (1994, 1996a) provides many sugges-
tions. Productive research in this area continues, and increasingly complex flows are
being broached.

By contrast, eddy viscosities, as a rule, assist convergence. How else could steady
solutions to the Navier–Stokes equations be obtained at Reynolds numbers in the mil-
lions? The tendency for the flow equations to develop chaotic solutions is overcome by the
enhanced viscous dissipation; or actually, by the transfer of mean flow energy to turbu-
lent velocity variance. The eddy viscosity provides an explicit statement of the enhanced
dissipation. It can be incorporated in the numerics so as to improve convergence; for
instance, it might enhance diagonal dominance of a spatial discretization scheme.

The precise method of implementing transport equations for turbulence variables
into a RANS computer code is a function of the numerical algorithm. Some general
observations can be made that are relevant in many cases. However, it is especially true
of second-moment closures that no hard-and-fast rules exist. Sometimes the numerical
techniques are recipes that often, but not always, assist convergence.

It is common practice to decouple the turbulence model solver from the mean flow
solver. The only communication from the model might be an eddy viscosity that is passed
to the mean flow. The mean flow solver would then compute the Navier–Stokes equations
with variable viscosity. Most applied CFD codes incorporate a selection of more than
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one eddy viscosity scheme; isolating the model solution from the mean flow solution
simplifies the implementation of the various models.

It is not just the plethora of models that motivates a segregated solution. As a rule, tur-
bulence models are solved more readily with implicit numerical schemes, while explicit
schemes are sometimes preferred for the mean flow (Turner and Jenions, 1993). A case
in point is provided by the Spalart–Allmaras (SA) model (Spalart and Allmaras, 1992):
explicit methods (Tannehill et al., 1997) are popular for compressible aerodynamic flows;
the SA eddy viscosity transport model (Section 6.6) is also popular for compressible aero-
dynamics; unfortunately, there has been little success solving SA with explicit schemes.
On the other hand, the SA equations are readily integrated with alternating direction
implicit (ADI) or other implicit methods.

It has been argued that first-order, upwind discretization of the convective deriva-
tive is acceptable for the turbulence variables. This is not acceptable for the mean flow
because of the excessive numerical diffusion. But, it is argued, the turbulence equations
are dominated by source and sink terms, so inaccuracies in the convection term are quan-
titatively small. In most cases, that line of reasoning has been verified: solutions with
first-order and with higher-order convection are quite close to one another. However,
where production is small, or changes are rapid, local inaccuracies exist. A standard
strategy is first to compute a preliminary solution with first-order convection, then recon-
verge it with higher-order accuracy. This is often effective because many turbulence
models are computationally stiff. The low-order computation generates a solution close
to the higher-order solution. Starting from the preliminary solution makes convergence
to the more accurate solution easier. In the same vein, an eddy viscosity solution is
sometimes used to initiate a second-moment computation.

A general rule of thumb for discretization is to make dissipation implicit and produc-
tion explicit. To see why, consider the simple equation

dt k = −+ k

T
.

The “−” sign corresponds to dissipation and the “+” sign to production. A finite-
difference approximation is (kn+1 − kn)/�t = −+kn[+1]/T . The notation [+1] in the
exponent represents an optional choice of whether to evaluate at n + 1 or at n. In the
former case, the right-hand side is “implicit.” In the latter case, it is “explicit.” With
the implicit choice,

kn+1 = kn

(1 ± �t/T )
.

In the dissipative case, the factor in the denominator is 1 + �t/T , which cannot be 0; the
time step can be large without worry of a singularity. In an implicit spatial discretization,
this treatment of dissipation adds to diagonal dominance.

But, for the case of production, the denominator is 1 − �t/T , which can run into
difficulty. The explicit case uses (kn+1 − kn)/�t = −+kn/T , so that

kn+1 = kn(1−+�t/T ).

For production, the factor on the right is 1 + �t/T , which cannot become negative; the
finite-difference approximation cannot inadvertently change production into dissipation.
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With both production and dissipation,

dt k = k

Tp
− k

Td
,

the rule that production is explicit and dissipation implicit gives the finite-difference
formula (kn+1 − kn)/�t = kn/Tp − kn+1/Td. Solving for kn+1:

kn+1 = kn 1 + �t/Tp

1 + �t/Td
.

This rule of thumb generalizes to the evolution equation for any variable φ, where φ

would be k in the k equation, or uiuj in a Reynolds stress equation. In order to distinguish
the implicit and explicit parts, the source term is arranged into the form A − Bφ, where
A,B > 0; that is, the evolution equation is put into the form

Dtφ = A − Bφ + · · · ,

where A and B can be functions of the dependent variables. The rule of thumb for treating
dissipation and production is implemented by updating the source term as An − Bnφn+1.
However, the splitting between the explicit contribution A and the implicit contribution
Bφ is not unique. As an example of the leeway, consider the right-hand side of the
k equation: P − ε might be rewritten P − (ε/k)k, for which A = P and B = ε/k. The
update is then P n − |εn/kn|kn+1; the absolute value is a good idea in case k or ε becomes
negative in the course of iterations. Lien and Leschziner (1994) discuss the treatment of
source terms in second-moment closures.

Numerical stiffness is often encountered when solving transport models for uiuj . The
root cause is the functional coupling between the Reynolds stress components introduced
by the production and redistribution tensors. For example, the evolution equation for uv

contains v2 ∂yU in the production term and the equation for v2 contains uv ∂yU in the
redistribution term. When uv and v2 are solved separately – often called a segregated
numerical solution – justice is not done to this intimate coupling. On occasion it has been
proposed to solve the full set of components simultaneously, as a coupled system. How-
ever, no general scheme has been offered for robustly solving Reynolds stress transport
equations.

The Reynolds stress appears as a body force if it is treated explicitly in the mean flow
equation (3.2.2). But the Reynolds stress is inherently a diffusive term that should provide
numerical stability. To recover the diffusive property, eddy diffusion can be subtracted
from both sides of the mean flow equation, treating it implicitly on one side and explicitly
on the other, as in

∂tUi + Uj ∂jUi − ∂j [νT(∂jUi + ∂iUj )]
(n+1)

= − 1

ρ
∂iP + ν∇2Ui − ∂jujui

(n) − ∂j [νT(∂jUi + ∂iUj )]
(n). (7.4.1)

The superscripts on the underlined terms denote the level of iteration. Lien and Leschziner
(1996a) argue that the eddy viscosity should be chosen by formal approximation to the
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Reynolds stress transport equations. This requires that it be a matrix, νT. The rationale
is that the procedure (7.4.1) will be the most effective if

∇ · uu + ∇ · (2νT · S − 2
3kI )

is made small. In practice, simply using the k–ε formula (6.2.2) for νT in Eq. (7.4.1)
adds greatly to the ease of convergence.

Boundary conditions can be problematic, especially with elliptic relaxation methods.
The appearance of y4 in the boundary condition (7.3.22) is a source of computational
stiffness. It is ameliorated if the v2 and f equations are solved as a coupled system
so that the boundary condition can be treated implicitly. In an iterative scheme, this
means that

f (n)(0) = −20ν2 lim
y→0

[
v2

(n)
(y)/εy4

]
is used on the nth iteration to update f and v2 simultaneously. The same can be done
when the k–ε model is integrated to a no-slip wall: then

ε(n)(0) = 2ν lim
y→0

[
k(n)(y)/y2]

is used on the nth iteration. A ratio evaluated at the first computational point from the
wall is substituted for the limit on the left-hand sides of these equations: lim[k(y)/y2] is
replaced by k(y1)/y

2
1 .

Another approach is to modify the model. The modified ε equation (6.2.21), page 131,
satisfies ε̃(0) = 0. A modified v2 –f model (Lien et al., 1997) has also been developed to
convert the boundary condition to f (0) = 0, and the ζ –f model is similarly motivated
by the boundary condition.

The singular boundary condition to the k–ω model (Section 6.1.3) is

ω(0) = lim
y→0

[6ν/(Cω2y
2)].

Wilcox (1993) suggests specifying this as the solution for the first few grid points. Menter
(1994) recommends using ω = 10[6ν/(Cω2y

2
1 )] as the boundary value. The factor of 10

is arbitrary, but he states that the results are not sensitive to the precise value.
Frequently, boundary conditions are a source of numerical stiffness. They require

attention, but are a surmountable obstacle.

7.4.2 Examples of Reynolds averaged computation

The examples in this section are relatively simple cases of RANS computation. The
experimental and DNS data cited have been used in the literature to test models. The
criteria for a good test case is that it consists of reproducible, accurately measured data, in
a well-defined geometrical configuration, with well-defined inlet and boundary conditions.
Generally the configuration is selected to highlight a phenomenon that has bearing on a
wide range of practical applications. Examples are effects of wall curvature, favorable
and adverse pressure gradients, and separation.
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The criterion of well-defined inlet conditions is usually met by establishing a fully
developed flow upstream of the test section. This might be a fully developed boundary-
layer or channel flow. Variables like ε or ω that arise in turbulence models are difficult,
if not impossible, to measure accurately. A fully developed inlet obviates the need for
such data. One simply solves the model itself to provide inflow profiles for use in the
computation. An example of this has already been seen in Figure 7.6. The flat-plate
boundary layer upstream of the convex wall was fully developed, with Rθ = 4200. A
separate computation of this boundary layer preceded the calculation of flow round the
convex bend.

The following examples are presented to illustrate the process of assessing models.
No attempt is made to review the performance of the wide variety of models available in
the literature. The reader can consult that literature for information on the merits of any
particular model. We will, however, make a few general observations on the predictions
of different types of turbulence models.

7.4.2.1 Plane diffuser

The flow in an asymmetric plane diffuser provides an example of separation from a
smooth wall. The data of Obi et al. (1993) are an attractive test case. These data were
reproduced and extended by Buice and Eaton (1997). Therefore, they meet the criterion
of reproducibility. The inlet is a fully developed channel flow with a Reynolds number of
104, based on centerline velocity and channel half-height. Figure 7.11 shows the geometry,
along with computed streamlines. The dashed curve delimits a region of reversed flow.
The streamlines were computed with the v2 –f model, which predicts the same extent of
separation as seen in the experiments.
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Figure 7.11 Flow in a plane asymmetric diffuser. The inlet duct height Reynolds number
is 2 × 104 and the expansion ratio is 4.7 : 1. Skin friction is plotted above, and U is
contoured below. The dotted line demarcates a region of negative U .
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The upper portion of Figure 7.11 contains skin friction predictions by various models,
along with the experimental data of Buice and Eaton (1997). The critical feature is the
region in which Cf < 0. The start of this separated zone is near x/H = 7 and it terminates
near x/H = 30. The predictions illustrate a general property of second-moment closures:
they underpredict backflow in separated regions and sometimes fail to predict separation
when it should occur. The IP curve has only a tiny extent of negative Cf at the bottom of
the ramp. The SSG model performs better than IP, as is generally the case. However, the
IP model is less stiff computationally–although omitting the nonlinear slow term (Cn

1 in
Eq. (7.1.9)) from the SSG model improves its computability. Both the IP and SSG quasi-
homogeneous models were solved with elliptic relaxation. Similar predictions would
be obtained with wall functions, although the tendency to separate would be reduced
even further.

It was found by Obi et al. (1993) that the k–ε model failed to predict separation when
solved with wall functions. It is generally observed that wall functions tend to underpredict
separation. The two-layer formulation (Section 6.2.2.2) has been found to be more accu-
rate than wall functions in many tests (Rodi, 1991), so only it is included in Figure 7.11.
Separation is indeed predicted correctly, although reattachment is premature–that is,
Cf crosses zero from above at the right location, but rises and crosses from below
too early.

The v2 –f model (Eqs. (7.3.21)) shows good agreement with the data. This stems
from using v2 to represent transport normal to the surface. It should be recalled that
v2 in this model is not the y component of intensity; it is a velocity scale that is
meant to behave like the normal component near the wall, whatever Cartesian direction
that may be.

7.4.2.2 Backward-facing step

A standard example of massively separated flow is provided by the backward-facing step.
It combines boundary-layer flow with a fully detached mixing layer in the lee of the step.
Many experiments have been done on this flow. We choose the Driver and Seegmiller
(1985) dataset as representative. It has a fully developed boundary layer at the inlet, atop
the step. The inlet momentum thickness Reynolds number is Rθ = 5000. The step-height
Reynolds number is RH = 37 500 and the expansion ratio is 9 : 8. The expansion ratio
is the height of the flow domain downstream of the step divided by that upstream of
it. Figure 7.12 illustrates the flow via computed streamlines. The dotted lines show the
separated zone, which extends six step heights downstream of the base of the step. This is
a typical extent for the separated zone behind a two-dimensional high Reynolds number
backstep (10 step heights would be a typical reattachment length for a step inside an
axisymmetric duct).

The predictions of skin friction downstream of the step show how second-moment
closures tend not to fare well in grossly separated flow. The IP and SSG models both
underpredict the magnitude of Cf in the region where Cf < 0. The skin friction also does
not rise sufficiently steeply after its minimum.

The low Reynolds number k–ε computation is representative of that class of models
(see Eq. (6.2.20) and following text); the particular computation was made with a variant
of the Launder and Sharma (1974) formulation. While the reattachment point, where
Cf crosses zero from below, is approximately at the correct location of x/H = 6, the
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Figure 7.12 Flow over a backward-facing step, RH = 35 700: (top) streamlines and
(bottom) skin friction on the wall downstream of the step for SSG, IP, low Reynolds
number k–ε, and v2 –f models.

magnitude of the minimum Cf is overpredicted, and the recovery when x/H > 6 is too
rapid. As noted previously, the two-layer formulation is a more effective near-wall patch
on the standard k–ε model. It is in rather good accord with the data. The v2 –f prediction
is similar to the two-layer k–ε result.

The velocity profiles at the top of Figure 7.13 were computed with the SSG model,
but they evidence a failure common to all current closures. Downstream of reattachment,
the experimental velocity profile is observed to fill out more rapidly than predicted.
Even models that predict the correct rate of recovery of the skin friction predict a too
slow recovery of the velocity profile. Recovery prediction is an unresolved problem
in turbulence modeling. (There is one case in which models tend to predict velocity
profiles correctly, that is, a low Reynolds number backstep with RH = 5000. We have
intentionally chosen a more representative, high Reynolds number case, even though a
DNS database is available for the low Reynolds number.)

Predictions of u2 in the lower part of Figure 7.13 are in reasonable agreement with
experimental data, except for the profile in the backflow region, at x/H = 4. Even the
last profile, at x/H = 15, has not recovered to the fully developed flat-plate form of
Figure 6.5, page 126. The latter form has a sharp peak near the wall, with no maximum
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Figure 7.13 Flow over a backward-facing step, continued: (top) U component of veloc-
ity and (bottom) u2 component of turbulence for the SSG model. Data of Driver and
Seegmiller (1985).

away from the surface. The maximum away from the wall, that is seen in Figure 7.13,
is a residue of the mixing layer that detaches from the upstream step. Even though the
mean flow has reattached at x/H = 6, the turbulent intensity profiles have the appear-
ance of a detached mixing layer well beyond that point. This is a nice example of
disequilibrium.

7.4.2.3 Vortex shedding by unsteady RANS

Unsteady flows occur in turbomachinery, in stirring tanks, and behind bluff bodies, to
name a few examples. A proper treatment of such flows requires a time-dependent com-
putation. The terminology “unsteady RANS” has evolved. This is not a new topic in
modeling. The model equations were developed with a convective derivative; an unsteady
RANS computation simply requires including the time derivative in the computation. Of
course, this is not to say that non-equilibrium effects are not an issue in modeling; but,
to date, no special features of temporal unsteadiness have arisen.
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Figure 7.14 Schematic spectrum of turbulence with coherent, periodic unsteadiness.

One can understand the role of the turbulence model by considering the energy spec-
trum in Figure 7.14. The sharp peak is produced by coherent, periodic vortex shedding.
The broadband spectrum is caused by background turbulence. The turbulence closure
model represents the broadband component; it does not model the sharp peak. An unsteady
RANS computation contains periodic energy at this frequency, as suggested by the dashed
line labelled “unsteady RANS” in the figure. This contribution to the unsteady energy is
computed explicitly as part of the mean flow.

Vorticity contours in the flow around a triangular cylinder inside a channel were
portrayed in Figure 5.12, page 102. These are instantaneous mean flow vortices created
by periodic shedding. Time-averaged velocity contours for that same case are shown
in Figure 7.15(a). This is a composite view, showing the time average of an unsteady,
periodic solution in the upper half, versus a steady computation of the same flow in the
lower half. (The steady solution can be computed by imposing top–bottom symmetry
in order to suppress vortex shedding.) Clearly the time average of the solution with
vortex shedding is quite different from a steady solution. To capture the correct flow
field, it is necessary to include deterministic shedding in the computation and only use
the turbulence model to represent statistics of the irregular component of motion. In an
experiment, the averaging can be along the span, or over measurements at a fixed phase
of oscillation; time averaging is not equivalent to statistical averaging in this case because
the flow is not statistically stationary.

Figure 7.15(c) shows experimental data measured on the centerline behind the trian-
gle. The data are time-averaged, mean velocities. The time-averaged, computed velocity
is displayed by the solid line. Its agreement with the data is far better than the steady
computation, shown by a dashed line. Figure 7.15(a) shows that in the unsteady RANS
computation vortex shedding causes the wake to fill in quite rapidly–an effect not cap-
tured by the steady RANS computation. The wake profiles in Figure 7.15(b) also are
time averages of the unsteady computation.

Looking back at Figure 5.12 on page 102, it can be seen that the vortex street decays
shortly downstream of the cylinder, in marked contrast to laminar vortex shedding, where
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Figure 7.15 Vortex shedding from a triangular cylinder. (a) Composite showing time-
average contours of U in the upper half, versus a steady solution in the lower half.
The dashed lines indicate negative velocity. (b) Time-averaged velocity profiles in the
wake. (c) Velocity along centerline: time average ( ) and steady computation ( )
Reprinted from International Journal of Heat and Fluid Flow , Vol 24, G. Iaccarino,
A. Ooi, P. A. Durbin, M. Behnia, ‘Reynolds averaged simulation of unsteady separated
flow’, 147–156. Copyright 2003, with permission from Elsevier.

the vortices persist for quite a distance. Turbulence increases the rate at which the vortices
dissipate. To predict this flow correctly, both the unsteady mean flow and the turbulence
model are required.

Similar unsteadiness of the ensemble-averaged flow can occur in three-dimensional
geometries. For example, a cube mounted on a flat wall sheds arch vortices. The legs
of the arch oscillate periodically so that streamlines in a plane near the wall have the
appearance of vortex shedding. The view in Figure 7.16 is looking down on the cube.
A periodic, oscillatory pattern is seen on the downstream side. The two foci are created
by the legs of vortices that arch over the height of the cube. Vortex legs shed from
alternative sides in the course of one period. The vortices dissipate more rapidly than
in a two-dimensional vortex street, so that they are not noticeable beyond a few cube
diameters downstream.

Again, the time average of the unsteady RANS computation differs from the steady
RANS computation. The two are compared in Figure 7.17. The unsteady case has
a shorter recirculation region behind the cube. The oscillatory arch vortices enhance
mixing, causing the wake to fill more rapidly. Experimental data are closely similar to the
unsteady case.
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Figure 7.16 Surface stress lines at four instants in flow over a surface-mounted cube.
Reprinted from International Journal of Heat and Fluid Flow , Vol 24, G. Iaccarino,
A. Ooi, P. A. Durbin, M. Behnia, ‘Reynolds averaged simulation of unsteady separated
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Figure 7.17 Streamlines in the central plane of flow over a surface-mounted cube: (top)
steady computation, (bottom) unsteady computation. From Iaccarino et al. (2003).

A necklace vortex wraps around the front of the cube. Its influence is visible in both
of Figures 7.16 and 7.17. In the latter, it appears as a small recirculating region at the
base of the cube.

7.4.2.4 Jet impingement

Jet impingement heating and cooling is used in many engineering and industrial applica-
tions. It also serves as a prototype for stagnating flows as a class. In most applications, a
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( ). Right: contours of k as obtained from v2 –f (top) and low Reynolds number k–ε
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jet of gas or liquid is directed toward a target area, as at the upper right of Figure 7.18.
This is a radial section through an axisymmetric jet. The full flow field can be visualized
by rotating this view 360◦ about the centerline. As the jet exits the pipe, it begins to
spread and to entrain ambient fluid (Section 4.3). This draws a flow through the upper
boundary, as labelled on the figure. In the computation, this boundary was maintained at
constant pressure and the entrainment velocity was allowed to adapt.

Impinging jets have several features that make them a good vehicle for evaluation of
turbulence models. In the impingement region, the mean flow is nearly perpendicular to
the surface; it then turns and follows the surface to form a wall jet. Adjacent to the wall,
there are thin stagnation point and wall jet boundary layers on the target plate. Large
total strains occur near the stagnation streamline.

In the experiment of Cooper et al. (1993), the jet issues from a fully developed pipe
flow at Reynolds number 23 000 based on diameter. It is situated two diameters above
the plate. Mean flow profiles at several radii are plotted at the lower right of Figure 7.18.
The data are the magnitude of the mean velocity; the curves are the same, computed with
the v2 –f model (Behnia et al., 1998). On the stagnation line, r = 0, the mean velocity
is in the −y direction. Therefore, the leftmost profile shows how the component normal
to the wall is blocked by the surface. The other profiles show how a wall jet develops
and spreads along the surface. The turbulence model is quite able to predict the flow
evolution; but some qualification is in order. The entire flow field, including the wall
jet, is axisymmetric. When the wall jet issues from an orifice tangential to the surface,
the jet will be three-dimensional, spreading at different rates in directions normal and
tangential to the wall. The ratio of tangential to normal spreading is measured to be about
5 (Launder and Rodi, 1989). Turbulence models, as a whole, significantly underpredict
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this ratio. Wall jets and impingement continue to challenge models, despite the impressive
predictive ability often demonstrated.

We have already mentioned the difficulties experienced by otherwise acceptable clo-
sure models when they are applied to impingement flow. Sections 6.4 and 7.3.4 cite
the stagnation-point anomaly of two-equation models and of wall-echo corrections. The
present example of an impinging round jet was studied by Craft et al. (1993), who showed
these faults in k–ε and SMC models. The tendency is toward spuriously high turbulent
kinetic energy and excessive eddy viscosity in the vicinity of the stagnation point. With-
out correcting this anomaly, the predicted profiles at the lower left of Figure 7.18 would
spread more quickly into the free stream than the data. The lower contour plot at the
right of Figure 7.18 was produced with a low Reynolds number k–ε model. The large
maximum of k at the stagnation point is erroneous. The potential core of the incident
jet carries a low level of turbulence; it should not become a maximum near the wall.
Instead, the turbulence in the shear layers should be amplified by streamline convergence
at the side of the jet, as in the upper right contour plot–this is the turbulence field of
the computation shown in the left portion of the figures. Erroneous predictions caused
by the stagnation-point anomaly are displayed in Behnia et al., (1998). Evidence is that
the anomaly can be corrected, but the reader is warned of its potential harm.

7.4.2.5 Square duct

Secondary currents in the plane perpendicular to the primary flow direction are fre-
quently encountered in geophysical and engineering flows. This secondary mean fluid
motion is created and maintained by two fundamentally different mechanisms: (i) trans-
verse pressure gradients, or inertial forces such as the Coriolis acceleration, can cause
quasi-inviscid deflection of the flow; and (ii) turbulence anisotropy can generate a new
component of the mean motion. Prandtl formally separated instances of these mecha-
nisms into two categories that are known as secondary motions of Prandtl’s first and
second kind, respectively. The latter, which can only exist in turbulent flows, are in gen-
eral associated with a substantially weaker secondary motion than the former, which can
exist in laminar or turbulent flow. Secondary flow of the second kind may, nevertheless,
substantially alter characteristics of the flow field; an example is provided by turbulent
flows inside non-circular ducts. From a turbulence modeling perspective, secondary flow
prediction constitutes a demanding test. A delicate imbalance between gradients of the
Reynolds stress components is responsible for generating secondary flow. This imbalance
has to be accurately predicted.

The velocity vectors depicted in Figure 7.19 are an example of secondary flow of the
second kind. The primary flow is along the x axis. Flow in the y − z plane would not be
present under laminar conditions. It can be attributed to streamwise vorticity generated
by turbulent stresses. To see its origin, consider the transport equation of streamwise
mean vorticity:

V ∂y�x + W ∂z�x = ν(∂2
y�x + ∂2

z �x) + ∂y∂z( v2 − w2) − ∂2
y vw + ∂2

z vw, (7.4.2)

where �x = ∂yW − ∂zV . In laminar flow, the Reynolds stresses are absent and the solu-
tion is �x = 0. In turbulent flow, the three last terms become sources of mean streamwise
vorticity: the first involves normal stress anisotropy; the second and third involve the
secondary Reynolds shear stress–the component vw is secondary in the sense that the
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Figure 7.19 Fully developed flow in a straight square duct at Rτ ≡ 2hu∗/ν = 600. The
vectors show the secondary mean flow field.

primary shear stress is uv. Normal stress anisotropy, v2 �= w2, has traditionally been
recognized as driving the streamwise vorticity. However, evidence from numerical sim-
ulations is that the shear stress contributions may dominate the net source term. This
highlights the complexity of the flow field: the vw shear stress component would be zero
if the mean secondary flow field were not present, yet it dominates and maintains the
secondary motion once it is created.

The flow pattern of Figure 7.19 displays the characteristic eight-fold symmetry about
the two wall mid-planes and the corner bisectors, seen in fully developed flow inside
a square duct. The computation was performed with the SSG model with the elliptic
relaxation treatment (Section 7.3.4) of the near-wall region. Elliptic relaxation enables
a full SMC to be integrated all the way to the wall in this complex flow. Figure 7.20
compares model predictions to DNS data. The agreement of the primary mean velocity
and Reynolds stresses to data is generally good. The discrepancy most noted by Pet-
tersson Reif and Andersson (1999) is that the strength of the weak secondary flow was
underpredicted, a fault traced back to deficient prediction of the secondary shear stress
component, vw.

7.4.2.6 Rotating shear flow

Flows in rotating frames of reference are encountered in a variety of applications, includ-
ing turbomachinery and geophysics. When the momentum equations are transformed to a
rotating frame of reference, a Coriolis acceleration, 2�F ∧ U , is added (see Eq. (8.1.2)).
Here �F is the frame rotation vector. One half of the Coriolis acceleration comes from
transforming the time derivative from the inertial frame to the rotating system; the other
half comes from rotation of the velocity components relative to the inertial frame. When
the Reynolds stress transport equations are similarly transformed, as in Eq. (8.3.4) on
page 228, the rotation adds the term −�F

l (εiklukuj + εjklukui) to the time derivative, and
subtracts the same term from the production tensor, by the same reasoning. It is impor-
tant to distinguish these two contributions, because the production tensor often appears in
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Figure 7.20 Fully developed flow in a straight square duct at Rτ ≡ 2hu∗/ν =
600. Lines are SSG model with elliptic relaxation; symbols are DNS (Huser and
Biringen 1993).

closure models: only the contribution of rotation to the production tensor should be added
to the closure formula. If this is not done correctly, the equations will not be coordinate
frame-independent. In the case of Eq. (8.3.4), the correct accounting is accomplished by
introducing the absolute vorticity, �A, into the production term and into the redistribution
model, while adding one half of the Coriolis acceleration explicitly to the time derivative.

The Coriolis acceleration can profoundly affect turbulent flows. These effects are
traditionally investigated by studying parallel shear flows subjected to orthogonal mode
rotation; in other words, flows where the axis of rotation is either parallel or antiparallel to
the mean flow vorticity. Depending on the magnitude and orientation of the rotation vector
(�F) relative to the mean flow vorticity (ω = ∇ ∧ U ), turbulence can be augmented or
reduced: the turbulence is usually suppressed if the rotation vector and the vorticity vector
are parallel, and enhanced if they are antiparallel. However, a large rate of antiparallel
rotation can suppress turbulence.

To elucidate the predominant dynamic processes associated with imposed rotation,
consider the exact Reynolds stress generation terms due to mean shear (Pij ) and due to
system rotation (Rij ),

Pij + Rij = −uiuk ∂kUj − ujuk ∂kUi + 2�F(εik3 ukuj + εjk3 ukui).

In parallel shear flow, rotating about the spanwise, z, axis,

P12 + R12 = −v2 dU/dy − 2�F( u2 − v2) (7.4.3)

and

P = −uv dU/dy
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represent the local generation of turbulent shear stress and of kinetic energy, respectively.
Note that the latter does not directly depend on the imposed frame rotation. We will
consider the case where dU/dy > 0; recall that the corresponding vorticity, ωz = −∂yU ,
is negative.

Consider a positive imposed angular velocity, �F > 0. Usually uv is negative in
parallel shear flow. According to Eq. (7.4.3), frame rotation will further decrease uv if
u2 >v2. Hence, positive rotation increases the magnitude of the shear stress. Negative
rotation has the opposite effect. These are consistent with the conception that rotation in
the same direction as the mean vorticity will suppress turbulence.

However, sufficiently strong positive rotation can drive u2 toward v2. The difference
between the production of u2 and the production of v2 is

P11 + R11 − R22 = −2uv(dU/dy − 4�F). (7.4.4)

A reduction of the normal stress anisotropy can be expected if this becomes negative. If
uv < 0, then, when �F < 1

4 dU/dy, normal stress anisotropy will begin to decrease, inso-
far as Eq. (7.4.4) is concerned. The rotation number‡ is defined by Ro = −2�F/(dU/dy).
Often Ro < 0 is referred to as the anticyclonic, and Ro > 0 as the cyclonic, direction of
rotation. The previous criterion becomes Ro < − 1

2 . Suppression of anisotropy by strong
anticyclonic rotation, in turn, reduces the rate of production of −uv, and can ultimately
lead to reduction of kinetic energy. In fact, linear theory suggests that the turbulence
intensity will be suppressed by rotation if Ro < −1. Hence, even when the rotation
vector is antiparallel to the background mean vorticity (Ro < 0), the turbulence is not
expected always to be enhanced.

Plane Poiseuille flow Highly simplified flows are attractive because the predictive capa-
bility of a closure model can be accurately assessed. In trivial geometries, the mean flow
might respond solely via alterations to the turbulence field. Thereby, the pure turbulence
effects are isolated.

Fully developed turbulent flow between two infinite parallel planes in orthogonal
mode rotation constitutes one example of a trivial geometry. DNS databases are available
to assist the model development. These data have contributed to making this particu-
lar flow a standard benchmark test case. The most frequently adopted configuration is
pressure-driven, Poiseuille flow, illustrated by Figure 7.21(a). Note that the y axis points
downward; y/h = 1 in Figure 7.22 is the lower side of the channel.

Figure 7.22 displays model predictions of unidirectional, fully developed, rotating
Poiseuille flow: U = [U(y), 0, 0] and �F = [0, 0,�]. In the figure, the rotation number
is defined as Ro ≡ 2�h/Ub, where the bulk velocity is

Ub = 1

2h

∫ h

−h

U(y) dy.

The transport of mean momentum is governed by

0 = −∂xP
∗ + ∂y(ν ∂yU − uv),

0 = −∂yP
∗ − 2�U − ∂yv2, (7.4.5)

‡ The Rossby number, defined as 1/Ro, is frequently used in geophysical flows; the rotation number is
mostly used in engineering flows.
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Figure 7.22 Spanwise rotating Poiseuille flow at Rτ ≡ u∗h/ν = 194: curves, second-
moment closure; symbols, DNS (Kristoffersen and Andersson, 1993).

where P ∗ = P − 1
2�2(x2 + y2) is the mean reduced pressure. The Coriolis force does

not directly affect the mean velocity; it is balanced by the gradients of the pressure and
the wall normal turbulent stress through the second of Eqs. (7.4.5). Nevertheless, the
imposed rotation breaks the symmetry of the mean flow field, as seen in Figure 7.22.
How does this occur? The asymmetry would not be seen in laminar flow; it is an example
of Prandtl’s “secondary flow of the second kind.” Rotation alters the profile of uv, as seen
at the right of Figure 7.22. It thereby induces asymmetry into the U(y) profile. Because
the mean flow vorticity changes sign across the channel, the flow field is simultaneously
subjected to both cyclonic and anticyclonic rotation; it is cyclonic on the lower side
and anticyclonic on the upper. Cyclonic rotation suppresses the turbulence, causing the
asymmetry.

The model predictions exhibit many of the effects of Coriolis acceleration upon the
mean flow field. An almost irrotational core region, where dU/dy ≈ 2�, is seen at
Ro = 0.5; and the steeper mean flow profile near y/h = −1 than near y/h = 1 is cor-
rectly predicted. The mean flow is asymmetric because turbulence mixes high-speed fluid
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from the central region toward the wall, maintaining a steep gradient on the turbulent
side. The stable side profile is less steep, but the velocity is higher. The same pressure
gradient is imposed on both sides of the channel, but the laminar side has lower resis-
tance, and this permits the higher flow rate. The stable side has essentially laminarized
when Ro = 0.5, as seen in the Reynolds shear stress plots of Figure 7.22.

From a practical standpoint, Poiseuille flow may overemphasize the impact of rotation-
ally modified Reynolds stresses. In non-trivial geometries, imposed rotation can directly
alter the mean flow field; for instance, if the walls of the channel are not parallel, Coriolis
accelerations alter the mean velocity. It may be possible to predict this first-order response
with a turbulence model that is not correctly sensitive to rotation. However, the Coriolis
acceleration does change the turbulence field, as just described, and this contributes to
the mean flow prediction as well.

Plane Couette flow Plane turbulent Couette flow subjected to spanwise rotation is rather
interesting. In contrast to pressure-driven channel flow, the flow field in Figure 7.21(b)
is exposed entirely to cyclonic or anticyclonic rotation, depending on the sign of �,
because of the antisymmetric mean velocity profile. Figure 7.23 shows the predicted
secondary flow in a cross-plane of the channel. The intriguing feature of this case is
that rotationally induced streamwise vortices span the channel in this flow. The counter-
rotating cells shown by the velocity vectors in Figure 7.23 are repeated across the span
of the flow. Figure 7.23 was computed with left–right periodic boundary conditions. A
wider domain would contain further cells, their width remaining approximately equal
to the channel height. The predicted magnitude of the secondary flow at Ro = 0.1 is
approximately 20% of the mean streamwise bulk velocity.

Turbulence models account only for the random component of the flow. Accurate
predictions require that the deterministic roll cells be calculated explicitly. Therefore,
the secondary flow was solved as an integral part of a two-dimensional, three-component
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Figure 7.23 Spanwise rotating plane Couette flow at Re ≡ Uwh/ν = 2600, Ro ≡
2�h/Uw = 0.1: arrow vectors, secondary flow field in a plane perpendicular to the
streamwise direction; contours, streamwise mean velocity; right, mean streamwise
component.
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flow field, U = [U(y, z), V (y, z), W(y, z)]. The turbulence model is then left to represent
nothing but real turbulence. The mean flow predicted by this approach agrees quite well
with the data (Figure 7.23). Without resolving the vortices, the predictions would be
less accurate.

Exercises

Exercise 7.1. Three-dimensional boundary layers. Let αRS = u2u3/u1u2 and αU =
S23/S12 denote the tangents of the direction of Reynolds stress and mean rate of strain.
Show that (7.1.1) implies the evolution equation

dtαRS = −2kCµC1S12

u1u2
(αU − αRS).

Let the initial state be an equilibrium shear flow, U(y), at t = 0.
Suppose that initially αU = 0 = αRS but the flow subsequently veers direction. It then

develops a component W(y) and αU > 0. Show that, if αU increases monotonically with
time, then αRS ≤ αU. Thus the angle of the Reynolds stress lags that of the mean rate
of strain.

Exercise 7.2. The anisotropy tensor. Why must the diagonal components b11, b22, and
b33 of the anisotropy tensor (7.1.5) lie between − 2

3 and 4
3 ? Show that, generally, the

eigenvalues of bij also lie between − 2
3 and 4

3 .

Exercise 7.3. Return to isotropy. Use the Rotta model for Fij to solve (7.1.7) for the
relaxation of bij in homogeneous turbulence with no mean flow, ∂iUj = 0, and initially
bij = b0

ij . Obtain the turbulence time-scale, T = k/ε, from the k–ε solution for decaying
isotropic turbulence (Section 6.2.1). Why is it satisfactory to use the isotropic solution,
even though bij �= 0? Rewrite your solution for bij as a solution for uiuj . Also explain
why C1 > 1 is necessary.

Exercise 7.4. Invariants of the anisotropy tensor. The second (II ) and third (III ) invari-
ants of bij are defined in (2.3.10) as II = − 1

2bij bji = − 1
2b2

ii and III = 1
3bij bjkbki =

1
3b3

ii . (The first invariant bii is identically 0.) For the same case of relaxation toward
isotropy via Rotta’s model as in the previous exercise, write the evolution equations
for II and III .

The two-dimensional plane with coordinates II and III is called the “invariant map.”
Find the equation for III as a function of II for the Rotta model by forming the ratio

dIII

dII
= dt III

dt II
.

Then show that this model predicts III ∝ II 3/2.

Exercise 7.5. Solution to SSG for homogeneous shear. Derive (7.2.4) with (7.1.35)
included. Substitute the SSG values for the coefficients of the rapid model. Use either the
empirical value PR = 1.6 or the k–ε value (6.2.11). Set the Rotta constant to C1 = 1.7.
Compare numerical values to the experimental results. (The values cited in the text
include a nonlinear term in the slow model.)
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Exercise 7.6. Skew symmetric tensor εijk. If you have not done so in Exercise 5.1),
show that

εijkεilm = δjlδkm − δjlδmk.

From this show that, if �ij = εijk�k , then ωi = εijk�jk = 2�i .

Exercise 7.7. General linear model (GLM). Show that (7.1.31) can be written in terms
of the production tensor as

℘
rapid
ij = [ 4

5 − 4
3 (C2 + C3)]kSij − C2(Pij − 2

3δijP) − C3(Dij − 2
3δijP),

where Dij ≡ −uiuk ∂kUj − ujuk ∂iUk . From this, show that the IP model corresponds to
canceling the terms involving Dij and Sij to leave

℘
rapid
ij = − 3

5 (Pij − 2
3δijP).

This is a simple, popular model.

Exercise 7.8. Solution for axisymmetric, homogeneous rate of strain. Find the equilib-
rium solution to (7.2.1) for the incompressible, homogeneous straining flow, U = Sx,
V = − 1

2Sy, and W = − 1
2Sz.

Exercise 7.9. Equations in a rotating frame. If Eqs. (7.2.1) are referred to a refer-
ence frame rotating about the x3 axis, the i, j component of the mean velocity gradient
becomes

∂jUi − εij3�
F
3

in the absolute frame. Here �F
3 is the rate of frame rotation and ∂jUi is the velocity

gradient in the rotating frame. Evaluate the components of the production tensor for
rotating, homogeneous shear flow, Ui(xj ) = δi1δj2Sx2, and compare to (7.2.6).

The time derivative of bij in the stationary frame is replaced by

∂tbij + �F
3(bikεkj3 + bjkεki3)

relative to the rotating frame. Substitute this and the transformed velocity gradient tensor
into (7.2.1) to derive the evolution equation (8.3.4) for bij in the rotating frame. There
are two choices for the last part of this exercise.

(i) Either solve this equation numerically for rotating, homogeneous shear flow. The
initial condition is isotropy, bij = 0. Non-dimensionalize time by S so that the
equations contain the ratio �F/S. Investigate how the solution depends on this
parameter–experiment with its value. The k–ε equations

dt k = −kSb12 − ε, dt ε = −(Cε1kSb12 + Cε2ε)
ε

k

will be needed as well. Include a plot of b12 versus time.
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(ii) Or derive the closed-form equilibrium solution (8.3.12) for b11, b22, b12, and Sk/ε

as functions of �F/S in homogeneous shear flow. You can use (6.2.11) for the
equilibrium value of P/ε.

In either case, discuss the stabilizing or destabilizing effects of rotation.

Exercise 7.10. Wall functions for SMC. State the wall function boundary conditions for
k, ε, U , and uiuj that can be applied somewhere inside the log layer. Write a program to
solve plane channel flow with one of the SMC formulations and wall functions. Compare
the solution to channel flow data at Rτ = 590 presented in Figure 4.3.

Exercise 7.11. Limiting budget. Consider the Reynolds stress budget (3.2.4). By exam-
ining the scaling of each term with y as y → 0 at a no-slip wall, derive the limiting
behaviors given in Eq. (7.3.6) and following pages.

Exercise 7.12. Near-wall analysis. Verify that the first of Eqs. (7.3.19) has the behavior

ε
uiuj

k
− ν

∂2uiuj

∂y2
= ℘ij + O(y3) = kfij + O(y3)

as y → 0. Show that, if fij (0) = O(1) and uiuj is not singular, then the only possible
behaviors are uiuj = O(y4) or uiuj = O(y2).





8

Advanced topics

Though this be madness, yet there is method in’t.
– William Shakespeare

Attempts to formulate principles of modeling often lead to intricate analysis. That, in turn,
leads to a deepened understanding of the models. Many of these developments are not
essential to practical applications. Some represent directions of contemporary research;
others may provide a basis for future improvements to predictive capabilities. They have
been left to this final chapter of Part II.

Equilibrium analysis provides an understanding of how solutions respond to
imposed forcing. Closed-form solutions provide a systematic development for nonlinear
constitutive modeling. Material in this vein also has been assigned to the current chapter
in order to present it without encumbering the more elementary development in the
forerunning chapters.

In addition, we have relegated a discussion of closure modeling for scalar transport
to this chapter on advanced topics. Some practical considerations on heat and mass
transfer have been covered in Chapter 4. What is described here is a more elaborate
level of closure. The three main topics of this chapter – principles (Section 8.1),
equilibria (Section 8.3), and scalars (Section 8.4) – are largely independent and can be
read separately.

8.1 Further modeling principles

From time to time, attempts have been made to formulate systematic guidelines for
developing second-moment closures. The idea of expansion in powers of anisotropy
was used in Section 7.1.4 to derive second-moment closure (SMC) models. A more
formal discussion consists in identifying overarching principles. Some of the principles

Statistical Theory and Modeling for Turbulent Flows, Second Edition P. A. Durbin and B. A. Pettersson Reif
 2011 John Wiley & Sons, Ltd
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are inviolable, others are optional (a less compelling name might be preferred, but we
will stay with “principles”). Those discussed in this section are:

• Dimensional consistency

• Coordinate system independence

• Galilean invariance

• Realizability.

Physical coherence could be included as well. This is not so much a concrete guideline
as a conceptual principle. It means that closure models should be physically plausible
substitutions for the real process. To mention one example, an inviscid effect should not
be modeled in terms of viscous parameters.

The first of the above list is obvious: all terms in any equation must have the
same dimensions. The model equation for the dissipation rate, ε, was described as a
dimensionally consistent analog to the turbulent kinetic energy equation. Dimensional
consistency demanded that production of k be divided by the turbulence time-scale to
serve as a model for production of ε. This principle is trivial, but still a powerful force in
turbulence modeling.

The second item in the list, coordinate system independence, demands that the model
must be independent of its expression by a particular set of components. Physically, it
implies that a closure model should exhibit the same response to translation, acceleration,
and reflections of the coordinate system as the real process. Chapter 2 contains mathe-
matical techniques that are used in coordinate-independent modeling. Consistent use of
tensor algebra and exact coordinate transformation are its essence. In Section 2.3.2, on
page 35, tensors were defined as coordinate-independent mathematical objects.

At an operational level, consistent use of tensor algebra is invoked by ensuring that
all terms in the equations have the same free subscripts and that matrix multiplication is
done correctly. For instance, the flux of a scalar, θ , having mean concentration �, could
be modeled by

θui = Kij ∂j�

because both sides have free index i and the right-hand side is the product of a matrix
and a vector. It should not be modeled by θui = T uiui ∂i�. With summation over
the repeated index i, the right-hand side has no free indices, while the left-hand side
is a vector with i being an unsummed index. Suspending the summation convention,
to make i free on the right, amounts to suspending correct matrix multiplication. The
result would depend on the coordinate system used in solving the model. In numerical
computations, this could mean that the solution depends on the grid if i is the direction
of a grid line. Indeed, a corollary to the principle of coordinate system independence is
the principle of grid system independence. This means that no functions in the model
should change if the computational mesh is altered, assuming that the mesh provides good
numerical resolution.

The remainder of the list of principles leads to new mathematical developments.
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8.1.1 Galilean invariance and frame rotation

Galilean invariance means that the equations should be the same in any two frames of
reference that move with a constant relative velocity, Urel. This is satisfied in SMC
modeling by using the convective derivative, Df/Dt = ∂tf + Ui ∂if , where f (x, t)

is any function, and by allowing the model to depend on velocity derivatives but not
velocity itself.

If one frame is “stationary” and the other moves with velocity Urel, then the fluid
velocity U , relative to the stationary frame, becomes U − Urel in the moving frame. The
position of a fixed point x moves as x = x′ − Urelt relative to the translating frame.
Hence the convective derivative Df (x, t)/Dt becomes

∂tf (x) + Ui

∂f (x)

∂xi

= ∂tf (x ′ − U relt, t) + Ui

∂f (x ′ − U relt, t)

∂x′
i

= ∂tf
′ + (U − Urel)i

∂f ′

∂x′
i

= ∂tf
′ + U ′

i

∂f ′

∂x′
i

,

where the primes denote functions evaluated in the moving frame. Therefore, the con-
vective derivative retains its form in the new inertial frame. Similarly,

∂iUj = ∂ ′
i (U − Urel)j = ∂ ′

iU
′
j .

The velocity gradient is unchanged by uniform translation; it is Galilean invariant. It
follows that the way the models in Chapter 7 were stated satisfies Galilean invariance, as
it should. Galilean invariance is best checked in Cartesian coordinates. A term like Uiuiuj

is not invariant, but a term somewhat similar to this arises correctly upon transformation
to cylindrical coordinates.

If the transformation is to a non-inertial frame, then additional accelerations arise. A
case that has been studied at length is transformation to a rotating frame. If a fluid is in
solid-body rotation, then relative to an inertial frame it has the rotation tensor εijk�

F
k ,

where �F
k is the component of the rate of frame rotation along the xk axis, and εijk is

the cyclic permutation tensor. If �ij is the fluid rotation tensor relative to the rotating
frame, then

�A
ij = �ij + εijk�

F
k (8.1.1)

is called the absolute rotation, measured relative to an inertial frame.
It stands to reason that models like (7.1.33) should be made to depend on �A

ij if they
are to be frame-invariant. To demonstrate this requires that Coriolis acceleration be added
to the convective derivative. In a rotating frame, the fluctuating acceleration of a fluid
element is

∂tui + Uk ∂kui + uk ∂kUi + 2εijk�
F
j uk + ∂kukui − ∂kukui . (8.1.2)

The new term, containing �F, is the Coriolis acceleration. It is an exact consequence of
expressing the acceleration relative to a non-inertial frame.
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Taking minus the divergence of Eq. (8.1.2), equating it to the Laplacian of pressure,
and keeping only the linear terms, we obtain

1

ρ
∇2p = −2 ∂iUk ∂kui − 2εkji�

F
j ∂kui = −2(∂iUk + εkji�

F
j ) ∂kui

= −2(Sik + �ik + εikj�
F
j ) ∂iuk = −2(Sik + �A

ik) ∂iuk

for the rapid pressure. As in (7.1.33), ∂iUj = Sij + �ij was used. It follows that the
rapid redistribution model should depend either on the absolute rate of rotation or on
the absolute vorticity. The vorticity and rotation tensor are related by ωi = εijk�jk =
εijk ∂jUk (see Exercise 7.6) and the absolute vorticity is

ωA
i = εijk�

A
jk = ωi + 2�F

i . (8.1.3)

It might at first seem odd that frame rotation should enter into the turbulence model.
Frame rotation should not enter constitutive models for material properties. Viscous
stresses vanish in a fluid under solid-body rotation, so the viscous constitutive model
should not depend on frame rotation or on absolute vorticity. However, turbulent motions
are most certainly affected by rotation; for instance, it can enhance or suppress turbulent
energy. The Coriolis acceleration therefore should appear in the closure model.

But a warning is in order. The replacement of mean rate of rotation, �ij , by absolute
mean rate of rotation, �A

ij , makes only algebraic closure formulas frame-independent
(as explained in the next section). In a stress transport model, frame rotation appears
additionally to the absolute fluid rotation tensor. This is seen by forming the convective
derivative of Reynolds stresses. From (8.1.2) the convective derivative is

∂tuiuj + Uk ∂kuiuj + uiuk ∂kUj + 2εjlk�
F
l uiuk + · · ·

= Dt uiuj + uiuk(∂kUj + 2εkjl�
F
l ) + · · · (8.1.4)

= Dt uiuj + uiuk(Skj + �kj + 2εkjl�
F
l ) + · · ·

= Dt uiuj + uiuk(Skj + �A
kj + εkjl�

F
l ) + · · · .

The “+ · · ·” signify that a transpose with respect to i and j is to be added. Both �A and
�F enter. The algebraic formulas and scalar transport models of Chapter 6 accommodate
frame rotation only through the absolute vorticity. The convective derivative contains
another effect that will be missed in such models: as the frame rotates, the direction of
the unit direction vectors rotate as well. A vector that is constant in an inertial frame
rotates in time relative to the non-inertial frame. This gives the explicit contribution of
frame rotation, �F, to Eq. (8.1.4).

8.1.1.1 Invariance and algebraic models

Properly formulated algebraic models should be both Galilean invariant, and invariant
under frame rotation. For example, in solving a rotor–stator flow, it should be irrelevant
whether the rotor or the stator frame of reference is adopted.

The simple eddy viscosity model takes turbulent stresses to be proportional to spatial
gradients of the velocity field, in particular to the rate-of-strain tensor Sij = 1

2 (∂Vi/∂xj +
∂Vj/∂xi). This particular combination of velocity gradients is not arbitrary: it is due to
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a type of kinematic frame invariance. Consider a general, time-dependent change of
reference frame that can be expressed algebraically as

x̃k = bk(t) + Ekl(t)xl . (8.1.5)

The coordinates x̃k and xk denote position in two different reference frames. These are
related by the transformation matrix E, as described in Eq. (2.3.2). The origins of the
two coordinate systems can be in relative translation, as allowed by the b(t). The time
dependence of E allows the coordinate systems to be in relative rotation. The velocity
in the x̃ frame, Ṽk ≡ ˙̃xk, is given by

Ṽk = ḃk + Ėklxl + EklVl. (8.1.6)

Frame invariance requires that Ṽk = EklVl – see Section 2.3, page 34. Hence the velocity
vector obviously is not frame-invariant under the transformation (8.1.5). From (8.1.6),
the gradient of the velocity becomes

∂Ṽk

∂x̃l

= Ėkm

∂xm

∂x̃l

+ Ekm

∂Vm

∂x̃l

or
∂Ṽk

∂x̃l

= ĖkmElm + Ekm

∂Vm

∂xn

Eln, (8.1.7)

which differs from the transformation Ekm(∂Vm/∂xn)Eln described in Section 2.3. Con-
sequently, velocity gradients are not invariant either. However, it is readily seen that the
mean rate-of-strain tensor Skl is invariant;

S̃kl = 1

2

(
Ekm

∂Vm

∂x̃n

Eln + Elm

∂Vm

∂x̃n

Ekn + ĖkmElm + ĖlmEkm

)
(8.1.8)

= EkmSmnEnl.

The last equality is obtained upon noting that ĖkmElm + ĖlmEkm = ∂t (EkmElm) =
∂t (δkl) = 0. The local vorticity tensor is not invariant under the arbitrary change of
frame, but it can be shown that the absolute vorticity �A (defined by Eq. (8.1.3))
transforms properly (Exercise 8.1) between the stationary and rotating frames.

Hence, it is concluded that algebraic stress formulations should be functions of S and
�A, but not of � or �F.

8.1.2 Realizability

The last of the principles stated at the outset of this section is realizability. Realizability
means that the model should not violate the Schwartz inequality

(uiuj )
2 ≤ u2

i u2
j ,

and that component energies u2
i should be non-negative (Schumann, 1977). These two

conditions can alternatively be stated as one: the eigenvalues of uiuj should be non-
negative. Generally, the differential equations of the turbulence model will not ensure
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these inequalities in all circumstances. Indeed, most models can be made to predict the
equivalent of u2 < 0 in extreme conditions. One can debate whether ensuring realizability
in all circumstances is necessary. Realizability is a property of each solution; if a model
predicts realizable solutions in virtually all cases of interest, is there any need for concern?
As long as violations are not catastrophic, the answer is probably “no.” However, there are
circumstances in which potentially negative eigenvalues could be a matter for concern. For
instance, CµuiujT is commonly used as an eddy viscosity tensor. A negative eigenvalue
leads to negative viscosity, which is numerically unstable. In such a context, realizability
offers a useful mathematical tool for nonlinear eddy viscosity closure development.

Much of the literature on realizability is rather misleading. It has been implied that
tensoral nonlinearity in the Mijkl expansion developed in Section 7.1.4 is required in order
to guarantee realizability. In fact, certain inequalities need only be satisfied, and this is
readily done by constraints on the model coefficients. It is possible to revise any model
to ensure realizability in all circumstances with only a minor alteration of its coefficients,
as will be explained at the conclusion of the present section (also see Section 8.2).

A realizability inequality (7.1.14), page 162, has already been encountered in the
discussion of the slow redistribution model. Corresponding results can be derived for the
rapid redistribution model. First adopt a coordinate system in which the Reynolds stress
tensor is diagonal; in other words, τ̃ij = 0, i �= j . The issue at hand can be stated as being
to ensure unconditionally that τ̃11 ≥ 0, where τ̃11 is defined as the smallest component
of τ̃ . In the notation τij ≡ uiuj , Eq. (7.1.4), page 157, can be written as

dt τij = Hij , (8.1.9)

where

Hij = Pij + ℘ij − 2
3εδij .

Let U represent the matrix of orthonormal eigenvectors of τ and let tU denote its
transpose. These are matrix inverses: U · tU = δ. In terms of these matrices, τ̃ = U · τ ·
tU is the diagonalized Reynolds stress. U can also be thought of as a product of rotations
about each of the coordinate axes, that diagonalizes τ . Then the present transformation
is analogous to those discussed in Section 2.3.

As the turbulence evolves in time, U will evolve too. Thus the evolution equation
for the diagonalized Reynolds stress tensor is

dt τ̃ = H̃ + (dtU · tU) · τ̃ + τ̃ · (U · dt
tU). (8.1.10)

The matrices in parentheses are transposes of one another. They are easily shown to be
antisymmetric matrices: differentiating U · tU = δ shows that

W ≡ (dtU · tU) = −(U · dt
tU) = −tW .

W is defined by this equation as the rotation matrix of the principal axes of τ . The only
property of W needed here is that it is antisymmetric, so that Wij = 0 if i = j . The
evolution equation (8.1.10) is then seen to be

dt τ̃ = H̃ + W · τ̃ + τ̃ · tW = H̃ + W · τ̃ − τ̃ · W .
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Because τ̃ is a diagonalized matrix, by definition τ̃ij vanishes at all times if i �= j . In
component form, the evolution equation is therefore

dt τ̃ij = H̃ij , i = j,

0 = H̃ij + Wikτ̃kj − τ̃ikWkj , i �= j.

The second equation determines the rate of rotation of the principal axes; for instance
the 1, 2 component gives

W12 = H̃12/(τ̃11 − τ̃22).

However, W does not factor into present considerations.
When τ̃11 = 0, realizability demands that τ̃11 decrease no further. This is ensured by

requiring that dt τ̃11 > 0, or that H̃11 > 0, when τ̃11 = 0. For the GLM (Eq. (7.1.31), page
167) with Rotta return to isotropy (Eq. (7.1.8)) for the slow model,

H̃ij = P̃ij − 2
3εδij − ε

k
C1(τ̃ij − 2

3kδij ) + [ 4
5 − 4

3 (C2 + C3)]kS̃ij

− C2(P̃ij − 2
3δijP) − C3(D̃ij − 2

3δijP). (8.1.11)

If τ11 = 0, both P̃11 and D̃11 vanish. This follows from P̃11 = −2τ̃11 ∂1Ũ1, which is a
consequence of the diagonalization

−U · (τ · ∇U ) · tU = −(U · τ · tU) · (U · ∇U · tU) = −τ̃ · ∇̃U

and the fact that τ̃ is diagonal. The production tensor P̃ equals the above plus its matrix
transpose. Note that only τ̃ is diagonal; the velocity gradient matrix is not.

The 1, 1 component of (8.1.11) with τ̃11 = 0 is

H̃11 = 2
3 (C1 − 1)ε + [ 4

5 − 4
3 (C2 + C3)]kS̃11 + 2

3 (C2 + C3)P. (8.1.12)

This is positive if

C1 − 1 + (C2 + C3)
P
ε

+ [ 6
5 − 2(C2 + C3)]S̃11k/ε > 0. (8.1.13)

Only this inequality need be ensured to guarantee realizability. However, the rate of
strain, S̃11, is a projection onto the principal axes of the Reynolds stress tensor. That
makes the inequality (8.1.13) rather tenuous. A more readily imposed bound is needed.

It will be assumed that 6
5 − 2(C2 + C3) < 0 in Eq. (8.1.13), as is usually the case:

for example, the LRR model equates it to (6 − 90 × 0.4)/55 = −6/11. To formulate
a general constraint, S̃11 in Eq. (8.1.13) can be replaced by the largest eigenvalue of
Sij . This will suffice to prevent the smallest eigenvalue, τ̃11, from becoming negative.
Eigenvalues are invariant under coordinate rotation, so it is the largest eigenvalue of
Sij that is desired. Denote this by λS

max. Then the realizability constraint (8.1.13) will
be met if

C1 > 1 − (C2 + C3)
P
ε

+ [2(C2 + C3) − 6
5 ]

λS
maxk

ε
(8.1.14)
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(Durbin and Speziale, 1994). For the LRR model, C2 = (c + 8)/11, C3 = (8c − 2)/11,
and c = 0.4, and condition (8.1.14) becomes

C1 > 1 − 9.6

11

P
ε

+ 6

11

λS
maxk

ε
.

For the IP model, C2 = 3/5 and C3 = 0, and constraint (8.1.14) is simply

C1 > 1 − 3

5

P
ε

. (8.1.15)

At this point it should be clear that realizability is not a daunting matter. It has been
reduced to a straightforward inequality.

A typical value of C1 is 1.8. So the IP model is realizable if the rate of turbulent
energy production is not negative, which is usually the case. Non-realizable solutions can
be prevented by specifying C1 = max[1.8, 1 − 3

5P/ε]. If sufficiently negative production
were to occur in any computation, this limiter would come into effect; but in most cases
it would be irrelevant.

The same approach can be applied to (8.1.14). If C1 = 1.8 is usually a satisfactory
value, then

C1 = max[1.8, 1 − (C2 + C3)P/ε + (2C2 + 2C3 − 6
5 )λS

maxk/ε] (8.1.16)

will ensure realizability in extreme cases without altering the model in typical cases.
Certainly, more elaborate schemes can be devised to satisfy the inequality. Such schemes
would be warranted if they were designed to improve agreement with data; otherwise, it is
hard to justify the added complexity. What is revealed by the analysis is that realizability
can be implemented readily. It is not a cumbersome constraint, and it might prove valuable
in some applications.

8.2 Second-moment closure and Langevin equations

Probability density models are widely used in reacting flows (Fox, 2003). In practice, they
are rarely formulated as evolution equations for the PDF; invariably they are formulated
as stochastic models. A Langevin equation plus a stochastic mixing model is commonly
the concrete realization of the PDF method.

In Section 2.2.2.1 the Langevin equation introduced concepts of Lagrangian dispersion
theory. Indeed, its origin in the study of turbulence was as a Lagrangian model. However,
the application to PDF methods led to a recognition that it also forms a basis of an
Eulerian model – and, particularly, that it can be linked to second-moment closure (SMC).
Pope (1994) noted that the second moment of a Langevin equation is an SMC, and
Durbin and Speziale (1994) described how a Langevin equation can be derived for any
particular SMC.

We consider a stochastic differential equation of the general form

dui = − 1

T
Aijuj dt + Bij dWj(t) (8.2.1)
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(see Eq. (2.2.23)). This is a particular version of an Ito type of stochastic differential
equation (Section 2.2.2.1); or, rather, it is a differential equation in which randomness is
introduced by white noise. The function dWj(t) can be thought of as a set of independent
random variables, selected at a time interval of dt and having the properties

dWi(t) = 0,

dWi(t) dWj(t) = dt δij , (8.2.2)

uj (t) dWi(t) = 0.

Its average vanishes, its components are uncorrelated, and the increment dW(t) is uncor-
related with the present value of the dependent variable u(t).

The second of properties (8.2.2) states that dWi is an isotropic random process with
magnitude of order

√
dt . When deriving moment equations, therefore, it is necessary to

retain terms to O(dWi)
2. The first step to evaluate d uiuj/dt is to expand the differential

d(uiuj ) = (ui + dui)(uj + duj ) − uiuj

= ui duj + uj dui + dui duj . (8.2.3)

Then substitute (8.2.1) for du, using the rules (8.2.2) and keeping terms up to order dt :

d uiuj

dt
= − 1

T
(uiukAjk + ujukAik) + BikBjk. (8.2.4)

This is in the format of an SMC.
As an example, consider the Reynolds stress evolution equation

d uiuj

dt
= Pij − 2

3δij ε − C1

T
(uiuj − 2

3kδij ) − C2(Pij − 2
3δijP).

With T = k/ε and C2 = 3/5, this is the Rotta slow model and the IP rapid model. Its
right-hand side can be rearranged to

(1 − C2)Pij − C1

T
uiuj + 2

3

(
C1k

T
− ε + C2P

)
δij .

Writing out the production tensor puts this into the form

−
[
(1 − C2)uiuk ∂kUj + C1

2T
uiuj

]
−
[
(1 − C2)ujuk ∂kUi + C1

2T
ujui

]
+ 2

3

(
C1k

T
− ε + C2P

)
δij .

Now, by comparison to (8.2.4), the coefficients of the Langevin equation (8.2.1) are
found to be

Aik = (1 − C2)T ∂kUi + 1

2
C1δik,

Bik = δik

√
2

3

(
C1k

T
− ε + C2P

)
.
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Hence a Langevin equation has been found for the IP model. The argument of the square
root in the definition of Bij must be positive, so

C1 >
εT

k
− C2

PT

k
.

This is just the realizability condition (8.1.15) of the previous section. The solution to a
Langevin equation is a realization of a random process. Hence, any model that can be
derived from a Langevin equation is by definition realizable. The criterion that Bij be
real-valued is a first-principles derivation of a realizability constraint.

The general linear model (7.1.32) is obtained from (8.2.4) via the prescriptions

Aij = 1
2C1δij + (1 − C2)T ∂jUi − C3T ∂iUj ,

(8.2.5)

Bij = δij

√
2
3 [C1ε − ε + (C2 + C3)P ] − 1

3csεMklMlk + √
csεMij

(Durbin and Speziale, 1994), where M is a symmetric matrix related to the rate of
strain by

M2
ij − 1

3M2δij = T Sij ,

and cs is the coefficient of the rate-of-strain tensor, cs = 4
5 − 4

3 (C2 + C3). The argu-
ment of the square root must be non-negative for this to be a properly posed Langevin
equation, which recovers the realizability constraint (8.1.14) of the previous section. As
this example illustrates, B is not, in general, isotropic.

To go from the Langevin equation (8.2.1) to the SMC equation (8.2.4) is a straight-
forward exercise. Going in the other direction is less obvious. A given Reynolds stress
closure must be arranged into a form that is like (8.2.4), then suitable matrices A and B

can be devised.

8.3 Moving equilibrium solutions of SMC

We next explore equilibrium analysis in a widened context. Equilibrium analysis provides
insights into properties of closure schemes, for example showing how the model responds
to imposed forcing. It is also the basis for a systematic derivation of nonlinear, algebraic
constitutive formulas.

Equation (7.2.4) is a special case of a broader equilibrium solution that can be found
to the general linear model, or, for that matter, to the general quasi-linear model. The
more comprehensive solution described below is valid for any two-dimensional, steady,
homogeneous mean flow. That solution is a tensoral formula that relates uiuj to Sij

and �ij . In other words, it is a constitutive relation between turbulent stress and mean
velocity gradient.

A constitutive relation is essentially a broadening of the concept of an eddy viscos-
ity. The terminology “constitutive relation” is inherited from the theory of continuum
mechanics. The objective of a constitutive equation is to establish a mathematical rela-
tionship between kinematical variables and stresses – in the simplest case, between rate
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of strain and stress. However, there is an important distinction between constitutive
relations in continuum mechanics and in turbulence modeling: the former describes a
material property, whereas the latter approximates statistical properties of the flow field.

The simplest turbulent constitutive relations are the linear eddy viscosity models. An
extension of this class is the so-called nonlinear eddy viscosity closure. That terminology
alludes to tensoral nonlinearity, as described in Section 2.3.2. For instance, S2

ij might
appear in addition to Sij ; and k and ε enter as dimensionalizing factors. When used in
conjunction with the k–ε transport equations, the constitutive relation is called a nonlinear
k–ε model.

In a sense this section is an introduction to nonlinear constitutive modeling. However,
the approach has a very attractive element: if the full Reynolds stress transport equations
are considered to encompass the correct physical processes, then the formula derived
from equilibrium approximation to those equations should be imbued with some of their
physics. That is the method explained in this section. Formulations derived by systematic
equilibrium approximation to the transport equations are called explicit algebraic stress
models (EASM).

But the value of this section goes beyond introducing nonlinear algebraic stress rela-
tions. By allowing for coordinate system rotation, we will set the stage to explore its
stabilizing and destabilizing effects. That forms the topic of Section 8.3.3 on bifurcations .

The matter immediately at hand is to find the moving equilibria of (7.2.1) for three-
dimensional turbulence in two-dimensional mean flows. The method of solution invokes
integrity basis expansions (Pope, 1975). A mathematical background can be found in
Section 2.3.2, especially the material leading to (2.3.16). As explained there, the two-
dimensional integrity basis is far more manageable than the three-dimensional basis
(Eq. (2.3.17)). That is one reason why we consider the solution for two-dimensional
mean flow. Equilibrium solutions for the three-dimensional case were derived by Gatski
and Speziale (1993). Those solutions are not true equilibria because they do not corre-
spond to steady mean flow; however, they are a nice example of the power of tensor
analysis.

8.3.1 Criterion for steady mean flow

A basic assumption in the analysis to follow is that the mean flow is constant in time. As
a preliminary to the main analysis, it is instructive to consider the criterion for the mean
velocity gradient to be homogeneous and steady. Homogeneity requires that a mean flow
be of the form Ui = (Ski + �ki)xk (if the origin of the x coordinate system is suitably
chosen). The steady mean momentum equation is Uj ∂jUi = −(1/ρ) ∂iP . Substituting
for Ui and differentiating with respect to xk gives

(Skj + �kj )(Sji + �ji) = S2
ik + �2

ik + Skj�ji + �kjSji = − 1

ρ
∂i∂kP .

The symmetric part of this equation determines the mean pressure

P = P0 − 1
2ρ(S2

ik + �2
ik)xkxi .

The antisymmetric part,

Skj�ji + �kjSji = 0, (8.3.1)



228 ADVANCED TOPICS

is equivalent to the steady vorticity equation ωi(Sij + �ij ) = 0. That can be shown by
contracting Eq. (8.3.1) with εlik and invoking the relation �ji = 1

2εjimωm. Upon noting
that 2ωi�ij = ωiεijkωk = 0, the condition for steady flow becomes the statement

ωiSij = 0

that the mean vorticity be perpendicular to the principal axes of strain. Physically, to
attain steady state, the strain cannot be stretching the vorticity.

If the ω axis is x3, then the axes of the rate-of-strain tensor must lie in the x1 –x2

plane. For instance, homogeneous shear U1 = Ax2 corresponds to ω = (0, 0, −A) and

S =
 0 A/2 0

A/2 0 0
0 0 0

 .

Thus ω · S = 0 is satisfied.
Generally, if ω = (0, 0, 2�), then steady flow requires the velocity gradient matrix

to be

[∂iUj ] =
 S � 0

−� −S 0
0 0 0

 (8.3.2)

in the coordinate system of the principal axes of the rate of strain. (In homogeneous
shear flow, S = 1

2 dU/dy and � = − 1
2 dU/dy.) The rate-of-strain and rate-of-rotation

tensors are

S =
S 0 0

0 −S 0
0 0 0

 , � =
 0 � 0

−� 0 0
0 0 0

 . (8.3.3)

The streamlines of this flow are proportional to 1
2�(x2 + y2) − Sxy. Cases where

|�| > |S| are referred to as elliptic flow because, when rotation is larger than strain, the
streamlines are ellipses.

8.3.2 Solution in two-dimensional mean flow

We now seek the solution to the general linear model for steady, two-dimensional, incom-
pressible mean flow. First, a slight extension will be made: the possibility of coordinate
system rotation will be included. In a rotating frame, Coriolis acceleration must be added
to the evolution equation (7.2.1) of the Reynolds stress anisotropy, on page 169. From
(8.1.4) the revised evolution equation is seen to be

dt bij = (1 − C1)bij

ε

k
− bikεkj l�

F
l − bjkεkil�

F
l − bij

P
k

− 8
15Sij

+ (C2 + C3 − 1)(bikSkj + bjkSki − 2
3δij bklSlk) (8.3.4)

+ (C2 − C3 − 1)(bik�
A
kj + bjk�

A
ki).
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In addition to adding the non-inertial acceleration, involving �F, the rate of rotation of
the fluid has been replaced by the absolute rotation, �A, in the last term (see page 219).
The latter accommodates the contribution of frame rotation to Reynolds stress production
and to the redistribution model.

Following Gatski and Speziale (1993), this is further rearranged to

k

ε
dt aij = (1 − C1)aij − aijPR − 8

15Sij

− aikSkj − ajkSki + 2
3δij aklSlk − aikWkj − ajkWki (8.3.5)

(recall that PR ≡ P/ε), where

Wij = [(1 − C2 + C3)�
A
ij + εij l�

F
l ]

k

ε
,

Sij = [(1 − C2 − C3)Sij ]
k

ε
, (8.3.6)

aij = (1 − C2 − C3)bij .

This form has a non-dimensional right-hand side, and constants have been absorbed into
the definitions of W , S, and a to simplify subsequent algebra. In equilibrium, dt aij = 0;
then in matrix notation, Eq. (8.3.5) becomes

0 = (1 − C1 − PR)a − 8
15S − a · S − S · a + 2

3δ trace(a · S)

− a · W + W · a. (8.3.7)

Note that the ratio of production to dissipation is

PR = −trace(b · S)k/ε = −trace(a · S)/(1 − C2 − C3)
2

in the scaled variables. If for now PR is considered to be known, then Eq. (8.3.7) is
analogous to Exercise 2.11: it is a tensor equation with a tensor unknown, a . Such
equations can be solved by integrity basis expansion, as explained in Section 2.3.2.

As explained in Section 2.3.2, it is a mathematical theorem that any solution to
Eq. (8.3.7) must be of the form

a = CµS + b(W · S − S · W ) + c(S2 − 1
3 |S|2δ), (8.3.8)

where |S|2 ≡ |trace(S2)| = SijSj i . This is substituted into (8.3.7) to find the unknown
coefficients Cµ, b, and c. Substituting (8.3.8) into (8.3.7), simplifying using (8.3.11), and
equating separately the coefficients of S, S2, and S · W gives

Cµ = − 8
15g

1 − 2
3g2|S|2 + 2g2|W |2 ,

b = gCµ, (8.3.9)

c = −2gCµ,
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where

g = 1/(C1 − 1 + PR).

Finally, equating the coefficients of δ and inserting the definition PR ≡ P/ε gives

(1 − C2 − C3)
2 P
ε

=
8

15g|S|2
1 − 2

3g2|S|2 + 2g2|W |2 (8.3.10)

to complete the solution.
For those who wish to verify this solution, the identities

W 2 = − 1
2 |W 2|δ2, S2 = 1

2 |S2|δ2, S · W + W · S = 0 (8.3.11)

are useful. They follow from the Cayley–Hamilton theorem (2.3.12) for trace-free two-
dimensional tensors. The two-dimensional identity δ2 is defined as the diagonal matrix

δ2 =
1 0 0

0 1 0
0 0 0

 .

In the first of (8.3.11), trace(W 2) ≤ 0 was used. This follows from

4 trace(W 2) ≡ 4WijWji = εijkωkεjilωl = (δkj δjl − δjj δkl)ωkωl = −2|ω|2 ≤ 0.

Equation (8.3.11) shows that S2 is interchangeable with the two-dimensional identity
matrix. But, by expressing the solution in terms of S2, a formula is obtained that could
be adopted in three-dimensional flow.

The solution (8.3.8) with coefficients (8.3.9) can be written as the extended eddy
viscosity formula

uiuj − 2
3kδij = − Cµ

k2

ε
Sij + Cµ

gk3

ε2
[(1 − C2 + C3)(�

A
ikSkj − Sik�

A
kj )

+ εikl�
F
l Skj − Sikεkj l�

F
l − 2(1 − C2 − C3)(S

2
ij − 1

3 |S|2δij )].

(8.3.12)

Formula (8.3.12) has reverted to the original variables used in (8.3.6) to define W , S,
and a. The solution (7.2.4) is a special case of the more general formula (8.3.12). This
can be verified by substituting the S and � corresponding to homogeneous shear.

The leading term on the right-hand side of (8.3.12) is the linear, eddy viscosity formula
(although we have used Cµ rather than 2Cµ as the coefficient). The bracketed term is a
tensorally nonlinear extension.

The closed-form solution (8.3.12) is commonly known as an explicit algebraic
stress model (EASM). The algebraic stress approximation (ASM) was introduced by
Rodi (1976) (and earlier in his PhD thesis); the explicit solution was first obtained by
Pope (1975), who noted that it serves as a constitutive model. It is a particular case of
the concept of a nonlinear k–ε model. In this case, it was derived by solving a second-
moment closure. More generally, a formula like (8.3.8) with empirical coefficients
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Cµ, b, and c could be postulated as an ad hoc constitutive relation. There would then
be complete freedom in choosing these coefficients as functions of |S| and |�|. The
EASM is attractive precisely because it eliminates that freedom in favor of a systematic
solution of the second-moment equations.

When Eq. (8.3.12) is used to predict the Reynolds stress tensor, the k–ε model is first
solved, then P is found from (8.3.10), which is entirely equivalent to P = −uiujSij , with
uiuj substituted by expression (8.3.12). The mean flow is obtained by a RANS compu-
tation in which (8.3.12) closes (3.2.2). Examples of RANS computation with nonlinear
constitutive models can be found in Lien and Leschziner (1996b). It presently is not clear
when, or whether, nonlinear models are actually needed for predictive flow computation.
Here we are more concerned to gain further understanding of Reynolds stress models
than to expound on nonlinear k–ε methodology.

What improvements can be expected with the added complexity contained in a non-
linear constitutive equation? Linear eddy viscosity models are not properly sensitive to
rotation. The nonlinear formulation corrects it. This would seem an obvious advantage,
but it must be qualified. It will be shown in Section 8.3.3 that the ability to predict
rotational stabilization is contained solely in the linear term, CµS; the new dependence
on |W | is the critical feature. As an example, consider the case of pipe flow rotating
about its axis. The most prominent feature of axially rotating pipe flow is a stabilization
of turbulence that can be caused by the superimposed axial rotation. As the turbulence
intensity is suppressed, the axial mean velocity distribution becomes more laminar-like;
given a pressure gradient, the mass flow through the pipe is thereby increased. This
feature can be predicted by the explicit algebraic stress model (8.3.12).

As another example, a nonlinear constitutive formula is necessary in order to account
for normal stress anisotropy in parallel shear flows; any linear model erroneously predicts
u2 = v2 = w2 = 2

3k. Normal stress anisotropy plays a crucial role in the generation of
mean streamwise vorticity – also known as Prandtl’s second kind of secondary flow. A
three-dimensional turbulent jet exiting from a rectangular nozzle constitutes an example:
the mixing of the jet with the surrounding ambient fluid is significantly increased due
to secondary motion generated by normal stress anisotropy. A phenomenon referred to
as axis switching occurs, which means that the major and minor axes of the jet rotate
by 90◦ about the streamwise axis as the jet proceeds downstream. Turbulent flow in a
non-circular duct constitutes another example in which normal stress anisotropy alters
the mean flow field. The particular case of the flow in a square duct is illustrated in
Figure 7.19 on page 208.

8.3.3 Bifurcations

Although the first term on the right of (8.3.12) is just the linear eddy viscosity formula,
the coefficient Cµ is no longer a constant; it is now the function (8.3.9) of S and W .
That dependence produces an interesting mathematical behavior: the solution to the k–ε

equations can bifurcate between exponential and algebraic time dependence.
The origin of the bifurcation can be understood by attributing it to an external stabiliz-

ing force. If the stabilizing force is weak, then the equilibrium state is fully turbulent and
k grows exponentially. But what if the force is sufficient to suppress the turbulence? A
structural equilibrium still exists, in the sense that the anisotropy tensor, bij , is constant,
but k and uiuj decay with time in this case. This is a different solution branch to that
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Figure 8.1 Left: bifurcation diagram showing parametric dependence of turbulent time-
scale and of production. Right: illustration of k as a function of time on the two solution
branches.

of healthy turbulence where k and uiuj both grow exponentially. Mathematically, the
model has undergone a bifurcation between solution branches.

The bifurcation occurs at a critical value, rb, of a parameter characterizing the stabi-
lizing force. The parameter in the present analysis is the ratio of the rate of rotation to
the rate of strain, represented by R in Figure 8.1. The region |R| < rb is the region of
healthy turbulence. Non-rotating shear flow lies in that region. If the rate of rotation is
small in comparison to the mean rate of strain, rotation has little effect. But if the rate
of rotation is sufficiently large, R moves out of the unstable region and the turbulence
decays. This is where R>rr in the figure. More correctly, the time dependence of the
solution shifts from exponential to algebraic when R crosses rb. There is a short range
rb < |R| < rr in which the solution actually grows algebraically as tλ, λ> 0. This short
range is followed by the stable region |R|>rr in which the solution decays as tλ, λ < 0
(Durbin and Pettersson Reif, 1999). These temporal behaviors are illustrated to the right
of Figure 8.1. The formal analysis corresponding to these diagrams follows from the
solution (8.3.10), as explained in the following.

The k and standard ε equations (6.2.5) and (6.2.6) on page 122 can be combined to

dt (ε/k) = (ε/k)2[(Cε1 − 1)PR − (Cε2 − 1)].

This admits two equilibria, obtained by setting dt (ε/k) = 0 on the left-hand side (Speziale
and Mac Giolla Mhuiris, 1989). The two solutions to

(ε/k)2[(Cε1 − 1)PR − (Cε2 − 1)] = 0 (8.3.13)

are PR = (Cε2 − 1)/(Cε1 − 1) and ε/k = 0. These are the two solution branches of the
bifurcation analysis.

On the first branch, PR attains the fixed value (Cε2 − 1)/(Cε1 − 1), as occurs in
homogeneous shear or straining flow, for example. The exponentially growing solution
for k and ε, found in Section 6.2.1, occurs on this solution branch. It has the form

k ∝ eλt , ε ∝ eλt ,

with

λ = Cε2 − Cε1

Cε1 − 1

(ε
k

)
∞

.
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The subscript ∞ denotes the equilibrium value. This solution is readily verified by
substituting it into dt ε = ε(Cε1PR − Cε2)(ε/k) and dt k = ε(PR − 1).

However, the exponential solution is only valid if (8.3.10) can be satisfied. Indeed,
that equation determines the value of (ε/k)∞ which is needed to complete the solution
for λ. Equation (8.3.10), with the definitions (8.3.6), can be rearranged to read

(ε/Sk)2
∞

g2(1 − C2 − C3)2
= 2

3
+ 8

15(1 − C2 − C3)2gPR
− 2

(1 − C2 + C3)
2

(1 − C2 − C3)2
R2, (8.3.14)

where R is defined as

R2 ≡
(

�

S
+ (2 − C2 + C3)�

F

(1 − C2 + C3)S

)2

for the general 2D flow represented by (8.3.3). The parameter R is a function of the mean
flow vorticity and rate of strain, and of the coordinate system rotation. For instance, with
the constants of the SSG model, it is simply R2 = (2.25�F/S + �/S)2; and for the LRR
constants, it is R2 = (6.0�F/S + �/S)2.

Given a set of model constants, (8.3.14) is an equation for (ε/Sk)∞ as a function of
R of the form A(ε/Sk)2∞ = B − CR2. This is the equation of an ellipse in the R–ε/Sk

plane. Half of the ellipse is portrayed as branch 1 on the left-hand side of Figure 8.1.
That semi-ellipse is called the bifurcation curve.

The left-hand side of (8.3.14) is non-negative, but the right becomes negative when R
is large. It follows that the exponentially growing solution exists only if R is sufficiently
small. Indeed, the curve marked branch 1 in Figure 8.1 is the solution to (8.3.14) for
(ε/Sk)∞ as a function of R. If R is larger than a critical value, marked rb in the figure,
this solution no longer exists. The equilibrium then bifurcates to branch 2 . On that branch,
ε/Sk = 0, as explained below Eq. (8.3.13).

The occurrence of a bifurcation is solely a consequence of the functional depen-
dence of Cµ; tensoral nonlinearity plays no role. To see this, notice that, when (8.3.8) is
contracted with S to obtain the formula (8.3.10) for production,

aijSj i = CµSijSj i + b(WijS2
j i − S2

ijWji) + c(S3
ii − 1

3 |S|2Sii ) = Cµ|S|2

is obtained. The last equality follows because S3
ii = 0 = Sii for incompressible two-

dimensional straining, and WijS2
j i = 0 because W is antisymmetric and S2 is symmetric.

The important message for turbulence modeling is that the response to rotation can be
obtained by an eddy viscosity model with a variable Cµ. Instead of using the present
analytical solution for Cµ, an ad hoc functional dependence could be designed to capture
the bifurcation. Constant Cµ precludes bifurcations; indeed, Exercise 6.6 shows that with
constant Cµ the solution is independent of system rotation.

The nature of the second branch follows from setting ε/Sk = 0. In this case P/ε = PR
is no longer constant; it varies as a function of R as illustrated by the dashed line
in Figure 8.1. When |R| just crosses rb, PR is still greater than unity, although it is
decreasing. As long as P>ε, the turbulence will grow with time; so there is a region
between rb, the bifurcation point, and rr, the restabilization point, in which k grows with
time, albeit the solution branch has bifurcated.
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The solution for k on the second branch is found to be (Durbin and Pettersson
Reif, 1999)

k ∼ tλ, ε ∼ tλ−1,

with

λ = PR − 1

Cε2 − 1 − PR(Cε1 − 1)
. (8.3.15)

This is verified by substitution into the k and ε equations. Now (8.3.14) plays the role
of an equation for PR:

C1 − 1 + PR
PR

= 15(1 − C2 + C3)
2R2

4
− 5(1 − C2 − C3)

2

4
(8.3.16)

after using g = 1/(C1 − 1 + PR) and recognizing that ε/Sk = 0. This formula provided
the dashed curve plotted in the left half of Figure 8.1.

The bifurcation point, R = rb, is found by rearranging Eq. 8.3.16) to

R = ±
(

1

3
+ 4(C1 − 1 + PR)

15PR(1 − C2 − C3)
2

)1/2
(1 − C2 − C3)

(1 − C2 + C3)
. (8.3.17)

This pertains to branch 2 , while PR = (Cε2 − 1)/(Cε1 − 1) obtains on branch 1 . The
bifurcation point is common to both branches. Hence, the value of R at bifurcation
is deduced by substituting PR = (Cε2 − 1)/(Cε1 − 1) into (8.3.17). These points are
evaluated on the two top lines of Table 8.1 for two turbulence models. The table cites
the frame rotation rates for bifurcation. They are not symmetric with respect to �F = 0.

With the standard constants Cε1 = 1.44 and Cε2 = 1.92 the ratio of production to
dissipation is PR ≈ 2.1 on branch 1. As R increases beyond the bifurcation point PR
decreases along branch 2. When PR decreases below unity λ becomes negative in
(8.3.15) and k decays algebraically with time. The value where PR = 1 is R = rr in
Figure 8.1. Its numerical value is given by (8.3.17) upon substitution of PR = 1. At
that point the solution changes from algebraic growth to algebraic decay. Restabilization
points are evaluated on the two lower lines of Table 8.1. The physical source of this
stabilization is rotation of the fluid. However, the same concepts apply to stabilization
by other external forces, such as stratification.

Linear stability theory gives the values �F/S = 1 and 0 as the stability limits for
laminar parallel shear flow (Craik, 1989). Speziale et al. (1991) proposed that an approx-
imate correspondence to linear theory is a requirement for any model that intends to

Table 8.1 Bifurcation and restabilization points in homogeneous shear.

Model P/ε rb �F+/S �F−/S

SSG 2.09 ±1.358 1.048 −0.159
LRR 2.09 ±3.136 0.689 −0.356

Model P/ε rr �F+/S �F−/S

SSG 1.00 ±1.427 1.078 −0.190
LRR 1.00 ±3.552 0.759 −0.425
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represent rotational effects on turbulence. Formula (8.3.17) gives the bifurcation and
restabilization points for linear models such as LRR. Analogous formulas can be derived
for quasi-linear models such as SSG (Pettersson Reif et al., 1999). Table 8.1 gives the
bifurcation and restabilization points, rb and rr, for the SSG and LRR models. The fourth
and fifth columns, stating values of frame rotation, were obtained by setting R = ±rb or
±rr. For parallel shear flow, �/S = −1, and the definition of R becomes

R = −1 + (2 − C2 + C3)

(1 − C2 + C3)

�F

S
.

By design, the SSG model is close to the stability values �F+/S = 1 and �F−/S = 0.

8.4 Passive scalar flux modeling

Research into turbulence closure modeling has focused primarily on momentum transport;
less attention has been paid to transport of scalars. There is a good reason for this: the
mean velocity and turbulent stresses constitute very important inputs to the scalar flux
equations. The opposite is not true: the passive scalar field is mathematically decoupled
from the dynamical equations governing the flow field. A solution of the flow field is
thus a prerequisite to solution of the scalar field. From a practical point of view, a 15%
error in the prediction of skin friction might be unacceptable in aerospace applications,
but the same level of accuracy of the heat-transfer coefficient would probably suffice in
most applications. In view of this, elaborate closure schemes seem more justified for the
turbulent stresses than for the turbulent fluxes. But there is no compulsion to dismiss the
topic of scalar flux transport in a text on turbulence modeling, and we broach the subject
in the ensuing sections.

8.4.1 Scalar diffusivity models

The notion that turbulence transports passive contaminants in much the same way as
momentum has led to closure formulations of the same ilk as eddy viscosity stress
models. The simplest scalar flux model adopts the gradient diffusion hypothesis

uic = −αT
∂C

∂xi

, (8.4.1)

where the scalar diffusivity is αT = νT/PrT, as discussed in Section 4.4, page 77. The
eddy viscosity νT is known from the solution to one of the models from Chapter 6, and
a value of the turbulent Prandtl number PrT is simply prescribed. The value chosen for
PrT depends on the flow configuration. Experimental measurements suggest that a value
of PrT ≈ 0.9 can be used in turbulent boundary layers, while PrT ≈ 0.7 is often more
suitable in free-shear flows. The turbulent Prandtl number is not a material property.
Inevitably, it can depend on many factors that influence the flow field, and a constant
value is not generally acceptable.

In many practical calculations the dominant concern is with transport across bound-
ary layers, and the scalar diffusivity assumption, with constant PrT = 0.9, is reasonably
effective; then nothing more needs to be said. However, some researchers have explored
scalar flux transport models, with more complex applications in mind.
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8.4.2 Tensor diffusivity models

For many years, development and refinement of scalar flux closures suffered tremendously
from a shortage of available experimental data. For every scalar field measurement,
there were many, many velocity field measurements. However, as more data have been
compiled over the years, it has become obvious that the gradient diffusion model (8.4.1)
has serious limitations. The use of a scalar diffusivity αT implies alignment between the
scalar flux and the mean scalar gradient. This is not always true.

To illustrate this point, consider the transport of a passive scalar in fully developed
plane channel flow with a temperature differential between the upper and lower walls.
The only mean temperature gradient is in the y direction. Figure 8.2 displays profiles of
wall normal and streamwise scalar flux obtained in a direct numerical simulation. The
maximum streamwise flux is almost an order of magnitude larger than the wall normal
flux component; but the model (8.4.1) predicts uc/vc = ∂xC/∂yC = 0. This failure to
predict the streamwise turbulent flux is not as severe as it first seems: uc does not influ-
ence the mean scalar concentration profile across the channel because the derivative ∂xuc

is zero. Only the wall normal flux ∂yvc contributes to the mean flux divergence, and only
this enters the mean concentration equation. The wall normal flux can be reasonably well
predicted by a simple formula like (8.4.1). However, this example highlights a shortcom-
ing of scalar diffusivity models that has the potential to adversely affect predictions in
complex flows of engineering interest.

The inability to predict the scalar flux vector with a gradient diffusion model could be
corrected by replacing the scalar diffusivity αT by a tensor diffusivity, also referred to as
a dispersion tensor . The simplest form is the generalized gradient diffusion hypothesis

uic = −αTij

∂C

∂xj

, (8.4.2)
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Figure 8.2 Streamwise and cross-stream scalar fluxes in plane channel flow at Rτ = 180
(Kim and Moin, 1989): uθ ( ); and vθ ( ). A temperature difference is imposed
between the top and bottom walls.
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as in Exercise 3.3. This expression is termed “generalized” because, in contrast to (8.4.1),
scalar fluxes arise in directions other than that of the mean scalar gradient. In the presence
of mean velocity gradients, αTij

will be an asymmetric tensor. For instance, Dr. M. Rogers
informs us that he found αT12/αT22 ≈ −2 and αT21/αT22 ≈ 0 in a direct numerical simu-
lation of homogeneously sheared turbulence.

A formula that does not respect the asymmetry is that of Daly and Harlow (1970):

αTij
= Ccuiuj

k

ε
.

Near a wall with a concentration gradient in the y direction, this gives vc/uc =
αT22/αT12 = v2/uv. Although a non-zero streamwise flux is produced, the predicted
value is only half of that observed in numerical simulations. Including gradients of the
mean velocity field

uic = −Cc

k

ε

(
uiuj

∂C

∂xj

+ cuj

∂Ui

∂xj

)
(8.4.3)

further improves the predictions. The introduction of the mean velocity field into (8.4.3)
might seem arbitrary. However, the term inside the bracket in (8.4.3) is nothing but the
exact rate of production of turbulent fluxes, as appears in Eq. (8.4.5), which depends on
both the mean scalar and mean velocity gradients. On dimensional grounds, it has been
multiplied by a suitable time-scale, k/ε.

Substituting the representation (8.4.2) into formula (8.4.3) shows that the correspond-
ing dispersion tensor satisfies

αTij
= Cc

k

ε

(
uiuj − αTkj

∂Ui

∂xk

)
. (8.4.4)

This algebraic formula for αT can be solved by the methods of Section 2.3.2, or, in this
case, by direct matrix inversion. It can been seen from that solution, or by inspection,
that αT is not symmetric in the presence of velocity gradients.

This formula embodies an important concept in passive scalar transport: the dispersion
tensor is a function of the turbulence, not of the contaminant. Concentration does not
appear in Eq. (8.4.4); only statistics of the turbulent velocity do. From another perspective,
this embodies the superposition principle: any representation of the flux must be linear
in the concentration. Some researchers have proposed to normalize uc by the nonlinear

term
√

kc2. That normalized flux vector produces no simplification because superposition
demands that it cannot be independent of the scalar field – as is readily apparent from
substitution into Eq. (8.4.3).

A more refined algebraic model than (8.4.4) would be needed to accurately predict
scalar flux anisotropy in complex flows. This is especially the case for flows affected
by body forces, such as buoyancy. Rather than postulating an algebraic formula for
the scalar flux vector uic, a more physically appealing approach is to solve a closed
version of the scalar flux transport equation (3.4.3). Starting from the exact equation
is physically appealing because the generation rate of fluxes is retained in its exact
form. This particular feature makes second-moment closures for Reynolds stress trans-
port seem attractive in many complex flow computations. The case that it is necessary
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to solve a full set of transport equations for the scalar flux distribution is probably less
strong; if the velocity field is properly modeled, it might suffice to adopt an algebraic
model, or perhaps just simple gradient diffusion, for the turbulent fluxes. But, even if
an algebraic model for the dispersion tensor is the route adopted, the scalar flux trans-
port equation provides an attractive starting point. Let us consider closure of the scalar
flux equation.

8.4.3 Scalar flux transport

The exact transport equation (3.4.3), page 55, for uic can be written symbolically as

Dt uic = Pic + ℘ic + Dic − εic, (8.4.5)

where

℘ic = − 1

ρ
c ∂ip,

Dic = −∂j

(
uiuj c − α ui ∂j c − ν c ∂jui

)
,

εic = (α + ν) ∂j c ∂jui,

Pic = −uiuj ∂jC − cuj ∂jUi.

The first three terms represent the pressure scalar correlation, molecular and turbulent
diffusion, and dissipation rate. They are all unclosed and need to be modeled. The last
term is the rate of production of scalar fluxes by mean scalar and velocity gradients – this
is the term that was used in Eq. (8.4.3) to model the turbulent flux.

The problem consists of how to close Eq. (8.4.5). It will suffice to consider the limit of
high Reynolds and Peclet numbers. Molecular diffusion and turbulent scrambling rapidly
remove small-scale directional preferences, so at high Reynolds numbers the small-scale
motion is nearly isotropic; this is the well-known assumption of local isotropy of the
small scales. The dissipation rate εic is associated with small scales. Since a first-order
isotropic tensor does not exist, the isotropic value of the scalar flux dissipation rate
is zero:

εic = 0.

Dispersion by random convection dominates over molecular diffusion provided the
Peclet number is large. The reason for this is provided in Section 4.4: if the flow field
has characteristic turbulent velocity, u, and length, L, the ratio of the turbulent diffusivity
(αT = Lu) to the molecular diffusivity is αT/α = Pe. So if the Peclet number is large,
turbulent dispersion controls the rate of mixing, and molecular diffusion can be neglected.

Different models for the turbulent transport term have been put forward by different
researchers. The Daly–Harlow form (Daly and Harlow, 1970) is widely used:

−∂juiuj c = Cc

k

ε
∂j

[
ujuk ∂kuic

]
. (8.4.6)

The value of Cc varies in the range 0.11 ≤ Cc ≤ 0.20; a common value is 0.15.
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In the absence of dissipative terms, only the pressure scalar correlation, ℘ic, is
responsible for counteracting production of uic. The problem of closing (8.4.5) is now
reduced to providing a model for ℘ic. If buoyancy is neglected, this term can be decom-
posed into slow and rapid parts:

℘ic = ℘ic1 + ℘ic2.

As will be shown later, a third term appears if the flow is affected by buoyancy.
The slow part ℘ic1 is associated with the problem of return to isotropy; if there are

no mean scalar or velocity gradients, an initially anisotropic scalar flux field would be
driven towards isotropy. The simplest way to achieve this is to adopt a formula in the
spirit of Rotta’s linear return model (7.1.8) for the turbulent stresses:

℘ic1 = −C1c

ε

k
uic. (8.4.7)

The coefficient C1c is usually termed the Monin constant. It is not as constant as the
corresponding coefficient used in the Rotta model. A wide range of values has been
proposed in the literature; perhaps the most commonly used is C1c = 3.0. Modifications to
(8.4.7) have been proposed to accommodate effects of turbulence anisotropy. In practice,
this has meant that nonlinear terms like uiuk ukc were added. At present there is little
motive for such elaboration.

In order to gain insight into modeling of the rapid term, ℘ic2, the approach described
in Section 7.1.4 can be adopted. The fluctuating pressure gradient is eliminated by first
solving the Poisson equation, which, for the rapid contribution, has the formal solution
given by (7.1.17). Then, by differentiating this solution with respect to xi and substituting
the result into ℘ic,

℘ic2 ≡ − 1

ρ
c ∂ip

rapid = −∂lUk

2π

∫ ∞∫
−∞

∫
[∂i∂kulc ] (ξ )

1

|ξ | d3ξ

(8.4.8)
= Mikl ∂lUk

is obtained. The right-hand side of the first line in (8.4.8) is a definite integral, so the
components of M are constants. This is exactly the same procedure as was used in
Section 7.1.4 to evaluate the rapid pressure–strain correlation term that appears in the
Reynolds stress transport equations. Obviously, the third-order tensor Mikl is analogous
to the fourth-order tensor Mijkl in Eq. (7.1.20). A normalization is obtained from the
contraction Mkkl , which, for the integral in (8.4.8), is readily evaluated as Mkkl = 2 ulc.
The reasoning is the same as used to derive (7.1.21).

In Section 7.1.4 rapid pressure–strain models were developed by expansion in
anisotropy. In isotropic turbulence, uic = 0. If Mikl is assumed to depend only on
turbulent fluxes, in accord with (8.4.8), then

Mikl = C2c ulc δik + C3c (ukc δli + uic δlk) (8.4.9)

is the most general form that is linear in anisotropy and symmetric in i and k. The rapid
term is correspondingly modeled as

℘ic2 = C2c cuk ∂kUi + C3c cuk ∂iUk.
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The normalization constraint is 3C2c + 2C3c = −2; however, this is not usually imposed
in practice.

A further term is often added to counteract the production term, based partly on
dimensional reasoning, and partly on pragmatic grounds. The general linear model,

℘ic2 = C2c cuk ∂kUi + C3c cuk ∂iUk + C4c uiuj ∂jC, (8.4.10)

is then obtained. There is no consensus in the literature on values for the constants:
Launder (1989) gives C2c = 0.4, C3c = 0, C4c = 0; Craft et al. (1993) give C2c = 0.5,
C3c = 0, C4c = 0; and Durbin (1993) gives C2c = 0, C3c = 0, C4c = 0.45 with C1c = 2.5.
Based on these, we will adopt C2c = 0 and C3c = 0, which greatly simplifies this model.
On substituting the closure (8.4.10) into (8.4.5), it becomes

dt uic = −C1c

ε

k
uic + (C4c − 1) uiuj ∂jC − cuj ∂jUi (8.4.11)

in homogeneous turbulence.
Closure has now been devised for the set of equations governing the transport of pas-

sive scalar fluxes. The advantages of solving the additional partial differential equations
in practical computations are debatable; it may suffice to simplify them to obtain a set of
algebraic equations. In general, this is a difficult exercise; but results are readily obtained
in the important case of homogeneously sheared turbulence.

8.4.3.1 Equilibrium solution for homogeneous shear

The form of Eq. (8.4.11) suggests that a solution be sought in the form

uic = −αTij
∂jC.

The mean scalar gradient evolves under homogeneous distortion according to
d(∂jC)/dt = −∂jUk ∂kC. Hence, the evolution equation for αT, obtained from (8.4.11)
by inserting the above representation of uic, is

dαTij

dt
= (1 − C4c) uiuj − C1cε

k
αTij

+ αTik
∂kUj − αTkj

∂kUi. (8.4.12)

Under conditions of equilibrium, αT will not be constant, but the ratio αT/νT will. This
implies that a solution to Eq. (8.4.12) should be of the form

αTij
= Kijk

2/ε,

with Kij being constant in equilibrium. Substituting this form, setting dtKij = 0, and
invoking the k–ε equations for dt k and dt ε, provides a set of algebraic equations for Kij

(Shabany and Durbin, 1997).
For a uniform shear flow, U = Sy, the equilibrium solution to (8.4.12) obtained by

the above procedure is

K11 = (1 − C4c)gk[τ11 − 2(gkS)2τ22],
K22 = (1 − C4c)gkτ22,

K12 = (1 − C4c)gk[τ12 − gkSτ22],
K21 = (1 − C4c)gk[τ12 + gkSτ22],
K33 = (1 − C4c)gkτ33,

(8.4.13)
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where

1

gk

= C1c + (2 − Cε1)P/ε + Cε2 − 2,

S = Sk/ε, and τij = uiuj/k. A log-layer analysis shows that this solution applies there,
as well, except that

g−1
k = C1c.

Solution (8.4.13) illustrates the ability of the full transport closure to capture the
asymmetry of the dispersion tensor. Because τ12 < 0, the qualitative effect is that K21 is
decreased in magnitude by shear and the magnitude of K12 is increased. Also K12 < 0.
The solution for K11 raises the concern that K11 might become negative at large S, which
is unphysical.

If the temperature gradient is in the y direction, then a turbulent Prandtl number can
be defined as

PrT = νT

αT22

= C1cCµ

1 − C4c

, (8.4.14)

where the v2 –f formula νT = Cµτ22k
2/ε was used and the log-layer value for gk was

substituted. The model constants should be chosen to produce a plausible value of PrT.

8.4.4 Scalar variance

A section on scalar variance is interposed here, in preparation for the ensuing material on
buoyancy. Analysis of scalar variance is of interest in its own right, but it also appears
explicitly in the scalar flux equation for turbulent buoyant flow.

The equation governing scalar variance is obtained by multiplying Eq. (3.4.1), for the
instantaneous value of the scalar (C + c), by c and averaging. The result is

Dt c2 = α∇2c2 − ∂juj c2 − 2 ujc ∂jC − 2α ∂j c ∂j c. (8.4.15)

The first two terms on the right-hand side of (8.4.15) represent molecular and turbulent
transport, whereas the third is the rate of variance production due to mean scalar gradients.
The last term is the scalar variance dissipation rate, which will be denoted εc. This
equation resembles the turbulent energy transport equation, except that pressure-diffusion
is absent. The majority of proposals to close the turbulent transport term in (8.4.15) have
adopted gradient transport:

−∂iuic2 = ∂i

(
Cc uiuj T ∂j c2

)
. (8.4.16)

The more important term to close in (8.4.15) is the rate of dissipation, εc. It could
be obtained from its own modeled transport equation, in the vein of two-equation stress
models. We will describe the simpler approach of invoking a time-scale ratio. The ratio
of mechanical to scalar time-scales is defined by

R ≡ k/ε

c2/εc

. (8.4.17)
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Assuming R to be a universal constant gives the unostentatious closure

εc = Rc2

k
ε. (8.4.18)

The rate of scalar dissipation is made proportionate to the rate of energy dissipation
Any experiment can be used to measure R if it is fundamentally a constant. Decaying

isotropic turbulence is a natural. In homogeneous isotropic turbulence, the scalar variance
equation reduces to

dt c2 = −Rε

k
c2 = −nRc2

t
,

where n is the decay exponent of k. The solution is c2 ∝ t−m, where m = nR. One need
only measure the decay exponents, n and m, of k and c2 to obtain the time-scale ratio.

While experiments on the decay rate of turbulent kinetic energy show that n is rea-
sonably constant, and equal to about 1.2, the scalar decay exponent, m, has been found
to vary over the range 1.0–3.0 (Warhaft, 2000). Hence R is not a constant in grid turbu-
lence. The range of measured values does not reflect lack of reproducibility. The evidence
is that the variation of R is systematic and that it depends on the initial length scale of
the contaminant relative to that of the velocity.

That tendency for scalar variance to be sensitive to source conditions is found for
concentrated sources too (Borgas and Sawford, 1996). Such dependence on initial con-
ditions can be explained theoretically by relating scalar variance to relative dispersion
of particle pairs (Durbin, 1980) (see Exercise 2.3). When the integral length scale of the
contaminant concentration is comparable to, or less than, that of the velocity, scalar
variance is predicted by the theory to be a function of the shape of the two-point
velocity correlation. Unfortunately, practical prediction methods have not benefited from
this theory.

In the presence of a uniform mean scalar gradient, R is found to be more nearly
constant and equal to about 1.5 (Warhaft, 2000). This gives some hope that a constant
time-scale ratio model (8.4.18) will be a reasonable estimate in some circumstances.

8.5 Active scalar flux modeling: effects of buoyancy

Buoyancy effects arise in a group of problems that include the dynamics of atmospheric
and oceanic boundary layers, and convective cooling. Predictions of heat transfer with
buoyancy are needed in many engineering applications. Apart from generating turbulence
anisotropy, buoyancy gives rise to changes of turbulence structure and intensity in much
the same way as streamline curvature does: it may either enhance or suppress turbulence
intensity. When density increases in the direction of gravity, the stratification is stable
and tends to suppress turbulent energy.

Buoyant forces are due to variations in the density of the fluid caused by differences
in the scalar concentration. They give rise to a fluctuating body force in the vertical
momentum equation. This body force affects both the mean flow field and the turbulence.
We will focus our attention on incompressible fluids and will invoke the Boussinesq
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approximation. The latter approximation is that density variations can be neglected in
inertial terms, but not when they are multiplied by gravity.

When the contaminant is dynamically active, the equations governing its concentration
are coupled to the momentum equations. The Reynolds stress equations depend on the
scalar flux and vice versa. A fluctuating concentration field causes density fluctuations
ρ ′ = −ρβc, where β is defined as the expansion coefficient at a fixed mean state,

β ≡ [−∂ log(ρ)/∂c]C.

Note that, if c is temperature, β is positive because increase of temperature causes
decrease of density. It is assumed that density variations are not large, consistent with
the Boussinesq assumption.

In the presence of gravity, the fluctuating density enters the Navier–Stokes equations
through a fluctuating body force giρ

′/ρ, which can be rewritten as −giβc. This extra
term is added to the right-hand side of the fluctuation momentum equation (3.2.3). Note
that g is a vector in the direction of gravity, which is often the −y direction. In some
applications, such as to rotating machinery, the effective gravity is due to centrifugal
acceleration and is directed toward the center of curvature.

Let us start by writing down the set of governing equations under the condition of
homogeneity. This is sufficiently general since the terms containing gravity are the same
in homogeneous and non-homogeneous flow. If buoyancy effects are added, the exact
transport equation for the turbulent flux is

dt uic = Pic + ℘ic − εic + Gic, (8.5.1)

where only the last term is new to (8.4.5). Its explicit statement is

Gic = −giβc2. (8.5.2)

Because of it, the components of the scalar flux vector now depend on the scalar variance.
Again, local isotropy is usually invoked to set εic = 0.

Under the same conditions that (8.5.1) is valid, the turbulent stress transport equation
becomes

dt uiuj = Pij + ℘ij − 2
3εδij + Gij . (8.5.3)

This is identical to (7.1.4) except for the last term on the right-hand side,

Gij = −β(giuj c + gjuic). (8.5.4)

This is often referred to as the gravitational production term. Since Gij contains ujc, the
second-moment equations for Reynolds stress and for scalar flux are now fully coupled.

Half the trace of (8.5.4) defines the turbulent kinetic energy equation

dt k = P + G − ε, (8.5.5)

where G = −βgiuic. The buoyancy terms in (8.5.4) and (8.5.5) are exact once the scalar
flux field is known. Hence, the direct influence of the gravitational field on the turbulent
field is exactly represented.
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Minus the ratio of buoyant to stress production of turbulent kinetic energy in parallel
shear flow defines the flux Richardson number

Rif ≡ −G

P = β cui gi

−uiuj ∂jUi

. (8.5.6)

In the numerator, −G is used so that Rif parameterizes the stabilizing effect of strat-
ification. When Rif > 0, the density gradient suppresses turbulence. The kinetic energy
equation can be re-expressed as

dt k = P(1 − Rif) − ε.

Mixing length ideas have been used previously to argue that, if ∂2U1 > 0, the shear
stress u1u2 < 0. By that same rationale, if ∂2C > 0, one expects cu2 < 0. If c is tem-
perature, this corresponds to downward heat transfer in a parallel shear flow. Downward
transfer works against gravity, so in this case the buoyant production becomes negative
and Rif > 0 (recall that g points downward, in the direction of gravity); turbulent kinetic
energy is lost. Similarly, if the heat transfer is upwards, cu2 > 0, the buoyant production
is positive and Rif < 0; turbulent kinetic energy is augmented. Observations have shown
that turbulence cannot be sustained under the stabilizing effect of buoyancy if Rif � 0.2
(Turner, 1980).

It is natural also to sensitize the modeled dissipation rate equation to buoyancy. This
is usually done by replacing the mean shear production P with P + G. That gives the
revised equation

dt ε = ε

k
[Cε1(P + G) − Cε2ε]. (8.5.7)

Let us explore the condition of structural equilibrium. Consider a uniform shear
flow with mean shear S. The equation for the ratio of mean to turbulent time-scale can
be written

1

S
d

dt

( ε

Sk

)
=
[
(1 − Rif)(Cε1 − 1)

P
ε

− (Cε2 − 1)

] ( ε

Sk

)2
(8.5.8)

by using (8.5.5)–(8.5.7). Equilibrium requires dt (ε/Sk) = 0, giving

P
ε

= Cε2 − 1

(1 − Rif)(Cε1 − 1)
. (8.5.9)

The model cannot sustain equilibrium if Rif ≥ 1, or G ≤ −P. This only says that shear
production must exceed buoyant suppression if the turbulence is to survive. In prac-
tice, stable stratification overcomes shear if G � −0.2P. The reason that stabilization is
stronger than simple energetics would suggest is because it also alters the Reynolds shear
stress. To understand this, the Reynolds stress budgets must be examined.
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8.5.1 Second-moment transport models

Indirect influences of buoyancy are hidden in the redistribution terms, ℘ic in (8.5.1)
and ℘ij in (8.5.3). The fluctuating body force caused by density irregularities induces a
fluctuating pressure field. Again, consider the free-space solution (7.1.17), page 163, of
the Poisson equation for pressure, this time including the gravitational contribution. Now
the pressure scalar correlation vector splits into three parts,

℘ic = ℘ic1 + ℘ic2 + ℘ic3.

The extra term is associated with the gravitational field. Similarly to the analysis of ℘ic2

on page 239, ℘ic3 can be expressed formally as

℘ic3 = − 1

4π

∫ ∞∫
−∞

∫
βgk

∂i∂k[cc(ξ )]

|ξ | d3ξ , (8.5.10)

where cc(ξ ) stands for a two-point correlation function c(x)c(x + ξ). Comparing this
expression for ℘ic3 to Eq. (8.4.8) for ℘ic2, one sees that the former is of the form

℘ic3 = βgkMki,

where Mki represents the integral in (8.5.10). Assuming that Mki only depends on the
scalar variance, the most general form is then

Mki = C5c c2δki . (8.5.11)

The contraction Mkk , obtained from the integral (8.5.10), is Mkk = c2. This follows from
the rationale below Eq. (7.1.21)∗ that ∇−2∇2 = 1. Applying this constraint to (8.5.11)
gives C5c = 1

3 . The pressure scalar term can thus be modeled as

℘ic3 = C5cβgic2, (8.5.12)

with the theoretical value C5c = 1
3 .

The Reynolds stress is also indirectly affected by the gravitational field through pres-
sure fluctuations. As was done above for the scalar flux equation, the pressure–strain
correlation is decomposed into three parts: ℘ij = ℘ij1 + ℘ij2 + ℘ij3. An isotropization
of production (IP) type of model can be adopted. The IP formulation is described in
Section 7.1.4. Quite simply, redistribution is assumed proportional to the anisotropic part
of buoyant production as in

℘ij3 = −C4(Gij − 2
3Gδij ). (8.5.13)

A value of C4 = 3
5 is quoted in Launder (1989), whereas Gibson and Launder (1978)

proposed the value C4 = 0.5.

∗ Alternatively, f (x) = − 1

4π

∫ ∞∫
−∞

∫ ∇2
ξ cc(ξ)

|ξ − x| d3ξ is the solution to ∇2f (x) = ∇2cc(x) and satisfies f (0) =

Mkk . Clearly f (x) = cc(x), which is the desired result.
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As is often the case, model constants are not uniquely specified by experimental
measurements. They are interdependent, and must be selected in aggregate to repro-
duce certain well-founded data; for instance, the constants appearing in Eq. (8.4.14) are
related to turbulent Prandtl number. An important quantity in stratified flow is the critical
Richardson number. Model predictions of it are discussed in the following.

8.5.2 Stratified shear flow

The complete set of equations that generalize the IP model to buoyant flow is obtained
by assembling formulas from the previous section. In short,

dt uic = −C1c

ε

k
uic − (1 − C4c) uiuj ∂jC − cuj ∂jUi − (1 − C5c)βgic2,

dt c2 = −2 cuj ∂jC − Rε

k
c2,

dt ε = [Cε1(P + G) − Cε2ε]
ε

k
, (8.5.14)

dt uiuj = −C1
ε

k
(uiuj − 2

3kδij ) − (1 − C2)
(
uiuk ∂kUj + ujuk ∂kUi

)
+ 2

3C2Pδij − (1 − C4)β
(
cujgi + cuigj

)+ 2
3C4Gδij − 2

3εδij .

These will be solved for uniformly stratified, homogeneous shear flow in order to illustrate
the stabilizing effect of stratification. The mean flow and concentration consist of U and
C varying linearly in the y direction, which is also the direction of gravity. Under this
circumstance, the variables in Eq. (8.5.14) can be non-dimensionalized so that they are
functions only of the gradient Richardson number,

Rig ≡ gβ ∂yC/(∂yU)2,

and of time. Here g is the magnitude of gi (which is in the −y direction.) If an eddy vis-
cosity and conductivity model were used, then the flux and gradient Richardson numbers
would be directly related by

Rif = gβαT ∂yC

νT(∂yU)2
= Rig

PrT
.

The ratio Rig/Rif is a sort of turbulent Prandtl number; hence, one expects it to be of
order unity.

After an initial transient, the numerical solution to the system of equations (8.5.14)
achieves a state of moving equilibrium, in which k might be growing or decaying, but
Sk/ε becomes constant. The situation is analogous to that described in Section 8.3.3,
except now c2 and the scalar fluxes also evolve with time, but attain an equilibrium
when normalized by k. The gradient Richardson number plays the role of a bifurcation
parameter in this problem.
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Figure 8.3 Ratio of production to dissipation versus gradient Richardson number in
stratified shear flow. The solid line is ε/Sk; the dotted line is the ratio of the flux to
gradient Richardson numbers.

The model was solved for the set of constants

C1c = 2.5, C4c = 0.45, C5c = 1/3, C1 = 1.8, C2 = 0.6, C4 = 0.1,R = 1.5

to generate Figure 8.3. As in the homogeneous shear flow computations of Section
7.2.1, the values Cε1 = 1.5 and Cε2 = 1.8 were used to produce the equilibrium value
P/ε = 1.6 in neutrally stratified, homogeneous shear flow. The value of C4 is lower
than in Gibson and Launder (1978) in order to obtain a critical gradient Richardson
number of about 0.25. Linear stability theory gives Rig = 0.25 for stabilization by
negative buoyancy.

Figure 8.3 is analogous to Figure 8.1; it shows how stratification causes the solution to
bifurcate from a constant (P + G)/ε branch to one on which the turbulence is suppressed.
The solid curve shows how ε/Sk varies on the first branch, and vanishes after bifurca-
tion. The critical Richardson number is defined as the value at which (P + G)/ε = 1;
at larger values of Ri, the turbulence decays. Figure 8.3 shows that the theoretical value
of 0.25 is captured reasonably well by the set of constants chosen for the computa-
tion. Note that the bifurcation point, where ε/Sk vanishes, is at the smaller value of
Rig ≈ 0.16.

As a practical matter, the equilibrium solution can be used to modify an eddy viscosity
model such that it mimics suppression of turbulence by stable stratification; this is entirely
analogous to the method of representing effects of rotation by a variable Cµ that was
described in Section 8.3.3. The formulation of Mellor and Yamada (1982) is widely used
in geophysical fluid dynamics.

Exercises

Exercise 8.1. Objective tensors. Show that the absolute vorticity tensor �A
ij =

1
2 (∂Vi/∂xj − ∂Vj/∂xi) + εjik�

F
k transforms properly under the arbitrary change of

reference frame in Eq. (8.1.5).
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Exercise 8.2. Realizability by stochastic equations. If a model can be derived from a
well-defined random process, then by definition it is realizable. Consider a random veloc-
ity vector that satisfies

ui(t + dt) =
(

1 − a dt

T

)
ui(t) +

√
bk dt

T
ξi(t).

Here ξ is a vector version of the random variable used in Eq. (2.2.10), which has the
additional property that

ξiξj = δij ,

a and b are coefficients that will be determined, and k is the turbulent kinetic energy,
as usual.

(i) Derive the evolution equation for the Reynolds stress tensor uiuj .

(ii) Assume the high Reynolds number formula T = k/ε and determine a and b such that
the Reynolds stress evolution equation is identical to the Rotta model for decaying
anisotropic turbulence.

(iii) What realizability constraint is implied by the square root in the first equation above?

Exercise 8.3. Bifurcation. Verify (8.3.14). Substitute constants and plot the bifurcation
curve for the LRR model.

Exercise 8.4. Nonlinear constitutive equations. In constitutive modeling, the coefficients
in Eq. (8.3.8) are regarded as unknown functions of |S| and |W | that can be formulated
with complete freedom, provided they are dimensionally consistent. However, useful
constraints can be obtained by invoking realizability. Consider a general two-dimensional
mean flow field where the mean rate of strain and mean vorticity tensors can be written
according to (8.3.3) and let

b = 2CµS + B(� · S − S · �) + C(S2 − 1
3 |S|2δ).

Show that, for the flow (8.3.3), the constraints

B2 ≤ [( 2
3 + 1

3cS2)2 − (2CµS)2]/(2�S)2

and

C ≤ min[1/S2, 3( 4
3 − 2Cµ|S|)/S2]

ensure that a (quadratically) nonlinear model is realizable. Here S and � are understood
to be non-dimensionalized by k/ε.
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Mathematical representations

Then I come along and try differentiating under the integral sign, and often it
worked. So I got a great reputation for doing integrals, only because my box of tools
was different . . .

–Richard Feynman

The emphasis of this book is on single-point statistical theory and modeling for turbulence.
Those subjects sometimes benefit from ideas evolved out of two-point and spectral theory;
the latter are introduced in the present chapter to round out the scope of the book. The
focus will be on the basic analytical concepts that underlie spectral theory. The intent is to
provide exposure to some important areas of turbulence theory, without delving into their
greater intricacies. A thorough treatment, including advanced mathematical techniques,
can be found in the monograph by McComb (1990).

The theory of statistically homogeneous turbulence forms a backbone for a vast
amount of research into fluid dynamical turbulence. The theory gels around spectral
representation of two-point correlations. After covering formalisms and definitions in
the present chapter, matters of turbulence physics and modeling will be discussed in
Chapter 10. The final chapter of Part III is on rapid distortion theory.

The Fourier transform is the central mathematical tool of homogeneous turbulence
theory. The classical conception of the spectrum of scales in turbulent flow was explained
in Section 2.1. Fourier modes were introduced in that section, equating wavenumber
components with “eddies” of differing size. In loosely used terminology, a “large eddy”
was synonymous with a low wavenumber; a “small eddy” alluded to a high wavenumber.
The Kolmogoroff κ−5/3 law arose in an intermediate range of scales. Such was a prelude
to the more elaborate theory developed below.

Recall that homogeneity means translational invariance of statistics in space
(Section 2.2). Single-point statistics are independent of position; two-point statistics are
a function of the relative position of the two points, but not of the absolute position

Statistical Theory and Modeling for Turbulent Flows, Second Edition P. A. Durbin and B. A. Pettersson Reif
 2011 John Wiley & Sons, Ltd
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of the individual points. For example, u(x)u(x′) is a function of x − x′, but not of x

and x′ individually. This property follows from invariance with respect to translation
of the origin of the coordinate system. Translational invariance is easily embedded into
Fourier representations. Consider an oscillation, u(x) = eikx . Its complex conjugate, at
x′, is u∗(x′) = e−ikx′

. Their product is

u(x)u∗(x′) = eik(x−x′).

The functional dependence on x − x′ is just that required for homogeneous
two-point statistics. This is one reason why Fourier analysis is so useful for
homogeneous turbulence.

The corollary, that Fourier spectra are not useful in non-homogeneous turbulence,
should not be confused with the use of Fourier transforms in analysis. In the latter case,
Fourier transforms provide a complete basis for solving a certain equation, irrespective
of whether or not the equation describes properties of a random process. In the present
application, Fourier spectra provide a statistical description of random fields. This is
why the restriction is to homogeneity. It will be seen that each random Fourier mode is
uncorrelated with all others in homogeneous turbulence: that is another of the properties
of Fourier transforms that makes them especially suited to present purposes. A third
property is that they convert differential equations into algebraic equations. We begin
with a brief discussion of the generalized Fourier transform.

9.1 Fourier transforms

The notion of a “generalized” Fourier transform is required for many applications
(Lightill, 1958). Why? The conventional Fourier transform is defined for absolutely
integrable functions, ∫ ∞

−∞
|f (x)| dx < ∞.

However, integrals like

∫ ∞∫
−∞

∫
|u(x)| d3x

are not convergent in homogeneous turbulence; a more flexible definition of the Fourier
transform is needed.

Alternatively, consider a function like f (x) = x. What is its Fourier transform? Trans-
forms of powers of x are not defined in the classical sense. The generalized Fourier
transform covers such cases. More significantly for present developments, it encompasses
unconventional functions like the δ function. This function is defined by∫ ∞

−∞
f (x′)δ(x − x′) dx′ = f (x), for anyf (x). (9.1.1)
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Loosely, δ(x) = 0 when x �= 0 and δ(0) = ∞, such that∫ ∞

−∞
δ(x) dx = 1.

This is extended in three dimensions to δ(x) = 0 when x �= 0, y �= 0, z �= 0, and∫ ∞∫
−∞

∫
δ(x) d3x = 1.

One way to think of the δ function is as the limit ε → 0 of the Gaussian, bell-shaped
function

δ(x) = lim
ε→0

e−x2/ε2

√
π ε

(9.1.2)

in one dimension or

δ(x) = δ(x)δ(y)δ(z) = lim
ε→0

e−(x2+y2+z2)/ε2

π3/2ε3

in three dimensions. These functions vanish in the limit ε → 0 if x2 �= 0, or if x2 + y2 +
z2 �= 0, respectively. They both integrate to unity.

The generalized Fourier transform is simply the usual Fourier transform with rules
for interpreting integrals that do not converge in the classical sense. In some cases,
the definition of a generalized Fourier transform can be formalized via a convergence
factor: sometimes

f̂ (k) = lim
ε→0

1

2π

∫ ∞

−∞
e−|x|ε eikxf (x) dx ≡ Fk(f (x)) (9.1.3)

works. If ε ≡ 0, this is the classical definition. In practice, the formal limiting process
can usually be avoided. A rather useful example of the generalized transform is

Fk(δ) = 1

2π

∫ ∞

−∞
eikx′

δ(x′) dx′ = 1

2π
, (9.1.4)

which follows from (9.1.1) with x = 0 and f (x) = eikx .
The inverse Fourier transform is defined by

f (x) =
∫ ∞

−∞
f̂ (k) e−ikx dk ≡ F−1

x

[
f̂ (k)
]
. (9.1.5)

Note the convention of using a hat (ˆ) for the transformed variable and no hat for the
variable in physical space. An important example for present purposes is

2πδ(x) =
∫ ∞

−∞
e−ikx dk. (9.1.6)

To see this, invert (9.1.4): F−1
x [1/2π] = F−1[F(δ(x))] = δ(x). The evaluation (9.1.6) is

proved directly in Exercise 9.1–incidentally, that inversion also proves that F−1 is truly
the inverse operation to F.
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9.2 Three-dimensional energy spectrum
of homogeneous turbulence

A curious result is that, in homogeneous turbulence, the wavenumber components of the
Fourier transform of velocity are uncorrelated: specifically, ûi (k)û∗

i (k
′) = 0 if k �= k′.

This is an application of (9.1.6). It was mentioned earlier that the lack of correlation
between different wavenumber components is one of the properties of Fourier modes
that makes them especially suited to statistical description of homogeneous turbulence.

The three-dimensional Fourier transform of the velocity is

ûi (k) = 1

(2π)3

∫ ∞∫
−∞

∫
eik·xui(x) d3x. (9.2.1)

Since u(x) is a real-valued function, the complex conjugate of the integral is the same
as the integral with k replaced by −k. Therefore, the curious result can also be stated as
ûi (k)ûi(−k′) = 0 if k′ �= k.

The result is less mysterious if it is derived. The two-wavenumber correlation function
can be related to the two-point spatial correlation function. Multiplying Eq. (9.2.1) by its
complex conjugate, with k replaced by k′, gives

ûi (k)û∗
i (k

′) = 1

(2π)6

∫ ∞∫
−∞

∫
ui(x) eik·x d3x

∫ ∞∫
−∞

∫
ui(x ′) e−ik′·x′ d3x ′ (9.2.2)

= 1

(2π)6

∫ ∞∫
−∞

∫ ∫ ∞∫
−∞

∫
ui(x)ui(x′) ei(k·x−k′·x′) d3x d3x′.

By the very definition of homogeneity, the correlation function ui(x)ui(x ′) depends only
on the difference between x and x′. Let r = x − x′. Then

ui(x)ui(x′) = q2R(r),

where q2 ≡ uiui is the turbulence intensity and R is a correlation function.
Continuing with Eq. (9.2.2)

ûi(k)û∗
i (k

′) = q2

(2π)6

∫ ∞∫
−∞

∫ ∫ ∞∫
−∞

∫
eik·r ei(k−k′)·x′

R(r) d3x ′ d3r (9.2.3)

= q2

(2π)6

∫ ∞∫
−∞

∫
ei(k−k′)·x ′

d3x ′
∫ ∞∫
−∞

∫
eik·rR(r) d3r

= δ(k − k′)�(k).

The x′ integral provides the δ function. Because the δ function is zero when k �= k′, the
desired result has been proved: the complex conjugate Fourier coefficients of disparate
wavenumbers are uncorrelated.
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In (9.2.3) the spectral density is defined by

�(k) ≡ q2

(2π)3

∫ ∞∫
−∞

∫
eik·rR(r) d3r. (9.2.4)

It is the Fourier transform of the correlation function. Homogeneity implies that
Rii(−r) = Rii(r); it follows from this and (9.2.4) that �(k) = �∗(k) = �(−k).

9.2.1 Spectrum tensor and velocity covariances

The spectral density (9.2.4) is a scalar. A Reynolds stress spectrum tensor, �ij (k), can
be defined by analogy. To this end, the relation (9.2.3) is invoked. The spectrum tensor
is related to the correlation of the Fourier components of the velocity by

Re
[
ûi (k)û∗

j (k
′)
]

= δ(k − k′)�ij (k). (9.2.5)

(Recall that û∗ denotes the complex conjugate.) This spectrum tensor is the Fourier trans-
form partner of the two-point velocity covariance, as shown by the following argument.
The Fourier representation of u is

ui(x) =
∫ ∞∫
−∞

∫
ûi (k) e−ik·x d3k =

∫ ∞∫
−∞

∫
û∗

i (k) eik·x d3k. (9.2.6)

Multiplying this by itself with i replaced by j and x replaced by x′ gives

ui(x)uj (x′) = 1

2

∫ ∞∫
−∞

∫ ∫ ∞∫
−∞

∫ [
ûi (k)û∗

j (k
′) + û∗

i (k
′)ûj (k)

]
ei(k′·x′−k·x) d3k d3k′

=
∫ ∞∫
−∞

∫
�ij (k) eik·(x′−x)d3k (9.2.7)

for the two-point velocity covariance. Equation (9.2.5) was used. In homogeneous tur-
bulence, ui(x)uj (x ′) is a function only of the difference x − x ′ of measurement points;
Eq. (9.2.7) is consistent with this. The δ function in (9.2.5) ensures homogeneity in
(9.2.7). Hence it has been shown that uiuj (x − x′) = F−1(�ij ). The statement that the
spectrum tensor and two-point velocity covariance are Fourier transform partners means
that the inversion of Eq. (9.2.7) gives �ij if uiuj (r) is known: thus, the spectrum tensor
is computed as

�ij (k) = 1

(2π)3

∫ ∞∫
−∞

∫
uiuj (r) eik·r d3r. (9.2.8)

The two-point correlation is constructed in (9.2.7) by a superposition of Fourier
modes. Each one of these modes extends in an oscillatory manner to x = ±∞ with-
out decrease in amplitude; it does not have the spatial localization associated with a
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physical eddy. One might wonder how this is consistent with the fact that the correlation
function Rij (r) ≡ ui(x)uj (x ′)/q2 usually decays as r → ∞. The connection essentially
is by the phenomenon of statistical scrambling: a sum of random oscillations, as on the
right of Eq. (9.2.6), can produce a localized correlation on the left of (9.2.7). A corollary
is that the association of Fourier modes with instantaneous eddies should be treated with
some skepticism. Eddies are localized structures; Fourier modes are not. Nevertheless, the
sum of random Fourier modes produces a localized correlation function that represents
eddies on a statistical level.

Evaluating the trace of (9.2.7) at x = x′ gives

q2 =
∫ ∞∫
−∞

∫
�ii(k) d3k. (9.2.9)

If �ii(k) is only a function of the magnitude |k|2 = k2
1 + k2

2 + k2
3, and the notation |k| ≡ κ

is used, then this integral simplifies in spherical coordinates to

q2 =
∫ ∞

0
�ii(κ)4πκ2 dκ. (9.2.10)

If �ii(k) is a function of the direction as well as of the magnitude of k, then �ii(κ) can
be defined as the spectrum averaged over spheres of |k| = constant:

�ii(κ) = 1

4π

∫ 2π

0

∫ π

0
�ii(κ cos θ, κ sin θ cos φ, κ sin θ sin φ) sin θ dθ dφ.

The spherically symmetric energy spectral density is defined by

E(κ) = 2π�ii(κ)κ2. (9.2.11)

A factor of 2π appears here, instead of 4π , so that the integral of E equals the turbulent
kinetic energy, ∫ ∞

0
E(κ) dκ = 1

2q2 = k.

The energy spectral density E(κ) is the same as that which appears in the Kolmogo-
roff −5/3 law (2.1.3), page 18. Its form is sketched in Figure 9.1. Here E(κ) is the
energy density within spherical shells in spectral space. The term energy density is used
because E(κ) dκ is the energy (per unit mass) in between spheres of radius κ and κ + dκ .
Summing all these infinitesimal energies gives the total kinetic energy 1

2q2.
Note that E(κ) is not the quantity plotted in Figure 2.1 on page 17; the latter is a

one-dimensional spectrum, �11(k1). As in Exercise 9.3, a one-dimensional spectrum can
be defined by integrating over the other two wavenumber directions,

�ij (k1) =
∫ ∞∫
−∞

�ij (k1, k2, k3) dk2 dk3. (9.2.12)
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Figure 9.1 Schematic of the turbulent energy spectrum.

The letter � distinguishes the 1D spectrum from the letter � used for the 3D spectrum. As
explained in connection with Figure 2.1, �ij (k1) is the spectrum that is usually measured
in a wind tunnel. From Eqs. (9.2.8) and (9.1.6) it follows that the one-dimensional
spectrum is the Fourier transform of the corresponding unidirectional correlation function,

�ij (k1) = 1

2π

∫ ∞

∞
uiuj (r1, 0, 0) eik1r1 dr1. (9.2.13)

9.2.2 Modeling the energy spectrum

The exposition so far has consisted only of definitions. Connections to the properties of
turbulent fluid dynamics are met initially by considering constraints imposed by kine-
matics and by scaling. The role of dynamics is discussed in Chapter 10.

Incompressible flow satisfies the constraint ∂iui = 0 = ∇ · u. In Fourier space, the
divergence is replaced by a dot product, ∇ · u ↔ −ik · û. The rationale follows from (9.2.6),

∂iui = ∂i

∫ ∞∫
−∞

∫
ûi e−ik·x d3k =

∫ ∞∫
−∞

∫
−iki ûi e−ik·x d3k (9.2.14)

upon differentiating under the integral (as recommended by Feynman in the quote that heads
this chapter). Incompressibility in physical space ∂iui = 0 implies ki ûi = 0 in wavenumber
space: the velocity is orthogonal to the wavevector – a nice concept. The same reasoning
applied to (9.2.7) shows that

ki�ij = 0 = �ijkj . (9.2.15)

This follows because ∂xi
ui(x)uj (x ′) = [∂xi

ui(x)]uj (x′) = 0 and, similarly,
∂x′

j
ui(x)uj (x ′) = 0. The left-most term in Eq. (9.2.15) is the Fourier transform of

∂xi
ui(x)uj (x ′); the right-most is the Fourier transform of ∂x′

i
ui(x)uj (x′).
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9.2.2.1 Isotropic turbulence

The form of �ij is constrained by incompressibility (9.2.15). Symmetry constraints can
also be imposed. The most common of these is full isotropic symmetry.

Isotropy implies no directional preference. Hence there can be no external forcing
of the flow, and no direction of mean shearing or straining. This limits the immediate
applicability of isotropic turbulence, but provides an enormous benefit to theoretical devel-
opments. The theory of isotropic turbulence has contributed to the conceptual framework
that engineers and scientists use as a foothold on turbulence phenomena.

The basic ideas of isotropy are presented in Section 2.3.1. The same type of intuitive
reasoning described there can be applied to two-point correlations. Consider the corre-
lation u(x, y)v(x, y′). Reflection in the y –z plane transforms u to −u, v to v, and x

to −x, as illustrated by Figure 9.2. Homogeneity requires that statistics at points x and
−x be equivalent. Therefore, reflectional invariance in the y –z plane asserts that

u(x, y)v(x, y′) = −u(x, y)v(x, y′) = 0.

Similar considerations about reflection in the x –y plane show that the u–v correlation
is zero unless the velocities are evaluated at two distinct sets of coordinates, (x, y) and
(x ′, y′). Invariance under rotation and reflection leads to the requirement that

u(x, y)v(x′, y′) ∝ (x − x′)(y − y′).

For instance, reflectional invariance in the x –z plane gives

u(x, y)v(x′, y′) = −u(x, y′)v(x′, y),

which is effected in the formula by (y − y′) → −(y − y′) under reflection.
Although the sort of reasoning illustrated in Figure 9.2 gives a conceptual basis for

isotropic formulas, an algebraic approach is generally more manageable. The algebraic
approach will be developed in wavenumber space. If the spectrum tensor �ij is isotropic,
it can only be a function of ki and δij ; there are no other independent variables available.

Single point

uv
uv = 0

reflection

−uv

Two-point

u(x,y )

v (x ’,y ’)
reflection

u(x,y ’)

−v (x ’,y ) u(x,y ),v (x ’,y ’) ∝ (x-x ’)(y-y ’)

Figure 9.2 Illustrations for isotropic invariance.
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The absence of any distinctive direction immediately leads to isotropic statistics. The
only tensor form consistent with the given functional dependence is

�ij = A(|k|)δij + B(|k|)kikj . (9.2.16)

This is the most general form that has the same free indices, i, j , on both sides. The
coefficients A and B are permitted to be functions of the magnitude of k. The continuity
constraint (9.2.15) imposes

[A(|k|)δij + B(|k|)kikj ]kj = A(|k|)ki + B(|k|)ki |k|2 = 0

or B = −A/|k|2. The trace of (9.2.16) must reproduce (9.2.11) with κ = |k|. It fol-
lows that

�ij = E(|k|)
4π |k|2

(
δij − kikj

|k|2
)

(9.2.17)

is the most general form for the isotropic, incompressible energy spectrum tensor. In this
expression, E is an arbitrary scalar function, which has to be either measured or modeled.

9.2.2.2 How to measure E(k)

It would be rather difficult to measure three-dimensional spectra experimentally. For
instance, one might have to use two probes, one stationary, and the other traversed along
the three coordinate axes. Fortunately, the only unknown in the representation (9.2.17)
is the energy spectral density, E, and a means exists to measure it with a single fixed
probe. The method invokes a relation between E and the one-dimensional spectrum,

�11(k1) =
∫ ∞∫
−∞

�11(k) dk2 dk3 =
∫ ∞∫
−∞

E(|k|)
4π |k|4 (k2

2 + k2
3) dk2 dk3,

where (9.2.17) was substituted. Introduce cylindrical coordinates, k2
2 + k2

3 = r2, and let
G(k2) = E(k)/k4. Then

�11(k1) =
∫ ∞

0

G(r2 + k2
1)

4π
r22πr dr =

∫ ∞

0

G(y + k2
1)

4
y dy.

where y = r2. Now

d�11

dk2
1

= 1

2k1

d�11

dk1
=
∫ ∞

0

G′(y + k2
1)

4
y dy = −

∫ ∞

0

G(y + k2
1)

4
dy,

after integration by parts with G(∞) = 0 assumed. Differentiating and integrating by
parts again gives

1

k1

d

dk1

[
1

k1

d�11

dk1

]
= −
∫ ∞

0
G′(y + k2

1) dy = G(k2
1).
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Finally, substituting the definition of G gives the desired formula:

E(k) = k3 d

dk

[
1

k

d�11(k)

dk

]
. (9.2.18)

To illustrate this, suppose a measurement of �11(k1) is fitted by �11 = A e−L2k2
1 .

Plugging into the above gives E(k) = 4AL4k4 e−L2k2
. Note that �11(0) = O(1), while

E(k) = O(k4) as k → 0. This explains the difference between Figures 2.1 (page 17)
and 9.1, which illustrate one-dimensional and spherically averaged spectra, respectively:
the former has its maximum value at k1 = 0; the latter tends to zero as k1 → 0.

It was explained in connection with Figure 2.1 that the 1D spectrum can be measured
as a frequency spectrum using a fixed probe, then converted to a spatial spectrum by
invoking Taylor’s hypothesis. Thence the three-dimensional energy spectral density is
obtained by relation (9.2.18).

9.2.2.3 The Von Karman spectrum

The essential methods to represent homogeneous turbulence by spatial spectra have now
been developed. They are general formulas and relationships, phrased in terms of a
few unknown functions. To be useful, the functions need to be specified. Sometimes,
instead of relying on experimental data, the shape of the spectrum is represented by a
formula. Formulas for the energy spectrum are commonly used in rapid distortion theory
(Chapter 11), to initialize direct numerical simulations of turbulence, and in kinematic
simulations of turbulent mixing. This and the next section describe ways in which spectra
are constructed for such purposes.

The Von Karman spectrum is an ad hoc formula that interpolates between the energetic
and inertial ranges. Its functional form is

E(κ) = q2LCvK
(κL)4

[1 + (κL)2]p
, (9.2.19)

where L is a length scale that is required for dimensional consistency and p is an
exponent to be selected. The limits of this formula are that, as κ → 0, E(κ) ∝ κ4, while,
as κ → ∞, E(κ) ∝ κ4−2p. The value p = 17/6 reproduces the −5/3 law.

The constant CvK is found from the normalization∫ ∞

0
E(κ) dκ = 1

2q2.

Substituting expression (9.2.19) gives

CvK = �(p)

�(5/2)�(p − 5/2)
, (9.2.20)

where � is the factorial function.
A multiplicative factor of e−cη(κη)2

can be used to produce a viscous cut-off in the
dissipative region; η = (ν3/ε)1/4 is the Kolmogoroff, dissipative length scale described
on page 19. The spectrum (9.2.19) with p = 17/6, multiplied by e−0.001(κL)2

, is plotted
in Figure 9.1. This formula produces the +4 spectrum at low κ , the −5/3 spectrum
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in the inertial subrange, and an exponential fall-off in the viscous, dissipative range.
Although the precise form of the viscous cut-off is a matter of speculation, it is generally
accepted to be exponential. A κ2 in the exponential is suggested by the final period of
decay analysis, described in the next chapter. The “Pao spectrum” invokes inertial-range
scaling to give an exponent proportional to κ4/3. The rationale stems from the argument
that in the inertial range an eddy viscosity would have the form νT ∝ (εκ4)1/3 because
kinematic viscosity has dimensions �2/t and the available dimensional parameters are
ε ∼ �2/t3 and κ ∼ 1/�. The spectral turbulent Reynolds number, νT(κ)/ν, is assumed
to be the controlling factor and it suggests the form e−cη(κη)4/3

for the viscous cut-
off. For most purposes, κ2 has been found satisfactory and not in disagreement with
available data.

Combining (9.2.19) with (9.2.17) gives the 3D spectrum tensor

�ij = q2CvKL5

4π

(|k|2δij − kikj )

[1 + (|k|L)2]p
(9.2.21)

in the inertial and energy-containing ranges. Corresponding one-dimensional spectra can
be computed as in (9.2.12). For instance, integrating in cylindrical coordinates gives

�11(k1) = q2CvKL

4π

∫ ∞

0

x2

[1 + x2 + (k1L)2]p
2πx dx (9.2.22)

= q2CvKL

4(p − 1)(p − 2)[1 + (k1L)2]p−2
.

A comparison between the form of 1D and 3D spectra is made in Figure 9.3. The former
asymptotes to a non-zero value of �11(0) ∝ q2L at k1 = 0. This shows how the spectrum
at zero wavelength defines a turbulence scale; in fact, it defines the integral length scale.
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Figure 9.3 One- and three-dimensional Von Karman energy spectra.
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9.2.2.4 Synthesizing spectra from random modes

For some purposes, like kinematic simulation, a random process with a given spectrum is
desired (Fung et al., 1992). The term kinematic simulation simply means that a random
field is generated from a formula, rather than by a dynamical equation. One method is
to sum Fourier modes with random amplitudes and phases. In some cases, it suffices to
choose phases randomly, while specifying the amplitude to be proportional to

√
E(k).

That is the method described here.
The objective is to synthesize an incompressible, isotropic, random field. To start, let

ξ (k) be a random Fourier amplitude that satisfies the condition

ξi(k)ξ ∗
j (k′) = δij δ(k − k′), (9.2.23)

where ξ is an isotropic random function in wavenumber space. It can be constructed by
analogy to the random processes described in Section 2.2.2.1. One procedure is to set

ξi(k) =
√

3 eiφκ
ηi(k)√

dκ
, (9.2.24)

where η is a unit vector with random orientation, chosen independently for each k. It
could be realized as

η =
(
p, ±
√

1 − p2 cos θ, ±
√

1 − p2 sin θ
)

,

where p is a random number distributed uniformly between −1 and +1, and θ is uni-
formly distributed between 0 and 2π . The random orientation of η gives it the property
ηiηj = 1

3δij , and the independence of each k gives ηi(k)ηj (k
′) = 0, for k �= k′. These

and the factor of 1/
√

dκ produce the behavior desired by Eq. (9.2.23). The phase
angle φκ in construction (9.2.24) is random and also distributed uniformly between 0
and 2π . Different random numbers are selected for each k.

The Fourier modes of a random velocity field are synthesized from the function ξ .
The condition of incompressibility, k · û, states that the velocity is orthogonal to the
wavenumber vector. This condition is met by

û = k ∧ ξ

√
E(κ)

4πκ4
or, in index form, ûi = εij lkj ξl

√
E(κ)

4πκ4
, (9.2.25)

where κ = |k|. It can be verified that this construction has an isotropic spectrum. First
evaluate the velocity correlation

ûi û
∗
j = εilmεjnpklknξmξp

E(κ)

4πκ4
, (9.2.26)

then use relation (9.2.23) in the form ξm(k)ξ ∗
p(k′) = δmpδ(k − k′), along with

Exercise 5.1, to obtain

ûi û
∗
j = (δij δln − δinδlj )klknδ(k − k′)

E(κ)

4πκ4

= δ(k − k′)
E(κ)

4πκ4
[κ2δij − kikj ].
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Comparing to the definition (9.2.5), the spectral tensor is seen to be

�ij = E(κ)

4πκ4
[κ2δij − kikj ],

as desired. So it has been shown that the representation (9.2.25) is a method to synthesize
an incompressible, isotropic, random field.

The synthesized random process is not unique. For instance, the factor of
√

E(κ)

in (9.2.25) could be replaced by a random variable with variance equal to E(κ). If the
only constraint is that the random process have a given spectrum, then only its second
moment is being prescribed; this does not uniquely define the process.

9.2.2.5 Physical space

The discussion on isotropy has so far been in Fourier space. In physical space, one works
with covariances and correlation functions; these are simply the inverse Fourier transform
of �ij . For example, with x = x′, (9.2.7) is

uiuj =
∫ ∞∫
−∞

∫
�ij d3k. (9.2.27)

To see how this works, consider the case of isotropic turbulence. The integral is best
evaluated in spherical coordinates. Let

k = κ(cos θ, cos φ sin θ, sin φ sin θ).

In terms of the unit vector, e = (cos θ, cos φ sin θ, sin φ sin θ), the isotropic spectrum
(9.2.17) is

�ij = E(κ)

4πκ2
(δij − eiej ).

The integral (9.2.27) becomes

uiuj =
∫ 2π

0

∫ π

0

∫ ∞

0
(δij − eiej )

E(κ)

4π
dκ sin θ dθ dφ

=
∫ 2π

0

∫ π

0
(δij − eiej ) sin θ dθ dφ

∫ ∞

0

E(κ)

4π
dκ

= 1

4π

∫ 2π

0

∫ π

0
(δij − eiej ) sin θ dθ dφ ( 1

2q2).

The angular integral can be determined,∫ 2π

0

∫ π

0
eiej sin θ dθ dφ = 4

3πδij ,

so the above integration gives

uiuj = 1
3q2δij . (9.2.28)
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This is the correct result for isotropic turbulence.
The formula for the two-point covariance in physical space follows from (9.2.7) and

(9.2.17):

ui(x)uj (x′) =
∫ ∞∫
−∞

∫
E(κ)

4πκ2

(
δij − kikj

|k|2
)

e−ik·r d3k (9.2.29)

= f (|r|)δij + |r|
2

f ′(|r|)
(

δij − rirj

|r|2
)

,

where r = x − x′. The function f (r) is related to the energy spectrum by

f (r) = 2i

|r|2
∫ ∞∫
−∞

∫
k · r e−ik·r E(κ)

4πκ4
d3k.

From this it follows that f (0) = q2/3 and f ′(0) = 0, so (9.2.29) reproduces (9.2.28)
when r = 0. For non-zero r it represents the general form of an isotropic correlation
function for incompressible turbulence; for instance, it recovers the inference drawn
from Figure 9.2 that u(x, y)v(x′, y′) ∝ (x − x′)(y − y′).

Relation (9.2.29) between the covariance and the energy spectrum is obtained simply
by rearranging the integrals. To this end, note that the first line of Eq. (9.2.29) can
be written

uiuj (r) = ∂i∂jH − ∇2Hδij = ∂i∂jH − 1

r2
∂r [r2 ∂rH ]δij (9.2.30)

with

H(|r|) ≡
∫ ∞∫
−∞

∫
E(|k|)
4π |k|4 e−ik·r d3k.

Seeing this is just a matter of differentiating H under the integral. Carrying out the
differentiations in expression (9.2.30), using the property that H is a function of |r|
alone, gives (9.2.29), in which f is defined to be −(2/|r|) drH .

The isotropic correlation function (9.2.29) is often stated in terms of longitudinal
and transverse correlations. The longitudinal autocovariance is between a single veloc-
ity component and itself, at two points separated in the same direction as the velocity
component; for instance

u1u1(r1, 0, 0) = f (|r|).
If the turbulence is isotropic, it does not matter which velocity component is chosen.
The transverse autocovariance is between two points separated in a direction transverse
to the velocity component; for instance

u1u1(0, r2, 0) = f (|r|) + |r|
2

f ′(|r|) ≡ g(r)
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according to Eq. (9.2.29). If we define g(r) to be the transverse covariance stated above,
then (9.2.29) can also be written

ui(x)uj (x ′) = f (|r|)δij + [g(|r|) − f (|r|)]
(

δij − rirj

|r|2
)

. (9.2.31)

This shows how a measurement of just the longitudinal and transverse covariance
functions provides the entire covariance tensor, under the assumption of isotropy.

9.2.2.6 Integral length scale

The integral length scale is analogous to the integral time-scale (2.2.17) defined on
page 29; for instance

L1
11 =
∫ ∞

0
R11(x1) dx1, (9.2.32)

where the superscript denotes the direction of integration and the subscripts denote the
velocity components. Recall that Rij denotes the components of the correlation tensor. A
particularly simple example is provided by the Von Karman form (9.2.22) in the case p = 3.
The Fourier inversion

u2
1R11 =

∫ ∞

−∞
�11(k1) e−ik1x1 dk1

and (9.2.20) show that

u2
1R11 = 1

3q2 e−x1/L.

Under conditions of isotropy, u2
1 = 1

3q2; then (9.2.32) gives L1
11 = L; the length that

appears in the Von Karman spectrum is exactly the integral scale for this case of p = 3.
Measurement of L1

11 is facilitated by a relation between it and the one-dimensional
spectrum. It is shown in Exercise 9.3 that

L1
11 = π�11(k1=0)/u2

1.

The spectrum on the right is usually measured as a frequency spectrum, invoking Taylor’s
hypothesis (see page 19).

If the turbulence is isotropic, then L1
11 = L2

22 = L3
33, any of which can be called

the longitudinal integral scale. The latitudinal scale is L1
22, or any similarly non-equal

set of super- and subscripts. It can be shown (Exercise 9.7) that L1
22 = 1

2L1
11. This disparity

between longitudinal and latitudinal integral lengths gives rise to a phenomenon known
in the literature on heavy-particle dispersion as the “trajectory crossing effect” (Wang
and Stock, 1994).

Consider a small solid particle falling through isotropic turbulence under the influence
of gravity. Let it settle at the mean velocity dy/dt = −Vs, with −y being the direction
of gravity. Homogeneous dispersion theory gives rise to the formulas

αT11 =
∫ ∞

0
up1(t)up1(t + τ) dτ,

αT22 =
∫ ∞

0
up2(t)up2(t + τ) dτ
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for the eddy diffusivities, by analogy to Eq. (2.2.21), page 31. The subscript “p” indicates
the velocity of the solid particle. For simplicity, assume that the particle fluctuating
velocity equals the fluid fluctuating velocity. If both are homogeneous and isotropic, and
if furthermore u2 � V 2

s , then dτ can be substituted by dy/Vs and the integrals evaluated
as follows:

αT11 =
∫ ∞

0
u1u1(y)

dy

Vs
= u2

1L
2
11

Vs
,

αT22 =
∫ ∞

0
u2u2(y)

dy

Vs
= u2

2L
2
22

Vs
.

But u2
1 = u2

2 and L2
22 = 2L2

11 in isotropic turbulence. Hence αT22 = 2αT11 ; a cloud of
particles will disperse twice as fast in the direction of gravity as transverse to it.

This behavior has its origin in two causes, one physical and one mathematical. Dis-
persion is effected by random convection. A particle that does not settle under gravity
moves coherently within an eddy; but a settling particle moves for only a short time
within an eddy before it crosses into the next. The duration of coherent convection is
reduced thereby. This decreases the correlation time-scale and hence reduces the extent
to which a cloud of particles disperses: the dispersion coefficient decreases inversely with
the settling velocity. This is the effect of trajectory crossing.

Longitudinal, isotropic correlations are more persistent in space than are latitudinal
correlations; thus the velocity that a falling particle experiences remains coherent in the
direction of settling for a longer duration than the velocity in perpendicular directions.
This mathematical property causes greater longitudinal dispersion.

Exercises

Exercise 9.1. Familiarization with δ function. Show that

lim
ε→0

∫ ∞

−∞
e−|x|ε e−ikx dx = 2πδ(k)

by explicitly evaluating the integral, then applying the definition of the δ function.

Exercise 9.2. Direction of independence. Let r = (rx, ry, rz) be the components of the

separation between two hot-wire anemometers. Suppose that Rii(r) = e−(r2
x+r2

y )/L2
, inde-

pendently of rz. This means that the eddying motion is independent of the z axis. What
is �(kx, ky, kz)? What is the kz-space analog to independence of z in physical space?

Exercise 9.3. Integral length scale. The integral length scale provides a measure of the
size of energetic eddies. This length scale can be defined as a vector with x1 component

L1
11 =
∫ ∞

0
R11(x1; x2 = 0, x3 = 0) dx1,
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and similarly for L2
11 and L3

11. This notation means “the integral scale in the x2 (x3)
direction of the 11 correlation.” For instance,

L2
11 = 1

2

∫ ∞

−∞
R11(0, x2, 0) dx2.

Show that

u2
1L

2
11 = π

∫ ∞∫
−∞

�11(kx, 0, kz) dkx dkz,

and hence that �11(k2=0) = u2
1L

2
11/π . Often it is easier to measure or compute �(0)

than to obtain L by integrating the correlation function.

Exercise 9.4. Practice with isotropy. Derive (9.2.29) in physical space by assuming that
uiuj (r) is a function of rk and δkl . To this end:

(i) Write the most general tensoral form for this function.

(ii) Apply incompressibility: why is the incompressibility constraint now ∂ri uiuj (r) =
0 = ∂rj uiuj (r)?

In your derivation, simply obtain the form (9.2.29) with f an unspecified function; you
need not relate it to the energy spectrum.

Exercise 9.5. Experimental test of isotropy. The 1D spectra �11(k1) and �22(k1) can
be measured with a fixed probe. The method is to measure frequency spectra and then
use Taylor’s hypothesis to replace ω by k1Uc, where Uc is the mean convection velocity
measured by the anemometer. Show that, if the turbulence is isotropic, then

�22(k1) = 1
2 [�11(k1) − k1 ∂k1�11(k1)].

The 1D spectrum is defined by Eq. (9.2.12).
The connection between spectral components has been used to test experimentally for

isotropy. Both �11 and �22 are measured and it is checked whether they agree with the
relation above.

Exercise 9.6. The Von Karman spectrum. What is the proportionality between the length
scale L that appears in the Von Karman spectrum and the 1D integral length scale L1

11?
Recall the definition

u2
1L

1
11 =
∫ ∞

0
u1(x)u1(x + rx) drx.

Exercise 9.7. One-dimensional spectra. Use the Von Karman form to evaluate the 1D
spectrum, �22(k1). From this, show that the integral scale in the x1 direction of the 22
correlation (L1

22) is one half the integral scale in the x1 direction of the 11 correlation
(L1

11). In general, the transverse integral scale in isotropic turbulence is one-half the
longitudinal integral scale.
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Exercise 9.8. Synthetic spectra. Another way to synthesize an isotropic, incompressible
random field is

û =
[
ξ − (k · ξ)k

|k|2
]√

E(κ)

4πκ2
.

Verify that this equation has an isotropic spectrum.
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Navier–Stokes equations
in spectral space

. . . for it is harder to discover the elements than to develop the science.
– Alfred North Whitehead

The first two parts of this book focused on single-point statistics. Evolution equations
for the Reynolds stresses in space and time were derived in Section 3. The dynamics
of interest were those that governed the transport of mean momentum and those that
governed development of the turbulent stresses. The manner in which turbulent energy
was distributed among the scales of random motion was at best of passing interest. The
energy cascade was introduced in Section 2.1 as an example of an insight into turbulence
dynamics that derived from inspired dimensional analysis. Nothing was said about its
causes. Most research into homogeneous isotropic turbulence is concerned precisely with
that – with how the Navier–Stokes equations describe the transfer of energy between
the infinite degrees of freedom embodied in the Fourier spectrum. Energy transfer has its
origin in the quadratic nonlinearity of the Navier–Stokes equations.

10.1 Convolution integrals as triad interaction

The energy cascade can be described qualitatively as a flow of kinetic energy from large-
scale eddies to small-scale eddies. In physical space, it could be associated with vortex
stretching, with instabilities, with folding of material surfaces, or with chaotic convection,
depending on one’s viewpoint. In Fourier space, the energy cascade has a more concrete
analytical form: nonlinear coupling transfers energy between Fourier modes. However,
the fact that it cascades from large to small scale is to some extent an empirical and
intuitive observation.

Statistical Theory and Modeling for Turbulent Flows, Second Edition P. A. Durbin and B. A. Pettersson Reif
 2011 John Wiley & Sons, Ltd
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Recall the convolution theorem for the Fourier transform of the product of two func-
tions: if ûi (k) and ûj (k) are the transforms of ui(x) and uj (x), then the transform of
their product is

Fk(ui(x)uj (x)) =
∫ ∞∫
−∞

∫
ûi (k − k′) ûj (k

′) d3k′ (10.1.1)

=
∫∫∫

p+q=k

ûi (p)ûj (q) dp dq ≡ ûi � ûj |p+q=k.

The notation � is defined to be shorthand for the integral. This type of quadratic nonlin-
earity appears in the Navier–Stokes equations. It causes the energy cascade because a
Fourier mode with wavevector p times a mode with wavevector q produces a mode with
wavevector k if k = p + q. This is readily seen by multiplying complex exponentials:

eip·x eiq·x = ei(p+q)·x = eik·x .

Thus nonlinearity transfers energy between Fourier modes. Expectations, and observa-
tions, are that energy is transferred from energetic, large-scale modes to less energetic,
smaller-scale modes, where energy is removed by viscous dissipation. It is quite natural
to posit this process. It is quite another matter to prove it. The objective here will be
solely to make it plausible.

The second form of the integral in (10.1.1) is over wavenumber vector triangles,
p + q = k. This is just a reinterpretation of the first form. Such integrals are interpreted
as interactions within triads of eddies of differing length scales: small k corresponds to
“large eddies,” and large k corresponds to “small eddies.” Possible triads are illustrated in
Figure 10.1. Types A and C are formally the same; what is meant here is that the horizontal
leg represents the scale of interest. It can interact with comparable (B), larger (C) or
smaller (A) eddies.

Kolmogoroff’s inertial-range theory assumes that the dominant interactions in the
inertial subrange are local. This corresponds to case B in Figure 10.1. Eddies in this
range are not significantly influenced by large, energy-containing, or small, viscous,
scales. Numerical simulations suggest that this type of interaction is indeed dominant in
the inertial subrange. There is evidence that type A might be dominant in the small-scale,
dissipation range. However, that interaction probably amounts to convection of small

A B C

2 small eddies interact
 with one larger eddy

3 eddies of
comparable size

2 eddies of comparable
 size, one larger eddy

Figure 10.1 Triad interactions in homogeneous turbulence.
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eddies by large ones – referred to as “sweeping” – rather than to the energy cascade
(Kraichnan 1968). In particular, it is not clear that these long-range interactions violate
Kolmogoroff’s universality hypothesis (Section 2.1). His hypothesis is that the smallest
scales of motion are insensitive to the flow geometry; hence their structure is not
influenced by the large-scale eddies. Long-range interactions that impose anisotropy on
the small eddies would invalidate the hypothesis.

In general, all the triad interactions of Figure 10.1 take place and can transfer energy in
any direction between different scales. The averaged direction of transfer depends on the
relative amplitudes of the Fourier modes. Evidence is that triad interactions like A transfer
energy from large scales to small scales on average (Domaradski and Rogallo, 1991).

10.2 Evolution of spectra

In hopes of a more definitive understanding of nonlinear processes, we will develop
the Navier–Stokes equations in Fourier space and, from them, the spectrum evolu-
tion equations.

The Navier–Stokes equations for fluctuations in homogeneous turbulence are

∂tui + ∂jujui = −∂ip/ρ + ν∇2ui (10.2.1)

in physical space. These are Fourier-transformed using the rule ∂i ↔ −iki stated on
page 257 above Eq. (9.2.14), and the convolution theorem (10.1.1), to find

dt ûi − ikj ûj � ûi = ikip̂/ρ − νκ2ûi , (10.2.2)

where κ = |k|. Incompressibility requires that ki ûi = 0. Taking the dot product of Eq.
(10.2.2) with k therefore gives

p̂ = −ρ
klkj

κ2
ûj � ûl (10.2.3)

for the pressure. This permits the pressure to be eliminated from (10.2.2), giving the
evolution equation

dt ûi + νκ2ûi = ikj

(
δil − kikl

κ2

)
ûj � ûl (10.2.4)

for Fourier velocity components. Equation (10.2.4) is the incompressible, Navier–Stokes
momentum equation in spectral space.

10.2.1 Small-k behavior and energy decay

The behavior of the Fourier coefficient û as k tends to zero has been a matter of discussion
among turbulence researchers because it might have a controlling influence on the decay
rate of isotropic turbulence. Consider the magnitude, in powers of k, of ûi at small k.
Viscous terms in (10.2.4) are of order k2, and hence smaller than those retained. For
short times, an integration of (10.2.4) from some initial state to time t is

ûi = û(0)i + ikj t

(
δil − kikl

κ2

)
ûj � ûl = û(0)i + kj t × (something)ij , (10.2.5)
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where “something” is O(1) as k → 0. If ûi (0) is smaller than O(k), then the second
term above dominates. Squaring and averaging shows that

û2
i ∝ k2 and E(k) ∝ k4.

If the extra factor of k2 in E is unclear, see Eq. (9.2.11) on page 256. Under these assump-
tions, E(k) → k4 as k → 0. Thus the nonlinear terms in the Navier–Stokes equations
will generate a k4 power law. If E(k) goes initially like a higher power of k, it will
promptly revert to k4.

However, if E(k) ∝ ks with s < 4 at t = 0, then the first term in (10.2.5) dominates
and ûi remains equal to its initial value, ûi (0) as k → 0. The Navier–Stokes equations
are unable to change the initial power law because they can only generate k4 and higher
powers: the low-wavenumber energy spectrum remains defined by its initial condition.
When s < 4, E(k) → Csk

s , as k → 0, for all t . The coefficient Cs is independent of
time; in other words, Cs is an invariant under these assumptions.

If s < 4 were true at t = 0, then the exponent s would determine the decay law
for isotropic turbulence as follows: E(k) has dimensions of velocity2 × length, so by
dimensional analysis Cs ∝ q2Ls+1. The observation that Cs is constant if s < 4 means
that q2Ls+1 is invariant with time, or

L ∝ q−2/(s+1).

In self-similar, decaying isotropic turbulence, kinetic energy is simply dissipated. If the
scaling ε ∝ q3/L is invoked (as explained on page 103), then

1
2 dt q

2 = −ε ∝ q3/L ∝ q(3s+5)/(s+1).

This is readily integrated to obtain

q2 ∝ (t + t0)
−(2s+2)/(s+3). (10.2.6)

In principle, a measurement of the decay exponent in grid turbulence determines s.
Experimental data are fit quite well by the form q2 ∝ (t + t0)

−n. The exponent n

depends somewhat on Reynolds number, but a typical value is n = 1.2. This n is obtained
if s = 2. It is tempting to conclude that s = 2 and hence that q2L3 is an invariant of
self-similar turbulence. However, it is hard to see how s = 2 could be produced as an
initial state.

If turbulence is generated by processes like shear flow instability, that are governed
by the Navier–Stokes equations, then only s = 4 can be produced; thus it seems more
likely that s = 4. In that case, the decay exponent predicted by (10.2.6) is n = 10/7,
which is larger than found in most experiments. However, when s = 4, Eq. (10.2.6)
would be valid only if the combination q2L5 were independent of time; but we have
already discussed the fact that, if s = 4, the Navier–Stokes equations do not permit this
invariant. Hence, formula (10.2.6) is not justified when s = 4 and the inference of decay
exponent equal to 10/7 is not consistent.

One approach to maintaining the small-k theory with s = 4 but to bring it into
agreement with experiment is to allow C4 to increase with time (Lesieur 1990). If
C4 = tγ , then a modification of the rationale leading to expression (10.2.6) gives
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q2 ∝ (t + t0)
−(10−2γ )/7. The value γ = 0.8 provides a decay exponent of 1.2. It is likely

that the small-k theory is only suggestive of the true processes that determine the decay
exponent. Also, it may well be that n is not exactly a constant.

10.2.2 Energy cascade

The energy cascade is a statistical concept, alluding to the dynamics of the kinetic energy
spectrum. Equation (10.2.4) is for the instantaneous, fluctuating velocity. The dynamical
equation of the spectrum is derived by multiplying (10.2.4) by û∗

i , adding the result to
its complex conjugate, and averaging. This gives

dt ûi û
∗
i + 2νκ2ûi û

∗
i

= ikl

{
û∗

i (k)[ûl(p) � ûi(q)]

∣∣∣∣
p+q=k

− ûi (k)[û∗
l (p) � û∗

i (q)]

∣∣∣∣
p+q=k

}
. (10.2.7)

Strictly speaking, all these terms are infinite due to the δ function in (9.2.5), page 255.
But since ∫∫∫

ui(k)u∗
i (k

′) d3k′ = E(κ)

2πκ2

(recall that |k| = κ) in isotropic turbulence, the δ function can be integrated out and
(10.2.7) can be rewritten as

dtE︸︷︷︸
I

+ 2νκ2E︸ ︷︷ ︸
II

= T (k)︸︷︷︸
III

, (10.2.8)

where T is defined formally as

T (k) = 2π iκ2kl

∫ ∞∫
−∞

∫
û∗

i (k
′)[ûl(p) � ûi(q)]

∣∣∣∣
p+q=k

− ûi (k
′)[û∗

l (p) � û∗
i (q)]

∣∣∣∣
p+q=k

d3k′. (10.2.9)

The integration simply indicates that the δ function has been fired at k′ = k.
We now consider the physical meaning of the terms in Eq. (10.2.8), one by one:

(I) The first term of (10.2.8) is the evolution of E. This is the variation of the energy
density in each spherical shell of wavenumber space with time. The term “spherical
shell” simply means the volume between |k| = constant = κ and |k| = constant =
κ + dκ . The surface |k| = constant defines a sphere in three-dimensional k space;
and E(κ) dκ is the energy in that shell. The energy density, E, varies with time
due to dissipation within the shell and due to transfer to, or from, other shells.
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Integrating the energy spectrum over all wavenumbers gives the total energy, and
this first term becomes ∫ ∞

0
dtE(κ) dκ = 1

2 dt q
2.

(II) The second term is the viscous dissipation within the spherical shell κ ≤ |k| ≤
κ + dκ . In this case, integration over all shells gives the total rate of energy dissi-
pation, 2ν

∫∞
0 κ2E(κ) dκ = ε. This relation can be derived from (9.2.7) as follows.

Differentiating under the integrals gives

∂lui(x) ∂ ′
muj (x ′) =

∫ ∞∫
−∞

∫
klkm�ij (k) eik·(x′−x) d3k.

Setting x = x′, contracting on i − j and l − m, and substituting (9.2.17) gives

∂lui ∂lui =
∫ ∞∫
−∞

∫
klkl

E(k)

4πk2

[
δii − kiki

k2

]
d3k =

∫ ∞∫
−∞

∫
E(k)

2π
d3k. (10.2.10)

In spherical coordinates, d3k = 4πκ2 dκ . The rate of turbulent dissipation is
ε = ν ∂jui ∂jui , which is now seen to be

ε = 2ν

∫ ∞

0
κ2E(κ) dκ,

as was to be shown.
In the inertial subrange, where E ∝ ε2/3κ−5/3, the dissipation spectrum 2νκ2E

varies as ε2/3κ1/3. The dissipation rate increases with k through the inertial
subrange, peaking in the viscous range. This behavior is illustrated by Figure 10.2.
To stop this increase, introduce an exponential cut-off at high wavenumber,
represented by

κ2E(κ) ∝ κ1/3 e−cη(κη)2
.

Now the dissipation spectrum has a maximum at κ = 1/(
√

6cη η). Hence, the
maximum rate of energy dissipation is affected by eddies of order η in size. These
are the smallest scales of turbulent motion.

(III) The right-hand side of (10.2.8) causes energy transfer among eddies of wavenum-
bers p, q, and k that form triads. This redistributes energy between spherical shells,
but causes no net production or destruction. Energy removed from one shell by T

must be deposited into another. In isotropic turbulence, the total energy satisfies
1
2 dt q

2 = −ε. Integrating (10.2.8) proves that∫ ∞

0
T (κ) dκ = 0.
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Figure 10.2 Schematic of energy dissipation spectrum.

This is why T (κ) must be understood to transfer energy in k space, neither creating
nor destroying it. Our intuitive understanding of the form of this redistribution is
that T removes energy from large scales (low k) and transfers it to small scales
(large k), where it is dissipated. That intuition is supported by the following line
of reasoning.

In the inertial subrange, viscous and unsteady effects are negligible, so the left-hand side
of (10.2.8) vanishes and T = 0, for κ in this range. In the viscous dissipation range,
where κ ∼ 1/η, unsteadiness is negligible and T = 2νκ2E(κ) from (10.2.8). Integrating
over the dissipation range gives

∫ ∞

kI

T (κ) dκ =
∫ ∞

kI

2νκ2E(κ) dκ ≈ ε, (10.2.11)

where kI is chosen to be in the inertial range, and hence kI � 1/η. The integral on the
right covers the range where the bulk of the dissipation occurs; hence at high Re it
asymptotes to ε. Then, integrating over the large scales gives

∫ kI

0
T (κ) dκ =

∫ ∞

0
T (κ) dκ −

∫ ∞

kI

T (κ) dκ = 0 − ε = −ε. (10.2.12)

It follows from (10.2.12) and (10.2.11) that energy is transferred from small k, where T

is negative, to large k, where it is positive (Figure 10.3). This provides analytical support
for the idea of an energy cascade.

Further examination shows that T redistributes energy at a “fine-grained” level as
well. It is common to define a third-order spectrum tensor that gets rid of the δ(k − k′),
analogously to �ij in (9.2.5), page 255. For present purposes, it suffices to define qili by

qili (k, q)δ(k − k′) = û∗
i (k

′)[ûl(k − q)ûi(q)]. (10.2.13)
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Figure 10.3 Schematic of spectral energy transfer.

With this, after the convolution in (10.2.9) is made explicit using (10.1.1), the definition
of T becomes

T (k) = 2π iκ2
∫ ∞∫
−∞

∫
kl qili (k, q) − kl q

∗
ili (k, q) d3q

= 2π iκ2
∫ ∞∫
−∞

∫
kl qili (k, q) − kl qili (q, k) d3q, (10.2.14)

where q∗
ili (k, q) = qili (q, k) has been used. [To show that q∗

ili (k, q) = qili (q, k), reverse
q and k on the right-hand side of (10.2.13) to get

û∗
i (q)ûl(q − k)ûi (k) = ûi(k)û∗

l (k − q)û∗
i (q),

given that û(−k) = û∗(k). This is the complex conjugate of the original term.]
A further insight into T (k) is now possible: the integrand of (10.2.14) represents

spectral energy transfer from wavenumber q to wavenumber k. This transfer is equal and
opposite to that from k to q because reversing k and q reverses the sign of transfer:

kl qili (k, q) − kl qili (q, k) = −[kl qili (q, k) − kl qili (k, q)].

At this fine-grained level T (k) accounts for a conservative transfer of energy between
wavenumber components.

10.2.3 Final period of decay

The dynamical equation (10.2.8) for the spectrum is unclosed because the right-hand side
involves third moments of û. Closing this equation has proved formidable. Early attempts
consisted of spectral eddy viscosities; these were unsuccessful. Approaches based on a
quasi-normal approximation for fourth moments fared better, but are fraught with diffi-
culties. Successful instances of this approach are the “direct interaction approximation”
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and the “eddy damped quasi-normal model.” These approaches are beyond the scope of
this book; a reference is McComb (1990).

A grossly simplistic closure consists in just ignoring the right-hand side. This can
only be justified by assuming a very low Reynolds number. Although that approximation
has limited bearing on fully turbulent flow, it has appeared in the literature under the
present heading of final period of decay . In a sense, the analysis in this section shows
that the velocity decay exponent must depend on turbulent Reynolds number and gives
the limiting low Reynolds number value.

Setting its right-hand side to zero, (10.2.8) becomes dtE + 2νκ2E = 0. This has
the solution

E(κ, t) = E(κ, 0) e−2νκ2t .

The turbulent kinetic energy equals the integral of this energy spectrum, given by

1
2 q2 =

∫ ∞

0
E(κ, 0) e−2νκ2t dκ.

As t → ∞ the dominant contribution to the integral is from κ → 0. To see this, let
ζ = κ

√
2νt so that

1
2 q2 = (2νt)−1/2

∫ ∞

0
E(ζ/

√
2νt, 0) e−ζ 2

dζ.

If E has the limiting form E → Csκ
s as κ → 0, then

1
2 q2 → (2νt)−(s+1)/2

∫ ∞

0
Csζ

s e−ζ 2
dζ

= 1
2 Cs(2νt)−(s+1)/2�[(s + 1)/2] ∝ t−(s+1)/2.

In the case s = 4 this gives q2 ∝ t−2.5. The value n = 2.5 is the decay exponent for the
final period of decay. It is generally considered to be the upper bound to n. The lower
bound is n = 1.0, corresponding to strict scale similarity at infinite Reynolds number
(Exercise 10.6). Experimental data all fall between these two extremes.

Exercises

Exercise 10.1. Triad interactions. The Navier–Stokes equations contain the term
uj ∂jui . Write the Fourier transform of this term as a convolution integral. Also write it
as an integral over wavenumber triangles.

Exercise 10.2. Energy decay. Considered a crude model for the spectrum. Let

E(κ)=Csκ
s, κ < 1/L(t),

E(κ)=CKε2/3κ−5/3, 1/η >κ > 1/L(t),

E(κ)= 0, κ > 1/η.

Here CK is supposed to be a universal constant. Consider the case η ≈ 0. How is Cs

related to CK , ε, and L(t)? How is q2 related to ε and L(t)? Assume that ε and q2

follow power-law decays. Derive a formula relating the exponent in L ∝ tm to s.
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Exercise 10.3. Two-point correlations. Consider the two-point correlation

q2Rii = ui(x)ui(x
′)

in homogeneous turbulence. If r = x − x′ then

∂xj
Rii(r) = −∂x′

j
Rii(r)

and ui(x
′) ∂xui(x) = ∂x[ui(x)ui(x

′)] because x and x′ can be regarded as independent
variables.

Let u be statistically homogeneous in all three directions. A “microscale,” λ, was
defined in Exercise 2.5. It could also be defined by

lim
|ξ |→0

∂ξi
∂ξi

R(ξ ) = − 1

λ2
.

Derive a formula to relate λ to the rate of energy dissipation ε, q2, and ν.

Exercise 10.4. Physical space. The spectral evolution equations have a physical space
corollary. Two-point correlations and spectra form Fourier transform pairs. Because of
this, spectral closure models are called “two-point” closures. An equation for the two-
point autocorrelation in homogeneous, isotropic turbulence, analogous to (10.2.8) is

∂tuiui(r) + 2ν∇2
r uiui(r) = −2 ∂rj ujuiu

′
i (r),

where

ujuiu
′
i(r) = uj (x)ui(x)ui(x ′).

Derive the above equation.

Exercise 10.5. A dissipation formula for isotropic turbulence. Streamwise derivatives of
streamwise velocity (∂1u1) are the easiest to measure. Show that this derivative can be
used to infer the rate of dissipation by deriving the formula

ε = 15ν (∂1u1)2

for isotropic turbulence. Your derivation must start from the energy spectrum tensor, Eq.
(9.2.17). The “velocity derivative skewness” is defined by

Sd = (∂1u1)3/((∂1u1)2)3/2.

High Reynolds number experimental values of Sd are about 0.4. In isotropic turbulence,
the exact equation for dt ε contains a term proportional to ν(∂1u1)

3 (the self-stretching
term). Show that this term non-dimensionalized by ε2/k is of order R

1/2
T , where

RT = k2/εν.
The velocity derivative skewness relation above can also be derived by invoking the

definition of isotropy in physical space, rather than via Fourier space. The general form
for an isotropic fourth-order tensor is (2.3.4)

∂iuj ∂kul = Aδikδjl + Bδilδjk + Cδij δkl .
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Determine A and B in terms of C by invoking incompressibility and symmetry – symmetry
demands that the functional form be unaltered by the exchange i ↔ k.

Exercise 10.6. Scale similarity. Strict scale similarity would require that E(k) be of the
form q2(t)L(t)Ẽ(η) with η = kL(t) and where Ẽ is a non-dimensional, similarity solu-
tion. Assume that q2 ∝ t−n and find n by requiring strict self-similarity in Eq. (10.2.8).
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Rapid distortion theory

It is science that has taught us the way to substitute tentative truth for cocksure error.
–Bertrand Russell

Rapid distortion theory (RDT) developed out of ideas about how grid turbulence behaves
as it passes through a wind tunnel contraction. The basic idea is quite simple. To conserve
mass, the flow accelerates continuously along the length of the contraction. The increase
of velocity with distance along the tunnel creates a rate of strain along the axis of the tun-
nel. Turbulence within the flow is subjected to this strain. Thereby, turbulent eddies are
distorted as they flow downstream. The nature of that distortion can be reasoned out. If
turbulence is thought of as a random tangle of vortex filaments, then the contraction con-
sists of a straining flow that will compress or elongate the filaments (Figure 1.6, page 11):
they are stretched along the axis of the tunnel and compressed perpendicular to it. The
distorted vorticity induces corresponding distortions of the velocity field. Basic fluid
dynamic considerations provide an understanding of the evolution of turbulence in this
and similar situations. The subject of this chapter is a theory that describes such processes.

On a statistical level, the Reynolds stress tensor also will be altered by the distortion.
Intuitive reasoning about vorticity, and the Biot–Savart relation between vorticity and
velocity (Batchelor 1967) lead to an understanding of how Reynolds stresses evolve in
a contracting nozzle. A similar rationale provides insight into turbulence in flow round
bluff bodies and in many other geometries in which turbulence undergoes rapid distortion.
RDT provides a mathematical framework to analyze the evolution of turbulence when it
is deformed by flow gradients or by boundaries.

The mathematical approximation made in RDT consists of linearizing the equations
about a given mean flow. In a wind tunnel contraction, the turbulence is considered to
be strained by the mean flow, but its self-induced distortion is omitted. This is the exact
opposite of the phenomenology in Section 10.1, which addresses the energy cascade. The
energy cascade is dominated by nonlinearity, whereas RDT analysis is linear.

Statistical Theory and Modeling for Turbulent Flows, Second Edition P. A. Durbin and B. A. Pettersson Reif
 2011 John Wiley & Sons, Ltd
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Rapid distortions have been studied experimentally by sending grid turbulence through
a variable cross-section duct (Gence and Mathieu, 1979), or by introducing turbulence
into the flow upstream of an impingement plate (Britter et al., 1979). In both cases, the
turbulence scale and rate of distortion are established so as to approximate the require-
ments of the theory. The basic requirement is that the distortion occurs on a time-scale
short compared to the eddy lifetime, T = k/ε.

The analytical approach makes use of the spectral representations developed in
Chapter 9. Straining flow RDT is the most tractable and illustrates the concepts: it will
be described first.

11.1 Irrotational mean flow

Consider an irrotational straining flow with a mean rate of strain of magnitude S. The
essential RDT assumption is that ST 	 1, where T is the turbulence time-scale. Then the
mean distortion is large compared to the self-distortion of the turbulence. The turbulent
Reynolds number is also assumed to be large, so that effects of viscous dissipation can
be ignored.

The inviscid, barotropic vorticity equation is (Batchelor 1967)

Dt

(
ω

ρ

)
=
(

ω

ρ

)
· ∇u. (11.1.1)

The right-hand side of equation (11.1.1) represents stretching and rotation of vorticity by
velocity gradients. An equivalent way to write the barotropic vorticity equation is

Dtω = ω · ∇u − ω∇ · u.

The continuity equation, Dt ρ = −ρ∇ · u, shows this to be the same as (11.1.1). The last
term vanishes in incompressible flow.

If (11.1.1) is linearized about an irrotational flow, then U and ρ are mean quantities
and ω is turbulent:

Dt

(
ω

ρ

)
=
(

ω

ρ

)
· ∇U (11.1.2)

or, equivalently,

∂tω + U · ∇ω = ω · ∇U − ω∇ · U .

Terms like ω · ∇u, which are quadratic in the fluctuating quantities, have been dropped.
Because of the linearization, this equation describes the stretching and rotation of turbu-
lent vortex tubes by an irrotational mean flow. This is illustrated by Figure 11.1. The
solid line represents a vortex tube that moves along the streamlines represented as dashed
curves, being stretched in length and rotated in direction.

11.1.1 Cauchy form of vorticity equation

The right-hand side of (11.1.2) describes the rate of vortex stretching and rotation.
Another form of the vorticity equation is particularly effective for RDT problems in
which the mean flow is irrotational; it is called the “Cauchy” form. The Cauchy form of
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X0

X0 + dX0

X(t ; X0) = X(t )

X(t ; X0 + dX0) = X(t ) + dX(t )

Figure 11.1 Schematic of vortex line distortion. The solid line represents an infinites-
imal segment of a material line; the dashed lines represent trajectories of its endpoints.

the vorticity equation describes the net stretching and rotation of vortex filaments: it can
be thought of as an integrated version of (11.1.2).

The approach is to relate the evolution of the vorticity to the deformation of infinites-
imal material line elements. Denote the trajectory of a fluid particle by X(t; X0). This
is a convected particle, initially located at X0. Following the particle, dX/dt = U (X),
subject to the initial position X(t = 0) = X0. By considering two neighboring fluid par-
ticles, an equation relating the trajectory to the distortion of an infinitesimal line segment,
δX, will be obtained.

Figure 11.1 shows how the separation of the two particles at any time is a function
of their initial separation. Consider particles with a small initial separation δX0. They
will follow slightly different trajectories, which determine their subsequent separation.
Mathematically

δXi = Xi(t; X0 + δX0) − Xi(t; X0) → ∂Xi

∂X0j

δX0j (11.1.3)

as δX0 → 0. The matrix ∂Xi/∂X0j describes the net stretching and rotation of the mate-
rial line shown in the figure. The meaning of this matrix is found by deriving the evolution
equation for δX. This also draws a connection between (11.1.3) and the vorticity equation.

The motion of particles located at X + δX and at X is determined by

d(Xi + δXi)/dt = Ui(X + δX),

dXi/dt = Ui(X). (11.1.4)

Subtracting the second from the first gives

dδXi/dt = Ui(X + δX) − Ui(X).

Then letting δX → 0 results in

Dt δXi = δXj ∂jUi

or

Dt δX = (δX · ∇)U . (11.1.5)

The Lagrangian time derivative d/dt has been restated as the Eulerian material derivative
D/Dt . By comparing (11.1.5) to (11.1.2), it can be seen that ω/ρ evolves in the same way
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as an infinitesimal line element. If the two equations have proportionate initial conditions,
(ω/ρ)(0) ∝ δX(0), then they have proportionate solutions at later times: ω/ρ ∝ δX.
Consequently (11.1.3) is a formal solution to the vorticity equation if δX is replaced by
ω/ρ. Hence the vorticity equation can be written

ωi(X, t) = ρ

ρ0

∂Xi

∂X0j

ω0j (X0); (11.1.6)

this is Cauchy’s form. Equation (11.1.6) is a general relation between Lagrangian coordi-
nates and vortex line stretching and rotation. If deformation of material lines ∂Xi/∂X0j

is known, the evolution of the vorticity vector is obtained by (11.1.6).
Generally, the particle paths required by Cauchy’s formula would depend on the vor-

ticity, so that (11.1.6) would be an integral equation for the vorticity, not a solution per se.
However, in rapid distortion theory Cauchy’s formula is linearized about an irrotational
mean flow. Then the Lagrangian coordinates, X(t; X0), are particle trajectories following
the mean flow and ω is the turbulent vorticity. The Jacobian derivative, ∂X/∂X0, and
the density, ρ, are computed solely from the mean flow. This provides an elegant anal-
ysis of the present case, in which turbulence is distorted by an irrotational mean flow.
If the mean flow is rotational, the analysis is more involved, and Cauchy’s formula is
not helpful.

11.1.1.1 Example: Lagrangian coordinates for linear distortions

The meaning of Eq. (11.1.6) can be clarified by computing the Lagrangian coordinate and
its Jacobian derivative for a constant-direction, irrotational straining flow. In this case,
the velocity components in the principal axes of the rate of strain are Ui = αixi , with no
summation on i. Then the particle trajectories satisfy

dX1/dt = α1X1,

dX2/dt = α2X2, (11.1.7)

dX3/dt = α3X3.

The mean dilatation is ∇ · U ≡ D = α1 + α2 + α3. The solutions to (11.1.7) for the
individual Xi are

X1 = X01 eα1t , X2 = X02 eα2t , X3 = X03 eα3t . (11.1.8)

The deformation matrix occurring in (11.1.6) is then found to be

(
∂Xi

∂X0j

)
=
eα1t 0 0

0 eα2t 0
0 0 eα3t

 . (11.1.9)

Mass conservation can also be expressed in terms of this matrix: density times volume
is the mass of a fluid element. Equating its initial and subsequent density,

ρ δX1 δX2 δX3 = ρ0 δX01 δX02 δX03 ,
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which can also be stated as

ρ

ρ0
= 1

Det(∂Xi/∂X0j )
.

This form of mass conservation permits (11.1.6) to be written in terms of the deformation
matrix alone:

ωi(x, t) = (∂Xi/∂X0j )

Det(∂Xk/∂X0l
)
ω0j (X0). (11.1.10)

In the case of (11.1.9)

Det(∂Xi/∂X0j ) = e(α1+α2+α3)t = eDt ;
hence ρ = ρ0 e−Dt . For compression, D < 0; for expansion, D > 0; and for incompress-
ible flow, D = 0.

As an example of an irrotational distortion, consider a compression in the x1 direction
alone: α2 = 0 = α3 and D = α1 < 0. Then

ρ

ρ0

(
∂Xi

∂X0j

)
=
1 0 0

0 e−α1t 0
0 0 e−α1t

 (11.1.11)

is used on the right-hand side of (11.1.6). It is then found that this distortion gives
ω1 = ω01 , ω2 = e−α1tω02 , and ω3 = e−α1tω03 . Even though the compression is along the
x1 axis, it intensifies ω2 and ω3 but does not alter ω1. It is the increase in density that
intensifies the vorticity. This might play a role in piston engines (see Figure 11.9).

11.1.2 Distortion of a Fourier mode

Considerations on the stretching and rotation of vorticity are only the first step. The next
step is to obtain the corresponding velocity field and, from that, the Reynolds stress tensor.

To proceed with this agenda, the randomness of the flow must be represented. This
can be done by the techniques of Chapter 9: the instantaneous turbulence is represented
by a sum of Fourier modes. The velocity field of a single mode can be obtained from the
Cauchy solution for the vorticity. Second moments of the velocity can then be formed
and averaged, using spectral representations. Finally, the solution is integrated over the
turbulence spectrum to find the Reynolds stress, as in Eq. (9.2.27) on page 263. The net
result will relate the Reynolds stress after the distortion to that prior to the distortion.

Pursuing this program, we next obtain a solution for the velocity of an individual
component Fourier component. Owing to linearity, the full solution is a sum of these
individual solutions.

The initial vorticity field of a single Fourier component is

ω0 = ω̂0(k) e−ik·X0 .

Consider a particle located at the field point x; that is, X(t) = x. Substituting the initial
vorticity and (11.1.9) into the Cauchy formula (11.1.6) gives

ωγ = e−Dt eαγ t e−ik·X0 ω̂0γ , γ = 1, 2, 3. (11.1.12)



286 RAPID DISTORTION THEORY

For a homogeneous mean straining flow, from (11.1.8) the initial coordinates of the
particle currently at x are X0γ = xγ e−αγ t . Using this in the result (11.1.12) gives

ωγ (x, t) = e−Dt eαγ t e−iκ ·xω̂0γ , γ = 1, 2, 3 (11.1.13)

for the vorticity at position x, at time t . In the exponent of (11.1.13), kjX0j = kj e−αj t xj

has been substituted and then

κγ (t) ≡ kγ e−αγ t , γ = 1, 2, 3 (11.1.14)

was defined to simplify the algebra.
Note that κ(t) is a time-dependent wavevector, while k is constant in time. If αi > 0

then κi decreases with time. A physical explanation follows from noting that κ = 2π/λ,
where λ is the wavelength. When αi > 0, the wavelength in the i direction is stretched;
hence the wavenumber, κ , decreases. If αi < 0, the wavelength is reduced and κ increases.
An example of wavelength reduction occurs when turbulence flows toward a stagnation
point; the flow slows down as it approaches the surface, corresponding to α1 < 0. In this
case, wavelength shortening can also can be interpreted as vortices piling up round the
surface, as sketched later by Figure 11.3 (Hunt, 1973).

We define ω̂ by ωi = ω̂i eiκ ·x , that is, just drop the exponential to get ω̂. Then solution
(11.1.13) becomes

ω̂γ = ω̂0γ e−Dt eαγ t , γ = 1, 2, 3.

In Fourier space, −iκ is the “gradient operator” because ∇ω = −iκω in the case of
(11.1.13). Thus

∇ ∧ ω ⇒ −iκ ∧ ω̂ and ∇2u ⇒ −|κ|2û. (11.1.15)

Note that both κ and û are functions of t and of the initial wavevector, k.
In physical space, the kinematic relation between velocity and vorticity is ∇2u =

−∇ ∧ ω if the turbulence is incompressible. The corresponding equation in Fourier space
follows from the correspondences (11.1.15),

û = −iκ ∧ ω̂

|κ |2

or, in index form,

ûj = −εjkl

iκkω̂l

|κ |2 . (11.1.16)

For instance, in the incompressible case, where D = 0,

û1 = i
κ3ω̂2 − κ2ω̂3

|κ |2 = i
κ3 eα2t ω̂02 − κ2 eα3t ω̂03

|κ |2

= i
k3 e(α2−α3)t ω̂02 − k2 e(α3−α2)t ω̂03

|κ |2
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after substituting kγ e−αγ t for κγ . Multiplying by the complex conjugate and averaging
give

û1û
∗
1 = k2

3 e2(α2−α3)t ω̂02 ω̂
∗
02

+ k2
2 e2(α3−α2)t ω̂03 ω̂

∗
03

− k2k3(ω̂02 ω̂
∗
03

+ ω̂03 ω̂
∗
02

)

|κ |4 .

(11.1.17)

11.1.3 Calculation of covariances

The randomness of the turbulence can now be introduced via a model for the vorticity
correlations, ω̂0i

(k)ω̂∗
0j

(k′), that appear in Eq. (11.1.7). In homogeneous turbulence, these
are of the form

Re
[
ω̂0i

(k)ω̂∗
0j

(k′)
]

= δ(k − k′)�ω
ij (k)

as in (9.2.5), page 255. From ω̂j = −iεjklkkûl , it is seen that the vorticity spectrum can
be obtained from the velocity spectrum as

�ω
ij = kkkmεiklεjmn�lm.

Substituting the isotropic velocity spectrum (9.2.17), page 259, it follows that the isotropic
vorticity spectrum is

�ω
ij = |k|2�ij = E(|k|)

4π

(
δij − kikj

|k|2
)

. (11.1.18)

Though the turbulence is initially isotropic, it will not remain so: formula (11.1.17) gives
the evolution of the 11 component of the velocity spectrum,

�11(t) =
{

k2
2(k

2
1 + k2

2) e2(α3−α2)t + k2
3(k

2
1 + k2

3) e2(α2−α3)t + 2k2
2k

2
3

(k2
1 e−2α1t + k2

2 e−2α2t + k2
3 e−2α3t )2

}
E(|k|)
4π |k|2 ,

(11.1.19)

with similar solutions for other components.
The factor in curly brackets determines the time evolution. Note that this factor is

independent of the shape of the energy spectrum, E(|k|). It is a general result of inviscid
RDT that the turbulence evolution is not a function of the initial spectrum shape. An
equivalent observation is that the factor in curly brackets is independent of the magnitude
of k. Thus, if ei ≡ ki/|k|, then

�11(t) =
{

e2
2(e

2
1 + e2

2) e2(α3−α2)t + e2
3(e

2
1 + e2

3) e2(α2−α3)t + 2e2
2e

2
3

(e2
1 e−2α1t + e2

2 e−2α2t + e2
3 e−2α3t )2

}
E(|k|)
4π |k|2 ,

(11.1.20)

where e is a unit vector in the direction of the initial wavevector. Only this direction, not
the magnitude of k, affects the time evolution.
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The integration of Eq. (11.1.20) can be performed conveniently in spherical polar
coordinates: e1 = cos θ , e2 = sin θ cos φ, e3 = sin θ sin φ. With this substitution, the rela-
tion (9.2.27) between the Reynolds stress and the spectrum tensor becomes

u2
1 =
∫ 2π

0

∫ π

0

∫ ∞

0
�11(e, k; t)k2 dk sin θ dθ dφ.

After substituting (11.1.20), it is seen that the k integral can be done independently of the
angular integrals. It gives a factor of 1

2q2
0 irrespective of the form of E(k). The subscript

“0” indicates the initial value.
Thus the velocity variance obtained from (11.1.20) is given by the very messy integral

(Batchelor and Proudman 1954):

u2
1(t) = q2

0

8π

∫ 2π

0

∫ π

0

cos2 φ (cos2 θ + sin2 θ cos2 φ) e2(α3−α2)t+

+ sin2 φ (cos2 θ + sin2 θ sin2 φ) e2(α2−α3)t + 2 sin2 θ cos2 φ sin2 φ

(e−2α1t cos2 θ + e−2α2t sin2 θ cos2 φ + e−2α3t sin2 θ sin2 φ)2
sin3 θ dθ dφ

(11.1.21)

Analogous results can be derived for u2
2 and u2

3. The angular integrations can be performed
numerically.

Figures 11.2 and 11.4 plot the rapid distortion solution, u2
i (t)/u

2
0, for turbulence

subjected to incompressible, irrotational distortions. The initial intensity is defined by
u2

0 = 1
3q2

0 . Incompressibility, α1 + α2 + α3 = 0, shows that the total strains, si ≡ eαi t ,
satisfy s1s2s3 = 1.

s2 = ea2 t

u 1
,u

2,
u 3

2
2

2

1.0 1.5 2.0 2.5 3.0 3.5
0

0.5

1.0

1.5

2.0

2.5

3.0

Figure 11.2 Normalized normal stresses provided by the RDT solution for a plane

strain: u2
1 ( ); u2

2 ( ); and u2
3 ( ).
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schematic
vortex tube

Figure 11.3 Sketch of vortex tube distortion in flow round a bluff body. Vortices piling
up at the stagnation point are synonymous with wavelength reduction.

s1 = ea1 t

u
2 1
,u

2 2
(=

 u
2 3
)

1.0 1.5 2.0 2.5 3.0 3.5
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1.5

2.0

2.5

3.0

Figure 11.4 Normalized normal stresses provided by the RDT solution for axisymmetric

strain: u2
1 ( ); and u2

2, u2
3 ( ).

Figure 11.2 is a computation for the plane strain, α1 = −α2, α3 = 0 with α2 > 0. A
qualitative understanding of this figure comes from considering the distortion of vorticity.
Vortex lines are being stretched in the x2 direction and compressed in x1. Correspondingly
ω2 is increasing with s2 and ω1 is decreasing.

The associated effect on velocity can be inferred by the “right-hand rule:” the velocity
associated with the vortex line lies in a plane perpendicular to it. Analytically, since

∇2u1 = ∂3ω2 − ∂2ω3

and ω2 is increased by the plane strain, one might anticipate that u2
1 would increase with

s1, as indeed it does. Similarly, because

∇2u2 = ∂1ω3 − ∂3ω1

and ω1 is decreased, u2
2 decreases. Finally,

∇2u3 = ∂2ω1 − ∂1ω2.
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It might be less clear what this component should do: ω2 increases, but ω1 decreases.
The amplified component wins out and u2

3 increases, but not so much as u2
1.

Asymptotic approximation to angular integrals like (11.1.21) gives the limiting large-
strain behaviors

u2
1/u

2
0 → 3

4
s2 + 3

8s2

(
log 4s2 − 1

2

)
,

u2
2/u

2
0 → 3

4s2
(log 4s2 − 1), (11.1.22)

u2
3/u

2
0 → 3

4
s2 − 3

8s2

(
log 4s2 − 3

2

)
,

as s2 → ∞ (Townsend, 1976). These are concrete formulas for the relative magnitudes
of the normal stresses.

The plane-strain result can be interpreted as the solution for small-scale turbulence
on the stagnation line of a two-dimensional, bluff body as in Figure 11.3. A “quasi-
homogeneous” approximation is invoked (Goldstein and Durbin 1980) when applying
the strictly homogeneous solution to such a case. The rate of strain along the axis is
dU/dx. The time a particle takes to travel along the stagnation streamline from x to
x + dx is dx/U(x). Hence, a vortex tube is subjected to a total strain∫

α1dt =
∫ x

−∞

∂U

∂x

dx

U
= log[U(x)/U∞].

This is a nice result because it relates the straining to the local potential flow velocity as

s1 = e
∫

α1dt = U(x)/U∞. (11.1.23)

By incompressibility s2 = 1/s1 = U∞/U(x).
In the two-dimensional stagnation point flow of Figure 11.3, the streamwise compo-

nent of intensity, u2
1, is amplified as vorticity stretches around the nose of the body. At

the stagnation point, U → 0, and s2 → ∞. Invoking the large-strain result (11.1.22), one
finds u2

1/u
2
0 → 3U∞/4U . The turbulence intensity increases inversely to the velocity as

stagnation point is approached.
The asymptotic approximation (11.1.22) shows that the cross-stream component,

u2
2, is suppressed near the stagnation point. Further around the surface, the stretched

vorticity component rotates into the x1 direction and u2
2 is amplified. Of course, the

singularity predicted by (11.1.22) at the surface is unphysical, but the amplification of
u2

1 and suppression of u2
2 on the stagnation streamline is consistent with experiments

(Britter et al. 1979).
Figure 11.4 shows the solution for axisymmetric strain, α2 = α3 = − 1

2α1 with α1 > 0.

Again, ω1 is increased by the strain so that u2
2 ( = u2

3) increases with s1. Both ω3 and ω2
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are reduced by negative strain, so u2
1 is decreased by the strain. The asymptotic behaviors

for large s1 are

u2
1/u

2
0 → 3

4s2
1

(log 4s3
1 − 1),

u2
2/u

2
0, u2

3/u
2
0 → 3

4
s1.

These provide reasonable approximations to the exact solution when s1 > 2.
The solution for an axisymmetric rate of strain could be interpreted as the solution for

small-scale turbulence on the centerline of a contracting pipe. Again, the straining is equal
to the ratio of upstream to downstream velocities: s1 = Udown/Uup. By mass conservation,
UA is constant, where A is the cross-section of the pipe. If the cross-sectional area
is Aup upstream of the contraction and Adown downstream, then s1 = Aup/Adown. The
turbulence intensity is directly related to the duct area. In fact, this was the original RDT
problem discussed by Taylor (1935). Figure 11.4 indicates the form of anisotropy that
can be expected for this type of configuration if the upstream turbulence is isotropic grid
turbulence. The component u2

1, along the axis of the pipe is decreased relative to the
other two components.

When the flow is an axisymmetric expansion, s1 < 1 and s2 = s3 = 1/s
1/2
1 , two com-

ponents of vorticity are stretched. Consequently, all components of turbulent intensity
amplify. The situation is like Figure 11.3, except the body is axisymmetric, so that a
vortex perpendicular to the page will also wrap around the nose. The relation between
strain and velocity corresponding to (11.1.23) is seen to be (Durbin 1981)

s1 = U(x)/U∞, s2 = s3 = s
−1/2
1 =

√
U∞/U(x).

As the stagnation point is approached, U → 0 and the solution asymptotes to that for
large strain. The result, analogous to (11.1.22), is found to be

u2
1 → 3πs2

8
= 3π

8

√
U∞
U(x)

,

u2
2 = u2

3 → 3πs2

16
= 3π

16

√
U∞
U(x)

, (11.1.24)

as s2 → ∞. For instance, all components of intensity amplify on the stagnation streamline
of a sphere.

11.2 General homogeneous distortions

In the general case, the mean flow vorticity is not zero. The intuitive, analytically elegant,
approach of the previous section does not work. Up to this point, only distortion of
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Mean flow vorticity

Turbulent eddy

Figure 11.5 Schematic of mean vorticity distortion by turbulent eddies.

turbulent vorticity by mean velocity gradients arose; but when mean vorticity is present,
it will be distorted by turbulent velocity gradients. When mean vorticity is distorted, it
becomes fluctuating vorticity, as suggested by Figure 11.5. The tube represents mean
vorticity that has been kinked by an eddy. The kink represents the creation of fluctuating
vorticity from the mean. This can be considered a mechanism of turbulence production.

The mean velocity is generally of the form

Ui = Aijxj (11.2.1)

in homogeneous turbulence (Section 3.3). Consider a Fourier mode

ûi (t; κ) e−iκ(t)·x . (11.2.2)

Substituting this and the mean flow (11.2.1) into the linearized, inviscid momentum
equation

∂tui + Uj ∂jui + uj ∂jUi = −∂ip.

(for constant density with ρ ≡ 1) gives

dt ûi − i dt κj xj ûi − iAkjxjκkûi + ûjAij = iκip̂. (11.2.3)

The evolution equation for κ is found by setting the sum of the two terms containing xj

to zero. This eliminates the secular term from (11.2.3):

dt κj = −κkAkj , dt |κ |2 = −2κkAkjκj . (11.2.4)

The pressure is eliminated by invoking continuity, κiûi = 0. This gives

p̂ = −2iκiûjAij

|κ |2 ,

which was derived from (11.2.3) using (11.2.4). Eliminating the pressure from (11.2.3)
gives the evolution equation of the Fourier amplitude,

dt ûi = ûjAkj

{
2κiκk

|κ|2 − δik

}
= ûjAkj {2eiek − δik} , (11.2.5)

where ei = κi/|κ |. In fact, it is readily shown that, again, the evolution of û is a function
only of the direction, e, of the wavevector and not of its magnitude |κ|. The general
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homogeneous RDT problem is to solve (11.2.5) and then to compute turbulent statistics
from a given initial spectrum.

Since (11.2.5) is linear, its solution can be written symbolically as

ûi = Mij (t; e)û0
j .

This shows the general approach. The distortion matrix Mij must first be found for a
particular velocity gradient matrix Aij . Then the Reynolds stresses at any time are related
to the initial energy spectrum tensor by

uiuj =
∫ ∞∫
−∞

∫
MikMj l(t; e)�0

kl(k) d3k. (11.2.6)

Hunt and Carruthers (1990) develop the theory via this formalism. Homogeneous shear
flow provides a case in point.

11.2.1 Homogeneous shear

The case of homogeneously sheared turbulence is of some practical interest (see
Chapter 7). In this case, U1 = Sx2, so A12 = S and all other components of Aij are
zero. Then (11.2.5) becomes

dt û1 = Sû2(2e2
1 − 1),

dt û2 = 2Sû2e1e2, (11.2.7)

dt û3 = 2Sû2e1e3.

The solution to (11.2.4) with the initial values κi(0) = ki , is

κ2 = k2 − Stk1, κ1 = k1, κ3 = k3.

Only the κ2 component evolves in time, due to the mean shearing. Figure 11.6 illustrates
how shearing distorts wavecrests. The crests rotate, changing their spacing in the x2

direction, but not altering the x1 spacing. Hence κ1 is not altered, while κ2 increases or
decreases to maintain that the wavevector is perpendicular to the crests.

k1 does not
 change

k (t )
wavecrests

wavevector

The k2 wavevector is 
distorted by mean shear

Figure 11.6 Shearing of the κ2 wavevector component. The other components of κi are
unaffected.
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It follows from the second of (11.2.7) and (11.2.4) that dt (|κ |2û2) = 0 and hence

û2 = û0
2
|k|2
|κ|2 = û0

2
k2

1 + k2
2 + k2

3

k2
1 + (k2 − Stk1)2 + k2

3

. (11.2.8)

The denominator increases with time for most values of k1 (k1 >k2/St or k1/k2 < 0),
hence one expects that u2

2 will be decreased by shear, as is the case. However, it can
be seen that, if k1 = k2/St , then û2 is independent of time. Values of k1 that satisfy
this will become increasingly dominant as time progresses. This leads to a conclusion
that turbulent intensity is increasingly associated with small k1 as time evolves. But
small k1 corresponds to long wavelength in the streamwise direction. The very important
conclusion is that eddies that are elongated in the streamwise direction are preferred by
a strongly sheared flow.

A suggestive way to see why streamwise elongation develops in time is to analyze
how u2

2 is calculated from (11.2.8). If that equation is squared and averaged,

û2(k)û∗
2(k

′) =
[

k2
1 + k2

2 + k2
3

k2
1 + (k2 − Stk1)2 + k2

3

]2

�0
22(k)δ(k − k′)

is obtained. The velocity variance is the integral over k and k′. If the change of variables
η = Stk1 is made in the k integral,

u2
2 = 1

St

∫ ∞∫
−∞

∫
�22(η/St, k2, k3)

[
(η/St)2 + k2

2 + k2
3

(η/St)2 + (k2 − η)2 + k2
3

]2

dη dk2 dk3

results. As St → ∞, the portion of the spectrum that contributes to the integral becomes
approximately �22(0, k2, k3), showing the dominance of k1 = 0. This change of variables
also shows that u2

2 decreases at long time because of the factor in front of the integral.
[The simplistic reasoning of setting η/St to zero gives the correct understanding that
u2

2 is decreased by shear, although it is flawed mathematically. Letting η/St → 0 inside

the integral suggests the long-time behavior u2
2 ∼ 1/St . However, the resulting inte-

gral is logarithmically divergent if �22 has the isotropic proportionality to (η/St)2 + k2
3.

Consequently, the actual behavior is u2
2 ∼ log(St)/St as St → ∞ (Rogers 1991).]

The other components of Eqs. (11.2.7) have closed-form, although more complicated,
solutions (Townsend, 1976). After forming moments, as in (11.2.6), Reynolds stresses
can be computed by numerical integration. Solutions are plotted in Figure 11.7. The
short-time behaviors that can be derived by Taylor series solution to Eqs. (11.2.7) are

u1u2/u
2
0 = − 2

5St + O(t)3,

u2
1/u

2
0 = 1 + 2

7 (St)2 + O(t)4,

u2
2/u

2
0 = 1 − 4

35 (St)2 + O(t)4, (11.2.9)

u2
3/u

2
0 = 1 + 8

35 (St)2 + O(t)4,
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Figure 11.7 RDT solution for homogeneously sheared isotropic turbulence: u2 ( );
v2 ( ); w2 ( ); and uv ( ). The dotted lines are the short-time asymptote
stated in Eq. (11.2.9) (the dotted line corresponding to u2 is almost on top of the full
RDT solution).

as St → 0. The first of these is analogous to the result (7.1.29) on page 166, and as such is
widely used in turbulence modeling – in the literature this connection has led to the factor
of 2/5 in (7.1.29) being called a “rapid distortion constraint.” The second and third of
Eqs. (11.2.9) illustrate the general result that u2

1 increases and u2
2 decreases under the action

of mean shearing in the x1 direction; u2
3 increases only slightly. Approximations (11.2.9)

are included as dotted lines in Figure 11.7. They are reasonably accurate for St < 2.5.
This solution and Figure 11.7 show that u2

1 is substantially increased by shear. As time

progresses, u2
1 becomes the largest Reynolds stress, at long times growing in proportion to

t . We have previously concluded that Fourier components with k1 ≈ 0 become increas-
ingly dominant; now it is also seen that u1 is the dominant velocity component. In
conjunction, these observations are that the theory predicts persistent growth of stream-
wise velocity fluctuations that have a long length in the x1 direction, that is, it predicts
streamwise streaks (see Figure 5.10, page 101).

The mechanism of streak formation is quite simple. For components with k1 ≈ 0,

û2 = û0
2 and dt û1 = Sû0

2 = û0
2 dU/dx2 (11.2.10)

according to (11.2.7). This equation for û1 simply equates its evolution to vertical
displacement of mean momentum by the u2 component of velocity. For these low-
wavenumber components, growth of u2

1 is simply due to random displacement of mean
momentum by cross-stream velocity fluctuations; the pressure gradient is negligible.

Equation (11.2.10) shows that dtu
2
1 → −2 u1u2S in this large-St limit. It can be

shown that u1u2/u
2
0 → − 1

2 log 8 as St → ∞ (Rogers, 1991). Thus the turbulent kinetic
energy grows linearly with time, asymptoting to

k ∼ k0 St log 8,
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and this growth is due to amplification of the streamwise component, u2
1. The qual-

itative behavior that u2
1 grows and u2

2 diminishes is more important than the precise
mathematical asymptotes.

This overview of shear flow RDT provides an understanding of the structure of
sheared turbulence. It tends to develop jet-like eddies with fluctuating velocity of
the functional form u1(y, z). This is a physical interpretation of the dominance of
the streamwise Reynolds stress component, u1, and of the independence from the
streamwise wavenumber, k1 ≈ 0. Visualizations of turbulent shear flow consistently
show streamwise-elongated, jet-like eddies. The prevalence of such structure in shear
flow turbulence is indeed remarkable. RDT provides a convincing explanation of this
phenomenon.

11.2.2 Turbulence near a wall

This final section describes a linear analysis of kinematic blocking. The analysis of
blocking is subsumed under the heading of non-homogeneous rapid distortion theory
even though it does not involve turbulence distortion per se. It serves as a good example
of the non-homogeneous theory.

The classical rapid distortion theory was developed for strictly homogeneous turbu-
lence. Section 11.1.3 referred implicitly to a quasi-homogeneous approximation, when
replacing the total strain by the local mean velocity (see Eqs. (11.1.23) and (11.1.24)).
That serves as an introduction to non-homogeneous RDT, which body of work is reviewed
in Hunt and Carruthers (1990). We conclude this chapter on rapid distortion by discussing
a prototypical example of full non-homogeneity.

The kinematic wall effect is that the normal component of velocity must vanish on an
impenetrable surface. This was mentioned in Section 7.3.4. For a plane, infinite boundary,
the no-normal-velocity condition is accommodated by an image system of vorticity as in
Figure 7.7, page 185. Turbulence is a three-dimensional, random field of vorticity. The
idea of image vorticity gives some insight into wall effects.

A preliminary understanding can be had by considering a two-dimensional problem.
The method of images solution for the complex conjugate velocity field of a point vortex
at (0, yv) above a wall along y = 0 is

u − iv = iγ

2π

[
1

x + i(y + yv)
− 1

x + i(y − yv)

]
. (11.2.11)

The second term is the vortex in the flow; the first is its image in the wall. Evaluating
expression (11.2.11) on y = 0, we find

v = 0 and u = γyv

π(x2 + y2
v )

.

Right beneath the vortex, at x = 0, the velocity tangential to the boundary is u = γ/πyv .
Without a wall, u would equal γ/2πyv at this same point. The horizontal velocity is
doubled and the normal velocity is canceled by the wall effect. In a boundary layer, shear
production probably overwhelms enhancement of u2 by the image effect, but suppression
of v2 by this mechanism very likely plays a role.
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The full RDT analysis is of unsheared turbulence near a boundary (Hunt and Graham,
1978). Viscous effects are assumed to be confined to a very thin layer next to the wall,
which is ignored.

The point vortex plus image, Eq. (11.2.11), is a solution to ∇2φ = 0 with u = ∇φ.
The corresponding rapid distortion analysis is as follows. Let

uv =
∫ ∞∫
−∞

∫
ûv(k) e−i(kx+ly+mz) dk dl dm (11.2.12)

be a field of homogeneous, vortical turbulence. A wall is instantaneously inserted at
y = 0. Far from the wall, the turbulence remains homogeneous and given by uv . To
satisfy the no-penetration condition, an irrotational turbulent field, up = ∇φ, is added.
The total velocity is u = uv + up.

The total velocity is divergence-free, as is the turbulence far from the wall, uv . Hence

0 = ∇ · u = ∇ · uv + ∇ · up = ∇2φ.

That is, the irrotational velocity potential, φ, must solve

∇2φ = 0. (11.2.13)

Consider a Fourier representation in directions of homogeneity:

φ(x, y, z) =
∫ ∞∫
−∞

φ̃(y) e−i(kx+mz) dk dm. (11.2.14)

Note that a tilde is used to represent a Fourier mode in k and m, while a hat is used
for the full 3D Fourier transform in (11.2.12). Using the representation (11.2.14) in the
Laplace equation and differentiating under the integral give∫ ∞∫

−∞
[∂2

y φ̃ − (k2 + m2)φ̃] e−i(kx+mz) dk dm = 0.

As the Fourier modes are independent, the bracketed term itself must vanish:

∂2
y φ̃ − (k2 + m2)φ̃ = 0.

The solution to this equation, which is bounded as y → ∞, is

φ̃ = φ̃0 e−λy, (11.2.15)

where λ2 = k2 + m2.
The wall condition is that the total normal velocity vanishes, v = vv + vp = 0; or,

taking the 2D Fourier transform,

ṽp = −ṽv
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on y = 0. From the representation (11.2.12), the vortical velocity is

ṽv =
∫ ∞

−∞
v̂v dl

on y = 0. Then, from Eq. (11.2.15), the potential velocity is

ṽp = ∂yφ̃ = −λφ̃0

on y = 0. Substituting these wall values into the above boundary condition gives

λφ̃0 =
∫ ∞

−∞
v̂v dl. (11.2.16)

The solution for φ is completed by substituting (11.2.15) with (11.2.16) into (11.2.14).
It is now

φ =
∫ ∞∫
−∞

∫
1

λ
v̂v(k) e−λy e−i(kx+mz) dk dl dm.

With this, the Fourier representation of the full turbulent fluctuating velocity, uv + ∇φ, is

(u, v, w) =
∫ ∞∫
−∞

∫ {
(ûv, v̂v, ŵv) e−ily − (ik,

√
k2 + m2, im)√
k2 + m2

v̂v e−
√

k2+m2 y

}

× e−i(kx+mz) dk dl dm. (11.2.17)

This is the essence of the kinematic blocking solution. The rest of the RDT analysis
consists in computing statistics. The methodology for the further analysis is that used
previously for homogeneous turbulence. It will be illustrated by showing that blocking
increases the tangential velocity by 50%, in the sense that u2(y = 0) = 3

2u2(y = ∞).
On y = 0 the solution (11.2.17) gives v = 0 and

u(0) =
∫ ∞∫
−∞

∫ (
ûv − ik√

k2 + m2
v̂v

)
e−i(kx+mz) dk dl dm. (11.2.18)

By “squaring” this and assuming that the turbulence far from the wall (i.e., ûv) is isotropic,
it can be shown that

u(0)2 =
∫ ∞∫
−∞

∫
�11 + k2

k2 + m2
�22 d3k. (11.2.19)

The contribution from �12 that would seem to arise from the bracketed term in the
integrand of (11.2.18) vanishes upon integration. For the isotropic spectrum (9.2.17),
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page 259, the integration can be done in spherical coordinates,

u(0)2 =
∫ ∞∫
−∞

∫
E(|k|)
4π |k|4

[
(l2 + m2) + k2

k2 + m2
(k2 + m2)

]
d3k

=
∫ ∞

0

E(κ)

4πκ2
4πκ2 dκ = 1

2q2,

where κ2 = k2 + l2 + m2.
The turbulence at infinity is isotropic, which means that u2∞ = 1

3q2. Thus,

u2(0) = 3
2u2∞,

as was to be shown. The intensity at the wall is 50% higher than the intensity far above
the wall. This result is consistent with the point vortex reasoning below Eq. (11.2.11),
but the 50% amplification has to be derived by statistical averaging over the random
velocity field (Hunt and Graham, 1978).

When y is not zero, the full solution (11.2.17) is used. To compute the variances,
each component of the integrand is multiplied by its complex conjugate and averaged.
This gives

u2 = w2 =
∫ ∞∫
−∞

∫ {
�11 + �22 e−2

√
k2+m2 y k2

k2 + m2

+ 2k sin(ly)√
k2 + m2

�12 e−
√

k2+m2 y

}
dk dl dm, (11.2.20)

v2 =
∫ ∞∫
−∞

∫
�22

{
1 + e−2

√
k2+m2 y − 2 cos(ly) e−

√
k2+m2 y

}
dk dl dm,

and uv is zero because there is no mean shear. The turbulence is axisymmetric about
the y axis. The integrals (11.2.20) have been computed using the isotropic form
(9.2.17) for �ij , with the Von Karman spectrum (9.2.19), defined on page 260, for
E(k). The result is plotted in Figure 11.8. Note that the non-homogeneous solution
for wall blocking does depend on the shape of the energy spectrum, unlike the case of
homogeneous RDT.

If L∞ is the integral scale of the turbulence far above the wall, then v2 starts to
be suppressed at a height of order (L∞) above the surface, and tends to 0 at the wall.
The horizontal intensities, u2 = w2, are amplified in the same region. The behavior is
qualitatively consistent with a simple understanding of the influence of image vorticity.
As in other RDT analyses, the conceptual understanding of wall blocking is as important
as the detailed solution.
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Figure 11.8 Kinematic solutions for v2 ( ) and u2 = w2 ( ) near a plane
boundary.

Exercises

Exercise 11.1. Turbulence in a piston; 1D compression. RDT analysis can be applied
to a unidirectional compression (Hunt, 1977). This models the effect of compression on
turbulence in a piston (away from the walls, because the analysis is of homogeneous
turbulence).

Consider the mean flow

U = x dH/dt

H(t)

corresponding to Figure 11.9. Show that s1 = H/H0, that is, that the total strain is just the
expansion ratio. This permits the solution to be written in terms of the physical dimension
H instead of time.

Show that the distorted wavevector is

κ1 = H0

H
k1, κ2 = k2, κ3 = k3,

Piston

H(t )

U = 0 

U = dH/dt

Figure 11.9 Schematic for compression of turbulence by a piston.
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and, from Cauchy’s formula, that

ω̂1 = ω̂01, ω̂2 = H0

H
ω̂02 , ω̂3 = H0

H
ω̂03 .

By invoking (11.1.16) obtain a complete solution for the component û1 and obtain the
integrand in

u2
1 =
∫ ∞∫
−∞

∫
û1û

∗
1 d3k

explicitly. Evaluate the integral for initially isotropic turbulence.

Exercise 11.2. Homogeneous shear RDT. Use a two-term series solution to (11.2.7),
starting with isotropic turbulence, to obtain the short-time solutions (11.2.9) for v2 and uv.
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Eddy-resolving simulation

I am an old man now, and when I die and go to heaven there are two matters on
which I hope for enlightenment. One is quantum electrodynamics, and the other is the
turbulent motion of fluids. And about the former I am rather optimistic

– Sir Horace Lamb

In 1932, Sir Horace Lamb lamented the incomprehensibility of the turbulent motion of
fluids. Even at that time, it was supposed that turbulence was governed by the same laws
as laminar flow; but how equations of such apparent simplicity could invoke such com-
plex behavior was a puzzle. In the course of time, the evidence that the Navier–Stokes
equations are the appropriate laws of physics has become indisputable. Now, with suf-
ficient computing power, turbulence can be simulated via numerical solution to these
equations. Highly resolved, time-accurate computations are able to simulate the chaotic
eddying motions of turbulent flow. This is not the enlightenment sought by Horace Lamb;
but it does mean that we know the governing laws, and have to accept that they have
very complex, deterministic solutions that can be found numerically.

Computer simulation provides a laboratory in which to study turbulence. Computa-
tions with grid spacings that are small enough to resolve Kolmogoroff scale eddies are
called direct numerical simulations (DNS). That terminology is synonymous with “fully
resolved simulation:” the spacing and number of grid points suffice to capture the entire
spectrum of scales.

Fully resolved simulation is quite demanding of computer resources. A good part
of the expense is incurred in capturing the smallest scales. The role of those scales is
to dissipate fluctuation energy. Expense can be reduced by capturing the largest scales
and using a dissipative model in place of the smaller eddies. This is called large eddy
simulation (LES). For instance, if the grid spacing is five times that of direct simulation
in each of three directions, the number of grid points is reduced by a factor of 125. To the
extent that the dissipative model does not contaminate the large scales, LES can provide
Navier–Stokes simulations of satisfactory accuracy for many purposes. However, the

Statistical Theory and Modeling for Turbulent Flows, Second Edition P. A. Durbin and B. A. Pettersson Reif
 2011 John Wiley & Sons, Ltd
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results depend inherently on the grid. Selecting a grid that is coarse enough for efficiency
and fine enough for accuracy is an art.

Near to walls, a separation between large- and small-scale eddies becomes impossible.
Accurate large eddy simulation requires the same grid resolution as direct numerical
simulation within this region. To avoid the expense of large grids, the notion of hybrid
RANS–LES has been developed. The near-wall region is represented by a formulation
suited to Reynolds averaged description; away from the wall, large eddies are simulated.
Detached eddy simulation (DES) is a version of this hybrid approach.

The two chapters in Part IV describe aspects of these various versions of eddy-
resolving simulation.

12.1 Direct numerical simulation

12.1.1 Grid requirements

The endeavor to simulate turbulence by direct numerical solution of the Navier–Stokes
equations is predicated on the availability of suitable algorithms and a fine enough dis-
cretization of space and time to faithfully reproduce turbulence dynamics. It also demands
sufficiently powerful computers.

The overall computational cost depends strongly on the number of discrete points
in space and the number of discrete steps in time. These numbers grow rapidly with
Reynolds number. Conventional estimates of grid requirements have been developed
from ideas that were presented in earlier chapters of this text.

Our discussion of direct simulation starts with estimates of grid requirements. First
we consider homogeneous turbulence, then turbulent boundary layers.

The subject of Exercise 2.2 is Reynolds number scaling of grid points and time steps
in homogeneous turbulence. Let Nx , Ny , and Nz denote the number of grid points in
the x, y, and z directions; then N = NxNyNz is the total number of points. The dashed
grid in Figure 12.1 schematically represents the resolution required to capture both large-
and small-scale eddies. The grid spacing must be on the order of the Kolmogoroff scale
(2.1.6). The number of points must suffice to capture several of the largest-scale eddies.

h

L

Figure 12.1 Schematic of DNS and LES grid resolution. Dashed lines are a DNS grid;
solid lines are an LES grid.
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Thus
Nx 	 L

η
= L

(ν3/ε)1/4
∼ R

3/4
T .

This is true for all three directions. Thus, N ∼ N3
x grows with Reynolds number as

N ∼ R
9/4
T .

Similarly, the number of time steps grows as R
1/2
T . The overall expense scales as R

11/4
T ,

or almost the third power of Reynolds number.
Historically, the rapid increase of expense restricted direct simulation to low Reynolds

numbers. However, at the time of writing, simulation of isotropic turbulence with 40283 ∼
6.5 × 1010 grid points has become feasible. Reynolds numbers of order RT ∼ 105–106

can be computed. This brings computer simulation of homogeneous turbulence up to
typical laboratory Reynolds numbers. The large number of grid points is feasible because
highly efficient, pseudo-spectral methods can be used to simulate spatially homogeneous
turbulence (Canuto et al., 2006).

Such is not the case for inhomogeneous flows. Consider a channel flow, or flat-plate
boundary layer. The grid requirements are governed by statistical correlation lengths;
however, reference to streak widths and wall units provides a more intuitive perspective
and leads to the same conclusions. Streaks have a spacing of about 100 plus units in the
direction across the span – the z direction (Section 5.1.2). If 20 grid points are needed to
resolve a streak, �z+ ∼ 5. If 10 steaks are needed to represent statistical homogeneity,
Nz ∼ 200. This number is typical of boundary-layer and channel flow DNS.

Streaks are long in the streamwise, or x, direction. However, to capture their irregu-
larities requires about the same spacing as that in the z direction: �x+ ≈ �z+ ∼ 5. The
streak length is about 1000 plus units. To capture four streaks requires Nx ∼ 800. The
long streamwise correlation length creates a demand for large Nx , that often is not met
(Del Alamo and Jiménez, 2003). However, tests show that local statistics are not highly
sensitive to streamwise domain length.

If Ny ≈ Nz, the overall requirement is of order 3 × 107; this is typical of channel flow
simulations to date (Moser et al., 1999). But the estimate should scale with Reynolds
number. Consider how such an estimate might proceed.

If �z
+ is the spanwise correlation length and the domain width is a fixed multiple of

this, say 10�z
+, then Nz = 10�z

+/�z+ is independent of Reynolds number. However, if
the domain width is fixed, say W , then Nz =W/�z = Wu∗/ν�z+. In boundary layers,
Eq. (4.2.8) on page 68 states the empirical relation Cf ∝ R

−1/4
θ . Because u∗ = U∞

√
2Cf,

Nz ∼ U∞W
√

2Cf/ν�z+ ∼ (W/�)R
7/8
θ

for a fixed �z+ (Chapman, 1979). The same argument applies in the x direction:
Nx ∼ R

7/8
θ .

The wall normal direction, y, is more ambiguous. Adjacent to the wall, �y+ < 1
is needed to capture the viscous sublayer. Grid spacing expands slowly until it reaches
�y+ ∼ 5 in the law-of-the-wake region. If it expands to some fixed y+ in the log region,
then Ny ∼ y+/�y+ is independent of Reynolds number. If most grid points are below
this level, then N = NxNyNz ∼ R

7/4
θ . However, the number of grid points in the outer

portion of the boundary layer increases with Reynolds number in the same manner as
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Nz. So the y grid splits into two parts that scale as R0
θ and as R

7/8
θ . The overall Reynolds

number scaling is in the range

N ∼ R
7/4
θ –R

21/8
θ . (12.1.1)

Turbulent boundary-layer structure is fully established for Rθ � 3000; hence, direct sim-
ulations of boundary-layer and channel flow to date have required 106–109 grid points.
The larger grids create quite stringent demands for computer time.

Computational expense is a function of both the number of grid points and the effi-
ciency of the solution algorithm. Spectral methods are accurate and are efficient when
fast Fourier transforms (FFTs) are used. FFTs are applicable if the grid spacing is uniform
along a Cartesian direction. Homogeneous turbulence can be simulated on a grid that is
uniformly spaced in all three directions. Highly efficient pseudo-spectral methods permit
large grids.

To understand the origin of computational expense, consider solving Poisson’s
equation ∇2p = S: for instance, a Poisson equation is solved for the pressure in
incompressible flow. It can be solved exactly by Fourier transforms (see page 271):

p = −F−1
k

(Fk(S)

|k|2
)

.

The equation is Fourier-transformed and solved by dividing by −|k2|, then inverse-
transformed.

If the grid is uniform in two directions but not in the third, the Poisson equation
can be Fourier-transformed in those two directions, providing an ordinary differential
equation in the third:

d2
yp̂ − (k2

x + k2
y)p̂ = Ŝ.

This can be solved directly, but pressure cannot be eliminated from the momentum
equation. The efficiency is less than in homogeneous turbulence, but still relatively high.
Grids that are uniform in two spatial directions arise in channel flow simulations.

When the flow is inhomogeneous in two or three directions, non-uniform grids are
required. The Poisson equation cannot be solved directly; iterative methods are required,
and the computational time increases in proportion to the number of iterations. Thus,
the solution algorithms for non-homogeneous turbulence are greatly more costly per
time step than those for homogeneous turbulence. The expense usually scales with the
total number of grid points (times log N for FFTs) times the number of iterations, or
substeps per time step. Iteration adds expense. The increased expense per time step
must be compensated by a smaller grid. That is why the number of grid points for
inhomogeneous turbulence simulation must be one or two orders of magnitude fewer
than for homogeneous turbulence for numerical simulation to be feasible.

12.1.2 Numerical dissipation

Direct numerical simulation is the art of accurately solving the full, time-dependent
Navier–Stokes equations. To capture the smallest scales of motion, the computational
algorithm should have low numerical dissipation. Indeed, too much numerical dissipation
can cause turbulence to decay spuriously, confounding the effort to simulate it.
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One way to characterize numerical dissipation is to apply the discretization to the
equation

∂tφ + c ∂xφ = 0, (12.1.2)

with φ = eikx at t = 0. The exact solution is φ = eik(x−ct). Consider a discrete approxi-
mation of the x derivative:

∂tφ + c δxφ = 0, (12.1.3)

with the notation that δx is a discrete approximation of ∂x . For instance, it might be
the central difference formula δxφ = [φ(j + 1) − φ(j − 1)]/2�x. If the solution to this
discrete equation has the form

φ = eik(x−cefft)−σ t , (12.1.4)

the difference between ceff and c in (12.1.3) is called a dispersive error and σ is called
the dissipative error.

Centered difference discretization only has a dispersive error. For instance, consider
a set of uniformly spaced grid points, x = [0,�x, 2�x, . . . , j�x] and let

δxφ = φ(j + 1) − φ(j − 1)

2�x
. (12.1.5)

It is found by substituting (12.1.4) into (12.1.3) that

ikceff + σ = c
eik�x − e−ik�x

2�x
.

Then the solution to (12.1.3) has ceff = c sin(k�x)/(k�x) and σ = 0. The dispersive
error is characterized alternatively by the effective wavenumber

keff = k
ceff

c
= sin(k�x)

�x
.

For small �x, keff ≈ k; for larger �x, keff < k. The exact derivative of φ = eikx is
ikφ; the numerical derivative is ikeffφ. It is in substantial error unless �x is sufficiently
small. An objective of high-accuracy discretization methods is to make keff close to k for
large �x.

If, instead of (12.1.5), the derivative is discretized as

δxφ = φ(j + 1) − φ(j)

�x
, (12.1.6)

then keff = sin(k�x)/�x, again, but σ = c[1 − cos(k�x)]/�x. Now there is a dissipa-
tive error. The approximation (12.1.6) is called a first-order finite-difference approxima-
tion because σ → ck2�x/2 as �x → 0: the error diminishes as �x to the first power.

The discretization

δxφ = 2φ(j + 1) + 3φ(j) − 6φ(j − 1) + φ(j − 2)

6�x
(12.1.7)
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is a third-order, upwind approximation, for which

σ = c[3 − 4 cos(k�x) + cos(2k�x)]/(6�x) → O(k�x)3 as �x → 0.

The common element of (12.1.6) and (12.1.7) is that they are asymmetric about the grid
point xj ; for example, the points [j − 2, j − 1, j, j + 1] are biased to the left of j . On a
uniformly spaced grid, asymmetric schemes have a dissipative error, whereas symmetric
schemes have only dispersive error.

Centered, symmetric discretization is more suited to direct numerical simulation
because it is not dissipative on a uniform grid. However, it can be unstable, or can
lead to large grid-point to grid-point oscillations (called 2� waves). Often, some degree
of numerical dissipation is needed; the demands of DNS require it to be minimized,
subject to constraints of stability and fidelity.

12.1.3 Energy-conserving schemes

Conservation of kinetic energy provides another perspective on discretization schemes for
turbulence simulation. If kinetic energy is conserved, then the scheme will not dissipate
turbulence spuriously. Also, the method will be stable because the total kinetic energy is
bounded by its initial value. Even though the exact, inviscid equations conserve kinetic
energy, such may not be true of a numerical approximation.

The exact, inviscid momentum and continuity equations are (page 46)

∂t ũi + ũj ∂j ũi = − 1

ρ
∂ip̃,

∂i ũi = 0.

(12.1.8)

Energy conservation is derived from these. The product of the momentum equation
with ui , summed over i, gives

∂t

1

2
|ũ|2 + ∂j

(
ũj

1

2
|ũ|2
)

= − 1

ρ
∂iũi p̃

upon invoking the second equation of (12.1.8). Letting K ≡ 1
2 |ũ|2 and writing this in

vector form gives

∂tρK + ∇ · (ũρK) + ∇ · (ũp̃) = 0. (12.1.9)

The two terms that are divergences transport kinetic energy without creating or destroying
it. Integrated over the flow domain, they become equal to the flux of energy into the
domain, minus the flux out. Energy is conserved within the domain. Let us see whether
this carries over to numerical schemes.

To isolate convection, consider the quantity

u · ∇φ. (12.1.10)

Then, for a divergence-free velocity field,

φu · ∇φ = 1
2u · ∇φ2 = 1

2∇ · uφ2.

The last is a conservative form because it is written as the divergence of a flux.
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The question of whether numerical schemes conserve energy arises because the steps
of this derivation are not generally respected by discretized equations. For instance,
central differencing

ũ δxφ = ũ(j)
φ(j + 1) − φ(j − 1)

2�x

implies that φ · (ũ δxφ) �= 1
2 ũ δxφ

2. Explicitly,

φ · (ũ δxφ) = φ(j)ũ(j)
φ(j + 1) − φ(j − 1)

2�x

�= 1

2
ũ δxφ

2 = ũ(j)
φ2(j + 1) − φ2(j − 1)

4�x
.

By analogy, the convective term in (12.1.9) would not be in conservation form in the
discrete approximation.

A resolution, originally introduced by Arakawa (see Morinishi et al ., 1998), is to
discretize as

ũi ∂iφ = 1
2 ũi δiφ + 1

2δi(ũiφ),

which goes under the name of the “skew form.” Continuity is invoked to show that
δi ũiφ = ũi δiφ, so the two sides of this equation are equivalent.

For the skew form, φ · ũi δiφ becomes

φ · ũ δxφ = φ(j)

2

(
ũ(j)

φ(j + 1) − φ(j − 1)

2�x

+ ũ(j + 1)φ(j + 1) − ũ(j − 1)φ(j − 1)

2�x

)
,

(12.1.11)

plus similar terms in the y and z directions. If

F(j + 1
2 ) ≡ 1

4 [u(j)φ(j)φ(j + 1) + u(j + 1)φ(j)φ(j + 1)],

then the right-hand side of (12.1.11) has the conservation form

F(j + 1
2 ) − F(j − 1

2 )

�x
.

Hence, the discretized convection equation

∂tφ + ui ∂iφ = 0

conserves variance because it gives the equation

1
2 ∂tφ

2 = −φui δiφ = −F(j + 1
2 ) − F(j − 1

2 )

�x
.

for the variance. Global conservation is confirmed by summing: in one dimension

�x

J∑
j=1

∂tφ
2
j = −2

J∑
j=1

F(j + 1
2 ) − F

(
j − 1

2

)
.
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But

J∑
j=1

F(j + 1
2 ) − F(j − 1

2 ) = F(J + 1
2 ) − F( 1

2 ). (12.1.12)

Thus, the net flux is that crossing the boundaries. In directions of statistical homogene-
ity, periodic boundary conditions are applied, so the right-hand side vanishes. Then the
integrated variance is constant in time.

It follows by similar reasoning that

ũj ∂j ũi = 1
2

(
ũj δj ũi + δj (ũj ũi)

)
(12.1.13)

is an energy-conserving form of the convection term of the momentum equation.
Another approach to energy conservation for (12.1.8) is to rewrite convection in

rotational form:

ũj ∂j ũi = ũj (∂j ũi − ∂iũj ) + 1
2 ∂i ũ

2
j . (12.1.14)

This ensures that kinetic energy is conserved in incompressible flow, as follows. The
first term on the right is the cross-product of velocity and vorticity, ũ ∧ ω. From this, or
from antisymmetry in i and j of the rotation tensor, it follows by taking the product of
(12.1.14) with ũi that

ũi ũj ∂j ũi = 1
2 ũj ∂j |ũ|2.

So conservation hinges on putting the last term in divergence form. That is the same as
putting the pressure contribution into divergence form, as in (12.1.9); in fact, |ũ|2/2 is
just the dynamic pressure, divided by density.

Consider the finite-difference representation

ũ δxp̃ = ũ(i)

(
p̃(i + 1) − p̃(i − 1)

2�x

)
.

Adding p(i) times the continuity equation, discretized as

δjuj = ũ(i + 1) − ũ(i − 1)

2�x
+ ṽ(j + 1) − ṽ(j − 1)

2�y
+ w̃(k + 1) − w̃(k − 1)

2�z
,

(12.1.15)

to this gives

ũ δxp̃ = ũ(i)

(
p̃(i + 1) − p̃(i − 1)

2�x

)
+ p̃(i)

(
ũ(i + 1) − ũ(i − 1)

2�x

)
=
(

ũ(i)p̃(i + 1) + ũ(i + 1)p̃(i)

2�x

)
−
(

ũ(i − 1)p̃(i) + ũ(i)p̃(i − 1)

2�x

)
,

and similarly in the y and z directions. If

Gx(i + 1
2 ) ≡ 1

2 [ũ(i)p(i + 1) + ũ(i + 1)p̃(i)],
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then the pressure term assumes the divergence form

ũi δi p̃ = Gx(i + 1
2 ) − Gx(i − 1

2 )

�x
+ Gy(j + 1

2 ) − Gy(j − 1
2 )

�y

+ Gz(k + 1
2 ) − Gz(k − 1

2 )

�z

≡ δiGi.

So energy conservation is obeyed if the discrete continuity equation (12.1.15) is satisfied.

12.2 Illustrations

Some numerical concepts will be illustrated via an equation that is much simpler than
Navier–Stokes. The Burgers equation is

∂tu + u ∂xu = ∂x(ν ∂xu). (12.2.1)

Its convective nonlinearity has some semblance to the Navier–Stokes momentum
equation, but there is no pressure gradient. The domain is −1/2 ≤ x ≤ 1/2. The initial
condition is u = 1 + sin(2πx) and periodic conditions are applied:

u(− 1
2 − ξ) = u( 1

2 − ξ), u( 1
2 + ξ) = u(− 1

2 + ξ).

Thus a point outside the range −1/2 ≤ x ≤ 1/2 that appears in a finite-difference formula
can be replaced by one inside the range. Variables are non-dimensional, so the viscosity
is equivalent to 1/Re.

First derive the equation for kinetic energy. In differential form,

1
2 ∂tu

2 + 1
3 ∂xu

3 = ∂x(ν ∂x
1
2u2) − ν(∂xu)2

follows from (12.2.1) upon multiplication by u. If ν = 0, energy is conserved. If it is not
zero, the last term on the right dissipates energy.

Next consider the discrete form. We will use Arakawa’s skew treatment of convection:

u ∂xu ≈ au δxu + (1 − a) δx
1
2u2

= a
u(j)

2�x
[u(j + 1) − u(j − 1)] + (1 − a)

1

4�x
[u(j + 1)2 − u(j − 1)2].

If a = 1/3 this becomes

u(j)

6�x
[u(j + 1) − u(j − 1)] + 1

6�x
[u(j + 1)2 − u(j − 1)2]. (12.2.2)

Multiplying by u(j) shows this to be energy-conserving, with the flux function

F(j + 1
2 ) = 1

6 [u2(j)u(j + 1) + u(j)u(j + 1)2].



314 EDDY-RESOLVING SIMULATION

1.44

1.45

1.46

1.47

1.48

1.49

1.50

0.040 0.08
t

0.12 0.16 0.2

en
er

gy

Figure 12.2 Energy versus time for the Burgers equation with skew ( ), central
( ), and upwind ( ) differencing.

Figure 12.2 compares the treatment (12.2.2) to the central and upwind forms,

1

4�x
[u(j + 1)2 − u(j − 1)2] and

1

�x
u(j)[u(j) − u(j − 1)].

The total number of grid points is J = 128, with periodicity: u(128) = u(1). The viscosity
is set to zero in order to illustrate energy conservation. The discrete equations were
integrated by fourth-order Runge–Kutta (see Exercise 12.2). The integrated energy

�x

J−1∑
j=1

u(j)2 (12.2.3)

is plotted versus time. It is constant for the skew form, but decreases for the other two.
The first-order, upwind scheme has a dissipative error and energy decays rapidly. The
central form initially conserves energy; but, as time progresses, the Burgers equation
develops steep gradients, which cause energy to decay.

Next, the Burgers equation is solved with the energy-conserving scheme and with the
random initial condition

u = 1 + 1
2 [1 + ξ(x)] sin(2πx),

where ξ is a random number between 0 and 1. This is an analogy to DNS. Profiles at
two times are illustrated by the dashed curves in Figure 12.3.

For future reference, in addition to the raw data, data averaged according to (13.1.1)
with N = 2 are shown by the solid curves in Figure 12.3. The running average removes
short wavelength wiggles, leaving smoother velocity profiles. The smoother field is the
subject of the next section, on large eddy simulation. Exercise 12.2 asks the reader to
explore DNS of the Burgers equation.
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Figure 12.3 Velocity profiles at two times for the Burgers equation. Instantaneous
( ) and filtered ( ) fields.

The numerical techniques and resolution requirements described in this chapter are
the starting point of direct simulation. To go further is beyond our present scope. The
discussion of direct simulation concludes by showing a few examples of instantaneous
fields of eddies. Other illustrations of DNS fields can be found in Chapters 1 and 5.

Figure 12.4 is from a spectral simulation of isotropic turbulence: the pseudo-spectral
method is the topic of the next section. The grid is 1283. The Reynolds averaged
description is rather less intriguing than this instantaneous flow field: it is k ∝ t−1.22

(see discussion of the decay exponent on pages 124 and 273). This simulation is at the

Figure 12.4 DNS of homogeneous, isotropic turbulence. Contours of velocity magni-
tude. Courtesy of Dr. Yang Liu.
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microscale Reynolds number Rλ = 27.13, which is low compared to typical laboratory
data. Nevertheless, one can detect large and small features in the contours. DNS captures
the full range of eddy scales.

Vorticity contours in a DNS of plane channel flow are illustrated by Figure 12.5. A
variation in the scales of turbulence can be seen. The eddies are large in the center of
the channel and become smaller near the walls. Figure 12.6 displays elongated velocity
contours just above the wall, at y+ = 10. There, x is the streamwise direction and z is
the spanwise direction. Contours of the u component emphasize elongated streaks. The
v contours contain substantial irregularities of a size much less than the streak length.
The streamwise grid resolution must be adequate to capture these small scales; hence it
cannot be significantly coarser than the resolution in the spanwise direction. Moser et al.
(1999) provide other data and the grid requirements for simulations at various Reynolds
numbers. Statistics from a channel flow DNS are displayed in Figure 4.3.

A wide range of eddy sizes is captured in Figure 12.7. This is from a simulation of
flow in a channel that has ribs along the lower wall. The ribs lift the near-wall streaks
away from the surface, producing small scale features higher in the flow field. The upper
wall is plane. Large eddies are seen in the center of the channel. In this example, the
geometrical complexity is minimal; however, the turbulence structure is complex and
computationally demanding. The grid for this simulation was 1024 × 352 × 192 in the
streamwise, cross-stream, and spanwise directions.

Direct simulation has proved to be especially effective for studying transition from
laminar to turbulent flow. By its nature, transition occurs at relatively low Reynolds
number, which reduces the demand for large grids. Early studies did not progress beyond
nonlinear growth of instability waves and were even less demanding. More recently, it
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Figure 12.5 Contours of horizontal vorticity in DNS of a plane channel. Courtesy of
Dr. Greg Laskowski. Flow from left to right.

z

x

u contours

z

x
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Figure 12.6 Contours of streamwise and normal velocities near the wall of a plane
channel at y+ = 10. Courtesy of Dr. Tomoaki Ikeda.
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Figure 12.7 Fluctuating velocity field in DNS of a plane channel with ribs on the lower
wall. Flow from left to right. Source: Tomoaki Ikeda and Paul A. Durbin, ‘Direct sim-
ulations of a rough wall channel flow’, The Journal of Fluid Mechanics , 571, 235–263.
2007  Cambridge Journals, published by Cambridge University Press.

has become possible to carry simulations all the way through to a turbulent state. Grids
become larger, but simulations are done at realistic Reynolds numbers. DNS has been
performed for both orderly and bypass transition (Section 6.5), for separated and attached
flow, and for incompressible and compressible flow (Criminale et al., 2003).

If the computation is to be carried right through from instability to turbulence, then
grid resolution must be adequate to capture eddies that appear after transition. The
wavelength of instabilities is on the the order of the shear-layer thickness, δ. Eddies
of order the Kolmogoroff scale, η, or in a wall-bounded flow of order ν/u∗, must be
resolved. Thus the number of grid points scales as (δ/η)3 ∼ R

9/4
δ in a free-shear layer

and as (u∗δ/ν)3 ∼ R
21/8
δ in a boundary layer, per Eq. (12.1.1). The saving grace is that

Reynolds numbers are low.
Figure 12.8 illustrates transition in the boundary layer on a compressor blade (Zaki

et al ., 2009). Instability is initiated by free-stream turbulence. Perturbations to the region
next to the leading edge are large-scale and relatively smooth. But a high degree of
irregularity develops on the latter part of the blade. In the lower image, contours of
Q ≡ |S|2 − |�|2 = constant are superimposed on contours of wall normal velocity; Q is
an indicator of vortices and thus of small scale features. In transitional flow, vortices lift
from the surface and breakdown into turbulence.

In this geometry, transition occurs for chord Reynolds numbers in the range
105 –106 and momentum thickness Reynolds numbers of order 102 –103. In the case
of Figure 12.8, the Reynolds number based on axial chord and free-stream velocity
is Re = 1.385 × 105. A grid of dimensions 1025 × 641 × 129 in the streamwise,
cross-stream, and spanwise directions was employed. A rather large number of points
is needed in the streamwise direction. Streamwise resolution is especially important in
the neighborhood of the location of transition; the abrupt rise in skin friction (Figures
6.11 and 6.13) can be difficult to capture.

Free-shear layers are subject to an inviscid instability. It is more powerful than viscous
instability in boundary layers. The critical Reynolds number may be less than 100. A
mixing layer is unstable at any Reynolds number. Primary instabilities grow rapidly and
develop secondary instabilities that break down to turbulence.

The primary instability of a mixing layer is a spanwise roll. The upper panel of
Figure 12.9 is a side view of a mixing layer; it highlights the formation of rolls. The
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Figure 12.8 Transition on the pressure side of a compressor blade. Flow from left to
right. Top: contours of tangential velocity. Bottom: contours of normal velocity with
vorticity surfaces superimposed. Figure courtesy of T. Zaki and J. Wissink.

Figure 12.9 Transition in the mixing layer downstream of a splitter plate. Reprinted
with permission from ‘Direct numerical simulation of a mixing layer downstream a thick
splitter plate’ by Sylvain Laizet, Sylvain Lardeau, Eric Lamballais, in Physics of Fluids
22, 015104 . Copyright 2010, American Institute of Physics.

lower panel is a view looking down on the layer; it illustrates the development of
small-scale, three-dimensional motion. These views are plots of vorticity magnitude.
The Reynolds number based on velocity difference and splitter plate thickness is 400.
Shear-layer thickness grows by a factor of 10 in the computational domain. So on the
order of 108 grid points are needed if the grid is uniform. This grid for this simulation
was 961 × 257 × 120 (Laizet et al., 2010).

12.3 Pseudo-spectral method

Figure 12.4 shows the simplest, and earliest application of direct numerical simulation.
The idea that homogeneous turbulence might be simulated numerically occurred to the
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mathematician John Von Neuman in 1949, shortly after the first digital electronic com-
puter was built. He made this proposal at the end of a review of then-recent literature on
the theory of homogeneous turbulence. The idea is seemingly easy: the set of ordinary
differential equations (10.2.4) for the evolution of the Fourier coefficients of the veloc-
ity field are integrated in time. In order to make use of fast Fourier transforms (FFTs),
coefficients are evaluated only at a discrete set of wavenumbers,

kn = 2πn/(N�x), −N/2 ≤ n < N/2, (12.3.1)

in each of the three directions. Thus, the problem reduces to that of solving a set of
N = Nx × Ny × Nz coupled ordinary differential equations. The computation starts with
a random set of Fourier coefficients, selected so that their mean-square amplitude follows
a model spectrum, such as the Von Karman spectrum (9.2.19) with a viscous cut-off in
the dissipation range. Whenever a velocity field is desired in physical space, it is found
by inverse transformation of the Fourier coefficients.

Despite being conceptually attractive, computing power was not up to the task for
over two decades, until, in 1972, Orszag and Patterson performed a spectral simulation
with N = 643 grid points. Their approach was to replace the Fourier integrals of
Chapter III with a truncated Fourier series. Then the evolution is solved numerically.
Efficiency was gained by combining a collocation method with FFTs, which is now
called a “pseudo-spectral method.” We will describe the gist of pseudo-spectral
simulation of homogeneous turbulence. A comprehensive treatment of spectral methods
can be found in Canuto et al . (2006).

For the present case, the starting point is the truncated Fourier series representation

u(x) = u(j�x) =
N/2−1∑

n=−N/2

û(n) ei2πn(j/N). (12.3.2)

Here, the x axis is discretized such that grid points are at x = j�x and the domain is
an interval of length N�x. The N Fourier coefficients,∗

û(n), −N/2 ≤ n ≤ N/2 − 1,

are determined by the values of u(x) at N equally spaced points j = 0, 1, 2, . . . , N − 1
through the transform

û(n) = 1

N

N−1∑
j=0

u(j) ei2πn(j/N), (12.3.3)

where the argument of u is simplified from j�x to j . Note that periodicity u(N) = u(0) is
assumed. The transformed Navier–Stokes equations are (10.2.4) restricted to the discrete
values of the truncated series expansion:

dt û(n) + νκ2û(n) = k · û � û − k
k · û � û · k

κ2
. (12.3.4)

∗ For real-valued functions, u(−N/2) should be set to 0 so that the range of summation is symmetric
about 0.
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As previously, κ2 = |k|2 and values of k are of the form (12.3.1). On a grid with
equal spacing in the x, y, and z directions, k is represented by three integers as
2π(n, m, p)/N�x. The primary question is how to evaluate the convolution product,
û � û.

Consider a product of Fourier sums

u(j)v(j) =
N/2−1∑

n=−N/2

û(n) ei2πn(j/N)

N/2−1∑
m=−N/2

v̂(m) ei2πm(j/N)

=
∑

n

∑
m

û(n)v̂(m) ei2π(m+n)(j/N).

(12.3.5)

A convolution sum arises when this is Fourier-transformed. The transform at wavenumber
p simply extracts the coefficient of ei2πp(j/N):

ûv(p) =
∑

n+m=p

û(n)v̂(m) =
∑

n

û(n)v̂(p − n). (12.3.6)

This is the convolution sum û � v̂.
Equation (12.3.5) warrants consideration. As n and m vary from −N/2 to N/2 − 1,

the sum in their product ranges from −N to N − 2. However, (12.3.4) only applies in the
range of −N/2 to N/2, so the convolution extends to wavenumbers higher than those
being computed; in physical space, wavelengths shorter than those resolved on the grid are
generated by the product. The shortest resolved wavelength occurs when n = N/2. The
cosine part of (12.3.2) then becomes cos(πj), which equals (−i)j : it oscillates between
+1 and −1 from one grid point to the next. This is the most rapid oscillation that can be
captured on the grid. The condition that n must be less than N/2 is called the Nyquist
criterion. The convolution product generates n larger than the Nyquist condition.

What should be done about this? One approach is to cut out those wavenumbers
created by convolution that are greater in magnitude than N/2. Expression (12.3.6) is set
to zero if p > N/2 − 1 or if p < −N/2. For instance, if n = N/3, values of m ≥ N/6
are omitted. This is called a Galerkin approximation in Canuto et al. (2006). Under
this approximation, it is assumed that the omitted modes have little influence on the
turbulence dynamics.

Another approach stems from the need for efficiency. In practice, the sum (12.3.6)
is not evaluated. For each p, it is a sum of N terms. There are N values of p. So the
total work would increase like N2. That is too high for large simulations. In efficient
computational algorithms, the number of operations increases about in proportion to N ;
the FFT requires of order N log N operations.

A reduction in work is based on the observation that the convolution sum is the
Fourier transform of u(x)v(x) (see Eq. (10.1.1)). Given the Fourier coefficients, û, the
FFT algorithm permits an efficient transformation to physical space via (12.3.2). The
convolution can be evaluated by transforming to physical space, forming products, then
going back to Fourier space. So, when a term like u(x) ∂xu(x) is needed, two FFTs to
physical space are performed, to provide u and ∂xu, then the product is evaluated at
each grid point of physical space, after which an FFT back to wavenumber space is
performed. In this context, the grid points in physical space are called collocation points.
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The convolution sum has been obtained with operation count proportional to N log N .
This is called an aliased pseudo-spectral algorithm. It takes three FFTs and a product
at all x, but those are far cheaper to compute than the O(N2) direct evaluation of a
convolution sum.

Aliasing refers to the fact that the Nyquist criterion has been ignored. No truncation of
the sum (12.3.6) has occurred. If the unresolved wavenumbers have not been truncated,
what has become of them? The answer is given by Figure 12.10: they have shown up
as an additional contribution to the wavenumbers that can be resolved on the grid. In
Figure 12.10, the diamonds are located at the grid points. Two sine waves are sampled,
one above the Nyquist wavenumber and one below. At the sample points, they are indis-
tinguishable. The dynamic equation (12.3.4) treats both as having the lower wavenumber.
The higher wavenumber is said to have been aliased into the lower.

Mathematically, the product ei2πnj/N × ei2πmj/N is equal to ei2π(n+m−N)j/N . If n + m

is greater than N/2, the product appears at n + m − N , rather than at m + n. That is
illustrated in Figure 12.11 at the bottom. The range between N/2 + 1 and N is aliased
into the range between −N/2 + 1 and 0. Looking at the magnitude of wavenumber, this
is described as folding across N/2: the energy at N/2 + n is folded to N/2 − n. The
turbulent energy spectrum has low amplitude at high wavenumbers. Hence the aliasing
from high n might be harmless. For instance, if N/2 is a wavenumber in the dissipation
range, high wavenumbers are aliased by folding dissipation-range energy into the inertial
and energetic ranges, which has negligible effect. The primary contamination is near
N/2, where the aliased amplitude is comparable to that which is resolved. If the energy
is already low at N/2, aliasing might not corrupt the simulation. Aliased DNS may be
viable. However, as a rule, it is preferable to de-alias .

Several techniques have been developed to de-alias a spectral simulation. We mention
only the simplest, the 3/2 rule. This technique is illustrated at the top of Figure 12.11. In
physical space, products are formed on a grid that has a spacing of 2

3�x. In Fourier space,
the wavenumber range is extended to ± 3

4N solely for the purpose of evaluating products.
Then aliasing folds wavenumbers between 3N/4 and N into the range below −N/2, so
that the computational interval is uncontaminated. The simulation itself continues on the
grid with spacing �x. The method is implemented by padding the Fourier coefficients
with zeros between N/2 and 3N/4 before transforming to physical space and evaluating
products at the 3N/2 collocation points. After transforming the product back to Fourier
space, modes beyond ±N/2 are deleted.

0 ∆x 2∆x 3∆x 4∆x

Figure 12.10 At the computational points, the cosine waves, cos(2nπx/L) with n = 0.4
( ) and 0.6 ( ) are indistinguishable.
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−N/2 0 N/2 N

−3N/4 −N/2 0 N/2 3N/4 N

     

Figure 12.11 In the lower part, energy in the range N/2 ≤ n ≤ N is aliased into the
range −N/2 ≤ n ≤ 0. The upper part illustrates the 3/2 method for de-aliasing. No energy
is aliased into the range −N/2 ≤ n ≤ N/2.

The primary motive for spectral simulation is efficiency. Pressure can be eliminated
exactly and the problem reduced to integrating a system of ordinary differential equations
(12.3.4). Usually that is done with a Runge–Kutta method (Exercise 12.2). Not only is
this more efficient than finite-difference methods in physical space, but it is more accurate.
The Riemann–Lebesgue lemma says that the coefficients of a Fourier series converge
exponentially toward zero as n → ∞ if the function is infinitely differentiable. Hence,
spectral methods are said to have exponential order of accuracy. The high accuracy is
because derivatives are evaluated exactly, rather than by finite differences. For instance,
differentiating (12.3.2) under the sum,

du(x)

dx
= i2π

N�x

N/2−1∑
n=−N/2

nû(n) ei2πn(j/N). (12.3.7)

In the pseudo-spectral method, when u ∂xu is computed in physical space, this sum is
evaluated by FFT to obtain the derivative.

Exercises

Exercise 12.1. Energy-conserving schemes. Consider the equation

∂tφ + u ∂xφ + ∂x(uφ) = 0.

Show that φ2 is conserved.
The velocity is stored at the half grid points, x = (j + 1

2 )�x, j = 1, 2, 3, . . . , J , and
φ is stored at the grid points, x = j . Consider the discretizations

u δxφ
∣∣
j

= 1

2

(
u(j + 1

2 )
φ(j + 1) − φ(j)

�x
+ u(j − 1

2 )
φ(j) − φ(j − 1)

�x

)
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and

δx(uφ)
∣∣
j

= 1

�x

(
u(j + 1

2 )
φ(j + 1) + φ(j)

2
− u(j − 1

2 )
φ(j) + φ(j − 1)

2

)
.

Show that φ2 is conserved for this discretization.

Exercise 12.2. DNS via Burgers equation. Solve the Burgers equation (12.2.1) numeri-
cally with ν = 0.01 and 0.001, imposing the initial condition

1
2 +
{

e−20x2 + e−20(x+1)2 + e−20(x−1)2
}

(0.5 + 0.5ξ), (12.3.8)

where ξ is a random number between 0 and 1. The flow domain is −1/2 ≤ x ≤ 1/2.
Apply periodic boundary conditions: u(1/2 + j�x) = u(−1/2 + j�x). Use about
160 grid points. Integrate to a non-dimensional time of 0.12, plotting the solution at
t = 0, 0.04, 0.08, and 0.12.

Looking ahead to Section 13.1.1: compare the DNS velocity field to its filtered field
at four equally spaced times, t = 0, 0.4, 0.8, and 0.12. Try the running-average filter
(13.1.2) with N = 2 and 3, and the Padé filter (13.1.3) with α = 0.45.

[Note: DNS commonly employs the Runge–Kutta method for time integration. The dis-
crete equations

∂tuj = −
u2

j+1 − u2
j−1

4�x
+ 1

�x

(
νj+1/2

uj+1 − uj

�x
− νj−1/2

uj − uj−1

�x

)
are a system of ordinary differential equations of the form

∂tuj = RHS(ui).

The second-order Runge–Kutta method is as follows.

up(:) = RHS(u(:),t)
u1(:) = u(:)+up(:)�t/2
up(:) = RHS(u1(:),t)
u(:) = u(:)+up(:)�t ; t = t+�t

At the end, u has been advanced one time step. This is a simple integration method,
which facilitates tests of various convection schemes.]

Exercise 12.3. Spectral methods. Use fast Fourier transforms (FFT) to evaluate ∂xu
2 and

∂2
xu. In the pseudo-spectral method, u2 is evaluated in physical space to avoid convolution

sums; derivatives are evaluated in Fourier space, as in (12.3.7). Specify u by the initial
condition (12.3.8) of the previous problem.

Optional: Replace the finite-difference discretization used in the previous problem by
pseudo-spectral evaluation and solve the Burgers equation.
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Simulation of large eddies

We haven’t the money, so we’ve got to think.
– Ernest Rutherford

Fully resolved simulation of the spectrum of turbulent eddies is quite demanding of
computer resources, not to say of manpower. Tending the simulation, accumulating statis-
tics, and post-processing the data can take months of effort. For those reasons, less
expensive methods of approximate simulation have been developed. Those addressed in
this chapter are large eddy and detached eddy simulation. The former has been in use
for many years. Indeed, in 1970, before direct numerical simulation of turbulent channel
flow was feasible, James Deardorff published a seminal study that initiated the concept of
large eddy simulation (LES). From then until now, LES has been viewed as a pragmatic
version of eddy simulation. As of any approximate method, one can point to shortcom-
ings. Citing certain limitations to LES, in 1999 Philippe Spalart proposed the method of
detached eddy simulation (DES). We will review the motives and methods of LES and
DES in this chapter.

The numerical requirements for capturing large eddies are much the same as those
discussed in the previous chapter. Low-dissipation or energy-conserving schemes are
required. Although the grids are coarser, they still must be designed to capture turbu-
lent eddies.

13.1 Large eddy simulation

The expense of direct simulation owes to the need to resolve dissipation-range eddies.
The bulk of energy often resides in scales more than an order of magnitude larger. If
the small scales are omitted, the grid can be coarsened in each of the three coordinate
directions. Increasing grid spacing by a factor of 5 reduces the number of grid points
by a factor of 125. In Figure 12.1, the grid shown by solid lines is fives times coarser

Statistical Theory and Modeling for Turbulent Flows, Second Edition P. A. Durbin and B. A. Pettersson Reif
 2011 John Wiley & Sons, Ltd
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than the DNS grid, represented by dashed lines. It captures the larger eddy, but is unable
to resolve the smaller eddy. If the objective is to capture energetic eddies completely,
but to delete dissipation-range eddies, then it makes sense to choose the grid spacing to
lie within the inertial range. In practice, large eddy simulation is effected by performing
DNS on the coarse grid, with the addition of a model that represents effects of the
small eddies.

In the context of large eddy simulation, the notion of deleting small scales is called
filtering , and the deleted scales are said to have been cut off ; those that are retained are
called resolved .

A conceptual picture emerges by reference to the energy spectrum of homogeneous
isotropic turbulence. Consider Figure 2.1, on page 17. When Rλ = 600, the spectral
energy density falls by 10−4 from the energetic range to the start of the dissipation range.
It would seem adequate to resolve scales with κη < 10−1. Call the cut-off scale �c: that
is κcη = 2πη/�c. Then �c ≈ 10 × 2πη. It is clear from Figure 2.1 that �c ≈ 2πη is
sufficient resolution for DNS; so LES resolution could be 10 times coarser in this case.

A caveat must be made: this reasoning is based on the energy spectrum. The vorticity
spectrum is κ2 times the energy spectrum; it increases as κ1/3 in the inertial range and
peaks in the dissipation range. Cutting off the spectrum in the inertial range omits a
large portion of the vorticity. Fortunately, the primary role of small-scale vorticity is to
dissipate energy. A premise of LES is that this omission can be overcome in a fairly
simple manner. The exact dissipation is to be replaced by an alternative that produces
the correct level of dissipation without requiring the smallest scales to be simulated.

The overall rate of dissipation is controlled by the energy cascade. The fundamental
assumption of LES is that, if the energy cascade is captured at large scales, the precise
nature of the small-scale processes is not critical. They need only dissipate energy as
it arrives through the cascade. In particular, an artificial model can replace the exact,
Navier–Stokes, dynamics. The LES approach is to use a grid that is under-resolved, then
add a subgrid model to represent the small-scale dissipative processes. Subgrid models
are discussed in Section 13.1.2 after the following discussion of filtering.

13.1.1 Filtering

Formally, cutting off the small scales is described as filtering. A low-pass filter removes
small scales and leaves large scales unscathed. In physical space, the filter is a running
average. For instance, a three-point, running average replaces u(x) by

û(x) = 1
4 [u(x + �x) + 2u(x) + u(x − �x)],

where the hat over u indicates a filtered variable. An N -point average replaces
u(x) by

û(x) = 1

2N

u(x + N�x) + u(x − N�x)

2
+

N−1∑
j=1−N

u(x + j�x)

 . (13.1.1)
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The filter in spectral space is evaluated by applying the average to the complex
exponential u = eikx :

êikx = 1

2N

1 + cos(Nk�x) + 2
N−1∑
j=1

cos(jk�x)

 eikx. (13.1.2)

Equation (13.1.2) has the form û = Fkuk, where the filter Fk is the bracketed factor on its
right-hand side. In Fourier space, the running average becomes a multiplicative function
of k. A low-pass filter is an Fk that is nearly unity for small k and becomes very small
at large k.

When N = 1, the filter of the three-point running average,

Fk = 1 + cos(k�x)

2
,

is obtained. Note that this vanishes at k = π/�x. That is the shortest wavelength that can
appear on the grid; it corresponds to a disturbance u = (−1)j , which oscillates between
+1 and −1 from one grid point to the next. The filter removes this component entirely,
and reduces the amplitude at wavenumbers near to it.

A sharper filter can be constructed by the Padé average:

û(x) + α[û(x + �x) + û(x − �x)]

= au(x) + 1
2b[u(x + �x) + u(x − �x)] + 1

2c[u(x + 2�x) + u(x − 2�x)].

(13.1.3)
This is an implicit formula. The filtered variable is found by inverting the left-hand side
with a tridiagonal matrix algorithm. Lele (1992) gives a = (5 + 6α)/8, b = (1 + 2α)/2,
and c = (2α − 1)/8 for fourth-order accuracy. He shows that α = 0.45 provides a filter
that is flat for small k and cuts off sharply at large k. The functional form of the filter is

Fk = a + b cos(k�x) + c cos(2k�x)

1 + 2α cos(k�x)
(13.1.4)

in Fourier space.
Running-average and Padé filters are compared in Figure 13.1. The Padé filter has the

desired form: near unity for small wavenumbers, cutting off steeply at high wavenumbers.
More generally, a weighted running average has the form

û(x) =
N∑

j=−N

u(x + j�x)wj ,

where the weights sum to unity,
∑

wj = 1. In (13.1.1) the weights are 1/2N for j �= ±N

and 1/4N for j = ±N . The general running average can be represented as an integral

û(x) =
∫ �f

−�f

F(x − ξ ; x)u(ξ) dξ, (13.1.5)

where �f is the filter width. If F is a function of only x − ξ , the filter is said to
be homogeneous.
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Figure 13.1 Running-average filter (13.1.2) with N = 2 ( ) and N = 3 ( ),
and Padé filter (13.1.4) with α = 0.45 ( ).

For a homogeneous filter, the average of eikx is the Fourier transform of F (see
Chapter 9):

êikx = Fk eikx,

where Fk is the Fourier transform of the filter. The top-hat filter

F(x − ξ) = 1

2�f
, |ξ | < �f,

Fk = sin(k�f)

k�f

is a simple example. The running average (13.1.1) is a discrete version of the top-hat
filter. An example with Gaussian weights is provided by Exercise (13.2). That exercise
requests the reader to obtain a curve corresponding to Figure 13.1.

An expression is filtered formally by drawing a hat over it. For instance, the filtered
Navier–Stokes equations (3.1.1) are written as

∂t ûi + ∂j ûj ûi = − 1

ρ
∂ip̂ + ν∇2ûi − ∂j τ

SGS
ij ,

∂i ûi = 0. (13.1.6)

That is, a hat is drawn over each term. Here

τSGS
ij = ûiuj − ûi ûj (13.1.7)

is called the subgrid stress. Strictly, (13.1.6) is exact only for a homogeneous filter because
the hat has been moved inside the derivatives. Differentiation does not commute with
filtering unless the filter is homogeneous, so extra terms arise from non-commutation.
They are usually ignored.

Although the filtered Navier–Stokes equations (13.1.6) have a formal similarity to
the Reynolds averaged Navier–Stokes equations, the two are quite distinct. The filter is
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Figure 13.2 Filtered version of Figure 12.4.

a local smoother that leaves an irregular, turbulent velocity field; the Reynolds average
sums over an ensemble, creating a regular, smooth velocity field. Figure 13.2 was created
by cutting off three-quarters of the Fourier modes of the data in Figure 12.4 – which is
a top-hat filter in Fourier space. The field in Figure 13.2 has a similar appearance to the
original DNS; only the smallest-scale irregularity has been removed.

Filtering once again would make the field in Figure 13.2 smoother still; filtering twice
produces a different result from filtering once: ̂̂u �= û. This contrasts to properties of the
Reynolds average, stated in Eq. (2.2.3): averaging an average does not change its value:
u = u.

By corollary, the filtered value of the fluctuation u′ = u − û does not vanish: û′ =
û−̂̂u �= 0. As an example, consider the formula

Lij = ̂̂uiûj − ûi ûj ,

which is called the Leonard stress. It is not Galilean invariant (see Section 8.1): if a
constant is added to u, it becomes

(ûi + ci)(ûj + cj ) − (ûi + ci)(ûj + cj ) = Lij + ci (̂ûj − ûj ) + cj (̂ûi − ûi ).

The last two terms do not vanish.
In the filtered Navier–Stokes equations (13.1.6), variables with a hat are simply the

dependent variables. No explicit filtering is involved. Once a closure model is provided
for τSGS

ij , the equations can be solved. The result is a turbulent field. Instead of referring
to it as the filtered field, it can be called the resolved field .

The resolved field could be explicitly filtered. The filter denoted by a hat is a notional
filter. A different filter could be applied to the û(x) field. Denote the explicit filter by
a tilde: ũ.
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A computable stress can be defined by applying this new filter to the LES field:

Lij = ˜̂uiûj − ˜̂ui
˜̂uj . (13.1.8)

The known, resolved velocity is processed explicitly by the filter. A rather useful identity
was derived by Germano (see Germano et al., 1991; Sagaut, 2001). Let

Tij = ˜̂uiuj − ˜̂ui
˜̂uj .

Then Germano’s identity is

τ̃SGS
ij = Tij − Lij . (13.1.9)

It can be verified by substituting the definition of each term. Germano’s identity will be
used in the next section to describe the dynamic procedure for subgrid modeling.

13.1.2 Subgrid models

The closure problem for subgrid stress (13.1.7) is far less demanding than the closure
problem for Reynolds stress. The primary dictum is: do not let the subgrid model under-
mine the Navier–Stokes physics; or the Hippocratic, “first, do no harm.” Large eddy
simulation relies on the Navier–Stokes equations to capture most of the physics. The
primary role for the subgrid model is to replace dissipation by the smallest-scale eddies.
In fact, one approach, which is called implicit large eddy simulation (ILES), invokes a dis-
sipative numerical algorithm and no subgrid closure model at all (Grinstein et al., 2007).

13.1.2.1 Smagorinsky model

Among explicit models, the Smagorinsky model is most popular. This is an eddy viscosity

τSGS
ij = −2νSGSŜij , (13.1.10)

where the resolved rate-of-strain tensor is

Ŝij = 1
2 (∂i ûj + ∂j ûi).

(Note that the traces of both sides of (13.1.10) are not equal because the subgrid kinetic
energy is omitted; 2

3kSGSδij could be added on the right, but without a model for kSGS,
the subgrid energy must be absorbed into the definition of pressure.)

Smagorinsky’s model is the mixing length form (see Section 6.1.2, on page 115)

νSGS = (cs�)2
√

2|̂S|2, (13.1.11)

where |̂S|2 = Ŝij Ŝj i is the magnitude of the rate-of-strain tensor. For a pure shear,
√

2|̂S|2
becomes |dU/dy|, as in Prandtl’s model (6.1.6).

The mixing length cs� is proportional to the grid spacing, and cs is an empirical
constant. On a finite-volume mesh, the grid spacing can be defined as � = (�Vol)1/3, or
as � = (�x�y�z)1/3 on a Cartesian grid.
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Returning to the Burgers equation (12.2.1) for a simple illustration, the Smagorinsky
subgrid viscosity is added to the molecular viscosity in (12.2.1):

∂tu + u ∂xu = ∂x[(ν + νSGS) ∂xu],

νSGS = cBurgers(cs�x)2|∂xu|. (13.1.12)

An additional constant, cBurgers, was incorporated because the empirical value of cs is not
appropriate to the Burgers equation. The constant cs is set to the typical value 0.2, but
cBurgers is set to 100 in order to approximate the filtered field obtained in Figure 12.3.
Figure 13.3 compares the solution of (13.1.12) with 32 grid points to the filtered data
from Figure 12.3. The LES grid is four times coarser than the DNS grid.

The rate of subgrid energy production is stress times rate of strain, −τijSji . Invoking
an equilibrium assumption, equating this to the rate of subgrid dissipation, and using
(13.1.10) gives

εSGS = −τijSji = 2νSGSŜj i Ŝj i = (cs�)2(2|̂S|2)3/2. (13.1.13)

Note that this is consistent with inertial-range scaling, |̂S|3 ∼ ε/�2. Hence, the Smagorin-
sky model is consistent with a cut-off in the inertial range. The eddy viscosity formula
then introduces subgrid dissipation that is consistent with the energy cascade.

Formula (13.1.13) permits an estimate of cs ∼ 0.18 from measurements of inertial-
range spectra (Sagaut 2001). However, it has been found that the empirical constant
cs in (13.1.11) depends on the flow, ranging from 0.1 for plane channel flow to 0.2 for
isotropic turbulence. For this and other reasons, a dynamic procedure has been developed
to compute cs in the course of the simulation. The method is derived from (13.1.9) and
(13.1.11).

Consider two filter scales � and �̃ and assume that cs is the same on both. Substitute
(13.1.10) and

Tij = 23/2(cs�̃)2 |̃̂S |̃Ŝij
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Figure 13.3 Burgers equation with Smagorinsky model, compared to filtered DNS:
LES ( ) and filtered DNS ( ).
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into (13.1.9):

23/2(cs�̃)2 |̃̂S |̃Ŝij − 23/2(cs�)2 |̃̂S|Ŝij = Lij − 1
3δijLkk. (13.1.14)

Recall that the hat denotes dependent variables of the simulation. The tilde denotes an
explicit filter, such as a running average (13.1.1). Typically, �̃ is twice the grid spacing.
The stress Lij is computed from the resolved field per (13.1.8). Hence, all quantities in
(13.1.14) can be computed. In the dynamic procedure, this is used to obtain cs (Germano
et al., 1991). A different value is obtained at each grid point – which is not entirely
consistent with the derivation, as it treated cs as a constant.

The tensor equation (13.1.14) does not provide a unique value for the scalar cs. Select
a unique value by least squares: then

c2
s = −Lijmji

mklmlk

, (13.1.15)

where

mij = 23/2�2 ˜|Ŝij |Ŝij − 23/2�̃2 |̃Ŝij |̃Ŝij .

The right-hand side of (13.1.15) is evaluated at each computational node. However, it
can be negative, which is unphysical. To avoid this, the formula is clipped above zero
and values of cs are averaged over some region, such as a direction of homogeneity.

The dynamic procedure has several virtues: cs is no longer a prescribed constant, it
adapts to the flow; in laminar regions, cs = 0, so the subgrid viscosity is switched off;
as a wall is approached, cs → 0, so the viscous sublayer is recovered. All of these are
improvements to the original formation by Smagorinsky.

Despite the final virtue, no-slip walls present a challenge to LES. In the vicinity of
a wall, the large eddies are not distinct from the small eddies. The notion of cutting off
the energy spectrum in the inertial range relies inherently on a high Reynolds number.
The relevant Reynolds number is that based in the integral scale of the turbulence. In
the log layer, the integral scale decreases linearly with decreasing distance from the wall.
Hence, LES loses its rationale as a wall is approached. Two resolutions are available.
The first is to decrease the grid spacing near the wall. The grid resolution must become
comparable to that needed for DNS. The second solution is to introduce a wall model.
In early efforts, either Van Driest damping or wall functions were invoked, by analogy
to Reynolds averaged (RANS) modeling (Section 6.2.2.1). More elaborate wall models
are discussed in Sagaut (2001). Generally, they invoke ideas from RANS. The notion of
hybridizing RANS and LES leads to the method of detached eddy simulation, which is
the topic of Section 13.2.

13.1.2.2 Scale-similar models

Although the Smagorinsky model is very popular, many alternatives have been proposed.
The similarity between the computable stress Lij in Eq. (13.1.8) and the unclosed subgrid
stress (13.1.7) motivates the scale-similar model

τSGS
ij = cssmLij . (13.1.16)
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The tensoral form of the subgrid stress is assumed to be that of the explicitly filtered,
resolved velocity. The coefficient cssm is empirical. It is found to be near to unity.

By itself, the scale-similar model is not sufficiently dissipative. It does not prevent
energy from accumulating at small scales and can lead to numerical instability. This is
corrected by the mixed model,

τSGS
ij = cssmLij − 2νSGSŜij . (13.1.17)

It adds the Smagorinsky eddy viscosity (13.1.11) to the scale-similar stress. The constant
in the Smagorinsky model can be prescribed or found dynamically; the latter generally
provides improved predictions.

The notion of an a priori test is to compare the formula of the subgrid model to
subgrid stresses evaluated by filtering DNS data. The model is not solved; DNS data
provide Ŝij and Lij also. Such tests show that the mixed model is an improvement on
the Smagorinsky model.

When the model is implemented into an LES code and computed statistics are com-
pared to data, the test is called an a posteriori test. For instance, Figure 13.3 has the
flavor of an a posteriori test. A posteriori tests are less flattering to the mixed model;
little benefit is found. In complex geometries, the inherent grid dependence of LES
overwhelms any perceived benefit to elaborations of the Smagorinsky subgrid model
beyond the dynamic procedure.

13.1.2.3 Wall-adapting local eddy viscosity model

Near to a wall, the subgrid shear stress should approach zero as y3; see Section 7.3.3.
As the wall is approached,

u → O(y), v → O(y2), w → O(y).

Thus, the magnitude of the rate of strain is O(1). Consequently, the eddy viscosity should
approach zero as y3. The Smagorinsky model is not consistent with this scaling. It makes
eddy viscosity proportional to rate of strain, and hence of O(1).

Nicoud and Ducros (1999) introduced a subgrid viscosity with the correct scaling, in
their wall-adapting local eddy (WALE) viscosity model. They first noted that the tensor

Sij = 1
2 (∂kui ∂juk + ∂kuj ∂iuk) − 1

3δij ∂kul ∂luk, (13.1.18)

constructed from the velocity gradient, is O(y) as the wall is approached. The reasoning
is of the following form. If all derivatives are in the x and z directions, then the term
∂kui ∂juk is O(y2). If j is the y direction and k is the x direction, then this term is
∂xui ∂yu = O(y). Such considerations lead to S = O(y).

The tensor (13.1.18) can be rewritten in terms of the rate of rotation and rate of strain,

�ij = 1
2 (∂iuj − ∂jui), Sij = 1

2 (∂iuj + ∂jui),

as

Sij = SikSkj + �ik�kj − 1
3 (SikSki + �ik�ki)δij (13.1.19)
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(see Section 2.3). In a parallel shear flow,

S =
 0 1

2∂yu 0
1
2∂yu 0 0

0 0 0

 , � =
 0 1

2∂yu 0
− 1

2∂yu 0 0
0 0 0

 ,

so S2 = −�2 and Sij = 0.
Nicoud and Ducros (1999) started the formulation of their WALE viscosity model

with the idea that it was more suitable for νSGS to depend on |SSS | than on |S|. To obtain
the scaling νSGS ∼ O(y3), they devised the expression

νSGS = (cw�)2 (SijSj i)
3/2

(SklSlk)5/2 + (SmnSmn)5/4
. (13.1.20)

This is dimensionally correct and has the correct near-wall asymptote. The denominator
was devised to prevent a singularity if |S| = 0. Near a wall (13.1.20) becomes

νSGS = (cw�)2 (SijSj i)
3/2

(SklSlk)
5/2

.

The empirical constant cw = 0.5 was selected.
The WALE subgrid model has been found to provide predictions similar to the

dynamic Smagorinsky model (13.1.15). The latter also provides the correct near-wall
asymptotic behavior, through its dependence on Lij . The WALE formulation does not
require explicit filtering and hence is well suited to unstructured grids.

13.1.2.4 What are the grid requirements?

In scientific computing, the term “grid independence” refers to demonstrating accuracy
by decreasing the grid spacing until the solution practically does not change. The grid
requirements of large eddy simulation are somewhat nebulous. There is no concept of
grid independence, per se: the subgrid model is an explicit function of the grid. Some-
times DNS is described as the grid-independent limit of LES; but that is not helpful.
Nevertheless, ideas about proper LES grid resolution do exist, and grid refinement is
sometimes used to provide a sense of accuracy.

The sufficiency of an LES grid is tested by checking that statistics are relatively
insensitive to resolution. Spalart (2000) refers to such accuracy studies as physical, rather
than numerical, tests. The objective is to make the large eddies accurate, knowing that
the subgrid model is grid-dependent. An assessment is made by comparing data from the
LES to DNS or to experiment.

Figure 13.4 is from a study in which grid refinement and comparisons to experiment
were used for validation. As in many similar studies, the grid was fine near the walls, as
shown by the inset, but even then was considered by the computationalists to be marginal.
Large scales in the turbulent wake are captured well.

Another test provides a rule of thumb when there are no data with which to compare.
As the grid is refined, the subgrid viscosity decreases. When the ratio of the subgrid
viscosity to molecular viscosity is not more than the order of 10, LES is found to be very
accurate. When it reaches 100, the simulation often is found to be somewhat inaccurate.
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Figure 13.4 Large eddy simulation of flow over a cylinder attached to a wall. The
surface Q ≡ |S|2 − |�|2 = 1 is shaded by magnitude of vorticity. The height of the
cylinder is 6 (top) and 10 (bottom) times its diameter. The grid is shown bottom left.
Reprinted from International Journal of Heat and Fluid Flow , 28, Imran Afgan, Charles
Moulinec, Robert Prosser and Dominique Laurence, ‘Large eddy simulation of turbulent
flow for wall mounted cantilever cylinders of aspect ratio 6 and 10’, 561–574, Copyright
2007, with permission from Elsevier.

Figure 13.5, from Le Ribault et al. (1999), is an example of the ratio of subgrid to
molecular viscosity in a jet, using the Smagorinsky and mixed models, with coefficients
obtained by the dynamic procedure. The grid is more than adequate, as the maximum
ratio is less than 10 in all cases.

The ratio µSGS/µ is a measure of the role of the subgrid model. One can define a
subgrid activity parameter

s = µSGS

µSGS + µ
,

which ranges between zero and unity. Zero corresponds to DNS and unity to very coarse-
grid LES. The parameter s can alternatively be defined via the rate of energy dissipation,
ε = −τij Sij , as

s = εSGS

εSGS + εµ

,



336 SIMULATION OF LARGE EDDIES

y/d0.5

m
S

G
S
/m

Figure 13.5 Ratio of subgrid viscosity to molecular viscosity in a turbulent plane jet.
Curves are for the Smagorinsky, dynamic Smagorinsky, and mixed models, as indicated.
Reprinted with permission from ‘Large eddy simulation of a plane jet’ by C. Le Ribault,
S. Sarkar, S. A. Stanley, in Physics of Fluids (11) Copyright 1999, American Institute of
Physics.

where εµ is dissipation by molecular viscosity. Geurts and Fröhlich (2002) provide an
example in which the LES error correlates with this definition of s. When s < 1/2, the
error is very low and LES produces the accuracy of DNS. After that, the error rises
exponentially with s.

The study cited in Figure 13.5 consisted of a DNS of a low Reynolds number jet on
a 205 × 189 × 60 grid and an LES on a 61 × 105 × 16 grid. In this case, comparison to
DNS provided a direct assessment of the suitability of the LES grid. The subgrid stress
was evaluated exactly from formula (13.1.7) by filtering the DNS to the LES resolution.
In an a priori test, the dynamic mixed model (13.1.17) was found to agree quite well with
the DNS data, while the dynamic Smagorinsky model greatly underpredicted the stress.

However, this assessment proved to be unrepresentative of a posteriori performance.
The dynamic Smagorinsky model provided an accurate prediction when used in a full
computation: it is not safe to rely on a priori assessments; a proper evaluation demands that
the model be used in a full simulation. Figure 13.6 is an example in which the jet thickness
predicted by LES is compared to DNS. Both the dynamic Smagorinsky and dynamic mixed
models are faithful to the DNS. Other variables, including the mean velocity profiles and
profiles of Reynolds stresses, were also found to be accurate when the dynamic procedure
was applied either to the Smagorinsky or to the mixed model. As in Figure 13.6, the
Smagorinsky model with a fixed constant performed very poorly. The dynamic procedure
produced a coefficient cs that decreased with downstream distance and at the edge of the
jet. This variation appears to be needed to obtain an accurate large eddy simulation.

Inaccuracy of a large eddy simulation has two sources: the numerical discretization,
and limitations of the subgrid model. By nature, LES is an under-resolved simulation of
turbulent eddies, so numerical error is inevitable. The standard definition of numerical
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Figure 13.6 Evolution of jet thickness as predicted by three subgrid models, compared
to DNS and experimental data. Reprinted with permission from ‘Large eddy simulation
of a plane jet’ by C. Le Ribault, S. Sarkar, S. A. Stanley, in Physics of Fluids (11)
Copyright 1999, American Institute of Physics.

error applies within the neighborhood of a well-resolved computation. For instance, if
a method is accurate to second order, the error tends to zero in proportion to �3 as
�/L → 0, where L is scale of velocity variation. But in large eddy simulation, �/L ∼ 1
and we are not considering its approach to zero. The definition of order of accuracy is
cloudy. Ambiguity could be removed by making the computational grid fine compared
to the filter width (Geurts and Fröhlich 2002); but that is not common practice. Grid
spacing and filter width are usually the same. If the grid is quite coarse, the numerical
error can overwhelm the subgrid model. One should appreciate that the two causes of
inaccuracy are not easily separated.

Another cause of inaccuracy is slow statistical convergence. Eddy simulations start
from an arbitrary initial condition. In time, through nonlinear scrambling and the energy
cascade, the flow field becomes representative of fluid dynamical turbulence. If the
computational domain is between inflow and outflow boundaries, the duration of the
transient is measured in through-flow times. Through-flow time is defined as the domain
length divided by the bulk velocity. Typically 5–10 through-flow times are required to
reach statistically steady state. After that, statistics are accumulated. It is common to
cite the duration of averaging in through-flow times, as well; typically averaging occurs
over another 5–100 through-flow times. This is a bit misleading. The rate of statistical
convergence is determined by the correlation time, as discussed on page 20. If the domain
were 20 eddy correlation lengths, 10 through flows would sample 200 eddies; that is a
more relevant characterization. Statistical convergence is slow, improving as the square
root of the number of samples. So averaging over 200 eddies reduces error only by a
factor of about 14. This makes LES, and eddy simulation in general, costly. For instance,
the curves in Figure 13.5 are averaged data. They should be smooth and symmetric;
clearly a much longer time would be needed to obtain statistically converged plots.
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Figure 13.7 Energy and dissipation spectra at three Reynolds numbers, increasing from
dashed to solid. The vertical line marked “cut off” divides resolved from subgrid scales.

The question “What are the grid requirements?” that heads this section could be
addressed in the same vein as Section 12.1.1: How do grid requirements scale with
Reynolds number? Scaling for LES is not clear-cut. The viscosity entered DNS scal-
ing via the dissipation length, η. LES does not resolve eddies of order η in size. The
perspective offered by Figure 12.1 is that dissipation eddies are smaller than the grid
spacing. Another perspective is provided by Figure 13.7. It illustrates the variation of the
spectrum of homogeneous turbulence with Reynolds number, when the wavenumber is
non-dimensionalized by the integral scale. Below the cut-off, the spectrum is insensitive
to Reynolds number. Hence, requirements on grid resolution are independent of Reynolds
number. Above the cut-off, the spectrum extends to smaller scales because L/η increases
as R

3/4
T (see page 19). The energy is low above the cut-off, but dissipation has its maxi-

mum at subgrid scales. The subgrid model must account for an increasing proportion of
the energy dissipation as RT increases.

The curves in Figure 13.7 are plotted with the same level of E at small kL. Were
they not normalized so, this level would vary with Reynolds number. Hence Figure 13.7
suggests that the grid requirement is independent of RT, not that the simulation is.

The spectral reasoning is valid for homogeneous turbulence, but it also applies to
free-shear flow. Free-shear layers tend to be tolerant of low resolution. Consider the
schematic in Figure 1.8. It suggests how the small scales become more intense as the
Reynolds number increases, but the large scales are unchanged. If only the large scales
are resolved, the grid should be nearly independent of Reynolds number. The number of
grid points should scale on the shear-layer thickness. The thickness of canonical, fully
developed free-shear layers is insensitive to Reynolds number–see Section 4.3.1. Thus
the number of grid points within a computational domain of height H scales on the
ratio H/δ of height to shear-layer thickness. For instance, 30 grid points across the jet
might resolve the large eddies. Then �y = δ/30, so that 30H/δ points are needed if a
uniform grid spans the domain. Similar grid spacing is needed in spanwise and streamwise
directions, so N ≈ 303 W × H × L/δ3. Usually a coarser grid will be used outside the
shear layer to reduce this number.
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LES is well suited for free-shear layers because the resolution requirements are nearly
independent of Reynolds number. Again, the solution can depend on Reynolds number via
the split of dissipation between resolved and subgrid scales. The total, 2(ν + νSGS)|S|2,
includes contributions from both resolved and subgrid scales.

The most challenging issue in gridding for LES is near-wall resolution. The outer
layer of a turbulent boundary layer is analogous to a free-shear layer: N ∼ (L/δ)3.
Boundary-layer thickness grows as x/R

1/5
x (see page 68). If we interpret x as L, then

N ∼ Re3/5. Alternatively, if the domain height scales on the boundary-layer thickness,
then Ly/δ is constant and N ∼ Re2/5 (Piomelli 2008). The grid requirements are not
highly demanding, even at high Reynolds number.

The expense arises from resolving the inner layer. If the outer grid scales on δ, then
the expense is due to a requirement for finer spacing, relative to δ, near the wall. In the
direction normal to the wall, the eddy size scales as ν/u∗; hence

Ny ∼ δ/(ν/u∗) ∼ Rδ

√
Cf ∼ R

7/8
δ .

If the same resolution is applied in the spanwise direction, but the outer scaling is retained
in the streamwise direction, then

NxNyNz ∼ R
1/5
δ R

7/8
δ R

7/8
δ = R1.95

δ .

In practice, the expense is comparable to DNS. LES of wall-bounded flows is expensive
because the energetic eddies become small as the wall is approached. Efforts to reduce
expense by replacing simulation by a wall model are surveyed by Piomelli (2008). We
will not discuss wall models. Rather, we move on to the topic of detached simulation,
which has the same motivation. The region next to walls is modeled by RANS, avoiding
the stringent demands of eddy-resolving simulation.

13.2 Detached eddy simulation

Several versions of detached eddy simulation (DES) have been developed since it
was originated in 1999 (see Spalart, 2009). The original DES was based on the
Spalart–Allmaras model of Section 6.6. That is an eddy viscosity model for Reynolds
averaged flow. Detached eddy simulation consists of limiting the eddy viscosity, so as
to permit large-scale, turbulent eddies to occur. In the Spalart–Allmaras model, the
distance to the wall, d , is used as a length scale. For detached eddy simulation, this
same model is solved, but with d replaced by

d̃ = min[d, CDES max(�x, �y, �z)],

with CDES = 0.65. Near to a wall, this reduces to the original value d . Farther from the
wall, it becomes CDES times the maximum grid spacing. For instance, if �x+ ∼ 100,
then d̃ would be d for y+ � 65 and CDES�x for y+ � 65. Then a computation that used
the DES limiter would transition from RANS to eddy simulation within the log layer.

The bound on length scale has the effect of bounding the eddy viscosity. If the eddy
viscosity is kept low, natural instabilities within separated shear layers are able to evolve
into turbulence. Also, the computation must be three-dimensional and accurate in time
to permit eddying.
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Figure 13.8 Computations of flow over a cylinder. First column (from top): 2D steady
RANS; 2D unsteady RANS; and 3D, unsteady RANS. Second column (from top): DES
on a coarse grid; and two DES models on a fine grid. Reproduced with permission of
Annual Review of Fluid Mechanics, Vol. 41, 2009.

A zone near to the wall is called the RANS region, and the rest of the flow is the eddy
simulation region; this behavior is illustrated by Figure 13.8. Figure 13.8 compares steady
and unsteady RANS in the left column to DES in the right column. As the flow passes over
the cylinder, shear layers detach from the surface. In the RANS computation, they roll
into vortices in the wake. The detached eddy simulation shows highly three-dimensional
structure in the wake, with rolls and ribs similar to those discussed in Chapter 5 and shown
in Figure 5.2. The shear layer transitions promptly upon separating from the surface. The
automatic transition to eddy simulation is what makes this such an attractive method. No
boundary between RANS and LES regions need be drawn; the same model serves as
both the Reynolds averaged and subgrid eddy viscosity.

Indeed, there cannot be a clear boundary between RANS and eddy simulation regions.
Although, the notion of detached eddy simulation is that the computation shifts from a
Reynolds averaged formulation in attached boundary layers to eddy simulation in sepa-
rated shear layers, in practice the eddy simulation region extends into the boundary layer.
There is no RANS region, per se, because the whole flow is unsteady. With sufficient
grid resolution, and sufficiently low Reynolds number, DES behaves quite like LES all
the way to the wall.

The transition to eddying is effected by limiting the eddy viscosity. In the original
DES formulation, this was done indirectly, through a term in a transport equation. Rather
than being indirect, the eddy viscosity can be bounded directly. The eddy viscosity is
naturally expressed as νT = kT , where T is the correlation time-scale (see page 31). If
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this is re-expressed in terms of a mixing length, as νT = √
k�, then the DES model is

νT =
√

k �̃ with �̃ = min[�,CDES max(�x, �y, �z)]. (13.2.1)

For instance, in the k–ω model (6.3.2), the mixing length is � = Cµ

√
k/ω. Placing a

bound on � allows eddying in detached shear layers.
A more elaborate variant of the k–ω DES model was developed by Menter and

co-workers (Menter et al., 2003), who called it scale adaptive simulation (SAS). It was
derived from the SST model described on page 138. There were two primary motives for
SAS. One was to replace the grid spacing with a physical length scale. The Von Karman
length

L2
vK = |κS|2

|∇2U |2 (13.2.2)

plays that role. Here κ = 0.41 is the Von Karman constant.
The second motive for SAS was to reduce the severe grid sensitivity created by

(13.2.1). In a typical boundary-layer grid, �x will be larger than the other grid spacings.
If �x is larger than the boundary-layer thickness, then (13.2.1) will ensure that the
RANS model is used in the boundary layer. However, if �x is smaller than the boundary
thickness, the model will switch to eddy simulation inside the boundary layer. That is
contrary to the intent of DES; it is meant to simulate eddies in detached shear layers.
The SAS formulation invokes the interpolation functions of the SST model to forestall
the switch to eddy simulation. Spalart (2009) refers to this as delayed detached eddy
simulation (DDES).

Switching inside the boundary layer is undesirable because it creates a stress depletion
layer. The total stress is a sum of that due to the eddy viscosity and that due to the resolved
eddies; say

τij = −2νTSij + ûi ûj ,

where the overbar denotes a Reynolds average. Turbulent eddies begin to form when the
eddy viscosity is suppressed, but initially they are weak and the second contribution to
the stress tensor does not make up for the reduction of the first. Hence, the total stress is
underpredicted at the start of the eddying region. That effect is benign if it occurs outside
the boundary layer. The general notion of delayed DES is to maintain the RANS eddy
viscosity throughout most of the boundary layer, so that the stress depletion region is
away from the steep shear near the wall.

A stark version of DDES was described by Spalart et al. (2006). They define the
parameter

rd = νT + ν√
∂iuj ∂iuj κ2d2

.

By analogy to the SST interpolation functions, they let

fd = 1 − tanh(83r3
d )

and interpolate as

d̃ = (1 − fd)d + fd min[d,CDES max(�x, �y, �z)]. (13.2.3)
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Figure 13.9 Contours of spanwise velocity in flow over a backstep using the SAS
model. Courtesy of Dr. Jongwook Joo.
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Figure 13.10 Mean velocity profiles in flow over a backstep using the SAS model (solid
lines) compared to data. Courtesy of Dr. Jongwook Joo.

When d → 0, rd → ∞ and fd → 0. When d → ∞, rd → 0 and fd → 1. In the
log layer,

rd ∼ νT

∂yuκ2y2
= κu∗y

(u∗/κy)κ2y2
= 1,

and hence fd ∼ 1 − tanh 83 ≈ 0. The switch to eddy simulation cannot occur in the log
layer, irrespective of the grid resolution.

A second example of DES is provided by Figures 13.9 and 13.10. This is flow over a
backward-facing step. It was computed with the SAS model. The instantaneous velocity
contours show the unsteady eddying that develops behind the step. They can be compared
to the steady, Reynolds averaged flow presented in Section 7.4.2.2. Fluctuations were
added at the inlet in order to trigger instability in the detached shear layer. Eddy fields are
averaged to obtain statistics, just as in all other forms of eddy simulation. Figure 13.10
shows mean velocity profiles that were obtained by averaging the simulation over a
long time.

Detached eddy simulation is an extension of Reynolds averaged computation. As
such, often it is implemented into a computer code that already solves the underlying
model, with some changes to the numerics. For instance, a low-dissipation treatment
of convection is needed to permit the eddying to develop. Schemes for convection are
similar to those described in Section 12.1.3.
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Exercises

Exercise 13.1. Filtering in physical space. The top-hat filter is

û = 1

�f

∫ �f/2

−�f/2
u(x + ξ) dξ.

Let u = sin(kx). Evaluate û and ̂̂u.
Let

u =
{ |1 − x|, x < 1,

0, |x| ≥ 1.

Evaluate û and compare it to the unfiltered function.

Exercise 13.2. Filter in Fourier space. The Gaussian filter is expressed by the running
average

û = 1√
π �f

∫ ∞

−∞
e−ξ2/�2

f u(x + ξ) dξ.

What is Fk of this filter in Fourier space?

Exercise 13.3. Filtered spectrum. Convince yourself that the filtered and unfiltered one-
dimensional energy spectra (see page 256) are related by

�̂11 = FkF
∗
k �11.

On a single graph, plot the filtered and unfiltered spectrum (9.2.22) with p = 17/6 for
various ratios of �f/L. Use either the top-hat or Gaussian filter.

Exercise 13.4. Filtering and vorticity. Let

u = A cos(kx) sin(ky) cos(kz),

v = −A sin(kx) cos(ky) cos(kz),

w = 0.

This is called the Taylor–Green vortex. Evaluate the vorticity vector field. Average |u|2
and |ω2| over one period of the sine waves in each direction.

Let

A2 = k3

[1 + (kη)2]2
.

Filter the velocity and vorticity fields with a filter width equal to 5η. Average |û|2 and
|ω̂2| over a period and compare to their unfiltered values.

Exercise 13.5. WALE subgrid model. Show that

SijSj i = 1
6 (S2S2 + �2�2) − 2

3�2S2 + 2S2
ij�

2
j i ,
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where Sij is defined in (13.1.19), �2
ij = �ik�kj , �2 = �2

ii , and similarly for S. The
Cayley–Hamilton theorem (2.3.7) with the invariants defined in Eq. (2.3.9) is needed.
Why is �2 ≤ 0? Show that SijSj i is zero in parallel shear flow, u(y).

Exercise 13.6. LES via Burgers equation. Repeat Exercise 12.2, adding the Smagorinsky
model (13.1.12) and using a four times coarser grid. Select a value of cBurgers to optimize
agreement with the filtered DNS field. Compare the LES solution to the filtered DNS
data at several times.
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Del Alamo, J. C. and Jiménez, J. 2003. Spectra of the very large anisotropic scales in turbulent
channels. Phys. Fluids A. 15, L41–L44.

Demuren, A. O. and Wilson, R. V. 1995. On elliptic relaxation near wall models. Transition,
Turbulence and Combustion , vol. II, Turbulence and Combustion (eds M. Y. Hussaini, T. B.
Gatski and T. L. Jackson) 61–71. Kluwer Academic.

Domaradski, J. A. and Rogallo, R. S. 1991. Local energy transfer and nonlocal interactions in
homogeneous isotropic turbulence. Phys. Fluids A. 2, 413–426.

Driver, D. and Seegmiller, H. L. 1985. Features of a reattaching turbulent shear layer in divergent
channel flow. AIAA J . 23, 163–171.

Durbin, P. A. 1980. A stochastic model of two-particle dispersion and concentration fluctuations
in homogeneous turbulence. J. Fluid Mech . 100, 279–302.

Durbin, P. A. 1981. Distorted turbulence in axisymmetric flow. Q. J. Mech. Appl. Math . 34,
489–500.

Durbin, P. A. 1991. Near-wall turbulence closure modeling without “damping functions”. Theor.
Comput. Fluid Dyn . 3, 1–13.

Durbin, P. A. 1993. A Reynolds stress model for near-wall turbulence. J. Fluid Mech . 249,
465–498.

Durbin, P. A. 1995. Separated flow computations with the k–ε–v2 model. AIAA J . 33, 659–664.
Durbin, P. A. 1996. On the k–ε stagnation point anomaly. Int. J. Heat Fluid Flow. 17, 89–90.
Durbin, P. A. and Pettersson Reif, B. A. 1999. On algebraic second moment models. Flow,

Turbul. Combust . 63, 23–37.
Durbin, P. A. and Speziale, C. G. 1994. Realizability of second moment closures by stochastic

analysis. J. Fluid Mech . 280, 395–407.
Eringen, A. C. 1980. Mechanics of Continua , 2nd edn, vol. 1. R. E. Krieger.
Fletcher, C. A. J. 1991. Computational Techniques for Fluid Dynamics . Springer.
Fox, R. O. 2003. Computational Models for Turbulent Reacting Flows . Cambridge University

Press.
Fung, J. C. H., Hunt, J. C. R., Malik, N. A. and Perkins, R. J. 1992. Kinematic simulation of

homogeneous turbulence by unsteady random Fourier modes. J. Fluid Mech . 236, 281–318.
Gatski, T. B. and Speziale, C. G. 1993. On explicit algebraic stress models for complex turbulent

flows. J. Fluid Mech . 254, 59–78.
Gence, J. N. and Mathieu, J. 1979. On the application of successive plane strains to grid-generated

turbulence. J. Fluid Mech . 93, 501–513.
Germano, M., Piomelli, U., Moin, P. and Cabot, W. H. 1991. A dynamics subgrid scale eddy

viscosity model. Phys. Fluids A. 3, 1760–1765.
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constitutive model, 34, 156, 230
correlation coefficient, 26
correlation function, 27, 33, 85,

254, 264
isotropic, 264

curvature, 173
cut-off scale, 326

δ function, 252
Dahmköhler number, 25
Daly–Harlow transport

model, 180
decay exponent, 124, 272, 277
delayed detached eddy

simulation, 341
discrete approximation, 309
dissipation rate, ε, 16, 274

definition, 49
scalar, 241

drag crisis, 115
dynamic procedure, 331–2
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constitutive relation, 122, 220, 226
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transport, 148

edge solution, 135
elliptic relaxation, 188–91, 200, 208
energy cascade, 4, 15, 92, 270, 273, 275
energy spectral density, 256
energy spectral density �ij , 259
energy-conserving schemes, 310
ensemble average, 20
enthalpy thickness, 82
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entrainment eddies, 94–5
entrainment interface, 101
expansion coefficient, β, 243
explicit algebraic stress model

(EASM), 177, 230
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vector, �F, 208
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data correlation, 114
friction velocity, u∗, 58

Galilean invariance, 219, 329
general linear model, GLM, 166, 226

for anisotropy evolution, 169
realizability, 224

general quasi-linear model, 165, 172
Germano identity, 330
Gibson–Launder model, 187
grid requirements for DNS, 307

grid turbulence, 124, 131, 136, 281–2,
291

hairpin vortices, 97–8, 100
heat transfer, 78–82, 128, 193, 244
high-speed streaks, 100
homogeneous shear flow

data on anisotropy tensor, 171
rapid distortion theory, 293
solution to k–ε model, 124
solution to SMC, 170

homogeneous, isotropic turbulence, 10

image vorticity, 185, 296
implicit large eddy simulation

(ILES), 330
inertial subrange, 16, 103, 261, 270, 275
instability waves, 141
IP model, 53, 172, 200, 214, 225

constants, 167
realizability, 224

isotropic turbulence, 107, 156, 258
decay rate, 271
solution to k–ε model, 123

jet
plane, 76, 95
round, 71, 76, 207
self-similar, 70
spreading rate, 76, 88

k–� model, 133
k–ε model, 76, 124–5, 128, 135, 178,

200, 227
boundary conditions, 128, 132, 198
low Reynolds number, 130, 207
nonlinear, 230
standard, 121, 201

k–ω model, 136–9
SST, see SST model, 138

kinematic blocking, 185, 296
kinematic simulation, 262
kinetic energy budget, 52

plot, 52
Klebanoff modes, 143, 147
Kolmogoroff −5/3 law, 15–18, 256, 260
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Kolmogoroff length scale, see length
scale, dissipative 19

Kolmogoroff time-scale, see time-scale,
dissipative 18

Langevin equation, 32, 224
Launder–Sharma model, 131
law of the wake, 65, 76, 126

mixing length, 117
law of the wall, 65, 76, 126, 149

mixing length, 117
length scale

dissipative, 19
integral, 18, 261

Leonard stress, 329
logarithmic law, 61, 187

for scalar, 80
rough wall, 64

logarithmic layer, 60, 132
k–ε solution, 130
eddy viscosity, 118
Reynolds stresses, 126–7
solution to k–ε model, 125

low-speed streaks, 100
LRR model, 223, 233, 235

constants, 167
Lumley triangle, 161

Markov chain, 28
microscale

Reynolds number, 42
Taylor, 42

mixing layer
plane, 96, 124
self-similar, 70
two stream, 70, 72, 76

mixing length, 50, 83, 100, 119
model, 116

mixing-layer spreading rate, 76
Monin constant, 239
moving equilibrium, 170, 227

Navier–Stokes equations, 46
in spectral space, 271

near-wall asymptotics, 182
non-inertial frame, 219
nonlinear eddy viscosity, 230

nonlocality
spatial, 184
temporal, 158

normal stress anisotropy, 140, 169, 207,
231

numerical error
dispersive, 310
dissipative, 310

Nyquist criterion, 320

one-component state, 160

PDF method, 43, 224
Peclet number, 82
plane channel flow, 58
plus units, 59
Poisson equation for pressure, 163, 184
Prandtl number, 79, 81

turbulent, PrT, 51, 80, 235
turbulent, νT, 82

pressure echo, pressure reflection, see
wall -echo, 184

pressure–strain correlation, 53, 162
pressure–strain model, see redistribution

model, 53
pressure-diffusion, 49–50, 53, 181
pressure-gradient parameter, 67
probability density function, 22
production tensor, 158, 173, 243

definition, 52
pseudo-spectral methods, 308, 318

quasi-homogeneous, 179, 190

RANS, 48, 195, 332
rapid distortion theory, 281
rate of rotation, ε

definition, 54
rate of strain, Sij

definition, 54
realizability, 141, 162, 221, 248
redistribution model

rapid, 165, 222
slow, 159, 222

redistribution tensor, 53
�ij , 53
℘h

ij , ℘ij , 183
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redistribution tensor, (continued )
℘ij , 157

resolved field, 329, 332
return to isotropy, 159
Reynolds analogy, 78
Reynolds averaged Navier–Stokes

equations, 48
Reynolds stress

budget, 52, 180
data, 60, 68–9, 127
model, 174, 182
tensor, 26, 48, 126
transport equation, 49

buoyant flow, 243
homogeneous form, 54

Richardson number
flux, 244
gradient, 246

rotating frame, 119, 208, 219, 228
Rotta model, 159, 186
roughness, 63
round jet–plane jet anomaly, 76

scalar
flux equation, 55
transport equation, 55
variance equation, 241

scalar flux
equation, 243

scale-adaptive simulation (SAS), 341
Schwartz inequality, 26, 179, 221
second-moment closure, 157, 230

temporal relaxation, 157
secondary flow, 208, 212

second kind, 207, 211, 231
self-similarity, 71–3, 279
shear dispersion, 84–6
shear-layer spreading rate, 76, 124, 149,

179
skew form, 311
skin friction, see friction coefficient 63
Smagorinsky subgrid model, see dynamic

procedure 330
coefficient, 331–2

Spalart–Allmaras model, 149, 196
spectrum

energy, 32, 260, 273

spherically symmetric, 256
spectrum tensor, 255, 275, 278, 288

definition, �ij , 255
isotropic, 259
one-dimensional, �ij , 256, 259

SSG model, 200, 201, 233
constants, 161, 168

SST model, 138, 139
stagnation point

anomaly, 139, 141, 207
bluff body, 290

Stanton number, 79
statistical stationarity, 20, 84, 203
stress-intensity ratio, 138
subgrid activity parameter, 335
subgrid model, 330

mixed, 333
scale-similar, 332

superlayer, 100

Taylor’s hypothesis, 19
tensors

definition, 34
invariant, 35
isotropic, 36
principal invariants, 39
skew symmetric, εijk, 214

through-flow time, 337
time-scale, 129

dissipative, 18
integral, 18, 29, 32–3

time-scale ratio, 241
Toor’s analogy, 24, 25, 42
trajectory crossing effect, 265
transition, 46
transition length, 145
triad interactions, 271
turbulence intensity, q2, 159, 254
turbulent dispersion, 25, 27, 29, 86
turbulent eddies, 4, 32, 78, 91–3, 121,

187
turbulent kinetic energy, 49, 86

definition, k, 49
equation, 49

homogeneous form, 54
turbulent Reynolds number

definition, 18
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turbulent self-transport, 180
turbulent spots, 142
two-component state, 160
two-layer model, 134, 201

unsteady RANS, 202

v2 –f model, 193, 198–200
Van Driest damping function, 118
velocity–pressure gradient correlation,

φij , 53
viscous sublayer, 59, 63, 137
Von Karman constant, 61, 118, 126, 133
Von Karman spectrum, 260
vortex stretching, 104, 282

vortical structures, 91
rolls, ribs, 93

vorticity equation, 105–6, 282–4

wake
momentumless, 74
plane, 76, 88
self-similar, 70

WALE subgrid model, 333
wall functions, 131–2, 181
wall-echo, 184, 187–8, 207
wavenumber, 18, 251

effective, 309

ζ –f model, 194
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