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Problem 7.3       [2] 
 
 
 
 
 
 
 
 
 
 
 
 
 

Given: Equation for beam 

Find: Dimensionless groups 

Solution:  
 
Denoting nondimensional quantities by an asterisk 

L
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Problem 7.6       [2] 
 

 
 
 
 
 
 
 
 
 
 
 
 

 

Given: Equations for modeling atmospheric motion 

Find: Non-dimensionalized equation; Dimensionless groups 

Solution:  
 
Recall that the total acceleration is 
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Nondimensionalizing the velocity vector, pressure, angular velocity, spatial measure, and time, (using a typical velocity magnitude V 
and angular velocity magnitude Ω): 
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Hence 
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Substituting into the governing equation 
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The final dimensionless equation is 
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The dimensionless groups are 
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The second term on the left of the governing equation is the Coriolis force due to a rotating coordinate system.  This is a very 
significant term in atmospheric studies, leading to such phenomena as geostrophic flow.  



Problem 7.7        [2] 
 

 
 
 
 
 
 
 
 

Given: Equations Describing pipe flow 

Find: Non-dimensionalized equation; Dimensionless groups 

Solution:  
 
Nondimensionalizing the velocity, pressure, spatial measures, and time: 
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Substituting into the governing equation 
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The final dimensionless equation is 
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The dimensionless groups are 
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Problem 7.8       [2] 
 
 
 
 
 
 
 
 
 
 
 
 
 

Given: Equation for unsteady, 2D compressible, inviscid flow 

Find: Dimensionless groups 

Solution:  
 
Denoting nondimensional quantities by an asterisk 
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Note that the stream function indicates volume flow rate/unit depth! 
 
Hence 

******* 0
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000 ψψ cL
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Substituting into the governing equation 
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The final dimensionless equation is 
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No dimensionless group is needed for this equation! 
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Problem 7.10      [2] 
 
 
 
 
 
 

Given: That drag depends on speed, air density and frontal area 

Find: How drag force depend on speed 

Solution:  
 
Apply the Buckingham Π procedure 
 

   F          V         ρ          A   n = 4 parameters 
 

 Select primary dimensions M, L, t 
 

 
2
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t
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AVF ρ
  r = 3 primary dimensions 

 
    V         ρ          A    m = r = 3 repeat parameters 

 
  Then n – m = 1 dimensionless groups will result.  Setting up a dimensional equation, 
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Summing exponents, 
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  Check using F, L, t as primary dimensions 
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The relation between drag force F and speed V must then be 
 

22 VAVF ∝∝ ρ  
 
The drag is proportional to the square of the speed. 
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Problem 7.12       [2] 
 
 
 
 
 
 

Given: That speed of shallow waves depends on depth, density, gravity and surface tension 

Find: Dimensionless groups; Simplest form of V 

Solution:  
 
Apply the Buckingham Π procedure 
 

   V          D         ρ          g         σ   n = 5 parameters 
 

 Select primary dimensions M, L, t 
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    g         ρ          D    m = r = 3 repeat parameters 

 
  Then n – m = 2 dimensionless groups will result.  Setting up a dimensional equation, 
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Summing exponents,  
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Summing exponents,  
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The relation between drag force speed V is  ( )21 Π=Π f  ⎟⎟
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Problem 7.15       [2] 
 
 
 
 
 
 
 

Given: That light objects can be supported by surface tension 

Find: Dimensionless groups 

Solution:  
 
Apply the Buckingham Π procedure 
 

   W          p         ρ          g         σ   n = 5 parameters 
 

 Select primary dimensions M, L, t 
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    g         ρ          p    m = r = 3 repeat parameters 

 
  Then n – m = 2 dimensionless groups will result.  Setting up a dimensional equation, 
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Summing exponents,  
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Note: Any combination of Π1 and Π2 is a Π group, e.g., 
σ

Wp
=

Π
Π

2

1 , so  Π1 and Π2 are not unique! 
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Problem 7.18       [2] 
 
 
 
 
 
 
 

Given: That automobile buffer depends on several parameters 

Find: Dimensionless groups 

Solution:  
 
Apply the Buckingham Π procedure 
 

   T          ω         F          e         μ         σ   n = 6 parameters 
 

 Select primary dimensions M, L, t 
 

            

⎪
⎪
⎭

⎪
⎪

⎬

⎫

⎪
⎪
⎩

⎪
⎪

⎨

⎧

222

2 1
t
M

Lt
ML

t
ML

tt
ML

eFT σμω
 r = 3 primary dimensions 

 
    F         e          ω    m = r = 3 repeat parameters 

 
  Then n – m = 3 dimensionless groups will result.  Setting up a dimensional equation, 
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Summing exponents, 
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Summing exponents,  
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Summing exponents,  
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  Check using F, L, t as primary dimensions 
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Note: Any combination of Π1, Π2 and Π3 is a Π group, e.g., 3
2

1

e
T

μω
=

Π
Π

, so  Π1, Π2 and Π3 are not unique!  
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Problem 7.22 (In Excel) [2]

Given: That drain time depends on fluid viscosity and density, orifice diameter, and gravity

Find: Functional dependence of t  on other variables

Solution:
We will use the workbook of Example 7.1, modified for the current problem

The number of parameters is: n = 5
The number of primary dimensions is: r = 3
The number of repeat parameters is: m = r = 3
The number of Π groups is: n - m = 2

Enter the dimensions (M, L, t) of
the repeating parameters, and of up to
four other parameters (for up to four Π groups).
The spreadsheet will compute the exponents a , b , and c for each.

REPEATING PARAMETERS: Choose ρ, g , d

M L t
ρ 1 -3
g 1 -2
d 1

Π GROUPS:
M L t M L t

t 0 0 1 μ 1 -1 -1

Π1: a  = 0 Π2: a = -1
b  = 0.5 b = -0.5
c  = -0.5 c = -1.5

The following Π groups from Example 7.1 are not used:

M L t M L t
0 0 0 0 0 0

Π3: a  = 0 Π4: a = 0
b  = 0 b = 0
c  = 0 c = 0

Hence                                    and                                                      with 
 
 
 
 
 
 
The final result is 

d
gt=Π1 32

2

2
3

2
12 gd
dg

ρ
μ

ρ

μ
→=Π ( )21 Π=Π f

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
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2

gd
f

g
dt

ρ
μ



Problem 7.23       [2] 
 
 
 
 
 
 
 
 
 

Given: That the power of a vacuum depends on various parameters 

Find: Dimensionless groups 

Solution:  
Apply the Buckingham Π procedure 

   P          Δ p         D          d         ω         ρ          di          do   n = 8 parameters 
 

 Select primary dimensions M, L, t 

            

⎪
⎪

⎭

⎪
⎪

⎬
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⎪
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⎪

⎨

⎧
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2 1

ρωP
 r = 3 primary dimensions 

 
    ρ         D          ω    m = r = 3 repeat parameters 

 
  Then n – m = 5 dimensionless groups will result.  Setting up a dimensional equation, 
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⎠
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Summing exponents,  
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Summing exponents,  
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 Hence  222 ωρD
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The other Π groups can be found by inspection: 
D
d

=Π3  
D
di=Π4  

D
do=Π5  

  Check using F, L, t as primary dimensions 
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Note: Any combination of Π1, Π2 and Π3 is a Π group, e.g., 
ω32

1

pDΔ
=

Π
Π P

, so the Π’s are not unique!  
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Problem 7.30 (In Excel) [3]

Given: That dot size depends on ink viscosity, density, and surface tension, and geometry

Find: Π groups

Solution:
We will use the workbook of Example 7.1, modified for the current problem

The number of parameters is: n = 7
The number of primary dimensions is: r = 3
The number of repeat parameters is: m = r = 3
The number of Π groups is: n - m = 4

Enter the dimensions (M, L, t) of
the repeating parameters, and of up to
four other parameters (for up to four Π groups).
The spreadsheet will compute the exponents a , b , and c for each.

REPEATING PARAMETERS:Choose ρ, V , D

M L t
ρ 1 -3
V 1 -1
D 1

Π GROUPS:

M L t M L t
d 0 1 0 μ 1 -1 -1

Π1: a  = 0 Π2: a  = -1
b  = 0 b  = -1
c  = -1 c  = -1

M L t M L t
σ 1 0 -2 L 0 1 0

Π3: a  = -1 Π4: a  = 0
b  = -2 b  = 0
c  = -1 c  = -1

Note that groups Π1 and Π4 can be obtained by inspection

Hence                                                                                                                                         
D
d

=Π1
μ

ρ
ρ
μ VD
VD

→=Π 2 DV 23
ρ
σ

=Π
D
L

=Π 4



 
Problem 7.31                                                                             [3]



Problem 7.32 (In Excel) [3]

Given: Speed depends on mass, area, gravity, slope, and air viscosity and thickness

Find: Π groups

Solution:
We will use the workbook of Example 7.1, modified for the current problem

The number of parameters is: n = 7
The number of primary dimensions is: r = 3
The number of repeat parameters is: m = r = 3
The number of Π groups is: n - m = 4

Enter the dimensions (M, L, t) of
the repeating parameters, and of up to
four other parameters (for up to four Π groups).
The spreadsheet will compute the exponents a , b , and c for each.

REPEATING PARAMETERS: Choose g , δ, m

M L t
g 1 -2
δ 1
m 1

Π GROUPS:

M L t M L t
V 0 1 -1 μ 1 -1 -1

Π1: a  = -0.5 Π2: a  = -0.5
b  = -0.5 b  = 1.5
c  = 0 c  = -1

M L t M L t
θ 0 0 0 A 0 2 0

Π3: a  = 0 Π4: a  = 0
b  = 0 b  = -2
c  = 0 c  = 0

Note that the Π1 , Π3 and Π4 groups can be obtained by inspection

Hence                                                                                                                                         
δ

δ
g
V

g

V 2

2
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2
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gm
mg

2
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2
δμμδ

→=Π θ=Π 3 24
δ
A

=Π



Problem 7.33 (In Excel) [3]

Given: Bubble size depends on viscosity, density, surface tension, geometry and pressure

Find: Π groups

Solution:
We will use the workbook of Example 7.1, modified for the current problem

The number of parameters is: n = 6
The number of primary dimensions is: r = 3
The number of repeat parameters is: m = r = 3
The number of Π groups is: n - m = 3

Enter the dimensions (M, L, t) of
the repeating parameters, and of up to
four other parameters (for up to four Π groups).
The spreadsheet will compute the exponents a , b , and c for each.

REPEATING PARAMETERS:Choose ρ, Δp , D

M L t
ρ 1 -3
Δp 1 -1 -2
D 1

Π GROUPS:

M L t M L t
d 0 1 0 μ 1 -1 -1

Π1: a  = 0 Π2: a  = -0.5
b  = 0 b  = -0.5
c  = -1 c  = -1

M L t M L t
σ 1 0 -2 0 0 0

Π3: a  = 0 Π4: a  = 0
b  = -1 b  = 0
c  = -1 c  = 0

Note that the Π1 group can be obtained by inspection

Hence                                                                                                                                         D
d

=Π1 2

2

2
1

2
12

pD
Dp

Δ
→

Δ

=Π
ρ
μ

ρ

μ
pDΔ
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σ

3



Problem 7.34       [2] 
 
 
 
 
 
 
 
 
 

Given: That the power of a washing machine agitator depends on various parameters 

Find: Dimensionless groups 

Solution:  
Apply the Buckingham Π procedure 
 

   P          H         D          h         ωmax         f          ρ          μ   n = 8 parameters 
 

 Select primary dimensions M, L, t 

            

⎪
⎪
⎭

⎪
⎪

⎬

⎫
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⎪
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2
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μρωP
 r = 3 primary dimensions 

    ρ         D          ωmax    m = r = 3 repeat parameters 
 

  Then n – m = 5 dimensionless groups will result.  Setting up a dimensional equation, 
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Summing exponents,  
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 Hence  3
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Summing exponents,  
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 Hence  
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22 ωρ
μ

D
=Π  

The other Π groups can be found by inspection: 
D
H

=Π3  
D
h

=Π4  
max

5 ω
f

=Π  

  Check using F, L, t as primary dimensions 
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1
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t
L

L
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t
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  [ ]1
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2

2 ==Π

t
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L
Ft

L
Ft

  [ ]1543 =Π=Π=Π  

Note: Any combination of Π’s is a Π group, e.g., 
μω2

max
3

2

1

D
P

=
Π
Π

, so the Π’s are not unique!  



Problem 7.35 (In Excel) [3]

Given: Time to speed up depends on inertia, speed, torque, oil viscosity and geometry

Find: Π groups

Solution:
We will use the workbook of Example 7.1, modified for the current problem

The number of parameters is: n = 8
The number of primary dimensions is: r = 3
The number of repeat parameters is: m = r = 3
The number of Π groups is: n - m = 5

Enter the dimensions (M, L, t) of
the repeating parameters, and of up to
four other parameters (for up to four Π groups).
The spreadsheet will compute the exponents a , b , and c for each.

REPEATING PARAMETERS:Choose ω, D , T

M L t
ω -1
D 1
T 1 2 -2

Π GROUPS:
Two Π groups can be obtained by inspection: δ/D and L /D .  The others are obtained below

M L t M L t
t 0 0 1 μ 1 -1 -1

Π1: a  = 1 Π2: a  = 1
b  = 0 b  = 3
c  = 0 c  = -1

M L t M L t
I 1 2 0 0 0 0

Π3: a  = 2 Π4: a  = 0
b  = 0 b  = 0
c  = -1 c  = 0

Note that the Π1 group can also be easily obtained by inspection

Hence the Π groups are                                                                                                                         
 
 
 
 
 

ωt
D
δ

T
D3μω

T
I 2ω

D
L
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Problem 7.37       [2] 
 
 
 
 
 
 
 
 
 
 
 

Given: Ventilation system of cruise ship clubhouse 

Find: Dimensionless groups 

Solution:  
Apply the Buckingham Π procedure 

   c          N         Δp          D         ω         ρp          ρ          g          μ n = 9 parameters 
 Select primary dimensions M, L, t 

            

⎪
⎪
⎭

⎪
⎪
⎬

⎫

⎪
⎪
⎩

⎪
⎪
⎨

⎧
Δ

Lt
M

t
L

L
M

L
M

t
L

Lt
M

L

gDpNc p

23323
111

μρρω
 r = 3 primary dimensions 

    ρ         D          ω    m = r = 3 repeat parameters 
 

  Then n – m = 6 dimensionless groups will result.  Setting up a dimensional equation, 

( ) 000
231

1 tLM
Lt
M

t
L

L
MΔpD

c
b

a
cba =⎟

⎠
⎞

⎜
⎝
⎛

⎟
⎠
⎞

⎜
⎝
⎛==Π ωρ  

Summing exponents,  

202:
2013:
101:

−==−−
−==−+−
−==+

cct
bbaL
aaM

 Hence  221 ωρD
pΔ

=Π  

( ) 000
32

1 tLM
Lt
M

t
L

L
MD

c
b

a
cba =⎟

⎠
⎞

⎜
⎝
⎛

⎟
⎠
⎞

⎜
⎝
⎛==Π μωρ  

Summing exponents,  

101:
2013:
101:

−==−−
−==−+−
−==+

cct
bbaL
aaM

 Hence  
ωρ

μ
22 D

=Π  

The other Π groups can be found by inspection: 3
3 cD=Π  N=Π4  

ρ
ρ p=Π5  26 ωD

g
=Π  

  Check using F, L, t as primary dimensions 

  [ ]1
1
2

2
4

2

2

1 ==Π

t
L

L
Ft

L
F

  [ ]1
12

4

2

2

2 ==Π

t
L

L
Ft

L
Ft

  [ ]16543 =Π=Π=Π=Π  

Note: Any combination of Π’s is a Π group, e.g., 
ωμ

pΔ
=

Π
Π

2

1 , so the Π’s are not unique!  
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 Problem 7.43      [3] 
 

 
 
 
 
 
 
 
 

Given: That the cooling rate depends on rice properties and air properties 

Find: The Π groups 

Solution:  
 
Apply the Buckingham Π procedure 
 

   dT/dt        c        k        L        cp       ρ       μ       V  n = 8 parameters 
 

 Select primary dimensions M, L, t and T (temperature) 
 

 

t
L

Lt
M

L
M

Tt
LL

Tt
ML

Tt
L

t
T

VcLkcdtdT p

32

2

22

2

μρ
 r = 4 primary dimensions 

 
    V         ρ          L         cp     m = r = 4 repeat parameters 

 
Then n – m = 4 dimensionless groups will result.  By inspection, one Π group is c/cp. Setting up a dimensional equation, 
 

( ) 0000
2

2

31 tLMT
t
T

Tt
LL

L
M

t
L

dt
dTcLV

d
c

ba
d
p

cba =⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛

⎟
⎠
⎞

⎜
⎝
⎛==Π ρ  

 
Summing exponents, 
 

3012:
12023:

00:
101:

−==−−−
=→−=+=++−

==
==+−

adat
ccadcbaL

bbM
ddT

 

 

Hence 31 V

Lc
dt
dT p=Π  

 

By a similar process, we find 
pcL

k
22

ρ
=Π  and 

LVρ
μ

=Π3  

Hence 
 

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
=

LVcL
k

c
cf

V

Lc
dt
dT

pp

p

ρ
μ

ρ
,, 23  
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Problem 7.45       [2] 
 
 
 
 
 
 
 
 
 
 

Given: Boundary layer profile 

Find: Two Π groups by inspection; One Π that is a standard fluid mechanics group; Dimensionless groups 

Solution:  
 
Two obvious Π groups are u/U and y/δ.  A dimensionless group common in fluid mechanics is Uδ/ν (Reynolds number) 
 
Apply the Buckingham Π procedure 
 

   u          y         U          dU/dx         ν         δ   n = 6 parameters 
 

 Select primary dimensions M, L, t 
 

            

⎪
⎪
⎭

⎪
⎪

⎬

⎫

⎪
⎪
⎩

⎪
⎪

⎨

⎧

L
t
L

tt
LL

t
L

dxdUUyu

21

δν
 m = r = 3 primary dimensions 

 
    U         δ      m = r = 2 repeat parameters 

 
  Then n – m = 4 dimensionless groups will result.  We can easily do these by inspection 

 

U
u

=Π1  
δ
y

=Π2  
( )

U
dydU δ

=Π3  
Uδ
ν

=Π4  

 
  Check using F, L, t as primary dimensions, is not really needed here 

 
Note: Any combination of Π’s can be used; they are not unique!  
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Problem 7.47 [3]

Given: Model scale for on balloon

Find: Required water model water speed; drag on protype based on model drag

Solution:

From Appendix A (inc. Fig. A.2) ρair 1.24
kg

m3
⋅= μair 1.8 10 5−

×
N s⋅

m2
⋅= ρw 999

kg

m3
⋅= μw 10 3− N s⋅

m2
⋅=

The given data is Vair 5
m
s

⋅= Lratio 20= Fw 2 kN⋅=

For dynamic similarity we assume
ρw Vw⋅ Lw⋅

μw

ρair Vair⋅ Lair⋅

μair
=

Then Vw Vair
μw
μair
⋅

ρair
ρw

⋅
Lair
Lw

⋅= Vair
μw
μair
⋅

ρair
ρw

⋅ Lratio⋅= 5
m
s

⋅
10 3−

1.8 10 5−
×

⎛⎜
⎜⎝

⎞⎟
⎟⎠

×
1.24
999

⎛⎜
⎝

⎞⎟
⎠

× 20×= Vw 6.90
m
s

=

Fair
1
2

ρair⋅ Aair⋅ Vair
2

⋅

Fw
1
2

ρw⋅ Aw⋅ Vw
2

⋅
=For the same Reynolds numbers, the drag coefficients will be the same so we have

where
Aair
Aw

Lair
Lw

⎛
⎜
⎝

⎞
⎟
⎠

2

= Lratio
2

=

Hence the prototype drag is Fair Fw
ρair
ρw

⋅ Lratio
2

⋅
Vair
Vw

⎛
⎜
⎝

⎞
⎟
⎠

2

⋅= 2000 N⋅
1.24
999

⎛⎜
⎝

⎞⎟
⎠

× 202
×

5
6.9
⎛⎜
⎝

⎞⎟
⎠

2
×= Fair 522N=



 
Problem 7.48                                                                             [5]



 
Problem 7.49                                                                             [2]



Problem 7.50                                                                             [3]



Problem 7.51 [2]

Given: Flow around ship's propeller

Find: Model propeller speed using Froude number and Reynolds number

Solution:

Basic equations Fr
V

g L⋅
= Re

V L⋅
ν

=

Using the Froude number Frm
Vm

g Lm⋅
= Frp=

Vp

g Lp⋅
= or

Vm
Vp

Lm
Lp

= (1)

But the angular velocity is given by V L ω⋅= so
Vm
Vp

Lm
Lp

ωm
ωp

⋅= (2)

Comparing Eqs. 1 and 2
Lm
Lp

ωm
ωp

⋅
Lm
Lp

= ωm
ωp

Lp
Lm

=

The model rotation speed is then ωm ωp
Lp
Lm

⋅=
ωm 125 rpm⋅

10
1

×= ωm 395rpm=

Using the Reynolds number Rem
Vm Lm⋅

νm
= Rep=

Vp Lp⋅

νp
= or

Vm
Vp

Lp
Lm

νm
νp

⋅=
Lp
Lm

= (3)

(We have assumed the viscosities of the sea water and model water are comparable)

Comparing Eqs. 2 and 3
Lm
Lp

ωm
ωp

⋅
Lp
Lm

= ωm
ωp

Lp
Lm

⎛
⎜
⎝

⎞
⎟
⎠

2

=

The model rotation speed is then ωm ωp
Lp
Lm

⎛
⎜
⎝

⎞
⎟
⎠

2

⋅=
ωm 125 rpm⋅

10
1

⎛⎜
⎝

⎞⎟
⎠

2
×= ωm 12500rpm=

Of the two models, the Froude number appears most realistic; at 12,500 rpm serious cavitation will occur.  Both flows will likely have
high Reynolds numbers so that the flow becomes independent of Reynolds number; the Froude number is likely to be a good indicator
of static pressure to dynamic pressure for this (although cavitation number would be better).
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Problem 7.54 [2]

Given: Model of weather balloon

Find: Model test speed; drag force expected on full-scale balloon

Solution:

From Buckingham Π F

ρ V2
⋅ D2

⋅
f

ν

V D⋅
V
c

, ⎛⎜
⎝

⎞⎟
⎠

= F Re M, ( )=

For similarity Rep Rem= and Mp Mm= (Mach number criterion
satisified because M<<)

Hence Rep
Vp Dp⋅

νp
= Rem=

Vm Dm⋅

νm
=

Vm Vp
νm
νp

⋅
Dp
Dm

⋅=

From Table A.7 at 68oF νm 1.08 10 5−
×

ft2

s
⋅= From Table A.9 at 68oF νp 1.62 10 4−

×
ft2

s
⋅=

Vm 5
ft
s

⋅
1.08 10 5−

×
ft2

s
⋅

1.62 10 4−
×

ft2

s
⋅

⎛
⎜
⎜
⎜
⎜
⎝

⎞
⎟
⎟
⎟
⎟
⎠

×
10 ft⋅
1
6

ft⋅

⎛
⎜
⎜
⎝

⎞
⎟
⎟
⎠

×= Vm 20.0
ft
s

=

Then
Fm

ρm Vm
2

⋅ Dm
2

⋅

Fp

ρp Vp
2

⋅ Dp
2

⋅
= Fp Fm

ρp
ρm.

⋅
Vp

2

Vm
2

⋅
Dp

2

Dm
2

⋅=

Fp 0.85 lbf⋅

0.00234
slug

ft3
⋅

1.94
slug

ft3
⋅

⎛
⎜
⎜
⎜
⎜
⎝

⎞
⎟
⎟
⎟
⎟
⎠

×
5

ft
s

20
ft
s

⋅

⎛
⎜
⎜
⎜
⎝

⎞
⎟
⎟
⎟
⎠

2

×
10 ft⋅
1
6

ft⋅

⎛
⎜
⎜
⎝

⎞
⎟
⎟
⎠

2
×= Fp 0.231 lbf=



Problem 7.55 [2]

Given: Model of wing

Find: Model test speed for dynamic similarity; ratio of model to prototype forces

Solution:

We would expect F F l s, V, ρ, μ, ( )= where F is the force (lift or drag),  l is the chord and s the span

From Buckingham Π F

ρ V2
⋅ l⋅ s⋅

f
ρ V⋅ l⋅

μ

l
s

, ⎛⎜
⎝

⎞⎟
⎠

=

For dynamic similarity
ρm Vm⋅ lm⋅

μm

ρp Vp⋅ lp⋅

μp
=

Hence Vm Vp
ρp
ρm

⋅
lp
lm

⋅
μm
μp

⋅=

From Table A.8 at 20oC μm 1.01 10 3−
×

N s⋅

m2
⋅= From Table A.10 at 20oC μp 1.81 10 5−

×
N s⋅

m2
⋅=

Vm 7.5
m
s

⋅

1.21
kg

m3
⋅

998
kg

m3
⋅

⎛
⎜
⎜
⎜
⎜
⎝

⎞
⎟
⎟
⎟
⎟
⎠

×
10
1

⎛⎜
⎝

⎞⎟
⎠

×

1.01 10 3−
×

N s⋅

m2
⋅

1.81 10 5−
×

N s⋅

m2
⋅

⎛
⎜
⎜
⎜
⎜
⎝

⎞
⎟
⎟
⎟
⎟
⎠

×= Vm 5.07
m
s

=

Then
Fm

ρm Vm
2

⋅ lm⋅ sm⋅

Fp

ρp Vp
2

⋅ lp⋅ sp⋅
=

Fm
Fp

ρm
ρp

Vm
2

Vp
2

⋅
lm sm⋅

lp sp⋅
⋅=

998
1.21

5.07
7.5

⎛⎜
⎝

⎞⎟
⎠

2
×

1
10

×
1

10
×= 3.77=
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Problem 7.57 [3]

Given: Model of water pump

Find: Model flow rate for dynamic similarity (ignoring Re); Power of prototype

Solution:
Q

ω D3
⋅

and P

ρ ω
3

⋅ D5
⋅

where Q is flow rate, ω is angular speed,
d is diameter, and ρ is density (these Π
groups will be discussed in Chapter 10

From Buckingham Π

Qm

ωm Dm
3

⋅

Qp

ωp Dp
3

⋅
=For dynamic similarity

Hence Qm Qp
ωm
ωp

⋅
Dm
Dp

⎛
⎜
⎝

⎞
⎟
⎠

3

⋅=

Qm 0.4
m3

s
⋅

2000
800

⎛⎜
⎝

⎞⎟
⎠

×
1
2

⎛⎜
⎝

⎞⎟
⎠

3
×= Qm 0.125

m3

s
=

From Table A.8 at 20oC ρp 998
kg

m3
⋅= From Table A.10 at 20oC μm 1.21

kg

m3
⋅=

Then
Pm

ρm ωm
3

⋅ Dm
5

⋅

Pp

ρp ωp
3

⋅ Dp
5

⋅
=

Pp Pm
ρp
ρm
⋅

ωp
ωm

⎛
⎜
⎝

⎞
⎟
⎠

3

⋅
Dp
Dm

⎛
⎜
⎝

⎞
⎟
⎠

5

⋅=

Pp 75 W⋅
998
1.21

×
800
2000
⎛⎜
⎝

⎞⎟
⎠

3
×

2
1
⎛⎜
⎝
⎞⎟
⎠

5
×= Pp 127kW=



Problem 7.58 [2]

Given: Model of Frisbee

Find: Dimensionless parameters; Model speed and angular speed

Solution:
The functional dependence is F F D V, ω, h, ρ, μ, ( )= where F represents lift or drag

From Buckingham Π F

ρ V2
⋅ D2

⋅
f

ρ V⋅ D⋅
μ

ω D⋅
V

, 
h
D

, ⎛⎜
⎝

⎞⎟
⎠

=

For dynamic similarity
ρm Vm⋅ Dm⋅

μm

ρp Vp⋅ Dp⋅

μp
= Vm Vp

ρp
ρm

⋅
Dp
Dm

⋅
μm
μp

⋅= Vm 5
m
s

⋅ 1( )×
4
1

⎛⎜
⎝

⎞⎟
⎠

× 1( )×= Vm 20
m
s

=

Also
ωm Dm⋅

Vm

ωp Dp⋅

Vp
= ωm ωp

Dp
Dm

⋅
Vm
Vp

⋅= ωm 100 rpm⋅
4
1

⎛⎜
⎝

⎞⎟
⎠

×
20
5

⎛⎜
⎝

⎞⎟
⎠

×= ωm 1600rpm=
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Problem 7.60 [2]

Given: Oil flow in pipe and dynamically similar water flow

Find: Average water speed and pressure drop

Solution:

From Example 7.2 Δp

ρ V2
⋅

f
μ

ρ V⋅ D⋅
l
D

, 
e
D

, ⎛⎜
⎝

⎞⎟
⎠

=

μH2O
ρH2O VH2O⋅ DH2O⋅

μOil
ρOil VOil⋅ DOil⋅

=For dynamic similarity so VH2O
μH2O
ρH2O

ρOil
μOil

⋅ Voil⋅=
νH2O
νOil

VOil⋅=

From Fig. A.3 at 25oC νOil 8 10 5−
×

m2

s
⋅= From Table A.8 at 15oC νH2O 1.14 10 6−

×
m2

s
⋅=

Hence VH2O

1.14 10 6−
×

m2

s
⋅

8 10 5−
×

m2

s
⋅

1×
m
s

⋅= VH2O 0.0142
m
s

=

Then
ΔpOil

ρOil VOil
2

⋅

ΔpH2O

ρH2O VH2O
2

⋅
= ΔpH2O

ρH2O VH2O
2

⋅

ρOil VOil
2

⋅
ΔpOil⋅=

From Table A.2 SGOil 0.92=

ΔpH2O
1

0.92
0.0142

1
⎛⎜
⎝

⎞⎟
⎠

2
× 450× kPa⋅= ΔpH2O 98.6 Pa⋅=
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Problem 7.63 [2]

Given: Flow around cruise ship smoke stack

Find: Range of wind tunnel speeds

Solution:

For dynamic similarity
Vm Dm⋅

νm

Vp Dp⋅

νm
= or Vm

Dp
Dm

Vp⋅=
1

12.5
Vp⋅= 0.08 Vp⋅=

From Wikipedia 1 knot⋅ 1.852
km
hr

= 1.852
km
hr

⋅
1000 m⋅

km
×

1 hr⋅
3600 s⋅

×= 0.514
m
s

⋅=

Hence for Vp 15 knot⋅= 15 knot⋅
0.514

m
s

⋅

1 knot⋅
×= Vp 7.72

m
s

⋅= Vm 0.08 7.72×
m
s

⋅= Vm 0.618
m
s

=

Vp 25 knot⋅= 25 knot⋅
0.514

m
s

⋅

1 knot⋅
×= Vp 12.86

m
s

⋅= Vm 0.08 12.86×
m
s

⋅= Vm 1.03
m
s

=



Problem 7.64 [2]

Given: Model of flying insect

Find: Wind tunnel speed and wing frequency; select a better model fluid

Solution:
For dynamic similarity the following dimensionless groups must be the same in the insect and model (these are Reynolds number
and Strouhal number, and can be obtained from a Buckingham Π analysis)

Vinsect Linsect⋅

νair

Vm Lm⋅

νm
=

ωinsect Linsect⋅

Vinsect

ωm Lm⋅

Vm
=

From Table A.9 (68oF) ρair 0.00234
slug

ft3
⋅= νair 1.62 10 4−

×
ft2

s
⋅=

The given data is ωinsect 50 Hz⋅= Vinsect 4
ft
s

⋅=
Linsect

Lm

1
10

=

Hence in the wind tunnel Vm Vinsect
Linsect

Lm
⋅

νm
νair
⋅= Vinsect

Linsect
Lm

⋅= 4
ft
s

⋅
1
10

×= Vm 0.4
ft
s

⋅=

Also ωm ωinsect
Vm

Vinsect
⋅

Linsect
Lm

⋅= 50 Hz⋅
0.4
4

×
1
10

×= ωm 0.5 Hz⋅=

It is unlikely measurable wing lift can be measured at such a low wing frequency (unless the measured lift was averaged, using
an integrator circuit).  Maybe try hot air (200oF) for the model

For hot air try νhot 2.4 10 4−
×

ft2

s
⋅= instead of νair 1.62 10 4−

×
ft2

s
⋅=

Hence
Vinsect Linsect⋅

νair

Vm Lm⋅

νhot
= Vm Vinsect

Linsect
Lm

⋅
νhot
νair
⋅= 4

ft
s

⋅
1
10

×
2.4 10 4−

×

1.62 10 4−
×

×= Vm 0.593
ft
s

⋅=

Also ωm ωinsect
Vm

Vinsect
⋅

Linsect
Lm

⋅= 50 Hz⋅
0.593

4
×

1
10

×= ωm 0.741 Hz⋅=

Hot air does not improve things much.  Try modeling in waterνw 1.08 10 5−
×

ft2

s
⋅=

Hence
Vinsect Linsect⋅

νair

Vm Lm⋅

νw
= Vm Vinsect

Linsect
Lm

⋅
νw
νair
⋅= 4

ft
s

⋅
1
10

×
1.08 10 5−

×

1.62 10 4−
×

×= Vm 0.0267
ft
s

⋅=

Also ωm ωinsect
Vm

Vinsect
⋅

Linsect
Lm

⋅= ωinsect
Vm

Vinsect
⋅ Lratio⋅= 50 Hz⋅

0.0267
4

×
1
10

×= ωm 0.033 Hz⋅=

This is even worse!  It seems the best bet is hot (very hot) air for the wind tunnel.  Alternatively, choose a much smaller wind
tunnel model, e.g., a 2.5 X model would lead to Vm = 1.6 ft/s and ωm = 8 Hz 
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Problem 7.66 [2]

Given: Model of boat

Find: Model kinematic viscosity for dynamic similarity

Solution:

For dynamic similarity
Vm Lm⋅

νm

Vp Lp⋅

νp
= (1)

Vm

g Lm⋅

Vp

g Lp⋅
= (2) (from Buckingham Π; the first

is the Reynolds number, the
second the Froude number)

Hence from Eq 2
Vm
Vp

g Lm⋅

g Lp⋅
=

Lm
Lp

=

Using this in Eq 1 νm νp
Vm
Vp

⋅
Lm
Lp

⋅= νp
Lm
Lp

⋅
Lm
Lp

⋅= νp
Lm
Lp

⎛
⎜
⎝

⎞
⎟
⎠

3
2

⋅=

From Table A.8 at 10oC νp 1.3 10 6−
×

m2

s
⋅= νm 1.3 10 6−

×
m2

s
⋅

1
5
⎛⎜
⎝
⎞⎟
⎠

3
2

×= νm 1.16 10 7−
×

m2

s
=
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Problem 7.68 [3]

Given: Model of automobile

Find: Factors for kinematic similarity; Model speed; ratio of protype and model drags; minimum pressure for no cavitation

Solution:

For dynamic similarity
ρm Vm⋅ Lm⋅

μm

ρp Vp⋅ Lp⋅

μp
= Vm Vp

ρp
ρm
⋅

Lp
Lm
⋅

μm
μp

⋅=

For air (Table A.9) and water (Table A.7) at 68oF

ρp 0.00234
slug

ft3
⋅= μp 3.79 10 7−

×
lbf s⋅

ft2
⋅=

ρm 1.94
slug

ft3
⋅= μm 2.10 10 5−

×
lbf s⋅

ft2
⋅=

Vm 60 mph⋅
88

ft
s

⋅

60 mph⋅
×

0.00234
1.94

⎛⎜
⎝

⎞⎟
⎠

×
5
1
⎛⎜
⎝
⎞⎟
⎠

×
2.10 10 5−

×

3.79 10 7−
×

⎛⎜
⎜⎝

⎞⎟
⎟⎠

×= Vm 29.4
ft
s

⋅=

Then
Fm

ρm Vm
2

⋅ Lm
2

⋅

Fp

ρp Vp
2

⋅ Lp
2

⋅
=

Hence
Fp
Fm

ρp Vp
2

⋅ Lp
2

⋅

ρm Vm
2

⋅ Lm
2

⋅
=

0.00234
1.94

⎛⎜
⎝

⎞⎟
⎠

88
29.4
⎛⎜
⎝

⎞⎟
⎠

2
×

5
1
⎛⎜
⎝
⎞⎟
⎠

2
×=

Fp
Fm

0.270=

For Ca = 0.5
pmin pv−

1
2

ρ⋅ V2
⋅

0.5= so we get pmin pv
1
4

ρ⋅ V2
⋅+= for the water tank

From steam tables, for water at 68oF pv 0.339 psi⋅= so

pmin 0.339 psi⋅
1
4

1.94×
slug

ft3
⋅ 29.4

ft
s

⋅⎛⎜
⎝

⎞⎟
⎠

2
×

lbf s2
⋅

slug ft⋅
×

1 ft⋅
12 in⋅
⎛⎜
⎝

⎞⎟
⎠

2
×+= pmin 3.25psi=

This is the minimum allowable pressure in the water tank; we can use it to find the required tank pressure

Cp 1.4−=
pmin ptank−

1
2

ρ⋅ V2
⋅

= ptank pmin
1.4
2

ρ⋅ V2
⋅+= pmin 0.7 ρ⋅ V2

⋅+=

ptank 3.25 psi⋅ 0.7 1.94×
slug

ft3
⋅ 29.4

ft
s

⋅⎛⎜
⎝

⎞⎟
⎠

2
×

lbf s2
⋅

slug ft⋅
×

1 ft⋅
12 in⋅
⎛⎜
⎝

⎞⎟
⎠

2
×+= ptank 11.4psi=
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Problem 7.71 [3]

Given: Model of tractor-trailer truck

Find: Drag coefficient; Drag on prototype; Model speed for dynamic similarity

Solution:
For kinematic similarity we need to ensure the geometries of model and prototype are similar, as is the incoming flow field

The drag coefficient is CD
Fm

1
2

ρm⋅ Vm
2

⋅ Am⋅
=

For air (Table A.10) at 20oC ρm 1.21
kg

m3
⋅= μp 1.81 10 5−

×
N s⋅

m2
⋅=

CD 2 350× N⋅
m3

1.21 kg⋅
×

s
75 m⋅
⎛⎜
⎝

⎞⎟
⎠

2
×

1

0.1 m2
⋅

×
N s2
⋅

kg m⋅
×= CD 1.028=

This is the drag coefficient for model and prototype 

For the rig Fp
1
2

ρp⋅ Vp
2

⋅ Ap⋅ CD⋅= with
Ap
Am

Lp
Lm

⎛
⎜
⎝

⎞
⎟
⎠

2

= 100= Ap 10 m2
⋅=

Fp
1
2

1.21×
kg

m3
⋅ 90

km
hr

⋅
1000 m⋅

1 km⋅
×

1 hr⋅
3600 s⋅

×⎛⎜
⎝

⎞⎟
⎠

2
× 10× m2

⋅ 1.028×
N s2
⋅

kg m⋅
×= Fp 3.89kN=

For dynamic similarity
ρm Vm⋅ Lm⋅

μm

ρp Vp⋅ Lp⋅

μp
= Vm Vp

ρp
ρm
⋅

Lp
Lm
⋅

μm
μp

⋅= Vp
Lp
Lm
⋅=

Vm 90
km
hr

⋅
1000 m⋅

1 km⋅
×

1 hr⋅
3600 s⋅

×
10
1

×= Vm 250
m
s

=

For air at standard conditions, the speed of sound is c k R⋅ T⋅=

c 1.40 286.9×
N m⋅
kg K⋅
⋅ 20 273+( )× K⋅

kg m⋅

s2 N⋅
×= c 343

m
s

=

Hence we have M
Vm

c
=

250
343

= 0.729= which indicates compressibility is significant - this model speed is
impractical (and unnecessary)
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Problem 7.75 (In Excel) [3]

Given: Data on model of aircraft

Find: Plot of lift vs speed of model; also of prototype

Solution:

V m (m/s) 10 15 20 25 30 35 40 45 50
F m (N) 2.2 4.8 8.7 13.3 19.6 26.5 34.5 43.8 54.0

This data can be fit to

From the trendline, we see that

k m = N/(m/s)2

(And note that the power is 1.9954 or 2.00 to three signifcant
figures, confirming the relation is quadratic)

Also, k p = 1110 k m

Hence,

k p = 24.3 N/(m/s)2 F p = k pV m
2

V p (m/s) 75 100 125 150 175 200 225 250
F p (kN) 

(Trendline)
137 243 380 547 744 972 1231 1519

0.0219

Fm
1
2
ρ⋅ Am⋅ CD⋅ Vm

2⋅= or Fm km Vm
2⋅=



Lift vs Speed for an Airplane Model

y = 0.0219x1.9954

R2 = 0.9999
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Lift vs Speed for an Airplane Model
(Log-Log Plot)

y = 0.0219x1.9954

R2 = 0.9999
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Problem 7.77 [3]

For drag we can use As a suitable scaling area for A  we use L 2

Model: L = 1 m

For water ρ  = 1000 kg/m3

μ  = 1.01E-03 N·s/m2

The data is:

V  (m/s) 3 6 9 12 15 18 20
D Wave  (N) 0 0.125 0.5 1.5 3 4 5.5
D Friction  (N) 0.1 0.35 0.75 1.25 2 2.75 3.25

Fr 0.958 1.916 2.873 3.831 4.789 5.747 6.386
Re 2.97E+06 5.94E+06 8.91E+06 1.19E+07 1.49E+07 1.78E+07 1.98E+07

C D(Wave) 0.00E+00 6.94E-06 1.23E-05 2.08E-05 2.67E-05 2.47E-05 2.75E-05
C D(Friction) 2.22E-05 1.94E-05 1.85E-05 1.74E-05 1.78E-05 1.70E-05 1.63E-05

The friction drag coefficient becomes a constant, as expected, at high Re .
The wave drag coefficient appears to be linear with Fr , over most values

Ship: L = 50 m

V  (knot) 15 20
V  (m/s) 7.72 10.29

Fr 0.348 0.465
Re 3.82E+08 5.09E+08

Hence for the ship we have very high Re , and low Fr .
From the graph we see the friction C D  levels out at about 1.75 x 10-5

From the graph we see the wave C D  is negligibly small

C D(Wave) 0 0
C D(Friction) 1.75E-05 1.75E-05

D Wave  (N) 0 0
D Friction  (N) 1303 2316

D Total  (N) 1303 2316

AV

DC D
2

2
1 ρ

=
22

2
1 LV

DC D

ρ
=

DCLVD 22

2
1 ρ=

Wave Drag

0.0E+00

5.0E-06

1.0E-05

1.5E-05

2.0E-05

2.5E-05

3.0E-05

0 1 2 3 4 5 6 7

Fr

CD

Friction Drag

0.0E+00

5.0E-06

1.0E-05

1.5E-05

2.0E-05

2.5E-05

3.0E-05

0.0.E+00 5.0.E+06 1.0.E+07 1.5.E+07 2.0.E+07 2.5.E+07

Re

CD



Problem 7.78 (In Excel) [4]

Given: Data on centrifugal water pump

Find: Π groups; plot pressure head vs flow rate for range of speeds

Solution:
We will use the workbook of Example 7.1, modified for the current problem

The number of parameters is: n = 5
The number of primary dimensions is: r = 3
The number of repeat parameters is: m = r = 3
The number of Π groups is: n - m = 2

Enter the dimensions (M, L, t) of
the repeating parameters, and of up to
four other parameters (for up to four Π groups).
The spreadsheet will compute the exponents a , b , and c  for each.

REPEATING PARAMETERS: Choose ρ, g , d

M L t
ρ 1 -3
ω -1
D 1

Π GROUPS:
M L t M L t

Δp 1 -1 -2 Q 0 3 -1

Π1: a  = -1 Π2: a = 0
b  = -2 b = -1
c  = -2 c = -3

The following Π groups from Example 7.1 are not used:

M L t M L t
0 0 0 0 0 0

Π3: a  = 0 Π4: a = 0
b  = 0 b = 0
c  = 0 c = 0

The data is

Q  (m3/hr) 0 100 150 200 250 300 325 350
Δp  (kPa) 361 349 328 293 230 145 114 59

Hence                                      and                            with Π1 = f(Π2). 
 
 
 
Based on the plotted data, it looks like the relation between Π1 and Π2 may be parabolic 
 
 
Hence 
 
 
 

221
D
p

ρω
Δ

=Π
32 D

Q
ω

=Π

2

3322 ⎟
⎠

⎞
⎜
⎝

⎛+⎟
⎠

⎞
⎜
⎝

⎛+=
Δ

D
Qc

D
Qba

D
p

ωωρω



ρ = 999 kg/m3

ω = 750 rpm
D  = 1 m (D  is not given; use D = 1 m as a scale)

Q /(ωD 3) 0.00000 0.000354 0.000531 0.000707 0.000884 0.00106 0.00115 0.00124

Δp /(ρω2D 2) 0.0586 0.0566 0.0532 0.0475 0.0373 0.0235 0.0185 0.00957

From the Trendline  analysis

a  = 0.0582
b  = 13.4
c  = -42371

and

Finally, data at 500 and 1000 rpm can be calculated and plotted

ω = 500 rpm

Q  (m3/hr) 0 25 50 75 100 150 200 250
Δp  (kPa) 159 162 161 156 146 115 68 4

ω = 1000 rpm

Q  (m3/hr) 0 25 50 100 175 250 300 350
Δp  (kPa) 638 645 649 644 606 531 460 374

Centifugal Pump Data and Trendline

y = -42371x2 + 13.399x + 0.0582
R2 = 0.9981
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Problem 7.79 [3]

Given: Model of water pump

Find: Model head, flow rate and diameter

Solution:

From Buckingham Π h

ω
2 D2
⋅

f
Q

ω D3
⋅

ρ ω⋅ D2
⋅

μ
, 

⎛⎜
⎜⎝

⎞⎟
⎟⎠

= and P

ω
3 D5
⋅

f
Q

ω D3
⋅

ρ ω⋅ D2
⋅

μ
, 

⎛⎜
⎜⎝

⎞⎟
⎟⎠

=

Neglecting viscous effects
Qm

ωm Dm
3

⋅

Qp

ωp Dp
3

⋅
= then

hm

ωm
2 Dm

2
⋅

hp

ωp
2 Dp

2
⋅

= and
Pm

ωm
3 Dm

5
⋅

Pp

ωp
3 Dp

5
⋅

=

Hence if
Qm
Qp

ωm
ωp

Dm
Dp

⎛
⎜
⎝

⎞
⎟
⎠

3

⋅=
1000
500

Dm
Dp

⎛
⎜
⎝

⎞
⎟
⎠

3

⋅= 2
Dm
Dp

⎛
⎜
⎝

⎞
⎟
⎠

3

⋅= (1)

hm
hp

ωm
2

ωp
2

Dm
2

Dp
2

⋅=
1000
500

⎛⎜
⎝

⎞⎟
⎠

2 Dm
2

Dp
2

⋅= 4
Dm

2

Dp
2

⋅= (2)then

and Pm
Pp

ωm
3

ωp
3

Dm
5

Dp
5

⋅=
1000
500

⎛⎜
⎝

⎞⎟
⎠

3 Dm
5

Dp
5

⋅= 8
Dm

5

Dp
5

⋅= (3)

We can find Pp from Pp ρ Q⋅ h⋅= 1000
kg

m3
⋅ 0.75×

m3

s
⋅ 15×

J
kg

⋅= 11.25 kW⋅=

From Eq 3
Pm
Pp

8
Dm

5

Dp
5

⋅= so Dm Dp
1
8

Pm
Pp

⋅
⎛
⎜
⎝

⎞
⎟
⎠

1
5

⋅= Dm 0.25 m⋅
1
8

2.25
11.25

×⎛⎜
⎝

⎞⎟
⎠

1
5

×= Dm 0.120m=

From Eq 1
Qm
Qp

2
Dm
Dp

⎛
⎜
⎝

⎞
⎟
⎠

3

⋅= so Qm Qp 2⋅
Dm
Dp

⎛
⎜
⎝

⎞
⎟
⎠

3

⋅= Qm 0.75
m3

s
⋅ 2×

0.12
0.25

⎛⎜
⎝

⎞⎟
⎠

3
×= Qm 0.166

m3

s
=

From Eq 2
hm
hp

4
Dm
Dp

⎛
⎜
⎝

⎞
⎟
⎠

2

⋅= so hm hp 4⋅
Dm
Dp

⎛
⎜
⎝

⎞
⎟
⎠

2

⋅= hm 15
J

kg
⋅ 4×

0.12
0.25

⎛⎜
⎝

⎞⎟
⎠

2
×= hm 13.8

J
kg

=



Problem 7.80       [3] 
 
 
 
 
 
 
 
 
 
 

Given: Data on model propeller 

Find: Speed, thrust and torque on prototype 

Solution:  
 
There are two problems here:  Determine ( )ρμω ,,,,1 VDfFt =  and also ( )ρμω ,,,,2 VDfT = .  Since μ is to be ignored, do not 
select it as a repeat parameter; instead select D, ω, ρ as repeats. 
 
Apply the Buckingham Π procedure 
 

   Ft          D         ω          V         μ        ρ     n = 6 parameters 
 

 Select primary dimensions M, L, t 

            

⎪
⎪
⎭

⎪
⎪
⎬

⎫

⎪
⎪
⎩

⎪
⎪
⎨

⎧

32
1

L
M

Lt
M

t
L

t
L

t
LM

VDFt ρμω
 r = 3 primary dimensions 

    ρ         D          ω    m = r = 3 repeat parameters 
 

  Then n – m = 5 dimensionless groups will result.  Setting up a dimensional equation, 

( ) 000
231

1 tLM
t

ML
t

L
L
MFD

c
b

a

t
cba =⎟

⎠
⎞

⎜
⎝
⎛

⎟
⎠
⎞

⎜
⎝
⎛==Π ωρ  

Summing exponents,  

202:
4013:
101:

−==−−
−==++−
−==+

cct
bbaL
aaM

 Hence  241 ωρD
Ft=Π  

( ) 000
32

1 tLM
t
L

t
L

L
MVD

c
b

a
cba =⎟

⎠
⎞

⎜
⎝
⎛

⎟
⎠
⎞

⎜
⎝
⎛==Π ωρ  

Summing exponents,  

101:
1013:

00:

−==−−
−==++−

==

cct
bbaL
aaM

 Hence  
ωD

V
=Π2  

( ) 000
33

1 tLM
Lt
M

t
L

L
MD

c
b

a
cba =⎟

⎠
⎞

⎜
⎝
⎛

⎟
⎠
⎞

⎜
⎝
⎛==Π μωρ  



Summing exponents,  

101:
2013:
101:

−==−−
−==−+−
−==+

cct
bbaL
aaM

 Hence  
ωρ

μ
23 D

=Π  

  Check using F, L, t as primary dimensions 

    [ ]1
1
2

4
4

21 ==Π

t
L

L
Ft

F
  [ ]112 ==Π

t
L
t
L

  [ ]1
12

4

2

2

3 ==Π

t
L

L
Ft

L
Ft

 

Then    ( )3211 ,ΠΠ=Π f   ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

ωρ
μ

ωωρ 2124 ,
DD

Vf
D
Ft   

If viscous effects are neglected ⎟
⎠
⎞

⎜
⎝
⎛=

ωωρ D
Vg

D
Ft

124  

For dynamic similarity  
pp

p

mm

m

D
V

D
V

ωω
=  

so    rpm533rpm2000
150
400

10
1

=×⎟
⎠
⎞

⎜
⎝
⎛×⎟

⎠
⎞

⎜
⎝
⎛== m

m

p

p

m
p V

V
D
D ωω  

Under these conditions  2424
pp

t

mm

t

D

F

D
F

pm

ωρωρ
=  (assuming ρm = ρp) 

or    lbf1078.1lbf25
2000
533

1
10 4

24

2

2

4

4

×=×⎟
⎠
⎞

⎜
⎝
⎛×⎟

⎠
⎞

⎜
⎝
⎛==

mp t
m

p

m

p
t F

D
D

F
ω
ω

 

 
 
For the torque we can avoid repeating a lot of the work 

( ) 000
2

2

34
1 tLM

t
ML

t
L

L
MTD

c
b

a
cba =⎟

⎠
⎞

⎜
⎝
⎛

⎟
⎠
⎞

⎜
⎝
⎛==Π ωρ  

Summing exponents,  

202:
5023:
101:

−==−−
−==++−
−==+

cct
bbaL
aaM

 Hence  254 ωρD
T

=Π  

Then    ( )3224 , ΠΠ=Π f   ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

ωρ
μ

ωωρ 2225 ,
DD

Vf
D
T

  

 

If viscous effects are neglected ⎟
⎠
⎞

⎜
⎝
⎛=

ωωρ D
Vg

D
T

225  

For dynamic similarity  2525
pp

p

mm

m

D
T

D
T

ωρωρ
=  

or    ftlbf1033.5ftlbf5.7
2000
533

1
10 4

25

2

2

5

5

⋅×=⋅×⎟
⎠
⎞

⎜
⎝
⎛×⎟

⎠
⎞

⎜
⎝
⎛== m

m

p

m

p
p T

D
D

T
ω
ω
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(see Problem 7.40)



Problem 7.82 [2]

Given: Water drop mechanism

Find: Difference between small and large scale drops

Solution:

d D We( )

3
5

−
⋅= D

ρ V2
⋅ D⋅

σ

⎛
⎜
⎝

⎞
⎟
⎠

3
5

−

⋅=Given relation

For dynamic similarity
dm
dp

Dm
ρ Vm

2
⋅ Dm⋅

σ

⎛⎜
⎜⎝

⎞⎟
⎟⎠

3
5

−

⋅

Dp
ρ Vp

2
⋅ Dp⋅

σ

⎛⎜
⎜⎝

⎞⎟
⎟⎠

3
5

−

⋅

=
Dm
Dp

⎛
⎜
⎝

⎞
⎟
⎠

2
5 Vm

Vp

⎛
⎜
⎝

⎞
⎟
⎠

6
5

−

⋅= where dp stands for dprototype not the original dp!

Hence
dm
dp

1
10

⎛⎜
⎝

⎞⎟
⎠

2
5 4

1
⎛⎜
⎝

⎞⎟
⎠

6
5

−

×=
dm
dp

0.075=

The small scale droplets are 7.5% of the size of the large scale
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Problem 7.86        [4] 
 

   
 

Given: Flapping flag on a flagpole 

Find: Explanation of the flappinh 

Solution:  
 
Open-Ended Problem Statement:  Frequently one observes a flag on a pole "flapping" in the wind.  Explain why this occurs.  What 
dimensionless parameters might characterize the phenomenon? Why?  
  
Discussion:  The natural wind contains significant fluctuations in air speed and direction.  These fluctuations tend to disturb the flag 
from an initially plane position. 
  
When the flag is bent or curved from the plane position, the flow nearby must follow its contour.  Flow over a convex surface tends to 
be faster, and have lower pressure, than flow over a concave curved surface.  The resulting pressure forces tend to exaggerate the 
curvature of the flag.  The result is a seemingly random "flapping" motion of the flag. 
  
The rope or chain used to raise the flag may also flap in the wind.  It is much more likely to exhibit a periodic motion than the flag 
itself.  The rope is quite close to the flag pole, where it is influenced by any vortices shed from the pole.  If the Reynolds number is 
such that periodic vortices are shed from the pole, they will tend to make the rope move with the same frequency.  This accounts for 
the periodic thump of a rope or clank of a chain against the pole. 
  
The vortex shedding phenomenon is characterized by the Strouhal number, St = fD/V∞, where f is the vortex shedding frequency, D is 
the pole diameter, and D is the wind speed.  The Strouhal number is constant at approximately 0.2 over a broad range of Reynolds 
numbers. 
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Problem 8.1 [1]

Given: Air entering duct

Find: Flow rate for turbulence; Entrance length

Solution:
The governing equations are Re

V D⋅
ν

= Recrit 2300= Q
π

4
D2
⋅ V⋅=

The given data is D 6 in⋅= From Table A.9 ν 1.62 10 4−
×

ft2

s
⋅=

Llaminar 0.06 Recrit⋅ D⋅= or, for turbulent, Lturb = 25D to 40D

Hence Recrit

Q
π

4
D2
⋅

D⋅

ν
= or Q

Recrit π⋅ ν⋅ D⋅

4
=

Q 2300
π

4
× 1.62× 10 4−

×
ft2

s
⋅

1
2

× ft⋅= Q 0.146
ft3

s
⋅=

For laminar flow Llaminar 0.06 Recrit⋅ D⋅= Llaminar 0.06 2300× 6× in⋅= Llaminar 69.0 ft⋅=

For turbulent flow Lmin 25 D⋅= Lmin 12.5 ft⋅= Lmax 40 D⋅= Lmax 20 ft⋅=
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Problem 8.3 [3]

Given: Air entering pipe system

Find: Flow rate for turbulence in each section; Which become fully developed

Solution:
From Table A.9 ν 1.62 10 4−

×
ft2

s
⋅=

The given data is L 5 ft⋅= D1 1 in⋅= D2
1
2

in⋅= D3
1
4

in⋅=

The critical Reynolds number is Recrit 2300=

Writing the Reynolds number as a function of flow rate

Re
V D⋅

ν
=

Q
π

4
D2
⋅

D
ν
⋅= or Q

Re π⋅ ν⋅ D⋅
4

=

Then the flow rates for turbulence to begin in each section of pipe are 

Q1
Recrit π⋅ ν⋅ D1⋅

4
= Q1 2300

π

4
× 1.62× 10 4−

×
ft2

s
⋅

1
12

× ft⋅= Q1 0.0244
ft3

s
=

Q2
Recrit π⋅ ν⋅ D2⋅

4
= Q2 0.0122

ft3

s
= Q3

Recrit π⋅ ν⋅ D3⋅

4
= Q3 0.00610

ft3

s
=

Hence, smallest pipe becomes turbulent first, then second, then the largest.

For the smallest pipe transitioning to turbulence (Q3)

For pipe 3 Re3 2300= Llaminar 0.06 Re3⋅ D3⋅= Llaminar 2.87 ft= Llaminar < L: Not fully developed

or, for turbulent, Lmin 25 D3⋅= Lmin 0.521 ft= Lmax 40 D3⋅= Lmax 0.833 ft= Lmax/min < L: Not fully developed

For pipes 1 and 2 Llaminar 0.06
4 Q3⋅

π ν⋅ D1⋅

⎛
⎜
⎝

⎞
⎟
⎠

⋅ D1⋅= Llaminar 2.87 ft= Llaminar < L: Not fully developed

Llaminar 0.06
4 Q3⋅

π ν⋅ D2⋅

⎛
⎜
⎝

⎞
⎟
⎠

⋅ D2⋅= Llaminar 2.87 ft= Llaminar < L: Not fully developed



For the middle pipe transitioning to turbulence (Q2)

For pipe 2 Re2 2300= Llaminar 0.06 Re2⋅ D2⋅= Llaminar 5.75 ft=

Llaminar > L: Fully developed

or, for turbulent, Lmin 25 D2⋅= Lmin 1.04 ft= Lmax 40 D2⋅= Lmax 1.67 ft=

Lmax/min < L: Not fully developed

For pipes 1 and 3 L1 0.06
4 Q2⋅

π ν⋅ D1⋅

⎛
⎜
⎝

⎞
⎟
⎠

⋅ D1⋅= L1 5.75 ft=

L3min 25 D3⋅= L3min 0.521 ft= L3max 40 D3⋅= L3max 0.833 ft=

Lmax/min < L: Not fully developed

For the large pipe transitioning to turbulence (Q1)

For pipe 1 Re1 2300= Llaminar 0.06 Re1⋅ D1⋅= Llaminar 11.5 ft=

Llaminar > L: Fully developed

or, for turbulent, Lmin 25 D1⋅= Lmin 2.08 ft= Lmax 40 D1⋅= Lmax 3.33 ft=

Lmax/min < L: Not fully developed

For pipes 2 and 3 L2min 25 D2⋅= L2min 1.04 ft= L2max 40 D2⋅= L2max 1.67 ft=

Lmax/min < L: Not fully developed

L3min 25 D3⋅= L3min 0.521 ft= L3max 40 D3⋅= L3max 0.833 ft=

Lmax/min < L: Not fully developed



Problem 8.4 [2]

Given: That transition to turbulence occurs at about Re = 2300

Find: Plots of average velocity and volume and mass flow rates for turbulence for air and water

Solution:

From Tables A.8 and A.10 ρair 1.23
kg

m3
⋅= νair 1.45 10 5−

×
m2

s
⋅= ρw 999

kg

m3
⋅= νw 1.14 10 6−

×
m2

s
⋅=

The governing equations are Re
V D⋅

ν
= Recrit 2300=

For the average velocity V
Recrit ν⋅

D
=

Hence for air Vair

2300 1.45× 10 5−
×

m2

s
⋅

D
= Vair

0.0334
m2

s
⋅

D
=

For water Vw

2300 1.14× 10 6−
×

m2

s
⋅

D
= Vw

0.00262
m2

s
⋅

D
=

For the volume flow rates Q A V⋅=
π

4
D2
⋅ V⋅=

π

4
D2
⋅

Recrit ν⋅

D
⋅=

π Recrit⋅ ν⋅

4
D⋅=

Hence for air Qair
π

4
2300× 1.45× 10 5−

⋅
m2

s
⋅ D⋅= Qair 0.0262

m2

s
⋅ D×=

For water Qw
π

4
2300× 1.14× 10 6−

⋅
m2

s
⋅ D⋅= Qw 0.00206

m2

s
⋅ D×=

Finally, the mass flow rates are obtained from volume flow rates

mair ρair Qair⋅= mair 0.0322
kg
m s⋅
⋅ D×=

mw ρw Qw⋅= mw 2.06
kg
m s⋅
⋅ D×=

These results are plotted in the associated Excel workbook



The relations needed are

From Tables A.8 and A.10 the data required is

ρair = 1.23 kg/m3 νair = 1.45E-05 m2/s

ρw = 999 kg/m3 νw = 1.14E-06 m2/s

D  (m) 0.0001 0.001 0.01 0.05 1.0 2.5 5.0 7.5 10.0
V air (m/s) 333.500 33.350 3.335 0.667 3.34E-02 1.33E-02 6.67E-03 4.45E-03 3.34E-03

V w (m/s) 26.2 2.62 0.262 5.24E-02 2.62E-03 1.05E-03 5.24E-04 3.50E-04 2.62E-04

Q air (m
3/s) 2.62E-06 2.62E-05 2.62E-04 1.31E-03 2.62E-02 6.55E-02 1.31E-01 1.96E-01 2.62E-01

Q w (m3/s) 2.06E-07 2.06E-06 2.06E-05 1.03E-04 2.06E-03 5.15E-03 1.03E-02 1.54E-02 2.06E-02

m air (kg/s) 3.22E-06 3.22E-05 3.22E-04 1.61E-03 3.22E-02 8.05E-02 1.61E-01 2.42E-01 3.22E-01

m w (kg/s) 2.06E-04 2.06E-03 2.06E-02 1.03E-01 2.06E+00 5.14E+00 1.03E+01 1.54E+01 2.06E+01

Average Velocity for Turbulence in a Pipe

1.E-04

1.E-02

1.E+00

1.E+02

1.E+04

1.E-04 1.E-03 1.E-02 1.E-01 1.E+00 1.E+01

D  (m)

V
 (m

/s
)

Velocity (Air)
Velocity (Water)



Flow Rate for Turbulence in a Pipe

1.E-07

1.E-05

1.E-03

1.E-01

1.E+01

1.E-04 1.E-03 1.E-02 1.E-01 1.E+00 1.E+01

D  (m)

Q
 (m

3 /s
)

Flow Rate (Air)
Flow Rate (Water)

Mass Flow Rate for Turbulence in a Pipe

1.E-06

1.E-04

1.E-02

1.E+00

1.E+02

1.E-04 1.E-03 1.E-02 1.E-01 1.E+00 1.E+01

D  (m)

m
flo

w
 (k

g/
s)

Mass Flow Rate (Air)
Mass Flow Rate (Water)
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Problem 8.9 [2]

 

x 
y 

2h 

Given: Laminar flow between flat plates

Find: Shear stress on upper plate; Volume flow rate per width

Solution:

Basic equation τyx μ
du
dy
⋅= u y( )

h2

2 μ⋅
−

dp
dx
⋅ 1

y
h

⎛⎜
⎝

⎞⎟
⎠

2
−

⎡
⎢
⎣

⎤
⎥
⎦

⋅= (from Eq. 8.7)

τyx
h2

−
2

dp
dx
⋅

2 y⋅

h2
−⎛⎜
⎝

⎞
⎟
⎠

⋅= y−
dp
dx
⋅=Then

At the upper surface y h= τyx 1.5− mm⋅
1 m⋅

1000 mm⋅
× 1.25× 103

×
N

m2 m⋅
⋅= τyx 1.88− Pa=

The volume flow rate is Q Au
⌠⎮
⎮⌡

d=
h−

h
yu b⋅

⌠
⎮
⌡

d=
h2 b⋅
2 μ⋅

−
dp
dx
⋅

h−

h

y1
y
h

⎛⎜
⎝

⎞⎟
⎠

2
−

⎡
⎢
⎣

⎤
⎥
⎦

⌠
⎮
⎮
⌡

d⋅= Q
2 h3
⋅ b⋅
3 μ⋅

−
dp
dx
⋅=

Q
b

2
3

− 1.5 mm⋅
1 m⋅

1000 mm⋅
×⎛⎜

⎝
⎞⎟
⎠

3
× 1.25× 103

×
N

m2 m⋅
⋅

m2

0.5 N⋅ s⋅
×=

Q
b

5.63− 10 6−
×

m2

s
=
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Problem 8.11 [3]

F 
p1 D 

L 

a 

Given: Piston cylinder assembly

Find: Rate of oil leak

Solution:

Basic equation Q
l

a3
Δp⋅

12 μ⋅ L⋅
= Q

π D⋅ a3
⋅ Δp⋅

12 μ⋅ L⋅
= (from Eq. 8.6c; we assume laminar flow and

verify this is correct after solving)

For the system Δp p1 patm−=
F
A

=
4 F⋅

π D2
⋅

=

Δp
4
π

4500× lbf⋅
1

4 in⋅
12 in⋅
1 ft⋅

×⎛⎜
⎝

⎞⎟
⎠

2
×= Δp 358 psi⋅=

At 120oF (about 50oC), from Fig. A.2 μ 0.06 0.0209×
lbf s⋅

ft2
⋅= μ 1.25 10 3−

×
lbf s⋅

ft2
⋅=

Q
π

12
4× in⋅ 0.001 in⋅

1 ft⋅
12 in⋅

×⎛⎜
⎝

⎞⎟
⎠

3
× 358×

lbf

in2
⋅

144 in2
⋅

1 ft2⋅
×

ft2

1.25 10 3−
× lbf s⋅

×
1

2 in⋅
×= Q 1.25 10 5−

×
ft3

s
⋅= Q 0.0216

in3

s
⋅=

Check Re: V
Q
A

=
Q

a π⋅ D⋅
= V

1
π

1.25× 10 5−
×

ft3

s
1

.001 in⋅
×

1
4 in⋅

×
12 in⋅
1 ft⋅

⎛⎜
⎝

⎞⎟
⎠

2
×= V 0.143

ft
s

⋅=

Re
V a⋅
ν

= ν 6 10 5−
× 10.8×

ft2

s
= ν 6.48 10 4−

×
ft2

s
⋅= (at 120oF, from Fig. A.3)

Re 0.143
ft
s

⋅ 0.001× in⋅
1 ft⋅

12 in⋅
×

s

6.48 10 4−
× ft2

×= Re 0.0184= so flow is very much laminar

The speed of the piston is approximately

Vp
Q

π D2
⋅
4

⎛
⎜
⎝

⎞
⎟
⎠

= Vp
4
π

1.25× 10 5−
×

ft3

s
1

4 in⋅
12 in⋅
1 ft⋅

×⎛⎜
⎝

⎞⎟
⎠

2
×= Vp 1.432 10 4−

×
ft
s

⋅=

The piston motion is negligible so our assumption of flow between parallel plates is reasonable
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Problem 8.14 [3]

Given: Hydrostatic bearing

Find: Required pad width; Pressure gradient; Gap height

Solution:
For a laminar flow (we will verify this assumption later), the pressure gradient is constantp x( ) pi 1

2 x⋅
W

−⎛⎜
⎝

⎞⎟
⎠

⋅=

where pi = 700 kPa is the inlet pressure (gage)

Hence the total force in the y direction due to pressure is F b xp
⌠⎮
⎮⌡

d⋅= where b is the pad width into the paper

F b

W
2

−

W
2

xpi 1
2 x⋅
W

−⎛⎜
⎝

⎞⎟
⎠

⋅
⌠
⎮
⎮
⎮
⌡

d⋅= F pi
b W⋅

2
⋅=

This must be equal to the applied load F.  Hence W
2
pi

F
b
⋅= W 2

m2

700 103
× N⋅

×
50000 N⋅

m
×= W 0.143m=

The pressure gradient is then dp
dx

Δp
W
2

−=
2 Δp⋅

W
−= 2−

700 103
× N⋅

m2
×

1
0.143 m⋅

×= 9.79−
MPa

m
⋅=

The flow rate is given Q
l

h3

12 μ⋅
−

dp
dx
⎛⎜
⎝

⎞⎟
⎠

⋅= (Eq. 8.6c)

Hence, for h we have h
12 μ⋅

Q
l

⋅

dp
dx

−

⎛
⎜
⎜
⎜
⎝

⎞
⎟
⎟
⎟
⎠

1
3

= At 35oC, from Fig. A.2 μ 0.15
N s⋅

m2
⋅=

h 12−
m3

9.79 106
× N⋅

−
⎛⎜
⎜⎝

⎞⎟
⎟⎠

× 0.15×
N s⋅

m2
⋅

1 mL⋅
min m⋅

×
10 6− m3

⋅
1 mL⋅

×
1 min⋅
60 s⋅

×
⎡⎢
⎢⎣

⎤⎥
⎥⎦

1
3

= h 1.452 10 5−
× m=

Check Re: Re
V D⋅

ν
=

D
ν

Q
A
⋅=

h
ν

Q
b h⋅
⋅=

1
ν

Q
l

⋅= ν 1.6 10 4−
×

m2

s
= (at 35oC, from Fig. A.3)

Re
s

1.6 10 4−
× m2

⋅

1 mL⋅
min m⋅

×
10 6− m3

⋅
1 mL⋅

×
1 min⋅
60 s⋅

×= Re 1.04 10 4−
×= so flow is very

much laminar
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Problem 8.16       [2] 
 
 
 
 
 
 
 

Given: Navier-Stokes Equations 

Find: Derivation of Eq. 8.5 

Solution:  
 
The Navier-Stokes equations are 
 

0=
∂
∂

+
∂
∂

+
∂
∂

z
w

y
v

x
u

                                                     (5.1c) 

 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

+
∂
∂

+
∂
∂

+
∂
∂

−=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

+
∂
∂

+
∂
∂

+
∂
∂

2

2

2

2

2

2

z
u

y
u

x
u

x
pg

z
uw

y
uv

x
uu

t
u

x μρρ              (5.27a) 

 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

+
∂
∂

+
∂
∂

+
∂
∂

−=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

+
∂
∂

+
∂
∂

+
∂
∂

2

2

2

2

2

2

z
v

y
v

x
v

y
pg

z
vw

y
vv

x
vu

t
v

y μρρ              (5.27b) 

 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

+
∂
∂

+
∂
∂

+
∂
∂

−=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

+
∂
∂

+
∂
∂

+
∂
∂

2

2

2

2

2

2

z
w

y
w

x
w

z
pg

z
ww

y
wv

x
wu

t
w

z μρρ              (5.27c) 

 
The following assumptions have been applied: 
 

(1) Steady flow (given). 
(2) Incompressible flow; ρ = constant. 
(3) No flow or variation of properties in the z direction; w= 0 and ∂/∂z = 0. 
(4) Fully developed flow, so no properties except pressure p vary in the x direction; ∂/∂x = 0. 
(5) See analysis below. 
(6) No body force in the x direction; gx = 0 

 
Assumption (1) eliminates time variations in any fluid property.  Assumption (2) eliminates space variations in density.  Assumption 
(3) states that there is no z component of velocity and no property variations in the z direction. All terms in the z component of the 
Navier–Stokes equation cancel.  After assumption (4) is applied, the continuity equation reduces to ∂v/∂y = 0. Assumptions (3) and (4) 
also indicate that ∂v/∂z = 0 and ∂v/∂x = 0. Therefore v must be constant. Since v is zero at the solid surface, then v must be zero 
everywhere.  The fact that v = 0 reduces the Navier–Stokes equations further, as indicated by (5). Hence for the y direction 
 

g
y
p ρ=
∂
∂

 

 
which indicates a hydrostatic variation of pressure.  In the x direction, after assumption (6) we obtain 
 

02

2

=
∂
∂

−
∂
∂

x
p

y
uμ  

Integrating twice 

6 

4 

4 

4 4 

4 3 

3 

3 3 

3 3 3 3 3 3 3 

1 

1 

1 

5 

5 5 

3 

3 



 

2
12

2
1 cycy

x
pu ++
∂
∂

=
μμ

 

 
To evaluate the constants, c1 and c2, we must apply the boundary conditions. At y = 0, u = 0.  Consequently, c2 = 0.  At y = a, u = 0.  
Hence 
 

aca
x
p

μμ
12

2
10 +

∂
∂

=  

which gives 

a
x
pc
∂
∂

−=
μ2
1

1  

and finally 

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛−⎟

⎠
⎞

⎜
⎝
⎛

∂
∂

=
a
y

a
y

x
pau

22

2μ
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Problem 8.19 [3]

Given: Laminar velocity profile of power-law fluid flow between parallel plates

Find: Expression for flow rate; from data determine the type of fluid

Solution:

The velocity profile is u
h
k

Δp
L

⋅⎛⎜
⎝

⎞⎟
⎠

1
n n h⋅

n 1+
⋅ 1

y
h
⎛⎜
⎝
⎞⎟
⎠

n 1+
n

−

⎡
⎢
⎢
⎣

⎤
⎥
⎥
⎦

⋅=

The flow rate is then Q w
h−

h
yu

⌠
⎮
⌡

d⋅= or, because the flow is symmetric Q 2 w⋅
0

h
yu

⌠
⎮
⌡

d⋅=

The integral is computed as y1
y
h
⎛⎜
⎝
⎞⎟
⎠

n 1+
n

−

⌠
⎮
⎮
⎮
⎮
⌡

d y 1
n

2 n⋅ 1+
y
h
⎛⎜
⎝
⎞⎟
⎠

2 n⋅ 1+
n

⋅−

⎡
⎢
⎢
⎣

⎤
⎥
⎥
⎦

⋅=

Using this with the limits Q 2 w⋅
h
k

Δp
L

⋅⎛⎜
⎝

⎞⎟
⎠

1
n

⋅
n h⋅

n 1+
⋅ h⋅ 1

n
2 n⋅ 1+

1( )

2 n⋅ 1+
n

⋅−

⎡⎢
⎢
⎣

⎤⎥
⎥
⎦

⋅= Q
h
k

Δp
L

⋅⎛⎜
⎝

⎞⎟
⎠

1
n 2 n⋅ w⋅ h2

⋅
2 n⋅ 1+

⋅=

The associated Excel spreadsheet shows computation of n.



The data is

Δp  (kPa) 10 20 30 40 50 60 70 80 90 100
Q  (L/min) 0.451 0.759 1.01 1.15 1.41 1.57 1.66 1.85 2.05 2.25

We can fit a power curve to the data

Hence 1/n  = 0.677 n  = 1.48

Flow Rate vs Applied Pressure for a
Non-Newtonian Fluid

y = 0.0974x0.677

R2 = 0.997

0.1

1.0

10.0

10 100Δp  (kPa)

Q
 (L

/m
in

) Data
Power Curve Fit
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Problem 8.22 [2]

x 
y d 

U2 

U1 

Given: Laminar flow between moving plates

Find: Expression for velocity; Volume flow rate per depth

Solution:
Using the analysis of Section 8-2, the sum of forces in the x direction is

τ

y
τ

∂

∂

dy
2

⋅+ τ

y
τ

∂

∂

dy
2

⋅−
⎛
⎜
⎝

⎞
⎟
⎠

−
⎡
⎢
⎣

⎤
⎥
⎦

b⋅ dx⋅ p
x

p∂

∂

dx
2

⋅− p−
x

p∂

∂

dx
2

⋅+
⎛
⎜
⎝

⎞
⎟
⎠

b⋅ dy⋅+ 0=

Simplifying dτ

dy
dp
dx

= 0= or μ
d2u

dy2
⋅ 0=

Integrating twice u c1 y⋅ c2+=

Boundary conditions: u 0( ) U1−= c2 U1−= u y d=( ) U2= c1
U1 U2+

d
=

Hence u y( ) U1 U2+( ) y
d
⋅ U1−= u y( ) 75 y⋅ 0.25−= (u in m/s, y in m)

The volume flow rate is Q Au
⌠⎮
⎮⌡

d= b yu
⌠⎮
⎮⌡

d⋅= Q b

0

d

xU1 U2+( ) y
d
⋅ U1−⎡⎢

⎣
⎤⎥
⎦

⌠
⎮
⎮
⌡

d⋅=

Q b d⋅
U2 U1−( )

2
⋅=

Q
b

10 mm⋅
1 m⋅

1000 mm⋅
×

1
2

× 0.5 0.25−( )×
m
s

×= Q 0.00125

m3

s
m

=



Problem 8.23 [3]

Given: Laminar flow of two fluids between plates

Find: Velocity at the interface

Solution:
Using the analysis of Section 8-2, the sum of forces in the x direction is

τ

y
τ

∂

∂

dy
2

⋅+ τ

y
τ

∂

∂

dy
2

⋅−
⎛
⎜
⎝

⎞
⎟
⎠

−
⎡
⎢
⎣

⎤
⎥
⎦

b⋅ dx⋅ p
x

p∂

∂

dx
2

⋅− p−
x

p∂

∂

dx
2

⋅+
⎛
⎜
⎝

⎞
⎟
⎠

b⋅ dy⋅+ 0=

Simplifying dτ

dy
dp
dx

= 0= or μ
d2u

dy2
⋅ 0=

Applying this to fluid 1 (lower fluid) and fluid 2 (upper fluid), integrating twice yields u1 c1 y⋅ c2+= u2 c3 y⋅ c4+=

We need four BCs.  Three are obvious y 0= u1 0= y h= u1 u2= y 2 h⋅= u2 U=

The fourth BC comes from the fact that the stress at the interface generated by each fluid is the same

y h= μ1
du1
dy

⋅ μ2
du2
dy

⋅=

Using these four BCs 0 c2= c1 h⋅ c2+ c3 h⋅ c4+= U c3 2⋅ h⋅ c4+= μ1 c1⋅ μ2 c3⋅=

Hence c2 0=

From the 2nd and 3rd equations c1 h⋅ U− c3− h⋅= and μ1 c1⋅ μ2 c3⋅=

Hence c1 h⋅ U− c3− h⋅=
μ1
μ2

− h⋅ c1⋅= c1
U

h 1
μ1
μ2

+
⎛
⎜
⎝

⎞
⎟
⎠

⋅

=

Hence for fluid 1 (we do not need to complete the analysis for fluid 2) u1
U

h 1
μ1
μ2

+
⎛
⎜
⎝

⎞
⎟
⎠

⋅

y⋅=

Evaluating this at y = h, where u1 = uinterface uinterface

20
ft
s

⋅

1
1
3

+⎛⎜
⎝

⎞⎟
⎠

= uinterface 15
ft
s

⋅=



Problem 8.24 [3]

Given: Properties of two fluids flowing between parallel plates; applied pressure gradient

Find: Velocity at the interface; maximum velocity; plot velocity distribution

Solution:

Given data k
dp
dx

= 1000−
Pa
m

⋅= h 2.5 mm⋅=

μ1 0.5
N s⋅

m2
⋅= μ2 2 μ1⋅= μ2 1

N s⋅

m2
⋅=

(Lower fluid is fluid 1; upper is fluid 2)

Following the analysis of Section 8-2, analyse the forces on a differential CV of either fluid

The net force is zero for steady flow, so

τ
dτ

dy
dy
2

⋅+ τ
dτ

dy
dy
2

⋅−⎛⎜
⎝

⎞⎟
⎠

−⎡⎢
⎣

⎤⎥
⎦

dx⋅ dz⋅ p
dp
dx

dx
2

⋅− p
dp
dx

dx
2

⋅+⎛⎜
⎝

⎞⎟
⎠

−⎡⎢
⎣

⎤⎥
⎦

dy⋅ dz⋅+ 0=

Simplifying dτ

dy
dp
dx

= k= so for each fluid μ 2y
ud

d

2
⋅ k=

Applying this to fluid 1 (lower fluid) and fluid 2 (upper fluid), integrating twice yields

u1
k

2 μ1⋅
y2
⋅ c1 y⋅+ c2+= u2

k
2 μ2⋅

y2
⋅ c3 y⋅+ c4+=

For convenience the origin of coordinates is placed at the centerline

We need four BCs.  Three are obvious y h−= u1 0= (1)

y 0= u1 u2= (2)

y h= u2 0= (3)

The fourth BC comes from the fact that the stress at the interface generated by each fluid is the same

y 0= μ1
du1
dy

⋅ μ2
du2
dy

⋅= (4)



Using these four BCs 0
k

2 μ1⋅
h2
⋅ c1 h⋅− c2+=

c2 c4=

0
k

2 μ2⋅
h2
⋅ c3 h⋅+ c4+=

μ1 c1⋅ μ2 c3⋅=

Hence, after some algebra

c1
k h⋅

2 μ1⋅

μ2 μ1−( )
μ2 μ1+( )

⋅= c2 c4=
k h2
⋅

μ2 μ1+
−= c3

k h⋅
2 μ2⋅

μ2 μ1−( )
μ2 μ1+( )

⋅=

The velocity distributions are then

u1
k

2 μ1⋅
y2 y h⋅

μ2 μ1−( )
μ2 μ1+( )

⋅+
⎡
⎢
⎣

⎤
⎥
⎦

⋅
k h2
⋅

μ2 μ1+
−= u2

k
2 μ2⋅

y2 y h⋅
μ2 μ1−( )
μ2 μ1+( )

⋅+
⎡
⎢
⎣

⎤
⎥
⎦

⋅
k h2
⋅

μ2 μ1+
−=

Evaluating either velocity at y =  0, gives the velocity at the interface

uinterface
k h2
⋅

μ2 μ1+
−= uinterface 4.17 10 3−

×
m
s

=

The plots of these velocity distributions are shown in the associated Excel workbook, as is the determination of the maximum
velocity.

From Excel umax 4.34 10 3−
×

m
s

⋅=



The data is

k  = -1000 Pa/m
h  = 2.5 mm
μ1 = 0.5 N.s/m2

μ2 = 1.0 N.s/m2

The velocity distribution is

y  (mm) u 1 x 103 (m/s) u 2 x 103 (m/s) The lower fluid has the highest velocity
-2.50 0.000 NA We can use Solver  to find the maximum
-2.25 0.979 NA (Or we could differentiate to find the maximum)
-2.00 1.83 NA
-1.75 2.56 NA y (mm) u max x 103 (m/s)

-1.50 3.17 NA -0.417 4.34
-1.25 3.65 NA
-1.00 4.00 NA
-0.75 4.23 NA
-0.50 4.33 NA
-0.25 4.31 NA
0.00 4.17 4.17
0.25 NA 4.03
0.50 NA 3.83
0.75 NA 3.57
1.00 NA 3.25
1.25 NA 2.86
1.50 NA 2.42
1.75 NA 1.91
2.00 NA 1.33
2.25 NA 0.698
2.50 NA 0.000

Velocity Distribution Between Parallel Plates

-2.5
-2.0
-1.5
-1.0
-0.5
0.0
0.5
1.0
1.5
2.0
2.5

0.0 1.0 2.0 3.0 4.0 5.0

u  x 103 (m/s)y
 (m

m
) Lower Velocity

Upper Velocity



Problem 8.25 [2]

Given: Velocity profile between parallel plates

Find: Pressure gradients for zero stress at upper/lower plates; plot

Solution:

From Eq. 8.8, the velocity distribution is u
U y⋅

a
a2

2 μ⋅ x
p∂

∂

⎛
⎜
⎝

⎞
⎟
⎠

⋅
y
a
⎛⎜
⎝
⎞⎟
⎠

2 y
a

−
⎡
⎢
⎣

⎤
⎥
⎦

⋅+=

The shear stress is τyx μ
du
dy
⋅= μ

U
a

⋅
a2

2 x
p∂

∂

⎛
⎜
⎝

⎞
⎟
⎠

⋅ 2
y

a2
⋅

1
a

−⎛
⎜
⎝

⎞
⎟
⎠

⋅+=

(a)   For τyx = 0 at y = a 0 μ
U
a

⋅
a
2 x

p∂

∂
⋅+=

x
p∂

∂

2 U⋅ μ⋅

a2
−=

The velocity distribution is then u
U y⋅

a
a2

2 μ⋅
2 U⋅ μ⋅

a2
⋅

y
a
⎛⎜
⎝
⎞⎟
⎠

2 y
a

−
⎡
⎢
⎣

⎤
⎥
⎦

⋅−=
u
U

2
y
a
⋅

y
a
⎛⎜
⎝
⎞⎟
⎠

2
−=

(b)   For τyx = 0 at y = 0 0 μ
U
a

⋅
a
2 x

p∂

∂
⋅−=

x
p∂

∂

2 U⋅ μ⋅

a2
=

The velocity distribution is then u
U y⋅

a
a2

2 μ⋅
2 U⋅ μ⋅

a2
⋅

y
a
⎛⎜
⎝
⎞⎟
⎠

2 y
a

−
⎡
⎢
⎣

⎤
⎥
⎦

⋅+=
u
U

y
a
⎛⎜
⎝
⎞⎟
⎠

2
=

The velocity distributions are plotted in the associated Excel workbook



y /a (a) u /U (b) u /U
0.0 0.000 0.000
0.1 0.190 0.010
0.2 0.360 0.040
0.3 0.510 0.090
0.4 0.640 0.160
0.5 0.750 0.250
0.6 0.840 0.360
0.7 0.910 0.490
0.8 0.960 0.640
0.9 0.990 0.810
1.0 1.00 1.000

Zero-Stress Velocity Distributions

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
u /U

y
/ a

Zero Stress Upper Plate

Zero Stress Lower Plate



Problem 8.26 [2]

Given: Computer disk drive

Find: Flow Reynolds number; Shear stress; Power required

Solution:
For a distance R from the center of a disk spinning at speed ω

V R ω⋅= V 25 mm⋅
1 m⋅

1000 mm⋅
× 8500× rpm⋅

2 π⋅ rad⋅
rev

×
1 min⋅
60 s⋅

×= V 22.3
m
s

⋅=

The gap Reynolds number is Re
ρ V⋅ a⋅

μ
=

V a⋅
ν

= ν 1.45 10 5−
×

m2

s
⋅= from Table A.10 at 15oC

Re 22.3
m
s

⋅ 0.25× 10 6−
× m⋅

s

1.45 10 5−
× m2

⋅
×= Re 0.384=

The flow is definitely laminar

The shear stress is then τ μ
du
dy
⋅= μ

V
a

⋅= μ 1.79 10 5−
×

N s⋅

m2
⋅= from Table A.10 at 15oC

τ 1.79 10 5−
×

N s⋅

m2
⋅ 22.3×

m
s

⋅
1

0.25 10 6−
× m⋅

×= τ 1.60 kPa⋅=

The power required is P T ω⋅= where torque T is given by T τ A⋅ R⋅= with A 5 mm⋅( )2
= A 2.5 10 5−

× m2
=

P τ A⋅ R⋅ ω⋅= P 1600
N

m2
⋅ 2.5× 10 5−

× m2
⋅ 25× mm⋅

1 m⋅
1000 mm⋅

× 8500× rpm⋅
2 π⋅ rad⋅

rev
×

1 min⋅
60 s⋅

×= P 0.890W=
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Problem 8.29 [2]

Given: Velocity distribution on incline

Find: Expression for shear stress; Maximum shear; volume flow rate/mm width; Reynolds number

Solution:
From Example 5.9 u y( )

ρ g⋅ sin θ( )⋅
μ

h y⋅
y2

2
−

⎛
⎜
⎝

⎞
⎟
⎠

⋅=

For the shear stress τ μ
du
dy
⋅= ρ g⋅ sin θ( )⋅ h y−( )⋅=

τ is a maximum at y = 0 τmax ρ g⋅ sin θ( )⋅ h⋅= SG ρH2O⋅ g⋅ sin θ( )⋅ h⋅=

τmax 1.2 1000×
kg

m3
9.81×

m

s2
⋅ sin 15 deg⋅( )× 0.007× m⋅

N s2
⋅

kg m⋅
×= τmax 21.3Pa=

This stress is in the x direction on the wall

The flow rate is
Q Au

⌠⎮
⎮⌡

d= w
0

h
yu y( )

⌠
⎮
⌡

d⋅= w

0

h

y
ρ g⋅ sin θ( )⋅

μ
h y⋅

y2

2
−

⎛
⎜
⎝

⎞
⎟
⎠

⋅
⌠
⎮
⎮
⌡

d⋅= Q
ρ g⋅ sin θ( )⋅ w⋅ h3

⋅
3 μ⋅

=

Q
w

1
3

1.2× 1000×
kg

m3
9.81×

m

s2
⋅ sin 15 deg⋅( )× 0.007 m⋅( )3

×
m2

1.60 N⋅ s⋅
×

N s2
⋅

kg m⋅
⋅= 2.18 10 4−

×

m3

s
m

=
Q
w

217

mm3

s
mm

=

The average velocity is V
Q
A

=
Q

w h⋅
= V 217

mm3

s
mm

⋅
1

7 mm⋅
×= V 31.0

mm
s

=

The gap Reynolds number is Re
ρ V⋅ h⋅

μ
=

Re 1.2 1000×
kg

m3
31×

mm
s

⋅ 7× mm⋅
m2

1.60 N⋅ s⋅
×

1 m⋅
1000 mm⋅
⎛⎜
⎝

⎞⎟
⎠

2
×= Re 0.163=

The flow is definitely laminar



Problem 8.30 [3]

Given: Data on flow of liquids down an incline

Find: Velocity at interface; velocity at free surface; plot

Solution:

Given data h 2.5 mm⋅= θ 30 deg⋅= ν1 2 10 4−
×

m2

s
⋅= ν2 2 ν1⋅=

(The lower fluid is designated fluid 1, the upper fluid 2)

From Example 5.9 (or Exanple 8.3 with g replaced with gsinθ), a free body analysis leads to (for either fluid)

2y
ud

d

2
ρ g⋅ sin θ( )⋅

μ
−=

Applying this to fluid 1 (lower fluid) and fluid 2 (upper fluid), integrating twice yields

u1
ρ g⋅ sin θ( )⋅

2 μ1⋅
− y2

⋅ c1 y⋅+ c2+= u2
ρ g⋅ sin θ( )⋅

2 μ2⋅
− y2

⋅ c3 y⋅+ c4+=

We need four BCs.  Two are obvious y 0= u1 0= (1)

y h= u1 u2= (2)

The third BC comes from the fact that there is no shear stress at the free surface 

y 2 h⋅= μ2
du2
dy

⋅ 0= (3)

The fourth BC comes from the fact that the stress at the interface generated by each fluid is the same

y h= μ1
du1
dy

⋅ μ2
du2
dy

⋅= (4)

Using these four BCs c2 0=

ρ g⋅ sin θ( )⋅
2 μ1⋅

− h2
⋅ c1 h⋅+ c2+

ρ g⋅ sin θ( )⋅
2 μ2⋅

− h2
⋅ c3 h⋅+ c4+=

ρ− g⋅ sin θ( )⋅ 2⋅ h⋅ μ2 c3⋅+ 0=

ρ− g⋅ sin θ( )⋅ h⋅ μ1 c1⋅+ ρ− g⋅ sin θ( )⋅ h⋅ μ2 c3⋅+=



Hence, after some algebra c1
2 ρ⋅ g⋅ sin θ( )⋅ h⋅

μ1
= c2 0=

c3
2 ρ⋅ g⋅ sin θ( )⋅ h⋅

μ2
= c4 3 ρ⋅ g⋅ sin θ( )⋅ h2

⋅
μ2 μ1−( )
2 μ1⋅ μ2⋅

⋅=

The velocity distributions are then u1
ρ g⋅ sin θ( )⋅

2 μ1⋅
4 y⋅ h⋅ y2

−( )⋅= u2
ρ g⋅ sin θ( )⋅

2 μ2⋅
3 h2
⋅

μ2 μ1−( )
μ1

⋅ 4 y⋅ h⋅+ y2
−

⎡
⎢
⎣

⎤
⎥
⎦

⋅=

Rewriting in terms of ν1 and ν2 (ρ is constant and equal for both fluids)

u1
g sin θ( )⋅

2 ν1⋅
4 y⋅ h⋅ y2

−( )⋅= u2
g sin θ( )⋅

2 ν2⋅
3 h2
⋅

ν2 ν1−( )
ν1

⋅ 4 y⋅ h⋅+ y2
−

⎡
⎢
⎣

⎤
⎥
⎦

⋅=

(Note that these result in the same expression if ν1 = ν2, i.e., if we have one fluid)

Evaluating either velocity at y =  h, gives the velocity at the interface

uinterface
3 g⋅ h2

⋅ sin θ( )⋅
2 ν1⋅

= uinterface 0.23
m
s

=

Evaluating u2 at y = 2h gives the velocity at the free surface

ufreesurface g h2
⋅ sin θ( )⋅

3 ν2⋅ ν1+( )
2 ν1⋅ ν2⋅

⋅= ufreesurface 0.268
m
s

=

The velocity distributions are plotted in the associated Excel workbook



h  = 2.5 mm
θ = 30 deg
ν1 = 2.00E-04 m2/s

ν2 = 4.00E-04 m2/s

y  (mm) u 1 (m/s) u 2 (m/s)

0.000 0.000
0.250 0.0299
0.500 0.0582
0.750 0.0851
1.000 0.110
1.250 0.134
1.500 0.156
1.750 0.177
2.000 0.196
2.250 0.214
2.500 0.230 0.230
2.750 0.237
3.000 0.244
3.250 0.249
3.500 0.254
3.750 0.259
4.000 0.262
4.250 0.265
4.500 0.267
4.750 0.268
5.000 0.268

Velocity Distributions down an Incline

0.0

1.0

2.0

3.0

4.0

5.0

0.00 0.05 0.10 0.15 0.20 0.25 0.30
u  (m/s)

y
 (m

m
) Lower Velocity

Upper Velocity



Problem 8.31 [3]

Given: Flow between parallel plates

Find: Shear stress on lower plate; Plot shear stress; Flow rate for pressure gradient; Pressure gradient for zero shear; Plot

Solution:
From Section 8-2 u y( )

U y⋅
a

a2

2 μ⋅
dp
dx
⋅

y
a

⎛⎜
⎝

⎞⎟
⎠

2 y
a

−
⎡
⎢
⎣

⎤
⎥
⎦

⋅+=

For dp/dx = 0 u U
y
a
⋅=

Q
l 0

a
yu y( )

⌠
⎮
⌡

d= w

0

a

yU
y
a
⋅

⌠
⎮
⎮
⌡

d⋅=
U a⋅

2
= Q

1
2

5×
ft
s

⋅
0.1
12

× ft⋅= Q 0.0208

ft3

s
ft

=

For the shear stress τ μ
du
dy
⋅=

μ U⋅
a

= when dp/dx = 0 μ 3.79 10 7−
×

lbf s⋅

ft2
⋅= (Table A.9)

The shear stress is constant - no need to plot!

τ 3.79 10 7−
×

lbf s⋅

ft2
⋅ 5×

ft
s

⋅
12

0.1 ft⋅
×

1 ft⋅
12 in⋅

⎛⎜
⎝

⎞⎟
⎠

2
×= τ 1.58 10 6−

× psi=

Q will decrease if dp/dx > 0; it will increase if dp/dx < 0.

For non- zero dp/dx: τ μ
du
dy
⋅=

μ U⋅
a

a
dp
dx
⋅

y
a

1
2

−⎛⎜
⎝

⎞⎟
⎠

⋅+=

At y = 0.25a, we get τ y 0.25 a⋅=( ) μ
U
a

⋅ a
dp
dx
⋅

1
4

1
2

−⎛⎜
⎝

⎞⎟
⎠

⋅+= μ
U
a

⋅
a
4

dp
dx
⋅−=

Hence this stress is zero when dp
dx

4 μ⋅ U⋅

a2
= 4 3.79× 10 7−

×
lbf s⋅

ft2
⋅ 5×

ft
s

⋅
12

0.1 ft⋅
⎛⎜
⎝

⎞⎟
⎠

2
×= 0.109

lbf

ft2

ft
⋅= 7.58 10 4−

×
psi
ft

=

1− 10 4−× 0 1 10 4−× 2 10 4−× 3 10 4−×

0.025

0.05

0.075

0.1

Shear Stress (lbf/ft3)

y 
(in

)



Problem 8.32 [3]

Given: Flow between parallel plates

Find: Location and magnitude of maximum velocity; Volume flow in 10 s; Plot velocity and shear stress

Solution:
From Section 8-2 u y( )

U y⋅
b

b2

2 μ⋅
dp
dx
⋅

y
b
⎛⎜
⎝
⎞⎟
⎠

2 y
b

−
⎡
⎢
⎣

⎤
⎥
⎦

⋅+=

For umax set du/dx = 0 du
dy

0=
U
b

b2

2 μ⋅
dp
dx
⋅

2 y⋅

b2
1
a

−⎛
⎜
⎝

⎞
⎟
⎠

⋅+=
U
b

1
2 μ⋅

dp
dx
⋅ 2 y⋅ b−( )⋅+=

Hence u umax= at y
b
2

μ U⋅

b
dp
dx
⋅

−= From Table A.8 at 15oC μ 1.14 10 3−
×

N s⋅

m2
⋅=

y
0.0025 m⋅

2
1.14 10 3−

×
N s⋅

m2
⋅ 0.25×

m
s

⋅
1

0.0025 m⋅
×

m3

175 N⋅
−
⎛
⎜
⎝

⎞
⎟
⎠

×−= y 1.90 10 3−
× m⋅= y 1.90 mm⋅=

Hence umax
U y⋅

b
b2

2 μ⋅
dp
dx
⋅

y
b
⎛⎜
⎝
⎞⎟
⎠

2 y
b

−
⎡
⎢
⎣

⎤
⎥
⎦

⋅+= with y = 1.90 mm

umax 0.25
m
s

⋅
1.90
2.5

⎛⎜
⎝

⎞⎟
⎠

×
1
2

0.0025 m⋅( )2
×

m2

1.14 10 3−
× N⋅ s⋅

×
175 N⋅

m3
−⎛⎜
⎝

⎞
⎟
⎠

×
1.90
2.5

⎛⎜
⎝

⎞⎟
⎠

2 1.90
2.5

⎛⎜
⎝

⎞⎟
⎠

−
⎡
⎢
⎣

⎤
⎥
⎦

×+= umax 0.278
m
s

=

Q
w 0

b
yu y( )

⌠
⎮
⌡

d= w

0

b

y
U y⋅

b
b2

2 μ⋅
dp
dx
⋅

y
b
⎛⎜
⎝
⎞⎟
⎠

2 y
b

−
⎡
⎢
⎣

⎤
⎥
⎦

⋅+
⎡
⎢
⎣

⎤
⎥
⎦

⌠
⎮
⎮
⌡

d⋅=
U b⋅

2
b3

12 μ⋅
dp
dx
⋅−=

Q
w

1
2

0.25×
m
s

⋅ 0.0025× m⋅
1
12

0.0025 m⋅( )3
×

m2

1.14 10 3−
× N⋅ s⋅

×
175 N⋅

m3
−⎛⎜
⎝

⎞
⎟
⎠

×−=
Q
w

5.12 10 4−
×

m2

s
=

Flow
Q
w

Δt⋅= 5.12 10 4−
×

m2

s
10× s⋅= Flow 5.12 10 3−

× m2
= 5.12 10 3−

×
m3

m
=

The velocity profile is u
U

y
b

b2

2 μ⋅ U⋅
dp
dx
⋅

y
b
⎛⎜
⎝
⎞⎟
⎠

2 y
b

−
⎡
⎢
⎣

⎤
⎥
⎦

⋅+= For the shear stress τ μ
du
dy
⋅= μ

U
b

⋅
b
2

dp
dx
⋅ 2

y
b
⎛⎜
⎝
⎞⎟
⎠

⋅ 1−⎡⎢
⎣

⎤⎥
⎦

⋅+=

The graphs on the next page can be plotted in Excel
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Problem 8.36       [2] 
 
 
 
 
 
 
 

Given: Navier-Stokes Equations 

Find: Derivation of Eq. 8.5 

Solution:  
 
The Navier-Stokes equations are (using the coordinates of Example 8.3, so that x is vertical, y is horizontal) 
 

0=
∂
∂

+
∂
∂

+
∂
∂

z
w

y
v

x
u

                                                     (5.1c) 
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The following assumptions have been applied: 
 

(1) Steady flow (given). 
(2) Incompressible flow; ρ = constant. 
(3) No flow or variation of properties in the z direction; w= 0 and ∂/∂z = 0. 
(4) Fully developed flow, so no properties except possibly pressure p vary in the x direction; ∂/∂x = 0. 
(5) See analysis below. 
(6) No body force in the y direction; gy = 0 

 
Assumption (1) eliminates time variations in any fluid property.  Assumption (2) eliminates space variations in density.  Assumption 
(3) states that there is no z component of velocity and no property variations in the z direction. All terms in the z component of the 
Navier–Stokes equation cancel.  After assumption (4) is applied, the continuity equation reduces to ∂v/∂y = 0. Assumptions (3) and (4) 
also indicate that ∂v/∂z = 0 and ∂v/∂x = 0. Therefore v must be constant. Since v is zero at the solid surface, then v must be zero 
everywhere.  The fact that v = 0 reduces the Navier–Stokes equations further, as indicated by (5). Hence for the y direction 
 

0=
∂
∂

y
p

 

 
which indicates the pressure is a constant across the layer.  However, at the free surface p = patm = constant.  Hence we conclude that p 
= constant throughout the fluid, and so 
 

0=
∂
∂

x
p
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In the x direction, we obtain 
 

02

2

=+
∂
∂ g
y
u ρμ  

Integrating twice 
 

2
12

2
1 cycgyu ++−=

μ
ρ

μ
 

 
To evaluate the constants, c1 and c2, we must apply the boundary conditions. At y = 0, u = 0.  Consequently, c2 = 0.  At y = a, du/dy = 
0 (we assume air friction is negligible).  Hence 
 

( ) 01 1 =+−===
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δρ
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μδτ
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dy
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y

 

which gives 
δρgc =1  

and finally 
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Using the result for average velocity from Example 8.3
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Problem 8.40 (In Excel)

Given: Expression for efficiency

Find: Plot; find flow rate for maximum efficiency; explain curve

Solution:

q η
0.00 0.0%
0.05 7.30%
0.10 14.1%
0.15 20.3%
0.20 25.7%
0.25 30.0%
0.30 32.7%
0.35 33.2%
0.40 30.0%
0.45 20.8%
0.50 0.0%

For the maximum efficiency point we can use Solver  (or alternatively differentiate)

q η The efficiency is zero at zero flow rate because there is no output at all
0.333 33.3% The efficiency is zero at maximum flow rate Δp  = 0 so there is no output

The efficiency must therefore peak somewhere between these extremes

Efficiency of a Viscous Pump

0%
5%

10%
15%
20%
25%
30%
35%

0.00 0.10 0.20 0.30 0.40 0.50
q

η
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Problem 2.59



Problem 8.44 [3]

Given: Data on a journal bearing

Find: Time for the bearing to slow to 10 rpm

Solution:
The given data is D 50 mm⋅= L 1 m⋅= I 0.055 kg⋅ m2

⋅= δ 1 mm⋅=

μ 0.1
N s⋅

m2
⋅= ωi 60 rpm⋅= ωf 10 rpm⋅=

The equation of motion for the slowing bearing is I α⋅ Torque= τ− A⋅
D
2
⋅=

where α is the angular acceleration and τ is the viscous stress, and A π D⋅ L⋅=  is the surface area of the bearing

As in Example 8.2 the stress is given by τ μ
U
δ
⋅=

μ D⋅ ω⋅
2 δ⋅

=

where U and ω are the instantaneous linear and angular velocities.

Hence I α⋅ I
dω

dt
⋅=

μ D⋅ ω⋅
2 δ⋅

− π⋅ D⋅ L⋅
D
2

⋅=
μ π⋅ D3

⋅ L⋅
4 δ⋅

− ω⋅=

Separating variables dω

ω

μ π⋅ D3
⋅ L⋅

4 δ⋅ I⋅
− dt⋅=

Integrating and using IC ω = ω0 ω t( ) ωi e

μ π⋅ D3⋅ L⋅
4 δ⋅ I⋅

− t⋅
⋅=

The time to slow down to ωf = 10 rpm is obtained from solving ωf ωi e

μ π⋅ D3⋅ L⋅
4 δ⋅ I⋅

− t⋅
⋅=

so t
4 δ⋅ I⋅

μ π⋅ D3
⋅ L⋅

− ln
ωf
ωi

⎛
⎜
⎝

⎞
⎟
⎠

⋅= t 10s=
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Problem 8.47 [2]

F 
p1 D 

L 

d 

Given: Hyperdermic needle

Find: Volume flow rate of saline

Solution:

Basic equation Q
π Δp⋅ d4

⋅
128 μ⋅ L⋅

= (Eq. 8.13c; we assume laminar flow and verify this is correct after solving)

For the system Δp p1 patm−=
F
A

=
4 F⋅

π D2
⋅

=

Δp
4
π

7.5× lbf⋅
1

0.375 in⋅
12 in⋅
1 ft⋅

×⎛⎜
⎝

⎞⎟
⎠

2
×= Δp 67.9 psi⋅=

At 68oF, from Table A.7 μH2O 2.1 10 5−
×

lbf s⋅

ft2
⋅= μ 5 μH2O⋅= μ 1.05 10 4−

×
lbf s⋅

ft2
⋅=

Q
π

128
67.9×

lbf

in2
⋅

144 in2
⋅

1 ft2⋅
× 0.005 in⋅

1 ft⋅
12 in⋅

×⎛⎜
⎝

⎞⎟
⎠

4
×

ft2

1.05 10 4−
× lbf s⋅

×
1

1 in⋅
×

12 in⋅
1 ft⋅

×=

Q 8.27 10 7−
×

ft3

s
⋅= Q 1.43 10 3−

×
in3

s
⋅= Q 0.0857

in3

min
⋅=

Check Re: V
Q
A

=
Q

π d2⋅
4

= V
4
π

8.27× 10 7−
×

ft3

s
1

.005 in⋅
⎛⎜
⎝

⎞⎟
⎠

2
×

12 in⋅
1 ft⋅

⎛⎜
⎝

⎞⎟
⎠

2
×= V 6.07

ft
s

⋅=

Re
ρ V⋅ d⋅

μ
= ρ 1.94

slug

ft3
⋅= (assuming saline is close to water)

Re 1.94
slug

ft3
⋅ 6.07×

ft
s

⋅ 0.005× in⋅
1 ft⋅

12 in⋅
×

ft2

1.05 10 4−
× lbf⋅ s⋅

×
slug ft⋅

s2 lbf⋅
×= Re 46.7=

Flow is laminar



Problem 8.48 [3]

Given: Data on a tube

Find: "Resistance" of tube; maximum flow rate and pressure difference for which electrical analogy
holds for (a) kerosine and (b) castor oil

Solution:
The given data is L 100 mm⋅= D 0.3 mm⋅=

From Fig. A.2 and Table A.2

Kerosene: μ 1.1 10 3−
×

N s⋅

m2
⋅= ρ 0.82 990×

kg

m3
⋅= 812

kg

m3
⋅=

Castor oil: μ 0.25
N s⋅

m2
⋅= ρ 2.11 990×

kg

m3
⋅= 2090

kg

m3
⋅=

For an electrical resistor V R I⋅= (1)

The governing equation for the flow rate for laminar flow in a tube is Eq. 8.13c

Q
π Δp⋅ D4

⋅
128 μ⋅ L⋅

=

or Δp
128 μ⋅ L⋅

π D4
⋅

Q⋅= (2)

By analogy, current I is represented by flow rate Q, and voltage V by pressure drop Δp.
Comparing Eqs. (1) and (2), the "resistance" of the tube is

R
128 μ⋅ L⋅

π D4
⋅

=

The "resistance" of a tube is directly proportional to fluid viscosity and pipe length, and strongly dependent on the inverse of
diameter

The analogy is only valid for Re 2300< or ρ V⋅ D⋅
μ

2300<

Writing this constraint in terms of flow rate

ρ
Q

π

4
D2
⋅

⋅ D⋅

μ
2300< or Qmax

2300 μ⋅ π⋅ D⋅
4 ρ⋅

=



The corresponding maximum pressure gradient is then obtained from Eq. (2)

Δpmax
128 μ⋅ L⋅

π D4
⋅

Qmax⋅=
32 2300⋅ μ

2
⋅ L⋅

ρ D3
⋅

=

(a)  For kerosine Qmax 7.34 10 7−
×

m3

s
= Δpmax 406kPa=

(b)  For castor oil Qmax 6.49 10 5−
×

m3

s
= Δpmax 8156MPa=

The analogy fails when Re > 2300 because the flow becomes turbulent, and "resistance" to flow is then no longer linear with
flow rate
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Problem 8.52



Problem 8.54 [3]

Given: Two-fluid flow in tube

Find: Velocity distribution; Plot

Solution:
Given data D 0.2 in⋅= L 50 ft⋅= Δp 1− psi⋅= μ1 0.02

lbf s⋅

ft2
⋅= μ2 0.03

lbf s⋅

ft2
⋅=

From Section 8-3 for flow in a pipe, Eq. 8.11 can be applied to either fluid

u
r2

4 μ⋅ x
p∂

∂

⎛
⎜
⎝

⎞
⎟
⎠

⋅
c1
μ

ln r( )⋅+ c2+=

Applying this to fluid 1 (inner fluid) and fluid 2 (outer fluid)

u1
r2

4 μ1⋅
Δp
L

⋅
c1
μ1

ln r( )⋅+ c2+= u2
r2

4 μ2⋅
Δp
L

⋅
c3
μ2

ln r( )⋅+ c4+=

We need four BCs.  Two are obvious r
D
2

= u2 0= (1) r
D
4

= u1 u2= (2)

The third BC comes from the fact that the axis is a line of symmetry

r 0=
du1
dr

0= (3)

The fourth BC comes from the fact that the stress at the interface generated by each fluid is the same

r
D
4

= μ1
du1
dr

⋅ μ2
du2
dr

⋅= (4)

Using these four BCs

D
2

⎛⎜
⎝

⎞⎟
⎠

2

4 μ2⋅
Δp
L

⋅
c3
μ2

ln
D
2

⎛⎜
⎝

⎞⎟
⎠

⋅+ c4+ 0=

D
4

⎛⎜
⎝

⎞⎟
⎠

2

4 μ1⋅
Δp
L

⋅
c1
μ1

ln
D
4

⎛⎜
⎝

⎞⎟
⎠

⋅+ c2+

D
4

⎛⎜
⎝

⎞⎟
⎠

2

4 μ2⋅
Δp
L

⋅
c3
μ2

ln
D
4

⎛⎜
⎝

⎞⎟
⎠

⋅+ c4+=

0r

c1
μ1 r⋅

lim
→

0=
D
8

Δp
L

⋅
4 c1⋅

D
+

D
8

Δp
L

⋅
4 c3⋅

D
+=

Hence, after some algebra

c1 0= (To avoid singularity) c2
D2

Δp⋅
64 L⋅

−
μ2 3 μ1⋅+( )

μ1 μ2⋅
= c3 0= c4

D2
Δp⋅

16 L⋅ μ2⋅
−=

The velocity distributions are then

u1 r( )
Δp

4 μ1⋅ L⋅
r2

D
2

⎛⎜
⎝

⎞⎟
⎠

2 μ2 3 μ1⋅+( )
4 μ2⋅

⋅−
⎡⎢
⎢⎣

⎤⎥
⎥⎦

⋅= u2 r( )
Δp

4 μ2⋅ L⋅
r2

D
2

⎛⎜
⎝

⎞⎟
⎠

2
−

⎡
⎢
⎣

⎤
⎥
⎦

⋅=

(Note that these result in the same expression if μ1 = μ2, i.e., if we have one fluid)



Evaluating either velocity at r =  D/4 gives the velocity at the interface

uinterface
3 D2
⋅ Δp⋅

64 μ2⋅ L⋅
−= uinterface

3
64

−
0.2
12

ft⋅⎛⎜
⎝

⎞⎟
⎠

2
× 1−

lbf

in2
⋅⎛

⎜
⎝

⎞
⎟
⎠

×
144 in2

⋅

1 ft2⋅
×

ft2

0.03 lbf⋅ s⋅
×

1
50 ft⋅

×= uinterface 1.25 10 3−
×

ft
s

=

Evaluating u1 at r = 0 gives the maximum velocity

umax
D2

Δp⋅ μ2 3 μ1⋅+( )⋅

64 μ1⋅ μ2⋅ L⋅
−= umax

1
64

−
0.2
12

ft⋅⎛⎜
⎝

⎞⎟
⎠

2
× 1−

lbf

in2
⋅⎛

⎜
⎝

⎞
⎟
⎠

×
0.03 3 0.02×+

0.02 0.03×
×

ft2

lbf s⋅
⋅

1
50 ft⋅

×= umax 1.88 10 3−
×

ft
s

=

0 5 10 4−× 1 10 3−× 1.5 10 3−× 2 10 3−×

0.025

0.05

0.075

0.1
Inner fluid
Outer fluid

Velocity (ft/s)

r (
in

)

The velocity distributions can be plotted in Excel



Problem 8.55 [2]

Given: Turbulent pipe flow

Find: Wall shear stress

Solution:

Basic equation (Eq. 4.18a)

Assumptions 1) Horizontal pipe 2) Steady flow 3) Fully developed flow

With these assumptions the x momentum equation becomes

p1
π D2
⋅
4

⋅ τw π⋅ D⋅ L⋅+ p2
π D2
⋅
4

⋅− 0= or τw
p2 p1−( ) D⋅

4 L⋅
=

Δp D⋅
4 L⋅

−=

τw
1
4

− 35× 103
×

N

m2
⋅ 150× mm⋅

1 m⋅
1000 mm⋅

×
1

10 m⋅
×=

τw 131− Pa=

Since τw is negative it acts to the left on the fluid, to the right on the pipe wall



Problem 8.56 [3]

Given: Pipe glued to tank

Find: Force glue must hold when cap is on and off

Solution:
Basic equation (Eq. 4.18a)

First solve when the cap is on.  In this static case

Fglue
π D2
⋅
4

p1⋅= where p1 is the tank pressure

Second, solve for when flow is occuring:

Assumptions 1) Horizontal pipe 2) Steady flow 3) Fully developed flow

With these assumptions the x momentum equation becomes

p1
π D2
⋅
4

⋅ τw π⋅ D⋅ L⋅+ p2
π D2
⋅
4

⋅− 0=

Here p1 is again the tank pressure and p2 is the pressure at the pipe exit; the pipe exit pressure is patm = 0 kPa gage. Hence

Fpipe Fglue= τw− π⋅ D⋅ L⋅=
π D2
⋅
4

p1⋅=

We conclude that in each case the force on the glue is the same!  When the cap is on the glue has to withstand the tank pressure;
when the cap is off, the glue has to hold the pipe in place against the friction of the fluid on the pipe, which is equal in magnitude to the
pressure drop.

Fglue
π

4
2.5 cm⋅

1 m⋅
100 cm⋅

×⎛⎜
⎝

⎞⎟
⎠

2
× 250× 103

×
N

m2
⋅= Fglue 123N=



Problem 8.57 [2]

Given: Flow through channel

Find: Average wall stress

Solution:
Basic equation (Eq. 4.18a)

Assumptions 1) Horizontal pipe 2) Steady flow 3) Fully developed flow

With these assumptions the x momentum equation becomes

p1 W⋅ H⋅ τw 2⋅ L⋅ W H+( )⋅+ p2 W⋅ H⋅− 0= or τw p2 p1−( ) W H⋅
2 W H+( )⋅ L⋅
⋅= τw Δp−

H
L

2 1
H
W

+⎛⎜
⎝

⎞⎟
⎠

⋅
⋅=

τw
1
2

− 1×
lbf

in2
⋅

144 in2
⋅

ft2
×

1 in⋅
1 ft⋅

12 in⋅
×

30 ft⋅
×

1

1
9.5 in⋅

1 ft⋅
12 in⋅

×

30 ft⋅
+

⎛
⎜
⎜
⎜
⎝

⎞
⎟
⎟
⎟
⎠

×= τw 0.195−
lbf

ft2
= τw 1.35− 10 3−

× psi=

Since τw < 0, it acts to the left on the fluid, to the right on the channel wall



Problem 8.58 [2]

Given: Data on pressure drops in flow in a tube

Find: Which pressure drop is laminar flow, which turbulent 

Solution:

Given data
x

p1
∂

∂
4.5−

kPa
m

⋅=
x

p2
∂

∂
11−

kPa
m

⋅= D 30 mm⋅=

From Section 8-4, a force balance on a section of fluid leads to

τw
R
2

−
x

p∂

∂
⋅=

D
4

−
x

p∂

∂
⋅=

Hence for the two cases

τw1
D
4

−
x

p1
∂

∂
⋅= τw1 33.8Pa=

τw2
D
4

−
x

p2
∂

∂
⋅= τw2 82.5Pa=

Because both flows are at the same nominal flow rate, the higher pressure drop must correspond to the turbulent flow,
because, as indicated in Section 8-4, turbulent flows experience additional stresses.  Also indicated in Section 8-4 is that
for both flows the shear stress varies from zero at the centerline to the maximums computed above at the walls.

The stress distributions are linear in both cases: Maximum at the walls and zero at the centerline.
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Problem 8.61 [3]

Given: Data on mean velocity in fully developed turbulent flow

Find: Trendlines for each set; values of n  for each set; plot

Solution:

y/R u/U y/R u/U Equation 8.22 is
0.898 0.996 0.898 0.997
0.794 0.981 0.794 0.998
0.691 0.963 0.691 0.975
0.588 0.937 0.588 0.959
0.486 0.907 0.486 0.934
0.383 0.866 0.383 0.908
0.280 0.831 0.280 0.874
0.216 0.792 0.216 0.847
0.154 0.742 0.154 0.818
0.093 0.700 0.093 0.771
0.062 0.650 0.062 0.736
0.041 0.619 0.037 0.690
0.024 0.551

Applying the Trendline  analysis to each set of data:

At Re  = 50,000 At Re  = 500,000

u/U  = 1.017(y/R )0.161 u/U  = 1.017(y/R )0.117

with R 2 = 0.998 (high confidence) with R 2 = 0.999 (high confidence)

Hence 1/n  = 0.161 Hence 1/n = 0.117
n  = 6.21 n = 8.55

Both sets of data tend to confirm the validity of Eq. 8.22

Mean Velocity Distributions in a Pipe

0.1

1.0

0.01 0.10 1.00
y/R

u/
U

Re = 50,000 Re = 500,000 Power (Re = 500,000) Power (Re = 50,000)
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Problem 8.64       [3] 
 
 
 
 
 
 

Given: Laminar flow between parallel plates 

Find: Kinetic energy coefficient, α 

Solution:  
 
Basic Equation: The kinetic energy coefficient, α is given by 
 

2

3

Vm

dAV
A

&

∫=
ρ

α                                                      (8.26b) 

From Section 8-2, for flow between parallel plates 
 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
−=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
−=

22

max

2
1

2
3

2
1 a

yVa
yuu  

since Vu
2
3

max = . 

Substituting 

∫∫∫∫∫
⎟
⎠
⎞

⎜
⎝
⎛=⎟

⎠
⎞

⎜
⎝
⎛=⎟

⎠
⎞

⎜
⎝
⎛===

−

2

0

32

2

33

2

3

2

3
211

aa

a
A

AA dy
V
u

a
wdy

V
u

wa
dA

V
u

AVAV

dAu

Vm

dAV

ρ

ρρ
α

&
 

Then 

( )∫∫ −⎟
⎠
⎞

⎜
⎝
⎛=⎟

⎟

⎠

⎞

⎜
⎜

⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

1

0

32
31

0

3
max

3

max

1
2
3

22
2 ηηα da

yd
V

u
u
ua

a
 

where 

2
a
y

=η  

Evaluating, 
 

( ) 64232 3311 ηηηη −+−=−  
The integral is then 
 

( ) 54.1
35
16

8
27

7
1

5
3

2
3331

2
3 1

0

753
31

0

642
3

==⎥⎦
⎤

⎢⎣
⎡ −+−⎟

⎠
⎞

⎜
⎝
⎛=−+−⎟

⎠
⎞

⎜
⎝
⎛= ∫ ηηηηηηηηα d  
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Problem 8.66 [3]

Given: Definition of kinetic energy correction coefficient α

Find: α for the power-law velocity profile; plot

Solution:

Equation 8.26b is α

Aρ V3
⋅

⌠⎮
⎮⌡

d

mrate Vav
2

⋅
=

where V is the velocity, mrate is the mass flow rate and Vav is the average velocity

For the power-law profile (Eq. 8.22) V U 1
r
R

−⎛⎜
⎝

⎞⎟
⎠

1
n

⋅=

For the mass flow rate mrate ρ π⋅ R2.
⋅ Vav⋅=

Hence the denominator of Eq. 8.26b is mrate Vav
2

⋅ ρ π⋅ R2
⋅ Vav

3
⋅=

We next must evaluate the numerator of Eq. 8.26b Aρ V3
⋅

⌠⎮
⎮⌡

d rρ 2⋅ π⋅ r⋅ U3
⋅ 1

r
R

−⎛⎜
⎝

⎞⎟
⎠

3
n

⋅

⌠
⎮
⎮
⎮
⎮
⌡

d=

0

R

rρ 2⋅ π⋅ r⋅ U3
⋅ 1

r
R

−⎛⎜
⎝

⎞⎟
⎠

3
n

⋅

⌠⎮
⎮
⎮
⎮
⌡

d
2 π⋅ ρ⋅ R2

⋅ n2
⋅ U3

⋅
3 n+( ) 3 2 n⋅+( )⋅

=

To integrate substitute m 1
r
R

−= dm
dr
R

−=

Then r R 1 m−( )⋅= dr R− dm⋅=

0

R

rρ 2⋅ π⋅ r⋅ U3
⋅ 1

r
R

−⎛⎜
⎝

⎞⎟
⎠

3
n

⋅

⌠⎮
⎮
⎮
⎮
⌡

d
1

0

mρ 2⋅ π⋅ R⋅ 1 m−( )⋅ m

3
n

⋅ R⋅

⌠
⎮
⎮
⌡

d−=



Hence Aρ V3
⋅

⌠⎮
⎮⌡

d
0

1

mρ 2⋅ π⋅ R⋅ m

3
n m

3
n

1+
−

⎛
⎜
⎝

⎞
⎟
⎠⋅ R⋅

⌠
⎮
⎮
⌡

d=

Aρ V3
⋅

⌠⎮
⎮⌡

d
2 R2
⋅ n2

⋅ ρ⋅ π⋅ U3
⋅

3 n+( ) 3 2 n⋅+( )⋅
=

Putting all these results together α

Aρ V3
⋅

⌠⎮
⎮⌡

d

mrate Vav
2

⋅
=

2 R2⋅ n2⋅ ρ⋅ π⋅ U3⋅
3 n+( ) 3 2 n⋅+( )⋅

ρ π⋅ R2
⋅ Vav

3
⋅

=

α
U

Vav

⎛
⎜
⎝

⎞
⎟
⎠

3 2 n2
⋅

3 n+( ) 3 2 n⋅+( )⋅
⋅=

To plot α versus ReVav we use the following parametric relations

n 1.7− 1.8 log Reu( )⋅+= (Eq. 8.23)

Vav
U

2 n2
⋅

n 1+( ) 2 n⋅ 1+( )⋅
= (Eq. 8.24)

ReVav
Vav
U

ReU⋅=

α
U

Vav

⎛
⎜
⎝

⎞
⎟
⎠

3 2 n2
⋅

3 n+( ) 3 2 n⋅+( )⋅
⋅= (Eq. 8.27)

A value of ReU leads to a value for n; this leads to a value for Vav/U; these lead to a value for ReVav and α

The plots of α, and the error in assuming α = 1, versus ReVav are shown in the associated Excel workbook



Re U n V av/U Re Vav α α Error
1.00E+04 5.50 0.776 7.76E+03 1.09 8.2%
2.50E+04 6.22 0.797 1.99E+04 1.07 6.7%
5.00E+04 6.76 0.811 4.06E+04 1.06 5.9%
7.50E+04 7.08 0.818 6.14E+04 1.06 5.4%
1.00E+05 7.30 0.823 8.23E+04 1.05 5.1%
2.50E+05 8.02 0.837 2.09E+05 1.05 4.4%
5.00E+05 8.56 0.846 4.23E+05 1.04 3.9%
7.50E+05 8.88 0.851 6.38E+05 1.04 3.7%
1.00E+06 9.10 0.854 8.54E+05 1.04 3.5%
2.50E+06 9.82 0.864 2.16E+06 1.03 3.1%

A value of Re U leads to a value for n ; 5.00E+06 10.4 0.870 4.35E+06 1.03 2.8%
this leads to a value for V av/U ; 7.50E+06 10.7 0.873 6.55E+06 1.03 2.6%
these lead to a value for Re Vav and α 1.00E+07 10.9 0.876 8.76E+06 1.03 2.5%

Kinetic Energy Coefficient
vs Reynolds Number

1.00

1.03

1.05

1.08

1.10

1E+03 1E+04 1E+05 1E+06 1E+07
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α

Error in assuming α = 1
vs Reynolds Number
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5.0%
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Re Vav
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Problem 8.67 [2]

Given: Data on flow through elbow

Find: Head loss

Solution:

Basic equation
p1
ρ g⋅

α

V1
2

2 g⋅
⋅+ z1+

⎛⎜
⎜⎝

⎞⎟
⎟⎠

p2
ρ g⋅

α

V2
2

2 g⋅
⋅+ z2+

⎛⎜
⎜⎝

⎞⎟
⎟⎠

−
hlT
g

= HlT=

Assumptions: 1) Steady flow 2) Incompressible flow 3) α at 1 and 2 is approximately 1

Then HlT
p1 p2−

ρ g⋅

V1
2 V2

2
−

2 g⋅
+ z1+ z2−=

HlT 70 45−( ) 103
×

N

m2
⋅

m3

1000 kg⋅
×

kg m⋅

s2 N⋅
×

s2

9.81 m⋅
×

1
2

1.752 3.52
−( )×

m
s

⎛⎜
⎝

⎞⎟
⎠

2
⋅

s2

9.81 m⋅
×+ 2.25 3−( ) m⋅+= HlT 1.33m=

In terms of energy/mass hlT g HlT⋅= hlT 9.81
m

s2
⋅ 1.33× m⋅

N s2
⋅

kg m⋅
×= hlT 13.0

N m⋅
kg

⋅=



Problem 8.68 [2]

Given: Data on flow in a pipe

Find: Head loss for horizontal pipe; inlet pressure for different alignments; slope for gravity feed

Solution:

Given or available data D 50 mm⋅= ρ 1000
kg

m3
⋅=

The governing equation between inlet (1) and exit (2) is

p1
ρ

α1
V1

2

2
⋅+ g z1⋅+

⎛⎜
⎜⎝

⎞⎟
⎟⎠

p2
ρ

α2
V2

2

2
⋅+ g z2⋅+

⎛⎜
⎜⎝

⎞⎟
⎟⎠

− hlT= (8.29)

Horizontal pipe data p1 588 kPa⋅= p2 0 kPa⋅= (Gage pressures)

z1 z2= V1 V2=

Equation 8.29 becomes hlT
p1 p2−

ρ
= hlT 588

J
kg
⋅=

For an inclined pipe with the same flow rate, the head loss will be the same as above; in addition we have the following new data

z1 0 m⋅= z2 25 m⋅=

Equation 8.29 becomes p1 p2 ρ g⋅ z2 z1−( )⋅+ ρ hlT⋅+= p1 833 kPa⋅=

For a declining pipe with the same flow rate, the head loss will be the same as above; in addition we have the following new data

z1 0 m⋅= z2 25− m⋅=

Equation 8.29 becomes p1 p2 ρ g⋅ z2 z1−( )⋅+ ρ hlT⋅+= p1 343 kPa⋅=

For a gravity feed with the same flow rate, the head loss will be the same as above; in addition we have the following new data

p1 0 kPa⋅= (Gage)

Equation 8.29 becomes z2 z1
hlT
g

−= z2 60− m=



Problem 8.69 [2]

Given: Data on flow through elbow

Find: Inlet velocity

Solution:

Basic equation
p1
ρ g⋅

α

V1
2

2 g⋅
⋅+ z1+

⎛⎜
⎜⎝

⎞⎟
⎟⎠

p2
ρ g⋅

α

V2
2

2 g⋅
⋅+ z2+

⎛⎜
⎜⎝

⎞⎟
⎟⎠

−
hlT
g

= HlT=

Assumptions: 1) Steady flow 2) Incompressible flow 3) α at 1 and 2 is approximately 1

Then V2
2 V1

2
− 2 V1⋅( )2 V1

2
−= 3 V1

2
⋅=

2 p1 p2−( )⋅

ρ
2 g⋅ z1 z2−( )⋅+ 2 g⋅ HlT⋅−=

V1
2
3

p1 p2−( )
ρ

g z1 z2−( )⋅+ g HlT⋅−
⎡
⎢
⎣

⎤
⎥
⎦

⋅=

V1
2
3

50 103
×

N

m2
⋅

m3

1000 kg⋅
×

kg m⋅

s2 N⋅
×

9.81 m⋅

s2
2−( )× m⋅+ 9.81

m

s2
⋅ 1× m⋅−

⎡⎢
⎢⎣

⎤⎥
⎥⎦

×= V1 3.70
m
s

=



Problem 8.70 [2]

Given: Increased friction factor for water tower flow

Find: How much flow is decreased

Solution:

Basic equation from Example 8.7 V2
2 g⋅ z1 z2−( )⋅

f
L
D

8+⎛⎜
⎝

⎞⎟
⎠

⋅ 1+
=

where L 680 ft⋅= D 4 in⋅= z1 z2− 80 ft⋅=

With f = 0.0308, we obtain V2 8.97
ft
s

⋅= and Q = 351 gpm

We need to recompute with f = 0.04 V2 2 32.2×
ft

s2
⋅ 80× ft⋅

1

0.04
680

4
12

8+⎛
⎜
⎜
⎝

⎞
⎟
⎟
⎠

⋅ 1+
×= V2 7.88

ft
s

=

Hence Q V2 A⋅= V2
π D2
⋅
4

⋅=

Q 7.88
ft
s

⋅
π

4
×

4
12

ft⋅⎛⎜
⎝

⎞⎟
⎠

2
×

7.48 gal⋅

1 ft3⋅
×

60 s⋅
1 min⋅

×= Q 309gpm=

(From Table G.2 1 ft3 = 7.48 gal)

Hence the flow is decreased by 351 309−( ) gpm⋅ 42gpm=



Problem 8.71 [2]

Given: Increased friction factor for water tower flow, and reduced length

Find: How much flow is decreased

Solution:

Basic equation from Example 8.7 V2
2 g⋅ z1 z2−( )⋅

f
L
D

8+⎛⎜
⎝

⎞⎟
⎠

⋅ 1+
=

where now we have L 380 ft⋅= D 4 in⋅= z1 z2− 80 ft⋅=

We need to recompute with f = 0.04 V2 2 32.2×
ft

s2
⋅ 80× ft⋅

1

0.04
380

4
12

8+⎛
⎜
⎜
⎝

⎞
⎟
⎟
⎠

⋅ 1+
×= V2 10.5

ft
s

=

Hence Q V2 A⋅= V2
π D2
⋅
4

⋅=

Q 10.5
ft
s

⋅
π

4
×

4
12

ft⋅⎛⎜
⎝

⎞⎟
⎠

2
×

7.48 gal⋅

1 ft3⋅
×

60 s⋅
1 min⋅

×= Q 411gpm=

(From Table G.2 1 ft3 = 7.48 gal)



Problem 8.72 [2]

Given: Data on flow through Alaskan pipeline

Find: Head loss

Solution:

Basic equation
p1

ρoil g⋅
α

V1
2

2 g⋅
⋅+ z1+

⎛
⎜
⎜
⎝

⎞
⎟
⎟
⎠

p2
ρoil g⋅

α

V2
2

2 g⋅
⋅+ z2+

⎛
⎜
⎜
⎝

⎞
⎟
⎟
⎠

−
hlT
g

= HlT=

Assumptions: 1) Steady flow 2) Incompressible flow 3) α at 1 and 2 is approximately 1 4) SG = 0.9 (Table A.2)

Then HlT
p1 p2−

SGoil ρH2O⋅ g⋅
z1+ z2−=

HlT 8250 350−( ) 103
×

N

m2
⋅

1
0.9

×
m3

1000 kg⋅
×

kg m⋅

s2 N⋅
×

s2

9.81 m⋅
× 45 115−( ) m⋅+= HlT 825m=

In terms of energy/mass hlT g HlT⋅= hlT 9.81
m

s2
⋅ 825× m⋅

N s2
⋅

kg m⋅
×= hlT 8.09

kN m⋅
kg

⋅=
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Problem 8.76 [3]

Given: Data on flow from reservoir

Find: Head from pump; head loss

Solution:

Basic equations
p3
ρ g⋅

α

V3
2

2 g⋅
⋅+ z3+

⎛⎜
⎜⎝

⎞⎟
⎟⎠

p4
ρ g⋅

α

V4
2

2 g⋅
⋅+ z4+

⎛⎜
⎜⎝

⎞⎟
⎟⎠

−
hlT
g

= HlT= for flow from 3 to 4

p3
ρ g⋅

α

V3
2

2 g⋅
⋅+ z3+

⎛⎜
⎜⎝

⎞⎟
⎟⎠

p2
ρ g⋅

α

V2
2

2 g⋅
⋅+ z2+

⎛⎜
⎜⎝

⎞⎟
⎟⎠

−
Δhpump

g
= Hpump= for flow from 2 to 3

Assumptions: 1) Steady flow 2) Incompressible flow 3) α at 1 and 2 is approximately 1 4) V2 = V3 = V4 (constant area pipe)

Then for the pump Hpump
p3 p2−

ρ g⋅
=

Hpump 450 150−( ) 103
×

N

m2
⋅

m3

1000 kg⋅
×

kg m⋅

s2 N⋅
×

s2

9.81 m⋅
×= Hpump 30.6m=

In terms of energy/mass hpump g Hpump⋅= hpump 9.81
m

s2
⋅ 30.6× m⋅

N s2
⋅

kg m⋅
×= hpump 300

N m⋅
kg

⋅=

For the head loss from 3 to 4 HlT
p3 p4−

ρ g⋅
z3+ z4−=

HlT 450 0−( ) 103
×

N

m2
⋅

m3

1000 kg⋅
×

kg m⋅

s2 N⋅
×

s2

9.81 m⋅
× 0 35−( ) m⋅+= HlT 10.9m=

In terms of energy/mass hlT g HlT⋅= hlT 9.81
m

s2
⋅ 10.9× m⋅

N s2
⋅

kg m⋅
×= hlT 107

N m⋅
kg

⋅=
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Problem 8.79 [2]

Given: Data on flow in a pipe

Find: Friction factor; Reynolds number; if flow is laminar or turbulent

Solution:

Given data D 75 mm⋅=
Δp
L

0.075
Pa
m

⋅= mrate 0.075
kg
s

⋅=

From Appendix A ρ 1000
kg

m3
⋅= μ 4 10 4−

⋅
N s⋅

m2
⋅=

The governing equations between inlet (1) and exit (2) are

p1
ρ

α1
V1

2

2
⋅+ g z1⋅+

⎛⎜
⎜⎝

⎞⎟
⎟⎠

p2
ρ

α2
V2

2

2
⋅+ g z2⋅+

⎛⎜
⎜⎝

⎞⎟
⎟⎠

− hl= (8.29)

hl f
L
D
⋅

V2

2
⋅= (8.34)

For a constant area pipe V1 V2= V=

Hence Eqs. 8.29 and 8.34 become f
2 D⋅

L V2
⋅

p1 p2−( )
ρ

⋅=
2 D⋅

ρ V2
⋅

Δp
L

⋅=

For the velocity V
mrate

ρ
π

4
⋅ D2

⋅
= V 0.017

m
s

=

Hence f
2 D⋅

ρ V2
⋅

Δp
L

⋅= f 0.0390=

The Reynolds number is Re
ρ V⋅ D⋅

μ
= Re 3183=

This Reynolds number indicates the flow is turbulent.

(From Eq. 8.37, at this Reynolds number the friction factor for a smooth pipe is f = 0.043; the friction factor computed
above thus indicates that, within experimental error, the flow corresponds to turbulent flow in a smooth pipe)



Problem 8.80 [3]

Solution:

Using the add-in function Friction factor  from the web site

e/D = 0 0.0001 0.0002 0.0005 0.001 0.002 0.005 0.01 0.02 0.04

Re
500 0.1280 0.1280 0.1280 0.1280 0.1280 0.1280 0.1280 0.1280 0.1280 0.1280

1.00E+03 0.0640 0.0640 0.0640 0.0640 0.0640 0.0640 0.0640 0.0640 0.0640 0.0640
1.50E+03 0.0427 0.0427 0.0427 0.0427 0.0427 0.0427 0.0427 0.0427 0.0427 0.0427
2.30E+03 0.0473 0.0474 0.0474 0.0477 0.0481 0.0489 0.0512 0.0549 0.0619 0.0747
1.00E+04 0.0309 0.0310 0.0312 0.0316 0.0324 0.0338 0.0376 0.0431 0.0523 0.0672
1.50E+04 0.0278 0.0280 0.0282 0.0287 0.0296 0.0313 0.0356 0.0415 0.0511 0.0664
1.00E+05 0.0180 0.0185 0.0190 0.0203 0.0222 0.0251 0.0313 0.0385 0.0490 0.0649
1.50E+05 0.0166 0.0172 0.0178 0.0194 0.0214 0.0246 0.0310 0.0383 0.0489 0.0648
1.00E+06 0.0116 0.0134 0.0147 0.0172 0.0199 0.0236 0.0305 0.0380 0.0487 0.0647
1.50E+06 0.0109 0.0130 0.0144 0.0170 0.0198 0.0235 0.0304 0.0379 0.0487 0.0647
1.00E+07 0.0081 0.0122 0.0138 0.0168 0.0197 0.0234 0.0304 0.0379 0.0486 0.0647
1.50E+07 0.0076 0.0121 0.0138 0.0167 0.0197 0.0234 0.0304 0.0379 0.0486 0.0647
1.00E+08 0.0059 0.0120 0.0137 0.0167 0.0196 0.0234 0.0304 0.0379 0.0486 0.0647

f

Friction Factor vs Reynolds Number

0.001

0.010

0.100

1.000

1.0E+02 1.0E+03 1.0E+04 1.0E+05 1.0E+06 1.0E+07 1.0E+08
Re

f

0 0.0001

0.0002 0.0005

0.001 0.002

0.005 0.01

0.02 0.04

e/D  =



Problem 8.81

Using the above formula for f 0, and Eq. 8.37 for f 1

e/D = 0 0.0001 0.0002 0.0005 0.001 0.002 0.005 0.01 0.02 0.05

Re
1.00E+04 0.0310 0.0311 0.0313 0.0318 0.0327 0.0342 0.0383 0.0440 0.0534 0.0750
2.50E+04 0.0244 0.0247 0.0250 0.0258 0.0270 0.0291 0.0342 0.0407 0.0508 0.0731
5.00E+04 0.0208 0.0212 0.0216 0.0226 0.0242 0.0268 0.0325 0.0395 0.0498 0.0724
7.50E+04 0.0190 0.0195 0.0200 0.0212 0.0230 0.0258 0.0319 0.0390 0.0494 0.0721
1.00E+05 0.0179 0.0185 0.0190 0.0204 0.0223 0.0253 0.0316 0.0388 0.0493 0.0720
2.50E+05 0.0149 0.0158 0.0167 0.0186 0.0209 0.0243 0.0309 0.0383 0.0489 0.0717
5.00E+05 0.0131 0.0145 0.0155 0.0178 0.0204 0.0239 0.0307 0.0381 0.0488 0.0717
7.50E+05 0.0122 0.0139 0.0150 0.0175 0.0201 0.0238 0.0306 0.0380 0.0487 0.0716
1.00E+06 0.0116 0.0135 0.0148 0.0173 0.0200 0.0237 0.0305 0.0380 0.0487 0.0716
5.00E+06 0.0090 0.0124 0.0140 0.0168 0.0197 0.0235 0.0304 0.0379 0.0487 0.0716
1.00E+07 0.0081 0.0122 0.0139 0.0168 0.0197 0.0235 0.0304 0.0379 0.0486 0.0716
5.00E+07 0.0066 0.0120 0.0138 0.0167 0.0196 0.0234 0.0304 0.0379 0.0486 0.0716
1.00E+08 0.0060 0.0120 0.0137 0.0167 0.0196 0.0234 0.0304 0.0379 0.0486 0.0716

Using the add-in function Friction factor  from the Web

e/D = 0 0.0001 0.0002 0.0005 0.001 0.002 0.005 0.01 0.02 0.05

Re
1.00E+04 0.0309 0.0310 0.0312 0.0316 0.0324 0.0338 0.0376 0.0431 0.0523 0.0738
2.50E+04 0.0245 0.0248 0.0250 0.0257 0.0268 0.0288 0.0337 0.0402 0.0502 0.0725
5.00E+04 0.0209 0.0212 0.0216 0.0226 0.0240 0.0265 0.0322 0.0391 0.0494 0.0720
7.50E+04 0.0191 0.0196 0.0200 0.0212 0.0228 0.0256 0.0316 0.0387 0.0492 0.0719
1.00E+05 0.0180 0.0185 0.0190 0.0203 0.0222 0.0251 0.0313 0.0385 0.0490 0.0718
2.50E+05 0.0150 0.0158 0.0166 0.0185 0.0208 0.0241 0.0308 0.0381 0.0488 0.0716
5.00E+05 0.0132 0.0144 0.0154 0.0177 0.0202 0.0238 0.0306 0.0380 0.0487 0.0716
7.50E+05 0.0122 0.0138 0.0150 0.0174 0.0200 0.0237 0.0305 0.0380 0.0487 0.0716
1.00E+06 0.0116 0.0134 0.0147 0.0172 0.0199 0.0236 0.0305 0.0380 0.0487 0.0716
5.00E+06 0.0090 0.0123 0.0139 0.0168 0.0197 0.0235 0.0304 0.0379 0.0486 0.0716
1.00E+07 0.0081 0.0122 0.0138 0.0168 0.0197 0.0234 0.0304 0.0379 0.0486 0.0716
5.00E+07 0.0065 0.0120 0.0138 0.0167 0.0196 0.0234 0.0304 0.0379 0.0486 0.0716
1.00E+08 0.0059 0.0120 0.0137 0.0167 0.0196 0.0234 0.0304 0.0379 0.0486 0.0716

f

f 0



The error can now be computed

e/D = 0 0.0001 0.0002 0.0005 0.001 0.002 0.005 0.01 0.02 0.05

Re
1.00E+04 0.29% 0.36% 0.43% 0.61% 0.88% 1.27% 1.86% 2.12% 2.08% 1.68%
2.50E+04 0.39% 0.24% 0.11% 0.21% 0.60% 1.04% 1.42% 1.41% 1.21% 0.87%
5.00E+04 0.63% 0.39% 0.19% 0.25% 0.67% 1.00% 1.11% 0.98% 0.77% 0.52%
7.50E+04 0.69% 0.38% 0.13% 0.35% 0.73% 0.95% 0.93% 0.77% 0.58% 0.38%
1.00E+05 0.71% 0.33% 0.06% 0.43% 0.76% 0.90% 0.81% 0.64% 0.47% 0.30%
2.50E+05 0.65% 0.04% 0.28% 0.64% 0.72% 0.66% 0.48% 0.35% 0.24% 0.14%
5.00E+05 0.52% 0.26% 0.51% 0.64% 0.59% 0.47% 0.31% 0.21% 0.14% 0.08%
7.50E+05 0.41% 0.41% 0.58% 0.59% 0.50% 0.37% 0.23% 0.15% 0.10% 0.06%
1.00E+06 0.33% 0.49% 0.60% 0.54% 0.43% 0.31% 0.19% 0.12% 0.08% 0.05%
5.00E+06 0.22% 0.51% 0.39% 0.24% 0.16% 0.10% 0.06% 0.03% 0.02% 0.01%
1.00E+07 0.49% 0.39% 0.27% 0.15% 0.10% 0.06% 0.03% 0.02% 0.01% 0.01%
5.00E+07 1.15% 0.15% 0.09% 0.05% 0.03% 0.02% 0.01% 0.01% 0.00% 0.00%
1.00E+08 1.44% 0.09% 0.06% 0.03% 0.02% 0.01% 0.00% 0.00% 0.00% 0.00%

The maximum discrepancy is 2.12% at Re  = 10,000 and e/D = 0.01

Error (%)

0.001

0.010

0.100

1E+04 1E+05 1E+06 1E+07 1E+08

Re

f0
e/D = 0
e/D = 0.0001
e/D = 0.0002
e/D = 0.0005
e/D = 0.001
e/D = 0.002
e/D = 0.005
e/D = 0.01
e/D = 0.02
e/D = 0.05



Problem 8.82

Using the above formula for f 0, and Eq. 8.37 for f 1

e/D = 0 0.0001 0.0002 0.0005 0.001 0.002 0.005 0.01 0.02 0.05

Re
1.00E+04 0.0309 0.0310 0.0311 0.0315 0.0322 0.0335 0.0374 0.0430 0.0524 0.0741
2.50E+04 0.0244 0.0245 0.0248 0.0254 0.0265 0.0285 0.0336 0.0401 0.0502 0.0727
5.00E+04 0.0207 0.0210 0.0213 0.0223 0.0237 0.0263 0.0321 0.0391 0.0495 0.0722
7.50E+04 0.0189 0.0193 0.0197 0.0209 0.0226 0.0254 0.0316 0.0387 0.0492 0.0720
1.00E+05 0.0178 0.0183 0.0187 0.0201 0.0220 0.0250 0.0313 0.0385 0.0491 0.0719
2.50E+05 0.0148 0.0156 0.0164 0.0183 0.0207 0.0241 0.0308 0.0382 0.0489 0.0718
5.00E+05 0.0131 0.0143 0.0153 0.0176 0.0202 0.0238 0.0306 0.0381 0.0488 0.0717
7.50E+05 0.0122 0.0137 0.0148 0.0173 0.0200 0.0237 0.0305 0.0381 0.0488 0.0717
1.00E+06 0.0116 0.0133 0.0146 0.0172 0.0199 0.0236 0.0305 0.0380 0.0488 0.0717
5.00E+06 0.0090 0.0123 0.0139 0.0168 0.0197 0.0235 0.0304 0.0380 0.0487 0.0717
1.00E+07 0.0081 0.0122 0.0139 0.0168 0.0197 0.0235 0.0304 0.0380 0.0487 0.0717
5.00E+07 0.0066 0.0120 0.0138 0.0167 0.0197 0.0235 0.0304 0.0380 0.0487 0.0717
1.00E+08 0.0060 0.0120 0.0138 0.0167 0.0197 0.0235 0.0304 0.0380 0.0487 0.0717

Using the add-in function Friction factor  from the Web

e/D = 0 0.0001 0.0002 0.0005 0.001 0.002 0.005 0.01 0.02 0.05

Re
1.00E+04 0.0309 0.0310 0.0312 0.0316 0.0324 0.0338 0.0376 0.0431 0.0523 0.0738
2.50E+04 0.0245 0.0248 0.0250 0.0257 0.0268 0.0288 0.0337 0.0402 0.0502 0.0725
5.00E+04 0.0209 0.0212 0.0216 0.0226 0.0240 0.0265 0.0322 0.0391 0.0494 0.0720
7.50E+04 0.0191 0.0196 0.0200 0.0212 0.0228 0.0256 0.0316 0.0387 0.0492 0.0719
1.00E+05 0.0180 0.0185 0.0190 0.0203 0.0222 0.0251 0.0313 0.0385 0.0490 0.0718
2.50E+05 0.0150 0.0158 0.0166 0.0185 0.0208 0.0241 0.0308 0.0381 0.0488 0.0716
5.00E+05 0.0132 0.0144 0.0154 0.0177 0.0202 0.0238 0.0306 0.0380 0.0487 0.0716
7.50E+05 0.0122 0.0138 0.0150 0.0174 0.0200 0.0237 0.0305 0.0380 0.0487 0.0716
1.00E+06 0.0116 0.0134 0.0147 0.0172 0.0199 0.0236 0.0305 0.0380 0.0487 0.0716
5.00E+06 0.0090 0.0123 0.0139 0.0168 0.0197 0.0235 0.0304 0.0379 0.0486 0.0716
1.00E+07 0.0081 0.0122 0.0138 0.0168 0.0197 0.0234 0.0304 0.0379 0.0486 0.0716
5.00E+07 0.0065 0.0120 0.0138 0.0167 0.0196 0.0234 0.0304 0.0379 0.0486 0.0716
1.00E+08 0.0059 0.0120 0.0137 0.0167 0.0196 0.0234 0.0304 0.0379 0.0486 0.0716

f

f 0



The error can now be computed

e/D = 0 0.0001 0.0002 0.0005 0.001 0.002 0.005 0.01 0.02 0.05

Re
1.00E+04 0.01% 0.15% 0.26% 0.46% 0.64% 0.73% 0.55% 0.19% 0.17% 0.43%
2.50E+04 0.63% 0.88% 1.02% 1.20% 1.22% 1.03% 0.51% 0.11% 0.14% 0.29%
5.00E+04 0.85% 1.19% 1.32% 1.38% 1.21% 0.84% 0.28% 0.00% 0.16% 0.24%
7.50E+04 0.90% 1.30% 1.40% 1.35% 1.07% 0.65% 0.16% 0.06% 0.17% 0.23%
1.00E+05 0.92% 1.34% 1.42% 1.28% 0.94% 0.52% 0.09% 0.09% 0.18% 0.22%
2.50E+05 0.84% 1.33% 1.25% 0.85% 0.47% 0.16% 0.07% 0.15% 0.19% 0.21%
5.00E+05 0.70% 1.16% 0.93% 0.48% 0.19% 0.00% 0.13% 0.18% 0.20% 0.20%
7.50E+05 0.59% 0.99% 0.72% 0.30% 0.07% 0.07% 0.16% 0.18% 0.20% 0.20%
1.00E+06 0.50% 0.86% 0.57% 0.20% 0.01% 0.10% 0.17% 0.19% 0.20% 0.20%
5.00E+06 0.07% 0.17% 0.01% 0.11% 0.15% 0.18% 0.19% 0.20% 0.20% 0.20%
1.00E+07 0.35% 0.00% 0.09% 0.15% 0.18% 0.19% 0.20% 0.20% 0.20% 0.20%
5.00E+07 1.02% 0.16% 0.18% 0.19% 0.20% 0.20% 0.20% 0.20% 0.20% 0.20%
1.00E+08 1.31% 0.18% 0.19% 0.20% 0.20% 0.20% 0.20% 0.20% 0.20% 0.20%

The maximum discrepancy is 1.42% at Re  = 100,000 and e/D = 0.0002

Error (%)

0.001

0.010

0.100

1E+04 1E+05 1E+06 1E+07 1E+08

Re

f
e/D = 0
e/D = 0.0001
e/D = 0.0002
e/D = 0.0005
e/D = 0.001
e/D = 0.002
e/D = 0.005
e/D = 0.01
e/D = 0.02
e/D = 0.05
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Problem 8.85 [2]

Given: Flow through gradual contraction

Find: Pressure after contraction; compare to sudden contraction

Solution:

Basic equations
p1
ρ

α

V1
2

2
⋅+ g z1⋅+

⎛⎜
⎜⎝

⎞⎟
⎟⎠

p2
ρ

α

V2
2

2
⋅+ g z2⋅+

⎛⎜
⎜⎝

⎞⎟
⎟⎠

− hlm= hlm K
V2

2

2
⋅= Q V A⋅=

Assumptions: 1) Steady flow 2) Incompressible flow 3) α at 1 and 2 is approximately 1 4) Horizontal

For an included angle of 120
o
 and an area ratio 

A2
A1

D2
D1

⎛
⎜
⎝

⎞
⎟
⎠

2

=
2.5
5

⎛⎜
⎝

⎞⎟
⎠

2
= 0.25=  we find from Table 8.3K 0.27=

Hence the energy equation becomes
p1
ρ

V1
2

2
+

⎛⎜
⎜⎝

⎞⎟
⎟⎠

p2
ρ

V2
2

2
+

⎛⎜
⎜⎝

⎞⎟
⎟⎠

− K
V2

2

2
⋅= with V1

4 Q⋅

π D1
2

⋅
= V2

4 Q⋅

π D2
2

⋅
=

p2 p1
ρ

2
1 K+( ) V2

2
⋅ V1

2
−⎡

⎣
⎤
⎦⋅−= p2

8 ρ⋅ Q2
⋅

π
2

1 K+( )

D2
4

1

D1
4

−⎡⎢
⎢⎣

⎤⎥
⎥⎦

⋅−=

p2 200 103
×

N

m2
⋅

8

π
2

1000×
kg

m3
⋅

0.003 mm3
⋅
s

1 m⋅
1000 mm⋅
⎛⎜
⎝

⎞⎟
⎠

3
⋅

⎡
⎢
⎣

⎤
⎥
⎦

2

× 1 0.27+( )
1

0.025 m⋅( )4
×

1

0.05 m⋅( )4
−⎡

⎢
⎣

⎤
⎥
⎦

×
N s2
⋅

kg m⋅
×−=

p2 200 kPa⋅= No change because the flow rate is miniscule!

Repeating the above analysis for an included angle of 180o (sudden contraction) K 0.41=

p2 200 103
×

N

m2
⋅

8

π
2

1000×
kg

m3
⋅

0.003 mm3
⋅
s

1 m⋅
1000 mm⋅
⎛⎜
⎝

⎞⎟
⎠

3
⋅

⎡
⎢
⎣

⎤
⎥
⎦

2

× 1 0.41+( )
1

0.025 m⋅( )4
×

1

0.05 m⋅( )4
−⎡

⎢
⎣

⎤
⎥
⎦

×
N s2
⋅

kg m⋅
×−=

p2 200 kPa⋅= No change because the flow rate is miniscule!

The flow rate has a typo: it is much too small, and should be Q 0.003
m3

s
⋅= not Q 0.003

mm3

s
⋅=

p2 200 103
×

N

m2
⋅

8

π
2

1000×
kg

m3
⋅

0.003 m3
⋅

s

⎛
⎜
⎝

⎞
⎟
⎠

2

× 1 0.27+( )
1

0.025 m⋅( )4
×

1

0.05 m⋅( )4
−⎡

⎢
⎣

⎤
⎥
⎦

×
N s2
⋅

kg m⋅
×−= p2 177 kPa⋅=

Repeating the above analysis for an included angle of 180o (sudden contraction) K 0.41=

p2 200 103
×

N

m2
⋅

8

π
2

1000×
kg

m3
⋅

0.003 m3
⋅

s

⎛
⎜
⎝

⎞
⎟
⎠

2

× 1 0.41+( )
1

0.025 m⋅( )4
×

1

0.05 m⋅( )4
−⎡

⎢
⎣

⎤
⎥
⎦

×
N s2
⋅

kg m⋅
×−= p2 175 kPa⋅=

There is slightly more loss in the sudden contraction



Problem 8.86 [2]

Given: Flow through sudden expansion

Find: Inlet speed; Volume flow rate

Solution:

Basic equations
p1
ρ

α

V1
2

2
⋅+ g z1⋅+

⎛⎜
⎜⎝

⎞⎟
⎟⎠

p2
ρ

α

V2
2

2
⋅+ g z2⋅+

⎛⎜
⎜⎝

⎞⎟
⎟⎠

− hlm= hlm K
V1

2

2
⋅= Q V A⋅= Δp ρH2O g⋅ Δh⋅=

Assumptions: 1) Steady flow 2) Incompressible flow 3) α at 1 and 2 is approximately 1 4) Horizontal

Hence the energy equation becomes

p1
ρ

V1
2

2
+

⎛⎜
⎜⎝

⎞⎟
⎟⎠

p2
ρ

V2
2

2
+

⎛⎜
⎜⎝

⎞⎟
⎟⎠

− K
V1

2

2
⋅=

From continuity V2 V1
A1
A2
⋅= V1 AR⋅=

Hence p1
ρ

V1
2

2
+

⎛⎜
⎜⎝

⎞⎟
⎟⎠

p2
ρ

V1
2 AR2
⋅

2
+

⎛⎜
⎜⎝

⎞⎟
⎟⎠

− K
V1

2

2
⋅=

Solving for V1 V1
2 p2 p1−( )⋅

ρ 1 AR2
− K−( )⋅

= AR
D1
D2

⎛
⎜
⎝

⎞
⎟
⎠

2

=
75
225
⎛⎜
⎝

⎞⎟
⎠

2
= 0.111= so from Fig. 8.14 K 0.8=

Also p2 p1− ρH2O g⋅ Δh⋅= 1000
kg

m3
⋅ 9.81×

m

s2
⋅

5
1000

× m⋅
N s2
⋅

kg m⋅
×= 49.1 Pa⋅=

Hence V1 2 49.1×
N

m2
⋅

m3

1.23 kg⋅
×

1

1 0.1112
− 0.8−( )×

kg m⋅

N s2
⋅

×= V1 20.6
m
s

=

Q V1 A1⋅=
π D1

2
⋅

4
V1⋅= Q

π

4
75

1000
m⋅⎛⎜

⎝
⎞⎟
⎠

2
× 20.6×

m
s

⋅= Q 0.0910
m3

s
⋅= Q 5.46

m3

min
⋅=



Problem 8.87 [2]

Given: Flow through sudden contraction

Find: Volume flow rate

Solution:

Basic equations
p1
ρ

α

V1
2

2
⋅+ g z1⋅+

⎛⎜
⎜⎝

⎞⎟
⎟⎠

p2
ρ

α

V2
2

2
⋅+ g z2⋅+

⎛⎜
⎜⎝

⎞⎟
⎟⎠

− hlm= hlm K
V2

2

2
⋅= Q V A⋅=

Assumptions: 1) Steady flow 2) Incompressible flow 3) α at 1 and 2 is approximately 1 4) Horizontal

Hence the energy equation becomes

p1
ρ

V1
2

2
+

⎛⎜
⎜⎝

⎞⎟
⎟⎠

p2
ρ

V2
2

2
+

⎛⎜
⎜⎝

⎞⎟
⎟⎠

− K
V2

2

2
⋅=

From continuity V1 V2
A2
A1
⋅= V2 AR⋅=

Hence p1
ρ

V2
2 AR2
⋅

2
+

⎛⎜
⎜⎝

⎞⎟
⎟⎠

p2
ρ

V2
2

2
+

⎛⎜
⎜⎝

⎞⎟
⎟⎠

− K
V2

2

2
⋅=

Solving for V2 V2
2 p1 p2−( )⋅

ρ 1 AR2
− K+( )⋅

= AR
D2
D1

⎛
⎜
⎝

⎞
⎟
⎠

2

=
1
2
⎛⎜
⎝
⎞⎟
⎠

2
= 0.25= so from Fig. 8.14 K 0.4=

Hence V2 2 0.5×
lbf

in2
⋅

12 in⋅
1 ft⋅

⎛⎜
⎝

⎞⎟
⎠

2
×

ft3

1.94 slug⋅
×

1

1 0.252
− 0.4+( )×

slug ft⋅

lbf s2
⋅

×= V2 7.45
ft
s

⋅=

Q V2 A2⋅=
π D2

2
⋅

4
V2⋅= Q

π

4
1
12

ft⋅⎛⎜
⎝

⎞⎟
⎠

2
× 7.45×

ft
s

⋅= Q 0.0406
ft3

s
⋅= Q 2.44

ft3

min
⋅= Q 18.2gpm=



Problem 8.88 [2]

Given: Data on a pipe sudden contraction

Find: Theoretical calibration constant; plot

Solution:

Given data D1 400 mm⋅= D2 200 mm⋅=

The governing equations between inlet (1) and exit (2) are

p1
ρ

α1
V1

2

2
⋅+ g z1⋅+

⎛⎜
⎜⎝

⎞⎟
⎟⎠

p2
ρ

α2
V2

2

2
⋅+ g z2⋅+

⎛⎜
⎜⎝

⎞⎟
⎟⎠

− hl= (8.29)

where hl K
V2

2

2
⋅= (8.40a)

Hence the pressure drop is (assuming α = 1)

Δp p1 p2−= ρ

V2
2

2

V1
2

2
− K

V2
2

2
⋅+

⎛⎜
⎜⎝

⎞⎟
⎟⎠

⋅=

For the sudden contraction V1
π

4
⋅ D1

2
⋅ V2

π

4
⋅ D2

2
⋅= Q=

or V2 V1
D1
D2

⎛
⎜
⎝

⎞
⎟
⎠

2

⋅=

so Δp
ρ V1

2
⋅

2

D1
D2

⎛
⎜
⎝

⎞
⎟
⎠

4

1 K+( ) 1−
⎡
⎢
⎢
⎣

⎤
⎥
⎥
⎦

⋅=

For the pressure drop we can use the manometer equation

Δp ρ g⋅ Δh⋅=

Hence ρ g⋅ Δh⋅
ρ V1

2
⋅

2

D1
D2

⎛
⎜
⎝

⎞
⎟
⎠

4

1 K+( ) 1−
⎡
⎢
⎢
⎣

⎤
⎥
⎥
⎦

⋅=



In terms of flow rate Q ρ g⋅ Δh⋅
ρ

2
Q2

π

4
D1

2
⋅⎛⎜

⎝
⎞⎟
⎠

2
⋅

D1
D2

⎛
⎜
⎝

⎞
⎟
⎠

4

1 K+( ) 1−
⎡
⎢
⎢
⎣

⎤
⎥
⎥
⎦

⋅=

or g Δh⋅
8 Q2
⋅

π
2 D1

4
⋅

D1
D2

⎛
⎜
⎝

⎞
⎟
⎠

4

1 K+( ) 1−
⎡
⎢
⎢
⎣

⎤
⎥
⎥
⎦

⋅=

Hence for flow rate Q we find Q k Δh⋅=

where k
g π

2
⋅ D1

4
⋅

8
D1
D2

⎛
⎜
⎝

⎞
⎟
⎠

4

1 K+( ) 1−
⎡
⎢
⎢
⎣

⎤
⎥
⎥
⎦

⋅

=

For K, we need the aspect ratio AR AR
D2
D1

⎛
⎜
⎝

⎞
⎟
⎠

2

= AR 0.25=

From Fig. 8.15 K 0.4=

Using this in the expression for k, with the other given values

k
g π

2
⋅ D1

4
⋅

8
D1
D2

⎛
⎜
⎝

⎞
⎟
⎠

4

1 K+( ) 1−
⎡
⎢
⎢
⎣

⎤
⎥
⎥
⎦

⋅

= 0.12
m

5
2

s
⋅=

For Δh in mm and Q in L/min k 228

L
min

mm

1
2

=

The plot of theoretical Q versus flow rate Δh is shown in the associated Excel workbook



D 1 = 400 mm
D 1 = 200 mm
K  = 0.4 The values for Δh  are quite low;

this would not be a good meter -
k  = 228 L/min/mm1/2 it is not sensitive enough.

In addition, it is non-linear.

Δh  (mm) Q  (L/min)
0.010 23
0.020 32
0.030 40
0.040 46
0.050 51
0.075 63
0.100 72
0.150 88
0.200 102
0.250 114
0.300 125
0.400 144
0.500 161
0.600 177
0.700 191
0.767 200

Calibration Curve for a
Sudden Contraction Flow Meter

10

100

1000

0.01 0.10 1.00
Δh (mm)

Q
 (L

/m
m

)



Problem 8.89 [3]

Given: Contraction coefficient for sudden contraction

Find: Expression for minor head loss; compare with Fig. 8.15; plot

Solution:

We analyse the loss at the "sudden expansion" at the vena contracta

The governing CV equations (mass, momentum, and energy) are

Assume: 1) Steady flow  2) Incompressible flow  3) Uniform flow at each section  4) Horizontal: no body force
5) No shaft work  6) Neglect viscous friction  7) Neglect gravity

The mass equation becomes Vc Ac⋅ V2 A2⋅= (1)

The momentum equation becomes pc A2⋅ p2 A2⋅− Vc ρ− Vc⋅ Ac⋅( )⋅ V2 ρ V2⋅ A2⋅( )⋅+=

or (using Eq. 1) pc p2− ρ Vc⋅
Ac
A2
⋅ V2 Vc−( )⋅= (2)

The energy equation becomes Qrate uc
pc
ρ

+ Vc
2

+
⎛
⎜
⎝

⎞
⎟
⎠

ρ− Vc⋅ Ac⋅( )⋅ u2
p2
ρ

+ V2
2

+
⎛
⎜
⎝

⎞
⎟
⎠

ρ V2⋅ A2⋅( )⋅+=

or (using Eq. 1) hlm u2 uc−
Qrate
mrate

−=
Vc

2 V2
2

−

2

pc p2−

ρ
+= (3)



Combining Eqs. 2 and 3 hlm
Vc

2 V2
2

−

2
Vc

Ac
A2
⋅ V2 Vc−( )⋅+=

hlm
Vc

2

2
1

V2
Vc

⎛
⎜
⎝

⎞
⎟
⎠

2

−
⎡
⎢
⎢
⎣

⎤
⎥
⎥
⎦

⋅ Vc
2 Ac

A2
⋅

V2
Vc

⎛
⎜
⎝

⎞
⎟
⎠

1−
⎡
⎢
⎣

⎤
⎥
⎦

⋅+=

From Eq. 1 Cc
Ac
A2

=
V2
Vc

=

Hence hlm
Vc

2

2
1 Cc

2
−⎛

⎝
⎞
⎠⋅ Vc

2 Cc⋅ Cc 1−( )⋅+=

hlm
Vc

2

2
1 Cc

2
− 2 Cc

2
⋅+ 2 Cc⋅−⎛

⎝
⎞
⎠⋅=

hlm
Vc

2

2
1 Cc−( )2⋅= (4)

But we have hlm K
V2

2

2
⋅= K

Vc
2

2
⋅

V2
Vc

⎛
⎜
⎝

⎞
⎟
⎠

2

⋅= K
Vc

2

2
⋅ Cc

2
⋅= (5)

Hence, comparing Eqs. 4 and 5 K
1 Cc−( )2

Cc
2

=

So, finally K
1

Cc
1−⎛

⎜
⎝

⎞
⎟
⎠

2
=

where Cc 0.62 0.38
A2
A1

⎛
⎜
⎝

⎞
⎟
⎠

3

⋅+=

This result, and the curve of Fig. 8.15, are shown in the associated Excel workbook.  The agreement is reasonable.



The CV analysis leads to

A 2/A 1 K CV K Fig. 8.15

0.0 0.376 0.50
0.1 0.374
0.2 0.366 0.40
0.3 0.344
0.4 0.305 0.30
0.5 0.248 0.20
0.6 0.180
0.7 0.111 0.10
0.8 0.052
0.9 0.013 0.01
1.0 0.000 0.00

(Data from Fig. 8.15
is "eyeballed")
Agreement is reasonable

Loss Coefficient for a
Sudden Contraction

0.0

0.3

0.5

0.8

1.0

0.00 0.25 0.50 0.75 1.00
Area Ratio AR

K
Theoretical Curve

Fig. 8.15



Problem 8.90 [2]

Given: Flow through short pipe

Find: Volume flow rate; How to improve flow rate

Solution:

Basic equations
p1
ρ

α

V1
2

2
⋅+ g z1⋅+

⎛⎜
⎜⎝

⎞⎟
⎟⎠

p2
ρ

α

V2
2

2
⋅+ g z2⋅+

⎛⎜
⎜⎝

⎞⎟
⎟⎠

− hlT= hlT hl hlm+= f
L
D
⋅

V2
2

2
⋅ K

V2
2

2
⋅+= Q V A⋅=

Assumptions: 1) Steady flow 2) Incompressible flow 3) α at 1 and 2 is approximately 1 4) L << so ignore hl 5) Reentrant

Hence between the free surface (Point 1) and the exit (2) the energy equation becomes

V1
2

2
g z1⋅+

V2
2

2
− K

V2
2

2
⋅=

From continuity V1 V2
A2
A1
⋅=

Hence
V2

2

2

A2
A1

⎛
⎜
⎝

⎞
⎟
⎠

2

⋅ g h⋅+
V2

2

2
− K

V2
2

2
⋅=

Solving for V2 V2
2 g⋅ h⋅

1 K+
A2
A1

⎛
⎜
⎝

⎞
⎟
⎠

2

−
⎡
⎢
⎢
⎣

⎤
⎥
⎥
⎦

= and from Table 8.2 K 0.78=

Hence V2 2 9.81×
m

s2
⋅ 1× m⋅

1

1 0.78+
350
3500
⎛⎜
⎝

⎞⎟
⎠

2
−

⎡
⎢
⎣

⎤
⎥
⎦

×= V2 3.33
m
s

=

Q V2 A2⋅= Q 3.33
m
s

⋅ 350× mm2
⋅

1 m⋅
1000 mm⋅
⎛⎜
⎝

⎞⎟
⎠

2
×= Q 1.17 10 3−

×
m3

s
= Q 0.070

m3

min
=

The flow rate could be increased by (1) rounding the entrance and/or (2) adding a diffuser (both somewhat expensive)



 
Problem 8.91                                                                             [3]



 
Problem 8.92                                                                             [2]



Problem 8.93 [3]

Given: Flow out of water tank

Find: Volume flow rate using hole; Using short pipe section; Using rounded edge

Solution:

Basic equations
p1
ρ

α

V1
2

2
⋅+ g z1⋅+

⎛⎜
⎜⎝

⎞⎟
⎟⎠

p2
ρ

α

V2
2

2
⋅+ g z2⋅+

⎛⎜
⎜⎝

⎞⎟
⎟⎠

− hlT= hlT hl hlm+= f
L
D
⋅

V2
2

2
⋅ K

V2
2

2
⋅+= Q V A⋅=

Assumptions: 1) Steady flow 2) Incompressible flow 3) α at 1 and 2 is approximately 1 4) Vl << 5) L << so hl = 0

Hence for all three cases, between the free surface (Point 1) and the exit (2) the energy equation becomes

g z1⋅
V2

2

2
− K

V2
2

2
⋅=

Solving for V2 V2
2 g⋅ h⋅
1 K+( )

=

From Table 8.2 Khole 0.5= for a hole (assumed to be square-edged) Kpipe 0.78= for a short pipe (rentrant)

Also, for a rounded edge r
D

0.01 in⋅
0.5 in⋅

= 0.02= so from Table 8.2 Kround 0.28=

Hence for the hole V2 2 32.2×
ft

s2
⋅ 10× ft⋅

1
1 0.5+( )

×= V2 20.7
ft
s

⋅=

Q V2 A2⋅= Q 20.7
ft
s

⋅
π

4
×

0.5
12

ft⋅⎛⎜
⎝

⎞⎟
⎠

2
×

7.48 gal⋅

1 ft3⋅
×

60 s⋅
1 min⋅

×= Q 12.7 gpm⋅=

Hence for the pipe V2 2 32.2×
ft

s2
⋅ 10× ft⋅

1
1 0.78+( )

×= V2 19.0
ft
s

⋅=

Q V2 A2⋅= Q 19.0
ft
s

⋅
π

4
×

0.5
12

ft⋅⎛⎜
⎝

⎞⎟
⎠

2
×

7.48 gal⋅

1 ft3⋅
×

60 s⋅
1 min⋅

×= Q 11.6 gpm⋅=

Hence the change in flow rate is 11.6 12.7− 1.1− gpm⋅= The pipe leads to a LOWER flow rate

Hence for the rounded V2 2 32.2×
ft

s2
⋅ 10× ft⋅

1
1 0.28+( )

×= V2 22.4
ft
s

⋅=

Q V2 A2⋅= Q 22.4
ft
s

⋅
π

4
×

0.5
12

ft⋅⎛⎜
⎝

⎞⎟
⎠

2
×

7.48 gal⋅

1 ft3⋅
×

60 s⋅
1 min⋅

×= Q 13.7 gpm⋅=

Hence the change in flow rate is 13.7 12.7− 1.0 gpm⋅= The rounded edge leads to a HIGHER flow rate



Problem 8.94 [2]

Given: Data on inlet and exit diameters of diffuser

Find: Minimum lengths to satisfy requirements

Solution:

Given data D1 100 mm⋅= D2 150 mm⋅=

The governing equations for the diffuser are

hlm K
V1

2

2
⋅= Cpi Cp−( )

V1
2

2
⋅= (8.44)

and Cpi 1
1

AR2
−= (8.42)

Combining these we obtain an expression for the loss coefficient K

K 1
1

AR2
− Cp−= (1)

The area ratio AR is AR
D2
D1

⎛
⎜
⎝

⎞
⎟
⎠

2

= AR 2.25=

The pressure recovery coefficient Cp is obtained from Eq. 1 above once we select K; then, with Cp and AR specified, the minimum value of
N/R1 (where N is the length and R1 is the inlet radius) can be read from Fig. 8.15

(a) K 0.2= Cp 1
1

AR2
− K−= Cp 0.602=

From Fig. 8.15 N
R1

5.5= R1
D1
2

= R1 50 mm⋅=

N 5.5 R1⋅= N 275 mm⋅=

(b) K 0.35= Cp 1
1

AR2
− K−= Cp 0.452=

From Fig. 8.15 N
R1

3=

N 3 R1⋅= N 150 mm⋅=



Problem 8.95 [3]

Given: Data on geometry of conical diffuser; flow rate

Find: Static pressure rise; loss coefficient

Solution:
Basic equations Cp

p2 p1−

1
2

ρ⋅ V1
2

⋅
= (8.41) hlm K

V1
2

2
⋅= Cpi Cp−( )

V1
2

2
⋅= (8.44) Cpi 1

1

AR2
−= (8.42)

Given data D1 2 in⋅= D2 3.5 in⋅= N 6 in⋅= (N = length) Q 750 gpm⋅=

From Eq. 8.41 Δp p2 p1−=
1
2

ρ⋅ V1
2

⋅ Cp⋅= (1)

Combining Eqs. 8.44 and 8.42 we obtain an expression for the loss coefficient K K 1
1

AR2
− Cp−= (2)

The pressure recovery coefficient Cp for use in Eqs. 1 and 2 above is obtained from Fig. 8.15 once compute AR and the dimensionless
length N/R1 (where R1 is the inlet radius)

The aspect ratio AR is AR
D2
D1

⎛
⎜
⎝

⎞
⎟
⎠

2

= AR
3.5
2

⎛⎜
⎝

⎞⎟
⎠

2
= AR 3.06=

R1
D1
2

= R1 1 in⋅= Hence N
R1

6=

From Fig. 8.15, with AR = 3.06 and the dimensionless length N/R1 = 6, we find Cp 0.6=

To complete the calculations we need V1 V1
Q

π

4
D1

2
⋅

= V1
4
π

750×
gal
min
⋅

1 ft3⋅
7.48 gal⋅

×
1 min⋅
60 s⋅

×
1

2
12

ft⋅

⎛
⎜
⎜
⎝

⎞
⎟
⎟
⎠

2
×= V1 76.6

ft
s

⋅=

We can now compute the pressure rise and loss coefficient from Eqs. 1 and 2 Δp
1
2

ρ⋅ V1
2

⋅ Cp⋅=

Δp
1
2

1.94×
slug

ft3
⋅ 76.6

ft
s

⋅⎛⎜
⎝

⎞⎟
⎠

2
× 0.6×

lbf s2
⋅

slug ft⋅
×

1 ft⋅
12 in⋅
⎛⎜
⎝

⎞⎟
⎠

2
×= Δp 23.7 psi⋅=

K 1
1

AR2
− Cp−= K 1

1

3.062
− 0.6−= K 0.293=
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Problem 8.97 [3]

Given: Sudden expansion

Find: Expression for minor head loss; compare with Fig. 8.15; plot

Solution:

The governing CV equations (mass, momentum, and energy) are

Assume: 1) Steady flow  2) Incompressible flow  3) Uniform flow at each section  4) Horizontal: no body force
5) No shaft work  6) Neglect viscous friction  7) Neglect gravity

The mass equation becomes V1 A1⋅ V2 A2⋅= (1)

The momentum equation becomes p1 A2⋅ p2 A2⋅− V1 ρ− V1⋅ A1⋅( )⋅ V2 ρ V2⋅ A2⋅( )⋅+=

or (using Eq. 1) p1 p2− ρ V1⋅
A1
A2
⋅ V2 V1−( )⋅= (2)

The energy equation becomes Qrate u1
p1
ρ

+ V1
2

+
⎛
⎜
⎝

⎞
⎟
⎠

ρ− V1⋅ A1⋅( )⋅ u2
p2
ρ

+ V2
2

+
⎛
⎜
⎝

⎞
⎟
⎠

ρ V2⋅ A2⋅( )⋅+=

or (using Eq. 1) hlm u2 u1−
Qrate
mrate

−=
V1

2 V2
2

−

2

p1 p2−

ρ
+= (3)

Combining Eqs. 2 and 3 hlm
V1

2 V2
2

−

2
V1

A1
A2
⋅ V2 V1−( )⋅+=

hlm
V1

2

2
1

V2
V1

⎛
⎜
⎝

⎞
⎟
⎠

2

−
⎡
⎢
⎢
⎣

⎤
⎥
⎥
⎦

⋅ V1
2 A1

A2
⋅

V2
V1

⎛
⎜
⎝

⎞
⎟
⎠

1−
⎡
⎢
⎣

⎤
⎥
⎦

⋅+=



From Eq. 1 AR
A1
A2

=
V2
V1

=

Hence hlm
V1

2

2
1 AR2
−( )⋅ V1

2 AR⋅ AR 1−( )⋅+=

hlm
V1

2

2
1 AR2
− 2 AR2

⋅+ 2 AR⋅−( )⋅=

hlm K
V1

2

2
⋅= 1 AR−( )2 V1

2

2
⋅=

Finally K 1 AR−( )2
=

This result, and the curve of Fig. 8.15, are shown in the associated Excel workbook.  The agreement is excellent



From the CV analysis

AR K CV K Fig. 8.15

0.0 1.00 1.00
0.1 0.81
0.2 0.64 0.60
0.3 0.49
0.4 0.36 0.38
0.5 0.25 0.25
0.6 0.16
0.7 0.09 0.10
0.8 0.04
0.9 0.01 0.01
1.0 0.00 0.00

(Data from Fig. 8.15
is "eyeballed")
Agreement is excellent

Loss Coefficient for a
Sudden Expansion

0.0

0.3

0.5

0.8

1.0

0.00 0.25 0.50 0.75 1.00
Area Ratio AR

K

Theoretical Curve

Fig. 8.15
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Problem 8.99 [2]

Given: Sudden expansion

Find: Expression for upstream average velocity

Solution:

The governing equation is
p1
ρ

α1
V1

2

2
⋅+ g z1⋅+

⎛⎜
⎜⎝

⎞⎟
⎟⎠

p2
ρ

α2
V2

2

2
⋅+ g z2⋅+

⎛⎜
⎜⎝

⎞⎟
⎟⎠

− hlT= (8.29)

hlT hl K
V2

2
⋅+=

Assume: 1) Steady flow 2) Incompressible flow 3) hl = 0 4) α1 = α2 = 1  5) Neglect gravity

The mass equation is V1 A1⋅ V2 A2⋅= so V2 V1
A1
A2
⋅=

V2 AR V1⋅= (1)

Equation 8.29 becomes
p1
ρ

V1
2

2
+

p1
ρ

V1
2

2
+ K

V1
2

2
⋅+=

or (using Eq. 1) Δp
ρ

p2 p1−

ρ
=

V1
2

2
1 AR2
− K−( )⋅=

Solving for V1 V1
2 Δp⋅

ρ 1 AR2
− K−( )⋅

=

If the flow were frictionless, K = 0, so Vinviscid
2 Δp⋅

ρ 1 AR2
−( )⋅

V1<=

Hence the flow rate indicated by a given Δp would be lower

If the flow were frictionless, K = 0, so Δpinvscid
V1

2

2
1 AR2
−( )⋅=

compared to Δp
V1

2

2
1 AR2
− K−( )⋅=

Hence a given flow rate would generate a larger Δp for inviscid flow



Problem 8.100 [4]

Flow 

 

Nozzle Short pipe 

Given: Flow out of water tank through a nozzle

Find: Change in flow rate when short pipe section is added; Minimum pressure; Effect of frictionless flow

Solution:

Basic equations
p1
ρ

α

V1
2

2
⋅+ g z1⋅+

⎛⎜
⎜⎝

⎞⎟
⎟⎠

p2
ρ

α

V2
2

2
⋅+ g z2⋅+

⎛⎜
⎜⎝

⎞⎟
⎟⎠

− hlT= hlT hl hlm+= f
L
D
⋅

V2
2

2
⋅ K

V2
2

2
⋅+= Q V A⋅=

Assumptions: 1) Steady flow 2) Incompressible flow 3) α at 1 and 2 is approximately 1 4) Vl << 5) L << so hl = 0

Hence for the nozzle case, between the free surface (Point 1) and the exit (2) the energy equation becomes

g z1⋅
V2

2

2
− Knozzle

V2
2

2
⋅=

Solving for V2 V2
2 g⋅ z1⋅

1 Knozzle+( )
=

For a rounded edge, we choose the first value from Table 8.2 Knozzle 0.28=

Hence V2 2 32.2×
ft

s2
⋅ 5× ft⋅

1
1 0.28+( )

×= V2 15.9
ft
s

⋅=

Q V2 A2⋅= Q 15.9
ft
s

⋅
π

4
×

0.5
12

ft⋅⎛⎜
⎝

⎞⎟
⎠

2
×

7.48 gal⋅

1 ft3⋅
×

60 s⋅
1 min⋅

×= Q 9.73 gpm⋅= Q 0.0217
ft3

s
=

When a small piece of pipe is added the energy equation between the free surface (Point 1) and the exit (3) becomes

g z1⋅
V3

2

2
− Knozzle

V2
2

2
⋅ Ke

V2
2

2
⋅+=

From continuity V3 V2
A2
A3
⋅= V2 AR⋅=

Solving for V2 V2
2 g⋅ z1⋅

AR2 Knozzle+ Ke+⎛
⎝

⎞
⎠

=

We need the AR for the sudden expansion AR
A2
A3

=
D2
D3

⎛
⎜
⎝

⎞
⎟
⎠

2

=
1
2
⎛⎜
⎝
⎞⎟
⎠

2
= 0.25=

From Fig. 8.14 for AR = 0.25 Ke 0.6=



Hence V2 2 32.2×
ft

s2
⋅ 5× ft⋅

1

0.252 0.28+ 0.6+( )×= V2 18.5
ft
s

⋅=

Q V2 A2⋅= Q 18.5
ft
s

⋅
π

4
×

0.5
12

ft⋅⎛⎜
⎝

⎞⎟
⎠

2
×

7.48 gal⋅

1 ft3⋅
×

60 s⋅
1 min⋅

×= Q 11.32 gpm⋅= Q 0.0252
ft3

s
=

Comparing results we see the flow increases from 0.0217 ft3/s to 0.0252 ft3/s ΔQ
Q

0.0252 0.0217−
0.0217

= 16.1 %⋅=

The flow increases because the effect of the pipe is to allow an exit pressure at the nozzle LESS than atmospheric!

The minimum pressure point will now be at Point 2 (it was atmospheric before adding the small pipe).  The energy
equation between 1 and 2 is

g z1⋅
p2
ρ

V2
2

2
+

⎛⎜
⎜⎝

⎞⎟
⎟⎠

− Knozzle
V2

2

2
⋅=

Solving for p2 p2 ρ g z1⋅
V2

2

2
Knozzle 1+( )⋅−

⎡⎢
⎢⎣

⎤⎥
⎥⎦

⋅=

Hence p2 1.94
slug

ft3
⋅ 32.2

ft

s2
⋅ 5× ft⋅

1
2

18.5
ft
s

⋅⎛⎜
⎝

⎞⎟
⎠

2
× 0.28 1+( )×−

⎡⎢
⎢⎣

⎤⎥
⎥⎦

×
lbf s2

⋅
slug ft⋅

×= p2 113−
lbf

ft2
= p2 0.782− psi=

If the flow were frictionless the the two loss coeffcients would be zero.  Instead of V2
2 g⋅ z1⋅

AR2 Knozzle+ Ke+⎛
⎝

⎞
⎠

=

We'd have V2
2 g⋅ z1⋅

AR2
= which is larger

If V2 is larger, then p2, through Bernoulli, would be lower (more negative)
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Given data: Tabulated or graphical data:

L  = 15.3 m ν = 1.00E-06 m2/s
D  = 3.18 mm ρ = 998 kg/m3

K ent = 1.4 (Appendix A)
α = 2

Computed results:

Re  = 2300 (Transition Re )
V  = 0.723 m/s
α = 1 (Turbulent)
f  = 0.0473 (Turbulent)

d  = 6.13 m (Vary d  to minimize error in energy equation)

Energy equation: Left (m2/s) Right (m2/s) Error
(Using Solver ) 59.9 59.9 0.00%

Note that we used α = 1 (turbulent); using α = 2 (laminar) gives d  = 6.16 m
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Problem 8.105 [3]

Given: Data on a tube

Find: "Resistance" of tube for flow of kerosine; plot

Solution:

The given data is L 100 mm⋅= D 0.3 mm⋅=

From Fig. A.2 and Table A.2 μ 1.1 10 3−
×

N s⋅

m2
⋅= ρ 0.82 990×

kg

m3
⋅= 812

kg

m3
⋅= (Kerosene)

For an electrical resistor V R I⋅= (1)

The governing equations for turbulent flow are

p1
ρ

α1
V1

2

2
⋅+ g z1⋅+

⎛⎜
⎜⎝

⎞⎟
⎟⎠

p2
ρ

α2
V2

2

2
⋅+ g z2⋅+

⎛⎜
⎜⎝

⎞⎟
⎟⎠

− hl= (8.29)

hl f
L
D
⋅

V2

2
⋅= (8.34) 1

f
2.0− log

e
D

3.7
2.51

Re f⋅
+

⎛
⎜
⎜
⎝

⎞
⎟
⎟
⎠

⋅= (8.37)

Simplifying Eqs. 8.29 and 8.34 for a horizontal, constant-area pipe

p1 p2−

ρ
f

L
D
⋅

V2

2
⋅= f

L
D
⋅

Q
π

4
D2
⋅

⎛
⎜
⎜
⎝

⎞
⎟
⎟
⎠

2

2
⋅= Δp

8 ρ⋅ f⋅ L⋅

π
2 D5
⋅

Q2
⋅=or (2)

By analogy, current I is represented by flow rate Q, and voltage V by pressure drop Δp.
Comparing Eqs. (1) and (2), the "resistance" of the tube is

R
Δp
Q

=
8 ρ⋅ f⋅ L⋅ Q⋅

π
2 D5
⋅

=

The "resistance" of a tube is not constant, but is proportional to the "current" Q!  Actually, the dependence is not quite linear,
because f decreases slightly (and nonlinearly) with Q.  The analogy fails!

The analogy is hence invalid for Re 2300> or ρ V⋅ D⋅
μ

2300>

Writing this constraint in terms of flow rate

ρ
Q

π

4
D2
⋅

⋅ D⋅

μ
2300> or Q

2300 μ⋅ π⋅ D⋅
4 ρ⋅

>

Flow rate above which analogy fails Q 7.34 10 7−
×

m3

s
=

The plot of "resistance" versus flow rate is shown in the associated Excel workbook 



Given data: Tabulated or graphical data:

L  = 100 mm μ = 1.01E-03 N.s/m2

D  = 0.3 mm SG ker = 0.82
ρw = 990 kg/m3

ρ = 812 kg/m3

(Appendix A)

Computed results:

Q  (m3/s) V  (m/s) Re f "R" (109 

Pa/m3/s)

1.0E-06 14.1 3.4E+03 0.0419 1133
2.0E-06 28.3 6.8E+03 0.0343 1855
4.0E-06 56.6 1.4E+04 0.0285 3085
6.0E-06 84.9 2.0E+04 0.0257 4182
8.0E-06 113.2 2.7E+04 0.0240 5202
1.0E-05 141.5 3.4E+04 0.0228 6171
2.0E-05 282.9 6.8E+04 0.0195 10568
4.0E-05 565.9 1.4E+05 0.0169 18279
6.0E-05 848.8 2.0E+05 0.0156 25292
8.0E-05 1131.8 2.7E+05 0.0147 31900

The "resistance" is not constant; the analogy is invalid for turbulent flow

"Resistance" of a Tube versus Flow Rate

1.E+00

1.E+02

1.E+04

1.E+06

1.0E-06 1.0E-05 1.0E-04

Q  (m3/s)

"R"
(109 Pa/m3/s)



Given data: Tabulated or graphical data:

L  = 100 m μ = 1.01E-03 N.s/m2

D  = 10 mm ρ = 998 kg/m3

α = 1 (All flows turbulent) (Table A.8)
K ent = 0.5 (Square-edged)

(Table 8.2)

Computed results:

Q  (L/min) V  (m/s) Re f d  (m)
1 0.2 2.1E+03 0.0305 0.704
2 0.4 4.2E+03 0.0394 3.63
3 0.6 6.3E+03 0.0350 7.27
4 0.8 8.4E+03 0.0324 11.9
5 1.1 1.0E+04 0.0305 17.6
6 1.3 1.3E+04 0.0291 24.2
7 1.5 1.5E+04 0.0280 31.6
8 1.7 1.7E+04 0.0270 39.9
9 1.9 1.9E+04 0.0263 49.1

10 2.1 2.1E+04 0.0256 59.1

Required Reservoir Head versus Flow Rate

0

25

50

75

0 2 4 6 8 10 12
Q  (L/min)

d  (m)



Problem 8.107 [3]

Given: Flow of oil in a pipe

Find: Percentage change in loss if diameter is reduced

Solution:
Basic equations hl f

L
D
⋅

V2

2
⋅= f

64
Re

= Laminar 1

f
2.0− log

e
D

3.7
2.51

Re f⋅
+

⎛
⎜
⎜
⎝

⎞
⎟
⎟
⎠

⋅= Turbulent

Here V
Q
A

=
4 Q⋅

π D2
⋅

= V
4
π

0.003×
m3

s
⋅

1
0.04 m⋅
⎛⎜
⎝

⎞⎟
⎠

2
×= V 2.39

m
s

=

Then Re
V D⋅

ν
= Re 2.39

m
s

⋅ 0.04× m⋅
s

0.00005 m2
⋅

×= Re 1912=

The flow is LAMINAR hl f
L
D
⋅

V2

2
⋅= hl

64
Re

L
D
⋅

V2

2
⋅= hl

64
1912

25 m⋅
0.04 m⋅

×
2.39

m
s

⋅⎛⎜
⎝

⎞⎟
⎠

2

2
×= hl 643

ft2

s2
⋅=

When the diameter is reduced

V
Q
A

=
4 Q⋅

π D2
⋅

= V
4
π

0.003×
m3

s
⋅

1
0.01 m⋅
⎛⎜
⎝

⎞⎟
⎠

2
×= V 38.2

m
s

=

Re
V D⋅

ν
= Re 38.2

m
s

⋅ 0.01× m⋅
s

0.00005 m2
⋅

×= Re 7640=

The flow is TURBULENT For a steel pipe, from table 8.1 e 0.046 mm⋅=

Given
1

f
2.0− log

e
D

3.7
2.51

Re f⋅
+

⎛
⎜
⎜
⎝

⎞
⎟
⎟
⎠

⋅= f 0.0389=

hl f
L
D
⋅

V2

2
⋅= hl 0.0389

25 m⋅
0.01 m⋅

×
38.2

m
s

⋅⎛⎜
⎝

⎞⎟
⎠

2

2
×= hl 7.64 105

×
ft2

s2
⋅=

The increase in loss is

7.64 105
×

ft2

s2

643
ft2

s2

1188= This is a HUGH increase!  As a percentage increase of
118800%.  Hence choice of diameter is very important!
The increase is because the diameter reduces by a factor of
four and the velocity therefore increases by a factor of 16,
and is squared!
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Problem 8.109 [3]

Given: Data on reservoir/pipe system

Find: Plot elevation as a function of flow rate; fraction due to minor losses

Solution:

L  = 250 m
D  = 50 mm

e/D  = 0.003
K ent = 0.5
K exit = 1.0

ν = 1.01E-06 m2/s

Q  (m3/s) V  (m/s) Re f Δz  (m) h lm /h lT

0.0000 0.000 0.00E+00 0.000
0.0005 0.255 1.26E+04 0.0337 0.562 0.882%
0.0010 0.509 2.52E+04 0.0306 2.04 0.972%
0.0015 0.764 3.78E+04 0.0293 4.40 1.01%
0.0020 1.02 5.04E+04 0.0286 7.64 1.04%
0.0025 1.27 6.30E+04 0.0282 11.8 1.05%
0.0030 1.53 7.56E+04 0.0279 16.7 1.07%
0.0035 1.78 8.82E+04 0.0276 22.6 1.07%
0.0040 2.04 1.01E+05 0.0275 29.4 1.08%
0.0045 2.29 1.13E+05 0.0273 37.0 1.09%
0.0050 2.55 1.26E+05 0.0272 45.5 1.09%
0.0055 2.80 1.39E+05 0.0271 54.8 1.09%
0.0060 3.06 1.51E+05 0.0270 65.1 1.10%
0.0065 3.31 1.64E+05 0.0270 76.2 1.10%
0.0070 3.57 1.76E+05 0.0269 88.2 1.10%
0.0075 3.82 1.89E+05 0.0269 101 1.10%
0.0080 4.07 2.02E+05 0.0268 115 1.11%
0.0085 4.33 2.14E+05 0.0268 129 1.11%
0.0090 4.58 2.27E+05 0.0268 145 1.11%
0.0095 4.84 2.40E+05 0.0267 161 1.11%
0.0100 5.09 2.52E+05 0.0267 179 1.11%

Required Head versus Flow Rate
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Minor Loss Percentage versus Flow Rate
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Problem 8.110 [2]

Given: Flow from pump to reservoir

Find: Pressure at pump discharge

Solution:

Basic equations
p1
ρ

α

V1
2

2
⋅+ g z1⋅+

⎛⎜
⎜⎝

⎞⎟
⎟⎠

p2
ρ

α

V2
2

2
⋅+ g z2⋅+

⎛⎜
⎜⎝

⎞⎟
⎟⎠

− hlT= hlT hl hlm+= f
L
D
⋅

V1
2

2
⋅ Kexit

V1
2

2
⋅+=

Assumptions: 1) Steady flow 2) Incompressible flow 3) α at 1 and 2 is approximately 1 4) V2 <<

Hence the energy equation between Point 1 and the free surface (Point 2) becomes

p1
ρ

V2

2
+

⎛
⎜
⎝

⎞
⎟
⎠

g z2⋅( )− f
L
D
⋅

V2

2
⋅ Kexit

V2

2
⋅+=

Solving for p1 p1 ρ g z2⋅
V2

2
− f

L
D
⋅

V2

2
⋅+ Kexit

V2

2
⋅+

⎛
⎜
⎝

⎞
⎟
⎠

⋅=

From Table A.7 (68oF) ρ 1.94
slug

ft3
⋅= ν 1.08 10 5−

×
ft2

s
⋅=

Re
V D⋅

ν
= Re 10

ft
s

⋅
9
12

× ft⋅
s

1.08 10 5−
× ft2⋅

×= Re 6.94 105
×= Turbulent

For commercial steel pipe e 0.00015 ft⋅= (Table 8.1) so e
D

0.0002=

Flow is turbulent: Given
1

f
2.0− log

e
D

3.7
2.51

Re f⋅
+

⎛
⎜
⎜
⎝

⎞
⎟
⎟
⎠

⋅= f 0.0150=

For the exit Kexit 1.0= so we find p1 ρ g z2⋅ f
L
D
⋅

V2

2
⋅+

⎛
⎜
⎝

⎞
⎟
⎠

⋅=

p1 1.94
slug

ft3
⋅ 32.2

ft

s2
⋅ 50× ft⋅ .0150

4 mile⋅
0.75 ft⋅

×
5280 ft⋅
1mile

×
1
2

× 10
ft
s

⋅⎛⎜
⎝

⎞⎟
⎠

2
×+

⎡⎢
⎢⎣

⎤⎥
⎥⎦

×
lbf s2

⋅
slug ft⋅

×= p1 4.41 104
×

lbf

ft2
⋅= p1 306 psi⋅=



Problem 8.111 [3]

Given: Flow through three different layouts

Find: Which has minimum loss

Solution:

Basic equations
p1
ρ

α

V1
2

2
⋅+ g z1⋅+

⎛⎜
⎜⎝

⎞⎟
⎟⎠

p2
ρ

α

V2
2

2
⋅+ g z2⋅+

⎛⎜
⎜⎝

⎞⎟
⎟⎠

− hlT= hlT hl hlm+= f
L
D
⋅

V2

2
⋅

Minor

f
Le
D

⋅
V2

2
⋅

⎛
⎜
⎝

⎞
⎟
⎠∑+=

Assumptions: 1) Steady flow 2) Incompressible flow 3) α is approximately 1  4) Ignore additional length of elbows

For a flow rate of Q 350
L

min
⋅= V

Q
A

=
4 Q⋅

π D2
⋅

= V
4
π

350×
L

min
⋅

0.001 m3
⋅

1 L⋅
×

1 min⋅
60 s⋅

×
1

0.05 m⋅
⎛⎜
⎝

⎞⎟
⎠

2
×= V 2.97

m
s

=

For water at 20oC ν 1.01 10 6−
×

m2

s
⋅= Re

V D⋅
ν

= Re 2.97
m
s

⋅ 0.05× m⋅
s

1.01 10 6−
× m2

⋅
×= Re 1.47 105

×=

Flow is turbulent.  From Table 8.1 e 0.15 mm⋅=
e
D

6.56 10 4−
×=

Given
1

f
2.0− log

e
D

3.7
2.51

Re f⋅
+

⎛
⎜
⎜
⎝

⎞
⎟
⎟
⎠

⋅= f 0.0201=

For Case (a) L 5.252 2.52
+ m⋅= L 5.81m= Two 45o miter bends (Fig. 8.16), for each

Le
D

13=

Hence the energy equation is
p1
ρ

p2
ρ

− f
L
D
⋅

V2

2
⋅ 2 f⋅

Le
D

⋅
V2

2
⋅+=

Solving for Δp Δp p1 p2−= ρ f⋅
V2

2
⋅

L
D

2
Le
D

⋅+
⎛
⎜
⎝

⎞
⎟
⎠

⋅=

Δp 1000
kg

m3
⋅ .0201× 2.97

m
s

⋅⎛⎜
⎝

⎞⎟
⎠

2
×

5.81
0.05

2 13⋅+⎛⎜
⎝

⎞⎟
⎠

×
N s2
⋅

kg m⋅
×= Δp 25.2kPa=

For Case (b) L 5.25 2.5+( ) m⋅= L 7.75m= One standard 90o elbow (Table 8.4)
Le
D

30=

Hence the energy equation is
p1
ρ

p2
ρ

− f
L
D
⋅

V2

2
⋅ f

Le
D

⋅
V2

2
⋅+=

Solving for Δp Δp p1 p2−= ρ f⋅
V2

2
⋅

L
D

Le
D

+
⎛
⎜
⎝

⎞
⎟
⎠

⋅=



Δp 1000
kg

m3
⋅ .0201× 2.97

m
s

⋅⎛⎜
⎝

⎞⎟
⎠

2
×

7.75
0.05

30+⎛⎜
⎝

⎞⎟
⎠

×
N s2
⋅

kg m⋅
×= Δp 32.8kPa=

For Case (c) L 5.25 2.5+( ) m⋅= L 7.75m= Three standard 90o elbows, for each
Le
D

30=

Hence the energy equation is
p1
ρ

p2
ρ

− f
L
D
⋅

V2

2
⋅ 3 f⋅

Le
D

⋅
V2

2
⋅+=

Solving for Δp Δp p1 p2−= ρ f⋅
V2

2
⋅

L
D

3
Le
D

⋅+
⎛
⎜
⎝

⎞
⎟
⎠

⋅=

Δp 1000
kg

m3
⋅ .0201× 2.97

m
s

⋅⎛⎜
⎝

⎞⎟
⎠

2
×

7.75
0.05

3 30×+⎛⎜
⎝

⎞⎟
⎠

×
N s2
⋅

kg m⋅
×= Δp 43.4kPa=

Hence we conclude Case (a) is the best and Case (c) is the worst
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Problem 8.113 [3]

 

LA 

LB 

 
h 

Given: Pipe friction experiment

Find: Required average speed; Estimate feasibility of constant head tank; Pressure drop over 5 m

Solution:

Basic equations
p1
ρ

α

V1
2

2
⋅+ g z1⋅+

⎛⎜
⎜⎝

⎞⎟
⎟⎠

p2
ρ

α

V2
2

2
⋅+ g z2⋅+

⎛⎜
⎜⎝

⎞⎟
⎟⎠

− hlT= hlT hA hB+= fA
LA
DA
⋅

VA
2

2
⋅ fB

LB
DB
⋅

VB
2

2
⋅+=

Assumptions: 1) Steady flow 2) Incompressible flow 3) α is approximately 1  4) Ignore minor losses

We wish to have ReB 105
=

Hence, from ReB
VB DB⋅

ν
= VB

ReB ν⋅

DB
= and for water at 20oC ν 1.01 10 6−

×
m2

s
⋅=

VB 105 1.01× 10 6−
×

m2

s
⋅

1
0.025 m⋅

×= VB 4.04
m
s

=

We will also need VA VB
DB
DA

⎛
⎜
⎝

⎞
⎟
⎠

2

⋅= VA 4.04
m
s

⋅
2.5
5

⎛⎜
⎝

⎞⎟
⎠

2
×= VA 1.01

m
s

=

ReA
VA DA⋅

ν
= ReA 1.01

m
s

⋅ 0.05× m⋅
s

1.01 10 6−
× m2

⋅
×= ReA 5 104

×=

Both tubes have turbulent flow

For PVC pipe (from Googling!) e 0.0015 mm⋅=

For tube A Given
1

fA
2.0− log

e
DA
3.7

2.51

ReA fA⋅
+

⎛⎜
⎜
⎜⎝

⎞⎟
⎟
⎟⎠

⋅= fA 0.0210=

For tube B Given
1

fB
2.0− log

e
DB
3.7

2.51

ReB fB⋅
+

⎛⎜
⎜
⎜⎝

⎞⎟
⎟
⎟⎠

⋅= fB 0.0183=

Applying the energy equation between Points 1 and 3

g LA h+( )⋅
VB

2

2
− fA

LA
DA
⋅

VA
2

2
⋅ fB

LB
DB
⋅

VB
2

2
⋅+=



Solving for LA LA

VB
2

2
1 fB

LB
DB
⋅+

⎛
⎜
⎝

⎞
⎟
⎠

⋅ g h⋅−

g
fA
DA

VA
2

2
⋅−

⎛
⎜
⎜
⎝

⎞
⎟
⎟
⎠

=

LA

1
2

4.04
m
s

⋅⎛⎜
⎝

⎞⎟
⎠

2
× 1 0.0183

20
0.025

×+⎛⎜
⎝

⎞⎟
⎠

× 9.81
m

s2
⋅ 0.5× m⋅−

9.81
m

s2
⋅

0.0210
2

1
0.05 m⋅

× 1.01
m
s

⋅⎛⎜
⎝

⎞⎟
⎠

2
×−

= LA 12.8m=

Most ceilings are about 3.5 m or 4 m, so this height is IMPRACTICAL 

Applying the energy equation between Points 2 and 3

p2
ρ

VB
2

2
+

⎛⎜
⎜⎝

⎞⎟
⎟⎠

p3
ρ

VB
2

2
+

⎛⎜
⎜⎝

⎞⎟
⎟⎠

− fB
L

DB
⋅

VB
2

2
⋅= or Δp ρ fB⋅

L
DB
⋅

VB
2

2
⋅=

Δp 1000
kg

m3
⋅

0.0183
2

×
5 m⋅

0.025 m⋅
× 4.04

m
s

⋅⎛⎜
⎝

⎞⎟
⎠

2
×

N s2
⋅

kg m⋅
×= Δp 29.9 kPa⋅=



Given data: Tabulated or graphical data:

L  = 20 m e  = 0.26 mm
D  = 75 mm (Table 8.1)

μ = 1.00E-03 N.s/m2

ρ = 999 kg/m3

(Appendix A)
Gate valve L e/D  = 8

Elbow L e/D  = 30
(Table 8.4)

Computed results:

Q  (m3/s) V  (m/s) Re f Δp  (kPa)
0.010 2.26 1.70E+05 0.0280 28.3
0.015 3.40 2.54E+05 0.0277 63.1
0.020 4.53 3.39E+05 0.0276 112
0.025 5.66 4.24E+05 0.0276 174
0.030 6.79 5.09E+05 0.0275 250
0.035 7.92 5.94E+05 0.0275 340
0.040 9.05 6.78E+05 0.0274 444
0.045 10.2 7.63E+05 0.0274 561
0.050 11.3 8.48E+05 0.0274 692
0.055 12.4 9.33E+05 0.0274 837
0.060 13.6 1.02E+06 0.0274 996

Required Pressure Head for a Circuit
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Problem 8.115 [3]

Given: Same flow rate in various ducts

Find: Pressure drops of each compared to round duct

Solution:

Basic equations
p1
ρ

α

V1
2

2
⋅+ g z1⋅+

⎛⎜
⎜⎝

⎞⎟
⎟⎠

p2
ρ

α

V2
2

2
⋅+ g z2⋅+

⎛⎜
⎜⎝

⎞⎟
⎟⎠

− hl= Dh
4 A⋅
Pw

= e 0= (Smooth)

Assumptions: 1) Steady flow 2) Incompressible flow 3) α is approximately 1  4) Ignore minor losses

The energy equation simplifies to

Δp p1 p2−= ρ f⋅
L

Dh
⋅

V2

2
⋅= or Δp

L
ρ

f
Dh
⋅

V2

2
⋅=

But we have V
Q
A

= V 1250
ft3

min
⋅

1 min⋅
60 s⋅

×
1

1 ft2⋅
×= V 20.8

ft
s

=

From Table A.9 ν 1.62 10 4−
×

ft2

s
⋅= ρ 0.00234

slug

ft3
⋅= at 68oF

Hence Re
V Dh⋅

ν
= Re 20.8

ft
s

⋅
s

1.62 10 4−
× ft2⋅

× Dh×= 1.284 105
× Dh⋅= (Dh in ft)

For a round duct Dh D=
4 A⋅
π

= Dh
4
π

1× ft2⋅= Dh 1.13 ft=

For a rectangular duct Dh
4 A⋅
Pw

=
4 b⋅ h⋅

2 b h+( )⋅
=

2 h⋅ ar⋅
1 ar+

= where ar
b
h

=

But h
b
ar

= so h2 b h⋅
ar

=
A
ar

= or h
A
ar

= and Dh
2 ar⋅
1 ar+

A⋅=

The results are:

Round Dh 1.13 ft⋅= Re 1.284 105
×

1
ft
⋅ Dh⋅= Re 1.45 105

×=

Given 1

f
2.0− log

e
Dh
3.7

2.51

Re f⋅
+

⎛
⎜
⎜
⎝

⎞
⎟
⎟
⎠

⋅= f 0.0167=
Δp
L

ρ
f

Dh
⋅

V2

2
⋅=

Δp
L

7.51 10 3−
×

lbf

ft3
⋅=

ar 1= Dh
2 ar⋅
1 ar+

A⋅= Dh 1ft= Re 1.284 105
×

1
ft
⋅ Dh⋅= Re 1.28 105

×=

Given 1

f
2.0− log

e
Dh
3.7

2.51

Re f⋅
+

⎛
⎜
⎜
⎝

⎞
⎟
⎟
⎠

⋅= f 0.0171=
Δp
L

ρ
f

Dh
⋅

V2

2
⋅=

Δp
L

8.68 10 3−
×

lbf

ft3
⋅=



Hence the square duct experiences a percentage increase in pressure drop of 8.68 10 3−
× 7.51 10 3−

×−

7.51 10 3−
×

15.6%=

ar 2= Dh
2 ar⋅
1 ar+

A⋅= Dh 0.943 ft= Re 1.284 105
×

1
ft
⋅ Dh⋅= Re 1.21 105

×=

Given 1

f
2.0− log

e
Dh
3.7

2.51

Re f⋅
+

⎛
⎜
⎜
⎝

⎞
⎟
⎟
⎠

⋅= f 0.0173=
Δp
L

ρ
f

Dh
⋅

V2

2
⋅=

Δp
L

9.32 10 3−
×

lbf

ft3
⋅=

Hence the 2 x 1 duct experiences a percentage increase in pressure drop of 9.32 10 3−
× 7.51 10 3−

×−

7.51 10 3−
×

24.1%=

ar 3= Dh
2 ar⋅
1 ar+

A⋅= Dh 0.866 ft= Re 1.284 105
×

1
ft
⋅ Dh⋅= Re 1.11 105

×=

Given
1

f
2.0− log

e
Dh
3.7

2.51

Re f⋅
+

⎛
⎜
⎜
⎝

⎞
⎟
⎟
⎠

⋅= f 0.0176=
Δp
L

ρ
f

Dh
⋅

V2

2
⋅=

Δp
L

0.01
lbf

ft3
⋅=

Hence the 3 x 1 duct experiences a percentage increase in pressure drop of 0.01 7.51 10 3−
×−

7.51 10 3−
×

33.2%=

Note that f varies only about 7%; the large change in Δp/L is primarily due to the 1/Dh factor
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Problem 8.117 [3]

Given: Flow through fire hose and nozzle

Find: Supply pressure

Solution:

Basic equations
p1
ρ

α

V1
2

2
⋅+ g z1⋅+

⎛⎜
⎜⎝

⎞⎟
⎟⎠

p2
ρ

α

V2
2

2
⋅+ g z2⋅+

⎛⎜
⎜⎝

⎞⎟
⎟⎠

− hlT= hlT hl hlm+= f
L
D
⋅

V2

2
⋅

Minor

K
V2

2
⋅

⎛
⎜
⎝

⎞
⎟
⎠∑+=

Assumptions: 1) Steady flow 2) Incompressible flow 3) α is approximately 1 4) p2 = patm so p2 = 0 gage

Hence the energy equation between Point 1 at the supply and the nozzle exit (Point n); let the velocity in the hose be V

p1
ρ

Vn
2

2
− f

L
D
⋅

V2

2
⋅ Ke 4 Kc⋅+( ) V2

2
⋅+ Kn

Vn
2

2
⋅+=

From continuity Vn
D
D2

⎛
⎜
⎝

⎞
⎟
⎠

2
V⋅= and V

Q
A

=
4 Q⋅

π D2
⋅

= V
4
π

0.75×
ft3

s
⋅

1

1
4

ft⋅⎛⎜
⎝

⎞⎟
⎠

2
×= V 15.3

ft
s

=

Solving for p1 p1
ρ V2
⋅
2

f
L
D
⋅ Ke+ 4 Kc⋅+

D
D2

⎛
⎜
⎝

⎞
⎟
⎠

4
1 Kn+( )⋅+

⎡⎢
⎢⎣

⎤⎥
⎥⎦

⋅=

From Table A.7 (68oF) ρ 1.94
slug

ft3
⋅= ν 1.08 10 5−

×
ft2

s
⋅=

Re
V D⋅

ν
= Re 15.3

ft
s

⋅
3
12

× ft⋅
s

1.08 10 5−
× ft2⋅

×= Re 3.54 105
×= Turbulent

For the hose e
D

0.004=

Flow is turbulent: Given
1

f
2.0− log

e
D

3.7
2.51

Re f⋅
+

⎛
⎜
⎜
⎝

⎞
⎟
⎟
⎠

⋅= f 0.0287=

p1
1
2

1.94×
slug

ft3
⋅ 15.3

ft
s

⋅⎛⎜
⎝

⎞⎟
⎠

2
× 0.0287

250
1
4

× 0.5+ 4 0.5×+
3
1
⎛⎜
⎝
⎞⎟
⎠

4
1 0.02+( )×+

⎡
⎢
⎢
⎣

⎤
⎥
⎥
⎦

×
lbf s2

⋅
slug ft⋅

×=

p1 2.58 104
×

lbf

ft2
⋅= p1 179 psi⋅=



Problem 8.118 [3]

Given: Flow down corroded iron pipe

Find: Pipe roughness; Power savings with new pipe

Solution:

Basic equations
p1
ρ

α

V1
2

2
⋅+ g z1⋅+

⎛⎜
⎜⎝

⎞⎟
⎟⎠

p2
ρ

α

V2
2

2
⋅+ g z2⋅+

⎛⎜
⎜⎝

⎞⎟
⎟⎠

− hl= hl f
L
D
⋅

V2

2
⋅=

Assumptions: 1) Steady flow 2) Incompressible flow 3) α is approximately 1 4) No minor losses

Hence the energy equation becomes

p1
ρ

g z1⋅+
⎛
⎜
⎝

⎞
⎟
⎠

p2
ρ

g z2⋅+
⎛
⎜
⎝

⎞
⎟
⎠

− f
L
D
⋅

V2

2
⋅=

and V
Q
A

=
4 Q⋅

π D2
⋅

= V
4
π

0.2×
m3

min
⋅

1 min⋅
60 s⋅

×
1

0.025 m⋅( )2
×= V 6.79

m
s

=

In this problem we can compute directly f and Re, and hnece obtain e/D

Solving for f f
2 D⋅

L V2
⋅

p1 p2−

ρ
g z1 z2−( )+

⎛
⎜
⎝

⎞
⎟
⎠

⋅=

f 2
0.025

6
×

s
6.79 m⋅
⎛⎜
⎝

⎞⎟
⎠

2
× 700 525−( ) 103

×
N

m2
⋅

m3

1000 kg⋅
×

kg m⋅

s2 N⋅
× 9.81

m

s2
⋅ 6× m⋅+

⎡⎢
⎢⎣

⎤⎥
⎥⎦

×= f 0.0423=

From Table A.8 (20oF) ν 1.01 10 6−
×

m2

s
⋅= Re

V D⋅
ν

= Re 6.79
m
s

⋅ 0.025× m⋅
s

1.01 10 6−
× m2

⋅
×= Re 1.68 105

×=

Flow is turbulent: Given
1

f
2.0− log

e
D

3.7
2.51

Re f⋅
+

⎛
⎜
⎜
⎝

⎞
⎟
⎟
⎠

⋅=
e
D

0.0134=

New pipe (Table 8.1) e 0.15 mm⋅=
e
D

0.006=

Given
1

f
2.0− log

e
D

3.7
2.51

Re f⋅
+

⎛
⎜
⎜
⎝

⎞
⎟
⎟
⎠

⋅= f 0.0326=

In this problem Δp p1 p2−= ρ g z2 z1−( )⋅ f
L
D
⋅

V2

2
⋅+

⎡
⎢
⎣

⎤
⎥
⎦

⋅=

Hence Δpnew 1000
kg

m3
⋅ 9.81

m

s2
⋅ 6− m⋅( )×

0.0326
2

6
0.025

× 6.79
m
s

⋅⎛⎜
⎝

⎞⎟
⎠

2
×+

⎡⎢
⎢⎣

⎤⎥
⎥⎦

×
N s2
⋅

kg m⋅
×= Δpnew 121 kPa⋅=

Compared to Δpold 175 kPa⋅=  we find
Δpold Δpnew−

Δpold
30.6 %⋅=



Choose data: Tabulated or graphical data:

L  = 1.0 m μ = 1.00E-03 N.s/m2

D  = 3.0 mm ρ = 999 kg/m3

e  = 0.0 mm (Appendix A)
α = 2 (Laminar) K ent = 0.5 (Square-edged)

= 1 (Turbulent) (Table 8.2)

Computed results:

Q  (L/min) V  (m/s) Re Regime f H  (m)
0.200 0.472 1413 Laminar 0.0453 0.199
0.225 0.531 1590 Laminar 0.0403 0.228
0.250 0.589 1767 Laminar 0.0362 0.258
0.275 0.648 1943 Laminar 0.0329 0.289
0.300 0.707 2120 Laminar 0.0302 0.320
0.325 0.766 2297 Laminar 0.0279 0.353
0.350 0.825 2473 Turbulent 0.0462 0.587
0.375 0.884 2650 Turbulent 0.0452 0.660
0.400 0.943 2827 Turbulent 0.0443 0.738
0.425 1.002 3003 Turbulent 0.0435 0.819
0.450 1.061 3180 Turbulent 0.0428 0.904

The flow rates are realistic, and could easily be measured using a tank/timer system
The head required is also realistic for a small-scale laboratory experiment
Around Re  = 2300 the flow may oscillate between laminar and turbulent:
Once turbulence is triggered (when H  > 0.353 m), the resistance to flow increases
requiring H  >0.587 m to maintain; hence the flow reverts to laminar, only to trip over
again to turbulent!  This behavior will be visible: the exit flow will switch back and
forth between smooth (laminar) and chaotic (turbulent)

Required Reservoir Head versus Reynolds Number

0.00

0.25

0.50

0.75
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1000 1500 2000 2500 3000 3500
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Problem 8.122 [3]

Given: Flow in horizontal pipe

Find: Flow rate

Solution:

Basic equations
p1
ρ

α

V1
2

2
⋅+ g z1⋅+

⎛⎜
⎜⎝

⎞⎟
⎟⎠

p2
ρ

α

V2
2

2
⋅+ g z2⋅+

⎛⎜
⎜⎝

⎞⎟
⎟⎠

− hl= hl f
L
D
⋅

V2

2
⋅=

Assumptions: 1) Steady flow 2) Incompressible flow 3) α is approximately 1 4) No minor losses

Hence the energy equation becomes

p1
ρ

p2
ρ

−
Δp
ρ

= f
L
D
⋅

V2

2
⋅=

Solving for V V
2 D⋅ Δp⋅

L ρ⋅ f⋅
= V

k

f
= (1)

k
2 D⋅ Δp⋅

L ρ⋅
= k 2

1
3

300
× 40×

lbf

in2
⋅

12 in⋅
1 ft⋅

⎛⎜
⎝

⎞⎟
⎠

2
×

ft3

1.94 slug⋅
×

slugft⋅

s2 lbf⋅
×= k 2.57

ft
s

⋅=

We also have Re
V D⋅

ν
= or Re c V⋅= (2) where c

D
ν

=

From Table A.7 (68oF) ν 1.08 10 5−
×

ft2

s
⋅= c

1
3

ft⋅
s

1.08 10 5−
× ft2⋅

×= c 3.09 104
×

s
ft
⋅=

(3)In addition 1

f
2.0− log

e
D

3.7
2.51

Re f⋅
+

⎛
⎜
⎜
⎝

⎞
⎟
⎟
⎠

⋅=

Equations 1, 2 and 3 form a set of simultaneous equations for V, Re and f

Make a guess for f f 0.1= then V
k

f
= V 8.12

ft
s

⋅= Re c V⋅= Re 2.51 105
×=

Given
1

f
2.0− log

e
D

3.7
2.51

Re f⋅
+

⎛
⎜
⎜
⎝

⎞
⎟
⎟
⎠

⋅= f 0.0573= V
k

f
= V 10.7

ft
s

⋅= Re c V⋅= Re 3.31 105
×=

Given
1

f
2.0− log

e
D

3.7
2.51

Re f⋅
+

⎛
⎜
⎜
⎝

⎞
⎟
⎟
⎠

⋅= f 0.0573= V
k

f
= V 10.7

ft
s

⋅= Re c V⋅= Re 3.31 105
×=

The flow rate is then Q V
π D2
⋅
4

⋅= Q 10.7
ft
s

⋅
π

4
×

1
3

ft⋅⎛⎜
⎝

⎞⎟
⎠

2
×

7.48 gal⋅

1 ft3⋅
×

60 s⋅
1 min⋅

×= Q 419 gpm⋅=

Note that we could use Excel's Solver for this problem



Problem 8.123 [3]

Given: Drinking of a beverage

Find: Fraction of effort of drinking of friction and gravity

Solution:

Basic equations
p1
ρ

α

V1
2

2
⋅+ g z1⋅+

⎛⎜
⎜⎝

⎞⎟
⎟⎠

p2
ρ

α

V2
2

2
⋅+ g z2⋅+

⎛⎜
⎜⎝

⎞⎟
⎟⎠

− hl= hl f
L
D
⋅

V2

2
⋅=

Assumptions: 1) Steady flow 2) Incompressible flow 3) α is approximately 1 4) No minor losses

Hence the energy equation becomes, between the bottom of the straw (Point 1) and top (Point 2)

g z1⋅
p2
ρ

g z2⋅+
⎛
⎜
⎝

⎞
⎟
⎠

− f
L
D
⋅

V2

2
⋅= where p2 is the gage pressure in the mouth

The negative gage pressure the mouth must create is therefore due to two parts

pgrav ρ− g⋅ z2 z1−( )⋅= pfric ρ− f⋅
L
D
⋅

V2

2
⋅=

Assuming a person can drink 12 fluid ounces in 5 s Q

12
128

gal⋅

5 s⋅
1 ft3⋅

7.48 gal⋅
×= Q 2.51 10 3−

×
ft3

s
=

Assuming a straw is 6 in long diameter 0.2 in, with roughness e 5 10 5−
× in= (from Googling!)

V
4 Q⋅

π D2
⋅

= V
4
π

2.51× 10 3−
×

ft3

s
1

0.2 in⋅
12 in⋅
1 ft⋅

×⎛⎜
⎝

⎞⎟
⎠

2
×= V 11.5

ft
s

=

From Table A.7 (68oF) ν 1.08 10 5−
×

ft2

s
⋅= (for water, but close enough)

Re
V D⋅

ν
= Re 11.5

ft
s

⋅
0.2
12

× ft⋅
s

1.08 10 5−
× ft2

×= Re 1.775 104
×=

Given
1

f
2.0− log

e
D

3.7
2.51

Re f⋅
+

⎛
⎜
⎜
⎝

⎞
⎟
⎟
⎠

⋅= f 0.0272=

Then pgrav 1.94−
slug

ft3
⋅ 32.2×

ft

s2
⋅

1
2

× ft⋅
lbf s2

⋅
slugft⋅

×= pgrav 31.2−
lbf

ft2
= pgrav 0.217− psi=

and pfric 1.94−
slug

ft3
⋅ 0.0272×

6
0.2

×
1
2

× 11.5
ft
s

⋅⎛⎜
⎝

⎞⎟
⎠

2
×

lbf s2
⋅

slug ft⋅
×= pfric 105−

lbf

ft2
= pfric 0.727− psi=

Hence the fraction due to friction is
pfric

pfric pgrav+
77%= and gravity is

pgrav
pfric pgrav+

23%=

These results will vary depending on assumptions, but it seems friction is significant!
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Problem 8.129 [3]

Given: Galvanized drainpipe

Find: Maximum downpour it can handle

Solution:

Basic equations
p1
ρ

α

V1
2

2
⋅+ g z1⋅+

⎛⎜
⎜⎝

⎞⎟
⎟⎠

p2
ρ

α

V2
2

2
⋅+ g z2⋅+

⎛⎜
⎜⎝

⎞⎟
⎟⎠

− hl= hl f
L
D
⋅

V2

2
⋅=

Assumptions: 1) Steady flow 2) Incompressible flow 3) α is approximately 1 4) No minor losses

Hence the energy equation becomes g z1⋅ g z2⋅− g z1 z2−( )⋅= g h⋅= f
L
D
⋅

V2

2
⋅= h L=

Solving for V V
2 D⋅ g⋅ h⋅

L f⋅
=

2 D⋅ g⋅
f

= V
k

f
= (1)

k 2 D⋅ g⋅= k 2 0.075× m⋅ 9.81×
m

s2
⋅= k 1.21

m
s

=

We also have Re
V D⋅

ν
= or Re c V⋅= (2) where c

D
ν

=

From Table A.7 (20oC) ν 1.01 10 6−
×

m2

s
⋅= c 0.075 m⋅

s

1.01 10 6−
× m2

⋅
×= c 7.43 104

×
s
m
⋅=

(3) e 0.15mm= (Table 8.1)In addition 1

f
2.0− log

e
D

3.7
2.51

Re f⋅
+

⎛
⎜
⎜
⎝

⎞
⎟
⎟
⎠

⋅=

Equations 1, 2 and 3 form a set of simultaneous equations for V, Re and f

Make a guess for f f 0.01= then V
k

f
= V 12.13

m
s

= Re c V⋅= Re 9.01 105
×=

Given
1

f
2.0− log

e
D

3.7
2.51

Re f⋅
+

⎛
⎜
⎜
⎝

⎞
⎟
⎟
⎠

⋅= f 0.0236= V
k

f
= V 7.90

m
s

= Re c V⋅= Re 5.86 105
×=

Given
1

f
2.0− log

e
D

3.7
2.51

Re f⋅
+

⎛
⎜
⎜
⎝

⎞
⎟
⎟
⎠

⋅= f 0.0237= V
k

f
= V 7.88

m
s

= Re c V⋅= Re 5.85 105
×=

Given
1

f
2.0− log

e
D

3.7
2.51

Re f⋅
+

⎛
⎜
⎜
⎝

⎞
⎟
⎟
⎠

⋅= f 0.0237= V
k

f
= V 7.88

m
s

= Re c V⋅= Re 5.85 105
×=



The flow rate is then Q V
π D2
⋅
4

⋅= Q 7.88
m
s

⋅
π

4
× 0.075 m⋅( )2

×= Q 0.0348
m3

s
⋅=

The downpour rate is then Q
Aroof

0.0348
m3

s
⋅

500 m2
⋅

100 cm⋅
1 m⋅

×
60 s⋅

1 min⋅
×= 0.418

cm
min
⋅= The drain can handle 0.418 cm/min

Note that we could use Excel's Solver for this problem



 
Problem 8.130                                                                             [3]   Part 1/2



Problem 8.130                                                                             [3]   Part 2/2



Fluid is not specified: use water

Given data: Tabulated or graphical data:

Δp  = 100 kPa μ = 1.00E-03 N.s/m2

D  = 25 mm ρ = 999 kg/m3

L  = 100 m (Water - Appendix A)

Computed results:

e/D V  (m/s) Q  (m3/s) x 104
Re Regime f Δp (kPa) Error

0.000 1.50 7.35 37408 Turbulent 0.0223 100 0.0%
0.005 1.23 6.03 30670 Turbulent 0.0332 100 0.0%
0.010 1.12 5.49 27953 Turbulent 0.0400 100 0.0%
0.015 1.05 5.15 26221 Turbulent 0.0454 100 0.0%
0.020 0.999 4.90 24947 Turbulent 0.0502 100 0.0%
0.025 0.959 4.71 23939 Turbulent 0.0545 100 0.0%
0.030 0.925 4.54 23105 Turbulent 0.0585 100 0.0%
0.035 0.897 4.40 22396 Turbulent 0.0623 100 0.0%
0.040 0.872 4.28 21774 Turbulent 0.0659 100 0.0%
0.045 0.850 4.17 21224 Turbulent 0.0693 100 0.0%
0.050 0.830 4.07 20730 Turbulent 0.0727 100 0.0%

It is not possible to roughen the tube sufficiently to slow the flow down to
a laminar flow for this Δp .  Even a relative roughness of 0.5 (a physical
impossibility!) would not work.

Flow Rate versus Tube Relative Roughness
for fixed Δp
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Fluid is not specified: use water

Given data: Tabulated or graphical data:

Δp  = 100 m μ = 1.00E-03 N.s/m2

D  = 25 mm ρ = 999 kg/m3

(Water - Appendix A)

Computed results:

L  (km) V  (m/s) Q  (m3/s) x 104
Re Regime f Δp (kPa) Error

1.0 0.40 1.98 10063 Turbulent 0.0308 100 0.0%
1.5 0.319 1.56 7962 Turbulent 0.0328 100 0.0%
2.0 0.270 1.32 6739 Turbulent 0.0344 100 0.0%
2.5 0.237 1.16 5919 Turbulent 0.0356 100 0.0%
5.0 0.158 0.776 3948 Turbulent 0.0401 100 0.0%
10 0.105 0.516 2623 Turbulent 0.0454 100 0.0%
15 0.092 0.452 2300 Turbulent 0.0473 120 20.2%
19 0.092 0.452 2300 Laminar 0.0278 90 10.4%
21 0.092 0.452 2300 Laminar 0.0278 99 1.0%
25 0.078 0.383 1951 Laminar 0.0328 100 0.0%
30 0.065 0.320 1626 Laminar 0.0394 100 0.0%

The "critical" length of tube is between 15 and 20 km.
For this range, the fluid is making a transition between laminar
and turbulent flow, and is quite unstable.  In this range the flow oscillates
between laminar and turbulent; no consistent solution is found 
(i.e., an Re  corresponding to turbulent flow needs an f  assuming laminar to produce
 the Δp  required, and vice versa!)
More realistic numbers (e.g., tube length) are obtained for a fluid such as SAE 10W oil
(The graph will remain the same except for scale)

Flow Rate vs Tube Length for Fixed Δp
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Given data: Tabulated or graphical data:

Δp  = 153 kPa μ = 1.00E-03 N.s/m2

D  = 75 mm ρ = 999 kg/m3

L  = 100 m (Water - Appendix A)

Computed results:

e/D V  (m/s) Q  (m3/s) Re Regime f Δp (kPa) Error
0.000 3.98 0.0176 2.98E+05 Turbulent 0.0145 153 0.0%
0.005 2.73 0.0121 2.05E+05 Turbulent 0.0308 153 0.0%
0.010 2.45 0.0108 1.84E+05 Turbulent 0.0382 153 0.0%
0.015 2.29 0.0101 1.71E+05 Turbulent 0.0440 153 0.0%
0.020 2.168 0.00958 1.62E+05 Turbulent 0.0489 153 0.0%
0.025 2.076 0.00917 1.56E+05 Turbulent 0.0533 153 0.0%
0.030 2.001 0.00884 1.50E+05 Turbulent 0.0574 153 0.0%
0.035 1.937 0.00856 1.45E+05 Turbulent 0.0612 153 0.0%
0.040 1.882 0.00832 1.41E+05 Turbulent 0.0649 153 0.0%
0.045 1.833 0.00810 1.37E+05 Turbulent 0.0683 153 0.0%
0.050 1.790 0.00791 1.34E+05 Turbulent 0.0717 153 0.0%

It is not possible to roughen the tube sufficiently to slow the flow down to
a laminar flow for this Δp.



Computed results:

L  (m) V  (m/s) Q  (m3/s) Re Regime f Δp (kPa) Error
100 1.37 0.00606 1.03E+05 Turbulent 0.1219 153 0.0%
200 1.175 0.00519 8.80E+04 Turbulent 0.0833 153 0.0%
300 1.056 0.00467 7.92E+04 Turbulent 0.0686 153 0.0%
400 0.975 0.00431 7.30E+04 Turbulent 0.0604 153 0.0%
500 0.913 0.004036 6.84E+04 Turbulent 0.0551 153 0.0%
600 0.865 0.003821 6.48E+04 Turbulent 0.0512 153 0.0%
700 0.825 0.003645 6.18E+04 Turbulent 0.0482 153 0.0%
800 0.791 0.003496 5.93E+04 Turbulent 0.0459 153 0.0%
900 0.762 0.003368 5.71E+04 Turbulent 0.0439 153 0.0%

1000 0.737 0.003257 5.52E+04 Turbulent 0.0423 153 0.0%

Flow Rate versus Tube Relative Roughness for fixed Δp
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Given data: Tabulated or graphical data:
p 2 = 600 kPa e = 0.26 mm

(Closed) (Table 8.1)
D  = 150 mm μ = 1.00E-03 N.s/m2

L  = 200 m ρ = 999 kg/m3

Q  = 0.75 m3/min (Water - Appendix A)
(Open)

Computed results:

Closed: Fully open: Partially open:

H  = 61.2 m V  = 5.91 m/s Q  = 0.75 m3/min
(Eq. 1) Re  = 8.85E+05 V  = 0.71 m/s

f  = 0.0228 Re  = 1.06E+05
f  = 0.0243

Eq. 2, solved by varying V using Solver : p 2 = 591 kPa
Left (m2/s) Right (m2/s) Error (Eq. 3)

601 601 0%

Q  = 0.104 m3/s



Problem 8.135 [3]

Given: Syphon system

Find: Flow rate; Minimum pressure

Solution:

Basic equations
p1
ρ

α

V1
2

2
⋅+ g z1⋅+

⎛⎜
⎜⎝

⎞⎟
⎟⎠

p2
ρ

α

V2
2

2
⋅+ g z2⋅+

⎛⎜
⎜⎝

⎞⎟
⎟⎠

− hlT= hlT f
L
D
⋅

V2

2
⋅ hlm+=

Assumptions: 1) Steady flow 2) Incompressible flow 3) α is approximately 1

Hence the energy equation applied between the tank free surface (Point 1) and the tube exit (Point 2, z = 0) becomes

g z1⋅
V2

2

2
− g z1⋅

V2

2
−= f

L
D
⋅

V2

2
⋅ Kent

V2

2
⋅+ f

Le
D

⋅
V2

2
⋅+=

From Table 8.2 for reentrant entrance Kent 0.78=

For the bend R
D

9= so from Fig. 8.16
Le
D

28= for a 90o bend so for a 180o bend
Le
D

56=

Solving for V V
2 g⋅ h⋅

1 Kent+ f
L
D

Le
D

+
⎛
⎜
⎝

⎞
⎟
⎠

⋅+
⎡
⎢
⎣

⎤
⎥
⎦

= (1) and h 2.5 m⋅=

The two lengths are Le 56 D⋅= Le 2.8m= L 0.6 π 0.45⋅+ 2.5+( ) m⋅= L 4.51m=

We also have Re
V D⋅

ν
= or Re c V⋅= (2) where c

D
ν

=

From Table A.7 (15oC) ν 1.14 10 6−
×

m2

s
⋅= c 0.05 m⋅

s

1.14 10 6−
× m2

⋅
×= c 4.39 104

×
s
m
⋅=

(3) e 0.0015mm= (Table 8.1)In addition 1

f
2.0− log

e
D

3.7
2.51

Re f⋅
+

⎛
⎜
⎜
⎝

⎞
⎟
⎟
⎠

⋅=

Equations 1, 2 and 3 form a set of simultaneous equations for V, Re and f

Make a guess for f f 0.01= then

V
2 g⋅ h⋅

1 Kent+ f
L
D

Le
D

+
⎛
⎜
⎝

⎞
⎟
⎠

⋅+
⎡
⎢
⎣

⎤
⎥
⎦

=
V 3.89

m
s

= Re c V⋅= Re 1.71 105
×=



Given
1

f
2.0− log

e
D

3.7
2.51

Re f⋅
+

⎛
⎜
⎜
⎝

⎞
⎟
⎟
⎠

⋅= f 0.0164=

V
2 g⋅ h⋅

1 Kent+ f
L
D

Le
D

+
⎛
⎜
⎝

⎞
⎟
⎠

⋅+
⎡
⎢
⎣

⎤
⎥
⎦

= V 3.43
m
s

= Re c V⋅= Re 1.50 105
×=

Given
1

f
2.0− log

e
D

3.7
2.51

Re f⋅
+

⎛
⎜
⎜
⎝

⎞
⎟
⎟
⎠

⋅= f 0.0168=

V
2 g⋅ h⋅

1 Kent+ f
L
D

Le
D

+
⎛
⎜
⎝

⎞
⎟
⎠

⋅+
⎡
⎢
⎣

⎤
⎥
⎦

= V 3.40
m
s

= Re c V⋅= Re 1.49 105
×=

Given
1

f
2.0− log

e
D

3.7
2.51

Re f⋅
+

⎛
⎜
⎜
⎝

⎞
⎟
⎟
⎠

⋅= f 0.0168=

V
2 g⋅ h⋅

1 Kent+ f
L
D

Le
D

+
⎛
⎜
⎝

⎞
⎟
⎠

⋅+
⎡
⎢
⎣

⎤
⎥
⎦

= V 3.40
m
s

= Re c V⋅= Re 1.49 105
×=

Note that we could use Excel's Solver for this problem

The minimum pressure occurs at the top of the curve (Point 3).  Applying the energy equation between Points 1 and 3

g z1⋅
p3
ρ

V3
2

2
+ g z3⋅+

⎛⎜
⎜⎝

⎞⎟
⎟⎠

− g z1⋅
p3
ρ

V2

2
+ g z3⋅+

⎛
⎜
⎝

⎞
⎟
⎠

−= f
L
D
⋅

V2

2
⋅ Kent

V2

2
⋅+ f

Le
D

⋅
V2

2
⋅+=

where we have
Le
D

28= for the first 90o of the bend, and L 0.6
π 0.45×

2
+⎛⎜

⎝
⎞⎟
⎠

m⋅= L 1.31m=

p3 ρ g z1 z3−( )⋅
V2

2
1 Kent+ f

L
D

Le
D

+
⎛
⎜
⎝

⎞
⎟
⎠

⋅+
⎡
⎢
⎣

⎤
⎥
⎦

⋅−
⎡
⎢
⎣

⎤
⎥
⎦

⋅=

p3 1000
kg

m3
⋅ 9.81

m

s2
⋅ 0.45− m⋅( )× 3.4

m
s

⋅⎛⎜
⎝

⎞⎟
⎠

2
1 0.78+ 0.0168

1.31
0.05

28+⎛⎜
⎝

⎞⎟
⎠

⋅+⎡⎢
⎣

⎤⎥
⎦

⋅−
⎡⎢
⎢⎣

⎤⎥
⎥⎦

×
N s2
⋅

kg m⋅
×= p3 35.5− kPa=



Problem 8.136 [4]

Given: Tank with drainpipe

Find: Flow rate for rentrant, square-edged, and rounded entrances

Solution:

Basic equations
p1
ρ

α

V1
2

2
⋅+ g z1⋅+

⎛⎜
⎜⎝

⎞⎟
⎟⎠

p2
ρ

α

V2
2

2
⋅+ g z2⋅+

⎛⎜
⎜⎝

⎞⎟
⎟⎠

− hlT= hlT f
L
D
⋅

V2

2
⋅ Kent

V2

2
⋅+=

Assumptions: 1) Steady flow 2) Incompressible flow 3) α is approximately 1

Hence the energy equation applied between the tank free surface (Point 1) and the pipe exit (Point 2, z = 0) becomes

g z1⋅
V2

2

2
− g z1⋅

V2

2
−= f

L
D
⋅

V2

2
⋅ Kent

V2

2
⋅+=

Solving for V V
2 g⋅ h⋅

1 Kent+ f
L
D
⋅+⎛⎜

⎝
⎞⎟
⎠

= (1) and h 1.5 3.5+( ) m⋅= h 5m=

We also have Re
V D⋅

ν
= or Re c V⋅= (2) where c

D
ν

=

From Table A.7 (20oC) ν 1.01 10 6−
×

m2

s
⋅= c 0.025 m⋅

s

1.01 10 6−
× m2

⋅
×= c 2.48 104

×
s
m
⋅=

(3) e 0.26 mm⋅= (Table 8.1)In addition 1

f
2.0− log

e
D

3.7
2.51

Re f⋅
+

⎛
⎜
⎜
⎝

⎞
⎟
⎟
⎠

⋅=

Equations 1, 2 and 3 form a set of simultaneous equations for V, Re and f

For a reentrant entrance, from Table 8.2 Kent 0.78=

Make a guess for f f 0.01= then

V
2 g⋅ h⋅

1 Kent+ f
L
D
⋅+⎛⎜

⎝
⎞⎟
⎠

=
V 6.42

m
s

= Re c V⋅= Re 1.59 105
×=

Given
1

f
2.0− log

e
D

3.7
2.51

Re f⋅
+

⎛
⎜
⎜
⎝

⎞
⎟
⎟
⎠

⋅= f 0.0388=

V
2 g⋅ h⋅

1 Kent+ f
L
D
⋅+⎛⎜

⎝
⎞⎟
⎠

= V 4.89
m
s

= Re c V⋅= Re 1.21 105
×=

Given
1

f
2.0− log

e
D

3.7
2.51

Re f⋅
+

⎛
⎜
⎜
⎝

⎞
⎟
⎟
⎠

⋅= f 0.0389=



V
2 g⋅ h⋅

1 Kent+ f
L
D
⋅+⎛⎜

⎝
⎞⎟
⎠

= V 4.88
m
s

= Re c V⋅= Re 1.21 105
×=

Given
1

f
2.0− log

e
D

3.7
2.51

Re f⋅
+

⎛
⎜
⎜
⎝

⎞
⎟
⎟
⎠

⋅= f 0.0389=

V
2 g⋅ h⋅

1 Kent+ f
L
D
⋅+⎛⎜

⎝
⎞⎟
⎠

= V 4.88
m
s

= Re c V⋅= Re 1.21 105
×=

Note that we could use Excel's Solver for this problem

The flow rate is then Q V
π D2
⋅
4

⋅= Q 4.88
m
s

⋅
π

4
× 0.025 m⋅( )2

×= Q 2.4 10 3−
×

m3

s
⋅= Q 8.62

m3

hr
⋅=

For a square-edged entrance, from Table 8.2 Kent 0.5=

Make a guess for f f 0.01= then

V
2 g⋅ h⋅

1 Kent+ f
L
D
⋅+⎛⎜

⎝
⎞⎟
⎠

=
V 6.83

m
s

= Re c V⋅= Re 1.69 105
×=

Given
1

f
2.0− log

e
D

3.7
2.51

Re f⋅
+

⎛
⎜
⎜
⎝

⎞
⎟
⎟
⎠

⋅= f 0.0388=

V
2 g⋅ h⋅

1 Kent+ f
L
D
⋅+⎛⎜

⎝
⎞⎟
⎠

= V 5.06
m
s

= Re c V⋅= Re 1.25 105
×=

Given
1

f
2.0− log

e
D

3.7
2.51

Re f⋅
+

⎛
⎜
⎜
⎝

⎞
⎟
⎟
⎠

⋅= f 0.0389=

V
2 g⋅ h⋅

1 Kent+ f
L
D
⋅+⎛⎜

⎝
⎞⎟
⎠

= V 5.06
m
s

= Re c V⋅= Re 1.25 105
×=

The flow rate is then Q V
π D2
⋅
4

⋅= Q 5.06
m
s

⋅
π

4
× 0.025 m⋅( )2

×= Q 2.48 10 3−
×

m3

s
⋅= Q 8.94

m3

hr
⋅=

For a rounded entrance, from Table 8.2 r
D

3.75
25

= 0.15= Kent 0.04=

Make a guess for f f 0.01= then

V
2 g⋅ h⋅

1 Kent+ f
L
D
⋅+⎛⎜

⎝
⎞⎟
⎠

=
V 7.73

m
s

= Re c V⋅= Re 1.91 105
×=



Given
1

f
2.0− log

e
D

3.7
2.51

Re f⋅
+

⎛
⎜
⎜
⎝

⎞
⎟
⎟
⎠

⋅= f 0.0387=

V
2 g⋅ h⋅

1 Kent+ f
L
D
⋅+⎛⎜

⎝
⎞⎟
⎠

= V 5.40
m
s

= Re c V⋅= Re 1.34 105
×=

Given
1

f
2.0− log

e
D

3.7
2.51

Re f⋅
+

⎛
⎜
⎜
⎝

⎞
⎟
⎟
⎠

⋅= f 0.0389=

V
2 g⋅ h⋅

1 Kent+ f
L
D
⋅+⎛⎜

⎝
⎞⎟
⎠

= V 5.39
m
s

= Re c V⋅= Re 1.34 105
×=

Given
1

f
2.0− log

e
D

3.7
2.51

Re f⋅
+

⎛
⎜
⎜
⎝

⎞
⎟
⎟
⎠

⋅= f 0.0389=

V
2 g⋅ h⋅

1 Kent+ f
L
D
⋅+⎛⎜

⎝
⎞⎟
⎠

= V 5.39
m
s

= Re c V⋅= Re 1.34 105
×=

Note that we could use Excel's Solver for this problem

The flow rate is then Q V
π D2
⋅
4

⋅= Q 5.39
m
s

⋅
π

4
× 0.025 m⋅( )2

×= Q 2.65 10 3−
×

m3

s
⋅= Q 9.52

m3

hr
⋅=

In summary: Renentrant: Q 8.62
m3

hr
⋅= Square-edged: Q 8.94

m3

hr
⋅= Rounded: Q 9.52

m3

hr
⋅=



 
Problem 8.137                                                                             [4]



Problem 8.138 [5]

Given: Tank with drain hose

Find: Flow rate at different instants; Estimate of drain time

Solution:

Basic equations
p1
ρ

α

V1
2

2
⋅+ g z1⋅+

⎛⎜
⎜⎝

⎞⎟
⎟⎠

p2
ρ

α

V2
2

2
⋅+ g z2⋅+

⎛⎜
⎜⎝

⎞⎟
⎟⎠

− hl= hl f
L
D
⋅

V2

2
⋅=

Assumptions: 1) Steady flow 2) Incompressible flow 3) α is approximately 1 4) Ignore minor loss at entrance (L >>; verify later)

Hence the energy equation applied between the tank free surface (Point 1) and the hose exit (Point 2, z = 0) becomes

g z1⋅
V2

2

2
− g z1⋅

V2

2
−= f

L
D
⋅

V2

2
⋅=

Solving for V V
2 g⋅ h⋅

1 f
L
D
⋅+⎛⎜

⎝
⎞⎟
⎠

= (1) and h 10 ft⋅= initially

We also have Re
V D⋅

ν
= or Re c V⋅= (2) where c

D
ν

=

From Fig. A.2 (20oC) ν 1.8 10 6−
×

m2

s
⋅

10.8
ft2

s
⋅

1
m2

s
⋅

×= ν 1.94 10 5−
×

ft2

s
=

c
1
12

ft⋅
s

1.94 10 5−
× ft2⋅

×= c 4.30 103
×

s
ft
⋅=

In addition 1

f
2.0− log

e
D

3.7
2.51

Re f⋅
+

⎛
⎜
⎜
⎝

⎞
⎟
⎟
⎠

⋅= (3) with e 0.01 in⋅= D 1 in=

Equations 1, 2 and 3 form a set of simultaneous equations for V, Re and f

Make a guess for f f 0.01= then

V
2 g⋅ h⋅

1 f
L
D
⋅+⎛⎜

⎝
⎞⎟
⎠

=
V 9.59

ft
s

⋅= Re c V⋅= Re 4.12 104
×=

Given
1

f
2.0− log

e
D

3.7
2.51

Re f⋅
+

⎛
⎜
⎜
⎝

⎞
⎟
⎟
⎠

⋅= f 0.0393= V
2 g⋅ h⋅

1 f
L
D
⋅+⎛⎜

⎝
⎞⎟
⎠

= V 5.12
ft
s

⋅= Re c V⋅= Re 2.20 104
×=



Given
1

f
2.0− log

e
D

3.7
2.51

Re f⋅
+

⎛
⎜
⎜
⎝

⎞
⎟
⎟
⎠

⋅= f 0.0405= V
2 g⋅ h⋅

1 f
L
D
⋅+⎛⎜

⎝
⎞⎟
⎠

= V 5.04
ft
s

⋅= Re c V⋅= Re 2.17 104
×=

Given
1

f
2.0− log

e
D

3.7
2.51

Re f⋅
+

⎛
⎜
⎜
⎝

⎞
⎟
⎟
⎠

⋅= f 0.0405= V
2 g⋅ h⋅

1 f
L
D
⋅+⎛⎜

⎝
⎞⎟
⎠

= V 5.04
ft
s

⋅= Re c V⋅= Re 2.17 104
×=

Note that we could use Excel's Solver for this problem Note: f
L
D
⋅ 24.3= Ke 0.5= hlm hl<

The flow rate is then Q V
π D2
⋅
4

⋅= Q 5.04
ft
s

⋅
π

4
×

1
12

ft⋅⎛⎜
⎝

⎞⎟
⎠

2
×= Q 0.0275

ft3

s
⋅= Q 12.3 gpm⋅=

Next we recompute everything for h 5 ft⋅=

Given
1

f
2.0− log

e
D

3.7
2.51

Re f⋅
+

⎛
⎜
⎜
⎝

⎞
⎟
⎟
⎠

⋅= f 0.0405= V
2 g⋅ h⋅

1 f
L
D
⋅+⎛⎜

⎝
⎞⎟
⎠

= V 3.57
ft
s

⋅= Re c V⋅= Re 1.53 104
×=

Given
1

f
2.0− log

e
D

3.7
2.51

Re f⋅
+

⎛
⎜
⎜
⎝

⎞
⎟
⎟
⎠

⋅= f 0.0415= V
2 g⋅ h⋅

1 f
L
D
⋅+⎛⎜

⎝
⎞⎟
⎠

= V 3.52
ft
s

⋅= Re c V⋅= Re 1.51 104
×=

Given
1

f
2.0− log

e
D

3.7
2.51

Re f⋅
+

⎛
⎜
⎜
⎝

⎞
⎟
⎟
⎠

⋅= f 0.0415= V
2 g⋅ h⋅

1 f
L
D
⋅+⎛⎜

⎝
⎞⎟
⎠

= V 3.52
ft
s

⋅= Re c V⋅= Re 1.51 104
×=

The flow rate is then Q V
π D2
⋅
4

⋅= Q 3.52
ft
s

⋅
π

4
×

1
12

ft⋅⎛⎜
⎝

⎞⎟
⎠

2
×= Q 0.0192

ft3

s
⋅= Q 8.62 gpm⋅=

Next we recompute everything for h 1 ft⋅=

Given
1

f
2.0− log

e
D

3.7
2.51

Re f⋅
+

⎛
⎜
⎜
⎝

⎞
⎟
⎟
⎠

⋅= f 0.0415= V
2 g⋅ h⋅

1 f
L
D
⋅+⎛⎜

⎝
⎞⎟
⎠

= V 1.58
ft
s

⋅= Re c V⋅= Re 6.77 103
×=

Given
1

f
2.0− log

e
D

3.7
2.51

Re f⋅
+

⎛
⎜
⎜
⎝

⎞
⎟
⎟
⎠

⋅= f 0.0452= V
2 g⋅ h⋅

1 f
L
D
⋅+⎛⎜

⎝
⎞⎟
⎠

= V 1.51
ft
s

⋅= Re c V⋅= Re 6.50 103
×=

Given
1

f
2.0− log

e
D

3.7
2.51

Re f⋅
+

⎛
⎜
⎜
⎝

⎞
⎟
⎟
⎠

⋅= f 0.0454= V
2 g⋅ h⋅

1 f
L
D
⋅+⎛⎜

⎝
⎞⎟
⎠

= V 1.51
ft
s

⋅= Re c V⋅= Re 6.48 103
×=

The flow rate is then Q V
π D2
⋅
4

⋅= Q 1.51
ft
s

⋅
π

4
×

1
12

ft⋅⎛⎜
⎝

⎞⎟
⎠

2
×= Q 0.00824

ft3

s
⋅= Q 3.70 gpm⋅=

Initially we have dQ/dt = -12.3 gpm, then -8.62 gpm, then -3.70 gpm.  These occur at h = 10 ft, 5 ft and 1 ft.  The corresponding
volumes in the tank are then Q = 7500 gal, 3750 gal, and 750 gal.  Using Excel we can fit a power trendline to the dQ/dt versus
Q data to find, approximately

dQ
dt

0.12− Q

1
2

⋅= where dQ/dt is in gpm and t is min.  Solving this with initial condition Q = 7500 gpm when t = 0 gives

t
1

0.06
7500 Q−( )⋅= Hence, when Q = 750 gal (h = 1 ft) t

1
0.06

7500 750−( )⋅ min⋅= t 987min= t 16.4hr=
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Problem 8.141

Applying the energy equation between inlet and exit:

or
D = 1 in
e = 0.00015 ft

"Old school": ν  = 1.08E-05 ft2/s
ρ  = 1.94 slug/ft3

Q  (gpm) Q  (ft3/s) V  (ft/s) Re f Δp (old 
school) (psi) Δp (psi/ft)

1.25 0.00279 0.511 3940 0.0401 0.00085 0.00085
1.50 0.00334 0.613 4728 0.0380 0.00122 0.00115
1.75 0.00390 0.715 5516 0.0364 0.00166 0.00150
2.00 0.00446 0.817 6304 0.0350 0.00216 0.00189
2.25 0.00501 0.919 7092 0.0339 0.00274 0.00232
2.50 0.00557 1.021 7881 0.0329 0.00338 0.00278
2.75 0.00613 1.123 8669 0.0321 0.00409 0.00328
3.00 0.00668 1.226 9457 0.0314 0.00487 0.00381
3.25 0.00724 1.328 10245 0.0307 0.00571 0.00438
3.50 0.00780 1.430 11033 0.0301 0.00663 0.00498
3.75 0.00836 1.532 11821 0.0296 0.00761 0.00561
4.00 0.00891 1.634 12609 0.0291 0.00865 0.00628
4.25 0.00947 1.736 13397 0.0286 0.00977 0.00698
4.50 0.01003 1.838 14185 0.0282 0.01095 0.00771
4.75 0.01058 1.940 14973 0.0278 0.01220 0.00847
5.00 0.01114 2.043 15761 0.0275 0.01352 0.00927
5.25 0.01170 2.145 16549 0.0272 0.01491 0.01010
5.50 0.01225 2.247 17337 0.0268 0.01636 0.01095
5.75 0.01281 2.349 18125 0.0265 0.01788 0.01184
6.00 0.01337 2.451 18913 0.0263 0.01947 0.01276
6.25 0.01393 2.553 19701 0.0260 0.02113 0.01370
6.50 0.01448 2.655 20489 0.0258 0.02285 0.01468
6.75 0.01504 2.758 21277 0.0255 0.02465 0.01569
7.00 0.01560 2.860 22065 0.0253 0.02651 0.01672
7.25 0.01615 2.962 22854 0.0251 0.02843 0.01779
7.50 0.01671 3.064 23642 0.0249 0.03043 0.01888
7.75 0.01727 3.166 24430 0.0247 0.03249 0.02000
8.00 0.01783 3.268 25218 0.0245 0.03462 0.02115
8.25 0.01838 3.370 26006 0.0243 0.03682 0.02233
8.50 0.01894 3.472 26794 0.0242 0.03908 0.02354
8.75 0.01950 3.575 27582 0.0240 0.04142 0.02477

Your boss was wrong! 9.00 0.02005 3.677 28370 0.0238 0.04382 0.02604

2

2V
D
Lfp

=
Δ
ρ 2

2V
D
f

L
p ρ
=

Δ
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Problem 8.142 [3]

Given: Hydraulic press system

Find: Minimum required diameter of tubing

Solution:

Basic equations
p1
ρ

α

V1
2

2
⋅+ g z1⋅+

⎛⎜
⎜⎝

⎞⎟
⎟⎠

p2
ρ

α

V2
2

2
⋅+ g z2⋅+

⎛⎜
⎜⎝

⎞⎟
⎟⎠

− hl= hl f
L
D
⋅

V2
2

2
⋅=

Assumptions: 1) Steady flow 2) Incompressible flow 3) α at 1 and 2 is approximately 1 4) Ignore minor losses

The flow rate is low and it's oil, so try assuming laminar flow.  Then, from Eq. 8.13c

Δp
128 μ⋅ Q⋅ L⋅

π D4
⋅

= or D
128 μ⋅ Q⋅ L⋅

π Δp⋅
⎛⎜
⎝

⎞⎟
⎠

1
4

=

For SAE 10W oil at 100oF (Fig. A.2, 38oC) μ 3.5 10 2−
×

N s⋅

m2
⋅

0.0209
lbf s⋅

ft2
⋅

1
N s⋅

m2
⋅

×= μ 7.32 10 4−
×

lbf s⋅

ft2
=

Hence D
128
π

7.32× 10 4−
×

lbf s⋅

ft2
0.02×

ft3

s
⋅ 165× ft⋅

in2

3000 2750−( ) lbf⋅
×

1 ft⋅
12 in⋅
⎛⎜
⎝

⎞⎟
⎠

2
×

⎡⎢
⎢⎣

⎤⎥
⎥⎦

1
4

= D 0.0407 ft= D 0.488 in=

Check Re to assure flow is laminar V
Q
A

=
4 Q⋅

π D2
⋅

= V
4
π

0.02×
ft3

s
⋅

12
0.488

1
ft
⋅⎛⎜

⎝
⎞⎟
⎠

2
×= V 15.4

ft
s

=

From Table A.2 SGoil 0.92= so Re
SGoil ρH2O⋅ V⋅ D⋅

μ
=

Re 0.92 1.94×
slug

ft3
⋅ 15.4×

ft
s

⋅
0.488

12
× ft⋅

ft2

7.32 10 4−
× lbf s⋅

×
lbf s2

⋅
slug ft⋅

×= Re 1527=

Hence the flow is laminar, Re < 2300.  The minimum diameter is 0.488 in, so 0.5 in ID tube should be chosen



Problem 8.143 [4]

Given: Flow out of reservoir by pump

Find: Smallest pipe needed

Solution:

Basic equations
p1
ρ

α

V1
2

2
⋅+ g z1⋅+

⎛⎜
⎜⎝

⎞⎟
⎟⎠

p2
ρ

α

V2
2

2
⋅+ g z2⋅+

⎛⎜
⎜⎝

⎞⎟
⎟⎠

− hlT= hlT hl hlm+= f
L
D
⋅

V2
2

2
⋅ Kent

V2
2

2
⋅+ f

Le
D

⋅
V2

2

2
⋅+=

Assumptions: 1) Steady flow 2) Incompressible flow 3) α at 1 and 2 is approximately 1 4) Vl <<

Hence for flow between the free surface (Point 1) and the pump inlet (2) the energy equation becomes

p2
ρ

− g z2⋅−
V2

2

2
−

p2
ρ

− g z2⋅−
V2

2
−= f

L
D
⋅

V2

2
⋅ Kent

V2

2
⋅+ f

Le
D

⋅
V2

2
⋅+= and p ρ g⋅ h⋅=

Solving for h2 = p2/ρg h2 z2−
V2

2 g⋅
f

L
D

Le
D

+
⎛
⎜
⎝

⎞
⎟
⎠

⋅ Kent+
⎡
⎢
⎣

⎤
⎥
⎦

⋅−= (1)

From Table 8.2 Kent 0.78= for rentrant, and from Table 8.4 two standard elbows lead to
Le
D

2 30×= 60=

We also have e 0.046 mm⋅= (Table 8.1) ν 1.51 10 6−
×

m2

s
⋅= (Table A.8)

and we are given Q 6
L
s

⋅= Q 6 10 3−
×

m3

s
= z2 3.5 m⋅= L 3.5 4.5+( ) m⋅= L 8m= h2 6− m⋅=

Equation 1 is tricky because D is unknown, so V is unknown (even though Q is known), L/D and Le/D are unknown, and Re
and hence f are unknown!  We COULD set up Excel to solve Eq 1, the Reynolds number, and f, simultaneously by varying D,
but here we try guesses:

D 2.5 cm⋅= V
4 Q⋅

π D2
⋅

= V 12.2
m
s

= Re
V D⋅

ν
= Re 2.02 105

×=

Given
1

f
2.0− log

e
D

3.7
2.51

Re f⋅
+

⎛
⎜
⎜
⎝

⎞
⎟
⎟
⎠

⋅= f 0.0238=

h2 z2−
V2

2 g⋅
f

L
D

Le
D

+
⎛
⎜
⎝

⎞
⎟
⎠

⋅ Kent+
⎡
⎢
⎣

⎤
⎥
⎦

⋅−= h2 78.45− m= but we need -6 m!

D 5 cm⋅= V
4 Q⋅

π D2
⋅

= V 3.06
m
s

= Re
V D⋅

ν
= Re 1.01 105

×=

Given
1

f
2.0− log

e
D

3.7
2.51

Re f⋅
+

⎛
⎜
⎜
⎝

⎞
⎟
⎟
⎠

⋅= f 0.0219=



h2 z2−
V2

2 g⋅
f

L
D

Le
D

+
⎛
⎜
⎝

⎞
⎟
⎠

⋅ Kent+
⎡
⎢
⎣

⎤
⎥
⎦

⋅−= h2 6.16− m= but we need -6 m!

D 5.1 cm⋅= V
4 Q⋅

π D2
⋅

= V 2.94
m
s

= Re
V D⋅

ν
= Re 9.92 104

×=

Given
1

f
2.0− log

e
D

3.7
2.51

Re f⋅
+

⎛
⎜
⎜
⎝

⎞
⎟
⎟
⎠

⋅= f 0.0219=

h2 z2−
V2

2 g⋅
f

L
D

Le
D

+
⎛
⎜
⎝

⎞
⎟
⎠

⋅ Kent+
⎡
⎢
⎣

⎤
⎥
⎦

⋅−= h2 5.93− m=

To within 1%, we can use 5-5.1 cm tubing; this corresponds to standard 2 in pipe.



Problem 8.144 [4]

Given: Flow of air in rectangular duct

Find: Minimum required size

Solution:

Basic equations
p1
ρ

α

V1
2

2
⋅+ g z1⋅+

⎛⎜
⎜⎝

⎞⎟
⎟⎠

p2
ρ

α

V2
2

2
⋅+ g z2⋅+

⎛⎜
⎜⎝

⎞⎟
⎟⎠

− hl= hl f
L

Dh
⋅

V2

2
⋅= Dh

4 A⋅
Pw

=

Assumptions: 1) Steady flow 2) Incompressible flow 3) α at 1 and 2 is approximately 1 4) Ignore minor losses

Hence for flow between the inlet (Point 1) and the exit (2) the energy equation becomes

p1
ρ

p2
ρ

−
Δp
ρ

= f
L

Dh
⋅

V2

2
⋅= and Δp ρH2O g⋅ Δh⋅=

For a rectangular duct Dh
4 b⋅ h⋅

2 b h+( )⋅
=

2 h2
⋅ ar⋅

h 1 ar+( )⋅
=

2 h⋅ ar⋅
1 ar+

= and also A b h⋅= h2 b
h
⋅= h2 ar⋅=

Hence Δp ρ f⋅ L⋅
V2

2
⋅

1 ar+( )
2 h⋅ ar⋅

⋅= ρ f⋅ L⋅
Q2

2 A2
⋅

⋅
1 ar+( )
2 h⋅ ar⋅

⋅=
ρ f⋅ L⋅ Q2

⋅
4

1 ar+( )

ar3
⋅

1

h5
⋅=

Solving for h h
ρ f⋅ L⋅ Q2

⋅
4 Δp⋅

1 ar+( )

ar3
⋅

⎡⎢
⎢⎣

⎤⎥
⎥⎦

1
5

= (1)

We are given Q 2850
ft3

min
⋅= L 100 ft⋅= e 0 ft⋅= ar 2=

and also Δp ρH2O g⋅ Δh⋅= Δp 1.94
slug

ft3
⋅ 32.2×

ft

s2
1.25
12

× ft⋅
lbf s2

⋅
slug ft⋅

×= Δp 6.51
lbf

ft2
⋅=

ρ 0.00234
slug

ft3
⋅= ν 1.62 10 4−

×
ft2

s
⋅= (Table A.9)

Equation 1 is tricky because h is unknown, so Dh is unknown, hence V is unknown (even though Q is known), and Re and
hence f are unknown!  We COULD set up Excel to solve Eq 1, the Reynolds number, and f, simmultaneously by varying h, but
here we try guesses:

f 0.01= h
ρ f⋅ L⋅ Q2

⋅
4 Δp⋅

1 ar+( )

ar3
⋅

⎡⎢
⎢⎣

⎤⎥
⎥⎦

1
5

= h 0.597 ft⋅= V
Q

h2 ar⋅
= V 66.6

ft
s

⋅=

Dh
2 h⋅ ar⋅
1 ar+

= Dh 0.796 ft⋅= Re
V Dh⋅

ν
= Re 3.27 105

×=

Given
1

f
2.0− log

e
Dh
3.7

2.51

Re f⋅
+

⎛
⎜
⎜
⎝

⎞
⎟
⎟
⎠

⋅= f 0.0142=



h
ρ f⋅ L⋅ Q2

⋅
4 Δp⋅

1 ar+( )

ar3
⋅

⎡⎢
⎢⎣

⎤⎥
⎥⎦

1
5

= h 0.641 ft⋅= V
Q

h2 ar⋅
= V 57.8

ft
s

⋅=

Dh
2 h⋅ ar⋅
1 ar+

= Dh 0.855 ft⋅= Re
V Dh⋅

ν
= Re 3.05 105

×=

Given
1

f
2.0− log

e
Dh
3.7

2.51

Re f⋅
+

⎛
⎜
⎜
⎝

⎞
⎟
⎟
⎠

⋅= f 0.0144=

h
ρ f⋅ L⋅ Q2

⋅
4 Δp⋅

1 ar+( )

ar3
⋅

⎡⎢
⎢⎣

⎤⎥
⎥⎦

1
5

= h 0.643 ft⋅= V
Q

h2 ar⋅
= V 57.5

ft
s

⋅=

Dh
2 h⋅ ar⋅
1 ar+

= Dh 0.857 ft⋅= Re
V Dh⋅

ν
= Re 3.04 105

×=

Given
1

f
2.0− log

e
Dh
3.7

2.51

Re f⋅
+

⎛
⎜
⎜
⎝

⎞
⎟
⎟
⎠

⋅= f 0.0144=

h
ρ f⋅ L⋅ Q2

⋅
4 Δp⋅

1 ar+( )

ar3
⋅

⎡⎢
⎢⎣

⎤⎥
⎥⎦

1
5

= h 0.643 ft⋅= V
Q

h2 ar⋅
= V 57.5

ft
s

⋅=

Dh
2 h⋅ ar⋅
1 ar+

= Dh 0.857 ft⋅= Re
V Dh⋅

ν
= Re 3.04 105

×=

In this process h and f have converged to a solution.  The minimum dimensions are 0.642 ft by 1.28 ft, or 7.71 in by 15.4 in
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Problem 8.146 [4]

Given: Flow of air in square duct

Find: Minimum required size

Solution:

Basic equations
p1
ρ

α

V1
2

2
⋅+ g z1⋅+

⎛⎜
⎜⎝

⎞⎟
⎟⎠

p2
ρ

α

V2
2

2
⋅+ g z2⋅+

⎛⎜
⎜⎝

⎞⎟
⎟⎠

− hl= hl f
L

Dh
⋅

V2

2
⋅= Dh

4 A⋅
Pw

=

Assumptions: 1) Steady flow 2) Incompressible flow 3) α at 1 and 2 is approximately 1 4) Ignore minor losses

Hence for flow between the inlet (Point 1) and the exit (2) the energy equation becomes

p1
ρ

p2
ρ

−
Δp
ρ

= f
L

Dh
⋅

V2

2
⋅= and Δp ρH2O g⋅ Δh⋅=

For a square duct Dh
4 h⋅ h⋅

2 h h+( )⋅
= h= and also A h h⋅= h2

=

Hence Δp ρ f⋅ L⋅
V2

2 h⋅
⋅= ρ f⋅ L⋅

Q2

2 h⋅ A2
⋅

⋅=
ρ f⋅ L⋅ Q2

⋅

2 h5
⋅

=

Solving for h h
ρ f⋅ L⋅ Q2

⋅
2 Δp⋅

⎛
⎜
⎝

⎞
⎟
⎠

1
5

= (1)

We are given Q 2
m3

s
⋅= L 25 m⋅= e 0.046 mm⋅= (Table 8.1)

and also Δp ρH2O g⋅ Δh⋅= Δp 1000
kg

m3
⋅ 9.81×

m

s2
0.015× m⋅

N s2
⋅

kg m⋅
×= Δp 147Pa=

ρ 1.21
kg

m3
⋅= ν 1.50 10 5−

×
m2

s
⋅= (Table A.10)

Equation 1 is tricky because h is unknown, so Dh is unknown, hence V is unknown (even though Q is known), and Re and
hence f are unknown!  We COULD set up Excel to solve Eq 1, the Reynolds number, and f, simmultaneously by varying h, but
here we try guesses:

f 0.01= h
ρ f⋅ L⋅ Q2

⋅
2 Δp⋅

⎛
⎜
⎝

⎞
⎟
⎠

1
5

= h 0.333m= V
Q

h2
= V 18.0

m
s

⋅=

Dh h= Dh 0.333m= Re
V Dh⋅

ν
= Re 4.00 105

×=

Given
1

f
2.0− log

e
Dh
3.7

2.51

Re f⋅
+

⎛
⎜
⎜
⎝

⎞
⎟
⎟
⎠

⋅= f 0.0152=



h
ρ f⋅ L⋅ Q2

⋅
2 Δp⋅

⎛
⎜
⎝

⎞
⎟
⎠

1
5

= h 0.362m= V
Q

h2
= V 15.2

m
s

=

Dh h= Dh 0.362 m⋅= Re
V Dh⋅

ν
= Re 3.68 105

×=

Given
1

f
2.0− log

e
Dh
3.7

2.51

Re f⋅
+

⎛
⎜
⎜
⎝

⎞
⎟
⎟
⎠

⋅= f 0.0153=

h
ρ f⋅ L⋅ Q2

⋅
2 Δp⋅

⎛
⎜
⎝

⎞
⎟
⎠

1
5

= h 0.363m= V
Q

h2
= V 15.2

m
s

=

In this process h and f have converged to a solution.  The minimum dimensions are 0.363 m by 0.363 m, or 36.3 cm by 36.3 cm



Fluid is not specified: use water (basic trends in plot apply to any fluid)

Given data: Tabulated or graphical data:

Δp  = 100 kPa μ = 1.00E-03 N.s/m2

L  = 100 m ρ = 999 kg/m3

(Water - Appendix A)

Computed results:

D  (mm) V  (m/s) Q  (m3/s) x 104
Re Regime f Δp (kPa) Error

0.5 0.00781 0.0000153 4 Laminar 16.4 100 0.0%
1.0 0.0312 0.000245 31 Laminar 2.05 100 0.0%
2.0 0.125 0.00393 250 Laminar 0.256 100 0.0%
3.0 0.281 0.0199 843 Laminar 0.0759 100 0.0%
4.0 0.500 0.0628 1998 Laminar 0.0320 100 0.0%
5.0 0.460 0.0904 2300 Turbulent 0.0473 100 0.2%
6.0 0.530 0.150 3177 Turbulent 0.0428 100 0.0%
7.0 0.596 0.229 4169 Turbulent 0.0394 100 0.0%
8.0 0.659 0.331 5270 Turbulent 0.0368 100 0.0%
9.0 0.720 0.458 6474 Turbulent 0.0348 100 0.0%

10.0 0.778 0.611 7776 Turbulent 0.0330 100 0.0%

Flow Rate versus Tube Diameter for Fixed 
Δp

0.0

0.2

0.4

0.6

0.8

0.0 2.5 5.0 7.5 10.0
D  (mm)

Q  (m3/s)
x 104

Laminar
Turbulent



Problem 8.148 [4]

Given: Flow of water in circular pipe

Find: Minimum required diameter

Solution:

Basic equations
p1
ρ

α

V1
2

2
⋅+ g z1⋅+

⎛⎜
⎜⎝

⎞⎟
⎟⎠

p2
ρ

α

V2
2

2
⋅+ g z2⋅+

⎛⎜
⎜⎝

⎞⎟
⎟⎠

− hl= hl f
L
D
⋅

V2

2
⋅= and also A

π D2
⋅
4

=

Assumptions: 1) Steady flow 2) Incompressible flow 3) α at 1 and 2 is approximately 1 4) Ignore minor losses

Hence for flow between the inlet (Point 1) and the exit (2) the energy equation becomes

p1
ρ

p2
ρ

−
Δp
ρ

= f
L
D
⋅

V2

2
⋅=

Hence Δp ρ f⋅
L
D
⋅

V2

2
⋅= ρ f⋅

L
D
⋅

Q2

2 A2
⋅

⋅=
8 ρ⋅ f⋅ L⋅ Q2

⋅

π
2 D5
⋅

=

Solving for D D
8 ρ⋅ f⋅ L⋅ Q2

⋅

π
2

Δp⋅

⎛⎜
⎜⎝

⎞⎟
⎟⎠

1
5

= (1)

We are given Q 1200 gpm⋅= L 500 ft⋅= e 0.01 ft⋅= Δp 50 psi⋅=

and also ρ 1.94
slug

ft3
⋅= ν 1.08 10 5−

×
ft2

s
⋅= (Table A.7)

Equation 1 is tricky because D is unknown, hence V is unknown (even though Q is known), and Re and hence f are unknown!
We COULD set up Excel to solve Eq 1, the Reynolds number, and f, simultaneously by varying D, but here we try guesses:

f 0.01= D
8 ρ⋅ f⋅ L⋅ Q2

⋅

π
2

Δp⋅

⎛⎜
⎜⎝

⎞⎟
⎟⎠

1
5

= D 0.379 ft⋅= V
4 Q⋅

π D2
⋅

= V 23.7
ft
s

⋅= Re
V D⋅

ν
= Re 8.32 105

×=

Given
1

f
2.0− log

e
D

3.7
2.51

Re f⋅
+

⎛
⎜
⎜
⎝

⎞
⎟
⎟
⎠

⋅= f 0.0543=

D
8 ρ⋅ f⋅ L⋅ Q2

⋅

π
2

Δp⋅

⎛⎜
⎜⎝

⎞⎟
⎟⎠

1
5

= D 0.531 ft⋅= V
4 Q⋅

π D2
⋅

= V 12.1
ft
s

⋅= Re
V D⋅

ν
= Re 5.93 105

×=

Given
1

f
2.0− log

e
D

3.7
2.51

Re f⋅
+

⎛
⎜
⎜
⎝

⎞
⎟
⎟
⎠

⋅= f 0.0476=



D
8 ρ⋅ f⋅ L⋅ Q2

⋅

π
2

Δp⋅

⎛⎜
⎜⎝

⎞⎟
⎟⎠

1
5

= D 0.518 ft⋅= V
4 Q⋅

π D2
⋅

= V 12.7
ft
s

⋅= Re
V D⋅

ν
= Re 6.09 105

×=

Given
1

f
2.0− log

e
D

3.7
2.51

Re f⋅
+

⎛
⎜
⎜
⎝

⎞
⎟
⎟
⎠

⋅= f 0.0481=

D
8 ρ⋅ f⋅ L⋅ Q2

⋅

π
2

Δp⋅

⎛⎜
⎜⎝

⎞⎟
⎟⎠

1
5

= D 0.519 ft⋅= V
4 Q⋅

π D2
⋅

= V 12.7
ft
s

⋅= Re
V D⋅

ν
= Re 6.08 105

×=

Given
1

f
2.0− log

e
D

3.7
2.51

Re f⋅
+

⎛
⎜
⎜
⎝

⎞
⎟
⎟
⎠

⋅= f 0.0480=

D
8 ρ⋅ f⋅ L⋅ Q2

⋅

π
2

Δp⋅

⎛⎜
⎜⎝

⎞⎟
⎟⎠

1
5

= D 0.519 ft⋅= V
4 Q⋅

π D2
⋅

= V 12.7
ft
s

⋅= Re
V D⋅

ν
= Re 6.08 105

×=

In this process D and f have converged to a solution.  The minimum diameter is 0.519 ft or 6.22 in 
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Problem 8.153 [2]

Given: Flow through water pump

Find: Power required

Solution:

Basic equations hpump
pd
ρ

Vd
2

2
+ g zd⋅+

⎛⎜
⎜⎝

⎞⎟
⎟⎠

ps
ρ

Vs
2

2
+ g zs⋅+

⎛⎜
⎜⎝

⎞⎟
⎟⎠

−= V
Q
A

=
4 Q⋅

π D2
⋅

=

Assumptions: 1) Steady flow 2) Incompressible flow 3) Uniform flow

Hence for the inlet Vs
4
π

25×
lbm

s
⋅

1 slug⋅
32.2 lbm⋅

×
ft3

1.94 slug⋅
×

12
3

1
ft
⋅⎛⎜

⎝
⎞⎟
⎠

2
×= Vs 8.15

ft
s

= ps 2.5− psi⋅=

For the outlet Vd
4
π

25×
lbm

s
⋅

1 slug⋅
32.2 lbm⋅

×
ft3

1.94 slug⋅
×

12
2

1
ft
⋅⎛⎜

⎝
⎞⎟
⎠

2
×= Vd 18.3

ft
s

= pd 50 psi⋅=

Then hpump
pd ps−

ρ

Vd
2 Vs

2
−

2
+= and Wpump mpump hpump⋅=

Wpump mpump
pd ps−

ρ

Vd
2 Vs

2
−

2
+

⎛⎜
⎜⎝

⎞⎟
⎟⎠

⋅=

Note that the software cannot render a dot, so the power is Wpump and mass flow rate is mpump!

Wpump 25
lbm

s
⋅

1 slug⋅
32.2 lbm⋅

× 50 2.5−−( )
lbf

in2
⋅

12 in⋅
1 ft⋅

⎛⎜
⎝

⎞⎟
⎠

2
×

ft3

1.94 slug⋅
×

1
2

18.32 8.152
−( )×

ft
s

⎛⎜
⎝

⎞⎟
⎠

2
⋅

lbf s2
⋅

slug ft⋅
×+

⎡⎢
⎢⎣

⎤⎥
⎥⎦

×
1 hp⋅

550
ft lbf⋅

s
⋅

×=

Wpump 5.69hp= For an efficiency of η 70 %⋅= Wrequired
Wpump

η
= Wrequired 8.13hp=



Problem 8.154 [1]

Given: Flow through water pump

Find: Power required

Solution:

Basic equations hpump
pd
ρ

Vd
2

2
+ g zd⋅+

⎛⎜
⎜⎝

⎞⎟
⎟⎠

ps
ρ

Vs
2

2
+ g zs⋅+

⎛⎜
⎜⎝

⎞⎟
⎟⎠

−= V
Q
A

=
4 Q⋅

π D2
⋅

=

Assumptions: 1) Steady flow 2) Incompressible flow 3) Uniform flow

In this case we assume Ds Dd= so Vs Vd=

Then hpump
pd ps−

ρ
=

Δp
ρ

= and Wpump mpump hpump⋅=

Wpump mpump
Δp
ρ

⋅= ρ Q⋅
Δp
ρ

⋅= Q Δp⋅=

Note that the software cannot render a dot, so the power is Wpump and mass flow rate is mpump!

Wpump 25
L
s

⋅
0.001 m3

⋅
1 L⋅

× 75× 103
×

N

m2
⋅= Wpump 1.88kW=

For an efficiency of η 80 %⋅= Wrequired
Wpump

η
= Wrequired 2.34 kW⋅=
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Problem 8.159 [4]

Given: Fire nozzle/pump system

Find: Design flow rate; nozzle exit velocity; pump power needed

Solution:

Basic equations
p2
ρ

α

V2
2

2
⋅+ g z2⋅+

⎛⎜
⎜⎝

⎞⎟
⎟⎠

p3
ρ

α

V3
2

2
⋅+ g z3⋅+

⎛⎜
⎜⎝

⎞⎟
⎟⎠

− hl= hl f
L
D
⋅

V2
2

2
⋅= for the hose

Assumptions: 1) Steady flow 2) Incompressible flow 3) α at 2 and 3 is approximately 1 4) No minor loss

p3
ρ

V3
2

2
+ g z3⋅+

p4
ρ

V4
2

2
+ g z4⋅+= for the nozzle (assuming Bernoulli applies)

p2
ρ

α

V2
2

2
⋅+ g z2⋅+

⎛⎜
⎜⎝

⎞⎟
⎟⎠

p1
ρ

α

V1
2

2
⋅+ g z1⋅+

⎛⎜
⎜⎝

⎞⎟
⎟⎠

− hpump= for the pump

Assumptions: 1) Steady flow 2) Incompressible flow 3) α at 1 and 2 is approximately 1 4) No minor loss

Hence for the hose Δp
ρ

p2 p3−

ρ
= f

L
D
⋅

V2

2
⋅= or V

2 Δp⋅ D⋅
ρ f⋅ L⋅

=

We need to iterate to solve this for V because f is unknown until Re is known.  This can be done using Excel's Solver, but here:

Δp 750 kPa⋅= L 100 m⋅= e 0= D 3.5 cm⋅= ρ 1000
kg

m3
⋅= ν 1.01 10 6−

×
m2

s
⋅=

Make a guess for f f 0.01= V
2 Δp⋅ D⋅

ρ f⋅ L⋅
= V 7.25

m
s

= Re
V D⋅

ν
= Re 2.51 105

×=

Given
1

f
2.0− log

e
D

3.7
2.51

Re f⋅
+

⎛
⎜
⎜
⎝

⎞
⎟
⎟
⎠

⋅= f 0.0150=

V
2 Δp⋅ D⋅

ρ f⋅ L⋅
= V 5.92

m
s

= Re
V D⋅

ν
= Re 2.05 105

×=

Given
1

f
2.0− log

e
D

3.7
2.51

Re f⋅
+

⎛
⎜
⎜
⎝

⎞
⎟
⎟
⎠

⋅= f 0.0156=

V
2 Δp⋅ D⋅

ρ f⋅ L⋅
= V 5.81

m
s

= Re
V D⋅

ν
= Re 2.01 105

×=

Given
1

f
2.0− log

e
D

3.7
2.51

Re f⋅
+

⎛
⎜
⎜
⎝

⎞
⎟
⎟
⎠

⋅= f 0.0156=



V
2 Δp⋅ D⋅

ρ f⋅ L⋅
= V 5.80

m
s

= Re
V D⋅

ν
= Re 2.01 105

×=

Q V A⋅=
π D2
⋅
4

V⋅= Q
π

4
0.035 m⋅( )2

× 5.80×
m
s

⋅= Q 5.58 10 3−
×

m3

s
= Q 0.335

m3

min
=

For the nozzle
p3
ρ

V3
2

2
+ g z3⋅+

p4
ρ

V4
2

2
+ g z4⋅+= so V4

2 p3 p4−( )⋅

ρ
V3

2
+=

V4 2 700× 103
×

N

m2
⋅

m3

1000 kg⋅
×

kg m⋅

s2 N⋅
× 5.80

m
s

⋅⎛⎜
⎝

⎞⎟
⎠

2
+= V4 37.9

m
s

=

For the pump p2
ρ

α

V2
2

2
⋅+ g z2⋅+

⎛⎜
⎜⎝

⎞⎟
⎟⎠

p1
ρ

α

V1
2

2
⋅+ g z1⋅+

⎛⎜
⎜⎝

⎞⎟
⎟⎠

− hpump= so hpump
p2 p1−

ρ
=

p1 350 kPa⋅= p2 700 kPa⋅ 750 kPa⋅+= p2 1450kPa=

The pump power is Ppump mpump hpump⋅= where Ppump and mpump are the pump power and mass flow rate
(software cannot render a dot!)

Ppump ρ Q⋅
p2 p1−( )

ρ
⋅= Q p2 p1−( )⋅= Ppump 5.58 10 3−

×
m3

s
⋅ 1450 350−( )× 103

×
N

m2
⋅= Ppump 6.14kW=

Prequired
Ppump

η
= Prequired

6.14 kW⋅
70 %⋅

= Prequired 8.77kW=
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Given data: Tabulated or graphical data:

L  = 20 m e  = 0.26 mm
D  = 75 mm (Table 8.1)

ηpump = 70% μ = 1.00E-03 N.s/m2

ρ = 999 kg/m3

(Appendix A)
Gate valve L e/D  = 8

Elbow L e/D  = 30
(Table 8.4)

Computed results:

Q  (m3/s) V  (m/s) Re f Δp  (kPa) 
(Eq 1)

Δp  (kPa) 
(Eq 2)

0.010 2.26 1.70E+05 0.0280 28.3 735
0.015 3.40 2.54E+05 0.0277 63.1 716
0.020 4.53 3.39E+05 0.0276 112 690
0.025 5.66 4.24E+05 0.0276 174 656
0.030 6.79 5.09E+05 0.0275 250 615
0.035 7.92 5.94E+05 0.0275 340 566
0.040 9.05 6.78E+05 0.0274 444 510
0.045 10.2 7.63E+05 0.0274 561 446
0.050 11.3 8.48E+05 0.0274 692 375
0.055 12.4 9.33E+05 0.0274 837 296
0.060 13.6 1.02E+06 0.0274 996 210

Error
0.0419 9.48 7.11E+05 0.0274 487 487 0 Using Solver !

Power = 29.1 kW (Eq. 3)

Circuit and Pump Pressure Heads

0

200

400

600

800

1000

1200

0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07
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Δ
p

 (k
Pa

)

Circuit
Pump



Tabulated or graphical data: Given data:

μ = 2.10E-05 lbf·s/ft2 L  = 2500 ft
ρ = 1.94 slug/ft3 D  = 20 in

(Appendix A) ηpump = 70%

Computed results: e  = 0.5 in

Q  (ft3/s) V  (ft/s) Re f Δp  (psi) (Eq 1) Δp  (psi) (Eq 2)
10 4.58 7.06E+05 0.0531 11.3 135.0
12 5.50 8.47E+05 0.0531 16.2 130.6
14 6.42 9.88E+05 0.0531 22.1 125.4
16 7.33 1.13E+06 0.0531 28.9 119.4
18 8.25 1.27E+06 0.0531 36.5 112.6
20 9.17 1.41E+06 0.0531 45.1 105.0
22 10.08 1.55E+06 0.0531 54.6 96.6
24 11.00 1.69E+06 0.0531 64.9 87.4
26 11.92 1.83E+06 0.0531 76.2 77.4
28 12.83 1.98E+06 0.0531 88.4 66.6
30 13.75 2.12E+06 0.0531 101.4 55.0

Error
26.1 12.0 1.84E+06 0.0531 76.8 76.8 0.00 Using Solver !

Power = 750 hp (Eq. 3)



Repeating, with smoother pipe

Computed results: e  = 0.25 in

Q  (ft3/s) V  (ft/s) Re f Δp  (psi) (Eq 1) Δp  (psi) (Eq 2)
10 4.58 7.06E+05 0.0410 8.71 135.0
12 5.50 8.47E+05 0.0410 12.5 130.6
14 6.42 9.88E+05 0.0410 17.1 125.4
16 7.33 1.13E+06 0.0410 22.3 119.4
18 8.25 1.27E+06 0.0410 28.2 112.6
20 9.17 1.41E+06 0.0410 34.8 105.0
22 10.08 1.55E+06 0.0410 42.1 96.6
24 11.00 1.69E+06 0.0410 50.1 87.4
26 11.92 1.83E+06 0.0410 58.8 77.4
28 12.83 1.98E+06 0.0410 68.2 66.6
30 13.75 2.12E+06 0.0410 78.3 55.0

Error
27.8 12.8 1.97E+06 0.0410 67.4 67.4 0.00 Using Solver !

Power = 702 hp (Eq. 3)

Pump and Pipe Pressure Heads

0
20
40
60
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120
140
160
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Pump



Given data: Computed results:

L  = 30 m Q  (m3/s) V  (m/s) Δp  (Pa) (Eq 1) Δp  (Pa) (Eq 2)
D h = 0.5 m 0.00 0.00 0 1020
K  = 12 0.25 1.00 8 1012
f  = 0.03 0.50 2.00 30 1000
ρ = 1.1 kg/m3 0.75 3.00 68 984

1.00 4.00 121 965
1.25 5.00 190 942
1.50 6.00 273 915
1.75 7.00 372 884
2.00 8.00 486 850
2.25 9.00 615 812
2.50 10.00 759 770
2.75 11.00 918 724
3.00 12.00 1093 675

Error
2.51 10.06 768 768 0.00 Using Solver !

Fan and Duct Pressure Heads
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The workbook for Example 8.11 is modified for use in this problem

Pipe Data:

Pipe L  (m) D (mm) e (mm)
0 300 75 0.15
1 400 75 0.15
2 100 75 0.15
3 100 75 0.15
4 75 75 0.15



Fluid Properties:

ρ = 999 kg/m3

μ = 0.001 N.s/m2

Available Head:

Δp  = 250 kPa

Flows: Q 0 (m
3/s) Q 1 (m

3/s) Q 2 (m
3/s) Q 3 (m

3/s) Q 4 (m
3/s)

0.00928 0.00306 0.00311 0.00311 0.00623

V 0 (m/s) V 1 (m/s) V 2 (m/s) V 3 (m/s) V 4 (m/s)
2.10 0.692 0.705 0.705 1.41

Re 0 Re 1 Re 2 Re 3 Re 4

1.57E+05 5.18E+04 5.28E+04 5.28E+04 1.06E+05

f 0 f 1 f 2 f 3 f 4

0.0245 0.0264 0.0264 0.0264 0.0250

Heads: Δp 0 (kPa) Δp 1 (kPa) Δp 2 (kPa) Δp 3 (kPa) Δp 4 (kPa)
216.4 33.7 8.7 8.7 24.8

Constraints: (1) Q 0 = Q 1 + Q4 (2) Q 4 = Q 2 + Q 3

0.00% 0.01%

(3) Δp  = Δp 0 + Δp 1 (4) Δp  = Δp 0 + Δp 4 + Δp 2

0.03% 0.01%

(5) Δp 2 = Δp 3

0.00%

Error: 0.05% Vary Q 0, Q 1, Q 2, Q 3 and Q 4

using Solver  to minimize total error



The workbook for Example Problem 8.11 is modified for use in this problem



Pipe Data:

Pipe L  (ft) D (in) e (ft)
A 150 1.5 0.00085
B 150 1.5 0.00085
C 150 1 0.00085
D 150 1.5 0.00085

Fluid Properties:

ρ = 1.94 slug/ft3

μ = 2.10E-05 lbf·s/ft2

Available Head:

Δp  = 50 psi

Flows: Q A (ft3/s) Q B (ft3/s) Q C (ft3/s) Q D (ft3/s)
0.103 0.077 0.026 0.103

V A (ft/s) V B (ft/s) V C (ft/s) V D (ft/s)
8.41 6.28 4.78 8.41

Re A Re B Re C Re D

9.71E+04 7.25E+04 3.68E+04 9.71E+04

f A f B f C f D

0.0342 0.0345 0.0397 0.0342

Heads: Δp A (psi) Δp B (psi) Δp C (psi) Δp D (psi)
19.5 11.0 11.0 19.5

Constraints: (5) Q A = Q D (6) Q A = Q B + Q C

0.00% 0.05%

(7) Δp  = Δp A + Δp B + Δp D (8) Δp B = Δp C

0.00% 0.00%

Error: 0.05% Vary Q A, Q B, Q C, and Q D

using Solver  to minimize total error
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Problem 8.171 [2]

Given: Flow through an orifice

Find: Pressure drop

Solution:
Basic equation mactual K At⋅ 2 ρ⋅ p1 p2−( )⋅⋅= K At⋅ 2 ρ⋅ Δp⋅⋅= Note that mactual is mass flow rate (the

software cannot render a dot!)

For the flow coefficient K K ReD1
Dt
D1

, 
⎛
⎜
⎝

⎞
⎟
⎠

=

At 65oC,(Table A.8) ρ 980
kg

m3
⋅= ν 4.40 10 7−

×
m2

s
⋅=

V
Q
A

= V
4
π

1

0.15 m⋅( )2
× 20×

L
s

⋅
0.001 m3

⋅
1 L⋅

×= V 1.13
m
s

=

ReD1
V D⋅

ν
= ReD1 1.13

m
s

⋅ 0.15× m⋅
s

4.40 10 7−
× m2

⋅
×= ReD1 3.85 105

×=

β

Dt
D1

= β
75
150

= β 0.5=

From Fig. 8.20 K 0.624=

Then Δp
mactual
K At⋅

⎛
⎜
⎝

⎞
⎟
⎠

2
1

2 ρ⋅
⋅=

ρ Q⋅
K At⋅

⎛
⎜
⎝

⎞
⎟
⎠

2 1
2 ρ⋅

⋅=
ρ

2
Q

K At⋅
⎛
⎜
⎝

⎞
⎟
⎠

2
⋅=

Δp
1
2

980×
kg

m3
⋅ 20

L
s

⋅
0.001 m3

⋅
1 L⋅

×
1

0.624
×

4
π

×
1

0.075 m⋅( )2
×

⎡⎢
⎢⎣

⎤⎥
⎥⎦

2

×= Δp 25.8kPa=
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Problem 8.173 [2]

Given: Flow through a venturi meter (NOTE: Throat is obviously 3 in not 30 in!)

Find: Flow rate

Solution:
Basic equation mactual

C At⋅

1 β
4

−
2 ρ⋅ p1 p2−( )⋅⋅=

C At⋅

1 β
4

−
2 ρ⋅ Δp⋅⋅= Note that mactual is mass flow rate (the

software cannot render a dot!)

For ReD1 > 2 x 105, 0.980 < C < 0.995.  Assume C = 0.99, then check Re

β

Dt
D1

= β
3
6

= β 0.5=

Also Δp ρHg g⋅ Δh⋅= SGHg ρ⋅ g⋅ Δh⋅=

Then Q
mactual

ρ
=

C At⋅

ρ 1 β
4

−⋅
2 ρ⋅ Δp⋅⋅=

π C⋅ Dt
2

⋅

4 ρ⋅ 1 β
4

−⋅
2 ρ⋅ SGHg⋅ ρ⋅ g⋅ Δh⋅⋅=

π C⋅ Dt
2

⋅

4 1 β
4

−⋅
2 SGHg⋅ g⋅ Δh⋅⋅=

Q
π

4 1 0.54
−×

0.99×
1
4

ft⋅⎛⎜
⎝

⎞⎟
⎠

2
× 2 13.6× 32.2×

ft

s2
⋅ 1× ft⋅×= Q 1.49

ft3

s
⋅=

Hence V
Q
A

=
4 Q⋅

π D1
2

⋅
= V

4
π

1

1
2

ft⋅⎛⎜
⎝

⎞⎟
⎠

2
× 1.49×

ft3

s
⋅= V 7.59

ft
s

⋅=

At 75oF,(Table A.7) ν 9.96 10 6−
×

ft2

s
⋅=

ReD1
V D1⋅

ν
= ReD1 7.59

ft
s

⋅
1
2

× ft⋅
s

9.96 10 6−
× ft2⋅

×= ReD1 3.81 105
×=

Thus ReD1 > 2 x 105. The volume flow rate is Q 1.49
ft3

s
⋅=



Given data: Tabulated or graphical data:
ΔH  = 30 m K ent = 0.50 (Fig. 8.14)

L  = 200 m K exit = 1.00 (Fig. 8.14)
D  = 100 mm Loss at orifice = 80% (Fig. 8.23)
D t = 40 mm μ = 0.001 N.s/m2

β = 0.40 ρ = 999 kg/m3

(Water - Appendix A)



Computed results:

Orifice loss coefficient: Flow system: Orifice pressure drop

K  = 0.61 V = 2.25 m/s Δp = 265 kPa
(Fig. 8.20 Q  = 0.0176 m3/s
Assuming high Re ) Re = 2.24E+05

f = 0.0153

Eq. 1, solved by varying V  AND Δp , using Solver :
Left (m2/s) Right (m2/s) Error Procedure using Solver :

294 293 0.5% a) Guess at V  and Δp
b) Compute error in Eq. 1

Eq. 2 and m rate = ρQ  compared, varying V AND Δp c) Compute error in mass flow rate
(From Q ) (From Eq. 2) Error d) Minimize total error 

m rate (kg/s) = 17.6 17.6 0.0% e) Minimize total error by varying V and Δp

Total Error 0.5%
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Problem 8.176 [2]

Given: Flow through an venturi meter

Find: Flow rate

Solution:
Basic equation mactual

C At⋅

1 β
4

−
2 ρ⋅ p1 p2−( )⋅⋅=

C At⋅

1 β
4

−
2 ρ⋅ Δp⋅⋅= Note that mactual is mass flow rate (the

software cannot render a dot!)

For ReD1 > 2 x 105, 0.980 < C < 0.995.  Assume C = 0.99, then check Re

β

Dt
D1

= β
25
50

= β 0.5=

Then Q
mactual

ρ
=

C At⋅

ρ 1 β
4

−⋅
2 ρ⋅ Δp⋅⋅=

π C⋅ Dt
2

⋅

4 1 β
4

−⋅

2 Δp⋅
ρ

⋅=

Q
π

4 1 0.54
−×

0.99× 0.025 m⋅( )2
× 2 150× 103

×
N

m2
⋅

m3

1000 kg⋅
×

kg m⋅

s2 N⋅
××= Q 8.69 10 3−

×
m3

s
=

Hence V
Q
A

=
4 Q⋅

π D1
2

⋅
= V

4
π

1

0.05 m⋅( )2
× 8.69× 10 3−

×
m3

s
= V 4.43

m
s

=

At 20oC (Table A.8) ν 1.01 10 6−
×

m2

s
⋅=

ReD1
V D⋅

ν
= ReD1 4.43

m
s

⋅ 0.05× m⋅
s

1.01 10 6−
× m2

⋅
×= ReD1 2.19 105

×=

Thus ReD1 > 2 x 105. The volume flow rate is Q 8.69 10 3−
×

m3

s
= Q 0.522

m3

min
⋅=
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Problem 8.178 [4]

Given: Flow through a venturi meter (NOTE: Throat is obviously 3 in not 30 in!)

Find: Maximum flow rate for incompressible flow; Pressure reading

Solution:
Basic equation mactual

C At⋅

1 β
4

−
2 ρ⋅ p1 p2−( )⋅⋅=

C At⋅

1 β
4

−
2 ρ⋅ Δp⋅⋅= Note that mactual is mass flow rate (the

software cannot render a dot!)

Assumptions: 1) Neglect density change 2) Use ideal gas equation for density

Then ρ
p

Rair T⋅
= ρ 60

lbf

in2
⋅

12 in⋅
1 ft⋅

⎛⎜
⎝

⎞⎟
⎠

2
×

lbm R⋅
53.33 ft⋅ lbf⋅

×
1 slug⋅

32.2 lbm⋅
×

1
68 460+( ) R⋅

⋅= ρ 9.53 10 3−
×

slug

ft3
⋅=

For incompressible flow V must be less than about 100 m/s or 330 ft/s at the throat.  Hence

mactual ρ V2⋅ A2⋅= mactual 9.53 10 3−
×

slug

ft3
330×

ft
s

⋅
π

4
×

1
4

ft⋅⎛⎜
⎝

⎞⎟
⎠

2
×= mactual 0.154

slug
s

⋅=

β

Dt
D1

= β
3
6

= β 0.5=

Also Δp ρHg g⋅ Δh⋅= Δh
Δp

ρHg g⋅
=

and in addition Δp
1

2 ρ⋅

mactual
C At⋅

⎛
⎜
⎝

⎞
⎟
⎠

2

⋅ 1 β
4

−( )⋅= so Δh
1 β

4
−( )

2 ρ⋅ ρHg⋅ g⋅

mactual
C At⋅

⎛
⎜
⎝

⎞
⎟
⎠

2

⋅=

For ReD1 > 2 x 105, 0.980 < C < 0.995.  Assume C = 0.99, then check Re

Δh
1 0.54
−( )

2
ft3

9.53 10 3−
× slug

×
ft3

13.6 1.94⋅ slug⋅
×

s2

32.2 ft⋅
× 0.154

slug
s

1
0.99

×
4
π

×
4

1 ft⋅
⎛⎜
⎝

⎞⎟
⎠

2
×

⎡
⎢
⎣

⎤
⎥
⎦

2

×= Δh 0.581 ft⋅= Δh 6.98 in⋅=

Hence V
Q
A

=
4 mactual⋅

π ρ⋅ D1
2

⋅
= V

4
π

ft3

9.53 10 3−
× slug

×
1

1
2

ft⋅⎛⎜
⎝

⎞⎟
⎠

2
× 0.154×

slug
s

= V 82.3
ft
s

⋅=

At 68oF,(Table A.7) ν 1.08 10 5−
×

ft2

s
⋅=

ReD1
V D1⋅

ν
= ReD1 82.3

ft
s

⋅
1
2

× ft⋅
s

1.08 10 5−
× ft2⋅

×= ReD1 3.81 106
×=

Thus ReD1 > 2 x 105. The mass flow rate is mactual 0.154
slug

s
= and pressure Δh 6.98 in= Hg
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Problem 8.180 [5] Part 2/2



Problem 8.181 [1]

V1, A1 V2, A2 

Given: Flow through a diffuser

Find: Derivation of Eq. 8.42

Solution:

Basic equations Cp
p2 p1−

1
2

ρ⋅ V1
2

⋅
=

p1
ρ

V1
2

2
+ g z1⋅+

p2
ρ

V2
2

2
+ g z2⋅+= Q V A⋅=

Assumptions:  1) All the assumptions of the Bernoulli equation 2) Horizontal flow 3) No flow separation

From Bernoulli
p2 p1−

ρ

V1
2

2

V2
2

2
−=

V1
2

2

V1
2

2

A1
A2

⎛
⎜
⎝

⎞
⎟
⎠

2

⋅−= using continuity

Hence Cp
p2 p1−

1
2

ρ⋅ V1
2

⋅
=

1
1
2

V1
2

⋅

V1
2

2

V1
2

2

A1
A2

⎛
⎜
⎝

⎞
⎟
⎠

2

⋅−
⎡
⎢
⎢
⎣

⎤
⎥
⎥
⎦

⋅= 1
A1
A2

⎛
⎜
⎝

⎞
⎟
⎠

2

−=

Finally Cp 1
1

AR2
−= which is Eq. 8.42.

This result is not realistic as a real diffuser is very likely to have flow separation
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Problem 8.158

Problem 8.158

 8.158

Problem 8.158

Problem 8.158



 
Problem 8.185                                                                             [5]   Part 2/3



 
Problem 8.185                                                                             [5]   Part 1/3



Problem 9.1 [2]

Given: Model of riverboat

Find: Distance at which transition occurs

Solution:

Basic equation Rex
ρ U⋅ x⋅

μ
=

U x⋅
ν

= and transition occurs at about Rex 5 105
×=

For water at 10oC ν 1.30 10 6−
×

m2

s
⋅= (Table A.8) and we are given U 3.5

m
s

⋅=

Hence xp
ν Rex⋅

U
= xp 0.186m= xp 18.6 cm⋅=

For the model xm
xp
18

= xm 0.0103m= xm 10.3 mm⋅=



Problem 9.2 [2]

Given: Minivan traveling at various speeds

Find: Plot of boundary layer length as function of speed

Solution:

Governing equations:

The critical Reynolds number for transition to turbulence is

Re crit = ρVL crit/μ =500000

The critical length is then

L crit = 500000μ/V ρ

Tabulated or graphical data:

μ = 3.79E-07 lbf.s/ft2

ρ = 0.00234 slug/ft3

(Table A.9, 68oF)

Computed results:

V  (mph) L crit (ft)
10 5.52
13 4.42
15 3.68
18 3.16
20 2.76
30 1.84
40 1.38
50 1.10
60 0.920
70 0.789
80 0.690
90 0.614

Length of Laminar Boundary Layer
on the Roof of a Minivan

0

1

2

3

4

5

6

0 10 20 30 40 50 60 70 80 90 100
V  (mph)

L crit (ft)



Problem 9.3 [3]

Given: Boeing 757

Find: Point at which transition occurs; Same point at 10,000 m

Solution:

Basic equation Rex
ρ U⋅ x⋅

μ
=

U x⋅
ν

= and transition occurs at about Rex 5 105
×=

For air at 20oC ν 1.50 10 5−
×

m2

s
⋅= (Table A.10) and we are given U 260

km
hr

⋅=

Hence xp
ν Rex⋅

U
= xp 0.104m= xp 10.4cm=

At 10,000 m T 223.3 K⋅= (Table A.3) T 49.8− °C=

We need to estimate ν or μ at this temperature.  From Appendix A-3

μ
b T⋅

1
S
T

+
= b 1.458 10 6−

×
kg

m s⋅ K

1
2

⋅

⋅= S 110.4 K⋅=

Hence μ
b T⋅

1
S
T

+
= μ 1.458 10 5−

×
N s⋅

m2
=

For air at 10,000 m (Table A.3)

ρ

ρSL
0.3376= ρSL 1.225

kg

m3
⋅= ρ 0.3376 ρSL⋅= ρ 0.414

kg

m3
=

ν
μ

ρ
= ν 3.53 10 5−

×
m2

s
= and we are given U 850

km
hr

⋅=

Hence xp
ν Rex⋅

U
= xp 0.0747m= xp 7.47cm=



Problem 9.4 [2]

Given: Flow around American and British golf balls, and soccer ball

Find: Speed at which boundary layer becomes turbulent

Solution:

Basic equation ReD
ρ U⋅ D⋅

μ
=

U D⋅
ν

= and transition occurs at about ReD 2.5 105
×=

For air ν 1.62 10 4−
×

ft2

s
⋅= (Table A.9)

For the American golf ball D 1.68 in⋅= Hence U
ν ReD⋅

D
= U 289

ft
s

⋅= U 197mph= U 88.2
m
s

=

For the British golf ball D 41.1 mm⋅= Hence U
ν ReD⋅

D
= U 300

ft
s

⋅= U 205mph= U 91.5
m
s

=

For soccer ball D 8.75 in⋅= Hence U
ν ReD⋅

D
= U 55.5

ft
s

⋅= U 37.9mph= U 16.9
m
s

=



Problem 9.5 [2]

Given: Experiment with 1 cm diameter sphere in SAE 10 oil

Find: Reasonableness of two flow extremes

Solution:

Basic equation ReD
ρ U⋅ D⋅

μ
=

U D⋅
ν

= and transition occurs at about

For SAE 10 ν 1.1 10 4−
×

m2

s
⋅= (Fig. A.3 at 20oC) and D 1 cm⋅=

For ReD 1= we find U
ν ReD⋅

D
= U 0.011

m
s

⋅= U 1.10
cm
s

⋅= which is reasonable

For ReD 2.5 105
×= U

ν ReD⋅

D
= U 2750

m
s

= which is much too high!

Note that for ReD 2.5 105
×= we need to increase the sphere diameter D by a factor of about 1000, or reduce the viscosity ν b

the same factor, or some combination of these.  One possible solution is

For water ν 1.01 10 6−
×

m2

s
⋅= (Table A.8 at 20oC) and D 10 cm⋅=

For ReD 2.5 105
×= we find U

ν ReD⋅

D
= U 2.52

m
s

⋅= which is reasonable

Hence one solution is to use a 10 cm diameter sphere in a water tank.



Problem 9.6 [2]

Given: Sheet of plywood attached to the roof of a car

Find: Speed at which boundary layer becomes turbulent; Speed at which 90% is turbulent

Solution:

Basic equation Rex
ρ U⋅ x⋅

μ
=

U x⋅
ν

= and transition occurs at about Rex 5 105
×=

For air ν 1.62 10 4−
×

ft2

s
⋅= (Table A.9)

For the plywood x 8 ft⋅= Hence U
ν Rex⋅

x
= U 10.1

ft
s

⋅= U 6.90 mph⋅=

When 90% of the boundary layer is turbulent x 0.1 8× ft⋅= Hence U
ν Rex⋅

x
= U 101

ft
s

⋅= U 69.0 mph⋅=



Problem 9.7 [2]

Given: Aircraft or missile at various altitudes

Find: Plot of boundary layer length as function of altitude

Solution:

Governing equations:

The critical Reynolds number for transition to turbulence is

Re crit = ρUL crit/μ = 500000

The critical length is then

L crit = 500000μ/U ρ

Let L 0 be the length at sea level (density ρ0 and viscosity μ0).  Then

L crit/L 0 = (μ/μ0)/(ρ/ρ0)

The viscosity of air increases with temperature so generally decreases with elevation;
the density also decreases with elevation, but much more rapidly.
Hence we expect that the length ratio increases with elevation

For the density ρ, we use data from Table A.3.
For the viscosity μ, we use the Sutherland correlation (Eq. A.1)

μ = bT 1/2/(1+S /T )
b  = 1.46E-06 kg/m.s.K1/2

S  = 110.4 K



Computed results:

z  (km) T  (K) ρ/ρ0 μ/μ0 L crit/L 0

0.0 288.2 1.0000 1.000 1.000
0.5 284.9 0.9529 0.991 1.04
1.0 281.7 0.9075 0.982 1.08
1.5 278.4 0.8638 0.973 1.13
2.0 275.2 0.8217 0.965 1.17
2.5 271.9 0.7812 0.955 1.22
3.0 268.7 0.7423 0.947 1.28
3.5 265.4 0.7048 0.937 1.33
4.0 262.2 0.6689 0.928 1.39
4.5 258.9 0.6343 0.919 1.45
5.0 255.7 0.6012 0.910 1.51
6.0 249.2 0.5389 0.891 1.65
7.0 242.7 0.4817 0.872 1.81
8.0 236.2 0.4292 0.853 1.99
9.0 229.7 0.3813 0.834 2.19

10.0 223.3 0.3376 0.815 2.41
11.0 216.8 0.2978 0.795 2.67
12.0 216.7 0.2546 0.795 3.12
13.0 216.7 0.2176 0.795 3.65
14.0 216.7 0.1860 0.795 4.27
15.0 216.7 0.1590 0.795 5.00
16.0 216.7 0.1359 0.795 5.85
17.0 216.7 0.1162 0.795 6.84
18.0 216.7 0.0993 0.795 8.00
19.0 216.7 0.0849 0.795 9.36
20.0 216.7 0.0726 0.795 10.9
22.0 218.6 0.0527 0.800 15.2
24.0 220.6 0.0383 0.806 21.0
26.0 222.5 0.0280 0.812 29.0
28.0 224.5 0.0205 0.818 40.0
30.0 226.5 0.0150 0.824 54.8

Length of Laminar Boundary Layer
versus Elevation
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Problem 9.8 [2]

Given:Laminar boundary layer (air & water)

Find: Plot of boundary layer length as function of speed (at various altitudes for air)

Solution:

Governing equations:

The critical Reynolds number for transition to turbulence is

Re crit = UL crit/μ = 500000

The critical length is then

L crit = 500000μ/U ρ

For air at sea level and 10 km, we can use tabulated data for density ρ from Table A.3.
For the viscosity μ, use the Sutherland correlation (Eq. A.1)

μ = bT 1/2/(1+S /T )
b  = 1.46E-06 kg/m.s.K1/2

S  = 110.4 K

Air (sea level, T  = 288.2 K): Air (10 K, T  = 223.3 K): Water (20oC):
ρ = 1.225 kg/m3 ρ = 0.414 kg/m3 ρ = 998 slug/ft3

(Table A.3) (Table A.3) μ = 1.01E-03 N.s/m2

μ = 1.79E-05 N.s/m2 μ = 1.46E-05 N.s/m2 (Table A.8)
(Sutherland) (Sutherland)



Computed results:

Water Air (Sea level) Air (10 km)
L crit (m) L crit (m) L crit (m)

0.05 10.12 146.09 352.53
0.10 5.06 73.05 176.26
0.5 1.01 14.61 35.25
1.0 0.506 7.30 17.63
5.0 0.101 1.46 3.53
15 0.0337 0.487 1.18
20 0.0253 0.365 0.881
25 0.0202 0.292 0.705
30 0.0169 0.243 0.588
50 0.0101 0.146 0.353

100 0.00506 0.0730 0.176
200 0.00253 0.0365 0.0881

1000 0.00051 0.0073 0.0176

U  (m/s)

Length of Laminar Boundary Layer
for Water and Air

0.0

0.0

1.0

100.0

1.E-02 1.E+00 1.E+02 1.E+04
U  (m/s)

L crit (m)

Water
Air (Sea level)
Air (10 km)
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Problem 9.11       [2] 
 
 
 
 
 
 
 
 
 

Given: Laminar boundary layer profile 

Find: If it satisfies BC’s; Evaluate δ*/δ and θ/δ 

Solution:  
 

The boundary layer equation is  
3

2
1

2
3

⎟
⎠
⎞

⎜
⎝
⎛−=

δδ
yy

U
u

  for which u = U at y = δ 

The BC’s are    ( ) 000 ==
=δydy

duu  

At y = 0     ( ) ( ) 00
2
10

2
3 3 =−=

U
u

 

At y = δ     0
2
31

2
3

2
31

2
3

3

2

3

2

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−=

=
δ
δ

δδδ
δ

UyU
dy
du

y

 

 

For δ*:     ∫∫ ⎟
⎠
⎞

⎜
⎝
⎛ −=⎟

⎠
⎞

⎜
⎝
⎛ −=

∞ δ

δ
00

11* dy
U
udy

U
u

 

Then     ∫∫∫ ⎟
⎠
⎞

⎜
⎝
⎛ −=⎟

⎠
⎞

⎜
⎝
⎛

⎟
⎠
⎞

⎜
⎝
⎛ −=⎟

⎠
⎞

⎜
⎝
⎛ −=

1

0

1

00

1111* η
δδδ

δ δ

d
U
uyd

U
udy

U
u

 

with     3

2
1

2
3 ηη −=

U
u

 

Hence     375.0
8
3

8
1

4
3

2
1

2
311* 1

0

42
1

0

3
1

0

==⎥⎦
⎤

⎢⎣
⎡ +−=⎟

⎠
⎞

⎜
⎝
⎛ +−=⎟

⎠
⎞

⎜
⎝
⎛ −= ∫∫ ηηηηηηη

δ
δ dd

U
u

 

 

For θ:     ∫∫ ⎟
⎠
⎞

⎜
⎝
⎛ −=⎟

⎠
⎞

⎜
⎝
⎛ −=

∞ δ

θ
00

11 dy
U
u

U
udy

U
u

U
u

 

Then     ∫∫∫ ⎟
⎠
⎞

⎜
⎝
⎛ −=⎟

⎠
⎞

⎜
⎝
⎛

⎟
⎠
⎞

⎜
⎝
⎛ −=⎟

⎠
⎞

⎜
⎝
⎛ −=

1

0

1

00

1111 η
δδδ

θ δ

d
U
u

U
uyd

U
u

U
udy

U
u

U
u

 

Hence ∫∫∫ ⎟
⎠
⎞

⎜
⎝
⎛ −+−−=⎟

⎠
⎞

⎜
⎝
⎛ +−⎟

⎠
⎞

⎜
⎝
⎛ −=⎟

⎠
⎞

⎜
⎝
⎛ −=

1

0

6432
1

0

33
1

0 4
1

2
3

2
1

4
9

2
3

2
1

2
31

2
1

2
31 ηηηηηηηηηηηη

δ
θ ddd

U
u

U
u

 

139.0
280
39

28
1

10
3

8
1

4
3

4
3 1

0

75432 ==⎥⎦
⎤

⎢⎣
⎡ −+−−= ηηηηη

δ
θ  



Problem 9.12       [2] 
 
 
 
 
 
 
 
 
 

Given: Laminar boundary layer profile 

Find: If it satisfies BC’s; Evaluate δ*/δ and θ/δ 

Solution:  
 

The boundary layer equation is  
43

22 ⎟
⎠
⎞

⎜
⎝
⎛+⎟

⎠
⎞

⎜
⎝
⎛−=

δδδ
yyy

U
u

  for which u = U at y = δ 

 

The BC’s are    ( ) 000 ==
=δydy

duu  

At y = 0     ( ) ( ) ( ) 000202 43 =+−=
U
u

 

At y = δ     046124612 4

3

3

2

4

3

3

2

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+−=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+−=

=
δ
δ

δ
δ

δδδδ
δ

UyyU
dy
du

y

 

For δ*:     ∫∫ ⎟
⎠
⎞

⎜
⎝
⎛ −=⎟

⎠
⎞

⎜
⎝
⎛ −=

∞ δ

δ
00

11* dy
U
udy

U
u

 

Then     ∫∫∫ ⎟
⎠
⎞

⎜
⎝
⎛ −=⎟

⎠
⎞

⎜
⎝
⎛

⎟
⎠
⎞

⎜
⎝
⎛ −=⎟

⎠
⎞

⎜
⎝
⎛ −=

1

0

1

00

1111* η
δδδ

δ δ

d
U
uyd

U
udy

U
u

 

with     4322 ηηη +−=
U
u

 

Hence  ( ) 3.0
10
3

5
1

2
12211* 1

0

542
1

0

43
1

0

==⎥⎦
⎤

⎢⎣
⎡ −+−=−+−=⎟

⎠
⎞

⎜
⎝
⎛ −= ∫∫ ηηηηηηηηη

δ
δ dd

U
u

 

 

For θ:     ∫∫ ⎟
⎠
⎞

⎜
⎝
⎛ −=⎟

⎠
⎞

⎜
⎝
⎛ −=

∞ δ

θ
00

11 dy
U
u

U
udy

U
u

U
u

 

Then     ∫∫∫ ⎟
⎠
⎞

⎜
⎝
⎛ −=⎟

⎠
⎞

⎜
⎝
⎛

⎟
⎠
⎞

⎜
⎝
⎛ −=⎟

⎠
⎞

⎜
⎝
⎛ −=

1

0

1

00

1111 η
δδδ

θ δ

d
U
u

U
uyd

U
u

U
udy

U
u

U
u

 

Hence
 

( )( ) ( )∫∫∫ −+−−+−−=−+−+−=⎟
⎠
⎞

⎜
⎝
⎛ −=

1

0

8765432
1

0

4343
1

0

44492422121 ηηηηηηηηηηηηηηηηη
δ
θ ddd

U
u

U
u

 



117.0
315
37

9
1

2
1

7
4

5
9

2
1

3
4 1

0

9875432 ==⎥⎦
⎤

⎢⎣
⎡ −+−+−−= ηηηηηηη

δ
θ  



Problem 9.13       [3] 
 
 
 
 
 
 
 
 
 
 

Given: Laminar boundary layer profile 

Find: If it satisfies BC’s; Evaluate δ*/δ and θ/δ 

Solution:  
 

The boundary layer equation is 
2

02 δ
δ

<<= yy
U
u

 

( ) ( ) δδ
δ

<<−+−= yy
U
u

2
1222   for which u = U at y = δ 

 

The BC’s are   ( ) 000 ==
=δydy

duu  

At y = 0    ( ) 002 ==
U
u

 

At y = δ    ( ) 0122 ≠⎥⎦
⎤

⎢⎣
⎡ −=

=δδ y

U
dy
du

  so it fails the outer BC. 

This simplistic distribution is a piecewise linear profile: The first half of the layer has velocity gradient 
δδ
UU 414.12 = , and the 

second half has velocity gradient ( )
δδ
UU 586.022 =− .  At y = δ, we make another transition to zero velocity gradient. 

For δ*:    ∫∫ ⎟
⎠
⎞

⎜
⎝
⎛ −=⎟

⎠
⎞

⎜
⎝
⎛ −=

∞ δ

δ
00

11* dy
U
udy

U
u

 

Then    ∫∫∫ ⎟
⎠
⎞

⎜
⎝
⎛ −=⎟

⎠
⎞

⎜
⎝
⎛

⎟
⎠
⎞

⎜
⎝
⎛ −=⎟

⎠
⎞

⎜
⎝
⎛ −=

1

0

1

00

1111* η
δδδ

δ δ

d
U
uyd

U
udy

U
u

 

with    
2
102 <<= ηη

U
u

 

    ( ) ( ) 1
2
11222 <<−+−= ηη

U
u

  

Hence 
 

( ) ( ) ( )[ ] ( ) ( ) ( )
1
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2
21

0

2
1

21

21

0

1

0

221
2
112

22
112221211*

⎥⎦
⎤

⎢⎣
⎡ −−+⎥⎦

⎤
⎢⎣
⎡ −=−−−−+−=⎟

⎠
⎞

⎜
⎝
⎛ −= ∫∫∫ ηηηηηηη

δ
δ ddd

U
u

 



396.0
4
2

4
3

8
2

4
1

8
2

2
1*

=−=⎥
⎦

⎤
⎢
⎣

⎡
−+⎥

⎦

⎤
⎢
⎣

⎡
−=

δ
δ

  

 

For θ:    ∫∫ ⎟
⎠
⎞

⎜
⎝
⎛ −=⎟

⎠
⎞

⎜
⎝
⎛ −=

∞ δ

θ
00

11 dy
U
u

U
udy

U
u

U
u

 

Then    ∫∫∫ ⎟
⎠
⎞

⎜
⎝
⎛ −=⎟

⎠
⎞

⎜
⎝
⎛

⎟
⎠
⎞

⎜
⎝
⎛ −=⎟

⎠
⎞

⎜
⎝
⎛ −=

1

0

1

00

1111 η
δδδ

θ δ

d
U
u

U
uyd

U
u

U
udy

U
u

U
u

 

Hence, after a LOT of work  
 

( ) ( ) ( )( ) ( ) ( )( )[ ]∫∫∫ −−−−−+−+−=⎟
⎠
⎞

⎜
⎝
⎛ −=

1

21

21

0

1

0

1222112222121 ηηηηηηη
δ
θ ddd

U
u

U
u

( )( ) ( )( ) 152.0
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1

6
2
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2
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1

8
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2
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3
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2
1

3
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1
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2
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⎦

⎤
⎢
⎣

⎡
−−⎟

⎠
⎞

⎜
⎝
⎛ −−−+

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝
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−= ηηηη

δ
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Problem 9.18 [3]

Given: Data on fluid and boundary layer geometry

Find: Mass flow rate across ab; Drag

Solution:

The given data is ρ 800
kg

m3
⋅= U 3

m
s

⋅= L 3 m⋅= δ 25 mm⋅= b 1 m⋅=

Governing equations:

Mass

Momentum

Assumptions: (1) Steady flow (2) No pressure force (3) No body force in x direction (4) Uniform flow at a

Applying these to the CV abcd

Mass ρ− U⋅ b⋅ δ⋅( )
0

δ

yρ u⋅ b⋅
⌠
⎮
⌡

d+ mab+ 0=

For the boundary layer u
U

y
δ

= η=
dy
δ

dη=

Hence mab ρ U⋅ b⋅ δ⋅
0

1
yρ U⋅ η⋅ δ⋅

⌠
⎮
⌡

d−= ρ U⋅ b⋅ δ⋅
1
2

ρ⋅ U⋅ b⋅ δ⋅−=

mab
1
2

ρ⋅ U⋅ b⋅ δ⋅= mab 30
kg
s

=

Momentum Rx U ρ− U⋅ δ⋅( )⋅ mab uab⋅+
0

δ

yu ρ⋅ u⋅ b⋅
⌠
⎮
⌡

d+=

Note that uab U= and
0

δ

yu ρ⋅ u⋅ b⋅
⌠
⎮
⌡

d
0

1
ηρ U2

⋅ b⋅ δ⋅ η
2

⋅
⌠
⎮
⌡

d=

Rx ρ− U2
⋅ b⋅ δ⋅

1
2

ρ⋅ U⋅ b⋅ δ⋅ U⋅+
0

1
yρ U2

⋅ b⋅ δ⋅ η
2

⋅
⌠
⎮
⌡

d+=

Rx ρ− U2
⋅ b⋅ δ⋅

1
2

ρ⋅ U2
⋅ δ⋅+

1
3

ρ⋅ U2
⋅ δ⋅+= Rx

1
6

− ρ⋅ U2
⋅ b⋅ δ⋅= Rx 30− N=

We are able to compute the boundary layer drag even though we do not know the viscosity because it is the viscosity that creates the
boundary layer in the first place



Problem 9.19 [3]

Given: Data on fluid and boundary layer geometry

Find: Mass flow rate across ab; Drag; Compare to Problem 9.18

Solution:
The given data is ρ 800

kg

m3
⋅= U 3

m
s

⋅= L 1 m⋅= δ 14 mm⋅= b 3 m⋅=

Governing equations:

Mass

Momentum

Assumptions: (1) Steady flow (2) No pressure force (3) No body force in x direction (4) Uniform flow at a

Applying these to the CV abcd

Mass ρ− U⋅ b⋅ δ⋅( )
0

δ

yρ u⋅ b⋅
⌠
⎮
⌡

d+ mab+ 0=

For the boundary layer u
U

y
δ

= η=
dy
δ

dη=

Hence mab ρ U⋅ b⋅ δ⋅
0

1
yρ U⋅ η⋅ δ⋅

⌠
⎮
⌡

d−= ρ U⋅ b⋅ δ⋅
1
2

ρ⋅ U⋅ b⋅ δ⋅−=

mab
1
2

ρ⋅ U⋅ b⋅ δ⋅= mab 50.4
kg
s

=

Momentum Rx U ρ− U⋅ δ⋅( )⋅ mab uab⋅+
0

δ

yu ρ⋅ u⋅ b⋅
⌠
⎮
⌡

d+=

Note that uab U= and
0

δ

yu ρ⋅ u⋅ b⋅
⌠
⎮
⌡

d
0

1
ηρ U2

⋅ b⋅ δ⋅ η
2

⋅
⌠
⎮
⌡

d=

Rx ρ− U2
⋅ b⋅ δ⋅

1
2

ρ⋅ U⋅ b⋅ δ⋅ U⋅+
0

1
yρ U2

⋅ b⋅ δ⋅ η
2

⋅
⌠
⎮
⌡

d+=

Rx ρ− U2
⋅ b⋅ δ⋅

1
2

ρ⋅ U2
⋅ δ⋅+

1
3

ρ⋅ U2
⋅ δ⋅+=

Rx
1
6

− ρ⋅ U2
⋅ b⋅ δ⋅= Rx 50.4− N=

We should expect the drag to be larger than for Problem 9.18 because the viscous friction is mostly
concentrated near the leading edge (which is only 1 m wide in Problem 9.18 but 3 m here).  The reason viscous
stress is highest at the front region is that the boundary layer is very small (δ <<) so τ = μdu/dy ~ μU/δ >>
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Problem 9.21 [2]

Given: Data on wind tunnel and boundary layers

Find: Displacement thickness at exit; Percent change in uniform velocity through test section

Solution:
The solution involves using mass conservation in the inviscid core, allowing for the fact that as the boundary layer grows it
reduces the size of the core.  One approach would be to integrate the 1/7 law velocity profile to compute the mass flow in
the boundary layer; an easier approach is to simply use the displacement thickness!

Basic equations (4.12) δdisp
0

δ

y1
u
U

−⎛⎜
⎝

⎞⎟
⎠

⌠
⎮
⎮
⌡

d=

Assumptions: 1) Steady flow 2) Incompressible 3) No friction outside boundary layer 4) Flow along streamline 5) Horizontal

For this flow ρ U⋅ A⋅ const= and u
U

y
δ

⎛⎜
⎝
⎞⎟
⎠

1
7

=

The design data is Udesign 50
m
s

⋅= w 20 cm⋅= h 20 cm⋅= Adesign w h⋅= Adesign 0.04m2
=

The volume flow rate is Q Udesign Adesign⋅= Q 2
m3

s
=

We also have δin 10 mm⋅= δexit 25 mm⋅=

Hence δdisp
0

δ

y1
u
U

−⎛⎜
⎝

⎞⎟
⎠

⌠
⎮
⎮
⌡

d=

0

δ

y1
y
δ

⎛⎜
⎝
⎞⎟
⎠

1
7

−

⎡
⎢
⎢
⎣

⎤
⎥
⎥
⎦

⌠⎮
⎮
⎮
⎮
⌡

d= δ

0

1

η1 η

1
7

−

⎛
⎜
⎝

⎞
⎟
⎠

⌠
⎮
⎮
⌡

d⋅= where η
y
δ

= δdisp
δ

8
=

Hence at the inlet and exit

δdispin
δin
8

= δdispin 1.25 mm⋅= δdispexit
δexit

8
= δdispexit 3.125 mm⋅=



Hence the areas are Ain w 2 δdispin⋅−( ) h 2 δdispin⋅−( )⋅= Ain 0.0390 m2
⋅=

Aexit w 2 δdispexit⋅−( ) h 2 δdispexit⋅−( )⋅= Aexit 0.0375 m2
⋅=

Applying mass conservation between "design" conditions and the inlet

ρ− Udesign⋅ Adesign⋅( ) ρ Uin⋅ Ain⋅( )+ 0=

or Uin Udesign
Adesign

Ain
⋅= Uin 51.3

m
s

=

Also Uexit Udesign
Adesign

Aexit
⋅= Uexit 53.3

m
s

=

The percent change in uniform velocity is then
Uexit Uin−

Uin
3.91 %⋅= The exit displacement thickness is δdispexit 3.125 mm⋅=



Problem 9.22 [2]

Given: Data on wind tunnel and boundary layers

Find: Uniform velocity at exit; Change in static pressure through the test section

Solution:

Basic equations (4.12) δdisp
0

δ

y1
u
U

−⎛⎜
⎝

⎞⎟
⎠

⌠
⎮
⎮
⌡

d=
p
ρ

V2

2
+ g z⋅+ const=

Assumptions: 1) Steady flow 2) Incompressible 3) No friction outside boundary layer 4) Flow along streamline 5) Horizontal

For this flow ρ U⋅ A⋅ const= and u
U

y
δ

⎛⎜
⎝

⎞⎟
⎠

1
7

=

The given data is U1 25
m
s

⋅= h 25 cm⋅= A h2
= A 625 cm2

⋅=

We also have δ1 20 mm⋅= δ2 30 mm⋅=

Hence δdisp
0

δ

y1
u
U

−⎛⎜
⎝

⎞⎟
⎠

⌠
⎮
⎮
⌡

d=

0

δ

y1
y
δ

⎛⎜
⎝

⎞⎟
⎠

1
7

−

⎡
⎢
⎢
⎣

⎤
⎥
⎥
⎦

⌠⎮
⎮
⎮
⎮
⌡

d= δ

0

1

η1 η

1
7

−

⎛
⎜
⎝

⎞
⎟
⎠

⌠
⎮
⎮
⌡

d⋅= where η
y
δ

= δdisp
δ

8
=

Hence at the inlet and exit

δdisp1
δ1
8

= δdisp1 2.5 mm⋅= δdisp2
δ2
8

= δdisp2 3.75 mm⋅=

Hence the areas are A1 h 2 δdisp1⋅−( )2= A1 600 cm2
⋅=

A2 h 2 δdisp2⋅−( )2= A2 588 cm2
⋅=

Applying mass conservation between Points 1 and 2

ρ− U1⋅ A1⋅( ) ρ U2⋅ A2⋅( )+ 0= or U2 U1
A1
A2
⋅= U2 25.52

m
s

=

The pressure change is found from Bernoulli
p1
ρ

U1
2

2
+

p2
ρ

U2
2

2
+= with ρ 1.21

kg

m3
⋅=

Hence Δp
ρ

2
U1

2 U2
2

−⎛
⎝

⎞
⎠⋅= Δp 15.8− Pa= The pressure drops slightly through the test section



Problem 9.23 [2]

Given: Data on boundary layer in a cylindrical duct

Find: Velocity U2 in the inviscid core at location 2; Pressure drop

Solution:
The solution involves using mass conservation in the inviscid core, allowing for the fact that as the boundary layer grows it reduces the size
the core.  One approach would be to integrate the 1/7 law velocity profile to compute the mass flow in the boundary layer; an easier approa
is to simply use the displacement thickness!

The given or available data (from Appendix A) is

ρ 1.23
kg

m3
⋅= U1 12.5

m
s

⋅= D 100 mm⋅= δ1 5.25 mm⋅= δ2 24 mm⋅=

Governing equations:

Mass

Bernoulli p
ρ

V2

2
+ g z⋅+ constant= (4.24)

The displacement thicknesses can be computed from boundary layer thicknesses using  Eq. 9.1

δdisp
0

δ

y1
u
U

−⎛⎜
⎝

⎞⎟
⎠

⌠
⎮
⎮
⌡

d= δ

0

1

η1 η

1
7

−

⎛
⎜
⎝

⎞
⎟
⎠

⌠
⎮
⎮
⌡

d⋅=
δ

8
=

Hence at locations 1 and 2 δdisp1
δ1
8

= δdisp1 0.656 mm⋅= δdisp2
δ2
8

= δdisp2 3 mm⋅=

Applying mass conservation at locations 1 and 2 ρ− U1⋅ A1⋅( ) ρ U2⋅ A2⋅( )+ 0= or U2 U1
A1
A2
⋅=

The two areas are given by the duct cross section area minus the displacement boundary layer

A1
π

4
D 2 δdisp1⋅−( )2⋅= A1 7.65 10 3−

× m2
= A2

π

4
D 2 δdisp2⋅−( )2⋅= A2 6.94 10 3−

× m2
=

Hence U2 U1
A1
A2
⋅= U2 13.8

m
s

=

For the pressure drop we can apply Bernoulli to locations 1 and 2 to find p1 p2− Δp=
ρ

2
U2

2 U1
2

−⎛
⎝

⎞
⎠⋅= Δp 20.6Pa=



Problem 9.24 [2]

Given: Data on wind tunnel and boundary layers

Find: Uniform velocity at Point 2; Change in static pressure through the test section

Solution:

Basic equations (4.12) δdisp
0

δ

y1
u
U

−⎛⎜
⎝

⎞⎟
⎠

⌠
⎮
⎮
⌡

d=
p
ρ

V2

2
+ g z⋅+ const=

Assumptions: 1) Steady flow 2) Incompressible 3) No friction outside boundary layer 4) Flow along streamline 5) Horizontal

For this flow ρ U⋅ A⋅ const= and u
U

y
δ

⎛⎜
⎝
⎞⎟
⎠

1
7

=

The given data is U1 60
ft
s

⋅= W 12 in⋅= A W2
= A 144 in2

⋅=

We also have δ1 0.4 in⋅= δ2 0.5 in⋅=

Hence δdisp
0

δ

y1
u
U

−⎛⎜
⎝

⎞⎟
⎠

⌠
⎮
⎮
⌡

d=

0

δ

y1
y
δ

⎛⎜
⎝
⎞⎟
⎠

1
7

−

⎡
⎢
⎢
⎣

⎤
⎥
⎥
⎦

⌠⎮
⎮
⎮
⎮
⌡

d= δ

0

1

η1 η

1
7

−

⎛
⎜
⎝

⎞
⎟
⎠

⌠
⎮
⎮
⌡

d⋅= where η
y
δ

= δdisp
δ

8
=

Hence at the inlet and exit

δdisp1
δ1
8

= δdisp1 0.050 in⋅= δdisp2
δ2
8

= δdisp2 0.0625 in⋅=

Hence the areas are A1 W 2 δdisp1⋅−( )2= A1 142 in2
⋅=

A2 W 2 δdisp2⋅−( )2= A2 141 in2
⋅=

Applying mass conservation between Points 1 and 2

ρ− U1⋅ A1⋅( ) ρ U2⋅ A2⋅( )+ 0= or U2 U1
A1
A2
⋅= U2 60.25

ft
s

⋅=

The pressure change is found from Bernoulli
p1
ρ

U1
2

2
+

p2
ρ

U2
2

2
+= with ρ 0.00234

slug

ft3
⋅=

Hence Δp
ρ

2
U1

2 U2
2

−⎛
⎝

⎞
⎠⋅= Δp 2.47− 10 4−

× psi⋅= Δp 0.0356−
lbf

ft2
⋅=

In terms of inches of water ρH2O 1.94
slug

ft3
⋅= Δh

Δp
ρH2O g⋅

= Δh 0.00684− in⋅=



Problem 9.25 [2]

Given: Data on wind tunnel and boundary layers

Find: Pressure change between points 1 and 2

Solution:

Basic equations (4.12) p
ρ

V2

2
+ g z⋅+ const=

Assumptions: 1) Steady flow 2) Incompressible 3) No friction outside boundary layer 4) Flow along streamline 5) Horizontal

For this flow ρ U⋅ A⋅ const=

The given data is U0 100
ft
s

⋅= U1 U0= h 3 in⋅= A1 h2
= A1 9 in2

⋅=

We also have δdisp2 0.035 in⋅=

Hence at the Point 2 A2 h 2 δdisp2⋅−( )2= A2 8.58 in2
⋅=

Applying mass conservation between Points 1 and 2

ρ− U1⋅ A1⋅( ) ρ U2⋅ A2⋅( )+ 0= or U2 U1
A1
A2
⋅= U2 105

ft
s

⋅=

The pressure change is found from Bernoulli
p1
ρ

U1
2

2
+

p2
ρ

U2
2

2
+= with ρ 0.00234

slug

ft3
⋅=

Hence Δp
ρ

2
U1

2 U2
2

−⎛
⎝

⎞
⎠⋅= Δp 8.05− 10 3−

× psi⋅= Δp 1.16−
lbf

ft2
⋅=

The pressure drops by a small amount as the air accelerates 



 
Problem 9.26                                                                             [3]



 
Problem 9.27                                                                             [3]



Problem 9.28 [3]

Given: Data on fluid and boundary layer geometry

Find: Gage pressure at location 2; average wall stress

Solution:
The solution involves using mass conservation in the inviscid core, allowing for the fact that as the boundary layer grows it reduces the size
core.  One approach would be to integrate the 1/7 law velocity profile to compute the mass flow in the boundary layer; an easier approach i
simply use the displacement thickness!

The average wall stress can be estimated using the momentum equation for a CV

The given and available (from Appendix A) data is

ρ 1.23
kg

m3
⋅= U1 15

m
s

⋅= L 6 m⋅= D 400 mm⋅= δ2 100 mm⋅=

Governing equations:

Mass

Momentum

Bernoulli p
ρ

V2

2
+ g z⋅+ constant= (4.24)

Assumptions: (1) Steady flow (2) No pressure force (3) No body force in x direction

The displacement thickness at location 2 can be computed from boundary layer thickness using  Eq. 9.1

δdisp2
0

δ2
y1

u
U

−⎛⎜
⎝

⎞⎟
⎠

⌠
⎮
⎮
⌡

d= δ2
0

1

η1 η

1
7

−

⎛
⎜
⎝

⎞
⎟
⎠

⌠
⎮
⎮
⌡

d⋅=
δ2
8

=

Hence δdisp2
δ2
8

= δdisp2 12.5mm=

Applying mass conservation at locations 1 and 2 ρ− U1⋅ A1⋅( ) ρ U2⋅ A2⋅( )+ 0= or U2 U1
A1
A2
⋅=

A1
π

4
D2
⋅= A1 0.126m2

=

The area at location 2 is given by the duct cross section area minus the displacement boundary layer

A2
π

4
D 2 δdisp2⋅−( )2⋅= A2 0.11m2

=



Hence U2 U1
A1
A2
⋅= U2 17.1

m
s

=

For the pressure change we can apply Bernoulli to locations 1 and 2 to find

p1 p2− Δp=
ρ

2
U2

2 U1
2

−⎛
⎝

⎞
⎠⋅= Δp 40.8Pa= p2 Δp−=

Hence p2 gage( ) p1 gage( ) Δp−= p2 40.8− Pa=

For the average wall shear stress we use the momentum equation, simplified for this problem

Δp A1⋅ τ π⋅ D⋅ L⋅− ρ− U1
2

⋅ A1⋅ ρ U2
2

⋅
π

4
⋅ D 2 δ2⋅−( )2⋅+ ρ

D
2

δ2−

D
2

r2 π⋅ r⋅ u2
⋅

⌠
⎮
⎮
⌡

d⋅+=

where u r( ) U2
y

δ2

⎛
⎜
⎝

⎞
⎟
⎠

1
7

⋅= and r
D
2

y−= dr dy−=

The integral is ρ

D
2

δ2−

D
2

r2 π⋅ r⋅ u2
⋅

⌠
⎮
⎮
⌡

d⋅ 2− π⋅ ρ⋅ U2
2

⋅

δ2

0

y
D
2

y−⎛⎜
⎝

⎞⎟
⎠

y
δ2

⎛
⎜
⎝

⎞
⎟
⎠

2
7

⋅

⌠
⎮
⎮
⎮
⎮
⌡

d⋅=

ρ

D
2

δ2−

D
2

r2 π⋅ r⋅ u2
⋅

⌠
⎮
⎮
⌡

d⋅ 7 π⋅ ρ⋅ U2
2

⋅ δ2⋅
D
9

δ2
8

−
⎛
⎜
⎝

⎞
⎟
⎠

⋅=

Hence τ

Δp A1⋅ ρ U1
2

⋅ A1⋅+ ρ U2
2

⋅
π

4
⋅ D 2 δ2⋅−( )2⋅− 7 π⋅ ρ⋅ U2

2
⋅ δ2⋅

D
9

δ2
8

−
⎛
⎜
⎝

⎞
⎟
⎠

⋅−

π D⋅ L⋅
=

τ 0.461Pa=



 
Problem 9.29                                                                             [5]   Part 1/2



 
Problem 9.29                                                                             [5]   Part 1/2
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Problem *9.32                                                                             [3]



 
Problem *9.33                                                                             [3]
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Problem 9.35 [4]

Given: Blasius solution for laminar boundary layer

Find: Point at which u = 0.95U; Slope of streamline; expression for skin friction coefficient and total drag; Momentum thicknes

Solution:

Basic equation: Use results of Blasius solution (Table 9.1 on the web), and η y
ν x⋅
U

⋅=

f'
u
U

= 0.9130= at η 3.5=

f'
u
U

= 0.9555= at η 4.0=

Hence by linear interpolation, when f' 0.95= η 3.5
4 3.5−( )

0.9555 0.9310−( )
0.95 0.9310−( )⋅+= η 3.89=

From Table A.9 at 68oF ν 1.62 10 4−
×

ft2

s
⋅= and U 15

ft
s

⋅= x 7.5 in⋅=

Hence y η
ν x⋅
U

⋅= y 0.121 in=

The streamline slope is given by dy
dx

v
u

= where u U f'⋅= and v
1
2

ν U⋅
x

⋅ η f'⋅ f−( )⋅=

dy
dx

1
2

ν U⋅
x

⋅ η f'⋅ f−( )⋅
1

U f'⋅
⋅=

1
2

ν

U x⋅
⋅

η f'⋅ f−( )
f'

⋅=
1

2 Rex⋅

η f'⋅ f−( )
f'

⋅=

We have Rex
U x⋅

ν
= Rex 5.79 104

×=

From the Blasius solution (Table 9.1 on the web)

f 1.8377= at η 3.5=

f 2.3057= at η 4.0=

Hence by linear interpolation f 1.8377
2.3057 1.8377−( )

4.0 3.5−( )
3.89 3.5−( )⋅+= f 2.2027=

dy
dx

1

2 Rex⋅

η f'⋅ f−( )
f'

⋅= 0.00326=

The shear stress is τw μ

y
u∂

∂ x
v∂

∂
+

⎛
⎜
⎝

⎞
⎟
⎠

⋅= μ

y
u∂

∂
⋅= at y = 0 (v = 0 at the wall for all x, so the derivative is zero there)

τw μ U⋅
U

ν x⋅
⋅

d2f

dη
2

⋅= and at η = 0 d2f

dη
2

0.3321= (from Table 9.1)



τw 0.3321 U⋅
ρ U⋅ μ⋅

x
⋅= τw 0.3321 ρ⋅ U2

⋅
μ

ρ U⋅ x⋅
⋅= 0.3321

ρ U2
⋅

Rex
⋅=

The friction drag is FD Aτw
⌠
⎮
⎮
⌡

d=
0

L
xτw b⋅

⌠
⎮
⌡

d= where b is the plate width

FD

0

L

x0.3321
ρ U2
⋅

Rex
⋅ b⋅

⌠
⎮
⎮
⎮
⌡

d= 0.3321 ρ⋅ U2
⋅

ν

U
⋅

0

L

x
1

x

1
2

⌠⎮
⎮
⎮
⎮
⌡

d⋅=

FD 0.3321 ρ⋅ U2
⋅

ν

U
⋅ b⋅ 2⋅ L

1
2

⋅= FD ρ U2
⋅ b⋅ L⋅

0.6642

ReL
⋅=

For the momentum integral
τw

ρ U2
⋅

dθ

dx
= or dθ

τw

ρ U2
⋅

dx⋅=

θL
1

ρ U2
⋅ 0

L
xτw

⌠
⎮
⌡

d⋅=
1

ρ U2
⋅

FD
b

⋅=
0.6642 L⋅

ReL
=

We have L 3 ft⋅= ReL
U L⋅

ν
= ReL 2.78 105

×=

θL
0.6642 L⋅

ReL
= θL 0.0454 in=



Problem *9.36 [5]

Given: Blasius nonlinear equation

Find: Blasius solution using Excel

Solution:

The equation to be solved is 

02 2

2

3

3
=+

ηη d
fdf

d
fd                                                         (9.11)

The boundary conditions are 

0at        0   and   0 === η
ηd

dff  

 

∞→==′ η
η

at        1
d
dff                                                    (9.12)

Recall that these somewhat abstract variables are related to physically meaningful variables: 
 

f
U
u ′=  

and 

δν
η y

x
Uy ∝=  

 
Using Euler’s numerical method 
 

nnn fff ′Δ+≈+ η1                                                                   (1)
 

nnn fff ′′Δ+′≈′+ η1                                                                  (2)
 

nnn fff ′′′Δ+′′≈′′+ η1  
 

th



Computations (only the first few lines of 1000 are shown):

Δη = 0.01

Make a guess for the first f ''; use Solver to vary it until f 'N = 1

Count η f f' f''
0 0.00 0.0000 0.0000 0.3303
1 0.01 0.0000 0.0033 0.3303
2 0.02 0.0000 0.0066 0.3303
3 0.03 0.0001 0.0099 0.3303
4 0.04 0.0002 0.0132 0.3303
5 0.05 0.0003 0.0165 0.3303
6 0.06 0.0005 0.0198 0.3303
7 0.07 0.0007 0.0231 0.3303
8 0.08 0.0009 0.0264 0.3303
9 0.09 0.0012 0.0297 0.3303

10 0.10 0.0015 0.0330 0.3303
11 0.11 0.0018 0.0363 0.3303
12 0.12 0.0022 0.0396 0.3303
13 0.13 0.0026 0.0429 0.3303
14 0.14 0.0030 0.0462 0.3303
15 0.15 0.0035 0.0495 0.3303
16 0.16 0.0040 0.0528 0.3303
17 0.17 0.0045 0.0562 0.3303
18 0.18 0.0051 0.0595 0.3303
19 0.19 0.0056 0.0628 0.3303
20 0.20 0.0063 0.0661 0.3302
21 0.21 0.0069 0.0694 0.3302
22 0.22 0.0076 0.0727 0.3302

Blasius Velocity Profile

0

2

4

6

8

10

0.0 0.2 0.4 0.6 0.8 1.0

u/U  = f '

η

 
In these equations, the subscripts refer to the nth discrete value of the variables, and Δη = 10/N is the step
size for η (N is the total number of steps). 
 
But from Eq. 9.11 

fff ′′−=′′′
2
1  

 
so the last of the three equations is 
 

⎟
⎠
⎞

⎜
⎝
⎛ ′′−Δ+′′≈′′+ nnnn ffff

2
1

1 η                                                              (3)

 
Equations 1 through 3 form a complete set for computing fff ′′′,, .  All we need is the starting condition
for each.  From Eqs. 9.12 
 

0   and   0 00 =′= ff  
 
We do NOT have a starting condition for f ′′ !  Instead we must choose (using Solver) 0f ′′  so that the last
condition of Eqs. 9.12 is met: 

1=′Nf  
 



Problem 9.37 [2]

Given: Data on flow over flat plate

Find: Plot of laminar thickness at various speeds

Solution:

Governing equations:

Tabulated or graphical data:

ν = 1.50E-05 m2/s
(Table A.10, 20oC)

Computed results:

U  (m/s) 1 2 3 4 5 10
x crit (m) 7.5 3.8 2.5 1.9 1.5 0.75

x  (m) δ (mm) δ (mm) δ (mm) δ (mm) δ (mm) δ (mm)
0.000 0.00 0.00 0.00 0.00 0.00 0.00
0.025 3.36 2.37 1.94 1.68 1.50 1.06
0.050 4.75 3.36 2.74 2.37 2.12 1.50
0.075 5.81 4.11 3.36 2.91 2.60 1.84
0.100 6.71 4.75 3.87 3.36 3.00
0.2 9.49 6.71 5.48 4.75 4.24
0.5 15.01 10.61 8.66 7.50 6.71
1.5 25.99 18.38 15.01 13.00 11.62
1.9 29.26 20.69 16.89 14.63
2.5 33.56 23.73 19.37
3.8 41.37 29.26
5.0 47.46
6.0 51.99
7.5 58.12

Laminar Boundary Layer Profiles
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U = 10 m/s



Hence

Tabulated or graphical data: Given data:

ν = 1.01E-06 m2/s L  = 0.25 m
(Table A.8, 20oC) U  = 1.75 m/s

Computed results:

x  (m) Re x δ (mm) δ* (mm) τw (Pa)

0.0000 0.00.E+00 0.000 0.000
0.0125 2.17.E+04 0.465 0.155 10.40
0.0250 4.33.E+04 0.658 0.219 7.36
0.0375 6.50.E+04 0.806 0.269 6.01
0.0500 8.66.E+04 0.931 0.310 5.20
0.0625 1.08.E+05 1.041 0.347 4.65
0.0750 1.30.E+05 1.140 0.380 4.25
0.0875 1.52.E+05 1.231 0.410 3.93
0.1000 1.73.E+05 1.317 0.439 3.68
0.1125 1.95.E+05 1.396 0.465 3.47
0.1250 2.17.E+05 1.472 0.491 3.29
0.1375 2.38.E+05 1.544 0.515 3.14
0.1500 2.60.E+05 1.612 0.537 3.00
0.1625 2.82.E+05 1.678 0.559 2.89
0.1750 3.03.E+05 1.742 0.581 2.78
0.1875 3.25.E+05 1.803 0.601 2.69
0.2000 3.47.E+05 1.862 0.621 2.60
0.2125 3.68.E+05 1.919 0.640 2.52
0.2250 3.90.E+05 1.975 0.658 2.45
0.2375 4.12.E+05 2.029 0.676 2.39
0.2500 4.33.E+05 2.082 0.694 2.33

Laminar Boundary Layer Profiles
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=⎥⎦
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U
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δ
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Problem 9.39 [2]

Given: Parabolic solution for laminar boundary layer

Find: Derivation of FD; Evaluate FD and θL

Solution:

Basic equations: u
U

2
y
δ

⎛⎜
⎝
⎞⎟
⎠

⋅
y
δ

⎛⎜
⎝
⎞⎟
⎠

2
−=

δ

x
5.48

Rex
=

L 0.25 m⋅= b 1 m⋅= U 1.75
m
s

⋅= ρ 1000
kg

m3
⋅=

Assumptions: 1) Flat plate so 
x

p∂

∂
0= , and U = const 2) δ is a function of x only 3) Incompressible

The momentum integral equation then simplifies to
τw
ρ

d
dx

U2
θ⋅( )= where θ

0

δ

y
u
U

1
u
U

−⎛⎜
⎝

⎞⎟
⎠

⋅
⌠
⎮
⎮
⌡

d=

For U = const τw ρ U2
⋅

dθ

dx
⋅=

The drag force is then FD Aτw
⌠
⎮
⎮
⌡

d=
0

L
xτw b⋅

⌠
⎮
⌡

d=

0

L

xρ U2
⋅

dθ

dx
⋅ b⋅

⌠
⎮
⎮
⌡

d= ρ U2
⋅ b⋅

0

θL
θ1

⌠
⎮
⌡

d⋅= FD ρ U2
⋅ b⋅ θL⋅=

For the given profile θ

δ

0

1

η
u
U

1
u
U

−⎛⎜
⎝

⎞⎟
⎠

⋅
⌠
⎮
⎮
⌡

d=
0

1
η2 η⋅ η

2
−( ) 1 2 η⋅− η

2
+( )⋅

⌠
⎮
⌡

d=
0

1
η2 η⋅ 5 η

2
⋅− 4 η

3
⋅+ η

4
−( )⌠

⎮
⌡

d=
2

15
=

θ
2
15

δ⋅=

From Table A.8 at 20oC ν 1.01 10 6−
×

m2

s
⋅= ReL

U L⋅
ν

= ReL 4.332 105
×=

δL L
5.48

ReL
⋅= δL 2.08mm=

θL
2
15

δL⋅= θL 0.278mm=

FD ρ U2
⋅ b⋅ θL⋅= FD 0.850N=



 
Problem 9.40                                                                             [2]



Problem 9.41 [2]

Given: Data on fluid and plate geometry

Find: Drag at both orientations using boundary layer equation

Solution:

The given data is ρ 800
kg

m3
⋅= μ 0.02

N s⋅

m2
⋅= U 3

m
s

⋅= L 3 m⋅= b 1 m⋅=

First determine the nature of the boundary layer ReL
ρ U⋅ L⋅

μ
= ReL 3.6 105

×=

The maximum Reynolds number is less than the critical value of 5 x 105

Hence:

Governing equations: cf
τw

1
2

ρ⋅ U2
⋅

= (9.22) cf
0.730

Rex
= (9.23)

The drag (one side) is FD
0

L
xτw b⋅

⌠
⎮
⌡

d=

Using Eqs. 9.22 and 9.23 FD
1
2

ρ⋅ U2
⋅ b⋅

0

L

x
0.73

ρ U⋅ x⋅
μ

⌠
⎮
⎮
⎮
⌡

d⋅=

FD 0.73 b⋅ μ L⋅ ρ⋅ U3
⋅⋅= FD 26.3N= (Compare to 30 N for Problem 9.18)

Repeating for L 1 m⋅= b 3 m⋅=

FD 0.73 b⋅ μ L⋅ ρ⋅ U3
⋅⋅= FD 45.5N= (Compare to 50.4 N for Problem 9.19)



Problem 9.42 [3]

Given: Triangular plate

Find: Drag

Solution:

Basic equations: cf
τw

1
2

ρ⋅ U2
⋅

= cf
0.730

Rex
=

L 0.50 cm⋅
3

2
⋅= L 0.433 cm⋅= W 50 cm⋅= U 5

m
s

⋅=

From Table A.10 at 20oC ν 1.50 10 5−
×

m2

s
⋅= ρ 1.21

kg

m3
⋅=

First determine the nature of the boundary layer ReL
U L⋅
ν

= ReL 1443= so definitely laminar

The drag (one side) is FD Aτw
⌠
⎮
⎮
⌡

d= FD
0

L
xτw w x( )⋅

⌠
⎮
⌡

d= w x( ) W
x
L
⋅=

We also have τw cf
1
2
⋅ ρ⋅ U2

⋅=
1
2

ρ⋅ U2
⋅

0.730

Rex
⋅=

Hence FD
1
2

ρ⋅ U2
⋅

W
L

⋅

0

L

x
0.730 x⋅

U x⋅
ν

⌠
⎮
⎮
⎮
⌡

d⋅=
0.730

2
ρ⋅ U

3
2

⋅
W
L

⋅ ν⋅
0

L

xx

1
2

⌠
⎮
⎮
⌡

d⋅=

The integral is
0

L

xx

1
2

⌠
⎮
⎮
⌡

d
2
3

L

3
2

⋅= so FD 0.243 ρ⋅ W⋅ ν L⋅ U3
⋅⋅= FD 4.19 10 4−

× N=

Note: For two-sided solution 2 FD⋅ 8.38 10 4−
× N=



Problem 9.43 [3]

Plate is reversed from this!

Given: Triangular plate

Find: Drag

Solution:

Basic equations: cf
τw

1
2

ρ⋅ U2
⋅

= cf
0.730

Rex
=

L 0.50 cm⋅
3

2
⋅= L 0.433 cm⋅= W 50 cm⋅= U 5

m
s

⋅=

From Table A.10 at 20oC ν 1.50 10 5−
×

m2

s
⋅= ρ 1.21

kg

m3
⋅=

First determine the nature of the boundary layer ReL
U L⋅
ν

= ReL 1443= so definitely laminar

The drag (one side) is FD Aτw
⌠
⎮
⎮
⌡

d= FD
0

L
xτw w x( )⋅

⌠
⎮
⌡

d= w x( ) W 1
x
L

−⎛⎜
⎝

⎞⎟
⎠

⋅=

We also have τw cf
1
2
⋅ ρ⋅ U2

⋅=
1
2

ρ⋅ U2
⋅

0.730

Rex
⋅=

Hence FD
1
2

ρ⋅ U2
⋅ W⋅

0

L

x
0.730 1

x
L

−⎛⎜
⎝

⎞⎟
⎠

⋅

U x⋅
ν

⌠
⎮
⎮
⎮
⎮
⎮
⌡

d⋅=
0.730

2
ρ⋅ U

3
2

⋅ W⋅ ν⋅

0

L

xx

1
2

− x

1
2

L
−

⎛
⎜
⎜
⎝

⎞
⎟
⎟
⎠

⌠⎮
⎮
⎮
⎮
⌡

d⋅=

The integral is

0

L

xx

1
2

− x

1
2

L
−

⎛
⎜
⎜
⎝

⎞
⎟
⎟
⎠

⌠⎮
⎮
⎮
⎮
⌡

d 2 L

1
2

⋅
2
3

L

3
2

L
⋅−=

4
3

L⋅=

FD 0.487 ρ⋅ W⋅ ν L⋅ U3
⋅⋅= FD 8.40 10 4−

× N=

Note: For two-sided solution 2 FD⋅ 1.68 10 3−
× N=

The drag is much higher (twice as much) compared to Problem 9.42.  This is because τw is largest near the
leading edge and falls off rapidly; in this problem the widest area is also at the front



Problem 9.44 [3]

Given: Parabolic plate

Find: Drag

Solution:

Basic equations: cf
τw

1
2

ρ⋅ U2
⋅

= cf
0.730

Rex
=

W 25 cm⋅= L

W
2

⎛⎜
⎝

⎞⎟
⎠

2

25 cm⋅
= L 6.25 cm⋅= U 7.5

m
s

⋅=

Note: "y" is the equation of the upper and lower surfaces, so y = W/2 at x = L

From Table A.10 at 20oC ν 1.50 10 5−
×

m2

s
⋅= ρ 1.21

kg

m3
⋅=

First determine the nature of the boundary layer ReL
U L⋅
ν

= ReL 3.12 104
×= so just laminar

The drag (one side) is FD Aτw
⌠
⎮
⎮
⌡

d= FD
0

L
xτw w x( )⋅

⌠
⎮
⌡

d= w x( ) W
x
L

⋅=

We also have τw cf
1
2
⋅ ρ⋅ U2

⋅=
1
2

ρ⋅ U2
⋅

0.730

Rex
⋅=

Hence FD
1
2

ρ⋅ U2
⋅ W⋅

0

L

x
0.730

x
L

⋅

U x⋅
ν

⌠
⎮
⎮
⎮
⎮
⎮
⌡

d⋅=
0.730

2
ρ⋅ U

3
2

⋅ W⋅
ν

L
⋅

0

L
x1

⌠
⎮
⌡

d⋅=

FD 0.365 ρ⋅ W⋅ ν L⋅ U3
⋅⋅= FD 2.20 10 3−

× N=

Note: For two-sided solution 2 FD⋅ 4.39 10 3−
× N=



Problem 9.45 [4]

Note: Plate is now reversed!

Given: Parabolic plate

Find: Drag

Solution:

Basic equations: cf
τw

1
2

ρ⋅ U2
⋅

= cf
0.730

Rex
=

W 25 cm⋅= L

W
2

⎛⎜
⎝

⎞⎟
⎠

2

25 cm⋅
= L 6.25 cm⋅= U 7.5

m
s

⋅=

Note: "y" is the equation of the upper and lower surfaces, so y = W/2 at x = 0

From Table A.10 at 20oC ν 1.50 10 5−
×

m2

s
⋅= ρ 1.21

kg

m3
⋅=

First determine the nature of the boundary layer ReL
U L⋅
ν

= ReL 3.12 104
×= so just laminar

The drag (one side) is FD Aτw
⌠
⎮
⎮
⌡

d= FD
0

L
xτw w x( )⋅

⌠
⎮
⌡

d= w x( ) W 1
x
L

−⋅=

We also have τw cf
1
2
⋅ ρ⋅ U2

⋅=
1
2

ρ⋅ U2
⋅

0.730

Rex
⋅=

Hence FD
1
2

ρ⋅ U2
⋅ W⋅

0

L

x
0.730 1

x
L

−⋅

U x⋅
ν

⌠
⎮
⎮
⎮
⎮
⎮
⌡

d⋅=
0.730

2
ρ⋅ U

3
2

⋅ W⋅ ν⋅

0

L

x
1
x

1
L

−
⌠
⎮
⎮
⌡

d⋅=

The tricky integral is (this
might be easier to do
numerically!)

x
1
x

1
L

−
⌠⎮
⎮
⎮⌡

d x
x2

L
−

i
2

L⋅ ln
L x−− x−

L x−− x+

⎛
⎜
⎝

⎞
⎟
⎠

⋅−= so

0

L

x
1
x

1
L

−
⌠
⎮
⎮
⌡

d 0.393 m⋅=

FD
0.730

2
ρ⋅ U

3
2

⋅ W⋅ ν⋅

0

L

x
1
x

1
L

−
⌠
⎮
⎮
⌡

d⋅= FD 3.45 10 3−
× N=

Note: For two-sided solution 2 FD⋅ 6.9 10 3−
× N=

The drag is much higher compared to Problem 9.44.  This is because τw is largest near the leading edge
and falls off rapidly; in this problem the widest area is also at the front



Problem 9.46 [3]

Given: Pattern of flat plates

Find: Drag on separate and composite plates

Solution:

Basic equations: cf
τw

1
2

ρ⋅ U2
⋅

= cf
0.730

Rex
=

For separate plates L 7.5 cm⋅= W 7.5 cm⋅= U 1
m
s

⋅=

From Table A.8 at 20oC ν 1.01 10 6−
×

m2

s
⋅= ρ 998

kg

m3
⋅=

First determine the nature of the boundary layer ReL
U L⋅
ν

= ReL 7.43 104
×= so definitely laminar

The drag (one side) is FD Aτw
⌠
⎮
⎮
⌡

d= FD
0

L
xτw W⋅

⌠
⎮
⌡

d=

We also have τw cf
1
2
⋅ ρ⋅ U2

⋅=
1
2

ρ⋅ U2
⋅

0.730

Rex
⋅=

Hence FD
1
2

ρ⋅ U2
⋅ W⋅

0

L

x
0.730

U x⋅
ν

⌠
⎮
⎮
⎮
⌡

d⋅=
0.730

2
ρ⋅ U

3
2

⋅ W⋅ ν⋅
0

L

xx

1
2

−
⌠
⎮
⎮
⌡

d⋅=

The integral is
0

L

xx

1
2

−
⌠
⎮
⎮
⌡

d 2 L

1
2

⋅= so FD 0.730 ρ⋅ W⋅ ν L⋅ U3
⋅⋅= FD 0.0150N=

This is the drag on one plate.  The total drag is then FTotal 4 FD⋅= FTotal 0.0602N=

For both sides: 2 FTotal⋅ 0.120N=

For the composite plate L 4 7.5× cm⋅= L 0.30m=

FComposite 0.730 ρ⋅ W⋅ ν L⋅ U3
⋅⋅= FComposite 0.0301N=

For both sides: 2 FComposite⋅ 0.0602N=

The drag is much lower on the composite compared to the separate plates.  This is because τw is largest near the
leading edges and falls off rapidly; in this problem the separate plates experience leading edges four times!



 
Problem 9.47                                                                             [2]



Problem 9.48                                                                             [3]



 
Problem 9.49                                                                             [3]



 
Problem 9.50                                                                             [3]



Problem 9.51 [3]

Given: Water flow over flat plate

Find: Drag on plate for linear boundary layer

Solution:

Basic equations: FD 2 Aτw
⌠
⎮
⎮
⌡

d⋅= τw μ
du
dy
⋅= at y = 0, and also τw ρ U2

⋅
dδ

dx
⋅

0

1

η
u
U

1
u
U

−⎛⎜
⎝

⎞⎟
⎠

⋅
⌠
⎮
⎮
⌡

d⋅=

L 0.35 m⋅= W 1 m⋅= U 0.8
m
s

⋅=

From Table A.8 at 10oC ν 1.30 10 6−
×

m2

s
⋅= ρ 1000

kg

m3
⋅=

First determine the nature of the boundary layer ReL
U L⋅
ν

= ReL 2.15 105
×= so laminar

The velocity profile is u U
y
δ
⋅= U η⋅=

Hence τw μ
du
dy
⋅= μ

U
δ

⋅= (1) but we need δ(x)

We also have
τw ρ U2

⋅
dδ

dx
⋅

0

1

η
u
U

1
u
U

−⎛⎜
⎝

⎞⎟
⎠

⋅
⌠
⎮
⎮
⌡

d⋅= ρ U2
⋅

dδ

dx
⋅

0

1
ηη 1 η−( )⋅

⌠
⎮
⌡

d⋅=

The integral is
0

1
xη η

2
−( )⌠

⎮
⌡

d
1
6

= so τw ρ U2
⋅

dδ

dx
⋅=

1
6

ρ⋅ U2
⋅

dδ

dx
⋅= (2)

Comparing Eqs 1 and 2 τw μ
U
δ

⋅=
1
6

ρ⋅ U2
⋅

dδ

dx
⋅=

Separating variables δ dδ⋅
6 μ⋅
ρ U⋅

dx⋅= or δ
2

2
6 μ⋅
ρ U⋅

x⋅ c+= but δ(0) = 0 so c = 0

Hence δ
12 μ⋅
ρ U⋅

x⋅= or δ

x
12

Rex
=

3.46
Rex

=

Then FD 2 Aτw
⌠
⎮
⎮
⌡

d⋅= 2 W⋅

0

L

xμ
U
δ

⋅
⌠
⎮
⎮
⌡

d⋅= 2 W⋅

0

L

xμ U⋅
ρ U⋅
12 μ⋅

⋅ x

1
2

−
⋅

⌠
⎮
⎮
⎮
⌡

d⋅=
μ W⋅ U⋅

3

U
ν

⋅
0

L

xx

1
2

−
⌠
⎮
⎮
⌡

d⋅=

The integral is
0

L

xx

1
2

−
⌠
⎮
⎮
⌡

d 2 L⋅= so FD
2 μ⋅ W⋅ U⋅

3

U L⋅
ν

⋅=

FD
2

3
ρ⋅ W⋅ ν L⋅ U3

⋅⋅= FD 0.557N=



Problem 9.52 [3]

Given: Data on flow in a channel

Find: Static pressures; plot of stagnation pressure

Solution:

The given data is h 30 mm⋅= δ2 10 mm⋅= U2 22.5
m
s

⋅= w 1 m⋅= (Arbitrary)

Appendix A ρ 1.23
kg

m3
⋅=

Governing equations

Mass

Before entering the duct, and in the the inviscid core, the Bernoulli equation holds

p
ρ

V2

2
+ g z⋅+ constant= (4.24)

Assumptions: (1) Steady flow (2) No body force in x direction

For a linear velocity profile, from Table 9.2 the displacement thickness at location 2 is

δdisp2
δ2
2

= δdisp2 5mm=

From the definition of the displacement thickness, to compute the flow rate, the uniform flow at location 2 is assumed to
take place in the entire duct, minus the displacement thicknesses at top and bottom

A2 w h 2 δdisp2⋅−( )⋅= A2 0.02m2
=

Then Q A2 U2⋅= Q 0.45
m3

s
=



Mass conservation (Eq. 4.12) leads to U2

U1 A1⋅ U2 A2⋅= where A1 w h⋅= A1 0.03m2
=

U1
A2
A1

U2⋅= U1 15
m
s

=

The Bernoull equation applied between atmosphere and location 1 is

patm
ρ

p1
ρ

U1
2

2
+=

or, working in gage pressures

p1
1
2

− ρ⋅ U1
2

⋅= p1 138− Pa=

(Static pressure)

Similarly, between atmosphere and location 2 (gage pressures)

p2
1
2

− ρ⋅ U2
2

⋅= p2 311− Pa=

(Static pressure)

The static pressure falls continuously in the entrance region as the fluid in the central core accelerates into a
decreasing core

The stagnation pressure at location 2 (measured, e.g., with a Pitot tube as in Eq. 6.12), is indicated by an application
of the Bernoulli equation at a point

pt
ρ

p
ρ

u2

2
+=

where pt is the total or stagnation pressure, p =  p2 is the static pressure, and u is the local velocity, given by

u
U2

y
δ2

= y δ2≤

u U2= δ2 y<
h
2

≤

(Flow and pressure distibutions are symmetric about centerline)

Hence pt p2
1
2

ρ⋅ u2
⋅+=

The plot of stagnation pressure is shown in the associated Excel workbook



Problem 9.52 (In Excel) [3]

Given: Data on flow in a channel

Find: Static pressures; plot of stagnation pressure

Solution:

Given data: The relevant equations are:

h  = 30 mm
U 2 = 22.5 m/s
δ2 = 10 mm
ρ = 1.23 kg/m3

p 2 = -311 Pa

y  (mm) u (m/s) p t (Pa)
0.0 0.00 -311.00
1.0 2.25 -307.89
2.0 4.50 -298.55
3.0 6.75 -282.98
4.0 9.00 -261.19
5.0 11.25 -233.16
6.0 13.50 -198.92
7.0 15.75 -158.44
8.0 18.00 -111.74
9.0 20.25 -58.81

10.0 22.50 0.34
11.0 22.50 0.34
12.0 22.50 0.34
13.0 22.50 0.34
14.0 22.50 0.34
15.0 22.50 0.34

The stagnation pressure indicates total mechanical energy - the curve indicates significant loss close to the walls
and no loss of energy in the central core.

Stagnation Pressure Distibution in a Duct

0

5

10

15

-400 -300 -200 -100 0
p t (Pa gage)

y  (mm)



Problem 9.53 [3]

Given: Data on flow over a flat plate

Find: Plot of laminar and turbulent boundary layer; Speeds for transition at trailing edge

Solution:

Given data:

U  = 10 m/s
L  = 5 m

Tabulated data:

ν = 1.45E-05 m2/s
(Table A.10)



Computed results:

(a) Laminar (b) Turbulent (c) Transition
δ (mm) δ (mm) δ (mm)

0.00 0.00E+00 0.00 0.00 0.00
0.125 8.62E+04 2.33 4.92 2.33
0.250 1.72E+05 3.30 8.56 3.30
0.375 2.59E+05 4.04 11.8 4.04
0.500 3.45E+05 4.67 14.9 4.67
0.700 4.83E+05 5.52 19.5 5.5
0.75 5.17E+05 5.71 20.6 20.6
1.00 6.90E+05 6.60 26.0 26.0
1.50 1.03E+06 8.08 35.9 35.9
2.00 1.38E+06 9.3 45.2 45.2
3.00 2.07E+06 11.4 62.5 62.5
4.00 2.76E+06 13.2 78.7 78.7
5.00 3.45E+06 14.8 94.1 94.1

The speeds U  at which transition occurs at specific points are shown below

x trans 

(m)
U (m/s)

5 1.45
4 1.81
3 2.42
2 3.63
1 7.25

Re xx  (m)

Boundary Layer Profiles on a Flat Plate

0

25

50

75

100

0 1 2 3 4 5
x  (m)

δ (mm) Laminar
Turbulent
Transitional



Problem 9.54 [3]

Note: Figure data applies to problem 9.18 only

Given: Data on fluid and turbulent boundary layer

Find: Mass flow rate across ab; Momentum flux across bc; Distance at which turbulence occurs

Solution:

Basic equations: Mass

Momentum

Assumptions: 1) Steady flow 2) No pressure force 3) No body force in x direction 4) Uniform flow at ab

The given or available data (Table A.9) is

U 165
ft
s

⋅= δ 0.75 in⋅= b 10 ft⋅= ρ 0.00234
slug

ft3
⋅= ν 1.62 10 4−

×
ft2

s
⋅=

Consider CV abcd mad ρ− U⋅ b⋅ δ⋅= mad 0.241−
slug

s
= (Note: Software cannot render a dot)

Mass mad
0

δ

yρ u⋅ b⋅
⌠
⎮
⌡

d+ mab+ 0= and in the boundary layer u
U

y
δ

⎛⎜
⎝
⎞⎟
⎠

1
7

= η

1
7

= dy dη δ⋅=

Hence m.ab ρ U⋅ b⋅ δ⋅
0

1

ηρ U⋅ η

1
7

⋅ δ⋅

⌠
⎮
⎮
⌡

d−= ρ U⋅ b⋅ δ⋅
7
8

ρ⋅ U⋅ b⋅ δ⋅−= mab
1
8

ρ⋅ U⋅ b⋅ δ⋅= mab 0.0302
slug

s
=

The momentum flux
across bc is

mfbc
0

δ

A
→

u ρ⋅ V
→
⋅

⌠
⎮
⌡

d=
0

δ

yu ρ⋅ u⋅ b⋅
⌠
⎮
⌡

d=
0

1

ηρ U2
⋅ b⋅ δ⋅ η

2
7

⋅

⌠
⎮
⎮
⌡

d= ρ U2
⋅ b⋅ δ⋅

7
9
⋅=

mfbc
7
9

ρ⋅ U2
⋅ b⋅ δ⋅= mfbc 31

slug ft⋅

s2
=

From momentum Rx− U ρ− U⋅ δ⋅( )⋅ mab uab⋅+ mfbc+= Rx ρ U2
⋅ b⋅ δ⋅ mab U⋅− mfbc−= Rx 3.87 lbf=

Transition occurs at Rex 5 105
×= and Rex

U x⋅
ν

= xtrans
Rex ν⋅

U
= xtrans 0.491 ft=



 
Problem 9.55                                                                             [3]
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Problem 9.57 [3]

Given: Triangular plate

Find: Drag

Solution:

Basic equations: cf
τw

1
2

ρ⋅ U2
⋅

= cf
0.0594

Rex

1
5

=

L 0.50 cm⋅
3

2
⋅= L 0.433 cm⋅= W 50 cm⋅= U 25

m
s

⋅=

From Table A.10 at 20oC ν 1.50 10 5−
×

m2

s
⋅= ρ 1.21

kg

m3
⋅=

First determine the nature of the boundary layer ReL
U L⋅
ν

= ReL 7217= so definitely still laminar, but we are
told to assume turbulent!

The drag (one side) is FD Aτw
⌠
⎮
⎮
⌡

d= FD
0

L
xτw w x( )⋅

⌠
⎮
⌡

d= w x( ) W
x
L
⋅=

We also have τw cf
1
2
⋅ ρ⋅ U2

⋅=
1
2

ρ⋅ U2
⋅

0.0594

Rex

1
5

⋅=

Hence FD
1
2

ρ⋅ U2
⋅

W
L

⋅

0

L

x
0.0594 x⋅

U x⋅
ν

⎛⎜
⎝

⎞⎟
⎠

1
5

⌠
⎮
⎮
⎮
⎮
⎮
⌡

d⋅=
0.0594

2
ρ⋅ U

9
5

⋅
W
L

⋅ ν

1
5

⋅
0

L

xx

4
5

⌠
⎮
⎮
⌡

d⋅=

The integral is
0

L

xx

4
5

⌠
⎮
⎮
⌡

d
5
9

L

9
5

⋅= so FD 0.0165 ρ⋅ W⋅ L4
ν⋅ U9
⋅( )

1
5

⋅= FD 4.57 10 3−
× N=

Note: For two-sided solution 2 FD⋅ 9.14 10 3−
× N=



Problem 9.58 [3]

Given: Parabolic plate

Find: Drag

Solution:

Basic equations: cf
τw

1
2

ρ⋅ U2
⋅

= cf
0.0594

Rex

1
5

=

W 25 cm⋅= L

W
2

⎛⎜
⎝

⎞⎟
⎠

2

25 cm⋅
= L 6.25 cm⋅= U 25

m
s

⋅=

Note: "y" is the equation of the upper and lower surfaces, so y = W/2 at x = L

From Table A.10 at 20oC ν 1.50 10 5−
×

m2

s
⋅= ρ 1.21

kg

m3
⋅=

First determine the nature of the boundary layer ReL
U L⋅
ν

= ReL 1.04 105
×= so still laminar, but we are

told to assume turbulent!

The drag (one side) is FD Aτw
⌠
⎮
⎮
⌡

d= FD
0

L
xτw w x( )⋅

⌠
⎮
⌡

d= w x( ) W
x
L

⋅=

We also have τw cf
1
2
⋅ ρ⋅ U2

⋅=
1
2

ρ⋅ U2
⋅

0.0594

Rex

1
5

⋅=

Hence FD
1
2

ρ⋅ U2
⋅ W⋅

0

L

x
0.0594

x
L

⋅

U x⋅
ν

⎛⎜
⎝

⎞⎟
⎠

1
5

⌠⎮
⎮
⎮
⎮
⎮
⎮
⎮
⌡

d⋅=
0.0594

2
ρ⋅ U

9
5

⋅ W⋅ L

1
2

−
⋅ ν

1
5

⋅
0

L

xx

3
10

⌠
⎮
⎮
⌡

d⋅=

FD 0.0228 ρ⋅ W⋅ ν L4
⋅ U9

⋅( )
1
5

⋅= FD 0.0267N=

Note: For two-sided solution 2 FD⋅ 0.0534N=



Problem 9.59 [3]

Given: Pattern of flat plates

Find: Drag on separate and composite plates

Solution:

Basic equations: cf
τw

1
2

ρ⋅ U2
⋅

= cf
0.0594

Rex

1
5

=

For separate plates L 7.5 cm⋅= W 7.5 cm⋅= U 10
m
s

⋅=

From Table A.8 at 20oC ν 1.01 10 6−
×

m2

s
⋅= ρ 998

kg

m3
⋅=

First determine the nature of the boundary layer ReL
U L⋅

ν
= ReL 7.43 105

×= so turbulent

The drag (one side) is FD Aτw
⌠
⎮
⎮
⌡

d= FD
0

L
xτw W⋅

⌠
⎮
⌡

d=

We also have τw cf
1
2
⋅ ρ⋅ U2

⋅=
1
2

ρ⋅ U2
⋅

0.0594

Rex

1
5

⋅=

Hence FD
1
2

ρ⋅ U2
⋅ W⋅

0

L

x
0.0594

U x⋅
ν

⎛⎜
⎝

⎞⎟
⎠

1
5

⌠
⎮
⎮
⎮
⎮
⎮
⌡

d⋅=
0.0594

2
ρ⋅ U

9
5

⋅ W⋅ ν

1
5

⋅
0

L

xx

1
5

−
⌠
⎮
⎮
⌡

d⋅=

The integral is
0

L

xx

1
5

−
⌠
⎮
⎮
⌡

d
5
4

L

4
5

⋅= so FD 0.371 ρ⋅ W⋅ ν L4
⋅ U9

⋅( )
1
5

⋅= FD 13.9N=

This is the drag on one plate.  The total drag is then FTotal 4 FD⋅= FTotal 55.8N=

For both sides: 2 FTotal⋅ 112N=



For the composite plate L 4 7.5× cm⋅= L 0.30m=

FComposite 0.371 ρ⋅ W⋅ ν L4
⋅ U9

⋅( )
1
5

⋅= FComposite 42.3N=

For both sides: 2 FComposite⋅ 84.6N=

The drag is much lower on the composite compared to the separate plates.  This is because τw is largest near the
leading edges and falls off rapidly; in this problem the separate plates experience leading edges four times!
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Problem 9.68 [3]

Given: Data on flow in a duct

Find: Velocity at location 2; pressure drop; length of duct; position at which boundary layer is 20 mm

Solution:

The given data is D 150 mm⋅= δ1 10 mm⋅= δ2 30 mm⋅= U1 25
m
s

⋅=

Table A.10 ρ 1.23
kg

m3
⋅= ν 1.45 10 5−

×
m2

s
⋅=

Governing equations

Mass

In the boundary layer δ

x
0.382

Rex

1
5

= (9.26)

In the the inviscid core, the Bernoulli equation holds

p
ρ

V2

2
+ g z⋅+ constant= (4.24)

Assumptions: (1) Steady flow (2) No body force (gravity) in x direction

For a 1/7-power law profile, from Example 9.4 the displacement thickness is δdisp
δ

8
=

Hence δdisp1
δ1
8

= δdisp1 1.25mm=

δdisp2
δ2
8

= δdisp2 3.75mm=

From the definition of the displacement thickness, to compute the flow rate, the uniform flow at locations 1 and 2 is
assumed to take place in the entire duct, minus the displacement thicknesses

A1
π

4
D 2 δdisp1⋅−( )2⋅= A1 0.0171m2

=



A2
π

4
D 2 δdisp2⋅−( )2⋅= A2 0.0159m2

=

Mass conservation (Eq. 4.12) leads to U2

ρ− U1⋅ A1⋅( ) ρ U2⋅ A2⋅( )+ 0= or U2 U1
A1
A2
⋅= U2 26.8

m
s

=

The Bernoulli equation applied between locations 1 and 2 is

p1
ρ

U1
2

2
+

p2
ρ

U2
2

2
+=

or the pressure drop is p1 p2− Δp=
ρ

2
U2

2 U1
2

−⎛
⎝

⎞
⎠⋅= Δp 56.9Pa= (Depends on ρ value selected) 

The static pressure falls continuously in the entrance region as the fluid in the central core accelerates into a decreasing core.

If we assume the stagnation pressure is atmospheric, a change in pressure of about 60 Pa is not significant; in addition, the velocity changes
about 5%, again not a large change to within engineering accuracy

To compute distances corresponding to boundary layer thicknesses, rearrange Eq.9.26 

δ

x
0.382

Rex

1
5

= 0.382
ν

U x⋅
⎛⎜
⎝

⎞⎟
⎠

1
5

⋅= so x
δ

0.382
⎛⎜
⎝

⎞⎟
⎠

5
4 U

ν

⎛⎜
⎝

⎞⎟
⎠

1
4

⋅=

Applying this equation to locations 1 and 2 (using U = U1 or U2 as approximations)

x1
δ1

0.382

⎛
⎜
⎝

⎞
⎟
⎠

5
4 U1

ν

⎛
⎜
⎝

⎞
⎟
⎠

1
4

⋅= x1 0.382m=

x2
δ2

0.382

⎛
⎜
⎝

⎞
⎟
⎠

5
4 U2

ν

⎛
⎜
⎝

⎞
⎟
⎠

1
4

⋅= x2 1.533m=

x2 x1− 1.15m= (Depends on ν value selected) 

For location 3 δ3 20 mm⋅= δdisp3
δ3
8

= δdisp3 2.5mm=

A3
π

4
D 2 δdisp3⋅−( )2⋅= A3 0.017m2

=

U3 U1
A1
A3
⋅= U3 25.9

m
s

=

x3
δ3

0.382

⎛
⎜
⎝

⎞
⎟
⎠

5
4 U2

ν

⎛
⎜
⎝

⎞
⎟
⎠

1
4

⋅= x3 0.923m=

x3 x1− 0.542m= (Depends on ν value selected) 



Problem 9.69 [3]

Given: Data on a large tanker

Find: Cost effectiveness of tanker; compare to Alaska pipeline

Solution:
The given data is L 360 m⋅= B 70 m⋅= D 25 m⋅= ρ 1020

kg

m3
⋅= U 6.69

m
s

⋅= x 2000 mi⋅=

P 9.7 MW⋅= P 1.30 104
× hp= (Power consumed by drag)

The power to the propeller is Pprop
P

70 %⋅
= Pprop 1.86 104

× hp=

The shaft power is Ps 120% Pprop⋅= Ps 2.23 104
× hp=

The efficiency of the engines is η 40 %⋅=

Hence the heat supplied to the engines is Q
Ps
η

= Q 1.42 108
×

BTU
hr

=

The journey time is t
x
U

= t 134hr=

The total energy consumed is Qtotal Q t⋅= Qtotal 1.9 1010
× BTU=

From buoyancy the total ship weight equals the displaced seawater volume

Mship g⋅ ρ g⋅ L⋅ B⋅ D⋅= Mship ρ L⋅ B⋅ D⋅= Mship 1.42 109
× lb=

Hence the mass of oil is Moil 75% Mship⋅= Moil 1.06 109
× lb=

The chemical energy stored in the petroleum is q 20000
BTU

lb
⋅=

The total chemical energy is E q Moil⋅= E 2.13 1013
× BTU=

The equivalent percentage of petroleum cargo used is then
Qtotal

E
0.089%=

The Alaska pipeline uses epipeline 120
BTU

ton mi⋅
⋅= but for the ship eship

Qtotal
Moil x⋅

= eship 17.8
BTU

ton mi⋅
=

The ship uses only about 15% of the energy of the pipeline!



Problem 9.70 [3]

Given: Linear, sinusoidal and parabolic velocity profiles

Find: Momentum fluxes

Solution:

The momentum flux is given by mf
0

δ

yρ u2
⋅ w⋅

⌠
⎮
⌡

d=

where w is the width of the boundary layer

For a linear velocity profile u
U

y
δ

= η= (1)

For a sinusoidal velocity profile u
U

sin
π

2
y
δ
⋅⎛⎜

⎝
⎞⎟
⎠

= sin
π

2
η⋅⎛⎜

⎝
⎞⎟
⎠

= (2)

For a parabolic velocity profile u
U

2
y
δ

⎛⎜
⎝

⎞⎟
⎠

⋅
y
δ

⎛⎜
⎝

⎞⎟
⎠

2
−= 2 η⋅ η( )2

−= (3)

For each of these u U f η( )⋅= y δ η⋅=

Using these in the momentum flux equation mf ρ U2
⋅ δ⋅ w⋅

0

1
ηf η( )2⌠

⎮
⌡

d⋅= (4)

For the linear profile Eqs. 1 and 4 give mf ρ U2
⋅ δ⋅ w⋅

0

1
ηη

2⌠
⎮
⌡

d⋅= mf
1
3

ρ⋅ U2
⋅ δ⋅ w⋅=

For the sinusoidal profile Eqs. 2 and 4 give mf ρ U2
⋅ δ⋅ w⋅

0

1

ηsin
π

2
η⋅⎛⎜

⎝
⎞⎟
⎠

2⌠
⎮
⎮
⌡

d⋅= mf
1
2

ρ⋅ U2
⋅ δ⋅ w⋅=

For the parabolic profile Eqs. 3 and 4 give mf ρ U2
⋅ δ⋅ w⋅

0

1

η2 η⋅ η( )2
−⎡⎣ ⎤⎦

2⌠⎮
⎮⌡

d⋅= mf
8
15

ρ⋅ U2
⋅ δ⋅ w⋅=

The linear profile has the smallest momentum, so would be most likely to separate



Problem *9.71 [4]

Given: Laminar (Blasius) and turbulent (1/7 - power) velocity distributions

Find: Plot of distributions; momentum fluxes

Solution:



Computed results:

(Table 9.1) (Simpsons Rule)
Laminar Weight Weight x Turbulent

u/U w (u/U )2 u/U
0.0 0.000 1 0.00 0.0 0.00
0.5 0.166 4 0.11 0.0125 0.53
1.0 0.330 2 0.22 0.025 0.59
1.5 0.487 4 0.95 0.050 0.65
2.0 0.630 2 0.79 0.10 0.72
2.5 0.751 4 2.26 0.15 0.76
3.0 0.846 2 1.43 0.2 0.79
3.5 0.913 4 3.33 0.4 0.88
4.0 0.956 2 1.83 0.6 0.93
4.5 0.980 4 3.84 0.8 0.97
5.0 0.992 1 0.98 1.0 1.00

Simpsons': 0.525

η y /δ = η

Laminar and Turbulent Boundary Layer
Velocity Profiles

0.0

0.3

0.5

0.8

1.0

0 0.25 0.5 0.75 1
u/U

y /δ Laminar
Turbulent
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Problem 9.75 [5]

Given: Channel flow with laminar boundary layers

Find: Maximum inlet speed for laminar exit; Pressure drop for parabolic velocity in boundary layers

Solution:

Basic equations: Retrans 5 105
×=

δ

x
5.48

Rex
=

p
ρ

V2

2
+ g z⋅+ const=

Assumptions: 1) Steady flow 2) Incompressible 3) z = constant

From Table A.10 at 20oC ν 1.50 10 5−
×

m2

s
⋅= ρ 1.21

kg

m3
⋅= L 3 m⋅= h 15 cm⋅=

Then Retrans
Umax L⋅

ν
= Umax

Retrans ν⋅

L
= Umax 2.50

m
s

= U1 Umax= U1 2.50
m
s

=

For Retrans 5 105
×= δ2 L

5.48

Retrans
⋅= δ2 0.0232m=

For a parabolic profile
δdisp

δ

0

1

λ1
u
U

−⎛⎜
⎝

⎞⎟
⎠

⌠
⎮
⎮
⌡

d=
0

1
λ1 2 λ⋅− λ

2
+( )⌠

⎮
⌡

d=
1
3

= where δtrans  is the displacement thickness

δdisp2
1
3

δ2⋅= δdisp2 0.00775m=

From continuity U1 w⋅ h⋅ U2 w⋅ h 2 δdisp2⋅−( )⋅= U2 U1
h

h 2 δdisp2⋅−
⋅= U2 2.79

m
s

=

Since the boundary layers do not meet Bernoulli applies in the core

p1
ρ

U1
2

2
+

p2
ρ

U2
2

2
+= Δp p1 p2−=

ρ

2
U2

2 U1
2

−⎛
⎝

⎞
⎠⋅=

Δp
ρ

2
U2

2 U1
2

−⎛
⎝

⎞
⎠⋅= Δp 0.922Pa=

From hydrostatics Δp ρH2O g⋅ Δh⋅= with ρH2O 1000
kg

m3
⋅=

Δh
Δp

ρH2O g⋅
= Δh 0.0940mm= Δh 0.00370 in=
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Problem 9.79 [3]

Given: Pattern of flat plates

Find: Drag on separate and composite plates

Solution:

Basic equations: CD
FD

1
2

ρ⋅ V2
⋅ A⋅

=

For separate plates L 7.5 cm⋅= W 7.5 cm⋅= A W L⋅= A 5.625 10 3−
× m2

= V 10
m
s

⋅=

From Table A.8 at 20oC ν 1.01 10 6−
×

m2

s
⋅= ρ 998

kg

m3
⋅=

First determine the Reynolds number ReL
V L⋅
ν

= ReL 7.43 105
×= so use Eq. 9.34

CD
0.0742

ReL

1
5

= CD 0.00497=

The drag (one side) is then FD CD
1
2
⋅ ρ⋅ V2

⋅ A⋅= FD 1.39N=

This is the drag on one plate.  The total drag is then FTotal 4 FD⋅= FTotal 5.58N=

For both sides: 2 FTotal⋅ 11.2N=

For the composite plate L 4 7.5× cm⋅= L 0.300m= A W L⋅= A 0.0225m2
=

First determine the Reylolds number ReL
V L⋅

ν
= ReL 2.97 106

×= so use Eq. 9.34

CD
0.0742

ReL

1
5

= CD 0.00377=

The drag (one side) is then FD CD
1
2
⋅ ρ⋅ V2

⋅ A⋅= FD 4.23N= For both sides: 2 FD⋅ 8.46N=

The drag is much lower on the composite compared to the separate plates.  This is because τw is largest near the
leading edges and falls off rapidly; in this problem the separate plates experience leading edges four times!
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Problem 9.81 [3]

Given: Aircraft cruising at 40,000 ft

Find: Skin friction drag force; Power required

Solution:

Basic equations: CD
FD

1
2

ρ⋅ V2
⋅ A⋅

=

We "unwrap" the cylinder to obtain an equivalent flat plate

L 125 ft⋅= D 12 ft⋅= A L π⋅ D⋅= A 4712 ft2⋅= V 500 mph⋅=

From Table A.3, with z 40000 ft⋅= z 12192m=

For z 12000 m⋅=
ρ

ρSL
0.2546= with ρSL 0.002377

slug

ft3
⋅=

z 13000 m⋅=
ρ

ρSL
0.2176=

Hence at z 12192m=
ρ

ρSL
0.2546

0.2176 0.2546−( )
1300 12000−( )

12192 12000−( )⋅+= 0.255=

ρ 0.255 ρSL⋅= ρ 0.000606
slug

ft3
⋅= and also T 216.7 K⋅=

From Appendix A-3 μ
b T

1
2

⋅

1
S
T

+
= with b 1.458 10 6−

×
kg

m s⋅ K

1
2

⋅

⋅= S 110.4 K⋅=

Hence μ
b T

1
2

⋅

1
S
T

+
= μ 1.42 10 5−

×
N s⋅

m2
⋅= μ 2.97 10 7−

×
lbf s⋅

ft2
⋅=

Next we need the Reynolds number ReL
ρ V⋅ L⋅

μ
= ReL 1.87 108

×= so use Eq. 9.35

CD
0.455

log ReL( )2.58
= CD 0.00195=

The drag is then FD CD
1
2
⋅ ρ⋅ V2

⋅ A⋅= FD 1500 lbf⋅=

The power consumed is P FD V⋅= P 1.100 106
×

ft lbf⋅
s

⋅= P 1999 hp⋅=
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Given data:
L  = 80 ft
B  = 35 ft
D  = 5 ft
ν = 1.21E-05 ft2/s (Table A.7)
ρ = 1.94 slug/ft3 (Table A.7)

Computed results:

A  = 3600 ft2

U  (mph) Re L C D P (hp)

1 9.70E+06 0.00285 0.0571
2 1.94E+07 0.00262 0.421
3 2.91E+07 0.00249 1.35
4 3.88E+07 0.00240 3.1
5 4.85E+07 0.00233 5.8
6 5.82E+07 0.00227 9.8
7 6.79E+07 0.00222 15
8 7.76E+07 0.00219 22
9 8.73E+07 0.00215 31

10 9.70E+07 0.00212 42
11 1.07E+08 0.00209 56
12 1.16E+08 0.00207 72
13 1.26E+08 0.00205 90
14 1.36E+08 0.00203 111
15 1.45E+08 0.00201 136



Power Consumed by Friction on a Barge

0

30

60

90

120

150

0 3 6 9 12 15
U  (mph)

P  (hp)
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Problem 9.86 [3]

Given: Plastic sheet falling in water

Find: Terminal speed both ways

Solution:

Basic equations: ΣFy 0= for terminal speed CD
FD

1
2

ρ⋅ V2
⋅ A⋅

= CD
0.0742

ReL

1
5

= (9.34) (assuming 5 x 105 < ReL < 107)

h 10 mm⋅= W 1 m⋅= L 0.5 m⋅= A W L⋅= SG 1.5=

From Table A.8 at 20oC ν 1.01 10 6−
×

m2

s
⋅= ρ 998

kg

m3
⋅= for water

Hence FD Fbuoyancy+ W− 0= FD W Fbuoyancy−= ρ g⋅ h⋅ A⋅ SG 1−( )⋅=

Also FD 2 CD⋅ A⋅
1
2
⋅ ρ⋅ V2

⋅= 2
0.0742

ReL

1
5

⋅ A⋅
1
2
⋅ ρ⋅ V2

⋅=
0.0742

V L⋅
ν

⎛⎜
⎝

⎞⎟
⎠

1
5

W⋅ L⋅ ρ⋅ V2
⋅= 0.0742 W⋅ L

4
5

⋅ ν

1
5

⋅
1
2
⋅ ρ⋅ V

9
5

⋅=

Note that we double FD because
we have two sides!

Hence ρH2O g⋅ h⋅ W⋅ L⋅ SG 1−( )⋅ 0.0742 W⋅ L

4
5

⋅ ν

1
5

⋅
1
2
⋅ ρ⋅ V

9
5

⋅=

Solving for V V
g h⋅ SG 1−( )⋅

0.0742
L
ν

⎛⎜
⎝

⎞⎟
⎠

1
5

⋅

⎡
⎢
⎢
⎣

⎤
⎥
⎥
⎦

5
9

= V 3.41
m
s

=

Check the Reynolds numberReL
V L⋅

ν
= ReL 1.69 106

×= Hence Eq. 9.34 is reasonable

Repeating for L 1 m⋅= V
g h⋅ SG 1−( )⋅

0.0742
L
ν

⎛⎜
⎝

⎞⎟
⎠

1
5

⋅

⎡
⎢
⎢
⎣

⎤
⎥
⎥
⎦

5
9

= V 3.68
m
s

=

Check the Reynolds numberReL
V L⋅

ν
= ReL 3.65 106

×= Eq. 9.34 is still reasonable

The short side vertical orientation falls more slowly because the largest friction is at the region of the leading edge (τ tails off as the
boundary layer progresses); its leading edge area is larger.  Note that neither orientation is likely - the plate will flip around in a chaotic
manner
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Problem 9.89 [4]

Given: "Resistance" data on a ship

Find: Plot of wave, viscous and total drag (protoype and model); Power required by prototype

Solution:



Given data:
L p = 409 ft
A p = 19500 ft2

L m = 5.11 ft (1/80 scale)
A m = 3.05 ft2

SG  = 1.025 (Table A.2)
μ = 2.26E-05 lbf.s/ft2 (Table A.2)
ρ = 1023 slug/ft3

Computed results:

Model

Fr Wave 
"Resistance"

Viscous 
"Resistance"

Total 
"Resistance" U  (ft/s) Wave 

Drag (lbf)
Viscous 

Drag (lbf)
Total 

Drag (lbf)
0.10 0.00050 0.0052 0.0057 1.28 0.641 6.67 7.31
0.20 0.00075 0.0045 0.0053 2.57 3.85 23.1 26.9
0.30 0.00120 0.0040 0.0052 3.85 13.9 46.2 60.0
0.35 0.00150 0.0038 0.0053 4.49 23.6 59.7 83.3
0.40 0.00200 0.0038 0.0058 5.13 41.0 78.0 119
0.45 0.00300 0.0036 0.0066 5.77 77.9 93.5 171
0.50 0.00350 0.0035 0.0070 6.42 112 112 224
0.60 0.00320 0.0035 0.0067 7.70 148 162 309

Drag on a Model Ship

0

50

100

150

200

250

300

350

0 1 2 3 4 5 6 7 8 9
U  (ft/s)

F  (lbf)

Total
Wave
Viscous



Prototype

Fr Wave 
"Resistance"

Viscous 
"Resistance"

Total 
"Resistance" U  (ft/s)

Wave 
Drag    (lbf 

x 106)

Viscous 
Drag    (lbf x 

106)

Total   
Drag      

(lbf x 106)
0.10 0.00050 0.0017 0.0022 11.5 0.328 1.12 1.44
0.20 0.00075 0.0016 0.0024 23.0 1.97 4.20 6.17
0.30 0.00120 0.0015 0.0027 34.4 7.09 8.87 16.0
0.35 0.00150 0.0015 0.0030 40.2 12.1 12.1 24.1
0.40 0.00200 0.0013 0.0033 45.9 21.0 13.7 34.7
0.45 0.00300 0.0013 0.0043 51.6 39.9 17.3 57.2
0.50 0.00350 0.0013 0.0048 57.4 57.5 21.3 78.8
0.60 0.00320 0.0013 0.0045 68.9 75.7 30.7 106

For the prototype wave resistance is a much more significant factor at high speeds!

Drag on a Prototype Ship
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80
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Problem 9.91 [3]

Given: Fishing net

Find: Drag; Power to maintain motion

Solution:

Basic equations: CD
FD

1
2

ρ⋅ V2
⋅ A⋅

=

We convert the net into an equivalent cylinder (we assume each segment does not interfere with its neighbors)

L 40 ft⋅= W 5 ft⋅= d
1
32

in⋅= Spacing: D
3
8

in⋅= V 7 knot⋅= V 11.8
ft
s

=

Total number of threads of length L is n1
W
D

= n1 160= Total length L1 n1 L⋅= L1 6400ft=

Total number of threads of length W is n2
L
D

= n2 1280= Total length L2 n2 W⋅= L2 6400ft=

Total length of thread LT L1 L2+= LT 12800ft= LT 2.42mile= A lot!

The frontal area is then A LT d⋅= A 33.3 ft2= Note that L W⋅ 200 ft2=

From Table A.7 ρ 1.94
slug

ft3
⋅= ν 1.21 10 5−

×
ft2

s
⋅=

The Reynolds number is Red
V d⋅

ν
= Red 2543=

For a cylinder in a crossflow at this Reynolds number, from Fig. 9.13, approximately CD 0.8=

Hence FD CD
1
2
⋅ ρ⋅ V2

⋅ A⋅= FD 3611 lbf=

The power required is P FD V⋅= P 42658
ft lbf⋅

s
= P 77.6hp=
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Problem 9.93 [3]

Given: Data on a rotary mixer

Find: New design dimensions

Solution:

The given data or available data is

R 0.6 m⋅= P 350 W⋅= ω 60 rpm⋅= ρ 1099
kg

m3
⋅=

For a ring, from Table 9.3 CD 1.2=

The torque at the specified power and speed is

T
P
ω

= T 55.7N m⋅=

The drag on each ring is then FD
1
2

T
R
⋅= FD 46.4N=

The linear velocity of each ring is V R ω⋅= V 3.77
m
s

=

The drag and velocity of each ring are related using the definition of drag coefficient

CD
FD

1
2

ρ⋅ A⋅ V2
⋅

=

Solving for the ring area A
FD

1
2

ρ⋅ V2
⋅ CD⋅

= A 4.95 10 3−
× m2

=

But A
π

4
do

2 di
2

−⎛
⎝

⎞
⎠⋅=

The outer diameter is do 125 mm⋅=

Hence the inner diameter is di do
2 4 A⋅

π
−= di 96.5mm=
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Problem 9.95 [3]

Given: Data on airplane and parachute

Find: Time and distance to slow down; plot speed against distance and time; maximum "g"'s

Solution:

Given data:
M  = 8500 kg
V i = 400 km/hr
V f = 100 km/hr

C D = 1.42 (Table 9.3)
ρ = 1.23 kg/m3

Single: D  = 6 m Triple: D  = 3.75 m



Computed results:
A  = 28.3 m2 A  = 11.0 m2

t  (s) x  (m) V  (km/hr) t  (s) x (m) V (km/hr)
0.0 0.0 400 0.0 0.0 400
1.0 96.3 302 1.0 94.2 290
2.0 171 243 2.0 165 228
3.0 233 203 3.0 223 187
4.0 285 175 4.0 271 159
5.0 331 153 5.0 312 138
6.0 371 136 6.0 348 122
7.0 407 123 7.0 380 110
8.0 439 112 7.93 407 100
9.0 469 102 9.0 436 91

9.29 477 100 9.3 443 89

"g "'s = -3.66 Max

Aircraft Velocity versus Time
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Problem 9.96 [3]

Given: Data on airplane landing

Find: Single and three-parachute sizes; plot speed against distance and time; maximum "g''s

Solution:

Given data:
M  = 9500 kg
V i = 350 km/hr
V f = 100 km/hr
x f = 1200 m

C D = 1.42 (Table 9.3)
ρ = 1.23 kg/m3



Computed results:
Single: Triple:
A  = 11.4 m2 A  = 3.8 m2

D  = 3.80 m D  = 2.20 m

"g "'s = -1.01 Max

t  (s) x  (m) V  (km/hr)
0.00 0.0 350
2.50 216.6 279
5.00 393.2 232
7.50 542.2 199
10.0 671.1 174
12.5 784.7 154
15.0 886.3 139
17.5 978.1 126
20.0 1061.9 116
22.5 1138.9 107
24.6 1200.0 100

Aircraft Velocity versus Time
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Problem 9.100 [2]

Given: Data on cyclist performance on a calm day

Find: Performance hindered and aided by wind

Solution:
The given data or available data is

FR 7.5 N⋅= M 65 kg⋅= A 0.25 m2
⋅=

CD 1.2= ρ 1.23
kg

m3
⋅= V 30

km
hr

⋅=

The governing equation is FD
1
2

ρ⋅ A⋅ V2
⋅ CD⋅= FD 12.8N=

The power steady power generated by the cyclist is

P FD FR+( ) V⋅= P 169W= P 0.227hp=

Now, with a headwind we have Vw 10
km
hr

⋅= V 24
km
hr

⋅=

The aerodynamic drag is greater because of the greater effective wind speed

FD
1
2

ρ⋅ A⋅ V Vw+( )2⋅ CD⋅= FD 16.5N=

The power required is that needed to overcome the total force FD + FR, moving at the cyclist's speed

P V FD FR+( )⋅= P 160W=

This is less than the power she can generate She wins the bet!

With the wind supporting her the effective wind speed is substantially lower

VW 10
km
hr

⋅= V 40
km
hr

⋅=

FD
1
2

ρ⋅ A⋅ V VW−( )2⋅ CD⋅= FD 12.8N=

The power required is that needed to overcome the total force FD + FR, moving at the cyclist's speed

P V FD FR+( )⋅= P 226W=

This is more than the power she can generate She loses the bet



Problem 9.101 [3]

Given: Data on cyclist performance on a calm day

Find: Performance hindered and aided by wind; repeat with high-tech tires; with fairing

Solution:
The given data or available data is

FR 7.5 N⋅= M 65 kg⋅= A 0.25 m2
⋅=

CD 1.2= ρ 1.23
kg

m3
⋅= V 30

km
hr

⋅=

The governing equation is FD
1
2

ρ⋅ A⋅ V2
⋅ CD⋅= FD 12.8N=

Power steady power generated by the cyclist is P FD FR+( ) V⋅= P 169W= P 0.227 hp⋅=

Now, with a headwind we have Vw 10
km
hr

⋅=

The aerodynamic drag is greater because of the greater effective wind speed

FD
1
2

ρ⋅ A⋅ V Vw+( )2⋅ CD⋅= (1)

The power required is that needed to overcome the total force FD + FR, moving at the cyclist's speed is

P V FD FR+( )⋅= (2)

Combining Eqs 1 and 2 we obtain an expression for the cyclist's maximum speed V cycling into a 
headwind (where P = 169 W is the cyclist's power)

Cycling into the wind: P FR
1
2

ρ⋅ A⋅ V Vw+( )2⋅ CD⋅+⎡⎢
⎣

⎤⎥
⎦

V⋅= (3)

This is a cubic equation for V; it can be solved analytically, or by iterating.  It is convenient to use Excel's Goal Seek (or
Solver).  From the associated Excel workbook

From Solver V 24.7
km
hr

⋅=

By a similar reasoning:

Cycling with the wind: P FR
1
2

ρ⋅ A⋅ V Vw−( )2⋅ CD⋅+⎡⎢
⎣

⎤⎥
⎦

V⋅= (4)



From Solver V 35.8
km
hr

⋅=

With improved tires FR 3.5 N⋅=

Maximum speed on a calm day is obtained from P FR
1
2

ρ⋅ A⋅ V2
⋅ CD⋅+⎛⎜

⎝
⎞⎟
⎠

V⋅=

This is a again a cubic equation for V; it can be solved analytically, or by iterating.  It is convenient to use Excel's Goal
Seek (or Solver).  From the associated Excel workbook

From Solver V 32.6
km
hr

⋅=

Equations 3 and 4 are repeated for the case of improved tires

From Solver Against the wind V 26.8
km
hr

⋅= With the wind V 39.1
km
hr

⋅=

For improved tires and fairing, from Solver

V 35.7
km
hr

⋅= Against the wind V 29.8
km
hr

⋅= With the wind V 42.1
km
hr

⋅=



Problem 9.101 (In Excel) [3]

Given: Data on cyclist performance on a calm day

Find: Performance hindered and aided by wind; repeat with high-tech tires; with fairing

Solution:

Given data:
F R = 7.5 N
M  = 65 kg
A = 0.25 m2

C D = 1.2
ρ = 1.23 kg/m3

V = 30 km/hr
V w = 10 km/hr

Computed results:

F D = 12.8 N

P = 169 W

Left (W) Right (W) Error V (km/hr)
Using Solver : 169 169 0% 24.7

Left (W) Right (W) Error V (km/hr)
Using Solver : 169 169 0% 35.8



With improved tires:

F R = 3.5 N

Left (W) Right (W) Error V (km/hr)
Using Solver : 169 169 0% 32.6

Left (W) Right (W) Error V (km/hr)
Using Solver : 169 169 0% 26.8

Left (W) Right (W) Error V (km/hr)
Using Solver : 169 169 0% 39.1

With improved tires and fairing:

F R = 3.5 N
C D = 0.9

Left (W) Right (W) Error V (km/hr)
Using Solver : 169 169 0% 35.7

Left (W) Right (W) Error V (km/hr)
Using Solver : 169 169 0% 29.8

Left (W) Right (W) Error V (km/hr)
Using Solver : 169 169 0% 42.1



Problem 9.102 [3]

Given: Data on cyclist performance on a calm day

Find: Performance on a hill with and without wind

Solution:
The given data or available data is

FR 7.5 N⋅= M 65 kg⋅= A 0.25 m2
⋅=

CD 1.2= ρ 1.23
kg

m3
⋅= V 30

km
hr

⋅=

The governing equation is FD
1
2

ρ⋅ A⋅ V2
⋅ CD⋅= FD 12.8N=

Power steady power generated by the cyclist is P FD FR+( ) V⋅= P 169W= P 0.227hp=

Riding up the hill (no wind) θ 5 deg⋅=

For steady speed the cyclist's power is consumed by working against the net force (rolling resistance, darg, and gravity)

Cycling up the hill: P FR
1
2

ρ⋅ A⋅ V2
⋅ CD⋅+ M g⋅ sin θ( )⋅+⎛⎜

⎝
⎞⎟
⎠

V⋅=

This is a cubic equation for the speed which can be solved analytically, or by iteration, or using Excel's Goal Seek
or Solver.  The solution is obtained from the associated Excel workbook

From Solver V 9.47
km
hr

⋅=

Now, with a headwind we have Vw 10
km
hr

⋅=

The aerodynamic drag is greater because of the greater effective wind speed

FD
1
2

ρ⋅ A⋅ V Vw+( )2⋅ CD⋅=

The power required is that needed to overcome the total force (rolling resistance, drag, and gravity) moving at the cyclist's speed is

Uphill against the wind: P FR
1
2

ρ⋅ A⋅ V Vw+( )2⋅ CD⋅+ M g⋅ sin θ( )⋅+⎡⎢
⎣

⎤⎥
⎦

V⋅=

This is again a cubic equation for V

From Solver V 8.94
km
hr

⋅=



Pedalling downhill (no wind) gravity helps increase the speed; the maximum speed is obtained from

Cycling down the hill: P FR
1
2

ρ⋅ A⋅ V2
⋅ CD⋅+ M g⋅ sin θ( )⋅−⎛⎜

⎝
⎞⎟
⎠

V⋅=

This cubic equation for V is solved in the associated Excel workbook

From Solver V 63.6
km
hr

⋅=

Pedalling downhill (wind assisted) gravity helps increase the speed; the maximum speed is obtained from

Wind-assisted downhill: P FR
1
2

ρ⋅ A⋅ V Vw−( )2⋅ CD⋅+ M g⋅ sin θ( )⋅−⎡⎢
⎣

⎤⎥
⎦

V⋅=

This cubic equation for V is solved in the associated Excel workbook

From Solver V 73.0
km
hr

⋅=

Freewheeling downhill, the maximum speed is obtained from the fact that the net force is zero

Freewheeling downhill: FR
1
2

ρ⋅ A⋅ V2
⋅ CD⋅+ M g⋅ sin θ( )⋅− 0=

V
M g⋅ sin θ( )⋅ FR−

1
2

ρ⋅ A⋅ CD⋅
= V 58.1

km
hr

=

Wind assisted: FR
1
2

ρ⋅ A⋅ V Vw−( )2⋅ CD⋅+ M g⋅ sin θ( )⋅− 0=

V Vw
M g⋅ sin θ( )⋅ FR−

1
2

ρ⋅ A⋅ CD⋅
+= V 68.1

km
hr

=



Problem 9.102 (In Excel) [3]

Given: Data on cyclist performance on a calm day

Find: Performance on a hill with and without wind

Solution:

Given data:
F R = 7.5 N
M  = 65 kg
A = 0.25 m2

C D = 1.2
ρ = 1.23 kg/m3

V = 30 km/hr
V w = 10 km/hr
θ = 5 deg

Computed results:

F D = 12.8 N

P = 169 W

Left (W) Right (W) Error V  (km/hr)
Using Solver : 169 169 0% 9.47

Left (W) Right (W) Error V  (km/hr)
Using Solver : 169 169 0% 8.94

Left (W) Right (W) Error V  (km/hr)
Using Solver : 169 169 0% 63.6

Left (W) Right (W) Error V  (km/hr)
Using Solver : 169 169 0% 73.0

FD
1
2
ρ⋅ A⋅ V2⋅ CD⋅=

P FD FR+( ) V⋅=

Cycling up the hill: P FR
1
2
ρ⋅ A⋅ V2⋅ CD⋅+ M g⋅ sin θ( )⋅+⎛⎜

⎝
⎞⎟
⎠

V⋅=

Uphill against the wind: P FR
1
2
ρ⋅ A⋅ V Vw+( )2⋅ CD⋅+ M g⋅ sin θ( )⋅+⎡⎢

⎣
⎤⎥
⎦

V⋅=

Cycling down the hill: P FR
1
2
ρ⋅ A⋅ V2⋅ CD⋅+ M g⋅ sin θ( )⋅−⎛⎜

⎝
⎞⎟
⎠

V⋅=

Wind-assisted downhill: P FR
1
2
ρ⋅ A⋅ V Vw−( )2⋅ CD⋅+ M g⋅ sin θ( )⋅−⎡⎢

⎣
⎤⎥
⎦

V⋅=



Problem *9.103 [3]

 

T 

θ 

V 

x 

y 

FBnet 

FD 

Wlatex 

Given: Series of party balloons

Find: Wind velocity profile; Plot Note: Flagpole is actually 27 ft tall, not 63 ft! 

Solution:

Basic equations: CD
FD

1
2

ρ⋅ V2
⋅ A⋅

= FB ρair g⋅ Vol⋅= Σ F
→

0=

The above figure applies to each balloon

For the horizontal forces FD T sin θ( )⋅− 0= (1)

For the vertical forces T− cos θ( )⋅ FBnet+ Wlatex− 0= (2)

Here FBnet FB W−= ρair ρHe−( ) g⋅
π D3
⋅
6

⋅=

D 9 in⋅= Mlatex
1
10

oz⋅= Wlatex Mlatex g⋅= Wlatex 0.00625 lbf=

We have (Table A.6) RHe 386.1
ft lbf⋅
lbm R⋅
⋅= pHe 16.2 psi⋅= THe 530 R⋅= ρHe

pHe
RHe THe⋅

= ρHe 0.000354
slug

ft3
=

Rair 53.33
ft lbf⋅
lbm R⋅
⋅= pair 14.7 psi⋅= Tair 530 R⋅= ρair

pair
Rair Tair⋅

= ρair 0.00233
slug

ft3
=

FBnet ρair ρHe−( ) g⋅
π D3
⋅
6

⋅= FBnet 0.0140 lbf=

Applying Eqs 1 and 2 to the top balloon, for which θ 65 deg⋅=

FD T sin θ( )⋅=
FBnet Wlatex−

cos θ( )
sin θ( )⋅=

Hence FD FBnet Wlatex−( ) tan θ( )⋅= FD 0.0167 lbf=

But we have FD CD
1
2
⋅ ρair⋅ V2

⋅ A⋅= CD
1
2
⋅ ρair⋅ V2

⋅
π D2
⋅
4

⋅= with CD 0.4= from Fig. 9.11 (we will
check Re later)

V
8 FD⋅

CD ρair⋅ π⋅ D2
⋅

= V 9.00
ft
s

=

From Table A.9 ν 1.63 10 4−
×

ft2

s
⋅= The Reynolds number is Red

V D⋅
ν

= Red 4.14 104
×= We are okay!



For the next balloon θ 60 deg⋅= FD FBnet Wlatex−( ) tan θ( )⋅= FD 0.0135 lbf= with CD 0.4=

V
8 FD⋅

CD ρair⋅ π⋅ D2
⋅

= V 8.09
ft
s

=

The Reynolds number is Red
V D⋅

ν
= Red 3.72 104

×= We are okay!

For the next balloon θ 50 deg⋅= FD FBnet Wlatex−( ) tan θ( )⋅= FD 0.00927 lbf= with CD 0.4=

V
8 FD⋅

CD ρair⋅ π⋅ D2
⋅

= V 6.71
ft
s

=

The Reynolds number is Red
V D⋅

ν
= Red 3.09 104

×= We are okay!

For the next balloon θ 45 deg⋅= FD FBnet Wlatex−( ) tan θ( )⋅= FD 0.00777 lbf= with CD 0.4=

V
8 FD⋅

CD ρair⋅ π⋅ D2
⋅

= V 6.15
ft
s

=

The Reynolds number is Red
V D⋅

ν
= Red 2.83 104

×= We are okay!

For the next balloon θ 35 deg⋅= FD FBnet Wlatex−( ) tan θ( )⋅= FD 0.00544 lbf= with CD 0.4=

V
8 FD⋅

CD ρair⋅ π⋅ D2
⋅

= V 5.14
ft
s

=

The Reynolds number is Red
V D⋅

ν
= Red 2.37 104

×= We are okay!

For the next balloon θ 30 deg⋅= FD FBnet Wlatex−( ) tan θ( )⋅= FD 0.00449 lbf= with CD 0.4=

V
8 FD⋅

CD ρair⋅ π⋅ D2
⋅

= V 4.67
ft
s

=

The Reynolds number is Red
V D⋅

ν
= Red 2.15 104

×= We are okay!

For the next balloon θ 20 deg⋅= FD FBnet Wlatex−( ) tan θ( )⋅= FD 0.00283 lbf= with CD 0.4=

V
8 FD⋅

CD ρair⋅ π⋅ D2
⋅

= V 3.71
ft
s

=

The Reynolds number is Red
V D⋅

ν
= Red 1.71 104

×= We are okay!

For the next balloon θ 10 deg⋅= FD FBnet Wlatex−( ) tan θ( )⋅= FD 0.00137 lbf= with CD 0.4=

V
8 FD⋅

CD ρair⋅ π⋅ D2
⋅

= V 2.58
ft
s

=

The Reynolds number is Red
V D⋅

ν
= Red 1.19 104

×= We are okay!

For the next balloon θ 5 deg⋅= FD FBnet Wlatex−( ) tan θ( )⋅= FD 0.000680 lbf= with CD 0.4=

V
8 FD⋅

CD ρair⋅ π⋅ D2
⋅

= V 1.82
ft
s

=



The Reynolds number is Red
V D⋅

ν
= Red 8367.80= We are okay!

In summary we have V 1.82 2.58 3.71 4.67 5.14 6.15 6.71 8.09 9.00( )
ft
s

⋅=

h 3 6 9 12 15 18 21 24 27( ) ft⋅=

0 2 4 6 8 10

10

20

30

V (ft/s)

h 
(f

t)

This problem is ideal for computing and plotting in Excel



Problem 9.104 [2]

 

T θ 

V 

x 

y 

FB 

FD 

W 

Given: Sphere dragged through river

Find: Relative velocity of sphere

Solution:

Basic equations: CD
FD

1
2

ρ⋅ V2
⋅ A⋅

= FB ρ g⋅ Vol⋅= Σ F
→

0=

The above figure applies to the sphere

For the horizontal forces FD T sin θ( )⋅− 0= (1)

For the vertical forces T− cos θ( )⋅ FB+ W− 0= (2)

Here D 1 ft⋅= SG 0.25= and from Table A.7 ν 1.41 10 5−
×

ft2

s
⋅= ρ 1.94

slug

ft3
⋅=

Applying Eqs 1 and 2 to the sphere, for which θ 45 deg⋅=

FD T sin θ( )⋅=
FB W−

cos θ( )
sin θ( )⋅= ρ g⋅ Vol⋅ 1 SG−( )⋅ tan θ( )⋅=

Hence FD ρ g⋅
π D3
⋅
6

⋅ 1 SG−( )⋅ tan θ( )⋅= FD 24.5 lbf⋅=

But we have FD CD
1
2
⋅ ρ⋅ V2

⋅ A⋅= CD
1
2
⋅ ρ⋅ V2

⋅
π D2
⋅
4

⋅= with CD 0.4= from Fig. 9.11 (we will
check Re later)

V
8 FD⋅

CD ρ⋅ π⋅ D2
⋅

= V 8.97
ft
s

⋅=

The Reynolds number is Red
V D⋅

ν
= Red 6.36 105

×= A bit off from Fig 9.11

Try CD 0.15= V
8 FD⋅

CD ρ⋅ π⋅ D2
⋅

= V 14.65
ft
s

⋅=

The Reynolds number is Red
V D⋅

ν
= Red 1.04 106

×= A good fit with Fig 9.11 (extreme right of graph)



Problem 9.105 [2]

 

Fn 

W 

Given: Circular disk in wind

Find: Mass of disk; Plot α versus V

Solution:

Basic equations: CD
FD

1
2

ρ⋅ V2
⋅ A⋅

= Σ M
→

0=

Summing moments at the pivotW L⋅ sin α( )⋅ Fn L⋅− 0= and Fn
1
2

ρ⋅ Vn
2

⋅ A⋅ CD⋅=

Hence M g⋅ sin α( )⋅
1
2

ρ⋅ V cos α( )⋅( )2
⋅

π D2
⋅
4

⋅ CD⋅=

The data is ρ 1.225
kg

m3
⋅= V 15

m
s

⋅= D 25 mm⋅= α 10 deg⋅= CD 1.17= (Table 9.3)

M
π ρ⋅ V2

⋅ cos α( )2
⋅ D2

⋅ CD⋅

8 g⋅ sin α( )⋅
= M 0.0451kg=

Rearranging V
8 M⋅ g⋅

π ρ⋅ D2
⋅ CD⋅

tan α( )
cos α( )

⋅= V 35.5
m
s

⋅
tan α( )
cos α( )

⋅=

We can plot this by choosing α and computing V

0 10 20 30 40 50 60 70

20

40

60

80

Angle (deg)

V
 (m

/s
)

This graph can be easily plotted in Excel



Problem 9.106 [3]

Given: Data on dimensions of anemometer

Find: Calibration constant; compare to actual with friction

Solution:

The given data or available data is D 50 mm⋅= R 80 mm⋅= ρ 1.23
kg

m3
⋅=

The drag coefficients for a cup with open end facing the airflow and a cup with open end facing downstream are, respectively, from Table 9

CDopen 1.42= CDnotopen 0.38=

The equation for computing drag is FD
1
2

ρ⋅ A⋅ V2
⋅ CD⋅= (1)

where A
π D2
⋅
4

= A 1.96 10 3−
× m2

=

Assuming steady speed ω at steady wind speed V the sum of moments will be zero.  The two cups that are momentarily parallel to the flow
will exert no moment; the two cups with open end facing and not facing the flow will exert a moment beacuse of their drag forces.  For eac
the drag is based on Eq. 1 (with the relative velocity used!).  In addition, friction of the anemometer is neglected

ΣM 0=
1
2

ρ⋅ A⋅ V R ω⋅−( )2
⋅ CDopen⋅⎡⎢

⎣
⎤⎥
⎦

R⋅
1
2

ρ⋅ A⋅ V R ω⋅+( )2
⋅ CDnotopen⋅⎡⎢

⎣
⎤⎥
⎦

R⋅−=

or V R ω⋅−( )2 CDopen⋅ V R ω⋅+( )2 CDnotopen⋅=

This indicates that the anemometer reaches a steady speed even in the abscence of friction because it is the relative
velocity on each cup that matters: the cup that has a higher drag coefficient has a lower relative velocity

Rearranging for k
V
ω

=
V
ω

R−⎛⎜
⎝

⎞⎟
⎠

2
CDopen⋅

V
ω

R+⎛⎜
⎝

⎞⎟
⎠

2
CDnotopen⋅=



Hence k

1
CDnotopen

CDopen
+

⎛⎜
⎜⎝

⎞⎟
⎟⎠

1
CDnotopen

CDopen
−

⎛⎜
⎜⎝

⎞⎟
⎟⎠

R⋅= k 0.251m= k 0.0948

km
hr

rpm
=

For the actual anemometer (with friction), we first need to determine the torque produced when the anemometer is stationary but
about to rotate

Minimum wind for rotation is Vmin 1
km
hr

⋅=

The torque produced at this wind speed is

Tf
1
2

ρ⋅ A⋅ Vmin
2

⋅ CDopen⋅⎛⎜
⎝

⎞⎟
⎠

R⋅
1
2

ρ⋅ A⋅ Vmin
2

⋅ CDnotopen⋅⎛⎜
⎝

⎞⎟
⎠

R⋅−=

Tf 7.75 10 6−
× N m⋅=

A moment balance at wind speed V, including this friction, is

ΣM 0=
1
2

ρ⋅ A⋅ V R ω⋅−( )2
⋅ CDopen⋅⎡⎢

⎣
⎤⎥
⎦

R⋅
1
2

ρ⋅ A⋅ V R ω⋅+( )2
⋅ CDnotopen⋅⎡⎢

⎣
⎤⎥
⎦

R⋅− Tf−=

or V R ω⋅−( )2 CDopen⋅ V R ω⋅+( )2 CDnotopen⋅−
2 Tf⋅

R ρ⋅ A⋅
=

This quadratic equation is to be solved for ω when V 10
km
hr

⋅=

After considerable calculations ω 104 rpm=

This must be compared to the rotation for a frictionless model, given by

ωfrictionless
V
k

= ωfrictionless 105 rpm=

The error in neglecting friction is
ω ωfrictionless−

ω
1.12%=
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W  = 4500 lbf 3500 lbf
C D  = 0.5 0.3

A  = 24 ft2 20 ft2

ρ = 0.00234 slug/ft3 (Table A.9)

Computed results:

V  (mph) F D  (lbf) F T  (lbf) P (hp) F D (lbf) F T (lbf) P  (hp)

20 12.1 79.6 4.24 6.04 58.5 3.12
25 18.9 86.4 5.76 9.44 61.9 4.13
30 27.2 94.7 7.57 13.6 66.1 5.29
35 37.0 104 9.75 18.5 71.0 6.63
40 48.3 116 12.4 24.2 76.7 8.18
45 61.2 129 15.4 30.6 83.1 10.0
50 75.5 143 19.1 37.8 90.3 12.0
55 91.4 159 23.3 45.7 98.2 14.4
60 109 176 28.2 54.4 107 17.1
65 128 195 33.8 63.8 116 20.2
70 148 215 40.2 74.0 126 23.6
75 170 237 47.5 84.9 137 27.5
80 193 261 55.6 96.6 149 31.8
85 218 286 64.8 109 162 36.6
90 245 312 74.9 122 175 42.0
95 273 340 86.2 136 189 47.8

100 302 370 98.5 151 204 54.3

1970's Sedan Current Sedan

1970's Sedan Current Sedan



V  (mph) F D  (lbf) F R  (lbf) V (mph) F D (lbf) F R  (lbf)

47.3 67.5 67.5 59.0 52.5 52.5

The two speeds above were obtained using Solver

Power Consumed by Old and New Sedans

0

30

60

90

120

150

20 30 40 50 60 70 80 90 100
V  (mph)

P  (hp)

1970's Sedan
Current Sedan



Problem 9.112 [3]

Given: Data on a bus

Find: Power to overcome drag; Maximum speed; Recompute with new fairing; Time for fairing to pay for itself

Solution:

Basic equation: FD
1
2

ρ⋅ A⋅ V2
⋅ CD⋅= P FD V⋅=

The given data or available data is V 50 mph⋅= V 73.3
ft
s

= A 80 ft2⋅= CD 0.95= ρ 0.00234
slug

ft3
⋅=

FD
1
2

ρ⋅ A⋅ V2
⋅ CD⋅= FD 478 lbf= P FD V⋅= P 3.51 104

×
ft lbf⋅

s
= P 63.8hp=

The power available is Pmax 450 hp⋅=

The maximum speed corresponding to this maximum power is obtained from

Pmax
1
2

ρ⋅ A⋅ Vmax
2

⋅ CD⋅⎛⎜
⎝

⎞⎟
⎠

Vmax⋅= or Vmax
Pmax

1
2

ρ⋅ A⋅ CD⋅

⎛
⎜
⎜
⎝

⎞
⎟
⎟
⎠

1
3

= Vmax 141
ft
s

= Vmax 95.9mph=

We repeat these calculations with the new fairing, for which CD 0.85=

FD
1
2

ρ⋅ A⋅ V2
⋅ CD⋅= FD 428 lbf= Pnew FD V⋅= Pnew 3.14 104

×
ft lbf⋅

s
= Pnew 57.0hp=

The maximum speed is now Vmax
Pmax

1
2

ρ⋅ A⋅ CD⋅

⎛
⎜
⎜
⎝

⎞
⎟
⎟
⎠

1
3

= Vmax 146
ft
s

= Vmax 99.5mph=

The initial cost of the fairing is Cost 4500 dollars⋅= The fuel cost is Costday 200
dollars

day
⋅=

The cost per day is reduced by improvement in the bus performance at 50 mph Gain
Pnew

P
= Gain 89.5%=

The new cost per day is then Costdaynew Gain Costday⋅= Costdaynew 179
dollars

day
=

Hence the savings per day is Saving Costday Costdaynew−= Saving 21.1
dollars

day
=

The initial cost will be paid for in τ
Cost

Saving
= τ 7.02month=
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Problem 9.114 [4]

Given: Data on a sports car

Find: Speed for aerodynamic drag to exceed rolling resistance; maximum speed & acceleration at 55 mph;
Redesign change that has greatest effect

Solution:

Basic equation: FD
1
2

ρ⋅ A⋅ V2
⋅ CD⋅= P FD V⋅=

The given data or available data is M 2750 lbm⋅= A 18.5 ft2⋅= CD 0.32=

Pengine 165 hp⋅= FR 0.01 M× g⋅= ρ 0.00234
slug

ft3
⋅=

The rolling resistance is then FR 27.5 lbf=

To find the speed at which aerodynamic drag first equals rolling resistance, set the two forces equal 1
2

ρ⋅ V2
⋅ A⋅ CD⋅ FR=

Hence V
2 FR⋅

ρ A⋅ CD⋅
= V 63.0

ft
s

= V 43.0mph=

To find the drive train efficiency we use the data at a speed of 55 mph V 55 mph⋅= V 80.7
ft
s

= Pengine 12 hp⋅=

The aerodynamic drag at this speed is FD
1
2

ρ⋅ V2
⋅ A⋅ CD⋅= FD 45.1 lbf=

The power consumed by drag and rolling resistance at this speed is Pused FD FR+( ) V⋅= Pused 10.6hp=

Hence the drive train efficiency is η

Pused
Pengine

= η 88.7%=

The acceleration is obtained from Newton's second lawM a⋅ ΣF= T FR− FD−=

where T is the thrust produced by the engine, given by T
P
V

=

The maximum acceleration at 55 mph is when we have maximum thrust, when full engine power is used. Pengine 165 hp⋅=

Because of drive train inefficiencies the maximum power at the wheels isPmax η Pengine⋅= Pmax 146hp=

Hence the maximum thrust is Tmax
Pmax

V
= Tmax 998 lbf=

The maximum acceleration at 55 mph is then amax
Tmax FD− FR−

M
= amax 10.8

ft

s2
=



The maximum speed is obtained when the maximum engine power is just balanced by power consumed by drag and rolling
resistance

For maximum speed: Pmax
1
2

ρ⋅ Vmax
2

⋅ A⋅ CD⋅ FR+⎛⎜
⎝

⎞⎟
⎠

Vmax⋅=

This is a cubic equation that can be solved by iteration or by using Excel's Goal Seek or Solver Vmax 150mph=

We are to evaluate several possible improvements:

For improved drive train η η 5 %⋅+= η 93.7%= Pmax η Pengine⋅= Pmax 155hp=

Pmax
1
2

ρ⋅ Vmax
2

⋅ A⋅ CD⋅ FR+⎛⎜
⎝

⎞⎟
⎠

Vmax⋅=

Solving the cubic (using Solver) Vmax 153mph=

Improved drag coefficient: CDnew 0.29=

Pmax
1
2

ρ⋅ Vmax
2

⋅ A⋅ CDnew⋅ FR+⎛⎜
⎝

⎞⎟
⎠

Vmax⋅=

Solving the cubic (using Solver) Vmax 158mph= This is the best option!

Reduced rolling resistance: FRnew 0.93 %⋅ M⋅ g⋅= FRnew 25.6 lbf=

Pmax
1
2

ρ⋅ Vmax
2

⋅ A⋅ CD⋅ FRnew+⎛⎜
⎝

⎞⎟
⎠

Vmax⋅=

Solving the cubic (using Solver) Vmax 154mph=
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Problem 9.116 [5]

Given: Data on dimensions of anemometer

Find: Calibration constant

Solution:
The given data or available data is D 50 mm⋅= R 80 mm⋅= ρ 1.23

kg

m3
⋅=

The drag coefficients for a cup with open end facing the airflow and a cup with open end facing downstream are, respectively, from Table 9

CDopen 1.42= CDnotopen 0.38=

Assume the anemometer achieves steady speed ω due to steady wind speed V

The goal is to find the calibration constant k, defined by k
V
ω

=

We will analyse each cup separately, with the following assumptions

1) Drag is based on the instantaneous normal component of velocity (we ignore possible effects on drag coefficient of
velocity component parallel to the cup)

2) Each cup is assumed unaffected by the others - as if it were the only object present

3) Swirl is neglected

4) Effects of struts is neglected

 

Vcosθ 
V 

ωR 

θ 

Relative velocity  
= Vcosθ - ωR 



In this more sophisticated analysis we need to compute the instantaneous normal relative velocity.
From the sketch, when a cup is at angle θ, the normal component of relative velocity is 

Vn V cos θ( )⋅ ω R⋅−= (1)

The relative velocity is sometimes positive sometimes negatiive.  From Eq. 1, this is determined by 

θc acos
ω R⋅
V

⎛⎜
⎝

⎞⎟
⎠

= (2)

For 0 θ< θc< Vn 0>

θc θ< 2 π⋅ θc−< Vn 0<

θc θ< 2 π⋅< Vn 0>

0 90 180 270 360

Vn θ( )

θ

The equation for computing drag is FD
1
2

ρ⋅ A⋅ Vn
2

⋅ CD⋅= (3)

where A
π D2
⋅
4

= A 1.96 10 3−
× m2

=

In Eq. 3, the drag coefficient, and whether the drag is postive or negative, depend on the sign of the relative velocity

For 0 θ< θc< CD CDopen= FD 0>

θc θ< 2 π⋅ θc−< CD CDnotopen= FD 0<

θc θ< 2 π⋅< CD CDopen= FD 0>

The torque is T FD R⋅=
1
2

ρ⋅ A⋅ Vn
2

⋅ CD⋅ R⋅=

The average torque is Tav
1

2 π⋅
θ

2 π⋅

θT
⌠
⎮
⌡

d⋅=
1
π

θ

π

θT
⌠
⎮
⌡

d⋅=

where we have taken advantage of symmetry

Evaluating this, allowing for changes when θ = θc Tav
1
π

θ

θc
θ

1
2

ρ⋅ A⋅ Vn
2

⋅ CDopen⋅ R⋅
⌠
⎮
⎮
⌡

d⋅
1
π

θc

π

θ
1
2

ρ⋅ A⋅ Vn
2

⋅ CDnotopen⋅ R⋅
⌠
⎮
⎮
⌡

d⋅−=



Using Eq. 1 Tav
ρ A⋅ R⋅

2 π⋅
CDopen

θ

θc
θV cos θ( )⋅ ω R⋅−( )2⌠

⎮
⌡

d⋅ CDnotopen
θc

π

θV cos θ( )⋅ ω R⋅−( )2⌠
⎮
⌡

d⋅−
⎡
⎢
⎢
⎣

⎤
⎥
⎥
⎦

⋅=

Tav
ρ A⋅ R⋅ ω

2
⋅

2 π⋅
CDopen

θ

θc

θ
V
ω

cos θ( )⋅ R−⎛⎜
⎝

⎞⎟
⎠

2⌠
⎮
⎮
⌡

d⋅ CDnotopen
θc

π

θ
V
ω

cos θ( )⋅ R−⎛⎜
⎝

⎞⎟
⎠

2⌠⎮
⎮
⎮⌡

d⋅−

⎡
⎢
⎢
⎢
⎣

⎤
⎥
⎥
⎥
⎦

⋅=

and note that V
ω

k=

The integral is θk cos θ( )⋅ R−( )2⌠⎮
⎮⌡

d k2 1
2

cos θ( )⋅ sin θ( )⋅
1
2

θ⋅+⎛⎜
⎝

⎞⎟
⎠

⋅ 2 k⋅ R⋅ sin θ( )⋅− R2
θ⋅+=

For convenience define f θ( ) k2 1
2

cos θ( )⋅ sin θ( )⋅
1
2

θ⋅+⎛⎜
⎝

⎞⎟
⎠

⋅ 2 k⋅ R⋅ sin θ( )⋅− R2
θ⋅+=

Hence Tav
ρ A⋅ R⋅

2 π⋅
CDopen f θc( )⋅ CDnotopen f π( ) f θc( )−( )⋅−⎡⎣ ⎤⎦⋅=

For steady state conditions the torque (of each cup, and of all the cups) is zero.  Hence

CDopen f θc( )⋅ CDnotopen f π( ) f θc( )−( )⋅− 0=

or f θc( )
CDnotopen

CDopen CDnotopen+
f π( )⋅=

Hence k2 1
2

cos θc( )⋅ sin θc( )⋅
1
2

θc⋅+⎛⎜
⎝

⎞⎟
⎠

⋅ 2 k⋅ R⋅ sin θc( )⋅− R2
θc⋅+

CDnotopen
CDopen CDnotopen+

k2 π

2
⋅ R2

π⋅+⎛⎜
⎝

⎞⎟
⎠

⋅=

Recall from Eq 2 that θc acos
ω R⋅
V

⎛⎜
⎝

⎞⎟
⎠

= or θc acos
R
k

⎛⎜
⎝

⎞⎟
⎠

=

Hence k2 1
2

R
k
⋅ sin acos

R
k

⎛⎜
⎝

⎞⎟
⎠

⎛⎜
⎝

⎞⎟
⎠

⋅
1
2

acos
R
k

⎛⎜
⎝

⎞⎟
⎠

⋅+⎛⎜
⎝

⎞⎟
⎠

⋅ 2 k⋅ R⋅ sin acos
R
k

⎛⎜
⎝

⎞⎟
⎠

⎛⎜
⎝

⎞⎟
⎠

⋅− R2 acos
R
k

⎛⎜
⎝

⎞⎟
⎠

⋅+
CDnotopen

CDopen CDnotopen+
k2 π

2
⋅ R2

π⋅+⎛⎜
⎝

⎞⎟
⎠

⋅=

This equation is to be solved for the coefficient k.  The equation is highly nonlinear; it can be solved by iteration or
using Excel's Goal Seek or Solver

From the associated Excel workbook

k 0.316 m⋅= k 0.119

km
hr

rpm
⋅=



Problem 9.116 (In Excel) [5]

Given: Data on dimensions of anemometer

Find: Calibration constant

Solution:

Given data:
D  = 50 mm
R  = 80 mm

C Dopen = 1.42
C Dnotopen = 0.38

Use Solver  to find k  to make the error zero!
k  (mm) Left Right Error
315.85 37325.8 37326 0%

k  = 0.316 m
k  = 0.119 km/hr/rpm
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Problem 9.120 [2]

Given: Data on advertising banner

Find: Power to tow banner; Compare to flat plate; Explain discrepancy

Solution:

Basic equation: FD
1
2

ρ⋅ A⋅ V2
⋅ CD⋅= P FD V⋅=

The given data or available data is V 55 mph⋅= V 80.7
ft
s

⋅= L 45 ft⋅= h 4 ft⋅= ρ 0.00234
slug

ft3
⋅=

A L h⋅= A 180 ft2⋅= CD 0.05
L
h
⋅= CD 0.563=

FD
1
2

ρ⋅ A⋅ V2
⋅ CD⋅= FD 771 lbf⋅= P FD V⋅= P 6.22 104

×
ft lbf⋅

s
⋅= P 113 hp⋅=

For a flate plate, check Re ν 1.62 10 4−
×

ft2

s
⋅= (Table A.9, 69oF)

ReL
V L⋅

ν
= ReL 2.241 107

×= so flow is fully turbulent.  Hence use Eq 9.37b

CD
0.455

log ReL( )2.58
1610
ReL

−= CD 0.00258=

FD
1
2

ρ⋅ A⋅ V2
⋅ CD⋅= FD 3.53 lbf⋅=

This is the drag on one side.  The total drag is then 2 FD⋅ 7.06 lbf⋅= .  This is VERY much less than the banner
drag.  The banner drag allows for banner flutter and other secondary motion which induces significant form drag.



Problem 9.121 [1]

Given: Data on car antenna

Find: Bending moment

Solution:

Basic equation: FD
1
2

ρ⋅ A⋅ V2
⋅ CD⋅=

The given or available data is V 120
km
hr

⋅= V 33.3
m
s

⋅= L 1.8 m⋅= D 10 mm⋅=

A L D⋅= A 0.018m2
=

ρ 1.225
kg

m3
⋅= ν 1.50 10 5−

×
m2

s
⋅= (Table A.10, 20oC)

For a cylinder, check Re Re
V D⋅

ν
= Re 2.22 104

×=

From Fig. 9.13 CD 1.0= FD
1
2

ρ⋅ A⋅ V2
⋅ CD⋅= FD 12.3N=

The bending moment is then M FD
L
2
⋅= M 11.0 N m⋅⋅=



Problem 9.122 [1]

Given: Data on wind turbine blade

Find: Bending moment

Solution:

Basic equation: FD
1
2

ρ⋅ A⋅ V2
⋅ CD⋅=

The given or available data is V 45
m
s

⋅= L 0.45 m⋅= W 35 m⋅=

A L W⋅= A 15.75m2
=

ρ 1.225
kg

m3
⋅= ν 1.50 10 5−

×
m2

s
⋅= (Table A.10, 20oC)

For a flat plate, check Re ReL
V L⋅

ν
= ReL 1.35 106

×= so use Eq. 9.37a

CD
0.0742

ReL

1
5

1740
ReL

−= CD 0.00312=

FD
1
2

ρ⋅ A⋅ V2
⋅ CD⋅= FD 61.0N=

The bending moment is then M FD
W
2

⋅= M 1067 N m⋅⋅=



Problem 9.123 [4]

Given: Data on wind turbine blade

Find: Power required to maintain operating speed

Solution:

Basic equation: FD
1
2

ρ⋅ A⋅ V2
⋅ CD⋅=

The given or available data is ω 20 rpm⋅= L 0.45 m⋅= w 35 m⋅=

ρ 1.225
kg

m3
⋅= ν 1.50 10 5−

×
m2

s
⋅= (Table A.10, 20oC)

The velocity is a function of radial position, V r( ) r ω⋅= , so Re varies from 0 to Remax
V w( ) L⋅

ν
= Remax 2.20 106

×=

The transition Reynolds number is 500,000 which therefore occurs at about 1/4 of the maximum radial distance; the boundary layer is
laminar for the first quarter of the blade.  We approximate the entire blade as turbulent - the first 1/4 of the blade will not exert much
moment in any event

Hence Re r( )
L
ν

V r( )⋅=
L ω⋅
ν

r⋅=

Using Eq. 9.37a CD
0.0742

ReL

1
5

1740
ReL

−=
0.0742

L ω⋅
ν

r⋅⎛⎜
⎝

⎞⎟
⎠

1
5

1740
L ω⋅
ν

r⋅
−= 0.0742

ν

L ω⋅
⎛⎜
⎝

⎞⎟
⎠

1
5

⋅ r

1
5

−
⋅ 1740

ν

L ω⋅
⎛⎜
⎝

⎞⎟
⎠

⋅ r 1−
⋅−=

The drag on a differential area is dFD
1
2

ρ⋅ dA⋅ V2
⋅ CD⋅=

1
2

ρ⋅ L⋅ V2
⋅ CD⋅ dr⋅= The bending moment is then dM dFD r⋅=

Hence M M1
⌠⎮
⎮⌡

d=

0

w

r
1
2

ρ⋅ L⋅ V2
⋅ CD⋅ r⋅

⌠
⎮
⎮
⌡

d= M

0

w

r
1
2

ρ⋅ L⋅ ω
2

⋅ r3
⋅ 0.0742

ν

L ω⋅
⎛⎜
⎝

⎞⎟
⎠

1
5

⋅ r

1
5

−
⋅ 1740

ν

L ω⋅
⎛⎜
⎝

⎞⎟
⎠

⋅ r 1−
⋅−

⎡
⎢
⎢
⎣

⎤
⎥
⎥
⎦

⋅

⌠⎮
⎮
⎮
⎮
⌡

d=

M
1
2

ρ⋅ L⋅ ω
2

⋅

0

w

r0.0742
ν

L ω⋅
⎛⎜
⎝

⎞⎟
⎠

1
5

⋅ r

14
5

⋅ 1740
ν

L ω⋅
⎛⎜
⎝

⎞⎟
⎠

⋅ r2
⋅−

⎡
⎢
⎢
⎣

⎤
⎥
⎥
⎦

⌠⎮
⎮
⎮
⎮
⌡

d⋅= M
1
2

ρ⋅ L⋅ ω
2

⋅
5 0.0742⋅

19
ν

L ω⋅
⎛⎜
⎝

⎞⎟
⎠

1
5

⋅ w

19
5

⋅
1740

3
ν

L ω⋅
⎛⎜
⎝

⎞⎟
⎠

⋅ w3
⋅−

⎡
⎢
⎢
⎣

⎤
⎥
⎥
⎦

⋅=

M 1.43 kN m⋅⋅= Hence the power is P M ω⋅= P 3.00kW=
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Problem 9.128 [2]

Given: 3 mm raindrop

Find: Terminal speed

Solution:

Basic equation: FD
1
2

ρ⋅ A⋅ V2
⋅ CD⋅= ΣF 0=

Given or available data is D 3 mm⋅= ρH2O 1000
kg

m3
⋅= ρair 1.225

kg

m3
⋅= ν 1.50 10 5−

×
m2

s
⋅= (Table A.10, 20oC)

Summing vertical forces M g⋅ FD− M g⋅
1
2

ρair⋅ A⋅ V2
⋅ CD⋅−= 0= Buoyancy is negligible

M ρH2O
π D3
⋅
6

⋅= M 1.41 10 5−
× kg= A

π D2
⋅
4

= A 7.07 10 6−
× m2

=

Assume the drag coefficient is in the flat region of Fig. 9.11 and verify Re later CD 0.4=

V
2 M⋅ g⋅

CD ρair⋅ A⋅
= V 8.95

m
s

=

Check Re Re
V D⋅

ν
= Re 1.79 103

×= which does place us in the flat region of the curve

Actual raindrops are not quite spherical, so their speed will only be approximated by this result
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Problem 9.130                                                                             [3]



Problem 9.131 [3]

 

Fn1 

W 

Fn2 

Given: Circular disk in wind

Find: Mass of disk; Plot α versus V

Solution:

Basic equations: CD
FD

1
2

ρ⋅ V2
⋅ A⋅

= Σ M
→

0=

Summing moments at the pivotW L⋅ sin α( )⋅ Fn1 L⋅−
1
2

L
D
2

−⎛⎜
⎝

⎞⎟
⎠

⋅ Fn2⋅− 0= (1)  and for each normal drag Fn
1
2

ρ⋅ Vn
2

⋅ A⋅ CD⋅=

Assume 1) No pivot friction 2) CD is valid for Vn = Vcos(α)

The data is ρ 1.225
kg

m3
⋅= μ 1.8 10 5−

×
N s⋅

m2
⋅= V 15

m
s

⋅=

D 25 mm⋅= d 3 mm⋅= L 40 mm⋅= α 10 deg⋅=

CD1 1.17= (Table 9.3) Red
ρ V⋅ d⋅

μ
= Red 3063= so from Fig. 9.13 CD2 0.9=

Hence Fn1
1
2

ρ⋅ V cos α( )⋅( )2
⋅

π D2
⋅
4

⋅ CD1⋅= Fn1 0.077N=

Fn2
1
2

ρ⋅ V cos α( )⋅( )2
⋅ L

D
2

−⎛⎜
⎝

⎞⎟
⎠

⋅ d⋅ CD2⋅= Fn2 0.00992N=

The drag on the support is much less than on the disk (and moment even less), so results will not be much different from those of Problem 9

Hence Eq. 1 becomes M L⋅ g⋅ sin α( )⋅ L
1
2
⋅ ρ⋅ V cos α( )⋅( )2

⋅
π D2
⋅
4

⋅ CD1⋅
1
2

L
D
2

−⎛⎜
⎝

⎞⎟
⎠

⋅
1
2

ρ⋅ V cos α( )⋅( )2
⋅ L

D
2

−⎛⎜
⎝

⎞⎟
⎠

⋅ d⋅ CD2⋅⎡⎢
⎣

⎤⎥
⎦

⋅+=

M
ρ V2
⋅ cos α( )2

⋅
4 g⋅ sin α( )⋅

1
2

π⋅ D2
⋅ CD1⋅ 1

D
2 L⋅

−⎛⎜
⎝

⎞⎟
⎠

L
D
2

−⎛⎜
⎝

⎞⎟
⎠

⋅ d⋅ CD2⋅+⎡⎢
⎣

⎤⎥
⎦

⋅= M 0.0471kg=



Rearranging V
4 M⋅ g⋅

ρ

tan α( )
cos α( )

⋅
1

1
2

π⋅ D2
⋅ CD1⋅ 1

D
2 L⋅

−⎛⎜
⎝

⎞⎟
⎠

L
D
2

−⎛⎜
⎝

⎞⎟
⎠

⋅ d⋅ CD2⋅+⎡⎢
⎣

⎤⎥
⎦

⋅= V 35.5
m
s

⋅
tan α( )
cos α( )

⋅=

We can plot this by choosing α and computing V

0 10 20 30 40 50 60 70

20

40

60

80

Angle (deg)

V
 (m

/s
)

This graph can be easily plotted in Excel



Problem 9.132 [3]

Given: Data on a tennis ball

Find: Terminal speed time and distance to reach 95% of terminal speed

Solution:
The given data or available data is M 57 gm⋅= D 64 mm⋅= ν 1.45 10 5−

⋅
m2

s
⋅= ρ 1.23

kg

m3
⋅=

Then A
π D2
⋅
4

= A 3.22 10 3−
× m2

=

Assuming high Reynolds number CD 0.5= (from Fig. 9.11)

At terminal speed drag equals weight FD M g⋅=

The drag at speed V is given by FD
1
2

ρ⋅ A⋅ V2
⋅ CD⋅=

Hence the terminal speed is Vt
M g⋅

1
2

ρ⋅ A⋅ CD⋅
= Vt 23.8

m
s

=

Check the Reynolds number Re
Vt D⋅

ν
= Re 1.05 105

×= Check!

For motion before terminal speed Newton's second law applies

M a⋅ M
dV
dt

⋅= M g⋅
1
2

−⋅ ρ⋅ V2
⋅ A⋅ CD⋅= or

t
Vd

d
g k V2

⋅−= where k
ρ A⋅ CD⋅

2 M⋅
= k 0.0174

1
m

=

Separating variables

0

V

V
1

g k V2
⋅−

⌠
⎮
⎮
⌡

d t= V
1

g k V2
⋅−

⌠
⎮
⎮
⎮
⌡

d
1

g k⋅
atanh

k
g

V⋅
⎛
⎜
⎝

⎞
⎟
⎠

⋅=

Hence V t( )
g
k

tanh g k⋅ t⋅( )⋅=

Evaluating at V = 0.95Vt 0.95 Vt⋅
g
k

tanh g k⋅ t⋅( )⋅= t
1

g k⋅
atanh 0.95 Vt⋅

k
g

⋅
⎛
⎜
⎝

⎞
⎟
⎠

⋅= t 4.44s=

For distance x versus time, integrate dx
dt

g
k

tanh g k⋅ t⋅( )⋅= x

0

t

t
g
k

tanh g k⋅ t⋅( )⋅
⌠
⎮
⎮
⌡

d=



Note that ttanh a t⋅( )
⌠⎮
⎮⌡

d
1
a

ln cosh a t⋅( )( )⋅=

Hence x t( )
1
k

ln cosh g k⋅ t⋅( )( )⋅=

Evaluating at V = 0.95Vt t 4.44s= so x t( ) 67.1m=



Problem 9.133 [3]

Given: Data on model airfoil

Find: Lift and drag coefficients

Solution:

Basic equation: CD
FD

1
2

ρ⋅ A⋅ V2
⋅

= CL
FL

1
2

ρ⋅ A⋅ V2
⋅

= where A is plan area for airfoil, frontal area for rod

Given or available data is D 2 cm⋅= L 25 cm⋅= (Rod) b 60 cm⋅= c 15 cm⋅= (Airfoil)

V 30
m
s

⋅= FL 50 N⋅= FH 6 N⋅=

Note that the horizontal force FH is due to drag on the airfoil AND on the rod

ρ 1.225
kg

m3
⋅= ν 1.50 10 5−

×
m2

s
⋅= (Table A.10, 20oC)

For the rod Rerod
V D⋅

ν
= Rerod 4 104

×= so from Fig. 9.13 CDrod 1.0=

Arod L D⋅= Arod 5 10 3−
× m2

=

FDrod CDrod
1
2

ρ⋅ Arod⋅⋅ V2
⋅= FDrod 2.76N=

Hence for the airfoil A b c⋅= FD FH FDrod−= FD 3.24N=

CD
FD

1
2

ρ⋅ A⋅ V2
⋅

= CD 0.0654= CL
FL

1
2

ρ⋅ A⋅ V2
⋅

= CL 1.01=
CL
CD

15.4=
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Problem 9.139 [4]

Given: Data on a tennis ball

Find: Terminal speed time and distance to reach 95% of terminal speed

Solution:
The given data or available data is M 57 gm⋅= D 64 mm⋅= ν 1.45 10 5−

⋅
m2

s
⋅= ρ 1.23

kg

m3
⋅=

Then A
π D2
⋅
4

= A 3.22 10 3−
× m2

=

From Problem 9.130 CD
24
Re

= Re 1≤

CD
24

Re0.646
= 1 Re< 400≤

CD 0.5= 400 Re< 3 105
×≤

CD 0.000366 Re0.4275
⋅= 3 105

× Re< 2 106
×≤

CD 0.18= Re 2 106
×>

At terminal speed drag equals weight FD M g⋅=

The drag at speed V is given by FD
1
2

ρ⋅ A⋅ V2
⋅ CD⋅=

Assume CD 0.5=

Hence the terminal speed is Vt
M g⋅

1
2

ρ⋅ A⋅ CD⋅
= Vt 23.8

m
s

=

Check the Reynolds number Re
Vt D⋅

ν
= Re 1.05 105

×=

This is consistent with the tabulated CD values!



For motion before terminal speed, Newton's second law is M a⋅ M
dV
dt

⋅= M g⋅
1
2

−⋅ ρ⋅ V2
⋅ A⋅ CD⋅=

Hence the time to reach 95% of terminal speed is obtained by separating variables and integrating

t

0

0.95 Vt⋅

V
1

g
ρ A⋅ CD⋅

2 M⋅
V2
⋅−

⌠⎮
⎮
⎮
⎮⌡

d=

For the distance to reach terminal speed Newton's second law is written in the form

M a⋅ M V⋅
dV
dx

⋅= M g⋅
1
2

−⋅ ρ⋅ V2
⋅ A⋅ CD⋅=

Hence the distance to reach 95% of terminal speed is obtained by separating variables and integrating

x

0

0.95 Vt⋅

V
V

g
ρ A⋅ CD⋅

2 M⋅
V2
⋅−

⌠⎮
⎮
⎮
⎮⌡

d=

These integrals are quite difficult because the drag coefficient varies with Reynolds number, which varies with
speed.  They are best evaluated numerically.  A form of Simpson's Rule is

Vf V( )
⌠⎮
⎮⌡

d
ΔV

3
f V0( ) 4 f V1( )⋅+ 2 f V2( )⋅+ 4 f V3( )⋅+ f VN( )+( )⋅=

where ΔV is the step size, and V0, V1 etc., are the velocities at points 0, 1, ... N.

Here V0 0= VN 0.95 Vt⋅= ΔV
0.95 Vt⋅

N
=

From the associated Excel workbook t 4.69 s⋅= x 70.9 m⋅=

These results compare to 4.44 s and 67.1 m from Problem 9.132, which assumed the drag coefficient was constant and analytically
integrated.  Note that the drag coefficient IS essentially constant, so numerical integration was not really necessary!



Problem 9.139 (In Excel) [4]

Given: Data on a tennis ball

Find: Terminal speed time and distance to reach 95% of terminal speed

Solution:

Given data:

M  = 57 gm
ρ = 1.23 kg/m3

D  = 64 mm
C D = 0.5 (Fig. 9.11)
ν = 1.45E-05 m2/s

Computed results:
A  = 0.00322 m2

V t = 23.8 m/s
N  = 20

ΔV  = 1.19 m/s

For the time: For the distance:
V  (m/s) Re C D W f (V ) W xf (V ) f (V ) W xf (V )

0 0 5438 1 0.102 0.102 0.00 0.000
1.13 4985 0.500 4 0.102 0.409 0.115 0.462
2.26 9969 0.500 2 0.103 0.206 0.232 0.465
3.39 14954 0.500 4 0.104 0.416 0.353 1.41
4.52 19938 0.500 2 0.106 0.212 0.478 0.955
5.65 24923 0.500 4 0.108 0.432 0.610 2.44
6.78 29908 0.500 2 0.111 0.222 0.752 1.50
7.91 34892 0.500 4 0.115 0.458 0.906 3.62
9.03 39877 0.500 2 0.119 0.238 1.08 2.15
10.2 44861 0.500 4 0.125 0.499 1.27 5.07
11.3 49846 0.500 2 0.132 0.263 1.49 2.97
12.4 54831 0.500 4 0.140 0.561 1.74 6.97
13.6 59815 0.500 2 0.151 0.302 2.05 4.09
14.7 64800 0.500 4 0.165 0.659 2.42 9.68
15.8 69784 0.500 2 0.183 0.366 2.89 5.78
16.9 74769 0.500 4 0.207 0.828 3.51 14.03
18.1 79754 0.500 2 0.241 0.483 4.36 8.72
19.2 84738 0.500 4 0.293 1.17 5.62 22.5
20.3 89723 0.500 2 0.379 0.758 7.70 15.4
21.5 94707 0.500 4 0.550 2.20 11.8 47.2
22.6 99692 0.500 1 1.05 1.05 23.6 23.6

Total time: 4.69 s Total distance: 70.9 m
(This compares to 4.44s for the exact result) (This compares to 67.1 m for the exact result)

Note that C D is basically constant, so analytical result of Problem 9.132 is accurate!



Problem 9.140 [4]

Given: Data on an air bubble

Find: Time to reach surface; plot depth as function of time; repeat for different sizes

Solution:
The given data or available data is d0 0.3 in⋅= h 100 ft⋅= ρw 1000

kg

m3
⋅= SG 1.025= (Table A.2)

ρ SG ρw⋅= ν 1.05 8.03× 10 7−
×

m2

s
⋅= (Tables A.2 & A.8) patm 101 kPa⋅=

The density of air is negligible compared to that of water, so Newton's second law is applicable with negligible MdV/dt

M
dV
dt

⋅ 0= ΣF= FB FD−= or FB FD= (1)

where FB is the buoyancy force and FD is the drag (upwards is positive x)

FB ρ Vol⋅ g⋅= FD
1
2

ρ⋅ A⋅ V2
⋅ CD⋅= (2)

For a sphere, assuming high Reynolds number, from Fig. 9.11 CD 0.5=

The volume of the sphere increases as the bubble rises and experiences decreased pressure.  Assuming the air is an isothermal
idea gas

p0 Vol0⋅ p Vol⋅=

where p0 and Vol0 are the initial pressure and volume (at depth h), and p and Vol are the pressure and
volume at any depth

p0 patm ρ g⋅ h⋅+= p patm ρ g⋅ h x−( )⋅+=

Hence patm ρ g⋅ h⋅+( ) π

6
⋅ d0

3
⋅ patm ρ g⋅ h x−( )⋅+⎡⎣ ⎤⎦

π

6
⋅ d3

⋅=

d d0

3 patm ρ g⋅ h⋅+( )
patm ρ g⋅ h x−( )⋅+⎡⎣ ⎤⎦

⋅= (3)

For example, at the free surface (x = h) d 12.1mm=

Combining Eqs. 1, 2 and 3 ρ
π

6
⋅ d3

⋅
1
2

ρ⋅
π

4
⋅ d2

⋅ V2
⋅ CD⋅=

V
4 g⋅ d⋅
3 CD⋅

= V
4 g⋅ d0⋅

3 CD⋅

patm ρ g⋅ h⋅+( )
patm ρ g⋅ h x−( )⋅+⎡⎣ ⎤⎦

⎡
⎢
⎣

⎤
⎥
⎦

1
6

⋅=

Strictly speaking, to obtain x as a function of t we would have to integrate this expression (V = dx/dt).



However, evaluating V at depth h (x = 0) and at the free surface (x = h)

x 0= V0 0.446
m
s

=

x h= V 0.563
m
s

=

we see that the velocity varies slightly.  Hence, instead of integrating we use the approximation dx = Vdt where dx is an increment of
displacement and dt is an increment of time. (This amounts to numerically integrating)

Note that the Reynolds number at the initial depth (the smallest Re) is Re0
V0 d0⋅

ν
= Re0 4034=

so our use of CD = 0.5 from Fig. 9.11 is reasonable

The plots of depth versus time are shown in the associated Excel workbook

The results are d0 0.3 in⋅= t 63.4 s⋅=

d0 5 mm⋅= t 77.8 s⋅=

d0 15 mm⋅= t 45.1 s⋅=



Problem 9.140 (In Excel) [4]

Given: Data on an air bubble

Find: Time to reach surface; plot depth as function of time; repeat for different sizes

Solution:

The equation is where

Given data:
h  = 100 ft
h  = 30.5 m
ρw = 1000 kg/m3

SG = 1.025 Table A.2)
C D = 0.5 (Fig. 9.11)

ρ = 1025 kg/m3

p atm = 101 kPa

Computed results:
d 0 = 0.3 in
d 0 = 7.62 mm d 0 = 5 mm d 0 = 15 mm

t  (s) x  (m) V  (m/s) t  (s) x (m) V (m/s) t (s) x (m) V (m/s)
0 0 0.446 0 0 0.362 0.0 0 0.626
5 2.23 0.451 5 1.81 0.364 5.0 3.13 0.635
10 4.49 0.455 10 3.63 0.367 10.0 6.31 0.644
15 6.76 0.460 15 5.47 0.371 15.0 9.53 0.655
20 9.1 0.466 20 7.32 0.374 20.0 12.8 0.667
25 11.4 0.472 25 9.19 0.377 25.0 16.1 0.682
30 13.8 0.478 30 11.1 0.381 30.0 19.5 0.699
35 16.1 0.486 35 13.0 0.386 35.0 23.0 0.721
40 18.6 0.494 40 14.9 0.390 40.0 26.6 0.749
45 21.0 0.504 45 16.9 0.396 45.1 30.5 0.790
50 23.6 0.516 50 18.8 0.401

63.4 30.5 0.563 55 20.8 0.408
60 22.9 0.415
65 25.0 0.424
70 27.1 0.435
75 29.3 0.448

77.8 30.5 0.456

Use Goal Seek  for the last time step to make x = h !
Depth of Air Bubbles versus Time
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Problem 9.141 [4]

Given: Data on a tennis ball

Find: Maximum height

Solution:

The given data or available data is M 57 gm⋅= D 64 mm⋅= Vi 50
m
s

⋅= ν 1.45 10 5−
⋅

m2

s
⋅= ρ 1.23

kg

m3
⋅=

Then A
π D2
⋅
4

= A 3.22 10 3−
× m2

=

From Problem 9.130 CD
24
Re

= Re 1≤

CD
24

Re0.646
= 1 Re< 400≤

CD 0.5= 400 Re< 3 105
×≤

CD 0.000366 Re0.4275
⋅= 3 105

× Re< 2 106
×≤

CD 0.18= Re 2 106
×>

The drag at speed V is given by FD
1
2

ρ⋅ A⋅ V2
⋅ CD⋅=

For motion before terminal speed, Newton's second law (x upwards) is M a⋅ M
dV
dt

⋅=
1
2

− ρ⋅ V2
⋅ A⋅ CD⋅ M g⋅−=

For the maximum height Newton's second law is written in the form M a⋅ M V⋅
dV
dx

⋅=
1
2

− ρ⋅ V2
⋅ A⋅ CD⋅ M g⋅−=

Hence the maximum height is xmax

Vi

0

V
V

ρ A⋅ CD⋅

2 M⋅
− V2

⋅ g−

⌠
⎮
⎮
⎮
⎮
⌡

d=

0

Vi
V

V
ρ A⋅ CD⋅

2 M⋅
V2
⋅ g+

⌠⎮
⎮
⎮
⎮⌡

d=

This integral is quite difficult because the drag coefficient varies with Reynolds number, which varies with
speed.  It is best evaluated numerically.  A form of Simpson's Rule is

Vf V( )
⌠⎮
⎮⌡

d
ΔV

3
f V0( ) 4 f V1( )⋅+ 2 f V2( )⋅+ 4 f V3( )⋅+ f VN( )+( )⋅=

where ΔV is the step size, and V0, V1 etc., are the velocities at points 0, 1, ... N.



Here V0 0= VN Vi= ΔV
Vi
N

−=

From the associated Excel workbook xmax 48.7 m⋅=

If we assume CD 0.5=

the integral xmax

0

Vi
V

V
ρ A⋅ CD⋅

2 M⋅
V2
⋅ g+

⌠⎮
⎮
⎮
⎮⌡

d=

xmax
M

ρ A⋅ CD⋅
ln

ρ A⋅ CD⋅

2 M⋅ g⋅
Vi

2
⋅ 1+

⎛
⎜
⎝

⎞
⎟
⎠

⋅= xmax 48.7m=becomes

The two results agree very closely!  This is because the integrand does not vary much after the first few steps so the numerical
integral is accurate, and the analytic solution assumes CD = 0.5, which it essentially does!



Problem 9.141 (In Excel) [4]

Given: Data on a tennis ball

Find: Maximum height

Solution:

The equation is

Given data:

M  = 57 gm
V 0 = 50.0 m/s

ρ = 1.23 kg/m3

D  = 64 mm
C D = 0.5 (Fig. 9.11)
ν = 1.45E-05 m2/s

Computed results:
A  = 0.00322 m2

N  = 20
ΔV  = 2.50 m/s

V  (m/s) Re C D W f (V ) W xf (V )
0.0 0 0.000 1 0.000 0.000
2.5 11034 0.500 4 0.252 1.01
5.0 22069 0.500 2 0.488 0.976
7.5 33103 0.500 4 0.695 2.78
10.0 44138 0.500 2 0.866 1.73
12.5 55172 0.500 4 1.00 3.99
15.0 66207 0.500 2 1.09 2.19
17.5 77241 0.500 4 1.16 4.63
20.0 88276 0.500 2 1.19 2.39
22.5 99310 0.500 4 1.21 4.84
25.0 110345 0.500 2 1.21 2.42
27.5 121379 0.500 4 1.20 4.80
30.0 132414 0.500 2 1.18 2.36
32.5 143448 0.500 4 1.15 4.62
35.0 154483 0.500 2 1.13 2.25
37.5 165517 0.500 4 1.10 4.38
40.0 176552 0.500 2 1.06 2.13
42.5 187586 0.500 4 1.03 4.13
45.0 198621 0.500 2 1.00 2.00
47.5 209655 0.500 4 0.970 3.88
50.0 220690 0.500 1 0.940 0.940

Maximum height: 48.7 m
(This is the same as the exact result)

Note that C D is basically constant, so analytical result of Problem 9.132 is accurate!



Problem 9.142 [3]

Given: Data on rooftop carrier

Find: Drag on carrier; Additional fuel used; Effect on economy; Effect of "cheaper" carrier

Solution:

Basic equation: CD
FD

1
2

ρ⋅ A⋅ V2
⋅

=

Given or available data is w 1 m⋅= h 50 cm⋅= r 10 cm⋅= ηd 85 %⋅=

V 100
km
hr

⋅= V 27.8
m
s

= FE 12.75
km
L

⋅= FE 30.0
mi
gal

=

ρH2O 1000
kg

m3
⋅= A w h⋅= A 0.5m2

= BSFC 0.3
kg

kW hr⋅
⋅=

ρ 1.225
kg

m3
⋅= ν 1.50 10 5−

×
m2

s
⋅= (Table A.10, 20oF)

From the diagram r
h

0.2= so CD 0.25= FD CD
1
2
⋅ ρ⋅ A⋅ V2

⋅= FD 59.1N=

Additional power is ΔP
FD V⋅

ηd
= ΔP 1.93kW=

Additional fuel is ΔFC BSFC ΔP⋅= ΔFC 1.61 10 4−
×

kg
s

= ΔFC 0.00965
kg

min
=

Fuel consumption of the car only is (with SGgas 0.72=   from Table A.2)

FC
V
FE

SGgas⋅ ρH2O⋅= FC 1.57 10 3−
×

kg
s

= FC 0.0941
kg
min

=

The total fuel consumption is then FCT FC ΔFC+= FCT 1.73 10 3−
×

kg
s

= FCT 0.104
kg
min

=

Fuel economy with the carrier is FE
V

FCT
SGgas⋅ ρH2O⋅= FE 11.6

km
L

= FE 27.2
mi
gal

=

For the square-edged: r
h

0= so CD 0.9= FD CD
1
2
⋅ ρ⋅ A⋅ V2

⋅= FD 213N=

Additional power is ΔP
FD V⋅

ηd
= ΔP 6.95kW=



Additional fuel is ΔFC BSFC ΔP⋅= ΔFC 5.79 10 4−
×

kg
s

= ΔFC 0.0348
kg

min
=

The total fuel consumption is then FCT FC ΔFC+= FCT 2.148 10 3−
×

kg
s

= FCT 0.129
kg

min
=

Fuel economy withy the carrier is now FE
V

FCT
SGgas⋅ ρH2O⋅= FE 9.3

km
L

= FE 21.9
mi
gal

=

The cost of the trip of distance d 750 km⋅=  for fuel costing p
$ 3.50⋅

gal
=  with a rental discount $ 5⋅=  less than the rounded carrier is then

Cost
d

FE
p⋅ discount−= Cost 69.47$= plus the rental fee

The cost of the trip of with the rounded carrier (FE 11.6
km
L

⋅= ) is then

Cost
d

FE
p⋅= Cost 59.78$= plus the rental fee

Hence the "cheaper" carrier is more expensive (AND the environment is significantly more damaged!)
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Problem 9.146 [4]

Given: Data on a rocket

Find: Plot of rocket speed with and without drag

Solution:
From Example 4.12, with the addition of drag the momentum equation becomes 
 

∫∫∫ ⋅+
∂
∂

=−+
CVCVCV

AdVvVdv
t

VdaFF xyzxyzxyzrfSB yyy

rr
ρρρ  

 
where the surface force is 

D
2

2
1 CAVF

yS ρ−=  

 
Following the analysis of the example problem, we end up with 
 

g
tmM

CAVmV
dt

dV

e

ee −
−

−
=

&

&

0

D
2

CV2
1

CV ρ
 

 
This can be written (dropping the subscript for convenience) 
 

( )tVf
dt
dV ,=                                                          (1)

 
where 

( ) g
tmM

CAVmV
tVf

e

ee −
−

−
=

&

&

0

D
2

2
1

,
ρ

                                             (2)

 
Equation 1 is a differential equation for speed V. 
 
It can be solved using Euler’s numerical method 
 

nn1n ftVV Δ+≈+  
 
where Vn+1 and Vn  are the n + 1th and nth values of V, fn is the function given by Eq. 2 evaluated at the nth

step, and Δt is the time step. 
 
The initial condition is   0at      00 == tV  



Given or available data:

M 0 = 400 kg
m e  = 5 kg/s
V e  = 3500 m/s
ρ = 1.23 kg/m3

D  = 700 mm
C D = 0.3

Computed results:
A  = 0.385 m2

N  = 20
Δt  = 0.50 s

With drag: Without drag:
n t n (s) V n (m/s) f n V n+1 (m/s) V n (m/s) f n V n+1 (m/s)
0 0.0 0.0 33.9 17.0 0.0 33.9 17.0
1 0.5 17.0 34.2 34.1 17.0 34.2 34.1
2 1.0 34.1 34.3 51.2 34.1 34.5 51.3
3 1.5 51.2 34.3 68.3 51.3 34.8 68.7
4 2.0 68.3 34.2 85.5 68.7 35.1 86.2
5 2.5 85.5 34.0 102 86.2 35.4 104
6 3.0 102 33.7 119 104 35.6 122
7 3.5 119 33.3 136 122 35.9 140
8 4.0 136 32.8 152 140 36.2 158
9 4.5 152 32.2 168 158 36.5 176

10 5.0 168 31.5 184 176 36.9 195
11 5.5 184 30.7 200 195 37.2 213
12 6.0 200 29.8 214 213 37.5 232
13 6.5 214 28.9 229 232 37.8 251
14 7.0 229 27.9 243 251 38.1 270
15 7.5 243 26.9 256 270 38.5 289
16 8.0 256 25.8 269 289 38.8 308
17 8.5 269 24.7 282 308 39.1 328
18 9.0 282 23.6 293 328 39.5 348
19 9.5 293 22.5 305 348 39.8 368
20 10.0 305 21.4 315 368 40.2 388

Trajectory of a Rocket

0

100

200

300

400

0 2 4 6 8 10 12
t  (s)

V  (m/s)

Without Drag
With Drag
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Problem 9.151 [2]

Given: Antique airplane guy wires

Find: Maximum power saving using optimum streamlining

Solution:

Basic equation: CD
FD

1
2

ρ⋅ A⋅ V2
⋅

= P FD V⋅=

Given or available data is L 50 m⋅= D 5 mm⋅= V 175
km
hr

⋅= V 48.6
m
s

=

A L D⋅= A 0.25m2
=

ρ 1.21
kg

m3
⋅= ν 1.50 10 5−

×
m2

s
⋅= (Table A.10, 20oC)

The Reynolds number is Re
V D⋅

ν
= Re 1.62 104

×= so from Fig. 9.13 CD 1.0=

Hence P CD
1
2
⋅ ρ⋅ A⋅ V2

⋅⎛⎜
⎝

⎞⎟
⎠

V⋅= P 17.4 kW⋅= with standard wires

Figure 9.19 suggests we could reduce the drag coefficient to CD 0.06=

Hence Pfaired CD
1
2
⋅ ρ⋅ A⋅ V2

⋅⎛⎜
⎝

⎞⎟
⎠

V⋅= Pfaired 1.04 kW⋅=

The maximum power saving is then ΔP P Pfaired−= ΔP 16.3 kW⋅=

Thus ΔP
P

94 %⋅= which is a HUGE savings! It's amazing the antique planes flew!
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Problem 9.156 [1]

Given: Aircraft in level flight

Find: Effective lift area; Engine thrust and power

Solution:

Basic equation: CD
FD

1
2

ρ⋅ A⋅ V2
⋅

= CL
FL

1
2

ρ⋅ A⋅ V2
⋅

= P T V⋅=

For level, constant speed FD T= FL W=

Given or available data is V 225
km
hr

⋅= V 62.5
m
s

= CL 0.45= CD 0.065= M 900 kg⋅=

ρ 1.21
kg

m3
⋅= (Table A.10, 20oC)

Hence FL CL
1
2
⋅ ρ⋅ A⋅ V2

⋅= M g⋅= A
2 M⋅ g⋅

CL ρ⋅ V2
⋅

= A 8.30m2
=

Also
FL
FD

CL
CD

= FL M g⋅= FL 8826N= FD FL
CD
CL
⋅= FD 1275N=

T FD= T 1275N=

The power required is then P T V⋅= P 79.7kW=
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Problem 9.158 [2]

Given: Data on an airfoil

Find: Maximum payload; power required

Solution:

The given data or available data is ρ 1.23
kg

m3
⋅= L 1.5 m⋅= w 2 m⋅= V 12

m
s

⋅= CL 0.72= CD 0.17=

Then A w L⋅= A 3m2
=

The governing equations for steady flight are W FL= and T FD=

where W is the model total weight and T is the thrust

The lift is given by FL
1
2

ρ⋅ A⋅ V2
⋅ CL⋅= FL 191N= FL 43 lbf⋅=

The payload is then given by W M g⋅= FL=

or M
FL
g

= M 19.5kg= M 43 lb⋅=

The drag is given by FD
1
2

ρ⋅ A⋅ V2
⋅ CD⋅= FD 45.2N= FD 10.2 lbf⋅=

Engine thrust required T FD= T 45.2N=

The power required is P T V⋅= P 542W= P 0.727 hp⋅=

The model ultralight is just feasible: it is possible to find an engine that can produce about 1 hp that weighs less than about 45 lb
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Problem 9.160 [3]

Given: Data on a light airplane

Find: Angle of attack of wing; power required; maximum "g" force

Solution:

The given data or available data is ρ 1.23
kg

m3
⋅= M 1000 kg⋅= A 10 m2

⋅=

V 63
m
s

⋅= CL 0.72= CD 0.17=

The governing equations for steady flight are W M g⋅= FL= T FD=

where W is the weight T is the engine thrust

The lift coeffcient is given by FL
1
2

ρ⋅ A⋅ V2
⋅ Cd⋅=

Hence the required lift coefficient is CL
M g⋅

1
2

ρ⋅ A⋅ V2
⋅

= CL 0.402=

From Fig 9.17, for at this lift coefficient α 3 deg⋅=

and the drag coefficient at this angle of attack is CD 0.0065=

(Note that this does NOT allow for aspect ratio effects on lift and drag!)

Hence the drag is FD
1
2

ρ⋅ A⋅ V2
⋅ CD⋅= FD 159N=

and T FD= T 159N=

The power required is then P T V⋅= P 10kW=

The maximum "g"'s occur when the angle of attack is suddenly increased to produce the maximum lift

From Fig. 9.17 CL.max 1.72=

FLmax
1
2

ρ⋅ A⋅ V2
⋅ CL.max⋅= FLmax 42kN=

The maximum "g"s are given by application of Newton's second law

M aperp⋅ FLmax=

where aperp is the acceleration perpendicular to the flight direction



Hence aperp
FLmax

M
= aperp 42

m

s2
=

In terms of "g"s
aperp

g
4.28=

Note that this result occurs when the airplane is banking at 90o, i.e, when the airplane is flying momentarily in a circular
flight path in the horizontal plane.  For a straight horizontal flight path Newton's second law is

M aperp⋅ FLmax M g⋅−=

Hence aperp
FLmax

M
g−= aperp 32.2

m

s2
=

In terms of "g"s
aperp

g
3.28=



Problem 9.161 [3]

Given: Data on an airfoil

Find: Maximum payload; power required

Solution:
The given data or available data is V 12

m
s

⋅= ρ 1.23
kg

m3
⋅= c 1.5 m⋅= b 2 m⋅=

Then the area is A b c⋅= A 3m2
=

and the aspect ratio is ar
b
c

= ar 1.33=

The governing equations for steady flight are

W FL= and T FD=

where W is the model total weight and T is the thrust

At a 12o angle of attack, from Fig. 9.17 CL 1.4= CDi 0.012=

where CDi is the section drag coefficient 

The wing drag coefficient is given by Eq. 9.42 CD CDi
CL

2

π ar⋅
+= CD 0.48=

The lift is given by FL
1
2

ρ⋅ A⋅ V2
⋅ CL⋅= FL 372N= FL 83.6 lbf=

The payload is then given by W M g⋅= FL=

or M
FL
g

= M 37.9kg= M 83.6 lb=

The drag is given by FD
1
2

ρ⋅ A⋅ V2
⋅ CD⋅= FD 127.5N= FD 28.7 lbf=

Engine thrust required T FD= T 127.5N=

The power required is P T V⋅= P 1.53kW= P 2.05hp=

NOTE: Strictly speaking we have TWO extremely stubby wings, so a recalculation of drag effects (lift is unaffected) gives

b 1 m⋅= c 1.5m=



and A b c⋅= A 1.5m2
= ar

b
c

= ar 0.667=

so the wing drag coefficient is CD CDi
CL

2

π ar⋅
+= CD 0.948=

The drag is FD 2
1
2

ρ⋅ A⋅ V2
⋅⋅ CD⋅= FD 252N= FD 56.6 lbf=

Engine thrust is T FD= T 252N=

The power required is P T V⋅= P 3.02kW= P 4.05hp=
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Problem 9.164 [3]

Given: Data on an airfoil

Find: Maximum payload; power required

Solution:

The given data or available data is Vold 225
m
s

⋅= ρ 1.23
kg

m3
⋅= A 180 m2

⋅= arold
10
1.8

= arold 5.56=

Assuming the old airfoil operates at close to design lift, from Fig. 9.19 CL 0.3= CDi 0.0062= (CDi is the old airfoil's
section drag coefficient)

Then CDold CDi
CL

2

π arold⋅
+= CDold 0.0114=

The new wing aspect ratio is arnew 8=

Hence CDnew CDi
CL

2

π arnew⋅
+= CDnew 0.00978=

The power required is P T V⋅= FD V⋅=
1
2

ρ⋅ A⋅ V2
⋅ CD⋅ V⋅=

If the old and new designs have the same available power, then

1
2

ρ⋅ A⋅ Vnew
2

⋅ CDnew⋅ Vnew⋅
1
2

ρ⋅ A⋅ Vold
2

⋅ CDold⋅ Vold⋅=

or Vnew Vold

3 CDold
CDnew

⋅= Vnew 236
m
s

=



Problem 9.165 [3]

Given: Aircraft in circular flight

Find: Drag and power

Solution:

Basic equations: CD
FD

1
2

ρ⋅ A⋅ V2
⋅

= CL
FL

1
2

ρ⋅ A⋅ V2
⋅

= P FD V⋅= Σ F
→
⋅ M a

→
⋅=

The given data or available data are

ρ 0.002377
slug

ft3
⋅= R 3250 ft⋅= M 10000 lbm⋅= M 311 slug⋅=

V 150 mph⋅= V 220
ft
s

⋅= A 225 ft2⋅= ar 7=

Assuming the aircraft is flying banked at angle β, the vertical force balance is

FL cos β( )⋅ M g⋅− 0= or 1
2

ρ⋅ A⋅ V2
⋅ CL⋅ cos β( )⋅ M g⋅= (1)

The horizontal force balance is

FL− sin β( )⋅ M ar⋅=
M V2
⋅
R

−= or 1
2

ρ⋅ A⋅ V2
⋅ CL⋅ sin β( )⋅

M V2
⋅
R

= (2)

Equations 1 and 2 enable the bank angle β to be found tan β( )
V2

R g⋅
= β atan

V2

R g⋅

⎛
⎜
⎝

⎞
⎟
⎠

= β 24.8 deg⋅=

Then from Eq 1 FL
M g⋅

cos β( )
= FL 1.10 104

× lbf⋅=

Hence CL
FL

1
2

ρ⋅ A⋅ V2
⋅

= CL 0.851=

For the section, CDinf 0.0075=  at CL 0.851= (from Fig. 9.19),
so

CD CDinf
CL

2

π ar⋅
+= CD 0.040=

Hence FD FL
CD
CL
⋅= FD 524 lbf⋅=

The power is P FD V⋅= P 1.15 105
×

ft lbf⋅
s

⋅= P 209 hp⋅=



Problem 9.166 [4]

Given: Aircraft in circular flight

Find: Maximum and minimum speeds; Drag and power at these extremes

Solution:

Basic equations: CD
FD

1
2

ρ⋅ A⋅ V2
⋅

= CL
FL

1
2

ρ⋅ A⋅ V2
⋅

= P FD V⋅= Σ F
→
⋅ M a

→
⋅=

The given data or available data are

ρ 0.002377
slug

ft3
⋅= R 3250 ft⋅= M 10000 lbm⋅= M 311 slug⋅=

A 225 ft2⋅= ar 7=

The minimum velocity will be when the wing is at its maximum lift condition.  From Fig . 9. 17 or Fig. 9.19

CL 1.72= CDinf 0.02=

where CDinf is the section drag coefficient

The wing drag coefficient is then CD CDinf
CL

2

π ar⋅
+= CD 0.155=

Assuming the aircraft is flying banked at angle β, the vertical force balance is

FL cos β( )⋅ M g⋅− 0= or 1
2

ρ⋅ A⋅ V2
⋅ CL⋅ cos β( )⋅ M g⋅= (1)

The horizontal force balance is

FL− sin β( )⋅ M ar⋅=
M V2
⋅
R

−= or 1
2

ρ⋅ A⋅ V2
⋅ CL⋅ sin β( )⋅

M V2
⋅
R

= (2)

Equations 1 and 2 enable the bank angle β and the velocity V to be determined

sin β( )2 cos β( )2
+

M V2⋅
R

1
2

ρ⋅ A⋅ V2
⋅ CL⋅

⎛⎜
⎜
⎜
⎜⎝

⎞⎟
⎟
⎟
⎟⎠

2

M g⋅
1
2

ρ⋅ A⋅ V2
⋅ CL⋅

⎛
⎜
⎜
⎝

⎞
⎟
⎟
⎠

2
+= 1=

or M2 V4
⋅

R2
M2 g2

⋅+
ρ

2 A2
⋅ V4

⋅ CL
2

⋅

4
=

V

4
M2 g2

⋅

ρ
2 A2
⋅ CL

2
⋅

4
M2

R2
−

= V 149
ft
s

= V 102mph=

tan β( )
V2

R g⋅
= β atan

V2

R g⋅

⎛
⎜
⎝

⎞
⎟
⎠

= β 12.0deg=



The drag is then FD
1
2

ρ⋅ A⋅ V2
⋅ CD⋅= FD 918 lbf=

The power required to overcome drag is P FD V⋅= P 1.37 105
×

ft lbf⋅
s

= P 249hp=

The analysis is repeated for the maximum speed case, when the lift/drag coefficient is at its minimum
value.  From Fig. 9.19, reasonable values are

CL 0.3= CDinf
CL
47.6

= corresponding to α = 2o (Fig. 9.17)

The wing drag coefficient is then CD CDinf
CL

2

π ar⋅
+= CD 0.0104=

From Eqs. 1 and 2 V

4
M2 g2

⋅

ρ
2 A2
⋅ CL

2
⋅

4
M2

R2
−

= V 309.9 309.9i+( )
ft
s

= Obviously unrealistic (lift is just too low,
and angle of attack is too low to
generate sufficient lift)

We try instead a larger, more reasonable, angle of attack

CL 0.55= CDinf 0.0065= corresponding to α = 4o (Fig. 9.17)

The wing drag coefficient is then CD CDinf
CL

2

π ar⋅
+= CD 0.0203=

From Eqs. 1 and 2 V

4
M2 g2

⋅

ρ
2 A2
⋅ CL

2
⋅

4
M2

R2
−

= V 91.2
m
s

= V 204mph=

tan β( )
V2

R g⋅
= β atan

V2

R g⋅

⎛
⎜
⎝

⎞
⎟
⎠

= β 40.6deg=

The drag is then FD
1
2

ρ⋅ A⋅ V2
⋅ CD⋅= FD 485 lbf=

The power required to overcome drag is P FD V⋅= P 1.45 105
×

ft lbf⋅
s

= P 264hp=
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Problem 9.169 [4]

Given: Car spoiler

Find: Whether they are effective

Solution:
To perform the investigation, consider some typical data

For the spoiler, assume b 4 ft⋅= c 6 in⋅= ρ 1.23
kg

m3
⋅= A b c⋅= A 2 ft2=

From Fig. 9.17 a reasonable lift coefficient for a conventional airfoil section is CL 1.4=

Assume the car speed is V 55 mph⋅=

Hence the "negative lift" is FL
1
2

ρ⋅ A⋅ V2
⋅ CL⋅= FL 21.7 lbf=

This is a relatively minor negative lift force (about four bags of sugar); it is not likely to produce a noticeable
difference in car traction

The picture gets worse at 30 mph: FL 6.5 lbf=

For a race car, such as that shown on the cover of the text, typical data might be

b 5 ft⋅= c 18 in⋅= A b c⋅= A 7.5 ft2= V 200 mph⋅=

In this case: FL 1078 lbf=

Hence, for a race car, a spoiler can generate very significant negative lift!
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Problem 9.179 [4]

 

θ 

x 

L 
R 

Given: Baseball pitch

Find: Spin on the ball

Solution:

Basic equations: CL
FL

1
2

ρ⋅ A⋅ V2
⋅

= Σ F
→
⋅ M a

→
⋅=

The given or available data is ρ 0.00234
slug

ft3
⋅= ν 1.62 10 4−

×
ft2

s
⋅= L 60 ft⋅=

M 5 oz⋅= C 9 in⋅= D
C
π

= D 2.86 in= A
π D2
⋅
4

= A 6.45 in2
= V 80 mph⋅=

Compute the Reynolds number Re
V D⋅

ν
= Re 1.73 105

×=

This Reynolds number is slightly beyond the range of Fig. 9.27; we use Fig. 9.27 as a rough estimate

The ball follows a trajectory defined by Newton's second law.  In the horizontal plane (x coordinate)

FL M aR⋅= M ax⋅= M
V2

R
⋅= and FL

1
2

ρ⋅ A⋅ V2
⋅ CL⋅=

where R is the instantaneous radius of curvature of the trajectory

From Eq 1 we see the ball trajectory has the smallest radius (i.e. it curves the most) when CL is as large as possible.
From Fig. 9.27 we see this is when CL 0.4=

Solving for R R
2 M⋅

CL A⋅ ρ⋅
= (1) R 463.6 ft=

Also, from Fig. 9.27 ω D⋅
2 V⋅

1.5= to ω D⋅
2 V⋅

1.8= defines the best range

Hence ω 1.5
2 V⋅
D

⋅= ω 14080 rpm= ω 1.8
2 V⋅
D

⋅= ω 16896 rpm=

From the trajectory geometry x R cos θ( )⋅+ R= where sin θ( )
L
R

=

Hence x R 1
L
R
⎛⎜
⎝

⎞⎟
⎠

2
−⋅+ R=

Solving for x x R R 1
L
R
⎛⎜
⎝

⎞⎟
⎠

2
−⋅−= x 3.90 ft=



Problem 9.180 [4]

 

θ 

x 

L 
R 

Given: Soccer free kick

Find: Spin on the ball

Solution:

Basic equations: CL
FL

1
2

ρ⋅ A⋅ V2
⋅

= Σ F
→
⋅ M a

→
⋅=

The given or available data is ρ 1.21
kg

m3
⋅= ν 1.50 10 5−

⋅
m2

s
⋅= L 10 m⋅= x 1 m⋅=

M 420 gm⋅= C 70 cm⋅= D
C
π

= D 22.3cm= A
π D2
⋅
4

= A 0.0390m2
= V 30

m
s

⋅=

Compute the Reynolds number Re
V D⋅

ν
= Re 4.46 105

×=

This Reynolds number is beyond the range of Fig. 9.27; however, we use Fig. 9.27 as a rough estimate

The ball follows a trajectory defined by Newton's second law.  In the horizontal plane (x coordinate)

FL M aR⋅= M ax⋅= M
V2

R
⋅= and FL

1
2

ρ⋅ A⋅ V2
⋅ CL⋅=

where R is the instantaneous radius of curvature of the trajectory

Hence, solving for R R
2 M⋅

CL A⋅ ρ⋅
= (1)

From the trajectory geometry x R cos θ( )⋅+ R= where sin θ( )
L
R

=

Hence x R 1
L
R
⎛⎜
⎝

⎞⎟
⎠

2
−⋅+ R=

Solving for R R
L2 x2

+( )
2 x⋅

= R 50.5m=

Hence, from Eq 1 CL
2 M⋅

R A⋅ ρ⋅
= CL 0.353=

For this lift coefficient, from Fig. 9.27 ω D⋅
2 V⋅

1.2=

Hence ω 1.2
2 V⋅
D

⋅= ω 3086 rpm=

(And of course, Beckham still kind of rules!)
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Problem 10.2 [2]

Given: Geometry of centrifugal pump

Find: Estimate discharge for axial entry; Head

Solution:

Basic equations: (Eq. 10.2b) 

(Eq. 10.2c) 

The given or available data is

ρ 1.94
slug

ft3
⋅= r1 4 in⋅= r2 7.5 in⋅= b1 1.5 in⋅= b2 1.5 in⋅=

ω 1500 rpm⋅= β1 30 deg⋅= β2 20 deg⋅=

From continuity Vn
Q

2 π⋅ r⋅ b⋅
= Vrb sin β( )⋅= Vrb

Vn
sin β( )

=

From geometry Vt U Vrb cos β( )⋅−= U
Vn

sin β( )
cos β( )⋅−= U

Q
2 π⋅ r⋅ b⋅

cot β( )⋅−=

For an axial entry Vt1 0= so U1
Q

2 π⋅ r1⋅ b1⋅
cot β1( )⋅− 0=

Using given data U1 ω r1⋅= U1 52.4
ft
s

⋅=

Hence Q 2 π⋅ r1⋅ b1⋅ U1⋅ tan β1( )⋅= Q 7.91
ft3

s
⋅= Q 3552 gpm⋅=

To find the power we need U2, Vt2, and mrate

The mass flow rate is mrate ρ Q⋅= mrate 15.4
slug

s
⋅=

U2 ω r2⋅= U2 98.2
ft
s

⋅=

Vt2 U2
Q

2 π⋅ r2⋅ b2⋅
cot β2( )⋅−= Vt2 53.9

ft
s

⋅=

Hence Wm U2 Vt2⋅ U1 Vt1⋅−( ) mrate⋅= Wm 81212
ft lbf⋅

s
⋅= Wm 148 hp⋅=

The head is H
Wm

mrate g⋅
= H 164 ft⋅=



Problem 10.3 [2]

Given: Data on centrifugal pump

Find: Estimate basic dimensions

Solution:

Basic equations: (Eq. 10.2b, directly derived from the Euler turbomachine equation) 

The given or available data is

ρ 1.94
slug

ft3
⋅= Q 150 gpm⋅= Q 0.334

ft3

s
= Win 6.75 hp⋅= η 67 %⋅=

ω 3500 rpm⋅= Vrb2 17.5
ft
s

⋅= β2 90 deg⋅=

For an axial inlet Vt1 0=

From the outlet geometry Vt2 U2 Vrb2 cos β2( )⋅−= U2= and U2 r2 ω⋅=

Hence, in Eq. 10.2b Wm U2
2 mrate⋅= r2

2
ω

2
⋅ mrate⋅=

with Wm η Win⋅= Wm 4.52hp=

and mrate ρ Q⋅= mrate 0.648
slug

s
=

Hence r2
Wm

mrate ω
2

⋅
= r2 0.169 ft= r2 2.03 in=

Also Vn2 Vrb2 sin β2( )⋅= Vn2 17.5
ft
s

=

From continuity Vn2
Q

2 π⋅ r2⋅ b2⋅
=

Hence b2
Q

2 π⋅ r2⋅ Vn2⋅
= b2 0.0180 ft= b2 0.216 in=
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Problem 10.5 [2]

Given: Geometry of centrifugal pump

Find: Theoretical head; Power input for given flow rate

Solution:

Basic equations: (Eq. 10.2b) 

(Eq. 10.2c) 

The given or available data is

ρ 1.94
slug

ft3
⋅= r1 3 in⋅= r2 9.75 in⋅= b1 1.5 in⋅= b2 1.125 in⋅=

ω 1250 rpm⋅= β1 60 deg⋅= β2 70 deg⋅= Q 1500 gpm⋅= Q 3.34
ft3

s
=

From continuity Vn
Q

2 π⋅ r⋅ b⋅
= Vrb sin β( )⋅= Vrb

Vn
sin β( )

=

From geometry Vt U Vrb cos β( )⋅−= U
Vn

sin β( )
cos β( )⋅−= U

Q
2 π⋅ r⋅ b⋅

cot β( )⋅−=

Using given data U1 ω r1⋅= U1 32.7
ft
s

= U2 ω r2⋅= U2 106.4
ft
s

=

Vt1 U1
Q

2 π⋅ r1⋅ b1⋅
cot β1( )⋅−= Vt1 22.9

ft
s

=

Vt2 U2
Q

2 π⋅ r2⋅ b2⋅
cot β2( )⋅−= Vt2 104

ft
s

=

The mass flow rate is mrate ρ Q⋅= mrate 6.48
slug

s
=

Hence Wm U2 Vt2⋅ U1 Vt1⋅−( ) mrate⋅= Wm 66728
ft lbf⋅

s
= Wm 121hp=

The head is H
Wm

mrate g⋅
= H 320ft=



Problem 10.6 [2]

Given: Geometry of centrifugal pump

Find: Theoretical head; Power input for given flow rate

Solution:

Basic equations: (Eq. 10.2b) 

(Eq. 10.2c) 

The given or available data is

ρ 1.94
slug

ft3
⋅= r1 15 in⋅= r2 45 in⋅= b1 4.75 in⋅= b2 3.25 in⋅=

ω 575 rpm⋅= β1 40 deg⋅= β2 60 deg⋅= Q 80000 gpm⋅= Q 178
ft3

s
=

From continuity Vn
Q

2 π⋅ r⋅ b⋅
= Vrb sin β( )⋅= Vrb

Vn
sin β( )

=

From geometry Vt U Vrb cos β( )⋅−= U
Vn

sin β( )
cos β( )⋅−= U

Q
2 π⋅ r⋅ b⋅

cot β( )⋅−=

Using given data U1 ω r1⋅= U1 75.3
ft
s

= U2 ω r2⋅= U2 226
ft
s

=

Vt1 U1
Q

2 π⋅ r1⋅ b1⋅
cot β1( )⋅−= Vt1 6.94

ft
s

=

Vt2 U2
Q

2 π⋅ r2⋅ b2⋅
cot β2( )⋅−= Vt2 210

ft
s

=

The mass flow rate is mrate ρ Q⋅= mrate 346
slug

s
=

Hence Wm U2 Vt2⋅ U1 Vt1⋅−( ) mrate⋅= Wm 1.62 107
×

ft lbf⋅
s

= Wm 2.94 104
× hp=

The head is H
Wm

mrate g⋅
= H 1455ft=



Problem 10.7 [2]

Given: Geometry of centrifugal pump

Find: Theoretical head; Power input for given flow rate

Solution:

Basic equations: (Eq. 10.2b) 

(Eq. 10.2c) 

The given or available data is

ρ 1000
kg

m3
⋅= r2 7.5 cm⋅= b2 2 cm⋅= β2 65 deg⋅=

ω 1750 rpm⋅= Q 225
m3

hr
⋅= Q 0.0625

m3

s
=

From continuity Vn2
Q

2 π⋅ r2⋅ b2⋅
= Vn2 6.63

m
s

=

From geometry Vt2 U2 Vrb2 cos β2( )⋅−= U2
Vn2

sin β2( )
cos β2( )⋅−=

Using given data U2 ω r2⋅= U2 13.7
m
s

=

Hence Vt2 U2
Q

2 π⋅ r2⋅ b2⋅
cot β2( )⋅−= Vt2 10.7

m
s

= Vt1 0= (axial inlet)

The mass flow rate is mrate ρ Q⋅= mrate 62.5
kg
s

=

Hence Wm U2 Vt2⋅ mrate⋅= Wm 9.15kW=

The head is H
Wm

mrate g⋅
= H 14.9m=



Problem 10.8 [2]

Given: Geometry of centrifugal pump

Find: Rotational speed for zero inlet velocity; Theoretical head; Power input

Solution:

Basic equations: (Eq. 10.2b) 

(Eq. 10.2c) 

The given or available data is

ρ 1.94
slug

ft3
⋅= r1 3 in⋅= r2 9.75 in⋅= b1 1.5 in⋅= b2 1.125 in⋅=

β1 60 deg⋅= β2 70 deg⋅= Q 4000 gpm⋅= Q 8.91
ft3

s
⋅=

From continuity Vn
Q

2 π⋅ r⋅ b⋅
= Vrb sin β( )⋅= Vrb

Vn
sin β( )

=

From geometry Vt U Vrb cos β( )⋅−= U
Vn

sin β( )
cos β( )⋅−= U

Q
2 π⋅ r⋅ b⋅

cot β( )⋅−=

For Vt1 0=  we get U1
Q

2 π⋅ r1⋅ b1⋅
cot β1( )⋅− 0= or ω r1⋅

Q
2 π⋅ r1⋅ b1⋅

cot β1( )⋅− 0=

Hence, solving for ω ω
Q

2 π⋅ r1
2

⋅ b1⋅
cot β1( )⋅= ω 105

rad
s

= ω 1001 rpm=

We can now find U2 U2 ω r2⋅= U2 85.2
ft
s

⋅=

Vt2 U2
Q

2 π⋅ r2⋅ b2⋅
cot β2( )⋅−= Vt2 78.4

ft
s

⋅=

The mass flow rate is mrate ρ Q⋅= mrate 17.3
slug

s
⋅=

Hence Eq 10.2b becomes Wm U2 Vt2⋅ mrate⋅= Wm 1.15 105
×

ft lbf⋅
s

⋅= Wm 210 hp⋅=

The head is H
Wm

mrate g⋅
= H 208 ft⋅=



Problem 10.9 [2]

Given: Geometry of centrifugal pump

Find: Draw inlet and exit velocity diagrams; Inlet blade angle; Power

Solution:
Vn

Q
2 π⋅ r⋅ b⋅

=Basic equations:

The given or available data is

R1 1 in⋅= R2 7.5 in⋅= b2 0.375 in⋅= ω 2000 rpm⋅=

ρ 1.94
slug

ft3
⋅= Q 800 gpm⋅= Q 1.8

ft3

s
⋅=

β2 75 deg⋅=

U1 ω R1⋅= U1 17.5
ft
s

⋅= U2 ω R2⋅= U2 131
ft
s

⋅=

Vn2
Q

2 π⋅ R2⋅ b2⋅
= Vn2 14.5

ft
s

⋅= Vn1
R2
R1

Vn2⋅= Vn1 109
ft
s

⋅=

 

β1 

Vrb1 

U1 

Vn1 = V1 (Vt1 = 0) 
 

β2 
Vrb2 

U2 

Vt2 

Vn2 α2 
V2 Velocity diagrams:

Then β1 atan
Vn1
U1

⎛
⎜
⎝

⎞
⎟
⎠

= β1 80.9 deg⋅= (Essentially radial entry)

From geometry Vt1 U1 Vn1 cos β1( )⋅−= Vt1 0.2198
ft
s

⋅= Vt2 U2 Vn2 cos β2( )⋅−= Vt2 127.1
ft
s

⋅=

Then Wm U2 Vt2⋅ U1 Vt1⋅−( ) ρ⋅ Q⋅= Wm 5.75 104
×

ft lbf⋅
s

⋅= Wm 105 hp⋅=

Note: In earlier printings the flow rate was given as 8000 gpm not 800 gpm; water at 1089 ft/s would be quite dangerous!
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Problem 10.11 [3]

Note: Earlier printings had 8000 gpm; it is actually 800 gpm!

Given: Geometry of centrifugal pump

Find: Shutoff head; Absolute and relative exit velocitiesTheoretical head; Power input

Solution:

Basic equations: (Eq. 10.2b) 

(Eq. 10.2c) 

The given or available data is

ρ 1.94
slug

ft3
⋅= R1 1 in⋅= R2 7.5 in⋅= b2 0.375 in⋅=

ω 2000 rpm⋅= β2 75 deg⋅= Q 800 gpm⋅= Q 1.8
ft3

s
⋅=

At the exit U2 ω R2⋅= U2 131
ft
s

⋅=

At shutoff Vt2 U2= Vt2 131
ft
s

⋅= H0
1
g

U2 Vt2⋅( )⋅= H0 533 ft⋅=

At design. from continuity Vn2
Q

2 π⋅ R2⋅ b2⋅
= Vn2 15

ft
s

⋅=

From the velocity diagram Vn2 Vrb2 sin β2( )⋅= Vrb2
Vn2

sin β2( )
= Vrb2 15.0

ft
s

⋅=

Vt2 U2 Vn2 cot β2( )⋅−= Vt2 127.0
ft
s

⋅=

Hence we obtain V2 Vn2
2 Vt2

2
+= V2 128

ft
s

⋅=

with (see sketch above) α2 atan
Vt2
Vn2

⎛
⎜
⎝

⎞
⎟
⎠

= α2 83.5 deg⋅=

For Vt1 0=  we get Wm U2 Vt2⋅ ρ⋅ Q⋅= Wm 5.75 104
×

ft lbf⋅
s

⋅= Wm 105 hp⋅=

H
Wm

ρ Q⋅ g⋅
= H 517 ft⋅=



Problem 10.12 [2]

Given: Geometry of centrifugal pump

Find: Inlet blade angle for no tangential inlet velocity at 125,000 gpm; Head; Power

Solution:

Basic equations: (Eq. 10.2b) 

(Eq. 10.2c) 

The given or available data is

ρ 1.94
slug

ft3
⋅= r1 15 in⋅= r2 45 in⋅= b1 4.75 in⋅= b2 3.25 in⋅=

ω 575 rpm⋅= β2 60 deg⋅= Q 125000 gpm⋅= Q 279
ft3

s
=

From continuity Vn
Q

2 π⋅ r⋅ b⋅
= Vrb sin β( )⋅= Vrb

Vn
sin β( )

=

From geometry Vt U Vrb cos β( )⋅−= U
Vn

sin β( )
cos β( )⋅−= U

Q
2 π⋅ r⋅ b⋅

cot β( )⋅−=

For Vt1 0=   we obtain U1
Q

2 π⋅ r1⋅ b1⋅
cot β1( )⋅− 0= or cot β1( )

2 π⋅ r1⋅ b1⋅ U1⋅

Q
=

Using given data U1 ω r1⋅= U1 75.3
ft
s

⋅=

Hence β1 acot
2 π⋅ r1⋅ b1⋅ U1⋅

Q

⎛
⎜
⎝

⎞
⎟
⎠

= β1 50deg=

Also U2 ω r2⋅= U2 226
ft
s

⋅=

Vt2 U2
Q

2 π⋅ r2⋅ b2⋅
cot β2( )⋅−= Vt2 201

ft
s

⋅=

The mass flow rate is mrate ρ Q⋅= mrate 540
slug

s
⋅=

Hence Wm U2 Vt2⋅ U1 Vt1⋅−( ) mrate⋅= Wm 2.45 107
×

ft lbf⋅
s

⋅= Wm 44497 hp⋅=

The head is H
Wm

mrate g⋅
= H 1408 ft⋅=
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Problem 10.14 [3]

Given: Data on a centrifugal pump

Find: Estimate exit angle of impeller blades

Solution:

The given or available data is ρ 999
kg

m3
⋅= Q 50

L
s

⋅= Win 45 kW⋅= η 75 %⋅=

ω 1750 rpm⋅= b2 10 mm⋅= D 300 mm⋅=

The governing equation (derived directly from the Euler turbomachine equation) is

For an axial inlet Vt1 0= hence Vt2
Wm

U2 ρ⋅ Q⋅
=

We have U2
D
2

ω⋅= U2 27.5
m
s

= and Wm η Win⋅= Wm 33.8kW=

Hence Vt2
Wm

U2 ρ⋅ Q⋅
= Vt2 24.6

m
s

=

Vn2
Q

π D⋅ b2⋅
=From continuity Vn2 5.31

m
s

=

With the exit velocities determined, β can be determined from exit geometry

tan β( )
Vn2

U2 Vt2−
= or β atan

Vn2
U2 Vt2−

⎛
⎜
⎝

⎞
⎟
⎠

= β 61.3deg=
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Problem 10.16 [1]

Given: Impulse turbibe

Find: Optimum speed using the Euler turbomachine equation

Solution:

The governing equation is the Euler turbomachine equation

In terms of the notation of Example 10.5, for a stationary CV

r1 r2= R= U1 U2= U= Vt1 V U−= Vt2 V U−( ) cos θ( )⋅= and mflow ρ Q⋅=

Hence Tshaft R V U−( )⋅ cos θ( )⋅ R V U−( )⋅−[ ] ρ⋅ Q⋅= Tout Tshaft= ρ Q⋅ R⋅ V U−( )⋅ 1 cos θ( )−( )⋅=

The power is Wout ω Tout⋅= ρ Q⋅ R⋅ ω⋅ V U−( )⋅ 1 cos θ( )−( )⋅= Wout ρ Q⋅ U⋅ V U−( )⋅ 1 cos θ( )−( )⋅=

These results are identical to those of Example 10.5.  The proof that maximum power is when U = V/2 is hence also
the same and will not be repeated here.



Problem 10.17 [3]

Given: Data on a centrifugal pump

Find: Flow rate for zero inlet tangential velocity; outlet flow angle; power; head
developed

Solution:

The given or available data is ρ 999
kg

m3
⋅= ω 1200 rpm⋅= η 70 %⋅=

r1 90 mm⋅= b1 10 mm⋅= β1 25 deg⋅= r2 150 mm⋅= b2 7.5 mm⋅= β2 45 deg⋅=

The governing equations (derived directly from the Euler turbomachine equation) are

We also have from geometry α2 atan
Vt2
Vn2

⎛
⎜
⎝

⎞
⎟
⎠

= (1)

From geometry Vt1 0= U1 Vrb1 cos β1( )⋅−= r1 ω⋅
Vn1

sin β1( )
−⋅ cos β1( )⋅=

and from continuity Vn1
Q

2 π⋅ r1⋅ b1⋅
=

Hence r1 ω⋅
Q

2 π⋅ r1⋅ b1⋅ tan β1( )⋅
− 0= Q 2 π⋅ r1

2
⋅ b1⋅ ω⋅ tan β1( )⋅= Q 29.8

L
s

= Q 0.0298
m3

s
=

The power, head and absolute angle α at the exit are obtained from direct computation using Eqs. 10.2b, 10.2c, and 1 above

U1 r1 ω⋅= U1 11.3
m
s

= U2 r2 ω⋅= U2 18.8
m
s

= Vt1 0
m
s

⋅=

From geometry Vt2 U2 Vrb2 cos β2( )⋅−= r2 ω⋅
Vn2

sin β2( )
−⋅ cos β2( )⋅=

and from continuity Vn2
Q

2 π⋅ r2⋅ b2⋅
= Vn2 4.22

m
s

=



Hence Vt2 r2 ω⋅
Vn2

tan β2( )
−= Vt2 14.6

m
s

=

Using these results in Eq. 1 α2 atan
Vt2
Vn2

⎛
⎜
⎝

⎞
⎟
⎠

= α2 73.9deg=

Using them in Eq. 10.2b Wm U2 Vt2⋅ U1 Vt1⋅−( ) ρ⋅ Q⋅= Wm 8.22kW=

Using them in Eq. 10.2c H
1
g

U2 Vt2⋅ U1 Vt1⋅−( )⋅= H 28.1m=

This is the power and head assuming no inefficiency; with η = 70%, we have (from Eq. 10.8c)

Wh η Wm⋅= Wh 5.75kW=

Hp η H⋅= Hp 19.7m=

(This last result can also be obtained from Eq. 10.8a Wh ρ Q⋅ g⋅ Hp⋅= )



Problem 10.18 [1]

Given: Data on centrifugal pump

Find: Pressure rise; Express as ft of water and gasoline

Solution:

Basic equations: η
ρ Q⋅ g⋅ H⋅

Wm
=

The given or available data is ρw 1000
kg

m3
⋅= Q 0.025

m3

s
⋅= Wm 15 kW⋅= η 85 %⋅=

Solving for H H
η Wm⋅

ρw Q⋅ g⋅
= H 52.0m= H 171ft=

For gasoline, from Table A.2 SG 0.72= Hg
η Wm⋅

SG ρw⋅ Q⋅ g⋅
= Hg 72.2m= Hg 237ft=



Problem 10.19 [3]

Given: Geometry of centrifugal pump

Find: Draw inlet velocity diagram; Design speed for no inlet tangential velocity; Outlet angle; Head; Power

Solution:

Basic equations: (Eq. 10.2b) 

(Eq. 10.2c) 

The given or available data is

r1 75 mm⋅= r2 150 mm⋅= b1 7.5 mm⋅= b2 6.25 mm⋅= β1 25 deg⋅= β2 40 deg⋅=

ρ 1000
kg

m3
⋅= Q 30

L
s

⋅= Q 0.030
m3

s
⋅=

 

β1 

Vrb1 

U1 

Vn1 = V1 (Vt1 = 0) 
 

β2 
Vrb2 

U2 

Vt2 

Vn2 α2 
V2 Velocity diagrams:

From continuity Vn
Q

2 π⋅ r⋅ b⋅
= Vrb sin β( )⋅= Vrb

Vn
sin β( )

=
Vn1
Vn2

A1
A2

=
r1 b1⋅

r2 b2⋅
=

From geometry Vt U Vrb cos β( )⋅−= U
Vn

sin β( )
cos β( )⋅−= U

Q
2 π⋅ r⋅ b⋅

cot β( )⋅−=

For Vt1 0=   we obtain U1
Q

2 π⋅ r1⋅ b1⋅
cot β1( )⋅− 0= or ω r1⋅

Q
2 π⋅ r1⋅ b1⋅

cot β1( )⋅− 0=

Solving for ω ω
Q

2 π⋅ r1
2

⋅ b1⋅
cot β1( )⋅= ω 243

rad
s

= ω 2318 rpm=

Hence U1 ω r1⋅= U1 18.2
m
s

= U2 ω r2⋅= U2 36.4
m
s

=

Vn2
Q

2 π⋅ r2⋅ b2⋅
= Vn2 5.09

m
s

= Vt2 U2
Q

2 π⋅ r2⋅ b2⋅
cot β2( )⋅−= Vt2 30.3

m
s

=



From the sketch α2 atan
Vt2
Vn2

⎛
⎜
⎝

⎞
⎟
⎠

= α2 80.5deg=

Hence Wm U2 Vt2⋅ ρ⋅ Q⋅= Wm 33.1 kW⋅=

The head is H
Wm

ρ Q⋅ g⋅
= H 113m=
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Problem 10.21 [4]

Given: Geometry of centrifugal pump with diffuser casing

Find: Flow rate; Theoretical head; Power; Pump efficiency at maximum efficiency point

Solution:

Basic equations: (Eq. 10.2b) 

(Eq. 10.2c) 

The given or available data is

ρ 1000
kg

m3
⋅= r2 7.5 cm⋅= b2 2 cm⋅= β2 65 deg⋅=

ω 1750 rpm⋅= ω 183
rad
s

⋅=

Using given data U2 ω r2⋅= U2 13.7
m
s

=

Illustrate the procedure with Q 0.065
m3

s
⋅=

From continuity Vn2
Q

2 π⋅ r2⋅ b2⋅
= Vn2 6.9

m
s

=

From geometry Vt2 U2 Vrb2 cos β2( )⋅−= U2
Vn2

sin β2( )
cos β2( )⋅−=

Hence Vt2 U2
Q

2 π⋅ r2⋅ b2⋅
cot β2( )⋅−= Vt2 10.5

m
s

= Vt1 0= (axial inlet)

V2 Vn2
2 Vt2

2
+= V2 12.6

m
s

=

Hideal
U2 Vt2⋅

g
= Hideal 14.8 m⋅=

Tfriction 10 %⋅
Wmideal

ω
⋅= 10 %⋅

ρ Q⋅ Hideal⋅

ω
⋅=

Tfriction 10 %⋅
Q ρ⋅ g⋅ Hideal⋅

ω
⋅= Tfriction 5.13N m⋅=



Hactual 60 %⋅
V2

2

2 g⋅
⋅ 0.75

Vn2
2

2 g⋅
⋅−= Hactual 3.03m=

η

Q ρ⋅ g⋅ Hactual⋅

Q ρ⋅ g⋅ Hideal⋅ ω Tfriction⋅+
= η 18.7%=

0 0.02 0.04 0.06 0.08 0.1

5

10

15

20

25

Q (cubic meter/s)

Ef
fic

ie
nc

y 
(%

)

The above graph can be plotted in Excel.  In addition, Solver can be used to vary Q to maximize η.  The results are

Q 0.0282
m3

s
= η 22.2%= Hideal 17.3m= Hactual 4.60m=

Wm Q ρ⋅ g⋅ Hideal⋅ ω Tfriction⋅+= Wm 5.72kW=
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ρ = 1000 kg/m3 Fitting a 2nd order polynomial to each set of data we find

H =-8440Q 2 + 167Q  + 59.9
Q  (m3/s) H  (m) Pm (kW) Ph (kW) η (%) η =-302Q 2 + 26.9Q + 0.170

0.017 60 19 10.0 52.7%
0.026 59 22 15.0 68.4% Finally, we use Solver to maximize η  by varying Q :
0.038 54 26 20.1 77.4%
0.045 50 30 22.1 73.6% Q (m3/s) H (m) η (%)

0.063 37 34 22.9 67.3% 0.045 50.6 76.9%

Pump Performance Curve
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ρ = 1000 kg/m3 Fitting a 2nd order polynomial to each set of data we find

H =-5404Q 2 + 194Q  + 60.5
Q  (m3/s) H  (m) Pm (kW) Ph (kW) η (%) η =-197Q 2 + 23.0Q + 0.150

0.018 62 22 10.9 49.8%
0.028 62 26 17.0 65.5% Finally, we use Solver to maximize η  by varying Q :
0.035 61 30 20.9 69.8%
0.050 57 34 28.0 82.2% Q (m3/s) H (m) η (%)

0.058 53 37 30.2 81.5% 0.058 53.4 82.1%
0.081 41 45 32.6 72.4%

Pump Performance Curve
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Problem 10.26 [3]

Given: Data on centrifugal pump

Find: Dynamic head at inlet and exit; Hydraulic power input; Pump efficiency; Motor size; Electric power required

Solution:

Basic equations: (Eq. 10.8a) 

(Eq. 10.8b) (Eq. 10.8c) 

The given or available data is

ρ 1.94
slug

ft3
⋅= ω 2750 rpm⋅= ηe 85 %⋅= Q 65 gpm⋅= Q 0.145

ft3

s
⋅= T 6.25 lbf⋅ ft⋅=

p1 17.5 psi⋅= z1 8.25 ft⋅= V1 9
ft
s

⋅= p2 75 psi⋅= z2 30 ft⋅= V2 12
ft
s

⋅=

Then Hp1
p1
ρ g⋅

V1
2

2 g⋅
+ z1+= Hp1 49.9 ft⋅= Hp2

p2
ρ g⋅

V2
2

2 g⋅
+ z2+= Hp2 205 ft⋅=

Also, from Eq. 10.8a Wh ρ g⋅ Q⋅ Hp2 Hp1−( )⋅= Wh 1405
ft lbf⋅

s
⋅= Wh 2.55 hp⋅=

The mechanical power in is Wm ω T⋅= Wm 1800
ft lbf⋅

s
⋅= Wm 3.27 hp⋅=

We need a 3.5 hp motor

From Eq. 10.8c ηp
Wh
Wm

= ηp 78.0 %⋅=

The input power is then We
Wm
ηe

= We 2117
ft lbf⋅

s
⋅= We 3.85 hp⋅= We 2.87 kW⋅=



Problem 10.27 [3]

Given: Data on centrifugal pump

Find: Electric power required; gage pressure at exit

Solution:

Basic equations: (Eq. 10.8a) 

(Eq. 10.8b) (Eq. 10.8c) 

The given or available data is

ρ 1.94
slug

ft3
⋅= ω 3000 rpm⋅= ηp 75 %⋅= ηe 85 %⋅= Q 65 gpm⋅= Q 0.145

ft3

s
⋅=

T 4.75 lbf⋅ ft⋅= p1 12.5 psi⋅= z1 6.5 ft⋅= V1 6.5
ft
s

⋅= z2 32.5 ft⋅= V2 15
ft
s

⋅=

From Eq. 10.8c Hp
ω T⋅ ηp⋅

ρ Q⋅ g⋅
= Hp 124 ft⋅=

Hence, from Eq. 10.8b p2 p1
ρ

2
V1

2 V2
2

−⎛
⎝

⎞
⎠⋅+ ρ g⋅ z1 z2−( )⋅+ ρ g⋅ Hp⋅+= p2 53.7 psi⋅=

Also Wh ρ g⋅ Q⋅ Hp⋅= Wh 1119
ft lbf⋅

s
⋅= Wh 2.03 hp⋅=

The shaft work is then Wm
Wh
ηp

= Wm 1492
ft lbf⋅

s
⋅= Wm 2.71 hp⋅=

Hence, electrical input is We
Wm
ηe

= We 1756
ft lbf⋅

s
⋅= We 2.38 kW⋅=
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Problem 10.32 [2]

Given: Data on small centrifugal pump

Find: Specific speed; Sketch impeller shape; Required power input

Solution:

Basic equation: (Eq. 10.22b) (Eq. 10.8c) 

The given or available data is

ρ 1000
kg

m3
⋅= ω 2875 rpm⋅= ηp 70 %⋅= Q 0.016

m3

s
⋅= H 40 m⋅=

Hence h g H⋅= h 392
m2

s2
= (H is energy/weight. h is energy/mass)

Then NS
ω Q

1
2

⋅

h

3
4

= NS 0.432=

From the figure we see the impeller will be centrifugal

The power input is (from Eq. 10.8c) Wm
Wh
ηp

= Wm
ρ Q⋅ g⋅ H⋅

ηp
= Wm 8.97kW=



Problem 10.33 [3]

Given: Data on a pump

Find: Shutoff head; best efficiency; type of pump; flow rate, head, shutoff head and power at 900 rpm

Solution:

The given or available data is

ρ 999
kg

m3
⋅= Ns 1.74= D 500 mm⋅= Q 0.725

m3

s
⋅= H 10 m⋅= Wm 90 kW⋅= ω' 900 rpm⋅=

The governing equations are Wh ρ Q⋅ g⋅ H⋅= (10.8a)

Ns ω Q

1
2

⋅ h

3
4

= (7.16a)

H0 C1=
U2

2

g
= (From Eq. 10.7b)

Similarity rules

Q1

ω1 D1
3

⋅

Q2

ω2 D2
3

⋅
= (10.19a)

h1

ω1
2 D1

2
⋅

h2

ω2
2 D2

2
⋅

= (10.19b)
P1

ρ1 ω1
3

⋅ D1
5

⋅

P2

ρ2 ω2
3

⋅ D2
5

⋅
= (10.19a)

h g H⋅= h 98.1
J

kg
=

Hence from Eq. 7.16a ω

Ns h

3
4

⋅

Q

1
2

= ω 608 rpm= ω 63.7
rad
s

=

From Eq. 10.8a Wh ρ Q⋅ g⋅ H⋅= Wh 71kW=

ηp
Wh
Wm

= ηp 78.9%=

The shutoff head is given by H0
U2

2

g
= (From Eq. 10.7b)



U2
D
2

ω⋅= U2 15.9
m
s

=

Hence H0
U2

2

g
= H0 25.8m=

From Eq. 10.19a (with D1 = D2)
Q1
ω1

Q2
ω2

= or Q
ω

Q'
ω'

= Q' Q
ω'
ω
⋅= Q' 1.07

m3

s
=

From Eq. 10.19b (with D1 = D2)
h1

ω1
2

h2

ω2
2

= or H

ω
2

H'

ω'2
= H' H

ω'
ω

⎛⎜
⎝

⎞⎟
⎠

2
⋅= H' 21.9m=

Also
H0

ω
2

H'0

ω'2
= H'0 H0

ω'
ω

⎛⎜
⎝

⎞⎟
⎠

2
⋅= H'0 56.6m=

(Alternatively, we could have used H'0
U'2

2

g
= )

From Eq. 10.19c (with D1 = D2)
P1

ρ ω1
3

⋅

P2

ρ ω2
3

⋅
= or

Wm

ω
3

W'm

ω'3
= W'm Wm

ω'
ω

⎛⎜
⎝

⎞⎟
⎠

3
⋅= W'm 292kW=
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Problem 10.35 [2]

Given: Data on centrifugal pump

Find: Head at 1150 rpm

Solution:

Basic equation: (Eq. 10.2c)

The given or available data is

ρ 1000
kg

m3
⋅= Q 0.025

m3

s
⋅= β2 60 deg⋅= b2 1.25 cm⋅=

ω 1750 rpm⋅= ω' 1150 rpm⋅= Vn2 3.5
m
s

⋅=

From continuity Vn2
Q

2 π⋅ r2⋅ b2⋅
=

Hence r2
Q

2 π⋅ b2⋅ Vn2⋅
= r2 0.0909m= r2 9.09cm=

Then V'n2
ω'
ω

Vn2⋅= V'n2 2.30
m
s

=

Also U'2 ω' r2⋅= U'2 11.0
m
s

=

From the outlet geometry V't2 U'2 V'n2 cos β2( )⋅−= V't2 9.80
m
s

=

Finally H'
U'2 V't2⋅

g
= H' 10.9m=



Problem 10.36 [3]

Given: Data on pumping system

Find: Number of pumps needed; Operating speed

Solution:

Basic equations: Wh ρ Q⋅ g⋅ H⋅= ηp
Wh
Wm

=

The given or available data is

ρ 1000
kg

m3
⋅= Qtotal 110 106

×
L

day
⋅= Qtotal 1.273

m3

s
= H 10 m⋅= η 65 %⋅=

Then for the system Wh ρ Qtotal⋅ g⋅ H⋅= Wh 125 kW⋅=

The required total power is Wm
Wh
η

= Wm 192 kW⋅=

Hence the total number of pumps must be 
192
37.5

5.12= , or at least six pumps

The flow rate per pump will then be Q
Qtotal

6
= Q 0.212

m3

s
= Q 212

L
s

⋅=

From Fig. 10.15 the peak effiiciency is at a
specific speed of about

NScu 2000=

We also need H 32.8 ft⋅= Q 3363 gpm⋅=

Hence N NScu
H

3
4

Q

1
2

⋅= N 473=

The nearest standard speed to N 473= rpm should be used



Problem 10.37 [3]

Given: Data on pumping system

Find: Total delivery; Operating speed

Solution:

Basic equations: Wh ρ Q⋅ g⋅ H⋅= ηp
Wh
Wm

=

The given or available data is

ρ 1000
kg

m3
⋅= Wm 35 hp⋅= H 50 ft⋅= η 60 %⋅=

Then for the system WmTotal 7 Wm⋅= WmTotal 245 hp⋅=

The hydraulic total power is WhTotal
WmTotal

η
= WhTotal 304 kW⋅=

The total flow rate will then be QTotal
WhTotal

ρ g⋅ H⋅
= QTotal 71.95

ft3

s
⋅= QTotal 32293 gpm⋅=

The flow rate per pump is Q
QTotal

6
= Q 12.0

ft3

s
⋅= Q 5382 gpm⋅=

From Fig. 10.15 the peak effiiciency is at a
specific speed of about

NScu 2500=

Hence N NScu
H

3
4

Q

1
2

⋅= N 641=

The nearest standard speed to N 641= rpm should be used



Problem 10.38 [3]

Given: Data on Peerless Type 10AE12 pump at 1760 rpm

Find: Data at speeds of 1000, 1200, 1400, and 1600 rpm

Solution:

The governing equations are the similarity rules

Speed (rpm) = 1760 Speed (rpm) = 1000 Speed (rpm) = 1200 Speed (rpm) = 1400 Speed (rpm) = 1600
Q  (gal/min) Q 2 H  (ft) H  (fit) Q  (gal/min) H  (ft) Q  (gal/min) H  (ft) Q  (gal/min) H  (ft) Q  (gal/min) H  (ft)

0 0 170 161 0 52.0 0 74.9 0 102.0 0 133.2
500 250000 160 160 284 51.7 341 74.5 398 101.3 455 132.4

1000 1000000 155 157 568 50.7 682 73.0 795 99.3 909 129.7
1500 2250000 148 152 852 49.0 1023 70.5 1193 96.0 1364 125.4
2000 4000000 140 144 1136 46.6 1364 67.1 1591 91.3 1818 119.2
2500 6250000 135 135 1420 43.5 1705 62.6 1989 85.3 2273 111.4
3000 9000000 123 123 1705 39.7 2045 57.2 2386 77.9 2727 101.7
3500 12250000 110 109 1989 35.3 2386 50.8 2784 69.2 3182 90.4
4000 16000000 95 93 2273 30.2 2727 43.5 3182 59.1 3636 77.2



Data from Fig. D.8 is "eyeballed"
The fit to data is obtained from a least squares fit to H  = H 0 - AQ 2

H 0 = 161 ft
A  = 4.23E-06 ft/(gal/min)

Performance Curves for Pump at various Speeds
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Problem 10.46 [3]

Given: Data on turbine system

Find: Model test speed; Scale; Volume flow rate

Solution:

Basic equations: Wh ρ Q⋅ g⋅ H⋅= η

Wmech
Wh

= NS
ω P

1
2

⋅

ρ

1
2 h

5
4

⋅

=

The given or available data is

ρ 1000
kg

m3
⋅= Wp 17.5 MW⋅= Hp 45 m⋅= ωp 120 rpm⋅= Hm 10 m⋅= Wm 35 kW⋅=

where sub p stands for prototype and sub m stands for model

Note that we need h (energy/mass), not H (energy/weight) hp Hp g⋅= hp 441
m2

s2
= hm Hm g⋅= hm 98.1

m2

s2
=

Hence for the prototype NS
ωp Wp

1
2

⋅

ρ

1
2 hp

5
4

⋅

= NS 0.822=

Then for the model NS
ωm Wm

1
2

⋅

ρ

1
2 hm

5
4

⋅

= ωm NS
ρ

1
2 hm

5
4

⋅

Wm

1
2

⋅= ωm 42.9
rad
s

= ωm 409rpm=

For dynamically similar conditions
Hp

ωp
2 Dp

2
⋅

Hm

ωm
2 Dm

2
⋅

= so
Dm
Dp

ωp
ωm

Hm
Hp

⋅= 0.138=

Also
Qp

ωp Dp
3

⋅

Qm

ωm Dm
3

⋅
= so Qm Qp

ωm
ωp

⋅
Dm
Dp

⎛
⎜
⎝

⎞
⎟
⎠

3

⋅=

To find Qp we need efficiency.  At Wp 17.5MW=  or Wp 23468hp=  and Hp 45m=  or Hp 148ft=

 from F ig. 10.17 we find (see below), for

NScu
N rpm( ) P hp( )

1
2

⋅

H ft( )5.4
= 35.7= η 93 %⋅=



Hence from η

Wmech
Wh

=
Wmech
ρ Q⋅ g⋅ H⋅

= Qp
Wp

ρ g⋅ Hp⋅ η⋅
= Qp 42.6

m3

s
=

and also Qm
Wm

ρ g⋅ Hm⋅ η⋅
= Qm 0.384

m3

s
=



Problem 10.47 [3]

Given: Data on a model pump

Find: Prototype flow rate, head, and power at 125 rpm

Solution:
Basic equation: Wh ρ Q⋅ g⋅ H⋅= and similarity rules

Q1

ω1 D1
3

⋅

Q2

ω2 D2
3

⋅
= (10.19a)

h1

ω1
2 D1

2
⋅

h2

ω2
2 D2

2
⋅

= (10.19b)
P1

ρ1 ω1
3

⋅ D1
5

⋅

P2

ρ2 ω2
3

⋅ D2
5

⋅
= (10.19a)

The given or available data is Nm 100 rpm⋅= Np 125 rpm⋅= ρ 1000
kg

m3
⋅=

Qm 1
m3

s
⋅= Hm 4.5 m⋅=

From Eq. 10.8a Whm ρ Qm⋅ g⋅ Hm⋅= Whm 44.1 kW⋅=

From Eq. 10.19a (with Dm/Dp = 1/3)
Qp

ωp Dp
3

⋅

Qm

ωm Dm
3

⋅
= or Qp Qm

ωp
ωm
⋅

Dp
Dm

⎛
⎜
⎝

⎞
⎟
⎠

3

⋅= 33 Qm⋅
ωp
ωm
⋅=

Qp 27 Qm⋅
Np
Nm
⋅= Qp 33.8

m3

s
=

From Eq. 10.19b (with Dm/Dp = 1/3)
hp

ωp
2 Dp

2
⋅

hm

ωm
2 Dm

2
⋅

= or
g Hp⋅

ωp
2 Dp

2
⋅

g Hm⋅

ωm
2 Dpm

2
⋅

=

Hp Hm
ωp
ωm

⎛
⎜
⎝

⎞
⎟
⎠

2

⋅
Dp
Dm

⎛
⎜
⎝

⎞
⎟
⎠

2

⋅= 32 Hm⋅
ωp
ωm

⎛
⎜
⎝

⎞
⎟
⎠

2

⋅= Hp 9 Hm⋅
Np
Nm

⎛
⎜
⎝

⎞
⎟
⎠

2

⋅= Hp 63.3m=

From Eq. 10.19c (with Dm/Dp = 1/3)
Pp

ρ ωp
3

⋅ Dp
5

⋅

Pm

ρ ωm
3

⋅ Dm
5

⋅
= or Whp Whm

ωp
ωm

⎛
⎜
⎝

⎞
⎟
⎠

3

⋅
Dp
Dm

⎛
⎜
⎝

⎞
⎟
⎠

5

⋅= 35 Whm⋅
ωp
ωm

⎛
⎜
⎝

⎞
⎟
⎠

3

⋅=

Whp 243 Whm⋅
Np
Nm

⎛
⎜
⎝

⎞
⎟
⎠

3

⋅= Whp 20.9 MW⋅=
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Problem 10.50 [2]

Given: Data on a model pump

Find: Temperature for dynamically similar operation at 1750 rpm; Flow rate and head; Comment on NPSH

Solution:
Basic equation: Re1 Re2= and similarity rules

Q1

ω1 D1
3

⋅

Q2

ω2 D2
3

⋅
=

H1

ω1
2 D1

2
⋅

H2

ω2
2 D2

2
⋅

=

The given or available data is ω1 3500 rpm⋅= ω2 1750 rpm⋅= Q1 20 gpm⋅= H1 60 ft⋅=

From Table A.7 at 59oF ν1 1.23 10 5−
×

ft2

s
⋅=

For D = constant Re1
V1 D⋅

ν1
=

ω1 D⋅ D⋅

ν1
= Re2=

ω2 D⋅ D⋅

ν2
= or ν2 ν1

ω2
ω1
⋅= ν2 6.15 10 6−

×
ft2

s
⋅=

From Table A.7, at ν2 6.15 10 6−
×

ft2

s
⋅= , we find, by linear interpolation

T2 110
120 110−( )
6.05 6.68−( )

6.15 6.68−( )⋅+= T2 118= degrees F

From similar operation
Q1

ω1 D3
⋅

Q2

ω2 D3
⋅

= or Q2 Q1
ω2
ω1
⋅= Q2 10 gpm⋅=

and also
H1

ω1
2 D2
⋅

H2

ω2
2 D2
⋅

= or H2 H1
ω2
ω1

⎛
⎜
⎝

⎞
⎟
⎠

2

⋅= H2 15 ft⋅=

The water at 118oF is closer to boiling.  The inlet pressure would have to be changed to avoid cavitation.  The increase between runs
1 and 2 would have to be Δp pv2 pv1−=  where pv2 and pv1 are the vapor pressures at T2 and T1.  From the steam tables (find them

by Googling!)  
pv1 0.247 psi⋅= pv2 1.603 psi⋅= Δp pv2 pv1−= Δp 1.36 psi⋅=



Problem 10.51 [3]

Given: Data on a boiler feed pump

Find: NPSHA at inlet for field temperature water; Suction head to duplicate field conditions

Solution:
Basic equation: NPSHA pt pv−= pg patm+

1
2

ρ⋅ V2
⋅+ pv−=

Given or available data is Ds 10 cm⋅= Dd 7.5 cm⋅= H 125 m⋅= Q 0.025
m3

s
⋅=

pinlet 150 kPa⋅= patm 101 kPa⋅= zinlet 50− cm⋅= ρ 1000
kg

m3
⋅= ω 3500 rpm⋅=

For field conditions pg pinlet ρ g⋅ zinlet⋅+= pg 145kPa=

From continuity Vs
4 Q⋅

π Ds
2

⋅
= Vs 3.18

m
s

=

From steam tables (try Googling!) at 115oC pv 169 kPa⋅=

Hence NPSHA pg patm+
1
2

ρ⋅ Vs
2

⋅+ pv−= NPSHA 82.2kPa=

Expressed in meters or feet of water NPSHA
ρ g⋅

8.38m=
NPSHA

ρ g⋅
27.5 ft=

In the laboratory we must have the same NPSHA. From Table A.8 (or steam tables - try Googling!) at 27oC pv 3.57 kPa⋅=

Hence pg NPSHA patm−
1
2

ρ⋅ Vs
2

⋅− pv+= pg 20.3− kPa=

The absolute pressure is pg patm+ 80.7kPa=



Q  (m3/s x 103) Q 2 NPSHR  (m) NPSHR  (fit)
10 1.00E+02 2.2 2.2
20 4.00E+02 2.4 2.4
30 9.00E+02 2.6 2.7
40 1.60E+03 3.1 3.1
50 2.50E+03 3.6 3.6
60 3.60E+03 4.1 4.2
70 4.90E+03 5.1 5.0

The fit to data is obtained from a least squares fit to NPSHR  = a  + bQ 2

a  = 2.12 m Q  (m3/s x 103) NPSHR  (m)

b  = 5.88E-04 m/(m3/s x 103)2 81.2 6.00 Use Goal Seek  to find Q !

NPSHR Curve for a Pump

0

1

2

3

4

5

0 15 30 45 60 75

Q  (m3/s x 103)

N
PS

H
R

 (m
) Data at 1500 rpm

Curve Fit



 
Problem 10.53                                                                             [4]



Given data: Computed results:

L  = 6 m Q  (m3/s) V  (m/s) Re f NPSHA  (m) NPSHR  (m)
e  = 0.26 mm 0.010 0.566 8.40E+04 0.0247 16.0 3.30
D  = 15 cm 0.015 0.849 1.26E+05 0.0241 16.0 3.68

K ent = 0.5 0.020 1.13 1.68E+05 0.0237 15.9 4.20
L e /D  = 30 0.025 1.41 2.10E+05 0.0235 15.8 4.88

H 0 = 3 m 0.030 1.70 2.52E+05 0.0233 15.7 5.70
A  = 3000 m/(m3/s)2 0.035 1.98 2.94E+05 0.0232 15.6 6.68
H  = 6 m 0.040 2.26 3.36E+05 0.0232 15.5 7.80

p atm = 101 kPa 0.045 2.55 3.78E+05 0.0231 15.4 9.08
p v = 2.34 kPa 0.050 2.83 4.20E+05 0.0230 15.2 10.5
ρ = 1000 kg/m3 0.055 3.11 4.62E+05 0.0230 15.0 12.1
ν = 1.01E-06 m2/s 0.060 3.40 5.04E+05 0.0230 14.8 13.8

0.065 3.68 5.46E+05 0.0229 14.6 15.7
0.070 3.96 5.88E+05 0.0229 14.4 17.7

Error
0.0625 3.54 5.25E+05 0.0229 14.7 14.7 0.00



NPSHA and NPSHR
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Given data: Computed results:

L  = 6 m T  (oC) p v (kPa) ρ  (kg/m3) ν  (m3/s) Q  (m3/s) V  (m/s) Re f NPSHA  (m) NPSHR  (m) Error
e  = 0.26 mm 0 0.661 1000 1.76E-06 0.06290 3.56 3.03E+05 0.0232 14.87 14.87 0.00
D  = 15 cm 5 0.872 1000 1.51E-06 0.06286 3.56 3.53E+05 0.0231 14.85 14.85 0.00

K ent = 0.5 10 1.23 1000 1.30E-06 0.06278 3.55 4.10E+05 0.0230 14.82 14.82 0.00
L e /D  = 30 15 1.71 999 1.14E-06 0.06269 3.55 4.67E+05 0.0230 14.79 14.79 0.00

H 0 = 3 m 20 2.34 998 1.01E-06 0.06257 3.54 5.26E+05 0.0229 14.75 14.75 0.00
A  = 3000 m/(m3/s)2 25 3.17 997 8.96E-07 0.06240 3.53 5.91E+05 0.0229 14.68 14.68 0.00
H  = 6 m 30 4.25 996 8.03E-07 0.06216 3.52 6.57E+05 0.0229 14.59 14.59 0.00

p atm = 101 kPa 35 5.63 994 7.25E-07 0.06187 3.50 7.24E+05 0.0228 14.48 14.48 0.00
ρ = 1000 kg/m3 40 7.38 992 6.59E-07 0.06148 3.48 7.92E+05 0.0228 14.34 14.34 0.00

ν = 1.01E-06 m2/s 45 9.59 990 6.02E-07 0.06097 3.45 8.60E+05 0.0228 14.15 14.15 0.00
50 12.4 988 5.52E-07 0.06031 3.41 9.27E+05 0.0228 13.91 13.91 0.00
55 15.8 986 5.09E-07 0.05948 3.37 9.92E+05 0.0228 13.61 13.61 0.00
60 19.9 983 4.72E-07 0.05846 3.31 1.05E+06 0.0228 13.25 13.25 0.00
65 25.0 980 4.40E-07 0.05716 3.23 1.10E+06 0.0227 12.80 12.80 0.00
70 31.2 978 4.10E-07 0.05548 3.14 1.15E+06 0.0227 12.24 12.24 0.00
75 38.6 975 3.85E-07 0.05342 3.02 1.18E+06 0.0227 11.56 11.56 0.00
80 47.4 972 3.62E-07 0.05082 2.88 1.19E+06 0.0227 10.75 10.75 0.00
85 57.8 969 3.41E-07 0.04754 2.69 1.18E+06 0.0227 9.78 9.78 0.00
90 70.1 965 3.23E-07 0.04332 2.45 1.14E+06 0.0227 8.63 8.63 0.00
95 84.6 962 3.06E-07 0.03767 2.13 1.05E+06 0.0228 7.26 7.26 0.00
100 101 958 2.92E-07 0.02998 1.70 8.71E+05 0.0228 5.70 5.70 0.00

Use Solver  to make the sum of absolute errors between NPSHA and NPSHR  zero by varying the Q 's 0.00



NPSHR increases with temperature because the p v increases; NPHSA decreases because ρ  decreases and p v increases
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Problem 10.58 [3]

Given: Pump and reservoir system

Find: System head curve; Flow rate when pump off; Loss, Power required and cost for 1 m3/s flow rate

Solution:

Basic equations:
p1
ρ

α1
V1

2

2
⋅+ g z1⋅+

⎛⎜
⎜⎝

⎞⎟
⎟⎠

p2
ρ

α2
V2

2

2
⋅+ g z2⋅+

⎛⎜
⎜⎝

⎞⎟
⎟⎠

− hlT hp−= hlT f
L
D
⋅

V2

2
⋅ Σ K⋅

V2

2
⋅+= (K for the exit)

where points 1 and 2 are the reservoir free surfaces, and hp is the pump head

Note also H
h
g

= Pump efficiency: ηp
Wh
Wm

=

Assumptions: 1) p1 = p2 = patm 2) V1 = V2 = 0 3) α2 = 0 4) z1 0= , z2 15− m⋅=   4) K Kent Kent+= 1.5=

From the energy equation g− z2⋅ f
L
D
⋅

V2

2
⋅ hp− K

V2

2
⋅+= hp g z2⋅ f

L
D
⋅

V2

2
⋅+ K

V2

2
⋅+= Hp z2 f

L
D
⋅

V2

2 g⋅
⋅+ K

V2

2 g⋅
⋅+=

Given or available data L 300 m⋅= D 40 cm⋅= e 0.26 mm⋅= (Table 8.1)

ρ 1000
kg

m3
⋅= ν 1.01 10 6−

×
m2

s
⋅= (Table A.8)

The set of equations to solve for each flow rate Q are

V
4 Q⋅

π D2
⋅

= Re
V D⋅

ν
=

1

f
2.0− log

e
D

3.7
2.51

Re f⋅
+

⎛
⎜
⎜
⎝

⎞
⎟
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⋅= Hp z2 f
L
D
⋅

V2

2 g⋅
⋅+ K

V2

2 g⋅
⋅+=

For example, for Q 1
m3

s
⋅= V 7.96

m
s

⋅= Re 3.15 106
×= f 0.0179= Hp 33.1 m⋅=
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The above graph can be plotted in Excel.  In Excel, Solver can be used to find Q for Hp = 0 Q 0.557
m3

s
= (Zero power rate)

At Q 1
m3

s
⋅= we saw that Hp 33.1 m⋅=

Assuming optimum efficiency at Q 1.59 104
× gpm⋅=  from Fig.

10.15 
ηp 92 %⋅=

Then the hydraulic power is Wh ρ g⋅ Hp⋅ Q⋅= Wh 325 kW⋅=

The pump power is then Wm
Wh
ηp

= Wm 2⋅ 706 kW⋅=

If electricity is 10 cents per kW-hr then the hourly cost is about $35

If electricity is 15 cents per kW-hr then the hourly cost is about $53

If electricity is 20 cents per kW-hr then the hourly cost is about $71
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Problem 10.60 [3]

Given: Data on pump and pipe system

Find: Delivery through system

Solution:

Given or available data:

L 1 = 3000 ft ν = 1.23E-05 ft2/s (Table A.7)
D 1 = 9 in K ent = 0.5 (Fig. 8.14)
L 2 = 1000 ft K exp = 1
D 2 = 6 in Q loss = 75 gpm

e  = 0.00085 ft (Table 8.1)



The system and pump heads are computed and plotted below.
To find the operating condition, Goal Seek  is used to vary Q 1

so that the error between the two heads is zero.

Q 1 (gpm) Q 2 (gpm) V 1 (ft/s) V 2 (ft/s) Re 1 Re 2 f 1 f 2 H lT (ft) H pump (ft)
100 25 0.504 0.284 30753 11532 0.0262 0.0324 0.498 55.6
200 125 1.01 1.42 61506 57662 0.0238 0.0254 3.13 54.5
300 225 1.51 2.55 92260 103792 0.0228 0.0242 8.27 52.8
400 325 2.02 3.69 123013 149922 0.0222 0.0237 15.9 50.4
500 425 2.52 4.82 153766 196052 0.0219 0.0234 26.0 47.3
600 525 3.03 5.96 184519 242182 0.0216 0.0233 38.6 43.5
700 625 3.53 7.09 215273 288312 0.0215 0.0231 53.6 39.0

Q 1 (gpm) Q 2 (gpm) V 1 (ft/s) V 2 (ft/s) Re 1 Re 2 f 1 f 2 H lT (ft) H pump (ft) Error)
627 552 3.162 6.263 192785 254580 0.0216 0.0232 42.4 42.4 0%
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Given or available data (Note: final results will vary depending on fluid data selected) :

L  = 500 m K ent = 0.5 (Fig. 8.14)
e  = 0.046 mm (Table 8.1) K exp = 1

D   = 20 cm L e/D elbow = 60 (Two)
ν = 1.01E-06 m2/s (Table A.8) L e/D valve = 8 (Table 8.4)

z 2 = 7.5 m



The pump data is curve-fitted to H pump = H 0 - AQ 2.
The system and pump heads are computed and plotted below.
To find the operating condition, Solver  is used to vary Q
so that the error between the two heads is minimized.

Q  (m3/s) Q 2 H p (m) V  (m/s) Re f H p (fit) H lT + z 2 (m)

0.000 0.00000 27.5 0.00 0 0.0000 27 7.5
0.025 0.00063 27.0 0.80 157579 0.0179 27 9.0
0.050 0.00250 25.0 1.59 315158 0.0164 25 13.1
0.075 0.00563 22.0 2.39 472737 0.0158 22 19.7
0.100 0.01000 18.0 3.18 630317 0.0154 18 28.7
0.125 0.01563 13.0 3.98 787896 0.0152 12.9 40.2
0.150 0.02250 6.5 4.77 945475 0.0150 6.5 54.1

H 0 = 27 m
A  = 9.30E+02 /(m3/s)2

Q  (m3/s) V  (m/s) Re f H p (fit) H lT + z 2 (m) Error)
0.0803 2.56 506221 0.0157 21.4 21.4 0.00%

Repeating for: D   = 30 cm

Q  (m3/s) V  (m/s) Re f H p (fit) H lT + z 2 (m) Error)
0.1284 1.82 539344 0.0149 12.1 12.1 0.00%

Repeating for: D   = 40 cm

Q  (m3/s) V  (m/s) Re f H p (fit) H lT + z 2 (m) Error)
0.1413 1.12 445179 0.0148 8.9 8.9 0.00%
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Problem 10.62 [3]

Given: Data on pump and pipe system

Find: Delivery through system; valve position to reduce delivery by half

Solution:

Given or available data (Note: final results will vary depending on fluid data selected):

L  = 1200 ft K ent = 0.5 (Fig. 8.14)
D   = 12 in K exp = 1
e  = 0.00015 ft (Table 8.1) L e/D elbow = 30
ν = 1.23E-05 ft2/s (Table A.7) L e/D valve = 8 (Table 8.4)

Δz  = -50 ft



The pump data is curve-fitted to H pump = H 0 - AQ 2.
The system and pump heads are computed and plotted below.
To find the operating condition, Solver  is used to vary Q
so that the error between the two heads is minimized.

Q  (gpm) Q 2 (gpm) H pump (ft) V  (ft/s) Re f H pump (fit) H lT + Δz  (ft)
0 0 179 0.00 0 0.0000 180 50.0

500 250000 176 1.42 115325 0.0183 176 50.8
1000 1000000 165 2.84 230649 0.0164 164 52.8
1500 2250000 145 4.26 345974 0.0156 145 56.0
2000 4000000 119 5.67 461299 0.0151 119 60.3
2500 6250000 84 7.09 576623 0.0147 84.5 65.8
3000 9000000 43 8.51 691948 0.0145 42.7 72.4

H 0 = 180 ft
A  = 1.52E-05 ft/(gpm)2

Q  (gpm) V  (ft/s) Re f H pump (fit) H lT + Δz (ft) Error)
2705 7.67 623829 0.0146 68.3 68.3 0%

For the valve setting to reduce the flow by half, use Solver to vary the value below to minimize the error.

L e/D valve = 26858

Q  (gpm) V  (ft/s) Re f H pump (fit) H lT + Δz (ft) Error)
1352 3.84 311914 0.0158 151.7 151.7 0%
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Problem 10.63 [3]

Given: Data on pump and pipe system

Find: Delivery through series pump system; valve position to reduce delivery by half

Solution:

Given or available data (Note: final results will vary depending on fluid data selected):

L  = 1200 ft K ent = 0.5 (Fig. 8.14)
D   = 12 in K exp = 1
e  = 0.00015 ft (Table 8.1) L e/D elbow = 30
ν = 1.23E-05 ft2/s (Table A.7) L e/D valve = 8 (Table 8.4)

Δz  = -50 ft



The pump data is curve-fitted to H pump = H 0 - AQ 2.
The system and pump heads are computed and plotted below.
To find the operating condition, Solver  is used to vary Q
so that the error between the two heads is minimized.

Q  (gpm) Q 2 (gpm) H pump (ft) H pump (fit) V (ft/s) Re f H pumps (par) H lT + Δz  (ft)
0 0 179 180 0.00 0 0.0000 359 50.0

500 250000 176 176 1.42 115325 0.0183 351 50.8
1000 1000000 165 164 2.84 230649 0.0164 329 52.8
1500 2250000 145 145 4.26 345974 0.0156 291 56.0
2000 4000000 119 119 5.67 461299 0.0151 237 60.3
2500 6250000 84 85 7.09 576623 0.0147 169 65.8
3000 9000000 43 43 8.51 691948 0.0145 85 72.4
3250 9.22 749610 0.0144 38 76.1

H 0 = 180 ft
A  = 1.52E-05 ft/(gpm)2

Q  (gpm) V  (ft/s) Re f H pumps (par) H lT + Δz (ft) Error)
3066 8.70 707124 0.0145 73.3 73.3 0%

For the valve setting to reduce the flow by half, use Solver  to vary the value below to minimize the error.

L e/D valve = 50723

Q  (gpm) V  (ft/s) Re f H pumps (par) H lT + Δz (ft) Error)
1533 4.35 353562 0.0155 287.7 287.7 0%
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Problem 10.64 [3]

Given: Data on pump and pipe system

Find: Delivery through parallel pump system; valve position to reduce delivery by half

Solution:

Given or available data (Note: final results will vary depending on fluid data selected):

L  = 1200 ft K ent = 0.5 (Fig. 8.14)
D   = 12 in K exp = 1
e  = 0.00015 ft (Table 8.1) L e/D elbow = 30
ν = 1.23E-05 ft2/s (Table A.7) L e/D valve = 8 (Table 8.4)

Δz  = -50 ft



The pump data is curve-fitted to H pump = H 0 - AQ 2.
The system and pump heads are computed and plotted below.
To find the operating condition, Solver  is used to vary Q
so that the error between the two heads is minimized.

Q  (gpm) Q 2 (gpm) H pump (ft) H pump (fit) V (ft/s) Re f H pumps (par) H lT + Δz  (ft)
0 0 179 180 0.00 0 0.0000 180 50.0

500 250000 176 176 1.42 115325 0.0183 179 50.8
1000 1000000 165 164 2.84 230649 0.0164 176 52.8
1500 2250000 145 145 4.26 345974 0.0156 171 56.0
2000 4000000 119 119 5.67 461299 0.0151 164 60.3
2500 6250000 84 85 7.09 576623 0.0147 156 65.8
3000 9000000 43 43 8.51 691948 0.0145 145 72.4
3500 9.93 807273 0.0143 133 80.1
4000 11.35 922597 0.0142 119 89.0
4500 12.77 1037922 0.0141 103 98.9
5000 14.18 1153247 0.0140 85 110.1

H 0 = 180 ft
A  = 1.52E-05 ft/(gpm)2

Q  (gpm) V  (ft/s) Re f H pumps (par) H lT + Δz (ft) Error)
4565 12.95 1053006 0.0141 100.3 100.3 0%

For the valve setting to reduce the flow by half, use Solver  to vary the value below to minimize the error.

L e/D valve = 9965

Q  (gpm) V  (ft/s) Re f H pumps (par) H lT + Δz (ft) Error)
2283 6.48 526503 0.0149 159.7 159.7 0%
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Problem 10.65 [4]

Given: Data on pump and pipe system, and their aging

Find: Reduction in delivery through system after 20 and 40 years (aging and non-aging pumps)

Solution:

Given or available data (Note: final results will vary depending on fluid data selected) :

L  = 1200 ft K ent = 0.5 (Fig. 8.14)
D   = 12 in K exp = 1
e  = 0.00015 ft (Table 8.1) L e/D elbow = 30
ν = 1.23E-05 ft2/s (Table A.7) L e/D valve = 8 (Table 8.4)

Δz  = -50 ft

The pump data is curve-fitted to H pump = H 0 - AQ 2.
The system and pump heads are computed and plotted below.
To find the operating condition, Solver  is used to vary Q
so that the error between the two heads is minimized.



New System:

Q  (gpm) Q 2 (gpm) H pump (ft) V  (ft/s) Re f H pump (fit) H lT + Δz  (ft)
0 0 179 0.00 0 0.0000 180 50.0

500 250000 176 1.42 115325 0.0183 176 50.8
1000 1000000 165 2.84 230649 0.0164 164 52.8
1500 2250000 145 4.26 345974 0.0156 145 56.0
2000 4000000 119 5.67 461299 0.0151 119 60.3
2500 6250000 84 7.09 576623 0.0147 84.5 65.8
3000 9000000 43 8.51 691948 0.0145 42.7 72.4

H 0 = 180 ft
A  = 1.52E-05 ft/(gpm)2

Q  (gpm) V  (ft/s) Re f H pump (fit) H lT + Δz (ft) Error)
2705 7.67 623829 0.0146 68.3 68.3 0%

20-Year Old System:

f  = 2.00 f new

Q  (gpm) V  (ft/s) Re f H pump (fit) H lT + Δz (ft) Error) Flow reduction:
2541 7.21 586192 0.0295 81.4 81.4 0% 163 gpm

6.0% Loss

40-Year Old System:

f  = 2.40 f new

Q  (gpm) V  (ft/s) Re f H pump (fit) H lT + Δz (ft) Error) Flow reduction:
2484 7.05 572843 0.0354 85.8 85.8 0% 221 gpm

8.2% Loss

20-Year Old System and Pump:

f  = 2.00 f new H pump = 0.90 H new

Q  (gpm) V  (ft/s) Re f H pump (fit) H lT + Δz (ft) Error) Flow reduction:
2453 6.96 565685 0.0296 79.3 79.3 0% 252 gpm

9.3% Loss

40-Year Old System and Pump:

f  = 2.40 f new H pump = 0.75 H new

Q  (gpm) V  (ft/s) Re f H pump (fit) H lT + Δz (ft) Error) Flow reduction:
2214 6.28 510754 0.0358 78.8 78.8 0% 490 gpm

18.1% Loss
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Problem 10.66 [4]

Given: Data on pump and pipe system

Find: Delivery through series pump system; reduction after 20 and 40 years

Solution:

Given or available data (Note: final results will vary depending on fluid data selected) :

L  = 1200 ft K ent = 0.5 (Fig. 8.14)
D   = 12 in K exp = 1
e  = 0.00015 ft (Table 8.1) L e/D elbow = 30
ν = 1.23E-05 ft2/s (Table A.7) L e/D valve = 8 (Table 8.4)

Δz  = -50 ft

The pump data is curve-fitted to H pump = H 0 - AQ 2.
The system and pump heads are computed and plotted below.
To find the operating condition, Solver  is used to vary Q
so that the error between the two heads is minimized.

Q  (gpm) Q 2 (gpm) H pump (ft) H pump (fit) V (ft/s) Re f H pumps (par) H lT + Δz  (ft)
0 0 179 180 0.00 0 0.0000 359 50.0

500 250000 176 176 1.42 115325 0.0183 351 50.8
1000 1000000 165 164 2.84 230649 0.0164 329 52.8
1500 2250000 145 145 4.26 345974 0.0156 291 56.0
2000 4000000 119 119 5.67 461299 0.0151 237 60.3
2500 6250000 84 85 7.09 576623 0.0147 169 65.8
3000 9000000 43 43 8.51 691948 0.0145 85 72.4
3250 9.22 749610 0.0144 38 76.1



H 0 = 180 ft
A  = 1.52E-05 ft/(gpm)2

Q  (gpm) V  (ft/s) Re f H pumps (par) H lT + Δz (ft) Error)
3066 8.70 707124 0.0145 73.3 73.3 0%

20-Year Old System:

f  = 2.00 f new

Q  (gpm) V  (ft/s) Re f H pumps (par) H lT + Δz (ft) Error) Flow reduction:
2964 8.41 683540 0.0291 92.1 92.1 0% 102 gpm

3.3% Loss

40-Year Old System:

f  = 2.40 f new

Q  (gpm) V  (ft/s) Re f H pump (fit) H lT + Δz (ft) Error) Flow reduction:
2925 8.30 674713 0.0349 98.9 98.9 0% 141 gpm

4.6% Loss

20-Year Old System and Pumps:

f  = 2.00 f new H pump = 0.90 H new

Q  (gpm) V  (ft/s) Re f H pump (fit) H lT + Δz (ft) Error) Flow reduction:
2915 8.27 672235 0.0291 90.8 90.8 0% 151 gpm

4.9% Loss

40-Year Old System and Pumps:

f  = 2.40 f new H pump = 0.75 H new

Q  (gpm) V  (ft/s) Re f H pump (fit) H lT + Δz (ft) Error) Flow reduction:
2772 7.86 639318 0.0351 94.1 94.1 0% 294 gpm

9.6% Loss
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Problem 10.67 [4]

Given: Data on pump and pipe system

Find: Delivery through parallel pump system; reduction in delivery after 20 and 40 years

Solution:

Given or available data (Note: final results will vary depending on fluid data selected) :

L  = 1200 ft K ent = 0.5 (Fig. 8.14)
D   = 12 in K exp = 1
e  = 0.00015 ft (Table 8.1) L e/D elbow = 30
ν = 1.23E-05 ft2/s (Table A.7) L e/D valve = 8 (Table 8.4)

Δz  = -50 ft

The pump data is curve-fitted to H pump = H 0 - AQ 2.
The system and pump heads are computed and plotted below.
To find the operating condition, Solver  is used to vary Q
so that the error between the two heads is minimized.



Q  (gpm) Q 2 (gpm) H pump (ft) H pump (fit) V (ft/s) Re f H pumps (par) H lT + Δz  (ft)

0 0 179 180 0.00 0 0.0000 180 50.0
500 250000 176 176 1.42 115325 0.0183 179 50.8
1000 1000000 165 164 2.84 230649 0.0164 176 52.8
1500 2250000 145 145 4.26 345974 0.0156 171 56.0
2000 4000000 119 119 5.67 461299 0.0151 164 60.3
2500 6250000 84 85 7.09 576623 0.0147 156 65.8
3000 9000000 43 43 8.51 691948 0.0145 145 72.4
3500 9.93 807273 0.0143 133 80.1
4000 11.35 922597 0.0142 119 89.0
4500 12.77 1037922 0.0141 103 98.9
5000 14.18 1153247 0.0140 85 110.1

H 0 = 180 ft
A  = 1.52E-05 ft/(gpm)2

Q  (gpm) V  (ft/s) Re f H pumps (par) H lT + Δz (ft) Error)
4565 12.95 1053006 0.0141 100.3 100.3 0%

20-Year Old System:

f  = 2.00 f new

Q  (gpm) V  (ft/s) Re f H pumps (par) H lT + Δz (ft) Error) Flow reduction:
3906 11.08 900891 0.0284 121.6 121.6 0% 660 gpm

14.4% Loss

40-Year Old System:

f  = 2.40 f new

Q  (gpm) V  (ft/s) Re f H pump (fit) H lT + Δz (ft) Error) Flow reduction:
3710 10.52 855662 0.0342 127.2 127.2 0% 856

18.7%

20-Year Old System and Pumps:

f  = 2.00 f new H pump = 0.90 H new

Q  (gpm) V  (ft/s) Re f H pump (fit) H lT + Δz (ft) Error) Flow reduction:
3705 10.51 854566 0.0285 114.6 114.6 0% 860 gpm

18.8% Loss

40-Year Old System and Pumps:

f  = 2.40 f new H pump = 0.75 H new

Q  (gpm) V  (ft/s) Re f H pump (fit) H lT + Δz (ft) Error) Flow reduction:
3150 8.94 726482 0.0347 106.4 106.4 0% 1416

31.0%
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Problem 10.72 [3]

 
 

Given: Flow from pump to reservoir

Find: Select a pump to satisfy NPSHR

Solution:

Basic equations
p1
ρ

α

V1
2

2
⋅+ g z1⋅+

⎛⎜
⎜⎝

⎞⎟
⎟⎠

p2
ρ

α

V2
2

2
⋅+ g z2⋅+

⎛⎜
⎜⎝

⎞⎟
⎟⎠

− hlT hp−= hlT hl hlm+= f
L
D
⋅

V1
2

2
⋅ Kexit

V1
2

2
⋅+=

Assumptions: 1) Steady flow 2) Incompressible flow 3) α at 1 is approximately 1 4) V2 <<

Note that we compute head per unit weight, H, not head per unit mass, h, so the
energy equation between Point 1 and the free surface (Point 2) becomes

p1
ρ g⋅

V2

2 g⋅
+

⎛
⎜
⎝

⎞
⎟
⎠

z2( )− f
L
D
⋅

V2

2 g⋅
⋅ Kexit

V2

2 g⋅
⋅+ Hp−=

Solving for Hp Hp z2
p1
ρ g⋅

−
V2

2 g⋅
− f

L
D
⋅

V2

2 g⋅
⋅+ Kexit

V2

2 g⋅
⋅+=

From Table A.7 (68oF) ρ 1.94
slug

ft3
⋅= ν 1.08 10 5−

×
ft2

s
⋅= Re

V D⋅
ν

= Re 6.94 105
×=

For commercial steel pipe e 0.00015 ft⋅= (Table 8.1) so e
D

0.0002=

Flow is turbulent: Given
1

f
2.0− log

e
D

3.7
2.51

Re f⋅
+

⎛
⎜
⎜
⎝

⎞
⎟
⎟
⎠

⋅= f 0.0150=

For the exit Kexit 1.0= so we find Hp z2
p1
ρ g⋅

− f
L
D
⋅

V2

2 g⋅
⋅+=

Note that for an NPSHR of 15 ft this means
p1
ρ g⋅

15 ft⋅= Hp z2
p1
ρ g⋅

− f
L
D
⋅

V2

2 g⋅
⋅+= Hp 691ft=

Note that Q
π D2
⋅
4

V⋅= Q 4.42
ft3

s
= Q 1983gpm=

For this combination of Q and Hp, from Fig. D.11 the best pump appears to be a Peerless two-stage 10TU22C operating at 1750 rpm

After 10 years, from Problem 10.65, the friction factor will have increased by a factor of 2.2 f 2.2 0.150×= f 0.330=

We now need to solve Hp z2
p1
ρ g⋅

− f
L
D
⋅

V2

2 g⋅
⋅+= for the new velocity V

V
2 D⋅ g⋅

f L⋅
Hp z2−

p1
ρ g⋅

+
⎛
⎜
⎝

⎞
⎟
⎠

⋅= V 2.13
ft
s

= and f will still be 2.2 0.150×

Q
π D2
⋅
4

V⋅= Q 0.94
ft3

s
= Q 423gpm= Much less!
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Pipe Data:

Pipe L  (ft) D (in) e (ft)
A 150 1.5 0.00085
B 150 1.5 0.00085
C 150 1 0.00085
D 150 1.5 0.00085



Fluid Properties:

ρ = 1.94 slug/ft3

μ = 2.10E-05 lbf·s/ft2

Flow Rate:

Q  = 300 gpm
= 0.668 ft3/s

Flows: Q A (ft3/s) Q B (ft3/s) Q C (ft3/s) Q D (ft3/s)
0.668 0.499 0.169 0.668

V A (ft/s) V B (ft/s) V C (ft/s) V D (ft/s)
54.47 40.67 31.04 54.47

Re A Re B Re C Re D

6.29E+05 4.70E+05 2.39E+05 6.29E+05

f A f B f C f D

0.0335 0.0336 0.0384 0.0335

Heads: Δp A (psi) Δp B (psi) Δp C (psi) Δp D (psi)
804.0 448.8 448.8 804.0

Constraints: (6) Q  = Q B + Q C (8) Δp B = Δp C

0.00% 0.00%

Error: 0.00% Vary Q B and Q C

using Solver  to minimize total error

For the pump: Δp  (psi) Q  (gpm) P (hp)
2057 300 360

This is a very high pressure; a sequence of pumps would be needed





Given data: Computed results: Set up Solver so that it varies all flow rates to make the total head error zero

L  = 300 m H pump (m) Q  (m3/s) Q a  (m3/s) V a  (m/s) Re a f a H pump (Eq. 1) Q b  (m3/s) V b  (m/s) Re b f b H pump (Eq. 2) H  (Errors)
e  = 0.26 mm 24.0 0.070 0.000 0.000 8.62E+00 7.4264 24.0 0.070 2.230 4.42E+05 0.0215 24.0 0.00

D  = 20 cm 24.5 0.088 0.016 0.506 1.00E+05 0.0231 24.5 0.072 2.292 4.54E+05 0.0215 24.5 0.00
K  = 1.5 25.0 0.097 0.023 0.72 1.44E+05 0.0225 25.0 0.074 2.35 4.66E+05 0.0215 25.0 0.00

L ea /D  = 90 25.5 0.104 0.028 0.89 1.77E+05 0.0223 25.5 0.076 2.41 4.78E+05 0.0215 25.5 0.00
L eb /D  = 80 26.0 0.110 0.033 1.03 2.05E+05 0.0221 26.0 0.078 2.47 4.89E+05 0.0215 26.0 0.00

H a  = 24 m 26.5 0.116 0.036 1.16 2.30E+05 0.0220 26.5 0.079 2.52 5.00E+05 0.0215 26.5 0.00
H b  = 15 m 27.0 0.121 0.040 1.27 2.52E+05 0.0219 27.0 0.081 2.58 5.11E+05 0.0214 27.0 0.00

ρ = 1000 kg/m3 27.5 0.126 0.043 1.38 2.73E+05 0.0218 27.5 0.083 2.63 5.21E+05 0.0214 27.5 0.00
ν = 1.01E-06 m2/s 28.0 0.131 0.046 1.47 2.92E+05 0.0218 28.0 0.084 2.69 5.32E+05 0.0214 28.0 0.00

28.5 0.135 0.049 1.56 3.10E+05 0.0217 28.5 0.086 2.74 5.42E+05 0.0214 28.5 0.00
29.0 0.139 0.052 1.65 3.27E+05 0.0217 29.0 0.088 2.79 5.52E+05 0.0214 29.0 0.00
29.5 0.144 0.054 1.73 3.43E+05 0.0217 29.5 0.089 2.84 5.62E+05 0.0214 29.5 0.00
30.0 0.148 0.057 1.81 3.59E+05 0.0216 30.0 0.091 2.89 5.72E+05 0.0214 30.0 0.00

For the pump head less than the upper reservoir head flow will be out of the reservoir (into the lower one) Total Error: 0.00

Head Versus Flow Rate
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Problem 10.78 [4]

Given: Data on flow from reservoir/pump

Find: Appropriate pump; Reduction in flow after 10 years

Solution:

Basic equation:
p1
ρ g⋅

α

V1
2

2 g⋅
⋅+ z1+

⎛⎜
⎜⎝

⎞⎟
⎟⎠

p4
ρ g⋅

α

V4
2

2 g⋅
⋅+ z4+

⎛⎜
⎜⎝

⎞⎟
⎟⎠

− HlT Hp−= for flow from 1 to 4

HlT f
L
D
⋅

V2

2 g⋅
⋅ f

Le
D

⋅
V2

2 g⋅
⋅+ K

V2

2 g⋅
⋅+=

Assumptions: 1) Steady flow 2) Incompressible flow 3) α at 1 and 2 is approximately 1 4) V2 = V3 = V4 (constant area pipe)

Given or available data ρ 1000
kg

m3
⋅= ν 1.01 10 6−

×
m2

s
⋅= pv 2.34 kPa⋅= (Table A.8)

p2 150 kPa⋅= p3 450 kPa⋅= D 15 cm⋅= e 0.046 mm⋅= Q 0.075
m3

s
⋅=

z1 20 m⋅= z4 35 m⋅= V
4 Q⋅

π D2
⋅

= V 4.24
m
s

=

For minor losses we have Four elbows:
Le
D

4 12×= 48= (Fig. 8.16) Square inlet: Kent 0.5=

At the pump inlet NPSHA
p2

1
2

ρ⋅ V2
⋅+ pv−

ρ g⋅
= NPSHA 16.0m=

The head rise through the pump is Hp
p3 p2−

ρ g⋅
= Hp 30.6m=

Hence for a flow rate of Q 0.075
m3

s
=  or Q 1189gpm=  and Hp 30.6m= orHp 100ft= , from Appendix

D. Fig. D3 a Peerless4AE11 would suffice

We do not know the pipe length L!  Solving the energy equation for it:z1 z4− HlT Hp−= f
L
D
⋅

V2

2 g⋅
⋅ f

Le
D

⋅
V2

2 g⋅
⋅+ Kent

V2

2 g⋅
⋅+ Hp−=

For f Re
V D⋅

ν
= Re 6.303 105

×= and e
D

3.07 10 4−
×=

Given
1

f
2.0− log

e
D

3.7
2.51

Re f⋅
+

⎛
⎜
⎜
⎝

⎞
⎟
⎟
⎠

⋅= f 0.0161=



Hence, substituting values L
2 g⋅ D⋅

f V2
⋅

z1 z4− Hp+( )⋅ D
Le
D

⎛
⎜
⎝

⎞
⎟
⎠

⋅−
Kent D⋅

f
−= L 146m=

From Problem 10.65, for a pipe D 0.15m=  or D 5.91 in= , the aging over 10 years leads to fworn 2.2 f⋅=

We need to solve the energy equation for a new V

Vworn
2 g⋅ z1 z4− Hp+( )⋅

fworn
L
D

Le
D

+
⎛
⎜
⎝

⎞
⎟
⎠

⋅ Kent+

= Vworn 2.88
m
s

=

Hence Qworn
π D2
⋅
4

Vworn⋅= Qworn 0.0510
m3

s
=

ΔQ Qworn Q−= ΔQ 0.0240−
m3

s
=

ΔQ
Q

32.0− %=

Check f Reworn
Vworn D⋅

ν
= Given

1

f
2.0− log

e
D

3.7
2.51

Reworn f⋅
+

⎛
⎜
⎜
⎝

⎞
⎟
⎟
⎠

⋅= f 0.0165=

Hence using 2.2 x 0.0161 is close enough to using 2.2 x 0.0165
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Problem 10.84 [4]

Given: Fire nozzle/pump system

Find: Appropriate pump; Impeller diameter; Pump power input needed

Solution:

Basic equations
p2
ρ

α

V2
2

2
⋅+ g z2⋅+

⎛⎜
⎜⎝

⎞⎟
⎟⎠

p3
ρ

α

V3
2

2
⋅+ g z3⋅+

⎛⎜
⎜⎝

⎞⎟
⎟⎠

− hl= hl f
L
D
⋅

V2
2

2
⋅= for the hose

Assumptions: 1) Steady flow 2) Incompressible flow 3) α at 2 and 3 is approximately 1 4) No minor loss

p2
ρ

α

V2
2

2
⋅+ g z2⋅+

⎛⎜
⎜⎝

⎞⎟
⎟⎠

p1
ρ

α

V1
2

2
⋅+ g z1⋅+

⎛⎜
⎜⎝

⎞⎟
⎟⎠

− hpump= for the pump

Assumptions: 1) Steady flow 2) Incompressible flow 3) α at 1 and 2 is approximately 1 4) No minor loss

The first thing we need is the flow rate.  Below we repeat Problem 8.159 calculations

Hence for the hose Δp
ρ

p2 p3−

ρ
= f

L
D
⋅

V2

2
⋅= or V

2 Δp⋅ D⋅
ρ f⋅ L⋅

=

We need to iterate to solve this for V because f is unknown until Re is known.  This can be done using Excel's Solver, but here:

Δp 750 kPa⋅= L 100 m⋅= e 0= D 3.5 cm⋅= ρ 1000
kg

m3
⋅= ν 1.01 10 6−

×
m2

s
⋅=

Make a guess for f f 0.01= V
2 Δp⋅ D⋅

ρ f⋅ L⋅
= V 7.25

m
s

= Re
V D⋅

ν
= Re 2.51 105

×=

Given
1

f
2.0− log

e
D

3.7
2.51

Re f⋅
+

⎛
⎜
⎜
⎝

⎞
⎟
⎟
⎠

⋅= f 0.0150=

V
2 Δp⋅ D⋅

ρ f⋅ L⋅
= V 5.92

m
s

= Re
V D⋅

ν
= Re 2.05 105

×=

Given
1

f
2.0− log

e
D

3.7
2.51

Re f⋅
+

⎛
⎜
⎜
⎝

⎞
⎟
⎟
⎠

⋅= f 0.0156=

V
2 Δp⋅ D⋅

ρ f⋅ L⋅
= V 5.81

m
s

= Re
V D⋅

ν
= Re 2.01 105

×=

Given
1

f
2.0− log

e
D

3.7
2.51

Re f⋅
+

⎛
⎜
⎜
⎝

⎞
⎟
⎟
⎠

⋅= f 0.0156=

V
2 Δp⋅ D⋅

ρ f⋅ L⋅
= V 5.80

m
s

= Re
V D⋅

ν
= Re 2.01 105

×=



Q
π D2
⋅
4

V⋅= Q 5.578 10 3−
×

m3

s
= Q 0.335

m3

min
⋅=

We have p1 350 kPa⋅= p2 700 kPa⋅ 750 kPa⋅+= p2 1450kPa=

For the pump p2
ρ

α

V2
2

2
⋅+ g z2⋅+

⎛⎜
⎜⎝

⎞⎟
⎟⎠

p1
ρ

α

V1
2

2
⋅+ g z1⋅+

⎛⎜
⎜⎝

⎞⎟
⎟⎠

− hpump=

so hpump
p2 p1−

ρ
= or Hpump

p2 p1−

ρ g⋅
= Hpump 112m=

We need a pump that can provide a flow of Q 0.335
m3

min
=  or Q 88.4gpm= , with a head of Hpump 112m=  or Hpump 368ft=

From Appendix D, Fig. D.1 we see that a Peerless 2AE11 can provide this kind of flow/head combination; it could also
handle four such hoses (the flow rate would be 4 Q⋅ 354gpm= ).  An impeller diameter could be chosen from
proprietary curves.

The required power input is Wm
Wh
ηp

= where we choose ηp 75 %⋅=   from Fig. 10.15

Wm
ρ Q⋅ g⋅ Hpump⋅

ηp
= Wm 8.18kW= for one hose or 4 Wm⋅ 32.7kW= for four

Prequired
Ppump

η
= Prequired

6.14 kW⋅
70 %⋅

= Prequired 8.77 kW⋅= or 4 Prequired⋅ 35.1kW= for four



ρw = 1000 kg/m3
Fitting a 2nd order polynomial to each set of data we find

Δp =-1.32Q 2 + 5.85Q  + 48.0
Q  (m3/s) Δp  (mm) Pm (kW) Ph (kW) η (%) η =-0.0426Q 2 + 0.389Q -0.0267

3 53 2.05 1.56 76.1%
4 51 2.37 2.00 84.4% Finally, we use Solver to maximize η  by varying Q :
5 45 2.60 2.21 84.9%
6 35 2.62 2.06 78.6% Q (m3/s) Δp (mm) η (%)

7 23 2.61 1.58 60.5% 4.57 47.2 86.1%
8 11 2.40 0.86 36.0%
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ρw = 1000 kg/m3 Fitting a 2nd order polynomial to each set of data we find
ρair = 1.225 kg/m3 Δp =-1.32Q 2 + 5.85Q  + 48.0

νair = 1.50.E-05 m2/s
L = 15 m User Solver to vary H so the error in Δp is zero

Assume smooth ducting Fan
Q (m3/s) Δp  (mm)

Note: Efficiency curve not needed for this problem 7.08 23.3
Q  (m3/s) Δp  (mm) Pm (kW) Ph (kW) η (%)

3 53 2.05 1.56 76.1% Duct
4 51 2.37 2.00 84.4% H (m) V (m/s) Re f Δp  (mm)
5 45 2.60 2.21 84.9% 0.472 31.73 9.99.E+05 0.0116 23.3
6 35 2.62 2.06 78.6%
7 23 2.61 1.58 60.5% Error in Δp 0.00%
8 11 2.40 0.86 36.0%

Answers:
Q (m3/s) H (m) Q (m3/s) H  (m)

5.75 0.394 7.08 0.472

Fan Performance Curve
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At Q  = 5.75 m3/s
h dyn = 4 mm Hence V  = 8.00 m/s

A  = 0.71838 m2

ρw = 1000 kg/m3 Fitting a 2nd order polynomial to each set of data we find
ρair = 1.225 kg/m3

h t  =  -0.12Q 2 + 0.585Q  + 4.7986
Q  (m3/s) Δp  (mm) Pm (kW) h dyn (mm) h t  (cm) Ph (kW) η (%) Ph  = -0.133Q 2 + 1.43Q  - 1.5202

3 53 2.05 1.09 5.41 1.59 77.7% η = -0.0331Q 2 + 0.330Q+ 0.0857
4 51 2.37 1.94 5.29 2.08 87.6%
5 45 2.60 3.02 4.80 2.36 90.6%Finally, we use Solver to maximize η  by varying Q :
6 35 2.62 4.36 3.94 2.32 88.4%
7 23 2.61 5.93 2.89 1.99 76.1% Q (m3/s) h t  (cm) Ph (kW) η (%)

8 11 2.40 7.74 1.87 1.47 61.3% 4.98 4.73 2.30 90.8%
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Problem 10.88 [3]

Given: Data on centrifugal fan and various sizes

Find: Suitable fan; Fan speed and input power

Solution:

Basic equations: Q'
Q

ω'
ω

⎛⎜
⎝

⎞⎟
⎠

D'
D

⎛⎜
⎝

⎞⎟
⎠

3
⋅=

h'
h

ω'
ω

⎛⎜
⎝

⎞⎟
⎠

2 D'
D

⎛⎜
⎝

⎞⎟
⎠

2
⋅=

P'
P

ω'
ω

⎛⎜
⎝

⎞⎟
⎠

3 D'
D

⎛⎜
⎝

⎞⎟
⎠

5
⋅=

We choose data from the middle of the table above as being in the region of the best efficiency

Q 5
m3

s
⋅= h 45 mm⋅= P 2.62 kW⋅= and ω 650 rpm⋅= D 1 m⋅=

The flow and head are Q' 14
m3

s
⋅= h' 25 mm⋅=

These equations are the scaling laws for scaling from the table data to the new fan.  Solving for scaled fan speed, and
diameter using the first two equations

ω' ω
Q
Q'
⎛⎜
⎝

⎞⎟
⎠

1
2

⋅
h'
h

⎛⎜
⎝

⎞⎟
⎠

3
4

⋅= ω' 250 rpm= D' D
Q'
Q

⎛⎜
⎝

⎞⎟
⎠

1
2

⋅
h
h'

⎛⎜
⎝

⎞⎟
⎠

1
4

⋅= D' 1.938m=

This size is too large; choose (by trial and error)

Q 7
m3

s
⋅= h 23 mm⋅= P 2.61 kW⋅=

ω' ω
Q
Q'
⎛⎜
⎝

⎞⎟
⎠

1
2

⋅
h'
h

⎛⎜
⎝

⎞⎟
⎠

3
4

⋅= ω' 489 rpm= D' D
Q'
Q

⎛⎜
⎝

⎞⎟
⎠

1
2

⋅
h
h'

⎛⎜
⎝

⎞⎟
⎠

1
4

⋅= D' 1.385m=

Hence it looks like the largest fan (1.375 m) will be the only fit; it must run at about 500 rpm.  Note that it will NOT be running at
best efficiency.  The power will be

P' P
ω'
ω

⎛⎜
⎝

⎞⎟
⎠

3
⋅

D'
D

⎛⎜
⎝

⎞⎟
⎠

5
⋅= P' 5.67kW=
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Problem 10.92 [3]

 

CS 

x 
y 

2h 

  
V2 = V3 = V V1 

V4 

Given: Data on boat and propeller

Find: Propeller diameter; Thrust at rest; Thrust at 30 mph

Solution:

Basic equation: (4.26)

Assumption: 1) Atmospheric pressure on CS 2) Horizontal 3) Steady w.r.t. the CV 4) Use velocities relative to CV

The x-momentum is then T u1 mrate−( )⋅ u4 mrate( )⋅+= V4 V1−( ) mrate⋅= where mrate 90
lbm

s
⋅=  is the mass flow rate

It can be shown (see Example 10.13) that V
1
2

V4 V1+( )⋅=

For the static case V1 0 mph⋅= V4 90 mph⋅= so V
1
2

V4 V1+( )⋅= V 45mph=

From continuity mrate ρ V⋅ A⋅= ρ V⋅
π D2
⋅
4

⋅= with ρ 0.002377
slug

ft3
⋅=

Hence D
4 mrate⋅

ρ π⋅ V⋅
= D 4.76 ft=

For V1 = 0 T mrate V4 V1−( )⋅= T 369 lbf=

When in motion V1 30 mph⋅= and V
1
2

V4 V1+( )⋅= so V4 2 V⋅ V1−= V4 60mph=

Hence for V1 = 30 mph T mrate V4 V1−( )⋅= T 123 lbf=



Problem 10.93 [3]

Given: Data on air boat and propeller

Find: Thrust at rest; Thrust at 12.5 m/s

Solution:

Assume the aircraft propeller coefficients in Fi.g 10.40 are applicable to this propeller.

At V = 0, J = 0.  Extrapolating from Fig. 10.40b CF 0.16=

We also have D 1.5 m⋅= n 1800 rpm⋅= n 30
rev
s

⋅= and ρ 1.225
kg

m3
⋅=

The thrust at standstill (J = 0) is found from FT CF ρ⋅ n2
⋅ D4

⋅= (Note: n is in rev/s) FT 893N=

At a speed V 12.5
m
s

⋅= J
V

n D⋅
= J 0.278= and so from Fig. 10.40b CP 0.44= and CF 0.145=

The thrust and power at this speed can be found FT CF ρ⋅ n2
⋅ D4

⋅= FT 809N= P CP ρ⋅ n3
⋅ D5

⋅= P 111kW=



Problem 10.94 [3]

 

CS 

U 

X 
Y 

x 
y 

V 

Given: Data on jet-propelled aircraft

Find: Propulsive efficiency

Solution:

Basic equation: (4.26)

(4.56)

Assumption: 1) Atmospheric pressure on CS 2) Horizontal 3) Steady w.r.t. the CV 4) Use velocities relative to CV

The x-momentum is then FD− u1 mrate−( )⋅ u4 mrate( )⋅+= U−( ) mrate−( )⋅ V−( ) mrate( )⋅+=

or FD mrate V U−( )⋅= where mrate 90
lbm

s
⋅=  is the mass flow rate

The useful work is then FD U⋅ mrate V U−( )⋅ U⋅=

The energy equation simplifies to W−
U2

2

⎛
⎜
⎝

⎞
⎟
⎠

mrate−( )⋅
V2

2

⎛
⎜
⎝

⎞
⎟
⎠

mrate( )⋅+=
mrate

2
V2 U2

−( )⋅=

Hence η

mrate V U−( )⋅ U⋅

mrate
2

V2 U2
−( )⋅

=
2 V U−( )⋅ U⋅

V2 U2
−( )=

2

1
V
U

+
=

With U 450 mph⋅= and V 1200 mph⋅= η
2

1
V
U

+
= η 54.5%=
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9.89

9.89



Problem 10.96 [4]

 

CS 

x 
y 

2h 

  
V2 = V3 = V V1 

V4 

Given: Definition of propulsion efficiency η

Find: η for moving and stationary boat

Solution:

Assumption: 1) Atmospheric pressure on CS 2) Horizontal 3) Steady w.r.t. the CV 4) Use velocities relative to CV

The x-momentum (Example 10.3): T u1 mrate−( )⋅ u4 mrate( )⋅+= mrate V4 V1−( )⋅=

Applying the energy equation to steady, incompressible, uniform flow through the moving CV gives the minimum power input requiremen

Pmin mrate
V4

2

2

V1
2

2
−

⎛⎜
⎜⎝

⎞⎟
⎟⎠

⋅=

On the other hand, useful work is done at the rate of

Puseful V1 T⋅= V1 mrate⋅ V4 V1−( )⋅=

Combining these expressions η

V1 mrate⋅ V4 V1−( )⋅

mrate
V4

2

2

V1
2

2
−

⎛⎜
⎜⎝

⎞⎟
⎟⎠

⋅

=
V1 V4 V1−( )⋅

1
2

V4 V1−( )⋅ V4 V1+( )⋅
=

or η

2 V1⋅

V1 V4+
=

When in motion V1 30 mph⋅= and V4 90 mph⋅= η

2 V1⋅

V1 V4+
= η 50%=

For the stationary case V1 0 mph⋅= η

2 V1⋅

V1 V4+
= η 0%=
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9.170

9.170



 
Problem 10.98                                                                             [5]

Section 10-5.              .
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Problem 10.100 [2]

V1 U = Rω 

D 

Vj 

Given: Pelton turbine

Find: 1) Power 2) Operating speed 3) Runaway speed 4) Torque 5) Torque at zero speed

Solution:

Basic equations
p1
ρ g⋅

α

V1
2

2 g⋅
⋅+ z1+

⎛⎜
⎜⎝

⎞⎟
⎟⎠

pj
ρ g⋅

α

Vj
2

2 g⋅
⋅+ zj+

⎛⎜
⎜⎝

⎞⎟
⎟⎠

−
hlT
g

= hlT hl hlm+= K
V2

2
⋅=

and from Example 10.5 Tideal ρ Q⋅ R⋅ Vj U−( )⋅ 1 cos θ( )−( )⋅= θ 165 deg⋅=

Assumptions: 1) pj = pamt 2) Incompressible flow 3) α at 1 and j is approximately 1 4) Only minor loss at nozzle 5) z1 = zj

Given data p1g 700 psi⋅= V1 15 mph⋅= V1 22
ft
s

= η 86 %⋅=

d 7.5 in⋅= D 8 ft⋅= R
D
2

= K 0.04= ρ 1.94
slug

ft3
⋅=

Then
p1g
ρ g⋅

V1
2

2 g⋅
+

Vj
2

2 g⋅
−

K
g

Vj
2

2
⋅= or Vj

2
p1g
ρ

V1
2

2
+

⎛⎜
⎜⎝

⎞⎟
⎟⎠

⋅

1 K+
= Vj 317

ft
s

=

and
Q Vj

π d2
⋅
4

⋅= Q 97.2
ft3

s
= H

p1g
ρ g⋅

V1
2

2 g⋅
+= H 1622ft=

Hence P η ρ⋅ Q⋅ g⋅ H⋅= P 15392hp=

From Fig. 10.10, normal operating speed is around U 0.47 Vj⋅= U 149
ft
s

= ω
U
R

= ω 37.2
rad
s

= ω 356 rpm=

At runaway Urun Vj= ωrun
Urun

D
2

⎛⎜
⎝

⎞⎟
⎠

= ωrun 79.2
rad
s

= ωrun 756 rpm=

From Example 10.5 Tideal ρ Q⋅ R⋅ Vj U−( )⋅ 1 cos θ( )−( )⋅= Tideal 2.49 105
× ft lbf⋅=

Hence T η Tideal⋅= T 2.14 105
× ft lbf⋅=

Stall occurs when U 0= Tstall η ρ⋅ Q⋅ R⋅ Vj⋅ 1 cos θ( )−( )⋅= Tstall 4.04 105
× ft lbf⋅=
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10.13

10.13
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Problem 10.105 [3]

Given: Impulse turbine requirements

Find: 1) Operating speed 2) Wheel diameter 4) Jet diameter 5) Compare to multiple-jet and double-overhung

Solution:

Basic equations: Vj 2 g⋅ H⋅= NS
ω P

1
2

⋅

ρ

1
2 h

5
4

⋅

= η
P

ρ Q⋅ g⋅ H⋅
= Q Vj Aj⋅=

Model as optimum.  This means. from Fig. 10.10 U 0.47 Vj⋅= and from Fig. 10.17 NScu 5= with η 89 %⋅=

Given or available data H 350 m⋅= P 15 MW⋅= ρ 1.94
slug

ft3
⋅=

Then Vj 2 g⋅ H⋅= Vj 82.9
m
s

= U 0.47 Vj⋅= U 38.9
m
s

=

We need to convert from NScu (from Fig. 10.17)  to NS (see discussion after Eq. 10.18b). NS
NScu
43.46

= NS 0.115=

The water consumption is Q
P

η ρ⋅ g⋅ H⋅
= Q 4.91

m3

s
=

For a single jet ω NS
ρ

1
2 g H⋅( )

5
4

⋅

P

1
2

⋅= (1) ω 236 rpm= Dj
4 Q⋅
π Vj⋅

= (2) Dj 0.275m=

The wheel radius is D
2 U⋅
ω

= (3) D 3.16m=

For multiple (n) jets, we use the power and flow per jet

From Eq 1 ωn ω n⋅= From Eq. 2 Djn
Dj

n
= and Dn

D

n
= from Eq. 3

Results:
n

1

2

3

4

5

= ωn n( )

236

333

408

471

527

rpm
= Djn n( )

0.275

0.194

0.159

0.137

0.123

m
= Dn n( )

3.16

2.23

1.82

1.58

1.41

m
=

A double-hung wheel is equivalent to having a single wheel with two jets



H  = 25 m NOTE: Earlier printings had H incorrectly as 20 m, which gives efficiencies > 100%
ρ  = 1000 kg/m3

R  = 2.00 m

ω  = 300 rpm ω = 325 rpm
Q  (m3/hr) F  (N) T  (N·m) P (kW) η (%) Q  (m3/hr) F (N) T (N·m) P (kW) η (%)

44 33 66 2.07 69.2% 44 29 58 1.97 65.9%
86 72 144 4.52 77.2% 86 63 126 4.29 73.2%

124 107 214 6.72 79.6% 124 96 192 6.53 77.4%
157 140 280 8.80 82.2% 157 124 248 8.44 78.9%
211 194 388 12.19 84.8% 211 175 350 11.91 82.9%
257 233 466 14.64 83.6% 257 213 426 14.50 82.8%

Turbine Performance Curves
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f = 0.02
ρ  = 1.94 slug/ft3

R  = 2.00 m
η  = 80%

D  (in) V  (m/s) Q  (ft3/s) Ph (hp) Pm (hp) Turbine efficiency varies with specific speed (Fig. 10.17).
10 21.1 11.5 9.10 7.28 Pipe roughness appears to the 1/2 power, so has a secondary effect.
12 23.2 18.2 17.22 13.78 A 20% error in f leads to a 10% change in water speed
14 25.0 26.7 29.54 23.63 and 30% change in power.
16 26.7 37.3 47.13 37.71 A Pelton wheel is an impulse turbine that does not flow full of water;
18 28.4 50.1 71.18 56.95 it directs the stream with open buckets.
20 29.9 65.2 102.93 82.34 A diffuser could not be used with this system.

15.7 26.5 35.4 43.75 35.00 Use Goal Seek or Solver to vary D  to make Pm 35 hp!
The smallest standard size is 16 in.

Power Versus Pipe Diameter

0
10
20
30
40
50
60
70
80
90

10 12 14 16 18 20
D  (in)

P
m

 (h
p)
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Problem 10.112 [2]

Given: Model of farm windmill

Find: Angular speed for optimum power; Power output

Solution:

Basic equations: CP
P

1
2

ρ⋅ V3
⋅ π⋅ R2

⋅
= X

ω R⋅
V

= and we have ρ 1.225
kg

m3
⋅=

From Fig. 10.45 CPmax 0.3= at X 0.8= and D 1 m⋅= R
D
2

= R 0.5m=

Hence, for V 10
m
s

⋅= ω
X V⋅

R
= ω 16

rad
s

= ω 153 rpm=

Also P CPmax
1
2
⋅ ρ⋅ V3

⋅ π⋅ R2
⋅= P 144W=
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10.45
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Problem 11.1 [1]

Given: Rectangular channel flow

Find: Discharge

Solution:

Basic equation: Q
1
n

A⋅ R

2
3

⋅ S0

1
2

⋅=

Note that this is an "engineering" equation, to be used without units!

For a rectangular channel of width Bw 2 m⋅=  and depth y 1.5 m⋅=  we find from Table 11.2

A Bw y⋅= A 3.00 m2
⋅= R

Bw y⋅

Bw 2 y⋅+
= R 0.600 m⋅=

Manning's roughness coefficient is n 0.015= and S0 0.0005=

Q
1.49

n
A⋅ R

2
3

⋅ S0

1
2

⋅= Q 3.18
m3

s
⋅=



Problem 11.2 [3]

Given: Data on rectangular channel

Find: Depth of flow

Solution:

Basic equation: Q
1
n

A⋅ R

2
3

⋅ S0

1
2

⋅=

Note that this is an "engineering" equation, to be used without units!

For a rectangular channel of width Bw 2.5 m⋅=  and flow rate Q 3
m3

s
⋅=  we find from Table 11.2 A Bw y⋅= R

Bw y⋅

Bw 2 y⋅+
=

Manning's roughness coefficient is n 0.015= and S0 0.0004=

Hence the basic equation becomes Q
1
n

Bw⋅ y⋅
Bw y⋅

Bw 2 y⋅+

⎛
⎜
⎝

⎞
⎟
⎠

2
3

⋅ S0

1
2

⋅=

Solving for y
y

Bw y⋅

Bw 2 y⋅+

⎛
⎜
⎝

⎞
⎟
⎠

2
3

⋅
Q n⋅

Bw S0

1
2

⋅

=

This is a nonlinear implicit equation for y and must be solved numerically.  We can use one of a number of numerical
root finding techniques, such as Newton's method, or we can use Excel's Solver or Goal Seek, or we can manually

iterate, as below, to make the left side evaluate to 
Q n⋅

Bw S0

1
2

⋅

0.900= .

For y 1= m( ) y
Bw y⋅

Bw 2 y⋅+

⎛
⎜
⎝

⎞
⎟
⎠

2
3

⋅ 0.676= For y 1.2= m( ) y
Bw y⋅

Bw 2 y⋅+

⎛
⎜
⎝

⎞
⎟
⎠

2
3

⋅ 0.865=

For y 1.23= m( ) y
Bw y⋅

Bw 2 y⋅+

⎛
⎜
⎝

⎞
⎟
⎠

2
3

⋅ 0.894= For y 1.24= m( ) y
Bw y⋅

Bw 2 y⋅+

⎛
⎜
⎝

⎞
⎟
⎠

2
3

⋅ 0.904=

The solution to three figures is y 1.24= (m)



Problem 11.3 [3]

Given: Data on trapzoidal channel

Find: Depth of flow

Solution:

Basic equation: Q
1.49

n
A⋅ R

2
3

⋅ S0

1
2

⋅=

Note that this is an "engineering" equation, to be used without units!

For the trapezoidal channel we have Bw 8 ft⋅= z 2= Q 100
ft3

s
⋅= S0 0.0004=

n 0.015=

Hence from Table 11.2 A Bw z y⋅+( ) y⋅= 8 2 y⋅+( ) y⋅= R
Bw z y⋅+( ) y⋅

Bw 2 y⋅ 1 z2
+⋅+

=
8 2 y⋅+( ) y⋅

8 2 y⋅ 5⋅+
=

Hence Q
1.49

n
A⋅ R

2
3

⋅ S0

1
2

⋅=
1.49
0.015

8 2 y⋅+( )⋅ y⋅
8 2 y⋅+( ) y⋅

8 2 y⋅ 5⋅+
⎡
⎢
⎣

⎤
⎥
⎦

2
3

⋅ 0.0004

1
2

⋅= 100= (Note that we don't use units!)

Solving for y 8 2 y⋅+( ) y⋅[ ]

5
3

8 2 y⋅ 5⋅+( )
2
3

50.3=

This is a nonlinear implicit equation for y and must be solved numerically.  We can use one of a number of numerical root finding techniqu
such as Newton's method, or we can use Excel's Solver or Goal Seek, or we can manually iterate, as below.

For y 2= ft( )
8 2 y⋅+( ) y⋅[ ]

5
3

8 2 y⋅ 5⋅+( )
2
3

30.27= For y 3= ft( )
8 2 y⋅+( ) y⋅[ ]

5
3

8 2 y⋅ 5⋅+( )
2
3

65.8=

For y 2.6= ft( )
8 2 y⋅+( ) y⋅[ ]

5
3

8 2 y⋅ 5⋅+( )
2
3

49.81= For y 2.61= ft( )
8 2 y⋅+( ) y⋅[ ]

5
3

8 2 y⋅ 5⋅+( )
2
3

50.18=

The solution to three figures is y 2.61= (ft)



Problem 11.4 [3]

Given: Data on trapezoidal channel

Find: Depth of flow

Solution:

Basic equation: Q
1
n

A⋅ R

2
3

⋅ S0

1
2

⋅=

Note that this is an "engineering" equation, to be used without units!

For the trapezoidal channel we have Bw 2.5 m⋅= z 2= Q 3
m3

s
⋅= S0 0.0004=

n 0.015=

Hence from Table 11.2 A Bw z y⋅+( ) y⋅= 8 2 y⋅+( ) y⋅= R
Bw z y⋅+( ) y⋅

Bw 2 y⋅ 1 z2
+⋅+

=
2.5 2 y⋅+( ) y⋅

2.5 2 y⋅ 5⋅+
=

Hence Q
1
n

A⋅ R

2
3

⋅ S0

1
2

⋅=
1

0.015
2.5 2 y⋅+( )⋅ y⋅

2.5 2 y⋅+( ) y⋅

2.5 2 y⋅ 5⋅+
⎡
⎢
⎣

⎤
⎥
⎦

2
3

⋅ 0.0004

1
2

⋅= 3= (Note that we don't use units!)

Solving for y 2.5 2 y⋅+( ) y⋅[ ]

5
3

2.5 2 y⋅ 5⋅+( )
2
3

2.25=

This is a nonlinear implicit equation for y and must be solved numerically.  We can use one of a number of numerical root finding techniqu
such as Newton's method, or we can use Excel's Solver or Goal Seek, or we can manually iterate, as below.

For y 1= m( )
2.5 2 y⋅+( ) y⋅[ ]

5
3

2.5 2 y⋅ 5⋅+( )
2
3

3.36= For y 0.8= m( )
2.5 2 y⋅+( ) y⋅[ ]

5
3

2.5 2 y⋅ 5⋅+( )
2
3

2.17=

For y 0.81= m( )
2.5 2 y⋅+( ) y⋅[ ]

5
3

2.5 2 y⋅ 5⋅+( )
2
3

2.23= For y 0.815= m( )
2.5 2 y⋅+( ) y⋅[ ]

5
3

2.5 2 y⋅ 5⋅+( )
2
3

2.25=

The solution to three figures is y 0.815= (m)



Problem 11.5 [2]

Given: Data on sluice gate

Find: Downstream depth; Froude number

Solution:

Basic equation:
p1
ρ g⋅

V1
2

2 g⋅
+ y1+

p2
ρ g⋅

V2
2

2 g⋅
+ y2+ h+= The Bernoulli equation applies because we have steady,

incompressible, frictionless flow.

Noting that p1 = p2 = patm, (1 = upstream, 2 = downstream) the Bernoulli equation becomes

V1
2

2 g⋅
y1+

V2
2

2 g⋅
y2+=

The given data is b 3 m⋅= y1 2 m⋅= Q 8.5
m3

s
⋅=

For mass flow Q V A⋅= so V1
Q

b y1⋅
= and V2

Q
b y2⋅

=

Using these in the Bernoulli equation

Q
b y1⋅
⎛
⎜
⎝

⎞
⎟
⎠

2

2 g⋅
y1+

Q
b y2⋅
⎛
⎜
⎝

⎞
⎟
⎠

2

2 g⋅
y2+= (1)

The only unknown on the right is y2.  The left side evaluates to

Q
b y1⋅
⎛
⎜
⎝

⎞
⎟
⎠

2

2 g⋅
y1+ 2.10m=

To find y2 we need to solve the non-linear equation.  We must do this numerically; we may use the Newton method or similar, or
Excel's Solver or Goal Seek.  Here we interate manually, starting with an arbitrary value less than y1.

For y2 0.5 m⋅=

Q
b y2⋅
⎛
⎜
⎝

⎞
⎟
⎠

2

2 g⋅
y2+ 2.14m= For y2 0.51 m⋅=

Q
b y2⋅

⎛
⎜
⎝

⎞
⎟
⎠

2

2 g⋅
y2+ 2.08m=

For y2 0.505 m⋅=

Q
b y2⋅
⎛
⎜
⎝

⎞
⎟
⎠

2

2 g⋅
y2+ 2.11m= For y2 0.507 m⋅=

Q
b y2⋅

⎛
⎜
⎝

⎞
⎟
⎠

2

2 g⋅
y2+ 2.10m=

Hence y2 0.507m=

Then V2
Q

b y2⋅
= V2 5.59

m
s

= Fr2
V2

g y2⋅
= Fr2 2.51=



Problem 11.6 [1]

Given: Data on flume

Find: Discharge

Solution:

Basic equation: Q
1.49

n
A⋅ R

2
3

⋅ S0

1
2

⋅=

Note that this is an "engineering" equation, to be used without units!

For a rectangular channel of width Bw 6 ft⋅=  and depth y 3 ft⋅=  we find from Table 11.2

A Bw y⋅= A 18 ft2⋅= R
Bw y⋅

Bw 2 y⋅+
= R 1.50 ft⋅=

For concrete (Table 11.1) n 0.013= and S0
1 ft⋅

1000 ft⋅
= S0 0.001=

Q
1.49

n
A⋅ R

2
3

⋅ S0

1
2

⋅= Q 85.5
ft3

s
⋅=



Problem 11.7 [1]

Given: Data on flume

Find: Slope

Solution:

Basic equation: Q
1.49

n
A⋅ R

2
3

⋅ S0

1
2

⋅=

Note that this is an "engineering" equation, to be used without units!

For a rectangular channel of width Bw 3 ft⋅=  and depth y 6 ft⋅=  we find

A Bw y⋅= A 18 ft2⋅= R
Bw y⋅

Bw 2 y⋅+
= R 1.20 ft⋅=

For wood (not in Table 11.1) a Google search finds n = 0.012 to 0.017; we use n 0.0145= with Q 90
ft3

s
⋅=

S0
n Q⋅

1.49 A⋅ R

2
3

⋅

⎛
⎜
⎜
⎝

⎞
⎟
⎟
⎠

2
= S0 1.86 10 3−

×=



Problem 11.8 [2]

Given: Data on square channel

Find: Dimensions for concrete and soil cement

Solution:

Basic equation: Q
1
n

A⋅ R

2
3

⋅ S0

1
2

⋅=

Note that this is an "engineering" equation, to be used without units!

For a square channel of width Bw we find A Bw
2

= R
Bw y⋅

Bw 2 y⋅+
=

Bw
2

Bw 2 Bw⋅+
=

Bw
3

=

Hence Q
1
n

Bw
2

⋅
Bw
3

⎛
⎜
⎝

⎞
⎟
⎠

2
3

⋅ S0

1
2

⋅=
S0

1
2

n 3

2
3

⋅

Bw

8
3

⋅= or Bw
3

2
3 Q⋅

S0

1
2

n⋅

⎛
⎜
⎜
⎜
⎜
⎝

⎞
⎟
⎟
⎟
⎟
⎠

3
8

=

The given data is Q 20
m3

s
⋅= S0 0.003=

For concrete, from Table 11.1 (assuming large depth) n .013=

Bw 2.36m=

For soil cement from Table 11.1 (assuming large depth) n .020=

Bw 2.77m=



Problem 11.9 [1]

Given: Data on trapezoidal channel

Find: Bed slope

Solution:

Basic equation: Q
1
n

A⋅ R

2
3

⋅ S0

1
2

⋅=

Note that this is an "engineering" equation, to be used without units!

For the trapezoidal channel we have Bw 2.4 m⋅= z 1= y 1.2 m⋅= Q 7.1
m3

s
⋅=

For bare soil (Table 11.1) n 0.020=

Hence from Table 11.2 A Bw z y⋅+( ) y⋅= A 4.32m2
= R

Bw z y⋅+( ) y⋅

Bw 2 y⋅ 1 z2
+⋅+

= R 0.746m=

Hence S0
Q n⋅

A R

2
3

⋅

⎛
⎜
⎜
⎝

⎞
⎟
⎟
⎠

2
= S0 1.60 10 3−

×=



Problem 11.10 [1]

Given: Data on triangular channel

Find: Required dimensions

Solution:

Basic equation: Q
1
n

A⋅ R

2
3

⋅ S0

1
2

⋅=

Note that this is an "engineering" equation, to be used without units!

For the triangular channel we have z 1= S0 0.001= Q 10
m3

s
⋅=

For concrete (Table 11.1) n 0.013= (assuming y > 60 cm: verify later)

Hence from Table 11.2 A z y2
⋅= y2

= R
z y⋅

2 1 z2
+⋅

=
y

2 2⋅
=

Hence Q
1
n

A⋅ R

2
3

⋅ S0

1
2

⋅=
1
n

y2
⋅

y

2 2⋅
⎛
⎜
⎝

⎞
⎟
⎠

2
3

⋅ S0⋅=
1
n

y

8
3

⋅
1
8

⎛⎜
⎝

⎞⎟
⎠

1
3

⋅ S0

1
2

⋅=
1

2 n⋅
y

8
3

⋅ S0

1
2

⋅=

Solving for y y
2 n⋅ Q⋅

S0

⎛
⎜
⎝

⎞
⎟
⎠

3
8

= y 2.20m= (The assumption that y > 60 cm is verified)



Problem 11.11 [2]

Given: Data on semicircular trough

Find: Discharge

Solution:

Basic equation: Q
1
n

A⋅ R

2
3

⋅ S0

1
2

⋅=

Note that this is an "engineering" equation, to be used without units!

For the semicircular channel d0 1 m⋅= y 0.25 m⋅= S0 0.01=

Hence, from geometry θ 2 asin
y

d0
2

−

d0
2

⎛⎜
⎜
⎜
⎜
⎝

⎞⎟
⎟
⎟
⎟
⎠

⋅ 180 deg⋅+= θ 120 deg⋅=

For corrugated steel, a Google search leads to n 0.022=

Hence from Table 11.2 A
1
8

θ sin θ( )−( )⋅ d0
2

⋅= A 0.154m2
=

R
1
4

1
sin θ( )

θ
−⎛⎜

⎝
⎞⎟
⎠

⋅ d0⋅= R 0.147m=

Then the discharge is Q
1
n

A⋅ R

2
3

⋅ S0

1
2

⋅
m3

s
⋅= Q 0.194

m3

s
=



Problem 11.12 [1]

Given: Data on semicircular trough

Find: Discharge

Solution:

Basic equation: Q
1
n

A⋅ R

2
3

⋅ S0

1
2

⋅=

Note that this is an "engineering" equation, to be used without units!

For the semicircular channel d0 1 m⋅= θ 180 deg⋅= S0 0.01=

For corrugated steel, a Google search leads to (Table 11.1) n 0.022=

Hence from Table 11.2 A
1
8

θ sin θ( )−( )⋅ d0
2

⋅= A 0.393m2
=

R
1
4

1
sin θ( )

θ
−⎛⎜

⎝
⎞⎟
⎠

⋅ d0⋅= R 0.25m=

Then the discharge is Q
1
n

A⋅ R

2
3

⋅ S0

1
2

⋅
m3

s
⋅= Q 0.708

m3

s
=



Problem 11.13 [3]

Given: Data on flume with plastic liner

Find: Depth of flow

Solution:

Basic equation: Q
1.49

n
A⋅ R

2
3

⋅ S0

1
2

⋅=

Note that this is an "engineering" equation, to be used without units!

For a rectangular channel of width Bw 6 ft⋅=  and depth y we find from Table 11.2

A Bw y⋅= 6 y⋅= R
Bw y⋅

Bw 2 y⋅+
=

6 y⋅
6 2 y⋅+

=

and also n 0.010= and S0
1 ft⋅

1000 ft⋅
= S0 0.001=

Hence Q
1.49

n
A⋅ R

2
3

⋅ S0

1
2

⋅=
1.49
0.010

6⋅ y⋅
6 y⋅

6 2 y⋅+
⎛⎜
⎝

⎞⎟
⎠

2
3

⋅ 0.001

1
2

⋅= 85.5= (Note that we don't use units!)

Solving for y y

5
3

6 2 y⋅+( )

2
3

85.5 0.010⋅

1.49 .001

1
2

⋅ 6⋅ 6

2
3

⋅

= or y

5
3

6 2 y⋅+( )

2
3

0.916=

This is a nonlinear implicit equation for y and must be solved numerically.  We can use one of a number of numerical root finding techniqu
such as Newton's method, or we can use Excel's Solver or Goal Seek, or we can manually iterate, as below.  We start with Problem 11.6's
depth 

For y 3= feet( )
y

5
3

6 2 y⋅+( )

2
3

1.191= For y 2= feet( )
y

5
3

6 2 y⋅+( )

2
3

0.684=

For y 2.5= feet( )
y

5
3

6 2 y⋅+( )

2
3

0.931= For y 2.45= feet( )
y

5
3

6 2 y⋅+( )

2
3

0.906=

For y 2.47= feet( )
y

5
3

6 2 y⋅+( )

2
3

0.916= y 2.47= (feet)



Problem 11.14 [3]

Given: Data on trapzoidal channel

Find: New depth of flow

Solution:

Basic equation: Q
1
n

A⋅ R

2
3

⋅ S0

1
2

⋅=

Note that this is an "engineering" equation, to be used without units!

For the trapezoidal channel we have Bw 2.4 m⋅= z 1= Q 15
m3

s
⋅= S0 0.00193=

For bare soil (Table 11.1) n 0.020=

Hence from Table 11.2 A Bw z y⋅+( ) y⋅= 2.4 y+( ) y⋅= R
Bw z y⋅+( ) y⋅

Bw 2 y⋅ 1 z2
+⋅+

=
2.4 y+( ) y⋅

2.4 2 y⋅ 2⋅+
=

Hence Q
1
n

A⋅ R

2
3

⋅ S0

1
2

⋅=
1

0.020
2.4 y+( )⋅ y⋅

2.4 y+( ) y⋅

2.4 2 y⋅ 2⋅+
⎡
⎢
⎣

⎤
⎥
⎦

2
3

⋅ 0.00193

1
2

⋅= 15= (Note that we don't use units!)

Solving for y 2.4 y+( ) y⋅[ ]

5
3

2.4 2 y⋅ 2⋅+( )
2
3

6.83=

This is a nonlinear implicit equation for y and must be solved numerically.  We can use one of a number of numerical root finding techniqu
such as Newton's method, or we can use Excel's Solver or Goal Seek, or we can manually iterate, as below.  We start with a larger depth
than Problem 11.9's. 

For y 1.5= m( )
2.4 y+( ) y⋅[ ]

5
3

2.4 2 y⋅ 2⋅+( )
2
3

5.37= For y 1.75= m( )
2.4 y+( ) y⋅[ ]

5
3

2.4 2 y⋅ 2⋅+( )
2
3

7.2=

For y 1.71= m( )
2.4 y+( ) y⋅[ ]

5
3

2.4 2 y⋅ 2⋅+( )
2
3

6.89= For y 1.70= m( )
2.4 y+( ) y⋅[ ]

5
3

2.4 2 y⋅ 2⋅+( )
2
3

6.82=

The solution to three figures is y 1.70= (m)



Problem 11.15 [3]

Given: Data on trapzoidal channel

Find: New depth of flow

Solution:

Basic equation: Q
1
n

A⋅ R

2
3

⋅ S0

1
2

⋅=

Note that this is an "engineering" equation, to be used without units!

For the trapezoidal channel we have Bw 2.4 m⋅= z 1= Q 7.1
m3

s
⋅= S0 0.00193=

For bare soil (Table 11.1) n 0.010=

Hence from Table 11.2 A Bw z y⋅+( ) y⋅= 2.4 y+( ) y⋅= R
Bw z y⋅+( ) y⋅

Bw 2 y⋅ 1 z2
+⋅+

=
2.4 y+( ) y⋅

2.4 2 y⋅ 2⋅+
=

Hence Q
1
n

A⋅ R

2
3

⋅ S0

1
2

⋅=
1

0.010
2.4 y+( )⋅ y⋅

2.4 y+( ) y⋅

2.4 2 y⋅ 2⋅+
⎡
⎢
⎣

⎤
⎥
⎦

2
3

⋅ 0.00193

1
2

⋅= 7.1= (Note that we don't use units!)

Solving for y 2.4 y+( ) y⋅[ ]

5
3

2.4 2 y⋅ 2⋅+( )
2
3

1.62=

This is a nonlinear implicit equation for y and must be solved numerically.  We can use one of a number of numerical root finding techniqu
such as Newton's method, or we can use Excel's Solver or Goal Seek, or we can manually iterate, as below.  We start with a shallower depth
than that of Problem 11.9. 

For y 1= m( )
2.4 y+( ) y⋅[ ]

5
3

2.4 2 y⋅ 2⋅+( )
2
3

2.55= For y 0.75= m( )
2.4 y+( ) y⋅[ ]

5
3

2.4 2 y⋅ 2⋅+( )
2
3

1.53=

For y 0.77= m( )
2.4 y+( ) y⋅[ ]

5
3

2.4 2 y⋅ 2⋅+( )
2
3

1.60= For y 0.775= m( )
2.4 y+( ) y⋅[ ]

5
3

2.4 2 y⋅ 2⋅+( )
2
3

1.62=

The solution to three figures is y 0.775= (m)



Problem 11.16 [3]

Given: Data on semicircular trough

Find: New depth of flow

Solution:

Basic equation: Q
1
n

A⋅ R

2
3

⋅ S0

1
2

⋅=

Note that this is an "engineering" equation, to be used without units!

For the semicircular channel d0 1 m⋅= S0 0.01= Q 0.3
m3

s
⋅=

For corrugated steel, a Google search leads to (Table 11.1) n 0.022=

From Table 11.2 A
1
8

θ sin θ( )−( )⋅ d0
2

⋅=
1
8

θ sin θ( )−( )⋅=

R
1
4

1
sin θ( )

θ
−⎛⎜

⎝
⎞⎟
⎠

⋅ d0⋅=
1
4

1
sin θ( )

θ
−⎛⎜

⎝
⎞⎟
⎠

⋅=

Hence Q
1
n

A⋅ R

2
3

⋅ S0

1
2

⋅=
1

0.022
1
8

θ sin θ( )−( )⋅⎡⎢
⎣

⎤⎥
⎦

⋅
1
4

1
sin θ( )

θ
−⎛⎜

⎝
⎞⎟
⎠

⋅⎡⎢
⎣

⎤⎥
⎦

2
3

⋅ 0.01

1
2

⋅= 0.3= (Note that we don't use units!)

Solving for θ θ

2
3

−
θ sin θ( )−( )

5
3

⋅ 1.33=

This is a nonlinear implicit equation for θ and must be solved numerically.  We can use one of a number of numerical root finding techniqu
such as Newton's method, or we can use Excel's Solver or Goal Seek, or we can manually iterate, as below.  We start with a half-full channe

For θ 180 deg⋅= θ

2
3

−
θ sin θ( )−( )

5
3

⋅ 3.14= For θ 140 deg⋅= θ

2
3

−
θ sin θ( )−( )

5
3

⋅ 1.47=

For θ 135 deg⋅= θ

2
3

−
θ sin θ( )−( )

5
3

⋅ 1.30= For θ 136 deg⋅= θ

2
3

−
θ sin θ( )−( )

5
3

⋅ 1.33=

The solution to three figures is θ 136 deg⋅=

From geometry y
d0
2

1 cos
θ

2
⎛⎜
⎝
⎞⎟
⎠

−⎛⎜
⎝

⎞⎟
⎠

⋅= y 0.313m=



Problem 11.17 [2]

Given: Triangular channel

Find: Proof that wetted perimeter is minimized when sides meet at right angles

Solution:

From Table 11.2 A z y2
⋅= P 2 y⋅ 1 z2

+⋅=

We need to vary z to minimize P while keeping A constant, which means thaty
A
z

= with A = constant

Hence we eliminate y in the expression for P P 2
A
z

⋅ 1 z2
+⋅= 2

A 1 z2
+( )⋅

z
⋅=

For optimizing P dP
dz

z2 1−
z

A

z z2 1+( )⋅
⋅= 0= or z 1=

For z = 1 we find from the figure that we have the case where the sides are inclined at 45o, so meet at 90o.  Note that we have only
proved that this is a minimum OR maximum of P!  It makes sense that it's the minimum, as, for constant A, we get a huge P if we set
z to a large number (almost vertical walls); taking the second derivative at z = 1 results in a value of 2 A⋅ , which is positive, so we
DO have a minimum.



Problem 11.18 [3]

Given: Data on trapezoidal channel

Find: Critical depth and velocity

Solution:

Basic equation: E y
V2

2 g⋅
+=

The given data is: Bw 20 ft⋅= z
1
2

= S0 0.0016= n 0.025= Q 400
ft3

s
⋅=

In terms of flow rate E y
Q2

2 A2
⋅ g⋅

+= where (Table 11.2) A Bw z y⋅+( ) y⋅=

Hence in terms of y E y
Q2

2 Bw z y⋅+( )2⋅ y2
⋅ g⋅

+=

For critical conditions dE
dy

0= 1
Q2 z⋅

g y2
⋅ Bw y z⋅+( )3⋅

−
Q2

g y3
⋅ Bw y z⋅+( )2⋅

−= 1
Bw Q2

⋅

g y3
⋅ Bw y z⋅+( )3⋅

−=

Hence g y3
⋅ Bw y z⋅+( )3⋅ Bw Q2

⋅=

The only unknown on the right is y.  The right side evaluates to Bw Q2
⋅ 3.20 106

×
ft7

s2
=

To find y we need to solve the non-linear equation.  We must do this numerically; we may use the Newton method or similar, or
Excel's Solver or Goal Seek.  Here we interate manually, starting with an arbitrary value

For y 1 ft⋅= g y3
⋅ Bw y z⋅+( )3⋅ 2.77 105

×
ft7

s2
= For y 2 ft⋅= g y3

⋅ Bw y z⋅+( )3⋅ 2.38 106
×

ft7

s2
=

For y 2.5 ft⋅= g y3
⋅ Bw y z⋅+( )3⋅ 4.82 106

×
ft7

s2
= For y 2.2 ft⋅= g y3

⋅ Bw y z⋅+( )3⋅ 3.22 106
×

ft7

s2
=

For y 2.19 ft⋅= g y3
⋅ Bw y z⋅+( )3⋅ 3.17 106

×
ft7

s2
= For y 2.20 ft⋅= g y3

⋅ Bw y z⋅+( )3⋅ 3.22 106
×

ft7

s2
=

Hence the critical depth is y 2.20 ft=

Also A Bw z y⋅+( ) y⋅= A 46.4 ft2= so critical speed is V
Q
A

= V 8.62
ft
s

=



Problem 11.19 [3]

Given: Data on trapezoidal channel

Find: Normal depth and velocity

Solution:

Basic equation: Q
1.49

n
A⋅ R

2
3

⋅ S0

1
2

⋅=

Note that this is an "engineering" equation, to be used without units!

For the trapezoidal channel we have Bw 20 ft⋅= z
1
2

= Q 400
ft3

s
⋅= S0 0.0016= n 0.025=

Hence from Table 11.2 A Bw z y⋅+( ) y⋅= 20
1
2

y⋅+⎛⎜
⎝

⎞⎟
⎠

y⋅= R
Bw z y⋅+( ) y⋅

Bw 2 y⋅ 1 z2
+⋅+

=
20

1
2

y⋅+⎛⎜
⎝

⎞⎟
⎠

y⋅

20 y 5⋅+
=

Hence Q
1
n

A⋅ R

2
3

⋅ S0

1
2

⋅=
1

0.025
20

1
2

y⋅+⎛⎜
⎝

⎞⎟
⎠

⋅ y⋅
20

1
2

y⋅+⎛⎜
⎝

⎞⎟
⎠

y⋅

20 y 5⋅+

⎡
⎢
⎢
⎣

⎤
⎥
⎥
⎦

2
3

⋅ 0.0016

1
2

⋅= 400= (Note that we don't use units!)

Solving for y
20

1
2

y⋅+⎛⎜
⎝

⎞⎟
⎠

y⋅⎡⎢
⎣

⎤⎥
⎦

5
3

20 y 5⋅+( )
2
3

250= This is a nonlinear implicit equation for y and must be solved numerically.  We can u
one of a number of numerical root finding techniques, such as Newton's method, or
we can use Excel's Solver or Goal Seek, or we can manually iterate, as below.  We
start with an arbitrary depth

For y 5= ft( )
20

1
2

y⋅+⎛⎜
⎝

⎞⎟
⎠

y⋅⎡⎢
⎣

⎤⎥
⎦

5
3

20 y 5⋅+( )
2
3

265= For y 4.9= ft( )
20

1
2

y⋅+⎛⎜
⎝

⎞⎟
⎠

y⋅⎡⎢
⎣

⎤⎥
⎦

5
3

20 y 5⋅+( )
2
3

256=

For y 4.85= ft( )
20

1
2

y⋅+⎛⎜
⎝

⎞⎟
⎠

y⋅⎡⎢
⎣

⎤⎥
⎦

5
3

20 y 5⋅+( )
2
3

252= For y 4.83= ft( )
20

1
2

y⋅+⎛⎜
⎝

⎞⎟
⎠

y⋅⎡⎢
⎣

⎤⎥
⎦

5
3

20 y 5⋅+( )
2
3

250=

The solution to three figures is y 4.83 ft⋅= Then A Bw z y⋅+( ) y⋅= A 108 ft2⋅=

Finally, the normal velocity is V
Q
A

= V 3.69
ft
s

⋅=



Problem 11.20 [3]

Given: Trapezoidal channel

Find: Derive expression for hydraulic radius; Plot R/y versus y for two different side slopes

Solution:

The area is (from simple geometry or Table 11.2) A Bw y⋅ 2
1
2
⋅ y⋅ y⋅ z⋅+= Bw z y⋅+( ) y⋅=

The wetted perimeter is (from simple geometry or Table 11.2) P Bw 2 y⋅ 1 z2
+⋅+=

Hence the hydraulic radius is R
A
P

=
Bw z y⋅+( ) y⋅

Bw 2 y⋅ 1 z2
+⋅+

= which is the same as that listed in Table 11.2

We are to plot R
y

Bw z y⋅+( )
Bw 2 y⋅ 1 z2

+⋅+
= with Bw 2 m⋅= for θ = 30o and 60o, and 0.5 < y < 3 m.

Note: For θ = 30o z
1

tan 30 deg⋅( )
= z 1.73=

Note: For θ = 60o z
1

tan 60 deg⋅( )
= z 0.577=

The graph is plotted in the associated Excel workbook



Problem 11.20 [3]

Given: Trapezoidal channel

Find: Derive expression for hydraulic radius; Plot R/y versus y for two different side slopes

Solution:

Given data: Bw = 2 m

Computed results:

θ = 30o θ = 60o

z  = 1.73 z  = 0.577
y  (m) R /y R /y

0.5 0.717 0.725
0.6 0.691 0.693
0.7 0.669 0.665
0.8 0.651 0.640
0.9 0.636 0.618
1.0 0.622 0.598
1.1 0.610 0.580
1.2 0.600 0.564
1.3 0.591 0.550
1.4 0.582 0.537
1.5 0.575 0.524
1.6 0.568 0.513
1.7 0.562 0.503
1.8 0.556 0.494
1.9 0.551 0.485
2.0 0.546 0.477
2.1 0.542 0.469
2.2 0.538 0.462
2.3 0.534 0.455
2.4 0.531 0.449
2.5 0.527 0.443
2.6 0.524 0.437
2.7 0.522 0.432
2.8 0.519 0.427
2.9 0.516 0.422
3.0 0.514 0.418

R /y  versus y  for Trapezoidal Channels

0.0

0.2

0.4

0.6

0.8

0.5 1.0 1.5 2.0 2.5 3.0
y  (m)

R /y

z = 1.73
z = 0.577



Problem 11.21 [3]

Given: Circular channel

Find: Derive expression for hydraulic radius; Plot R/d0 versus d0 for a range of depths

Solution:

The area is (from simple geometry or Table 11.2)

A
d0

2

8
θ⋅ 2

1
2
⋅

d0
2

⋅ sin π
θ

2
−⎛⎜

⎝
⎞⎟
⎠

⋅
d0
2

⋅ cos π
θ

2
−⎛⎜

⎝
⎞⎟
⎠

⋅+=
d0

2

8
θ⋅

d0
2

4
sin π

θ

2
−⎛⎜

⎝
⎞⎟
⎠

⋅ cos π
θ

2
−⎛⎜

⎝
⎞⎟
⎠

⋅+=

A
d0

2

8
θ⋅

d0
2

8
sin 2 π⋅ θ−( )⋅+=

d0
2

8
θ⋅

d0
2

8
sin θ( )⋅−=

d0
2

8
θ sin θ( )−( )⋅=

The wetted perimeter is (from simple geometry or Table 11.2) P
d0
2

θ⋅=

Hence the hydraulic radius is R
A
P

=

d0
2

8
θ sin θ( )−( )⋅

d0
2

θ⋅

=
1
4

1
sin θ( )

θ
−⎛⎜

⎝
⎞⎟
⎠

⋅ d0⋅= which is the same as that listed in Table 11.2

We are to plot R
d0

1
4

1
sin θ( )

θ
−⎛⎜

⎝
⎞⎟
⎠

⋅=

We will need y as a function of θ: y
d0
2

d0
2

cos π
θ

2
−⎛⎜

⎝
⎞⎟
⎠

⋅+=
d0
2

1 cos
θ

2
⎛⎜
⎝
⎞⎟
⎠

−⎛⎜
⎝

⎞⎟
⎠

⋅= or y
d0

1
2

1 cos
θ

2
⎛⎜
⎝
⎞⎟
⎠

−⎛⎜
⎝

⎞⎟
⎠

⋅=

The graph is plotted in the associated Excel workbook



Problem 11.21 [3]

Given: Circular channel

Find: Derive expression for hydraulic radius; Plot R/d0 versus d0

Solution:

Given data

θ (o) y /d 0 R /d 0

0 0.000 0.000
20 0.008 0.005
40 0.030 0.020
60 0.067 0.043
80 0.117 0.074

100 0.179 0.109
120 0.250 0.147
140 0.329 0.184
160 0.413 0.219
180 0.500 0.250
200 0.587 0.274
220 0.671 0.292
240 0.750 0.302
260 0.821 0.304
280 0.883 0.300
300 0.933 0.291
320 0.970 0.279
340 0.992 0.264
360 1.000 0.250

R /d 0 versus y /d 0 for a Circular Channel

0.0

0.1

0.2

0.3

0.4

0.0 0.2 0.4 0.6 0.8 1.0

y /d 0

R /d 0



Problem 11.22 [5]

Given: Data on trapezoidal channel

Find: Geometry for greatest hydraulic efficiency

Solution:

Basic equation: Q
1
n

A⋅ R

2
3

⋅ S0

1
2

⋅=

Note that this is an "engineering" equation, to be used without units!

For the trapezoidal channel we have z 2= Q 10
m3

s
⋅= S0 0.001= n 0.020=

From Table 11.2 A Bw z y⋅+( ) y⋅= P Bw 2 y⋅ 1 z2
+⋅+=

We need to vary Bw and y to obtain optimum conditions.  These are when the area and perimeter are optimized.  Instead of two
independent variables Bw and y, we eliminate Bw by doing the following

Bw
A
y

z y⋅−= and so P
A
y

z y⋅− 2 y⋅ 1 z2
+⋅+=

Taking the derivative w.r.t. y
y

P∂

∂

1
y y

A∂

∂
⋅

A

y2
− z− 2 1 z2

+⋅+=

But at optimum conditions
y

P∂

∂
0= and

y
A∂

∂
0=

Hence 0
A

y2
− z− 2 1 z2

+⋅+= or A 2 y2
⋅ 1 z2

+⋅ z y2
⋅−=

Comparing to A Bw z y⋅+( ) y⋅= we find A Bw z y⋅+( ) y⋅= 2 y2
⋅ 1 z2

+⋅ z y2
⋅−=

Hence Bw 2 y⋅ 1 z2
+⋅ 2 z⋅ y⋅−=

Then A Bw z y⋅+( ) y⋅= y2 2 1 z2
+⋅ z−( )⋅=

P Bw 2 y⋅ 1 z2
+⋅+= 4 y⋅ 1 z2

+⋅ 2 z⋅ y⋅−=



and R
A
P

=
y2 2 1 z2

+⋅ z−( )⋅

4 y⋅ 1 z2
+⋅ 2 z⋅ y⋅−

=
2 1 z2

+⋅ z−( )
4 1 z2

+⋅ 2 z⋅−
y⋅=

Hence Q
1
n

A⋅ R

2
3

⋅ S0

1
2

⋅=
1
n

y2 2 1 z2
+⋅ z−( )⋅⎡⎣ ⎤⎦⋅

2 1 z2
+⋅ z−( )

4 1 z2
+⋅ 2 z⋅−

y⋅
⎡
⎢
⎢
⎣

⎤
⎥
⎥
⎦

2
3

⋅ S0

1
2

⋅=

Q
2 1 z2

+⋅ z−( )
5
3

S0

1
2

⋅

n 4 1 z2
+⋅ 2 z⋅−( )

2
3

⋅

y

8
3

⋅=

Solving for y y
n 4 1 z2

+⋅ 2 z⋅−( )
2
3

⋅

2 1 z2
+⋅ z−( )

5
3

S0

1
2

⋅

Q⋅

⎡
⎢
⎢
⎢
⎢
⎢
⎣

⎤
⎥
⎥
⎥
⎥
⎥
⎦

3
8

= y 1.69= (m)

Finally Bw 2 y⋅ 1 z2
+⋅ 2 z⋅ y⋅−= Bw 0.799= (m)



Problem 11.23 [3]

Given: Data on trapezoidal channel

Find: Normal depth

Solution:

Basic equation: Q
1.49

n
A⋅ R

2
3

⋅ S0

1
2

⋅=

Note that this is an "engineering" equation, to be used without units!

For the trapezoidal channel we have Bw 20 ft⋅= z 1.5= Q 1000
ft3

s
⋅= S0 0.0002=

n 0.014=

Hence from Table 11.2 A Bw z y⋅+( ) y⋅= 20 1.5 y⋅+( ) y⋅= R
Bw z y⋅+( ) y⋅

Bw 2 y⋅ 1 z2
+⋅+

=
20 1.5 y⋅+( ) y⋅

20 2 y⋅ 3.25⋅+
=

Hence Q
1.49

n
A⋅ R

2
3

⋅ S0

1
2

⋅=
1.49
0.014

20 1.5 y⋅+( )⋅ y⋅
20 1.5 y⋅+( ) y⋅

20 2 y⋅ 3.25⋅+
⎡
⎢
⎣

⎤
⎥
⎦

2
3

⋅ 0.0002

1
2

⋅= 1000= (Note that we don't use units!)

Solving for y 20 1.5 y⋅+( ) y⋅[ ]

5
3

20 2 y⋅ 3.25⋅+( )
2
3

664=

This is a nonlinear implicit equation for y and must be solved numerically.  We can use one of a number of numerical root finding techniqu
such as Newton's method, or we can use Excel's Solver or Goal Seek, or we can manually iterate, as below.

For y 7.5= ft( )
20 1.5 y⋅+( ) y⋅[ ]

5
3

20 2 y⋅ 3.25⋅+( )
2
3

684= For y 7.4= ft( )
20 1.5 y⋅+( ) y⋅[ ]

5
3

20 2 y⋅ 3.25⋅+( )
2
3

667=

For y 7.35= ft( )
20 1.5 y⋅+( ) y⋅[ ]

5
3

20 2 y⋅ 3.25⋅+( )
2
3

658= For y 7.38= ft( )
20 1.5 y⋅+( ) y⋅[ ]

5
3

20 2 y⋅ 3.25⋅+( )
2
3

663=

The solution to three figures is y 7.38= (ft)



Problem 11.24 [5]

Given: Trapezoidal channel

Find: Geometry for greatest hydraulic efficiency

Solution:

From Table 11.2 A Bw z y⋅+( ) y⋅= P Bw 2 y⋅ 1 z2
+⋅+=

We need to vary Bw and y (and then z!) to obtain optimum conditions.  These are when the area and perimeter are optimized.
Instead of two independent variables Bw and y, we eliminate Bw by doing the following

Bw
A
y

z y⋅−= and so P
A
y

z y⋅− 2 y⋅ 1 z2
+⋅+=

Taking the derivative w.r.t. y
y

P∂

∂

1
y y

A∂

∂
⋅

A

y2
− z− 2 1 z2

+⋅+=

But at optimum conditions
y

P∂

∂
0= and

y
A∂

∂
0=

Hence 0
A

y2
− z− 2 1 z2

+⋅+= or A 2 y2
⋅ 1 z2

+⋅ z y2
⋅−= (1)

Now we optimize A w.r.t. z
z

A∂

∂

2 y2
⋅ z⋅

z2 1+
y2

−= 0= or 2 z⋅ z2 1+=

Hence 4 z2
⋅ z2 1+= or z

1

3
=

We can now evaluate A from Eq 1 A 2 y2
⋅ 1 z2

+⋅ z y2
⋅−= 2 y2

⋅ 1
1
3

+⋅
1
3

y2
⋅−=

4

3

1

3
−⎛

⎜
⎝

⎞
⎟
⎠

y2
⋅= 3 y2

⋅=

But for a trapezoid A Bw z y⋅+( ) y⋅= Bw
1

3
y⋅+⎛

⎜
⎝

⎞
⎟
⎠

y⋅=

Comparing the two A expressions A Bw
1

3
y⋅+⎛

⎜
⎝

⎞
⎟
⎠

y⋅= 3 y2
⋅= we find Bw 3

1

3
−⎛

⎜
⎝

⎞
⎟
⎠

y⋅=
2

3
y⋅=

But the perimeter is P Bw 2 y⋅ 1 z2
+⋅+= Bw 2 y⋅ 1

1
3

+⋅+= Bw
4

3
y⋅+= Bw 2 Bw⋅+= 3 Bw⋅=

In summary we have z
1

3
= θ atan

1
z
⎛⎜
⎝
⎞⎟
⎠

= θ 60deg= where θ is the angle the sides make with
the vertical

and Bw
1
3

P⋅= so each of the symmetric sides is
P

1
3

P⋅−

2
1
3

P⋅=

We have proved that the optimum shape is equal side and bottom lengths, with 60 angles i.e., half a hexagon!



Problem 11.25 [3]

Given: Rectangular channel

Find: Plot of specific energy curves; Critical depths; Critical specific energy

Solution:

Given data: B = 20 ft

Specific energy: Critical depth:

Q  = Q  = Q  = Q = Q =
y  (ft) 0 25 75 125 200
0.5 0.50 0.60 1.37 2.93 6.71
0.6 0.60 0.67 1.21 2.28 4.91
0.8 0.80 0.84 1.14 1.75 3.23
1.0 1.00 1.02 1.22 1.61 2.55
1.2 1.20 1.22 1.35 1.62 2.28
1.4 1.40 1.41 1.51 1.71 2.19
1.6 1.60 1.61 1.69 1.84 2.21
1.8 1.80 1.81 1.87 1.99 2.28
2.0 2.00 2.01 2.05 2.15 2.39
2.2 2.20 2.21 2.25 2.33 2.52
2.4 2.40 2.40 2.44 2.51 2.67
2.6 2.60 2.60 2.63 2.69 2.83
2.8 2.80 2.80 2.83 2.88 3.00
3.0 3.00 3.00 3.02 3.07 3.17
3.5 3.50 3.50 3.52 3.55 3.63
4.0 4.00 4.00 4.01 4.04 4.10
4.5 4.50 4.50 4.51 4.53 4.58
5.0 5.00 5.00 5.01 5.02 5.06

y c  (ft) 0.365 0.759 1.067 1.46
E c  (ft) 0.547 1.14 1.60 2.19

Specific Energy, E  (ft·lb/lb)

0

1

2

3

4

5

0 2 4 6

E  (ft)

y  (ft)
Q = 0

Q = 25 cfs

Q = 75 cfs

Q = 125 cfs

Q = 200 cfs

22

2 1
2 ygB
QyE ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+=

3
1

2

2

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

gB
Qyc



Problem 11.26 [2]

Given: Rectangular channel flow with hump and/or side wall restriction

Find: Whether critical flow occurs

Solution:

Basic equations: yc
q2

g

⎛
⎜
⎝

⎞
⎟
⎠

1
3

= E y
Q2

2 g⋅ A2
⋅

+= A Bw y⋅= Emin
3
2

yc⋅= (From Example 11.5)

Given data: Bw 2 m⋅= y 1 m⋅= Δz 30 cm⋅= B 1.6 m⋅= Q 2.4
m3

s
⋅=

(a) For a hump with Δz 30 cm= E y
Q2

2 g⋅ Bw
2

⋅

1

y2
⋅+= E 1.07m=

yc

Q
Bw

⎛
⎜
⎝

⎞
⎟
⎠

2

g

⎡⎢
⎢
⎢
⎣

⎤⎥
⎥
⎥
⎦

1
3

= yc 0.528m= Emin
3
2

yc⋅= Emin 0.791m=

Δzcrit E Emin−= Δzcrit 0.282m=

Hence we have Δz 0.3m=  > Δzcrit 0.282m= so the hump IS sufficient for critical flow

(b) For the sidewall restriction with B 1.6m=

yc

Q
B
⎛⎜
⎝

⎞⎟
⎠

2

g

⎡⎢
⎢
⎢⎣

⎤⎥
⎥
⎥⎦

1
3

= yc 0.612m= Emin
3
2

yc⋅= Emin 0.918m=

Hence we have E 1.073m=  > Emin 0.918m= so the restriction is insufficient for critical flow

(a) For both, we can use the minimum energy from case (b) Emin 0.918m=

Δzcrit E Emin−= Δzcrit 0.155m=

Hence we have Δz 0.3m=  > Δzcrit 0.155m= so in this case the conditions ARE sufficient for critical flow



Problem 11.27 [1]

Given: Rectangular channel flow

Find: Critical depth

Solution:

Basic equations: yc
q2

g

⎛
⎜
⎝

⎞
⎟
⎠

1
3

= Q
1.49

n
A⋅ R

2
3

⋅ S0

1
2

⋅=

For a rectangular channel of width Bw 2 m⋅=  and depth y 1.5 m⋅=  we find from Table 11.2

A Bw y⋅= A 3.00 m2
⋅= R

Bw y⋅

Bw 2 y⋅+
= R 0.600 m⋅=

Manning's roughness coefficient is n 0.015= and S0 0.0005=

Q
1.49

n
A⋅ R

2
3

⋅ S0

1
2

⋅= Q 3.18
m3

s
⋅=

Hence q
Q

Bw
= q 1.59

m2

s
= yc

q2

g

⎛
⎜
⎝

⎞
⎟
⎠

1
3

= yc 0.637m=



Problem 11.28 [1]

Given: Rectangular channel flow

Find: Critical depth

Solution:

Basic equations: yc
q2

g

⎛
⎜
⎝

⎞
⎟
⎠

1
3

=

Given data: Bw 2.5 m⋅= Q 3
m3

s
⋅=

Hence q
Q

Bw
= q 1.2

m2

s
= yc

q2

g

⎛
⎜
⎝

⎞
⎟
⎠

1
3

= yc 0.528m=



Problem 11.29 [2]

Given: Rectangular channel

Find: Plot of specific force curves

Solution:

Given data: B = 20 ft

Specific force:

Q  = Q  = Q  = Q  = Q =
y  (ft) 0 25 75 125 200
0.1 0.10 9.80 87.44 242.72 621.22
0.2 0.40 5.25 44.07 121.71 310.96
0.4 1.60 4.03 23.44 62.26 156.88
0.6 3.60 5.22 18.16 44.04 107.12
0.8 6.40 7.61 17.32 36.73 84.04
1.0 10.00 10.97 18.73 34.26 72.11
1.2 14.40 15.21 21.68 34.62 66.16
1.4 19.60 20.29 25.84 36.93 63.97
1.6 25.60 26.21 31.06 40.76 64.42
1.8 32.40 32.94 37.25 45.88 66.91
2.0 40.00 40.49 44.37 52.13 71.06
2.2 48.40 48.84 52.37 59.43 76.63
2.4 57.60 58.00 61.24 67.71 83.48
2.6 67.60 67.97 70.96 76.93 91.49
2.8 78.40 78.75 81.52 87.07 100.58
3.0 90.00 90.32 92.91 98.09 110.70
3.5 122.50 122.78 125.00 129.43 140.25
4.0 160.00 160.24 162.18 166.07 175.53
4.5 202.50 202.72 204.44 207.89 216.30
5.0 250.00 250.19 251.75 254.85 262.42

Specific Force, F  (ft3)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

0 20 40 60 80 100 120 140 160 180

F  (ft3)

y  (ft)

Q = 0
Q = 25 cfs
Q = 75 cfs
Q = 125 cfs
Q = 200 cfs

2

22 By
gBy
QF +=



Problem 11.30 [2]

Given: Vena contracta at a sluice gate

Find: Distance from vena contracta at which depth is 0.5 m

Solution:

Basic equations: E y
V2

2 g⋅
+= R y= (Wide channel) Sf

Vave n⋅

Rave

2
3

⎛
⎜
⎜
⎜
⎝

⎞
⎟
⎟
⎟
⎠

2

= Δx
Ea Eb−

Sf S0−
=

(Some equations from Example 11.7)

Given data: q 4.646

m3

s
m

⋅= ya 0.457 m⋅= yb 0.5 m⋅= n 0.020= S0 0.003=

Hence we find Va
q
ya

= Va 10.2
m
s

= Vb
q
yb

= Vb 9.29
m
s

=

Then Ea ya
Va

2

2 g⋅
+= Ea 5.73m= Eb yb

Vb
2

2 g⋅
+= Eb 4.90m=

and Vave
Va Vb+

2
= Vave 9.73

m
s

=

Ra ya= Rb yb= Rave
Ra Rb+

2
= Ra 0.457m=

Then Sf
Vave n⋅

Rave

2
3

⎛
⎜
⎜
⎜
⎝

⎞
⎟
⎟
⎟
⎠

2

= Sf 0.101=

Finally Δx
Ea Eb−

Sf S0−
= Δx 8.40m=



Problem 11.31 [4]

Given: Data on trapezoidal channel and dam

Find: Location upstream at which depth is 4.80 ft

Solution:

Basic equations:

From Example 11.7 Δx
Δy

V1
2

2 g⋅

V2
2

2 g⋅
−

⎛⎜
⎜⎝

⎞⎟
⎟⎠

+

S0 Sf−
= and Sf

n V⋅

1.49 R

2
3

⋅

⎛
⎜
⎜
⎝

⎞
⎟
⎟
⎠

2
= (note the factor 1.49 because this is

not SI units)

The given data is: Bw 20 ft⋅= z
1
2

= S0 0.0016= n 0.025= Q 400
ft3

s
⋅= y1 5 ft⋅= y2 4.80 ft⋅=

We need to modify the specific energy equation to allow for the emergy correction coefficient (Section 8-6): instead of 
V2

2 g⋅
, the kinetic

energy per unit weight is α
V2

2 g⋅
⋅  where α 1.1=

Hence Δx
Δy α

V1
2

2 g⋅

V2
2

2 g⋅
−

⎛⎜
⎜⎝

⎞⎟
⎟⎠

⋅+

S0 Sf−
=

We need to obtain terms on the right S0 0.0016= α 1.1= Δy y1 y2−= Δy 0.200 ft=

We will need (Table 11.2) A Bw z y⋅+( ) y⋅= R
Bw z y⋅+( ) y⋅

Bw 2 y⋅ 1 z2
+⋅+

=

Then V1
Q
A1

= V1
Q

Bw z y1⋅+( ) y1⋅
= V1 3.56

ft
s

=

V2
Q
A2

= V2
Q

Bw z y2⋅+( ) y2⋅
= V2 3.72

ft
s

=

For Sf we use averages for V and R (as in Example 11.7)

and Vave
V1 V2+

2
= Vave 1.11

m
s

=

R1
Bw z y1⋅+( ) y1⋅

Bw 2 y1⋅ 1 z2
+⋅+

= R1 3.61 ft= R2
Bw z y2⋅+( ) y2⋅

Bw 2 y2⋅ 1 z2
+⋅+

= R2 3.50 ft=



Rave
R1 R2+

2
= Rave 3.55 ft⋅=

Then Sf
Vave n⋅

1.49 Rave

2
3

⋅

⎛
⎜
⎜
⎜
⎝

⎞
⎟
⎟
⎟
⎠

2

= Sf 0.000687=

Finally Δx
Δy α

V1
2

2 g⋅

V2
2

2 g⋅
−

⎛⎜
⎜⎝

⎞⎟
⎟⎠

⋅+

S0 Sf−
= Δx 197 ft=



Problem 11.32 [2]

Given: Data on rectangular channel

Find: Minimum specific energy; Flow depth; Speed

Solution:

Basic equation: E y
V2

2 g⋅
+= (11.14)

In Section 11-2 we prove that the minimum specific energy is when we have critical flow; here we rederive the minimum energy point

For a rectangular channel Q V Bw⋅ y⋅= or V
Q

Bw y⋅
= with Q

Bw
10

ft3

s
ft

⋅= constant=

Hence, using this in Eq. 11.14 E y
Q

Bw y⋅
⎛
⎜
⎝

⎞
⎟
⎠

2 1
2 g⋅
⋅+= y

Q2

2 Bw
2

⋅ g⋅

⎛
⎜
⎜
⎝

⎞
⎟
⎟
⎠

1

y2
⋅+=

E is a minimum when dE
dy

1
Q2

Bw
2 g⋅

⎛
⎜
⎜
⎝

⎞
⎟
⎟
⎠

1

y3
⋅−= 0= or y

Q2

Bw
2 g⋅

⎛
⎜
⎜
⎝

⎞
⎟
⎟
⎠

1
3

= y 1.46 ft⋅=

Note that from Eq. 11.22 we have yc
q2

g

⎛
⎜
⎝

⎞
⎟
⎠

1
3

=
Q2

Bw
2 g⋅

⎛
⎜
⎜
⎝

⎞
⎟
⎟
⎠

1
3

= which is the same result we derived

The speed is then given by V
Q

Bw y⋅
= V 6.85

ft
s

⋅=

Note that from Eq. 11.20 we also have V g D⋅= where D is the hydraulic depth D y= V g D⋅= V 6.85
ft
s

⋅=

The minimum energy is then Emin y
V2

2 g⋅
+= Emin 2.19 ft⋅=



Problem 11.33 [3]

Given: Data on rectangular channel

Find: Depths for twice the minimum energy

Solution:

Basic equation: E y
V2

2 g⋅
+= (11.14)

For a rectangular channel Q V Bw⋅ y⋅= or V
Q

Bw y⋅
= with Q

Bw
10

ft3

s
ft

⋅= constant=

Hence, using this in Eq. 11.14 E y
Q

Bw y⋅
⎛
⎜
⎝

⎞
⎟
⎠

2 1
2 g⋅
⋅+= y

Q2

2 Bw
2

⋅ g⋅

⎛
⎜
⎜
⎝

⎞
⎟
⎟
⎠

1

y2
⋅+= and E 2 2.19⋅ ft⋅= E 4.38 ft⋅=

We have a nonlinear implicit equation for y y
Q2

2 Bw
2

⋅ g⋅

⎛
⎜
⎜
⎝

⎞
⎟
⎟
⎠

1

y2
⋅+ E=

This is a nonlinear implicit equation for y and must be solved numerically.  We can use one of a number of numerical root finding
techniques, such as Newton's method, or we can use Excel's Solver or Goal Seek, or we can manually iterate, as below.  We start with
a y larger than the critical, and evaluate the left side of the equation so that it is equal to E 4.38 ft=

For y 2 ft⋅= y
Q2

2 Bw
2

⋅ g⋅

⎛
⎜
⎜
⎝

⎞
⎟
⎟
⎠

1

y2
⋅+ 2.39 ft⋅= For y 4 ft⋅= y

Q2

2 Bw
2

⋅ g⋅

⎛
⎜
⎜
⎝

⎞
⎟
⎟
⎠

1

y2
⋅+ 4.10 ft⋅=

For y 4.5 ft⋅= y
Q2

2 Bw
2

⋅ g⋅

⎛
⎜
⎜
⎝

⎞
⎟
⎟
⎠

1

y2
⋅+ 4.58 ft⋅= For y 4.30 ft⋅= y

Q2

2 Bw
2

⋅ g⋅

⎛
⎜
⎜
⎝

⎞
⎟
⎟
⎠

1

y2
⋅+ 4.38 ft⋅=

Hence y 4.3 ft⋅=

For the shallow depth

For y 1 ft⋅= y
Q2

2 Bw
2

⋅ g⋅

⎛
⎜
⎜
⎝

⎞
⎟
⎟
⎠

1

y2
⋅+ 2.55 ft⋅= For y 0.5 ft⋅= y

Q2

2 Bw
2

⋅ g⋅

⎛
⎜
⎜
⎝

⎞
⎟
⎟
⎠

1

y2
⋅+ 6.72 ft⋅=

For y 0.6 ft⋅= y
Q2

2 Bw
2

⋅ g⋅

⎛
⎜
⎜
⎝

⎞
⎟
⎟
⎠

1

y2
⋅+ 4.92 ft⋅= For y 0.65 ft⋅= y

Q2

2 Bw
2

⋅ g⋅

⎛
⎜
⎜
⎝

⎞
⎟
⎟
⎠

1

y2
⋅+ 4.33 ft⋅=

For y 0.645 ft⋅= y
Q2

2 Bw
2

⋅ g⋅

⎛
⎜
⎜
⎝

⎞
⎟
⎟
⎠

1

y2
⋅+ 4.38 ft⋅= Hence y 0.645 ft⋅=



Problem 11.34 [3]

Given: Data on trapezoidal channel

Find: Critical depth

Solution:

Basic equation: E y
V2

2 g⋅
+= (11.14)

In Section 11-2 we prove that the minimum specific energy is when we have critical flow; here we rederive the minimum energy point

For a trapezoidal channel (Table 11.2) A Bw z y⋅+( ) y⋅= and Bw 8 ft⋅= z 0.5=

Hence for V V
Q
A

=
Q

Bw z y⋅+( ) y⋅
= and Q 300

ft3

s
⋅=

Using this in Eq. 11.14 E y
Q

Bw z y⋅+( ) y⋅
⎡
⎢
⎣

⎤
⎥
⎦

2 1
2 g⋅
⋅+=

E is a minimum when dE
dy

1
Q2 z⋅

g y2
⋅ Bw y z⋅+( )3⋅

−
Q2

g y3
⋅ Bw y z⋅+( )2⋅

−= 0=

Hence we obtain for y Q2 z⋅

g y2
⋅ Bw y z⋅+( )3⋅

Q2

g y3
⋅ Bw y z⋅+( )2⋅

+ 1= or
Q2 Bw 2 y⋅ z⋅+( )⋅

g y3
⋅ Bw y z⋅+( )3⋅

1=

This is a nonlinear implicit equation for y and must be solved numerically.  We can use one of a number of numerical root finding techniqu
such as Newton's method, or we can use Excel's Solver or Goal Seek, or we can manually iterate, as below, to make the left side equal unity

y 1 ft⋅=
Q2 Bw 2 y⋅ z⋅+( )⋅

g y3
⋅ Bw y z⋅+( )3⋅

41= y 5 ft⋅=
Q2 Bw 2 y⋅ z⋅+( )⋅

g y3
⋅ Bw y z⋅+( )3⋅

0.251=

y 3 ft⋅=
Q2 Bw 2 y⋅ z⋅+( )⋅

g y3
⋅ Bw y z⋅+( )3⋅

1.33= y 3.5 ft⋅=
Q2 Bw 2 y⋅ z⋅+( )⋅

g y3
⋅ Bw y z⋅+( )3⋅

0.809=

y 3.25 ft⋅=
Q2 Bw 2 y⋅ z⋅+( )⋅

g y3
⋅ Bw y z⋅+( )3⋅

1.03= y 3.28 ft⋅=
Q2 Bw 2 y⋅ z⋅+( )⋅

g y3
⋅ Bw y z⋅+( )3⋅

0.998=

The critical depth is y 3.28 ft⋅=



Problem 11.35 [2]

Given: Triangular channel

Find: Critcal depth

Solution:

Basic equation: E y
V2

2 g⋅
+= (11.14)

For a triangular channel (Table 11.2) A z y2
⋅=

Hence for V V
Q
A

=
Q

z y2
⋅

=

Using this in Eq. 11.14 E y
Q

z y2
⋅

⎛
⎜
⎝

⎞
⎟
⎠

2 1
2 g⋅
⋅+=

E is a minimum when dE
dy

1 4
Q2

z2 y5
⋅

⋅
1

2 g⋅
⋅−= 0=

Hence we obtain for y y
2 Q2
⋅

z2 g⋅

⎛⎜
⎜⎝

⎞⎟
⎟⎠

1
5

=



Problem 11.36 [2]

Given: Trapezoidal channel

Find: Critcal depth

Solution:

Basic equation: E y
V2

2 g⋅
+= (11.14)

The critical depth occurs when the specific energy is minimized

For a trapezoidal channel (Table 11.2) A Bw z y⋅+( ) y⋅= and Bw 8 ft⋅= z 0.5=

Hence for V V
Q
A

=
Q

Bw z y⋅+( ) y⋅
= and Q 300

ft3

s
⋅=

Using this in Eq. 11.14 E y
Q

Bw z y⋅+( ) y⋅
⎡
⎢
⎣

⎤
⎥
⎦

2 1
2 g⋅
⋅+=

E is a minimum when dE
dy

1
Q2 z⋅

g y2
⋅ Bw y z⋅+( )3⋅

−
Q2

g y3
⋅ Bw y z⋅+( )2⋅

−= 0=

Hence we obtain for y Q2 z⋅

g y2
⋅ Bw y z⋅+( )3⋅

Q2

g y3
⋅ Bw y z⋅+( )2⋅

+ 1=

This can be simplified to Q2 Bw 2 y⋅ z⋅+( )⋅

g y3
⋅ Bw y z⋅+( )3⋅

1=

This expression is the simplest one for y; it is implicit



Problem 11.37 [2]

Given: Data on venturi flume

Find: Flow rate

Solution:

Basic equation:
p1
ρ g⋅

V1
2

2 g⋅
+ y1+

p2
ρ g⋅

V2
2

2 g⋅
+ y2+= The Bernoulli equation applies because we have steady, incompressible,

frictionless flow

At each section Q V A⋅= V b⋅ y⋅= or V
Q
b y⋅

=

The given data is b1 2 ft⋅= y1 1 ft⋅= b2 1 ft⋅= y2 0.75 ft⋅=

Hence the Bernoulli equation becomes (with p1 = p2 = patm)

Q
b1 y1⋅

⎛
⎜
⎝

⎞
⎟
⎠

2

2 g⋅
y1+

Q
b2 y2⋅

⎛
⎜
⎝

⎞
⎟
⎠

2

2 g⋅
y2+=

Solving for Q Q
2 g⋅ y1 y2−( )⋅

1
b2 y2⋅

⎛
⎜
⎝

⎞
⎟
⎠

2 1
b1 y1⋅

⎛
⎜
⎝

⎞
⎟
⎠

2
−

= Q 3.24
ft3

s
⋅=



Problem 11.38 [3]

Given: Data on rectangular channel and a bump

Find: Elevation of free surface above the bump

Solution:

Basic equation:
p1
ρ g⋅

V1
2

2 g⋅
+ y1+

p2
ρ g⋅

V2
2

2 g⋅
+ y2+ h+= The Bernoulli equation applies because we have steady,

incompressible, frictionless flow.  Note that at location 2 (the
bump), the potential is y2 + h, where h is the bump height

Recalling the specific energy E
V2

2 g⋅
y+= and noting that p1 = p2 = patm, the Bernoulli equation becomes E1 E2 h+=

At each section Q V A⋅= V b⋅ y⋅= or V
Q
b y⋅

=

The given data is b 10 ft⋅= y1 1 ft⋅= h 4 in⋅= Q 100
ft3

s
⋅=

Hence we find V1
Q

b y1⋅
= V1 10

ft
s

⋅=

and E1
V1

2

2 g⋅
y1+= E1 2.554 ft⋅=

Hence E1 E2 h+=
V2

2

2 g⋅
y2+ h+=

Q2

2 g⋅ b2
⋅ y2

2
⋅

y2+ h+= or Q2

2 g⋅ b2
⋅ y2

2
⋅

y2+ E1 h−=

This is a nonlinear implicit equation for y2 and must be solved numerically.  We can use one of a number of numerical root finding
techniques, such as Newton's method, or we can use Excel's Solver or Goal Seek, or we can manually iterate, as below.  We select y2
so the left side of the equation equals E1 h− 2.22 ft⋅=  

For y2 1 ft⋅=
Q2

2 g⋅ b2
⋅ y2

2
⋅

y2+ 2.55 ft⋅= For y2 1.5 ft⋅=
Q2

2 g⋅ b2
⋅ y2

2
⋅

y2+ 2.19 ft⋅=

For y2 1.4 ft⋅=
Q2

2 g⋅ b2
⋅ y2

2
⋅

y2+ 2.19 ft⋅= For y2 1.3 ft⋅=
Q2

2 g⋅ b2
⋅ y2

2
⋅

y2+ 2.22 ft⋅=

Hence y2 1.30 ft⋅=

Note that V2
Q

b y2⋅
= V2 7.69

ft
s

⋅=

so we have Fr1
V1

g y1⋅
= Fr1 1.76= and Fr2

V2

g y2⋅
= Fr2 1.19=



Problem 11.39 [3]

Given: Data on rectangular channel and a bump

Find: Local change in flow depth caused by the bump

Solution:

Basic equation:
p1
ρ g⋅

V1
2

2 g⋅
+ y1+

p2
ρ g⋅

V2
2

2 g⋅
+ y2+ h+= The Bernoulli equation applies because we have steady,

incompressible, frictionless flow.  Note that at location 2 (the
bump), the potential is y2 + h, where h is the bump height

Recalling the specific energy E
V2

2 g⋅
y+= and noting that p1 = p2 = patm, the Bernoulli equation becomes E1 E2 h+=

At each section Q V A⋅= V b⋅ y⋅= or V
Q
b y⋅

=

The given data is b 10 ft⋅= y1 0.9 ft⋅= h 0.2 ft⋅= Q 20
ft3

s
⋅=

Hence we find V1
Q

b y1⋅
= V1 2.22

ft
s

⋅=

and E1
V1

2

2 g⋅
y1+= E1 0.977 ft⋅=

Hence E1 E2 h+=
V2

2

2 g⋅
y2+ h+=

Q2

2 g⋅ b2
⋅ y2

2
⋅

y2+ h+= or Q2

2 g⋅ b2
⋅ y2

2
⋅

y2+ E1 h−=

This is a nonlinear implicit equation for y2 and must be solved numerically.  We can use one of a number of numerical root finding
techniques, such as Newton's method, or we can use Excel's Solver or Goal Seek, or we can manually iterate, as below.  We select y2
so the left side of the equation equals E1 h− 0.777 ft⋅=  

For y2 0.9 ft⋅=
Q2

2 g⋅ b2
⋅ y2

2
⋅

y2+ 0.977 ft⋅= For y2 0.5 ft⋅=
Q2

2 g⋅ b2
⋅ y2

2
⋅

y2+ 0.749 ft⋅=

For y2 0.6 ft⋅=
Q2

2 g⋅ b2
⋅ y2

2
⋅

y2+ 0.773 ft⋅= For y2 0.61 ft⋅=
Q2

2 g⋅ b2
⋅ y2

2
⋅

y2+ 0.777 ft⋅=

Hence y2 0.61 ft⋅= and
y2 y1−

y1
32.2− %=

Note that V2
Q

b y2⋅
= V2 3.28

ft
s

⋅=

so we have Fr1
V1

g y1⋅
= Fr1 0.41= and Fr2

V2

g y2⋅
= Fr2 0.74=



Problem 11.40 [3]

Given: Data on rectangular channel and a bump

Find: Local change in flow depth caused by the bump

Solution:

Basic equation:
p1
ρ g⋅

V1
2

2 g⋅
+ y1+

p2
ρ g⋅

V2
2

2 g⋅
+ y2+ h+= The Bernoulli equation applies because we have steady,

incompressible, frictionless flow.  Note that at location 2 (the
bump), the potential is y2 + h, where h is the bump height

Recalling the specific energy E
V2

2 g⋅
y+= and noting that p1 = p2 = patm, the Bernoulli equation becomes E1 E2 h+=

At each section Q V A⋅= V b⋅ y⋅= or V
Q
b y⋅

=

The given data is b 10 ft⋅= y1 0.3 ft⋅= h 0.1 ft⋅= Q 20
ft3

s
⋅=

Hence we find V1
Q

b y1⋅
= V1 6.67

ft
s

⋅=

and E1
V1

2

2 g⋅
y1+= E1 0.991 ft⋅=

Hence E1 E2 h+=
V2

2

2 g⋅
y2+ h+=

Q2

2 g⋅ b2
⋅ y2

2
⋅

y2+ h+= or Q2

2 g⋅ b2
⋅ y2

2
⋅

y2+ E1 h−=

This is a nonlinear implicit equation for y2 and must be solved numerically.  We can use one of a number of numerical root finding
techniques, such as Newton's method, or we can use Excel's Solver or Goal Seek, or we can manually iterate, as below.  We select y2
so the left side of the equation equals E1 h− 0.891 ft⋅=  

For y2 0.3 ft⋅=
Q2

2 g⋅ b2
⋅ y2

2
⋅

y2+ 0.991 ft⋅= For y2 0.35 ft⋅=
Q2

2 g⋅ b2
⋅ y2

2
⋅

y2+ 0.857 ft⋅=

For y2 0.33 ft⋅=
Q2

2 g⋅ b2
⋅ y2

2
⋅

y2+ 0.901 ft⋅= For y2 0.334 ft⋅=
Q2

2 g⋅ b2
⋅ y2

2
⋅

y2+ 0.891 ft⋅=

Hence y2 0.334 ft⋅= and
y2 y1−

y1
11.3%=

Note that V2
Q

b y2⋅
= V2 5.99

ft
s

⋅=

so we have Fr1
V1

g y1⋅
= Fr1 2.15= and Fr2

V2

g y2⋅
= Fr2 1.83=



Problem 11.41 [3]

Given: Data on wide channel

Find: Stream depth after rise

Solution:

Basic equation:
p1
ρ g⋅

V1
2

2 g⋅
+ y1+

p2
ρ g⋅

V2
2

2 g⋅
+ y2+ h+= The Bernoulli equation applies because we have steady,

incompressible, frictionless flow.  Note that at location 2 (the
bump), the potential is y2 + h, where h is the bump height

Recalling the specific energy E
V2

2 g⋅
y+= and noting that p1 = p2 = patm, the Bernoulli equation becomes E1 E2 h+=

At each section Q V A⋅= V1 b⋅ y1⋅= V2 b⋅ y2⋅= V2 V1
y1
y2
⋅=

The given data is y1 2 ft⋅= V1 3
ft
s

⋅= h 0.5 ft⋅=

Hence E1
V1

2

2 g⋅
y1+= E1 2.14 ft⋅=

Then E1 E2 h+=
V2

2

2 g⋅
y2+ h+=

V1
2 y1

2
⋅

2 g⋅
1

y2
2

⋅ y2+ h+= or
V1

2 y1
2

⋅

2 g⋅
1

y2
2

⋅ y2+ E1 h−=

This is a nonlinear implicit equation for y2 and must be solved numerically.  We can use one of a number of numerical root finding
techniques, such as Newton's method, or we can use Excel's Solver or Goal Seek, or we can manually iterate, as below.  We select y2
so the left side of the equation equals E1 h− 1.64 ft⋅=  

For y2 2 ft⋅=
V1

2 y1
2

⋅

2 g⋅
1

y2
2

⋅ y2+ 2.14 ft⋅= For y2 1.5 ft⋅=
V1

2 y1
2

⋅

2 g⋅
1

y2
2

⋅ y2+ 1.75 ft⋅=

For y2 1.3 ft⋅=
V1

2 y1
2

⋅

2 g⋅
1

y2
2

⋅ y2+ 1.63 ft⋅= For y2 1.31 ft⋅=
V1

2 y1
2

⋅

2 g⋅
1

y2
2

⋅ y2+ 1.64 ft⋅=

Hence y2 1.31 ft⋅=

Note that V2 V1
y1
y2
⋅= V2 4.58

ft
s

⋅=

so we have Fr1
V1

g y1⋅
= Fr1 0.37= and Fr2

V2

g y2⋅
= Fr2 0.71=



Problem 11.42 [2]

Given: Data on sluice gate

Find: Water level upstream; Maximum flow rate

Solution:

Basic equation:
p1
ρ g⋅

V1
2

2 g⋅
+ y1+

p2
ρ g⋅

V2
2

2 g⋅
+ y2+ h+= The Bernoulli equation applies because we have steady,

incompressible, frictionless flow.

Noting that p1 = p2 = patm, and V1 is approximately zero (1 = upstream, 2 = downstream) the Bernoulli equation becomes

y1
V2

2

2 g⋅
y2+=

The given data is Q
b

6.0
m2

s
= y2 0.6 m⋅=

Hence Q V2 A2⋅= V2 b⋅ y2⋅= or V2
Q

b y2⋅
= V2 10

m
s

=

Then upstream y1
V2

2

2 g⋅
y2+

⎛⎜
⎜⎝

⎞⎟
⎟⎠

= y1 5.70m=

The maximum flow rate occurs at critical conditions (see Section 11-2), for constant specific energy

In this case V2 Vc= g yc⋅=

Hence we find y1
Vc

2

2 g⋅
yc+=

g yc⋅

2 g⋅
yc+=

3
2

yc⋅=

Hence yc
2
3

y1⋅= yc 3.80m= Vc g yc⋅= Vc 6.10
m
s

=

Q
b

Vc yc⋅=
Q
b

23.2

m3

s
m

= (Maximum flow rate)



Problem 11.43 [2]

Given: Data on sluice gate

Find: Flow rate

Solution:

Basic equation:
p1
ρ g⋅

V1
2

2 g⋅
+ y1+

p2
ρ g⋅

V2
2

2 g⋅
+ y2+ h+= The Bernoulli equation applies because we have steady,

incompressible, frictionless flow.

Noting that p1 = p2 = patm, (1 = upstream, 2 = downstream) the Bernoulli equation becomes

V1
2

2 g⋅
y1+

V2
2

2 g⋅
y2+=

The given data is b 3 ft⋅= y1 6 ft⋅= y2 0.9 ft⋅=

Also Q V A⋅= so V1
Q

b y1⋅
= and V2

Q
b y2⋅

=

Using these in the Bernoulli equation

Q
b y1⋅

⎛
⎜
⎝

⎞
⎟
⎠

2

2 g⋅
y1+

Q
b y2⋅

⎛
⎜
⎝

⎞
⎟
⎠

2

2 g⋅
y2+=

Solving for Q Q
2 g⋅ b2

⋅ y1
2

⋅ y2
2

⋅

y1 y2+
= Q 49.5

ft3

s
=

Note that V1
Q

b y1⋅
= V1 2.75

ft
s

= Fr1
V1

g y1⋅
= Fr1 0.198=

V2
Q

b y2⋅
= V2 18.3

ft
s

= Fr2
V2

g y2⋅
= Fr2 3.41=



Problem 11.44 [4]

Given: Data on rectangular channel and weir

Find: If a hydraulic jump forms upstream of the weir

Solution:

Basic equations: Q
1
n

A⋅ R

2
3

⋅ S0

1
2

⋅= yc
q2

g

⎛
⎜
⎝

⎞
⎟
⎠

1
3

=

Note that the Q equation is an "engineering" equation, to be used without units!

For a rectangular channel of width Bw 2.45 m⋅=  and depth y we find from Table 11.2

A Bw y⋅= 2.45 y⋅= R
Bw y⋅

Bw 2 y⋅+
=

2.45 y⋅
2.45 2 y⋅+

=

and also n 0.015= and S0 0.0004= Q 5.66
m3

s
⋅=

Hence Q
1
n

A⋅ R

2
3

⋅ S0

1
2

⋅=
1

0.015
2.45⋅ y⋅

2.45 y⋅
2.45 2 y⋅+

⎛⎜
⎝

⎞⎟
⎠

2
3

⋅ 0.0004

1
2

⋅= 5.66= (Note that we don't use units!)

Solving for y y

5
3

2.45 2 y⋅+( )

2
3

5.66 0.015⋅

.0004

1
2 2.54⋅ 2.54

2
3

⋅

= or y

5
3

2.54 2 y⋅+( )

2
3

0.898=

This is a nonlinear implicit equation for y and must be solved numerically.  We can use one of a number of numerical root finding techniqu
such as Newton's method, or we can use Excel's Solver or Goal Seek, or we can manually iterate, as below.  We start with the given depth

For y 1.52= m( )
y

5
3

2.54 2 y⋅+( )

2
3

0.639= For y 2= m( )
y

5
3

2.54 2 y⋅+( )

2
3

0.908=

For y 1.95= m( )
y

5
3

2.54 2 y⋅+( )

2
3

0.879= For y 1.98= m( )
y

5
3

2.54 2 y⋅+( )

2
3

0.896=

y 1.98= (m) This is the normal depth.



We also have the critical depth: q
Q

Bw
= q 2.31

m2

s
= yc

q2

g

⎛
⎜
⎝

⎞
⎟
⎠

1
3

= yc 0.816m=

Hence the given depth is 1.52 m > yc, but 1.52 m < yn, the normal depth.  This implies the flow is subcritical (far enough upstream it is dep
1.98 m), and that it draws down to 1.52 m as it gets close to the wier.  There is no jump.



Problem 11.45 [2]

Given: Data on rectangular channel and hydraulic jump

Find: Flow rate; Critical depth; Head loss

Solution:

Basic equations:
y2
y1

1
2

1− 1 8 Fr1
2

⋅++⎛
⎝

⎞
⎠⋅= Hl E1 E2−= y1

V1
2

2 g⋅
+

⎛⎜
⎜⎝

⎞⎟
⎟⎠

y2
V2

2

2 g⋅
+

⎛⎜
⎜⎝

⎞⎟
⎟⎠

−= yc
q2

g

⎛
⎜
⎝

⎞
⎟
⎠

1
3

=

The given data is b 4 m⋅= y1 0.4 m⋅= y2 1.7 m⋅=

We can solve for Fr1 from the basic equation 1 8 Fr1
2

⋅+ 1 2
y2
y1
⋅+=

Fr1

1 2
y2
y1
⋅+

⎛
⎜
⎝

⎞
⎟
⎠

2

1−

8
= Fr1 3.34= and Fr1

V1

g y1⋅
=

Hence V1 Fr1 g y1⋅⋅= V1 6.62
m
s

=

Then Q V1 b⋅ y1⋅= Q 10.6
m3

s
⋅= q

Q
b

= q 2.65
m2

s
=

The critical depth is yc
q2

g

⎛
⎜
⎝

⎞
⎟
⎠

1
3

= yc 0.894m=

Also V2
Q

b y2⋅
= V2 1.56

m
s

= Fr2
V2

g y2⋅
= Fr2 0.381=

The energy loss is Hl y1
V1

2

2 g⋅
+

⎛⎜
⎜⎝

⎞⎟
⎟⎠

y2
V2

2

2 g⋅
+

⎛⎜
⎜⎝

⎞⎟
⎟⎠

−= Hl 0.808m=

Note that we could use the result of Example 11.9 Hl
y2 y1−( )3
4 y1⋅ y2⋅

= Hl 0.808m=



Problem 11.46 [2]

Given: Data on wide channel and hydraulic jump

Find: Jump depth; Head loss

Solution:

Basic equations:
y2
y1

1
2

1− 1 8 Fr1
2

⋅++⎛
⎝

⎞
⎠⋅= Hl E1 E2−= y1

V1
2

2 g⋅
+

⎛⎜
⎜⎝

⎞⎟
⎟⎠

y2
V2

2

2 g⋅
+

⎛⎜
⎜⎝

⎞⎟
⎟⎠

−=

The given data is Q
b

20

ft3

s
ft

= y1 1 ft⋅=

Also Q V A⋅= V b⋅ y⋅=

Hence V1
Q

b y1⋅
= V1 20.0

ft
s

= Fr1
V1

g y1⋅
= Fr1 3.53=

Then y2
y1
2

1− 1 8 Fr1
2

⋅++⎛
⎝

⎞
⎠⋅= y2 4.51 ft=

V2
Q

b y2⋅
= V2 4.43

ft
s

= Fr2
V2

g y2⋅
= Fr2 0.368=

The energy loss is Hl y1
V1

2

2 g⋅
+

⎛⎜
⎜⎝

⎞⎟
⎟⎠

y2
V2

2

2 g⋅
+

⎛⎜
⎜⎝

⎞⎟
⎟⎠

−= Hl 2.40 ft=

Note that we could use the result of Example 11.9 Hl
y2 y1−( )3
4 y1⋅ y2⋅

= Hl 2.40 ft=



Problem 11.47 [1]

Given: Data on wide channel and hydraulic jump

Find: Jump depth

Solution:

Basic equations:
y2
y1

1
2

1− 1 8 Fr1
2

⋅++⎛
⎝

⎞
⎠⋅=

The given data is Q
b

30

ft3

s
ft

= y1 1.3 ft⋅=

Also Q V A⋅= V b⋅ y⋅=

Hence V1
Q

b y1⋅
= V1 23.1

ft
s

= Fr1
V1

g y1⋅
= Fr1 3.57=

Then y2
y1
2

1− 1 8 Fr1
2

⋅++⎛
⎝

⎞
⎠⋅= y2 5.94 ft=

Note: V2
Q

b y2⋅
= V2 5.05

ft
s

= Fr2
V2

g y2⋅
= Fr2 0.365=



Problem 11.48 [2]

Given: Data on wide channel and hydraulic jump

Find: Jump depth; Head loss

Solution:

Basic equations:
y2
y1

1
2

1− 1 8 Fr1
2

⋅++⎛
⎝

⎞
⎠⋅= Hl E1 E2−= y1

V1
2

2 g⋅
+

⎛⎜
⎜⎝

⎞⎟
⎟⎠

y2
V2

2

2 g⋅
+

⎛⎜
⎜⎝

⎞⎟
⎟⎠

−=

The given data is Q 200
ft3

s
⋅= b 10 ft⋅= y1 1.2 ft⋅=

Also Q V A⋅= V b⋅ y⋅=

Hence V1
Q

b y1⋅
= V1 16.7

ft
s

⋅= Fr1
V1

g y1⋅
= Fr1 2.68=

Then y2
y1
2

1− 1 8 Fr1
2

⋅++⎛
⎝

⎞
⎠⋅= y2 3.99 ft⋅=

V2
Q

b y2⋅
= V2 5.01

ft
s

⋅= Fr2
V2

g y2⋅
= Fr2 0.442=

The energy loss is Hl y1
V1

2

2 g⋅
+

⎛⎜
⎜⎝

⎞⎟
⎟⎠

y2
V2

2

2 g⋅
+

⎛⎜
⎜⎝

⎞⎟
⎟⎠

−= Hl 1.14 ft⋅=

Note that we could use the result of Example 11.9 Hl
y2 y1−( )3
4 y1⋅ y2⋅

= Hl 1.14 ft⋅=



Problem 11.49 [2]

Given: Data on wide channel and hydraulic jump

Find: Flow rate; Head loss

Solution:

Basic equations:
y2
y1

1
2

1− 1 8 Fr1
2

⋅++⎛
⎝

⎞
⎠⋅= Hl E1 E2−= y1

V1
2

2 g⋅
+

⎛⎜
⎜⎝

⎞⎟
⎟⎠

y2
V2

2

2 g⋅
+

⎛⎜
⎜⎝

⎞⎟
⎟⎠

−=

The given data is b 5 ft⋅= y1 0.66 ft⋅= y2 3.0 ft⋅=

We can solve for Fr1 from the basic equation 1 8 Fr1
2

⋅+ 1 2
y2
y1
⋅+=

Fr1

1 2
y2
y1
⋅+

⎛
⎜
⎝

⎞
⎟
⎠

2

1−

8
= Fr1 3.55= and Fr1

V1

g y1⋅
=

Hence V1 Fr1 g y1⋅⋅= V1 16.4
ft
s

⋅=

Then Q V1 b⋅ y1⋅= Q 54.0
ft3

s
=

Also V2
Q

b y2⋅
= V2 3.60

ft
s

⋅= Fr2
V2

g y2⋅
= Fr2 0.366=

The energy loss is Hl y1
V1

2

2 g⋅
+

⎛⎜
⎜⎝

⎞⎟
⎟⎠

y2
V2

2

2 g⋅
+

⎛⎜
⎜⎝

⎞⎟
⎟⎠

−= Hl 1.62 ft⋅=

Note that we could use the result of Example 11.9 Hl
y2 y1−( )3
4 y1⋅ y2⋅

= Hl 1.62 ft⋅=



Problem 11.50 [2]

Given: Data on wide spillway flow

Find: Depth after hydraulic jump; Specific energy change

Solution:

Basic equations:
y2
y1

1
2

1− 1 8 Fr1
2

⋅++⎛
⎝

⎞
⎠⋅= Hl E1 E2−= y1

V1
2

2 g⋅
+

⎛⎜
⎜⎝

⎞⎟
⎟⎠

y2
V2

2

2 g⋅
+

⎛⎜
⎜⎝

⎞⎟
⎟⎠

−=

The given data is y1 0.9 m⋅= V1 25
m
s

=

Then Fr1 is Fr1
V1

g y1⋅
= Fr1 8.42=

Hence y2
y1
2

1− 1 8 Fr1
2

⋅++⎛
⎝

⎞
⎠⋅= y2 10.3m=

Then Q V1 b⋅ y1⋅= V2 b⋅ y2⋅= V2 V1
y1
y2
⋅= V2 2.19

m
s

=

For the specific energies E1 y1
V1

2

2 g⋅
+= E1 32.8m=

E2 y2
V2

2

2 g⋅
+= E2 10.5m=

E2
E1

0.321=

The energy loss is Hl E1 E2−= Hl 22.3m=

Note that we could use the result of Example 11.9 Hl
y2 y1−( )3
4 y1⋅ y2⋅

= Hl 22.3 m⋅=



Problem 11.51 [2]

Given: Data on rectangular channel flow

Find: Depth after hydraulic jump; Specific energy change

Solution:

Basic equations:
y2
y1

1
2

1− 1 8 Fr1
2

⋅++⎛
⎝

⎞
⎠⋅= Hl E1 E2−= y1

V1
2

2 g⋅
+

⎛⎜
⎜⎝

⎞⎟
⎟⎠

y2
V2

2

2 g⋅
+

⎛⎜
⎜⎝

⎞⎟
⎟⎠

−=

The given data is y1 0.4 m⋅= b 1 m⋅= Q 6.5
m3

s
=

Then Q V1 b⋅ y1⋅= V2 b⋅ y2⋅= V1
Q

b y1⋅
= V1 16.3

m
s

=

Then Fr1 is Fr1
V1

g y1⋅
= Fr1 8.20=

Hence y2
y1
2

1− 1 8 Fr1
2

⋅++⎛
⎝

⎞
⎠⋅= y2 4.45m=

and V2
Q

b y2⋅
= V2 1.46

m
s

=

For the specific energies E1 y1
V1

2

2 g⋅
+= E1 13.9m=

E2 y2
V2

2

2 g⋅
+= E2 4.55m=

The energy loss is Hl E1 E2−= Hl 9.31m=

Note that we could use the result of Example 11.9 Hl
y2 y1−( )3
4 y1⋅ y2⋅

= Hl 9.31 m⋅=



Problem 11.52 [3]

Given: Data on rectangular, sharp-crested weir

Find: Required weir height

Solution:

Basic equations: Q Cd
2
3
⋅ 2 g⋅⋅ B'⋅ H

3
2

⋅= where Cd 0.62= and B' B 0.1 n⋅ H⋅−= with n 2=

Given data: B 1.6 m⋅= Q 0.5
m3

s
⋅=

Hence we find
Q Cd

2
3
⋅ 2 g⋅⋅ B'⋅ H

3
2

⋅= Cd
2
3
⋅ 2 g⋅⋅ B 0.1 n⋅ H⋅−( )⋅ H

3
2

⋅=

Rearranging B 0.1 n⋅ H⋅−( ) H

3
2

⋅
3 Q⋅

2 2 g⋅⋅ Cd⋅
=

This is a nonlinear implicit equation for H and must be solved numerically.  We can use one of a number of numerical root finding techniqu
such as Newton's method, or we can use Excel's Solver or Goal Seek, or we can manually iterate, as below.

The right side evaluates to 3 Q⋅

2 2 g⋅⋅ Cd⋅
0.273m

5
2

=

For H 1 m⋅= B 0.1 n⋅ H⋅−( ) H

3
2

⋅ 1.40m

5
2

= For H 0.5 m⋅= B 0.1 n⋅ H⋅−( ) H

3
2

⋅ 0.530m

5
2

=

For H 0.3 m⋅= B 0.1 n⋅ H⋅−( ) H

3
2

⋅ 0.253m

5
2

= For H 0.35 m⋅= B 0.1 n⋅ H⋅−( ) H

3
2

⋅ 0.317m

5
2

=

For H 0.31 m⋅= B 0.1 n⋅ H⋅−( ) H

3
2

⋅ 0.265m

5
2

= For H 0.315 m⋅= B 0.1 n⋅ H⋅−( ) H

3
2

⋅ 0.272m

5
2

=

For H 0.316 m⋅= B 0.1 n⋅ H⋅−( ) H

3
2

⋅ 0.273m

5
2

= H 0.316m=

But from the figure H P+ 2.5 m⋅= P 2.5 m⋅ H−= P 2.18m=



Problem 11.53 [1]

Given: Data on rectangular, sharp-crested weir

Find: Discharge

Solution:

Basic equation: Q Cw B⋅ H

3
2

⋅= where Cw 3.33= and B 8 ft⋅= P 2 ft⋅= H 1 ft⋅=

Note that this is an "engineering" equation, to be used without units!

Q Cw B⋅ H

3
2

⋅= Q 26.6=
ft3

s



Problem 11.54 [3]

Given: Data on rectangular, sharp-crested weir

Find: Required weir height

Solution:

Basic equations: Q Cd
2
3
⋅ 2 g⋅⋅ B'⋅ H

3
2

⋅= where Cd 0.62= and B' B 0.1 n⋅ H⋅−= with n 2=

Given data: B 1.5 m⋅= Q 0.5
m3

s
⋅=

Hence we find
Q Cd

2
3
⋅ 2 g⋅⋅ B'⋅ H

3
2

⋅= Cd
2
3
⋅ 2 g⋅⋅ B 0.1 n⋅ H⋅−( )⋅ H

3
2

⋅=

Rearranging B 0.1 n⋅ H⋅−( ) H

3
2

⋅
3 Q⋅

2 2 g⋅⋅ Cd⋅
=

This is a nonlinear implicit equation for H and must be solved numerically.  We can use one of a number of numerical root finding techniqu
such as Newton's method, or we can use Excel's Solver or Goal Seek, or we can manually iterate, as below.

The right side evaluates to 3 Q⋅

2 2 g⋅⋅ Cd⋅
0.273 m

5
2

⋅=

For H 1 m⋅= B 0.1 n⋅ H⋅−( ) H

3
2

⋅ 1.30 m

5
2

⋅= For H 0.5 m⋅= B 0.1 n⋅ H⋅−( ) H

3
2

⋅ 0.495 m

5
2

⋅=

For H 0.3 m⋅= B 0.1 n⋅ H⋅−( ) H

3
2

⋅ 0.237 m

5
2

⋅= For H 0.35 m⋅= B 0.1 n⋅ H⋅−( ) H

3
2

⋅ 0.296 m

5
2

⋅=

For H 0.34 m⋅= B 0.1 n⋅ H⋅−( ) H

3
2

⋅ 0.284 m

5
2

⋅= For H 0.33 m⋅= B 0.1 n⋅ H⋅−( ) H

3
2

⋅ 0.272 m

5
2

⋅=

For H 0.331 m⋅= B 0.1 n⋅ H⋅−( ) H

3
2

⋅ 0.273 m

5
2

⋅= H 0.331m=

But from the figure H P+ 2.5 m⋅= P 2.5 m⋅ H−= P 2.17m=



Problem 11.55 [1]

Given: Data on V-notch weir

Find: Flow head

Solution:

Basic equation: Q Cd
8
15
⋅ 2 g⋅⋅ tan

θ

2
⎛⎜
⎝

⎞⎟
⎠

⋅ H

5
2

⋅= where Cd 0.58= θ 60 deg⋅= Q 150
L
s

⋅=

H
Q

Cd
8
15
⋅ 2 g⋅⋅ tan

θ

2
⎛⎜
⎝

⎞⎟
⎠

⋅

⎛
⎜
⎜
⎝

⎞
⎟
⎟
⎠

2
5

= H 0.514m=



Problem 11.56 [1]

Given: Data on V-notch weir

Find: Discharge

Solution:

Basic equation: Q Cw H

5
2

⋅= where H 1.5 ft⋅= Cw 2.50= for θ 90 deg⋅=

Note that this is an "engineering" equation in which we ignore units!

Q Cw H

5
2

⋅= Q 6.89=
ft3

s



Problem 11.57 [1]

Given: Data on V-notch weir

Find: Weir coefficient

Solution:

Basic equation: Q Cw H

5
2

⋅= where H 180 mm⋅= Q 20
L
s

⋅=

Note that this is an "engineering" equation in which we ignore units!

Cw
Q

H

5
2

= Cw 1.45=



Problem 12.1 [2]

Given: Air flow through a filter

Find: Change in p, T and ρ

Solution:

Basic equations: h2 h1− cp T2 T1−( )⋅= p ρ R⋅ T⋅=

Assumptions: 1) Ideal gas 2) Throttling process

In a throttling process enthalpy is constant.  Hence h2 h1− 0= so T2 T1− 0= or T constant=

The filter acts as a resistance through which there is a pressure drop (otherwise there would be no flow.  Hence p2 p1<

From the ideal gas equation
p1
p2

ρ1 T1⋅

ρ2 T2⋅
= so ρ2 ρ1

T1
T2

⎛
⎜
⎝

⎞
⎟
⎠

⋅
p2
p1

⎛
⎜
⎝

⎞
⎟
⎠

⋅= ρ1
p2
p1

⎛
⎜
⎝

⎞
⎟
⎠

⋅= Hence ρ2 ρ1<

The governing equation for entropy is Δs cp ln
T2
T1

⎛
⎜
⎝

⎞
⎟
⎠

⋅ R ln
p2
p1

⎛
⎜
⎝

⎞
⎟
⎠

⋅−=

Hence Δs R− ln
p2
p1

⎛
⎜
⎝

⎞
⎟
⎠

⋅= and
p2
p1

1< so Δs 0>

Entropy increases because throttling is an irreversible adiabatic process



 
Problem 12.2                                                                             [2]



Problem 12.3 [2]

Given: Data on an air compressor

Find: Whether or not the vendor claim is feasible

Solution:

Basic equation: Δs cp ln
T2
T1

⎛
⎜
⎝

⎞
⎟
⎠

⋅ R ln
p2
p1

⎛
⎜
⎝

⎞
⎟
⎠

⋅−=

The data provided, or available in the Appendices, is:

p1 101 kPa⋅= T1 20 273+( ) K⋅=

p2 650 101+( ) kPa⋅= T2 285 273+( ) K⋅=

cp 1004
J

kg K⋅
⋅= R 287

J
kg K⋅
⋅=

Then Δs cp ln
T2
T1

⎛
⎜
⎝

⎞
⎟
⎠

⋅ R ln
p2
p1

⎛
⎜
⎝

⎞
⎟
⎠

⋅−= Δs 71.0
J

kg K⋅
=

Entropy s

Te
m

pe
ra

tu
re

 T

The second law of thermodynamics states that, for an adiabatic process

Δs 0≥ or for all real processes Δs 0>

Hence the process is feasible!



Problem 12.4 [2]

Given: Adiabatic air compressor

Find: Lowest delivery temperature; Sketch the process on a Ts diagram

Solution:

Basic equation: Δs cp ln
T2
T1

⎛
⎜
⎝

⎞
⎟
⎠

⋅ R ln
p2
p1

⎛
⎜
⎝

⎞
⎟
⎠

⋅−=

T2 T1
p1
p2

⎛
⎜
⎝

⎞
⎟
⎠

1 k−
k

⋅=The lowest temperature implies an ideal (reversible) process; it is also adiabatic, so Δs = 0, and

The data provided, or available in the Appendices, is:p1 14.7 psi⋅= p2 100 14.7+( ) psi⋅= T1 68 460+( ) R⋅= k 1.4=

Hence T2 T1
p1
p2

⎛
⎜
⎝

⎞
⎟
⎠

1 k−
k

⋅= T2 950R= T2 490°F=

Entropy s

Te
m

pe
ra

tu
re

 TThe process is



Problem 12.5 [2]

Given: Test chamber with two chambers

Find: Pressure and temperature after expansion

Solution:

Basic equation: p ρ R⋅ T⋅= Δu q w−= (First law - closed system) Δu cv ΔT⋅=

Assumptions: 1) Ideal gas 2) Adiabatic 3) No work

For no work and adiabatic the first law becomes Δu 0= or for an Ideal gas ΔT 0= T2 T1=

We also have M ρ Vol⋅= const= and Vol2 2 Vol1⋅= so ρ2
1
2

ρ1⋅=

From the ideal gas equation
p2
p1

ρ2
ρ1

T2
T1
⋅=

1
2

= so p2
1
2

p1⋅=

Hence T2 20 °F= p2
200 kPa⋅

2
= p2 100 kPa⋅=

Note that Δs cp ln
T2
T1

⎛
⎜
⎝

⎞
⎟
⎠

⋅ R ln
p2
p1

⎛
⎜
⎝

⎞
⎟
⎠

⋅−= R− ln
1
2
⎛⎜
⎝
⎞⎟
⎠

⋅= 0.693 R⋅= so entropy increases (irreversible adiabatic)



Problem 12.6 [2]

Given: Supercharger

Find: Pressure, temperature and flow rate at exit; power drawn

Solution:

Basic equation: p ρ Rair⋅ T⋅= Δs cp ln
T2
T1

⎛
⎜
⎝

⎞
⎟
⎠

⋅ R ln
p2
p1

⎛
⎜
⎝

⎞
⎟
⎠

⋅−=

Δh q w−= (First law - open system) Δh cp ΔT⋅=

Assumptions: 1) Ideal gas 2) Adiabatic

In an ideal process (reversible and adiabatic) the first law becomes Δh w= or for an Ideal gas wideal cp ΔT⋅=

For an isentropic process Δs 0= cp ln
T2
T1

⎛
⎜
⎝

⎞
⎟
⎠

⋅ R ln
p2
p1

⎛
⎜
⎝

⎞
⎟
⎠

⋅−= or
T2
T1

p2
p1

⎛
⎜
⎝

⎞
⎟
⎠

k 1−
k

=

The given or available data is T1 70 460+( ) R⋅= p1 14.7 psi⋅= p2 200 14.7+( ) psi⋅= η 70 %⋅=

Q1 0.5
ft3

s
⋅= k 1.4= cp 0.2399

Btu
lbm R⋅
⋅= Rair 53.33

ft lbf⋅
lbm R⋅
⋅=

Hecne T2
p2
p1

⎛
⎜
⎝

⎞
⎟
⎠

k 1−
k

T1⋅= T2 1140 R⋅= T2 681 °F⋅= p2 215 psi⋅=

We also have mrate ρ1 Q1⋅= ρ2 Q2⋅= Q2 Q1
ρ1
ρ2
⋅= Q2 Q1

p1
p2
⋅

T2
T1
⋅= Q2 0.0737

ft3

s
⋅=

For the power we use Pideal mrate wideal⋅= ρ1 Q1⋅ cp⋅ Δ⋅ T⋅=

From the ideal gas equation ρ1
p1

Rair T1⋅
= ρ1 0.00233

slug

ft3
⋅= or ρ1 0.0749

lbm

ft3
⋅=

Hence Pideal ρ1 Q1⋅ cp⋅ T2 T1−( )⋅= Pideal 5.78 kW⋅=

The actual power needed is Pactual
Pideal

η
= Pactual 8.26 kW⋅=

A supercharger is a pump that forces air into an engine, but generally refers to a pump that is driven directly by the engine, as
opposed to a turbocharger that is driven by the pressure of the exhaust gases.



Problem 12.7 [2]

Given: Cooling of air in a tank

Find: Change in entropy, internal energy, and enthalpy

Solution:

Basic equation: p ρ R⋅ T⋅= Δs cp ln
T2
T1

⎛
⎜
⎝

⎞
⎟
⎠

⋅ R ln
p2
p1

⎛
⎜
⎝

⎞
⎟
⎠

⋅−=

Δu cv ΔT⋅= Δh cp ΔT⋅=

Assumptions: 1) Ideal gas 2) Constant specific heats

Given or available data M 5 kg⋅= T1 250 273+( ) K⋅= T2 50 273+( ) K⋅= p1 3 MPa⋅=

cp 1004
J

kg K⋅
⋅= cv 717.4

J
kg K⋅
⋅= k

cp
cv

= k 1.4= R cp cv−= R 287
J

kg K⋅
⋅=

For a constant volume process the ideal gas equation gives
p2
p1

T2
T1

= p2
T2
T1

p1⋅= p2 1.85 MPa⋅=

Then Δs cp ln
T2
T1

⎛
⎜
⎝

⎞
⎟
⎠

⋅ R ln
p2
p1

⎛
⎜
⎝

⎞
⎟
⎠

⋅−= Δs 346−
J

kg K⋅
⋅=

Δu cv T2 T1−( )⋅= Δu 143−
kJ
kg
⋅=

Δh cp T2 T1−( )⋅= Δh 201−
kJ
kg
⋅=

Total amounts are ΔS M Δs⋅= ΔS 1729−
J
K
⋅=

ΔU M Δu⋅= ΔU 717− kJ⋅=

ΔH M Δh⋅= ΔH 1004− kJ⋅=



Problem 12.8 [3]

Given: Air in a piston-cylinder

Find: Heat to raise temperature to 1200oC at a) constant pressure and b) constant volume

Solution:

The data provided, or available in the Appendices, is:

T1 100 273+( ) K⋅= T2 1200 273+( ) K⋅= R 287
J

kg K⋅
⋅= cp 1004

J
kg K⋅
⋅= cv cp R−= cv 717

J
kg K⋅
⋅=

a) For a constant pressure process we start with T ds⋅ dh v dp⋅−=

Hence, for p = const. ds
dh
T

= cp
dT
T

⋅=

But δq T ds⋅=

Hence δq cp dT⋅= q Tcp
⌠
⎮
⎮
⌡

d= q cp T2 T1−( )⋅= q 1104
kJ
kg
⋅=

b)  For a constant volume process we start T ds⋅ du p dv⋅+=

Hence, for v = const. ds
du
T

= cv
dT
T

⋅=

But δq T ds⋅=

Hence δq cv dT⋅= q Tcv
⌠
⎮
⎮
⌡

d= q cv T2 T1−( )⋅= q 789
kJ
kg
⋅=

Heating to a higher temperature at constant pressure requires more heat than at constant volume: some of the heat is used
to do work in expanding the gas; hence for constant pressure less of the heat is available for raising the temperature.

From the first law: Constant pressure: q Δu w+= Constant volume: q Δu=

The two processes can be plotted using Eqs. 11.11b and 11.11a, simplified for the case of constant pressure and
constant volume.

a) For constant pressure s2 s1− cp ln
T2
T1

⎛
⎜
⎝

⎞
⎟
⎠

⋅ R ln
p2
p1

⎛
⎜
⎝

⎞
⎟
⎠

⋅−= so Δs cp ln
T2
T1

⎛
⎜
⎝

⎞
⎟
⎠

⋅=

b) For constant volume s2 s1− cv ln
T2
T1

⎛
⎜
⎝

⎞
⎟
⎠

⋅ R ln
v2
v1

⎛
⎜
⎝

⎞
⎟
⎠

⋅+= so Δs cv ln
T2
T1

⎛
⎜
⎝

⎞
⎟
⎠

⋅=

The processes are plotted in the associated Excel workbook



Problem 12.8 (In Excel) [3]

Given: Air in a piston-cylinder

Find: Heat to raise temperature to 1200oC at a) constant pressure and b) constant volume; plot

Solution:

The given or available data is:

T 1 = 100 oC

T 2 = 1200 oC
R  = 287 J/kg.K
c p = 1004 J/kg.K
c v = 717 J/kg.K

The equations to be plotted are:

T  (K) a) Δs  J/kg·K) b) Δs  J/kg·K)
373 0 0
473 238 170
573 431 308
673 593 423
773 732 522
873 854 610
973 963 687
1073 1061 758
1173 1150 821
1273 1232 880
1373 1308 934

T-s  Diagram for Constant Pressure and Constant Volume 
Processes
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1000

1250

1500

0 250 500 750 1000 1250 1500
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T
 (K

)

a) Constant Pressure
b) Constant Volume



Problem 12.9 [4]

Given: Data on Otto cycle

Find: Plot of pV and Ts diagrams; efficiency

Solution:

The data provided, or available in the Appendices, is:

cp 1004
J

kg K⋅
⋅= R 287

J
kg K⋅
⋅= cv cp R−= cv 717

J
kg K⋅
⋅= k

cp
cv

= k 1.4=

p1 100 kPa⋅= T1 20 273+( ) K⋅= T3 2750 273+( ) K⋅= V1 500 cc⋅= V2
V1
8.5

= V2 58.8 cc⋅=

V4 V1=

Computed results: M
p1 V1⋅

R T1⋅
= M 5.95 10 4−

× kg=

For process 1-2 we have isentropic behavior T vk 1−
⋅ constant= p vk

⋅ constant= (12.12 a and 12.12b)

Hence T2 T1
V1
V2

⎛
⎜
⎝

⎞
⎟
⎠

k 1−

⋅= T2 690K= p2 p1
V1
V2

⎛
⎜
⎝

⎞
⎟
⎠

k

⋅= p2 2002 kPa⋅=

The process from 1 -2 is p V( ) p1
V1
V

⎛
⎜
⎝

⎞
⎟
⎠

k

⋅= and s constant=

The work is W12
V1

V2
Vp V( )

⌠
⎮
⌡

d
p1 V1⋅ p2 V2⋅−

k 1−
=

⎛
⎜
⎜
⎝

⎞
⎟
⎟
⎠

= W12 169− J= Q12 0 J⋅= (Isentropic)

For process 2 - 3 we have constant volume V3 V2= V3 58.8 cc⋅=

Hence p3 p2
T3
T2
⋅= p3 8770 kPa⋅=



The process from 2 -3 is V V2= constant= and Δs cv ln
T
T2

⎛
⎜
⎝

⎞
⎟
⎠

⋅= W23 0 J⋅=

(From 12.11a)

Q23 M Δu⋅= M Tcv
⌠
⎮
⎮
⌡

d⋅= Q23 M cv⋅ T3 T2−( )⋅= Q23 995J=

For process 3 - 4 we again have isentropic behavior

Hence T4 T3
V3
V4

⎛
⎜
⎝

⎞
⎟
⎠

k 1−

⋅= T4 1284K= p4 p3
V3
V4

⎛
⎜
⎝

⎞
⎟
⎠

k

⋅= p4 438 kPa⋅=

The process from 3 - 4 is p V( ) p3
V3
V

⎛
⎜
⎝

⎞
⎟
⎠

k

⋅= and s constant=

The work is W34
p3 V3⋅ p4 V4⋅−

k 1−
= W34 742J= Q34 0 J⋅=

For process 4-1 we again have constant volume

The process from 4 -1 is V V4= constant= and Δs cv ln
T
T4

⎛
⎜
⎝

⎞
⎟
⎠

⋅= W41 0 J⋅=

(From 12.11a)

Q41 M cv⋅ T1 T4−( )⋅= Q41 422− J=

The net work is Wnet W12 W23+ W34+ W41+= Wnet 572J=

The efficiency is η

Wnet
Q23

= η 57.5 %⋅=

This is consistent with the expression for the Otto efficiency ηOtto 1
1

rk 1−
−=

where r is the compression ratio r
V1
V2

= r 8.5=

ηOtto 57.5 %⋅=

Plots of the cycle in pV and Ts space are shown in the associated Excel workbook



Problem 12.9 (In Excel) [4]

Given: Data on Otto cycle

Find: Plot of pV  and Ts  diagrams; efficiency

Solution:

The given, available, or computed data is:

R  = 287 J/kg.K
c p = 1004 J/kg.K
c v = 717 J/kg.K
k  = 1.4

T 1 = 293 K p 1 = 100 kPa V 1 = 500 cc
T 2 = 690 K p 2 = 2002 kPa V 2 = 58.8 cc
T 3 = 3023 K p 3 = 8770 kPa V 3 = 58.8 cc
T 4 = 1284 K p 4 = 438 kPa V 4 = 500 cc



The computations are:

V  (cc) p  (kPa) T  (K) s  J/kg·K)

1 500 100 293 100 Initial entropy is arbitrary
450 116 306 100 Temperatures from Eq. 12.12b
400 137 320 100
350 165 338 100
300 204 359 100
250 264 387 100
200 361 423 100
150 540 474 100
100 952 558 100

2 58.8 2002 690 100 Uniform temperature steps
58.8 2176 750 160
58.8 2901 1000 366
58.8 3626 1250 526
58.8 4352 1500 657
58.8 5077 1750 767
58.8 5802 2000 863
58.8 6527 2250 947
58.8 7253 2500 1023
58.8 7978 2750 1091

3 58.8 8770 3023 1159 Temperatures from Eq. 12.12b
100 4172 2445 1159
150 2364 2078 1159
200 1580 1852 1159
250 1156 1694 1159
300 896 1575 1159
350 722 1481 1159
400 599 1403 1159
450 508 1339 1159

4 500 438 1284 1159 Uniform temperature steps
500 410 1200 1111
500 375 1100 1049
500 341 1000 980
500 307 900 905
500 273 800 820
500 239 700 724
500 205 600 614
500 171 500 483
500 137 400 323

1 500 100 293 100



T - s  Diagram for Otto Cycle
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Problem 12.10 [4]

Given: Data on diesel cycle

Find: Plot of pV and Ts diagrams; efficiency

Solution:

The data provided, or available in the Appendices, is:

cp 1004
J

kg K⋅
⋅= R 287

J
kg K⋅
⋅= cv cp R−= cv 717

J
kg K⋅

= k
cp
cv

= k 1.4=

p1 100 kPa⋅= T1 20 273+( ) K⋅= T3 3000 273+( ) K⋅= V1 500 cc⋅=

V2
V1

12.5
= V2 40cc= V3 V2= V4 1.75 V3⋅= V4 70cc= V5 V1=

Computed results: M
p1 V1⋅

R T1⋅
= M 5.95 10 4−

× kg=

For process 1-2 we have isentropic behavior T vk 1−
⋅ constant= (12.12a) p vk

⋅ constant= (12.12c)

Hence T2 T1
V1
V2

⎛
⎜
⎝

⎞
⎟
⎠

k 1−

⋅= T2 805K= p2 p1
V1
V2

⎛
⎜
⎝

⎞
⎟
⎠

k

⋅= p2 3435kPa=

The process from 1 -2 is p V( ) p1
V1
V

⎛
⎜
⎝

⎞
⎟
⎠

k

⋅= and s constant=

The work is W12
V1

V2
Vp V( )

⌠
⎮
⌡

d=
p1 V1⋅ p2 V2⋅−

k 1−
= W12 218− J= Q12 0 J⋅=

(Isentropic)

For process 2 - 3 we have constant volume V3 V2= V3 40cc=

Hence p3 p2
T3
T2
⋅= p3 13963kPa=



The process from 2 -3 is V V2= constant= and Δs cv ln
T
T2

⎛
⎜
⎝

⎞
⎟
⎠

⋅= W23 0 J⋅=

(From Eq. 12.11a)

Q23 M Δu⋅= M Tcv
⌠
⎮
⎮
⌡

d⋅= Q23 M cv⋅ T3 T2−( )⋅= Q23 1052J=

For process 3 - 4 we have constant pressure p4 p3= p4 13963kPa= T4 T3
V4
V3

⎛
⎜
⎝

⎞
⎟
⎠

⋅= T4 5728K=

The process from 3 - 4 is p p3= constant= and Δs cp ln
T
T3

⎛
⎜
⎝

⎞
⎟
⎠

⋅=

(From Eq. 12.11b)

W34 p3 V4 V3−( )⋅= W34 419J= Q34 M cp⋅ T4 T3−( )⋅= Q34 1465J=

For process 4 - 5 we again have isentropic behavior T5 T4
V4
V5

⎛
⎜
⎝

⎞
⎟
⎠

k 1−

⋅= T5 2607K=

Hence p5 p4
V4
V5

⎛
⎜
⎝

⎞
⎟
⎠

k

⋅= p5 890kPa=

The process from 4 - 5 is p V( ) p4
V4
V

⎛
⎜
⎝

⎞
⎟
⎠

k

⋅= and s constant=

The work is W45
p4 V4⋅ p5 V5⋅−

k 1−
= W45 1330J= Q45 0 J⋅=

For process 5-1 we again have constant volume

The process from 5 -1 is V V5= constant= and Δs cv ln
T
T5

⎛
⎜
⎝

⎞
⎟
⎠

⋅=

(From Eq. 12.11a)

Q51 M cv⋅ T1 T5−( )⋅= Q51 987− J= W51 0 J⋅=

The net work is Wnet W12 W23+ W34+ W45+ W51+= Wnet 1531J=

The heat added is Qadded Q23 Q34+= Qadded 2517J=

The efficiency is η

Wnet
Qadded

= η 60.8%=



This is consistent with the expression from thermodynamics for the diesel efficiency

ηdiesel 1
1

rk 1−

rc
k 1−

k rc 1−( )⋅

⎡
⎢
⎢
⎣

⎤
⎥
⎥
⎦

⋅−=

where r is the compression ratio r
V1
V2

= r 12.5=

and rc is the cutoff ratio rc
V4
V3

= rc 1.75=

ηdiesel 58.8%=

The plots of the cycle in pV and Ts space are shown in the associated Excel workbook



Problem 12.10 (In Excel) [4]

Given: Data on diesel cycle

Find: Plot of pV  and Ts  diagrams; efficiency

Solution:

The given, available, or computed data is:

R  = 287 J/kg.K
c p = 1004 J/kg.K
c v = 717 J/kg.K
k  = 1.4

T 1 = 293 K p 1 = 100 kPa V 1 = 500 cc
T 2 = 805 K p 2 = 3435 kPa V 2 = 40 cc
T 3 = 3273 K p 3 = 13963 kPa V 3 = 40 cc
T 4 = 5728 K p 4 = 13963 kPa V 4 = 70 cc
T 5 = 2607 K p 5 = 890 kPa V 5 = 500 cc



The computations are:

V  (cc) p  (kPa) T  (K) s  J/kg.K)

1 500 100 293 100 Initial entropy is arbitrary
400 137 320 100 Temperatures from Eq. 12.12b
300 204 359 100
250 264 387 100
200 361 423 100
150 540 474 100
100 952 558 100
75.0 1425 626 100
50.0 2514 736 100

2 40.0 3435 805 100 Uniform temperature steps
40.0 3840 900 180
40.0 4266 1000 255
40.0 5333 1250 415
40.0 6399 1500 546
40.0 7466 1750 657
40.0 8532 2000 752
40.0 9599 2250 837
40.0 10666 2500 912
40.0 11732 2750 981

3 40.0 13963 3273 1105 Uniform temperature steps
42.8 13963 3500 1173
45.8 13963 3750 1242
48.9 13963 4000 1307
51.9 13963 4250 1368
55.0 13963 4500 1425
58.1 13963 4750 1479
61.1 13963 5000 1531
64.2 13963 5250 1580
67.2 13963 5500 1627

4 70.0 13963 5728 1667 Temperatures from Eq. 12.12b
100 8474 4966 1667
150 4803 4222 1667
200 3210 3763 1667
250 2349 3441 1667
300 1820 3199 1667
350 1466 3007 1667
400 1216 2851 1667
450 1031 2720 1667

5 500 890 2607 1667 Uniform temperature steps
500 853 2500 1637
500 768 2250 1562
500 683 2000 1477
500 597 1750 1381
500 512 1500 1271
500 427 1250 1140
500 341 1000 980
500 256 750 774
500 171 500 483

1 500 100 293 100
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Problem 12.11                                                                             [3]



 
Problem 12.12                                                                             [2]



 
Problem 12.13                                                                             [3]



Problem 12.14 [3]

Given: Data on flow through compressor

Find: Efficiency at which power required is 30 MW; plot required efficiency and exit temperature as functions of efficiency

Solution:
The data provided, or available in the Appendices, is:

R 518.3
J

kg K⋅
⋅= cp 2190

J
kg K⋅
⋅= cv cp R−= cv 1672

J
kg K⋅

= k
cp
cv

= k 1.31=

T1 13 273+( ) K⋅= p1 0.5 MPa⋅ 101 kPa⋅+= V1 32
m
s

⋅=

p2 8 MPa⋅ 101 kPa⋅+= Wcomp 30 MW⋅= D 0.6 m⋅=

The governing equation is the first law of thermodynamics for the compressor

Mflow h2
V2

2

2
+

⎛⎜
⎜⎝

⎞⎟
⎟⎠

h1
V1

2

2
+

⎛⎜
⎜⎝

⎞⎟
⎟⎠

−
⎡⎢
⎢⎣

⎤⎥
⎥⎦

⋅ Wcomp= or Wcomp Mflow cp T2 T1−( )⋅
V2

2 V1
2

−

2
+

⎡⎢
⎢⎣

⎤⎥
⎥⎦

⋅=

We need to find the mass flow rate and the temperature and velocity at the exit

Mflow ρ1 A1⋅ V1⋅=
p1

R T1⋅
π

4
⋅ D2

⋅ V1⋅= Mflow
p1

R T1⋅
π

4
⋅ D2

⋅ V1⋅= Mflow 36.7
kg
s

=

The exit velocity is then given by Mflow
p2

R T2⋅
π

4
⋅ D2

⋅ V2⋅= V2
4 Mflow⋅ R⋅ T2⋅

π p2⋅ D2
⋅

= (1)

The exit velocity cannot be computed until the exit temperature is determined!

Using Eq. 1 in the first law Wcomp Mflow cp T2 T1−( )⋅

4 Mflow⋅ R⋅ T2⋅

π p2⋅ D2
⋅

⎛
⎜
⎜
⎝

⎞
⎟
⎟
⎠

2

V1
2

−

2
+

⎡⎢
⎢
⎢
⎢⎣

⎤⎥
⎥
⎥
⎥⎦

⋅=

In this complicated expression the only unknown is T2, the exit temperature.  The equation is a quadratic, so is solvable
explicitly for T2, but instead we use Excel's Goal Seek to find the solution (the second solution is mathematically
correct but physically unrealistic - a very large negative absolute temperature).  The exit temperature is T2 660 K⋅=

If the compressor was ideal (isentropic), the exit temperature would be given by

T p

1 k−
k

⋅ constant= (12.12b)



Hence T2s T1
p1
p2

⎛
⎜
⎝

⎞
⎟
⎠

1 k−
k

⋅= T2s 529K=

For a compressor efficiency η, we have η

h2s h1−

h2 h1−
= or η

T2s T1−

T2 T1−
= η 65.1%=

To plot the exit temperature and power as a function of efficiency we use T2 T1
T2s T1−

η
+=

with V2
4 Mflow⋅ R⋅ T2⋅

π p2⋅ D2
⋅

= and Wcomp Mflow cp T2 T1−( )⋅
V2

2 V1
2

−

2
+

⎡⎢
⎢⎣

⎤⎥
⎥⎦

⋅=

The dependencies of T2 and Wcomp on efficiency are plotted in the associated Excel workbook



Problem 12.14 (In Excel) [3]

Given: Data on flow through compressor

Find: Efficiency at which power required is 30 MW; plot required efficiency
and exit temperature as functions of efficiency

Solution:

The given or available data is:

R  = 518.3 J/kg.K
c p = 2190 J/kg.K
c v = 1672 J/kg.K
k  = 1.31

T 1 = 286 K
p 1 = 601 kPa
V 1 = 32 m/s
p 2 = 8101 kPa
D  = 0.6 m/s

W comp = 30 MW

Computed results:

M flow = 36.7 kg/s

Use Goal Seek  to vary T 2 below so that the error between the left and right sides is zero!

T 2 = 660 K

LHS (MW) RHS (MW) Error
30.0 30.0 0.00%

T 2s = 529 K

η = 65.1%



η T 2 (K) V 2 (m/s) W comp (MW)
85% 572 4.75 23
80% 590 4.90 24
70% 634 5.26 28
50% 773 6.41 39
40% 894 7.42 49
35% 981 8.14 56
30% 1097 9.11 65
25% 1259 10.45 78
20% 1503 12.47 98
15% 1908 15.84 130

Required Compressor Power
as a Function of Efficiency
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Problem 12.15                                                                             [4]



Problem 12.16 [3]

Given: Data on flow rate and balloon properties

Find: "Volumetric efficiency" over time

Solution:

The given or available data is:

R  = 53.3 ft.lbf/lboR
T atm = 519 R
p atm = 14.7 psi

k  = 200 lbf/ft3

V rate = 0.1 ft3/min

Computing equations:

Computed results:

ρair = 0.0765 lb/ft3

M rate = 0.000128 lb/s



r  (in) p  (psi) ρ (lb/ft3) V ball (ft
3) M ball (lb) t (s) ΔV/V rate

5.00 29.2 0.152 0.303 0.0461 0.00 0.00
5.25 30.0 0.156 0.351 0.0547 67.4 42.5%
5.50 30.7 0.160 0.403 0.0645 144 41.3%
5.75 31.4 0.164 0.461 0.0754 229 40.2%
6.00 32.2 0.167 0.524 0.0876 325 39.2%
6.25 32.9 0.171 0.592 0.101 433 38.2%
6.50 33.6 0.175 0.666 0.116 551 37.3%
6.75 34.3 0.179 0.746 0.133 683 36.4%
7.00 35.1 0.183 0.831 0.152 828 35.5%

Volume Increase of Balloon
as Percentage of Supplied Volume
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Problem 12.17 [3]

Given: Sound wave

Find: Estimate of change in density, temperature, and velocity after sound wave passes

Solution:

Basic equation: p ρ R⋅ T⋅= Δs cp ln
T2
T1

⎛
⎜
⎝

⎞
⎟
⎠

⋅ R ln
p2
p1

⎛
⎜
⎝

⎞
⎟
⎠

⋅−=

du cv dT⋅= dh cp dT⋅=

Assumptions: 1) Ideal gas 2) Constant specific heats 3) Isentropic process 4) infinitesimal changes

Given or available data

T1 20 273+( ) K⋅= p1 100 kPa⋅= dp 20 Pa⋅= k 1.4= R 286.9
J

kg K⋅
=

c k R⋅ T1⋅= c 343
m
s

=

For small changes, from Section 11-2 dp c2 dρ⋅= so dρ
dp

c2
= dρ 1.70 10 4−

×
kg

m3
⋅= a very small change!

The air density is ρ1
p1

R T1⋅
= ρ1 1.19

kg

m3
=

Then dVx
1

ρ1 c⋅
dp⋅= dVx 0.049

m
s

= This is the velocity of the air after the sound wave!

For the change in temperature we start with the ideal gas equation p ρ R⋅ T⋅= and differentiate dp dρ R⋅ T⋅ ρ R⋅ dT⋅+=

Dividing by the ideal gas equation we find dp
p

dρ

ρ

dT
T

+=

Hence dT T1
dp
p1

dρ

ρ1
−⎛

⎜
⎝

⎞
⎟
⎠

⋅= dT 0.017K= dT 0.030 Δ°F⋅= a very small change!



Problem 12.18 [3]

Given: Sound wave

Find: Estimate of change in density, temperature, and velocity after sound wave passes

Solution:

Basic equations: p ρ R⋅ T⋅= Ev
dp
dρ

ρ

=

Assumptions: 1) Ideal gas 2) Constant specific heats 3) Infinitesimal changes

To find the bulk modulus we need dp
dρ

in Ev
dp
dρ

ρ

= ρ
dp
dρ
⋅=

For rapid compression (isentropic) p

ρ
k

const= and so dp
dρ

k
p
ρ
⋅=

Hence Ev ρ k
p
ρ
⋅⎛⎜

⎝
⎞⎟
⎠

⋅= Ev k p⋅=

For gradual compression (isothermal) we can use the ideal gas equation p ρ R⋅ T⋅= so dp dρ R⋅ T⋅=

Hence Ev ρ R T⋅( )⋅= p= Ev p=

We conclude that the "stiffness" (Ev) of air is equal to kp when rapidly compressed and p when gradually compressed.  To give an idea of v

For water Ev 2.24 GPa⋅=

For air (k 1.4= ) at p 101 kPa⋅= Rapid compression Ev k p⋅= Ev 141 kPa⋅=

Gradual compression Ev p= Ev 101 kPa⋅=



Problem 12.19 [2]

Given: Device for determining bulk modulus

Find: Time delay; Bulk modulus of new material

Solution:

Basic equation: c
Ev
ρ

=

Hence for given data Ev 200
GN

m2
⋅= L 1 m⋅= and for steel SG 7.83= ρw 1000

kg

m3
⋅=

For the steel c
Ev

SG ρw⋅
= c 5054

m
s

=

Hence the time to travel distance L is Δt
L
c

= Δt 1.98 10 4−
× s= Δt 0.198ms= Δt 198 μs=

For the unknown material M 0.25 kg⋅= D 1 cm⋅= Δt 0.5 ms⋅=

The density is then ρ
M

L
π D2
⋅
4

⋅

= ρ 3183
kg

m3
=

The speed of sound in it is c
L

Δt
= c 2000

m
s

=

Hence th bulk modulus is Ev ρ c2
⋅= Ev 12.7

GN

m2
=



Problem 12.20 [2]

Given: Hunting dolphin

Find: Time delay before it hears prey at 1000 m

Solution:

Basic equation: c
Ev
ρ

=

Given (and Table A.2) data L 1000 m⋅= SG 1.025= Ev 2.42
GN

m2
⋅= ρw 1000

kg

m3
⋅=

For the seawater c
Ev

SG ρw⋅
= c 1537

m
s

=

Hence the time for sound to travel distance L is Δt
L
c

= Δt 0.651 s⋅= Δt 651 ms⋅=



Problem 12.21 [2]

Given: Submarine sonar

Find: Separation between submarines

Solution:

Basic equation: c
Ev
ρ

=

Given (and Table A.2) data Δt 25 s⋅= SG 1.025= Ev 2.42
GN

m2
⋅= ρw 1000

kg

m3
⋅=

For the seawater c
Ev

SG ρw⋅
= c 1537

m
s

=

Hence the distance sound travels in time Δt is L c Δt⋅= L 38.4km=

The distance between submarines is half of this x
L
2

= x 19.2km=



Problem 12.22 [1]

Given: Airplane cruising at two different elevations

Find: Mach numbers

Solution:

Basic equation: c k R⋅ T⋅= M
V
c

=

Available data R 286.9
J

kg K⋅
= k 1.4=

At z 1600 ft⋅= z 488m= interpolating from Table A.3 T 288.2 K⋅
284.9 288.2−( ) K⋅

500 0−( ) m⋅
z 0m−( )⋅+=

T 285K=

Hence c k R⋅ T⋅= c 338
m
s

= c 757mph= and we have V 400 mph⋅=

The Mach number is M
V
c

= M 0.529=

Repeating at z 50000 ft⋅= z 15240m= T 216.7 K⋅=

Hence c k R⋅ T⋅= c 295
m
s

= c 660mph= and we have V 725 mph⋅=

The Mach number is M
V
c

= M 1.10=
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V = 500 mph
R = 286.90 J/kg·K (Table A.6)
k  = 1.40

Data on temperature versus height obtained from Table A.3

z  (m) T  (K) c  (m/s) c  (mph) M
0 288.2 340 661 0.756

500 284.9 338 658 0.760
1000 281.7 336 654 0.765
1500 278.4 334 650 0.769
2000 275.2 332 646 0.774
2500 271.9 330 642 0.778
3000 268.7 329 639 0.783
3500 265.4 326 635 0.788
4000 262.2 325 631 0.793
4500 258.9 322 627 0.798
5000 255.7 320 623 0.803
6000 249.2 316 615 0.813
7000 242.7 312 607 0.824
8000 236.2 308 599 0.835
9000 229.7 304 590 0.847

10000 223.3 299 582 0.859

Mach Number versus Elevation

0.70

0.75

0.80

0.85

0.90

0 2000 4000 6000 8000 10000

z  (m)

M



Problem 12.26 [2]

Given: Fireworks displays!

Find: How long after seeing them do you hear them?

Solution:

Basic equation: c k R⋅ T⋅=

Assumption: Speed of light is essentially infinite (compared to speed of sound)

The given or available data is TJuly 75 460+( ) R⋅= L 1 mi⋅= k 1.4= Rair 53.33
ft lbf⋅
lbm R⋅
⋅=

Hence cJuly k Rair⋅ TJuly⋅= cJuly 1134
ft
s

=

Then the time is ΔtJuly
L

cJuly
= ΔtJuly 4.66s=

In January TJan 5 460+( ) R⋅=

Hence cJan k Rair⋅ TJan⋅= cJan 1057
ft
s

=

Then the time is ΔtJan
L

cJan
= ΔtJan 5.00s=



p 2 = 10 MPa
p 1 = 5 MPa
Δp  = 5 MPa

Data on specific volume versus temperature can be obtained fro any good thermodynamics text (try the Web!)

p 1 p 2

T  (oC) v  (m3/kg) v  (m3/kg) Δρ (kg/m3) c  (m/s)

0 0.0009977 0.0009952 2.52 1409
20 0.0009996 0.0009973 2.31 1472
40 0.0010057 0.0010035 2.18 1514
60 0.0010149 0.0010127 2.14 1528
80 0.0010267 0.0010244 2.19 1512

100 0.0010410 0.0010385 2.31 1470
120 0.0010576 0.0010549 2.42 1437
140 0.0010769 0.0010738 2.68 1366
160 0.0010988 0.0010954 2.82 1330
180 0.0011240 0.0011200 3.18 1254
200 0.0011531 0.0011482 3.70 1162

Speed of Sound versus Temperature

1000

1100

1200

1300

1400

1500

1600

0 50 100 150 200

T  (oC)

c
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(Eq. 12.18, Section 12-2)

Section 12-2



Problem 12.29 [2]

Given: Data on atmospheric temperature variation with altitude

Find: Sound of speed at sea level; plot speed as function of altitude

Solution

The given or available data is:

R  = 286.9 J/kg.K
k  = 1.4

Computing equation:

Computed results:

(Only partial data is shown in table)
z  (m) T  (K) c  (m/s)

0 288.2 340
500 284.9 338

1000 281.7 336
1500 278.4 334
2000 275.2 332
2500 271.9 330
3000 268.7 329
3500 265.4 326
4000 262.2 325
4500 258.9 322
5000 255.7 320
6000 249.2 316
7000 242.7 312
8000 236.2 308
9000 229.7 304
10000 223.3 299

Speed of Sound Variation with Altitude

250

275

300

325

350

0 10000 20000 30000 40000 50000 60000 70000 80000 90000 100000

z  (m)

c
 (m

/s
)

kRTc =



Problem 12.30 [3]

Given: Data on atmospheric temperature variation with altitude

Find: Lapse rate; plot of rate of change of sonic speed with altitude

Solution:

The given or available data is:

R  = 286.9 J/kg.K
k  = 1.4

T 0 = 288.2 K
T 10k = 223.3 K

Computing equations:

Computed results:

m  = -0.00649 K/m (Using T  at z = 10 km)

z  (km) T  (K) dc/dz  (s-1)

0 288.2 -0.00383
1 281.7 -0.00387
2 275.2 -0.00392
3 268.7 -0.00397
4 262.2 -0.00402
5 255.8 -0.00407
6 249.3 -0.00412
7 242.8 -0.00417
8 236.3 -0.00423
9 229.8 -0.00429

10 223.3 -0.00435

Rate of Change of Sonic Speed
with Altitude

-0.0044

-0.0043

-0.0042

-0.0041

-0.0040

-0.0039

-0.0038

0 2 4 6 8 10
z  (km)

dc
/d

z 
(s

-1
)



Problem 12.31 [1]

Given: Air flow at M = 1.9

Find: Air speed; Mach angle

Solution:

Basic equations: c k R⋅ T⋅= M
V
c

= α asin
1
M

⎛⎜
⎝

⎞⎟
⎠

=

The given or available data is T 77 460+( ) R⋅= M 1.9= k 1.4= Rair 53.33
ft lbf⋅
lbm R⋅
⋅=

Hence c k Rair⋅ T⋅= c 1136
ft
s

⋅=

Then the air speed is V M c⋅= V 2158
ft
s

= V 1471mph=

The Mach angle is given by α asin
1
M

⎛⎜
⎝

⎞⎟
⎠

= α 31.8deg=
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Problem 12.36 [2]

 x 

h 
α 

Given: High-speed jet flying overhead

Find: Estimate speed and Mach number of jet

Solution:

Basic equations: c k R⋅ T⋅= M
V
c

= α asin
1
M
⎛⎜
⎝

⎞⎟
⎠

=

Given or available data T 30 273+( ) K⋅= h 3500 m⋅= k 1.4= R 286.9
J

kg K⋅
=

The time it takes to fly from directly overhead to where you hear it is Δt 5 s⋅=

The distance traveled, moving at speed V, is x V Δt⋅=

The Mach angle is related to height h and distance x by tan α( )
sin α( )
cos α( )

=
h
x

=
h

V Δt⋅
= (1)

and also we have sin α( )
1
M

=
c
V

= (2)

Dividing Eq. 2 by Eq 1 cos α( )
c
V

V Δt⋅
h

⋅=
c Δt⋅

h
=

Note that we could have written this equation from geometry directly!

We have c k R⋅ T⋅= c 349
m
s

= so α acos
c Δt⋅

h
⎛⎜
⎝

⎞⎟
⎠

= α 60.1 deg⋅=

Hence M
1

sin α( )
= M 1.15=

Then the speed is V M c⋅= V 402
m
s

=

Note that we assume the temperature of the air is uniform.  In fact the temperature will vary over 3500 m, so the Mach
cone will be curved.  This speed and Mach number are only rough estimates
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Problem 12.38 [3]

 x 

h 
α 

Given: Supersonic aircraft flying overhead

Find: Time at which airplane heard

Solution:

Basic equations: c k R⋅ T⋅= M
V
c

= α asin
1
M

⎛⎜
⎝

⎞⎟
⎠

=

Given or available data V 1000
m
s

⋅= h 3 km⋅= k 1.4= R 286.9
J

kg K⋅
=

The time it takes to fly from directly overhead to where you hear it is Δt
x
V

=

If the temperature is constant then x
h

tan α( )
=

The temperature is not constant so the Mach line will not be straight.  We can find a range of Δt by considering the temperature range

At h 3km=  we find from Table A.3 that T 268.7 K⋅=

Using this temperature c k R⋅ T⋅= c 329
m
s

= and M
V
c

= M 3.04=

Hence α asin
1
M
⎛⎜
⎝

⎞⎟
⎠

= α 19.2deg= x
h

tan α( )
= x 8625m= Δt

x
V

= Δt 8.62s=

At sea level we find from Table A.3 that T 288.2 K⋅=

Using this temperature c k R⋅ T⋅= c 340
m
s

= and M
V
c

= M 2.94=

Hence α asin
1
M
⎛⎜
⎝

⎞⎟
⎠

= α 19.9deg= x
h

tan α( )
= x 8291m= Δt

x
V

= Δt 8.29s=

Thus we conclude that the time is somwhere between 8.62 and 8.29 s.  Taking an average Δt 8.55 s⋅=



Problem 12.39 [3]

 

x = VΔt 

h α 
α 

Δx 

Given: Supersonic aircraft flying overhead

Find: Location at which first sound wave was emitted

Solution:

Basic equations: c k R⋅ T⋅= M
V
c

= α asin
1
M

⎛⎜
⎝

⎞⎟
⎠

=

Given or available data V 1000
m
s

⋅= h 3 km⋅= k 1.4= R 286.9
J

kg K⋅
=

We need to find Δx as shown in the figure Δx h tan α( )⋅=

The temperature is not constant so the Mach line will not be straight (α is not constant).  We can find a range of α and Δx by
considering the temperature range

At h 3km=  we find from Table A.3 that T 268.7 K⋅=

Using this temperature c k R⋅ T⋅= c 329
m
s

= and M
V
c

= M 3.04=

Hence α asin
1
M
⎛⎜
⎝

⎞⎟
⎠

= α 19.2deg= Δx h tan α( )⋅= Δx 1043m=

At sea level we find from Table A.3 that T 288.2 K⋅=

Using this temperature c k R⋅ T⋅= c 340
m
s

= and M
V
c

= M 2.94=

Hence α asin
1
M
⎛⎜
⎝

⎞⎟
⎠

= α 19.9deg= Δx h tan α( )⋅= Δx 1085m=

Thus we conclude that the distance is somwhere between 1043 and 1085 m.  Taking an average Δx 1064 m⋅=
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Problem 12.41 [2]

Given: Speed of automobile

Find: Whether flow can be considered incompressible

Solution:
Consider the automobile at rest with 60 mph air flowing over it.  Let state 1 be upstream, and point 2 the
stagnation point on the automobile

The data provided, or available in the Appendices, is:

R 287
J

kg K⋅
⋅= k 1.4= V1 60 mph⋅= p1 101 kPa⋅= T1 20 273+( ) K⋅=

The basic equation for the density change is
ρ0
ρ

1
k 1−( )

2
M2
⋅+⎡⎢

⎣
⎤⎥
⎦

1
k 1−

= (12.20c)

or ρ0 ρ1 1
k 1−( )

2
M1

2
⋅+⎡⎢

⎣
⎤⎥
⎦

1
k 1−

⋅=

ρ1
p1

R T1⋅
= ρ1 1.201

kg

m3
=

For the Mach number we need c c1 k R⋅ T1⋅= c1 343
m
s

=

V1 26.8
m
s

= M1
V1
c1

= M1 0.0782=

ρ0 ρ1 1
k 1−

2
M1

2
⋅+⎛⎜

⎝
⎞⎟
⎠

1
k 1−

⋅= ρ0 1.205
kg

m3
= The percentage change in density is

ρ0 ρ1−

ρ0
0.305%=

This is an insignificant change, so the flow can be considered incompressible.  Note that M < 0.3, the
usual guideline for incompressibility

For the maximum speed present V1 120 mph⋅= V1 53.6
m
s

= M1
V1
c1

= M1 0.156=

ρ0 ρ1 1
k 1−

2
M1

2
⋅+⎛⎜

⎝
⎞⎟
⎠

1
k 1−

⋅= ρ0 1.216
kg

m3
= The percentage change in density is

ρ0 ρ1−

ρ0
1.21%=

This is still an insignificant change, so the flow can be considered incompressible.



Problem 12.42       [5] 
 
 
 
 
 
 
 

Given: Supersonic transport aircraft 

Find: Explanation of sound wave refraction 

Solution:  
 
A sound wave is refracted when the speed of sound varies with altitude in the atmosphere.  (The variation in sound speed is caused by 
temperature variations in the atmosphere, as shown in Fig. 3.3) 
 
Imagine a plane wave front that initially is vertical.  When the wave encounters a region where the temperature increase with altitude 
(such as between 20.1 km and 47.3 km altitude in Fig. 3.3), the sound speed increases with elevation.  Therefore the upper portion of 
the wave travels faster than the lower portion.  The wave front turns gradually and the sound wave follows a curved path through the 
atmosphere.  Thus a wave that initially is horizontal bends and follows a curved path, tending to reach the ground some distance from 
the source. 
 
The curvature and the path of the sound could be calculated for any specific temperature variation in the atmosphere.  However, the 
required analysis is beyond the scope of this text. 



Problem 12.43 [2]

Given: Mach number range from 0.05 to 0.95

Find: Plot of percentage density change; Mach number for 1%, 5%, and 10% change

Solution:

The given or available data is:

k  = 1.4

Computing equation:



Computed results:

M Δρ/ρo

0.05 0.1%
0.10 0.5%
0.15 1.1%
0.20 2.0%
0.25 3.1% To find M  for specific density changes
0.30 4.4% use Goal Seek repeatedly
0.35 5.9% M Δρ/ρo

0.40 7.6% 0.142 1%
0.45 9.4% 0.322 5%
0.50 11% 0.464 10%
0.55 14% Note: Based on ρ (not ρo) the results are:
0.60 16% 0.142 0.314 0.441
0.65 18%
0.70 21%
0.75 23%
0.80 26%
0.85 29%
0.90 31%
0.95 34%

Density Variation with Mach Number

0%

10%

20%

30%

40%

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

M

Δ
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ρ



Problem 12.44 [1]

Given: Aircraft flying at 250 m/s

Find: Stagnation pressure

Solution:

Basic equations: c k R⋅ T⋅= M
V
c

=
p0
p

1
k 1−

2
M2
⋅+⎛⎜

⎝
⎞⎟
⎠

k
k 1−

=

Given or available data V 250
m
s

⋅= T 50− 273+( ) K⋅= p 28 kPa⋅= k 1.4= R 286.9
J

kg K⋅
=

First we need c k R⋅ T⋅= c 299
m
s

= then M
V
c

= M 0.835=

Finally we solve for p0 p0 p 1
k 1−

2
M2
⋅+⎛⎜

⎝
⎞⎟
⎠

k
k 1−

⋅= p0 44.2kPa=



Problem 12.45 [2]

Given: Pressure data on aircraft in flight

Find: Change in air density; whether flow can be considered incompressible

Solution:

The data provided, or available in the Appendices, is:

k 1.4= p0 48 kPa⋅= p 27.6 kPa⋅= T 55− 273+( ) K⋅=

Governing equation (assuming isentropic flow):

p

ρ
k

constant= (12.12c)

Hence ρ

ρ0

p
p0

⎛
⎜
⎝

⎞
⎟
⎠

1
k

=

so Δρ

ρ

ρ0 ρ−

ρ
=

ρ0
ρ

1−=
p0
p

⎛
⎜
⎝

⎞
⎟
⎠

1
k

1−=
Δρ

ρ
48.5 %⋅= NOT an incompressible flow!



Problem 12.46 [1]

Given: Car at sea level and aircraft flying at 30,000 ft

Find: Ratio of static to total pressure in each case

Solution:

Basic equations: c k R⋅ T⋅= M
V
c

=
p0
p

1
k 1−

2
M2
⋅+⎛⎜

⎝
⎞⎟
⎠

k
k 1−

=

Given or available data Vcar 55 mph⋅= Vcar 80.7
ft
s

= Vplane 550 mph⋅= Vplane 807
ft
s

=

k 1.4= Rair 53.33
ft lbf⋅
lbm R⋅
⋅=

At sea level, from Table A.3 T 288.2 K⋅= or T 519R=

Hence c k Rair⋅ T⋅= c 1116
ft
s

= Mcar
Vcar

c
= Mcar 0.0723=

The pressure ratio is p
p0

1
k 1−

2
Mcar

2
⋅+⎛⎜

⎝
⎞⎟
⎠

k
k 1−

−

= 0.996=

Note that the Bernoulli equation would give the same result!

At h 30000 ft⋅=  or h 9144m=  ,interpolating from Table A.3

T 229.7 K⋅
223.3 229.7−( ) K⋅

10000 9000−( )
9144 9000−( )⋅+= T 229K= T 412R=

Hence c k Rair⋅ T⋅= c 995
ft
s

= Mplane
Vplane

c
= Mplane 0.811=

The pressure ratio is p
p0

1
k 1−

2
Mplane

2
⋅+⎛⎜

⎝
⎞⎟
⎠

k
k 1−

−

= 0.649=



Problem 12.47 [2]

Given: Aircraft flying at 12 km

Find: Dynamic and stagnation pressures

Solution:

Basic equations: c k R⋅ T⋅= M
V
c

=
p0
p

1
k 1−

2
M2
⋅+⎛⎜

⎝
⎞⎟
⎠

k
k 1−

= pdyn
1
2

ρ⋅ V2
⋅=

Given or available data M 2= h 12 km⋅= k 1.4= R 286.9
J

kg K⋅
⋅=

ρSL 1.225
kg

m3
⋅= pSL 101.3 kPa⋅=

At  h 12km=  ,from Table A.3 ρ 0.2546 ρSL⋅= ρ 0.312
kg

m3
= p 0.1915 pSL⋅= p 19.4kPa= T 216.7 K⋅=

Hence p0 p 1
k 1−

2
M2
⋅+⎛⎜

⎝
⎞⎟
⎠

k
k 1−

⋅= p0 152kPa=

Also c k R⋅ T⋅= c 295
m
s

= V M c⋅= V 590
m
s

=

Hence pdyn
1
2

ρ⋅ V2
⋅= pdyn 54.3kPa=
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Problem 12.51 [2]

Given: Mach number of aircraft

Find: Pressure difference; air speed based on a) compressible b) incompressible assumptions

Solution:

The data provided, or available in the Appendices, is:

R 287
J

kg K⋅
⋅= cp 1004

J
kg K⋅
⋅= k 1.4= M 0.65=

From Table A.3, at 10 km altitude T 223.3 K⋅= p 0.2615 101⋅ kPa⋅= p 26.4kPa=

The governing equation for pressure change is:
p0
p

1
k 1−

2
M2
⋅+⎛⎜

⎝
⎞⎟
⎠

k
k 1−

= (12.20a)

Hence p0 p 1
k 1−

2
M2
⋅+⎛⎜

⎝
⎞⎟
⎠

k
k 1−

⋅= p0 35.1kPa=

The pressure difference is p0 p− 8.67kPa=

a) Assuming compressibility c k R⋅ T⋅= c 300
m
s

= V M c⋅= V 195
m
s

=

b) Assuming incompressibility

Here the Bernoulli equation applies in the form p
ρ

V2

2
+

p0
ρ

= so V
2 p0 p−( )⋅

ρ
=

For the density ρ
p

R T⋅
= ρ 0.412

kg

m3
= V

2 p0 p−( )⋅

ρ
=

Hence V 205
m
s

=

In this case the error at M = 0.65 in computing the speed of the aircraft using Bernoulli equation is 205 195−
195

5.13%=
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Problem 12.53 [2]

Given: Flight altitude of high-speed aircraft

Find: Mach number and aircraft speed errors assuming incompressible flow; plot

Solution:

The governing equation for pressure change is:
p0
p

1
k 1−

2
M2
⋅+⎛⎜

⎝
⎞⎟
⎠

k
k 1−

= (12.20a)

Hence Δp p0 p−= p
p0
p

1−
⎛
⎜
⎝

⎞
⎟
⎠

⋅= Δp p 1
k 1−

2
M2
⋅+⎛⎜

⎝
⎞⎟
⎠

k
k 1−

1−

⎡
⎢
⎢
⎣

⎤
⎥
⎥
⎦

⋅= (1)

For each Mach number the actual pressure change can be computed from Eq. 1

Assuming incompressibility, the Bernoulli equation applies in the form p
ρ

V2

2
+

p0
ρ

= so V
2 p0 p−( )⋅

ρ
=

2 Δp⋅
ρ

=

and the Mach number based on this is Mincomp
V
c

=

2 Δp⋅
ρ

k R⋅ T⋅
=

2 Δp⋅
k ρ⋅ R⋅ T⋅

=

Using Eq. 1 Mincomp
2
k

1
k 1−

2
M2
⋅+⎛⎜

⎝
⎞⎟
⎠

k
k 1−

1−

⎡
⎢
⎢
⎣

⎤
⎥
⎥
⎦

⋅=

The error in using Bernoulli to estimate the Mach number is ΔM
M

Mincomp M−

M
=

For errors in speed:

Actual speed: V M c⋅= V M k R⋅ T⋅⋅=

Speed assuming incompressible flow: Vinc Mincomp k R⋅ T⋅⋅=

The error in using Bernoulli to estimate the speed from the pressure difference is ΔV
V

Vincomp V−

V
=

The computations and plots are shown in the associated Excel workbook



Problem 12.53 (In Excel) [2]

Given: Flight altitude of high-speed aircraft

Find: Mach number and aircraft speed errors assuming incompressible flow; plot

Solution:

The given or available data is:

R  = 286.9 J/kg.K
k  = 1.4
T  = 216.7 K (At 12 km, Table A.3)

Computing equations:



Computed results:

c  = 295 m/s

M M incomp ΔM/M V  (m/s) V incomp (m/s) ΔV/V
0.1 0.100 0.13% 29.5 29.5 0.13%
0.2 0.201 0.50% 59.0 59.3 0.50%
0.3 0.303 1.1% 88.5 89.5 1.1%
0.4 0.408 2.0% 118 120 2.0%
0.5 0.516 3.2% 148 152 3.2%
0.6 0.627 4.6% 177 185 4.6%
0.7 0.744 6.2% 207 219 6.2%
0.8 0.865 8.2% 236 255 8.2%
0.9 0.994 10.4% 266 293 10.4%

Error in Mach Number Using Bernoulli
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Problem 12.54 [2]

Given: Wind tunnel at M = 2.5

Find: Stagnation conditions; mass flow rate

Solution:

Basic equations: c k R⋅ T⋅= M
V
c

=
p0
p

1
k 1−

2
M2
⋅+⎛⎜

⎝
⎞⎟
⎠

k
k 1−

=
T0
T

1
k 1−

2
M2
⋅+=

Given or available data M 2.5= T 15 273+( ) K⋅= p 35 kPa⋅= A 0.175 m2
⋅=

k 1.4= R 286.9
J

kg K⋅
⋅=

Then T0 T 1
k 1−

2
M2
⋅+⎛⎜

⎝
⎞⎟
⎠

⋅= T0 648K= T0 375 °C⋅=

Also p0 p 1
k 1−

2
M2
⋅+⎛⎜

⎝
⎞⎟
⎠

k
k 1−

⋅= p0 598 kPa⋅=

The mass flow rate is given by mrate ρ A⋅ V⋅=

We need c k R⋅ T⋅= c 340
m
s

= V M c⋅= V 850
m
s

=

and also ρ
p

R T⋅
= ρ 0.424

kg

m3
=

Then mrate ρ A⋅ V⋅= mrate 63.0
kg
s

=
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Problem 12.56 [3]

Given: Wind tunnel test of supersonic transport

Find: Lift and drag coefficients

Solution:

Basic equations: c k R⋅ T⋅= M
V
c

=
p0
p

1
k 1−

2
M2
⋅+⎛⎜

⎝
⎞⎟
⎠

k
k 1−

=
T0
T

1
k 1−

2
M2
⋅+=

CL
FL

1
2

ρ⋅ V2
⋅ A⋅

= CD
FD

1
2

ρ⋅ V2
⋅ A⋅

=

Given or available data M 1.8= T0 500 460+( ) R⋅= p0 200 psi⋅= FL 12000 lbf⋅= FD 1600 lbf⋅=

A 100 in2
⋅= k 1.4= Rair 53.33

ft lbf⋅
lbm R⋅
⋅=

We need local conditions p p0 1
k 1−

2
M2
⋅+⎛⎜

⎝
⎞⎟
⎠

k
k 1−

−

⋅= p 34.8psi=

T
T0

1
k 1−

2
M2
⋅+

= T 583R= T 123°F=

Then c k Rair⋅ T⋅= c 1183
ft
s

= c 807mph=

and V M c⋅= V 2129
ft
s

= V 1452mph=

We also need ρ
p

Rair T⋅
= ρ 0.00501

slug

ft3
=

Finally CL
FL

1
2

ρ⋅ V2
⋅ A⋅

= CL 1.52=

CD
FD

1
2

ρ⋅ V2
⋅ A⋅

= CD 0.203=
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Problem 12.59 [2]

Given: Data on air flow in a duct

Find: Stagnation pressures and temperatures; explain velocity increase; isentropic or not?

Solution:

The data provided, or available in the Appendices, is:

R 287
J

kg K⋅
⋅= cp 1004

J
kg K⋅
⋅= k 1.4=

M1 0.1= T1 20 273+( ) K⋅= p1 1000 kPa⋅= M2 0.7= T2 5.62− 273+( ) K⋅= p2 136.5 kPa⋅=

For stagnation temperatures: T01 T1 1
k 1−

2
M1

2
⋅+⎛⎜

⎝
⎞⎟
⎠

⋅= T01 293.6K= T01 20.6 C⋅=

T02 T2 1
k 1−

2
M2

2
⋅+⎛⎜

⎝
⎞⎟
⎠

⋅= T02 293.6K= T02 20.6 C⋅=

(Because the stagnation temperature is constant, the process is adiabatic)

For stagnation pressures: p01 p1 1
k 1−

2
M1

2
⋅+⎛⎜

⎝
⎞⎟
⎠

k
k 1−

⋅= p01 1.01 MPa⋅=

p02 p2 1
k 1−

2
M2

2
⋅+⎛⎜

⎝
⎞⎟
⎠

k
k 1−

⋅= p02 189 kPa⋅=

The entropy change is: Δs cp ln
T2
T1

⎛
⎜
⎝

⎞
⎟
⎠

⋅ R ln
p2
p1

⎛
⎜
⎝

⎞
⎟
⎠

⋅−= Δs 480
J

kg K⋅
⋅=

Note that V1 M1 k R⋅ T1⋅⋅= V1 34.3
m
s

= V2 M2 k R⋅ T2⋅⋅= V2 229
m
s

=

Although there is friction, suggesting the flow should decelerate, because the static pressure drops so much, the net
effect is flow acceleration!

The entropy increases because the process is adiabatic but irreversible
(friction).

From the second law of thermodynamics ds
δq
T

≥ : becomes ds > 0



Problem 12.60 [2]

Given: Data on air flow in a duct

Find: Stagnation temperatures; explain; rate of cooling; stagnation pressures; entropy change

Solution:

The data provided, or available in the Appendices, is: R 287
J

kg K⋅
⋅= cp 1004

J
kg K⋅
⋅= k 1.4=

T1 500 273+( ) K⋅= p1 500 kPa⋅= T2 18.57− 273+( ) K⋅= p2 639.2 kPa⋅=

M1 0.5= M2 0.2= Mrate 0.05
kg
s

⋅=

For stagnation temperatures: T01 T1 1
k 1−

2
M1

2
⋅+⎛⎜

⎝
⎞⎟
⎠

⋅= T01 811.7K= T01 539 C⋅=

T02 T2 1
k 1−

2
M2

2
⋅+⎛⎜

⎝
⎞⎟
⎠

⋅= T02 256.5K= T02 16.5− C⋅=

The fact that the stagnation temperature (a measure of total energy) decreases suggests cooling is taking place.

For the heat transfer: Q Mrate cp⋅ T02 T01−( )⋅= Q 27.9− kW=

For stagnation pressures: p01 p1 1
k 1−

2
M1

2
⋅+⎛⎜

⎝
⎞⎟
⎠

k
k 1−

⋅= p01 593kPa=

p02 p2 1
k 1−

2
M2

2
⋅+⎛⎜

⎝
⎞⎟
⎠

k
k 1−

⋅= p02 657kPa=

The entropy change is: Δs cp ln
T2
T1

⎛
⎜
⎝

⎞
⎟
⎠

⋅ R ln
p2
p1

⎛
⎜
⎝

⎞
⎟
⎠

⋅−= Δs 1186−
J

kg K⋅
=

The entropy decreases because the process is a cooling process (Q is negative).

From the second law of thermodynamics: ds
δq
T

≥  becomes ds ve−≥

Hence, if the process is reversible, the entropy must decrease; if it is irreversible, it may increase or decrease
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Problem 12.62 [3]

Given: Air flow in duct with heat transfer and friction

Find: Heat transfer; Stagnation pressure at location 2

Solution:

Basic equations: c k R⋅ T⋅= M
V
c

=
p0
p

1
k 1−

2
M2
⋅+⎛⎜

⎝
⎞⎟
⎠

k
k 1−

=

ρ V⋅ A⋅ const= h1
V1

2

2
+

δQ
dm

+ h2
V2

2

2
+=

Given or available data p1 400 kPa⋅= T1 325 K⋅= V1 150
m
s

⋅=

p2 275 kPa⋅= T2 450 K⋅=

cp 1004
J

kg K⋅
⋅= k 1.4= R 286.9

J
kg K⋅
⋅=

Then ρ1
p1

R T1⋅
= ρ1 4.29

kg

m3
= ρ2

p2
R T2⋅

= ρ2 2.13
kg

m3
=

and from ρ V⋅ A⋅ const= V2 V1
ρ1
ρ2
⋅= V2 302

m
s

=

Also δQ
dm

q= h2 h1−
V2

2 V1
2

−

2
+=

q cp T2 T1−( )⋅
V2

2 V1
2

−

2
+= q 160

kJ
kg

=

We also have c2 k R⋅ T2⋅= c2 425
m
s

= so M2
V2
c2

= M2 0.711=

Hence p02 p2 1
k 1−

2
M2

2
⋅+⎛⎜

⎝
⎞⎟
⎠

k
k 1−

⋅= p02 385kPa=
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Problem 12.64 [2]

Given: Air flow through turbine

Find: Stagnation conditions at inlet and exit; change in specific entropy; Plot on Ts diagram

Solution:

Basic equations:
p0
p

1
k 1−

2
M2
⋅+⎛⎜

⎝
⎞⎟
⎠

k
k 1−

=
T0
T

1
k 1−

2
M2
⋅+= Δs cp ln

T2
T1

⎛
⎜
⎝

⎞
⎟
⎠

⋅ R ln
p2
p1

⎛
⎜
⎝

⎞
⎟
⎠

⋅−=

Given or available data M1 0.4= p1 625 kPa⋅= T1 1250 273+( ) K⋅=

M2 0.8= p2 20 kPa⋅= T2 650 273+( ) K⋅=

cp 1004
J

kg K⋅
⋅= k 1.4= R 286.9

J
kg K⋅
⋅=

Then T01 T1 1
k 1−

2
M1

2
⋅+⎛⎜

⎝
⎞⎟
⎠

⋅= T01 1572K= T01 1299 °C⋅=

p01 p1 1
k 1−

2
M1

2
⋅+⎛⎜

⎝
⎞⎟
⎠

k
k 1−

⋅= p01 698 kPa⋅=

T02 T2 1
k 1−

2
M2

2
⋅+⎛⎜

⎝
⎞⎟
⎠

⋅= T02 1041K= T02 768 °C⋅=

p02 p2 1
k 1−

2
M2

2
⋅+⎛⎜

⎝
⎞⎟
⎠

k
k 1−

⋅= p02 30 kPa⋅=

Δs cp ln
T2
T1

⎛
⎜
⎝

⎞
⎟
⎠

⋅ R ln
p2
p1

⎛
⎜
⎝

⎞
⎟
⎠

⋅−= Δs 485
J

kg K⋅
⋅=

 
T 

p01 

s 

p1 
T01 

T1 
 

p02 

p2 
T02 

T2 
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Problem 12.66 [2]

Given: Air flow leak in window of airplane

Find: Mass flow rate

Solution:

Basic equations: mrate ρ V⋅ A⋅= Vcrit
2 k⋅

k 1+
R⋅ T0⋅=

ρ0
ρcrit

k 1+
2

⎛⎜
⎝

⎞⎟
⎠

1
k 1−

=

The interior conditions are the stagnation conditions for the flow

Given or available data T0 271.9 K⋅= ρSL 1.225
kg

m3
⋅= ρ0 0.7812 ρSL⋅= ρ0 0.957

kg

m3
=

(Above data from Table A.3 at an altitude of 2500 m)

A 1 mm2
⋅= cp 1004

J
kg K⋅
⋅= k 1.4= R 286.9

J
kg K⋅
⋅=

Then ρcrit
ρ0

k 1+
2

⎛⎜
⎝

⎞⎟
⎠

1
k 1−

= ρcrit 0.607
kg

m3
= Vcrit

2 k⋅
k 1+

R⋅ T0⋅= Vcrit 302
m
s

=

The mass flow rate is mrate ρcrit Vcrit⋅ A⋅= mrate 1.83 10 4−
×

kg
s

=
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Problem 12.68 [1]

Given: Data on helium in reservoir

Find: Critical conditions

Solution:

The data provided, or available in the Appendices, is:

RHe 386.1
ft lbf⋅
lbm R⋅
⋅= k 1.66= T0 3600 R⋅= p0 725 14.7+( )psi= p0 740psi=

For critical conditions
T0

Tcrit

k 1+
2

= Tcrit
T0

k 1+
2

= Tcrit 2707R=

p0
pcrit

k 1+
2

⎛⎜
⎝

⎞⎟
⎠

k
k 1−

= pcrit
p0

k 1+
2

⎛⎜
⎝

⎞⎟
⎠

k
k 1−

= pcrit 361psi= absolute

Vcrit k RHe⋅ Tcrit⋅= Vcrit 7471
ft
s

=
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Problem 12.70 [1]

Given: Data on hot gas stream

Find: Critical conditions

Solution:

The data provided, or available in the Appendices, is:

R 287
J

kg K⋅
⋅= k 1.4= T0 1500 273+( ) K⋅= T0 1773K= p0 140 kPa⋅=

For critical conditions
T0

Tcrit

k 1+
2

= Tcrit
T0

k 1+
2

= Tcrit 1478K=

p0
pcrit

k 1+
2

⎛⎜
⎝

⎞⎟
⎠

k
k 1−

= pcrit
p0

k 1+
2

⎛⎜
⎝

⎞⎟
⎠

k
k 1−

= pcrit 74.0kPa= absolute

Vcrit k R⋅ Tcrit⋅= Vcrit 770
m
s

=



Problem 13.1 [2]

Given: Air extracted from a large tank

Find: Mass flow rate

Solution:

Basic equations: mrate ρ V⋅ A⋅= h1
V1

2

2
+ h2

V2
2

2
+=

p

ρ
k

const= T p

1 k−( )
k

⋅ const=

Given or available data T0 70 273+( ) K⋅= p0 101 kPa⋅= p 25 kPa⋅=

D 15 cm⋅= cp 1004
J

kg K⋅
⋅= k 1.4= R 286.9

J
kg K⋅
⋅=

The mass flow rate is given by mrate ρ A⋅ V⋅= A
π D2
⋅
4

= A 0.0177m2
=

We need the density and velocity at the nozzle.  In the tank ρ0
p0

R T0⋅
= ρ0 1.026

kg

m3
=

From the isentropic relation ρ ρ0
p
p0

⎛
⎜
⎝

⎞
⎟
⎠

1
k

⋅= ρ 0.379
kg

m3
=

We can apply the energy equation between the tank (stagnation conditions) and the point in the nozzle to find the velocity

h0 h
V2

2
+= V 2 h0 h−( )⋅= 2 cp⋅ T0 T−( )⋅=

Fot T we again use insentropic relations T T0
p0
p

⎛
⎜
⎝

⎞
⎟
⎠

1 k−( )
k

⋅= T 230.167K= T 43.0− °C⋅=

Then V 2 cp⋅ T0 T−( )⋅= V 476
m
s

=

The mass flow rate is mrate ρ A⋅ V⋅= mrate 3.18
kg
s

=

Note that the flow is supersonic at this point c k R⋅ T⋅= c 304
m
s

= M
V
c

= M 1.57=

Hence we must have a converging-diverging nozzle





Problem 13.3 [2]

Given: Steam flow through a nozzle

Find: Speed and Mach number; Mass flow rate; Sketch the shape

Solution:

Basic equations: mrate ρ V⋅ A⋅= h1
V1

2

2
+ h2

V2
2

2
+=

Assumptions: 1) Steady flow 2) Isentropic 3) Uniform flow 4) Superheated steam can be treated as ideal gas

Given or available data T0 450 273+( ) K⋅= p0 6 MPa⋅= p 2 MPa⋅=

D 2 cm⋅= k 1.30= R 461.4
J

kg K⋅
⋅= (Table A.6)

From the steam tables (try finding interactive ones on the Web!), at stagnation conditions

s0 6720
J

kg K⋅
⋅= h0 3.302 106

×
J

kg
⋅=

Hence at the nozzle section s s0= 6720
J

kg K⋅
⋅= and p 2MPa=

From these values we find from the steam tables that T 289 °C= h 2.997 106
×

J
kg
⋅= v 0.1225

m3

kg
⋅=

Hence the first law becomes V 2 h0 h−( )⋅= V 781
m
s

=

The mass flow rate is given by mrate ρ A⋅ V⋅=
A V⋅

v
= A

π D2
⋅
4

= A 3.14 10 4−
× m2

=

Hence mrate
A V⋅

v
= mrate 2.00

kg
s

=

For the Mach number we need c k R⋅ T⋅= c 581
m
s

= M
V
c

= M 1.35=

The flow is supersonic starting from rest, so must be converging-diverging



Problem 13.4 [2]

Given: Air flow in a passage

Find: Mach number; Sketch shape

Solution:

Basic equations:
p0
p

1
k 1−

2
M2
⋅+⎛⎜

⎝
⎞⎟
⎠

k
k 1−

= c k R⋅ T⋅=

Given or available data T1 10 273+( ) K⋅= p1 150 kPa⋅= V1 120
m
s

⋅=

p2 50 kPa⋅= k 1.4= R 286.9
J

kg K⋅
⋅=

The speed of sound at state 1 is c1 k R⋅ T1⋅= c1 337
m
s

=

Hence M1
V1
c1

= M1 0.356=

For isentropic flow stagnation pressure is constant.  Hence at state 2
p0
p2

1
k 1−

2
M2

2
⋅+⎛⎜

⎝
⎞⎟
⎠

k
k 1−

=

Hence p0 p1 1
k 1−

2
M1

2
⋅+⎛⎜

⎝
⎞⎟
⎠

k
k 1−

⋅= p0 164kPa=

Solving for M2 M2
2

k 1−

p0
p2

⎛
⎜
⎝

⎞
⎟
⎠

k 1−
k

1−

⎡
⎢
⎢
⎢
⎣

⎤
⎥
⎥
⎥
⎦

⋅= M2 1.42=

Hence, as we go from subsonic to supersonic we must have a converging-diverging nozzle



Problem 13.5 [2]

Given: Data on flow in a passage

Find: Pressure at downstream location

Solution:

The given or available data is: R  = 53.33 ft·lbf/lbm·oR
k  = 1.4

T 1 = 560
oR

p 1 = 30 psi
V 1 = 1750 ft/s
M 2 = 2.5

Equations and Computations:

From T 1 and Eq. 12.18

c 1 = 1160 ft/s

Then M 1 = 1.51

From M 1 and p 1, and Eq. 13.7a
(using built-in function Isenp (M ,k ))

p 01 = 111 psi

For isentropic flow (p 01 = p 02)

p 02 = 111 psi

From M 2 and p 02, and Eq. 13.7a
(using built-in function Isenp (M ,k ))

p 2 = 6.52 psi



Problem 13.6 [3]

Given: Data on flow in a nozzle

Find: Mass flow rate; Throat area; Mach numbers

Solution:

The given or available data is: R  = 286.9 J/kg·K
k  = 1.4

T 0 = 523 K
p 1 = 200 kPa p 2 = 50 kPa
A  = 1 cm2

Equations and Computations:

We don't know the two Mach numbers.  We do know for each that Eq. 13.7a applies:

Hence we can write two equations, but have three unknowns (M 1, M 2, and p 0)!

We also know that states 1 and 2 have the same area.  Hence we can write Eq. 13.7d twice:

We now have four equations for four unknowns (A *, M 1, M 2, and p 0)!
We make guesses (using Solver) for M 1 and M 2, and make the errors in computed A * and p 0 zero.

For: M 1 = 0.512 M 2 = 1.68 Errors

from Eq. 13.7a: p 0 = 239 kPa p 0 = 239 kPa 0.00%

and from Eq. 13.7d: A*  = 0.759 cm2 A*  = 0.759 cm2 0.00%

Note that the throat area is the critical area Sum 0.00%

The stagnation density is then obtained from the ideal gas equation

ρ0 = 1.59 kg/m3

The density at critical state is obtained from Eq. 13.7a (or 12.22c)

ρ* = 1.01 kg/m3

The velocity at critical state can be obtained from Eq. 12.23)

V*  = 418 m/s

The mass flow rate is ρ*V *A *
m rate = 0.0321 kg/s





Problem 13.8 [3]

Given: Air flow in a passage

Find: Speed and area downstream; Sketch flow passage

Solution:

Basic equations:
T0
T

1
k 1−

2
M2
⋅+= c k R⋅ T⋅=

A
Acrit

1
M

1
k 1−

2
M2
⋅+

k 1+
2

⎛
⎜
⎜
⎜
⎝

⎞
⎟
⎟
⎟
⎠

k 1+
2 k 1−( )⋅

⋅=

Given or available data T1 32 460+( ) R⋅= p1 25 psi⋅= M1 1.75=

T2 225 460+( ) R⋅= k 1.4= Rair 53.33
ft lbf⋅
lbm R⋅
⋅=

D1 3 ft⋅= A1
π D1

2
⋅

4
= A1 7.07 ft2=

Hence T0 T1 1
k 1−

2
M1

2
⋅+⎛⎜

⎝
⎞⎟
⎠

⋅= T0 793R= T0 334°F=

For isentropic flow stagnation conditions are constant.  Hence

M2
2

k 1−

T0
T2

1−
⎛
⎜
⎝

⎞
⎟
⎠

⋅= M2 0.889=

We also have c2 k Rair⋅ T2⋅= c2 1283
ft
s

=

Hence V2 M2 c2⋅= V2 1141
ft
s

=

From state 1 Acrit
A1 M1⋅

1
k 1−

2
M1

2
⋅+

k 1+
2

⎛
⎜
⎜
⎜
⎝

⎞
⎟
⎟
⎟
⎠

k 1+
2 k 1−( )⋅

= Acrit 5.10 ft2=

Hence at state 2 A2
Acrit
M2

1
k 1−

2
M2

2
⋅+

k 1+
2

⎛
⎜
⎜
⎜
⎝

⎞
⎟
⎟
⎟
⎠

k 1+
2 k 1−( )⋅

⋅= A2 5.15 ft2=

Hence, as we go from supersonic to subsonic we must have a converging-diverging diffuser





Problem 13.10 [2]

Given: Data on flow in a passage

Find: Flow rate; area and pressure at downstream location; sketch passage shape

Solution:

The given or available data is: R  = 286.9 J/kg.K
k  = 1.4

A 1 = 0.25 m2

T 1 = 283 K
p 1 = 15 kPa
V 1 = 590 m/s
T 2 = 410
M 2 = 0.75

Equations and Computations:

From T 1 and Eq. 12.18 (12.18)

c 1 = 337 m/s

Then M 1 = 1.75

Because the flow decreases isentropically from supersonic to subsonic
the passage shape must be convergent-divergent

From p 1 and T 1 and the ideal gas equation

ρ1 = 0.185 kg/m3

The mass flow rate is m rate = ρ1A 1V 1

m rate = 27.2 kg/s



From M 1 and A 1, and Eq. 13.7d
(using built-in function IsenA (M ,k ))

(13.7d)

A*  = 0.180 m2

From M 2 and A *, and Eq. 13.7d
(using built-in function IsenA (M ,k ))

A 2 = 0.192 m2

From M 1 and p 1, and Eq. 13.7a
(using built-in function Isenp (M ,k ))

(13.7a)

p 01 = 79.9 kPa

For isentropic flow (p 01 = p 02)
p 02 = 79.9 kPa

From M 2 and p 02, and Eq. 13.7a
(using built-in function Isenp (M ,k ))

p 2 = 55.0 kPa



Problem 13.11 [3]

Given: Flow in a converging nozzle to a pipe

Find: Plot of mass flow rate

Solution:

The given or available data is R  = 287 J/kg·K
k  = 1.4

T 0 = 293 K
p 0 = 101 kPa
D t = 1 cm
A t = 0.785 cm2

Equations and Computations:

The critical pressure is given by

p * = 53.4 kPa

Hence for p  = 100 kPa down to this pressure the flow gradually increases; then it is constant

p M T  (K) c V  = M ·c ρ  = p /RT Flow 
(kPa) (Eq. 13.7a) (Eq. 13.7b) (m/s) (m/s) (kg/m3) (kg/s)
100 0.119 292 343 41 1.19 0.00383
99 0.169 291 342 58 1.18 0.00539
98 0.208 290 342 71 1.18 0.00656
97 0.241 290 341 82 1.17 0.00753
96 0.270 289 341 92 1.16 0.00838
95 0.297 288 340 101 1.15 0.0091
90 0.409 284 337 138 1.11 0.0120
85 0.503 279 335 168 1.06 0.0140
80 0.587 274 332 195 1.02 0.0156
75 0.666 269 329 219 0.971 0.0167
70 0.743 264 326 242 0.925 0.0176
65 0.819 258 322 264 0.877 0.0182
60 0.896 252 318 285 0.828 0.0186
55 0.974 246 315 306 0.778 0.0187

53.4 1.000 244 313 313 0.762 0.0187
53 1.000 244 313 313 0.762 0.0187
52 1.000 244 313 313 0.762 0.0187
51 1.000 244 313 313 0.762 0.0187
50 1.000 244 313 313 0.762 0.0187

Using critical conditions, and Eq. 13.9 for mass flow rate:
53.4 1.000 244 313 313 0.762 0.0185

(Note: discrepancy in mass flow rate is due to round-off error)

Flow Rate in a Converging Nozzle
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Problem 13.12 [2]

Given: Flow in a converging-diverging nozzle to a pipe

Find: Plot of mass flow rate

Solution:

The given or available data is R  = 286.9 J/kg·K
k  = 1.4

T 0 = 293 K
p 0 = 101 kPa
D t = 1 cm De = 2.5 cm
A t = 0.785 cm2 A e = 4.909 cm2

Equations and Computations:

The critical pressure is given by

p * = 53.4 kPa This is the minimum throat pressure

For the CD nozzle, we can compute the pressure at the exit required for this to happen

A* = 0.785 cm2 (= A t)
A e/A * = 6.25

M e = 0.0931 or 3.41 (Eq. 13.7d)
p e = 100.4 or 67.2 kPa (Eq. 13.7a)

Hence we conclude flow occurs in regimes iii  down to v  (Fig. 13.8); the flow is ALWAYS choked!

p * M T * (K) c * V * = c * ρ  = p /RT Flow 
(kPa) 13.7a) (Eq. 13.7b) (m/s) (m/s) (kg/m3) (kg/s)
53.4 1.000 244 313 313 0.762 0.0187

(Note: discrepancy in mass flow rate is due to round-off error) 0.0185 (Using Eq. 13.9)



Problem 13.13 [3]

Given: Data on tank conditions; isentropic flow

Find: Plot cross-section area and pressure distributions

Solution:

The given or available data is: R  = 53.33 ft·lbf/lbm·oR
k  = 1.4

T 0 = 500
oR

p 0 = 45 psia
p e = 14.7 psia

m rate = 2.25 lbm/s

Equations and Computations:

From p 0, p e and Eq. 13.7a (using built-in function IsenMfromp (M,k))

(13.7a)

M e = 1.37

Because the exit flow is supersonic, the passage must be a CD nozzle
We need a scale for the area.
From p 0, T 0, m flow, and Eq. 13.10c

(13.10c)

Then A t  = A * = 0.0146 ft2

For each M , and A *, and Eq. 13.7d
(using built-in function IsenA (M ,k )

(13.7d)

we can compute each area A .

From each M , and p 0, and Eq. 13.7a
(using built-in function Isenp (M ,k )
we can compute each pressure p .



L  (ft) M A  (ft2) p (psia)

1.00 0.069 0.1234 44.9
1.25 0.086 0.0989 44.8
1.50 0.103 0.0826 44.7
1.75 0.120 0.0710 44.5
2.00 0.137 0.0622 44.4
2.50 0.172 0.0501 44.1
3.00 0.206 0.0421 43.7
4.00 0.274 0.0322 42.7
5.00 0.343 0.0264 41.5
6.00 0.412 0.0227 40.0
7.00 0.480 0.0201 38.4
8.00 0.549 0.0183 36.7
9.00 0.618 0.0171 34.8

10.00 0.686 0.0161 32.8
11.00 0.755 0.0155 30.8
12.00 0.823 0.0150 28.8
13.00 0.892 0.0147 26.8
14.00 0.961 0.0146 24.9
14.6 1.000 0.0146 23.8

16.00 1.098 0.0147 21.1
17.00 1.166 0.0149 19.4
18.00 1.235 0.0152 17.7
19.00 1.304 0.0156 16.2
20.00 1.372 0.0161 14.7

Area Variation in Passage
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Problem 13.14 [2]

Given: Air flow in a converging nozzle

Find: Mass flow rate

Solution:

Basic equations: mrate ρ V⋅ A⋅= p ρ R⋅ T⋅=
T0
T

1
k 1−

2
M2
⋅+=

p0
p

1
k 1−

2
M2
⋅+⎛⎜

⎝
⎞⎟
⎠

k
k 1−

=

Given or available data pb 35 psi⋅= p0 60 psi⋅= T0 200 460+( ) R⋅= Dt 4 in⋅=

k 1.4= Rair 53.33
ft lbf⋅
lbm R⋅
⋅= At

π

4
Dt

2
⋅= At 0.0873 ft2⋅=

Since 
pb
p0

0.583= is greater than 0.528, the nozzle is not choked and pt pb=

Hence Mt
2

k 1−

p0
pt

⎛
⎜
⎝

⎞
⎟
⎠

k 1−
k

1−

⎡
⎢
⎢
⎢
⎣

⎤
⎥
⎥
⎥
⎦

⋅= Mt 0.912=

and Tt
T0

1
k 1−

2
Mt

2
⋅+

= Tt 566 R⋅= Tt 106 °F⋅=

ct k Rair⋅ Tt⋅= Vt ct= Vt 1166
ft
s

⋅=

ρt
pt

Rair Tt⋅
= ρt 5.19 10 3−

×
slug

ft3
⋅=

mrate ρt At⋅ Vt⋅= mrate 0.528
slug

s
⋅= mrate 17.0

lbm
s

⋅=



Problem 13.15 [2]

Given: Isentropic air flow in converging nozzle

Find: Pressure, speed and Mach number at throat

Solution:

Basic equations:
T0
T

1
k 1−

2
M2
⋅+=

p0
p

1
k 1−

2
M2
⋅+⎛⎜

⎝
⎞⎟
⎠

k
k 1−

=

Given or available data p1 350 kPa⋅= V1 150
m
s

⋅= M1 0.5= pb 250 kPa⋅=

k 1.4= R 286.9
J

kg K⋅
⋅=

The flow will be choked if pb/p0 < 0.528

p0 p1 1
k 1−

2
M1

2
⋅+⎛⎜

⎝
⎞⎟
⎠

k
k 1−

⋅= p0 415kPa=
pb
p0

0.602= (Not choked)

Hence
p0
pt

1
k 1−

2
Mt

2
⋅+⎛⎜

⎝
⎞⎟
⎠

k
k 1−

= where pt pb= pt 250kPa=

so Mt
2

k 1−

p0
pt

⎛
⎜
⎝

⎞
⎟
⎠

k 1−
k

1−

⎡
⎢
⎢
⎢
⎣

⎤
⎥
⎥
⎥
⎦

⋅= Mt 0.883=

Also V1 M1 c1⋅= M1 k R⋅ T1⋅⋅= or T1
1

k R⋅

V1
M1

⎛
⎜
⎝

⎞
⎟
⎠

2

⋅= T1 224K= T1 49.1− °C=

Then T0 T1 1
k 1−

2
M1

2
⋅+⎛⎜

⎝
⎞⎟
⎠

⋅= T0 235K= T0 37.9− °C=

Hence Tt
T0

1
k 1−

2
Mt

2
⋅+

= Tt 204K= Tt 69.6− °C=

Then ct k R⋅ Tt⋅= ct 286
m
s

=

Finally Vt Mt ct⋅= Vt 252
m
s

=



Problem 13.16 [3]

Given: Data on three tanks

Find: Mass flow rate; Pressure in second tank

Solution:
The given or available data is: R = 286.9 J/kg.K

k = 1.4
A t = 1 cm2

We need to establish whether each nozzle is choked.  There is a large total pressure drop so this is likely.
However, BOTH cannot be choked and have the same flow rate.  This is because Eq. 13.9a, below

(13.9b)

indicates that the choked flow rate depends on stagnation temperature (which is constant) but also
stagnation pressure, which drops because of turbulent mixing in the middle chamber.  Hence BOTH nozzles
cannot be choked.  We assume the second one only is choked (why?) and verify later.

Temperature and pressure in tank 1: T 01 = 308 K
p 01 = 650 kPa

We make a guess at the pressure at the first nozzle exit: p e1 = 527 kPa
NOTE: The value shown is the final answer!  It was obtained using Solver !
This will also be tank 2 stagnation pressure: p 02 = 527 kPa
Pressure in tank 3: p 3 = 65 kPa

Equations and Computations:

From the p e1 guess and Eq. 13.17a: M e1 = 0.556
Then at the first throat (Eq.13.7b): T e1 = 290 K
The density at the first throat (Ideal Gas) is: ρ e1 = 6.33 kg/m3

Then c  at the first throat (Eq. 12.18) is: c e1 = 341 m/s
Then V  at the first throat is: V e1 = 190 m/s
Finally the mass flow rate is: m rate = 0.120 kg/s First Nozzle!

For the presumed choked flow at the second nozzle we use Eq. 13.9a, with T 01 = T 02 and p 02:

m rate = 0.120 kg/s Second Nozzle!

For the guess value for p e1 we compute the error between the two flow rates:

Δm rate = 0.000 kg/s
Use Solver to vary the guess value for p e1 to make this error zero!
Note that this could also be done manually.



 
Problem 13.17                                                                             [2]





Problem 13.19 [2]

Given: Data on converging nozzle; isentropic flow

Find: Pressure and Mach number; throat area; mass flow rate

Solution:

The given or available data is: R  = 286.9 J/kg.K
k  = 1.4

A 1 = 0.05 m2

T 1 = 276.3 K
V 1 = 200 m/s

p atm = 101 kPa

Equations and Computations:

From T 1 and Eq. 12.18 (12.18)

c 1 = 333 m/s

Then M 1 = 0.60

To find the pressure, we first need the stagnation pressure.
If the flow is just choked

p e = p atm = p * = 101 kPa

From p e = p * and Eq. 12.22a

(12.22a)

p 0 = 191 kPa

From M 1 and p 0, and Eq. 13.7a
(using built-in function Isenp (M ,k )

(13.7a)

Then p 1 = 150 kPa



The mass flow rate is m rate = ρ1A 1V 1

Hence, we need ρ1 from the ideal gas equation.

ρ1 = 1.89 kg/m3

The mass flow rate m rate is then

m rate = 18.9 kg/s

The throat area A t = A * because the flow is choked.
From M 1 and A 1, and Eq. 13.7d
(using built-in function IsenA (M ,k )

(13.7d)

A*  = 0.0421 m2

Hence A t = 0.0421 m2
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Problem 13.23 [2]

Given: Temperature in and mass flow rate from a tank

Find: Tank pressure; pressure, temperature and speed at exit

Solution:

The given or available data is: R  = 286.9 J/kg.K
k  = 1.4

T 0 = 273 K
A t = 0.001 m2

m rate = 2 kg/s

Equations and Computations:

Because p b = 0 p e = p *
Hence the flow is choked!

Hence T e = T *

From T 0, and Eq. 12.22b

(12.22b)

T * = 228 K

T e = 228 K
-45.5 oC

Also M e = 1
Hence V e = V * = c e

From T e and Eq. 12.18 (12.18)

c e = 302 m/s

Then V e = 302 m/s

To find the exit pressure we use the ideal gas equation
after first finding the exit density.
The mass flow rate is m rate = ρeA eV e

Hence ρe = 6.62 kg/m3

From the ideal gas equation p e = ρeRT e

p e = 432 kPa

From p e = p * and Eq. 12.22a
(12.22a)

p 0 = 817 kPa

We can check our results:
From p 0, T 0, A t, and Eq. 13.9a

(13.9a)

Then m choked = 2.00 kg/s
m choked = m rate Correct!



Problem 13.24 [2]

Given: Isentropic air flow into a tank

Find: Initial mass flow rate; Ts process; explain nonlinear mass flow rate

Solution:

Basic equations:
T0
T

1
k 1−

2
M2
⋅+=

p0
p

1
k 1−

2
M2
⋅+⎛⎜

⎝
⎞⎟
⎠

k
k 1−

= mrate ρ A⋅ V⋅=

Given or available data p0 101 kPa⋅= pb p0 10 kPa⋅−= pb 91 kPa⋅= T0 20 273+( ) K⋅=

k 1.4= R 286.9
J

kg K⋅
⋅= D 5 mm⋅=

Then A
π

4
D2
⋅= Avena 65 %⋅ A⋅= Avena 12.8 mm2

⋅=

The flow will be choked if pb/p0 < 0.528
pb
p0

0.901= (Not choked)

Hence
p0

pvena
1

k 1−
2

M2
⋅+⎛⎜

⎝
⎞⎟
⎠

k
k 1−

= where pvena pb= pvena 91 kPa⋅=

so Mvena
2

k 1−

p0
pvena

⎛
⎜
⎝

⎞
⎟
⎠

k 1−
k

1−

⎡
⎢
⎢
⎢
⎣

⎤
⎥
⎥
⎥
⎦

⋅= Mvena 0.389=

Then Tvena
T0

1
k 1−

2
Mvena

2
⋅+

= Tvena 284K= Tvena 11.3 °C⋅=

Then cvena k R⋅ Tvena⋅= cvena 338
m
s

=

and Vvena Mvena cvena⋅= Vvena 131
m
s

=

Also ρvena
pvena

R Tvena⋅
= ρvena 1.12

kg

m3
=

Finally mrate ρvena Avena⋅ Vvena⋅= mrate 1.87 10 3−
×

kg
s

=

The Ts diagram will be a vertical line (T decreases and s = const).  After entering the tank there will be turbulent mixing (s increases) and th
comes to rest (T increases).  The mass flow rate versus time will look like the curved part of Fig. 13.6b; it is nonlinear because V AND ρ va



Problem 13.25 [3]

Given: Spherical cavity with valve

Find: Time to reach desired pressure; Entropy change

Solution:

Basic equations:
T0
T

1
k 1−

2
M2
⋅+=

p0
p

1
k 1−

2
M2
⋅+⎛⎜

⎝
⎞⎟
⎠

k
k 1−

= Δs cp ln
T2
T1

⎛
⎜
⎝

⎞
⎟
⎠

⋅ R ln
p2
p1

⎛
⎜
⎝

⎞
⎟
⎠

⋅−=

p ρ R⋅ T⋅= c k R⋅ T⋅= mrate ρ A⋅ V⋅= mchoked At p0⋅
k

R T0⋅
⋅

2
k 1+
⎛⎜
⎝

⎞⎟
⎠

k 1+
2 k 1−( )⋅

⋅=

Given or available data p0 101 kPa⋅= Tatm 20 273+( ) K⋅= T0 Tatm= d 1 mm⋅= D 50 cm⋅=

pf 45 kPa⋅= Tf Tatm= k 1.4= R 286.9
J

kg K⋅
⋅= cp 1004

J
kg K⋅
⋅=

Then the inlet area is At
π

4
d2
⋅= At 0.785mm2

= and tank volume is V
π

3
D3
⋅= V 0.131m3

=

The flow will be choked if pb/p0 < 0.528; the MAXIMUM back pressure is pb pf= so
pb
p0

0.446= (Choked)

The final density is ρf
pf

R Tf⋅
= ρf 0.535

kg

m3
= and final mass is M ρf V⋅= M 0.0701kg=

Since the mass flow rate is constant (flow is always choked) M mrate Δt⋅= or Δt
M

mrate
=

We have choked flow so mrate At p0⋅
k

R T0⋅
⋅

2
k 1+
⎛⎜
⎝

⎞⎟
⎠

k 1+
2 k 1−( )⋅

⋅= mrate 1.873 10 4−
×

kg
s

=

Hence Δt
M

mrate
= Δt 374s= Δt 6.23min=

The air in the tank will be cold when the valve is closed.  Because ρ =M/V is constant, p = ρRT = const x T, so as the temperature rises to
ambient, the pressure will rise too.

For the entropy change during the charging process is given by Δs cp ln
T2
T1

⎛
⎜
⎝

⎞
⎟
⎠

⋅ R ln
p2
p1

⎛
⎜
⎝

⎞
⎟
⎠

⋅−=   where T1 Tatm= T2 Tatm=

and p1 p0= p2 pf= Hence Δs cp ln
T2
T1

⎛
⎜
⎝

⎞
⎟
⎠

⋅ R ln
p2
p1

⎛
⎜
⎝

⎞
⎟
⎠

⋅−= Δs 232
J

kg K⋅
=
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Problem 13.29 [3]

Given: Air-driven rocket in space

Find: Tank pressure; pressure, temperature and speed at exit; initial acceleration

Solution:

The given or available data is: R  = 286.9 J/kg.K
k  = 1.4

T 0 = 398 K
A t = 25 mm2

M  = 25 kg
m rate = 0.05 kg/s

Equations and Computations:

Because p b = 0 p e = p *
Hence the flow is choked!

Hence T e = T *

From T 0, and Eq. 12.22b

(12.22b)

T * = 332 K

T e = 332 K

58.7 oC

Also M e = 1
Hence V e = V * = c e

From T e and Eq. 12.18 (12.18)

c e = 365 m/s

Then V e = 365 m/s



To find the exit pressure we use the ideal gas equation
after first finding the exit density.
The mass flow rate is m rate = ρeA eV e

Hence ρe = 0.0548 kg/m3

From the ideal gas equation p e = ρeRT e

p e = 5.21 kPa

From p e = p * and Eq. 12.22a
(12.22a)

p 0 = 9.87 kPa

We can check our results:
From p 0, T 0, A t, and Eq. 13.9a

(13.9a)

Then m choked = 0.050 kg/s
m choked = m rate Correct!

The initial acceleration is given by:

(4.33)

which simplifies to: or:

a x = 1.25 m/s2

VmMaAp ratexte =−
M

ApVma terate
x

+
=



Problem 13.30 [3]

Given: Gas cylinder with broken valve

Find: Mass flow rate; acceleration of cylinder

Solution:

Basic equations:
T0
T

1
k 1−

2
M2
⋅+=

p0
p

1
k 1−

2
M2
⋅+⎛⎜

⎝
⎞⎟
⎠

k
k 1−

= p ρ R⋅ T⋅= c k R⋅ T⋅= mrate ρ A⋅ V⋅=

(4.33)

Given or available data patm 101 kPa⋅= p0 20 MPa⋅= T0 20 273+( ) K⋅= k 1.4= R 286.9
J

kg K⋅
⋅=

d 10 mm⋅= so the nozzle area is Ae
π

4
d2
⋅= Ae 78.5 mm2

⋅= MCV 65 kg⋅=

The flow will be choked if pb/p0 < 0.528: pb patm= so
pb
p0

5.05 10 3−
×= (Choked: Critical conditions)

The exit temperature is Te
T0

1
k 1−

2
+⎛⎜

⎝
⎞⎟
⎠

= Te 244K= Te 29− °C⋅= ce k R⋅ Te⋅=

The exit speed is Ve ce= Ve 313
m
s

=

The exit pressure is pe
p0

1
k 1−

2
+⎛⎜

⎝
⎞⎟
⎠

k
k 1−

= pe 10.6 MPa⋅= and exit density is ρe
pe

R Te⋅
= ρe 151

kg

m3
=

Then mrate ρe Ae⋅ Ve⋅= mrate 3.71
kg
s

=

The momentum equation (Eq. 4.33) simplifies to pe patm−( ) Ae⋅ MCV ax⋅− Ve− mrate⋅=

Hence ax
pe patm−( ) Ae⋅ Ve mrate⋅+

MCV
= ax 30.5

m

s2
=

The process is isentropic, followed by nonisentropic expansion to atmospheric pressure





Problem 13.32 [4]

Given: Spherical air tank

Find: Air temperature after 30s; estimate throat area

Solution:

Basic equations:
T0
T

1
k 1−

2
M2
⋅+=

p

ρ
k

const=
t

VCVρ

⌠⎮
⎮⌡

d∂

∂
ACS
→⎯⎯

ρ V
→
⋅

⌠⎮
⎮
⌡

d+ 0= (4.12)

Assumptions: 1) Large tank (stagnation conditions) 2) isentropic 3) uniform flow

Given or available data patm 101 kPa⋅= p1 2.75 MPa⋅= T1 450 K⋅= D 2 m⋅= V
π

6
D3
⋅= V 4.19 m3

⋅=

ΔM 30 kg⋅= Δt 30 s⋅= k 1.4= R 286.9
J

kg K⋅
⋅=

The flow will be choked if pb/p1 < 0.528: pb patm= so
pb
p1

0.037= (Initially choked: Critical conditions)

We need to see if the flow is still choked after 30s

The initial (State 1) density and mass are ρ1
p1

R T1⋅
= ρ1 21.3

kg

m3
= M1 ρ1 V⋅= M1 89.2kg=

The final (State 2) mass and density are then M2 M1 ΔM−= M2 59.2kg= ρ2
M2
V

= ρ2 14.1
kg

m3
=

For an isentropic process p

ρ
k

const= so p2 p1
ρ2
ρ1

⎛
⎜
⎝

⎞
⎟
⎠

k

⋅= p2 1.55 MPa⋅=
pb
p2

0.0652= (Still choked)

The final temperature is T2
p2

ρ2 R⋅
= T2 382K= T2 109 °C⋅=

To estimate the throat area we use ΔM
Δt

mtave= ρtave At⋅ Vtave⋅= or At
ΔM

Δt ρtave⋅ Vtave⋅
=

where we use average values of density and speed at the throat.

The average stagnation temperature is T0ave
T1 T2+

2
= T0ave 416K=

The average stagnation pressure is p0ave
p1 p2+

2
= p0ave 2.15 MPa⋅=



Hence the average temperature and pressure (critical) at the throat are

Ttave
T0ave

1
k 1−

2
+⎛⎜

⎝
⎞⎟
⎠

= Ttave 347K= and ptave
p0ave

1
k 1−

2
+⎛⎜

⎝
⎞⎟
⎠

k
k 1−

= ptave 1.14 MPa⋅=

Hence Vtave k R⋅ Ttave⋅= Vtave 373
m
s

= ρtave
ptave

R Ttave⋅
= ρtave 11.4

kg

m3
=

Finally At
ΔM

Δt ρtave⋅ Vtave⋅
= At 2.35 10 4−

× m2
= At 235 mm2

⋅=

This corresponds to a diameter

Dt
4 At⋅

π
= Dt 0.0173m= Dt 17.3 mm⋅=

The process is isentropic, followed by nonisentropic expansion to atmospheric pressure



Problem 13.33 [4]

Given: Ideal gas flow in a converging nozzle

Find: Exit area and speed

Solution:

Basic equations:
T0
T

1
k 1−

2
M2
⋅+=

p0
p

1
k 1−

2
M2
⋅+⎛⎜

⎝
⎞⎟
⎠

k
k 1−

=
A

Acrit

1
M

1
k 1−

2
M2
⋅+

k 1+
2

⎛
⎜
⎜
⎜
⎝

⎞
⎟
⎟
⎟
⎠

k 1+
2 k 1−( )⋅

⋅=

Given or available data p1 35 psi⋅= ρ1 0.1
lbm

ft3
⋅= V1 500

ft
s

⋅= A1 1 ft2⋅= p2 25 psi⋅= k 1.25=

Check for choking: c1 k R⋅ T1⋅= or, replacing R using the ideal gas equation c1 k
p1
ρ1
⋅= c1 1424

ft
s

=

Hence M1
V1
c1

= M1 0.351=

Then p0 p1 1
k 1−

2
M1

2
⋅+⎛⎜

⎝
⎞⎟
⎠

k
k 1−

⋅= p0 37.8psi=

The critical pressure is then pcrit
p0

k 1+
2

⎛⎜
⎝

⎞⎟
⎠

k
k 1−

= pcrit 21.0psi= Hence p2 > pcrit, so NOT choked

Then we have M2
2

k 1−

p0
p2

⎛
⎜
⎝

⎞
⎟
⎠

k 1−
k

1−

⎡
⎢
⎢
⎢
⎣

⎤
⎥
⎥
⎥
⎦

⋅= M2 0.830=

From M1 we find Acrit
M1 A1⋅

1
k 1−

2
M1

2
⋅+

k 1+
2

⎛
⎜
⎜
⎜
⎝

⎞
⎟
⎟
⎟
⎠

k 1+
2 k 1−( )⋅

= Acrit 0.557 ft2= A2
Acrit
M2

1
k 1−

2
M2

2
⋅+

k 1+
2

⎛
⎜
⎜
⎜
⎝

⎞
⎟
⎟
⎟
⎠

k 1+
2 k 1−( )⋅

⋅= A2 0.573 ft2=

For isentropic flow p ρ
k

⋅ const= so ρ2 ρ1
p1
p2

⎛
⎜
⎝

⎞
⎟
⎠

1
k

⋅= ρ2 0.131
lbm

ft3
=

Finally from continuity ρ A⋅ V⋅ const= so V2 V1
A1 ρ1⋅

A2 ρ2⋅
⋅= V2 667

ft
s

=



 
Problem 13.34                                                                             [4]   Part 1/3



 
Problem 13.34                                                                             [4]   Part 2/3



 
Problem 13.34                                                                             [4]   Part 3/3



 
Problem 13.35                                                                             [4]



Problem 13.36 [2]

Given: CD nozzle attached to large tank

Find: Flow rate

Solution:

Basic equations:
T0
T

1
k 1−

2
M2
⋅+=

p0
p

1
k 1−

2
M2
⋅+⎛⎜

⎝
⎞⎟
⎠

k
k 1−

= mrate ρ V⋅ A⋅=

Given or available data p0 150 kPa⋅= T0 35 273+( ) K⋅= pe 101 kPa⋅= D 2.75 cm⋅=

k 1.4= R 286.9
J

kg K⋅
⋅= Ae

π

4
D2
⋅= Ae 5.94cm2

=

For isentropic flow Me
2

k 1−

p0
pe

⎛
⎜
⎝

⎞
⎟
⎠

k 1−
k

1−

⎡
⎢
⎢
⎢
⎣

⎤
⎥
⎥
⎥
⎦

⋅= Me 0.773=

Then Te
T0

1
k 1−

2
Me

2
⋅+⎛⎜

⎝
⎞⎟
⎠

= Te 275K= Te 1.94°C=

Also ce k R⋅ Te⋅= ce 332
m
s

= Ve Me ce⋅= Ve 257
m
s

=

ρe
pe

R Te⋅
= ρe 1.28

kg

m3
=

Finally mrate ρe Ve⋅ Ae⋅= mrate 0.195
kg
s

=



Problem 13.37 [2]

Given: Design condition in a converging-diverging nozzle

Find: Tank pressure; flow rate; throat area

Solution:

The given or available data is: R  = 53.33 ft.lbf/lbm.oR
k = 1.4

T 0 = 560
oR

A e = 1 in2

p b = 14.7 psia
M e = 2

Equations and Computations:

At design condition p e = p b

p e = 14.7 psia

From M e and p e, and Eq. 13.7a
(using built-in function Isenp (M ,k )

(13.7a)

p 0 = 115 psia

From M e and A e, and Eq. 13.7d
(using built-in function IsenA (M ,k )

(13.7d)

A*  = 0.593 in2

Hence A t = 0.593 in2

From p 0, T 0, A t, and Eq. 13.10a

(13.10a)

m choked = 1.53 lb/s



Problem 13.38                                                                             [4]   Part 1/2
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Problem 13.43                                                                             [3]   Part 1/2
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Problem 13.44 [3]

Given: Rocket motor on test stand

Find: Mass flow rate; thrust force

Solution:

Basic equations:
T0
T

1
k 1−

2
M2
⋅+=

p0
p

1
k 1−

2
M2
⋅+⎛⎜

⎝
⎞⎟
⎠

k
k 1−

= p ρ R⋅ T⋅= c k R⋅ T⋅= mrate ρ A⋅ V⋅=

patm pe−( ) Ae⋅ Rx+ mrate Ve⋅= Momentum for pressure pe and velocity Ve at exit; Rx is the reaction for

Given or available data pe 75 kPa⋅= patm 101 kPa⋅= p0 4 MPa⋅= T0 3250 K⋅= k 1.25= R 300
J

kg K⋅
⋅=

d 25 cm⋅= so the nozzle exit area is Ae
π

4
d2
⋅= Ae 491 cm2

⋅=

From the pressures Me
2

k 1−

p0
pe

⎛
⎜
⎝

⎞
⎟
⎠

k 1−
k

1−

⎡
⎢
⎢
⎢
⎣

⎤
⎥
⎥
⎥
⎦

⋅= Me 3.12=

The exit temperature is Te
T0

1
k 1−

2
Me

2
⋅+⎛⎜

⎝
⎞⎟
⎠

= Te 1467K= ce k R⋅ Te⋅= ce 742
m
s

=

The exit speed is Ve Me ce⋅= Ve 2313
m
s

= and ρe
pe

R Te⋅
= ρe 0.170

kg

m3
⋅=

Then mrate ρe Ae⋅ Ve⋅= mrate 19.3
kg
s

=

The momentum equation (Eq. 4.33) simplifies to pe patm−( ) Ae⋅ MCV ax⋅− Ve− mrate⋅=

Hence Rx pe patm−( ) Ae⋅ Ve mrate⋅+= Rx 43.5 kN⋅=







 
Problem 13.47                                                                             [3]



Problem 13.48 [4]

Given: Compressed CO2 in a cartridge expanding through a nozzle

Find: Throat pressure; Mass flow rate; Thrust; Thrust increase with diverging section; Exit area

Solution:

Basic equations:

Assumptions: 1) Isentropic flow 2) Stagnation in cartridge 3) Ideal gas 4) Uniform flow

Given or available data: k 1.29= R 188.9
J

kg K⋅
⋅= patm 101 kPa⋅=

p0 35 MPa⋅= T0 20 273+( ) K⋅= dt 0.5 mm⋅=

From isentropic relations pcrit
p0

1
k 1−

2
+⎛⎜

⎝
⎞⎟
⎠

k
k 1−

= pcrit 19.2MPa=

Since pb << pcrit, then pt pcrit= pt 19.2MPa=

Throat is critical so mrate ρt Vt⋅ At⋅=

Tt
T0

1
k 1−

2
+

= Tt 256K=

Vt k R⋅ Tt⋅= Vt 250
m
s

=

At
π dt

2
⋅

4
= At 1.963 10 7−

× m2
=

ρt
pt

R Tt⋅
= ρt 396

kg

m3
=

mrate ρt Vt⋅ At⋅= mrate 0.0194
kg
s

=



For 1D flow with no body force the momentum equation reduces to Rx ptgage At⋅− mrate Vt⋅= ptgage pt patm−=

Rx mrate Vt⋅ ptgage At⋅+= Rx 8.60N=

When a diverging section is added the nozzle can exit to atmospheric pressurepe patm=

Hence the Mach number at exit is Me
2

k 1−

p0
pe

⎛
⎜
⎝

⎞
⎟
⎠

k 1−
k

1−

⎡
⎢
⎢
⎢
⎣

⎤
⎥
⎥
⎥
⎦

⋅

⎡
⎢
⎢
⎢
⎣

⎤
⎥
⎥
⎥
⎦

1
2

= Me 4.334=

Te
T0

1
k 1−

2
Me

2
⋅+

= Te 78.7K=

ce k R⋅ Te⋅= ce 138
m
s

=

Ve Me ce⋅= Ve 600
m
s

=

The mass flow rate is unchanged (choked flow)

From the momentum equation Rx mrate Ve⋅= Rx 11.67N=

The percentage increase in thrust is 11.67 N⋅ 8.60 N⋅−
8.60 N⋅

35.7%=

The exit area is obtained from mrate ρe Ve⋅ Ae⋅= and ρe
pe

R Te⋅
= ρe 6.79

kg

m3
=

Ae
mrate
ρe Ve⋅

= Ae 4.77 10 6−
× m2

= Ae 4.77mm2
=

 
T 

p0 

s 

pt 

T0 

Tt 

CD 
Nozzle 

pb Te 

Conv. 
Nozzle 



Problem 13.49 [3]

Given: CO2 cartridge and convergent nozzle

Find: Tank pressure to develop thrust of 15 N

Solution:

The given or available data is: R  = 188.9 J/kg·K
k  = 1.29

T 0 = 293 K
p b = 101 kPa
D t = 0.5 mm

Equations and Computations:
A t = 0.196 mm2

The momentum equation gives

R x = m flowV e

Hence, we need m flow and V e

For isentropic flow p e = p b

p e = 101 kPa

If we knew p 0 we could use it and p e, and Eq. 13.7a, to find M e.

Once M e is known, the other exit conditions can be found.

Make a guess for p 0, and eventually use Goal Seek  (see below).

p 0 = 44.6 MPa

From p 0 and p e, and Eq. 13.7a
(using built-in function IsenMfromp (M ,k )

(13.7a)

M e = 4.5



From M e and T 0 and Eq. 13.7b
(using built-in function IsenT (M ,k )

(13.7b)

T e = 74.5 K

From T e and Eq. 12.18 (12.18)

c e = 134.8 m/s

Then V e = 606 m/s

The mass flow rate is obtained from p 0, T 0, A t, and Eq. 13.10a

(13.10a)

m choked = 0.0248 kg/s

Finally, the momentum equation gives

R x = m flowV e

= 15.0 N

We need to set R x to 15 N.  To do this use Goal Seek
to vary p 0 to obtain the result!



Problem 13.50 [2]

 

  

Given: Air flow in an insulated duct

Find: Mass flow rate; Range of choked exit pressures

Solution:

Basic equations:
T0
T

1
k 1−

2
M2
⋅+= c k R⋅ T⋅=

A
Acrit

1
M

1
k 1−

2
M2
⋅+

k 1+
2

⎛
⎜
⎜
⎜
⎝

⎞
⎟
⎟
⎟
⎠

k 1+
2 k 1−( )⋅

⋅=

Given or available data T0 80 460+( ) R⋅= p0 14.7 psi⋅= p1 13 psi⋅= D 1 in⋅=

k 1.4= Rair 53.33
ft lbf⋅
lbm R⋅
⋅= A

π D2
⋅
4

= A 0.785 in2
⋅=

Assuming isentropic flow, stagnation conditions are constant.  Hence

M1
2

k 1−

p0
p1

⎛
⎜
⎝

⎞
⎟
⎠

k 1−
k

1−

⎡
⎢
⎢
⎢
⎣

⎤
⎥
⎥
⎥
⎦

⋅= M1 0.423= T1
T0

1
k 1−

2
M1

2
⋅+

= T1 521 R⋅= T1 61.7 °F⋅=

c1 k Rair⋅ T1⋅= c1 341
m
s

= V1 M1 c1⋅= V1 144
m
s

=

Also ρ1
p1

Rair T1⋅
= ρ1 0.0673

lbm

ft3
⋅=

Hence mrate ρ1 V1⋅ A⋅= mrate 0.174
lbm

s
⋅=

When flow is choked henceM2 1= T2
T0

1
k 1−

2
+

= T2 450 R⋅= T2 9.7− °F⋅=

We also have c2 k Rair⋅ T2⋅= c2 1040
ft
s

⋅= V2 c2= V2 1040
ft
s

⋅=

From continuity ρ1 V1⋅ ρ2 V2⋅= ρ2 ρ1
V1
V2
⋅= ρ2 0.0306

lbm

ft3
⋅=

Hence p2 ρ2 Rair⋅ T2⋅= p2 5.11 psi⋅=

The flow will therefore choke for any back pressure (pressure at the exit) less than or equal to this pressure

(From Fanno line function
p1

pcrit
2.545= at M1 0.423= so pcrit

p1
2.545

= pcrit 5.11psi= Check!)



Problem 13.51 [4]

Given: Air flow from converging nozzle into pipe

Find: Plot Ts diagram and pressure and speed curves

Solution:

The given or available data is: R  = 53.33 ft·lbf/lbm·oR
k = 1.4

c p = 0.2399 Btu/lbm·oR

187 ft·lbf/lbm·oR
T 0 = 710

oR
p 0 = 25 psi
p e = 24 psi

Equations and Computations:
From p 0 and p e, and Eq. 13.7a
(using built-in function IsenMfromp (M ,k )) M e = 0.242

Using built-in function IsenT (M ,k ) T e = 702
oR

Using p e, M e, and function Fannop (M ,k ) p* = 5.34 psi

Using T e, M e, and function FannoT (M ,k ) T*  = 592
oR

We can now use Fanno-line relations to compute values for a range of Mach numbers:

M T /T * T  (oR) c  (ft/s) V  (ft/s) p /p * p  (psi)
Δs 

(ft·lbf/lbm·oR) 
Eq. (12.11b)

0.242 1.186 702 1299 315 4.50 24.0 0.00
0.25 1.185 701 1298 325 4.35 23.2 1.57
0.26 1.184 701 1298 337 4.19 22.3 3.50
0.27 1.183 700 1297 350 4.03 21.5 5.35
0.28 1.181 699 1296 363 3.88 20.7 7.11
0.29 1.180 698 1296 376 3.75 20.0 8.80
0.3 1.179 697 1295 388 3.62 19.3 10.43
0.31 1.177 697 1294 401 3.50 18.7 11.98
0.32 1.176 696 1293 414 3.39 18.1 13.48
0.33 1.174 695 1292 427 3.28 17.5 14.92
0.34 1.173 694 1292 439 3.19 17.0 16.30
0.35 1.171 693 1291 452 3.09 16.5 17.63
0.36 1.170 692 1290 464 3.00 16.0 18.91
0.37 1.168 691 1289 477 2.92 15.6 20.14
0.38 1.166 690 1288 489 2.84 15.2 21.33
0.39 1.165 689 1287 502 2.77 14.8 22.48
0.4 1.163 688 1286 514 2.70 14.4 23.58
0.41 1.161 687 1285 527 2.63 14.0 24.65
0.42 1.159 686 1284 539 2.56 13.7 25.68
0.43 1.157 685 1283 552 2.50 13.4 26.67
0.44 1.155 684 1282 564 2.44 13.0 27.63
0.45 1.153 682 1281 576 2.39 12.7 28.55

Ts  Curve (Fanno)

580

600

620

640

660

680

700

720

0 10 20 30 40 50

s  (ft.lbf/lbmoR)

T  (oR)



0.46 1.151 681 1280 589 2.33 12.4 29.44
0.47 1.149 680 1279 601 2.28 12.2 30.31
0.48 1.147 679 1277 613 2.23 11.9 31.14
0.49 1.145 677 1276 625 2.18 11.7 31.94
0.5 1.143 676 1275 638 2.14 11.4 32.72
0.51 1.141 675 1274 650 2.09 11.2 33.46
0.52 1.138 674 1273 662 2.05 11.0 34.19
0.53 1.136 672 1271 674 2.01 10.7 34.88
0.54 1.134 671 1270 686 1.97 10.5 35.56
0.55 1.132 669 1269 698 1.93 10.3 36.21
0.56 1.129 668 1267 710 1.90 10.1 36.83
0.57 1.127 667 1266 722 1.86 9.9 37.44
0.58 1.124 665 1265 733 1.83 9.8 38.02
0.59 1.122 664 1263 745 1.80 9.6 38.58
0.6 1.119 662 1262 757 1.76 9.4 39.12
0.61 1.117 661 1260 769 1.73 9.2 39.64
0.62 1.114 659 1259 781 1.70 9.1 40.14
0.63 1.112 658 1258 792 1.67 8.9 40.62
0.64 1.109 656 1256 804 1.65 8.8 41.09
0.65 1.107 655 1255 815 1.62 8.6 41.53
0.66 1.104 653 1253 827 1.59 8.5 41.96
0.67 1.101 652 1252 839 1.57 8.4 42.37
0.68 1.098 650 1250 850 1.54 8.2 42.77
0.69 1.096 648 1248 861 1.52 8.1 43.15
0.7 1.093 647 1247 873 1.49 8.0 43.51
0.71 1.090 645 1245 884 1.47 7.8 43.85
0.72 1.087 643 1244 895 1.45 7.7 44.18
0.73 1.084 642 1242 907 1.43 7.6 44.50
0.74 1.082 640 1240 918 1.41 7.5 44.80
0.75 1.079 638 1239 929 1.38 7.4 45.09
0.76 1.076 636 1237 940 1.36 7.3 45.36
0.77 1.073 635 1235 951 1.35 7.2 45.62
0.78 1.070 633 1234 962 1.33 7.1 45.86
0.79 1.067 631 1232 973 1.31 7.0 46.10
0.8 1.064 629 1230 984 1.29 6.9 46.31
0.81 1.061 628 1228 995 1.27 6.8 46.52
0.82 1.058 626 1227 1006 1.25 6.7 46.71
0.83 1.055 624 1225 1017 1.24 6.6 46.90
0.84 1.052 622 1223 1027 1.22 6.5 47.07
0.85 1.048 620 1221 1038 1.20 6.4 47.22
0.86 1.045 619 1219 1049 1.19 6.3 47.37
0.87 1.042 617 1218 1059 1.17 6.3 47.50
0.88 1.039 615 1216 1070 1.16 6.2 47.63
0.89 1.036 613 1214 1080 1.14 6.1 47.74
0.9 1.033 611 1212 1091 1.13 6.0 47.84
0.91 1.029 609 1210 1101 1.11 6.0 47.94
0.92 1.026 607 1208 1112 1.10 5.9 48.02
0.93 1.023 605 1206 1122 1.09 5.8 48.09
0.94 1.020 603 1204 1132 1.07 5.7 48.15
0.95 1.017 601 1202 1142 1.06 5.7 48.20
0.96 1.013 600 1201 1153 1.05 5.6 48.24
0.97 1.010 598 1199 1163 1.04 5.5 48.27
0.98 1.007 596 1197 1173 1.02 5.5 48.30
0.99 1.003 594 1195 1183 1.01 5.4 48.31

1 1.000 592 1193 1193 1.00 5.3 48.31
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Problem 13.52 [4]

Given: Air flow from converging-diverging nozzle into pipe

Find: Plot Ts diagram and pressure and speed curves

Solution:

The given or available data is: R  = 53.33 ft·lbf/lbm·oR
k = 1.4

c p = 0.2399 Btu/lbm·oR

187 ft·lbf/lbm·oR
T 0 = 710 oR
p 0 = 25 psi
p e = 2.5 psi

Equations and Computations:
From p 0 and p e, and Eq. 13.7a
(using built-in function IsenMfromp (M ,k )) M e = 2.16

Using built-in function IsenT (M ,k ) T e = 368 oR

Using p e, M e, and function Fannop (M ,k ) p* = 6.84 psi

Using T e, M e, and function FannoT (M ,k ) T*  = 592 oR

We can now use Fanno-line relations to compute values for a range of Mach numbers:

M T /T * T  (oR) c  (ft/s) V  (ft/s) p /p * p  (psi)
Δs 

(ft·lbf/lbm·oR) 
Eq. (12.11b)

2.157 0.622 368 940 2028 0.37 2.5 0.00
2 0.667 394 974 1948 0.41 2.8 7.18

1.99 0.670 396 976 1942 0.41 2.8 7.63
1.98 0.673 398 978 1937 0.41 2.8 8.07
1.97 0.676 400 980 1931 0.42 2.9 8.51
1.96 0.679 402 982 1926 0.42 2.9 8.95
1.95 0.682 403 985 1920 0.42 2.9 9.38
1.94 0.685 405 987 1914 0.43 2.9 9.82
1.93 0.688 407 989 1909 0.43 2.9 10.25
1.92 0.691 409 991 1903 0.43 3.0 10.68
1.91 0.694 410 993 1897 0.44 3.0 11.11
1.9 0.697 412 996 1892 0.44 3.0 11.54

1.89 0.700 414 998 1886 0.44 3.0 11.96
1.88 0.703 416 1000 1880 0.45 3.1 12.38
1.87 0.706 418 1002 1874 0.45 3.1 12.80
1.86 0.709 420 1004 1868 0.45 3.1 13.22
1.85 0.712 421 1007 1862 0.46 3.1 13.64
1.84 0.716 423 1009 1856 0.46 3.1 14.05
1.83 0.719 425 1011 1850 0.46 3.2 14.46
1.82 0.722 427 1013 1844 0.47 3.2 14.87
1.81 0.725 429 1015 1838 0.47 3.2 15.28
1.8 0.728 431 1018 1832 0.47 3.2 15.68

1.79 0.731 433 1020 1826 0.48 3.3 16.08
1.78 0.735 435 1022 1819 0.48 3.3 16.48
1.77 0.738 436 1024 1813 0.49 3.3 16.88
1.76 0.741 438 1027 1807 0.49 3.3 17.27
1.75 0.744 440 1029 1801 0.49 3.4 17.66
1.74 0.747 442 1031 1794 0.50 3.4 18.05
1.73 0.751 444 1033 1788 0.50 3.4 18.44
1.72 0.754 446 1036 1781 0.50 3.5 18.82
1.71 0.757 448 1038 1775 0.51 3.5 19.20
1.7 0.760 450 1040 1768 0.51 3.5 19.58

Ts  Curve (Fanno)
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1.69 0.764 452 1042 1761 0.52 3.5 19.95
1.68 0.767 454 1045 1755 0.52 3.6 20.32
1.67 0.770 456 1047 1748 0.53 3.6 20.69
1.66 0.774 458 1049 1741 0.53 3.6 21.06
1.65 0.777 460 1051 1735 0.53 3.7 21.42
1.64 0.780 462 1054 1728 0.54 3.7 21.78
1.63 0.784 464 1056 1721 0.54 3.7 22.14
1.62 0.787 466 1058 1714 0.55 3.7 22.49
1.61 0.790 468 1060 1707 0.55 3.8 22.84
1.6 0.794 470 1063 1700 0.56 3.8 23.18

1.59 0.797 472 1065 1693 0.56 3.8 23.52
1.58 0.800 474 1067 1686 0.57 3.9 23.86
1.57 0.804 476 1069 1679 0.57 3.9 24.20
1.56 0.807 478 1072 1672 0.58 3.9 24.53
1.55 0.811 480 1074 1664 0.58 4.0 24.86
1.54 0.814 482 1076 1657 0.59 4.0 25.18
1.53 0.817 484 1078 1650 0.59 4.0 25.50
1.52 0.821 486 1080 1642 0.60 4.1 25.82
1.51 0.824 488 1083 1635 0.60 4.1 26.13
1.5 0.828 490 1085 1627 0.61 4.1 26.44

1.49 0.831 492 1087 1620 0.61 4.2 26.75
1.48 0.834 494 1089 1612 0.62 4.2 27.05
1.47 0.838 496 1092 1605 0.62 4.3 27.34
1.46 0.841 498 1094 1597 0.63 4.3 27.63
1.45 0.845 500 1096 1589 0.63 4.3 27.92
1.44 0.848 502 1098 1582 0.64 4.4 28.21
1.43 0.852 504 1101 1574 0.65 4.4 28.48
1.42 0.855 506 1103 1566 0.65 4.5 28.76
1.41 0.859 508 1105 1558 0.66 4.5 29.03
1.4 0.862 510 1107 1550 0.66 4.5 29.29

1.39 0.866 512 1110 1542 0.67 4.6 29.55
1.38 0.869 514 1112 1534 0.68 4.6 29.81
1.37 0.872 516 1114 1526 0.68 4.7 30.06
1.36 0.876 518 1116 1518 0.69 4.7 30.31
1.35 0.879 520 1118 1510 0.69 4.8 30.55
1.34 0.883 522 1121 1502 0.70 4.8 30.78
1.33 0.886 524 1123 1493 0.71 4.8 31.01
1.32 0.890 527 1125 1485 0.71 4.9 31.24
1.31 0.893 529 1127 1477 0.72 4.9 31.46
1.3 0.897 531 1129 1468 0.73 5.0 31.67

1.29 0.900 533 1132 1460 0.74 5.0 31.88
1.28 0.904 535 1134 1451 0.74 5.1 32.09
1.27 0.907 537 1136 1443 0.75 5.1 32.28
1.26 0.911 539 1138 1434 0.76 5.2 32.48
1.25 0.914 541 1140 1426 0.76 5.2 32.66
1.24 0.918 543 1143 1417 0.77 5.3 32.84
1.23 0.921 545 1145 1408 0.78 5.3 33.01
1.22 0.925 547 1147 1399 0.79 5.4 33.18
1.21 0.928 549 1149 1390 0.80 5.4 33.34
1.2 0.932 551 1151 1381 0.80 5.5 33.50

1.19 0.935 553 1153 1372 0.81 5.6 33.65
1.18 0.939 555 1155 1363 0.82 5.6 33.79
1.17 0.942 557 1158 1354 0.83 5.7 33.93
1.16 0.946 559 1160 1345 0.84 5.7 34.05
1.15 0.949 561 1162 1336 0.85 5.8 34.18
1.14 0.952 564 1164 1327 0.86 5.9 34.29
1.13 0.956 566 1166 1318 0.87 5.9 34.40
1.12 0.959 568 1168 1308 0.87 6.0 34.50
1.11 0.963 570 1170 1299 0.88 6.0 34.59
1.1 0.966 572 1172 1290 0.89 6.1 34.68

1.09 0.970 574 1174 1280 0.90 6.2 34.76
1.08 0.973 576 1176 1271 0.91 6.2 34.83
1.07 0.976 578 1179 1261 0.92 6.3 34.89
1.06 0.980 580 1181 1251 0.93 6.4 34.95
1.05 0.983 582 1183 1242 0.94 6.5 34.99
1.04 0.987 584 1185 1232 0.96 6.5 35.03
1.03 0.990 586 1187 1222 0.97 6.6 35.06
1.02 0.993 588 1189 1212 0.98 6.7 35.08
1.01 0.997 590 1191 1203 0.99 6.8 35.10

1 1.000 592 1193 1193 1.00 6.8 35.10
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Problem 13.54 [3]

 

  

Given: Air flow in a converging nozzle and insulated duct

Find: Pressure at end of duct; Entropy increase

Solution:

Basic equations:
T0
T

1
k 1−

2
M2
⋅+=

p0
p

1
k 1−

2
M2
⋅+⎛⎜

⎝
⎞⎟
⎠

k
k 1−

= Δs cp ln
T2
T1

⎛
⎜
⎝

⎞
⎟
⎠

⋅ Rair ln
p2
p1

⎛
⎜
⎝

⎞
⎟
⎠

⋅−= c k R⋅ T⋅=

Given or available data T0 250 460+( ) R⋅= p0 145 psi⋅= p1 125 psi⋅= T2 150 460+( ) R⋅=

k 1.4= cp 0.2399
Btu

lbm R⋅
⋅= Rair 53.33

ft lbf⋅
lbm R⋅
⋅=

Assuming isentropic flow in the nozzle

M1
2

k 1−

p0
p1

⎛
⎜
⎝

⎞
⎟
⎠

k 1−
k

1−

⎡
⎢
⎢
⎢
⎣

⎤
⎥
⎥
⎥
⎦

⋅= M1 0.465= T1
T0

1
k 1−

2
M1

2
⋅+

= T1 681 R⋅= T1 221 °F⋅=

In the duct T0 (a measure of total energy) is constant, so M2
2

k 1−

T0
T2

⎛
⎜
⎝

⎞
⎟
⎠

1−
⎡
⎢
⎣

⎤
⎥
⎦

⋅= M2 0.905=

At each location c1 k Rair⋅ T1⋅= c1 1279
ft
s

⋅= V1 M1 c1⋅= V1 595
ft
s

⋅=

c2 k Rair⋅ T2⋅= c2 1211
ft
s

⋅= V2 M2 c2⋅= V2 1096
ft
s

⋅=

Also ρ1
p1

Rair T1⋅
= ρ1 0.4960

lbm

ft3
⋅=

Hence mrate ρ1 V1⋅ A⋅= ρ2 V2⋅ A⋅= so ρ2 ρ1
V1
V2
⋅= ρ2 0.269

lbm

ft3
⋅=

Then p2 ρ2 Rair⋅ T2⋅= p2 60.8 psi⋅= Finally Δs cp ln
T2
T1

⎛
⎜
⎝

⎞
⎟
⎠

⋅ Rair ln
p2
p1

⎛
⎜
⎝

⎞
⎟
⎠

⋅−= Δs 0.0231
Btu

lbm R⋅
⋅=

(Note: Using Fanno line relations, at M1 0.465=
T1

Tcrit
1.150= Tcrit

T1
1.150

= Tcrit 329K=

p1
pcrit

2.306= pcrit
p1

2.3060
= pcrit 54.2 psi⋅=

Then
T2

Tcrit
1.031= so M2 0.907=

p2
pcrit

1.119= p2 1.119 pcrit⋅= p2 60.7 psi⋅= Check!)







Problem 13.57 [3]

 

  

Given: Air flow in a CD nozzle and insulated duct

Find: Temperature at end of duct; Force on duct; Entropy increase

Solution:

Basic equations: Fs p1 A⋅ p2 A⋅− Rx+= mrate V2 V1−( )⋅=
T0
T

1
k 1−

2
M2
⋅+= Δs cp ln

T2
T1

⎛
⎜
⎝

⎞
⎟
⎠

⋅ Rair ln
p2
p1

⎛
⎜
⎝

⎞
⎟
⎠

⋅−=

Given or available data T1 100 460+( ) R⋅= p1 18.5 psi⋅= M1 2= M2 1= A 1 in2
⋅=

k 1.4= cp 0.2399
Btu

lbm R⋅
⋅= Rair 53.33

ft lbf⋅
lbm R⋅
⋅=

Assuming isentropic flow in the nozzle

T0
T1

T2
T0
⋅

1
k 1−

2
M1

2
⋅+

1
k 1−

2
M2

2
⋅+

= so T2 T1

1
k 1−

2
M1

2
⋅+

1
k 1−

2
M2

2
⋅+

⋅= T2 840 R⋅= T2 380 °F⋅=

Also c1 k Rair⋅ T1⋅= V1 M1 c1⋅= V1 2320
ft
s

⋅= c2 k Rair⋅ T2⋅= V2 M2 c2⋅= V2 1421
ft
s

⋅=

ρ1
p1

Rair T1⋅
= ρ1 0.0892

lbm

ft3
⋅= mrate ρ1 V1⋅ A⋅= ρ2 V2⋅ A2⋅= so ρ2 ρ1

V1
V2
⋅= ρ2 0.146

lbm

ft3
⋅=

mrate ρ1 V1⋅ A⋅= mrate 1.44
lbm

s
⋅= p2 ρ2 Rair⋅ T2⋅= p2 45.3 psi⋅=

Hence Rx p2 p1−( ) A⋅ mrate V2 V1−( )⋅+= Rx 13.3− lbf⋅= (Force is to the right)

Finally Δs cp ln
T2
T1

⎛
⎜
⎝

⎞
⎟
⎠

⋅ Rair ln
p2
p1

⎛
⎜
⎝

⎞
⎟
⎠

⋅−= Δs 0.0359
Btu

lbm R⋅
⋅=

(Note: Using Fanno line relations, at M1 2=
T1

Tcrit

T1
T2

= 0.6667= T2
T1

0.667
= T2 840 R⋅=

p1
pcrit

p1
p2

= 0.4083= p2
p1

0.4083
= p2 45.3 psi⋅= Check!)
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Problem 13.63 [2]

 

  

Given: Air flow in a converging nozzle and insulated duct

Find: Length of pipe

Solution:

Basic equations: Fanno-line flow equations, and friction factor

Given or available data T0 250 460+( ) R⋅= p0 145 psi⋅= p1 125 psi⋅= T2 150 460+( ) R⋅=

D 2 in⋅= k 1.4= cp 0.2399
Btu

lbm R⋅
⋅= Rair 53.33

ft lbf⋅
lbm R⋅
⋅=

From isentropic relations M1
2

k 1−

p0
p1

⎛
⎜
⎝

⎞
⎟
⎠

k 1−
k

1−

⎡
⎢
⎢
⎢
⎣

⎤
⎥
⎥
⎥
⎦

⋅

⎡
⎢
⎢
⎢
⎣

⎤
⎥
⎥
⎥
⎦

1
2

= M1 0.465=

T0
T1

1
k 1−

2
M1

2
⋅+= so T1

T0

1
k 1−

2
M1

2
⋅+⎛⎜

⎝
⎞⎟
⎠

= T1 681 R⋅= T1 221 °F⋅=

Then for Fanno-line flow
fave Lmax1⋅

Dh

1 M1
2

−

k M1
2

⋅

k 1+
2 k⋅

ln
k 1+( ) M1

2
⋅

2 1
k 1−

2
M1

2
⋅+⎛⎜

⎝
⎞⎟
⎠

⋅

⎡⎢
⎢
⎢
⎣

⎤⎥
⎥
⎥
⎦

⋅+= 1.3923=

p1
pcrit

p1
p2

=
1

M1

k 1+
2

1
k 1−

2
M1

2
⋅+

⎛
⎜
⎜
⎜
⎝

⎞
⎟
⎟
⎟
⎠

1
2

⋅= 2.3044=
T1

Tcrit

k 1+
2

1
k 1−

2
M1

2
⋅+

= 1.150= Tcrit
T1

1.150
=

pcrit
p1

2.3044
= pcrit 54.2 psi⋅= Tcrit 592 R⋅= Tcrit 132 °F⋅=

Also, for
T2

Tcrit
1.031=

T2
Tcrit

k 1+
2

1
k 1−

2
M2

2
⋅+

= leads to M2
2

k 1−
k 1+

2

Tcrit
T2

⋅ 1−
⎛
⎜
⎝

⎞
⎟
⎠

⋅= M2 0.906=

Then
fave Lmax2⋅

Dh

1 M2
2

−

k M2
2

⋅

k 1+
2 k⋅

ln
k 1+( ) M2

2
⋅

2 1
k 1−

2
M2

2
⋅+⎛⎜

⎝
⎞⎟
⎠

⋅

⎡⎢
⎢
⎢
⎣

⎤⎥
⎥
⎥
⎦

⋅+= 0.01271=

Also ρ1
p1

Rair T1⋅
= ρ1 0.496

lbm

ft3
= V1 M1 k Rair⋅ T1⋅⋅= V1 595

ft
s

=



For air at T1 221°F= , from Table A.9 (approximately) μ 4.48 10 7−
×

lbf s⋅

ft2
⋅= so Re1

ρ1 V1⋅ D⋅

μ
=

For commercial steel pipe (Table 8.1) e 0.00015 ft⋅=
e
D

9 10 4−
×= and Re1 3.41 106

×=

Hence at this Reynolds number and roughness (Eq. 8.37) f 0.01924=

Combining results L12
D
f

fave Lmax2⋅

Dh

fave Lmax1⋅

Dh
−

⎛
⎜
⎝

⎞
⎟
⎠

⋅=

2
12

ft⋅

.01924
1.3923 0.01271−( )⋅= L12 12.0 ft⋅=

These calculations are a LOT easier using the Excel Add-ins!
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Example 13.7

Example 13.7
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Problem 13.70 [2]

Given: Air flow through a CD nozzle and tube.

Find: Average friction factor; Pressure drop in tube

Solution:
Assumptions: 1) Isentropic flow in nozzle 2) Adiabatic flow in tube 3) Ideal gas 4) Uniform flow

Given or available data: k 1.40= R 286.9
J

kg K⋅
⋅= p1 15 kPa⋅= where State 1 is the nozzle exit

p0 1.35 MPa⋅= T0 550 K⋅= D 2.5 cm⋅= L 1.5 m⋅=

From isentropic relations M1
2

k 1−

p0
p1

⎛
⎜
⎝

⎞
⎟
⎠

k 1−
k

1−

⎡
⎢
⎢
⎢
⎣

⎤
⎥
⎥
⎥
⎦

⋅

⎡
⎢
⎢
⎢
⎣

⎤
⎥
⎥
⎥
⎦

1
2

= M1 3.617=

Then for Fanno-line flow (for choking at the exit)

fave Lmax⋅

Dh

1 M1
2

−

k M1
2

⋅

k 1+
2 k⋅

ln
k 1+( ) M1

2
⋅

2 1
k 1−

2
M1

2
⋅+⎛⎜

⎝
⎞⎟
⎠

⋅

⎡⎢
⎢
⎢
⎣

⎤⎥
⎥
⎥
⎦

⋅+= 0.599=

fave
D
L

1 M1
2

−

k M1
2

⋅

k 1+
2 k⋅

ln
k 1+( ) M1

2
⋅

2 1
k 1−

2
M1

2
⋅+⎛⎜

⎝
⎞⎟
⎠

⋅

⎡⎢
⎢
⎢
⎣

⎤⎥
⎥
⎥
⎦

⋅+
⎡⎢
⎢
⎢
⎣

⎤⎥
⎥
⎥
⎦

⋅= fave 0.0100=Hence

p1
pcrit

p1
p2

=
1

M1

k 1+
2

1
k 1−

2
M1

2
⋅+

⎛
⎜
⎜
⎜
⎝

⎞
⎟
⎟
⎟
⎠

1
2

⋅= 0.159=

p2
p1

1
M1

k 1+
2

1
k 1−

2
M1

2
⋅+

⎛
⎜
⎜
⎜
⎝

⎞
⎟
⎟
⎟
⎠

1
2

⋅

⎡⎢
⎢
⎢
⎢
⎢
⎣

⎤⎥
⎥
⎥
⎥
⎥
⎦

= p2 94.2kPa=

Δp p1 p2−= Δp 79.2− kPa=

These calculations are a LOT easier using the Excel Add-ins!



Problem 13.71 [3]

 

  

Given: Air flow in a CD nozzle and insulated duct

Find: Duct length; Plot of M and p

Solution:

Basic equations: Fanno-line flow equations, and friction factor

Given or available data T1 100 460+( ) R⋅= p1 18.5 psi⋅= M1 2= M2 1= A 1 in2
⋅=

k 1.4= cp 0.2399
Btu

lbm R⋅
⋅= Rair 53.33

ft lbf⋅
lbm R⋅
⋅=

Then for Fanno-line flow at M1 2=

p1
pcrit

p1
p2

=
1

M1

k 1+
2

1
k 1−

2
M1

2
⋅+

⎛
⎜
⎜
⎜
⎝

⎞
⎟
⎟
⎟
⎠

1
2

⋅= 0.4082=
fave Lmax1⋅

Dh

1 M1
2

−

k M1
2

⋅

k 1+
2 k⋅

ln
k 1+( ) M1

2
⋅

2 1
k 1−

2
M1

2
⋅+⎛⎜

⎝
⎞⎟
⎠

⋅

⎡⎢
⎢
⎢
⎣

⎤⎥
⎥
⎥
⎦

⋅+= 0.3050=

so pcrit
p1

0.4082
= pcrit 45.3 psi⋅=

and at M2 1=
fave Lmax2⋅

Dh

1 M2
2

−

k M2
2

⋅

k 1+
2 k⋅

ln
k 1+( ) M2

2
⋅

2 1
k 1−

2
M2

2
⋅+⎛⎜

⎝
⎞⎟
⎠

⋅

⎡⎢
⎢
⎢
⎣

⎤⎥
⎥
⎥
⎦

⋅+= 0=

Also ρ1
p1

Rair T1⋅
= ρ1 0.089

lbm

ft3
⋅= V1 M1 k Rair⋅ T1⋅⋅= V1 2320

ft
s

⋅= D
4 A⋅
π

= D 1.13 in⋅=

For air at T1 100 °F⋅= , from Table A.9 μ 3.96 10 7−
×

lbf s⋅

ft2
⋅= so Re1

ρ1 V1⋅ D⋅

μ
=

For commercial steel pipe (Table 8.1) e 0.00015 ft⋅=
e
D

1.595 10 3−
×= and Re1 1.53 106

×=

Hence at this Reynolds number and roughness (Eq. 8.37) f .02222=

Combining results L12
D
f

fave Lmax2⋅

Dh

fave Lmax1⋅

Dh
−

⎛
⎜
⎝

⎞
⎟
⎠

⋅=

1.13
12

ft⋅

.02222
0.3050 0−( )⋅= L12 1.29 ft⋅= L12 15.5 in⋅=

These calculations are a LOT easier using the Excel Add-ins!  The M and p plots are shown in the associated Excel workbook



Problem 13.71 (In Excel) [3]

Given: Air flow in a CD nozzle and insulated duct

Find: Duct length; Plot of M and p

Solution:

The given or available data is: f  = 0.0222
p * = 45.3 kPa
D  = 1.13 in

M fL max/D ΔfL max/D x  (in) p /p * p  (psi)

2.00 0.305 0.000 0 0.408 18.49
1.95 0.290 0.015 0.8 0.423 19.18
1.90 0.274 0.031 1.6 0.439 19.90
1.85 0.258 0.047 2.4 0.456 20.67
1.80 0.242 0.063 3.2 0.474 21.48
1.75 0.225 0.080 4.1 0.493 22.33
1.70 0.208 0.097 4.9 0.513 23.24
1.65 0.190 0.115 5.8 0.534 24.20
1.60 0.172 0.133 6.7 0.557 25.22
1.55 0.154 0.151 7.7 0.581 26.31
1.50 0.136 0.169 8.6 0.606 27.47
1.45 0.118 0.187 9.5 0.634 28.71
1.40 0.100 0.205 10.4 0.663 30.04
1.35 0.082 0.223 11.3 0.695 31.47
1.30 0.065 0.240 12.2 0.728 33.00
1.25 0.049 0.256 13.0 0.765 34.65
1.20 0.034 0.271 13.8 0.804 36.44
1.15 0.021 0.284 14.5 0.847 38.37
1.10 0.010 0.295 15.0 0.894 40.48
1.05 0.003 0.302 15.4 0.944 42.78
1.00 0.000 0.305 15.5 1.000 45.30

Fanno Line Flow Curves(M  and p )
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Problem *13.73 [2]

Given: Isothermal air flow in a duct

Find: Downstream Mach number; Direction of heat transfer; Plot of Ts diagram

Solution:

Basic equations: h1
V1

2

2
+

δQ
dm

+ h2
V2

2

2
+=

T0
T

1
k 1−

2
M2
⋅+= mrate ρ V⋅ A⋅=

Given or available data T1 20 273+( ) K⋅= p1 350 kPa⋅= M1 0.1= p2 150 kPa⋅=

From continuity mrate ρ1 V1⋅ A⋅= ρ2 V2⋅ A⋅= so ρ1 V1⋅ ρ2 V2⋅=

Also p ρ R⋅ T⋅= and M
V
c

= or V M c⋅=

Hence continuity becomes
p1

R T1⋅
M1⋅ c1⋅

p2
R T2⋅

M2⋅ c2⋅=

Since T1 T2= c1 c2= so p1 M1⋅ p2 M2⋅=

Hence M2
p1
p2

M1⋅= M2 0.233=

From energy δQ
dm

h2
V2

2

2
+

⎛⎜
⎜⎝

⎞⎟
⎟⎠

h1
V1

2

2
+

⎛⎜
⎜⎝

⎞⎟
⎟⎠

−= h02 h01−= cp T02 T01−( )⋅=

But at each state
T0
T

1
k 1−

2
M2
⋅+= or T0 T 1

k 1−
2

M2
⋅+⎛⎜

⎝
⎞⎟
⎠

⋅=

T 
p01 

s 

p1 

T01 

p02 

p2 

  

T02 Since T = const, but M2 > M1, then T02 > T01, and

δQ
dm

0> so energy is ADDED to the system



Problem *13.74 [5]

Given: Isothermal air flow in a pipe

Find: Mach number and location at which pressure is 500 kPa

Solution:

Basic equations: mrate ρ V⋅ A⋅= p ρ R⋅ T⋅=
f Lmax⋅

D
1 k M2

⋅−

k M2
⋅

ln k M2
⋅( )+=

Given or available data T1 15 273+( ) K⋅= p1 1.5 MPa⋅= V1 60
m
s

⋅= f 0.013= p2 500 kPa⋅=

D 15 cm⋅= k 1.4= R 286.9
J

kg K⋅
⋅=

From continuity ρ1 V1⋅ ρ2 V2⋅= or
p1
T1

V1⋅
p2
T2

V2⋅=

Since T1 T2= and V M c⋅= M k R⋅ T⋅⋅= M2 M1
p1
p2
⋅=

c1 k R⋅ T1⋅= c1 340
m
s

= M1
V1
c1

= M1 0.176=

Then M2 M1
p1
p2
⋅= M2 0.529=

At M1 0.176=
f Lmax1⋅

D

1 k M1
2

⋅−

k M1
2

⋅
ln k M1

2
⋅⎛

⎝
⎞
⎠+= 18.819=

At M2 0.529=
f Lmax2⋅

D

1 k M2
2

⋅−

k M2
2

⋅
ln k M2

2
⋅⎛

⎝
⎞
⎠+= 0.614=

Hence
f L12⋅

D

f Lmax2⋅

D

f Lmax1⋅

D
−= 18.819 0.614−= 18.2=

L12 18.2
D
f

⋅= L12 210m=
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Problem 13.78 [4]

Given: Air flow from converging nozzle into heated pipe

Find: Plot Ts diagram and pressure and speed curves

Solution:

The given or available data is: R  = 53.33 ft·lbf/lbm·oR
k  = 1.4

c p = 0.2399 Btu/lbm·oR

187 ft·lbf/lbm·oR
T 0 = 710 oR
p 0 = 25 psi
p e = 24 psi

Equations and Computations:
From p 0 and p e, and Eq. 13.7a
(using built-in function IsenMfromp (M ,k )) M e = 0.242

Using built-in function IsenT (M ,k ) T e = 702 oR

Using p e, M e, and function Rayp (M ,k ) p* = 10.82 psi

Using T e, M e, and function RayT (M ,k ) T*  = 2432 oR

We can now use Rayleigh-line relations to compute values for a range of Mach numbers:

M T /T * T  (oR) c  (ft/s) V  (ft/s) p /p * p  (psi)
Δs 

(ft·lbf/lbm·oR) 
Eq. (12.11b)

0.242 0.289 702 1299 315 2.22 24.0 0.00
0.25 0.304 740 1334 334 2.21 23.9 10.26
0.26 0.325 790 1378 358 2.19 23.7 22.81
0.27 0.346 841 1422 384 2.18 23.6 34.73
0.28 0.367 892 1464 410 2.16 23.4 46.09
0.29 0.388 943 1506 437 2.15 23.2 56.89
0.3 0.409 994 1546 464 2.13 23.1 67.20

0.31 0.430 1046 1586 492 2.12 22.9 77.02
0.32 0.451 1097 1624 520 2.10 22.7 86.40
0.33 0.472 1149 1662 548 2.08 22.5 95.35
0.34 0.493 1200 1698 577 2.07 22.4 103.90
0.35 0.514 1250 1734 607 2.05 22.2 112.07
0.36 0.535 1301 1768 637 2.03 22.0 119.89
0.37 0.555 1351 1802 667 2.01 21.8 127.36
0.38 0.576 1400 1834 697 2.00 21.6 134.51
0.39 0.595 1448 1866 728 1.98 21.4 141.35
0.4 0.615 1496 1897 759 1.96 21.2 147.90

0.41 0.634 1543 1926 790 1.94 21.0 154.17
0.42 0.653 1589 1955 821 1.92 20.8 160.17
0.43 0.672 1635 1982 852 1.91 20.6 165.92
0.44 0.690 1679 2009 884 1.89 20.4 171.42
0.45 0.708 1722 2035 916 1.87 20.2 176.69
0.46 0.725 1764 2059 947 1.85 20.0 181.73

Ts  Curve (Rayleigh)
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0.47 0.742 1805 2083 979 1.83 19.8 186.57
0.48 0.759 1845 2106 1011 1.81 19.6 191.19
0.49 0.775 1884 2128 1043 1.80 19.4 195.62
0.5 0.790 1922 2149 1075 1.78 19.2 199.86

0.51 0.805 1958 2170 1107 1.76 19.0 203.92
0.52 0.820 1993 2189 1138 1.74 18.8 207.80
0.53 0.834 2027 2208 1170 1.72 18.6 211.52
0.54 0.847 2060 2225 1202 1.70 18.4 215.08
0.55 0.860 2091 2242 1233 1.69 18.2 218.48
0.56 0.872 2122 2258 1265 1.67 18.0 221.73
0.57 0.884 2150 2274 1296 1.65 17.9 224.84
0.58 0.896 2178 2288 1327 1.63 17.7 227.81
0.59 0.906 2204 2302 1358 1.61 17.5 230.65
0.6 0.917 2230 2315 1389 1.60 17.3 233.36

0.61 0.927 2253 2328 1420 1.58 17.1 235.95
0.62 0.936 2276 2339 1450 1.56 16.9 238.42
0.63 0.945 2298 2350 1481 1.54 16.7 240.77
0.64 0.953 2318 2361 1511 1.53 16.5 243.01
0.65 0.961 2337 2370 1541 1.51 16.3 245.15
0.66 0.968 2355 2379 1570 1.49 16.1 247.18
0.67 0.975 2371 2388 1600 1.47 15.9 249.12
0.68 0.981 2387 2396 1629 1.46 15.8 250.96
0.69 0.987 2401 2403 1658 1.44 15.6 252.70
0.7 0.993 2415 2409 1687 1.42 15.4 254.36

0.71 0.998 2427 2416 1715 1.41 15.2 255.93
0.72 1.003 2438 2421 1743 1.39 15.0 257.42
0.73 1.007 2449 2426 1771 1.37 14.9 258.83
0.74 1.011 2458 2431 1799 1.36 14.7 260.16
0.75 1.014 2466 2435 1826 1.34 14.5 261.41
0.76 1.017 2474 2439 1853 1.33 14.4 262.59
0.77 1.020 2480 2442 1880 1.31 14.2 263.71
0.78 1.022 2486 2445 1907 1.30 14.0 264.75
0.79 1.024 2490 2447 1933 1.28 13.9 265.73
0.8 1.025 2494 2449 1959 1.27 13.7 266.65

0.81 1.027 2497 2450 1985 1.25 13.5 267.50
0.82 1.028 2499 2451 2010 1.24 13.4 268.30
0.83 1.028 2501 2452 2035 1.22 13.2 269.04
0.84 1.029 2502 2452 2060 1.21 13.1 269.73
0.85 1.029 2502 2452 2085 1.19 12.9 270.36
0.86 1.028 2501 2452 2109 1.18 12.8 270.94
0.87 1.028 2500 2451 2133 1.17 12.6 271.47
0.88 1.027 2498 2450 2156 1.15 12.5 271.95
0.89 1.026 2495 2449 2180 1.14 12.3 272.39
0.9 1.025 2492 2448 2203 1.12 12.2 272.78

0.91 1.023 2488 2446 2226 1.11 12.0 273.13
0.92 1.021 2484 2444 2248 1.10 11.9 273.43
0.93 1.019 2479 2441 2270 1.09 11.7 273.70
0.94 1.017 2474 2439 2292 1.07 11.6 273.92
0.95 1.015 2468 2436 2314 1.06 11.5 274.11
0.96 1.012 2461 2433 2335 1.05 11.3 274.26
0.97 1.009 2455 2429 2356 1.04 11.2 274.38
0.98 1.006 2448 2426 2377 1.02 11.1 274.46
0.99 1.003 2440 2422 2398 1.01 10.9 274.51

1 1.000 2432 2418 2418 1.00 10.8 274.52
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Problem 13.79 [4]

Given: Air flow from converging-diverging nozzle into heated pipe

Find: Plot Ts diagram and pressure and speed curves

Solution:

The given or available data is: R  = 53.33 ft·lbf/lbm·oR
k = 1.4

c p = 0.2399 Btu/lbm·oR

187 ft·lbf/lbm·oR
T 0 = 710 oR
p 0 = 25 psi
p e = 2.5 psi

Equations and Computations:
From p 0 and p e, and Eq. 13.7a
(using built-in function IsenMfromp (M ,k )) M e = 2.16

Using built-in function IsenT (M ,k ) T e = 368 oR

Using p e, M e, and function Rayp (M ,k ) p* = 7.83 psi

Using T e, M e, and function RayT (M ,k ) T*  = 775 oR

We can now use Rayleigh-line relations to compute values for a range of Mach numbers:

M T /T * T  (oR) c  (ft/s) V  (ft/s) p /p * p  (psi)
Δs 

(ft·lbf/lbm·oR) 
Eq. (12.11b)

2.157 0.475 368 940 2028 0.32 2.5 0.00
2 0.529 410 993 1985 0.36 2.8 13.30

1.99 0.533 413 996 1982 0.37 2.9 14.15
1.98 0.536 416 1000 1979 0.37 2.9 14.99
1.97 0.540 418 1003 1976 0.37 2.9 15.84
1.96 0.544 421 1007 1973 0.38 2.9 16.69
1.95 0.548 424 1010 1970 0.38 3.0 17.54
1.94 0.552 427 1014 1966 0.38 3.0 18.39
1.93 0.555 430 1017 1963 0.39 3.0 19.24
1.92 0.559 433 1021 1960 0.39 3.0 20.09
1.91 0.563 436 1024 1957 0.39 3.1 20.93
1.9 0.567 440 1028 1953 0.40 3.1 21.78

1.89 0.571 443 1032 1950 0.40 3.1 22.63
1.88 0.575 446 1035 1946 0.40 3.2 23.48
1.87 0.579 449 1039 1943 0.41 3.2 24.32
1.86 0.584 452 1043 1939 0.41 3.2 25.17
1.85 0.588 455 1046 1936 0.41 3.2 26.01
1.84 0.592 459 1050 1932 0.42 3.3 26.86
1.83 0.596 462 1054 1928 0.42 3.3 27.70
1.82 0.600 465 1057 1925 0.43 3.3 28.54
1.81 0.605 468 1061 1921 0.43 3.4 29.38
1.8 0.609 472 1065 1917 0.43 3.4 30.22

1.79 0.613 475 1069 1913 0.44 3.4 31.06
1.78 0.618 479 1073 1909 0.44 3.5 31.90
1.77 0.622 482 1076 1905 0.45 3.5 32.73
1.76 0.626 485 1080 1901 0.45 3.5 33.57
1.75 0.631 489 1084 1897 0.45 3.6 34.40
1.74 0.635 492 1088 1893 0.46 3.6 35.23
1.73 0.640 496 1092 1889 0.46 3.6 36.06
1.72 0.645 499 1096 1885 0.47 3.7 36.89
1.71 0.649 503 1100 1880 0.47 3.7 37.72
1.7 0.654 507 1104 1876 0.48 3.7 38.54

Ts  Curve (Rayleigh)
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1.69 0.658 510 1107 1872 0.48 3.8 39.36
1.68 0.663 514 1111 1867 0.48 3.8 40.18
1.67 0.668 517 1115 1863 0.49 3.8 41.00
1.66 0.673 521 1119 1858 0.49 3.9 41.81
1.65 0.677 525 1123 1853 0.50 3.9 42.62
1.64 0.682 529 1127 1849 0.50 3.9 43.43
1.63 0.687 532 1131 1844 0.51 4.0 44.24
1.62 0.692 536 1135 1839 0.51 4.0 45.04
1.61 0.697 540 1139 1834 0.52 4.1 45.84
1.6 0.702 544 1143 1829 0.52 4.1 46.64

1.59 0.707 548 1147 1824 0.53 4.1 47.43
1.58 0.712 551 1151 1819 0.53 4.2 48.22
1.57 0.717 555 1155 1814 0.54 4.2 49.00
1.56 0.722 559 1159 1809 0.54 4.3 49.78
1.55 0.727 563 1164 1803 0.55 4.3 50.56
1.54 0.732 567 1168 1798 0.56 4.3 51.33
1.53 0.737 571 1172 1793 0.56 4.4 52.10
1.52 0.742 575 1176 1787 0.57 4.4 52.86
1.51 0.747 579 1180 1782 0.57 4.5 53.62
1.5 0.753 583 1184 1776 0.58 4.5 54.37

1.49 0.758 587 1188 1770 0.58 4.6 55.12
1.48 0.763 591 1192 1764 0.59 4.6 55.86
1.47 0.768 595 1196 1758 0.60 4.7 56.60
1.46 0.773 599 1200 1752 0.60 4.7 57.33
1.45 0.779 603 1204 1746 0.61 4.8 58.05
1.44 0.784 607 1208 1740 0.61 4.8 58.77
1.43 0.789 612 1213 1734 0.62 4.9 59.48
1.42 0.795 616 1217 1728 0.63 4.9 60.18
1.41 0.800 620 1221 1721 0.63 5.0 60.88
1.4 0.805 624 1225 1715 0.64 5.0 61.56

1.39 0.811 628 1229 1708 0.65 5.1 62.24
1.38 0.816 632 1233 1701 0.65 5.1 62.91
1.37 0.822 636 1237 1695 0.66 5.2 63.58
1.36 0.827 641 1241 1688 0.67 5.2 64.23
1.35 0.832 645 1245 1681 0.68 5.3 64.88
1.34 0.838 649 1249 1674 0.68 5.3 65.51
1.33 0.843 653 1253 1667 0.69 5.4 66.14
1.32 0.848 657 1257 1659 0.70 5.5 66.76
1.31 0.854 662 1261 1652 0.71 5.5 67.36
1.3 0.859 666 1265 1645 0.71 5.6 67.96

1.29 0.865 670 1269 1637 0.72 5.6 68.54
1.28 0.870 674 1273 1629 0.73 5.7 69.11
1.27 0.875 678 1277 1622 0.74 5.8 69.67
1.26 0.881 682 1281 1614 0.74 5.8 70.22
1.25 0.886 686 1285 1606 0.75 5.9 70.75
1.24 0.891 690 1288 1598 0.76 6.0 71.27
1.23 0.896 694 1292 1589 0.77 6.0 71.78
1.22 0.902 699 1296 1581 0.78 6.1 72.27
1.21 0.907 703 1300 1573 0.79 6.2 72.75
1.2 0.912 706 1303 1564 0.80 6.2 73.21

1.19 0.917 710 1307 1555 0.80 6.3 73.65
1.18 0.922 714 1310 1546 0.81 6.4 74.08
1.17 0.927 718 1314 1537 0.82 6.4 74.50
1.16 0.932 722 1318 1528 0.83 6.5 74.89
1.15 0.937 726 1321 1519 0.84 6.6 75.27
1.14 0.942 730 1324 1510 0.85 6.7 75.63
1.13 0.946 733 1328 1500 0.86 6.7 75.96
1.12 0.951 737 1331 1491 0.87 6.8 76.28
1.11 0.956 741 1334 1481 0.88 6.9 76.58
1.1 0.960 744 1337 1471 0.89 7.0 76.86

1.09 0.965 747 1341 1461 0.90 7.1 77.11
1.08 0.969 751 1344 1451 0.91 7.1 77.34
1.07 0.973 754 1347 1441 0.92 7.2 77.55
1.06 0.978 757 1349 1430 0.93 7.3 77.73
1.05 0.982 761 1352 1420 0.94 7.4 77.88
1.04 0.986 764 1355 1409 0.95 7.5 78.01
1.03 0.989 767 1358 1398 0.97 7.6 78.12
1.02 0.993 769 1360 1387 0.98 7.6 78.19
1.01 0.997 772 1362 1376 0.99 7.7 78.24

1 1.000 775 1365 1365 1.00 7.8 78.25
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Problem 13.82 [2]

Given: Frictionless air flow in a pipe

Find: Heat exchange per lb (or kg) at exit, where 500 kPa

Solution:

Basic equations: mrate ρ V⋅ A⋅= p ρ R⋅ T⋅=
δQ
dm

cp T02 T01−( )⋅= (Energy) p1 p2− ρ1 V1⋅ V2 V1−( )⋅= (Momentum)

Given or available data T1 15 273+( ) K⋅= p1 1 MPa⋅= M1 0.35= p2 500 kPa⋅= M2 1=

D 5 cm⋅= k 1.4= cp 1004
J

kg K⋅
⋅= R 286.9

J
kg K⋅
⋅=

At section 1 ρ1
p1

R T1⋅
= ρ1 12.1

kg

m3
= c1 k R⋅ T1⋅= c1 340

m
s

=

V1 M1 c1⋅= V1 119
m
s

=

From momentum V2
p1 p2−

ρ1 V1⋅
V1+= V2 466

m
s

=

From continuity ρ1 V1⋅ ρ2 V2⋅= ρ2 ρ1
V1
V2
⋅= ρ2 3.09

kg

m3
=

Hence T2
p2

ρ2 R⋅
= T2 564K= T2 291°C=

and T02 T2 1
k 1−

2
M2

2
⋅+⎛⎜

⎝
⎞⎟
⎠

⋅= T02 677K= T02 403°C=

with T01 T1 1
k 1−

2
M1

2
⋅+⎛⎜

⎝
⎞⎟
⎠

⋅= T01 295K= T01 21.9°C=

Then δQ
dm

cp T02 T01−( )⋅= 164
Btu
lbm
⋅= 383

kJ
kg
⋅=

(Note: Using Rayleigh line functions, for M1 0.35=
T0

T0crit
0.4389=

so T0crit
T01

0.4389
= T0crit 672K= close to T2 ... Check!)



Problem 13.83 [2]

Given: Frictionless flow of Freon in a tube

Find: Heat transfer; Pressure drop NOTE: ρ2 is NOT as stated; see below

Solution:

Basic equations: mrate ρ V⋅ A⋅= p ρ R⋅ T⋅= Q mrate h02 h01−( )⋅= h0 h
V2

2
+= p1 p2− ρ1 V1⋅ V2 V1−( )⋅=

Given or available data h1 25
Btu
lbm
⋅= ρ1 100

lbm

ft3
⋅= h2 65

Btu
lbm
⋅= ρ2 0.850

lbm

ft3
⋅=

D 0.65 in⋅= A
π

4
D2
⋅= A 0.332 in2

= mrate 1.85
lbm

s
⋅=

Then V1
mrate
ρ1 A⋅

= V1 8.03
ft
s

= h01 h1
V1

2

2
+= h01 25.0

Btu
lbm

=

V2
mrate
ρ2 A⋅

= V2 944
ft
s

= h02 h2
V2

2

2
+= h02 82.8

Btu
lbm

=

The heat transfer is Q mrate h02 h01−( )⋅= Q 107
Btu
s

= (74 Btu/s with the wrong ρ2!)

The pressure drop is Δp ρ1 V1⋅ V2 V1−( )⋅= Δp 162psi= (-1 psi with the wrong ρ2!)
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Problem 13.87 [3]

Given: Frictionless flow of air in a duct

Find: Heat transfer without choking flow; change in stagnation pressure

Solution:

Basic equations:
T0
T

1
k 1−

2
M2
⋅+=

p0
p

1
k 1−

2
M2
⋅+⎛⎜

⎝
⎞⎟
⎠

k
k 1−

= p ρ R⋅ T⋅= mrate ρ A⋅ V⋅=

p1 p2−
mrate

A
V2 V1−( )⋅=

δQ
dm

cp T02 T01−( )⋅=

Given or available data T1 0 273+( ) K⋅= p1 70 kPa⋅= mrate 0.5
kg
s

⋅= D 10 cm⋅=

A
π

4
D2
⋅= A 78.54cm2

= k 1.4= M2 1= cp 1004
J

kg K⋅
⋅= R 286.9

J
kg K⋅
⋅=

At state 1 ρ1
p1

R T1⋅
= ρ1 0.894

kg

m3
= c1 k R⋅ T1⋅= c1 331

m
s

=

From continuity V1
mrate
ρ1 A⋅

= V1 71.2
m
s

= then M1
V1
c1

= M1 0.215=

From momentum p1 p2−
mrate

A
V2 V1−( )⋅= ρ2 V2

2
⋅ ρ1 V1

2
⋅−= but ρ V2

⋅ ρ c2
⋅ M2

⋅=
p

R T⋅
k⋅ R⋅ T⋅ M2

⋅= k p⋅ M2
⋅=

Hence p1 p2− k p2⋅ M2
2

⋅ k p1⋅ M1
2

⋅−= or p2 p1
1 k M1

2
⋅+

1 k M2
2

⋅+

⎛
⎜
⎜
⎝

⎞
⎟
⎟
⎠

⋅= p2 31.1kPa=

From continuity ρ1 V1⋅
p1

R T1⋅
M1⋅ c1⋅=

p1
R T1⋅

M1⋅ k R⋅ T1⋅⋅=
k
R

p1 M1⋅

T1
⋅= ρ2 V2⋅=

k
R

p2 M2⋅

T2
⋅=

Hence
p1 M1⋅

T1

p2 M2⋅

T2
= T2 T1

p2
p1

M2
M1
⋅

⎛
⎜
⎝

⎞
⎟
⎠

2

⋅= T2 1161K= T2 888°C=

Then T02 T2 1
k 1−

2
M2

2
⋅+⎛⎜

⎝
⎞⎟
⎠

⋅= T02 1394K= T01 T1 1
k 1−

2
M1

2
⋅+⎛⎜

⎝
⎞⎟
⎠

⋅= T01 276K=

p02 p2 1
k 1−

2
M2

2
⋅+⎛⎜

⎝
⎞⎟
⎠

k
k 1−

⋅= p02 58.8kPa= p01 p1 1
k 1−

2
M1

2
⋅+⎛⎜

⎝
⎞⎟
⎠

k
k 1−

⋅= p01 72.3kPa=

Finally δQ
dm

cp T02 T01−( )⋅= 1.12
MJ
kg

⋅= Δp0 p02 p01−= Δp0 13.5− kPa=

(Using Rayleigh functions, at M1 0.215=
T01

T0crit

T01
T02

= 0.1975= T02
T01

0.1975
= T02 1395K= and ditto for p02

...Check!)
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Problem 13.93 [3]

Given: Data on flow through gas turbine combustor

Find: Maximum heat addition; Outlet conditions; Reduction in stagnation pressure; Plot of process

Solution:

The given or available data is: R = 286.9 J/kg·K
k = 1.4

c p  = 1004 J/kg·K
T 1 = 773 K
p 1 = 1.5 MPa

M 1 = 0.5

Equations and Computations:

From ρ 1 = 6.76 kg/m3

From V 1 = 279 m/s

Using built-in function IsenT (M,k):
T 01 /T 1 = 1.05 T 01 = 812 K

Using built-in function Isenp (M,k):
p 01 /p 1 = 1.19 p 01 = 1.78 MPa

For maximum heat transfer: M 2 = 1

Using built-in function rayT0 (M,k), rayp0 (M,k), rayT (M,k), rayp (M,k), rayV (M,k):
T 01 /T 0

* = 0.691 T 0
* = 1174 K ( = T 02)

p 01 /p 0
* = 1.114 p 0

* = 1.60 MPa ( = p 02)
T /T * = 0.790 T * = 978 K ( = T 02)
p /p * = 1.778 p * = 0.844 MPa ( = p 2)
ρ */ρ  = 0.444 ρ * = 3.01 kg/m3 ( = ρ 2)

Note that at state 2 we have critical conditions!

Hence: p 012 – p 01 = -0.182 MPa -182 kPa

From the energy equation:

δQ /dm = 364 kJ/kg

111 RTp ρ=

111 kRTMV =

( )0102 TTc
dm
Q

p −=
δ

 

T 
p01 

s 

p1 

T01 

p02 

p2 

 

T02 

T1 

T2 
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Problem 13.99 [3]

 (Vs)  (Vs – V) Shock speed Vs Shift coordinates: 
V 

Shock at rest 

Given: Normal shock due to explosion

Find: Shock speed; temperature and speed after shock

Solution:

Basic equations: M2
2

M1
2 2

k 1−
+

2 k⋅
k 1−
⎛⎜
⎝

⎞⎟
⎠

M1
2

⋅ 1−
= V M c⋅= M k R⋅ T⋅⋅=

T2
T1

1
k 1−

2
M1

2
⋅+⎛⎜

⎝
⎞⎟
⎠

k M1
2

⋅
k 1−

2
−⎛⎜

⎝
⎞⎟
⎠

⋅

k 1+
2

⎛⎜
⎝

⎞⎟
⎠

2
M1

2
⋅

=p2
p1

2 k⋅
k 1+

M1
2

⋅
k 1−
k 1+

−=

Given or available data k 1.4= R 286.9
J

kg K⋅
⋅= p2 30 MPa⋅= p1 101 kPa⋅= T1 20 273+( ) K⋅=

From the pressure ratio M1
k 1+
2 k⋅

⎛⎜
⎝

⎞⎟
⎠

p2
p1

k 1−
k 1+

+
⎛
⎜
⎝

⎞
⎟
⎠

⋅= M1 16.0=

Then we have T2 T1

1
k 1−

2
M1

2
⋅+⎛⎜

⎝
⎞⎟
⎠

k M1
2

⋅
k 1−

2
−⎛⎜

⎝
⎞⎟
⎠

⋅

k 1+
2

⎛⎜
⎝

⎞⎟
⎠

2
M1

2
⋅

⋅= T2 14790K= T2 14517 °C⋅=

M2

M1
2 2

k 1−
+

2 k⋅
k 1−
⎛⎜
⎝

⎞⎟
⎠

M1
2

⋅ 1−
= M2 0.382=

Then the speed of the shock (Vs = V1) is V1 M1 k R⋅ T1⋅⋅= V1 5475
m
s

= Vs V1= Vs 5475
m
s

=

After the shock (V2) the speed is V2 M2 k R⋅ T2⋅⋅= V2 930
m
s

=

But we have V2 Vs V−= V Vs V2−= V 4545
m
s

=

These results are unrealistic because at the very high post-shock temperatures experienced, the specific heat ratio will NOT
be constant!  The extremely high initial air velocity and temperature will rapidly decrease as the shock wave expands in a
spherical manner and thus weakens.



Problem 13.100 [3]

Given: C-D nozzle with normal shock

Find: Mach numbers at the shock and at exit; Stagnation and static pressures before and after the shock

Solution:

Basic equations: Isentropic flow A
Acrit

1
M

1
k 1−

2
M2
⋅+

k 1+
2

⎛
⎜
⎜
⎜
⎝

⎞
⎟
⎟
⎟
⎠

k 1+
2 k 1−( )⋅

⋅=
p0
p

1
k 1−

2
M2
⋅+⎛⎜

⎝
⎞⎟
⎠

k
k 1−

=

Normal shock M2
2

M1
2 2

k 1−
+

2 k⋅
k 1−
⎛⎜
⎝

⎞⎟
⎠

M1
2

⋅ 1−
=

p2
p1

2 k⋅
k 1+

M1
2

⋅
k 1−
k 1+

−=
p02
p01

k 1+
2

M1
2

⋅

1
k 1−

2
M1

2
⋅+

⎛
⎜
⎜
⎜
⎝

⎞
⎟
⎟
⎟
⎠

k
k 1−

2 k⋅
k 1+

M1
2

⋅
k 1−
k 1+

−⎛⎜
⎝

⎞⎟
⎠

1
k 1−

=

Given or available data k 1.4= Rair 53.33
ft lbf⋅
lbm R⋅
⋅= p01 125 psi⋅= T0 175 460+( ) R⋅=

At 1.5 in2
⋅= As 2.5 in2

⋅= (Shock area) Ae 3.5 in2
⋅=

Because we have a normal shock the CD must be accelerating the flow to supersonic so the throat is at critical state.

Acrit At=

At the shock we have
As

Acrit
1.667=

At this area ratio we can find the Mach number before the shock from the isentropic relation
As

Acrit

1
M1

1
k 1−

2
M1

2
⋅+

k 1+
2

⎛
⎜
⎜
⎜
⎝

⎞
⎟
⎟
⎟
⎠

k 1+
2 k 1−( )⋅

⋅=

Solving iteratively (or using Excel's Solver, or even better the function isenMsupfromA from the Web site!) M1 1.985=

The stagnation pressure before the shock was given: p01 125psi=

The static pressure is then p1
p01

1
k 1−

2
M1

2
⋅+⎛⎜

⎝
⎞⎟
⎠

k
k 1−

= p1 16.4psi=



After the shock we have M2

M1
2 2

k 1−
+

2 k⋅
k 1−
⎛⎜
⎝

⎞⎟
⎠

M1
2

⋅ 1−
= M2 0.580=

Also p02 p01

k 1+
2

M1
2

⋅

1
k 1−

2
M1

2
⋅+

⎛
⎜
⎜
⎜
⎝

⎞
⎟
⎟
⎟
⎠

k
k 1−

2 k⋅
k 1+

M1
2

⋅
k 1−
k 1+

−⎛⎜
⎝

⎞⎟
⎠

1
k 1−

⋅= p02 91.0psi=

and p2 p1
2 k⋅

k 1+
M1

2
⋅

k 1−
k 1+

−⎛⎜
⎝

⎞⎟
⎠

⋅= p2 72.4psi=

Finally, for the Mach number at the exit, we could find the critical area change across the shock; instead we find the
new critical area from isentropic conditions at state 2.

Acrit2 As M2⋅
1

k 1−
2

M2
2

⋅+

k 1+
2

⎛
⎜
⎜
⎜
⎝

⎞
⎟
⎟
⎟
⎠

k 1+
2 k 1−( )⋅

−

⋅= Acrit2 2.06 in2
=

At the exit we have
Ae

Acrit2
1.698=

At this area ratio we can find the Mach number before the shock from the isentropic relation
Ae

Acrit2

1
Me

1
k 1−

2
Me

2
⋅+

k 1+
2

⎛
⎜
⎜
⎜
⎝

⎞
⎟
⎟
⎟
⎠

k 1+
2 k 1−( )⋅

⋅=

Solving iteratively (or using Excel's Solver, or even better the function isenMsubfromA from the Web site!) Me 0.369=

These calculations are obviously a LOT easier using the Excel functions available on the Web site!



Problem 13.101 [2]

 

Given: Normal shock near pitot tube

Find: Air speed

Solution:

Basic equations: p1 p2− ρ1 V1⋅ V2 V1−( )⋅= (Momentum)
p0
p

1
k 1−

2
M2
⋅+⎛⎜

⎝
⎞⎟
⎠

k
k 1−

=

Given or available data T1 285 R⋅= p1 1.75 psi⋅= p02 10 psi⋅= p2 8 psi⋅=

k 1.4= Rair 53.33
ft lbf⋅
lbm R⋅
⋅=

At state 2 M2
2

k 1−

p02
p2

⎛
⎜
⎝

⎞
⎟
⎠

k 1−
k

1−

⎡
⎢
⎢
⎢
⎣

⎤
⎥
⎥
⎥
⎦

⋅= M2 0.574=

From momentum p1 p2− ρ2 V2
2

⋅ ρ1 V1
2

⋅−= but ρ V2
⋅ ρ c2

⋅ M2
⋅=

p
R T⋅

k⋅ R⋅ T⋅ M2
⋅= k p⋅ M2

⋅=

p1 p2− k p2⋅ M2
2

⋅ k p1⋅ M1
2

⋅−= or p1 1 k M1
2

⋅+⎛
⎝

⎞
⎠⋅ p2 1 k M2

2
⋅+⎛

⎝
⎞
⎠⋅=

Hence M1
1
k

p2
p1

1 k M2
2

⋅+⎛
⎝

⎞
⎠⋅ 1−

⎡
⎢
⎣

⎤
⎥
⎦

⋅= M1 2.01=

Also c1 k Rair⋅ T1⋅= c1 827
ft
s

=

Then V1 M1 c1⋅= V1 1666
ft
s

=

Note: With p1 = 1.5 psi we obtain V1 1822
ft
s

⋅=

(Using normal shock functions, for 
p2
p1

4.571= we find M1 2.02= M2 0.573= Check!)
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Problem 13.104 [2]

Given: Normal shock

Find: Speed and temperature after shock; Entropy change

Solution:

The given or available data is: R  = 53.33 ft·lbf/lbm·R 0.0685 Btu/lbm·R
k  = 1.4

c p  = 0.2399 Btu/lbm·R
T 01 = 1250

oR
p 1 = 20 psi

M 1 = 2.5

Equations and Computations:

From ρ 1 = 300.02 kg/m3

V 1 = 764 m/s

Using built-in function IsenT (M,k):
T 01 /T 1 = 2.25 T 1 = 556

oR

96 oF
Using built-in function NormM2fromM (M,k):

M 2 = 0.513

Using built-in function NormTfromM (M,k):
T 2 /T 1 = 2.14 T 2 = 1188

oR

728 oF

Using built-in function NormpfromM (M,k):
p 2 /p 1 = 7.13 p 2 = 143 psi

From V 2 = 867 ft/s

From

Δs  = 0.0476 Btu/lbm·R
37.1 ft·lbf/lbm·R

111 RTp ρ=

222 kRTMV =

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=Δ

1

2

1

2 lnln
p
pR

T
Tcs p





Problem 13.106 [2]

Given: Normal shock

Find: Pressure after shock; Compare to isentropic deceleration

Solution:

The given or available data is: R  = 286.9 J/kg·K
k  = 1.4

T 01 = 550 K
p 01 = 650 kPa
M 1 = 2.5

Equations and Computations:

Using built-in function Isenp (M,k):
p 01 /p 1 = 17.09 p 1 = 38 kPa

Using built-in function NormM2fromM (M,k):
M 2 = 0.513

Using built-in function NormpfromM (M,k):
p 2 /p 1 = 7.13 p 2 = 271 kPa

Using built-in function Isenp (M,k) at M 2:
p 02 /p 2 = 1.20

But for the isentropic case: p 02 = p 01

Hence for isentropic deceleration: p 2 = 543 kPa



Problem 13.107 [2]

Given: Normal shock

Find: Speed and Mach number after shock; Change in stagnation pressure

Solution:

The given or available data is: R  = 53.33 ft·lbf/lbm·R 0.0685 Btu/lbm·R
k  = 1.4

T 1 = 445
oR

p 1 = 5 psi
V 1 = 2000 mph 2933 ft/s

Equations and Computations:

From c 1 = 1034 ft/s
Then M 1 = 2.84

Using built-in function NormM2fromM (M,k):
M 2 = 0.486

Using built-in function NormdfromM (M,k):
ρ 2 /ρ 1 = 3.70

Using built-in function Normp0fromM (M,k):
p 02 /p 01 = 0.378

Then V 2 = 541 mph 793 ft/s

Using built-in function Isenp (M,k) at M 1:
p 01 /p 1 = 28.7

From the above ratios and given p 1:
p 01 = 143 psi
p 02 = 54.2 psi

p 01 – p 02 = 89.2 psi

11 kRTc =

1
2

1
2 VV

ρ
ρ

=



Problem 13.108 [2]

Given: Normal shock

Find: Speed; Change in pressure; Compare to shockless deceleration

Solution:

The given or available data is: R  = 53.33 ft·lbf/lbm·R 0.0685 Btu/lbm·R
k  = 1.4

T 1 = 452.5
oR

p 1 = 14.7 psi
V 1 = 1750 mph 2567 ft/s

Equations and Computations:

From c 1 = 1043 ft/s
Then M 1 = 2.46

Using built-in function NormM2fromM (M,k):
M 2 = 0.517

Using built-in function NormdfromM (M,k):
ρ 2 /ρ 1 = 3.29

Using built-in function NormpfromM (M,k):
p 2 /p 1 = 6.90 p 2 = 101 psi

p 2 – p 1 = 86.7 psi

Then V 2 = 532 mph 781 ft/s

Using built-in function Isenp (M,k) at M 1:
p 01 /p 1 = 16.1

Using built-in function Isenp (M,k) at M 2:
p 02 /p 2 = 1.20

From above ratios and p 1, for isentropic flow (p 0 = const): p 2 = 197 psi

p 2 – p 1 = 182 psi

11 kRTc =

1
2

1
2 VV

ρ
ρ

=
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Problem 13.112 [4]

Given: Normal shock

Find: Rankine-Hugoniot relation

Solution:

Basic equations: Momentum: p1 ρ1 V1
2

⋅+ p2 ρ2 V2
2

⋅+= Mass: ρ1 V1⋅ ρ2 V2⋅=

Energy: h1
1
2

V1
2

⋅+ h2
1
2

V2
2

⋅+= Ideal Gas: p ρ R⋅ T⋅=

From the energy equation 2 h2 h1−( )⋅ 2 cp⋅ T2 T1−( )⋅= V1
2 V2

2
−= V1 V1−( ) V1 V2+( )⋅= (1)

From the momentum equation p2 p1− ρ1 V1
2

⋅ ρ2 V2
2

⋅−= ρ1 V1⋅ V1 V2−( )⋅= where we have used the mass equation

Hence V1 V2−
p2 p1−

ρ1 V1⋅
=

Using this in Eq 1 2 cp⋅ T2 T1−( )⋅
p2 p1−

ρ1 V1⋅
V1 V2+( )⋅=

p2 p1−

ρ1
1

V2
V1

+
⎛
⎜
⎝

⎞
⎟
⎠

⋅=
p2 p1−

ρ1
1

ρ1
ρ2

+
⎛
⎜
⎝

⎞
⎟
⎠

⋅= p2 p1−( ) 1
ρ1

1
ρ2

+⎛
⎜
⎝

⎞
⎟
⎠

⋅=

where we again used the mass equation

Using the idea gas equation 2 cp⋅
p2

ρ2 R⋅

p1
ρ1 R⋅

−
⎛
⎜
⎝

⎞
⎟
⎠

⋅ p2 p1−( ) 1
ρ1

1
ρ2

+⎛
⎜
⎝

⎞
⎟
⎠

⋅=

Dividing by p1 and multiplying by ρ2, and using R = cp - cv, k = cp/cv

2
cp
R

⋅
p2
p1

ρ2
ρ1

−
⎛
⎜
⎝

⎞
⎟
⎠

⋅ 2
k

k 1−
⋅

p2
p1

ρ2
ρ1

−
⎛
⎜
⎝

⎞
⎟
⎠

⋅=
p2
p1

1−
⎛
⎜
⎝

⎞
⎟
⎠

ρ2
ρ1

1+
⎛
⎜
⎝

⎞
⎟
⎠

⋅=

Collecting terms p2
p1

2 k⋅
k 1−

1−
ρ2
ρ1

−
⎛
⎜
⎝

⎞
⎟
⎠

⋅
2 k⋅

k 1−

ρ2
ρ1
⋅

ρ2
ρ1

− 1−=

p2
p1

2 k⋅
k 1−

ρ2
ρ1
⋅

ρ2
ρ1

− 1−

2 k⋅
k 1−

1−
ρ2
ρ1

−
⎛
⎜
⎝

⎞
⎟
⎠

=

k 1+( )
k 1−( )

ρ2
ρ1
⋅ 1−

k 1+( )
k 1−( )

ρ2
ρ1

−

= or
p2
p1

k 1+( )
ρ2
ρ1
⋅ k 1−( )−

k 1+( ) k 1−( )
ρ2
ρ1
⋅−

=

For an infinite pressure ratio k 1+( ) k 1−( )
ρ2
ρ1
⋅− 0= or

ρ2
ρ1

k 1+
k 1−

= (= 6 for air)
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Problem 13.124 [3]

Given: Normal shock in CD nozzle

Find: Exit pressure; Throat area; Mass flow rate

Solution:

The given or available data is: R  = 286.9 J/kg·K
k  = 1.4

T 01 = 550 K
p 01 = 700 kPa
M 1 = 2.75
A 1 = 25 cm2

A e = 40 cm2

Equations and Computations (assuming State 1 and 2 before and after the shock):

Using built-in function Isenp (M,k):
p 01 /p 1 = 25.14 p 1 = 28 kPa

Using built-in function IsenT (M,k):
T 01 /T 1 = 2.51 T 1 = 219 K

Using built-in function IsenA (M,k):
A 1 /A 1

* = 3.34 A 1
* = A t = 7.49 cm2

Then from the Ideal Gas equation:
ρ 1 = 0.4433 kg/m3

Also: c 1 = 297 m/s
So: V 1 = 815 m/s

Then the mass flow rate is: m rate = ρ 1 V 1A 1

m rate = 0.904 kg/s

For the normal shock:

Using built-in function NormM2fromM (M,k):
M 2 = 0.492

Using built-in function Normp0fromM (M,k) at M 1:
p 02 /p 01 = 0.41 p 02 = 284 kPa

For isentropic flow after the shock:

Using built-in function IsenA (M,k):
A 2 /A 2

* = 1.356
But: A 2 = A 1

Hence: A 2
* = 18.44 cm2

Using built-in function IsenAMsubfromA (Aratio,k):
For: A e /A 2

* = 2.17 M e = 0.279

Using built-in function Isenp (M,k):
p 02 /p e = 1.06 p e = 269 kPa
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Problem 13.138 [3]

Given: Normal shock

Find: Approximation for downstream Mach number as upstream one approaches infinity

Solution:

Basic equations: M2n
2

M1n
2 2

k 1−
+

2 k⋅
k 1−

⎛⎜
⎝

⎞⎟
⎠

M1n
2

⋅ 1−
= (13.48a) M2n M2 sin β θ−( )⋅= (13.47b)

Combining the two equations M2
M2n

sin β θ−( )
=

M1n
2 2

k 1−
+

2 k⋅
k 1−

⎛⎜
⎝

⎞⎟
⎠

M1n
2

⋅ 1−

sin β θ−( )
=

M1n
2 2

k 1−
+

2 k⋅
k 1−

⎛⎜
⎝

⎞⎟
⎠

M1n
2

⋅ 1−⎡⎢
⎣

⎤⎥
⎦

sin β θ−( )2
⋅

=

M2

1
2

k 1−( ) M1n
2

⋅
+

2 k⋅
k 1−

⎛⎜
⎝

⎞⎟
⎠

1

M1n
2

−⎡⎢
⎢⎣

⎤⎥
⎥⎦

sin β θ−( )2
⋅

=

As M1 goes to infinity, so does M1n, so

M2
1

2 k⋅
k 1−
⎛⎜
⎝

⎞⎟
⎠

sin β θ−( )2
⋅

= M2
k 1−

2 k⋅ sin β θ−( )2
⋅

=



Problem 13.139 [3]

Given: Data on an oblique shock

Find: Mach number and pressure downstream; compare to normal shock

Solution:

The given or available data is: R  = 286.9 J/kg.K
k  = 1.4

p 1 = 80 kPa
M 1 = 2.5
β = 35 o

Equations and Computations:

From M 1 and β M 1n = 1.43
M 1t = 2.05

From M1n and p1, and Eq. 13.48d
(using built-in function NormpfromM (M ,k ))

(13.48d)

p 2 = 178.6 kPa

The tangential velocity is unchanged

V t1 = V t2

Hence c t1 M t1 = c t2 M t2

(T 1)
1/2 M t1 = (T 2)

1/2 M t2

M 2t = (T 1/T 2)
1/2 M t1

From M1n, and Eq. 13.48c
(using built-in function NormTfromM (M ,k ))

T 2/T 1 = 1.28

Hence M 2t = 1.81



Also, from M1n, and Eq. 13.48a
(using built-in function NormM2fromM (M ,k ))

(13.48a)

M 2n = 0.726

The downstream Mach number is then

M 2 = (M 2t
2 + M 2n

2)1/2

M 2 = 1.95

Finally, from geometry
V 2n = V 2sin(β - θ)

Hence θ = β - sin-1(V 2n/V 2)

or θ = β - sin-1(M 2n/M 2)

θ = 13.2 o

For the normal shock:
From M1 and p1, and Eq. 13.48d
(using built-in function NormpfromM (M ,k ))

p 2 = 570 kPa

Also, from M1, and Eq. 13.48a
(using built-in function NormM2fromM (M ,k ))

M 2 = 0.513

For the minimum β:
The smallest value of β is when the shock is a Mach wave (no deflection)

β = sin-1(1/M 1)

β = 23.6 o



Problem 13.140 [3]

Given: Oblique shock in flow at M  = 3

Find: Minimum and maximum β, plot of pressure rise across shock

Solution:

The given or available data is: R  = 286.9 J/kg.K
k  = 1.4

M 1 = 3

Equations and Computations:

The smallest value of β is when the shock is a Mach wave (no deflection)

β = sin-1(1/M 1)

β = 19.5 o

The largest value is β = 90.0 o

The normal component of Mach number is

M 1n = M 1sin(β) (13.47a)

For each β,  p2/p1 is obtained from M1n, and Eq. 13.48d
(using built-in function NormpfromM (M ,k ))

(13.48d)



Computed results:

β (o) M 1n p 2/p 1

19.5 1.00 1.00
20 1.03 1.06
30 1.50 2.46
40 1.93 4.17
50 2.30 5.99
60 2.60 7.71
70 2.82 9.11
75 2.90 9.63
80 2.95 10.0
85 2.99 10.3
90 3.00 10.3

Pressure Change across an Oblique Shock
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Problem 13.141 [3]

Given: Velocities and deflection angle of an oblique shock

Find: Shock angle β; pressure ratio across shock

Solution:

The given or available data is: R  = 286.9 J/kg.K
k  = 1.4

V 1 = 1250 m/s
V 2 = 650 m/s
θ = 35 o

Equations and Computations:

From geometry we can write two equations for tangential velocity:

For V 1t V 1t = V 1cos(β) (1)

For V 2t V 2t = V 2cos(β - θ) (2)

For an oblique shock V 2t = V 1t, so Eqs. 1 and 2 give

V 1cos(β) = V 2cos(β - θ) (3)

Solving for β β = tan-1((V 1 - V 2cos(θ))/(V 2sin(θ)))

β = 62.5 o

(Alternatively, solve Eq. 3 using Goal Seek !)



For p 2/p 1, we need M 1n for use in Eq. 13.48d

(13.48d)

We can compute M 1 from θ and β, and Eq. 13.49
(using built-in function Theta (M ,β, k ))

(13.49)

For θ = 35.0 o

β = 62.5 o

M 1 = 3.19

This value of M 1 was obtained by using Goal Seek :
Vary M 1 so that θ becomes the required value.
(Alternatively, find M 1 from Eq. 13.49 by explicitly solving for it!)

We can now find M 1n from M 1.  From M 1 and Eq. 13.47a

M 1n = M 1sin(β) (13.47a)

Hence M 1n = 2.83

Finally, for p 2/p 1, we use M 1n in Eq. 13.48d
(using built-in function NormpfromM (M ,k )

p 2 /p 1 = 9.15



Problem 13.142

Given: Data on an oblique shock

Find: Deflection angle θ; shock angle β; Mach number after shock

Solution:

The given or available data is: R  = 286.9 J/kg.K
k  = 1.4

M 1 = 3.25
T 1 = 283 K

p 2 /p 1 = 5

Equations and Computations:

From p 2/p 1, and Eq. 13.48d
(using built-in function NormpfromM (M ,k )
and Goal Seek  or Solver )

(13.48d)

For p 2 /p 1 = 5.00

M 1n = 2.10

From M 1 and M 1n, and Eq 13.47a

M 1n = M 1sin(β) (13.47a)

β = 40.4 o

From M 1 and β, and Eq. 13.49
(using built-in function Theta (M ,β, k )

(13.49)

θ = 23.6 o

To find M 2 we need M 2n.  From M 1n, and Eq. 13.48a
(using built-in function NormM2fromM (M ,k ))

(13.48a)

M 2n = 0.561

The downstream Mach number is then obtained from
from M 2n, θ and β, and Eq. 13.47b

M 2n = M 2sin(β - θ) (13.47b)

Hence M 2 = 1.94



Problem 13.143 [4]

Given: Airfoil with included angle of 20o

Find: Mach number and speed at which oblique shock forms

Solution:

The given or available data is: R  = 286.9 J/kg.K
k  = 1.4

T 1 = 288 K
θ = 10 o

Equations and Computations:

From Fig. 13.29 the smallest Mach number for which an oblique shock exists
at a deflection θ = 10o is approximately M 1 = 1.4.

By trial and error, a more precise answer is
(using built-in function Theta (M ,β, k ) 

M 1 = 1.42
β = 67.4 o

θ = 10.00 o

c 1 = 340 m/s
V 1 = 483 m/s

A suggested procedure is:
1) Type in a guess value for M 1

2) Type in a guess value for β



3) Compute θ from Eq. 13.49
(using built-in function Theta (M ,β, k ))

(13.49)

4) Use Solver  to maximize θ by varying β
5) If θ is not 10o, make a new guess for M 1

6) Repeat steps 1 - 5 until θ = 10o

Computed results:

M 1 β (o) θ (o) Error
1.42 67.4 10.0 0.0%
1.50 56.7 10.0 0.0%
1.75 45.5 10.0 0.0%
2.00 39.3 10.0 0.0%
2.25 35.0 10.0 0.0%
2.50 31.9 10.0 0.0%
3.00 27.4 10.0 0.0%
4.00 22.2 10.0 0.0%
5.00 19.4 10.0 0.0%
6.00 17.6 10.0 0.0%
7.00 16.4 10.0 0.0%

Sum: 0.0%

To compute this table:
1) Type the range of M 1

2) Type in guess values for β
3) Compute θ from Eq. 13.49

(using built-in function Theta (M ,β, k ) 
4) Compute the absolute error between each θ and θ = 10o

5) Compute the sum of the errors
6) Use Solver  to minimize the sum by varying the β values

(Note: You may need to interactively type in new β values
if Solver  generates β values that lead to no θ, or to
β values that correspond to a strong rather than weak shock)

Oblique Shock Angle as a Function of
Aircraft Mach Number
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Problem 13.144 [4]

Given: Airfoil with included angle of 60o

Find: Plot of temperature and pressure as functions of angle of attack

Solution:

The given or available data is: R = 286.9 J/kg.K
k = 1.4

T 1 = 276.5 K
p 1 = 75 kPa
V 1 = 1200 m/s
δ = 60 o

Equations and Computations:

From T 1 c 1 = 333 m/s

Then M 1 = 3.60

Computed results:

α (o) β (o) θ (o) Needed θ (o) Error M 1n p 2 (kPa) T 2 (
oC)

0.00 47.1 30.0 30.0 0.0% 2.64 597 357
2.00 44.2 28.0 28.0 0.0% 2.51 539 321
4.00 41.5 26.0 26.0 0.0% 2.38 485 287
6.00 38.9 24.0 24.0 0.0% 2.26 435 255
8.00 36.4 22.0 22.0 0.0% 2.14 388 226

10.00 34.1 20.0 20.0 0.0% 2.02 344 198
12.00 31.9 18.0 18.0 0.0% 1.90 304 172
14.00 29.7 16.0 16.0 0.0% 1.79 267 148
16.00 27.7 14.0 14.0 0.0% 1.67 233 125
18.00 25.7 12.0 12.0 0.0% 1.56 202 104
20.00 23.9 10.0 10.0 0.0% 1.46 174 84
22.00 22.1 8.0 8.0 0.0% 1.36 149 66
24.00 20.5 6.0 6.0 0.0% 1.26 126 49
26.00 18.9 4.0 4.0 0.0% 1.17 107 33
28.00 17.5 2.0 2.0 0.0% 1.08 90 18
30.00 16.1 0.0 0.0 0.0% 1.00 75 3

Sum: 0.0% Max: 597 357



To compute this table:
1) Type the range of α
2) Type in guess values for β
3) Compute θNeeded from θ = δ/2 - α
4) Compute θ from Eq. 13.49

(using built-in function Theta (M ,β, k ) 
5) Compute the absolute error between each θ and θNeeded

6) Compute the sum of the errors
7) Use Solver to minimize the sum by varying the β values

(Note: You may need to interactively type in new β values
if Solver  generates β values that lead to no θ)

8) For each α, M 1n is obtained from M 1, and Eq. 13.47a
9) For each α,  p 2 is obtained from p 1, M 1n, and Eq. 13.48d

(using built-in function NormpfromM (M ,k ))
10) For each α,  T 2 is obtained from T 1, M 1n, and Eq. 13.48c

(using built-in function NormTfromM (M ,k ))
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Problem 13.145 [4]

Given: Airfoil with included angle of 60o

Find: Angle of attack at which oblique shock becomes detached

Solution:

The given or available data is: R  = 286.9 J/kg.K
k  = 1.4

T 1 = 276.5 K
p 1 = 75 kPa
V 1 = 1200 m/s
δ = 60 o

Equations and Computations:

From T 1 c 1 = 333 m/s

Then M 1 = 3.60

From Fig. 13.29, at this Mach number the smallest deflection angle for which
an oblique shock exists is approximately θ = 35o.

By using Solver , a more precise answer is
(using built-in function Theta (M ,β, k ) 

M 1 = 3.60
β = 65.8 o

θ = 37.3 o

A suggested procedure is:
1) Type in a guess value for β
2) Compute θ from Eq. 13.49

(using built-in function Theta (M ,β, k ))

(13.49)

3) Use Solver  to maximize θ by varying β

For a deflection angle θ the angle of attack α is

α = θ - δ/2
α = 7.31 o



Computed results:

α (o) β (o) θ (o) Needed θ (o) Error M 1n p 2 (kPa) T 2 (
oC)

0.00 47.1 30.0 30.0 0.0% 2.64 597 357
1.00 48.7 31.0 31.0 0.0% 2.71 628 377
2.00 50.4 32.0 32.0 0.0% 2.77 660 397
3.00 52.1 33.0 33.0 0.0% 2.84 695 418
4.00 54.1 34.0 34.0 0.0% 2.92 731 441
5.50 57.4 35.5 35.5 0.0% 3.03 793 479
5.75 58.1 35.8 35.7 0.0% 3.06 805 486
6.00 58.8 36.0 36.0 0.0% 3.08 817 494
6.25 59.5 36.3 36.2 0.0% 3.10 831 502
6.50 60.4 36.5 36.5 0.0% 3.13 845 511
6.75 61.3 36.8 36.7 0.0% 3.16 861 521
7.00 62.5 37.0 37.0 0.0% 3.19 881 533
7.25 64.4 37.3 37.2 0.0% 3.25 910 551
7.31 65.8 37.3 37.3 0.0% 3.28 931 564

Sum: 0.0% Max: 931 564

To compute this table:
1) Type the range of α
2) Type in guess values for β
3) Compute θNeeded from θ = α + δ/2
4) Compute θ from Eq. 13.49

(using built-in function Theta (M ,β, k ) 
5) Compute the absolute error between each θ and θNeeded

6) Compute the sum of the errors
7) Use Solver  to minimize the sum by varying the β values

(Note: You may need to interactively type in new β values
if Solver  generates β values that lead to no θ)

8) For each α, M 1n is obtained from M 1, and Eq. 13.47a
9) For each α,  p 2 is obtained from p 1, M 1n, and Eq. 13.48d

(using built-in function NormpfromM (M ,k ))
10) For each α,  T 2 is obtained from T 1, M 1n, and Eq. 13.48c

(using built-in function NormTfromM (M ,k ))
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Problem 13.146

Given: Data on airfoil flight

Find: Lift per unit span

Solution:

The given or available data is: R  = 286.9 J/kg.K
k  = 1.4

p 1 = 70 kPa
M 1 = 2.75
δ = 7 o

c  = 1.5 m

Equations and Computations:

The lift per unit span is

L = (p L - p U)c (1)

(Note that p L acts on area c /cos(δ), but its
normal component is multiplied by cos(δ))

For the upper surface:

p U = p 1

p U = 70.0 kPa



For the lower surface:

We need to find M 1n

The deflection angle is θ = δ

θ = 7 o

From M 1 and θ, and Eq. 13.49

(using built-in function Theta (M , β,k ))

(13.49)

For θ = 7.0 o

β = 26.7 o

(Use Goal Seek  to vary β so that θ = δ)

From M 1 and β M 1n = 1.24

From M 1n and p 1, and Eq. 13.48d
(using built-in function NormpfromM (M ,k ))

(13.48d)

p 2 = 113 kPa

p L = p 2

p L = 113 kPa

From Eq 1 L  = 64.7 kN/m



Problem 13.147 [3]

Given: Data on airfoil flight

Find: Lift per unit span

Solution:

The given or available data is: R  = 286.9 J/kg.K
k  = 1.4

p 1 = 75 kPa
M 1 = 2.75
δU = 5 o

δL = 15 o

c  = 2 m

Equations and Computations:

The lift per unit span is

L = (p L - p U)c (1)

(Note that each p  acts on area c /cos(δ), but its
normal component is multiplied by cos(δ))

For the upper surface:

We need to find M 1n(U)

The deflection angle is θU = δU

θU = 5 o

From M 1 and θU, and Eq. 13.49

(using built-in function Theta (M , β,k ))

(13.49)

For θU = 5.00 o

βU = 25.1 o



(Use Goal Seek  to vary βU so that θU = δU)

From M 1 and βU M 1n(U) = 1.16

From M 1n(U) and p 1, and Eq. 13.48d
(using built-in function NormpfromM (M ,k ))

(13.48d)

p 2 = 106 kPa

p U = p 2

p U = 106 kPa

For the lower surface:

We need to find M 1n(L)

The deflection angle is θL = δL

θL = 15 o

From M 1 and θL, and Eq. 13.49

(using built-in function Theta (M , β,k ))

For θL = 15.00 o

βL = 34.3 o

(Use Goal Seek  to vary βL so that θL = δL)

From M 1 and βL M 1n(L) = 1.55

From M 1n(L) and p 1, and Eq. 13.48d
(using built-in function NormpfromM (M ,k ))

p 2 = 198 kPa

p L = p 2

p L = 198 kPa

From Eq 1 L  = 183 kN/m



Problem 13.148 [3]

Given: Oblique shock Mach numbers

Find: Deflection angle; Pressure after shock

Solution:

The given or available data is: k = 1.4
p 1 = 75 kPa

M 1 = 4
M 2 = 2.5

Equations and Computations:

We make a guess for β: β = 33.6 o

From M 1 and β, and Eq. 13.49 (using built-in function Theta (M , β,k ))

(13.49)

θ = 21.0 o

From M 1 and β M 1n = 2.211
From M 2, θ, and β M 2n = 0.546 (1)

We can also obtain M 2n from Eq. 13.48a (using built-in function normM2fromM (M ,k ))

(13.48a)

M 2n = 0.546 (2)

We need to manually change β so that Eqs. 1 and 2 give the same answer.
Alternatively, we can compute the difference between 1 and 2, and use
Solver  to vary β to make the difference zero

Error in M 2n = 0.00%

Then p 2 is obtained from Eq. 13.48d (using built-in function normpfromm (M ,k ))

(13.48d)

p 2 = 415 kPa



Problem 13.149 [4]

Given: Air flow into engine

Find: Pressure of air in engine; Compare to normal shock

Solution:

The given or available data is: k  = 1.4
p 1 = 50 kPa

M 1 = 3
θ = 7.5 o

Equations and Computations:

Assuming isentropic flow deflection

p 0 = constant

p 02 = p 01

For p 01 we use Eq. 13.7a (using built-in function Isenp (M , k ))

(13.7a)

p 01 = 1837 kPa
p 02 = 1837 kPa

For the deflection θ = 7.5 o

From M 1 and Eq. 13.55 (using built-in function Omega (M , k ))

(13.55)

ω1 = 49.8 o

Deflection = ω2 - ω1 = ω(M 2) - ω(M 1) (1)

Applying Eq. 1 ω2 = ω1 - θ (Compression!)

ω2 = 42.3 o



From ω2, and Eq. 13.55 (using built-in function Omega (M , k ))

For ω2 = 42.3 o

M 2 = 2.64

(Use Goal Seek  to vary M 2 so that ω2 is correct)

Hence for p 2 we use Eq. 13.7a

(using built-in function Isenp (M , k ))

p 2 = p 02/(p 02/p 2)

p 2 = 86.8 kPa

For the normal shock (2 to 3) M 2 = 2.64

From M 2 and p 2, and Eq. 13.41d (using built-in function NormpfromM (M ,k ))

(13.41d)

p 3 = 690 kPa

For slowing the flow down from M 1 with only a normal shock, using Eq. 13.41d

p  = 517 kPa



Problem 13.150 [3]

Given: Air flow in a duct

Find: Mach number and pressure at contraction and downstream; 

Solution:

The given or available data is: k  = 1.4
M 1 = 2.5
θ = 7.5 o

p 1 = 50 kPa

Equations and Computations:

For the first oblique shock (1 to 2) we need to find β from Eq. 13.49

(13.49)

We choose β by iterating or by using Goal Seek  to target θ (below) to equal the given θ
Using built-in function theta (M, β,k )

θ = 7.50 o

β = 29.6 o

Then M 1n can be found from geometry (Eq. 13.47a)

M 1n = 1.233

Then M 2n can be found from Eq. 13.48a)
Using built-in function NormM2fromM (M,k )

(13.48a)

M 2n = 0.822

Then, from M 2n and geometry (Eq. 13.47b)

M 2 = 2.19



From M 1n and Eq. 13.48d (using built-in function NormpfromM (M ,k ))

(13.48d)

p 2/p 1 = 1.61 Pressure ratio
p 2 = 80.40

We repeat the analysis of states 1 to 2 for states 2 to 3, to analyze the second oblique shock

We choose β for M 2 by iterating or by using Goal Seek  to target θ (below) to equal the given θ
Using built-in function theta (M, β,k )

θ = 7.50 o

β = 33.5 o

Then M 2n (normal to second shock!) can be found from geometry (Eq. 13.47a)

M 2n = 1.209

Then M 3n can be found from Eq. 13.48a)
Using built-in function NormM2fromM (M,k )

M 3n = 0.837

Then, from M 3n and geometry (Eq. 13.47b)

M 3 = 1.91

From M 2n and Eq. 13.48d (using built-in function NormpfromM (M ,k ))

p 3/p 2 = 1.54 Pressure ratio
p 3 = 124



Problem 13.151 [3]

NOTE: Angle is 30o not 50o!

Given: Air flow in a duct

Find: Mach number and pressure at contraction and downstream; 

Solution:

The given or available data is: k  = 1.4
M 1 = 2.5
β = 30 o

p 1 = 50 kPa

Equations and Computations:

For the first oblique shock (1 to 2) we find θ from Eq. 13.49

(13.49)

Using built-in function theta (M, β,k )

θ = 7.99 o

Also, M 1n can be found from geometry (Eq. 13.47a)

M 1n = 1.250

Then M 2n can be found from Eq. 13.48a)
Using built-in function NormM2fromM (M,k )

(13.48a)

M 2n = 0.813

Then, from M 2n and geometry (Eq. 13.47b)

M 2 = 2.17



From M 1n and Eq. 13.48d (using built-in function NormpfromM (M ,k ))

(13.48d)

p 2/p 1 = 1.66 Pressure ratio
p 2 = 82.8

We repeat the analysis for states 1 to 2 for 2 to 3, for the second oblique shock

We choose β for M 2 by iterating or by using Goal Seek  to target θ (below) to equal the previous θ
Using built-in function theta (M, β,k )

θ = 7.99 o

β = 34.3 o

Then M 2n (normal to second shock!) can be found from geometry (Eq. 13.47a)

M 2n = 1.22

Then M 3n can be found from Eq. 13.48a)
Using built-in function NormM2fromM (M,k )

M 3n = 0.829

Then, from M 3n and geometry (Eq. 13.47b)

M 3 = 1.87

From M 2n and Eq. 13.48d (using built-in function NormpfromM (M ,k ))

p 3/p 2 = 1.58 Pressure ratio
p 3 = 130



Problem 13.152 [3]

Given: Deflection of air flow

Find: Pressure changes

Solution:

The given or available data is: R  = 286.9 J/kg.K
k  = 1.4
p  = 95 kPa

M  = 1.5
θ1 = 15 o

θ2 = 15 o

Equations and Computations:

We use Eq. 13.55

(13.55)

and

Deflection = ωa - ωb = ω(M a) - ω(M b) (1)

From M  and Eq. 13.55 (using built-in function Omega (M , k ))

ω = 11.9 o

For the first deflection:

Applying Eq. 1

θ1 = ω1 - ω

ω1 = θ1 + ω

ω1 = 26.9 o

From ω1, and Eq. 13.55

(using built-in function Omega (M , k ))



For ω1 = 26.9 o

M 1 = 2.02

(Use Goal Seek  to vary M 1 so that ω1 is correct)

Hence for p 1 we use Eq. 13.7a

(13.7a)

The approach is to apply Eq. 13.7a twice, so that
(using built-in function Isenp (M , k ))

p 1 = p (p 0/p )/(p 0/p 1)

p 1 = 43.3 kPa

For the second deflection:

We repeat the analysis of the first deflection

Applying Eq. 1

θ2 + θ1 = ω2 - ω

ω2 = θ2 + θ1 + ω

ω2 = 41.9 o

(Note that instead of working from the initial state to state 2 we could have
worked from state 1 to state 2 because the entire flow is isentropic)

From ω2, and Eq. 13.55

(using built-in function Omega (M , k ))

For ω2 = 41.9 o

M 2 = 2.62

(Use Goal Seek  to vary M 2 so that ω2 is correct)

Hence for p 2 we use Eq. 13.7a
(using built-in function Isenp (M , k ))

p 2 = p (p 0/p )/(p 0/p 2)

p 2 = 16.9 kPa



Problem 13.153 [3]

Given: Deflection of air flow

Find: Mach numbers and pressures

Solution

The given or available data is: R = 286.9 J/kg.K
k = 1.4

p 2 = 10 kPa
M 2 = 4
θ1 = 15 o

θ2 = 15 o

Equations and Computations:

We use Eq. 13.55

(13.55)

and
Deflection = ωa - ωb = ω(M a) - ω(M b) (1)

From M  and Eq. 13.55 (using built-in function Omega (M , k ))

ω2 = 65.8 o

For the second deflection:

Applying Eq. 1

ω1 = ω2 - θ2

ω1 = 50.8 o

From ω1, and Eq. 13.55

(using built-in function Omega (M , k ))

For ω1 = 50.8 o

M 1 = 3.05

(Use Goal Seek  to vary M 1 so that ω1 is correct)



Hence for p 1 we use Eq. 13.7a

(13.7a)

The approach is to apply Eq. 13.7a twice, so that
(using built-in function Isenp (M , k ))

p 1 = p 2(p 0/p 2)/(p 0/p 1)

p 1 = 38.1 kPa

For the first deflection:

We repeat the analysis of the second deflection

Applying Eq. 1

θ2 + θ1 = ω2 - ω

ω = ω2 - (θ2 + θ1)

ω = 35.8 o

(Note that instead of working from state 2 to the initial state we could have
worked from state 1 to the initial state because the entire flow is isentropic)

From ω, and Eq. 13.55
(using built-in function Omega (M , k ))

For ω = 35.8 o

M  = 2.36

(Use Goal Seek  to vary M  so that ω is correct)

Hence for p  we use Eq. 13.7a
(using built-in function Isenp (M , k ))

p  = p 2(p 0/p 2)/(p 0/p )

p  = 110 kPa



Problem 13.154 [4]

Given: Mach number and deflection angle

Find: Static and stagnation pressures due to: oblique shock; compression wave

Solution:

The given or available data is: R  = 286.9 J/kg.K
k  = 1.4

p 1 = 50 kPa
M 1 = 3.5

θ = 35 o

Equations and Computations:

For the oblique shock:

We need to find M 1n

The deflection angle is θ = 35 o

From M 1 and θ, and Eq. 13.49

(using built-in function Theta (M , β,k ))

(13.49)

For θ = 35.0 o

β = 57.2 o

(Use Goal Seek  to vary β so that θ = 35o)

From M 1 and β M 1n = 2.94

From M 1n and p 1, and Eq. 13.48d
(using built-in function NormpfromM (M ,k ))

(13.48d)

p 2 = 496 kPa



To find M 2 we need M 2n.  From M 1n, and Eq. 13.48a
(using built-in function NormM2fromM (M ,k ))

(13.48a)

M 2n = 0.479

The downstream Mach number is then obtained from
from M 2n, θ and β, and Eq. 13.47b

M 2n = M 2sin(β - θ) (13.47b)

Hence M 2 = 1.27

For p 02 we use Eq. 12.7a

(using built-in function Isenp (M , k ))

(13.7a)

p 02 = p 2/(p 02/p 2)

p 02 = 1316 kPa

For the isentropic compression wave:

For isentropic flow p 0 = constant

p 02 = p 01

For p 01 we use Eq. 13.7a
(using built-in function Isenp (M , k ))

p 01 = 3814 kPa

p 02 = 3814 kPa

(Note that for the oblique shock, as required by Eq. 13.48b

(13.48b)

p 02/p 01 = 0.345
(using built-in function Normp0fromM (M ,k )



p 02/p 01 = 0.345
(using p 02 from the shock and p 01)

For the deflection θ = − θ (Compression )

θ = -35.0 o

We use Eq. 13.55

(13.55)

and

Deflection = ω2 - ω1 = ω(M 2) - ω(M 1) (1)

From M 1 and Eq. 13.55 (using built-in function Omega (M , k ))

ω1 = 58.5 o

Applying Eq. 1 ω2 = ω1 + θ

ω2 = 23.5 o

From ω2, and Eq. 13.55

(using built-in function Omega (M , k ))

For ω2 = 23.5 o

M 2 = 1.90

(Use Goal Seek  to vary M 2 so that ω2 = 23.5o)

Hence for p 2 we use Eq. 13.7a
(using built-in function Isenp (M , k ))

p 2 = p 02/(p 02/p 2)

p 2 = 572 kPa



Problem 13.155 [3]

Given: Wedge-shaped airfoil

Find: Lift per unit span assuming isentropic flow

Solution:

The given or available data is: R  = 286.9 J/kg.K
k  = 1.4
p  = 70 kPa

M  = 2.75
δ = 7 o

c  = 1.5 m

Equations and Computations:

The lift per unit span is

L = (p L - p U)c (1)

(Note that p L acts on area c /cos(δ), but its
normal component is multiplied by cos(δ))

For the upper surface:

p U = p

p U = 70 kPa

For the lower surface:

θ = − δ

θ = -7.0 o

We use Eq. 13.55

(13.55)

and
Deflection = ωL - ω = ω(M L) - ω(M ) (2)



From M  and Eq. 13.55 (using built-in function Omega (M , k ))

ω = 44.7 o

Applying Eq. 2
θ = ωL - ω

ωL = θ + ω

ωL = 37.7 o

From ωL, and Eq. 13.55

(using built-in function Omega (M , k ))

For ωL = 37.7 o

M L = 2.44

(Use Goal Seek  to vary M L so that ωL is correct)

Hence for p L we use Eq. 13.7a

(13.7a)

The approach is to apply Eq. 13.7a twice, so that
(using built-in function Isenp (M , k ))

p L = p (p 0/p )/(p 0/p L)

p L = 113 kPa

From Eq 1 L  = 64.7 kN/m



Problem 13.156 [4]

Given: Mach number and airfoil geometry

Find: Lift and drag per unit span

Solution:

The given or available data is: R  = 286.9 J/kg.K
k  = 1.4

p 1 = 50 kPa
M 1 = 1.75
α = 18 o

c  = 1 m

Equations and Computations:

The net force per unit span is F  = (p L - p U)c

Hence, the lift force per unit span is
L  = (p L - p U)c cos(α) (1)

The drag force per unit span is
D  = (p L - p U)c sin(α) (2)

For the lower surface (oblique shock):

We need to find M 1n

The deflection angle is θ = α

θ = 18 o

From M 1 and θ, and Eq. 13.49

(using built-in function Theta (M , β,k ))

(13.49)

For θ = 18.0 o

β = 62.9 o

(Use Goal Seek  to vary β so that θ is correct)

From M 1 and β M 1n = 1.56

From M 1n and p 1, and Eq. 13.48d
(using built-in function NormpfromM (M ,k ))

(13.48d)

p 2 = 133.2 kPa

p L = p 2

p L = 133.2 kPa



For the upper surface (isentropic expansion wave):

For isentropic flow p 0 = constant

p 02 = p 01

For p 01 we use Eq. 13.7a
(using built-in function Isenp (M , k ))

(13.7a)

p 01 = 266 kPa

p 02 = 266 kPa

For the deflection θ = α (Compression )

θ = 18.0 o

We use Eq. 13.55

(13.55)

and
Deflection = ω2 - ω1 = ω(M 2) - ω(M 1) (3)

From M 1 and Eq. 13.55 (using built-in function Omega (M , k ))

ω1 = 19.3 o

Applying Eq. 3 ω2 = ω1 + θ

ω2 = 37.3 o

From ω2, and Eq. 13.55 (using built-in function Omega (M , k ))

For ω2 = 37.3 o

M 2 = 2.42

(Use Goal Seek  to vary M 2 so that ω2 is correct)

Hence for p 2 we use Eq. 13.7a
(using built-in function Isenp (M , k ))

p 2 = p 02/(p 02/p 2)

p 2 = 17.6 kPa

p U = p 2

p U = 17.6 kPa

From Eq. 1 L  = 110.0 kN/m

From Eq. 2 D  = 35.7 kN/m



Problem 13.157 [4]

Given: Mach number and airfoil geometry

Find: Plot of lift and drag and lift/drag versus angle of attack

Solution:

The given or available data is:

k  = 1.4
p 1 = 50 kPa

M 1 = 1.75
α = 12 o

c  = 1 m

Equations and Computations:

The net force per unit span is

F  = (p L - p U)c

Hence, the lift force per unit span is

L  = (p L - p U)c cos(α) (1)

The drag force per unit span is

D  = (p L - p U)c sin(α) (2)

For each angle of attack the following needs to be computed:

For the lower surface (oblique shock):

We need to find M 1n

Deflection θ = α

From M 1 and θ, and Eq. 13.49

(using built-in function Theta (M , β,k ))

(13.49)

find β

(Use Goal Seek  to vary β so that θ is the correct value)

From M 1 and β find M 1n

From M 1n and p 1, and Eq. 13.48d
(using built-in function NormpfromM (M ,k ))

(13.48d)

find p 2

and p L = p 2



For the upper surface (isentropic expansion wave):

For isentropic flow p 0 = constant

p 02 = p 01

For p 01 we use Eq. 13.7a
(using built-in function Isenp (M , k ))

(13.7a)

find p 02 = 266 kPa

Deflection θ = α

we use Eq. 13.55

(13.55)

and
Deflection = ω2 - ω1 = ω(M 2) - ω(M 1) (3)

From M 1 and Eq. 13.55 (using built-in function Omega (M , k ))

find ω1 = 19.3 o

Applying Eq. 3 ω2 = ω1 + θ (4)

From ω2, and Eq. 12.55 (using built-in function Omega (M , k ))

From ω2 find M 2

(Use Goal Seek  to vary M 2 so that ω2 is the correct value)

Hence for p 2 we use Eq. 13.7a
(using built-in function Isenp (M , k ))

p 2 = p 02/(p 02/p 2)

p U = p 2

Finally, from Eqs. 1 and 2, compute L  and D

Computed results:

α (o) β (o) θ (o) Error M 1n p L (kPa) ω2 (
o) ω2 from M 2 (

o) Error M 2 p U (kPa) L  (kN/m) D (kN/m) L/D
0.50 35.3 0.50 0.0% 1.01 51.3 19.8 19.8 0.0% 1.77 48.7 2.61 0.0227 115
1.00 35.8 1.00 0.0% 1.02 52.7 20.3 20.3 0.0% 1.78 47.4 5.21 0.091 57.3
1.50 36.2 1.50 0.0% 1.03 54.0 20.8 20.8 0.0% 1.80 46.2 7.82 0.205 38.2
2.00 36.7 2.00 0.0% 1.05 55.4 21.3 21.3 0.0% 1.82 45.0 10.4 0.364 28.6
4.00 38.7 4.00 0.0% 1.09 61.4 23.3 23.3 0.0% 1.89 40.4 20.9 1.46 14.3
5.00 39.7 5.00 0.0% 1.12 64.5 24.3 24.3 0.0% 1.92 38.3 26.1 2.29 11.4
10.00 45.5 10.0 0.0% 1.25 82.6 29.3 29.3 0.0% 2.11 28.8 53.0 9.35 5.67
15.00 53.4 15.0 0.0% 1.41 106.9 34.3 34.3 0.0% 2.30 21.3 82.7 22.1 3.73
16.00 55.6 16.0 0.0% 1.44 113.3 35.3 35.3 0.0% 2.34 20.0 89.6 25.7 3.49
16.50 56.8 16.5 0.0% 1.47 116.9 35.8 35.8 0.0% 2.36 19.4 93.5 27.7 3.38
17.00 58.3 17.0 0.0% 1.49 121.0 36.3 36.3 0.0% 2.38 18.8 97.7 29.9 3.27
17.50 60.1 17.5 0.0% 1.52 125.9 36.8 36.8 0.0% 2.40 18.2 102.7 32.4 3.17
18.00 62.9 18.0 0.0% 1.56 133.4 37.3 37.3 0.0% 2.42 17.6 110 35.8 3.08

Sum: 0.0% Sum: 0.0%



To compute this table:
1) Type the range of α
2) Type in guess values for β
3) Compute θ from Eq. 13.49

(using built-in function Theta (M ,β, k ) 
4) Compute the absolute error between each θ and α
5) Compute the sum of the errors
6) Use Solver  to minimize the sum by varying the β values

(Note: You may need to interactively type in new β values
if Solver  generates β values that lead to no θ)

7) For each α, M 1n is obtained from M 1, and Eq. 13.47a
8) For each α,  p L is obtained from p 1, M 1n, and Eq. 13.48d

(using built-in function NormpfromM (M ,k ))
9) For each α, compute ω2 from Eq. 4

10) For each α, compute ω2 from M 2, and Eq. 13.55
(using built-in function Omega (M ,k ))

11) Compute the absolute error between the two values of ω2

12) Compute the sum of the errors
13) Use Solver  to minimize the sum by varying the M 2 values

(Note: You may need to interactively type in new M 2 values)
if Solver  generates β values that lead to no θ)

14) For each α,  p U is obtained from p 02, M 2, and Eq. 13.47a
(using built-in function Isenp (M , k ))

15) Compute L  and D  from Eqs. 1 and 2
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Problem 13.158 [4]

Given: Mach number and airfoil geometry

Find: Drag coefficient

Solution:

The given or available data is: R  = 286.9 J/kg.K
k  = 1.4

p 1 = 95 kPa
M 1 = 2
α = 0 o

δ = 10 o

Equations and Computations:

The drag force is

D  = (p F - p R)cs tan(δ/2) (1)

(s  and c  are the span and chord)

This is obtained from the following analysis

Airfoil thickness (frontal area) = 2s (c /2tan(δ/2))

Pressure difference acting on frontal area = (p F - p R)

(p F and p R are the pressures on the front and rear surfaces)

The drag coefficient is C D = D /(1/2ρV 2A ) (2)

But it can easily be shown that

ρV 2 = pkM 2

Hence, from Eqs. 1 and 2

C D = (p F - p R)tan(δ/2)/(1/2pkM 2) (3)

For the frontal surfaces (oblique shocks):

We need to find M 1n

The deflection angle is θ = δ/2

θ = 5 o

From M 1 and θ, and Eq. 13.49

(using built-in function Theta (M , β,k ))



(13.49)

For θ = 5.0 o

β = 34.3 o

(Use Goal Seek  to vary β so that θ = 5o)

From M 1 and β M 1n = 1.13

From M 1n and p 1, and Eq. 13.48d
(using built-in function NormpfromM (M ,k ))

(13.48d)

p 2 = 125.0 kPa

p F = p 2

p F = 125.0 kPa

To find M 2 we need M 2n.  From M 1n, and Eq. 13.48a
(using built-in function NormM2fromM (M ,k ))

(13.48a)

M 2n = 0.891

The downstream Mach number is then obtained from
from M 2n, θ and β, and Eq. 13.47b

M 2n = M 2sin(β - θ) (13.47b)

Hence M 2 = 1.82

For p 02 we use Eq. 13.7a
(using built-in function Isenp (M , k ))

(13.7a)

p 02 = 742 kPa

For the rear surfaces (isentropic expansion waves):

Treating as a new problem

Here: M 1 is the Mach number after the shock
and M 2 is the Mach number after the expansion wave
p 01 is the stagnation pressure after the shock
and p 02 is the stagnation pressure after the expansion wave



M 1 = M 2 (shock)

M 1 = 1.82

p 01 = p 02 (shock)

p 01 = 742 kPa

For isentropic flow p 0 = constant

p 02 = p 01

p 02 = 742 kPa

For the deflection θ = δ

θ = 10.0 o

We use Eq. 13.55

(13.55)

and

Deflection = ω2 - ω1 = ω(M 2) - ω(M 1) (3)

From M 1 and Eq. 13.55 (using built-in function Omega (M , k ))

ω1 = 21.3 o

Applying Eq. 3 ω2 = ω1 + θ

ω2 = 31.3 o

From ω2, and Eq. 13.55 (using built-in function Omega(M, k))

For ω2 = 31.3 o

M 2 = 2.18

(Use Goal Seek  to vary M 2 so that ω2 = 31.3o)

Hence for p 2 we use Eq. 13.7a
(using built-in function Isenp (M , k ))

p 2 = p 02/(p 02/p 2)

p 2 = 71.2 kPa

p R = p 2

p R = 71.2 kPa

Finally, from Eq. 1 C D = 0.0177



Problem 13.159 [4]

Given: Mach number and airfoil geometry

Find: Lift and Drag coefficients

Solution:

The given or available data is: R  = 286.9 J/kg.K
k  = 1.4

p 1 = 95 kPa
M 1 = 2
α = 12 o

δ = 10 o

Equations and Computations:

Following the analysis of Example 13.14
the force component perpendicular to the major axis, per area, is

F V/sc = 1/2{(p FL + p RL) - (p FU + p RU)} (1)

and the force component parallel to the major axis, per area, is

F H/sc = 1/2tan(δ/2){(p FU + p FL) - (p RU + p RL)} (2)

using the notation of the figure above.
(s  and c  are the span and chord)

The lift force per area is

F L/sc = (F Vcos(α) - F Hsin(α))/sc (3)

The drag force per area is

F D/sc = (F Vsin(α) + F Hcos(α))/sc (4)

The lift coefficient is C L = F L/(1/2ρV 2A ) (5)

But it can be shown that

ρV 2 = pkM 2 (6)

Hence, combining Eqs. 3, 4, 5 and 6

C L = (F V/sc cos(α) - F H/sc sin(α))/(1/2pkM 2) (7)

Similarly, for the drag coefficient

C D = (F V/sc sin(α) + F H/sc cos(α))/(1/2pkM 2) (8)

1 FU RU
FL RL



For surface FL (oblique shock):

We need to find M 1n

The deflection angle is θ = α + δ/2

θ = 17 o

From M 1 and θ, and Eq. 13.49
(using built-in function Theta (M , β,k ))

(13.49)

For θ = 17.0 o

β = 48.2 o

(Use Goal Seek  to vary β so that θ = 17o)

From M 1 and β M 1n = 1.49

From M 1n and p 1, and Eq. 13.48d
(using built-in function NormpfromM (M ,k ))

(13.48d)

p 2 = 230.6 kPa

p FL = p 2

p FL = 230.6 kPa

To find M 2 we need M 2n.  From M 1n, and Eq. 13.48a
(using built-in function NormM2fromM (M ,k ))

(13.48a)

M 2n = 0.704

The downstream Mach number is then obtained from
from M 2n, θ and β, and Eq. 13.47b

M 2n = M 2sin(β - θ) (13.47b)

Hence M 2 = 1.36

For p 02 we use Eq. 13.7a
(using built-in function Isenp (M , k ))

(13.7a)

p 02 = 693 kPa



For surface RL (isentropic expansion wave):

Treating as a new problem

Here: M 1 is the Mach number after the shock
and M 2 is the Mach number after the expansion wave
p 01 is the stagnation pressure after the shock
and p 02 is the stagnation pressure after the expansion wave

M 1 = M 2 (shock)

M 1 = 1.36

p 01 = p 02 (shock)

p 01 = 693 kPa

For isentropic flow p 0 = constant

p 02 = p 01

p 02 = 693 kPa

For the deflection θ = δ

θ = 10.0 o

We use Eq. 13.55

(13.55)

and
Deflection = ω2 - ω1 = ω(M 2) - ω(M 1) (3)

From M 1 and Eq. 13.55 (using built-in function Omega (M , k ))

ω1 = 7.8 o

Applying Eq. 3 ω2 = ω1 + θ

ω2 = 17.8 o

From ω2, and Eq. 13.55 (using built-in function Omega (M , k ))

For ω2 = 17.8 o

M 2 = 1.70

(Use Goal Seek  to vary M 2 so that ω2 = 17.8o)

Hence for p 2 we use Eq. 13.7a
(using built-in function Isenp (M , k ))

p 2 = p 02/(p 02/p 2)

p 2 = 141 kPa

p RL = p 2

p RL = 141 kPa



For surface FU (isentropic expansion wave):

M 1 = 2.0

For isentropic flow p 0 = constant

p 02 = p 01

For p 01 we use Eq. 13.7a
(using built-in function Isenp (M , k ))

p 01 = 743
p 02 = 743 kPa

For the deflection θ = α - δ/2

θ = 7.0 o

We use Eq. 13.55

and
Deflection = ω2 - ω1 = ω(M 2) - ω(M 1) (3)

From M 1 and Eq. 13.55 (using built-in function Omega (M , k ))

ω1 = 26.4 o

Applying Eq. 3 ω2 = ω1 + θ

ω2 = 33.4 o

From ω2, and Eq. 13.55 (using built-in function Omega(M, k))

For ω2 = 33.4 o

M 2 = 2.27

(Use Goal Seek  to vary M 2 so that ω2 = 33.4o)

Hence for p 2 we use Eq. 13.7a
(using built-in function Isenp (M , k ))

p 2 = p 02/(p 02/p 2)

p 2 = 62.8 kPa

p FU = p 2

p FU = 62.8 kPa

For surface RU (isentropic expansion wave):

Treat as a new problem.

Flow is isentropic so we could analyse from region FU to RU
but instead analyse from region 1 to region RU.

M 1 = 2.0

For isentropic flow p 0 = constant

p 02 = p 01



p 01 = 743 kPa
p 02 = 743 kPa

TOTAL deflection θ = α + δ/2

θ = 17.0 o

We use Eq. 13.55

and
Deflection = ω2 - ω1 = ω(M 2) - ω(M 1) (3)

From M 1 and Eq. 13.55 (using built-in function Omega (M , k ))

ω1 = 26.4 o

Applying Eq. 3 ω2 = ω1 + θ

ω2 = 43.4 o

From ω2, and Eq. 13.55 (using built-in function Omega(M, k))

For ω2 = 43.4 o

M 2 = 2.69

(Use Goal Seek  to vary M 2 so that ω2 = 43.4o)

Hence for p 2 we use Eq. 13.7a
(using built-in function Isenp (M , k ))

p 2 = p 02/(p 02/p 2)

p 2 = 32.4 kPa

p RU = p 2

p RU = 32.4 kPa

The four pressures are:

p FL = 230.6 kPa
p RL = 140.5 kPa
p FU = 62.8 kPa
p RU = 32.4 kPa

From Eq 1 F V/sc = 138 kPa

From Eq 2 F H/sc = 5.3 kPa

From Eq 7 C L = 0.503

From Eq 8 C D = 0.127
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