Problem 7.1
Given: The slope of the free surface of a steady wave in one-dumensional flow in a shallow liquid layers is described by the equation.

$$
\frac{\partial h}{\partial k}=-\frac{u}{9} \frac{\partial u}{\partial k}
$$

Find: Nonduriensionalize fie equation (using lent scale, 4 , and velocity scale, ${ }_{0}$) Stow the deriensinhes groups that characterize the flaw.

Sdution:
To nonduriensionalize the equation, all length are divided by the reference lengt, L, and all vecolities are divided by the D reference velocity, No.
lending the nondenensiona quantities by an asterisk,

$$
h^{*}=\frac{h}{2}, x^{*}=\frac{x}{2}, \quad u=\frac{u}{V_{0}}
$$

Substituting ito the governing equation

$$
\begin{aligned}
\frac{\partial(h)}{\partial\left(x^{2} L\right)} & =-\frac{v_{0} u^{*}}{g} \frac{\partial\left(v_{0} u^{*}\right)}{\partial\left(h x^{2}\right)} \\
\frac{\partial h^{*}}{\partial x^{*}} & =-\frac{V_{0}^{2}}{g^{L}} \frac{\partial u^{*}}{\partial x^{*}}
\end{aligned}
$$

The durensonless group is $\frac{Y_{0}^{2}}{g^{2}}$ this is the square of the Froude number

Problem 7.2
Given: The propagation speed of small amplitude waves in a region of COnform depth is guin by

$$
c^{2}=\left(\frac{6}{\rho} \frac{2 \pi}{\pi}+\frac{9 \pi}{2 \pi}\right) \tanh \frac{2 \pi h}{\pi}
$$

where h is the dept of the undisturbed liquid $T_{\text {is }}$ is the wavelengt.
Find: Obtain the dinensiontess groups that characterize the equation. Uss Lis a Characteristic lengy and No as a characteristic velocity)
Solution:

$$
c^{2}=\left(\frac{5}{e} \frac{2 \pi}{\pi}+\frac{g n}{2 \pi}\right) \tan \frac{2 \pi h}{\lambda}
$$

To nandinersionalize the equation, all length are divided by and all velocities are divided be to.

Yenoting nondinensional quantities by an asterisk, then

$$
x^{*}=\frac{n}{2} \quad h^{*}=\frac{h}{h} \quad c^{*}=\frac{\varepsilon}{v_{0}}
$$

Then

$$
\begin{aligned}
c^{2} \psi_{0}^{2} & =\left(\frac{5}{p} \frac{2 \pi}{4 \pi}+\frac{g h^{2} h}{2 \pi}\right) \tanh \frac{2 \pi h^{*} L}{n^{2} L} \\
c^{2} & =\left(\frac{\sigma}{p v_{0}^{2}} \frac{2 \pi}{R^{2}}+\frac{g h h^{*}}{v_{0}^{2}}\right) \tan \frac{2 \pi h^{4}}{n^{2}}
\end{aligned}
$$

\therefore Vinencrites groups are $\frac{0}{p^{2}}$, $\frac{T^{2}}{t^{2}}$
7.3 The equation describing small amplitude vibration of a beam is

$$
\rho A \frac{\partial^{2} y}{\partial t^{2}}+E I \frac{\partial^{4} y}{\partial x^{4}}=0
$$

where y is the beam deflection at location x and time t, ρ and E are the density and modulus of elasticity of the beam material, respectively, and A and I are the beam cross-section area and second moment of area, respectively. Use the beam length L, and frequency of vibration ω, to nondimensionalize this equation. Obtain the dimensionless groups that characterize the equation.

Given:

Equation for beam
Find:
Dimensionless groups

Solution:

Denoting nondimensional quantities by an asterisk

$$
A^{*}=\frac{A}{L^{2}} \quad y^{*}=\frac{y}{L} \quad t^{*}=t \omega \quad I^{*}=\frac{I}{L^{4}} \quad x^{*}=\frac{x}{L}
$$

Hence

$$
A=L^{2} A^{*} \quad y=L y^{*} \quad t=\frac{t^{*}}{\omega} \quad I=L^{4} I^{*} \quad x=L x^{*}
$$

Substituting into the governing equation

$$
\rho L^{2} L \omega^{2} A * \frac{\partial^{2} y^{*}}{\partial t^{*}}+E L^{4} \frac{1}{L^{4}} L I * \frac{\partial^{4} y^{*}}{\partial x^{*}}=0
$$

The final dimensionless equation is

$$
A * \frac{\partial^{2} y^{*}}{\partial t^{2}}+\left(\frac{E}{\rho L^{2} \omega^{2}}\right) I * \frac{\partial^{4} y^{*}}{\partial x^{*}}=0
$$

The dimensionless group is

$$
\left(\frac{E}{\rho L^{2} \omega^{2}}\right)
$$

Problem 7.4
Gwen: One-dimensional, unsteady flow in a Min liquid layer is described by the equation

$$
\frac{\partial u}{\partial t}+u \frac{\partial u}{\partial h}=-g \frac{\partial h}{\partial x}
$$

Find: Nondirinsionalize the equation (using length scale, in and velocity sedge, V_{0}) obtain the Cumiensionves groups that characterize this flow.

Solution:
To nonduxiensionalize the equation, all leyte are divided by the reference herat, in, velocity is divided by the reverence velocity. No, and time si duded by the ratio, $4 w_{0}$

Pending the nondinensional quantities by an asterisk,

$$
x^{*}=\frac{N}{L}, \quad \vec{L}=\frac{h}{2}, \vec{u}=\vec{V}_{0}, \quad t=\frac{t}{W_{0}}
$$

Substituting into the governing equation

$$
\begin{aligned}
& \frac{\partial\left(v_{0} u^{*}\right)}{\partial\left(L t_{j}\right)}+u^{*} v_{0} \frac{\partial\left(v_{0} u^{*}\right)}{2\left(x^{2} L\right)}=-g \frac{\partial\left(h^{*} L\right)}{\partial\left(k^{2} L\right)} \\
& \frac{v_{0}^{2}}{L} \frac{\partial u^{*}}{\partial t^{*}}+\frac{v_{0}^{2}}{L} u^{*} \frac{\partial u^{*}}{\partial x^{*}}=-9 \frac{\partial h^{*}}{\partial x^{*}}
\end{aligned}
$$

Multiplying froug by $4 \psi_{0}^{2}$.

$$
\frac{\partial u^{t}}{\partial t^{2}}+u^{*} \frac{\partial u^{*}}{\partial t^{2}}=-\frac{q L}{v_{0}^{2}} \frac{\partial h^{*}}{\partial t^{*}}
$$

Re duriensoiless group is $\frac{g h}{b_{0}^{2}}$. This is one over the square of the froude number.

Problem 7.5
Given: For steady, viconpressible, two-dinenswial How, the Brandt! boundary layer equations are

$$
\begin{align*}
& \frac{\partial u}{\partial x}+\frac{\partial y}{\partial y}=0 \tag{N}\\
& u \frac{\partial u}{\partial u}+\frac{\partial}{\frac{\partial y}{5} y}=-\frac{1}{Q} \frac{\partial e}{\partial x}+\nabla^{\frac{\partial^{2} u}{\partial y^{2}}} \tag{c}
\end{align*}
$$

Find: Hondinensionalize these equations (using and to as characteristic length and velocity, respectively) and identify the resulting sinitarity parameters.
Solution:
Penotrig nonderiensicial quantities by an asterisk.

$$
x=\frac{1}{2}, \quad y=\frac{y}{6} \quad u=\frac{Q_{1}}{v_{0}} \quad v=\frac{v}{u_{0}}
$$

Substitutrig into Eg.', we obtain

$$
\frac{2\left(u^{*} t_{0}\right)}{2\left(x^{2} L\right)}+\frac{2\left(v^{2} V_{0}\right)}{2\left(y^{2}\right)}=0=\frac{\psi_{0}}{2} \frac{\partial u^{4}}{\partial x^{*}}+\frac{V_{0}}{L} \frac{\partial v^{*}}{\partial y^{4}}
$$

σ

$$
\frac{\partial u^{4}}{\partial x^{4}}+\frac{\partial v^{*}}{\partial y^{*}}=0
$$

Consider each term in Eq. 2 .
$u \frac{\partial u}{\partial x}=u^{*} \Delta_{0} \frac{\partial\left(u^{*} v_{0}\right)}{\partial\left(x^{*}\right)}=\psi_{E}^{2} u^{*} \frac{\partial u^{*}}{\partial x^{*}}$
$v \frac{\partial u}{\partial y}=v^{*} v_{0} \frac{\partial\left(u^{*} \nu_{0}\right)}{\partial\left(y^{2} L\right)}=\frac{v_{0}^{2}}{L} v^{*} \frac{\partial u^{*}}{\partial x^{*}}$
hove 3^{b} term as is for the moment

$$
\nabla \frac{\partial^{2} u}{\partial y^{2}}=J \frac{\partial}{\partial y}\left(\frac{\partial u}{\partial y}\right)=\nabla \frac{\partial}{\partial y}\left(\frac{\partial u^{*} v_{0}^{\prime}}{\partial y^{*} L}\right)=\nabla \frac{\psi_{0}}{L} \frac{\partial}{\partial y^{\prime}}\left(\frac{\partial u^{\prime}}{\partial y^{\prime}}\right)-\nabla \frac{\psi_{0}}{L} \frac{\partial}{\partial\left(y^{\prime}\right)} \frac{\partial u^{*}}{\partial y^{*}}=v \frac{\nu_{0}}{L} \frac{\partial u^{*}}{\partial y^{*}}
$$

Substituting into Eq.2.

$$
\frac{V_{0}^{2}}{L} u^{2} \frac{\partial u^{2}}{\partial c}+\frac{b^{2}}{L} v^{*} \frac{\partial u^{*}}{\partial y^{*}}=-\frac{1}{p} \frac{\partial p}{\partial x}+v \frac{b^{2}}{L^{2}} \frac{\partial^{2} u^{2}}{\partial y^{2}}
$$

Multiplying R rough by z_{0}^{2}

Define Re non-duriensionalpreswre, $p^{*}=\frac{p}{p t^{2}}$, fen

$$
u^{*} \frac{\partial u^{*}}{\partial x^{2}}+v^{*} \frac{\partial u^{*}}{\partial y}=-\frac{\partial p^{*}}{\partial x^{*}}+\frac{\nabla}{V_{0} h} \frac{\partial^{2} u^{*}}{\partial y^{2}}
$$

Re similarity parameter is $\frac{\nabla}{U_{0}}=\frac{1}{R_{e}}$
7.6 In atmospheric studies the motion of the earth's atmosphere can sometimes be modeled with the equation

$$
\frac{D \vec{V}}{D t}+2 \vec{\Omega} \times \vec{V}=-\frac{1}{\rho} \nabla p
$$

where \vec{V} is the large-scale velocity of the atmosphere across the earth's surface, ∇p is the climatic pressure gradient, and $\vec{\Omega}$ is the earth's angular velocity. What is the meaning of the term $\vec{\Omega} \times \vec{V}$? Use the pressure difference, Δp, and typical length scale, L (which could, for example, be the magnitude of, and distance between, an atmospheric high and low, respectively), to nondimensionalize this equation. Obtain the dimensionless groups that characterize this flow.

Given:
Equations for modeling atmospheric motion
Find:
Non-dimensionalized equation; Dimensionless groups

Solution:

Recall that the total acceleration is

$$
\frac{D \vec{V}}{D t}=\frac{\partial \vec{V}}{\partial t}+\vec{V} \cdot \nabla \vec{V}
$$

Nondimensionalizing the velocity vector, pressure, angular velocity, spatial measure, and time, (using a typical velocity magnitude V and angular velocity magnitude Ω):

$$
\vec{V}^{*}=\frac{\vec{V}}{V} \quad p^{*}=\frac{p}{\Delta p} \quad \vec{\Omega}^{*}=\frac{\vec{\Omega}}{\Omega} \quad x^{*}=\frac{x}{L} \quad t^{*}=t \frac{V}{L}
$$

Hence

$$
\vec{V}=V \vec{V}^{*} \quad p=\Delta p p^{*} \quad \vec{\Omega}=\Omega \vec{\Omega}^{*} \quad x=L x^{*} \quad t=\frac{L}{V} t^{*}
$$

Substituting into the governing equation

$$
V \frac{V}{L} \frac{\partial \vec{V}^{*}}{\partial t^{*}}+V \frac{V}{L} \vec{V}^{*} \cdot \nabla * \vec{V}^{*}+2 \Omega V \vec{\Omega}^{*} \times \vec{V}^{*}=-\frac{1}{\rho} \frac{\Delta p}{L} \nabla p^{*}
$$

The final dimensionless equation is

$$
\frac{\partial \vec{V} *}{\partial t^{*}}+\vec{V} * \cdot \nabla * \vec{V} *+2\left(\frac{\Omega L}{V}\right) \vec{\Omega} * \times \vec{V}=-\frac{\Delta p}{\rho V^{2}} \nabla p^{*}
$$

The dimensionless groups are

$$
\frac{\Delta p}{\rho \bar{V}^{2}} \quad \frac{\Omega L}{V}
$$

The second term on the left of the governing equation is the Coriolis force due to a rotating coordinate system. This is a very significant term in atmospheric studies, leading to such phenomena as geostrophic flow.
7.7 The equation describing motion of fluid in a pipe due to an applied pressure gradient, when the flow starts from rest, is

$$
\frac{\partial u}{\partial t}=-\frac{1}{\rho} \frac{\partial p}{\partial x}+v\left(\frac{\partial^{2} u}{\partial r^{2}}+\frac{1}{r} \frac{\partial u}{\partial r}\right)
$$

Use the average velocity \bar{V}, pressure drop Δp, pipe length L, and diameter D to nondimensionalize this equation. Obtain the dimensionless groups that characterize this flow.

Given:

Equations Describing pipe flow
Find:
Non-dimensionalized equation; Dimensionless groups

Solution:

Nondimensionalizing the velocity, pressure, spatial measures, and time:

$$
u^{*}=\frac{u}{\bar{V}} \quad p^{*}=\frac{p}{\Delta p} \quad x^{*}=\frac{x}{L} \quad r^{*}=\frac{r}{L} \quad t^{*}=t \frac{\bar{V}}{L}
$$

Hence

$$
u=\bar{V} u^{*} \quad p=\Delta p p^{*} \quad x=L x^{*} \quad r=D r^{*} \quad t=\frac{L}{\bar{V}} t^{*}
$$

Substituting into the governing equation

$$
\frac{\partial u}{\partial t}=\bar{V} \frac{\bar{V}}{L} \frac{\partial u^{*}}{\partial t^{*}}=-\frac{1}{\rho} \Delta p \frac{1}{L} \frac{\partial p^{*}}{\partial x^{*}}+v \bar{V} \frac{1}{D^{2}}\left(\frac{\partial^{2} u^{*}}{\partial r^{*}}+\frac{1}{r^{*}} \frac{\partial u^{*}}{\partial r^{*}}\right)
$$

The final dimensionless equation is

$$
\frac{\partial u^{*}}{\partial t^{*}}=-\frac{\Delta p}{\rho \bar{V}^{2}} \frac{\partial p^{*}}{\partial x^{*}}+\left(\frac{v}{D \bar{V}}\right)\left(\frac{L}{D}\right)\left(\frac{\partial^{2} u^{*}}{\partial r^{*}}+\frac{1}{r^{*}} \frac{\partial u^{*}}{\partial r^{*}}\right)
$$

The dimensionless groups are

$$
\frac{\Delta p}{\rho \bar{V}^{2}} \quad \frac{v}{D \bar{V}} \quad \frac{L}{D}
$$

7.8 An unsteady, two dimensional, compressible, inviscid flow can be described by the equation
$\frac{\partial^{2} \psi}{\partial t^{2}}+\frac{\partial}{\partial t}\left(u^{2}+v^{2}\right)+\left(u^{2}-c^{2}\right) \frac{\partial^{2} \psi}{\partial x^{2}}+\left(v^{2}-c^{2}\right) \frac{\partial^{2} \psi}{\partial y^{2}}+2 u v \frac{\partial^{2} \psi}{\partial x \partial y}=0$
where ψ is the stream function, u and v are the x and y components of velocity, respectively, c is the local speed of sound, and t is the time. Using L as a characteristic length and c_{0} (the speed of sound at the stagnation point) to nondimensionalize this equation, obtain the dimensionless groups that characterize the equation.

Given:

Equation for unsteady, 2D compressible, inviscid flow
Find:
Dimensionless groups

Solution:

Denoting nondimensional quantities by an asterisk

$$
x^{*}=\frac{x}{L} \quad y^{*}=\frac{y}{L} \quad u^{*}=\frac{u}{c_{0}} \quad v^{*}=\frac{v}{c_{0}} \quad c^{*}=\frac{c}{c_{0}} \quad t^{*}=\frac{t c_{0}}{L} \quad \psi^{*}=\frac{\psi}{L c_{0}}
$$

Note that the stream function indicates volume flow rate/unit depth!
Hence

$$
x=L x^{*} \quad y=L y^{*} \quad u=c_{0} u^{*} \quad v=c_{0} v^{*} \quad c=c_{0} c^{*} \quad t=\frac{L t^{*}}{c_{0}} \quad \psi=L c_{0} \psi^{*}
$$

Substituting into the governing equation

$$
\left(\frac{c_{0}^{3}}{L}\right) \frac{\partial^{2} \psi^{*}}{\partial t^{2}}+\left(\frac{c_{0}^{3}}{L}\right) \frac{\partial\left(u *^{2}+v^{*^{2}}\right)}{\partial t}+\left(\frac{c_{0}^{3}}{L}\right)\left(u *^{2}-c *^{2}\right) \frac{\partial^{2} \psi^{*}}{\partial x^{2}}+\left(\frac{c_{0}^{3}}{L}\right)\left(v^{*^{2}-c *^{2}}\right) \frac{\partial^{2} \psi^{*}}{\partial y^{2}}+\left(\frac{c_{0}^{3}}{L}\right) 2 u * v^{*} \frac{\partial^{2} \psi^{*}}{\partial x^{*} \partial y^{*}}=0
$$

The final dimensionless equation is

No dimensionless group is needed for this equation!

Given: At low speeds, drag is independent of fluid density.

$$
F=F(\mu, v, D)
$$

Find: Appropriate dimensionless parameters.
Solution: Apply Buckingham IT procedure.
(1) $F \mu \vee D$ $n=4$ parameters
(2) select primary dimensions M, L, t.
(3) $F \mu \vee D$

$$
\frac{M L}{t^{2}} \quad \frac{M}{L t} \quad \frac{L}{t} \quad L
$$

$$
r=3 \text { primary dimensions }
$$

(4) $\mu, V, D \quad m=r=3$ repeating parameters
(5) Then $n-m=1$ dimensionless group will result. Setting 40 a dimensional equation,

$$
\begin{aligned}
\Pi_{1} & =\mu^{a} V^{b} D^{c} F \\
& =\left(\frac{M}{L t}\right)^{a}\left(\frac{L}{t}\right)^{b}(L)^{c} \frac{M L}{t^{2}}=M^{0} L^{0} t^{0}
\end{aligned}
$$

Summing exponents,

$$
\begin{array}{l|l}
M: a+1=0 & a=-1 \\
L:-a+b+c+1=0 & c=-1 \\
t:-a-b-2=0 & b=-1
\end{array} \quad \therefore \pi_{1}=\frac{F}{\mu V D} .
$$

(4) Check, using F, L, t primary dimensions.

$$
\Pi_{1}=F \frac{L^{2}}{F t} \frac{t}{L} \frac{1}{L}=[1] \vee
$$

$\left\{\begin{array}{l}\text { Since the procedure produces only one dimensionless group, }\end{array}\right\}$ $\{$ it must be a constant. Thus

$$
\pi_{1}=\frac{F}{\mu v D} \text { or } F \propto \mu v D
$$

7.10 At relatively high speeds the drag on an object is independent of fluid viscosity. Thus the aerodynamic drag force, F, on an automobile, is a function only of speed, V, air density ρ, and vehicle size, characterized by its frontal area A. Use dimensional analysis to determine how the drag force F depends on the speed V.

Given: That drag depends on speed, air density and frontal area
Find: How drag force depend on speed

Solution:

Apply the Buckingham Π procedure
(1) $\begin{array}{llllll} & F & V & \rho & A & n=4 \text { parameters }\end{array}$
(2) Select primary dimensions M, L, t
(4) $V \quad \rho \quad A \quad m=r=3$ repeat parameters
(5) Then $n-m=1$ dimensionless groups will result. Setting up a dimensional equation,

$$
\begin{aligned}
\Pi_{1} & =V^{a} \rho^{b} A^{c} F \\
& =\left(\frac{L}{t}\right)^{a}\left(\frac{M}{L^{3}}\right)^{b}\left(L^{2}\right)^{c} \frac{M L}{t^{2}}=M^{0} L^{0} t^{0}
\end{aligned}
$$

Summing exponents,

$$
\begin{array}{cc|c}
M: & b+1=0 & b=-1 \\
L: & a-3 b+2 c+1=0 & c=-1 \\
t: & -a-2=0 & a=-2
\end{array}
$$

Hence

$$
\Pi_{1}=\frac{F}{\rho V^{2} A}
$$

(6) Check using F, L, t as primary dimensions

$$
\Pi_{1}=\frac{F}{\frac{F t^{2}}{L^{4}} \frac{L^{2}}{t^{2}} L^{2}}=[1]
$$

The relation between drag force F and speed V must then be

$$
F \propto \rho V^{2} A \propto V^{2}
$$

The drag is proportional to the square of the speed.

Given: Flow through an orifice plate

$$
\Delta p=p_{1}-p_{2}=f\left(\rho_{2}, \mu, V, D_{1} d\right)
$$

Find: Dimensionless parameters.

Solution: Choose ρ, v, and D as repeating variable.
(1) $\Delta p \quad \rho \quad \downarrow \quad$ $\quad \vee \quad n=6$ parameters
(2) select primary dimensions M, L, t

$\frac{M}{L t^{2}} \quad \frac{M}{L^{3}} \quad \frac{M}{L t} \quad \frac{L}{t} \quad L \quad L$ $r=3$ primary dimensions
(4) $\quad, v_{2} D \quad m=r=3$ repeating parameters
(5) Then $n-m=3$ dimensionless groups will result. Setting up dimensional equations,

$$
\begin{aligned}
T_{1}=\rho^{a} V^{b} D^{c} \Delta p & T_{2}
\end{aligned}=\rho^{a} V^{b} D^{c} \mu
$$

Summing exponents,
summing exponents,

$$
\begin{aligned}
& \text { M: } a+1=0 \quad a=-1 \\
& L:-3 a+b+c-1=0 \\
& t:-b-2=0 \quad b=-2 \\
& c=1-b+3 a=0 \\
& \therefore \pi_{1}=\frac{\Delta p}{\rho V^{2}} \\
& \text { M: } a+1=0 \\
& a=-1 \\
& c:-3 a+b+c-1=0 \\
& t:-b-1=0 \\
& b=-1 \\
& c=1-b+3 a=-1 \\
& \therefore T_{2}=\frac{\mu}{\rho V O} \\
& T_{3}=\rho^{a} V^{b} D^{c} d=\left(\frac{M}{L^{3}}\right)^{a}\left(\frac{L}{t}\right)^{b} L^{c} L=M^{0} L^{0} t^{0} \\
& \left.\begin{array}{ll}
M: a+0=0 & a=0 \\
L:-3 a+b+c+1=0 & b=0
\end{array}\right\} c=-1 ; \pi_{3}=\frac{d}{D}
\end{aligned}
$$

Thus $\pi_{1}=f\left(\pi_{2}, \pi_{3}\right)$ or $\frac{\Delta p}{\rho V^{2}}=f\left(\frac{\alpha 匕}{O V D}, \frac{d}{D}\right)$
(6) Check, using F,L,t $\Pi_{1}=\frac{F}{L^{2}} \frac{L^{4}}{F t^{2}} \frac{t^{2}}{L^{2}}=[1] \vee, \Pi_{2}=R c=[1] \checkmark, \Pi_{3}=\frac{L}{L}=[1]$,
7.12 The speed, V, of a free-surface wave in shallow liquid is a function of depth, D, density, ρ, gravity, g, and surface tension, σ. Use dimensional analysis to find the functional dependence of V on the other variables. Express V in the simplest form possible.

Given:

That speed of shallow waves depends on depth, density, gravity and surface tension
Find: \quad Dimensionless groups; Simplest form of V

Solution:

Apply the Buckingham Π procedure
(1) V
$D \quad \rho \quad g \quad \sigma$
$n=5$ parameters
(2) Select primary dimensions M, L, t
(3)

$$
\left\{\begin{array}{lllll}
V & D & \rho & g & \sigma \\
\frac{L}{t} & L & \frac{M}{L^{3}} & \frac{L}{t^{2}} & \frac{M}{t^{2}}
\end{array}\right\} \quad r=3 \text { primary dimensions }
$$

(4) $g \quad \rho \quad D \quad m=r=3$ repeat parameters
(5) Then $n-m=2$ dimensionless groups will result. Setting up a dimensional equation,

$$
\begin{array}{ll|l}
M: \quad b=0 & b=0
\end{array}
$$

Summing exponents,

$$
\Pi_{1}=g^{a} \rho^{b} D^{c} V=\left(\frac{L}{t^{2}}\right)^{a}\left(\frac{M}{L^{3}}\right)^{b}(L)^{c} \frac{L}{t}=M^{0} L^{0} t^{0}
$$

Summing exponents,

$$
\begin{array}{cc|c}
L: & a-3 b+c+1=0 & c=-\frac{1}{2} \\
t: & -2 a-1=0 & a=-\frac{1}{2}
\end{array}
$$

$$
\Pi_{2}=g^{a} \rho^{b} D^{c} \sigma=\left(\frac{L}{t^{2}}\right)^{a}\left(\frac{M}{L^{3}}\right)^{b}(L)^{c} \frac{M}{t^{2}}=M^{0} L^{0} t^{0}
$$

$$
\begin{array}{cc|c}
M: & b+1=0 & b=-1
\end{array}
$$

$$
\begin{array}{cc|c}
L: & a-3 b+c=0 & c=-2 \\
t: & -2 a-2=0 & a=-1
\end{array}
$$

Hence
$\Pi_{2}=\frac{\sigma}{g \rho D^{2}}$
(6) Check using F, L, t as primary dimensions $\quad \Pi_{1}=\frac{\frac{L}{t}}{\left(\frac{L}{t^{2}} L\right)^{\frac{1}{2}}}=[1]$
$\Pi_{2}=\frac{\frac{F}{L}}{\frac{L}{t^{2}} \frac{F t^{2}}{L^{4}} L^{2}}=[1]$

The relation between drag force speed V is

$$
\Pi_{1}=f\left(\Pi_{2}\right) \quad \frac{V}{\sqrt{g D}}=f\left(\frac{\sigma}{g \rho D^{2}}\right) \quad V=\sqrt{g D} f\left(\frac{\sigma}{g \rho D^{2}}\right)
$$

Given: Wall shear stress, tu, in a boundary layer, depends on P, μ, L, and U.
Find: (a) Dimensionless groups.
(b) Express the functional relationship.

Solution: step (1) $\tau_{w} \rho \quad \mu \quad L \quad U \quad N=S$ Step (2) Choose $M, L, t . \tau_{\omega}=\frac{F}{L^{2}} \times \frac{M}{F t^{2}}=\frac{M}{L t^{2}}$
step (3)

$$
\frac{M}{L t^{2}} \quad \frac{M}{L^{3}} \quad \frac{M}{L t} \quad L
$$

$$
\frac{L}{t}
$$

$$
r=3
$$

Step (4) select P, L, U
$\operatorname{sta} \rho(5) \quad \Pi_{1}=\tau \omega \rho^{a} L^{b} U^{c}=\frac{M}{L t^{+}}\left(\frac{M}{L^{3}}\right)^{a}\left(L^{b}\left(\frac{L}{t}\right)^{c}=M^{0} L^{0} t^{0}\right.$

$$
\begin{array}{r|r}
\sigma^{2} & n \prime \\
\hdashline
\end{array}
$$

$$
\begin{array}{l|l}
\hline 2 \\
\\
\hline &
\end{array}
$$

step (6): Check using F,L,t: $\rho=\frac{M}{L^{3}} \times \frac{F t^{2}}{M L}=\frac{F t^{2}}{L^{4}}$

$$
\begin{aligned}
& \pi_{1}=\frac{\tau_{\omega}}{\rho U^{2}}=\frac{F}{L^{2}} \frac{L^{4}}{F t^{2}} \frac{t^{2}}{L^{2}}-\frac{F L^{4} t^{2}}{F L^{\prime} t^{2}}=1 \mathrm{~V} \\
& \pi_{2}=\frac{\mu}{\rho \sigma L}=\frac{F_{t}}{L^{2}} \frac{L^{4}}{F t^{2} L} \frac{t}{L}=\frac{F_{L^{4} t^{2}}^{F L^{4} t^{2}}=1}{}
\end{aligned}
$$

The functional relationship is

$$
\pi_{1}=f\left(\pi_{2}\right)
$$

$$
\begin{aligned}
& M: 0=1+a \quad a=-1 \\
& \text { L: } 0=-1-3 a+b+c \\
& t: 0=-z-c \quad c=-z \\
& \pi_{2}=\mu \rho^{a_{L}} U_{U}^{c}=\frac{M}{L t}\left(\frac{M}{L}\right)^{a}(L)^{L}\left(\frac{L}{t}\right)^{c}=M^{0} L^{a} t^{0} \\
& M: 0=1+a \quad a=-1 \\
& \left.\begin{array}{ll}
M: 0=1+a & a=-1 \\
L: 0=-1-3 a+b+c & \begin{array}{l}
a=-1
\end{array} \quad b=3 a-c+1=-1
\end{array}\right\} \pi_{2}=\frac{\mu}{\rho U L} \\
& b=3 a-c+1=0\} \pi_{1}=\frac{\tau \omega}{\rho \sigma^{2}}
\end{aligned}
$$

Problem 7.14
Given: The boundary layer thickness, δ, on a smooth ila plate in incompressible few without pressure gradient is a function of v (free stream velocity), p, μ, and x (distance)
Find: suitable dimensionless paraneters
Solution: Apply Buckingham π-theorem
(1) δ U $\rho \quad x \quad n=5$ paranders
(3) Select M,L,t as primary dimensions
(3) $\begin{array}{lllll}h & U & R & \mu & M \\ L & \frac{M}{i} & \frac{M}{4} & L\end{array}$
$r=3$ primary dimensions
(4) $p, S, N \quad m=r=3$ repeating paranters
(5) Then $n-m=2$ dimensionless groups will result.
belting up dimensional equations.

$$
\begin{aligned}
& \pi_{2}=\rho^{a} v^{b} x^{c} \\
& M L^{\mu}=\left(\frac{y}{b}\right)^{a}(t)(b) \frac{M}{i t}
\end{aligned}
$$

Equating exponents,
Equating exponents,

$$
\therefore \quad 0 \triangleq a+1 \quad \therefore a=-1
$$

$$
\because \quad 0=-3 a+b+c-1
$$

$$
c=-1
$$

$$
\text { t. } \quad 0=-b-1
$$

$$
\therefore b=-1
$$

$$
\pi_{2}=\frac{\mu}{p u x}
$$

(6) Check using F,L,t dimensions

$$
\pi_{1}=\sum_{2}^{0}=[]^{2}
$$

$$
\pi_{2}=\frac{F t}{L^{2}} \cdot \frac{H}{F t^{2}} t \frac{1}{L}=[1]^{v}
$$

$$
\begin{aligned}
& \text { M: } \quad 0=a \quad \therefore a=0 \\
& \text { ㄴ. } \quad 0=-3 a+b+c+1 \quad c=-1 \\
& \text { t: } \quad 0=-b \quad \therefore b=0 \\
& \therefore \pi_{1}=\frac{\delta}{x} \\
& \text { and } \frac{\delta}{x}=f\left(\frac{p-j x}{\mu}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \pi_{1}=e^{a} u^{b} x^{c} \delta \\
& M^{\circ} L^{\circ}=\binom{n}{e}\left(\begin{array}{l}
\text { b }
\end{array}\right)^{c}
\end{aligned}
$$

7.15 If an object is light enough it can be supported on the surface of a fluid by surface tension. Tests are to be done to investigate this phenomenon. The weight, W, supportable in this way depends on the object's perimeter, p, and the fluid's density, ρ, surface tension σ, and gravity, g. Determine the dimensionless parameters that characterize this problem.

Given:
 That light objects can be supported by surface tension

Find:
Dimensionless groups

Solution:

Apply the Buckingham Π procedure
(1) $W \quad \begin{array}{llllll}W & \rho & g & \sigma & n=5 \text { parameters }\end{array}$
(2) Select primary dimensions M, L, t
(3) $\left\{\begin{array}{ccccc}W & p & \rho & g & \sigma \\ \frac{M L}{t^{2}} & L & \frac{M}{L^{3}} & \frac{L}{t^{2}} & \frac{M}{t^{2}}\end{array}\right\} \quad r=3$ primary dimensions
(4) $g \quad \rho \quad p \quad m=r=3$ repeat parameters
(5) Then $n-m=2$ dimensionless groups will result. Setting up a dimensional equation,

$$
\Pi_{1}=g^{a} \rho^{b} p^{c} W=\left(\frac{L}{t^{2}}\right)^{a}\left(\frac{M}{L^{3}}\right)^{b}(L)^{c} \frac{M L}{t^{2}}=M^{0} L^{0} t^{0}
$$

$$
\begin{array}{cc|cc}
M: & b+1=0 & b=-1 & \\
L: & a-3 b+c+1=0 & c=-3 \\
t: & -2 a-2=0 & a=-1 & \text { Hence }
\end{array} \quad \Pi_{1}=\frac{W}{g \rho p^{3}}
$$

$$
\Pi_{2}=g^{a} \rho^{b} p^{c} \sigma=\left(\frac{L}{t^{2}}\right)^{a}\left(\frac{M}{L^{3}}\right)^{b}(L)^{c} \frac{M}{t^{2}}=M^{0} L^{0} t^{0}
$$

$$
M: \quad b+1=0 \quad \mid b=-1
$$

Summing exponents,

$$
\begin{array}{cc|ccc}
L: & a-3 b+c=0 & c=-2 & \text { Hence } & \Pi_{2}=\frac{\sigma}{g \rho p^{2}} \\
t: & -2 a-2=0 & a=-1 &
\end{array}
$$

(6) Check using F, L, t as primary dimensions

$$
\Pi_{1}=\frac{F}{\frac{L}{t^{2}} \frac{F t^{2}}{L^{4}} L^{3}}=[1]
$$

$$
\Pi_{2}=\frac{\frac{F}{L}}{\frac{L}{t^{2}} \frac{F t^{2}}{L^{4}} L^{2}}=[1]
$$

Note: Any combination of Π_{1} and Π_{2} is a Π group, e.g.,

$$
\frac{\Pi_{1}}{\Pi_{2}}=\frac{W p}{\sigma} \text {, so } \Pi_{1} \text { and } \Pi_{2} \text { are not unique! }
$$

Given: The mean vebcity, \bar{u}, for turbulent pipe or boundary bayer flow, may be correlated in terns of the wall shearstres, r_{w}, distance from the wall, y, and fluid properties, gand μ.
Find: (a) durensiontes parameter containing \bar{u} and ore containing 4 that are suitable for organizing experimental data (b) show that he result may to writer as

$$
\bar{u}_{4}=f\left(\frac{y u}{\nabla}\right) \text { where } u_{*}=\left(r_{\omega} \mid \rho\right)^{1 / 2}
$$

Solution: Apply the Buckingham T. Theorem
(1) $\bar{u} \quad \imath_{\omega} \quad y \quad \mu=5$ prancers
(2) Select M,L,t as primary dimensions
(3) $\frac{L}{t} \frac{M}{t^{2}} \quad \frac{M}{L^{3}} \frac{M}{L t}$
(4) $T_{\omega}, y, p \quad n=r=3$ repeating parameters
(5) Then $n-m=2$ dunersionless groups will result. Setting up dimensional equations

Summing exponents
M: $\quad a+c=0 \quad \therefore a=-c$

$$
\begin{aligned}
& r_{2}=f_{\omega}^{a} y^{b} e^{c} \mu \\
& n^{0} t^{\infty}=\left(\frac{N}{L^{2}}\right)^{a} L^{(}\left(\frac{M}{0}\right)^{c} \frac{\mu}{-t}
\end{aligned}
$$

L: $\quad-a+b-3 c+1=0$
t: $\quad-2 a-1=0 \quad \therefore a=-y_{2}$.

$$
M: \quad a+c+1=0 \quad \therefore c=-a-1
$$

$$
\therefore \quad-a+b-3 c-1=0
$$

$$
\text { t: } \quad-2 a-1=0 \quad \therefore a=-12
$$

$$
a=-l_{2}, c=l_{2}, b=0
$$

$$
a=-l_{2}, c=-l_{2}, b=-1
$$

$$
\pi_{1}=\bar{G} \frac{p^{4_{2}}}{{\underset{w}{w}}_{3}^{s_{2}}}=\frac{\bar{u}}{\sqrt{v i l}}
$$

$$
\pi_{2}=\frac{\mu}{r_{m} e^{1 / 2} y}=\frac{\mu}{\rho_{y} \sqrt{\frac{\tau_{m}}{\rho}}}
$$

$$
\pi_{1}=f\left(\pi_{r}\right) \text { or } \frac{\bar{u}}{\sqrt{T_{w} / p}}=f\left(\frac{\mu}{p y \sqrt{T_{w}} p^{\prime}}\right)
$$

Sines $\sqrt{T_{u} t p}=4 *$, Wen

$$
\frac{\bar{u}}{u_{4}}=f\left(\frac{\mu}{8 y} u_{+}\right)=f\left(\frac{7}{y u_{*}}\right)=g\left(\frac{y u_{t}}{v}\right) \quad \frac{\bar{u}}{u_{*}}
$$

$$
\begin{aligned}
& \pi_{1}=-_{\omega}^{a} y^{b} p^{c} \bar{u} \\
& M^{0} L^{0} L^{0}=\left(\frac{M}{4}\right)^{a} b\left(\frac{M}{2}\right)^{c} \frac{L}{t}
\end{aligned}
$$

Gwen: Velocity, V, or a free surface gravity wave in deep water is Ca function of λ (wavelengh) D, P, and g Find: Dependence of V on ot fer variables.

Solution: Apply Bucking lan π-tHeorem
(1) $\gamma \quad i>\rho g$
$n=5$ parameters
(2) Select M.L.t as primary dimensions
(3) $\begin{array}{llllll} & i & p & g & j & \frac{n}{3} \\ \frac{L}{4} & \frac{1}{2} & r=3 \text { primary dimensions }\end{array}$
(4) $\quad, i, g \quad m=r=3$ repealing parameters
(5) Then $n-m=2$ dimensionless groups will result

Setting up dimensional equations
)

$$
\begin{aligned}
& \pi_{1}=e^{a} b^{b} g^{c} v \\
& M^{0} L^{0} t^{0}=\left(\frac{M}{2}\right)^{a} b^{(}\left(L^{2}\right)^{c}= \\
& \\
& \text { Summing exponents, } \\
& M: \quad a=0 \\
& \therefore \quad-3 a+b+c+1=0 \\
& t: \quad-2 c-1=0
\end{aligned}
$$

$$
\text { le } a=0
$$

$$
\begin{aligned}
& c=-\frac{1}{2} \\
& b=3 a-c-1=-\frac{1}{2} \\
& \therefore \pi_{1}=\frac{v}{\sqrt{g}}
\end{aligned}
$$

$$
\begin{aligned}
& \pi_{2}=p^{a} y^{b} g^{c} n \\
& M^{0} 0^{0}=\left(\frac{M}{n^{3}}\right)^{a} L^{b}\left(t^{2}\right)^{c} L
\end{aligned}
$$

Summing exponents,

$$
\begin{array}{ll}
M: & a=0 \\
\therefore & -3 a+b, c+1=0 \\
& -2 c=0 \\
& 1 e \\
& a=0 \\
& c=0 \\
b & =3 a-c-1=-1 \\
\therefore \pi_{2}= & =\frac{\pi}{7}
\end{array}
$$

Thu $\frac{y}{\sqrt{g 9}}=f\left(\frac{\pi}{8}\right)$ or $v=\sqrt{g g} f\left(\frac{\pi}{y}\right)$
(6) Beck using F.L.t

$$
\left.\pi_{1}=\frac{v}{t} L_{2}^{-}\right)^{\prime 2}=[1]^{2} \quad \pi_{2}=\frac{L}{L}=[7
$$

7.18 The torque, T, of a handheld automobile buffer is a function of rotational speed, ω, applied normal force, F, automobile surface roughness, e, buffing paste viscosity, μ, and surface tension, σ. Determine the dimensionless parameters that characterize this problem.

Given:

That automobile buffer depends on several parameters
Find:
Dimensionless groups

Solution:

Apply the Buckingham Π procedure
(1) T
$\omega \quad F$
$e \quad \mu$
σ
$n=6$ parameters
(2) Select primary dimensions M, L, t
(3)

$$
\left\{\begin{array}{cccccc}
T & \omega & F & e & \mu & \sigma \\
\frac{M L^{2}}{t^{2}} & \frac{1}{t} & \frac{M L}{t^{2}} & L & \frac{M}{L t} & \frac{M}{t^{2}}
\end{array}\right\} \quad r=3 \text { primary dimensions }
$$

(4) $F \quad e \quad \omega$

$$
m=r=3 \text { repeat parameters }
$$

(5) Then $n-m=3$ dimensionless groups will result. Setting up a dimensional equation,

$$
\Pi_{1}=F^{a} e^{b} \omega^{c} T=\left(\frac{M L}{t^{2}}\right)^{a}(L)^{b}\left(\frac{1}{t}\right)^{c} \frac{M L^{2}}{t^{2}}=M^{0} L^{0} t^{0}
$$

Summing exponents,

Summing exponents,

$$
\begin{array}{cc|cc}
M: & a+1=0 & a=-1 & \\
L: & a+b+2=0 & b=-1 \\
t: & -2 a-c-2=0 & c=0 & \text { Hence }
\end{array} \quad \Pi_{1}=\frac{T}{F e}
$$

$$
\Pi_{2}=F^{a} e^{b} \omega^{c} \mu=\left(\frac{M L}{t^{2}}\right)^{a}(L)^{b}\left(\frac{1}{t}\right)^{c} \frac{M}{L t}=M^{0} L^{0} t^{0}
$$

$$
\begin{array}{cc|c}
M: & a+1=0 & a=-1 \\
L: & a+b-1=0 & b=2 \\
t: & -2 a-c-1=0 & c=1 \\
\Pi_{3}=F^{a} e^{b} \omega^{c} \sigma=\left(\frac{M L}{t^{2}}\right)^{a}(L)^{b}\left(\frac{1}{t}\right)^{c} \frac{M}{t^{2}}=M^{0} L^{0} t^{0}
\end{array}
$$

Summing exponents,

$$
\begin{array}{cc|cc}
M: & a+1=0 & a=-1 & \\
L: & a+b=0 & b=1 \\
t: & -2 a-c-2=0 & c=0 & \text { Hence }
\end{array} \quad \Pi_{3}=\frac{\sigma e}{F}
$$

(6) Check using F, L, t as primary dimensions

$$
\Pi_{1}=\frac{F L}{F L}=[1] \quad \Pi_{2}=\frac{\frac{F t}{L^{2}} L^{2} \frac{1}{t}}{F}=[1] \quad \Pi_{3}=\frac{\frac{F}{L} L}{F}=[1]
$$

Note: Any combination of Π_{1}, Π_{2} and Π_{3} is a Π group, e.g., $\frac{\Pi_{1}}{\Pi_{2}}=\frac{T}{\mu \omega e^{3}}$, so Π_{1}, Π_{2} and Π_{3} are not unique!

Given: Volume flow rate, A, over a weir is a function of: upstream height it, gravity. g, and channel width b
Find: Expression for a (using dimensional analysis)
Solution: Apply Buckingham π-theorem
© List a h $g \quad n=4$ parameters
(2) Crosse Fin, it as primary dimensions
(3) Dimensions $\frac{b}{t} L{ }^{3} L$
(6) Repeating variables $g, h \quad m=c=2$
(5) Then $n-n=2$ dimensionless groups will result Setting up dimensional equations

$$
\begin{aligned}
& \pi=g^{a} h^{b} \\
& t^{0}=\left(\frac{h}{t}\right)^{a} b^{0}\left(\frac{3}{t}\right)
\end{aligned}
$$

Equating exponents

$$
\begin{aligned}
n \quad 0 & =a+b+3 \\
0 & =-2 a-1 \\
\therefore a & =-\frac{1}{2} \\
b & =-2 \frac{1}{2} \\
\therefore \pi_{1} & =\frac{a}{g^{1 / 2}} h^{23} \\
\pi_{1} & =\frac{Q}{h^{2} \sqrt{g h}}
\end{aligned}
$$

$$
\begin{gathered}
\pi_{2}=g^{a} h^{c} b \\
0 t^{0}=\left(\frac{c}{t^{2}}\right)^{a} c L
\end{gathered}
$$

Equating exponents

$$
\begin{gathered}
\therefore \quad 0=a+c+1 \\
t \quad 0=-2 a \\
\therefore a=0 \\
c=-1 \\
\pi_{2}=\frac{b}{h}
\end{gathered}
$$

(Pis is obvious by inspection)

Hen

$$
\begin{aligned}
& \frac{Q}{h^{2}} \sqrt{g h}=f\left(\frac{b}{h}\right) \\
& Q=h^{2} \sqrt{g h} f\left(\frac{b}{h}\right)
\end{aligned}
$$

Gwen: Capillary waves form on a liquid free surface. Te speed of the Clave is a function of σ (surfacetersion), n (the wave length) and p
Find: The wave speed as a function of the variables
Solution: Apply Bucking han THeorem
(1) $V \quad \pi \quad n=4$ parameters
(C) Select M, h, t as primary dimensions
$\begin{array}{lllll} & V & \sigma & n & p \\ \vdots & \frac{M}{2} & L & \frac{M}{3}\end{array}$
$r=3$ primary dimensions
(4) $\sigma, n, p \quad n=5=3$ repeating parameters
(5) Then $n-m=1$ dimensionless group will result

Setting up dimensional equation

$$
\begin{aligned}
\pi & =\sigma^{a} n^{b} p^{c} v \\
\operatorname{meL}^{c} & =\left(\frac{m}{t^{2}}\right)^{b}\left(b^{b}\right)^{c} b
\end{aligned}
$$

Summing exponents

$$
\begin{array}{ll}
M: \quad a+c=0 \\
\therefore \quad b-3 c+1=0 \\
t \quad-2 a-1=0 \quad & \therefore \quad a=-a=\frac{1}{2} \\
\therefore \quad & b=-\frac{1}{2}
\end{array}
$$

$$
\therefore \pi_{1}=\left(\frac{\rho \pi}{\sigma}\right)^{\frac{1}{2}} V=\text { constant } \quad \therefore V \propto \sqrt{\frac{\sigma}{\rho \pi}}
$$

(6) Check using Fit

$$
\pi_{1}=\left(\frac{F t^{2}}{h^{4}} \cdot \frac{h}{F}\right)^{1 / 2} \frac{L}{t}=[1]^{\gamma}
$$

Gwen: hoad-corrying capacity, w, (of a journal bearing) depends on: deanter i; leng̀, e^{i} clearance, c; angular spend, w; fubricant Sscosity, μ
Find: Ywienswiless paranders that characterize the problen.
Sohtion: Apply Buckinghan K-theoren
0 List w $\ggg \quad c \quad n=6$ pararders
(2) Choose F.I.t as prinary dirnensions
(3) Yurensions F L $\frac{1}{t} \frac{F t}{2}$
(4) Reprating Jariables $>, w, \mu \quad n=r=3$
(5) Ren $n-n=3$ deriensiontess groups will result

By inspection, $\pi_{1}=\frac{l}{y} \quad \pi_{2}=\frac{C}{V}$
Set up dunensional equation to determine π_{3}

Equating exponerts: $F \quad 0=e+1 \quad \therefore e=-1$

$$
\begin{aligned}
& \because \quad 0=a-2 e \quad \therefore a=-2 \\
& t \quad 0=-b+e \quad \therefore b=-1
\end{aligned}
$$

and

$$
\pi_{3}=\frac{w}{\nu^{2}} \omega
$$

(6) Geck using M, t dirmensons

$$
\begin{gathered}
\pi_{3}=\frac{M_{2}}{t^{2}} \times \frac{1}{2}+\frac{t}{M}=[1] \\
\therefore \frac{W}{D^{2} \omega \mu}=f\left(\frac{t}{8}, \frac{c}{y}\right)
\end{gathered}
$$

7.22 The time, t, for oil to drain out of a viscosity calibration container depends on the fluid viscosity, μ, and density, ρ, the orifice diameter, d, and gravity, g. Use dimensional analysis to find the functional dependence of t on the other variables. Express t in
the simplest possible form.

Given: That drain time depends on fluid viscosity and density, orifice diameter, and gravity
Find: Functional dependence of t on other variables

Solution:

We will use the workbook of Example 7.1, modified for the current problem

The number of parameters is:
The number of primary dimensions is:
The number of repeat parameters is:
The number of Π groups is:
$n=5$
$r=3$
$m=r=3$
$\boldsymbol{n}-\boldsymbol{m}=2$

Enter the dimensions ($\mathbf{M}, \mathbf{L}, \mathbf{t}$) of
the repeating parameters, and of up to
four other parameters (for up to four Π groups).
The spreadsheet will compute the exponents a, b, and c for each.
REPEATING PARAMETERS: Choose $\rho, \boldsymbol{g}, \boldsymbol{d}$

П GROUPS:

The following Π groups from Example 7.1 are not used:

The final result is $\quad t=\sqrt{\frac{d}{g}} f\left(\frac{\mu^{2}}{\rho^{2} g d^{3}}\right)$
7.23 The power, \mathscr{P}, used by a vacuum cleaner is to be correlated with the amount of suction provided (indicated by the pressure drop, Δp, below the ambient room pressure). It also depends on impeller diameter, D, and width, d, motor speed, ω, air density, ρ, and cleaner inlet and exit widths, d_{i} and d_{o}, respectively. Determine the dimensionless parameters that characterize this problem.

Given: That the power of a vacuum depends on various parameters

Find:

Dimensionless groups

Solution:

Apply the Buckingham $П$ procedure
(1) $\begin{array}{ccccccccc} & \Delta p & D & d & \omega & \rho & d_{i} & d_{o} & n=8 \text { parameters }\end{array}$
(2) Select primary dimensions M, L, t
(3) $\left\{\begin{array}{cccccccc}\mathcal{P} & \Delta p & D & d & \omega & \rho & d_{i} & d_{o} \\ \frac{M L^{2}}{t^{3}} & \frac{M}{L t^{2}} & L & L & \frac{1}{t} & \frac{M}{L^{3}} & L & L\end{array}\right\} \quad r=3$ primary dimensions
(4) ρ
$\rho \quad D$
ω
$m=r=3$ repeat parameters
(5) Then $n-m=5$ dimensionless groups will result. Setting up a dimensional equation,

Summing exponents,

$$
\Pi_{1}=\rho^{a} D^{b} \omega^{c} \boldsymbol{P}=\left(\frac{M}{L^{3}}\right)^{a}(L)^{b}\left(\frac{1}{t}\right)^{c} \frac{M L^{2}}{t^{3}}=M^{0} L^{0} t^{0}
$$

$$
\begin{array}{cc|l}
M: & a+1=0 & a=-1 \\
L: & -3 a+b+2=0 & b=-5 \\
t: & -c-3=0 & c=-3
\end{array} \quad \text { Hence } \quad \begin{aligned}
& \Pi_{2}=\rho^{a} D^{b} \omega^{c} \Delta p=\left(\frac{M}{L^{3}}\right)^{a}(L)^{b}\left(\frac{1}{t}\right)^{c} \frac{M}{L t^{2}}=M^{0} L^{0} t^{0}
\end{aligned}
$$

$$
M: \quad a+1=0 \quad a=-1
$$

Summing exponents,

$$
\begin{array}{cc|c}
L: & -3 a+b-1=0 & b=-2 \\
t: & -c-2=0 & c=-2
\end{array} \quad \text { Hence } \quad \Pi_{2}=\frac{\Delta p}{\rho D^{2} \omega^{2}}
$$

The other Π groups can be found by inspection: $\quad \Pi_{3}=\frac{d}{D} \quad \Pi_{4}=\frac{d_{i}}{D} \quad \Pi_{5}=\frac{d_{o}}{D}$
© Check using F, L, t as primary dimensions

$$
\Pi_{1}=\frac{\frac{F L}{t}}{\frac{F t^{2}}{L^{4}} L^{5} \frac{1}{t^{3}}}=[1] \quad \Pi_{2}=\frac{\frac{F}{L^{2}}}{\frac{F t^{2}}{L^{4}} L^{2} \frac{1}{t^{2}}}=[1] \quad \quad \Pi_{3}=\Pi_{4}=\Pi_{5}=\frac{L}{L}=[1]
$$

Note: Any combination of Π_{1}, Π_{2} and Π_{3} is a Π group, e.g., $\frac{\Pi_{1}}{\Pi_{2}}=\frac{\mathcal{P}}{\Delta p D^{3} \omega}$, so the Π 's are not unique!

Given: Power per unit cross-sectional area, E, transmitted by a sound wave, depends on wave speed, v, amplitude, r, frequency, n, and medium dens its, p.
Find: General form of dependence of E on the other variables.
Solution: $\operatorname{stcp}(1) \quad v \quad n \quad \rho \quad n=5$
$\operatorname{step}(2)$ Choose $M, L, t, E=\frac{P}{L^{2}}=\frac{F L^{2}}{t} \times \frac{L}{L^{2}}=\frac{F}{L t} \times \frac{M L}{F t^{2}}=\frac{M}{t^{3}}$
Step (3)

$$
\frac{M}{t^{3}} \quad \frac{L}{t} \quad L \quad \frac{1}{t} \quad \frac{M}{L^{3}}
$$

step (4) Choose ρ, V, r
$\operatorname{step}(5) \quad \pi_{1}=\rho^{a} V^{b} r^{c} E=\left(\frac{M}{L 3}\right)^{a}\left(\frac{L}{t}\right)^{b}(L)^{c} \frac{M}{t^{3}}=M^{0} L^{0} t^{0}$

$$
\begin{aligned}
& \left.\begin{array}{l}
M: a+1=0 \quad a=-1 \\
L:-3 a+b+c=0 \quad c=3 a-b=3(-1)-(-3)=0 \\
t:-b-3=0 \quad b=-3
\end{array}\right\} \pi_{1}=\frac{E}{C^{3}} \\
& \Pi_{2}=\rho^{a} V^{b} r^{c} n=\left(\frac{M}{L^{3}}\right)^{a}\left(\frac{L}{t}\right)^{b}(L)^{c} \frac{1}{t}=M_{0} L^{0} t^{0} \\
& M: a+0=0 \quad a=0 \quad c=3 a-b=3(0)-(-1)-1\} \pi_{2}=\frac{n r}{V} \\
& L:-3 a+b+c=0 \quad b=-1
\end{aligned}
$$

Step (6) Check using $F L t: \rho=\frac{M}{L} \times \frac{F t^{2}}{M L}=\frac{F t^{2}}{L^{4}}$

$$
\begin{aligned}
& \Pi_{1}=\frac{E}{\rho V^{3}}=\frac{F L}{t L^{2}} \frac{L^{4}}{F t^{2}} \frac{t^{3}}{L^{3}}=\frac{F L^{5} t^{3}}{F L^{5} t^{3}}=1 \\
& \Pi_{2}=\frac{n n}{V}=\frac{1}{t} L_{x} \frac{t}{L}=\frac{L t}{L t}=1
\end{aligned}
$$

Given: Draining of a tank from initial level, no.
Tire, τ, depends on tank diameter. D, orifice diameter, d, acceleration of gravity, g, density, l, and viscosity, μ.
Find: (a) Number of dimensionless parameters
(b) Number of repeating variables.
(a) 7 -parameter containing viscosity.

Solution: $\operatorname{step}(1) \quad h_{0} \quad D \quad d \quad g \quad l \quad \mu$
3 Sep (2) Choose MLE system
step (3)
$\left.t \quad L \quad L \quad \frac{L}{t^{2}} \quad \frac{M}{L B} \quad \frac{M}{L t} \right\rvert\,$

Then $n-r=7-3=4$ parameters will result.
Step (4) $r=3$, so choose 3 variables: ρ, d, g
$\operatorname{step}(5) \pi_{1}=\rho^{a} d^{b} g^{c} \mu=\left(\frac{M}{L^{3}}\right)^{a} L^{b}\left(\frac{L}{t^{2}}\right)^{c} \frac{M}{L t}=M L^{0} t^{0}$

$$
\begin{array}{lll}
& M: a+1=0 & a=-1 \\
L:-3 a+b+c-1=0 & b=3 a-c+1=3(-1)-\left(-\frac{1}{2}\right)+1 \\
t:-2 c-1=0 & c=-\frac{1}{2} & b=-\frac{3}{2} \\
\Pi_{1}= & \frac{\mu}{\rho d^{3 / 2} g} / 2 / 2 &
\end{array}
$$

Step (6) Check, using FLt system.

$$
\begin{aligned}
& \mu=\frac{F t}{L^{2}} ; \rho=\frac{M}{L^{3}} \times \frac{F t^{2}}{M L}=\frac{F F^{t}}{L_{t}} \\
& \Pi_{1}=\frac{F t}{L^{2}} \frac{L^{4}}{F t^{2}} \frac{1}{L^{\left(z_{2}\right.} L} \frac{t}{L^{1 / 2}}=\frac{F L^{4} t^{2}}{F L^{4} t^{2}}=1
\end{aligned}
$$

Problem 7.26
Given: Power, θ, required to drive a fan depends on ρ, Q, D and ω.

Find: Dependence of \mathscr{P} on other parameters.
Solution: Apply Buckingham TP procedure.
(1) $\quad \boldsymbol{P} \quad P \quad Q \quad D \quad \omega$ $n=5$ parameters
(2) Choose primary dimensions M, L, t
(3) $P \rho \quad Q \quad D \quad \omega$

$$
\frac{M L^{2}}{t^{3}} \quad \frac{M}{L^{3}} \quad \frac{L^{3}}{t} \quad L \quad \frac{1}{t}
$$

$r=3$ primary dimensions
(4) $p, 0, \omega \quad m=r=3$ repeating parameters
(5) Then $n-m=2$ dimensionless groups will result. Setting up dimensional equations,

$$
\begin{aligned}
\pi_{1} & =\rho^{a} D^{b} w^{c} \theta \\
& =\left(\frac{M}{L^{3}}\right)^{a}(L)^{b}\left(\frac{1}{t}\right)^{c}\left(\frac{M C^{2}}{t^{3}}\right)=M^{0} L^{a} t^{0}
\end{aligned}
$$

$$
\pi_{2}=\rho^{d} D^{e} \omega^{f} Q
$$

$$
=\left(\frac{M}{L^{3}}\right)^{d}(L)^{0}\left(\frac{1}{t}\right)^{f}\left(L^{\frac{L^{3}}{t}}\right)=M^{0} L^{0} t^{0}
$$

summing exponents,

$$
\begin{array}{ll|ll}
M: a+1=0 & a=-1 & M: d+0=0 & d=0 \\
L:-3 a+b+2=0 & b=-5 & C:-3 d+e+3=0 & e=-3 \\
t:-c-3=0 & c=-3 & t:-f-1=0 & f=-1 \\
\therefore \pi_{1}=\frac{\theta}{f D^{5} \omega^{3}} & & \therefore \Pi_{2}=\frac{Q}{D^{3} \omega} &
\end{array}
$$

summing exponents,
(6) Check using primary dimensions F, L, t

$$
\pi_{1}=\frac{F L}{t} \frac{L^{4}}{F t^{2}} \frac{1}{L^{5}} t^{3}=[1] \checkmark \quad \pi_{2}=\frac{L^{3}}{t} \frac{1}{L^{3}} t=[1] \vee
$$

Thus $\pi_{1}=f\left(\pi_{2}\right)$, or $\frac{Q}{\rho D^{5} \omega^{3}}=f\left(\frac{Q}{D^{3} \omega^{3}}\right)$

Given: Cortinuous bett noving vertically through a viscous liquid batk The volurie rale of liquid loss, Q, is a furchion of $\mu, p, 9, h$ (thikness of liquid layer), and v
Find: form of dependence of Q on ofrer variables.
Solution: Apply Bucsingtan r-theoren.
(1) $Q \mu \quad \rho \quad, \quad v=6$ paranters
(2) Sellect M,h,t as primary dimensions

(5) Then $n-m=3$ dinensiontass groups wil sesult.

Setting up dinensiaral equations.

$$
\begin{aligned}
& \pi_{3}=p^{a} v^{b} h^{c} \\
& M^{0} 0^{\circ}=\binom{y^{a}}{i}(t)^{c} \leqslant^{c}
\end{aligned}
$$

Equatring exponents, Equaling exponerts,
Equating exponerts,
M: $0=a$
h: $0=-3 a+b+c+3$

$$
\text { M: } \quad 0=a+1
$$

M: $0=a$
$t: \quad 0=-b-1$
L. $\quad 0=-3 a+b+c-1$
(G) $0=-3 a+b+c+1$
i.e. $a=0$
$b=-1$
$c=-2$
ᄂ. $0=-b-1$
t. $0=-b-2$
le $a=-1$
$b=-1$
i.e $a=0$

$$
b=-2
$$

$$
c=-1
$$

$$
c=1
$$

$$
\therefore \pi_{1}=\sqrt{h^{2}}
$$

$$
\therefore \pi_{3}=\frac{g h}{y^{2}}
$$

Then

$$
\frac{D}{i h^{2}}=f\left(\frac{\rho \psi h}{\mu}, \frac{y^{2}}{g h}\right)
$$

(6) Check using Fi.L.L dinensions

$$
\pi_{1}=\frac{3^{3}}{t} \cdot \frac{t}{2} \cdot \frac{1}{L^{2}}=[]^{2} \quad \pi_{2}=\frac{F_{1}}{2} \cdot \frac{4}{F^{2}} \frac{t}{2} \cdot[1] \quad \pi_{3}=\frac{\ddots}{t^{2}} \cdot \frac{t^{2}}{L^{2}}=[1]^{2}
$$

)

Given: Water is drowned from a tank of darter, Prang a smoothly rounded drops hae of diameter, d'. Re initial mas flow rate, m, from the tank is written in functional form as

$$
i=i n\left(h_{0}, \lambda, d, g, f, \mu\right)
$$

where h_{0} is the initial water depth in the tank g is the acceleration of gravity

Find: (a) Re number of dinensiontess groups required to correlate the data-
(b) Pe number of repeating variboles that must be selected to determine the dimensionless parameters.
(c) the π parameter that contains the fluid viscosity, μ.

Solution: Apply the Buckingham K. tHeorem
(1) List in h_{0} d \quad a 9
(c) Select. M, M as primary dimensions
(3) Dimensions $\frac{M}{t} L L \frac{L}{t^{2}} \frac{M}{L^{3}} \frac{M}{L} \quad r=3$ prim dim
(4) Choose repeating variables p,d,g
\therefore expect $n-n=7-3=4$ duriensionless paranders
(5)

$$
\begin{aligned}
& \begin{array}{l}
\pi=p^{a} d^{b} g^{c} \mu \\
m_{0}^{c} t^{2}=\left(\frac{N}{3}\right)^{a} b\left(\frac{5}{t^{2}}\right)^{\frac{\mu}{2}}
\end{array} \\
& t: \quad 0=-2 c-1 \quad \therefore c=-\frac{1}{2} \\
& M \quad 0=a+1 \quad \therefore a=-1 \\
& \text { L } \quad 0=-3 a+b+c-1 \quad \therefore \quad b=3 a-c+1=-\frac{3}{2}
\end{aligned}
$$

$$
\pi_{1}=\frac{\mu}{p d^{3 / 2}} g^{12}
$$

(b) Check $\pi_{1}=\frac{k t}{L^{2}} \times \frac{2}{\sqrt{2}} \times \frac{1}{L^{3 / 2}} \times \frac{k}{L^{1 / 2}}=[1]$

Problem 7.29
Given: Diameter, d, of Squid droplets formed in fuel injection process is a function of ρ, μ, σ (surface tension), ψ, p.
Find: (a) number of dimensionless ratios required to characterize the process (b) the dinersiontess ratios.

Solution: Apply Bucking ian π - Herren
(1) d $\rho \mu \quad \sigma \quad \forall \quad\rangle \quad n=6$ parameters
(2) Select M, L, t as primary dimensions
(3) d $\rho \mu \sigma$ v ρ

$$
L \quad \frac{m}{L^{3}} \quad \frac{M}{L t} \quad \frac{M}{t^{2}} \quad L \quad r=3 \text { primary dimensions }
$$

(4) $\rho, D, v \quad m=r=3$ repeating parameters
(5) Then $n-n=3$ dimensionless groups will result. Setting up dimensional equations
)
$M^{\circ} L^{0}=\left(\frac{m}{b}\right)^{b}(b)^{c} L$
Summing exponent,

$$
\pi_{2}=p^{a} v^{b} v^{c} \mu
$$

$$
\begin{aligned}
& 6^{a} b^{b} v^{c} \sigma \\
& m j^{a} b c^{c}
\end{aligned}
$$

$$
\pi_{3}=e^{a} p^{b} v^{c} \sigma
$$

$$
\left.M^{\circ} L^{-}=\left(\frac{m}{3}\right)^{a} b(t)\right)^{c} \frac{m}{t^{2}}
$$

M: $\quad a=0 \quad 10$
t: $\quad-c=0$
Sunning exponents
Sumnnigexponents

$$
\begin{array}{l|ll}
M: \quad a+1=0 & M: \quad a+1=0 \\
L:-3 a+b+c-1=0 & \ddots & -3 a+b+c=0 \\
t:-c-1=0 & t: & -c-2=0
\end{array}
$$

ie. $a=0$
$c=0$

$$
b=-1
$$

$$
\therefore \pi_{1}=\frac{d}{>}
$$

ie. $a=-1$
$c=-1$

$$
b=3 a-c+1=-1
$$

$$
\therefore \pi_{2}=\frac{\mu}{\left.\rho^{v}\right\rangle}
$$

(b) Check using F.L, t dimensions

$$
\pi_{1}=\frac{L}{L}=[]^{V} \quad \pi_{2}=\frac{F t}{L^{2}} \cdot \frac{L^{4}}{F t^{2}} \cdot \frac{t}{L} \cdot \frac{1}{L}=[i]^{\prime} \quad \pi_{3}=F \cdot \frac{N^{\prime}}{F t^{2}} \cdot \frac{1}{L} \cdot \frac{t^{2}}{L^{2}}=[i]^{\prime}
$$

)

$$
\begin{aligned}
& \text { (ie. } a=-1 \\
& c=-2 \\
& \therefore \pi_{3}=\frac{\sigma}{\rho \sqrt{v}}
\end{aligned}
$$

[^0]Given: That dot size depends on ink viscosity, density, and surface tension, and geometry
Find: Π groups

Solution:

We will use the workbook of Example 7.1, modified for the current problem

The number of parameters is:
The number of primary dimensions is:
The number of repeat parameters is:
The number of Π groups is:
$n=7$
$r=3$
$m=r=3$
$n-m=4$

Enter the dimensions ($\mathbf{M}, \mathbf{L}, \mathbf{t}$) of
the repeating parameters, and of up to
four other parameters (for up to four Π groups).
The spreadsheet will compute the exponents a, b, and c for each.

REPEATING PARAMETERS: Choose $\rho, \boldsymbol{V}, \boldsymbol{D}$

П GROUPS:

	M	L	t		M	L
d	0	1	0	μ	1	-1
$\Pi_{1}:$	$a=$ $b=$ $c=$	0 0 -1		Π_{2} :	$a=$ $b=$ $c=$	-1 -1 -1

	M	L	t		M	L
σ	1	0	-2	L	0	1
$\Pi_{3}:$	$a=$ $b=$ $c=$	-1 -2 -1		$\Pi_{4}:$	$a=$ $b=$ $c=$	0 0 -1

Hence

$$
\Pi_{1}=\frac{d}{D} \quad \Pi_{2}=\frac{\mu}{\rho V D} \rightarrow \frac{\rho V D}{\mu} \quad \Pi_{3}=\frac{\sigma}{\rho V^{2} D} \quad \Pi_{4}=\frac{L}{D}
$$

Note that groups Π_{1} and Π_{4} can be obtained by inspection

Problem 7.31
Given: Ball in jet

$$
h=h(d, D, \rho, v, \mu, w)
$$

Find: p_{i} parameters
Solution: Apply Buckingham procedure
(1) $\quad h d \quad D \rho V \mu \quad \omega \quad n=7$
(2) M, L, t
(3) $L L L \frac{M}{L^{3}} \leq \frac{M}{L t} \frac{M L}{t^{2}} \quad m=3 \quad n-m=7-3=4$ parameters
(4) Choose ρ, V, d as repeating parameters.
(5) $P^{a} V^{b} d^{c} W=\left(\frac{M}{L^{3}}\right)^{a}\left(\frac{L}{t}\right)^{b}(L)^{c} \frac{M L}{t^{t}}=N 0 L^{a} t^{0}$

$$
\begin{array}{ll}
\text { M: } a+1=0 & a=-1 \\
L:-3 a+b+c+1=0 & \\
t:-b-z=0 & b=-2
\end{array}
$$

(6) Check: $F_{\times} \frac{L^{4}}{F t^{2}} \frac{t^{2}}{L^{2}} \times \frac{1}{L^{2}}=1 \ldots$

$$
\begin{aligned}
& \pi_{2}=\rho^{a} v^{b} d^{0} \mu=\frac{\mu}{\rho v^{d}} \\
& \pi_{3}=\rho^{a} v^{b} d^{c} h=\frac{h}{d} \\
& \pi_{4}=\rho^{a} v^{b} d^{c} D=\frac{D}{d}
\end{aligned}
$$

7.32 The terminal speed V of shipping boxes sliding down an incline on a layer of air (injected through numerous pinholes in the incline surface) depends on the box mass, m, and base area, A, gravity, g, the incline angle, θ, the air viscosity, μ, and the air layer thickness, δ. Use dimensional analysis to find the Π parameters that characterize this phenomenon.

Given: Speed depends on mass, area, gravity, slope, and air viscosity and thickness
Find: Π groups

Solution:

We will use the workbook of Example 7.1, modified for the current problem

The number of parameters is:
The number of primary dimensions is:
The number of repeat parameters is:
The number of Π groups is:
$n=7$
$r=3$
$m=r=3$
$n-m=4$

Enter the dimensions ($\mathbf{M}, \mathbf{L}, \mathbf{t}$) of the repeating parameters, and of up to
four other parameters (for up to four Π groups).
The spreadsheet will compute the exponents a, b, and c for each.
REPEATING PARAMETERS: Choose $\boldsymbol{g}, \boldsymbol{\delta}, \boldsymbol{m}$

Π GROUPS:

	M	L
V	0	1
$\Pi_{1}:$	$a=$	-0.5
	$b=$	-0.5
	$c=$	0

		\mathbf{M}
μ	1	\mathbf{L}
		-1
$\Pi_{2}:$		$=$
		$=$
		$-\mathbf{0 . 5}$
		$\mathbf{1 . 5}$

Note that the Π_{1}, Π_{3} and Π_{4} groups can be obtained by inspection

[^1]Given: Bubble size depends on viscosity, density, surface tension, geometry and pressure
Find: П groups

Solution:

We will use the workbook of Example 7.1, modified for the current problem

The number of parameters is:
The number of primary dimensions is:
The number of repeat parameters is:
The number of Π groups is:
$n=6$
$r=3$
$m=r=3$
$n-m=3$

Enter the dimensions ($\mathbf{M}, \mathbf{L}, \mathbf{t}$) of
the repeating parameters, and of up to
four other parameters (for up to four Π groups).
The spreadsheet will compute the exponents a, b, and c for each.

REPEATING PARAMETERS: Choose $\rho, \Delta p, D$

П GROUPS:

Note that the Π_{1} group can be obtained by inspection
7.34 A washing machine agitator is to be designed. The power, \mathscr{P}, required for the agitator is to be correlated with the amount of water used (indicated by the depth, H, of the water). It also depends on the agitator diameter, D, height, h, maximum angular velocity, $\omega_{\max }$, and frequency of oscillations, f, and water density, ρ, and viscosity, μ. Determine the dimensionless parameters that characterize this problem.

Given: That the power of a washing machine agitator depends on various parameters

Find:

Dimensionless groups

Solution:

Apply the Buckingham П procedure
(1) $\boldsymbol{P} \quad H$
$H \quad D \quad h$
$\omega_{\max } \quad f$
$\rho \quad \mu$
$n=8$ parameters
(2) Select primary dimensions M, L, t
(3) $\left\{\begin{array}{cccccccc}\mathcal{P} & H & D & h & \omega_{\max } & f & \rho & \mu \\ \frac{M L^{2}}{t^{3}} & L & L & L & \frac{1}{t} & \frac{1}{t} & \frac{M}{L^{3}} & \frac{M}{L t}\end{array}\right\} \quad r=3$ primary dimensions
(4) $\rho \quad D \quad \omega_{\max } \quad m=r=3$ repeat parameters
(5) Then $n-m=5$ dimensionless groups will result. Setting up a dimensional equation,

Summing exponents,

$$
\Pi_{1}=\rho^{a} D^{b} \omega_{\max }^{c} \mathcal{P}=\left(\frac{M}{L^{3}}\right)^{a}(L)^{b}\left(\frac{1}{t}\right)^{c} \frac{M L^{2}}{t^{3}}=M^{0} L^{0} t^{0}
$$

$$
\begin{array}{cc|c}
M: & a+1=0 & a=-1 \\
L: & -3 a+b+2=0 & b=-5 \quad \text { Hence } \\
t: & -c-3=0 & c=-3
\end{array} \begin{aligned}
& \Pi_{2}=\rho^{a} D^{b} \omega_{\max }^{c} \mu=\left(\frac{M}{L^{3}}\right)^{a}(L)^{b}\left(\frac{1}{t}\right)^{c} \frac{M}{L t}=M^{0} L^{0} t^{0}
\end{aligned}
$$

$$
\begin{array}{cc|c}
M: & a+1=0 & a=-1 \\
L: & -3 a+b-1=0 & b=-2 \\
t: & -c-1=0 & c=-1
\end{array} \quad \text { Hence } \quad \Pi_{2}
$$

(6) Check using F, L, t as primary dimensions

$$
\Pi_{1}=\frac{\frac{F L}{t}}{\frac{F t^{2}}{L^{4}} L^{5} \frac{1}{t^{3}}}=[1] \quad \Pi_{2}=\frac{\frac{F t}{L^{2}}}{\frac{F t^{2}}{L^{4}} L^{2} \frac{1}{t}}=[1] \quad \quad \Pi_{3}=\Pi_{4}=\Pi_{5}=[1]
$$

Note: Any combination of Π 's is a Π group, e.g., $\quad \frac{\Pi_{1}}{\Pi_{2}}=\frac{\mathcal{P}}{D^{3} \omega_{\max }^{2} \mu}$, so the Π 's are not unique!
7.35 The time, t, for a flywheel, with moment of inertia, I, to
reach angular velocity, ω, from rest, depends on the applied torque,
T, and the following flywheel bearing properties: the oil viscosity,
μ, gap, δ, diameter, D, and length, L. Use dimensional analysis to
find the Π parameters that characterize this phenomenon.

Given: Time to speed up depends on inertia, speed, torque, oil viscosity and geometry
Find: Π groups

Solution:

We will use the workbook of Example 7.1, modified for the current problem

The number of parameters is:
The number of primary dimensions is:
The number of repeat parameters is:
The number of Π groups is:

$$
n=8
$$

$$
r=3
$$

$$
m=r=3
$$

$$
n-m=5
$$

Enter the dimensions ($\mathbf{M}, \mathbf{L}, \mathbf{t}$) of
the repeating parameters, and of up to
four other parameters (for up to four Π groups).
The spreadsheet will compute the exponents a, b, and c for each.

REPEATING PARAMETERS: Choose $\omega, \boldsymbol{D}, \boldsymbol{T}$

П GROUPS:

Two Π groups can be obtained by inspection: δ / \boldsymbol{D} and $\boldsymbol{L} / \boldsymbol{D}$. The others are obtained below

	\mathbf{M}	\mathbf{L}
t	0	0
$\Pi_{1}:$	$a=$	$\mathbf{1}$
	$b=$	$\mathbf{0}$
	$=$	$\mathbf{0}$

	\mathbf{M}	\mathbf{L}	\mathbf{t}
μ	1	-1	-1

	M	L
I	1	2
$\Pi_{3}:$	a	2
	$b=$	0
	$c=$	-1

	\mathbf{M} 0
$\Pi_{4}:$	\mathbf{L} 0
	$=$
b	$=$
c	$\mathbf{0}$

Hence the Π groups are

$$
t \omega \quad \frac{\delta}{D} \quad \frac{L}{D} \quad \frac{\mu \omega D^{3}}{T} \quad \frac{I \omega^{2}}{T}
$$

Note that the Π_{1} group can also be easily obtained by inspection

Given: Pressurized tank drained through a smooth nozzle, area A.

$$
\dot{m}=\dot{m}(\Delta p, h, \rho, A, g)
$$

Find: (a) Number of independent dimensionless parameters.
(b) Obtain the parameters.
(c) State the functional relationship for m.

Solution: Apply the Buckingham I-theorem.
(1) $\dot{m} \quad \Delta p \quad \rho \quad A \quad g \quad n=6$ parameters
(2) select M, L, t as primary dimensions
(3) $\frac{M}{t} \quad \frac{M}{L^{2}} \quad L \quad \frac{M}{L^{3}} \quad L^{2} \quad \frac{L}{t^{2}} \quad r=3$ primary dimensions
(4) Choose ρ, A, g as repeating parameters.
(5) Then $n-m=6-3=3$ dimensionless parameters result.

set up dimensional equations:

$$
\begin{array}{l|l|c}
\Pi_{1}=\rho^{a} A^{b} g^{c} \dot{m} & \Pi_{2}=\rho^{a} A^{b} g^{c} \Delta p & \pi_{3}=\rho^{a} A^{b} g^{c} h \\
M^{0} L^{0} t^{0}=\left(\frac{M}{L^{3}}\right)^{a}\left(L^{2}\right)^{b}\left(\frac{L}{t^{2}}\right)^{c} \frac{M}{t} & M^{0} L^{0} t^{0}=\left(\frac{M}{L^{3}}\right)^{a}\left(L^{b}\right)^{b}\left(\frac{L}{t^{2}}\right)^{c} \frac{M}{L^{2}} & M^{0} L^{0} t^{0}=\left(\frac{M}{L}\right)^{a}\left(L^{2}\right)^{b}\left(\frac{L}{t^{2}}\right)^{c} L
\end{array}
$$

Equating exponents: equatrig exponents:

$$
M: a=0 \quad a=0
$$

$$
\begin{aligned}
& 6-3 a+2 b+c+1=0 \\
& t ;-2 c+0=0 \quad c=0
\end{aligned}
$$

$$
\therefore b=\frac{1}{2}(-1+3 a-c)=-\frac{1}{2}
$$

$$
\pi_{3}=\frac{h}{A^{1 / 2}}
$$

(6) Check using $F L t$ dincosions: $\dot{m}=\frac{M}{t} \frac{F t^{2}}{M L}=\frac{F t}{L} ; \rho=\frac{M}{L^{3}} \frac{F t^{2}}{M L}=\frac{F t^{2}}{L^{4}}$

$$
\pi_{1}=\frac{F t}{L} \frac{L^{4}}{F t^{2}} \frac{1}{L^{5 / 2}} \frac{t}{L^{1 / 2}}=[1]^{v} \quad\left|\pi_{2}=\frac{F}{L^{2}} \frac{L^{*}}{F} \frac{1}{L} \frac{t^{2}}{L}=[1] \omega v \quad\right| \pi_{3}=\frac{L}{L}=[1] \omega
$$

Thus

$$
\mathbb{T}_{1}=f\left(\pi_{2}, \pi_{3}\right) \quad \frac{\dot{m}}{\rho A^{5 / 4 g^{1 / 2}}}=f\left(\frac{\Delta p}{\rho A^{1 / 2} g}, \frac{h}{A^{1 / 2}}\right)
$$

or

$$
\dot{m}=\rho A^{5 / 4} g^{1 / 2} f\left(\frac{\Delta p}{\rho A^{1 / 2 g}}, \frac{h}{A^{1 / 2}}\right)
$$

$$
\begin{aligned}
& \text { M: } a+1=0 \quad a=-1, M: a+1=0 \quad a=-1 \\
& \text { L: }-3 a+2 b+c=0 \\
& t:-2 c-1=0 \\
& c=-\frac{1}{2} \left\lvert\, \begin{array}{l}
1:-3 a+2 b+c-1=0 \\
t:-2 c-2=0
\end{array}\right. \\
& c=-1 \\
& \therefore b=\frac{1}{2}(3 a-c)=-\frac{5}{4} \\
& \therefore b=\frac{1}{2}(1+3 a-c)=-\frac{1}{2} \\
& \pi_{1}=\frac{\dot{m}}{p A^{5 / 4} g^{1 / 2}} \\
& \pi_{2}=\frac{\Delta p}{\rho A^{1 / 2} g}
\end{aligned}
$$

7.37 The ventilation in the clubhouse on a cruise ship is insufficient to clear cigarette smoke (the ship is not yet completely smoke-free). Tests are to be done to see if a larger extractor fan will work. The concentration of smoke, c (particles per cubic meter) depends on the number of smokers, N, the pressure drop produced by the fan, Δp, the fan diameter, D, motor speed, ω, the particle and air densities, ρ_{p}, and ρ, respectively, gravity, g, and air viscosity, μ. Determine the dimensionless parameters that characterize this problem.

Given:

Ventilation system of cruise ship clubhouse
Find:
Dimensionless groups

Solution:

Apply the Buckingham Π procedure

(1) | c | N | Δp | D | ω | ρ_{p} | ρ | g | μ | $n=9$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |

(2) Select primary dimensions M, L, t
(3) $\left\{\begin{array}{ccccccccc}c & N & \Delta p & D & \omega & \rho_{p} & \rho & g & \mu \\ \frac{1}{L^{3}} & 1 & \frac{M}{L t^{2}} & L & \frac{1}{t} & \frac{M}{L^{3}} & \frac{M}{L^{3}} & \frac{L}{t^{2}} & \frac{M}{L t}\end{array}\right\} \quad r=3$ primary dimensions
(4) $\rho \quad D \quad \omega \quad m=r=3$ repeat parameters
(5) Then $n-m=6$ dimensionless groups will result. Setting up a dimensional equation,

Summing exponents,

$$
\Pi_{2}=\rho^{a} D^{b} \omega^{c} \mu=\left(\frac{M}{L^{3}}\right)^{a}(L)^{b}\left(\frac{1}{t}\right)^{c} \frac{M}{L t}=M^{0} L^{0} t^{0}
$$

Summing exponents,

$$
\Pi_{1}=\rho^{a} D^{b} \omega^{c} \Delta p=\left(\frac{M}{L^{3}}\right)^{a}(L)^{b}\left(\frac{1}{t}\right)^{c} \frac{M}{L t^{2}}=M^{0} L^{0} t^{0}
$$

$$
\begin{array}{cc|c}
M: & a+1=0 & a=-1 \\
L: & -3 a+b-1=0 & b=-2 \\
t: & -c-2=0 & c=-2
\end{array} \quad \text { Hence } \quad \Pi_{1}=\frac{\Delta p}{\rho D^{2} \omega^{2}}
$$

$$
\begin{array}{cc|c}
M: & a+1=0 & a=-1 \\
L: & -3 a+b-1=0 & b=-2 \\
t: & -c-1=0 & c=-1
\end{array} \quad \text { Hence } \quad \Pi_{2}=\frac{\mu}{\rho D^{2} \omega}
$$

The other Π groups can be found by inspection: $\quad \Pi_{3}=c D^{3} \quad \Pi_{4}=N \quad \Pi_{5}=\frac{\rho_{p}}{\rho} \quad \Pi_{6}=\frac{g}{D \omega^{2}}$
(6) Check using F, L, t as primary dimensions

$$
\Pi_{1}=\frac{\frac{F}{L^{2}}}{\frac{F t^{2}}{L^{4}} L^{2} \frac{1}{t^{2}}}=[1] \quad \Pi_{2}=\frac{\frac{F t}{L^{2}}}{\frac{F t^{2}}{L^{4}} L^{2} \frac{1}{t}}=[1] \quad \quad \Pi_{3}=\Pi_{4}=\Pi_{5}=\Pi_{6}=[1]
$$

Note: Any combination of Π 's is a Π group, e.g., $\quad \frac{\Pi_{1}}{\Pi_{2}}=\frac{\Delta p}{\omega \mu}$, so the Π 's are not unique!

Problem 7.38
Given: Aerodynamic torque on spinning ball,

$$
T=f(v, \rho, \mu, D, \omega, d)
$$

Find: Dimensionless parameters
Solution: Apply Buckinghamprocedure.

(1)List: T $\vee \rho \mu \quad D \quad \omega \quad n=7$
(2) Choose M, L, t
(3) $\frac{M L^{2}}{t^{2}} \frac{L}{t} \quad \frac{M}{L^{3}} \quad \frac{M}{L t} \quad L \quad \frac{1}{t} L \quad m=3$
(4) Choose ρ, V, D

$$
n-m=4 \text { parameters }
$$

(5)

$$
\begin{array}{ll}
\pi_{1}=\rho^{a} V^{b} D^{c} T=\left(\frac{M}{L^{3}}\right)^{a}\left(\frac{L}{t}\right)^{b}(L)^{c} \frac{M L^{b}}{t}=N^{0} C^{0} t^{0} \\
M: a+1=0 & a=-1 \\
L:-3 a+b+c+z=0 & b=-2
\end{array}
$$

(6) Check: $\pi_{1}=F L_{*} \frac{L^{4}}{F t^{2}} * \frac{t^{2}}{L^{2}} \times \frac{1}{L^{3}}=1 \cdots$

$$
\begin{aligned}
& \pi_{2}=\frac{\mu}{\rho v D} \\
& \pi_{3}=\frac{\omega D}{v} \\
& \pi_{4}=\frac{d}{D}
\end{aligned}
$$

$$
\begin{aligned}
& \pi_{1}=f\left(\pi_{2}, \pi_{3}, \pi_{4}\right) \\
& \frac{T}{\rho v^{2} D^{3}}=f\left(\frac{\mu}{\rho V D}, \frac{\omega D}{v}, \frac{d}{D}\right)
\end{aligned}
$$

Given: Paver loss, ${ }^{8}$, depends on : lergh, t, dianter, ${ }^{2}$; dearance, 4; angulor speed, w; viscosity, μ; Nean pressure, f '.
Find: (s) Dmersionles -paraneters that Caracterize the problen (b) Furktional form of dependence of Q on parametars.

Solution: Apply Buckinghom r-Peorem

(C) Select F, t, as primary dimensions
(3) $\begin{array}{lllllll}B & l & G & \omega & \mu & e \\ \frac{F L}{t} & L & L & L & \frac{F t}{L^{2}} & \frac{F}{L^{2}}\end{array}$
(4) $D, w,-p \quad n=r=3$ repeating paraneters
(5) Then $n-n=4$ dirensiontess groups will result.

Settring up dinensional equations

$$
\begin{aligned}
& \left.\pi_{1}=\right\rangle^{a} \omega^{b} p^{e} e \quad\left|\pi_{2}=y^{a} \omega^{b}+p^{e}+\left|\pi_{3}=y^{a} \omega^{b} p^{e} c \quad\right| \pi_{k}=y^{a} \omega^{b} e^{e}\right.
\end{aligned}
$$

Equating exponents, Equating exponents! Equating exponents! Equating exponents,

$$
\begin{aligned}
& F: 0=e+1 \quad \mid F: 0=e \\
& \text { L: } \quad 0=a-2 e+1 \quad \therefore \quad 0=a-2 e+1 \\
& \text { t: } 0=-b-1 \\
& \text { it } o=-b \\
& \therefore e=-1 \\
& a=-3 \\
& \therefore e=0 \\
& b=-1 \\
& \pi=\frac{\beta}{\left.-\beta_{\omega}\right\rangle^{3}} \\
& F: \quad 0=e \\
& 0=a-2 e+1 \\
& 0=-b \\
& \therefore e=0 \\
& \therefore e=-1 \\
& a=-1 \\
& a=0 \\
& b=0 \\
& b=1 \\
& \pi_{3}=\frac{c}{y} \quad \pi_{4}=\frac{\mu \omega}{-p}
\end{aligned}
$$

Then, $\frac{Q}{\langle\omega\rangle^{3}}=f\left(\frac{\mu \omega}{f}, \frac{c}{D}, \frac{k}{\rangle}\right)$
(6) Geck using M, t durienbions

$$
\begin{aligned}
& \pi_{1}=\frac{m^{2}}{t^{3}} \times \frac{L^{2}}{r^{2}} \times \frac{1}{L^{3}}=[1] \\
& \pi_{2}=\frac{2}{2}=[1] \quad \pi_{3}=\frac{2}{2}=[1]^{2} \\
& \pi_{4}=\frac{M}{t} \times \frac{1}{M}=[]^{2}
\end{aligned}
$$

Given: Thrust, F_{t}, of a marine prapeller is hougit to depend on: P (woter dersity), $)$ (dianeiter), $\$ (speed of advance) 9 (acceleration 8 grauity), w (angular spead of propeller), \rightarrow (-pressure in He liqued), and Pe(liquidviscostity)
Find: Dimessionless paraneless that characterize propelter -performance.
Solution: Apply Buckinghan π-theorem
(1) his: $F_{t} e^{\prime}+9 w$ p $\mu \quad(n=8)$
(2) Chocse M,L,t as primary dumersions
(3) YMersios: $\frac{M}{t^{2}} \frac{M}{L^{3}} \leq \frac{L}{t} \frac{1}{t} \frac{M}{t^{2}} \frac{M}{t}$
(4) Reperating wariables $p \geqslant,\rangle \quad m=r=3$
(3) Then $n=m=5$ dinensionles groups will result
setting up dumensional equations

$$
\begin{aligned}
& \pi_{1}=\rho^{a} b^{b} y^{c} F_{t} \\
& \text { Niet }=\left(\frac{n}{B}\right)^{0}(t)^{c} L^{c} \frac{n}{t^{2}} \quad\left\{\begin{array}{l}
M: 0=a+1 \\
t: 0=-b-2 \\
i: 0=-3 a+b+c+1
\end{array}\right\} \begin{array}{l}
a=-1 \\
b=-2 \\
c=-2
\end{array} \quad \therefore \pi=\frac{F_{t}}{\rho^{\left.v^{2}\right\rangle^{2}}}
\end{aligned}
$$

$$
\begin{aligned}
& \pi_{3}=p^{x} j^{j} p^{c} \omega
\end{aligned}
$$

Vinensociless paranders are $\frac{F_{t}}{p^{2} y^{2}}, ~ \frac{g y}{3}, \frac{w y}{y}, \frac{p^{2}}{p^{2}}, ~ \frac{\mu}{p y y}$ \qquad
(e) Greck using F, i, t

$$
\begin{aligned}
& \pi_{1}=F \times \frac{L^{2}}{F t^{2}} \frac{L^{2}}{L^{2}}+\frac{1}{L_{2}}=[]^{2} \quad \pi_{2}=\frac{L}{t^{2}}{ }^{2}+\frac{t^{2}}{L^{2}}=[i] \\
& \pi_{3}=\frac{1}{t} \times L+\frac{t}{L}=[1], \pi_{4}=\frac{F}{V^{2}}+\frac{\frac{L}{F}}{F^{2}} \times \frac{t^{2}}{L^{2}}=[.]
\end{aligned}
$$

Given: Fan-assisted convection oven; \dot{Q} = heat trans for rate (energy/time).

$$
\dot{Q}=f\left(c_{p}, \Theta, L, Q, \mu, V\right)
$$

Find: (a) Number of basic dimensions neluded in these variabks.
(b) Number of 7 -parameters.
(c) Obtain the parameters.

Solution: Apply the Buckingham π-theorem.
(1) $\dot{Q} \quad C_{\rho}$
$\rho \quad \mu$ $v \quad n=7$ parameters
(2) Select F, L, t, T (temperature) as primary dimensions.
(3) $\frac{F L}{t} \frac{L^{2}}{t^{2} T}$
(4) Choose ρ, V, L, Θ as repeating parameters.
(5) Then $n-m=7-4=3$ dimensionless parameters result.

$$
m=r=4
$$ 4 primary dimensions

$\left.-\frac{F t^{2}}{L^{4}}\right)^{c}\left(\frac{L}{t}\right)^{d}\left(L l^{c}(T)^{d} \frac{F_{t}}{L^{2}}\right.$

$$
\begin{aligned}
& \text { Equating exponents: } \\
& \text { Equating exponents: } \\
& \begin{array}{l|l|l}
\Pi_{1}=\rho^{a} V^{b} L^{c} \theta^{d} \dot{Q} & \Pi_{2}=\rho^{a} V^{b} L^{c} \theta^{d} c_{\rho} & \Pi_{3}=\rho^{a} V_{L}^{L_{L} \theta^{d} \mu}
\end{array} \\
& F^{0} L^{0} t^{0} T^{D}=\left(\frac{F_{t}^{2}}{L^{2}}\right)^{a}\left(\frac{L}{t}\right)^{q}()^{c}(T)^{d} \frac{F L}{t} \\
& F^{0} L^{0} t^{a} T^{0}=\left(\frac{\mathcal{F L}^{2}}{L^{4}}\right)^{a}\left(\frac{L}{t}\right)^{6}\left(\omega^{c}(T)^{d} \frac{L^{2}}{C^{T} T}\right. \\
& F^{0} L^{0} t^{0} T^{0}=\left(\frac{F t^{2}}{L^{4}}\right)^{a}\left(\frac{L}{t}\right)^{b}\left(L^{c}(T)^{d} \frac{F t}{L^{2}}\right. \\
& \begin{array}{ll|l}
F: a+1=0 & a=-1 & \text { ai } a=0
\end{array} a=0 \\
& \text { L: }-4 a+b+c+1=0 \\
& t: 2 a-b-1=0 \\
& \begin{array}{l}
\text { L: }-4 a+b+c+2 \\
\text { t: } 2 a-b-2=0
\end{array} \\
& \text { F: } a+1=0 \quad a=-1 \\
& T: d=0 \\
& T: d-1=0 \\
& d=1 \\
& \text { T: } d=0 \\
& \begin{array}{l}
\text { f. } d=0 \\
\therefore c=-1+4 a-b=-2
\end{array} \\
& T_{1}=\frac{\dot{Q}}{\rho V^{3} L^{2}} \\
& \therefore c=-2+4 a-b=0 \\
& \therefore c=2+4 a-b=-1 \\
& \pi_{2}=\frac{C \theta}{V^{2}} \\
& \text { Equating exponents: }
\end{aligned}
$$

Set up dimensional equations:
(6) Check, Lasing MLt T dimensions: $\dot{Q}=M L^{2} / t^{3} ; \mu=M / L t$

$$
\Pi_{1}=\frac{M L^{2} L^{3} \frac{t^{3}}{t^{3}} \frac{1}{L^{3}} L^{2}}{L^{2}}=[1] v v \quad\left|\pi_{L}=\frac{L^{2}}{t^{2} T}{ }^{\top} \frac{t^{2}}{L^{2}}=[1] v v \quad\right| \pi_{3}=\frac{M}{L E} \frac{L^{3} \frac{t}{M} \frac{1}{L}=[1] v v}{}
$$

Thus

$$
\pi_{1}=f\left(\pi_{2}, \pi_{3}\right) \quad \frac{\dot{Q}}{\rho V^{3} L^{2}}=f\left(\frac{c_{\rho} \theta}{V^{2}}, \frac{\mu}{\alpha V L}\right)
$$

or

$$
\dot{Q}=\rho V^{3} L^{2} f\left(\frac{C_{\rho} \Theta}{V^{2}}, \frac{\mu}{\rho V L}\right)
$$

Given: Power, B, required to drive a propeller is a function of ψ, D, ω (angular velocity), μ, p, and c (speed of sound)
Find: (a) number of dimensionless groups required To characterize situation (b) the dimensionless groups

Solution: Apply Buckingham π-theorem
(1) $P \ggg \rho p$
(2) Select Mint as primary dimensions
(3) $+\quad$ i $\gg \rho \rho \rho$

$$
\frac{m^{2}}{t^{3}} \stackrel{L}{t} \frac{1}{t} \frac{m}{L^{3}} \stackrel{M}{t}
$$

$x=3$ primary dimensions
(4) $V, 1, p \quad m=r=3$ repeating parameters
(5) Ten $n-n=4$ dimensionless groups will result.

Setting up dimensional equations:

$$
\begin{aligned}
& \pi_{1}=V^{a} b^{b} p^{c} \dot{b}^{d} \\
& M^{0} t^{a}=\left(\frac{L}{t}\right)^{a} b^{b}\left(\frac{n^{3}}{b^{2}}\right)^{2}
\end{aligned}
$$

Summing exponents,

Summing exponents,

$$
\text { M. } \quad c+1=C_{0} \therefore c=-1
$$

$$
\therefore \quad a+b-3 c-1=0
$$

$$
t \quad-a-1=0 \quad \therefore \quad a=-1
$$

$$
b=3 c+1-a=-1
$$

$$
\therefore \pi_{3}=\frac{\mu}{e^{4}}
$$

$$
\begin{aligned}
& \text { M: } \quad c+1=0 \quad \therefore c=-1 \\
& \text { L: } \quad a+b-3 c+2=0 \text {. } \\
& t: \quad-a-3=0 \quad \therefore a=-3 \\
& b=3 c-2-a=-2 \\
& \therefore \pi_{1}=\frac{\theta}{\rho)^{2} y^{3}} \\
& \pi_{3}=v^{a} b^{b} p^{c} \mu \\
& \left.M_{0} L^{\circ}=\left(\frac{6}{t}\right)^{a} L\left(\frac{b}{L}\right)^{c}\right)^{\frac{M}{L}}
\end{aligned}
$$

$$
\begin{aligned}
& \pi_{2}=v^{a} y^{b} p^{c} \omega \\
& M^{0} t^{c}=(b)^{a} b\left(\frac{M}{b^{c}}\right)^{c} t
\end{aligned}
$$

Summing exponents,

$$
\begin{aligned}
& \text { n: } \quad c=0 \\
& \text { n: } \quad a+b-3 c=0
\end{aligned}
$$

$$
t: \quad-a-1=0
$$

$$
b-3 c-a=1
$$

$$
\therefore \pi_{2}=\frac{\omega \nu}{Y}
$$

Summing exponents,

ㄴ. $a+b-3 c+1=0$
t.

$$
-a-1=0 \quad \therefore a=-1
$$

$$
b=3 c-a-1=0
$$

$$
\therefore \pi_{4}=\frac{c}{V}
$$

Dimensionless groups are: $\frac{Q}{\rho \eta^{2} V^{3}}, \frac{\omega}{V}, \frac{\mu}{\rho i}, \frac{c}{V}$
(6) Check using F.W.t

$$
\begin{array}{ll}
\pi_{1}=\frac{F L}{t} \cdot \frac{R^{2}}{F t^{2}} \frac{1}{2^{2}} \frac{\frac{1}{3}_{3}^{2}}{L^{2}} & \pi_{2}=\frac{1}{t} L=[]^{2} \\
\pi_{3}=\frac{1}{R_{2}}=[]^{2} & \pi_{4}=\frac{L}{t}=[i]^{2}
\end{array}
$$

$$
\begin{aligned}
& \pi_{4}=v^{a} b^{b} p^{c} c \\
& M^{\circ} \mathrm{CO}=\left(\frac{L}{t}\right)^{a} b\left(\frac{n}{L^{3}}\right)^{c} \frac{h}{t}
\end{aligned}
$$

7.43 The rate $d T / d t$ at which the temperature T at the center of a rice kernel falls during a food technology process is critical-too high a value leads to cracking of the kernel, and too low a value makes the process slow and costly. The rate depends on the rice specific heat, c, thermal conductivity, k, and size, L, as well as the cooling air specific heat, c_{p}, density, ρ, viscosity, μ, and speed, V. How many basic dimensions are included in these variables? Determine the Π parameters for this problem.

Given:

That the cooling rate depends on rice properties and air properties
Find:
The П groups

Solution:

Apply the Buckingham Π procedure

(2) Select primary dimensions M, L, t and T (temperature)
(3)

$$
d T / d t \quad c \quad k \quad L \quad c_{p} \quad \rho \quad \mu \quad V
$$

$$
\frac{T}{t} \quad \frac{L^{2}}{t^{2} T} \quad \frac{M L}{t^{2} T} \quad L \quad \frac{L^{2}}{t^{2} T} \quad \frac{M}{L^{3}} \quad \frac{M}{L t} \quad \frac{L}{t}
$$

(4) $V \quad L \quad c_{p} \quad m=r=4$ repeat parameters

Then $n-m=4$ dimensionless groups will result. By inspection, one Π group is c / c_{p}. Setting up a dimensional equation,

$$
\Pi_{1}=V^{a} \rho^{b} L^{c} c_{p}^{d} \frac{d T}{d t}=\left(\frac{L}{t}\right)^{a}\left(\frac{M}{L^{3}}\right)^{b}(L)^{c}\left(\frac{L^{2}}{t^{2} T}\right)^{d} \frac{T}{t}=T^{0} M^{0} L^{0} t^{0}
$$

Summing exponents,

$$
\begin{array}{cc|c}
T: & -d+1=0 & d=1 \\
M: & b=0 & b=0 \\
L: & a-3 b+c+2 d=0 & a+c=-2 \rightarrow c=1 \\
t: & -a-2 d-1=0 & a=-3
\end{array}
$$

Hence $\quad \Pi_{1}=\frac{d T}{d t} \frac{L c_{p}}{V^{3}}$
By a similar process, we find $\quad \Pi_{2}=\frac{k}{\rho L^{2} c_{p}} \quad$ and $\quad \Pi_{3}=\frac{\mu}{\rho L V}$
Hence

$$
\frac{d T}{d t} \frac{L c_{p}}{V^{3}}=f\left(\frac{c}{c_{p}}, \frac{k}{\rho L^{2} c_{p}}, \frac{\mu}{\rho L V}\right)
$$

Given: Water hammer caused by sudden closure of value in pipeline.

$$
p_{\max }=f\left(f, U_{0}, E_{v}\right)
$$

Find: (a) How many dimenseontess groups needed to characterize?
(b) Functional relationship in terms of $\Pi 7$ Groups.

Solution: Step (1): List $p_{\max } \quad \rho \quad \omega_{0} \quad E_{v}$
Step (2): Choose M,L,t
Step 3 :

$$
\frac{M}{L^{2}} \quad \frac{M}{L^{3}} \quad \frac{L}{t} \quad \frac{M}{C t^{2}}
$$

For this matrix, $r=2$
Step (4): Choose (,V_{0}
step (5):

$$
\left.\begin{array}{ll}
\pi_{1}=\rho^{a} V_{0}^{b} \rho_{\text {max }}=\left(\frac{M}{L^{3}}\right)^{a}\left(\frac{L}{t}\right)^{b} \frac{M}{L t^{2}}=M_{0}^{0} L^{0} \\
M: a+1=0 \quad a=-1 \\
L:-3 a+b-1=0 & b=-2
\end{array}\right\} r \quad \pi_{1}=\frac{p_{\max }}{\rho U_{0}^{2}} .
$$

By inspection
Step (6): Check using FLt: $\rho \times \frac{M}{L^{3}} \times \frac{F t^{2}}{M L}=\frac{F_{t^{2}}}{L^{4}}$

$$
\pi_{1}=\frac{F}{L^{2}} \frac{L^{4}}{F t^{2}} \frac{t^{2}}{L^{2}}=\frac{F L^{4} t^{2}}{F L^{4} t^{2}}=1
$$

The functional relationship is $\pi_{1}=f\left(\pi_{2}\right)$, Thus

$$
\frac{p_{\max }}{\rho V_{0}^{2}}=f\left(\frac{E_{V}}{\rho V_{0}^{2}}\right)
$$

7.45 The fluid velocity u at any point in a boundary layer depends on the distance y of the point above the surface, the freestream velocity U and free-stream velocity gradient $d U / d x$, the fluid kinematic viscosity v, and the boundary layer thickness δ. How many dimensionless groups are required to describe this problem? Find: (a) two Π groups by inspection, (b) one Π that is a standard fluid mechanics group, and (c) any remaining Π groups using the Buckingham Pi theorem.

Given:

Boundary layer profile
Find:
Two Π groups by inspection; One Π that is a standard fluid mechanics group; Dimensionless groups

Solution:

Two obvious Π groups are u / U and y / δ. A dimensionless group common in fluid mechanics is $U \delta / v$ (Reynolds number)
Apply the Buckingham Π procedure
$\begin{array}{lllllll}\text { (1) } & u & y & U & d U / d x & v & \delta\end{array} n=6$ parameters
(2) Select primary dimensions M, L, t
(3) $\left\{\begin{array}{cccccc}u & y & U & d U / d x & v & \delta \\ \frac{L}{t} & L & \frac{L}{t} & \frac{1}{t} & \frac{L^{2}}{t} & L\end{array}\right\} \quad m=r=3$ primary dimensions
(4) $U \quad \delta$
$m=r=2$ repeat parameters
(5) Then $n-m=4$ dimensionless groups will result. We can easily do these by inspection

$$
\Pi_{1}=\frac{u}{U} \quad \Pi_{2}=\frac{y}{\delta} \quad \Pi_{3}=\frac{(d U / d y) \delta}{U} \quad \Pi_{4}=\frac{v}{\delta U}
$$

(6) Check using F, L, t as primary dimensions, is not really needed here

Note: Any combination of П's can be used; they are not unique!

Given: Airship to operate at 20 mbec in standard air Modal built to $1 / 20$ scale tested at sane air temperature. Model is tested at 75 mech

Find: (a) Criterion for dynamic similarity.
b) Wind tunnel pressure.
(c) Prototype drag if drag force on model is 250 N .

Solution.
Dimensional analysis predicts $\frac{F}{p y^{2} L^{2}}=f\left(P \frac{V L}{\mu}\right)$
Consequently for similarity, $\left(\frac{V L}{\mu}\right)_{n}=\left(\frac{V L}{\mu}\right)_{p}$.
Slice is fined, and $\mu_{p}=\mu_{n}$ (because T is the same)

$$
p_{m}=p_{p} \nu_{p} L_{p} L_{m} \frac{\mu_{m}}{\mu_{p}}=p_{p} \frac{20}{55}(2.0)(1)=3.33 p_{p}
$$

From ideal gas law, $P=p R T$

$$
\therefore P_{n}=\frac{P_{n}}{P_{p}}=5.33 \text { and } P_{n}=5.33 P_{p}=5.33 \times 1018 P_{a}=5.39 \times 10^{5} P_{a}-\quad P_{n}
$$

From the force ratios,

$$
F_{7}=F_{m} \frac{p_{0}}{\rho_{n}} \frac{\psi_{f}^{2}}{\psi_{n}^{2}} \frac{L_{n}^{2}}{L_{n}^{2}}=F_{n} \frac{1}{533}\left(\frac{20}{75}\right)^{2}(20)^{2}=5.34 F_{m}
$$

thus

$$
F_{p}=5.34 F_{m}=5.34 \times 250 \mathrm{~N}=1.346 \mathrm{~N}
$$

7.47 The designers of a large tethered pollution-sampling balloon wish to know what the drag will be on the balloon for the maximum anticipated wind speed of $5 \mathrm{~m} / \mathrm{s}$ (the air is assumed to be at $20^{\circ} \mathrm{C}$). A $\frac{1}{20^{-}}$-scale model is built for testing in water at $20^{\circ} \mathrm{C}$. What water speed is required to model the prototype? At this speed the model drag is measured to be 2 kN . What will be the corresponding drag on the prototype?

Given: Model scale for on balloon

Find: Required water model water speed; drag on protype based on model drag

Solution:

From Appendix A (inc. Fig. A.2) $\quad \rho_{\text {air }}=1.24 \cdot \frac{\mathrm{~kg}}{\mathrm{~m}^{3}} \quad \quad \mu_{\text {air }}=1.8 \times 10^{-5} \cdot \frac{\mathrm{~N} \cdot \mathrm{~s}}{\mathrm{~m}^{2}} \quad \rho_{\mathrm{W}}=999 \cdot \frac{\mathrm{~kg}}{\mathrm{~m}^{3}} \quad \quad \mu_{\mathrm{w}}=10^{-3} \cdot \frac{\mathrm{~N} \cdot \mathrm{~s}}{\mathrm{~m}^{2}}$

The given data is

$$
\mathrm{V}_{\text {air }}=5 \cdot \frac{\mathrm{~m}}{\mathrm{~s}} \quad \mathrm{~L}_{\text {ratio }}=20
$$

$$
\mathrm{F}_{\mathrm{W}}=2 \cdot \mathrm{kN}
$$

For dynamic similarity we assume $\frac{\rho_{\mathrm{w}} \cdot \mathrm{V}_{\mathrm{w}} \mathrm{L}_{\mathrm{w}}}{\mu_{\mathrm{W}}}=\frac{\rho_{\text {air }} \mathrm{V}_{\text {air }} \mathrm{L}_{\text {air }}}{\mu_{\text {air }}}$

Then

$$
\mathrm{V}_{\mathrm{W}}=\mathrm{V}_{\mathrm{air}} \frac{\mu_{\mathrm{W}}}{\mu_{\mathrm{air}}} \cdot \frac{\rho_{\mathrm{air}}}{\rho_{\mathrm{W}}} \cdot \frac{\mathrm{~L}_{\mathrm{air}}}{\mathrm{~L}_{\mathrm{W}}}=\mathrm{V}_{\mathrm{air}} \cdot \frac{\mu_{\mathrm{W}}}{\mu_{\mathrm{air}}} \cdot \frac{\rho_{\mathrm{air}}}{\rho_{\mathrm{W}}} \cdot \mathrm{~L}_{\text {ratio }}=5 \cdot \frac{\mathrm{~m}}{\mathrm{~s}} \times\left(\frac{10^{-3}}{1.8 \times 10^{-5}}\right) \times\left(\frac{1.24}{999}\right) \times 20 \quad \mathrm{~V}_{\mathrm{W}}=6.90 \frac{\mathrm{~m}}{\mathrm{~s}}
$$

For the same Reynolds numbers, the drag coefficients will be the same so we have
$\frac{\mathrm{F}_{\text {air }}}{\frac{1}{2} \cdot \rho_{\text {air }} \cdot \mathrm{A}_{\text {air }} \cdot \mathrm{V}_{\text {air }}^{2}}=\frac{\mathrm{F}_{\mathrm{w}}}{\frac{1}{2} \cdot \rho_{\mathrm{W}} \cdot \mathrm{A}_{\mathrm{W}} \cdot \mathrm{V}_{\mathrm{W}}{ }^{2}}$
where

$$
\frac{A_{\text {air }}}{A_{W}}=\left(\frac{L_{\text {air }}}{L_{w}}\right)^{2}=L_{\text {ratio }}^{2}
$$

Hence the prototype drag is

$$
\mathrm{F}_{\text {air }}=\mathrm{F}_{\mathrm{w}} \cdot \frac{\rho_{\text {air }}}{\rho_{\mathrm{W}}} \cdot \mathrm{~L}_{\text {ratio }} 2 \cdot\left(\frac{\mathrm{~V}_{\text {air }}}{\mathrm{V}_{\mathrm{W}}}\right)^{2}=2000 \cdot \mathrm{~N} \times\left(\frac{1.24}{999}\right) \times 20^{2} \times\left(\frac{5}{6.9}\right)^{2} \quad \mathrm{~F}_{\text {air }}=522 \mathrm{~N}
$$

Given: Vessel, to be powered by rotating cylinder. Mode/ to be tested to estimate power neededed to rotate cylinder.

Find: (a) Parameters that should be included.
(b) Important dime iswonkss groceps

Solution: $\theta=f(\rho, \omega, D, \mu, H, V)$
(1) $\rho \quad \omega \quad 0$ н $\quad \rho \quad v \quad \beta \quad n=7$ wind $\left\{\begin{array}{l}\rho \\ v \\ \mu\end{array}\right.$
(2) Choose M, L, t as primary dimensions

(3) $\frac{M}{L^{3}} \quad \frac{1}{t} L \frac{M}{L t} L \frac{L}{t} \frac{M^{2}}{t^{3}} \quad r=3$ primary dimensions
(4) $p, w, 0 \quad m=3$ $m=r=3$ repeating parameters
(5) Then expect $n-m=4$ dimension tess groups

$$
\begin{array}{cc}
\Pi_{1}=\rho^{a} \omega^{b} D^{c} \rho=\left(\frac{M}{L^{3}}\right)^{a}\left(\frac{1}{t}\right)^{t}(c)^{c} \frac{M L^{2}}{t^{3}} \\
M: a+1=0 & a=-1 \\
L:-3 a+c+2=0 & c=-5 \\
t:-b-3=0 & b=-3 \\
\Pi_{1}=\frac{Q}{\rho \omega^{3} D^{5}}
\end{array}
$$

$$
\begin{array}{ll}
\pi_{2}=\rho^{a} \omega^{b} D^{c} V=\left(\frac{M}{3}\right)^{a}\left(\frac{1}{t}\right)^{b}(c)^{c} \frac{L}{t} \\
M: a+0=0 & a=0 \\
L:-3 a+c+1=0 & c=-1 \\
t:-b-1=0 & b=-1
\end{array}
$$

By inspection $\Pi_{3}=\frac{H}{D}$
$\stackrel{\pi}{3}$

$$
M: a+1=0
$$

$$
\pi \quad \left\lvert\, \quad \pi_{z}=\frac{V}{\omega D}\right.
$$

$$
\pi_{3}=\rho^{a} \omega^{b} 0^{c} H
$$

$$
\pi_{4}=\rho^{a} \omega^{b} D^{c} \mu=\left(\frac{M}{L^{3}}\right)^{a}\left(\frac{1}{t}\right)^{t}(C)^{c} \frac{M}{L t}
$$

$a=-1$

$$
a=-1
$$

$$
L:-3 a+c-1=0
$$ $c=-2$

$$
t ;-b-1=0
$$

$$
b=-1
$$

$$
\Pi_{4}=\frac{\mu}{\rho \omega^{2}}
$$

Thus

$$
\pi_{1}=f\left(\pi_{2}, \pi_{3}, \pi_{4}\right) \text { or } \frac{\rho}{\rho \omega^{3} D S}=f\left(\frac{V}{\omega D}, \frac{H}{D}, \frac{\mu}{\rho \omega D^{2}}\right)
$$

\qquad
(6) Check, using $F L, t$

$$
\begin{array}{ll}
\Pi_{1}=\frac{F_{L}}{t} \frac{L^{4}}{F_{t^{2}}} \frac{t^{3}}{1} \frac{L^{5}}{1}=[1] \vee & \pi_{2}=\frac{L}{t} \frac{t}{L} *[1] \vee \\
\Pi_{3}=\frac{L}{L}=[1] \vee & \pi_{4}=\frac{F_{t}}{L^{2}} \frac{L^{4}}{F_{t}} \frac{t}{1} \frac{1}{L^{2}}=[1]
\end{array}
$$

Given: Desire to matin Reynolds number in two flows: one of air and one of water, using the same size model.
Find: Which flow must have the higher speed, and by how much.
Solution: set Rem $=\frac{\rho w V_{w} L_{w}}{\mu_{w}}=R_{e_{a}}=\frac{\rho a V_{a} L_{a}}{\mu_{a}}$
Since $L_{w}=L_{a}$, then $\quad \frac{V_{a}}{V_{w}}=\frac{\rho_{w}}{\rho_{a}} \frac{\mu_{a}}{\mu_{w}}=\frac{V_{a}}{V_{w}}$
From Tables $A .8$ and $A \cdot 10$, at $20^{\circ} \mathrm{C}, \nu_{\omega}=1.00 \times 10^{-6} \mathrm{~m}^{2} / \mathrm{s}$ and $\nu_{2}=1.51 \times 10^{-5} \mathrm{~m}^{2} / \mathrm{s}$.
Thus $\quad \frac{V_{a}}{V_{w}}=1.51 \times 10^{-5} \frac{\mathrm{~m}^{2}}{3} \times \frac{\mathrm{s}}{1.00 \times 10^{-6} \mathrm{~m}^{2}}=15.1$
Therefore V_{a} must be larger than V_{w}. In fact, to match Re,

$$
V_{a}=15.1 V_{w}
$$

Given: Measurements of drag force are made on a model car in a towing tank filed with freshwater; in $h=$ ' ${ }^{\prime}$ is. The diriensicntess force ratio becomes constant at model test speeds about $\psi_{n}=4 \mathrm{mls}$. At this speed the drag force on the model is $F_{D_{M}}=182 N$
Find: (a) state conditions required to assure dynamic similarity between model and prodolyper (b) Determine required speed ratio prolltpt to assure dy namically similar conditions
(c) Calculate expected perdotype drag when operating in our at speed, $\mathrm{H}_{\mathrm{p}}=\mathrm{aoh}$ with.
Solution:
(a) The flows must be geometrically and kinematically similar, and have equal Reynolds numbers to be dynamically simitar.

- geometric similarity requires true model in all respects
- Eniematic similarity requires same flow pallern, ie no free-surface effects or cavitation.
- The problem may be stated as $F_{\nabla}=f(p, V, L, \mu)$. Diriensional anafsis gives

$$
\frac{E_{g} L^{2}}{\rho^{2}} f\left(\frac{\mu}{\rho} L\right)=g\left(R_{e}\right) \text {. }
$$

(b) Matching Reynolds nurnters between Model a prototype flows gives $\varnothing \quad \bigcirc V_{-1 m}^{V_{m}}=\frac{V_{p} h_{p}}{V_{p}} \quad$ Assume $T=20^{\circ} \mathrm{C}$

$$
\begin{equation*}
\frac{V_{n}}{V_{p}}=\frac{V_{m}}{V_{p}} \times \frac{L_{p}}{V_{n}}=1 \times 10^{-6} \frac{n^{2}}{5} \times 1.51 \times 15^{5} \frac{5}{m^{2}}+5=0.331 \tag{m}
\end{equation*}
$$

(c) For dynamically similar conditions, $\left.F^{F_{1}} v^{2}\right)_{m}=\frac{F_{0}}{p^{2}} l_{p}$

$$
\begin{aligned}
& \left.\therefore F_{p p}=F_{m} \frac{p_{p}}{p_{n}} \times\left(\frac{V_{m}}{V_{m}}\right)^{\left(L_{m}\right.}\right)^{2} \\
& =152 \mathrm{~N} \times \frac{120}{999} \times\left(\frac{906 m}{h r} \times \frac{1000 \mathrm{Nm}}{\mathrm{~km}} \times \frac{\mathrm{hr}}{360 \mathrm{~s}} \times \frac{5}{4 m}\right)^{2}(5)^{2}
\end{aligned}
$$

$$
F_{p}=214 N
$$

7.51 On a cruise ship, passengers complain about the noise emanating from the ship's propellers (probably due to turbulent flow effects between propeller and ship). You have been hired to find out the source of this noise. You will study the flow pattern around the propellers and have decided to use a 1:10 scale water tank. If the ship's propellers rotate at 125 rpm , estimate the model propeller rotation speed if a) the Froude number or b) the Reynolds number is the governing dimensionless group. Which is most likely to lead to the best modeling?

Given: Flow around ship's propeller

Find: \quad Model propeller speed using Froude number and Reynolds number

Solution:

Basic equations $\quad \mathrm{Fr}=\frac{\mathrm{V}}{\sqrt{\mathrm{g} \cdot \mathrm{L}}} \quad \operatorname{Re}=\frac{\mathrm{V} \cdot \mathrm{L}}{\nu}$

Using the Froude number

$$
\begin{equation*}
\mathrm{Fr}_{\mathrm{m}}=\frac{\mathrm{V}_{\mathrm{m}}}{\sqrt{\mathrm{~g} \cdot \mathrm{~L}_{\mathrm{m}}}}=\mathrm{Fr}_{\mathrm{p}}=\frac{\mathrm{V}_{\mathrm{p}}}{\sqrt{\mathrm{~g} \cdot \mathrm{~L}_{\mathrm{p}}}} \quad \text { or } \quad \frac{\mathrm{V}_{\mathrm{m}}}{\mathrm{~V}_{\mathrm{p}}}=\sqrt{\frac{\mathrm{L}_{\mathrm{m}}}{\mathrm{~L}_{\mathrm{p}}}} \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
\text { so } \quad \frac{\mathrm{V}_{\mathrm{m}}}{\mathrm{~V}_{\mathrm{p}}}=\frac{\mathrm{L}_{\mathrm{m}}}{\mathrm{~L}_{\mathrm{p}}} \cdot \frac{\omega_{\mathrm{m}}}{\omega_{\mathrm{p}}} \tag{2}
\end{equation*}
$$

$\omega_{\mathrm{m}}=395 \mathrm{rpm}$

Using the Reynolds number

$$
\frac{\mathrm{L}_{\mathrm{m}}}{\mathrm{~L}_{\mathrm{p}}} \cdot \frac{\omega_{\mathrm{m}}}{\omega_{\mathrm{p}}}=\sqrt{\frac{\mathrm{L}_{\mathrm{m}}}{\mathrm{~L}_{\mathrm{p}}}}
$$

Comparing Eqs. 1 and 2
$V=\mathrm{L} \cdot \omega$
$\frac{\omega_{\mathrm{m}}}{\omega_{\mathrm{p}}}=\sqrt{\frac{\mathrm{L}_{\mathrm{p}}}{\mathrm{L}_{\mathrm{m}}}}$
The model rotation speed is then

$$
\omega_{\mathrm{m}}=\omega_{\mathrm{p}} \cdot \sqrt{\frac{\mathrm{~L}_{\mathrm{p}}}{\mathrm{~L}_{\mathrm{m}}}}
$$

$$
\omega_{\mathrm{m}}=125 \cdot \mathrm{rpm} \times \sqrt{\frac{10}{1}}
$$

$$
\begin{equation*}
\operatorname{Re}_{\mathrm{m}}=\frac{\mathrm{V}_{\mathrm{m}} \cdot \mathrm{~L}_{\mathrm{m}}}{\nu_{\mathrm{m}}}=\mathrm{Re}_{\mathrm{p}}=\frac{\mathrm{V}_{\mathrm{p}} \cdot \mathrm{~L}_{\mathrm{p}}}{\nu_{\mathrm{p}}} \quad \text { or } \quad \frac{\mathrm{V}_{\mathrm{m}}}{\mathrm{~V}_{\mathrm{p}}}=\frac{\mathrm{L}_{\mathrm{p}}}{\mathrm{~L}_{\mathrm{m}}} \cdot \frac{\nu_{\mathrm{m}}}{\nu_{\mathrm{p}}}=\frac{\mathrm{L}_{\mathrm{p}}}{\mathrm{~L}_{\mathrm{m}}} \tag{3}
\end{equation*}
$$

(We have assumed the viscosities of the sea water and model water are comparable)

Comparing Eqs. 2 and 3

$$
\begin{aligned}
& \frac{L_{m}}{L_{p}} \cdot \frac{\omega_{m}}{\omega_{p}}=\frac{L_{p}}{L_{m}} \\
& \omega_{m}=\omega_{p} \cdot\left(\frac{L_{p}}{L_{m}}\right)^{2}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{\omega_{\mathrm{m}}}{\omega_{\mathrm{p}}}=\left(\frac{\mathrm{L}_{\mathrm{p}}}{\mathrm{~L}_{\mathrm{m}}}\right)^{2} \\
& \omega_{\mathrm{m}}=125 \cdot \mathrm{rpm} \times\left(\frac{10}{1}\right)^{2} \quad \omega_{\mathrm{m}}=12500 \mathrm{rpm}
\end{aligned}
$$

Of the two models, the Froude number appears most realistic; at 12,500 rpm serious cavitation will occur. Both flows will likely have high Reynolds numbers so that the flow becomes independent of Reynolds number; the Froude number is likely to be a good indicator of static pressure to dynamic pressure for this (although cavitation number would be better).

Given : Prototype torpedo, $P=533 \mathrm{~mm}, \mathrm{Q}=6.7 \mathrm{~m}$ operates n water at a spend of $28 \mathrm{~m} / \mathrm{s}$. Sod (" s sable) is to be tested n a wind tunnel. Maximum wind tarred speed is yomlsar; $T=2 \AA^{\circ}$; presure is variable. it dynamically swilar test conditions, Fumble $=b 18 n$

Find: (a) required wind tunnel pressure for dynamically similar test b) expected drag force on prototype

Solution:
Assume $F=F(\lambda, M, P, \mu)$. Frow the Budingham π theorem, for $n=5$, wi $m=r=3$, we would expect two dimensionless groups.

$$
\frac{E}{p^{v^{2}} y^{2}}=f\left(\frac{p y y}{\mu}\right)
$$

To stain dynamically simitar model test, $\left.\left.\frac{p v y}{\mu}\right)_{m}=\frac{p v y}{\mu}\right)_{e}$

$$
\begin{aligned}
& \therefore p_{n}=p_{\rightarrow} \frac{\psi_{p}}{V_{m}} \sum_{p} \sum_{m} \mu_{n} \\
& \text { For our at } 20^{\circ} \mathrm{C} \quad \mu_{m}=1.84 \times 0^{-6} A .8 / \mathrm{Im}^{2} \\
& \text { water at } 20^{\circ} \mathrm{C} \quad \mu_{p}=1 \times 0^{-3} \text { AsS } \mathrm{H}^{2} \\
& p_{n}=998 \frac{\mathrm{~kg}}{\mathrm{n}^{3}} \times \frac{28}{10} \times 5 \times \frac{1.8410^{-5}}{1+10^{-3}}=230 \mathrm{kgln}^{3} .
\end{aligned}
$$

From the ideal gas equation of state,

$$
p=p_{n} R T_{n}=23.0 \frac{\mathrm{gg}}{n^{2}} \times 287 \frac{\mathrm{~N} \cdot \mathrm{M}}{\mathrm{H}^{k}} \times 293 \mathrm{~K}=1.93 \mathrm{MPa}(a b s)
$$

For dynamically similar flows,

$$
\begin{aligned}
& \left.\left.\frac{F_{y}}{\left(v^{2} \nu^{2}\right.}\right)_{n}=\frac{F_{0}}{\left.p^{v^{2}}\right\rangle^{2}}\right)_{p} \\
& \therefore F_{p}=F_{D_{n}} \frac{p_{p}}{p_{n}}\left(\frac{V_{p}}{V_{n}}\right)^{2}\left(\frac{y_{n}}{g_{n}}\right)^{2} \\
& =618 N \times \frac{998}{23-0}\left(\frac{28}{110}\right)^{2}(5)^{2} \\
& F_{D-p}=43.4 \text { kN }
\end{aligned}
$$

Problem 7.53
Given: Drag fore, F, of an airfoil at zero angle of attack is a furftion of P, μ, V, and L ?
Model Lest conditions:
$T_{n}=\frac{1}{10} \quad R_{n}=5.5 \times 10^{6}$ baked on chord hugh
$T=15^{\circ} \mathrm{C}, ~ P=10$ atmospheres
Prototype data chord length, $L=2 m$ $T=15^{\circ} \mathrm{C} \quad P=10 \mathrm{lPa}$

Find: (a) velocity, U_{n}, of model test (b) corves pronding prototype velocity.

Solution
Iinensional analysis predicts $\quad E \quad P^{N^{2}} L^{2}=f\left(\frac{P L}{\mu}\right)$
$\left.R_{e_{n}}=P \frac{V_{M}}{\mu}\right)_{m}$ and hence $V_{n}=\frac{R_{e_{n}} \mu_{n}}{P_{n} L_{n}}$
To determine ρ_{n} assume ar behoves as an ideal gas.

$$
P_{n}=\frac{P_{n}}{R T_{m}}=10 \times 101 \times 10^{3} \frac{4}{n^{2}} \times \frac{\lg x}{287+1 \cdot n} \times \frac{1}{2884}=12.2 \mathrm{kn}^{2} \ln ^{3}
$$

From Table A.o, Appendix $R, \mu_{m}=1.79 \cdot 0^{-5} \mathrm{~N} . \mathrm{sln}^{2}$

$$
V_{n}=\frac{R_{m} \mu_{m}}{P_{n} \ln _{m}}=5.5 \times 10^{6} \times 1.79 \times 10^{-5} \frac{N_{154}}{m^{2}} \times \frac{\mathrm{m}^{3}}{12.2 \mathrm{~kg}} \times \frac{1}{0.2 n} \times \frac{6 g_{0}}{N_{504}^{2}}
$$

$V_{n}=40.3 \mathrm{mls}$
For dynamic similarity $\left.\left.\quad \frac{\rho \omega}{\mu}\right)_{m}=\frac{p u l}{\mu}\right)_{p}$

$$
\begin{aligned}
& V_{p}=\psi_{n} \mu_{\mu_{n}}^{\mu_{n}} \frac{P_{n}}{P_{p}} L_{n}=\lambda_{n} \frac{\mu_{p}}{\mu_{n}} \frac{P_{n}}{P_{p}} T_{p} T_{m} \zeta_{m} \\
& V_{P}=40.3 \frac{n}{5} \times(1) \times(10) \times(1) \times\left(\frac{1}{10}\right)=40.3 n(\mathrm{~s}
\end{aligned}
$$

7.54 Consider a smooth sphere, of diameter D, immersed in a fluid moving with speed V. The drag force on a $10-\mathrm{ft}$ diameter weather balloon in air moving at $5 \mathrm{ft} / \mathrm{s}$ is to be calculated from test data. The test is to be performed in water using a $2-\mathrm{in}$. diameter model. Under dynamically similar conditions, the model drag force is measured as 0.85 lbf . Evaluate the model test speed and the drag force expected on the full-scale balloon.

Given: Model of weather balloon

Find: Model test speed; drag force expected on full-scale balloon

Solution:

From Buckingham Π

$$
\frac{\mathrm{F}}{\rho \cdot \mathrm{~V}^{2} \cdot \mathrm{D}^{2}}=\mathrm{f}\left(\frac{\nu}{\mathrm{~V} \cdot \mathrm{D}}, \frac{\mathrm{~V}}{\mathrm{c}}\right)=\mathrm{F}(\operatorname{Re}, \mathrm{M})
$$

For similarity

$$
\operatorname{Re}_{\mathrm{p}}=\operatorname{Re}_{\mathrm{m}} \quad \text { and } \quad \mathrm{M}_{\mathrm{p}}=\mathrm{M}_{\mathrm{m}}
$$

(Mach number criterion satisified because $\mathrm{M} \ll$)

Hence

$$
\begin{aligned}
& \mathrm{Re}_{\mathrm{p}}=\frac{\mathrm{V}_{\mathrm{p}} \cdot \mathrm{D}_{\mathrm{p}}}{\nu_{\mathrm{p}}}=\mathrm{Re}_{\mathrm{m}}=\frac{\mathrm{V}_{\mathrm{m}} \cdot \mathrm{D}_{\mathrm{m}}}{\nu_{\mathrm{m}}} \\
& \mathrm{~V}_{\mathrm{m}}=\mathrm{V}_{\mathrm{p}} \cdot \frac{\nu_{\mathrm{m}}}{\nu_{\mathrm{p}}} \cdot \frac{\mathrm{D}_{\mathrm{p}}}{\mathrm{D}_{\mathrm{m}}}
\end{aligned}
$$

From Table A. 7 at $68^{\circ} \mathrm{F}$

$$
\nu_{\mathrm{m}}=1.08 \times 10^{-5} \cdot \frac{\mathrm{ft}^{2}}{\mathrm{~s}} \quad \text { From Table A.9 at } 68^{\circ} \mathrm{F} \quad \nu_{\mathrm{p}}=1.62 \times 10^{-4} \cdot \frac{\mathrm{ft}^{2}}{\mathrm{~s}}
$$

$$
\mathrm{V}_{\mathrm{m}}=5 \cdot \frac{\mathrm{ft}}{\mathrm{~s}} \times\left(\frac{1.08 \times 10^{-5} \cdot \frac{\mathrm{ft}^{2}}{\mathrm{~s}}}{1.62 \times 10^{-4} \cdot \frac{\mathrm{ft}^{2}}{\mathrm{~s}}}\right) \times\left(\frac{10 \cdot \mathrm{ft}}{\frac{1}{6} \cdot \mathrm{ft}}\right)
$$

$$
\mathrm{V}_{\mathrm{m}}=20.0 \frac{\mathrm{ft}}{\mathrm{~s}}
$$

Then

$$
\frac{\mathrm{F}_{\mathrm{m}}}{\rho_{\mathrm{m}} \cdot \mathrm{~V}_{\mathrm{m}}^{2} \cdot \mathrm{D}_{\mathrm{m}}^{2}}=\frac{\mathrm{F}_{\mathrm{p}}}{\rho_{\mathrm{p}} \cdot \mathrm{~V}_{\mathrm{p}}^{2} \cdot \mathrm{D}_{\mathrm{p}}^{2}}
$$

$$
\mathrm{F}_{\mathrm{p}}=\mathrm{F}_{\mathrm{m}} \cdot \frac{\rho_{\mathrm{p}}}{\rho_{\mathrm{m}}} \cdot \frac{\mathrm{~V}_{\mathrm{p}}^{2}}{\mathrm{~V}_{\mathrm{m}}^{2}} \cdot \frac{\mathrm{D}_{\mathrm{p}}^{2}}{\mathrm{D}_{\mathrm{m}}^{2}}
$$

$$
\mathrm{F}_{\mathrm{p}}=0.85 \cdot \mathrm{lbf} \times\left(\frac{0.00234 \cdot \frac{\mathrm{slug}}{\mathrm{ft}^{3}}}{1.94 \cdot \frac{\mathrm{slug}}{\mathrm{ft}^{3}}}\right) \times\left(\frac{5 \frac{\mathrm{ft}}{\mathrm{~s}}}{20 \cdot \frac{\mathrm{ft}}{\mathrm{~s}}}\right)^{2} \times\left(\frac{10 \cdot \mathrm{ft}}{\frac{1}{6} \cdot \mathrm{ft}}\right)^{2}
$$

$$
\mathrm{F}_{\mathrm{p}}=0.231 \mathrm{lbf}
$$

Problem 7.55

7.55 An airplane wing, with chord length of 1.5 m and span of 9 m , is designed to move through standard air at a speed of $7.5 \mathrm{~m} / \mathrm{s}$. A $\frac{1}{10}$-scale model of this wing is to be tested in a water tunnel. What speed is necessary in the water tunnel to achieve dynamic similarity? What will be the ratio of forces measured in the model flow to those on the prototype wing?

Given: Model of wing
Find: \quad Model test speed for dynamic similarity; ratio of model to prototype forces

Solution:

We would expect $\quad \mathrm{F}=\mathrm{F}(\mathrm{l}, \mathrm{s}, \mathrm{V}, \rho, \mu) \quad$ where F is the force (lift or drag), l is the chord and s the span

From Buckingham $\Pi \quad \frac{\mathrm{F}}{\rho \cdot \mathrm{V}^{2} \cdot \mathrm{l} \cdot \mathrm{s}}=\mathrm{f}\left(\frac{\rho \cdot \mathrm{V} \cdot \mathrm{l}}{\mu}, \frac{1}{\mathrm{~s}}\right)$
For dynamic similarity $\quad \frac{\rho_{\mathrm{m}} \cdot \mathrm{V}_{\mathrm{m}} \cdot \mathrm{l}_{\mathrm{m}}}{\mu_{\mathrm{m}}}=\frac{\rho_{\mathrm{p}} \cdot \mathrm{V}_{\mathrm{p}} \cdot \mathrm{l}_{\mathrm{p}}}{\mu_{\mathrm{p}}}$

Hence

$$
\mathrm{V}_{\mathrm{m}}=\mathrm{V}_{\mathrm{p}} \cdot \frac{\rho_{\mathrm{p}}}{\rho_{\mathrm{m}}} \cdot \frac{\mathrm{l}_{\mathrm{p}}}{l_{\mathrm{m}}} \cdot \frac{\mu_{\mathrm{m}}}{\mu_{\mathrm{p}}}
$$

From Table A. 8 at $20^{\circ} \mathrm{C}$

$$
\mu_{\mathrm{m}}=1.01 \times 10^{-3} \cdot \frac{\mathrm{~N} \cdot \mathrm{~s}}{\mathrm{~m}^{2}} \quad \text { From Table A. } 10 \text { at } 20^{\circ} \mathrm{C} \quad \mu_{\mathrm{p}}=1.81 \times 10^{-5} \cdot \frac{\mathrm{~N} \cdot \mathrm{~s}}{\mathrm{~m}^{2}}
$$

$$
\mathrm{V}_{\mathrm{m}}=7.5 \cdot \frac{\mathrm{~m}}{\mathrm{~s}} \times\left(\frac{1.21 \cdot \frac{\mathrm{~kg}}{\mathrm{~m}^{3}}}{998 \cdot \frac{\mathrm{~kg}}{\mathrm{~m}^{3}}}\right) \times\left(\frac{10}{1}\right) \times\left(\frac{1.01 \times 10^{-3} \cdot \frac{\mathrm{~N} \cdot \mathrm{~s}}{2}}{1.81 \times 10^{-5} \cdot \frac{\mathrm{~N} \cdot \mathrm{~s}}{\mathrm{~m}^{2}}}\right) \quad \mathrm{V}_{\mathrm{m}}=5.07 \frac{\mathrm{~m}}{\mathrm{~s}}
$$

Then

$$
\frac{\mathrm{F}_{\mathrm{m}}}{\rho_{\mathrm{m}} \cdot \mathrm{~V}_{\mathrm{m}}^{2} \cdot \mathrm{l}_{\mathrm{m}} \cdot \mathrm{~s}_{\mathrm{m}}}=\frac{\mathrm{F}_{\mathrm{p}}}{\rho_{\mathrm{p}} \cdot \mathrm{~V}_{\mathrm{p}}^{2} \cdot \mathrm{l}_{\mathrm{p}} \cdot \mathrm{~s}_{\mathrm{p}}} \quad \frac{\mathrm{~F}_{\mathrm{m}}}{\mathrm{~F}_{\mathrm{p}}}=\frac{\rho_{\mathrm{m}}}{\rho_{\mathrm{p}}} \cdot \frac{\mathrm{~V}_{\mathrm{m}}^{2}}{\mathrm{~V}_{\mathrm{p}}^{2}} \cdot \frac{\mathrm{l}_{\mathrm{m}} \cdot \mathrm{~s}_{\mathrm{m}}}{\mathrm{l}_{\mathrm{p}} \cdot \mathrm{~s}_{\mathrm{p}}}=\frac{998}{1.21} \times\left(\frac{5.07}{7.5}\right)^{2} \times \frac{1}{10} \times \frac{1}{10}=3.77
$$

Given: Find dynamic charaderstics of a got ball are to be tested using a model in a wind tunnel? Eeperdent vosidoles: F_{Y}, F_{2}
independent variables stiould include w dd (dimple depth) Goff pro can tit prololype ($p=1$ ios in) at $y=240$ ft ls and $w=9000 \mathrm{ren}$ Prototype is to be modeled in wind tunnel wite $y=80$ fth.

Find: (a) suitable dimensuctless parameters
(b) required diameter of model
(c) required rotational speed of modal

Solution: Assure the furtional dependence to be given by.

$$
F_{D}=F_{D}(D, \psi, \omega, d, p, \mu) \quad \text { and } F_{2}=F_{2}(\eta, v, w, d, p, \mu)
$$

From he Buckingham k-theorem, for $n=7$ and $m=r=3$, we would expect four dirhensionters groups

$$
\frac{F_{y}}{\left(p^{2}\right)^{2}}=f\left(p \frac{\psi)}{\mu}, \frac{\omega y}{y}, \frac{d}{\nu}\right) \text { and } \quad F_{V} p^{(2} y^{2}=9\left(p \frac{p y}{\mu}, \frac{\omega y}{v}, \frac{d}{\nu}\right)
$$

\qquad
To determine the required diameter of the model.

$$
\begin{aligned}
\left.\left(\frac{p y}{\mu}\right)_{m}=\frac{p y y}{\mu}\right)_{p} \quad \therefore y_{n} & =\frac{p_{p}}{p_{n}} V_{p} \mu_{n} \mu_{p} y_{p}=1 \times \frac{240}{80} \times 1 \times y_{p} \\
y_{n} & =3 \%=3 \times 1.68 \mathrm{in}=5.04 \mathrm{in} \ldots \quad \text { pm }
\end{aligned}
$$

To determine the required rational speed of the medal,

$$
\begin{align*}
\left.\left.\frac{\omega_{0}}{y}\right\rangle_{n}=\frac{\omega_{p}}{4}\right\rangle_{p} \quad \therefore \omega_{n} & =\omega_{p} \frac{y_{p}}{y_{n}} \frac{\psi_{m}}{y_{p}}=\omega_{p} \frac{1}{3} \times \frac{80}{2 p_{0}}=\frac{1}{a} w_{p} \\
\omega_{n} & =\frac{1}{q} w_{p}=\frac{1}{q} \times 9000 \mathrm{rpn}=1000 \mathrm{rpm} . \tag{m}
\end{align*}
$$

Problem 7.57

7.57 A water pump with impeller diameter 60 cm is to be designed to move $0.4 \mathrm{~m}^{3} / \mathrm{s}$ when running at 800 rpm . Testing is performed on a $\frac{1}{2}$ scale model running at 2000 rpm using air $\left(20^{\circ} \mathrm{C}\right)$ as the fluid. For similar conditions (neglecting Reynolds number effects), what will be the model flow rate? If the model draws 75 W , what will be the power requirement of the prototype?

Given: Model of water pump
Find: Model flow rate for dynamic similarity (ignoring Re); Power of prototype

Solution:

From Buckingham Π

$$
\frac{\mathrm{Q}}{\omega \cdot \mathrm{D}^{3}} \quad \text { and } \quad \frac{\mathrm{P}}{\rho \cdot \omega^{3} \cdot D^{5}}
$$

where Q is flow rate, ω is angular speed, d is diameter, and ρ is density (these Π groups will be discussed in Chapter 10
For dynamic similarity $\frac{Q_{m}}{\omega_{m} \cdot D_{m}^{3}}=\frac{Q_{p}}{\omega_{p} \cdot D_{p}^{3}}$

Hence

$$
\begin{aligned}
& \mathrm{Q}_{\mathrm{m}}=\mathrm{Q}_{\mathrm{p}} \cdot \frac{\omega_{\mathrm{m}}}{\omega_{\mathrm{p}}} \cdot\left(\frac{\mathrm{D}_{\mathrm{m}}}{\mathrm{D}_{\mathrm{p}}}\right)^{3} \\
& \mathrm{Q}_{\mathrm{m}}=0.4 \cdot \frac{\mathrm{~m}^{3}}{\mathrm{~s}} \times\left(\frac{2000}{800}\right) \times\left(\frac{1}{2}\right)^{3}
\end{aligned}
$$

$\mathrm{Q}_{\mathrm{m}}=0.125 \frac{\mathrm{~m}^{3}}{\mathrm{~s}}$
From Table A. 8 at $20^{\circ} \mathrm{C}$

$$
\text { From Table A. } 10 \text { at } 20^{\circ} \mathrm{C}
$$

$\mu_{\mathrm{m}}=1.21 \cdot \frac{\mathrm{~kg}}{\mathrm{~m}^{3}}$
Then

$$
\begin{aligned}
& \frac{P_{m}}{\rho_{\mathrm{m}} \cdot \omega_{\mathrm{m}}^{3} \cdot \mathrm{D}_{\mathrm{m}}^{5}}=\frac{\mathrm{P}_{\mathrm{p}}}{\rho_{\mathrm{p}} \cdot \omega_{\mathrm{p}}^{3} \cdot \mathrm{D}_{\mathrm{p}}^{5}} \\
& \mathrm{P}_{\mathrm{p}}=\mathrm{P}_{\mathrm{m}} \cdot \frac{\rho_{\mathrm{p}}}{\rho_{\mathrm{m}}} \cdot\left(\frac{\omega_{\mathrm{p}}}{\omega_{\mathrm{m}}}\right)^{3} \cdot\left(\frac{\mathrm{D}_{\mathrm{p}}}{\mathrm{D}_{\mathrm{m}}}\right)^{5} \\
& \mathrm{P}_{\mathrm{p}}=75 \cdot \mathrm{~W} \times \frac{998}{1.21} \times\left(\frac{800}{2000}\right)^{3} \times\left(\frac{2}{1}\right)^{5}
\end{aligned}
$$

$$
\mathrm{P}_{\mathrm{p}}=127 \mathrm{~kW}
$$

Problem 7.58

7.58 A model test is performed to determine the flight characteristics of a Frisbee. Dependent parameters are drag force, F_{D}, and lift force, F_{L}. The independent parameters should include angular speed, ω, and roughness height, h. Determine suitable dimensionless parameters and express the functional dependence among them. The test (using air) on a $\frac{1}{4}$-scale model Frisbee is to be geometrically, kinematically, and dynamically similar to the prototype. The prototype values are $V_{p}=5 \mathrm{~m} / \mathrm{s}$ and $\omega_{p}=100 \mathrm{rpm}$. What values of V_{m} and ω_{m} should be used?

Given: Model of Frisbee

Find: Dimensionless parameters; Model speed and angular speed

Solution:

The functional dependence is $\mathrm{F}=\mathrm{F}(\mathrm{D}, \mathrm{V}, \omega, \mathrm{h}, \rho, \mu) \quad$ where F represents lift or drag
From Buckingham $\Pi \quad \frac{F}{\rho \cdot V^{2} \cdot D^{2}}=f\left(\frac{\rho \cdot V \cdot D}{\mu}, \frac{\omega \cdot D}{V}, \frac{h}{D}\right)$
For dynamic similarity $\quad \frac{\rho_{m} \cdot V_{m} \cdot D_{m}}{\mu_{m}}=\frac{\rho_{\mathrm{p}} \cdot \mathrm{V}_{\mathrm{p}} \cdot \mathrm{D}_{\mathrm{p}}}{\mu_{\mathrm{p}}} \quad \mathrm{V}_{\mathrm{m}}=\mathrm{V}_{\mathrm{p}} \cdot \frac{\rho_{\mathrm{p}}}{\rho_{\mathrm{m}}} \cdot \frac{\mathrm{D}_{\mathrm{p}}}{\mathrm{D}_{\mathrm{m}}} \cdot \frac{\mu_{\mathrm{m}}}{\mu_{\mathrm{p}}} \quad \mathrm{V}_{\mathrm{m}}=5 \cdot \frac{\mathrm{~m}}{\mathrm{~s}} \times(1) \times\left(\frac{4}{1}\right) \times(1) \quad \mathrm{V}_{\mathrm{m}}=20 \frac{\mathrm{~m}}{\mathrm{~s}}$

Also

$$
\frac{\omega_{\mathrm{m}} \cdot \mathrm{D}_{\mathrm{m}}}{\mathrm{~V}_{\mathrm{m}}}=\frac{\omega_{\mathrm{p}} \cdot \mathrm{D}_{\mathrm{p}}}{\mathrm{~V}_{\mathrm{p}}} \quad \omega_{\mathrm{m}}=\omega_{\mathrm{p}} \cdot \frac{\mathrm{D}_{\mathrm{p}}}{\mathrm{D}_{\mathrm{m}}} \cdot \frac{\mathrm{~V}_{\mathrm{m}}}{\mathrm{~V}_{\mathrm{p}}} \quad \omega_{\mathrm{m}}=100 \cdot \mathrm{rpm} \times\left(\frac{4}{1}\right) \times\left(\frac{20}{5}\right) \quad \omega_{\mathrm{m}}=1600 \mathrm{rpm}
$$

Given: Modal of hydrofoil boat (1.20 scale) is to be tested in water at 30° F. Prototype operates at speed of 60 knots in water \& 450

To model cavitation correctly, cavitation number must be duplicated.
Find: ambient pressure at which model test mut be rus'.
Solution:
To duplicate the Froude nusiber between model and prototype requires

$$
\frac{t_{m}}{\sqrt{g n}}=\frac{U_{p}}{\sqrt{g} h_{p}} \quad \text { or } \quad \frac{t_{m}}{U_{p}}=\left(\frac{L_{n}}{L_{p}}\right)^{4_{2}}=\frac{1}{\sqrt{2} 0}
$$

and $V_{n}=\frac{1}{\sqrt{20}} t_{p}=\frac{1}{\sqrt{20}} 60$ trot $=13.4$ And
For $C_{a_{n}}=C_{a}$, fen

$$
\left.\left.\frac{p-p_{s}}{\frac{1}{2} p^{2}}\right)_{m}=\frac{p-e_{v}}{\frac{1}{2} p^{2}}\right)_{p}
$$

or (assuming $p_{n} z p_{f}$)
and

$$
P_{n}=p_{v}+\left(\varphi-P_{v}\right)_{+} \cdot \frac{1}{20}
$$

From the Table $A . \lambda$, at $T=130 \% \quad \varphi_{v_{n}}=2.23 p s a$

$$
\begin{aligned}
& T=45 F \quad-P_{5}=0.15 \text { psia } \\
& \therefore f_{n}=2.23 \text { psia }+(14.7-0.15) p \text { psia }=\frac{1}{20} \\
& f_{n}=2.91 \text { psia }
\end{aligned}
$$

7.60 SAE 10 W oil at $25^{\circ} \mathrm{C}$ flowing in a $25-\mathrm{mm}$ diameter horizontal pipe, at an average speed of $1 \mathrm{~m} / \mathrm{s}$, produces a pressure drop of 450 kPa (gage) over a $150-\mathrm{m}$ length. Water at $15^{\circ} \mathrm{C}$ flows through the same pipe under dynamically similar conditions. Using the results of Example 7.2, calculate the average speed of the water flow and the corresponding pressure drop.

Given: Oil flow in pipe and dynamically similar water flow
Find: Average water speed and pressure drop

Solution:

From Example 7.2

$$
\frac{\Delta \mathrm{p}}{\rho \cdot \mathrm{~V}^{2}}=\mathrm{f}\left(\frac{\mu}{\rho \cdot \mathrm{~V} \cdot \mathrm{D}}, \frac{\mathrm{l}}{\mathrm{D}}, \frac{\mathrm{e}}{\mathrm{D}}\right)
$$

For dynamic similarity $\quad \frac{\mu_{\mathrm{H} 2 \mathrm{O}}}{\rho_{\mathrm{H} 2 \mathrm{O}} \cdot \mathrm{V}_{\mathrm{H} 2 \mathrm{O}} \cdot \mathrm{D}_{\mathrm{H} 2 \mathrm{O}}}=\frac{\mu_{\mathrm{Oil}}}{\rho_{\mathrm{Oil}} \cdot \mathrm{V}_{\mathrm{Oil}} \cdot \mathrm{D}_{\mathrm{Oil}}} \quad$ so $\quad \mathrm{V}_{\mathrm{H} 2 \mathrm{O}}=\frac{\mu_{\mathrm{H} 2 \mathrm{O}}}{\rho_{\mathrm{H} 2 \mathrm{O}}} \cdot \frac{\rho_{\mathrm{Oil}}}{\mu_{\mathrm{Oil}}} \cdot \mathrm{V}_{\mathrm{oil}}=\frac{\nu_{\mathrm{H} 2 \mathrm{O}}}{\nu_{\text {Oil }}} \cdot \mathrm{V}_{\text {Oil }}$
From Fig. A. 3 at $25^{\circ} \mathrm{C} \quad \nu_{\text {Oil }}=8 \times 10^{-5} \cdot \frac{\mathrm{~m}^{2}}{\mathrm{~s}} \quad$ From Table A. 8 at $15^{\circ} \mathrm{C} \quad \nu_{\mathrm{H} 2 \mathrm{O}}=1.14 \times 10^{-6} \cdot \frac{\mathrm{~m}^{2}}{\mathrm{~s}}$

Hence

$$
\frac{1.14 \times 10^{-6} \cdot \frac{\mathrm{~m}^{2}}{\mathrm{~s}}}{8 \times 10^{-5} \cdot \frac{\mathrm{~m}^{2}}{\mathrm{~s}}} \times 1 \cdot \frac{\mathrm{~m}}{\mathrm{~s}}
$$

$$
\mathrm{V}_{\mathrm{H} 2 \mathrm{O}}=0.0142 \frac{\mathrm{~m}}{\mathrm{~s}}
$$

Then

$$
\frac{\Delta \mathrm{p}_{\mathrm{Oil}}}{\rho_{\mathrm{Oil}} \cdot \mathrm{~V}_{\mathrm{Oil}}{ }^{2}}=\frac{\Delta \mathrm{p}_{\mathrm{H} 2 \mathrm{O}}}{\rho_{\mathrm{H} 2 \mathrm{O}} \cdot \mathrm{~V}_{\mathrm{H} 2 \mathrm{O}}{ }^{2}}
$$

$$
\Delta \mathrm{p}_{\mathrm{H} 2 \mathrm{O}}=\frac{\rho_{\mathrm{H} 2 \mathrm{O}} \cdot \mathrm{~V}_{\mathrm{H} 2 \mathrm{O}}^{2}}{\rho_{\mathrm{Oil}} \cdot \mathrm{~V}_{\mathrm{Oil}}^{2}} \cdot \Delta \mathrm{p}_{\mathrm{Oil}}
$$

From Table A. 2

$$
\mathrm{SG}_{\text {Oil }}=0.92
$$

$$
\Delta \mathrm{p}_{\mathrm{H} 2 \mathrm{O}}=\frac{1}{0.92} \times\left(\frac{0.0142}{1}\right)^{2} \times 450 \cdot \mathrm{kPa} \quad \Delta \mathrm{p}_{\mathrm{H} 2 \mathrm{O}}=98.6 \cdot \mathrm{~Pa}
$$

Gwen: The frequency: f, of vortex shedding from the rear of a bluff cyludareis a function of p, p, d, μ
Two cylinders is standard our, $\frac{d_{1}}{d_{2}}=2$
Find: (a) functional relations tip for f, using durnersional analysis
(b) $V_{1} \mathrm{~V}_{2}$ for dynamic similarity
(c) $\mathrm{f}_{1} \mathrm{ff}_{2}$

Solution: Apply Buckingham π theorem.
(1) $f p \quad \downarrow \mu \quad \eta=5$ parameters
(2) Select Mint as primary dimensions
(3) $f p \quad y d$

$$
\begin{array}{lllll}
f & p & V & d & \mu \\
\frac{1}{t} & \frac{M}{2} & \frac{M}{t} & L & \frac{M}{L}
\end{array} \quad r=3 \text { primary dimensions }
$$

(4) $p, \forall, d \quad m=r=3$ repeating parameters
(5) Then $n-n=2$ dimensionless groups will result Setting up dimensional equations
)

Equating exponents,
m: $0=a$
$\therefore \quad 0=-3 a+b+c \quad c=1$
$t \quad 0=-b-1 \quad \therefore b=-1$

$$
\therefore \pi_{1}=\frac{f d}{4}
$$

(6) Check using Fit diversions

$$
\pi_{1}=\frac{1}{t} \cdot \theta \cdot t=[0]^{\prime}
$$

$$
\therefore \quad \frac{f d}{\psi}=g\left(\rho \frac{\nu d}{\mu}\right)
$$

Equating exporaits,

$$
\begin{aligned}
& \text { M: } \quad 0=a+1 \quad \therefore \quad a=-1 \\
& L \quad 0=-3 a b+c-1 \quad c=-1 \\
& t: \quad 0=-b-1 \quad \therefore b=-1
\end{aligned}
$$

$$
\therefore \pi_{2}=\frac{\mu}{\rho_{d}}
$$

$$
\pi_{2}=\frac{F t}{L^{2}} \cdot \frac{L^{n}}{F t^{2}} \cdot \frac{t}{L}=[I]^{v}
$$

$$
\begin{aligned}
& \pi_{2}=e^{2} y^{b} d^{c} \mu
\end{aligned}
$$

To achieve dynanic similarity between geometrically simitar flows, we must duplicate of l but one of Fe dimensionless groups

$$
\left.\left.\frac{p v d}{\mu}\right)_{1}=\frac{p \| d}{\mu}\right\rangle_{2} \Rightarrow \psi_{1}=\frac{p_{2}}{\rho_{1}} \frac{\mu_{1}}{\mu_{2}} \frac{d_{2}}{d_{1}}=1 \times \frac{1}{2}=\frac{1}{2} \quad \psi_{1} v_{2}
$$

) If $\left.\left.\frac{p \Delta d}{\mu}\right)_{1}=\frac{p \Delta d}{\mu}\right)_{2}$, then $\left.\left.\frac{(d)}{\nu}\right)_{1}=\frac{(d}{\psi}\right)_{2}$ and $\frac{f_{1}}{f_{2}}=\frac{V_{1}}{V_{2}} \frac{d_{2}}{d_{1}}=\frac{1}{2} \times \frac{1}{2}=\frac{1}{4}$

Given: $\frac{1}{8}$-seal model of tractor-trailer rig tested in pressurized wind than el.

$$
\begin{array}{ll}
W=0.305 \mathrm{~m} & V=75.0 \mathrm{~m} / \mathrm{s} \\
H=0.476 \mathrm{~m} & F_{D}=128 \mathrm{~N} \\
L=2.46 \mathrm{~m} & \rho=323 \mathrm{~kg} / \mathrm{m}^{3}
\end{array}
$$

Find: (a) Aerodynamic drag coefficient of modes.
(b) Compare Reyno ids number for model with prototype at $V=55 \mathrm{mph}$.
(c) Aerodynamic drag on prototype at $V=55$ mph, with headwind, $v_{w}=10 \mathrm{mph}$.
Solution: Defining equations: $F_{D} \times C_{D} A \frac{1}{2} \rho V^{2} ; R C=\frac{V V L}{\mu}$
Then $C_{D_{m}}=\frac{F_{0 m}}{\frac{1}{2}\left(m V_{m}^{2} A_{m}\right.}$
Assure $\mathrm{Am}=W_{m} H \mathrm{~m}=0.305 \mathrm{~m}_{\times} 0.476 \mathrm{~m}=0.145 \mathrm{~m}^{2}$

$$
\begin{aligned}
& C_{D m}={ }^{2} \times 128 N_{*} \frac{m^{2}}{3.23 \mathrm{~kg}} \times \frac{\mathrm{s}^{2}}{(0)^{2} m^{2}} \times \frac{1}{0.145 m^{2}} \times \frac{\mathrm{kg} / \mathrm{m}}{1 . s^{2}}=0.0972 \\
& \frac{R_{L_{m}}}{R_{C_{p}}}=\frac{\rho_{m} V_{m} L_{m}}{\mu_{m}} \times \frac{\mu_{p}}{\rho_{p} V_{p} L_{p}}=\frac{\rho_{m}}{\rho_{p}} \frac{V_{m}}{V_{p}} \frac{L_{m}}{L_{p}} \quad \text { (assume air: } \mu_{m}=\mu_{p} \text {) }
\end{aligned}
$$

For the prototype, $V_{p}=5 \frac{5 \mathrm{mi}}{h r} \times 528 \frac{\mathrm{ft}}{\mathrm{mi}} \times \frac{h r}{3600 \mathrm{~s}} \times 0.305 \frac{\mathrm{~m}}{\frac{7}{7}}=24.6 \mathrm{~m} / \mathrm{s}$

$$
\frac{R e m}{R_{e p}}=\left(\frac{3.23}{1.23}\right)\left(\frac{250}{24.6}\right)\left(\frac{1}{8}\right)=1.00 \quad \therefore R_{e n}=R_{e p}
$$

since $R_{e m}=R_{e s}$, then $C_{D P}=C_{D m}$, assuming geometric and kinematic simitantity, so

$$
F_{D \rho}=c_{D_{\rho}} A_{\rho} \frac{1}{2} f_{\rho}\left(v_{\rho}+v_{\omega}\right)^{2}
$$

With $V_{w}=10 \mathrm{mph}, V_{p}+V_{w}=\frac{65}{55} \times 24.6 \mathrm{~m} / \mathrm{s}=29.1 \mathrm{~m} / \mathrm{s}$
Thus

$$
\begin{aligned}
& F_{0 p}=0.0972 \times(8)^{2} 0.145 \mathrm{~m}^{6} \times \frac{1}{2} \times 1.23 \frac{\mathrm{~kg}}{\mathrm{~m}^{3}}(29.1)^{2} \frac{\mathrm{~m}^{2}}{\mathrm{~s}^{2}} \times \frac{\mathrm{N} . \mathrm{s}^{2}}{\mathrm{~kg} . \mathrm{m}} \\
& F_{O P}=470 \mathrm{~N}
\end{aligned}
$$

7.63 On a cruise ship, passengers complain about the amount of smoke that becomes entrained behind the cylindrical smoke stack. You have been hired to study the flow pattern around the stack, and have decided to use a $1: 12.5$ scale model of the 4.75 m smoke stack. What range of wind tunnel speeds could you use if the ship speed for which the problem occurs is 15 knots to 25 knots?

Given: Flow around cruise ship smoke stack
Find: Range of wind tunnel speeds

Solution:

For dynamic similarity $\quad \frac{\mathrm{V}_{\mathrm{m}} \cdot \mathrm{D}_{\mathrm{m}}}{\nu_{\mathrm{m}}}=\frac{\mathrm{V}_{\mathrm{p}} \cdot \mathrm{D}_{\mathrm{p}}}{\nu_{\mathrm{m}}} \quad$ or $\quad \mathrm{V}_{\mathrm{m}}=\frac{\mathrm{D}_{\mathrm{p}}}{\mathrm{D}_{\mathrm{m}}} \cdot \mathrm{V}_{\mathrm{p}}=\frac{1}{12.5} \cdot \mathrm{~V}_{\mathrm{p}}=0.08 \cdot \mathrm{~V}_{\mathrm{p}}$
From Wikipedia

$$
1 \cdot \mathrm{knot}=1.852 \frac{\mathrm{~km}}{\mathrm{hr}}=1.852 \cdot \frac{\mathrm{~km}}{\mathrm{hr}} \times \frac{1000 \cdot \mathrm{~m}}{\mathrm{~km}} \times \frac{1 \cdot \mathrm{hr}}{3600 \cdot \mathrm{~s}}=0.514 \cdot \frac{\mathrm{~m}}{\mathrm{~s}}
$$

$$
\begin{array}{llll}
\mathrm{V}_{\mathrm{p}}=15 \cdot \mathrm{knot}=15 \cdot \mathrm{knot} \times \frac{0.514 \cdot \frac{\mathrm{~m}}{\mathrm{~s}}}{1 \cdot \mathrm{knot}} & \mathrm{~V}_{\mathrm{p}}=7.72 \cdot \frac{\mathrm{~m}}{\mathrm{~s}} & \mathrm{~V}_{\mathrm{m}}=0.08 \times 7.72 \cdot \frac{\mathrm{~m}}{\mathrm{~s}} & \mathrm{~V}_{\mathrm{m}}=0.618 \frac{\mathrm{~m}}{\mathrm{~s}} \\
\mathrm{~V}_{\mathrm{p}}=25 \cdot \mathrm{knot}=25 \cdot \mathrm{knot} \times \frac{0.514 \cdot \frac{\mathrm{~m}}{\mathrm{~s}}}{1 \cdot \mathrm{knot}} & \mathrm{~V}_{\mathrm{p}}=12.86 \cdot \frac{\mathrm{~m}}{\mathrm{~s}} & \mathrm{~V}_{\mathrm{m}}=0.08 \times 12.86 \cdot \frac{\mathrm{~m}}{\mathrm{~s}} & \mathrm{~V}_{\mathrm{m}}=1.03 \frac{\mathrm{~m}}{\mathrm{~s}}
\end{array}
$$

Hence for
7.64 The aerodynamic behavior of a flying insect is to be investigated in a wind tunnel using a ten-times scale model. If the insect flaps its wings 50 times a second when flying at $4 \mathrm{ft} / \mathrm{s}$, determine the wind tunnel air speed and wing oscillation frequency required for dynamic similarity. Do you expect that this would be a successful or practical model for generating an easily measurable wing lift? If not, can you suggest a different fluid (e.g., water, or air at a different pressure and/or temperature) that would produce a better modeling?

Given: Model of flying insect

Find: Wind tunnel speed and wing frequency; select a better model fluid

Solution:

For dynamic similarity the following dimensionless groups must be the same in the insect and model (these are Reynolds number and Strouhal number, and can be obtained from a Buckingham Π analysis)

$$
\frac{\mathrm{V}_{\text {insect }} \cdot \mathrm{L}_{\text {insect }}}{v_{\text {air }}}=\frac{\mathrm{V}_{\mathrm{m}} \cdot \mathrm{~L}_{\mathrm{m}}}{v_{\mathrm{m}}} \quad \frac{\omega_{\text {insect }} \cdot \mathrm{L}_{\text {insect }}}{\mathrm{V}_{\text {insect }}}=\frac{\omega_{\mathrm{m}} \cdot \mathrm{~L}_{\mathrm{m}}}{\mathrm{~V}_{\mathrm{m}}}
$$

From Table A.9 $\left(68^{\circ} \mathrm{F}\right) \quad \rho_{\mathrm{air}}=0.00234 \cdot \frac{\mathrm{slug}}{\mathrm{ft}^{3}} \quad \quad \nu_{\mathrm{air}}=1.62 \times 10^{-4} \cdot \frac{\mathrm{ft}^{2}}{\mathrm{~s}}$
The given data is

$$
\omega_{\text {insect }}=50 \cdot \mathrm{~Hz}
$$

$$
\mathrm{V}_{\mathrm{insect}}=4 \cdot \frac{\mathrm{ft}}{\mathrm{~s}}
$$

$$
\frac{\mathrm{L}_{\text {insect }}}{\mathrm{L}_{\mathrm{m}}}=\frac{1}{10}
$$

Hence in the wind tunnel $V_{m}=V_{\text {insect }} \cdot \frac{\mathrm{L}_{\text {insect }}}{\mathrm{L}_{\mathrm{m}}} \cdot \frac{\nu_{\mathrm{m}}}{v_{\text {air }}}=\mathrm{V}_{\text {insect }} \cdot \frac{\mathrm{L}_{\text {insect }}}{\mathrm{L}_{\mathrm{m}}}=4 \cdot \frac{\mathrm{ft}}{\mathrm{s}} \times \frac{1}{10} \quad \mathrm{~V}_{\mathrm{m}}=0.4 \cdot \frac{\mathrm{ft}}{\mathrm{s}}$

Also

$$
\omega_{\mathrm{m}}=\omega_{\text {insect }} \cdot \frac{\mathrm{V}_{\mathrm{m}}}{\mathrm{~V}_{\text {insect }}} \cdot \frac{\mathrm{L}_{\text {insect }}}{\mathrm{L}_{\mathrm{m}}}=50 \cdot \mathrm{~Hz} \times \frac{0.4}{4} \times \frac{1}{10} \quad \omega_{\mathrm{m}}=0.5 \cdot \mathrm{~Hz}
$$

It is unlikely measurable wing lift can be measured at such a low wing frequency (unless the measured lift was averaged, using an integrator circuit). Maybe try hot air $\left(200^{\circ} \mathrm{F}\right)$ for the model
For hot air try $\quad \nu_{\text {hot }}=2.4 \times 10^{-4} \cdot \frac{\mathrm{ft}^{2}}{\mathrm{~s}} \quad$ instead of $\quad \nu_{\text {air }}=1.62 \times 10^{-4} \cdot \frac{\mathrm{ft}^{2}}{\mathrm{~s}}$
Hence

$$
\frac{\mathrm{V}_{\text {insect }} \cdot \mathrm{L}_{\text {insect }}}{\nu_{\text {air }}}=\frac{\mathrm{V}_{\mathrm{m}} \cdot \mathrm{~L}_{\mathrm{m}}}{\nu_{\text {hot }}} \quad \mathrm{V}_{\mathrm{m}}=\mathrm{V}_{\text {insect }} \cdot \frac{\mathrm{L}_{\text {insect }}}{\mathrm{L}_{\mathrm{m}}} \cdot \frac{\nu_{\text {hot }}}{\nu_{\text {air }}}=4 \cdot \frac{\mathrm{ft}}{\mathrm{~s}} \times \frac{1}{10} \times \frac{2.4 \times 10^{-4}}{1.62 \times 10^{-4}} \quad \mathrm{~V}_{\mathrm{m}}=0.593 \cdot \frac{\mathrm{ft}}{\mathrm{~s}}
$$

Also

$$
\omega_{\mathrm{m}}=\omega_{\text {insect }} \cdot \frac{\mathrm{V}_{\mathrm{m}}}{\mathrm{~V}_{\text {insect }}} \cdot \frac{\mathrm{L}_{\text {insect }}}{\mathrm{L}_{\mathrm{m}}}=50 \cdot \mathrm{~Hz} \times \frac{0.593}{4} \times \frac{1}{10} \quad \omega_{\mathrm{m}}=0.741 \cdot \mathrm{~Hz}
$$

Hot air does not improve things much. Try modeling in $\mathrm{w}^{c} \nu_{\mathrm{w}}=1.08 \times 10^{-5} \cdot \frac{\mathrm{ft}^{2}}{\mathrm{~s}}$
Hence

$$
\frac{\mathrm{V}_{\text {insect }} \cdot \mathrm{L}_{\text {insect }}}{\nu_{\text {air }}}=\frac{\mathrm{V}_{\mathrm{m}} \cdot \mathrm{~L}_{\mathrm{m}}}{\nu_{\mathrm{w}}} \quad \mathrm{~V}_{\mathrm{m}}=\mathrm{V}_{\text {insect }} \cdot \frac{\mathrm{L}_{\text {insect }}}{\mathrm{L}_{\mathrm{m}}} \cdot \frac{\nu_{\mathrm{w}}}{\nu_{\text {air }}}=4 \cdot \frac{\mathrm{ft}}{\mathrm{~s}} \times \frac{1}{10} \times \frac{1.08 \times 10^{-5}}{1.62 \times 10^{-4}} \quad \mathrm{~V}_{\mathrm{m}}=0.0267 \cdot \frac{\mathrm{ft}}{\mathrm{~s}}
$$

Also

$$
\omega_{\mathrm{m}}=\omega_{\text {insect }} \cdot \frac{\mathrm{V}_{\mathrm{m}}}{\mathrm{~V}_{\text {insect }}} \cdot \frac{\mathrm{L}_{\text {insect }}}{\mathrm{L}_{\mathrm{m}}}=\omega_{\text {insect }} \cdot \frac{\mathrm{V}_{\mathrm{m}}}{\mathrm{~V}_{\text {insect }}} \cdot \mathrm{L}_{\text {ratio }}=50 \cdot \mathrm{~Hz} \times \frac{0.0267}{4} \times \frac{1}{10} \quad \omega_{\mathrm{m}}=0.033 \cdot \mathrm{~Hz}
$$

This is even worse! It seems the best bet is hot (very hot) air for the wind tunnel. Alternatively, choose a much smaller wind tunnel model, e.g., a 2.5 X model would lead to $\mathrm{V}_{\mathrm{m}}=1.6 \mathrm{ft} / \mathrm{s}$ and $\omega_{\mathrm{m}}=8 \mathrm{~Hz}$

Given: Model test of tractor-tracker rig in standard air.

$$
\begin{aligned}
& F_{D}=f(A, V, 1, \mu) \text {; scale is } 1: 4 ; A_{m}=0.625 \mathrm{~m}^{2} \\
& \text { At } V_{m}=89.6 \mathrm{~m} / \mathrm{s}, F_{D}=2.46 \mathrm{kN}
\end{aligned}
$$

Find: (a) Dimensionless parameters.
(b) Conditions for dynamic similarity.
(c) Drag force on prototype at $V_{p}=22.4 \mathrm{~m} / \mathrm{s}$ (n owing).
(d) Power to overcome aero drag.

Solution: (1) $F_{D} \quad A \quad v \quad \rho \quad \mu$ | (3) ML
(3) $\frac{M L}{t^{2}} L^{2} \quad \frac{L}{z} \quad \frac{M}{L^{3}} \quad \frac{M}{L t}$ (4) $\rho V A$
(5)

$$
\begin{aligned}
& \pi_{1}=\rho^{a} V^{b} A^{c} F_{D}=M_{L}^{0} t^{0} \\
& \text { M: } a+1=0 \quad \mid a=-1 \\
& \text { L: }-3 a+b+2 c+1=0 \mid c=-1 \\
& t:-b-2=0 \quad \mid b=-2 \\
& \pi_{1}=\frac{F_{0}}{\rho y^{2} A} \\
& \text { (6) } \pi_{1}=F_{x} \frac{L^{4}}{F^{2}} \times \frac{t^{-}}{L^{2}} \times \frac{1}{L^{2}}=1 \mathrm{v} \\
& \pi_{2}=\rho^{a v} A^{c} \mu \\
& \text { M: } a+1=0 \quad \mid a=-1 \\
& L:-3 a+b+2 c-1=0 \mid c=-1 k \\
& t:-b-1=0 \quad \mid b=-1 \\
& \pi_{2}=\frac{\mu}{\rho V A^{1 / 2}} \\
& \pi_{2}=\frac{F t}{L^{2}} \times \frac{L^{4}}{F^{*} t_{L}} \frac{L_{2}}{L} \frac{1}{L}=1 \cdots
\end{aligned}
$$

For dynamic similarity, must have geometric and kinematic similarity and $R_{e m}=R_{\rho}$. Then $\frac{F_{D}}{\left.\rho^{V^{2} A}\right)_{m}}=\frac{F_{D}}{\left.\ell^{v^{2} A}\right)_{P}}$
For the prototype,

$$
F_{D p}=F_{0 m} \frac{\rho_{P}}{\rho_{m}}\left(\frac{N_{P}}{V_{m}}\right)^{2} \frac{A_{p}}{A_{m}}=F_{D m}\left(\frac{1.23}{1.23}\right)\left(\frac{22.4}{89.6}\right)^{2}(4)^{2}=F_{D m}=2.46 \mathrm{kN}
$$

The power requirement is

$$
P=F_{D \rho} V_{p}=2.46 \mathrm{kN} \times 22.4 \frac{\mathrm{~m}}{\mathrm{~s}} \times \frac{\mathrm{W} \cdot \mathrm{~s}}{\mathrm{~N} . \mathrm{m}}=55.1 \mathrm{kw}(73.9 \mathrm{hp})
$$

7.66 Tests are performed on a $1: 5$ scale boat model. What must be the kinematic viscosity of the model fluid if friction and wave drag phenomena are to be correctly modeled? The full size boat will be used in a freshwater lake where the average water temperature is $10^{\circ} \mathrm{C}$.

Given: Model of boat

Find: \quad Model kinematic viscosity for dynamic similarity

Solution:

For dynamic similarity $\quad \frac{\mathrm{V}_{\mathrm{m}} \cdot \mathrm{L}_{\mathrm{m}}}{\nu_{\mathrm{m}}}=\frac{\mathrm{V}_{\mathrm{p}} \cdot \mathrm{L}_{\mathrm{p}}}{\nu_{\mathrm{p}}}$

$$
\begin{equation*}
\frac{\mathrm{V}_{\mathrm{m}}}{\sqrt{\mathrm{~g} \cdot \mathrm{~L}_{\mathrm{m}}}}=\frac{\mathrm{V}_{\mathrm{p}}}{\sqrt{\mathrm{~g} \cdot \mathrm{~L}_{\mathrm{p}}}} \tag{1}
\end{equation*}
$$

(from Buckingham Π; the first is the Reynolds number, the second the Froude number)
Hence from Eq $2 \quad \frac{V_{m}}{V_{p}}=\sqrt{\frac{g \cdot L_{m}}{g \cdot L_{p}}}=\sqrt{\frac{L_{m}}{L_{p}}}$
Using this in Eq $1 \quad \nu_{m}=\nu_{p} \cdot \frac{V_{m}}{V_{p}} \cdot \frac{L_{m}}{L_{p}}=\nu_{p} \cdot \sqrt{\frac{L_{m}}{L_{p}}} \cdot \frac{L_{m}}{L_{p}}=\nu_{p} \cdot\left(\frac{L_{m}}{L_{p}}\right)^{\frac{3}{2}}$
From Table A. 8 at $10^{\circ} \mathrm{C} \quad \nu_{\mathrm{p}}=1.3 \times 10^{-6} \cdot \frac{\mathrm{~m}^{2}}{\mathrm{~s}}$

$$
\nu_{\mathrm{m}}=1.3 \times 10^{-6} \cdot \frac{\mathrm{~m}^{2}}{\mathrm{~s}} \times\left(\frac{1}{5}\right)^{\frac{3}{2}}
$$

$$
\nu_{\mathrm{m}}=1.16 \times 10^{-7} \frac{\mathrm{~m}^{2}}{\mathrm{~s}}
$$

Given: Model glacier using glycerine. Assume ice is Newtonian and $10^{66} \times$ as viscous.

$$
\left.\begin{array}{rl}
D & =15 \mathrm{~m} \\
H & =1.5 \mathrm{~m} \\
L & =1850 \mathrm{~m}
\end{array}\right\} \text { mock }
$$

In las test, model instructor reappears in $t=9.6 \mathrm{hr}$.
Find: (a) Develop suitable dimensionless parameters.
(b) Estimate time when instructor will reappear.

Solution: (1)	\bar{V}	ρ	g	μ	D	H	L	$n=7$
(2) MAt	$\frac{L}{Z}$	$\frac{M}{L^{3}}$	$\frac{L}{t^{2}}$	$\frac{M}{L t}$	L	L	L	$m=r=3$

(4) Choose ρ, g, D as repeating variables: $n-m=7-3=4$ parameters
(5) $\pi_{1}=\rho^{a} g^{b} D^{c} \bar{V}=M^{0} L^{0} t^{0}$

$$
\begin{array}{l|l}
M: a+0=0 & a=0
\end{array}
$$

$$
\therefore-3 a+b+c+1=0 \quad c=-b-1=-\frac{1}{2}
$$

$$
t:-2 b-1=0 \quad 1 b=-\frac{1}{2}
$$

$$
\begin{array}{ll}
\pi_{z}=\rho^{a} g^{b} D^{c} \mu=M^{0} L^{0} t^{0} \\
M: a+1=0 & a=-1 \\
L:-3 a+b+c-1=0 & c=3 a-b+1=-\frac{3}{2} \\
t:-2 b-1=0 & b=-\frac{1}{2}
\end{array}
$$

$$
\pi_{1}=\frac{\bar{v}}{\sqrt{g D}} \text { (Froude no.) }
$$

$$
\pi_{2}=\frac{\mu}{\rho g^{1 / 2} D^{s h}} \sim \frac{\mu}{\rho \sqrt{g D D}}\left(\text { Regnous } n_{0}\right)
$$

$$
\pi_{3}=\frac{H}{D}, \pi_{4}=\frac{L}{D} \quad \text { (by inspection) }
$$

geometric Similarity
(6) Check: obvious from forms above. $\pi_{1}=f\left(\pi_{2}, \pi_{3}, \pi_{4}\right)$

For dynamic similarity, $\pi_{2 m}=\pi_{z_{p}}=\frac{\mu_{m}}{\rho_{m} g_{m}^{1 / 2} m_{m}^{3 / 2}}=\frac{\mu_{\rho}}{\rho_{\rho} g_{p}^{1 / 2 D_{p}}}$, so
so $\frac{L m}{L_{0}}=8.11 \times 10^{-5} ; L_{m}=8.11 \times 10^{-5} L_{\rho}=8.11 \times 10^{-5} \times 1850 \mathrm{~m}=0.150 \mathrm{~m}$
From $\pi_{1}, \frac{\bar{V}_{m}}{\bar{V}_{p}}=\sqrt{\frac{D_{m}}{D_{p}}}=9.00 \times 10^{-3}$
The time to reappear is $\tau=L / \bar{v}$, so $\tau_{p}=L_{P} t_{V_{p}}, \tau_{m}=L m t_{V_{m}}$

$$
\frac{\tau_{p}}{\tau_{m}}=\frac{L}{L m} \frac{\bar{v}_{m}}{L_{m}}=\frac{D_{p}}{\bar{D}_{m}} \sqrt{\frac{D_{m}}{D_{p}}}=\sqrt{\frac{D_{P}}{D_{m}}}=\frac{1}{9.00 \times 10^{-3}}=11
$$

Thus $\tau_{p}=111 \tau_{m}=111 \times 9.6 \mathrm{hr}=1070 \mathrm{hr}(\sim 45$ daws $)$
$\{$ The instructor will reappear before the semester ends!\} ~
SEgyeoin $=1.24(A \cdot 2)$
7.68 An automobile is to travel through standard air at 60 mph . To determine the pressure distribution, a $\frac{1}{5}$-scale model is to be tested in water. What factors must be considered to ensure kinematic similarity in the tests? Determine the water speed that should be used. What is the corresponding ratio of drag force between prototype and model flows? The lowest pressure coefficient is $C_{p}=-1.4$ at the location of the minimum static pressure on the surface. Estimate the minimum tunnel pressure required to avoid cavitation, if the onset of cavitation occurs at a cavitation number of 0.5 .

Given: Model of automobile

Find: Factors for kinematic similarity; Model speed; ratio of protype and model drags; minimum pressure for no cavitation

Solution:

For dynamic similarity $\quad \frac{\rho_{\mathrm{m}} \cdot \mathrm{V}_{\mathrm{m}} \cdot \mathrm{L}_{\mathrm{m}}}{\mu_{\mathrm{m}}}=\frac{\rho_{\mathrm{p}} \cdot \mathrm{V}_{\mathrm{p}} \cdot \mathrm{L}_{\mathrm{p}}}{\mu_{\mathrm{p}}} \quad \quad \mathrm{V}_{\mathrm{m}}=\mathrm{V}_{\mathrm{p}} \cdot \frac{\rho_{\mathrm{p}}}{\rho_{\mathrm{m}}} \cdot \frac{\mathrm{L}_{\mathrm{p}}}{\mathrm{L}_{\mathrm{m}}} \cdot \frac{\mu_{\mathrm{m}}}{\mu_{\mathrm{p}}}$
For air (Table A.9) and water (Table A.7) at $68^{\circ} \mathrm{F}$

$$
\mathrm{V}_{\mathrm{m}}=60 \cdot \mathrm{mph} \times \frac{88 \cdot \frac{\mathrm{ft}}{\mathrm{~s}}}{60 \cdot \mathrm{mph}} \times\left(\frac{0.00234}{1.94}\right) \times\left(\frac{5}{1}\right) \times\left(\frac{2.10 \times 10^{-5}}{3.79 \times 10^{-7}}\right)
$$

$$
\mathrm{V}_{\mathrm{m}}=29.4 \cdot \frac{\mathrm{ft}}{\mathrm{~s}}
$$

Then

Hence

$$
\begin{array}{ll}
\rho_{\mathrm{p}}=0.00234 \cdot \frac{\mathrm{slug}}{\mathrm{ft}^{3}} & \mu_{\mathrm{p}}=3.79 \times 10^{-7} \cdot \frac{\mathrm{lbf} \cdot \mathrm{~s}}{\mathrm{ft}^{2}} \\
\rho_{\mathrm{m}}=1.94 \cdot \frac{\operatorname{slug}}{\mathrm{ft}^{3}} & \mu_{\mathrm{m}}=2.10 \times 10^{-5} \cdot \frac{\mathrm{lbf} \cdot \mathrm{~s}}{\mathrm{ft}^{2}}
\end{array}
$$

$$
\frac{\mathrm{F}_{\mathrm{m}}}{\rho_{\mathrm{m}} \cdot \mathrm{~V}_{\mathrm{m}}^{2} \cdot \mathrm{~L}_{\mathrm{m}}^{2}}=\frac{\mathrm{F}_{\mathrm{p}}}{\rho_{\mathrm{p}} \cdot \mathrm{~V}_{\mathrm{p}}^{2} \cdot \mathrm{~L}_{\mathrm{p}}^{2}}
$$

$$
\frac{\mathrm{F}_{\mathrm{p}}}{\mathrm{~F}_{\mathrm{m}}}=\frac{\rho_{\mathrm{p}} \cdot \mathrm{~V}_{\mathrm{p}}^{2} \cdot \mathrm{~L}_{\mathrm{p}}^{2}}{\rho_{\mathrm{m}} \cdot \mathrm{~V}_{\mathrm{m}}^{2} \cdot \mathrm{~L}_{\mathrm{m}}^{2}}=\left(\frac{0.00234}{1.94}\right) \times\left(\frac{88}{29.4}\right)^{2} \times\left(\frac{5}{1}\right)^{2} \quad \frac{\mathrm{~F}_{\mathrm{p}}}{\mathrm{~F}_{\mathrm{m}}}=0.270
$$

For $\mathrm{Ca}=0.5 \quad \frac{\mathrm{P}_{\min }-\mathrm{p}_{\mathrm{V}}}{\frac{1}{2} \cdot \rho \cdot \mathrm{~V}^{2}}=0.5 \quad$ so we get $\quad \mathrm{p}_{\min }=\mathrm{p}_{\mathrm{V}}+\frac{1}{4} \cdot \rho \cdot \mathrm{~V}^{2} \quad$ for the water tank
From steam tables, for water at $68^{\circ} \mathrm{F} \quad \mathrm{p}_{\mathrm{v}}=0.339 \cdot \mathrm{psi} \quad$ so

$$
\mathrm{p}_{\min }=0.339 \cdot \mathrm{psi}+\frac{1}{4} \times 1.94 \cdot \frac{\mathrm{slug}}{\mathrm{ft}^{3}} \times\left(29.4 \cdot \frac{\mathrm{ft}}{\mathrm{~s}}\right)^{2} \times \frac{\mathrm{lbf} \cdot \mathrm{~s}^{2}}{\mathrm{slug} \cdot \mathrm{ft}} \times\left(\frac{1 \cdot \mathrm{ft}}{12 \cdot \mathrm{in}}\right)^{2} \quad \mathrm{p}_{\min }=3.25 \mathrm{psi}
$$

This is the minimum allowable pressure in the water tank; we can use it to find the required tank pressure

$$
\begin{aligned}
& \mathrm{C}_{\mathrm{p}}=-1.4=\frac{\mathrm{p}_{\min }-\mathrm{p}_{\operatorname{tank}}}{\frac{1}{2} \cdot \rho \cdot \mathrm{~V}^{2}} \quad \mathrm{P}_{\operatorname{tank}}=\mathrm{p}_{\min }+\frac{1.4}{2} \cdot \rho \cdot \mathrm{~V}^{2}=\mathrm{p}_{\min }+0.7 \cdot \rho \cdot \mathrm{~V}^{2} \\
& \mathrm{p}_{\operatorname{tank}}=3.25 \cdot \mathrm{psi}+0.7 \times 1.94 \cdot \frac{\mathrm{slug}}{\mathrm{ft}^{3}} \times\left(29.4 \cdot \frac{\mathrm{ft}}{\mathrm{~s}}\right)^{2} \times \frac{\mathrm{lbf} \cdot \mathrm{~s}^{2}}{\mathrm{slug} \cdot \mathrm{ft}} \times\left(\frac{1 \cdot \mathrm{ft}}{12 \cdot \mathrm{in}}\right)^{2} \quad \mathrm{P}_{\operatorname{tank}}=11.4 \mathrm{psi}
\end{aligned}
$$

Given: Submarine model (1:3 scale) to be tested in fresh water under two conditions:
(1) on the surface at 20 kt (prototype)
(2) far be low the surface $\alpha+0.5 k t$ (proton type)

Find: (a) speed for model test on surface
(b) Speed for model test submerged
(c) Ratio of full-scale to model drag force.

Solution: On the surface, match the Frond number, Fr $=\frac{V}{\sqrt{g L}}$
Thus $F_{r m}=\frac{V_{m}}{\sqrt{g} L_{m}}=F_{r_{p}}=\frac{V_{p}}{\sqrt{g} L_{p}}$ or $V_{m}=V_{p} \sqrt{\frac{L_{m}}{L_{p}}}$
For 1:30 scale,

$$
\begin{aligned}
& V_{m}=20 k t \sqrt{\frac{1}{30}}=3.65 \mathrm{kt} \\
& V_{m}=3.65 \frac{\mathrm{~nm}}{\mathrm{hr}} \times 1852 \frac{\mathrm{~m}}{\mathrm{hm}} \times \frac{\mathrm{hr}}{3600 \mathrm{~s}}=1.88 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

From Table A. 2 , for seawater, $S G=1.025$ and $\mu=1.08 \times 10^{-3} \mathrm{~N} . \mathrm{s} / \mathrm{m}^{2}$ $a+20^{\circ} \mathrm{C}$, Thus

$$
\nu_{\rho}=\frac{\mu_{p}}{\rho_{\rho}}=\frac{\mu_{\rho}}{s 6 \rho_{H L C}}=1.08 \times 10^{-3} \frac{\mathrm{~N} \cdot \mathrm{~s}}{\mathrm{~m}^{2}} \times \frac{\mathrm{m}^{3}}{(1.025) 1000 \mathrm{~kg}} \times \frac{\mathrm{kg} \cdot m}{\mathrm{~N} \cdot \mathrm{~s}^{2}}=1.05 \times 10^{-6} \frac{\mathrm{~m}^{2}}{\mathrm{~s}}
$$

From Table A.8, fresh water at $20^{\circ} \mathrm{C}$ has $v=1.00 \times 10^{-6} \mathrm{~m}^{2} / \mathrm{s}$.
For $1: 30$ scale

$$
\begin{aligned}
& V_{m}=0.5 k t_{\times} \frac{30}{1} \times 1.00 \times 10^{-6} \frac{\mathrm{~m}^{2}}{\mathrm{~s}} \times \frac{\mathrm{s}}{1.05 \times 10^{-6} \mathrm{~m}^{2}}=14.3 \mathrm{kt} \\
& V_{\mathrm{m}}=14.3 \frac{\mathrm{~nm}}{\mathrm{hr}} \times 1852 \frac{\mathrm{~m}}{\mathrm{~nm}} \times \frac{\mathrm{hr}}{3600 \mathrm{~s}}=7.36 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

Under dynamically similar condinons the drag coefficients, $C_{D}=\frac{F_{D}}{\rho^{v} A}$, will be identical. Thus

$$
\begin{aligned}
& \frac{F_{p}}{\rho_{\rho} V_{p}^{2} L_{p}^{2}}=\frac{F_{m}}{f_{m} V_{m}^{2} L_{m}^{2}} \text { or } F_{\rho}=F_{m} \frac{\rho_{\rho}}{\rho_{m}} \frac{V_{p}^{2}}{V_{m}^{2}} \frac{L_{p}^{2}}{L_{m}^{2}} \\
& F_{p}=F_{m} \frac{1.025}{0.499} \times\left(\frac{0.5}{14.3}\right)^{2}\left(\frac{30}{1}\right)^{2}=1.13 \text { (submerged), } 2.77 \times 10^{4} \text { (surface) } F_{P} / F_{n}
\end{aligned}
$$

Given: Te drag fore on a aralas enfinder immersed in a water How con be expressed as

$$
\begin{aligned}
& \text { Robe expressed as } \\
& F_{y}=f(y, H, P, \mu)
\end{aligned}
$$

The static pressure ditirbation on a crrablas cylinder can be expressed in terns of the dimensionless pressure coefficient

$$
c_{0}=\frac{+-f_{x}}{\frac{1}{2} v^{2}}
$$

Pt the location of minimus static pressure on the cylinder surface, $C_{p}=-2.4$. The onset of cavitation occurs at $C_{a}=0.5$

Find: (a) expression for dumensiontest drag force
(b) an estimate of maximums spec t at which cylinder could bo towed in water (at Rath) without causing cavitation

Solution:
$F_{>}=f(D, l, Y, R, \mu)$: From he Buckingran k - theorem, for $n=b_{0}$, wi $n=5=3$, We would export three duriensionless groups.

$$
\begin{aligned}
& \frac{F}{e^{2} y^{2}}=f\left(\frac{1}{y}, \frac{p \frac{4 y}{\mu}}{\mu}\right) \\
& C_{f}=\frac{p^{-p_{\infty}}}{\frac{1}{2} p^{2}} \quad C_{0}=\frac{e^{2}-p_{v}}{\frac{1}{2} p^{2}}
\end{aligned}
$$

$$
\begin{aligned}
& \text { For } C_{a}=\frac{1}{2}, f_{\min }-f_{J}=\frac{1}{2} p^{\psi_{\max }^{2}} C_{a} \therefore f_{\min }=f_{v}+\frac{1}{2} p_{\operatorname{rad}}^{2} C_{a}
\end{aligned}
$$

Equation expressions for pain,

$$
\begin{aligned}
& P_{\infty}+\frac{1}{2} p_{\text {max }}^{2} C_{p_{\text {min }}}=P_{5}+\frac{1}{2} p_{\text {max }}^{2} C_{a} \\
& \frac{1}{2} p^{\psi_{\text {mart }}}\left[C_{a}-C_{p \text { min }}\right]=p_{\infty}-p_{v}
\end{aligned}
$$

$$
\begin{aligned}
& V_{\text {max }}=27.1 \mathrm{ft} l_{\mathrm{s}}(8.26 \mathrm{ml})
\end{aligned}
$$

7.71 A $\frac{1}{10}$-scale model of a tractor-trailer rig is tested in a wind tunnel. The model frontal area is $A_{m}=0.1 \mathrm{~m}^{2}$. When tested at $V_{m}=75 \mathrm{~m} / \mathrm{s}$ in standard air, the measured drag force is $F_{D}=350$ N. Evaluate the drag coefficient for the model conditions given. Assuming that the drag coefficient is the same for model and prototype, calculate the drag force on a prototype rig at a highway speed of $90 \mathrm{~km} / \mathrm{hr}$. Determine the air speed at which a model should be tested to ensure dynamically similar results if the prototype speed is $90 \mathrm{~km} / \mathrm{hr}$. Is this air speed practical? Why or why not?

Given: Model of tractor-trailer truck

Find: Drag coefficient; Drag on prototype; Model speed for dynamic similarity

Solution:

For kinematic similarity we need to ensure the geometries of model and prototype are similar, as is the incoming flow field

The drag coefficient is

$$
\mathrm{C}_{\mathrm{D}}=\frac{\mathrm{F}_{\mathrm{m}}}{\frac{1}{2} \cdot \rho_{\mathrm{m}} \cdot \mathrm{~V}_{\mathrm{m}}^{2} \cdot \mathrm{~A}_{\mathrm{m}}}
$$

For air (Table A.10) at $20^{\circ} \mathrm{C}$

$$
\begin{aligned}
& \rho_{\mathrm{m}}=1.21 \cdot \frac{\mathrm{~kg}}{\mathrm{~m}^{3}} \quad \quad \mu_{\mathrm{p}}=1.81 \times 10^{-5} \cdot \frac{\mathrm{~N} \cdot \mathrm{~s}}{\mathrm{~m}^{2}} \\
& \mathrm{C}_{\mathrm{D}}=2 \times 350 \cdot \mathrm{~N} \times \frac{\mathrm{m}^{3}}{1.21 \cdot \mathrm{~kg}} \times\left(\frac{\mathrm{s}}{75 \cdot \mathrm{~m}}\right)^{2} \times \frac{1}{0.1 \cdot \mathrm{~m}^{2}} \times \frac{\mathrm{N} \cdot \mathrm{~s}^{2}}{\mathrm{~kg} \cdot \mathrm{~m}}
\end{aligned}
$$

$$
\mathrm{C}_{\mathrm{D}}=1.028
$$

This is the drag coefficient for model and prototype

For the rig

$$
\text { For dynamic similarity } \quad \frac{\rho_{\mathrm{m}} \cdot \mathrm{~V}_{\mathrm{m}} \cdot \mathrm{~L}_{\mathrm{m}}}{\mu_{\mathrm{m}}}=\frac{\rho_{\mathrm{p}} \cdot \mathrm{~V}_{\mathrm{p}} \cdot \mathrm{~L}_{\mathrm{p}}}{\mu_{\mathrm{p}}}
$$

$$
\begin{array}{ll}
\mathrm{F}_{\mathrm{p}}=\frac{1}{2} \cdot \rho_{\mathrm{p}} \cdot \mathrm{~V}_{\mathrm{p}}^{2} \cdot \mathrm{~A}_{\mathrm{p}} \cdot \mathrm{C}_{\mathrm{D}} & \text { with } \\
\mathrm{F}_{\mathrm{p}}=\frac{1}{2} \times 1.21 \cdot \frac{\mathrm{~kg}}{\mathrm{~m}_{\mathrm{p}}^{3}} \times\left(90 \cdot \frac{\mathrm{~km}}{\mathrm{hr}} \times \frac{1000 \cdot \mathrm{~m}}{1 \cdot \mathrm{~km}} \times \frac{1 \cdot \mathrm{hr}}{3600 \cdot \mathrm{~s}}\right)^{2} & \left.\times 10 \cdot \mathrm{~m}^{2} \times 1.028 \times \frac{\mathrm{N} \cdot \mathrm{~s}}{\mathrm{~L}_{\mathrm{m}}}\right)^{2} \\
\mathrm{~kg} \cdot \mathrm{~m} & \mathrm{~A}_{\mathrm{p}}=10 \cdot \mathrm{~m}^{2} \\
\frac{\rho_{\mathrm{m}} \cdot \mathrm{~V}_{\mathrm{m}} \cdot \mathrm{~L}_{\mathrm{m}}}{\mu_{\mathrm{m}}}=\frac{\rho_{\mathrm{p}} \cdot \mathrm{~V}_{\mathrm{p}} \cdot \mathrm{~L}_{\mathrm{p}}}{\mu_{\mathrm{p}}} & \mathrm{~F}_{\mathrm{p}}=3.89 \mathrm{kN} \\
\mathrm{~V}_{\mathrm{m}}=90 \cdot \frac{\mathrm{~km}}{\mathrm{hr}} \times \frac{1000 \cdot \mathrm{~m}}{1 \cdot \mathrm{~km}} \times \frac{1 \cdot \mathrm{hr}}{3600 \cdot \mathrm{~s}} \times \frac{10}{1} & \mathrm{~V}_{\mathrm{m}}=\mathrm{V}_{\mathrm{p}} \cdot \frac{\rho_{\mathrm{p}}}{\rho_{\mathrm{m}}} \cdot \frac{\mathrm{~L}_{\mathrm{p}}}{\mathrm{~L}_{\mathrm{m}}} \cdot \frac{\mu_{\mathrm{m}}}{\mu_{\mathrm{p}}}=\mathrm{V}_{\mathrm{p}} \cdot \frac{\mathrm{~L}_{\mathrm{p}}}{\mathrm{~L}_{\mathrm{m}}} \\
\end{array}
$$

For air at standard conditions, the speed of sound is $\quad c=\sqrt{k \cdot R \cdot T}$

$$
\mathrm{c}=\sqrt{1.40 \times 286.9 \cdot \frac{\mathrm{~N} \cdot \mathrm{~m}}{\mathrm{~kg} \cdot \mathrm{~K}} \times(20+273) \cdot \mathrm{K} \times \frac{\mathrm{kg} \cdot \mathrm{~m}}{\mathrm{~s}^{2} \cdot \mathrm{~N}}} \quad \mathrm{c}=343 \frac{\mathrm{~m}}{\mathrm{~s}}
$$

Hence we have

$$
\mathrm{M}=\frac{\mathrm{V}_{\mathrm{m}}}{\mathrm{c}}=\frac{250}{343}=0.729
$$

which indicates compressibility is significant - this model speed is impractical (and unnecessary)

Given: Circular container partially filed with water is rotated about is axis at constant angular velocity, w.

The velocity t_{θ} is a function of: location, r, tire from start, ${ }^{-}$, angular velocity, ω, density, and viscosity. μ. Hater is Replaced wist horny and cyivider is rotated at the same value of ω.

Fid: (a) dimensionless parameters that Characterize the problem. (b) Petermine whether honey will attain steady state moluo as
(c) Euperly as water.
(c) Etplait why Fe would not be an portant parameter in scaling te steady state motion of the liquid.
Solution:

$$
\forall_{\theta}=\psi_{\theta}(\omega, r,+, \rho, \mu)
$$

From the Buckriglam π-theorem, for $n=6$ and $n=r=3$, we would expect tree divensiortess groups.

$$
\frac{\psi_{Q}}{\omega r}=f\left(\frac{\mu}{\beta \omega r^{2}}, \omega r\right)
$$

From the above results $\pi_{2}=\mu_{0}$ pw r contain the fluid properties pi μ.

$$
\begin{gathered}
k_{3}=\omega t \quad \text { contours Re time } V \\
\pi_{2} \pi_{3}=\frac{\mu}{p \omega r^{2}} \omega t=\frac{\mu t}{\rho r^{2}}=\frac{\nabla x}{r^{2}} \quad \text { whose } J=/ \bar{\rho}
\end{gathered}
$$

For steady flow ot the same radius

$$
\begin{aligned}
& \left.\left.\frac{V T}{r^{2}}\right\rangle_{\text {taney }}=\frac{V i}{T^{2}}\right)_{\text {weer }} \\
& \therefore r_{A}=\frac{V_{\text {water }}}{\nabla_{\text {wry }}} r_{\text {wader }}
\end{aligned}
$$

Since $\nabla_{\text {trey }}>\nabla_{\text {water }}\left(\mu_{\text {lory }}>\mu_{\text {water }}\right.$ and $\left.p_{*} \neq f_{w}\right)$

$$
\uparrow_{H}<\widehat{T}_{\text {under }}
$$

At steady state conditions, we have solid body rotation there are no fuscous forces. Hence le is not important.

Problem 7.73
Given: Recomended procedures for wind turnel teds of trudtsabuess suggest:

Aradel / A west sective <0.05
hrobs / heat exction $<0.30 \quad(h=$ height
$w_{\text {masid }}$ at man you $\left(20^{\circ}\right) /$ Whethat $<0.30 \quad$ (w) progeted width)
$t_{\text {mar }}-300$ \&t 5
whind tunnaitest selon is $h=1.5 f, w=2 f$,
Prothype has: $h=13.5 \mathrm{f}, w=8 \mathrm{ft}$, Lergh $=65 \mathrm{ft}$.
Find: (0) scale ratio of largett model that mets the recommended eriterie.
(b) Ux results of ExTrob 7.5 to asscos whether an adequate value of Re can be achieved in the test facility.
Solutior:
Let $s=$ scale ratio. Then $h_{n}=s h_{p}, w_{n}=s w_{p}, h_{n}=s l_{p}$
ii) height criteria.

$$
\begin{aligned}
& h_{n}-0.30 h_{\text {deatsation }}=0.3(1.5 f)=0.45 f \\
& \quad s=\frac{h_{m}}{h_{n}}=\frac{0.45 f t}{13.5 f}=0.0333 \quad\left\{\frac{1}{5}=30\right\}
\end{aligned}
$$

(a) Frontal area criteria

$$
\begin{aligned}
& A_{\text {nctil }}=0.05 A_{\text {tesuct }}=0.05 \times 1.5 f \times 2 f=0.15 f^{2} \\
& A_{\text {nos }}=s^{2} A_{P}=s^{2}[13.5 f \times 8 f]=s^{2}(108) f^{2}=0.15 \\
& \therefore s=\left(\frac{0.15}{108}\right)^{12}=0.0373 \quad\left\{\frac{1}{5}=26.8\right\}
\end{aligned}
$$

(3) widh erteria

$$
\begin{aligned}
w_{n t x^{-}} & =l_{n} \sin 20^{\circ}+w_{n} \cos 20^{\circ} \\
& =s\left(l_{p} \sin 20^{\circ}+w_{p} \cos 20^{\circ}\right) \\
w_{m_{26}} & =S\left[65 \sin 20^{\circ}+8 \cos 20^{\circ}\right] r t=29.7 \operatorname{st}
\end{aligned}
$$

Fron corbtrount, $W_{120}=0.30 W_{\text {tamand }}=0.30(2 \mathrm{ft})=0.6 \mathrm{ft}$.

$$
\therefore 0.6 \mathrm{f}=29.7 \mathrm{ff} \text { and } s=0.0202 \quad\left\{\frac{1}{s}=49.5\right\}
$$

The widh criteria is the mott stringent $\therefore s=\frac{1}{s o}$

$$
\text { Modd }=\frac{1}{50} \text { Prototyer. }
$$

From E., Prob i.s, $C_{9}=$ cont for $R_{e}>4 \times 10^{5}$ wh he $=\frac{p+x}{\mu}=\frac{\psi N}{J} \quad$ standardair $J=1.57+6 \psi^{*} \psi_{s}$
Fer current notstect, $R_{e}=300 \frac{\pi}{54} \times\left(\frac{1}{50}+84\right) \times \frac{5}{\left(.5740^{-4} f_{2}\right.}=3.06 \times 10^{5}$

\therefore Hodequate h^{2} carrol be olicued

Given: Power, P, to drive a fan depends on ρ, Q, D, and w.

$$
\frac{\text { Condition }}{1} \frac{O(\mathrm{~mm})}{200} \frac{Q\left(\mathrm{~m}^{3} / \mathrm{s}\right)}{0.4} \frac{\omega(\text { rpm }}{2400}
$$

Find: Volume flow rate at condition 2, for dynamic similarity.
Solution: Step (1) P
step (2) ML
(3): $\frac{M L^{2}}{t^{3}}$

ρ	Q
$\frac{M}{L^{3}}$	$\frac{L^{3}}{t}$

$t^{\frac{L^{3}}{t}}$
L
(5)

$$
\begin{array}{l|l|l}
\pi_{1}=\rho^{a} \omega^{b} D^{c} P=M^{0} L^{0} & \pi_{2}=\rho^{a} \omega^{b} D^{c} Q=M^{0} L^{0} t^{0} \\
M: a+1=0 \quad \mid a=-1 & M: a+0=0 & \mid a=0 \\
L:-3 a+c+2=0 \mid c=3 a-2=-5 & L:-3 a+c+3=0 \mid c=-3 \\
t:-b-3=0 & \mid b=-3 & t:-b-1=0 \\
\pi_{1}=\frac{\rho}{\rho \omega^{3} D^{5}} & & \mid b=-1 \\
\pi_{2}=\frac{Q}{\omega D^{3}} &
\end{array}
$$

(6) $\pi_{1}=\frac{F L}{t} \times \frac{L^{4}}{F t^{2}} \times t^{3} \times \frac{1}{L^{5}}=\frac{F L^{5} t^{3}}{F L^{5} t^{3}}=1 \quad v \quad \pi_{2}=\frac{L^{3}}{t} \times t^{+} \times \frac{1}{L^{3}}=\frac{L^{3} t}{L^{3} t}=1 \mathrm{~m}$

Thus $\pi_{1}=f\left(\pi_{2}\right)$ or $\frac{P}{\rho \omega^{3} D^{5}}=f\left(\frac{Q}{\omega D^{3}}\right)$
For dynamic similarity, need geometric and kinematic similarity and

$$
\frac{Q_{1}}{\omega_{1} D_{1}^{3}}=\frac{Q_{2}}{\omega_{2} D_{2}^{3}}
$$

Thus

$$
Q_{2}=Q_{1} \frac{\omega_{2}}{\omega_{1}}\left(\frac{D_{2}}{D_{1}}\right)^{3}=0.4 \mathrm{~m}^{3} / \mathrm{s} \frac{1850 \mathrm{rpm}}{2400 \mathrm{rpm}}\left(\frac{200 \mathrm{~mm}}{400 \mathrm{~mm}}\right)^{3}=2.47 \mathrm{~m}^{3} / \mathrm{s}
$$

7.75 Over a certain range of air speeds, V, the lift, F_{L}, produced by a model of a complete aircraft in a wind tunnel depends on the air speed, air density, ρ, and a characteristic length (the wing base chord length, $c=150 \mathrm{~mm}$). The following experimental data is obtained for air at standard atmospheric conditions:

```
l(m/s)
```

Plot the lift versus speed curve. By using Excel to perform a trendline analysis on this curve, generate and plot data for the lift produced by the prototype, which has a wing base chord length of 5 m , over a speed range of $75 \mathrm{~m} / \mathrm{s}$ to $250 \mathrm{~m} / \mathrm{s}$.

Given: Data on model of aircraft
Find: Plot of lift vs speed of model; also of prototype

Solution:

$\left.\boldsymbol{V}_{\mathbf{m}} \mathbf{(m / s}\right)$	10	15	20	25	30	35	40	45	50
$\boldsymbol{F}_{\mathbf{m}} \mathbf{(N)}$	2.2	4.8	8.7	13.3	19.6	26.5	34.5	43.8	54.0

This data can be fit to
$\mathrm{F}_{\mathrm{m}}=\frac{1}{2} \cdot \rho \cdot \mathrm{~A}_{\mathrm{m}} \cdot \mathrm{C}_{\mathrm{D}} \cdot \mathrm{V}_{\mathrm{m}}^{2} \quad$ or $\quad \mathrm{F}_{\mathrm{m}}=\mathrm{k}_{\mathrm{m}} \cdot \mathrm{V}_{\mathrm{m}}{ }^{2}$
From the trendline, we see that

$$
k_{\mathrm{m}}=0.0219 \quad \mathrm{~N} /(\mathrm{m} / \mathrm{s})^{2}
$$

(And note that the power is 1.9954 or 2.00 to three signifcant figures, confirming the relation is quadratic)

Also, $k_{\mathrm{p}}=1110 k_{\mathrm{m}}$

Hence,

$$
k_{\mathrm{p}}=24.3 \mathrm{~N} /(\mathrm{m} / \mathrm{s})^{2} \quad F_{\mathrm{p}}=k_{\mathrm{p}} V_{\mathrm{m}}^{2}
$$

$\boldsymbol{V}_{\mathbf{p}}(\mathbf{m} / \mathbf{s})$	75	100	125	150	175	200	225	250
$\boldsymbol{F}_{\mathbf{p}}(\mathbf{k N})$ (Trendline)	137	243	380	547	744	972	1231	1519

Given: Information relating th geometrically similar model test of centrifugal, pump:

Find: Missing values for dynamically similar conditions.
Solution: Apply Buckingham π-theorem. Assume $\Delta p=f(Q, p, \omega, D)$
(1) Δp

Q
0 $n=5$ parameters
(2) Choose $M_{1} L, t$ as fundamental dimensions.
(3) $\frac{M}{L t^{2}} \quad \frac{L^{3}}{t} \quad \frac{M}{L^{3}} \quad \frac{L}{t} \quad L \quad r=3$ primary dimensions
(4) Let p, ω, and D be repeating variables. $m=r=3$
(5) Then $n-m=5-3=2$ dimensionless parameters result. (6) check:

$$
\begin{aligned}
& \Pi_{1}=\rho^{a} \omega^{b} D^{c} \Delta p=\left(\frac{M}{L 3}\right)^{a}\left(\frac{1}{t}\right)^{b}(L)^{c} \frac{M}{L t^{2}}=M^{0} L^{a} t^{0} \\
& \left.\begin{array}{ll}
M: a+1=0 & a=-1 \\
L:-3 a+c-1=0 & c=-2 \\
t:-b-2=0 & b=-2
\end{array}\right\} \Pi_{1}=\frac{\Delta p}{\rho \omega^{2} D^{2}} \\
& \pi_{1}=\frac{E}{L^{2} F L^{2}} \frac{L^{2}}{l} \frac{1}{L^{2}}-[1] \| v \\
& m_{\tau}=\rho^{a} \omega^{b} D^{c} Q=\left(\frac{M}{L}\right)^{a}\left(\frac{1}{t}\right)^{t}(L)^{c} \frac{L^{3}}{t}=M^{D} L^{0} t^{0} \\
& \left.\begin{array}{ll}
\text { M: } a=0 \\
L:-3 a+c+3=0 & a=0 \\
t:-b-1=0 & b=-1
\end{array}\right\} T_{2}=\frac{Q}{\omega D} \\
& \pi_{2}=\frac{L^{3}}{t} \frac{t}{1} \frac{1}{L^{3}}=[1] \cup 4
\end{aligned}
$$

Thus $\Pi_{1}=f\left(\Pi_{2}\right)$ for this situation. Flows are geometrically similar. Assume kinematic similarity. Then for dynamic similarity, if $\pi_{2 m}=\pi_{t p}$ then $\pi_{m}=\pi_{i} \rho$.

$$
\begin{aligned}
& T_{2 m}=\frac{Q_{m}}{\omega_{m} D_{m}}=T_{2 p}=\frac{Q_{p}}{\omega_{\rho D_{p}}} ; \quad Q_{m}=Q_{p}\left(\frac{\omega_{m}}{\omega_{p}}\right)\left(\frac{D_{p}}{D_{p}}\right)^{3}=Q_{p}\left(\frac{367}{183}\right)\left(\frac{50}{150}\right)^{3}=0.0743 Q_{p} \\
& Q_{m}=0.0743 \times 1.25 \frac{m^{3}}{m 11}=0.0928 \mathrm{~m}^{3} / \mathrm{min} \\
& \Pi_{I m}=\frac{\Delta D_{m}}{\rho_{m} \omega_{m}^{2} D_{m}^{2}}=\Pi_{p p}=\frac{\Delta p_{p}}{\rho_{p} l_{p}^{2} D_{p}^{2}} ; \Delta p_{p}=\Delta p_{m} \frac{\rho_{p}}{f_{m}}\left(\frac{\omega_{p}}{\omega_{m}}\right)^{2}\left(\frac{D_{p}}{D_{m}}\right)^{2} \\
& \Delta p_{p}=\Delta p_{m}\left(\frac{800}{499}\right)\left(\frac{183}{367}\right)^{2}\left(\frac{150}{50}\right)^{2}=1.79 \times 29.3 \mathrm{kPa}=52.5 \mathrm{kPa}
\end{aligned}
$$

$\{$ This result neglects any effect of viscosity. \}
7.77 Tests are performed on a 1-m long ship model in a water
tank. Results obtained (after doing some data analysis) are as
follows:

$\boldsymbol{V}(\mathbf{m} / \mathbf{s})$	3	6	9	12	15	18	20
$\boldsymbol{D}_{\text {Wave }}(\mathbf{N})$	0	0.125	0.5	1.5	3	4	5.5
$\boldsymbol{D}_{\text {Friction }}(\mathbf{N})$	0.1	0.35	0.75	1.25	2	2.75	3.25

The assumption is that wave drag modeling is done using the Froude number, and friction drag by the Reynolds number. The full size ship will be 50 m long when built. Estimate the total drag when it is cruising at 15 knots, and at 20 knots, in a freshwater
lake.
For drag we can use $\quad C_{D}=\frac{D}{\frac{1}{2} \rho V^{2} A} \quad$ As a suitable scaling area for A we use $L^{2} \quad C_{D}=\frac{D}{\frac{1}{2} \rho V^{2} L^{2}}$

Model:	$L=$	1	m
For water	$\rho=$	1000	$\mathrm{~kg} / \mathrm{m}^{3}$
	$\mu=$	$1.01 \mathrm{E}-03$	$\mathrm{~N} \cdot \mathrm{~s} / \mathrm{m}^{2}$

The data is:

$V(\mathrm{~m} / \mathrm{s})$	3	6	9	12	15	18	20
$D_{\text {Wave }}(\mathrm{N})$	0	0.125	0.5	1.5	3	4	5.5
$D_{\text {Fricion }}(\mathrm{N})$	0.1	0.35	0.75	1.25	2	2.75	3.25

$F r$	0.958	1.916	2.873	3.831	4.789	5.747	6.386
$R e$	$2.97 \mathrm{E}+06$	$5.94 \mathrm{E}+06$	$8.91 \mathrm{E}+06$	$1.19 \mathrm{E}+07$	$1.49 \mathrm{E}+07$	$1.78 \mathrm{E}+07$	$1.98 \mathrm{E}+07$
$C_{D(\text { (Wve })}$	$0.00 \mathrm{E}+00$	$6.94 \mathrm{E}-06$	$1.23 \mathrm{E}-05$	$2.08 \mathrm{E}-05$	$2.67 \mathrm{E}-05$	$2.47 \mathrm{E}-05$	$2.75 \mathrm{E}-05$
$C_{D(\text { Friction })}$	$2.22 \mathrm{E}-05$	$1.94 \mathrm{E}-05$	$1.85 \mathrm{E}-05$	$1.74 \mathrm{E}-05$	$1.78 \mathrm{E}-05$	$1.70 \mathrm{E}-05$	$1.63 \mathrm{E}-05$

The friction drag coefficient becomes a constant, as expected, at high $R e$
The wave drag coefficient appears to be linear with Fr , over most values
Ship:
$L=\quad 50$
m

$V(\mathrm{knot})$	15	20
$V(\mathrm{~m} / \mathrm{s})$	7.72	10.29
$F r$	0.348	0.465
$R e$	$3.82 \mathrm{E}+08$	$5.09 \mathrm{E}+08$

$$
D=\frac{1}{2} \rho V^{2} L^{2} C_{D}
$$

Hence for the ship we have very high Re , and low Fr .
From the graph we see the friction C_{D} levels out at about 1.75×10^{-5}
From the graph we see the wave C_{D} is negligibly small

7.78 A centrifugal water pump running at speed $\omega=750 \mathrm{rpm}$ has the following data for flow rate Q and pressure head Δp :

$\boldsymbol{Q}\left(\mathbf{m}^{\mathbf{3}} / \mathbf{h r}\right)$	0	100	150	200	250	300	325	350
$\Delta p(\mathbf{k P a})$	361	349	328	293	230	145	114	59

The pressure head Δp is a function of flow rate, Q, and speed, ω, and also impeller diameter, D, and water density, ρ. Plot the pressure head versus flow rate curve. Find the two Π parameters for this problem, and from the above data plot one against the other. By using Excel to perform a trendline analysis on this latter curve, generate and plot data for pressure head versus flow rate for impeller speeds of 500 rpm and 1000 rpm .

Given: Data on centrifugal water pump
Find: Π groups; plot pressure head vs flow rate for range of speeds

Solution:

We will use the workbook of Example 7.1, modified for the current problem
The number of parameters is:

$$
n=5
$$

The number of primary dimensions is:
$r=3$
The number of repeat parameters is:
$m=r=3$
The number of Π groups is:
$n-m=2$
Enter the dimensions ($\mathbf{M}, \mathbf{L}, \mathbf{t}$) of
the repeating parameters, and of up to
four other parameters (for up to four Π groups).
The spreadsheet will compute the exponents a, b, and c for each.
REPEATING PARAMETERS: Choose $\boldsymbol{\rho}, \boldsymbol{g}, \boldsymbol{d}$

	\mathbf{M}	\mathbf{L}	\mathbf{t}
	1 -3 D 1		

Π GROUPS:

	\mathbf{M}	\mathbf{L}	\mathbf{t}		\mathbf{M}	\mathbf{L}
Δp	1	-1	-2	Q	0	3

The following Π groups from Example 7.1 are not used:

	M	L	t		M	L
	0	0	0		0	0
$\Pi_{3}:$	a	0		$\Pi_{4}:$	$a=$	0
	$b=$	0			$b=$	0
	$c=$	0			$c=$	0

Hence

$$
\Pi_{1}=\frac{\Delta p}{\rho \omega^{2} D^{2}} \quad \text { and } \quad \Pi_{2}=\frac{Q}{\omega D^{3}}
$$

with $\Pi_{1}=f\left(\Pi_{2}\right)$.

Based on the plotted data, it looks like the relation between Π_{1} and Π_{2} may be parabolic
Hence $\quad \frac{\Delta p}{\rho \omega^{2} D^{2}}=a+b\left(\frac{Q}{\omega D^{3}}\right)+c\left(\frac{Q}{\omega D^{3}}\right)^{2}$
The data is

$\boldsymbol{Q}\left(\mathbf{m}^{\mathbf{3}} / \mathbf{h r}\right)$	0	100	150	200	250	300	325	350
$\Delta \boldsymbol{p}(\mathbf{k P a})$	361	349	328	293	230	145	114	59

$\begin{array}{rlll}\rho & = & 999 & \mathrm{~kg} / \mathrm{m}^{3} \\ \omega & = & 750 & \mathrm{rpm} \\ D & = & 1 & \mathrm{~m}\end{array} \quad$ (D is not given; use $D=1 \mathrm{~m}$ as a scale $)$

$\boldsymbol{Q} /\left(\omega \boldsymbol{D}^{3}\right)$	0.00000	0.000354	0.000531	0.000707	0.000884	0.00106	0.00115	0.00124
$\Delta \boldsymbol{p} /\left(\rho \omega^{2} \boldsymbol{D}^{2}\right)$	0.0586	0.0566	0.0532	0.0475	0.0373	0.0235	0.0185	0.00957

From the Trendline analysis

$$
\begin{aligned}
& a=0.0582 \\
& b=13.4 \\
& c=-42371 \\
& \text { and } \quad \Delta p=\rho \omega^{2} D^{2}\left[a+b\left(\frac{Q}{\omega D^{3}}\right)+c\left(\frac{Q}{\omega D^{3}}\right)^{2}\right]
\end{aligned}
$$

Finally, data at 500 and 1000 rpm can be calculated and plotted

$$
\omega=\quad 500 \quad \mathrm{rpm}
$$

$\boldsymbol{Q}\left(\mathbf{m}^{\mathbf{3}} / \mathbf{h r}\right)$	0	25	50	75	100	150	200	250
$\Delta \boldsymbol{p}(\mathbf{k P a})$	159	162	161	156	146	115	68	4

$\omega=1000 \quad$ rpm

$\boldsymbol{Q}\left(\mathbf{m}^{\mathbf{3}} / \mathbf{h r}\right)$	0	25	50	100	175	250	300	350
$\Delta \boldsymbol{p} \mathbf{(k P a})$	638	645	649	644	606	531	460	374

Problem 7.79

7.79 An axial-flow pump is required to deliver $0.75 \mathrm{~m}^{3} / \mathrm{s}$ of water at a head of $15 \mathrm{~J} / \mathrm{kg}$. The diameter of the rotor is 0.25 m , and it is to be driven at 500 rpm . The prototype is to be modeled on a small test apparatus having a $2.25 \mathrm{~kW}, 1000 \mathrm{rpm}$ power supply. For similar performance between the prototype and the model, calculate the head, volume flow rate, and diameter of the model.

Given: Model of water pump

Find: Model head, flow rate and diameter

Solution:

From Buckingham Π

$$
\frac{\mathrm{h}}{\omega^{2} \cdot \mathrm{D}^{2}}=\mathrm{f}\left(\frac{\mathrm{Q}}{\omega \cdot \mathrm{D}^{3}}, \frac{\rho \cdot \omega \cdot \mathrm{D}^{2}}{\mu}\right) \quad \text { and } \quad \frac{\mathrm{P}}{\omega^{3} \cdot \mathrm{D}^{5}}=\mathrm{f}\left(\frac{\mathrm{Q}}{\omega \cdot \mathrm{D}^{3}}, \frac{\rho \cdot \omega \cdot \mathrm{D}^{2}}{\mu}\right)
$$

Neglecting viscous effects $\frac{Q_{m}}{\omega_{m} \cdot D_{m}{ }^{3}}=\frac{Q_{p}}{\omega_{\mathrm{D}} \cdot D_{\mathrm{D}}{ }^{3}} \quad$ then $\quad \frac{h_{m}}{\omega_{m}{ }^{2} \cdot D_{m}{ }^{2}}=\frac{h_{p}}{\omega_{p}^{2} \cdot D_{p}^{2}} \quad$ and $\quad \frac{P_{m}}{\omega_{m}^{3} \cdot D_{m}^{5}}=\frac{P_{p}}{\omega_{p}^{3} \cdot D_{p}^{5}}$
Hence if

$$
\begin{equation*}
\frac{\mathrm{Q}_{\mathrm{m}}}{\mathrm{Q}_{\mathrm{p}}}=\frac{\omega_{\mathrm{m}}}{\omega_{\mathrm{p}}} \cdot\left(\frac{\mathrm{D}_{\mathrm{m}}}{\mathrm{D}_{\mathrm{p}}}\right)^{3}=\frac{1000}{500} \cdot\left(\frac{\mathrm{D}_{\mathrm{m}}}{\mathrm{D}_{\mathrm{p}}}\right)^{3}=2 \cdot\left(\frac{\mathrm{D}_{\mathrm{m}}}{\mathrm{D}_{\mathrm{p}}}\right)^{3} \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
\frac{\mathrm{h}_{\mathrm{m}}}{\mathrm{~h}_{\mathrm{p}}}=\frac{\omega_{\mathrm{m}}^{2}}{\omega_{\mathrm{p}}^{2}} \cdot \frac{\mathrm{D}_{\mathrm{m}}^{2}}{\mathrm{D}_{\mathrm{p}}^{2}}=\left(\frac{1000}{500}\right)^{2} \cdot \frac{\mathrm{D}_{\mathrm{m}}^{2}}{\mathrm{D}_{\mathrm{p}}^{2}}=4 \cdot \frac{\mathrm{D}_{\mathrm{m}}^{2}}{\mathrm{D}_{\mathrm{p}}^{2}} \tag{2}
\end{equation*}
$$

then

$$
\begin{equation*}
\frac{\mathrm{P}_{\mathrm{m}}}{\mathrm{P}_{\mathrm{p}}}=\frac{\omega_{\mathrm{m}}^{3}}{\omega_{\mathrm{p}}^{3}} \cdot \frac{\mathrm{D}_{\mathrm{m}}^{5}}{\mathrm{D}_{\mathrm{p}}^{5}}=\left(\frac{1000}{500}\right)^{3} \cdot \frac{\mathrm{D}_{\mathrm{m}}^{5}}{\mathrm{D}_{\mathrm{p}}^{5}}=8 \cdot \frac{\mathrm{D}_{\mathrm{m}}^{5}}{\mathrm{D}_{\mathrm{p}}^{5}} \tag{3}
\end{equation*}
$$

We can find P_{p} from

$$
P_{p}=\rho \cdot Q \cdot \mathrm{~h}=1000 \cdot \frac{\mathrm{~kg}}{\mathrm{~m}^{3}} \times 0.75 \cdot \frac{\mathrm{~m}^{3}}{\mathrm{~s}} \times 15 \cdot \frac{\mathrm{~J}}{\mathrm{~kg}}=11.25 \cdot \mathrm{~kW}
$$

From Eq 3

$$
\frac{\mathrm{P}_{\mathrm{m}}}{\mathrm{P}_{\mathrm{p}}}=8 \cdot \frac{\mathrm{D}_{\mathrm{m}}^{5}}{\mathrm{D}_{\mathrm{p}}^{5}} \quad \text { so } \quad \mathrm{D}_{\mathrm{m}}=\mathrm{D}_{\mathrm{p}} \cdot\left(\frac{1}{8} \cdot \frac{\mathrm{P}_{\mathrm{m}}}{\mathrm{P}_{\mathrm{p}}}\right)^{\overline{5}}
$$

$$
\mathrm{D}_{\mathrm{m}}=0.25 \cdot \mathrm{~m} \times\left(\frac{1}{8} \times \frac{2.25}{11.25}\right)^{\frac{1}{5}} \quad \mathrm{D}_{\mathrm{m}}=0.120 \mathrm{~m}
$$

From Eq 1

$$
\frac{\mathrm{Q}_{\mathrm{m}}}{\mathrm{Q}_{\mathrm{p}}}=2 \cdot\left(\frac{\mathrm{D}_{\mathrm{m}}}{\mathrm{D}_{\mathrm{p}}}\right)^{3} \quad \text { so } \quad \mathrm{Q}_{\mathrm{m}}=\mathrm{Q}_{\mathrm{p}} \cdot 2 \cdot\left(\frac{\mathrm{D}_{\mathrm{m}}}{\mathrm{D}_{\mathrm{p}}}\right)^{3}
$$

$$
\mathrm{Q}_{\mathrm{m}}=0.75 \cdot \frac{\mathrm{~m}^{3}}{\mathrm{~s}} \times 2 \times\left(\frac{0.12}{0.25}\right)^{3} \quad \mathrm{Q}_{\mathrm{m}}=0.166 \frac{\mathrm{~m}^{3}}{\mathrm{~s}}
$$

From Eq 2

$$
\frac{\mathrm{h}_{\mathrm{m}}}{\mathrm{~h}_{\mathrm{p}}}=4 \cdot\left(\frac{\mathrm{D}_{\mathrm{m}}}{\mathrm{D}_{\mathrm{p}}}\right)^{2} \quad \text { so } \quad \mathrm{h}_{\mathrm{m}}=\mathrm{h}_{\mathrm{p}} \cdot 4 \cdot\left(\frac{\mathrm{D}_{\mathrm{m}}}{\mathrm{D}_{\mathrm{p}}}\right)^{2} \quad \mathrm{~h}_{\mathrm{m}}=15 \cdot \frac{\mathrm{~J}}{\mathrm{~kg}} \times 4 \times\left(\frac{0.12}{0.25}\right)^{2} \quad \mathrm{~h}_{\mathrm{m}}=13.8 \frac{\mathrm{~J}}{\mathrm{~kg}}
$$

7.80 A model propeller 2 ft in diameter is tested in a wind tunnel. Air approaches the propeller at $150 \mathrm{ft} / \mathrm{s}$ when it rotates at 2000 rpm . The thrust and torque measured under these conditions are 25 lbf and $7.5 \mathrm{lbf} \cdot \mathrm{ft}$, respectively. A prototype 10 times as large as the model is to be built. At a dynamically similar operating point, the approach air speed is to be $400 \mathrm{ft} / \mathrm{s}$. Calculate the speed, thrust, and torque of the prototype propeller under these conditions, neglecting the effect of viscosity but including density.

Given: Data on model propeller
Find:
Speed, thrust and torque on prototype

Solution:

There are two problems here: Determine $F_{t}=f_{1}(D, \omega, V, \mu, \rho)$ and also $T=f_{2}(D, \omega, V, \mu, \rho)$. Since μ is to be ignored, do not select it as a repeat parameter; instead select D, ω, ρ as repeats.

Apply the Buckingham Π procedure
(1) F_{t}
D
$\omega \quad V \quad \mu \quad \rho$
$n=6$ parameters
(2) Select primary dimensions M, L, t
(3) $\left\{\begin{array}{cccccc}F_{t} & D & \omega & V & \mu & \rho \\ \frac{M L}{t^{2}} & L & \frac{1}{t} & \frac{L}{t} & \frac{M}{L t} & \frac{M}{L^{3}}\end{array}\right\} \quad r=3$ primary dimensions
(4) ρ
(5) Then $n-m=5$ dimensionless groups will result. Setting up a dimensional equation,

$$
\Pi_{1}=\rho^{a} D^{b} \omega^{c} F_{t}=\left(\frac{M}{L^{3}}\right)^{a}(L)^{b}\left(\frac{1}{t}\right)^{c} \frac{M L}{t^{2}}=M^{0} L^{0} t^{0}
$$

$$
M: \quad a+1=0 \quad a=-1
$$

Summing exponents,

Summing exponents,

$$
\begin{array}{cc|cc}
L: & -3 a+b+1=0 & b=-4 \\
t: & -c-2=0 & c=-2
\end{array} \quad \text { Hence } \quad \Pi_{1}=\frac{F_{t}}{\rho D^{4} \omega^{2}}
$$

$$
\begin{array}{cc|l}
M: & a=0 & a=0 \\
L: & -3 a+b+1=0 & b=-1 \\
t: & -c-1=0 & c=-1
\end{array} \quad \text { Hence } \quad \Pi_{2}=\frac{V}{D \omega}
$$

Summing exponents,

$$
\begin{array}{cc|c}
M: & a+1=0 & a=-1 \\
L: & -3 a+b-1=0 & b=-2 \\
t: & -c-1=0 & c=-1
\end{array}
$$

Hence
$\Pi_{3}=\frac{\mu}{\rho D^{2} \omega}$
(6) Check using F, L, t as primary dimensions

$$
\begin{aligned}
& \Pi_{1}=\frac{F}{\frac{F t^{2}}{L^{4}} L^{4} \frac{1}{t^{2}}}=[1] \quad \Pi_{2}=\frac{\frac{L}{t}}{L_{t}^{\frac{1}{t}}}=[1] \quad \Pi_{3}=\frac{\frac{F t}{L^{2}}}{\frac{F t^{2}}{L^{4}} L^{2} \frac{1}{t}}=[1] \\
& \text { Then } \\
& \Pi_{1}=f_{1}\left(\Pi_{2}, \Pi_{3}\right) \\
& \frac{F_{t}}{\rho D^{4} \omega^{2}}=f_{1}\left(\frac{V}{D \omega}, \frac{\mu}{\rho D^{2} \omega}\right) \\
& \text { If viscous effects are neglected } \frac{F_{t}}{\rho D^{4} \omega^{2}}=g_{1}\left(\frac{V}{D \omega}\right) \\
& \text { For dynamic similarity } \\
& \frac{V_{m}}{D_{m} \omega_{m}}=\frac{V_{p}}{D_{p} \omega_{p}} \\
& \text { so } \\
& \omega_{p}=\frac{D_{m}}{D_{p}} \frac{V_{p}}{V_{m}} \omega_{m}=\left(\frac{1}{10}\right) \times\left(\frac{400}{150}\right) \times 2000 \mathrm{rpm}=533 \mathrm{rpm} \\
& \text { Under these conditions } \\
& \text { or } \\
& \frac{F_{t_{m}}}{\rho D_{m}^{4} \omega_{m}^{2}}=\frac{F_{t_{p}}}{\rho D_{p}^{4} \omega_{p}^{2}} \quad \text { (assuming } \rho_{m}=\rho_{p} \text {) } \\
& F_{t_{p}}=\frac{D_{p}^{4}}{D_{m}^{4}} \frac{\omega_{p}^{2}}{\omega_{m}^{2}} F_{t_{m}}=\left(\frac{10}{1}\right)^{4} \times\left(\frac{533}{2000}\right)^{2} \times 25 \mathrm{lbf}=1.78 \times 10^{4} \mathrm{lbf}
\end{aligned}
$$

For the torque we can avoid repeating a lot of the work

If viscous effects are neglected $\quad \frac{T}{\rho D^{5} \omega^{2}}=g_{2}\left(\frac{V}{D \omega}\right)$
For dynamic similarity $\quad \frac{T_{m}}{\rho D_{m}^{5} \omega_{m}^{2}}=\frac{T_{p}}{\rho D_{p}^{5} \omega_{p}^{2}}$
or

$$
T_{p}=\frac{D_{p}^{5}}{D_{m}^{5}} \frac{\omega_{p}^{2}}{\omega_{m}^{2}} T_{m}=\left(\frac{10}{1}\right)^{5} \times\left(\frac{533}{2000}\right)^{2} \times 7.5 \mathrm{lbf} \cdot \mathrm{ft}=5.33 \times 10^{4} \mathrm{lbf} \cdot \mathrm{ft}
$$

Given: For a norine propeller (see Problem 7.40) the Hrut forse, F_{t}, is $F_{t}=F_{t}(p, V, \psi, g, \omega, p, \mu)$
Neglecting Discous effeds, 'and presure, Men
Assume that Torque, $F_{t}=F_{1}$, and $\left.{ }^{\prime}, w\right)$ power, B, deperd on sare parancters

$$
\begin{aligned}
& T=T(p, 9,4, g, \omega) \\
& P=8(p, 9,4, g, \omega)
\end{aligned}
$$

Find: Yerwe scalng" Vaws" for propellers that relde $F_{t,}$ ', and 8 to other vortables.

Solution: Apply Buckingan 4 -Fieorem
(1) $p \quad\rangle \quad \downarrow \quad q \quad \omega \quad F_{t} \quad T \quad Q$
(b) Qoose Fint as primaring duriensions
(3) Ft $L \frac{1}{2} \frac{h}{t^{2}} O_{1}^{2}$ FL FL
(4) Repating variables $p, w, 7$
(5) Ren $n_{n}=5$ dimensionless groups (2 indeperdant, 3 dependent) setting up dimersional equations

$$
\begin{aligned}
& \text { Ren scating lam" are } \frac{F_{t}}{p^{2} \nu^{4}}=f_{1}\left(\frac{1}{\omega y}, \frac{g}{5\rangle}\right) \\
& \left.\frac{T}{p \omega^{2} D^{3}}=C_{2}\left(\frac{t}{\omega}, \frac{g}{\omega^{2}}\right\rangle\right) \\
& \frac{Q}{\left.p v^{2}\right\rangle^{s}}=f_{3}\left(\frac{d}{\omega_{y}}, \frac{g}{\left.\omega^{2}\right\rangle}\right)
\end{aligned}
$$

Problem 7.82

7.82 Water drops are produced by a mechanism that it is believed follows the pattern $d_{\mathrm{p}}=D(W e)^{-3 / 5}$. In this formula, d_{p} is the drop size, D is proportional to a length scale, and $W e$ is the Weber number. In scaling up, if the large-scale characteristic length scale was increased by 10 and the large-scale velocity decreased by a factor of 4 , how would the small- and large-scale drops differ from each other for the same material, for example, water?

Given: Water drop mechanism

Find: Difference between small and large scale drops

Solution:

Given relation

$$
\mathrm{d}=\mathrm{D} \cdot(\mathrm{We})^{-\frac{3}{5}}=\mathrm{D} \cdot\left(\frac{\rho \cdot \mathrm{~V}^{2} \cdot \mathrm{D}}{\sigma}\right)^{-\frac{3}{5}}
$$

For dynamic similarity

$$
\frac{d_{m}}{d_{p}}=\frac{D_{m} \cdot\left(\frac{\rho \cdot V_{m}^{2} \cdot D_{m}}{\sigma}\right)^{-\frac{3}{5}}}{D_{p} \cdot\left(\frac{\rho \cdot V_{p}^{2} \cdot D_{p}}{\sigma}\right)^{-\frac{3}{5}}}=\left(\frac{D_{m}}{D_{p}}\right)^{\frac{2}{5}} \cdot\left(\frac{\mathrm{~V}_{\mathrm{m}}}{\mathrm{~V}_{\mathrm{p}}}\right)^{-\frac{6}{5}}
$$

where d_{p} stands for $d_{\text {prototype }}$ not the original d_{p} !

Hence

$$
\frac{\mathrm{d}_{\mathrm{m}}}{\mathrm{~d}_{\mathrm{p}}}=\left(\frac{1}{10}\right)^{\frac{2}{5}} \times\left(\frac{4}{1}\right)^{-\frac{6}{5}}
$$

$$
\frac{\mathrm{d}_{\mathrm{m}}}{\mathrm{~d}_{\mathrm{p}}}=0.075
$$

The small scale droplets are 7.5% of the size of the large scale

Given: The kinetic energy ratio is a figure of merit defined as the ratio of Kinetic energy flux in a wind tunnel test section to the drive power.
Find: an estimate of the kinetic energy ratio for the 40×80 wind tunnel at HASA-Ames.
Solution:
From text (piziq). For MASA-Ames fumed:

$$
\begin{aligned}
& A=40 f+80 f=3200 f^{2} \quad, B=125.000 \mathrm{hp} \\
& v_{\text {max }}=300 \frac{k m i}{h r} \times 600 \frac{s t}{h i} \cdot \frac{h r}{2600 s}=\left.507 \mathrm{ct}\right|_{s}
\end{aligned}
$$

Assuming standard air,

$$
\begin{aligned}
& \text { K.E ratio }=7.22
\end{aligned}
$$

Given: A rib scale riodel of a z on long truck is tested in a wind tunnel at speed $\mathrm{V}_{n}=8 \mathrm{~m}_{\mathrm{m}} \mathrm{ls}$. The axial pressure gradient at this speed is dillon= $-1.2 \mathrm{~mm} \mathrm{H}_{\mathrm{o}} \mathrm{lm}$. She frontal area of prototype is $A_{P}=10 \mathrm{~N}^{2} . C_{7}=0.85$
Find: (a) Estimate the horizontal buayancy correction b) Express the correction as a fraction of the measured C_{T}.
Solution:
The horizontal buoyancy force, F_{F}, is the difference in the pressure force between the front and back of the model due to the pressure gradient in the tunnel

$$
\begin{aligned}
& F_{B}=\left(P_{5}-P_{b}\right) A=\rho_{0} g \frac{d h}{d x} \ln A_{m} \\
& \text { (} \Delta P=p, g \Delta h) \\
& L_{n}=\frac{h_{p}}{l_{0}} \quad A_{n}=\frac{A_{p}}{(16)^{2}} \\
& \therefore F_{3}=999 \frac{\mathrm{lg}_{3}}{\mathrm{~m}^{3}} \times 9.81 \frac{\mathrm{~m}}{\mathrm{~s}^{2}} \times(-1.2) \times \frac{.3}{\frac{\mathrm{~m}}{\mathrm{~m}}} \times \frac{20 \mathrm{~m}}{16} \times \frac{10 \mathrm{~m}^{2}}{(6)^{2}}+\frac{1 . \mathrm{s}^{2}}{8 \mathrm{~kg}} \\
& F_{8}=-0.574 N
\end{aligned}
$$

The horizontal buoyancy correction should be added to the measured drag force on the model
The measured drag force on the model is given by

$$
F_{D_{n}}=\frac{1}{2} p v^{2} A_{n} C_{\theta}=\frac{1}{2} p v^{2}\left(A_{p}\right)^{2} C_{p}
$$

Assure air at standard conditions, $p=1.23 \mathrm{~kg} / \mathrm{m}^{3}$

$$
\begin{aligned}
F_{m}= & \frac{1}{2} \times 1.23 \frac{g_{g}}{m^{3}} \times(80)^{2} \frac{m^{2}}{s^{2}} \times \frac{10 m^{2}}{(16)^{2}} \times 0.85 \times \frac{1.5^{2}}{\mathrm{Eg}^{m}} \\
F_{m m}= & 131 N \\
& F_{\frac{B}{m}}^{F_{9 m}}=\frac{-0.574}{131}=-4.38 \times 10^{-3}=-0.449_{0}
\end{aligned}
$$

Given: Wind tunnel test of 1:16 model bus in standard air.

$$
\begin{array}{rlr}
W=152 \mathrm{~mm} & V=26.5 \mathrm{~m} / \mathrm{s} & \text { Pressure gradient: } \\
H=200 \mathrm{~mm} & F_{D}=6.09 \mathrm{~N} & \frac{d p}{d x}=-11.8 \mathrm{~N} / \mathrm{m}^{2} / \mathrm{m} \\
L=762 \mathrm{~mm} & \text { (measured) } &
\end{array}
$$

Find: (a) Estimate the horizontal buoyancy correction.
(b) Calculate the corrected model diag coefficient.
(c) Evaluate the drag trice on the prototype at $100 \mathrm{~km} / \mathrm{hr}$ on a calm day.

Solution: Apply definitions
Computing equations: $C_{0}=\frac{F_{D}}{\frac{1}{2} V^{2} A} \quad$ Assume $A=W H$
The buoyancy force will be

$$
F_{B}=p_{1} A-p_{2} A=\left(-p_{1}-p_{2}\right) A
$$

But $p_{2}{ }^{2} p_{1}+\frac{\partial p}{\partial x} \Delta x+\cdots \approx p_{1}+\frac{\partial p}{\partial x} L$
Therefore $p_{1}-p_{2}=-\frac{\partial p}{\partial x} L$, and $F_{B} \approx-\frac{\partial p}{\partial x} L A=-\frac{\partial p}{\partial x} L w H$

$$
F_{B} \approx-(-11.8) \frac{\mathrm{N}}{\mathrm{~m}^{3}} \times 0.762 \mathrm{~m}_{\times} 0.152 \mathrm{~m}_{\times} 0.200 \mathrm{~m}=0.273 \mathrm{~N}\left(t_{0} \mathrm{right}\right)
$$

The corrected dray force is

$$
F_{D_{C}}=F_{D m}-F_{B}=(6.09-0.273) N=5.82 \mathrm{~N}
$$

The corrected model drag coefficient is

$$
C_{D_{m}}=\frac{F D_{c}}{\frac{1}{2} \rho V^{2} A}=2 \times 5.82 N_{\times} \frac{m^{3}}{1.23 \mathrm{~kg}^{2}} \times \frac{\mathrm{s}^{2}}{(26.5)^{2} m^{2}} \times \frac{1}{(0.200)(0 . \Omega \Omega) m^{2}} \times \frac{\mathrm{kg} \cdot \mathrm{~m}}{\mathrm{~N} \cdot s^{2}}=0.443
$$

Assume the test was conducted at high enough Reynolds number so $C_{D P}=C_{D m}$. Then

$$
\begin{aligned}
& F_{D_{\rho}}=G_{D_{\rho}} A_{\rho} \frac{1}{2} f V_{\rho}{ }^{2} \\
& =\frac{1}{2} \times 0.443 \times 0.200(16) m_{x} 0.152(16) m_{x} 1.23 \frac{\mathrm{~kg}}{\mathrm{~m}^{3}} \times\left[100 \frac{\mathrm{~km}}{\mathrm{hr}^{2}} \times 1000 \frac{\mathrm{~m}}{\mathrm{~km}} \times \frac{\mathrm{hr}}{3600 \mathrm{~s}}\right]^{2} \frac{\mathrm{~N} \cdot \mathrm{~s}}{\mathrm{~kg} \cdot \mathrm{~m}} \\
& F_{D p}=1.64 \mathrm{kN} \text { (prototype at } 100 \mathrm{~km} / \mathrm{hr} \text {) } \\
& \left\{\begin{array}{l}
\text { Rolling resistance must be included to obtain the total tractive effort } \\
\text { needed to propel the fulr-scare vehicle. }
\end{array}\right\}
\end{aligned}
$$

7.86 Frequently one observes a flag on a pole flapping in the wind. Explain why this occurs.

Given:

Flapping flag on a flagpole
Find:
Explanation of the flappinh

Solution:

Open-Ended Problem Statement: Frequently one observes a flag on a pole "flapping" in the wind. Explain why this occurs. What dimensionless parameters might characterize the phenomenon? Why?

Discussion: The natural wind contains significant fluctuations in air speed and direction. These fluctuations tend to disturb the flag from an initially plane position.

When the flag is bent or curved from the plane position, the flow nearby must follow its contour. Flow over a convex surface tends to be faster, and have lower pressure, than flow over a concave curved surface. The resulting pressure forces tend to exaggerate the curvature of the flag. The result is a seemingly random "flapping" motion of the flag.

The rope or chain used to raise the flag may also flap in the wind. It is much more likely to exhibit a periodic motion than the flag itself. The rope is quite close to the flag pole, where it is influenced by any vortices shed from the pole. If the Reynolds number is such that periodic vortices are shed from the pole, they will tend to make the rope move with the same frequency. This accounts for the periodic thump of a rope or clank of a chain against the pole.

The vortex shedding phenomenon is characterized by the Strouhal number, $S t=f D / V_{\infty}$, where f is the vortex shedding frequency, D is the pole diameter, and D is the wind speed. The Strouhal number is constant at approximately 0.2 over a broad range of Reynolds numbers.

Open-Ended Problem Statement: Explore the variation in wave propagation speed given by the equation of Problem 7.2 for a free-surface flow of water. Find the operating depth to minimize the speed of capillary waves (waves with small wavelength, also called ripples). First assume wavelength is much smaller than water depth. Then explore the effect of depth. What depth do you recommend for a water table used to visualize compressible-flow wave phenomena? What is the effect of reducing surface tension by adding a surfactant?

Discussion: The equation given in Problem 7.2 contains three terms. The first term contains surface tension and gives a speed inversely proportional to wavelength. This term will be important when small wavelengths are considered.

The second term contains gravity and gives a speed proportional to wavelength. This term will be important when long wavelengths are considered.

The argument of the hyperbolic tangent is proportional to water depth and inversely proportional to wavelength. For small wavelengths, this term should approach unity since the hyperbolic tangent of a large number approaches one.

See the spreadsheet for numerical values and a plot.

Input Parameters:

$g=$	9.81	$\mathrm{~m} / \mathrm{s}^{2}$	Acceleration of gravity
$h=$	0.01	m	Liquid depth (for hyperbolic tangent calculation)
$\rho=$	999	$\mathrm{~kg} / \mathrm{m}^{3}$	Liquid density
$\sigma=$	0.0728	$\mathrm{~N} / \mathrm{m}$	Surface tension

Calculated Values:

$h(\mathrm{~m})=$
Wavelength, $\tanh (--)$ $\lambda(m)$

$\lambda(\mathrm{m})$	$(\mathrm{h}=10 \mathrm{~mm})$						
0.00185	1.00	0.500	0.500	0.500	0.500	0.500	0.500
0.003	1.00	0.396	0.397	0.397	0.397	0.397	0.397
0.005	1.00	0.313	0.315	0.315	0.315	0.315	0.315
0.0075	1.00	0.263	0.270	0.270	0.270	0.270	0.270
0.01	1.00	0.233	0.248	0.248	0.248	0.248	0.248
0.025	0.987	0.167	0.227	0.238	0.239	0.239	0.239
0.05	0.850	0.138	0.229	0.275	0.295	0.295	0.295
0.075	0.685	0.126	0.229	0.294	0.351	0.351	0.351
0.1	0.557	0.120	0.228	0.303	0.400	0.401	0.401
0.2	0.304	0.110	0.226	0.312	0.537	0.560	0.561
0.5	0.125	0.104	0.223	0.314	0.660	0.815	0.884
0.75	0.0836	0.102	0.223	0.314	0.681	0.896	1.08
1	0.0627	0.101	0.222	0.314	0.690	0.933	1.25
2	0.0314	0.100	0.222	0.314	0.698	0.975	1.69
5	0.0126	0.100	0.222	0.313	0.700	0.988	2.09
7.5	0.00838	0.0994	0.222	0.313	0.700	0.989	2.15
10	0.00628	0.0993	0.222	0.313	0.700	0.990	2.18
Froude Speed, $(g h)^{1 / 2}$	0.0990	0.221	0.313	0.700	0.990	2.21	

$\begin{array}{ccccccc}\begin{array}{c}\text { Froude Speed, }(g h)^{1 / 2} \\ (\mathrm{~m} / \mathrm{s})\end{array} & 0.0990 & 0.221 & 0.313 & 0.700 & 0.990 & 2.21\end{array}$
$0.001 \quad 0.005$
0.01
0.05
0.1
0.5

Problem 8.1

8.1 Standard air enters a 6-in. diameter duct. Find the volume flow rate at which the flow becomes turbulent. At this flow rate, estimate the entrance length required to establish fully developed flow.

Given: Air entering duct

Find: Flow rate for turbulence; Entrance length

Solution:

Given: Incompressible flow in \& circular Chanel. Re $=1800$ in a section where the hansel diameter is $\rangle=10 \mathrm{~mm}$
Find: (i) general expression for he_{e} in terns of Ga) volume flow rate, Q, and plane diameter, bo mass flow rale, in, and channel diameter. I.
(ii) Re for same flows rate and $y=6 \mathrm{~mm}$.

Solution:
Assurne steady, nicompressble How
Definitions: $R_{e}=\frac{\rho}{\mu} \frac{\bar{J}}{\mu}, Q=A \bar{Y}, i n=P \overline{A N}$ and $A=\frac{\bar{p}^{2}}{4}$
Then,

$$
\operatorname{Re}=\frac{\rho \bar{\nu}}{\mu}=\frac{\rho \eta}{\mu} \frac{Q}{\pi}=\frac{\rho P}{\mu} \frac{Q^{4}}{\pi \nu^{2}}=\frac{4 Q \rho}{\pi /}=\frac{4 Q}{\pi \nabla}
$$

\qquad
Also

$$
R_{e}=\frac{\rho \bar{v}}{\mu}=\frac{\partial}{\mu} \frac{\rho \overline{\bar{y}} \bar{R}}{\bar{R}}=\frac{\partial}{\mu} \frac{\dot{m} u}{\pi)^{2}}=\frac{4 \dot{m}}{\pi \eta \mu}
$$

From Eq (i) a

$$
Q=\frac{\pi V / R_{e}}{4}
$$

Then for same flow rate in sections will different Camel diameter.

$$
\begin{gathered}
\text { De Re }_{1}=D_{2} R_{2} \\
R_{e_{2}}=\frac{D_{1}}{D_{2}} R_{e_{1}}=\frac{1 O_{\mathrm{mm}}}{6 \mathrm{~mm}} \times 1800=3000
\end{gathered}
$$

\qquad

Problem 8.3

8.3 Standard air flows in a pipe system in which diameter is decreased in two stages from 1 in ., to $\frac{1}{2} \mathrm{in}$., to $\frac{1}{4} \mathrm{in}$. Each section is 5 ft long. As the flow rate is increased, which section will become turbulent first? Determine the flow rates at which one, two, then all three sections first become turbulent. At each of these flow rates, determine which sections, if any, attain fully developed
 flow.

Given: Air entering pipe system
Find: Flow rate for turbulence in each section; Which become fully developed

Solution:

From Table A. 9

$$
\nu=1.62 \times 10^{-4} \cdot \frac{\mathrm{ft}^{2}}{\mathrm{~s}}
$$

The given data is

$$
\mathrm{L}=5 \cdot \mathrm{ft}
$$

$D_{1}=1 \cdot$ in
$\mathrm{D}_{2}=\frac{1}{2} \cdot \mathrm{in}$
$D_{3}=\frac{1}{4} \cdot$ in
The critical Reynolds number is

$$
\operatorname{Re}_{\text {crit }}=2300
$$

Writing the Reynolds number as a function of flow rate

$$
\mathrm{Re}=\frac{\mathrm{V} \cdot \mathrm{D}}{\nu}=\frac{\mathrm{Q}}{\frac{\pi}{4} \cdot \mathrm{D}^{2}} \cdot \frac{\mathrm{D}}{\nu} \quad \text { or } \quad \mathrm{Q}=\frac{\mathrm{Re} \cdot \pi \cdot \nu \cdot \mathrm{D}}{4}
$$

Then the flow rates for turbulence to begin in each section of pipe are
$\mathrm{Q}_{1}=\frac{\operatorname{Re}_{\mathrm{crit}} \pi \cdot \nu \cdot \mathrm{D}_{1}}{4}$
$\mathrm{Q}_{1}=2300 \times \frac{\pi}{4} \times 1.62 \times 10^{-4} \cdot \frac{\mathrm{ft}^{2}}{\mathrm{~s}} \times \frac{1}{12} \cdot \mathrm{ft}$
$\mathrm{Q}_{1}=0.0244 \frac{\mathrm{ft}^{3}}{\mathrm{~s}}$
$\mathrm{Q}_{2}=\frac{\mathrm{Re}_{\mathrm{crit}} \cdot \pi \cdot \nu \cdot \mathrm{D}_{2}}{4}$
$\mathrm{Q}_{2}=0.0122 \frac{\mathrm{ft}^{3}}{\mathrm{~s}}$
$\mathrm{Q}_{3}=\frac{\mathrm{Re}_{\mathrm{crit}} \cdot \pi \cdot \nu \cdot \mathrm{D}_{3}}{4}$
$\mathrm{Q}_{3}=0.00610 \frac{\mathrm{ft}^{3}}{\mathrm{~s}}$

Hence, smallest pipe becomes turbulent first, then second, then the largest.
For the smallest pipe transitioning to turbulence $\left(Q_{3}\right)$

For pipe $3 \quad \mathrm{Re}_{3}=2300 \quad \mathrm{~L}_{\text {laminar }}=0.06 \cdot \mathrm{Re}_{3} \cdot \mathrm{D}_{3} \quad \mathrm{~L}_{\text {laminar }}=2.87 \mathrm{ft} \quad \mathrm{L}_{\text {laminar }}<\mathrm{L}$: Not fully developed
or, for turbulent, $\quad L_{\min }=25 \cdot D_{3} \quad L_{\min }=0.521 \mathrm{ft} \quad \mathrm{L}_{\max }=40 \cdot \mathrm{D}_{3} \quad \mathrm{~L}_{\max }=0.833 \mathrm{ft} \quad \mathrm{L}_{\max / \min }<\mathrm{L}$: Not fully developed
$\begin{array}{rll}\text { For pipes } 1 \text { and } 2 & \mathrm{~L}_{\text {laminar }}=0.06 \cdot\left(\frac{4 \cdot \mathrm{Q}_{3}}{\pi \cdot v \cdot \mathrm{D}_{1}}\right) \cdot \mathrm{D}_{1} & \mathrm{~L}_{\text {laminar }}=2.87 \mathrm{ft} \\ \mathrm{L}_{\text {laminar }} & =0.06 \cdot\left(\frac{4 \cdot \mathrm{Q}_{3}}{\pi \cdot \nu \cdot \mathrm{D}_{2}}\right) \cdot \mathrm{D}_{2} & \mathrm{~L}_{\text {laminarar }}<2.87 \mathrm{ft}\end{array}$

For the middle pipe transitioning to turbulence $\left(Q_{2}\right)$

For pipe $2 \quad \mathrm{Re}_{2}=2300 \quad \mathrm{~L}_{\text {laminar }}=0.06 \cdot \mathrm{Re}_{2} \cdot \mathrm{D}_{2} \quad \mathrm{~L}_{\text {laminar }}=5.75 \mathrm{ft}$
$\mathrm{L}_{\text {laminar }}>\mathrm{L}$: Fully developed
or, for turbulent, $\quad \mathrm{L}_{\min }=25 \cdot \mathrm{D}_{2} \quad \mathrm{~L}_{\min }=1.04 \mathrm{ft} \quad \mathrm{L}_{\max }=40 \cdot \mathrm{D}_{2}$
$\mathrm{L}_{\text {max }}=1.67 \mathrm{ft}$
$\mathrm{L}_{\text {max } / \text { min }}<\mathrm{L}$: Not fully developed
For pipes 1 and $3 \quad \mathrm{~L}_{1}=0.06 \cdot\left(\frac{4 \cdot \mathrm{Q}_{2}}{\pi \cdot v \cdot \mathrm{D}_{1}}\right) \cdot \mathrm{D}_{1} \quad \mathrm{~L}_{1}=5.75 \mathrm{ft}$

$$
\mathrm{L}_{3 \min }=25 \cdot \mathrm{D}_{3} \quad \mathrm{~L}_{3 \min }=0.521 \mathrm{ft} \quad \mathrm{~L}_{3 \max }=40 \cdot \mathrm{D}_{3}
$$

$\mathrm{L}_{3 \text { max }}=0.833 \mathrm{ft}$
$\mathrm{L}_{\text {max } / \text { min }}<\mathrm{L}$: Not fully developed
For the large pipe transitioning to turbulence $\left(Q_{1}\right)$

For pipe $1 \quad \mathrm{Re}_{1}=2300 \quad \mathrm{~L}_{\text {laminar }}=0.06 \cdot \mathrm{Re}_{1} \cdot \mathrm{D}_{1} \quad \mathrm{~L}_{\text {laminar }}=11.5 \mathrm{ft}$
or, for turbulent, $\quad \mathrm{L}_{\min }=25 \cdot \mathrm{D}_{1} \quad \mathrm{~L}_{\text {min }}=2.08 \mathrm{ft} \quad \mathrm{L}_{\text {max }}=40 \cdot \mathrm{D}_{1}$

For pipes 2 and 3

$$
\begin{array}{lll}
\mathrm{L}_{2 \min }=25 \cdot \mathrm{D}_{2} & \mathrm{~L}_{2 \min }=1.04 \mathrm{ft} & \mathrm{~L}_{2 \max }=40 \cdot \mathrm{D}_{2} \\
\mathrm{~L}_{3 \min }=25 \cdot \mathrm{D}_{3} & \mathrm{~L}_{3 \min }=0.521 \mathrm{ft} & \mathrm{~L}_{3 \max }=40 \cdot \mathrm{D}_{3}
\end{array}
$$

$\mathrm{L}_{\text {max } / \text { min }}<\mathrm{L}$: Not fully developed
$\mathrm{L}_{\text {laminar }}>\mathrm{L}$: Fully developed
$\mathrm{L}_{\text {max }}=3.33 \mathrm{ft}$
$\mathrm{L}_{\text {max/min }}<\mathrm{L}$: Not fully developed

$$
\mathrm{L}_{2 \max }=1.67 \mathrm{ft}
$$

$\mathrm{L}_{3 \text { max }}=0.833 \mathrm{ft}$
$\mathrm{L}_{\text {max } / \text { min }}<\mathrm{L}$: Not fully developed

Problem 8.4

8.4 For flow in circular tubes, transition to turbulence usually occurs around $R e \approx 2300$. Investigate the circumstances under which the flows of (a) standard air and (b) water at $15^{\circ} \mathrm{C}$ become turbulent. On log-log graphs, plot: the average velocity, the volume flow rate, and the mass flow rate, at which turbulence first occurs, as functions of tube diameter.

Given: That transition to turbulence occurs at about $R e=2300$
Find: \quad Plots of average velocity and volume and mass flow rates for turbulence for air and water

Solution:

From Tables A. 8 and A. $10 \quad \rho_{\text {air }}=1.23 \cdot \frac{\mathrm{~kg}}{\mathrm{~m}^{3}} \quad \nu_{\text {air }}=1.45 \times 10^{-5} \cdot \frac{\mathrm{~m}^{2}}{\mathrm{~s}} \quad \rho_{\mathrm{W}}=999 \cdot \frac{\mathrm{~kg}}{\mathrm{~m}^{3}} \quad \nu_{\mathrm{w}}=1.14 \times 10^{-6} \cdot \frac{\mathrm{~m}^{2}}{\mathrm{~s}}$
The governing equations are $\quad \mathrm{Re}=\frac{\mathrm{V} \cdot \mathrm{D}}{\nu} \quad \quad \mathrm{Re}_{\text {crit }}=2300$
For the average velocity $\quad \mathrm{V}=\frac{\mathrm{Re}_{\mathrm{crit}^{\prime} \cdot \nu}}{\mathrm{D}}$

Hence for air

$$
\mathrm{V}_{\mathrm{air}}=\frac{2300 \times 1.45 \times 10^{-5} \cdot \frac{\mathrm{~m}^{2}}{\mathrm{~s}}}{\mathrm{D}}
$$

$$
\mathrm{V}_{\mathrm{air}}=\frac{0.0334 \cdot \frac{\mathrm{~m}^{2}}{\mathrm{~s}}}{\mathrm{D}}
$$

For water

$$
\mathrm{V}_{\mathrm{W}}=\frac{2300 \times 1.14 \times 10^{-6} \cdot \frac{\mathrm{~m}^{2}}{\mathrm{~s}}}{\mathrm{D}}
$$

$$
\mathrm{V}_{\mathrm{W}}=\frac{0.00262 \cdot \frac{\mathrm{~m}^{2}}{\mathrm{~s}}}{\mathrm{D}}
$$

For the volume flow rates

$$
\mathrm{Q}=\mathrm{A} \cdot \mathrm{~V}=\frac{\pi}{4} \cdot \mathrm{D}^{2} \cdot \mathrm{~V}=\frac{\pi}{4} \cdot \mathrm{D}^{2} \cdot \frac{\mathrm{Re}_{\mathrm{crit}^{-}}{ }^{\nu}}{\mathrm{D}}=\frac{\pi \cdot \mathrm{Re}_{\text {crit }^{-}}{ }^{\nu}}{4} \cdot \mathrm{D}
$$

Hence for air

$$
\begin{array}{ll}
\mathrm{Q}_{\mathrm{air}}=\frac{\pi}{4} \times 2300 \times 1.45 \cdot 10^{-5} \cdot \frac{\mathrm{~m}^{2}}{\mathrm{~s}} \cdot \mathrm{D} & \mathrm{Q}_{\mathrm{air}}=0.0262 \cdot \frac{\mathrm{~m}^{2}}{\mathrm{~s}} \times \mathrm{D} \\
\mathrm{Q}_{\mathrm{W}}=\frac{\pi}{4} \times 2300 \times 1.14 \cdot 10^{-6} \cdot \frac{\mathrm{~m}^{2}}{\mathrm{~s}} \cdot \mathrm{D} & \mathrm{Q}_{\mathrm{W}}=0.00206 \cdot \frac{\mathrm{~m}^{2}}{\mathrm{~s}} \times \mathrm{D}
\end{array}
$$

For water

Finally, the mass flow rates are obtained from volume flow rates

$$
\begin{array}{ll}
\mathrm{m}_{\mathrm{air}}=\rho_{\mathrm{air}} \cdot \mathrm{Q}_{\mathrm{air}} & \mathrm{~m}_{\mathrm{air}}=0.0322 \cdot \frac{\mathrm{~kg}}{\mathrm{~m} \cdot \mathrm{~s}} \times \mathrm{D} \\
\mathrm{~m}_{\mathrm{w}}=\rho_{\mathrm{w}} \cdot \mathrm{Q}_{\mathrm{W}} & \mathrm{~m}_{\mathrm{w}}=2.06 \cdot \frac{\mathrm{~kg}}{\mathrm{~m} \cdot \mathrm{~s}} \times \mathrm{D}
\end{array}
$$

These results are plotted in the associated Excel workbook

Problem 8.4
8.4 For flow in circular tubes, transition to turbulence usually occurs around $\operatorname{Re} \approx 2300$. Investigate the circumstances under which the flows of (a) standard air and (b) water at $15^{\circ} \mathrm{C}$ become turbulent. On log-log graphs, plot: the average velocity, the volume flow rate, and the mass flow rate, at which turbulence first occurs, as functions of tube diameter.

Given: That transition to turbulence occurs at about $R e=2300$
Find: Plots of average velocity and volume and mass flow rates for turbulence for air and water

Solution:

The relations needed are

$$
\operatorname{Re}_{\text {crit }}=2300 \quad \mathrm{~V}=\frac{\operatorname{Re}_{\text {crit }} \cdot \nu}{\mathrm{D}} \quad \mathrm{Q}=\frac{\pi \cdot \mathrm{Re}_{\text {crit }} \cdot \boldsymbol{\nu}}{4} \cdot \mathrm{D} \quad \mathrm{~m}_{\text {rate }}=\rho \cdot \mathrm{Q}
$$

From Tables A. 8 and A. 10 the data required is

$$
\begin{array}{rll}
\rho_{\mathrm{air}} & =1.23 \mathrm{~kg} / \mathrm{m}^{3} & v_{\mathrm{air}}=1.45 \mathrm{E}-05 \mathrm{~m}^{2} / \mathrm{s} \\
\rho_{\mathrm{w}} & =999 \mathrm{~kg} / \mathrm{m}^{3} & v_{\mathrm{w}}=1.14 \mathrm{E}-06 \mathrm{~m}^{2} / \mathrm{s}
\end{array}
$$

$\boldsymbol{D}(\mathbf{m})$	0.0001	0.001	0.01	0.05	1.0	2.5	5.0	7.5	10.0
$\boldsymbol{V}_{\text {air }}(\mathbf{m} / \mathbf{s})$	333.500	33.350	3.335	0.667	$3.34 \mathrm{E}-02$	$1.33 \mathrm{E}-02$	$6.67 \mathrm{E}-03$	$4.45 \mathrm{E}-03$	$3.34 \mathrm{E}-03$
$\boldsymbol{V}_{\mathrm{w}}(\mathbf{m} / \mathbf{s})$	26.2	2.62	0.262	$5.24 \mathrm{E}-02$	$2.62 \mathrm{E}-03$	$1.05 \mathrm{E}-03$	$5.24 \mathrm{E}-04$	$3.50 \mathrm{E}-04$	$2.62 \mathrm{E}-04$
$\boldsymbol{Q}_{\text {air }}\left(\mathbf{m}^{3} / \mathbf{s}\right)$	$2.62 \mathrm{E}-06$	$2.62 \mathrm{E}-05$	$2.62 \mathrm{E}-04$	$1.31 \mathrm{E}-03$	$2.62 \mathrm{E}-02$	$6.55 \mathrm{E}-02$	$1.31 \mathrm{E}-01$	$1.96 \mathrm{E}-01$	$2.62 \mathrm{E}-01$
$\boldsymbol{Q}_{\mathrm{w}}\left(\mathbf{m}^{\mathbf{3}} / \mathbf{s}\right)$	$2.06 \mathrm{E}-07$	$2.06 \mathrm{E}-06$	$2.06 \mathrm{E}-05$	$1.03 \mathrm{E}-04$	$2.06 \mathrm{E}-03$	$5.15 \mathrm{E}-03$	$1.03 \mathrm{E}-02$	$1.54 \mathrm{E}-02$	$2.06 \mathrm{E}-02$
$\boldsymbol{m}_{\text {air }}(\mathbf{k g} / \mathbf{s})$	$3.22 \mathrm{E}-06$	$3.22 \mathrm{E}-05$	$3.22 \mathrm{E}-04$	$1.61 \mathrm{E}-03$	$3.22 \mathrm{E}-02$	$8.05 \mathrm{E}-02$	$1.61 \mathrm{E}-01$	$2.42 \mathrm{E}-01$	$3.22 \mathrm{E}-01$
$\left.\boldsymbol{m}_{\mathrm{w}} \mathbf{(k g} / \mathbf{s}\right)$	$2.06 \mathrm{E}-04$	$2.06 \mathrm{E}-03$	$2.06 \mathrm{E}-02$	$1.03 \mathrm{E}-01$	$2.06 \mathrm{E}+00$	$5.14 \mathrm{E}+00$	$1.03 \mathrm{E}+01$	$1.54 \mathrm{E}+01$	$2.06 \mathrm{E}+01$

Given: Laminar flow in the entrance section of a pipe shown schematically in Fig. 8.1.
Find: Sketch centerline velocity, static pressure, and wall shear stress as functions of distance along the pipe. Explain significant features of the plots, comparing them with fully developed flow. Can the Bernoulli equation be applied anywhere in the flow field? If so, where? Explain briefly.

Discussion: The centerline velocity, static pressure, and wall shear stress variations are sketched on the next page. Each variation sketch is aligned vertically with the corresponding sections of the developing pipe flow in Fig. 8.1.

Boundary layers grow on the tube wall, reducing the velocity near the wall. The velocity reduction becomes more pronounced farther downstream. Consequently the centerline velocity must increase in the streamwise direction to carry the same mass flow rate across each section of the tube. (When laminar flow becomes fully developed, the centerline velocity becomes twice the average velocity at any cross-section.)

Frictional effects are concentrated within the boundary layers. The boundary layers do not join at the tube centerline for some distance along the tube. Therefore in the center region outside the boundary layers flow may still be considered to behave as though it were inviscid.

Flow outside the boundary layers is steady, frictionless, incompressible, and along a streamline. These are the restrictions required to apply the Bernoulli equation. Therefore the Bernoulli equation may be applied as a reasonable model for the actual flow outside the boundary layers. The Bernoulli equation predicts that pressure decreases as flow speed increases.

After the boundary layers merge at the centerline of the channel the entire flow is affected by friction. Therefore it is no longer possible to apply the Bernoulli equation.

When flow becomes fully developed the rate of change of pressure with distance becomes constant. In the entrance region the pressure falls more rapidly; the increased pressure gradient is caused by increased shear stress at the wall (larger than for fully developed flow) and by the developing velocity profile, which causes momentum flux to increase.

In fully developed flow the pressure curve becomes linear; the pressure drops the same amount for each length along the tube. The pressure distribution curve at the end of the entrance length becomes asymptotic to the linear variation for fully developed flow.

The wall shear stress initially is large, because the boundary layers are thin. The shear stress decreases as the boundary layers become thicker. At the end of the entrance length the shear stress asymptotically approaches the constant value for fully developed flow.

Problem 8.5

Fig. 日. 1 Flow in the entrance region of a pipe.

Problem 8.6
Gwen: Incompressible flow between paratel plates with

$$
u=u_{\max }\left(A y^{2}+B y+c\right)
$$

Find: (a) constants A, B, C using appropriate boundang condtions

(b) Q per unt depth b.
(c) E/umax

Solution:
(a) Avaitable boundary condition:

$$
\text { (1) } y=0, u=0
$$

$$
\text { (2) } y=h, u=0
$$

$$
\text { (3) } y=h i z, u=u_{\max }
$$

From B.C (i) $u(0)=0=u_{\text {max }} C \quad \therefore \quad c=0$
From B.C(2) $u(h)=0=u_{\max }\left(A h^{2}+B h\right)$
…(i)
From B.C (3) $u(h / 2)=u_{\text {max }}=u_{\max }\left(A \frac{h^{2}}{4}+B \frac{h}{2}\right) \cdots(i)$
From Eq(i), $B=-A h$, Substituting into Eq(i) gues

$$
\begin{equation*}
y_{\operatorname{arax}}=x_{\max }\left(R \frac{h^{2}}{4}-A \frac{h^{2}}{2}\right) \quad \therefore \quad A=-\frac{4}{h^{2}} \tag{A}
\end{equation*}
$$

$$
\text { and } B=-A h=\frac{4}{h}
$$

Then

$$
u=u_{\max }\left(\beta_{y}^{2}+B y+c\right)=u_{\max }\left(-4 \frac{y^{2}}{n^{2}}+4 \frac{y}{n}\right)=4 u_{\max }\left[\frac{y}{h}-\left(\frac{y}{h}\right)^{2}\right]
$$

(b) $Q=\int_{0}^{h} u b d y=\int_{0}^{h} 4 u_{\max }\left[\frac{u}{h}-\frac{y^{2}}{r^{2}}\right] b d y=4 u_{\operatorname{mar}} b\left[\frac{y^{2}}{2 h}-\frac{y^{3}}{3 h^{2}}\right]_{0}^{h}$

$$
Q=4 b u_{\max }\left[\frac{h}{2}-\frac{h}{3}\right]=\frac{2}{3} u_{\max } b h
$$

$$
\theta / b=\frac{2}{3} u_{\max } h
$$

(c) Since $Q=\bar{V} A=\bar{V} b h$

$$
\frac{\theta}{6}=\bar{V} h=\frac{2}{3} u_{\max } h
$$

and

$$
\frac{\bar{v}}{u_{\max }}=\frac{2}{3}
$$

Problem 8.7
Given: Velocity profile for flow between stationary parallel plates.

$$
u=a\left(h^{2} / 4-y^{2}\right)
$$

Find: Ratio T/umax
Solution: First find $u_{\max }$ by setting $\frac{d u}{d y}=0$

$$
\begin{aligned}
& \frac{d u}{d y}=-2 a y ; \frac{d u}{d y}=0 \text { at } y=0 \\
& u_{\text {max }}=u(0)=a \frac{h^{2}}{4}
\end{aligned}
$$

From the definition of \bar{V},

$$
\begin{aligned}
\bar{V} & =\frac{Q}{A}=\frac{1}{A}\left(u d A=\frac{1}{h} \int_{-h l_{2}}^{h l_{2}} u d y\right. \\
& =\frac{1}{h}\left(-h l_{2} a\left(\frac{h^{2}}{4}-y^{2}\right)=\frac{a}{h}\left[\frac{h^{2} y}{4}-\frac{y^{3}}{3}\right]_{-h l_{2}}^{h l_{2}}\right. \\
\bar{V} & =\frac{a}{h}\left[\left(\frac{h^{3}}{8}-\frac{h^{3}}{24}\right)-\left(-\frac{h^{3}}{8}+\frac{h^{3}}{24}\right)\right]=\frac{a}{h}\left[\frac{h^{3}}{4}-\frac{h^{3}}{12}\right] \\
\bar{V} & =\frac{1}{6} a h^{2}
\end{aligned}
$$

and

$$
\frac{\bar{v}}{u_{\text {max }}}=\frac{a h^{2}}{b} \frac{4}{a h^{2}}=\frac{2}{3}
$$

Given: Fully developed laminar flow between parallel plates.

$$
\mu=2.40 \times 10^{-5} \frac{\mathrm{bf} \cdot \mathrm{~s}}{\mathrm{f}^{2}} ; \frac{\partial p}{\partial x}=-4 \frac{\mathrm{lbt}}{\mathrm{ft}^{3}}
$$

Find: (a) Derive and plot equation tor shear stress versus y.
(b) Maximum shear stress.

Solution: From Eq. 8.7 , with $a=h, u=-\frac{h^{2}}{8 \mu} \frac{\partial p}{\partial x}\left[1-\left(\frac{2 y}{h}\right)^{2}\right]$.
By symmetry, the origin for y must be located at the channel centerline. Apply Newton's low of viscosity.

$$
\tau_{y x}=\mu \frac{d u}{d_{y}}
$$

Assumption: Newtonian fluid
Then

$$
\tau_{y x}=u \frac{d}{d y}\left\{-\frac{h^{2}}{g u} \frac{\partial p}{\partial x}\left[1-\left(\frac{2 y}{h}\right)^{2}\right]\right\}=y \frac{\partial p}{\partial x}
$$

For $u>0, \partial p / \partial x<0$. Thus $\tau_{y x}<0$ for $y>0$ and $\tau_{y x}>0$ for $y<0$.
On the leper plate (a. minus y surface), $\tau_{y x}<0$, so shear stress acts to the right.
on the lower plate (a plus y scerface), $\tau_{y x}>0$, so shear stress acts to the right.
The maximum stress occurs when $y= \pm \mathrm{h} / \mathrm{h}$. Thus

Problem 8.9

8.9 Viscous oil flows steadily between parallel plates. The flow is fully developed and laminar. The pressure gradient is 1.25 $\mathrm{kPa} / \mathrm{m}$ and the channel half-width is $h=1.5 \mathrm{~mm}$. Calculate the magnitude and direction of the wall shear stress at the upper plate surface. Find the volume flow rate through the channel
 $\left(\mu=0.50 \mathrm{~N} \cdot \mathrm{~s} / \mathrm{m}^{2}\right)$.

Given: Laminar flow between flat plates
Find: \quad Shear stress on upper plate; Volume flow rate per width

Solution:

Basic equation

$$
\begin{aligned}
& \tau_{\mathrm{yx}}=\mu \cdot \frac{\mathrm{du}}{\mathrm{dy}} \quad u(\mathrm{y})=-\frac{\mathrm{h}^{2}}{2 \cdot \mu} \cdot \frac{\mathrm{dp}}{\mathrm{dx}} \cdot\left[1-\left(\frac{\mathrm{y}}{\mathrm{~h}}\right)^{2}\right] \\
& \tau_{\mathrm{yx}}=\frac{-\mathrm{h}^{2}}{2} \cdot \frac{\mathrm{dp}}{\mathrm{dx}} \cdot\left(-\frac{2 \cdot \mathrm{y}}{\mathrm{~h}^{2}}\right)=-\mathrm{y} \cdot \frac{\mathrm{dp}}{\mathrm{dx}}
\end{aligned}
$$

At the upper surface

$$
\mathrm{y}=\mathrm{h}
$$

$$
\tau_{\mathrm{yx}}=-1.5 \cdot \mathrm{~mm} \times \frac{1 \cdot \mathrm{~m}}{1000 \cdot \mathrm{~mm}} \times 1.25 \times 10^{3} \cdot \frac{\mathrm{~N}}{\mathrm{~m}^{2} \cdot \mathrm{~m}} \quad \tau_{\mathrm{yx}}=-1.88 \mathrm{~Pa}
$$

The volume flow rate is $Q=\int u d A=\int_{-h}^{h} u \cdot b d y=-\frac{h^{2} \cdot b}{2 \cdot \mu} \cdot \frac{d p}{d x} \cdot \int_{-h}^{h}\left[1-\left(\frac{y}{h}\right)^{2}\right] d y$
$Q=-\frac{2 \cdot h^{3} \cdot b}{3 \cdot \mu} \cdot \frac{d p}{d x}$
$\frac{\mathrm{Q}}{\mathrm{b}}=-\frac{2}{3} \times\left(1.5 \cdot \mathrm{~mm} \times \frac{1 \cdot \mathrm{~m}}{1000 \cdot \mathrm{~mm}}\right)^{3} \times 1.25 \times 10^{3} \cdot \frac{\mathrm{~N}}{\mathrm{~m}^{2} \cdot \mathrm{~m}} \times \frac{\mathrm{m}^{2}}{0.5 \cdot \mathrm{~N} \cdot \mathrm{~s}}$
$\frac{\mathrm{Q}}{\mathrm{b}}=-5.63 \times 10^{-6} \frac{\mathrm{~m}^{2}}{\mathrm{~s}}$

Given: Laminar, fully developed flow between parallel plates

$$
\mu=0.5 \frac{\mathrm{~N} \cdot \mathrm{~s}}{\mathrm{~m}^{2}} ; \frac{\partial p}{\partial x}=-10.00 \frac{\mathrm{~N}}{\mathrm{~m}^{3}}
$$

Find: (a) shear stress on upper plate.
(b) Volume flow rate per unit width.

with $=6$
Solution: From Eq. 8.7 with $a=h$,

$$
u=-\frac{h^{2}}{8 \mu} \frac{\partial p}{\partial x}\left[1-\left(\frac{2 g}{h}\right)^{2}\right]
$$

Then

$$
I_{y x}=\mu \frac{d u}{d y}=-\frac{h^{2}}{8} \frac{\partial p}{\partial x}\left(-\frac{8 y}{h^{2}}\right)=y \frac{\partial p}{\partial x}
$$

At upper surface, $y=b / 2$, and

$$
\tau_{y x}=\frac{0.005 m^{2}}{2}-1000 \frac{\mathrm{~N}}{m^{3}}=-2.5 \mathrm{~N} / \mathrm{m}^{2}
$$

The upper plate is a negative y surface. Thus since $C_{y x}<0$, stress acts to rights in $t x$ direction.

The volume flow rate is

$$
Q=\int_{A} u d A=\int_{-h / 2}^{h / 2} u b d y=2 \int_{0}^{h / 2} u b d y=2\left(\frac{h}{2}\right) b \int_{0}^{1} u d\left(\frac{2 y}{h}\right)
$$

or

$$
\frac{Q}{b}=h \int_{0}^{1} u d \eta \text { where } \eta=\frac{2 y}{h} \text { and } u=-\frac{h^{2}}{8 h} \frac{\partial p}{\partial x}\left(1-n^{2}\right)
$$

Thees $\frac{Q}{6}=h \int_{0}^{1}-\frac{h^{2}}{\partial \mu} \frac{\partial p}{\partial x}\left(1-\eta^{2}\right) d \eta=-\left.\frac{h^{3}}{\delta \mu} \frac{\partial p}{\partial x}\left(\eta-\frac{1}{3} \eta^{3}\right)\right|_{0} ^{1}=-\frac{h^{3}}{1 z \mu} \frac{\partial p}{\partial x}$

$$
\frac{Q}{b}=-\frac{1}{12} \times(0.00 .5)^{3} \mathrm{~m}^{3} \times \frac{\mathrm{m}^{2}}{0.5 \mathrm{~N} \cdot 5} \times-1000 \frac{\mathrm{~N}}{\mathrm{~m}^{3}}=20.8 \times 10^{-6} \mathrm{~m}^{2} / \mathrm{s}
$$

Note $u>0$, so flow is from left to right.

Problem 8.11

8.11 Oil is confined in a 4-in. diameter cylinder by a piston having a radial clearance of 0.001 in . and a length of 2 in . A steady force of 4500 lbf is applied to the piston. Assume the properties of SAE 30 oil at $120^{\circ} \mathrm{F}$. Estimate the rate at which oil leaks past the piston.

Given: Piston cylinder assembly
Find: Rate of oil leak

Solution:

Basic equation $\quad \frac{\mathrm{Q}}{\mathrm{l}}=\frac{\mathrm{a}^{3} \cdot \Delta \mathrm{p}}{12 \cdot \mu \cdot \mathrm{~L}} \quad \mathrm{Q}=\frac{\pi \cdot \mathrm{D} \cdot \mathrm{a}^{3} \cdot \Delta \mathrm{p}}{12 \cdot \mu \cdot \mathrm{~L}}$
(from Eq. 8.6c; we assume laminar flow and verify this is correct after solving)

For the system

$$
\begin{aligned}
& \Delta \mathrm{p}=\mathrm{p}_{1}-\mathrm{p}_{\mathrm{atm}}=\frac{\mathrm{F}}{\mathrm{~A}}=\frac{4 \cdot \mathrm{~F}}{\pi \cdot \mathrm{D}^{2}} \\
& \Delta \mathrm{p}=\frac{4}{\pi} \times 4500 \cdot \mathrm{lbf} \times\left(\frac{1}{4 \cdot \mathrm{in}} \times \frac{12 \cdot \mathrm{in}}{1 \cdot \mathrm{ft}}\right)^{2}
\end{aligned}
$$

$$
\Delta \mathrm{p}=358 \cdot \mathrm{psi}
$$

At $120^{\circ} \mathrm{F}$ (about $50^{\circ} \mathrm{C}$), from Fig. A. 2

$$
\mu=0.06 \times 0.0209 \cdot \frac{\mathrm{lbf} \cdot \mathrm{~s}}{\mathrm{ft}^{2}} \quad \mu=1.25 \times 10^{-3} \cdot \frac{\mathrm{lbf} \cdot \mathrm{~s}}{\mathrm{ft}^{2}}
$$

$\mathrm{Q}=\frac{\pi}{12} \times 4 \cdot \mathrm{in} \times\left(0.001 \cdot \mathrm{in} \times \frac{1 \cdot \mathrm{ft}}{12 \cdot \mathrm{in}}\right)^{3} \times 358 \cdot \frac{\mathrm{lbf}}{\mathrm{in}^{2}} \times \frac{144 \cdot \mathrm{in}^{2}}{1 \cdot \mathrm{ft}^{2}} \times \frac{\mathrm{ft}^{2}}{1.25 \times 10^{-3} \mathrm{lbf} \cdot \mathrm{s}} \times \frac{1}{2 \cdot \mathrm{in}} \quad \mathrm{Q}=1.25 \times 10^{-5} \cdot \frac{\mathrm{ft}^{3}}{\mathrm{~s}} \quad \mathrm{Q}=0.0216 \cdot \frac{\mathrm{in}^{3}}{\mathrm{~s}}$
Check Re: $\quad V=\frac{Q}{A}=\frac{Q}{a \cdot \pi \cdot D}$
$\mathrm{V}=\frac{1}{\pi} \times 1.25 \times 10^{-5} \frac{\mathrm{ft}^{3}}{\mathrm{~s}} \times \frac{1}{.001 \cdot \mathrm{in}} \times \frac{1}{4 \cdot \mathrm{in}} \times\left(\frac{12 \cdot \mathrm{in}}{1 \cdot \mathrm{ft}}\right)^{2}$
$\mathrm{V}=0.143 \cdot \frac{\mathrm{ft}}{\mathrm{s}}$
$\mathrm{Re}=\frac{\mathrm{V} \cdot \mathrm{a}}{\nu} \quad \nu=6 \times 10^{-5} \times 10.8 \frac{\mathrm{ft}^{2}}{\mathrm{~s}} \quad \nu=6.48 \times 10^{-4} \cdot \frac{\mathrm{ft}^{2}}{\mathrm{~s}} \quad$ (at $120^{\circ} \mathrm{F}$, from Fig. A.3)
$\mathrm{Re}=0.143 \cdot \frac{\mathrm{ft}}{\mathrm{s}} \times 0.001 \cdot \mathrm{in} \times \frac{1 \cdot \mathrm{ft}}{12 \cdot \mathrm{in}} \times \frac{\mathrm{s}}{6.48 \times 10^{-4} \mathrm{ft}^{2}} \quad \mathrm{Re}=0.0184 \quad$ so flow is very much laminar
The speed of the piston is approximately

$$
\mathrm{V}_{\mathrm{p}}=\frac{\mathrm{Q}}{\left(\frac{\pi \cdot \mathrm{D}^{2}}{4}\right)} \quad \mathrm{V}_{\mathrm{p}}=\frac{4}{\pi} \times 1.25 \times 10^{-5} \frac{\mathrm{ft}^{3}}{\mathrm{~s}} \times\left(\frac{1}{4 \cdot \mathrm{in}} \times \frac{12 \cdot \mathrm{in}}{1 \cdot \mathrm{ft}}\right)^{2} \quad \mathrm{~V}_{\mathrm{p}}=1.432 \times 10^{-4} \cdot \frac{\mathrm{ft}}{\mathrm{~s}}
$$

The piston motion is negligible so our assumption of flow between parallel plates is reasonable

Given: Hydraulic jack supports supports a load of 9000 Eg piston diameter $D=100 \mathrm{~mm}$
radial clearance $a=0.05 \mathrm{~mm}$
piston henge $L=120 \mathrm{~mm}$
Fid has viscosity of SPE 30 oil at $30^{\circ} \mathrm{C}$
Find: Leakage rote of fluid past the piston
Solution:
D $1=1$ a Model the flow as steady, fully developed laminar T/ $\frac{1}{1}$ flow between stationary parallel plates, inc, negev motion of the piston
Then, the leakage flow rate can be evaluated from Eq. 8.6 c (in the tets)
$Q=\frac{a^{3} \Delta P}{12 \mu h}$ where $\left.l=\pi\right\rangle$
From Fig. AR at $T=30^{\circ} \mathrm{C}, \mu=3.0 \times 10^{-1} \mathrm{~N} . \mathrm{Sh}^{2}$

$$
\begin{align*}
& \Delta p=-p_{1}-P_{\text {atm }} \text { and } p_{1}=\frac{W}{H}=\frac{m g}{H}=\frac{4 m g}{2} \\
& P_{1}=\frac{4}{\pi} \times 9000 \mathrm{~kg} \times 9.81 \frac{\mathrm{~m}}{s^{2}} \times \frac{1}{(0.1 n)^{2}} \times \frac{n . s^{2}}{\lg \cdot n}=11.2 M \mathrm{~Pa} \\
& Q=\frac{\pi P a^{3} \Delta P}{12 \mu L}=\frac{\pi}{12} \times(0.1 m) \times\left(5 \times 10^{-5} m\right)^{3} \times 11.2 \times 10^{6} \frac{1}{n^{2}} \times 0.3 \frac{m^{2}}{\lambda .5}+\frac{1}{0.2 n} \\
& Q=1.01 \times 10^{-6} \mathrm{~m}^{3} \mathrm{l}_{\mathrm{s}}=1.9 \times 10^{-3} \mathrm{~L} \mathrm{l}
\end{align*}
$$

Check $R_{e}=\frac{\rho \overline{\bar{y}}}{\mu}=\frac{a \bar{y}}{\bar{v}}$ utrere $J=2.8 \times 10^{-4} \mathrm{~m}^{2} / \mathrm{s}$ (Frg.A.B)

$$
\begin{aligned}
& \bar{Y}=\frac{Q}{A}=\frac{Q}{a l}=\frac{Q}{a N y}=\frac{1}{\pi} \times 1.01 \times 10^{-6} \frac{m^{3}}{s} \times \frac{1}{5 \times 10^{-5} m^{2}} \times \frac{1}{0 . m}=0.0643 n / s \\
& R_{e}=\frac{a Y}{V}=5 \times 10^{-5} m \times 0.0 .43 \frac{m}{s} \times \frac{1}{2.8} \times 10^{-4} \frac{s}{m^{2}}=0.011
\end{aligned}
$$

\therefore flow is definitely laminar
Piton moving down at speed v displaces $l i q u i d$ at rate Q where $Q=\frac{y^{2}}{4} v$
her

$$
v=\frac{4 \theta}{\pi y^{2}}=\frac{4}{\pi} \times 1.0 \times 10^{-6} \frac{\mathrm{~m}^{3}}{\mathrm{~s}} \times \frac{1}{(0.1 n)^{2}}=1.29 \times 10^{-4} \mathrm{~m} / \mathrm{s}
$$

Since $\frac{v}{v}=\frac{1.29 \times 10^{-4} \mathrm{Mls}}{0.0643 \mathrm{Mls}}=2.0 \times 10^{-3}$, Motion of piston can be neglected.

Problem 8.13
Given: Piston-cylindar device with SAE bow ail at 35°

Find: Leakage flow rate
Solution: Computing equation: $\frac{Q}{l}=\frac{a^{3} \Delta p}{12 \mu}$
Assumptions: (i) Laminar flow
(2) Fully developed flaw (h>>d)

For SAE low oil at $35^{\circ} \mathrm{C}, \mu=3.8 \times 10^{-2} \mathrm{~N} . \mathrm{S} / \mathrm{m}^{2}$ (Fig.A. C)
For this configuration, $l=\pi\rangle$, since $a\langle\theta\rangle$, Then

$$
\begin{align*}
& Q=\frac{a^{3} \Delta P l}{12 \mu h}=\frac{\left.\pi a^{3} \Delta P\right\rangle}{12 \mu h} \\
& Q=\frac{\pi}{12} \times\left(2 \times 10^{-6} m\right)^{3} \times 6 \times 10^{8} \frac{A}{H^{2}} \times 0.006 \mathrm{~m} \times 3.8 \times 10^{-2} \frac{\mathrm{~m}^{2}}{1.5} \times \frac{1}{0.05 \mathrm{~m}} \\
& Q=3.97 \times\left. 10^{-9} \mathrm{~m}^{3}\right|_{s}=3.97 \times 10^{-6} \mathrm{l} l_{s}
\end{align*}
$$

Check Re to assure laminar flow

$$
\begin{aligned}
& \bar{V}=\frac{Q}{q}=\frac{Q}{\pi y a}=\frac{1}{\pi} \times 3.97 \times 10^{-9} \frac{n^{3}}{s} \times \frac{1}{0.000 m} \times \frac{1}{2 \times 10^{-6}}=0.105 \mathrm{~m} / \mathrm{s} \\
& S G=0.88 \text { (Table F. } 2 \text {) ; } \rho=s G \rho_{H_{2 S}} \\
& R_{e}=\frac{\rho \overline{V_{a}}}{\mu}=\frac{\text { SG } \mu_{H_{0}} \overline{V_{a}}}{\mu} \\
& =0.88 \times \frac{999 \mathrm{~kg}}{\mathrm{M}^{3}} \times 0.105 \frac{\mathrm{M}}{5} \times 2 \times 10^{-6} \mathrm{~m} \times 3.8 \times 10^{-2} \frac{\mathrm{M}^{2}}{\mathrm{~N} .5}
\end{aligned}
$$

$R_{e}=0.005 \angle 2300$ so flow is drfintexg Laminar
8.14 A hydrostatic bearing is to support a load of $50,000 \mathrm{~N}$ per meter of length perpendicular to the diagram. The bearing is supplied with SAE 30 oil at $35^{\circ} \mathrm{C}$ and 700 kPa (gage) through the central slit. Since the oil is viscous and the gap is small, the flow may be considered fully developed. Calculate (a) the required width of the bearing pad, (b) the resulting pressure gradient, $d p / d x$, and (c) the gap height, if $Q=1 \mathrm{~mL} / \mathrm{min}$ per meter of length.

Given: Hydrostatic bearing

Find: Required pad width; Pressure gradient; Gap height

Solution:

For a laminar flow (we will verify this assumption later), the pressure gradient is constı $\mathrm{p}(\mathrm{x})=\mathrm{p}_{\mathrm{i}} \cdot\left(1-\frac{2 \cdot \mathrm{x}}{\mathrm{W}}\right)$
where $\mathrm{p}_{\mathrm{i}}=700 \mathrm{kPa}$ is the inlet pressure (gage)
Hence the total force in the y direction due to pressure is $F=b \cdot \int d x \quad$ where b is the pad width into the paper

$$
F=b \cdot \int_{-\frac{W}{2}}^{\frac{W}{2}} p_{i} \cdot\left(1-\frac{2 \cdot x}{W}\right) d x \quad F=p_{i} \cdot \frac{b \cdot W}{2}
$$

This must be equal to the applied load F. Hence $\quad W=\frac{2}{p_{i}} \cdot \frac{F}{b} \quad W=2 \times \frac{m^{2}}{700 \times 10^{3} \cdot \mathrm{~N}} \times \frac{50000 \cdot \mathrm{~N}}{\mathrm{~m}} \quad \mathrm{~W}=0.143 \mathrm{~m}$
The pressure gradient is then $\frac{\mathrm{dp}}{\mathrm{dx}}=-\frac{\Delta \mathrm{p}}{\frac{\mathrm{W}}{2}}=-\frac{2 \cdot \Delta \mathrm{p}}{\mathrm{W}}=-2 \times \frac{700 \times 10^{3} \cdot \mathrm{~N}}{\mathrm{~m}^{2}} \times \frac{1}{0.143 \cdot \mathrm{~m}}=-9.79 \cdot \frac{\mathrm{MPa}}{\mathrm{m}}$
The flow rate is given $\quad \frac{\mathrm{Q}}{\mathrm{l}}=-\frac{\mathrm{h}^{3}}{12 \cdot \mu} \cdot\left(\frac{\mathrm{dp}}{\mathrm{dx}}\right)$
(Eq. 8.6c)

Hence, for h we have

$$
h=\left(-\frac{12 \cdot \mu \cdot \frac{\mathrm{Q}}{\mathrm{l}}}{\frac{\mathrm{dp}}{\mathrm{dx}}}\right)^{\frac{1}{3}} \quad \text { At } 35^{\circ} \mathrm{C} \text {, from Fig. A. } 2 \quad \mu=0.15 \cdot \frac{\mathrm{~N} \cdot \mathrm{~s}}{\mathrm{~m}^{2}}
$$

$h=\left[-12 \times\left(-\frac{\mathrm{m}^{3}}{9.79 \times 10^{6} \cdot \mathrm{~N}}\right) \times 0.15 \cdot \frac{\mathrm{~N} \cdot \mathrm{~s}}{\mathrm{~m}^{2}} \times \frac{1 \cdot \mathrm{~mL}}{\mathrm{~min} \cdot \mathrm{~m}} \times \frac{10^{-6} \cdot \mathrm{~m}^{3}}{1 \cdot \mathrm{~mL}} \times \frac{1 \cdot \mathrm{~min}}{60 \cdot \mathrm{~s}}\right]^{\frac{1}{3}} \quad \mathrm{~h}=1.452 \times 10^{-5} \mathrm{~m}$

Check Re:

$$
\begin{array}{ll}
\operatorname{Re}=\frac{\mathrm{V} \cdot \mathrm{D}}{\nu}=\frac{\mathrm{D}}{\nu} \cdot \frac{\mathrm{Q}}{\mathrm{~A}}=\frac{\mathrm{h}}{\nu} \cdot \frac{\mathrm{Q}}{\mathrm{~b} \cdot \mathrm{~h}}=\frac{1}{\nu} \cdot \frac{\mathrm{Q}}{\mathrm{l}} & \nu=1.6 \times 10^{-4} \frac{\mathrm{~m}^{2}}{\mathrm{~s}} \\
\operatorname{Re}=\frac{\text { (at } 35^{\circ} \mathrm{C}, \text { from Fig. A.3) }}{1.6 \times 10^{-4} \cdot \mathrm{~m}^{2}} \times \frac{1 \cdot \mathrm{~mL}}{\min \cdot \mathrm{~m}} \times \frac{10^{-6} \cdot \mathrm{~m}^{3}}{1 \cdot \mathrm{~mL}} \times \frac{1 \cdot \mathrm{~min}}{60 \cdot \mathrm{~s}} & \mathrm{Re}=1.04 \times 10^{-4}
\end{array} \begin{aligned}
& \text { so flow is very } \\
& \text { much laminar }
\end{aligned}
$$

Given：Piston－cylider device，as shown．

$$
D=6 \mathrm{~mm} \quad L=25 \mathrm{~mm}
$$

Liquid is SAE 30 oi t at $20^{\circ} \mathrm{C}$ ．
Find：（a）M to develop $p=1.5 \mathrm{MPa}$（gage）
（b）Leakage flow rate in terms of a
（c）Maximum a to provide $\langle 1 \mathrm{~mm} / \mathrm{min}$ movement．

$$
M=\frac{\pi}{4} \times(0.006)^{2} m_{*}^{2} \times 1.5 \times 10^{6} \frac{\lambda 1}{m^{2}} \times \frac{\mathrm{s}^{2}}{9.81 \mathrm{~m}} \times \frac{\mathrm{kg} \cdot \mathrm{~m}}{N \cdot \mathrm{~s}^{2}}=4.32 \mathrm{~kg}
$$

so $M=\frac{\pi D^{2}}{4 g}$ gage

The leakage flow rate may be evaluate of for flow between flat plates． From Eq．S．6c，neglecting motion of the piston．

$$
\frac{Q}{l}=\frac{a^{3} \Delta p}{12 \mu L} \quad \text { or, since } \ell=\pi D, \quad Q=\frac{\pi}{12} \frac{a^{3} \Delta p D}{\mu L} \sim a^{3}
$$

The piston，moving downward at speed，v；displaces liquid at rate

$$
Q=\frac{\pi D^{2}}{4} v^{2}=\frac{\pi}{4}(0.006)^{2} m^{2} * 0.001 \frac{m}{m m} \times \frac{\min }{60 \mathrm{~s}}=4.71 \times 10^{-10} \mathrm{~m}^{3} / \mathrm{s}
$$

Then，with $\mu=0.42 \mathrm{~N} \cdot \mathrm{sec} / m+\left(a+20^{\circ} \mathrm{C}\right.$ ，Fig．A． 2 ），

$$
\begin{aligned}
& a=\left[\frac{12 \mu Q L}{m D \Delta p}\right]^{1 / 3}=\left[\frac{12}{\pi} \times 0.42 \frac{N \cdot 5}{m^{2}} \times 4.71 \times 10^{-20} \frac{m^{3}}{3} \times 0.025 m \times \frac{1}{0.006 m} \times \frac{m^{2}}{15 \times 10^{6} \mathrm{~N}}\right]^{1 / 3} \\
& a=1.28 \times 10^{-5} \mathrm{~m} \cdot(12.8 \mu \mathrm{~m})
\end{aligned}
$$

Check assumptions： $\bar{V}=\frac{Q}{A}=\frac{Q}{\pi D a}=\frac{1}{\pi} \times 4.71 \times 10^{-10} \frac{\mathrm{~m}^{3}}{3} \times \frac{1}{0.006 \mathrm{~m}} \times \frac{1}{1.28 \times 10^{-5} \mathrm{~m}}=1.95 \frac{\mathrm{~mm}}{3}$
Thus $\quad \frac{v}{\nabla}=1 \frac{\mathrm{~mm}}{\mathrm{~min}^{2}} \times \frac{\mathrm{sec}}{1.95 \mathrm{~mm}} \times \frac{m_{10}}{60 \mathrm{~s}}=0.00855<0.01$
Therefore piston motion is negligible．
Also $R_{C}=\frac{\overline{v a}}{\nu} ; \nu=\frac{\mu}{\rho}=\frac{\mu}{S G \rho_{1+1}}$ ，From Table $A .2(A p p e i d i x A), 5 \Theta=0.92$

$$
\begin{aligned}
& v=0.42 \frac{\mathrm{~N} \cdot \mathrm{~s}}{\mathrm{~m}^{2}} \times \frac{\mathrm{m}^{2}}{(0.92) 1000 \mathrm{~kg}} \times \frac{\mathrm{kg} \cdot \mathrm{~m}}{\mathrm{~N} \cdot \mathrm{~s}^{2}}=4.57 \times 10^{-4} \mathrm{~m}^{2} / \mathrm{s} \\
& R e=1.95 \times 10^{-3} \frac{m}{\mathrm{~s}} \times 1.28 \times 10^{-5} \mathrm{~m} \times \frac{\mathrm{s}}{4.57 \times 10^{-4} \mathrm{~m}^{2}}=5.46 \times 10^{-5} \ll 1
\end{aligned}
$$

Therefore flow is surely laminar！
8.16 In Section 8-2 we derived the velocity profile between parallel plates (Eq. 8.5) by using a differential control volume. Instead, following the procedure we used in Example 5.9, derive Eq. 8.5 by starting with the Navier-Stokes equations (Eqs. 5.27). Be sure to state all assumptions.

Given:

Navier-Stokes Equations
Find:
Derivation of Eq. 8.5

Solution:

The Navier-Stokes equations are

$$
\begin{align*}
& \frac{\partial \psi^{4}}{\partial x}+\frac{\partial v}{\partial y}+\frac{\partial y^{4}}{\partial z}=0 \tag{5.1c}\\
& \rho\left(\frac{\partial u)^{1}}{\partial t}+u \frac{\partial u^{4}}{\partial x x^{4}}+v \frac{\partial u^{4}}{\partial y}+w \frac{\partial u^{4}}{\partial z}\right)^{3}=\rho \varphi_{x}-\frac{\partial p}{\partial x}+\mu\left(\frac{\partial^{2} \hat{\mu}^{4}}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}+\frac{\partial^{2} \mu^{3}}{\partial z^{2}}\right) \tag{5.27a}\\
& \rho\left(\frac{\partial y^{\wedge}}{\partial t}+u \frac{\partial v /^{\prime}}{\partial x}+v \frac{\partial y^{4}}{\partial y}+w \frac{\partial y^{*}}{\partial z}\right)=\rho g_{y}-\frac{\partial p}{\partial y}+\mu\left(\frac{\partial^{2} \hat{p^{\prime}}}{\partial x^{2}}+\frac{\partial^{2} y^{4}}{\partial y^{2}}+\frac{\partial^{2} \hat{\beta}}{\partial z^{2}}\right) \tag{5.27b}
\end{align*}
$$

The following assumptions have been applied:
(1) Steady flow (given).
(2) Incompressible flow; $\rho=$ constant.
(3) No flow or variation of properties in the z direction; $w=0$ and $\partial / \partial z=0$.
(4) Fully developed flow, so no properties except pressure p vary in the x direction; $\partial / \partial x=0$.
(5) See analysis below.
(6) No body force in the x direction; $g_{x}=0$

Assumption (1) eliminates time variations in any fluid property. Assumption (2) eliminates space variations in density. Assumption (3) states that there is no z component of velocity and no property variations in the z direction. All terms in the z component of the Navier-Stokes equation cancel. After assumption (4) is applied, the continuity equation reduces to $\partial v / \partial y=0$. Assumptions (3) and (4) also indicate that $\partial v / \partial z=0$ and $\partial v / \partial x=0$. Therefore v must be constant. Since v is zero at the solid surface, then v must be zero everywhere. The fact that $v=0$ reduces the Navier-Stokes equations further, as indicated by (5). Hence for the y direction

$$
\frac{\partial p}{\partial y}=\rho g
$$

which indicates a hydrostatic variation of pressure. In the x direction, after assumption (6) we obtain

$$
\mu \frac{\partial^{2} u}{\partial y^{2}}-\frac{\partial p}{\partial x}=0
$$

Integrating twice

$$
u=\frac{1}{2 \mu} \frac{\partial p}{\partial x} y^{2}+\frac{c_{1}}{\mu} y+c_{2}
$$

To evaluate the constants, c_{1} and c_{2}, we must apply the boundary conditions. At $y=0, u=0$. Consequently, $c_{2}=0$. At $y=a, u=0$. Hence

$$
0=\frac{1}{2 \mu} \frac{\partial p}{\partial x} a^{2}+\frac{c_{1}}{\mu} a
$$

which gives

$$
c_{1}=-\frac{1}{2 \mu} \frac{\partial p}{\partial x} a
$$

and finally

$$
u=\frac{a^{2}}{2 \mu} \frac{\partial p}{\partial x}\left[\left(\frac{y}{a}\right)^{2}-\left(\frac{y}{a}\right)\right]
$$

Problem 8.17
Given: Viscous tow in narrow gap between parallel disks, as shown.
Flow rate is Q, accelerators are small. Velocity profile same as this developed.

Find: (a) Expression for $\vec{V}(r),(b) d p / d r$ in gap
(c) Expression for $p(r)$.
(d) Show net force to hold upper plate is

$$
F=\frac{3 \mu Q R^{2}}{h^{3}}\left[1-\left(\frac{R_{0}}{R}\right)^{2}\right]
$$

Solution: From the definition of mean velocity, $Q=\bar{v} 2 \pi r h$ so $\bar{V}=\frac{Q}{2 \pi r h}$
The pressure change with radices can be evaluated by analogy to E9. 8.66

$$
\frac{Q}{l}=-\frac{1}{12 \mu}\left(\frac{\partial P}{\partial x}\right) h^{3} \quad \text { with } l=2 \pi r \text { so } \frac{Q}{2 \pi r}=-\frac{1}{12 \mu}\left(\frac{\partial p}{\partial r}\right) h^{3}
$$

Thee

$$
\frac{d p}{d r}=-\frac{6 \mu Q}{\pi h^{3} r}
$$

Integrating to tiro $p(r)$,

$$
\left.\int_{p}^{p_{a t m}} d p=p_{a t m}-p=\int_{r}^{R}-\frac{6 \mu Q}{\pi h^{3} r} d r=-\frac{6 \mu Q}{\pi h^{3}} \ln r\right]_{r}^{R}=\frac{6 \mu Q}{\pi h^{3}} \ln (r / R)
$$

Thus $p(r)=p a t m-\frac{6 \mu Q}{\pi h^{3}} \ln (\Gamma / R) \quad\left(R_{0}<r<R\right) ; p=p_{0}$

$$
r<R_{0}
$$

The force on the upper plate is $d F_{g}=\left(p(r)-p_{a t m}\right)$ 乙urdr

$$
\begin{aligned}
& F_{z}=R_{0} \pi R_{0}^{2}+\int_{R_{0}}^{R} p(r) 2 \pi r d r=p_{0} \pi R_{0}^{2}+2 \pi R^{2} \int_{R_{0, R}}^{1} p(r)\left(\frac{r}{R}\right) d\left(\frac{r}{R}\right) \\
& =\pi_{0} \pi R_{0}^{2}+2 \pi R^{2} \int_{R_{0} / R}^{1}-\frac{6 \mu Q}{\pi h^{3}} \operatorname{l\omega }\left(\frac{r}{R}\right)\left(\frac{C}{R}\right) d\left(\frac{C}{R}\right)=R_{0} \pi R_{0}^{2}-\left.\frac{12 \mu Q R^{2}}{h^{3}}\left(\frac{r}{R}\right)^{2}\left[\frac{1}{2} \ln \left(\frac{R}{R}\right)-\frac{1}{4}\right]\right|_{0 / R} ^{1} \\
& =p_{0} \pi R_{0}^{2}-\frac{12 \mu Q R^{2}}{h^{3}}\left\{(1)\left[\frac{1}{2}(0)-\frac{1}{4}\right]-\left(\frac{R_{0}}{R}\right) ;\left[\frac{1}{2} \ln \left(\frac{\left(R_{0}\right.}{R}\right)-\frac{1}{4}\right]\right\} \\
& =-\frac{6 \mu Q R^{2}}{h^{2}}\left(\frac{R_{0}}{R}\right)^{2} \ln \left(\frac{R_{0}}{R}\right)-\frac{6 \mu Q R^{2}}{h^{3}}\left[-\frac{1}{2}-\left(\frac{R_{0}}{R}\right)^{2} \operatorname{lu}\left(\frac{R_{0}}{R}\right)+\frac{1}{2}\left(\frac{R_{0}}{R}\right)^{2}\right] \\
& F_{z}=\frac{3 \mu Q R^{2}}{h^{3}}\left[1-\left(\frac{R_{0}}{R}\right)^{2}\right]
\end{aligned}
$$

Given: Power-law model for non-Newtonian liquid, $\tau_{y x}=k\left(\frac{d u}{d y}\right)^{n}$
Find: Show $u=\left(\frac{h}{k} \frac{\Delta p}{L}\right)^{1 / n} \frac{n h}{n+1}\left[1-\left(\frac{y}{h}\right)^{\frac{n+1}{n}}\right]$

for fully developed laminar flow between plates.'
Plot: Profiles u / v vs. y / h for $n=0.7,1.0, a n d 1.3\left(v=u_{m a x}\right) . \quad\left(\tau+\frac{\partial v}{\partial y} d y\right) w d x$
Solution: Apply momentum equation to differential $C V$
Basic equation:

$$
\begin{gathered}
=0(1)=0(2) \\
F_{s_{x}}+F_{\phi_{x}}=\frac{\partial f}{\partial t} \int_{c v} u \rho d t+\int_{c s} u p \vec{V} \cdot d \vec{d}
\end{gathered}
$$

pard

Assumptions: (1) Horizontal flow
(z) steady flow
(3) Fully developed flow

Then

$$
p \omega d y+\left(\tau+\frac{\partial \tau}{\partial y} d y\right) \omega d x-\left(p+\frac{\partial p}{\partial x} d x\right) \omega d y-\tau \omega d x=0 \text { or } \frac{\partial \tau}{\partial y}=\frac{\partial p}{\partial x}
$$

since $\tau=\tau(y)$ and $p=p(x)$, then $\frac{d \tau}{d y}=\frac{\partial p}{\partial x}=$ constant and $\tau=y \frac{\partial p}{\partial x}$ or

$$
\tau_{y x}=k\left(\frac{d u}{d y}\right)^{n}=y \frac{\partial p}{\partial x}=-y \frac{\Delta p}{L}
$$

Thus $\quad \frac{d u}{d y}=-\left(\frac{1}{k} \frac{\Delta 0}{L}\right)^{1 / n} y^{1 / n}$
Integrating

$$
u=-\left(\frac{1}{k} \frac{\Delta p}{L}\right)^{1 / n} \frac{1}{1 / n+1} y^{1 / n+1}+c=-\left(\frac{1}{k} \frac{\Delta p}{L}\right)^{\frac{1}{n}} \frac{n}{n+1} s^{\frac{n+1}{n}}+C
$$

But $u=0$ at $y=h$, so

$$
c=\left(\frac{1}{k} \frac{\Delta p}{L}\right)^{\frac{1}{n}} \frac{n}{n+1} h^{\frac{n+1}{n}}
$$

and

$$
u=\left(\frac{1}{k} \frac{\Delta p}{L}\right)^{\frac{1}{n}} \frac{n}{n+1} h^{\frac{n+1}{n}}\left[1-\left(\frac{y}{h}\right)^{\frac{n+1}{n}}\right]
$$

or

$$
u=\left(\frac{h}{k} \frac{\Delta p}{L}\right)^{\frac{1}{n}} \frac{n h}{n+1}\left[1-\left(\frac{y}{h}\right)^{\frac{n+1}{n}}\right]
$$

$$
n=0.7 \quad n=1.0 \quad n=1.3
$$

y / h	u / U	u / U	u / U
0	1	1	1
0.03	1.000	0.999	0.998
0.06	0.999	0.996	0.993
0.1	0.996	0.990	0.983
0.2	0.980	0.960	0.942
0.3	0.946	0.910	0.881
0.4	0.892	0.840	0.802
0.5	0.814	0.750	0.707
0.6	0.711	0.640	0.595
0.7	0.580	0.510	0.468
0.8	0.418	0.360	0.326
0.9	0.226	0.190	0.170
1	0	0	0

Problem 8.19

8.19 Using the profile of Problem 8.18, show that the flow rate for fully developed laminar flow of a power-law fluid between stationary parallel plates may be written as

$$
Q=\left(\frac{h}{k} \frac{\Delta p}{L}\right)^{1 / n} \frac{2 n w h^{2}}{2 n+1}
$$

Here w is the plate width. In such an experimental setup the following data on applied pressure difference Δp and flow rate Q were obtained:

$\Delta p(\mathrm{kPa})$	10	20	30	40	50	60	70	80	90	100
$Q(\mathrm{~L} / \mathrm{min})$	0.451	0.759	1.01	1.15	1.41	1.57	1.66	1.85	2.05	2.25

Determine if the fluid is pseudoplastic or dilatant, and obtain an experimental value for n.

Given: Laminar velocity profile of power-law fluid flow between parallel plates
Find: \quad Expression for flow rate; from data determine the type of fluid

Solution:

The velocity profile is

$$
\mathrm{u}=\left(\frac{\mathrm{h}}{\mathrm{k}} \cdot \frac{\Delta \mathrm{p}}{\mathrm{~L}}\right)^{\frac{1}{\mathrm{n}}} \cdot \frac{\mathrm{n} \cdot \mathrm{~h}}{\mathrm{n}+1} \cdot\left[1-\left(\frac{\mathrm{y}}{\mathrm{~h}}\right)^{\frac{\mathrm{n}+1}{\mathrm{n}}}\right]
$$

The flow rate is then

$$
\mathrm{Q}=\mathrm{w} \cdot \int_{-\mathrm{h}}^{\mathrm{h}} \mathrm{udy} \quad \text { or, because the flow is symmetric } \quad \mathrm{Q}=2 \cdot \mathrm{w} \cdot \int_{0}^{\mathrm{h}} \mathrm{udy}
$$

The integral is computed as $\quad 1-\left(\frac{y}{h}\right)^{\frac{n+1}{n}} d y=y \cdot\left[1-\frac{n}{2 \cdot n+1} \cdot\left(\frac{y}{h}\right)^{\frac{2 \cdot n+1}{n}}\right]$

Using this with the limits

$$
\mathrm{Q}=2 \cdot \mathrm{w} \cdot\left(\frac{\mathrm{~h}}{\mathrm{k}} \cdot \frac{\Delta \mathrm{p}}{\mathrm{~L}}\right)^{\frac{1}{\mathrm{n}}} \cdot \frac{\mathrm{n} \cdot \mathrm{~h}}{\mathrm{n}+1} \cdot \mathrm{~h} \cdot\left[1-\frac{\mathrm{n}}{2 \cdot \mathrm{n}+1} \cdot(1)^{\frac{2 \cdot \mathrm{n}+1}{\mathrm{n}}}\right] \quad \mathrm{Q}=\left(\frac{\mathrm{h}}{\mathrm{k}} \cdot \frac{\Delta \mathrm{p}}{\mathrm{~L}}\right)^{\frac{1}{\mathrm{n}}} \cdot \frac{2 \cdot \mathrm{n} \cdot \mathrm{w} \cdot \mathrm{~h}^{2}}{2 \cdot \mathrm{n}+1}
$$

The associated Excel spreadsheet shows computation of n.
8.19 Using the profile of Problem 8.18, show that the flow rate for fully developed laminar flow of a power-law fluid between stationary parallel plates may be written as

$$
Q=\left(\frac{h}{k} \frac{\Delta p}{L}\right)^{1 / n} \frac{2 n w h^{2}}{2 n+1}
$$

Here w is the plate width. In such an experimental setup the following data on applied pressure difference Δp and flow rate Q were obtained:

$\Delta p(\mathrm{kPa})$	10	20	30	40	50	60	70	80	90	100
$Q(\mathrm{~L} / \mathrm{min})$	0.451	0.759	1.01	1.15	1.41	1.57	1.66	1.85	2.05	2.25

Determine if the fluid is pseudoplastic or dilatant, and obtain an experimental value for n.

Given: Laminar velocity profile of power-law fluid flow between parallel plates
Find: Expression for flow rate; from data determine the type of fluid

Solution:

The data is

$\boldsymbol{\Delta} \boldsymbol{p}$ (kPa)	10	20	30	40	50	60	70	80	90	100
$\boldsymbol{Q}(\mathbf{L} / \mathbf{m i n})$	0.451	0.759	1.01	1.15	1.41	1.57	1.66	1.85	2.05	2.25

This must be fitted to $\quad \mathrm{Q}=\left(\frac{\mathrm{h}}{\mathrm{k}} \cdot \frac{\Delta \mathrm{p}}{\mathrm{L}}\right)^{\frac{1}{\mathrm{n}}} \cdot \frac{2 \cdot \mathrm{n} \cdot \mathrm{w} \cdot \mathrm{h}^{2}}{2 \cdot \mathrm{n}+1} \quad$ or $\quad \mathrm{Q}=\mathrm{k} \cdot \Delta \mathrm{p}^{\frac{1}{\mathrm{n}}}$

We can fit a power curve to the data

Hence $\quad 1 / n=0.677 \quad n=1.48$

Given: sealed journal bearing rotating as shown.

$$
r_{0}=26 \mathrm{~mm}, r_{i}=25 \mathrm{~mm}
$$

Gap contains oil in laminar motion with linear velocity profile.

$\omega=2800 \mathrm{rpm}$ and Torque, $T=0.2 \mathrm{~N} \cdot \mathrm{~m}$
Find: (a) Viscosity of oi s
(b) Will torque increase or decrease with time? Why?

Solution: "unford"bearing since gap is small", and consider as flow between parallel plates. Apply Newton's law of viscosity.
Basic equation: $\tau_{t x}=\mu \frac{d u}{d y}$
Assumption: Linear velocity profile

Then $\tau_{y x}=\mu \frac{U}{\Delta r}=\frac{\mu \omega r_{i}}{\Delta r}$
and

$$
T=r_{c}\left(2 \pi r_{L}<\tau_{y x}\right)=2 \pi r_{2}^{2} \angle \tau_{y x}=\frac{2 \pi \mu \omega r_{L}^{3} L}{\Delta r}
$$

Solving, $\mu=\frac{\Delta r T}{2 \pi \omega r_{L}^{3} L}$

$$
\begin{aligned}
\mu & =\frac{1}{2 \pi} \times 0.001 \mathrm{~m}_{\times} 0.2 \mathrm{~N} \cdot \mathrm{~m}_{\times} \frac{\min }{2800 \pi \mathrm{rv}} \times \frac{1}{\left(0.025^{13} \mathrm{~m}^{3}\right.} \times \frac{1}{0.1 \mathrm{~m}} \times \frac{\mathrm{rev}}{2 \pi \mathrm{rad}} \times 60 \mathrm{~s} \\
\mu & =0.0695 \mathrm{~N} \cdot \mathrm{~s} / \mathrm{m}^{2}
\end{aligned}
$$

Bearing is sealed, so oil temperature will increase as energy is dissipated by friction. For liquid's, μ decreases as 7 increases. Thus torque will decrease, since it is proportional to μ.

Given: Water at $60^{\circ} \mathrm{C}$ flows between large flat plates.

$$
\begin{aligned}
& U=0.3 \mathrm{~m} / \mathrm{s} \\
& b=3 \mathrm{~mm}
\end{aligned}
$$

Find: Pressure gradient required for zero net flow at a section.
Solution: Apply momentum equation using cv and coordinates shown.
Basic equations:

$$
F_{s_{x}}+F_{\beta_{x}}^{=o(1)}=\frac{\partial f}{\partial t} \int_{c v}^{o(z)} u \rho d t+f_{c s}^{=\alpha(3)} u p \vec{v} \cdot d \vec{A}, \tau=\tau_{y x}=\mu \frac{d u}{d y}
$$

Assumptions : (1) $F_{B_{x}}=0$
(2) Steady flow
(3) Fully -developed flow
(4) Newtonian fluid

Then $F_{5 x}=0$. Substituting the force terms (seepage 315 for details) gives

$$
\frac{\partial p}{\partial x}=\frac{d L_{y x}}{d y}=\frac{d}{d y}\left(\mu \frac{d u}{d y}\right)=\mu \frac{d^{2} u}{d y^{2}} \quad \text { or } \quad \frac{d^{2} u}{d y^{2}}=\frac{1}{\mu} \frac{\partial p}{\partial x}
$$

Integrating twice,

$$
u=\frac{1}{2 \mu} \frac{\partial p}{\partial x} y^{2}+c_{1} y+c_{2}
$$

To evaluate the constants c, and c_{2}, we must use the boundary conditions. At $y=0, u=-U$, so $c_{2}=-v$. At $y=6$, $u=0$, so

$$
0=\frac{1}{3 \mu} \frac{\partial p}{\partial x} b^{4}+c, b-v \quad \text { or } c_{1}=\frac{U}{b}-\frac{1}{3 \mu} \frac{\partial p}{\partial x} b
$$

Thus

$$
u=\frac{1}{2 \mu} \frac{\partial p}{\partial x}\left(y^{2}-b y\right)+U\left(\frac{y}{b}-1\right)
$$

To find the flow rate, we integrate

$$
\frac{Q}{\omega}=\int_{0}^{b} u d y=\int_{0}^{b}\left[\frac{1}{2 \mu} \frac{\partial b}{\partial x}\left(y^{2}-b y\right)+U\left(\frac{y}{b}-1\right)\right] d y=-\frac{1}{1 h} \frac{\partial p}{\partial x} b^{3}-\frac{U^{6}}{2}
$$

For $Q=0$, with $\mu=4.63 \times 10^{-4} \frac{\mathrm{~N} \cdot \mathrm{~S}}{\mathrm{~m}^{2}}$ from Tabk A.I,

$$
\frac{\partial p}{\partial x}=-\frac{6 U \mu}{b^{2}}=-6 \times 0 . \frac{3 \mathrm{~m}}{5} \times 4.63 \times 10^{-4} \frac{\mathrm{~N}^{5} .5}{\mathrm{~m}^{2}} \times \frac{1}{(0.003)^{2} \mathrm{~m}^{2}}=-92.6 \mathrm{~N} / \mathrm{m}^{2} \mathrm{~m}
$$

Thus pressure must decrease in x direction for $3<0$ net flowrate.

Problem 8.22
8.22 Consider fully developed laminar flow between infinite parallel plates separated by gap width $d=10 \mathrm{~mm}$. The upper plate moves to the right with speed $U_{2}=0.5 \mathrm{~m} / \mathrm{s}$; the lower plate moves to the left with speed $U_{1}=0.25 \mathrm{~m} / \mathrm{s}$. The pressure gradient in the direction of flow is zero. Develop an expression for the velocity distribution in the gap. Find the volume flow rate per unit depth
 passing a given cross-section.

$$
\left[\tau_{y x}+\frac{\partial \tau_{y x}}{\partial y}\left(\frac{d y}{2}\right)\right] d x d z
$$

Find: Expression for velocity; Volume flow rate per depth

Solution:

Using the analysis of Section 8-2, the sum of forces in the x direction is
$\left.\left[p+\frac{\partial p}{\partial x}\left(-\frac{d x}{2}\right)\right] d y d z \longrightarrow \tau_{y x}+\frac{\partial \tau_{y x}}{\partial y}\left(\frac{d y}{2}\right)\right] d x d z$

$$
\left[\tau+\frac{\partial}{\partial y} \tau \cdot \frac{d y}{2}-\left(\tau-\frac{\partial}{\partial y} \tau \cdot \frac{d y}{2}\right)\right] \cdot b \cdot d x+\left(p-\frac{\partial}{\partial x} p \cdot \frac{d x}{2}-p+\frac{\partial}{\partial x} p \cdot \frac{d x}{2}\right) \cdot b \cdot d y=0
$$

Simplifying $\quad \frac{d \tau}{d y}=\frac{d p}{d x}=0 \quad$ or $\quad \mu \cdot \frac{d^{2} u}{d y^{2}}=0$
Integrating twice

$$
u=c_{1} \cdot y+c_{2}
$$

Boundary conditions: $u(0)=-U_{1} \quad c_{2}=-U_{1} \quad u(y=d)=U_{2} \quad c_{1}=\frac{U_{1}+U_{2}}{d}$
Hence

$$
\mathrm{u}(\mathrm{y})=\left(\mathrm{U}_{1}+\mathrm{U}_{2}\right) \cdot \frac{\mathrm{y}}{\mathrm{~d}}-\mathrm{U}_{1} \quad \mathrm{u}(\mathrm{y})=75 \cdot \mathrm{y}-0.25 \quad(\mathrm{u} \text { in } \mathrm{m} / \mathrm{s}, \mathrm{y} \text { in } \mathrm{m})
$$

The volume flow rate is $Q=\int u d A=b \cdot \int u d y \quad Q=b \cdot \int_{0}^{d}\left[\left(U_{1}+U_{2}\right) \cdot \frac{y}{d}-U_{1}\right] d x$

$$
\mathrm{Q}=\mathrm{b} \cdot \mathrm{~d} \cdot \frac{\left(\mathrm{U}_{2}-\mathrm{U}_{1}\right)}{2}
$$

$$
\frac{\mathrm{Q}}{\mathrm{~b}}=10 \cdot \mathrm{~mm} \times \frac{1 \cdot \mathrm{~m}}{1000 \cdot \mathrm{~mm}} \times \frac{1}{2} \times(0.5-0.25) \times \frac{\mathrm{m}}{\mathrm{~s}}
$$

$$
\mathrm{Q}=0.00125 \frac{\frac{\mathrm{~m}^{3}}{\mathrm{~s}}}{\mathrm{~m}}
$$

Problem 8.23

8.23 Two immiscible fluids are contained between infinite parallel plates. The plates are separated by distance $2 h$, and the two fluid layers are of equal thickness h; the dynamic viscosity of the upper fluid is three times that of the lower fluid. If the lower plate is stationary and the upper plate moves at constant speed $U=20 \mathrm{ft} / \mathrm{s}$, what is the velocity at the interface? Assume laminar flows, and that the pressure gradient in the direction of flow is zero.

Given: Laminar flow of two fluids between plates
Find: Velocity at the interface

Solution:

Using the analysis of Section 8-2, the sum of forces in the x direction is

$$
\left[\tau_{y x}+\frac{\partial \tau_{y x}}{\partial y}\left(\frac{d y}{2}\right)\right] d x d z
$$

$$
\left[\tau+\frac{\partial}{\partial y} \tau \cdot \frac{d y}{2}-\left(\tau-\frac{\partial}{\partial y} \tau \cdot \frac{d y}{2}\right)\right] \cdot b \cdot d x+\left(p-\frac{\partial}{\partial x} p \cdot \frac{d x}{2}-p+\frac{\partial}{\partial x} p \cdot \frac{d x}{2}\right) \cdot b \cdot d y=0
$$

Simplifying

$$
\frac{d \tau}{d y}=\frac{\mathrm{dp}}{\mathrm{dx}}=0 \quad \text { or } \quad \mu \cdot \frac{\mathrm{d}^{2} \mathrm{u}}{\mathrm{dy}^{2}}=0
$$

Applying this to fluid 1 (lower fluid) and fluid 2 (upper fluid), integrating twice yields

$$
u_{1}=c_{1} \cdot y+c_{2}
$$

$$
u_{2}=c_{3} \cdot y+c_{4}
$$

We need four BCs. Three are obvious $\quad y=0 \quad u_{1}=0 \quad y=h \quad u_{1}=u_{2} \quad y=2 \cdot h \quad u_{2}=U$
The fourth BC comes from the fact that the stress at the interface generated by each fluid is the same

$$
\mathrm{y}=\mathrm{h} \quad \mu_{1} \cdot \frac{\mathrm{du}_{1}}{\mathrm{dy}}=\mu_{2} \cdot \frac{\mathrm{du}_{2}}{\mathrm{dy}}
$$

Using these four BCs $\quad 0=c_{2} \quad c_{1} \cdot h+c_{2}=c_{3} \cdot h+c_{4} \quad U=c_{3} \cdot 2 \cdot h+c_{4} \quad \mu_{1} \cdot c_{1}=\mu_{2} \cdot c_{3}$
Hence
$\mathrm{c}_{2}=0$
From the 2nd and 3rd equations
$\mathrm{c}_{1} \cdot \mathrm{~h}-\mathrm{U}=-\mathrm{c}_{3} \cdot \mathrm{~h}$ and $\quad \mu_{1} \cdot \mathrm{c}_{1}=\mu_{2} \cdot \mathrm{c}_{3}$
$c_{1} \cdot \mathrm{~h}-\mathrm{U}=-\mathrm{c}_{3} \cdot \mathrm{~h}=-\frac{\mu_{1}}{\mu_{2}} \cdot \mathrm{~h} \cdot \mathrm{c}_{1}$

Hence for fluid 1 (we do not need to complete the analysis for fluid 2)

Evaluating this at $y=h$, where $u_{1}=u_{\text {interface }} \quad \mathrm{u}_{\text {interface }}=\frac{20 \cdot \frac{\mathrm{ft}}{\mathrm{s}}}{\left(1+\frac{1}{3}\right)}$
$c_{1}=\frac{U}{h \cdot\left(1+\frac{\mu_{1}}{\mu_{2}}\right)}$

$$
u_{1}=\frac{U}{h \cdot\left(1+\frac{\mu_{1}}{\mu_{2}}\right)} \cdot y
$$

$$
\mathrm{u}_{\text {interface }}=15 \cdot \frac{\mathrm{ft}}{\mathrm{~s}}
$$

Problem 8.24

8.24 Two immiscible fluids are contained between infinite parallel plates. The plates are separated by distance $2 h$, and the two fluid layers are of equal thickness $h=2.5 \mathrm{~mm}$. The dynamic viscosity of the upper fluid is twice that of the lower fluid, which is $\mu_{\text {lower }}=0.5 \mathrm{~N} \cdot \mathrm{~s} / \mathrm{m}^{2}$. If the plates are stationary and the applied pressure gradient is $-1000 \mathrm{~N} / \mathrm{m}^{2} / \mathrm{m}$, find the velocity at the interface. What is the maximum velocity of the flow? Plot the velocity distribution.

Given: Properties of two fluids flowing between parallel plates; applied pressure gradient
Find: Velocity at the interface; maximum velocity; plot velocity distribution

Solution:

Given data

$$
\begin{array}{ll}
\mathrm{k}=\frac{\mathrm{dp}}{\mathrm{dx}}=-1000 \cdot \frac{\mathrm{~Pa}}{\mathrm{~m}} & \mathrm{~h}=2.5 \cdot \mathrm{~mm} \\
\mu_{1}=0.5 \cdot \frac{\mathrm{~N} \cdot \mathrm{~s}}{\mathrm{~m}^{2}} & \mu_{2}=2 \cdot \mu_{1}
\end{array}
$$

(Lower fluid is fluid 1 ; upper is fluid 2)
Following the analysis of Section 8-2, analyse the forces on a differential CV of either fluid
The net force is zero for steady flow, so
$\left[\tau+\frac{d \tau}{d y} \cdot \frac{d y}{2}-\left(\tau-\frac{d \tau}{d y} \cdot \frac{d y}{2}\right)\right] \cdot d x \cdot d z+\left[p-\frac{d p}{d x} \cdot \frac{d x}{2}-\left(p+\frac{d p}{d x} \cdot \frac{d x}{2}\right)\right] \cdot d y \cdot d z=0$

Simplifying $\quad \frac{d \tau}{d y}=\frac{d p}{d x}=k \quad$ so for each fluid $\quad \mu \cdot \frac{d^{2}}{d y^{2}} u=k$
Applying this to fluid 1 (lower fluid) and fluid 2 (upper fluid), integrating twice yields

$$
\mathrm{u}_{1}=\frac{\mathrm{k}}{2 \cdot \mu_{1}} \cdot \mathrm{y}^{2}+\mathrm{c}_{1} \cdot \mathrm{y}+\mathrm{c}_{2} \quad \quad \mathrm{u}_{2}=\frac{\mathrm{k}}{2 \cdot \mu_{2}} \cdot \mathrm{y}^{2}+\mathrm{c}_{3} \cdot \mathrm{y}+\mathrm{c}_{4}
$$

For convenience the origin of coordinates is placed at the centerline
We need four BCs. Three are obvious

$$
\begin{array}{ll}
\mathrm{y}=-\mathrm{h} & \mathrm{u}_{1}=0 \\
\mathrm{y}=0 & \mathrm{u}_{1}=\mathrm{u}_{2} \\
\mathrm{y}=\mathrm{h} & \mathrm{u}_{2}=0 \tag{3}
\end{array}
$$

The fourth BC comes from the fact that the stress at the interface generated by each fluid is the same

$$
\begin{equation*}
\mathrm{y}=0 \quad \mu_{1} \cdot \frac{\mathrm{du}_{1}}{\mathrm{dy}}=\mu_{2} \cdot \frac{\mathrm{du}_{2}}{\mathrm{dy}} \tag{4}
\end{equation*}
$$

Using these four BCs

$$
\begin{aligned}
& 0=\frac{\mathrm{k}}{2 \cdot \mu_{1}} \cdot h^{2}-\mathrm{c}_{1} \cdot \mathrm{~h}+\mathrm{c}_{2} \\
& \mathrm{c}_{2}=\mathrm{c}_{4} \\
& 0=\frac{\mathrm{k}}{2 \cdot \mu_{2}} \cdot h^{2}+\mathrm{c}_{3} \cdot \mathrm{~h}+\mathrm{c}_{4} \\
& \mu_{1} \cdot \mathrm{c}_{1}=\mu_{2} \cdot \mathrm{c}_{3}
\end{aligned}
$$

Hence, after some algebra

$$
c_{1}=\frac{\mathrm{k} \cdot \mathrm{~h}}{2 \cdot \mu_{1}} \cdot \frac{\left(\mu_{2}-\mu_{1}\right)}{\left(\mu_{2}+\mu_{1}\right)} \quad \mathrm{c}_{2}=\mathrm{c}_{4}=-\frac{\mathrm{k} \cdot \mathrm{~h}^{2}}{\mu_{2}+\mu_{1}} \quad \mathrm{c}_{3}=\frac{\mathrm{k} \cdot \mathrm{~h}}{2 \cdot \mu_{2}} \cdot \frac{\left(\mu_{2}-\mu_{1}\right)}{\left(\mu_{2}+\mu_{1}\right)}
$$

The velocity distributions are then

$$
u_{1}=\frac{k}{2 \cdot \mu_{1}} \cdot\left[y^{2}+y \cdot h \cdot \frac{\left(\mu_{2}-\mu_{1}\right)}{\left(\mu_{2}+\mu_{1}\right)}\right]-\frac{k \cdot h^{2}}{\mu_{2}+\mu_{1}} \quad u_{2}=\frac{k}{2 \cdot \mu_{2}} \cdot\left[y^{2}+y \cdot h \cdot \frac{\left(\mu_{2}-\mu_{1}\right)}{\left(\mu_{2}+\mu_{1}\right)}\right]-\frac{k \cdot h^{2}}{\mu_{2}+\mu_{1}}
$$

Evaluating either velocity at $y=0$, gives the velocity at the interface

$$
\mathrm{u}_{\text {interface }}=-\frac{\mathrm{k} \cdot \mathrm{~h}^{2}}{\mu_{2}+\mu_{1}} \quad \quad \mathrm{u}_{\text {interface }}=4.17 \times 10^{-3} \frac{\mathrm{~m}}{\mathrm{~s}}
$$

The plots of these velocity distributions are shown in the associated Excel workbook, as is the determination of the maximum velocity.

$$
\text { From Excel } \quad \mathrm{u}_{\max }=4.34 \times 10^{-3} \cdot \frac{\mathrm{~m}}{\mathrm{~s}}
$$

8.24 Two immiscible fluids are contained between infinite parallel plates. The plates are separated by distance $2 h$, and the two fluid layers are of equal thickness $h=2.5 \mathrm{~mm}$. The dynamic viscosity of the upper fluid is twice that of the lower fluid, which is $\mu_{\text {lower }}=0.5 \mathrm{~N} \cdot \mathrm{~s} / \mathrm{m}^{2}$. If the plates are stationary and the applied pressure gradient is $-1000 \mathrm{~N} / \mathrm{m}^{2} / \mathrm{m}$, find the velocity at the interface. What is the maximum velocity of the flow? Plot the velocity distribution.

Given: Properties of two fluids flowing between parallel plates; applied pressure gradient

Find: Velocity at the interface; maximum velocity; plot velocity distribution

Solution:

The data is

$$
\begin{array}{rcl}
k= & -1000 & \mathrm{~Pa} / \mathrm{m} \\
h= & 2.5 & \mathrm{~mm} \\
\mu_{1}= & 0.5 & \mathrm{~N} . \mathrm{s} / \mathrm{m}^{2} \\
\mu_{2}= & 1.0 & \mathrm{~N} . \mathrm{s} / \mathrm{m}^{2}
\end{array}
$$

The velocity distribution is

$$
u_{1}=\frac{k}{2 \cdot \mu_{1}} \cdot\left[y^{2}+y \cdot h \cdot \frac{\left(\mu_{2}-\mu_{1}\right)}{\left(\mu_{2}+\mu_{1}\right)}\right]-\frac{\mathrm{k} \cdot \mathrm{~h}^{2}}{\mu_{2}+\mu_{1}}
$$

$$
u_{2}=\frac{k}{2 \cdot \mu_{2}} \cdot\left[y^{2}+y \cdot h \cdot \frac{\left(\mu_{2}-\mu_{1}\right)}{\left(\mu_{2}+\mu_{1}\right)}\right]-\frac{k \cdot h^{2}}{\mu_{2}+\mu_{1}}
$$

The lower fluid has the highest velocity
We can use Solver to find the maximum
(Or we could differentiate to find the maximum)

$y(\mathrm{~mm})$	$u_{\max } \times 10^{3}(\mathrm{~m} / \mathrm{s})$
-0.417	4.34

Problem 8.25

8.25 The dimensionless velocity profile for fully developed laminar flow between infinite parallel plates with the upper plate moving at constant speed U is shown in Fig. 8.6. Find the pressure gradient $\partial p / \partial x$ at which (a) the upper plate and (b) the lower plate experience zero shear stress, in terms of U, a, and μ. Plot the dimensionless velocity profiles for these cases.

Given: Velocity profile between parallel plates
Find: Pressure gradients for zero stress at upper/lower plates; plot
Solution:

Fig. 8.6 Dimensionless velocity profile for fully developed laminar flow between infinite parallel plates: upper plate moving with constant speed, U.

From Eq. 8.8, the velocity distribution is

$$
\mathrm{u}=\frac{\mathrm{U} \cdot \mathrm{y}}{\mathrm{a}}+\frac{\mathrm{a}^{2}}{2 \cdot \mu} \cdot\left(\frac{\partial}{\partial \mathrm{x}} \mathrm{p}\right) \cdot\left[\left(\frac{\mathrm{y}}{\mathrm{a}}\right)^{2}-\frac{\mathrm{y}}{\mathrm{a}}\right]
$$

The shear stress is

$$
\tau_{y x}=\mu \cdot \frac{d u}{d y}=\mu \cdot \frac{U}{a}+\frac{a^{2}}{2} \cdot\left(\frac{\partial}{\partial x} p\right) \cdot\left(2 \cdot \frac{y}{a^{2}}-\frac{1}{a}\right)
$$

(a) For $\tau_{y x}=0$ at $y=a$
$0=\mu \cdot \frac{U}{a}+\frac{a}{2} \cdot \frac{\partial}{\partial \mathrm{x}} \mathrm{p}$
$\frac{\partial}{\partial x} p=-\frac{2 \cdot U \cdot \mu}{a^{2}}$
The velocity distribution is then

$$
\mathrm{u}=\frac{\mathrm{U} \cdot \mathrm{y}}{\mathrm{a}}-\frac{\mathrm{a}^{2}}{2 \cdot \mu} \cdot \frac{2 \cdot \mathrm{U} \cdot \mu}{\mathrm{a}^{2}} \cdot\left[\left(\frac{\mathrm{y}}{\mathrm{a}}\right)^{2}-\frac{\mathrm{y}}{\mathrm{a}}\right] \quad \frac{\mathrm{u}}{\mathrm{U}}=2 \cdot \frac{\mathrm{y}}{\mathrm{a}}-\left(\frac{\mathrm{y}}{\mathrm{a}}\right)^{2}
$$

(b) For $\tau_{\mathrm{yx}}=0$ at $\mathrm{y}=0$
$0=\mu \cdot \frac{U}{a}-\frac{a}{2} \cdot \frac{\partial}{\partial \mathrm{x}} \mathrm{p}$
$\frac{\partial}{\partial x} p=\frac{2 \cdot U \cdot \mu}{a^{2}}$
The velocity distribution is then

$$
\mathrm{u}=\frac{\mathrm{U} \cdot \mathrm{y}}{\mathrm{a}}+\frac{\mathrm{a}^{2}}{2 \cdot \mu} \cdot \frac{2 \cdot \mathrm{U} \cdot \mu}{\mathrm{a}^{2}} \cdot\left[\left(\frac{\mathrm{y}}{\mathrm{a}}\right)^{2}-\frac{\mathrm{y}}{\mathrm{a}}\right] \quad \frac{\mathrm{u}}{\mathrm{U}}=\left(\frac{\mathrm{y}}{\mathrm{a}}\right)^{2}
$$

The velocity distributions are plotted in the associated Excel workbook
8.25 The dimensionless velocity profile for fully developed laminar flow between infinite parallel plates with the upper plate moving at constant speed U is shown in Fig. 8.6. Find the pressure gradient $\partial p / \partial x$ at which (a) the upper plate and (b) the lower plate experience zero shear stress, in terms of U, a, and μ. Plot the dimensionless velocity profiles for these cases.

Given: Velocity profile between parallel plates

Find: Pressure gradients for zero stress at upper/lower plates; plot
Solution:

Fig. 8.6 Dimensionless velocity profile for fully developed laminar flow between infinite parallel plates: upper plate moving with constant speed, U.
(a) For zero shear stress at upper plate $\quad \frac{u}{U}=2 \cdot \frac{y}{a}-\left(\frac{y}{a}\right)^{2}$
(b) For zero shear stress at lower plate $\quad \frac{\mathrm{u}}{\mathrm{U}}=\left(\frac{\mathrm{y}}{\mathrm{a}}\right)^{2}$

y / a	(a) u / U	$(\mathrm{~b}) u / U$
0.0	0.000	0.000
0.1	0.190	0.010
0.2	0.360	0.040
0.3	0.510	0.090
0.4	0.640	0.160
0.5	0.750	0.250
0.6	0.840	0.360
0.7	0.910	0.490
0.8	0.960	0.640
0.9	0.990	0.810
1.0	1.00	1.000

Problem 8.26

8.26 The record-read head for a computer disk-drive memory storage system rides above the spinning disk on a very thin film of air (the film thickness is $0.25 \mu \mathrm{~m}$). The head location is 25 mm from the disk centerline; the disk spins at 8500 rpm . The recordread head is 5 mm square. For standard air in the gap between the head and disk, determine (a) the Reynolds number of the flow, (b) the viscous shear stress, and (c) the power required to overcome viscous shear.

Given: Computer disk drive
Find: Flow Reynolds number; Shear stress; Power required

Solution:

For a distance R from the center of a disk spinning at speed ω

$$
\mathrm{V}=\mathrm{R} \cdot \omega \quad \mathrm{~V}=25 \cdot \mathrm{~mm} \times \frac{1 \cdot \mathrm{~m}}{1000 \cdot \mathrm{~mm}} \times 8500 \cdot \mathrm{rpm} \times \frac{2 \cdot \pi \cdot \mathrm{rad}}{\mathrm{rev}} \times \frac{1 \cdot \mathrm{~min}}{60 \cdot \mathrm{~s}} \quad \mathrm{~V}=22.3 \cdot \frac{\mathrm{~m}}{\mathrm{~s}}
$$

The gap Reynolds number is $\mathrm{Re}=\frac{\rho \cdot \mathrm{V} \cdot \mathrm{a}}{\mu}=\frac{\mathrm{V} \cdot \mathrm{a}}{\nu} \quad \nu=1.45 \times 10^{-5} \cdot \frac{\mathrm{~m}^{2}}{\mathrm{~s}} \quad$ from Table A. 10 at $15^{\circ} \mathrm{C}$

$$
\mathrm{Re}=22.3 \cdot \frac{\mathrm{~m}}{\mathrm{~s}} \times 0.25 \times 10^{-6} \cdot \mathrm{~m} \times \frac{\mathrm{s}}{1.45 \times 10^{-5} \cdot \mathrm{~m}^{2}} \quad \operatorname{Re}=0.384
$$

The flow is definitely laminar
The shear stress is then $\quad \tau=\mu \cdot \frac{\mathrm{du}}{\mathrm{dy}}=\mu \cdot \frac{\mathrm{V}}{\mathrm{a}} \quad \mu=1.79 \times 10^{-5} \cdot \frac{\mathrm{~N} \cdot \mathrm{~s}}{\mathrm{~m}^{2}} \quad$ from Table A. 10 at $15^{\circ} \mathrm{C}$

$$
\tau=1.79 \times 10^{-5} \cdot \frac{\mathrm{~N} \cdot \mathrm{~s}}{\mathrm{~m}^{2}} \times 22.3 \cdot \frac{\mathrm{~m}}{\mathrm{~s}} \times \frac{1}{0.25 \times 10^{-6} \cdot \mathrm{~m}} \quad \tau=1.60 \cdot \mathrm{kPa}
$$

The power required is $\quad \mathrm{P}=\mathrm{T} \cdot \omega \quad$ where torque T is given by $\quad \mathrm{T}=\tau \cdot \mathrm{A} \cdot \mathrm{R} \quad$ with $\quad \mathrm{A}=(5 \cdot \mathrm{~mm})^{2} \quad \mathrm{~A}=2.5 \times 10^{-5} \mathrm{~m}^{2}$
$\mathrm{P}=\tau \cdot \mathrm{A} \cdot \mathrm{R} \cdot \omega \quad \mathrm{P}=1600 \cdot \frac{\mathrm{~N}}{\mathrm{~m}^{2}} \times 2.5 \times 10^{-5} \cdot \mathrm{~m}^{2} \times 25 \cdot \mathrm{~mm} \times \frac{1 \cdot \mathrm{~m}}{1000 \cdot \mathrm{~mm}} \times 8500 \cdot \mathrm{rpm} \times \frac{2 \cdot \pi \cdot \mathrm{rad}}{\mathrm{rev}} \times \frac{1 \cdot \mathrm{~min}}{60 \cdot \mathrm{~s}} \quad \mathrm{P}=0.890 \mathrm{~W}$

Given: Steady, incompressible, full developed laminar How down an incline (of ante θ).
tebocty profile (Example efroblem sip) is

$$
u=\frac{p g \sin \theta}{\mu^{2}}\left(h_{y}-\left.y^{2}\right|_{2}\right)
$$

Find: Kinematic viscosity 7 of liquid for $h=0.8 \mathrm{~mm}$,
Plot: te velouty profile
Solution

$$
u=\frac{f g \sin \theta}{\mu}\left(h_{y}-\left.y^{2}\right|_{2}\right)=\frac{g \sin \theta}{7}\left(h_{y}-y^{2}\left(l_{2}\right)\right.
$$

$\begin{aligned} & u=u_{\max } a t y=h \\ \therefore & u_{\text {max }}=\frac{g \sin \theta}{\nabla}\left(h^{2}-h^{2}\left(l_{2}\right)=\frac{g \sin \theta h^{2}}{27}\right.\end{aligned}$
and.

$$
\begin{aligned}
& \nabla=\frac{9 \sin h^{2}}{2 u_{\text {mat }}}=\frac{\sin 30}{2} \times 9.8 \frac{1}{s^{2}} \times\left(0.8 \times 10^{-3}\right)^{2} \times \frac{5}{151.10^{-3} m} \\
& J=1.00 \times 10^{-4} \mathrm{~m}^{2} \mathrm{ls}_{5} \\
& \text { Prot } \frac{u}{u_{\text {noun }}}=\frac{9 \sin \theta}{8}\left(h y-t^{2} l_{2}\right) \times \frac{27}{\operatorname{sing}^{2}}=2 \frac{y}{h}-\left(\frac{y}{h}\right)^{2}
\end{aligned}
$$

Given: Fully developed, lamias flow of an neonpressible ligjed down an inclined surface. The thickness, h, of the liquid layer is constant
Find: cal the velocity profile by use of a suitably chosen differential control volume. (b) volume flow rate, a/w
Solution: Flow is fully developed, so $u=u(y)$ and $u=r(y)$.
Expand r in a Taylor Series abbot the.
 center of the differential cl

$$
\begin{aligned}
& r_{t}=r+\frac{d r}{d y} \frac{d y}{2} \\
& r_{b}=r+\frac{d y}{d y}\left(-\frac{d y}{2}\right)
\end{aligned}
$$

The boundary condition on the velocity proffer are
@ $y=0, k=0$ (noslip).
e $y=h, \frac{d u}{d y}=0$ (no shearstres).
Apply the a component of the momentum equation to the
differential CD shown

(e) fury y flow
(3) no duration of pressure in the x direction of york
then

$$
\begin{aligned}
& F_{s_{1}+}+F_{\text {dx }}=0=\left(r+\frac{d r}{d y} \frac{d y}{z}\right) d x d z-\left(r-\frac{d r}{d y} \frac{d y}{z}\right) d x d z+p g \sin \theta d x d y d z \\
& \frac{d r}{d y}=-p g \sin \theta
\end{aligned}
$$

Integrating,
But $r=0 \otimes y=h, \quad \therefore c_{1}=p g \sin \theta h$, and

$$
\frac{d \mu}{d y}=\frac{p g \sin \theta}{\mu}(h \cdot y)
$$

Integrating again,

$$
u=\frac{f g \sin \theta}{\mu}\left(h_{y}-y^{2}\right)+c_{2}
$$

At $y=0, u=0$, so $c_{2}=0$ and france

$$
\begin{align*}
& u=\frac{f g \sin \theta}{\mu}\left(h_{y}-\frac{y^{2}}{2}\right) \\
& Q \left\lvert\, w=\int_{0}^{h} u d y=\frac{f g \sin \theta}{\mu} \int_{0}^{h}\left(h y-\frac{e^{2}}{2}\right) d y=\frac{p g \sin \theta}{\mu}\left[\frac{h^{2}}{2}-\frac{y^{3}}{6}\right]_{0}^{h} u\right. \\
& Q l_{w}=p g \sin \theta h^{3} / 3 \mu \tag{n}
\end{align*}
$$

8.29 The velocity distribution for flow of a thin viscous film down an inclined plane surface was developed in Example 5.9. Consider a film 7 mm thick, of liquid with $\mathrm{SG}=1.2$ and dynamic viscosity of $1.60 \mathrm{~N} \cdot \mathrm{~s} / \mathrm{m}^{2}$. Derive an expression for the shear stress distribution within the film. Calculate the maximum shear stress within the film and indicate its direction. Evaluate the volume flow rate in the film, in $\mathrm{mm}^{3} / \mathrm{s}$ per millimeter of surface width. Calculate the film Reynolds number based on average velocity.

Given: Velocity distribution on incline
Find: Expression for shear stress; Maximum shear; volume flow rate/mm width; Reynolds number

Solution:

From Example 5.9

$$
\begin{aligned}
& u(y)=\frac{\rho \cdot g \cdot \sin (\theta)}{\mu} \cdot\left(h \cdot y-\frac{y^{2}}{2}\right) \\
& \tau=\mu \cdot \frac{d u}{d y}=\rho \cdot g \cdot \sin (\theta) \cdot(h-y)
\end{aligned}
$$

For the shear stress
τ is a maximum at $\mathrm{y}=0$

$$
\begin{aligned}
& \tau_{\max }=\rho \cdot \mathrm{g} \cdot \sin (\theta) \cdot \mathrm{h}=\mathrm{SG} \cdot \rho_{\mathrm{H} 2 \mathrm{O}} \cdot \mathrm{~g} \cdot \sin (\theta) \cdot \mathrm{h} \\
& \tau_{\max }=1.2 \times 1000 \frac{\mathrm{~kg}}{\mathrm{~m}^{3}} \times 9.81 \cdot \frac{\mathrm{~m}}{\mathrm{~s}^{2}} \times \sin (15 \cdot \mathrm{deg}) \times 0.007 \cdot \mathrm{~m} \times \frac{\mathrm{N} \cdot \mathrm{~s}^{2}}{\mathrm{~kg} \cdot \mathrm{~m}} \quad \tau_{\max }=21.3 \mathrm{~Pa}
\end{aligned}
$$

This stress is in the x direction on the wall
The flow rate is

The gap Reynolds number is $\quad \operatorname{Re}=\frac{\rho \cdot \mathrm{V} \cdot \mathrm{h}}{\mu}$

$$
\mathrm{Re}=1.2 \times 1000 \frac{\mathrm{~kg}}{\mathrm{~m}^{3}} \times 31 \cdot \frac{\mathrm{~mm}}{\mathrm{~s}} \times 7 \cdot \mathrm{~mm} \times \frac{\mathrm{m}^{2}}{1.60 \cdot \mathrm{~N} \cdot \mathrm{~s}} \times\left(\frac{1 \cdot \mathrm{~m}}{1000 \cdot \mathrm{~mm}}\right)^{2} \quad \mathrm{Re}=0.163
$$

The flow is definitely laminar

Problem 8.30

8.30 Two immiscible fluids of equal density are flowing down a surface inclined at a 30° angle. The two fluid layers are of equal thickness $h=2.5 \mathrm{~mm}$; the kinematic viscosity of the upper fluid is twice that of the lower fluid, which is $v_{\text {lower }}=2 \times 10^{-4} \mathrm{~m}^{2} / \mathrm{s}$. Find the velocity at the interface and the velocity at the free surface. Plot the velocity distribution.

Given: Data on flow of liquids down an incline
Find: Velocity at interface; velocity at free surface; plot

Solution:

Given data $\quad \mathrm{h}=2.5 \cdot \mathrm{~mm} \quad \theta=30 \cdot \mathrm{deg} \quad \nu_{1}=2 \times 10^{-4} \cdot \frac{\mathrm{~m}^{2}}{\mathrm{~s}} \quad \nu_{2}=2 \cdot \nu_{1}$
(The lower fluid is designated fluid 1, the upper fluid 2)
From Example 5.9 (or Exanple 8.3 with g replaced with $g \sin \theta$), a free body analysis leads to (for either fluid)

$$
\frac{\mathrm{d}^{2}}{\mathrm{dy}^{2}} \mathrm{u}=-\frac{\rho \cdot g \cdot \sin (\theta)}{\mu}
$$

Applying this to fluid 1 (lower fluid) and fluid 2 (upper fluid), integrating twice yields

$$
u_{1}=-\frac{\rho \cdot g \cdot \sin (\theta)}{2 \cdot \mu_{1}} \cdot y^{2}+c_{1} \cdot y+c_{2} \quad \quad u_{2}=-\frac{\rho \cdot g \cdot \sin (\theta)}{2 \cdot \mu_{2}} \cdot y^{2}+c_{3} \cdot y+c_{4}
$$

We need four BCs. Two are obvious

$$
\begin{array}{ll}
\mathrm{y}=0 & \mathrm{u}_{1}=0 \\
\mathrm{y}=\mathrm{h} & \mathrm{u}_{1}=\mathrm{u}_{2}
\end{array}
$$

The third BC comes from the fact that there is no shear stress at the free surface

$$
\begin{equation*}
y=2 \cdot h \quad \quad \mu_{2} \cdot \frac{\mathrm{du}_{2}}{d y}=0 \tag{3}
\end{equation*}
$$

The fourth BC comes from the fact that the stress at the interface generated by each fluid is the same

$$
\begin{equation*}
\mathrm{y}=\mathrm{h} \quad \mu_{1} \cdot \frac{\mathrm{du}_{1}}{\mathrm{dy}}=\mu_{2} \cdot \frac{\mathrm{du}_{2}}{\mathrm{dy}} \tag{4}
\end{equation*}
$$

Using these four BCs $\quad \mathrm{c}_{2}=0$

$$
\begin{aligned}
& -\frac{\rho \cdot g \cdot \sin (\theta)}{2 \cdot \mu_{1}} \cdot h^{2}+c_{1} \cdot h+c_{2}=-\frac{\rho \cdot g \cdot \sin (\theta)}{2 \cdot \mu_{2}} \cdot h^{2}+c_{3} \cdot h+c_{4} \\
& -\rho \cdot g \cdot \sin (\theta) \cdot 2 \cdot h+\mu_{2} \cdot c_{3}=0 \\
& -\rho \cdot g \cdot \sin (\theta) \cdot h+\mu_{1} \cdot c_{1}=-\rho \cdot g \cdot \sin (\theta) \cdot h+\mu_{2} \cdot c_{3}
\end{aligned}
$$

Hence, after some algebra

$$
\mathrm{c}_{1}=\frac{2 \cdot \rho \cdot \mathrm{~g} \cdot \sin (\theta) \cdot \mathrm{h}}{\mu_{1}} \quad \mathrm{c}_{2}=0
$$

$$
\mathrm{c}_{3}=\frac{2 \cdot \rho \cdot \mathrm{~g} \cdot \sin (\theta) \cdot \mathrm{h}}{\mu_{2}}
$$

$$
c_{4}=3 \cdot \rho \cdot g \cdot \sin (\theta) \cdot h^{2} \cdot \frac{\left(\mu_{2}-\mu_{1}\right)}{2 \cdot \mu_{1} \cdot \mu_{2}}
$$

The velocity distributions are then

$$
\mathrm{u}_{1}=\frac{\rho \cdot \mathrm{g} \cdot \sin (\theta)}{2 \cdot \mu_{1}} \cdot\left(4 \cdot \mathrm{y} \cdot \mathrm{~h}-\mathrm{y}^{2}\right)
$$

$$
\mathrm{u}_{2}=\frac{\rho \cdot \mathrm{g} \cdot \sin (\theta)}{2 \cdot \mu_{2}} \cdot\left[3 \cdot \mathrm{~h}^{2} \cdot \frac{\left(\mu_{2}-\mu_{1}\right)}{\mu_{1}}+4 \cdot \mathrm{y} \cdot \mathrm{~h}-\mathrm{y}^{2}\right]
$$

Rewriting in terms of v_{1} and v_{2} (ρ is constant and equal for both fluids)

$$
\mathrm{u}_{1}=\frac{\mathrm{g} \cdot \sin (\theta)}{2 \cdot v_{1}} \cdot\left(4 \cdot \mathrm{y} \cdot \mathrm{~h}-\mathrm{y}^{2}\right)
$$

$$
\mathrm{u}_{2}=\frac{\mathrm{g} \cdot \sin (\theta)}{2 \cdot v_{2}} \cdot\left[3 \cdot \mathrm{~h}^{2} \cdot \frac{\left(v_{2}-v_{1}\right)}{v_{1}}+4 \cdot \mathrm{y} \cdot \mathrm{~h}-\mathrm{y}^{2}\right]
$$

(Note that these result in the same expression if $v_{1}=v_{2}$, i.e., if we have one fluid)

Evaluating either velocity at $y=h$, gives the velocity at the interface

$$
\mathrm{u}_{\text {interface }}=\frac{3 \cdot \mathrm{~g} \cdot \mathrm{~h}^{2} \cdot \sin (\theta)}{2 \cdot v_{1}} \quad \mathrm{u}_{\text {interface }}=0.23 \frac{\mathrm{~m}}{\mathrm{~s}}
$$

Evaluating u_{2} at $y=2 h$ gives the velocity at the free surface

$$
\mathrm{u}_{\text {freesurface }}=\mathrm{g} \cdot \mathrm{~h}^{2} \cdot \sin (\theta) \cdot \frac{\left(3 \cdot v_{2}+v_{1}\right)}{2 \cdot v_{1} \cdot v_{2}} \quad \mathrm{u}_{\text {freesurface }}=0.268 \frac{\mathrm{~m}}{\mathrm{~s}}
$$

The velocity distributions are plotted in the associated Excel workbook
8.30 Two immiscible fluids of equal density are flowing down a surface inclined at a 30° angle. The two fluid layers are of equal thickness $h=2.5 \mathrm{~mm}$; the kinematic viscosity of the upper fluid is twice that of the lower fluid, which is $v_{\text {lower }}=2 \times 10^{-4} \mathrm{~m}^{2} / \mathrm{s}$.
Find the velocity at the interface and the velocity at the free surface. Plot the velocity distribution.

Given: Data on flow of liquids down an incline
Find: Velocity at interface; velocity at free surface; plot

Solution:

$$
\begin{array}{rlrl}
h & = & 2.5 & \mathrm{~mm} \\
\theta & =30 & \mathrm{deg} \\
v_{1} & =2.00 \mathrm{E}-04 \mathrm{~m}^{2} / \mathrm{s} \\
v_{2} & =4.00 \mathrm{E}-04 \mathrm{~m}^{2} / \mathrm{s}
\end{array}
$$

$$
u_{1}=\frac{g \cdot \sin (\theta)}{2 \cdot \nu_{1}} \cdot\left(4 \cdot \mathrm{y} \cdot \mathrm{~h}-\mathrm{y}^{2}\right) \quad \mathrm{u}_{2}=\frac{\mathrm{g} \cdot \sin (\theta)}{2 \cdot \nu_{2}} \cdot\left[3 \cdot \mathrm{~h}^{2} \cdot \frac{\left(\nu_{2}-\nu_{1}\right)}{\nu_{1}}+4 \cdot \mathrm{y} \cdot \mathrm{~h}-\mathrm{y}^{2}\right]
$$

$y(\mathrm{~mm})$	$u_{1}(\mathrm{~m} / \mathrm{s})$	$u_{2}(\mathrm{~m} / \mathrm{s})$
0.000	0.000	
0.250	0.0299	
0.500	0.0582	
0.750	0.0851	
1.000	0.110	
1.250	0.134	
1.500	0.156	
1.750	0.177	
2.000	0.196	
2.250	0.214	
2.500	0.230	0.230
2.750		0.237
3.000		0.244
3.250		0.249
3.500		0.254
3.750		0.259
4.000		0.262
4.250		0.265
4.500		0.267
4.750		0.268
5.000		0.268

Problem 8.31

8.31 Consider fully developed flow between parallel plates with the upper plate moving at $U=5 \mathrm{ft} / \mathrm{s}$; the spacing between the plates is $a=0.1 \mathrm{in}$. Determine the flow rate per unit depth for the case of zero pressure gradient. If the fluid is air, evaluate the shear stress on the lower plate and plot the shear stress distribution across the channel for the zero pressure gradient case. Will the flow rate increase or decrease if the pressure gradient is adverse? Determine the pressure gradient that will give zero shear stress at $y=0.25 a$. Plot the shear stress distribution across the channel for the latter case.

Given: Flow between parallel plates
Find: \quad Shear stress on lower plate; Plot shear stress; Flow rate for pressure gradient; Pressure gradient for zero shear; Plot

Solution:

From Section 8-2 $\quad u(y)=\frac{U \cdot y}{a}+\frac{a^{2}}{2 \cdot \mu} \cdot \frac{d p}{d x} \cdot\left[\left(\frac{y}{a}\right)^{2}-\frac{y}{a}\right]$
For $\mathrm{dp} / \mathrm{dx}=0$

$$
\mathrm{u}=\mathrm{U} \cdot \frac{\mathrm{y}}{\mathrm{a}} \quad \frac{\mathrm{Q}}{\mathrm{l}}=\int_{0}^{\mathrm{a}} \mathrm{u}(\mathrm{y}) \mathrm{dy}=\mathrm{w} \cdot \int_{0}^{\mathrm{a}} \mathrm{U} \cdot \frac{\mathrm{y}}{\mathrm{a}} \mathrm{dy}=\frac{\mathrm{U} \cdot \mathrm{a}}{2}
$$

$$
\mathrm{Q}=\frac{1}{2} \times 5 \cdot \frac{\mathrm{ft}}{\mathrm{~s}} \times \frac{0.1}{12} \cdot \mathrm{ft}
$$

$\mathrm{Q}=0.0208 \frac{\frac{\mathrm{ft}^{3}}{\mathrm{~s}}}{\mathrm{ft}}$

For the shear stress

$$
\tau=\mu \cdot \frac{\mathrm{du}}{\mathrm{dy}}=\frac{\mu \cdot \mathrm{U}}{\mathrm{a}} \quad \text { when } \mathrm{dp} / \mathrm{dx}=0 \quad \mu=3.79 \times 10^{-7} \cdot \frac{\mathrm{lbf} \cdot \mathrm{~s}}{\mathrm{ft}^{2}}
$$

(Table A.9)
The shear stress is constant - no need to plot!

$$
\tau=3.79 \times 10^{-7} \cdot \frac{\mathrm{lbf} \cdot \mathrm{~s}}{\mathrm{ft}^{2}} \times 5 \cdot \frac{\mathrm{ft}}{\mathrm{~s}} \times \frac{12}{0.1 \cdot \mathrm{ft}} \times\left(\frac{1 \cdot \mathrm{ft}}{12 \cdot \mathrm{in}}\right)^{2} \quad \tau=1.58 \times 10^{-6} \mathrm{psi}
$$

Q will decrease if $\mathrm{dp} / \mathrm{dx}>0$; it will increase if $\mathrm{dp} / \mathrm{dx}<0$.
For non- zero $\mathrm{dp} / \mathrm{dx}: \quad \quad \tau=\mu \cdot \frac{d u}{d y}=\frac{\mu \cdot U}{a}+\mathrm{a} \cdot \frac{\mathrm{dp}}{\mathrm{dx}} \cdot\left(\frac{\mathrm{y}}{\mathrm{a}}-\frac{1}{2}\right)$
At $y=0.25 a$, we get

$$
\tau(\mathrm{y}=0.25 \cdot \mathrm{a})=\mu \cdot \frac{\mathrm{U}}{\mathrm{a}}+\mathrm{a} \cdot \frac{\mathrm{dp}}{\mathrm{dx}} \cdot\left(\frac{1}{4}-\frac{1}{2}\right)=\mu \cdot \frac{\mathrm{U}}{\mathrm{a}}-\frac{\mathrm{a}}{4} \cdot \frac{\mathrm{dp}}{\mathrm{dx}}
$$

Hence this stress is zero when $\frac{\mathrm{dp}}{\mathrm{dx}}=\frac{4 \cdot \mu \cdot \mathrm{U}}{\mathrm{a}^{2}}=4 \times 3.79 \times 10^{-7} \cdot \frac{\mathrm{lbf} \cdot \mathrm{s}}{\mathrm{ft}^{2}} \times 5 \cdot \frac{\mathrm{ft}}{\mathrm{s}} \times\left(\frac{12}{0.1 \cdot \mathrm{ft}}\right)^{2}=0.109 \cdot \frac{\frac{\mathrm{lbf}}{\mathrm{ft}^{2}}}{\mathrm{ft}}=7.58 \times 10^{-4} \frac{\mathrm{psi}}{\mathrm{ft}}$

Problem 8.32

8.32 Water at $15^{\circ} \mathrm{C}$ flows between parallel plates with gap width $b=2.5 \mathrm{~mm}$. The upper plate moves with speed $U=0.25 \mathrm{~m} / \mathrm{s}$ in the positive x direction. The pressure gradient is $\partial p / \partial x=$ $-175 \mathrm{~Pa} / \mathrm{m}$. Locate the point of maximum velocity and determine its magnitude (let $y=0$ at the bottom plate). Determine the volume of flow that passes a given cross-section $(x=$ constant $)$ in 10
s. Plot the velocity and shear stress distributions.

Given: Flow between parallel plates
Find: Location and magnitude of maximum velocity; Volume flow in 10 s ; Plot velocity and shear stress

Solution:

From Section 8-2

$$
\mathrm{u}(\mathrm{y})=\frac{\mathrm{U} \cdot \mathrm{y}}{\mathrm{~b}}+\frac{\mathrm{b}^{2}}{2 \cdot \mu} \cdot \frac{\mathrm{dp}}{\mathrm{dx}} \cdot\left[\left(\frac{\mathrm{y}}{\mathrm{~b}}\right)^{2}-\frac{\mathrm{y}}{\mathrm{~b}}\right]
$$

For $u_{\text {max }}$ set $d u / d x=0 \quad \frac{d u}{d y}=0=\frac{U}{b}+\frac{b^{2}}{2 \cdot \mu} \cdot \frac{d p}{d x} \cdot\left(\frac{2 \cdot y}{b^{2}}-\frac{1}{a}\right)=\frac{U}{b}+\frac{1}{2 \cdot \mu} \cdot \frac{d p}{d x} \cdot(2 \cdot y-b)$
$\begin{array}{lll}\text { Hence } u=u_{\text {max }} \quad \text { at } & y=\frac{b}{2}-\frac{\mu \cdot U}{d \cdot \frac{d p}{d x}} & \text { From Table A.8 at } 15^{\circ} \mathrm{C}\end{array} \quad \mu=1.14 \times 10^{-3} \cdot \frac{\mathrm{~N} \cdot \mathrm{~s}}{\mathrm{~m}^{2}}$

Hence
$u_{\max }=\frac{\mathrm{U} \cdot \mathrm{y}}{\mathrm{b}}+\frac{\mathrm{b}^{2}}{2 \cdot \mu} \cdot \frac{\mathrm{dp}}{\mathrm{dx}} \cdot\left[\left(\frac{\mathrm{y}}{\mathrm{b}}\right)^{2}-\frac{\mathrm{y}}{\mathrm{b}}\right] \quad$ with $\mathrm{y}=1.90 \mathrm{~mm}$
$\mathrm{u}_{\max }=0.25 \cdot \frac{\mathrm{~m}}{\mathrm{~s}} \times\left(\frac{1.90}{2.5}\right)+\frac{1}{2} \times(0.0025 \cdot \mathrm{~m})^{2} \times \frac{\mathrm{m}^{2}}{1.14 \times 10^{-3} \cdot \mathrm{~N} \cdot \mathrm{~s}} \times\left(-\frac{175 \cdot \mathrm{~N}}{\mathrm{~m}^{3}}\right) \times\left[\left(\frac{1.90}{2.5}\right)^{2}-\left(\frac{1.90}{2.5}\right)\right] \quad \mathrm{u}_{\max }=0.278 \frac{\mathrm{~m}}{\mathrm{~s}}$
$\frac{\mathrm{Q}}{\mathrm{w}}=\int_{0}^{\mathrm{b}} u(y) d y=w \cdot \int_{0}^{\mathrm{b}}\left[\frac{\mathrm{U} \cdot \mathrm{y}}{\mathrm{b}}+\frac{\mathrm{b}^{2}}{2 \cdot \mu} \cdot \frac{d p}{d x} \cdot\left[\left(\frac{y}{b}\right)^{2}-\frac{y}{b}\right]\right] d y=\frac{\mathrm{U} \cdot \mathrm{b}}{2}-\frac{\mathrm{b}^{3}}{12 \cdot \mu} \cdot \frac{d p}{d x}$
$\frac{\mathrm{Q}}{\mathrm{w}}=\frac{1}{2} \times 0.25 \cdot \frac{\mathrm{~m}}{\mathrm{~s}} \times 0.0025 \cdot \mathrm{~m}-\frac{1}{12} \times(0.0025 \cdot \mathrm{~m})^{3} \times \frac{\mathrm{m}^{2}}{1.14 \times 10^{-3} \cdot \mathrm{~N} \cdot \mathrm{~s}} \times\left(-\frac{175 \cdot \mathrm{~N}}{\mathrm{~m}^{3}}\right) \quad \frac{\mathrm{Q}}{\mathrm{w}}=5.12 \times 10^{-4} \frac{\mathrm{~m}^{2}}{\mathrm{~s}}$
Flow $=\frac{Q}{w} \cdot \Delta t=5.12 \times 10^{-4} \frac{\mathrm{~m}^{2}}{\mathrm{~s}} \times 10 \cdot \mathrm{~s}$
Flow $=5.12 \times 10^{-3} \mathrm{~m}^{2}=5.12 \times 10^{-3} \frac{\mathrm{~m}^{3}}{\mathrm{~m}}$
The velocity profile is $\quad \frac{u}{U}=\frac{y}{b}+\frac{b^{2}}{2 \cdot \mu \cdot U} \cdot \frac{d p}{d x} \cdot\left[\left(\frac{y}{b}\right)^{2}-\frac{y}{b}\right] \quad$ For the shear stress $\quad \tau=\mu \cdot \frac{d u}{d y}=\mu \cdot \frac{U}{b}+\frac{b}{2} \cdot \frac{d p}{d x} \cdot\left[2 \cdot\left(\frac{y}{b}\right)-1\right]$

The graphs on the next page can be plotted in Excel

Gwen: Vebocty profile for fully developed laminar flow of ar between parallel plates

$$
\begin{aligned}
& u=\frac{u y}{a}+\frac{a^{2}}{2 \mu}\left(\frac{\partial p}{\partial x}\right)\left[\left(\frac{y}{a}\right)^{2}-\left(\frac{y}{a}\right)\right] \\
& u=2 m l s \quad a=2.5 \mathrm{~mm}
\end{aligned}
$$

Find: (a) pressure gradient for which net flow is zero; pot expected $u(y)$ and $Y y(y)$
(b) expected $u(y)$ and $\mathcal{F}_{y} y(y)$ for case where $u=2 \pi$ ot $y f a=0.5$
Solution:
Computing equations: \quad all $=\frac{5 a}{2}-\frac{a^{3}}{12 \mu}\left(\frac{\partial p}{2 n}\right)$
(8 .ab)

$$
\begin{equation*}
\tau_{y x}=\mu \frac{U}{a}+a\left(\frac{\partial P}{\partial x}\right)\left[\frac{y}{a}-\frac{1}{2}\right] \tag{8,9a}
\end{equation*}
$$

For $Q=0$, from $E q 8, a b$ (assuming $T=15^{\circ} \mathrm{C}$)

$$
\frac{\partial P}{\partial L}=\frac{6 \mu U}{a^{2}}=6 \times 179 \times 10^{-5} \frac{N .5}{n^{2}} \times 2 \frac{4}{5} \times\left(2.5 \times 10^{-3 m}\right)^{2}=34.4 N\left(m^{2}\right\}_{m}\left(\frac{\partial v}{\partial x}\right)
$$

For this adverse pressure gradient
3 front flow

(b) For $u=20$ at y la $=0.5$

$$
\begin{aligned}
& 20=0.50+\frac{a^{2}}{2 \mu}\left(\frac{\partial P}{2 t}\right)\left[\frac{1}{4}-\frac{1}{2}\right] \text { and } \frac{3}{2} v=-\frac{a^{2}}{8 \mu}\left(\frac{\partial p}{2 x}\right) \\
& \frac{\partial P}{\partial \alpha}=-\frac{12 J \mu}{a^{2}}=-12 \times \frac{2 m}{6} \times 179 \times 10^{-5}+\frac{5}{m^{2}} \times\left(2.5 \times 10^{-3} m\right)^{2}=-\left.\left.68.7 N\right|_{m} ^{2}\right|_{m} \\
& r=\mu \frac{\bar{u}}{a}+a\left(\frac{\partial P}{2 x}\right)\left[\frac{y}{a}-\frac{1}{2}\right] \quad \text { \{shear stress is linear\} ~ } \\
& y=0 \quad r=\mu \frac{3}{a}-\frac{a}{2}\left(\frac{2 p}{2}\right)=1.79 \times 10^{-5} \frac{1.6}{n^{2}} \times \frac{2 m}{s} \times \frac{1}{2.5 \times 10^{-3} m}-\frac{2.5 \times 10^{-3}}{2} m\left(-66.7 \frac{1}{n^{3}}\right)=0.10^{\frac{1}{2}}{ }^{2} \\
& y=a \quad r=\mu \frac{U}{a}+\frac{a}{2}\left(\frac{\partial p}{2 x}\right)=-0.07 b \mathrm{~N} \ln ^{2}
\end{aligned}
$$

Note that the port of zero shear thess is not at $y l_{a}=0.5$ and hence $y^{\prime} l_{a}=0.5$ is not te location of Maximum velocity. Maximum velocity occurs ot yla>0.5.

To find the location of zero shear set $T_{y}=0$. Then

$$
\begin{aligned}
& 0=\frac{\mu \pi}{a}+a\left(\frac{2 p}{2 x}\right)\left(\frac{y}{a}-\frac{5}{2}\right) \quad \text { and } \quad \frac{y}{a}=\frac{1}{2}-\frac{\mu 0}{a^{2}\left(\frac{20}{3 x}\right)} \text {. } \\
& \frac{y}{a}=0.5-i .7 a \times 10^{-5} \frac{1.5}{n^{2}} \times 2 \frac{2}{5} \times\left(2.5 \times 10^{-3} n\right)^{2} \times \frac{1}{(-681)} \frac{m^{3}}{n}=0.583 .
\end{aligned}
$$

 sear stress destributurs urus be as four.

The shear stress is positive (duldy 0) below $y l_{a}=0.583$; positive stress acts in positive x direction on a positive y surface.
The shear stress is negative (duldy to) above. $y_{a}=0.583$; negative stress acts in the negative x direction on a positive y surface.
From Excel, the plots are

Velocity Distribution $-u(y / a=0.5)=2 U$

Stress Distribution $-u(y / a=0.5)=2 U$

Gwen: Vebuity profile for fully developed laminar How of water tutween parallel plates

$$
\begin{aligned}
& u=\frac{\bar{y}}{a}+\frac{a^{2}}{2 \mu}\left(\frac{\partial p}{\partial x}\right)\left[\left(\frac{y}{a}\right)^{2}-\frac{y}{a}\right]^{2} \\
& u=2 m l_{s} \quad a=2.5 \mathrm{~mm}
\end{aligned}
$$

Find: (a) Volum flow rate for zero pressure gradient.
(b) shear stress on lower plate; sketch Thy)
(c) effect of mild adverse pressure gradient on Q
(d) pressure gradient for zero sher at y la $=0.25$; sketch rif.
Solution:
Computing equations: $T_{y z}=\mu \frac{u}{a}+a\left(\frac{\partial y}{\partial x}\right)\left[\frac{y}{a}-\frac{1}{2}\right]$

$$
\begin{equation*}
\theta l e=\frac{V a}{2}-\frac{1}{12 \mu}\left(\frac{2 p}{2 x}\right) a^{3} \tag{8,9a}
\end{equation*}
$$

$$
\begin{equation*}
\text { For } \operatorname{\partial il} l_{2 x}=0, \quad l_{2}=\frac{0 a}{2}=\frac{1}{2} x^{2} \frac{m}{3} \times 2.5 \times 10^{-3}=2.50 \times 0^{-3} m^{3} / s / m, Q \tag{8,9b}
\end{equation*}
$$

Re Gear stress is $v_{y}=\mu \frac{\mathrm{J}}{a} \quad\left\{\right.$ At $\left.1 S^{\circ} C, \mu=1.4 \times 0^{-3} \mathrm{~N} \cdot \sin ^{2}\right\}$

$$
\begin{equation*}
Y_{y s}=1.14 \times 10^{-3}+\frac{1 .}{m^{2}}+2 \frac{m}{5} \times \frac{1}{2.5 \times 10^{-3} m}=0.912 N \mathrm{~lm}^{2} \tag{yx}
\end{equation*}
$$

The shear stress is constant across the Panel (curve l below)
For ${ }^{\circ f} \mathrm{~b}_{\mathrm{k}}>0$, Eq. 8, ab indicates hat Q will decrease-
For $t=0$ at $y^{l a}=0.25$

$$
\begin{aligned}
& r_{y x}=0=\mu \frac{U}{a}+a\left(\frac{\partial p}{\partial x}\right)\left[\frac{1}{4}-\frac{1}{2}\right]=\mu \frac{U}{a}-\frac{a}{4}\left(\frac{\partial p}{\partial x}\right) \\
& \frac{\partial p}{\partial x}=\frac{4 \mu U}{a^{2}}=4 \times 1.14 \times 10^{-3} \frac{n .5}{n^{2}} \times \frac{2 \mu}{5} \times \frac{1}{\left(2.5 \times 10^{-3} n\right)^{2}}=\left.\left.1.46 \operatorname{kn}\right|_{4 n} ^{2}\right|_{M} \frac{\partial p}{\partial x}
\end{aligned}
$$

For this pressure gradient

$$
\begin{aligned}
& v_{y}=1.14 \times 10^{-3} \frac{2.5}{m^{2}} \times 2 \frac{m}{5} \times \frac{1}{2.5 \times 10^{-3} m}+2.5 \times 40^{-3} \times 1.46 \times \frac{0^{3} N}{m^{3}}\left[\frac{y}{a}-0.5\right] \\
& v_{y}=0.912 N T_{m^{2}}+3.65 \frac{N}{m^{2}}\left(\frac{y}{a}-0.5\right) \\
& \left.\begin{array}{l}
r_{y+\rangle_{y=0}}=-0.913 N T_{M^{2}} \\
r_{y-l_{y=0}}=2.14 N t_{H^{2}}
\end{array}\right\} \text { curves }
\end{aligned}
$$

Given: Belt moving steadily through bath as shown.

Assume zero shear at impair surface, and no pressure forces.

Find: (a) Boundary conditions for velocity at $y=0, y=h$.
(b) Velocity profile.

Solution: Choose $C V$ dxdydz as shown.

Bath: feu

Apply x component of momentum equation.
Basic equations:

Assumptions: (a) Ex due to shear forces on /y
(2) Steady frow
(3) Fully-developed flow

Then

$$
\left.F_{s x}+F_{B_{x}}=F_{0}-F_{z}^{(z)}+F_{B_{x}}=\left(\tau+\frac{d \tau}{d y} \frac{d y}{e}\right) d x d z-G-\frac{d \tau}{d y} \frac{d y}{2}\right) d x d z-\rho g d x d y d z=0
$$

) or

$$
\begin{aligned}
& \frac{d \tau}{d y}=\rho g \cdot \text { Integrating } \\
& \tau=\rho g y+c_{1}=\mu \frac{d u}{d y} \quad \text { or } \frac{d u}{d y}=\frac{\rho g y}{\mu}+\frac{c_{1}}{u} \cdot \text { Integrating again, } \\
& u=\frac{\rho g y^{2}}{z^{u}}+\frac{c_{1}}{\mu} y+c_{z}
\end{aligned}
$$

To evaluate the constants c_{1} and c_{2}, apply the boundary conditions:

$$
\text { At } y=0, u=U_{0} \text {, so } c_{2}=U_{0}
$$

At $y=h, z=0$, so $\frac{d u}{d y}=0$, and $c_{1}=-f g h$ substituting,

$$
u=\frac{f g y^{2}}{2 \mu}-\frac{f g h y}{\mu}+U_{0}=\frac{f g}{\mu}\left(\frac{y^{2}}{2}-h y\right)+v_{0}
$$

$\{$ Note that at $y=h$,

$$
u=\frac{\rho g}{\mu}\left(-\frac{h^{2}}{2}\right)+v_{0} \neq 0
$$

)
(Thus the solution is determined only when V_{0} and h are known.)
8.36 In Example 8.3 we derived the velocity profile for laminar flow on a vertical wall by using a differential control volume. Instead, following the procedure we used in Example 5.9, derive the velocity profile by starting with the Navier-Stokes equations (Eqs. 5.27). Be sure to state all assumptions.

Given:

Navier-Stokes Equations
Find:
Derivation of Eq. 8.5

Solution:

The Navier-Stokes equations are (using the coordinates of Example 8.3, so that x is vertical, y is horizontal)

$$
\begin{equation*}
\frac{\partial u^{4}}{\partial x}+\frac{\partial v}{\partial y}+\frac{\partial w^{3}}{\not \partial z}=0 \tag{5.1c}
\end{equation*}
$$

$$
\begin{align*}
& \rho\left(\frac{\partial y^{\uparrow}}{\partial t}+u \frac{\partial v »^{4}}{\partial x}+v \frac{\partial y^{\wedge}}{\partial y}+w \frac{\partial y^{\wedge}}{\partial z}\right)=\rho g{ }_{y}^{3}-\frac{\partial p}{\partial y}+\mu\left(\frac{\partial^{2} \not{ }^{4}}{\partial x^{2}}+\frac{\partial^{2} y^{4}}{\partial y^{2}}+\frac{\partial^{2} \not{ }^{2}}{\partial \partial z^{2}}\right) \tag{5.27b}
\end{align*}
$$

The following assumptions have been applied:
(1) Steady flow (given).
(2) Incompressible flow; $\rho=$ constant.
(3) No flow or variation of properties in the z direction; $w=0$ and $\partial / \partial z=0$.
(4) Fully developed flow, so no properties except possibly pressure p vary in the x direction; $\partial / \partial x=0$.
(5) See analysis below.
(6) No body force in the y direction; $g_{y}=0$

Assumption (1) eliminates time variations in any fluid property. Assumption (2) eliminates space variations in density. Assumption (3) states that there is no z component of velocity and no property variations in the z direction. All terms in the z component of the Navier-Stokes equation cancel. After assumption (4) is applied, the continuity equation reduces to $\partial v / \partial y=0$. Assumptions (3) and (4) also indicate that $\partial v / \partial z=0$ and $\partial v / \partial x=0$. Therefore v must be constant. Since v is zero at the solid surface, then v must be zero everywhere. The fact that $v=0$ reduces the Navier-Stokes equations further, as indicated by (5). Hence for the y direction

$$
\frac{\partial p}{\partial y}=0
$$

which indicates the pressure is a constant across the layer. However, at the free surface $p=p_{\mathrm{atm}}=$ constant. Hence we conclude that p = constant throughout the fluid, and so

$$
\frac{\partial p}{\partial x}=0
$$

In the x direction, we obtain

$$
\mu \frac{\partial^{2} u}{\partial y^{2}}+\rho g=0
$$

Integrating twice

$$
u=-\frac{1}{2 \mu} \rho g y^{2}+\frac{c_{1}}{\mu} y+c_{2}
$$

To evaluate the constants, c_{1} and c_{2}, we must apply the boundary conditions. At $y=0, u=0$. Consequently, $c_{2}=0$. At $y=a$, $d u / d y=$ 0 (we assume air friction is negligible). Hence

$$
\tau(y=\delta)=\left.\mu \frac{d u}{d y}\right|_{y=\delta}=-\frac{1}{\mu} \rho g \delta+\frac{c_{1}}{\mu}=0
$$

which gives

$$
c_{1}=\rho g \delta
$$

and finally

$$
u=-\frac{1}{2 \mu} \rho g y^{2}+\frac{\rho g}{\mu} y=\frac{\rho g}{\mu} \delta^{2}\left[\left(\frac{y}{\delta}\right)-\frac{1}{2}\left(\frac{y}{\delta}\right)^{2}\right]
$$

Given: Microchip supported on air film, on a horizontal surface. Chips are $L=11.7 \mathrm{~mm}$ long, $w=9.35 \mathrm{~mm}$ wide, and have mass $m=0.325 \mathrm{~g}$, The air film is $h=0.125 \mathrm{~mm}$ thick. The initial spec of the chips is $V_{0}=1.75 \mathrm{~mm} / \mathrm{s}$; they $s l o w$ from viscous shear.

Find: (a) Differential equation for chip motion during deceleration.
(b) Time required for chip to lose 5 percent of Vo.
(c) Plot of chip speed vs, time, with labels and comments.

Solution: Apply Necuton's law of viscosity
Basic equations: $\tau_{y x}=\mu \frac{d u}{d y}$

$$
F_{V}=\tau A \quad \Sigma F=m a_{x}
$$

Assume: (1) Newtonian fluid
(3) Air at STP
(2) Linear velocity protive in narrow gap

Then

$$
\tau_{L x}=\mu \frac{d u}{d y}=\mu \frac{V}{h}: F_{V}=\tau_{A}=\mu \frac{V}{h} \omega L=\mu \frac{\mu V \omega_{L} L}{h}
$$

The free-body diagram for the chip is

$$
\sum F_{x}=-F_{V}=-\frac{\mu V \omega L L}{h}=m \frac{d V}{d t} ; \quad \frac{d V}{V}=-\frac{\mu \omega L L}{m h} d t
$$

Integrating, $\int_{V_{0}}^{V} \frac{d V}{V}=\ln \frac{V}{V_{0}}=-\frac{\mu \omega L}{m h} t$
Thess

$$
\begin{aligned}
& t=-\frac{m h}{\mu \omega L} \ln \frac{V}{V_{0}} \\
& t=-0.3259 \times 0.125 \mathrm{~mm} \times \frac{\mathrm{m.3}}{1.79 \times 10^{-5} \mathrm{~kg}} \times \frac{1}{9.35 \mathrm{~mm}} \times \frac{1}{11.7 \mathrm{~mm}} \times \ln 0.95 \times \frac{\mathrm{kg}}{1000} \times 1000 \mathrm{~mm} \\
& t=1.06 \mathrm{~s}
\end{aligned}
$$

From Excel, the plot of speed vs. time is:
Chip Speed V versus Time t

Given: Free-surface waves begin to form on a laminar liquid film flowing down an inclined surface whenever the Reynolds number, based on mass flow per unit width of film, is larger than about 33 .

Find: Estimate of the maximum thickness of a laminar film of water that remains free from waves while flowing down a vertical surface.

Solution: The mass flow rate is $n=\rho \vec{V} A=\rho \bar{V} \omega \bar{V}, \leq \dot{m} / \omega=\rho \bar{V} \delta$. Thus

$$
R_{e}=\frac{\rho \vec{v} \delta}{\mu}=\frac{\bar{v} \delta}{\nu}=33 \text { (maximin) }
$$

Using the result for average velocity from Example 8.3

$$
\bar{v}=\frac{\rho g \delta^{2}}{3 \mu}
$$

Thus

$$
\frac{\rho \bar{v} \delta}{\mu}=\frac{\rho^{2} g \delta^{3}}{3 \mu^{2}}=33
$$

Solving for δ,

$$
\delta=\left[\frac{99 \mu^{2}}{\rho^{2} g}\right]^{1 / 3}
$$

$A+T=20^{\circ} \mathrm{C}, \mu=1.00 \times 10^{-3} \mathrm{~kg} / \mathrm{ms}$ and $\rho=948 \mathrm{~kg} / \mathrm{m}^{3}$ (Task A.8). Substituting, $\delta=\left[99 \times\left(1.00 \times 10^{-3}\right)^{2} \frac{\mathrm{~kg}^{+}}{\mathrm{m}^{2}+\mathrm{s}^{2}} \times \frac{\mathrm{m}^{6}}{(998)^{2} \mathrm{~kg}^{2}} \times \frac{\mathrm{s}^{2}}{4.81 \mathrm{~m}}\right]^{1 / 3}$ $\delta=2.16 \times 10^{-4} \mathrm{~m}$ or 0.216 mm

Problem 8.39
Given: Viscous-shear pump, as shown.

$$
b=\text { width normal to diagram; } a \ll R
$$

Find: Performance characteristics
(a) Pressure differential
(b) Input power
(c) Efficiency
as functions of volume flow rate.
Solution: Since $a \ll R$, unwrap to form flow between para le I plates. Apply Eqs. 8.9 to fulls developed flow:

Volume flow rate is $\frac{Q}{6}=\frac{V_{a}}{2}-\frac{1}{13}\left(\frac{\partial p}{\partial x}\right) a^{3}$ Substituting $U=$ Kw and $\frac{\partial p}{Z x}=\frac{A_{p}}{2}$, then

$$
\Delta p=\frac{12 \mu L}{a^{3}}\left(\frac{\omega R a}{2}-\frac{Q}{b}\right)=\frac{6 \mu L \pi \omega}{a^{2}}\left(1-\frac{2 Q}{a b R \omega}\right)
$$

Torque is $T=\tau R(b L)=R L b \tau$. Power. is $P=T \omega$. From eq. 8. $9 a$, at $y=a$,

$$
\begin{aligned}
& P=R \angle b \omega\left[\frac{\mu R \omega}{a}+\frac{\Delta p}{L} \frac{a}{2}\right]=R L b \omega\left[\frac{\mu R_{\omega}}{a}+\frac{6 \mu L R_{\omega}}{a^{2}}\left(1-\frac{2 Q}{a b R \omega}\right) \frac{a}{Z^{L}}\right] \\
& P=R L b \omega\left[\frac{\mu R \omega}{a}\left(4-\frac{6 Q}{a b R \omega}\right)\right]=\frac{\mu L b(R \omega)^{2}}{a}\left(4-\frac{6 Q}{a b R \omega}\right)
\end{aligned}
$$

Output power is $Q \Delta p$, so efficiency is

$$
\begin{aligned}
& \eta=\frac{Q \Delta p}{p}=\frac{6 \mu Q L R \omega}{a^{2}}\left(1-\frac{2 Q}{a b R \omega}\right) \frac{a}{\mu L 6(R \omega)}+\frac{1}{\left(4-\frac{6 Q}{a b R \omega}\right)} \\
& \eta=\frac{6 Q}{a b R \omega} \frac{\left(1-\frac{2 Q}{a b R \omega}\right)}{\left(4-\frac{Q Q}{a b R \omega}\right)}
\end{aligned}
$$

Problem 8.40 (In Excel)

8.40 The efficiency of the viscous-shear pump of Fig. P8.39 is given by

$$
\eta=6 q \frac{(1-2 q)}{(4-6 q)}
$$

where $q=Q / a b R \omega$ is a dimensionless flow rate (Q is the flow rate at pressure differential Δp, and b is the depth normal to the diagram). Plot the efficiency versus dimensionless flow rate, and find the flow rate for maximum efficiency. Explain why the efficiency peaks, and why it is zero at certain values of q.

Given: Expression for efficiency

Find: Plot; find flow rate for maximum efficiency; explain curve

Solution:

P8.39, P8.40

q	η
0.00	0.0%
0.05	7.30%
0.10	14.1%
0.15	20.3%
0.20	25.7%
0.25	30.0%
0.30	32.7%
0.35	33.2%
0.40	30.0%
0.45	20.8%
0.50	0.0%

For the maximum efficiency point we can use Solver (or alternatively differentiate)

q	η
0.333	33.3%

The efficiency is zero at zero flow rate because there is no output at all The efficiency is zero at maximum flow rate $\Delta p=0$ so there is no output The efficiency must therefore peak somewhere between these extremes

Given. Annular gap seal as shown.
Power required to pump oil, P.
Power to overcome viscous dissipation, P.
Find: (a) Expressions for P_{p}, P_{v}
(b) Show total power minimize o when a is chosen so that $P_{V}=3 P_{P}$.

The viscous power is the product of visoces torque times ω :

$$
P_{v}=T \omega=\tau(2 \pi R L) R \omega=\mu \frac{V}{a}\left(2 \pi \frac{D}{2} L\right) \frac{D}{2} \omega=\mu \frac{\omega D}{2 a} \pi D L \frac{D}{2} \omega=\frac{\pi \mu \omega^{2} D^{3} L}{4 a}
$$

The pump power is the product of flow rate times Pressure drop.

$$
P_{P}=Q . \Delta p
$$

From Eq. $8.6 \mathrm{c}, Q=\frac{\ell a^{3} \Delta p}{13 \mu L}=\frac{\pi D a^{3} \Delta p}{12 \mu L}$, so $P \cdot \frac{\pi D a^{3} \Delta^{2}}{12 \mu L}$
The total power requireor is $P_{T}=P_{V}+P_{p}=\frac{\pi \mu \omega^{2} D^{3} L}{4 a}+\frac{\pi D Q^{3} \Delta p^{3}}{12 \mu L}$
It may be minimized by setting $\frac{d P_{r}}{d a}=0$. Th as

$$
\begin{equation*}
\frac{d P_{T}}{d a}=-\frac{\pi \mu \omega^{2} D^{3} L}{4 a^{2}}+\frac{\pi D a^{2} \Delta p^{2}}{4 \mu L}=0 \tag{1}
\end{equation*}
$$

This can be written

$$
\frac{d P_{T}}{d a}=-\frac{1}{a} P_{V}+\frac{3}{a} P_{P}=0
$$

which is satisfied when $3 P_{P}-P_{V}=0$ or $P_{V}=3 P_{P}$
Equation' also can be solved for a at optimum conditions:

$$
a^{4}=\frac{\mu^{2} \omega^{2} D^{2} L^{2}}{\Delta p^{2}} \text { or } a^{2}=\frac{\mu \omega D L}{\Delta p} \text { or } \quad \frac{a}{D}=\sqrt{\frac{\mu \omega L}{D \Delta p}}(o p+i m u m)
$$

Given: "Viscous timer:" consisting of a cylindrical mass inside a circular tube filled with viscous liquid, creating a narnu annular gap.

Find: (a) The flow field oneated when the mass falls under gravity.
(b) Whether this would make a satisfactory timer, and if so, for what range of time intervals.
(c) Effect of temperature change on measured time interval.

Solution: Apply conservation of mass to a CV enclosing the cylinder and the moving mass:
Then: $\quad Q=U \frac{\pi D^{2}}{4}=\bar{V} \pi D a=\bar{V} \ell a$
Assume: (1) Gap i narrow, $a \ll D$
(2) Unroll gap so flat, $\ell=\pi D$
(3) Steady flow
(4) Fully developed laminar flow

Under these assumptions, the flow field in the gap is that for flow between parallel plates with one plate moving.

Place coordinates on the moving mass:
Then the volume flow rate (Eq. 8.9b) is

$$
\frac{Q}{l}=\frac{Q}{\pi D}=\frac{U a}{2}-\frac{1}{12 \mu}\left(\frac{\partial p}{\partial x}\right) a^{3}
$$

But $\frac{\partial p}{\partial x}=-\frac{\Delta p_{v}}{L}$, where Δp_{v} is the pressure drop driving viscous flow, so

$$
\begin{equation*}
\frac{Q}{l}=\frac{v a}{2}-\frac{1}{12 \mu}\left(-\frac{\Delta p_{v}}{L}\right) a^{3}=\frac{v a}{2}+\frac{\Delta \psi a^{3}}{12 \mu L} \tag{2}
\end{equation*}
$$

The pressure change across the moving mass is

$$
\begin{equation*}
\Delta p=\rho \ell g L+\Delta p_{v} \tag{3}
\end{equation*}
$$

summing forces on the moving mass gives

$$
\Sigma F_{Y}=\Delta p \frac{\pi D^{2}}{4}-m g+F_{v}=m \frac{d d^{\not t t}}{m o(3)}
$$

But $m g=\rho_{m} \frac{\pi O^{2}}{4} L$ and $F_{v}=\tau_{3} \pi D L$
From $5 q .8 .9 a, \tau_{s}=\mu \frac{U}{a}-\frac{a}{2}\left(\frac{\partial p}{\partial x}\right)=\mu \frac{U}{a}+\frac{a}{2} \frac{\Delta p_{u}}{L}$
Substituting, $\Delta p \frac{\pi D^{2}}{4}-\rho m \frac{\pi D^{2}}{4} L g+\left[\mu \frac{D}{a}+\frac{a}{2} \frac{\Delta E v}{2}\right] \pi D L=0$
or $\quad \Delta p=\rho m g L-\left[\mu \frac{U}{a}+\frac{a}{2} \frac{\Delta p_{v}}{L}\right] \frac{4 L}{D}$

Combining Eqs. 1 and 2 gives $\frac{U D}{4}=\frac{U_{0}}{2}+\frac{\Delta p_{v} a^{3}}{12 \mu L}$
Thus

$$
\begin{equation*}
\Delta p_{V}=\frac{12 \mu L}{a^{3}}\left[\frac{U D}{4}-\frac{U /}{L}\right]^{\ll D}=\frac{3 \mu U L D}{a^{3}} \tag{5}
\end{equation*}
$$

Combining Eqs. 3 and 4 gives $\Delta p=p e g L+\Delta R=f m g L-\left[u \frac{U}{a}+\frac{a}{2} \frac{\Delta p}{L}\right] \frac{4 L}{D}$ Using Eq. 5,

$$
\rho_{l} g L+\frac{3 \mu U L D}{a^{3}}=\rho_{m} g L-\mu \frac{V}{a} \frac{4 L}{D}-\frac{a}{2} \frac{3 \mu U L D}{L a^{3}} \frac{4 L}{D}
$$

simplifying and re-arranging,

$$
\left(P_{m}-P_{l}\right) g L=\frac{3 \mu U L D}{a^{3}}+\frac{4 \mu U L}{a D}+\frac{6 \mu U L}{a^{2}} \approx \frac{3 \mu U L D}{a^{3}}
$$

Finally, using $\rho=s \in \rho_{H+2}$,

$$
U=\frac{\left(56_{m}-3 \sigma_{R}\right) \rho_{H 20} a^{3}}{3 \mu D}
$$

The time interval for the mass to move distance H is

$$
\begin{equation*}
\Delta t=\frac{H}{\bar{U}}=\frac{3, \mu 0}{\left(s_{m}-5 G_{\ell}\right) p_{1+\infty} g a^{3}} \tag{6}
\end{equation*}
$$

Equation 6 shows that the time interval for the mass to fall any distance H is proportional to liquid viscosity μ and inversely proportional to gap width a cubed. A temperature change would affect the diameter of the measuring tube and the diameter of the falling mass. A temperature change also would affect the viscosity of the liquid in the tube.
Speed of the falling mass is proportional to the cube of gap width. If the coefficient of thermal expansion of the falling mass were greater than that of the glass measuring tube (which seems likely), then the width of the annular gap would decrease with increasing temperature. This would tend to slow the falling mass. The total amount of thermal expansion would depend on the diameter of the mass and tube. The effect on gap width would be greater, the larger the tube diameter compared to the initial gap width.
It might be possible to "tailor" the thermal expansion coefficient of the cylinder, by using a suitable material, to closely match that of the falling mass. Then there would be no differential thermal expansion between the mass and tube, and changes in temperature would not affect the gap width.
Speed of the falling mass is inversely proportional to liquid viscosity. Liquid viscosity decreases sharply as temperature increases (the viscosity of SAE 30 oil drops more than 10 percent as its temperature increases from $20^{\circ} \mathrm{C}$ to $25^{\circ} \mathrm{C}$, see Fig. A.2). This would tend to increase the speed of the falling mass.
The entire device could be maintained at constant temperature.

Open-Ended Design Problem: Automotive design is tending toward all-wheel drive to improve vehicle performance and safety when traction is poor. An all-wheel drive vehicle must have an interaxle differential to allow operation on dry roads. Numerous vehicles are being built using multiplate viscous drives for interaxle differentials. Perform the analysis and design needed to define the torque transmitted by the differential for a given speed difference, in terms of the design parameters. Identify suitable dimensions for a viscous differential to transmit a torque of $150 \mathrm{~N} \cdot \mathrm{~m}$ at a speed loss of 125 rpm , using lubricant with the properties of SAE 30 oil. Discuss how to find the minimum material cost for the differential, if the plate cost per square meter is constant.
Solution: From. Problem 2.59; $d T=r d F=r \tau d A$
But $\tau \geqslant \mu \frac{d u}{d y}=\mu \frac{\mu}{h}=\mu \frac{r \Delta \omega}{h} ; d A=2 \pi r d r$
Thus $d T=r \mu \frac{r \Delta \omega}{h} 2 \pi r d r=\frac{z \pi \mu \Delta \omega}{h} r^{3} d r ; T=\frac{\pi \mu \Delta \omega}{2 h}\left[R_{0}^{4}-R_{i}^{4}\right]$
or $T=\frac{\pi \mu \Delta \omega}{2 h} R^{4}\left(1-\alpha^{4}\right)$ where $a=R_{i} / R$
This wake is per gap. Each rotor has 2 gaps to a housing. For a gaps

$$
T_{n}=\frac{n \pi \mu \Delta \omega}{2 h} R^{4}\left(1-\alpha^{4}\right)
$$

From Eq. 1 , assuming $\mu=0.18 \mathrm{~kg} \operatorname{lm.s}($ Fig. $A .2)$ and $\alpha=\frac{1}{2}$, so $1-\alpha^{4}=1-\frac{1}{16} \approx 1$, then

$$
\frac{n R^{4}}{n}=\frac{2 \pi_{n}}{\pi \mu \Delta \omega}=\frac{2}{\pi} \times 150 \mathrm{Nm} \times \frac{m^{2}}{0.18 \mathrm{~N} \cdot \mathrm{~s}} \times \frac{\mathrm{min}}{125 \mathrm{rev}} \times \frac{\mathrm{rv}}{2 \pi \mathrm{rad}} \times \frac{60 \mathrm{~s}}{\mathrm{mmin}}=40.5 \mathrm{~m}^{3}=\mathrm{c}
$$

or

$$
R^{4}=c \frac{h}{n}
$$

For $n=100$ and $h=0.2 \mathrm{~mm}^{2} R^{4}=40.5 \mathrm{~m}_{x}^{3} 0.0002 \mathrm{~m}_{\times} \frac{1}{100}=9.11 \times 10^{-5} \mathrm{~m}^{4}$

$$
\left.R=\left[8.11 \times 10^{-5}\right]^{4 / 4}=0.0949 \mathrm{~m} \text { (or } D=180 \mathrm{~mm}\right)
$$

The stack length might be

8.44 A journal bearing consists of a shaft of diameter $D=50 \mathrm{~mm}$ and length $L=1 \mathrm{~m}$ (moment of inertia $I=0.055$ $\mathrm{kg} \cdot \mathrm{m}^{2}$) installed symmetrically in a stationary housing such that the annular gap is $\delta=1 \mathrm{~mm}$. The fluid in the gap has viscosity $\mu=0.1 \mathrm{~N} \cdot \mathrm{~s} / \mathrm{m}^{2}$. If the shaft is given an initial angular velocity of $\omega=60 \mathrm{rpm}$, determine the time for the shaft to slow to 10 rpm .

Given: Data on a journal bearing
Find: Time for the bearing to slow to 10 rpm

Solution:

The given data is
$\mathrm{D}=50 \cdot \mathrm{~mm}$
$\mu=0.1 \cdot \frac{\mathrm{~N} \cdot \mathrm{~s}}{\mathrm{~m}^{2}}$
$\mathrm{L}=1 \cdot \mathrm{~m}$
$\mathrm{I}=0.055 \cdot \mathrm{~kg} \cdot \mathrm{~m}^{2}$
$\delta=1 \cdot \mathrm{~mm}$
$\omega_{i}=60 \cdot \mathrm{rpm}$
$\omega_{\mathrm{f}}=10 \cdot \mathrm{rpm}$
The equation of motion for the slowing bearing is $\quad I \cdot \alpha=$ Torque $=-\tau \cdot A \cdot \frac{D}{2}$
where α is the angular acceleration and τ is the viscous stress, and $A=\pi \cdot D \cdot L$ is the surface area of the bearing

As in Example 8.2 the stress is given by

$$
\tau=\mu \cdot \frac{\mathrm{U}}{\delta}=\frac{\mu \cdot \mathrm{D} \cdot \omega}{2 \cdot \delta}
$$

where U and ω are the instantaneous linear and angular velocities.
Hence

$$
\begin{aligned}
& \mathrm{I} \cdot \alpha=\mathrm{I} \cdot \frac{\mathrm{~d} \omega}{\mathrm{dt}}=-\frac{\mu \cdot \mathrm{D} \cdot \omega}{2 \cdot \delta} \cdot \pi \cdot \mathrm{D} \cdot \mathrm{~L} \cdot \frac{\mathrm{D}}{2}=-\frac{\mu \cdot \pi \cdot \mathrm{D}^{3} \cdot \mathrm{~L}}{4 \cdot \delta} \cdot \omega \\
& \frac{\mathrm{~d} \omega}{\omega}=-\frac{\mu \cdot \pi \cdot \mathrm{D}^{3} \cdot \mathrm{~L}}{4 \cdot \delta \cdot \mathrm{I}} \cdot \mathrm{dt}
\end{aligned}
$$

Separating variables $\quad \frac{\mathrm{d} \omega}{\omega}=-\frac{\mu \cdot \pi \cdot \mathrm{D}^{3} \cdot \mathrm{~L}}{4 \cdot \delta \cdot \mathrm{I}} \cdot \mathrm{dt}$

Integrating and using IC $\omega=\omega_{0}$

The time to slow down to $\omega_{\mathrm{f}}=10 \mathrm{rpm}$ is obtained from solving

$$
\omega_{\mathrm{f}}=\omega_{\mathrm{i}} \cdot \mathrm{e}^{-\frac{\mu \cdot \pi \cdot \mathrm{D}^{3} \cdot \mathrm{~L}}{4 \cdot \delta \cdot \mathrm{I}} \cdot \mathrm{t}}
$$

so

$$
\mathrm{t}=-\frac{4 \cdot \delta \cdot \mathrm{I}}{\mu \cdot \pi \cdot \mathrm{D}^{3} \cdot \mathrm{~L}} \cdot \ln \left(\frac{\omega_{\mathrm{f}}}{\omega_{\mathrm{i}}}\right) \quad \mathrm{t}=10 \mathrm{~s}
$$

Problem 8.45
Given: Fully developed laminar flow in a pipe, with

$$
u=-\frac{R^{2}}{y u} \frac{\partial p}{\partial x}\left[1-\left(\frac{r}{R} j^{2}\right]\right.
$$

Find: Radices from pipe axis at which u equals the average velocity, \bar{V}.

Solution: First determine \bar{V}.

$$
\begin{aligned}
\bar{V} & =\frac{Q}{A}=\frac{1}{\pi R^{2}} \int_{A} u d A=\frac{1}{\pi R^{2}} \int_{0}^{R}\left\{-\frac{R^{2}}{4 \mu} \frac{\partial p}{\partial x}\left[1-\left(\frac{r}{R}\right)^{2}\right]\right\} 2 \pi r d r \\
& =-\frac{R^{2}}{2 \mu} \frac{\partial p}{\partial x} \int_{0}^{1}\left[1-\left(\frac{c}{R}\right)^{2}\right]\left(\frac{r}{R}\right) d\left(\frac{r}{R}\right)=-\frac{R^{2}}{2 \mu} \frac{\partial p}{\partial x}\left[\frac{1}{2}\left(\frac{r}{R}\right)^{2}-\frac{1}{4}\left(\frac{R}{R}\right)^{4}\right]_{0}^{1} \\
\bar{V} & =-\frac{R^{2}}{\partial \mu} \frac{\partial p}{\partial x}
\end{aligned}
$$

Then $u=\bar{v}$ when

$$
u=-\frac{R^{2}}{4 \mu} \frac{\partial p}{\partial x}\left[1-\left(\frac{r}{R}\right)^{2}\right]=\bar{v}=-\frac{R^{2}}{8 \mu} \frac{\partial p}{\partial x}
$$

or

$$
1-\left(\frac{r}{R}\right)^{2}=\frac{1}{2}
$$

or

$$
\begin{aligned}
& \left(\frac{r}{R}\right)^{2}=\frac{1}{2} \\
& r=\frac{R}{\sqrt{2}}=0.707 R
\end{aligned}
$$

Given: Water and SAE 10 W oil flowing at $40^{\circ} \mathrm{C}$ through a 6 mm tube. Find, for each flu id:
(a) The maximin flow rate for laminar flow.
(b) The corresponding pressure gradient.

Solution: Laminar flow is expected for Re $\leqslant 2300$. Expressing this in terns of flownate,

$$
R_{e}=\frac{\rho \bar{V} D}{\mu}=\frac{\bar{V} D}{\nu}=\frac{Q D}{A \nu}=\frac{4}{\pi D^{2}} \frac{Q D}{\nu}=\frac{4 Q}{\pi \nu D} \text { or } Q=\frac{\pi \nu D R e}{4}
$$

Thus

$$
Q_{\max }=\frac{\pi \nu O \operatorname{Remax}_{\max }}{4}=\frac{\pi}{4} \times 2300 \times 0.006 m_{x} \nu \frac{m^{2}}{3}=10.8 \nu\left(\frac{\mathrm{~m}^{3}}{3}\right)
$$

Also, $Q=-\frac{\Pi R^{4}}{8 \mu} \frac{\partial p}{\partial x}$ for laminar flow, according to Eq. 8.136. Then
so

$$
\frac{\partial p}{\partial x}=-\frac{g \mu Q}{\pi R^{4}}=-\frac{1 \pi 8 \mu Q}{\pi D^{4}}
$$

$$
\frac{\partial p}{\partial x}=-\frac{128}{\pi} \times \mu \frac{N \cdot 5}{m^{2}} \times \frac{Q m^{3}}{3 r^{3}} \times \frac{1}{(0.006)^{4} m^{4}}=-3.14 \times 10^{10} \mu Q\left(\frac{N}{m^{2}}\right)
$$

Using data from Appendix A, at $40^{\circ} \mathrm{C}$,

$\left\{\right.$ Note $Q \sim \nu=\frac{\mu}{\rho}$ and $\left.\underset{\partial x}{\partial P} \sim \mu Q \sim \frac{\mu^{2}}{\rho} \cdot\right\}$
8.47 A hypodermic needle, with inside diameter $d=0.005 \mathrm{in}$. and length $L=1 \mathrm{in}$., is used to inject saline solution with viscosity five times that of water. The plunger diameter is $D=0.375 \mathrm{in}$.; the maximum force that can be exerted by a thumb on the plunger is $F=7.5 \mathrm{lbf}$. Estimate the volume flow rate of saline that can be produced.

Given: Hyperdermic needle

Find: Volume flow rate of saline

Solution:

Basic equation

$$
\mathrm{Q}=\frac{\pi \cdot \Delta \mathrm{p} \cdot \mathrm{~d}^{4}}{128 \cdot \mu \cdot \mathrm{~L}} \quad \text { (Eq. 8.13c; we assume laminar flow and verify this is correct after solving) }
$$

For the system

$$
\begin{aligned}
& \Delta \mathrm{p}=\mathrm{p}_{1}-\mathrm{p}_{\mathrm{atm}}=\frac{\mathrm{F}}{\mathrm{~A}}=\frac{4 \cdot \mathrm{~F}}{\pi \cdot \mathrm{D}^{2}} \\
& \Delta \mathrm{p}=\frac{4}{\pi} \times 7.5 \cdot \mathrm{lbf} \times\left(\frac{1}{0.375 \cdot \mathrm{in}} \times \frac{12 \cdot \mathrm{in}}{1 \cdot \mathrm{ft}}\right)^{2} \quad \Delta \mathrm{p}=67.9 \cdot \mathrm{psi}
\end{aligned}
$$

At $68^{\circ} \mathrm{F}$, from Table A. 7

$$
\mu_{\mathrm{H} 2 \mathrm{O}}=2.1 \times 10^{-5} \cdot \frac{\mathrm{lbf} \cdot \mathrm{~s}}{\mathrm{ft}^{2}} \quad \mu=5 \cdot \mu_{\mathrm{H} 2 \mathrm{O}} \quad \mu=1.05 \times 10^{-4} \cdot \frac{\mathrm{lbf} \cdot \mathrm{~s}}{\mathrm{ft}^{2}}
$$

$$
\mathrm{Q}=\frac{\pi}{128} \times 67.9 \cdot \frac{\mathrm{lbf}}{\mathrm{in}^{2}} \times \frac{144 \cdot \mathrm{in}^{2}}{1 \cdot \mathrm{ft}^{2}} \times\left(0.005 \cdot \mathrm{in} \times \frac{1 \cdot \mathrm{ft}}{12 \cdot \mathrm{in}}\right)^{4} \times \frac{\mathrm{ft}^{2}}{1.05 \times 10^{-4} \mathrm{lbf} \cdot \mathrm{~s}} \times \frac{1}{1 \cdot \mathrm{in}} \times \frac{12 \cdot \mathrm{in}}{1 \cdot \mathrm{ft}}
$$

$$
\mathrm{Q}=8.27 \times 10^{-7} \cdot \frac{\mathrm{ft}^{3}}{\mathrm{~s}}
$$

$$
\mathrm{Q}=1.43 \times 10^{-3} \cdot \frac{\mathrm{in}^{3}}{\mathrm{~s}}
$$

$$
\mathrm{Q}=0.0857 \cdot \frac{\mathrm{in}^{3}}{\mathrm{~min}}
$$

Check Re:

$$
\begin{aligned}
& \begin{array}{ll}
\mathrm{V}=\frac{\mathrm{Q}}{\mathrm{~A}}=\frac{\mathrm{Q}}{\frac{\pi \cdot \mathrm{~d}^{2}}{4}} \quad \mathrm{~V}=\frac{4}{\pi} \times 8.27 \times 10^{-7} \frac{\mathrm{ft}^{3}}{\mathrm{~s}} \times\left(\frac{1}{.005 \cdot \mathrm{in}}\right)^{2} \times\left(\frac{12 \cdot \mathrm{in}}{1 \cdot \mathrm{ft}}\right)^{2} \\
\mathrm{Re}=\frac{\rho \cdot \mathrm{V} \cdot \mathrm{~d}}{\mu} \quad \rho=1.94 \cdot \frac{\text { slug }}{\mathrm{ft}^{3}} \quad \quad \text { (assuming saline is close to water) }
\end{array} \\
& \mathrm{Re}=1.94 \cdot \frac{\mathrm{slug}}{\mathrm{ft}^{3}} \times 6.07 \cdot \frac{\mathrm{ft}}{\mathrm{~s}} \times 0.005 \cdot \mathrm{in} \times \frac{1 \cdot \mathrm{ft}}{12 \cdot \mathrm{in}} \times \frac{\mathrm{ft}^{2}}{1.05 \times 10^{-4} \cdot \mathrm{lbf} \cdot \mathrm{~s}} \times \frac{\mathrm{slug} \cdot \mathrm{ft}}{\mathrm{~s}^{2} \cdot \mathrm{lbf}} \\
& \mathrm{Re}=46.7 \\
& \text { Flow is laminar }
\end{aligned}
$$

Problem 8.48

8.48 In engineering science there are often analogies to be made between disparate phenomena. For example, the applied pressure difference Δp and corresponding volume flow rate Q in a tube can be compared to the applied DC voltage V across and current I through an electrical resistor, respectively. By analogy, find a formula for the "resistance" of laminar flow of fluid of viscosity μ in a tube length of L and diameter D, corresponding to electrical resistance R. For a tube 100 mm long with inside diameter 0.3 mm , find the maximum flow rate and pressure difference for which this analogy will hold for (a) kerosine and (b) castor oil (both at $40^{\circ} \mathrm{C}$). When the flow exceeds this maximum, why does the analogy fail?

Given: Data on a tube

Find: \quad "Resistance" of tube; maximum flow rate and pressure difference for which electrical analogy holds for (a) kerosine and (b) castor oil

Solution:

The given data is

$$
\mathrm{L}=100 \cdot \mathrm{~mm}
$$

$\mathrm{D}=0.3 \cdot \mathrm{~mm}$

From Fig. A. 2 and Table A. 2
Kerosene:

$$
\mu=1.1 \times 10^{-3} \cdot \frac{\mathrm{~N} \cdot \mathrm{~s}}{\mathrm{~m}^{2}}
$$

$\rho=0.82 \times 990 \cdot \frac{\mathrm{~kg}}{\mathrm{~m}^{3}}=812 \cdot \frac{\mathrm{~kg}}{\mathrm{~m}^{3}}$
Castor oil:

$$
\mu=0.25 \cdot \frac{\mathrm{~N} \cdot \mathrm{~s}}{\mathrm{~m}^{2}}
$$

$$
\rho=2.11 \times 990 \cdot \frac{\mathrm{~kg}}{\mathrm{~m}^{3}}=2090 \cdot \frac{\mathrm{~kg}}{\mathrm{~m}^{3}}
$$

For an electrical resistor

$$
\begin{equation*}
\mathrm{V}=\mathrm{R} \cdot \mathrm{I} \tag{1}
\end{equation*}
$$

The governing equation for the flow rate for laminar flow in a tube is Eq. 8.13c

$$
\text { or } \quad \begin{align*}
& \mathrm{Q}=\frac{\pi \cdot \Delta \mathrm{p} \cdot \mathrm{D}^{4}}{128 \cdot \mu \cdot \mathrm{~L}} \\
& \Delta \mathrm{p}=\frac{128 \cdot \mu \cdot \mathrm{~L}}{\pi \cdot \mathrm{D}^{4}} \cdot \mathrm{Q} \tag{2}
\end{align*}
$$

By analogy, current I is represented by flow rate Q, and voltage V by pressure drop Δp.
Comparing Eqs. (1) and (2), the "resistance" of the tube is

$$
\mathrm{R}=\frac{128 \cdot \mu \cdot \mathrm{~L}}{\pi \cdot \mathrm{D}^{4}}
$$

The "resistance" of a tube is directly proportional to fluid viscosity and pipe length, and strongly dependent on the inverse of diameter

The analogy is only valid for
$\operatorname{Re}<2300$
or $\quad \frac{\rho \cdot \mathrm{V} \cdot \mathrm{D}}{\mu}<2300$
Writing this constraint in terms of flow rate $\frac{\rho \cdot \frac{\mathrm{Q}}{\frac{\pi}{4} \cdot D^{2}} \cdot \mathrm{D}}{\mu}<2300$
or $\quad \mathrm{Q}_{\max }=\frac{2300 \cdot \mu \cdot \pi \cdot \mathrm{D}}{4 \cdot \rho}$

The corresponding maximum pressure gradient is then obtained from Eq. (2)

$$
\Delta \mathrm{p}_{\max }=\frac{128 \cdot \mu \cdot \mathrm{~L}}{\pi \cdot \mathrm{D}^{4}} \cdot \mathrm{Q}_{\max }=\frac{32 \cdot 2300 \cdot \mu^{2} \cdot \mathrm{~L}}{\rho \cdot \mathrm{D}^{3}}
$$

(a) For kerosine
(b) For castor oil

$$
\begin{array}{ll}
\mathrm{Q}_{\max }=7.34 \times 10^{-7} \frac{\mathrm{~m}^{3}}{\mathrm{~s}} & \Delta \mathrm{p}_{\max }=406 \mathrm{kPa} \\
\mathrm{Q}_{\max }=6.49 \times 10^{-5} \frac{\mathrm{~m}^{3}}{\mathrm{~s}} & \Delta \mathrm{p}_{\max }=8156 \mathrm{MPa}
\end{array}
$$

The analogy fails when $\mathrm{Re}>2300$ because the flow becomes turbulent, and "resistance" to flow is then no longer linear with flow rate

Given: Fully -developed laminar flow in an annulus as shown. The inner section is stationary; the outer moves at V_{0}. Assume $\frac{\partial p}{\partial X}=0$.

Find (a) $\tau(r)$ in terms of c_{1}.
(b) $V(r)$ in terms of c_{1}, c_{2}.
(c) Evaluate c_{1}, c_{2}.

Solution: Apply x component of momentum equation, using annular CV Shown.
Basic Equations: $F_{s_{x}}+F_{\beta_{x}}=\frac{d f}{y C_{c v}} \int_{c v} u p d \psi+\int_{c s}^{=o(x)} u \rho \vec{v} \cdot d \vec{A} ; \quad \tau_{r x}=\mu \frac{d u}{d r}=\tau$
Assumptions: (1) $F_{B_{x}}=0$
(c) steady flow
(s) Fully -developed flow

Then

$$
F_{0 x}=F_{0}-\sqrt{2}=\left(t+\frac{d r}{d r}\right) 2 \pi\left(r+\frac{d r}{2}\right) d x-\left(\tau-\frac{d r}{d r} \frac{d r}{2}\right) 2 \pi\left(r-\frac{d r}{2}\right) d x=0
$$

Neglecting products of differentials, this reduces to

$$
\tau+r \frac{d \tau}{d r}=0 \quad \text { or } \quad \frac{d}{d r}(r \tau)=0
$$

Thus $r \bar{c}=c_{1} \quad$ or $\quad \tau=\frac{c_{1}}{r}$
But $\tau=u \frac{d u}{d r}$, so $\quad \frac{d u}{d r}=\frac{c_{1}}{\mu r}$ $\operatorname{and} \quad L=\frac{c_{1}}{\mu} \ln r+c_{2}$
To evaluate constants c_{1} and c_{2}, use boundary conditions.
At $r-c, u=v_{b}$ so $\quad v_{0}=\frac{c_{1}}{a} \ln r_{c}+c_{2}$
At $r=r_{0}, u=0$, so $\quad 0 \quad \frac{c_{1}}{\mu} \operatorname{nn} r_{0}+c_{2} \quad$ and $c_{2}=-\frac{c_{1}}{\mu} t_{n} r_{0}$
Thus, subtracting, $v_{0}=\frac{c_{1}}{\mu} \ln \left(\frac{r_{2}}{r_{0}}\right)$ or $c_{1}=\frac{\mu v_{0}}{\ln \left(r_{2} / r_{0}\right.}$, $s_{0} c_{2}=\frac{-V_{0} \ln r_{0}}{\ln \left(r_{0}\right)}$
Finally

$$
u=\frac{V_{0}}{\ln \left(r_{i} / r_{0}\right)}\left(L_{n} r-\ln r_{i}\right)=V_{0} \frac{\ln \left(r / r_{0}\right)}{\ln \left(r_{i} / r_{0}\right)}
$$

Given: Felly-dareloped lamar flow in a circular pipe, with cylindrical control volume as shown.

Find: (a) Forces acting on $c v$.
(b) Expression for velocity distribution.

Solution: The forces on a CV of radius - are shown above.
Apply the x component of momentecm to cV shown.
Basic equations:

Assumptions: (1) $F_{B_{x}}=0$
(2) Steady frow
(3) Fully -developed flow

Then

$$
F_{s_{x}}=\left(p-\frac{\partial p}{\partial x} \frac{d x}{2}\right) \pi r^{2}+r_{x} 2 \pi r d x-\left(p+\frac{\partial p}{\partial x} \frac{d x}{2}\right) \pi r^{2}=0
$$

cancelling and combining terms,

$$
-r \frac{\partial p}{\partial x}+2 t_{r x}=0 \quad \text { or } \quad \tau_{r x}=\mu \frac{d u}{d r}=\frac{c}{2} \frac{\partial p}{\partial x}
$$

Thus $\quad \frac{d u}{d r}=\frac{r}{2 \mu} \frac{\partial \rho}{\partial x}$
and

$$
u=\frac{r^{2}}{4 u} \frac{\partial p}{\partial x}+c
$$

To evaluate c_{1}, apply the boundary condition $u=0$ at $r=R$. Thees

$$
c_{1}=-\frac{e^{2}}{4 \mu} \frac{\partial p}{\partial x}
$$

and

$$
u=\frac{1}{4 \mu} \frac{\partial p}{\partial x}\left(r^{2}-R^{2}\right)=-\frac{R^{2}}{4 \mu} \frac{\partial p}{\partial x}\left[1-\left(\frac{C}{R}\right)^{2}\right]
$$

which is identical to E9.8.12.

Given: Fully developed laminar tow with pressure gradient $a P l a t$, in the annulus shown'

(a) Show that the velocity profile is gwenby

$$
u=-\frac{R^{2}}{4 \mu}\left(\frac{\partial P}{\partial \alpha}\right)\left[1-\left(\frac{\Gamma}{R}\right)^{2}+\frac{\left(1-l^{2}\right)}{\ln (1 / R)} \ln \frac{\Gamma}{R}\right]
$$

(b) Obtain an expression for the location $(\alpha-r l e)$ of matiriur u as a function of k.
(c) Not α us k.
(d) Compare limiting case, $k \rightarrow 0$, with tow in arcular pipe.

Solution: We may use the results of Pe differential control $\sqrt{6}$ lure analysis of Section $8-3$ to write

$$
\begin{equation*}
u=\frac{r^{2}}{4 \mu} \frac{\partial P}{\partial x}+\frac{C_{1}}{\mu} \ln r+C_{2} \tag{1}
\end{equation*}
$$

The boundary conditions are $u=0$ at $r=R$

$$
u=0 \text { at } r=k R \text {. }
$$

Substituting the boundary conditions

$$
\begin{align*}
& 0=\frac{R^{2}}{4 \mu} \frac{\partial p}{2 x}+\frac{c_{1}}{\mu} \ln R+\delta_{2} \tag{z}\\
& 0=\frac{k^{2} R^{2}}{4 \mu} \frac{\partial p}{\partial \alpha}+\frac{c_{1}}{\mu} \ln h+c_{2} \tag{3}
\end{align*}
$$

Subtractrig.
\therefore
From Eq. 2

$$
\begin{aligned}
& \therefore \quad c_{1}=-\frac{R^{2}}{4} \frac{\partial p}{\partial h} \frac{\left(1-t^{2}\right)}{\ln (1 \mid k)} \\
& -\frac{R^{2}}{4 \mu} \frac{\partial p}{\partial h}+\frac{R^{2}}{4 \mu} \frac{\partial p}{\partial x} \frac{\left(1-t^{2}\right)}{\ln (1) t} \ln \beta
\end{aligned}
$$

Substituturig for c_{1} and c_{2} into Eq.' goes

$$
\begin{aligned}
& u=\frac{r^{2}}{4 \mu} \frac{\partial p}{\partial x}-\frac{R^{2}}{4 \mu} \frac{\partial p}{2 \alpha} \frac{\left(1-k^{2}\right)}{\left.\ln (1)^{2}\right)} \ln r-\frac{p^{2}}{4 \mu} \frac{\partial p}{\partial k}+\frac{k^{2}}{4 \mu} \frac{\partial f}{\partial x} \frac{\left(1-k^{2}\right)}{\ln (1 / 1 t)} \ln R \\
& u=\frac{1}{4 \mu} \frac{\partial p}{\partial x}\left[r^{2}-R^{2}-\frac{R^{2}\left(1-t^{2}\right)}{\ln (1) t)}(\ln r-\ln R)\right] \\
& u=-\frac{R^{2}}{4 \mu} \frac{\partial p}{\partial x}\left[1-\left(\frac{r}{R}\right)^{2}+\frac{\left(1-b^{2}\right)}{\ln (1) t)} \ln \frac{\Gamma}{R}\right]
\end{aligned}
$$

To locate max u, set $r_{r-2}=\mu \frac{d u}{d r}=0$

$$
r_{r x}=\mu \frac{d u}{d r}=-\frac{R^{2}}{4} \frac{\partial \varphi}{2 x}\left[-\frac{2 r}{R^{2}}+\frac{\left(1-t^{2}\right)}{\ln (1) t} \frac{1}{r}\right]
$$

Set $t_{r x}=0$ at $r=\alpha R$. Ken

$$
0=-\frac{2 d R}{R^{2}}+\frac{\left(1-R^{2}\right)}{\ln (1(R)} \frac{1}{d R}
$$

and

$$
\alpha=\left[\frac{1}{2} \frac{\left(1-e^{2}\right)}{l_{n}(1 / 2)}\right]^{1 / 2} \quad \alpha=\alpha(0)
$$

For $k \rightarrow 0, \alpha \rightarrow 0$ and $u=-\frac{R^{2}}{4 \mu}\left(\frac{\partial p}{\partial x}\right)\left[1-\left(\frac{V^{2}}{k}\right)^{2}\right]$
this agrees with the results for flow in a arcular pip
As $\ell \rightarrow 1.0, \alpha \rightarrow 1.0$ and the flow behaves like flow between stationary infinite parallel plates.

Gwen: Fully developed laminar flows in the annulus shown, with pressure gradient $2 \cdot p l s x$. The velocity profile is gwen by

$$
u=-\frac{R^{2}}{4 \mu} \frac{\partial \varphi}{\partial x}\left[1-\left(\frac{r}{R}\right)^{2}+\frac{\left(1-R^{2}\right)}{\ln (1) l C} \ln \frac{r}{R}\right]
$$

(a) Show that the volume flow rote e is gen by

$$
Q=-\frac{\pi p^{4}}{8 \mu} \frac{\partial f}{2 x}\left[\left(1-k^{4}\right)-\frac{\left(1-k^{2}\right)^{2}}{\ln (1)}\right]^{2}
$$

(b) Obtain an expression for the average velocity (c) Compare limiting case, $k \rightarrow 0$, with flow in a circular pipe.
Solution: The volume flow rate is gwen by

$$
\begin{align*}
& Q=\int u d A=\int_{k 又}^{k} u 2 \pi r d r=2 \pi \int_{t 2}^{h} u r d r \\
& =\operatorname{ar}\left(-\frac{R^{2}}{4} \mu \frac{2 P}{2 n}\right) \int_{k}^{e}\left[r-\frac{r^{3}}{R^{2}}+\frac{\left(1-R^{2}\right)}{\ln (1)(k)} r \ln \frac{r}{R}\right] d r \\
& =-\left.\frac{\pi}{2 \mu} R^{4} \frac{\partial P}{\partial x}\right|_{k} ^{1}\left[\frac{r}{R}-\left(\frac{r}{R}\right)^{3}+\frac{\left(l-R^{2}\right)}{\ln (i l)} \frac{r}{R} \ln \frac{r}{R}\right] d\left(\frac{r}{R}\right) \\
& =-\frac{\pi R^{4}}{2 \mu} \frac{\partial P}{\partial R}\left[\frac{1}{2}\left(\frac{r}{R}\right)^{2}-\frac{1}{4}\left(\frac{r}{R}\right)^{4}+\frac{\left(1-t^{2}\right)}{\ln (1 / R)}\left\{\left(\frac{r}{R}\right)^{2}\left[\frac{1}{2} \ln \left(\frac{r}{R}\right)-\frac{r}{4}\right]\right]_{k}^{1}\right. \\
& =-\frac{\pi k^{4}}{2 \mu} \frac{\partial p}{\partial k}\left[\frac{1}{2}-\frac{k^{2}}{2}-\frac{1}{4}+\frac{b^{4}}{4}+\frac{\left(1-b^{2}\right)}{\ln (12)}\left\{-\frac{1}{4}-k^{2}\left[\frac{1}{2} \ln k-\frac{1}{4}\right]\right\}\right. \\
& =-\frac{\pi b^{4}}{2 \mu} \partial p\left[\frac{1}{2}-\frac{t^{2}}{2}+\frac{k^{4}}{4}+\frac{\left(1-t^{2}\right)}{\ln (1 k)}\left\{-\frac{1}{4}+\frac{t^{2}}{4}-t^{2} \frac{1}{2} \ln k\right\}\right. \\
& =-\frac{\pi k^{4}}{2 \mu} \frac{\partial p}{\partial k}\left[\frac{1-2 k^{2}+k^{4}}{4}+\frac{\left(1-b^{2}\right)}{\ln (1 k} \frac{\left(k^{2}-1\right)}{4}-\frac{\left(1-k^{2}\right)}{\ln (1) k} k^{2} \frac{1}{2} \ln k\right] \\
& =-\frac{\pi p^{4}}{2 \mu} \frac{\partial P}{\partial \alpha}\left[\frac{1-2 t^{2}+t^{4}}{4}-\frac{\left(1-t^{2}\right)^{2}}{\left.4 \ln (1)^{2}\right)}+\frac{t^{4}-t^{4}}{2}\right] \\
& =-\frac{\pi p^{4}}{2 \mu} \cdot \frac{\partial p}{2 h}\left[\frac{1-2 t^{2}+b^{4}+2 t^{2}-2 t^{4}}{4}-\frac{\left(1-t^{2}\right)^{2}}{2 h(1)}\right] \\
& Q=-\frac{\pi e^{4}}{8 \mu} \frac{\partial p}{\partial x}\left[\left(1-k^{4}\right)-\frac{\left(1-k^{2}\right)^{2}}{\ln (1 \mid k)}\right]
\end{align*}
$$

The average velocity, $\bar{y}=\frac{\theta}{\bar{T}}$

The area is given by

$$
\begin{aligned}
& A=\left(d A=\left(2 \pi r d r=2 \pi R^{2} C_{k}^{1} r_{k} d\left(\frac{r}{k}\right)\right.\right. \\
& A=2 \pi R^{2}\left[\frac{1}{2}\left(\frac{r}{k}\right)^{2}\right]_{k}^{1}=2 \pi R^{2}+\frac{1}{2}\left(1-R^{2}\right)=\pi R^{2}\left(1-R^{2}\right)
\end{aligned}
$$

Thus

$$
\begin{aligned}
& \bar{V}=\frac{Q}{A}=-\frac{\pi p^{4}}{8 \mu} \frac{\partial p}{\partial \alpha} \times \frac{1}{\pi R^{2}}\left[\frac{\left(1-b^{4}\right)}{\left(1-b^{2}\right)}-\frac{\left(1-l^{2}\right)}{\ln (1 \mid l)}\right] \\
& \bar{V}=-\frac{R^{2}}{8 \mu} \frac{\partial p}{\partial k}\left[\frac{\left(1-b^{4}\right)}{\left(1-b^{2}\right)}-\frac{\left(1-b^{2}\right)}{\ln (1 \mid l)}\right]
\end{aligned}
$$

For $k \rightarrow 0$

$$
Q=-\frac{\pi R^{4}}{8 \mu} \frac{\partial p}{\partial x} \text { and } \bar{V}=-\frac{R^{2}}{8 \mu} \frac{\partial P}{2 x}
$$

These agree with the results for flow in a circular pipe

Given: Fully developed laminar flow in a circular pipe is converted to flow in an annulus by insertion of a tin wire tong the centerture

(a) Use results of ${ }^{\prime}$ Problem 8.52 to obtain an expression for tie percent change in pressure drop as a function of radws ratio R.
(b) Plot percent change in ΔP us k for $0.001 \leqslant k \leqslant 0.00$

Solution: Fee results of problem 8.48 give
Rus

$$
Q=-\frac{\pi R^{4}}{8 \mu} \frac{2 p}{2 x}\left[\left(1-k^{4}\right)-\frac{\left(1-2^{2}\right)^{2}}{\ln (1 k)}\right.
$$

$$
\frac{\Delta P}{L}=-\frac{\partial P}{\partial k}=\frac{8 \mu Q}{\pi R^{4}} \times\left[\frac{1}{\left[\left(1-R^{4}\right)-\frac{\left(1 Q^{2}\right)^{2}}{\operatorname{la}(1)}\right]}\right.
$$

For $B=0, \quad \frac{\Delta P}{L}=\frac{3 \mu Q}{\pi R^{4}}$

$$
\text { Percent Change }=\frac{\Delta P / L-\Delta P / L \ell_{0}=0}{\Delta P M) k=0}=\frac{1}{\left[\left(1-b^{4}\right)-\frac{\left(1-b^{2}\right)^{2}}{\ln (1)}-1\right.}
$$

$$
q_{0} \text { Mange }=\frac{1-\left[\left(1-k^{4}\right)-\frac{\left(1-k^{2}\right)}{\ln (1)}\right]}{\left[\left(1-b^{4}\right)-\left(1-k^{2}\right)\right]}
$$

For small k,

$$
\text { o lo change }=\frac{1-\left[1-\frac{1}{\ln (1) k}\right]}{\left[1-\frac{1}{\ln (\ln)]}\right.}=\frac{1-\left[1+\frac{1}{\ln k}\right]}{\left[1+\frac{1}{\ln k}\right]}=\frac{-\frac{1}{\ln k}}{\left[1+\frac{1}{\ln k}\right]}
$$

$$
\operatorname{logange}=-\frac{1}{\ln 2\left(1+\frac{1}{n k}\right)} \times 100
$$

\% Sarge

$k=r_{i} / R$	\% change in Δp
0.0000	12.2
0.0002	13.3
0.0005	15.1
0.001	16.9
0.002	19.2
0.005	23.3
0.01	27.7
0.02	34.3
0.05	50.1
0.1	76.8

Te plot Shows that even Pe smallest of wires causes a significant increase in pressure drop for a gwen Row rale.
8.54 In a food industry plant two immiscible fluids are pumped through a tube such that fluid $1\left(\mu_{1}=0.02 \mathrm{lbf} \cdot \mathrm{s} / \mathrm{ft}^{2}\right)$ forms an inner core and fluid $2\left(\mu_{2}=0.03 \mathrm{lbf} \cdot \mathrm{s} / \mathrm{ft}^{2}\right)$ forms an outer annulus. The tube has $D=0.2 \mathrm{in}$. diameter and length $L=50 \mathrm{ft}$. Derive and plot the velocity distribution if the applied pressure difference, Δp, is 1 psi .

Given: Two-fluid flow in tube
Find: Velocity distribution; Plot

Solution:

Given data

$$
\mathrm{D}=0.2 \cdot \mathrm{in}
$$

$\mathrm{L}=50 \cdot \mathrm{ft}$
$\Delta \mathrm{p}=-1 \cdot \mathrm{psi}$
$\mu_{1}=0.02 \cdot \frac{\mathrm{lbf} \cdot \mathrm{s}}{\mathrm{ft}^{2}}$
$\mu_{2}=0.03 \cdot \frac{\mathrm{lbf} \cdot \mathrm{s}}{\mathrm{ft}^{2}}$
From Section 8-3 for flow in a pipe, Eq. 8.11 can be applied to either fluid

$$
\mathrm{u}=\frac{\mathrm{r}^{2}}{4 \cdot \mu} \cdot\left(\frac{\partial}{\partial \mathrm{x}} \mathrm{p}\right)+\frac{\mathrm{c}_{1}}{\mu} \cdot \ln (\mathrm{r})+\mathrm{c}_{2}
$$

Applying this to fluid 1 (inner fluid) and fluid 2 (outer fluid)

$$
\mathrm{u}_{1}=\frac{\mathrm{r}^{2}}{4 \cdot \mu_{1}} \cdot \frac{\Delta \mathrm{p}}{\mathrm{~L}}+\frac{\mathrm{c}_{1}}{\mu_{1}} \cdot \ln (\mathrm{r})+\mathrm{c}_{2} \quad \mathrm{u}_{2}=\frac{\mathrm{r}^{2}}{4 \cdot \mu_{2}} \cdot \frac{\Delta \mathrm{p}}{\mathrm{~L}}+\frac{\mathrm{c}_{3}}{\mu_{2}} \cdot \ln (\mathrm{r})+\mathrm{c}_{4}
$$

We need four BCs. Two are obvious

$$
\begin{equation*}
r=\frac{D}{2} \tag{2}
\end{equation*}
$$

$$
\mathrm{u}_{2}=0
$$

(1) $r=\frac{D}{4}$
$\mathrm{u}_{1}=\mathrm{u}_{2}$
The third BC comes from the fact that the axis is a line of symmetry

$$
\begin{equation*}
\mathrm{r}=0 \quad \frac{\mathrm{du}_{1}}{\mathrm{dr}}=0 \tag{3}
\end{equation*}
$$

The fourth BC comes from the fact that the stress at the interface generated by each fluid is the same

$$
\begin{equation*}
 \tag{4}
\end{equation*}
$$

Using these four BCs

Hence, after some algebra
$\mathrm{c}_{1}=0 \quad$ (To avoid singularity)

$$
c_{2}=-\frac{D^{2} \cdot \Delta p}{64 \cdot L} \frac{\left(\mu_{2}+3 \cdot \mu_{1}\right)}{\mu_{1} \cdot \mu_{2}} \quad c_{3}=0 \quad c_{4}=-\frac{D^{2} \cdot \Delta p}{16 \cdot L \cdot \mu_{2}}
$$

The velocity distributions are then

$$
u_{1}(r)=\frac{\Delta p}{4 \cdot \mu_{1} \cdot L} \cdot\left[r^{2}-\left(\frac{\mathrm{D}}{2}\right)^{2} \cdot \frac{\left(\mu_{2}+3 \cdot \mu_{1}\right)}{4 \cdot \mu_{2}}\right] \quad u_{2}(\mathrm{r})=\frac{\Delta p}{4 \cdot \mu_{2} \cdot L} \cdot\left[r^{2}-\left(\frac{\mathrm{D}}{2}\right)^{2}\right]
$$

(Note that these result in the same expression if $\mu_{1}=\mu_{2}$, i.e., if we have one fluid)

Evaluating either velocity at $r=D / 4$ gives the velocity at the interface
$u_{\text {interface }}=-\frac{3 \cdot D^{2} \cdot \Delta \mathrm{p}}{64 \cdot \mu_{2} \cdot \mathrm{~L}} \quad u_{\text {interface }}=-\frac{3}{64} \times\left(\frac{0.2}{12} \cdot \mathrm{ft}\right)^{2} \times\left(-1 \cdot \frac{\mathrm{lbf}}{\mathrm{in}^{2}}\right) \times \frac{144 \cdot \mathrm{in}^{2}}{1 \cdot \mathrm{ft}^{2}} \times \frac{\mathrm{ft}^{2}}{0.03 \cdot \mathrm{lbf} \cdot \mathrm{s}} \times \frac{1}{50 \cdot \mathrm{ft}} \quad u_{\text {interface }}=1.25 \times 10^{-3} \frac{\mathrm{ft}}{\mathrm{s}}$

Evaluating u_{1} at $r=0$ gives the maximum velocity
$\mathrm{u}_{\text {max }}=-\frac{\mathrm{D}^{2} \cdot \Delta \mathrm{p} \cdot\left(\mu_{2}+3 \cdot \mu_{1}\right)}{64 \cdot \mu_{1} \cdot \mu_{2} \cdot \mathrm{~L}} \quad \mathrm{u}_{\max }=-\frac{1}{64} \times\left(\frac{0.2}{12} \cdot \mathrm{ft}\right)^{2} \times\left(-1 \cdot \frac{\mathrm{lbf}}{\mathrm{in}^{2}}\right) \times \frac{0.03+3 \times 0.02}{0.02 \times 0.03} \cdot \frac{\mathrm{ft}^{2}}{\mathrm{lbf} \cdot \mathrm{s}} \times \frac{1}{50 \cdot \mathrm{ft}} \quad \mathrm{u}_{\max }=1.88 \times 10^{-3} \frac{3 \mathrm{ft}}{\mathrm{s}}$

The velocity distributions can be plotted in Excel

Problem 8.55

8.55 A horizontal pipe carries fluid in fully developed turbulent flow. The static pressure difference measured between two sections is 35 kPa . The distance between the sections is 10 m and the pipe diameter is 150 mm . Calculate the shear stress, τ_{w}, that acts on the walls.

Given: Turbulent pipe flow
Find: Wall shear stress

Solution:

Basic equation $\quad F_{x}=F_{S_{x}}+F_{B_{x}}=\frac{\partial}{\partial t} \int_{\mathrm{CV}} u \rho d \forall+\int_{\mathrm{CS}} u \rho \vec{V} \cdot d \vec{A}$
Assumptions 1) Horizontal pipe 2) Steady flow 3) Fully developed flow
With these assumptions the x momentum equation becomes

$$
\begin{array}{ll}
\mathrm{p}_{1} \cdot \frac{\pi \cdot \mathrm{D}^{2}}{4}+\tau_{\mathrm{w}} \cdot \pi \cdot \mathrm{D} \cdot \mathrm{~L}-\mathrm{p}_{2} \cdot \frac{\pi \cdot \mathrm{D}^{2}}{4}=0 & \text { or } \\
\tau_{\mathrm{w}}=-\frac{1}{4} \times 35 \times 10^{3} \cdot \frac{\mathrm{~N}}{\mathrm{~m}^{2}} \times 150 \cdot \mathrm{~mm} \times \frac{1 \cdot \mathrm{~m}}{1000 \cdot \mathrm{~mm}} \times \frac{1}{10 \cdot \mathrm{~m}} & \tau_{\mathrm{w}}=\frac{\left(\mathrm{p}_{2}-\mathrm{p}_{1}\right) \cdot \mathrm{D}}{4 \cdot \mathrm{~L}}=-\frac{\Delta \mathrm{p} \cdot \mathrm{D}}{4 \cdot \mathrm{~L}} \\
\end{array}
$$

Since τ_{w} is negative it acts to the left on the fluid, to the right on the pipe wall

Problem 8.56

8.56 One end of a horizontal pipe is attached using glue to a pressurized tank containing liquid, and the other has a cap attached. The inside diameter of the pipe is 2.5 cm , and the tank pressure is 250 kPa (gage). Find the force the glue must withstand, and the force it must withstand when the cap is off and the liquid is discharging to atmosphere.

Given: Pipe glued to tank
Find: Force glue must hold when cap is on and off

Solution:

Basic equation $\quad F_{x}=F_{S_{x}}+F_{B_{x}}=\frac{\partial}{\partial t} \int_{\mathrm{CV}} u \rho d \forall+\int_{\mathrm{CS}} u \rho \vec{V} \cdot d \vec{A}$
First solve when the cap is on. In this static case

$$
\mathrm{F}_{\text {glue }}=\frac{\pi \cdot \mathrm{D}^{2}}{4} \cdot \mathrm{p}_{1} \quad \quad \text { where } \mathrm{p}_{1} \text { is the tank pressure }
$$

Second, solve for when flow is occuring:
Assumptions 1) Horizontal pipe 2) Steady flow 3) Fully developed flow
With these assumptions the x momentum equation becomes

$$
\mathrm{p}_{1} \cdot \frac{\pi \cdot \mathrm{D}^{2}}{4}+\tau_{\mathrm{w}} \cdot \pi \cdot \mathrm{D} \cdot \mathrm{~L}-\mathrm{p}_{2} \cdot \frac{\pi \cdot \mathrm{D}^{2}}{4}=0
$$

Here p_{1} is again the tank pressure and p_{2} is the pressure at the pipe exit; the pipe exit pressure is $\mathrm{p}_{\text {atm }}=0 \mathrm{kPa}$ gage. Hence

$$
\mathrm{F}_{\text {pipe }}=\mathrm{F}_{\text {glue }}=-\tau_{\mathrm{w}} \cdot \pi \cdot \mathrm{D} \cdot \mathrm{~L}=\frac{\pi \cdot \mathrm{D}^{2}}{4} \cdot \mathrm{p}_{1}
$$

We conclude that in each case the force on the glue is the same! When the cap is on the glue has to withstand the tank pressure; when the cap is off, the glue has to hold the pipe in place against the friction of the fluid on the pipe, which is equal in magnitude to the pressure drop.

$$
\text { Fglue }=\frac{\pi}{4} \times\left(2.5 \cdot \mathrm{~cm} \times \frac{1 \cdot \mathrm{~m}}{100 \cdot \mathrm{~cm}}\right)^{2} \times 250 \times 10^{3} \cdot \frac{\mathrm{~N}}{\mathrm{~m}^{2}} \quad \text { F glue }=123 \mathrm{~N}
$$

8.57 The pressure drop between two taps separated in the streamwise direction by 30 ft in a horizontal, fully developed channel flow of water is 1 psi . The cross-section of the channel is a $1 \mathrm{in} . \times 9 \frac{1}{2} \mathrm{in}$. rectangle. Calculate the average wall shear stress.

Given: Flow through channel
Find: Average wall stress

Solution:

Basic equation $\quad F_{x}=F_{S_{x}}+F_{B_{x}}=\frac{\partial}{\partial t} \int_{\mathrm{CV}} u \rho d \forall+\int_{\mathrm{CS}} u \rho \vec{V} \cdot d \vec{A}$

Assumptions 1) Horizontal pipe 2) Steady flow 3) Fully developed flow

$$
\begin{aligned}
& \text { With these assumptions the } \mathrm{x} \text { momentum equation becomes } \\
& \qquad \mathrm{p}_{1} \cdot \mathrm{~W} \cdot \mathrm{H}+\tau_{\mathrm{w}} \cdot 2 \cdot \mathrm{~L} \cdot(\mathrm{~W}+\mathrm{H})-\mathrm{p}_{2} \cdot \mathrm{~W} \cdot \mathrm{H}=0 \quad \text { or } \quad \tau_{\mathrm{w}}=\left(\mathrm{p}_{2}-\mathrm{p}_{1}\right) \cdot \frac{\mathrm{W} \cdot \mathrm{H}}{2 \cdot(\mathrm{~W}+\mathrm{H}) \cdot \mathrm{L}} \quad \tau_{\mathrm{w}}=-\Delta \mathrm{p} \cdot \frac{\frac{\mathrm{H}}{\mathrm{~L}}}{2 \cdot\left(1+\frac{\mathrm{H}}{\mathrm{~W}}\right)}
\end{aligned}
$$

$\tau_{\mathrm{W}}=-\frac{1}{2} \times 1 \cdot \frac{\mathrm{lbf}}{\mathrm{in}^{2}} \times \frac{144 \cdot \mathrm{in}^{2}}{\mathrm{ft}^{2}} \times \frac{1 \cdot \mathrm{in} \times \frac{1 \cdot \mathrm{ft}}{12 \cdot \mathrm{in}}}{30 \cdot \mathrm{ft}} \times\left(\frac{1}{1+\frac{9.5 \cdot \mathrm{in} \times \frac{1 \cdot \mathrm{ft}}{12 \cdot \mathrm{in}}}{30 \cdot \mathrm{ft}}}\right)$

$$
\tau_{\mathrm{w}}=-0.195 \frac{\mathrm{lbf}}{\mathrm{ft}^{2}} \quad \tau_{\mathrm{w}}=-1.35 \times 10^{-3} \mathrm{psi}
$$

Since $\tau_{\mathrm{w}}<0$, it acts to the left on the fluid, to the right on the channel wall
8.58 Kerosine is pumped through a smooth tube with inside diameter $D=30 \mathrm{~mm}$ at close to the critical Reynolds number. The flow is unstable and fluctuates between laminar and turbulent states, causing the pressure gradient to intermittently change from approximately $-4.5 \mathrm{kPa} / \mathrm{m}$ to $-11 \mathrm{kPa} / \mathrm{m}$. Which pressure gradient corresponds to laminar, and which to turbulent, flow? For each flow, compute the shear stress at the tube wall, and sketch the shear stress distributions.

Given: Data on pressure drops in flow in a tube
Find: Which pressure drop is laminar flow, which turbulent

Solution:

Given data

$$
\frac{\partial}{\partial \mathrm{x}} \mathrm{p}_{1}=-4.5 \cdot \frac{\mathrm{kPa}}{\mathrm{~m}} \quad \frac{\partial}{\partial \mathrm{x}} \mathrm{p}_{2}=-11 \cdot \frac{\mathrm{kPa}}{\mathrm{~m}} \quad \mathrm{D}=30 \cdot \mathrm{~mm}
$$

From Section 8-4, a force balance on a section of fluid leads to

$$
\tau_{\mathrm{w}}=-\frac{\mathrm{R}}{2} \cdot \frac{\partial}{\partial \mathrm{x}} \mathrm{p}=-\frac{\mathrm{D}}{4} \cdot \frac{\partial}{\partial \mathrm{x}} \mathrm{p}
$$

Hence for the two cases

$$
\begin{array}{ll}
\tau_{\mathrm{w} 1}=-\frac{\mathrm{D}}{4} \cdot \frac{\partial}{\partial \mathrm{x}} \mathrm{p}_{1} & \tau_{\mathrm{w} 1}=33.8 \mathrm{~Pa} \\
\tau_{\mathrm{w} 2}=-\frac{\mathrm{D}}{4} \cdot \frac{\partial}{\partial \mathrm{x}} \mathrm{p}_{2} & \tau_{\mathrm{w} 2}=82.5 \mathrm{~Pa}
\end{array}
$$

Because both flows are at the same nominal flow rate, the higher pressure drop must correspond to the turbulent flow, because, as indicated in Section 8-4, turbulent flows experience additional stresses. Also indicated in Section 8-4 is that for both flows the shear stress varies from zero at the centerline to the maximums computed above at the walls.

The stress distributions are linear in both cases: Maximum at the walls and zero at the centerline.

Given: Liquid with viscosity and density of water in laminar flow in a smooth capillary the $D=0.25 \mathrm{~mm}, \angle=50 \mathrm{~mm}$.

Find: (a) Maxincen volume flow rate.
(b) Pressure drop to produce this flow rate.
(c) Corresponding wall shear stress.

Solution: Flow will be laminar for $e_{e}<2300$.

$$
R_{e}=\frac{\rho \bar{V} O}{\mu}=\frac{\bar{V}_{O}}{\nu}=\frac{Q}{A} \frac{D}{\nu}=\frac{4 Q}{\pi D^{2}} \frac{D}{\nu}=\frac{4 Q}{\bar{\nu} D}<23 \infty 0
$$

Thus (at $T=20^{\circ} \mathrm{C}$)

$$
Q<\frac{2300 \pi V D}{4}=\frac{2300 \pi}{4} \times 1.0 \times 10^{-6} \frac{m^{2}}{5} \times 0.00025 m=4.52 \times 10^{-7} \mathrm{~m}^{3} / \mathrm{s}
$$

(This flow rate corresponds to 27.1 melvin.)
A force balance on a fiwio element shows:

$$
\Sigma F_{x}=\Delta p \frac{\pi D^{2}}{4}-\tau_{w} \pi D L=0
$$

or

$$
\Delta p=\tau_{\omega} \frac{4 L}{D}
$$

For laminar pipe flow, $u=u_{\text {max }}\left[1-\left(\frac{r}{e}\right)^{2}\right]$, from Eq. 8.14. Thus

$$
\left.\left.\tau_{w}=\mu \frac{\partial u}{\partial y}\right)_{y=0}=-\mu \frac{\partial u}{\partial r}\right)_{r}=R=-\mu \mu_{m a x}\left(-\frac{2 r}{R^{2}}\right)_{r-R}=\frac{2 \mu u_{m a x}}{R}
$$

But $u_{\max }=2 \bar{v}$, so $\tau_{w}=\frac{2 \mu 2 \bar{v}}{D / 2}=\frac{8 \mu \bar{v}}{D}=8 \rho \frac{\nu \bar{v}}{D}$
Also

$$
\bar{V}=\frac{Q}{4}=\frac{4 Q}{\pi D^{2}}=\frac{4}{\pi} \times 4.52 \times 10^{-7} \frac{\mathrm{~m}^{3}}{5} \times \frac{1}{(0.00025)^{2} \mathrm{~m}^{2}}=9.21 \mathrm{~m} / \mathrm{s}
$$

Thus

Guien: Velocity profiles for -pipe flow $\bar{u}=\left(1-\frac{r}{R}\right)^{2}$ (turbulent); $\frac{u}{3}=1-\left(\frac{t}{2}\right)^{2}$ (laminar)
Find: (a) value of Fl 恠 at which $u=\bar{v}$ for each profit.
Mot: ileus n for $b \leqslant n \leqslant 10$
Solution:
Definition: $\bar{y}=\frac{\theta}{A}=\frac{1}{A} \int_{e} u d A$
For lam nat Row, $\bar{V}=\frac{1}{\pi R^{2}} \int_{0}^{R} U\left[1-\left(\frac{r}{R}\right)^{2}\right] 2 \pi r d r=20\left(\left[1-\left(\frac{r^{2}}{R}\right)^{\prime}\right] \frac{\Gamma}{R} d \frac{(}{R}\right)$

$$
\vec{V}=20\left[\frac{1}{2}\left(\frac{r}{R}\right)^{2}-\frac{1}{4}\left(\frac{r}{R}\right)^{4}\right]_{0}^{1}=\frac{V}{2}
$$

The $u=\bar{V}$ when $1-\left(\frac{r}{R}\right)^{2}=\frac{\bar{V}}{J}=\frac{1}{2}$ or $\frac{F}{R}=0.107$ laminar
For turbuivent flow, $\bar{J}=\frac{1}{\pi R^{2}} \int_{0}^{R} U\left(1-\frac{R}{R}\right)^{\frac{1}{N}} 2 \pi d r$

$$
\bar{y}=20 \int_{0}^{1}\left(1-\frac{r}{R}\right)^{\frac{1}{n}} \frac{r}{R} d\left(\frac{r}{R}\right)^{0}
$$

To integrate let $m=1-\frac{r}{R}$. Ten $\frac{r}{R}=1-m, d\left(\frac{r}{R}\right)=-d m$ and

$$
\begin{aligned}
& \bar{y}=20 \int_{1}^{0} m^{\frac{1}{n}}(1-n)(-d m)=20 \int_{0}^{1}\left(m^{\frac{1}{n}}-m^{1+\frac{1}{n}}\right) d m \\
& =205\left[\frac{n}{n+1} m^{\frac{1}{n+1}}-\frac{n}{2 n+1} m^{2+n}\right]_{0}^{1}=2 \pi\left[\frac{n}{n+1}-\frac{n}{2 n+1}\right] \\
& \begin{array}{l}
\bar{v}=20\left[\frac{n(2 n+1)-n(n+1)}{(n+1)(2 n+1)}\right]=-\frac{2 n^{2}}{(n+1)(2 n} \\
n=7, \bar{V}=0 \frac{2(n)^{2}}{8 \times 15}=0.81725
\end{array}
\end{aligned}
$$

The $u=\overline{=}$ when $\left(1-\frac{r}{R}\right)^{\prime \prime}=0.817$ or $\frac{r}{R}=1-(0.877)^{7}=0.738+$ toto
From Eq $8.24, ~ u=\bar{v}$ when.

$$
\left(1-\frac{r}{R}\right)^{\frac{1}{n}}=\frac{2 n^{2}}{(n+1)(2 n+1)}
$$

or

$$
\frac{r}{b}=1-\left[\frac{2 n^{2}}{(n+1)(2 n+1)}\right]^{n}
$$

The is plotted us n.

8.61 Laufer [5] measured the following data for mean velocity in fully developed turbulent pipe flow at $R e_{U}=50,000$:

π / U	0.996	0.981	0.963	0.937	0.907	0.866	0.831
y / r	0.898	0.794	0.691	0.588	0.486	0.383	0.280
π / U	0.792	0.742	0.700	0.650	0.619	0.551	
y / R	0.216	0.154	0.093	0.062	0.041	0.024	

In addition, Laufer measured the following data for mean velocity in fully developed turbulent pipe flow at $R e_{U}=500,000$:

\bar{u} / U	0.997	0.988	0.975	0.959	0.934	0.908
y / R	0.898	0.794	0.691	0.588	0.486	0.383
\bar{u} / U	0.874	0.847	0.818	0.771	0.736	0.690
y / R	0.280	0.216	0.154	0.093	0.062	0.037

Using Excel's trendline analysis, fit each set of data to the "power-law" profile for turbulent flow, Eq. 8.22, and obtain a value of n for each set. Do the data tend to confirm the validity of Eq. 8.22? Plot the data and their corresponding trendlines on the same graph.

Given: Data on mean velocity in fully developed turbulent flow
Find: Trendlines for each set; values of n for each set; plot

Solution:

y / R	u / U
0.898	0.996
0.794	0.981
0.691	0.963
0.588	0.937
0.486	0.907
0.383	0.866
0.280	0.831
0.216	0.792
0.154	0.742
0.093	0.700
0.062	0.650
0.041	0.619
0.024	0.551

y / R	u / U
0.898	0.997
0.794	0.998
0.691	0.975
0.588	0.959
0.486	0.934
0.383	0.908
0.280	0.874
0.216	0.847
0.154	0.818
0.093	0.771
0.062	0.736
0.037	0.690

Equation 8.22 is

$$
\frac{\bar{u}}{U}=\left(\frac{y}{R}\right)^{1 / n}=\left(1-\frac{y}{R}\right)^{1 / n}
$$

Applying the Trendline analysis to each set of data:

At $R e=50,000$
$u / U=1.017(y / R)^{0.161}$
with $R^{2}=0.998$ (high confidence)
Hence

$$
\begin{aligned}
1 / n & =0.161 \\
n & =6.21
\end{aligned}
$$

At $R e=500,000$
$u / U=1.017(y / R)^{0.117}$
with $R^{2}=0.999$ (high confidence)
Hence

$$
\begin{aligned}
1 / n & =0.117 \\
n & =8.55
\end{aligned}
$$

Both sets of data tend to confirm the validity of Eq. 8.22

Problem 8.62
Given: Power-taw exponent n as a function of hers and ratio Flu as a function of n.

$$
\begin{array}{ll}
n=-1.7+1.8 \log \operatorname{Re} 0 & (8,23) \\
\left.V\right|_{0}=\frac{2 n^{2}}{(n+1)(2 n+1)} & (8,24)
\end{array}
$$

Plot: ilo us Rev
Solution:
Prepare a Table of values
Re y

Gwen: Velocity profiles for pipe flow:
$\frac{u}{v}=1-\left(\frac{r}{R}\right)^{2}$ (laminar); $\frac{U}{S}=\left(1-\frac{r}{R}\right)^{\frac{1}{n}}$ (turbulent)
Momerturn coefficient, β, where $\beta \bar{M} \bar{V}=\int_{h} u$ punt
Find: (a) β for laminar profile.
(b) β for turbulent profile wit $n=-1$

Hot: β us n for turbulant profile over range $b_{0} \leqslant n \leqslant 0$, and compare with laminar profile
Solution:

$$
\beta=\frac{1}{m} \int_{a} u p u d A=\frac{1}{p^{1} \pi R^{2} J} \int_{0}^{R} u p u \hbar \pi r d r
$$

Noting Q at $\frac{u}{3}=f\left(\left.T\right|_{R}\right)$

$$
\beta=\frac{1}{p \pi R^{2}}\left[\frac{V}{V}\right]^{2} \int_{0}^{R}\left(\frac{u}{U}\right)^{2} 2 p \pi r d r=2\left[\frac{U}{V}\right]^{2} \int_{0}^{1}\left(\frac{U}{U}\right)^{2}\left(\frac{r}{R}\right) d\left(\frac{r}{R}\right)_{m}-\beta-\beta
$$

For laminar flow, $\frac{u}{3}=1-\left(\frac{r}{R}\right)^{2}$, so $\left(\frac{U}{J}\right)^{2}=1-2\left(\frac{r}{R}\right)^{2}+\left(\frac{r}{R}\right)^{4}$, and

$$
\beta=2\left[\frac{J}{5}\right]^{2} \int_{0}^{1}\left[\left(\frac{T}{R}\right)-2\left(\frac{r}{R}\right)^{3}+\left(\frac{r}{R}\right)^{5}\right] d\left(\frac{r}{R}\right)=2\left[\frac{V}{V}\right]^{2}\left[\frac{1}{2}-\frac{1}{2}+\frac{1}{6}\right]
$$

$\beta=\frac{1}{3}\left[\frac{U}{5}\right]^{2}$. For his case $U=2 \bar{V}$ so

$$
\beta=\frac{1}{3}[2]^{2}=\frac{4}{3}
$$

Blaming
Forturbubent flow, $\frac{u}{0}=\left(1-\frac{r}{R}\right)^{\frac{1}{n}}$, so $\left(\frac{u}{v}\right)^{2}=\left(1-\frac{R}{R}\right)^{\frac{2}{n}}$, and

$$
\beta=2\left[\frac{Q}{\pi}\right]^{2} \int_{0}^{1}\left(1-\frac{F}{R}\right)^{\frac{2}{\pi}}\left(\frac{\sigma}{R}\right) d\left(\frac{\pi}{R}\right)
$$

To integrate, let $m=1-\frac{F}{R}$. Then $\frac{F}{R}=1-m, d\left(\frac{F}{R}\right)=-d m$, so

$$
\begin{aligned}
& \beta=2\left[\frac{5}{5}\right]^{2} \int^{0} m^{\frac{2}{n}}(1-m)(-d m)=2\left[\frac{0 J}{3}\right]^{2} \int_{0}^{1}\left(m^{\frac{2}{n}}-m^{w^{2}}\right) d m \\
& \beta=2\left[\frac{U^{2}}{5}\right]^{2}\left[\frac{n}{(n+2)} m^{\frac{2}{n+1}}-\frac{n}{\left.\left.\left.(2 n+2)^{m^{2}}\right)^{\frac{2}{n}}\right]_{0}^{1}=2\left[\frac{0}{5}\right]^{2}\left[\frac{n}{(n+2)}-\frac{n}{(2 n+2)}\right]\right]}\right. \\
& \beta=2\left[\frac{0}{5}\right]^{2}\left[\frac{(2 n+2) n-(n+2) n}{(n+2)(2 n+2)}=2\left[\frac{0}{5}\right]^{2}\left[\frac{n^{2}}{(n+2)(2 n+2)}\right]_{-.(1)}\right.
\end{aligned}
$$

From Eq. 8.24, $\quad \frac{\bar{V}}{}=\frac{2 n^{2}}{(n+1)(2 n+1)}$
For $n=7, \frac{\bar{J}}{0}=0.877$, so

$$
\beta=\left[\frac{1}{0.877}\right]^{2} \frac{2(7)^{2}}{(9)(10)}=1.02
$$

Bart

Problem 8.63

$$
\text { To plot } \begin{aligned}
\frac{\pi}{y} & =\frac{2 n^{2}}{(n+1)(2 n+1)} \ldots . . .(8,24) \\
\cdot \beta & =\left[\frac{0}{5}\right]^{2} \frac{n^{2}}{(n+2)(n+1)} \\
\beta & =\frac{(n+1)(2 n+1)^{2}}{4 n^{2}(n+2)}
\end{aligned}
$$

8.64 Consider fully developed laminar flow of water between stationary parallel plates. The maximum flow speed, plate spacing, and width are $20 \mathrm{ft} / \mathrm{s}, 0.075 \mathrm{in}$. and 1.25 in . respectively. Find the kinetic energy coefficient, α.

Given:
 Laminar flow between parallel plates

Find: Kinetic energy coefficient, α

Solution:

Basic Equation: The kinetic energy coefficient, α is given by

$$
\begin{equation*}
\alpha=\frac{\int_{A} \rho V^{3} d A}{\dot{m} \bar{V}^{2}} \tag{8.26b}
\end{equation*}
$$

From Section 8-2, for flow between parallel plates

$$
u=u_{\max }\left[1-\left(\frac{y}{a / 2}\right)^{2}\right]=\frac{3}{2} \bar{V}\left[1-\left(\frac{y}{a / 2}\right)^{2}\right]
$$

since $u_{\max }=\frac{3}{2} \bar{V}$.
Substituting

$$
\alpha=\frac{\int_{A} \rho V^{3} d A}{\dot{m} \bar{V}^{2}}=\frac{\int_{A} \rho u^{3} d A}{\rho \bar{V} A \bar{V}^{2}}=\frac{1}{A} \int_{A}\left(\frac{u}{\bar{V}}\right)^{3} d A=\frac{1}{w a} \int_{-\frac{a}{2}}^{\frac{a}{2}}\left(\frac{u}{\bar{V}}\right)^{3} w d y=\frac{2}{a} \int_{0}^{\frac{a}{2}}\left(\frac{u}{\bar{V}}\right)^{3} d y
$$

Then

$$
\alpha=\frac{2}{a} \frac{a}{2} \int_{0}^{1}\left(\frac{u}{u_{\max }}\right)^{3}\left(\frac{u_{\max }}{\bar{V}}\right)^{3} d\left(\frac{y}{a / 2}\right)=\left(\frac{3}{2}\right)^{3} \int_{0}^{1}\left(1-\eta^{2}\right)^{3} d \eta
$$

where $\eta=\frac{y}{a / 2}$
Evaluating,

$$
\left(1-\eta^{2}\right)^{3}=1-3 \eta^{2}+3 \eta^{4}-\eta^{6}
$$

The integral is then

$$
\alpha=\left(\frac{3}{2}\right)^{3} \int_{0}^{1}\left(1-3 \eta^{2}+3 \eta^{4}-\eta^{6}\right) d \eta=\left(\frac{3}{2}\right)^{3}\left[\eta-\eta^{3}+\frac{3}{5} \eta^{5}-\frac{1}{7} \eta^{7}\right]_{0}^{1}=\frac{27}{8} \frac{16}{35}=1.54
$$

Problem 8.65
Given: Fully developed laminar flow in a circular tube.

Find: Kine ic energy coefficient, α
Solution: Apply definition of Kinetic energy coefficient,

$$
\begin{equation*}
\alpha=\frac{\int_{A} \rho V^{3} d A}{\dot{m} \bar{V}^{2}}, \dot{m}=\rho \bar{V} A \tag{8.266}
\end{equation*}
$$

From the analysis of \sec ton $8-3$, for flow in a circular tube,

$$
u=u_{\max }\left[1-\left(\frac{r}{R}\right)^{2}\right]=2 \bar{v}\left[1-\left(\frac{r}{R}\right)^{2}\right] \text { since } u_{\max }=2 \bar{v}
$$

Substituting into E9. 8.256,

$$
\alpha=\frac{\int_{A} \rho V^{3} d A}{\dot{m} \bar{V}^{2}}=\frac{\int_{A} \rho u^{3} d A}{\rho \bar{V} A \bar{V}^{2}}=\frac{1}{A} \int_{A}\left(\frac{u}{V}\right)^{3} d A=\frac{1}{\pi R^{2}} \int_{0}^{R}\left(\frac{u}{\bar{V}}\right)^{3} 2 \pi r d r=2 \int_{0}^{1}\left(\frac{u}{\bar{V}}\right)^{3}\left(\frac{\tilde{R}}{}\right) d\left(\frac{r}{R}\right)
$$

Then

$$
\alpha=2 \int_{0}^{1}\left(\frac{u}{u_{\max }}\right)^{3}\left(\frac{u_{\max }}{\bar{v}}\right)^{3}\left(\frac{r}{R}\right) d\left(\frac{r}{R}\right)=2(2)^{3} \int_{0}^{1}\left(1-\eta^{2}\right)^{3} \eta d \eta \text { where } \eta=\frac{r}{\hat{R}}
$$

Evaluating,

$$
\left(1-\eta^{2}\right)^{3} \eta=\eta-3 \eta^{3}+3 \eta^{5}-\eta^{7}
$$

The integral is

$$
\int_{0}^{1}\left(1-\eta^{2}\right)^{3} \eta d \eta=\left[\frac{\eta^{2}}{2}-\frac{3}{4} \eta^{4}+\frac{3}{6} \eta^{6}-\frac{1}{8} \eta^{8}\right]_{0}^{1}=\frac{1}{2}-\frac{3}{4}+\frac{1}{2}-\frac{1}{8}=\frac{1}{8}
$$

substituting,

$$
\alpha=16 \int_{0}^{1}\left(1-\eta^{2}\right)^{3} \eta d \eta=16 \times \frac{1}{8}=2
$$

8.66 Show that the kinetic energy coefficient, α, for the "power law" turbulent velocity profile of Eq. 8.22 is given by Eq. 8.27. Plot α as a function of $R e_{\bar{V}}$, for $R e_{\bar{V}}=1 \times 10^{4}$ to 1×10^{7}. When analyzing pipe flow problems it is common practice to assume $\alpha \approx 1$. Plot the error associated with this assumption as a function of $R e_{\bar{V}}$, for $R e_{\bar{V}}=1 \times 10^{4}$ to 1×10^{7}.

Given: Definition of kinetic energy correction coefficient α
Find: $\quad \alpha$ for the power-law velocity profile; plot

Solution:

Equation 8.26b is

$$
\alpha=\frac{\int \rho \cdot \mathrm{V}^{3} \mathrm{dA}}{\mathrm{~m}_{\mathrm{rate}} \cdot \mathrm{~V}_{\mathrm{av}}^{2}}
$$

where V is the velocity, $m_{\text {rate }}$ is the mass flow rate and $V_{\text {av }}$ is the average velocity

For the power-law profile (Eq. 8.22)

$$
V=U \cdot\left(1-\frac{r}{R}\right)^{\frac{1}{n}}
$$

For the mass flow rate

$$
\mathrm{m}_{\text {rate }}=\rho \cdot \pi \cdot \mathrm{R}^{2} \cdot \mathrm{~V}_{\mathrm{av}}
$$

Hence the denominator of Eq. 8.26b is

$$
\mathrm{m}_{\mathrm{rate}} \cdot \mathrm{~V}_{\mathrm{av}}^{2}=\rho \cdot \pi \cdot \mathrm{R}^{2} \cdot \mathrm{~V}_{\mathrm{av}}^{3}
$$

We next must evaluate the numerator of Eq. 8.26b $\int \cdot V^{3} d A=\int \rho \cdot 2 \cdot \pi \cdot r \cdot U^{3} \cdot\left(1-\frac{r}{R}\right)^{\frac{3}{n}} d r$

$$
\int_{0}^{\mathrm{R}} \rho \cdot 2 \cdot \pi \cdot r \cdot U^{3} \cdot\left(1-\frac{r}{R}\right)^{\frac{3}{n}} d r=\frac{2 \cdot \pi \cdot \rho \cdot R^{2} \cdot n^{2} \cdot U^{3}}{(3+n) \cdot(3+2 \cdot n)}
$$

To integrate substitute

$$
\mathrm{m}=1-\frac{\mathrm{r}}{\mathrm{R}} \quad \mathrm{dm}=-\frac{\mathrm{dr}}{\mathrm{R}}
$$

Then

$$
\begin{aligned}
& r=R \cdot(1-m) \quad d r=-R \cdot d m \\
& \int_{0}^{\mathrm{R}} \rho \cdot 2 \cdot \pi \cdot r \cdot U^{3} \cdot\left(1-\frac{r}{R}\right)^{\frac{3}{n}} \mathrm{dr}=-\int_{1}^{0} \rho \cdot 2 \cdot \pi \cdot \mathrm{R} \cdot(1-\mathrm{m}) \cdot \mathrm{m}^{\frac{3}{\mathrm{n}}} \cdot \mathrm{R} d m
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \int \rho \cdot V^{3} d A=\int_{0}^{1} \rho \cdot 2 \cdot \pi \cdot R \cdot\left(m^{\frac{3}{n}}-m^{\frac{3}{n}+1}\right) \cdot R d m \\
& \int \rho \cdot V^{3} d A=\frac{2 \cdot R^{2} \cdot n^{2} \cdot \rho \cdot \pi \cdot U^{3}}{(3+n) \cdot(3+2 \cdot n)} \\
& \alpha=\frac{\int \rho \cdot V^{3} d A}{m_{r a t e} \cdot V_{a v}^{2}}=\frac{\frac{2 \cdot R^{2} \cdot n^{2} \cdot \rho \cdot \pi \cdot U^{3}}{(3+n) \cdot(3+2 \cdot n)}}{\rho \cdot \pi \cdot R^{2} \cdot V_{a v}^{3}} \\
& \alpha=\left(\frac{U}{V_{a v}}\right)^{3} \cdot \frac{2 \cdot n^{2}}{(3+n) \cdot(3+2 \cdot n)}
\end{aligned}
$$

To plot α versus $R e_{\text {Vav }}$ we use the following parametric relations

$$
\begin{align*}
& \mathrm{n}=-1.7+1.8 \cdot \log \left(\operatorname{Re}_{\mathrm{u}}\right) \tag{Eq.8.23}\\
& \frac{\mathrm{V}_{\mathrm{av}}}{\mathrm{U}}=\frac{2 \cdot \mathrm{n}^{2}}{(\mathrm{n}+1) \cdot(2 \cdot \mathrm{n}+1)} \tag{Eq.8.24}\\
& \operatorname{Re}_{\mathrm{Vav}}=\frac{\mathrm{V}_{\mathrm{av}}}{\mathrm{U}} \cdot \mathrm{Re}_{\mathrm{U}} \\
& \alpha=\left(\frac{\mathrm{U}}{\mathrm{~V}_{\mathrm{av}}}\right)^{3} \cdot \frac{2 \cdot \mathrm{n}^{2}}{(3+\mathrm{n}) \cdot(3+2 \cdot n)} \tag{Eq.8.27}
\end{align*}
$$

A value of $R e_{\mathrm{U}}$ leads to a value for n; this leads to a value for V_{av} / U; these lead to a value for $R e_{\mathrm{Vav}}$ and α The plots of α, and the error in assuming $\alpha=1$, versus $R e_{\text {Vav }}$ are shown in the associated Excel workbook
8.66 Show that the kinetic energy coefficient, α, for the "power law" turbulent velocity profile of Eq. 8.22 is given by Eq. 8.27. Plot α as a function of $R e_{\bar{V}}$, for $R e_{\bar{V}}=1 \times 10^{4}$ to 1×10^{7}. When analyzing pipe flow problems it is common practice to assume $\alpha \approx 1$. Plot the error associated with this assumption as a function of $R e_{\bar{V}}$, for $R e_{\bar{V}}=1 \times 10^{4}$ to 1×10^{7}.

Given: Definition of kinetic energy correction coefficient α
Find: $\quad \alpha$ for the power-law velocity profile; plot

Solution:

$\mathrm{n}=-1.7+1.8 \cdot \log \left(\mathrm{Re}_{\mathrm{u}}\right)$						
	$R e_{\mathrm{U}}$	n	V_{av} / U	$R e_{\text {Vav }}$	α	α Error
	$1.00 \mathrm{E}+04$	5.50	0.776	$7.76 \mathrm{E}+03$	1.09	8.2\%
$\mathrm{V}_{\mathrm{av}}=\frac{2 \cdot \mathrm{n}^{2}}{}$	$2.50 \mathrm{E}+04$	6.22	0.797	$1.99 \mathrm{E}+04$	1.07	6.7\%
$\overline{\mathrm{U}}=\frac{(\mathrm{n}+1) \cdot(2 \cdot \mathrm{n}+1)}{\text { (Eq. }}$	$5.00 \mathrm{E}+04$	6.76	0.811	$4.06 \mathrm{E}+04$	1.06	5.9\%
$\operatorname{Re}_{\mathrm{Vav}}=\frac{\mathrm{V}_{\mathrm{av}}}{\mathrm{U}} \cdot \operatorname{Re}_{\mathrm{U}}$	$7.50 \mathrm{E}+04$	7.08	0.818	$6.14 \mathrm{E}+04$	1.06	5.4\%
	$1.00 \mathrm{E}+05$	7.30	0.823	$8.23 \mathrm{E}+04$	1.05	5.1\%
	$2.50 \mathrm{E}+05$	8.02	0.837	$2.09 \mathrm{E}+05$	1.05	4.4\%
	$5.00 \mathrm{E}+05$	8.56	0.846	$4.23 \mathrm{E}+05$	1.04	3.9\%
	$7.50 \mathrm{E}+05$	8.88	0.851	$6.38 \mathrm{E}+05$	1.04	3.7\%
$(\mathrm{U})^{3} \quad 2 \cdot \mathrm{n}^{2}$	$1.00 \mathrm{E}+06$	9.10	0.854	$8.54 \mathrm{E}+05$	1.04	3.5\%
$=\left(\frac{U}{V^{\prime}}\right) \cdot \frac{2 \cdot n}{(3+\mathrm{n}) \cdot(3+2 \cdot \mathrm{n})} \quad$ (Eq. 8.27)	$2.50 \mathrm{E}+06$	9.82	0.864	$2.16 \mathrm{E}+06$	1.03	3.1\%
	$5.00 \mathrm{E}+06$	10.4	0.870	$4.35 \mathrm{E}+06$	1.03	2.8\%
this leads to a value for V_{av} / U;	$7.50 \mathrm{E}+06$	10.7	0.873	$6.55 \mathrm{E}+06$	1.03	2.6\%
these lead to a value for $R e_{\text {Vav }}$ and α	$1.00 \mathrm{E}+07$	10.9	0.876	$8.76 \mathrm{E}+06$	1.03	2.5\%

Problem 8.67

8.67 Measurements are made for the flow configuration shown in Fig. 8.12. At the inlet, section (1), the pressure is 70 kPa (gage), the average velocity is $1.75 \mathrm{~m} / \mathrm{s}$, and the elevation is 2.25 m . At the outlet, section (2), the pressure, average velocity, and elevation are 45 kPa (gage), $3.5 \mathrm{~m} / \mathrm{s}$, and 3 m , respectively. Calculate the head loss in meters. Convert to units of energy per unit mass.

Given: Data on flow through elbow
Find: Head loss
Solution:
Basic equation $\left(\frac{p_{1}}{\rho \cdot g}+\alpha \cdot \frac{V_{1}{ }^{2}}{2 \cdot g}+z_{1}\right)-\left(\frac{p_{2}}{\rho \cdot g}+\alpha \cdot \frac{V_{2}{ }^{2}}{2 \cdot g}+z_{2}\right)=\frac{h_{l T}}{g}=H_{l T}$

Assumptions: 1) Steady flow 2) Incompressible flow 3) α at 1 and 2 is approximately 1

Then

$$
\mathrm{H}_{\mathrm{lT}}=\frac{\mathrm{p}_{1}-\mathrm{p}_{2}}{\rho \cdot \mathrm{~g}}+\frac{\mathrm{v}_{1}^{2}-\mathrm{v}_{2}^{2}}{2 \cdot \mathrm{~g}}+\mathrm{z}_{1}-\mathrm{z}_{2}
$$

$\mathrm{H}_{\mathrm{lT}}=(70-45) \times 10^{3} \cdot \frac{\mathrm{~N}}{\mathrm{~m}^{2}} \times \frac{\mathrm{m}^{3}}{1000 \cdot \mathrm{~kg}} \times \frac{\mathrm{kg} \cdot \mathrm{m}}{\mathrm{s}^{2} \cdot \mathrm{~N}} \times \frac{\mathrm{s}^{2}}{9.81 \cdot \mathrm{~m}}+\frac{1}{2} \times\left(1.75^{2}-3.5^{2}\right) \cdot\left(\frac{\mathrm{m}}{\mathrm{s}}\right)^{2} \times \frac{\mathrm{s}^{2}}{9.81 \cdot \mathrm{~m}}+(2.25-3) \cdot \mathrm{m} \quad \mathrm{H}_{\mathrm{lT}}=1.33 \mathrm{~m}$

In terms of energy/mass

$$
\mathrm{h}_{\mathrm{lT}}=\mathrm{g} \cdot \mathrm{H}_{\mathrm{lT}}
$$

$$
\mathrm{h}_{\mathrm{lT}}=9.81 \cdot \frac{\mathrm{~m}}{\mathrm{~s}^{2}} \times 1.33 \cdot \mathrm{~m} \times \frac{\mathrm{N} \cdot \mathrm{~s}^{2}}{\mathrm{~kg} \cdot \mathrm{~m}}
$$

$$
\mathrm{h}_{\mathrm{lT}}=13.0 \cdot \frac{\mathrm{~N} \cdot \mathrm{~m}}{\mathrm{~kg}}
$$

8.68 Water flows in a horizontal constant-area pipe; the pipe diameter is 50 mm and the average flow speed is $1.5 \mathrm{~m} / \mathrm{s}$. At the pipe inlet the gage pressure is 588 kPa , and the outlet is at atmospheric pressure. Determine the head loss in the pipe. If the pipe is now aligned so that the outlet is 25 m above the inlet, what will the inlet pressure need to be to maintain the same flow rate? If the pipe is now aligned so that the outlet is 25 m below the inlet, what will the inlet pressure need to be to maintain the same flow rate? Finally, how much lower than the inlet must the outlet be so that the same flow rate is maintained if both ends of the pipe are at atmospheric pressure (i.e., gravity feed)?

Given: Data on flow in a pipe

Find: Head loss for horizontal pipe; inlet pressure for different alignments; slope for gravity feed

Solution:

Given or available data $\quad \mathrm{D}=50 \cdot \mathrm{~mm} \quad \rho=1000 \cdot \frac{\mathrm{~kg}}{\mathrm{~m}^{3}}$
The governing equation between inlet (1) and exit (2) is

$$
\begin{equation*}
\left(\frac{p_{1}}{\rho}+\alpha_{1} \cdot \frac{\mathrm{~V}_{1}^{2}}{2}+\mathrm{g} \cdot \mathrm{z}_{1}\right)-\left(\frac{\mathrm{p}_{2}}{\rho}+\alpha_{2} \cdot \frac{\mathrm{~V}_{2}^{2}}{2}+\mathrm{g} \cdot \mathrm{z}_{2}\right)=\mathrm{h}_{\mathrm{lT}} \tag{8.29}
\end{equation*}
$$

Horizontal pipe data

$$
\begin{array}{lll}
\text { Horizontal pipe data } & \mathrm{p}_{1}=588 \cdot \mathrm{kPa} & \mathrm{p}_{2}=0 \cdot \mathrm{kPa} \\
& \mathrm{z}_{1}=\mathrm{z}_{2} & \mathrm{~V}_{1}=\mathrm{V}_{2} \\
\text { Equation } 8.29 \text { becomes } & \mathrm{h}_{\mathrm{lT}}=\frac{\mathrm{p}_{1}-\mathrm{p}_{2}}{\rho} & \mathrm{~h}_{\mathrm{lT}}=588 \cdot \frac{\mathrm{~J}}{\mathrm{~kg}}
\end{array}
$$

(Gage pressures)

For an inclined pipe with the same flow rate, the head loss will be the same as above; in addition we have the following new data

$$
\begin{array}{ll}
\mathrm{z}_{1}=0 \cdot \mathrm{~m} & \mathrm{z}_{2}=25 \cdot \mathrm{~m} \\
\mathrm{p}_{1}=\mathrm{p}_{2}+\rho \cdot \mathrm{g} \cdot\left(\mathrm{z}_{2}-\mathrm{z}_{1}\right)+\rho \cdot \mathrm{h}_{\mathrm{lT}} & \mathrm{p}_{1}=833 \cdot \mathrm{kPa}
\end{array}
$$

Equation 8.29 becomes

For a declining pipe with the same flow rate, the head loss will be the same as above; in addition we have the following new data

$$
\mathrm{z}_{1}=0 \cdot \mathrm{~m} \quad \mathrm{z}_{2}=-25 \cdot \mathrm{~m}
$$

Equation 8.29 becomes

$$
\mathrm{p}_{1}=\mathrm{p}_{2}+\rho \cdot \mathrm{g} \cdot\left(\mathrm{z}_{2}-\mathrm{z}_{1}\right)+\rho \cdot \mathrm{h}_{\mathrm{lT}} \quad \mathrm{p}_{1}=343 \cdot \mathrm{kPa}
$$

For a gravity feed with the same flow rate, the head loss will be the same as above; in addition we have the following new data

$$
\mathrm{p}_{1}=0 \cdot \mathrm{kPa} \quad(\text { Gage })
$$

Equation 8.29 becomes

$$
\mathrm{z}_{2}=\mathrm{z}_{1}-\frac{\mathrm{h}_{\mathrm{lT}}}{\mathrm{~g}} \quad \mathrm{z}_{2}=-60 \mathrm{~m}
$$

8.69 For the flow configuration of Fig. 8.12, it is known that the head loss is 1 m . The pressure drop from inlet to outlet is 50 kPa , the velocity doubles from inlet to outlet, and the elevation increase is 2 m . Compute the inlet water velocity.

Given: Data on flow through elbow
Find: Inlet velocity

Solution:

Basic equation $\left(\frac{p_{1}}{\rho \cdot g}+\alpha \cdot \frac{V_{1}^{2}}{2 \cdot g}+z_{1}\right)-\left(\frac{p_{2}}{\rho \cdot g}+\alpha \cdot \frac{V_{2}^{2}}{2 \cdot g}+z_{2}\right)=\frac{h_{l T}}{g}=H_{l T}$

Assumptions: 1) Steady flow 2) Incompressible flow 3) α at 1 and 2 is approximately 1

Then

$$
\begin{aligned}
& \mathrm{V}_{2}^{2}-\mathrm{V}_{1}^{2}=\left(2 \cdot \mathrm{~V}_{1}\right)^{2}-\mathrm{V}_{1}^{2}=3 \cdot \mathrm{~V}_{1}^{2}=\frac{2 \cdot\left(\mathrm{p}_{1}-\mathrm{p}_{2}\right)}{\rho}+2 \cdot \mathrm{~g} \cdot\left(\mathrm{z}_{1}-\mathrm{z}_{2}\right)-2 \cdot \mathrm{~g} \cdot \mathrm{H}_{\mathrm{lT}} \\
& \mathrm{~V}_{1}=\sqrt{\frac{2}{3} \cdot\left[\frac{\left(\mathrm{p}_{1}-\mathrm{p}_{2}\right)}{\rho}+\mathrm{g} \cdot\left(\mathrm{z}_{1}-\mathrm{z}_{2}\right)-\mathrm{g} \cdot \mathrm{H}_{\mathrm{lT}}\right]} \\
& \mathrm{V}_{1}=\sqrt{\frac{2}{3} \times\left[50 \times 10^{3} \cdot \frac{\mathrm{~N}}{\mathrm{~m}^{2}} \times \frac{\mathrm{m}^{3}}{1000 \cdot \mathrm{~kg}} \times \frac{\mathrm{kg} \cdot \mathrm{~m}}{\mathrm{~s}^{2} \cdot \mathrm{~N}}+\frac{9.81 \cdot \mathrm{~m}}{\mathrm{~s}^{2}} \times(-2) \cdot \mathrm{m}-9.81 \cdot \frac{\mathrm{~m}}{\mathrm{~s}^{2}} \times 1 \cdot \mathrm{~m}\right] \quad \mathrm{V}_{1}=3.70 \frac{\mathrm{~m}}{\mathrm{~s}}}
\end{aligned}
$$

8.70 Consider the pipe flow from the water tower of Example 8.7. After another 10 years the pipe roughness has increased such that the flow is fully turbulent and $f=0.04$. Find by how much the flow rate is decreased.

Given: Increased friction factor for water tower flow
Find: How much flow is decreased

Solution:

Basic equation from Example $8.7 \quad V_{2}=\sqrt{\frac{2 \cdot g \cdot\left(z_{1}-z_{2}\right)}{f \cdot\left(\frac{L}{D}+8\right)+1}}$
where
$\mathrm{L}=680 \cdot \mathrm{ft}$
$\mathrm{D}=4 \cdot \mathrm{in}$
$\mathrm{z}_{1}-\mathrm{z}_{2}=80 \cdot \mathrm{ft}$
With $\mathrm{f}=0.0308$, we obtain

We need to recompute with $\mathrm{f}=0.04$

$$
\mathrm{V}_{2}=8.97 \cdot \frac{\mathrm{ft}}{\mathrm{~s}} \quad \text { and } \mathrm{Q}=351 \mathrm{gpm}
$$

$$
\mathrm{V}_{2}=\sqrt{2 \times 32.2 \cdot \frac{\mathrm{ft}}{\mathrm{~s}^{2}} \times 80 \cdot \mathrm{ft} \times \frac{1}{0.04 \cdot\left(\frac{680}{\frac{4}{12}}+8\right)+1}} \quad \mathrm{~V}_{2}=7.88 \frac{\mathrm{ft}}{\mathrm{~s}}
$$

Hence

$$
\begin{aligned}
& \mathrm{Q}=\mathrm{V}_{2} \cdot \mathrm{~A}=\mathrm{V}_{2} \cdot \frac{\pi \cdot \mathrm{D}^{2}}{4} \\
& \mathrm{Q}=7.88 \cdot \frac{\mathrm{ft}}{\mathrm{~s}} \times \frac{\pi}{4} \times\left(\frac{4}{12} \cdot \mathrm{ft}\right)^{2} \times \frac{7.48 \cdot \mathrm{gal}}{1 \cdot \mathrm{ft}^{3}} \times \frac{60 \cdot \mathrm{~s}}{1 \cdot \mathrm{~min}} \quad \mathrm{Q}=309 \mathrm{gpm}
\end{aligned}
$$

(From Table G. $21 \mathrm{ft}^{3}=7.48 \mathrm{gal}$)
Hence the flow is decreased by

Problem 8.71

8.71 Consider the pipe flow from the water tower of Problem
8.70. To increase delivery, the pipe length is reduced from 600 ft to 300 ft (the flow is still fully turbulent and $f \approx 0.04$). What is the flow rate?

Given: Increased friction factor for water tower flow, and reduced length
Find: How much flow is decreased

Solution:

Basic equation from Example $8.7 \quad V_{2}=\sqrt{\frac{2 \cdot g \cdot\left(z_{1}-z_{2}\right)}{f \cdot\left(\frac{L}{D}+8\right)+1}}$
where now we have
$\mathrm{L}=380 \cdot \mathrm{ft}$
$\mathrm{D}=4 \cdot \mathrm{in}$
$\mathrm{V}_{2}=\sqrt{2 \times 32.2 \cdot \frac{\mathrm{ft}}{\mathrm{s}^{2}} \times 80 \cdot \mathrm{ft} \times \frac{1}{0.04 \cdot\left(\frac{380}{\frac{4}{12}}+8\right)+1}}$
$\mathrm{z}_{1}-\mathrm{z}_{2}=80 \cdot \mathrm{ft}$

We need to recompute with $f=0.04$

$$
\begin{aligned}
& \mathrm{Q}=\mathrm{V}_{2} \cdot \mathrm{~A}=\mathrm{V}_{2} \cdot \frac{\pi \cdot \mathrm{D}^{2}}{4} \\
& \mathrm{Q}=10.5 \cdot \frac{\mathrm{ft}}{\mathrm{~s}} \times \frac{\pi}{4} \times\left(\frac{4}{12} \cdot \mathrm{ft}\right)^{2} \times \frac{7.48 \cdot \mathrm{gal}}{1 \cdot \mathrm{ft}^{3}} \times \frac{60 \cdot \mathrm{~s}}{1 \cdot \mathrm{~min}} \quad \mathrm{Q}=411 \mathrm{gpm}
\end{aligned}
$$

Problem 8.72

8.72 The average flow speed in a constant-diameter section of the Alaskan pipeline is $2.5 \mathrm{~m} / \mathrm{s}$. At the inlet, the pressure is 8.25 MPa (gage) and the elevation is 45 m ; at the outlet, the pressure is 350 kPa (gage) and the elevation is 115 m . Calculate the head loss in this section of pipeline.

Given: Data on flow through Alaskan pipeline
Find: Head loss

Solution:

Basic equation $\quad\left(\frac{p_{1}}{\rho_{\mathrm{oil} \cdot} \cdot g}+\alpha \cdot \frac{\mathrm{V}_{1}^{2}}{2 \cdot g}+\mathrm{z}_{1}\right)-\left(\frac{\mathrm{p}_{2}}{\rho_{\mathrm{oil}} \cdot g}+\alpha \cdot \frac{\mathrm{V}_{2}^{2}}{2 \cdot g}+\mathrm{z}_{2}\right)=\frac{\mathrm{h}_{\mathrm{lT}}}{\mathrm{g}}=\mathrm{H}_{\mathrm{lT}}$
Assumptions: 1) Steady flow 2) Incompressible flow 3) α at 1 and 2 is approximately 1 4) SG $=0.9$ (Table A.2)
Then $\quad \mathrm{H}_{\mathrm{lT}}=\frac{\mathrm{p}_{1}-\mathrm{p}_{2}}{\mathrm{SG}_{\mathrm{oil}} \cdot \rho_{\mathrm{H} 2 \mathrm{O}} \cdot \mathrm{g}}+\mathrm{z}_{1}-\mathrm{z}_{2}$
$\mathrm{H}_{\mathrm{lT}}=(8250-350) \times 10^{3} \cdot \frac{\mathrm{~N}}{\mathrm{~m}^{2}} \times \frac{1}{0.9} \times \frac{\mathrm{m}^{3}}{1000 \cdot \mathrm{~kg}} \times \frac{\mathrm{kg} \cdot \mathrm{m}}{\mathrm{s}^{2} \cdot \mathrm{~N}} \times \frac{\mathrm{s}^{2}}{9.81 \cdot \mathrm{~m}}+(45-115) \cdot \mathrm{m}$
$\mathrm{H}_{\mathrm{lT}}=825 \mathrm{~m}$

In terms of energy/mass $\quad h_{l T}=\mathrm{g} \cdot \mathrm{H}_{\mathrm{lT}}$

$$
\mathrm{h}_{\mathrm{lT}}=9.81 \cdot \frac{\mathrm{~m}}{\mathrm{~s}^{2}} \times 825 \cdot \mathrm{~m} \times \frac{\mathrm{N} \cdot \mathrm{~s}^{2}}{\mathrm{~kg} \cdot \mathrm{~m}} \quad \mathrm{~h}_{\mathrm{lT}}=8.09 \cdot \frac{\mathrm{kN} \cdot \mathrm{~m}}{\mathrm{~kg}}
$$

Problem 8.73
Given: Water flows from a horizontal tube ito a very large fan ix as shown.

$$
d=2.5 \mathrm{~m}, f_{e}=2 \mathrm{~J} / \mathrm{g}
$$

Find Average flow speed on tube

Solution:
Apply definition of head loss, Eg 8,29 ,

$$
\left(\frac{p_{1}}{p}+\alpha_{1} \frac{v_{1}^{2}}{2}+g_{3}\right)-\left(\frac{p_{2}}{p^{2}}+\alpha_{2} \frac{p_{2}}{2}+g_{2}\right)=h_{1}
$$

Pt free surface, $U_{2}=0, P_{2}=P_{\text {atm }}$
Ft tube dishaga $P_{1}=p g d, z_{1}=0$. Assume $\alpha_{1} \neq 1$ Sen

$$
\begin{aligned}
& g d+\frac{v^{2}}{2}-g d=h_{e} \\
& \bar{v}^{2}=2^{\prime} h_{T}=2 \times 2 \frac{N \cdot m}{g g} \times \frac{\lg ^{\prime}}{n_{1}^{2}}=4 M_{s}^{2} \\
& V_{1}=2 m i s
\end{aligned}
$$

Gwen: Section of Alaskan pipeline with conditions shown

$$
h_{e_{1 \rightarrow 2}}=6.9 \mathrm{~kJ} / \mathrm{kg}
$$

Find: outlet pressure, P_{2}

$$
\begin{aligned}
& f_{1}=8.5 \mathrm{kPa} \\
& z_{1}=45 \mathrm{~m}
\end{aligned}
$$

Solution:
Computing equation: $\left(\frac{e_{1}}{e}+\alpha_{1} \frac{V^{2}}{2}+g \theta^{2}\right)\left(\frac{p_{2}}{\rho^{2}}+\alpha_{7} \frac{\gamma_{2}^{2}}{2}+g_{2}^{2}\right)=h_{e_{T}} \quad(8,2 a)$
Assumptions: (i) incompressible flow, so $\bar{W}_{1}=\bar{\Psi}_{2}$
(2) fully daudoped so $\alpha_{1}=\alpha_{2}$
(3) $5 G$ Etude \therefore i $=0.90$ (Table A. D)

Then

$$
\begin{aligned}
& e_{2}=e_{1}+\rho g\left(z-z_{2}\right)-p h e t
\end{aligned}
$$

$$
\begin{aligned}
& -0.9 \times 9.9 \frac{\mathrm{gg}}{\mathrm{n}^{3}} \times 6.9 \times 10^{3} \frac{\mathrm{~km}}{\mathrm{~kg}} \\
& \theta_{2}=1.68 \mathrm{MPa}
\end{aligned}
$$

Given: Water flow at $Q=3 g \mathrm{pm}$ through a horizontal $5 / 8 \mathrm{in}$. diameter garden hose. Pressure drop in $L=50 \mathrm{ft}$ is 12,3 psi.
Find: Head lass
Solution: Computing equation is

$$
h_{R T}-\left(\frac{p_{1}}{\rho}+\alpha_{1} f_{2}^{(1)}+g_{1}\right)^{(3)}-\left(\frac{p_{2}}{\rho}+\alpha_{2} \frac{p_{1}^{(1)}}{R}+g_{2} p_{2}^{(3)}\right)
$$

Assumptions: (1) Incompressible flow, so $\vec{V}_{1}=\vec{V}_{2}$ -
(2) Fully dive lo ped so $\alpha_{1}=\alpha_{2}$
(3) Horizontal, 50 3, zr

Then $h_{l T}=\frac{p_{1}-p_{2}}{\rho}=12.3 \frac{16 f}{1 n^{2}} \times \frac{f_{t^{3}}}{1.9451 \mathrm{~kg}} \times 144 \frac{\dot{n}_{2}^{2}}{f^{2}} \times \frac{3 \mathrm{~kg} \cdot \mathrm{ft}_{4}}{\mathrm{lbf.3}^{2}}$

$$
h_{l T}=913 \mathrm{ft}^{2} / \mathrm{s}
$$

Also

$$
H_{e T}=\frac{h_{e T}}{g}=913 \frac{\mathrm{ft}^{2}}{s^{2}} \times \frac{\mathrm{s}^{2}}{32.2 \mathrm{ft}}=28.4 \mathrm{ft}
$$

Problem 8.76

8.76 Water is pumped at the rate of $0.075 \mathrm{~m}^{3} / \mathrm{s}$ from a reservoir 20 m above a pump to a free discharge 35 m above the pump. The pressure on the intake side of the pump is 150 kPa and the pressure on the discharge side is 450 kPa . All pipes are commercial steel of 15 cm diameter. Determine (a) the head supplied by the pump and (b) the total head loss between the pump and point of free discharge.
(4)

Given:

Data on flow from reservoir
Find: Head from pump; head loss

Solution:

Basic equations

$$
\begin{aligned}
& \left(\frac{p_{3}}{\rho \cdot g}+\alpha \cdot \frac{V_{3}^{2}}{2 \cdot g}+z_{3}\right)-\left(\frac{p_{4}}{\rho \cdot g}+\alpha \cdot \frac{V_{4}^{2}}{2 \cdot g}+z_{4}\right)=\frac{h_{l T}}{g}=H_{l T} \quad \text { for flow from } 3 \text { to } 4 \\
& \left(\frac{p_{3}}{\rho \cdot g}+\alpha \cdot \frac{V_{3}{ }^{2}}{2 \cdot g}+z_{3}\right)-\left(\frac{p_{2}}{\rho \cdot g}+\alpha \cdot \frac{V_{2}^{2}}{2 \cdot g}+z_{2}\right)=\frac{\Delta h_{p u m p}}{g}=H_{p u m p} \quad \text { for flow from } 2 \text { to } 3
\end{aligned}
$$

Assumptions: 1) Steady flow 2) Incompressible flow 3) α at 1 and 2 is approximately 14) $V_{2}=V_{3}=V_{4}$ (constant area pipe)
Then for the pump $\quad H_{\text {pump }}=\frac{\mathrm{p}_{3}-\mathrm{p}_{2}}{\rho \cdot g}$

$$
\mathrm{H}_{\text {pump }}=(450-150) \times 10^{3} \cdot \frac{\mathrm{~N}}{\mathrm{~m}^{2}} \times \frac{\mathrm{m}^{3}}{1000 \cdot \mathrm{~kg}} \times \frac{\mathrm{kg} \cdot \mathrm{~m}}{\mathrm{~s}^{2} \cdot \mathrm{~N}} \times \frac{\mathrm{s}^{2}}{9.81 \cdot \mathrm{~m}}
$$

$$
\mathrm{H}_{\text {pump }}=30.6 \mathrm{~m}
$$

In terms of energy/mass

$$
\mathrm{h}_{\text {pump }}=\mathrm{g} \cdot \mathrm{H}_{\text {pump }}
$$

$$
\mathrm{h}_{\text {pump }}=9.81 \cdot \frac{\mathrm{~m}}{\mathrm{~s}^{2}} \times 30.6 \cdot \mathrm{~m} \times \frac{\mathrm{N} \cdot \mathrm{~s}^{2}}{\mathrm{~kg} \cdot \mathrm{~m}}
$$

$$
\mathrm{h}_{\text {pump }}=300 \cdot \frac{\mathrm{~N} \cdot \mathrm{~m}}{\mathrm{~kg}}
$$

For the head loss from 3 to $4 \quad H_{l T}=\frac{\mathrm{p}_{3}-\mathrm{p}_{4}}{\rho \cdot g}+\mathrm{z}_{3}-\mathrm{z}_{4}$
$\mathrm{H}_{\mathrm{lT}}=(450-0) \times 10^{3} \cdot \frac{\mathrm{~N}}{\mathrm{~m}^{2}} \times \frac{\mathrm{m}^{3}}{1000 \cdot \mathrm{~kg}} \times \frac{\mathrm{kg} \cdot \mathrm{m}}{\mathrm{s}^{2} \cdot \mathrm{~N}} \times \frac{\mathrm{s}^{2}}{9.81 \cdot \mathrm{~m}}+(0-35) \cdot \mathrm{m} \quad \quad \mathrm{H}_{\mathrm{lT}}=10.9 \mathrm{~m}$
In terms of energy/mass

$$
\mathrm{h}_{\mathrm{lT}}=\mathrm{g} \cdot \mathrm{H}_{\mathrm{lT}}
$$

$$
\mathrm{h}_{\mathrm{lT}}=9.81 \cdot \frac{\mathrm{~m}}{\mathrm{~s}^{2}} \times 10.9 \cdot \mathrm{~m} \times \frac{\mathrm{N} \cdot \mathrm{~s}^{2}}{\mathrm{~kg} \cdot \mathrm{~m}}
$$

$$
\mathrm{h}_{\mathrm{lT}}=107 \cdot \frac{\mathrm{~N} \cdot \mathrm{~m}}{\mathrm{~kg}}
$$

Given: Data measured in fully developed turbulent pipe flow at $R e_{G}=50,000$ in air:

\bar{u}	0.343	0.318	0.300	0.264	0.228	0.221	0.179	0.152	0.140
$\frac{\square}{R}$	0.0082	0.0075	0.0071	0.0061	0.0055	0.0051	0.0041	0.0034	0.0030

$U=9.8 \mathrm{ft} / \mathrm{s}$ and $R=4.86 \mathrm{in}$.
Find: (a) Evaluate best-fit value of du/dy from plot.
(b) $\tau_{w}=\mu \mathrm{da} / \alpha_{\mu}$
(c) In calculated from friction factor.

$\frac{d^{(\bar{u} / v)}}{d(\bar{v} / R)} \approx \frac{\Delta^{\left(\overline{u_{/ O}}\right)}}{\Delta(\overline{v / R})}=39.8$
$\frac{d \vec{u}}{d y}=\frac{U d(\bar{u} /(J)}{R d(f / R)}=39.8 \times 9.8 \frac{f+}{5} \times \frac{1}{4.86 \mathrm{~m}} \times \frac{12 i n}{f+}=9635^{.0 .20}$
For standard air, $\mu=3,72 \times 10^{-7} 16 f .5 / f 4^{2}, 50$ $\tau_{w}=\frac{d z}{d y}=3.72 \times 10^{-7} \frac{\mathrm{bfc}}{\mathrm{ft}} \times \frac{963}{5}=3.58 \times 10^{-4} \mathrm{lbf} / \mathrm{ft}$
Friction factor is $f=f\left(R e, e_{D}\right)$. For $R e_{U}=50,000$,
 $n=6.8$ from Eq, 8,23. Then from Eq. 8.24,

$$
\frac{\bar{V}}{\bar{U}}=\frac{2 n^{2}}{(n+1)(2 n+1)}=0.812 \text { and } \operatorname{Re}_{\bar{v}}=0.812 R_{e_{U}}=0.812 \times 5,000=40,600
$$

Assuming smooth pipe, $f=0.0219$ from Eg. 8.37
Balancing forces on a flue id element: $(p+\Delta p) \frac{\pi D^{2}}{4} \cdots p \frac{\pi p^{2}}{4}$
Then $(p+\Delta p) \pi D^{2}-\tau_{w} \pi D L-p \pi D^{2}=0$
Then $(p+\Delta p) \frac{\pi D^{2}}{4}-\tau_{\omega} \pi D L-p \frac{\pi D^{2}}{4}=0$

$$
\tau_{m}=\frac{R}{2} \frac{\Delta B}{L}=\frac{D}{4 L}+\frac{L}{D} \rho \frac{V^{2}}{2}=\frac{f}{8} \rho v^{2} ; V=0.812 V=0.812 \times 9.8 \frac{f}{\sec }=7.96 \mathrm{ft} \mathrm{kec}
$$

Substitheting,

Given: Smal-deainter ($i, \alpha=0.5 \mathrm{~mm}$) capillary tube made from drawn aluminum is used in place of an expansion value in a home refrigerator
Find: corresponding relative roughness, will regard"? to fluid foul, can tube beonsudered "shook"?
Solution:
For drawn tubing, from Table 8.1, $e=0.0015 \mathrm{~mm}$ Ten with $>=0.5 \mathrm{~mm}, \frac{e}{y}=\frac{0.0015}{0.5}=0.003$
hooking at the Moody diagram (Fig. 8.13), it is clear Pat this tube cane be considered mod for turbulent flow Rough pe tube. For laminar flow (Res z300) the relative roughness has no effect on the flow
8.79 A smooth, $75-\mathrm{mm}$ diameter pipe carries water $\left(65^{\circ} \mathrm{C}\right)$ horizontally. When the mass flow rate is $0.075 \mathrm{~kg} / \mathrm{s}$, the pressure drop is measured to be 7.5 Pa per 100 m of pipe. Based on these measurements, what is the friction factor? What is the Reynolds number? Does this Reynolds number generally indicate laminar or turbulent flow? Is the flow actually laminar or turbulent?

Given: Data on flow in a pipe
Find: Friction factor; Reynolds number; if flow is laminar or turbulent

Solution:

Given data
$\mathrm{D}=75 \cdot \mathrm{~mm}$
$\frac{\Delta \mathrm{p}}{\mathrm{L}}=0.075 \cdot \frac{\mathrm{~Pa}}{\mathrm{~m}}$
$\mathrm{m}_{\text {rate }}=0.075 \cdot \frac{\mathrm{~kg}}{\mathrm{~s}}$
From Appendix A

$$
\rho=1000 \cdot \frac{\mathrm{~kg}}{\mathrm{~m}^{3}}
$$

$$
\mu=4 \cdot 10^{-4} \cdot \frac{\mathrm{~N} \cdot \mathrm{~s}}{\mathrm{~m}^{2}}
$$

The governing equations between inlet (1) and exit (2) are

$$
\begin{align*}
& \left(\frac{p_{1}}{\rho}+\alpha_{1} \cdot \frac{\mathrm{~V}_{1}^{2}}{2}+\mathrm{g} \cdot \mathrm{z}_{1}\right)-\left(\frac{\mathrm{p}_{2}}{\rho}+\alpha_{2} \cdot \frac{\mathrm{~V}_{2}^{2}}{2}+\mathrm{g} \cdot \mathrm{z}_{2}\right)=\mathrm{h}_{\mathrm{l}} \tag{8.29}\\
& \mathrm{~h}_{\mathrm{l}}=\mathrm{f} \cdot \frac{\mathrm{~L}}{\mathrm{D}} \cdot \frac{\mathrm{~V}^{2}}{2} \tag{8.34}
\end{align*}
$$

For a constant area pipe

$$
\mathrm{V}_{1}=\mathrm{V}_{2}=\mathrm{V}
$$

Hence Eqs. 8.29 and 8.34 become $\mathrm{f}=\frac{2 \cdot \mathrm{D}}{\mathrm{L} \cdot \mathrm{V}^{2}} \cdot \frac{\left(\mathrm{p}_{1}-\mathrm{p}_{2}\right)}{\rho}=\frac{2 \cdot \mathrm{D}}{\rho \cdot \mathrm{V}^{2}} \cdot \frac{\Delta \mathrm{p}}{\mathrm{L}}$

For the velocity

$$
\mathrm{V}=\frac{\mathrm{m}_{\text {rate }}}{\rho \cdot \frac{\pi}{4} \cdot \mathrm{D}^{2}} \quad \mathrm{~V}=0.017 \frac{\mathrm{~m}}{\mathrm{~s}}
$$

Hence

$$
\mathrm{f}=\frac{2 \cdot \mathrm{D}}{\rho \cdot \mathrm{~V}^{2}} \cdot \frac{\Delta \mathrm{p}}{\mathrm{~L}} \quad \mathrm{f}=0.0390
$$

The Reynolds number is

$$
\operatorname{Re}=\frac{\rho \cdot \mathrm{V} \cdot \mathrm{D}}{\mu} \quad \operatorname{Re}=3183
$$

This Reynolds number indicates the flow is turbulent.
(From Eq. 8.37, at this Reynolds number the friction factor for a smooth pipe is $f=0.043$; the friction factor computed above thus indicates that, within experimental error, the flow corresponds to turbulent flow in a smooth pipe)

Problem 8.80

8.80 Using Eqs. 8.36 and 8.37, generate the Moody chart of

Fig. 8.13.

Solution:

Using the add-in function Friction factor from the web site

$e / D=$	0	0.0001	0.0002	0.0005	0.001	0.002	0.005	0.01	0.02	0.04
Re										
500	0.1280	0.1280	0.1280	0.1280	0.1280	0.1280	0.1280	0.1280	0.1280	0.1280
$1.00 \mathrm{E}+03$	0.0640	0.0640	0.0640	0.0640	0.0640	0.0640	0.0640	0.0640	0.0640	0.0640
$1.50 \mathrm{E}+03$	0.0427	0.0427	0.0427	0.0427	0.0427	0.0427	0.0427	0.0427	0.0427	0.0427
$2.30 \mathrm{E}+03$	0.0473	0.0474	0.0474	0.0477	0.0481	0.0489	0.0512	0.0549	0.0619	0.0747
$1.00 \mathrm{E}+04$	0.0309	0.0310	0.0312	0.0316	0.0324	0.0338	0.0376	0.0431	0.0523	0.0672
$1.50 \mathrm{E}+04$	0.0278	0.0280	0.0282	0.0287	0.0296	0.0313	0.0356	0.0415	0.0511	0.0664
$1.00 \mathrm{E}+05$	0.0180	0.0185	0.0190	0.0203	0.0222	0.0251	0.0313	0.0385	0.0490	0.0649
$1.50 \mathrm{E}+05$	0.0166	0.0172	0.0178	0.0194	0.0214	0.0246	0.0310	0.0383	0.0489	0.0648
$1.00 \mathrm{E}+06$	0.0116	0.0134	0.0147	0.0172	0.0199	0.0236	0.0305	0.0380	0.0487	0.0647
$1.50 \mathrm{E}+06$	0.0109	0.0130	0.0144	0.0170	0.0198	0.0235	0.0304	0.0379	0.0487	0.0647
$1.00 \mathrm{E}+07$	0.0081	0.0122	0.0138	0.0168	0.0197	0.0234	0.0304	0.0379	0.0486	0.0647
$1.50 \mathrm{E}+07$	0.0076	0.0121	0.0138	0.0167	0.0197	0.0234	0.0304	0.0379	0.0486	0.0647
$1.00 \mathrm{E}+08$	0.0059	0.0120	0.0137	0.0167	0.0196	0.0234	0.0304	0.0379	0.0486	0.0647

Problem 8.81

8.81 The Colebrook equation (Eq. 8.37) for computing the turbulent friction factor is implicit in f. An explicit expression [30] that gives reasonable accuracy is

$$
f_{0}=0.25\left[\log \left(\frac{e / D}{3.7}+\frac{5.74}{R e^{0.9}}\right)\right]^{-2}
$$

Compare the accuracy of this expression for f with Eq. 8.37 by computing the percentage discrepancy as a function of $R e$ and e / D, for $R e=10^{4}$ to 10^{8}, and $e / D=0,0.0001,0.001,0.01$, and 0.05 . What is the maximum discrepancy for these $R e$ and e / D values? Plot f against $R e$ with e / D as a parameter.

Using the above formula for f_{0}, and Eq. 8.37 for f_{1}

$e / D=$	0	0.0001	0.0002	0.0005	0.001	0.002	0.005	0.01	0.02	0.05

$R e$	f_{0}									0.0327
$1.00 \mathrm{E}+04$	0.0310	0.0311	0.0313	0.0318	0.0342	0.0383	0.0440	0.0534	0.0750	
$2.50 \mathrm{E}+04$	0.0244	0.0247	0.0250	0.0258	0.0270	0.0291	0.0342	0.0407	0.0508	0.0731
$5.00 \mathrm{E}+04$	0.0208	0.0212	0.0216	0.0226	0.0242	0.0268	0.0325	0.0395	0.0498	0.0724
$7.50 \mathrm{E}+04$	0.0190	0.0195	0.0200	0.0212	0.0230	0.0258	0.0319	0.0390	0.0494	0.0721
$1.00 \mathrm{E}+05$	0.0179	0.0185	0.0190	0.0204	0.0223	0.0253	0.0316	0.0388	0.0493	0.0720
$2.50 \mathrm{E}+05$	0.0149	0.0158	0.0167	0.0186	0.0209	0.0243	0.0309	0.0383	0.0489	0.0717
$5.00 \mathrm{E}+05$	0.0131	0.0145	0.0155	0.0178	0.0204	0.0239	0.0307	0.0381	0.0488	0.0717
$7.50 \mathrm{E}+05$	0.0122	0.0139	0.0150	0.0175	0.0201	0.0238	0.0306	0.0380	0.0487	0.0716
$1.00 \mathrm{E}+06$	0.0116	0.0135	0.0148	0.0173	0.0200	0.0237	0.0305	0.0380	0.0487	0.0716
$5.00 \mathrm{E}+06$	0.0090	0.0124	0.0140	0.0168	0.0197	0.0235	0.0304	0.0379	0.0487	0.0716
$1.00 \mathrm{E}+07$	0.0081	0.0122	0.0139	0.0168	0.0197	0.0235	0.0304	0.0379	0.0486	0.0716
$5.00 \mathrm{E}+07$	0.0066	0.0120	0.0138	0.0167	0.0196	0.0234	0.0304	0.0379	0.0486	0.0716
$1.00 \mathrm{E}+08$	0.0060	0.0120	0.0137	0.0167	0.0196	0.0234	0.0304	0.0379	0.0486	0.0716

Using the add-in function Friction factor from the Web

$e / D=$	0	0.0001	0.0002	0.0005	0.001	0.002	0.005	0.01	0.02	0.05

$R e$	$\quad 0.0312$									
$1.00 \mathrm{E}+04$	0.0309	0.0310	0.0312	0.0316	0.0324	0.0338	0.0376	0.0431	0.0523	0.0738
$2.50 \mathrm{E}+04$	0.0245	0.0248	0.0250	0.0257	0.0268	0.0288	0.0337	0.0402	0.0502	0.0725
$5.00 \mathrm{E}+04$	0.0209	0.0212	0.0216	0.0226	0.0240	0.0265	0.0322	0.0391	0.0494	0.0720
$7.50 \mathrm{E}+04$	0.0191	0.0196	0.0200	0.0212	0.0228	0.0256	0.0316	0.0387	0.0492	0.0719
$1.00 \mathrm{E}+05$	0.0180	0.0185	0.0190	0.0203	0.0222	0.0251	0.0313	0.0385	0.0490	0.0718
$2.50 \mathrm{E}+05$	0.0150	0.0158	0.0166	0.0185	0.0208	0.0241	0.0308	0.0381	0.0488	0.0716
$5.00 \mathrm{E}+05$	0.0132	0.0144	0.0154	0.0177	0.0202	0.0238	0.0306	0.0380	0.0487	0.0716
$7.50 \mathrm{E}+05$	0.0122	0.0138	0.0150	0.0174	0.0200	0.0237	0.0305	0.0380	0.0487	0.0716
$1.00 \mathrm{E}+06$	0.0116	0.0134	0.0147	0.0172	0.0199	0.0236	0.0305	0.0380	0.0487	0.0716
$5.00 \mathrm{E}+06$	0.0090	0.0123	0.0139	0.0168	0.0197	0.0235	0.0304	0.0379	0.0486	0.0716
$1.00 \mathrm{E}+07$	0.0081	0.0122	0.0138	0.0168	0.0197	0.0234	0.0304	0.0379	0.0486	0.0716
$5.00 \mathrm{E}+07$	0.0065	0.0120	0.0138	0.0167	0.0196	0.0234	0.0304	0.0379	0.0486	0.0716
$1.00 \mathrm{E}+08$	0.0059	0.0120	0.0137	0.0167	0.0196	0.0234	0.0304	0.0379	0.0486	0.0716

The error can now be computed

$e / D=$	0	0.0001	0.0002	0.0005	0.001	0.002	0.005	0.01	0.02	0.05

$R e$		Error (\%)								
$1.00 \mathrm{E}+04$	0.29%	0.36%	0.43%	0.61%	0.88%	1.27%	1.86%	$\mathbf{2 . 1 2 \%}$	2.08%	1.68%
$2.50 \mathrm{E}+04$	0.39%	0.24%	0.11%	0.21%	0.60%	1.04%	1.42%	1.41%	1.21%	0.87%
$5.00 \mathrm{E}+04$	0.63%	0.39%	0.19%	0.25%	0.67%	1.00%	1.11%	0.98%	0.77%	0.52%
$7.50 \mathrm{E}+04$	0.69%	0.38%	0.13%	0.35%	0.73%	0.95%	0.93%	0.77%	0.58%	0.38%
$1.00 \mathrm{E}+05$	0.71%	0.33%	0.06%	0.43%	0.76%	0.90%	0.81%	0.64%	0.47%	0.30%
$2.50 \mathrm{E}+05$	0.65%	0.04%	0.28%	0.64%	0.72%	0.66%	0.48%	0.35%	0.24%	0.14%
$5.00 \mathrm{E}+05$	0.52%	0.26%	0.51%	0.64%	0.59%	0.47%	0.31%	0.21%	0.14%	0.08%
$7.50 \mathrm{E}+05$	0.41%	0.41%	0.58%	0.59%	0.50%	0.37%	0.23%	0.15%	0.10%	0.06%
$1.00 \mathrm{E}+06$	0.33%	0.49%	0.60%	0.54%	0.43%	0.31%	0.19%	0.12%	0.08%	0.05%
$5.00 \mathrm{E}+06$	0.22%	0.51%	0.39%	0.24%	0.16%	0.10%	0.06%	0.03%	0.02%	0.01%
$1.00 \mathrm{E}+07$	0.49%	0.39%	0.27%	0.15%	0.10%	0.06%	0.03%	0.02%	0.01%	0.01%
$5.00 \mathrm{E}+07$	1.15%	0.15%	0.09%	0.05%	0.03%	0.02%	0.01%	0.01%	0.00%	0.00%
$1.00 \mathrm{E}+08$	1.44%	0.09%	0.06%	0.03%	0.02%	0.01%	0.00%	0.00%	0.00%	0.00%

The maximum discrepancy is 2.12% at $R e=10,000$ and $e / D=0.01$

Problem 8.82

8.82 We saw in Section 8-7 that instead of the implicit Colebrook equation (Eq. 8.37) for computing the turbulent friction factor f, an explicit expression that gives reasonable accuracy is

$$
\frac{1}{\sqrt{f}}=-1.8 \log \left[\left(\frac{e / D}{3.7}\right)^{1.11}+\frac{6.9}{R e}\right]
$$

Compare the accuracy of this expression for f with Eq. 8.37 by computing the percentage discrepancy as a function of $R e$ and e / D, for $R e=10^{4}$ to 10^{8}, and $e / D=0,0.0001,0.001,0.01$, and 0.05 . What is the maximum discrepancy for these Re and e / D values? Plot f against $R e$ with e / D as a parameter.

Using the above formula for f_{0}, and Eq. 8.37 for f_{1}

$e / D=$	0	0.0001	0.0002	0.0005	0.001	0.002	0.005	0.01	0.02	0.05

$R e$	f_{0}									0.0322
$1.00 \mathrm{E}+04$	0.0309	0.0310	0.0311	0.0315	0.0335	0.0374	0.0430	0.0524	0.0741	
$2.50 \mathrm{E}+04$	0.0244	0.0245	0.0248	0.0254	0.0265	0.0285	0.0336	0.0401	0.0502	0.0727
$5.00 \mathrm{E}+04$	0.0207	0.0210	0.0213	0.0223	0.0237	0.0263	0.0321	0.0391	0.0495	0.0722
$7.50 \mathrm{E}+04$	0.0189	0.0193	0.0197	0.0209	0.0226	0.0254	0.0316	0.0387	0.0492	0.0720
$1.00 \mathrm{E}+05$	0.0178	0.0183	0.0187	0.0201	0.0220	0.0250	0.0313	0.0385	0.0491	0.0719
$2.50 \mathrm{E}+05$	0.0148	0.0156	0.0164	0.0183	0.0207	0.0241	0.0308	0.0382	0.0489	0.0718
$5.00 \mathrm{E}+05$	0.0131	0.0143	0.0153	0.0176	0.0202	0.0238	0.0306	0.0381	0.0488	0.0717
$7.50 \mathrm{E}+05$	0.0122	0.0137	0.0148	0.0173	0.0200	0.0237	0.0305	0.0381	0.0488	0.0717
$1.00 \mathrm{E}+06$	0.0116	0.0133	0.0146	0.0172	0.0199	0.0236	0.0305	0.0380	0.0488	0.0717
$5.00 \mathrm{E}+06$	0.0090	0.0123	0.0139	0.0168	0.0197	0.0235	0.0304	0.0380	0.0487	0.0717
$1.00 \mathrm{E}+07$	0.0081	0.0122	0.0139	0.0168	0.0197	0.0235	0.0304	0.0380	0.0487	0.0717
$5.00 \mathrm{E}+07$	0.0066	0.0120	0.0138	0.0167	0.0197	0.0235	0.0304	0.0380	0.0487	0.0717
$1.00 \mathrm{E}+08$	0.0060	0.0120	0.0138	0.0167	0.0197	0.0235	0.0304	0.0380	0.0487	0.0717

Using the add-in function Friction factor from the Web

$e / D=$	0	0.0001	0.0002	0.0005	0.001	0.002	0.005	0.01	0.02	0.05

Re										
$1.00 \mathrm{E}+04$	0.0309	0.0310	0.0312	0.0316	0.0324	0.0338	0.0376	0.0431	0.0523	0.0738
$2.50 \mathrm{E}+04$	0.0245	0.0248	0.0250	0.0257	0.0268	0.0288	0.0337	0.0402	0.0502	0.0725
$5.00 \mathrm{E}+04$	0.0209	0.0212	0.0216	0.0226	0.0240	0.0265	0.0322	0.0391	0.0494	0.0720
$7.50 \mathrm{E}+04$	0.0191	0.0196	0.0200	0.0212	0.0228	0.0256	0.0316	0.0387	0.0492	0.0719
$1.00 \mathrm{E}+05$	0.0180	0.0185	0.0190	0.0203	0.0222	0.0251	0.0313	0.0385	0.0490	0.0718
$2.50 \mathrm{E}+05$	0.0150	0.0158	0.0166	0.0185	0.0208	0.0241	0.0308	0.0381	0.0488	0.0716
$5.00 \mathrm{E}+05$	0.0132	0.0144	0.0154	0.0177	0.0202	0.0238	0.0306	0.0380	0.0487	0.0716
$7.50 \mathrm{E}+05$	0.0122	0.0138	0.0150	0.0174	0.0200	0.0237	0.0305	0.0380	0.0487	0.0716
$1.00 \mathrm{E}+06$	0.0116	0.0134	0.0147	0.0172	0.0199	0.0236	0.0305	0.0380	0.0487	0.0716
$5.00 \mathrm{E}+06$	0.0090	0.0123	0.0139	0.0168	0.0197	0.0235	0.0304	0.0379	0.0486	0.0716
$1.00 \mathrm{E}+07$	0.0081	0.0122	0.0138	0.0168	0.0197	0.0234	0.0304	0.0379	0.0486	0.0716
$5.00 \mathrm{E}+07$	0.0065	0.0120	0.0138	0.0167	0.0196	0.0234	0.0304	0.0379	0.0486	0.0716
$1.00 \mathrm{E}+08$	0.0059	0.0120	0.0137	0.0167	0.0196	0.0234	0.0304	0.0379	0.0486	0.0716

The error can now be computed

$e / D=$	0	0.0001	0.0002	0.0005	0.001	0.002	0.005	0.01	0.02	0.05

Re	Error (\%)									
$1.00 \mathrm{E}+04$	0.01\%	0.15\%	0.26\%	0.46\%	0.64\%	0.73\%	0.55\%	0.19\%	0.17\%	0.43\%
$2.50 \mathrm{E}+04$	0.63\%	0.88\%	1.02\%	1.20\%	1.22\%	1.03\%	0.51\%	0.11\%	0.14\%	0.29\%
$5.00 \mathrm{E}+04$	0.85\%	1.19\%	1.32\%	1.38\%	1.21\%	0.84\%	0.28\%	0.00\%	0.16\%	0.24\%
$7.50 \mathrm{E}+04$	0.90\%	1.30\%	1.40\%	1.35\%	1.07\%	0.65\%	0.16\%	0.06\%	0.17\%	0.23\%
$1.00 \mathrm{E}+05$	0.92\%	1.34\%	1.42\%	1.28\%	0.94\%	0.52\%	0.09\%	0.09\%	0.18\%	0.22\%
$2.50 \mathrm{E}+05$	0.84\%	1.33\%	1.25\%	0.85\%	0.47\%	0.16\%	0.07\%	0.15\%	0.19\%	0.21\%
$5.00 \mathrm{E}+05$	0.70\%	1.16\%	0.93\%	0.48\%	0.19\%	0.00\%	0.13\%	0.18\%	0.20\%	0.20\%
$7.50 \mathrm{E}+05$	0.59\%	0.99\%	0.72\%	0.30\%	0.07\%	0.07\%	0.16\%	0.18\%	0.20\%	0.20\%
$1.00 \mathrm{E}+06$	0.50\%	0.86\%	0.57\%	0.20\%	0.01\%	0.10\%	0.17\%	0.19\%	0.20\%	0.20\%
$5.00 \mathrm{E}+06$	0.07\%	0.17\%	0.01\%	0.11\%	0.15\%	0.18\%	0.19\%	0.20\%	0.20\%	0.20\%
$1.00 \mathrm{E}+07$	0.35\%	0.00\%	0.09\%	0.15\%	0.18\%	0.19\%	0.20\%	0.20\%	0.20\%	0.20\%
$5.00 \mathrm{E}+07$	1.02\%	0.16\%	0.18\%	0.19\%	0.20\%	0.20\%	0.20\%	0.20\%	0.20\%	0.20\%
$1.00 \mathrm{E}+08$	1.31\%	0.18\%	0.19\%	0.20\%	0.20\%	0.20\%	0.20\%	0.20\%	0.20\%	0.20\%

The maximum discrepancy is 1.42% at $R e=100,000$ and $e / D=0.0002$

Given: Moody diagram gives Darcy friction factor, t.
Fanning friction factor is $f_{F} \equiv \frac{\tau_{w}}{\frac{1}{2} \rho \bar{v}^{2}}$
Find: Relate Darky and Fanning friction factors tor fully developed pipe flow. Show $f=4 f_{F}$.

Solution: Consider cylindrical! $u v$ containing fluid in pipe; apply force balance, definition of f.

Basic equations: $\Sigma F_{x}=0$

From the force balance,

$$
(p+\Delta p) \frac{\pi D^{2}}{4}-\tau_{\omega} \pi O L-p \frac{\pi D^{2}}{4}=0 \quad \text { or } \quad \tau_{\omega}=\frac{D}{4} \frac{\Delta p}{L}
$$

Substitheting.

$$
\tau_{w}=\frac{D}{4 L} f \frac{L}{D} \frac{\rho \bar{V}^{2}}{2}=f \rho \frac{\bar{V}_{g}^{2}}{}
$$

But

$$
f_{F} \equiv \frac{\tau w^{2}}{\frac{1}{2} \rho \bar{v}^{2}}=\frac{f \rho \bar{v}^{2}}{8} \frac{z}{\rho \bar{v}^{2}}=\frac{f}{4}
$$

Given: Water flow through. sudden enlargement from 25 mm to 50 mm diameter. $Q=1.25$ liters per minute.

Find: Pressure rise across enlargement. Comparison with value for frictionkss flow.
Solution: Apply energy equation for pipe flow.

$$
D_{1}=25 \mathrm{~mm} \quad D_{2}=50 \mathrm{~mm}
$$

Computing equation: $\frac{p_{1}}{\rho}+\alpha_{1} \frac{\bar{V}_{1}^{2}}{2}+g \neq 1=\frac{p_{2}}{\rho}+\alpha_{2} \frac{\nabla_{2}^{2}}{2}+g_{p}^{2}+h_{R_{T}}$
Assumptions: (i) Steads flow
(2) Incompressible flow

$$
h_{C T}=K \frac{\bar{V}_{T}^{2}}{2}
$$

(3) Uniform flow at each section: $\alpha_{1}=\alpha_{2}=1$
(4) Horizontal section

Then

$$
p_{2}-p_{1}=\frac{\rho}{2}\left(\bar{v}_{1}^{2}-\bar{v}_{2}^{2}\right)-\rho h_{c_{12}}
$$

From continuity, $\bar{V}_{1} A_{1}=\vec{V}_{2} A_{2}$, so $\vec{V}_{2}=\bar{V}_{1} \frac{A_{1}}{A_{2}}=\bar{V}_{(}\left(D_{1}\right)^{2} ; \bar{V}_{2}^{2}=\bar{V}_{1}^{2}\left(\frac{D_{1}}{D_{2}}\right)^{4}$
From Fig. 8.14, at $A R=\left(\frac{D}{2}\right)^{2}=\frac{1}{4}, k=0.56$.

$$
\bar{V}_{1}=\frac{Q}{A_{1}}=\frac{4 Q}{\pi D_{1}^{2}}=\frac{4}{\pi} \times 1.25 \frac{1}{5} \times 10^{-3} \frac{m}{}^{3} \times \frac{1}{\left(25 \times 10^{-3}\right)^{2} m^{2}}=2.55 \mathrm{~m} / \mathrm{s}
$$

Substituting,

$$
\begin{aligned}
p_{2}-p_{1} & =\frac{\rho \bar{V}_{1}^{2}}{2}\left[1-\left(\frac{D_{1}}{D_{2}}\right)^{4}\right]-\frac{k \rho \bar{V}_{1}^{2}}{2}=\frac{1}{2} \rho \bar{V}_{1}^{2}\left[1-\left(\frac{D_{1}}{D_{2}}\right)^{4}-k\right] \\
& =\frac{1}{2} \times \cdot 999 \frac{k g_{1}}{r_{1}^{3}} \times(2.55)^{2} \frac{\mathrm{~m}^{2}}{s^{2}}\left[1-\left(\frac{1}{2}\right)^{4}-0.56\right] \frac{\mathrm{N} \cdot \mathrm{~s}^{2}}{\mathrm{~kg}} \\
p_{2}-p_{1} & =1.22 k \rho_{2}
\end{aligned}
$$

For frictionless flow, $k=0$, and

$$
p_{2}-p_{1}=\frac{1}{2} p_{1}^{2}\left[1-\left(\frac{D_{1}}{D_{2}}\right)^{4}\right]=3.04 \mathrm{R} p_{a}
$$

Thus $\frac{\Delta p_{\text {actual }}}{\Delta \text { prrictiness }}=\frac{1.22}{3.04}=0.403$ or 40.3%
8.85 Water flows at $0.003 \mathrm{~mm}^{3} / \mathrm{s}$ through a gradual contraction, in which the pipe diameter is reduced from 5 cm to 2.5 cm , with a 120° included angle. If the pressure before the contraction is 200 kPa , estimate the pressure after the contraction. Recompute the answer if the included angle is changed to 180° (a sudden contraction).

Given: Flow through gradual contraction
Find: Pressure after contraction; compare to sudden contraction

Solution:

Basic equations

$$
\left(\frac{\mathrm{p}_{1}}{\rho}+\alpha \cdot \frac{\mathrm{V}_{1}^{2}}{2}+\mathrm{g} \cdot \mathrm{z}_{1}\right)-\left(\frac{\mathrm{p}_{2}}{\rho}+\alpha \cdot \frac{\mathrm{V}_{2}^{2}}{2}+\mathrm{g} \cdot \mathrm{z}_{2}\right)=\mathrm{h}_{\operatorname{lm}} \quad \mathrm{h}_{\mathrm{lm}}=\mathrm{K} \cdot \frac{\mathrm{~V}_{2}^{2}}{2} \quad \mathrm{Q}=\mathrm{V} \cdot \mathrm{~A}
$$

Assumptions: 1) Steady flow 2) Incompressible flow 3) α at 1 and 2 is approximately 1 4) Horizontal
For an included angle of 120° and an area ratio $\frac{A_{2}}{A_{1}}=\left(\frac{D_{2}}{D_{1}}\right)^{2}=\left(\frac{2.5}{5}\right)^{2}=0.25$ we find from Table 8. $\mathrm{K}=0.27$
Hence the energy equation becomes $\left(\frac{\mathrm{p}_{1}}{\rho}+\frac{\mathrm{V}_{1}^{2}}{2}\right)-\left(\frac{\mathrm{p}_{2}}{\rho}+\frac{\mathrm{V}_{2}^{2}}{2}\right)=\mathrm{K} \cdot \frac{\mathrm{V}_{2}^{2}}{2} \quad$ with $\quad \mathrm{V}_{1}=\frac{4 \cdot \mathrm{Q}}{\pi \cdot \mathrm{D}_{1}{ }^{2}} \quad \mathrm{~V}_{2}=\frac{4 \cdot \mathrm{Q}}{\pi \cdot \mathrm{D}_{2}{ }^{2}}$

$$
\mathrm{P}_{2}=\mathrm{p}_{1}-\frac{\rho}{2} \cdot\left[(1+\mathrm{K}) \cdot \mathrm{V}_{2}^{2}-\mathrm{V}_{1}^{2}\right]=\mathrm{p}_{2}-\frac{8 \cdot \rho \cdot \mathrm{Q}^{2}}{\pi^{2}} \cdot\left[\frac{(1+\mathrm{K})}{\mathrm{D}_{2}^{4}}-\frac{1}{\mathrm{D}_{1}^{4}}\right]
$$

$\mathrm{p}_{2}=200 \times 10^{3} \cdot \frac{\mathrm{~N}}{\mathrm{~m}^{2}}-\frac{8}{\pi^{2}} \times 1000 \cdot \frac{\mathrm{~kg}}{\mathrm{~m}^{3}} \times\left[\frac{0.003 \cdot \mathrm{~mm}^{3}}{\mathrm{~s}} \cdot\left(\frac{1 \cdot \mathrm{~m}}{1000 \cdot \mathrm{~mm}}\right)^{3}\right]^{2} \times\left[(1+0.27) \times \frac{1}{(0.025 \cdot \mathrm{~m})^{4}}-\frac{1}{(0.05 \cdot \mathrm{~m})^{4}}\right] \times \frac{\mathrm{N} \cdot \mathrm{s}^{2}}{\mathrm{~kg} \cdot \mathrm{~m}}$
$\mathrm{p}_{2}=200 \cdot \mathrm{kPa} \quad$ No change because the flow rate is miniscule!
Repeating the above analysis for an included angle of 180° (sudden contraction) $\mathrm{K}=0.41$
$\mathrm{P}_{2}=200 \times 10^{3} \cdot \frac{\mathrm{~N}}{\mathrm{~m}^{2}}-\frac{8}{\pi^{2}} \times 1000 \cdot \frac{\mathrm{~kg}}{\mathrm{~m}^{3}} \times\left[\frac{0.003 \cdot \mathrm{~mm}^{3}}{\mathrm{~s}} \cdot\left(\frac{1 \cdot \mathrm{~m}}{1000 \cdot \mathrm{~mm}}\right)^{3}\right]^{2} \times\left[(1+0.41) \times \frac{1}{(0.025 \cdot \mathrm{~m})^{4}}-\frac{1}{(0.05 \cdot \mathrm{~m})^{4}}\right] \times \frac{\mathrm{N} \cdot \mathrm{s}^{2}}{\mathrm{~kg} \cdot \mathrm{~m}}$
$\mathrm{p}_{2}=200 \cdot \mathrm{kPa} \quad$ No change because the flow rate is miniscule!
The flow rate has a typo: it is much too small, and should be $\mathrm{Q}=0.003 \cdot \frac{\mathrm{~m}^{3}}{\mathrm{~s}} \quad$ not $\quad \mathrm{Q}=0.003 \cdot \frac{\mathrm{~mm}^{3}}{\mathrm{~s}}$
$\mathrm{p}_{2}=200 \times 10^{3} \cdot \frac{\mathrm{~N}}{\mathrm{~m}^{2}}-\frac{8}{\pi^{2}} \times 1000 \cdot \frac{\mathrm{~kg}}{\mathrm{~m}^{3}} \times\left(\frac{0.003 \cdot \mathrm{~m}^{3}}{\mathrm{~s}}\right)^{2} \times\left[(1+0.27) \times \frac{1}{(0.025 \cdot \mathrm{~m})^{4}}-\frac{1}{(0.05 \cdot \mathrm{~m})^{4}}\right] \times \frac{\mathrm{N} \cdot \mathrm{s}^{2}}{\mathrm{~kg} \cdot \mathrm{~m}}$
$\mathrm{p}_{2}=177 \cdot \mathrm{kPa}$

Repeating the above analysis for an included angle of 180° (sudden contraction)

$$
\mathrm{K}=0.41
$$

$\mathrm{P}_{2}=200 \times 10^{3} \cdot \frac{\mathrm{~N}}{\mathrm{~m}^{2}}-\frac{8}{\pi^{2}} \times 1000 \cdot \frac{\mathrm{~kg}}{\mathrm{~m}^{3}} \times\left(\frac{0.003 \cdot \mathrm{~m}^{3}}{\mathrm{~s}}\right)^{2} \times\left[(1+0.41) \times \frac{1}{(0.025 \cdot \mathrm{~m})^{4}}-\frac{1}{(0.05 \cdot \mathrm{~m})^{4}}\right] \times \frac{\mathrm{N} \cdot \mathrm{s}^{2}}{\mathrm{~kg} \cdot \mathrm{~m}}$ $\mathrm{p}_{2}=175 \cdot \mathrm{kPa}$

There is slightly more loss in the sudden contraction

Problem 8.86

8.86 Air at standard conditions flows through a sudden expansion in a circular duct. The upstream and downstream duct diameters are 75 mm and 225 mm , respectively. The pressure downstream is 5 mm of water higher than that upstream. Determine the average speed of the air approaching the expansion and the volume flow rate.

Given: Flow through sudden expansion
Find: Inlet speed; Volume flow rate

Solution:

Basic equations $\left(\frac{p_{1}}{\rho}+\alpha \cdot \frac{V_{1}^{2}}{2}+g \cdot z_{1}\right)-\left(\frac{\mathrm{p}_{2}}{\rho}+\alpha \cdot \frac{V_{2}^{2}}{2}+g \cdot z_{2}\right)=h_{l m} \quad h_{l m}=K \cdot \frac{V_{1}^{2}}{2} \quad Q=V \cdot A \quad \Delta p=\rho_{H 2 O} \cdot g \cdot \Delta h$
Assumptions: 1) Steady flow 2) Incompressible flow 3) α at 1 and 2 is approximately 1 4) Horizontal
Hence the energy equation becomes

$$
\left(\frac{\mathrm{p}_{1}}{\rho}+\frac{\mathrm{V}_{1}^{2}}{2}\right)-\left(\frac{\mathrm{p}_{2}}{\rho}+\frac{\mathrm{V}_{2}^{2}}{2}\right)=\mathrm{K} \cdot \frac{\mathrm{~V}_{1}^{2}}{2}
$$

From continuity $\mathrm{V}_{2}=\mathrm{V}_{1} \cdot \frac{\mathrm{~A}_{1}}{\mathrm{~A}_{2}}=\mathrm{V}_{1} \cdot \mathrm{AR}$
Hence $\quad\left(\frac{\mathrm{p}_{1}}{\rho}+\frac{\mathrm{V}_{1}{ }^{2}}{2}\right)-\left(\frac{\mathrm{p}_{2}}{\rho}+\frac{\mathrm{V}_{1}{ }^{2} \cdot \mathrm{AR}^{2}}{2}\right)=\mathrm{K} \cdot \frac{\mathrm{V}_{1}{ }^{2}}{2}$
Solving for $V_{1} \quad V_{1}=\sqrt{\frac{2 \cdot\left(P_{2}-p_{1}\right)}{\rho \cdot\left(1-A R^{2}-K\right)}} \quad A R=\left(\frac{D_{1}}{D_{2}}\right)^{2}=\left(\frac{75}{225}\right)^{2}=0.111 \quad$ so from Fig. $8.14 \quad K=0.8$

Also

$$
\mathrm{p}_{2}-\mathrm{p}_{1}=\rho_{\mathrm{H} 2 \mathrm{O}} \cdot \mathrm{~g} \cdot \Delta \mathrm{~h}=1000 \cdot \frac{\mathrm{~kg}}{\mathrm{~m}^{3}} \times 9.81 \cdot \frac{\mathrm{~m}}{\mathrm{~s}^{2}} \times \frac{5}{1000} \cdot \mathrm{~m} \times \frac{\mathrm{N} \cdot \mathrm{~s}^{2}}{\mathrm{~kg} \cdot \mathrm{~m}}=49.1 \cdot \mathrm{~Pa}
$$

Hence $\quad V_{1}=\sqrt{2 \times 49.1 \cdot \frac{\mathrm{~N}}{\mathrm{~m}^{2}} \times \frac{\mathrm{m}^{3}}{1.23 \cdot \mathrm{~kg}} \times \frac{1}{\left(1-0.111^{2}-0.8\right)} \times \frac{\mathrm{kg} \cdot \mathrm{m}}{\mathrm{N} \cdot \mathrm{s}^{2}}}$

$$
\mathrm{Q}=\mathrm{V}_{1} \cdot \mathrm{~A}_{1}=\frac{\pi \cdot \mathrm{D}_{1}^{2}}{4} \cdot \mathrm{~V}_{1} \quad \mathrm{Q}=\frac{\pi}{4} \times\left(\frac{75}{1000} \cdot \mathrm{~m}\right)^{2} \times 20.6 \cdot \frac{\mathrm{~m}}{\mathrm{~s}}
$$

$$
\begin{aligned}
& \mathrm{V}_{1}=20.6 \frac{\mathrm{~m}}{\mathrm{~s}} \\
& \mathrm{Q}=0.0910 \cdot \frac{\mathrm{~m}^{3}}{\mathrm{~s}} \quad \mathrm{Q}=5.46 \cdot \frac{\mathrm{~m}^{3}}{\mathrm{~min}}
\end{aligned}
$$

Problem 8.87

8.87 Water flows through a $2-\mathrm{in}$. diameter tube that suddenly contracts to 1 in . diameter. The pressure drop across the contraction is 0.5 psi . Determine the volume flow rate.

Given: Flow through sudden contraction
Find: Volume flow rate
Solution:
Basic equations $\left(\frac{p_{1}}{\rho}+\alpha \cdot \frac{V_{1}{ }^{2}}{2}+g \cdot z_{1}\right)-\left(\frac{p_{2}}{\rho}+\alpha \cdot \frac{V_{2}^{2}}{2}+g \cdot z_{2}\right)=h_{l m} \quad h_{l m}=K \cdot \frac{V_{2}^{2}}{2} \quad Q=V \cdot A$
Assumptions: 1) Steady flow 2) Incompressible flow 3) α at 1 and 2 is approximately 1 4) Horizontal
Hence the energy equation becomes

$$
\left(\frac{\mathrm{p}_{1}}{\rho}+\frac{\mathrm{V}_{1}^{2}}{2}\right)-\left(\frac{\mathrm{p}_{2}}{\rho}+\frac{\mathrm{V}_{2}^{2}}{2}\right)=\mathrm{K} \cdot \frac{\mathrm{~V}_{2}^{2}}{2}
$$

From continuity $V_{1}=V_{2} \cdot \frac{A_{2}}{A_{1}}=V_{2} \cdot A R$
Hence $\quad\left(\frac{p_{1}}{\rho}+\frac{\mathrm{V}_{2}{ }^{2} \cdot \mathrm{AR}^{2}}{2}\right)-\left(\frac{\mathrm{p}_{2}}{\rho}+\frac{\mathrm{V}_{2}{ }^{2}}{2}\right)=\mathrm{K} \cdot \frac{\mathrm{V}_{2}{ }^{2}}{2}$
Solving for $V_{2} \quad V_{2}=\sqrt{\frac{2 \cdot\left(P_{1}-P_{2}\right)}{\rho \cdot\left(1-A R^{2}+K\right)}} \quad A R=\left(\frac{D_{2}}{D_{1}}\right)^{2}=\left(\frac{1}{2}\right)^{2}=0.25 \quad$ so from Fig. 8.14
$K=0.4$

Hence

$$
\begin{aligned}
& \mathrm{V}_{2}=\sqrt{2 \times 0.5 \cdot \frac{\mathrm{lbf}}{\mathrm{in}^{2}} \times\left(\frac{12 \cdot \mathrm{in}}{1 \cdot \mathrm{ft}}\right)^{2} \times \frac{\mathrm{ft}^{3}}{1.94 \cdot \mathrm{slug}} \times \frac{1}{\left(1-0.25^{2}+0.4\right)} \times \frac{\mathrm{slug} \cdot \mathrm{ft}}{\mathrm{lbf} \cdot \mathrm{~s}^{2}}} \quad \mathrm{~V}_{2}=7.45 \cdot \frac{\mathrm{ft}}{\mathrm{~s}} \\
& \mathrm{Q}=\mathrm{V}_{2} \cdot \mathrm{~A}_{2}=\frac{\pi \cdot \mathrm{D}_{2}^{2}}{4} \cdot \mathrm{~V}_{2} \quad \mathrm{Q}=\frac{\pi}{4} \times\left(\frac{1}{12} \cdot \mathrm{ft}\right)^{2} \times 7.45 \cdot \frac{\mathrm{ft}}{\mathrm{~s}} \quad \mathrm{Q}=0.0406 \cdot \frac{\mathrm{ft}^{3}}{\mathrm{~s}} \quad \mathrm{Q}=2.44 \cdot \frac{\mathrm{ft}^{3}}{\mathrm{~min}} \quad \mathrm{Q}=18.2 \mathrm{gpm}
\end{aligned}
$$

8.88 In an undergraduate laboratory you have been assigned the task of developing a crude flow meter for measuring the flow in a $400-\mathrm{mm}$ diameter water pipe system. You are to install a $200-\mathrm{mm}$ diameter section of pipe, and a water manometer to measure the pressure drop at the sudden contraction. Derive an expression for the theoretical calibration constant k in $Q=k \sqrt{\Delta h}$, where Q is the volume flow rate in $\mathrm{L} / \mathrm{min}$, and Δh is the manometer deflection in mm . Plot the theoretical calibration curve for a flow rate range of 0 to $200 \mathrm{~L} / \mathrm{min}$. Would you expect this to be a practical device for measuring flow rate?

Given: Data on a pipe sudden contraction
Find: Theoretical calibration constant; plot

Solution:

Given data
$D_{1}=400 \cdot \mathrm{~mm}$
$\mathrm{D}_{2}=200 \cdot \mathrm{~mm}$

The governing equations between inlet (1) and exit (2) are
where

$$
\begin{equation*}
\left(\frac{p_{1}}{\rho}+\alpha_{1} \cdot \frac{V_{1}^{2}}{2}+g \cdot z_{1}\right)-\left(\frac{p_{2}}{\rho}+\alpha_{2} \cdot \frac{V_{2}^{2}}{2}+g \cdot z_{2}\right)=h_{l} \tag{8.29}
\end{equation*}
$$

Hence the pressure drop is (assuming $\alpha=1$)

$$
\Delta \mathrm{p}=\mathrm{p}_{1}-\mathrm{p}_{2}=\rho \cdot\left(\frac{\mathrm{V}_{2}^{2}}{2}-\frac{\mathrm{V}_{1}^{2}}{2}+\mathrm{K} \cdot \frac{\mathrm{~V}_{2}^{2}}{2}\right)
$$

For the sudden contraction

$$
\begin{equation*}
\mathrm{h}_{\mathrm{l}}=\mathrm{K} \cdot \frac{\mathrm{~V}_{2}^{2}}{2} \tag{8.40a}
\end{equation*}
$$

$$
\mathrm{V}_{1} \cdot \frac{\pi}{4} \cdot \mathrm{D}_{1}^{2}=\mathrm{V}_{2} \cdot \frac{\pi}{4} \cdot \mathrm{D}_{2}^{2}=\mathrm{Q}
$$

or

$$
\mathrm{V}_{2}=\mathrm{V}_{1} \cdot\left(\frac{\mathrm{D}_{1}}{\mathrm{D}_{2}}\right)^{2}
$$

so

$$
\Delta \mathrm{p}=\frac{\rho \cdot \mathrm{V}_{1}^{2}}{2} \cdot\left[\left(\frac{\mathrm{D}_{1}}{\mathrm{D}_{2}}\right)^{4}(1+\mathrm{K})-1\right]
$$

For the pressure drop we can use the manometer equation

$$
\Delta \mathrm{p}=\rho \cdot \mathrm{g} \cdot \Delta \mathrm{~h}
$$

Hence

$$
\rho \cdot g \cdot \Delta \mathrm{~h}=\frac{\rho \cdot \mathrm{V}_{1}^{2}}{2} \cdot\left[\left(\frac{\mathrm{D}_{1}}{\mathrm{D}_{2}}\right)^{4}(1+\mathrm{K})-1\right]
$$

In terms of flow rate Q

$$
\rho \cdot g \cdot \Delta \mathrm{~h}=\frac{\rho}{2} \cdot \frac{\mathrm{Q}^{2}}{\left(\frac{\pi}{4} \cdot \mathrm{D}_{1}^{2}\right)^{2}} \cdot\left[\left(\frac{\mathrm{D}_{1}}{\mathrm{D}_{2}}\right)^{4}(1+\mathrm{K})-1\right]
$$

or

$$
g \cdot \Delta h=\frac{8 \cdot Q^{2}}{\pi^{2} \cdot D_{1}^{4}} \cdot\left[\left(\frac{D_{1}}{D_{2}}\right)^{4}(1+K)-1\right]
$$

Hence for flow rate Q we find

$$
\mathrm{Q}=\mathrm{k} \cdot \sqrt{\Delta \mathrm{~h}}
$$

where

$$
k=\sqrt{\frac{g \cdot \pi^{2} \cdot D_{1}^{4}}{8 \cdot\left[\left(\frac{D_{1}}{D_{2}}\right)^{4}(1+K)-1\right]}}
$$

For K, we need the aspect ratio $A R \quad A R=\left(\frac{\mathrm{D}_{2}}{\mathrm{D}_{1}}\right)^{2} \quad \mathrm{AR}=0.25$

From Fig. 8.15

$$
\mathrm{K}=0.4
$$

Using this in the expression for k, with the other given values

$$
\begin{aligned}
& \mathrm{k}=\sqrt{\frac{\mathrm{g} \cdot \pi^{2} \cdot \mathrm{D}_{1}^{4}}{8 \cdot\left[\left(\frac{\mathrm{D}_{1}}{\mathrm{D}_{2}}\right)^{4}(1+\mathrm{K})-1\right]}}=0.12 \cdot \frac{\mathrm{~m}^{\frac{5}{2}}}{\mathrm{~s}} \\
& \mathrm{k}=228 \frac{\frac{\mathrm{~L}}{\mathrm{~min}}}{\frac{1}{2}}
\end{aligned}
$$

The plot of theoretical Q versus flow rate Δh is shown in the associated Excel workbook
8.88 In an undergraduate laboratory you have been assigned the task of developing a crude flow meter for measuring the flow in a $400-\mathrm{mm}$ diameter water pipe system. You are to install a $200-\mathrm{mm}$ diameter section of pipe, and a water manometer to measure the pressure drop at the sudden contraction. Derive an expression for the theoretical calibration constant k in $Q=k \sqrt{\Delta h}$, where Q is the volume flow rate in $\mathrm{L} / \mathrm{min}$, and Δh is the manometer deflection in mm . Plot the theoretical calibration curve for a flow rate range of 0 to $200 \mathrm{~L} / \mathrm{min}$. Would you expect this to be a practical device for measuring flow rate?

Given: Data on a pipe sudden contraction

Find: Theoretical calibration constant; plot

Solution:

$$
\begin{array}{rlrl}
D_{1} & = & 400 & \mathrm{~mm} \\
D_{1} & =200 & \mathrm{~mm} & \mathrm{Q}=\mathrm{k} \sqrt{\Delta \mathrm{~h}} \\
K & =0.4 & & \mathrm{k}=\frac{\square}{[\mathrm{D}}
\end{array}
$$

The values for Δh are quite low; this would not be a good meter it is not sensitive enough. In addition, it is non-linear.

$\Delta h(\mathrm{~mm})$	$Q(\mathrm{~L} / \mathrm{min})$
0.010	23
0.020	32
0.030	40
0.040	46
0.050	51
0.075	63
0.100	72
0.150	88
0.200	102
0.250	114
0.300	125
0.400	144
0.500	161
0.600	177
0.700	191
0.767	200

8.89 Flow through a sudden contraction is shown. The minimum flow area at the vena contracta is given in terms of the area ratio by the contraction coefficient [31],

$$
C_{c}=\frac{A_{c}}{A_{2}}=0.62+0.38\left(\frac{A_{2}}{A_{1}}\right)^{3}
$$

The loss in a sudden contraction is mostly a result of the vena contracta: The fluid accelerates into the contraction, there is flow separation (as shown by the dashed lines), and the vena contracta acts as a miniature sudden expansion with significant secondary flow losses. Use these assumptions to obtain and plot estimates of the minor loss coefficient for a sudden contraction, and compare with the data presented in Fig. 8.15.

Given: Contraction coefficient for sudden contraction

Find: Expression for minor head loss; compare with Fig. 8.15; plot

Solution:

We analyse the loss at the "sudden expansion" at the vena contracta
The governing CV equations (mass, momentum, and energy) are

$$
\begin{gather*}
\frac{\partial}{\partial t} \int_{\mathrm{CV}} \rho d \nvdash+\int_{\mathrm{CS}} \rho \vec{V} \cdot d \vec{A}=0 \tag{4.12}\\
F_{x}=F_{S_{x}}+F_{B_{x}}=\frac{\partial}{\partial t} \int_{\mathrm{CV}} u \rho d \nvdash+\int_{\mathrm{CS}} u \rho \vec{V} \cdot d \vec{A} \tag{4.18a}\\
\dot{Q}-\dot{W}_{s}-\dot{W}_{\text {shear }}-\dot{W}_{\text {other }}=\frac{\partial}{\partial t} \int_{\mathrm{CV}} e \rho d \nvdash+\int_{\mathrm{CS}}\left(u+p v+\frac{V^{2}}{2}+g z\right) \rho \vec{V} \cdot d \vec{A} \tag{4.56}
\end{gather*}
$$

Assume: 1) Steady flow 2) Incompressible flow 3) Uniform flow at each section 4) Horizontal: no body force 5) No shaft work 6) Neglect viscous friction 7) Neglect gravity

The mass equation becomes

$$
\begin{equation*}
\mathrm{V}_{\mathrm{c}} \cdot \mathrm{~A}_{\mathrm{c}}=\mathrm{V}_{2} \cdot \mathrm{~A}_{2} \tag{1}
\end{equation*}
$$

The momentum equation becomes

$$
p_{c} \cdot A_{2}-p_{2} \cdot A_{2}=V_{c} \cdot\left(-\rho \cdot V_{c} \cdot A_{c}\right)+V_{2} \cdot\left(\rho \cdot V_{2} \cdot A_{2}\right)
$$

or (using Eq. 1)

$$
\begin{equation*}
\mathrm{p}_{\mathrm{C}}-\mathrm{p}_{2}=\rho \cdot \mathrm{V}_{\mathrm{c}} \cdot \frac{\mathrm{~A}_{\mathrm{c}}}{\mathrm{~A}_{2}} \cdot\left(\mathrm{~V}_{2}-\mathrm{V}_{\mathrm{c}}\right) \tag{2}
\end{equation*}
$$

The energy equation becomes

$$
\mathrm{Q}_{\text {rate }}=\left(\mathrm{u}_{\mathrm{c}}+\frac{\mathrm{P}_{\mathrm{c}}}{\rho}+\mathrm{V}_{\mathrm{c}}^{2}\right) \cdot\left(-\rho \cdot \mathrm{V}_{\mathrm{c}} \cdot \mathrm{~A}_{\mathrm{c}}\right)+\left(\mathrm{u}_{2}+\frac{\mathrm{P}_{2}}{\rho}+\mathrm{V}_{2}^{2}\right) \cdot\left(\rho \cdot \mathrm{V}_{2} \cdot \mathrm{~A}_{2}\right)
$$

or (using Eq. 1)

$$
\begin{equation*}
\mathrm{h}_{\mathrm{lm}}=\mathrm{u}_{2}-\mathrm{u}_{\mathrm{c}}-\frac{\mathrm{Q}_{\text {rate }}}{\mathrm{m}_{\text {rate }}}=\frac{\mathrm{V}_{\mathrm{c}}^{2}-\mathrm{V}_{2}^{2}}{2}+\frac{\mathrm{p}_{\mathrm{c}}-\mathrm{p}_{2}}{\rho} \tag{3}
\end{equation*}
$$

$$
\begin{aligned}
& \mathrm{h}_{\mathrm{lm}}=\frac{\mathrm{V}_{\mathrm{c}}^{2}-\mathrm{V}_{2}^{2}}{2}+\mathrm{V}_{\mathrm{c}} \cdot \frac{A_{\mathrm{c}}}{A_{2}} \cdot\left(\mathrm{~V}_{2}-\mathrm{V}_{\mathrm{c}}\right) \\
& \mathrm{h}_{\mathrm{lm}}=\frac{\mathrm{V}_{\mathrm{c}}^{2}}{2} \cdot\left[1-\left(\frac{\mathrm{V}_{2}}{\mathrm{~V}_{\mathrm{c}}}\right)^{2}\right]+\mathrm{V}_{\mathrm{c}}^{2} \cdot \frac{A_{\mathrm{c}}}{\mathrm{~A}_{2}} \cdot\left[\left(\frac{\mathrm{~V}_{2}}{\mathrm{~V}_{\mathrm{c}}}\right)-1\right]
\end{aligned}
$$

From Eq. 1

$$
C_{c}=\frac{A_{c}}{A_{2}}=\frac{V_{2}}{V_{c}}
$$

Hence
$\mathrm{h}_{\mathrm{lm}}=\frac{\mathrm{V}_{\mathrm{c}}^{2}}{2} \cdot\left(1-\mathrm{C}_{\mathrm{c}}^{2}\right)+\mathrm{V}_{\mathrm{c}}^{2} \cdot \mathrm{C}_{\mathrm{c}} \cdot\left(\mathrm{C}_{\mathrm{c}}-1\right)$
$h_{l m}=\frac{V_{c}^{2}}{2} \cdot\left(1-C_{c}^{2}+2 \cdot C_{c}^{2}-2 \cdot C_{c}\right)$
$\mathrm{h}_{\mathrm{lm}}=\frac{\mathrm{V}_{\mathrm{c}}{ }^{2}}{2} \cdot\left(1-\mathrm{C}_{\mathrm{c}}\right)^{2}$

But we have

Hence, comparing Eqs. 4 and 5
$\mathrm{h}_{\mathrm{lm}}=\mathrm{K} \cdot \frac{\mathrm{V}_{2}{ }^{2}}{2}=\mathrm{K} \cdot \frac{\mathrm{V}_{\mathrm{c}}{ }^{2}}{2} \cdot\left(\frac{\mathrm{~V}_{2}}{\mathrm{~V}_{\mathrm{c}}}\right)^{2}=\mathrm{K} \cdot \frac{\mathrm{V}_{\mathrm{c}}{ }^{2}}{2} \cdot \mathrm{C}_{\mathrm{c}}{ }^{2}$

$$
K=\frac{\left(1-C_{c}\right)^{2}}{C_{C}^{2}}
$$

So, finally

$$
\mathrm{K}=\left(\frac{1}{\mathrm{C}_{\mathrm{C}}}-1\right)^{2}
$$

where

$$
C_{c}=0.62+0.38 \cdot\left(\frac{A_{2}}{A_{1}}\right)^{3}
$$

This result, and the curve of Fig. 8.15, are shown in the associated Excel workbook. The agreement is reasonable.
8.89 Flow through a sudden contraction is shown. The minimum flow area at the vena contracta is given in terms of the area ratio by the contraction coefficient [31],

$$
C_{c}=\frac{A_{c}}{A_{2}}=0.62+0.38\left(\frac{A_{2}}{A_{1}}\right)^{3}
$$

The loss in a sudden contraction is mostly a result of the vena con-
 tracta: The fluid accelerates into the contraction, there is flow separation (as shown by the dashed lines), and the vena contracta acts as a miniature sudden expansion with significant secondary flow losses. Use these assumptions to obtain and plot estimates of the minor loss coefficient for a sudden contraction, and compare with the data presented in Fig. 8.15.

Given: Contraction coefficient for sudden contraction

Find: \quad Expression for minor head loss; compare with Fig. 8.15; plot

Solution:

The CV analysis le

$$
\begin{aligned}
& \mathrm{K}=\left(\frac{1}{\mathrm{C}_{\mathrm{c}}}-1\right)^{2} \\
& \mathrm{C}_{\mathrm{c}}=0.62+0.38 \cdot\left(\frac{\mathrm{~A}_{2}}{\mathrm{~A}_{1}}\right)^{3}
\end{aligned}
$$

A_{2} / A_{1}	$K_{\text {CV }}$	$K_{\text {Fig. 8.15 }}$
0.0	0.376	0.50
0.1	0.374	
0.2	0.366	0.40
0.3	0.344	
0.4	0.305	0.30
0.5	0.248	0.20
0.6	0.180	
0.7	0.111	0.10
0.8	0.052	
0.9	0.013	0.01
1.0	0.000	0.00

(Data from Fig. 8.15
is "eyeballed")
Agreement is reasonable

Loss Coefficient for a Sudden Contraction

Problem 8.90

8.90 Water flows from the tank shown through a very short pipe. Assume the flow is quasi-steady. Estimate the flow rate at the instant shown. How could you improve the flow system if a larger flow rate were desired?

Given: Flow through short pipe
Find: Volume flow rate; How to improve flow rate

Solution:

Basic equations $\left(\frac{p_{1}}{\rho}+\alpha \cdot \frac{V_{1}^{2}}{2}+g \cdot z_{1}\right)-\left(\frac{p_{2}}{\rho}+\alpha \cdot \frac{V_{2}^{2}}{2}+g \cdot z_{2}\right)=h_{l T} \quad h_{l T}=h_{l}+h_{l m}=f \cdot \frac{L}{D} \cdot \frac{V_{2}^{2}}{2}+K \cdot \frac{V_{2}^{2}}{2} \quad Q=V \cdot A$
Assumptions: 1) Steady flow 2) Incompressible flow 3) α at 1 and 2 is approximately 1 4) $L \ll$ so ignore h_{l} 5) Reentrant
Hence between the free surface (Point 1) and the exit (2) the energy equation becomes

$$
\frac{\mathrm{V}_{1}^{2}}{2}+\mathrm{g} \cdot \mathrm{z}_{1}-\frac{\mathrm{V}_{2}^{2}}{2}=\mathrm{K} \cdot \frac{\mathrm{~V}_{2}^{2}}{2}
$$

From continuity $\mathrm{V}_{1}=\mathrm{V}_{2} \cdot \frac{\mathrm{~A}_{2}}{\mathrm{~A}_{1}}$
Hence $\quad \frac{V_{2}{ }^{2}}{2} \cdot\left(\frac{A_{2}}{A_{1}}\right)^{2}+\mathrm{g} \cdot \mathrm{h}-\frac{\mathrm{V}_{2}{ }^{2}}{2}=\mathrm{K} \cdot \frac{\mathrm{V}_{2}{ }^{2}}{2}$
Solving for $\mathrm{V}_{2} \quad \mathrm{~V}_{2}=\sqrt{\frac{2 \cdot \mathrm{~g} \cdot \mathrm{~h}}{\left[\quad\left(\mathrm{~A}^{2}\right.\right.}} \quad$ and from Table 8.2 $\quad \mathrm{K}=0.78$
$\begin{array}{cc} & \sqrt{\left[1+\mathrm{K}-\left(\frac{\mathrm{A}_{2}}{\mathrm{~A}_{1}}\right)^{2}\right]} \\ \text { Hence } \quad \mathrm{V}_{2}=\sqrt{2 \times 9.81 \cdot \frac{\mathrm{~m}}{\mathrm{~s}^{2}} \times 1 \cdot \mathrm{~m} \times \frac{1}{\left[1+0.78-\left(\frac{350}{3500}\right)^{2}\right]}} & \mathrm{V}_{2}=3.33 \frac{\mathrm{~m}}{\mathrm{~s}} \\ \mathrm{Q}=\mathrm{V}_{2} \cdot \mathrm{~A}_{2} \quad \mathrm{Q}=3.33 \cdot \frac{\mathrm{~m}}{\mathrm{~s}} \times 350 \cdot \mathrm{~mm}^{2} \times\left(\frac{1 \cdot \mathrm{~m}}{1000 \cdot \mathrm{~mm})^{2}} \quad \mathrm{Q}=1.17 \times 10^{-3} \frac{\mathrm{~m}^{3}}{\mathrm{~s}} \quad \mathrm{Q}=0.070 \frac{\mathrm{~m}^{3}}{\mathrm{~min}}\right.\end{array}$
The flow rate could be increased by (1) rounding the entrance and/or (2) adding a diffuser (both somewhat expensive)

Problem 8.91
Given: Consider again flow through the elbow analyzed in Example Problem 4.b

$$
\begin{aligned}
& P_{1}=221 \mathrm{kPa} \quad A_{1}=0.01 \mathrm{~m}^{2} \\
& V_{2}=\text { ibmls } \quad A_{2}=0.0025 \mathrm{~m}^{2} \\
& P_{2}=P_{\text {th }}
\end{aligned}
$$

Find: Minor head loss coefficient for the elbow
Solution: Apply the energy equation for steady, incompressible pipe flow. $=d(t)$
 Assumptions: (i) $\alpha_{1}=\alpha_{2}=1$
(a) neglect D z
(3) uniform, incompresidolv flow so $\bar{V}_{1} H_{1}=\bar{V}_{2} H_{2}$
(4) use gage pressures

From continuity $\bar{y}_{1}=\bar{J}_{2} \frac{H_{2}}{\bar{H}_{1}}=16 \frac{H_{5}}{5} \cdot \frac{0.0025 m^{2}}{0.01 m^{2}}=M \lambda_{s}$
Then

$$
\begin{aligned}
& +\frac{1}{2}\left[(4)^{2}-(6)^{2}\right] \frac{\mathrm{m}^{2}}{\mathrm{~s}^{2}}
\end{aligned}
$$

$$
h_{l_{m}}=0.120 \mathrm{~m}^{2} / \mathrm{s}^{2}
$$

Bent hen $=\frac{V_{2}^{2}}{2} ; k=\frac{2 h_{e_{n}}}{v_{2}^{2}}=2 \times 0.120 \frac{n^{2}}{5^{2}}(16)^{2^{2}} \frac{5}{2}^{2}=9.38 \times 0^{4} \quad k$

Given: Air flow from a clean mom through a duct of 150 mmdrameter.
original:
(1)

$$
h_{1}-h_{2}=2.5 \mathrm{~mm} \mathrm{H}+2
$$

Friction losses negligible, compared to init and exit losses.
Find: Increase in volume flow rate for modified duct.
Solution: Apply the energy equation for steady, incompressible pipe flow.
Computing equations:

$$
\begin{aligned}
& \approx o() \\
& \frac{p_{1}}{\rho}+\alpha_{1} \frac{\hat{x}_{1}^{2}}{2}+g p_{1}=\frac{p_{2}}{\rho}+\alpha_{2} \frac{{\overline{v_{2}}}_{2}^{2}+g \hat{f}+h_{e_{T}}}{h_{e T}=\hat{h}_{l}+h_{e_{m} m} ; h_{e_{m}}=K_{e n t} \frac{\vec{v}_{2}^{2}}{2} ; \Delta p=\rho_{\text {Hog }} g \Delta h} .
\end{aligned}
$$

Assumptions: (1) $\overline{V_{1}} \approx 0$
(3) Uniform flow at exit
(2) Neglect elevation Changes
(4) Neglect frictional losses

Then

$$
\frac{\Delta p}{\bar{\rho}}=\frac{p_{1}-p_{2}}{\rho}=\frac{\bar{V}_{2}^{2}}{2}+K_{\text {nt }} \frac{\bar{V}_{2}^{2}}{2}=\frac{\bar{V}_{2}^{2}}{2}\left(1+K_{\text {nt }}\right)=\frac{\rho_{+1 \infty} g \Delta h_{1}}{\rho}
$$

or

$$
\bar{V}_{2}=\sqrt{\frac{2\left(p_{1}-\mu_{0}\right)}{\rho\left(1+k_{e n t}\right)}}=\sqrt{\frac{2 \rho_{r_{2}} g \Delta h}{\rho\left(1+k_{\text {en }}\right)}}
$$

From Table 8.2, Kent $=0.5$ for square-edged, Kent $=0.04$ for rounded entrance.

$$
\begin{aligned}
& \bar{V}_{2}=\sqrt{\frac{2}{7.50} \times \frac{999 \mathrm{~kg}}{\mathrm{~m}^{3}} \times 9.81 \frac{\mathrm{~m}}{s^{2}} \times 0.0025 \mathrm{~m}_{\times} \frac{m^{3}}{1.23 \mathrm{~kg}}}=5.15 \mathrm{~m} / \mathrm{s} \\
& \bar{V}_{2}(\text { modified })=\sqrt{\frac{2}{1.04} \times 999 \frac{\mathrm{~kg}}{\mathrm{~m}^{3}} \times 9.81 \frac{\mathrm{~m}}{\mathrm{~s}^{2}} \times 0.0025 \mathrm{~m} \times \frac{\mathrm{m}^{2}}{1.25 \mathrm{~kg}}}=6.19 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

since $Q=\bar{V} A$, then

$$
\Delta Q=\left(\bar{V}_{2} m-V_{2}\right) A=(6.19-5.15) \frac{m}{5} \times \frac{\pi}{4}(0.15)^{2} m^{2}=0.0184 \mathrm{~m}^{3} / \mathrm{s}
$$

$\left\{\begin{array}{l}\text { The percentage improvement is } \\ \%=\frac{\Delta Q}{Q} \times 100=\frac{\bar{V}_{2 m}-\bar{V}_{2}}{\bar{V}_{2}} \times 100=\frac{6.19-5.15}{5.15} \times 100=20.2 \text { percent }\end{array}\right\}$

Problem 8.93

8.93 A water tank (open to the atmosphere) contains water to a depth of 10 ft . A $\frac{1}{2}$ - in . diameter hole is punched in the bottom. Modeling the hole as square-edged, estimate the flow rate (gpm) exiting the tank. If you were to stick a short section of pipe into the hole, by how much would the flow rate change? If instead you were to machine the inside of the hole to give it a rounded edge ($r=0.01 \mathrm{in}$.), by how much would the flow rate change?

Given: Flow out of water tank

Find: Volume flow rate using hole; Using short pipe section; Using rounded edge

Solution:

Basic equations

$$
\left(\frac{p_{1}}{\rho}+\alpha \cdot \frac{V_{1}^{2}}{2}+g \cdot z_{1}\right)-\left(\frac{p_{2}}{\rho}+\alpha \cdot \frac{V_{2}^{2}}{2}+g \cdot z_{2}\right)=h_{l T} \quad h_{l T}=h_{l}+h_{l m}=f \cdot \frac{L}{D} \cdot \frac{V_{2}^{2}}{2}+K \cdot \frac{V_{2}^{2}}{2} \quad Q=V \cdot A
$$

Assumptions: 1) Steady flow 2) Incompressible flow 3) α at 1 and 2 is approximately 14) $\mathrm{V}_{\mathrm{l}} \ll 5$) $\mathrm{L} \ll$ so $h_{l}=0$
Hence for all three cases, between the free surface (Point 1) and the exit (2) the energy equation becomes

$$
\mathrm{g} \cdot \mathrm{z}_{1}-\frac{\mathrm{V}_{2}^{2}}{2}=\mathrm{K} \cdot \frac{\mathrm{~V}_{2}^{2}}{2}
$$

Solving for $\mathrm{V}_{2} \quad \mathrm{~V}_{2}=\sqrt{\frac{2 \cdot \mathrm{~g} \cdot \mathrm{~h}}{(1+\mathrm{K})}}$
From Table $8.2 \mathrm{~K}_{\text {hole }}=0.5$ for a hole (assumed to be square-edged) $\quad \mathrm{K}_{\mathrm{pipe}}=0.78 \quad$ for a short pipe (rentrant)
Also, for a rounded edge $\frac{\mathrm{r}}{\mathrm{D}}=\frac{0.01 \cdot \mathrm{in}}{0.5 \cdot \text { in }}=0.02 \quad$ so from Table $8.2 \quad \mathrm{~K}_{\text {round }}=0.28$
Hence for the hole

$$
\begin{aligned}
& \mathrm{V}_{2}=\sqrt{2 \times 32.2 \cdot \frac{\mathrm{ft}}{\mathrm{~s}^{2}} \times 10 \cdot \mathrm{ft} \times \frac{1}{(1+0.5)}} \quad \mathrm{V}_{2}=20.7 \cdot \frac{\mathrm{ft}}{\mathrm{~s}} \\
& \mathrm{Q}=\mathrm{V}_{2} \cdot \mathrm{~A}_{2} \quad \mathrm{Q}=20.7 \cdot \frac{\mathrm{ft}}{\mathrm{~s}} \times \frac{\pi}{4} \times\left(\frac{0.5}{12} \cdot \mathrm{ft}\right)^{2} \times \frac{7.48 \cdot \mathrm{gal}}{1 \cdot \mathrm{ft}^{3}} \times \frac{60 \cdot \mathrm{~s}}{1 \cdot \mathrm{~min}} \quad \mathrm{Q}=12.7 \cdot \mathrm{gpm}
\end{aligned}
$$

Hence for the pipe

$$
\begin{aligned}
& \mathrm{V}_{2}=\sqrt{2 \times 32.2 \cdot \frac{\mathrm{ft}}{\mathrm{~s}^{2}} \times 10 \cdot \mathrm{ft} \times \frac{1}{(1+0.78)}} \quad \mathrm{V}_{2}=19.0 \cdot \frac{\mathrm{ft}}{\mathrm{~s}} \\
& \mathrm{Q}=\mathrm{V}_{2} \cdot \mathrm{~A}_{2} \quad \mathrm{Q}=19.0 \cdot \frac{\mathrm{ft}}{\mathrm{~s}} \times \frac{\pi}{4} \times\left(\frac{0.5}{12} \cdot \mathrm{ft}\right)^{2} \times \frac{7.48 \cdot \mathrm{gal}}{1 \cdot \mathrm{ft}^{3}} \times \frac{60 \cdot \mathrm{~s}}{1 \cdot \mathrm{~min}} \quad \mathrm{Q}=11.6 \cdot \mathrm{gpm}
\end{aligned}
$$

Hence the change in flow rate is $11.6-12.7=-1.1 \cdot \mathrm{gpm}$ The pipe leads to a LOWER flow rate

Hence for the rounded $\quad \mathrm{V}_{2}=\sqrt{2 \times 32.2 \cdot \frac{\mathrm{ft}}{\mathrm{s}^{2}} \times 10 \cdot \mathrm{ft} \times \frac{1}{(1+0.28)}} \quad \mathrm{V}_{2}=22.4 \cdot \frac{\mathrm{ft}}{\mathrm{s}}$

$$
\mathrm{Q}=\mathrm{V}_{2} \cdot \mathrm{~A}_{2} \quad \mathrm{Q}=22.4 \cdot \frac{\mathrm{ft}}{\mathrm{~s}} \times \frac{\pi}{4} \times\left(\frac{0.5}{12} \cdot \mathrm{ft}\right)^{2} \times \frac{7.48 \cdot \mathrm{gal}}{1 \cdot \mathrm{ft}^{3}} \times \frac{60 \cdot \mathrm{~s}}{1 \cdot \mathrm{~min}} \quad \mathrm{Q}=13.7 \cdot \mathrm{gpm}
$$

Hence the change in flow rate is $\quad 13.7-12.7=1.0 \cdot \mathrm{gpm}$ The rounded edge leads to a HIGHER flow rate
8.94 A conical diffuser is used to expand a pipe flow from a diameter of 100 mm to a diameter of 150 mm . Find the minimum length of the diffuser if we want a loss coefficient (a) $K_{\text {diffuser }} \leq 0.2$, (b) $K_{\text {diffuser }} \leq 0.35$.

Given: Data on inlet and exit diameters of diffuser
Find: Minimum lengths to satisfy requirements

Solution:

Given data
$\mathrm{D}_{1}=100 \cdot \mathrm{~mm}$
$\mathrm{D}_{2}=150 \cdot \mathrm{~mm}$

The governing equations for the diffuser are

$$
\begin{equation*}
\mathrm{h}_{\mathrm{lm}}=\mathrm{K} \cdot \frac{\mathrm{~V}_{1}^{2}}{2}=\left(\mathrm{C}_{\mathrm{pi}}-\mathrm{C}_{\mathrm{p}}\right) \cdot \frac{\mathrm{V}_{1}^{2}}{2} \tag{8.44}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathrm{C}_{\mathrm{pi}}=1-\frac{1}{\mathrm{AR}^{2}} \tag{8.42}
\end{equation*}
$$

Combining these we obtain an expression for the loss coefficient K

$$
\begin{equation*}
\mathrm{K}=1-\frac{1}{\mathrm{AR}^{2}}-\mathrm{C}_{\mathrm{p}} \tag{1}
\end{equation*}
$$

The area ratio $A R$ is

$$
\mathrm{AR}=\left(\frac{\mathrm{D}_{2}}{\mathrm{D}_{1}}\right)^{2}
$$

$$
\mathrm{AR}=2.25
$$

The pressure recovery coefficient C_{p} is obtained from Eq. 1 above once we select K; then, with C_{p} and $A R$ specified, the minimum value of N / R_{1} (where N is the length and R_{1} is the inlet radius) can be read from Fig. 8.15
(a) $\mathrm{K}=0.2$
$C_{p}=1-\frac{1}{\mathrm{AR}^{2}}-K$
$C_{p}=0.602$
From Fig. 8.15

$$
\begin{aligned}
& \frac{\mathrm{N}}{\mathrm{R}_{1}}=5.5 \\
& \mathrm{~N}=5.5 \cdot \mathrm{R}_{1}
\end{aligned}
$$

$$
\mathrm{R}_{1}=\frac{\mathrm{D}_{1}}{2}
$$

$$
\mathrm{R}_{1}=50 \cdot \mathrm{~mm}
$$

$$
\mathrm{N}=275 \cdot \mathrm{~mm}
$$

(b) $\quad \mathrm{K}=0.35$

$$
C_{p}=1-\frac{1}{A R^{2}}-K
$$

$$
C_{p}=0.452
$$

From Fig. 8.15

$$
\frac{\mathrm{N}}{\mathrm{R}_{1}}=3
$$

$$
\mathrm{N}=3 \cdot \mathrm{R}_{1}
$$

$$
\mathrm{N}=150 \cdot \mathrm{~mm}
$$

8.95 A conical diffuser of length 6 in . is used to expand a pipe flow from a diameter of 2 in . to a diameter of 3.5 in . For a water flow rate of $750 \mathrm{gal} / \mathrm{min}$, estimate the static pressure rise. What is the approximate value of the loss coefficient?

Given: Data on geometry of conical diffuser; flow rate
Find: Static pressure rise; loss coefficient

Solution:

Basic equations

$$
\begin{equation*}
\mathrm{C}_{\mathrm{p}}=\frac{\mathrm{p}_{2}-\mathrm{p}_{1}}{\frac{1}{2} \cdot \rho \cdot \mathrm{~V}_{1}^{2}} \quad(8.41) \quad \mathrm{h}_{\mathrm{lm}}=\mathrm{K} \cdot \frac{\mathrm{~V}_{1}^{2}}{2}=\left(\mathrm{C}_{\mathrm{pi}}-\mathrm{C}_{\mathrm{p}}\right) \cdot \frac{\mathrm{V}_{1}^{2}}{2} \tag{8.44}
\end{equation*}
$$

$$
\begin{equation*}
\mathrm{C}_{\mathrm{pi}}=1-\frac{1}{\mathrm{AR}^{2}} \tag{8.42}
\end{equation*}
$$

Given data $\mathrm{D}_{1}=2 \cdot \mathrm{in}$
$\mathrm{D}_{2}=3.5 \cdot \mathrm{in}$
$\mathrm{N}=6 \cdot \mathrm{in}$
($\mathrm{N}=$ length)
$Q=750 \cdot g p m$

From Eq. 8.41

$$
\begin{equation*}
\Delta \mathrm{p}=\mathrm{p}_{2}-\mathrm{p}_{1}=\frac{1}{2} \cdot \rho \cdot \mathrm{~V}_{1}^{2} \cdot \mathrm{C}_{\mathrm{p}} \tag{1}
\end{equation*}
$$

Combining Eqs. 8.44 and 8.42 we obtain an expression for the loss coefficient $K \quad \mathrm{~K}=1-\frac{1}{\mathrm{AR}^{2}}-\mathrm{C}_{\mathrm{p}}$
The pressure recovery coefficient C_{p} for use in Eqs. 1 and 2 above is obtained from Fig. 8.15 once compute $A R$ and the dimensionless length N / R_{1} (where R_{1} is the inlet radius)
The aspect ratio $A R$ is $\mathrm{AR}=\left(\frac{\mathrm{D}_{2}}{\mathrm{D}_{1}}\right)^{2} \quad \mathrm{AR}=\left(\frac{3.5}{2}\right)^{2} \quad \mathrm{AR}=3.06$

$$
\mathrm{R}_{1}=\frac{\mathrm{D}_{1}}{2} \quad \mathrm{R}_{1}=1 \cdot \text { in } \quad \text { Hence } \quad \frac{\mathrm{N}}{\mathrm{R}_{1}}=6
$$

From Fig. 8.15, with $A R=3.06$ and the dimensionless length $N / R_{1}=6$, we find $\mathrm{C}_{\mathrm{p}}=0.6$
To complete the calculations we need $V_{1} \quad \mathrm{~V}_{1}=\frac{\mathrm{Q}}{\frac{\pi}{4} \cdot \mathrm{D}_{1}^{2}} \quad \mathrm{~V}_{1}=\frac{4}{\pi} \times 750 \cdot \frac{\mathrm{gal}}{\min } \times \frac{1 \cdot \mathrm{ft}^{3}}{7.48 \cdot \mathrm{gal}} \times \frac{1 \cdot \mathrm{~min}}{60 \cdot \mathrm{~s}} \times\left(\frac{1}{\frac{2}{12} \cdot \mathrm{ft}}\right)^{2} \quad \mathrm{~V}_{1}=76.6 \cdot \frac{\mathrm{ft}}{\mathrm{s}}$
We can now compute the pressure rise and loss coefficient from Eqs. 1 and $2 \quad \Delta \mathrm{p}=\frac{1}{2} \cdot \rho \cdot \mathrm{~V}_{1}{ }^{2} \cdot \mathrm{C}_{\mathrm{p}}$

$$
\begin{array}{ll}
\Delta \mathrm{p}=\frac{1}{2} \times 1.94 \cdot \frac{\mathrm{slug}}{\mathrm{ft}^{3}} \times\left(76.6 \cdot \frac{\mathrm{ft}}{\mathrm{~s}}\right)^{2} \times 0.6 \times \frac{\mathrm{lbf} \cdot \mathrm{~s}^{2}}{\mathrm{slug} \cdot \mathrm{ft}} \times\left(\frac{1 \cdot \mathrm{ft}}{12 \cdot \mathrm{in}}\right)^{2} & \Delta \mathrm{p}=23.7 \cdot \\
\mathrm{~K}=1-\frac{1}{\mathrm{AR}^{2}}-\mathrm{C}_{\mathrm{p}} \quad \mathrm{~K}=1-\frac{1}{3.06^{2}}-0.6 & \mathrm{~K}=0.293
\end{array}
$$

Given: Air flow from a clean room through a duct of 100 mm diameter.

Origina:
(1)
$h_{1}-h_{2}=2.5 \mathrm{~mm} H_{2}$

(1)

We "l rounded

$$
h_{1}-h_{3}=2.5 \mathrm{~mm} \mathrm{H}_{2} \mathrm{O}
$$

Neglect friction loses compared to "minor "losses.
Find: (a) Area rato and angle for optimum conical diffuser.
(b) Flow rate for modified system.

Solution: Apply the energy equation for steady, incompressible pipe flow.
Computing equations:

$$
\begin{aligned}
& \frac{p_{1}}{\rho}+\alpha_{1} \frac{\hat{y}_{1}^{2}}{2}+g \eta_{1}=\frac{p_{2}}{\rho}+\alpha_{2} \frac{\vec{v}_{2}^{2}}{2}+g z_{1}+\text { her (or to section 3) } \\
& h_{e r}=h_{c}+h_{e_{m}} ; h_{\text {em }}=K_{\text {ext }}+h_{\text {codiffuser } ; ~} \Delta p=p_{\text {moo }} g \Delta h \\
& \text { From Eq. } 8.42, \text { hediffuser }=\frac{\bar{V}_{2}^{2}}{2}\left[1-\frac{1}{A R^{2}}-\zeta\right]
\end{aligned}
$$

Assumptions: (1) \bar{v}, ≈ 0
(3) Uniform flow a+ each section
(a) Neglect Δz
(4) Neglect frictional lasses

For the original system, $\frac{p_{1}-p_{2}}{\rho}=\frac{\bar{v}_{2}^{2}}{2}+k_{\text {en }} \frac{\bar{v}_{2}^{2}}{2}=1.5 \frac{\bar{v}_{2}^{2}}{2}=\frac{p_{1+1} \text { gog. th }}{\rho} \quad$ (kent $=0.5$)
Thus

$$
\bar{V}_{2}=\sqrt{\frac{2}{1.5} \frac{\rho_{m_{20}-g \Delta u}}{\rho}}=\sqrt{\frac{z}{1,5} \times 999 \frac{\mathrm{~kg}}{\mathrm{~m}^{3}} \times 9.81 \frac{\mathrm{~m}}{\mathrm{~s}^{2}} \times 0.0025 \mathrm{~m}_{4, \frac{\mathrm{~m}^{3}}{1,25 \mathrm{kj}}}}=5,15 \mathrm{~m} / \mathrm{s}
$$

For the modificidsystem, $\frac{p_{1}-p_{3}}{\rho}=\frac{\bar{V}_{3}^{2}}{2}+K_{\text {en }} \frac{\bar{V}_{2}^{2}}{2}+\frac{\bar{V}_{2}^{2}}{2}\left[1-\frac{1}{A R^{2}}-c_{p}\right]=\frac{\bar{V}_{2}^{2}}{2}\left[1+K_{\text {cent }}-c_{p}\right]$ since $\bar{V}_{3}^{2}=\bar{V}_{2}^{2} \frac{1}{A R^{2}}$. Thus the best diffuser has the highest c_{p}.
From Fig. $8.16, c_{p}=f\left(N / R_{1}: A R\right)$. $N / R_{1}=2 N / D_{1}=z_{N} \frac{0.45 m}{0.15 m}=6$. From the figure, the best diffecer is

$$
c_{p} \approx 0.62 \text { at } A R \approx 2.7 \text { and } 2 \phi \approx 12 \mathrm{deg}
$$

For the modified system,

$$
\bar{V}_{2}=\sqrt{\frac{2}{1+k_{\text {L nt }}-40} \frac{\rho_{400} g \Delta h}{\rho}}=\sqrt{\frac{2}{1+0.04-0.62} \times 999 \mathrm{~kg}} \mathrm{~m}^{3} \times 9.81 \mathrm{~m} \mathrm{u}^{2} \times 0.0025 \mathrm{~m}_{\frac{1}{} \frac{\mathrm{~m}}{1.23 \mathrm{~kg}}}=9.74 \mathrm{~m} / \mathrm{s}
$$

and

$$
Q=\bar{V}_{2} A_{2}=9.74 \frac{m^{3}}{3} * \frac{\pi}{4}(0,15)^{2} m^{2}=0.172 \mathrm{~m}^{3} / \mathrm{s}
$$

\{The improvement is $\frac{Q_{m}-Q^{2}}{Q} \times 100=\frac{V_{m}-V_{V}}{\bar{V}} \times 100=\frac{9.74-5,5}{5.15} \times 100=89.1$ percent more $\}$

Problem 8.97

8.97 By applying the basic equations to a control volume starting at the expansion and ending downstream, analyze flow through a sudden expansion (assume the inlet pressure p_{1} acts on the area A_{2} at the expansion). Develop an expression for and plot the minor head loss across the expansion as a function of area ratio, and compare with the data of Fig. 8.15.

Given: Sudden expansion
Find: Expression for minor head loss; compare with Fig. 8.15; plot

Solution:

The governing CV equations (mass, momentum, and energy) are

$$
\begin{gather*}
\frac{\partial}{\partial t} \int_{\mathrm{CV}} \rho d \not+\int_{\mathrm{CS}} \rho \vec{V} \cdot d \vec{A}=0 \tag{4.12}\\
F_{x}=F_{S_{x}}+F_{B_{x}}=\frac{\partial}{\partial t} \int_{\mathrm{CV}} u \rho d \nvdash+\int_{\mathrm{CS}} u \rho \vec{V} \cdot d \vec{A} \tag{4.18a}\\
\dot{Q}-\dot{W}_{S}-\dot{W}_{\text {shear }}-\dot{W}_{\text {other }}=\frac{\partial}{\partial t} \int_{\mathrm{CV}} e \rho d \nvdash+\int_{\mathrm{CS}}\left(u+p v+\frac{V^{2}}{2}+g z\right) \rho \vec{V} \cdot d \vec{A} \tag{4.56}
\end{gather*}
$$

Assume: 1) Steady flow 2) Incompressible flow 3) Uniform flow at each section 4) Horizontal: no body force 5) No shaft work 6) Neglect viscous friction 7) Neglect gravity

The mass equation becomes

$$
\begin{equation*}
\mathrm{V}_{1} \cdot \mathrm{~A}_{1}=\mathrm{V}_{2} \cdot \mathrm{~A}_{2} \tag{1}
\end{equation*}
$$

The momentum equation becomes

$$
P_{1} \cdot A_{2}-P_{2} \cdot A_{2}=V_{1} \cdot\left(-\rho \cdot V_{1} \cdot A_{1}\right)+V_{2} \cdot\left(\rho \cdot V_{2} \cdot A_{2}\right)
$$

or (using Eq. 1)

$$
\begin{equation*}
\mathrm{p}_{1}-\mathrm{p}_{2}=\rho \cdot \mathrm{V}_{1} \cdot \frac{\mathrm{~A}_{1}}{\mathrm{~A}_{2}} \cdot\left(\mathrm{~V}_{2}-\mathrm{V}_{1}\right) \tag{2}
\end{equation*}
$$

The energy equation becomes
or (using Eq. 1)

Combining Eqs. 2 and 3

$$
\begin{align*}
& \mathrm{Q}_{\text {rate }}=\left(\mathrm{u}_{1}+\frac{\mathrm{p}_{1}}{\rho}+\mathrm{V}_{1}^{2}\right) \cdot\left(-\rho \cdot \mathrm{V}_{1} \cdot \mathrm{~A}_{1}\right)+\left(\mathrm{u}_{2}+\frac{\mathrm{P}_{2}}{\rho}+\mathrm{V}_{2}^{2}\right) \cdot\left(\rho \cdot \mathrm{V}_{2} \cdot \mathrm{~A}_{2}\right) \\
& \mathrm{h}_{\mathrm{lm}}=\mathrm{u}_{2}-\mathrm{u}_{1}-\frac{\mathrm{Q}_{\text {rate }}}{m_{\text {rate }}}=\frac{\mathrm{V}_{1}{ }^{2}-\mathrm{V}_{2}^{2}}{2}+\frac{\mathrm{p}_{1}-\mathrm{p}_{2}}{\rho} \tag{3}
\end{align*}
$$

$$
\begin{aligned}
& h_{l m}=\frac{V_{1}^{2}-V_{2}^{2}}{2}+V_{1} \cdot \frac{A_{1}}{A_{2}} \cdot\left(V_{2}-V_{1}\right) \\
& h_{l m}=\frac{V_{1}^{2}}{2} \cdot\left[1-\left(\frac{V_{2}}{V_{1}}\right)^{2}\right]+V_{1}^{2} \cdot \frac{A_{1}}{A_{2}} \cdot\left[\left(\frac{V_{2}}{V_{1}}\right)-1\right]
\end{aligned}
$$

From Eq. 1

$$
\begin{aligned}
& \mathrm{AR}=\frac{\mathrm{A}_{1}}{\mathrm{~A}_{2}}=\frac{\mathrm{V}_{2}}{\mathrm{~V}_{1}} \\
& \mathrm{~h}_{\mathrm{lm}}=\frac{\mathrm{V}_{1}{ }^{2}}{2} \cdot\left(1-\mathrm{AR}^{2}\right)+\mathrm{V}_{1}^{2} \cdot \mathrm{AR} \cdot(\mathrm{AR}-1) \\
& \mathrm{h}_{\mathrm{lm}}=\frac{\mathrm{V}_{1}}{2} \cdot\left(1-\mathrm{AR}^{2}+2 \cdot \mathrm{AR}^{2}-2 \cdot \mathrm{AR}\right) \\
& \mathrm{h}_{\mathrm{lm}}=\mathrm{K} \cdot \frac{\mathrm{~V}_{1}}{2}=(1-\mathrm{AR})^{2} \cdot \frac{\mathrm{~V}_{1}^{2}}{2} \\
& \mathrm{~K}=(1-\mathrm{AR})^{2}
\end{aligned}
$$

This result, and the curve of Fig. 8.15, are shown in the associated Excel workbook. The agreement is excellent
8.97 By applying the basic equations to a control volume starting at the expansion and ending downstream, analyze flow through a sudden expansion (assume the inlet pressure p_{1} acts on the area A_{2} at the expansion). Develop an expression for and plot the minor head loss across the expansion as a function of area ratio, and compare with the data of Fig. 8.15.

Given: Sudden expansion
Find: \quad Expression for minor head loss; compare with Fig. 8.15; plot

Solution:

From the CV analysis

$$
\mathrm{K}=(1-\mathrm{AR})^{2}
$$

$A R$	K_{CV}	$K_{\text {Fig. 8.15 }}$
0.0	1.00	1.00
0.1	0.81	
0.2	0.64	0.60
0.3	0.49	
0.4	0.36	0.38
0.5	0.25	0.25
0.6	0.16	
0.7	0.09	0.10
0.8	0.04	
0.9	0.01	0.01
1.0	0.00	0.00

(Data from Fig. 8.15
is "eyeballed")
Agreement is excellent

Given: Water at $45^{\circ} \mathrm{C}$ enters a shower head through a circular tube with 15.8 mm inside diameter. The water leaves in 24 streams, each of 1.05 mm diameter. The volume flow rate is $5.67 \mathrm{~L} / \mathrm{min}$.

Find: (a) Estimate of the minimum water pressure needed at the inlet to the shower head.
(b) Force needed to hold the shower head onto the end of the circular tube, indicating clearly whether this is a compression or a tension force.
Solution: Apply the energy equation for steady, incompressiske pipe flow, and the x component of momentum, wing the $U V$ shown.

Assume: (1) steady flow
(2) Incompressible flow
(3) Neglect changes in z
(4) Uniform flow: $\alpha_{1}=\alpha_{2} \approx 1$
(5) Use gage pressures 24 streams

Then

$$
\begin{aligned}
& \frac{p_{1}}{\rho}+\alpha_{1} \frac{\bar{v}_{1}^{2}}{2}+g_{1}-\left(p_{1} \dot{p}_{2}^{2}+\alpha_{2} \frac{\bar{v}_{2}^{2}}{2}+g_{2}\right) \\
& =h_{2 T}=h_{k}^{=0}+h_{e m} \quad A_{1}=24 \frac{\pi D_{2}^{2}}{4}=2.08 \times 10^{-5} \mathrm{~m}^{2} \\
& \bar{V}_{1}=\frac{Q}{A_{1}}=5.67 \frac{\mathrm{~L}}{\mathrm{~mm}} \times \frac{1}{1.96 \times 10^{-4} \mathrm{~m}^{2}} \times \frac{\mathrm{m}^{3}}{100 \mathrm{~L}} \times \frac{2 \mathrm{~min}}{40 S}=0.487 \mathrm{~m} / \mathrm{s} \\
& \bar{V}_{2}=\bar{V}_{1} \frac{A_{1}}{A_{2}}=0.487 \frac{\mathrm{~m}}{\mathrm{~s}} \times \frac{1.96 \times 10^{-4} \mathrm{~m}^{2}}{2.08 \times 10^{-5} \mathrm{~m}^{2}}=4.59 \mathrm{~m} / \mathrm{s} \\
& \text { Use } K=0.5 \text {, for a square-edged orificial } f=9 \% \mathrm{~kg}_{\mathrm{l}} / \mathrm{m}^{3} \text { (Table A.8). Then } \\
& p_{1}=\frac{\rho}{2}\left(\bar{V}_{2}^{\alpha}+k \bar{V}_{2}^{2}-\vec{V}_{1}^{2}\right)=\frac{\rho}{2}\left[(1+k) \bar{V}_{2}^{*} \div \bar{V}_{1}{ }^{+}\right] \\
& p_{1}=\frac{1}{2} \times 940 \frac{\mathrm{~kg}}{\mathrm{~m}^{3}}\left[(1+0.5)(4.59)^{2}-(0.487)^{2}\right] \frac{\mathrm{m}^{2}}{\mathrm{~S}^{2}} \times \frac{\mathrm{Ng} \mathrm{~s}}{\mathrm{kgm}}=15.5 \mathrm{kPa}(g \mathrm{ggc})
\end{aligned}
$$

Use momentum to find force:

$$
A_{1}=\frac{\pi D_{1}^{2}}{4}=1.96 \times 10^{-4} \mathrm{~m}^{2}
$$

Basic equation: $F_{y y}+F f_{x}^{2(4)}=\frac{P^{2}}{=0(1)} \int_{C v} u f d t+\int_{c s} u \rho \vec{v} \cdot d \vec{A}$
Assume: (6) $F_{B X}=0$
Then $R_{x}-p_{1} g A_{1}=u_{i}\{-\rho Q\}+u_{i}\{+\rho Q\}=-v_{1}\left\{-\rho_{Q}\right\}+\left(-v_{2}\right)\{+\rho Q\}=\rho Q\left(v_{1}-v_{2}\right)$
Step (2): $\quad u_{1}=-v_{1} \quad u_{2}=-v_{2}$

$$
\begin{gathered}
R_{x}=p_{1 g} A_{1}+p_{Q}\left(v_{1}-v_{2}\right)=15.5 \times 10^{3} \frac{\mathrm{~N}}{\mathrm{~m}^{2}} \times 1.96 \times 10^{-4} \mathrm{~m}^{2}+990 \frac{\mathrm{~kg}}{\mathrm{~m}^{3}} \times 5.67 \frac{\mathrm{~L}}{\mathrm{~mm}^{2}} \times(0.497-4.54) \frac{\mathrm{m}}{\mathrm{~s}} \\
\times \frac{\mathrm{m}^{3}}{1000 \mathrm{~L}} \times \frac{\mathrm{mm}}{605}
\end{gathered}
$$

$$
R_{x}=2.65 \mathrm{~N} \text { (in direction shown, ie., tension) }
$$

Problem 8.99

8.99 Analyze flow through a sudden expansion to obtain an expression for the upstream average velocity \bar{V}_{1} in terms of the pressure change $\Delta p=p_{2}-p_{1}$, area ratio $A R$, fluid density ρ, and loss coefficient K. If the flow were frictionless, would the flow rate indicated by a measured pressure change be higher or lower than a real flow, and why? Conversely, if the flow were frictionless, would a given flow generate a larger or smaller pressure change, and why?

Given: Sudden expansion
Find: Expression for upstream average velocity

Solution:

The governing equation is

$$
\begin{align*}
& \left(\frac{\mathrm{p}_{1}}{\rho}+\alpha_{1} \cdot \frac{\mathrm{~V}_{1}^{2}}{2}+\mathrm{g} \cdot \mathrm{z}_{1}\right)-\left(\frac{\mathrm{p}_{2}}{\rho}+\alpha_{2} \cdot \frac{\mathrm{~V}_{2}^{2}}{2}+\mathrm{g} \cdot \mathrm{z}_{2}\right)=\mathrm{h}_{\mathrm{lT}} \tag{8.29}\\
& \mathrm{~h}_{\mathrm{lT}}=\mathrm{h}_{\mathrm{l}}+\mathrm{K} \cdot \frac{\mathrm{~V}^{2}}{2}
\end{align*}
$$

Assume:

1) Steady flow 2) Incompressible flow 3) $\left.h_{l}=04\right) \alpha_{1}=\alpha_{2}=1$ 5) Neglect gravity

The mass equation is

$$
\begin{equation*}
\mathrm{V}_{1} \cdot \mathrm{~A}_{1}=\mathrm{V}_{2} \cdot \mathrm{~A}_{2} \tag{so}
\end{equation*}
$$

$\mathrm{V}_{2}=\mathrm{V}_{1} \cdot \frac{\mathrm{~A}_{1}}{\mathrm{~A}_{2}}$

Equation 8.29 becomes

$$
\begin{equation*}
\mathrm{V}_{2}=\mathrm{AR} \cdot \mathrm{~V}_{1} \tag{1}
\end{equation*}
$$

$$
\frac{\mathrm{p}_{1}}{\rho}+\frac{\mathrm{V}_{1}^{2}}{2}=\frac{\mathrm{p}_{1}}{\rho}+\frac{\mathrm{V}_{1}^{2}}{2}+\mathrm{K} \cdot \frac{\mathrm{~V}_{1}^{2}}{2}
$$

$$
\frac{\Delta \mathrm{p}}{\rho}=\frac{\mathrm{p}_{2}-\mathrm{p}_{1}}{\rho}=\frac{\mathrm{V}_{1}^{2}}{2} \cdot\left(1-\mathrm{AR}^{2}-\mathrm{K}\right)
$$

Solving for V_{1}

$$
V_{1}=\sqrt{\frac{2 \cdot \Delta p}{\rho \cdot\left(1-A R^{2}-K\right)}}
$$

If the flow were frictionless, $K=0$, so $\quad V_{\text {inviscid }}=\sqrt{\frac{2 \cdot \Delta \mathrm{p}}{\rho \cdot\left(1-\mathrm{AR}^{2}\right)}}<\mathrm{V}_{1}$
Hence the flow rate indicated by a given Δp would be lower
If the flow were frictionless, $K=0$, so $\quad \Delta \mathrm{p}_{\text {invscid }}=\frac{\mathrm{V}_{1}{ }^{2}}{2} \cdot\left(1-\mathrm{AR}^{2}\right)$
compared to

$$
\Delta \mathrm{p}=\frac{\mathrm{V}_{1}^{2}}{2} \cdot\left(1-\mathrm{AR}^{2}-\mathrm{K}\right)
$$

Hence a given flow rate would generate a larger Δp for inviscid flow
8.100 Water discharges to atmosphere from a large reservoir through a moderately rounded horizontal nozzle of 1 in . diameter. The free surface is 5 ft above the nozzle exit plane. Calculate the change in flow rate when a short section of 2-in. diameter pipe is attached to the end of the nozzle to form a sudden expansion. Determine the location and estimate the magnitude of the minimum pressure with the sudden expansion in place. If the flow were frictionless (with the sudden expansion in place), would the minimum pressure be higher, lower, or the same? Would the flow rate be
 higher, lower, or the same?

Given: Flow out of water tank through a nozzle
Find: Change in flow rate when short pipe section is added; Minimum pressure; Effect of frictionless flow

Solution:

Basic equations

$$
\left(\frac{p_{1}}{\rho}+\alpha \cdot \frac{V_{1}^{2}}{2}+g \cdot z_{1}\right)-\left(\frac{p_{2}}{\rho}+\alpha \cdot \frac{V_{2}^{2}}{2}+g \cdot z_{2}\right)=h_{l T} \quad h_{l T}=h_{l}+h_{l m}=f \cdot \frac{L}{D} \cdot \frac{V_{2}^{2}}{2}+K \cdot \frac{V_{2}^{2}}{2} \quad Q=V \cdot A
$$

Assumptions: 1) Steady flow 2) Incompressible flow 3) α at 1 and 2 is approximately 1 4) $\mathrm{V}_{\mathrm{l}} \ll 5$) $\mathrm{L} \ll$ so $h_{l}=0$
Hence for the nozzle case, between the free surface (Point 1) and the exit (2) the energy equation becomes

$$
\begin{array}{ll}
\mathrm{g} \cdot \mathrm{z}_{1}-\frac{\mathrm{V}_{2}^{2}}{2}=\mathrm{K}_{\mathrm{nozzle}} \cdot \frac{\mathrm{~V}_{2}^{2}}{2} \\
\text { Solving for } \mathrm{V}_{2} \quad & \mathrm{~V}_{2}=\sqrt{\frac{2 \cdot \mathrm{~g} \cdot \mathrm{z}_{1}}{\left(1+\mathrm{K}_{\mathrm{nozzle}}\right)}}
\end{array}
$$

For a rounded edge, we choose the first value from Table 8.2

$$
\mathrm{K}_{\text {nozzle }}=0.28
$$

Hence

$$
\begin{aligned}
& \mathrm{V}_{2}=\sqrt{2 \times 32.2 \cdot \frac{\mathrm{ft}}{\mathrm{~s}^{2}} \times 5 \cdot \mathrm{ft} \times \frac{1}{(1+0.28)}} \quad \mathrm{V}_{2}=15.9 \cdot \frac{\mathrm{ft}}{\mathrm{~s}} \\
& \mathrm{Q}=\mathrm{V}_{2} \cdot \mathrm{~A}_{2} \quad \mathrm{Q}=15.9 \cdot \frac{\mathrm{ft}}{\mathrm{~s}} \times \frac{\pi}{4} \times\left(\frac{0.5}{12} \cdot \mathrm{ft}\right)^{2} \times \frac{7.48 \cdot \mathrm{gal}}{1 \cdot \mathrm{ft}^{3}} \times \frac{60 \cdot \mathrm{~s}}{1 \cdot \mathrm{~min}} \quad \mathrm{Q}=9.73 \cdot \mathrm{gpm} \quad \mathrm{Q}=0.0217 \frac{\mathrm{ft}^{3}}{\mathrm{~s}}
\end{aligned}
$$

When a small piece of pipe is added the energy equation between the free surface (Point 1) and the exit (3) becomes

$$
\mathrm{g} \cdot \mathrm{z}_{1}-\frac{\mathrm{V}_{3}^{2}}{2}=\mathrm{K}_{\text {nozzle }} \cdot \frac{\mathrm{V}_{2}^{2}}{2}+\mathrm{K}_{\mathrm{e}} \cdot \frac{\mathrm{~V}_{2}^{2}}{2}
$$

From continuity

$$
\mathrm{V}_{3}=\mathrm{V}_{2} \cdot \frac{\mathrm{~A}_{2}}{\mathrm{~A}_{3}}=\mathrm{V}_{2} \cdot \mathrm{AR}
$$

Solving for V_{2}

$$
\mathrm{V}_{2}=\sqrt{\frac{2 \cdot g \cdot \mathrm{z}_{1}}{\left(\mathrm{AR}^{2}+\mathrm{K}_{\text {nozzle }}+\mathrm{K}_{\mathrm{e}}\right)}}
$$

We need the AR for the sudden expansion $\quad A R=\frac{A_{2}}{A_{3}}=\left(\frac{D_{2}}{D_{3}}\right)^{2}=\left(\frac{1}{2}\right)^{2}=0.25$
From Fig. 8.14 for $\mathrm{AR}=0.25$

$$
\mathrm{K}_{\mathrm{e}}=0.6
$$

Hence

$$
\begin{array}{ll}
\mathrm{V}_{2}=\sqrt{2 \times 32.2 \cdot \frac{\mathrm{ft}}{\mathrm{~s}^{2}} \times 5 \cdot \mathrm{ft} \times \frac{1}{\left(0.25^{2}+0.28+0.6\right)}} & \mathrm{V}_{2}=18.5 \cdot \frac{\mathrm{ft}}{\mathrm{~s}} \\
\mathrm{Q}=\mathrm{V}_{2} \cdot \mathrm{~A}_{2} & \mathrm{Q}=18.5 \cdot \frac{\mathrm{ft}}{\mathrm{~s}} \times \frac{\pi}{4} \times\left(\frac{0.5}{12} \cdot \mathrm{ft}\right)^{2} \times \frac{7.48 \cdot \mathrm{gal}}{1 \cdot \mathrm{ft}^{3}} \times \frac{60 \cdot \mathrm{~s}}{1 \cdot \mathrm{~min}}
\end{array} \quad \mathrm{Q}=11.32 \cdot \mathrm{gpm} \quad \mathrm{Q}=0.0252 \frac{\mathrm{ft}^{3}}{\mathrm{~s}} .
$$

Comparing results we see the flow increases from $0.0217 \mathrm{ft}^{3} / \mathrm{s}$ to $0.0252 \mathrm{ft}^{3} / \mathrm{s}$

$$
\frac{\Delta \mathrm{Q}}{\mathrm{Q}}=\frac{0.0252-0.0217}{0.0217}=16.1 \%
$$

The flow increases because the effect of the pipe is to allow an exit pressure at the nozzle LESS than atmospheric!

The minimum pressure point will now be at Point 2 (it was atmospheric before adding the small pipe). The energy equation between 1 and 2 is
$g \cdot z_{1}-\left(\frac{p_{2}}{\rho}+\frac{V_{2}^{2}}{2}\right)=K_{\text {nozzle }} \cdot \frac{V_{2}^{2}}{2}$
Solving for $\mathrm{P}_{2} \quad \mathrm{P}_{2}=\rho \cdot\left[\mathrm{g} \cdot \mathrm{z}_{1}-\frac{\mathrm{V}_{2}^{2}}{2} \cdot\left(\mathrm{~K}_{\text {nozzle }}+1\right)\right]$

Hence $\quad \mathrm{p}_{2}=1.94 \cdot \frac{\text { slug }}{\mathrm{ft}^{3}} \times\left[32.2 \cdot \frac{\mathrm{ft}}{\mathrm{s}^{2}} \times 5 \cdot \mathrm{ft}-\frac{1}{2} \times\left(18.5 \cdot \frac{\mathrm{ft}}{\mathrm{s}}\right)^{2} \times(0.28+1)\right] \times \frac{\mathrm{lbf} \cdot \mathrm{s}^{2}}{\mathrm{slug} \cdot \mathrm{ft}}$

$$
\mathrm{p}_{2}=-113 \frac{\mathrm{lbf}}{\mathrm{ft}^{2}}
$$

$\mathrm{p}_{2}=-0.782 \mathrm{psi}$

If the flow were frictionless the the two loss coeffcients would be zero. Instead of $V_{2}=\sqrt{\frac{2 \cdot g \cdot z_{1}}{\left(A R^{2}+K_{\text {nozzle }}+K_{e}\right)}}$

$$
\text { We'd have } \quad \mathrm{V}_{2}=\sqrt{\frac{2 \cdot g \cdot \mathrm{z}_{1}}{\mathrm{AR}^{2}}} \quad \text { which is larger }
$$

If V_{2} is larger, then p_{2}, through Bernoulli, would be lower (more negative)

Gwen: steady flow of water from a large tank through a length of smooth plastic thing, with $D=3.18 \mathrm{~mm}$ and $L=15.3 \mathrm{~m}$.

Find: (a) Maximum volume flow rate for laminar flow.
(b) Estimate maximum water level in tank for laminar flow $(\alpha=2$ and kent $=1.4)$

Solution: Assume water $a+20^{\circ} \mathrm{C}$. From Table $A .8, \rho=998 \mathrm{~kg} / \mathrm{m}_{3}^{3}, v=1,00 \times 10^{-6} \mathrm{~m}^{2} / 4$.

$$
\begin{align*}
& R e=\frac{P \bar{V} D}{\mu}=\frac{V D}{V} \leqslant 2300 ; \bar{V}_{m a x}=\frac{2300 v}{D}=2300 \times 1.00 \times 10^{-6} \frac{\mathrm{~m}^{2}}{\mathrm{~s}} \times \frac{1}{0.003 .8 \mathrm{~m}}=0.723 \mathrm{~m} / \mathrm{s} \\
& Q=\bar{V} A ; A=\frac{\pi D^{2}}{4}=\frac{\pi}{4}(0.00318)^{2} \mathrm{~m}^{2}=7.94 \times 10^{-6} \mathrm{~m}^{2} \\
& Q=0.723 \frac{\mathrm{~m}}{\mathrm{~s}} \times 7.94 \times 10^{-6} \mathrm{~m}^{2}=5.74 \times 10^{-6} \frac{\mathrm{~m}^{3}}{3} \times 10^{3} \frac{\mathrm{~L}}{\mathrm{~m}^{3}} \times \frac{60 \mathrm{~s}}{\mathrm{~mm}}=0.3454 / \mathrm{min} \tag{0}
\end{align*}
$$

Apply energy equation for steady, $\rho=$ constant pipe flow
Computing
Equation:

$$
\begin{aligned}
& \left.\left(\frac{\phi_{1}}{p}+\alpha_{1} \bar{b}_{F}^{2}+g b_{1}\right)-\left(\frac{\phi_{2}}{p}+\alpha_{2} \frac{\bar{v}_{2}^{2}}{2}+g_{p}\right)^{T}\right)^{0}=h_{e T} \\
& h_{l T}-h_{l n}+h_{l}
\end{aligned}
$$

Assumptions: (1) $p_{1}=p_{2}=$ pate
(2) $\nabla_{1} \approx 0$

(3) Kent $=1.4$ (given)

Then $g d=\alpha_{2} \frac{\bar{V}_{2}^{2}}{2}+k_{\operatorname{con}}+\frac{\bar{V}_{2}^{2}}{2}+f \frac{L_{D}}{\bar{D}} \frac{\bar{v}_{2}^{2}}{2} \quad$ or $\quad d=\frac{\bar{V}_{2}^{2}}{2 g}\left(\alpha_{2}+k_{\text {en }}+f \frac{L}{D}\right)$
For laminar flow, $f=\frac{64}{R e}=\frac{64}{2300}=0.0278$. substituting

$$
\begin{aligned}
& d=\frac{1}{2} \times(0.723)^{2} \frac{m^{2}}{s^{2}} \times \frac{s^{2}}{9.81 m}\left(2.0+1.4+0.0278 \frac{15.3 \mathrm{~m}}{0.003 .18 \mathrm{~m}}\right) \\
& d=3.65 \mathrm{~m}
\end{aligned}
$$

Open-Ended Problem Statement: You are asked to compare the behavior of fully developed laminar flow and fully developed turbulent flow in a horizontal pipe under different conditions. For the same flow rate, which will have the larger centerline velocity? Why? If the pipe discharges to atmosphere what would you expect the trajectory of the discharge stream to look like (for the same flow rate)? Sketch your expectations for each case. For the same flow rate, which flow would give the larger wall shear stress? Why? Sketch the shear stress distribution τ / τ_{w} as a function of radius for each flow. For the same Reynolds number, which flow would have the larger pressure drop per unit length? Why? For a given imposed pressure differential, which flow would have the larger flow rate? Why?

Discussion: In the following fully developed laminar flow and fully developed turbulent flow in a pipe are compared:
(a) For the same flow rate, laminar flow has the higher maximum velocity, because the turbulent velocity profile is more blunt.
(b) The trajectory of the discharge stream spreads out for laminar flow because of the large variation in velocity across the pipe exit. For turbulent flow the exit profile is more nearly uniform (except for the region adjacent to the wall) and hence the trajectory is more uniform. Since centerline velocity is larger for laminar flow, liquid travels the greatest horizontal distance. Trajectories for the two flow cases are shown below:

(i) Laminar flow

(ii) Turbulent flow
(c) For the same flow rate (same mean velocity), turbulent flow has larger wall shear stress because of the larger velocity gradient at the pipe wall. For fully developed flow the pressure force driving the flow is balanced by the shear force at the wall.
(d) Shear stress varies linearly with radius for both flow cases, from its maximum value at the wall to zero at the pipe centerline.
(e) For the same Reynolds number, turbulent flow has a larger pressure drop per unit length because the friction factor is larger.
(f) For a given pressure drop (per unit length), laminar flow has the larger flow rate (larger mean velocity), because it has the smaller friction factor.

The two flow cases are compared in the NCFMF video Turbulence, in which R. W. Stewart uses a clever experimental setup to contrast the two flow regimes at constant volume flow rate by varying the liquid viscosity. The trajectories of the liquid streams leaving the end of the pipe are particularly well shown.
8.103 Estimate the minimum level in the water tank of Problem
8.101 such that the flow will be turbulent.

Given: Data on water flow from a tank/tubing system

Find: \quad Minimum tank level for turbulent flow

Solution:

Governing equations:

$$
\begin{align*}
& \left(\frac{p_{1}}{\rho}+\alpha_{1} \cdot \frac{V_{1}^{2}}{2}+g \cdot z_{1}\right)-\left(\frac{p_{2}}{\rho}+\alpha_{2} \cdot \frac{V_{2}^{2}}{2}+g \cdot z_{2}\right)=h_{1 T}=\sum_{\text {major }} h_{1}+\sum_{\text {minor }} h_{l m} \tag{8.29}\\
& R e=\frac{\rho \cdot V \cdot D}{\mu} \quad h_{1}=f \cdot \frac{L}{D} \cdot \frac{V^{2}}{2} \quad(8.34) \quad h_{l m}=K \cdot \frac{V^{2}}{2} \quad \text { (8.40a) } \quad h_{l m}=f \cdot \frac{L_{e}}{D} \cdot \frac{V^{2}}{2} \\
& f=\frac{64}{\operatorname{Re}} \tag{8.37}\\
& \text { (Laminar) } \frac{1}{\sqrt{\mathrm{f}}}=-2.0 \cdot \log \left(\frac{\frac{\mathrm{e}}{\mathrm{D}}}{3.7}+\frac{2.51}{\operatorname{Re} \cdot \sqrt{\mathrm{f}}}\right)
\end{align*}
$$

The energy equation (Eq. 8.29) becomes $\quad g \cdot d-\alpha \cdot \frac{V^{2}}{2}=f \cdot \frac{L}{D} \cdot \frac{V^{2}}{2}+K \cdot \frac{V^{2}}{2}$
This can be solved expicitly for height d, or solved using Solver

Given data: Tabulated or graphical data:

$$
\begin{array}{rlrl}
L & =15.3 \mathrm{~m} & v=1.00 \mathrm{E}-06 \mathrm{~m}^{2} / \mathrm{s} \\
D & =3.18 \mathrm{~mm} & \rho=998 \mathrm{~kg} / \mathrm{m} \\
K_{\text {ent }} & =1.4 & & (\text { Appendix A) } \\
\alpha & =2 & &
\end{array}
$$

Computed results:

$$
\begin{array}{rlr}
R e & =2300 \quad \text { (Transition } R e) \\
V & =0.723 \mathrm{~m} / \mathrm{s} \\
\alpha & =1 \quad \text { (Turbulent) } \\
f & =0.0473 \text { (Turbulent) } \\
d & =6.13 \mathrm{~m} \quad \text { (Vary } d \text { to minimize error in energy equation) }
\end{array}
$$

Energy equation:
(Using Solver)

Left ($\mathbf{m}^{\mathbf{2}} / \mathbf{s}$)	Right (m${ }^{\mathbf{2}} / \mathbf{s}$)	Error
59.9	59.9	0.00%

Note that we used $\alpha=1$ (turbulent); using $\alpha=2$ (laminar) gives $d=6.16 \mathrm{~m}$

Gie: System for measuring pressure drop for water flow in smodit tube as shown

Find: (a) Volume flow rate needed for turbulent flow in pipe (b) resernar trait differential needed for turbulent pipe flow
Solution:
Flow will be turbulent for Req $\gg 2300$

$$
R_{e y}=\frac{\overline{P V} \bar{\mu}}{\mu}=\frac{\bar{V}}{v}=\frac{Q\rangle}{A}=\frac{\theta y}{V} \frac{4}{\pi y^{2}}=\frac{4 Q}{\pi \nabla\rangle} \text { so } Q=\frac{\pi \bar{y}}{4}
$$

Assume $T=20^{\circ} \mathrm{C}, \forall=1.00 \times 10^{-6} \mathrm{n}^{2} \mathrm{I}_{\mathrm{s}}$ (Table $A . B^{\prime}$)
For $R_{e}=2300$,

$$
Q=\frac{\pi}{4} \cdot 1.0 \times 10^{-6} \frac{n^{2}}{3} \times 15,9 \times 10^{-3} \mathrm{~m}+2300=2.87 \times 10^{-5} \mathrm{~m}^{3} \mathrm{I}_{\mathrm{s}}+Q
$$

$$
h_{e T}=h_{e}+h_{e_{m}} \quad h_{e}=\left\{\frac{-V^{2}}{8}, h_{e_{m}}=x^{\frac{J^{2}}{2}}\right.
$$

Assumptions: (i) $P_{1}=P_{2}=P_{\text {atm }}(2) \bar{J}_{1}=J_{2}=0$

$$
\text { (3) } K_{\text {at }}=0.5(\text { Table } 8.2), K_{\text {ait }}=1.0
$$

Then, $z_{1}-z_{2}=\frac{-y^{2}}{2 g}\left[f \frac{L}{8}+k_{\text {ert }}+k_{\text {eire }}\right]$

$$
\bar{y}=\frac{\theta}{\pi}=\frac{4 \theta}{\pi y^{2}}=\frac{4}{\pi} \times 2.87 \times 10^{-5} \frac{H}{5} \times\left(15 \cdot 9 \times 10^{-3}+1\right)^{2}=0.145 \mathrm{ml}
$$

For turbutert flow in a smooth pipe at Re =2300,

$$
f=0.05\left(\operatorname{Fig}_{8} .13\right)
$$

From Eq.'

$$
d=3 .-z^{2}=\frac{\left.(0.145)^{2}\right)^{2}}{2} \frac{5^{2}}{5^{2}}+\frac{s^{2}}{9.81 m}\left[0.05 \times \frac{3.56 \times 0^{3}}{15.9}+0.5+1.0\right]
$$

$d=0.0136 \mathrm{n}$ or 13.6 mm

Problem 8.105

8.105 As discussed in Problem 8.48, the applied pressure difference, Δp, and corresponding volume flow rate, Q, for laminar flow in a tube can be compared to the applied DC voltage V across, and current I through, an electrical resistor, respectively. Investigate whether or not this analogy is valid for turbulent flow by plotting the "resistance" $\Delta p / Q$ as a function of Q for turbulent flow of kerosine (at $40^{\circ} \mathrm{C}$) in a tube 100 mm long with inside diameter 0.3 mm .

Given: Data on a tube

Find: \quad "Resistance" of tube for flow of kerosine; plot

Solution:

The given data is

$$
\mathrm{L}=100 \cdot \mathrm{~mm}
$$

$$
\mathrm{D}=0.3 \cdot \mathrm{~mm}
$$

(Kerosene)
From Fig. A. 2 and Table A. 2

$$
\mu=1.1 \times 10^{-3} \cdot \frac{\mathrm{~N} \cdot \mathrm{~s}}{\mathrm{~m}^{2}}
$$

$$
\rho=0.82 \times 990 \cdot \frac{\mathrm{~kg}}{\mathrm{~m}^{3}}=812 \cdot \frac{\mathrm{~kg}}{\mathrm{~m}^{3}}
$$

$$
\begin{equation*}
\mathrm{V}=\mathrm{R} \cdot \mathrm{I} \tag{1}
\end{equation*}
$$

The governing equations for turbulent flow are

$$
\begin{align*}
& \left(\frac{p_{1}}{\rho}+\alpha_{1} \cdot \frac{V_{1}^{2}}{2}+g \cdot z_{1}\right)-\left(\frac{p_{2}}{\rho}+\alpha_{2} \cdot \frac{V_{2}^{2}}{2}+g \cdot z_{2}\right)=h_{l} \tag{8.29}\\
& h_{l}=f \cdot \frac{L}{D} \cdot \frac{V^{2}}{2} \tag{8.37}
\end{align*}
$$

Simplifying Eqs. 8.29 and 8.34 for a horizontal, constant-area pipe

$$
\begin{equation*}
\frac{p_{1}-p_{2}}{\rho}=\mathrm{f} \cdot \frac{\mathrm{~L}}{\mathrm{D}} \cdot \frac{\mathrm{~V}^{2}}{2}=\mathrm{f} \cdot \frac{\mathrm{~L}}{\mathrm{D}} \cdot \frac{\left(\frac{\mathrm{Q}}{\frac{\pi}{4} \cdot \mathrm{D}^{2}}\right)^{2}}{2} \quad \text { or } \quad \Delta \mathrm{p}=\frac{8 \cdot \rho \cdot \mathrm{f} \cdot \mathrm{~L}}{\pi^{2} \cdot \mathrm{D}^{5}} \cdot \mathrm{Q}^{2} \tag{2}
\end{equation*}
$$

By analogy, current I is represented by flow rate Q, and voltage V by pressure drop Δp.
Comparing Eqs. (1) and (2), the "resistance" of the tube is

$$
\mathrm{R}=\frac{\Delta \mathrm{p}}{\mathrm{Q}}=\frac{8 \cdot \rho \cdot \mathrm{f} \cdot \mathrm{~L} \cdot \mathrm{Q}}{\pi^{2} \cdot \mathrm{D}^{5}}
$$

The "resistance" of a tube is not constant, but is proportional to the "current" Q ! Actually, the dependence is not quite linear, because f decreases slightly (and nonlinearly) with Q. The analogy fails!
The analogy is hence invalid for

$$
\operatorname{Re}>2300
$$

or

$$
\frac{\rho \cdot \mathrm{V} \cdot \mathrm{D}}{\mu}>2300
$$

or

$$
\begin{aligned}
& \mathrm{Q}>\frac{2300 \cdot \mu \cdot \pi \cdot \mathrm{D}}{4 \cdot \rho} \\
& \mathrm{Q}=7.34 \times 10^{-7} \frac{\mathrm{~m}^{3}}{\mathrm{~s}}
\end{aligned}
$$

The plot of "resistance" versus flow rate is shown in the associated Excel workbook
8.105 As discussed in Problem 8.48, the applied pressure difference, Δp, and corresponding volume flow rate, Q, for laminar flow in a tube can be compared to the applied DC voltage V across, and current I through, an electrical resistor, respectively. Investigate whether or not this analogy is valid for turbulent flow by plotting the "resistance" $\Delta p / Q$ as a function of Q for turbulent flow of kerosine (at $40^{\circ} \mathrm{C}$) in a tube 100 mm long with inside diameter 0.3 mm .

Given: Data on a tube
Find: \quad "Resistance" of tube for flow of kerosine; plot

Solution:

The "resistance" is

$$
\mathrm{R}=\frac{\Delta \mathrm{p}}{\mathrm{Q}}=\frac{8 \cdot \rho \cdot \mathrm{f} \cdot \mathrm{~L} \cdot \mathrm{Q}}{\pi^{2} \cdot \mathrm{D}^{5}}
$$

The "resistance" of a tube is not constant, but is proportional to the "current" Q ! Actually, the dependence is not quite linear, because f decreases slightly (and nonlinearly) with Q. The analogy fails!

Given data: Tabulated or graphical data:

$L=$	100	mm	μ	$=1.01 \mathrm{E}-03$	$\mathrm{~N} . \mathrm{s} / \mathrm{m}^{2}$
$D=$	0.3	mm	$S G_{\mathrm{ker}}$	$=0$	0.82
ρ_{w}	$=990$	$\mathrm{~kg} / \mathrm{m}^{3}$			
		$=812$	$\mathrm{~kg} / \mathrm{m}^{3}$		

Computed results:

$\boldsymbol{Q}\left(\mathbf{m}^{\mathbf{3} / \mathbf{s})}\right.$	$\boldsymbol{V}(\mathbf{m} / \mathbf{s})$	$\boldsymbol{R e}$	\boldsymbol{f}	"R" $(\mathbf{1 0}$ $\left.\mathbf{P a} / \mathbf{m}^{\mathbf{3}} / \mathbf{s}\right)$
$1.0 \mathrm{E}-06$	14.1	$3.4 \mathrm{E}+03$	0.0419	1133
$2.0 \mathrm{E}-06$	28.3	$6.8 \mathrm{E}+03$	0.0343	1855
$4.0 \mathrm{E}-06$	56.6	$1.4 \mathrm{E}+04$	0.0285	3085
$6.0 \mathrm{E}-06$	84.9	$2.0 \mathrm{E}+04$	0.0257	4182
$8.0 \mathrm{E}-06$	113.2	$2.7 \mathrm{E}+04$	0.0240	5202
$1.0 \mathrm{E}-05$	141.5	$3.4 \mathrm{E}+04$	0.0228	6171
$2.0 \mathrm{E}-05$	282.9	$6.8 \mathrm{E}+04$	0.0195	10568
$4.0 \mathrm{E}-05$	565.9	$1.4 \mathrm{E}+05$	0.0169	18279
$6.0 \mathrm{E}-05$	848.8	$2.0 \mathrm{E}+05$	0.0156	25292
$8.0 \mathrm{E}-05$	1131.8	$2.7 \mathrm{E}+05$	0.0147	31900

The "resistance" is not constant; the analogy is invalid for turbulent flow

8.106 Plot the required reservoir depth of water to create flow in a smooth tube of diameter 10 mm and length 100 m , for a flow rate range of $1 \mathrm{~L} / \mathrm{min}$ through $10 \mathrm{~L} / \mathrm{min}$.

Given: Data on tube geometry

Find: Plot of reservoir depth as a function of flow rate

Solution:

Governing equations: $\quad\left(\frac{p_{1}}{\rho}+\alpha_{1} \cdot \frac{V_{1}{ }^{2}}{2}+g \cdot z_{1}\right)-\left(\frac{p_{2}}{\rho}+\alpha_{2} \cdot \frac{v_{2}{ }^{2}}{2}+g \cdot z_{2}\right)=h_{\mathrm{lT}}=\sum_{\text {major }} h_{1}+\sum_{\text {minor }} h_{l m}$

$$
\begin{array}{llll}
\operatorname{Re}=\frac{\rho \cdot \mathrm{V} \cdot \mathrm{D}}{\mu} & \mathrm{~h}_{1}=\mathrm{f} \cdot \frac{\mathrm{~L}}{\mathrm{D}} \cdot \frac{\mathrm{~V}^{2}}{2} & (8.34) & \mathrm{h}_{\mathrm{lm}}=\mathrm{K} \cdot \frac{\mathrm{~V}^{2}}{2} \quad \text { (8.40a) } \\
\mathrm{f}=\frac{64}{\operatorname{Re}} & \text { (8.36) } & \text { (Laminar) } & \frac{1}{\sqrt{\mathrm{f}}}=-2.0 \cdot \log \left(\frac{\frac{\mathrm{e}}{\mathrm{D}}}{3.7}+\frac{2.51}{\operatorname{Re} \cdot \sqrt{\mathrm{f}}}\right) \quad \mathrm{h}_{\mathrm{lm}}=\mathrm{f} \cdot \frac{\mathrm{~L}_{\mathrm{e}}}{\mathrm{D}} \cdot \frac{\mathrm{~V}^{2}}{2} \quad \text { (8.37) } \quad \text { (Turbulent) }
\end{array}
$$

The energy equation (Eq. 8.29) becomes $\quad g \cdot d-\alpha \cdot \frac{v^{2}}{2}=f \cdot \frac{L}{D} \cdot \frac{v^{2}}{2}+K \cdot \frac{v^{2}}{2}$
This can be solved expicitly for height d, or solved using Solver

$$
d=\frac{v^{2}}{2 \cdot g} \cdot\left(\alpha+f \cdot \frac{L}{D}+K\right)
$$

Given data:
Tabulated or graphical data:

$L=$	100	m	$\mu=$	1.01E-03	$\mathrm{N} . \mathrm{s} / \mathrm{m}^{2}$
$\begin{array}{r} D= \\ \alpha= \end{array}$	10	mm	ρ	998	$\mathrm{kg} / \mathrm{m}^{3}$
	1			Table A.8)	
			ent $=$	0.5	(Square-edged)
				Table 8.2)	

Computed results:

$\boldsymbol{Q}(\mathbf{L} / \mathbf{m i n})$	$\boldsymbol{V}(\mathbf{m} / \mathbf{s})$	$\boldsymbol{R e}$	\boldsymbol{f}	$\boldsymbol{d}(\mathbf{m})$
1	0.2	$2.1 \mathrm{E}+03$	0.0305	0.704
2	0.4	$4.2 \mathrm{E}+03$	0.0394	3.63
3	0.6	$6.3 \mathrm{E}+03$	0.0350	7.27
4	0.8	$8.4 \mathrm{E}+03$	0.0324	11.9
5	1.1	$1.0 \mathrm{E}+04$	0.0305	17.6
6	1.3	$1.3 \mathrm{E}+04$	0.0291	24.2
7	1.5	$1.5 \mathrm{E}+04$	0.0280	31.6
8	1.7	$1.7 \mathrm{E}+04$	0.0270	39.9
9	1.9	$1.9 \mathrm{E}+04$	0.0263	49.1
10	2.1	$2.1 \mathrm{E}+04$	0.0256	59.1

Problem 8.107

8.107 Oil with kinematic viscosity $v=0.00005 \mathrm{~m}^{2} / \mathrm{s}$ flows at $0.003 \mathrm{~m}^{3} / \mathrm{s}$ in a $25-\mathrm{m}$ long horizontal steel pipe of 4 cm diameter. By what percentage ratio will the energy loss increase if the same flow rate is maintained while the pipe diameter is reduced to 1 cm ?

Given: Flow of oil in a pipe
Find: \quad Percentage change in loss if diameter is reduced

Solution:

Basic equations

$$
\mathrm{h}_{\mathrm{l}}=\mathrm{f} \cdot \frac{\mathrm{~L}}{\mathrm{D}} \cdot \frac{\mathrm{~V}^{2}}{2} \quad \mathrm{f}=\frac{64}{\mathrm{Re}} \quad \text { Laminar } \quad \frac{1}{\sqrt{\mathrm{f}}}=-2.0 \cdot \log \left(\frac{\frac{\mathrm{e}}{\mathrm{D}}}{3.7}+\frac{2.51}{\operatorname{Re} \cdot \sqrt{\mathrm{f}}}\right)
$$

Turbulent

Here

$$
\mathrm{V}=\frac{\mathrm{Q}}{\mathrm{~A}}=\frac{4 \cdot \mathrm{Q}}{\pi \cdot \mathrm{D}^{2}} \quad \mathrm{~V}=\frac{4}{\pi} \times 0.003 \cdot \frac{\mathrm{~m}^{3}}{\mathrm{~s}} \times\left(\frac{1}{0.04 \cdot \mathrm{~m}}\right)^{2}
$$

$$
\mathrm{V}=2.39 \frac{\mathrm{~m}}{\mathrm{~s}}
$$

Then

$$
\operatorname{Re}=\frac{\mathrm{V} \cdot \mathrm{D}}{\nu} \quad \operatorname{Re}=2.39 \cdot \frac{\mathrm{~m}}{\mathrm{~s}} \times 0.04 \cdot \mathrm{~m} \times \frac{\mathrm{s}}{0.00005 \cdot \mathrm{~m}^{2}}
$$

$$
\operatorname{Re}=1912
$$

The flow is LAMINAR

$$
h_{l}=\mathrm{f} \cdot \frac{\mathrm{~L}}{\mathrm{D}} \cdot \frac{\mathrm{~V}^{2}}{2} \quad \mathrm{~h}_{\mathrm{l}}=\frac{64}{\mathrm{Re}} \cdot \frac{\mathrm{~L}}{\mathrm{D}} \cdot \frac{\mathrm{~V}^{2}}{2} \quad \mathrm{~h}_{\mathrm{l}}=\frac{64}{1912} \times \frac{25 \cdot \mathrm{~m}}{0.04 \cdot \mathrm{~m}} \times \frac{\left(2.39 \cdot \frac{\mathrm{~m}}{\mathrm{~s}}\right)^{2}}{2} \quad \mathrm{~h}_{\mathrm{l}}=643 \cdot \frac{\mathrm{ft}^{2}}{\mathrm{~s}^{2}}
$$

When the diameter is reduced

$$
\begin{array}{lll}
\mathrm{V}=\frac{\mathrm{Q}}{\mathrm{~A}}=\frac{4 \cdot \mathrm{Q}}{\pi \cdot \mathrm{D}^{2}} & \mathrm{~V}=\frac{4}{\pi} \times 0.003 \cdot \frac{\mathrm{~m}^{3}}{\mathrm{~s}} \times\left(\frac{1}{0.01 \cdot \mathrm{~m}}\right)^{2} & \mathrm{~V}=38.2 \frac{\mathrm{~m}}{\mathrm{~s}} \\
\mathrm{Re}=\frac{\mathrm{V} \cdot \mathrm{D}}{\nu} & \mathrm{Re}=38.2 \cdot \frac{\mathrm{~m}}{\mathrm{~s}} \times 0.01 \cdot \mathrm{~m} \times \frac{\mathrm{s}}{0.00005 \cdot \mathrm{~m}^{2}} & \mathrm{Re}=7640
\end{array}
$$

The flow is TURBULENT For a steel pipe, from table 8.1

$$
\mathrm{e}=0.046 \cdot \mathrm{~mm}
$$

$$
\begin{aligned}
& \frac{1}{\sqrt{f}}=-2.0 \cdot \log \left(\frac{\frac{e}{D}}{3.7}+\frac{2.51}{\operatorname{Re} \cdot \sqrt{f}}\right) \\
& \mathrm{h}_{\mathrm{l}}=\mathrm{f} \cdot \frac{\mathrm{~L}}{\mathrm{D}} \cdot \frac{\mathrm{~V}^{2}}{2}
\end{aligned}
$$

Given

$$
\mathrm{f}=0.0389
$$

$$
\mathrm{h}_{\mathrm{l}}=0.0389 \times \frac{25 \cdot \mathrm{~m}}{0.01 \cdot \mathrm{~m}} \times \frac{\left(38.2 \cdot \frac{\mathrm{~m}}{\mathrm{~s}}\right)^{2}}{2}
$$

$$
\mathrm{h}_{\mathrm{l}}=7.64 \times 10^{5} \cdot \frac{\mathrm{ft}^{2}}{\mathrm{~s}^{2}}
$$

$$
7.64 \times 10^{5} \frac{\mathrm{ft}^{2}}{\mathrm{~s}^{2}}
$$

The increase in loss is

$$
\frac{\mathrm{s}^{2}}{\mathrm{ft}^{2}}=1188
$$

$$
643 \frac{\mathrm{ft}^{2}}{\mathrm{~s}^{2}}
$$

This is a HUGH increase! As a percentage increase of 118800%. Hence choice of diameter is very important! The increase is because the diameter reduces by a factor of four and the velocity therefore increases by a factor of 16 , and is squared!

Given: System for measuring pressure drop for water Tow in smooth pipe Supplies water from an avertread constart-head tank. System includes:

- square edged entrance
- two 45° staRdardelbant
- two 90° standard elbows.
- Gully ope gate value
- piptergi $T=9.8 \mathrm{~m}$, diameter $D=15.9 \mathrm{~mm}$

Find: elevation of water sur face in supply tank above pipe discharge needed to achieve $\mathrm{fe}_{2}=10^{\circ}$.
Solution:
$R_{e}=\frac{P \bar{M}}{\mu}=\frac{\bar{V}}{V} \quad$ Assure $T=20^{\circ} \mathrm{C}, ~ V=1.00 \times 10^{-6} \mathrm{n}^{2} l_{\mathrm{l}}$ (Table A.B),
For $\left.R_{e}=10^{5}, \bar{V}=\frac{R_{0} V}{D}=10^{5} \times 1.0 \times 10^{-6} \frac{\mathrm{~m}^{2}}{3} \times \frac{1}{5} \cdot 9 \times 10^{-3} \mathrm{~m}=6.29 \mathrm{~m}\right]_{\mathrm{s}}$
Basic equations: $\left(\frac{P_{1}}{e}+\alpha_{1} \frac{j^{2}}{2}+g j_{2}\right)-\left(\frac{e_{2}}{e^{2}}+\alpha_{2} \bar{j}_{2}^{2}+g z_{2}^{2}\right)=h_{-2}$

$$
h_{5}=h_{6}+h_{m}, h_{e}=f \frac{j^{2}}{y} \frac{\bar{y}^{2}}{2}, h_{m}=f \frac{j^{2}}{2} \Sigma \frac{k}{5}+k_{m+} \frac{-2}{2}
$$

Assumpticis: in $P_{1}=P_{2}=p_{\text {dan }}$
(a) $\bar{y}=0$
(3) $\alpha_{2}=1.0$

Ron.

$$
\begin{aligned}
& d=\left(z-z_{2}\right)=\frac{\bar{J}_{2}^{2}}{2 g}\left[1+f \frac{5}{8}+2 f\left(\frac{V}{8}\right)_{45 d}+2 f\left(\frac{h}{5}\right)_{\text {adj }}+f\left(\frac{4}{5}\right)_{g y}+V_{\text {end }}\right]
\end{aligned}
$$

From Table 8.2 Kart $=0.5$

For Re $=10^{5}$ in smooh-pipe, $f=0.018$ (Fig. $8 \cdot 13$)
the

$$
\begin{align*}
& d=\frac{1}{2} \times(6.29)^{2} \frac{n^{2}}{5^{2}} \times 9.81 m\left[1+0.018 \times \frac{9.8 \times 10^{3}}{15.9}+2(0.08) 16+2(0.018) 30+0.08(8)+0.0\right] \\
& d=29.0 \mathrm{~m}
\end{align*}
$$

This value or a indicates that I will not be possible to detain a value of $R_{e}=10^{5}$ in the flow system. We matirium value of he will be considerably hess than 10°.

Problem 8.109
Gwen: Water flow by gravity between two riser vars tHrough stragt garuanzed ron pipe. Required Row fate $\because Q$

Phot: required elevation difference $\Delta z u s 0$ for $0 \leqslant Q^{2} 0.0$ an k Estimate: fraction of Az due to minor losses
That: (a) vz and bs minarlas fort loss versus Q
Solution:
Apply tie energy equation for shady inconpresisis Row belike sector o an (g)
Basic equations:

Assumptions: (o) $-P_{1}-f_{2}=-f$ aton (given)

$$
\text { (a) } \vec{v}_{1}=\bar{v}_{2}=0
$$

(3) square edged entrance

For square edged entrance (Table 8, Kento.5; abokenilio

To plot vi us Q

$$
\begin{aligned}
& \bar{y}=\frac{4 Q}{\pi^{2}}=50 a Q\left(r^{3} l_{s}\right) \\
& \Delta z=\frac{-V^{2}}{2 g}\left[k_{\text {ert }}+k_{\text {neut }}+f \frac{V^{2}}{s}\right]=\frac{\bar{y}^{2}}{2 g}[1.5+5000 f]
\end{aligned}
$$

where $f=f($ Re, e fy $=0.003)$

$$
\frac{h_{\text {em }}}{h_{c t}}=\frac{k_{\text {ant }}+k_{0} t}{k_{\text {et }}+k_{0}+f_{5}}=\frac{1.5}{1.5+5000 f}
$$

Re ratio hem the increases with increasing Re_{e} because f decreases with mareasing be.
8.109 Water is to flow by gravity from one reservoir to a lower
one through a straight, inclined galvanized iron pipe. The pipe diameter is 50 mm , and the total length is 250 m . Each reservoir is open to the atmosphere. Plot the required elevation difference Δz as a function of flow rate Q, for Q ranging from 0 to $0.01 \mathrm{~m}^{3} / \mathrm{s}$. Estimate the fraction of Δz due to minor losses.

Given: Data on reservoir/pipe system
Find: Plot elevation as a function of flow rate; fraction due to minor losses
Solution:

L	$=$	250
D	m	
D	50	mm
e / D	$=$	0.003
$K_{\text {ent }}$	$=$	0.5
$K_{\text {exit }}$	$=$	1.0
v	$=1.01 \mathrm{E}-06 \mathrm{~m}^{2} / \mathrm{s}$	

$Q\left(\mathrm{~m}^{5} / \mathrm{s}\right)$	$V(\mathrm{~m} / \mathrm{s})$	$R e$	f	$\Delta z(\mathrm{~m})$	$h_{l m} / h_{\text {lT }}$
0.0000	0.000	$0.00 \mathrm{E}+00$		0.000	
0.0005	0.255	$1.26 \mathrm{E}+04$	0.0337	0.562	0.882%
0.0010	0.509	$2.52 \mathrm{E}+04$	0.0306	2.04	0.972%
0.0015	0.764	$3.78 \mathrm{E}+04$	0.0293	4.40	1.01%
0.0020	1.02	$5.04 \mathrm{E}+04$	0.0286	7.64	1.04%
0.0025	1.27	$6.30 \mathrm{E}+04$	0.0282	11.8	1.05%
0.0030	1.53	$7.56 \mathrm{E}+04$	0.0279	16.7	1.07%
0.0035	1.78	$8.82 \mathrm{E}+04$	0.0276	22.6	1.07%
0.0040	2.04	$1.01 \mathrm{E}+05$	0.0275	29.4	1.08%
0.0045	2.29	$1.13 \mathrm{E}+05$	0.0273	37.0	1.09%
0.0050	2.55	$1.26 \mathrm{E}+05$	0.0272	45.5	1.09%
0.0055	2.80	$1.39 \mathrm{E}+05$	0.0271	54.8	1.09%
0.0060	3.06	$1.51 \mathrm{E}+05$	0.0270	65.1	1.10%
0.0065	3.31	$1.64 \mathrm{E}+05$	0.0270	76.2	1.10%
0.0070	3.57	$1.76 \mathrm{E}+05$	0.0269	88.2	1.10%
0.0075	3.82	$1.89 \mathrm{E}+05$	0.0269	101	1.10%
0.0080	4.07	$2.02 \mathrm{E}+05$	0.0268	115	1.11%
0.0085	4.33	$2.14 \mathrm{E}+05$	0.0268	129	1.11%
0.0090	4.58	$2.27 \mathrm{E}+05$	0.0268	145	1.11%
0.0095	4.84	$2.40 \mathrm{E}+05$	0.0267	161	1.11%
0.0100	5.09	$2.52 \mathrm{E}+05$	0.0267	179	1.11%

8.110 Water from a pump flows through a 9-in. diameter commercial steel pipe for a distance of 4 miles from the pump discharge to a reservoir open to the atmosphere. The level of the water in the reservoir is 50 ft above the pump discharge, and the average speed of the water in the pipe is $10 \mathrm{ft} / \mathrm{s}$. Calculate the pressure at the pump discharge.

Given: Flow from pump to reservoir
Find: Pressure at pump discharge

Solution:

Basic equations

$$
\left(\frac{p_{1}}{\rho}+\alpha \cdot \frac{V_{1}^{2}}{2}+g \cdot z_{1}\right)-\left(\frac{p_{2}}{\rho}+\alpha \cdot \frac{V_{2}^{2}}{2}+g \cdot z_{2}\right)=h_{l T} \quad h_{l T}=h_{l}+h_{l m}=f \cdot \frac{L}{D} \cdot \frac{V_{1}^{2}}{2}+K_{e x i t} \cdot \frac{V_{1}^{2}}{2}
$$

Assumptions: 1) Steady flow 2) Incompressible flow 3) α at 1 and 2 is approximately 1 4) $V_{2} \ll$
Hence the energy equation between Point 1 and the free surface (Point 2) becomes

$$
\left(\frac{p_{1}}{\rho}+\frac{v^{2}}{2}\right)-\left(g \cdot z_{2}\right)=f \cdot \frac{L}{D} \cdot \frac{V^{2}}{2}+K_{e x i t} \frac{V^{2}}{2}
$$

Solving for p_{1}

$$
p_{1}=\rho \cdot\left(g \cdot z_{2}-\frac{v^{2}}{2}+\mathrm{f} \cdot \frac{\mathrm{~L}}{\mathrm{D}} \cdot \frac{\mathrm{~V}^{2}}{2}+\mathrm{K}_{\mathrm{exit}} \frac{\mathrm{~V}^{2}}{2}\right)
$$

From Table A. $7\left(68{ }^{\circ} \mathrm{F}\right) \quad \rho=1.94 \cdot \frac{\mathrm{slug}}{\mathrm{ft}^{3}} \quad \nu=1.08 \times 10^{-5} \cdot \frac{\mathrm{ft}^{2}}{\mathrm{~s}}$

$$
\mathrm{Re}=\frac{\mathrm{V} \cdot \mathrm{D}}{\nu} \quad \operatorname{Re}=10 \cdot \frac{\mathrm{ft}}{\mathrm{~s}} \times \frac{9}{12} \cdot \mathrm{ft} \times \frac{\mathrm{s}}{1.08 \times 10^{-5} \cdot \mathrm{ft}^{2}} \quad \mathrm{Re}=6.94 \times 10^{5} \quad \text { Turbulent }
$$

For commercial steel pipe $\mathrm{e}=0.00015 \cdot \mathrm{ft}$
(Table 8.1) so $\frac{e}{D}=0.0002$

Flow is turbulent: Given

$$
\frac{1}{\sqrt{\mathrm{f}}}=-2.0 \cdot \log \left(\frac{\frac{\mathrm{e}}{\mathrm{D}}}{3.7}+\frac{2.51}{\operatorname{Re} \cdot \sqrt{\mathrm{f}}}\right)
$$

$$
\mathrm{f}=0.0150
$$

For the exit $\quad K_{\text {exit }}=1.0 \quad$ so we find $\quad p_{1}=\rho \cdot\left(g \cdot z_{2}+f \cdot \frac{L}{D} \cdot \frac{\mathrm{~V}^{2}}{2}\right)$
$\mathrm{p}_{1}=1.94 \cdot \frac{\mathrm{slug}}{\mathrm{ft}^{3}} \times\left[32.2 \cdot \frac{\mathrm{ft}}{\mathrm{s}^{2}} \times 50 \cdot \mathrm{ft}+.0150 \times \frac{4 \cdot \mathrm{mile}}{0.75 \cdot \mathrm{ft}} \times \frac{5280 \cdot \mathrm{ft}}{1 \mathrm{mile}} \times \frac{1}{2} \times\left(10 \cdot \frac{\mathrm{ft}}{\mathrm{s}}\right)^{2}\right] \times \frac{\mathrm{lbf} \cdot \mathrm{s}^{2}}{\mathrm{slug} \cdot \mathrm{ft}} \quad \mathrm{p}_{1}=4.41 \times 10^{4} \cdot \frac{\mathrm{lbf}}{\mathrm{ft}^{2}} \quad \mathrm{p}_{1}=306 \cdot \mathrm{psi}$
8.111 A $5-\mathrm{cm}$ diameter potable water line is to be run through a maintenance room in a commercial building. Three possible layouts for the water line are proposed, as shown. Which is the best option, based on minimizing losses? Assume galvanized iron, and a flow rate of $350 \mathrm{~L} / \mathrm{min}$.

(a) Two miter bends

(b) A standard elbow

(c) Three standard elbows

Given: Flow through three different layouts
Find: Which has minimum loss

Solution:

Basic equations $\quad\left(\frac{p_{1}}{\rho}+\alpha \cdot \frac{V_{1}^{2}}{2}+g \cdot z_{1}\right)-\left(\frac{p_{2}}{\rho}+\alpha \cdot \frac{V_{2}^{2}}{2}+g \cdot z_{2}\right)=h_{l T} \quad h_{l T}=h_{l}+h_{l m}=f \cdot \frac{L}{D} \cdot \frac{V^{2}}{2}+\sum_{\text {Minor }}\left(f \cdot \frac{L_{e}}{D} \cdot \frac{v^{2}}{2}\right)$
Assumptions: 1) Steady flow 2) Incompressible flow 3) α is approximately 1 4) Ignore additional length of elbows
For a flow rate of $\quad \mathrm{Q}=350 \cdot \frac{\mathrm{~L}}{\min } \quad \mathrm{~V}=\frac{\mathrm{Q}}{\mathrm{A}}=\frac{4 \cdot \mathrm{Q}}{\pi \cdot \mathrm{D}^{2}} \quad \mathrm{~V}=\frac{4}{\pi} \times 350 \cdot \frac{\mathrm{~L}}{\min } \times \frac{0.001 \cdot \mathrm{~m}^{3}}{1 \cdot \mathrm{~L}} \times \frac{1 \cdot \mathrm{~min}}{60 \cdot \mathrm{~s}} \times\left(\frac{1}{0.05 \cdot \mathrm{~m}}\right)^{2} \quad \mathrm{~V}=2.97 \frac{\mathrm{~m}}{\mathrm{~s}}$
For water at $20^{\circ} \mathrm{C} \quad \nu=1.01 \times 10^{-6} \cdot \frac{\mathrm{~m}^{2}}{\mathrm{~s}} \quad \operatorname{Re}=\frac{\mathrm{V} \cdot \mathrm{D}}{\nu} \quad \operatorname{Re}=2.97 \cdot \frac{\mathrm{~m}}{\mathrm{~s}} \times 0.05 \cdot \mathrm{~m} \times \frac{\mathrm{s}}{1.01 \times 10^{-6} \cdot \mathrm{~m}^{2}} \quad \operatorname{Re}=1.47 \times 10^{5}$
Flow is turbulent. From Table $8.1 \quad e=0.15 \cdot \mathrm{~mm} \quad \frac{e}{D}=6.56 \times 10^{-4}$

Given

$$
\frac{1}{\sqrt{\mathrm{f}}}=-2.0 \cdot \log \left(\frac{\frac{\mathrm{e}}{\mathrm{D}}}{3.7}+\frac{2.51}{\operatorname{Re} \cdot \sqrt{\mathrm{f}}}\right) \quad \mathrm{f}=0.0201
$$

For Case (a) $\quad \mathrm{L}=\sqrt{5.25^{2}+2.5^{2}} \cdot \mathrm{~m} \quad \mathrm{~L}=5.81 \mathrm{~m} \quad$ Two 45° miter bends (Fig. 8.16), for each $\frac{\mathrm{L}_{\mathrm{e}}}{\mathrm{D}}=13$
Hence the energy equation is $\frac{\mathrm{P}_{1}}{\rho}-\frac{\mathrm{P}_{2}}{\rho}=\mathrm{f} \cdot \frac{\mathrm{L}}{\mathrm{D}} \cdot \frac{\mathrm{V}^{2}}{2}+2 \cdot \mathrm{f} \cdot \frac{\mathrm{L}_{\mathrm{e}}}{\mathrm{D}} \cdot \frac{\mathrm{V}^{2}}{2}$
Solving for $\Delta \mathrm{p} \quad \Delta \mathrm{p}=\mathrm{p}_{1}-\mathrm{p}_{2}=\rho \cdot \mathrm{f} \cdot \frac{\mathrm{V}^{2}}{2} \cdot\left(\frac{\mathrm{~L}}{\mathrm{D}}+2 \cdot \frac{\mathrm{~L}_{\mathrm{e}}}{\mathrm{D}}\right)$

$$
\Delta \mathrm{p}=1000 \cdot \frac{\mathrm{~kg}}{\mathrm{~m}^{3}} \times .0201 \times\left(2.97 \cdot \frac{\mathrm{~m}}{\mathrm{~s}}\right)^{2} \times\left(\frac{5.81}{0.05}+2 \cdot 13\right) \times \frac{\mathrm{N} \cdot \mathrm{~s}^{2}}{\mathrm{~kg} \cdot \mathrm{~m}}
$$

$$
\Delta \mathrm{p}=25.2 \mathrm{kPa}
$$

For Case (b)

$$
\mathrm{L}=(5.25+2.5) \cdot \mathrm{m}
$$

$\mathrm{L}=7.75 \mathrm{~m}$
One standard 90° elbow (Table 8.4) $\quad \frac{\mathrm{L}_{\mathrm{e}}}{\mathrm{D}}=30$
Hence the energy equation is $\frac{\mathrm{p}_{1}}{\rho}-\frac{\mathrm{P}_{2}}{\rho}=\mathrm{f} \cdot \frac{\mathrm{L}}{\mathrm{D}} \cdot \frac{\mathrm{V}^{2}}{2}+\mathrm{f} \cdot \frac{\mathrm{L}_{e}}{D} \cdot \frac{\mathrm{~V}^{2}}{2}$
Solving for $\Delta p \quad \Delta p=p_{1}-p_{2}=\rho \cdot f \cdot \frac{V^{2}}{2} \cdot\left(\frac{L}{D}+\frac{L_{e}}{D}\right)$

$$
\Delta \mathrm{p}=1000 \cdot \frac{\mathrm{~kg}}{\mathrm{~m}^{3}} \times .0201 \times\left(2.97 \cdot \frac{\mathrm{~m}}{\mathrm{~s}}\right)^{2} \times\left(\frac{7.75}{0.05}+30\right) \times \frac{\mathrm{N} \cdot \mathrm{~s}^{2}}{\mathrm{~kg} \cdot \mathrm{~m}}
$$

$$
\mathrm{L}=(5.25+2.5) \cdot \mathrm{m} \quad \mathrm{~L}=7.75 \mathrm{~m} \quad \text { Three standard } 90^{\circ} \text { elbows, for each } \quad \frac{\mathrm{L}_{\mathrm{e}}}{\mathrm{D}}=30
$$

Hence the energy equation is $\frac{p_{1}}{\rho}-\frac{p_{2}}{\rho}=f \cdot \frac{L}{D} \cdot \frac{v^{2}}{2}+3 \cdot f \cdot \frac{L_{e}}{D} \cdot \frac{v^{2}}{2}$
Solving for $\Delta \mathrm{p}$

$$
\begin{aligned}
& \Delta \mathrm{p}=\mathrm{p}_{1}-\mathrm{p}_{2}=\rho \cdot \mathrm{f} \cdot \frac{\mathrm{v}^{2}}{2} \cdot\left(\frac{\mathrm{~L}}{\mathrm{D}}+3 \cdot \frac{\mathrm{~L}_{\mathrm{e}}}{\mathrm{D}}\right) \\
& \Delta \mathrm{p}=1000 \cdot \frac{\mathrm{~kg}}{\mathrm{~m}^{3}} \times .0201 \times\left(2.97 \cdot \frac{\mathrm{~m}}{\mathrm{~s}}\right)^{2} \times\left(\frac{7.75}{0.05}+3 \times 30\right) \times \frac{\mathrm{N} \cdot \mathrm{~s}^{2}}{\mathrm{~kg} \cdot \mathrm{~m}}
\end{aligned}
$$

$$
\Delta \mathrm{p}=43.4 \mathrm{kPa}
$$

Hence we conclude Case (a) is the best and Case (c) is the worst

Given: Air at a flowrate of $35 \mathrm{~m}^{3} / \mathrm{min}$ at standard conditions in a smooth duct 1.3 m square.

Find: Pressure drop in $\mathrm{mm} \mathrm{H} \mathrm{H}_{2}$ o per 30 m of horizontal duct.
Solution: Apply the energy equation for steady, incompressible flow that is uniform at each section. Use hsjoraulic diameter.

Assecmptions: $(1) \bar{V}=\bar{t} / 2$
(2) Horizontal
(o) hem $=0$

Then

$$
\Delta p=p_{1}-p_{2}=f \frac{L}{D_{h}} P \frac{D^{2}}{2}
$$

From continuity; $\bar{V}=\frac{Q}{A}=35{\frac{m^{3}}{} m^{3}}^{\min ^{2}} \frac{1}{(0.3)^{2} m^{2}} \times \frac{\min }{60 \sec }=6.48 \mathrm{~m} / \mathrm{s}$

$$
\begin{aligned}
& D_{h}=\frac{4 A}{P_{w}}=4+(0.3)^{2} m^{2} \times 4(0.3) m \\
& R_{e}=\frac{V}{\nu} D_{h}=6.3 \mathrm{~m} ; \nu=1.45 \times 10^{-5} \mathrm{~m}^{2} / \mathrm{s}(\text { Table .A.10) } \\
& f=0.3 m_{\times} \frac{5}{1.4 .6 \times 10^{-5} m^{2}}=1.33 \times 10^{5} \\
& f=0.017(F 19.8 .13)
\end{aligned}
$$

Then $\Delta p=\frac{0.017}{2} \times \frac{30 m}{0.3 \mathrm{~m}} \times 1.23 \mathrm{~kg} \frac{(6.48)^{2} \mathrm{~m}^{2}}{\mathrm{~s}^{2}} \times \frac{\mathrm{N} \cdot \mathrm{s}^{2}}{\mathrm{~kg} \cdot \mathrm{~m}}=43.9 \mathrm{~N} / \mathrm{m}^{2}$
For a manometer, $\Delta p=\rho_{H_{2}} g \Delta h$

$$
\Delta h=\frac{\Delta p}{\rho_{\mu,} g}=43.9 \frac{N}{m^{2}} \times \frac{m^{3}}{999 \mathrm{~kg}} \times \frac{\mathrm{s}^{2}}{9.81 \mathrm{~m}} \cdot \frac{\mathrm{~kg} \mathrm{~m}}{\mathrm{~N} \cdot \mathrm{~s}^{2}}=0.00448 \mathrm{~m}
$$

Thees

$$
\Delta h=4.48 \mathrm{~mm} H O \text { (per } 30 \text { m of } d u c t)
$$

8.113 A pipe friction experiment is to be designed, using water, to reach a Reynolds number of 100,000 . The system will use 5 cm smooth PVC pipe from a constant-head tank to the flow bench and 20 m of smooth 2.5 cm PVC line mounted horizontally for the test section. The water level in the constant-head tank is 0.5 m above the entrance to the 5 cm PVC line. Determine the required average speed of water in the 2.5 cm pipe. Estimate the feasibility of using a constant-head tank. Calculate the pressure difference expected between taps 5 m apart in the horizontal test section.

Given: Pipe friction experiment

Find: Required average speed; Estimate feasibility of constant head tank; Pressure drop over 5 m

Solution:

Basic equations $\quad\left(\frac{p_{1}}{\rho}+\alpha \cdot \frac{V_{1}^{2}}{2}+g \cdot z_{1}\right)-\left(\frac{p_{2}}{\rho}+\alpha \cdot \frac{V_{2}^{2}}{2}+g \cdot z_{2}\right)=h_{l T} \quad h_{l T}=h_{A}+h_{B}=f_{A} \cdot \frac{L_{A}}{D_{A}} \cdot \frac{V_{A}{ }^{2}}{2}+f_{B} \cdot \frac{L_{B}}{D_{B}} \cdot \frac{V_{B}^{2}}{2}$
Assumptions: 1) Steady flow 2) Incompressible flow 3) α is approximately 1 4) Ignore minor losses

We wish to have $\quad \operatorname{Re}_{B}=10^{5}$
$\begin{aligned} \text { Hence, from } & \mathrm{Re}_{\mathrm{B}}=\frac{\mathrm{V}_{\mathrm{B}} \cdot \mathrm{D}_{\mathrm{B}}}{\nu} & \mathrm{V}_{\mathrm{B}}=\frac{\mathrm{Re}_{\mathrm{B}} \cdot \nu}{\mathrm{D}_{\mathrm{B}}} & \text { and for water at } 20^{\circ} \mathrm{C}\end{aligned} \quad \nu=1.01 \times 10^{-6} \cdot \frac{\mathrm{~m}^{2}}{\mathrm{~s}}$
Both tubes have turbulent flow
For PVC pipe (from Googling!) $\quad e=0.0015 \cdot \mathrm{~mm}$

For tube A
Given

$$
\begin{array}{ll}
\frac{1}{\sqrt{f_{A}}}=-2.0 \cdot \log \left(\frac{\frac{e}{D_{A}}}{3.7}+\frac{2.51}{\mathrm{Re}_{A} \cdot \sqrt{{ }^{{ }_{A A}}}}\right) & \mathrm{f}_{\mathrm{A}}=0.0210 \\
\frac{1}{\sqrt{\mathrm{f}_{\mathrm{B}}}}=-2.0 \cdot \log \left(\frac{\frac{\mathrm{D}}{\mathrm{D}_{\mathrm{B}}}}{3.7}+\frac{2.51}{\mathrm{Re}_{\mathrm{B}} \cdot \sqrt{\mathrm{f}_{\mathrm{B}}}}\right) & \mathrm{f}_{\mathrm{B}}=0.0183
\end{array}
$$

For tube B
Given

Applying the energy equation between Points 1 and 3

$$
g \cdot\left(L_{A}+h\right)-\frac{V_{B}^{2}}{2}=f_{A} \cdot \frac{L_{A}}{D_{A}} \cdot \frac{V_{A}^{2}}{2}+f_{B} \cdot \frac{L_{B}}{D_{B}} \cdot \frac{V_{B}^{2}}{2}
$$

Solving for $\mathrm{L}_{\mathrm{A}} \quad \mathrm{L}_{\mathrm{A}}=\frac{\frac{\mathrm{V}_{B}^{2}}{2} \cdot\left(1+f_{B} \cdot \frac{L_{B}}{D_{B}}\right)-g \cdot h}{\left(g-\frac{f_{A}}{D_{A}} \cdot \frac{\mathrm{~V}_{A}{ }^{2}}{2}\right)}$

$$
\mathrm{L}_{\mathrm{A}}=\frac{\frac{1}{2} \times\left(4.04 \cdot \frac{\mathrm{~m}}{\mathrm{~s}}\right)^{2} \times\left(1+0.0183 \times \frac{20}{0.025}\right)-9.81 \cdot \frac{\mathrm{~m}}{\mathrm{~s}} \times 0.5 \cdot \mathrm{~m}}{9.81 \cdot \frac{\mathrm{~m}}{\mathrm{~s}^{2}}-\frac{0.0210}{2} \times \frac{1}{0.05 \cdot \mathrm{~m}} \times\left(1.01 \cdot \frac{\mathrm{~m}}{\mathrm{~s}}\right)^{2}} \quad \mathrm{~L}_{\mathrm{A}}=12.8 \mathrm{~m}
$$

Most ceilings are about 3.5 m or 4 m , so this height is IMPRACTICAL
Applying the energy equation between Points 2 and 3

$$
\begin{array}{rlr}
\left(\frac{\mathrm{p}_{2}}{\rho}+\frac{\mathrm{v}_{B}^{2}}{2}\right)-\left(\frac{\mathrm{p}_{3}}{\rho}+\frac{\mathrm{v}_{B}^{2}}{2}\right)=\mathrm{f}_{\mathrm{B}} \cdot \frac{\mathrm{~L}}{\mathrm{D}_{\mathrm{B}}} \cdot \frac{\mathrm{v}_{\mathrm{B}}^{2}}{2} & \Delta \mathrm{p}=\rho \cdot \mathrm{f}_{\mathrm{B}} \cdot \frac{\mathrm{~L}}{\mathrm{D}_{\mathrm{B}}} \cdot \frac{\mathrm{~V}_{B}^{2}}{2} \\
\Delta \mathrm{p}=1000 \cdot \frac{\mathrm{~kg}}{\mathrm{~m}^{3}} \times \frac{0.0183}{2} \times \frac{5 \cdot \mathrm{~m}}{0.025 \cdot \mathrm{~m}} \times\left(4.04 \cdot \frac{\mathrm{~m}}{\mathrm{~s}}\right)^{2} \times \frac{\mathrm{N} \cdot \mathrm{~s}^{2}}{\mathrm{~kg} \cdot \mathrm{~m}} & \Delta \mathrm{p}=29.9 \cdot \mathrm{kPa}
\end{array}
$$

8.114 A system for testing variable-output pumps consists of the pump, four standard elbows, and an open gate valve forming a closed circuit as shown. The circuit is to absorb the energy added by the pump. The tubing is $75-\mathrm{mm}$ diameter cast iron, and the total length of the circuit is 20 m . Plot the pressure difference required from the pump for water flow rates Q ranging from 0.01 $\mathrm{m}^{3} / \mathrm{s}$ to $0.06 \mathrm{~m}^{3} / \mathrm{s}$.

Given: Data on circuit
Find: Plot pressure difference for a range of flow rates

Solution:

Governing equations: $\quad\left(\frac{p_{1}}{\rho}+\alpha_{1} \cdot \frac{\mathrm{~V}_{1}^{2}}{2}+\mathrm{g} \cdot \mathrm{z}_{1}\right)-\left(\frac{\mathrm{p}_{2}}{\rho}+\alpha_{2} \cdot \frac{\mathrm{~V}_{2}^{2}}{2}+\mathrm{g} \cdot \mathrm{z}_{2}\right)=\mathrm{h}_{\mathrm{lT}}=\sum_{\text {major }} \mathrm{h}_{1}+\sum_{\text {minor }} \mathrm{h}_{\mathrm{lm}}$

$$
\begin{equation*}
\operatorname{Re}=\frac{\rho \cdot \mathrm{V} \cdot \mathrm{D}}{\mu} \quad h_{1}=\mathrm{f} \cdot \frac{\mathrm{~L}}{\mathrm{D}} \cdot \frac{\mathrm{~V}^{2}}{2} \quad(8.34) \quad \mathrm{h}_{\mathrm{lm}}=\mathrm{K} \cdot \frac{\mathrm{~V}^{2}}{2} \quad \text { (8.40a) } \quad h_{\operatorname{lm}}=\mathrm{f} \cdot \frac{\mathrm{~L}_{\mathrm{e}}}{\mathrm{D}} \cdot \frac{\mathrm{~V}^{2}}{2} \quad \text { (8.40b) } \tag{8.34}
\end{equation*}
$$

$f=\frac{64}{\operatorname{Re}}$
(Laminar) $\frac{1}{\sqrt{f}}=-2.0 \cdot \log \left(\frac{\frac{\mathrm{D}}{\mathrm{D}}}{3.7}+\frac{2.51}{\operatorname{Re} \cdot \sqrt{\mathrm{f}}}\right)$
(Turbulent)

The energy equation (Eq. 8.29) becomes for the circuit ($1=$ pump inlet, $2=$ pump outlet)

$$
\frac{p_{1}-p_{2}}{\rho}=f \cdot \frac{L}{D} \cdot \frac{v^{2}}{2}+4 \cdot f \cdot L_{\text {elbow }} \cdot \frac{v^{2}}{2}+f \cdot L_{\text {valve }} \cdot \frac{v^{2}}{2} \quad \text { or } \quad \Delta p=\rho \cdot f \cdot \frac{v^{2}}{2} \cdot\left(\frac{L}{D}+4 \cdot \frac{L_{\text {elbow }}}{D}+\frac{L_{\text {valve }}}{D}\right)
$$

Given data:
Tabulated or graphical data:

$$
\begin{array}{rll}
L & =20 & \mathrm{~m} \\
D & =75 & \mathrm{~mm}
\end{array}
$$

$$
\begin{gathered}
e=\begin{array}{cc}
0.26 & \mathrm{~mm} \\
\text { (Table } 8.1 \text {) }
\end{array} \\
\mu=
\end{gathered}
$$

$$
\begin{array}{rcc}
\text { Gate valve } L_{\mathrm{e}} / D & = & 8 \\
\text { Elbow } L_{\mathrm{e}} / D & = & 30
\end{array}
$$

(Table 8.4)
Computed results:

$\boldsymbol{Q}\left(\mathbf{m}^{\mathbf{3}} / \mathbf{s}\right)$	$\boldsymbol{V}(\mathbf{m} / \mathbf{s})$	$\boldsymbol{R e}$	\boldsymbol{f}	$\Delta \boldsymbol{p} \mathbf{(k P a)}$
0.010	2.26	$1.70 \mathrm{E}+05$	0.0280	28.3
0.015	3.40	$2.54 \mathrm{E}+05$	0.0277	63.1
0.020	4.53	$3.39 \mathrm{E}+05$	0.0276	112
0.025	5.66	$4.24 \mathrm{E}+05$	0.0276	174
0.030	6.79	$5.09 \mathrm{E}+05$	0.0275	250
0.035	7.92	$5.94 \mathrm{E}+05$	0.0275	340
0.040	9.05	$6.78 \mathrm{E}+05$	0.0274	444
0.045	10.2	$7.63 \mathrm{E}+05$	0.0274	561
0.050	11.3	$8.48 \mathrm{E}+05$	0.0274	692
0.055	12.4	$9.33 \mathrm{E}+05$	0.0274	837
0.060	13.6	$1.02 \mathrm{E}+06$	0.0274	996

Problem 8.115

8.115 Consider flow of standard air at $1250 \mathrm{ft}^{3} / \mathrm{min}$. Compare the pressure drop per unit length of a round duct with that for rectangular ducts of aspect ratio 1,2 , and 3 . Assume that all ducts are smooth, with cross-sectional areas of $1 \mathrm{ft}^{2}$.

Given: Same flow rate in various ducts
Find: Pressure drops of each compared to round duct

Solution:

Basic equations $\quad\left(\frac{p_{1}}{\rho}+\alpha \cdot \frac{V_{1}^{2}}{2}+g \cdot z_{1}\right)-\left(\frac{p_{2}}{\rho}+\alpha \cdot \frac{V_{2}^{2}}{2}+g \cdot z_{2}\right)=h_{l} \quad D_{h}=\frac{4 \cdot A}{P_{W}} \quad e=0$
(Smooth)

Assumptions: 1) Steady flow 2) Incompressible flow 3) α is approximately 1 4) Ignore minor losses

The energy equation simplifies to

$$
\Delta \mathrm{p}=\mathrm{p}_{1}-\mathrm{p}_{2}=\rho \cdot \mathrm{f} \cdot \frac{\mathrm{~L}}{\mathrm{D}_{\mathrm{h}}} \cdot \frac{\mathrm{v}^{2}}{2} \quad \text { or } \quad \frac{\Delta \mathrm{p}}{\mathrm{~L}}=\rho \cdot \frac{\mathrm{f}}{\mathrm{D}_{\mathrm{h}}} \cdot \frac{\mathrm{~V}^{2}}{2}
$$

But we have

$$
\mathrm{V}=\frac{\mathrm{Q}}{\mathrm{~A}} \quad \mathrm{~V}=1250 \cdot \frac{\mathrm{ft}^{3}}{\min } \times \frac{1 \cdot \mathrm{~min}}{60 \cdot \mathrm{~s}} \times \frac{1}{1 \cdot \mathrm{ft}^{2}} \quad \mathrm{~V}=20.8 \frac{\mathrm{ft}}{\mathrm{~s}}
$$

From Table A. 9

$$
\nu=1.62 \times 10^{-4} \cdot \frac{\mathrm{ft}^{2}}{\mathrm{~s}} \quad \rho=0.00234 \cdot \frac{\mathrm{slug}}{\mathrm{ft}^{3}} \quad \text { at } 68^{\circ} \mathrm{F}
$$

Hence

$$
\mathrm{Re}=\frac{\mathrm{V} \cdot \mathrm{D}_{\mathrm{h}}}{v} \mathrm{Re}=20.8 \cdot \frac{\mathrm{ft}}{\mathrm{~s}} \times \frac{\mathrm{s}}{1.62 \times 10^{-4} \cdot \mathrm{ft}^{2}} \times \mathrm{D}_{\mathrm{h}}=1.284 \times 10^{5} \cdot \mathrm{D}_{\mathrm{h}} \quad\left(\mathrm{D}_{\mathrm{h}} \text { in ft }\right)
$$

For a round duct $\quad D_{h}=D=\sqrt{\frac{4 \cdot A}{\pi}} \quad D_{h}=\sqrt{\frac{4}{\pi} \times 1 \cdot \mathrm{ft}^{2}} \quad D_{h}=1.13 \mathrm{ft}$
For a rectangular duct $\quad \mathrm{D}_{\mathrm{h}}=\frac{4 \cdot \mathrm{~A}}{\mathrm{P}_{\mathrm{w}}}=\frac{4 \cdot \mathrm{~b} \cdot \mathrm{~h}}{2 \cdot(\mathrm{~b}+\mathrm{h})}=\frac{2 \cdot \mathrm{~h} \cdot \mathrm{ar}}{1+\mathrm{ar}} \quad$ where \quad ar $=\frac{\mathrm{b}}{\mathrm{h}}$

But

$$
\mathrm{h}=\frac{\mathrm{b}}{\mathrm{ar}} \quad \text { so } \quad \mathrm{h}^{2}=\frac{\mathrm{b} \cdot \mathrm{~h}}{\mathrm{ar}}=\frac{\mathrm{A}}{\mathrm{ar}} \quad \text { or } \quad \mathrm{h}=\sqrt{\frac{\mathrm{A}}{\mathrm{ar}}} \quad \text { and } \quad \mathrm{D}_{\mathrm{h}}=\frac{2 \cdot \sqrt{\mathrm{ar}}}{1+\mathrm{ar}} \cdot \sqrt{\mathrm{~A}}
$$

The results are:
Round

$$
\mathrm{D}_{\mathrm{h}}=1.13 \cdot \mathrm{ft} \quad \mathrm{Re}=1.284 \times 10^{5} \cdot \frac{1}{\mathrm{ft}} \cdot \mathrm{D}_{\mathrm{h}} \quad \mathrm{Re}=1.45 \times 10^{5}
$$

Given

$$
\frac{1}{\sqrt{f}}=-2.0 \cdot \log \left(\frac{\frac{e}{D_{h}}}{3.7}+\frac{2.51}{\operatorname{Re} \cdot \sqrt{f}}\right) \quad \mathrm{f}=0.0167 \quad \frac{\Delta p}{L}=\rho \cdot \frac{\mathrm{f}}{D_{h}} \cdot \frac{V^{2}}{2}
$$

$$
\frac{\Delta \mathrm{p}}{\mathrm{~L}}=7.51 \times 10^{-3} \cdot \frac{\mathrm{lbf}}{\mathrm{ft}^{3}}
$$

ar $=1$

$$
\mathrm{D}_{\mathrm{h}}=\frac{2 \cdot \sqrt{\mathrm{ar}}}{1+\mathrm{ar}} \cdot \sqrt{\mathrm{~A}}
$$

$$
\mathrm{D}_{\mathrm{h}}=1 \mathrm{ft}
$$

$$
\mathrm{Re}=1.284 \times 10^{5} \cdot \frac{1}{\mathrm{ft}} \cdot \mathrm{D}_{\mathrm{h}} \quad \operatorname{Re}=1.28 \times 10^{5}
$$

Given $\quad \frac{1}{\sqrt{\mathrm{f}}}=-2.0 \cdot \log \left(\frac{\frac{\mathrm{D}}{\mathrm{D}}}{3.7}+\frac{2.51}{\mathrm{Re} \cdot \sqrt{\mathrm{f}}}\right)$

$$
\mathrm{f}=0.0171 \quad \frac{\Delta \mathrm{p}}{\mathrm{~L}}=\rho \cdot \frac{\mathrm{f}}{\mathrm{D}_{\mathrm{h}}} \cdot \frac{\mathrm{~V}^{2}}{2} \quad \frac{\Delta \mathrm{p}}{\mathrm{~L}}=8.68 \times 10^{-3} \cdot \frac{\mathrm{lbf}}{\mathrm{ft}^{3}}
$$

Hence the square duct experiences a percentage increase in pressure drop of

$$
\frac{8.68 \times 10^{-3}-7.51 \times 10^{-3}}{7.51 \times 10^{-3}}=15.6 \%
$$

ar $=2$

$$
\mathrm{D}_{\mathrm{h}}=\frac{2 \cdot \sqrt{\mathrm{ar}}}{1+\mathrm{ar}} \cdot \sqrt{\mathrm{~A}}
$$

$\mathrm{D}_{\mathrm{h}}=0.943 \mathrm{ft}$
$\operatorname{Re}=1.284 \times 10^{5} \cdot \frac{1}{\mathrm{ft}} \cdot \mathrm{D}_{\mathrm{h}}$
$\operatorname{Re}=1.21 \times 10^{5}$

Given $\quad \frac{1}{\sqrt{\mathrm{f}}}=-2.0 \cdot \log \left(\frac{\frac{\mathrm{e}}{\mathrm{D}_{\mathrm{h}}}}{3.7}+\frac{2.51}{\operatorname{Re} \cdot \sqrt{\mathrm{f}}}\right) \quad \mathrm{f}=0.0173 \quad \frac{\Delta \mathrm{p}}{\mathrm{L}}=\rho \cdot \frac{\mathrm{f}}{\mathrm{D}_{\mathrm{h}}} \cdot \frac{\mathrm{v}^{2}}{2} \quad \frac{\Delta \mathrm{p}}{\mathrm{L}}=9.32 \times 10^{-3} \cdot \frac{\mathrm{lbf}}{\mathrm{ft}^{3}}$

Hence the 2×1 duct experiences a percentage increase in pressure drop of

$$
\frac{9.32 \times 10^{-3}-7.51 \times 10^{-3}}{7.51 \times 10^{-3}}=24.1 \%
$$

$\operatorname{ar}=3 \quad \mathrm{D}_{\mathrm{h}}=\frac{2 \cdot \sqrt{\mathrm{ar}}}{1+\mathrm{ar}} \cdot \sqrt{\mathrm{A}} \quad \mathrm{D}_{\mathrm{h}}=0.866 \mathrm{ft} \quad \mathrm{Re}=1.284 \times 10^{5} \cdot \frac{1}{\mathrm{ft}} \cdot \mathrm{D}_{\mathrm{h}} \quad \operatorname{Re}=1.11 \times 10^{5}$
Given $\quad \frac{1}{\sqrt{\mathrm{f}}}=-2.0 \cdot \log \left(\frac{\frac{\mathrm{e}}{\mathrm{D}_{\mathrm{h}}}}{3.7}+\frac{2.51}{\operatorname{Re} \cdot \sqrt{\mathrm{f}}}\right) \quad \mathrm{f}=0.0176 \quad \frac{\Delta \mathrm{p}}{\mathrm{L}}=\rho \cdot \frac{\mathrm{f}}{\mathrm{D}_{\mathrm{h}}} \cdot \frac{\mathrm{V}^{2}}{2} \quad \frac{\Delta \mathrm{p}}{\mathrm{L}}=0.01 \cdot \frac{\mathrm{lbf}}{\mathrm{ft}^{3}}$

Hence the 3×1 duct experiences a percentage increase in pressure drop of

$$
\frac{0.01-7.51 \times 10^{-3}}{7.51 \times 10^{-3}}=33.2 \%
$$

Note that f varies only about 7%; the large change in $\Delta \mathrm{p} / \mathrm{L}$ is primarily due to the $1 / \mathrm{D}_{\mathrm{h}}$ factor

Given: Reservoirs connected by three clean, cast iron pipes in series. The flow is water at $0.11 \mathrm{~m}^{3} / \mathrm{s}$ ane $15^{\circ} \mathrm{C}$.

Find: Elevation difference, $z_{1}-g s$
Solution: Apply the energy equation for 3 teddy, meompressible flow that is uniform at each section.
Basic equations:

$$
\begin{aligned}
& h_{C T}=\sum f_{D}^{L} \frac{\bar{V}^{2}}{2}+h_{e_{m}} ; h_{e_{n}}=K_{\text {int }} \frac{\nabla_{2}}{2}+\sum h_{\text {exp }}+K_{\text {exit }} \frac{\nabla_{4}}{2}
\end{aligned}
$$

Assumptions: (i) $\underline{p}_{1}=p_{s}=p a t m$
(2) $\bar{V}_{1}=\bar{V}_{s}=0$
(3) Neglect heexp at pipe joints (note allminor losses are probably small due to long lengths of straight pipe sections, but we will checks.
For non-smooth pipe, $f=f\left(R e, Q_{0}\right), \mu=1.1 \times 10^{-2} N . S / m^{2}$ from Ta bk A. 8 . section (2): $e / D_{z}=0.26 \mathrm{~mm} / 300 \mathrm{mmi}-0.00087$ (for castirun, $e=0.2 \mathrm{~mm}$ Table 8.1)

$$
\begin{aligned}
& \bar{V}_{2}=\frac{Q}{A}=0.11 \frac{\mathrm{~m}^{3}}{5} \times \frac{4}{\pi} \frac{1}{(0.3)^{2} m^{2}}=1.56 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

From $19,8,13, f_{2}=0.020$
Section (3): $\epsilon_{0}=0.00065$

$$
\begin{aligned}
& \vec{V}_{3}=\frac{Q}{A_{3}}=0.11 \frac{m^{3}}{s} \times \frac{4}{\pi} \frac{1}{(0.4)^{2} m^{2}}-0.875 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

From Fig. 8.13, $f_{3}=0.019$
section (4): $e^{e} D_{4}=0.00058$

$$
\begin{gathered}
\bar{V}_{4}=\frac{Q}{A_{4}}=0.11 \frac{m^{3}}{5} \times \frac{4}{\pi} \frac{1}{(0.45)^{2} \mathrm{~m}^{2}}=0.692 \mathrm{~m} / \mathrm{s} \\
R e_{4}=\frac{f \bar{V}_{4} D_{4}}{\mu}=\frac{999}{\mathrm{~kg}^{5}} \times 0.492 \frac{\mathrm{~m}}{\mathrm{~m}} \times 0.45 m_{x} \frac{\mathrm{~m}^{2}}{1 / 4 \times 10^{-3} \mathrm{~N} \cdot \mathrm{~s}} \times \frac{\mathrm{N} \cdot \mathrm{~s}^{2}}{\mathrm{~kg} \cdot \mathrm{~m}}=2.73 \times 10^{5}
\end{gathered}
$$

From Fig. 8.13, $f_{4}=0.0185$
Then $\Sigma f \frac{L}{D} \frac{V^{2}}{2}=0.020 \times \frac{600 m}{0.3 m} \times \frac{1}{2}(1.56)^{2} \frac{m}{}^{2}+0.019 \times \frac{900 m}{0.4 m} \times \frac{1}{2}(0.875)^{2} \frac{m}{}_{3^{2}}^{3^{2}}$

$$
+0.0125 \times \frac{1500 m}{0.45 m} \times \frac{1}{2}(0.672) m^{2}=79.8 \mathrm{~m}^{2} / \mathrm{s}^{2}
$$

The minor loss coefficients are Kent $=0.5$ (Table 8.2) and Kexit $=1.0$. Thus,

$$
\begin{aligned}
& h_{e m}=K_{e n}+\frac{\bar{V}_{2}}{2}+K_{e x i+\frac{W_{4}^{2}}{2}} \\
& h_{e_{m}}=0.5 \times \frac{1}{2} \times(1.56)^{2} m^{2}+10 \times \frac{1}{2} \times(0.69 x)_{\frac{2}{3}}^{3^{2}}=0.848 \mathrm{~m}^{2} / \mathrm{s}^{2}
\end{aligned}
$$

Therefore minor losses are roughly / percent of the frictional losses, so they may be neglected. Thus from the energy equation

$$
3-z_{5}=\sum f \frac{L}{D} \frac{\bar{V}^{2}}{2 g}=79.8 \frac{m^{2}}{5^{2}} \times \frac{5}{9.81 \mathrm{~m}}=8.13 \mathrm{~m}
$$

Problem 8.117

8.117 Water, at volume flow rate $Q=0.75 \mathrm{ft}^{3} / \mathrm{s}$, is delivered by a fire hose and nozzle assembly. The hose ($L=250 \mathrm{ft}, D=3$ in and $e / D=0.004$) is made up of four 60 ft sections joined by couplings. The entrance is square-edged; the minor loss coefficient for each coupling is $K_{c}=0.5$, based on mean velocity through the hose. The nozzle loss coefficient is $K_{n}=0.02$, based on velocity in the exit jet, of $D_{2}=1 \mathrm{in}$. diameter. Estimate the supply pressure required at this flow rate.

Given: Flow through fire hose and nozzle
Find: Supply pressure

Solution:

Basic equations

$$
\left(\frac{\mathrm{p}_{1}}{\rho}+\alpha \cdot \frac{\mathrm{V}_{1}^{2}}{2}+\mathrm{g} \cdot \mathrm{z}_{1}\right)-\left(\frac{\mathrm{p}_{2}}{\rho}+\mathrm{\alpha} \cdot \frac{\mathrm{~V}_{2}^{2}}{2}+\mathrm{g} \cdot \mathrm{z}_{2}\right)=\mathrm{h}_{\mathrm{lT}} \quad \mathrm{~h}_{\mathrm{lT}}=\mathrm{h}_{\mathrm{l}}+\mathrm{h}_{\mathrm{lm}}=\mathrm{f} \cdot \frac{\mathrm{~L}}{\mathrm{D}} \cdot \frac{\mathrm{~V}^{2}}{2}+\sum_{\text {Minor }}\left(\mathrm{K} \cdot \frac{\mathrm{~V}^{2}}{2}\right)
$$

Assumptions: 1) Steady flow 2) Incompressible flow 3) α is approximately 14) $\mathrm{p}_{2}=\mathrm{patm}$ so $\mathrm{p}_{2}=0$ gage
Hence the energy equation between Point 1 at the supply and the nozzle exit (Point n); let the velocity in the hose be V

From continuity

$$
\frac{\mathrm{p}_{1}}{\rho}-\frac{\mathrm{V}_{\mathrm{n}}^{2}}{2}=\mathrm{f} \cdot \frac{\mathrm{~L}}{\mathrm{D}} \cdot \frac{\mathrm{~V}^{2}}{2}+\left(\mathrm{K}_{\mathrm{e}}+4 \cdot \mathrm{~K}_{\mathrm{c}}\right) \cdot \frac{\mathrm{V}^{2}}{2}+\mathrm{K}_{\mathrm{n}} \cdot \frac{\mathrm{~V}_{\mathrm{n}}^{2}}{2}
$$

$$
\mathrm{V}_{\mathrm{n}}=\left(\frac{\mathrm{D}}{\mathrm{D}_{2}}\right)^{2} \cdot \mathrm{~V} \quad \text { and } \quad \mathrm{V}=\frac{\mathrm{Q}}{\mathrm{~A}}=\frac{4 \cdot \mathrm{Q}}{\pi \cdot \mathrm{D}^{2}} \quad \mathrm{~V}=\frac{4}{\pi} \times 0.75 \cdot \frac{\mathrm{ft}^{3}}{\mathrm{~s}} \times \frac{1}{\left(\frac{1}{4} \cdot \mathrm{ft}\right)^{2}} \quad \mathrm{~V}=15.3 \frac{\mathrm{ft}}{\mathrm{~s}}
$$

Solving for $\mathrm{p}_{1} \quad \mathrm{p}_{1}=\frac{\rho \cdot \mathrm{V}^{2}}{2} \cdot\left[\mathrm{f} \cdot \frac{\mathrm{L}}{\mathrm{D}}+\mathrm{K}_{\mathrm{e}}+4 \cdot \mathrm{~K}_{\mathrm{C}}+\left(\frac{\mathrm{D}}{\mathrm{D}_{2}}\right)^{4} \cdot\left(1+\mathrm{K}_{\mathrm{n}}\right)\right]$
From Table A. $7\left(68^{\circ} \mathrm{F}\right) \quad \rho=1.94 \cdot \frac{\mathrm{slug}}{\mathrm{ft}^{3}} \quad \nu=1.08 \times 10^{-5} \cdot \frac{\mathrm{ft}^{2}}{\mathrm{~s}}$

$$
\mathrm{Re}=\frac{\mathrm{V} \cdot \mathrm{D}}{\nu} \quad \operatorname{Re}=15.3 \cdot \frac{\mathrm{ft}}{\mathrm{~s}} \times \frac{3}{12} \cdot \mathrm{ft} \times \frac{\mathrm{s}}{1.08 \times 10^{-5} \cdot \mathrm{ft}^{2}} \quad \mathrm{Re}=3.54 \times 10^{5} \quad \text { Turbulent }
$$

For the hose

$$
\frac{\mathrm{e}}{\mathrm{D}}=0.004
$$

Flow is turbulent:

> Given

$$
\frac{1}{\sqrt{f}}=-2.0 \cdot \log \left(\frac{\frac{e}{D}}{3.7}+\frac{2.51}{\operatorname{Re} \cdot \sqrt{f}}\right) \quad f=0.0287
$$

$$
\mathrm{P}_{1}=\frac{1}{2} \times 1.94 \cdot \frac{\mathrm{slug}}{\mathrm{ft}^{3}} \times\left(15.3 \cdot \frac{\mathrm{ft}}{\mathrm{~s}}\right)^{2} \times\left[0.0287 \times \frac{250}{\frac{1}{4}}+0.5+4 \times 0.5+\left(\frac{3}{1}\right)^{4} \times(1+0.02)\right] \times \frac{\mathrm{lbf} \cdot \mathrm{~s}^{2}}{\mathrm{slug} \cdot \mathrm{ft}}
$$

$$
\mathrm{p}_{1}=2.58 \times 10^{4} \cdot \frac{\mathrm{lbf}}{\mathrm{ft}^{2}} \quad \mathrm{p}_{1}=179 \cdot \mathrm{psi}
$$

8.118 Data were obtained from measurements on a vertical section of old, corroded, galvanized iron pipe of 25 mm inside diameter. At one section the pressure was $p_{1}=700 \mathrm{kPa}$ (gage); at a second section, 6 m lower, the pressure was $p_{2}=525 \mathrm{kPa}$ (gage). The volume flow rate of water was $0.2 \mathrm{~m}^{3} / \mathrm{min}$. Estimate the relative roughness of the pipe. What percent savings in pumping power would result if the pipe were restored to its new, clean relative roughness?

Given: Flow down corroded iron pipe
Find: Pipe roughness; Power savings with new pipe

Solution:

Basic equations

$$
\left(\frac{p_{1}}{\rho}+\alpha \cdot \frac{V_{1}^{2}}{2}+g \cdot z_{1}\right)-\left(\frac{p_{2}}{\rho}+\alpha \cdot \frac{V_{2}^{2}}{2}+g \cdot z_{2}\right)=h_{l} \quad h_{l}=f \cdot \frac{L}{D} \cdot \frac{V^{2}}{2}
$$

Assumptions: 1) Steady flow 2) Incompressible flow 3) α is approximately 1 4) No minor losses
Hence the energy equation becomes

$$
\begin{aligned}
& \left(\frac{\mathrm{p}_{1}}{\rho}+\mathrm{g} \cdot \mathrm{z}_{1}\right)-\left(\frac{\mathrm{p}_{2}}{\rho}+\mathrm{g} \cdot \mathrm{z}_{2}\right)=\mathrm{f} \cdot \frac{\mathrm{~L}}{\mathrm{D}} \cdot \frac{\mathrm{~V}^{2}}{2} \\
\text { and } & \mathrm{V}=\frac{\mathrm{Q}}{\mathrm{~A}}=\frac{4 \cdot \mathrm{Q}}{\pi \cdot \mathrm{D}^{2}} \quad \mathrm{~V}=\frac{4}{\pi} \times 0.2 \cdot \frac{\mathrm{~m}^{3}}{\min } \times \frac{1 \cdot \mathrm{~min}}{60 \cdot \mathrm{~s}} \times \frac{1}{(0.025 \cdot \mathrm{~m})^{2}} \quad \mathrm{~V}=6.79 \frac{\mathrm{~m}}{\mathrm{~s}}
\end{aligned}
$$

In this problem we can compute directly f and Re , and hnece obtain e/D
Solving for $\mathrm{f} \quad \begin{aligned} \mathrm{f} & =\frac{2 \cdot \mathrm{D}}{\mathrm{L} \cdot \mathrm{V}^{2}} \cdot\left(\frac{\mathrm{p}_{1}-\mathrm{p}_{2}}{\rho}+\mathrm{g}\left(\mathrm{z}_{1}-\mathrm{z}_{2}\right)\right) \\ \mathrm{f} & =2 \times \frac{0.025}{6} \times\left(\frac{\mathrm{s}}{6.79 \cdot \mathrm{~m}}\right)^{2} \times\left[(700-525) \times 10^{3} \cdot \frac{\mathrm{~N}}{\mathrm{~m}^{2}} \times \frac{\mathrm{m}^{3}}{1000 \cdot \mathrm{~kg}} \times \frac{\mathrm{kg} \cdot \mathrm{m}}{\mathrm{s}^{2} \cdot \mathrm{~N}}+9.81 \cdot \frac{\mathrm{~m}}{\mathrm{~s}^{2}} \times 6 \cdot \mathrm{~m}\right] \quad \mathrm{f}=0.0423\end{aligned}$
From Table A. $8\left(20^{\circ} \mathrm{F}\right) \quad v=1.01 \times 10^{-6} \cdot \frac{\mathrm{~m}^{2}}{\mathrm{~s}} \quad \operatorname{Re}=\frac{\mathrm{V} \cdot \mathrm{D}}{\nu} \quad \operatorname{Re}=6.79 \cdot \frac{\mathrm{~m}}{\mathrm{~s}} \times 0.025 \cdot \mathrm{~m} \times \frac{\mathrm{s}}{1.01 \times 10^{-6} \cdot \mathrm{~m}^{2}} \quad \operatorname{Re}=1.68 \times 10^{5}$
Flow is turbulent: \quad Given $\quad \frac{1}{\sqrt{f}}=-2.0 \cdot \log \left(\frac{\frac{e}{D}}{3.7}+\frac{2.51}{\operatorname{Re} \cdot \sqrt{f}}\right) \quad \frac{e}{D}=0.0134$
New pipe (Table 8.1) $\quad e=0.15 \cdot \mathrm{~mm} \quad \frac{\mathrm{e}}{\mathrm{D}}=0.006$

Given

$$
\frac{1}{\sqrt{\mathrm{f}}}=-2.0 \cdot \log \left(\frac{\frac{\mathrm{e}}{\mathrm{D}}}{3.7}+\frac{2.51}{\operatorname{Re} \cdot \sqrt{\mathrm{f}}}\right) \quad \mathrm{f}=0.0326
$$

In this problem

$$
\Delta \mathrm{p}=\mathrm{p}_{1}-\mathrm{p}_{2}=\rho \cdot\left[\mathrm{g} \cdot\left(\mathrm{z}_{2}-\mathrm{z}_{1}\right)+\mathrm{f} \cdot \frac{\mathrm{~L}}{\mathrm{D}} \cdot \frac{\mathrm{~V}^{2}}{2}\right]
$$

$$
\Delta \mathrm{p}_{\text {new }}=1000 \cdot \frac{\mathrm{~kg}}{\mathrm{~m}^{3}} \times\left[9.81 \cdot \frac{\mathrm{~m}}{\mathrm{~s}^{2}} \times(-6 \cdot \mathrm{~m})+\frac{0.0326}{2} \times \frac{6}{0.025} \times\left(6.79 \cdot \frac{\mathrm{~m}}{\mathrm{~s}}\right)^{2}\right] \times \frac{\mathrm{N} \cdot \mathrm{~s}^{2}}{\mathrm{~kg} \cdot \mathrm{~m}} \quad \Delta \mathrm{p}_{\text {new }}=121 \cdot \mathrm{kPa}
$$

Compared to $\Delta \mathrm{p}_{\text {old }}=175 \cdot \mathrm{kPa}$ we find

$$
\frac{\Delta \mathrm{p}_{\mathrm{old}}-\Delta \mathrm{p}_{\mathrm{new}}}{\Delta \mathrm{p}_{\mathrm{old}}}=30.6 \cdot \%
$$

8.119 Flow in a tube may alternate between laminar and turbulent states for Reynolds numbers in the transition zone. Design a bench-top experiment consisting of a constant-head cylindrical transparent plastic tank with depth graduations, and a length of plastic tubing (assumed smooth) attached at the base of the tank through which the water flows to a measuring container. Select tank and tubing dimensions so that the system is compact, but will operate in the transition zone range. Design the experiment so that you can easily increase the tank head from a low range (laminar flow) through transition to turbulent flow, and vice versa. (Write instructions for students on recognizing when the flow is laminar or turbulent.) Generate plots (on the same graph) of tank depth against Reynolds number, assuming laminar or turbulent flow.

Given: Proposal for bench top experiment

Find: Design it; Plot tank depth versus Re

Solution:

Governing equations: $\quad\left(\frac{p_{1}}{\rho}+\alpha_{1} \cdot \frac{v_{1}{ }^{2}}{2}+g \cdot z_{1}\right)-\left(\frac{p_{2}}{\rho}+\alpha_{2} \cdot \frac{v_{2}{ }^{2}}{2}+g \cdot z_{2}\right)=h_{\mathrm{lT}}=\sum_{\text {major }} h_{1}+\sum_{\text {minor }} h_{l m}$

$$
\begin{equation*}
R e=\frac{\rho \cdot V \cdot D}{\mu} \quad h_{1}=f \cdot \frac{L}{D} \cdot \frac{V^{2}}{2} \quad \text { (8.34) } \quad h_{l m}=K \cdot \frac{V^{2}}{2} \quad \text { (8.40a) } \quad h_{l m}=f \cdot \frac{L_{e}}{D} \cdot \frac{v^{2}}{2} \tag{8.40b}
\end{equation*}
$$

$$
\begin{aligned}
& f=\frac{64}{\operatorname{Re}} \\
& \text { 8.29) becomes } \\
& g \cdot H-\alpha \cdot \frac{V^{2}}{2}=f \cdot \frac{L}{D} \cdot \frac{V^{2}}{2}+K \cdot \frac{V^{2}}{2}
\end{aligned}
$$

This can be solved explicity for reservoir height H

$$
H=\frac{v^{2}}{2 \cdot g} \cdot\left(\alpha+f \cdot \frac{L}{D}+K\right)
$$

Choose data:

L	$=$	1.0	m
D	$=$	3.0	mm
e	$=$	0.0	
mm			
α	$=2$	(Laminar)	
	$=1$		(Turbulent)

Tabulated or graphical data:

$$
\begin{aligned}
\mu= & 1.00 \mathrm{E}-03 \mathrm{~N} . \mathrm{s} / \mathrm{m}^{2} \\
\rho= & 999 \mathrm{~kg} / \mathrm{m}^{3} \\
& \text { (Appendix A) } \\
K_{\text {ent }}= & 0.5 \quad \text { (Square-edged) } \\
& \text { (Table 8.2) }
\end{aligned}
$$

Computed results:

$Q(\mathbf{L} / \mathbf{m i n})$	$V(\mathbf{m} / \mathbf{s})$	$\boldsymbol{R e}$	Regime	\boldsymbol{f}	$\boldsymbol{H}(\mathbf{m})$
0.200	0.472	1413	Laminar	0.0453	0.199
0.225	0.531	1590	Laminar	0.0403	0.228
0.250	0.589	1767	Laminar	0.0362	0.258
0.275	0.648	1943	Laminar	0.0329	0.289
0.300	0.707	2120	Laminar	0.0302	0.320
0.325	0.766	2297	Laminar	0.0279	0.353
0.350	0.825	2473	Turbulent	0.0462	0.587
0.375	0.884	2650	Turbulent	0.0452	0.660
0.400	0.943	2827	Turbulent	0.0443	0.738
0.425	1.002	3003	Turbulent	0.0435	0.819
0.450	1.061	3180	Turbulent	0.0428	0.904

The flow rates are realistic, and could easily be measured using a tank/timer system
The head required is also realistic for a small-scale laboratory experiment
Around $R e=2300$ the flow may oscillate between laminar and turbulent:
Once turbulence is triggered (when $H>0.353 \mathrm{~m}$), the resistance to flow increases requiring $H>0.587 \mathrm{~m}$ to maintain; hence the flow reverts to laminar, only to trip over again to turbulent! This behavior will be visible: the exit flow will switch back and forth between smooth (laminar) and chaotic (turbulent)

Given: Small swimming pool is draried using a gardantiose.
Hose: $y=20 \mathrm{~mm}, ~ h=30 \mathrm{~m}$

$$
\begin{aligned}
& \quad e=0.2 \mathrm{~mm} \\
& \bar{V}_{2}=1.2 \mathrm{~m}_{\mathrm{s}}
\end{aligned}
$$

If the flow were inviscid (at this dept) what would bo the velocity
Solution:
Apply Ae energy equation for steady incompressible flow belsen sechont and Q

$$
h_{e}=h_{e}, h_{e m} ; h_{8}=f_{8} \frac{5^{2}}{2} ; \quad h_{e_{n}}=k_{\text {est }} \frac{\bar{j}^{2}}{2}
$$

Assumphons:

$$
\text { (i) } p_{1}=p_{2}=p_{a t m}
$$

(h) $\bar{J}_{1}=0 \quad, \quad \alpha_{2}=10$
(3) square edged entrance

Ten

$$
\begin{align*}
& \therefore d=\frac{j^{2}}{2 g}\left[f \frac{2}{y}+k_{\text {ert }} d\right]-3 m \tag{-1}
\end{align*}
$$

For square edged entrance (Table si) k tent $=0.5$

$$
\begin{aligned}
& R_{e}=\frac{D}{V}=0.020 n \times 1.2 \frac{1}{2} \times 1.00 \times 10^{-6} \frac{5}{m^{2}}=2.4 \times 10^{4} \quad\left\{\frac{\text { assume } T=20}{0}\right\} \\
& e_{y}=0.2 / 20=0.01 \text { From Fig. } 8.13, f=0.04
\end{aligned}
$$

Then from Eq.'

$$
\left.d=\frac{(1.2)^{2}}{2} \frac{m^{2}}{s} \times 9.81 m\left[0.04 \times \frac{30}{0.02}+0.5+1\right]-3 m=1.51 m\right]
$$

For frictionless flow, her $=f \frac{L^{-2}}{2}+k_{\text {et }} \frac{D^{2}}{2}=0$ and Eq. ques $d=\frac{1^{2}}{2 q}-3 m$
and $\bar{V}=[2 g(d+3 n)]^{\prime}=\left[2 \times 9.81 \frac{m}{s^{2}}(1.5 u+3) n\right]^{12}$

$$
\bar{V}=9.41 \mathrm{~m} / \mathrm{s}
$$

Given: Fir flow through a line, of length and diameter

$$
\begin{aligned}
& D=40 \mathrm{~mm} . O \\
& P_{1}=670 \mathrm{fPa}(\mathrm{~g}) P_{2}=650 \mathrm{kPa}(\mathrm{~g}) \\
& T_{1}=40^{\circ} \mathrm{C} \text { in }=0.25 \mathrm{kgl} \\
& P^{2}=\text { constant }
\end{aligned}
$$

Find: Allowable length of hose
Solution:

where $h_{e}=f \frac{5}{y} \frac{y^{2}}{2} \quad h_{2}=k \frac{-y^{2}}{2}$
For $p=c$, Pen $\bar{V}_{2}=\bar{J}_{2}$, since $H_{1}=A_{2}$. Since p, and p_{2} are given, neglect innior losses. Assume $\alpha_{1}=\alpha_{2}$ and neglect elevation change. Then Eq. 8.29 can be writer as

$$
\frac{P_{1}-p_{2}}{P}=f^{\frac{1}{-}} \frac{V^{2}}{2} \quad \text { or } L=\frac{\left(P_{1}-P_{2}\right)}{P} \frac{2 \nu}{f_{1}^{2}}
$$

The density is

$$
p=p_{1}=\frac{P_{1}}{R_{1}}=7.91 \times 10^{5} \frac{\lambda_{1}}{r^{2}} \times \frac{\lg \cdot x}{22^{2}+n} \times \frac{1}{313 K}=8.81 \mathrm{kglm}^{3}
$$

From continuity

$$
\bar{y}=\frac{i n}{p^{R}}=\frac{4 m}{\pi p^{2}}=\frac{4}{\pi} \times 0.25 \frac{\mathrm{~kg}}{\mathrm{sec}} \times \frac{m^{3}}{8.81 \mathrm{~kg}} \times \frac{1}{(0.04)^{2} r^{2}}=22.6 \mathrm{~m} / \mathrm{sec}
$$

For air at $40^{\circ} \mathrm{C}, \mu=1.91 \times 10^{-5} \mathrm{~kg}$ lies (Table $\mathrm{A} \cdot 6$), 50

Assure smodit pipe; then from $F i g .8 .13, f=0.0134$ Substituting gives

$$
\begin{aligned}
& L=\frac{\left(P_{1}-P_{2}\right)}{p} \frac{2 \theta}{{A \nabla^{2}}^{2}} \\
& =20 \times 10^{3} \frac{\mathrm{~N}}{\mathrm{~m}^{2}} \times 2 \times 0.04 \mathrm{n} \times \frac{n^{3}}{8.88 g} \times \frac{1}{0.0134} \times \frac{\mathrm{sec}^{2}}{(22)^{2} \mathrm{n}^{2}} \times \frac{\mathrm{gq} \cdot \mathrm{~m}}{\frac{1 \mathrm{sec}^{2}}{2}} \\
& h=26.5 \mathrm{~m}
\end{aligned}
$$

Problem 8.122

[3]
8.122 What flow rate (gpm) will be produced in a 4-in. diameter
water pipe for which there is a pressure drop of 40 psi over a 300
ft length? The pipe roughness is 0.01 ft . The water is at $68^{\circ} \mathrm{F}$.
Given: Flow in horizontal pipe
Find: Flow rate

Solution:

Basic equations $\quad\left(\frac{p_{1}}{\rho}+\alpha \cdot \frac{V_{1}^{2}}{2}+g \cdot z_{1}\right)-\left(\frac{p_{2}}{\rho}+\alpha \cdot \frac{V_{2}^{2}}{2}+g \cdot z_{2}\right)=h_{l} \quad h_{l}=f \cdot \frac{L}{D} \cdot \frac{V^{2}}{2}$
Assumptions: 1) Steady flow 2) Incompressible flow 3) α is approximately 1 4) No minor losses
Hence the energy equation becomes

$$
\frac{\mathrm{p}_{1}}{\rho}-\frac{\mathrm{p}_{2}}{\rho}=\frac{\Delta \mathrm{p}}{\rho}=\mathrm{f} \cdot \frac{\mathrm{~L}}{\mathrm{D}} \cdot \frac{\mathrm{~V}^{2}}{2}
$$

Solving for V

$$
V=\sqrt{\frac{2 \cdot D \cdot \Delta \mathrm{p}}{\mathrm{~L} \cdot \rho \cdot \mathrm{f}}} \quad \mathrm{~V}=\frac{\mathrm{k}}{\sqrt{\mathrm{f}}}
$$

$$
\mathrm{k}=\sqrt{\frac{2 \cdot \mathrm{D} \cdot \Delta \mathrm{p}}{\mathrm{~L} \cdot \rho}} \quad \mathrm{k}=\sqrt{2 \times \frac{\frac{1}{3}}{300} \times 40 \cdot \frac{\mathrm{lbf}}{\mathrm{in}^{2}} \times\left(\frac{12 \cdot \mathrm{in}}{1 \cdot \mathrm{ft}}\right)^{2} \times \frac{\mathrm{ft}^{3}}{1.94 \cdot \mathrm{slug}} \times \frac{\mathrm{slugft}}{\mathrm{~s}^{2} \cdot l \mathrm{lbf}}} \quad \mathrm{k}=2.57 \cdot \frac{\mathrm{ft}}{\mathrm{~s}}
$$

We also have

$$
\begin{equation*}
\mathrm{Re}=\frac{\mathrm{V} \cdot \mathrm{D}}{\nu} \quad \text { or } \tag{2}
\end{equation*}
$$

$$
\mathrm{Re}=\mathrm{c} \cdot \mathrm{~V}
$$

where
$c=\frac{D}{\nu}$
From Table A. $7\left(68{ }^{\circ} \mathrm{F}\right) \quad \nu=1.08 \times 10^{-5} \cdot \frac{\mathrm{ft}^{2}}{\mathrm{~s}}$ $\mathrm{c}=\frac{1}{3} \cdot \mathrm{ft} \times \frac{\mathrm{s}}{1.08 \times 10^{-5} \cdot \mathrm{ft}^{2}}$
$c=3.09 \times 10^{4} \cdot \frac{\mathrm{~s}}{\mathrm{ft}}$

In addition $\quad \frac{1}{\sqrt{f}}=-2.0 \cdot \log \left(\frac{\frac{\mathrm{D}}{\mathrm{D}}}{3.7}+\frac{2.51}{\mathrm{Re} \cdot \sqrt{\mathrm{f}}}\right)$
Equations 1, 2 and 3 form a set of simultaneous equations for V, Re and f
Make a guess for $\mathrm{f} \quad \mathrm{f}=0.1 \quad$ then $\quad \mathrm{V}=\frac{\mathrm{k}}{\sqrt{\mathrm{f}}} \quad \mathrm{V}=8.12 \cdot \frac{\mathrm{ft}}{\mathrm{s}} \quad \mathrm{Re}=\mathrm{c} \cdot \mathrm{V} \quad \operatorname{Re}=2.51 \times 10^{5}$
Given $\quad \frac{1}{\sqrt{f}}=-2.0 \cdot \log \left(\frac{\frac{e}{D}}{3.7}+\frac{2.51}{\operatorname{Re} \cdot \sqrt{f}}\right) \quad \mathrm{f}=0.0573 \quad \mathrm{~V}=\frac{\mathrm{k}}{\sqrt{\mathrm{f}}} \quad \mathrm{V}=10.7 \cdot \frac{\mathrm{ft}}{\mathrm{s}} \quad \mathrm{Re}=\mathrm{c} \cdot \mathrm{V} \quad \mathrm{Re}=3.31 \times 10^{5}$
Given $\quad \frac{1}{\sqrt{\mathrm{f}}}=-2.0 \cdot \log \left(\frac{\frac{\mathrm{e}}{\mathrm{D}}}{3.7}+\frac{2.51}{\operatorname{Re} \cdot \sqrt{\mathrm{f}}}\right) \quad \mathrm{f}=0.0573 \quad \mathrm{~V}=\frac{\mathrm{k}}{\sqrt{\mathrm{f}}} \quad \mathrm{V}=10.7 \cdot \frac{\mathrm{ft}}{\mathrm{s}} \quad \mathrm{Re}=\mathrm{c} \cdot \mathrm{V} \quad \mathrm{Re}=3.31 \times 10^{5}$
The flow rate is then $\quad \mathrm{Q}=\mathrm{V} \cdot \frac{\pi \cdot \mathrm{D}^{2}}{4} \quad \mathrm{Q}=10.7 \cdot \frac{\mathrm{ft}}{\mathrm{s}} \times \frac{\pi}{4} \times\left(\frac{1}{3} \cdot \mathrm{ft}\right)^{2} \times \frac{7.48 \cdot \mathrm{gal}}{1 \cdot \mathrm{ft}^{3}} \times \frac{60 \cdot \mathrm{~s}}{1 \cdot \mathrm{~min}}$
$Q=419 \cdot g p m$

Note that we could use Excel's Solver for this problem
8.123 When you drink you beverage with a straw, you need to overcome both gravity and friction in the straw. Estimate the fraction of the total effort you put into quenching your thirst of each factor, making suitable assumptions about the liquid and straw properties, and your drinking rate (for example, how long it would take you to drink a 12 oz drink if you drank it all in one go (quite a feat with a straw). Is the flow laminar or turbulent? (Ignore minor losses.)

Given: Drinking of a beverage
Find: \quad Fraction of effort of drinking of friction and gravity

Solution:

Basic equations

$$
\left(\frac{p_{1}}{\rho}+\alpha \cdot \frac{V_{1}^{2}}{2}+g \cdot z_{1}\right)-\left(\frac{p_{2}}{\rho}+\alpha \cdot \frac{V_{2}^{2}}{2}+g \cdot z_{2}\right)=h_{l} \quad h_{l}=f \cdot \frac{L}{D} \cdot \frac{V^{2}}{2}
$$

Assumptions: 1) Steady flow 2) Incompressible flow 3) α is approximately 1 4) No minor losses
Hence the energy equation becomes, between the bottom of the straw (Point 1) and top (Point 2)

$$
\mathrm{g} \cdot \mathrm{z}_{1}-\left(\frac{\mathrm{p}_{2}}{\rho}+\mathrm{g} \cdot \mathrm{z}_{2}\right)=\mathrm{f} \cdot \frac{\mathrm{~L}}{\mathrm{D}} \cdot \frac{\mathrm{~V}^{2}}{2} \quad \text { where } \mathrm{p}_{2} \text { is the gage pressure in the mouth }
$$

The negative gage pressure the mouth must create is therefore due to two parts

$$
\text { Pgrav }=-\rho \cdot g \cdot\left(z_{2}-z_{1}\right) \quad \text { pfric }=-\rho \cdot f \cdot \frac{L}{D} \cdot \frac{\mathrm{~V}^{2}}{2}
$$

Assuming a person can drink 12 fluid ounces in 5 s

$$
\mathrm{Q}=\frac{\frac{12}{128} \cdot \mathrm{gal}}{5 \cdot \mathrm{~s}} \times \frac{1 \cdot \mathrm{ft}^{3}}{7.48 \cdot \mathrm{gal}}
$$

$$
\mathrm{Q}=2.51 \times 10^{-3} \frac{\mathrm{ft}^{3}}{\mathrm{~s}}
$$

Assuming a straw is 6 in long diameter 0.2 in, with roughness

$$
\mathrm{e}=5 \times 10^{-5} \text { in } \quad \text { (from Googling!) }
$$

$$
\mathrm{V}=\frac{4 \cdot \mathrm{Q}}{\pi \cdot \mathrm{D}^{2}}
$$

$$
\mathrm{V}=\frac{4}{\pi} \times 2.51 \times 10^{-3} \frac{\mathrm{ft}^{3}}{\mathrm{~s}} \times\left(\frac{1}{0.2 \cdot \mathrm{in}} \times \frac{12 \cdot \mathrm{in}}{1 \cdot \mathrm{ft}}\right)^{2} \quad \mathrm{~V}=11.5 \frac{\mathrm{ft}}{\mathrm{~s}}
$$

From Table A. $7\left(68^{\circ} \mathrm{F}\right) \quad v=1.08 \times 10^{-5} \cdot \frac{\mathrm{ft}^{2}}{\mathrm{~s}} \quad$ (for water, but close enough)

$$
\mathrm{Re}=\frac{\mathrm{V} \cdot \mathrm{D}}{\nu}
$$

$$
\operatorname{Re}=11.5 \cdot \frac{\mathrm{ft}}{\mathrm{~s}} \times \frac{0.2}{12} \cdot \mathrm{ft} \times \frac{\mathrm{s}}{1.08 \times 10^{-5} \mathrm{ft}^{2}}
$$

$$
\operatorname{Re}=1.775 \times 10^{4}
$$

Given

$$
\frac{1}{\sqrt{\mathrm{f}}}=-2.0 \cdot \log \left(\frac{\frac{\mathrm{e}}{\mathrm{D}}}{3.7}+\frac{2.51}{\operatorname{Re} \cdot \sqrt{\mathrm{f}}}\right)
$$

$$
\mathrm{f}=0.0272
$$

Then

$$
\mathrm{p}_{\text {grav }}=-1.94 \cdot \frac{\mathrm{slug}}{\mathrm{ft}^{3}} \times 32.2 \cdot \frac{\mathrm{ft}}{\mathrm{~s}^{2}} \times \frac{1}{2} \cdot \mathrm{ft} \times \frac{\mathrm{lbf} \cdot \mathrm{~s}^{2}}{\mathrm{slug} \mathrm{ft}}
$$

$$
\text { Pgrav }=-31.2 \frac{\mathrm{lbf}}{\mathrm{ft}^{2}}
$$

$$
\mathrm{p}_{\text {grav }}=-0.217 \mathrm{psi}
$$

and

$$
\mathrm{P}_{\text {fric }}=-1.94 \cdot \frac{\operatorname{slug}}{\mathrm{ft}^{3}} \times 0.0272 \times \frac{6}{0.2} \times \frac{1}{2} \times\left(11.5 \cdot \frac{\mathrm{ft}}{\mathrm{~s}}\right)^{2} \times \frac{\mathrm{lbf} \cdot \mathrm{~s}^{2}}{\mathrm{slug} \cdot \mathrm{ft}} \quad \mathrm{P}_{\text {fric }}=-105 \frac{\mathrm{lbf}}{\mathrm{ft}^{2}}
$$

$$
\mathrm{p}_{\text {fric }}=-0.727 \mathrm{psi}
$$

Hence the fraction due to friction is $\frac{\mathrm{P}_{\text {fric }}}{\mathrm{p}_{\text {fric }}+\mathrm{p}_{\text {grav }}}=77 \% \quad$ and gravity is $\quad \frac{\mathrm{P}_{\text {grav }}}{\mathrm{p}_{\text {fric }}+\mathrm{p}_{\text {grav }}}=23 \%$
These results will vary depending on assumptions, but it seems friction is significant!

Given: Gasoline flow in a horizontal pipeline $a+15^{\circ} \mathrm{C}$. The distance and pressure drop between pumping stations are 13 km and 1.4 MPa , respectively. The pipe is 0.6 m in diameter. Its roughness corresponds to galvanized iron.

Find: Volume flow rate.
Solution: Apply the energy equation for steady, incompressible flow that is uniform at each section.

Assumptions: (1) Constant area pipe, $s_{0} \bar{v}_{1}=\bar{v}_{2}, h_{c m}=0$
(2) Level, so $3_{1}=3_{2}$

Thus

$$
\frac{p_{1}-p_{2}}{f}=f \frac{L}{5} \frac{\bar{v}^{2}}{2} \quad \text { or } \quad \bar{V}=\left[\frac{2 D\left(p_{1}-p_{2}\right)}{\rho f L}\right]^{\frac{1}{2}}
$$

But $f=f\left(\right.$ Re, $\left.\epsilon_{D}\right)$, and the Reynolds number is not known. Therefore iteration is required. Choose t in the fulluy-rocugh zone. From Table 8.l, $e=0,15 \mathrm{~mm}, \mathrm{e}=0.00025$, Then from Fig. $8.13, f=0.014$, ${ }^{0}$ From Eq. 8.37,

$$
\begin{aligned}
& \text { using Excel's solver, } f=0.04 \mathrm{~m} \text {. }{ }^{3} \text {. Then, } \\
& \bar{V}=\left[2 \times 0.6 \mathrm{~m}_{\times} 1.4 \times 10^{6} \frac{\mathrm{~N}}{\mathrm{~m}^{2}} \times \frac{\mathrm{m}^{3}}{(0.72) 1000 \mathrm{~kg}} \times \frac{1}{0.014} \times \frac{1}{13 \times 10^{3} \mathrm{~m}} \times \frac{\mathrm{kg} \cdot \mathrm{~m}}{\mathrm{~N} \cdot \mathrm{~s}^{2}}\right]^{\frac{2}{2}} \\
& \{\leq g=0.72, \text { Table A. } 2\} \\
& \bar{V}=3.58 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

Now compute re and check on guan for f. Choose $\mu \approx 5 \times 10^{-4} \mathrm{~N} \cdot \mathrm{~s} / \mathrm{m}^{2}(\mathrm{Fig}$. A. 2).

$$
R e=\frac{\rho \overline{v D}}{\mu}=(0.72) 1000 \frac{\mathrm{~kg}}{\mathrm{~m}^{3}} \times \frac{3.58 \mathrm{~m}}{\mathrm{~s}} \times 0.6 \mathrm{~m}_{\times} \frac{\mathrm{m}^{2}}{5 \times 10^{-4} \mathrm{~N} \cdot \mathrm{~s}} \times \frac{\mathrm{N} \mathrm{\cdot s}^{2}}{\mathrm{~kg} \cdot \mathrm{~m}}=3.09 \times 10^{6}
$$

checking on fig. 8.13, flow is essentially in the fully-rowghzone, and initial guess for f was okay. Thees

$$
Q=\bar{V}_{\mathrm{A}} A=3.58 \frac{\mathrm{~m}}{\mathrm{~s}} \times \frac{\pi}{4}(0.6)^{2} \mathrm{~m}^{2}=1.01 \mathrm{~m}^{3} / \mathrm{s}
$$

* Note gasoline is between heptane and octane.

Given: Steady flow of water in 5 in , diameter, horizontal, cast-iron pipe.

Find: Volume flow rate.
Solution: Apply the energy equation for steady, incompressible pipe flow.
Computing equation:

$$
\begin{aligned}
& \left(\frac{p_{1}}{p}+\alpha_{1} \frac{\hat{k}_{1}^{2}}{2}+g g_{1}\right)-\left(\frac{p_{2}}{\rho}+\alpha_{2} \frac{\hat{v}_{2}^{2}}{p}+g_{\vec{p}}\right)+h_{l T} \\
& h_{l_{T}}=h_{L}+h_{l m}=f \frac{L}{D} \frac{\vec{k}^{2}}{2}+k \frac{\nabla^{2}}{2}
\end{aligned}
$$

Assumptions: (1) Fully developed flow: $\alpha_{1} \vec{v}_{1}{ }^{2}=\alpha_{2} \vec{v}_{2}{ }^{2}$
(2) Horizontal: $z_{1}=z_{2}$
(3) Constantarea, so $k=0$

Then

$$
\frac{\Delta p}{\rho}=h_{l T}=f \frac{L}{D} \frac{\bar{v}^{2}}{2} \quad \text { so } \quad \bar{V}=\sqrt{\frac{2 \Delta p D}{\rho+L}}
$$

Since flow rate (hence pe and f) are unknown, must iterate. Guess a trial value of f in the fully rough zone. From Table $8,1, e=0.26 \mathrm{~mm}$
Then $e_{1 D} \cdot \frac{0.26}{125}=0.0021$. Then from $E_{q} .8 .31^{*} f=0.0237$ for $R e \geqslant 6 \times 105$

$$
\bar{V}=\left[z_{\times} \cdot 150 \times 10^{3} \frac{\mathrm{~N}}{\mathrm{M}_{2}} \times 0.125 \mathrm{~m} \times \mathrm{mq} \frac{\mathrm{M}^{3}}{\mathrm{~kg}} \times \frac{1}{0.0237} \times \frac{1}{150 \mathrm{~m}} \times \frac{\mathrm{kg} \cdot \mathrm{~m}}{\sqrt[1 \cdot \mathrm{~s}^{2}]{ }}\right]^{1 / 2}=3.25 \mathrm{~m} / \mathrm{s}
$$

and, checking Re, with $v=1.14 \times 10^{-6} \mathrm{~m}^{2} / \mathrm{s}$ at $T=15^{\circ} \mathrm{C}$ (Table A.8),

$$
R e=\frac{\vec{V} D}{\nu}=3.25 \frac{m}{\mathrm{~s}} \times 0.125 \mathrm{~m} \frac{\mathrm{~s}}{1.14 \times 10^{-6} \mathrm{~N}^{2}}=3.56 \times 10^{5}
$$

The friction factor at this Re is still $f=0.0242$ (2 lo error), so convergence is ok.

$$
Q=\nabla \cdot V A=3.25 \frac{\mathrm{~m}}{\mathrm{~s}} \times \frac{\pi}{1} \times(0.125 \mathrm{~m})^{2}=0.0399 \mathrm{~m}^{3} \mathrm{~L}
$$

$$
U_{\operatorname{sing}} f=0243, \bar{V}=3.22 \mathrm{~m} / \mathrm{s} \text { and } Q=0.0395 \mathrm{~m}^{3} / \mathrm{s}
$$

* Value of $f=0.237$ obtained using Excel's Solver (or Goal Seek)

Gwen: Steady flow of water throng, a cast ron pipe of diameter $y=125 \mathrm{~mm}$. The pressure drop over a length, of pipe, $L=150 \mathrm{~m}$ is $p_{1}-p_{2}=150 \mathrm{PPa}$. Section 2 is located 15 M above section i.

Find: the volume fou rate, Q.
Solution: Apply the energy equation for steady, incompressible pipe tad
Computing equation:

$$
\begin{align*}
& \left(\frac{e_{1}}{p}+\alpha \bar{y}^{2} \frac{1}{2}+g z_{0}\right)-\left(\frac{e_{2}}{p}+\alpha / \frac{-X_{2}^{2}}{2}+g z_{2}\right)=h_{e_{T}} \tag{i}\\
& h_{e_{T}}=h_{e}+h_{e_{n}}=f \frac{y^{2}}{2}+4 / \frac{j^{2}}{2} o(4) \tag{2}
\end{align*}
$$

Assumptions: (i) $\bar{V}_{1}=\bar{J}_{2}$ from cortunituy
(2) $\alpha_{1}=\alpha_{2}$
(3) $z_{2}-z_{1}=15 m$
(in) neglect minor losses
For cast ron pipe with $\rangle=125 \mathrm{~mm}, \varepsilon=0.0021(\varepsilon=0$. 2homm, Table 8.N) Since $f=f\left(R_{e}\right)$ and \bar{Y} is unknown, iteration will be required
For cast ron pipe
Since $f=f(R e)$ and
From EgS(i) and (h)
$\left(P_{1}\right)$
Then

$$
\begin{aligned}
& f j^{2}=\frac{2 y}{2}\left[\frac{\left(p_{1}-p_{2}\right)}{p}+g\left(z-z_{2}\right)\right] \\
& f n^{2}=2 \times \frac{0.125 m}{150 m}\left[150+10^{3} \frac{n}{H^{2}} \times 999 \mathrm{~m}^{3} \times \frac{\mathrm{kgm}}{A . s^{2}}\right]+2.81 \frac{4}{5^{2}} \times(-15 m) \\
& f N^{2}=0.005 \mathrm{~m}^{2} / \mathrm{s}^{2}
\end{aligned}
$$

Assume flow in fully rough region, $f=0.0237$, Pen $\bar{V}=0 . H_{b}$ ib s Check Re. Assume $\frac{V}{}=15^{\circ} \mathrm{C}, ~ V=1.14 \times 10^{-16} \mathrm{~m}^{2}$ (s) (Tablic A. 8)

$$
\text { Rem Re }=\frac{\bar{J}}{\nabla}=0.125 m \times 0.46 \frac{H}{s} \times 1.4 \times 10^{-6} \frac{5}{r^{2}}=50,400
$$

From, Eq. 8.37 with $\mathrm{Re}=50,400$, ely $=0.002$, then using Excl's Solver (or Goal Seek)

$$
f=0.0267 \text { and } \bar{v}=0.433 \mathrm{mls}
$$

Wit this value of $\bar{V}, R_{e}=47.500, f=0.0268, \bar{N}=0.432 \mathrm{~m} / \mathrm{s}$ Then

$$
Q=A \bar{V}=\frac{\pi)^{2}}{4} \bar{V}=\frac{\pi}{4}(0.125 m)^{2}+0.432 \frac{m}{5}=0.0053 \mathrm{~m}^{3} / \mathrm{s} .
$$

\qquad

Given: Two open standpipes shown. water flows by gravity.

Find: Estimate of rate of change of water level in left standpipe.

Solution: Apply the energy equation for quasi-steady, incoompressible pipe flow.

Computing equation:

From continuity, $A, V_{1}=A_{p} \bar{V}$
Assumptions: (1) Neglect unsteady effects
(2) Incompressible flow
(3) $p_{1}=p_{2}=p a t m$
(4) $\bar{v}_{1}=\bar{v}_{2}$ since diameters are equal

Then $g \Delta h=h_{t T}=\left[f\left(\frac{L-D)}{d}+k_{\text {eat }}+k_{t x i}+\right] \frac{\bar{V}^{2}}{2}\right.$
Flow rate (henc espeed) is unknown, so assume flow is in fully rough 3 one.

$$
\frac{E}{D}=\frac{0.3}{75}=0.004, \text { so } f \approx 0.0285 \text { from Eq. } 8.37 \text { (Using Excel's Solver or Goal Seek) }
$$

From Tabk $8,2, k_{\text {tent }}=0.5$; from Fig. $E_{1} 15, K_{\text {exit }}=1$. Then

$$
\bar{V}=\left[\frac{2 g \Delta h}{f\left(\frac{L-D)}{d}+k_{e n t}+k_{e x i t}\right.}\right]^{\frac{1}{2}}=\left[\frac{2 \times 9.81 \frac{\mathrm{~m}}{s^{2}} \times 2.5 \mathrm{~m}}{0.028\left(\frac{4-0.75}{0.075}\right)+0.5+1.0}\right]^{\frac{1}{2}}=4.23 \mathrm{~m} / \mathrm{s}
$$

Check Re and f. For water at $20^{\circ} \mathrm{C}, \nu=1.00 \times 0^{-6} \mathrm{~m}^{2} / \mathrm{s}$ (Table A.8)

$$
\mathrm{Re}=\frac{\bar{V} d}{\nu}=4.23 \mathrm{~m} \times 0.075 \mathrm{~m}_{\times} \frac{5}{1.00 \times 10^{-6} \mathrm{~m}^{2}}=3.18 \times 10^{5}
$$

From Equation 8.37, $f \approx 0.0288$, so this is satisfactory agreement. (2 18)

$$
V_{1}=\frac{A p}{A_{1}} V_{p}=\left(\frac{d}{D}\right)^{2} V_{p}=\left(\frac{0.075}{0.75}\right)^{2} \times 4.23 \frac{\mathrm{~m}}{\mathrm{~s}}=0.0423 \mathrm{~m} / \mathrm{s}(\text { down })
$$

The water level in the left tank falls at about $42.3 \mathrm{~mm} / \mathrm{s}$

Given: Two gatuanjed rom pipes connected to large water resertuoir as shown.

Determine: (a) which pipe will pass the larger flo rate (without calculations);
b) peltry larger flow rate if $H_{H}=10 \mathrm{~m}$,

$$
D=50 \mathrm{~m}, \mathrm{~L}=50 \mathrm{~m}
$$

Solution:
Mow trough each pere is governed by the energy equation for steady hcomprestitle fisk.
Basic equations: $\left(\frac{p_{1}}{p}+\alpha_{1} \frac{j_{1}^{2}}{2}+g_{3}\right)-\left(\frac{p_{2}}{p}+\alpha_{2} \frac{\bar{j}_{2}^{2}}{2}+g_{j}^{2}\right)=h_{p_{t}}$

$$
h_{e_{T}}=h_{e}+h_{e m}=f \frac{5}{8} \frac{\bar{y}^{2}}{2}+k_{\text {ant }} \frac{-y^{2}}{2}
$$

Assumptuons:(1) $p_{1}=P_{2}=P_{3}=-P_{\text {am }}$
Res

$$
\text { (2) } J_{1}=0, \quad \alpha_{2}=\alpha_{3}=110
$$

$$
\begin{aligned}
& g(z-z)=h_{k+}+\frac{j_{2}^{2}}{2}=\frac{j_{2}^{2}}{\frac{2}{2}}\left[f_{j}^{2}+k_{\text {et }}^{2}+1\right]
\end{aligned}
$$

Since $z_{1}-z_{2}=z_{1}-z_{3}$, then $\bar{y}_{2} \bar{N}_{3}$ and $\theta_{A}>Q_{B}$ \qquad
Trough Q pipe $A \quad g t=\frac{J_{2}^{2}}{2}\left[f \xi+k_{\text {ert }}^{2}\right]$
From Table 8.1 $\quad e=0.15 \mathrm{~m} \quad \therefore$ ely $=0.15 / 50=0.003$
Assume water at $20^{\circ} \mathrm{C}, \nu=1.00 \times 10^{-6} \mathrm{~m}^{2} l_{\mathrm{s}}$ (Table H.B) Moose friction factor $f=0.0203^{*}(\mathrm{in}$ full roughregion)
Ton $\bar{V}_{2}=\left\{\frac{2 g H}{\left[\in \frac{g}{y}+k e t+i\right]}\right\}^{4_{2}}=\left\{2 \times 9.81 \frac{\mu}{5^{2}} \times 10 m+\frac{0}{\left[0.0263 \times \frac{50}{0.15}+0.5+1.0\right]}\right\}$

$$
\bar{V}_{2}=2.66 \mathrm{~m} \mathrm{l}_{\mathrm{s}}
$$

Check $\operatorname{Re}=\frac{\sqrt{J}}{\nabla}=0.05 m \times 2.66 \frac{\mu}{3} \times 1.00 \times 10^{-6} \frac{5}{M^{2}}=1.33 \times 10^{5}$
It his he, $f=0.0272^{*}$ and $\bar{V}_{2}=2.62 \mathrm{mls}$

$$
Q=A \bar{v}=\frac{\pi)^{2}}{4} \bar{v}=\frac{\pi}{4} \times(0.05 m)^{2}+2.62 \frac{\mu}{s}=5.14 \times 10^{-3} \mathrm{~m}^{3} / \mathrm{s}, Q_{n}
$$

* Wake obtained from Eq. 4.37 , using Excel Solver Cor Goal Sell

Problem 8.129

8.129 Galvanized iron drainpipes of diameter 7.5 cm are located at the four corners of a building, but three of them become clogged with debris. Find the rate of downpour $(\mathrm{cm} / \mathrm{min})$ at which the single functioning drainpipe can no longer drain the roof. The building roof area is $500 \mathrm{~m}^{2}$, and the height is 5 m . Assume the drainpipes are the same height as the building, and that both ends are open to atmosphere. Ignore minor losses.

Given: Galvanized drainpipe

Find: Maximum downpour it can handle

Solution:

Basic equations

$$
\left(\frac{p_{1}}{\rho}+\alpha \cdot \frac{V_{1}^{2}}{2}+g \cdot z_{1}\right)-\left(\frac{p_{2}}{\rho}+\alpha \cdot \frac{V_{2}^{2}}{2}+g \cdot z_{2}\right)=h_{l} \quad h_{l}=f \cdot \frac{L}{D} \cdot \frac{V^{2}}{2}
$$

Assumptions: 1) Steady flow 2) Incompressible flow 3) α is approximately 1 4) No minor losses
Hence the energy equation becomes $g \cdot z_{1}-g \cdot z_{2}=g \cdot\left(z_{1}-z_{2}\right)=g \cdot h=f \cdot \frac{L}{D} \cdot \frac{V^{2}}{2} \quad h=L$

Solving for V

$$
\begin{align*}
& V=\sqrt{\frac{2 \cdot D \cdot g \cdot h}{L \cdot f}}=\sqrt{\frac{2 \cdot D \cdot g}{f}} \quad V=\frac{k}{\sqrt{f}} \tag{1}\\
& k=\sqrt{2 \cdot D \cdot g} \quad k=\sqrt{2 \times 0.075 \cdot \mathrm{~m} \times 9.81 \cdot \frac{\mathrm{~m}}{\mathrm{~s}^{2}}}
\end{align*}
$$

We also have $\operatorname{Re}=\frac{\mathrm{V} \cdot \mathrm{D}}{\nu} \quad$ or
$\mathrm{Re}=\mathrm{c} \cdot \mathrm{V}$
where
$\mathrm{k}=1.21 \frac{\mathrm{~m}}{\mathrm{~s}}$

From Table A. $7\left(20^{\circ} \mathrm{C}\right)$

$$
\nu=1.01 \times 10^{-6} \cdot \frac{\mathrm{~m}^{2}}{\mathrm{~s}}
$$

$\mathrm{c}=0.075 \cdot \mathrm{~m} \times \frac{\mathrm{s}}{1.01 \times 10^{-6} \cdot \mathrm{~m}^{2}}$
$c=7.43 \times 10^{4} \cdot \frac{\mathrm{~s}}{\mathrm{~m}}$

In addition

$$
\frac{1}{\sqrt{\mathrm{f}}}=-2.0 \cdot \log \left(\frac{\frac{\mathrm{e}}{\mathrm{D}}}{3.7}+\frac{2.51}{\operatorname{Re} \cdot \sqrt{\mathrm{f}}}\right)
$$

$$
\text { (3) } \quad \mathrm{e}=0.15 \mathrm{~mm}
$$

(Table 8.1)

Equations 1, 2 and 3 form a set of simultaneous equations for V, Re and f
Make a guess for f

$$
\mathrm{f}=0.01 \quad \text { then }
$$

$V=\frac{k}{\sqrt{\mathrm{f}}}$
$\mathrm{V}=12.13 \frac{\mathrm{~m}}{\mathrm{~s}}$
$R e=c \cdot V$
$\operatorname{Re}=9.01 \times 10^{5}$
Given $\quad \frac{1}{\sqrt{\mathrm{f}}}=-2.0 \cdot \log \left(\frac{\frac{\mathrm{e}}{\mathrm{D}}}{3.7}+\frac{2.51}{\operatorname{Re} \cdot \sqrt{\mathrm{f}}}\right)$
$f=0.0236 \quad V=\frac{k}{\sqrt{f}}$
$\mathrm{V}=7.90 \frac{\mathrm{~m}}{\mathrm{~s}}$
$\mathrm{Re}=\mathrm{c} \cdot \mathrm{V}$
$\operatorname{Re}=5.86 \times 10^{5}$

Given $\frac{1}{\sqrt{\mathrm{f}}}=-2.0 \cdot \log \left(\frac{\frac{\mathrm{e}}{\mathrm{D}}}{3.7}+\frac{2.51}{\mathrm{Re} \cdot \sqrt{\mathrm{f}}}\right)$
$f=0.0237 \quad V=\frac{k}{\sqrt{f}}$
$\mathrm{V}=7.88 \frac{\mathrm{~m}}{\mathrm{~s}}$
$R e=c \cdot V$
$R e=5.85 \times 10^{5}$

Given $\quad \frac{1}{\sqrt{\mathrm{f}}}=-2.0 \cdot \log \left(\frac{\frac{\mathrm{e}}{\mathrm{D}}}{3.7}+\frac{2.51}{\operatorname{Re} \cdot \sqrt{\mathrm{f}}}\right)$
$\mathrm{f}=0.0237 \quad \mathrm{~V}=\frac{\mathrm{k}}{\sqrt{\mathrm{f}}}$
$\mathrm{V}=7.88 \frac{\mathrm{~m}}{\mathrm{~s}}$
$\mathrm{Re}=\mathrm{c} \cdot \mathrm{V}$
$\operatorname{Re}=5.85 \times 10^{5}$

The flow rate is then $\quad \mathrm{Q}=\mathrm{V} \cdot \frac{\pi \cdot \mathrm{D}^{2}}{4} \quad \mathrm{Q}=7.88 \cdot \frac{\mathrm{~m}}{\mathrm{~s}} \times \frac{\pi}{4} \times(0.075 \cdot \mathrm{~m})^{2} \quad \mathrm{Q}=0.0348 \cdot \frac{\mathrm{~m}^{3}}{\mathrm{~s}}$
The downpour rate is then $\frac{\mathrm{Q}}{\mathrm{A}_{\text {roof }}}=\frac{0.0348 \cdot \frac{\mathrm{~m}^{3}}{\mathrm{~s}}}{500 \cdot \mathrm{~m}^{2}} \times \frac{100 \cdot \mathrm{~cm}}{1 \cdot \mathrm{~m}} \times \frac{60 \cdot \mathrm{~s}}{1 \cdot \mathrm{~min}}=0.418 \cdot \frac{\mathrm{~cm}}{\mathrm{~min}}$ The drain can handle $0.418 \mathrm{~cm} / \mathrm{min}$

Note that we could use Excel's Solver for this problem

Given: Site for hydraulic mining: $H=300 \mathrm{~m}, L=900 \mathrm{~m}$.
Hose with $D=75 \mathrm{~mm}, e / D=0.01$. Couplings, $\frac{L E}{D}=20$, every 10 m along hose Nozzle diameter, $d=25 \mathrm{~mm} ; K=0.02$, based on \bar{V}_{0}
Find: (a) Estimate maximum outlet velocity, V_{0}.
(b) Determine maximum force of let on rock face.

Solution: Apply the energy equation for steady, incompresiste pipe flow.

Assume: (1) $p_{1}=0 ;(2) \bar{V}_{1}=0 ;(3) p_{2}=0 ;(4) \alpha_{2}=1 ;(5) z_{2}=0 ;(6)$ Fully -rough zone
Then $g H=h_{2 T}+\frac{\bar{V}_{2}^{2}}{2}=+\frac{L}{D} \frac{\bar{V}_{p}^{2}}{2}+f_{x} 90 \frac{L e}{D} \frac{\bar{V}_{p}^{2}}{2}+K \frac{\bar{V}_{0}^{2}}{2}+\frac{\bar{V}_{0}^{2}}{2}$
From continuity $\bar{V}_{p} A_{p}=\bar{V}_{0} A_{0} ; \bar{V}_{2}=\bar{V}_{0} \frac{A_{0}}{A_{1}} ; \bar{V}_{2}^{2}=\bar{V}_{0}^{2}\left(\frac{A_{0}}{A_{2}}\right)^{2}=\bar{V}_{b}^{2}\left(\frac{d}{D}\right)^{4}$
Substituting, $g H=\left[f\left(\frac{L}{D}+90 \frac{L}{D}\right)\left(\frac{d}{D}\right)^{4}+1+k\right] \frac{V_{0}^{2}}{2}$

$$
\begin{aligned}
& \bar{V}_{0}=\left[\frac{2 g H}{f\left(\frac{L}{D}+90 \frac{\mathrm{~L}}{D}\right)\left(\frac{d}{D}\right)^{4}+1+\mathrm{k}}\right]^{1 / 2} ; \text { in felly-rough zone }\left(\frac{c}{D}=0.01\right), f=0.038^{*}(\mathrm{Eq} .8 .5 \mathrm{l}) \\
& \bar{V}_{0}=\left[\begin{array}{c}
2 \times 9.81 \mathrm{~m} \\
\mathrm{~s}^{2}
\end{array} 300 \mathrm{~m} \times \frac{1}{0.038\left(\frac{900 \mathrm{~m}}{0.05 \mathrm{~m}}+90(20)\right)\left(\frac{0.02}{0.070}\right)^{4}+1+0.02}\right]^{1 / 2}=28.0 \mathrm{~m} / \mathrm{s}(\mathrm{est})
\end{aligned}
$$

Check for fully -rough flow zone:

$$
\begin{aligned}
& \operatorname{Re}=\frac{\bar{V}_{P} D}{\nu} ; \bar{V}_{p}=\bar{V}_{0}\left(\frac{d}{D}\right)^{4}=28.0 \frac{\mathrm{~m}}{\mathrm{~s}}\left(\frac{1}{3}\right)^{4}=0.346 \mathrm{~m} / \mathrm{s} \quad\left\{\text { Assume } T=20^{\circ} \mathrm{C}\right\} \\
& \operatorname{Re}=0.346 \frac{\mathrm{~m}}{\mathrm{sec}} \times 0.075 \mathrm{~m}_{\times} \times \frac{1}{1 \times 10^{-6} \mathrm{~m}^{2}}=2.60 \times 10^{4} ; a t \frac{e}{D}=0.01, f=0.040(E q \cdot 8.37)
\end{aligned}
$$

The new estimate is

$$
\bar{V}_{0}=\sqrt{\frac{0.038}{0.040}} \bar{V}_{0}(e s t)=\sqrt{\frac{0.038}{0.040}} 28.0 \frac{\mathrm{~m}}{\mathrm{~s}}=27.3 \mathrm{~m} / \mathrm{s}
$$

Apply morrentem to find force: $C V$ is shown.

$$
F_{S x}+F_{B_{x}}=\frac{\partial}{\partial t} \int_{C v} u p d t+\int_{C S} u p \vec{v} \cdot d \vec{A}
$$

Assumptions: (i) No pressure forces
(2) $F_{B_{X}}=0$
(3) Steady flow
(4) Uniform flow at each cross-section

Then

$$
\begin{gathered}
R_{x}=u_{2}\left\{-\rho \bar{V}_{0} A_{0}\right\}+u_{3}\left\{+\rho \bar{V}_{0} A_{0}\right\} \\
u_{2}=\bar{V}_{0} \quad u_{3}=0 \\
R_{x}=-\rho \bar{v}_{0}^{2} A_{0}
\end{gathered}
$$

The force on the rock face is

$$
\begin{aligned}
K_{x} & =-R_{x}=\rho V_{0}^{2} A_{0} \\
& =999 \frac{\mathrm{~kg}}{m^{3} x}(27.3)^{2} \frac{m^{2}}{\mathrm{~s}^{2}} \times \frac{\pi}{4}(0.025)^{2} m^{2} \times \frac{\mathrm{N} \cdot \mathrm{~s}^{2}}{\mathrm{~kg} \cdot \mathrm{~m}} \\
K_{x} & =365 \mathrm{~N}(t 0 \text { right })
\end{aligned}
$$

* Values of f obtained from Eq. 8.37 using Excels Solver (or GoalSeck)
8.131 Investigate the effect of tube roughness on flow rate by computing the flow generated by a pressure difference $\Delta p=100$ kPa applied to a length $L=100 \mathrm{~m}$ of tubing, with diameter $D=$ 25 mm . Plot the flow rate against tube relative roughness e / D for e / D ranging from 0 to 0.05 (this could be replicated experimentally by progressively roughening the tube surface). Is it possible that this tubing could be roughened so much that the flow could be slowed to a laminar flow rate?

Given: Flow in a tube

Find: Effect of tube roughness on flow rate; Plot

Solution:

The energy equation (Eq. 8.29) becomes for flow in a tube

$$
p_{1}-p_{2}=\Delta p=\rho \cdot f \cdot \frac{L}{D} \cdot \frac{v^{2}}{2}
$$

This cannot be solved explicitly for velocity V, (and hence flow rate Q) because f depends on V; solution for a given relative roughness e / D requires iteration (or use of Solver)
Fluid is not specified: use water
Given data: Tabulated or graphical data:

| Δp | $=100$ | kPa | $\mu=1.00 \mathrm{E}-03 \mathrm{~N} . \mathrm{s} / \mathrm{m}^{2}$ | |
| ---: | :--- | ---: | :--- | ---: | :--- |
| D | $=25$ | mm | ρ | $=999 \mathrm{~kg} / \mathrm{m}^{3}$ |
| L | $=100$ | m | (Water - Appendix A) | |

Computed results:

$\boldsymbol{e} / \boldsymbol{D}$	$\boldsymbol{V}(\mathbf{m} / \mathbf{s})$	$\left.Q \mathbf{(m}^{\mathbf{3}} / \mathbf{s}\right) \times \mathbf{1 0}^{\mathbf{4}}$	$\boldsymbol{R e}$	Regime	\boldsymbol{f}	$\Delta \boldsymbol{p}(\mathbf{k P a})$	Error
0.000	1.50	7.35	37408	Turbulent	0.0223	100	0.0%
0.005	1.23	6.03	30670	Turbulent	0.0332	100	0.0%
0.010	1.12	5.49	27953	Turbulent	0.0400	100	0.0%
0.015	1.05	5.15	26221	Turbulent	0.0454	100	0.0%
0.020	0.999	4.90	24947	Turbulent	0.0502	100	0.0%
0.025	0.959	4.71	23939	Turbulent	0.0545	100	0.0%
0.030	0.925	4.54	23105	Turbulent	0.0585	100	0.0%
0.035	0.897	4.40	22396	Turbulent	0.0623	100	0.0%
0.040	0.872	4.28	21774	Turbulent	0.0659	100	0.0%
0.045	0.850	4.17	21224	Turbulent	0.0693	100	0.0%
0.050	0.830	4.07	20730	Turbulent	0.0727	100	0.0%

It is not possible to roughen the tube sufficiently to slow the flow down to a laminar flow for this Δp. Even a relative roughness of 0.5 (a physical impossibility!) would not work.

8.132 Investigate the effect of tube length on water flow rate by computing the flow generated by a pressure difference $\Delta p=100$ kPa applied to a length L of smooth tubing, of diameter $D=25$ mm . Plot the flow rate against tube length for flow ranging from low speed laminar to fully turbulent.

Given: Flow in a tube

Find: Effect of tube length on flow rate; Plot

Solution:

Governing equations: $\quad\left(\frac{p_{1}}{\rho}+\alpha_{1} \cdot \frac{v_{1}{ }^{2}}{2}+g \cdot z_{1}\right)-\left(\frac{p_{2}}{\rho}+\alpha_{2} \cdot \frac{v_{2}{ }^{2}}{2}+g \cdot z_{2}\right)=h_{\mathrm{TT}}=\sum_{\text {major }} h_{1}+\sum_{\text {minor }} h_{l m}$

$$
\begin{array}{lllll}
\operatorname{Re}=\frac{\rho \cdot \mathrm{V} \cdot \mathrm{D}}{\mu} & \mathrm{~h}_{1}=\mathrm{f} \cdot \frac{\mathrm{~L}}{\mathrm{D}} \cdot \frac{\mathrm{~V}^{2}}{2} & (8.34) & \mathrm{h}_{\mathrm{lm}}=\mathrm{K} \cdot \frac{\mathrm{~V}^{2}}{2} \quad \\
\mathrm{f}=\frac{64}{\operatorname{Re}} & (8.36) & \text { (Laminar) } & \frac{1}{\sqrt{\mathrm{f}}}=-2.0 \cdot \log \left(\frac{\frac{\mathrm{e}}{\mathrm{D}}}{3.7}+\frac{2.51}{\operatorname{Re} \cdot \sqrt{\mathrm{f}}}\right) \quad \text { (8.37) } \quad \text { (Turbulent) }
\end{array}
$$

The energy equation (Eq. 8.29) becomes for flow in a tube

$$
p_{1}-p_{2}=\Delta p=\rho \cdot f \cdot \frac{L}{D} \cdot \frac{v^{2}}{2}
$$

This cannot be solved explicitly for velocity V, (and hence flow rate Q) because f depends on V;
solution for a given L requires iteration (or use of Solver)
Fluid is not specified: use water
Given data:
Tabulated or graphical data:

$$
\begin{array}{rlll}
\Delta p & = & 100 & \mathrm{~m} \\
D & = & 25 & \mathrm{~mm}
\end{array}
$$

$$
\begin{aligned}
\mu= & 1.00 \mathrm{E}-03 \mathrm{~N} . \mathrm{s} / \mathrm{m}^{2} \\
\rho= & 999 \mathrm{~kg} / \mathrm{m}^{3} \\
& (\text { Water }- \text { Appendix A) }
\end{aligned}
$$

Computed results:

$\boldsymbol{L}(\mathbf{k m})$	$\boldsymbol{V}(\mathbf{m} / \mathbf{s})$	$\boldsymbol{Q}\left(\mathbf{m}^{\mathbf{3}} / \mathbf{s}\right) \times \mathbf{1 0}$	$\boldsymbol{R e}$	Regime	\boldsymbol{f}	$\Delta \boldsymbol{p}(\mathbf{k P a})$	Error
1.0	0.40	1.98	10063	Turbulent	0.0308	100	0.0%
1.5	0.319	1.56	7962	Turbulent	0.0328	100	0.0%
2.0	0.270	1.32	6739	Turbulent	0.0344	100	0.0%
2.5	0.237	1.16	5919	Turbulent	0.0356	100	0.0%
5.0	0.158	0.776	3948	Turbulent	0.0401	100	0.0%
10	0.105	0.516	2623	Turbulent	0.0454	100	0.0%
15	0.092	0.452	2300	Turbulent	0.0473	120	20.2%
19	0.092	0.452	2300	Laminar	0.0278	90	10.4%
21	0.092	0.452	2300	Laminar	0.0278	99	1.0%
25	0.078	0.383	1951	Laminar	0.0328	100	0.0%
30	0.065	0.320	1626	Laminar	0.0394	100	0.0%

The "critical" length of tube is between 15 and 20 km .
For this range, the fluid is making a transition between laminar
 and turbulent flow, and is quite unstable. In this range the flow oscillates between laminar and turbulent; no consistent solution is found
(i.e., an $R e$ corresponding to turbulent flow needs an f assuming laminar to produce the Δp required, and vice versa!)
More realistic numbers (e.g., tube length) are obtained for a fluid such as SAE 10W oil (The graph will remain the same except for scale)
8.133 For the pipe flow into a reservoir of Example 8.5 consider the effect of pipe roughness on flow rate, assuming the pressure of the pump is maintained at 153 kPa . Plot the flow rate against pipe roughness ranging from smooth $(e=0)$ to very rough ($e=$ 3.75 mm). Also consider the effect of pipe length (again assuming the pump always produces 153 kPa) for smooth pipe. Plot the flow rate against pipe length for $L=100 \mathrm{~m}$ through $L=$ 1000 m .

Given: Flow from a reservoir

Find: Effect of pipe roughness and pipe length on flow rate; Plot

Solution:

Governing equations: $\quad\left(\frac{p_{1}}{\rho}+\alpha_{1} \cdot \frac{V_{1}^{2}}{2}+g \cdot z_{1}\right)-\left(\frac{p_{2}}{\rho}+\alpha_{2} \cdot \frac{V_{2}^{2}}{2}+g \cdot z_{2}\right)=h_{1 T}=\sum_{\text {major }} h_{1}+\sum_{\text {minor }} h_{l m}$

$$
\begin{equation*}
\operatorname{Re}=\frac{\rho \cdot \mathrm{V} \cdot \mathrm{D}}{\mu} \quad h_{1}=\mathrm{f} \cdot \frac{\mathrm{~L}}{\mathrm{D}} \cdot \frac{\mathrm{~V}^{2}}{2} \quad \text { (8.34) } \quad \mathrm{h}_{\mathrm{lm}}=\mathrm{K} \cdot \frac{\mathrm{~V}^{2}}{2} \quad \text { (8.40a) } \quad \mathrm{h}_{\mathrm{lm}}=\mathrm{f} \cdot \frac{\mathrm{~L}_{\mathrm{e}}}{\mathrm{D}} \cdot \frac{\mathrm{~V}^{2}}{2} \tag{8.40b}
\end{equation*}
$$

$$
\begin{equation*}
\mathrm{f}=\frac{64}{\operatorname{Re}} \tag{8.36}
\end{equation*}
$$

(Laminar) $\frac{1}{\sqrt{\mathrm{f}}}=-2.0 \cdot \log \left(\frac{\frac{\mathrm{e}}{\mathrm{D}}}{3.7}+\frac{2.51}{\operatorname{Re} \cdot \sqrt{\mathrm{f}}}\right)$
(Turbulent)

The energy equation (Eq. 8.29) becomes for this flow (see Example 8.5)

$$
p_{\text {pump }}=\Delta p=\rho \cdot\left(g \cdot d+f \cdot \frac{L}{D} \cdot \frac{v^{2}}{2}\right)
$$

We need to solve this for velocity V, (and hence flow rate Q) as a function of roughness e, then length L. This cannot be solved explicitly for velocity V, (and hence flow rate Q) because f depends on V; solution for a given relative roughness e / D or length L requires iteration (or use of Solver)
Given data: Tabulated or graphical data:

| Δp | $=153$ | kPa |
| ---: | :--- | :--- | :--- |
| D | $=75$ | mm |
| L | $=100$ | m |

$$
\begin{aligned}
\mu= & 1.00 \mathrm{E}-03 \mathrm{~N} . \mathrm{s} / \mathrm{m}^{2} \\
\rho= & 999 \mathrm{~kg} / \mathrm{m}^{3} \\
& (\text { Water }- \text { Appendix A) }
\end{aligned}
$$

Computed results:

$\boldsymbol{e} / \mathbf{D}$	$\boldsymbol{V}(\mathbf{m} / \mathbf{s})$	$\boldsymbol{Q}\left(\mathbf{m}^{\mathbf{3}} / \mathbf{s}\right)$	$\boldsymbol{R e}$	Regime	\boldsymbol{f}	$\Delta \boldsymbol{p}(\mathbf{k P a})$	Error
0.000	3.98	0.0176	$2.98 \mathrm{E}+05$	Turbulent	0.0145	153	0.0%
0.005	2.73	0.0121	$2.05 \mathrm{E}+05$	Turbulent	0.0308	153	0.0%
0.010	2.45	0.0108	$1.84 \mathrm{E}+05$	Turbulent	0.0382	153	0.0%
0.015	2.29	0.0101	$1.71 \mathrm{E}+05$	Turbulent	0.0440	153	0.0%
0.020	2.168	0.00958	$1.62 \mathrm{E}+05$	Turbulent	0.0489	153	0.0%
0.025	2.076	0.00917	$1.56 \mathrm{E}+05$	Turbulent	0.0533	153	0.0%
0.030	2.001	0.00884	$1.50 \mathrm{E}+05$	Turbulent	0.0574	153	0.0%
0.035	1.937	0.00856	$1.45 \mathrm{E}+05$	Turbulent	0.0612	153	0.0%
0.040	1.882	0.00832	$1.41 \mathrm{E}+05$	Turbulent	0.0649	153	0.0%
0.045	1.833	0.00810	$1.37 \mathrm{E}+05$	Turbulent	0.0683	153	0.0%
0.050	1.790	0.00791	$1.34 \mathrm{E}+05$	Turbulent	0.0717	153	0.0%

It is not possible to roughen the tube sufficiently to slow the flow down to a laminar flow for this Δp.

Computed results:

$\boldsymbol{L}(\mathbf{m})$	$\boldsymbol{V}(\mathbf{m} / \mathbf{s})$	$\boldsymbol{Q}\left(\mathbf{m}^{\mathbf{3}} / \mathbf{s}\right)$	$\boldsymbol{R e}$	Regime	\boldsymbol{f}	$\Delta \boldsymbol{p}(\mathbf{k P a})$	Error
100	1.37	0.00606	$1.03 \mathrm{E}+05$	Turbulent	0.1219	153	0.0%
200	1.175	0.00519	$8.80 \mathrm{E}+04$	Turbulent	0.0833	153	0.0%
300	1.056	0.00467	$7.92 \mathrm{E}+04$	Turbulent	0.0686	153	0.0%
400	0.975	0.00431	$7.30 \mathrm{E}+04$	Turbulent	0.0604	153	0.0%
500	0.913	0.004036	$6.84 \mathrm{E}+04$	Turbulent	0.0551	153	0.0%
600	0.865	0.003821	$6.48 \mathrm{E}+04$	Turbulent	0.0512	153	0.0%
700	0.825	0.003645	$6.18 \mathrm{E}+04$	Turbulent	0.0482	153	0.0%
800	0.791	0.003496	$5.93 \mathrm{E}+04$	Turbulent	0.0459	153	0.0%
900	0.762	0.003368	$5.71 \mathrm{E}+04$	Turbulent	0.0439	153	0.0%
1000	0.737	0.003257	$5.52 \mathrm{E}+04$	Turbulent	0.0423	153	0.0%

Flow Rate versus Tube Relative Roughness for fixed Δp

8.134 Water for a fire protection system is supplied from a water tower through a 150 mm cast-iron pipe. A pressure gage at a fire hydrant indicates 600 kPa when no water is flowing. The total pipe length between the elevated tank and the hydrant is 200 m . Determine the height of the water tower above the hydrant. Calculate the maximum volume flow rate that can be achieved when the system is flushed by opening the hydrant wide (assume minor losses are 10 percent of major losses at this condition). When a fire hose is attached to the hydrant, the volume flow rate is 0.75 $\mathrm{m}^{3} / \mathrm{min}$. Determine the reading of the pressure gage at this flow condition.

Given: System for fire protection
Find: Height of water tower; Maximum flow rate; Pressure gage reading

Solution:

Governing equations: $\quad\left(\frac{p_{1}}{\rho}+\alpha_{1} \cdot \frac{\mathrm{~V}_{1}^{2}}{2}+\mathrm{g} \cdot \mathrm{z}_{1}\right)-\left(\frac{\mathrm{p}_{2}}{\rho}+\alpha_{2} \cdot \frac{\mathrm{~V}_{2}^{2}}{2}+\mathrm{g} \cdot \mathrm{z}_{2}\right)=\mathrm{h}_{\mathrm{T}}=\sum_{\text {major }} \mathrm{h}_{1}+\sum_{\text {minor }} \mathrm{h}_{\mathrm{lm}}$

$$
\begin{array}{llll}
\operatorname{Re}=\frac{\rho \cdot \mathrm{V} \cdot \mathrm{D}}{\mu} & \mathrm{~h}_{1}=\mathrm{f} \cdot \frac{\mathrm{~L}}{\mathrm{D}} \cdot \frac{\mathrm{v}^{2}}{2} & (8.34) & \mathrm{h}_{\mathrm{lm}}=0.1 \cdot \mathrm{~h}_{1}
\end{array} \quad \mathrm{~h}_{\mathrm{lm}}=\mathrm{f} \cdot \frac{\mathrm{~L}}{\mathrm{D}} \cdot \frac{\mathrm{~V}^{2}}{2} \quad(8.40 \mathrm{~b})
$$

For no flow the energy equation (Eq. 8.29) applied between the water tower free surface (state 1 ; height H) and the pressure gage is

$$
\begin{equation*}
g \cdot H=\frac{p_{2}}{\rho} \quad \text { or } \quad H=\frac{p_{2}}{\rho \cdot g} \tag{1}
\end{equation*}
$$

The energy equation (Eq. 8.29) becomes, for maximum flow (and $\alpha=1$)

$$
\begin{equation*}
\mathrm{g} \cdot \mathrm{H}-\frac{\mathrm{V}^{2}}{2}=\mathrm{h}_{\mathrm{IT}}=(1+0.1) \cdot \mathrm{h}_{1} \quad \text { or } \quad \mathrm{g} \cdot \mathrm{H}=\frac{\mathrm{V}^{2}}{2} \cdot\left(1+1.1 \cdot \mathrm{f} \cdot \frac{\mathrm{~L}}{\mathrm{D}}\right) \tag{2}
\end{equation*}
$$

This can be solved for V (and hence Q) by iterating, or by using Solver
The energy equation (Eq. 8.29) becomes, for restricted flow

$$
\begin{equation*}
g \cdot H-\frac{p_{2}}{\rho}+\frac{\mathrm{v}^{2}}{2}=h_{1 T}=(1+0.1) \cdot h_{1} \quad \quad p_{2}=\rho \cdot \mathrm{g} \cdot \mathrm{H}-\rho \cdot \frac{\mathrm{v}^{2}}{2} \cdot\left(1+1.1 \cdot \rho \cdot \mathrm{f} \cdot \frac{\mathrm{~L}}{\mathrm{D}}\right) \tag{3}
\end{equation*}
$$

Given data:

Tabulated or graphical data:

$$
\begin{aligned}
e= & 0.26 \mathrm{~mm} \\
& (\text { Table } 8.1) \\
\mu= & 1.00 \mathrm{E}-03 \mathrm{~N} . \mathrm{s} / \mathrm{m}^{2} \\
\rho= & 999 \mathrm{~kg} / \mathrm{m}^{3} \\
& (\text { Water }- \text { Appendix A) }
\end{aligned}
$$

(Open)

Computed results:

Closed:

$$
H=\frac{61.2}{(\text { Eq. } 1)} \mathrm{m}
$$

Fully open:

V	$=5.91 \mathrm{~m} / \mathrm{s}$
$R e$	$=8.85 \mathrm{E}+05$
f	$=0.0228$

$\begin{array}{ll}V= & 5.85 \mathrm{E}+05 \\ f= & 0.0228\end{array}$
ved by varying V using Solver :

Left (m $\left.{ }^{2} / \mathbf{s}\right)$	Right (m	
$601 / \mathbf{)}$	Error	
601	601	0%

$Q=0.104 \mathrm{~m}^{3} / \mathrm{s}$

Partially open:

$$
\begin{aligned}
Q & =0.75 \mathrm{~m}^{3} / \mathrm{min} \\
V & =0.71 \mathrm{~m} / \mathrm{s} \\
R e & =1.06 \mathrm{E}+05 \\
f & =0.0243 \\
p_{2} & =591 \mathrm{kPa}
\end{aligned}
$$

Problem 8.135
8.135 The siphon shown is fabricated from 50 mm i.d. drawn aluminum tubing. The liquid is water at $15^{\circ} \mathrm{C}$. Compute the volume flow rate through the siphon. Estimate the minimum pressure inside the tube.

Given: Syphon system

Find: Flow rate; Minimum pressure

Solution:

Basic equations

$$
\left(\frac{\mathrm{p}_{1}}{\rho}+\alpha \cdot \frac{\mathrm{V}_{1}^{2}}{2}+\mathrm{g} \cdot \mathrm{z}_{1}\right)-\left(\frac{\mathrm{p}_{2}}{\rho}+\alpha \cdot \frac{\mathrm{V}_{2}^{2}}{2}+\mathrm{g} \cdot \mathrm{z}_{2}\right)=\mathrm{h}_{\mathrm{lT}} \quad \quad \mathrm{~h}_{\mathrm{lT}}=\mathrm{f} \cdot \frac{\mathrm{~L}}{\mathrm{D}} \cdot \frac{\mathrm{~V}^{2}}{2}+\mathrm{h}_{\mathrm{lm}}
$$

Assumptions: 1) Steady flow 2) Incompressible flow 3) α is approximately 1
Hence the energy equation applied between the tank free surface (Point 1) and the tube exit (Point $2, \mathrm{z}=0$) becomes

$$
g \cdot z_{1}-\frac{V_{2}^{2}}{2}=g \cdot z_{1}-\frac{v^{2}}{2}=f \cdot \frac{L}{D} \cdot \frac{v^{2}}{2}+K_{e n t} \cdot \frac{v^{2}}{2}+f \cdot \frac{L_{e}}{D} \cdot \frac{v^{2}}{2}
$$

From Table 8.2 for reentrant entrance

$$
\mathrm{K}_{\mathrm{ent}}=0.78
$$

For the bend $\quad \frac{R}{D}=9 \quad$ so from Fig. $8.16 \quad \frac{L_{e}}{D}=28 \quad$ for a 90° bend so for a 180° bend $\quad \frac{L_{e}}{D}=56$
Solving for V

$$
V=\sqrt{\frac{2 \cdot g \cdot h}{\left[1+K_{e n t}+f \cdot\left(\frac{L}{D}+\frac{L_{e}}{D}\right)\right]}}
$$

(1) and

$$
\mathrm{h}=2.5 \cdot \mathrm{~m}
$$

The two lengths are

$$
\mathrm{L}_{\mathrm{e}}=56 \cdot \mathrm{D} \quad \mathrm{~L}_{\mathrm{e}}=2.8 \mathrm{~m}
$$

$\mathrm{L}=(0.6+\pi \cdot 0.45+2.5) \cdot \mathrm{m}$
$\mathrm{L}=4.51 \mathrm{~m}$
We also have

$$
\mathrm{Re}=\frac{\mathrm{V} \cdot \mathrm{D}}{\nu} \quad \text { or }
$$

$\mathrm{Re}=\mathrm{c} \cdot \mathrm{V}$
(2) where
$\mathrm{c}=\frac{\mathrm{D}}{\nu}$
From Table A. $7\left(15^{\circ} \mathrm{C}\right)$

$$
\nu=1.14 \times 10^{-6} \cdot \frac{\mathrm{~m}^{2}}{\mathrm{~s}}
$$

$\mathrm{c}=0.05 \cdot \mathrm{~m} \times \frac{\mathrm{s}}{1.14 \times 10^{-6} \cdot \mathrm{~m}^{2}}$ $c=4.39 \times 10^{4} \cdot \frac{\mathrm{~s}}{\mathrm{~m}}$

In addition

$$
\begin{equation*}
\frac{1}{\sqrt{f}}=-2.0 \cdot \log \left(\frac{\frac{e}{D}}{3.7}+\frac{2.51}{\operatorname{Re} \cdot \sqrt{f}}\right) \tag{3}
\end{equation*}
$$

$$
\begin{equation*}
\mathrm{e}=0.0015 \mathrm{~mm} \tag{Table8.1}
\end{equation*}
$$

Equations 1, 2 and 3 form a set of simultaneous equations for V , Re and f
Make a guess for f

$$
\mathrm{f}=0.01 \quad \text { then }
$$

$$
V=\sqrt{\left[1+\mathrm{K}_{\mathrm{ent}}+\mathrm{f} \cdot\left(\frac{\mathrm{~L}}{\mathrm{D}}+\frac{\mathrm{L}_{\mathrm{e}}}{\mathrm{D}}\right)\right]} \quad \mathrm{V}=3.89 \frac{\mathrm{~m}}{\mathrm{~s}}
$$

$$
\operatorname{Re}=\mathrm{c} \cdot \mathrm{~V} \quad \mathrm{Re}=1.71 \times 10^{5}
$$

Given $\quad \frac{1}{\sqrt{f}}=-2.0 \cdot \log \left(\frac{\frac{e}{D}}{3.7}+\frac{2.51}{\operatorname{Re} \cdot \sqrt{\mathrm{f}}}\right) \quad \mathrm{f}=0.0164$

$$
V=\sqrt{\frac{2 \cdot g \cdot h}{\left[1+K_{\text {ent }}+f \cdot\left(\frac{L}{D}+\frac{L_{e}}{D}\right)\right]}} \quad \mathrm{V}=3.43 \frac{\mathrm{~m}}{\mathrm{~s}} \quad \mathrm{Re}=\mathrm{c} \cdot \mathrm{~V} \quad \mathrm{Re}=1.50 \times 10^{5}
$$

Given $\quad \frac{1}{\sqrt{\mathrm{f}}}=-2.0 \cdot \log \left(\frac{\frac{e}{D}}{3.7}+\frac{2.51}{\operatorname{Re} \cdot \sqrt{\mathrm{f}}}\right) \quad \mathrm{f}=0.0168$

$$
\mathrm{V}=\sqrt{\frac{2 \cdot \mathrm{~g} \cdot \mathrm{~h}}{\left[1+\mathrm{K}_{\mathrm{ent}}+\mathrm{f} \cdot\left(\frac{\mathrm{~L}}{\mathrm{D}}+\frac{\mathrm{L}_{\mathrm{e}}}{\mathrm{D}}\right)\right]}} \quad \mathrm{V}=3.40 \frac{\mathrm{~m}}{\mathrm{~s}} \quad \mathrm{Re}=\mathrm{c} \cdot \mathrm{~V} \quad \mathrm{Re}=1.49 \times 10^{5}
$$

Given $\quad \frac{1}{\sqrt{f}}=-2.0 \cdot \log \left(\frac{\frac{e}{D}}{3.7}+\frac{2.51}{\operatorname{Re} \cdot \sqrt{\mathrm{f}}}\right) \quad \mathrm{f}=0.0168$

$$
V=\sqrt{\frac{2 \cdot g \cdot h}{\left[1+K_{\text {ent }}+f \cdot\left(\frac{L}{D}+\frac{L_{e}}{D}\right)\right]}} \quad V=3.40 \frac{\mathrm{~m}}{\mathrm{~s}} \quad \mathrm{Re}=\mathrm{c} \cdot \mathrm{~V} \quad \mathrm{Re}=1.49 \times 10^{5}
$$

Note that we could use Excel's Solver for this problem
The minimum pressure occurs at the top of the curve (Point 3). Applying the energy equation between Points 1 and 3

$$
g \cdot z_{1}-\left(\frac{p_{3}}{\rho}+\frac{V_{3}^{2}}{2}+g \cdot z_{3}\right)=g \cdot z_{1}-\left(\frac{p_{3}}{\rho}+\frac{V^{2}}{2}+g \cdot z_{3}\right)=f \cdot \frac{L}{D} \cdot \frac{v^{2}}{2}+K_{e n t} \cdot \frac{v^{2}}{2}+f \cdot \frac{L_{e}}{D} \cdot \frac{v^{2}}{2}
$$

where we have $\frac{\mathrm{L}_{\mathrm{e}}}{\mathrm{D}}=28 \quad$ for the first 90° of the bend, and $\quad \mathrm{L}=\left(0.6+\frac{\pi \times 0.45}{2}\right) \cdot \mathrm{m}$

$$
\mathrm{L}=1.31 \mathrm{~m}
$$

$$
p_{3}=\rho \cdot\left[g \cdot\left(z_{1}-z_{3}\right)-\frac{\mathrm{V}^{2}}{2} \cdot\left[1+\mathrm{K}_{\mathrm{ent}}+\mathrm{f} \cdot\left(\frac{\mathrm{~L}}{\mathrm{D}}+\frac{\mathrm{L}_{\mathrm{e}}}{\mathrm{D}}\right)\right]\right]
$$

$$
\mathrm{P}_{3}=1000 \cdot \frac{\mathrm{~kg}}{\mathrm{~m}^{3}} \times\left[9.81 \cdot \frac{\mathrm{~m}}{\mathrm{~s}^{2}} \times(-0.45 \cdot \mathrm{~m})-\left(3.4 \cdot \frac{\mathrm{~m}}{\mathrm{~s}}\right)^{2} \cdot\left[1+0.78+0.0168 \cdot\left(\frac{1.31}{0.05}+28\right)\right]\right] \times \frac{\mathrm{N} \cdot \mathrm{~s}^{2}}{\mathrm{~kg} \cdot \mathrm{~m}} \quad \mathrm{P}_{3}=-35.5 \mathrm{kPa}
$$

Problem 8.136
8.136 A large open water tank has a horizontal 2.5 cm diameter cast iron drainpipe of length 1.5 m attached at its base, If the depth of water is 3.5 m , find the flow rate $\left(\mathrm{m}^{3} / \mathrm{hr}\right)$ if the pipe entrance is
a) reentrant, b) square-edged and c) rounded ($r=3.75 \mathrm{~mm}$).

Given: Tank with drainpipe
Find: Flow rate for rentrant, square-edged, and rounded entrances

Solution:

Basic equations

$$
\left(\frac{p_{1}}{\rho}+\alpha \cdot \frac{V_{1}^{2}}{2}+g \cdot z_{1}\right)-\left(\frac{p_{2}}{\rho}+\alpha \cdot \frac{V_{2}^{2}}{2}+g \cdot z_{2}\right)=h_{l T} \quad h_{l T}=f \cdot \frac{L}{D} \cdot \frac{v^{2}}{2}+K_{e n t} \cdot \frac{v^{2}}{2}
$$

Assumptions: 1) Steady flow 2) Incompressible flow 3) α is approximately 1
Hence the energy equation applied between the tank free surface (Point 1) and the pipe exit (Point $2, \mathrm{z}=0$) becomes

$$
\mathrm{g} \cdot \mathrm{z}_{1}-\frac{\mathrm{V}_{2}^{2}}{2}=\mathrm{g} \cdot \mathrm{z}_{1}-\frac{\mathrm{v}^{2}}{2}=\mathrm{f} \cdot \frac{\mathrm{~L}}{\mathrm{D}} \cdot \frac{\mathrm{v}^{2}}{2}+\mathrm{K}_{\mathrm{ent}} \cdot \frac{\mathrm{v}^{2}}{2}
$$

Solving for V

$$
V=\sqrt{\frac{2 \cdot g \cdot h}{\left(1+K_{e n t}+f \cdot \frac{L}{D}\right)}}
$$

(1) and $\quad \mathrm{h}=(1.5+3.5) \cdot \mathrm{m} \quad \mathrm{h}=5 \mathrm{~m}$

We also have $\mathrm{Re}=\frac{\mathrm{V} \cdot \mathrm{D}}{\nu} \quad$ or
$\mathrm{Re}=\mathrm{c} \cdot \mathrm{V}$
where
$\mathrm{c}=\frac{\mathrm{D}}{\nu}$
From Table A. $7\left(20^{\circ} \mathrm{C}\right)$

$$
\begin{equation*}
v=1.01 \times 10^{-6} \cdot \frac{\mathrm{~m}^{2}}{\mathrm{~s}} \tag{2}
\end{equation*}
$$

$\mathrm{c}=0.025 \cdot \mathrm{~m} \times \frac{\mathrm{s}}{1.01 \times 10^{-6} \cdot \mathrm{~m}^{2}}$ $c=2.48 \times 10^{4} \cdot \frac{\mathrm{~s}}{\mathrm{~m}}$

In addition

$$
\begin{equation*}
\frac{1}{\sqrt{\mathrm{f}}}=-2.0 \cdot \log \left(\frac{\frac{\mathrm{e}}{\mathrm{D}}}{3.7}+\frac{2.51}{\operatorname{Re} \cdot \sqrt{\mathrm{f}}}\right) \tag{3}
\end{equation*}
$$

$\mathrm{e}=0.26 \cdot \mathrm{~mm}$
(Table 8.1)

Equations 1, 2 and 3 form a set of simultaneous equations for V, Re and f
For a reentrant entrance, from Table 8.2 $\quad \mathrm{K}_{\mathrm{ent}}=0.78$

Make a guess for f

$$
\mathrm{f}=0.01 \quad \text { then }
$$

$$
V=\sqrt{\frac{2 \cdot g \cdot h}{\left(1+K_{\mathrm{ent}}+f \cdot \frac{L}{D}\right)}}
$$

$$
\mathrm{V}=6.42 \frac{\mathrm{~m}}{\mathrm{~s}}
$$

$$
\mathrm{Re}=\mathrm{c} \cdot \mathrm{~V}
$$

$$
\operatorname{Re}=1.59 \times 10^{5}
$$

Given $\quad \frac{1}{\sqrt{f}}=-2.0 \cdot \log \left(\frac{\frac{e}{D}}{3.7}+\frac{2.51}{\operatorname{Re} \cdot \sqrt{f}}\right) \quad f=0.0388$

$$
V=\sqrt{\frac{2 \cdot g \cdot h}{\left(1+K_{e n t}+f \cdot \frac{L}{D}\right)}} \quad \mathrm{V}=4.89 \frac{\mathrm{~m}}{\mathrm{~s}} \quad \operatorname{Re}=\mathrm{c} \cdot \mathrm{~V} \quad \operatorname{Re}=1.21 \times 10^{5}
$$

Given $\quad \frac{1}{\sqrt{f}}=-2.0 \cdot \log \left(\frac{\frac{e}{D}}{3.7}+\frac{2.51}{\operatorname{Re} \cdot \sqrt{f}}\right) \quad f=0.0389$

$$
\begin{array}{rlrl}
\mathrm{V} & =\sqrt{\frac{2 \cdot \mathrm{~g} \cdot \mathrm{~h}}{\left(1+\mathrm{K}_{\mathrm{ent}}+\mathrm{f} \cdot \frac{\mathrm{~L}}{\mathrm{D}}\right)}} & \mathrm{V}=4.88 \frac{\mathrm{~m}}{\mathrm{~s}} & \mathrm{Re}=\mathrm{c} \cdot \mathrm{~V} \\
\text { Given } & \frac{1}{\sqrt{\mathrm{f}}}=-2.0 \cdot \log \left(\frac{\frac{\mathrm{D}}{\mathrm{D}}}{3.7}+\frac{2.51}{\operatorname{Re} \cdot \sqrt{\mathrm{f}}}\right) & \mathrm{f}=0.0389 & \mathrm{Re}=1.21 \times 10^{5} \\
\mathrm{~V}=\sqrt{\frac{2 \cdot \mathrm{~g} \cdot \mathrm{~h}}{\left(1+\mathrm{K}_{\mathrm{ent}}+\mathrm{f} \cdot \frac{\mathrm{~L}}{\mathrm{D}}\right)}} & \mathrm{V}=4.88 \frac{\mathrm{~m}}{\mathrm{~s}} & \mathrm{Re}=\mathrm{c} \cdot \mathrm{~V} & \mathrm{Re}=1.21 \times 10^{5}
\end{array}
$$

Note that we could use Excel's Solver for this problem
The flow rate is then $\quad \mathrm{Q}=\mathrm{V} \cdot \frac{\pi \cdot \mathrm{D}^{2}}{4} \quad \mathrm{Q}=4.88 \cdot \frac{\mathrm{~m}}{\mathrm{~s}} \times \frac{\pi}{4} \times(0.025 \cdot \mathrm{~m})^{2} \quad \mathrm{Q}=2.4 \times 10^{-3} \cdot \frac{\mathrm{~m}^{3}}{\mathrm{~s}} \quad \mathrm{Q}=8.62 \cdot \frac{\mathrm{~m}^{3}}{\mathrm{hr}}$

For a square-edged entrance, from Table 8.2 $\mathrm{K}_{\mathrm{ent}}=0.5$

Make a guess for

$$
\mathrm{f}=0.01 \quad \text { then }
$$

$$
V=\sqrt{\frac{2 \cdot g \cdot h}{\left(1+K_{\mathrm{ent}}+\mathrm{f} \cdot \frac{\mathrm{~L}}{\mathrm{D}}\right)}}
$$

$$
\mathrm{V}=6.83 \frac{\mathrm{~m}}{\mathrm{~s}} \quad \mathrm{Re}=\mathrm{c} \cdot \mathrm{~V} \quad \mathrm{Re}=1.69 \times 10^{5}
$$

Given $\quad \frac{1}{\sqrt{f}}=-2.0 \cdot \log \left(\frac{\frac{e}{D}}{3.7}+\frac{2.51}{\operatorname{Re} \cdot \sqrt{f}}\right) \quad f=0.0388$

$$
V=\sqrt{\frac{2 \cdot g \cdot h}{\left(1+K_{e n t}+f \cdot \frac{L}{D}\right)}} \quad \mathrm{V}=5.06 \frac{\mathrm{~m}}{\mathrm{~s}} \quad \mathrm{Re}=\mathrm{c} \cdot \mathrm{~V} \quad \mathrm{Re}=1.25 \times 10^{5}
$$

Given $\quad \frac{1}{\sqrt{f}}=-2.0 \cdot \log \left(\frac{\frac{e}{D}}{3.7}+\frac{2.51}{\operatorname{Re} \cdot \sqrt{f}}\right) \quad f=0.0389$

$$
V=\sqrt{\frac{2 \cdot g \cdot h}{\left(1+K_{e n t}+f \cdot \frac{L}{D}\right)}} \quad \mathrm{V}=5.06 \frac{\mathrm{~m}}{\mathrm{~s}} \quad \mathrm{Re}=\mathrm{c} \cdot \mathrm{~V} \quad \mathrm{Re}=1.25 \times 10^{5}
$$

The flow rate is then

$$
\begin{aligned}
& \text { The flow rate is then } \quad \mathrm{Q}=\mathrm{V} \cdot \frac{\pi \cdot \mathrm{D}^{2}}{4} \quad \mathrm{Q}=5.06 \cdot \frac{\mathrm{~m}}{\mathrm{~s}} \times \frac{\pi}{4} \times(0.025 \cdot \mathrm{~m})^{2} \quad \mathrm{Q}= \\
& \text { For a rounded entrance, from Table } 8.2 \quad \frac{\mathrm{r}}{\mathrm{D}}=\frac{3.75}{25}=0.15 \quad \mathrm{~K}_{\mathrm{ent}}=0.04
\end{aligned}
$$

Make a guess for f

$$
\begin{aligned}
& \mathrm{f}=0.01 \text { then } \\
& \mathrm{V}=\sqrt{\frac{2 \cdot \mathrm{~g} \cdot \mathrm{~h}}{\left(1+\mathrm{K}_{\mathrm{ent}}+\mathrm{f} \cdot \frac{\mathrm{~L}}{\mathrm{D}}\right)}}
\end{aligned}
$$

Given $\quad \frac{1}{\sqrt{f}}=-2.0 \cdot \log \left(\frac{\frac{e}{D}}{3.7}+\frac{2.51}{\operatorname{Re} \cdot \sqrt{f}}\right) \quad f=0.0387$

$$
V=\sqrt{\frac{2 \cdot g \cdot h}{\left(1+K_{\text {ent }}+f \cdot \frac{L}{D}\right)}} \quad V=5.40 \frac{\mathrm{~m}}{\mathrm{~s}} \quad \operatorname{Re}=\mathrm{c} \cdot \mathrm{~V} \quad \operatorname{Re}=1.34 \times 10^{5}
$$

Given $\quad \frac{1}{\sqrt{f}}=-2.0 \cdot \log \left(\frac{\frac{e}{D}}{3.7}+\frac{2.51}{\operatorname{Re} \cdot \sqrt{f}}\right) \quad \mathrm{f}=0.0389$

$$
\mathrm{V}=\sqrt{\frac{2 \cdot \mathrm{~g} \cdot \mathrm{~h}}{\left(1+\mathrm{K}_{\mathrm{ent}}+\mathrm{f} \cdot \frac{\mathrm{~L}}{\mathrm{D}}\right)}} \quad \mathrm{V}=5.39 \frac{\mathrm{~m}}{\mathrm{~s}} \quad \mathrm{Re}=\mathrm{c} \cdot \mathrm{~V} \quad \mathrm{Re}=1.34 \times 10^{5}
$$

Given $\quad \frac{1}{\sqrt{\mathrm{f}}}=-2.0 \cdot \log \left(\frac{\frac{\mathrm{e}}{\mathrm{D}}}{3.7}+\frac{2.51}{\operatorname{Re} \cdot \sqrt{\mathrm{f}}}\right) \quad \mathrm{f}=0.0389$

$$
V=\sqrt{\frac{2 \cdot \mathrm{~g} \cdot \mathrm{~h}}{\left(1+\mathrm{K}_{\text {ent }}+\mathrm{f} \cdot \frac{\mathrm{~L}}{\mathrm{D}}\right)}} \quad \mathrm{V}=5.39 \frac{\mathrm{~m}}{\mathrm{~s}} \quad \mathrm{Re}=\mathrm{c} \cdot \mathrm{~V} \quad \mathrm{Re}=1.34 \times 10^{5}
$$

Note that we could use Excel's Solver for this problem
The flow rate is then $\quad \mathrm{Q}=\mathrm{V} \cdot \frac{\pi \cdot \mathrm{D}^{2}}{4} \quad \mathrm{Q}=5.39 \cdot \frac{\mathrm{~m}}{\mathrm{~s}} \times \frac{\pi}{4} \times(0.025 \cdot \mathrm{~m})^{2} \quad \mathrm{Q}=2.65 \times 10^{-3} \cdot \frac{\mathrm{~m}^{3}}{\mathrm{~s}} \quad \mathrm{Q}=9.52 \cdot \frac{\mathrm{~m}^{3}}{\mathrm{hr}}$
In summary: \quad Renentrant: $Q=8.62 \cdot \frac{\mathrm{~m}^{3}}{\mathrm{hr}} \quad$ Square-edged: $\quad \mathrm{Q}=8.94 \cdot \frac{\mathrm{~m}^{3}}{\mathrm{hr}} \quad$ Rounded: $\quad \mathrm{Q}=9.52 \cdot \frac{\mathrm{~m}^{3}}{\mathrm{hr}}$

Given: Roman water supply system from Example Problem 8. 10, but with 50 foot length of straight pipe with $D=25 \mathrm{~mm}, Q / D=0.01$.

Find: (a) flow rate delivered.
(b) Effect of adding a diffuser.

Solution: Apply the energy equation for steady, incompressible pipe flow.

Computing equation:

$$
\frac{\hat{p}_{0}}{\rho}+\frac{\alpha_{0} \hat{V}_{0}^{2}}{k}+g z_{0}=\hat{\hat{p}_{1}}+\alpha_{1} \frac{\bar{V}_{1}^{2}}{2}+g \hat{g}, h_{L_{T}} ; h_{C_{T}}=\left(f \frac{L}{D}+k_{C n}\right) \frac{\bar{V}_{2}^{2}}{2}
$$

Assumptions: (1) $p_{0}=p_{1}=p a t m$
(3) $\alpha_{1} \approx 1$
(2) $\bar{V}_{1} \approx 0$
(4) $K_{\text {CAt }}=0.04$

Then

$$
g z_{0}=\frac{\bar{V}_{1}^{2}}{2}+\left(f \frac{L}{D}+k_{\operatorname{con}}\right) \frac{\bar{V}_{1}^{2}}{2} \quad \text { or } \quad \bar{V}_{1}=\sqrt{\frac{2 g z_{0}}{1+f_{D}+k}}
$$

For $e / D=0.01, f^{*}=0.038$ from Eq.8.37 7^{*}, so

$$
\bar{V}_{1}=\left[z_{\times} 9.81 \frac{\mathrm{~m}}{\mathrm{~s}^{2}} \times 1.5 \mathrm{~m}_{\times} \frac{1}{1+0.038 \times 50+7 \times \frac{1}{25 \mathrm{~mm}}+304.8 \mathrm{~mm}+0.04}\right]^{1 / 2}=1.10 \mathrm{~m} / \mathrm{s}
$$

Checking, assuming $T=20^{\circ} \mathrm{C}$,

$$
\begin{aligned}
& R_{e}=\frac{\bar{V}}{\nu}=1.10 \frac{\mathrm{~m}}{\mathrm{sec}} \times 0.02 m_{\times} \frac{\mathrm{sec}}{1.0 \times 10^{-6} \mathrm{~m}^{2}}=2.75 \times 10^{4} ; \text { from } \mathrm{Eq} 8.37^{*}, f \approx 0.040,50 \\
& \bar{V}_{1}=\left[2 \times 9.81 \frac{\mathrm{~m}}{5.2} \times 15 \mathrm{~m}_{\times} \frac{1}{1+0.040 \times 50 \mathrm{ft} \times \frac{1}{25 \mathrm{~mm}} \times \frac{304.8 \mathrm{~mm}}{f}+0.04}\right]^{1 / 2}=1.08 \mathrm{~m} \mathrm{~s} \\
& Q=\bar{V}_{1} A=1.08 \frac{\mathrm{~m}}{\mathrm{~s}} \times \frac{\pi}{4}(0.025)^{2} \mathrm{~m}^{2}=5.30 \times 10^{-4} \mathrm{~m}^{3} / \mathrm{s} \quad \text { (nodiffuser) }
\end{aligned}
$$

The diffuser would increase head toss by Kdiffuer $=0.3$ (see Example 8.10), but would reduce \bar{V}_{2} to $\frac{1}{2} \bar{V}_{1}$. The energy equation would be

$$
g z_{0}=\frac{\bar{V}_{2}^{2}}{2}+\left(f \frac{L}{D}+\varepsilon_{n} t+K_{\text {diff }}\right) \frac{\bar{V}_{1}^{2}}{2}=\left(\frac{1}{4}+f \frac{L}{D}+k_{\operatorname{cen}}+k_{d}\right) \frac{\bar{V}_{1}}{2}
$$

Thus

$$
\begin{aligned}
& \bar{V}_{1}=\sqrt{\frac{2 g z_{0}}{0.25+f \frac{L}{D}+k_{\text {nt }}+k_{\text {diff }}}} \\
& \bar{V}_{1}=\left[2 \times 9.81 \frac{\mathrm{~m}}{\mathrm{~s}^{2}} \times 1.5 \mathrm{~m} \times \frac{1}{0.25+0.040 \times 50 \mathrm{ft} \times \frac{1}{25 \mathrm{~mm}} \times 304.8 \frac{\mathrm{~mm}}{f t}+0.04+0.3}\right]^{1 / 2}=1.09 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

and

$$
Q=\bar{V}_{1} A=1.09 \frac{\mathrm{~m}}{\mathrm{~s}} \times \frac{\pi}{4}(0.025)^{2} \mathrm{~m}^{2}=5.35 \times 10^{-4} \mathrm{~m}^{3 / \mathrm{s}} \text { (with diffuser) }
$$

$\left\{\begin{array}{l}\text { The diffuser increases flow rate only sigh holy (} w 1 \text { percent), because loss is } \\ \text { dominated by fin }\end{array}\right\}$ dominated by $f L / D$.

* Values of f obtained using Excel's Solver (or Each Seek)
8.138 A 7500 gallon tank of kerosine is to be emptied by a gravity feed using a drain hose of diameter 1 in ., roughness 0.01 in., and length 50 ft . The top of the tank is open to the atmosphere and the hose exits to an open chamber. If the kerosense level is initially 10 ft above the drain exit, estimate (by assuming steady flow) the initial drainage rate. Estimate the flow rate when the kerosene level is down to 5 ft , and down to 1 ft . Based on these three estimates, make a rough estimate of the time it took to drain to the 1 ft level.

Given: Tank with drain hose
Find: \quad Flow rate at different instants; Estimate of drain time

Solution:

Basic equations

$$
\left(\frac{p_{1}}{\rho}+\alpha \cdot \frac{V_{1}^{2}}{2}+g \cdot z_{1}\right)-\left(\frac{p_{2}}{\rho}+\alpha \cdot \frac{V_{2}^{2}}{2}+g \cdot z_{2}\right)=h_{l} \quad h_{l}=f \cdot \frac{L}{D} \cdot \frac{V^{2}}{2}
$$

Assumptions: 1) Steady flow 2) Incompressible flow 3) α is approximately 14) Ignore minor loss at entrance (L >>; verify later)
Hence the energy equation applied between the tank free surface (Point 1) and the hose exit (Point $2, \mathrm{z}=0$) becomes

Solving for V

$$
g \cdot z_{1}-\frac{V_{2}^{2}}{2}=g \cdot z_{1}-\frac{V^{2}}{2}=f \cdot \frac{L}{D} \cdot \frac{V^{2}}{2}
$$

$$
V=\sqrt{\frac{2 \cdot g \cdot h}{\left(1+f \cdot \frac{L}{D}\right)}}
$$

(1) and $\mathrm{h}=10 \cdot \mathrm{ft} \quad$ initially

We also have

$$
\begin{equation*}
\mathrm{Re}=\frac{\mathrm{V} \cdot \mathrm{D}}{1} \quad \text { or } \quad \mathrm{Re}=\mathrm{c} \cdot \mathrm{~V} \tag{2}
\end{equation*}
$$

where
$\mathrm{c}=\frac{\mathrm{D}}{\nu}$

From Fig. A. $2\left(20^{\circ} \mathrm{C}\right)$

$$
\begin{array}{ll}
\nu=1.8 \times 10^{-6} \cdot \frac{\mathrm{~m}^{2}}{\mathrm{~s}} \times \frac{10.8 \cdot \frac{\mathrm{ft}^{2}}{\mathrm{~s}}}{1 \cdot \frac{\mathrm{~m}^{2}}{\mathrm{~s}}} & \nu=1.94 \times 10^{-5} \frac{\mathrm{ft}^{2}}{\mathrm{~s}} \\
\mathrm{c}=\frac{1}{12} \cdot \mathrm{ft} \times \frac{\mathrm{s}}{1.94 \times 10^{-5} \cdot \mathrm{ft}^{2}} & \mathrm{c}=4.30 \times 10^{3} \cdot \frac{\mathrm{~s}}{\mathrm{ft}}
\end{array}
$$

In addition

$$
\frac{1}{\sqrt{f}}=-2.0 \cdot \log \left(\frac{\frac{e}{D}}{3.7}+\frac{2.51}{\operatorname{Re} \cdot \sqrt{f}}\right)
$$

$$
\text { (3) with } \mathrm{e}=0.01 \cdot \text { in } \mathrm{D}=1 \text { in }
$$

Equations 1, 2 and 3 form a set of simultaneous equations for V, Re and f
Make a guess for f
$\mathrm{f}=0.01 \quad$ then

$$
V=\sqrt{\frac{2 \cdot g \cdot h}{\left(1+f \cdot \frac{L}{D}\right)}} \quad V=9.59 \cdot \frac{f t}{s}
$$

$$
\operatorname{Re}=c \cdot V \quad \operatorname{Re}=4.12 \times 10^{4}
$$

Given $\quad \frac{1}{\sqrt{f}}=-2.0 \cdot \log \left(\frac{\frac{e}{D}}{3.7}+\frac{2.51}{\operatorname{Re} \cdot \sqrt{f}}\right) \quad f=0.0393 \quad V=\sqrt{\frac{2 \cdot g \cdot h}{\left(1+\mathrm{f} \cdot \frac{\mathrm{L}}{\mathrm{D}}\right)}} \quad \mathrm{V}=5.12 \cdot \frac{\mathrm{ft}}{\mathrm{s}} \quad \mathrm{Re}=\mathrm{c} \cdot \mathrm{V} \quad \mathrm{Re}=2.20 \times 10^{4}$

Given $\quad \frac{1}{\sqrt{f}}=-2.0 \cdot \log \left(\frac{\frac{e}{D}}{3.7}+\frac{2.51}{\operatorname{Re} \cdot \sqrt{f}}\right) \quad \mathrm{f}=0.0405 \quad \mathrm{~V}=\sqrt{\frac{2 \cdot g \cdot h}{\left(1+\mathrm{f} \cdot \frac{\mathrm{L}}{\mathrm{D}}\right)}} \quad \mathrm{V}=5.04 \cdot \frac{\mathrm{ft}}{\mathrm{s}} \quad \mathrm{Re}=\mathrm{c} \cdot \mathrm{V} \quad \mathrm{Re}=2.17 \times 10^{4}$
Given $\quad \frac{1}{\sqrt{f}}=-2.0 \cdot \log \left(\frac{\frac{\mathrm{e}}{\mathrm{D}}}{3.7}+\frac{2.51}{\operatorname{Re} \cdot \sqrt{\mathrm{f}}}\right) \quad \mathrm{f}=0.0405 \quad \mathrm{~V}=\sqrt{\frac{2 \cdot \mathrm{~g} \cdot \mathrm{~h}}{\left(1+\mathrm{f} \cdot \frac{\mathrm{L}}{\mathrm{D}}\right)}} \quad \mathrm{V}=5.04 \cdot \frac{\mathrm{ft}}{\mathrm{s}} \quad \mathrm{Re}=\mathrm{c} \cdot \mathrm{V} \quad \mathrm{Re}=2.17 \times 10^{4}$
Note that we could use Excel's Solver for this problem Note: $\quad \mathrm{f} \cdot \frac{\mathrm{L}}{\mathrm{D}}=24.3 \quad \mathrm{~K}_{\mathrm{e}}=0.5 \quad \mathrm{~h}_{\mathrm{lm}}<\mathrm{h}_{\mathrm{l}}$

The flow rate is then

$$
\mathrm{Q}=\mathrm{V} \cdot \frac{\pi \cdot \mathrm{D}^{2}}{4} \quad \mathrm{Q}=5.04 \cdot \frac{\mathrm{ft}}{\mathrm{~s}} \times \frac{\pi}{4} \times\left(\frac{1}{12} \cdot \mathrm{ft}\right)^{2} \quad \mathrm{Q}=0.0275 \cdot \frac{\mathrm{ft}^{3}}{\mathrm{~s}}
$$

$$
\mathrm{Q}=12.3 \cdot \mathrm{gpm}
$$

Next we recompute everything for $\mathrm{h}=5 \cdot \mathrm{ft}$
Given $\quad \frac{1}{\sqrt{f}}=-2.0 \cdot \log \left(\frac{\frac{e}{D}}{3.7}+\frac{2.51}{\operatorname{Re} \cdot \sqrt{f}}\right) \quad f=0.0405 \quad V=\sqrt{\frac{2 \cdot g \cdot h}{\left(1+\mathrm{f} \cdot \frac{\mathrm{L}}{\mathrm{D}}\right)}} \quad \mathrm{V}=3.57 \cdot \frac{\mathrm{ft}}{\mathrm{s}} \quad \mathrm{Re}=\mathrm{c} \cdot \mathrm{V} \quad \mathrm{Re}=1.53 \times 10^{4}$
Given $\quad \frac{1}{\sqrt{f}}=-2.0 \cdot \log \left(\frac{\frac{e}{D}}{3.7}+\frac{2.51}{\operatorname{Re} \cdot \sqrt{f}}\right) \quad f=0.0415 \quad V=\sqrt{\frac{2 \cdot \mathrm{~g} \cdot \mathrm{~h}}{\left(1+\mathrm{f} \cdot \frac{\mathrm{L}}{\mathrm{D}}\right)}} \quad \mathrm{V}=3.52 \cdot \frac{\mathrm{ft}}{\mathrm{s}} \quad \mathrm{Re}=\mathrm{c} \cdot \mathrm{V} \quad \mathrm{Re}=1.51 \times 10^{4}$
Given $\quad \frac{1}{\sqrt{f}}=-2.0 \cdot \log \left(\frac{\frac{e}{D}}{3.7}+\frac{2.51}{\operatorname{Re} \cdot \sqrt{f}}\right) \quad f=0.0415 \quad V=\sqrt{\frac{2 \cdot g \cdot h}{\left(1+\mathrm{f} \cdot \frac{\mathrm{L}}{\mathrm{D}}\right)}} \quad \mathrm{V}=3.52 \cdot \frac{\mathrm{ft}}{\mathrm{s}} \quad \mathrm{Re}=\mathrm{c} \cdot \mathrm{V} \quad \mathrm{Re}=1.51 \times 10^{4}$
The flow rate is then

$$
\mathrm{Q}=\mathrm{V} \cdot \frac{\pi \cdot \mathrm{D}^{2}}{4} \quad \mathrm{Q}=3.52 \cdot \frac{\mathrm{ft}}{\mathrm{~s}} \times \frac{\pi}{4} \times\left(\frac{1}{12} \cdot \mathrm{ft}\right)^{2} \quad \mathrm{Q}=0.0192 \cdot \frac{\mathrm{ft}^{3}}{\mathrm{~s}} \quad \mathrm{Q}=8.62 \cdot \mathrm{gpm}
$$

Next we recompute everything for $\mathrm{h}=1 \cdot \mathrm{ft}$
Given $\quad \frac{1}{\sqrt{f}}=-2.0 \cdot \log \left(\frac{\frac{e}{D}}{3.7}+\frac{2.51}{\operatorname{Re} \cdot \sqrt{f}}\right) \quad f=0.0415 \quad V=\sqrt{\frac{2 \cdot g \cdot h}{\left(1+\mathrm{f} \cdot \frac{\mathrm{L}}{\mathrm{D}}\right)}} \quad \mathrm{V}=1.58 \cdot \frac{\mathrm{ft}}{\mathrm{s}} \quad \mathrm{Re}=\mathrm{c} \cdot \mathrm{V} \quad \mathrm{Re}=6.77 \times 10^{3}$
Given $\quad \frac{1}{\sqrt{\mathrm{f}}}=-2.0 \cdot \log \left(\frac{\frac{\mathrm{e}}{\mathrm{D}}}{3.7}+\frac{2.51}{\operatorname{Re} \cdot \sqrt{\mathrm{f}}}\right) \quad \mathrm{f}=0.0452 \quad \mathrm{~V}=\sqrt{\frac{2 \cdot \mathrm{~g} \cdot \mathrm{~h}}{\left(1+\mathrm{f} \cdot \frac{\mathrm{L}}{\mathrm{D}}\right)}} \quad \mathrm{V}=1.51 \cdot \frac{\mathrm{ft}}{\mathrm{s}} \quad \mathrm{Re}=\mathrm{c} \cdot \mathrm{V} \quad \mathrm{Re}=6.50 \times 10^{3}$
Given $\quad \frac{1}{\sqrt{f}}=-2.0 \cdot \log \left(\frac{\frac{e}{D}}{3.7}+\frac{2.51}{\operatorname{Re} \cdot \sqrt{f}}\right) \quad f=0.0454 \quad V=\sqrt{\frac{2 \cdot g \cdot h}{\left(1+\mathrm{f} \cdot \frac{\mathrm{L}}{\mathrm{D}}\right)}} \quad \mathrm{V}=1.51 \cdot \frac{\mathrm{ft}}{\mathrm{s}} \quad \mathrm{Re}=\mathrm{c} \cdot \mathrm{V} \quad \mathrm{Re}=6.48 \times 10^{3}$
The flow rate is then
$\mathrm{Q}=\mathrm{V} \cdot \frac{\pi \cdot \mathrm{D}^{2}}{4} \quad \mathrm{Q}=1.51 \cdot \frac{\mathrm{ft}}{\mathrm{s}} \times \frac{\pi}{4} \times\left(\frac{1}{12} \cdot \mathrm{ft}\right)^{2}$
$\mathrm{Q}=0.00824 \cdot \frac{\mathrm{ft}^{3}}{\mathrm{~s}} \quad \mathrm{Q}=3.70 \cdot \mathrm{gpm}$

Initially we have dQ/ $\mathrm{dt}=-12.3 \mathrm{gpm}$, then -8.62 gpm , then -3.70 gpm . These occur at $\mathrm{h}=10 \mathrm{ft}, 5 \mathrm{ft}$ and 1 ft . The corresponding volumes in the tank are then $\mathrm{Q}=7500 \mathrm{gal}, 3750 \mathrm{gal}$, and 750 gal . Using Excel we can fit a power trendline to the dQ/dt versus Q data to find, approximately
$\frac{\mathrm{dQ}}{\mathrm{dt}}=-0.12 \cdot \mathrm{Q}^{\frac{1}{2}} \quad$ where $\mathrm{dQ} / \mathrm{dt}$ is in gpm and t is min. Solving this with initial condition $\mathrm{Q}=7500$ gpm when $\mathrm{t}=0$ gives $\mathrm{t}=\frac{1}{0.06} \cdot(\sqrt{7500}-\sqrt{\mathrm{Q}}) \quad$ Hence, when $\mathrm{Q}=750 \mathrm{gal}(\mathrm{h}=1 \mathrm{ft}) \quad \mathrm{t}=\frac{1}{0.06} \cdot(\sqrt{7500}-\sqrt{750}) \cdot \mathrm{min} \quad \mathrm{t}=987 \mathrm{~min} \quad \mathrm{t}=16.4 \mathrm{hr}$

Given: Pipe of length 1 inserted between he nozzle (attached to the water maui and diffuser of Example Problem 8.10.

$$
D_{1}=25 \mathrm{~mm}, V_{\mathrm{ent}}=0.0 \mathrm{~m}, \mathrm{~d}=1.5 \mathrm{~m}
$$

$$
\text { Diffuser: } N l_{2}=30, \text { AR }=20
$$

$$
k_{\text {duff }}^{2}=0.3
$$

Flow with nozzle alone:

$$
\begin{aligned}
& w \text { with nozzle abe: } \\
& Q_{i}=2 . b \times\left. 10^{3} \mathrm{~m}^{3}\right|_{\mathrm{s}}, y_{1}=5.32 m h_{\mathrm{s}}
\end{aligned}
$$

Flow wifi nozzle and diffuser $(L=0) \quad Q_{\alpha}=3.47 \times 10^{-3} \mathrm{~m}^{3} / \mathrm{s}$
Find: length (A) of pepe wit ely $=0.01$ required to give Row rate Qi, with diffuser in place; compare with commissioner's requirement of $h=$ soft (isiah)
Plot: alai us wig
Solution:
Apply the energy equation for steady, incompressible fou btwar te water surface and the diffuse discharge.
Basic equations:

Assumptions: (i) $P_{0}=P_{3}=P_{\text {atm }}$
(a) $J_{0}=0, \alpha_{3}=1.0$

Ron,
(3) water © $20^{\circ} \mathrm{c}, \quad 0=1.00 \mathrm{k} 0^{-6} \mathrm{~m}^{2} \mathrm{l}$

$$
g\left(z_{0}-z\right)=g d=f \frac{L}{y} \frac{y^{2}}{2}+\left(k_{a t}+k_{\alpha} i f f\right) \frac{V_{2}^{2}}{2}+\frac{\bar{V}_{3}^{2}}{2}
$$

From conturnty $\quad A_{2} \bar{J}_{2}=R_{3} \bar{J}_{3} \quad \therefore V_{3}=\bar{V}_{2}$
and

$$
h=\frac{P}{f}\left[\frac{2 g d}{V_{2}} 2-0.590\right]
$$

wile ely $=0.0$, $f=0.038\left(F_{1 g} 8.13\right)$ and

$$
h=\frac{0.025 m}{0.038}\left[2 \times 9.8 \frac{m}{s^{2}} \times 1.5 m \times(5.32)^{2} m^{2}-0.590\right]=0.296 m-L
$$

His is segnificantly tess than the so required but te water cofmiswiset. te was extremely conservative.
 Increasing L

$$
\begin{aligned}
\text { with } L & =0 \quad \text { alai }=1.33 \\
h & =0.2 n+\cdots \quad(L y=11.8) \quad \text { aloi=1.00 }
\end{aligned}
$$

As in is increased \bar{y}_{2} land thence Re will decrease; Q friction factor wit vickease slightly from 0.038 .
Fe plot of alai (A_{1}) is best done by assuring values of 4 , and solving $E q .2$ for 4 .

Given: Water flow from spigot (at $60^{\circ} \mathrm{F}$) rough an dd hose with $y=0.75 \mathrm{in}$ and $e=0.022 \mathrm{in}$. Pressure at man remains cottar at sopsig; pressure at spigot varies with flow rate.
one 50 fl. long th of hose delvers is gpm
Find: (a) pressure at spigot (psia) for this case.
(b) Delivery wit two soft length of hose connected

Solution:

Apply the energy equation for steady incompressible flow between the spigot (B) and the nose tiscknage (3)

$$
h_{e}=h_{e}+h_{\text {en }}, h_{e}=f \frac{5}{2}
$$

Assumptions: (1) $P_{3}=$ Pate
(4) Turbulent flows so

$$
\begin{aligned}
& \text { (2) } \vec{v}_{2}=\bar{j}_{3}, \alpha_{2}=\alpha_{3}=100 \\
& \text { (3) }, z_{2}=z_{3}
\end{aligned}
$$ $\Delta P_{\rightarrow-2} \alpha \theta^{2}$

Then

From $E_{q, 8.37} f=0.056^{*}$. From Eq.",

$$
p_{2}=1.94 \frac{5 \operatorname{lng}}{5 t^{3}} \times 0.056 \times \frac{50 \mathrm{ft}}{0.5 \mathrm{in}} \times \frac{(2 \mathrm{in}}{\mathrm{ft}} \times \frac{1}{2} \times(10.9)^{2} \frac{\mathrm{ft}^{2}}{5^{2}} \times \frac{6 \mathrm{~s}^{2}}{5(\mathrm{mg} \cdot \mathrm{ft}} \times \frac{\mathrm{ft}^{2}}{\mathrm{kmin}} \mathrm{in}^{2}
$$

$$
P_{2}=35.9 \text { psigage }
$$

The pressure drop from the main (1) to the spigot(?) is proportional to the square of the flow rate obtain the hos cofficert using the energy equation between (D) ard (B)

$$
\left(\frac{P_{1}}{p}+\alpha_{1} \cdot \frac{j^{2}}{2}+g_{1}\right)-\left(\frac{P_{2}}{e}+\alpha_{2} \frac{p_{2}}{2}+g_{2} z^{2}\right)=k \frac{J^{2}}{2} .
$$

* Value of fobtaried using Excel's Solver (or Goal Seek)

$$
\begin{aligned}
& \left.-p_{1}-p_{2}=p\left[k \frac{\bar{y}_{2}^{2}}{2}+\frac{j^{2}}{2}\right]=p \frac{a}{2}\right]=z^{2} 2[k+]
\end{aligned}
$$

$$
\begin{aligned}
& k=16.6
\end{aligned}
$$

$$
\begin{aligned}
& P_{2}=p^{f} \frac{2}{\bar{y}} \frac{\bar{y}^{2}}{2}
\end{aligned}
$$

$$
\begin{aligned}
& e l y=0.02210 .75=0.0293
\end{aligned}
$$

To find the delingry wite two hoses, again apply the energy equation from tremoin (1) to the end of Peguond

$$
J_{4}=\left[\rho^{2-p_{5}}\left(2 f \frac{5}{5}+k+1\right)\right]^{1 / 2}
$$

pehinery will be reduced somentrat with two lergfts of these

Caching

$$
R_{e}-\frac{8 \pi}{5}=\frac{0,754}{12} \times \frac{8.32 \frac{4}{3}}{2} 1.21 \times 10^{-5} \frac{5}{4 t^{2}}=4.30 \times 10^{-4}, \text {, } 0 . f \approx 0.56
$$

Tues wit two hoses,

$$
Q=\bar{V} A=8.32 \frac{\mathrm{t}}{6} \times \frac{\pi}{4} \times\left(\frac{0.35}{12}\right)^{2} \mathrm{f}^{2}+7.48 \frac{\mathrm{gal}}{\mathrm{ft}^{3}} \times \frac{605}{\operatorname{tm}}=11.5 \mathrm{gpm} \quad Q
$$

$\left\{\begin{array}{l}\text { Similar calculations could be performed using any } \\ \text { desired number of hose length. }\end{array}\right\}$

$$
\begin{aligned}
& \bar{J}_{+}=8.32 \mathrm{ft} \mathrm{f}_{\mathrm{s}} .
\end{aligned}
$$

$$
\begin{aligned}
& \left(\frac{e_{1}}{\rho}+\alpha \frac{\bar{N}_{2}^{2}}{2}+g_{0}\right)-\left(\frac{p}{p}+\alpha+\frac{\bar{v}^{2}}{2}+g j_{j}\right)=f \frac{h^{2}}{y} \frac{j^{2}}{2}+k^{-\frac{j^{2}}{2}} \\
& P_{4}=P_{a t m}, z_{1}=z_{4}, \bar{V}_{1}=0, \alpha_{4}=1
\end{aligned}
$$

Problem 8.141

8.141 Your boss, from the "old school," claims that for pipe flow the flow rate, $Q \propto \sqrt{\Delta p}$, where Δp is the pressure difference driving the flow. You dispute this, so perform some calculations. You take a 1-in. diameter commercial steel pipe and assume an initial flow rate of $1.25 \mathrm{gal} / \mathrm{min}$ of water. You then increase the applied pressure in equal increments and compute the new flow rates so you can plot Q versus Δp, as computed by you and your boss. Plot the two curves on the same graph. Was your boss right?

Applying the energy equation between inlet and exit:

$$
\begin{array}{rlrl}
\frac{\Delta p}{\rho}= & f & \frac{L}{D} \frac{V^{2}}{2} \text { or } & \frac{\Delta p}{L}= \\
& =\frac{\rho f}{D} \frac{V^{2}}{2} \\
& \text { "Old school": } & \frac{\Delta p}{L}=\left(\frac{\Delta p}{L}\right)_{0}\left(\frac{Q_{0}}{Q}\right)^{2}
\end{array}
$$

$$
\begin{array}{lc}
D= & 1 \mathrm{in} \\
e= & 0.00015 \mathrm{ft} \\
v= & 1.08 \mathrm{E}-05 \mathrm{ft}^{2} / \mathrm{s} \\
\rho= & 1.94 \mathrm{slug} / \mathrm{ft}^{3}
\end{array}
$$

$Q(\mathrm{gpm})$	$Q\left(\mathrm{ft}^{3} / \mathrm{s}\right)$	$V(\mathrm{ft} / \mathrm{s})$	$R e$	f	$\Delta \mathrm{p}(\mathrm{old}$ school) (psi)	$\Delta \mathrm{p}(\mathrm{psi} / \mathrm{ft})$
1.25	0.00279	0.511	3940	0.0401	0.00085	0.00085
1.50	0.00334	0.613	4728	0.0380	0.00122	0.00115
1.75	0.00390	0.715	5516	0.0364	0.00166	0.00150
2.00	0.00446	0.817	6304	0.0350	0.00216	0.00189

Flow Rate versus Pressure Drop

Your boss was wrong!

8.75	0.01950	3.575	27582	0.0240	0.04142	0.02477
9.00	0.02005	3.677	28370	0.0238	0.04382	0.02604

Problem 8.142

8.142 A hydraulic press is powered by a remote high-pressure pump. The gage pressure at the pump outlet is 3000 psi , whereas the pressure required for the press is 2750 psi (gage), at a flow rate of $0.02 \mathrm{ft}^{3} / \mathrm{s}$. The press and pump are connected by 165 ft of smooth, drawn steel tubing. The fluid is SAE 10 W oil at $100^{\circ} \mathrm{F}$. Determine the minimum tubing diameter that may be used.

Given: Hydraulic press system
Find: \quad Minimum required diameter of tubing

Solution:

Basic equations

$$
\left(\frac{p_{1}}{\rho}+\alpha \cdot \frac{V_{1}^{2}}{2}+g \cdot z_{1}\right)-\left(\frac{p_{2}}{\rho}+\alpha \cdot \frac{V_{2}^{2}}{2}+g \cdot z_{2}\right)=h_{l} \quad h_{l}=f \cdot \frac{L}{D} \cdot \frac{V_{2}^{2}}{2}
$$

Assumptions: 1) Steady flow 2) Incompressible flow 3) α at 1 and 2 is approximately 1 4) Ignore minor losses
The flow rate is low and it's oil, so try assuming laminar flow. Then, from Eq. 8.13c

$$
\Delta \mathrm{p}=\frac{128 \cdot \mu \cdot \mathrm{Q} \cdot \mathrm{~L}}{\pi \cdot \mathrm{D}^{4}} \quad \text { or } \quad \mathrm{D}=\left(\frac{128 \cdot \mu \cdot \mathrm{Q} \cdot \mathrm{~L}}{\pi \cdot \Delta \mathrm{p}}\right)^{\frac{1}{4}}
$$

For SAE 10 W oil at $100^{\circ} \mathrm{F}$ (Fig. A.2, $38^{\circ} \mathrm{C}$) $\quad \mu=3.5 \times 10^{-2} \cdot \frac{\mathrm{~N} \cdot \mathrm{~s}}{\mathrm{~m}^{2}} \times \frac{0.0209 \cdot \frac{\mathrm{lbf} \cdot \mathrm{s}}{\mathrm{ft}^{2}}}{1 \cdot \frac{\mathrm{~N} \cdot \mathrm{~s}}{\mathrm{~m}^{2}}} \quad \mu=7.32 \times 10^{-4} \frac{\mathrm{lbf} \cdot \mathrm{s}}{\mathrm{ft}^{2}}$
Hence $\quad \mathrm{D}=\left[\frac{128}{\pi} \times 7.32 \times 10^{-4} \frac{\mathrm{lbf} \cdot \mathrm{s}}{\mathrm{ft}^{2}} \times 0.02 \cdot \frac{\mathrm{ft}^{3}}{\mathrm{~s}} \times 165 \cdot \mathrm{ft} \times \frac{\mathrm{in}^{2}}{(3000-2750) \cdot \mathrm{lbf}} \times\left(\frac{1 \cdot \mathrm{ft}}{12 \cdot \mathrm{in}}\right)^{2}\right]^{\frac{1}{4}} \quad \mathrm{D}=0.0407 \mathrm{ft} \quad \mathrm{D}=0.488 \mathrm{in}$
Check Re to assure flow is laminar

$$
\mathrm{V}=\frac{\mathrm{Q}}{\mathrm{~A}}=\frac{4 \cdot \mathrm{Q}}{\pi \cdot \mathrm{D}^{2}} \quad \mathrm{~V}=\frac{4}{\pi} \times 0.02 \cdot \frac{\mathrm{ft}^{3}}{\mathrm{~s}} \times\left(\frac{12}{0.488} \cdot \frac{1}{\mathrm{ft}}\right)^{2}
$$

$$
\mathrm{V}=15.4 \frac{\mathrm{ft}}{\mathrm{~s}}
$$

From Table A. 2

$$
\begin{aligned}
& \mathrm{SG}_{\text {oil }}=0.92 \quad \text { so } \quad \mathrm{Re}=\frac{\mathrm{SG}_{\mathrm{oil}} \cdot \rho_{\mathrm{H} 2 \mathrm{O}} \cdot \mathrm{~V} \cdot \mathrm{D}}{\mu} \\
& \mathrm{Re}=0.92 \times 1.94 \cdot \frac{\mathrm{slug}}{\mathrm{ft}^{3}} \times 15.4 \cdot \frac{\mathrm{ft}}{\mathrm{~s}} \times \frac{0.488}{12} \cdot \mathrm{ft} \times \frac{\mathrm{ft}^{2}}{7.32 \times 10^{-4} \mathrm{lbf} \cdot \mathrm{~s}} \times \frac{\mathrm{lbf} \cdot \mathrm{~s}^{2}}{\mathrm{slug} \cdot \mathrm{ft}}
\end{aligned}
$$

$$
R e=1527
$$

Hence the flow is laminar, $\mathrm{Re}<2300$. The minimum diameter is 0.488 in , so 0.5 in ID tube should be chosen

Problem 8.143
8.143 A pump is located 4.5 m to one side of, and 3.5 m above a reservoir. The pump is designed for a flow rate of $6 \mathrm{~L} / \mathrm{s}$. For satisfactory operation, the static pressure at the pump inlet must not be lower than -6 m of water gage. Determine the smallest standard commercial steel pipe that will give the required performance.

Given: Flow out of reservoir by pump

Find: Smallest pipe needed

Solution:

Basic equations $\quad\left(\frac{p_{1}}{\rho}+\alpha \cdot \frac{V_{1}{ }^{2}}{2}+g \cdot z_{1}\right)-\left(\frac{p_{2}}{\rho}+\alpha \cdot \frac{V_{2}^{2}}{2}+g \cdot z_{2}\right)=h_{l T} \quad h_{l T}=h_{l}+h_{l m}=f \cdot \frac{L}{D} \cdot \frac{V_{2}^{2}}{2}+K_{e n t} \cdot \frac{V_{2}^{2}}{2}+f \cdot \frac{L_{e}}{D} \cdot \frac{V_{2}^{2}}{2}$
Assumptions: 1) Steady flow 2) Incompressible flow 3) α at 1 and 2 is approximately 1 4) $\mathrm{V}_{\mathrm{l}} \ll$
Hence for flow between the free surface (Point 1) and the pump inlet (2) the energy equation becomes

$$
-\frac{\mathrm{p}_{2}}{\rho}-\mathrm{g} \cdot \mathrm{z}_{2}-\frac{\mathrm{V}_{2}^{2}}{2}=-\frac{\mathrm{p}_{2}}{\rho}-\mathrm{g} \cdot \mathrm{z}_{2}-\frac{\mathrm{V}^{2}}{2}=\mathrm{f} \cdot \frac{\mathrm{~L}}{\mathrm{D}} \cdot \frac{\mathrm{~V}^{2}}{2}+\mathrm{K}_{\mathrm{ent}} \cdot \frac{\mathrm{~V}^{2}}{2}+\mathrm{f} \cdot \frac{\mathrm{~L}_{\mathrm{e}}}{\mathrm{D}} \cdot \frac{\mathrm{~V}^{2}}{2} \quad \text { and } \quad \mathrm{p}=\rho \cdot \mathrm{g} \cdot \mathrm{~h}
$$

Solving for $h_{2}=p_{2} / \rho g \quad h_{2}=-z_{2}-\frac{V^{2}}{2 \cdot g} \cdot\left[f \cdot\left(\frac{L}{D}+\frac{L_{e}}{D}\right)+K_{e n t}\right]$
From Table $8.2 \quad \mathrm{~K}_{\mathrm{ent}}=0.78$ for rentrant, and from Table 8.4 two standard elbows lead to $\quad \frac{\mathrm{L}_{\mathrm{e}}}{\mathrm{D}}=2 \times 30=60$
We also have $\quad \mathrm{e}=0.046 \cdot \mathrm{~mm}$ (Table 8.1) $v=1.51 \times 10^{-6} \cdot \frac{\mathrm{~m}^{2}}{\mathrm{~s}} \quad$ (Table A.8)
and we are given $\quad \mathrm{Q}=6 \cdot \frac{\mathrm{~L}}{\mathrm{~s}} \quad \mathrm{Q}=6 \times 10^{-3} \frac{\mathrm{~m}^{3}}{\mathrm{~s}} \quad \mathrm{z}_{2}=3.5 \cdot \mathrm{~m} \quad \mathrm{~L}=(3.5+4.5) \cdot \mathrm{m} \quad \mathrm{L}=8 \mathrm{~m} \quad \mathrm{~h}_{2}=-6 \cdot \mathrm{~m}$
Equation 1 is tricky because D is unknown, so V is unknown (even though Q is known), L / D and L_{e} / D are unknown, and Re and hence f are unknown! We COULD set up Excel to solve Eq 1, the Reynolds number, and f, simultaneously by varying D, but here we try guesses:

	$\mathrm{D}=2.5 \cdot \mathrm{~cm} \quad \mathrm{~V}=\frac{4 \cdot \mathrm{Q}}{\pi \cdot \mathrm{D}^{2}}$	$\mathrm{V}=12.2 \frac{\mathrm{~m}}{\mathrm{~s}}$	$\mathrm{Re}=\frac{\mathrm{V} \cdot \mathrm{D}}{\nu}$	$\mathrm{Re}=2.02 \times 10^{5}$
Given	$\frac{1}{\sqrt{\mathrm{f}}}=-2.0 \cdot \log \left(\frac{\frac{\mathrm{e}}{\mathrm{D}}}{3.7}+\frac{2.51}{\mathrm{Re} \cdot \sqrt{\mathrm{f}}}\right)$	$\mathrm{f}=0.0238$		
	$\mathrm{h}_{2}=-z_{2}-\frac{\mathrm{V}^{2}}{2 \cdot g} \cdot\left[\mathrm{f} \cdot\left(\frac{L}{D}+\frac{L_{e}}{D}\right)+\mathrm{K}_{\text {ent }}\right]$	$h_{2}=-78.45 \mathrm{~m}$	but we need -6m!	
	$\mathrm{D}=5 \cdot \mathrm{~cm} \quad \mathrm{~V}=\frac{4 \cdot \mathrm{Q}}{\pi \cdot \mathrm{D}^{2}}$	$\mathrm{V}=3.06 \frac{\mathrm{~m}}{\mathrm{~s}}$	$\mathrm{Re}=\frac{\mathrm{V} \cdot \mathrm{D}}{\nu}$	$\mathrm{Re}=1.01 \times 10^{5}$
Given	$\frac{1}{\sqrt{\mathrm{f}}}=-2.0 \cdot \log \left(\frac{\frac{\mathrm{e}}{\mathrm{D}}}{3.7}+\frac{2.51}{\operatorname{Re} \cdot \sqrt{\mathrm{f}}}\right)$	$\mathrm{f}=0.0219$		

$$
\begin{array}{rlrl}
\mathrm{h}_{2} & =-\mathrm{z}_{2}-\frac{\mathrm{V}^{2}}{2 \cdot g} \cdot\left[\mathrm{f} \cdot\left(\frac{\mathrm{~L}}{\mathrm{D}}+\frac{\mathrm{L}_{\mathrm{e}}}{\mathrm{D}}\right)+\mathrm{K}_{\mathrm{ent}}\right] \quad \mathrm{h}_{2}=-6.16 \mathrm{~m} & \text { but we need }-6 \mathrm{~m}! & \\
\mathrm{D}=5.1 \cdot \mathrm{~cm} \quad \mathrm{~V}=\frac{4 \cdot \mathrm{Q}}{\pi \cdot \mathrm{D}^{2}} & \mathrm{~V}=2.94 \frac{\mathrm{~m}}{\mathrm{~s}} \quad \mathrm{Re}=\frac{\mathrm{V} \cdot \mathrm{D}}{\nu} \quad \mathrm{Re}=9.92 \times 10^{4} \\
\text { Given } \quad \frac{1}{\sqrt{\mathrm{f}}}=-2.0 \cdot \log \left(\frac{\frac{\mathrm{e}}{\mathrm{D}}}{3.7}+\frac{2.51}{\operatorname{Re} \cdot \sqrt{f}}\right) \quad \mathrm{f}=0.0219 & \\
\mathrm{~h}_{2}=-\mathrm{z}_{2}-\frac{\mathrm{V}^{2}}{2 \cdot g} \cdot\left[\mathrm{f} \cdot\left(\frac{\mathrm{~L}}{\mathrm{D}}+\frac{\mathrm{L}_{\mathrm{e}}}{\mathrm{D}}\right)+\mathrm{K}_{\mathrm{ent}}\right] \quad \mathrm{h}_{2}=-5.93 \mathrm{~m} &
\end{array}
$$

To within 1%, we can use $5-5.1 \mathrm{~cm}$ tubing; this corresponds to standard 2 in pipe.
8.144 Determine the minimum size smooth rectangular duct with an aspect ratio of 2 that will pass 2850 cfm of standard air with a head loss of 1.25 in . of water per 100 ft of duct.

Given: Flow of air in rectangular duct
Find: Minimum required size

Solution:

Basic equations

$$
\left(\frac{p_{1}}{\rho}+\alpha \cdot \frac{V_{1}^{2}}{2}+g \cdot z_{1}\right)-\left(\frac{p_{2}}{\rho}+\alpha \cdot \frac{V_{2}^{2}}{2}+g \cdot z_{2}\right)=h_{l} \quad h_{l}=f \cdot \frac{L}{D_{h}} \cdot \frac{V^{2}}{2} \quad D_{h}=\frac{4 \cdot A}{P_{w}}
$$

Assumptions: 1) Steady flow 2) Incompressible flow 3) α at 1 and 2 is approximately 1 4) Ignore minor losses
Hence for flow between the inlet (Point 1) and the exit (2) the energy equation becomes

$$
\frac{\mathrm{p}_{1}}{\rho}-\frac{\mathrm{p}_{2}}{\rho}=\frac{\Delta \mathrm{p}}{\rho}=\mathrm{f} \cdot \frac{\mathrm{~L}}{\mathrm{D}_{\mathrm{h}}} \cdot \frac{\mathrm{~V}^{2}}{2}
$$

and $\quad \Delta \mathrm{p}=\rho_{\mathrm{H} 2 \mathrm{O}} \cdot \mathrm{g} \cdot \Delta \mathrm{h}$

For a rectangular duct $D_{h}=\frac{4 \cdot b \cdot h}{2 \cdot(b+h)}=\frac{2 \cdot h^{2} \cdot a r}{h \cdot(1+a r)}=\frac{2 \cdot h \cdot a r}{1+a r} \quad$ and also $\quad A=b \cdot h=h^{2} \cdot \frac{b}{h}=h^{2} \cdot a r$

Hence

$$
\Delta \mathrm{p}=\rho \cdot \mathrm{f} \cdot \mathrm{~L} \cdot \frac{\mathrm{~V}^{2}}{2} \cdot \frac{(1+\mathrm{ar})}{2 \cdot \mathrm{~h} \cdot \mathrm{ar}}=\rho \cdot \mathrm{f} \cdot \mathrm{~L} \cdot \frac{\mathrm{Q}^{2}}{2 \cdot \mathrm{~A}^{2}} \cdot \frac{(1+\mathrm{ar})}{2 \cdot \mathrm{~h} \cdot \mathrm{ar}}=\frac{\rho \cdot \mathrm{f} \cdot \mathrm{~L} \cdot \mathrm{Q}^{2}}{4} \cdot \frac{(1+\mathrm{ar})}{\mathrm{ar}^{3}} \cdot \frac{1}{\mathrm{~h}^{5}}
$$

Solving for $h \quad h=\left[\frac{\rho \cdot f \cdot L \cdot Q^{2}}{4 \cdot \Delta p} \cdot \frac{(1+a r)}{a r^{3}}\right]^{\frac{1}{5}}$
We are given

$$
\begin{equation*}
\mathrm{Q}=2850 \cdot \frac{\mathrm{ft}^{3}}{\mathrm{~min}} \tag{1}
\end{equation*}
$$

$\mathrm{L}=100 \cdot \mathrm{ft}$
$\mathrm{e}=0 \cdot \mathrm{ft}$
ar $=2$
and also

$$
\begin{array}{ll}
\Delta \mathrm{p}=\rho_{\mathrm{H} 2 \mathrm{O}} \cdot \mathrm{~g} \cdot \Delta \mathrm{~h} & \Delta \mathrm{p}=1.94 \cdot \frac{\mathrm{slug}}{\mathrm{ft}^{3}} \times 32.2 \frac{\mathrm{ft}}{\mathrm{~s}^{2}} \times \frac{1.25}{12} \cdot \mathrm{ft} \times \frac{\mathrm{lbf} \cdot \mathrm{~s}^{2}}{\mathrm{slug} \cdot \mathrm{ft}} \\
\rho=0.00234 \cdot \frac{\mathrm{slug}}{\mathrm{ft}^{3}} & \nu=1.62 \times 10^{-4} \cdot \frac{\mathrm{ft}^{2}}{\mathrm{~s}} \quad \quad \text { (Table A.9) }
\end{array}
$$

$$
\Delta \mathrm{p}=6.51 \cdot \frac{\mathrm{lbf}}{\mathrm{ft}^{2}}
$$

Equation 1 is tricky because h is unknown, so D_{h} is unknown, hence V is unknown (even though Q is known), and Re and hence f are unknown! We COULD set up Excel to solve Eq 1, the Reynolds number, and f, simmultaneously by varying h, but here we try guesses:

$$
\begin{array}{lll}
\mathrm{f}=0.01 & \mathrm{~h}=\left[\frac{\rho \cdot \mathrm{f} \cdot \mathrm{~L} \cdot \mathrm{Q}^{2}}{4 \cdot \Delta \mathrm{p}} \cdot \frac{(1+\mathrm{ar})}{\mathrm{ar}^{3}}\right]^{\frac{1}{5}} & \mathrm{~h}=0.597 \cdot \mathrm{ft} \\
\mathrm{D}_{\mathrm{h}}=\frac{2 \cdot \mathrm{~h} \cdot \mathrm{ar}}{1+\mathrm{ar}} & \mathrm{D}_{\mathrm{h}}=0.796 \cdot \mathrm{ft} & \mathrm{Ve}=\frac{\mathrm{Q}}{\mathrm{~h}^{2} \cdot \mathrm{ar}} \quad \mathrm{~V} \cdot \mathrm{D}_{\mathrm{h}} \\
\text { Given } & \mathrm{Ve}=3.27 \times 10^{5} \\
& \frac{1}{\sqrt{\mathrm{f}}}=-2.0 \cdot \log \left(\frac{\frac{\mathrm{e}}{\mathrm{D}_{\mathrm{h}}}}{3.7}+\frac{2.51}{\operatorname{Re} \cdot \sqrt{\mathrm{f}}}\right) & \mathrm{f}=0.0142
\end{array}
$$

$\begin{array}{lll}\mathrm{h}=\left[\frac{\rho \cdot \mathrm{f} \cdot \mathrm{L} \cdot \mathrm{Q}^{2}}{4 \cdot \Delta \mathrm{p}} \cdot \frac{(1+\mathrm{ar})}{\mathrm{ar}^{3}}\right]^{\frac{1}{5}} & \mathrm{~h}=0.641 \cdot \mathrm{ft} & \mathrm{V}=\frac{\mathrm{Q}}{\mathrm{h}^{2} \cdot \mathrm{ar}} \\ \mathrm{D}_{\mathrm{h}}=\frac{2 \cdot \mathrm{~h} \cdot \mathrm{ar}}{1+\mathrm{ar}} & \mathrm{D}_{\mathrm{h}}=0.855 \cdot \mathrm{ft} & \mathrm{Re}=\frac{\mathrm{V} \cdot \mathrm{D}_{\mathrm{h}}}{\nu}\end{array}$
Given $\quad \frac{1}{\sqrt{\mathrm{f}}}=-2.0 \cdot \log \left(\frac{\frac{\mathrm{e}}{\mathrm{D}_{\mathrm{h}}}}{3.7}+\frac{2.51}{\mathrm{Re} \cdot \sqrt{\mathrm{f}}}\right) \quad \mathrm{f}=0.0144$
$\mathrm{h}=\left[\frac{\rho \cdot \mathrm{f} \cdot \mathrm{L} \cdot \mathrm{Q}^{2}}{4 \cdot \Delta \mathrm{p}} \cdot \frac{(1+\mathrm{ar})}{\mathrm{ar}^{3}}\right]^{\frac{1}{5}} \quad \mathrm{~h}=0.643 \cdot \mathrm{ft} \quad \mathrm{V}=\frac{\mathrm{Q}}{\mathrm{h}^{2} \cdot \mathrm{ar}} \quad \mathrm{V}=57.5 \cdot \frac{\mathrm{ft}}{\mathrm{s}}$
$\mathrm{D}_{\mathrm{h}}=\frac{2 \cdot \mathrm{~h} \cdot \mathrm{ar}}{1+\mathrm{ar}} \quad \mathrm{D}_{\mathrm{h}}=0.857 \cdot \mathrm{ft} \quad \operatorname{Re}=\frac{\mathrm{V} \cdot \mathrm{D}_{\mathrm{h}}}{\nu} \quad \operatorname{Re}=3.04 \times 10^{5}$

Given

$$
\frac{1}{\sqrt{\mathrm{f}}}=-2.0 \cdot \log \left(\frac{\frac{\mathrm{e}}{\mathrm{D}_{\mathrm{h}}}}{3.7}+\frac{2.51}{\operatorname{Re} \cdot \sqrt{\mathrm{f}}}\right) \quad \mathrm{f}=0.0144
$$

$h=\left[\frac{\rho \cdot f \cdot L \cdot Q^{2}}{4 \cdot \Delta p} \cdot \frac{(1+\mathrm{ar})}{a r^{3}}\right]^{\frac{1}{5}} \quad h=0.643 \cdot f t$

$$
\mathrm{V}=\frac{\mathrm{Q}}{\mathrm{~h}^{2} \cdot \mathrm{ar}} \quad \mathrm{~V}=57.5 \cdot \frac{\mathrm{ft}}{\mathrm{~s}}
$$

$\mathrm{D}_{\mathrm{h}}=\frac{2 \cdot \mathrm{~h} \cdot \mathrm{ar}}{1+\mathrm{ar}} \quad \mathrm{D}_{\mathrm{h}}=0.857 \cdot \mathrm{ft}$
$\mathrm{Re}=\frac{\mathrm{V} \cdot \mathrm{D}_{\mathrm{h}}}{\nu}$
$\operatorname{Re}=3.04 \times 10^{5}$

In this process h and f have converged to a solution. The minimum dimensions are 0.642 ft by 1.28 ft , or 7.71 in by 15.4 in

Given: New industrial plant requires water supply of $5.7 \mathrm{~m} / \mathrm{min}$. The gage pressure at the main, 50 m from the plant, is 800 kpa . The supply line will have 4 elbows in a total length of 65 m . Pressure in the plant must be at least 500 kpa (gage).

Fine: Minminem line size of galvanized iron to install.
Solution: Apply the energy equation for steady, incomprecsiore flow that is uniform at each section ($\alpha=1$).
Basic equation: $\frac{p_{1}}{f}+\frac{\vec{p}_{2}^{(2)}}{p^{(2)}}+g f^{(3)}=\frac{p_{2}}{f}+\frac{\bar{q}^{(2)}}{f}+g p^{(3)}+f \frac{L}{D} \frac{\bar{v}^{2}}{2}+h_{e m}$
Assumptions: (i) $p_{1}-p_{2} \leq 300 k p_{2}=\Delta p$
(2) Fully developed flow in constantarkapipe, $\bar{V}=\overline{V_{2}}=\bar{V}$
(3) $z_{1}=z_{2}$
(4) $h_{C_{m}}=4\left(\frac{L e}{D}\right)_{\text {enow s }} \frac{\bar{V}^{2}}{2}=120 \frac{\bar{V}^{2}}{2}\left(\frac{6}{2}=30\right.$, from Ta be 8.5)

Then

$$
\frac{\Delta p}{f}=f\left(\frac{L}{D}+120\right) \frac{\bar{V}^{2}}{2} \text { or } \Delta p=f f\left(\frac{L}{D}+120\right) \frac{\bar{V}^{2}}{2}
$$

since D is whenown, iteration is required. The calculating equations are:

$$
\begin{aligned}
& V=\frac{Q}{A}=\frac{4 Q}{\pi D^{2}}=\frac{4}{\pi} \times \frac{5.7 m^{3}}{m m^{2}} \times \frac{1}{D^{2} m^{2}} \times \frac{m \mathrm{~m}}{60 \mathrm{~s}}=\frac{0.12}{D^{2}}(\mathrm{~m} / \mathrm{s}) \\
& R C=\frac{\overline{V D}}{2}=\frac{4 Q}{\pi \nu D}=\frac{4}{\pi} \times \frac{5.7 \mathrm{~m}^{2}}{\mathrm{~mm}^{2}} \times \frac{5}{1.14 \times 10^{-6} \mathrm{~m}^{2}} \times \frac{1}{D \mathrm{~m}} \times \frac{\mathrm{min}}{60 \mathrm{~s}}=\frac{1.00 \times 10^{5}}{D}\left(T=15^{\circ} \mathrm{C}\right)
\end{aligned}
$$

$e=0.15 \mathrm{~mm}(\operatorname{Tab} / \mathrm{C} 8.1)$, from $E q \cdot 8.37^{*}, L=65 \mathrm{~m}$. O from Tactic 8.5 .

Pipe friction cakutatons are acecente only within about ± 10 percent. Line resistance (and consegcesithy Δp) will increase with age.

Recommend installation of 6 in. (nominal) line.

* Values of f obtained using Excels Solver (or Goal Sad)

Problem 8.146

8.146 Air at $20^{\circ} \mathrm{C}$ flows in a horizontal square cross-section duct made from commercial steel. The duct is 25 m long. What size (length of a side) duct is required to convey $2 \mathrm{~m}^{3} / \mathrm{s}$ of air with a pressure drop of $1.5 \mathrm{~cm} \mathrm{H}_{2} \mathrm{O}$?

Given: Flow of air in square duct
Find: Minimum required size

Solution:

Basic equations $\quad\left(\frac{p_{1}}{\rho}+\alpha \cdot \frac{V_{1}^{2}}{2}+g \cdot z_{1}\right)-\left(\frac{p_{2}}{\rho}+\alpha \cdot \frac{V_{2}^{2}}{2}+g \cdot z_{2}\right)=h_{l} \quad h_{l}=f \cdot \frac{L}{D_{h}} \cdot \frac{V^{2}}{2} \quad D_{h}=\frac{4 \cdot A}{P_{W}}$
Assumptions: 1) Steady flow 2) Incompressible flow 3) α at 1 and 2 is approximately 14) Ignore minor losses
Hence for flow between the inlet (Point 1) and the exit (2) the energy equation becomes

$$
\frac{\mathrm{p}_{1}}{\rho}-\frac{\mathrm{P}_{2}}{\rho}=\frac{\Delta \mathrm{p}}{\rho}=\mathrm{f} \cdot \frac{\mathrm{~L}}{\mathrm{D}_{\mathrm{h}}} \cdot \frac{\mathrm{~V}^{2}}{2}
$$

and

$$
\Delta \mathrm{p}=\rho_{\mathrm{H} 2 \mathrm{O}} \cdot \mathrm{~g} \cdot \Delta \mathrm{~h}
$$

For a square duct

$$
D_{h}=\frac{4 \cdot h \cdot h}{2 \cdot(h+h)}=h
$$

and also

$$
\mathrm{A}=\mathrm{h} \cdot \mathrm{~h}=\mathrm{h}^{2}
$$

Hence

$$
\Delta \mathrm{p}=\rho \cdot \mathrm{f} \cdot \mathrm{~L} \cdot \frac{\mathrm{~V}^{2}}{2 \cdot \mathrm{~h}}=\rho \cdot \mathrm{f} \cdot \mathrm{~L} \cdot \frac{\mathrm{Q}^{2}}{2 \cdot \mathrm{~h} \cdot \mathrm{~A}^{2}}=\frac{\rho \cdot \mathrm{f} \cdot \mathrm{~L} \cdot \mathrm{Q}^{2}}{2 \cdot \mathrm{~h}^{5}}
$$

Solving for $h \quad h=\left(\frac{\rho \cdot f \cdot L \cdot Q^{2}}{2 \cdot \Delta p}\right)^{\frac{1}{5}}$
We are given

$$
\begin{equation*}
\mathrm{Q}=2 \cdot \frac{\mathrm{~m}^{3}}{\mathrm{~s}} \tag{1}
\end{equation*}
$$

$\mathrm{L}=25 \cdot \mathrm{~m} \quad \mathrm{e}=0.046 \cdot \mathrm{~mm}$
(Table 8.1)
and also

$$
\Delta \mathrm{p}=\rho_{\mathrm{H} 2 \mathrm{O}} \cdot \mathrm{~g} \cdot \Delta \mathrm{~h}
$$

$$
\Delta \mathrm{p}=1000 \cdot \frac{\mathrm{~kg}}{\mathrm{~m}^{3}} \times 9.81 \frac{\mathrm{~m}}{\mathrm{~s}^{2}} \times 0.015 \cdot \mathrm{~m} \times \frac{\mathrm{N} \cdot \mathrm{~s}^{2}}{\mathrm{~kg} \cdot \mathrm{~m}}
$$

(Table A.10)

Equation 1 is tricky because h is unknown, so D_{h} is unknown, hence V is unknown (even though Q is known), and Re and hence f are unknown! We COULD set up Excel to solve Eq 1, the Reynolds number, and f, simmultaneously by varying h, but here we try guesses:

$\mathrm{f}=0.01$	$\mathrm{~h}=\left(\frac{\rho \cdot \mathrm{f} \cdot \mathrm{L} \cdot \mathrm{Q}^{2}}{2 \cdot \Delta \mathrm{p}}\right)^{\frac{1}{5}}$
$\mathrm{D}_{\mathrm{h}}=\mathrm{h}$	$\mathrm{h}=0.333 \mathrm{~m}$
$\mathrm{D}=0.333 \mathrm{~m}$	$\mathrm{Ve}=\frac{\mathrm{V} \cdot \mathrm{D}_{\mathrm{h}}}{\nu}$
Given	$\mathrm{Re}=4.00 \times 10^{5}$
	$\frac{1}{\sqrt{2}}=-2.0 \cdot \log \left(\frac{\frac{\mathrm{D}}{\mathrm{D}}}{3.7}+\frac{2.51}{\operatorname{Re} \cdot \sqrt{\mathrm{f}}}\right)$
	$\mathrm{f}=0.0152$

$\begin{array}{lll}\mathrm{h}=\left(\frac{\rho \cdot f \cdot \mathrm{~L} \cdot \mathrm{Q}^{2}}{2 \cdot \Delta \mathrm{p}}\right)^{\frac{1}{5}} & \mathrm{~h}=0.362 \mathrm{~m} & \mathrm{~V}=\frac{\mathrm{Q}}{\mathrm{h}^{2}} \\ \mathrm{D}_{\mathrm{h}}=\mathrm{h} & \mathrm{D} & \mathrm{V}=0.362 \cdot \mathrm{~m}=\frac{\mathrm{V} \cdot \mathrm{D}_{\mathrm{h}}}{\nu}\end{array} \mathrm{Re}=3.68 \times 10^{5} \mathrm{~m}$

Given

$$
\frac{1}{\sqrt{\mathrm{f}}}=-2.0 \cdot \log \left(\frac{\frac{\mathrm{e}}{\mathrm{D}_{\mathrm{h}}}}{3.7}+\frac{2.51}{\operatorname{Re} \cdot \sqrt{\mathrm{f}}}\right) \quad \mathrm{f}=0.0153
$$

$h=\left(\frac{\rho \cdot f \cdot L \cdot Q^{2}}{2 \cdot \Delta \mathrm{p}}\right)^{\frac{1}{5}} \quad \mathrm{~h}=0.363 \mathrm{~m} \quad \mathrm{~V}=\frac{\mathrm{Q}}{\mathrm{h}^{2}} \quad \mathrm{~V}=15.2 \frac{\mathrm{~m}}{\mathrm{~s}}$

In this process h and f have converged to a solution. The minimum dimensions are 0.363 m by 0.363 m , or 36.3 cm by 36.3 cm
8.147 Investigate the effect of tube diameter on water flow rate by computing the flow generated by a pressure difference, $\Delta p=100 \mathrm{kPa}$, applied to a length $L=100 \mathrm{~m}$ of smooth tubing. Plot the flow rate against tube diameter for a range that includes laminar and turbulent flow.

Given: Flow in a tube

Find: Effect of diameter; Plot flow rate versus diameter

Solution:

$$
\begin{align*}
& \text { Governing equations: } \tag{8.29}\\
& \left.\qquad \begin{array}{rl}
\left(\frac{p_{1}}{\rho}+\alpha_{1} \cdot \frac{V_{1}^{2}}{2}+g \cdot z_{1}\right)-\left(\frac{p_{2}}{\rho}+\alpha_{2} \cdot \frac{V_{2}^{2}}{2}+g \cdot z_{2}\right)=h_{1} \\
& \operatorname{Re}=\frac{\rho \cdot V \cdot D}{\mu} \quad h_{1}=f \cdot \frac{L}{D} \cdot \frac{v^{2}}{2} \quad \\
& f=\frac{64}{\operatorname{Re}} \quad
\end{array} \quad \text { (Laminar) } \quad \frac{1}{\sqrt{f}}=-2.34\right) \tag{8.34}\\
& \tag{8.36}
\end{align*}
$$

The energy equation (Eq. 8.29) becomes for flow in a tube

$$
p_{1}-p_{2}=\Delta p=\rho \cdot f \cdot \frac{L}{D} \cdot \frac{v^{2}}{2}
$$

This cannot be solved explicitly for velocity V (and hence flow rate Q), because f depends on V; solution for a given diameter D requires iteration (or use of Solver)

Fluid is not specified: use water (basic trends in plot apply to any fluid)

Given data:

$$
\begin{array}{rll}
\Delta p & =100 & \mathrm{kPa} \\
L & =100 & \mathrm{~m}
\end{array}
$$

Tabulated or graphical data:

$$
\begin{aligned}
\mu= & 1.00 \mathrm{E}-03 \mathrm{~N} . \mathrm{s} / \mathrm{m}^{2} \\
\rho= & 999 \mathrm{~kg} / \mathrm{m}^{3} \\
& (\text { Water }- \text { Appendix A) }
\end{aligned}
$$

Computed results:

$\boldsymbol{D}(\mathbf{m m})$	$\boldsymbol{V}(\mathbf{m} / \mathbf{s})$	$\boldsymbol{Q}\left(\mathbf{m}^{\mathbf{3}} / \mathbf{s}\right) \times \mathbf{1 0}$	$\boldsymbol{R e}$	Regime	\boldsymbol{f}	$\Delta \boldsymbol{p}(\mathbf{k P a})$	Error
0.5	0.00781	0.0000153	4	Laminar	16.4	100	0.0%
1.0	0.0312	0.000245	31	Laminar	2.05	100	0.0%
2.0	0.125	0.00393	250	Laminar	0.256	100	0.0%
3.0	0.281	0.0199	843	Laminar	0.0759	100	0.0%
4.0	0.500	0.0628	1998	Laminar	0.0320	100	0.0%
5.0	0.460	0.0904	2300	Turbulent	0.0473	100	0.2%
6.0	0.530	0.150	3177	Turbulent	0.0428	100	0.0%
7.0	0.596	0.229	4169	Turbulent	0.0394	100	0.0%
8.0	0.659	0.331	5270	Turbulent	0.0368	100	0.0%
9.0	0.720	0.458	6474	Turbulent	0.0348	100	0.0%
10.0	0.778	0.611	7776	Turbulent	0.0330	100	0.0%

8.148 What diameter water pipe is required to handle 1200 gpm and a 50 psi pressure drop? The pipe length is 500 ft , and roughness is 0.01 ft . The water is at $68^{\circ} \mathrm{F}$.

Given: Flow of water in circular pipe
Find: Minimum required diameter

Solution:

Basic equations $\quad\left(\frac{p_{1}}{\rho}+\alpha \cdot \frac{V_{1}{ }^{2}}{2}+g \cdot z_{1}\right)-\left(\frac{p_{2}}{\rho}+\alpha \cdot \frac{V_{2}{ }^{2}}{2}+g \cdot z_{2}\right)=h_{l} \quad h_{l}=f \cdot \frac{L}{D} \cdot \frac{V^{2}}{2} \quad$ and also $\quad A=\frac{\pi \cdot D^{2}}{4}$
Assumptions: 1) Steady flow 2) Incompressible flow 3) α at 1 and 2 is approximately 1 4) Ignore minor losses
Hence for flow between the inlet (Point 1) and the exit (2) the energy equation becomes

Equation 1 is tricky because D is unknown, hence V is unknown (even though Q is known), and Re and hence f are unknown! We COULD set up Excel to solve Eq 1, the Reynolds number, and f, simultaneously by varying D, but here we try guesses:
$\mathrm{f}=0.01 \quad \mathrm{D}=\left(\frac{8 \cdot \rho \cdot \mathrm{f} \cdot \mathrm{L} \cdot \mathrm{Q}^{2}}{\pi^{2} \cdot \Delta \mathrm{p}}\right)^{\frac{1}{5}} \quad \mathrm{D}=0.379 \cdot \mathrm{ft} \quad \mathrm{V}=\frac{4 \cdot \mathrm{Q}}{\pi \cdot \mathrm{D}^{2}} \quad \mathrm{~V}=23.7 \cdot \frac{\mathrm{ft}}{\mathrm{s}} \quad \mathrm{Re}=\frac{\mathrm{V} \cdot \mathrm{D}}{\nu} \quad \mathrm{Re}=8.32 \times 10^{5}$

Given

$$
\frac{1}{\sqrt{\mathrm{f}}}=-2.0 \cdot \log \left(\frac{\frac{\mathrm{e}}{\mathrm{D}}}{3.7}+\frac{2.51}{\operatorname{Re} \cdot \sqrt{\mathrm{f}})} \mathrm{f}=0.0543\right.
$$

$D=\left(\frac{8 \cdot \rho \cdot f \cdot L \cdot Q^{2}}{\pi^{2} \cdot \Delta p}\right)^{\frac{1}{5}} \quad D=0.531 \cdot f t \quad V=\frac{4 \cdot Q}{\pi \cdot D^{2}} \quad \mathrm{~V}=12.1 \cdot \frac{\mathrm{ft}}{\mathrm{s}} \quad \mathrm{Re}=\frac{\mathrm{V} \cdot \mathrm{D}}{\nu} \quad \mathrm{Re}=5.93 \times 10^{5}$

Given $\quad \frac{1}{\sqrt{f}}=-2.0 \cdot \log \left(\frac{\frac{e}{D}}{3.7}+\frac{2.51}{\operatorname{Re} \cdot \sqrt{f}}\right) \quad f=0.0476$
$\mathrm{D}=\left(\frac{8 \cdot \rho \cdot f \cdot L \cdot \mathrm{Q}^{2}}{\pi^{2} \cdot \Delta \mathrm{p}}\right)^{\frac{1}{5}} \quad \mathrm{D}=0.518 \cdot \mathrm{ft} \quad \mathrm{V}=\frac{4 \cdot \mathrm{Q}}{\pi \cdot \mathrm{D}^{2}} \quad \mathrm{~V}=12.7 \cdot \frac{\mathrm{ft}}{\mathrm{s}} \quad \mathrm{Re}=\frac{\mathrm{V} \cdot \mathrm{D}}{\nu} \quad \mathrm{Re}=6.09 \times 10^{5}$

Given

$$
\frac{1}{\sqrt{\mathrm{f}}}=-2.0 \cdot \log \left(\frac{\frac{\mathrm{e}}{\mathrm{D}}}{3.7}+\frac{2.51}{\operatorname{Re} \cdot \sqrt{\mathrm{f}}}\right) \quad \mathrm{f}=0.0481
$$

$D=\left(\frac{8 \cdot \rho \cdot f \cdot L \cdot Q^{2}}{\pi^{2} \cdot \Delta p}\right)^{\frac{1}{5}} \quad D=0.519 \cdot f t \quad V=\frac{4 \cdot Q}{\pi \cdot D^{2}} \quad \mathrm{~V}=12.7 \cdot \frac{\mathrm{ft}}{\mathrm{s}} \quad \mathrm{Re}=\frac{\mathrm{V} \cdot \mathrm{D}}{\nu} \quad \mathrm{Re}=6.08 \times 10^{5}$

Given

$$
\frac{1}{\sqrt{\mathrm{f}}}=-2.0 \cdot \log \left(\frac{\frac{\mathrm{e}}{\mathrm{D}}}{3.7}+\frac{2.51}{\operatorname{Re} \cdot \sqrt{\mathrm{f}}}\right) \quad \mathrm{f}=0.0480
$$

$\mathrm{D}=\left(\frac{8 \cdot \rho \cdot f \cdot \mathrm{~L} \cdot \mathrm{Q}^{2}}{\pi^{2} \cdot \Delta \mathrm{p}}\right)^{\frac{1}{5}} \quad \mathrm{D}=0.519 \cdot \mathrm{ft} \quad \mathrm{V}=\frac{4 \cdot \mathrm{Q}}{\pi \cdot \mathrm{D}^{2}} \quad \mathrm{~V}=12.7 \cdot \frac{\mathrm{ft}}{\mathrm{s}} \quad \mathrm{Re}=\frac{\mathrm{V} \cdot \mathrm{D}}{\nu} \quad \mathrm{Re}=6.08 \times 10^{5}$

In this process D and f have converged to a solution. The minimum diameter is 0.519 ft or 6.22 in

Given: Portion of water supply system designed to provide $Q=1310$ his at $T=20^{\circ} \mathrm{C}$

Al pupe is cat tron, $\rangle=508 \mathrm{~mm}$

System $B \rightarrow C$

- square edged entrance
- 3 gate flues
- 4 देड elbows
- 290° cibous
- 160 pec
- $\mathrm{P}_{\mathrm{c}}=197$ R Pa gage
$\frac{\text { System } F \rightarrow G}{\text { ibo pep }}$
- 2 gate values
. 490 Elbows.

Find: (a) average velocity r pipe line
(b) gage pressurctp
(c) Shear stress on pipe centertwe atc
(d) power iripet to pump if efficiency $\eta=80^{\circ} 6$
(e) wall Star stress at G.

Solution:

To determine the pressure at part F, apply the energyequation for steady, 'ncompressiste flow between FRA G .

$$
h_{e}=h_{e}+h_{k}, h_{2}=f \frac{-2}{8} \frac{z^{2}}{2} \quad h_{e_{m}}=\frac{-2}{2} \sum f \frac{h_{e}}{8}+\frac{-2}{2} k_{e} i l
$$

Assume: (1) $\bar{v}_{H}=0$ (large storage tank) (2) $p_{A}=P_{a t m}$

$$
\text { (3) } \alpha_{F}=1.0 \text {. }
$$

Tan $P_{F}=h_{P}+g\left(z_{H}-z_{F}\right)-\frac{j_{F}^{2}}{2}$

$$
\operatorname{Re}_{\mathrm{e}} \times \frac{\bar{V}}{\nabla}=0.508 \mathrm{M} \times 6.4 \frac{\mathrm{M}}{5} \times \frac{5}{1.00 \times 10^{-6} \mathrm{M}^{2}}=3.28 \times 10^{\circ} \quad(\nabla \text { from Table } A .8)
$$

From Table 8.1,$e=0.26 \mathrm{~mm} \therefore{ }^{1}{ }_{y}=0.00051$
From Eq. 8.37 , $f=0.017$ (usvigEkel's Solver Tor Goal Saki) From Eg((1)

$$
\frac{P_{F}}{e}=f \frac{V^{2}}{2}\left[\frac{\hbar}{y}+2\left(\frac{6}{y}\right)_{g}+4\left(\frac{L}{y}\right)_{\infty} d\right]+g\left(z_{H}-z_{F}\right)
$$

$$
p_{F}=705 k p_{a}(g a g) \text {) }
$$

For fulk developed flow in a pipe $\quad r=\frac{5}{2} \frac{\partial y}{\partial x} \quad$ (8.15)
Ft Re pupe certertine, $Y=0$
To determine the power ipput to the fuid apely te energy equation across the pump. Assuruighoob Efficancy

The actual pump riput ${ }^{2}$, inpemp)act = inpumplidealin?

$$
\left.w_{\text {pump }}\right)_{\text {adual }}=8.32 \times 10^{5} \mathrm{~N} . \mathrm{M}_{\mathrm{s}}=832 \mathrm{kw}
$$

\qquad
From Fq. $8.15 \quad \gamma_{w}=\frac{R}{2} \frac{\partial p}{\partial k}$
Along the pupe from F to $G \quad \frac{\Delta f}{e}=5 \frac{L^{2}}{i}$.

$$
\begin{aligned}
& \therefore \frac{\partial p}{\partial x}=\frac{\Delta P}{L}=P \frac{f}{5} \frac{D^{2}}{2}=999 \frac{g g}{m^{3}}+\frac{0.017}{0.508 m}+\frac{1}{2}(6.4 b)^{2} \frac{M^{2}}{s^{2}}+\frac{N S^{2}}{g \cdot M} \\
& \frac{\partial E}{\partial h}=698 N / m^{2} \ln \\
& \therefore r_{\omega}=\frac{R}{2} \frac{\partial P}{\partial X}=\frac{0.254 M}{2} \times 698 \frac{N}{m^{3}}=88.6 \mathrm{~N}_{M^{2}} \quad r_{\omega}
\end{aligned}
$$

$$
\begin{aligned}
& i_{\text {fourp }}=\left(\frac{\rho_{F}}{\rho}-\frac{p_{c}}{\rho}\right) \rho A=\left(p_{F}-p_{c}\right) Q \\
& i_{\text {ipump }}=(705-19) \times 10^{3} \frac{\mathrm{~N}}{\mathrm{~m}^{2}} \times 1310 \frac{\mathrm{~L}}{\mathrm{~s}} \times 10^{-3} \mathrm{~m}^{3}=6.65 \times 10^{5} \frac{\mathrm{~N}}{\mathrm{~m}}
\end{aligned}
$$

$$
\begin{aligned}
& P_{F}=f \frac{\bar{J}^{2}}{2}\left[\frac{60}{0.508}+2(8)+4(30)\right]+g(3 H-z F)=f \frac{j^{2}}{2}(1630)+g(3+3 F) \\
& p_{F}=\rho\left[1630 f \frac{\overline{1}}{2}+g\left(z_{H}-z_{F}\right)\right] \\
& =\frac{998 \lg ^{3}}{n^{3}}\left[\frac{1630}{2} \times 0.017 \times\left(6.4 b^{2}\right)^{2} \frac{H^{2}}{s^{2}}+9.8 \frac{\mu}{s^{2}}(104-91) n\right] \times \frac{\mathrm{H}^{2}}{g^{2}}
\end{aligned}
$$

Given: An air-pipe friction experiment utilizes smooth brass tube, $D=63.5 \mathrm{~mm}, L=1.52 \mathrm{~m}$. At one flow condition $\Delta p=12.3 \mathrm{~mm}$ merman red oil, $U_{d}=23.1$ mes.

Find: (a) Ref
(b) friction factor f; compare wit blue for Frg.8.3.

Solution:
Apply the energy equation for steady incornpresible flow alone pipe
Basic equation: $\left(\frac{e_{1}}{e}+\alpha_{1} \frac{\bar{v}_{1}^{2}}{2}+g_{1}\right)-\left(\frac{p_{2}}{p}+\alpha_{2} \frac{\bar{J}_{2}^{2}}{2}+g Z_{2}\right)=h_{e_{T}}$

$$
h e=f \frac{J^{2}}{2}
$$

Computing equation: ${ }^{ \pm} \Xi_{J}^{2}=\frac{2 n^{2}}{(n+1)(2 n+1)}$
Assurnphons: in power tow profile, $n=7$

$$
\begin{aligned}
& \text { (2) } d_{1}=\alpha_{2}, z_{1}=z^{2} \\
& \text { (3) our at } T=15^{0} c \quad D=446 \times \mathrm{m}^{2} l_{\mathrm{s}}(T o b d e \text { A. } 0 \text {) }
\end{aligned}
$$

From Eq.8.24 wite $n=7$

$$
\begin{aligned}
& \frac{\bar{U}}{\bar{U}}=\frac{0(7)^{2}}{(8)(15)}=0.817 \\
& R_{e}=\frac{\bar{\Delta}}{\nabla}=0.0635 \times 1 \times 0.817 \times 23.14 \times 1.45 \times 10^{-5} m^{2}=8.26 \times 0^{4} \quad \operatorname{Re} \\
& \text { From Eq.8.2q } \quad \Delta p / p=f \frac{L^{2}}{8}
\end{aligned}
$$

and

$$
\begin{align*}
& f=2 \times \frac{10^{3}}{1.23} \times 0.827 \times 9.8 \frac{14}{52} \times 0.0123 n \times \frac{0.2035 n}{1.32 m} \times(0.817 \times 23.1)^{2} \frac{5^{2}}{n^{2}} \\
& f=0.0190
\end{align*}
$$

From Eq. 8.37 at $R_{2}=8.20 \times 10^{4}$ fer $\operatorname{smod} R$ fore $f=0.0187$ The value of f is obtained using Encl's Sower Cor Grok Seek

Given: Oil flowing from a large tank on a hill to a tanker at toe wharf. In stopping the frow, value on wharf at such a rate that $p_{2}=1$ Mia is maintained in the line immediately upstream of the value. Assure:

Find: the initial instantaneous rate of Change of volume flow rate.

Solution: For unsteady Flow with friction, we modify the unsteady Bernoulli equation (Eq. $6.2 i$) to include a head loss tern.

Computing equation:

$$
\frac{p_{1}}{p}+\frac{v_{1}^{2}}{2}+g^{2}=\frac{p_{2}}{p}+\frac{v^{2}}{2}+g^{2}+\left(\frac{2 v}{2 t} d s+h\right)
$$

Assurne: (i) $\forall 1 \geqslant 0$
(3) $p=\operatorname{costan}$

Fen

$$
\int_{1}^{2} \frac{2 V_{s}}{\partial t} d s=\frac{-p_{1}-p_{2}}{\rho}+g\left(z_{1}-z 2\right)-h_{1}-\frac{v_{2}}{2}
$$

If we reelect velocity in fie tarts except for small region near the nifet to tie pipe, then

$$
\begin{aligned}
& t_{1}^{2} \frac{2 t_{s}}{\partial t} d s=\int_{0}^{1} \frac{\partial t_{s}}{\partial t} d s \text {. Since } t_{s}=t_{2} \text { everywhere, then } \\
& \int_{0}^{1} \frac{2 t_{s}}{\partial t} d s=L \frac{d V_{2}}{d t} \text { and } \\
& \frac{d d_{2}}{d t}=\frac{1}{L}\left[\frac{P_{1}-P_{2}}{\rho}+g\left(z_{1}-z_{2}\right)-h_{e}-\frac{t_{2}^{2}}{2}\right], \nu_{2}=\frac{\theta}{h}=\frac{4 \theta^{2}}{\pi \gamma^{2}}
\end{aligned}
$$

Note $h_{e}=h_{e}(H)$ and hence his result can only be used todbtar the initial instantaneous rate of Garage of frow olociut.

$$
\begin{aligned}
& \left.-23 m \times 9.8 \frac{m}{s^{2}}-\frac{1}{2}\left\{\frac{H}{k} \times 2 . \frac{5 m^{3}}{m^{2}} \frac{1}{(0.2 m)^{2}} \times \frac{1 m i n}{\cos }\right\}\right\} \\
& \left.\frac{d V_{2}}{d t}\right)_{\text {initial }}=-0.278 \text { mills }
\end{aligned}
$$

The instantaneous rate of change of volume flow rate is

$$
\begin{aligned}
& \left.d s\right|_{d t}=\frac{d}{d t}(n y)=A \frac{d v}{d t}=\frac{\pi \theta^{2}}{4} \frac{d t}{d t} \\
& \left.d s\right|_{a t}=\frac{\pi}{4}(0.2 m)^{2} \times\left(-0.278 \frac{16}{s} \times \frac{605}{m}=-0.524 m^{3} / \mathrm{s} /\left.\mathrm{min} d s\right|_{d t}\right.
\end{aligned}
$$

Given: Problem 8.151 describes a situation in which flow in a long pipeline from a hilltop tank is slowed gradually to avoid a large pressure rise.

Find: Expansion of this analysis to predict and plot the closing schedule (valve loss coefficient versus time) needed to maintain the maximum pressure at the valve at or below a given value throughout the process of stopping the flow from the tank.
Solution: Apply the unsteady Bernoulli equation with a head kos term added. Computing equation:
$\frac{A_{1}}{z o}+\frac{\hat{y}_{2}^{2}}{R^{2}}+g z_{1}=\frac{p_{2}}{\hat{p}}+\frac{v_{2}^{2}}{z}+g z_{2}+\int_{1}^{2} \frac{\partial v}{\partial t} d s+h_{e T}$
Assume: (i) $v_{1} \approx 0$
(3) $p=$ constant
(2) $p_{1}=$ fate ETH

At the initial condition, $V=\frac{Q}{A}=\frac{4 Q}{\pi D^{2}}=\frac{4}{\pi} \times\left(\frac{12}{8}\right)^{2} \frac{1}{f^{2}} \times 1.5 \frac{f+3}{5}=4.30 \mathrm{f} / \mathrm{s}$

$$
H_{l T}=75 f+=\frac{h_{e r}}{g}=f \frac{L}{D} \frac{v^{2}}{2 g} ; f \frac{L}{D}=H_{l r} \frac{2 g}{v^{2}}=2 \times 75 f+32 \cdot \frac{2 f f}{s^{2}} \times \frac{s^{2}}{(4.30)^{2} f+}=261
$$

Neglecting velocity in tank, $\int_{1}^{2} \frac{\partial v}{\partial t} d s \approx \int_{0}^{L} \frac{\partial v}{\partial t} d s=\frac{d V}{d t} L$
Thus $\frac{d v}{d t}=\frac{1}{L}\left[-\frac{f_{2}}{f}+g\left(z_{1}-z \cdot\right)-f \frac{L}{D} \frac{v^{2}}{2}-\frac{v^{2}}{2}\right]$
substituting values,

$$
\begin{aligned}
& \frac{d v}{d t}=-0.686 \frac{f t}{s^{2}}-0.0131 v^{2}=-\left(a^{2}+b^{2} v^{2}\right) ; \quad a=\sqrt{0.686}=0.828 ; \text { vinfts } \\
& b=\sqrt{0.0131}=0.114
\end{aligned}
$$

separating variables and integrating

$$
\left.\int_{V_{0}}^{v} \frac{d V}{a^{2}+b^{2} t}=\frac{1}{a b} \tan ^{-1} \frac{b v}{a}\right]_{V_{0}}^{v}=\frac{1}{a b}\left[\tan ^{-1} \frac{b v}{a}-\tan ^{-1} \frac{b v_{0}}{a}\right]=-\int_{0}^{t} d t=-t
$$

Thus

$$
\tan ^{-1} \frac{b v}{a}=-a b t+\tan ^{-1} \frac{b v_{0}}{a} \text { or } v=\frac{a}{b} \tan ^{2}\left[\tan ^{-1} \frac{b v_{0}}{a}-a b t\right]
$$

Calculations and plats are shown on the spreadshect, next page.

Problem 8.153

8.153 A pump draws water at a steady flow rate of $25 \mathrm{lbm} / \mathrm{s}$ through a piping system. The pressure on the suction side of the pump is -2.5 psig . The pump outlet pressure is 50 psig . The inlet pipe diameter is 3 in .; the outlet pipe diameter is 2 in . The pump efficiency is 70 percent. Calculate the power required to drive the pump.

Given: Flow through water pump
Find: Power required

Solution:

Basic equations

$$
\mathrm{h}_{\text {pump }}=\left(\frac{\mathrm{p}_{\mathrm{d}}}{\rho}+\frac{\mathrm{V}_{\mathrm{d}}^{2}}{2}+\mathrm{g} \cdot \mathrm{z}_{\mathrm{d}}\right)-\left(\frac{\mathrm{p}_{\mathrm{s}}}{\rho}+\frac{\mathrm{V}_{\mathrm{s}}^{2}}{2}+\mathrm{g} \cdot \mathrm{z}_{\mathrm{s}}\right) \quad \mathrm{V}=\frac{\mathrm{Q}}{\mathrm{~A}}=\frac{4 \cdot \mathrm{Q}}{\pi \cdot \mathrm{D}^{2}}
$$

Assumptions: 1) Steady flow 2) Incompressible flow 3) Uniform flow
Hence for the inlet

$$
\mathrm{V}_{\mathrm{s}}=\frac{4}{\pi} \times 25 \cdot \frac{\mathrm{lbm}}{\mathrm{~s}} \times \frac{1 \cdot \mathrm{slug}}{32.2 \cdot \mathrm{lbm}} \times \frac{\mathrm{ft}^{3}}{1.94 \cdot \operatorname{slug}} \times\left(\frac{12}{3} \cdot \frac{1}{\mathrm{ft}}\right)^{2} \quad \mathrm{~V}_{\mathrm{s}}=8.15 \frac{\mathrm{ft}}{\mathrm{~s}} \quad \mathrm{p}_{\mathrm{s}}=-2.5 \cdot \mathrm{psi}
$$

For the outlet

$$
\mathrm{V}_{\mathrm{d}}=\frac{4}{\pi} \times 25 \cdot \frac{\mathrm{lbm}}{\mathrm{~s}} \times \frac{1 \cdot \mathrm{slug}}{32.2 \cdot \mathrm{lbm}} \times \frac{\mathrm{ft}^{3}}{1.94 \cdot \operatorname{slug}} \times\left(\frac{12}{2} \cdot \frac{1}{\mathrm{ft}}\right)^{2} \quad \mathrm{~V}_{\mathrm{d}}=18.3 \frac{\mathrm{ft}}{\mathrm{~s}} \quad \mathrm{p}_{\mathrm{d}}=50 \cdot \mathrm{psi}
$$

Then

$$
\begin{aligned}
& \mathrm{h}_{\text {pump }}=\frac{\mathrm{p}_{\mathrm{d}}-\mathrm{p}_{\mathrm{s}}}{\rho}+\frac{\mathrm{V}_{\mathrm{d}}^{2}-\mathrm{V}_{\mathrm{s}}^{2}}{2} \\
& \mathrm{~W}_{\text {pump }}=\mathrm{m}_{\text {pump }} \cdot\left(\frac{\mathrm{p}_{\mathrm{d}}-\mathrm{p}_{\mathrm{s}}}{\rho}+\frac{\mathrm{V}_{\mathrm{d}}^{2}-\mathrm{V}_{\mathrm{s}}^{2}}{2}\right)
\end{aligned}
$$

$$
\mathrm{W}_{\text {pump }}=\mathrm{m}_{\text {pump }} \cdot \mathrm{h}_{\text {pump }}
$$

Note that the software cannot render a dot, so the power is $W_{\text {pump }}$ and mass flow rate is $m_{\text {pump }}$!
$\mathrm{W}_{\text {pump }}=25 \cdot \frac{\mathrm{lbm}}{\mathrm{s}} \times \frac{1 \cdot \mathrm{slug}}{32.2 \cdot \mathrm{lbm}} \times\left[(50--2.5) \cdot \frac{\mathrm{lbf}}{\mathrm{in}^{2}} \times\left(\frac{12 \cdot \mathrm{in}}{1 \cdot \mathrm{ft}}\right)^{2} \times \frac{\mathrm{ft}^{3}}{1.94 \cdot \mathrm{slug}}+\frac{1}{2} \times\left(18.3^{2}-8.15^{2}\right) \cdot\left(\frac{\mathrm{ft}}{\mathrm{s}}\right)^{2} \times \frac{\mathrm{lbf} \cdot \mathrm{s}^{2}}{\mathrm{slug} \cdot \mathrm{ft}}\right] \times \frac{1 \cdot \mathrm{hp}}{550 \cdot \frac{\mathrm{ft} \cdot \mathrm{lbf}}{\mathrm{s}}}$
$W_{\text {pump }}=5.69 \mathrm{hp} \quad$ For an efficiency of $\quad \eta=70 \% \quad W_{\text {required }}=\frac{W_{\text {pump }}}{\eta} \quad W_{\text {required }}=8.13 \mathrm{hp}$
8.154 The pressure rise across a water pump is 75 kPa when the volume flow rate is $25 \mathrm{~L} / \mathrm{s}$. If the pump efficiency is 80 percent, determine the power input to the pump.

Given: Flow through water pump
Find: Power required

Solution:

Basic equations $\quad h_{\text {pump }}=\left(\frac{p_{d}}{\rho}+\frac{V_{d}^{2}}{2}+g \cdot z_{d}\right)-\left(\frac{p_{S}}{\rho}+\frac{V_{s}^{2}}{2}+g \cdot z_{s}\right) \quad V=\frac{Q}{A}=\frac{4 \cdot Q}{\pi \cdot D^{2}}$
Assumptions: 1) Steady flow 2) Incompressible flow 3) Uniform flow
In this case we assume $\mathrm{D}_{\mathrm{S}}=\mathrm{D}_{\mathrm{d}} \quad$ so $\quad \mathrm{V}_{\mathrm{S}}=\mathrm{V}_{\mathrm{d}}$

Then

$$
\begin{array}{ll}
\mathrm{h}_{\text {pump }}=\frac{\mathrm{p}_{\mathrm{d}}-\mathrm{p}_{\mathrm{s}}}{\rho}=\frac{\Delta \mathrm{p}}{\rho} \quad \text { and } \quad \mathrm{W}_{\text {pump }}=\mathrm{m}_{\text {pump }} \cdot \mathrm{h}_{\text {pump }} \\
\mathrm{W}_{\text {pump }}=\mathrm{m}_{\text {pump }} \cdot \frac{\Delta \mathrm{p}}{\rho}=\rho \cdot \mathrm{Q} \cdot \frac{\Delta \mathrm{p}}{\rho}=\mathrm{Q} \cdot \Delta \mathrm{p}
\end{array}
$$

Note that the software cannot render a dot, so the power is $W_{\text {pump }}$ and mass flow rate is $m_{\text {pump }}$!
$\mathrm{W}_{\text {pump }}=25 \cdot \frac{\mathrm{~L}}{\mathrm{~s}} \times \frac{0.001 \cdot \mathrm{~m}^{3}}{1 \cdot \mathrm{~L}} \times 75 \times 10^{3} \cdot \frac{\mathrm{~N}}{\mathrm{~m}^{2}} \quad \mathrm{~W}_{\text {pump }}=1.88 \mathrm{~kW}$

For an efficiency of $\eta=80 \%$

$$
\mathrm{W}_{\text {required }}=\frac{\mathrm{W}_{\text {pump }}}{\eta} \quad \mathrm{W}_{\text {required }}=2.34 \cdot \mathrm{~kW}
$$

Problem 8.155
Given: Pump inipiping system Shown moves $Q=0.439 \mathrm{ft}^{3} / \mathrm{s}$ So water, includes:

Find: pressure rise, -pulps, across pump e
Solution:

Assumptions: (i) $\bar{V}_{1}=0$
(a) $P_{2}=P_{\text {atm }}$
(3) $\alpha_{2}=1.0 \quad$ (4) $T=60^{\circ} \mathrm{F}$

Ten, $\Delta h_{\text {pump }}=h_{e_{T}}+g\left(z_{2}-z_{1}\right)+\frac{j_{2}^{2}}{2}-\frac{P_{1}}{p}$
 From Table 8.2 $k_{e}=0.5$. From Table 8.5 $D=2.47 \mathrm{in}$
From Table 8.1 $e=0.0005 \mathrm{ft}, \therefore \quad \therefore=0.0005 \times \frac{12}{2.1}=0.0024$ $\bar{J}=\frac{\theta}{A}=\frac{40}{\pi)^{2}}=\frac{4}{\pi} \times 0.439 \frac{4^{3}}{5} \times\left(\frac{12}{2.474+4}\right)^{2}=13.2 \mathrm{~A} l_{5}$

From Fig. 8.13, fro 0.025 .
From $H_{q} h_{t}=\frac{1}{2}+(3.2)^{2} \frac{a^{2}}{5^{2}}\left[0.025 \times \frac{29012}{2.077}+2(0.005)(8)+(0.025)(150)+7(0.02)(30)+0.5\right]$
$h_{T}=3930 \mathrm{~m}^{2}$. Then from Eq:
 sharp $=3950 \mathrm{ft}_{5}^{2}$
Apply the energy equation across the pune

Gwen: Cooling water supplysystem

$$
Q=600 \mathrm{gpn}
$$

$$
\eta_{\text {pump }}=0.0
$$

Find: (a) minimum pressure needed at pump outlet (o) power requirement

Solution:

$$
h_{e^{2}}=h_{1}+h_{h_{n}}, h_{1}=f \frac{L^{2}}{y} \frac{y^{2}}{2}, h_{h_{n}}=\frac{2^{2}}{2}\left(2 k+\Sigma c\left(\frac{x}{5}\right)\right.
$$

Assumptions: (i) $\bar{v}_{1}=0$
(a) $\alpha_{2}=\alpha_{3}=1$
(3) $P_{1}=P_{1}=P_{\text {aten }}$

Ron

$$
R_{e}=\frac{D \bar{y}}{\mathrm{y}}=\frac{1}{3} \hat{C}_{\times} 15.3 \frac{\mathrm{ft}}{3} \times 1.24 \times 10^{-1} \frac{夕^{0}}{4 t^{2}}=4.11 \times 10^{5} \quad\left\{v \text { at } T=60^{\circ} F, \text { Table } A . \lambda\right\}
$$

Table oi, $e=5 \times 10^{-6} \mathrm{ft}$ (drawn tubing) $\therefore d y=1.5 \times 10^{-5}$
From Fig. $8.13, f=0.0135$
From Table 8.1, $K_{a t}=0.28$
From Table 8.4, Lely $\left.\rangle_{g .4}=8,(-)_{a_{0 i e l}}=30, ~ L e h\right)_{4 s^{\circ} d}=16$
Then from Eq,

$$
\begin{aligned}
\Delta h_{e m p}=32.2 \frac{8}{5^{2}}+4004+\frac{1}{2}(120)^{2} \frac{a^{2}}{5^{2}} & +0.0135 \times \frac{700}{0.333} \frac{1}{2} \times(15.3)^{2} \frac{q^{2}}{5^{2}} \\
& +\frac{1}{2}(15.3)^{2} \frac{t^{2}}{5^{2}}[0.08+0.0135(30)+2 \times 0.035(00)+15(4)]
\end{aligned}
$$

$$
\Delta h_{\text {sup }}=2.53 \times 10^{4}{9 t^{2} / 3^{2}}^{2}
$$

the theoretical power input to the puppis qwerty insure in sh pune
From the defintuon of efficiency, $\eta=$ whemerlinact, then

$$
\omega_{\text {at }}=\frac{\text { in } \Delta \text { pimp }}{2}=\frac{P Q \Delta \text { pump }}{2}
$$

The discharge pressure from the pump is obtained by applying Et 8.48 between senors 0 and (3) neglecting hows in

Problem 8.157
Gwen: Water supply systern requeres Qm loogen pumped to reservois at elevation of 340 n . Water pressuse at pump intet (strat hevel) is 4oo \& pa gage.? Puping s to be comervid stral; $V_{\text {max }}=3$ mls
Find: (a) Moninum pipe deameter
(b) pressure Fise across the purip.
(c) minirium power reated to drue the purnp.

$$
\begin{aligned}
& \text { Solution: }
\end{aligned}
$$

$$
\begin{align*}
& D=0.048 \mathrm{~m}=48 \mathrm{~mm}
\end{align*}
$$

$$
h_{e x}=h_{1}+h k_{m}^{\infty}, h_{2}=\epsilon_{3} \frac{y^{2}}{2}
$$

Assurne: (i) $\alpha_{1}=\alpha_{2}$ (a) $e_{2}=\beta_{2}$
(3) minor losses are nealiathe.

Ren

$$
\Delta h_{\text {pume }}=h_{e}-\frac{p_{1}}{p}+g\left(z_{2}-z_{1}\right)=f \frac{\frac{1}{8}}{\frac{3}{2}}-\frac{e_{1}}{p}+g d
$$

From Table 8.1, $e=0.04 b \mathrm{mn} \quad \therefore e l y=0.04 b^{2} / 48=0.0009 b$

$$
R_{e}=\frac{J \bar{J}}{J}=0.048 \mathrm{n} \times 3.5 \frac{\mathrm{n}}{3} \times 1 \times 10^{6} \frac{5}{2}=1.68 \times 10^{5}
$$

From Fig. $813, f=0.021$. Then from Fq.
$\Delta h_{\text {puene }}=3,850 \mathrm{~m}^{2} / \mathrm{s}^{2}$ (This is head addad to Almid).

$$
\Delta h_{\text {pump }}=\frac{\omega_{\text {pup }}}{i=}=\left(\frac{p}{p}+\frac{y^{2}}{2}+\frac{g 3}{}\right)_{\text {dichage }}-\left(\frac{p}{p}+\frac{p^{2}}{2}+g\right)_{\text {setion }}(8,+7)
$$

Assure : (B) $\bar{J}_{\text {dua }}=\bar{J}_{\text {sut }} ;$ Jdullange $=$ Zunction

$$
\Delta P=f \Delta t=998 \mathrm{lg} \times 3850 \frac{\mathrm{~m}^{2}}{\mathrm{~s}^{2}} \times \frac{\mathrm{Ns}^{2}}{\mathrm{gg}^{2}}=3840 \mathrm{lPa} \quad \Delta p
$$

Also from Eq. 8.47

$$
\begin{aligned}
& \dot{w}_{\text {panp }}=\text { is } \Delta h_{\text {pump }}=p a \Delta h_{\text {pere }}
\end{aligned}
$$

$$
\begin{aligned}
& \text { inpurp }=24.3 \mathrm{kw} \text { (32.0 he) }
\end{aligned}
$$

Given: Chiled-water pipe system for carpus our conditioning makes a loop of lang h $1=3$ miles.

$$
\begin{aligned}
& D=2\{4 \\
& (5+e d)
\end{aligned}
$$

$\eta_{\text {pump }}=0.80, \eta_{\text {Motor }}=0.90$ $c=0.12 \mid(k+h t)$
Find: (a) the pressure drop, $f_{2}-f$,
(b) rate of energy addition to the water
(c) daily cost electrical energy for pumping

Solution:
Apply energy equation for steady incompressible pipe flow from pursy discharge around top to pump inlet

$$
h_{e}=h_{t}-h_{m}^{2} \quad h_{e}=f^{2} \frac{2}{2}
$$

Assumpliois: (1) $\alpha_{1}=\alpha_{2}$, (2) $z_{1}=z_{2}$ (3) neglect minor losses
Ten

Assure $T=50^{\circ} \mathrm{F}$, so $J=1.40 \times 10^{-5} \mathrm{~A}^{2} l_{s}$

$$
R_{e}=\frac{D \bar{y}}{\Delta}=2 f t \times 2.94 \frac{f t}{s} \times 1.40 \times 10^{-5} \frac{5}{f_{t}}=1.13 \times 10^{6}
$$

From Table 8, $e=0.00015 f ; \therefore d y=0.000075$. Ten, from Fig. $8.13, f=0.013$, and

$$
\begin{aligned}
& \Delta p=43.7 p s i .
\end{aligned}
$$

To determine the energy per unit mass applied byte pump.

$$
\begin{aligned}
& \text { pump }=i \frac{\Delta P}{\rho}=Q \Delta P
\end{aligned}
$$

The actual energy required to run the pune is

$$
B=\frac{i_{0 \text { pump }}^{n}}{\eta_{\text {pump }} \eta_{\text {made }}}=286 h_{p} \times \frac{1}{0.80} \times \frac{1}{0.400}=30 \text { hep }
$$

Re dourly cost is

$$
c=\frac{\text { daily } \operatorname{cost}: \$}{k w h r} \times 397 h p \times 0.74 b \frac{k w}{k p} \times \frac{24 h_{r}}{\text { day }}=\$ 853
$$

8.159 A fire nozzle is supplied through 100 m of $3.5-\mathrm{cm}$ diameter, smooth, rubber-lined hose. Water from a hydrant is supplied to a booster pump on board the pumper truck at 350 kPa (gage). At design conditions, the pressure at the nozzle inlet is 700 kPa (gage), and the pressure drop along the hose is 750 kPa per 100 m
 of length. Determine (a) the design flow rate, (b) the nozzle exit velocity, assuming no losses in the nozzle, and (c) the power required to drive the booster pump, if its efficiency is 70 percent.

Given: Fire nozzle/pump system

Find: Design flow rate; nozzle exit velocity; pump power needed

Solution:

Basic equations $\quad\left(\frac{p_{2}}{\rho}+\alpha \cdot \frac{V_{2}^{2}}{2}+g \cdot z_{2}\right)-\left(\frac{p_{3}}{\rho}+\alpha \cdot \frac{V_{3}^{2}}{2}+g \cdot z_{3}\right)=h_{l} \quad h_{l}=f \cdot \frac{L}{D} \cdot \frac{V_{2}^{2}}{2} \quad$ for the hose
Assumptions: 1) Steady flow 2) Incompressible flow 3) α at 2 and 3 is approximately 1 4) No minor loss

$$
\begin{array}{ll}
\frac{\mathrm{p}_{3}}{\rho}+\frac{\mathrm{V}_{3}{ }^{2}}{2}+\mathrm{g} \cdot \mathrm{z}_{3}=\frac{\mathrm{p}_{4}}{\rho}+\frac{\mathrm{V}_{4}^{2}}{2}+\mathrm{g} \cdot \mathrm{z}_{4} & \text { for the nozzle } \\
\left(\frac{\mathrm{p}_{2}}{\rho}+\alpha \cdot \frac{\mathrm{V}_{2}^{2}}{2}+\mathrm{g} \cdot \mathrm{z}_{2}\right)-\left(\frac{\mathrm{p}_{1}}{\rho}+\mathrm{\alpha} \cdot \frac{\mathrm{~V}_{1}{ }^{2}}{2}+\mathrm{g} \cdot \mathrm{z}_{1}\right)=\mathrm{h}_{\mathrm{pump}} & \text { for the pump }
\end{array}
$$

Assumptions: 1) Steady flow 2) Incompressible flow 3) α at 1 and 2 is approximately 1 4) No minor loss
Hence for the hose $\frac{\Delta p}{\rho}=\frac{p_{2}-p_{3}}{\rho}=f \cdot \frac{L}{D} \cdot \frac{V^{2}}{2} \quad$ or $\quad V=\sqrt{\frac{2 \cdot \Delta p \cdot D}{\rho \cdot f \cdot L}}$
We need to iterate to solve this for V because f is unknown until Re is known. This can be done using Excel's Solver, but here:

$$
\begin{aligned}
& \Delta \mathrm{p}=750 \cdot \mathrm{kPa} \\
& \mathrm{~L}=100 \cdot \mathrm{~m} \\
& \mathrm{e}=0 \\
& \mathrm{D}=3.5 \cdot \mathrm{~cm} \quad \rho=1000 \cdot \frac{\mathrm{~kg}}{\mathrm{~m}^{3}} \quad \nu=1.01 \times 10^{-6} \cdot \frac{\mathrm{~m}^{2}}{\mathrm{~s}} \\
& \text { Make a guess for } \mathrm{f} \text { f }=0.01 \\
& \mathrm{~V}=\sqrt{\frac{2 \cdot \Delta \mathrm{p} \cdot \mathrm{D}}{\rho \cdot f \cdot \mathrm{~L}}} \quad \mathrm{~V}=7.25 \frac{\mathrm{~m}}{\mathrm{~s}} \\
& \operatorname{Re}=\frac{V \cdot D}{v} \\
& \operatorname{Re}=2.51 \times 10^{5} \\
& \text { Given } \\
& \frac{1}{\sqrt{f}}=-2.0 \cdot \log \left(\frac{\frac{e}{D}}{3.7}+\frac{2.51}{\operatorname{Re} \cdot \sqrt{f}}\right) \quad f=0.0150 \\
& \mathrm{~V}=\sqrt{\frac{2 \cdot \Delta \mathrm{p} \cdot \mathrm{D}}{\rho \cdot \mathrm{f} \cdot \mathrm{~L}}} \quad \mathrm{~V}=5.92 \frac{\mathrm{~m}}{\mathrm{~s}} \quad \operatorname{Re}=\frac{\mathrm{V} \cdot \mathrm{D}}{\nu} \quad \operatorname{Re}=2.05 \times 10^{5} \\
& \text { Given } \\
& \text { Given } \\
& \frac{1}{\sqrt{f}}=-2.0 \cdot \log \left(\frac{\frac{e}{D}}{3.7}+\frac{2.51}{\operatorname{Re} \cdot \sqrt{f}}\right) \\
& \mathrm{f}=0.0156 \\
& \mathrm{~V}=\sqrt{\frac{2 \cdot \Delta \mathrm{p} \cdot \mathrm{D}}{\rho \cdot \mathrm{f} \cdot \mathrm{~L}}} \quad \mathrm{~V}=5.81 \frac{\mathrm{~m}}{\mathrm{~s}} \quad \quad \mathrm{Re}=\frac{\mathrm{V} \cdot \mathrm{D}}{\nu} \quad \operatorname{Re}=2.01 \times 10^{5} \\
& \frac{1}{\sqrt{f}}=-2.0 \cdot \log \left(\frac{\frac{e}{D}}{3.7}+\frac{2.51}{\operatorname{Re} \cdot \sqrt{f}}\right) \quad f=0.0156
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{V}=\sqrt{\frac{2 \cdot \Delta \mathrm{p} \cdot \mathrm{D}}{\rho \cdot \mathrm{f} \cdot \mathrm{~L}}} \quad \mathrm{~V}=5.80 \frac{\mathrm{~m}}{\mathrm{~s}} \quad \quad \operatorname{Re}=\frac{\mathrm{V} \cdot \mathrm{D}}{\nu} \quad \operatorname{Re}=2.01 \times 10^{5} \\
& \mathrm{Q}=\mathrm{V} \cdot \mathrm{~A}=\frac{\pi \cdot \mathrm{D}^{2}}{4} \cdot \mathrm{~V} \quad \mathrm{Q}=\frac{\pi}{4} \times(0.035 \cdot \mathrm{~m})^{2} \times 5.80 \cdot \frac{\mathrm{~m}}{\mathrm{~s}} \quad \mathrm{Q}=5.58 \times 10^{-3} \frac{\mathrm{~m}^{3}}{\mathrm{~s}} \quad \mathrm{Q}=0.335 \frac{\mathrm{~m}^{3}}{\mathrm{~min}} \\
& \text { For the nozzle } \quad \frac{\mathrm{P}_{3}}{\rho}+\frac{\mathrm{V}_{3}{ }^{2}}{2}+\mathrm{g} \cdot \mathrm{z}_{3}=\frac{\mathrm{p}_{4}}{\rho}+\frac{\mathrm{V}_{4}{ }^{2}}{2}+\mathrm{g} \cdot \mathrm{z}_{4} \\
& \text { so } \quad V_{4}=\sqrt{\frac{2 \cdot\left(\mathrm{P}_{3}-\mathrm{p}_{4}\right)}{\rho}+\mathrm{V}_{3}{ }^{2}} \\
& V_{4}=\sqrt{2 \times 700 \times 10^{3} \cdot \frac{\mathrm{~N}}{\mathrm{~m}^{2}} \times \frac{\mathrm{m}^{3}}{1000 \cdot \mathrm{~kg}} \times \frac{\mathrm{kg} \cdot \mathrm{~m}}{\mathrm{~s}^{2} \cdot \mathrm{~N}}+\left(5.80 \cdot \frac{\mathrm{~m}}{\mathrm{~s}}\right)^{2}} \quad \mathrm{~V}_{4}=37.9 \frac{\mathrm{~m}}{\mathrm{~s}}
\end{aligned}
$$

For the pump

$$
\left.\begin{array}{lc}
\left(\frac{\mathrm{p}_{2}}{\rho}+\alpha \cdot \frac{\mathrm{V}_{2}^{2}}{2}+\mathrm{g} \cdot \mathrm{z}_{2}\right.
\end{array}\right)-\left(\frac{\mathrm{p}_{1}}{\rho}+\alpha \cdot \frac{\mathrm{V}_{1}^{2}}{2}+\mathrm{g} \cdot \mathrm{z}_{1}\right)=\mathrm{h}_{\text {pump }} \quad \text { so } \quad \mathrm{h}_{\mathrm{pump}}=\frac{\mathrm{p}_{2}-\mathrm{p}_{1}}{\rho} .
$$

The pump power is $\mathrm{P}_{\text {pump }}=\mathrm{m}_{\text {pump }} \cdot \mathrm{h}_{\text {pump }}$
where $P_{\text {pump }}$ and $m_{\text {pump }}$ are the pump power and mass flow rate (software cannot render a dot!)

$$
\begin{array}{ll}
\mathrm{P}_{\text {pump }}=\rho \cdot \mathrm{Q} \cdot \frac{\left(\mathrm{P}_{2}-\mathrm{p}_{1}\right)}{\rho}=\mathrm{Q} \cdot\left(\mathrm{P}_{2}-\mathrm{p}_{1}\right) & \mathrm{P}_{\text {pump }}=5.58 \times 10^{-3} \cdot \frac{\mathrm{~m}^{3}}{\mathrm{~s}} \times(1450-350) \times 10^{3} \cdot \frac{\mathrm{~N}}{\mathrm{~m}^{2}} \\
\mathrm{P}_{\text {required }}=\frac{\mathrm{P}_{\text {pump }}}{\eta} & \mathrm{P}_{\text {pump }}=6.14 \mathrm{~kW} \\
\text { required }=\frac{6.14 \cdot \mathrm{~kW}}{70 \cdot \%} & \mathrm{P}_{\text {required }}=8.77 \mathrm{~kW}
\end{array}
$$

Given: Heavy crude oil ($56=0.925$) pumped through a level pipeline at a rate of $400,0006 a r r e k$ per day $(1661=42 \mathrm{gal})$. Pipe is 600 mm in diameter with 12 mm wall thickness. Maximum allowable stress in pipe wall is 275 MPa . Minimum pressure in oil is $500 \mathrm{kPa}\left(\nu=1.0 \times 10^{-4} \mathrm{~m}^{2} / \mathrm{s}\right)$ Pipeline is steel.

Find: (a) Maximum allowable spacing between punting stations. (b) Power added to oil at each pumping station.

Solution: First find the maximum pressure allowable in pipe. Consider a free body diagram of a segment of length, 4 :

Basic equation: $\Sigma F_{x}=0$
Assumption: Neglect hydrostatic
pressure variation,
and atmospheric pressure

Then $\Sigma F_{x}=p_{\max } D L-2 \sigma_{\max } t L=0$

$$
p_{\max }=2 \sigma_{\max } \frac{t}{D}=2 \times 2.75 \mathrm{MPa} \times \frac{12 \mathrm{~mm}}{600 \mathrm{Mm}}=11 \mathrm{MPa}(\text { gage })
$$

Thus the pumping problem is as shown below:

To find L, apply the energy equation for steady, incompressible flow that is uniform at each section.

Assumptions: (1) $\bar{V}_{1}=\bar{V}_{2}$
(2) $z_{1}=z_{2}$ (level)
(3) $h_{\text {em }}=0$, since straight, constant area pipe

Then

$$
f \frac{L}{D} \bar{v}^{2}=\frac{p_{1}-p_{2}}{f} \text { or } L=\frac{D}{f}\left(\frac{p_{1}-p_{2}}{f}\right) \frac{2}{\bar{v}^{2}}
$$

$$
\bar{V}=\frac{Q}{A}=4 \times 10^{5} \frac{b b 1}{d a y} \times \frac{d a y}{24 h r} \times \frac{h r}{3600 \mathrm{~s}} \times \frac{42 g a l}{b 61} \times \frac{4 g \tau}{\mathrm{gai}} \times \frac{9.46 \times 0^{-4} \mathrm{~m}^{3}}{q^{4}} \times \frac{4}{\pi} \frac{1}{(0 . \mathrm{bm})^{2}}=2 . \mathrm{bom} / \mathrm{s}
$$ $f=f(R e, C / D)$. From Tabk $8.1, e=0.046 \mathrm{~mm}$, so $e / 0^{\circ}=7.7 \times 10^{-5}$ Reunakls mimer is

$$
R e=\frac{P V D}{\mu}=\frac{\nabla D}{\nu}=\frac{2.6}{\mathrm{~m}} \times 0.6 \mathrm{~m} \times \frac{\mathrm{s}}{1.0 \times 10^{-4} \mathrm{~m}^{2}}=1.56 \times 10^{4}
$$

From Eq 8.37. $F=0.0277$ (Using Final's Solver or Goal Soak)

Thus, substituting into Eq. 1

$$
\begin{aligned}
& L=\frac{0.6 \mathrm{~m}}{0.02 \mathrm{n}}\left[11 \times 10^{6} \frac{\mathrm{~N}}{\mathrm{~m}^{2}}-(500-101) \times 10^{3} \frac{\mathrm{~N}}{\mathrm{M}^{2}}\right] \times(0.925) \frac{\mathrm{m}^{3}}{99 \mathrm{~kg}} \times 2 \times(2.6)^{\mathrm{s}^{2}} \mathrm{~m}^{2} \times \frac{\mathrm{kg} \cdot \mathrm{M}}{\mathrm{~F} . \mathrm{s}^{2}} \\
& L=72.8 \mathrm{~km} .
\end{aligned}
$$

To find pump power delivered to the oil, apply the energy equation to the CV show, between sections (3) and (3)

$$
\left(\frac{p}{p}+\alpha \frac{\bar{v}^{k}}{\psi}+g \phi\right)_{\text {discharge }}-\left(\frac{p}{p}+\alpha \frac{\psi^{2}}{\psi}+g \phi\right)_{\text {suction }}=\frac{\dot{w} p u n p}{\dot{m}^{\prime}}=\Delta h_{p u m p} \quad(8.45)
$$

Since $V=$ constant and elevation change is small, this reduces to

$$
\begin{aligned}
\Delta h_{\text {pump }} & =\frac{p_{3}-p_{2}}{\rho} \\
& =\left[11 \times 10^{6}-(500-101) \times 10^{3} \frac{\mathrm{~N}}{\mathrm{~m}^{2}} \times(0.925) 999 \frac{\mathrm{~m}^{3}}{\mathrm{~g}^{3}} \times \frac{\frac{\mathrm{kg} \cdot \mathrm{~m}}{\mathrm{H}_{1}}}{}\right. \\
\Delta h_{\text {pump }} & =1.15 \times 10^{4} \mathrm{~m}^{2} / \mathrm{s}^{2}
\end{aligned}
$$

The mass flow rate is

$$
\begin{aligned}
& \dot{m}=680 \mathrm{~kg} / \mathrm{s}
\end{aligned}
$$

The power added to the oil is

$$
\begin{aligned}
\dot{W}_{\text {pump }} & =\dot{m} \Delta h_{p u m p} \\
& =680 \frac{\mathrm{~kg}}{\mathrm{~s}} \times 1.15 \times 10^{4} \frac{\mathrm{~m}^{2}}{\mathrm{~s}^{2}} \times \frac{\mathrm{N} . \mathrm{s}^{2}}{\mathrm{gm}} \\
\dot{W}_{\text {pump }} & =7.730 \mathrm{kw}
\end{aligned}
$$

Note pump efficiency does not affect the power that must be added to the oil

Given: Fountain on Plerdue's Engineering Mall has

$$
Q=550 \mathrm{gpm} \text { and } H=10 \mathrm{~m}(32.8 \mathrm{ft})
$$

Find: Estimate of annual cost to operate the focentain.
Solution: Model fountain as a vertical jet (this will give maximum, cost).
computing equations:

Assurne $C_{e}=\$ 0.12 / \mathrm{kw} \cdot \mathrm{hr}$

$$
\begin{aligned}
& \text { Motor }=\frac{\text { Phydraulic }}{\text { \#pump motor }} ; \text { motor }=0.9, \text { pump }=0.8 \\
& \text { Onydraulic }=Q 40 \\
& N=365 \frac{\text { days }}{\text { gr }} \times 24 \frac{\text { hr }}{d a y}=8,760 \mathrm{hr} 190
\end{aligned}
$$

The minimum required Δp is $\rho g{ }^{H}$, so

$$
\Delta p=1.94 \frac{\mathrm{shg}}{\mathrm{ft}^{3}} \times 32.2 \frac{\mathrm{ft}}{\mathrm{~s}^{2}} \times 32.8 \mathrm{ft} \times \frac{\mathrm{bff} \mathrm{~s}^{2}}{\mathrm{shg} \cdot \mathrm{ft}}=2.05 \times 10^{3} \mathrm{lbf} / \mathrm{ft}+2
$$

Combining,

$$
\begin{aligned}
c= & \frac{\$ 0.12}{\mathrm{kw} \cdot \mathrm{hr}} \times \frac{1}{0.8(0.9)} \times 550 \frac{\mathrm{gat}}{\mathrm{~min}} \times 2.05 \times 10^{3} \frac{\mathrm{lbf}}{\mathrm{ft}} \times 8.760 \frac{\mathrm{hr}}{\mathrm{hr}} \\
& \times \frac{\mathrm{f}+3}{7.48 \mathrm{gat}} \times \frac{\mathrm{hp} \cdot \mathrm{~min}}{33,000 \mathrm{ft} \cdot \mathrm{ibf}} \times 0.746 \frac{\mathrm{~kW}}{\mathrm{hp}} \\
C= & \$ 4980 / \mathrm{gr}
\end{aligned}
$$

The fountain does not operate year-round. It might be more fair to say $c \approx \approx^{*} 3$ per day of operation.

Given: Ptrokern products transported long distances by fipelix, e.9, the Alaskan pipeline (see Example Problem 8.6).

Find: (a) Estimate of energy necked to pump typical petroleum product, expressed as a fraction of throughput energy carried by pipeline.
(b) Statement and critical assessment of assumptions.

Solution: From Example Problem 8.6, for the Alaskan pipeline, 0.16×10^{-6} bp.
Thus $\Delta=1.6 \times 10^{6} \frac{b \phi}{d a-y} \times 42 \frac{g a 1}{b b 1} \times \frac{f+3}{7.48 g a i} \times \frac{d \Delta y}{24 h r} \times \frac{h r}{36005}=104 \mathrm{f} 3 / \mathrm{s}$
and

$$
\dot{m}=\rho Q=56 \rho_{H 2 O} Q=0.43 \times 1.4+\frac{5 k e g}{4+5} \times \frac{104+4^{3}}{3}=188 \mathrm{skcg} / \mathrm{s}
$$

The energy content of a typical petroleum product is about $18,000 \mathrm{Btu} / 1 \mathrm{bm}$, so the throughput energy is

From Example probkm 816, each pumping station requires 36,800 hp, and they are located $L=120$ mi apart.

The entire pipeline is about 750 mi long. Thus the ne must be $\mathrm{N}=751 / 20$ or about $N=7$ pumping stations. Thus the total energy required to pump must be

$$
\theta=N \dot{W}=7 \text { stations } x_{x} 36,800 \frac{h p}{\text { station }}=258,000 \mathrm{hp}
$$

Expressed as a fraction of throughput energy

$$
\frac{Q}{\dot{E}}=258,000 h P_{\times} \frac{s}{1.09 \times 10^{9} B+L^{2}} \times 2545 \frac{3 t_{\mu}}{h p, h r^{2}} \times \frac{h r}{3600 \mathrm{~S}}=1.67 \times 10^{-3} \text { or } 0.00167
$$

Thus about 0.167% of energy is used for transporting petroleum.
The assumptions outlined above appear reasonable. The complete or result is probably accurate within \pm to $\%$.

A more universal metric would be energy per unit mass and distance, e. Gi, energy per ton-mile of transport.

Thus

$$
e \Rightarrow \frac{\rho}{\operatorname{m}^{\prime} L}=71.6 \mathrm{Bta} / \mathrm{tan} \cdot \mathrm{mi}
$$

This specific metric allows direct comparison with other modes of transport.
8.163 The pump testing system of Problem 8.114 is run with a pump that generates a pressure difference given by $\Delta p=$ $750-15 \times 10^{4} Q^{2}$ where Δp is in kPa , and the generated flow rate is $Q \mathrm{~m}^{3} / \mathrm{s}$. Find the water flow rate, pressure difference, and power supplied to the pump if it is 70 percent efficient.

Given: Flow in a pump testing system
Find: Flow rate; Pressure difference; Power

Solution:

$$
\begin{align*}
& \text { Governing equations: } \quad\left(\frac{p_{1}}{\rho}+\alpha_{1} \cdot \frac{\mathrm{~V}_{1}{ }^{2}}{2}+\mathrm{g} \cdot \mathrm{z}_{1}\right)-\left(\frac{\mathrm{p}_{2}}{\rho}+\alpha_{2} \cdot \frac{\mathrm{~V}_{2}{ }^{2}}{2}+\mathrm{g} \cdot \mathrm{z}_{2}\right)=\mathrm{h}_{\mathrm{TT}}=\sum_{\text {major }} \mathrm{h}_{1}+\sum_{\text {minor }} \mathrm{h}_{\mathrm{lm}} \tag{8.29}\\
& \operatorname{Re}=\frac{\rho \cdot V \cdot D}{\mu} \quad h_{1}=f \cdot \frac{L}{D} \cdot \frac{V^{2}}{2} \quad \text { (8.34) } \quad h_{l m}=f \cdot \frac{L_{e}}{D} \cdot \frac{V^{2}}{2} \quad \text { (8.40b) } \\
& \mathrm{f}=\frac{64}{\operatorname{Re}} \quad \text { (8.36) } \quad \text { (Laminar) } \quad \frac{1}{\sqrt{\mathrm{f}}}=-2.0 \cdot \log \left(\frac{\frac{\mathrm{e}}{\mathrm{D}}}{3.7}+\frac{2.51}{\operatorname{Re} \cdot \sqrt{\mathrm{f}}}\right) \\
& \text { (8.37) (Turbulent) }
\end{align*}
$$

The energy equation (Eq. 8.29) becomes for the circuit ($1=$ pump outlet, $2=$ pump inlet)

$$
\begin{align*}
& \frac{p_{1}-p_{2}}{\rho}=f \cdot \frac{L}{D} \cdot \frac{v^{2}}{2}+4 \cdot f \cdot L_{\text {elbow }} \cdot \frac{v^{2}}{2}+f \cdot L_{\text {valve }} \cdot \frac{v^{2}}{2} \\
& \Delta p=\rho \cdot f \cdot \frac{v^{2}}{2} \cdot\left(\frac{L}{D}+4 \cdot \frac{L_{\text {elbow }}}{D}+\frac{L_{\text {valve }}}{D}\right) \tag{1}
\end{align*}
$$

This must be matched to the pump characteristic equation; at steady state, the pressure generated by the pump just equals that lost to friction in the circuit

$$
\begin{equation*}
\Delta \mathrm{p}=750-15 \times 10^{4} \cdot \mathrm{Q}^{2} \tag{2}
\end{equation*}
$$

Finally, the power supplied to the pump, efficiency η, is

$$
\begin{equation*}
\text { Power }=\frac{\mathrm{Q} \cdot \Delta \mathrm{p}}{\eta} \tag{3}
\end{equation*}
$$

Given data:
Tabulated or graphical data:

$$
\begin{array}{rlcl}
L & = & 20 & \mathrm{~m} \\
D & = & 75 & \mathrm{~mm} \\
& & \\
\eta_{\text {pump }} & = & 70 \% &
\end{array}
$$

$$
\begin{aligned}
e= & 0.26 \mathrm{~mm} \\
& \text { (Table 8.1) } \\
\mu= & 1.00 \mathrm{E}-03 \mathrm{~N} . \mathrm{s} / \mathrm{m}^{2} \\
\rho= & 999 \mathrm{~kg} / \mathrm{m}^{3} \\
& (\text { Appendix A) }
\end{aligned}
$$

Gate valve $L_{e} / D=8$
Elbow $L_{e} / D=30$
(Table 8.4)
Computed results:

$\boldsymbol{Q}\left(\mathbf{m}^{\mathbf{3} / \mathbf{s})}\right.$	$\boldsymbol{V}(\mathbf{m} / \mathbf{s})$	$\boldsymbol{R e}$	\boldsymbol{f}	$\Delta \boldsymbol{p}(\mathbf{k P a})$ $\mathbf{(E q ~ 1)}$	$\Delta \boldsymbol{p}(\mathbf{k P a})$ $\mathbf{(E q ~ 2)}$
0.010	2.26	$1.70 \mathrm{E}+05$	0.0280	28.3	735
0.015	3.40	$2.54 \mathrm{E}+05$	0.0277	63.1	716
0.020	4.53	$3.39 \mathrm{E}+05$	0.0276	112	690
0.025	5.66	$4.24 \mathrm{E}+05$	0.0276	174	656
0.030	6.79	$5.09 \mathrm{E}+05$	0.0275	250	615
0.035	7.92	$5.94 \mathrm{E}+05$	0.0275	340	566
0.040	9.05	$6.78 \mathrm{E}+05$	0.0274	444	510
0.045	10.2	$7.63 \mathrm{E}+05$	0.0274	561	446
0.050	11.3	$8.48 \mathrm{E}+05$	0.0274	692	375
0.055	12.4	$9.33 \mathrm{E}+05$	0.0274	837	296
0.060	13.6	$1.02 \mathrm{E}+06$	0.0274	996	210

0.0419	9.48	$7.11 \mathrm{E}+05$	0.0274	487	487	0

8.164 A water pump can generate a pressure difference Δp (psi) given by $\Delta p=145-0.1 Q^{2}$, where the flow rate is $Q \mathrm{ft}^{3} / \mathrm{s}$. It supplies a pipe of diameter 20 in ., roughness 0.5 in ., and length 2500 ft . Find the flow rate, pressure difference, and the power supplied to the pump if it is 70 percent efficient. If the pipe were replaced with one of roughness 0.25 in ., how much would the flow increase, and what would the required power be?

Given: Pump/pipe system

Find: Flow rate, pressure drop, and power supplied; Effect of roughness

Solution:

$\operatorname{Re}=\frac{\rho \cdot V \cdot D}{\mu} \quad\left(\frac{p_{1}}{\rho}+\alpha_{1} \cdot \frac{V_{1}^{2}}{2}+g \cdot z_{1}\right)-\left(\frac{p_{2}}{\rho}+\alpha_{2} \cdot \frac{V_{2}^{2}}{2}+g \cdot z_{2}\right)=h_{T T}-\Delta h_{p u m p} \quad h_{T T}=f \cdot \frac{L}{D} \cdot \frac{v^{2}}{2}$
$\mathrm{f}=\frac{64}{\operatorname{Re}} \quad$ (Laminar) $\quad \frac{1}{\sqrt{\mathrm{f}}}=-2.0 \cdot \log \left(\frac{\frac{\mathrm{e}}{\mathrm{D}}}{3.7}+\frac{2.51}{\operatorname{Re} \cdot \sqrt{\mathrm{f}}}\right)$
(Turbulent)

The energy equation becomes for the system ($1=$ pipe inlet, $2=$ pipe outlet $)$
$\Delta h_{\text {pump }}=f \cdot \frac{L}{D} \cdot \frac{v^{2}}{2} \quad$ or $\quad \Delta p_{\text {pump }}=\rho \cdot f \cdot \frac{L}{D} \cdot \frac{v^{2}}{2}$
This must be matched to the pump characteristic equation; at steady state, the pressure generated by the pump just equals that lost to friction in the circuit
$\Delta \mathrm{p}_{\text {pump }}=145-0.1 \cdot \mathrm{Q}^{2}$
Finally, the power supplied to the pump, efficiency η, is
Power $=\frac{\mathrm{Q} \cdot \Delta \mathrm{p}}{\eta}$
Tabulated or graphical data: Given data:

$\mu=$	$2.10 \mathrm{E}-05$	$\mathrm{lbf} \cdot \mathrm{s} / \mathrm{ft}^{2}$	$L=$	2500
$\rho=$	1.94	$\mathrm{slug} / \mathrm{ft}^{3}$	D	ft
	(Appendix A)		$\eta_{\text {pump }}$	$=$
		70%	in	

Computed results: $\quad e=0.5$ in

$\boldsymbol{Q}\left(\mathbf{f t}^{\mathbf{3}} \mathbf{/ s}\right)$	$\boldsymbol{V}(\mathbf{f t} / \mathbf{s})$	$\boldsymbol{R e}$	\boldsymbol{f}	$\Delta \boldsymbol{p}(\mathbf{p s i}) \mathbf{(E q ~ 1)}$	$\Delta \boldsymbol{p} \mathbf{(p s i)} \mathbf{(E q ~ 2)}$
10	4.58	$7.06 \mathrm{E}+05$	0.0531	11.3	135.0
12	5.50	$8.47 \mathrm{E}+05$	0.0531	16.2	130.6
14	6.42	$9.88 \mathrm{E}+05$	0.0531	22.1	125.4
16	7.33	$1.13 \mathrm{E}+06$	0.0531	28.9	119.4
18	8.25	$1.27 \mathrm{E}+06$	0.0531	36.5	112.6
20	9.17	$1.41 \mathrm{E}+06$	0.0531	45.1	105.0
22	10.08	$1.55 \mathrm{E}+06$	0.0531	54.6	96.6
24	11.00	$1.69 \mathrm{E}+06$	0.0531	64.9	87.4
26	11.92	$1.83 \mathrm{E}+06$	0.0531	76.2	77.4
28	12.83	$1.98 \mathrm{E}+06$	0.0531	88.4	66.6
30	13.75	$2.12 \mathrm{E}+06$	0.0531	101.4	55.0

Error

	Error					
26.1	12.0	$1.84 \mathrm{E}+06$	0.0531	76.8	76.8	0.00

Repeating, with smoother pipe
Computed results: $\quad e=0.25 \quad$ in

$\boldsymbol{Q}\left(\mathbf{f t}^{\mathbf{3}} \mathbf{/ s)}\right.$	$\boldsymbol{V}(\mathbf{f t} / \mathbf{s})$	$\boldsymbol{R e}$	\boldsymbol{f}	$\Delta \boldsymbol{p}(\mathbf{p s i}) \mathbf{(E q ~ 1)}$	$\Delta \boldsymbol{p} \mathbf{(p s i)} \mathbf{(E q ~ 2)}$
10	4.58	$7.06 \mathrm{E}+05$	0.0410	8.71	135.0
12	5.50	$8.47 \mathrm{E}+05$	0.0410	12.5	130.6
14	6.42	$9.88 \mathrm{E}+05$	0.0410	17.1	125.4
16	7.33	$1.13 \mathrm{E}+06$	0.0410	22.3	119.4
18	8.25	$1.27 \mathrm{E}+06$	0.0410	28.2	112.6
20	9.17	$1.41 \mathrm{E}+06$	0.0410	34.8	105.0
22	10.08	$1.55 \mathrm{E}+06$	0.0410	42.1	96.6
24	11.00	$1.69 \mathrm{E}+06$	0.0410	50.1	87.4
26	11.92	$1.83 \mathrm{E}+06$	0.0410	58.8	77.4
28	12.83	$1.98 \mathrm{E}+06$	0.0410	68.2	66.6
30	13.75	$2.12 \mathrm{E}+06$	0.0410	78.3	55.0

27.8	12.8	$1.97 \mathrm{E}+06$	0.0410	67.4	67.4	0.00

Power $=$
702 hp
(Eq. 3)

8.165 A square cross-section duct $(0.5 \mathrm{~m} \times 0.5 \mathrm{~m} \times 30 \mathrm{~m})$ is used to convey air ($\rho=1.1 \mathrm{~kg} / \mathrm{m}^{3}$) into a clean room in an electronics manufacturing facility. The air is supplied by a fan and passes through a filter installed in the duct. The duct friction factor is $f=0.03$, the filter has a loss coefficient of $K=12$, and the clean room is kept at a positive gage pressure of 50 Pa . The fan performance is given by $\Delta p=1020-25 Q-30 Q^{2}$, where Δp (Pa) is the pressure generated by the fan at flow rate $Q\left(\mathrm{~m}^{3} / \mathrm{s}\right)$. Determine the flow rate delivered to the room.

Given:

Fan/duct system
Find:
Flow rate

Solution:

$\left(\frac{p_{1}}{\rho}+\alpha_{1} \cdot \frac{V_{1}^{2}}{2}+g \cdot z_{1}\right)-\left(\frac{p_{2}}{\rho}+\alpha_{2} \cdot \frac{V_{2}^{2}}{2}+g \cdot z_{2}\right)=h_{T T}-\Delta h_{\text {fan }} \quad h_{T T}=f \cdot \frac{L}{D_{h}} \cdot \frac{v^{2}}{2}+K \cdot \frac{v^{2}}{2} \quad f=0.03$
The energy equation becomes for the system ($1=$ duct inlet, $2=$ duct outlet $)$
$\Delta h_{\text {fan }}=\mathrm{f} \cdot \frac{\mathrm{L}}{\mathrm{D}_{\mathrm{h}}} \cdot \frac{\mathrm{v}^{2}}{2}+\mathrm{K} \cdot \frac{\mathrm{v}^{2}}{2}$
or $\quad \Delta p_{\text {pump }}=\frac{\rho \cdot V^{2}}{2} \cdot\left(f \cdot \frac{L}{D_{h}}+K\right)$
(1) where $D_{h}=\frac{4 \cdot \mathrm{~A}}{\mathrm{P}_{\mathrm{w}}}=\frac{4 \cdot \mathrm{~h}^{2}}{4 \cdot \mathrm{~h}}=\mathrm{h}$

This must be matched to the fan characteristic equation; at steady state, the pressure generated by the
fan just equals that lost to friction in the circuit
$\Delta \mathrm{p}_{\text {fan }}=1020-25 \cdot \mathrm{Q}-30 \cdot \mathrm{Q}^{2}$

Given data:
Computed results:

L	$=$	30	m
D_{h}	$=$	0.5	m
K	$=$	12	
f	$=$	0.03	
ρ	$=$	1.1	$\mathrm{~kg} / \mathrm{m}^{3}$

$\boldsymbol{Q}\left(\mathbf{m}^{\mathbf{3}} / \mathbf{s}\right)$	$\boldsymbol{V}(\mathbf{m} / \mathbf{s})$	$\Delta \boldsymbol{p}(\mathbf{P a})(\mathrm{Eq} \mathrm{1})$	$\Delta \boldsymbol{p}(\mathbf{P a})(\mathrm{Eq} 2)$
0.00	0.00	0	1020
0.25	1.00	8	1012
0.50	2.00	30	1000
0.75	3.00	68	984
1.00	4.00	121	965
1.25	5.00	190	942
1.50	6.00	273	915
1.75	7.00	372	884
2.00	8.00	486	850
2.25	9.00	615	812
2.50	10.00	759	770
2.75	11.00	918	724
3.00	12.00	1093	675

Error

2.51	10.06	768	768	0.00

Fan and Duct Pressure Heads

Given: Fan with outlet diriensions of $8 \times 16 \mathrm{in}$. Head us Capacity curve is approximately

$$
\begin{aligned}
& 5 \text { approximately } \\
& H\left(\text { in }, H_{2} O\right)=30^{-7}\left[Q\left(\mathrm{ft}^{3} / \text { min }\right)\right]^{2}
\end{aligned}
$$

Find: Air flow rate delivered into a 200 ft . length of straight $8 \times b i n$. duct.
Solution:
Basic equation:

Assumptions: (i) $\overline{V_{1}}=\mathcal{V}_{2}, \alpha_{1}=\alpha_{2}=1$

$$
\text { (a) } z_{1}=z_{2}
$$

(3) $h_{e_{m}}=0$

$$
\begin{aligned}
& A=a b=\frac{8}{12} f+\frac{16}{12} f=0.889 \mathrm{ft}^{2} \\
& D_{n}=\frac{4 A}{P_{w}}=\frac{4 A}{2(a \cdot b)}=\frac{2 \times 0.899 f^{2}}{\left(2(3+4)_{3}\right) c_{t}}=0.889 \mathrm{ft}
\end{aligned}
$$

From $E_{q} 8.30 \quad \Delta f=f 气$ pair $\frac{y^{2}}{2}=f 气 \frac{f}{8} \frac{Q^{2}}{A^{2}}=\gamma_{H_{b 0}} H_{\text {dud }}$ where H^{\prime} dun is the pressure drop in head of water.
$H_{\text {dat }}=1.81 \times 10^{-5} \mathrm{fQ}^{2}$ (where H is in in. $H_{2} O$) \qquad
For a snook duct, $f=f\left(R_{e}\right)$

$$
\begin{aligned}
& R_{e}=\frac{V D}{V}=\frac{D h}{V A} \quad \text { For } T=68^{\circ} F \text {, from Table } A Q, V=1.62 \times 10^{-4} \mathrm{Gt}^{2} / \mathrm{s} \\
& R_{e}=\frac{0.889 \mathrm{ft}}{0.889 \mathrm{ft}^{2}} \times 1.62 \times 10^{-4} \frac{\mathrm{~S}}{\mathrm{ft}^{2}} \times \frac{\mathrm{f}^{3}}{\mathrm{Fmin}} \times \frac{\mathrm{mi}}{60 \mathrm{~s}}=103 \mathrm{Q}
\end{aligned}
$$

To determine the air flow rate dalivered we need to determine the operating paint of the for.

Te operating paint is at the intersection of the

- fan head capacity curve, and the
- system curve (thread loss in the duct)
his is Shown on the phot below.
Note Rat the friction factor f is determined from te Colebroot equation (8.37a) using Eq. 8.37b for the intial estimate of f.

*8.167 The water pipe system shown is constructed from 75 mm galvanized iron pipe. Minor losses may be neglected. The inlet is at 250 kPa (gage), and all exits are at atmospheric pressure. Find the flow rates Q_{0}, Q_{1}, Q_{2}, and Q_{3}. If the flow in the 400 m branch is closed off $\left(Q_{1}=0\right)$, find the increase in flows Q_{2}, and Q_{3}.

$\downarrow Q_{3}$

Given: Pipe system

Find: Flow in each branch; Effect of shutting 400 m branch

Solution:

Governing equations: $\quad\left(\frac{p_{1}}{\rho}+\alpha_{1} \cdot \frac{V_{1}{ }^{2}}{2}+g \cdot z_{1}\right)-\left(\frac{p_{2}}{\rho}+\alpha_{2} \cdot \frac{V_{2}^{2}}{2}+g \cdot z_{2}\right)=h_{1} \quad$ (8.29) $\quad h_{1 T}=f \cdot \frac{L}{D} \cdot \frac{v^{2}}{2}$

$$
\begin{equation*}
\mathrm{f}=\frac{64}{\operatorname{Re}} \quad \text { (Laminar) (8.36) } \quad \frac{1}{\mathrm{f}^{0.5}}=-2.0 \cdot \log \left(\frac{\frac{\mathrm{e}}{\mathrm{D}}}{3.7}+\frac{2.51}{\operatorname{Re} \cdot \mathrm{f}^{0.5}}\right) \quad \text { (Turbulent) } \tag{8.37}
\end{equation*}
$$

The energy equation (Eq. 8.29) can be simplified to
$\Delta p=\rho \cdot f \cdot \frac{L}{D} \cdot \frac{V^{2}}{2}$
This can be written for each pipe section
In addition we have the following contraints

$$
\begin{align*}
& \mathrm{Q}_{0}=\mathrm{Q}_{1}+\mathrm{Q}_{4} \tag{1}\\
& \mathrm{Q}_{4}=\mathrm{Q}_{2}+\mathrm{Q}_{3} \tag{2}\\
& \Delta \mathrm{p}=\Delta \mathrm{p}_{0}+\Delta \mathrm{p}_{1} \tag{3}\\
& \Delta \mathrm{p}=\Delta \mathrm{p}_{0}+\Delta \mathrm{p}_{4}+\Delta \mathrm{p}_{2} \tag{4}\\
& \Delta \mathrm{p}_{2}=\Delta \mathrm{p}_{3} \tag{5}
\end{align*}
$$

(Pipe 4 is the 75 m unlabeled section)
We have 5 unknown flow rates (or, equivalently, velocities) and five equations

The workbook for Example 8.11 is modified for use in this problem

Pipe Data:

Pipe	$\boldsymbol{L}(\mathbf{m})$	$\boldsymbol{D}(\mathbf{m m})$	$\boldsymbol{e}(\mathbf{m m})$
0	300	75	0.15
1	400	75	0.15
2	100	75	0.15
3	100	75	0.15
4	75	75	0.15

Fluid Properties:

$$
\begin{array}{lcl}
\rho= & 999 & \mathrm{~kg} / \mathrm{m}^{3} \\
\mu= & 0.001 & \mathrm{~N} . \mathrm{s} / \mathrm{m}^{2}
\end{array}
$$

Available Head:

$$
\Delta p=\quad 250 \quad \mathrm{kPa}
$$

Flows:

$\boldsymbol{Q}_{\mathbf{0}}\left(\mathbf{m}^{\mathbf{3}} / \mathbf{s}\right)$	$\boldsymbol{Q}_{\mathbf{1}}\left(\mathbf{m}^{\mathbf{3}} / \mathbf{s}\right)$	$\boldsymbol{Q}_{\mathbf{2}}\left(\mathbf{m}^{\mathbf{3}} / \mathbf{s}\right)$	$\boldsymbol{Q}_{\mathbf{3}}\left(\mathbf{m}^{\mathbf{3}} / \mathbf{s}\right)$	$\boldsymbol{Q}_{\mathbf{4}}\left(\mathbf{m}^{\mathbf{3}} / \mathbf{s}\right)$
0.00928	0.00306	0.00311	0.00311	0.00623

$V_{\mathbf{0}}(\mathrm{m} / \mathbf{s})$	$V_{\mathbf{1}}(\mathrm{m} / \mathbf{s})$	$V_{\mathbf{2}}(\mathrm{m} / \mathbf{s})$	$V_{\mathbf{3}}(\mathrm{m} / \mathbf{s})$	$V_{4}(\mathrm{~m} / \mathbf{s})$
2.10	0.692	0.705	0.705	1.41

$\boldsymbol{R} \boldsymbol{e}_{\mathbf{0}}$	$\boldsymbol{R} \boldsymbol{e}_{\mathbf{1}}$	$\boldsymbol{R} \boldsymbol{e}_{\mathbf{2}}$	$\boldsymbol{R} \boldsymbol{e}_{\mathbf{3}}$	$\boldsymbol{R e}_{\mathbf{4}}$
$1.57 \mathrm{E}+05$	$5.18 \mathrm{E}+04$	$5.28 \mathrm{E}+04$	$5.28 \mathrm{E}+04$	$1.06 \mathrm{E}+05$

$\boldsymbol{f}_{\mathbf{0}}$	$\boldsymbol{f}_{\mathbf{1}}$	\boldsymbol{f}_{2}	\boldsymbol{f}_{3}	\boldsymbol{f}_{4}
0.0245	0.0264	0.0264	0.0264	0.0250

Heads:

$\Delta \boldsymbol{p}_{\mathbf{0}}(\mathbf{k P a})$	$\Delta \boldsymbol{p}_{\mathbf{1}}(\mathbf{k P a})$	$\Delta \boldsymbol{p}_{2}(\mathbf{k P a})$	$\Delta \boldsymbol{p}_{3}(\mathbf{k P a})$	$\Delta \boldsymbol{p}_{4}(\mathbf{k P a})$
216.4	33.7	8.7	8.7	24.8

Constraints:

(1) $Q_{0}=Q_{1}+Q_{4}$
$\mathbf{0 . 0 0 \%}$

(3) $\Delta p=\Delta p_{0}+\Delta p_{1}$ 0.03\%
(5) $\Delta p_{2}=\Delta p_{3}$

Error: \square Vary $Q_{0}, Q_{1}, Q_{2}, Q_{3}$ and Q_{4}
using Solver to minimize total error
*8.168 A cast-iron pipe system consists of a 150 ft section of water pipe, after which the flow branches into two 150 ft sections, which then meet in a final 150 ft section. Minor losses may be neglected. All sections are 1.5 in . diameter, except one of the two branches, which is 1 in . diameter. If the applied pressure across the system is 50 psi, find the overall flow rate and the flow rates in each of the two branches.

Given: Water pipe system

Find: Flow rates

Solution:

$\left(\frac{p_{1}}{\rho}+\alpha_{1} \cdot \frac{v_{1}{ }^{2}}{2}+g \cdot z_{1}\right)-\left(\frac{p_{2}}{\rho}+\alpha_{2} \cdot \frac{v_{2}{ }^{2}}{2}+g \cdot z_{2}\right)=h_{1} \quad h_{I T}=f \cdot \frac{L}{D} \cdot \frac{v^{2}}{2}$
$\mathrm{f}=\frac{64}{\mathrm{Re}} \quad$ (Laminar) $\quad \frac{1}{\sqrt{\mathrm{f}}}=-2.0 \cdot \log \left(\frac{\frac{\mathrm{e}}{\mathrm{D}}}{3.7}+\frac{2.51}{\mathrm{Re} \cdot \sqrt{\mathrm{f}}}\right) \quad$ (Turbulent)
The energy equation can be simplified to $\quad \Delta p=\rho \cdot f \cdot \frac{L}{D} \cdot \frac{v^{2}}{2}$
This can be written for each pipe section
Pipe A (first section)

$$
\begin{equation*}
\Delta \mathrm{p}_{\mathrm{A}}=\rho \cdot \mathrm{f}_{\mathrm{A}} \cdot \frac{\mathrm{~L}_{\mathrm{A}}}{\mathrm{D}_{\mathrm{A}}} \cdot \frac{\mathrm{~V}_{\mathrm{A}}^{2}}{2} \tag{1}
\end{equation*}
$$

Pipe B (1.5 in branch)

$$
\begin{equation*}
\Delta p_{B}=\rho \cdot f_{B} \cdot \frac{L_{B}}{D_{B}} \cdot \frac{v_{B}^{2}}{2} \tag{2}
\end{equation*}
$$

Pipe C (1 in branch)

$$
\begin{equation*}
\Delta \mathrm{p}_{\mathrm{C}}=\rho \cdot \mathrm{f}_{\mathrm{C}} \cdot \frac{\mathrm{~L}_{\mathrm{C}}}{\mathrm{D}_{\mathrm{C}}} \cdot \frac{\mathrm{v}_{\mathrm{C}}^{2}}{2} \tag{3}
\end{equation*}
$$

Pipe D (last section)

$$
\begin{equation*}
\Delta \mathrm{p}_{\mathrm{D}}=\rho \cdot \mathrm{f}_{\mathrm{D}} \cdot \frac{\mathrm{~L}_{\mathrm{D}}}{\mathrm{D}_{\mathrm{D}}} \cdot \frac{\mathrm{~V}_{\mathrm{D}}^{2}}{2} \tag{4}
\end{equation*}
$$

In addition we have the following contraints

$$
\begin{align*}
& \mathrm{Q}_{\mathrm{A}}=\mathrm{Q}_{\mathrm{D}} \tag{5}\\
& \mathrm{Q}_{\mathrm{A}}=\mathrm{Q}_{\mathrm{B}}+\mathrm{Q}_{\mathrm{C}} \tag{6}\\
& \Delta \mathrm{p}=\Delta \mathrm{p}_{\mathrm{A}}+\Delta \mathrm{p}_{\mathrm{B}}+\Delta \mathrm{p}_{\mathrm{D}} \tag{7}\\
& \Delta \mathrm{p}_{\mathrm{B}}=\Delta \mathrm{p}_{\mathrm{C}} \tag{8}
\end{align*}
$$

We have 4 unknown flow rates (or, equivalently, velocities) and four equations (5-8); Eqs 1 4 relate pressure drops to flow rates (velocities)

The workbook for Example Problem 8.11 is modified for use in this problem

Pipe Data:

Pipe	$\boldsymbol{L}(\mathbf{f t)}$	$\boldsymbol{D}(\mathbf{1 n)}$	\boldsymbol{e} (ft)
A	150	1.5	0.00085
B	150	1.5	0.00085
C	150	1	0.00085
D	150	1.5	0.00085

Fluid Properties:

$$
\begin{array}{lcl}
\rho= & 1.94 & \text { slug } / \mathrm{ft}^{3} \\
\mu= & 2.10 \mathrm{E}-05 & \text { lbf } / \mathrm{s} / \mathrm{ft}^{2}
\end{array}
$$

Available Head:

$$
\Delta p=\quad 50 \quad \text { psi }
$$

Flows:

$\boldsymbol{Q}_{\mathrm{A}}\left(\mathbf{f t}^{\mathbf{3}} / \mathbf{s}\right)$	$\boldsymbol{Q}_{\mathbf{B}}\left(\mathbf{f t}^{\mathbf{3}} / \mathbf{s}\right)$	$\boldsymbol{Q}_{\mathbf{C}}\left(\mathbf{f t}^{\mathbf{3}} / \mathbf{s}\right)$	$\boldsymbol{Q}_{\mathbf{D}}\left(\mathbf{f t}^{\mathbf{3}} / \mathbf{s}\right)$
0.103	0.077	0.026	0.103

$\boldsymbol{V}_{\mathbf{A}} \mathbf{(\mathbf { f t } / \mathbf { s })}$	$\boldsymbol{V}_{\mathbf{B}}(\mathbf{f t} / \mathbf{s})$	$\boldsymbol{V}_{\mathbf{C}}(\mathbf{f t} / \mathbf{s})$	$\boldsymbol{V}_{\mathbf{D}}(\mathbf{f t} / \mathbf{s})$
8.41	6.28	4.78	8.41

$\boldsymbol{R} \boldsymbol{e}_{\mathrm{A}}$	$\boldsymbol{\operatorname { R e }} \boldsymbol{e}_{\mathbf{B}}$	$\boldsymbol{\operatorname { R e }} \boldsymbol{C}_{\mathrm{C}}$	$\boldsymbol{\operatorname { R e }} \boldsymbol{e}_{\mathbf{D}}$
$9.71 \mathrm{E}+04$	$7.25 \mathrm{E}+04$	$3.68 \mathrm{E}+04$	$9.71 \mathrm{E}+04$

$\boldsymbol{f}_{\mathrm{A}}$	$\boldsymbol{f}_{\mathrm{B}}$	$\boldsymbol{f}_{\mathrm{C}}$	$\boldsymbol{f}_{\mathrm{D}}$
0.0342	0.0345	0.0397	0.0342

Heads:

Constraints:

$\Delta \boldsymbol{p}_{\mathrm{A}}(\mathrm{psi})$	$\Delta \boldsymbol{p}_{\mathrm{B}}(\mathrm{psi})$	$\Delta \boldsymbol{p}_{\mathrm{C}}(\mathrm{psi})$	$\Delta \boldsymbol{p}_{\mathrm{D}}(\mathrm{psi})$
19.5	11.0	11.0	19.5

(5) $Q_{\mathrm{A}}=Q_{\mathrm{D}}$
$\mathbf{0 . 0 0 \%}$

(7) $\Delta p=\Delta p_{\mathrm{A}}+\Delta p_{\mathrm{B}}+\Delta p_{\mathrm{D}}$
0.00%

(6) $Q_{\mathrm{A}}=Q_{\mathrm{B}}+Q_{\mathrm{C}}$
0.05%

(8) $\Delta p_{\text {B }}=\Delta p_{C}$ 0.00%

Error: 0.05\% Vary $Q_{\mathrm{A}}, Q_{\mathrm{B}}, Q_{\mathrm{C}}$, and Q_{D} using Solver to minimize total error

Problem *8.169
Given: Paftial-flow filtration system:
Pipes are $3 / 4$ in. nominal pule (smooth plastic) with $0=0.824$ in.

Pump delivers 30 gpo at $75^{\circ} F$.

Fitter presscere drop is $\Delta p(p s i)=0 . b[Q(g \rho m)]^{2}$.
Find: (a) Pressure at pump outlet.
(b) Flow rate through each branch of system.

Solution: Apply the energy equation for steady, incompressible pipe flow.
Computing equation: $\frac{p_{1}}{\rho}+\frac{\alpha_{1} \vec{v}_{1}^{2}}{2}+g_{3}=\frac{p_{2}}{\rho}+\frac{\alpha_{2}}{\frac{v_{2}}{2}}+g z_{2}+h_{e_{T}} ; h_{c_{T}}=\left[f\left(\frac{L}{D}+\frac{L e}{D}\right)+k\right] \frac{\vec{v}^{2}}{2}$
Asscemphons: (1) $\alpha_{1} \bar{v}_{1}^{2}=\alpha_{2} \bar{V}_{2}^{2} ;(2) 3_{1}=z_{2},(3)$ hem $=0$ for $1 \rightarrow 2$, (4) Ignore 'tee "a te)
The flow rate is $Q_{12}=30 \operatorname{gipm}\left(0.0608 f^{3} / \mathrm{sec}\right)$, so $\bar{V}=\frac{Q}{A}=18.0 \mathrm{ft} / \mathrm{sec}$. Then

$$
\begin{aligned}
& R e=\frac{\bar{V} D}{\nu}=18.0 \frac{f+}{\sec } \times\left(\frac{0.824}{12}\right)+\frac{\sec }{1.0 \times 10^{-5} f+}=1.24 \times 10^{5}, 50 f=0.017 \\
& \Delta p_{12}=f \frac{L}{D} \frac{\bar{v}^{2}}{2}=0.017 \times \frac{10 f}{0.82410} \times \frac{1}{2} \times 1.94 \frac{5 / L g}{f+3} \times(18.0)^{2} \frac{f^{2}}{\sec ^{2}} \times \frac{16 f s^{2}}{s / L e g . f t} \times \frac{f+}{12 \mathrm{in} .}=5.40 p \mathrm{pi}
\end{aligned}
$$

Branch flow rates are unknown, but flow split rust produce the same drop in each branch. Solve by iteration to obtain

$$
\begin{aligned}
& Q_{23}=5.2 \text { ppm; } \bar{V}_{23}=3.12 \mathrm{ft} / \mathrm{s} ; \operatorname{Re}^{2}=2.15 \times 10^{4} \text {, and } f=0.025^{*} \\
& \Delta p_{23}=f\left(\frac{L}{D}+2 \frac{L_{2}}{D}\right) \frac{P \vec{V}^{2}}{2}+0.6 Q^{2}
\end{aligned}
$$

$$
\begin{aligned}
& Q_{24}=24.8 \mathrm{gpm} ; \bar{V}_{24}=14.9 f+1 \mathrm{~s} ; \quad \operatorname{Re}=1.03 \times 10^{5}, \quad \text { and } f=0.018
\end{aligned}
$$

The pump outlet pressure is

$$
\Delta p_{p u e m p}=\Delta p_{12}+\Delta p_{23}=(5.4+16.8) p s i=22 . z p s i
$$

The branch flow rates are
$Q_{23} \approx 5.2 \mathrm{gpm}$
$Q_{24} \approx 24.8$ gem

* Value of f obtained from Eq 8.37 using Ethel's soke (or Gat sab)

Open-Ended Problem Statement: Why does the shower temperature change when a toilet is flushed? Sketch pressure curves for the hot and cold water supply systems to explain what happens.
Discussion: Assume the pressure in the water main servicing the dwelling remains constant. The hot and cold water flow rates reaching the shower are controlled by valve(s) in the shower. Assuming a water heater temperature of $140^{\circ} \mathrm{F}$, a cold water temperature of $60^{\circ} \mathrm{F}$, and a shower water temperature of $100^{\circ} \mathrm{F}$, the hot and cold flow rates must be equal. The two water streams mix before reaching the shower head, then spray out into the shower itself at $100^{\circ} \mathrm{F}$.

Supply curves and system curves for the hot and cold water streams are shown below. Diagram a is the cold water system and diagram b is the hot water system. The numerical values are representative of an actual system.
In general the supply curves for the hot and cold streams are not the same. The difference is caused by the two systems having different pipe lengths and different fittings.
Each stream operates at the flow rate where the curves intersect. An equal flow split is accomplished by adjusting the shower valves to vary their resistances.
Flushing the toilet temporarily increases the flow rate of cold water to the bathroom. This reduces the cold water supply pressure reaching the shower. The system curves do not change because the valve settings stay the same. Therefore the flow rate of cold water must decrease to again match the supply and system curves (diagram c).
When the flow rate of cold water decreases the shower temperature increases, as experience testifies!
(a) Cold water systam:

Cold water system:		
	System Curve	Supply Curve
Q (gpm)	p (psig)	p (psig)
0	0.00	50.0
0.2	0.53	49.6
0.4	2.13	48.6
0.6	4.80	46.8
0.8	8.53	44.3
1.0	13.3	41.1
1.2	19.2	37.2
1.4	26.1	32.6
1.6	34.1	27.2
1.7	38.5	24.3
1.8		21.2

(b) Hot water system:

	System Curve	Supply Curve
Q (gpm)	$p($ psig)	$p(p s i g)$
0	0.00	50.0
0.2	0.71	49.8
0.4	2.84	49.3
0.6	6.40	48.4
0.8	11.38	47.2
1.0	17.78	45.6
1.2	25.60	43.6
1.4	34.84	41.3
1.6	45.51	38.6
1.7		37.2
1.8		

(b) Hot water system curves
(c) Cold water system: toilet flush

	System Curve	Old Supply Curve	New Supply Curve
Q (gpm)	ρ (psig)	p (psig)	p (psig)
0	0.00	50.0	50.0
0.2	0.53	49.6	49.6
0.4	2.13	48.6	48.2
0.6	4.80	46.8	46.0
0.8	8.53	44.3	42.9
1.0	13.3	41.1	38.9
1.2	19.2	37.2	34.0
1.4	26.1	32.6	28.2
1.430	27.27	31.8	27.28
1.6	34.1	27.2	21.6
1.7	38.5	24.3	
1.8			

8.171 Water at $65^{\circ} \mathrm{C}$ flows through a $75-\mathrm{mm}$ diameter orifice installed in a $150-\mathrm{mm}$ i.d. pipe. The flow rate is $20 \mathrm{~L} / \mathrm{s}$. Determine the pressure difference between the corner taps.

Given: Flow through an orifice
Find: Pressure drop

Solution:

Basic equation $\quad m_{\text {actual }}=K \cdot A_{t} \cdot \sqrt{2 \cdot \rho \cdot\left(p_{1}-p_{2}\right)}=K \cdot A_{t} \cdot \sqrt{2 \cdot \rho \cdot \Delta p}$
Note that $\mathrm{m}_{\text {actual }}$ is mass flow rate (the software cannot render a dot!)
For the flow coefficient $K=K\left(\operatorname{Re}_{D 1}, \frac{D_{t}}{D_{1}}\right)$
At $65^{\circ} \mathrm{C}$,(Table A.8)

$$
\begin{array}{lll}
\rho=980 \cdot \frac{\mathrm{~kg}}{\mathrm{~m}^{3}} & \nu=4.40 \times 10^{-7} \cdot \frac{\mathrm{~m}^{2}}{\mathrm{~s}} \\
\mathrm{~V}=\frac{\mathrm{Q}}{\mathrm{~A}} & \mathrm{~V}=\frac{4}{\pi} \times \frac{1}{(0.15 \cdot \mathrm{~m})^{2}} \times 20 \cdot \frac{\mathrm{~L}}{\mathrm{~s}} \times \frac{0.001 \cdot \mathrm{~m}^{3}}{1 \cdot \mathrm{~L}} & \mathrm{~V}=1.13 \frac{\mathrm{~m}}{\mathrm{~s}} \\
\mathrm{Re}_{\mathrm{D} 1}=\frac{\mathrm{V} \cdot \mathrm{D}}{\nu} & \mathrm{Re}_{\mathrm{D} 1}=1.13 \cdot \frac{\mathrm{~m}}{\mathrm{~s}} \times 0.15 \cdot \mathrm{~m} \times \frac{\mathrm{s}}{4.40 \times 10^{-7} \cdot \mathrm{~m}^{2}} & \mathrm{Re}_{\mathrm{D} 1}=3.85 \times 10^{5} \\
\beta=\frac{\mathrm{D}_{\mathrm{t}}}{\mathrm{D}_{1}} & \beta=\frac{75}{150} & \beta=0.5
\end{array}
$$

From Fig. 8.20

$$
K=0.624
$$

Then

$$
\begin{aligned}
& \Delta \mathrm{p}=\left(\frac{\mathrm{m}_{\text {actual }}}{\mathrm{K} \cdot \mathrm{~A}_{\mathrm{t}}}\right)^{2} \cdot \frac{1}{2 \cdot \rho}=\left(\frac{\rho \cdot \mathrm{Q}}{\mathrm{~K} \cdot \mathrm{~A}_{\mathrm{t}}}\right)^{2} \cdot \frac{1}{2 \cdot \rho}=\frac{\rho}{2} \cdot\left(\frac{\mathrm{Q}}{\mathrm{~K} \cdot \mathrm{~A}_{\mathrm{t}}}\right)^{2} \\
& \Delta \mathrm{p}=\frac{1}{2} \times 980 \cdot \frac{\mathrm{~kg}}{\mathrm{~m}^{3}} \times\left[20 \cdot \frac{\mathrm{~L}}{\mathrm{~s}} \times \frac{0.001 \cdot \mathrm{~m}^{3}}{1 \cdot \mathrm{~L}} \times \frac{1}{0.624} \times \frac{4}{\pi} \times \frac{1}{(0.075 \cdot \mathrm{~m})^{2}}\right]^{2} \quad \Delta \mathrm{p}=25.8 \mathrm{kPa}
\end{aligned}
$$

Problem 8.172
Given: Square-edged orifice, $d_{t}=100 \mathrm{~mm}$, used to meter air Nous in a lsombl line. Te pressure upstream of the orifice is $p_{1}=600$ kia. The presume drop across the orifice is $\Delta p=750 \mathrm{~mm} \mathrm{H}_{2} \mathrm{O}$. The air temperature is $25^{\circ} \mathrm{C}$
Find: the volume flow rate of air in the line
Solution: Apply analysis of section 8-10; data from Fig. 8.23 apply
Computing equation:

$$
\begin{equation*}
i_{\text {actual }}=K A_{t} \sqrt{2 p\left(p_{i}-p_{2}\right)} \tag{8,56}
\end{equation*}
$$

Since $m=p a$, then

$$
P_{1}-p_{2}=750 \mathrm{~mm} A_{2} O=p g h_{H_{20}}=999 \frac{\mathrm{~kg}}{\mathrm{~m}^{3}} \times 9.8 \frac{\mathrm{~m}}{5^{2}} \times 0.75 \mathrm{~m} \times \frac{\mathrm{s}^{2}}{\mathrm{k}^{2}}=7.35 \mathrm{~kg}
$$

For the shat Δ, the assumption of incompressible frons is certorrly valid

$$
p=\frac{\sum_{1}}{R T}=701 \times 10^{3} \frac{N}{N^{2}} \times 287 \frac{8}{J} \times \frac{1}{298 k} \times \frac{\mathrm{J}}{\mathrm{H} . \mathrm{m}}=8.20 \mathrm{~kg} / \mathrm{m}^{3}
$$

Fie flow coerficunt $k=k$ (ken, Vt)
Assume $R_{e}>2+10^{5}$. For $F=\frac{y_{t}}{9,}=\frac{2}{3}$, from Fig. $8.20, k=0.675$

$$
\begin{aligned}
& Q=0.224 \mathrm{~m}^{3} / \mathrm{s}
\end{aligned}
$$

Guck Re. $T=25^{\circ} \mathrm{C} \quad \mu=1.84 \times 10^{-5} \mathrm{~A} . \mathrm{Sh}^{2}$ (Table A.DO)

$$
\begin{aligned}
& R_{e}=\frac{P D V}{\mu}=\frac{P D Q}{\mu H}=\frac{P D Q}{\mu} \pi \nu^{2}=\frac{4 P Q}{\pi \mu D}
\end{aligned}
$$

$$
\begin{aligned}
& \text { Re }=8.47 \times 10^{5}, \text { assumptive is valid }
\end{aligned}
$$

Problem 8.173

8.173 A venturi meter with a $30-\mathrm{in}$. diameter throat is placed in a 6 -in.-diameter line carrying water at $75^{\circ} \mathrm{F}$. The pressure drop between the upstream tap and the venturi throat is 12 in . of mercury. Compute the rate of flow.

Given: Flow through a venturi meter (NOTE: Throat is obviously 3 in not 30 in!)
Find: Flow rate

Solution:

Basic equation

$$
\mathrm{m}_{\text {actual }}=\frac{\mathrm{C} \cdot \mathrm{~A}_{\mathrm{t}}}{\sqrt{1-\beta^{4}}} \cdot \sqrt{2 \cdot \rho \cdot\left(\mathrm{p}_{1}-\mathrm{p}_{2}\right)}=\frac{\mathrm{C} \cdot \mathrm{~A}_{\mathrm{t}}}{\sqrt{1-\beta^{4}}} \cdot \sqrt{2 \cdot \rho \cdot \Delta \mathrm{p}}
$$

Note that $\mathrm{m}_{\text {actual }}$ is mass flow rate (the software cannot render a dot!)

For $\mathrm{Re}_{\mathrm{D} 1}>2 \times 10^{5}, 0.980<\mathrm{C}<0.995$. Assume $\mathrm{C}=0.99$, then check Re

$$
\beta=\frac{D_{t}}{D_{1}} \quad \beta=\frac{3}{6} \quad \beta=0.5
$$

Also

$$
\Delta \mathrm{p}=\rho_{\mathrm{Hg}} \cdot \mathrm{~g} \cdot \Delta \mathrm{~h}=\mathrm{SG}_{\mathrm{Hg}} \cdot \rho \cdot \mathrm{~g} \cdot \Delta \mathrm{~h}
$$

Then

Hence $\quad \mathrm{V}=\frac{\mathrm{Q}}{\mathrm{A}}=\frac{4 \cdot \mathrm{Q}}{\pi \cdot \mathrm{D}_{1}^{2}} \quad \mathrm{~V}=\frac{4}{\pi} \times \frac{1}{\left(\frac{1}{2} \cdot \mathrm{ft}\right)^{2}} \times 1.49 \cdot \frac{\mathrm{ft}^{3}}{\mathrm{~s}} \quad \mathrm{~V}=7.59 \cdot \frac{\mathrm{ft}}{\mathrm{s}}$
At $75^{\circ} \mathrm{F}$,(Table A.7) $\quad v=9.96 \times 10^{-6} \cdot \frac{\mathrm{ft}^{2}}{\mathrm{~s}}$

$$
\mathrm{Re}_{\mathrm{D} 1}=\frac{\mathrm{V} \cdot \mathrm{D}_{1}}{\nu} \quad \mathrm{Re}_{\mathrm{D} 1}=7.59 \cdot \frac{\mathrm{ft}}{\mathrm{~s}} \times \frac{1}{2} \cdot \mathrm{ft} \times \frac{\mathrm{s}}{9.96 \times 10^{-6} \cdot \mathrm{ft}^{2}} \quad \mathrm{Re}_{\mathrm{D} 1}=3.81 \times 10^{5}
$$

Thus $\mathrm{Re}_{\mathrm{D} 1}>2 \times 10^{5}$. The volume flow rate is $\quad \mathrm{Q}=1.49 \cdot \frac{\mathrm{ft}^{3}}{\mathrm{~s}}$
8.174 A smooth 200 m pipe, 100 mm diameter connects two reservoirs (the entrance and exit of the pipe are sharp-edged). At the midpoint of the pipe is an orifice plate with diameter 40 mm . If the water levels in the reservoirs differ by 30 m , estimate the pressure differential indicated by the orifice plate and the flow rate.

Given: Reservoir-pipe system
Find: Orifice plate pressure difference; Flow rate

Solution:

Governing equations: $\left(\frac{p_{1}}{\rho}+\alpha_{1} \cdot \frac{\mathrm{~V}_{1}^{2}}{2}+\mathrm{g} \cdot \mathrm{z}_{1}\right)-\left(\frac{\mathrm{p}_{2}}{\rho}+\alpha_{2} \cdot \frac{\mathrm{~V}_{2}^{2}}{2}+\mathrm{g} \cdot \mathrm{z}_{2}\right)=\mathrm{h}_{\mathrm{IT}}=\mathrm{h}_{1}+\Sigma \mathrm{h}_{\mathrm{lm}}$

$$
\mathrm{h}_{1}=\mathrm{f} \cdot \frac{\mathrm{~L}}{\mathrm{D}} \cdot \frac{\mathrm{v}^{2}}{2} \quad \text { (8.34) } \quad \mathrm{h}_{\mathrm{lm}}=\mathrm{K} \cdot \frac{\mathrm{~V}^{2}}{2}
$$

$$
\begin{equation*}
\mathrm{f}=\frac{64}{\operatorname{Re}} \quad \text { (Laminar) } \quad(8.36) \quad \frac{1}{\mathrm{f}^{0.5}}=-2.0 \cdot \log \left(\frac{\frac{\mathrm{e}}{\mathrm{D}}}{3.7}+\frac{2.51}{\operatorname{Re} \cdot \mathrm{f}^{0.5}}\right) \quad \text { (Turbulent) } \tag{8.37}
\end{equation*}
$$

There are three minor losses: at the entrance; at the orifice plate; at the exit. For each $\quad h_{\operatorname{lm}}=\mathrm{K} \cdot \frac{\mathrm{V}^{2}}{2}$
The energy equation (Eq. 8.29) becomes $(\alpha=1) \quad$ g. $\Delta \mathrm{H}=\frac{\mathrm{V}^{2}}{2} \cdot\left(\mathrm{f} \cdot \frac{\mathrm{L}}{\mathrm{D}}+\mathrm{K}_{\text {ent }}+\mathrm{K}_{\text {orifice }}+\mathrm{K}_{\text {exit }}\right)$
(ΔH is the difference in reservoir heights)
This cannot be solved for V (and hence Q) because f depends on V; we can solve by manually iterating, or by using Solver
The tricky part to this problem is that the orifice loss coefficient $K_{\text {orifice }}$ is given in Fig. 8.23 as a percentage of pressure differential Δp across the orifice, which is unknown until V is known!

The mass flow rate is given by

$$
\begin{equation*}
\mathrm{m}_{\text {rate }}=\mathrm{K} \cdot \mathrm{~A}_{\mathrm{t}} \cdot \sqrt{2 \cdot \rho \cdot \Delta \mathrm{p}} \tag{2}
\end{equation*}
$$

where K is the orifice flow coefficient, A_{t} is the orifice area, and Δp is the pressure drop across the orifice
Equations 1 and 2 form a set for solving for TWO unknowns: the pressure drop Δp across the orifice (leading to a value for $K_{\text {orifice }}$) and the velocity V. The easiest way to do this is by using Solver

Given data:

ΔH	$=$		30
		m	
L	$=$		200
		m	
D	$=$		100
	mm		
D_{t}	$=$		40
		mm	
β	$=$		0.40

Tabulated or graphical data:

$K_{\text {ent }}=$	0.50	(Fig. 8.14)
$K_{\text {exit }}=$	1.00	(Fig. 8.14)

Loss at orifice $=\quad 80 \% \quad($ Fig. 8.23 $)$ $\mu=\quad 0.001 \quad$ N.s $/ \mathrm{m}^{2}$
$\rho=999 \mathrm{~kg} / \mathrm{m}^{3}$ (Water - Appendix A)

Computed results:

Orifice loss coefficient:

$$
K=0.61
$$

(Fig. 8.20
Assuming high $R e$)

Flow system:

V	$=$	2.25	$\mathrm{~m} / \mathrm{s}$
Q	$=$	0.0176	$\mathrm{~m}^{3} / \mathrm{s}$
$R e$	$=$	$2.24 \mathrm{E}+05$	

Orifice pressure drop

$$
\Delta p=\quad 265 \quad \mathrm{kPa}
$$

Procedure using Solver :
a) Guess at V and Δp
b) Compute error in Eq. 1
c) Compute error in mass flow rate
d) Minimize total error
e) Minimize total error by varying V and Δp

Given: Flow of gasoline through a venter meter.

$$
S G=0.73, D_{1}=2.0 \mathrm{in}, D_{t}=1.0 \mathrm{in}, \Delta h=380 \mathrm{~mm} \mathrm{Hg}
$$

Find: Volume flow rate of gasoline.
Solution: Apply the analysis of section 8-10.3.
Computing equations:

$$
\begin{aligned}
& \text { mactual }=\frac{C A_{t}}{\sqrt{1-p^{4}}} \sqrt{2 p\left(p_{1}-p_{2}\right)} \\
& C=0.99 \text { for } R_{c_{p_{1}}}>2 \times 10^{5}
\end{aligned}
$$

For the manometer, $\Delta p=\rho \rho_{g} g \Delta h=S G_{\text {mtg }} \rho_{H_{2} O} g \Delta h$

$$
\begin{aligned}
& \text { Then } Q=\frac{\dot{m}}{\rho}=\frac{C A_{t}}{\sqrt{1-\beta^{4}}} \sqrt{\frac{2 \Delta D}{\rho}}=\frac{C A_{t}}{\sqrt{1-\beta^{4}}} \sqrt{\frac{Z S G_{H g} \rho_{N+0} g \Delta h}{S G_{g a s} \rho_{t+2}}}=\frac{C A_{t}}{\sqrt{1-\beta^{4}}} \sqrt{\frac{2 S G_{H g} g \Delta h}{S G_{g} a s}} \\
& Q=\frac{0.99}{\sqrt{1-(0.5)^{4} 4}} \frac{\pi}{4}(0.0254)^{2} \mathrm{~m}^{2} \sqrt{2 \times \frac{13.6}{0.73} \times 9.81 \frac{\mathrm{~m}}{s^{2}} \times 0.38 \mathrm{~m}}=0.00611 \mathrm{~m}^{3} / \mathrm{s}
\end{aligned}
$$

Now check Reynolds number:

$$
\bar{V}_{1}=\frac{Q}{A_{1}}=0.00611 \frac{\mathrm{~m}^{3}}{\mathrm{~s}} \times \frac{4}{\pi(0.0508)^{2} \mathrm{~m}^{2}}=3.01 \mathrm{~m} / \mathrm{s}
$$

Assume viscosity midway between octane and hep tare at $20^{\circ} \mathrm{C}$. From Fig. A.I,

$$
\begin{aligned}
& \mu \approx 5.0 \times 10^{-4} \mathrm{~N} . \mathrm{g} / \mathrm{m}^{2} \\
& R_{D_{1}}=\frac{p \bar{v}_{1} D_{1}}{\mu}=(0.73) 1000 \frac{\mathrm{~kg}}{\mathrm{~m}^{3}} \times 3.01 \mathrm{~m} \times 0.0508 \mathrm{~m}_{k} \frac{\mathrm{~m}^{2}}{5.0 \times 10^{-4 N \cdot 1}} \times \frac{\mathrm{N} \cdot \mathrm{~s}^{2}}{\mathrm{~kg} \cdot \mathrm{~m}}=2.23 \times 10^{5}
\end{aligned}
$$

Thus assumption that $c=0.99$ is okay

$$
Q=0.006 / 1 \mathrm{~m}^{3} / \mathrm{s}
$$

Problem 8.176

8.176 Consider a horizontal $50 \times 25 \mathrm{~mm}$ venturi with water flow. For a differential pressure of 150 kPa , calculate the volume flow rate.

Given: Flow through an venturi meter
Find: Flow rate

Solution:

Basic equation

$$
m_{\text {actual }}=\frac{C \cdot A_{t}}{\sqrt{1-\beta^{4}}} \cdot \sqrt{2 \cdot \rho \cdot\left(p_{1}-p_{2}\right)}=\frac{C \cdot A_{t}}{\sqrt{1-\beta^{4}}} \cdot \sqrt{2 \cdot \rho \cdot \Delta p}
$$

Note that $\mathrm{m}_{\text {actual }}$ is mass flow rate (the software cannot render a dot!)

For $\mathrm{Re}_{\mathrm{D} 1}>2 \times 10^{5}, 0.980<\mathrm{C}<0.995$. Assume $\mathrm{C}=0.99$, then check Re

$$
\beta=\frac{D_{t}}{D_{1}} \quad \beta=\frac{25}{50} \quad \beta=0.5
$$

Then

Hence

$$
\mathrm{Q}=\frac{\mathrm{m}_{\mathrm{actual}}}{\rho}=\frac{\mathrm{C} \cdot \mathrm{~A}_{\mathrm{t}}}{\rho \cdot \sqrt{1-\beta^{4}}} \cdot \sqrt{2 \cdot \rho \cdot \Delta \mathrm{p}}=\frac{\pi \cdot \mathrm{C} \cdot \mathrm{D}_{\mathrm{t}}^{2}}{4 \cdot \sqrt{1-\beta^{4}}} \cdot \sqrt{\frac{2 \cdot \Delta \mathrm{p}}{\rho}}
$$

$$
\mathrm{Q}=\frac{\pi}{4 \times \sqrt{1-0.5^{4}}} \times 0.99 \times(0.025 \cdot \mathrm{~m})^{2} \times \sqrt{2 \times 150 \times 10^{3} \cdot \frac{\mathrm{~N}}{\mathrm{~m}^{2}} \times \frac{\mathrm{m}^{3}}{1000 \cdot \mathrm{~kg}} \times \frac{\mathrm{kg} \cdot \mathrm{~m}}{\mathrm{~s}^{2} \cdot \mathrm{~N}}} \quad \mathrm{Q}=8.69 \times 10^{-3} \frac{\mathrm{~m}^{3}}{\mathrm{~s}}
$$

$$
\mathrm{V}=\frac{\mathrm{Q}}{\mathrm{~A}}=\frac{4 \cdot \mathrm{Q}}{\pi \cdot \mathrm{D}_{1}^{2}} \quad \mathrm{~V}=\frac{4}{\pi} \times \frac{1}{(0.05 \cdot \mathrm{~m})^{2}} \times 8.69 \times 10^{-3} \frac{\mathrm{~m}^{3}}{\mathrm{~s}}
$$

$$
\mathrm{V}=4.43 \frac{\mathrm{~m}}{\mathrm{~s}}
$$

At $20^{\circ} \mathrm{C}$ (Table A.8) $v=1.01 \times 10^{-6} \cdot \frac{\mathrm{~m}^{2}}{\mathrm{~s}}$

$$
\mathrm{Re}_{\mathrm{D} 1}=\frac{\mathrm{V} \cdot \mathrm{D}}{v}
$$

$$
\mathrm{Re}_{\mathrm{D} 1}=4.43 \cdot \frac{\mathrm{~m}}{\mathrm{~s}} \times 0.05 \cdot \mathrm{~m} \times \frac{\mathrm{s}}{1.01 \times 10^{-6} \cdot \mathrm{~m}^{2}}
$$

$$
\mathrm{Re}_{\mathrm{D} 1}=2.19 \times 10^{5}
$$

Thus $\operatorname{Re}_{\mathrm{D} 1}>2 \times 10^{5}$. The volume flow rate is

$$
\mathrm{Q}=8.69 \times 10^{-3} \frac{\mathrm{~m}^{3}}{\mathrm{~s}}
$$

$$
\mathrm{Q}=0.522 \cdot \frac{\mathrm{~m}^{3}}{\mathrm{~min}}
$$

Given: Test of 1.6 e internal combustion engine at 6000 rpm. Meter air with flow no z3/c, $\Delta 4 \leqslant 0.25 \mathrm{~m}$. Man netermeads to $\pm 0.5 \mathrm{~mm}$ of water.

Find: (a) Frow no zz le diameter required.
(b) Mininuen rate of air flow that can be measured t2pereent.

Solution: Apply competing equation for flow nozzk.
computing equation: $\quad \dot{m}=k A_{t} \sqrt{2 \rho\left(p_{1}-p_{2}\right)}$
Assumptions : (1) $K=0.97$ (section 8-10.26.)
(2) $\beta=0$ (nozzle int is from atmosphere)
(3) Four -stroke cure engine with 100 percent volumetric efficiency (\forall /rev $=$ displacement $/ 2$)
(4) standard air

Then

$$
\dot{m}=\rho Q=1.23 \frac{\mathrm{~kg}}{m^{3}} \times \frac{1.6 \mathrm{e}}{2 \pi \mathrm{tv}} \times 6000 \frac{\mathrm{rgy}}{n+1 \mathrm{~m}} \times \frac{m^{3}}{1000 \mathrm{e}^{2}} \times \frac{\mathrm{min}}{60 \mathrm{~s}}=0.0984 \mathrm{~kg} / \mathrm{s}
$$

Solving for A_{t},

$$
\begin{aligned}
& A_{t}=\frac{\dot{m}}{K \sqrt{2 \rho \Delta p}}=\frac{\dot{m}}{K \sqrt{2 \rho \rho_{H} \theta g \Delta h}} \\
& A_{t}=0.0984 \frac{\mathrm{~kg}}{S} \times \frac{1}{0.97}\left[\frac{1}{2} \times \frac{m^{3}}{1.23 \mathrm{~kg}^{3}} \times \frac{m^{4}}{949 \mathrm{~kg}} \times \frac{\mathrm{s}^{2}}{4.81 m^{2}} \times \frac{1}{0.25 m}\right]^{\frac{1}{2}}=1.31 \times 0^{-3} \mathrm{~m}^{2} \\
& A_{t}=\frac{\pi D_{t}^{2}}{4} ; D_{t}=\sqrt{\frac{4 A_{t}}{\pi}}=40.8 \mathrm{~mm}
\end{aligned}
$$

The allowable error is ± 2 percent, or ± 0.02. As discussed in Appendix E, the square-root relationship halves the experimental uncertainty. Thus

$$
e= \pm 0.02 \text { when } e_{\Delta h}= \pm 0.04 ; \Delta h_{m i n}=\frac{ \pm 0.5 \mathrm{~mm}}{ \pm 0.04}=12.5 \mathrm{~mm}
$$

$$
\dot{m}_{\min } \simeq \dot{m} \sqrt{\frac{\Delta h m i n}{\Delta h}}=0.09 g 4 \frac{\mathrm{~kg}}{\mathrm{~s}} \sqrt{\frac{12.5 \mathrm{~mm}}{250 \mathrm{~mm}}}=0.0220 \mathrm{~kg} / \mathrm{s}
$$

The air flow rate : cow ld be meas wire with $\ddagger \underline{q}$ percent decevexey down to abovet

$$
\omega=6000 \mathrm{rpm} \frac{0.0220}{0.0984}=1340 \mathrm{rpm}
$$

with this setup.
8.178 Air flows through the venturi meter described in Problem 8.173. Assume that the upstream pressure is 60 psi , and that the temperature is everywhere constant at $68^{\circ} \mathrm{F}$. Determine the maximum possible mass flow rate of air for which the assumption of incompressible flow is a valid engineering approximation. Compute the corresponding differential pressure reading on a mercury manometer.

Given: Flow through a venturi meter (NOTE: Throat is obviously 3 in not 30 in!)
Find: Maximum flow rate for incompressible flow; Pressure reading

Solution:

Basic equation

$$
m_{\text {actual }}=\frac{C \cdot A_{t}}{\sqrt{1-\beta^{4}}} \cdot \sqrt{2 \cdot \rho \cdot\left(p_{1}-p_{2}\right)}=\frac{C \cdot A_{t}}{\sqrt{1-\beta^{4}}} \cdot \sqrt{2 \cdot \rho \cdot \Delta p}
$$

Note that $\mathrm{m}_{\text {actual }}$ is mass flow rate (the software cannot render a dot!)

Assumptions: 1) Neglect density change 2) Use ideal gas equation for density
Then

$$
\rho=\frac{\mathrm{p}}{\mathrm{R}_{\mathrm{air}} \cdot \mathrm{~T}} \quad \rho=60 \cdot \frac{\mathrm{lbf}}{\mathrm{in}^{2}} \times\left(\frac{12 \cdot \mathrm{in}}{1 \cdot \mathrm{ft}}\right)^{2} \times \frac{\mathrm{lbm} \cdot \mathrm{R}}{53.33 \cdot \mathrm{ft} \cdot \mathrm{lbf}} \times \frac{1 \cdot \mathrm{slug}}{32.2 \cdot \mathrm{lbm}} \cdot \frac{1}{(68+460) \cdot \mathrm{R}} \quad \rho=9.53 \times 10^{-3} \cdot \frac{\mathrm{slug}}{\mathrm{ft}^{3}}
$$

For incompressible flow V must be less than about $100 \mathrm{~m} / \mathrm{s}$ or $330 \mathrm{ft} / \mathrm{s}$ at the throat. Hence

$$
\begin{array}{lc}
\mathrm{m}_{\text {actual }}=\rho \cdot \mathrm{V}_{2} \cdot \mathrm{~A}_{2} & \mathrm{~m}_{\text {actual }}=9.53 \times 10^{-3} \frac{\mathrm{slug}}{\mathrm{ft}^{3}} \times 330 \cdot \frac{\mathrm{ft}}{\mathrm{~s}} \times \frac{\pi}{4} \times\left(\frac{1}{4} \cdot \mathrm{ft}\right)^{2} \\
\beta=\frac{\mathrm{D}_{\mathrm{t}}}{\mathrm{D}_{1}} & \beta=\frac{3}{6} \\
\Delta \mathrm{p}=\rho_{\mathrm{Hg}} \cdot \mathrm{~g} \cdot \Delta \mathrm{~h} & \beta=0.5 \\
\Delta \mathrm{p}=\frac{1}{2 \cdot \rho} \cdot\left(\frac{\mathrm{~m}_{\text {actual }}}{\mathrm{C} \cdot \mathrm{~A}_{\mathrm{t}}}\right)^{2} \cdot\left(1-\beta^{4}\right) & \Delta \mathrm{h}=\frac{\Delta \mathrm{p}}{\rho_{\mathrm{Hg}} \cdot \mathrm{~g}} \\
& \text { so } \quad \Delta \mathrm{h}=\frac{\left(1-\beta^{4}\right)}{2 \cdot \rho \cdot \rho_{\mathrm{Hg}} \cdot g} \cdot\left(\frac{\mathrm{~m}_{\text {actual }}}{\mathrm{C} \cdot \mathrm{~A}_{\mathrm{t}}}\right)^{2}
\end{array}
$$

Also
and in addition

For $\mathrm{Re}_{\mathrm{D} 1}>2 \times 10^{5}, 0.980<\mathrm{C}<0.995$. Assume $\mathrm{C}=0.99$, then check Re

$$
\begin{aligned}
& \Delta \mathrm{h}=\frac{\left(1-0.5^{4}\right)}{2} \times \frac{\mathrm{ft}^{3}}{9.53 \times 10^{-3} \operatorname{slug}} \times \frac{\mathrm{ft}^{3}}{13.6 \cdot 1.94 \cdot \mathrm{slug}} \times \frac{\mathrm{s}^{2}}{32.2 \cdot \mathrm{ft}} \times\left[0.154 \frac{\mathrm{slug}}{\mathrm{~s}} \times \frac{1}{0.99} \times \frac{4}{\pi} \times\left(\frac{4}{1 \cdot \mathrm{ft}}\right)^{2}\right]^{2} \Delta \mathrm{~h}=0.581 \cdot \mathrm{ft} \\
& \text { Hence } \quad \Delta \mathrm{h}=6.98 \cdot \mathrm{in} \\
& \quad \mathrm{~V}=\frac{\mathrm{Q}}{\mathrm{~A}}=\frac{4 \cdot \mathrm{~m}_{\mathrm{actual}}}{\pi \cdot \rho \cdot \mathrm{D}_{1}^{2}} \quad \mathrm{~V}=\frac{4}{\pi} \times \frac{\mathrm{ft}^{3}}{9.53 \times 10^{-3} \operatorname{slug}} \times \frac{1}{\left(\frac{1}{2} \cdot \mathrm{ft}\right)^{2}} \times 0.154 \frac{\mathrm{slug}}{\mathrm{~s}}
\end{aligned} \quad \mathrm{~V}=82.3 \cdot \frac{\mathrm{ft}}{\mathrm{~s}} \quad 1 .
$$

At $68^{\circ} \mathrm{F}$,(Table A.7) $v=1.08 \times 10^{-5} \cdot \frac{\mathrm{ft}^{2}}{\mathrm{~s}}$

$$
\mathrm{Re}_{\mathrm{D} 1}=\frac{\mathrm{V} \cdot \mathrm{D}_{1}}{\nu} \quad \mathrm{Re}_{\mathrm{D} 1}=82.3 \cdot \frac{\mathrm{ft}}{\mathrm{~s}} \times \frac{1}{2} \cdot \mathrm{ft} \times \frac{\mathrm{s}}{1.08 \times 10^{-5} \cdot \mathrm{ft}^{2}} \quad \quad \mathrm{Re}_{\mathrm{D} 1}=3.81 \times 10^{6}
$$

Thus $\mathrm{Re}_{\mathrm{D} 1}>2 \times 10^{5}$. The mass flow rate is $\quad \mathrm{m}_{\text {actual }}=0.154 \frac{\text { slug }}{\mathrm{s}} \quad$ and pressure $\quad \Delta \mathrm{h}=6.98 \mathrm{in} \quad \mathrm{Hg}$

Given: Water at 70° F flows through a Venturi.
Flow \qquad

$$
p_{1}=5 \text { pig }
$$

$$
A_{1}=0.104^{2} \quad A_{2}=0.025 f^{2}
$$

Find: Estimate the maximums flow rate with no cavitation. (Express answer in cis.)

Solution: Apply flow meter equation.
Computing equation: $\dot{m}=\frac{C A_{t}}{\sqrt{1-\beta^{4}}} \sqrt{2 p\left(p,-p_{2}\right)} ; \quad \beta^{2}=A_{t} / A_{1}$,
Assume $C=0.99$ for $R e_{D_{1}} \geqslant 2 \times 10^{5}$.
Cavitation occurs when $p_{2} \leqslant p_{v}$. From steam table, $p_{v}=0.363$ psia at 70 F . Thus

$$
p_{1}-p_{2}=(14.7+5.0)-0.363=19.3 p \mathrm{si}
$$

and

$$
\begin{aligned}
& \dot{m}=0.99 \times 0.025 f^{2} \frac{1}{\sqrt[x]{1-(0.025 / 0.1)^{2}}}\left[2 \times 1.94 \frac{3 / 4 g}{f 4^{3}} \times 19.3 \frac{16 f}{\ln .^{2}} \times \frac{144 . i n^{2}}{\frac{f^{2}}{4} \times \frac{s / 4 g \cdot 4}{6 f \cdot 5^{2}}}\right]^{1 / 2} \\
& \dot{m}=2.65 \mathrm{~s} / \mathrm{ug} / \mathrm{s}
\end{aligned}
$$

But $\dot{m}=\rho \bar{V}_{A}=\rho Q$, so

$$
Q=\frac{\dot{m}}{\rho}=2.65 \frac{\mathrm{~s} / \mathrm{ug}}{\sec } \times \frac{\mathrm{ft}^{3}}{1.94 \mathrm{~s} / \mathrm{kg}}=1.37 \mathrm{ft} 3 / \mathrm{s}
$$

$\left\{\right.$ Note $\left.Q=1.37 \frac{\mathrm{ft}^{3}}{\mathrm{~s}} \times 7.48 \frac{\mathrm{gal}}{\mathrm{ft}^{3}} \times 60 \frac{\mathrm{~s}}{\mathrm{~min}}=613 \mathrm{gpm}.\right\}$
At $70 \mathrm{~F}, \nu=1.05 \times 10^{-5} \mathrm{f}+^{2} / \mathrm{s}$ (Table A.7). $\mathrm{R}_{\mathrm{D}_{1}} \frac{\bar{V}_{1} D_{1}}{\nu} \quad A,=\frac{\pi D_{1}}{4} ;$ so

Then

$$
R_{D_{i}}=13.7 \frac{4}{\xi} \times 0.357 \mathrm{ft} \times \frac{\mathrm{s}}{1,05 \times 10^{-5} \mathrm{ft}^{4}}=4.66 \times 10^{5}, 50 \mathrm{C}=0.99 \text { is okay. } \mathrm{w}
$$

Given: Flow nozzle installation in pipe as shown.

Fird: tiead ioss between sechous (1) and (3), cxpressed in coefficient form, $C_{l}=\frac{p_{1}-p_{3}}{p_{1}-p_{1}}$, show $C_{l}=\frac{1-A_{2} / A}{1+A_{1} / A}$.
Flot: C_{l} vs. D_{2} / D_{1}
Soiution: Apply tho Bernouli, continuite, nomentum and ciengy equations, using the CV shewn.
Basic equations: $\quad \frac{p_{1}}{f}+\frac{\bar{v}_{1}^{2}}{2}+g^{i}{ }^{(4)}=\frac{p_{2}}{p}+\frac{\bar{v}_{2}^{2}}{2}+g z^{(\%)}$

$$
\begin{aligned}
& 0=\frac{\partial}{\partial} \int_{c v}^{\alpha,} p d t+\int_{c s} \rho \vec{v} \cdot d \vec{A} \\
& F_{s_{x}}+F_{f_{k}}^{=\alpha(s)}=e_{j}^{=} \int_{c v}^{=(\nu)}\left(u_{f} d t+\int_{c s} u f \vec{v} \cdot d \vec{t}\right. \\
& \dot{Q}+\dot{w}_{s}^{A}=\frac{\partial}{\partial t} \int_{c V}^{m o(1)} c f \alpha+\int_{C S}\left(u+\frac{\bar{v}^{2}}{2}+g_{p}^{1}+\frac{p}{F}\right) \rho \vec{v} \cdot d \vec{A}
\end{aligned}
$$

Assumptions: (1) Stecidy flow
(a) Incompressible flow
(3) Nofriction betwoen (i) and (2
(4) Neglect elewation terms
(5) $F_{x}=0$
(6) $W_{s}=0$
(7) Unitorm flow at cach section

From contincity,

$$
Q=\bar{V}_{1} A_{1}=\bar{V}_{2} A_{4}=\bar{V}_{3} A_{3}
$$

Apply Bernouti alomg a stramtinc from (D to (B, noting $A=$ As,

$$
\frac{p_{1}-p_{2}}{\rho}=\frac{\vec{V}_{2}^{2}-\bar{V}_{1}^{2}}{2}=\frac{\bar{\nabla}_{2}^{2}}{2}\left[1-\left(\frac{A_{2}}{A_{1}}\right)^{2}\right]=\frac{\nabla_{2}^{2}}{2}\left[1-\left(\frac{A_{2}}{A_{3}}\right)^{2}\right]
$$

Frommomentem, and using continuity,

$$
F_{s x}=-\rho_{2} A_{1}-p_{3} A_{3}=\nabla_{2}\left\{-\left|\rho \bar{V}_{2} A_{2}\right|\right\}+\bar{V}_{3}\left\{+\left|\rho \bar{V}_{3} A_{3}\right|\right\}=\left(\bar{V}_{3}-\bar{V}_{2}\right) \rho \bar{V}_{3} A_{3}
$$

or $\quad \frac{p_{3}-p_{2}}{\rho}=\nabla_{3}\left(\bar{V}_{2}-\bar{V}_{3}\right)=\bar{V}_{2} \frac{A_{2}}{A_{3}}\left[\bar{V}_{2}-\bar{V}_{2} \frac{A_{2}}{A_{3}}\right]=\bar{V}_{2}^{2} \frac{A_{2}}{A_{3}}\left(1-\frac{A_{2}}{A_{3}}\right)$
Fromenergy,

$$
\dot{Q}=\left(u_{2}+\frac{\bar{V}_{2}^{2}}{2}+\frac{p_{2}}{\rho}\right)\left\{-\mid \rho_{V_{2}} A_{1} /\right\}+\left(u_{3}+\frac{\bar{V}_{3}^{2}}{2}+\frac{p_{3}}{f}\right)\left\{\left|\rho \bar{v}_{3} A_{3}\right|\right\}
$$

Problem 8.180
or $h_{l_{23}}=u_{3}-u_{2}-\frac{\dot{Q}}{\dot{n}}=\frac{\bar{V}_{2}^{2}-\bar{v}_{3}^{2}}{2}-\frac{p_{3}-p_{2}}{\rho}=\frac{\bar{V}_{2}^{2}}{2}\left[1-\left(\frac{A_{2}}{A_{3}}\right)^{2}\right]-\frac{p_{3}-p_{1}}{\rho}$ But $h_{c_{12}}=0 b_{y}$ assumption (3), so $h_{c_{3}}=h_{c_{23}}$ and using momentern

$$
h_{C_{3}} \approx \frac{\bar{V}_{2}^{2}}{2}\left[1-\left(\frac{A_{2}}{A_{3}}\right)^{2}\right]-\bar{V}_{2}^{2} \frac{A_{2}}{A_{3}}\left(1-\frac{A_{2}}{A_{3}}\right)
$$

After a little algebra, this mas be written

$$
h_{e_{13}} \simeq \frac{\bar{V}_{2}^{2}}{2}\left(1-\frac{A_{2}}{A_{3}}\right)^{2}
$$

Dividing by $\left(p_{1}-p_{n}\right) / f$, a loss coefficient is derived as

$$
C_{l}=\frac{h_{e / 3}}{\left(p_{1}-p_{2}\right) / p}=\frac{\frac{\nabla_{2}^{2}}{2}\left(1-\frac{A_{2}}{A_{3}}\right)^{2}}{\frac{\nabla_{2}^{2}}{2}\left[1-\left(A_{2}\right)^{2}\right]}=\frac{\left(1-A_{2 / A_{3}}\right)^{2}}{\left[1-\left(A_{2} / A_{3}\right)^{2}\right]}
$$

Bact $1-\left(\frac{A_{2}}{A_{3}}\right)^{2}=\left(1+\frac{A_{2}}{A_{3}}\right)\left(1-\frac{A_{2}}{A_{3}}\right)$, so

$$
c_{x}=\frac{h_{13}}{\left(p_{1}-p_{2}\right) / f}=\frac{1-A_{2} / A_{3}}{1+A_{2} / A_{3}}
$$

plotting:

Problem 8.181

8.181 Derive Eq. 8.42, the pressure loss coefficient for a diffuser assuming ideal (frictionless) flow.

Given: Flow through a diffuser
Find: Derivation of Eq. 8.42
Solution:
Basic equations $\quad C_{p}=\frac{p_{2}-p_{1}}{\frac{1}{2} \cdot \rho \cdot V_{1}^{2}} \quad \frac{p_{1}}{\rho}+\frac{V_{1}^{2}}{2}+g \cdot z_{1}=\frac{p_{2}}{\rho}+\frac{V_{2}^{2}}{2}+g \cdot z_{2} \quad Q=V \cdot A$

Assumptions: 1) All the assumptions of the Bernoulli equation 2) Horizontal flow 3) No flow separation
From Bernoulli $\frac{\mathrm{p}_{2}-p_{1}}{\rho}=\frac{\mathrm{V}_{1}{ }^{2}}{2}-\frac{\mathrm{V}_{2}^{2}}{2}=\frac{\mathrm{V}_{1}^{2}}{2}-\frac{\mathrm{V}_{1}^{2}}{2} \cdot\left(\frac{\mathrm{~A}_{1}}{A_{2}}\right)^{2} \quad$ using continuity

Hence

$$
\mathrm{C}_{\mathrm{p}}=\frac{\mathrm{p}_{2}-\mathrm{p}_{1}}{\frac{1}{2} \cdot \rho \cdot \mathrm{~V}_{1}^{2}}=\frac{1}{\frac{1}{2} \cdot \mathrm{~V}_{1}^{2}} \cdot\left[\frac{\mathrm{~V}_{1}^{2}}{2}-\frac{\mathrm{V}_{1}^{2}}{2} \cdot\left(\frac{\mathrm{~A}_{1}}{\mathrm{~A}_{2}}\right)^{2}\right]=1-\left(\frac{\mathrm{A}_{1}}{\mathrm{~A}_{2}}\right)^{2}
$$

Finally $\quad C_{p}=1-\frac{1}{\mathrm{AR}^{2}} \quad$ which is Eq. 8.42.
This result is not realistic as a real diffuser is very likely to have flow separation

Open-Ended Problem Statement: In some western states, water for mining and irrigation was sold by the "miner's inch," the rate at which water flows through an opening in a vertical plank of $1 \mathrm{in}^{2}$ area, up to 4 in . tall, under a head of 6 to 9 in . Develop an equation to predict the flow rate through such an orifice. Specify clearly the aspect ratio of the opening, thickness of the plank, and datum level for measurement of head (top, bottom, or middle of the opening). Show that the unit of measure varies from 38.4 (in Colorado) to 50 (in Arizona, Idaho, Nevada, and Utah) miner's inches equal to $1 \mathrm{ft}^{3} / \mathrm{s}$.

Analysis: The geometry of the opening in a vertical plank is shown. The analysis includes the effect on flow speed of the variation in water depth vertically across the opening.

For ar $=1, \alpha=0, a=H=9 \mathrm{in}, b=10.0 \mathrm{in}, w^{2}=1.0 \mathrm{in}$.

$$
Q_{\text {geom }}=\frac{2}{3} \times 1.0 \mathrm{~m} \times 9 \operatorname{m}\left[2 \times 32.2 \frac{f t}{5} \times 9 i n \times \frac{f+}{12 m}\right]^{\frac{1}{2}}\left[\left(\frac{10}{4}\right)^{3 / 2}-1\right] \frac{f^{2}}{144^{2}}=0.0496 \frac{f^{3}}{5}
$$

$$
Q_{\text {actual }}=0.6 \text { Qgeam }=0.0297 \mathrm{ft3} / \mathrm{s} ; \text { thes } 1 / 0.0297=33.6 \mathrm{MI}=1 \mathrm{cfs}
$$

Numerical results are presented in the spread sheet on the next page.
Discussion: All results assume a vena contracta in the liquid jet leaving the opening, reducing the effective flow area to 60 percent of the geometric area of the opening.
The calculated unit of measure varies from 31.3 to 52.4 miner's inch per cubic foot of water flow per second. This range encompasses the 38.4 and 50 values given in the problem statement.

Trends may be summarized as follows. The largest flow rate occurs when datum H is measured to the top of the opening in the vertical plank. This gives the deepest submergence and thus the highest flow speeds through the opening.
When $a r=1$, the opening is square; when $a r=16$, the opening is 4 inches tall and $1 / 4$ inch wide. Increasing ar from 1 to 16 increases the flow rate through the opening when H is measured to the top of the opening, because it increases the submergence of the lower portion of the opening, thus increasing the flow speeds. When H is measured to the center of the opening ar has almost no effect on flow rate. When H is measured to the bottom of the opening, increasing ar reduces the flow rate. For this case, the depth of the opening decreases as ar becomes larger.
Plank thickness does not affect calculated flow rates since a vena contracta is assumed. In this flow model, water separates from the interior edges of the opening in the vertical plank. Only if the plank were several inches thick might the stream reattach and affect the flow rate.
The actual relationship between $Q_{\text {flow }}$ and $Q_{\text {geom }}$ might be a weak function of aspect ratio. The flow separates from all four edges of the opening in the vertical plank. At large ar, contraction on the narrow ends of the stream has a relatively small effect on flow area. As ar approaches 1 the effect becomes more pronounced, but would need to be measured experimentally. Assuming a constant 60 percent area fraction certainly gives reasonable trends.

Problem 8.182

Computation of "Miner's Inch" in Engineering Units:

$a=$ depth to top of opening	(in.)
$a r=$ aspect ratio of opening	(--m)
$A=$ area of opening	$1 \mathrm{in}^{2}{ }^{2}$
$b=$ depth to bottom of opening	(in.)
$H=$ nominal head	(in.)
$H_{0}=$ height of opening	(in.)
$M 1=$ "miner's inch"	(mixed)
$Q=$ volume flow rate	$\left(\mathrm{ft}^{3} / \mathrm{s}\right)$
$w=$ width of opening	(in.)

Assume $Q_{\text {flow }}=0.6 \times Q_{\text {geometric }}$ to account for contraction of the stream leaving the opening.
(a) Measure H to top of opening:

H	ar	H_{o}	a	b	w	$Q_{\text {geam }}$	$Q_{\text {flow }}$	MI/cfs
9	1	1.00	9.00	10.0	1.00	0.0496	0.0297	33.6
9	2	1.41	9.00	10.4	0.707	0.0501	0.0301	33.3
9	4	2.00	9.00	11.0	0.500	0.0509	0.0305	32.8
9	8	2.83	9.00	11.8	0.354	0.0519	0.0311	32.1
9	16	4.00	9.00	13.0	0.250	0.0533	0.0320	31.3
6	1	1.00	6.00	7.00	1.00	0.0410	0.0246	40.6
6	2	1.41	6.00	7.41	0.707	0.0416	0.0250	40.0
6	4	2.00	6.00	8.00	0.500	0.0425	0.0255	39.2
6	8	2.83	6.00	8.83	0.354	0.0437	0.0262	38.1
6	16	4.00	6.00	10.0	0.250	0.0454	0.0272	36.7

(b) Measure H to middle of opening:

\boldsymbol{H}	ar	H_{0}	a	b	W	$Q_{\text {geom }}$	$Q_{\text {now }}$	M/cefs
9	1	1.00	8.50	9.50	1.00	0.0483	0.0290	34.5
9	2	1.41	8.29	9.71	0.707	0.0483	0.0290	34.5
9	4	2.00	8.00	10.0	0.500	0.0482	0.0289	34.6
9	8	2.83	7.59	10.4	0.354	0.0482	0.0289	34.6
9	16	4.00	7.00	11.0	0.250	0.0482	0.0289	34.6
6	1	1.00	5.50	6.50	1.00	0.0394	0.0236	42.3
6	2	1.41	5.29	6.71	0.707	0.0394	0.0236	42.3
6	4	2.00	5.00	7.00	0.500	0.0394	0.0236	42.3
6	8	2.83	4.59	7.41	0.354	0.0393	0.0236	42.4
6	16	4.00	4.00	8.00	0.250	0.0392	0.0235	42.5

(c) Measure H to bottom of opening:

H	$a r$	H_{o}	a	b	w	$Q_{\text {geom }}$	$Q_{\text {now }}$	MI/cfs
9	1	1.00	8.00	9.00	1.00	0.0469	0.0281	35.5
9	2	1.41	7.59	9.00	0.707	0.0463	0.0278	36.0
9	4	2.00	7.00	9.00	0.500	0.0455	0.0273	36.7
9	8	2.83	6.17	9.00	0.354	0.0442	0.0265	37.7
9	16	4.00	5.00	9.00	0.250	0.0424	0.0254	39.3
6	1	1.00	5.00	6.00	1.00	0.0377	0.0226	44.2
6	2	1.41	4.59	6.00	0.707	0.0370	0.0222	45.1
6	4	2.00	4.00	6.00	0.500	0.0359	0.0215	46.4
6	8	2.83	3.17	6.00	0.354	0.0343	0.0206	48.6
6	16	4.00	2.00	6.00	0.250	0.0318	0.0191	52.4

Given: fibe-flow experiment with flow straight ene made from straws.
Find: (a) Reynolds number for flow in each straw.
(b) Friction factor for flow in each straw.

$$
\begin{aligned}
& K_{e n t}=1.4 \\
& \alpha=2.0
\end{aligned}
$$

(c) Gage pressure at exit from straws.

Solution: Apply energy equation for steady, incompressible pipe flow.

Computing equation:

$$
h_{L_{T}}=h_{l}+h_{l m}=f \frac{L}{D} \frac{\bar{V}^{4}}{2}+k_{e n t} \frac{V^{2}}{2}=\left(f \frac{L}{\bar{D}}+k_{\text {en }}\right) \frac{\bar{V}^{2}}{2}
$$

Assumptions: (1) Flow from atmosphere: $p_{1}=$ fate,$\nabla \approx 0$
(c) Horizontal
(3) Neglect thickness of Straws.

Then

$$
\begin{aligned}
& \bar{V}_{2}=\frac{Q}{A}=100 \frac{\mathrm{~m}^{3}}{\mathrm{hr}} \times \frac{4}{\pi(0.0635)^{2} \mathrm{~m}^{2}} \times \frac{\mathrm{hr}}{36003}=8.77 \mathrm{~m} / \mathrm{s} \\
& \operatorname{Re}_{d}=\frac{\bar{V}_{2} d}{\nu}=8.77 \frac{\mathrm{~m}}{\mathrm{sec}} \times 0.003 \mathrm{~m} \times \frac{\mathrm{sec}}{1.46 \times 10^{-5} \mathrm{~m}^{2}}=1800
\end{aligned}
$$

For laminar flow,

$$
f=\frac{64}{R_{e}}=\frac{64}{1800}=0.0356
$$

The gage pressure at (2) is

$$
\begin{aligned}
p_{2 g} & =-P \bar{V}_{2}^{2}\left(\alpha_{2}+K_{e n t}+f \frac{L}{D}\right) \\
& =-\frac{1}{2} \times 1.25 \frac{\mathrm{~kg}}{m^{3}} \times(8.77)^{2} \frac{\mathrm{~m}^{2}}{5^{2}}\left(2.0+1.4+0.0356 \times \frac{230 \mathrm{~mm}}{3 \mathrm{~mm}}\right) \frac{\mathrm{N}_{\mathrm{m}}^{2}}{\mathrm{~kg} \cdot \mathrm{~m}} \\
p_{2 g} & =-290 \mathrm{~N} / \mathrm{m}^{2}(g a g \mathrm{c})
\end{aligned}
$$

This pressure drop is equivalent to

$$
\Delta h=\frac{\Delta t}{\rho_{H_{10}} g}=290 \frac{\mathrm{~N}}{\mathrm{~m}^{2}} \times \frac{\mathrm{m}^{3}}{999 \mathrm{~kg}} \times \frac{\mathrm{s}^{2}}{9.81 \mathrm{~m}} \times \frac{\mathrm{kg} / \mathrm{m}}{\mathrm{~N} \cdot 3^{2}}=29.6 \mathrm{~mm} \mathrm{H} 0
$$

Comments: (1) This pressure drop is large enough to meascine readily. The straws could be used as a tiowmeter.
(2) straws would eliminate any suit! from the flour.

Given: Volume flow rate in a circular duct is to be measured using a "Pitot traverse," by measuring the velocity in each of several area segments across the duct, then summing.

Find: Comment on the way the traverse should be set up. Quantify and plot the expected error in measurement of flow rate as a function of the number of radial locations used in the traverse.

Solution: First divide the duct cross section into segments of equal area. Then measure velocity at the mean area of each segment.
Assume flow is turbulent, and that the velocity profile is well represented by the $1 / 7$ power profile. From Eq. 8.24 the ratio of average flow velocity to centerline velocity is 0.817 .

Distinguish two cases, depending on whether velocity is measured at the centerline.
Case 1: Measure velocity at the duct centerline, plus at ($k-1$) other locations.
For $k=1$, the sole measurement is at the duct centerline. This measures the centerline velocity U, which is $1 / 0.817=1.22$ times the average flow velocity ${ }^{-}$. Thus the volume flow rate estimated by this 1 -point measurement is 22 percent larger than the true value.

For $k=2$, the duct is divided into two segments of equal area. The centerline velocity is measured and assigned the half of the duct area surrounding the centerline. The second measurement point is located at the midpoint of the remaining half of the duct area. Thus this point is located at the radius that encloses $3 / 4$ of the duct area, or $r_{2} / R=(3 / 4)^{1 / 2}=0.866$, as shown on the attached spreadsheet. The velocity ratio at this point is $\bar{u} / U=0.92$. Averaging the segmental flow rates gives $(1.22+0.92) / 2=1.07$. Thus the volume flow rate estimated by this 2 -point measurement is 7 percent high.

For $k=3$, the duct is divided into three portions of equal area. The centerline velocity is measured and assigned the one-third of the duct area surrounding the centerline. The second measurement point is located at the midpoint of the second one-third of the duct area. This point is located at the radius that encloses half the duct area, or at $r_{2} / R=(1 / 2)^{1 / 2}=0.707$. The third measurement point is located at the midpoint of the third one-third of the duct area. This point is located at the radius enclosing $5 / 6$ of the duct area, or at $r_{3} / R=(5 / 6)^{1 / 2}=0.913$.

Results of calculations for $k=4$ and 5 are also given on the spreadsheet.
Case 2: Measure velocity at k locations, not including the centerline.
For $k=1$, the radius is chosen at half the duct area. Thus $r_{1} / R=(1 / 2)^{1 / 2}=0.707, \bar{u} / U=$ 0.839 , and $\bar{u} I^{-}=1.03$, or about 3 percent too high, as shown on the spreadsheet.

For $k=2$, the duct is divided into two equal areas. The first measurement is made at the midpoint of the inner area, where the radius includes one fourth of the total area. The second is made at the midpoint of the outer area, where the radius includes three fourths of the total duct area. The results are shown; the flow rate estimate is high by about 1.4 percent.

For $k=3$, the duct is divided into three equal areas. The first measurement is made at the midpoint of the inner $1 / 3$ of the duct area, where the radius includes $1 / 6$ of the total area. The second is made at the midpoint of the second $1 / 3$ of the duct area, where the radius includes $1 / 2$ of the total duct area. The third is made at the midpoint of the third $1 / 3$ of the duct area, where the radius includes $5 / 6$ of the total duct area. The results are shown; the flow rate estimate is high by about 0.9 percent.

Results of calculations for $k=4$ and 5 also are given on the spreadsheet.
Remarkably, Case 2 gives less than 2 percent error for any number of locations.

$$
V_{\text {bar }} I U=0.817 \quad n=7 \quad k=\text { Number of measurement points }
$$

Case 1: Measure at centerline plus at $(k-1)$ other locations

k	i	r_{1} / R	u / U	$u / V_{\text {bar }}$	(\%) Error	k	i	r_{1} / R	u/U	$u N_{\text {bar }}$	$\begin{aligned} & \text { (\%) } \\ & \text { Error } \end{aligned}$
1	1	0.000	1.000	1.22	22.4	1	1	0.707	0.839	1.03	2.7
2	1	0.000	1.000	1.22		2	1	0.500	0.906	1.11	
	2	0.866	0.750	0.92			2	0.866	0.750	0.92	
				1.07	7.2					1.01	1.4
3	1	0.000	1.000	1.22		3	1	0.408	0.928	1.14	
	2	0.707	0.839	1.03			2	0.707	0.839	1.03	
	3	0.913	0.706	0.864			3	0.913	0.706	0.86	
				1.04	3.9					1.01	0.9
4	1	0.000	1.000	1.22		4	1	0.354	0.940	1.15	
	2	0.612	0.873	1.07			2	0.612	0.873	1.07	
	3	0.791	0.800	0.98			3	0.791	0.800	0.98	
	4	0.935	0.676	0.828			4	0.935	0.676	0.83	
				1.03	2.5					1.01	0.7
5	1	0.000	1.000	1.22		5	1	0.316	0.947	1.16	
	2	0.548	0.893	1.09			2	0.548	0.893	1.09	
	3	0.707	0.839	1.03			3	0.707	0.839	1.03	
	4	0.837	0.772	0.945			4	0.837	0.772	0.95	
	5	0.949	0.654	0.801			5	0.949	0.654	0.80	
				1.02	1.8					1.01	0.5

	Case 1	Case 2
k	$e(\%)$	$e(\%)$
1	22.4	2.7
2	7.2	1.4
3	3.9	0.9
4	2.5	0.7
5	1.8	0.5

Open-Ended Problem Statement: The chilled-water pipeline system that provides air conditioning for the Purdue University campus is described in Problem 8.158. The pipe diameter is selected to minimize total cost (capital cost plus operating cost). Annualized costs are compared, since capital cost occurs once and operating cost continues for the life of the system. The optimum diameter depends on both cost factors and operating conditions; the analysis must be repeated when these variables change. Perform a pipeline optimization analysis. Solve Problem 8.158 arranging your calculations to study the effect of pipe diameter on annual pumping cost. (Assume friction factor remains constant.) Obtain an expression for total annual cost per unit delivery (e.g., dollars per cubic meter), assuming construction cost varies as the square of pipe diameter. Obtain an analytic relation for the pipe diameter that yields minimum total cost per unit delivery. Assume the present chilledwater pipeline was optimized for a 20 -year life with 5 percent annual interest. Repeat the optimization for a design to operate at 30 percent larger flow rate. Plot the annual cost for electrical energy for pumping and the capital cost, using the flow conditions of Problem 8.158 , with pipe diameter varied from 300 to 900 mm . Show how the diameter may be chosen to minimize total cost. How sensitive are the results to interest rate?
(From Problem 8.158: The pipe makes a loop 3 miles in length. The pipe diameter is 2 ft and the material is steel. The maximum design volume flow rate is $11,200 \mathrm{gpm}$. The circulating pump is driven by an electric motor. The efficiencies of pump and motor are η_{p} $=0.80$ and $\eta_{m}=0.90$, respectively. Electricity cost is $\$ 0.067 /(\mathrm{kW} \cdot \mathrm{hr})$.)
Analysis: From Problem 8.158, the electricar enecgy for pumping costs $\$ n 4,000$ per year for 11,200 gallons per minute circulation. The present line, with $D=24 \mathrm{in}$, is optimized for this flow rate, $\dot{w}=Q \Delta p$, so $\dot{W} / a=\Delta p$.

The optimum pipe diameter minimizes to tal annualized cost, for constraction and aperation of the pipeline, $c_{t}=c_{c}+c_{p}$. construetion cost c_{c} is a pne-time cost. Annualized pumping cost C_{p} is computed by summing the present worth of each annual pumping cost aver the lifitine of the pipeline. For 20 seas at 5 percent per year, spof $=13,1$ (see spreadsheet), costs may be expressed in thrms of dianeter as

$$
\begin{equation*}
C_{t}=C_{C}+C_{p}=K_{c} D^{2}+\frac{K_{p}}{D^{5}} \tag{1}
\end{equation*}
$$

For the optincesi diameter, $d C_{t / d D}=2 K_{C} D-5 K_{P} D^{-6}=0$, so

$$
K_{c}=\frac{5 K_{p}}{2 D}=\frac{5 C_{p}}{2 D^{2}}=\frac{5}{2} \times(12.1)^{\frac{1}{4} / 74,000 \times \frac{1}{\left.(24)^{2} i^{2}\right)^{2}}}=\frac{49890 / \mathrm{m}^{2}}{}
$$

Fromequ,

Thus

> Calculations with these values are shown on the sprecedshet.

Ta optimize at a new, larger fewrate, note $c_{P} \sim \Delta p \sim f \frac{L}{D} \frac{\bar{v}^{2}}{2}=f \leq \frac{P}{2}\left(\frac{Q}{A}\right)^{2} \sim f Q^{2}$

$D=25.9$ in., as shown on the second plot.
Results are not to sensitive to interest rate; only Kpvaries. Dopt $\rightarrow 25$ in for $i=15 \%$.

	Annual interest rate (\%)			
$i=$	5	10	15	20
Year	pwf	pwf	pwf	pwf
1	1.00	1.00	1.00	1.00
2	0.952	0.909	0.870	0.833
3	0.907	0.826	0.756	0.694
4	0.864	0.751	0.658	0.579
5	0.823	0.683	0.572	0.482
6	0.784	0.621	0.497	0.402
7	0.746	0.564	0.432	0.335
8	0.711	0.513	0.376	0.279
9	0.677	0.467	0.327	0.233
10	0.645	0.424	0.284	0.194
11	0.614	0.386	0.247	0.162
12	0.585	0.350	0.215	0.135
13	0.557	0.319	0.187	0.112
14	0.530	0.290	0.163	0.0935
15	0.505	0.263	0.141	0.0779
16	0.481	0.239	0.123	0.0649
17	0.458	0.218	0.107	0.0541
18	0.436	0.198	0.0929	0.0451
19	0.416	0.180	0.0808	0.0376
20	0.396	0.164	0.0703	0.0313
Sum:	13.1	9.4	7.2	5.8

20-Year Sum of Present Worth Factors				

$K_{c}=$	9,890	$\$ / \mathrm{in} .^{2}$	Cost of const
$K_{p}=$	$1.81 E+13$	$\$ \mathrm{in}^{5}$	Present worth
Pipe	Cost of	Cost to	
Diameter,	Pumping,	Construct,	Total Cost,
D (in.)	$C_{p}\left(10^{6} \$\right)$	$C_{c}\left(10^{6} \$\right)$	$C_{t}\left(10^{6} \$\right)$

Problem 8.185

9.1 A model of a river towboat is to be tested at $1: 18$ scale. The boat is designed to travel at $3.5 \mathrm{~m} / \mathrm{s}$ in fresh water at $10^{\circ} \mathrm{C}$. Estimate the distance from the bow where transition occurs. Where should transition be stimulated on the model towboat?

Given: Model of riverboat
Find: Distance at which transition occurs

Solution:

Basic equation $\quad \operatorname{Re}_{\mathrm{X}}=\frac{\rho \cdot \mathrm{U} \cdot \mathrm{x}}{\mu}=\frac{\mathrm{U} \cdot \mathrm{x}}{\nu} \quad$ and transition occurs at about $\operatorname{Re}_{\mathrm{x}}=5 \times 10^{5}$
For water at $10^{\circ} \mathrm{C} \quad \nu=1.30 \times 10^{-6} \cdot \frac{\mathrm{~m}^{2}}{\mathrm{~s}} \quad$ (Table A.8) \quad and we are given $\quad \mathrm{U}=3.5 \cdot \frac{\mathrm{~m}}{\mathrm{~s}}$
Hence

$$
\mathrm{x}_{\mathrm{p}}=\frac{\nu \cdot \operatorname{Re}_{\mathrm{X}}}{\mathrm{U}}
$$

$x_{p}=0.186 m$
$x_{p}=18.6 \cdot \mathrm{~cm}$
For the model

$$
\mathrm{x}_{\mathrm{m}}=\frac{\mathrm{x}_{\mathrm{p}}}{18}
$$

$\mathrm{x}_{\mathrm{m}}=0.0103 \mathrm{~m}$
$\mathrm{x}_{\mathrm{m}}=10.3 \cdot \mathrm{~mm}$
9.2 The roof of a minivan is approximated as a horizontal flat plate.

Plot the length of the laminar boundary layer as a function of mini-
van speed, V, as the minivan accelerates from 10 mph to 90 mph .

Given: Minivan traveling at various speeds
Find: Plot of boundary layer length as function of speed

Solution:

Governing equations:

The critical Reynolds number for transition to turbulence is

$$
R e_{\text {crit }}=\quad \rho V L_{\text {crit }} / \mu=500000
$$

The critical length is then

$$
L_{\text {crit }}=500000 \mu / V \rho
$$

Tabulated or graphical data:

μ	3.79E-07	lbf.s/ft ${ }^{2}$
$\rho=$	0.00234	slug/ft ${ }^{3}$
(Table A.9, $68^{\circ} \mathrm{F}$)		

Computed results:

$\boldsymbol{V}(\mathbf{m p h})$	$\boldsymbol{L}_{\text {crit }} \mathbf{(f t)}$
10	5.52
13	4.42
15	3.68
18	3.16
20	2.76
30	1.84
40	1.38
50	1.10
60	0.920
70	0.789
80	0.690
90	0.614

Problem 9.3

9.3 The takeoff speed of a Boeing 757 is $260 \mathrm{~km} / \mathrm{hr}$. At approximately what distance will the boundary layer on the wings become turbulent? If it cruises at $850 \mathrm{~km} / \mathrm{hr}$ at $10,000 \mathrm{~m}$, at approximately what distance will the boundary layer on the wings now become turbulent?

Given: Boeing 757
Find: Point at which transition occurs; Same point at $10,000 \mathrm{~m}$

Solution:

Basic equation $\quad \operatorname{Re}_{\mathrm{X}}=\frac{\rho \cdot \mathrm{U} \cdot \mathrm{x}}{\mu}=\frac{\mathrm{U} \cdot \mathrm{x}}{\nu}$ and transition occurs at about $\operatorname{Re}_{\mathrm{X}}=5 \times 10^{5}$
For air at $20^{\circ} \mathrm{C} \quad \nu=1.50 \times 10^{-5} \cdot \frac{\mathrm{~m}^{2}}{\mathrm{~s}}$
(Table A.10)
$\mathrm{x}_{\mathrm{p}}=0.104 \mathrm{~m}$
At $10,000 \mathrm{~m}$

$$
\mathrm{x}_{\mathrm{p}}=\frac{\nu \cdot \mathrm{Re}_{\mathrm{X}}}{\mathrm{U}}
$$

(Table A.3) and we are given
$\mathrm{U}=260 \cdot \frac{\mathrm{~km}}{\mathrm{hr}}$

Hence

$$
\mathrm{T}=223.3 \cdot \mathrm{~K}
$$

$\mathrm{x}_{\mathrm{p}}=10.4 \mathrm{~cm}$
$\mathrm{T}=-49.8^{\circ} \mathrm{C}$
We need to estimate v or μ at this temperature. From Appendix A-3

$$
\mu=\frac{\mathrm{b} \cdot \sqrt{\mathrm{~T}}}{1+\frac{\mathrm{S}}{\mathrm{~T}}}
$$

$$
\mathrm{b}=1.458 \times 10^{-6} \cdot \frac{\mathrm{~kg}}{\mathrm{~m} \cdot \mathrm{~s} \cdot \mathrm{~K}^{\frac{1}{2}}}
$$

$$
\mathrm{S}=110.4 \cdot \mathrm{~K}
$$

Hence $\quad \mu=\frac{b \cdot \sqrt{T}}{1+\frac{S}{T}}$
$\mu=1.458 \times 10^{-5} \frac{\mathrm{~N} \cdot \mathrm{~s}}{\mathrm{~m}^{2}}$

For air at 10,000 m (Table A.3)

$$
\begin{array}{llll}
& \frac{\rho}{\rho_{\mathrm{SL}}}=0.3376 & \rho_{\mathrm{SL}}=1.225 \cdot \frac{\mathrm{~kg}}{\mathrm{~m}^{3}} & \rho=0.3376 \cdot \rho_{\mathrm{SL}} \\
\nu=\frac{\mu}{\rho} & \nu=3.53 \times 10^{-5} \frac{\mathrm{~m}^{2}}{\mathrm{~s}} & \text { and we are given } & \mathrm{U}=850 \cdot \frac{\mathrm{~km}}{\mathrm{hr}} \\
\text { Hence } & \mathrm{x}_{\mathrm{p}}=\frac{\nu \cdot \mathrm{Re}_{\mathrm{x}}}{\mathrm{U}} & \mathrm{x}_{\mathrm{p}}=0.0747 \mathrm{~m} & \mathrm{x}_{\mathrm{p}}=7.47 \mathrm{~cm}
\end{array}
$$

Problem 9.4

9.4 For flow around a sphere the boundary layer becomes turbulent around $R e_{D} \approx 2.5 \times 10^{5}$. Find the speeds at which (a) an American golf ball ($D=1.68 \mathrm{in}$.), (b) a British golf ball ($D=41.1 \mathrm{~mm}$), and (c) a soccer ball ($D=8.75 \mathrm{in}$.) develop turbulent boundary layers. Assume standard atmospheric conditions.

Given: Flow around American and British golf balls, and soccer ball
Find: Speed at which boundary layer becomes turbulent

Solution:

Basic equation	$\operatorname{Re}_{\mathrm{D}}=\frac{\rho \cdot \mathrm{U} \cdot \mathrm{D}}{\mu}$	$\frac{\mathrm{U} \cdot \mathrm{D}}{\nu}$	and transition occurs at about		$\mathrm{Re}_{\mathrm{D}}=2.5 \times 10^{5}$	
For air	$\nu=1.62 \times 10$	$\cdot \frac{\mathrm{s}}{}$	(Table A.9)			
For the American golf ball	$\mathrm{D}=1.68 \cdot \mathrm{in}$	Hence	$\mathrm{U}=\frac{\nu \cdot \mathrm{Re}_{\mathrm{D}}}{\mathrm{D}}$	$\mathrm{U}=289 \cdot \frac{\mathrm{ft}}{\mathrm{s}}$	$\mathrm{U}=197 \mathrm{mph}$	$\mathrm{U}=88.2 \frac{\mathrm{~m}}{\mathrm{~s}}$
For the British golf ball	$\mathrm{D}=41.1 \cdot \mathrm{~mm}$	Hence	$\mathrm{U}=\frac{\nu \cdot \mathrm{Re}_{\mathrm{D}}}{\mathrm{D}}$	$\mathrm{U}=300 \cdot \frac{\mathrm{ft}}{\mathrm{s}}$	$\mathrm{U}=205 \mathrm{mph}$	$\mathrm{U}=91.5 \frac{\mathrm{~m}}{\mathrm{~s}}$
For soccer ball	$\mathrm{D}=8.75 \cdot \mathrm{in}$	Hence	$\mathrm{U}=\frac{\nu \cdot R \mathrm{e}_{\mathrm{D}}}{\mathrm{D}}$	$\mathrm{U}=55.5 \cdot \frac{\mathrm{ft}}{\mathrm{s}}$	$\mathrm{U}=37.9 \mathrm{mph}$	$\mathrm{U}=16.9 \frac{\mathrm{~m}}{\mathrm{~s}}$

Problem 9.5

9.5 A student is to design an experiment involving dragging a sphere through a tank of fluid to illustrate (a) "creeping flow" $\left(R e_{D}<1\right)$ and (b) flow for which the boundary layer becomes turbulent ($R e_{D} \approx 2.5 \times 10^{5}$). She proposes to use a smooth sphere of diameter 1 cm in SAE 10 oil at room temperature. Is this realistic for both cases? If either case is unrealistic, select an alternative reasonable sphere diameter and common fluid for that case.

Given: Experiment with 1 cm diameter sphere in SAE 10 oil
Find: Reasonableness of two flow extremes

Solution:

Basic equation $\quad \operatorname{Re}_{\mathrm{D}}=\frac{\rho \cdot \mathrm{U} \cdot \mathrm{D}}{\mu}=\frac{\mathrm{U} \cdot \mathrm{D}}{\nu}$ and transition occurs at about
For SAE $10 \quad v=1.1 \times 10^{-4} \cdot \frac{\mathrm{~m}^{2}}{\mathrm{~s}} \quad$ (Fig. A.3 at $20^{\circ} \mathrm{C}$) and $\quad \mathrm{D}=1 \cdot \mathrm{~cm}$

| For | $R_{D}=1$ | we find | $U=\frac{\nu \cdot R e_{D}}{D}$ |
| :--- | :--- | :--- | :--- |$\quad U=0.011 \cdot \frac{m}{\mathrm{~s}} \quad U=1.10 \cdot \frac{\mathrm{~cm}}{\mathrm{~s}} \quad$ which is reasonable

Note that for $\quad \operatorname{Re}_{\mathrm{D}}=2.5 \times 10^{5} \quad$ we need to increase the sphere diameter D by a factor of about 1000, or reduce the viscosity $v \mathrm{~b}$ the same factor, or some combination of these. One possible solution is
For water $\quad v=1.01 \times 10^{-6} \cdot \frac{\mathrm{~m}^{2}}{\mathrm{~s}} \quad$ (Table A.8 at $20^{\circ} \mathrm{C}$) and $\quad \mathrm{D}=10 \cdot \mathrm{~cm}$
For

$$
\operatorname{Re}_{\mathrm{D}}=2.5 \times 10^{5} \quad \text { we find } \quad \mathrm{U}=\frac{\nu \cdot \mathrm{Re}_{\mathrm{D}}}{\mathrm{D}}
$$

$\mathrm{U}=2.52 \cdot \frac{\mathrm{~m}}{\mathrm{~s}}$
which is reasonable

Hence one solution is to use a 10 cm diameter sphere in a water tank.

Problem 9.6

9.6 A $4 \mathrm{ft} \times 8 \mathrm{ft}$ sheet of plywood is attached to the roof of your vehicle after being purchased at the hardware store. At what speed (mph) will the boundary layer first start becoming turbulent? At what speed is about 90% of the boundary layer turbulent?

Given: Sheet of plywood attached to the roof of a car
Find: Speed at which boundary layer becomes turbulent; Speed at which 90% is turbulent

Solution:

Basic equation $\quad \operatorname{Re}_{\mathrm{X}}=\frac{\rho \cdot \mathrm{U} \cdot \mathrm{x}}{\mu}=\frac{\mathrm{U} \cdot \mathrm{x}}{\nu} \quad$ and transition occurs at about $\quad \operatorname{Re}_{\mathrm{X}}=5 \times 10^{5}$
For air $\nu=1.62 \times 10^{-4} \cdot \frac{\mathrm{ft}^{2}}{\mathrm{~s}} \quad$ (Table A.9)
For the plywood $\quad x=8 \cdot f t \quad$ Hence $\quad U=\frac{\nu \cdot R_{x}}{x} \quad U=10.1 \cdot \frac{\mathrm{ft}}{\mathrm{s}} \quad \mathrm{U}=6.90 \cdot \mathrm{mph}$
When 90% of the boundary layer is turbulent $x=0.1 \times 8 \cdot \mathrm{ft} \quad$ Hence $\quad U=\frac{\nu \cdot \operatorname{Re}_{x}}{x} \quad U=101 \cdot \frac{\mathrm{ft}}{\mathrm{s}} \quad \mathrm{U}=69.0 \cdot \mathrm{mph}$
9.7 The extent of the laminar boundary layer on the surface of an aircraft or missile varies with altitude. For a given speed, will the laminar boundary-layer length increase or decrease with altitude? Why? Plot the ratio of laminar boundary-layer length at altitude z, to boundary-layer length at sea level, as a function of z, up to altitude $z=30 \mathrm{~km}$, for a standard atmosphere.

Given: Aircraft or missile at various altitudes
Find: Plot of boundary layer length as function of altitude

Solution:

Governing equations:

The critical Reynolds number for transition to turbulence is

$$
R e_{\text {crit }}=\rho U L_{\text {crit }} / \mu=500000
$$

The critical length is then

$$
L_{\text {crit }}=500000 \mu / U \rho
$$

Let L_{0} be the length at sea level (density ρ_{0} and viscosity μ_{0}). Then

$$
L_{\text {crit }} / L_{0}=\left(\mu / \mu_{0}\right) /\left(\rho / \rho_{0}\right)
$$

The viscosity of air increases with temperature so generally decreases with elevation; the density also decreases with elevation, but much more rapidly.
Hence we expect that the length ratio increases with elevation

For the density ρ, we use data from Table A.3.
For the viscosity μ, we use the Sutherland correlation (Eq. A.1)

$$
\begin{aligned}
& \mu=b T^{1 / 2} /(1+S / T) \\
& b=1.46 \mathrm{E}-06 \mathrm{~kg} / \mathrm{m} \cdot \mathrm{~s} \cdot \mathrm{~K}^{1 / 2} \\
& S=110.4 \mathrm{~K}
\end{aligned}
$$

Computed results:

$\mathbf{Z} \mathbf{(k m})$	$\boldsymbol{T} \mathbf{(K)}$	$\boldsymbol{\rho} / \boldsymbol{\rho}_{\mathbf{0}}$	$\mu / \mu_{\mathbf{0}}$	$\mathbf{L}_{\text {crit }} \mathbf{L}_{\mathbf{0}}$
0.0	288.2	1.0000	1.000	1.000
0.5	284.9	0.9529	0.991	1.04
1.0	281.7	0.9075	0.982	1.08
1.5	278.4	0.8638	0.973	1.13
2.0	275.2	0.8217	0.965	1.17
2.5	271.9	0.7812	0.955	1.22
3.0	268.7	0.7423	0.947	1.28
3.5	265.4	0.7048	0.937	1.33
4.0	262.2	0.6689	0.928	1.39
4.5	258.9	0.6343	0.919	1.45
5.0	255.7	0.6012	0.910	1.51
6.0	249.2	0.5389	0.891	1.65
7.0	242.7	0.4817	0.872	1.81
8.0	236.2	0.4292	0.853	1.99
9.0	229.7	0.3813	0.834	2.19
10.0	223.3	0.3376	0.815	2.41
11.0	216.8	0.2978	0.795	2.67
12.0	216.7	0.2546	0.795	3.12
13.0	216.7	0.2176	0.795	3.65
14.0	216.7	0.1860	0.795	4.27
15.0	216.7	0.1590	0.795	5.00
16.0	216.7	0.1359	0.795	5.85
17.0	216.7	0.1162	0.795	6.84
18.0	216.7	0.0993	0.795	8.00
19.0	216.7	0.0849	0.795	9.36
20.0	216.7	0.0726	0.795	10.9
22.0	218.6	0.0527	0.800	15.2
24.0	220.6	0.0383	0.806	21.0
26.0	222.5	0.0280	0.812	29.0
28.0	224.5	0.0205	0.818	40.0
30.0	226.5	0.0150	0.824	54.8

Length of Laminar Boundary Layer versus Elevation

Problem 9.8

9.8 Plot on one graph the length of the laminar boundary layer on a flat plate, as a function of freestream velocity, for (a) water and standard air at (b) sea level and (c) 10 km altitude. Use log-log axes, and compute data for the boundary-layer length ranging from 0.01 m to 10 m .

Given: Laminar boundary layer (air \& water)

Find: Plot of boundary layer length as function of speed (at various altitudes for air)

Solution:

Governing equations:

The critical Reynolds number for transition to turbulence is

$$
R e_{\text {crit }}=U L_{\text {crit }} / \mu=500000
$$

The critical length is then

$$
L_{\text {crit }}=500000 \mu / U \rho
$$

For air at sea level and 10 km , we can use tabulated data for density ρ from Table A.3.
For the viscosity μ, use the Sutherland correlation (Eq. A.1)

$$
\begin{aligned}
\mu & =b T^{1 / 2} /(1+S / T) \\
b & =1.46 \mathrm{E}-06 \mathrm{~kg} / \mathrm{m} \cdot \mathrm{~s} \cdot \mathrm{~K}^{1 / 2} \\
S & =110.4 \mathrm{~K}
\end{aligned}
$$

Air (sea level, $T=288.2 \mathrm{~K}$):
$\rho=1.225 \mathrm{~kg} / \mathrm{m}^{3}$
(Table A.3)
$\mu=1.79 \mathrm{E}-05 \mathrm{~N} . \mathrm{s} / \mathrm{m}^{2}$
(Sutherland)

Air (10 K, $T=223.3 \mathrm{~K}): \quad$ Water $\left(20^{\circ} \mathrm{C}\right)$:
$\rho=0.414 \mathrm{~kg} / \mathrm{m}^{3} \rho=998$ slug/ft ${ }^{3}$
(Table A.3) $\quad \mu=1.01 \mathrm{E}-03 \mathrm{~N} . \mathrm{s} / \mathrm{m}^{2}$
$\mu=1.46 \mathrm{E}-05 \mathrm{~N} . \mathrm{s} / \mathrm{m}^{2} \quad$ (Table A.8) (Sutherland)

Computed results:

$\boldsymbol{U}(\mathbf{m} / \mathbf{s})$	Water $\boldsymbol{L}_{\text {crit }}(\mathbf{m})$	Air (Sea level) $\boldsymbol{L}_{\text {crit }} \mathbf{(m)}$	$\boldsymbol{L}_{\text {crit }}(\mathbf{1 0} \mathbf{~ k m})$
0.05	10.12	146.09	352.53
0.10	5.06	73.05	176.26
0.5	1.01	14.61	35.25
1.0	0.506	7.30	17.63
5.0	0.101	1.46	3.53
15	0.0337	0.487	1.18
20	0.0253	0.365	0.881
25	0.0202	0.292	0.705
30	0.0169	0.243	0.588
50	0.0101	0.146	0.353
100	0.00506	0.0730	0.176
200	0.00253	0.0365	0.0881
1000	0.00051	0.0073	0.0176

Length of Laminar Boundary Layer for Water and Air

Problem 9.9
Given: Sinusoidal velocity profile for laminar boundary layer

$$
u=A \sin \left(B_{y}\right)+c
$$

Find: (a) state threc appicabic boundary conditions.
(b) Evaluate A, B and C.

Solution: For the boundary layer, at
(1) $y=0, u=0$ (no sip)
(2) $y=5, \quad u=0$
(3)

$$
\frac{\partial u}{\partial y}=0 \text { (nosnear stress) }
$$

Applying these bocundary conditions.
(0) $u(0)=A \sin (0)+c=0 \quad \therefore c=0$
(c) $u(\delta)=A \sin (B \delta)=V$

$$
\frac{\partial u}{\partial y}=A B \cos \left(B_{y}\right)
$$

(3) $\left.\quad \frac{\partial u}{\partial y}\right)_{y=\delta}=A B \cos (B \delta)=0 \quad \therefore B \delta=\frac{\pi}{2} \quad$ or $B=\frac{\pi}{2 \delta}$

Then from (2), $A \sin (B C)=A \sin \left(\frac{\pi}{Z}\right)=A=0$, and then

$$
\begin{aligned}
& U=U \sin \left(\frac{\pi}{2} \frac{U}{U}\right) \\
& A=U, B=\frac{\pi}{2 \delta}, c=0
\end{aligned}
$$

Problem 9.10
Given: Linear, parabolic, and sinusoidal velocity profiles for laminar boundary lager.

Linear $\quad \frac{u}{U}=\frac{y}{\delta}$
Parabolic $\quad \frac{u}{b}=2\left(\frac{y}{\delta}\right)-\left(\frac{y}{\xi}\right)^{2} \quad \operatorname{sinusoidal} \quad \frac{u}{U}=\sin \frac{\pi}{2}\left(\frac{y}{\xi}\right)$
Find: Compare shapes by piloting $\frac{I}{f}$ vs. $\frac{u}{0}$.
Solution:

9.11 An approximation for the velocity profile in a laminar boundary layer is

$$
\frac{u}{U}=\frac{3}{2} \frac{y}{\delta}-\frac{1}{2}\left(\frac{y}{\delta}\right)^{3}
$$

Does this expression satisfy boundary conditions applicable to the laminar boundary-layer velocity profile? Evaluate δ^{*} / δ and θ / δ.

Given: Laminar boundary layer profile
Find:
If it satisfies BC's; Evaluate δ^{*} / δ and θ / δ

Solution:

The boundary layer equation is

$$
\frac{u}{U}=\frac{3}{2} \frac{y}{\delta}-\frac{1}{2}\left(\frac{y}{\delta}\right)^{3} \text { for which } u=U \text { at } y=\delta
$$

The BC's are

$$
u(0)=\left.0 \quad \frac{d u}{d y}\right|_{y=\delta}=0
$$

At $y=0$

At $y=\delta$

$$
\frac{u}{U}=\frac{3}{2}(0)-\frac{1}{2}(0)^{3}=0
$$

$$
\frac{d u}{d y}=\left.U\left(\frac{3}{2} \frac{1}{\delta}-\frac{3}{2} \frac{y^{2}}{\delta^{3}}\right)\right|_{y=\delta}=U\left(\frac{3}{2} \frac{1}{\delta}-\frac{3}{2} \frac{\delta^{2}}{\delta^{3}}\right)=0
$$

For δ^{*} :

$$
\delta^{*}=\int_{0}^{\infty}\left(1-\frac{u}{U}\right) d y=\int_{0}^{\delta}\left(1-\frac{u}{U}\right) d y
$$

Then

$$
\frac{\delta^{*}}{\delta}=\frac{1}{\delta} \int_{0}^{\delta}\left(1-\frac{u}{U}\right) d y=\int_{0}^{1}\left(1-\frac{u}{U}\right) d\left(\frac{y}{\delta}\right)=\int_{0}^{1}\left(1-\frac{u}{U}\right) d \eta
$$

with
$\frac{u}{U}=\frac{3}{2} \eta-\frac{1}{2} \eta^{3}$

Hence
$\frac{\delta^{*}}{\delta}=\int_{0}^{1}\left(1-\frac{u}{U}\right) d \eta=\int_{0}^{1}\left(1-\frac{3}{2} \eta+\frac{1}{2} \eta^{3}\right) d \eta=\left[\eta-\frac{3}{4} \eta^{2}+\frac{1}{8} \eta^{4}\right]_{0}^{1}=\frac{3}{8}=0.375$

For θ :

$$
\theta=\int_{0}^{\infty} \frac{u}{U}\left(1-\frac{u}{U}\right) d y=\int_{0}^{\delta} \frac{u}{U}\left(1-\frac{u}{U}\right) d y
$$

Then

$$
\frac{\theta}{\delta}=\frac{1}{\delta} \int_{0}^{\delta} \frac{u}{U}\left(1-\frac{u}{U}\right) d y=\int_{0}^{1} \frac{u}{U}\left(1-\frac{u}{U}\right) d\left(\frac{y}{\delta}\right)=\int_{0}^{1} \frac{u}{U}\left(1-\frac{u}{U}\right) d \eta
$$

Hence $\frac{\theta}{\delta}=\int_{0}^{1} \frac{u}{U}\left(1-\frac{u}{U}\right) d \eta=\int_{0}^{1}\left(\frac{3}{2} \eta-\frac{1}{2} \eta^{3}\right)\left(1-\frac{3}{2} \eta+\frac{1}{2} \eta^{3}\right) d \eta=\int_{0}^{1}\left(\frac{3}{2} \eta-\frac{9}{4} \eta^{2}-\frac{1}{2} \eta^{3}+\frac{3}{2} \eta^{4}-\frac{1}{4} \eta^{6}\right) d \eta$

$$
\frac{\theta}{\delta}=\left[\frac{3}{4} \eta^{2}-\frac{3}{4} \eta^{3}-\frac{1}{8} \eta^{4}+\frac{3}{10} \eta^{5}-\frac{1}{28} \eta^{7}\right]_{0}^{1}=\frac{39}{280}=0.139
$$

9.12 An approximation for the velocity profile in a laminar boundary layer is

$$
\frac{u}{U}=2 \frac{y}{\delta}-2\left(\frac{y}{\delta}\right)^{3}+\left(\frac{y}{\delta}\right)^{4}
$$

Does this expression satisfy boundary conditions applicable to the laminar boundary-layer velocity profile? Evaluate $\delta * / \delta$ and θ / δ.

Given: Laminar boundary layer profile

Find: If it satisfies BC's; Evaluate δ^{*} / δ and θ / δ

Solution:

The boundary layer equation is

$$
\frac{u}{U}=2 \frac{y}{\delta}-2\left(\frac{y}{\delta}\right)^{3}+\left(\frac{y}{\delta}\right)^{4} \text { for which } u=U \text { at } y=\delta
$$

The BC's are

$$
u(0)=\left.0 \quad \frac{d u}{d y}\right|_{y=\delta}=0
$$

At $y=0$

$$
\frac{u}{U}=2(0)-2(0)^{3}+(0)^{4}=0
$$

At $y=\delta$

$$
\frac{d u}{d y}=\left.U\left(2 \frac{1}{\delta}-6 \frac{y^{2}}{\delta^{3}}+4 \frac{y^{3}}{\delta^{4}}\right)\right|_{y=\delta}=U\left(2 \frac{1}{\delta}-6 \frac{\delta^{2}}{\delta^{3}}+4 \frac{\delta^{3}}{\delta^{4}}\right)=0
$$

For δ^{*} :

$$
\delta^{*}=\int_{0}^{\infty}\left(1-\frac{u}{U}\right) d y=\int_{0}^{\delta}\left(1-\frac{u}{U}\right) d y
$$

Then

$$
\frac{\delta^{*}}{\delta}=\frac{1}{\delta} \int_{0}^{\delta}\left(1-\frac{u}{U}\right) d y=\int_{0}^{1}\left(1-\frac{u}{U}\right) d\left(\frac{y}{\delta}\right)=\int_{0}^{1}\left(1-\frac{u}{U}\right) d \eta
$$

with

$$
\frac{u}{U}=2 \eta-2 \eta^{3}+\eta^{4}
$$

Hence

$$
\frac{\delta^{*}}{\delta}=\int_{0}^{1}\left(1-\frac{u}{U}\right) d \eta=\int_{0}^{1}\left(1-2 \eta+2 \eta^{3}-\eta^{4}\right) d \eta=\left[\eta-\eta^{2}+\frac{1}{2} \eta^{4}-\frac{1}{5} \eta^{5}\right]_{0}^{1}=\frac{3}{10}=0.3
$$

For θ.

$$
\theta=\int_{0}^{\infty} \frac{u}{U}\left(1-\frac{u}{U}\right) d y=\int_{0}^{\delta} \frac{u}{U}\left(1-\frac{u}{U}\right) d y
$$

Then

$$
\frac{\theta}{\delta}=\frac{1}{\delta} \int_{0}^{\delta} \frac{u}{U}\left(1-\frac{u}{U}\right) d y=\int_{0}^{1} \frac{u}{U}\left(1-\frac{u}{U}\right) d\left(\frac{y}{\delta}\right)=\int_{0}^{1} \frac{u}{U}\left(1-\frac{u}{U}\right) d \eta
$$

Hence

$$
\frac{\theta}{\delta}=\int_{0}^{1} \frac{u}{U}\left(1-\frac{u}{U}\right) d \eta=\int_{0}^{1}\left(2 \eta-\eta^{3}+\eta^{4}\right)\left(1-2 \eta+\eta^{3}-\eta^{4}\right) d \eta=\int_{0}^{1}\left(2 \eta-4 \eta^{2}-2 \eta^{3}+9 \eta^{4}-4 \eta^{5}-4 \eta^{6}+4 \eta^{7}-\eta^{8}\right) d \eta
$$

$$
\frac{\theta}{\delta}=\left[\eta^{2}-\frac{4}{3} \eta^{3}-\frac{1}{2} \eta^{4}+\frac{9}{5} \eta^{5}-\frac{4}{7} \eta^{7}+\frac{1}{2} \eta^{8}-\frac{1}{9} \eta^{9}\right]_{0}^{1}=\frac{37}{315}=0.117
$$

9.13 A simplistic laminar boundary-layer model is

$$
\begin{aligned}
& \frac{u}{U}=\sqrt{2} \frac{y}{\delta} \quad 0<y \leq \frac{\delta}{2} \\
& \frac{u}{U}=(2-\sqrt{2}) \frac{y}{\delta}+(\sqrt{2}-1) \quad \frac{\delta}{2}<y \leq \delta
\end{aligned}
$$

Does this expression satisfy boundary conditions applicable to the laminar boundary-layer velocity profile? Evaluate δ^{*} / δ and θ / δ.

Given: Laminar boundary layer profile
Find: If it satisfies BC's; Evaluate δ^{*} / δ and θ / δ

Solution:

The boundary layer equation is $\quad \frac{u}{U}=\sqrt{2} \frac{y}{\delta} \quad 0<y<\frac{\delta}{2}$

$$
\frac{u}{U}=(2-\sqrt{2}) \frac{y}{\delta}+(\sqrt{2}-1) \quad \frac{\delta}{2}<y<\delta \text { for which } u=U \text { at } y=\delta
$$

The BC's are

$$
u(0)=\left.0 \quad \frac{d u}{d y}\right|_{y=\delta}=0
$$

At $y=0$

$$
\frac{u}{U}=\sqrt{2}(0)=0
$$

At $y=\delta$

$$
\frac{d u}{d y}=\left.U\left[(2-\sqrt{2}) \frac{1}{\delta}\right]\right|_{y=\delta} \neq 0 \text { so it fails the outer } \mathrm{BC} \text {. }
$$

This simplistic distribution is a piecewise linear profile: The first half of the layer has velocity gradient $\sqrt{2} \frac{U}{\delta}=1.414 \frac{U}{\delta}$, and the second half has velocity gradient $(2-\sqrt{2}) \frac{U}{\delta}=0.586 \frac{U}{\delta}$. At $y=\delta$, we make another transition to zero velocity gradient.

For δ^{*} :

$$
\delta^{*}=\int_{0}^{\infty}\left(1-\frac{u}{U}\right) d y=\int_{0}^{\delta}\left(1-\frac{u}{U}\right) d y
$$

Then

$$
\frac{\delta^{*}}{\delta}=\frac{1}{\delta} \int_{0}^{\delta}\left(1-\frac{u}{U}\right) d y=\int_{0}^{1}\left(1-\frac{u}{U}\right) d\left(\frac{y}{\delta}\right)=\int_{0}^{1}\left(1-\frac{u}{U}\right) d \eta
$$

with

$$
\begin{aligned}
\frac{u}{U} & =\sqrt{2} \eta \quad 0<\eta<\frac{1}{2} \\
\frac{u}{U} & =(2-\sqrt{2}) \eta+(\sqrt{2}-1) \quad \frac{1}{2}<\eta<1
\end{aligned}
$$

Hence
$\frac{\delta^{*}}{\delta}=\int_{0}^{1}\left(1-\frac{u}{U}\right) d \eta=\int_{0}^{1 / 2}(1-\sqrt{2} \eta) d \eta+\int_{1 / 2}^{1}[1-(2-\sqrt{2}) \eta-(\sqrt{2}-1)] d \eta=\left[\frac{1}{2 \sqrt{2}}(\sqrt{2} \eta-1)^{2}\right]_{0}^{1 / 2}+\left[\frac{1}{2}(\eta-1)^{2}(\sqrt{2}-2)\right]_{1 / 2}^{1}$

$$
\frac{\delta^{*}}{\delta}=\left[\frac{1}{2}-\frac{\sqrt{2}}{8}\right]+\left[\frac{1}{4}-\frac{\sqrt{2}}{8}\right]=\frac{3}{4}-\frac{\sqrt{2}}{4}=0.396
$$

For θ.

$$
\theta=\int_{0}^{\infty} \frac{u}{U}\left(1-\frac{u}{U}\right) d y=\int_{0}^{\delta} \frac{u}{U}\left(1-\frac{u}{U}\right) d y
$$

$$
\frac{\theta}{\delta}=\frac{1}{\delta} \int_{0}^{\delta} \frac{u}{U}\left(1-\frac{u}{U}\right) d y=\int_{0}^{1} \frac{u}{U}\left(1-\frac{u}{U}\right) d\left(\frac{y}{\delta}\right)=\int_{0}^{1} \frac{u}{U}\left(1-\frac{u}{U}\right) d \eta
$$

Hence, after a LOT of work

$$
\begin{aligned}
& \frac{\theta}{\delta}=\int_{0}^{1} \frac{u}{U}\left(1-\frac{u}{U}\right) d \eta=\int_{0}^{1 / 2} \sqrt{2} \eta(1-\sqrt{2} \eta) d \eta+\int_{1 / 2}^{1}[((2-\sqrt{2}) \eta+(\sqrt{2}-1))(1-(2-\sqrt{2}) \eta-(\sqrt{2}-1))] d \eta \\
& \frac{\theta}{\delta}=\left[\sqrt{2} \eta^{2}\left(\frac{\sqrt{2} \eta}{3}-\frac{1}{2}\right)\right]_{0}^{1 / 2}+\left[\left(\frac{1}{3}(\sqrt{2}-2)(\eta-1)-\frac{1}{2}\right)(\sqrt{2}-2)(\eta-1)^{2}\right]_{1 / 2}^{1}=\frac{\sqrt{2}}{8}-\frac{1}{12}+\frac{\sqrt{2}}{24}=\frac{\sqrt{2}}{6}-\frac{1}{12}=0.152
\end{aligned}
$$

Given: "Power lacu" velocity profile for turbcelent boundary layer and parabolic profile tor laminar bounden layer,
"Power law" $\frac{u}{V}=\left(\frac{y}{\delta}\right)^{\prime}$ Parabolic $\frac{u}{V}=2\left(\frac{y}{\delta}\right)-\left(\frac{y}{\delta}\right)^{2}$
Find: Compare shapes by plotting $\frac{y}{\xi}$ vs. $\frac{L}{U}$.
Solution:

[Note that the "power law" profile gives an infinite value of duly at $y=0$, since

$$
\frac{d u}{d y}=\frac{d\left(\frac{u}{v}\right)}{d\left(\frac{y}{g}\right)}=\frac{1}{7} \frac{1}{\left(\frac{y}{\delta}\right)^{6}, 7} \rightarrow \infty \text { as } \frac{y}{\delta} \rightarrow 0 .
$$

Given: Linear, parabolic, and sinusoidal profiles used to represent the laininar boundary layer velocity profit.
Evaluate: the ratio θ / δ for each profit.
Solution:
Definition: $\theta=\int_{0}^{\delta} \frac{u}{0}\left(1-\frac{4}{0}\right) d y$ then,

$$
\left.\theta\right|_{\delta}=\frac{1}{\delta} \int_{0}^{\delta} \frac{u}{v}\left(1-\frac{u}{v}\right) d y=C_{0}^{1} \frac{u}{v}\left(1-\frac{u}{v}\right) d\left(\frac{y}{\delta}\right)=\int_{0}^{1} \frac{u}{v}\left(1-\frac{u}{v}\right) d \eta
$$

Linear profile $\quad \frac{u}{0}=\left.y\right|_{\delta}=\eta$

$$
\left.\left.\left.\theta\right|_{f}=\int_{0}^{1} \eta(1-\eta) d \eta=C_{0}^{1}\left(\eta-\eta^{2}\right) d \eta=\left[\frac{1}{2} \eta^{2}-\frac{1}{3} \eta^{3}\right]_{0}^{1}=\frac{1}{b}=0.1\right\rangle\right]
$$

Parabolic profile $\frac{u}{v}=2 \frac{4}{\delta}-\left(\frac{y}{\delta}\right)^{2}=2 \eta-\eta^{2}$

$$
\begin{aligned}
& \theta \|_{\delta}=C_{0}^{1}\left(2 \eta-\eta^{2}\right)\left(1-2 \eta+\eta^{2}\right) d \eta=\int_{0}^{1}\left(2 \eta-5 \eta^{2}+4 \eta^{3}-\eta^{4}\right) d \eta \\
& \theta_{\delta}=\left[\eta^{2}-\frac{5}{3} \eta^{3}+\eta^{4}-\frac{1}{5} \eta^{5}\right]_{0}^{1}=\left[1-\frac{5}{3}+1-\frac{1}{5}\right]=\frac{2}{15}=0.133
\end{aligned}
$$

Sinusoidal profile $\frac{u}{U}=\sin \frac{\pi}{2} \frac{y}{6}=\sin \frac{\pi}{2} \eta$

$$
\begin{aligned}
& \left.\theta\right|_{\delta}=C_{0}^{1} \sin \frac{\pi}{2} \eta\left(1-\sin \frac{\pi}{2} \eta\right) d \eta=C_{0}^{1}\left(\sin \frac{\pi}{2} \eta-\sin ^{2} \frac{\pi}{2} \eta\right) d \eta \\
& \left.\theta\right|_{\delta}=\left[-\frac{2}{\pi} \cos \frac{\pi}{2} \eta-\frac{2}{\pi}\left\{\frac{\pi \eta}{4}-\frac{1}{4} \sin \pi \eta\right]_{0}^{1}=-0-\left(-\frac{2}{x}\right)-\frac{2}{\pi}\left(\frac{\pi}{4}\right)-0\right. \\
& \left.\theta\right|_{\delta}=\frac{2}{\pi}-\frac{1}{2}=0.137
\end{aligned}
$$

Summarizing: $\quad \frac{\text { Profile }}{\text { Linear }} \quad \frac{\text { Expression }}{u / 0}=\eta \quad \frac{\theta / \delta}{0 . i_{1}}$
Parabdic $u_{o}=2 \eta-\eta^{2} \quad 0.133$
Sinusoidal $\quad y_{0}=\sin \frac{\pi}{2} ? \quad 0.137$

Given: Linear, parabolic, and sinusoidal veloctyyprofiles for laminar boundary longer,
(a) lInear $\quad u_{0}=91 \%$
(b) parabolic
(c) sinusoidal

$$
\begin{aligned}
& u_{J}=2 \frac{y}{\delta}-\left(\frac{y}{\delta}\right)^{2} \\
& u_{0}=\sin \frac{\pi}{2} \frac{y}{\delta}
\end{aligned}
$$

Find: ratio s* ls for each profile
Solution:
Definition: $\delta^{*}=\int_{0}^{\infty}\left(1-\frac{y}{v}\right) d y=\int_{0}^{\delta}\left(1-\frac{y}{v}\right) d y$
hen, $\frac{\delta^{*}}{\delta}=\frac{1}{\delta} \int_{0}^{\delta}\left(1-\frac{u}{y}\right) d y=\int_{0}^{1}\left(1-\frac{u}{y}\right) d\left(\frac{y}{\delta}\right)=\int_{0}^{1}\left(1-\frac{u}{y}\right) d \eta$
(a) Linear profile $u /_{U}=\left.y\right|_{\delta}=\eta$

$$
\left.\delta^{*}\right|_{\delta}=\int_{0}^{1}\left(1-\frac{u}{v}\right) d \eta=C_{0}^{1}(1-\eta) d \eta=\left[\eta-\frac{1}{2} \eta^{2}\right]_{0}^{1}=\frac{1}{2}
$$

\qquad
(b) Parabolic profile, $y_{0}=2\left(\frac{y}{s}\right)-\left(\frac{y}{b}\right)^{2}=2 \eta-\eta^{2}$,

$$
\left.s\right|_{\delta}=C_{0}^{1}\left(1-\frac{u}{0}\right) d \eta=C_{0}^{1}\left(1-2 \eta+\eta^{2}\right) d \eta=\left[\eta-\eta^{2}+\frac{1}{3} \eta^{3}\right]_{0}^{1}=\frac{1}{3}
$$

\qquad
(c) Sinusoidal profile $\quad u / y=\sin \frac{\pi}{2} \frac{4}{3}=\sin \frac{\pi}{2} \eta$

$$
\left.s^{\prime} / \delta=\int_{0}^{1}\left(1-\frac{4}{v}\right) d=\int_{0}^{1}\left(1-\sin \frac{\pi}{2} \eta\right) d \eta=\left[\eta+\frac{2}{k} \cos \frac{\pi}{2} \pi\right]_{0}^{1}=1-\frac{2}{\pi}=0.30\right]
$$

Given: "Power-law" velocity profit for turbulent boundary layer and parabolic profile for laminar boundary ane, "Rowe r-lan" $\frac{u}{5}=\left(\frac{4}{\delta}\right)^{1 / 2}$ Parabolic $\frac{4}{0}=2 \frac{y}{\delta}-\left(\frac{\mu t}{\delta}\right)$
Evaluate: (and compare) ratios $\delta * / \delta$ and $1 / \delta$ for each profile
Solution:
Definitions:

$$
\begin{align*}
& \delta^{*}=\left(\int_{0}^{\delta}\left(1-\frac{u}{v}\right) d y\right. \tag{a.1}\\
& \theta=\int_{0}^{\delta} \frac{u}{0}\left(1-\frac{y}{v}\right) d y \tag{9,2}
\end{align*}
$$

Ten $\delta_{\left.\right|_{\delta}}=\frac{1}{\delta} \int_{0}^{\delta}\left(1-\frac{u}{v}\right) \delta y=\int_{0}^{1}\left(1-\frac{u}{v}\right) d\left(\frac{y}{\delta}\right)=\int_{0}^{1}\left(1-\frac{u}{v}\right) d q$
For the "power. law" profile

$$
\left.\delta^{*}\right|_{\delta}=\int_{0}^{1}\left(1-\eta^{4}\right) d \eta=\left[--\frac{7}{8} \eta\right]_{0}^{1}=\frac{1}{8}
$$

For the parabolic profile

$$
s=l_{\delta}=\int_{0}^{1}\left(1-2 \eta+\eta^{2}\right) d \eta=\left[\eta-\eta^{2}+\frac{\eta^{3}}{3}\right]_{0}^{1}=\frac{1}{3}
$$

Hus $\left.s^{*}\right|_{\delta}$ (turbulent) $=\left.\frac{3}{8} \delta^{*}\right|_{\delta}$ (laminar).
Also $\left.\theta\right|_{\delta}=\frac{1}{\delta} \int_{0}^{\delta} \frac{u}{v}\left(1-\frac{u}{v}\right) d y=\int_{0}^{1} \frac{u}{v}\left(1-\frac{u}{v}\right) d\left(\frac{y}{\delta}\right)=\int_{0}^{1} \frac{u}{v}\left(1-\frac{u}{v}\right) d \eta$.
For the "pouker-low" profile

$$
s_{\delta}=\int_{0}^{1} \eta_{1}^{11}\left(1-\eta^{4}\right) d \eta=\left(C_{0}^{1}\left(\eta^{1 / 2}-\eta^{4}\right) d \eta=\left[\frac{7}{8} \eta^{d / 1}-\frac{7}{9} \eta^{d \eta}\right]_{0}^{1}=\frac{7}{72}\right.
$$

For Pe parabolic profile

$$
\begin{aligned}
& \left.\theta\right|_{\delta}=b_{0}^{1}\left(2 \eta-\eta^{2}\right)\left(1-2 \eta+\eta^{2}\right) d \eta=\left(C_{0}^{1}\left(2 \eta-5 \eta^{2}+4 \eta^{3}-\eta^{4}\right) d \eta\right. \\
& \theta_{\delta}=\left[\eta^{2}-\frac{5}{3} \eta^{3}+\eta^{4}-\frac{\eta^{5}}{5}\right]=\left[1-\frac{5}{3}+1-\frac{1}{5}\right]=\frac{2}{5}
\end{aligned}
$$

tues $\operatorname{tlg}_{f}($ turbulent $)=0.729$ els (laminar) \qquad

$$
\begin{array}{lll}
\frac{\text { Profile }}{\text { Power-ham }} & \frac{\delta_{\delta}}{0.125} & 0.0972 \\
\text { Parabolic } & 0.333 & 0.133
\end{array}
$$

Problem 9.18

9.18 A fluid, with density $\rho=800 \mathrm{~kg} / \mathrm{m}^{3}$, flows at $U=3 \mathrm{~m} / \mathrm{s}$ over a flat plate 3 m long and 1 m wide. At the trailing edge the boundary-layer thickness is $\delta=25 \mathrm{~mm}$. Assume the velocity profile is linear, as shown, and that the flow is two-dimensional (flow conditions are independent of z). Using control volume $a b c d$, shown
 by dashed lines, compute the mass flow rate across surface $a b$. Determine the drag force on the upper surface of the plate. Explain how this (viscous) drag can be computed from the given data even though we do not know the fluid viscosity (see Problem 9.41).

Given: Data on fluid and boundary layer geometry
Find: Mass flow rate across $a b$; Drag

Solution:

The given data is

$$
\rho=800 \cdot \frac{\mathrm{~kg}}{\mathrm{~m}^{3}} \quad \mathrm{U}=3 \cdot \frac{\mathrm{~m}}{\mathrm{~s}}
$$

$\mathrm{L}=3 \cdot \mathrm{~m}$
$\delta=25 \cdot \mathrm{~mm}$
$\mathrm{b}=1 \cdot \mathrm{~m}$

Governing equations:

$$
\begin{align*}
& \text { Mass } \quad \frac{\partial}{\partial t} \int_{\mathrm{CV}} \rho d++\int_{\mathrm{CS}} \rho \vec{V} \cdot d \vec{A}=0 \tag{4.12}\\
& \text { Momentum } \quad \vec{F}=\vec{F}_{S}+\vec{F}_{B}=\frac{\partial}{\partial t} \int_{\mathrm{CV}} \vec{V} \rho d \not++\int_{\mathrm{CS}} \vec{V} \rho \vec{V} \cdot d \vec{A} \tag{4.17a}
\end{align*}
$$

Assumptions: (1) Steady flow (2) No pressure force (3) No body force in x direction (4) Uniform flow at a
Applying these to the CV abcd

Mass

$$
(-\rho \cdot \mathrm{U} \cdot \mathrm{~b} \cdot \delta)+\int_{0}^{\delta} \rho \cdot \mathrm{u} \cdot \mathrm{~b} d y+\mathrm{m}_{\mathrm{ab}}=0
$$

For the boundary layer

$$
\frac{\mathrm{u}}{\mathrm{U}}=\frac{\mathrm{y}}{\delta}=\eta
$$

$$
\frac{\mathrm{dy}}{\delta}=\mathrm{d} \eta
$$

Hence

$$
\begin{array}{ll}
\mathrm{m}_{\mathrm{ab}}=\rho \cdot U \cdot \mathrm{~b} \cdot \delta-\int_{0}^{1} \rho \cdot U \cdot \eta \cdot \delta d y=\rho \cdot U \cdot b \cdot \delta-\frac{1}{2} \cdot \rho \cdot \mathrm{U} \cdot \mathrm{~b} \cdot \delta & \\
\mathrm{~m}_{\mathrm{ab}}=\frac{1}{2} \cdot \rho \cdot \mathrm{U} \cdot \mathrm{~b} \cdot \delta & \mathrm{~m}_{\mathrm{ab}}=30 \frac{\mathrm{~kg}}{\mathrm{~s}}
\end{array}
$$

Momentum

$$
\mathrm{R}_{\mathrm{x}}=\mathrm{U} \cdot(-\rho \cdot \mathrm{U} \cdot \delta)+\mathrm{m}_{\mathrm{ab}} \cdot \mathrm{u}_{\mathrm{ab}}+\int_{0}^{\delta} \mathrm{u} \cdot \rho \cdot \mathrm{u} \cdot \mathrm{~b} d y
$$

$$
\text { Note that } \quad \mathrm{u}_{\mathrm{ab}}=\mathrm{U} \quad \text { and }
$$

$$
\int_{0}^{\delta} \mathrm{u} \cdot \rho \cdot \mathrm{u} \cdot \mathrm{~b} d \mathrm{dy}=\int_{0}^{1} \rho \cdot \mathrm{U}^{2} \cdot \mathrm{~b} \cdot \delta \cdot \eta^{2} \mathrm{~d} \eta
$$

$$
R_{X}=-\rho \cdot U^{2} \cdot b \cdot \delta+\frac{1}{2} \cdot \rho \cdot U \cdot b \cdot \delta \cdot U+\int_{0}^{1} \rho \cdot U^{2} \cdot b \cdot \delta \cdot \eta^{2} d y
$$

$$
R_{X}=-\rho \cdot U^{2} \cdot b \cdot \delta+\frac{1}{2} \cdot \rho \cdot U^{2} \cdot \delta+\frac{1}{3} \cdot \rho \cdot U^{2} \cdot \delta \quad R_{X}=-\frac{1}{6} \cdot \rho \cdot U^{2} \cdot b \cdot \delta \quad R_{X}=-30 N
$$

We are able to compute the boundary layer drag even though we do not know the viscosity because it is the viscosity that creates the boundary layer in the first place
9.19 The flat plate of Problem 9.18 is turned so that the 1 m side is parallel to the flow (the width becomes 3 m). Should we expect that the drag increases or decreases? Why? The trailing edge boundarylayer thickness is now $\delta=14 \mathrm{~mm}$. Assume again that the velocity profile is linear, and that the flow is two-dimensional (flow conditions are independent of z). Repeat the analysis of Problem 9.18.

Given: Data on fluid and boundary layer geometry
Find: \quad Mass flow rate across $a b$; Drag; Compare to Problem 9.18

Solution:

The given data is $\rho=800 \cdot \frac{\mathrm{~kg}}{\mathrm{~m}^{3}} \quad \mathrm{U}=3 \cdot \frac{\mathrm{~m}}{\mathrm{~s}} \quad \mathrm{~L}=1 \cdot \mathrm{~m} \quad \delta=14 \cdot \mathrm{~mm} \quad \mathrm{~b}=3 \cdot \mathrm{~m}$
Governing equations:
Mass

Assumptions: (1) Steady flow (2) No pressure force (3) No body force in x direction (4) Uniform flow at a
Applying these to the CV abcd

Mass

$$
(-\rho \cdot \mathrm{U} \cdot \mathrm{~b} \cdot \delta)+\int_{0}^{\delta} \rho \cdot \mathrm{u} \cdot \mathrm{~b} d y+\mathrm{m}_{\mathrm{ab}}=0
$$

For the boundary layer

$$
\frac{\mathrm{u}}{\mathrm{U}}=\frac{\mathrm{y}}{\delta}=\eta \quad \frac{\mathrm{dy}}{\delta}=\mathrm{d} \eta
$$

Hence

$$
\begin{array}{ll}
\mathrm{m}_{\mathrm{ab}}=\rho \cdot \mathrm{U} \cdot \mathrm{~b} \cdot \delta-\int_{0}^{1} \rho \cdot \mathrm{U} \cdot \eta \cdot \delta \mathrm{dy}=\rho \cdot \mathrm{U} \cdot \mathrm{~b} \cdot \delta-\frac{1}{2} \cdot \rho \cdot \mathrm{U} \cdot \mathrm{~b} \cdot \delta \\
\mathrm{~m}_{\mathrm{ab}}=\frac{1}{2} \cdot \rho \cdot \mathrm{U} \cdot \mathrm{~b} \cdot \delta & \mathrm{~m}_{\mathrm{ab}}=50.4 \frac{\mathrm{~kg}}{\mathrm{~s}}
\end{array}
$$

Momentum

$$
\begin{array}{ll}
R_{X}=U \cdot(-\rho \cdot U \cdot \delta)+m_{a b} \cdot u_{a b}+\int_{0}^{\delta} u \cdot \rho \cdot u \cdot b d y & \\
\text { Note that } \quad u_{a b}=U \quad \text { and } & \int_{0}^{\delta} u \cdot \rho \cdot u \cdot b d y=\int_{0}^{1} \rho \cdot U^{2} \cdot b \cdot \delta \cdot \eta^{2} d \eta \\
R_{X}=-\rho \cdot U^{2} \cdot b \cdot \delta+\frac{1}{2} \cdot \rho \cdot U \cdot b \cdot \delta \cdot U+\int_{0}^{1} \rho \cdot U^{2} \cdot b \cdot \delta \cdot \eta^{2} d y \\
R_{X}=-\rho \cdot U^{2} \cdot b \cdot \delta+\frac{1}{2} \cdot \rho \cdot U^{2} \cdot \delta+\frac{1}{3} \cdot \rho \cdot U^{2} \cdot \delta & R_{X}=-50.4 N
\end{array}
$$

We should expect the drag to be larger than for Problem 9.18 because the viscous friction is mostly concentrated near the leading edge (which is only 1 m wide in Problem 9.18 but 3 m here). The reason viscous stress is highest at the front region is that the boundary layer is very small ($\delta \ll$) so $\tau=\mu d u / d y \sim \mu U / \delta \gg$

Problem 9.20
Given: Fluidflow over a thin flat plate of width, $6=1.0 \mathrm{~m}$. Flow is two-dimensional. Assume that in the boundary layer the velocity profile is parabolic. (The plate is 3 m long.)

$$
\text { At bc, } \frac{u}{v}=2 \eta-\eta^{2} ; \eta=\frac{4}{8}
$$

$$
\begin{aligned}
& U=3.0 \mathrm{~m} / \mathrm{s} \\
& \rho=800 \mathrm{~kg} / \mathrm{m}^{3}
\end{aligned}
$$

Find: (a) Mass flow nate across ab.
(b) x component (and direction) of force needed to hold plate.

Solution: Apply the continuity and x component momentum equations.
Basic equations: $\quad 0=\frac{D}{\phi=} \int_{c v}^{=0(1)} \rho d \forall+\int_{c s} \rho \vec{v} \cdot d \vec{d}$

$$
F_{S_{x}}+F_{\phi x}^{=0(3)}=\frac{\partial)^{4}}{\# t} \int_{C V}^{=0(1)} u p d t+\int_{C S} u p \vec{V} \cdot d \vec{A}
$$

Assumptions: (1) Steady flow
(2) No pressureforces
(3) $F_{B_{x}}=0$
(4) Uniform flow at da

Then

$$
0=\{-|\rho v b \delta|\}+\int_{0}^{\delta} f u b d y+\dot{m}_{a b}
$$

But $\int_{0}^{\delta} \rho u b d y=\rho U b \delta \int_{0}^{1}\left(2 \eta-\eta^{2}\right) d \eta=\rho U b \delta\left[\eta^{2}-\frac{1}{3} \eta^{3}\right]_{0}^{1}=\frac{2}{3} \rho U 6 \delta$
Thus $\dot{r}_{a b}=f U b \delta-\frac{2}{3} \rho T b \delta=\frac{1}{3} \rho U 6 \delta$

$$
\dot{m}_{a b}=\frac{1}{3} \times 1800 \frac{\mathrm{~kg}}{\mathrm{~m}^{3}} \times 3 \frac{\mathrm{~m}}{\mathrm{~s}} \times 1 m_{\times} 0.025 \mathrm{~m}=20 \mathrm{~kg} / \mathrm{s}
$$

From momentum,

$$
R_{x}=u_{d a}\{-|\rho U b \delta|\}+u_{a b} \dot{m}_{a b}+\int_{0}^{\delta} u_{p} u b d y ; u_{d a}=u_{a b}=v
$$

But $\int_{0}^{\delta} u p u b d y=\rho \sigma^{2} b \delta \int_{0}^{1}\left(2 \eta-\eta^{2}\right) d \eta=\rho U^{2} b \delta\left[\frac{4}{3} \eta^{3}-\eta^{4}+\frac{1}{5} \eta \eta^{5}\right]_{0}^{1}=\frac{8}{15} \rho U^{2} b \delta$
Thus $R_{X}=-\rho U^{2} b \delta+\frac{1}{3} \varphi U^{2} b \delta+\frac{8}{15} \rho U^{2} b \delta=-\frac{2}{15} \rho U^{2} b \delta$

$$
R_{x}=-\frac{2}{15} \times 800 \frac{\mathrm{~kg}}{\mathrm{~m}^{3}} \times(3)^{2} \mathrm{~m}^{2} \mathrm{~s}^{2} \times 1 m_{x} 0.025 m_{\times} \frac{\mathrm{N} \cdot \mathrm{~s}^{2}}{\mathrm{~kg} \cdot \mathrm{~m}}=-\quad 24 \mathrm{~N}
$$

This force must be cipplied to the control volume by the plate. Thus to hold the prate,

$$
\left.F_{x}=R_{x}=-24 \ldots \text { (to the } 1<f t\right)
$$

9.21 The test section of a low speed wind tunnel is 1.5 meters long, preceded by a nozzle and with a diffuser at the outlet. The tunnel cross-section is $20 \mathrm{~cm} \times 20 \mathrm{~cm}$. The wind tunnel is to operate with $40^{\circ} \mathrm{C}$ air and have a design velocity of $50 \mathrm{~m} / \mathrm{s}$ in the test section. A potential problem with such a wind tunnel is boundary-layer blockage. The boundary-layer displacement thickness reduces the effective cross-sectional area (the test area, in which we have uniform flow), and in addition the uniform flow will be accelerated. If these effects are pronounced, we end up with a smaller useful test cross section with a velocity somewhat higher than anticipated. If the boundary-layer thickness is 10 mm at the entrance and 25 mm at the exit, and the boundary-layer velocity profile is given by $u / U=(y / \delta)^{1 / 7}$, estimate the displacement thickness at the end of the test section and the percent change in the uniform velocity between the inlet and outlet.

Given: Data on wind tunnel and boundary layers
Find: Displacement thickness at exit; Percent change in uniform velocity through test section

Solution:

The solution involves using mass conservation in the inviscid core, allowing for the fact that as the boundary layer grows it reduces the size of the core. One approach would be to integrate the $1 / 7$ law velocity profile to compute the mass flow in the boundary layer; an easier approach is to simply use the displacement thickness!

Basic equations

$$
\begin{equation*}
\frac{\partial}{\partial t} \int_{\mathrm{CV}} \rho d \forall+\int_{\mathrm{CS}} \rho \vec{V} \cdot d \vec{A}=0 \tag{4.12}
\end{equation*}
$$

$$
\delta_{\text {disp }}=\int_{0}^{\delta}\left(1-\frac{\mathrm{u}}{\mathrm{U}}\right) \mathrm{dy}
$$

Assumptions: 1) Steady flow 2) Incompressible 3) No friction outside boundary layer 4) Flow along streamline 5) Horizontal

	$\rho \cdot \mathrm{U} \cdot \mathrm{A}=\mathrm{const}$	and
For this flow	$\frac{\mathrm{u}}{\mathrm{U}}=\left(\frac{\mathrm{y}}{\delta}\right)^{\frac{1}{7}}$	
The design data is	$\mathrm{U}_{\text {design }}=50 \cdot \frac{\mathrm{~m}}{\mathrm{~s}}$	$\mathrm{w}=20 \cdot \mathrm{~cm}$
The volume flow rate is	$\mathrm{Q}=\mathrm{U}_{\text {design }} \cdot \mathrm{A}_{\text {design }}$	$\mathrm{h}=20 \cdot \mathrm{~cm}$
We also have	$\delta_{\text {in }}=10 \cdot \mathrm{~mm}$	$\mathrm{Q}=2 \frac{\mathrm{~m}^{3}}{\mathrm{~s}}$

Hence

$$
\delta_{\text {disp }}=\int_{0}^{\delta}\left(1-\frac{\mathrm{u}}{\mathrm{U}}\right) \mathrm{dy}=\int_{0}^{\delta}\left[1-\left(\frac{\mathrm{y}}{\delta}\right)^{\frac{1}{7}}\right] \mathrm{dy}=\delta \cdot \int_{0}^{1}\left(1-\eta^{\frac{1}{7}}\right) \mathrm{d} \eta \quad \text { where } \quad \eta=\frac{\mathrm{y}}{\delta} \quad \delta_{\mathrm{disp}}=\frac{\delta}{8}
$$

Hence at the inlet and exit

$$
\delta_{\text {dispin }}=\frac{\delta_{\text {in }}}{8} \quad \delta_{\text {dispin }}=1.25 \cdot \mathrm{~mm} \quad \delta_{\text {dispexit }}=\frac{\delta_{\text {exit }}}{8} \quad \delta_{\text {dispexit }}=3.125 \cdot \mathrm{~mm}
$$

Hence the areas are

$$
\begin{aligned}
& \mathrm{A}_{\mathrm{in}}=\left(\mathrm{w}-2 \cdot \delta_{\text {dispin }}\right) \cdot\left(\mathrm{h}-2 \cdot \delta_{\text {dispin }}\right) \\
& \mathrm{A}_{\text {exit }}=\left(\mathrm{w}-2 \cdot \delta_{\text {dispexit }}\right) \cdot\left(\mathrm{h}-2 \cdot \delta_{\text {dispexit }}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{A}_{\mathrm{in}}=0.0390 \cdot \mathrm{~m}^{2} \\
& \mathrm{~A}_{\mathrm{exit}}=0.0375 \cdot \mathrm{~m}^{2}
\end{aligned}
$$

$$
\left(-\rho \cdot \mathrm{U}_{\text {design }} \cdot \mathrm{A}_{\text {design }}\right)+\left(\rho \cdot \mathrm{U}_{\text {in }} \cdot \mathrm{A}_{\text {in }}\right)=0
$$

or

$$
\mathrm{U}_{\mathrm{in}}=\mathrm{U}_{\text {design }} \cdot \frac{\mathrm{A}_{\text {design }}}{\mathrm{A}_{\mathrm{in}}} \quad \mathrm{U}_{\mathrm{in}}=51.3 \frac{\mathrm{~m}}{\mathrm{~s}}
$$

Also $\quad U_{\text {exit }}=U_{\text {design }} \cdot \frac{A_{\text {design }}}{A_{\text {exit }}} \quad U_{\text {exit }}=53.3 \frac{\mathrm{~m}}{\mathrm{~s}}$
The percent change in uniform velocity is then $\frac{\mathrm{U}_{\text {exit }}-U_{\text {in }}}{U_{\text {in }}}=3.91 \%$
The exit displacement thickness is $\delta_{\text {dispexit }}=3.125 \cdot \mathrm{~mm}$
9.22 Laboratory wind tunnels have test sections 25 cm square and 50 cm long. With nominal air speed $U_{1}=25 \mathrm{~m} / \mathrm{s}$ at the test section inlet, turbulent boundary layers form on the top, bottom, and side walls of the tunnel. The boundary-layer thickness is $\delta_{1}=$ 20 mm at the inlet and $\delta_{2}=30 \mathrm{~mm}$ at the outlet from the test section. The boundary-layer velocity profiles are of power-law form, with $u / U=(y / \delta)^{1 / 7}$. Evaluate the freestream velocity, U_{2}, at the exit from the wind-tunnel test section. Determine the change in static pressure along the test section.

Given: Data on wind tunnel and boundary layers
Find: Uniform velocity at exit; Change in static pressure through the test section

Solution:

Basic equations $\quad \frac{\partial}{\partial t} \int_{\mathrm{CV}} \rho d \forall+\int_{\mathrm{CS}} \rho \vec{V} \cdot d \vec{A}=0$

$$
\begin{equation*}
\delta_{\operatorname{disp}}=\int_{0}^{\delta}\left(1-\frac{\mathrm{u}}{\mathrm{U}}\right) \mathrm{dy} \quad \frac{\mathrm{p}}{\rho}+\frac{\mathrm{v}^{2}}{2}+\mathrm{g} \cdot \mathrm{z}=\text { const } \tag{4.12}
\end{equation*}
$$

Assumptions: 1) Steady flow 2) Incompressible 3) No friction outside boundary layer 4) Flow along streamline 5) Horizontal

For this flow	$\rho \cdot U \cdot A=$ const	and
The given data is	$U_{1}=25 \cdot \frac{\mathrm{~m}}{\mathrm{~s}}$	$\mathrm{~h}=25 \cdot \mathrm{~cm}$
We also have	$\delta_{1}=20 \cdot \mathrm{~mm}$	$\delta_{2}=30 \cdot \mathrm{~mm}$

Hence $\quad \delta_{\text {disp }}=\int_{0}^{\delta}\left(1-\frac{\mathrm{u}}{\mathrm{U}}\right) \mathrm{dy}=\int_{0}^{\delta}\left[1-\left(\frac{\mathrm{y}}{\delta}\right)^{\frac{1}{7}}\right] \mathrm{dy}=\delta \cdot \int_{0}^{1}\left(1-\eta^{\frac{1}{7}}\right) \mathrm{d} \eta \quad$ where $\quad \eta=\frac{\mathrm{y}}{\delta} \quad \delta_{\text {disp }}=\frac{\delta}{8}$
Hence at the inlet and exit

$$
\delta_{\text {disp1 }}=\frac{\delta_{1}}{8} \quad \delta_{\text {disp1 }}=2.5 \cdot \mathrm{~mm} \quad \delta_{\text {disp2 }}=\frac{\delta_{2}}{8} \quad \delta_{\text {disp2 }}=3.75 \cdot \mathrm{~mm}
$$

Hence the areas are

$$
\begin{aligned}
& \mathrm{A}_{1}=\left(\mathrm{h}-2 \cdot \delta_{\text {disp } 1}\right)^{2} \\
& \mathrm{~A}_{2}=\left(\mathrm{h}-2 \cdot \delta_{\text {disp }}\right)^{2}
\end{aligned}
$$

$$
\mathrm{A}_{1}=600 \cdot \mathrm{~cm}^{2}
$$

$$
\mathrm{A}_{2}=588 \cdot \mathrm{~cm}^{2}
$$

Applying mass conservation between Points 1 and 2

$$
\left(-\rho \cdot U_{1} \cdot A_{1}\right)+\left(\rho \cdot U_{2} \cdot A_{2}\right)=0 \quad \text { or } \quad U_{2}=U_{1} \cdot \frac{A_{1}}{A_{2}} \quad U_{2}=25.52 \frac{\mathrm{~m}}{\mathrm{~s}}
$$

The pressure change is found from Bernoulli

$$
\frac{\mathrm{p}_{1}}{\rho}+\frac{\mathrm{U}_{1}^{2}}{2}=\frac{\mathrm{p}_{2}}{\rho}+\frac{\mathrm{U}_{2}^{2}}{2}
$$

$$
\rho=1.21 \cdot \frac{\mathrm{~kg}}{\mathrm{~m}^{3}}
$$

Hence

$$
\Delta \mathrm{p}=\frac{\rho}{2} \cdot\left(\mathrm{U}_{1}^{2}-\mathrm{U}_{2}^{2}\right)
$$

$\Delta \mathrm{p}=-15.8 \mathrm{~Pa}$
The pressure drops slightly through the test section

Problem 9.23

9.23 Air flows in a horizontal cylindrical duct of diameter $D=$ 100 mm . At a section a few meters from the entrance, the turbulent boundary layer is of thickness $\delta_{1}=5.25 \mathrm{~mm}$, and the velocity in the inviscid central core is $U_{1}=12.5 \mathrm{~m} / \mathrm{s}$. Farther downstream the boundary layer is of thickness $\delta_{2}=24 \mathrm{~mm}$. The velocity profile in the boundary layer is approximated well by the $\frac{1}{7}$-power expression. Find the velocity, U_{2}, in the inviscid central core at the second section, and the pressure drop between the two sections.

Given: Data on boundary layer in a cylindrical duct
Find: \quad Velocity U_{2} in the inviscid core at location 2; Pressure drop

Solution:

The solution involves using mass conservation in the inviscid core, allowing for the fact that as the boundary layer grows it reduces the size the core. One approach would be to integrate the $1 / 7$ law velocity profile to compute the mass flow in the boundary layer; an easier approa is to simply use the displacement thickness!

The given or available data (from Appendix A) is

$$
\rho=1.23 \cdot \frac{\mathrm{~kg}}{\mathrm{~m}^{3}} \quad \mathrm{U}_{1}=12.5 \cdot \frac{\mathrm{~m}}{\mathrm{~s}} \quad \mathrm{D}=100 \cdot \mathrm{~mm} \quad \delta_{1}=5.25 \cdot \mathrm{~mm} \quad \delta_{2}=24 \cdot \mathrm{~mm}
$$

Governing equations:

$$
\begin{array}{ll}
\text { Mass } & \frac{\partial}{\partial t} \int_{\mathrm{CV}} \rho d \not++\int_{\mathrm{CS}} \rho \vec{V} \cdot d \vec{A}=0 \\
\text { Bernoulli } & \frac{\mathrm{p}}{\rho}+\frac{\mathrm{V}^{2}}{2}+\mathrm{g} \cdot \mathrm{z}=\text { constant }
\end{array}
$$

The displacement thicknesses can be computed from boundary layer thicknesses using Eq. 9.1

$$
\delta_{\mathrm{disp}}=\int_{0}^{\delta}\left(1-\frac{\mathrm{u}}{\mathrm{U}}\right) \mathrm{dy}=\delta \cdot \int_{0}^{1}\left(1-\eta^{\frac{1}{7}}\right) \mathrm{d} \eta=\frac{\delta}{8}
$$

Hence at locations 1 and $2 \quad \delta_{\text {disp1 }}=\frac{\delta_{1}}{8} \quad \delta_{\text {disp1 }}=0.656 \cdot \mathrm{~mm} \quad \delta_{\text {disp2 }}=\frac{\delta_{2}}{8}$

$$
\delta_{\mathrm{disp} 2}=3 \cdot \mathrm{~mm}
$$

Applying mass conservation at locations 1 and 2

$$
\left(-\rho \cdot \mathrm{U}_{1} \cdot \mathrm{~A}_{1}\right)+\left(\rho \cdot \mathrm{U}_{2} \cdot \mathrm{~A}_{2}\right)=0
$$ or

$$
\mathrm{U}_{2}=\mathrm{U}_{1} \cdot \frac{\mathrm{~A}_{1}}{\mathrm{~A}_{2}}
$$

The two areas are given by the duct cross section area minus the displacement boundary layer

$$
\mathrm{A}_{1}=\frac{\pi}{4} \cdot\left(\mathrm{D}-2 \cdot \delta_{\operatorname{disp} 1}\right)^{2} \quad \mathrm{~A}_{1}=7.65 \times 10^{-3} \mathrm{~m}^{2} \quad \mathrm{~A}_{2}=\frac{\pi}{4} \cdot\left(\mathrm{D}-2 \cdot \delta_{\operatorname{disp} 2}\right)^{2} \quad \mathrm{~A}_{2}=6.94 \times 10^{-3} \mathrm{~m}^{2}
$$

Hence

$$
\mathrm{U}_{2}=\mathrm{U}_{1} \cdot \frac{\mathrm{~A}_{1}}{\mathrm{~A}_{2}}
$$

$$
\mathrm{U}_{2}=13.8 \frac{\mathrm{~m}}{\mathrm{~s}}
$$

For the pressure drop we can apply Bernoulli to locations 1 and 2 to find

$$
\mathrm{p}_{1}-\mathrm{p}_{2}=\Delta \mathrm{p}=\frac{\rho}{2} \cdot\left(\mathrm{U}_{2}^{2}-\mathrm{U}_{1}^{2}\right) \quad \Delta \mathrm{p}=20.6 \mathrm{~Pa}
$$

9.24 The square test section of a small laboratory wind tunnel has sides of width $W=12 \mathrm{in}$. At one measurement location, the turbulent boundary layers on the tunnel walls are $\delta_{1}=0.4 \mathrm{in}$. thick. The velocity profile is approximated well by the $\frac{1}{7}$-power expression. At this location the freestream air speed is $U_{1}=60 \mathrm{ft} / \mathrm{s}$, and the static pressure is $p_{1}=-1 \mathrm{in} . \mathrm{H}_{2} \mathrm{O}$ (gage). At a second measurement location downstream, the boundary-layer thickness is $\delta_{2}=0.5 \mathrm{in}$. Evaluate the air speed in the freestream at the second section. Calculate the difference in static pressure from section (1) to section (2).

Given: Data on wind tunnel and boundary layers
Find: Uniform velocity at Point 2; Change in static pressure through the test section

Solution:

Basic equations $\quad \frac{\partial}{\partial t} \int_{\mathrm{CV}} \rho d \forall+\int_{\mathrm{CS}} \rho \vec{V} \cdot d \vec{A}=0$

$$
\begin{equation*}
\delta_{\text {disp }}=\int_{0}^{\delta}\left(1-\frac{\mathrm{u}}{\mathrm{U}}\right) \mathrm{dy} \quad \frac{\mathrm{p}}{\rho}+\frac{\mathrm{V}^{2}}{2}+\mathrm{g} \cdot \mathrm{z}=\text { const } \tag{4.12}
\end{equation*}
$$

Assumptions: 1) Steady flow 2) Incompressible 3) No friction outside boundary layer 4) Flow along streamline 5) Horizontal

Hence at the inlet and exit

$$
\delta_{\text {disp1 }}=\frac{\delta_{1}}{8} \quad \delta_{\text {disp1 }}=0.050 \cdot \text { in } \quad \delta_{\text {disp2 }}=\frac{\delta_{2}}{8} \quad \delta_{\text {disp2 }}=0.0625 \cdot \text { in }
$$

Hence the areas are

$$
\begin{aligned}
& \mathrm{A}_{1}=\left(\mathrm{W}-2 \cdot \delta_{\mathrm{disp} 1}\right)^{2} \\
& \mathrm{~A}_{2}=\left(\mathrm{W}-2 \cdot \delta_{\mathrm{disp} 2}\right)^{2}
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{A}_{1}=142 \cdot \mathrm{in}^{2} \\
& \mathrm{~A}_{2}=141 \cdot \mathrm{in}^{2}
\end{aligned}
$$

Applying mass conservation between Points 1 and 2

$$
\left(-\rho \cdot \mathrm{U}_{1} \cdot \mathrm{~A}_{1}\right)+\left(\rho \cdot \mathrm{U}_{2} \cdot \mathrm{~A}_{2}\right)=0 \quad \text { or } \quad \mathrm{U}_{2}=\mathrm{U}_{1} \cdot \frac{\mathrm{~A}_{1}}{A_{2}} \quad \mathrm{U}_{2}=60.25 \cdot \frac{\mathrm{ft}}{\mathrm{~s}}
$$

The pressure change is found from Bernoulli $\frac{p_{1}}{\rho}+\frac{U_{1}{ }^{2}}{2}=\frac{p_{2}}{\rho}+\frac{U_{2}^{2}}{2} \quad$ with
$\rho=0.00234 \cdot \frac{\text { slug }}{\mathrm{ft}^{3}}$

Hence

$$
\Delta \mathrm{p}=\frac{\rho}{2} \cdot\left(\mathrm{U}_{1}^{2}-\mathrm{U}_{2}^{2}\right)
$$

$\Delta \mathrm{p}=-2.47 \times 10^{-4} \cdot \mathrm{psi}$
$\Delta \mathrm{p}=-0.0356 \cdot \frac{\mathrm{lbf}}{\mathrm{ft}^{2}}$

In terms of inches of water

$$
\rho_{\mathrm{H} 2 \mathrm{O}}=1.94 \cdot \frac{\text { slug }}{\mathrm{ft}^{3}}
$$

$\Delta h=\frac{\Delta p}{\rho_{\mathrm{H} 2 \mathrm{O}} \cdot g}$
$\Delta h=-0.00684 \cdot$ in

Problem 9.25

9.25 Air flows in the entrance region of a square duct, as shown. The velocity is uniform, $U_{0}=100 \mathrm{ft} / \mathrm{s}$, and the duct is 3 in . square. At a section 1 ft downstream from the entrance, the displacement thickness, δ^{*}, on each wall measures 0.035 in. Determine the pressure change between sections (1) and (2).

Given: Data on wind tunnel and boundary layers
Find: \quad Pressure change between points 1 and 2

Solution:

Basic equations

$$
\begin{equation*}
\frac{\partial}{\partial t} \int_{\mathrm{CV}} \rho d \forall+\int_{\mathrm{CS}} \rho \vec{V} \cdot d \vec{A}=0 \tag{4.12}
\end{equation*}
$$

$$
\frac{\mathrm{p}}{\rho}+\frac{\mathrm{V}^{2}}{2}+\mathrm{g} \cdot \mathrm{z}=\text { const }
$$

Assumptions: 1) Steady flow 2) Incompressible 3) No friction outside boundary layer 4) Flow along streamline 5) Horizontal
For this flow

$$
\rho \cdot \mathrm{U} \cdot \mathrm{~A}=\text { const }
$$

The given data is

$$
\mathrm{U}_{0}=100 \cdot \frac{\mathrm{ft}}{\mathrm{~s}} \quad \mathrm{U}_{1}=\mathrm{U}_{0}
$$

$h=3 \cdot$ in
$\mathrm{A}_{1}=\mathrm{h}^{2}$

$$
\mathrm{A}_{1}=9 \cdot \mathrm{in}^{2}
$$

We also have

$$
\delta_{\text {disp2 }}=0.035 \cdot \mathrm{in}
$$

Hence at the Point 2

$$
\mathrm{A}_{2}=\left(\mathrm{h}-2 \cdot \delta_{\operatorname{disp} 2}\right)^{2}
$$

$$
\mathrm{A}_{2}=8.58 \cdot \mathrm{in}^{2}
$$

Applying mass conservation between Points 1 and 2

$$
\left(-\rho \cdot U_{1} \cdot A_{1}\right)+\left(\rho \cdot U_{2} \cdot A_{2}\right)=0 \quad \text { or } \quad U_{2}=U_{1} \cdot \frac{A_{1}}{A_{2}} \quad U_{2}=105 \cdot \frac{\mathrm{ft}}{\mathrm{~s}}
$$

The pressure change is found from Bernoulli $\frac{\mathrm{p}_{1}}{\rho}+\frac{\mathrm{U}_{1}{ }^{2}}{2}=\frac{\mathrm{p}_{2}}{\rho}+\frac{\mathrm{U}_{2}^{2}}{2} \quad$ with $\quad \rho=0.00234 \cdot \frac{\text { slug }}{\mathrm{ft}^{3}}$
Hence

$$
\Delta \mathrm{p}=\frac{\rho}{2} \cdot\left(\mathrm{U}_{1}^{2}-\mathrm{U}_{2}^{2}\right)
$$

$\Delta \mathrm{p}=-8.05 \times 10^{-3} \cdot \mathrm{psi}$
$\Delta \mathrm{p}=-1.16 \cdot \frac{\mathrm{lbf}}{\mathrm{ft}^{2}}$
The pressure drops by a small amount as the air accelerates

Given: Developing flow of air in flat horizontal duct.
Assume $\frac{u}{V}=\left(\frac{y}{\delta}\right)^{1 / 7}$ in boundary layers.
Find: (a) show $\delta^{*} / \delta=1 / 8$
(b) Evaluate $-p_{2}$
(c) calculate average wall shear stress.

Solution:
(O).

$$
V_{0} \approx 0{ }_{L}^{y}
$$

Assume flow is steady and incompressible, and that frictional effects are negligible outside the boundary layers.

$$
\delta^{*}=\int_{0}^{\delta}\left(-\frac{u}{\bar{\sigma}}\right) d y=\delta \int_{0}^{1}\left(1-\frac{\mu}{\bar{V}}\right) d \eta=\delta \int_{0}^{1}\left(1-\eta^{1 / \eta}\right) d \eta=\left.\delta\left(\eta-\frac{7}{\delta} \eta \eta^{\delta / \eta}\right)\right|_{0} ^{1}=\delta / \gamma
$$

From continuity $V_{1} A_{1}=V_{1} \omega H=V_{2} A_{4}=V_{2} w\left(H-2 S_{4}^{*}\right)$

$$
V_{2}=V_{1} \frac{H}{H-2 S_{4}^{*}}=10 \frac{\mathrm{~m}}{\mathrm{~S}} \frac{300 \mathrm{~mm}}{(300-25) \mathrm{mm}}=10.9 \mathrm{~m} / \mathrm{s}
$$

From Bernoulli, since $z=$ constant, $\frac{p_{0}}{\rho}+\frac{v_{0}}{2}=\frac{p}{\ell}+\frac{V^{2}}{2}$ along a streamline.

$$
\begin{aligned}
& p_{1 g}=p_{1}-p_{0}=-\frac{1}{2} \rho_{1}^{2}=-\frac{1}{2} \times 1.23 \frac{\mathrm{~kg}}{\mathrm{~m}^{3} \times(10)^{2} \mathrm{~m}^{2}} \frac{\mathrm{~N}^{2} \mathrm{~s}^{2}}{\mathrm{~s} \mathrm{~s}^{2}}=-61.5 \mathrm{pa} \\
& p_{2 g}=p_{2}-p_{0}=-\frac{1}{2} \rho v_{2}^{2}=-\frac{1}{2} \times 1.23 \frac{\mathrm{~kg}}{\mathrm{~m}^{3}} \times(10.9)^{2} \frac{\mathrm{~m}^{2}}{\mathrm{~s}^{2}} \times \frac{\mathrm{N} \mathrm{~s}^{2}}{\mathrm{~kg} \cdot \mathrm{~m}}=-73.1 \mathrm{pa}
\end{aligned}
$$

Apply momentum using cV shown:
BE

$$
\begin{aligned}
& F_{s_{x}}+F_{\varepsilon_{x}}^{=0}=\frac{\partial^{A}}{\partial_{t}} \int_{c v}^{0} u \rho d \psi+\int_{c s} u \rho \vec{v} \cdot d \vec{A} \\
& \begin{aligned}
\left.\left(p_{1}-p_{2}\right) \omega \frac{H}{2}-\bar{\tau} \omega L=\overline{V_{1}}\left\{-\rho \bar{V}, \frac{H}{2} \omega\right\}\right\} & +\underbrace{\iint_{0}^{S_{2}} u \rho u \omega \ln d y}+V_{2}\left\{+\rho V_{2}\left(\frac{H}{2}-\delta_{2}\right) \omega\right\} \\
\rho V_{2}^{2} \delta_{2} \omega \int_{0}^{1} \eta^{2 / h} d \eta & =\rho V_{2}^{2}\left(\frac{7}{9} \delta_{2}\right) \omega
\end{aligned} \\
& \bar{\tau} \not \omega L=\left(p_{1}-p_{2}\right) \mu \sigma \frac{H}{2}+\varphi V_{1}^{2} \frac{\mu}{2} \mu^{2}-\rho V_{2}^{2}\left(\frac{H}{2}-\frac{2}{4} S_{2}\right) \mu^{\alpha} \\
& \bar{\tau}=\frac{1}{L}\left[\left(p_{1}-p_{2}\right) \frac{H}{2}+\rho V_{1}^{2} \frac{H}{2}-\rho V_{2}^{2}\left(\frac{H}{2}-\frac{2}{Q} S_{2}\right)\right]
\end{aligned}
$$

Given: Air flow in laboratory wind thence test section.

Find: (a) Frecstream speed at ex it, U_{2}.
(b) Pressure at exit, p_{2}.

Solution: Apply displacement thickness, continuity, Bemokiti eqs.
Computing equations: $\frac{\delta^{*}}{\delta}=\int_{0}^{1}\left(1-\frac{\mu}{D}\right) d y ; \quad 0=\frac{D^{\prime}}{\phi D} \int_{C v} \rho d t+\int_{0} \rho \vec{V} \cdot d \vec{A}$

$$
\frac{p_{1}}{p}+\frac{v_{1}^{2}}{2}+g z_{1}^{(8)}=\frac{p_{2}}{p}+\frac{v_{4}^{2}}{2}+g z^{(8)}
$$

Assumptions: (1) Steady flow
(2) Incompressible flow
(5) Uniform Aleut (outside BL)
(s) No friction (outside BL)
(6) Same BL on four walls
(4) Along a streamline
(7) Neglect corner effects

Then

$$
\begin{aligned}
& \frac{\delta^{*}}{\delta}=\int_{0}^{1}\left(1-\lambda^{1 / 7}\right) d \lambda=\left.\left(\lambda-\frac{7}{8} \lambda^{8 / 7}\right)\right|_{0} ^{1}=1-\frac{7}{8}=\frac{1}{8} \quad\left(\lambda \geq 3 / d^{\prime}\right) \\
& \delta_{1}^{*}=\frac{1}{8} \delta_{1}=\frac{1}{8} \times 20.3 \mathrm{~mm}=2.54 \mathrm{~mm} ; \delta_{2}^{4}=\frac{1}{8} \delta_{2}=\frac{1}{8} \times 25.4 \mathrm{~mm}=3.18 \mathrm{~mm}
\end{aligned}
$$

From continuity, $U_{1} A_{1}=U_{1}\left(\omega-2 \delta_{1}^{*}\right)^{2} * U_{2} A_{2}=V_{2}\left(\omega-2 \delta_{2}^{*}\right)^{2}$

$$
U_{2}=U_{1}\left(\frac{w-2 \delta_{1}^{*}}{w-2 \delta_{*}^{*}}\right)^{2}=24.4 \frac{m}{3}\left[\frac{300-2(2.54)}{300-2(3.18)}\right]^{2}=24.6 \mathrm{~m} / \mathrm{s}
$$

From Bernoulli, $\frac{p_{1}}{\rho}+\frac{v_{1}^{2}}{2}=\frac{p_{2}}{\rho}+\frac{v_{2}}{2}$

$$
p_{2}-p_{1}=\frac{\rho}{2}\left(U_{1}^{2}-v_{2}^{2}\right)=\frac{1}{2} \times 1.23 \frac{\mathrm{~kg}}{m^{3}}\left[(24.4)^{2}-(24.6)^{2}\right] \frac{\mathrm{m}^{2}}{\mathrm{~s}^{2}} \times \frac{\mathrm{N} \cdot \mathrm{~s}^{2}}{\mathrm{~kg} \cdot \mathrm{~m}}=-6.03 \mathrm{~N} / \mathrm{m}^{2}
$$

Since $\Delta p=\rho g \Delta h$, thin $\Delta h=\Delta p / \rho g$

$$
p_{2}-p_{1}=-6.03 \frac{N}{m^{2}} \times \frac{m^{3}}{999 \mathrm{~kg}} \times \frac{\mathrm{s}^{2}}{9.81 \mathrm{~m}} \times \frac{\mathrm{kg} m}{N \cdot s^{2}}=-0.615 \mathrm{~mm} \mathrm{H} \mathrm{H}_{2} \mathrm{O}
$$

From ambient to (1): $\left(\frac{\phi_{0}^{k_{k}+n_{0}}+\frac{v_{0}^{2}}{R}}{\frac{p}{p}}-\left(\frac{p_{1}}{\rho}+\frac{v^{2}}{2}\right)=h_{L_{T}}\right.$

$$
\begin{aligned}
& p_{1}=-\rho h_{l T}-\frac{1}{2} \rho U_{1}^{2} \\
& 0_{1}=-6.5 \mathrm{~mm} \text { Ho }-\frac{1}{2} \times 1.33 \frac{\mathrm{~kg}}{\mathrm{~m}^{3}} \times(24.4)^{12} \frac{\mathrm{~m}^{2}}{\mathrm{~s}^{2}} \times \frac{\mathrm{m}^{3}}{499 \mathrm{~kg}} \times \frac{\mathrm{s}^{2}}{9.81 \mathrm{~m}}=-43.9 \mathrm{~mm} \mathrm{HzO} \\
& p_{2}=p_{1}+\left(\mu_{2}-p_{1}\right)=-43.9-0.615 \mathrm{~mm} \mathrm{H} \mathrm{H}=-44.5 \mathrm{~mm} \mathrm{H} \mathrm{H}_{2} \mathrm{O}
\end{aligned}
$$

\qquad
9.28 Flow of air develops in a horizontal cylindrical duct, of diameter $D=400 \mathrm{~mm}$, following a well-rounded entrance. A turbulent boundary grows on the duct wall, but the flow is not yet fully developed. Assume that the velocity profile in the boundary layer is $u / U=(y / \delta)^{1 / 7}$. The inlet flow is at $\bar{V}=15 \mathrm{~m} / \mathrm{s}$ at section (1). At section (2), the boundary-layer thickness is $\delta_{2}=100 \mathrm{~mm}$. Evaluate the static gage pressure at section (2), located at $L=6$ m . Find the average wall shear stress.

Given: Data on fluid and boundary layer geometry

Find: Gage pressure at location 2; average wall stress

Solution:

The solution involves using mass conservation in the inviscid core, allowing for the fact that as the boundary layer grows it reduces the sizt core. One approach would be to integrate the $1 / 7$ law velocity profile to compute the mass flow in the boundary layer; an easier approach i simply use the displacement thickness!

The average wall stress can be estimated using the momentum equation for a CV
The given and available (from Appendix A) data is

$$
\rho=1.23 \cdot \frac{\mathrm{~kg}}{\mathrm{~m}^{3}} \quad \mathrm{U}_{1}=15 \cdot \frac{\mathrm{~m}}{\mathrm{~s}} \quad \mathrm{~L}=6 \cdot \mathrm{~m} \quad \mathrm{D}=400 \cdot \mathrm{~mm} \quad \delta_{2}=100 \cdot \mathrm{~mm}
$$

Governing equations:
Mass

$$
\begin{equation*}
\frac{\partial}{\partial t} \int_{\mathrm{CV}} \rho d \not+\int_{\mathrm{CS}} \rho \vec{V} \cdot d \vec{A}=0 \tag{4.12}
\end{equation*}
$$

Momentum

$$
\begin{equation*}
\vec{F}=\vec{F}_{S}+\vec{F}_{B}=\frac{\partial}{\partial t} \int_{\mathrm{CV}} \vec{V} \rho d \forall+\int_{\mathrm{CS}} \vec{V} \rho \vec{V} \cdot d \vec{A} \tag{4.17a}
\end{equation*}
$$

Bernoulli

$$
\begin{equation*}
\frac{\mathrm{p}}{\rho}+\frac{\mathrm{V}^{2}}{2}+\mathrm{g} \cdot \mathrm{z}=\text { constant } \tag{4.24}
\end{equation*}
$$

Assumptions: (1) Steady flow (2) No pressure force (3) No body force in x direction
The displacement thickness at location 2 can be computed from boundary layer thickness using Eq. 9.1

$$
\delta_{\operatorname{disp} 2}=\int_{0}^{\delta_{2}}\left(1-\frac{u}{U}\right) d y=\delta_{2} \cdot \int_{0}^{1}\left(1-\eta^{\frac{1}{7}}\right) d \eta=\frac{\delta_{2}}{8}
$$

Hence

$$
\delta_{\text {disp2 }}=\frac{\delta_{2}}{8} \quad \delta_{\text {disp2 }}=12.5 \mathrm{~mm}
$$

Applying mass conservation at locations 1 and $2 \quad\left(-\rho \cdot U_{1} \cdot A_{1}\right)+\left(\rho \cdot U_{2} \cdot A_{2}\right)=0 \quad$ or $\quad U_{2}=U_{1} \cdot \frac{A_{1}}{A_{2}}$

$$
\mathrm{A}_{1}=\frac{\pi}{4} \cdot \mathrm{D}^{2} \quad \mathrm{~A}_{1}=0.126 \mathrm{~m}^{2}
$$

The area at location 2 is given by the duct cross section area minus the displacement boundary layer

$$
\mathrm{A}_{2}=\frac{\pi}{4} \cdot\left(\mathrm{D}-2 \cdot \delta_{\operatorname{disp} 2}\right)^{2} \quad \mathrm{~A}_{2}=0.11 \mathrm{~m}^{2}
$$

Hence

$$
\mathrm{U}_{2}=\mathrm{U}_{1} \cdot \frac{\mathrm{~A}_{1}}{\mathrm{~A}_{2}}
$$

$$
\mathrm{U}_{2}=17.1 \frac{\mathrm{~m}}{\mathrm{~s}}
$$

For the pressure change we can apply Bernoulli to locations 1 and 2 to find

$$
\mathrm{p}_{1}-\mathrm{p}_{2}=\Delta \mathrm{p}=\frac{\rho}{2} \cdot\left(\mathrm{U}_{2}^{2}-\mathrm{U}_{1}^{2}\right) \quad \Delta \mathrm{p}=40.8 \mathrm{~Pa} \quad \mathrm{p}_{2}=-\Delta \mathrm{p}
$$

Hence

$$
\mathrm{p}_{2} \text { (gage) }=\mathrm{p}_{1} \text { (gage) }-\Delta \mathrm{p} \quad \mathrm{p}_{2}=-40.8 \mathrm{~Pa}
$$

For the average wall shear stress we use the momentum equation, simplified for this problem

$$
\Delta \mathrm{p} \cdot \mathrm{~A}_{1}-\tau \cdot \pi \cdot \mathrm{D} \cdot \mathrm{~L}=-\rho \cdot \mathrm{U}_{1}^{2} \cdot \mathrm{~A}_{1}+\rho \cdot \mathrm{U}_{2}^{2} \cdot \frac{\pi}{4} \cdot\left(\mathrm{D}-2 \cdot \delta_{2}\right)^{2}+\rho \cdot \int_{\frac{\mathrm{D}}{2}-\delta_{2}}^{\frac{\mathrm{D}}{2}} 2 \cdot \pi \cdot \mathrm{r} \cdot \mathrm{u}^{2} \mathrm{dr}
$$

where

$$
\mathrm{u}(\mathrm{r})=\mathrm{U}_{2} \cdot\left(\frac{\mathrm{y}}{\delta_{2}}\right)^{\frac{1}{7}} \quad \text { and } \quad \mathrm{r}=\frac{\mathrm{D}}{2}-\mathrm{y} \quad \mathrm{dr}=-\mathrm{dy}
$$

The integral is

$$
\rho \cdot \int_{\frac{D}{2}-\delta_{2}}^{\frac{D}{2}} 2 \cdot \pi \cdot r \cdot u^{2} d r=-2 \cdot \pi \cdot \rho \cdot U_{2}^{2} \cdot \int_{\delta_{2}}^{0}\left(\frac{D}{2}-y\right) \cdot\left(\frac{y}{\delta_{2}}\right)^{\frac{2}{7}} d y
$$

$$
\rho \cdot \int_{\frac{\mathrm{D}}{2}-\delta_{2}}^{\frac{\mathrm{D}}{2}} 2 \cdot \pi \cdot \mathrm{r} \cdot \mathrm{u}^{2} \mathrm{dr}=7 \cdot \pi \cdot \rho \cdot \mathrm{U}_{2}^{2} \cdot \delta_{2} \cdot\left(\frac{\mathrm{D}}{9}-\frac{\delta_{2}}{8}\right)
$$

Hence

$$
\tau=\frac{\Delta \mathrm{p} \cdot \mathrm{~A}_{1}+\rho \cdot \mathrm{U}_{1}^{2} \cdot \mathrm{~A}_{1}-\rho \cdot \mathrm{U}_{2}{ }^{2} \cdot \frac{\pi}{4} \cdot\left(\mathrm{D}-2 \cdot \delta_{2}\right)^{2}-7 \cdot \pi \cdot \rho \cdot \mathrm{U}_{2}{ }^{2} \cdot \delta_{2} \cdot\left(\frac{\mathrm{D}}{9}-\frac{\delta_{2}}{8}\right)}{\pi \cdot \mathrm{D} \cdot \mathrm{~L}}
$$

$$
\tau=0.461 \mathrm{~Pa}
$$

Given: Air flow into wind tunnel contraction and test section as shown.

$$
\begin{aligned}
V_{1} & =50.2 \mathrm{~m} / \mathrm{s} \\
\delta_{2} & =20.3 \mathrm{~mm} \\
H & =305 \mathrm{~mm} \\
L & =609 \mathrm{~mm}
\end{aligned}
$$

Find: (a) δ_{2}^{*}
(b) $p_{2}-p_{1}$
(c) Estimate total drag force caused by friction on each wall.

Solution: Assume turbulent BL with H_{7} power profit, $\frac{\mu}{U}=\left(\frac{y}{g}\right)^{1 / 7}=\lambda^{1 / 7}$
B_{y} definition $\frac{\delta^{*}}{\delta}=\int_{0}^{1}\left(1-\frac{u}{\bar{U}}\right) d\left(\frac{4}{\delta}\right)=\int_{0}^{1}\left(1-\lambda^{1 / 7}\right) d \lambda=\lambda-\frac{7}{\delta} \lambda^{8 / 7}=1 / 8$
Thus $\delta_{2}^{*}=\frac{1}{8} \delta_{2}=\frac{1}{8} \times 20.3 \mathrm{~mm}=2.54 \mathrm{~mm}$
From continuity, $U, A_{1}=U, H^{2}=U_{2} A_{2}=U_{2}\left(H-2 \delta_{2}^{*}\right)^{2}$

$$
U_{2}=U_{1} \frac{H^{2}}{\left(H-2 \delta_{2}^{N}\right)^{2}}=50.2 \frac{\mathrm{~m}}{5} \times \frac{(305)^{2}}{(305-2 \times 2.54)^{2}}=51.9 \mathrm{~m} / \mathrm{s}
$$

Apply the Bernoulli equation to the steads, incompressible, frictionless flow along a streamline outside the boundary layers:

$$
\frac{p_{1}}{p}+\frac{V_{1}^{2}}{2}+g z_{1}=\frac{-p_{2}}{p}+\frac{v_{2}^{2}}{2}+g_{2} ; z_{2}=z_{1}, z_{0} p_{2}-p_{1}=\frac{p}{2}\left(U_{1}^{2}-v_{2}^{2}\right)
$$

so

$$
p_{2}-p_{1}=\frac{1}{2} \times 1.23 \frac{\mathrm{kq}^{2}}{\mathrm{~m}^{3}}\left[(50.2)^{2}-(51.9)^{2}\right] \frac{\mathrm{m}^{2}}{\mathrm{~s}^{2}} \times \frac{N . \mathrm{s}^{2}}{\mathrm{~kg} / \mathrm{m}}=-107 \mathrm{~N} / \mathrm{m}^{2}
$$

\qquad
choose the $C V$ shown to evaluate drag caused by friction Basic equation: $F_{B_{x}}+F_{F x}^{=0(1)}=\frac{y^{*}}{\partial t} \int_{V U}^{-o(t)} u p d \psi+\int_{c s} u p \vec{v} \cdot d \vec{A}$
Assume: (1) Horizontals so $F_{B_{X}}=0$
(2) Steady flow

Then

$$
p_{1} H \delta_{2}-F_{D}-p_{2} H \delta_{2}=V_{1}\left\{-\rho U_{1} H \delta_{2}\right\}+\vec{U}\left\{+\dot{m}_{t o p}\right\}+\int_{0}^{\delta_{2}} u \rho u H d y
$$

or $F_{D}=\left(p_{1}-p_{2}\right) H \delta_{2}+\rho U_{1}^{2} H \delta_{2}-\vec{U} \dot{m}_{t o \rho}-\int_{0}^{\delta_{2}} u \rho u H d y$ From conservation of mass, $\dot{m}_{t_{p}}: \dot{m}_{1}-\dot{m}_{2}=\rho U_{1} H \delta_{2}-\int_{0}^{\delta_{2}} \rho u H d y$ Evaluating the integrals, $\int_{0}^{\delta_{2}} \rho u H d y=f U_{2} H \delta_{2} \int_{0}^{1} \lambda^{1 / 7} d \lambda=\frac{7}{\xi} \rho U_{2} H \delta_{2}$ and $\int_{0}^{\delta_{2}} u p u H d_{g}=p U_{2}^{2} H \delta_{2} \int_{0}^{1} \lambda^{2 / 7} d \lambda=\frac{7}{4} p U_{2}^{2} H \delta_{2}$

Thus $\int_{0}^{s_{1}} \rho u H d y=\frac{7}{8} \rho U_{2} H f_{L}=\frac{7}{8} \times 1.23 \frac{\mathrm{~kg}}{\mathrm{~m}} 3^{5} 5.4 \frac{\mathrm{~m}}{\mathrm{~s}} \kappa^{0.305 \mathrm{~m}} \times 0.0203 \mathrm{~m}=0.346 \mathrm{~kg} \mathrm{~L}$

$$
p U_{1} H s_{2}=1.23 \frac{\mathrm{kq}_{3}}{\mathrm{~m}^{3}} 50.2 \frac{\mathrm{~m}}{\mathrm{~s}} \times 0.305 \mathrm{~m}_{\times} 0.0203 \mathrm{~m}=0.38 \mathrm{z} \mathrm{~kg} / \mathrm{s}
$$

From Eq. 2 , maintop $=(0.382-0.34) \frac{\mathrm{leg}}{\mathrm{s}}=0.0364 \mathrm{~kg} / \mathrm{s}$
$A / s_{0} f_{0}^{\delta_{2}}$ upuHdy $=\frac{7}{9} p C_{2}^{2} H \delta_{2}=\frac{7}{9} \times 1.13 \frac{\mathrm{~kg}}{\mathrm{~m}_{3}} \times(51.9)^{2} \frac{\mathrm{~m}^{2}}{3^{2}} \times 1.30 .5 \mathrm{~m} \times 0.0203 \mathrm{~m}_{\times} \times \frac{\mathrm{Nu} \mathrm{s}^{2}}{\mathrm{~kg} \cdot \mathrm{~m}}=16.0 \mathrm{~N}$
and $\vec{U} \approx \frac{1}{2}\left(U_{1}+U_{2}\right)=\frac{1}{2}(50.2+51.9) \frac{\mathrm{m}}{3}=51.1 \mathrm{~m} / \mathrm{s}$
From E, $, 1,\left(p_{1}-\beta_{1}\right) H \delta_{1}=107 \frac{N}{m^{2}} \times 0.305 m_{x}+0.0203 \mathrm{~m}=0.662 \mathrm{~N}$

$$
\rho v_{1}^{2}+\delta_{1}=1.23 \frac{\mathrm{~kg}}{\mathrm{~m}^{3}} \times(50.2)^{2} \frac{\mathrm{~m}^{2}}{\mathrm{~S}^{2}} \times 0.305 \mathrm{~m}_{x} 0.0203 \mathrm{~m}_{\times} \frac{\mathrm{N} \cdot \mathrm{j}^{2}}{\mathrm{kq} \cdot \mathrm{~m}}=19.2 \mathrm{~N}
$$

Finally, substituting int Eq. 1

$$
F_{D}=0.662 N+19.2 N-51.1 \frac{\mathrm{~m}}{5} \times 0.0364 \frac{\mathrm{~kg}}{\mathrm{~s}} \times \frac{\mathrm{N} . \mathrm{s}^{2}}{\mathrm{~kg} . \mathrm{m}}-16.0 \mathrm{~N}=2.00 \mathrm{~N}
$$

The viscous drag force acts on the cv in the direction shown. The viscousdrag force on the wall of the test section is equal and opposite:

Viscous drag forces on
was of test section

Given: Blasius exact solution for laminar boundary-layer flow. Find: Pht and compare to parabolic profile, $\frac{u}{U}=2 \eta-\eta^{2}$.

Solution: The Blasivis solution is given in Table 9.1 ; it is plotted below.

Given: Numerical results of Blasius for laminar bowndarg-lager flow.
Find: (a) Evaluate t distribution.
(b) Plot $\tau / T w$ versus $4 / d$.
(c) Compare results from the sinusoidal/ profile, $\frac{u}{U}=\sin \left(\frac{\pi}{z} \frac{b}{s}\right.$)

Solution: For the Blasius solution, $u=U \frac{d f}{d \eta}=U f^{\prime}(\eta)$, and $\eta=4 \sqrt{\frac{U}{2 x}}$ computing equation: $\tau=\mu \frac{\partial u}{\partial y}$
For the Blasices profile, $\tau=\mu \frac{\partial}{\partial y}\left[U \frac{d f}{d \eta}\right]=\mu U \frac{d^{2} f}{d^{2}} \frac{\partial \eta}{\partial y}=\mu U f^{\prime}(\eta) \sqrt{\frac{U}{v x}}$
Thus $\frac{\tau}{\rho U^{2}}=\frac{\mu}{\rho U} f^{\prime \prime}(\eta) \sqrt{\frac{U}{2 x}}=\frac{f^{\prime \prime}(\eta)}{\sqrt{R e_{x}}} ; \tau \sim f^{4}(\eta)$
From the above equation, $\frac{t}{\tau_{w}}=\frac{f^{\prime \prime}(\eta)}{f^{\prime \prime}(0)}=\frac{f^{\prime \prime}(n)}{0.33206}$
since $y=\delta$ at $\eta=5$, then $y / 5=7 / 5$, plotting:

For the sinusoidal profile,

$$
\tau=\mu \frac{\partial \mu}{\partial \zeta}=\frac{\mu U}{\delta} \frac{d(\mu / \nu)}{d(\zeta / \delta)}=\frac{\mu U}{\delta} \frac{\pi}{2} \cos \left(\frac{\pi}{2} \frac{\psi}{\delta}\right) ; \tau_{\omega}=\frac{\mu U}{\delta} \frac{\pi}{2}
$$

Thus

$$
\tau_{/ \tau_{\omega}}=\cos \left(\frac{\pi}{2} \frac{y}{\delta}\right) \quad(\operatorname{sincsoida} \text { protite)}
$$

Given: Numerical resets of Blasius for laminar boundary-layer flow.
Find: (a) Evaluate τ distribution.
(b) Plot τ / c_{w} versus $y / 8$.
(c) Compare results from the parabolic profile, $\frac{U}{v}=2 n-\eta^{2}$

Solution: For the Blasius solution, $u=U \frac{d f}{d \eta}=U f^{\prime}(n)$, and $\eta=y \sqrt{\frac{U}{\nu x}}$ Computingequation: $\tau=\mu \frac{\partial u}{\partial y}$
For the slasices profile, $\tau=\mu \frac{\partial}{\partial y}\left[v-\frac{d f}{d \eta}\right]=\mu U \frac{d^{2} f}{d \eta^{2}} \frac{\partial y}{\partial y}=\mu U f^{\prime \prime}(n) \sqrt{V}$
Thus $\frac{\tau}{\rho V^{2}}=\frac{\mu}{\rho V} f^{\prime \prime}(\eta) \sqrt{\frac{v}{v x}}=\frac{f^{\prime \prime}(\eta)}{\sqrt{R e_{x}}} ; \tau \sim f^{\prime \prime}(\eta)$
From above equation, $\frac{\tau}{\tau_{w}}=\frac{f^{\prime \prime \prime}(\eta)}{f^{\prime \prime}(0)}=\frac{f^{\prime \prime}(n)}{0.33206}$
Since $y=\delta$ at $n=5$, then $y / \delta=3 / 5$. Potting:

For the parabolic profile,
τ / τ_{w}

$$
\tau=\mu \frac{\partial u}{\partial y}=\mu \frac{\mu v}{\delta} \frac{d\left(\mu_{0}\right)}{\partial\left(y_{/ \delta}\right)}=\frac{\mu U}{\delta}\left[z-z\left(\frac{y}{\delta}\right)\right] ; \tau_{w}=\frac{\mu U}{\delta}[z]
$$

Thus

$$
\tau_{\kappa_{\omega}}=1-\frac{y}{\delta}
$$

Given: Numerical results of Basics for laminar boundary-byer flow. Fino: Plot vier versusyls for Rex. $=10^{s}$.

Solution: For the Blasius solution, $\psi=\sqrt{v v x} f(\eta)$ and $\eta=\sqrt[y]{\frac{U}{v x}}$ From the stream function, $v=-\frac{\partial \psi}{\partial x}=-\left[\frac{1}{2} \sqrt{\frac{\nu v}{x}} f(\eta)+\sqrt{U_{\nu x}} \frac{d f}{d \eta} \frac{\partial \eta}{\partial x}\right]$ $B u+\frac{\partial v}{\partial x}=-\frac{1}{2} \frac{y}{x} \sqrt{\frac{U}{v x}}=-\frac{1}{2} \frac{1}{x}$
Thus $v=-\frac{1}{2} \sqrt{\frac{v v}{x}} f(\eta)-\sqrt{U v x} \frac{d f}{d \eta}\left(-\frac{1}{2} \frac{\eta}{x}\right)=\frac{1}{2} \sqrt{\frac{v v}{x}}\left[\eta f^{\prime}(\eta)-f(\eta)\right]$
and

$$
\frac{\eta}{U}=\frac{1}{2} \sqrt{\frac{\nu}{U x}}\left[\eta f^{\prime}(\eta)-f(\eta)\right]=\frac{\eta f^{\prime}(\eta)-f(n)}{2 \sqrt{e_{x}}}
$$

Also

$$
\frac{y}{\delta}=\frac{y}{5 \sqrt{\frac{\nu x}{v}}}=\frac{\eta}{5}
$$

Tabulate from Table 9.1:
Plot:

η	$\eta f^{\prime}(\eta)-f(\eta)$	v / v
0	0	0
0.4	0.0265	4.20×10^{-5}
1.0	0.164	2.60×10^{-4}
1.4	0.316	4.99×10^{-4}
2.0	0.610	9.64×10^{-4}
2.4	0.827	1.31×10^{-3}
3.0	1.14	1.80×10^{-3}
3.4	1.32	2.09×10^{-3}
4.0	1.52	2.40×10^{-3}
4.4	1.60	2.53×10^{-3}
5.0	1.67	2.65×10^{-3}

Given: Blasius solution to boundary layer equations goes $v=\frac{1}{2} \sqrt{\frac{v y}{x}}\left(\eta f^{\prime}-f\right)$
where $\Delta=f(\eta) \sqrt{\sqrt{x i}}$ and $\eta=y \sqrt{\frac{0}{7}}$
Find: (a) Verify expression for v (b) Obtain an expression for a_{x}

Foot: a_{4} vs η to determine maximum a_{4} for gwen x.
Solution: From the definition of $w, v=-2 v / a x$

$$
\begin{aligned}
& v=-\frac{\partial t}{\partial x}=-\left[\sqrt{\sqrt{x 0}} \frac{\partial f}{\partial x}+f \frac{1}{2} \sqrt{\frac{\sqrt{3}}{x}}\right]=-\left[\sqrt{\sqrt{x i}} \frac{d f}{d x} \frac{\partial x}{\partial x}+f \frac{1}{2} \sqrt{\frac{\sqrt{U}}{k}}\right] \\
& \frac{\partial x}{\partial x}=y \sqrt{\frac{3}{7}}\left(-\frac{1}{2}+x^{3 / 2}\right)=-\frac{y}{2 x} \sqrt{\frac{0}{5}}=-\frac{x}{2 x} \\
& \therefore v=-\left[\sqrt{\sqrt{80}} f^{\prime}\left(-\frac{1}{2-x}\right)+f \frac{1}{2} \sqrt{\frac{\sqrt{x}}{x}}\right]=\frac{1}{2} \sqrt{\frac{v 0}{x}}\left(\eta f^{\prime}-f\right) \\
& a_{x}=u \frac{\partial u}{\partial x}+v \frac{\partial u}{\partial y} \quad \text { where } u=U f^{\prime} \\
& \left.\frac{\partial u}{\partial x}=U \frac{d f^{\prime}}{d \eta} \frac{\partial \eta^{\prime}}{\partial x}=U f^{\prime \prime}(-\eta)=-\frac{1}{2} \frac{\eta}{2 x}\right)=f^{\prime \prime} \\
& \frac{\partial u}{\partial y}=u \frac{d f^{\prime}}{d \eta} \frac{\partial x}{\partial y}=O f^{\prime \prime} \sqrt{\frac{T}{7} x}
\end{aligned}
$$

Then

$$
\begin{aligned}
a_{x} & =U f^{\prime}\left(-\frac{1}{2} \frac{\eta f^{\prime \prime}}{x}\right)+\frac{1}{2} \sqrt{\frac{V O}{x}}\left(\eta f^{\prime}-f\right) \cup f^{\prime \prime} \sqrt{O} \\
& =-\frac{1}{3} \frac{U^{2}}{x} x f^{\prime} f^{\prime \prime}+\frac{1}{2} \frac{U^{2}}{x}\left(\eta f^{\prime} f^{\prime \prime}-f f^{\prime \prime}\right) \\
a_{x} & =-\frac{U^{2}}{2 x} f f^{\prime \prime}
\end{aligned}
$$

For gwen x, ax max for max $f f^{\prime \prime}$

| 2 | f | f | $f^{\prime \prime}$ |
| :--- | :--- | :--- | :--- |$\quad f f^{\prime \prime}$

From plot $f f^{\prime \prime} \lambda_{\text {man }}$ z 0.23

$$
\therefore a_{x}=-0.115 \frac{J^{2}}{x} \quad(a t y 23)
$$

Problem 9.35

9.35 Numerical results of the Blasius solution to the Prandtl boundary-layer equations are presented in Table 9.1. Consider steady, incompressible flow of standard air over a flat plate at freestream speed $U=15 \mathrm{ft} / \mathrm{s}$. At $x=7.5 \mathrm{in}$., estimate the distance from the surface at which $u=0.95 U$. Evaluate the slope of the streamline through this point. Obtain an algebraic expression for the local skin friction, $\tau_{w}(x)$. Obtain an algebraic expression for the total skin friction drag force on the plate. Evaluate the momentum thickness at $L=3 \mathrm{ft}$.

Given: Blasius solution for laminar boundary layer
Find: \quad Point at which $u=0.95 \mathrm{U}$; Slope of streamline; expression for skin friction coefficient and total drag; Momentum thicknes

Solution:

Basic equation: Use results of Blasius solution (Table 9.1 on the web), and $\eta=y \cdot \sqrt{\frac{\nu \cdot x}{U}}$

$$
\begin{array}{lll}
\mathrm{f}^{\prime}=\frac{\mathrm{u}}{\mathrm{U}}=0.9130 & \text { at } & \eta=3.5 \\
\mathrm{f}^{\prime}=\frac{\mathrm{u}}{\mathrm{U}}=0.9555 & \text { at } & \eta=4.0
\end{array}
$$

Hence by linear interpolation, when $\mathrm{f}^{\prime}=0.95$

From Table A.9 at $68^{\circ} \mathrm{F}$	$\nu=1.62 \times 10^{-4} \cdot \frac{\mathrm{ft}^{2}}{\mathrm{~s}} \quad$ and	$\mathrm{U}=15 \cdot \frac{\mathrm{ft}}{\mathrm{s}} \quad \mathrm{x}=7.5 \cdot \mathrm{in}$
Hence	$y=\eta \cdot \sqrt{\frac{\nu \cdot x}{U}}$	$y=0.121 \mathrm{in}$

The streamline slope is given by $\quad \frac{d y}{d x}=\frac{v}{u} \quad$ where $\quad u=U \cdot f^{\prime} \quad$ and $\quad v=\frac{1}{2} \cdot \sqrt{\frac{\nu \cdot U}{x}} \cdot\left(\eta \cdot f^{\prime}-f\right)$

$$
\frac{d y}{d x}=\frac{1}{2} \cdot \sqrt{\frac{\nu \cdot U}{x}} \cdot\left(\eta \cdot f^{\prime}-f\right) \cdot \frac{1}{U \cdot f^{\prime}}=\frac{1}{2} \cdot \sqrt{\frac{\nu}{U \cdot x}} \cdot \frac{\left(\eta \cdot f^{\prime}-f\right)}{f^{\prime}}=\frac{1}{2 \cdot \sqrt{R e_{x}}} \cdot \frac{\left(\eta \cdot f^{\prime}-f\right)}{f^{\prime}}
$$

We have

$$
\operatorname{Re}_{\mathrm{X}}=\frac{\mathrm{U} \cdot \mathrm{x}}{\nu} \quad \quad \operatorname{Re}_{\mathrm{X}}=5.79 \times 10^{4}
$$

From the Blasius solution (Table 9.1 on the web)

Hence by linear interpolation

$$
\begin{array}{lll}
\mathrm{f}=1.8377 & \text { at } & \eta=3.5 \\
\mathrm{f}=2.3057 & \text { at } & \eta=4.0
\end{array}
$$

$$
\mathrm{f}=1.8377+\frac{(2.3057-1.8377)}{(4.0-3.5)} \cdot(3.89-3.5) \quad \mathrm{f}=2.2027
$$

$$
\frac{\mathrm{dy}}{\mathrm{dx}}=\frac{1}{2 \cdot \sqrt{\operatorname{Re}_{\mathrm{x}}}} \cdot \frac{\left(\eta \cdot \mathrm{f}^{\prime}-\mathrm{f}\right)}{\mathrm{f}^{\prime}}=0.00326
$$

The shear stress is

$$
\begin{array}{ll}
\tau_{\mathrm{W}}=\mu \cdot\left(\frac{\partial}{\partial \mathrm{y}} \mathrm{u}+\frac{\partial}{\partial \mathrm{x}} \mathrm{v}\right)=\mu \cdot \frac{\partial}{\partial \mathrm{y}} \mathrm{u} & \text { at } \mathrm{y}=0(\mathrm{v}=0 \text { at the wall for all } \mathrm{x} \text {, so the derivative is zero there) } \\
\tau_{\mathrm{w}}=\mu \cdot \mathrm{U} \cdot \sqrt{\frac{\mathrm{U}}{\nu \cdot \mathrm{x}} \cdot \frac{\mathrm{~d}^{2} \mathrm{f}}{\mathrm{~d}^{2}}} \quad & \text { and at } \eta=0
\end{array} \frac{\frac{\mathrm{~d}^{2} \mathrm{f}}{\mathrm{~d}^{2}}=0.3321}{} \text { (from Table 9.1) }
$$

$$
\tau_{\mathrm{W}}=0.3321 \cdot \mathrm{U} \cdot \sqrt{\frac{\rho \cdot \mathrm{U} \cdot \mu}{\mathrm{x}}} \quad \tau_{\mathrm{W}}=0.3321 \cdot \rho \cdot \mathrm{U}^{2} \cdot \sqrt{\frac{\mu}{\rho \cdot \mathrm{U} \cdot \mathrm{x}}}=0.3321 \cdot \frac{\rho \cdot \mathrm{U}^{2}}{\sqrt{\operatorname{Re}_{\mathrm{X}}}}
$$

The friction drag is
$\mathrm{F}_{\mathrm{D}}=\int \tau_{\mathrm{w}} \mathrm{dA}=\int_{0}^{\mathrm{L}} \tau_{\mathrm{w}} \cdot \mathrm{bdx} \quad$ where b is the plate width
$\mathrm{F}_{\mathrm{D}}=\int_{0}^{\mathrm{L}} 0.3321 \cdot \frac{\rho \cdot \mathrm{U}^{2}}{\sqrt{\operatorname{Re}_{\mathrm{X}}}} \cdot \mathrm{bdx}=0.3321 \cdot \rho \cdot \mathrm{U}^{2} \cdot \sqrt{\frac{\nu}{\mathrm{U}}} \cdot \int_{0}^{\mathrm{L}} \frac{1}{\frac{1}{\frac{1}{2}}} \mathrm{dx}$
$\mathrm{F}_{\mathrm{D}}=0.3321 \cdot \rho \cdot \mathrm{U}^{2} \cdot \sqrt{\frac{\nu}{\mathrm{U}}} \cdot \mathrm{b} \cdot 2 \cdot \mathrm{~L}^{\frac{1}{2}} \quad \mathrm{~F}_{\mathrm{D}}=\rho \cdot \mathrm{U}^{2} \cdot \mathrm{~b} \cdot \mathrm{~L} \cdot \frac{0.6642}{\sqrt{\mathrm{Re}_{\mathrm{L}}}}$

For the momentum integral

We have

$$
\begin{aligned}
& \frac{\tau_{\mathrm{w}}}{\rho \cdot \mathrm{U}^{2}}=\frac{\mathrm{d} \theta}{\mathrm{dx}} \quad \text { or } \quad \mathrm{d} \theta=\frac{\tau_{\mathrm{w}}}{\rho \cdot \mathrm{U}^{2}} \cdot \mathrm{dx} \\
& \theta_{\mathrm{L}}=\frac{1}{\rho \cdot \mathrm{U}^{2}} \cdot \int_{0}^{\mathrm{L}} \tau_{\mathrm{W}} \mathrm{dx}=\frac{1}{\rho \cdot \mathrm{U}^{2}} \cdot \frac{\mathrm{~F}_{\mathrm{D}}}{\mathrm{~b}}=\frac{0.6642 \cdot \mathrm{~L}}{\sqrt{\mathrm{Re}_{\mathrm{L}}}}
\end{aligned}
$$

$$
\begin{array}{ll}
\mathrm{L}=3 \cdot \mathrm{ft} \quad \mathrm{Re}_{\mathrm{L}}=\frac{\mathrm{U} \cdot \mathrm{~L}}{\nu} & \mathrm{Re}_{\mathrm{L}}=2.78 \times 10^{5} \\
\theta_{\mathrm{L}}=\frac{0.6642 \cdot \mathrm{~L}}{\sqrt{\mathrm{Re}_{\mathrm{L}}}} & \theta_{\mathrm{L}}=0.0454 \mathrm{in}
\end{array}
$$

*9.36 The Blasius exact solution involves solving a nonlinear equation, Eq. 9.11, with initial and boundary conditions given by Eq. 9.12. Set up an Excel workbook to obtain a numerical solution of this system. The workbook should consist of columns for η, f, f^{\prime}, and $f^{\prime \prime}$. The rows should consist of values of these, with a suitable step size for η (e.g., for 1000 rows the step size for η would be 0.01 to generate data through $\eta=10$, to go a little beyond the data in Table 9.1). The values of f and f^{\prime} for the first row are zero (from the initial conditions, Eq. 9.12); a guess value is needed for $f^{\prime \prime}$ (try 0.5). Subsequent row values for f, f^{\prime}, and $f^{\prime \prime}$ can be obtained from previous row values using Euler's finite difference method for approximating first derivatives (and Eq. 9.11). Finally, a solution can be found by using Excel's Goal Seek or Solver functions to vary the initial value of $f^{\prime \prime}$ until $f^{\prime}=1$ for large η (e.g., $\eta=10$, boundary condition of Eq. 9.12). Plot the results. Note: Because Euler's method is relatively crude, the results will agree with Blasius' only to within about 1%.

Given: Blasius nonlinear equation

Find: Blasius solution using Excel

Solution:

The equation to be solved is

$$
\begin{equation*}
2 \frac{d^{3} f}{d \eta^{3}}+f \frac{d^{2} f}{d \eta^{2}}=0 \tag{9.11}
\end{equation*}
$$

The boundary conditions are

$$
\begin{gather*}
f=0 \text { and } \frac{d f}{d \eta}=0 \quad \text { at } \quad \eta=0 \\
f^{\prime}=\frac{d f}{d \eta}=1 \quad \text { at } \quad \eta \rightarrow \infty \tag{9.12}
\end{gather*}
$$

Recall that these somewhat abstract variables are related to physically meaningful variables:

$$
\frac{u}{U}=f^{\prime}
$$

and

$$
\eta=y \sqrt{\frac{U}{\nu x}} \propto \frac{y}{\delta}
$$

Using Euler's numerical method

$$
\begin{align*}
& f_{n+1} \approx f_{n}+\Delta \eta f_{n}^{\prime} \tag{1}\\
& f_{n+1}^{\prime} \approx f_{n}^{\prime}+\Delta \eta f_{n}^{\prime \prime} \tag{2}
\end{align*}
$$

$$
f_{n+1}^{\prime \prime} \approx f_{n}^{\prime \prime}+\Delta \eta f_{n}^{\prime \prime \prime}
$$

In these equations, the subscripts refer to the $n^{\text {th }}$ discrete value of the variables, and $\Delta \eta=10 / N$ is the step size for η (N is the total number of steps).

But from Eq. 9.11

$$
f^{\prime \prime \prime}=-\frac{1}{2} f f^{\prime \prime}
$$

so the last of the three equations is

$$
\begin{equation*}
f_{n+1}^{\prime \prime} \approx f_{n}^{\prime \prime}+\Delta \eta\left(-\frac{1}{2} f_{n} f_{n}^{\prime \prime}\right) \tag{3}
\end{equation*}
$$

Equations 1 through 3 form a complete set for computing $f, f^{\prime}, f^{\prime \prime}$. All we need is the starting condition for each. From Eqs. 9.12

$$
f_{0}=0 \text { and } f_{0}^{\prime}=0
$$

We do NOT have a starting condition for $f^{\prime \prime}!$ Instead we must choose (using Solver) $f_{0}^{\prime \prime}$ so that the last condition of Eqs. 9.12 is met:

$$
f_{N}^{\prime}=1
$$

Computations (only the first few lines of 1000 are shown):

$$
\Delta \eta=\quad 0.01
$$

Make a guess for the first $f^{\prime \prime}$; use Solver to vary it until $f^{\prime} \mathrm{N}=1$

Count	η	\boldsymbol{f}	\boldsymbol{f}^{\prime}	$\boldsymbol{f}^{\prime \prime}$
0	0.00	0.0000	0.0000	0.3303
1	0.01	0.0000	0.0033	0.3303
2	0.02	0.0000	0.0066	0.3303
3	0.03	0.0001	0.0099	0.3303
4	0.04	0.0002	0.0132	0.3303
5	0.05	0.0003	0.0165	0.3303

9.37 Consider flow of air over a flat plate. On one graph, plot
the laminar boundary-layer thickness as a function of distance
along the plate (up to transition) for freestream speeds $U=1 \mathrm{~m} / \mathrm{s}$,
$2 \mathrm{~m} / \mathrm{s}, 3 \mathrm{~m} / \mathrm{s}, 4 \mathrm{~m} / \mathrm{s}, 5 \mathrm{~m} / \mathrm{s}$, and $10 \mathrm{~m} / \mathrm{s}$.

Given: Data on flow over flat plate
Find: \quad Plot of laminar thickness at various speeds

Solution:

Governing equations:
$\frac{\delta}{x}=\frac{5.48}{\sqrt{\operatorname{Re}_{x}}}$
(9.21)
and
$\operatorname{Re}_{\mathrm{X}}=\frac{\mathrm{U} \cdot \mathrm{x}}{\nu}$
so $\quad \delta=5.48 \cdot \sqrt{\frac{\nu \cdot x}{U}}$

The critical Reynolds number is

$$
\operatorname{Re}_{\text {crit }}=500000
$$

Hence, for velocity U the critical length $x_{\text {crit }}$ is

$$
\mathrm{x}_{\text {crit }}=500000 \cdot \frac{\nu}{\mathrm{U}}
$$

Tabulated or graphical data:

$$
v=\underset{ }{\left(\text { Table A. } 10,20^{\circ} \mathrm{C}\right)} \mathrm{m}^{2} / \mathrm{s}
$$

Computed results:

$\boldsymbol{U}(\mathbf{m} / \mathbf{s})$	1	2	3	4	5	10
$\boldsymbol{x}_{\text {crit }} \mathbf{(m)}$	7.5	3.8	2.5	1.9	1.5	0.75

$\boldsymbol{x}(\mathbf{m})$	$\boldsymbol{\delta}(\mathbf{m m})$					
0.000	0.00	0.00	0.00	0.00	0.00	0.00
0.025	3.36	2.37	1.94	1.68	1.50	1.06
0.050	4.75	3.36	2.74	2.37	2.12	1.50
0.075	5.81	4.11	3.36	2.91	2.60	1.84
0.100	6.71	4.75	3.87	3.36	3.00	
0.2	9.49	6.71	5.48	4.75	4.24	
0.5	15.01	10.61	8.66	7.50	6.71	
1.5	25.99	18.38	15.01	13.00	11.62	
1.9	29.26	20.69	16.89	14.63		
2.5	33.56	23.73	19.37			
3.8	41.37	29.26				
5.0	47.46					
6.0	51.99					
7.5	58.12					

9.38 A thin flat plate, $L=0.25 \mathrm{~m}$ long and $b=1 \mathrm{~m}$ wide, is installed in a water tunnel as a splitter. The freestream speed is $U=$ $1.75 \mathrm{~m} / \mathrm{s}$ and the velocity profile in the boundary layer is approximated as parabolic. Plot δ, δ^{}, and τ_{w} versus x / L for the plate.

Given: Parabolic solution for laminar boundary layer

Find: \quad Plot of δ, δ^{*}, and τ_{w} versus x / L

Solution:

Basic equations:

$$
\frac{\mathrm{u}}{\mathrm{U}}=2 \cdot\left(\frac{\mathrm{y}}{\delta}\right)-\left(\frac{\mathrm{y}}{\delta}\right)^{2} \quad \frac{\delta}{\mathrm{x}}=\frac{5.48}{\sqrt{\operatorname{Re}_{\mathrm{x}}}} \quad \mathrm{c}_{\mathrm{f}}=\frac{\tau_{\mathrm{w}}}{\frac{1}{2} \cdot \rho \cdot \mathrm{U}^{2}}=\frac{0.730}{\sqrt{\operatorname{Re}_{\mathrm{x}}}}
$$

Hence

$$
\delta^{*}=\int_{0}^{\delta}\left(1-\frac{u}{U}\right) d y=\delta \int_{0}^{1}\left(1-\frac{u}{U}\right) d\left(\frac{y}{\delta}\right)=\delta \int_{0}^{1}\left(1-2+\eta^{2}\right) d \eta=\delta\left[\eta-\eta^{2}+\frac{1}{3} \eta^{3}\right]_{0}^{1}=\frac{\delta}{3}
$$

Tabulated or graphical data: Given data:

$$
\begin{array}{rlrlrl}
v= & 1.01 \mathrm{E}-06 \mathrm{~m}^{2} / \mathrm{s} & L & =0.25 \mathrm{~m} \\
& \left(\text { Table A. } 8,20^{\circ} \mathrm{C}\right) & & U= & 1.75 \mathrm{~m} / \mathrm{s}
\end{array}
$$

Computed results:

$\boldsymbol{x}(\mathbf{m})$	$R \boldsymbol{e}_{\boldsymbol{x}}$	$\boldsymbol{\delta}^{(\mathbf{m m})}$	$\delta^{*}(\mathbf{m m})$	$\tau_{\mathbf{w}} \mathbf{(P a)}$
0.0000	$0.00 . \mathrm{E}+00$	0.000	0.000	
0.0125	$2.17 . \mathrm{E}+04$	0.465	0.155	10.40
0.0250	$4.33 . \mathrm{E}+04$	0.658	0.219	7.36
0.0375	$6.50 . \mathrm{E}+04$	0.806	0.269	6.01
0.0500	$8.66 . \mathrm{E}+04$	0.931	0.310	5.20
0.0625	$1.08 . \mathrm{E}+05$	1.041	0.347	4.65
0.0750	$1.30 . \mathrm{E}+05$	1.140	0.380	4.25
0.0875	$1.52 . \mathrm{E}+05$	1.231	0.410	3.93
0.1000	$1.73 . \mathrm{E}+05$	1.317	0.439	3.68
0.1125	$1.95 . \mathrm{E}+05$	1.396	0.465	3.47
0.1250	$2.17 . \mathrm{E}+05$	1.472	0.491	3.29
0.1375	$2.38 . \mathrm{E}+05$	1.544	0.515	3.14
0.1500	$2.60 . \mathrm{E}+05$	1.612	0.537	3.00
0.1625	$2.82 . \mathrm{E}+05$	1.678	0.559	2.89
0.1750	$3.03 . \mathrm{E}+05$	1.742	0.581	2.78
0.1875	$3.25 . \mathrm{E}+05$	1.803	0.601	2.69
0.2000	$3.47 . \mathrm{E}+05$	1.862	0.621	2.60
0.2125	$3.68 . \mathrm{E}+05$	1.919	0.640	2.52
0.2250	$3.90 . \mathrm{E}+05$	1.975	0.658	2.45
0.2375	$4.12 . \mathrm{E}+05$	2.029	0.676	2.39
0.2500	$4.33 . \mathrm{E}+05$	$\mathbf{2 . 0 8 2}$	$\mathbf{0 . 6 9 4}$	$\mathbf{2 . 3 3}$

Laminar Boundary Layer Profiles

Problem 9.39

9.39 Consider flow over the splitter plate of Problem 9.38. Show algebraically that the total drag force on one side of the splitter plate may be written $F_{D}=\rho U^{2} \theta_{L} b$. Evaluate θ_{L} and the total drag for the given conditions.

Given: Parabolic solution for laminar boundary layer
Find: \quad Derivation of F_{D}; Evaluate F_{D} and θ_{L}

Solution:

Basic equations: $\begin{aligned} \frac{\mathrm{u}}{\mathrm{U}} & =2 \cdot\left(\frac{\mathrm{y}}{\delta}\right)-\left(\frac{\mathrm{y}}{\delta}\right)^{2} & \frac{\delta}{\mathrm{x}}=\frac{5.48}{\sqrt{\mathrm{Re}_{\mathrm{x}}}} & \frac{\tau_{w}}{\rho}\end{aligned}$
Assumptions: 1) Flat plate so $\frac{\partial}{\partial \mathrm{x}} \mathrm{p}=0$, and $\mathrm{U}=$ const 2) δ is a function of x only 3) Incompressible
The momentum integral equation then simplifies to $\quad \frac{\tau_{w}}{\rho}=\frac{d}{d x}\left(U^{2} \cdot \theta\right) \quad$ where $\quad \theta=\int_{0}^{\delta} \frac{u}{U} \cdot\left(1-\frac{u}{U}\right) d y$
For $U=$ const $\quad \tau_{w}=\rho \cdot U^{2} \cdot \frac{d \theta}{d x}$

The drag force is then

$$
\mathrm{F}_{\mathrm{D}}=\int \tau_{\mathrm{w}} \mathrm{dA}=\int_{0}^{\mathrm{L}} \tau_{\mathrm{w}} \cdot \mathrm{bdx}=\int_{0}^{\mathrm{L}} \rho \cdot \mathrm{U}^{2} \cdot \frac{\mathrm{~d} \theta}{\mathrm{dx}} \cdot \mathrm{bdx}=\rho \cdot \mathrm{U}^{2} \cdot \mathrm{~b} \cdot \int_{0}^{\theta_{L}} 1 \mathrm{~d} \theta \quad \quad \mathrm{~F}_{\mathrm{D}}=\rho \cdot \mathrm{U}^{2} \cdot \mathrm{~b} \cdot \theta_{L}
$$

For the given profile

$$
\begin{aligned}
& \frac{\theta}{\delta}=\int_{0}^{1} \frac{u}{U} \cdot\left(1-\frac{u}{U}\right) d \eta=\int_{0}^{1}\left(2 \cdot \eta-\eta^{2}\right) \cdot\left(1-2 \cdot \eta+\eta^{2}\right) d \eta=\int_{0}^{1}\left(2 \cdot \eta-5 \cdot \eta^{2}+4 \cdot \eta^{3}-\eta^{4}\right) d \eta=\frac{2}{15} \\
& \theta=\frac{2}{15} \cdot \delta
\end{aligned}
$$

From Table A. 8 at $20^{\circ} \mathrm{C}$

$$
\begin{array}{ll}
\nu=1.01 \times 10^{-6} \cdot \frac{\mathrm{~m}^{2}}{\mathrm{~s}} & \mathrm{Re}_{\mathrm{L}}=\frac{\mathrm{U} \cdot \mathrm{~L}}{\nu} \\
\delta_{\mathrm{L}}=\mathrm{L} \cdot \frac{5.48}{\sqrt{\mathrm{Re}_{\mathrm{L}}}} & \delta_{\mathrm{L}}=2.08 \mathrm{~mm} \\
\theta_{\mathrm{L}}=\frac{2}{15} \cdot \delta_{\mathrm{L}} & \theta_{\mathrm{L}}=0.278 \mathrm{~mm} \\
\mathrm{~F}_{\mathrm{D}}=\rho \cdot \mathrm{U}^{2} \cdot \mathrm{~b} \cdot \theta_{\mathrm{L}} & \mathrm{~F}_{\mathrm{D}}=0.850 \mathrm{~N}
\end{array}
$$

$$
\mathrm{Re}_{\mathrm{L}}=4.332 \times 10^{5}
$$

Given：Thin flat plate in water tunnel．

$$
\begin{aligned}
& U=1.6 \mathrm{~m} / \mathrm{s} \longrightarrow \\
& L=0.3 \mathrm{~m}
\end{aligned}
$$

Velocity profile is $\frac{u}{U}=2\left(\frac{y}{\delta}\right)-\left(\frac{y}{\delta}\right)^{2}$

Viscous drag for two sides of plate is （Assume $T=20^{\circ} \mathrm{C}$ ．）

$$
\begin{equation*}
\text { Drag }=2 \int_{0}^{L} \mathcal{I}_{w} 6 d x \tag{1}
\end{equation*}
$$

From the definition，$\left.\left.\left.\tau_{w}=\mu \frac{\partial U}{\partial y}\right)_{y=0}=\frac{\mu U}{\delta} \frac{d(\mu / \delta)}{d(y / \delta)}\right]_{\eta=0}=\frac{\mu U}{\delta}(2-2-\eta)\right]_{\eta=0}=\frac{z \mu \nu}{\delta}$ since $\frac{\delta}{x}=\frac{5.48}{\sqrt{R R_{x}}}, \delta=\frac{5.49 x}{\sqrt{R_{x}}}=\frac{5.48}{\sqrt{V / 2}} x^{1 / 2}$

$$
\mu=\rho \nu
$$

substituting into Eq．1，

Problem 9.41

9.41 In Problems 9.18 and 9.19 the drag on the upper surface of a flat plate with flow (fluid density $\rho=800 \mathrm{~kg} / \mathrm{m}^{3}$) at freestream speed $U=3 \mathrm{~m} / \mathrm{s}$, was determined from momentum flux calculations. The drag was determined for the plate with its long edge $(3 \mathrm{~m})$ and its short edge $(1 \mathrm{~m})$ parallel to the flow. If the fluid viscosity $\mu=0.02 \mathrm{~N} \cdot \mathrm{~s} / \mathrm{m}^{2}$, compute the drag using boundary-layer equations.

Given: Data on fluid and plate geometry
Find: \quad Drag at both orientations using boundary layer equation

Solution:

The given data is

$$
\rho=800 \cdot \frac{\mathrm{~kg}}{\mathrm{~m}^{3}}
$$

$$
\mu=0.02 \cdot \frac{\mathrm{~N} \cdot \mathrm{~s}}{\mathrm{~m}^{2}}
$$

$\mathrm{U}=3 \cdot \frac{\mathrm{~m}}{\mathrm{~s}}$
$\mathrm{L}=3 \cdot \mathrm{~m}$
$\mathrm{b}=1 \cdot \mathrm{~m}$

First determine the nature of the boundary layer $\quad \mathrm{Re}_{\mathrm{L}}=\frac{\rho \cdot \mathrm{U} \cdot \mathrm{L}}{\mu} \quad \mathrm{Re}_{\mathrm{L}}=3.6 \times 10^{5}$

The maximum Reynolds number is less than the critical value of 5×10^{5}
Hence:
Governing equations: $\quad \mathrm{c}_{\mathrm{f}}=\frac{\tau_{\mathrm{w}}}{\frac{1}{2} \cdot \rho \cdot \mathrm{U}^{2}} \quad \mathrm{c}_{\mathrm{f}}=\frac{0.730}{\sqrt{\operatorname{Re}_{\mathrm{x}}}}$

The drag (one side) is

$$
\mathrm{F}_{\mathrm{D}}=\int_{0}^{\mathrm{L}} \tau_{\mathrm{w}} \cdot \mathrm{bdx}
$$

Using Eqs. 9.22 and $9.23 \quad F_{D}=\frac{1}{2} \cdot \rho \cdot U^{2} \cdot b \cdot \int_{0}^{L} \frac{0.73}{\sqrt{\frac{\rho \cdot U \cdot x}{\mu}}} d x$

$$
F_{D}=0.73 \cdot b \cdot \sqrt{\mu \cdot L \cdot \rho \cdot U^{3}} \quad F_{D}=26.3 N
$$

(Compare to 30 N for Problem 9.18)

Repeating for
$\mathrm{L}=1 \cdot \mathrm{~m}$
$\mathrm{b}=3 \cdot \mathrm{~m}$

$$
\mathrm{F}_{\mathrm{D}}=0.73 \cdot \mathrm{~b} \cdot \sqrt{\mu \cdot \mathrm{~L} \cdot \rho \cdot \mathrm{U}^{3}}
$$

$\mathrm{F}_{\mathrm{D}}=45.5 \mathrm{~N}$
(Compare to 50.4 N for Problem 9.19)
9.42 Assume laminar boundary-layer flow to estimate the drag on the plate shown when it is placed parallel to a $5-\mathrm{m} / \mathrm{s}$ air flow. The air is at $20^{\circ} \mathrm{C}$ and 1 atm .

Given: Triangular plate
Find: Drag

Solution:

Basic equations: $\quad \mathrm{c}_{\mathrm{f}}=\frac{\tau_{\mathrm{w}}}{\frac{1}{2} \cdot \rho \cdot \mathrm{U}^{2}} \quad \mathrm{c}_{\mathrm{f}}=\frac{0.730}{\sqrt{\mathrm{Re}_{\mathrm{x}}}}$

$$
\mathrm{L}=0.50 \cdot \mathrm{~cm} \cdot \frac{\sqrt{3}}{2} \quad \mathrm{~L}=0.433 \cdot \mathrm{~cm} \quad \mathrm{~W}=50 \cdot \mathrm{~cm} \quad \mathrm{U}=5 \cdot \frac{\mathrm{~m}}{\mathrm{~s}}
$$

From Table A. 10 at $20^{\circ} \mathrm{C} \quad \nu=1.50 \times 10^{-5} \cdot \frac{\mathrm{~m}^{2}}{\mathrm{~s}} \quad \rho=1.21 \cdot \frac{\mathrm{~kg}}{\mathrm{~m}^{3}}$
First determine the nature of the boundary layer $\quad \mathrm{Re}_{\mathrm{L}}=\frac{\mathrm{U} \cdot \mathrm{L}}{\nu} \quad \mathrm{Re}_{\mathrm{L}}=1443 \quad$ so definitely laminar
The drag (one side) is $\quad F_{D}=\int \tau_{W} d A \quad F_{D}=\int_{0}^{L} \tau_{W} \cdot w(x) d x \quad w(x)=W \cdot \frac{x}{L}$
We also have

$$
\tau_{\mathrm{W}}=\mathrm{c}_{\mathrm{f}} \cdot \frac{1}{2} \cdot \rho \cdot \mathrm{U}^{2}=\frac{1}{2} \cdot \rho \cdot \mathrm{U}^{2} \cdot \frac{0.730}{\sqrt{\mathrm{Re}_{\mathrm{x}}}}
$$

Hence

$$
\mathrm{F}_{\mathrm{D}}=\frac{1}{2} \cdot \rho \cdot \mathrm{U}^{2} \cdot \frac{\mathrm{~W}}{\mathrm{~L}} \cdot \int_{0}^{\mathrm{L}} \frac{0.730 \cdot \mathrm{x}}{\sqrt{\frac{\mathrm{U} \cdot \mathrm{x}}{\nu}}} \mathrm{dx}=\frac{0.730}{2} \cdot \rho \cdot \mathrm{U}^{\frac{3}{2}} \cdot \frac{\mathrm{~W}}{\mathrm{~L}} \cdot \sqrt{\nu} \cdot \int_{0}^{\mathrm{L}} \frac{1}{x^{2}} d x
$$

The integral is $\quad \int_{0}^{\mathrm{L}} \mathrm{x}^{\frac{1}{2}} \mathrm{dx}=\frac{2}{3} \cdot \mathrm{~L}^{\frac{3}{2}} \quad$ so $\quad \mathrm{F}_{\mathrm{D}}=0.243 \cdot \rho \cdot \mathrm{~W} \cdot \sqrt{\nu \cdot L \cdot \mathrm{U}^{3}} \quad \quad \mathrm{~F}_{\mathrm{D}}=4.19 \times 10^{-4} \mathrm{~N}$

Problem 9.43
9.43 Assume laminar boundary-layer flow to estimate the drag on the plate shown when it is placed parallel to a $5-\mathrm{m} / \mathrm{s}$ air flow, except that the base rather than the tip faces the flow. Would you expect this to be larger than, the same as, or lower than the drag for Problem 9.42?

Given: Triangular plate
Find: Drag

Solution:

Basic equations: $\quad \mathrm{c}_{\mathrm{f}}=\frac{\tau_{\mathrm{w}}}{\frac{1}{2} \cdot \rho \cdot \mathrm{U}^{2}} \quad \mathrm{c}_{\mathrm{f}}=\frac{0.730}{\sqrt{\mathrm{Re}_{\mathrm{X}}}}$

$$
\mathrm{L}=0.50 \cdot \mathrm{~cm} \cdot \frac{\sqrt{3}}{2} \quad \mathrm{~L}=0.433 \cdot \mathrm{~cm} \quad \mathrm{~W}=50 \cdot \mathrm{~cm} \quad \mathrm{U}=5 \cdot \frac{\mathrm{~m}}{\mathrm{~s}}
$$

From Table A. 10 at $20^{\circ} \mathrm{C} \quad \nu=1.50 \times 10^{-5} \cdot \frac{\mathrm{~m}^{2}}{\mathrm{~s}} \quad \rho=1.21 \cdot \frac{\mathrm{~kg}}{\mathrm{~m}^{3}}$
First determine the nature of the boundary layer $\quad \mathrm{Re}_{\mathrm{L}}=\frac{\mathrm{U} \cdot \mathrm{L}}{\nu} \quad \quad \mathrm{Re}_{\mathrm{L}}=1443 \quad$ so definitely laminar
The drag (one side) is $\quad \mathrm{F}_{\mathrm{D}}=\int \tau_{\mathrm{w}} \mathrm{dA} \quad \mathrm{F}_{\mathrm{D}}=\int_{0}^{\mathrm{L}} \tau_{\mathrm{w}} \cdot \mathrm{w}(\mathrm{x}) \mathrm{dx} \quad \mathrm{w}(\mathrm{x})=\mathrm{W} \cdot\left(1-\frac{\mathrm{x}}{\mathrm{L}}\right)$

We also have

$$
\tau_{W}=\mathrm{c}_{\mathrm{f}} \cdot \frac{1}{2} \cdot \rho \cdot \mathrm{U}^{2}=\frac{1}{2} \cdot \rho \cdot \mathrm{U}^{2} \cdot \frac{0.730}{\sqrt{\operatorname{Re}_{\mathrm{v}}}}
$$

Hence

$$
\mathrm{F}_{\mathrm{D}}=\frac{1}{2} \cdot \rho \cdot \mathrm{U}^{2} \cdot \mathrm{~W} \cdot \int_{0}^{\mathrm{L}} \frac{0.730 \cdot\left(1-\frac{\mathrm{x}}{\mathrm{~L}}\right)}{\sqrt{\frac{\mathrm{U} \cdot \mathrm{x}}{v}}} \mathrm{dx}=\frac{0.730}{2} \cdot \rho \cdot \mathrm{U}^{\frac{3}{2}} \cdot \mathrm{~W} \cdot \sqrt{\nu} \cdot \int_{0}^{\mathrm{L}}\left(\mathrm{x}^{-\frac{1}{2}}-\frac{\mathrm{x}^{\frac{1}{2}}}{\mathrm{~L}}\right) \mathrm{dx}
$$

The integral is $\quad \int_{0}^{L}\left(x^{-\frac{1}{2}}-\frac{x^{\frac{1}{2}}}{L}\right) d x=2 \cdot L^{\frac{1}{2}}-\frac{2}{3} \cdot \frac{L^{\frac{3}{2}}}{L}=\frac{4}{3} \cdot \sqrt{L}$

$$
\mathrm{F}_{\mathrm{D}}=0.487 \cdot \rho \cdot \mathrm{~W} \cdot \sqrt{\nu \cdot \mathrm{~L} \cdot \mathrm{U}^{3}} \quad \mathrm{~F}_{\mathrm{D}}=8.40 \times 10^{-4} \mathrm{~N}
$$

Note: For two-sided solution
$2 \cdot \mathrm{~F}_{\mathrm{D}}=1.68 \times 10^{-3} \mathrm{~N}$

The drag is much higher (twice as much) compared to Problem 9.42. This is because τ_{w} is largest near the leading edge and falls off rapidly; in this problem the widest area is also at the front

Problem 9.44

9.44 Assume laminar boundary-layer flow to estimate the drag on the plate shown when it is placed parallel to a $7.5-\mathrm{m} / \mathrm{s}$ air flow. The air is at $20^{\circ} \mathrm{C}$ and 1 atm . (Note that the shape is given by $x=$ $y^{2} / 25$, where x and y are in cm .)

Given: Parabolic plate
Find: Drag

Solution:

Basic equations: $\quad c_{f}=\frac{\tau_{w}}{\frac{1}{2} \cdot \rho \cdot U^{2}}$

$$
\mathrm{c}_{\mathrm{f}}=\frac{0.730}{\sqrt{\operatorname{Re}_{\mathrm{x}}}}
$$

$$
\mathrm{W}=25 \cdot \mathrm{~cm} \quad \mathrm{~L}=\frac{\left(\frac{\mathrm{W}}{2}\right)^{2}}{25 \cdot \mathrm{~cm}}
$$

$\mathrm{L}=6.25 \cdot \mathrm{~cm}$
$\mathrm{U}=7.5 \cdot \frac{\mathrm{~m}}{\mathrm{~s}}$
Note: " y " is the equation of the upper and lower surfaces, so $y=W / 2$ at $x=L$
From Table A. 10 at $20^{\circ} \mathrm{C} \quad \nu=1.50 \times 10^{-5} \cdot \frac{\mathrm{~m}^{2}}{\mathrm{~s}} \quad \rho=1.21 \cdot \frac{\mathrm{~kg}}{\mathrm{~m}^{3}}$
First determine the nature of the boundary layer $\quad \mathrm{Re}_{\mathrm{L}}=\frac{\mathrm{U} \cdot \mathrm{L}}{\nu} \quad \quad \mathrm{Re}_{\mathrm{L}}=3.12 \times 10^{4} \quad$ so just laminar
The drag (one side) is $\quad F_{D}=\int \tau_{W} d A \quad F_{D}=\int_{0}^{L} \tau_{w} \cdot w(x) d x$
$w(x)=W \cdot \sqrt{\frac{x}{L}}$

We also have

Hence

$$
\begin{aligned}
& \tau_{\mathrm{W}}=\mathrm{c}_{\mathrm{f}} \cdot \frac{1}{2} \cdot \rho \cdot \mathrm{U}^{2}=\frac{1}{2} \cdot \rho \cdot \mathrm{U}^{2} \cdot \frac{0.730}{\sqrt{\mathrm{Re}_{\mathrm{X}}}} \\
& \mathrm{~F}_{\mathrm{D}}=\frac{1}{2} \cdot \rho \cdot \mathrm{U}^{2} \cdot \mathrm{~W} \cdot \int_{0}^{\mathrm{L}} \frac{0.730 \cdot \sqrt{\frac{\mathrm{x}}{\mathrm{~L}}}}{\sqrt{\frac{\mathrm{U} \cdot \mathrm{x}}{\nu}}} \mathrm{dx}=\frac{0.730}{2} \cdot \rho \cdot \mathrm{U}^{\frac{3}{2}} \cdot \mathrm{~W} \cdot \sqrt{\frac{\nu}{\mathrm{~L}}} \cdot \int_{0}^{\mathrm{L}} 1 \mathrm{dx}
\end{aligned}
$$

$$
\mathrm{F}_{\mathrm{D}}=0.365 \cdot \rho \cdot \mathrm{~W} \cdot \sqrt{\nu \cdot \mathrm{~L} \cdot \mathrm{U}^{3}}
$$

$$
\mathrm{F}_{\mathrm{D}}=2.20 \times 10^{-3} \mathrm{~N}
$$

Problem 9.45

9.45 Assume laminar boundary-layer flow to estimate the drag on the plate shown when it is placed parallel to a $7.5-\mathrm{m} / \mathrm{s}$ air flow, except that the base rather than the tip faces the flow. Would you expect this to be larger than, the same as, or lower than the drag for Problem 9.44?

Note: Plate is now reversed!

Given: Parabolic plate
Find: Drag

Solution:

Basic equations:

$$
\begin{array}{ll}
\mathrm{c}_{\mathrm{f}}=\frac{\tau_{\mathrm{w}}}{\frac{1}{2} \cdot \rho \cdot \mathrm{U}^{2}} & \mathrm{c}_{\mathrm{f}}=\frac{0.730}{\sqrt{\mathrm{Re}_{\mathrm{X}}}} \\
\mathrm{~W}=25 \cdot \mathrm{~cm} & \mathrm{~L}=\frac{\left(\frac{\mathrm{W}}{2}\right)^{2}}{25 \cdot \mathrm{~cm}}
\end{array}
$$

$$
\mathrm{L}=6.25 \cdot \mathrm{~cm}
$$

$$
\mathrm{U}=7.5 \cdot \frac{\mathrm{~m}}{\mathrm{~s}}
$$

Note: " y " is the equation of the upper and lower surfaces, so $y=W / 2$ at $x=0$
From Table A. 10 at $20^{\circ} \mathrm{C} \quad \nu=1.50 \times 10^{-5} \cdot \frac{\mathrm{~m}^{2}}{\mathrm{~s}} \quad \rho=1.21 \cdot \frac{\mathrm{~kg}}{\mathrm{~m}^{3}}$
First determine the nature of the boundary layer $\quad \mathrm{Re}_{\mathrm{L}}=\frac{\mathrm{U} \cdot \mathrm{L}}{\nu} \quad \mathrm{Re}_{\mathrm{L}}=3.12 \times 10^{4} \quad$ so just laminar
The drag (one side) is $\quad F_{D}=\int \tau_{W} d A \quad F_{D}=\int_{0}^{L} \tau_{w} \cdot w(x) d x \quad w(x)=W \cdot \sqrt{1-\frac{x}{L}}$
We also have

$$
\tau_{\mathrm{w}}=\mathrm{c}_{\mathrm{f}} \cdot \frac{1}{2} \cdot \rho \cdot \mathrm{U}^{2}=\frac{1}{2} \cdot \rho \cdot \mathrm{U}^{2} \cdot \frac{0.730}{\sqrt{\mathrm{Re}_{\mathrm{X}}}}
$$

Hence

$$
\mathrm{F}_{\mathrm{D}}=\frac{1}{2} \cdot \rho \cdot \mathrm{U}^{2} \cdot \mathrm{~W} \cdot \int_{0}^{\mathrm{L}} \frac{0.730 \cdot \sqrt{1-\frac{\mathrm{x}}{\mathrm{~L}}}}{\sqrt{\frac{\mathrm{U} \cdot \mathrm{x}}{\nu}}} \mathrm{dx}=\frac{0.730}{2} \cdot \rho \cdot \mathrm{U}^{\frac{3}{2}} \cdot \mathrm{~W} \cdot \sqrt{\nu} \cdot \int_{0}^{\mathrm{L}} \sqrt{\frac{1}{\mathrm{x}}-\frac{1}{L}} d x
$$

The tricky integral is (this might be easier to do numerically!)

$$
\begin{array}{ll}
\int \sqrt{\frac{1}{\mathrm{x}}-\frac{1}{\mathrm{~L}}} \mathrm{dx}=\sqrt{\mathrm{x}-\frac{\mathrm{x}}{\mathrm{~L}}}-\frac{\mathrm{i}}{2} \cdot \sqrt{\mathrm{~L}} \cdot \ln \left(\frac{\sqrt{-\mathrm{L}-\mathrm{x}}-\sqrt{\mathrm{x}}}{\sqrt{-\mathrm{L}-\mathrm{x}}+\sqrt{\mathrm{x}}}\right) & \int_{0}^{\mathrm{L}} \sqrt{\frac{1}{\mathrm{x}}-\frac{1}{\mathrm{~L}}} \mathrm{dx}=0.393 \cdot \sqrt{\mathrm{~m}} \\
\mathrm{~F}_{\mathrm{D}}=\frac{0.730}{2} \cdot \rho \cdot \mathrm{U}^{\frac{3}{2}} \cdot \mathrm{~W} \cdot \sqrt{\nu} \cdot \int_{0}^{\mathrm{L}} \sqrt{\frac{1}{\mathrm{x}}-\frac{1}{\mathrm{~L}}} \mathrm{dx} & \mathrm{~F}_{\mathrm{D}}=3.45 \times 10^{-3} \mathrm{~N} \\
\text { Note: For two-sided solution } & 2 \cdot \mathrm{~F}_{\mathrm{D}}=6.9 \times 10^{-3} \mathrm{~N}
\end{array}
$$

The drag is much higher compared to Problem 9.44. This is because τ_{w} is largest near the leading edge and falls off rapidly; in this problem the widest area is also at the front

Problem 9.46

9.46 Assume laminar boundary-layer flow to estimate the drag on four square plates (each $7.5 \mathrm{~cm} \times 7.5 \mathrm{~cm}$) placed parallel to a $1-\mathrm{m} / \mathrm{s}$ water flow, for the two configurations shown. Before calculating, which configuration do you expect to experience the lowest drag? Assume the plates attached with string are far enough apart for wake effects to be negligible, and that the water is at $20^{\circ} \mathrm{C}$.

Given: Pattern of flat plates
Find: \quad Drag on separate and composite plates

Solution:

Basic equations: $\quad \mathrm{c}_{\mathrm{f}}=\frac{\tau_{\mathrm{w}}}{\frac{1}{2} \cdot \rho \cdot \mathrm{U}^{2}} \quad \mathrm{c}_{\mathrm{f}}=\frac{0.730}{\sqrt{\mathrm{Re}_{\mathrm{X}}}}$
For separate plates

$$
\mathrm{L}=7.5 \cdot \mathrm{~cm}
$$

$$
\mathrm{W}=7.5 \cdot \mathrm{~cm}
$$

$$
\mathrm{U}=1 \cdot \frac{\mathrm{~m}}{\mathrm{~s}}
$$

From Table A. 8 at $20^{\circ} \mathrm{C} \quad \nu=1.01 \times 10^{-6} \cdot \frac{\mathrm{~m}^{2}}{\mathrm{~s}} \quad \rho=998 \cdot \frac{\mathrm{~kg}}{\mathrm{~m}^{3}}$
First determine the nature of the boundary layer $\quad \mathrm{Re}_{\mathrm{L}}=\frac{\mathrm{U} \cdot \mathrm{L}}{\nu} \quad \mathrm{Re}_{\mathrm{L}}=7.43 \times 10^{4} \quad$ so definitely laminar
The drag (one side) is $\quad F_{D}=\int \tau_{W} d A \quad F_{D}=\int_{0}^{L} \tau_{W} \cdot W d x$
We also have

$$
\tau_{\mathrm{W}}=\mathrm{c}_{\mathrm{f}} \cdot \frac{1}{2} \cdot \rho \cdot \mathrm{U}^{2}=\frac{1}{2} \cdot \rho \cdot \mathrm{U}^{2} \cdot \frac{0.730}{\sqrt{\mathrm{Re}_{\mathrm{X}}}}
$$

Hence

$$
\mathrm{F}_{\mathrm{D}}=\frac{1}{2} \cdot \rho \cdot \mathrm{U}^{2} \cdot \mathrm{~W} \cdot \int_{0}^{\mathrm{L}} \frac{0.730}{\sqrt{\frac{\mathrm{U} \cdot \mathrm{x}}{\nu}}} \mathrm{dx}=\frac{0.730}{2} \cdot \rho \cdot \mathrm{U}^{\frac{3}{2}} \cdot \mathrm{~W} \cdot \sqrt{\nu} \cdot \int_{0}^{\mathrm{L}} \mathrm{x}^{-\frac{1}{2}} \mathrm{dx}
$$

The integral is $\quad \int_{0}^{L} x^{-\frac{1}{2}} d x=2 \cdot L^{\frac{1}{2}} \quad$ so $\quad F_{D}=0.730 \cdot \rho \cdot W \cdot \sqrt{\nu \cdot L \cdot U^{3}} \quad F_{D}=0.0150 \mathrm{~N}$
This is the drag on one plate. The total drag is then
$\mathrm{F}_{\text {Total }}=4 \cdot \mathrm{~F}_{\mathrm{D}}$
$\mathrm{F}_{\text {Total }}=0.0602 \mathrm{~N}$
For both sides: $\quad 2 \cdot \mathrm{~F}_{\text {Total }}=0.120 \mathrm{~N}$
For the composite plate

$$
\mathrm{L}=4 \times 7.5 \cdot \mathrm{~cm} \quad \mathrm{~L}=0.30 \mathrm{~m}
$$

$$
\mathrm{F}_{\text {Composite }}=0.730 \cdot \rho \cdot \mathrm{~W} \cdot \sqrt{\nu \cdot \mathrm{~L} \cdot \mathrm{U}^{3}}
$$

$$
\mathrm{F}_{\text {Composite }}=0.0301 \mathrm{~N}
$$

$$
\text { For both sides: } \quad 2 \cdot \mathrm{~F}_{\text {Composite }}=0.0602 \mathrm{~N}
$$

The drag is much lower on the composite compared to the separate plates. This is because τ_{w} is largest near the leading edges and falls off rapidly; in this problem the separate plates experience leading edges four times!

Given: Laminar boundary layer in std. air, sinusoidal profile. Conditions: $U=3.2 \mathrm{~m} / \mathrm{s}, L=1.8 \mathrm{~m}, b=0.9 \mathrm{~m}$.
Find: Plot δ, δ^{*}, and twi us. x / L.
Solution: Apply momentum integral
 equation for steady, incompressible flew.

$$
\text { computingequatrons: } \tau_{\omega}=\rho U^{2} \frac{d \theta}{d x}, \frac{\delta^{*}}{\delta}=\int_{0}^{1}\left(1-\frac{u}{\sigma}\right) d x, \frac{\theta}{\delta}=\int_{0}^{1} \frac{u}{U}\left(1-\frac{u}{U}\right) d x
$$

For the sincesoldal profile,

$$
\begin{aligned}
& \frac{\theta}{\delta}=\int_{0}^{1} \sin \frac{\pi}{2} \lambda\left(1-\sin \frac{\pi}{2} \lambda\right) d \lambda=\int_{0}^{1}\left(\sin \frac{\pi}{2} \lambda-\sin ^{2} \frac{\pi}{2} n\right) d \lambda \\
& =\int_{0}^{1}\left(\sin \frac{\pi}{2} \lambda-\frac{1-\cos \pi \lambda}{2}\right) d \lambda=\left[-\frac{2}{\pi} \cos \frac{\pi}{2} \lambda-\frac{\lambda}{2}+\frac{1}{2 \pi} \sin \pi \lambda\right]_{0}^{1} \\
& \frac{\theta}{\delta}=-\frac{2}{\pi}(0-1)-\frac{1}{2}+\frac{1}{2 \pi}(0-0)=\frac{2}{\pi}-\frac{1}{2}=\frac{4-\pi}{2 \pi}=0.137 \\
& \left.\left.\left.A / s 0 \pi \omega=\mu \frac{d c}{d y}\right)_{y=0}=\mu v \frac{d}{d y} \sin \left(\frac{\pi}{2} \frac{y}{\delta}\right)\right]_{y=0}=\frac{\pi \mu v}{2 \delta}\left(\cos \frac{\pi}{2} \frac{y}{\delta}\right)\right]_{y=0}=\frac{\pi \mu v}{2 \delta}
\end{aligned}
$$

Thus $T \omega=\rho U^{2} \frac{d \theta}{d x}=\frac{\pi \mu U}{2 \delta}=\rho U^{2}\left(\frac{4-\pi}{2 \pi}\right) \frac{d E}{\partial x}$ or $\delta d \theta=\frac{\pi^{2}}{4-\pi} \frac{\mu}{V U} d x$
Integrating, $\frac{\delta^{2}}{2}=\frac{\pi^{2}}{4-\pi} \frac{\mu}{\mu \nu} \times$ so $\frac{\delta}{x}=\sqrt{\frac{2 \pi^{2}}{4-\pi}} \sqrt{\frac{\mu}{\rho U x}}=\frac{480}{\sqrt{R L_{x}}}$
Also $\frac{\delta^{*}}{\delta}=\int_{0}^{1}\left(1-\frac{u}{U}\right) d \lambda=\int_{0}^{1}\left(1-\sin \frac{\pi}{2} \lambda\right) d \lambda=\left.\left(\lambda+\frac{2}{\pi} \cos \frac{\pi}{2} x\right)\right|_{0} ^{1}=1-\frac{2}{\pi}=0.363$

$$
\begin{aligned}
& \text { Tabulate: } R e_{x}=\frac{V_{x}}{v}=3.2 \frac{m}{s} \times m_{x} \frac{s}{1.46 \times 10^{-5} m^{2}}=2.19 \times 10^{5} x
\end{aligned}
$$

Problem 9.48
Given: Laminar boundary layer frow with velocity profile, $\frac{u}{v}=\frac{y}{\delta}=\eta$.
Find: Expressions for $\delta / x, c_{f}$, using the momentum integral equation.
Solution: The momentum integral equation is
Computing equation: $-\delta \frac{\partial b^{\prime}}{\partial x}-\tau_{\omega}=\frac{\partial}{\partial x} \int_{0}^{\delta} u p u d y-U \frac{\partial}{\partial x} \int_{0}^{\delta} p u d y$
Assumptions: (1) Flat plate, so $U=$ constant and $\frac{\partial p}{\partial x}=0$
(2) δ is a function of x only, and $\delta=0$ at $x=0$
(3) Incompressible flow

Then

$$
\tau_{\omega}=\sigma \frac{\partial}{\partial x} \int_{0}^{\delta} \rho u d y-\frac{\partial}{\partial x} \int_{0}^{\delta} u \rho u d y=\frac{\partial}{\partial x} \int_{0}^{\delta} \rho u(v-u) d y
$$

or

$$
\tau_{w}=\rho U^{2} \frac{\partial \delta}{\partial x} \int_{0}^{1} \frac{u}{V}\left(1-\frac{u}{U}\right) d\left(\frac{y}{v}\right)=\rho U^{2} \frac{d s}{d x} \int_{0}^{1} \frac{u}{V}\left(1-\frac{u}{V}\right) d \eta=\rho U^{2} / \frac{d \delta}{d x}
$$

Now use the given velocity profile:

$$
\begin{aligned}
& \int_{0}^{1} \frac{u}{\partial}\left(1-\frac{u}{\bar{\delta}}\right) d \eta=\int_{0}^{1} \eta(1-\eta) d \eta=\left[\frac{1}{2} \eta^{2}-\frac{1}{3} \eta\right]_{0}^{1}=\frac{1}{6}=\beta \\
& \left.\left.\tau_{\omega}=\left.\mu \frac{\partial u}{\partial y}\right|_{y=0}=\frac{\mu v}{\delta} \frac{\partial(u / v)}{\partial(y / \sigma)}\right]_{y / \delta=0}=\frac{\mu v}{\delta} \frac{\partial\left(^{(u / v}\right.}{d \eta}\right]_{\eta=0}=\frac{\mu V}{\delta}
\end{aligned}
$$

substituting for β and τ_{w},

$$
\frac{\mu \nu}{\delta}=f U^{2} \frac{d \delta}{d x}\left(\frac{1}{6}\right) \quad \text { or } \quad \delta d \delta=\frac{6 \mu}{\rho U} d x
$$

Integrating, $\frac{\delta^{2}}{2}=\frac{6 u}{\rho \sigma} x+c$, but $c=0$ since $\delta=0$ at $x=0$. Thus

$$
\delta=\sqrt{\frac{12 \mu}{\rho v} x}
$$

or

$$
\frac{s}{x}=\sqrt{\frac{12 \mu}{F V_{x}}}=\frac{3.46}{\sqrt{R_{x}}}
$$

Also

$$
\begin{aligned}
& c_{f}=\frac{\tau_{\omega}}{\frac{1}{2} \rho^{2}}=\frac{\mu \frac{U}{\delta}}{\frac{1}{2} \rho U^{2}}=\frac{2 \mu}{\rho U \delta}=2_{x} \frac{\mu}{\rho U x} \frac{x}{\delta}=\frac{2}{R c_{x}} \frac{\sqrt{R c_{x}}}{3.46} \\
& c_{f}=\frac{0.577}{\sqrt{R c_{x}}}
\end{aligned}
$$

Given: Laminar boundary-layer flow of air, conditoins as shown.
Assume STP.

Find: Plot δ, δ, and Tu vs. x / L.
Solution: Apply the moment hem integral equation, Eq. 9.19.
Computing equations: $\left.\tau_{w}=\rho v^{2} \frac{d \delta}{d x} \beta \quad \tau_{w}=\mu \frac{\partial u}{\partial y}\right)_{y=0}$
Assume: (1) steady flow, (2) Incompressible flow, (3) zero pressure gradient
Thus $\left.\left.\tau_{\omega}=\mu \frac{\partial u}{\partial y}\right)_{y=0}=\frac{\mu V}{\delta} \frac{d(\mu / V)}{d(\delta / \delta)}\right]_{y=0}=\frac{\mu V}{\delta}(1)=\frac{\mu U}{\delta} ; \frac{\delta^{*}}{\delta} x \int_{0}^{1}(1-\lambda) d \lambda=\frac{1}{2}$

$$
\beta=\frac{\theta}{\delta}=\int_{0}^{1} \frac{u}{v}\left(1-\frac{u}{v}\right) d\left(\frac{y}{\delta}\right)=\int_{0}^{1} \lambda(1-\lambda) d \lambda=\left[\frac{\lambda^{2}}{2}-\frac{\lambda^{3}}{3}\right]_{0}^{1}=\frac{1}{6}
$$

Substituting into the ME, $\frac{\mu U}{\delta}=\rho U^{2} \frac{d \delta}{d x}\left(\frac{1}{6}\right)$ so $\delta d \delta=6 \frac{\mu}{\rho U} d x$
Integrating, $\delta^{2}=12 \mu \frac{\mu}{\rho U} x+c$ so $\frac{\delta}{x}=\frac{\sqrt{12}}{\sqrt{R C_{x}}}=\frac{3.46}{\sqrt{R C_{x}}} ; \frac{\delta^{*}}{x}=\frac{1.73}{\sqrt{R C_{x}}}$

$$
\tau_{\omega}=\frac{\mu U}{\delta}=\mu U \frac{\sqrt{R R_{x}}}{3.46 x}=\frac{\rho \nu U}{x} \frac{\sqrt{R C_{x}}}{3.4 H_{6}} ; C_{f}=\frac{T_{\omega}}{\frac{1}{2} \rho U^{2}}=\frac{0.578}{\sqrt{R_{x}}}
$$

At $x=L, R_{L}=\frac{D L}{2}=5.3 \frac{m}{\mathrm{~s}} \times 0.8 \mathrm{~m}_{\times} \frac{5}{1.46 \times 10^{-5} \mathrm{~m}^{2}}=2.90 \times 10^{5}$, so laminar

$$
\frac{\delta}{L}=\frac{3.46}{\sqrt{2.92 \times 10^{5}}}=0.00643 ; \delta_{L}=0.00643 L=0.00643 \times 800 \mathrm{~mm}=5.14 \mathrm{~mm}
$$

$$
\delta^{*}=\frac{1}{2} \delta, \text { so } \delta^{*}=\frac{1}{2} \times 5.14 \mathrm{~mm}=2.57 \mathrm{~mm}
$$

$$
\tau_{\omega}(x=L)=\frac{0.578}{\sqrt{2.90 \times 10^{5}}} \times \frac{1}{2} \times 1.23 \frac{\mathrm{~kg}}{\mathrm{~m}^{3}}(5.3)^{2} \frac{\mathrm{~m}^{2}}{\mathrm{sec}^{2}} \times \frac{\mathrm{N} \cdot \sec ^{2}}{\mathrm{~kg} \cdot \mathrm{~m}}=0.0185 \mathrm{~N} / \mathrm{m}^{2}
$$

τ_{w} (N / m^{2})

Given: Laminar boundary layer forms on flat plate of length $h=0.8 \mathrm{~m}$ ard wrath $b=1.9 \mathrm{~m}$. Free stream veffity, U $U 5.3 \mathrm{mls}$. Vibcity profile in the boundary layer is linear. Standard air
Find: al algebraic expression for $T_{w}(x)$ (b) alaebrack expression for F^{w} (c) magnitude of Fy.

Solution: Apply the momentum integral equation, Eq a.19
Computing eggs. $r_{\omega}=p v^{2} \frac{d \theta}{d x}, \theta=\delta \int_{0}^{1} \frac{u}{v}\left(1-\frac{u}{v}\right) d\left(\frac{y}{\delta}\right)^{b}$
For a linear profile $\theta=\delta \int_{0}^{1} \eta(1-\eta) d \eta=\delta\left[\frac{\eta^{2}}{2}-\frac{\lambda^{3}}{3}\right]_{0}^{1}=\frac{1}{6} \delta$

$$
\left.\left.\therefore r_{\omega}=\mu \frac{d u}{d y}\right)_{y=0}=\mu \frac{U}{\delta} \frac{d\left(\frac{u}{b}\right)}{d \eta}\right]_{\eta=0}=\frac{\mu U}{\delta}=\rho^{2} \frac{1}{6} \frac{d \delta}{d x}
$$

Separating variables and integrating guvs

$$
\delta d \delta=6 \frac{\mu}{p^{\pi}} d x
$$

Ten $\frac{\delta^{2}}{2}=\frac{6 \mu}{\rho^{0}} x+c \quad$. Since $\delta=0$ at $t=0$ then

$$
\begin{aligned}
& \delta=\left[\frac{12 \mu x}{\rho U}\right]^{1 / 2} \quad 3.46\left[\frac{\mu x}{\rho U}\right]^{1 / 2} \text { or } \frac{\delta}{\alpha}=\frac{3.46}{\sqrt{R_{x}}} \\
& r_{\omega}=\mu \frac{U}{\delta}=\frac{1}{3.46} \mu^{\mu_{2}} \frac{\rho^{j_{2}} v^{3 / 2}}{N^{3 / 2}}=0.289 v^{\mu} \sqrt{R_{2}}
\end{aligned}
$$

The drag force is given by

$$
\begin{align*}
& F_{0}=\int_{\omega} d A=\int_{0}^{2} r_{\omega} b d x=b \int_{0} p U^{2} \frac{d e}{d t} d x=b \int_{0}^{\theta_{L}} p^{2} d \theta \\
& F^{2} b \theta_{1} \tag{5}
\end{align*}
$$

where $\theta_{L}=\frac{1}{6} \delta_{L}$ and $\delta_{L}=\frac{3.46 L}{\sqrt{R_{E}}}$
For glen conditions

$$
\begin{aligned}
& R_{a}=\frac{U L}{V}=5.3 \frac{\mathrm{n}}{5} \times 0.8 \mathrm{~m} \cdot \frac{5}{1.45 \times 10^{-5} \mathrm{~m}^{2}}=2.90 \times 10^{5} \\
& \delta_{L}=\frac{3.46 \mathrm{~L}}{\sqrt{R_{1}}}=3.46 \times 0.8 \mathrm{~m} * \frac{1}{\left(2.90 \times 10^{5}\right)^{1 / 2}}=5.14 \mathrm{~mm} \\
& \theta_{L}=\frac{1}{6} \delta_{L}=0.857 \mathrm{~mm} \\
& F_{9}=p 0^{2} b F_{1}=1.23 \frac{\mathrm{bg}}{n^{2}} \times(5.3)^{2} \frac{m^{2}}{5^{2}} \times 1.9 m \times 0.854 \times 1^{-3} n+\frac{A . s^{2}}{\mathrm{~kg}} \\
& F_{0}=5.63 \times 10^{-2}
\end{aligned}
$$

Problem 9.51

9.51 Water at $10^{\circ} \mathrm{C}$ flows over a flat plate at a speed of $0.8 \mathrm{~m} / \mathrm{s}$.

The plate is 0.35 m long and 1 m wide. The boundary layer on each surface of the plate is laminar. Assume that the velocity profile may be approximated as linear. Determine the drag force on the plate.

Given: Water flow over flat plate
Find: \quad Drag on plate for linear boundary layer

Solution:

Basic equations: $\quad F_{D}=2 \cdot \int \tau_{W} d A \quad \tau_{W}=\mu \cdot \frac{d u}{d y} \quad$ at $y=0$, and also $\quad \tau_{W}=\rho \cdot U^{2} \cdot \frac{d \delta}{d x} \cdot \int_{0}^{1} \frac{u}{U} \cdot\left(1-\frac{u}{U}\right) d \eta$

$$
\mathrm{L}=0.35 \cdot \mathrm{~m} \quad \mathrm{~W}=1 \cdot \mathrm{~m} \quad \mathrm{U}=0.8 \cdot \frac{\mathrm{~m}}{\mathrm{~s}}
$$

From Table A. 8 at $10^{\circ} \mathrm{C} \quad \nu=1.30 \times 10^{-6} \cdot \frac{\mathrm{~m}^{2}}{\mathrm{~s}} \quad \rho=1000 \cdot \frac{\mathrm{~kg}}{\mathrm{~m}^{3}}$
First determine the nature of the boundary layer $\quad \mathrm{Re}_{\mathrm{L}}=\frac{\mathrm{U} \cdot \mathrm{L}}{\nu} \quad \mathrm{Re}_{\mathrm{L}}=2.15 \times 10^{5} \quad$ so laminar
The velocity profile is $\quad u=U \cdot \frac{\mathrm{y}}{\delta}=\mathrm{U} \cdot \eta$
Hence $\quad \tau_{w}=\mu \cdot \frac{d u}{d y}=\mu \cdot \frac{U}{\delta} \quad$ (1) but we need $\delta(\mathrm{x})$
We also have

$$
\tau_{\mathrm{W}}=\rho \cdot \mathrm{U}^{2} \cdot \frac{\mathrm{~d} \delta}{\mathrm{dx}} \cdot \int_{0}^{1} \frac{\mathrm{u}}{\mathrm{U}} \cdot\left(1-\frac{\mathrm{u}}{\mathrm{U}}\right) \mathrm{d} \eta=\rho \cdot \mathrm{U}^{2} \cdot \frac{\mathrm{~d} \delta}{\mathrm{dx}} \cdot \int_{0}^{1} \eta \cdot(1-\eta) \mathrm{d} \eta
$$

The integral is

$$
\int_{0}^{1}\left(\eta-\eta^{2}\right) \mathrm{dx}=\frac{1}{6} \quad \text { so } \quad \tau_{\mathrm{w}}=\rho \cdot \mathrm{U}^{2} \cdot \frac{\mathrm{~d} \delta}{\mathrm{dx}}=\frac{1}{6} \cdot \rho \cdot \mathrm{U}^{2} \cdot\left(\frac{\mathrm{~d}}{\mathrm{dx}}\right.
$$

Comparing Eqs 1 and $2 \quad \tau_{W}=\mu \cdot \frac{\mathrm{U}}{\delta}=\frac{1}{6} \cdot \rho \cdot \mathrm{U}^{2} \cdot \frac{\mathrm{~d} \delta}{\mathrm{dx}}$
Separating variables $\quad \delta \cdot d \delta=\frac{6 \cdot \mu}{\rho \cdot U} \cdot d x \quad$ or $\quad \frac{\delta^{2}}{2}=\frac{6 \cdot \mu}{\rho \cdot U} \cdot x+c \quad$ but $\delta(0)=0$ so c $=0$

Hence

$$
\delta=\sqrt{\frac{12 \cdot \mu}{\rho \cdot U} \cdot \mathrm{X}} \quad \text { or } \quad \frac{\delta}{\mathrm{x}}=\sqrt{\frac{12}{\mathrm{Re}_{\mathrm{X}}}}=\frac{3.46}{\mathrm{Re}_{\mathrm{x}}}
$$

Then
$F_{D}=2 \cdot \int \tau_{W} d A=2 \cdot W \cdot \int_{0}^{L} \mu \cdot \frac{U}{\delta} d x=2 \cdot W \cdot \int_{0}^{L} \mu \cdot U \cdot \sqrt{\frac{\rho \cdot U}{12 \cdot \mu}} \cdot x^{-\frac{1}{2}} d x=\frac{\mu \cdot W \cdot U}{\sqrt{3}} \cdot \sqrt{\frac{U}{\nu}} \cdot \int_{0}^{L} x^{-\frac{1}{2}} d x$
The integral is $\quad \int_{0}^{\mathrm{L}} \mathrm{x}^{-\frac{1}{2}} \mathrm{dx}=2 \cdot \sqrt{\mathrm{~L}} \quad$ so $\quad \mathrm{F}_{\mathrm{D}}=\frac{2 \cdot \mu \cdot \mathrm{~W} \cdot \mathrm{U}}{\sqrt{3}} \cdot \sqrt{\frac{\mathrm{U} \cdot \mathrm{L}}{\nu}}$

$$
\mathrm{F}_{\mathrm{D}}=\frac{2}{\sqrt{3}} \cdot \rho \cdot \mathrm{~W} \cdot \sqrt{\nu \cdot \mathrm{~L} \cdot \mathrm{U}^{3}} \quad \mathrm{~F}_{\mathrm{D}}=0.557 \mathrm{~N}
$$

9.52 Standard air flows from the atmosphere into the wide, flat channel shown. Laminar boundary layers form on the top and bottom walls of the channel (ignore boundary-layer effects on the side walls). Assume the boundary layers behave as on a flat plate, with linear velocity profiles. At any axial distance from the inlet, the static pressure is uniform across the channel. Assume uniform flow at section (1). Indicate where the Bernoulli equation can be applied in this flow field. Find the static pressure (gage) and the displacement thickness at section (2). Plot the stagnation pressure (gage) across the channel at section (2), and explain the result. Find the static pressure (gage) at section (1) and compare to the static pressure (gage) at section (2).

Given: Data on flow in a channel

Find: Static pressures; plot of stagnation pressure

Solution:

The given data is

$$
\mathrm{h}=30 \cdot \mathrm{~mm}
$$

$\delta_{2}=10 \cdot \mathrm{~mm}$

$$
\mathrm{U}_{2}=22.5 \cdot \frac{\mathrm{~m}}{\mathrm{~s}}
$$

$\mathrm{w}=1 \cdot \mathrm{~m} \quad$ (Arbitrary)

Appendix A

$$
\rho=1.23 \cdot \frac{\mathrm{~kg}}{\mathrm{~m}^{3}}
$$

Governing equations
Mass

$$
\begin{equation*}
\frac{\partial}{\partial t} \int_{\mathrm{CV}} \rho d \nVdash+\int_{\mathrm{CS}} \rho \vec{V} \cdot d \vec{A}=0 \tag{4.12}
\end{equation*}
$$

Before entering the duct, and in the the inviscid core, the Bernoulli equation holds

$$
\begin{equation*}
\frac{\mathrm{p}}{\rho}+\frac{\mathrm{V}^{2}}{2}+\mathrm{g} \cdot \mathrm{z}=\text { constant } \tag{4.24}
\end{equation*}
$$

Assumptions: (1) Steady flow (2) No body force in x direction
For a linear velocity profile, from Table 9.2 the displacement thickness at location 2 is

$$
\delta_{\text {disp2 }}=\frac{\delta_{2}}{2} \quad \delta_{\mathrm{disp} 2}=5 \mathrm{~mm}
$$

From the definition of the displacement thickness, to compute the flow rate, the uniform flow at location 2 is assumed to take place in the entire duct, minus the displacement thicknesses at top and bottom

$$
\mathrm{A}_{2}=\mathrm{w} \cdot\left(\mathrm{~h}-2 \cdot \delta_{\operatorname{disp} 2}\right)
$$

$$
\mathrm{A}_{2}=0.02 \mathrm{~m}^{2}
$$

Then

$$
\mathrm{Q}=\mathrm{A}_{2} \cdot \mathrm{U}_{2}
$$

$$
\mathrm{Q}=0.45 \frac{\mathrm{~m}^{3}}{\mathrm{~s}}
$$

Mass conservation (Eq. 4.12) leads to U_{2}

$$
\begin{array}{lll}
\mathrm{U}_{1} \cdot \mathrm{~A}_{1}=\mathrm{U}_{2} \cdot \mathrm{~A}_{2} & \text { where } \quad \mathrm{A}_{1}=\mathrm{w} \cdot \mathrm{~h} & \mathrm{~A}_{1}=0.03 \mathrm{~m}^{2} \\
\mathrm{U}_{1}=\frac{\mathrm{A}_{2}}{\mathrm{~A}_{1}} \cdot \mathrm{U}_{2} & & \mathrm{U}_{1}=15 \frac{\mathrm{~m}}{\mathrm{~s}}
\end{array}
$$

The Bernoull equation applied between atmosphere and location 1 is

$$
\frac{\mathrm{p}_{\mathrm{atm}}}{\rho}=\frac{\mathrm{p}_{1}}{\rho}+\frac{\mathrm{U}_{1}^{2}}{2}
$$

or, working in gage pressures

$$
\mathrm{p}_{1}=-\frac{1}{2} \cdot \rho \cdot \mathrm{U}_{1}^{2}
$$

$$
\mathrm{p}_{1}=-138 \mathrm{~Pa}
$$

(Static pressure)
Similarly, between atmosphere and location 2 (gage pressures)

$$
\mathrm{p}_{2}=-\frac{1}{2} \cdot \rho \cdot \mathrm{U}_{2}^{2}
$$

$$
\mathrm{p}_{2}=-311 \mathrm{~Pa}
$$

(Static pressure)
The static pressure falls continuously in the entrance region as the fluid in the central core accelerates into a decreasing core

The stagnation pressure at location 2 (measured, e.g., with a Pitot tube as in Eq. 6.12), is indicated by an application of the Bernoulli equation at a point

$$
\frac{\mathrm{p}_{\mathrm{t}}}{\rho}=\frac{\mathrm{p}}{\rho}+\frac{\mathrm{u}^{2}}{2}
$$

where p_{t} is the total or stagnation pressure, $p=p_{2}$ is the static pressure, and u is the local velocity, given by

$$
\begin{array}{ll}
\frac{\mathrm{u}}{\mathrm{U}_{2}}=\frac{\mathrm{y}}{\delta_{2}} & \mathrm{y} \leq \delta_{2} \\
\mathrm{u}=\mathrm{U}_{2} & \delta_{2}<\mathrm{y} \leq \frac{\mathrm{h}}{2}
\end{array}
$$

(Flow and pressure distibutions are symmetric about centerline)
Hence $\quad p_{t}=p_{2}+\frac{1}{2} \cdot \rho \cdot u^{2}$

The plot of stagnation pressure is shown in the associated Excel workbook
,9.52 Standard air flows from the atmosphere into the wide, flat channel shown. Laminar boundary layers form on the top and bottom walls of the channel (ignore boundary-layer effects on the side walls). Assume the boundary layers behave as on a flat plate, with linear velocity profiles. At any axial distance from the inlet, the static pressure is uniform across the channel. Assume uniform flow at section (1). Indicate where the Bernoulli equation can be applied in this flow field. Find the static pressure (gage) and the displacement thickness at section (2). Plot the stagnation pressure (gage) across the channel at section (2), and explain the result.
 Find the static pressure (gage) at section (1) and compare to the static pressure (gage) at section (2).

Given: Data on flow in a channel

Find: Static pressures; plot of stagnation pressure

Solution:

Given data: The relevant equations are:

$$
\begin{array}{rllll}
h & =30 & \mathrm{~mm} & \frac{\mathrm{u}}{\mathrm{U}_{2}}=\frac{\mathrm{y}}{\delta_{2}} & \mathrm{y} \leq \delta_{2} \\
U_{2} & =22.5 \mathrm{~m} / \mathrm{s} & & \delta_{2}<\mathrm{y} \leq \frac{\mathrm{h}}{2} \\
\delta_{2} & =10 & \mathrm{~mm} & \mathrm{u}=\mathrm{U}_{2} & \\
\rho= & 1.23 \mathrm{~kg} / \mathrm{m}^{3} & & \\
p_{2} & =-311 \mathrm{~Pa} & \mathrm{p}_{\mathrm{t}}=\mathrm{p}_{2}+\frac{1}{2} \cdot \rho \cdot \mathrm{u}^{2} &
\end{array}
$$

$\boldsymbol{y}(\mathbf{m m})$	$\boldsymbol{u}(\mathbf{m} / \mathbf{s})$	$\boldsymbol{p}_{\mathbf{t}}(\mathbf{P a})$
0.0	0.00	-311.00
1.0	2.25	-307.89
2.0	4.50	-298.55
3.0	6.75	-282.98
4.0	9.00	-261.19
5.0	11.25	-233.16
6.0	13.50	-198.92
7.0	15.75	-158.44
8.0	18.00	-111.74
9.0	20.25	-58.81
10.0	22.50	0.34
11.0	22.50	0.34
12.0	22.50	0.34
13.0	22.50	0.34
14.0	22.50	0.34
15.0	22.50	0.34

The stagnation pressure indicates total mechanical energy - the curve indicates significant loss close to the walls and no loss of energy in the central core.
,9.53 Consider flow of air over a flat plate of length 5 m . On one graph, plot the boundary-layer thickness as a function of distance along the plate for free-stream speed $U=10 \mathrm{~m} / \mathrm{s}$ assuming (a) a completely laminar boundary layer, (b) a completely turbulent boundary layer, and (c) a laminar boundary layer that becomes turbulent at $R e_{x}=5 \times 10^{5}$. Use Excel's Goal Seek or Solver to find the speeds U for which transition occurs at the trailing edge, and at $x=4 \mathrm{~m}, 3 \mathrm{~m}, 2 \mathrm{~m}$, and 1 m .

Given: Data on flow over a flat plate
Find: Plot of laminar and turbulent boundary layer; Speeds for transition at trailing edge

Solution:

For laminar flow

$$
\begin{equation*}
\frac{\delta}{\mathrm{x}}=\frac{5.48}{\sqrt{\operatorname{Re}_{\mathrm{X}}}} \quad \text { (9.21) } \quad \text { and } \quad \operatorname{Re}_{\mathrm{X}}=\frac{\mathrm{U} \cdot \mathrm{x}}{\nu} \quad \text { so } \quad \delta=5.48 \cdot \sqrt{\frac{\nu \cdot \mathrm{x}}{\mathrm{U}}} \tag{1}
\end{equation*}
$$

The critical Reynolds number is $\quad \operatorname{Re}_{\text {crit }}=500000$

$$
\text { Hence, for velocity } U \text { the critical length } x_{\text {crit }} \text { is } \quad \mathrm{x}_{\text {crit }}=500000 \cdot \frac{\nu}{U}
$$

For turbulent flow

$$
\begin{equation*}
\frac{\delta}{x}=\frac{0.382}{\operatorname{Re}_{x}{ }^{\frac{1}{5}}} \tag{9.26}
\end{equation*}
$$

so $\quad \delta=0.382 \cdot\left(\frac{\nu}{U}\right)^{\frac{1}{5}} \cdot x^{\frac{4}{5}}$

For (a) completely laminar flow Eq. 1 holds; for (b) completely turbulent flow Eq. 3 holds; for (c)
transitional flow Eq. 1 or 3 holds depending on $x_{\text {crit }}$ in Eq. 2

Given data:

$$
\begin{array}{rll}
U & =10 & \mathrm{~m} / \mathrm{s} \\
L & =5 & \mathrm{~m}
\end{array}
$$

Tabulated data:

$$
\begin{aligned}
v= & 1.45 \mathrm{E}-05 \mathrm{~m}^{2} / \mathrm{s} \\
& (\text { Table A.10) }
\end{aligned}
$$

Computed results:

$\boldsymbol{x}(\mathbf{m})$	$\boldsymbol{R} \boldsymbol{e}_{\mathbf{x}}$	(a) Laminar $\boldsymbol{\delta (\mathbf { m m })}$	(b) Turbulent $\boldsymbol{\delta}(\mathbf{m m})$	(c) Transition $\boldsymbol{\delta}(\mathbf{m m})$
0.00	$0.00 \mathrm{E}+00$	0.00	0.00	0.00
0.125	$8.62 \mathrm{E}+04$	2.33	4.92	2.33
0.250	$1.72 \mathrm{E}+05$	3.30	8.56	3.30
0.375	$2.59 \mathrm{E}+05$	4.04	11.8	4.04
0.500	$3.45 \mathrm{E}+05$	4.67	14.9	4.67
0.700	$4.83 \mathrm{E}+05$	5.52	19.5	5.5
0.75	$5.17 \mathrm{E}+05$	5.71	20.6	20.6
1.00	$6.90 \mathrm{E}+05$	6.60	26.0	26.0
1.50	$1.03 \mathrm{E}+06$	8.08	35.9	35.9
2.00	$1.38 \mathrm{E}+06$	9.3	45.2	45.2
3.00	$2.07 \mathrm{E}+06$	11.4	62.5	62.5
4.00	$2.76 \mathrm{E}+06$	13.2	78.7	78.7
5.00	$3.45 \mathrm{E}+06$	14.8	94.1	94.1

The speeds U at which transition occurs at specific points are shown below

$\boldsymbol{x}_{\text {trans }}$ (\mathbf{m})	$\boldsymbol{U}(\mathbf{m} / \mathbf{s})$
5	1.45
4	1.81
3	2.42
2	3.63
1	7.25

*9.54 A developing boundary layer of standard air on a flat plate is shown in Fig. P9.18. The free-stream flow outside the boundary layer is undisturbed with $U=165 \mathrm{ft} / \mathrm{s}$. The plate is 10 ft wide perpendicular to the diagram. Assume flow in the boundary layer is turbulent, with a $\frac{1}{7}$-power velocity profile, and that $\delta=0.75 \mathrm{in}$. at surface $b c$. Calculate the mass flow rate across surface $a d$ and the mass flux across surface $a b$. Evaluate the x momentum flux across surface $b c$. Determine the drag force exerted on the flat plate between d and c. Estimate the distance from the leading edge at which transition from laminar to turbulent flow may be expected.

Given: Data on fluid and turbulent boundary layer
Find: Mass flow rate across $a b$; Momentum flux across $b c$; Distance at which turbulence occurs

Solution:

Basic equations: Mass

$$
\frac{\partial}{\partial t} \int_{\mathrm{CV}} \rho d \forall+\int_{\mathrm{CS}} \rho \vec{V} \cdot d \vec{A}=0
$$

$$
\text { Momentum } \quad F_{x}=F_{S_{x}}+F_{B_{x}}=\frac{\partial}{\partial t} \int_{\mathrm{CV}} u \rho d \forall+\int_{\mathrm{CS}} u \rho \vec{V} \cdot d \vec{A}
$$

Assumptions: 1) Steady flow 2) No pressure force 3) No body force in x direction 4) Uniform flow at $a b$
The given or available data (Table A.9) is

$$
\mathrm{U}=165 \cdot \frac{\mathrm{ft}}{\mathrm{~s}} \quad \delta=0.75 \cdot \mathrm{in} \quad \mathrm{~b}=10 \cdot \mathrm{ft} \quad \rho=0.00234 \cdot \frac{\mathrm{slug}}{\mathrm{ft}^{3}} \quad \nu=1.62 \times 10-4 \cdot \frac{\mathrm{ft}^{2}}{\mathrm{~s}}
$$

Consider CV abcd

$$
\mathrm{m}_{\mathrm{ad}}=-\rho \cdot \mathrm{U} \cdot \mathrm{~b} \cdot \delta
$$

$$
\mathrm{m}_{\mathrm{ad}}=-0.241 \frac{\text { slug }}{\mathrm{s}}
$$

(Note: Software cannot render a dot)

Mass

$$
\mathrm{m}_{\mathrm{ad}}+\int_{0}^{\delta} \rho \cdot \mathrm{u} \cdot \mathrm{~b} d y+\mathrm{m}_{\mathrm{ab}}=0 \quad \text { and in the boundary layer } \frac{\mathrm{u}}{\mathrm{U}}=\left(\frac{\mathrm{y}}{\delta}\right)^{\frac{1}{7}}=\eta^{\frac{1}{7}} \quad \mathrm{dy}=\mathrm{d} \eta \cdot \delta
$$

Hence

$$
\mathrm{m}_{\cdot \mathrm{ab}}=\rho \cdot \mathrm{U} \cdot \mathrm{~b} \cdot \delta-\int_{0}^{1} \rho \cdot \mathrm{U} \cdot \eta^{\frac{1}{7}} \cdot \delta \mathrm{~d} \eta=\rho \cdot \mathrm{U} \cdot \mathrm{~b} \cdot \delta-\frac{7}{8} \cdot \rho \cdot \mathrm{U} \cdot \mathrm{~b} \cdot \delta
$$

$$
\mathrm{m}_{\mathrm{ab}}=\frac{1}{8} \cdot \rho \cdot \mathrm{U} \cdot \mathrm{~b} \cdot \delta \quad \mathrm{~m}_{\mathrm{ab}}=0.0302 \frac{\text { slug }}{\mathrm{s}}
$$

The momentum flux across $b c$ is

$$
\mathrm{mf}_{\mathrm{bc}}=\int_{0}^{\delta} \mathrm{u} \cdot \rho \cdot \overrightarrow{\mathrm{~V}} \overrightarrow{\mathrm{dA}}=\int_{0}^{\delta} \mathrm{u} \cdot \rho \cdot \mathrm{u} \cdot \mathrm{~b} \mathrm{dy}=\int_{0}^{1} \rho \cdot \mathrm{U}^{2} \cdot \mathrm{~b} \cdot \delta \cdot \eta^{\frac{2}{7}} \mathrm{~d} \eta=\rho \cdot \mathrm{U}^{2} \cdot \mathrm{~b} \cdot \delta \cdot \frac{7}{9}
$$

$$
\mathrm{mf}_{\mathrm{bc}}=\frac{7}{9} \cdot \rho \cdot \mathrm{U}^{2} \cdot \mathrm{~b} \cdot \delta \quad \mathrm{mf}_{\mathrm{bc}}=31 \frac{\mathrm{slug} \cdot \mathrm{ft}}{\mathrm{~s}^{2}}
$$

From momentum

$$
-\mathrm{R}_{\mathrm{X}}=\mathrm{U} \cdot(-\rho \cdot \mathrm{U} \cdot \delta)+\mathrm{m}_{\mathrm{ab}} \cdot \mathrm{u}_{\mathrm{ab}}+\mathrm{mf}_{\mathrm{bc}}
$$

$$
\mathrm{R}_{\mathrm{x}}=\rho \cdot \mathrm{U}^{2} \cdot \mathrm{~b} \cdot \delta-\mathrm{m}_{\mathrm{ab}} \cdot \mathrm{U}-\mathrm{mf}_{\mathrm{bc}}
$$

$$
\mathrm{R}_{\mathrm{x}}=3.87 \mathrm{lbf}
$$

Transition occurs at

$$
\operatorname{Re}_{\mathrm{X}}=5 \times 10^{5} \quad \text { and } \quad \operatorname{Re}_{\mathrm{X}}=\frac{\mathrm{U} \cdot \mathrm{x}}{\nu} \quad \mathrm{x}_{\text {trans }}=\frac{\operatorname{Re}_{\mathrm{X}} \cdot \boldsymbol{\nu}}{\mathrm{U}} \quad \mathrm{x}_{\text {trans }}=0.491 \mathrm{ft}
$$

Given: Turbulent boundary-layer flow of water, $\frac{1}{7}$-powerprofik.

$$
\begin{aligned}
& \frac{u}{\tilde{v}}=\left(\frac{y}{\delta}\right)^{1 / 7} \quad \bar{\sigma}=1 \mathrm{~m} / \mathrm{sec} \longrightarrow
\end{aligned}
$$

$$
\begin{aligned}
& \left\{\begin{array}{l}
\text { Conditions of } \\
\text { Example Problem 9.4. }
\end{array}\right\}
\end{aligned}
$$

Find: (a) Expression for wall shear stress, τw.
(b) Integrate to obtain expression for drag force, F_{D}.
(c) Evaluate for the conditions shown.

Solution: Apply results from the momentum integral equation.
computing equation: $C_{f}=\frac{\tau \omega}{\frac{1}{2} \rho U^{2}}=\frac{0.0594}{\left(R_{x}\right)^{1 / 5}}$
Solving for τ_{ω},

$$
\tau_{\omega}=\frac{1}{2} \rho U^{2} \frac{0.0594}{\left(R e_{x}\right)^{1 / 5}}=0.0594\left(\frac{1}{2} \rho U^{2}\right)\left(\frac{v}{\nu}\right)^{-1 / 5} x^{-1 / 5}
$$

Integrating to obta in F_{O},

$$
\begin{aligned}
F_{D} & =\int_{0}^{L} \tau_{\omega} b d x=\int_{0}^{L} \underbrace{0.0594\left(\frac{1}{2} \rho U^{2}\right)\left(\frac{U}{v}\right)^{-1 / 5}}_{C} x^{-1 / 5} b d x=c b \int_{0}^{L} x^{-1 / 5 d x} \\
& \left.=C b \frac{5}{4} x^{4 / 5}\right]_{0}^{L}=\frac{5}{4} c b L^{4 / 5}=\frac{5}{4} c b L L^{-1 / 5} \\
F_{D} & =\frac{5}{4}(0.0594) \frac{1}{2} \rho U^{2} b L\left(\frac{U}{2}\right)^{-1 / 5} L^{-1 / 5}=\frac{1}{2} \rho U^{2} b L \frac{0.0721}{\left(R R_{L}\right)^{1 / 5}}
\end{aligned}
$$

Evaluating, with $b=1 \mathrm{~m}$,

$$
\begin{aligned}
& R_{L}=\frac{U L}{2}=1 \frac{m}{s} \times 1 m_{\times} \frac{s}{1 \times 10^{-6 m^{2}}}=1.00 \times 10^{6} \quad\left(T=20^{\circ} \mathrm{C},\right. \text { Table A.8) } \\
& F_{D}=\frac{1}{2} \times 999 \frac{\mathrm{~kg}}{\mathrm{~m}^{3}} \times(1)^{2} \frac{\mathrm{~m}^{2}}{\mathrm{~s}^{2}} \times 1 m_{\times} 1 m_{\times} \times \frac{0.0743}{(106)^{1 / 5}} \times \frac{\mathrm{Ng} \mathrm{~s}^{2}}{\mathrm{~kg} \cdot \mathrm{~m}}=2.34 \mathrm{~N}
\end{aligned}
$$

Given: Turbulent boundary-layer flow of water, conditions of Example Problem 9.4.

$$
U=1 \mathrm{~m} / \mathrm{s}
$$ δ I.

Assume $\frac{u}{U}=\left(\frac{y}{\delta}\right)^{1 / 7}$

Solution: Apply the results of Example Problem 9.4.
Computing equations: $\frac{\delta}{x}=\frac{0.382}{\left(R e_{x}\right)^{1 / 5}} ; \frac{\delta^{*}}{\delta}=\frac{1}{8} ; C_{f}=\frac{\tau \omega}{\frac{1}{2 \rho U^{2}}}=\frac{0.0594}{\left(R e_{x}\right)^{1 / 5}}$
Assume: (I) BL therbulent from $x=0$ (i.e.tripped)
For conditions given: $R e_{L}=\frac{U L}{2}=\frac{1 m}{s} * 1 m_{\times} \frac{s}{1 \times 10^{-6 / m^{2}}}=10^{6}$

$$
\begin{aligned}
& q=\frac{1}{2} p U^{2}=\frac{1}{2} \times 999 \frac{\mathrm{~kg}}{\mathrm{~m}^{3}} \times(1)^{2} \frac{\mathrm{~m}^{2}}{\mathrm{~s}^{2}} \times \frac{\mathrm{N} \mathrm{~s}^{2}}{\mathrm{~kg} \cdot \mathrm{~m}}=500 \mathrm{~N} / \mathrm{m}^{2} \\
& \tau_{w}=0.0594 \times 500 \frac{\mathrm{~N}}{\mathrm{~m}^{2}} \times \frac{1}{\left(R e_{x}\right)^{1 / 5}}=\frac{29.7}{\left(R e_{x}\right)^{1 / 5}}
\end{aligned}
$$

Tabulate:

Plot:

Problem 9.57

9.57 Repeat Problem 9.42, except that the air flow is now at 25 m / s (assume turbulent boundary-layer flow).

Given: Triangular plate
Find: Drag

Solution:

Basic equations: $\quad \mathrm{c}_{\mathrm{f}}=\frac{\tau_{\mathrm{w}}}{\frac{1}{2} \cdot \rho \cdot \mathrm{U}^{2}} \quad \mathrm{c}_{\mathrm{f}}=\frac{0.0594}{\frac{1}{5}} \operatorname{Re}_{\mathrm{X}}{ }^{5}$

$$
\mathrm{L}=0.50 \cdot \mathrm{~cm} \cdot \frac{\sqrt{3}}{2} \quad \mathrm{~L}=0.433 \cdot \mathrm{~cm} \quad \mathrm{~W}=50 \cdot \mathrm{~cm} \quad \mathrm{U}=25 \cdot \frac{\mathrm{~m}}{\mathrm{~s}}
$$

From Table A. 10 at $20^{\circ} \mathrm{C} \quad \nu=1.50 \times 10^{-5} \cdot \frac{\mathrm{~m}^{2}}{\mathrm{~s}} \quad \rho=1.21 \cdot \frac{\mathrm{~kg}}{\mathrm{~m}^{3}}$
First determine the nature of the boundary layer $\quad \mathrm{Re}_{\mathrm{L}}=\frac{\mathrm{U} \cdot \mathrm{L}}{\nu} \quad \mathrm{Re}_{\mathrm{L}}=7217 \quad \begin{aligned} & \text { so definitely still laminar, but we are } \\ & \text { told to assume turbulent! }\end{aligned}$
The drag (one side) is $\quad F_{D}=\int \tau_{W} d A \quad F_{D}=\int_{0}^{L} \tau_{w} \cdot w(x) d x \quad w(x)=W \cdot \frac{x}{L}$
We also have

$$
\tau_{\mathrm{W}}=\mathrm{c}_{\mathrm{f}} \cdot \frac{1}{2} \cdot \rho \cdot \mathrm{U}^{2}=\frac{1}{2} \cdot \rho \cdot \mathrm{U}^{2} \cdot \frac{0.0594}{\frac{1}{5}}
$$

Hence

$$
\mathrm{F}_{\mathrm{D}}=\frac{1}{2} \cdot \rho \cdot \mathrm{U}^{2} \cdot \frac{\mathrm{~W}}{\mathrm{~L}} \cdot \int_{0}^{\mathrm{L}} \frac{0.0594 \cdot \mathrm{x}}{\left(\frac{\mathrm{U} \cdot \mathrm{x}}{\nu}\right)^{\frac{1}{5}}} \mathrm{dx}=\frac{0.0594}{2} \cdot \rho \cdot \mathrm{U}^{\frac{9}{5}} \cdot \frac{\mathrm{~W}}{\mathrm{~L}} \cdot v^{\frac{1}{5}} \cdot \int_{0}^{\mathrm{L}} \mathrm{x}^{\frac{4}{5}} \mathrm{dx}
$$

The integral is $\quad \int_{0}^{\mathrm{L}} \mathrm{x}^{\frac{4}{5}} \mathrm{dx}=\frac{5}{9} \cdot \mathrm{~L}^{\frac{9}{5}} \quad$ so $\quad \mathrm{F}_{\mathrm{D}}=0.0165 \cdot \rho \cdot \mathrm{~W} \cdot\left(\mathrm{~L}^{4} \cdot \boldsymbol{v} \cdot \mathrm{U}^{9}\right)^{\frac{1}{5}} \quad \mathrm{~F}_{\mathrm{D}}=4.57 \times 10^{-3} \mathrm{~N}$
Note: For two-sided solution

$$
2 \cdot \mathrm{~F}_{\mathrm{D}}=9.14 \times 10^{-3} \mathrm{~N}
$$

Problem 9.58

9.58 Repeat Problem 9.44, except that the air flow is now at 25 m / s (assume turbulent boundary-layer flow).

Given: Parabolic plate
Find: Drag

Solution:

Basic equations: $\quad \mathrm{c}_{\mathrm{f}}=\frac{\tau_{\mathrm{w}}}{\frac{1}{2} \cdot \rho \cdot \mathrm{U}^{2}} \quad \mathrm{c}_{\mathrm{f}}=\frac{0.0594}{\frac{1}{5}} \mathrm{Re}_{\mathrm{X}}{ }^{5}$

$$
\mathrm{W}=25 \cdot \mathrm{~cm} \quad \mathrm{~L}=\frac{\left(\frac{\mathrm{W}}{2}\right)^{2}}{25 \cdot \mathrm{~cm}} \quad \mathrm{~L}=6.25 \cdot \mathrm{~cm} \quad \mathrm{U}=25 \cdot \frac{\mathrm{~m}}{\mathrm{~s}}
$$

Note: " y " is the equation of the upper and lower surfaces, so $\mathrm{y}=\mathrm{W} / 2$ at $\mathrm{x}=\mathrm{L}$
From Table A. 10 at $20^{\circ} \mathrm{C} \quad \nu=1.50 \times 10^{-5} \cdot \frac{\mathrm{~m}^{2}}{\mathrm{~s}} \quad \rho=1.21 \cdot \frac{\mathrm{~kg}}{\mathrm{~m}^{3}}$
First determine the nature of the boundary layer $\quad \operatorname{Re}_{\mathrm{L}}=\frac{\mathrm{U} \cdot \mathrm{L}}{\nu} \quad \mathrm{Re}_{\mathrm{L}}=1.04 \times 10^{5}$
so still laminar, but we are told to assume turbulent!

The drag (one side) is $\quad F_{D}=\int \tau_{W} d A \quad F_{D}=\int_{0}^{L} \tau_{w} \cdot w(x) d x \quad w(x)=W \cdot \sqrt{\frac{x}{L}}$
We also have

Hence

$$
\tau_{\mathrm{W}}=\mathrm{c}_{\mathrm{f}} \cdot \frac{1}{2} \cdot \rho \cdot \mathrm{U}^{2}=\frac{1}{2} \cdot \rho \cdot \mathrm{U}^{2} \cdot \frac{0.0594}{} \frac{\operatorname{Re}_{\mathrm{X}}^{\frac{1}{5}}}{}
$$

$$
\mathrm{F}_{\mathrm{D}}=\frac{1}{2} \cdot \rho \cdot \mathrm{U}^{2} \cdot \mathrm{~W} \cdot \int_{0}^{\mathrm{L}} \frac{\sqrt{\frac{\mathrm{~L}}{\mathrm{~L}}}}{\left(\frac{\mathrm{U} \cdot \mathrm{x}}{\nu}\right)^{\frac{1}{5}}} \mathrm{dx}=\frac{0.0594}{2} \cdot \rho \cdot \mathrm{U}^{\frac{9}{5}} \cdot \mathrm{~W} \cdot \mathrm{~L}{ }^{-\frac{1}{2}} \cdot \nu^{\frac{1}{5}} \cdot \int_{0}^{\mathrm{L}} \mathrm{x}^{\frac{3}{10}} \mathrm{dx}
$$

$$
F_{D}=0.0228 \cdot \rho \cdot W \cdot\left(\nu \cdot L^{4} \cdot U^{9}\right)^{\frac{1}{5}}
$$

$$
\mathrm{F}_{\mathrm{D}}=0.0267 \mathrm{~N}
$$

9.59 Repeat Problem 9.46, except that the water flow is now at $10 \mathrm{~m} / \mathrm{s}$ (assume turbulent boundary-layer flow).

Given: Pattern of flat plates
Find: Drag on separate and composite plates

Solution:

Basic equations: $\quad \mathrm{c}_{\mathrm{f}}=\frac{\tau_{\mathrm{w}}}{\frac{1}{2} \cdot \rho \cdot \mathrm{U}^{2}} \quad \mathrm{c}_{\mathrm{f}}=\frac{0.0594}{\mathrm{Re}_{\mathrm{X}}{ }^{\frac{1}{5}}}$
For separate plates

$$
\mathrm{L}=7.5 \cdot \mathrm{~cm}
$$

$$
\mathrm{w}=7.5 \cdot \mathrm{~cm}
$$

$$
\mathrm{U}=10 \cdot \frac{\mathrm{~m}}{\mathrm{~s}}
$$

From Table A. 8 at $20^{\circ} \mathrm{C} \quad \nu=1.01 \times 10^{-6} \cdot \frac{\mathrm{~m}^{2}}{\mathrm{~s}} \quad \rho=998 \cdot \frac{\mathrm{~kg}}{\mathrm{~m}^{3}}$

First determine the nature of the boundary layer $\quad \mathrm{Re}_{\mathrm{L}}=\frac{\mathrm{U} \cdot \mathrm{L}}{\nu} \quad \mathrm{Re}_{\mathrm{L}}=7.43 \times 10^{5} \quad$ so turbulent
The drag (one side) is $\quad \mathrm{F}_{\mathrm{D}}=\int \tau_{\mathrm{w}} \mathrm{dA} \quad \mathrm{F}_{\mathrm{D}}=\int_{0}^{\mathrm{L}} \tau_{\mathrm{w}} \cdot \mathrm{Wdx}$
We also have

$$
\tau_{\mathrm{w}}=\mathrm{c}_{\mathrm{f}} \cdot \frac{1}{2} \cdot \rho \cdot \mathrm{U}^{2}=\frac{1}{2} \cdot \rho \cdot \mathrm{U}^{2} \cdot \frac{0.0594}{} \frac{\frac{1}{5}}{\operatorname{Re}_{\mathrm{X}}}
$$

Hence

$$
\mathrm{F}_{\mathrm{D}}=\frac{1}{2} \cdot \rho \cdot \mathrm{U}^{2} \cdot \mathrm{~W} \cdot \int_{0}^{\mathrm{L}} \frac{0.0594}{\left(\frac{\mathrm{U} \cdot \mathrm{x}}{\nu}\right)^{\frac{1}{5}}} \mathrm{dx}=\frac{0.0594}{2} \cdot \rho \cdot \mathrm{U}^{\frac{9}{5}} \cdot \mathrm{~W} \cdot \nu^{\frac{1}{5}} \cdot \int_{0}^{\mathrm{L}} \mathrm{x}^{-\frac{1}{5}} \mathrm{dx}
$$

The integral is $\quad \int_{0}^{\mathrm{L}} \mathrm{x}^{-\frac{1}{5}} \mathrm{dx}=\frac{5}{4} \cdot \mathrm{~L}^{\frac{4}{5}} \quad$ so $\quad \mathrm{F}_{\mathrm{D}}=0.371 \cdot \rho \cdot \mathrm{~W} \cdot\left(\nu \cdot \mathrm{~L}^{4} \cdot \mathrm{U}^{9}\right)^{\frac{1}{5}} \quad \mathrm{~F}_{\mathrm{D}}=13.9 \mathrm{~N}$

This is the drag on one plate. The total drag is then

$$
\begin{array}{lll}
\mathrm{F}_{\text {Total }}=4 \cdot \mathrm{~F}_{\mathrm{D}} & \mathrm{~F}_{\text {Total }}=55.8 \mathrm{~N} \\
& \text { For both sides: } & 2 \cdot \mathrm{~F}_{\text {Total }}=112 \mathrm{~N}
\end{array}
$$

For the composite plate $\quad \mathrm{L}=4 \times 7.5 \cdot \mathrm{~cm} \quad \mathrm{~L}=0.30 \mathrm{~m}$

$$
\mathrm{F}_{\text {Composite }}=0.371 \cdot \rho \cdot \mathrm{~W} \cdot\left(\nu \cdot \mathrm{~L}^{4} \cdot \mathrm{U}^{9}\right)^{\frac{1}{5}}
$$

$$
\begin{array}{ll}
& \mathrm{F}_{\text {Composite }}=42.3 \mathrm{~N} \\
\text { For both sides: } & 2 \cdot \mathrm{~F}_{\text {Composite }}=84.6 \mathrm{~N}
\end{array}
$$

The drag is much lower on the composite compared to the separate plates. This is because τ_{w} is largest near the leading edges and falls off rapidly; in this problem the separate plates experience leading edges four times!

Given: Turbulent boundary layer with velocity profile $\frac{\alpha}{U}=\eta^{1 / 6} ; \eta=\frac{y}{\delta}$
Find: Expressions for $\delta / x, c_{f}$, using momentum integral equation. compare with results of "1/7-power"profile, section 9-5.2.

Solution: The momentum integral equation is computing equation: $-\delta \frac{\partial \hat{\beta}}{\partial x}-\tau_{w}=\frac{\partial}{\partial x} \int_{0}^{\delta} u \rho u d y-U \frac{\partial}{\partial x} \int_{0}^{\delta} p u d y$
Assumptions: (1) Flat plate, so $U=$ constant and $\frac{\partial p}{\partial x}=0$
(2) δ is a function of x only; $\delta=0$ at $x=0$
(3) Incompressible flow
(4) $\tau_{\omega}=0.0233 \rho \mathcal{V}^{2}\left(\nu / v_{\delta}\right)^{1 / 4}$

Then

$$
\tau_{w}=v \frac{\partial}{\partial x} \int_{0}^{s} \rho u d y-\int_{0}^{s} u p u d y=\frac{\partial}{\partial x} \int_{0}^{\delta} \rho u(v-u) d y
$$

or

$$
\tau_{\omega}=\rho U^{2} \frac{d \delta}{d x} \int_{0}^{1} \frac{\mu}{V}\left(1-\frac{\mu}{U}\right) d\left(\frac{y}{\delta}\right)=\rho U^{2} \frac{d \delta}{d x} \beta
$$

Evaluating β,

$$
\beta=\int_{0}^{1} \eta^{1 / 6}\left(1-\eta^{1 / 6}\right) d \eta=\left[\frac{6}{7} \eta^{7 / 6}-\frac{6}{8} \eta^{8 / 6}\right]_{0}^{1}=\frac{6}{56}
$$

Substituting

$$
0.0233 \rho U^{2}\left(\frac{\nu}{U \delta}\right)^{\frac{1}{4}}=\rho U^{2} \frac{d \delta}{d x} \beta \quad \text { or } \quad \delta^{1 / 4} d \delta=\frac{0.0233}{\beta}\left(\frac{\nu}{V}\right)^{\frac{1}{4}} d x
$$

Integrating $\frac{4}{5} \delta^{5 / 4}=\frac{0.0225}{\beta}\left(\frac{\nu}{V}\right)^{\frac{1}{4}} x+c$, but $c=0$, since $\delta=0$ at $x=0$.
Thus

$$
\delta=\left[\frac{5}{4} \frac{0.0233}{\beta}\left(\frac{\nu}{V}\right)^{\frac{1}{4}} x\right]^{4 / 5}=0.353\left(\frac{\nu}{V}\right)^{\frac{1}{5}} x^{\frac{4}{5}}
$$

and

$$
\frac{\delta}{x}=0.353\left(\frac{\nu}{v x}\right)^{\frac{1}{5}}=\frac{0.353}{\left(\pi_{x}\right)^{1 / 5}}
$$

Also

$$
\begin{aligned}
c_{f} & =\frac{\tau_{w}}{\frac{1}{2} \rho \sigma^{2}}=\frac{0.0233 \rho \sigma^{2}\left(\frac{\nu}{v \delta}\right)^{\frac{1}{4}}}{\frac{1}{2} \rho \sigma^{2}}=0.0466\left(\frac{\nu}{v_{x}}\right)^{\frac{1}{4}}\left(\frac{x}{\delta}\right)^{\frac{1}{4}} \\
& =0.0466\left(\frac{\nu}{U x}\right)^{\frac{1}{4}}\left(\frac{1}{0.353}\right)^{\frac{1}{4}}\left[\left(\frac{\sigma_{x}}{\nu}\right)^{\frac{1}{5}}\right]^{\frac{6}{4}} \\
c_{f} & =\frac{0.0605}{\left(R_{c_{x}}\right)^{1 / 5}}
\end{aligned}
$$

Comparing:

$$
1 / 6 \text {-power }
$$

1/7-power

$\frac{\delta / x\left(R e_{x}\right)^{1 / 5}}{0.353}$	$\frac{c_{f}\left(R e_{x}\right)^{1 / 5}}{0.0605}$
0.382	0.0544

Given: Therbulent bocendary-kujer flow of water, $\frac{1}{6}$-power profile.

$$
\frac{u}{\sigma}=\left(\frac{y}{j}\right)^{1 / 6} \quad v=1 \mathrm{~m} / \mathrm{s}
$$

$$
\left\{\begin{array}{l}
\text { Flow conditions of } \\
\text { Example Problem } 9.4 .
\end{array}\right\}
$$

Find: (a) Expression for the ratio, δ / x
(b) Expression for the skin friction coefficient, C_{4}.
(c) Evaluate F_{D} for the conditions shown.

Solution: Apply the momentum integral equation.
computing equation: $\quad \tau w=\rho U^{2} \frac{d v}{d x}=\rho V^{2} \frac{d \delta}{d x} \beta$
Assumptions: (1) Flat plate, so $U=$ constant and $\frac{\partial p}{\partial x}=0$
(2) $\delta=\delta(x)$ only; $\delta=0$ at $x=0$
(3) Incompressible flow
(4) Wall shear correlation, $\tau_{\omega}=0.0233 \rho 0^{2}\left(\frac{\nu}{v_{d}}\right)^{\frac{1}{4}}$

Now $\beta=\frac{\theta}{\delta}=\int_{0}^{1} \frac{u}{\bar{v}}\left(1-\frac{u}{V}\right) d\left(\frac{y}{\delta}\right)=\int_{0}^{1} \lambda^{16}\left(1-\lambda^{1 / 6}\right) d \lambda=\int_{0}^{1}\left(\lambda^{1 / 6}-\lambda^{2 / 6}\right) d \lambda ; \lambda=\frac{y}{\delta}$

$$
\left.\beta=\frac{6}{7} \lambda^{76}-\frac{6}{8} \lambda^{8 / 6}\right]_{0}^{1}=\frac{6(8)-6(7)}{7(8)}=\frac{6}{Q}=0.107
$$

Substituting into the MIE,

$$
0.0233 \rho U^{2}\left(\frac{\nu}{U \delta}\right)^{\frac{1}{4}}=\rho U^{2} \frac{d \delta}{d x}(0.107) \quad \text { or } \quad \delta^{1 / 4} d \delta=0.218\left(\frac{\nu}{U}\right)^{\frac{1}{4}} d x
$$

Integrating, $\frac{4}{5} \delta^{5 / 4}=0.218\left(\frac{\nu}{4}\right)^{\frac{4}{4}} x+c$, but $c=0$, since $\delta(0)=0$.
Thees $\left.\delta=\left[0.218, \frac{5}{4}\right)\left(\frac{\partial}{y}\right)^{1 / 4 x}\right]^{1 / 4}=0.353\left(\frac{\nu}{U}\right)^{1 / 5} x^{4 / 5}$
and

$$
\frac{\delta}{x}=0.353\left(\frac{\nu}{U}\right)^{1 / 5} x^{-1 / 5}=\frac{0.353}{\left(R e_{x}\right)^{1 / 5}}
$$

From the wall shear correlation,

$$
\begin{aligned}
& c_{f}=\frac{\tau \omega}{\frac{1}{2} \rho U^{2}}=\frac{0.0233 \rho U^{2}}{\frac{1}{2} \rho U^{2}}\left(\frac{\nu}{U \delta}\right)^{1 / 4}=0.0466\left(\frac{\nu}{U \delta}\right)^{1 / 4}=0.0466\left(\frac{\nu}{U x}\right)^{1 / 4}\left(\frac{x}{\delta}\right)^{1 / 4} \\
& c_{f}=0.0466\left(\frac{\nu}{\sigma x}\right)^{1 / 4}\left[\frac{(U x / 0)^{1 / 5}}{0.353}\right]^{1 / 4}=\frac{0.0612}{\left(R e_{x}\right)^{1 / 5}}
\end{aligned}
$$

The drag force is $F_{D}=\int_{0}^{L} \tau_{\omega} b d x=\int_{0}^{L} 0.06 / 2 \frac{1}{2} \rho U^{2}\left(\frac{\nu}{U}\right)^{1 / 5} x^{-1 / 5} b d x$

$$
\begin{aligned}
& F_{D}=0.0612 \frac{1}{2} P U^{2}\left(\frac{\nu}{U}\right)^{1 / 5} b \int_{0}^{L} x^{-1 / 5} d x=0.0765 \frac{1}{2} f U^{2} b L\left(\frac{v}{U L}\right)^{1 / 5} \\
& F_{D}=\frac{0.0765}{2} \times 999 \frac{\mathrm{~kg}}{m^{3}}(1)^{2} \frac{m^{2}}{\mathrm{~s}^{2}} \times 1 m_{\times} / m_{\times}\left(\frac{1}{10^{6}}\right)^{1 / 5 \mathrm{~N} \cdot \mathrm{~s}^{2}} \frac{\mathrm{~kg} \cdot \mathrm{~m}}{}=2.41 \mathrm{~N}
\end{aligned}
$$

Problem 9.62
Given: Turbulent boundary layer with velocity profile, $\frac{u}{V}=\eta^{1 / g} ; \eta=\frac{y}{\delta}$.
Find: Expressions for $\delta / x, c_{f}$, wing momentum integral/ equation. compare with results of "I/7-power"profile, section 4-5.2.

Solution: The momentum integral equation is
Computing equation: $-\delta \frac{\partial p}{\partial x}-\tau_{w}=\frac{\partial}{\partial x} \int_{0}^{\delta} u \rho u d y-v \frac{\partial}{\partial x} \int_{0}^{\delta} p u d y$
Assumptions: (1) Flat plate, so $U=$ constant and $\frac{\partial p}{\partial x}=0$
(2) δ is a function of x only; $\delta=0$ at $x=0$
(3) Incompressible flow
(4) $\tau_{\omega}=0.0233 p v^{2}(\nu / U \delta)^{1 / 4}$

Then

$$
\tau_{\omega}=v \frac{\partial}{\partial x} \int_{0}^{\delta} \rho u d y-\int_{0}^{\delta} u \rho u d y=\rho U^{2} \frac{d \delta}{d x} \int_{0}^{1} \frac{u}{V}\left(1-\frac{u}{v}\right) d \eta=\rho U^{2} \frac{d k}{d x} \beta
$$

Evaluating β,

$$
\beta=\int_{0}^{1} \eta^{1 / 8}\left(1-\eta^{1 / 8}\right) d \eta=\left[\frac{8}{9} \eta^{9 / 8}-\frac{8}{10} \eta^{10 / 2}\right]_{0}^{1}=\frac{8}{90}
$$

substithating,

$$
0.0233 \rho U^{2}\left(\frac{\nu}{V \delta}\right)^{\frac{1}{4}}=\rho U^{2} \frac{d \delta}{d x} \beta \text { or } \delta^{1 / 4} d \delta=\frac{0.0233}{\beta}\left(\frac{\nu}{V}\right)^{\frac{1}{4}} d x
$$

Integrating $\frac{4}{5} \delta^{5 / 4}=\frac{0.0225}{13}\left(\frac{\nu}{v}\right)^{\frac{1}{4}} x+c$, but $c=0$, since $\delta=0$ at $x=0$.
Thus

$$
\delta=\left[\frac{5}{4} \frac{0.0233}{\beta}\left(\frac{\nu}{U}\right)^{\frac{1}{4}} x\right]^{4 / 5}=0.410\left(\frac{\nu}{V}\right)^{\frac{1}{5}} x^{4 / 5}
$$

and

$$
\frac{\delta}{x}=0.410\left(\frac{2 J}{\sigma x}\right)^{1 / 5}=\frac{0.410}{\left(r_{x}\right)^{3 / 5}}
$$

Also

$$
\begin{aligned}
& c_{f}=\frac{\tau_{w}}{\frac{1}{2} \rho U^{2}}=\frac{0.0233 \rho v^{2}\left(\frac{\nu}{V S}\right)^{1 / 4}}{\frac{1}{2} \rho U^{2}}=0.0466\left(\frac{\nu}{U x}\right)^{\frac{1}{4}}\left(\frac{x_{x}}{\delta}\right)^{\frac{1}{4}} \\
& c_{f}=0.0466\left(\frac{\nu}{v_{x}}\right)^{\frac{1}{4}}\left(\frac{1}{0.410}\right)^{\frac{1}{4}}\left[\left(\frac{U x}{\nu}\right)^{\frac{1}{5}}\right]^{\frac{1}{4}}=\frac{0.0582}{\left(R e_{x}\right)^{1 / 5}}
\end{aligned}
$$

Comparing:

$$
\frac{\text { Profile }}{\frac{\delta}{1 / 8-p o w e r ~}\left(R c_{x}\right)^{1 / 5}} \frac{C_{f}\left(R c_{x}\right)^{1 / 5}}{0.410} 0.0592
$$

Gwen: fir flow over smooth fit plate $a \leq$ shown; width $b=0.8 \mathrm{~m}$. Butripped, soturbubent $U=20 \mathrm{mls}$ tebocty profile is th-power.
Find: (a) δ at $x=1$, bi cw at t
(c) Drag on portion $0.5 m 4 x^{2} L$

Solution:
Computing equations: $\quad \frac{\delta}{x}=\frac{0.382}{\operatorname{Re}^{15}} \quad c_{f}=\frac{T_{w}}{\frac{1}{2} \theta^{2}}=\frac{0.0594}{\operatorname{Rex}^{\prime} X^{\prime}}$
Assumptions: in steady flow (i) incompresitue flow
(3) zero pressure gradient.
(4) Standing air $\left.(\phi)=15^{\circ} \mathrm{C}\right)$

$$
\begin{aligned}
& R_{e}=\frac{01}{7}=20 \frac{4}{5} \times 1.5 m \times 1.46 \times 10^{-5} \frac{5}{M^{2}}=2.06 \times 10^{6} \\
& \delta_{L}=\frac{0.382 \mathrm{~h}}{R_{e_{1}} 1^{5}}=0.382 \times 1.5 \mathrm{~m} \times \frac{1}{(2.06+5)^{0.2}}=31.3 \mathrm{~mm}-\delta_{L} \\
& c_{f}=\frac{T_{\omega}}{\frac{1}{2} p^{2}}=\frac{0.0594}{R_{e} 1_{5}^{1}} \quad \therefore r_{\omega}=\frac{1}{2} p^{2} \frac{0.0594}{R_{e x}^{15}} \\
& r_{w}=\frac{1}{2}+1.23 \frac{\mathrm{~kg}}{\mathrm{~m}^{3}} \times(20)^{2} \frac{m^{2}}{5^{2}} \times \frac{0.0594}{\left.(2.06+1)^{6}\right)^{2.2}} \times \frac{A^{2}}{\varepsilon^{2}}=0.798 n l_{M}^{2} r_{w}
\end{aligned}
$$

Te drag force is given by.

$$
\begin{aligned}
& F_{D}=\int_{x,}^{1} r_{w} b d x=\frac{1}{2} \operatorname{fa}^{2} b \int_{x,}^{2} \frac{0.0594}{R_{2} x^{15}} d x=\frac{1}{2} p^{2} b \frac{0.0594}{(01 J)^{15}} \int_{t}^{2} \frac{d x}{x^{15}} \\
& =\frac{1}{2} \operatorname{pen}^{2} b \frac{0.0544}{(0 / 5)^{1 / 5}}\left[\frac{5}{4} x^{4 / 5}\right]_{x_{1}}^{2}=\frac{1}{2} \operatorname{pej}^{2} b \frac{0.0594}{\left(0(J)^{1 / 5}\right.} \frac{5}{4}\left[\frac{x}{x^{15}}\right]_{x}^{2} \\
& F_{8}=\frac{1}{2} p 0^{2} b \frac{5}{4}\left[L c_{f_{2}}-x_{1} C_{f_{-1}}\right] \\
& \text { For } h_{1}=0.5 M, R_{H}=6.85 \times 10^{5} \text {, and } C_{F H}=0.00404 \\
& \text { For } h=h=1.5 \mathrm{M} \text {, } \mathrm{Re}_{2}=2.06 \times 10^{\circ} \text {, and } \mathrm{Crm}_{2}=0.00324
\end{aligned}
$$

Substituting.

$$
\begin{aligned}
& F_{8}=\frac{1}{2} \times 123 \frac{8}{m^{2}} \times(20)^{2} \frac{m^{2}}{5^{2}} \times 0.8 m \times \frac{3}{4} \times \frac{15}{\lg ^{2} m}[1.5 m+0.00324-0.5 m+0.00404] \\
& F_{D}=0.700 \lambda
\end{aligned}
$$

Alternate solution: $F_{y}=0^{2} b\left(\theta_{2}-\theta_{2}\right)$
For th-pouct, $\theta=\frac{7}{72} \delta$. $\theta_{2}=3.04 \mathrm{~mm} ; \delta_{1}=13 \mathrm{~mm}, \theta_{x}=1.2 b \mathrm{~mm}$

$$
F_{>}=1.23 \frac{\theta_{g}}{n_{3}} \times(20)^{2} \frac{m^{2}}{s^{2}} \times 0.8 m \times \frac{H^{2}}{\lg ^{2}}(0.00304-0.0026) m=0.70011
$$

Given: Air at standard conditions flows at 10 mils over a Nat plate.
Find: δ and T_{w} at a point 1 in from leading edge for (a) completely pernar fou (parable verity prof il) (b) completely furbulest flow (iMpower velocity profit)

Solution
Computing equations:

Laminar Flow

$$
\begin{aligned}
& \delta=\frac{5.48}{\sqrt{R_{x}}} \\
& c_{f}=\frac{0.730}{\sqrt{R_{e x}}}
\end{aligned}
$$

For standard our, $\rho=1,23 \mathrm{kgh} \mathrm{m}^{3}, ~ V=1,46 \times 10^{-5} \mathrm{~m}^{2} \mathrm{l}_{\mathrm{s}}$ (Tate, 10) The Reynolds number is

$$
R_{e_{x}}=\frac{U x}{J}=10 \frac{n}{5} \times 1 M \times 1.46010^{-5} \frac{5}{m^{2}}=6.85 \times 10^{5}
$$

For laminar flow

$$
\begin{aligned}
& \delta=\frac{5.48 x}{\sqrt{R e x}}=5.48 \times 1 \mathrm{~m} \times\left(\frac{1}{(6.85 \times 5)^{1 / 2}}=6.62 \mathrm{~mm}\right. \\
& c_{f}=\frac{r_{\omega}}{\frac{1}{2} p v^{2}}=\frac{0.730}{\sqrt{R_{e x}}} \quad \therefore r_{\omega}=\frac{1}{2} p 0^{2} \frac{0.730}{\sqrt{R_{e x}}}
\end{aligned}
$$

For turbulent flow

$$
\begin{aligned}
& \delta=\frac{0.382 x}{\operatorname{Re}^{1 / 5}}=0.342 \times 1 \mathrm{~m} \times \frac{1}{\left(6.85+0^{5}\right)^{0.2}}=26.0 \mathrm{NaN} \text { Stud }
\end{aligned}
$$

Comparing,

$$
\frac{\delta_{\text {turd }}}{\delta_{\text {lam }}}=3.93 \text { and } \frac{T_{w \text { tub }}}{T_{w . \text { bor }}}=4.58
$$

Rus le turbulent boundary hayes has a much larger skin friction whig causes it geo more raped

Given: Incompressible flow of air through a plane-wall diffuser. Diffuser walls diverge slightly to accommodate the boundary layer development, so there is no presscene gradient. Assume flat plate boundary layer development.

$V_{1}=60 \mathrm{~m} / \mathrm{sec}$
δ^{*} (2)
$p_{2}=p_{1}$
standard air
Find: (a) Explain why Bernoulli equation is applicable to this flow.
(b) Exit width, W_{2}.

Solution: The Bernowli equation may be applied along a streamline in any steady, incompressible flows in the absence of friction. The given flow is steady and incompressible. Frictional effects are confined to the thin wall boundary layers. Therefore the Bernoulli equation may be applied along any streamline in the cone flow outside the boundary lavers. (Since there is no streaming curvature, the pressure is uniform across sections (1) and (2) J
Basic equations:

$$
\begin{aligned}
& 0=\frac{\partial}{\partial} \int_{C v}^{n} \rho d v+\int_{S} \rho \vec{v} \cdot d \vec{A} \\
& \ddot{p}_{f}^{\prime}+\frac{v_{i}^{2}}{2}+g z_{1}^{\prime}=p_{f}^{(3)}+\frac{p_{2}^{2}}{2}+g J_{2}^{(3)}
\end{aligned}
$$

Assumptions: (1) steady frow
(2) Turbulent, "1/7-power" boundary lower from entrance
(3) $z_{1}=z_{2}$
(4) $p_{1}=p_{2}$

Then from Bernoulli, $v_{1}=v_{2}$, and from continuity,

$$
0=\left\{-\left|\rho v_{1} A_{1}\right|\right\}+\left\{\left|\rho v_{1} A_{2, \text { eff }}\right|\right\} \text { or } A_{2, \text { eff }}=\left(w_{2}-z \delta_{2}^{*}\right) b=w_{1} b
$$

Use the analysis of section 9-5.2: $\frac{\delta}{x}=\frac{0.382}{R e_{x}}$ is or $\frac{\delta}{L}=\frac{0.382}{R e_{L} /_{2}}$

$$
\begin{aligned}
\operatorname{Re}_{L} & =\frac{\rho V L}{\mu}=\frac{V L}{\nu}=60 \frac{m}{s} \times 1.2 \mathrm{~m} \times \frac{\mathrm{s}}{1.46 \times 10^{-5} \mathrm{~m}^{2}}=4.73 \times 10^{6} ; \frac{\delta_{2}}{L}=0.0175 \\
\text { or } \delta_{z} & =0.017 L=(0.0171) 1.2 \mathrm{~m}=0.0205 \mathrm{~m}, \text { or } 20.5 \mathrm{~mm} . \quad \delta^{*}=\int_{0}^{\delta}\left(1-\frac{L}{\sigma}\right) d y, 50 \\
\delta_{2}^{*} & \left.=\delta_{2} \int_{0}^{1}\left(1-\frac{U}{j}\right) d\left(\frac{U}{\xi}\right)=\delta \int_{0}^{1}\left(1-\eta^{m}\right) d \eta=\delta\left[\eta-\frac{7}{\delta \eta}\right)^{5 / 7}\right]_{0}^{1}=\frac{1}{\delta} \delta=2.63 \mathrm{~mm}
\end{aligned}
$$

Then $\omega_{2}=W_{1}+2 \delta_{2}^{*}=75 \mathrm{~mm}+2(2.63 \mathrm{~mm})=80.3 \mathrm{~mm}$

Given: Wind tumel with flexible upper wall and constant whit $w_{1}=305 \mathrm{~mm}$. Tunnel height adjusted to guv zero pressure gradient, Wall boundary layers represented by it power profile pt two sections in the turret
(1) $H_{1}=305 \mathrm{~mm}, \delta=12.2 \mathrm{~mm}$

$$
O_{1}=26.5 \mathrm{ml}_{\mathrm{s}}
$$

(2) $\delta_{b}=16.6 \mathrm{~mm}$

Find: (a) the height, H_{6}
(b) equinafort iergat of fat plate to give $\delta_{1}=12.2 \mathrm{~mm}$
(c) estimate the instance between sections (1) and (b)

Solution: To determine the height tho use the continuity equation and the concept of s
From continuity, $A U_{1}=A_{6} J_{6}$ where A is the effective flow area. Since $\mathcal{O}_{1}=\mathrm{O}_{6}$ for zero pressure gradient, $A_{1}=A_{0}$

$$
\therefore\left(\omega-\delta_{i}^{*}\right)\left(H,-\delta_{i}^{\circ}\right)=\left(\omega-\delta_{6}\right)\left(H_{6}-\delta_{6}^{\prime}\right)
$$

and $\quad H_{6}=\frac{\left(W-\delta_{i}^{*}\right)\left(H_{1}-\delta_{i}^{\circ}\right)}{\left(W-\delta_{6}^{*}\right)}+\delta_{6}^{*}$

$$
\begin{aligned}
& \left.\delta=\int_{0}^{\delta}\left(1-\frac{u}{0}\right) d y=\delta C_{0}^{1}\left(1-\frac{u}{0}\right) d(y /)_{1}\right)=\delta\left(\left(_{0}^{1}\left(1-\frac{u}{v}\right) d \eta\right.\right. \\
& \delta=\delta \int_{0}^{1}\left(1-\eta^{4}\right) d \eta=\delta\left[\eta-\frac{7}{8} \eta^{\prime}\right]_{0}^{1}=\frac{1}{8}
\end{aligned}
$$

Substitutrig into Re expression for H6

$$
H_{6}=\frac{\sum_{\left.305-\frac{1}{8} \times 12.2\right)\left(305-\frac{1}{8} \cdot 12.2\right)}^{\left(305-\frac{1}{8} \times 16.6\right)}}{(36.6 \mathrm{~mm}}=321 \mathrm{~mm}
$$

For flat plate turbulent boundary wit ti power law profile

$$
\frac{\delta}{x}=\frac{0.370}{R_{e} 1^{18}}(9.26) \quad \therefore \delta=0.310\left(\frac{J}{5}\right)^{115} x^{4 / 5}
$$

Then $x=\left[\frac{\delta}{0.370}\right]^{5 / 4}\left(\frac{0}{7}\right)^{1 / 4}$
At suction (1), $\delta=12.2 \mathrm{~mm}$

$$
\left.x_{1}=\left[\frac{0.0122 m}{0.370}\right]^{1.25}\left(26.5 \frac{m}{5} \times 1.45 \times 10^{-5} m^{2}\right)=0.517 \mathrm{~m}\right] \quad \mathrm{Leq}^{0.25}
$$

At section (c), $\delta=16.6 \mathrm{mon}$

$$
x_{6}=\left[\frac{0.0166 n}{0.370}\right]^{1.25}\left(\frac{26.5 M}{5} \times 1.45 \times 10^{-5} m^{2}\right)^{0.25}=0.159 \mathrm{~m}
$$

Approximate distance $t_{6}=t_{6}-t_{1}$

$$
=0.759 m-0.517 m=0.242 m, 16
$$

Given: Small laboratory wind tunnels with square test sections.

Boundary layers are turbulent with $1 / 1$-power velocity profiles.
Find: (a) Change in static pressure between (1) and (2).
(6) Estimate of distance L.

Solution: For a $1 / 7$-power protik in the turbletent boundary layer $\delta^{*}=\delta / 8$. Therefore $\delta_{1}^{*}=12.2 / 8=1.53 \mathrm{~mm}$ and $\delta_{2}^{*}=16.6 / 8=2.08 \mathrm{~mm}$.

Apply conservation of mass: $U_{1} A_{1}=U_{2} A_{2} ; A=W-2 \delta^{*}$

$$
U_{2}=U_{1}\left[\frac{305-2(1.53)}{305-2(2.08)}\right]^{2}=1.00733 U_{1}
$$

From Bernowli (for steady, incompressible, inviscid flow along a strearnline),

$$
\begin{aligned}
& \frac{p_{1}}{p}+\frac{U_{1}^{2}}{2}=\frac{p_{2}}{\rho}+\frac{U_{2}^{2}}{2} ; p_{1}-p_{2}=\frac{p}{2}\left(U_{L}^{2}-U_{1}^{2}\right)=\frac{f U_{1}^{2}}{2}\left[(1.00733)^{2}-1\right] \\
& p_{1}-p_{2}=\frac{1}{2} \times 1.23 \frac{\mathrm{~kg}}{m^{3}} \times(26 \cdot 1)^{2} \frac{m^{2}}{s^{2}}\left[(1.00733)^{2}-1\right] \frac{\mathrm{Ng} \cdot \mathrm{~s}}{\mathrm{~kg} \cdot \mathrm{~m}}=6.16 \mathrm{~N} / \mathrm{m}^{2}
\end{aligned}
$$

 Thus $s=0.382\left(\frac{V}{V}\right)^{1 / 5} x^{4 / 5}$ or $x=\left(\frac{\delta}{0.382}\right)^{5 / 4}\left(\frac{V}{V}\right)^{1 / 4}$
For standard air $\nu=1.46 \times 10^{-5} \mathrm{~m}^{2} / \mathrm{s}$ (Table A.10). Thus

$$
\begin{aligned}
& x_{1}=\left(\frac{0.0122 \mathrm{~m}}{0.382}\right)^{5 / 4}\left(26.1 \frac{\mathrm{~m}}{\mathrm{~s}} \times \frac{5}{1.46 \times 10^{-5} \mathrm{~m}^{2}}\right)^{1 / 4}=0.494 \mathrm{~m} \\
& x_{2}=\left(\frac{0.0166 \mathrm{~m}}{0.382}\right)^{5 / 4}\left(26.3 \frac{\mathrm{~m}}{\mathrm{~s}} \times \frac{3}{1.46 \times 10^{-6} \mathrm{~m}^{2}}\right)^{1 / 4}=0.727 \mathrm{~m}
\end{aligned}
$$

Then

$$
L_{12}=x_{2}-x_{1}=(0.727-0.494) \mathrm{m}=0.233 \mathrm{~m} \text { or } 233 \mathrm{~mm}
$$

$\left\{\begin{array}{l}\text { Note that } 6 \text { significant figures wite carried in the factor } 1.00733 \text { so } \\ \text { that } 3 \text { would remain in } 1.00733-1=0.733 \text {; }\end{array}\right\}$

Problem 9.68

9.68 Air flows in a cylindrical duct of diameter $D=150 \mathrm{~mm}$. At section (1), the turbulent boundary layer is of thickness $\delta_{1}=$ 10 mm , and the velocity in the inviscid central core is $U_{1}=25$ m / s. Further downstream, at section (2), the boundary layer is of thickness $\delta_{2}=30 \mathrm{~mm}$. The velocity profile in the boundary layer is approximated well by the $\frac{1}{7}$-power expression. Find the velocity, U_{2}, in the inviscid central core at the second section, and the pressure drop between the two sections. Does the magnitude of the pressure drop indicate that we are justified in approximating the flow between sections (1) and (2) as one with zero pressure gradient? Estimate the length of duct between sections (1) and (2). Estimate the distance downstream from section (1) at which the boundary-layer thickness is $\delta=20 \mathrm{~mm}$.

Given: Data on flow in a duct

Find: \quad Velocity at location 2; pressure drop; length of duct; position at which boundary layer is 20 mm

Solution:

The given data is

$$
\mathrm{D}=150 \cdot \mathrm{~mm}
$$

$$
\delta_{1}=10 \cdot \mathrm{~mm}
$$

$\delta_{2}=30 \cdot \mathrm{~mm}$
$\mathrm{U}_{1}=25 \cdot \frac{\mathrm{~m}}{\mathrm{~s}}$
Table A. 10

$$
\rho=1.23 \cdot \frac{\mathrm{~kg}}{\mathrm{~m}^{3}}
$$

$$
\nu=1.45 \times 10^{-5} \cdot \frac{\mathrm{~m}^{2}}{\mathrm{~s}}
$$

Governing equations

Mass

$$
\begin{equation*}
\frac{\partial}{\partial t} \int_{\mathrm{CV}} \rho d \forall+\int_{\mathrm{CS}} \rho \vec{V} \cdot d \vec{A}=0 \tag{4.12}
\end{equation*}
$$

In the boundary layer $\frac{\frac{\delta}{x}=}{}=\frac{0.382}{\frac{1}{5}}$
In the the inviscid core, the Bernoulli equation holds

$$
\begin{equation*}
\frac{\mathrm{p}}{\rho}+\frac{\mathrm{V}^{2}}{2}+\mathrm{g} \cdot \mathrm{z}=\text { constant } \tag{4.24}
\end{equation*}
$$

Assumptions: (1) Steady flow (2) No body force (gravity) in x direction

For a 1/7-power law profile, from Example 9.4 the displacement thickness is $\quad \delta_{\text {disp }}=\frac{\delta}{8}$
Hence

$$
\begin{array}{ll}
\delta_{\text {disp1 }}=\frac{\delta_{1}}{8} & \delta_{\text {disp1 }}=1.25 \mathrm{~mm} \\
\delta_{\text {disp2 }}=\frac{\delta_{2}}{8} & \delta_{\text {disp2 }}=3.75 \mathrm{~mm}
\end{array}
$$

From the definition of the displacement thickness, to compute the flow rate, the uniform flow at locations 1 and 2 is assumed to take place in the entire duct, minus the displacement thicknesses

$$
\mathrm{A}_{1}=\frac{\pi}{4} \cdot\left(\mathrm{D}-2 \cdot \delta_{\operatorname{disp} 1}\right)^{2} \quad \mathrm{~A}_{1}=0.0171 \mathrm{~m}^{2}
$$

$$
\mathrm{A}_{2}=\frac{\pi}{4} \cdot\left(\mathrm{D}-2 \cdot \delta_{\operatorname{disp} 2}\right)^{2} \quad \mathrm{~A}_{2}=0.0159 \mathrm{~m}^{2}
$$

Mass conservation (Eq. 4.12) leads to U_{2}

$$
\left(-\rho \cdot U_{1} \cdot A_{1}\right)+\left(\rho \cdot U_{2} \cdot A_{2}\right)=0 \quad \text { or } \quad U_{2}=U_{1} \cdot \frac{A_{1}}{A_{2}} \quad U_{2}=26.8 \frac{\mathrm{~m}}{\mathrm{~s}}
$$

The Bernoulli equation applied between locations 1 and 2 is

$$
\frac{\mathrm{p}_{1}}{\rho}+\frac{\mathrm{U}_{1}^{2}}{2}=\frac{\mathrm{p}_{2}}{\rho}+\frac{\mathrm{U}_{2}^{2}}{2}
$$

or the pressure drop is $\mathrm{p}_{1}-\mathrm{p}_{2}=\Delta \mathrm{p}=\frac{\rho}{2} \cdot\left(\mathrm{U}_{2}{ }^{2}-\mathrm{U}_{1}{ }^{2}\right)$

$$
\Delta \mathrm{p}=56.9 \mathrm{~Pa} \quad \text { (Depends on } \rho \text { value selected) }
$$

The static pressure falls continuously in the entrance region as the fluid in the central core accelerates into a decreasing core.
If we assume the stagnation pressure is atmospheric, a change in pressure of about 60 Pa is not significant; in addition, the velocity changes about 5%, again not a large change to within engineering accuracy

To compute distances corresponding to boundary layer thicknesses, rearrange Eq.9.26

$$
\frac{\delta}{x}=\frac{0.382}{\frac{1}{5}}=0.382 \cdot\left(\frac{v}{U \cdot x}\right)^{\frac{1}{5}} \quad \text { so } \quad \mathrm{x}=\left(\frac{\delta}{0.382}\right)^{\frac{5}{4}} \cdot\left(\frac{\mathrm{U}}{v}\right)^{\frac{1}{4}}
$$

Applying this equation to locations 1 and 2 (using $U=U_{1}$ or U_{2} as approximations)

$$
\begin{aligned}
& x_{1}=\left(\frac{\delta_{1}}{0.382}\right)^{\frac{5}{4}} \cdot\left(\frac{\mathrm{U}_{1}}{v}\right)^{\frac{1}{4}} \\
& \mathrm{x}_{2}=\left(\frac{\delta_{2}}{0.382}\right)^{\frac{5}{4}} \cdot\left(\frac{\mathrm{U}_{2}}{v}\right)^{\frac{1}{4}} \quad \mathrm{x}_{1}=0.382 \mathrm{~m} \\
& \mathrm{x}_{2}-\mathrm{x}_{1}=1.15 \mathrm{~m} \quad \quad \quad \mathrm{x}_{2}=1.533 \mathrm{~m} \\
& \quad \text { (Depends on } v \text { value selected) }
\end{aligned}
$$

For location $3 \quad \delta_{3}=20 \cdot \mathrm{~mm} \quad \delta_{\text {disp3 }}=\frac{\delta_{3}}{8} \quad \delta_{\text {disp3 }}=2.5 \mathrm{~mm}$

$$
\mathrm{A}_{3}=\frac{\pi}{4} \cdot\left(\mathrm{D}-2 \cdot \delta_{\operatorname{disp} 3}\right)^{2} \quad \mathrm{~A}_{3}=0.017 \mathrm{~m}^{2}
$$

$$
\mathrm{U}_{3}=\mathrm{U}_{1} \cdot \frac{\mathrm{~A}_{1}}{\mathrm{~A}_{3}}
$$

$$
\mathrm{U}_{3}=25.9 \frac{\mathrm{~m}}{\mathrm{~s}}
$$

$$
\mathrm{x}_{3}=\left(\frac{\delta_{3}}{0.382}\right)^{\frac{5}{4}} \cdot\left(\frac{\mathrm{U}_{2}}{v}\right)^{\frac{1}{4}}
$$

$$
x_{3}-x_{1}=0.542 m \quad \text { (Depends on } v \text { value selected) }
$$

9.69 Perform a cost-effectiveness analysis on a typical large tanker used for transporting petroleum. Determine, as a percentage of the petroleum cargo, the amount of petroleum that is consumed in traveling a distance of 2000 miles. Use data from Example 9.5, and the following: Assume the petroleum cargo constitutes 75% of the total weight, the propeller efficiency is 70%, the wave drag and power to run auxiliary equipment constitute losses equivalent to an additional 20%, the engines have a thermal efficiency of 40%, and the petroleum energy is $20,000 \mathrm{Btu} / \mathrm{lbm}$. Also compare the performance of this tanker to that of the Alaskan Pipeline, which requires about 120 Btu of energy for each ton-mile of petroleum delivery.

Given: Data on a large tanker

Find: Cost effectiveness of tanker; compare to Alaska pipeline

Solution:

The given data is $\quad \mathrm{L}=360 \cdot \mathrm{~m}$	$B=70 \cdot \mathrm{~m} \quad D=25 \cdot \mathrm{~m}$	$\rho=1020 \cdot \frac{\mathrm{~kg}}{\mathrm{~m}^{3}} \quad \mathrm{U}=6.69 \cdot \frac{\mathrm{~m}}{\mathrm{~s}}$	$\mathrm{x}=2000 \cdot \mathrm{mi}$
$\mathrm{P}=9.7 \cdot \mathrm{MW}$	$P=1.30 \times 10^{4} \mathrm{hp}$	(Power consumed by drag)	
The power to the propeller is	$\mathrm{P}_{\text {prop }}=\frac{\mathrm{P}}{70 \cdot \%}$	$\mathrm{P}_{\text {prop }}=1.86 \times 10^{4} \mathrm{hp}$	
The shaft power is	$\mathrm{P}_{\mathrm{S}}=120 \% \cdot \mathrm{P}_{\text {prop }}$	$\mathrm{P}_{\mathrm{S}}=2.23 \times 10^{4} \mathrm{hp}$	
The efficiency of the engines is	$\eta=40 \cdot \%$		
Hence the heat supplied to the engines is	$\mathrm{Q}=\frac{\mathrm{P}_{\mathrm{S}}}{\eta}$	$\mathrm{Q}=1.42 \times 10 \frac{8}{} \frac{\mathrm{BTU}}{\mathrm{hr}}$	
The journey time is	$t=\frac{x}{U}$	$\mathrm{t}=134 \mathrm{hr}$	
The total energy consumed is	$\mathrm{Q}_{\text {total }}=\mathrm{Q} \cdot \mathrm{t}$	$\mathrm{Q}_{\text {total }}=1.9 \times 10^{10} \mathrm{BTU}$	

From buoyancy the total ship weight equals the displaced seawater volume

$$
\mathrm{M}_{\text {ship }} \cdot \mathrm{g}=\rho \cdot \mathrm{g} \cdot \mathrm{~L} \cdot \mathrm{~B} \cdot \mathrm{D} \quad \mathrm{M}_{\text {ship }}=\rho \cdot \mathrm{L} \cdot \mathrm{~B} \cdot \mathrm{D} \quad \mathrm{M}_{\text {ship }}=1.42 \times 10^{9} \mathrm{lb}
$$

Hence the mass of oil is

$$
\mathrm{M}_{\text {oil }}=75 \% \cdot \mathrm{M}_{\text {ship }} \quad \mathrm{M}_{\text {oil }}=1.06 \times 10^{9} \mathrm{lb}
$$

The chemical energy stored in the petroleum is

$$
\mathrm{q}=20000 \cdot \frac{\mathrm{BTU}}{\mathrm{lb}}
$$

The total chemical energy is

$$
\mathrm{E}=\mathrm{q} \cdot \mathrm{M}_{\mathrm{oil}}
$$

$$
\mathrm{E}=2.13 \times 10^{13} \mathrm{BTU}
$$

The equivalent percentage of petroleum cargo used is then

$$
\frac{\mathrm{Q}_{\text {total }}}{\mathrm{E}}=0.089 \%
$$

The ship uses only about 15% of the energy of the pipeline!
9.70 Consider the linear, sinusoidal, and parabolic laminar boundary-layer approximations of Problem 9.10. Compare the momentum fluxes of these profiles. Which is most likely to separate first when encountering an adverse pressure gradient?

Given: Linear, sinusoidal and parabolic velocity profiles
Find: Momentum fluxes

Solution:

The momentum flux is given by
where w is the width of the boundary layer

For a linear velocity profile

For a sinusoidal velocity profile

$$
\frac{\mathrm{u}}{\mathrm{U}}=\frac{\mathrm{y}}{\delta}=\eta
$$

$$
\frac{\mathrm{u}}{\mathrm{U}}=\sin \left(\frac{\pi}{2} \cdot \frac{\mathrm{y}}{\delta}\right)=\sin \left(\frac{\pi}{2} \cdot \eta\right)
$$

$$
\frac{\mathrm{u}}{\mathrm{U}}=2 \cdot\left(\frac{\mathrm{y}}{\delta}\right)-\left(\frac{\mathrm{y}}{\delta}\right)^{2}=2 \cdot \eta-(\eta)^{2}
$$

For each of these

$$
\mathrm{u}=\mathrm{U} \cdot \mathrm{f}(\eta) \quad \mathrm{y}=\delta \cdot \eta
$$

Using these in the momentum flux equation $\quad \mathrm{mf}=\rho \cdot \mathrm{U}^{2} \cdot \delta \cdot \mathrm{w} \cdot \int_{0}^{1} \mathrm{f}(\eta)^{2} \mathrm{~d} \mathrm{\eta}$

For the linear profile Eqs. 1 and 4 give

For the sinusoidal profile Eqs. 2 and 4 give

$$
\mathrm{mf}=\rho \cdot \mathrm{U}^{2} \cdot \delta \cdot \mathrm{w} \cdot \int_{0}^{1} \sin \left(\frac{\pi}{2} \cdot \eta\right)^{2} \mathrm{~d} \eta
$$

For the parabolic profile Eqs. 3 and 4 give

$$
\mathrm{mf}=\rho \cdot \mathrm{U}^{2} \cdot \delta \cdot \mathrm{w} \cdot \int_{0}^{1} \eta^{2} \mathrm{~d} \eta
$$

$$
\mathrm{mf}=\rho \cdot \mathrm{U}^{2} \cdot \delta \cdot \mathrm{w} \cdot \int_{0}^{1}\left[2 \cdot \eta-(\eta)^{2}\right]^{2} \mathrm{~d} \eta
$$

$$
\mathrm{mf}=\frac{8}{15} \cdot \rho \cdot \mathrm{U}^{2} \cdot \delta \cdot \mathrm{w}
$$

The linear profile has the smallest momentum, so would be most likely to separate

Problem *9.71

*9.71 Table 9.1 shows the numerical results obtained from Blasius exact solution of the laminar boundary-layer equations. Plot the velocity distribution (note that from Eq. 9.13 we see that $\eta \approx 5.0 \frac{y}{\delta}$). On the same graph, plot the turbulent velocity distribution given by the $\frac{1}{7}$-power expression of Eq. 9.24. Which is most likely to separate first when encountering an adverse pressure gradient? To justify your answer, compare the momentum fluxes of these profiles (the laminar data can be integrated using a numerical method such as Simpson's rule).

Given: Laminar (Blasius) and turbulent (1/7-power) velocity distributions

Find: Plot of distributions; momentum fluxes

Solution:

The momentum flux is given by

$$
\mathrm{mf}=\int_{0}^{\delta} \rho \cdot \mathrm{u}^{2} \mathrm{dy} \quad \text { per unit width of the boundary layer }
$$

Using the substitutions
the momentum flux becomes

$$
\frac{\mathrm{u}}{\mathrm{U}}=\mathrm{f}(\eta) \quad \frac{\mathrm{y}}{\delta}=\eta
$$

$$
m f=\rho \cdot U^{2} \cdot \delta \cdot \int_{0}^{1} f(\eta)^{2} d \eta
$$

For the Blasius solution a numerical evaluation (a Simpson's rule) of the integral is needed

$$
\mathrm{mf}_{\mathrm{lam}}=\rho \cdot \mathrm{U}^{2} \cdot \delta \cdot \frac{\Delta \eta}{3} \cdot\left(\mathrm{f}\left(\eta_{0}\right)^{2}+4 \cdot \mathrm{f}\left(\eta_{1}\right)^{2}+2 \cdot \mathrm{f}\left(\eta_{2}\right)^{2}+\mathrm{f}\left(\eta_{\mathrm{N}}\right)^{2}\right)
$$

where $\Delta \eta$ is the step size and N the number of steps

The result for the Blasius profile is

$$
\begin{aligned}
& \mathrm{mf}_{\text {lam }}=0.525 \cdot \rho \cdot \mathrm{U}^{2} \cdot \delta \\
& \mathrm{mf}_{\text {turb }}=\rho \cdot \mathrm{U}^{2} \cdot \delta \cdot \int_{0}^{1} \frac{2}{7} \mathrm{~d} \eta \quad \quad \mathrm{mf}_{\text {turb }}=\frac{7}{9} \cdot \rho \cdot \mathrm{U}^{2} \cdot \delta
\end{aligned}
$$

The laminar boundary has less momentum, so will separate first when encountering an adverse pressure gradient

Computed results:

(Table 9.1) (Simpsons Rule)

η	Laminar $\boldsymbol{u} / \boldsymbol{U}$	Weight \boldsymbol{w}	Weight \mathbf{x} $(\boldsymbol{u} / \boldsymbol{U})^{\mathbf{2}}$
0.0	0.000	1	0.00
0.5	0.166	4	0.11
1.0	0.330	2	0.22
1.5	0.487	4	0.95
2.0	0.630	2	0.79
2.5	0.751	4	2.26
3.0	0.846	2	1.43
3.5	0.913	4	3.33
4.0	0.956	2	1.83
4.5	0.980	4	3.84
5.0	0.992	1	0.98
Simpsons':			
$\mathbf{y y y y}$	$\mathbf{0 . 5 2 5}$		

$\boldsymbol{y} / \delta=\eta$	Turbulent $\mathbf{u} / \boldsymbol{U}$
0.0	0.00
0.0125	0.53
0.025	0.59
0.050	0.65
0.10	0.72
0.15	0.76
0.2	0.79
0.4	0.88
0.6	0.93
0.8	0.97
1.0	1.00

Given: Flow through plare-wall diffuser, or shown: we wish to Compare the behavior of invisied and Viscous fluids
Find: (a) For an inviscid flied. describe flay pattern and pressure distribution as $\$$ is increased from $\phi=0$
(b) Inchucte viscous (boundary taxer effects.
(c) whit fund wit have the highest exit pressure?

(1)

Solution:
For the inviscid fluid.

- wit $\phi=0$ (straight' (Sand) here wi' se no charge in velocity, and hence no pressure gradient as t is increased, the velocity decreases and hence the pressure in creases fran the bernoulli equation alborg the channel
For the viscous fluid:
- wis $\alpha=0$ boundary layers will form along the channel wats reducing the effective tow area. Thus to satisfy continuity for incompressible flo the contertire pelocter must increase and the prossure wii dropealong the Carrel.
- as ϕ is increasca, the adverse pressure gradient increases. His causes an increased rite of boundary layer grow. If ϕ is too large, the fla Eirsposte from one cor boll salts.
The inviscid fund will haze the highest ext pressure The pressure gradient w ht te real flue s reduced by boundary hayes development for all values of ϕ.

Problem 9.73
Given: Laminar boundary layer with velocity profile

$$
\frac{u}{u_{e}}=a+b \eta+c \eta^{2}+d \eta^{3} ; \eta=\frac{y}{\delta}
$$

separation occurs when τw becomes zero.
Find: (a) Four boundary conditions for this laminar velocity profile.
(b) Evaluate constants a, b, c, and d.
(c) Calculate shape parameter, H, at separation.
pho: Poffils and compare with parabolic.
Solution: The profile shape will be:
Boundary conditions are:

$$
y=0 ; \quad u=0 \text { and } \tau \geqslant \mu \frac{d u}{d y}=0 ; y=\delta: u=u_{e} \text { and } \tau=\mu \frac{d u}{d y}=0
$$

Applying bowendary conditions:

$$
\begin{array}{rl}
y=0: \eta=0 \quad \frac{u}{u_{e}}=0=\left(a+b \eta+c \eta^{2}+d \eta^{3}\right)_{\eta=0}=a & a=0 \\
\frac{d u}{d y}=\frac{u_{e}}{\delta} \frac{d\left(u_{0}\right)}{d \eta}=0=\left(b+2 c \eta+3 c \eta^{2}\right)_{\eta=0}=b & b=0 \\
y=\delta: \eta=1 \quad \frac{u}{u_{e}}=1=\left(c \eta^{2}+d \eta 3\right)_{\eta=1} ; c+d=1 \\
\frac{d\left(u / u_{0}\right)}{d \eta}=0=\left(2 c \eta+3 d \eta_{n}^{2}\right)_{\eta=1} ; 2 c+3 c=0
\end{array}
$$

Solving

$$
\begin{array}{ll}
d=1-c ; 2 c+3(1-c)=2 c+3-3 c=3-c=0 & c=3 \\
d=1-c=1-3=-2 & d=-2
\end{array}
$$

The velocity profile is $\frac{u}{u_{0}}=3 n^{2}-2 n^{3} . H \equiv \delta^{*} / \theta=\frac{\delta^{*}}{\delta} \frac{\delta}{\theta}$, so

$$
\begin{aligned}
\frac{\delta^{*}}{\delta} & =\int_{0}^{1}\left(1-\frac{u}{u_{e}}\right) d \eta=\int_{0}^{1}\left(1-3 \eta^{2}+2 \eta^{3}\right) d \eta=\left[\eta-\eta^{3}+\frac{2}{4} \eta^{4}\right]_{0}^{1}=\frac{1}{2} \\
\frac{\theta}{\delta} & =\int_{0}^{1} \frac{u}{u_{e}}\left(1-\frac{u}{u_{e}}\right) d \eta=\int_{0}^{1}\left(3 \eta^{2}-2 \eta^{3}\right)\left(1-3 \eta^{2}+2 \eta^{3}\right) d \eta \\
& =\int_{0}^{1}\left(3 \eta^{2}-2 \eta^{3}-9 \eta^{4}+12 \eta^{5}-4 \eta^{6}\right) d \eta \\
\frac{\theta}{\delta} & =\left[\eta^{3}-\frac{2}{4} \eta^{4}-\frac{9}{5} \eta^{5}+\frac{12}{6} \eta^{6}-\frac{4}{7} \eta^{7}\right]_{0}^{1}=\frac{9}{70}
\end{aligned}
$$

Thus

$$
H=\frac{1}{2} \times \frac{70}{9}=\frac{70}{18}=\frac{35}{9}=3.89
$$

Problén 9.73
[3] Part 2/2

Open-Ended Problem Statement: For flow over a flat plate with zero pressure gradient, will the shear stress increase, decrease, or remain constant along the plate? Justify your answer. Does the momentum flux increase, decrease, or remain constant as the flow proceeds along the plate? Justify your answer. Compare the behavior of laminar flow and turbulent flow (both from the leading edge) over a flat plate. At a given distance from the leading edge, which flow will have the larger boundary-layer thickness? Does your answer depend on the distance along the plate? How would you justify your answer?

Discussion: Shear stress decreases along the plate because the freestream flow speed remains constant while the boundary-layer thickness increases.
The momentum flux decreases as the flow proceeds along the plate. Momentum thickness θ (actually proportional to the defect in momentum within the boundary layer) increases, showing that momentum flux decreases. The force that must be applied to hold the plate stationary reduces the momentum flux of the stream and boundary layer.
The laminar boundary layer has less shear stress than the turbulent boundary layer. Therefore laminar boundary-layer flow from the leading edge produces a thinner boundary layer and less shear stress everywhere along the plate than a turbulent boundary layer from the leading edge.
Since both boundary layers continue to grow with increasing distance from the leading edge, and the turbulent boundary layer continues to grow more rapidly because of its higher shear stress, this comparison will be the same no matter the distance from the leading edge.

Problem 9.75

9.75 Cooling air is supplied through the wide, flat channel shown. For minimum noise and disturbance of the outlet flow, laminar boundary layers must be maintained on the channel walls. Estimate the maximum inlet flow speed at which the outlet flow will be laminar. Assuming parabolic velocity profiles in the laminar boundary layers, evaluate the pressure drop, $p_{1}-p_{2}$. Express your answer in inches of water.

Given: Channel flow with laminar boundary layers
Find: Maximum inlet speed for laminar exit; Pressure drop for parabolic velocity in boundary layers

Solution:

Basic equations:

$$
\operatorname{Re}_{\text {trans }}=5 \times 10^{5} \quad \frac{\delta}{\mathrm{x}}=\frac{5.48}{\sqrt{\operatorname{Re}_{\mathrm{x}}}} \quad \frac{\mathrm{p}}{\rho}+\frac{\mathrm{V}^{2}}{2}+\mathrm{g} \cdot \mathrm{z}=\text { const }
$$

Assumptions: 1) Steady flow 2) Incompressible 3) $\mathrm{z}=$ constant
From Table A. 10 at $20^{\circ} \mathrm{C} \quad v=1.50 \times 10^{-5} \cdot \frac{\mathrm{~m}^{2}}{\mathrm{~s}} \quad \rho=1.21 \cdot \frac{\mathrm{~kg}}{\mathrm{~m}^{3}} \quad \mathrm{~L}=3 \cdot \mathrm{~m} \quad \mathrm{~h}=15 \cdot \mathrm{~cm}$
Then $\quad \operatorname{Re}_{\text {trans }}=\frac{\mathrm{U}_{\text {max }} \cdot \mathrm{L}}{\nu}$
$\mathrm{U}_{\text {max }}=\frac{\mathrm{Re}_{\text {trans }} \cdot \nu}{\mathrm{L}} \quad \mathrm{U}_{\text {max }}=2.50 \frac{\mathrm{~m}}{\mathrm{~s}} \quad \mathrm{U}_{1}=\mathrm{U}_{\max } \quad \mathrm{U}_{1}=2.50 \frac{\mathrm{~m}}{\mathrm{~s}}$
For

$$
\operatorname{Re}_{\text {trans }}=5 \times 10^{5}
$$

$$
\delta_{2}=\mathrm{L} \cdot \frac{5.48}{\sqrt{\mathrm{Re}_{\text {trans }}}} \quad \delta_{2}=0.0232 \mathrm{~m}
$$

For a parabolic profile $\frac{\delta_{\text {disp }}}{\delta}=\int_{0}^{1}\left(1-\frac{\mathrm{u}}{\mathrm{U}}\right) \mathrm{d} \lambda=\int_{0}^{1}\left(1-2 \cdot \lambda+\lambda^{2}\right) \mathrm{d} \lambda=\frac{1}{3} \quad$ where $\delta_{\text {trans }}$ is the displacement thickness

$$
\delta_{\mathrm{disp} 2}=\frac{1}{3} \cdot \delta_{2} \quad \delta_{\operatorname{disp} 2}=0.00775 \mathrm{~m}
$$

From continuity

$$
\mathrm{U}_{1} \cdot \mathrm{w} \cdot \mathrm{~h}=\mathrm{U}_{2} \cdot \mathrm{w} \cdot\left(\mathrm{~h}-2 \cdot \delta_{\text {disp2 }}\right) \quad \mathrm{U}_{2}=\mathrm{U}_{1} \cdot \frac{\mathrm{~h}}{\mathrm{~h}-2 \cdot \delta_{\text {disp2 }}}
$$

$$
\mathrm{U}_{2}=2.79 \frac{\mathrm{~m}}{\mathrm{~s}}
$$

Since the boundary layers do not meet Bernoulli applies in the core

$$
\begin{array}{ll}
\frac{\mathrm{p}_{1}}{\rho}+\frac{\mathrm{U}_{1}^{2}}{2}=\frac{\mathrm{p}_{2}}{\rho}+\frac{\mathrm{U}_{2}^{2}}{2} & \Delta \mathrm{p}=\mathrm{p}_{1}-\mathrm{p}_{2}=\frac{\rho}{2} \cdot\left(\mathrm{U}_{2}^{2}-\mathrm{U}_{1}^{2}\right) \\
\Delta \mathrm{p}=\frac{\rho}{2} \cdot\left(\mathrm{U}_{2}^{2}-\mathrm{U}_{1}^{2}\right) & \Delta \mathrm{p}=0.922 \mathrm{~Pa}
\end{array}
$$

From hydrostatics

$$
\begin{array}{lll}
\Delta \mathrm{p}=\rho_{\mathrm{H} 2 \mathrm{O}} \cdot \mathrm{~g} \cdot \Delta \mathrm{~h} & \text { with } & \rho_{\mathrm{H} 2 \mathrm{O}}=1000 \cdot \frac{\mathrm{~kg}}{\mathrm{~m}^{3}} \\
\Delta \mathrm{~h}=\frac{\Delta \mathrm{p}}{\rho_{\mathrm{H} 2 \mathrm{O}} \cdot \mathrm{~g}} & \Delta \mathrm{~h}=0.0940 \mathrm{~mm} & \Delta \mathrm{~h}=0.00370 \mathrm{in}
\end{array}
$$

Given: Wind tunnel with square cross section, $w_{1}=H_{1}=305 \mathrm{~mm}$ At inlet section $(1), U_{1}=24.5 \mathrm{mls}, \delta_{1}{ }^{\prime}=2.75 \mathrm{~mm}$ with a"ty-power" turbulent vebocty profile

$$
d P(d x)_{1}=-0.035 \frac{\mathrm{mmH} t_{20}}{\mathrm{~mm}}
$$

Find: (a) reduction in fou area at caused by boundary

b) defide at $(1$.
(c) estimate of θ_{2}

Solution: Apply continuity and the momentum integral eggs.
Computing eq: $\frac{d \theta}{d x}=\frac{x_{0}}{\sqrt{2} 0^{2}}(H+2) \frac{\theta}{v} \frac{d y}{d x} ; \quad \frac{u}{\Delta}=\left(\frac{y}{\delta}\right)^{4}=x^{4}$

$$
H=\frac{\delta}{\theta}, \quad r_{\frac{\omega}{2}}^{p u^{2}}=0.0233\left(\frac{J}{\sigma} \delta\right)^{14}
$$

Assumptions: (i) steady flow
(2) uniform flow outside boundary layer.

Oo reduction in flow area $=\frac{A_{\text {eff }}-P}{A}=\frac{(W-2 f)(H-2 \delta) \text {-wit }}{W H}$

$$
\text { area reduction }=\left(1-\frac{2 S^{t}}{k}\right)\left(1-\frac{2 s^{t}}{t}\right)-1=\left[1-\frac{2+1.22}{305}\right]\left[-\frac{24.22}{305}\right]-1
$$

area reduction $=-0.0159(-1.590)$

$$
\frac{d \theta}{d x}=\frac{r_{w}}{e^{2}}-(t+2) \frac{\theta}{-} \frac{d v}{d x}
$$

$$
\frac{r_{\omega}}{\rho^{2}}=0.0233\left(\frac{J}{\sigma \delta}\right)^{14}=0.0233\left[1.45 \times 6 \frac{m^{2}}{5} \times 24.5 m \times 9 \frac{1}{9.5 \times 10^{-3} m}\right]^{0.25}
$$

$$
v_{\omega^{2}}=0.00206+\ldots
$$

Onside fie boundary lays. $\quad-p+\frac{1}{2} p 0^{2}=\operatorname{con} t a n$

$$
\begin{aligned}
& \frac{\theta}{\delta}=\int_{0}^{1} \frac{4}{0}\left(1-\frac{h}{0}\right) d\left(y f_{\delta}\right)=\int_{0}^{1} n^{4}\left(1-n^{\prime}\right) d n=\left[\frac{7}{8} x^{x}-\frac{7}{9} x^{4}\right]_{0}^{1}=\frac{7}{2} \\
& \theta=\frac{7}{72} \delta=\frac{7}{72} \times 9.5 \mathrm{~mm}=0.948 \mathrm{~mm}=-- \\
& H=\frac{\delta}{\theta}=\frac{\frac{1}{\delta} \delta}{71.2 \delta}=\frac{9}{2}=1.29
\end{aligned}
$$

$$
\begin{aligned}
& \frac{\delta}{\delta}=C_{0}^{1}\left(1-\frac{4}{0}\right)+\left(\frac{y}{\delta}\right)=\int_{0}^{1}\left(1-h^{h}\right) d x=\left[x-\frac{7}{8} x^{\frac{1}{2}}\right]_{0}^{1}=\frac{1}{8} \\
& \therefore \delta_{1}^{*}=\frac{1}{8} \delta_{1}=\frac{1}{8} \times 9.5 \mathrm{~mm}=1.22 \mathrm{~mm}
\end{aligned}
$$

Problem 9.76
Then. $\quad \frac{d p}{d x}=-p u \frac{d v}{d x}$ and $\frac{1}{U} \frac{d u}{d x}=-\frac{1}{p u^{2}} \frac{d p}{d x}=-\frac{1}{p v^{2}} \frac{d p g h}{d x}$

$$
\begin{aligned}
& \frac{1}{0} \frac{d U}{d x}=0.465 \mathrm{~m}^{-1}
\end{aligned}
$$

Substituting

$$
\begin{aligned}
& \frac{d \theta}{d t}=\frac{V_{w}}{P V^{2}}-(H+\alpha) E \frac{d U}{\bar{U}} \\
& =0.002010-(1.29+2) 0.948 \mathrm{~mm} \times \frac{0.46 \mathrm{~S}}{\mathrm{~m}} \times \frac{\mathrm{m}}{10^{3} \mathrm{~mm}} \\
& \frac{d \theta}{d x}=0.002 d 0-0.00145=0.00061 \mathrm{~mm} / \mathrm{mm} \\
& \text { detdt }=0.61 \mathrm{~mm} / \mathrm{m} \\
& \theta_{2}=\theta_{1}+\frac{d \theta_{1}}{d x}, \Delta x \\
& =0.948+0.61 \frac{\mathrm{nt}}{\mathrm{n}} \times 0.254 \mathrm{~m} \\
& \theta_{2} \approx 1.10 \mathrm{~mm}
\end{aligned}
$$

Given: Wind tunnel with movable top wall.
At inlet: $U_{1}=24.5 \mathrm{~m} / \mathrm{s}$

$$
\delta_{1}=9.75 \mathrm{~mm}
$$

Assurne $1 / 7$-power turbulent $B L$ development,

$$
\delta=\operatorname{con} s t a n t
$$

Find: (a) Velocity distribution to make $\delta=\operatorname{const}$, (b) $h(x)$ from o to L.
Solution: calculate required pressure gradient (dply=-pudo$/ d x$) from The momentum integral equation, then integrate to find $U(x)$, use continuity to solve for $h(x)$:

Computing equations:

$$
\begin{align*}
& \frac{\tau \omega}{\rho U^{2}}=\frac{d \hat{\rho}}{\partial x}+(H+z) \frac{\theta}{U} \frac{d U}{d x} \tag{9,27}\\
& 0=\frac{\partial}{\partial^{t}} \int_{C V} \rho d \forall+\int_{C S} \rho \vec{V} \cdot d \vec{A}
\end{align*}
$$

Assumptions: (1) steady flow
(2) Incompressible flow
(3) Uniform flow outside BL
(4) Constant BL thickness:

$$
\delta^{*}=\frac{1}{8} \delta \text { and } \theta=\frac{7}{78} \delta ; H=\frac{\delta^{*}}{\varepsilon}=\frac{72}{(7,8}=1.29 \text { for } 1 / 7 \text {-power profit }
$$

Then from the momentum integral equation

$$
\frac{\tau \omega}{\rho \sigma^{2}}=(H+2) \frac{\theta}{V} \frac{d V}{d x}
$$

To integrate, we must make an assumption about twi.
Case 1: Assume $\tau_{\omega}=$ constant, and rearrange
Then $U_{d} d v=\frac{\tau \omega}{\rho \theta(H+2)} d x$
Integrating, $\left.\frac{1}{2} U^{2}\right]_{1}^{2}=\frac{\tau \omega}{\rho \theta(H+2)} x$ or $\frac{1}{2} U_{2}^{2}-\frac{1}{2} U_{1}^{2}=\frac{\tau \omega}{\rho \theta(1++2)} x$
So $\frac{U}{U_{1}}=\left[1+\frac{2 \tau \omega}{\rho \tau_{1}^{2}} \frac{x}{\theta(1+2)}\right]^{\frac{1}{2}}=\left[1+\frac{C_{f}}{\theta(H+2)} x\right]^{\frac{1}{2}}$
Case 2: Assume $\tau_{w} \neq$ constant

Then $\tau_{w}=0.0233 \rho \sigma^{2}\left(\frac{\nu}{\sigma \delta}\right)^{1 / 4}$
substituting and rearranging

$$
\frac{C \omega}{P U^{-2}}=0.0233\left(\frac{\nu}{\delta}\right)^{1 / 4} \frac{1}{U^{1 / 4}}=(H+2) \frac{\theta}{V} \frac{d U}{d x}
$$

or

$$
\frac{d v}{U^{0.75}}=0.0233\left(\frac{v}{\delta}\right)^{1 / 4} \frac{d x}{(1+2) \theta}
$$

Integrating, $\left.4 U^{1 / 4}\right]_{1}^{2}=0.0233\left(\frac{\nu}{\delta}\right)^{1 / 4} \frac{x}{(1+2) \theta}$

$$
\text { or } \frac{U}{U_{1}}=\left[1+0.00583\left(\frac{\nu}{J_{1} \delta}\right)^{\frac{1}{4}} \frac{x}{(H+2) \theta}\right]^{4}
$$

From continuity $U, A_{1}=U A=U_{1}\left(w_{1}-2 \delta_{1}^{*}\right)\left(H_{1}-2 \delta_{1}^{*}\right)=U\left(w_{1}-2 \delta_{1}^{*}\right)\left(h-2 \delta_{1}^{*}\right)$
Thus $A / A_{1}=\left(U / U_{1}\right)^{-1}$ and $\frac{h-2 \delta_{1}^{*}}{H-\delta_{1}^{*}}=\frac{U_{i}}{U}=\frac{h / H-2 \delta_{1}^{*} / H}{1-2 \delta_{1}^{*} / 1 /+}$

$$
\frac{h}{w}=\left(1-2 \frac{\delta_{1}^{*}}{h_{1}}\right) \frac{U_{1}}{U}+\frac{2 \delta_{1}^{*}}{h_{1}}
$$

Evaluating: $\delta_{1}=9.25 \mathrm{~mm}, \delta_{1}^{*}=\frac{1}{8} \delta_{1}=1.22 \mathrm{~mm}, \theta_{1}=\frac{7}{72} \delta_{1}=0.948 \mathrm{~mm}$

$$
\begin{aligned}
& \frac{1}{2} \rho U_{1}^{2}=\frac{1}{2} \times 1.23 \frac{\mathrm{~kg}}{\mathrm{~m}^{3}} \times(24.5)^{2} \frac{\mathrm{~m}^{2}}{\mathrm{~s}^{2}} \frac{\mathrm{~N}_{1} \mathrm{~s}^{2}}{\mathrm{~kg} \cdot \mathrm{~m}}=369 \mathrm{~N} / \mathrm{m}^{2} \\
& \operatorname{Re} \delta_{1}=\frac{U S_{1}}{2}=24.5 \frac{\mathrm{~m}}{\mathrm{~s}} \cdot 0.00975 \mathrm{~m} \times \frac{\mathrm{s}}{1.46 \times 10^{-5} \mathrm{~m}^{2}}=1.64 \times 10^{4} \\
& C_{f}=0.0466 \operatorname{ReS}_{1}^{-1 / 4}=0.0466(0.0883)=0.00411
\end{aligned}
$$

Plot results:

Given: Stabilizing fin on Bonneville land speed record auto.

$$
z=1,340 \mathrm{~m}
$$

Find: (a) Evaluate $R e_{L}$
(b) Location of x_{t}
(c) Power to overcome skin friction drag on tin.

Solution: Assume standard atmosphere, so $T=279 \mathrm{~K}, \rho / \rho_{0}=0.877$ (Table A.3); $\mu=1.79 \times 10^{-5} \mathrm{~kg} / \mathrm{mis}$ (Table A.7). Then

$$
\begin{aligned}
& R e_{L}=\frac{\rho V L}{\mu}=(0.877) 1.23 \frac{\mathrm{~kg}}{\mathrm{~m}^{3}} \times 560 \times 10^{3} \frac{\mathrm{~m}}{\mathrm{hr}} \times 1.65 \mathrm{~m} \times \frac{\mathrm{m} \cdot \mathrm{~s}}{1.79 \times 10^{-5} \mathrm{~kg}} \times \frac{\mathrm{hr}}{3600 \mathrm{~s}} \\
& R e_{L}=1.55 \times 10^{7}
\end{aligned}
$$

Assume transition occurs at $R e_{x}=500,000$. Then

$$
\begin{aligned}
& \frac{x_{t}}{L}=\frac{R e_{x_{t}}}{R e_{L}}=\frac{500,000}{1.55 \times 10^{7}}=0.0323 \\
& x_{t}=0.0323 \mathrm{~L}=0.0323 \times 1.65 \mathrm{~m}=0.0532 \mathrm{~m}=53.2 \mathrm{~mm}
\end{aligned}
$$

Calculate drag force using C_{D} from $F i g .9 .8: F_{D}=C_{D} A \frac{1}{2} p V^{2}$

$$
\begin{aligned}
& C_{D}=0.0029(F i g .9 .8) ; A=2 L H=2 \times 1.65 \mathrm{~m}_{\times} 0.785 \mathrm{~m}=2.59 \mathrm{~m}^{2} \text { (2 sides) } \\
& \frac{1}{2} \rho V^{2}=\frac{1}{2} \times(0.877) 1.23 \frac{\mathrm{~kg}}{\mathrm{~m}^{3}}\left(560 \times 10^{3} \frac{\mathrm{~m}}{\left.\mathrm{hr}^{2} \times \frac{h r}{36005}\right)^{2} \frac{\mathrm{~N} \cdot \mathrm{~s}^{2}}{\mathrm{~g} \cdot \mathrm{~m}}=1.31 \times 10^{4} \mathrm{~N} / \mathrm{m}^{2}}\right. \\
& F_{D}=0.0029 \times 2.59 \mathrm{~m}^{2} \times 1.31 \times 10^{4} \frac{\mathrm{~N}}{\mathrm{~m}^{2}}=98.4 \mathrm{~N} \text { (skin friction dragon fin) }
\end{aligned}
$$

The power required is

$$
P=F_{D} V=98.4 \mathrm{~N}_{\times} 560 \times 10^{3} \frac{\mathrm{~m}}{h r} \times \frac{h r}{3600 \mathrm{~s}} \times \frac{\mathrm{W} \cdot \mathrm{~s}}{\mathrm{~N} \cdot \mathrm{~m}}=15.3 \mathrm{~kW}
$$

Check using Eq. 9.376:

$$
C_{D}=\frac{0.455}{\left(\log R e_{L}\right)^{2.58}}-\frac{1610}{R e_{L}}=0.00270
$$

This is slightly less than from the graph, but reasonable agreement.

Problem 9.79

9.79 Repeat Problem 9.46, except that the water flow is now at $10 \mathrm{~m} / \mathrm{s}$ (use formulas for C_{D} from Section 9-7).

Given: Pattern of flat plates
Find: \quad Drag on separate and composite plates

Solution:

Basic equations: $\quad C_{D}=\frac{\mathrm{F}_{\mathrm{D}}}{\frac{1}{2} \cdot \rho \cdot \mathrm{~V}^{2} \cdot \mathrm{~A}}$
For separate plates

$$
\mathrm{L}=7.5 \cdot \mathrm{~cm}
$$

$\mathrm{W}=7.5 \cdot \mathrm{~cm}$
$\mathrm{A}=\mathrm{W} \cdot \mathrm{L}$
$A=5.625 \times 10^{-3} \mathrm{~m}^{2}$
$\mathrm{V}=10 \cdot \frac{\mathrm{~m}}{\mathrm{~s}}$
From Table A. 8 at $20^{\circ} \mathrm{C} \quad \nu=1.01 \times 10^{-6} \cdot \frac{\mathrm{~m}^{2}}{\mathrm{~s}} \quad \rho=998 \cdot \frac{\mathrm{~kg}}{\mathrm{~m}^{3}}$
First determine the Reynolds number $\operatorname{Re}_{\mathrm{L}}=\frac{\mathrm{V} \cdot \mathrm{L}}{\nu} \quad \mathrm{Re}_{\mathrm{L}}=7.43 \times 10^{5}$ so use Eq. 9.34

$$
\mathrm{C}_{\mathrm{D}}=\frac{0.0742}{\operatorname{Re}_{\mathrm{L}}{ }^{\frac{1}{5}}}
$$

$C_{D}=0.00497$

The drag (one side) is then $\mathrm{F}_{\mathrm{D}}=\mathrm{C}_{\mathrm{D}} \cdot \frac{1}{2} \cdot \rho \cdot \mathrm{~V}^{2} \cdot \mathrm{~A}$
$\mathrm{F}_{\mathrm{D}}=1.39 \mathrm{~N}$
This is the drag on one plate. The total drag is then

$$
\begin{aligned}
\mathrm{F}_{\text {Total }}=4 \cdot \mathrm{~F}_{\mathrm{D}} & \mathrm{~F}_{\text {Total }}=5.58 \mathrm{~N} \\
& \text { For both sides: }
\end{aligned} \quad 2 \cdot \mathrm{~F}_{\text {Total }}=11.2 \mathrm{~N}
$$

For the composite plate

$$
\mathrm{L}=4 \times 7.5 \cdot \mathrm{~cm}
$$

$\mathrm{L}=0.300 \mathrm{~m}$
$\mathrm{A}=\mathrm{W} \cdot \mathrm{L}$
$\mathrm{A}=0.0225 \mathrm{~m}^{2}$
First determine the Reylolds number

$$
\mathrm{Re}_{\mathrm{L}}=\frac{\mathrm{V} \cdot \mathrm{~L}}{\nu} \quad \mathrm{Re}_{\mathrm{L}}=2.97 \times 10^{6} \text { so use Eq. } 9.34
$$

$$
\mathrm{C}_{\mathrm{D}}=\frac{0.0742}{\operatorname{Re}_{\mathrm{L}}{ }^{\frac{1}{5}}}
$$

$C_{D}=0.00377$

The drag (one side) is then $\mathrm{F}_{\mathrm{D}}=\mathrm{C}_{\mathrm{D}} \cdot \frac{1}{2} \cdot \rho \cdot \mathrm{~V}^{2} \cdot \mathrm{~A} \quad \mathrm{~F}_{\mathrm{D}}=4.23 \mathrm{~N} \quad$ For both sides: $\quad 2 \cdot \mathrm{~F}_{\mathrm{D}}=8.46 \mathrm{~N}$
The drag is much lower on the composite compared to the separate plates. This is because τ_{w} is largest near the leading edges and falls off rapidly; in this problem the separate plates experience leading edges four times!

Given: Tocuboat model at $1: 13.5$ scale to be tested in towing tank. Dimensions are:

Length, 11.1 ft; Beam, 3.1 ft; Draft, 0.62 f
Model displacement in fresh water is 1200 lbf .
Find: (a) Estimate average length of wetted surface on hell.
(6) Skin friction drag force on prototype at $V=8 \mathrm{mph}$.

Solution: Represent the towboat as a rectangular soled of length, Li, with the displacement of the boat. From bwoyanos,

$$
\begin{aligned}
& W=\rho g \forall=\rho g Z B D \quad \text { or } L=\frac{W}{\rho g B D} \\
& \Sigma=1200 / b f^{*} \frac{f^{3}}{1.94 \operatorname{sicg}} \times \frac{\sec ^{2}}{32.2 f+} \times \frac{1}{3.114+} \times \frac{1}{0.62 f+} \times \frac{5 / \mathrm{Leg} \cdot \mathrm{ft}}{16 f \cdot \sec ^{2}}=9.96 \mathrm{ft}
\end{aligned}
$$

For the prototype,

$$
\bar{L}_{p}=13.5 \bar{L}_{m}=13.5 \times 9.96 \mathrm{ft}=134 \mathrm{ft}
$$

The Reynolds number is (Table A.7)
\qquad

$$
R C_{L}=\frac{V L}{2}=8 \frac{\mathrm{mi}}{\mathrm{hr}} \times 134 \mathrm{f} \times \frac{5}{1.08 \times 10^{-544}} \times 5280 \frac{\mathrm{ft}}{\mathrm{mi}} \times \frac{h r}{3600 \mathrm{~s}}=1.46 \times 10^{8} \quad\left(T^{\circ}=68^{\circ} \mathrm{F}\right)
$$

Thus flow is predommantly turbulent. Apply turbulent flow analysis.
Computing equations: $F_{D}=C_{D} A \frac{1}{2} \rho U^{2} \quad C_{D}=\frac{0.455}{\left(\log _{10} R e_{2}\right)^{2.58}}-\frac{1610}{R e_{L}} \quad(9,37 b)$
The vetted area is $A=\Gamma(B+20)$.

$$
C_{D}=\frac{0.455}{\left(\log _{10} 1.46 \times 10^{8}\right)^{2.55}}-\frac{1610}{1.46 \times 10^{7}}=0.00214
$$

Substituting,

$$
\begin{aligned}
& F_{D}=2250 \mathrm{lbf}(\text { skin friction on } 1 \mathrm{y})
\end{aligned}
$$

Problem 9.81

9.81 A jet transport aircraft cruises at $40,000 \mathrm{ft}$ altitude in steady level flight at 500 mph . Model the aircraft fuselage as a circular cylinder with diameter $D=12 \mathrm{ft}$ and length $L=125 \mathrm{ft}$. Neglecting compressibility effects, estimate the skin friction drag force on the fuselage. Evaluate the power needed to overcome this force.

Given: Aircraft cruising at $40,000 \mathrm{ft}$
Find: Skin friction drag force; Power required

Solution:

Basic equations: $\quad \mathrm{C}_{\mathrm{D}}=\frac{\mathrm{F}_{\mathrm{D}}}{\frac{1}{2} \cdot \rho \cdot \mathrm{~V}^{2} \cdot \mathrm{~A}}$
We "unwrap" the cylinder to obtain an equivalent flat plate

Problem 9.82
Given: Model barge tested at $1: 13.5$ scale; prototype speed, vp $=8 \mathrm{mph}$.
Dimensions are: Length, $L=22 f t$
Beam, $B=40 \mathrm{ft}$
Draft, $D=0.667 \mathrm{ft}$
Find: (a) Modeltest speed, V_{m}
(b) Boundary, layers keninar or turbulent on prototype?
(c) Where position BL trips on model?
(d) Estimate skin friction drag for model and prototype.

Solution: Test should be run so $F_{m}=F_{r p}=V_{m} / \sqrt{g L_{m}}=V_{p} / \sqrt{g L_{p}}$
Thus $V_{m}=V_{p} \sqrt{L_{m} / L_{p}}=8 m p h \sqrt{1 / 13.5}=2.18 \mathrm{mph}$

$$
R e_{p}=\frac{V_{p} L_{P}}{2}=(8 X 1.47) \frac{f t}{S} \times\left(22 \times(13.5) f+\frac{3}{1.08 \times 10^{-5} f^{2}}=3.24 \times 10^{8}\left(T=68^{\circ} \mathrm{F}, \text { Table. }\right)\right.
$$

Therefore bowendars-layer flow is twrbcelent. Transition would occur at $R e_{x_{t}} \approx 5 \times 10^{5}$, 50

$$
x_{t / L}=\frac{5 \times 10^{5}}{3.24 \times 10^{8}}=0.00154 ; x_{t}=0.001542 m=0.0339 \mathrm{ft} \text { from front }
$$

The wetter area is $A=L(B+2 D)$. Assume for turbulent $B L$ flow

$$
C_{D}=1.25 C_{f}=1.25 \times \frac{0.0594}{\left(\operatorname{Re}_{L}\right)^{15}}=\frac{0.0743}{\left(\operatorname{Re}_{L}\right)^{1 / 5}}
$$

For the model, $L=72 f t$, and

$$
\begin{aligned}
& R_{m}=\frac{V_{m} L_{m}}{2}=(2.18)(1,47) \frac{\mathrm{ft}}{\sec ^{2}} 22 \mathrm{ft} \times \frac{\mathrm{s}}{1.08 \times 10^{-5} \mathrm{ft}^{2}}=6.53 \times 10^{6} \\
& C_{D_{m}}=\frac{0.0743}{\left(6.53 \times 10^{6}\right)^{15}}=0.00322
\end{aligned}
$$

Fr the model

$$
\begin{aligned}
& \left.F_{D_{m}}=C_{D_{m}} \frac{1}{2} \rho V_{m}^{2} A_{m}=\frac{0.00322}{2} \times 1.94 \frac{-1 / g}{f+3} \times 2.18(1.47)\right]_{S_{t}^{2}}^{2} \times[22(4+2(0.667))] f_{1}^{2} \frac{b f s^{2}}{s 14 g \cdot f t} \\
& F_{D_{m}}=3.77 \mathrm{lbf}
\end{aligned}
$$

For the protiteye,

$$
\begin{aligned}
& R e_{\rho}=3.24 \times 10^{8}, C_{D P}=0.00148, A_{\rho}=(13.5)^{2} A m=21,400 \mathrm{ft}^{2}
\end{aligned}
$$

9.83 A flat-bottomed barge, 80 ft long and 35 ft wide, submerged to a depth of 5 ft , is to be pushed up a river (the river water is at $60^{\circ} \mathrm{F}$). Estimate and plot the power required to overcome skin friction for speeds ranging up to 15 mph .

Given: Barge pushed upriver

Find: Power required to overcome friction; Plot power versus speed

Solution:

Basic equations: $\quad C_{D}=\frac{F_{D}}{\frac{1}{2} \cdot \rho \cdot U^{2} \cdot A}$
(9.37b) $\quad \operatorname{Re}_{\mathrm{L}}=\frac{\mathrm{U} \cdot \mathrm{L}}{\nu}$

From Eq. 9.32

$$
\begin{array}{ll}
\mathrm{F}_{\mathrm{D}}=\mathrm{C}_{\mathrm{D}} \cdot \mathrm{~A} \cdot \frac{1}{2} \cdot \rho \cdot \mathrm{U}^{2} \text { and } & \mathrm{A}=\mathrm{L} \cdot(\mathrm{~B}+2 \cdot \mathrm{D}) \\
\mathrm{P}=\mathrm{F}_{\mathrm{D}} \cdot \mathrm{U} & \mathrm{P}=\mathrm{C}_{\mathrm{D}} \cdot \mathrm{~A} \cdot \frac{1}{2} \cdot \rho \cdot \mathrm{U}^{3}
\end{array}
$$

The power consumed is

Given data:

$$
\begin{array}{rcll}
L= & 80 & \mathrm{ft} & \\
B= & 35 & \mathrm{ft} & \\
D= & 5 & \mathrm{ft} & \\
\nu= & 1.21 \mathrm{E}-05 & \mathrm{ft}^{2} / \mathrm{s} & \text { (Table A.7) } \\
\rho= & 1.94 & {\operatorname{slug} / \mathrm{ft}^{3}}^{\text {(Table A.7) }} \text {) }
\end{array}
$$

Computed results:

$$
A=\quad 3600 \quad \mathrm{ft}^{2}
$$

$\boldsymbol{U}(\mathbf{m p h})$	$\boldsymbol{R e}_{\mathbf{L}}$	$\boldsymbol{C}_{\mathbf{D}}$	\boldsymbol{P} (hp)
1	$9.70 \mathrm{E}+06$	0.00285	0.0571
2	$1.94 \mathrm{E}+07$	0.00262	0.421
3	$2.91 \mathrm{E}+07$	0.00249	1.35
4	$3.88 \mathrm{E}+07$	0.00240	3.1
5	$4.85 \mathrm{E}+07$	0.00233	5.8
6	$5.82 \mathrm{E}+07$	0.00227	9.8
7	$6.79 \mathrm{E}+07$	0.00222	15
8	$7.76 \mathrm{E}+07$	0.00219	22
9	$8.73 \mathrm{E}+07$	0.00215	31
10	$9.70 \mathrm{E}+07$	0.00212	42
11	$1.07 \mathrm{E}+08$	0.00209	56
12	$1.16 \mathrm{E}+08$	0.00207	72
13	$1.26 \mathrm{E}+08$	0.00205	90
14	$1.36 \mathrm{E}+08$	0.00203	111
15	$1.45 \mathrm{E}+08$	0.00201	136

Power Consumed by Friction on a Barge

Given: Racing shell of Purdue crew, approximated as half a aylirider.

$\left(\nu=1 \times 10^{-6} \mathrm{~m}^{2} / \mathrm{s}\right.$ for water at $20^{\circ} \mathrm{C}$, Task e $\left.A .8\right)$. Thus $\angle B L$ is on $/ \mathrm{g}$ 1% of L.
For the turbulent boundary layer $\frac{\delta}{x}=\frac{0.382}{R_{e}^{1 / 5}}$, so $\delta=\frac{0.382}{R_{L}^{1 / 5}} \mathrm{~L}$

$$
\begin{aligned}
& R e_{L}=\frac{V L}{\nu}=6.7 \frac{m}{3} \times 7.32 \mathrm{~m} \times \frac{\mathrm{S}}{1.80 \times 10^{-6} \mathrm{~m}^{2}}=4.41 \times 10^{7} \\
& \delta=0.382 \times \frac{1}{\left(4.41 \times 10^{7}\right)^{/ 5}} \times 7.32 \mathrm{~m}=0.0810 \mathrm{~m}
\end{aligned}
$$

The drag fore is $F_{D}=C_{D} A \frac{1}{2} \rho v^{2}$.

$$
A \approx W L=\frac{\pi D}{2} L \times \frac{\pi}{2} \times 0.457 \mathrm{~m} \times 7.32 \mathrm{~m}=5.25 \mathrm{~m}^{2}
$$

Since $10^{7} \leqslant R_{e_{L}}<1^{9}$, then $C_{D}=\frac{0,455}{\left(\log R e_{L}\right)^{2.51}}=0.00237$
Then

$$
F_{D}=0.00237 \times 5.25 \mathrm{~m}^{2} \times \frac{1}{2} \times 449 \frac{\mathrm{~kg}}{\mathrm{~m}^{3}} \times(6.7)^{2} \frac{\mathrm{~m}^{2}}{\mathrm{~s}^{2}} \times \frac{\mu \cdot \mathrm{s}^{2}}{\mathrm{~kg} \cdot \mathrm{~m}}=280 \mathrm{~N}
$$

$\left\{\begin{array}{l}\text { Note the rowers must produce an average power of } \\ P=F_{D V} V=280 \mathrm{~N}_{\times} 6.71 \frac{\mathrm{~g}}{\mathrm{~s}} \times \frac{\mathrm{W} \cdot \mathrm{J}}{\mathrm{N} \cdot \mathrm{m}}=1.88 \mathrm{~kW} \\ \text { to move the shell at this speed. }\end{array}\right\}$

Given: Nuclear submarine, cruising submerged at $v=27 \mathrm{kt}$.
Assume hull is a circular cylinder, $D=11.0 \mathrm{~m}$, and $L=107 \mathrm{~m}$.
Find: (a) Estimate percentage of hull length with laminar BL.
(b) Calculate drag due to skin friction.
(c) Estimate power consurned

Solution: Treat hell as a flat plate with same wetter area.
Actual hull:
Model plate:

Completing equations: $R e_{x_{t}}=500,000$

$$
c_{D}=\frac{0.455}{\left(\log _{10} R e_{L}\right)^{2.58}}
$$

For seawater, $\nu=1.05 \times 10^{-6} \mathrm{~m}^{2} / \mathrm{sec}($ Table $A .2)$, so

$$
\left(T=20^{\circ} \mathrm{C}\right)
$$

$$
R e_{L}=\frac{V L}{2}=27 \frac{\mathrm{~nm}}{\mathrm{hr}} \times 6076 \frac{\mathrm{f}}{\mathrm{~nm}} \times 0.305 \frac{\mathrm{~m}}{\mathrm{ft}} \times \frac{h r}{3600 \mathrm{~s}} \times 107 \mathrm{~m} \times \frac{5}{1.05 \times 10^{-5} \mathrm{~m}^{2}}=1.42 \times 10^{9}
$$

Thus $\frac{x_{t}}{L}=\frac{R e_{x_{t}}}{R e_{L}}=\frac{500,000}{1.42 \times 10^{9}}=3.52 \times 10^{-4}$ or $x_{t}=0.0352 \%$ of L
Neglect laminar BL; assume flow is completely turbulent.

$$
\begin{aligned}
& C_{D}=\frac{0.455}{\left(\log _{10} R e_{L}\right)^{2.58}}=\frac{0.455}{(9.15)^{2.58}}=0.00150 ; A=\omega L=3.6 \mathrm{~m} \times 107 \mathrm{~m}=3.70 \times 10^{3} \mathrm{~m}^{2} \\
& q=\frac{1}{2} \rho v^{2}=\frac{1}{2} \times 1025 \frac{\mathrm{~kg}}{\mathrm{~m}^{3}}\left(\frac{27(6076)(0.305)^{2}}{3600}\right)^{\mathrm{m}^{2}} \times \frac{\mathrm{NJ}}{} \mathrm{~s}^{2} \mathrm{~kg} \mathrm{~m}^{\mathrm{m}}=99.0 \mathrm{kPa} \\
& F_{D}=C_{0} g A=0.09150 \times 99.0 \times 10^{3} \frac{\mathrm{~N}}{\mathrm{~m}^{2}} \times 3.70 \times 10^{3} \mathrm{~m}^{2}=5.49 \times 10^{5} \mathrm{~N} \\
& P=F V=5.49 \times 10^{5} A \times 27 \frac{0+\pi}{b r} \times \frac{604}{m \pi} \times 0.305 m \times \frac{b r}{3605}=7.634 W 4
\end{aligned}
$$

Problem 9.86

9.86 A sheet of plastic material 10 mm thick, with specific gravity $\mathrm{SG}=1.5$, is dropped into a large tank containing water. The sheet is 0.5 m by 1 m . Estimate the terminal speed of the sheet as it falls with (a) the short side vertical and (b) the long side vertical. Assume that the drag is due only to skin friction, and that the boundary layers are turbulent from the leading edge.

Given: Plastic sheet falling in water
Find: Terminal speed both ways

Solution:

Basic equations: $\quad \Sigma \mathrm{F}_{\mathrm{y}}=0 \quad$ for terminal speed $\quad \mathrm{C}_{\mathrm{D}}=\frac{\mathrm{F}_{\mathrm{D}}}{\frac{1}{2} \cdot \rho \cdot \mathrm{~V}^{2} \cdot \mathrm{~A}} \quad \mathrm{C}_{\mathrm{D}}=\frac{0.0742}{\mathrm{Re}_{\mathrm{L}}} \quad$ (9.34) (assuming $5 \times 10^{5}<\operatorname{Re}_{\mathrm{L}}<10^{7}$)
$\mathrm{h}=10 \cdot \mathrm{~mm}$
$\mathrm{W}=1 \cdot \mathrm{~m}$
$\mathrm{L}=0.5 \cdot \mathrm{~m} \quad \mathrm{~A}=\mathrm{W} \cdot \mathrm{L}$
SG $=1.5$

From Table A. 8 at $20^{\circ} \mathrm{C} \quad \nu=1.01 \times 10^{-6} \cdot \frac{\mathrm{~m}^{2}}{\mathrm{~s}} \quad \rho=998 \cdot \frac{\mathrm{~kg}}{\mathrm{~m}^{3}}$ for water
Hence

$$
\mathrm{F}_{\mathrm{D}}+\mathrm{F}_{\text {buoyancy }}-\mathrm{W}=0
$$

$$
\mathrm{F}_{\mathrm{D}}=\mathrm{W}-\mathrm{F}_{\text {buoyancy }}=\rho \cdot \mathrm{g} \cdot \mathrm{~h} \cdot \mathrm{~A} \cdot(\mathrm{SG}-1)
$$

Also

Hence

$$
\rho_{\mathrm{H} 2 \mathrm{O}} \cdot \mathrm{~g} \cdot \mathrm{~h} \cdot \mathrm{~W} \cdot \mathrm{~L} \cdot(\mathrm{SG}-1)=0.0742 \cdot \mathrm{~W} \cdot \mathrm{~L}^{\frac{4}{5}} \cdot \nu^{\frac{1}{5}} \cdot \frac{1}{2} \cdot \rho \cdot \mathrm{~V}^{\frac{9}{5}}
$$

Note that we double F_{D} because we have two sides!

Solving for V

$$
\mathrm{V}=\left[\frac{\mathrm{g} \cdot \mathrm{~h} \cdot(\mathrm{SG}-1)}{0.0742} \cdot\left(\frac{\mathrm{~L}}{v}\right)^{\frac{1}{5}}\right]^{\frac{5}{9}}
$$

$$
\mathrm{V}=3.41 \frac{\mathrm{~m}}{\mathrm{~s}}
$$

Check the Reynolds numbeı $\mathrm{Re}_{\mathrm{L}}=\frac{\mathrm{V} \cdot \mathrm{L}}{\nu}$
$\operatorname{Re}_{\mathrm{L}}=1.69 \times 10^{6}$
Hence Eq. 9.34 is reasonable

Repeating for

$$
\mathrm{L}=1 \cdot \mathrm{~m}
$$

$$
\mathrm{V}=\left[\frac{\mathrm{g} \cdot \mathrm{~h} \cdot(\mathrm{SG}-1)}{0.0742} \cdot\left(\frac{\mathrm{~L}}{v}\right)^{\frac{1}{5}}\right]^{\frac{5}{9}}
$$

$$
\mathrm{V}=3.68 \frac{\mathrm{~m}}{\mathrm{~s}}
$$

Check the Reynolds number $\operatorname{Re}_{\mathrm{L}}=\frac{\mathrm{V} \cdot \mathrm{L}}{\nu}$

The short side vertical orientation falls more slowly because the largest friction is at the region of the leading edge (τ tails off as the boundary layer progresses); its leading edge area is larger. Note that neither orientation is likely - the plate will flip around in a chaotic manner

Given: 600-seat jet transport proposed by Airbus Industries. Fuselage has length $L=70 \mathrm{~m}$ and diameter $D=7.5 \mathrm{~m}$. Aircraft operates 14 hr per day, 6 days perweek, cruising at $V=257 \mathrm{~m} / \mathrm{s}(M=0.87$) at $z=12 \mathrm{~km}$. The thrust specific que' consumption ($7 \$ F C$) is $0.06 \mathrm{~kg} / \mathrm{N} \cdot \mathrm{hr}$.

Find: (a) Estimate of skin friction dray on fuselage.
(b) Annual fuel saved by 1% reduction in drag by modifying surface.

Solution: Assume: (1) BL behaves as though on flat plate, $A=\pi D C=16.50 \mathrm{~m}^{2}$
(2) Neglect compressibility effects
(3) All fuel consumed in cruise flight

Need Reynolds number

$$
R e_{L}=\frac{P V L}{\mu}
$$

From Table $4.3, T=216.7 \mathrm{~K}$ and ρ 促 $=0.2546 ; \rho=0.2546 \times 1.23 \mathrm{~kg} \frac{\mathrm{~m}^{3}}{}=0.313 \mathrm{~kg} / \mathrm{m}^{3}$.
From $E_{G}, A, 1, \mu=1.458 \times 10^{-6} \frac{\mathrm{~kg}}{m \cdot 5 \cdot \mathrm{~K}^{1 / 2}} \times(216.7)^{3 / 2} \mathrm{~K}^{3 / 2} \times \frac{1}{(110.4+216.7) \mathrm{K}}=1.42 \times 10^{-5} \frac{\mathrm{~kg}}{\mathrm{~m} .5}$
Thus

$$
R_{L}=0.313 \frac{\mathrm{~kg}}{\mathrm{~m}^{3}} \times 257 \frac{\mathrm{~m}}{\mathrm{~s}} \times 70 \mathrm{~m} \times \frac{\mathrm{m} . \mathrm{s}}{1.42 \times 10^{-5} \mathrm{~kg}}=3.97 \times 10^{8}
$$

From Eq. $9.35\left(R e_{L}<10^{9}\right)$,

$$
C_{D}=\frac{0.455}{\left(\log R_{1}\right)^{2,58}}=\frac{0.455}{\left(\log 3.47 \times 10^{8}\right)^{2.88}}=0.0177
$$

and

$$
F_{D}=C_{D} A \frac{1}{2} \rho V^{2}=\frac{1}{2} \times 0.00177 \times 1600 \mathrm{~m}^{2} \times 0.313 \frac{\mathrm{~kg}^{3}}{\mathrm{~m}^{3}} \times(257)^{2} \frac{\mathrm{~m}^{2}}{\mathrm{~s}^{2}} \times \frac{\mathrm{N} \cdot \mathrm{~s}^{2}}{\mathrm{~kg}}=3.02 \times 10^{4} \mathrm{~N}
$$

Then $\Delta F_{D}=0.01 F_{D}=3.02 \times 10^{2} \mathrm{~N}=302 \mathrm{~N}$
and $\Delta F_{C}=\Delta F_{D \times} T S F C_{X} t$

$$
\Delta F_{C}=302 N_{\times} 0.06 \frac{\mathrm{~kg}}{\mathrm{M} \cdot \mathrm{hr}} \times 365 \frac{\mathrm{dag}}{\mathrm{gr}} \times 14 \frac{\mathrm{hr}}{d \operatorname{dy}} \times \frac{6}{7}=7.94 \times 10^{4} \mathrm{~kg} / \mathrm{gr}
$$

The specific gravity of jet fuel (kerosine) is about 0.82 (Table A.2). Thus

$$
\begin{aligned}
& \Delta \forall=\frac{\Delta F_{c}}{\rho}=\frac{\Delta F_{C}}{S G \rho_{H 20}} \\
& \Delta V=7.94 \times 10^{4} \frac{\mathrm{~kg}}{\mathrm{gr}} \times \frac{\mathrm{m}^{3}}{(0.82) 1000 \mathrm{~kg}^{2}} \times \frac{\mathrm{ft}}{(0.305)^{3} \mathrm{~m}^{2}} \times 7.48 \frac{\mathrm{gal}}{\mathrm{ft}}=2.55 \times 10^{4} \mathrm{gal} / \mathrm{gr} \\
& \Delta C \approx 2.55 \times 10^{4} \frac{g a 1}{g^{2}} \times \frac{\frac{1}{1}}{941} \approx \$ 25,000
\end{aligned}
$$

This is a substantial saury per aircraft. The cost saving for a fleet would be impressive.

Gwesn: Supertanker with 600,000 metricton displacement.
hengh, $h=300 \mathrm{~m} ;$ Prom, $b=80 \mathrm{~m} ;$, $\mathrm{braf}, D=25 \mathrm{~m}$ Stips steams at it et in seawoter at $4^{\circ} \mathrm{C}$
Estrenate: (a) In Yicknoss at stern of ship.
(b) total skin-friction drag.
(c) power required to axesotrestin-friction drag

Sobtion:
Apply resutte of morentum integral aralysis (section 9-5.2) and torrelations for drag codficiants (Sectrona-i.
Computing equations:

$$
\begin{align*}
& \left.\delta\right|_{x} ^{\infty}=\frac{0.382}{\operatorname{Re}_{4}^{45}} \\
& c_{>}=\frac{0.455}{\left(\log \operatorname{Ren}^{2}\right)^{2.58}}-\frac{160}{\operatorname{Re}} \tag{a,3ib}
\end{align*}
$$

$$
(a, d)
$$

Assumptions: is boundary lapers blove as an a flat plate
(द) th-pawer terbulent velocity profieb
For somater It ic, $S G=1.025, J=1.05 J_{\text {water }}^{\circ}$ (Table Q. 2) At $4^{\circ} \mathrm{C}, \nabla_{w n+x}=1.55 \times 10^{-6} \mathrm{n}^{2} l_{s}$ (Table A.8).

$$
\begin{aligned}
& v=14 \frac{n m}{h r} \times 18 \frac{12 n}{n m} \times \frac{h r}{3600 s}=7.20 \mathrm{~m} l_{s} \\
& \operatorname{Re}_{2}=\frac{\square}{7}=7.20 \frac{\mathrm{n}}{\mathrm{~s}} \times 300 \mathrm{~m} \times 1.05 \times 1.55 \times 10^{-10} \frac{s}{\mathrm{~m}^{2}}=1.33 \times 6^{9}
\end{aligned}
$$

Nus

$$
\begin{equation*}
\delta_{2}=\frac{0.382 \times 300 \times 1}{\left(1.33 \times 10^{9}\right)^{0.00}}=1.22 \mathrm{~m} \tag{L}
\end{equation*}
$$

Hodel drag area as in Example Problem a,s
(This is skin-friction drag: wave drag canot be estumated.)
the power is

$$
P=F_{D} O=1.56 \times 10^{6} \mathrm{~N} \times 7.20 \frac{\mathrm{~N}}{\mathrm{~s}} \cdot \frac{1.5}{A .4}=11.2 \mathrm{MN} \mathrm{~B}
$$

$$
\begin{align*}
& \left.A=(b+2)^{5}\right)=[80+2(25)]=300 m=3,90 \times 10^{4} \mathrm{~m}^{2} \\
& c_{5}=\frac{0.455}{(\log 1.33 \times 10)^{3.58}}-\frac{6_{10}}{\operatorname{Ren}}=0.00151 \\
& F_{D}=C_{D} A^{\frac{1}{2}} P^{2}=0.00151 \times 3.00 \times 6 N^{2} \times \frac{1}{2} \times(1.025) \times 10^{3} \frac{\mathrm{gg}^{2}}{\mathrm{M}^{3}} \times(7.20)^{2} \frac{N^{2}}{5^{2}} \times \frac{\mathrm{A.5}}{\mathrm{~S}^{2}} \\
& F_{D}=1.56 \mathrm{Ma} \tag{D}
\end{align*}
$$

9.89 In Section 7-6 the wave resistance and viscous resistance on a model and prototype ship were discussed. For the prototype, $L=$ 409 ft and $A=19,500 \mathrm{ft}^{2}$. From the data of Figs. 7.2 and 7.3, plot on one graph the wave, viscous, and total resistance (lbf) experienced by the prototype, as a function of speed. Plot a similar graph for the model. Discuss your results. Finally, plot the power (hp) required for the prototype ship to overcome the total resistance.

Given: "Resistance" data on a ship
Find: Plot of wave, viscous and total drag (protoype and model); Power required by prototype

Solution:

Fig. 7.2 Data from test of $1: 80$ scale model of U.S. Navy guided missile frigate Oliver Hazard Perry (FFG-7). (Data from U.S. Naval Academy Hydromechanics Laboratory, courtesy of Professor Bruce Johnson.)

Governing equation:

$$
\begin{align*}
& \mathrm{C}_{\mathrm{D}}=\frac{\mathrm{F}_{\mathrm{D}}}{\frac{1}{2} \cdot \rho \cdot \mathrm{U}^{2} \cdot \mathrm{~A}} \tag{9.32}\\
& \mathrm{Fr}=\frac{\mathrm{U}}{\sqrt{\mathrm{gL}}}
\end{align*}
$$

From Eq. 9.32

$$
\mathrm{F}_{\mathrm{D}}=\mathrm{C}_{\mathrm{D}} \cdot \mathrm{~A} \cdot \frac{1}{2} \cdot \rho \cdot \mathrm{U}^{2}
$$

This applies to each component of the drag (wave and viscous) as well as to the total
The power consumed is

$$
\mathrm{P}=\mathrm{F}_{\mathrm{D}} \cdot \mathrm{U}
$$

$$
\mathrm{P}=\mathrm{C}_{\mathrm{D}} \cdot \mathrm{~A} \cdot \frac{1}{2} \cdot \rho \cdot \mathrm{U}^{3}
$$

From the Froude number

$$
\mathrm{U}=\mathrm{Fr} \sqrt{\mathrm{gL}}
$$

The solution technique is: For each speed $F r$ value from the graph, compute U; compute the drag from the corresponding "resistance" value from the graph

Given data:

$L_{\mathrm{p}}=$	409	ft	
$A_{\mathrm{p}}=$	19500	ft^{2}	
$L_{\mathrm{m}}=$	5.11	$\mathrm{ft}^{2}(1 / 80$ scale)	
$A_{\mathrm{m}}=$	3.05	ft^{2}	
$S G=$	1.025		(Table A.2)
$\mu=$	$2.26 \mathrm{E}-05$	lbf.s/ft ${ }^{2}$	(Table A.2)
$\rho=$	1023	slug/ft 3	

Computed results:

Model

$F r$	Wave "Resistance"	Viscous "Resistance"	Total "Resistance"	\boldsymbol{U} (ft/s)	Wave Drag (lbf)	Viscous Drag (lbf)	Total Drag (lbf)
0.10	0.00050	0.0052	0.0057	1.28	0.641	6.67	7.31
0.20	0.00075	0.0045	0.0053	2.57	3.85	23.1	26.9
0.30	0.00120	0.0040	0.0052	3.85	13.9	46.2	60.0
0.35	0.00150	0.0038	0.0053	4.49	23.6	59.7	83.3
0.40	0.00200	0.0038	0.0058	5.13	41.0	78.0	119
0.45	0.00300	0.0036	0.0066	5.77	77.9	93.5	171
0.50	0.00350	0.0035	0.0070	6.42	112	112	224
0.60	0.00320	0.0035	0.0067	7.70	148	162	309

Prototype

Fr	Wave "Resistance"	Viscous "Resistance"	Total "Resistance"	\boldsymbol{U} (ft/s)	Wave Drag (lbf $\left.\times 10^{6}\right)$	Viscous Drag (lbf x $\left.10^{6}\right)$	Total Drag $\left(\operatorname{lbf} \times \mathbf{1 0}^{\mathbf{6}}\right.$)
0.10	0.00050	0.0017	0.0022	11.5	0.328	1.12	1.44
0.20	0.00075	0.0016	0.0024	23.0	1.97	4.20	6.17
0.30	0.00120	0.0015	0.0027	34.4	7.09	8.87	16.0
0.35	0.00150	0.0015	0.0030	40.2	12.1	12.1	24.1
0.40	0.00200	0.0013	0.0033	45.9	21.0	13.7	34.7
0.45	0.00300	0.0013	0.0043	51.6	39.9	17.3	57.2
0.50	0.00350	0.0013	0.0048	57.4	57.5	21.3	78.8
0.60	0.00320	0.0013	0.0045	68.9	75.7	30.7	106

For the prototype wave resistance is a much more significant factor at high speeds!

Problem 9.90
Given: Flag, 59 m high and 112 m wide, mounted vertically.
Find: Force on flag in $16 \mathrm{~km} / \mathrm{hr}$ wind. Was failure a surprise?
Solution: Apply definition of drag coefficient.
Computing equation: $\quad F_{D}=C_{D} \frac{1}{2} \rho V^{2} A$
Assumptions: (1) Frag acts as flat plate
(2) Standard air

The aspect ratio is $\frac{6}{h}=\frac{112 m}{59 m}=1.9$.

$$
F_{D}, V
$$

From Fig. 9.10, $c_{0} \simeq 1.15$. Then

$$
\begin{aligned}
& F_{D}=1.15 \times \frac{1}{2} \times 1.23 \frac{\mathrm{~kg}}{\mathrm{~m}^{5}}\left(16 \times 10^{3} \frac{\mathrm{~m}}{\mathrm{hr}} \times \frac{\mathrm{hr}}{36005}\right)^{2} 112 \mathrm{~m}_{\times} 59 \mathrm{~m} \times \frac{\mathrm{N} \cdot \mathrm{~s}^{2}}{\sqrt{\mathrm{gg} \cdot \mathrm{~m}}} \\
& F_{D}=92.3 \mathrm{kN}
\end{aligned}
$$

The flag failure should have been expected. This is a large force.

Problem 9.91

*9.91 Fishing net is made of $1 / 32$-in. diameter nylon thread assembled in a rectangular pattern. The horizontal and vertical distances between adjacent thread centerlines are $3 / 8 \mathrm{in}$. Estimate the drag on a $5 \mathrm{ft} \times 40 \mathrm{ft}$ section of this net when it is dragged (perpendicular to the flow) through $60^{\circ} \mathrm{F}$ water at 7 knots. What is the power required to maintain this motion?

Given: Fishing net
Find: Drag; Power to maintain motion

Solution:

Basic equations: $\quad C_{D}=\frac{F_{D}}{\frac{1}{2} \cdot \rho \cdot V^{2} \cdot \mathrm{~A}}$
We convert the net into an equivalent cylinder (we assume each segment does not interfere with its neighbors)

Given: Rotary mixer, constructed as shown: The mixer is rotator in brine, $S G=1.1$ Neglect motion of liquior and drag on rods.

Find: (a) Torque
(b) Horsepower required to drive mixer.

Solution: Use drag coefficient data from Table 9.2 , and
Basic equations: $T=Z R F_{D}$

$$
\begin{aligned}
& \mathbb{P}=T \omega \\
& C_{D}=\frac{F_{O}}{\frac{1}{2} f^{2} A}
\end{aligned}
$$

Thus $V=R \omega=0.6 \mathrm{~m}_{x} 60 \frac{\mathrm{nev}}{\mathrm{mm}} \times 2 \pi \frac{\mathrm{rad}}{\mathrm{rv}} \times \frac{\mathrm{min}}{605}=3.77 \mathrm{~m} / \mathrm{s}$
From Table 9.2, $c_{D}=1.17$ for a disk, so neglecting drag of rods,

$$
F_{D}=\frac{1}{2} P v^{2} \frac{\pi D^{2}}{4} C_{D}=\frac{\pi}{8} \times(1.1) 999 \frac{\mathrm{~kg}}{m^{3}} \times(3.77)^{2} m^{2} \times(0.1)^{2} m_{x}^{2} 1.17 \times \frac{\mathrm{N}^{2}}{\mathrm{~kg} \cdot \mathrm{~m}^{2}}=71.8 \mathrm{~N}
$$

Then

$$
T=2 R F_{D}=\varepsilon_{x} 0.6 \mathrm{~m} \times 71.8 \mathrm{~N}=86.2 \mathrm{~N} \cdot \mathrm{~m}
$$

cire

$$
\underline{P}=T_{\omega}=86.2 \mathrm{~N} \cdot \mathrm{~m}_{\times} 60 \frac{\mathrm{rev}}{m \mathrm{~m}} \times \frac{2 \pi \mathrm{md}}{\mathrm{rkv}} \times \frac{\mathrm{min}}{60 \mathrm{~s}} \times \frac{\mathrm{W} \cdot \mathrm{~s}}{\mathrm{~N} \cdot m}=542 \mathrm{~W}
$$

9.93 As a young design engineer you decide to make the rotary mixer look more "cool" by replacing the disks with rings. The rings may have the added benefit of making the mixer mix more effectively. If the mixer absorbs 350 W at 60 rpm , redesign the device. There is a design constraint that the outer diameter of the rings not exceed 125 mm .

Given: Data on a rotary mixer
Find: New design dimensions

Solution:

The given data or available data is
$R=0.6 \cdot m$
$\mathrm{P}=350 \cdot \mathrm{~W}$
$\omega=60 \cdot \mathrm{rpm}$
$\rho=1099 \cdot \frac{\mathrm{~kg}}{\mathrm{~m}^{3}}$

For a ring, from Table 9.3

$$
C_{D}=1.2
$$

The torque at the specified power and speed is

$$
\mathrm{T}=\frac{\mathrm{P}}{\omega} \quad \mathrm{~T}=55.7 \mathrm{~N} \cdot \mathrm{~m}
$$

The drag on each ring is then

$$
\mathrm{F}_{\mathrm{D}}=\frac{1}{2} \cdot \frac{\mathrm{~T}}{\mathrm{R}}
$$

$\mathrm{F}_{\mathrm{D}}=46.4 \mathrm{~N}$

The linear velocity of each ring is

$$
\mathrm{V}=\mathrm{R} \cdot \omega
$$

$$
\mathrm{V}=3.77 \frac{\mathrm{~m}}{\mathrm{~s}}
$$

The drag and velocity of each ring are related using the definition of drag coefficient

$$
\mathrm{C}_{\mathrm{D}}=\frac{\mathrm{F}_{\mathrm{D}}}{\frac{1}{2} \cdot \rho \cdot \mathrm{~A} \cdot \mathrm{~V}^{2}}
$$

Solving for the ring area

$$
\mathrm{A}=\frac{\mathrm{F}_{\mathrm{D}}}{\frac{1}{2} \cdot \rho \cdot \mathrm{~V}^{2} \cdot \mathrm{C}_{\mathrm{D}}} \quad \mathrm{~A}=4.95 \times 10^{-3} \mathrm{~m}^{2}
$$

But

$$
\mathrm{A}=\frac{\pi}{4} \cdot\left(\mathrm{~d}_{\mathrm{o}}^{2}-\mathrm{d}_{\mathrm{i}}^{2}\right)
$$

The outer diameter is

$$
\mathrm{d}_{\mathrm{o}}=125 \cdot \mathrm{~mm}
$$

Hence the inner diameter is

$$
d_{i}=\sqrt{d_{o}^{2}-\frac{4 \cdot \mathrm{~A}}{\pi}} \quad d_{i}=96.5 \mathrm{~mm}
$$

Problem 9.94
Given: Parachute and man with total mass, $m=120 \mathrm{~kg}$.

Find: Minimum diameter, D.
Solution: Apply Newton's second law of motion, definition of drag coefficient.

Computing equations: $\sum F_{y}=m g-F_{D}=m a y ; C_{D}=\frac{F_{D}}{\frac{1}{2} \rho V^{2} A}$
Assumptions: (1) Standard air
(z) Parachute behaves as open hemisphere
(s) $V_{y}=$ constant; $a_{y}=0$

Then $\Sigma F_{y}=m g-F_{D}=0$ or $F_{D}=S_{D} A \frac{1}{z} \rho v_{y}^{2}=m g$

$$
\begin{array}{ll}
A=\frac{\pi D^{2}}{4} \text { so } & m g=c_{0} \frac{\pi D^{2}}{8} \rho V_{y}^{2} \\
D^{2}=\frac{8 m g}{\pi b \rho V_{y}^{2}} & \text { and } D=\sqrt{\frac{8 m g}{\pi C_{D} \rho V_{y}^{2}}}
\end{array}
$$

From Table 9.3, $C_{D}=1.42$ for an open hemisphere.

$$
\begin{aligned}
& D=\left[\frac{8}{\pi} \times 120 \mathrm{~kg}_{\times} 9.81 \frac{\mathrm{~m}}{5^{2}} \times \frac{1}{1.42} \times \frac{\mathrm{m}^{3}}{1.23 \mathrm{~kg}^{2}} \times \frac{\mathrm{s}^{2}}{(6)^{2} \mathrm{~m}^{2}}\right]^{1 / 2} \\
& D=6.90 \mathrm{~m}
\end{aligned}
$$

9.95 An emergency braking parachute system on a military aircraft consists of a large parachute of diameter 6 m . If the airplane mass is 8500 kg , and it lands at $400 \mathrm{~km} / \mathrm{hr}$, find the time and distance at which the airplane is slowed to $100 \mathrm{~km} / \mathrm{hr}$ by the parachute alone. Plot the aircraft speed versus distance and versus time. What is the maximum "g-force" experienced? An engineer proposes that less space would be taken up by replacing the large parachute with three non-interfering parachutes each of diameter 3.75 m . What effect would this have on the time and distance to slow to $100 \mathrm{~km} / \mathrm{hr}$?

Given: Data on airplane and parachute
Find: Time and distance to slow down; plot speed against distance and time; maximum "g"'s

Solution:

Newton's second law for the aircraft is

$$
\mathrm{M} \cdot \frac{\mathrm{dV}}{\mathrm{dt}}=-\mathrm{C}_{\mathrm{D}} \cdot \frac{1}{2} \cdot \rho \cdot \mathrm{~A} \cdot \mathrm{~V}^{2}
$$

where A and C_{D} are the single parachute area and drag coefficient

Separating variables

$$
\frac{\mathrm{dV}}{\mathrm{~V}^{2}}=-\frac{\mathrm{C}_{\mathrm{D}} \cdot \rho \cdot \mathrm{~A}}{2 \cdot \mathrm{M}} \cdot \mathrm{dt}
$$

Integrating, with IC $V=V_{\mathrm{i}}$

Integrating again with respect to t

$$
\begin{equation*}
\mathrm{V}(\mathrm{t})=\frac{\mathrm{V}_{\mathrm{i}}}{1+\frac{\mathrm{C}_{\mathrm{D}} \cdot \rho \cdot \mathrm{~A}}{2 \cdot \mathrm{M}} \cdot \mathrm{~V}_{\mathrm{i}} \cdot \mathrm{t}} \tag{1}
\end{equation*}
$$

Eliminating t from Eqs. 1 and 2

$$
\begin{equation*}
\mathrm{x}(\mathrm{t})=\frac{2 \cdot \mathrm{M}}{\mathrm{C}_{\mathrm{D}} \cdot \rho \cdot \mathrm{~A}} \cdot \ln \left(1+\frac{\mathrm{C}_{\mathrm{D}} \cdot \rho \cdot \mathrm{~A}}{2 \cdot \mathrm{M}} \cdot \mathrm{~V}_{\mathrm{i}} \cdot \mathrm{t}\right) \tag{2}
\end{equation*}
$$

$$
\begin{equation*}
\mathrm{x}=\frac{2 \cdot \mathrm{M}}{\mathrm{C}_{\mathrm{D}} \cdot \rho \cdot \mathrm{~A}} \cdot \ln \left(\frac{\mathrm{~V}_{\mathrm{i}}}{\mathrm{~V}}\right) \tag{3}
\end{equation*}
$$

To find the time and distance to slow down to $100 \mathrm{~km} / \mathrm{hr}$, Eqs. 1 and 3 are solved with $V=100 \mathrm{~km} / \mathrm{hr}$ (or use Goal Seek)

The "g"'s are given by

$$
\frac{\frac{\mathrm{dV}}{\mathrm{dt}}}{\mathrm{~g}}=\frac{-\mathrm{C}_{\mathrm{D}} \cdot \rho \cdot \mathrm{~A} \cdot \mathrm{~V}^{2}}{2 \cdot \mathrm{M} \cdot \mathrm{~g}} \quad \text { which has a maximum at the initial instant }\left(V=V_{\mathrm{i}}\right)
$$

For three parachutes, the analysis is the same except A is replaced with $3 A$. leading to

$$
\begin{aligned}
& \mathrm{V}(\mathrm{t})=\frac{\mathrm{V}_{\mathrm{i}}}{1+\frac{3 \cdot \mathrm{C}_{\mathrm{D}} \cdot \rho \cdot \mathrm{~A}}{2 \cdot \mathrm{M}} \cdot \mathrm{~V}_{\mathrm{i}} \cdot \mathrm{t}} \\
& \mathrm{x}(\mathrm{t})=\frac{2 \cdot \mathrm{M}}{3 \cdot \mathrm{C}_{\mathrm{D}} \cdot \rho \cdot \mathrm{~A}} \cdot \ln \left(1+\frac{3 \cdot \mathrm{C}_{\mathrm{D}} \cdot \rho \cdot \mathrm{~A}}{2 \cdot \mathrm{M}} \cdot \mathrm{~V}_{\mathrm{i}} \cdot \mathrm{t}\right)
\end{aligned}
$$

Given data:

$$
\begin{aligned}
M & =8500 \mathrm{~kg} \\
V_{\mathrm{i}} & =400 \mathrm{~km} / \mathrm{hr} \\
V_{\mathrm{f}} & =100 \mathrm{~km} / \mathrm{hr} \\
C_{\mathrm{D}} & =1.42 \quad(\text { Table } 9.3) \\
\rho & =1.23 \mathrm{~kg} / \mathrm{m}^{3}
\end{aligned}
$$

$$
\text { Single: } D=6 \quad \text { m } \quad \text { Triple: } D=3.75 \mathrm{~m}
$$

Computed results:
$A=28.3 \mathrm{~m}^{2}$
$A=11.0 \mathrm{~m}^{2}$

$\boldsymbol{t} \mathbf{(\mathbf { s }}$	$\boldsymbol{x} \mathbf{(\mathbf { m })}$	$\boldsymbol{V} \mathbf{(k m} / \mathbf{h r})$
0.0	0.0	400
1.0	96.3	302
2.0	171	243
3.0	233	203
4.0	285	175
5.0	331	153
6.0	371	136
7.0	407	123
8.0	439	112
9.0	469	102
9.29	477	100

$\boldsymbol{t} \mathbf{(s)}$	$\boldsymbol{x} \mathbf{(m)}$	$\boldsymbol{V}(\mathbf{k m} / \mathbf{h r})$
0.0	0.0	400
1.0	94.2	290
2.0	165	228
3.0	223	187
4.0	271	159
5.0	312	138
6.0	348	122
7.0	380	110
7.93	407	100
9.0	436	91
9.3	443	89

" g "'s = -3.66 Max

9.96 As a young design engineer you are asked to design an emergency braking parachute system for use with a military aircraft of mass 9500 kg . The plane lands at $350 \mathrm{~km} / \mathrm{hr}$, and the parachute system alone must slow the airplane to $100 \mathrm{~km} / \mathrm{hr}$ in less than 1200 m . Find the minimum diameter required for a single parachute, and for three non-interfering parachutes. Plot the airplane speed versus distance and versus time. What is the maximum "g-force" experienced?

Given: Data on airplane landing
Find: Single and three-parachute sizes; plot speed against distance and time; maximum "g"s

Solution:

Newton's second law for the aircraft is

$$
\mathrm{M} \cdot \frac{\mathrm{dV}}{\mathrm{dt}}=-\mathrm{C}_{\mathrm{D}} \cdot \frac{1}{2} \cdot \rho \cdot \mathrm{~A} \cdot \mathrm{~V}^{2}
$$

where A and CD are the single parachute area and drag coefficient

$$
\begin{array}{ll}
\text { Separating variables } & \frac{\mathrm{dV}}{\mathrm{~V}^{2}}=-\frac{\mathrm{C}_{\mathrm{D}} \cdot \rho \cdot \mathrm{~A}}{2 \cdot \mathrm{M}} \cdot \mathrm{dt} \\
\text { Integrating, with IC } V=V_{\mathrm{i}} & \mathrm{~V}(\mathrm{t})=\frac{\mathrm{V}_{\mathrm{i}}}{1+\frac{\mathrm{C}_{\mathrm{D}} \cdot \rho \cdot \mathrm{~A}}{2 \cdot \mathrm{M}} \cdot \mathrm{~V}_{\mathrm{i}} \cdot \mathrm{t}} \\
\text { Integrating again with respect to } t & \mathrm{x}(\mathrm{t})=\frac{2 \cdot \mathrm{M}}{\mathrm{C}_{\mathrm{D}} \cdot \rho \cdot \mathrm{~A}} \cdot \ln \left(1+\frac{\mathrm{C}_{\mathrm{D}} \cdot \rho \cdot \mathrm{~A}}{2 \cdot \mathrm{M}} \cdot \mathrm{~V}_{\mathrm{i}} \cdot \mathrm{t}\right) \\
\text { Eliminating } t \text { from Eqs. } 1 \text { and } 2 & \mathrm{x}=\frac{2 \cdot \mathrm{M}}{\mathrm{C}_{\mathrm{D}} \cdot \rho \cdot \mathrm{~A}} \cdot \ln \left(\frac{\mathrm{~V}_{\mathrm{i}}}{\mathrm{~V}}\right)
\end{array}
$$

To find the minimum parachute area we must solve Eq 3 for A with $x=x_{\mathrm{f}}$ when $V=V_{\mathrm{f}}$

$$
\begin{equation*}
\mathrm{A}=\frac{2 \cdot \mathrm{M}}{\mathrm{C}_{\mathrm{D}} \cdot \rho \cdot \mathrm{x}_{\mathrm{f}}} \cdot \ln \left(\frac{\mathrm{~V}_{\mathrm{i}}}{\mathrm{~V}_{\mathrm{f}}}\right) \tag{4}
\end{equation*}
$$

For three parachutes, the analysis is the same except A is replaced with $3 A$, leading to

The " g "'s are given by

$$
\begin{equation*}
A=\frac{2 \cdot \mathrm{M}}{3 \cdot \mathrm{C}_{\mathrm{D}} \cdot \rho \cdot \mathrm{x}_{\mathrm{f}}} \cdot \ln \left(\frac{\mathrm{~V}_{\mathrm{i}}}{\mathrm{~V}_{\mathrm{f}}}\right) \tag{5}
\end{equation*}
$$

which has a maximum at the initial instant $\left(V=V_{\mathrm{i}}\right)$
Given data:

$$
\begin{aligned}
M & =9500 \mathrm{~kg} \\
V_{\mathrm{i}} & =350 \mathrm{~km} / \mathrm{hr} \\
V_{\mathrm{f}} & =100 \mathrm{~km} / \mathrm{hr} \\
x_{\mathrm{f}} & =1200 \mathrm{~m} \\
C_{\mathrm{D}} & =1.42 \quad(\text { Table } 9.3) \\
\rho & =1.23 \mathrm{~kg} / \mathrm{m}^{3}
\end{aligned}
$$

Computed results:
Single:
$A=11.4 \mathrm{~m}^{2}$
Triple:
$D=3.80 \mathrm{~m}$
" g "'s = -1.01 Max

$\boldsymbol{t} \mathbf{(s)}$	$\boldsymbol{x} \mathbf{(m)}$	$\boldsymbol{V}(\mathbf{k m} / \mathbf{h r})$
0.00	0.0	350
2.50	216.6	279
5.00	393.2	232
7.50	542.2	199
10.0	671.1	174
12.5	784.7	154
15.0	886.3	139
17.5	978.1	126
20.0	1061.9	116
22.5	1138.9	107
24.6	1200.0	100

Problem 9.97
Given: Windmills to be made from surplus 55-gal oildrums.
For a drum, $D=24 \mathrm{in}, H=29 \mathrm{in}$.
Find: Which configuration wove be better, why, and by how much?
Solution: Sum moments about pivot, neglecting friction, interference. Configuration A :

$$
\begin{aligned}
& \Sigma M=\frac{D}{2} F_{u}-\frac{D}{2} F_{d}=\frac{D}{2}\left(F_{u}-F_{d}\right) \\
& \Sigma M=\frac{D}{2}\left(C_{D u}-C_{D d}\right) A \frac{1}{2} \rho V^{2}
\end{aligned}
$$

Configuration B:

Configuration (A)

$$
\begin{aligned}
& \Sigma M=\frac{H}{2} F_{L}-\frac{H}{2} F_{d}=\frac{H}{2}\left(F_{u}-F_{d}\right) \\
& \Sigma M=\frac{H}{2}\left(C_{D_{u}}-C_{D_{d}}\right) A \frac{1}{L} \rho V^{2}
\end{aligned}
$$

Performance of B will be better becacese $H>D$.

$$
\frac{H-O}{D}=\frac{29-24}{24}=0.208 \text { or } 20.8 \text { percent improvement! }
$$

Given: Bike and rider with $M=100 \mathrm{~kg}, A=0.46 \mathrm{~m}^{2}$, and negligible rolling resistance, has terminal speed, $V_{t}=15 \mathrm{~ms}$, on a hill with 8 percent grade. Drag coefficient estimated ass $C_{D}=1,2$.
Find: (a) Verity this calculation of drag coefficient.
(b) Distance for bike and rider to 510 w from 15 to $10 \mathrm{~m} / \mathrm{sec}$ after reaching level / road.

Solution: Treat the bike and rider as a system From a free-bod's diagram,

$$
\Sigma F_{x}=F_{G}-F_{D}=m g \sin \theta-S_{D A} \frac{1}{z} \rho V^{2}=m a_{x}
$$

$$
\theta=\tan ^{-1}(0.08)=4,57^{\circ}
$$

At terminal speed, $a_{x}=0$. Then $m g \sin \theta=C_{D} A \frac{1}{2} \rho V_{t}{ }^{2}$, so

$$
C_{D}=\frac{2 m g \sin \theta}{A \rho V_{t}^{2}}=2 \times 100 \mathrm{~kg} \times 9.81 \frac{\mathrm{~m}}{3^{2}} \times \sin 4.57^{\circ} \times \frac{1}{8.46 m^{2}} \times \frac{m^{3}}{1.23 \mathrm{~kg}} \times \frac{\mathrm{s}^{2}}{(15)^{2} \mathrm{~m}^{2}}=1.23
$$

Thus $C_{0} \approx 1.2$ is correct.
on a flat surface, $\Sigma F_{x}=-F_{D}=-G_{D} A \frac{1}{2} \rho^{2}=m \frac{d v}{d t}=m v \frac{d v}{d \omega}$
Thus $m v \frac{d v}{d u}=-6 A \frac{1}{2} \rho v^{2}$
or

$$
d \Delta=-\frac{3 m}{c_{D \rho A}} \frac{d V}{V}
$$

Integrating

$$
\begin{aligned}
& A-\not A_{0}^{A}=\int_{\Delta_{0}}^{0} d \Delta=-\frac{2 m}{S_{D A A}} \int_{v_{0}}^{v} \frac{d v}{v}=-\frac{2 m}{\left.S_{D A} \operatorname{Cn} v\right]_{v_{0}}^{V}=-\frac{2 m}{C \rho A} \ln \left(\frac{v}{V_{0}}\right)} \\
& a=-2 \times 100 \mathrm{~kg} \times \frac{1}{1.23} \times \frac{m^{3}}{1.23 \mathrm{~kg}} \times \frac{1}{0.46 m^{2}} \ln \frac{10}{15}=117 \mathrm{~m}
\end{aligned}
$$

Given: Ballistic data for 44 magnum revolver bullet:

$$
\left.\begin{array}{l}
V_{i}=250 \mathrm{~m} / \mathrm{s} \\
V_{f}=210 \mathrm{~m} / \mathrm{s}
\end{array}\right\} \text { over } \Delta x=150 \mathrm{~m} \quad \begin{aligned}
& D=11.2 \mathrm{~mm} \\
& m=15.6 \mathrm{~g}
\end{aligned}
$$

Find: Evaluate average drag coefficient.
Solution: Apply Newton's second law, definition of drag coefficient. Completing equation i $F_{D}=\vec{C}_{D} A \frac{1}{Z} p v^{2}$

Basic equation: $\sum F_{x}=m a_{x}=m \frac{d v}{d t}=m v \frac{d v}{d x}$

From the free-body diagram, $\overline{\Sigma F_{X}}=-F_{0}$, so

$$
m V \frac{d V}{d x}=-F_{D}=-\vec{C}_{D} A \frac{1}{z} \varphi V^{*}
$$

Thus

$$
\frac{d V}{V}=-\frac{\bar{c}_{D} A f}{z m} d x
$$

Integrating

$$
\int_{i}^{V_{f}} \frac{d V}{V}=\ln V_{V_{i}}^{V_{f}}=\ln \frac{V_{f}}{V_{i}}=-\frac{\vec{C}_{D} A C}{\ln } \Delta x
$$

solving, using density of standard air,

$$
\begin{aligned}
\bar{C}_{D} & =-\frac{2 m}{\rho A \Delta x} \ln \frac{V_{f}}{V_{i}} \\
& =-2 \times 0.0156 / \mathrm{kg}_{x} \frac{m^{3}}{1123 \mathrm{~kg}} \times \frac{4}{\pi(0.012)^{2} m^{2}} \times \frac{1}{150 m^{2}} \ln \left(\frac{210}{250}\right) \\
\bar{C}_{D} & =0.299
\end{aligned}
$$

9.100 A cyclist is able to attain a maximum speed of $30 \mathrm{~km} / \mathrm{hr}$ on a calm day. The total mass of rider and bike is 65 kg . The rolling resistance of the tires is $F_{R}=7.5 \mathrm{~N}$, and the drag coefficient and frontal area are $C_{D}=1.2$ and $A=0.25 \mathrm{~m}^{2}$. The cyclist bets that today, even though there is a headwind of $10 \mathrm{~km} / \mathrm{hr}$, she can maintain a speed of $24 \mathrm{~km} / \mathrm{hr}$. She also bets that, cycling with wind support, she can attain a top speed of $40 \mathrm{~km} / \mathrm{hr}$. Which, if any, bets does she win?

Given: Data on cyclist performance on a calm day
Find: Performance hindered and aided by wind

Solution:

The given data or available data is

$$
\begin{array}{lll}
\mathrm{F}_{\mathrm{R}}=7.5 \cdot \mathrm{~N} & \mathrm{M}=65 \cdot \mathrm{~kg} & \mathrm{~A}=0.25 \cdot \mathrm{~m}^{2} \\
\mathrm{C}_{\mathrm{D}}=1.2 & \rho=1.23 \cdot \frac{\mathrm{~kg}}{\mathrm{~m}^{3}} & \mathrm{~V}=30 \cdot \frac{\mathrm{~km}}{\mathrm{hr}} \\
\text { ing equation is } & \mathrm{F}_{\mathrm{D}}=\frac{1}{2} \cdot \rho \cdot \mathrm{~A} \cdot \mathrm{v}^{2} \cdot \mathrm{C}_{\mathrm{D}} & \mathrm{~F}_{\mathrm{D}}=12.8 \mathrm{~N}
\end{array}
$$

The governing equation is
The power steady power generated by the cyclist is

Now, with a headwind we have

$$
\begin{array}{lll}
\mathrm{P}=\left(\mathrm{F}_{\mathrm{D}}+\mathrm{F}_{\mathrm{R}}\right) \cdot \mathrm{V} & \mathrm{P}=169 \mathrm{~W} & \mathrm{P}=0.227 \mathrm{hp} \\
\mathrm{~V}_{\mathrm{W}}=10 \cdot \frac{\mathrm{~km}}{\mathrm{hr}} & \mathrm{~V}=24 \cdot \frac{\mathrm{~km}}{\mathrm{hr}} &
\end{array}
$$

The aerodynamic drag is greater because of the greater effective wind speed

$$
\mathrm{F}_{\mathrm{D}}=\frac{1}{2} \cdot \rho \cdot \mathrm{~A} \cdot\left(\mathrm{~V}+\mathrm{V}_{\mathrm{w}}\right)^{2} \cdot \mathrm{C}_{\mathrm{D}} \quad \mathrm{~F}_{\mathrm{D}}=16.5 \mathrm{~N}
$$

The power required is that needed to overcome the total force $F_{D}+F_{R}$, moving at the cyclist's speed

$$
\mathrm{P}=\mathrm{V} \cdot\left(\mathrm{~F}_{\mathrm{D}}+\mathrm{F}_{\mathrm{R}}\right) \quad \mathrm{P}=160 \mathrm{~W}
$$

This is less than the power she can generate
She wins the bet!

With the wind supporting her the effective wind speed is substantially lower

$$
\begin{array}{ll}
\mathrm{V}_{\mathrm{W}}=10 \cdot \frac{\mathrm{~km}}{\mathrm{hr}} & \mathrm{~V}=40 \cdot \frac{\mathrm{~km}}{\mathrm{hr}} \\
\mathrm{~F}_{\mathrm{D}}=\frac{1}{2} \cdot \rho \cdot \mathrm{~A} \cdot\left(\mathrm{~V}-\mathrm{V}_{\mathrm{W}}\right)^{2} \cdot \mathrm{C}_{\mathrm{D}} & \mathrm{~F}_{\mathrm{D}}=12.8 \mathrm{~N}
\end{array}
$$

The power required is that needed to overcome the total force $F_{\mathrm{D}}+F_{\mathrm{R}}$, moving at the cyclist's speed

$$
\mathrm{P}=\mathrm{V} \cdot\left(\mathrm{~F}_{\mathrm{D}}+\mathrm{F}_{\mathrm{R}}\right)
$$

$$
\mathrm{P}=226 \mathrm{~W}
$$

This is more than the power she can generate
She loses the bet
9.101 Consider the cyclist in Problem 9.100. Determine the maximum speeds she is actually able to attain today (with the 10 $\mathrm{km} / \mathrm{hr}$ wind) cycling into the wind, and cycling with the wind. If she were to replace the tires with high-tech ones that had a rolling resistance of only 3.5 N , determine her maximum speed on a calm day, cycling into the wind, and cycling with the wind. If she in addition attaches an aerodynamic fairing that reduces the drag coefficient to $C_{D}=0.9$, what will be her new maximum speeds?

Given: Data on cyclist performance on a calm day

Find: Performance hindered and aided by wind; repeat with high-tech tires; with fairing

Solution:

The given data or available data is

$$
\begin{array}{cll}
\qquad \mathrm{F}_{\mathrm{R}}=7.5 \cdot \mathrm{~N} & \mathrm{M}=65 \cdot \mathrm{~kg} & \mathrm{~A}=0.25 \cdot \mathrm{~m}^{2} \\
\mathrm{C}_{\mathrm{D}}=1.2 & \rho=1.23 \cdot \frac{\mathrm{~kg}}{\mathrm{~m}^{3}} & \mathrm{~V}=30 \cdot \frac{\mathrm{~km}}{\mathrm{hr}} \\
\text { The governing equation is } & \mathrm{F}_{\mathrm{D}}=\frac{1}{2} \cdot \rho \cdot \mathrm{~A} \cdot \mathrm{~V}^{2} \cdot \mathrm{C}_{\mathrm{D}} & \mathrm{~F}_{\mathrm{D}}=12.8 \mathrm{~N} \\
\text { Power steady power generated by the cyclist is } & \mathrm{P}=\left(\mathrm{F}_{\mathrm{D}}+\mathrm{F}_{\mathrm{R}}\right) \cdot \mathrm{V} & \mathrm{P}=169 \mathrm{~W} \quad \mathrm{P}=0.227 \cdot \mathrm{hp}
\end{array}
$$

The governing equation is

Now, with a headwind we have

$$
\mathrm{V}_{\mathrm{W}}=10 \cdot \frac{\mathrm{~km}}{\mathrm{hr}}
$$

The aerodynamic drag is greater because of the greater effective wind speed

$$
\begin{equation*}
\mathrm{F}_{\mathrm{D}}=\frac{1}{2} \cdot \rho \cdot \mathrm{~A} \cdot\left(\mathrm{~V}+\mathrm{V}_{\mathrm{W}}\right)^{2} \cdot \mathrm{C}_{\mathrm{D}} \tag{1}
\end{equation*}
$$

The power required is that needed to overcome the total force $F_{D}+F_{R}$, moving at the cyclist's speed is

$$
\begin{equation*}
\mathrm{P}=\mathrm{V} \cdot\left(\mathrm{~F}_{\mathrm{D}}+\mathrm{F}_{\mathrm{R}}\right) \tag{2}
\end{equation*}
$$

Combining Eqs 1 and 2 we obtain an expression for the cyclist's maximum speed V cycling into a
headwind (where $P=169 \mathrm{~W}$ is the cyclist's power)

$$
\begin{equation*}
\text { Cycling into the wind: } \quad \mathrm{P}=\left[\mathrm{F}_{\mathrm{R}}+\frac{1}{2} \cdot \rho \cdot \mathrm{~A} \cdot\left(\mathrm{~V}+\mathrm{V}_{\mathrm{W}}\right)^{2} \cdot \mathrm{C}_{\mathrm{D}}\right] \cdot \mathrm{V} \tag{3}
\end{equation*}
$$

This is a cubic equation for V; it can be solved analytically, or by iterating. It is convenient to use Excel's Goal Seek (or Solver). From the associated Excel workbook

From Solver

$$
\mathrm{V}=24.7 \cdot \frac{\mathrm{~km}}{\mathrm{hr}}
$$

By a similar reasoning:

$$
\begin{equation*}
\text { Cycling with the wind: } \quad \mathrm{P}=\left[\mathrm{F}_{\mathrm{R}}+\frac{1}{2} \cdot \rho \cdot \mathrm{~A} \cdot\left(\mathrm{~V}-\mathrm{V}_{\mathrm{w}}\right)^{2} \cdot \mathrm{C}_{\mathrm{D}}\right] \cdot \mathrm{V} \tag{4}
\end{equation*}
$$

$$
\mathrm{V}=35.8 \cdot \frac{\mathrm{~km}}{\mathrm{hr}}
$$

With improved tires

$$
\mathrm{F}_{\mathrm{R}}=3.5 \cdot \mathrm{~N}
$$

Maximum speed on a calm day is obtained from $\quad \mathrm{P}=\left(\mathrm{F}_{\mathrm{R}}+\frac{1}{2} \cdot \rho \cdot \mathrm{~A} \cdot \mathrm{~V}^{2} \cdot \mathrm{C}_{\mathrm{D}}\right) \cdot \mathrm{V}$
This is a again a cubic equation for V; it can be solved analytically, or by iterating. It is convenient to use Excel's Goal Seek (or Solver). From the associated Excel workbook

From Solver

$$
\mathrm{V}=32.6 \cdot \frac{\mathrm{~km}}{\mathrm{hr}}
$$

Equations 3 and 4 are repeated for the case of improved tires
From Solver
Against the wind

$$
\mathrm{V}=26.8 \cdot \frac{\mathrm{~km}}{\mathrm{hr}}
$$

With the wind

$$
\mathrm{V}=39.1 \cdot \frac{\mathrm{~km}}{\mathrm{hr}}
$$

For improved tires and fairing, from Solver

$$
\mathrm{V}=35.7 \cdot \frac{\mathrm{~km}}{\mathrm{hr}} \quad \text { Against the wind } \quad \mathrm{V}=29.8 \cdot \frac{\mathrm{~km}}{\mathrm{hr}} \quad \text { With the wind } \quad \mathrm{V}=42.1 \cdot \frac{\mathrm{~km}}{\mathrm{hr}}
$$

9.101 Consider the cyclist in Problem 9.100. Determine the maximum speeds she is actually able to attain today (with the 10 $\mathrm{km} / \mathrm{hr}$ wind) cycling into the wind, and cycling with the wind. If she were to replace the tires with high-tech ones that had a rolling resistance of only 3.5 N , determine her maximum speed on a calm day, cycling into the wind, and cycling with the wind. If she in addition attaches an aerodynamic fairing that reduces the drag coefficient to $C_{D}=0.9$, what will be her new maximum speeds?

Given: Data on cyclist performance on a calm day
Find: Performance hindered and aided by wind; repeat with high-tech tires; with fairing

Solution:

Given data:

$F_{\mathrm{R}}=$	7.5	N
$M=$	65	kg
$A=$	0.25	$\mathrm{~m}^{2}$
$C_{\mathrm{D}}=$	1.2	
$\rho=$	1.23	$\mathrm{~kg} / \mathrm{m}^{3}$
$V=$	30	$\mathrm{~km} / \mathrm{hr}$
$V_{\mathrm{w}}=$	10	$\mathrm{~km} / \mathrm{hr}$

Computed results:

$$
\begin{aligned}
& \mathrm{F}_{\mathrm{D}}=\frac{1}{2} \cdot \rho \cdot \mathrm{~A} \cdot \mathrm{v}^{2} \cdot \mathrm{C}_{\mathrm{D}} \quad F_{\mathrm{D}}=12.8 \mathrm{~N} \\
& \mathrm{P}=\left(\mathrm{F}_{\mathrm{D}}+\mathrm{F}_{\mathrm{R}}\right) \cdot \mathrm{V} \quad P=169 \mathrm{~W} \\
& \text { Cycling into the wind: } \quad \mathrm{P}=\left[\mathrm{F}_{\mathrm{R}}+\frac{1}{2} \cdot \rho \cdot \mathrm{~A} \cdot\left(\mathrm{~V}+\mathrm{V}_{\mathrm{w}}\right)^{2} \cdot \mathrm{C}_{\mathrm{D}}\right] \cdot \mathrm{V} \\
& \text { Cycling with the wind: } \\
& \mathrm{P}=\left[\mathrm{F}_{\mathrm{R}}+\frac{1}{2} \cdot \rho \cdot \mathrm{~A} \cdot\left(\mathrm{~V}-\mathrm{V}_{\mathrm{w}}\right)^{2} \cdot \mathrm{C}_{\mathrm{D}}\right] \cdot \mathrm{V}
\end{aligned}
$$

With improved tires:

$$
\begin{aligned}
& F_{\mathrm{R}}=\quad 3.5 \quad \mathrm{~N} \\
& \mathrm{P}=\left(\mathrm{F}_{\mathrm{R}}+\frac{1}{2} \cdot \rho \cdot \mathrm{~A} \cdot \mathrm{~V}^{2} \cdot \mathrm{C}_{\mathrm{D}}\right) \cdot \mathrm{V}
\end{aligned}
$$

Left (W)	Right (W)	Error	\boldsymbol{V} (km/hr)
169	169	0%	32.6

Cycling into the wind:

$$
\mathrm{P}=\left[\mathrm{F}_{\mathrm{R}}+\frac{1}{2} \cdot \rho \cdot \mathrm{~A} \cdot\left(\mathrm{~V}+\mathrm{V}_{\mathrm{w}}\right)^{2} \cdot \mathrm{C}_{\mathrm{D}}\right] \cdot \mathrm{V}
$$

Left (W)	Right (W)	Error	\boldsymbol{V} (km/hr)
169	169	0%	26.8

Cycling with the wind: $\quad \mathrm{P}=\left[\mathrm{F}_{\mathrm{R}}+\frac{1}{2} \cdot \rho \cdot \mathrm{~A} \cdot\left(\mathrm{~V}-\mathrm{V}_{\mathrm{w}}\right)^{2} \cdot \mathrm{C}_{\mathrm{D}}\right] \cdot \mathrm{V}$

Left (W)	Right (W)	Error	\boldsymbol{V} (km/hr)
169	169	0%	39.1

With improved tires and fairing:

$$
\begin{aligned}
& F_{\mathrm{R}}= \\
& C_{\mathrm{D}}= \\
& 0.5 \quad \mathrm{~N} \\
& \mathrm{P}=\left(\mathrm{F}_{\mathrm{R}}+\frac{1}{2} \cdot \rho \cdot \mathrm{~A} \cdot \mathrm{~V}^{2} \cdot \mathrm{C}_{\mathrm{D}}\right) \cdot \mathrm{V}
\end{aligned}
$$

Left (W)	Right (W)	Error	\boldsymbol{V} (km/hr)
	169	169	0%

Cycling into the wind: $\quad \mathrm{P}=\left[\mathrm{F}_{\mathrm{R}}+\frac{1}{2} \cdot \rho \cdot \mathrm{~A} \cdot\left(\mathrm{~V}+\mathrm{V}_{\mathrm{w}}\right)^{2} \cdot \mathrm{C}_{\mathrm{D}}\right] \cdot \mathrm{V}$

Left (W)	Right (W)	Error	$\boldsymbol{V} \mathbf{(k m} / \mathbf{h r})$
	Using Solver :	169	169
	0%	29.8	

Cycling with the wind: $\quad \mathrm{P}=\left[\mathrm{F}_{\mathrm{R}}+\frac{1}{2} \cdot \rho \cdot \mathrm{~A} \cdot\left(\mathrm{~V}-\mathrm{V}_{\mathrm{w}}\right)^{2} \cdot \mathrm{C}_{\mathrm{D}}\right] \cdot \mathrm{V}$

Left (W)	Right (W)	Error	\boldsymbol{V} (km/hr)
	Using Solver :	169	169

Problem 9.102

9.102 Consider the cyclist in Problem 9.100. She is having a bad day, because she has to climb a hill with a 5° slope. What is the speed she is able to attain? What is the maximum speed if there is also a headwind of $10 \mathrm{~km} / \mathrm{hr}$? She reaches the top of the hill, and turns around and heads down the hill. If she still pedals as hard as possible, what will be her top speed (when it is calm, and when the wind is present)? What will be her maximum speed if she decides to coast down the hill (with and without the aid of the wind)?

Given: Data on cyclist performance on a calm day

Find: Performance on a hill with and without wind

Solution:

The given data or available data is

\[

\]

The governing equation is

Riding up the hill (no wind)
For steady speed the cyclist's power is consumed by working against the net force (rolling resistance, darg, and gravity)

$$
\text { Cycling up the hill: } \quad \mathrm{P}=\left(\mathrm{F}_{\mathrm{R}}+\frac{1}{2} \cdot \rho \cdot \mathrm{~A} \cdot \mathrm{~V}^{2} \cdot \mathrm{C}_{\mathrm{D}}+\mathrm{M} \cdot \mathrm{~g} \cdot \sin (\theta)\right) \cdot \mathrm{V}
$$

This is a cubic equation for the speed which can be solved analytically, or by iteration, or using Excel's Goal Seek or Solver. The solution is obtained from the associated Excel workbook

From Solver

$$
\begin{aligned}
& \mathrm{V}=9.47 \cdot \frac{\mathrm{~km}}{\mathrm{hr}} \\
& \mathrm{~V}_{\mathrm{W}}=10 \cdot \frac{\mathrm{~km}}{\mathrm{hr}}
\end{aligned}
$$

The aerodynamic drag is greater because of the greater effective wind speed

$$
\mathrm{F}_{\mathrm{D}}=\frac{1}{2} \cdot \rho \cdot \mathrm{~A} \cdot\left(\mathrm{~V}+\mathrm{V}_{\mathrm{W}}\right)^{2} \cdot \mathrm{C}_{\mathrm{D}}
$$

The power required is that needed to overcome the total force (rolling resistance, drag, and gravity) moving at the cyclist's speed is

$$
\text { Uphill against the wind: } \quad \mathrm{P}=\left[\mathrm{F}_{\mathrm{R}}+\frac{1}{2} \cdot \rho \cdot \mathrm{~A} \cdot\left(\mathrm{~V}+\mathrm{V}_{\mathrm{W}}\right)^{2} \cdot \mathrm{C}_{\mathrm{D}}+\mathrm{M} \cdot \mathrm{~g} \cdot \sin (\theta)\right] \cdot \mathrm{V}
$$

This is again a cubic equation for V
From Solver

$$
\mathrm{V}=8.94 \cdot \frac{\mathrm{~km}}{\mathrm{hr}}
$$

Pedalling downhill (no wind) gravity helps increase the speed; the maximum speed is obtained from

$$
\text { Cycling down the hill: } \quad \mathrm{P}=\left(\mathrm{F}_{\mathrm{R}}+\frac{1}{2} \cdot \rho \cdot \mathrm{~A} \cdot \mathrm{~V}^{2} \cdot \mathrm{C}_{\mathrm{D}}-\mathrm{M} \cdot \mathrm{~g} \cdot \sin (\theta)\right) \cdot \mathrm{V}
$$

This cubic equation for V is solved in the associated Excel workbook
From Solver

$$
\mathrm{V}=63.6 \cdot \frac{\mathrm{~km}}{\mathrm{hr}}
$$

Pedalling downhill (wind assisted) gravity helps increase the speed; the maximum speed is obtained from

$$
\text { Wind-assisted downhill: } \quad \mathrm{P}=\left[\mathrm{F}_{\mathrm{R}}+\frac{1}{2} \cdot \rho \cdot \mathrm{~A} \cdot\left(\mathrm{~V}-\mathrm{V}_{\mathrm{W}}\right)^{2} \cdot \mathrm{C}_{\mathrm{D}}-\mathrm{M} \cdot \mathrm{~g} \cdot \sin (\theta)\right] \cdot \mathrm{V}
$$

This cubic equation for V is solved in the associated Excel workbook
From Solver

$$
\mathrm{V}=73.0 \cdot \frac{\mathrm{~km}}{\mathrm{hr}}
$$

Freewheeling downhill, the maximum speed is obtained from the fact that the net force is zero

$$
\begin{array}{ll}
\text { Freewheeling downhill: } & \mathrm{F}_{\mathrm{R}}+\frac{1}{2} \cdot \rho \cdot \mathrm{~A} \cdot \mathrm{~V}^{2} \cdot \mathrm{C}_{\mathrm{D}}-\mathrm{M} \cdot \mathrm{~g} \cdot \sin (\theta)=0 \\
& \mathrm{~V}=\sqrt{\frac{\mathrm{M} \cdot \mathrm{~g} \cdot \sin (\theta)-\mathrm{F}_{\mathrm{R}}}{\frac{1}{2} \cdot \rho \cdot \mathrm{~A} \cdot \mathrm{C}_{\mathrm{D}}}} \\
\text { Wind assisted: } & \mathrm{F}_{\mathrm{R}}+\frac{1}{2} \cdot \rho \cdot \mathrm{~A} \cdot\left(\mathrm{~V}-\mathrm{V}_{\mathrm{W}}\right)^{2} \cdot \mathrm{C}_{\mathrm{D}}-\mathrm{M} \cdot \mathrm{~g} \cdot \sin (\theta)=0 \\
& \mathrm{~V}=\mathrm{V}_{\mathrm{W}}+\sqrt{\frac{\mathrm{M} \cdot \mathrm{~g} \cdot \sin (\theta)-\mathrm{F}_{\mathrm{R}}}{\frac{1}{2} \cdot \rho \cdot \mathrm{~A} \cdot \mathrm{C}_{\mathrm{D}}}}
\end{array}
$$

9.102 Consider the cyclist in Problem 9.100. She is having a bad day, because she has to climb a hill with a 5° slope. What is the speed she is able to attain? What is the maximum speed if there is also a headwind of $10 \mathrm{~km} / \mathrm{hr}$? She reaches the top of the hill, and turns around and heads down the hill. If she still pedals as hard as possible, what will be her top speed (when it is calm, and when the wind is present)? What will be her maximum speed if she decides to coast down the hill (with and without the aid of the wind)?

Given: Data on cyclist performance on a calm day
Find: Performance on a hill with and without wind

Solution:

Given data:

F_{R}	$=$	7.5	N
M	$=$	65	kg
A	$=$	0.25	$\mathrm{~m}^{2}$
C_{D}	$=$	1.2	
ρ	$=$	1.23	$\mathrm{~kg} / \mathrm{m}^{3}$
V	$=$	30	$\mathrm{~km} / \mathrm{hr}$
V_{w}	$=$	10	$\mathrm{~km} / \mathrm{hr}$
θ	$=$	5	deg

Computed results:

$$
\begin{array}{lll}
\mathrm{F}_{\mathrm{D}}=\frac{1}{2} \cdot \rho \cdot \mathrm{~A} \cdot \mathrm{~V}^{2} \cdot \mathrm{C}_{\mathrm{D}} & F_{\mathrm{D}}= & 12.8 \\
\mathrm{P}=\left(\mathrm{F}_{\mathrm{D}}+\mathrm{F}_{\mathrm{R}}\right) \cdot \mathrm{V} & P= & \mathrm{N} \\
& & 169 \\
\mathrm{~W}
\end{array}
$$

Cycling up the hill: $\quad \mathrm{P}=\left(\mathrm{F}_{\mathrm{R}}+\frac{1}{2} \cdot \rho \cdot \mathrm{~A} \cdot \mathrm{~V}^{2} \cdot \mathrm{C}_{\mathrm{D}}+\mathrm{M} \cdot \mathrm{g} \cdot \sin (\theta)\right) \cdot \mathrm{V}$

Left (W)	Right (W)	Error	$\boldsymbol{V}(\mathbf{k m} / \mathbf{h r})$
Using Solver:	169	169	0%

Uphill against the wind: $\quad \mathrm{P}=\left[\mathrm{F}_{\mathrm{R}}+\frac{1}{2} \cdot \rho \cdot \mathrm{~A} \cdot\left(\mathrm{~V}+\mathrm{V}_{\mathrm{w}}\right)^{2} \cdot \mathrm{C}_{\mathrm{D}}+\mathrm{M} \cdot \mathrm{g} \cdot \sin (\theta)\right] \cdot \mathrm{V}$

	Left (W)	Right (W)	Error	$V(\mathrm{~km} / \mathrm{hr})$
Using Solver :	169	169	0\%	8.94

Cycling down the hill: $\quad \mathrm{P}=\left(\mathrm{F}_{\mathrm{R}}+\frac{1}{2} \cdot \rho \cdot \mathrm{~A} \cdot \mathrm{~V}^{2} \cdot \mathrm{C}_{\mathrm{D}}-\mathrm{M} \cdot \mathrm{g} \cdot \sin (\theta)\right) \cdot \mathrm{V}$

	Left (W)	Right (W)	Error	$\boldsymbol{V}(\mathbf{k m} / \mathbf{h r})$
Using Solver $:$	169	169	0%	63.6

Wind-assisted downhill: $\quad \mathrm{P}=\left[\mathrm{F}_{\mathrm{R}}+\frac{1}{2} \cdot \rho \cdot \mathrm{~A} \cdot\left(\mathrm{~V}-\mathrm{V}_{\mathrm{W}}\right)^{2} \cdot \mathrm{C}_{\mathrm{D}}-\mathrm{M} \cdot \mathrm{g} \cdot \sin (\theta)\right] \cdot \mathrm{V}$

Left (W)	Right (W)	Error	$V(\mathbf{k m} / \mathbf{h r})$
Using Solver :	169	169	0%
73.0			

*9.103 At a surprise party for a friend you've tied a series of 9-in. diameter helium balloons to a flagpole, each tied with a short string. The first one is tied 3 ft above the ground, and the other eight are tied at 3 ft . spacings, so the last is tied at a height of 63 ft . Being quite a nerdy engineer, you notice that in the steady wind, each balloon is blown by the wind so it looks like the angles the strings make with the vertical are about $5^{\circ}, 10^{\circ}, 20^{\circ}, 30^{\circ}, 35^{\circ}$, $45^{\circ}, 50^{\circ}, 60^{\circ}$ and 65°. Estimate and plot the wind velocity profile for the 63 ft . range. Assume the helium is at $70^{\circ} \mathrm{F}$ and 1.5 psig , and that each balloon is made of $1 / 10 \mathrm{oz}$. of latex.

Given: Series of party balloons
Find: Wind velocity profile; Plot Note: Flagpole is actually 27 ft tall, not 63 ft !

Solution:

Basic equations: $\quad \mathrm{C}_{\mathrm{D}}=\frac{\mathrm{F}_{\mathrm{D}}}{\frac{1}{2} \cdot \rho \cdot \mathrm{~V}^{2} \cdot \mathrm{~A}} \quad \mathrm{~F}_{\mathrm{B}}=\rho_{\text {air }} \cdot \mathrm{g} \cdot \mathrm{Vol} \quad \stackrel{\rightharpoonup}{\mathrm{F}}=0$
The above figure applies to each balloon
For the horizontal forces $F_{D}-T \cdot \sin (\theta)=0$
For the vertical forces $-\mathrm{T} \cdot \cos (\theta)+\mathrm{F}_{\text {Bnet }}-\mathrm{W}_{\text {latex }}=0$

Here

$$
\begin{equation*}
\mathrm{F}_{\text {Bnet }}=\mathrm{F}_{\mathrm{B}}-\mathrm{W}=\left(\rho_{\mathrm{air}}-\rho_{\mathrm{He}}\right) \cdot \mathrm{g} \cdot \frac{\pi \cdot \mathrm{D}^{3}}{6} \tag{2}
\end{equation*}
$$

$$
\mathrm{D}=9 \cdot \text { in } \quad \mathrm{M}_{\text {latex }}=\frac{1}{10} \cdot \mathrm{oz} \quad \mathrm{~W}_{\text {latex }}=\mathrm{M}_{\text {latex }} \cdot \mathrm{g} \quad \mathrm{~W}_{\text {latex }}=0.00625 \mathrm{lbf}
$$

We have (Table A.6) $\quad \mathrm{R}_{\mathrm{He}}=386.1 \cdot \frac{\mathrm{ft} \cdot \mathrm{lbf}}{\mathrm{lbm} \cdot \mathrm{R}} \quad \quad \mathrm{p}_{\mathrm{He}}=16.2 \cdot \mathrm{psi} \quad \mathrm{T}_{\mathrm{He}}=530 \cdot \mathrm{R} \quad \rho_{\mathrm{He}}=\frac{\mathrm{p}_{\mathrm{He}}}{\mathrm{R}_{\mathrm{He}} \cdot \mathrm{T}_{\mathrm{He}}} \quad \rho_{\mathrm{He}}=0.000354 \frac{\text { slug }}{\mathrm{ft}^{3}}$

$$
\begin{array}{ll}
\mathrm{R}_{\mathrm{air}}=53.33 \cdot \frac{\mathrm{ft} \cdot \mathrm{lbf}}{\mathrm{lbm} \cdot \mathrm{R}} \quad \mathrm{P}_{\mathrm{air}}=14.7 \cdot \mathrm{psi} & \mathrm{~T}_{\mathrm{air}}=530 \cdot \mathrm{R} \quad \rho_{\mathrm{air}}=\frac{\mathrm{P}_{\mathrm{air}}}{\mathrm{R}_{\mathrm{air}} \cdot \mathrm{~T}_{\mathrm{air}}} \quad \rho_{\mathrm{air}}=0.00233 \frac{\text { slug }}{\mathrm{ft}^{3}} \\
\mathrm{~F}_{\text {Bnet }}=\left(\rho_{\mathrm{air}}-\rho_{\mathrm{He}}\right) \cdot \mathrm{g} \cdot \frac{\pi \cdot \mathrm{D}^{3}}{6} & \mathrm{~F}_{\text {Bnet }}=0.0140 \mathrm{lbf}
\end{array}
$$

Applying Eqs 1 and 2 to the top balloon, for which $\quad \theta=65 \cdot \mathrm{deg}$

$$
\mathrm{F}_{\mathrm{D}}=\mathrm{T} \cdot \sin (\theta)=\frac{\mathrm{F}_{\text {Bnet }}-\mathrm{W}_{\text {latex }}}{\cos (\theta)} \cdot \sin (\theta)
$$

Hence

$$
\mathrm{F}_{\mathrm{D}}=\left(\mathrm{F}_{\text {Bnet }}-\mathrm{W}_{\text {latex }}\right) \cdot \tan (\theta)
$$

$\mathrm{F}_{\mathrm{D}}=0.0167 \mathrm{lbf}$

But we have

From Table A. 9

$$
\begin{aligned}
& \mathrm{F}_{\mathrm{D}}=\mathrm{C}_{\mathrm{D}} \cdot \frac{1}{2} \cdot \rho_{\mathrm{air}} \cdot \mathrm{~V}^{2} \cdot \mathrm{~A}=\mathrm{C}_{\mathrm{D}} \cdot \frac{1}{2} \cdot \rho_{\mathrm{air}} \cdot \mathrm{~V}^{2} \cdot \frac{\pi}{\sqrt{\mathrm{C}_{\mathrm{D}} \cdot \rho_{\mathrm{air}} \cdot \pi \cdot \mathrm{D}^{2}}} \\
& \mathrm{~V}=\sqrt{8 \cdot \mathrm{~F}_{\mathrm{D}}}
\end{aligned}
$$ $v=1.63 \times 10^{-4} \cdot \frac{\mathrm{ft}^{2}}{\mathrm{~s}} \quad$ The Reynolds number is $\quad \mathrm{Re}_{\mathrm{d}}=\frac{\mathrm{V} \cdot \mathrm{D}}{\nu}$

$C_{D}=0.4 \quad$ from Fig. 9.11 (we will check Re later)

For the next balloon

$$
\theta=60 \cdot \operatorname{deg}
$$

$$
\mathrm{V}=\sqrt{\frac{8 \cdot \mathrm{~F}_{\mathrm{D}}}{\mathrm{C}_{\mathrm{D}} \cdot \rho_{\mathrm{air}} \cdot \pi \cdot \mathrm{D}^{2}}}
$$

$\mathrm{F}_{\mathrm{D}}=\left(\mathrm{F}_{\text {Bnet }}-\mathrm{W}_{\text {latex }}\right) \cdot \tan (\theta) \quad \mathrm{F}_{\mathrm{D}}=0.0135 \mathrm{lbf}$
with
$C_{D}=0.4$

The Reynolds number is $\mathrm{Re}_{\mathrm{d}}=\frac{\mathrm{V} \cdot \mathrm{D}}{\nu}$
For the next balloon

$$
\theta=50 \cdot \operatorname{deg}
$$

$$
\mathrm{V}=\sqrt{\frac{8 \cdot \mathrm{~F}_{\mathrm{D}}}{\mathrm{C}_{\mathrm{D}} \cdot \rho_{\mathrm{air}} \cdot \pi \cdot \mathrm{D}^{2}}}
$$

The Reynolds number is $\mathrm{Re}_{\mathrm{d}}=\frac{\mathrm{V} \cdot \mathrm{D}}{\nu}$
For the next balloon

$$
\theta=45 \cdot \operatorname{deg}
$$

$V=\sqrt{\frac{8 \cdot F_{D}}{C_{D} \cdot \rho_{a i r} \cdot \pi \cdot D^{2}}}$
The Reynolds number is $\mathrm{Re}_{\mathrm{d}}=\frac{\mathrm{V} \cdot \mathrm{D}}{\nu}$
For the next balloon

$$
\theta=35 \cdot \operatorname{deg}
$$

$V=\sqrt{\frac{8 \cdot F_{D}}{C_{D} \cdot \rho_{a i r} \cdot \pi \cdot D^{2}}}$
The Reynolds number is
$R e_{d}=\frac{V \cdot D}{\nu}$
For the next balloon

$$
\theta=30 \cdot \mathrm{deg}
$$

$\mathrm{V}=\sqrt{\frac{8 \cdot \mathrm{~F}_{\mathrm{D}}}{\mathrm{C}_{\mathrm{D}} \cdot \rho_{\mathrm{air}} \cdot \pi \cdot \mathrm{D}^{2}}}$
The Reynolds number is $\mathrm{Re}_{\mathrm{d}}=\frac{\mathrm{V} \cdot \mathrm{D}}{\nu}$
For the next balloon
$\theta=20 \cdot d e g$

$$
\mathrm{V}=\sqrt{\frac{8 \cdot \mathrm{~F}_{\mathrm{D}}}{\mathrm{C}_{\mathrm{D}} \cdot \rho_{\mathrm{air}} \cdot \pi \cdot \mathrm{D}^{2}}}
$$

The Reynolds number is $\mathrm{Re}_{\mathrm{d}}=\frac{\mathrm{V} \cdot \mathrm{D}}{\nu}$
For the next balloon $\quad \theta=10 \cdot \mathrm{deg}$
$\mathrm{V}=\sqrt{\frac{8 \cdot \mathrm{~F}_{\mathrm{D}}}{\mathrm{C}_{\mathrm{D}} \cdot \rho_{\mathrm{air}} \cdot \pi \cdot \mathrm{D}^{2}}}$
The Reynolds number is $\operatorname{Re}_{\mathrm{d}}=\frac{\mathrm{V} \cdot \mathrm{D}}{\nu}$
For the next balloon

$$
\begin{aligned}
& \theta=5 \cdot \mathrm{deg} \\
& V=\sqrt{\frac{8 \cdot \mathrm{~F}_{\mathrm{D}}}{\mathrm{C}_{\mathrm{D}} \cdot \rho_{\mathrm{air}} \cdot \pi \cdot \mathrm{D}^{2}}}
\end{aligned}
$$

$R e_{d}=3.72 \times 10^{4} \quad$ We are okay!
$\mathrm{F}_{\mathrm{D}}=\left(\mathrm{F}_{\text {Bnet }}-\mathrm{W}_{\text {latex }}\right) \cdot \tan (\theta) \quad \mathrm{F}_{\mathrm{D}}=0.00927 \mathrm{lbf}$
with
$C_{D}=0.4$
$\mathrm{V}=6.71 \frac{\mathrm{ft}}{\mathrm{s}}$
$\operatorname{Re}_{d}=3.09 \times 10^{4} \quad$ We are okay!
$\mathrm{F}_{\mathrm{D}}=\left(\mathrm{F}_{\text {Bnet }}-\mathrm{W}_{\text {latex }}\right) \cdot \tan (\theta)$
$\mathrm{F}_{\mathrm{D}}=0.00777 \mathrm{lbf}$
with
$C_{D}=0.4$
$\mathrm{V}=6.15 \frac{\mathrm{ft}}{\mathrm{s}}$
$R e_{d}=2.83 \times 10^{4} \quad$ We are okay!
$\mathrm{F}_{\mathrm{D}}=\left(\mathrm{F}_{\text {Bnet }}-\mathrm{W}_{\text {latex }}\right) \cdot \tan (\theta) \quad \mathrm{F}_{\mathrm{D}}=0.00544 \mathrm{lbf}$
with
$C_{D}=0.4$
$V=5.14 \frac{\mathrm{ft}}{\mathrm{s}}$
$\operatorname{Re}_{d}=2.37 \times 10^{4} \quad$ We are okay!
$\mathrm{F}_{\mathrm{D}}=\left(\mathrm{F}_{\text {Bnet }}-\mathrm{W}_{\text {latex }}\right) \cdot \tan (\theta) \quad \mathrm{F}_{\mathrm{D}}=0.00449 \mathrm{lbf}$
with
$C_{D}=0.4$
$V=4.67 \frac{\mathrm{ft}}{\mathrm{s}}$
$\operatorname{Re}_{\mathrm{d}}=2.15 \times 10^{4} \quad$ We are okay!
$\mathrm{F}_{\mathrm{D}}=\left(\mathrm{F}_{\text {Bnet }}-\mathrm{W}_{\text {latex }}\right) \cdot \tan (\theta) \quad \mathrm{F}_{\mathrm{D}}=0.00283 \mathrm{lbf} \quad$ with $\quad \mathrm{C}_{\mathrm{D}}=0.4$
$\mathrm{V}=3.71 \frac{\mathrm{ft}}{\mathrm{s}}$
$\operatorname{Re}_{d}=1.71 \times 10^{4} \quad$ We are okay!
$\mathrm{F}_{\mathrm{D}}=\left(\mathrm{F}_{\text {Bnet }}-\mathrm{W}_{\text {latex }}\right) \cdot \tan (\theta) \quad \mathrm{F}_{\mathrm{D}}=0.00137 \mathrm{lbf} \quad$ with $\quad \mathrm{C}_{\mathrm{D}}=0.4$
$\mathrm{V}=2.58 \frac{\mathrm{ft}}{\mathrm{s}}$
$\operatorname{Re}_{d}=1.19 \times 10^{4} \quad$ We are okay!
$\mathrm{F}_{\mathrm{D}}=\left(\mathrm{F}_{\text {Bnet }}-\mathrm{W}_{\text {latex }}\right) \cdot \tan (\theta) \quad \mathrm{F}_{\mathrm{D}}=0.000680 \mathrm{lbf}$
with $\quad C_{D}=0.4$

The Reynolds number is $\mathrm{Re}_{\mathrm{d}}=\frac{\mathrm{V} \cdot \mathrm{D}}{\nu}$ $\mathrm{Re}_{\mathrm{d}}=8367.80 \quad$ We are okay!

In summary we have $\quad \mathrm{V}=\left(\begin{array}{lllllllll}1.82 & 2.58 & 3.71 & 4.67 & 5.14 & 6.15 & 6.71 & 8.09 & 9.00\end{array}\right) \cdot \frac{\mathrm{ft}}{\mathrm{s}}$
$\mathrm{h}=\left(\begin{array}{lllllllll}3 & 6 & 9 & 12 & 15 & 18 & 21 & 24 & 27\end{array}\right) \cdot f t$

This problem is ideal for computing and plotting in Excel

Problem 9.104

9.104 A 1-ft diameter hollow plastic sphere containing pollution test equipment is being dragged through the Hudson River in New York by a diver riding an underwater jet device. The sphere (with an effective specific gravity of $\mathrm{SG}=0.25$) is fully submerged, and is tethered to the diver by a thin 4 - ft long wire. What is the relative velocity of the diver and sphere if the angle the wire makes with the horizontal is 45° ? The water is at $50^{\circ} \mathrm{F}$.

Given: Sphere dragged through river
Find: Relative velocity of sphere

Solution:

Basic equations: $\quad \mathrm{C}_{\mathrm{D}}=\frac{\mathrm{F}_{\mathrm{D}}}{\frac{1}{2} \cdot \rho \cdot \mathrm{~V}^{2} \cdot \mathrm{~A}} \quad \mathrm{~F}_{\mathrm{B}}=\rho \cdot \mathrm{g} \cdot \mathrm{Vol} \quad \quad \stackrel{\rightharpoonup}{\mathrm{F}}=0$
The above figure applies to the sphere
For the horizontal forces $F_{D}-T \cdot \sin (\theta)=0$
For the vertical forces $\quad-\mathrm{T} \cdot \cos (\theta)+\mathrm{F}_{\mathrm{B}}-\mathrm{W}=0$

Here
$\mathrm{D}=1 \cdot \mathrm{ft}$
SG $=0.25$
and from Table A. $7 \quad v=1.41 \times 10^{-5} \cdot \frac{\mathrm{ft}^{2}}{\mathrm{~s}} \quad \rho=1.94 \cdot \frac{\mathrm{slug}}{\mathrm{ft}^{3}}$
Applying Eqs 1 and 2 to the sphere, for which

$$
\theta=45 \cdot \operatorname{deg}
$$

$$
\mathrm{F}_{\mathrm{D}}=\mathrm{T} \cdot \sin (\theta)=\frac{\mathrm{F}_{\mathrm{B}}-\mathrm{W}}{\cos (\theta)} \cdot \sin (\theta)=\rho \cdot \mathrm{g} \cdot \mathrm{Vol} \cdot(1-\mathrm{SG}) \cdot \tan (\theta)
$$

Hence

$$
\mathrm{F}_{\mathrm{D}}=\rho \cdot \mathrm{g} \cdot \frac{\pi \cdot \mathrm{D}^{3}}{6} \cdot(1-\mathrm{SG}) \cdot \tan (\theta)
$$

$$
\mathrm{F}_{\mathrm{D}}=24.5 \cdot \mathrm{lbf}
$$

But we have

$$
\begin{aligned}
& F_{D}=C_{D} \cdot \frac{1}{2} \cdot \rho \cdot \mathrm{~V}^{2} \cdot \mathrm{~A}=\mathrm{C}_{\mathrm{D}} \cdot \frac{1}{2} \cdot \rho \cdot \mathrm{~V}^{2} \cdot \frac{\pi \cdot \mathrm{D}^{2}}{4} \\
& \mathrm{~V}=\sqrt{\frac{8 \cdot \mathrm{~F}_{\mathrm{D}}}{\mathrm{C}_{\mathrm{D}} \cdot \rho \cdot \pi \cdot \mathrm{D}^{2}}} \quad \mathrm{~V}=8.97 \cdot \frac{\mathrm{ft}}{\mathrm{~s}}
\end{aligned}
$$

$$
\text { with } \quad C_{D}=0.4
$$

from Fig. 9.11 (we will check Re later)

The Reynolds number is $\mathrm{Re}_{\mathrm{d}}=\frac{\mathrm{V} \cdot \mathrm{D}}{\nu}$

$$
\operatorname{Re}_{\mathrm{d}}=6.36 \times 10^{5}
$$

A bit off from Fig 9.11

Try

$$
C_{D}=0.15
$$

$$
V=\sqrt{\frac{8 \cdot F_{D}}{C_{D} \cdot \rho \cdot \pi \cdot D^{2}}}
$$

$$
\mathrm{V}=14.65 \cdot \frac{\mathrm{ft}}{\mathrm{~s}}
$$

The Reynolds number is $\operatorname{Re}_{\mathrm{d}}=\frac{\mathrm{V} \cdot \mathrm{D}}{\nu}$

$$
\operatorname{Re}_{\mathrm{d}}=1.04 \times 10^{6} \quad \text { A good fit with Fig } 9.11 \text { (extreme right of graph) }
$$

*9.105 A circular disk is hung in an air stream from a pivoted strut as shown. In a wind-tunnel experiment, performed in air at $15 \mathrm{~m} / \mathrm{s}$ with a $25-\mathrm{mm}$ diameter disk, α was measured at 10°. For these conditions determine the mass of the disk. Assume the drag coefficient for the disk applies when the component of wind speed normal to the disk is used. Assume drag on the strut and friction in the pivot are negligible. Plot a theoretical curve of α as a function of air speed.

Given: Circular disk in wind

Find: \quad Mass of disk; Plot α versus V

Solution:

Basic equations:

$$
\mathrm{C}_{\mathrm{D}}=\frac{\mathrm{F}_{\mathrm{D}}}{\frac{1}{2} \cdot \rho \cdot \mathrm{~V}^{2} \cdot \mathrm{~A}} \quad \stackrel{\rightharpoonup}{\mathrm{M}}=0
$$

Summing moments at the pivor $\mathrm{W} \cdot \mathrm{L} \cdot \sin (\alpha)-\mathrm{F}_{\mathrm{n}} \cdot \mathrm{L}=0 \quad$ and $\quad \mathrm{F}_{\mathrm{n}}=\frac{1}{2} \cdot \rho \cdot \mathrm{~V}_{\mathrm{n}}{ }^{2} \cdot \mathrm{~A} \cdot \mathrm{C}_{\mathrm{D}}$
Hence

$$
M \cdot g \cdot \sin (\alpha)=\frac{1}{2} \cdot \rho \cdot(V \cdot \cos (\alpha))^{2} \cdot \frac{\pi \cdot D^{2}}{4} \cdot C_{D}
$$

The data is

$$
\rho=1.225 \cdot \frac{\mathrm{~kg}}{\mathrm{~m}^{3}} \quad \mathrm{~V}=15 \cdot \frac{\mathrm{~m}}{\mathrm{~s}} \quad \mathrm{D}=25 \cdot \mathrm{~mm} \quad \alpha=10 \cdot \mathrm{deg} \quad \mathrm{C}_{\mathrm{D}}=1.17
$$

(Table 9.3)
$\mathrm{M}=\frac{\pi \cdot \rho \cdot \mathrm{V}^{2} \cdot \cos (\alpha)^{2} \cdot \mathrm{D}^{2} \cdot \mathrm{C}_{\mathrm{D}}}{8 \cdot g \cdot \sin (\alpha)}$
$\mathrm{M}=0.0451 \mathrm{~kg}$

Rearranging

$$
\mathrm{V}=\sqrt{\frac{8 \cdot \mathrm{M} \cdot \mathrm{~g}}{\pi \cdot \rho \cdot \mathrm{D}^{2} \cdot \mathrm{C}_{\mathrm{D}}}} \cdot \sqrt{\frac{\tan (\alpha)}{\cos (\alpha)}} \quad \mathrm{V}=35.5 \cdot \frac{\mathrm{~m}}{\mathrm{~s}} \cdot \sqrt{\frac{\tan (\alpha)}{\cos (\alpha)}}
$$

We can plot this by choosing α and computing V

This graph can be easily plotted in Excel
9.106 An anemometer to measure wind speed is made from four hemispherical cups of 50 mm diameter, as shown. The center of each cup is placed at $R=80 \mathrm{~mm}$ from the pivot. Find the theoretical calibration constant k in the calibration equation $V=k \omega$, where $V(\mathrm{~km} / \mathrm{hr})$ is the wind speed and $\omega(\mathrm{rpm})$ is the rotation speed. In your analysis base the torque calculations on the drag generated at the instant when two of the cups are orthogonal, and the other two cups are parallel, and ignore friction in the bearings. Explain why, in the absence of friction, at any given wind speed, the anemometer runs at constant speed rather than accelerating
 without limit. If the actual anemometer bearing has (constant) friction such that the anemometer needs a minimum wind speed of $1 \mathrm{~km} / \mathrm{hr}$ to begin rotating, compare the rotation speeds with and without friction for $V=10 \mathrm{~km} / \mathrm{hr}$.

Given: Data on dimensions of anemometer

Find: Calibration constant; compare to actual with friction

Solution:

$$
\text { The given data or available data is } \quad \mathrm{D}=50 \cdot \mathrm{~mm} \quad \mathrm{R}=80 \cdot \mathrm{~mm} \quad \rho=1.23 \cdot \frac{\mathrm{~kg}}{\mathrm{~m}^{3}}
$$

The drag coefficients for a cup with open end facing the airflow and a cup with open end facing downstream are, respectively, from Table !

$$
\mathrm{C}_{\text {Dopen }}=1.42 \quad \mathrm{C}_{\text {Dnotopen }}=0.38
$$

The equation for computing drag is $\mathrm{F}_{\mathrm{D}}=\frac{1}{2} \cdot \rho \cdot \mathrm{~A} \cdot \mathrm{~V}^{2} \cdot \mathrm{C}_{\mathrm{D}}$
where

$$
\mathrm{A}=\frac{\pi \cdot \mathrm{D}^{2}}{4} \quad \mathrm{~A}=1.96 \times 10^{-3} \mathrm{~m}^{2}
$$

Assuming steady speed ω at steady wind speed V the sum of moments will be zero. The two cups that are momentarily parallel to the flow will exert no moment; the two cups with open end facing and not facing the flow will exert a moment beacuse of their drag forces. For eac the drag is based on Eq. 1 (with the relative velocity used!). In addition, friction of the anemometer is neglected

$$
\begin{aligned}
& \Sigma \mathrm{M}=0=\left[\frac{1}{2} \cdot \rho \cdot \mathrm{~A} \cdot(\mathrm{~V}-\mathrm{R} \cdot \omega)^{2} \cdot \mathrm{C}_{\text {Dopen }}\right] \cdot \mathrm{R}-\left[\frac{1}{2} \cdot \rho \cdot \mathrm{~A} \cdot(\mathrm{~V}+\mathrm{R} \cdot \omega)^{2} \cdot \mathrm{C}_{\text {Dnotopen }}\right] \cdot \mathrm{R} \\
& (\mathrm{~V}-\mathrm{R} \cdot \omega)^{2} \cdot \mathrm{C}_{\text {Dopen }}=(\mathrm{V}+\mathrm{R} \cdot \omega)^{2} \cdot \mathrm{C}_{\text {Dnotopen }}
\end{aligned}
$$

This indicates that the anemometer reaches a steady speed even in the abscence of friction because it is the relative velocity on each cup that matters: the cup that has a higher drag coefficient has a lower relative velocity

Rearranging for

$$
\mathrm{k}=\frac{\mathrm{V}}{\omega} \quad\left(\frac{\mathrm{~V}}{\omega}-\mathrm{R}\right)^{2} \cdot \mathrm{C}_{\text {Dopen }}=\left(\frac{\mathrm{V}}{\omega}+\mathrm{R}\right)^{2} \cdot \mathrm{C}_{\text {Dnotopen }}
$$

Hence

$$
\mathrm{k}=\frac{\left(1+\sqrt{\frac{\mathrm{C}_{\text {Dnotopen }}}{\mathrm{C}_{\text {Dopen }}}}\right)}{\left(1-\sqrt{\frac{\mathrm{C}_{\text {Dnotopen }}}{\mathrm{C}_{\text {Dopen }}}}\right)} \cdot \mathrm{R} \quad \mathrm{k}=0.251 \mathrm{~m} \quad \mathrm{k}=0.0948 \frac{\frac{\mathrm{~km}}{\mathrm{hr}}}{\mathrm{rpm}}
$$

For the actual anemometer (with friction), we first need to determine the torque produced when the anemometer is stationary but about to rotate

Minimum wind for rotation is $\quad \mathrm{V}_{\min }=1 \cdot \frac{\mathrm{~km}}{\mathrm{hr}}$
The torque produced at this wind speed is

$$
\begin{aligned}
& \mathrm{T}_{\mathrm{f}}=\left(\frac{1}{2} \cdot \rho \cdot \mathrm{~A} \cdot \mathrm{~V}_{\min }{ }^{2} \cdot \mathrm{C}_{\text {Dopen }}\right) \cdot \mathrm{R}-\left(\frac{1}{2} \cdot \rho \cdot \mathrm{~A} \cdot \mathrm{~V}_{\min }{ }^{2} \cdot \mathrm{C}_{\text {Dnotopen }}\right) \cdot \mathrm{R} \\
& \mathrm{~T}_{\mathrm{f}}=7.75 \times 10^{-6} \mathrm{~N} \cdot \mathrm{~m}
\end{aligned}
$$

A moment balance at wind speed V, including this friction, is
or

$$
\begin{aligned}
& \Sigma \mathrm{M}=0=\left[\frac{1}{2} \cdot \rho \cdot \mathrm{~A} \cdot(\mathrm{~V}-\mathrm{R} \cdot \omega)^{2} \cdot \mathrm{C}_{\text {Dopen }}\right] \cdot \mathrm{R}-\left[\frac{1}{2} \cdot \rho \cdot \mathrm{~A} \cdot(\mathrm{~V}+\mathrm{R} \cdot \omega)^{2} \cdot \mathrm{C}_{\text {Dnotopen }}\right] \cdot \mathrm{R}-\mathrm{T}_{\mathrm{f}} \\
& (\mathrm{~V}-\mathrm{R} \cdot \omega)^{2} \cdot \mathrm{C}_{\text {Dopen }}-(\mathrm{V}+\mathrm{R} \cdot \omega)^{2} \cdot \mathrm{C}_{\text {Dnotopen }}=\frac{2 \cdot \mathrm{~T}_{\mathrm{f}}}{\mathrm{R} \cdot \rho \cdot \mathrm{~A}}
\end{aligned}
$$

This quadratic equation is to be solved for ω when

$$
\mathrm{V}=10 \cdot \frac{\mathrm{~km}}{\mathrm{hr}}
$$

After considerable calculations

$$
\omega=104 \mathrm{rpm}
$$

This must be compared to the rotation for a frictionless model, given by

$$
\omega_{\text {frictionless }}=\frac{\mathrm{V}}{\mathrm{k}} \quad \omega_{\text {frictionless }}=105 \mathrm{rpm}
$$

The error in neglecting friction is

$$
\left|\frac{\omega-\omega_{\text {frictionless }}}{\omega}\right|=1.12 \%
$$

Given: Single -vane anemometer made from brass plate, thick, with $h=20 \mathrm{~mm}$ and $\omega=10 \mathrm{~mm}$.

Find: (a) Relationship for wind speed as a function of deflection angle, θ.
(b) Plate thickness to give $\theta=30^{\circ}$ $a+v=10 \mathrm{~m} / \mathrm{s}$.

Solution: Sum moments about pivot.

$$
\begin{aligned}
& \Sigma M=F_{N} \frac{h}{2}-m g \frac{h}{2} \sin \theta=0 \\
& F_{N}=\operatorname{Co} A \frac{1}{2} \rho V_{n}^{2}=m g \sin \theta
\end{aligned}
$$

$m g$

From plate geometry, $m=\rho$ whit $=3 G_{H_{2} O}$ whit. From Eq.1,

$$
S G_{\text {f Hog }} \text { gWht } \sin \theta=C_{D A} \frac{1}{2} P^{2} \cos ^{2} \theta \quad\{\text { From Ta bk A. } s G=8.55 \text { for brass. }\}
$$

$$
t=\frac{C_{D A \rho} V^{2} \cos ^{2} \theta}{2 S G \rho_{+2} \operatorname{wr} h \sin \theta g}=\frac{C_{D} \rho V^{2} \cos ^{2} \theta}{2 S G \rho H_{2+1} \sin \theta g} \quad \text { since } A=w h
$$

From Fig. 9.10, $C_{0}=1.2$ at $b / h=2.0$, so

$$
\begin{aligned}
& t=\frac{1.2}{8.55} \times \frac{1.23}{2} \frac{\mathrm{~kg}}{m^{3}} \times\left(10^{2} \frac{\mathrm{~m}^{2}}{\mathrm{~s}^{2}} \times \cos ^{2}\left(30^{\circ}\right) \times \frac{m^{3}}{999 \mathrm{~kg}} \times \frac{1}{\left.\sin (30)^{\circ}\right)} \times \frac{\mathrm{s}^{2}}{9.81 \mathrm{~m}} \times 1000 \frac{\mathrm{~mm}}{\mathrm{~m}}\right. \\
& t=1.30 \mathrm{~mm}
\end{aligned}
$$

Given: Experimental data for a $5 k y$ diver with $M=75 \mathrm{~kg}$:
Prone, spread-eagled
Vertical fall

$$
\begin{aligned}
& C_{D A}=0.85 \mathrm{~m}^{2} \\
& C_{D A}=0.11 \mathrm{~m}^{2}
\end{aligned}
$$

Find: Estimate time and distance needed to reach 95 percent of terminal speed at 300 m attitude on a standard day.

Solution: From Table A.3, $/ / \rho_{s c}=0.7423$ at 3000 n attitude. consider free-body diagram of sky diver:

$$
\Sigma F_{y}=m g-F_{D}=m g-C_{D A} \frac{1}{2} \rho v^{2}=m a_{y}=m \frac{d V}{d t}=m v \frac{d V}{d y}
$$

At terminal, speed, $a_{y}=0$, Then $m g=C_{D} A \frac{1}{2} \rho V_{t}^{2}$

so $V_{t}^{2}=\frac{2 m g}{C_{D} A P}$. From above, $\frac{1}{g} \frac{d V}{d t}=\frac{V_{t}}{g} \frac{d\left(V v_{t}\right)}{d t}=1-\frac{C_{D} A P V^{2}}{2 m g}=1-\left(\frac{V}{V_{t}}\right)^{2}$ Thus $\quad \frac{d\left(V / V_{t}\right)}{1-\left(V / v_{t}\right)^{2}}=\frac{g}{V_{t}} d t$
Integrating $\left.\int_{0}^{0.95} \frac{d\left(V / v_{t}\right)}{1-\left(V / v_{t}\right)^{2}}=\tanh ^{-1}\left(\frac{V}{V_{t}}\right)\right]_{0}^{0.95}=1.83=\frac{g t}{V_{t}} ; t=\frac{1.83 V_{t}}{g}$
Also $1-\left(\frac{V}{V_{t}}\right)^{2}=\frac{V}{g} \frac{d V}{d y}=\frac{V_{t}{ }^{2}}{g}\left(\frac{V}{V_{t}}\right) \frac{d\left(V V_{t}\right)}{d y}$ or $\frac{\left(V / V_{t}\right) d\left(V_{N_{t}}\right)}{l-\left(V_{V_{t}}\right)^{2}}=\frac{g}{V_{t}} d y$
Integrating, $\int_{0}^{0.95} \frac{\left(v v_{t}\right) d\left(v_{v_{t}}\right)}{1-\left(v_{\left.v_{t}\right)^{2}}\right.}=-\frac{1}{2} \ln \left[1-\left(v_{v_{t}}\right)^{2}\right]_{0}^{0.95}=1.16=\frac{g}{v_{t}} y ; y=1.16 \frac{v_{t}}{g}$
calculating for $C_{D A}=0.85 \mathrm{~m}^{2}$:

$$
\begin{aligned}
& V_{t}=\left[2 \times 75 \mathrm{~kg}_{\mathrm{n}} 9.81 \frac{\mathrm{~m}}{s^{2}} \times \frac{1}{0.85 \mathrm{~m}^{2}} * \frac{\mathrm{~m}^{3}}{(0.7423) 1.23 \mathrm{~kg}}\right]^{1 / 2}=43.5 \mathrm{~m} / \mathrm{s} \\
& t=1.83 \frac{v_{t}}{g}=1.83 \mathrm{~m} \\
& y=1.5 \frac{\mathrm{~m}}{\mathrm{~s}} \times \frac{\mathrm{s}^{2}}{4.81 \mathrm{~m}}=8.115 \\
& y=\frac{\mathrm{t}^{2}}{\mathrm{~g}}=1.16(43.5)^{2} \frac{\mathrm{~m}^{2}}{\mathrm{~s}^{2}} \times \frac{\mathrm{s}}{9.81 \mathrm{~m}}=224 \mathrm{~m}
\end{aligned}
$$

Tabulating:

Position	V $(\mathrm{~m} / \mathrm{s})$	t $(\mathrm{~s})$	y $(\mathrm{~m})$
Prone	43.5	8.11	224
Vertical *	121	22.6	1,730

* These are estimates; density waverdvars significantly deeming this fall.

Given: F-4 aircraft slowed by dual parachutes, each 12 ft in diameter. Crit weighs $32,000 \mathrm{kr}$, lands at 160 kt .
Neglect drag of aircraft; brakes not applied.
Find: Tiric required to decelerate to 100 kt .
Solution: Apply Newton's second law of motion definition of C_{D}.
Basic equations: $\Sigma F_{x}=m a_{x}$

$$
C_{D}=\frac{F_{D}}{\frac{1}{2} \rho V^{2} A}
$$

Then

$$
\begin{equation*}
\Sigma F_{x}=-2 F_{D}=-\delta \rho v^{2} A=m a_{x}=\frac{w}{g} \frac{\partial v}{\partial t} \tag{1}
\end{equation*}
$$

or $\frac{d V}{V^{2}}=-\frac{\operatorname{copg} A}{W} d t$
Integrating,

$$
\left.\int_{v_{i}}^{v_{f}} \frac{d V}{V_{z}}=-\frac{1}{V}\right]_{v_{i}}^{v_{f}}=\frac{1}{v_{i}}-\frac{1}{v_{f}}=\int_{0}^{t}-\frac{\operatorname{c\rho g} A}{w} d t=-\frac{\operatorname{seg} A}{w} t
$$

or

$$
t=\frac{w}{c_{D} \rho g A}\left[\frac{1}{v_{f}}-\frac{1}{v_{i}}\right]
$$

Since two chutes (assume hemispheres),

$$
A=2\left(\frac{\pi D^{2}}{4}\right)=\frac{\pi D^{2}}{2}
$$

From Table 9.3, $C_{D}=1.42$ for hemisphere facing stream. For standard air, $\rho g=84 \simeq 0.075 \mathrm{sbf} / \mathrm{ft}^{3}$, and

$$
t=32,00016 f_{x} \frac{1}{1.42} \times \frac{4^{3}}{0.07516 f^{3}} \times \frac{2}{\pi^{2}} \times \frac{1}{(12)^{2}+r^{2}}\left[\frac{1}{100}-\frac{1}{1600}\right] \frac{\mathrm{hr}}{n \mathrm{~m}} \times \frac{3600 \mathrm{~s}}{\mathrm{hr}} \times \frac{\mathrm{nm}}{6080 \mathrm{~A}}
$$

or

$$
t=2.95 \mathrm{~s}
$$

$$
=\frac{w}{g} v \frac{d v}{d x}
$$

and $\frac{d V}{V}=-\frac{C A P g}{w} d x$
Integrating,

$$
\left.\int_{V_{i}}^{V_{f}} \frac{d v}{V}=\ln V\right]_{V_{i}}^{V_{f}}=\ln \frac{V_{f}}{V_{i}}=-\frac{C_{D A \rho g}}{V_{v}} \times \text { or } x=-\frac{\omega}{C_{b A \rho g}} \ln \frac{V_{f}}{V_{i}}
$$

Thus

$$
x=-\frac{1}{1.42} \times 32,00016 f_{\pi} \frac{2}{\pi(12)^{2}+4} \times \frac{43}{0.02516 f} \times \ln \left(\frac{100}{160}\right)=624+4
$$

Given: Land speed record vericie at Bonneville Salt Flats, elevation 4400 rt . Engine power, $\mathbb{P}=500 \mathrm{hp}$, frontal area, $4=15 \mathrm{ft}^{2}$, and $c_{D}=0.15$.

Find: Theoretical maximum speed (a) in still air, (b) 20 mph head wind.

Solution: Apply definitions of power, drag coefficient.
Computing equations: $\mathbb{P}=F_{D} V, C_{D}=\frac{F_{D}}{\frac{1}{2} p\left(V+V_{w}\right)^{2} A}$
Assumptions: (1) Neglect rolling drag
(2) $\rho \simeq 0.878 \rho_{0}$ (T aGE A.3)

For no wind case, $V_{w}=0$, and

$$
\begin{aligned}
& \mathbb{P}=F_{D} V=C_{D} \frac{1}{2} \rho V^{2} A V=C_{D} \frac{1}{2} \rho V^{3} A
\end{aligned}
$$

$$
\begin{aligned}
& V=489 \mathrm{ft} / \mathrm{s} \quad(333 \mathrm{mph})
\end{aligned}
$$

With a head wind,

$$
\mathbb{P}=F_{D} V=c_{0} \frac{1}{2} \rho\left(v+v_{w}\right)^{2} A V \text { or } \mathbb{H}\left(h_{\rho}\right)=4.27 \times 10^{-6}\left(v+v_{w}\right)^{2} v\left(t^{3} / s^{3}\right)
$$

This can be solved by iteration. Using $V_{w}=20 \mathrm{mph}$ or $29.3 \mathrm{ft} / \mathrm{s}$,

V	\mathbb{P}	
$(f t / s)$		$(h p)$
400		315
470		501
500	599	

From the plot, $V \simeq 468 \mathrm{ft} / \mathrm{s}$ (319 mph)
$\left\{\begin{array}{l}\text { Note that the maximum speed is not reduced ty } 20 \text { mph when } \\ \text { wind is present, because drag is nonlinear. }\end{array}\right.$
9.111 Compare and plot the power (hp) required by a typical large American sedan of the 1970s and a current midsize sedan to overcome aerodynamic drag versus road speed in standard air, for a speed range of 20 mph to 100 mph . Use the following as representative values:

	Weight (lbf)	Drag Coefficient	Frontal Area $\left(\mathrm{ft}^{2}\right)$
1970's Sedan	4500	0.5	24
Current Sedan	3500	0.3	20

If rolling resistance is 1.5 percent of curb weight, determine for each vehicle the speed at which the aerodynamic force exceeds frictional resistance.

Given: Data on 1970's and current sedans
Find: Plot of power versus speed; Speeds at which aerodynamic drag exceeds rolling drag

Solution:

Basic equation:	$\mathrm{C}_{\mathrm{D}}=\frac{\mathrm{F}_{\mathrm{D}}}{\frac{1}{2} \cdot \rho \cdot \mathrm{~V}^{2} \cdot \mathrm{~A}}$
The aerodynamic drag is	$\mathrm{F}_{\mathrm{D}}=\mathrm{C}_{\mathrm{D}} \cdot \frac{1}{2} \cdot \rho \cdot \mathrm{~V}^{2} \cdot \mathrm{~A} \quad$ The rolling resistance is $\quad \mathrm{F}_{\mathrm{R}}=0.015 \cdot \mathrm{~W}$
Total resistance	$\mathrm{F}_{\mathrm{T}}=\mathrm{F}_{\mathrm{D}}+\mathrm{F}_{\mathrm{R}}$

	1970's Sedan		Current Sedan	
$W=$	4500	lbf	3500	lbf
$C_{D}=$	0.5		0.3	
$A=$	24	ft^{2}	20	ft^{2}
$\rho=$	0.00234	slug/ft ${ }^{3}$	(Table A.9)	

Computed results:

	1970's Sedan			Current Sedan		
V (mph)	F_{D} (${ }^{\text {(Ibf) }}$	F_{T} (${ }^{\text {(lbf) }}$	P (hp)	$F_{D}(\mathrm{lbf})$	F_{T} ($\mathbf{l b f}$)	P (hp)
20	12.1	79.6	4.24	6.04	58.5	3.12
25	18.9	86.4	5.76	9.44	61.9	4.13
30	27.2	94.7	7.57	13.6	66.1	5.29
35	37.0	104	9.75	18.5	71.0	6.63
40	48.3	116	12.4	24.2	76.7	8.18
45	61.2	129	15.4	30.6	83.1	10.0
50	75.5	143	19.1	37.8	90.3	12.0
55	91.4	159	23.3	45.7	98.2	14.4
60	109	176	28.2	54.4	107	17.1
65	128	195	33.8	63.8	116	20.2
70	148	215	40.2	74.0	126	23.6
75	170	237	47.5	84.9	137	27.5
80	193	261	55.6	96.6	149	31.8
85	218	286	64.8	109	162	36.6
90	245	312	74.9	122	175	42.0
95	273	340	86.2	136	189	47.8
100	302	370	98.5	151	204	54.3

$V(\mathbf{m p h})$	$\boldsymbol{F}_{\boldsymbol{D}} \mathbf{(\mathbf { I b f })}$	$\boldsymbol{F}_{\boldsymbol{R}}(\mathbf{(b f})$
$\mathbf{4 7 . 3}$	67.5	67.5

$\boldsymbol{V}(\mathbf{m p h})$	$\left.\boldsymbol{F}_{\boldsymbol{D}} \mathbf{(l b f}\right)$	$\boldsymbol{F}_{\boldsymbol{R}} \mathbf{(I b f)}$
$\mathbf{5 9 . 0}$	52.5	52.5

The two speeds above were obtained using Solver

9.112 A bus travels at 50 mph in standard air. The frontal area of the vehicle is $80 \mathrm{ft}^{2}$, and the drag coefficient is 0.95 . How much power is required to overcome aerodynamic drag? Estimate the maximum speed of the bus if the engine is rated at 450 hp . A young engineer proposes adding fairings on the front and rear of the bus to reduce the drag coefficient. Tests indicate that this would reduce the drag coefficient to 0.85 without changing the frontal area. What would be the required power at 50 mph , and the new top speed? If the fuel cost for the bus is currently $\$ 200 /$ day, how long would the modification take to pay for itself if it costs $\$ 4,500$ to install?

Given: Data on a bus

Find: Power to overcome drag; Maximum speed; Recompute with new fairing; Time for fairing to pay for itself

Solution:

Basic equation: $F_{D}=\frac{1}{2} \cdot \rho \cdot A \cdot V^{2} \cdot C_{D} \quad P=F_{D} \cdot V$
The given data or available data is $\quad \mathrm{V}=50 \cdot \mathrm{mph} \quad \mathrm{V}=73.3 \frac{\mathrm{ft}}{\mathrm{s}} \quad \mathrm{A}=80 \cdot \mathrm{ft}^{2} \quad \mathrm{C}_{\mathrm{D}}=0.95 \quad \rho=0.00234 \cdot \frac{\mathrm{slug}}{\mathrm{ft}^{3}}$

$$
\mathrm{F}_{\mathrm{D}}=\frac{1}{2} \cdot \rho \cdot \mathrm{~A} \cdot \mathrm{~V}^{2} \cdot \mathrm{C}_{\mathrm{D}} \quad \mathrm{~F}_{\mathrm{D}}=478 \mathrm{lbf} \quad \mathrm{P}=\mathrm{F}_{\mathrm{D}} \cdot \mathrm{~V} \quad \mathrm{P}=3.51 \times 10 \frac{4 \mathrm{ft} \cdot \mathrm{lbf}}{\mathrm{~s}} \quad \mathrm{P}=63.8 \mathrm{hp}
$$

The power available is $\quad P_{\text {max }}=450 \cdot \mathrm{hp}$
The maximum speed corresponding to this maximum power is obtained from
$\mathrm{P}_{\max }=\left(\frac{1}{2} \cdot \rho \cdot \mathrm{~A} \cdot \mathrm{~V}_{\max }^{2} \cdot \mathrm{C}_{\mathrm{D}}\right) \cdot \mathrm{V}_{\max } \quad$ or $\quad \quad \mathrm{V}_{\max }=\left(\frac{\mathrm{P}_{\max }}{\frac{1}{2} \cdot \rho \cdot \mathrm{~A} \cdot \mathrm{C}_{\mathrm{D}}}\right)^{\frac{1}{3}} \quad \mathrm{~V}_{\max }=141 \frac{\mathrm{ft}}{\mathrm{s}} \quad \mathrm{V}_{\max }=95.9 \mathrm{mph}$
We repeat these calculations with the new fairing, for which
$C_{D}=0.85$

$$
\mathrm{F}_{\mathrm{D}}=\frac{1}{2} \cdot \rho \cdot \mathrm{~A} \cdot \mathrm{~V}^{2} \cdot \mathrm{C}_{\mathrm{D}} \quad \mathrm{~F}_{\mathrm{D}}=428 \mathrm{lbf} \quad \mathrm{P}_{\mathrm{new}}=\mathrm{F}_{\mathrm{D}} \cdot \mathrm{~V} \quad \mathrm{P}_{\mathrm{new}}=3.14 \times 10 \frac{4 \mathrm{ft} \cdot \mathrm{lbf}}{\mathrm{~s}} \quad \mathrm{P}_{\text {new }}=57.0 \mathrm{hp}
$$

The maximum speed is now $\quad \mathrm{V}_{\max }=\left(\frac{\mathrm{P}_{\max }}{\frac{1}{2} \cdot \rho \cdot \mathrm{~A} \cdot \mathrm{C}_{\mathrm{D}}}\right)^{\frac{1}{3}} \quad \mathrm{~V}_{\max }=146 \frac{\mathrm{ft}}{\mathrm{s}} \quad \mathrm{V}_{\max }=99.5 \mathrm{mph}$
The initial cost of the fairing is

$$
\text { Cost }=4500 \cdot \text { dollars }
$$

The fuel cost is

$$
\text { Cost }_{\text {day }}=200 \cdot \frac{\text { dollars }}{\text { day }}
$$

The cost per day is reduced by improvement in the bus performance at 50 mph
Gain $=\frac{P_{\text {new }}}{P}$
Gain $=89.5 \%$

The new cost per day is then

$$
\text { Cost }_{\text {daynew }}=\text { Gain } \cdot \text { Cost }_{\text {day }} \quad \text { Cost }_{\text {daynew }}=179 \frac{\text { dollars }}{\text { day }}
$$

Hence the savings per day is

$$
\text { Saving }=\text { Cost }_{\text {day }}-\text { Cost }_{\text {daynew }}
$$

$$
\text { Saving }=21.1 \frac{\text { dollars }}{\text { day }}
$$

The initial cost will be paid for in

$$
\tau=\frac{\text { Cost }}{\text { Saving }} \quad \tau=7.02 \text { month }
$$

Given: Tractor -trailer rig, with $A=102 \mathrm{ft}^{2}, C_{D}=0.9$. Rowing resistance is 6 lbf per $1000 \mathrm{lbf} ; \omega=72,000 \mathrm{lbf}$. BSFC is $0.34 \mathrm{lkm} / \mathrm{hp} . \mathrm{pr}$. $\eta d=0.92$, and $\rho=6.9 \mathrm{~km} / \mathrm{gal}$. Truck travels $120,000 \mathrm{mi} / \mathrm{ys}$.

Find: (a) Estimate fuel economy at $5 s$ mph.
(b) Fie/ saved by air deflector that reduces $b_{D} b_{y} / 5$ percent.

Solution: Tractive farce is $F_{T}=F_{R}+F_{D}+$-aerodynamic force t rolling resistance force
Engine power is $P_{e}=\frac{P_{T}}{\eta_{d}}=\frac{F_{T V}}{\eta_{d}}$
Thus
so

$$
\begin{aligned}
& F_{R}=C_{R} w=0.006 \times 72,00016 f=43216 f \\
& F_{D}=C_{D} A \frac{1}{2} N^{2} \quad V=55 \frac{m L}{h r} \times 5280 \frac{4 t}{m i} \times \frac{h r}{36003}=80.7 f t / \mathrm{s} \\
& F_{D}=0.9 \times 102 f^{2} \times \frac{1}{2} \times 0.00238 \frac{5 / 49}{f+3} \times(80.7)^{2} \frac{f^{2}}{s^{2}} \times \frac{14+s^{2}}{\operatorname{sich} \cdot f t}=71116 f
\end{aligned}
$$

$$
\begin{aligned}
& F_{T}=F_{R}+F_{D}=432+711=1140 \mathrm{hf} \\
& F_{C}=1140 \mathrm{lbf} \times 80.7 \frac{\mathrm{ft}}{3} \times \frac{1}{0.9 \mathrm{z}} \times \frac{h \rho \cdot \mathrm{~s}}{550 \mathrm{f} \cdot 10 \mathrm{f}}=182 \mathrm{hp}
\end{aligned}
$$

Finally

$$
F E=\frac{\rho V}{P} \frac{V}{B s F c}=6.9 \frac{1 b \mathrm{~m}}{g a i} \times 55 \frac{\mathrm{mi}}{1 \mathrm{r}} \times \frac{1}{182 \mathrm{hp}} \times \frac{h p \cdot \mathrm{hr}}{0.34 \mathrm{hm}}=6.13 \mathrm{mi} / \mathrm{gal}
$$

with the air deflector.

$$
\begin{gathered}
F_{D}=(1-0.15) 71116 f=60416 f \\
F_{T}=F_{R}+F_{D}=.432+604=104016 f \\
P_{t}=104015 f \times 80.7 \frac{f}{5} \times \frac{1}{0.92} \times \frac{120.5}{550 f+16 f}=166 \mathrm{hp}
\end{gathered}
$$

and $F E=6.9 \frac{16 \mathrm{~m}}{9 a} \times 55 \frac{\mathrm{mc}}{\mathrm{hr}} \times \frac{1}{16 b \mathrm{hp}} \times \frac{\mathrm{hp} \cdot \mathrm{hr}}{0.341 \mathrm{~m}}=6.72 \mathrm{mi} / \mathrm{ga}$
The fuel saving wockid be

$$
\left.\Delta Q=\left(\frac{1}{F E}\right)_{\text {without }}-\frac{1}{F E_{\text {with }}}\right) \text { mileage }=\left(\frac{1}{6.13}-\frac{1}{6.72}\right) \frac{9 a 1}{m i} \times 120,000 \frac{\mathrm{mi}}{\operatorname{Gr}}=1720 \mathrm{gal} / \mathrm{yr}
$$

The percentage sawing would be

$$
\frac{\Delta Q}{Q}=\frac{\left(\frac{1}{F E} w_{\text {without }}-\frac{1}{F E_{w, t h}}\right)}{\left.\frac{1}{F E}\right)_{\text {without }}}=0.0878 \text { or } 9.78 \text { percentisavings }
$$

9.114 A 165 hp sports car of frontal area $18.5 \mathrm{ft}^{2}$, with a drag coefficient of 0.32 , requires 12 hp to cruise at 55 mph . At what speed does aerodynamic drag first exceed rolling resistance? (The rolling resistance is 1% of the car weight, and the car mass is 2750 lb .) Find the drivetrain efficiency. What is the maximum acceleration at 55 mph ? What is the maximum speed? Which redesign will lead to a higher maximum speed: improving the drive train efficiency by 5% from its current value, reducing the drag coefficient to 0.29 , or reducing the rolling resistance to 0.93% of the car weight?

Given:

Data on a sports car
Find: \quad Speed for aerodynamic drag to exceed rolling resistance; maximum speed \& acceleration at 55 mph ; Redesign change that has greatest effect

Solution:

Basic equation: $\mathrm{F}_{\mathrm{D}}=\frac{1}{2} \cdot \rho \cdot \mathrm{~A} \cdot \mathrm{~V}^{2} \cdot \mathrm{C}_{\mathrm{D}} \quad \mathrm{P}=\mathrm{F}_{\mathrm{D}} \cdot \mathrm{V}$
The given data or available data is

$$
\begin{array}{lll}
\mathrm{M}=2750 \cdot \mathrm{lbm} & \mathrm{~A}=18.5 \cdot \mathrm{ft}^{2} & \mathrm{C}_{\mathrm{D}}=0.32 \\
\mathrm{P}_{\text {engine }}=165 \cdot \mathrm{hp} & \mathrm{~F}_{\mathrm{R}}=0.01 \times \mathrm{M} \cdot \mathrm{~g} & \rho=0.00234 \cdot \frac{\mathrm{slug}}{\mathrm{ft}^{3}}
\end{array}
$$

The rolling resistance is then

$$
\mathrm{F}_{\mathrm{R}}=27.5 \mathrm{lbf}
$$

To find the speed at which aerodynamic drag first equals rolling resistance, set the two forces equal

$$
\frac{1}{2} \cdot \rho \cdot \mathrm{~V}^{2} \cdot \mathrm{~A} \cdot \mathrm{C}_{\mathrm{D}}=\mathrm{F}_{\mathrm{R}}
$$

Hence $\quad V=\sqrt{\frac{2 \cdot \mathrm{~F}_{\mathrm{R}}}{\rho \cdot \mathrm{A} \cdot \mathrm{C}_{\mathrm{D}}}} \quad \mathrm{V}=63.0 \frac{\mathrm{ft}}{\mathrm{s}} \quad \mathrm{V}=43.0 \mathrm{mph}$
To find the drive train efficiency we use the data at a speed of $55 \mathrm{mph} \quad \mathrm{V}=55 \cdot \mathrm{mph} \quad \mathrm{V}=80.7 \frac{\mathrm{ft}}{\mathrm{s}} \quad \mathrm{P}_{\text {engine }}=12 \cdot \mathrm{hp}$
The aerodynamic drag at this speed is $\quad \mathrm{F}_{\mathrm{D}}=\frac{1}{2} \cdot \rho \cdot \mathrm{~V}^{2} \cdot \mathrm{~A} \cdot \mathrm{C}_{\mathrm{D}} \quad \mathrm{F}_{\mathrm{D}}=45.1 \mathrm{lbf}$
The power consumed by drag and rolling resistance at this speed is $\quad P_{\text {used }}=\left(F_{D}+F_{R}\right) \cdot V \quad P_{\text {used }}=10.6 \mathrm{hp}$
Hence the drive train efficiency is $\quad \eta=\frac{\mathrm{P}_{\text {used }}}{\mathrm{P}_{\text {engine }}} \quad \eta=88.7 \%$
The acceleration is obtained from Newton's second lav $M \cdot a=\Sigma F=T-F_{R}-F_{D}$
where T is the thrust produced by the engine, given by

$$
\mathrm{T}=\frac{\mathrm{P}}{\mathrm{~V}}
$$

The maximum acceleration at 55 mph is when we have maximum thrust, when full engine power is used. $\quad \mathrm{P}_{\text {engine }}=165 \cdot \mathrm{hp}$
Because of drive train inefficiencies the maximum power at the wheels $P_{\max }=\eta \cdot P_{\text {engine }} \quad P_{\max }=146 \mathrm{hp}$
Hence the maximum thrust is

$$
\begin{aligned}
& \mathrm{T}_{\max }=\frac{\mathrm{P}_{\max }}{\mathrm{V}} \quad \mathrm{~T}_{\max }=998 \mathrm{lbf} \\
& \mathrm{a}_{\max }=\frac{\mathrm{T}_{\max }-\mathrm{F}_{\mathrm{D}}-\mathrm{F}_{\mathrm{R}}}{\mathrm{M}} \quad \mathrm{a}_{\max }=10.8 \frac{\mathrm{ft}}{\mathrm{~s}^{2}}
\end{aligned}
$$

The maximum speed is obtained when the maximum engine power is just balanced by power consumed by drag and rolling resistance

For maximum speed:

$$
\mathrm{P}_{\max }=\left(\frac{1}{2} \cdot \rho \cdot \mathrm{~V}_{\max }^{2} \cdot \mathrm{~A} \cdot \mathrm{C}_{\mathrm{D}}+\mathrm{F}_{\mathrm{R}}\right) \cdot \mathrm{V}_{\max }
$$

This is a cubic equation that can be solved by iteration or by using Excel's Goal Seek or Solver $\quad \mathrm{V}_{\mathrm{max}}=150 \mathrm{mph}$ We are to evaluate several possible improvements:

For improved drive train $\quad \eta=\eta+5 \cdot \%$	$\eta=93.7 \% \quad P_{\max }=\eta \cdot \mathrm{P}_{\text {engine }} \quad \mathrm{P}_{\max }=155 \mathrm{hp}$
	$\mathrm{P}_{\max }=\left(\frac{1}{2} \cdot \rho \cdot \mathrm{~V}_{\max }^{2} \cdot \mathrm{~A} \cdot \mathrm{C}_{\mathrm{D}}+\mathrm{F}_{\mathrm{R}}\right) \cdot \mathrm{V}_{\max }$
Solving the cubic (using Solver)	$\mathrm{V}_{\max }=153 \mathrm{mph}$

Improved drag coefficient:
$\mathrm{P}_{\max }=\left(\frac{1}{2} \cdot \rho \cdot \mathrm{~V}_{\max }{ }^{2} \cdot \mathrm{~A} \cdot \mathrm{C}_{\text {Dnew }}+\mathrm{F}_{\mathrm{R}}\right) \cdot \mathrm{V}_{\text {max }}$
Solving the cubic (using Solver)
$\mathrm{V}_{\text {max }}=158 \mathrm{mph}$

$$
\begin{aligned}
& \mathrm{F}_{\text {Rnew }}=0.93 \cdot \% \cdot \mathrm{M} \cdot \mathrm{~g} \\
& \mathrm{P}_{\text {max }}=\left(\frac{1}{2} \cdot \rho \cdot \mathrm{~V}_{\text {max }}{ }^{2} \cdot \mathrm{H}\right. \\
& \mathrm{V}_{\text {max }}=154 \mathrm{mph}
\end{aligned}
$$

$$
\mathrm{F}_{\text {Rnew }}=25.6 \mathrm{lbf}
$$

Solving the cubic (using Solver)

Given: Round, thindisk of radius, R, with pressure data:

$$
\begin{aligned}
& c_{p}=1-\left(\frac{r}{R}\right)^{6} \text { (front) } \\
& c_{p}=-0.42 \text { (rear) }
\end{aligned}
$$

Find: Calculate the drag coefficient, C_{D}.
Solution: Computing equations are

$$
C_{p}=\frac{p-p_{0}}{\frac{1}{2} \rho V^{2}} \quad C_{D}=\frac{F_{0}}{\frac{1}{2} \rho V^{2} A} \quad A=\pi R^{e}
$$

Assumptions: (1) steady, incompressible flow
(2) Neglect skin friction drag (disk thin, edge area mai)

Then $C_{D}=\frac{F_{D}}{\frac{1}{2} \rho V^{2} A}=\frac{\int_{A}\left(p_{f}-p_{r}\right) d A}{\frac{1}{2} \rho v^{2} \pi R^{2}}=\frac{\int_{0}^{R}\left(p_{f}-p_{r}\right) 2 \pi r d r}{\frac{1}{2} \rho v^{2} \pi R^{2}}$
From def'n of $c_{p}, p_{f}=p_{\infty}+c_{f} \frac{1}{2} \rho v^{2}, p_{r}=p_{\infty}+c_{p_{r}} \frac{1}{2} \rho v^{2}$ and

$$
p_{f}-p_{r}=\left(c_{p_{f}}-c_{p_{r}}\right) \frac{1}{2} \rho v^{2}
$$

Substituting,

$$
\begin{aligned}
C_{D} & =\frac{\frac{1}{2} \rho v^{2} \int_{0}^{R}\left(C_{\rho f}-C_{\rho_{r}}\right) 2 \pi r d r}{\frac{1}{2} \rho v^{2} \pi R^{2}}=\frac{2}{R^{2}} \int_{0}^{R}\left[1-\left(\frac{r}{R}\right)^{6}+0.42\right] r d r \\
& =2 \int_{0}^{1}\left[1.42-\left(\frac{r}{R}\right)^{7}\right]\left(\frac{r}{R}\right) d\left(\frac{r}{R}\right)=2\left[\frac{1.42}{2}\left(\frac{r}{R}\right)^{2}-\frac{1}{8}\left(\frac{r}{R}\right)^{8}\right]_{0}^{1} \\
& =2(0.710-0.125) \\
C_{D} & =1.17
\end{aligned}
$$

9.116 Repeat the analysis for the frictionless anemometer of Problem 9.106, except this time base the torque calculations on the more realistic model that the average torque is obtained by integrating, over one revolution, the instantaneous torque generated by each cup (i.e., as the cup's orientation to the wind varies).

Given: Data on dimensions of anemometer
Find: Calibration constant

Solution:

The given data or available data is
$\mathrm{D}=50 \cdot \mathrm{~mm}$
$\mathrm{R}=80 \cdot \mathrm{~mm}$
$\rho=1.23 \cdot \frac{\mathrm{~kg}}{\mathrm{~m}^{3}}$
The drag coefficients for a cup with open end facing the airflow and a cup with open end facing downstream are, respectively, from Table !

$$
\mathrm{C}_{\text {Dopen }}=1.42 \quad \mathrm{C}_{\text {Dnotopen }}=0.38
$$

Assume the anemometer achieves steady speed ω due to steady wind speed V
The goal is to find the calibration constant k, defined by $k=\frac{V}{\omega}$
We will analyse each cup separately, with the following assumptions

1) Drag is based on the instantaneous normal component of velocity (we ignore possible effects on drag coefficient of velocity component parallel to the cup)
2) Each cup is assumed unaffected by the others - as if it were the only object present
3) Swirl is neglected
4) Effects of struts is neglected

In this more sophisticated analysis we need to compute the instantaneous normal relative velocity.
From the sketch, when a cup is at angle θ, the normal component of relative velocity is

$$
\begin{equation*}
\mathrm{V}_{\mathrm{n}}=\mathrm{V} \cdot \cos (\theta)-\omega \cdot \mathrm{R} \tag{1}
\end{equation*}
$$

The relative velocity is sometimes positive sometimes negatiive. From Eq. 1, this is determined by

For

$$
\begin{array}{ll}
0<\theta<\theta_{\mathrm{C}} & \mathrm{~V}_{\mathrm{n}}>0 \\
\theta_{\mathrm{C}}<\theta<2 \cdot \pi-\theta_{\mathrm{C}} & \mathrm{~V}_{\mathrm{n}}<0 \\
\theta_{\mathrm{C}}<\theta<2 \cdot \pi & \mathrm{~V}_{\mathrm{n}}>0
\end{array}
$$

$$
\begin{equation*}
\theta_{\mathrm{C}}=\operatorname{acos}\left(\frac{\omega \cdot \mathrm{R}}{\mathrm{~V}}\right) \tag{2}
\end{equation*}
$$

θ

The equation for computing drag is

$$
\begin{equation*}
\mathrm{F}_{\mathrm{D}}=\frac{1}{2} \cdot \rho \cdot \mathrm{~A} \cdot \mathrm{~V}_{\mathrm{n}}^{2} \cdot \mathrm{C}_{\mathrm{D}} \tag{3}
\end{equation*}
$$

where

$$
\mathrm{A}=\frac{\pi \cdot \mathrm{D}^{2}}{4} \quad \mathrm{~A}=1.96 \times 10^{-3} \mathrm{~m}^{2}
$$

In Eq. 3, the drag coefficient, and whether the drag is postive or negative, depend on the sign of the relative velocity
For

$$
\begin{aligned}
& 0<\theta<\theta_{\mathrm{C}} \\
& \theta_{\mathrm{C}}<\theta<2 \cdot \pi-\theta_{\mathrm{C}} \\
& \theta_{\mathrm{C}}<\theta<2 \cdot \pi
\end{aligned}
$$

$$
\mathrm{C}_{\mathrm{D}}=\mathrm{C}_{\text {Dopen }}
$$

$$
\mathrm{F}_{\mathrm{D}}>0
$$

$$
\mathrm{C}_{\mathrm{D}}=\mathrm{C}_{\text {Dnotopen }}
$$

$$
\mathrm{F}_{\mathrm{D}}<0
$$

$$
\mathrm{C}_{\mathrm{D}}=\mathrm{C}_{\text {Dopen }}
$$

$$
\mathrm{F}_{\mathrm{D}}>0
$$

The torque is

$$
\mathrm{T}=\mathrm{F}_{\mathrm{D}} \cdot \mathrm{R}=\frac{1}{2} \cdot \rho \cdot \mathrm{~A} \cdot \mathrm{~V}_{\mathrm{n}}^{2} \cdot \mathrm{C}_{\mathrm{D}} \cdot \mathrm{R}
$$

The average torque is

$$
\mathrm{T}_{\mathrm{av}}=\frac{1}{2 \cdot \pi} \cdot \int_{\theta}^{2 \cdot \pi} \mathrm{~T} \mathrm{~d} \theta=\frac{1}{\pi} \cdot \int_{\theta}^{\pi} \mathrm{T} \mathrm{~d} \theta
$$

where we have taken advantage of symmetry
Evaluating this, allowing for changes when $\theta=\theta_{\mathrm{c}} \quad \mathrm{T}_{\mathrm{av}}=\frac{1}{\pi} \cdot \int_{\theta}^{\theta_{\mathrm{C}}} \frac{1}{2} \cdot \rho \cdot \mathrm{~A} \cdot \mathrm{~V}_{\mathrm{n}}{ }^{2} \cdot \mathrm{C}_{\text {Dopen }} \cdot \mathrm{R} \mathrm{d} \theta-\frac{1}{\pi} \cdot \int_{\theta_{\mathrm{C}}}^{\pi} \frac{1}{2} \cdot \rho \cdot \mathrm{~A} \cdot \mathrm{~V}_{\mathrm{n}}{ }^{2} \cdot \mathrm{C}_{\text {Dnotopen }} \cdot \mathrm{R} \mathrm{d} \theta$

Using Eq. 1

$$
\begin{aligned}
& \mathrm{T}_{\mathrm{av}}=\frac{\rho \cdot \mathrm{A} \cdot \mathrm{R}}{2 \cdot \pi} \cdot\left[\mathrm{C}_{\text {Dopen }} \cdot \int_{\theta}^{\theta_{\mathrm{C}}}(\mathrm{~V} \cdot \cos (\theta)-\omega \cdot \mathrm{R})^{2} \mathrm{~d} \theta-\mathrm{C}_{\text {Dnotopen }} \cdot \int_{\theta_{\mathrm{C}}}^{\pi}(\mathrm{V} \cdot \cos (\theta)-\omega \cdot \mathrm{R})^{2} \mathrm{~d} \theta\right] \\
& \mathrm{T}_{\mathrm{av}}=\frac{\rho \cdot \mathrm{A} \cdot \mathrm{R} \cdot \omega^{2}}{2 \cdot \pi} \cdot\left[\mathrm{C}_{\text {Dopen }} \cdot \int_{\theta}^{\theta_{\mathrm{c}}}\left(\frac{\mathrm{~V}}{\omega} \cdot \cos (\theta)-\mathrm{R}\right)^{2} \mathrm{~d} \theta-\mathrm{C}_{\text {Dnotopen }} \cdot \int_{\theta_{\mathrm{C}}}^{\pi}\left(\frac{\mathrm{V}}{\omega} \cdot \cos (\theta)-\mathrm{R}\right)^{2} \mathrm{~d} \theta\right]
\end{aligned}
$$

and note that $\quad \frac{\mathrm{V}}{\omega}=\mathrm{k}$

The integral is

$$
\int(\mathrm{k} \cdot \cos (\theta)-\mathrm{R})^{2} \mathrm{~d} \theta=\mathrm{k}^{2} \cdot\left(\frac{1}{2} \cdot \cos (\theta) \cdot \sin (\theta)+\frac{1}{2} \cdot \theta\right)-2 \cdot \mathrm{k} \cdot \mathrm{R} \cdot \sin (\theta)+\mathrm{R}^{2} \cdot \theta
$$

For convenience define

$$
\mathrm{f}(\theta)=\mathrm{k}^{2} \cdot\left(\frac{1}{2} \cdot \cos (\theta) \cdot \sin (\theta)+\frac{1}{2} \cdot \theta\right)-2 \cdot \mathrm{k} \cdot \mathrm{R} \cdot \sin (\theta)+\mathrm{R}^{2} \cdot \theta
$$

Hence

$$
\mathrm{T}_{\mathrm{av}}=\frac{\rho \cdot \mathrm{A} \cdot \mathrm{R}}{2 \cdot \pi} \cdot\left[\mathrm{C}_{\text {Dopen }} \cdot \mathrm{f}\left(\theta_{\mathrm{c}}\right)-\mathrm{C}_{\text {Dnotopen }} \cdot\left(\mathrm{f}(\pi)-\mathrm{f}\left(\theta_{\mathrm{c}}\right)\right)\right]
$$

For steady state conditions the torque (of each cup, and of all the cups) is zero. Hence
or

$$
\mathrm{C}_{\text {Dopen }} \cdot \mathrm{f}\left(\theta_{\mathrm{c}}\right)-\mathrm{C}_{\text {Dnotopen }} \cdot\left(\mathrm{f}(\pi)-\mathrm{f}\left(\theta_{\mathrm{c}}\right)\right)=0
$$

$$
f\left(\theta_{c}\right)=\frac{C_{\text {Dnotopen }}}{\mathrm{C}_{\text {Dopen }}+\mathrm{C}_{\text {Dnotopen }}} \cdot f(\pi)
$$

Hence

$$
\begin{aligned}
& \mathrm{k}^{2} \cdot\left(\frac{1}{2} \cdot \cos \left(\theta_{\mathrm{C}}\right) \cdot \sin \left(\theta_{\mathrm{C}}\right)+\frac{1}{2} \cdot \theta_{\mathrm{C}}\right)-2 \cdot \mathrm{k} \cdot \mathrm{R} \cdot \sin \left(\theta_{\mathrm{C}}\right)+\mathrm{R}^{2} \cdot \theta_{\mathrm{C}}=\frac{\mathrm{C}_{\text {Dnotopen }}}{\mathrm{C}_{\text {Dopen }}+\mathrm{C}_{\text {Dnotopen }}} \cdot\left(\mathrm{k}^{2} \cdot \frac{\pi}{2}+\mathrm{R}^{2} \cdot \pi\right) \\
& \theta_{\mathrm{C}}=\operatorname{acos}\left(\frac{\omega \cdot \mathrm{R}}{\mathrm{~V}}\right) \quad \text { or } \quad \theta_{\mathrm{C}}=\operatorname{acos}\left(\frac{\mathrm{R}}{\mathrm{k}}\right)
\end{aligned}
$$

Recall from Eq 2 that

Hence $\quad \mathrm{k}^{2} \cdot\left(\frac{1}{2} \cdot \frac{\mathrm{R}}{\mathrm{k}} \cdot \sin \left(\operatorname{acos}\left(\frac{\mathrm{R}}{\mathrm{k}}\right)\right)+\frac{1}{2} \cdot \operatorname{acos}\left(\frac{\mathrm{R}}{\mathrm{k}}\right)\right)-2 \cdot \mathrm{k} \cdot \mathrm{R} \cdot \sin \left(\operatorname{acos}\left(\frac{\mathrm{R}}{\mathrm{k}}\right)\right)+\mathrm{R}^{2} \cdot \operatorname{acos}\left(\frac{\mathrm{R}}{\mathrm{k}}\right)=\frac{\mathrm{C}_{\text {Dnotopen }}}{\mathrm{C}_{\text {Dopen }}+\mathrm{C}_{\text {Dnotopen }}} \cdot\left(\mathrm{k}^{2} \cdot \frac{\pi}{2}+\mathrm{R}^{2} \cdot \pi\right)$

This equation is to be solved for the coefficient k. The equation is highly nonlinear; it can be solved by iteration or using Excel's Goal Seek or Solver

From the associated Excel workbook

$$
\mathrm{k}=0.316 \cdot \mathrm{~m}
$$

$$
\mathrm{k}=0.119 \cdot \frac{\frac{\mathrm{~km}}{\mathrm{hr}}}{\mathrm{rpm}}
$$

9.116 Repeat the analysis for the frictionless anemometer of Problem 9.106, except this time base the torque calculations on the more realistic model that the average torque is obtained by integrating, over one revolution, the instantaneous torque generated by each cup (i.e., as the cup's orientation to the wind varies).

Given: Data on dimensions of anemometer
Find: Calibration constant

Solution:

Given data:

| $D=$ | 50 | mm |
| ---: | :---: | :---: | :---: |
| $R=$ | 80 | mm |
| $C_{\text {Dopen }}=$ | 1.42 | |
| $C_{\text {Dnotopen }}=$ | 0.38 | |

$\mathrm{k}^{2} \cdot\left(\frac{1}{2} \cdot \frac{\mathrm{R}}{\mathrm{k}} \cdot \sin \left(\operatorname{acos}\left(\frac{\mathrm{R}}{\mathrm{k}}\right)\right)+\frac{1}{2} \cdot \operatorname{acos}\left(\frac{\mathrm{R}}{\mathrm{k}}\right)\right)-2 \cdot \mathrm{k} \cdot \mathrm{R} \cdot \sin \left(\operatorname{acos}\left(\frac{\mathrm{R}}{\mathrm{k}}\right)\right)+\mathrm{R}^{2} \cdot \operatorname{acos}\left(\frac{\mathrm{R}}{\mathrm{k}}\right)=\frac{\mathrm{C}_{\text {Dnotopen }}}{\mathrm{C}_{\text {Dopen }}+\mathrm{C}_{\text {Dnotopen }}} \cdot\left(\mathrm{k}^{2} \cdot \frac{\pi}{2}+\mathrm{R}^{2} \cdot \pi\right)$
Use Solver to find k to make the error zero!

$\boldsymbol{k}(\mathbf{m m})$	Left	Right	Error
315.85	37325.8	37326	0%

$$
\begin{array}{lll}
k= & 0.316 & \mathrm{~m} \\
k= & 0.119 & \mathrm{~km} / \mathrm{hr} / \mathrm{rpm}
\end{array}
$$

Problem 9.117
Given: Object of mass, m, falling in air down mail chute.
Motion is steady.
Wake area at (2) is $3 / 4$ of chute area.
Pressure is constant in wake.
Find: Expression for terminal speed of object.
Solution: choose a CV moving with the object. Apply continuity, Bernoulli, and y momentum.
Basic equations: $\quad 0=\frac{f}{\phi t} \int_{C v}^{=o(1)} \rho d t+\int_{c s} \rho \vec{v} \cdot d \vec{A}$

$$
\begin{gathered}
\frac{p_{1}}{\varphi}+\frac{v_{1}^{2}}{2}+g \hat{q}_{1}=\frac{p_{2}}{\varphi}+\frac{v_{2}^{2}}{z}+g \hat{p}_{2} \\
F_{s y}+F_{B_{y}}=\frac{g^{t}}{g^{\prime}} \int_{c v} v \rho d \psi+\int_{c s} v \rho \vec{v} \cdot d \vec{A}
\end{gathered}
$$

Assumptions: (1) steady flow relative to $C V$
(6) Neglect $\Delta 3$
(2) Incompressible flow
(7) No net frow in wake
(3) Neglect friction
(4) Flow along a streamline
(5) Uniform flow and pressures at (1) and (2).

From continuity,

$$
o=\left\{-\rho V_{1} A_{1}\right\}+\left\{\rho V_{2} A_{2}\right\} \text { so } V_{2}=V_{1} \frac{A_{1}}{A_{2}}=V \frac{A}{A_{2}}
$$

From Bernoulli

$$
p_{1}-p_{1}=\frac{1}{2} \rho V_{2}^{2}-\frac{1}{2} \rho V_{1}^{2}=\frac{1}{2} \rho V\left[\left(\frac{V_{2}}{V}\right)^{2}-1\right]=\frac{1}{2} \rho V^{[}\left[\left(\frac{A}{A}\right)^{2}-1\right]
$$

From momentum

$$
p_{1} A-p_{2} A-m g=v_{1}\left\{-\rho v_{1} A_{1}\right\}+v_{2}\left\{+\rho v_{2} A_{2}\right\}=\rho v_{A}\left(V_{2}-V\right)=\rho v^{2} A\left(\frac{V_{2}}{V}-1\right)
$$

$$
v_{1}=V \quad v_{2}=v_{2}
$$

or

$$
\left(p_{1}-p_{2}\right) A-m g=\rho v^{2} A\left(\frac{A}{A_{2}}-1\right)
$$

substituting for $p_{1}-p_{2}$

$$
\frac{1}{2} \rho v^{2}\left[\left(\frac{A}{A_{2}}\right)^{2}-1\right]-m g=\rho v^{2} A\left(\frac{A}{A_{2}}-1\right) \text { or } m g=\frac{1}{2} \rho v^{2} A\left[\left(\frac{A}{A_{2}}\right)^{2} 2\left(\frac{A}{A_{2}}\right)+1\right]
$$

Thess

$$
V=\left[\frac{2 m g}{\rho H} \frac{1}{\left(\frac{A}{A_{2}}\right)^{2}-2\left(\frac{A}{A_{2}}\right)+1}\right]^{1 / 2}
$$

where A_{2} is the net flow area at section (2).

Given: Object falling in air down chute.

$$
V=3 \mathrm{~m} / \mathrm{s}
$$

Frictional effects negligible.
Find: (a) Flow speed, V_{2}, relative to object.
(b) Static pressure, p_{1}.
(c) Mass of object.

$A_{1}=0.09 \mathrm{~m}^{2}$

$$
Y_{\pi}^{Y_{T}} X
$$

(7) No net flow in wake

Assumptions: (1) steady flow relative to CV
(2) Incompressible flow
(3) Neglect friction
(4) Flow along a streamline
(5) Negket Δz
(6) Uniform flow and pressures at (1) and (2).

Then from continuity,

$$
0=\left\{-\rho V_{1} A_{1}\right\}+\left\{+\rho V_{2} A_{2}\right\} \text { so } V_{2}=V_{1} \frac{A_{1}}{A_{2}}=\frac{3}{3} \times \frac{1}{0.2}=15 \mathrm{~m} / \mathrm{s}
$$

From Bernocelii,

$$
\begin{aligned}
& p_{2}=p_{1}+\frac{1}{2} \rho v_{1}^{2}-\frac{1}{2} \rho v_{2}^{2}=p_{1}+\frac{1}{2} \rho v_{1}^{2}\left[1-\left(\frac{V_{2}}{V_{1}}\right)^{2}\right] \\
& p_{2}(g a g e)=\frac{1}{2} \times 1.23 \frac{\mathrm{~kg}}{m^{3}} \times(3)^{2} \frac{m^{2}}{\mathrm{~m}^{2}}\left[1-\left(\frac{1}{0.2}\right)^{2}\right] \frac{\mathrm{N}^{2}}{\mathrm{~kg}}=-133 \mathrm{~N} / \mathrm{m}^{2}(g a g \mathrm{c})
\end{aligned}
$$

From momentum

| | V_{2} |
| :--- | :--- | :--- |
| $\left.-V_{1}\right)=\rho V_{1}^{2} A_{1}\left(\frac{V_{2}}{V_{1}}-1\right)$ | p_{2} |

Thus

$$
\begin{aligned}
& M=\frac{A}{g}\left[p_{1}-p_{2}-\rho v_{1}^{2}\left(\frac{v_{2}}{V_{1}}-1\right)\right] \\
& M=0.09 m^{*} \times \frac{s^{2}}{4.81 m}\left[133 \frac{N}{m^{2}} \times \frac{k g \cdot m}{N s^{2}}-1.23 \frac{\mathrm{~kg}_{2}}{m^{3}} \times(3)^{2} \frac{m^{2}}{s^{2}}\left(\frac{1}{0.2}-1\right)\right]=0.814 \mathrm{~kg}
\end{aligned}
$$

Given: Paddle wheel immersed in river current as shown.

Assume only one paddle equivalent is immersed at a time.

Find: Expressions for (a) force, (b) torque, and (c) power produced by the wheels and find optimum angular speed.
Solution: Computing equations $F_{D}=C_{D} A \frac{1}{z} \rho V_{r e i}^{2}$

$$
T=F_{D} R, P=T \omega
$$

Assumptions: (1) Neglect air resistance, since fair << water
(2) Use velocity relative to the parodic

Thus $V_{r e l}=V-V=V-R \omega$

$$
F_{D}=C_{D} A \frac{1}{2} \rho V_{r e 1^{2}}=C_{D} A \frac{1}{2} \rho(V-U)^{2}
$$

The torque is

$$
T=F_{D} R=C_{D} A \frac{1}{2} \rho(V-U)^{2} R
$$

The power is

Drag

\qquad

$$
P=T \omega=C_{D} A \frac{1}{2} \rho(V-V)^{2} R \omega=C_{D} A \frac{1}{2} \rho(V-V)^{2} U
$$

To optimize power, set $\frac{d P}{d v}=0$

$$
\frac{d P}{d U}=C_{D} A \frac{1}{2} \rho\left[2(V-U) U(-1)+(V-U)^{2}\right]=0
$$

cancelling a factor $(V-v) g i v e s ~-~ Z v+V-v=0$ or $V-3 v=0$
Thus $U=R \omega=\frac{V}{3}$ so

$$
\omega_{o p t}=\frac{V}{3 R}
$$

Problem 9.120

9.120 A light plane tows an advertising banner over a football stadium on a Saturday afternoon. The banner is 4 ft tall and 45 ft long. According to Hoerner [16], the drag coefficient based on area $(L h)$ for such a banner is approximated by $C_{D}=0.05 L / h$, where L is the banner length and h is the banner height. Estimate the power required to tow the banner at $V=55 \mathrm{mph}$. Compare with the drag of a rigid flat plate. Why is the drag larger for the banner?

Given: Data on advertising banner
Find: Power to tow banner; Compare to flat plate; Explain discrepancy

Solution:

Basic equation: $\quad \mathrm{F}_{\mathrm{D}}=\frac{1}{2} \cdot \rho \cdot \mathrm{~A} \cdot \mathrm{~V}^{2} \cdot \mathrm{C}_{\mathrm{D}} \quad \mathrm{P}=\mathrm{F}_{\mathrm{D}} \cdot \mathrm{V}$
The given data or available data is

$\mathrm{V}=55 \cdot \mathrm{mph}$	$\mathrm{V}=80.7 \cdot \frac{\mathrm{ft}}{\mathrm{s}}$	$\mathrm{L}=45 \cdot \mathrm{ft} \quad \mathrm{h}=4 \cdot \mathrm{ft}$	$\rho=0.00234 \cdot \frac{\mathrm{slug}}{\mathrm{ft}^{3}}$
$\mathrm{~A}=\mathrm{L} \cdot \mathrm{h}$	$\mathrm{A}=180 \cdot \mathrm{ft}^{2}$	$\mathrm{C}_{\mathrm{D}}=0.05 \cdot \frac{\mathrm{~L}}{\mathrm{~h}}$	$\mathrm{C}_{\mathrm{D}}=0.563$
$\mathrm{~F}_{\mathrm{D}}=771 \cdot \mathrm{lbf}$	$\mathrm{P}=\mathrm{F}_{\mathrm{D}} \cdot \mathrm{V}$	$\mathrm{P}=6.22 \times 10^{4} \cdot \frac{\mathrm{ft} \cdot \mathrm{lbf}}{\mathrm{s}}$	$\mathrm{P}=113 \cdot \mathrm{hp}$

For a flate plate, check Re

$$
\nu=1.62 \times 10^{-4} \cdot \frac{\mathrm{ft}^{2}}{\mathrm{~s}}
$$

(Table A.9, 69${ }^{\circ}$)

$$
\begin{array}{ll}
\mathrm{Re}_{\mathrm{L}}=\frac{\mathrm{V} \cdot \mathrm{~L}}{\nu} & \mathrm{Re}_{\mathrm{L}}=2.241 \times 10^{7} \quad \text { so flow is fully turbulent. Hence use Eq 9.37b } \\
\mathrm{C}_{\mathrm{D}}=\frac{0.455}{\log \left(\mathrm{Re}_{\mathrm{L}}\right)^{2.58}}-\frac{1610}{\mathrm{Re}_{\mathrm{L}}} & \mathrm{C}_{\mathrm{D}}=0.00258 \\
\mathrm{~F}_{\mathrm{D}}=\frac{1}{2} \cdot \rho \cdot \mathrm{~A} \cdot \mathrm{~V}^{2} \cdot \mathrm{C}_{\mathrm{D}} \quad \mathrm{~F}_{\mathrm{D}}=3.53 \cdot \mathrm{lbf} &
\end{array}
$$

This is the drag on one side. The total drag is then $2 \cdot \mathrm{~F}_{\mathrm{D}}=7.06 \cdot \mathrm{lbf}$. This is VERY much less than the banner drag. The banner drag allows for banner flutter and other secondary motion which induces significant form drag.

Problem 9.121

9.121 The antenna on a car is 10 mm in diameter and 1.8 m long. Estimate the bending moment that tends to snap it off if the car is driven at $120 \mathrm{~km} / \mathrm{hr}$ on a standard day.

Given: Data on car antenna

Find: Bending moment

Solution:

Basic equation: $\quad F_{D}=\frac{1}{2} \cdot \rho \cdot \mathrm{~A} \cdot \mathrm{~V}^{2} \cdot \mathrm{C}_{\mathrm{D}}$
The given or available data is

$$
\mathrm{V}=120 \cdot \frac{\mathrm{~km}}{\mathrm{hr}} \quad \mathrm{~V}=33.3 \cdot \frac{\mathrm{~m}}{\mathrm{~s}}
$$

$$
\mathrm{L}=1.8 \cdot \mathrm{~m}
$$

$\mathrm{D}=10 \cdot \mathrm{~mm}$

$$
\mathrm{A}=\mathrm{L} \cdot \mathrm{D} \quad \mathrm{~A}=0.018 \mathrm{~m}^{2}
$$

$$
\rho=1.225 \cdot \frac{\mathrm{~kg}}{\mathrm{~m}^{3}}
$$

$$
\nu=1.50 \times 10^{-5} \cdot \frac{\mathrm{~m}^{2}}{\mathrm{~s}} \quad \text { (Table A.10, } 20^{\circ} \mathrm{C} \text {) }
$$

For a cylinder, check Re

$$
\operatorname{Re}=\frac{\mathrm{V} \cdot \mathrm{D}}{\nu}
$$

$$
\mathrm{Re}=2.22 \times 10^{4}
$$

From Fig. 9.13
$C_{D}=1.0$
$\mathrm{F}_{\mathrm{D}}=\frac{1}{2} \cdot \rho \cdot \mathrm{~A} \cdot \mathrm{~V}^{2} \cdot \mathrm{C}_{\mathrm{D}} \quad \mathrm{F}_{\mathrm{D}}=12.3 \mathrm{~N}$
The bending moment is then
$M=F_{D} \cdot \frac{L}{2}$
$\mathrm{M}=11.0 \cdot \mathrm{~N} \cdot \mathrm{~m}$

Problem 9.122

9.122 A large three-blade horizontal axis wind turbine (HAWT) can be damaged if the wind speed is too high. To avoid this, the blades of the turbine can be oriented so that they are parallel to the flow. Find the bending moment at the base of each blade when the wind speed is $45 \mathrm{~m} / \mathrm{s}$. Model each blade as a flat plate 35 m wide and 0.45 m long.

Given: Data on wind turbine blade
Find: Bending moment

Solution:

Basic equation: $\quad \mathrm{F}_{\mathrm{D}}=\frac{1}{2} \cdot \rho \cdot \mathrm{~A} \cdot \mathrm{~V}^{2} \cdot \mathrm{C}_{\mathrm{D}}$
The given or available data is

$$
\mathrm{V}=45 \cdot \frac{\mathrm{~m}}{\mathrm{~s}}
$$

$\mathrm{L}=0.45 \cdot \mathrm{~m}$
$\mathrm{W}=35 \cdot \mathrm{~m}$

$$
\mathrm{A}=\mathrm{L} \cdot \mathrm{~W}
$$

$$
\mathrm{A}=15.75 \mathrm{~m}^{2}
$$

$\rho=1.225 \cdot \frac{\mathrm{~kg}}{\mathrm{~m}^{3}}$
$\nu=1.50 \times 10^{-5} \cdot \frac{\mathrm{~m}^{2}}{\mathrm{~s}}$
(Table A. $10,20^{\circ} \mathrm{C}$)

For a flat plate, check Re

$$
\begin{aligned}
\mathrm{Re}_{\mathrm{L}}=\frac{\mathrm{V} \cdot \mathrm{~L}}{\nu} & \mathrm{Re}_{\mathrm{L}}=1.35 \times 10^{6} \\
\mathrm{C}_{\mathrm{D}}=\frac{0.0742}{\frac{1}{5}}-\frac{1740}{\mathrm{Re}_{\mathrm{L}}} & \mathrm{C}_{\mathrm{D}}=0.00312 \\
\mathrm{Re}_{\mathrm{L}} & \\
\mathrm{~F}_{\mathrm{D}}=\frac{1}{2} \cdot \rho \cdot \mathrm{~A} \cdot \mathrm{~V}^{2} \cdot \mathrm{C}_{\mathrm{D}} & \mathrm{~F}_{\mathrm{D}}=61.0 \mathrm{~N}
\end{aligned}
$$

so use Eq. 9.37a

The bending moment is then

$$
\mathrm{M}=\mathrm{F}_{\mathrm{D}} \cdot \frac{\mathrm{~W}}{2}
$$

$$
\mathrm{M}=1067 \cdot \mathrm{~N} \cdot \mathrm{~m}
$$

9.123 The HAWT of Problem 9.122 is not self-starting. The generator is used as an electric motor to get the turbine up to the operating speed of 20 rpm . To make this easier, the blades are aligned so they lie in the plane of rotation. Assuming an overall efficiency of motor and drive train of 65%, find the power required to maintain the turbine at the operating speed. As an approximation, model each blade as a series of flat plates (the outer region of each blade moves at a significantly higher speed than the inner region).

Given: Data on wind turbine blade

Find: Power required to maintain operating speed

Solution:

Basic equation:

$$
\mathrm{F}_{\mathrm{D}}=\frac{1}{2} \cdot \rho \cdot \mathrm{~A} \cdot \mathrm{~V}^{2} \cdot \mathrm{C}_{\mathrm{D}}
$$

The given or available data is

$$
\omega=20 \cdot \mathrm{rpm} \quad \mathrm{~L}=0.45 \cdot \mathrm{~m} \quad \mathrm{w}=35 \cdot \mathrm{~m}
$$

$$
\rho=1.225 \cdot \frac{\mathrm{~kg}}{\mathrm{~m}^{3}} \quad \nu=1.50 \times 10^{-5} \cdot \frac{\mathrm{~m}^{2}}{\mathrm{~s}}
$$

(Table A. $10,20^{\circ} \mathrm{C}$)
The velocity is a function of radial position, $\mathrm{V}(\mathrm{r})=\mathrm{r} \cdot \omega$, so Re varies from 0 to $\mathrm{Re}_{\max }=\frac{\mathrm{V}(\mathrm{w}) \cdot \mathrm{L}}{\nu} \quad \quad \mathrm{Re}_{\max }=2.20 \times 10^{6}$
The transition Reynolds number is 500,000 which therefore occurs at about $1 / 4$ of the maximum radial distance; the boundary layer is laminar for the first quarter of the blade. We approximate the entire blade as turbulent - the first $1 / 4$ of the blade will not exert much moment in any event

Hence

$$
\operatorname{Re}(\mathrm{r})=\frac{\mathrm{L}}{\nu} \cdot \mathrm{~V}(\mathrm{r})=\frac{\mathrm{L} \cdot \omega}{\nu} \cdot \mathrm{r}
$$

Using Eq. 9.37a

$$
\mathrm{C}_{\mathrm{D}}=\frac{0.0742}{\mathrm{Re}_{\mathrm{L}}^{\frac{1}{5}}}-\frac{1740}{\mathrm{Re}_{\mathrm{L}}}=\frac{0.0742}{\left(\frac{\mathrm{~L} \cdot \omega}{\nu} \cdot \mathrm{r}\right)^{\frac{1}{5}}}-\frac{1740}{\frac{\mathrm{~L} \cdot \omega}{\nu} \cdot \mathrm{r}}=0.0742 \cdot\left(\frac{\nu}{\mathrm{~L} \cdot \omega}\right)^{\frac{1}{5}} \cdot \mathrm{r}^{-\frac{1}{5}}-1740 \cdot\left(\frac{\nu}{\mathrm{~L} \cdot \omega}\right) \cdot \mathrm{r}^{-1}
$$

The drag on a differential area is $\quad \mathrm{dF}_{\mathrm{D}}=\frac{1}{2} \cdot \rho \cdot \mathrm{dA} \cdot \mathrm{V}^{2} \cdot \mathrm{C}_{\mathrm{D}}=\frac{1}{2} \cdot \rho \cdot \mathrm{~L} \cdot \mathrm{~V}^{2} \cdot \mathrm{C}_{\mathrm{D}} \cdot \mathrm{dr} \quad$ The bending moment is then $\quad \mathrm{dM}=\mathrm{dF}_{\mathrm{D}} \cdot \mathrm{r}$

$$
\begin{aligned}
& \text { Hence } \quad \mathrm{M}=\int_{0} 1 \mathrm{dM}=\int_{0}^{\mathrm{W}} \frac{1}{2} \cdot \rho \cdot \mathrm{~L} \cdot \mathrm{~V}^{2} \cdot \mathrm{C}_{\mathrm{D}} \cdot \mathrm{rdr} \quad \mathrm{M}=\int_{0}^{\mathrm{W}} \frac{1}{2} \cdot \rho \cdot \mathrm{~L} \cdot \omega^{2} \cdot \mathrm{r}^{3} \cdot\left[0.0742 \cdot\left(\frac{\nu}{\mathrm{~L} \cdot \omega}\right)^{\left.\frac{1}{5} \cdot r^{-\frac{1}{5}}-1740 \cdot\left(\frac{\nu}{\mathrm{~L} \cdot \omega}\right) \cdot \mathrm{r}^{-1}\right] \mathrm{dr}}\right. \\
& \mathrm{M}=\frac{1}{2} \cdot \rho \cdot \mathrm{~L} \cdot \omega^{2} \cdot \int_{0}^{\mathrm{W}}\left[0.0742 \cdot\left(\frac{\nu}{\mathrm{~L} \cdot \omega}\right)^{\frac{1}{5}} \cdot \frac{14}{5}-1740 \cdot\left(\frac{\nu}{\mathrm{~L} \cdot \omega}\right) \cdot \mathrm{r}^{2}\right] \mathrm{dr} \quad \mathrm{M}=\frac{1}{2} \cdot \rho \cdot \mathrm{~L} \cdot \omega^{2} \cdot\left[\frac{5 \cdot 0.0742}{19} \cdot\left(\frac{\nu}{\mathrm{~L} \cdot \omega}\right)^{\left.\frac{1}{5} \cdot \mathrm{~W}^{\frac{19}{5}}-\frac{1740}{3} \cdot\left(\frac{\nu}{\mathrm{~L} \cdot \omega}\right) \cdot \mathrm{w}^{3}\right]}\right. \\
& \mathrm{M}=1.43 \cdot \mathrm{kN} \cdot \mathrm{~m} \quad \text { Hence the power is } \quad \mathrm{P}=\mathrm{M} \cdot \omega \quad \mathrm{P} \quad \mathrm{P}=3.00 \mathrm{~kW}
\end{aligned}
$$

Problem 9.124
Given: Small droplets of oil ($56=0.85$) rising in water.
Find: (al Relationship for terminalspeed, $v_{t}(m / s)$, as a function of droplet diameter, $\Delta(i n \mathrm{~mm})$.
(b) Range of D for which stokes flow is a reasonable assumption.

Solution: Draw free-body diagram of droplet, apply Newton's second law.
Basic equation: $\Sigma F_{y}=-m g+F_{B}-F_{D}=m a_{y}$
Assume: Stokes' drag law, $F_{0}=3 \pi \mu v o$, for Re <10
Then $-\rho \forall g+\rho_{1+20} \forall g-3 \pi \mu v_{t} D=0$ at terminal speed, v_{4}.

Solving, $\quad V_{t}=\frac{\left(\rho_{H_{2} O}-\rho_{0}\right) \forall g}{3 \pi \mu D}=\rho_{H_{2} O}\left(i-S G_{0}\right) \frac{\pi D^{3}}{6} \frac{g}{3 \pi \mu 0}=\frac{\left(1-5 G_{0}\right) D^{2} g}{18 v}$
Evaluating,

$$
\begin{aligned}
& V_{t}(\mathrm{~m} / \mathrm{s})=\frac{(1-0.85)}{18} \times D^{2} \mathrm{~mm}^{2} \times 9.81 \frac{\mathrm{~m}}{\mathrm{~s}} \times \frac{5}{1.000^{-6} \mathrm{~m}^{2}} \times \frac{\mathrm{m}^{2}}{10^{6} \mathrm{~mm}^{2}} \quad\left(T=20^{\circ} \mathrm{C}\right) \\
& V_{t}(\mathrm{~m} / \mathrm{s})=0.0818[0(\mathrm{~mm})]^{2}
\end{aligned}
$$

For Stokes flow, Re <1, so

$$
R_{c}=\frac{\rho V_{t} O}{\mu}=\frac{V_{t} O}{\nu}=\frac{\left(1-S G_{0}\right) D^{3} g}{18 \nu^{2}} \leqslant 1
$$

Thees

$$
D^{3} \leqslant \frac{18 v^{2}}{\left(1-56_{0}\right) g} \text { or } D \leqslant\left[\frac{18}{\left(1-5 \sigma_{0}\right) g}\right]^{1 / 3}
$$

Evaluating,

$$
D \leqslant\left[\frac{18}{(1-0.85)}\left(1.00 \times 10^{-6}\right)^{2} \frac{\mathrm{~m}^{4}}{s^{2}} \times \frac{\mathrm{s}^{2}}{9.81 \mathrm{~m}}\right]^{1 / 3}=2.31 \times 10^{-4} \mathrm{~m}(0.231 \mathrm{~mm})
$$

Thus Stokes' flow will be a valid asscempton for $D<0.231 \mathrm{~mm}$.

Problem 9.125
Given: Wind tunnel with standard air drawn in.
sphere with $D=30 \mathrm{~mm}$ on a force balance.
static pressure in thanes, $p=-40 \mathrm{~mm}(0 i 1, s 6=0.85)$
Find: (a) Freestream air speed
(b) Reynolds number for flow over sphere
(c) Drag force on sphere.

Solution: Apply Bernoulli:

$$
\begin{equation*}
p_{\infty}+\frac{1}{2} \rho \psi_{\infty}^{2}+\rho g g_{\infty}^{(5)}=p+\frac{1}{2} \rho v^{2}+\rho g g_{\rho}^{(5)} \tag{5}
\end{equation*}
$$

Assume: (I) Steady flow.
(2) Incompressible flow
(3) Flow a long a streamline
(4) No friction (neg lect honeycomb and for screens
(5) Neglect 3
(6) $V_{\infty} \approx 0$

Then $p=p+\frac{1}{2} \rho v^{2}$ or $V=\sqrt{\frac{2\left(p_{0}-p\right)}{p}}$
But $p_{00}-p=-p_{r i j} \Delta h=-3 G p_{H_{L O}} g \Delta h$

$$
\begin{aligned}
& V=\left[\frac{-2 S 6 \rho_{1+20} g \Delta h}{\rho}\right]^{\frac{1}{2}} \\
& V=\left[-2(0.85)_{\times} 1000 \frac{\mathrm{~kg}}{\mathrm{~m}^{3}} \times 9.81 \frac{\mathrm{~m}}{\mathrm{~s}^{2}} \times(-0.04 \mathrm{~m}) \times \frac{\mathrm{m}^{3}}{1,23 \mathrm{~kg}}\right]^{\frac{1}{2}}=23.3 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

and

$$
\operatorname{Re}=\frac{V D}{\nu}=23,3 \frac{m}{\mathrm{~s}} \times 0.03 \mathrm{~m}_{\times} \frac{5}{1.45 \times 10^{-5} \mathrm{~m}^{2}}=48,200
$$

Re is subcritical; $B C \leq$ are laminar, and $C_{D}=0.47$

$$
\begin{aligned}
F_{D} & =C_{D} A \frac{1}{2} \rho V^{2} \quad A=\frac{\pi D^{2}}{4}=7.07 \times 10^{-4} \mathrm{~m}^{2} \\
& =0.47 \times 7.07 \times 10^{-4} \mathrm{~m}^{2} \times \frac{1}{2} \times \frac{1.23 \mathrm{kq}}{\mathrm{~m}^{3}} \times(23.3)^{2} \frac{\mathrm{~m}^{2}}{\mathrm{~s}^{2}} \times \frac{\mathrm{N} . \mathrm{s}^{2}}{\mathrm{~kg} \cdot \mathrm{~m}} \\
F_{D} & =0.111 \mathrm{~N}
\end{aligned}
$$

Given: Spherical hydrogen-filled balloon, $D=0.6 \mathrm{~m}$, in standard air.
In stationary air.

In moving airs

Find: Drag coefficient of balloon.
Solution: Apply Newton's second law of motion, definition of C_{D}. Basic equations: $\Sigma F_{x}=m A_{x}^{\# 0(1)}, C_{0}=\frac{F_{D}}{\frac{1}{2} v^{2} A}$

Asscemptions: (1) Balloon is stationary
(2) $F_{b}($ buoyancy of ba 100 N$)=1.3 \mathrm{~N}$

Then a free body diagram gives

From the diagram, $F_{D}=F_{S} \tan 30^{\circ}$

$$
F_{0}=1.3 \mathrm{~N} \times 0.577=0.750 \mathrm{~N}
$$

For standard air, $\rho=1.23 \mathrm{~kg} / \mathrm{m}^{3}$. $A=\pi D^{2} / 4$, so

$$
\begin{aligned}
& C_{D}=\frac{F_{D}}{\frac{1}{2} F V^{2} A}=\frac{8}{\pi} \frac{F_{D}}{P V^{2} D^{2}} \\
& C_{D}=\frac{8}{\pi} \times 0.750 \mathrm{~N}^{1} \frac{m^{3}}{1.23 / \mathrm{kg}^{2} \times \frac{\mathrm{s}^{2}}{(3)^{2} m^{2}} \times \frac{1}{(0.6)^{2} m^{2}} \times \frac{\mathrm{kg} \cdot \mathrm{~m}}{N . \mathrm{s}^{2}}=0.479}
\end{aligned}
$$

Given: Field hockey ball with $D=73 \mathrm{~mm}$ and $m=1 \mathrm{log}$, leaving stick at $U_{0}=50 \mathrm{~m} / \mathrm{s}$. Bail is smooth sphere.
Find: Estimate distance traveled in horizontal flight to reduce speed of ball 10 percent.

Solution: Apply Newton's second law of motion: Basic equation: $\quad \Sigma F_{x}=m a_{x}=m \frac{d U}{d t}=m U \frac{d U}{d x}$
Thus $-F_{D}=-C_{D A} \frac{1}{2} \rho O^{2}=m U \frac{d U}{d x}$ or $d x=-\frac{2 m}{C_{D A P}} \frac{d U}{U}$ check te to find C_{D} (use ν at $T=15^{\circ} \mathrm{C}$ from Table $A, 10$):

$$
\operatorname{Re} \leqslant \frac{U_{0} D}{\nu}=50 \frac{m}{5} \times 0.075 m_{\times} \frac{s}{1.46 \times 10^{-5} m^{2}}=2.57 \times 10^{5} \quad \text { (standard air) }
$$

From Fig. 9.11, flow is subcritical and $C_{0} \simeq 0.47=$ constant.
Thus

$$
\left.x=\int_{0}^{x} d x=\int_{U_{0}}^{U}-\frac{z m}{C_{D A P}} \frac{d \sigma}{U}=-\frac{z m}{C_{D A \rho}} \ln V\right]_{U_{0}}^{U}=-\frac{z m}{C_{D} A \rho} \ln \left(\frac{V}{U_{0}}\right)
$$

or

$$
x=-2 \times 0.160 \mathrm{~kg}_{\times} \frac{1}{0.47} \times \frac{4}{\pi(0.073)^{2} \mathrm{~m}^{2}} \times \frac{\mathrm{m}^{3}}{1.23 / \mathrm{cg}^{3}} \ln (0.9)=13.9 \mathrm{~m}
$$

Problem 9.128

9.128 Compute the terminal speed of a 3-mm diameter raindrop
(assume spherical) in standard air.

Given: $\quad 3 \mathrm{~mm}$ raindrop

Find: Terminal speed

Solution:

Basic equation: $\quad \mathrm{F}_{\mathrm{D}}=\frac{1}{2} \cdot \rho \cdot \mathrm{~A} \cdot \mathrm{~V}^{2} \cdot \mathrm{C}_{\mathrm{D}} \quad \Sigma \mathrm{F}=0$

Given or available data is $\quad \mathrm{D}=3 \cdot \mathrm{~mm} \quad \rho_{\mathrm{H} 2 \mathrm{O}}=1000 \cdot \frac{\mathrm{~kg}}{\mathrm{~m}^{3}} \quad \rho_{\mathrm{air}}=1.225 \cdot \frac{\mathrm{~kg}}{\mathrm{~m}^{3}} \quad \nu=1.50 \times 10^{-5} \cdot \frac{\mathrm{~m}^{2}}{\mathrm{~s}} \quad$ (Table A.10, 20 ${ }^{\circ} \mathrm{C}$)
Summing vertical forces $\quad M \cdot g-F_{D}=M \cdot g-\frac{1}{2} \cdot \rho_{a i r} \cdot A \cdot V^{2} \cdot C_{D}=0$
Buoyancy is negligible
$\mathrm{M}=\rho_{\mathrm{H} 2 \mathrm{O}} \cdot \frac{\pi \cdot \mathrm{D}^{3}}{6}$
$\mathrm{M}=1.41 \times 10^{-5} \mathrm{~kg}$
$\mathrm{A}=\frac{\pi \cdot \mathrm{D}^{2}}{4}$
$A=7.07 \times 10^{-6} \mathrm{~m}^{2}$
Assume the drag coefficient is in the flat region of Fig. 9.11 and verify Re later

$$
C_{D}=0.4
$$

$$
\mathrm{V}=\sqrt{\frac{2 \cdot \mathrm{M} \cdot \mathrm{~g}}{\mathrm{C}_{\mathrm{D}} \cdot \rho_{\mathrm{air}} \cdot \mathrm{~A}}} \quad \mathrm{~V}=8.95 \frac{\mathrm{~m}}{\mathrm{~s}}
$$

Check Re

$$
\mathrm{Re}=\frac{\mathrm{V} \cdot \mathrm{D}}{\nu}
$$

$\operatorname{Re}=1.79 \times 10^{3}$ which does place us in the flat region of the curve
Actual raindrops are not quite spherical, so their speed will only be approximated by this result

Problem 9.129
Given: Small sphere falling through castor oil a+ $20 \mathrm{c} j \mathrm{D}=6 \mathrm{~mm}$.

Terminal speed is $60 \mathrm{~mm} / \mathrm{s}$.

Find: (a) Compute C_{0} for given sonere.
(b) Density of sphere.
(c) Compare terminal speed in water.

Solution: Apply Newton's second law of motion, definition of C_{0}. Basic equations: $\Sigma F_{y}=m a_{y}$

$$
C_{D}=\frac{F_{D}}{\frac{1}{2} P V^{*} A}
$$

Assume 'R es; so stokes flow, $F_{0}=3 \pi \mu D V$.

From the definition, noting A is the frontal area, $A=\frac{\pi P^{2}}{4}$,

$$
c_{0}=\frac{F_{D}}{\frac{1}{2} \rho V^{2} A}=\frac{3 \pi \mu D V}{\frac{1}{2} \rho V^{2} \frac{\pi D^{2}}{4}}=\frac{24 \mu}{P V D}=\frac{24}{R_{C}}
$$

For castor oil $a+20 C, \mu=0.9 \mathrm{~N} \cdot \mathrm{~s} / \mathrm{m}^{2}$ (Fig, A.2) and $56=0.97$ (Table A 2).

$$
\begin{aligned}
& R e=\frac{56 p_{H_{2} \mathrm{O}} V_{0}}{\mu}=(0.97) 999 \frac{\mathrm{~kg}}{\mathrm{~m}} \times 0.06 \frac{\mathrm{~m}}{3} \times 0.006 \mathrm{~m}_{1} \frac{\mathrm{~m}^{2}}{0.9 \mathrm{~N} .5} \times \frac{N \mathrm{~s}^{2} \mathrm{k}}{\mathrm{~kg} \cdot \mathrm{~m}}=0.388<1 \mathrm{~V} \\
& C_{D}=\frac{24}{R e}=\frac{24}{0.388}=61.9
\end{aligned}
$$

From Neut on's second law, $F_{D}+F_{\text {buoyancy }}-m g=0$ or $F_{D}=m y-F_{b}$, Thus

$$
\begin{aligned}
& F_{D}=C_{D} \frac{1}{2} \rho V^{2} A=m g-F_{b}=\left(S G_{S}-5 G_{D}\right) \rho_{H_{L} \circ g} \forall \text { or } S G_{S}=S G_{0}+\frac{C_{D} \frac{1}{2} \rho V^{2} A}{\rho_{H_{1} O} g V^{*}}=S G_{0}\left(1+\frac{C_{D} V^{2} A}{2 g \forall}\right) \\
& \text { But } \frac{A}{\forall}=\frac{\pi r^{2}}{\frac{4}{3} \pi r^{2}}=\frac{3}{4 r}=\frac{3}{20} \text {; } 50 \quad S \theta_{3}=56_{0}\left(1+\frac{3}{4} \frac{c_{0} V^{x}}{g D}\right) \\
& s s_{s}=0.97\left(1+\frac{9}{4} \times 6.9 q_{k}(0.06)^{2} \frac{m^{2}}{s^{2}} \cdot \frac{52}{9.81 \mathrm{~m}^{2}} * 0.006 \mathrm{~m}\right)=3.72,30 \rho_{S}=3720 \frac{\mathrm{~kg}}{\mathrm{~m}^{3}}
\end{aligned}
$$

In water, the net weight and drag must balance, or

$$
F_{D}=\frac{1}{2} \rho V^{2} C_{D} A=W-F_{D}=\gamma_{\mu_{L}}\left(S G_{S}-1\right) \forall \text { or } V=\left[\frac{4(S G-1) g D}{3 C_{D}}\right]^{\frac{1}{2}}
$$

However, C_{D} is a function of Re, so iteration is needed. From Fig. $9.11, C_{D}=0.4$ over a range of Re. Using $C_{D}=0.4$,

$$
V=\left[\frac{4}{3}\left(\frac{2.72}{0.4}\right)^{9.8 / \frac{m}{3^{2}}} \times^{0.006 m}\right]^{\frac{1}{2}}=0.731 \mathrm{~m} / \mathrm{s}
$$

Check RC:

$$
R_{e}=\frac{V 0}{2}=0.731 \frac{\mathrm{~m}}{\mathrm{~s}} \times 0.006 \mathrm{~m} \times \frac{\mathrm{s}}{1.1 \times 10^{-6} \mathrm{~m}^{2}}=5990 \text { ok! }
$$

Problem 9.130

Given: curve fit for drag coefficient of a sphere versus Re:

$$
\begin{array}{ll}
C_{D}=24 / R e & R e \leqslant 1 \\
C_{D}=24 / R e^{0.646} & 1<R e \leq 400 \\
C_{D}=0.5 & 400<\operatorname{Re} \leqslant 3 \times 10^{5} \\
C_{D}=0.000366 R e^{0.4275} & 3 \times 10^{5}<\operatorname{Re} \leqslant 2 \times 10^{6} \\
C_{D}=6.18 & \operatorname{Re}>2 \times 10^{6}
\end{array}
$$

Find: Use data from Fig. 9.11 to evaluate the maximum error between the curve fit and experimental data.

Solution: The curve-fit segments are plothed on Fig. 9. "below:

The maximurn significant errar occurs in the region whene c_{0} is modeled as equal to the constant value, $C_{D}=0.5$. The curve fit appears to be about 10 percent high in the region from Re $a 10^{3}$ to $R e \simeq 10^{4}$.
9.131 Problem 9.105 showed a circular disk hung in an air stream from a cylindrical strut. Assume the strut is $L=40 \mathrm{~mm}$ long and $d=3 \mathrm{~mm}$ in diameter. Solve Problem 9.105 including the effect of drag on the support.

Given: Circular disk in wind

Find: \quad Mass of disk; Plot α versus V

Solution:

Basic equations:

$$
\mathrm{C}_{\mathrm{D}}=\frac{\mathrm{F}_{\mathrm{D}}}{\frac{1}{2} \cdot \rho \cdot \mathrm{~V}^{2} \cdot \mathrm{~A}} \quad \stackrel{\overrightarrow{\mathrm{M}}}{ }=0
$$

Summing moments at the pivor $\mathrm{W} \cdot \mathrm{L} \cdot \sin (\alpha)-\mathrm{F}_{\mathrm{n} 1} \cdot \mathrm{~L}-\frac{1}{2} \cdot\left(\mathrm{~L}-\frac{\mathrm{D}}{2}\right) \cdot \mathrm{F}_{\mathrm{n} 2}=0 \quad$ (1) and for each normal drag $\quad \mathrm{F}_{\mathrm{n}}=\frac{1}{2} \cdot \rho \cdot \mathrm{~V}_{\mathrm{n}}^{2} \cdot \mathrm{~A} \cdot \mathrm{C}_{\mathrm{D}}$

Assume 1) No pivot friction 2) C_{D} is valid for $V_{\mathrm{n}}=V \cos (\alpha)$

The data is

$$
\begin{array}{lll}
\rho=1.225 \cdot \frac{\mathrm{~kg}}{\mathrm{~m}^{3}} & \mu=1.8 \times 10^{-5} \cdot \frac{\mathrm{~N} \cdot \mathrm{~s}}{\mathrm{~m}^{2}} & \mathrm{~V}=15 \cdot \frac{\mathrm{~m}}{\mathrm{~s}} \\
\mathrm{D}=25 \cdot \mathrm{~mm} & \mathrm{~d}=3 \cdot \mathrm{~mm} & \mathrm{~L}=40 \cdot \mathrm{~mm} \quad \alpha=10 \cdot \mathrm{deg}
\end{array}
$$

$$
\mathrm{C}_{\mathrm{D} 1}=1.17 \quad \text { (Table 9.3) } \quad \mathrm{Re}_{\mathrm{d}}=\frac{\rho \cdot \mathrm{V} \cdot \mathrm{~d}}{\mu} \quad \mathrm{Re}_{\mathrm{d}}=3063 \quad \text { so from Fig. } 9.13 \quad \mathrm{C}_{\mathrm{D} 2}=0.9
$$

Hence

$$
\begin{array}{ll}
\mathrm{F}_{\mathrm{n} 1}=\frac{1}{2} \cdot \rho \cdot(\mathrm{~V} \cdot \cos (\alpha))^{2} \cdot \frac{\pi \cdot \mathrm{D}^{2}}{4} \cdot \mathrm{C}_{\mathrm{D} 1} & \mathrm{~F}_{\mathrm{n} 1}=0.077 \mathrm{~N} \\
\mathrm{~F}_{\mathrm{n} 2}=\frac{1}{2} \cdot \rho \cdot(\mathrm{~V} \cdot \cos (\alpha))^{2} \cdot\left(\mathrm{~L}-\frac{\mathrm{D}}{2}\right) \cdot \mathrm{d} \cdot \mathrm{C}_{\mathrm{D} 2} & \mathrm{~F}_{\mathrm{n} 2}=0.00992 \mathrm{~N}
\end{array}
$$

The drag on the support is much less than on the disk (and moment even less), so results will not be much different from those of Problem :

Hence Eq. 1 becomes

$$
\begin{aligned}
& M \cdot L \cdot g \cdot \sin (\alpha)=L \cdot \frac{1}{2} \cdot \rho \cdot(V \cdot \cos (\alpha))^{2} \cdot \frac{\pi \cdot D^{2}}{4} \cdot C_{D 1}+\frac{1}{2} \cdot\left(L-\frac{D}{2}\right) \cdot\left[\frac{1}{2} \cdot \rho \cdot(V \cdot \cos (\alpha))^{2} \cdot\left(L-\frac{D}{2}\right) \cdot d \cdot C_{D 2}\right] \\
& M=\frac{\rho \cdot V^{2} \cdot \cos (\alpha)^{2}}{4 \cdot g \cdot \sin (\alpha)} \cdot\left[\frac{1}{2} \cdot \pi \cdot D^{2} \cdot C_{D 1}+\left(1-\frac{D}{2 \cdot L}\right) \cdot\left(L-\frac{D}{2}\right) \cdot d \cdot C_{D 2}\right] \quad M=0.0471 \mathrm{~kg}
\end{aligned}
$$

Rearranging

$$
\mathrm{V}=\sqrt{\frac{4 \cdot \mathrm{M} \cdot \mathrm{~g}}{\rho}} \cdot \sqrt{\frac{\tan (\alpha)}{\cos (\alpha)}} \cdot \frac{1}{\sqrt{\left.\frac{1}{2} \cdot \pi \cdot \mathrm{D}^{2} \cdot \mathrm{C}_{\mathrm{D} 1}+\left(1-\frac{\mathrm{D}}{2 \cdot \mathrm{~L}}\right) \cdot\left(\mathrm{L}-\frac{\mathrm{D}}{2}\right) \cdot \mathrm{d} \cdot \mathrm{C}_{\mathrm{D} 2}\right]}}
$$

$$
\mathrm{V}=35.5 \cdot \frac{\mathrm{~m}}{\mathrm{~s}} \cdot \sqrt{\frac{\tan (\alpha)}{\cos (\alpha)}}
$$

We can plot this by choosing α and computing V

This graph can be easily plotted in Excel

Problem 9.132

9.132 A tennis ball with a mass of 57 g and diameter of 64 mm is dropped in standard sea level air. Calculate the terminal velocity of the ball. Assuming as an approximation that the drag coefficient remains constant at its terminal-velocity value, estimate the time and distance required for the ball to reach 95% of its terminal speed.

Given: Data on a tennis ball
Find: Terminal speed time and distance to reach 95\% of terminal speed

Solution:

The given data or available data is $M=57 \cdot \mathrm{gm} \quad D=64 \cdot \mathrm{~mm}$

$$
\nu=1.45 \cdot 10^{-5} \cdot \frac{\mathrm{~m}^{2}}{\mathrm{~s}} \quad \rho=1.23 \cdot \frac{\mathrm{~kg}}{\mathrm{~m}^{3}}
$$

Then

$$
\mathrm{A}=\frac{\pi \cdot \mathrm{D}^{2}}{4} \quad \mathrm{~A}=3.22 \times 10^{-3} \mathrm{~m}^{2}
$$

Assuming high Reynolds number

$$
C_{D}=0.5
$$

(from Fig. 9.11)

At terminal speed drag equals weight

$$
F_{D}=M \cdot g
$$

The drag at speed V is given by
$\mathrm{F}_{\mathrm{D}}=\frac{1}{2} \cdot \rho \cdot \mathrm{~A} \cdot \mathrm{~V}^{2} \cdot \mathrm{C}_{\mathrm{D}}$

Hence the terminal speed is

$$
V_{t}=\sqrt{\frac{M \cdot g}{\frac{1}{2} \cdot \rho \cdot A \cdot C_{D}}}
$$

$$
\mathrm{V}_{\mathrm{t}}=23.8 \frac{\mathrm{~m}}{\mathrm{~s}}
$$

Check the Reynolds number

$$
\operatorname{Re}=\frac{\mathrm{V}_{\mathrm{t}} \cdot \mathrm{D}}{v}
$$

$$
\operatorname{Re}=1.05 \times 10^{5}
$$

Check!

For motion before terminal speed Newton's second law applies

$$
\mathrm{M} \cdot \mathrm{a}=\mathrm{M} \cdot \frac{\mathrm{dV}}{\mathrm{dt}}=\mathrm{M} \cdot \mathrm{~g} \cdot-\frac{1}{2} \cdot \rho \cdot \mathrm{~V}^{2} \cdot \mathrm{~A} \cdot \mathrm{C}_{\mathrm{D}} \quad \text { or } \quad \frac{\mathrm{d}}{\mathrm{dt}} \mathrm{~V}=\mathrm{g}-\mathrm{k} \cdot \mathrm{~V}^{2} \quad \text { where } \quad \mathrm{k}=\frac{\rho \cdot \mathrm{A} \cdot \mathrm{C}_{\mathrm{D}}}{2 \cdot \mathrm{M}} \quad \mathrm{k}=0.0174 \frac{1}{\mathrm{~m}}
$$

Separating variables
$\int_{0}^{V} \frac{1}{g-k \cdot V^{2}} d V=t$
$\int \frac{1}{g-k \cdot V^{2}} d V=\frac{1}{\sqrt{g \cdot k}} \cdot \operatorname{atanh}\left(\sqrt{\frac{k}{g}} \cdot V\right)$

Hence

$$
\mathrm{V}(\mathrm{t})=\sqrt{\frac{\mathrm{g}}{\mathrm{k}}} \cdot \tanh (\sqrt{\mathrm{~g} \cdot \mathrm{k}} \cdot \mathrm{t})
$$

Evaluating at $V=0.95 V_{\mathrm{t}}$

For distance x versus time, integrate

$$
0.95 \cdot \mathrm{~V}_{\mathrm{t}}=\sqrt{\frac{\mathrm{g}}{\mathrm{k}}} \cdot \tanh \left(\sqrt{\mathrm{~g} \cdot \mathrm{k} \cdot \mathrm{t})} \quad \mathrm{t}=\frac{1}{\sqrt{\mathrm{~g} \cdot \mathrm{k}}} \cdot \operatorname{atanh}\left(0.95 \cdot \mathrm{~V}_{\mathrm{t}} \cdot \sqrt{\frac{\mathrm{k}}{\mathrm{~g}}}\right) \quad \mathrm{t}=4.44 \mathrm{~s}\right.
$$

$$
\frac{\mathrm{dx}}{\mathrm{dt}}=\sqrt{\frac{\mathrm{g}}{\mathrm{k}}} \cdot \tanh (\sqrt{\mathrm{~g} \cdot \mathrm{k}} \cdot \mathrm{t}) \quad \mathrm{x}=\int_{0}^{\mathrm{t}} \sqrt{\frac{\mathrm{~g}}{\mathrm{k}}} \cdot \tanh (\sqrt{\mathrm{~g} \cdot \mathrm{k}} \cdot \mathrm{t}) \mathrm{dt}
$$

Note that

$$
\int \tanh (\mathrm{a} \cdot \mathrm{t}) \mathrm{dt}=\frac{1}{\mathrm{a}} \cdot \ln (\cosh (\mathrm{a} \cdot \mathrm{t}))
$$

Hence
$\mathrm{x}(\mathrm{t})=\frac{1}{\mathrm{k}} \cdot \ln (\cosh (\sqrt{\mathrm{g} \cdot \mathrm{k}} \cdot \mathrm{t}))$

Evaluating at $V=0.95 V_{\mathrm{t}}$
$\mathrm{t}=4.44 \mathrm{~s}$
so

$$
x(t)=67.1 \mathrm{~m}
$$

Problem 9.133

9.133 A model airfoil of chord 15 cm and span 60 cm is placed in a wind tunnel with an air flow of $30 \mathrm{~m} / \mathrm{s}$ (the air is at $20^{\circ} \mathrm{C}$). It is mounted on a cylindrical support rod 2 cm in diameter and 25 cm tall. Instruments at the base of the rod indicate a vertical force of 50 N and a horizontal force of 6 N . Calculate the lift and drag coefficients of the airfoil.

Given: Data on model airfoil
Find: Lift and drag coefficients

Solution:

Basic equation: $\quad C_{D}=\frac{F_{D}}{\frac{1}{2} \cdot \rho \cdot A \cdot V^{2}} \quad C_{L}=\frac{F_{L}}{\frac{1}{2} \cdot \rho \cdot A \cdot V^{2}} \quad$ where A is plan area for airfoil, frontal area for rod

Given or available data is $\mathrm{D}=2 \cdot \mathrm{~cm}$ $\mathrm{L}=25 \cdot \mathrm{~cm} \quad$ (Rod)
$\mathrm{b}=60 \cdot \mathrm{~cm} \quad \mathrm{c}=15 \cdot \mathrm{~cm}$
(Airfoil)

$$
\mathrm{V}=30 \cdot \frac{\mathrm{~m}}{\mathrm{~s}} \quad \mathrm{~F}_{\mathrm{L}}=50 \cdot \mathrm{~N} \quad \mathrm{~F}_{\mathrm{H}}=6 \cdot \mathrm{~N}
$$

Note that the horizontal force F_{H} is due to drag on the airfoil AND on the rod

$$
\rho=1.225 \cdot \frac{\mathrm{~kg}}{\mathrm{~m}^{3}} \quad \nu=1.50 \times 10^{-5} \cdot \frac{\mathrm{~m}^{2}}{\mathrm{~s}}
$$

(Table A. $10,20^{\circ} \mathrm{C}$)

For the rod

$$
\begin{array}{ll}
\mathrm{Re}_{\text {rod }}=\frac{\mathrm{V} \cdot \mathrm{D}}{\nu} & \mathrm{Re}_{\text {rod }}=4 \times 10^{4} \\
\mathrm{~A}_{\text {rod }}=\mathrm{L} \cdot \mathrm{D} & \mathrm{~A}_{\text {rod }}=5 \times 10^{-3} \mathrm{~m}^{2} \\
\mathrm{~F}_{\text {Drod }}=\mathrm{C}_{\text {Drod }} \cdot \frac{1}{2} \cdot \rho \cdot \mathrm{~A}_{\text {rod }} \cdot \mathrm{V}^{2} \quad \mathrm{~F}_{\text {Drod }}=2.76 \mathrm{~N}
\end{array}
$$

Hence for the airfoil
$\mathrm{A}=\mathrm{b} \cdot \mathrm{c}$
$\mathrm{F}_{\mathrm{D}}=\mathrm{F}_{\mathrm{H}}-\mathrm{F}_{\text {Drod }}$
$\mathrm{F}_{\mathrm{D}}=3.24 \mathrm{~N}$
$\mathrm{C}_{\mathrm{D}}=\frac{\mathrm{F}_{\mathrm{D}}}{\frac{1}{2} \cdot \rho \cdot \mathrm{~A} \cdot \mathrm{~V}^{2}} \quad \mathrm{C}_{\mathrm{D}}=0.0654 \quad \mathrm{C}_{\mathrm{L}}=\frac{\mathrm{F}_{\mathrm{L}}}{\frac{1}{2} \cdot \rho \cdot \mathrm{~A} \cdot \mathrm{~V}^{2}} \quad \mathrm{C}_{\mathrm{L}}=1.01 \quad \frac{\mathrm{C}_{\mathrm{L}}}{\mathrm{C}_{\mathrm{D}}}=15.4$

Given: water tower as shown.
Standard day.
Find: Estimate bending moment at base of tower.
$V=100 \mathrm{~km} / \mathrm{hr}$

Assumptions: (1) $F_{D_{S}}$ acts at center of sphere; $F_{D_{C}}$ at center of cylinder (2) Neglect interference between sphere and cylinder.

Then

$$
\begin{aligned}
M & =F_{D_{S}}\left(h+\frac{D}{2}\right)+F_{0 c}\left(\frac{h}{2}\right) \quad A_{s}
\end{aligned}=\frac{\pi D^{2}}{4}=\frac{\pi}{4}(12)^{2} m^{2}=113 \mathrm{~m}^{2} .
$$

$C_{D}=C_{D}(R C)$. For standard air (Table $\left.A .10\right), v=1.46 \times 10^{-5} \mathrm{~m}^{2} / \mathrm{s}$, ≤ 0

$$
R R_{s}=\frac{V D}{\nu}=27.8 \frac{\mathrm{~m}}{3} \times 12 m_{\times} \frac{4}{1.46 \times 10^{-5} \mathrm{~m}^{2}}=2.28 \times 10^{7}
$$

This Re is too large for Fig .9.11. Thus guess $C_{D_{S}}=0.18$ (Problem 9.125).

$$
\begin{aligned}
& F_{D S}=C_{D S} g A_{S}=0.18 \times 425 \frac{\mathrm{~N}}{\mathrm{~m}^{2}} \times 113 \mathrm{~m}^{2}=9.66 \mathrm{KN} \\
& R_{C}=\frac{V d}{\nu}=27.8 \frac{\mathrm{~m}}{\mathrm{~s}} \times 2.0 \mathrm{~m}_{\times} \frac{3}{1.46 \times 10^{-5} \mathrm{~m}^{2}}=3.81 \times 10^{6}
\end{aligned}
$$

This Re is to large for Fig .9.13. Thusquess $C_{D_{C}}=0.4$.

$$
F_{D C}=C_{D C} g A_{C}=0.4 \times 425 \frac{\mathrm{~N}}{\mathrm{~m}^{2}} \times 60 \mathrm{~m}^{2}=11.4 \mathrm{kN}
$$

The moment is

$$
M=9.66 \mathrm{kN}\left(30 \mathrm{~m}+\frac{12 \mathrm{~m}}{2}\right)+11.4 \mathrm{kN}\left(\frac{30 \mathrm{~m}}{2}\right)=519 \mathrm{kN} \cdot \mathrm{~m}
$$

Problem 9.135
Given: Cylindrical flag pole of height, H. wind-speed profile, $\frac{u}{\tilde{V}}=\left(\frac{y}{H}\right)^{1 / 7} ; c_{0}$ constant
Find: (a) Drag force
(b) Bending moment
(c) Compare with values for uniform profile, U.

Solution: Apply definition of drag coefficient, $C_{D}=\frac{F_{D}}{\frac{1}{2} e V^{2} A}$
Assume: (1) $C_{D}=$ constant
(z) C_{D} same as circular cylinder
on an element of the pole.

$$
d F_{D}=C_{D} \frac{1}{2} \rho u^{2} d A=C_{D} \frac{1}{2} \rho U^{2}\left(\frac{y}{H}\right)^{2 / 7} D d y
$$

Thus

$$
\begin{aligned}
& F_{D}=\int_{0}^{H} d F_{D}=\int_{0}^{H} C_{O} \frac{1}{2} \rho U^{2}\left(\frac{y}{H}\right)^{2 / 7} D d y \\
& F_{D}=C_{D} \frac{1}{2} \rho U^{2} D H \int_{0}^{1}\left(\frac{y}{H}\right)^{2 / 2} d\left(\frac{y}{H}\right)=C_{D} \frac{1}{2} \rho U^{2} D H\left[\frac{7}{9}\left(\frac{y}{H}\right)^{9 / 7}\right]_{0}^{1}=\frac{7}{9} C_{D} \frac{1}{2} \rho U^{2} D H
\end{aligned}
$$

On an element of the pole,

$$
d M=y d F_{D}=y C_{D} \frac{1}{2} \rho u^{2} d A=y C_{D} \frac{1}{2} \rho u^{2} D d y
$$

Thees

$$
\begin{aligned}
& M=\int_{0}^{H} d M=\int_{0}^{H} y C_{D} \frac{1}{2} \rho U^{2}\left(\frac{y}{H}\right)^{2 / 7} D d y=C_{D} \frac{1}{2} \rho U^{2} D H^{2} \int_{0}^{1}\left(\frac{y}{H}\right)\left(\frac{y}{H}\right)^{2 / h} d\left(\frac{y}{H}\right) \\
& M=C_{D} \frac{1}{2} \rho U^{2} D H^{2} \int_{0}^{1}\left(\frac{y}{H}\right)^{9 / 7} d\left(\frac{y}{H}\right)=C_{D} \frac{1}{2} \rho U^{2} D H^{2}\left[\frac{7}{16}\left(\frac{y}{H}\right)^{1 / 7}\right]_{0}^{1}=\frac{7}{16} C_{D} \frac{1}{2} \rho U^{2} D H
\end{aligned}
$$

Comparing,

$$
\begin{aligned}
& \frac{F_{D}(1 / 7 \text { profile })}{F_{D}(\text { uniform })}=\frac{\frac{7}{9} C_{D} \frac{1}{2} P V^{2} D H}{C_{D} \frac{1}{2} \rho V^{2} D H}=\frac{7}{9} \\
& \frac{M(1 / 7 \text {-profile) }}{M(\text { uniform })}=\frac{\frac{7}{16} C_{D} \frac{1}{2} \rho U^{2} D H^{2}}{C_{D} \frac{1}{2} P O^{2} D H \frac{H}{2}}=\frac{7 / 16}{1 / 2}=\frac{7}{8}
\end{aligned}
$$

Given: Cast-ifon "12-pounder"(m=12lom) cannon ball mols off ship and sinks in ocean where depth is $d=1000 \mathrm{~m}$.

Find: Estimate time elapsed before cannon ball hits sea bottom.
Solution: Apply Newton's second law of motion, definition of C_{D}.
Computing equations:

$$
\Sigma F_{y}=m a_{y} \quad C_{D}=\frac{F D}{\frac{1}{z} Q V^{2} A}
$$

First find diameter of ball. In air,

$$
w=m g=\rho \forall g=S G \rho_{1+10} \frac{7 D^{3}}{6} g=12 \mathrm{lbf} \quad\{\text { From Table A.1,56 }=7.08 .\} \forall{ }^{\prime} m g
$$

Thus

$$
D=\left[\frac{6 \mathrm{~W}}{\pi S G \rho+20 g}\right]^{1 / 3}\left[\frac{6}{\pi} \times 121 b f_{x} \frac{1}{7.08} \times \frac{f+3}{1.943 \operatorname{lng}} \times \frac{s^{2}}{32.2 f+} \times \frac{s / \mathrm{kg} \cdot \mathrm{ft}}{1 b A \cdot s^{2}}\right]^{1 / 3}=0.373 \mathrm{ft}
$$

or

$$
0=0.373 \mathrm{ft} \times 0.3048 \frac{\mathrm{~m}}{\mathrm{ft}}=0.114 \mathrm{~m}
$$

At terminal speed, $V=V_{t}$, and $a_{y}=0$. Summing forces,

$$
m g-F_{B}-F_{D}=s G \rho_{1+2 O} \forall g-s G_{s_{w}} \rho_{\dot{H}_{2} O} \forall g-c_{D} A \frac{1}{z} \rho V_{t}^{2}=0
$$

or

$$
V_{t}=\left[\frac{z\left(S G_{c i}-\delta G_{s \omega}\right) \rho_{H 20} \forall g}{C_{D} S G_{S W} \rho_{+20} A}\right]^{1 / 2}
$$

Introducing $\psi=\frac{\pi D^{3}}{6}$ and $A=\frac{\pi D^{2}}{4}$, then

$$
V_{t}=\left[\frac{4}{3} \frac{\left(G_{c i} / s_{s w}-1\right) b g}{C_{D}}\right]^{1 / 2}=\left[\frac{4}{3}(1.08 / 1005-1) 0.1 / 4 m \times 1.81 \frac{m}{s^{2}} \times \frac{1}{c_{D}}\right]^{1 / 2}=\frac{2.97}{\sqrt{C_{D}}} \mathrm{~m} / \mathrm{s}
$$

Choose $C_{D}=0.47$ from flat range of curve:

$$
\begin{aligned}
& V_{t}=\frac{2.97}{\sqrt{0.47}} \mathrm{~m} / \mathrm{sec}=4.33 \mathrm{~m} / \mathrm{s} \quad\left\{\mathrm{~A}+T=20^{\circ} \mathrm{C}, V_{s w}=1.052\right. \\
& \text { Pen } \mathrm{Re}=\frac{\ell V_{t} D}{\mu}=\frac{V_{t} D}{V_{3 \omega}}=4.33 \mathrm{~m} \times 0.14 \mathrm{~m} \times \frac{\mathrm{s}}{1.05 \times 10^{-6} \mathrm{~m}^{2}}=4.70 \times 10^{5}
\end{aligned}
$$

This is a supercritical Re, so choose $C_{D} \approx 0.09$ (Fig. 9.11). Then

$$
V_{t}=\frac{2.97}{\sqrt{0.09}} \mathrm{~m} / \mathrm{s}=9.90 \mathrm{~m} / \mathrm{s}
$$

Then $\mathrm{Re}={ }^{9.90} \frac{\mathrm{~m}}{\mathrm{~s}} \times 0.114 \mathrm{~m} \times \frac{\mathrm{s}}{1.05 \times 10^{-6} \mathrm{~m}^{2}}=1.07 \times 10^{\mathrm{k}}$
From Fig. $9.11, C_{D} \approx 0.14$. Thenefore $t_{t}=\frac{2.97}{\sqrt{0.14}}=7.94 \mathrm{~m} / \mathrm{s}$

$$
t=\frac{d}{v_{t}}=1000 m \times \frac{s}{7,94 m}=124 \mathrm{~s}
$$

Given: Stokes drag law for smooth spheres, $F_{D}=3 \pi$ mvD, to be verifico experimentally by drooping steel balls in glycerin.

Find: (a) Largest steel ball for which Res.
(b) Height of glycerine comma needed to reach 95 percent of terminal speed.

Solution: Draw free-body diagram of ball, apply New ton's second law.
Basic equation: $\Sigma F_{y}=m g-F_{B}-F_{D}=m \frac{d v}{d t}=m v \frac{d V}{d y}$

$$
\begin{equation*}
\forall=\frac{\pi D^{3}}{6} \quad m=\rho_{S} \forall \quad F_{B}=\rho_{g} \forall g \quad F_{D}=3 \pi \mu v D \tag{1}
\end{equation*}
$$

At terminal speed, v_{t}, acceleration is zero. Thees

$$
\rho_{s} \forall g-\rho_{g} \forall g-3 \pi \mu V_{t} D=0 \quad \text { or } \quad V_{t}=\left(\rho_{s}-p_{g}+\frac{\pi D^{3} g}{6} \frac{1}{3 \pi \mu D}=\frac{\left(\rho_{s}-\rho_{g}\right) D^{2} g}{18 \mu}\right.
$$

or $v_{t}=\frac{\left(\rho_{s} / \rho_{g}-1\right) \rho g D^{2} g}{18 \mu}=\frac{\left(S G_{s} / s G_{g}-1\right) D^{2} g}{18 \nu}=\frac{(7.8 / 1,2-1) D^{2} g}{18 \nu}=0.288 D^{2} \mathrm{~g} / \nu$
(from Table $A, 2,56 g=1.26$). Stokes'drag law hold's for $R e<1$. Thees

$$
\text { Re }=\frac{P v_{t} D}{\mu}=\frac{v_{t} D}{\nu}=\frac{0.288 D^{3} g \leqslant 1}{\nu^{2}} \leqslant 1 \text { or } D^{3} \leqslant \frac{1}{0.288} \frac{\nu^{2}}{g} \text { or } D \leqslant\left[\frac{3.47 v^{2}}{g}\right]^{1 / 3}
$$

Assuming $T=20^{\circ} \mathrm{C}$, then from fig: $A .3, \nu=0.0012 \mathrm{~m}^{2} / \mathrm{s}$, so

$$
0 \leqslant\left[3.47 \times(0.0012)^{2} \frac{m^{4}}{3^{2}} \times \frac{s^{2}}{9.51 \mathrm{~m}}\right]^{1 / 3}=0.00799 \mathrm{~m}(7.49 \mathrm{~mm})
$$

From Eq. 1,

$$
\rho_{s} \forall g-\rho_{g} \forall g-3 \pi \mu v D=\rho_{s} \forall v \frac{d v}{d y}
$$

Dividing by $\left(\rho_{s}-\rho_{g}\right) \forall g$ gives

$$
\left.1-\frac{3 \pi \mu}{\left(\beta_{3}-\rho_{g}\right) \frac{\pi D^{3} g}{6} g} V=1-\frac{V}{V_{t}}=\frac{\beta_{s} \forall}{\left(\rho_{3}-\rho_{g}\right) \forall g} V \frac{d V}{d y}=\left(\frac{\rho_{s}}{\rho_{s}-\mu_{g}}\right) \frac{V}{g} \frac{d V}{d y}=\left(\frac{\rho_{s}}{\rho_{s}-\rho_{9}}\right) \frac{v_{t}^{2}}{2} \frac{v}{V_{4}} \frac{d\left(v_{t}\right)}{d y}\right)
$$

Separating variables, $d y=\left(\frac{p_{s}}{\rho_{s}-f_{g}}\right) \frac{V_{t}^{2}}{g} \frac{\left(V_{t_{t}}\right) d\left(V V_{t}\right)}{1-V V_{t}}=\left(\frac{\rho_{s}}{\rho_{s}-\rho_{g}}\right) \frac{V_{t}}{d} \frac{\mathrm{rdp}}{1-r}$ Integrating, $\left.\int_{0}^{0.95} \frac{r d r}{1-r}=\int_{1}^{0.05} \frac{(1-x)(-d x)}{x}=\int_{1}^{0.05} d x-\int \frac{d x}{x}=x-\ln x\right]_{1}^{0.05}=-0.95-\ln \omega(0.05)$
Thus

$$
y=2.05\left(\frac{\rho_{s}}{\rho_{s}-\rho_{9}}\right) \frac{V_{t}{ }^{2}}{g}=2.05\left(\frac{s \theta_{s}}{S \epsilon_{s}-s \sigma_{g}}\right) \frac{V_{t}{ }^{2}}{g}
$$

But $V_{t}=0.288 \frac{D^{2} g}{2}=0.28 s_{*}(0.0172)^{2} \mathrm{~m}^{2} \times 9.81 \frac{\mathrm{~m}}{\mathrm{~s}^{2}} \times \frac{5}{0.0012 \mathrm{~m}^{2}}=0.697 \mathrm{~m} / \mathrm{s}$
so

$$
y=2.05 \times \frac{7.8}{(7.8-1.26)} \times(0.697)^{2} \frac{m^{2}}{s^{2}} \times \frac{8^{2}}{9.81 m}=0.121 \mathrm{~m}(121 \mathrm{~mm})
$$

Given: Measured data for pressure difference versus angl le for flow around a circular cylinder at $R_{e}=80,000$.

Find: (a) Estimate C_{0} for this flow.
(b) Compare with data from Fig. 9. 13; Explain any difference.

Solution: Consider the geometry sketched.
Apply the definition of drag coefficient.

Computing equation: $C_{D}=\frac{F_{D}}{\frac{1}{2} \rho U^{2} A}$
Assumption: Neglect viscous force; $d F_{D}=d F \cos \theta=p d A \cos \theta=p \omega / 2 d \theta \cos \theta$
Then $F_{D}=\int_{A} d F_{D}=\int_{0}^{2 \pi} p \omega R d \theta \cos \theta=2 \int_{0}^{\pi} p \omega R d \theta \cos \theta=\int_{0}^{\pi} p \cos \theta(\omega r 2) d \theta$
since $\int_{0}^{\pi} p_{\infty} \cos \theta d \theta=0$, then $\quad F_{D}=\int_{0}^{\pi}\left(p-p_{\infty}\right) \cos \theta(\omega-2 R) d \theta$
The stagnation pressure is $p(0)-p_{\infty}=\frac{1}{2} p U^{2}$ so

$$
C_{D}=\frac{F D}{\frac{1}{2} \rho U^{2} A}=\frac{\int_{0}^{\pi}\left(p-p_{\infty}\right) \cos \theta(\omega Z R) d \theta}{\left(p_{0}-p_{\infty}\right)(\omega-z R)}=\int_{0}^{\pi}\left(\frac{p_{0}-p_{\infty}}{p_{0}-p_{0}}\right) \cos \theta d \theta
$$

Tabulating: $\theta \quad$| $p-p_{\infty}$ |
| :---: |
| $($ deg $)$ |

$$
c_{0} \approx\left\{\Sigma\left(\frac{p-p_{00}}{p_{0}-p_{\infty}}\right) \cos \theta-\frac{1}{2}()_{0}-\frac{1}{2}()_{180}\right\} \Delta \theta=\left\{7.194-\frac{1}{2}(1.00+1.04)\right\} 10 \mathrm{deg} \times \frac{\pi r a d}{180 d e g}=1.08
$$

From Fig. 9.13, $c_{0} \approx 1.2$. The difference is due to skin friction effects.
9.139 Consider the tennis ball of Problem 9.132. Use the equations for drag coefficient given in Problem 9.130, and a numerical integration scheme (e.g., Simpson's rule) to compute the time and distance required for the ball to reach 95% of its terminal speed.

Given: Data on a tennis ball
Find: Terminal speed time and distance to reach 95% of terminal speed

Solution:

The given data or available data is

$$
\begin{array}{ll}
\mathrm{M}=57 \cdot \mathrm{gm} & \mathrm{D}=64 \cdot \mathrm{~mm} \\
\mathrm{~A}=\frac{\pi \cdot \mathrm{D}^{2}}{4} & \mathrm{~A}=3.22 \times 10^{-3} \mathrm{~m}^{2} \\
\mathrm{C}_{\mathrm{D}}=\frac{24}{\mathrm{Re}} & \mathrm{Re} \leq 1 \\
\mathrm{C}_{\mathrm{D}}=\frac{24}{\mathrm{Re}^{0.646}} & 1<\mathrm{Re} \leq 400 \\
\mathrm{C}_{\mathrm{D}}=0.5 & 400<\mathrm{Re} \leq 3 \times 10^{5} \\
\mathrm{C}_{\mathrm{D}}=0.000366 \cdot \mathrm{Re}^{0.4275} & 3 \times 10^{5}<\mathrm{Re} \leq 2 \times 10^{6} \\
C_{D}=0.18 & \mathrm{Re}>2 \times 10^{6}
\end{array}
$$

$$
v=1.45 \cdot 10^{-5} \cdot \frac{\mathrm{~m}^{2}}{\mathrm{~s}}
$$

$$
\rho=1.23 \cdot \frac{\mathrm{~kg}}{\mathrm{~m}^{3}}
$$

Then

From Problem 9.130

At terminal speed drag equals weight $\quad \mathrm{F}_{\mathrm{D}}=\mathrm{M} \cdot \mathrm{g}$

The drag at speed V is given by $\quad \mathrm{F}_{\mathrm{D}}=\frac{1}{2} \cdot \rho \cdot \mathrm{~A} \cdot \mathrm{~V}^{2} \cdot \mathrm{C}_{\mathrm{D}}$
Assume

$$
C_{D}=0.5
$$

Hence the terminal speed is $\quad V_{t}=\sqrt{\frac{\mathrm{M} \cdot \mathrm{g}}{\frac{1}{2} \cdot \rho \cdot \mathrm{~A} \cdot \mathrm{C}_{\mathrm{D}}}} \quad \mathrm{V}_{\mathrm{t}}=23.8 \frac{\mathrm{~m}}{\mathrm{~s}}$
Check the Reynolds number $\quad \operatorname{Re}=\frac{\mathrm{V}_{\mathrm{t}} \cdot \mathrm{D}}{\nu} \quad \operatorname{Re}=1.05 \times 10^{5}$
This is consistent with the tabulated C_{D} values!

For motion before terminal speed, Newton's second law is $\quad M \cdot a=M \cdot \frac{d V}{d t}=M \cdot g \cdot-\frac{1}{2} \cdot \rho \cdot V^{2} \cdot A \cdot C_{D}$

Hence the time to reach 95% of terminal speed is obtained by separating variables and integrating

$$
\mathrm{t}=\int_{0}^{0.95 \cdot \mathrm{~V}_{\mathrm{t}}} \frac{1}{\mathrm{~g}-\frac{\rho \cdot \mathrm{A} \cdot \mathrm{C}_{\mathrm{D}}}{2 \cdot \mathrm{M}} \cdot \mathrm{~V}^{2}} \mathrm{dV}
$$

For the distance to reach terminal speed Newton's second law is written in the form

$$
\mathrm{M} \cdot \mathrm{a}=\mathrm{M} \cdot \mathrm{~V} \cdot \frac{\mathrm{dV}}{\mathrm{dx}}=\mathrm{M} \cdot \mathrm{~g} \cdot-\frac{1}{2} \cdot \rho \cdot \mathrm{~V}^{2} \cdot \mathrm{~A} \cdot \mathrm{C}_{\mathrm{D}}
$$

Hence the distance to reach 95% of terminal speed is obtained by separating variables and integrating

$$
\mathrm{x}=\int_{0}^{0.95 \cdot \mathrm{~V}_{\mathrm{t}}} \frac{\mathrm{~V}}{\mathrm{~g}-\frac{\rho \cdot \mathrm{A} \cdot \mathrm{C}_{\mathrm{D}}}{2 \cdot \mathrm{M}} \cdot \mathrm{~V}^{2}} \mathrm{dV}
$$

These integrals are quite difficult because the drag coefficient varies with Reynolds number, which varies with speed. They are best evaluated numerically. A form of Simpson's Rule is

$$
\int \mathrm{f}(\mathrm{~V}) \mathrm{dV}=\frac{\Delta \mathrm{V}}{3} \cdot\left(\mathrm{f}\left(\mathrm{~V}_{0}\right)+4 \cdot \mathrm{f}\left(\mathrm{~V}_{1}\right)+2 \cdot \mathrm{f}\left(\mathrm{~V}_{2}\right)+4 \cdot \mathrm{f}\left(\mathrm{~V}_{3}\right)+\mathrm{f}\left(\mathrm{~V}_{\mathrm{N}}\right)\right)
$$

where ΔV is the step size, and V_{0}, V_{1} etc., are the velocities at points $0,1, \ldots N$.
Here $\quad \mathrm{V}_{0}=0 \quad \mathrm{~V}_{\mathrm{N}}=0.95 \cdot \mathrm{~V}_{\mathrm{t}} \quad \Delta \mathrm{V}=\frac{0.95 \cdot \mathrm{~V}_{\mathrm{t}}}{\mathrm{N}}$
From the associated Excel workbook

$$
\mathrm{t}=4.69 \cdot \mathrm{~s}
$$

$$
\mathrm{x}=70.9 \cdot \mathrm{~m}
$$

These results compare to 4.44 s and 67.1 m from Problem 9.132, which assumed the drag coefficient was constant and analytically integrated. Note that the drag coefficient IS essentially constant, so numerical integration was not really necessary!
9.139 Consider the tennis ball of Problem 9.132. Use the equations for drag coefficient given in Problem 9.130, and a numerical integration scheme (e.g., Simpson's rule) to compute the time and distance required for the ball to reach 95% of its terminal speed.

Given: Data on a tennis ball

Find: Terminal speed time and distance to reach 95% of terminal speed

Solution:

Given data:

$$
\begin{array}{rlr}
A & =0.00322 \mathrm{~m}^{2} \\
V_{\mathrm{t}} & =23.8 \mathrm{~m} / \mathrm{s} \\
N & =20 & \\
\Delta V & =1.19 \mathrm{~m} / \mathrm{s}
\end{array}
$$

For the time:

$\boldsymbol{V}(\mathbf{m} / \mathbf{s})$	$\boldsymbol{R e}$	$\boldsymbol{C}_{\mathbf{D}}$	W	$f(\boldsymbol{V})$	$W \mathbf{x f}(\boldsymbol{V})$
0	0	5438	1	0.102	0.102
1.13	4985	0.500	4	0.102	0.409
2.26	9969	0.500	2	0.103	0.206
3.39	14954	0.500	4	0.104	0.416
4.52	19938	0.500	2	0.106	0.212
5.65	24923	0.500	4	0.108	0.432
6.78	29908	0.500	2	0.111	0.222
7.91	34892	0.500	4	0.115	0.458
9.03	39877	0.500	2	0.119	0.238
10.2	44861	0.500	4	0.125	0.499
11.3	49846	0.500	2	0.132	0.263
12.4	54831	0.500	4	0.140	0.561
13.6	59815	0.500	2	0.151	0.302
14.7	64800	0.500	4	0.165	0.659
15.8	69784	0.500	2	0.183	0.366
16.9	74769	0.500	4	0.207	0.828
18.1	79754	0.500	2	0.241	0.483
19.2	84738	0.500	4	0.293	1.17
20.3	89723	0.500	2	0.379	0.758
21.5	94707	0.500	4	0.550	2.20
22.6	99692	0.500	1	1.05	1.05

Total time:
(This compares to 4.44 s for the exact result)

For the distance:

$f(\boldsymbol{V})$	$W \mathbf{x f} \mathbf{(V)}$
0.00	0.000
0.115	0.462
0.232	0.465
0.353	1.41
0.478	0.955
0.610	2.44
0.752	1.50
0.906	3.62
1.08	2.15
1.27	5.07
1.49	2.97
1.74	6.97
2.05	4.09
2.42	9.68
2.89	5.78
3.51	14.03
4.36	8.72
5.62	22.5
7.70	15.4
11.8	47.2
23.6	23.6

9.140 The air bubble of Problem 3.11 expands as it rises in water. Find the time it takes for the bubble to reach the surface. Repeat for bubbles of diameter 5 mm and 15 mm . Compute and plot the depth of the bubbles as a function of time.

Given: Data on an air bubble
Find: Time to reach surface; plot depth as function of time; repeat for different sizes

Solution:

| The given data or available data is | $\mathrm{d}_{0}=0.3 \cdot \mathrm{in} \quad \mathrm{h}=100 \cdot \mathrm{ft} \quad \rho_{\mathrm{W}}=1000 \cdot \frac{\mathrm{~kg}}{\mathrm{~m}^{3}} \quad \mathrm{SG}=1.025 \quad$ (Table A.2) | |
| ---: | :--- | ---: | :--- |
| | $\rho=\mathrm{SG} \cdot \rho_{\mathrm{W}}$ | $\nu=1.05 \times 8.03 \times 10^{-7} \cdot \frac{\mathrm{~m}^{2}}{\mathrm{~s}} \quad$ (Tables A.2 \& A.8) $\quad \mathrm{p}_{\mathrm{atm}}=101 \cdot \mathrm{kPa}$ |

The density of air is negligible compared to that of water, so Newton's second law is applicable with negligible MdV/dt

$$
\begin{equation*}
\mathrm{M} \cdot \frac{\mathrm{dV}}{\mathrm{dt}}=0=\Sigma \mathrm{F}=\mathrm{F}_{\mathrm{B}}-\mathrm{F}_{\mathrm{D}} \quad \text { or } \quad \mathrm{F}_{\mathrm{B}}=\mathrm{F}_{\mathrm{D}} \tag{1}
\end{equation*}
$$

where F_{B} is the buoyancy force and F_{D} is the drag (upwards is positive x)

$$
\begin{equation*}
\mathrm{F}_{\mathrm{B}}=\rho \cdot \mathrm{Vol} \cdot \mathrm{~g} \quad \mathrm{~F}_{\mathrm{D}}=\frac{1}{2} \cdot \rho \cdot \mathrm{~A} \cdot \mathrm{~V}^{2} \cdot \mathrm{C}_{\mathrm{D}} \tag{2}
\end{equation*}
$$

For a sphere, assuming high Reynolds number, from Fig. 9.11 $C_{D}=0.5$
The volume of the sphere increases as the bubble rises and experiences decreased pressure. Assuming the air is an isothermal idea gas

$$
\mathrm{P}_{0} \cdot \mathrm{Vol}_{0}=\mathrm{p} \cdot \mathrm{Vol}
$$

where p_{0} and $V o l_{0}$ are the initial pressure and volume (at depth h), and p and $V o l$ are the pressure and volume at any depth

$$
\mathrm{p}_{0}=\mathrm{patm}^{\left.+\rho \cdot g \cdot h \quad \mathrm{p}=\mathrm{p}_{\mathrm{atm}}+\rho \cdot g \cdot(\mathrm{~h}-\mathrm{x}),{ }^{2}\right)}
$$

Hence

$$
\begin{align*}
& \left(\mathrm{patm}^{+} \rho \cdot \mathrm{g} \cdot \mathrm{~h}\right) \cdot \frac{\pi}{6} \cdot \mathrm{~d}_{0}^{3}=\left[\mathrm{p}_{\mathrm{atm}}+\rho \cdot \mathrm{g} \cdot(\mathrm{~h}-\mathrm{x})\right] \cdot \frac{\pi}{6} \cdot \mathrm{~d}^{3} \\
& \mathrm{~d}=\mathrm{d}_{0} \cdot \sqrt[3]{\frac{\left(\mathrm{p}_{\mathrm{atm}}+\rho \cdot \mathrm{g} \cdot \mathrm{~h}\right)}{[\mathrm{patm}+\rho \cdot \mathrm{g} \cdot(\mathrm{~h}-\mathrm{x})]}} \tag{3}
\end{align*}
$$

For example, at the free surface $(x=h) \quad \mathrm{d}=12.1 \mathrm{~mm}$

Combining Eqs. 1, 2 and 3

$$
\begin{aligned}
& \rho \cdot \frac{\pi}{6} \cdot \mathrm{~d}^{3}=\frac{1}{2} \cdot \rho \cdot \frac{\pi}{4} \cdot \mathrm{~d}^{2} \cdot \mathrm{~V}^{2} \cdot \mathrm{C}_{\mathrm{D}} \\
& \mathrm{~V}=\sqrt{\frac{4 \cdot g \cdot \mathrm{~d}}{3 \cdot \mathrm{C}_{\mathrm{D}}}} \quad \mathrm{~V}=\sqrt{\frac{4 \cdot g \cdot \mathrm{~d}_{0}}{3 \cdot \mathrm{C}_{\mathrm{D}}}} \cdot\left[\frac{\left(\mathrm{p}_{\mathrm{atm}}+\rho \cdot \mathrm{g} \cdot \mathrm{~h}\right)}{\left[\mathrm{p}_{\mathrm{atm}}+\rho \cdot \mathrm{g} \cdot(\mathrm{~h}-\mathrm{x})\right]}\right]^{\frac{1}{6}}
\end{aligned}
$$

Strictly speaking, to obtain x as a function of t we would have to integrate this expression $(V=d x / d t)$.

However, evaluating V at depth $h(x=0)$ and at the free surface $(x=h)$

$$
\begin{array}{ll}
\mathrm{x}=0 & \mathrm{~V}_{0}=0.446 \frac{\mathrm{~m}}{\mathrm{~s}} \\
\mathrm{x}=\mathrm{h} & \mathrm{~V}=0.563 \frac{\mathrm{~m}}{\mathrm{~s}}
\end{array}
$$

we see that the velocity varies slightly. Hence, instead of integrating we use the approximation $\mathrm{dx}=\mathrm{Vdt}$ where $d x$ is an increment of displacement and $d t$ is an increment of time. (This amounts to numerically integrating)
Note that the Reynolds number at the initial depth (the smallest $R e$) is $\quad \operatorname{Re}_{0}=\frac{\mathrm{V}_{0} \cdot \mathrm{~d}_{0}}{\nu} \quad \operatorname{Re}_{0}=4034$ so our use of $C_{D}=0.5$ from Fig. 9.11 is reasonable

The plots of depth versus time are shown in the associated Excel workbook
The results are

$$
\begin{array}{ll}
\mathrm{d}_{0}=0.3 \cdot \mathrm{in} & \mathrm{t}=63.4 \cdot \mathrm{~s} \\
\mathrm{~d}_{0}=5 \cdot \mathrm{~mm} & \mathrm{t}=77.8 \cdot \mathrm{~s} \\
\mathrm{~d}_{0}=15 \cdot \mathrm{~mm} & \mathrm{t}=45.1 \cdot \mathrm{~s}
\end{array}
$$

9.140 The air bubble of Problem 3.11 expands as it rises in
water. Find the time it takes for the bubble to reach the surface.
Repeat for bubbles of diameter 5 mm and 15 mm . Compute and plot the depth of the bubbles as a function of time.

Given: Data on an air bubble
Find: Time to reach surface; plot depth as function of time; repeat for different sizes

Solution:

The equation is $\mathrm{dx}=\mathrm{V} \cdot \mathrm{dt} \quad$ where

$$
\mathrm{V}=\sqrt{\frac{4 \cdot \mathrm{~g} \cdot \mathrm{~d}_{0}}{3 \cdot \mathrm{C}_{\mathrm{D}}}} \cdot\left[\frac{\left(\mathrm{p}_{\mathrm{atm}}+\rho \cdot \mathrm{g} \cdot \mathrm{~h}\right)}{\left[\mathrm{p}_{\mathrm{atm}}+\rho \cdot \mathrm{g} \cdot(\mathrm{~h}-\mathrm{x})\right]}\right]^{\frac{1}{6}}
$$

Given data:

$$
\begin{aligned}
h & =100 \mathrm{ft} \\
h & =30.5 \mathrm{~m} \\
\rho_{\mathrm{w}} & =1000 \mathrm{~kg} / \mathrm{m}^{3} \\
\mathrm{SG} & =1.025 \text { Table A.2) } \\
C_{\mathrm{D}} & =0.5 \text { Fig. 9.11) } \\
\rho & =1025 \mathrm{~kg} / \mathrm{m}^{3} \\
p_{\mathrm{atm}} & =101 \mathrm{kPa}
\end{aligned}
$$

Computed results:

$$
\begin{aligned}
& d_{0}=0.3 \mathrm{in} \\
& d_{0}=7.62 \mathrm{~mm}
\end{aligned}
$$

$$
d_{0}=5 \mathrm{~mm}
$$

$$
d_{0}=15 \mathrm{~mm}
$$

$\boldsymbol{t}(\mathbf{s})$	$\boldsymbol{x}(\mathbf{m})$	$\boldsymbol{V}(\mathbf{m} / \mathbf{s})$
0	0	0.446
5	2.23	0.451
10	4.49	0.455
15	6.76	0.460
20	9.1	0.466
25	11.4	0.472
30	13.8	0.478
35	16.1	0.486
40	18.6	0.494
45	21.0	0.504
50	23.6	0.516
63.4	30.5	0.563

$\boldsymbol{t}(\mathbf{s})$	$\boldsymbol{x}(\mathbf{m})$	$\boldsymbol{V}(\mathbf{m} / \mathbf{s})$
0	0	0.362
5	1.81	0.364
10	3.63	0.367
15	5.47	0.371
20	7.32	0.374
25	9.19	0.377
30	11.1	0.381
35	13.0	0.386
40	14.9	0.390
45	16.9	0.396
50	18.8	0.401
55	20.8	0.408
60	22.9	0.415
65	25.0	0.424
70	27.1	0.435
75	29.3	0.448
77.8	30.5	0.456

$\boldsymbol{t}(\mathbf{s})$	$\boldsymbol{x}(\mathbf{m})$	$\boldsymbol{V}(\mathbf{m} / \mathbf{s})$
0.0	0	0.626
5.0	3.13	0.635
10.0	6.31	0.644
15.0	9.53	0.655
20.0	12.8	0.667
25.0	16.1	0.682
30.0	19.5	0.699
35.0	23.0	0.721
40.0	26.6	0.749
45.1	30.5	0.790

Problem 9.141

9.141 Consider the tennis ball of Problem 9.132. Suppose it is hit so that it has an initial upward speed of $50 \mathrm{~m} / \mathrm{s}$. Estimate the maximum height of the ball, assuming (a) a constant drag coefficient and (b) using the equations for drag coefficient given in Problem 9.130, and a numerical integration scheme (e.g., a Simpson's rule).

Given: Data on a tennis ball
Find: Maximum height

Solution:

The given data or available data is $\mathrm{M}=57 \cdot \mathrm{gm} \quad \mathrm{D}=64 \cdot \mathrm{~mm} \quad \mathrm{~V}_{\mathrm{i}}=50 \cdot \frac{\mathrm{~m}}{\mathrm{~s}} \quad \nu=1.45 \cdot 10^{-5} \cdot \frac{\mathrm{~m}^{2}}{\mathrm{~s}} \quad \rho=1.23 \cdot \frac{\mathrm{~kg}}{\mathrm{~m}^{3}}$
Then

$$
\begin{array}{ll}
\mathrm{A}=\frac{\pi \cdot \mathrm{D}^{2}}{4} & \mathrm{~A}=3.22 \times 10^{-3} \mathrm{~m}^{2} \\
\mathrm{C}_{\mathrm{D}}=\frac{24}{\mathrm{Re}} & \mathrm{Re} \leq 1 \\
\mathrm{C}_{\mathrm{D}}=\frac{24}{\mathrm{Re}^{0.646}} & 1<\mathrm{Re} \leq 400 \\
\mathrm{C}_{\mathrm{D}}=0.5 & 400<\mathrm{Re} \leq 3 \times 10^{5} \\
C_{D}=0.000366 \cdot \mathrm{Re}^{0.4275} & 3 \times 10^{5}<\mathrm{Re} \leq 2 \times 10^{6} \\
C_{D}=0.18 & \mathrm{Re}>2 \times 10^{6}
\end{array}
$$

The drag at speed V is given by $\quad \mathrm{F}_{\mathrm{D}}=\frac{1}{2} \cdot \rho \cdot \mathrm{~A} \cdot \mathrm{~V}^{2} \cdot \mathrm{C}_{\mathrm{D}}$
For motion before terminal speed, Newton's second law (x upwards) is $\quad M \cdot a=M \cdot \frac{d V}{d t}=-\frac{1}{2} \cdot \rho \cdot V^{2} \cdot A \cdot C_{D}-M \cdot g$

For the maximum height Newton's second law is written in the form
$M \cdot a=M \cdot V \cdot \frac{d V}{d x}=-\frac{1}{2} \cdot \rho \cdot V^{2} \cdot A \cdot C_{D}-M \cdot g$

Hence the maximum height is

$$
x_{\max }=\int_{V_{i}}^{0} \frac{V}{-\frac{\rho \cdot A \cdot C_{D}}{2 \cdot M} \cdot V^{2}-g} d V=\int_{0}^{V_{i}} \frac{V}{\frac{\rho \cdot A \cdot C_{D}}{2 \cdot M} \cdot V^{2}+g} d V
$$

This integral is quite difficult because the drag coefficient varies with Reynolds number, which varies with speed. It is best evaluated numerically. A form of Simpson's Rule is

$$
\int \mathrm{f}(\mathrm{~V}) \mathrm{dV}=\frac{\Delta \mathrm{V}}{3} \cdot\left(\mathrm{f}\left(\mathrm{~V}_{0}\right)+4 \cdot \mathrm{f}\left(\mathrm{~V}_{1}\right)+2 \cdot \mathrm{f}\left(\mathrm{~V}_{2}\right)+4 \cdot \mathrm{f}\left(\mathrm{~V}_{3}\right)+\mathrm{f}\left(\mathrm{~V}_{\mathrm{N}}\right)\right)
$$

where ΔV is the step size, and V_{0}, V_{1} etc., are the velocities at points $0,1, \ldots N$.

Here

$$
\mathrm{V}_{0}=0
$$

$$
\mathrm{V}_{\mathrm{N}}=\mathrm{V}_{\mathrm{i}}
$$

$$
\Delta \mathrm{V}=-\frac{\mathrm{V}_{\mathrm{i}}}{\mathrm{~N}}
$$

From the associated Excel workbook

$$
\mathrm{x}_{\max }=48.7 \cdot \mathrm{~m}
$$

If we assume $\quad C_{D}=0.5$
the integral

$$
\mathrm{x}_{\max }=\int_{0}^{\mathrm{V}_{\mathrm{i}}} \frac{\mathrm{~V}}{\frac{\rho \cdot \mathrm{~A} \cdot \mathrm{C}_{\mathrm{D}}}{2 \cdot \mathrm{M}} \cdot \mathrm{~V}^{2}+\mathrm{g}} \mathrm{dV}
$$

$$
\mathrm{x}_{\max }=\frac{\mathrm{M}}{\rho \cdot \mathrm{~A} \cdot \mathrm{C}_{\mathrm{D}}} \cdot \ln \left(\frac{\rho \cdot \mathrm{~A} \cdot \mathrm{C}_{\mathrm{D}}}{2 \cdot \mathrm{M} \cdot \mathrm{~g}} \cdot \mathrm{~V}_{\mathrm{i}}^{2}+1\right) \quad \mathrm{x}_{\max }=48.7 \mathrm{~m}
$$

The two results agree very closely! This is because the integrand does not vary much after the first few steps so the numerical integral is accurate, and the analytic solution assumes $C_{\mathrm{D}}=0.5$, which it essentially does!
9.141 Consider the tennis ball of Problem 9.132. Suppose it is hit so that it has an initial upward speed of $50 \mathrm{~m} / \mathrm{s}$. Estimate the maximum height of the ball, assuming (a) a constant drag coefficient and (b) using the equations for drag coefficient given in Problem 9.130, and a numerical integration scheme (e.g., a Simpson's rule).

Given: Data on a tennis ball
Find: Maximum height

Solution:

The equation is $x_{\max }=\int_{V_{i}}^{0} \frac{V}{-\frac{\rho \cdot A \cdot C_{D}}{2 \cdot M} \cdot V^{2}-g} d V=\int_{0}^{V_{i}} \frac{V}{\frac{\rho \cdot A \cdot C_{D}}{2 \cdot M} \cdot V^{2}+g} d V$

Given data:

$$
\begin{aligned}
& \begin{array}{llll}
M= & 57 & \mathrm{gm} & \mathrm{C}_{\mathrm{D}}=\frac{24}{\mathrm{Re}}
\end{array} \quad \mathrm{Re} \leq 1 \\
& V_{0}=50.0 \mathrm{~m} / \mathrm{s} \quad \mathrm{Re} \\
& \rho=1.23 ~ \mathrm{~kg} / \mathrm{m}^{3} \quad \mathrm{C}_{\mathrm{D}}=\frac{24}{\operatorname{Re}^{0.646}} \\
& C_{\mathrm{D}}=0.5 \quad \text { (Fig. 9.11) } \mathrm{C}_{\mathrm{D}}=0.5 \quad 400<\mathrm{Re} \leq 3 \times 10^{5} \\
& v=1.45 \mathrm{E}-05 \mathrm{~m}^{2} / \mathrm{s} \\
& C_{D}=0.000366 \cdot \mathrm{Re}^{0.4275} \quad 3 \times 10^{5}<\mathrm{Re} \leq 2 \times 10^{6} \\
& C_{D}=0.18 \\
& \mathrm{Re}>2 \times 10^{6}
\end{aligned}
$$

Computed results:

$$
\begin{array}{rlrl}
A & =0.00322 \mathrm{~m}^{2} \\
N & =20 & \\
\Delta V & =2.50 & \mathrm{~m} / \mathrm{s}
\end{array}
$$

$\boldsymbol{V}(\mathbf{m} / \mathbf{s})$	$\boldsymbol{R e}$	$C_{\mathbf{D}}$	W	$f(\boldsymbol{V})$	$W \mathbf{x f}(\boldsymbol{\nabla})$
0.0	0	0.000	1	0.000	0.000
2.5	11034	0.500	4	0.252	1.01
5.0	22069	0.500	2	0.488	0.976
7.5	33103	0.500	4	0.695	2.78
10.0	44138	0.500	2	0.866	1.73
12.5	55172	0.500	4	1.00	3.99
15.0	66207	0.500	2	1.09	2.19
17.5	77241	0.500	4	1.16	4.63
20.0	88276	0.500	2	1.19	2.39
22.5	99310	0.500	4	1.21	4.84
25.0	110345	0.500	2	1.21	2.42
27.5	121379	0.500	4	1.20	4.80
30.0	132414	0.500	2	1.18	2.36
32.5	143448	0.500	4	1.15	4.62
35.0	154483	0.500	2	1.13	2.25
37.5	165517	0.500	4	1.10	4.38
40.0	176552	0.500	2	1.06	2.13
42.5	187586	0.500	4	1.03	4.13
45.0	198621	0.500	2	1.00	2.00
47.5	209655	0.500	4	0.970	3.88
50.0	220690	0.500	1	0.940	0.940

Maximum height: 48.7 m
(This is the same as the exact result)
Note that C_{D} is basically constant, so analytical result of Problem 9.132 is accurate!
9.142 Approximate dimensions of a rented rooftop carrier are shown. Estimate the drag force on the carrier $(r=10 \mathrm{~cm})$ at 100 $\mathrm{km} / \mathrm{hr}$. If the drivetrain efficiency of the vehicle is 0.85 and the brake specific fuel consumption of its engine is $0.3 \mathrm{~kg} /(\mathrm{kW} \cdot \mathrm{hr})$, estimate the additional rate of fuel consumption due to the carrier. Compute the effect on fuel economy if the auto achieves 12.75 km / L without the carrier. The rental company offers you a cheaper, square-edged carrier at a price $\$ 5$ less than the current carrier. Estimate the extra cost of using this carrier instead of the round-edged one for a 750 km trip, assuming fuel is $\$ 3.50$ per

Drag coefficient v. radius ratio [37]
 gallon. Is the cheaper carrier really cheaper?

Given: Data on rooftop carrier

Find: Drag on carrier; Additional fuel used; Effect on economy; Effect of "cheaper" carrier

Solution:

Basic equation: $\quad C_{D}=\frac{F_{D}}{\frac{1}{2} \cdot \rho \cdot \mathrm{~A} \cdot \mathrm{~V}^{2}}$
Given or available data is

$$
\mathrm{w}=1 \cdot \mathrm{~m}
$$

$$
\mathrm{h}=50 \cdot \mathrm{~cm}
$$

$$
\mathrm{r}=10 \cdot \mathrm{~cm}
$$

$$
\eta_{d}=85 \cdot \%
$$

$$
\begin{array}{ll}
\mathrm{V}=100 \cdot \frac{\mathrm{~km}}{\mathrm{hr}} & \mathrm{~V}=27.8 \frac{\mathrm{~m}}{\mathrm{~s}} \\
\rho_{\mathrm{H} 2 \mathrm{O}}=1000 \cdot \frac{\mathrm{~kg}}{\mathrm{~m}^{3}} & \mathrm{~A}=\mathrm{w} \cdot \mathrm{~h} \\
\rho=1.225 \cdot \frac{\mathrm{~kg}}{\mathrm{~m}^{3}} & v=1.50 \times 10^{-5} \cdot \frac{\mathrm{~m}^{2}}{\mathrm{~s}}
\end{array}
$$

$$
\mathrm{FE}=12.75 \cdot \frac{\mathrm{~km}}{\mathrm{~L}} \quad \mathrm{FE}=30.0 \frac{\mathrm{mi}}{\mathrm{gal}}
$$

$$
\mathrm{A}=0.5 \mathrm{~m}^{2}
$$

$$
\mathrm{BSFC}=0.3 \cdot \frac{\mathrm{~kg}}{\mathrm{~kW} \cdot \mathrm{hr}}
$$

(Table A.10, 20 ${ }^{\circ} \mathrm{F}$)

From the diagram

$$
\frac{\mathrm{r}}{\mathrm{~h}}=0.2 \quad \text { so } \quad \mathrm{C}_{\mathrm{D}}=0.25
$$

$F_{D}=C_{D} \cdot \frac{1}{2} \cdot \rho \cdot A \cdot V^{2}$
$\mathrm{F}_{\mathrm{D}}=59.1 \mathrm{~N}$

Additional power is

$$
\Delta \mathrm{P}=\frac{\mathrm{F}_{\mathrm{D}} \cdot \mathrm{~V}}{\eta_{\mathrm{d}}} \quad \Delta \mathrm{P}=1.93 \mathrm{~kW}
$$

Additional fuel is

$$
\Delta \mathrm{FC}=\mathrm{BSFC} \cdot \Delta \mathrm{P} \quad \Delta \mathrm{FC}=1.61 \times 10^{-4} \frac{\mathrm{~kg}}{\mathrm{~s}}
$$

$$
\Delta \mathrm{FC}=0.00965 \frac{\mathrm{~kg}}{\min }
$$

Fuel consumption of the car only is (with $\mathrm{SG}_{\text {gas }}=0.72$ from Table A.2)

The total fuel consumption is then

$$
\mathrm{FC}=\frac{\mathrm{V}}{\mathrm{FE}} \cdot \mathrm{SG}_{\text {gas }} \cdot \rho_{\mathrm{H} 2 \mathrm{O}}
$$

$\mathrm{FC}=1.57 \times 10^{-3} \frac{\mathrm{~kg}}{\mathrm{~s}}$
$\mathrm{FC}=0.0941 \frac{\mathrm{~kg}}{\mathrm{~min}}$
$\mathrm{FC}_{\mathrm{T}}=\mathrm{FC}+\Delta \mathrm{FC}$
$\mathrm{FC}_{\mathrm{T}}=1.73 \times 10^{-3} \frac{\mathrm{~kg}}{\mathrm{~s}}$
$\mathrm{FC}_{\mathrm{T}}=0.104 \frac{\mathrm{~kg}}{\mathrm{~min}}$

Fuel economy with the carrier is
$\mathrm{FE}=\frac{\mathrm{V}}{\mathrm{FC}_{\mathrm{T}}} \cdot \mathrm{SG}_{\mathrm{gas}} \cdot \rho_{\mathrm{H} 2 \mathrm{O}}$
$\mathrm{FE}=11.6 \frac{\mathrm{~km}}{\mathrm{~L}}$
$\mathrm{FE}=27.2 \frac{\mathrm{mi}}{\mathrm{gal}}$
For the square-edged:

$$
\frac{\mathrm{r}}{\mathrm{~h}}=0
$$

so
$C_{D}=0.9$
$\mathrm{F}_{\mathrm{D}}=\mathrm{C}_{\mathrm{D}} \cdot \frac{1}{2} \cdot \rho \cdot \mathrm{~A} \cdot \mathrm{~V}^{2} \quad \mathrm{~F}_{\mathrm{D}}=213 \mathrm{~N}$

Additional power is

$$
\Delta \mathrm{P}=\frac{\mathrm{F}_{\mathrm{D}} \cdot \mathrm{~V}}{\eta_{\mathrm{d}}} \quad \Delta \mathrm{P}=6.95 \mathrm{~kW}
$$

Additional fuel is

$$
\Delta \mathrm{FC}=\mathrm{BSFC} \cdot \Delta \mathrm{P} \quad \Delta \mathrm{FC}=5.79 \times 10^{-4} \frac{\mathrm{~kg}}{\mathrm{~s}}
$$

$$
\Delta \mathrm{FC}=0.0348 \frac{\mathrm{~kg}}{\min }
$$

The total fuel consumption is then

$$
\mathrm{FC}_{\mathrm{T}}=\mathrm{FC}+\Delta \mathrm{FC}
$$

$$
\mathrm{FC}_{\mathrm{T}}=2.148 \times 10^{-3} \frac{\mathrm{~kg}}{\mathrm{~s}}
$$

$$
\mathrm{FC}_{\mathrm{T}}=0.129 \frac{\mathrm{~kg}}{\mathrm{~min}}
$$

Fuel economy withy the carrier is now

$$
\mathrm{FE}=\frac{\mathrm{V}}{\mathrm{FC}_{\mathrm{T}}} \cdot \mathrm{SG}_{\mathrm{gas}} \cdot \rho_{\mathrm{H} 2 \mathrm{O}}
$$

$F E=9.3 \frac{\mathrm{~km}}{\mathrm{~L}}$
$\mathrm{FE}=21.9 \frac{\mathrm{mi}}{\mathrm{gal}}$

The cost of the trip of distance $\mathrm{d}=750 \cdot \mathrm{~km}$ for fuel costing $\mathrm{p}=\frac{\$ \cdot 3.50}{\mathrm{gal}}$ with a rental discount $=\$ \cdot 5$ less than the rounded carrier is then

$$
\text { Cost }=\frac{\mathrm{d}}{\mathrm{FE}} \cdot \mathrm{p}-\text { discount } \quad \text { Cost }=69.47 \$ \quad \text { plus the rental fee }
$$

The cost of the trip of with the rounded carrier ($\mathrm{FE}=11.6 \cdot \frac{\mathrm{~km}}{\mathrm{~L}}$) is then

$$
\text { Cost }=\frac{\mathrm{d}}{\mathrm{FE}} \cdot \mathrm{p} \quad \text { Cost }=59.78 \$ \quad \text { plus the rental fee }
$$

Hence the "cheaper" carrier is more expensive (AND the environment is significantly more damaged!)

Problem 9.143
Given: Coastdown test data from level road, calm day, measured for vehicle with $W=25,000$ lb f and $A=79 \mathrm{ft}^{2} . F_{D}(5 \mathrm{mph}) \ll F_{D}(55 \mathrm{mph})$.

$V(m p h)$	5	55
$\frac{d V}{d t}(m p h / s)$	-0.150	-0.475

Find: Aerodynamic drag coefficient for this vehicle.
Speed at which F_{9} frost exceeds F_{R}.
Solution: Apply Newton's second law of motion, definition of C_{D}.
Computing equations:

$$
\Sigma F_{x}=\max \quad C_{D}=\frac{F_{D}}{\frac{1}{2} P V^{2} A} \stackrel{y}{4}
$$

Summing forces, $-F_{R}-F_{0}=m a_{x}$
At $55 \mathrm{mph} \quad-F_{R}-F_{055}=m a_{x 55}$
At 5 mph

$$
-F_{R}-F_{\phi_{5}}^{\approx 0}=m a_{x 5}
$$

Subtracting, obtain $\left.\left.-F_{D S 5}=m\left(a_{x_{55}}-a_{x_{5}}\right)=m\left[\frac{d v}{d t}\right)_{S 5}-\frac{d V}{d t}\right)_{S}\right]=-C_{D A} \frac{V_{2}}{2}$
Thus

$$
C_{D}=\frac{\left.\left.m\left[\frac{d v}{d t}\right)_{5}-\frac{d v}{d t}\right)_{5 S}\right]}{\frac{1}{2} \rho v^{2} A}=\frac{\left.\left.2 w\left[\frac{d v}{d t}\right)_{5}-\frac{d V}{d t}\right)_{55}\right]}{\rho g v^{2} A}
$$

Evaluating, assuming standard air, with $\rho g=0.0765 \mathrm{~b}+/ \mathrm{ft}^{3}$

$$
\begin{aligned}
C_{D}= & 2 \times 25000 \mathrm{lbf}_{\times} \frac{\mathrm{ft}^{3}}{0.076516 f} \times \frac{h r^{2}}{(55)^{2} \mathrm{~mL}^{2}} \times \frac{1}{79 \mathrm{ft}^{2}} \times[-0.150-(-0.475)] \frac{\mathrm{mi}}{\mathrm{hr} \cdot \mathrm{~s}} \\
& \times \frac{\mathrm{mi}^{2}}{5280 f_{t}} \times 3600 \frac{\mathrm{~s}}{\mathrm{hr}} \\
C_{D}= & 0.606
\end{aligned}
$$

Ht $V=5 m p^{\prime}, F_{y} 20 \quad \therefore-F_{R}=m a_{1 s}$

$$
F_{R}=-m a_{5}=-25000 \frac{1}{32.25 c} \frac{\xi^{2}}{6 \pi .5} \times \frac{0.1506}{3600} \times \frac{582 f}{6}=171 h_{6}
$$

For $F_{e}=F_{y}=c_{i} \frac{1}{2} p^{2} A$, then $V=\left[\frac{2 F_{Q}}{p_{i}}\right]^{1 / 2}$

$V=54.8 \frac{\mathrm{fE}}{\mathrm{s}}=37.4 \mathrm{mph}$.

Given: Spherical sonar transducer with $D=0.375 \mathrm{~m}$, to be towed in seawater, fully subrnerged, at $V=31 \mathrm{kt}$.
To avoid cavitation, minimum pressure on transducer surface must be $>30 \mathrm{kpa}(a b s)$.

Find: (a) Hydrodynamic drag force on transolucer.
(b) Minimum depth of submergence.

Solution: $V=31.1 \frac{\mathrm{~mm}}{\mathrm{hr}} \times 1852 \mathrm{~m} \times \frac{\mathrm{m}}{\mathrm{hm}} 3600 \mathrm{~s}=16.0 \mathrm{~m} / \mathrm{s}$

$$
\begin{aligned}
& q=\frac{1}{2} \rho v^{2}=\frac{1}{2} \times(1.025) 1000 \frac{\mathrm{~kg}}{\mathrm{~m}^{3}} \times(16.0)^{2} \frac{\mathrm{~m}^{2}}{\mathrm{~s}^{2}} \times \frac{\mathrm{N} \cdot \mathrm{~m}^{2}}{\mathrm{~kg} \cdot \mathrm{~m}} \times \frac{\mathrm{Pa} \mathrm{\cdot r}^{2}}{\mathrm{~N}}=131 \mathrm{kPa} \\
& R e=\frac{V D}{2}=16.0 \frac{\mathrm{~m}}{\mathrm{~s}} \times 0.375 \mathrm{~m}^{2} \times \frac{1}{(1.08) 1 \times 10^{-6} \mathrm{~m}^{2}}=5.56 \times 10^{6}
\end{aligned}
$$

Therefore flow over sphere is supercritical; from Fig.9.11, CD 0.18

$$
\begin{aligned}
& F_{D}=C_{D} A \frac{1}{2} \rho V^{2} \quad A=\frac{\pi D^{2}}{4}=\frac{\pi}{4} \times(0.325)^{2} \mathrm{~m}^{2}=0.110 \mathrm{~m}^{2} \\
& F_{D}=0.18 \times 0.110 \mathrm{~m}_{\times}^{2} 131 \times 10^{3} \frac{\mathrm{~N}}{\mathrm{~m}^{2}}=2.59 \mathrm{kN}
\end{aligned}
$$

From Fig. 9.12, the mimimeen pressure on a sphere with supercritical flow is $C_{P} \approx-1.2$

$$
\begin{aligned}
c_{p} & =\frac{p-p_{\infty}}{\frac{1}{2} p v^{2}}=\frac{p-p_{\infty}}{q}=-1.2 \\
\text { or } p_{\infty} & =p-c_{p} q \\
& =30 \mathrm{kPa}(a b s)-(-1.2) 131 \mathrm{kPa} \\
p_{\infty}(a b s) & =187 \mathrm{kPa}(a b s)
\end{aligned}
$$

$$
V_{1}
$$

$$
\longrightarrow
$$

$$
p_{\infty}
$$

Thus

$$
p_{\infty}(g a g e)=p_{\infty}(a b s)-p_{a+m}=(187-101) k p_{a}=86.2 \mathrm{kPa}
$$

But $p_{\infty}(g a g e)=p g h$ so

$$
h=\frac{p_{00}(g a g e)}{\rho g}=86.2 \times 10^{-3} \frac{\mathrm{~N}}{\mathrm{~m}^{2}} \times \frac{\mathrm{m}^{3}}{(1.025) 1000 \mathrm{~kg}} \times \frac{\mathrm{s}^{2}}{4.81 \mathrm{~m}^{2}} \times \frac{\mathrm{kg} \cdot \mathrm{~m}}{\mathrm{~N}^{2}}=8.57 \mathrm{~m}
$$

Open-Ended Problem Statement: While walking across campus one windy day, Floyd Fluids speculates about using an umbrella as a "sail" to propel a bicycle along the sidewalk.
Develop an algebraic expression for the speed a bike could reach on level ground with the umbrella "propulsion system." The frontal area of the bike and rider is estimated as $0.3 \mathrm{~m}^{2} . C_{Q}=1.2$ Evaluate the bike speed that could be achieved with an umbrella 1.22 m in diameter in a wind that blows at $24 \mathrm{~km} / \mathrm{hr}$. Discuss the practicality of this propulsion system.
Assume rolling resistance is o.75 h of whig fe ($N=75 \mathrm{ga}$)
Analysis: Draw a free-body diagram.
Sum forces in x direction:
$\Sigma F_{x}=F_{D}-F_{R}=0$
 force
But $F_{D}=\left(C_{D u} A_{u}+C_{D b} A_{b}\right) \frac{1}{2} p\left(V_{\omega}-V_{b}\right)^{2}$
$A_{c}=\frac{\pi a^{2}}{4}=\frac{\pi}{4}(1.22)^{2} \mathrm{~m}^{2}=1.17 \mathrm{~m}^{2}$

$$
F_{R}=c_{R} m g
$$

Choose Cu $=1.42$ (Table 9.3),

$$
c_{R}=0.75 \%, m=75 \mathrm{~kg}, 50 \mathrm{~F}_{R}=0.0075 \times 75 \mathrm{~kg} \times \frac{8.81 \mathrm{~m}}{\mathrm{~s}^{2}} \times \frac{\mathrm{N} \cdot \mathrm{~s}^{2}}{\mathrm{~kg} \cdot \mathrm{~m}}=5.52 \mathrm{~N}
$$

Then

$$
V_{b}=V_{w}-\left[\frac{2 F_{B}}{\rho\left(C_{D L} A_{L}+C_{D b} A_{b}\right)}\right]^{\frac{1}{2}}
$$

But

$$
V_{\mathrm{wr}}=24 \frac{\mathrm{~km}}{\mathrm{hr}} \times 1000 \frac{\mathrm{~m}}{\mathrm{~km}} \times \frac{\mathrm{hr}}{3600 \mathrm{~s}}=6.67 \mathrm{~m} / \mathrm{s}
$$

$$
\cdots \quad V_{b}=6.67 \frac{\mathrm{~m}}{\mathrm{~s}}-\left[2 \times 5.52 N_{\times} \frac{m^{3}}{1.2^{3} \mathrm{~kg}_{9}} \frac{1}{(1.42) 1.17 \mathrm{~m}^{2}+(1.20) 0.3 \mathrm{~m}^{2}} \times \frac{\mathrm{kg} \cdot \mathrm{~m}}{\mathrm{~N} \cdot \mathrm{~s}^{2}}\right]^{\frac{1}{2}}
$$

$$
V_{b}=6.67 \frac{\mathrm{~m}}{\mathrm{~s}}-2.11 \frac{\mathrm{~m}}{\mathrm{~s}}=4.56 \frac{\mathrm{~m}}{\mathrm{~s}} \text { or } 16.4 \frac{\mathrm{~km}}{\mathrm{hr}}
$$

Thus Floyd's bicigete (with the umbrella propelling it) travels at 68.3% wind speed $\left\{\right.$ Without the umbrella, $v_{0}=1.68 \frac{\mathrm{~m}}{\mathrm{~s}}$ or $6.04 \frac{\mathrm{~km}}{\mathrm{hr}}, b_{y}$ setting $C_{D_{u}}=0$ above. $\}$
Discussion: Floyd is confused about his fluid mechanics principles if he thinks he can exceed the wind speed. It is impossible to obtain a propulsive force from aerodynamic drag unless the bicycle is moving more slowly than the wind. The drag force must be sufficient to overcome the rolling resistance of the bike and rider. At equilibrium speed the drag force and rolling resistance force must be equal and opposite.
The only benefit could be achieved by adding drag force more rapidly than rolling resistance. An umbrella, with its relatively high drag and low weight, is ideal for this purpose.
However, one would somehow have to hold the umbrella perpendicular to the wind while riding the bike. This would be dangerous at best, especially if the bike had hand-activated brakes.
Since the umbrella must be held perpendicular to the wind, it would be very effective at blocking the rider's view of the road ahead!
In summary, this "system" of propulsion appears quite impractical.
9.146 Motion of a small rocket was analyzed in Example 4.12 assuming negligible aerodynamic drag. This was not realistic at the final calculated speed of $369 \mathrm{~m} / \mathrm{s}$. Use Euler's finite difference method for approximating the first derivatives, in an Excel workbook, to solve the equation of motion for the rocket. Plot the rocket speed as a function of time, assuming $C_{D}=0.3$ and a rocket diameter of 700 mm . Compare with the results for $C_{D}=0$.

Given: Data on a rocket

Find: Plot of rocket speed with and without drag

Solution:

From Example 4.12, with the addition of drag the momentum equation becomes

$$
F_{B_{y}}+F_{S_{y}}-\int_{\mathrm{CV}} a_{r f_{y}} \rho d \forall=\frac{\partial}{\partial t} \int_{\mathrm{CV}} v_{x y z} \rho d \forall+\int_{\mathrm{CV}} v_{x y z} \rho \vec{V}_{x y z} \cdot d \vec{A}
$$

where the surface force is

$$
F_{S_{y}}=-\frac{1}{2} \rho A V^{2} C_{\mathrm{D}}
$$

Following the analysis of the example problem, we end up with

$$
\frac{d V_{\mathrm{CV}}}{d t}=\frac{V_{e} \dot{m}_{e}-\frac{1}{2} \rho A V_{\mathrm{CV}}{ }^{2} C_{\mathrm{D}}}{M_{0}-\dot{m}_{e} t}-g
$$

This can be written (dropping the subscript for convenience)

$$
\begin{equation*}
\frac{d V}{d t}=f(V, t) \tag{1}
\end{equation*}
$$

where

$$
\begin{equation*}
f(V, t)=\frac{V_{e} \dot{m}_{e}-\frac{1}{2} \rho A V^{2} C_{\mathrm{D}}}{M_{0}-\dot{m}_{e} t}-g \tag{2}
\end{equation*}
$$

Equation 1 is a differential equation for speed V.
It can be solved using Euler's numerical method

$$
V_{\mathrm{n}+1} \approx V_{\mathrm{n}}+\Delta t f_{\mathrm{n}}
$$

where $V_{\mathrm{n}+1}$ and V_{n} are the $\mathrm{n}+1^{\text {th }}$ and $\mathrm{n}^{\text {th }}$ values of V, f_{n} is the function given by Eq. 2 evaluated at the $\mathrm{n}^{\text {th }}$ step, and Δt is the time step.

The initial condition is

$$
V_{0}=0 \text { at } t=0
$$

Given or available data:

$$
\begin{aligned}
M_{0} & =400 \mathrm{~kg} \\
m_{e} & =5 \mathrm{~kg} / \mathrm{s} \\
V_{e} & =3500 \mathrm{~m} / \mathrm{s} \\
\rho & =1.23 \mathrm{~kg} / \mathrm{m}^{3} \\
D & =700 \mathrm{~mm} \\
C_{\mathrm{D}} & =0.3
\end{aligned}
$$

Computed results:

$$
\begin{aligned}
A & =0.385 \mathrm{~m}^{2} \\
N & =20 \\
\Delta t & =0.50 \mathrm{~s}
\end{aligned}
$$

With drag:

\mathbf{n}	$\boldsymbol{t}_{\mathbf{n}}(\mathbf{s})$	$\boldsymbol{V}_{\mathbf{n}}(\mathbf{m} / \mathbf{s})$	$\boldsymbol{f}_{\mathbf{n}}$	$\boldsymbol{V}_{\mathbf{n + 1}}(\mathbf{m} / \mathbf{s})$
0	0.0	0.0	33.9	17.0
1	0.5	17.0	34.2	34.1
2	1.0	34.1	34.3	51.2
3	1.5	51.2	34.3	68.3
4	2.0	68.3	34.2	85.5
5	2.5	85.5	34.0	102
6	3.0	102	33.7	119
7	3.5	119	33.3	136
8	4.0	136	32.8	152
9	4.5	152	32.2	168
10	5.0	168	31.5	184
11	5.5	184	30.7	200
12	6.0	200	29.8	214
13	6.5	214	28.9	229
14	7.0	229	27.9	243
15	7.5	243	26.9	256
16	8.0	256	25.8	269
17	8.5	269	24.7	282
18	9.0	282	23.6	293
19	9.5	293	22.5	305
20	10.0	305	21.4	315

Without drag:

$\boldsymbol{V}_{\mathbf{n}}(\mathbf{m} / \mathbf{s})$	$\boldsymbol{f}_{\mathbf{n}}$	$\boldsymbol{V}_{\mathbf{n + 1}}(\mathbf{m} / \mathbf{s})$
0.0	33.9	17.0
17.0	34.2	34.1
34.1	34.5	51.3
51.3	34.8	68.7
68.7	35.1	86.2
86.2	35.4	104
104	35.6	122
122	35.9	140
140	36.2	158
158	36.5	176
176	36.9	195
195	37.2	213
213	37.5	232
232	37.8	251
251	38.1	270
270	38.5	289
289	38.8	308
308	39.1	328
328	39.5	348
348	39.8	368
368	40.2	388

Trajectory of a Rocket

Open-Ended Problem Statement: Towers for television transmitters may be up to 500 m in height. In the winter, ice forms on structural members. When the ice thaws, chunks break off and fall to the ground. How far from the base of a tower would you recommend placing a fence to limit danger to pedestrians from falling ice chunks?
Analysis: An ice chunk detaching from a tow tr starts at rest, fails by gravity, and sincurtaneousle, is blown sideways by wind. Because drag is proportional to relative speed squared, it may be treated in separate x and y components.

This equation is solved in Example Probien 4.11.

This equation is solved in Example Problem 1.2. The result is

$$
\begin{aligned}
& V=\left\{\frac{m g}{k}\left(1-e^{-\frac{2 k}{m}}\right)\right\}^{12} \text { or } \frac{V}{v_{t}}=1-e^{-2 \frac{k}{m} y} \\
& V_{t}=\left[\frac{m g}{k}\right]^{\frac{1}{2}}
\end{aligned}
$$

Model the chunk as a geometric sphere, but with larger C_{0} because of jagged edges. Both 6 and v_{t} depend on diameter; $v_{t}=[8.11 D(\mathrm{~mm})]_{3}^{2 / 2}$ on $11.0 \mathrm{~m} / \mathrm{s}$ for 0.15 mm .

Thus a reasonable approximation is falling at v_{t} and moving sidenews at v_{w}. For $V_{w}=10 \mathrm{mph}(4.47 \mathrm{~m} / \mathrm{s})$, and $V_{t}=11.0 \mathrm{~m} / \mathrm{s}$, then $\alpha=\tan ^{-1}(4.47 / \mathrm{m.0})=22.1$; and $X=\mu \tan 22.1^{4}=203 \mathrm{~m}$.

To more precises complete distance, obtain $x(t)$ and $y(t)$ by sovirig Eqs. 1 and 2 numerically, and plot the partic le path.

Discussion: Because towers may be very tall, ice chunks can travel long distances from the base even in moderate winds. Considerable area around the base of a tower must be fenced to keep personnel on the ground safe from falling ice.
The analysis in this problem would be accurate if the drag-area product $C_{D} A$ for an ice chunk were known precisely. However, the size of the structural members and the thickness of the ice coating are both unknown. Therefore it is difficult to choose the most probable drag-area product. We recommend you bracket the sizes of known ice chunks, pick a reasonable range of drag coefficients, and then use the analysis to develop guidelines for the safety of personnel.

Open-Ended Problem Statement: Wiffle ${ }^{\mathrm{TM}}$ balls made from light plastic with numerous holes are used to practice baseball and golf. Explain the purpose of the holes and why they work. Explain how you could test your hypothesis experimentally.
Discussion: The basic concept of the Wiffle ball is a low-mass, high-drag configuration that can be hit or struck with full force, but will not fly fast or far. Thus the Wiffle ball can be used for practice in a limited space.
The low mass is achieved by making the ball of relatively thin plastic material. This gives it low mass for its size, and is a step toward making the drag force relatively high compared to the weight of the ball.
Even higher drag force is achieved by perforating the surface of the Wiffle ball with numerous large holes. These holes further reduce the mass of the Wiffle ball.
In the sub-critical flow regime (below $R e_{D} \approx 2 \times 10^{5}$) skin friction drag accounts for less than 5 percent of the total drag of a sphere. The holes increase the skin friction drag of the ball by allowing boundary-layer fluid to escape into the interior of the ball. Each new bit of surface then sees essentially a new boundary layer developing, with attendant high shear stress.
Pressure drag accounts for the majority of the drag of a sphere at any Reynolds number above about 1000 . The holes disrupt the flow pattern around the ball and probably trigger early separation. This ensures that the ball remains in the high-drag sub-critical flow regime no matter what its actual Reynolds number.
This hypothesis could be tested experimentally by comparing the performance of two balls, one with holes and one without. (The balls should have nearly the same mass and diameter.) With the help of an assistant, drop the balls from some height (for example, down a stairwell). After each ball has reached terminal speed, measure the time required for it to fall through a fixed distance. Then calculate and compare the drag coefficients for the two balls. If the drag coefficient for the ball with holes is significantly larger than for the ball without holes, the hypothesis is confirmed.
Several balls of each type might be evaluated experimentally to obtain an idea of the Reynolds number dependence of the results.

Open-Ended Problem Statement: Design a wind anemometer that uses aerodynamic drag to move or deflect a member or linkage, producing an output that can be related to wind speed, for the range from 1 to $10 \mathrm{~m} / \mathrm{s}$ in standard air. Consider three alternative design concepts. Select the best concept and prepare a detailed design. Specify the shape, size, and material for each component. Quantify the relation between wind speed and anemometer output. Present results as a "calibration curve" of anemometer output versus wind speed. Discuss reasons why you rejected the alternative designs and chose your final design concept.
Analysis: The "target" concept was chosen for analysis. The drag force acting on the target is calculated, then moments are summed about the pivot (see Problem 9.105). The results are:

$\sum M_{0}=m g \varphi \sin \alpha-F_{D} \not \subset=0$

$$
\begin{equation*}
F_{D}=C_{D} A \frac{1}{2} \rho(v \cos \alpha)^{2}+C_{D} A \frac{1}{2} \rho v^{2} \cos ^{2} \alpha \tag{/}
\end{equation*}
$$

So $\quad c_{D} A \frac{1}{2} \rho V^{2} \cos ^{2} \alpha=m g \sin \alpha=\rho_{m} \forall_{m} g \sin \alpha=S \in \rho_{t_{10}} A h g \sin \alpha$
Asskme $\alpha=60^{*}$ at mighest wind speed (when $V=10 \mathrm{~m} / \mathrm{s}^{\prime} \mathrm{g}^{2}=\frac{1}{2} p V^{2}=61.5 \mathrm{~N} / \mathrm{m}^{2}$).
Then $\frac{\sin \alpha}{\cos ^{2} \alpha}=\frac{C_{0} A q}{S_{6} P_{H_{2}} A g h}-\frac{c_{0} g}{5 G f H_{\Delta O} g h}=f(\alpha)$

$$
h=\frac{\operatorname{Cog}}{S G P_{+0 a} g f(\alpha)}=1.2 \times 61.5 \frac{\mathrm{~N}}{\mathrm{~m}^{2}} \times \frac{\mathrm{m}^{3}}{(S G) 1000 \mathrm{~kg}} \times \frac{\mathrm{s}^{2}}{9.81 \mathrm{~m}} \times \frac{1}{3.46} \times \frac{\mathrm{kg} \mathrm{~m}}{\mathrm{Alis}}=\frac{0.00217 \mathrm{~m}}{56}=\frac{2.17 \mathrm{~mm}}{56}
$$

Choose almminul, with $S G=2.64$ (Tabla A. I). Then

$$
h=\frac{2.17 \mathrm{~mm}}{2.64}=0.822 \mathrm{~mm}
$$

Solve Eq. 1 for velocity

$$
V=\left[\frac{2 s s \rho_{+2} o h g}{\rho g_{D}} x(\alpha)\right]^{\frac{1}{2}} \quad(\text { see } \rho(o t)
$$

Discussion: Concepts considered included a manometer that sensed stagnation pressure, a parallelogram linkage supporting a vertical target, and bending of a thin member in the air stream. The three final concepts chosen were variations on the theme of a single hanging member supported from a single pivot, and were chosen for their simplicity.
The major advantage of the target concept is that different materials can be used for the rod and target; this concept can be tailored to give the largest deflection angle for a given wind speed. Therefore this device should be capable of the most accurate indication at low wind speeds.
Drag force on the target is assumed to depend on the component of wind velocity acting normal to the target. This model could be improved by using actual experimental data for the drag coefficient of a disk at angle of attack.

Problem 9.149

α	α	$f(\alpha)$	V
(deg)	(rad)	$(-\mathrm{c})$	$(\mathrm{m} / \mathrm{s})$
0	0	0	0
1	0.0175	0.0175	0.71
2	0.0349	0.0349	1.00
3	0.0524	0.0525	1.23
5	0.0873	0.0878	1.59
10	0.175	0.179	2.27
15	0.262	0.277	2.83
20	0.349	0.387	3.34
25	0.436	0.515	3.85
30	0.524	0.667	4.39
35	0.611	0.855	4.97
40	0.698	1.10	5.62
45	0.785	1.41	6.39
50	0.873	1.85	7.31
55	0.960	2.49	8.47
60	1.05	3.46	10.0

Open-Ended Problem Statement: The "shot tower," used to produce spherical lead shot, has been recognized as a mechanical engineering landmark. In a shot tower, molten lead is dropped from a high tower; as the lead solidifies, surface tension pulls each shot into a spherical shape. Discuss the possibility of increasing the "hang time," or of using a shorter tower, by dropping molten lead into an air stream that is moving upward. Support your discussion with appropriate calculations.

Analysis: This problem may be analyzed parametrically, in terms of shot diameter. Consider the range from "bird shot" of about 1 mm to musket balls of about 15 mm diameter to illustrate the results.

Analysis with still air: Terminal speed is reached when aerodynamic drag force exactly equals the weight of the shot. The first plot shows terminal speed versus diameter of lead shot.

The solution for shot speed versus distance traveled, with no upward air movement, parallels the solution of Example Problem 1.2, which gives the fraction of terminal speed reached in a tower of specified height. For any tower height (choose 50 m to illustrate the results) the fraction of terminal speed reached decreases with increasing shot diameter (see the second plot).
The solution for hang time versus diameter is shown in the third plot.
Analysis with upward flow of air: The solution for shot speed versus distance traveled is more complex when air in the shot tower flows upward. Introducing upward air flow in the tower increases drag force compared to shot weight. Therefore the shot accelerate more slowly in the upward flow. It is possible to obtain an analytical solution, but the result is so complex that it is difficult to interpret. Results can be obtained for specific cases by integrating the differential equations numerically.

The solution for shot speed versus time also is more complex when air flows upward. Again numerical integration can be used to obtain results for specific cases.
Outline of Procedure: Derive a differential equation for shot acceleration from a free-body diagram. Integrate once to obtain shot velocity as a function of time. Integrate again to obtain shot position as a function of time.

From the results of the second integration, identify the "hang time" when the shot reaches the bottom of the tower. Plot hang time versus diameter and compare with results for the case with no upward air flow.
Set the upward air flow velocity to zero and compare numerical results with the analytical results for the case without flow to validate your model.

Discussion: The terminal speed reached by small shot in still air is quite low. Therefore, the "hang time" of small shot can be increased significantly by providing upward flow of air at reasonable speed in the tower.
Larger shot have higher terminal speeds. However, the higher terminal speed does not reduce hang time much because the large shot reach only a smaller fraction of their terminal speed in the 50 m tower height.

Introducing upward flow of air in the shot tower increases the drag force and results in slower acceleration of the shot. Therefore the hang time is increased. The increase in hang time allows more time for cooling, and should result in the production of more nearly spherical shot.

Input data:

$C_{D}=$	0.47	$(-)$
$S G_{5}=$	11.4	$(-)$
$\Delta z=$	50	m
$\rho_{\text {air }}=$	1.23	$\mathrm{~kg} / \mathrm{m}^{3}$

Drag coefficient of sphere
Specific gravity of (lead) shot
Height of shot tower
Density of air

Calculated parameters:

$k / D^{2}=2.27 E-07 \mathrm{~kg} / \mathrm{m}-\mathrm{mm}^{2} \quad$ Drag factor $F_{D}=k V^{2}$
$m / D^{3}=5.969 \mathrm{E}-06 \mathrm{~kg} / \mathrm{mm}^{3} \quad$ Mass of shot

(1) Shot falling in still air:		
$D(\mathbf{m m})$	$V_{t}(\mathbf{m} / \mathbf{s})$	
1	16.1	0.989
1.5	19.7	0.960
2	22.7	0.922
3	27.8	0.848
4	32.1	0.783
5	35.9	0.730
6	39.3	0.685
7	42.5	0.647
8	45.4	0.615
9	48.2	0.587
10	50.8	0.562
11	53.3	0.541
12	55.6	0.521
13	57.9	0.504
14	60.1	0.488
15	62.2	0.473

$D(\mathrm{~mm})$	$V_{t}(\mathrm{~m} / \mathrm{s})$	$V N_{\mathbf{t}}(\cdots-)$	$\boldsymbol{t}(\mathrm{s})$
1	16.1	0.989	4.24
1.5	19.7	0.960	3.89
2	22.7	0.922	3.71
3	27.8	0.848	3.54
4	32.1	0.783	3.45
5	35.9	0.730	3.40
6	39.3	0.685	3.36
7	42.5	0.647	3.34
8	45.4	0.615	3.32
9	48.2	0.587	3.31
10	50.8	0.562	3.29
11	53.3	0.541	3.29
12	55.6	0.521	3.28
13	57.9	0.504	3.27
14	60.1	0.488	3.27
15	62.2	0.473	3.26

Problem 9.151

9.151 An antique airplane carries 50 m of external guy wires stretched normal to the direction of motion. The wire diameter is 5 mm . Estimate the maximum power saving that results from an optimum streamlining of the wires at a plane speed of $175 \mathrm{~km} / \mathrm{hr}$ in standard air at sea level.

Given: Antique airplane guy wires
Find: Maximum power saving using optimum streamlining

Solution:

Basic equation: $\quad C_{D}=\frac{F_{D}}{\frac{1}{2} \cdot \rho \cdot A \cdot V^{2}} \quad \mathrm{P}=\mathrm{F}_{\mathrm{D}} \cdot \mathrm{V}$
Given or available data is

$$
\mathrm{L}=50 \cdot \mathrm{~m} \quad \mathrm{D}=5 \cdot \mathrm{~mm}
$$

$\mathrm{V}=175 \cdot \frac{\mathrm{~km}}{\mathrm{hr}} \quad \mathrm{V}=48.6 \frac{\mathrm{~m}}{\mathrm{~s}}$

$$
\mathrm{A}=\mathrm{L} \cdot \mathrm{D} \quad \mathrm{~A}=0.25 \mathrm{~m}^{2}
$$

$\rho=1.21 \cdot \frac{\mathrm{~kg}}{\mathrm{~m}^{3}} \quad \nu=1.50 \times 10^{-5} \cdot \frac{\mathrm{~m}^{2}}{\mathrm{~s}}$
(Table A. $10,20^{\circ} \mathrm{C}$)
The Reynolds number is $\quad \mathrm{Re}=\frac{\mathrm{V} \cdot \mathrm{D}}{v} \quad \operatorname{Re}=1.62 \times 10^{4}$
so from Fig. 9.13 $\quad C_{D}=1.0$

Hence

$$
\mathrm{P}=\left(\mathrm{C}_{\mathrm{D}} \cdot \frac{1}{2} \cdot \rho \cdot \mathrm{~A} \cdot \mathrm{~V}^{2}\right) \cdot \mathrm{V} \quad \mathrm{P}=17.4 \cdot \mathrm{~kW} \quad \text { with standard wires }
$$

Figure 9.19 suggests we could reduce the drag coefficient to $C_{D}=0.06$

Hence

$$
\mathrm{P}_{\text {faired }}=\left(\mathrm{C}_{\mathrm{D}} \cdot \frac{1}{2} \cdot \rho \cdot \mathrm{~A} \cdot \mathrm{~V}^{2}\right) \cdot \mathrm{V} \quad \mathrm{P}_{\text {faired }}=1.04 \cdot \mathrm{~kW}
$$

The maximum power saving is then

$$
\Delta \mathrm{P}=\mathrm{P}-\mathrm{P}_{\text {faired }}
$$

$$
\Delta \mathrm{P}=16.3 \cdot \mathrm{~kW}
$$

Thus

$$
\frac{\Delta \mathrm{P}}{\mathrm{P}}=94 . \% \quad \text { which is a HUGE savings! It's amazing the antique planes flew! }
$$

Open-Ended Problem Statement: Why do modern guns have rifled barrels?
Discussion: Almost all projectiles fired by modern guns have smoothly rounded noses and abruptly tapered ("boat-tailed") or square rear ends. The minimum drag for these shapes is obtained when the projectile travels with its axis parallel to the direction of motion and its nose pointed forward.

Rifling in a gun barrel imparts spin about the longitudinal axis of the projectile. This rotation about the longitudinal axis causes the projectile to act as a gyroscope and stabilizes it during flight to keep its nose pointed in the direction of motion.

Early smoothbore guns primarily used ball projectiles. The balls were spherical and molded from lead. Since the ball shape was spherical and had no preferred orientation, no benefit would have been achieved from rifling that caused spin. Therefore the gun barrels were bored smooth, i.e., without rifling grooves, hence these guns were called "smoothbore" guns.

Open-Ended Problem Statement: Why is it possible to kick a football farther in a spiral motion than in an end-over-end tumbling motion?
Discussion: A football has a prolate spheroid shape. It is almost circular when viewed from the front (parallel to the major axis), and longer and more elliptical when viewed from the side (along a minor axis). The football has more frontal area when traveling with the major axis perpendicular to the motion that when it is "spiraling" with the major axis parallel to the direction of travel.

The drag coefficient of the ball when parallel to the flow in spiral motion undoubtedly is less than when perpendicular to the flow. As a rough approximation, the perpendicular drag coefficient might be similar to that of a cylinder ($C_{D}=1.2$), whereas the spiral drag coefficient probably is less (perhaps $C_{D} \approx 0.2-0.3$) than that of a sphere ($C_{D}=0.5$). Thus the drag coefficient when traveling with the long axis perpendicular to the flow may be 4 to 6 times as large as when traveling in spiral motion with the long axis parallel to the flow. The difference in the drag-area product $C_{D} A$ will be even larger.
In tumbling motion the drag-area product varies cyclically between the two extremes we have discussed. On average the drag-area product for the tumbling ball is considerably larger, perhaps 2 to 3 times as large, as when the ball is in spiral motion. Therefore the maximum range (travel distance) that can be achieved with tumbling motion is much less than that for spiral motion.
Also, a well kicked or thrown spiral is a thing of beauty. Perhaps function follows form here!

Problem 9.154
Given: Aircraft with NACA 23012 section airfoils and effective lift area, $A=25 \mathrm{~m}^{2}$ Maximum flap setting corresponds to condition (2) in Fig. 9.23. Takeoff speed is 150 kph .
Neglect added lift due to ground effect.
Find (a) Maximum gross mass at takeoff: speed in Denver ($z=1.61 \mathrm{~km}$).
(b) Minimum takeoff speed in lenver

Solution: Apply definition of lift coefficient.
Basic equation: $\quad C_{L}=\frac{F_{L}}{\frac{1}{2} p V^{2} A p}$
Assumption: Lift force must equal gravity force at takeoff.

$$
F_{L}=m g=C_{D} A_{p} \frac{1}{2} p v^{2}
$$

For maximum mass, need maximum lift, so use C_{L}, max:

$$
m_{\max }=\frac{C_{1} \max A \rho p V^{2}}{2 g}
$$

From Fig. $9.23, C_{L, m a x}=2.67$ for condition (2). Then for std. air,

$$
\begin{aligned}
& m_{\text {max }}=\frac{2.67}{2} \times 25 \mathrm{~m}^{2} \times 1.23 \mathrm{~kg} \\
& m^{3} \\
& \left(150 \times 10^{3} \frac{m}{h_{r}} \times \frac{h r}{3600 \mathrm{~s}}\right)^{2} \frac{s^{2}}{9.81 \mathrm{~m}} \\
& m_{\text {max }}=7260 \mathrm{~kg}
\end{aligned}
$$

$\left\{\begin{array}{l}\text { This represents the maximum mass theoretically possible } \\ \text { When the aircraft is on the venge of stalling. To attempt } \\ \text { takeoff at sech a large mass would be ill-advised. }\end{array}\right\}$
(b) In Denver, $z=1.61 \mathrm{~km}$. From Table $A .3$, at $z=1.61 \mathrm{~km}, \rho / \mathrm{o}=0.855$.

At the same gross mass, the lift force remains the same. Thus

$$
F_{L_{0}}=C_{D} A \frac{1}{2} \rho_{0} V_{0}^{2}=F_{L_{D}}=C_{D} A \frac{1}{z} \rho_{D} V_{D}^{2} \text { or } \rho_{D} V_{0}^{2}=\rho_{D} V_{D}^{2}
$$

and

$$
V_{D}=V_{0}\left(\frac{\rho_{0}}{\rho_{0}}\right)^{1 / 2}=150 \mathrm{kph}\left(\frac{1}{0.855}\right)^{1 / 2}=162 \mathrm{kph}
$$

\{Thetakeoff speed must increase about 8 percent. $\}$

Open-Ended Problem Statement: How do cab-mounted wind deflectors for tractor-trailer trucks work? Explain using diagrams of the flow pattern around the truck and pressure distribution on the surface of the truck.

Discussion: Consider both the cab and the trailer flow patterns and pressure distributions in no-wind and crosswind situations.

No-wind situation: Without the deflector, flow separation from the roof and sides of the tractor creates a low-pressure wake and high drag force on the tractor. (Flow patterns and pressure distributions on the tractor and the front of the trailer are sketched below.) The cab-mounted deflector reduces the pressures on the front of the tractor, thus reducing the aerodynamic drag force on the tractor.

Without the deflector, high-speed air separates from the roof of the tractor and impinges on the vertical front face of the trailer. The cab-mounted deflector reduces the amount of high-speed air hitting the front of the trailer, reducing the net aerodynamic drag force on the trailer. (Ideally air from the deflector flows smoothly along the top and sides of the trailer.)

Crosswind situation: Without the deflector, flow separates from the lee side of the tractor, altering the pressure field and increasing the drag on the tractor. The cab-mounted deflector, especially in combination with side seals, minimizes the increase in drag by reducing the amount of separation around the tractor.
Without the deflector, the front face of the trailer is impacted by the high-speed air from the freestream flow. Massive separation occurs on the lee side of the trailer, thus altering the pressure field and increasing the drag on the trailer. With the cab-mounted deflector, the amount of high-speed air impacting the trailer is markedly reduced. This alters the flow pattern and minimizes the increase in drag caused by the crosswind.

Without cab-mounted wind deflector:

With cab-mounted wind deflector:

Traiter face:

9.156 An aircraft is in level flight at $225 \mathrm{~km} / \mathrm{hr}$ through air at standard conditions. The lift coefficient at this speed is 0.45 and the drag coefficient is 0.065 . The mass of the aircraft is 900 kg . Calculate the effective lift area for the craft, and the required engine thrust and power.

Given: Aircraft in level flight
Find: Effective lift area; Engine thrust and power

Solution:

Basic equation: $\quad \mathrm{C}_{\mathrm{D}}=\frac{\mathrm{F}_{\mathrm{D}}}{\frac{1}{2} \cdot \rho \cdot \mathrm{~A} \cdot \mathrm{~V}^{2}} \quad \mathrm{C}_{\mathrm{L}}=\frac{\mathrm{F}_{\mathrm{L}}}{\frac{1}{2} \cdot \rho \cdot \mathrm{~A} \cdot \mathrm{~V}^{2}} \quad \mathrm{P}=\mathrm{T} \cdot \mathrm{V}$
For level, constant speed

$$
\mathrm{F}_{\mathrm{D}}=\mathrm{T}
$$

$\mathrm{F}_{\mathrm{L}}=\mathrm{W}$
Given or available data is

$$
\begin{aligned}
\mathrm{V}=225 \cdot \frac{\mathrm{~km}}{\mathrm{hr}} & \mathrm{~V}=62.5 \frac{\mathrm{~m}}{\mathrm{~s}} \\
\rho=1.21 \cdot \frac{\mathrm{~kg}}{\mathrm{~m}^{3}} & \text { (Table A.10, } \left.20^{\circ} \mathrm{C}\right)
\end{aligned}
$$

$\mathrm{C}_{\mathrm{L}}=0.45$
$C_{D}=0.065$
$\mathrm{M}=900 \cdot \mathrm{~kg}$

Hence

$$
\mathrm{F}_{\mathrm{L}}=\mathrm{C}_{\mathrm{L}} \cdot \frac{1}{2} \cdot \rho \cdot \mathrm{~A} \cdot \mathrm{~V}^{2}=\mathrm{M} \cdot \mathrm{~g}
$$

$A=\frac{2 \cdot M \cdot g}{C_{L} \cdot \rho \cdot V^{2}} \quad A=8.30 m^{2}$
$\frac{F_{L}}{F_{D}}=\frac{C_{L}}{C_{D}} \quad F_{L}=M \cdot g \quad F_{L}=8826 N \quad F_{D}=F_{L} \cdot \frac{C_{D}}{C_{L}} \quad F_{D}=1275 N$
$\mathrm{T}=\mathrm{F}_{\mathrm{D}} \quad \mathrm{T}=1275 \mathrm{~N}$
The power required is then $P=T \cdot V \quad P=79.7 \mathrm{~kW}$

Given: Hydrofoil craft with effective foil area, $A=0.7 \mathrm{~m}^{2}$ and mass, $m=1800 \mathrm{~kg}$. Foils have $c_{L}=1.6$ and $C_{D}=0.5$, Neglect induced drag.
Find: (a) Minimum speed to scepport craft on foils.
(b) Power required at this speed.
(c) Maximin speed if 110 kW is availabk.

Solution: Apply definitions of lift, drag coefficients and power.
Computing equations: $\quad C_{L}=\frac{F_{L}}{\frac{1}{2} \rho V^{2} A} ; C_{D}=\frac{F_{D}}{\frac{1}{2} \rho V^{2} A} ; \mathbb{P}=F_{D} V$
Assumptions: (1) Lift force equal gravity force.
(2) Neglect induced drag.

Then

$$
F_{L}=m g=C_{L} A \frac{1}{Z} \rho^{2} \quad \text { so } \quad V=\left[\frac{2 m g}{C_{L \rho} A}\right]^{1 / 2}
$$

Minimum speed is

$$
V_{\text {min }}=\left[\frac{2}{1.6} \times 1800 \mathrm{~kg}_{x} 9.81 \frac{\mathrm{~m}}{\mathrm{~s}^{2}} \times \frac{\mathrm{m}^{3}}{799 \mathrm{~kg}^{2}} \times \frac{1}{0.7 \mathrm{~m}^{2}}\right]=5.62 \mathrm{~m} / \mathrm{s} \quad(10.9 \mathrm{kt}) V_{\text {min }}
$$

The drag force at any speed is

$$
F_{D}=C_{D} A \frac{1}{2} \rho v^{2} \text { so } F_{D}=\frac{C_{D}}{C_{L}} F_{L}=\frac{C_{D}}{C_{L}} m g
$$

and

$$
P=F_{D} V=\frac{c_{D}}{C_{L}} m g V
$$

The minimum power is

$$
\begin{aligned}
& \mathbb{P}_{\text {min }}=\frac{C_{D}}{C_{L}} m g V_{\text {min }}=\frac{0.5}{1.6} \times 1800 \mathrm{~kg}_{\times} 9.81 \frac{\mathrm{~m}}{\frac{2}{2}} \times 5.62 \frac{\mathrm{~m}}{\mathrm{~S}} \times \frac{\mathrm{N.s}}{} \mathrm{~kg}^{2} \\
& \mathbb{P}_{\text {min }}=31.0 \times 10^{3} \frac{\mathrm{~N} \cdot \mathrm{~m}}{\mathrm{~s}} \times \frac{\mathrm{W} \cdot \mathrm{~s}}{\mathrm{~N} \cdot \mathrm{~m}}=31.0 \mathrm{~kW}
\end{aligned}
$$

As speed increases, the craft will ride higher in the water, decreasing the lifting area sued that $F_{L}=\mathrm{mg}$. Thus

$$
\mathbb{P}_{\max }=\frac{C_{D}}{C_{L}} \operatorname{mg} V_{\max } \quad \text { or } V_{\max }=\frac{C_{L}}{C_{D}} \frac{\mathbb{P}_{\max }}{m g}
$$

Assuming C_{D} / C_{C} remains constant,

Problem 9.158
9.158 A high school project involves building a model ultralight airplane. Some of the students propose making an airfoil from a sheet of plastic 1.5 m long by 2 m wide at an angle of attack of 12°. At this airfoil's aspect ratio and angle of attack the lift and drag coefficients are $C_{L}=0.72$ and $C_{D}=0.17$. If the airplane is designed to fly at $12 \mathrm{~m} / \mathrm{s}$, what is the maximum total payload? What will be the required power to maintain flight? Does this proposal seem feasible?

Given: Data on an airfoil

Find: Maximum payload; power required

Solution:

The given data or available data is	$\rho=1.23 \cdot \frac{\mathrm{~kg}}{\mathrm{~m}^{3}} \quad \mathrm{~L}=1.5 \cdot \mathrm{~m}$	$\mathrm{w}=2 \cdot \mathrm{~m}$
Then	$\mathrm{A}=\mathrm{w} \cdot \mathrm{L}$	$\mathrm{V}=12 \cdot \frac{\mathrm{~m}}{\mathrm{~s}} \quad \mathrm{C}_{\mathrm{L}}=0.72 \quad \mathrm{C}_{\mathrm{D}}=0.17$

where W is the model total weight and T is the thrust

The lift is given by	$\mathrm{F}_{\mathrm{L}}=\frac{1}{2} \cdot \rho \cdot \mathrm{~A} \cdot \mathrm{~V}^{2} \cdot \mathrm{C}_{L}$	$\mathrm{F}_{\mathrm{L}}=191 \mathrm{~N}$	$\mathrm{F}_{\mathrm{L}}=43 \cdot \mathrm{lbf}$
The payload is then given by		$\mathrm{W}=\mathrm{M} \cdot \mathrm{g}=\mathrm{F}_{\mathrm{L}}$	
or	$\mathrm{M}=\frac{\mathrm{F}_{\mathrm{L}}}{\mathrm{g}}$	$\mathrm{M}=19.5 \mathrm{~kg}$	$\mathrm{M}=43 \cdot \mathrm{lb}$
The drag is given by	$\mathrm{F}_{\mathrm{D}}=\frac{1}{2} \cdot \rho \cdot \mathrm{~A} \cdot \mathrm{~V}^{2} \cdot \mathrm{C}_{\mathrm{D}}$	$\mathrm{F}_{\mathrm{D}}=45.2 \mathrm{~N}$	$\mathrm{F}_{\mathrm{D}}=10.2 \cdot \mathrm{lbf}$
Engine thrust required	$\mathrm{T}=\mathrm{F}_{\mathrm{D}}$	$\mathrm{T}=45.2 \mathrm{~N}$	
The power required is	$\mathrm{P}=\mathrm{T} \cdot \mathrm{V}$	$\mathrm{P}=542 \mathrm{~W}$	$\mathrm{P}=0.727 \cdot \mathrm{hp}$

The model ultralight is just feasible: it is possible to find an engine that can produce about 1 hp that weighs less than about 45 lb

Given: USAF F-16 with $A_{P}=27.9 \mathrm{~m}^{2}$ and G_{L} max $=1.6$, at maximum gross mass of $M=1,600 \mathrm{~kg}$. Turn flown level with aircraft banked.

Find: (a) Minimum speed in standard air for $a_{t}=59$.
(b) Corresponding radius.
(c) Discuss effect of altituct.

Solution: Draw tree-body diagram of aircraft:
Computing equations:

$$
C_{L}=\frac{F_{L}}{\frac{1}{2} \rho^{2} A_{P}} \quad a_{r}=-\frac{V^{2}}{R}
$$

Assume: (1) Standard air, $p=1.23 \mathrm{~kg} / \mathrm{mm}^{3}$
(z) Pilot feels a_{t} along F_{l}

Then $F_{L}=m a_{t}=c_{L} A \frac{1}{2} \rho V^{2}$ or $V=\sqrt{\frac{2 m a_{t}}{C_{L} A \rho}}$ is minimum at c_{L} max .

$$
V_{\min }=\left[2 \times 11,600 \mathrm{~kg}_{\times}(5) 9.81 \frac{\mathrm{~m}}{5^{2}} \times \frac{1}{1.6} \times \frac{1}{27.9 \mathrm{~m}^{2}} \times \frac{\mathrm{m}^{3}}{1.23 \mathrm{~kg}^{\prime}}\right]^{1 / 2}
$$

$V_{\text {min }}=144 \mathrm{~m} / \mathrm{s}$. (minimum speed)
Need ar to find V. Sum forces vertically

$$
\begin{aligned}
\Sigma F_{3}= & F_{L} \sin (90-\beta)-m g=m a_{z}=0 \\
& \sin (90-\beta)=\cos \beta=\frac{m g}{F_{L}}=\frac{m g}{\operatorname{smg}}=\frac{1}{5} ; \beta=\cos ^{-1}\left(\frac{1}{5}\right)=78.5^{\circ}
\end{aligned}
$$

Sum forces radially:

$$
\begin{aligned}
& \Sigma F_{r}=-F_{L} \cos (90-\beta)=m a_{r}=m\left(-\frac{V^{2}}{R}\right) \\
& R=\frac{m v^{2}}{F_{L} \sin \beta}=\frac{m v^{2}}{5 m g \sin \beta}=\frac{v^{2}}{5 g \sin \beta} \\
&=\frac{1}{5} \times(144)^{2} \frac{m^{2}}{s^{2}} \times \frac{s^{2}}{9.81 m^{2}} \frac{1}{\sin 78.50} \\
& R=431 m
\end{aligned}
$$

As attitude increases, density decreases, and V is raised. This also increases R, $A+3=15 \mathrm{~km}, f / \rho_{0}=2,54$. Thus

$$
\frac{V}{V_{0}}=\sqrt{\frac{Q_{0}}{P}}=2.51 \quad \operatorname{ard} \frac{R}{R_{0}}=\frac{V^{2}}{V_{0}^{2}}=6.29
$$

9.160 A light airplane, with mass $M=1000 \mathrm{~kg}$, has a conven-tional-section (NACA 23015) wing of planform area $A=10 \mathrm{~m}^{2}$. Find the angle of attack of the wing for a cruising speed of $V=$ $63 \mathrm{~m} / \mathrm{s}$. What is the required power? Find the maximum instantaneous vertical "g force" experienced at cruising speed if the angle of attack is suddenly increased.

Given: Data on a light airplane
Find: Angle of attack of wing; power required; maximum "g" force

Solution:

The given data or available data is

$$
\begin{array}{lll}
\rho=1.23 \cdot \frac{\mathrm{~kg}}{\mathrm{~m}^{3}} & \mathrm{M}=1000 \cdot \mathrm{~kg} & \mathrm{~A}=10 \cdot \mathrm{~m}^{2} \\
\mathrm{~V}=63 \cdot \frac{\mathrm{~m}}{\mathrm{~s}} & \mathrm{C}_{\mathrm{L}}=0.72 & \mathrm{C}_{\mathrm{D}}=0.17 \\
\text { light are } & \mathrm{W}=\mathrm{M} \cdot \mathrm{~g}=\mathrm{F}_{\mathrm{L}} & \mathrm{~T}=\mathrm{F}_{\mathrm{D}}
\end{array}
$$

The governing equations for steady flight are
where W is the weight T is the engine thrust

The lift coeffcient is given by

$$
\mathrm{F}_{\mathrm{L}}=\frac{1}{2} \cdot \rho \cdot \mathrm{~A} \cdot \mathrm{~V}^{2} \cdot \mathrm{C}_{\mathrm{d}}
$$

Hence the required lift coefficient is

$$
\mathrm{C}_{\mathrm{L}}=\frac{\mathrm{M} \cdot \mathrm{~g}}{\frac{1}{2} \cdot \rho \cdot \mathrm{~A} \cdot \mathrm{~V}^{2}} \quad \mathrm{C}_{\mathrm{L}}=0.402
$$

From Fig 9.17, for at this lift coefficient

$$
\alpha=3 \cdot \operatorname{deg}
$$

and the drag coefficient at this angle of attack is

$$
C_{D}=0.0065
$$

(Note that this does NOT allow for aspect ratio effects on lift and drag!)
Hence the drag is
$F_{D}=\frac{1}{2} \cdot \rho \cdot \mathrm{~A} \cdot \mathrm{~V}^{2} \cdot \mathrm{C}_{\mathrm{D}}$
$\mathrm{F}_{\mathrm{D}}=159 \mathrm{~N}$
and

$$
\mathrm{T}=\mathrm{F}_{\mathrm{D}}
$$

$$
\mathrm{T}=159 \mathrm{~N}
$$

The power required is then
$\mathrm{P}=\mathrm{T} \cdot \mathrm{V}$
$\mathrm{P}=10 \mathrm{~kW}$

The maximum "g"'s occur when the angle of attack is suddenly increased to produce the maximum lift
From Fig. 9.17

$$
\begin{aligned}
& \mathrm{C}_{\mathrm{L} \cdot \max }=1.72 \\
& \mathrm{~F}_{\mathrm{L} \max }=\frac{1}{2} \cdot \rho \cdot \mathrm{~A} \cdot \mathrm{~V}^{2} \cdot \mathrm{C}_{\mathrm{L} \cdot \max } \quad \mathrm{~F}_{\mathrm{Lmax}}=42 \mathrm{kN}
\end{aligned}
$$

The maximum "g"s are given by application of Newton's second law

$$
\mathrm{M} \cdot \mathrm{a}_{\text {perp }}=\mathrm{F}_{\mathrm{Lmax}}
$$

where $a_{\text {perp }}$ is the acceleration perpendicular to the flight direction

Hence

$$
\mathrm{a}_{\text {perp }}=\frac{\mathrm{F}_{\text {Lmax }}}{\mathrm{M}} \quad \mathrm{a}_{\text {perp }}=42 \frac{\mathrm{~m}}{\mathrm{~s}}
$$

In terms of "g"s

$$
\frac{a_{\text {perp }}}{\mathrm{g}}=4.28
$$

Note that this result occurs when the airplane is banking at 90°, i.e, when the airplane is flying momentarily in a circular flight path in the horizontal plane. For a straight horizontal flight path Newton's second law is

$$
\mathrm{M} \cdot \mathrm{a}_{\text {perp }}=\mathrm{F}_{\mathrm{Lmax}}-\mathrm{M} \cdot \mathrm{~g}
$$

Hence

$$
\mathrm{a}_{\text {perp }}=\frac{\mathrm{F}_{\text {Lmax }}}{\mathrm{M}}-\mathrm{g} \quad \mathrm{a}_{\text {perp }}=32.2 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}
$$

In terms of "g"s

$$
\frac{a_{\text {perp }}}{g}=3.28
$$

Problem 9.161

9.161 The teacher of the students designing the airplane of Problem 9.158 is not happy with the idea of using a sheet of plastic for the airfoil. He asks the students to evaluate the expected maximum total payload, and required power to maintain flight, if the sheet of plastic is replaced with a conventional section (NACA 23015) airfoil with the same aspect ratio and angle of attack. What are the results of the analysis?

Given: Data on an airfoil
Find: Maximum payload; power required

Solution:

The given data or available data is $V=12 \cdot \frac{\mathrm{~m}}{\mathrm{~s}}$

$$
\rho=1.23 \cdot \frac{\mathrm{~kg}}{\mathrm{~m}^{3}}
$$

$\mathrm{c}=1.5 \cdot \mathrm{~m}$
$\mathrm{b}=2 \cdot \mathrm{~m}$

Then the area is

$$
\begin{array}{ll}
\mathrm{A}=\mathrm{b} \cdot \mathrm{c} & \mathrm{~A}=3 \mathrm{~m}^{2} \\
\mathrm{ar}=\frac{\mathrm{b}}{\mathrm{c}} & \text { ar }=1.33
\end{array}
$$

and the aspect ratio is

The governing equations for steady flight are

$$
\mathrm{W}=\mathrm{F}_{\mathrm{L}} \quad \text { and } \quad \mathrm{T}=\mathrm{F}_{\mathrm{D}}
$$

where W is the model total weight and T is the thrust
At a 12° angle of attack, from Fig. 9.17
$C_{L}=1.4$
$C_{D i}=0.012$
where C_{Di} is the section drag coefficient

The wing drag coefficient is given by Eq. 9.42
$C_{D}=C_{D i}+\frac{C_{L}{ }^{2}}{\pi \cdot a r}$
$C_{D}=0.48$

The lift is given by	$\mathrm{F}_{\mathrm{L}}=\frac{1}{2} \cdot \rho \cdot \mathrm{~A} \cdot \mathrm{~V}^{2} \cdot \mathrm{C}_{\mathrm{L}}$	$\mathrm{F}_{\mathrm{L}}=372 \mathrm{~N}$	$\mathrm{F}_{\mathrm{L}}=83.6 \mathrm{lbf}$
The payload is then given by		$\mathrm{W}=\mathrm{M} \cdot \mathrm{g}=\mathrm{F}_{\mathrm{L}}$	
or	$\mathrm{M}=\frac{\mathrm{F}_{\mathrm{L}}}{\mathrm{g}}$	$\mathrm{M}=37.9 \mathrm{~kg}$	$\mathrm{M}=83.6 \mathrm{lb}$
The drag is given by	$\mathrm{F}_{\mathrm{D}}=\frac{1}{2} \cdot \rho \cdot \mathrm{~A} \cdot \mathrm{~V}^{2} \cdot \mathrm{C}_{\mathrm{D}}$	$\mathrm{F}_{\mathrm{D}}=127.5 \mathrm{~N}$	$\mathrm{F}_{\mathrm{D}}=28.7 \mathrm{lbf}$
Engine thrust required	$\mathrm{T}=\mathrm{F}_{\mathrm{D}}$	$\mathrm{T}=127.5 \mathrm{~N}$	
The power required is	$\mathrm{P}=\mathrm{T} \cdot \mathrm{V}$	$\mathrm{P}=1.53 \mathrm{~kW}$	$\mathrm{P}=2.05 \mathrm{hp}$

NOTE: Strictly speaking we have TWO extremely stubby wings, so a recalculation of drag effects (lift is unaffected) gives

$$
\mathrm{b}=1 \cdot \mathrm{~m} \quad \mathrm{c}=1.5 \mathrm{~m}
$$

and
$\mathrm{A}=\mathrm{b} \cdot \mathrm{c}$
$A=1.5 \mathrm{~m}^{2}$
ar $=\frac{\mathrm{b}}{\mathrm{c}}$
$\mathrm{ar}=0.667$
so the wing drag coefficient is
$C_{D}=C_{D i}+\frac{C_{L}{ }^{2}}{\pi \cdot a r}$
$C_{D}=0.948$

The drag is

Engine thrust is

The power required is
$\mathrm{P}=\mathrm{T} \cdot \mathrm{V}$
$\mathrm{P}=3.02 \mathrm{~kW}$
$\mathrm{P}=4.05 \mathrm{hp}$

Given: Light plane with NACA 23015 airtil, $S=10 \mathrm{~m}, \mathrm{C}=1.8 \mathrm{~m}$, cruises at $V=225 \mathrm{~km} / \mathrm{hr}$ near sea level on a standard day.
Find: Determine cruise speed with NACA bbz-2i5 section airfoil.
Solution: Apply definitions of coefficients, use datatrom Fig. 9.19. Competing equations: $C_{D}=C_{D, \infty}+C_{D, i}=C_{D, \infty}+\frac{C_{L}{ }^{2}}{\pi a_{r}}$
From a free-body diagram $F_{L}=\omega, P=F_{D} V / M_{p}$
From Fig. 9.19, recognize airfiis should operate near design lIft coefficierits. Thus assume:

| $\frac{C_{L}}{\operatorname{section}} \frac{c_{0, \infty}}{23015}$ | 0.3 |
| :--- | :--- | :--- |
| $6 b_{2}-215$ | 0.0062 |
| 0.2 | 0.0031 |$\quad \operatorname{ar}=\frac{5}{c}=\frac{10 \mathrm{~m}}{1.8 \mathrm{~m}}=5.56$

Thus $c_{\text {Dote }} \approx 0.0062+\frac{(0.3)^{2}}{\pi(5.56}=0.0062+0.00515=0.0114$

$$
C_{\text {Drew }} \approx 0.0031+\frac{(0.2)^{2}}{\pi(5.56)}=0.0031+0.00229=0.00539
$$

Since for level flight,

$$
P=F_{D} V / \eta_{\rho}=\frac{C_{D} A \frac{1}{2} \rho V^{2} V}{\eta_{\rho}} \text {, then } V=\left[\frac{2 \eta_{P} P}{C_{D} A}\right]^{\frac{1}{3}}
$$

Assuming $n_{p} P$ remains constant, then $V_{n e w}=V_{o k}\left[\frac{C_{D, p d}}{C_{D_{1} n k}}\right]^{\frac{1}{3}}$

$$
V_{\text {now }} \approx 225 \frac{\mathrm{~cm}}{\mathrm{hr}}\left[\frac{0.0114}{0.00539}\right]^{\frac{1}{3}}=289 \mathrm{~km} / \mathrm{hr}
$$

Check assumption on C_{L} : since $F_{L}=W=C_{L} \dot{A} \frac{1}{2} P V^{2}$, then

$$
C_{\text {L new }} \approx C_{\text {Lond }}\left[\frac{V_{\text {old }}}{V_{\text {new }}}\right]^{2}=0.3\left[\frac{225}{289}\right]^{2}=0.182
$$

Therefore the above estimate for new onuise speed is probably conservative.

Given: Boeing 727 aircraft, with NACA 23012 section, $A_{p}=1600 \mathrm{f4}$,' and effective aspect ratios ar 26.5 . Arreraft fie's at $V=150 \mathrm{kt}$, with $\omega=175.000 \mathrm{ltf}$.

Find: Estimate thrust needed to maintain steady, level fight.
Solution: for steady, keel fight, thrust equals drag and I it equals weight.
Computing equations: $F_{L}=W=C_{L} \frac{1}{2} \rho V^{2} A$

$$
\begin{align*}
& F_{D}=T=C_{D} \frac{1}{2} \rho V^{2} A \tag{2}\\
& C_{D}=C_{D, \infty}+C_{D, i}=C_{D, 0}+\frac{C_{L}^{2}}{\pi a r}
\end{align*}
$$

Assumptions: (1) Standard air.
(2) Data from Fig. 9.23 apply

$$
\begin{aligned}
& V=150 \frac{n m}{n r} \times 6076 \frac{f t}{n m^{2}} \times \frac{h r}{3600 \mathrm{sec}}=253 \mathrm{~A} \mathrm{sec} \\
& q=\frac{1}{2} \rho v^{2}=\frac{1}{2} \times 0.00238 \frac{\mathrm{shg}}{\mathrm{~A}^{3}} \times(253)^{2} \frac{\mathrm{ft}^{2}}{5^{2}} \times \frac{b \mathrm{f} \cdot \mathrm{~s}^{2}}{s / \mathrm{mg} \cdot \mathrm{ft}^{2}}=76.2 \mathrm{lbt} / \mathrm{ft}^{\circ}
\end{aligned}
$$

From Fig. 9.23 , this corresponds to operation with a single slot open, and $C_{D, 0} \geqslant 0.04$. Thees

$$
C_{D}=C_{D, 0}+\frac{C^{2}}{\pi a r}=0.04+\frac{(1.44)^{2}}{\pi(6.5)}=0.142
$$

To find thrcest, note

$$
\frac{T}{F_{L}}=\frac{C_{D}}{C_{L}} \frac{q A}{g A}=\frac{C_{D}}{C_{L}}=\frac{0.142}{1.44}=0.0986
$$

Thus

$$
T=F_{2} \frac{C_{D}}{C_{6}}=W \frac{C}{C_{6}}=125,00016+\times 0.0986=17,300 \mathrm{Bt}
$$

Problem 9.164

9.164 Instead of a new laminar-flow airfoil, a redesign of the light airplane of Problem 9.162 is proposed in which the current conventional airfoil section is replaced with another conventional airfoil section of the same area, but with aspect ratio $A R=8$. Determine the cruising speed that could be achieved with this new airfoil for the same power.

Given: Data on an airfoil
Find: Maximum payload; power required

Solution:

The given data or available data is $\quad \mathrm{V}_{\text {old }}=225 \cdot \frac{\mathrm{~m}}{\mathrm{~s}} \quad \rho=1.23 \cdot \frac{\mathrm{~kg}}{\mathrm{~m}^{3}} \quad \mathrm{~A}=180 \cdot \mathrm{~m}^{2} \quad \operatorname{ar}_{\text {old }}=\frac{10}{1.8} \quad \operatorname{ar}_{\text {old }}=5.56$
Assuming the old airfoil operates at close to design lift, from Fig. 9.19
$\mathrm{C}_{\mathrm{L}}=0.3 \quad \mathrm{C}_{\mathrm{Di}}=0.0062$
(C_{Di} is the old airfoil's section drag coefficient)

Then

$$
\mathrm{C}_{\text {Dold }}=\mathrm{C}_{\mathrm{Di}}+\frac{\mathrm{C}_{\mathrm{L}}^{2}}{\pi \cdot \mathrm{ar}_{\text {old }}}
$$

$$
\mathrm{C}_{\text {Dold }}=0.0114
$$

The new wing aspect ratio is

$$
\mathrm{ar}_{\text {new }}=8
$$

Hence

$$
\mathrm{C}_{\text {Dnew }}=\mathrm{C}_{\text {Di }}+\frac{\mathrm{C}_{\mathrm{L}}^{2}}{\pi \cdot \mathrm{ar}_{\text {new }}} \quad \mathrm{C}_{\text {Dnew }}=0.00978
$$

The power required is

$$
P=T \cdot V=F_{D} \cdot V=\frac{1}{2} \cdot \rho \cdot A \cdot V^{2} \cdot C_{D} \cdot V
$$

If the old and new designs have the same available power, then

$$
\begin{aligned}
& \frac{1}{2} \cdot \rho \cdot \mathrm{~A} \cdot \mathrm{~V}_{\text {new }}{ }^{2} \cdot \mathrm{C}_{\text {Dnew }} \cdot \mathrm{V}_{\text {new }}=\frac{1}{2} \cdot \rho \cdot \mathrm{~A} \cdot \mathrm{~V}_{\text {old }}{ }^{2} \cdot \mathrm{C}_{\text {Dold }} \cdot \mathrm{V}_{\text {old }} \\
& \mathrm{V}_{\text {new }}=\mathrm{V}_{\text {old }} \sqrt[3]{\frac{\mathrm{C}_{\text {Dold }}}{\mathrm{C}_{\text {Dnew }}}} \quad \quad \mathrm{V}_{\text {new }}=236 \frac{\mathrm{~m}}{\mathrm{~s}}
\end{aligned}
$$

Problem 9.165

9.165 An airplane with mass of $10,000 \mathrm{lb}$ is flown at constant elevation and speed on a circular path at 150 mph . The flight circle has a radius of $3,250 \mathrm{ft}$. The plane has lifting area of $225 \mathrm{ft}^{2}$ and is fitted with NACA 23015 section airfoils with effective aspect ratio of 7. Estimate the drag on the aircraft and the power required.

Given: Aircraft in circular flight
Find: Drag and power

Solution:

Basic equations: $\quad \mathrm{C}_{\mathrm{D}}=\frac{\mathrm{F}_{\mathrm{D}}}{\frac{1}{2} \cdot \rho \cdot \mathrm{~A} \cdot \mathrm{~V}^{2}} \quad \mathrm{C}_{\mathrm{L}}=\frac{\mathrm{F}_{\mathrm{L}}}{\frac{1}{2} \cdot \rho \cdot \mathrm{~A} \cdot \mathrm{~V}^{2}} \quad \mathrm{P}=\mathrm{F}_{\mathrm{D}} \cdot \mathrm{V} \quad \mathrm{\Sigma} \cdot \overrightarrow{\mathrm{~F}}=\mathrm{M} \cdot \mathrm{a}$
The given data or available data are

$$
\begin{array}{lll}
\rho=0.002377 \cdot \frac{\text { slug }}{\mathrm{ft}^{3}} & \mathrm{R}=3250 \cdot \mathrm{ft} & \mathrm{M}=10000 \cdot \mathrm{lbm} \\
\mathrm{~V}=150 \cdot \mathrm{mph} & \mathrm{~V}=220 \cdot \frac{\mathrm{ft}}{\mathrm{~s}} & \mathrm{~A}=225 \cdot \mathrm{ft}^{2}
\end{array}
$$

Assuming the aircraft is flying banked at angle β, the vertical force balance is

$$
\begin{equation*}
\mathrm{F}_{\mathrm{L}} \cdot \cos (\beta)-\mathrm{M} \cdot \mathrm{~g}=0 \quad \text { or } \quad \frac{1}{2} \cdot \rho \cdot \mathrm{~A} \cdot \mathrm{~V}^{2} \cdot \mathrm{C}_{\mathrm{L}} \cdot \cos (\beta)=\mathrm{M} \cdot \mathrm{~g} \tag{1}
\end{equation*}
$$

The horizontal force balance is

$$
\begin{equation*}
-F_{L} \cdot \sin (\beta)=M \cdot a_{r}=-\frac{M \cdot V^{2}}{R} \quad \text { or } \quad \frac{1}{2} \cdot \rho \cdot A \cdot V^{2} \cdot C_{L} \cdot \sin (\beta)=\frac{M \cdot V^{2}}{R} \tag{2}
\end{equation*}
$$

Equations 1 and 2 enable the bank angle β to be found

$$
\tan (\beta)=\frac{\mathrm{V}^{2}}{\mathrm{R} \cdot \mathrm{~g}}
$$

$$
\beta=\operatorname{atan}\left(\frac{\mathrm{V}^{2}}{\mathrm{R} \cdot \mathrm{~g}}\right)
$$

$\beta=24.8 \cdot \operatorname{deg}$

Then from Eq $1 \quad \mathrm{~F}_{\mathrm{L}}=\frac{\mathrm{M} \cdot \mathrm{g}}{\cos (\beta)}$
$\mathrm{F}_{\mathrm{L}}=1.10 \times 10^{4} \cdot \mathrm{lbf}$
Hence

$$
\mathrm{C}_{\mathrm{L}}=\frac{\mathrm{F}_{\mathrm{L}}}{\frac{1}{2} \cdot \rho \cdot \mathrm{~A} \cdot \mathrm{~V}^{2}}
$$

$$
\mathrm{C}_{\mathrm{L}}=0.851
$$

For the section, $\mathrm{C}_{\mathrm{Dinf}}=0.0075$ at $\mathrm{C}_{\mathrm{L}}=0.851$ (from Fig. 9.19),

$$
C_{D}=C_{\operatorname{Dinf}}+\frac{C_{L}^{2}}{\pi \cdot a r} \quad C_{D}=0.040
$$

so
Hence

$$
\mathrm{F}_{\mathrm{D}}=\mathrm{F}_{\mathrm{L}} \cdot \frac{\mathrm{C}_{\mathrm{D}}}{\mathrm{C}_{\mathrm{L}}}
$$

$\mathrm{F}_{\mathrm{D}}=524 \cdot \mathrm{lbf}$
The power is

$$
P=F_{D} \cdot V
$$

$$
\mathrm{P}=1.15 \times 10^{5} \cdot \frac{\mathrm{ft} \cdot \mathrm{lbf}}{\mathrm{~s}} \quad \mathrm{P}=209 \cdot \mathrm{hp}
$$

9.166 Find the minimum and maximum speeds at which the airplane of Problem 9.165 can fly on a $3,250 \mathrm{ft}$ radius circular flight path, and estimate the drag on the aircraft and power required at these extremes.

Given: Aircraft in circular flight
Find: Maximum and minimum speeds; Drag and power at these extremes

Solution:

Basic equations:

$$
\mathrm{C}_{\mathrm{D}}=\frac{\mathrm{F}_{\mathrm{D}}}{\frac{1}{2} \cdot \rho \cdot \mathrm{~A} \cdot \mathrm{~V}^{2}} \quad \mathrm{C}_{\mathrm{L}}=\frac{\mathrm{F}_{\mathrm{L}}}{\frac{1}{2} \cdot \rho \cdot \mathrm{~A} \cdot \mathrm{~V}^{2}}
$$

$$
\mathrm{P}=\mathrm{F}_{\mathrm{D}} \cdot \mathrm{~V}
$$

$\stackrel{\rightharpoonup}{\vec{F}}=\overrightarrow{\mathrm{M} \cdot \mathrm{a}}$

The given data or available data are

$$
\begin{array}{lll}
\rho=0.002377 \cdot \frac{\text { slug }}{\mathrm{ft}^{3}} & \mathrm{R}=3250 \cdot \mathrm{ft} & \mathrm{M}=10000 \cdot \mathrm{lbm} \\
\mathrm{~A}=225 \cdot \mathrm{ft}^{2} & \text { ar }=7 & \mathrm{M}=311 \cdot \mathrm{slug} \\
&
\end{array}
$$

The minimum velocity will be when the wing is at its maximum lift condition. From Fig . 9. 17 or Fig. 9.19

$$
\mathrm{C}_{\mathrm{L}}=1.72 \quad \mathrm{C}_{\mathrm{Dinf}}=0.02
$$

where $C_{\text {Dinf }}$ is the section drag coefficient

The wing drag coefficient is then

$$
\mathrm{C}_{\mathrm{D}}=\mathrm{C}_{\operatorname{Dinf}}+\frac{\mathrm{C}_{\mathrm{L}}^{2}}{\pi \cdot \mathrm{ar}} \quad \mathrm{C}_{\mathrm{D}}=0.155
$$

Assuming the aircraft is flying banked at angle β, the vertical force balance is

$$
\begin{equation*}
\mathrm{F}_{\mathrm{L}} \cdot \cos (\beta)-\mathrm{M} \cdot \mathrm{~g}=0 \quad \text { or } \quad \frac{1}{2} \cdot \rho \cdot \mathrm{~A} \cdot \mathrm{~V}^{2} \cdot \mathrm{C}_{\mathrm{L}} \cdot \cos (\beta)=\mathrm{M} \cdot \mathrm{~g} \tag{1}
\end{equation*}
$$

The horizontal force balance is

$$
\begin{equation*}
-F_{L} \cdot \sin (\beta)=M \cdot a_{r}=-\frac{M \cdot V^{2}}{R} \quad \text { or } \quad \frac{1}{2} \cdot \rho \cdot A \cdot V^{2} \cdot C_{L} \cdot \sin (\beta)=\frac{M \cdot V^{2}}{R} \tag{2}
\end{equation*}
$$

Equations 1 and 2 enable the bank angle β and the velocity V to be determined
or

$$
\begin{array}{ll}
\sin (\beta)^{2}+\cos (\beta)^{2}=\left(\frac{\frac{M \cdot V^{2}}{R}}{\frac{1}{2} \cdot \rho \cdot A \cdot V^{2} \cdot C_{L}}\right)^{2}+\left(\frac{M \cdot g}{\frac{1}{2} \cdot \rho \cdot \mathrm{~A} \cdot \mathrm{~V}^{2} \cdot \mathrm{C}_{\mathrm{L}}}\right)^{2}=1 \\
\frac{\mathrm{M}^{2} \cdot \mathrm{~V}^{4}}{R^{2}}+\mathrm{M}^{2} \cdot \mathrm{~g}^{2}=\frac{\rho^{2} \cdot \mathrm{~A}^{2} \cdot \mathrm{~V}^{4} \cdot \mathrm{C}_{\mathrm{L}}^{2}}{4} & \mathrm{~V}=149 \frac{\mathrm{ft}}{\mathrm{~s}} \\
\mathrm{~V}=\sqrt[4]{\frac{\mathrm{M}^{2} \cdot \mathrm{~g}^{2}}{\rho^{2} \cdot \mathrm{~A}^{2} \cdot \mathrm{C}_{\mathrm{L}}^{2}}} \frac{\mathrm{M}^{2}}{4} & \mathrm{R}=102 \mathrm{mph} \\
\sqrt{2} & \beta=\operatorname{atan}\left(\frac{\mathrm{V}^{2}}{\mathrm{R} \cdot \mathrm{~g}}\right)
\end{array}
$$

The drag is then $\quad \mathrm{F}_{\mathrm{D}}=\frac{1}{2} \cdot \rho \cdot \mathrm{~A} \cdot \mathrm{~V}^{2} \cdot \mathrm{C}_{\mathrm{D}} \quad \mathrm{F}_{\mathrm{D}}=918 \mathrm{lbf}$
The power required to overcome drag is $\quad \mathrm{P}=\mathrm{F}_{\mathrm{D}} \cdot \mathrm{V} \quad \mathrm{P}=1.37 \times 10 \frac{5 \mathrm{ft} \cdot \mathrm{lbf}}{\mathrm{s}} \quad \mathrm{P}=249 \mathrm{hp}$
The analysis is repeated for the maximum speed case, when the lift/drag coefficient is at its minimum value. From Fig. 9.19, reasonable values are

$$
\mathrm{C}_{\mathrm{L}}=0.3 \quad \mathrm{C}_{\text {Dinf }}=\frac{\mathrm{C}_{\mathrm{L}}}{47.6} \quad \text { corresponding to } \alpha=2^{\circ} \text { (Fig. 9.17) }
$$

The wing drag coefficient is then
$C_{D}=C_{\operatorname{Dinf}}+\frac{C_{L}{ }^{2}}{\pi \cdot a r}$
$C_{D}=0.0104$

From Eqs. 1 and 2

$$
V=\sqrt[4]{\frac{M^{2} \cdot g^{2}}{\frac{\rho^{2} \cdot A^{2} \cdot C_{L}^{2}}{4}-\frac{M^{2}}{R^{2}}}} \quad V=(309.9+309.9 i) \frac{\mathrm{ft}}{\mathrm{~s}}
$$

Obviously unrealistic (lift is just too low, and angle of attack is too low to generate sufficient lift)

We try instead a larger, more reasonable, angle of attack

$$
C_{L}=0.55
$$

$C_{\text {Dinf }}=0.0065$
corresponding to $\alpha=4^{0}$ (Fig. 9.17)

The wing drag coefficient is then

$$
C_{D}=C_{D i n f}+\frac{C_{L}^{2}}{\pi \cdot a r} \quad C_{D}=0.0203
$$

From Eqs. 1 and 2

$$
\begin{array}{lll}
V=\sqrt[4]{\frac{M^{2} \cdot g^{2}}{\frac{\rho^{2} \cdot A^{2} \cdot C_{L}^{2}}{4}-\frac{M^{2}}{R^{2}}}} & V=91.2 \frac{m}{s} & V=204 \mathrm{mph} \\
\tan (\beta)=\frac{V^{2}}{R \cdot g} & \beta=\operatorname{atan}\left(\frac{\mathrm{V}^{2}}{\mathrm{R} \cdot \mathrm{~g}}\right) & \beta=40.6 \mathrm{deg}
\end{array}
$$

The drag is then

$$
\mathrm{F}_{\mathrm{D}}=\frac{1}{2} \cdot \rho \cdot \mathrm{~A} \cdot \mathrm{~V}^{2} \cdot \mathrm{C}_{\mathrm{D}} \quad \mathrm{~F}_{\mathrm{D}}=485 \mathrm{lbf}
$$

The power required to overcome drag is

$$
\mathrm{P}=\mathrm{F}_{\mathrm{D}} \cdot \mathrm{~V} \quad \mathrm{P}=1.45 \times 10^{5} \frac{\mathrm{ft} \cdot \mathrm{lbf}}{\mathrm{~s}}
$$

$$
P=264 h p
$$

Given: Unpowered fight with lift, drag, and weight in equilibrium.
Find: (a) Show glide shape angle is $\tan \theta=C_{D} / C_{L}$
(6) Evaluate minimum gide slope angle for Boeing 727-200 of Example Problem 4.8.
(c) Gide distance from altitude of 10 km on a standard day.

Solution: Consider tree-bodydiagram:
Sum forces $a \operatorname{long}(x)$ and normal to (y) flight path:

$$
\left.\begin{array}{ll}
\Sigma F_{X}=-F_{D}+m g \sin \theta=0 \\
\Sigma F_{G}=F_{L}-m g \cos \theta=0
\end{array} \quad m g \sin \theta=F_{D}, ~ m g \cos \theta=F_{L}\right\} \tan \theta=\frac{F_{D}}{F_{L}}=\frac{C_{D}}{C_{L}}
$$

Use relationships from section 9-8:
Computing equation: $C_{D}=C_{D, 0}+\frac{C_{L}^{2}}{\pi a r}=C_{D, 0}+C_{D, C}$
Thus $\frac{C_{D}}{C_{L}}=\frac{C_{D: O}}{C_{L}}+\frac{C_{L}}{\pi C^{\prime}}$

To minimize, set $d\left(C_{D} / C_{L}\right) / d c_{L}=0$

$$
\frac{d}{d C_{L}}\left(\frac{C_{D}}{C_{L}}\right)=(-1) \frac{C_{D_{L} 0}}{C_{L}{ }^{2}}+\frac{1}{\pi a r}=0 \quad \text { when } C_{D, 0}=\frac{C_{L}^{2}}{\pi a r}=C_{D, i}
$$

From Example Problem 9.8, $C_{D, 0}=0.0182$ and ar $=6.5$. Thus optimum is

$$
c_{L}=\left(\pi a r c_{D, 0}\right)^{1 / 2}=[\pi(6.5) 0.0182]^{1 / 2}=0.610
$$

and from Eq.1,

$$
\frac{C_{D}}{C_{L}}=\frac{0.0182}{0.61}+\frac{0.61}{\pi(6.5)}=0.0597=\tan \theta ; \theta=\tan ^{-1}(0.0597)=3.42^{\circ}
$$

Note θ is independent of atmospheric conditions. Thus $\theta=$ constant

$$
\frac{z_{0}}{L}=\tan \theta ; L=\frac{30}{\tan \theta}=\frac{10 \mathrm{~km}}{0.0597}=168 \mathrm{~km}
$$

Given: Chaparral $2 F$ with rear-mounted airfoil having span, $5=6, t$, and chord, $c=1 \mathrm{ft}$. Lift and drag coefficients same as conventional section in Fig. 9.77. Consider $V=120$ mph (cam days), $\alpha=-12^{\circ}(d o w n)$.

Find: (a)Maximum downward force.
(b) Maximum increase in deceleration force.

Solution: Apply definitions of C_{L} and C_{D}.
Computing equations: $\quad C_{L}=\frac{F_{L}}{\frac{1}{2} V^{2} A} \quad C_{D}=\frac{F_{D}}{\frac{1}{2} \rho^{2} A}=C_{D, \infty}+\frac{C_{L}^{2}}{\pi a r} \quad$ ar $\frac{5}{C}$
From Fig. 9.17, at $\alpha=12^{\circ}, C_{L}=1.4$ and $C_{D, w}=0.013$. Thus, since $\alpha=-12$;

$$
\begin{aligned}
F_{L} & =-C_{L} A \frac{1}{2} p V^{2} \quad A=S C=6 f^{2} \\
& =-1.4 \times 6 f t^{2} \times \frac{1}{2} \times 0.00238 \frac{51 / g}{A 3} \times\left(120 \frac{\mathrm{mi}}{\mathrm{hr}} \times 5280 \frac{\mathrm{ft}}{\mathrm{mi}} \times 3600 \cdot \frac{\mathrm{rr}}{36}\right)^{2} \frac{16 \mathrm{f} \cdot \mathrm{~s}^{2}}{5 / 1 \mathrm{f} \cdot \mathrm{ft}} \\
F_{L} & =-310 \mathrm{lbf} \text { (downward force) }
\end{aligned}
$$

Then $F_{D}=F_{L} \frac{c_{D}}{c_{L}}=\frac{0.013+\frac{(1.4)^{2}}{\pi(6)}}{1.4} \times 31016 t=25.916 f$
Braking thrust increases as drag increases and as normal force increases tire adhesion (friction). Thus

$$
\Delta F_{B}=\mu c_{k} F_{L}+F_{D}
$$

For $\mu_{k}=1.0$ (prob b/y conservative for racing tires),

$$
\Delta F_{B}=1.0 \times 31016 f+25.916 t=33616 f
$$

Problem 9.169

9.169 Some cars come with a "spoiler," a wing section mounted on the rear of the vehicle that salespeople sometimes claim significantly increases traction of the tires at highway speeds. Investigate the validity of this claim. Are these devices really just cosmetic?

Given: Car spoiler
Find: Whether they are effective

Solution:

To perform the investigation, consider some typical data
For the spoiler, assume
$\mathrm{b}=4 \cdot \mathrm{ft}$
$c=6 \cdot$ in
$\rho=1.23 \cdot \frac{\mathrm{~kg}}{\mathrm{~m}^{3}}$
$\mathrm{A}=\mathrm{b} \cdot \mathrm{c}$
$A=2 \mathrm{ft}^{2}$

From Fig. 9.17 a reasonable lift coefficient for a conventional airfoil section is
$C_{L}=1.4$
Assume the car speed is

$$
\mathrm{V}=55 \cdot \mathrm{mph}
$$

Hence the "negative lift" is

$$
\mathrm{F}_{\mathrm{L}}=\frac{1}{2} \cdot \rho \cdot \mathrm{~A} \cdot \mathrm{~V}^{2} \cdot \mathrm{C}_{\mathrm{L}}
$$

$$
\mathrm{F}_{\mathrm{L}}=21.7 \mathrm{lbf}
$$

This is a relatively minor negative lift force (about four bags of sugar); it is not likely to produce a noticeable difference in car traction

The picture gets worse at $30 \mathrm{mph}: \quad \mathrm{F}_{\mathrm{L}}=6.5 \mathrm{lbf}$

For a race car, such as that shown on the cover of the text, typical data might be

$$
\mathrm{b}=5 \cdot \mathrm{ft} \quad \mathrm{c}=18 \cdot \mathrm{in} \quad \mathrm{~A}=\mathrm{b} \cdot \mathrm{c} \quad \mathrm{~A}=7.5 \mathrm{ft}^{2} \quad \mathrm{~V}=200 \cdot \mathrm{mph}
$$

In this case:

$$
\mathrm{F}_{\mathrm{L}}=1078 \mathrm{lbf}
$$

Hence, for a race car, a spoiler can generate very significant negative lift!

Given: Man-powered aircraft, the Gossamer Condor:

$$
W / A=0.4 \mathrm{lbf} / \mathrm{ft}^{2} \quad W=200 \mathrm{lbf} \quad \text { ar }=17 \quad F_{D}=616 \mathrm{f} \text { at } 12 \mathrm{mph}
$$ Pilot could sustain 0.39 hp for $z \mathrm{hr}$.

Find: (a) Minimum power to fly aircraft.
(6) Compare to pilot output capability.

Solution: Apply relationships from section 9-8:
Computing equations:

$$
\begin{array}{ll}
W=F_{L}=C_{L} A \frac{1}{2} \rho V^{2} \quad \rho=V F_{D} \\
T=F_{D}=C_{D} A \frac{1}{2} \rho V^{2} ; & C_{D}=C_{D, 0}+\frac{C_{L}^{2}}{\pi a r}
\end{array}
$$

The task is to find V to minimize p :

$$
\begin{equation*}
P=V F_{D}=V\left(C_{D} A \frac{1}{2} \rho V^{2}\right)=\left(C_{D, O}+\frac{C_{L}^{2}}{\pi a r}\right) A \frac{1}{2} \rho V^{3} \tag{i}
\end{equation*}
$$

But C_{L} varies with aircraft speed:

$$
F_{L}=W=C_{L} A \frac{1}{Z} \rho V^{2} ; \quad C_{C}=\frac{2 W}{\rho V^{2} A} ; \quad C_{L}^{2}=\left(\frac{2 W}{\rho A}\right)^{2} \frac{L}{V^{4}}
$$

Substituting into Eq.1,

$$
P=\left[C_{0,0}+\frac{1}{\pi a r}\left(\frac{Z W}{f_{A}}\right)^{2} \frac{1}{V^{*}}\right] A \frac{1}{2} \rho V^{3}
$$

To minimize power, set $d P / d v=0$. Then

$$
\frac{d P}{d N}=C_{0,0} A \frac{1}{z} \rho v^{2}(3)+(-1) \frac{1}{\pi a r}\left(\frac{2 w}{f A}\right)^{2} \frac{1}{v^{2}} A \frac{1}{2} \rho=0
$$

Thus at minimum power,

$$
3 c_{D, 0}=\frac{1}{\operatorname{\pi ar}}\left(\frac{2 w}{\rho A}\right)^{2} \frac{1}{v^{4}}=\frac{c_{L}^{2}}{\pi a r}=c_{D, i} \text { or } c_{D, i}=3 C_{D, 0}
$$

From given data, at $12 \mathrm{mph}(17.6 \mathrm{ft} / \mathrm{s})$:

$$
\begin{aligned}
& \frac{1}{2} \rho v^{2}=\frac{1}{2} \times 0.00238 \frac{5 / \mathrm{Leg}}{f+3} \times(17.6)^{2} \frac{f^{2}}{\mathrm{f}^{2}} \times \frac{10 \mathrm{f} \cdot \mathrm{~s}^{2}}{\mathrm{~s} / \mathrm{Lug} \cdot \mathrm{ft}}=0.36916 \mathrm{f} / \mathrm{ft}^{2} \\
& C_{L}=\frac{F_{L}}{\frac{1}{2} f^{2} A}=\frac{W / A}{\frac{T}{2} V^{2}}=0.4 \frac{10 f}{4 t^{2}} \times \frac{f t^{2}}{0.36916 f}=1.08 ; A=\frac{W}{W / A}=20016 f \times \frac{f f^{2}}{0.41 b f}=500 \mathrm{ft}^{2} \\
& C_{D}=\frac{F_{D}}{\frac{1}{2} \rho V^{2} A}=6 \mathrm{lbf} \times \frac{f^{2}}{0.369 \mathrm{Hff}^{2}} \times \frac{1}{500 \mathrm{~A}^{2}}=0.0325 \\
& C_{D, 0}=C_{D}-C_{0, i}=C_{D}-\frac{C_{L}^{2}}{\pi C_{1}}=0.0525-\frac{(1.08)^{2}}{\pi(17)}=0.0107 \quad\left(C_{D, 0}=\text { constant }\right)
\end{aligned}
$$

At flight speed for minimum power, $C_{0, i}=3 C_{D, 0}$

Thus at minimuen power

$$
C_{D i}=\frac{c_{L}^{2}}{\pi a r}=3 c_{0,0}=3(0.0107)=0.0321
$$

so

$$
c_{L}=(0.0321 \pi a r)^{1 / 2}=1.31 \text { (minimum power) }
$$

since

$$
F_{L}=W=C_{L A} \frac{1}{2} \varphi V^{2}
$$

then

$$
V=\sqrt{\frac{2 W}{c_{L} \rho A}} \quad \text { and } \quad \frac{V_{\min }}{V}=\sqrt{\frac{c_{L}}{c_{L \min }}}
$$

Thus at minimum power

$$
V_{\text {min }}=12 \mathrm{mph} \sqrt{\frac{1.08}{1.3}}=10.9 \mathrm{mph}(16.0 \mathrm{ft} / \mathrm{s}) \text { (minimum power) }
$$

The power requirement would be

$$
\begin{aligned}
& P_{\text {pilot }}=\frac{P_{\text {flight }}}{\eta_{\text {drive } \eta_{\text {prop }}}} \\
& P_{\text {flight }}=V F_{D}=V C_{D} A \frac{1}{2} \rho V^{2}=\left(C_{D, O}+3 C_{D, O}\right) A \frac{L}{2} \rho V^{3}=2 C_{D, 0} A P V^{3} \\
& =2(0.0107) 500 \mathrm{f}^{2} \times 0.00738 \frac{\mathrm{~s} / \mathrm{Leg}^{2}}{\mathrm{f}^{3}}(16.0)^{3} \frac{\mathrm{ft}^{3}}{\mathrm{~s}^{3}} \times \frac{16 \mathrm{f} \mathrm{~s}^{2}}{\operatorname{slng} \cdot \mathrm{ft}} \times \frac{h \mathrm{~h} \cdot \mathrm{~s}}{550 \mathrm{ft} \cdot 16 \mathrm{f}}
\end{aligned}
$$

$P_{\text {fight }}=0.190$ ho (power for flight)
If $\eta_{\text {drive }}=0.9$ and $\eta_{p \text { pop }}=0.7$,

$$
P_{\text {pilot }} \approx \frac{0.190}{(0.9)(0.7)}=0.302 \text { hp } \text { (minimum power) }
$$

Thees Pitt < 0.39 hp!

Open-Ended Problem Statement: How does a Frisbee ${ }^{\text {TM }}$ fly? What causes it to curve left or right? What is the effect of spin on its flight?

Discussion: When viewed from the side, the Frisbee shape has a rounded upper surface and a flat bottom surface. Such a shape is capable of generating lift as it travels through air.
When a Frisbee is not spinning, the lift vector probably acts slightly forward of the maximum thickness on the profile. When spinning, the motion of the surface likely affects the development and separation of the boundary layers. This may displace the center of lift slightly to the right or left of center, depending on the direction of spin.
A Frisbee is not stable when thrown without spin: it will tend to tumble as it moves through the air. Spin is used to stabilize the motion (just as a spinning gyroscope tends to remain upright). The combination of spin and the off-center lift vector cause the Frisbee to precess as a gyroscope. Therefore its spin axis can change from vertical while in flight, causing the flight path to curve right or left.

The Frisbee also can be thrown intentionally to curve right or left. This is done by inclining the spin axis so that it is not vertical at launch. When the spin axis is inclined to the left (as seen by the thrower), the Frisbee drifts to the left along a more-or-less constant radius path. Inclining the spin axis to the right causes the opposite effect.

Open-Ended Problem Statement: Roadside signs tend to oscillate in a twisting motion when a strong wind blows. Discuss the phenomena that must occur to cause this behavior.
Discussion: Many roadside signs are mounted on a single post formed from stamped steel. The post has an open "C" cross-section, which provides little torsional rigidity. Wind gusts can excite oscillations in a sign, which acts as a flat plate at an angle of attack relative to the oncoming wind. When at an angle of attack, a plate develops both a lift force and a moment that tends to twist the sign farther from its equilibrium position. While the sign twists, the post provides a resisting torque as a result of being twisted from its equilibrium position.
As the sign twists, the angle of attack relative to the oncoming air increases. An overshoot phenomenon called dynamic stall allows the flow to remain attached and the angle of attack to grow larger before stall occurs than if the change in angle of attack had been slow and gradual. Once stall occurs, the lift force and moment decrease, and the motion is no longer forced. Then the sign tends to return to its undisturbed position.

The moment of inertia of the sign causes it to overshoot the equilibrium position. The sign continues beyond equilibrium and develops a lift force and a moment tending to move it farther past equilibrium. The process repeats, with growing amplitude, until a more-or-less steady-state oscillation is reached.

The sign and post form a spring-mass-damper mechanical system. The sign is the mass, the post is the spring, and hysteresis and aerodynamic resistance to oscillation provide the damping. The "steady" oscillation occurs near the natural frequency of the system.
At steady state, the rate at which energy is added to the sign by the gusting wind exactly balances the rate at which energy is dissipated by hysteresis in the sign motion and its supporting post. The oscillations can continue almost indefinitely, and with considerable amplitude, as can be observed on a windy day. In some cases the oscillations lead to fatigue failure of the sign post.

Open-Ended Problem Statement: An automobile travels down the road with a bicycle attached to a carrier across the rear of the trunk. The bicycle wheels rotate slowly. Explain why and in what direction the rotation occurs.

Discussion: All objects moving in ground effect generate lift (the air flows over the top faster than over the bottom because of the shape of the automobile). Any object that produces lift carries with it a bound vortex that creates circulation about the profile that accompanies lift.

The bound vortex creates two trailing vortices, one on each side of the car, which rotate in opposite directions as they follow in the wake of the automobile. When viewed from the rear of the auto, the left side trailing vortex rotates clockwise and the right side trailing vortex rotates counterclockwise.

The swirl in the trailing vortex motion is responsible for the motion of the bicycle wheels (check it out on your next auto trip during the summer months!). The swirl causes shear stresses that tend to rotate the bicycle wheels in the same senses as the trailing vortices. Again viewing from the rear of the auto, the left wheel rotates clockwise and the right wheel counterclockwise. (Sometimes the rear wheel of the bicycle cannot freewheel. In this case only the front wheel turns slowly as the car drives down the road.)

Given: Air moving over aktomobik, as shown in Fig. 9.25 .
Find: (a) Estimate presscere reduction in car when a window is "cracked" whit traveling at $4=100 \mathrm{~km} / \mathrm{hr}$.
(b) Air speed in freestream near window opening.

Solution: Apply the Bernoulli equation and pressure coefficient definition.
Basic equations: $\quad \frac{p_{\infty}}{\rho}+\frac{v_{0}^{2}}{2}+g p_{0}=\frac{t}{p}+\frac{v^{2}}{2}+g \xi \quad C_{p}=\frac{p-p_{\infty}}{\frac{1}{2} p v_{\infty}^{2}}$
Assumptions: (1) Steady flow seen from auto
(2) Incompressible flow

$\simeq V_{\infty}$
(3) No friction
(4) Flow a long a stream line
(5) Neglect changes in elevation

From Fig 9.25, cp near driven's window ranges between -1.23 and -0.40 .
$A+V_{0}=100 \mathrm{~km} / \mathrm{hr}_{3}$

$$
g=\frac{1}{2} e^{2}=\frac{1}{2} \times 1.25 \frac{\mathrm{~kg}}{\mathrm{~m}^{3}} \times\left[100 \frac{\mathrm{~km}}{\mathrm{hr}} \times 1000 \frac{\mathrm{~m}}{\mathrm{~km}} \times \frac{\mathrm{hr}}{3600 \mathrm{~s}}\right] \frac{\mathrm{N} \cdot \mathrm{~s}^{2}}{\mathrm{~kg} \cdot \mathrm{~m}}=475 \mathrm{~N} / \mathrm{m}^{2}
$$

Thus the pressures outside may be between

$$
p-p_{\infty}=C_{\rho} \frac{1}{2} \rho v_{\infty}^{2}=-1.23 \times 475 \frac{\mathrm{~N}}{\mathrm{~m}^{2}}=-584 \mathrm{~N} / \mathrm{m}^{2}(\mathrm{gag} c)
$$

and $p-p_{\infty}=-0.40 \times 475 \frac{\mathrm{~N}}{\mathrm{~m}^{2}}=-190 \mathrm{~N} / \mathrm{m}^{2}$ (gage)
From the Bernoulli equation,

$$
\frac{V^{4}}{2}=\frac{V_{\infty}^{2}}{2}+\frac{p_{\infty}-p}{\rho}=\frac{V_{\infty}^{2}}{2}\left(1-\frac{p^{1}-p_{\infty}}{\frac{1}{2} \rho V_{\infty}^{2}}\right)=\frac{V_{\infty}^{2}}{2}\left(1-c_{\rho}\right)
$$

Thus

$$
V=V_{\infty} \sqrt{1-C_{0}}
$$

The local flow speeds mange from

$$
\begin{aligned}
& V=V_{\infty} \sqrt{1-(-1.23)}=100 \frac{\mathrm{~km}}{\mathrm{hr}} \sqrt{2.23}=149 \mathrm{~km} / \mathrm{hr}(41.5 \mathrm{~m} / \mathrm{s}) \\
& V=V_{\infty} \sqrt{1-(-0.40)}=100 \frac{\mathrm{~km}}{\mathrm{hr}} \sqrt{1.40}=118 \mathrm{~km} / \mathrm{h} \quad(32.9 \mathrm{~m} / \mathrm{s})
\end{aligned}
$$

Thus local flow speeds are significantly higher than vow.

Given: Classroom demonstration of lift on spiminig cylinder

$$
\begin{aligned}
& L=10 \mathrm{in}, D=2 \mathrm{in} . \\
& \omega=300 \mathrm{rPm}
\end{aligned}
$$

x

$$
\bigotimes_{\omega}^{\infty}-v=4 \# / s
$$

Find: Estimate lift force acting on cylinder.
Solution: Apply definition of lift coefficient, data from Fig. 9.29.
Computing equation: $F_{L}=C_{0} A \frac{1}{2} P V^{2}$
From Fig. 9.29, $C_{L}=C_{L}(\omega D / 2 V)$

$$
\begin{aligned}
& \omega=300 \frac{\mathrm{rev}}{\mathrm{~min}} \times 2 \pi \frac{\mathrm{rad}}{\mathrm{rev}} \times \frac{\mathrm{min}}{60 \mathrm{~s}}=31.4 \mathrm{rad} / \mathrm{s} \\
& \frac{\omega D}{Z V}=\frac{1}{2} \times 31.4 \frac{\mathrm{rad}}{\mathrm{~s}} \times 2 \mathrm{in} \cdot \frac{\mathrm{~s}}{4 \mathrm{f}} \times \frac{\mathrm{ft}}{12 \mathrm{in}}=0.654
\end{aligned}
$$

There is a data band in Fig. 9.29. The highest value is $c_{l} \approx 1.1$

$$
A=D L=2 \operatorname{in} \times 10 \operatorname{in} \times \frac{f^{2}}{1441^{2}}=0.139 \mathrm{f}^{2}
$$

For standard atmosphere conditions

$$
F_{C}=1.1 \times 0.139 f_{x}^{*} \frac{1}{2} \times 0.00238 \frac{5 \operatorname{lng}}{f+3} \times(4)^{2} \frac{f+t}{s^{2}} \times \frac{16 f \cdot s^{2}}{s / \log \cdot f t}=0.0029116 f
$$

\{This is quite a small force, but the speed is low.\}

Given: Golf ball. with mass, $m=489$, and diameter, $D=43 \mathrm{~mm}$, is hit from a sand trap with speed, $v=20 \mathrm{~m} / \mathrm{sec}$ and backspin; $\omega=$ 2000 rpm .

Find: (a) Lift and drag forces acting on ball.
(b) Express as fractions of mg .

Solution: Use data from fig. 9.28 for lift and drag coefficients.
Computing equations: $F_{L}=C_{L} A \frac{1}{2} \rho v^{2} \quad F_{D}=C_{D A} \frac{L}{2} \rho V^{2}$
At $V=20 \mathrm{~m} / \mathrm{sec}$, then $g=\frac{1}{2} \varphi V^{2}=\frac{1}{2} \times 1.23 \frac{\mathrm{~kg}}{\mathrm{~m}^{*}}(20)^{2} \frac{\mathrm{~m}^{2}}{3^{2}} \times \frac{N \cdot s^{2}}{\mathrm{~kg} \cdot \mathrm{~m}}=246 \mathrm{~N} / \mathrm{m}^{2}$
From Fig. $9.28, C_{L}=C_{L}\left(R, \frac{\omega D}{2 V}\right)$

$$
\begin{aligned}
& R e=\frac{V D}{\nu}=20 \frac{m}{5} \times 0.043 \mathrm{~m} \times \frac{\mathrm{s}}{1.45 \times 10^{-5} \mathrm{~m}^{2}}=5.93 \times 10^{4} \text { (assume hose to } 1.26 \times 10^{5} \text {) } \\
& \frac{C D}{Z V}=\frac{1}{2} \times 2000 \frac{\mathrm{rv}}{\mathrm{~mm}} 0.043 \mathrm{~m} * \frac{5}{20 \mathrm{~m}} \times 2 \pi \frac{\mathrm{rad}}{\mathrm{rev}} \times \frac{\mathrm{min}}{60 \mathrm{~s}}=0.225
\end{aligned}
$$

Then $C_{L} \simeq 0.23$ and $F_{L}=C_{L} A \frac{1}{2} \rho V^{2}=C_{L} A g$

$$
F_{L}=0.23 \times \frac{\pi(0.043)^{2} m^{2}}{4} 246 \frac{\mathrm{~N}}{\mathrm{~m}^{2}}=0.0822 \mathrm{~N}
$$

From Fig. $9.28 \quad C_{0}=0.31$, so

$$
F_{O}=\frac{c_{0}}{C_{L}} F_{L}=\frac{0.31}{0.23} \times 0.0822 \mathrm{~N}=0.111 \mathrm{~N}
$$

For the ball, $m g=0.048 \mathrm{~kg} \times 9.81 \frac{\mathrm{~m}}{\mathrm{sec}^{2} \times \frac{\mathrm{N} \cdot \mathrm{sec}^{4}}{\mathrm{~kg} \cdot \mathrm{~m}}=0.471 \mathrm{~N}, ~}$
Thus $\quad \frac{F_{L}}{m g}=\frac{0.0822 \mathrm{~N}}{0.471 \mathrm{~N}}=0.175$

$$
\frac{F_{D}}{m g}=\frac{0.111 N}{0.471 \mathrm{~N}}=0.236
$$

Given: Rotating cylinders for ship propulsion.
$D=3 \mathrm{~m}, H=15 \mathrm{~m}, N \leqslant 750 \mathrm{rpm}$
Find: (a) cakulate maximiem lift and drag forces on each cyl hinder a+ $v=50 \mathrm{~km} / \mathrm{hm}$.

(b) Compare to force at optimum L / D.
(c) Estimate power needed to spin rotor at $N=750$ rom.

Solution: Apply definitions of coefficients, data from fig.9.29.
Computing equations: $\quad C_{L}=\frac{F_{L}}{\frac{1}{2} \rho V^{2} A} \quad C_{D}=\frac{F_{D}}{\frac{1}{2} \rho V^{2} A} \quad A=D H$ Coefficients are functoris of spin ratio, $\omega D / 2 \mathrm{~V}$.
$\omega=750 \frac{\mathrm{rev}}{\mathrm{mm}} \times 2 \pi \frac{\mathrm{rad}}{\mathrm{rev}} \times \frac{\mathrm{mmin}}{60 \mathrm{~s}}=78.5 \mathrm{rad} / \mathrm{s} ; \quad V=50 \frac{\mathrm{~km}}{\mathrm{hr}} \times 1000 \frac{\mathrm{~m}}{\mathrm{~km}} \times \frac{\mathrm{hr}}{360 \mathrm{~s}}=13.9 \mathrm{~m}$ $\frac{L 0 D}{2 V}=\frac{1}{2} \times 78.5 \frac{\mathrm{rad}}{\mathrm{s}} \times 3 m_{\times} \frac{5}{\sqrt{3.7 m}}=8.47 ; q=\frac{1}{2} e v^{2}=\frac{1}{2} \times \frac{123 \mathrm{~kg}}{\mathrm{~m}^{3}} \times \frac{13.9)^{2} \mathrm{~m}^{2}}{3^{2}}=119 \mathrm{~N} / \mathrm{m}^{2}$
This is above the range of data shown in Fig. 9.29, so w could be tess.
Choose $C_{L} \approx 9.5, C_{D} \approx 3.5, A=D H=45 \mathrm{~m}^{2}$

$$
F_{L}=4.5 \times 45 \mathrm{~m}^{2} \times 119 \frac{\mathrm{~N}}{\mathrm{~m}^{2}}=50.9 \mathrm{kN}
$$

$F_{D}=3.5 \times 45 \mathrm{~m}^{2} \times 119 \frac{N}{m^{2}}=18.7 \mathrm{kN}$
From inspection of Fig. 9.29 , this appears close to the optimum L_{D}. Then

$$
F=\left[F^{2}+F_{D}^{2}\right]^{\frac{1}{2}}=\left[(50.9)^{2}+(18.7)^{2}\right]^{\frac{1}{2}} \mathrm{kN}=54.2 \mathrm{kN}
$$

Torque will be product of mean shear stress, $\overline{2}$, area, and radices.

$$
T=\bar{\tau} A R=\bar{\tau}(\pi D H) R=\frac{\pi \bar{\tau} D^{2} H}{2}
$$

Estimate (very roughly) \bar{z} from flat plate correlation. Assume

$$
R C=\frac{(V+U) D}{\nu}=\frac{(V+\omega R) D}{v}=(13.9+118) \frac{\mathrm{m}}{3} \times 3 m_{\times} \frac{5}{1.45 \times 10^{-5} m^{2}}=2.73 \times 10^{7}
$$

From Fig. 9.8, $C_{D}=\frac{F_{D}}{\frac{1}{2} \mathrm{PV}^{2} A}=0.003 ; \vec{\tau}=\frac{F_{D}}{A}=C_{D} g=0.003_{x} 119 \frac{\mathrm{~N}}{\mathrm{~m}^{2}}=0.357 \frac{\mathrm{~N}}{\mathrm{~m}^{2}}$
Then

$$
T=\frac{\pi}{2} \times 0.357 \frac{\mathrm{~N}}{m^{2}} \times(3)^{2} \mathrm{~m}^{2} \times 15 \mathrm{~m}=75.7 \mathrm{~N} \mathrm{~m}
$$

and

$$
P_{=\omega}=\omega T=78.5 \frac{\mathrm{rad}}{\underline{L}} \times 75.7 \mathrm{~N} \cdot \mathrm{~m}_{\times} \times \frac{\omega_{1} \mathrm{~s}}{\mathrm{~N}_{1} \mathrm{~m}}=5.54 \mathrm{~kW}
$$

$\left\{\begin{array}{l}\text { The power estimate is gross only. More specific intonation is } \\ \text { needed to design with ccintidenc. }\end{array}\right\}$

Given: American and British golf balls (Problems 1.11 and 1.12). dimensions below. Hit from tee $a+V=85 \mathrm{~m} / \mathrm{sec}$, with backspin, $N=9000 \mathrm{rpm}$.

Find: (a) Evaluate lift and drag forces on each ball (express as fractions of body force).
(6) Estimate radius of curvathere of trajectory.
(c) Which ball would have the longer range?

Solution: Apply de finitions of lift and drag coefficients, data from Fig. 9.zs.
Computing equations: $\quad C_{L}=\frac{F_{L}}{\frac{1}{2} P V^{2} A}=\frac{F_{L}}{g A} ; C_{D}=\frac{F_{D}}{q A} ; q=\frac{1}{2} \rho V^{2} ; A=\frac{\pi D^{2}}{4}$ The parameters are Repand ω_{0} / v_{0}; tabulate results:

Taking ratios for the American ball:
British, ball:

$$
\begin{align*}
F_{L} / \mathrm{mg}=1.71 N_{\times} \times \frac{1}{1.620 z} \times \frac{160 z}{16 f} \times \frac{16 t}{4.447 \mathrm{~N}} & =3.80 \\
& =4.51
\end{align*}
$$

Draw FBD to compute trajectory:

$$
\Sigma F_{I t p a+h}=F_{L}-m g \cos \theta=m \frac{v^{2}}{R}
$$

Assume θ small: so $\operatorname{cosen} \approx 1$. Then

$$
\begin{aligned}
R \approx \frac{m V^{2}}{F_{L}-m g}=\frac{V^{2} / q}{F_{L} / m g^{-1}} & =\frac{1}{3.80-1} \times(85)^{2} \frac{m^{2}}{S^{2}} \times \frac{s^{2}}{9.81 m}=263 \mathrm{~m} \text { (American) } \\
& =\frac{1}{3.40-1} \times(85)^{2} \frac{\mathrm{~m}^{2}}{\mathrm{~s}^{2}} \times \frac{5^{2}}{9.81 m}=307 \mathrm{~m} \text { (British) }
\end{aligned}
$$

(Note because $F_{L} / m g>1$, the balls actually rise!)
Drag probably is move important than lift in affecting range of a drive. Therefore one probably would expect the British ball to carry farther.

Problem 9.179

9.179 A baseball pitcher throws a ball at 80 mph . Home plate is 60 ft away from the pitcher's mound. What spin should be placed on the ball for maximum horizontal deviation from a straight path? (A baseball has a mass of 5 oz and a circumference of 9 in .) How far will the ball deviate from a straight line?

Given: Baseball pitch
Find: Spin on the ball

Solution:

Basic equations:

$$
\mathrm{C}_{\mathrm{L}}=\frac{\mathrm{F}_{\mathrm{L}}}{\frac{1}{2} \cdot \rho \cdot \mathrm{~A} \cdot \mathrm{~V}^{2}} \quad \stackrel{\rightharpoonup}{\Sigma \cdot \mathrm{~F}}=\overrightarrow{\mathrm{M} \cdot \mathrm{a}}
$$

The given or available data is

$$
v=1.62 \times 10^{-4} \cdot \frac{\mathrm{ft}^{2}}{\mathrm{~s}}
$$

$\mathrm{L}=60 \cdot \mathrm{ft}$
$\mathrm{M}=5 \cdot \mathrm{oz}$
$C=9 \cdot$ in
$D=\frac{C}{\pi}$
$\mathrm{D}=2.86$ in
$\mathrm{A}=\frac{\pi \cdot \mathrm{D}^{2}}{4}$
$\mathrm{A}=6.45 \mathrm{in}^{2} \quad \mathrm{~V}=80 \cdot \mathrm{mph}$

Compute the Reynolds number

$$
\operatorname{Re}=\frac{\mathrm{V} \cdot \mathrm{D}}{\nu} \quad \operatorname{Re}=1.73 \times 10^{5}
$$

This Reynolds number is slightly beyond the range of Fig. 9.27; we use Fig. 9.27 as a rough estimate
The ball follows a trajectory defined by Newton's second law. In the horizontal plane (x coordinate)

$$
\mathrm{F}_{\mathrm{L}}=\mathrm{M} \cdot \mathrm{a}_{\mathrm{R}}=\mathrm{M} \cdot \mathrm{a}_{\mathrm{x}}=\mathrm{M} \cdot \frac{\mathrm{~V}^{2}}{\mathrm{R}} \quad \text { and } \quad \mathrm{F}_{\mathrm{L}}=\frac{1}{2} \cdot \rho \cdot \mathrm{~A} \cdot \mathrm{~V}^{2} \cdot \mathrm{C}_{\mathrm{L}}
$$

where R is the instantaneous radius of curvature of the trajectory
From Eq 1 we see the ball trajectory has the smallest radius (i.e. it curves the most) when CL is as large as possible.
From Fig. 9.27 we see this is when $\mathrm{C}_{\mathrm{L}}=0.4$

Solving for R	$R=\frac{2 \cdot M}{C_{L} \cdot A \cdot \rho}$	(1)	$\mathrm{R}=463.6 \mathrm{ft}$	
Also, from Fig. 9.27	$\frac{\omega \cdot \mathrm{D}}{2 \cdot \mathrm{~V}}=1.5$	to	$\frac{\omega \cdot \mathrm{D}}{2 \cdot \mathrm{~V}}=1.8$	defines the best range
Hence	$\omega=1.5 \cdot \frac{2 \cdot \mathrm{~V}}{\mathrm{D}}$	$\omega=14080 \mathrm{rpm}$	$\omega=1.8 \cdot \frac{2 \cdot \mathrm{~V}}{\mathrm{D}}$	$\omega=16896 \mathrm{rpm}$
From the trajectory geometry	$\mathrm{x}+\mathrm{R} \cdot \cos (\theta)=\mathrm{R}$	where	$\sin (\theta)=\frac{L}{R}$	
Hence	$x+R \cdot \sqrt{1-\left(\frac{L}{R}\right)^{2}}=R$			
Solving for x	$x=R-R \cdot \sqrt{1-\left(\frac{L}{R}\right)^{2}}$	$\mathrm{x}=3.90 \mathrm{ft}$		

9.180 A soccer player takes a free kick. Over a distance of 10 m , the ball veers to the right by about 1 m . Estimate the spin the player's kick put on the ball if its speed is $30 \mathrm{~m} / \mathrm{s}$. The ball has a mass of 420 gm and has a circumference of 70 cm .

Given: Soccer free kick
Find: \quad Spin on the ball

Solution:

Basic equations:

$$
\mathrm{C}_{\mathrm{L}}=\frac{\mathrm{F}_{\mathrm{L}}}{\frac{1}{2} \cdot \rho \cdot \mathrm{~A} \cdot \mathrm{~V}^{2}} \quad \stackrel{\rightharpoonup}{\Sigma \cdot \mathrm{~F}}=\overrightarrow{\mathrm{M} \cdot \mathrm{a}} \overrightarrow{\mathrm{a}}
$$

The given or available data is

$$
\rho=1.21 \cdot \frac{\mathrm{~kg}}{\mathrm{~m}^{3}} \quad \nu=1.50 \cdot 10^{-5} \cdot \frac{\mathrm{~m}^{2}}{\mathrm{~s}}
$$

$\mathrm{L}=10 \cdot \mathrm{~m}$
$\mathrm{x}=1 \cdot \mathrm{~m}$

$$
\mathrm{M}=420 \cdot \mathrm{gm} \quad \mathrm{C}=70 \cdot \mathrm{~cm} \quad \mathrm{D}=\frac{\mathrm{C}}{\pi} \quad \mathrm{D}=22.3 \mathrm{~cm} \quad \mathrm{~A}=\frac{\pi \cdot \mathrm{D}^{2}}{4} \quad \mathrm{~A}=0.0390 \mathrm{~m}^{2} \quad \mathrm{~V}=30 \cdot \frac{\mathrm{~m}}{\mathrm{~s}}
$$

Compute the Reynolds number

$$
\mathrm{Re}=\frac{\mathrm{V} \cdot \mathrm{D}}{\nu} \quad \operatorname{Re}=4.46 \times 10^{5}
$$

This Reynolds number is beyond the range of Fig. 9.27; however, we use Fig. 9.27 as a rough estimate
The ball follows a trajectory defined by Newton's second law. In the horizontal plane (x coordinate)

$$
\mathrm{F}_{\mathrm{L}}=\mathrm{M} \cdot \mathrm{a}_{\mathrm{R}}=\mathrm{M} \cdot \mathrm{a}_{\mathrm{X}}=\mathrm{M} \cdot \frac{\mathrm{~V}^{2}}{\mathrm{R}} \quad \text { and } \quad \mathrm{F}_{\mathrm{L}}=\frac{1}{2} \cdot \rho \cdot \mathrm{~A} \cdot \mathrm{~V}^{2} \cdot \mathrm{C}_{\mathrm{L}}
$$

where R is the instantaneous radius of curvature of the trajectory

Hence, solving for R	$R=\frac{2 \cdot M}{C_{L} \cdot A \cdot \rho}$	(1)
From the trajectory geometry	$x+R \cdot \cos (\theta)=R$	where $\sin (\theta)=\frac{L}{R}$
Hence	$x+R \cdot \sqrt{1-\left(\frac{L}{R}\right)^{2}}=R$	
Solving for R	$R=\frac{\left(L^{2}+x^{2}\right)}{2 \cdot x}$	$R=50.5 m$
Hence, from Eq 1	$C_{L}=\frac{2 \cdot M}{R \cdot A \cdot \rho}$	$C_{L}=0.353$

For this lift coefficient, from Fig. $9.27 \frac{\omega \cdot \mathrm{D}}{2 \cdot \mathrm{~V}}=1.2$
Hence

$$
\omega=1.2 \cdot \frac{2 \cdot \mathrm{~V}}{\mathrm{D}} \quad \omega=3086 \mathrm{rpm}
$$

(And of course, Beckham still kind of rules!)

Problem 10.1
Given: Impeller dimensions of Example Problem 10.1:
$Q=150 \mathrm{gm}$
$N=3450 \mathrm{rpm}$

$$
\begin{aligned}
& \text { Radus, rein) } \\
& \text { Blade wink ; bin) } \\
& \text { Blade angle, p(den) }
\end{aligned}
$$

Inter

$$
\begin{aligned}
& \frac{\text { aniline }}{2.0} \\
& 0.383 \\
& 60^{\circ}, 8,80,85^{\circ}
\end{aligned}
$$

Construct: Vobity diagram for exit flow leaning tangent
Find: (a) ideal head rise, (b) mechanical power input.
Solution:
Computing equations:

$$
\begin{aligned}
& \dot{w}_{m}=\left(v_{2} \psi_{t_{2}}-2 \not x_{t_{1}} \text { in } \quad(10.2 b)\right.
\end{aligned}
$$

Assumptions: ii) axial inlet flow (given) so two
(2) at blade athet. flow is uniform and leaves tangent to blade
Exit velocity diagram:

From corturinity, $t_{n_{2}}=\frac{Q}{2 \pi r_{2} b_{2}}=V t_{2} \sin \beta_{2} \quad \therefore V_{b_{2}}=\frac{V_{n_{2}}}{\sin \beta_{2}}$
 Substituting numerical values, for $\beta=60^{\circ}$

$$
\begin{aligned}
& U_{2}=\omega r_{2}=3450 \frac{\mathrm{red}}{\mathrm{rw}} \times 2 \pi \frac{\mathrm{rad}}{\mathrm{red}} \times \frac{\mathrm{mm}}{10 \mathrm{~s}} \times 2.0 \mathrm{n} \times \frac{\mathrm{ft}}{12 \mathrm{~m}}=60.2 \mathrm{ft} \mathrm{I}_{\mathrm{s}} \\
& V_{n_{2}}=\frac{Q}{2 \pi r_{2} b_{2}}=\frac{1}{2 \pi} \times 150 g_{\operatorname{gin}} \times \frac{\min }{605} \times \frac{\mathrm{ft}^{3}}{1.48 \mathrm{gab}} \times \frac{1}{2.0 \mathrm{n}^{2}} \times \frac{1}{0.383 \mathrm{~min}} \times \frac{144 \mathrm{in}^{2}}{\mathrm{ft}^{2}}=10.0 \mathrm{fl} \\
& v_{t_{2}}=J_{2}-v_{n_{2}} \cot \beta_{2}=60.2 \frac{\mathrm{ft}}{\mathrm{~s}}-10.0 \frac{\mathrm{ft}}{\mathrm{~s}} \operatorname{ct} 60^{\circ}=54.4 \mathrm{ft} \\
& \dot{M}=p Q=1.94 \frac{\operatorname{slng}}{f \mathrm{C}^{2}} \times 150 \mathrm{gat} \times \frac{m i n}{605} \times \frac{\mathrm{ft}^{3}}{\frac{1.4 g a t}{2}}=0.648 \text { slights } \\
& H=\frac{1}{g} U_{2} \psi_{t_{2}}=\frac{s^{2}}{32.264} \times 60.2 \frac{f}{s} \times 54.4 \frac{f t}{s}=102 f
\end{aligned}
$$

$\dot{\omega}_{m} \beta=\infty^{\circ}$

For $\beta=70^{\circ}, \quad V_{t}=56.10$ feels, $A=106$ f, $\dot{H}_{m}=4.02 \mathrm{hp}$

$$
\begin{array}{ll}
\beta=80^{\circ} ; & f_{t_{2}}=58.4 \mathrm{fls}, H=109 \mathrm{ft}, W_{m}=4.15 \mathrm{hp}+ \\
\beta=85^{\circ} ; & \psi_{2}=59.3 \text { fits, } H=11 \mathrm{ft},
\end{array}
$$

Problem 10.2

10.2 The geometry of a centrifugal water pump is $r_{1}=4 \mathrm{in}$., $r_{2}=7.5$ in., $b_{1}=b_{2}=1.5$ in., $\beta_{1}=30^{\circ}, \beta_{2}=20^{\circ}$, and it runs at speed 1500 rpm . Estimate the discharge required for axial entry, the horsepower generated in the water, and the head produced.

Given: Geometry of centrifugal pump
Find: Estimate discharge for axial entry; Head

Solution:

Basic equations: $\quad \dot{W}_{m}=\left(U_{2} V_{t_{2}}-U_{1} V_{t_{1}}\right) \dot{m}$

$$
\begin{equation*}
H=\frac{\dot{W}_{m}}{\dot{m} g}=\frac{1}{g}\left(U_{2} V_{t_{2}}-U_{1} V_{t_{1}}\right) \tag{Eq.10.2b}
\end{equation*}
$$

The given or available data is

$$
\begin{array}{lll}
\rho=1.94 \cdot \frac{\text { slug }}{\mathrm{ft}^{3}} & \mathrm{r}_{1}=4 \cdot \mathrm{in} & \mathrm{r}_{2}=7.5 \cdot \mathrm{in} \\
\omega=1500 \cdot \mathrm{rpm} & \beta_{1}=30 \cdot \mathrm{deg} & \beta_{2}=20 \cdot \mathrm{deg}
\end{array}
$$

$$
\mathrm{b}_{1}=1.5 \cdot \mathrm{in}
$$

$$
\mathrm{b}_{2}=1.5 \cdot \mathrm{in}
$$

From continuity

$$
\mathrm{V}_{\mathrm{n}}=\frac{\mathrm{Q}}{2 \cdot \pi \cdot \mathrm{r} \cdot \mathrm{~b}}=\mathrm{V}_{\mathrm{rb}} \cdot \sin (\beta)
$$

$$
\mathrm{V}_{\mathrm{rb}}=\frac{\mathrm{V}_{\mathrm{n}}}{\sin (\beta)}
$$

From geometry

$$
\mathrm{V}_{\mathrm{t}}=\mathrm{U}-\mathrm{V}_{\mathrm{rb}} \cdot \cos (\beta)=\mathrm{U}-\frac{\mathrm{V}_{\mathrm{n}}}{\sin (\beta)} \cdot \cos (\beta)=\mathrm{U}-\frac{\mathrm{Q}}{2 \cdot \pi \cdot \mathrm{r} \cdot \mathrm{~b}} \cdot \cot (\beta)
$$

For an axial entry

$$
\mathrm{V}_{\mathrm{t} 1}=0 \quad \text { so } \quad \mathrm{U}_{1}-\frac{\mathrm{Q}}{2 \cdot \pi \cdot \mathrm{r}_{1} \cdot \mathrm{~b}_{1}} \cdot \cot \left(\beta_{1}\right)=0
$$

Using given data

$$
\mathrm{U}_{1}=\omega \cdot \mathrm{r}_{1} \quad \mathrm{U}_{1}=52.4 \cdot \frac{\mathrm{ft}}{\mathrm{~s}}
$$

Hence

$$
\mathrm{Q}=2 \cdot \pi \cdot \mathrm{r}_{1} \cdot \mathrm{~b}_{1} \cdot \mathrm{U}_{1} \cdot \tan \left(\beta_{1}\right)
$$

$$
\mathrm{Q}=7.91 \cdot \frac{\mathrm{ft}^{3}}{\mathrm{~s}}
$$

$\mathrm{Q}=3552 \cdot \mathrm{gpm}$

To find the power we need $U_{2}, V_{t 2}$, and $m_{\text {rate }}$
The mass flow rate is

$$
\begin{array}{ll}
\mathrm{m}_{\text {rate }}=\rho \cdot \mathrm{Q} & \mathrm{~m}_{\text {rate }}=15.4 \cdot \frac{\mathrm{slug}}{\mathrm{~s}} \\
\mathrm{U}_{2}=\omega \cdot \mathrm{r}_{2} & \mathrm{U}_{2}=98.2 \cdot \frac{\mathrm{ft}}{\mathrm{~s}}
\end{array}
$$

Hence

$$
\mathrm{W}_{\mathrm{m}}=\left(\mathrm{U}_{2} \cdot \mathrm{~V}_{\mathrm{t} 2}-\mathrm{U}_{1} \cdot \mathrm{~V}_{\mathrm{t} 1}\right) \cdot \mathrm{m}_{\text {rate }}
$$

$$
\mathrm{W}_{\mathrm{m}}=81212 \cdot \frac{\mathrm{ft} \cdot \mathrm{lbf}}{\mathrm{~s}} \quad \mathrm{~W}_{\mathrm{m}}=148 \cdot \mathrm{hp}
$$

The head is

$$
\mathrm{H}=\frac{\mathrm{W}_{\mathrm{m}}}{\mathrm{~m}_{\text {rate }} \cdot \mathrm{g}}
$$

$$
\mathrm{H}=164 \cdot \mathrm{ft}
$$

Problem 10.3

10.3 A centrifugal pump running at 3500 rpm pumps water at a rate of 150 gpm . The water enters axially, and leaves the impeller at $17.5 \mathrm{ft} / \mathrm{s}$ relative to the blades, which are radial at the exit. If the pump requires 6.75 hp , and is 67 percent efficient, estimate the
 basic dimensions (impeller exit diameter and width), using the Euler turbomachine equation.

Given: Data on centrifugal pump
Find: Estimate basic dimensions

Solution:

Basic equations: $\quad \dot{W}_{m}=\left(U_{2} V_{t_{2}}-U_{1} V_{t_{1}}\right) \dot{m} \quad$ (Eq. 10.2b, directly derived from the Euler turbomachine equation)
The given or available data is

$$
\begin{array}{lll}
\rho=1.94 \cdot \frac{\text { slug }}{\mathrm{ft}^{3}} & \mathrm{Q}=150 \cdot \mathrm{gpm} & \mathrm{Q}=0.334 \frac{\mathrm{ft}^{3}}{\mathrm{~s}}
\end{array} \quad \mathrm{~W}_{\mathrm{in}}=6.75 \cdot \mathrm{hp} \quad \eta=67 \cdot \%
$$

For an axial inlet

$$
\mathrm{V}_{\mathrm{t} 1}=0
$$

From the outlet geometry

$$
\mathrm{V}_{\mathrm{t} 2}=\mathrm{U}_{2}-\mathrm{V}_{\mathrm{rb} 2} \cdot \cos \left(\beta_{2}\right)=\mathrm{U}_{2}
$$ and

$U_{2}=r_{2} \cdot \omega$
Hence, in Eq. 10.2b
$\mathrm{W}_{\mathrm{m}}=\mathrm{U}_{2}{ }^{2} \cdot \mathrm{~m}_{\text {rate }}=\mathrm{r}_{2}{ }^{2} \cdot \omega^{2} \cdot \mathrm{~m}_{\text {rate }}$
with
and

Hence

$$
W_{\mathrm{m}}=\eta \cdot W_{\mathrm{in}}
$$

$$
\mathrm{W}_{\mathrm{m}}=4.52 \mathrm{hp}
$$

$$
\mathrm{m}_{\text {rate }}=\rho \cdot \mathrm{Q}
$$

$$
\mathrm{m}_{\text {rate }}=0.648 \frac{\text { slug }}{\mathrm{s}}
$$

$$
\mathrm{r}_{2}=0.169 \mathrm{ft}
$$

$$
r_{2}=2.03 \text { in }
$$

Also
From continuity

$$
\mathrm{V}_{\mathrm{n} 2}=\mathrm{V}_{\mathrm{rb} 2} \cdot \sin \left(\beta_{2}\right)
$$

$\mathrm{V}_{\mathrm{n} 2}=17.5 \frac{\mathrm{ft}}{\mathrm{s}}$

Hence
$\mathrm{V}_{\mathrm{n} 2}=\frac{\mathrm{Q}}{2 \cdot \pi \cdot \mathrm{r}_{2} \cdot \mathrm{~b}_{2}}$
$\mathrm{b}_{2}=\frac{\mathrm{Q}}{2 \cdot \pi \cdot \mathrm{r}_{2} \cdot \mathrm{~V}_{\mathrm{n} 2}}$
$\mathrm{b}_{2}=0.0180 \mathrm{ft}$
$\mathrm{b}_{2}=0.216 \mathrm{in}$

Problem 10.4
Given: Dimensions of a centrifugal pump impeller: $N=750 \mathrm{rpm}$

Find: (a) theoretical head, (b) mechanical power input for water flow rate of $Q=0.75 \mathrm{~m}^{3} / \mathrm{s}$.
Solution:
Computing equations: $\dot{b}_{n}=\left(U_{2} v_{t_{2}}-U_{1} v_{t}\right)$ in
$(10,2 b)$

$$
\begin{equation*}
H=\frac{1}{g}\left(U_{2} V_{t_{2}}-U_{1} V_{t_{1}}\right) \tag{10,2c}
\end{equation*}
$$

Assume: (1) uniform flow at blade inlet and outlet (2) How enters and leaves tangent to the blade Draw velocity diagrams:

From continuity,

$$
V_{n}=\frac{Q}{2 \pi r b}=V_{r} b \sin \beta
$$

$\therefore V_{c} b=\frac{V_{n}}{\sin \beta}$
From geometry, $V_{t}=U-\forall+b \cos \beta=U-\frac{V_{n}}{\sin \beta} \cos \beta=0-\frac{Q}{2 \pi r b} \cot \beta$
Substituting numerical values,

$$
\begin{aligned}
& \omega=750 \frac{\mathrm{rev}}{\operatorname{lin}} \times 2 \pi \frac{\mathrm{rad}}{\mathrm{rej}} \times \frac{\mathrm{mm}}{60 \mathrm{~s}}=78.5 \mathrm{rad} / \mathrm{s} \\
& U_{1}=\omega r_{1}=78.5 \frac{\mathrm{rad}}{\mathrm{~s}} \times 0.75 \mathrm{~m}=13.7 \mathrm{mls} ; U_{2}=39.3 \mathrm{mls} \\
& J_{t_{1}}=U_{1}-\frac{Q}{2 \pi r . b_{1}} \text { cot } \beta_{1}=13.7 \frac{M}{s}-\frac{0.75}{2 \pi} \frac{\mathrm{~m}^{3}}{\mathrm{~s}} \times \frac{1}{0.175 \mathrm{~m}} \times \frac{\cot 65^{\circ}}{0.05 \mathrm{~m}}=7.34 \mathrm{~m} \mathrm{~s}_{\mathrm{s}} \\
& \psi_{t_{2}}=39.3 \frac{m}{s}-\frac{0.75}{2 \pi} \frac{\mathrm{~m}^{3}}{\mathrm{~s}} \times \frac{1}{0.50 m} \times \frac{00 t 70^{\circ}}{0.03 \mathrm{~m}}=36.4 \mathrm{mls} \\
& H=\frac{1}{g}\left(U_{2} J_{t_{2}}-U_{1} J_{t_{1}}\right)=\frac{s^{2}}{9.81 \mathrm{~m}}\left(39.3 \frac{\mathrm{~m}}{5} \times 36.4 \frac{\mathrm{~m}}{\mathrm{~s}}-13.7 \frac{\mathrm{~m}}{\mathrm{~s}} \times 7.34 \frac{\mathrm{n}}{\mathrm{~s}}\right)=135 \mathrm{~m} \mathrm{H}
\end{aligned}
$$

The pump is driven at 1250 rpm while pumping water. Calculate the theoretical head and mechanical power input if the flow rate is 1500 gpm .

Given: Geometry of centrifugal pump
Find: Theoretical head; Power input for given flow rate

Solution:

Basic equations: $\quad \dot{W}_{m}=\left(U_{2} V_{t_{2}}-U_{1} V_{t_{1}}\right) \dot{m}$

$$
\begin{equation*}
H=\frac{\dot{W}_{m}}{\dot{m} g}=\frac{1}{g}\left(U_{2} V_{t_{2}}-U_{1} V_{t_{1}}\right) \tag{Eq.10.2b}
\end{equation*}
$$

The given or available data is

$$
\begin{array}{llll}
\rho=1.94 \cdot \frac{\text { slug }}{\mathrm{ft}^{3}} & \mathrm{r}_{1}=3 \cdot \mathrm{in} & \mathrm{r}_{2}=9.75 \cdot \mathrm{in} & \mathrm{~b}_{1}=1.5 \cdot \mathrm{in} \\
\omega=1250 \cdot \mathrm{rpm} & \beta_{1}=60 \cdot \mathrm{deg} & \beta_{2}=70 \cdot \mathrm{deg} & \mathrm{Q}=1500 \cdot \mathrm{gpm} \\
\mathrm{~b}_{2}=1.125 \cdot \mathrm{in} & \mathrm{Q}=3.34 \frac{\mathrm{ft}^{3}}{\mathrm{~s}}
\end{array}
$$

From continuity

$$
\mathrm{V}_{\mathrm{n}}=\frac{\mathrm{Q}}{2 \cdot \pi \cdot r \cdot \mathrm{~b}}=\mathrm{V}_{\mathrm{rb}} \cdot \sin (\beta)
$$

$\mathrm{V}_{\mathrm{rb}}=\frac{\mathrm{V}_{\mathrm{n}}}{\sin (\beta)}$

From geometry

$$
\mathrm{V}_{\mathrm{t}}=\mathrm{U}-\mathrm{V}_{\mathrm{rb}} \cdot \cos (\beta)=\mathrm{U}-\frac{\mathrm{V}_{\mathrm{n}}}{\sin (\beta)} \cdot \cos (\beta)=\mathrm{U}-\frac{\mathrm{Q}}{2 \cdot \pi \cdot \mathrm{r} \cdot \mathrm{~b}} \cdot \cot (\beta)
$$

Using given data	$\mathrm{U}_{1}=\omega \cdot \mathrm{r}_{1} \quad \mathrm{U}_{1}=32.7 \frac{\mathrm{ft}}{\mathrm{s}}$	$U_{2}=\omega \cdot r_{2}$	$\mathrm{U}_{2}=106.4 \frac{\mathrm{ft}}{\mathrm{s}}$
	$\mathrm{V}_{\mathrm{t} 1}=\mathrm{U}_{1}-\frac{\mathrm{Q}}{2 \cdot \pi \cdot \mathrm{r}_{1} \cdot \mathrm{~b}_{1}} \cdot \cot \left(\beta_{1}\right)$	$\mathrm{V}_{\mathrm{t} 1}=22.9 \frac{\mathrm{ft}}{\mathrm{~s}}$	
	$\mathrm{V}_{\mathrm{t} 2}=\mathrm{U}_{2}-\frac{\mathrm{Q}}{2 \cdot \pi \cdot \mathrm{r}_{2} \cdot \mathrm{~b}_{2}} \cdot \cot \left(\beta_{2}\right)$	$\mathrm{V}_{\mathrm{t} 2}=104 \frac{\mathrm{ft}}{\mathrm{s}}$	
The mass flow rate is	$\mathrm{m}_{\text {rate }}=\rho \cdot \mathrm{Q}$	$\mathrm{m}_{\text {rate }}=6.48 \frac{\text { slug }}{\mathrm{s}}$	
Hence	$\mathrm{W}_{\mathrm{m}}=\left(\mathrm{U}_{2} \cdot \mathrm{~V}_{\mathrm{t} 2}-\mathrm{U}_{1} \cdot \mathrm{~V}_{\mathrm{t} 1}\right) \cdot \mathrm{m}_{\text {rate }}$	$\mathrm{W}_{\mathrm{m}}=66728 \frac{\mathrm{ft} \cdot \mathrm{lbf}}{\mathrm{s}}$	$\mathrm{W}_{\mathrm{m}}=121 \mathrm{hp}$
The head is	$\mathrm{H}=\frac{\mathrm{W}_{\mathrm{m}}}{\mathrm{~m}_{\text {rate }} \cdot \mathrm{g}}$		$\mathrm{H}=320 \mathrm{ft}$

The pump is driven at 575 rpm and the fluid is water. Calculate the theoretical head and mechanical power if the flow rate is $80,000 \mathrm{gpm}$.

Given: Geometry of centrifugal pump
Find: Theoretical head; Power input for given flow rate

Solution:

Basic equations: $\quad \dot{W}_{m}=\left(U_{2} V_{t_{2}}-U_{1} V_{t_{1}}\right) \dot{m}$

$$
\begin{equation*}
H=\frac{\dot{W}_{m}}{\dot{m} g}=\frac{1}{g}\left(U_{2} V_{t_{2}}-U_{1} V_{t_{1}}\right) \tag{Eq.10.2b}
\end{equation*}
$$

The given or available data is

$$
\begin{array}{lllll}
\rho=1.94 \cdot \frac{\text { slug }}{\mathrm{ft}^{3}} & \mathrm{r}_{1}=15 \cdot \mathrm{in} & \mathrm{r}_{2}=45 \cdot \mathrm{in} & \mathrm{~b}_{1}=4.75 \cdot \mathrm{in} & \mathrm{~b}_{2}=3.25 \cdot \mathrm{in}^{2} \\
\omega=575 \cdot \mathrm{rpm} & \beta_{1}=40 \cdot \mathrm{deg} & \beta_{2}=60 \cdot \mathrm{deg} & \mathrm{Q}=80000 \cdot \mathrm{gpm} & \mathrm{Q}=178 \frac{\mathrm{ft}^{3}}{\mathrm{~s}}
\end{array}
$$

From continuity

$$
\mathrm{V}_{\mathrm{n}}=\frac{\mathrm{Q}}{2 \cdot \pi \cdot \mathrm{r} \cdot \mathrm{~b}}=\mathrm{V}_{\mathrm{rb}} \cdot \sin (\beta)
$$

$$
\mathrm{V}_{\mathrm{rb}}=\frac{\mathrm{V}_{\mathrm{n}}}{\sin (\beta)}
$$

From geometry

$$
\mathrm{V}_{\mathrm{t}}=\mathrm{U}-\mathrm{V}_{\mathrm{rb}} \cdot \cos (\beta)=\mathrm{U}-\frac{\mathrm{V}_{\mathrm{n}}}{\sin (\beta)} \cdot \cos (\beta)=\mathrm{U}-\frac{\mathrm{Q}}{2 \cdot \pi \cdot \mathrm{r} \cdot \mathrm{~b}} \cdot \cot (\beta)
$$

| Using given data | $\mathrm{U}_{1}=\omega \cdot \mathrm{r}_{1}$ | $\mathrm{U}_{1}=75.3 \frac{\mathrm{ft}}{\mathrm{s}}$ |
| :--- | :--- | :--- | $\mathrm{U}_{2}=\omega \cdot \mathrm{r}_{2} \quad \mathrm{U}_{2}=226 \frac{\mathrm{ft}}{\mathrm{s}} \mathrm{l}$

Problem 10.7

10.7 A centrifugal water pump, with 15 cm diameter impeller and axial inlet flow, is driven at 1750 rpm . The impeller vanes are backward-curved $\left(\beta_{2}=65^{\circ}\right)$ and have axial width $b_{2}=2 \mathrm{~cm}$. For a volume flow rate of $225 \mathrm{~m}^{3} / \mathrm{hr}$ determine the theoretical head
 rise and power input to the pump.

Given: Geometry of centrifugal pump
Find: \quad Theoretical head; Power input for given flow rate

Solution:

Basic equations: $\quad \dot{W}_{m}=\left(U_{2} V_{t_{2}}-U_{1} V_{t_{1}}\right) \dot{m}$

$$
\begin{equation*}
H=\frac{\dot{W}_{m}}{\dot{m} g}=\frac{1}{g}\left(U_{2} V_{t_{2}}-U_{1} V_{t_{1}}\right) \tag{Eq.10.2b}
\end{equation*}
$$

The given or available data is

$$
\begin{array}{llll}
\rho=1000 \cdot \frac{\mathrm{~kg}}{\mathrm{~m}^{3}} & \mathrm{r}_{2}=7.5 \cdot \mathrm{~cm} & \mathrm{~b}_{2}=2 \cdot \mathrm{~cm} & \beta_{2}=65 \cdot \mathrm{deg} \\
\omega=1750 \cdot \mathrm{rpm} & \mathrm{Q}=225 \cdot \frac{\mathrm{~m}^{3}}{\mathrm{hr}} & \mathrm{Q}=0.0625 \frac{\mathrm{~m}^{3}}{\mathrm{~s}}
\end{array}
$$

From continuity

$$
\mathrm{V}_{\mathrm{n} 2}=\frac{\mathrm{Q}}{2 \cdot \pi \cdot \mathrm{r}_{2} \cdot \mathrm{~b}_{2}} \quad \mathrm{~V}_{\mathrm{n} 2}=6.63 \frac{\mathrm{~m}}{\mathrm{~s}}
$$

From geometry

$$
\mathrm{V}_{\mathrm{t} 2}=\mathrm{U}_{2}-\mathrm{V}_{\mathrm{rb} 2} \cdot \cos \left(\beta_{2}\right)=\mathrm{U}_{2}-\frac{\mathrm{V}_{\mathrm{n} 2}}{\sin \left(\beta_{2}\right)} \cdot \cos \left(\beta_{2}\right)
$$

Using given data

$$
\mathrm{U}_{2}=\omega \cdot \mathrm{r}_{2} \quad \mathrm{U}_{2}=13.7 \frac{\mathrm{~m}}{\mathrm{~s}}
$$

Hence

$$
\mathrm{V}_{\mathrm{t} 2}=\mathrm{U}_{2}-\frac{\mathrm{Q}}{2 \cdot \pi \cdot \mathrm{r}_{2} \cdot \mathrm{~b}_{2}} \cdot \cot \left(\beta_{2}\right) \quad \mathrm{V}_{\mathrm{t} 2}=10.7 \frac{\mathrm{~m}}{\mathrm{~s}} \quad \mathrm{~V}_{\mathrm{t} 1}=0 \quad \text { (axial inlet) }
$$

The mass flow rate is

$$
\mathrm{m}_{\text {rate }}=\rho \cdot \mathrm{Q}
$$

$$
\mathrm{m}_{\text {rate }}=62.5 \frac{\mathrm{~kg}}{\mathrm{~s}}
$$

Hence

The head is

$$
\begin{array}{ll}
\mathrm{W}_{\mathrm{m}}=\mathrm{U}_{2} \cdot \mathrm{~V}_{\mathrm{t} 2} \cdot \mathrm{~m}_{\text {rate }} & \mathrm{W}_{\mathrm{m}}=9.15 \mathrm{~kW} \\
\mathrm{H}=\frac{\mathrm{W}_{\mathrm{m}}}{\mathrm{~m}_{\mathrm{rate}} \cdot \mathrm{~g}} & \mathrm{H}=14.9 \mathrm{~m}
\end{array}
$$

Problem 10.8

10.8 For the impeller of Problem 10.5, determine the rotational speed for which the tangential component of the inlet velocity is zero if the volume flow rate is 4000 gpm . Calculate the theoretical head and mechanical power input.

Given: Geometry of centrifugal pump
Find: Rotational speed for zero inlet velocity; Theoretical head; Power input

Solution:

Basic equations: $\quad \dot{W}_{m}=\left(U_{2} V_{t_{2}}-U_{1} V_{t_{1}}\right) \dot{m}$

$$
\begin{equation*}
H=\frac{\dot{W}_{m}}{\dot{m} g}=\frac{1}{g}\left(U_{2} V_{t_{2}}-U_{1} V_{t_{1}}\right) \tag{Eq.10.2b}
\end{equation*}
$$

The given or available data is

$$
\begin{array}{llll}
\rho=1.94 \cdot \frac{\text { slug }}{\mathrm{ft}^{3}} & \mathrm{r}_{1}=3 \cdot \mathrm{in} & \mathrm{r}_{2}=9.75 \cdot \mathrm{in} & \mathrm{~b}_{1}=1.5 \cdot \mathrm{in} \\
& \beta_{1}=60 \cdot \mathrm{deg} & \beta_{2}=70 \cdot \mathrm{deg} & \mathrm{Q}=4000 \cdot \mathrm{gpm} \\
& \mathrm{Q}=8.91 \cdot \frac{\mathrm{ft}^{3}}{\mathrm{~s}}
\end{array}
$$

From continuity

$$
\mathrm{V}_{\mathrm{n}}=\frac{\mathrm{Q}}{2 \cdot \pi \cdot r \cdot \mathrm{~b}}=\mathrm{V}_{\mathrm{rb}} \cdot \sin (\beta)
$$

$\mathrm{V}_{\mathrm{rb}}=\frac{\mathrm{V}_{\mathrm{n}}}{\sin (\beta)}$

From geometry

$$
\mathrm{V}_{\mathrm{t}}=\mathrm{U}-\mathrm{V}_{\mathrm{rb}} \cdot \cos (\beta)=\mathrm{U}-\frac{\mathrm{V}_{\mathrm{n}}}{\sin (\beta)} \cdot \cos (\beta)=\mathrm{U}-\frac{\mathrm{Q}}{2 \cdot \pi \cdot \mathrm{r} \cdot \mathrm{~b}} \cdot \cot (\beta)
$$

For $V_{t 1}=0$ we get

$$
\mathrm{U}_{1}-\frac{\mathrm{Q}}{2 \cdot \pi \cdot \mathrm{r}_{1} \cdot \mathrm{~b}_{1}} \cdot \cot \left(\beta_{1}\right)=0 \quad \text { or } \quad \omega \cdot \mathrm{r}_{1}-\frac{\mathrm{Q}}{2 \cdot \pi \cdot \mathrm{r}_{1} \cdot \mathrm{~b}_{1}} \cdot \cot \left(\beta_{1}\right)=0
$$

Hence, solving for ω

$$
\omega=\frac{\mathrm{Q}}{2 \cdot \pi \cdot \mathrm{r}_{1}^{2} \cdot \mathrm{~b}_{1}} \cdot \cot \left(\beta_{1}\right)
$$

$\omega=105 \frac{\mathrm{rad}}{\mathrm{s}}$
$\omega=1001 \mathrm{rpm}$

We can now find U_{2}

$$
\mathrm{V}_{\mathrm{t} 2}=\mathrm{U}_{2}-\frac{\mathrm{Q}}{2 \cdot \pi \cdot \mathrm{r}_{2} \cdot \mathrm{~b}_{2}} \cdot \cot \left(\beta_{2}\right)
$$

The mass flow rate is

$$
\mathrm{U}_{2}=\omega \cdot \mathrm{r}_{2} \quad \mathrm{U}_{2}=85.2 \cdot \frac{\mathrm{ft}}{\mathrm{~s}}
$$

$V_{\mathrm{t} 2}=78.4 \cdot \frac{\mathrm{ft}}{\mathrm{s}}$

$$
\mathrm{m}_{\text {rate }}=\rho \cdot \mathrm{Q}
$$

$\mathrm{m}_{\text {rate }}=17.3 \cdot \frac{\text { slug }}{\mathrm{s}}$

Hence Eq 10.2b becomes
$\mathrm{W}_{\mathrm{m}}=\mathrm{U}_{2} \cdot \mathrm{~V}_{\mathrm{t} 2} \cdot \mathrm{~m}_{\text {rate }}$
$\mathrm{W}_{\mathrm{m}}=1.15 \times 10^{5} \cdot \frac{\mathrm{ft} \cdot \mathrm{lbf}}{\mathrm{s}}$
$\mathrm{W}_{\mathrm{m}}=210 \cdot \mathrm{hp}$

The head is

$$
\mathrm{H}=\frac{\mathrm{W}_{\mathrm{m}}}{\mathrm{~m}_{\mathrm{rate}} \cdot \mathrm{~g}}
$$

Problem 10.9

10.9 Consider the geometry of the idealized centrifugal pump described in Problem 10.11. Draw inlet and outlet velocity diagrams assuming $b=$ constant. Calculate the inlet blade angles required for "shockless" entry flow at the design flow rate. Evaluate the theoretical power input to the pump at the design flow rate.

Given: Geometry of centrifugal pump
Find: Draw inlet and exit velocity diagrams; Inlet blade angle; Power

Solution:

Basic equations: $\quad \dot{W}_{m}=\left(U_{2} V_{t_{2}}-U_{1} V_{t_{1}}\right) \dot{m} \quad \mathrm{~V}_{\mathrm{n}}=\frac{\mathrm{Q}}{2 \cdot \pi \cdot \mathrm{r} \cdot \mathrm{b}}$
The given or available data is

$$
\begin{array}{llll}
\mathrm{R}_{1}=1 \cdot \mathrm{in} & \mathrm{R}_{2}=7.5 \cdot \mathrm{in} & \mathrm{~b}_{2}=0.375 \cdot \mathrm{in} & \omega=2000 \cdot \mathrm{rpm} \\
\rho=1.94 \cdot \frac{\mathrm{slng}}{\mathrm{ft}^{3}} & \mathrm{Q}=800 \cdot \mathrm{gpm} & \mathrm{Q}=1.8 \cdot \frac{\mathrm{ft}^{3}}{\mathrm{~s}} & \beta_{2}=75 \cdot \mathrm{deg} \\
\mathrm{U}_{1}=\omega \cdot \mathrm{R}_{1} & \mathrm{U}_{1}=17.5 \cdot \frac{\mathrm{ft}}{\mathrm{~s}} & \mathrm{U}_{2}=\omega \cdot \mathrm{R}_{2} & \mathrm{U}_{2}=131 \cdot \frac{\mathrm{ft}}{\mathrm{~s}} \\
\mathrm{~V}_{\mathrm{n} 2}=\frac{\mathrm{Q}}{2 \cdot \pi \cdot \mathrm{R}_{2} \cdot \mathrm{~b}_{2}} & \mathrm{~V}_{\mathrm{n} 2}=14.5 \cdot \frac{\mathrm{ft}}{\mathrm{~s}} & \mathrm{~V}_{\mathrm{n} 1}=\frac{\mathrm{R}_{2}}{\mathrm{R}_{1}} \cdot \mathrm{~V}_{\mathrm{n} 2} & \mathrm{~V}_{\mathrm{n} 1}=109 \cdot \frac{\mathrm{ft}}{\mathrm{~s}}
\end{array}
$$

Velocity diagrams:

Then $\quad \beta_{1}=\operatorname{atan}\left(\frac{\mathrm{V}_{\mathrm{n} 1}}{\mathrm{U}_{1}}\right)$

$$
\beta_{1}=80.9 \cdot \operatorname{deg}
$$

(Essentially radial entry)

From geometry

$$
\mathrm{V}_{\mathrm{t} 1}=\mathrm{U}_{1}-\mathrm{V}_{\mathrm{n} 1} \cdot \cos \left(\beta_{1}\right) \quad \mathrm{V}_{\mathrm{t} 1}=0.2198 \cdot \frac{\mathrm{ft}}{\mathrm{~s}}
$$

$\mathrm{V}_{\mathrm{t} 2}=\mathrm{U}_{2}-\mathrm{V}_{\mathrm{n} 2} \cdot \cos \left(\beta_{2}\right)$
$\mathrm{V}_{\mathrm{t} 2}=127.1 \cdot \frac{\mathrm{ft}}{\mathrm{s}}$

Then

$$
\mathrm{W}_{\mathrm{m}}=\left(\mathrm{U}_{2} \cdot \mathrm{~V}_{\mathrm{t} 2}-\mathrm{U}_{1} \cdot \mathrm{~V}_{\mathrm{t} 1}\right) \cdot \rho \cdot \mathrm{Q}
$$

$$
\mathrm{W}_{\mathrm{m}}=5.75 \times 10^{4} \cdot \frac{\mathrm{ft} \cdot \mathrm{lbf}}{\mathrm{~s}} \quad \mathrm{~W}_{\mathrm{m}}=105 \cdot \mathrm{hp}
$$

Note: In earlier printings the flow rate was given as 8000 gpm not 800 gpm ; water at $1089 \mathrm{ft} / \mathrm{s}$ would be quite dangerous!

Gwen: Dimensions of a centrifugal pump impeller: $N=750 \mathrm{rpm}$

	Inti 0	ottletro)
Radius, $r(m m)$	175	500
Blade widi b (mm)	50	30
Blade angle, β (dag)	65	10

Find: (a) volume flow rate, θ for which $t_{t}=0$, (b) theoretical head, and (c) mechanical power input?
Solution:
Computing equations:

$$
\begin{aligned}
& \omega_{n}=\left(J_{2} \nu_{t_{2}}-\Psi+t_{1} i_{n}^{0(3)} \quad(10.2 b)\right. \\
& A^{\prime}=\frac{1}{g}\left(U_{2} J_{t_{2}}-J_{t}\right)^{(3)} \quad(10.2 C)
\end{aligned}
$$

Assume: (i) uniform flow at blade inlet and outlet
(2) flow enters and leaves tangent to te blade (3) $t_{t_{1}}=o$ (given)

Draw velocity diagrams:

$$
\frac{v_{r} t_{1} \underbrace{}_{1} \operatorname{U}_{1} v_{n}=v_{1}\left(v_{t}=0\right)}{U_{1}}
$$

From continuity, $\forall_{n}=\frac{Q}{2 \pi r b}=\forall_{r} \sin \beta \quad \therefore \lambda_{b}=\frac{V_{n}}{\sin \beta}$
From geometry, $V_{t}=U-V_{r} \cos \beta=U-\frac{J_{n}}{\sin \beta} \cos \beta=U-\frac{Q}{2 \pi r b} \operatorname{ct} \beta$
For $V_{t_{1}}=0$, then $U_{i}-\frac{\theta}{2 \pi r b_{1}} \cot \beta_{1}=0$ and $Q=\frac{2 \pi r_{1} b_{1} V_{1}}{\cot \beta_{1}}$
Substituting numerical values

$$
\begin{aligned}
& U_{1}=\omega_{1} r_{1}=\text { iso } \frac{\mathrm{rew}}{\mathrm{~min}} \times 2 \pi \frac{\mathrm{rad}}{\mathrm{rew}} \times \frac{\mathrm{min}}{\operatorname{los}} \times 0.175 \mathrm{~m}=13.7 \mathrm{mb} ; \mathrm{J}_{2}=39.3 \mathrm{~m} \\
& Q=\frac{2 \pi}{\cot 65^{\circ}} \times 0.175 m \times 0.050 m \times 13.7 \frac{\mathrm{~m}}{\mathrm{~s}}=1.62 \mathrm{~m}^{3} / \mathrm{s} \\
& Q \\
& V_{t_{2}}=U_{2}-\frac{Q}{2 \pi r_{2} b_{2}} d \beta_{2}=39.3 \frac{\mu}{5}-1.62 \frac{\mathrm{~m}^{3}}{5} \times \frac{1}{2 \pi} \times \frac{1}{0.50 \mathrm{~m}} \times \frac{00 b^{\circ}}{0.03 \mathrm{~m}}=33.0 \mathrm{M} 1_{\mathrm{s}} \\
& H=\frac{1}{g} V_{2} V_{t_{2}}=\frac{s^{2}}{9.81 m} \times 39.3 \frac{\mathrm{n}}{\mathrm{~s}} \times 33.0 \frac{\mathrm{~m}}{\mathrm{~s}}=132 \mathrm{~m} \quad H
\end{aligned}
$$

$$
\begin{aligned}
& i_{n}=2,100 \mathrm{kw}
\end{aligned}
$$

10.11 Consider a centrifugal pump whose geometry and flow conditions are

Impeller inlet radius, R_{1}	1 in.
Impeller outlet radius, R_{2}	7.5 in.
Impeller outlet width, b_{2}	0.375 in.
Design speed, N	2000 rpm
Design flow rate, Q	8000 gpm
Backward-curved vanes (outlet blade angle), β_{2}	75°
Required flow rate range	$50-150 \%$ of design

Note: Earlier printings had 8000 gpm; it is actually 800 gpm!

Assume ideal pump behavior with 100 percent efficiency. Find the shutoff head. Calculate the absolute and relative discharge velocities, the total head, and the theoretical power required at the design flow rate.

Given: Geometry of centrifugal pump

Find: Shutoff head; Absolute and relative exit velocitiesTheoretical head; Power input

Solution:

Basic equations: $\quad \dot{W}_{m}=\left(U_{2} V_{t_{2}}-U_{1} V_{t_{1}}\right) \dot{m}$

$$
\begin{equation*}
H=\frac{\dot{W}_{m}}{\dot{m} g}=\frac{1}{g}\left(U_{2} V_{t_{2}}-U_{1} V_{t_{1}}\right) \tag{Eq.10.2b}
\end{equation*}
$$

The given or available data is

$$
\begin{array}{llll}
\rho=1.94 \cdot \frac{\text { slug }}{\mathrm{ft}^{3}} & \mathrm{R}_{1}=1 \cdot \mathrm{in} & \mathrm{R}_{2}=7.5 \cdot \mathrm{in}^{2} & \mathrm{~b}_{2}=0.375 \cdot \mathrm{in} \\
\omega=2000 \cdot \mathrm{rpm} & \beta_{2}=75 \cdot \mathrm{deg} & \mathrm{Q}=800 \cdot \mathrm{gpm} & \mathrm{Q}=1.8 \cdot \frac{\mathrm{ft}^{3}}{\mathrm{~s}}
\end{array}
$$

At the exit

$$
\mathrm{U}_{2}=\omega \cdot \mathrm{R}_{2}
$$

$$
\mathrm{U}_{2}=131 \cdot \frac{\mathrm{ft}}{\mathrm{~s}}
$$

At shutoff

$$
\mathrm{V}_{\mathrm{t} 2}=\mathrm{U}_{2}
$$

$$
\mathrm{V}_{\mathrm{t} 2}=131 \cdot \frac{\mathrm{ft}}{\mathrm{~s}} \quad \mathrm{H}_{0}=\frac{1}{\mathrm{~g}} \cdot\left(\mathrm{U}_{2} \cdot \mathrm{~V}_{\mathrm{t} 2}\right) \quad \mathrm{H}_{0}=533 \cdot \mathrm{ft}
$$

At design. from continuity

$$
\mathrm{V}_{\mathrm{n} 2}=\frac{\mathrm{Q}}{2 \cdot \pi \cdot \mathrm{R}_{2} \cdot \mathrm{~b}_{2}}
$$

$$
\mathrm{V}_{\mathrm{n} 2}=15 \cdot \frac{\mathrm{ft}}{\mathrm{~s}}
$$

From the velocity diagram

$$
\begin{array}{lll}
\mathrm{V}_{\mathrm{n} 2}=\mathrm{V}_{\mathrm{rb} 2} \cdot \sin \left(\beta_{2}\right) & \mathrm{V}_{\mathrm{rb} 2}=\frac{\mathrm{V}_{\mathrm{n} 2}}{\sin \left(\beta_{2}\right)} & \mathrm{V}_{\mathrm{rb} 2}=15.0 \cdot \frac{\mathrm{ft}}{\mathrm{~s}} \\
\mathrm{~V}_{\mathrm{t} 2}=\mathrm{U}_{2}-\mathrm{V}_{\mathrm{n} 2} \cdot \cot \left(\beta_{2}\right) & \mathrm{V}_{\mathrm{t} 2}=127.0 \cdot \frac{\mathrm{ft}}{\mathrm{~s}} &
\end{array}
$$

Hence we obtain

$$
\mathrm{V}_{2}=\sqrt{\mathrm{V}_{\mathrm{n} 2}^{2}+\mathrm{V}_{\mathrm{t} 2}^{2}}
$$

$$
\mathrm{V}_{2}=128 \cdot \frac{\mathrm{ft}}{\mathrm{~s}}
$$

with (see sketch above)

$$
\alpha_{2}=\operatorname{atan}\left(\frac{\mathrm{V}_{\mathrm{t} 2}}{\mathrm{~V}_{\mathrm{n} 2}}\right)
$$

For $\mathrm{V}_{\mathrm{t} 1}=0$ we get

$$
\begin{aligned}
& \mathrm{W}_{\mathrm{m}}=\mathrm{U}_{2} \cdot \mathrm{~V}_{\mathrm{t} 2} \cdot \rho \cdot \mathrm{Q} \\
& \mathrm{H}=\frac{\mathrm{W}_{\mathrm{m}}}{\rho \cdot \mathrm{Q} \cdot \mathrm{~g}}
\end{aligned}
$$

$$
\alpha_{2}=83.5 \cdot \operatorname{deg}
$$

$$
\mathrm{W}_{\mathrm{m}}=105 \cdot \mathrm{hp}
$$

$$
\mathrm{H}=517 \cdot \mathrm{ft}
$$

Problem 10.12

10.12 For the impeller of Problem 10.6, determine the inlet blade angle for which the tangential component of the inlet velocity is zero if the volume flow rate is $125,000 \mathrm{gpm}$. Calculate the theoretical head and mechanical power input.

Given: Geometry of centrifugal pump
Find: Inlet blade angle for no tangential inlet velocity at $125,000 \mathrm{gpm}$; Head; Power

Solution:

Basic equations: $\quad \dot{W}_{m}=\left(U_{2} V_{t_{2}}-U_{1} V_{t_{1}}\right) \dot{m}$

$$
\begin{equation*}
H=\frac{\dot{W}_{m}}{\dot{m} g}=\frac{1}{g}\left(U_{2} V_{t_{2}}-U_{1} V_{t_{1}}\right) \tag{Eq.10.2b}
\end{equation*}
$$

The given or available data is

From continuity

From geometry

Using given data

$$
\mathrm{U}_{1}=\omega \cdot \mathrm{r}_{1} \quad \mathrm{U}_{1}=75.3 \cdot \frac{\mathrm{ft}}{\mathrm{~s}}
$$

Hence

$$
\beta_{1}=\operatorname{acot}\left(\frac{2 \cdot \pi \cdot \mathrm{r}_{1} \cdot \mathrm{~b}_{1} \cdot \mathrm{U}_{1}}{\mathrm{Q}}\right)
$$

$$
\beta_{1}=50 \mathrm{deg}
$$

Also

$$
\begin{array}{ll}
\mathrm{U}_{2}=\omega \cdot \mathrm{r}_{2} & \mathrm{U}_{2}=226 \cdot \frac{\mathrm{ft}}{\mathrm{~s}} \\
\mathrm{~V}_{\mathrm{t} 2}=\mathrm{U}_{2}-\frac{\mathrm{Q}}{2 \cdot \pi \cdot \mathrm{r}_{2} \cdot \mathrm{~b}_{2}} \cdot \cot \left(\beta_{2}\right) & \mathrm{V}_{\mathrm{t} 2}=201 \cdot \frac{\mathrm{ft}}{\mathrm{~s}}
\end{array}
$$

The mass flow rate is

$$
\mathrm{m}_{\text {rate }}=\rho \cdot \mathrm{Q}
$$

$$
\mathrm{m}_{\text {rate }}=540 \cdot \frac{\text { slug }}{\mathrm{s}}
$$

Hence

$$
\mathrm{W}_{\mathrm{m}}=\left(\mathrm{U}_{2} \cdot \mathrm{~V}_{\mathrm{t} 2}-\mathrm{U}_{1} \cdot \mathrm{~V}_{\mathrm{t} 1}\right) \cdot \mathrm{m}_{\text {rate }}
$$

$$
\mathrm{W}_{\mathrm{m}}=2.45 \times 10^{7} \cdot \frac{\mathrm{ft} \cdot \mathrm{lbf}}{\mathrm{~s}} \quad \mathrm{~W}_{\mathrm{m}}=44497 \cdot \mathrm{hp}
$$

The head is

$$
\mathrm{H}=\frac{\mathrm{W}_{\mathrm{m}}}{\mathrm{~m}_{\text {rate }} \cdot \mathrm{g}}
$$

$$
\begin{aligned}
& \rho=1.94 \cdot \frac{\text { slug }}{\mathrm{ft}^{3}} \\
& r_{1}=15 \cdot \text { in } \quad r_{2}=45 \cdot \text { in } \\
& \mathrm{b}_{1}=4.75 \cdot \mathrm{in} \\
& \mathrm{~b}_{2}=3.25 \cdot \mathrm{in} \\
& \omega=575 \cdot \mathrm{rpm} \\
& \beta_{2}=60 \cdot \operatorname{deg} \\
& \mathrm{Q}=125000 \cdot \mathrm{gpm} \\
& \mathrm{Q}=279 \frac{\mathrm{ft}^{3}}{\mathrm{~s}} \\
& \mathrm{~V}_{\mathrm{n}}=\frac{\mathrm{Q}}{2 \cdot \pi \cdot r \cdot \mathrm{~b}}=\mathrm{V}_{\mathrm{rb}} \cdot \sin (\beta) \\
& V_{r b}=\frac{V_{n}}{\sin (\beta)} \\
& V_{t}=U-V_{r b} \cdot \cos (\beta)=U-\frac{V_{n}}{\sin (\beta)} \cdot \cos (\beta)=U-\frac{Q}{2 \cdot \pi \cdot r \cdot b} \cdot \cot (\beta) \\
& \text { For } \mathrm{V}_{\mathrm{t} 1}=0 \text { we obtain } \quad \mathrm{U}_{1}-\frac{\mathrm{Q}}{2 \cdot \pi \cdot \mathrm{r}_{1} \cdot \mathrm{~b}_{1}} \cdot \cot \left(\beta_{1}\right)=0 \quad \text { or } \quad \cot \left(\beta_{1}\right)=\frac{2 \cdot \pi \cdot \mathrm{r}_{1} \cdot \mathrm{~b}_{1} \cdot \mathrm{U}_{1}}{\mathrm{Q}}
\end{aligned}
$$

Given: Impeller dimensions of Example Problem 10.1: $Q=1509 \mathrm{pm}$

Find: Construct velocity diagram for shockless flow at the impeller inlet.

$$
\begin{aligned}
& D_{1}=1.25 \mathrm{in} \\
& b=0.383 \mathrm{in}
\end{aligned}
$$

Investigate effects on inlet flow angle of: $N=3450 \mathrm{rpm}$
(a) variations in impeller width
(b) variations in inks swirl velocity

Solution: $Q=150 \frac{\mathrm{gal}}{\mathrm{m}_{10}} \times \frac{\mathrm{ft3}}{7.48 \mathrm{ga}} \times \frac{\mathrm{min}}{60 \mathrm{~s}}=0.334 \mathrm{fr} 3 / \mathrm{sec} ; r_{1}=0.05 \mathrm{z} 1 \mathrm{ft}$

$$
b=0.0319 \mathrm{ft} ; \omega=3450 \frac{\mathrm{rev}}{\mathrm{~mm}} \times 2 \pi \frac{\mathrm{rad}}{\mathrm{rev}} \times \frac{\mathrm{min}}{60 \mathrm{~s}}+361 \mathrm{rad} / \mathrm{s}
$$

From continuity, $V_{n 1}=\frac{Q}{2 \pi r, 6,}=\frac{1}{2 \pi} \times 0.334 \frac{\mathrm{ft}}{5} \times \frac{1}{0.0521 \mathrm{ft}} \times \frac{1}{0.0319 \mathrm{ft}}=32.0 \mathrm{ft} 1 \mathrm{~s}$

$$
\begin{aligned}
& U_{1}=\omega_{1}=\frac{361 \mathrm{rad}}{S} \times 0.0521 \mathrm{ft}=18.8 \mathrm{f} 1 \mathrm{~s} \\
& \beta_{1}=\tan ^{-1} \frac{V_{1 r}}{U_{1}}=\tan ^{-1}\left(\frac{320}{18.8}\right)=59.6^{\circ}
\end{aligned}
$$

Thus for radial vanes,

$$
\theta_{\text {eff }} \times \frac{\pi}{2}-S_{1}=90^{\circ}-59.6^{\circ}=30.4^{\circ}
$$

To change $\theta_{e f f}$: (a) vary b with no int swing: $V=V_{1}=\frac{Q}{2 \pi r, b}$,

$$
\beta_{1}=\tan ^{-1} \frac{Q}{2 \pi r, b, 0,} \text { so, }, 1 \text { as } b_{1} \downarrow
$$

$$
\theta_{\text {eff }}=90^{\circ}-\beta_{1}
$$

(b) Vary inlet swirl $\left(V_{t 1}\right)$ with $b=0.0319 \mathrm{fti}$

$$
\begin{array}{ll}
\beta_{1}=\tan ^{-1} \frac{V_{n_{1}}}{U_{1}-V_{t}} & \leq \infty, \uparrow \text { as } V_{t,} \uparrow \\
\theta_{\text {eff }}=90^{\circ}-\beta_{1} & \theta_{e f f}
\end{array}
$$

Problem 10.14

10.14 A centrifugal pump runs at 1750 rpm while pumping water at a rate of $50 \mathrm{~L} / \mathrm{s}$. The water enters axially, and leaves tangential to the impeller blades. The impeller exit diameter and width are 300 mm and 10 mm , respectively. If the pump requires 45 kW , and is 75 percent efficient, estimate the exit angle of the impeller blades.

Given: Data on a centrifugal pump
Find: Estimate exit angle of impeller blades

Solution:

The given or available data is

$$
\begin{array}{llll}
\rho=999 \cdot \frac{\mathrm{~kg}}{\mathrm{~m}^{3}} & \mathrm{Q}=50 \cdot \frac{\mathrm{~L}}{\mathrm{~s}} & \mathrm{~W}_{\text {in }}=45 \cdot \mathrm{~kW} & \eta=75 \cdot \% \\
\omega=1750 \cdot \mathrm{rpm} & \mathrm{~b}_{2}=10 \cdot \mathrm{~mm} & \mathrm{D}=300 \cdot \mathrm{~mm} &
\end{array}
$$

The governing equation (derived directly from the Euler turbomachine equation) íis. $=\left(U_{2} V_{t_{2}}-U_{1} V_{t_{1}}\right) \dot{m}$
For an axial inlet $\quad \mathrm{V}_{\mathrm{t} 1}=0 \quad$ hence $\quad \mathrm{V}_{\mathrm{t} 2}=\frac{\mathrm{W}_{\mathrm{m}}}{\mathrm{U}_{2} \cdot \rho \cdot \mathrm{Q}}$

We have
$\mathrm{U}_{2}=\frac{\mathrm{D}}{2} \cdot \omega$
$\mathrm{U}_{2}=27.5 \frac{\mathrm{~m}}{\mathrm{~s}}$
and
$W_{m}=\eta \cdot W_{\text {in }}$
$\mathrm{W}_{\mathrm{m}}=33.8 \mathrm{~kW}$

Hence
$V_{t 2}=\frac{W_{m}}{U_{2} \cdot \rho \cdot Q}$
$\mathrm{V}_{\mathrm{t} 2}=24.6 \frac{\mathrm{~m}}{\mathrm{~s}}$

From continuity

$$
\mathrm{V}_{\mathrm{n} 2}=\frac{\mathrm{Q}}{\pi \cdot \mathrm{D} \cdot \mathrm{~b}_{2}}
$$

$\mathrm{V}_{\mathrm{n} 2}=5.31 \frac{\mathrm{~m}}{\mathrm{~s}}$

With the exit velocities determined, β can be determined from exit geometry

$$
\tan (\beta)=\frac{V_{n 2}}{U_{2}-V_{t 2}} \quad \text { or }
$$

$$
\beta=\operatorname{atan}\left(\frac{\mathrm{V}_{\mathrm{n} 2}}{\mathrm{U}_{2}-\mathrm{V}_{\mathrm{t} 2}}\right) \quad \beta=61.3 \mathrm{deg}
$$

Gwen: Centrifugal water-punp deigned for $N=1300 \mathrm{rpm} ; \eta=0.35$, $Q=35 \omega_{5} \rho$

$$
\begin{array}{ll}
r_{1}=100 \mathrm{~mm} & r_{2}=175 \mathrm{~mm} \\
b_{1}=10 \mathrm{~mm} & b_{2}=7.5 \mathrm{~mm} \\
& \beta_{2}=40^{\circ}
\end{array}
$$

(a) Draw the inter and outlet velocity diagrams
(b) Find init blade angle so $4 t=8$
(c) Determine the auth absolute flow angle (measuredw.rit. normal).
(d) Evaluate hydraulic power and head.

Solution: Apply continuity and the Euler turboracine equation.
Competing equations: $V_{n}=\frac{Q}{2 \pi r b} \quad \dot{w}_{n}=p Q\left(U_{2} \lambda_{t_{2}}-U_{1} \lambda_{t}\right)$

$$
\begin{aligned}
& \omega=1300 \frac{\mathrm{red}}{\mathrm{~min}}+2 \pi \frac{\mathrm{rad}}{\mathrm{red}} \times \frac{\mathrm{min}}{60 \mathrm{~s}}=\left.136 \mathrm{rad}\right|_{\mathrm{s}} ; U_{1}=13.6 \mathrm{~m} \mathrm{ls}_{\mathrm{s}} U_{2}=23.8 \mathrm{~m} / \mathrm{s} \\
& v_{n_{1}}=\frac{Q}{2 \pi r . b_{1}}=\frac{1}{2 \pi} \times \frac{35 L}{s} \times \frac{m^{3}}{10^{3}} 4 \frac{1}{0.1 m^{2}} \times \frac{1}{0.01 m}=5.57 \mathrm{~m} l_{\mathrm{s}} \\
& V_{n_{2}}=\frac{r b_{1}}{r_{2} b_{2}} V_{n_{1}}=\frac{100}{175} \times \frac{10}{1.5} \times 5.57 \mathrm{~m} V_{\mathrm{s}}=4.24 \mathrm{~m} l_{\mathrm{s}} .
\end{aligned}
$$

Inlet

$$
\tan \beta_{1}=\frac{V_{n_{1}}}{\sigma_{1}}
$$

$$
\beta_{1}=\tan \left(\frac{5.57}{13.6}\right)
$$

Other

$$
\beta_{1}=22.3^{\circ} .
$$

From the outlet diagram, $\psi_{t_{2}}=J_{2}-\lambda_{n_{2}} \cot \beta_{2}=23.8 \frac{\mu}{s}-4.24 \frac{\mu}{5} \times \frac{1}{\tan } 40^{\circ}$

$$
t_{t_{2}}=18.8 \mathrm{~m} \mathrm{~s}_{\mathrm{s}}
$$

$$
\begin{aligned}
& \alpha_{2}=\tan ^{-1} \frac{\sqrt{t_{2}}}{\sqrt{n_{2}}}=\tan ^{-1}\left(\frac{18.8}{4.2 A}\right)=77.3^{\circ}
\end{aligned}
$$

Problem 10.16

10.16 Repeat the analysis for determining the optimum speed for an impulse turbine of Example 10.5, using the Euler turbomachine equation.

Given: Impulse turbibe

Find: Optimum speed using the Euler turbomachine equation

Solution:

The governing equation is the Euler turbomachine equation

$$
\begin{equation*}
T_{\text {shaft }}=\left(r_{2} V_{t_{2}}-r_{1} V_{t_{1}}\right) \dot{m} \tag{10.1c}
\end{equation*}
$$

In terms of the notation of Example 10.5, for a stationary CV

$$
\mathrm{r}_{1}=\mathrm{r}_{2}=\mathrm{R} \quad \mathrm{U}_{1}=\mathrm{U}_{2}=\mathrm{U} \quad \mathrm{~V}_{\mathrm{t} 1}=\mathrm{V}-\mathrm{U} \quad \mathrm{~V}_{\mathrm{t} 2}=(\mathrm{V}-\mathrm{U}) \cdot \cos (\theta) \quad \text { and } \quad \mathrm{m}_{\mathrm{flow}}=\rho \cdot \mathrm{Q}
$$

Hence

$$
T_{\text {shaft }}=[R \cdot(V-U) \cdot \cos (\theta)-R \cdot(V-U)] \cdot \rho \cdot Q
$$

$$
\mathrm{T}_{\text {out }}=\mathrm{T}_{\text {shaft }}=\rho \cdot \mathrm{Q} \cdot \mathrm{R} \cdot(\mathrm{~V}-\mathrm{U}) \cdot(1-\cos (\theta))
$$

The power is

$$
\mathrm{W}_{\text {out }}=\omega \cdot \mathrm{T}_{\text {out }}=\rho \cdot \mathrm{Q} \cdot \mathrm{R} \cdot \omega \cdot(\mathrm{~V}-\mathrm{U}) \cdot(1-\cos (\theta))
$$

$$
\mathrm{W}_{\text {out }}=\rho \cdot \mathrm{Q} \cdot \mathrm{U} \cdot(\mathrm{~V}-\mathrm{U}) \cdot(1-\cos (\theta))
$$

These results are identical to those of Example 10.5. The proof that maximum power is when $U=V / 2$ is hence also the same and will not be repeated here.
10.17 A centrifugal water pump designed to operate at 1200
rpm has dimensions

Parameter	Inlet	Outlet
Radius, $r(\mathrm{~mm})$	90	150
Blade width, $b(\mathrm{~mm})$	10	7.5
Blade angle, $\beta(\operatorname{deg})$	25	45

Determine the flow rate at which the entering velocity has no tangential component. Draw the outlet velocity diagram, and determine the outlet absolute flow angle (measured relative to the normal direction) at this flow rate. Evaluate the hydraulic power delivered by the pump if its efficiency is 70 percent. Determine the head developed by the pump.

Given: Data on a centrifugal pump

Find:
Flow rate for zero inlet tangential velocity; outlet flow angle; power; head

Solution:

The given or available data is $\quad \rho=999 \cdot \frac{\mathrm{~kg}}{\mathrm{~m}^{3}} \quad \omega=1200 \cdot \mathrm{rpm} \quad \eta=70 \cdot \%$

$$
\mathrm{r}_{1}=90 \cdot \mathrm{~mm} \quad \mathrm{~b}_{1}=10 \cdot \mathrm{~mm} \quad \beta_{1}=25 \cdot \mathrm{deg} \quad \mathrm{r}_{2}=150 \cdot \mathrm{~mm} \quad \mathrm{~b}_{2}=7.5 \cdot \mathrm{~mm} \quad \beta_{2}=45 \cdot \mathrm{deg}
$$

The governing equations (derived directly from the Euler turbomachine equation) are

$$
\begin{gather*}
\dot{W}_{m}=\left(U_{2} V_{t_{2}}-U_{1} V_{t_{1}}\right) \dot{m} \tag{10.2b}\\
H=\frac{\dot{W}_{m}}{\dot{m} g}=\frac{1}{g}\left(U_{2} V_{t_{2}}-U_{1} V_{t_{1}}\right) \tag{10.2c}
\end{gather*}
$$

We also have from geometry $\quad \alpha_{2}=\operatorname{atan}\left(\frac{\mathrm{V}_{\mathrm{t} 2}}{\mathrm{~V}_{\mathrm{n} 2}}\right)$
From geometry

$$
\mathrm{V}_{\mathrm{t} 1}=0=\mathrm{U}_{1}-\mathrm{V}_{\mathrm{rb} 1} \cdot \cos \left(\beta_{1}\right)=\mathrm{r}_{1} \cdot \omega \cdot-\frac{\mathrm{V}_{\mathrm{n} 1}}{\sin \left(\beta_{1}\right)} \cdot \cos \left(\beta_{1}\right)
$$

and from continuity

$$
\mathrm{V}_{\mathrm{n} 1}=\frac{\mathrm{Q}}{2 \cdot \pi \cdot \mathrm{r}_{1} \cdot \mathrm{~b}_{1}}
$$

Hence $\quad r_{1} \cdot \omega-\frac{\mathrm{Q}}{2 \cdot \pi \cdot r_{1} \cdot \mathrm{~b}_{1} \cdot \tan \left(\beta_{1}\right)}=0 \quad \mathrm{Q}=2 \cdot \pi \cdot \mathrm{r}_{1}{ }^{2} \cdot \mathrm{~b}_{1} \cdot \omega \cdot \tan \left(\beta_{1}\right) \quad \mathrm{Q}=29.8 \frac{\mathrm{~L}}{\mathrm{~s}} \quad \mathrm{Q}=0.0298 \frac{\mathrm{~m}^{3}}{\mathrm{~s}}$

The power, head and absolute angle α at the exit are obtained from direct computation using Eqs. 10.2b, 10.2c, and 1 above

$$
\mathrm{U}_{1}=\mathrm{r}_{1} \cdot \omega \quad \mathrm{U}_{1}=11.3 \frac{\mathrm{~m}}{\mathrm{~s}} \quad \mathrm{U}_{2}=\mathrm{r}_{2} \cdot \omega \quad \mathrm{U}_{2}=18.8 \frac{\mathrm{~m}}{\mathrm{~s}} \quad \mathrm{~V}_{\mathrm{t} 1}=0 \cdot \frac{\mathrm{~m}}{\mathrm{~s}}
$$

From geometry
and from continuity

$$
\mathrm{V}_{\mathrm{t} 2}=\mathrm{U}_{2}-\mathrm{V}_{\mathrm{rb} 2} \cdot \cos \left(\beta_{2}\right)=\mathrm{r}_{2} \cdot \omega \cdot-\frac{\mathrm{V}_{\mathrm{n} 2}}{\sin \left(\beta_{2}\right)} \cdot \cos \left(\beta_{2}\right)
$$

$$
\mathrm{V}_{\mathrm{n} 2}=\frac{\mathrm{Q}}{2 \cdot \pi \cdot \mathrm{r}_{2} \cdot \mathrm{~b}_{2}} \quad \mathrm{~V}_{\mathrm{n} 2}=4.22 \frac{\mathrm{~m}}{\mathrm{~s}}
$$

Hence

$$
\mathrm{V}_{\mathrm{t} 2}=\mathrm{r}_{2} \cdot \omega-\frac{\mathrm{V}_{\mathrm{n} 2}}{\tan \left(\beta_{2}\right)} \quad \mathrm{V}_{\mathrm{t} 2}=14.6 \frac{\mathrm{~m}}{\mathrm{~s}}
$$

Using these results in Eq. $1 \quad \alpha_{2}=\operatorname{atan}\left(\frac{\mathrm{V}_{\mathrm{t} 2}}{\mathrm{~V}_{\mathrm{n} 2}}\right) \quad \alpha_{2}=73.9 \mathrm{deg}$
Using them in Eq. 10.2b

$$
\mathrm{W}_{\mathrm{m}}=\left(\mathrm{U}_{2} \cdot \mathrm{~V}_{\mathrm{t} 2}-\mathrm{U}_{1} \cdot \mathrm{~V}_{\mathrm{t} 1}\right) \cdot \rho \cdot \mathrm{Q} \quad \mathrm{~W}_{\mathrm{m}}=8.22 \mathrm{~kW}
$$

Using them in Eq. 10.2c

$$
\mathrm{H}=\frac{1}{\mathrm{~g}} \cdot\left(\mathrm{U}_{2} \cdot \mathrm{~V}_{\mathrm{t} 2}-\mathrm{U}_{1} \cdot \mathrm{~V}_{\mathrm{t} 1}\right) \quad \mathrm{H}=28.1 \mathrm{~m}
$$

This is the power and head assuming no inefficiency; with $\eta=70 \%$, we have (from Eq. 10.8c)

$$
\begin{array}{ll}
\mathrm{W}_{\mathrm{h}}=\eta \cdot \mathrm{W}_{\mathrm{m}} & \mathrm{w}_{\mathrm{h}}=5.75 \mathrm{~kW} \\
\mathrm{H}_{\mathrm{p}}=\eta \cdot \mathrm{H} & \mathrm{H}_{\mathrm{p}}=19.7 \mathrm{~m}
\end{array}
$$

(This last result can also be obtained from Eq. 10.8a $\mathrm{W}_{\mathrm{h}}=\rho \cdot \mathrm{Q} \cdot \mathrm{g} \cdot \mathrm{H}_{\mathrm{p}}$)
10.18 Gasoline is pumped by a centrifugal pump. When the flow rate is $0.025 \mathrm{~m}^{3} / \mathrm{s}$, the pump requires 15 kW input, and its efficiency is 85 percent. Calculate the pressure rise produced by the pump. Express this result as (a) ft of water and (b) ft of gasoline.

Given: Data on centrifugal pump
Find: Pressure rise; Express as ft of water and gasoline

Solution:

Basic equations: $\quad \eta=\frac{\rho \cdot Q \cdot g \cdot H}{W_{m}}$
The given or available data is

$$
\mathrm{Q}=0.025 \cdot \frac{\mathrm{~m}^{3}}{\mathrm{~s}}
$$

$\mathrm{W}_{\mathrm{m}}=15 \cdot \mathrm{~kW}$
$\eta=85 . \%$

Solving for H
$H=\frac{\eta \cdot W_{m}}{\rho_{W} \cdot Q \cdot g}$
$H=52.0 \mathrm{~m}$
$\mathrm{H}=171 \mathrm{ft}$

For gasoline, from Table A. 2

$$
\mathrm{SG}=0.72
$$

$H_{g}=\frac{\eta \cdot W_{m}}{S G \cdot \rho_{W} \cdot Q \cdot g}$
$H_{g}=72.2 \mathrm{~m}$
$H_{g}=237 \mathrm{ft}$

Problem 10.19

10.19 A centrifugal pump designed to deliver water at $30 \mathrm{~L} / \mathrm{s}$ has dimensions

Parameter	Inlet	Outlet
Radius, $r(\mathrm{~mm})$	75	150
Blade width, $b(\mathrm{~mm})$	7.5	6.25
Blade angle, $\beta(\mathrm{deg})$	25	40

Draw the inlet velocity diagram. Determine the design speed if the entering velocity has no tangential component. Draw the outlet velocity diagram. Determine the outlet absolute flow angle (measured relative to the normal direction). Evaluate the theoretical head developed by the pump. Estimate the minimum mechanical power delivered to the pump.

Given: Geometry of centrifugal pump

Find: Draw inlet velocity diagram; Design speed for no inlet tangential velocity; Outlet angle; Head; Power

Solution:

Basic equations: $\quad \dot{W}_{m}=\left(U_{2} V_{t_{2}}-U_{1} V_{t_{1}}\right) \dot{m}$

$$
\begin{equation*}
H=\frac{\dot{W}_{m}}{\dot{m} g}=\frac{1}{g}\left(U_{2} V_{t_{2}}-U_{1} V_{t_{1}}\right) \tag{Eq.10.2b}
\end{equation*}
$$

The given or available data is

From the sketch $\quad \alpha_{2}=\operatorname{atan}\left(\frac{\mathrm{V}_{\mathrm{t} 2}}{\mathrm{~V}_{\mathrm{n} 2}}\right) \quad \alpha_{2}=80.5 \mathrm{deg}$
Hence

$$
\mathrm{W}_{\mathrm{m}}=\mathrm{U}_{2} \cdot \mathrm{~V}_{\mathrm{t} 2} \cdot \rho \cdot \mathrm{Q}
$$

$$
\mathrm{W}_{\mathrm{m}}=33.1 \cdot \mathrm{~kW}
$$

The head is

$$
\mathrm{H}=\frac{\mathrm{W}_{\mathrm{m}}}{\rho \cdot \mathrm{Q} \cdot \mathrm{~g}}
$$

$$
\mathrm{H}=113 \mathrm{~m}
$$

Given: Centrifugal pump operating with water, at shutoff.
Actual head rise is 70 percent of theoretical.
Find: (a) Prepare log-log plot of impeller radius versus theoretical head rise, with standard motor speeds as parameters.
(b) Explain how this plot might be used for preliminary design.

Solution: Apply the Euter turbomachine equation.
computing equation: $H=\frac{1}{g}\left(v_{2} v_{t 2}-v_{1} y_{t_{1}}^{*}\right)$
Assumptions: (1) No through flow, (2) Neglect V_{t},
Then $H=\frac{1}{g}\left(\omega R_{2} \omega R_{2}\right)=\frac{\omega^{2} R_{2}^{2}}{g}$ or $\log H=2 \log \omega+2 \log R_{2}-\log g$
These will be straight lines on a plot of $\log R_{2}$ vs. $\log H(a t c o n s t a n t w)$:

For a given application enter the abscissa with the desired head, move up to the desired driver speed, then move left to the ordinate and read the required impeller radius. The example (---line) illustrates.
10.21 In the water pump of Problem 10.7, the pump casing acts as a diffuser, which converts 60 percent of the absolute velocity head at the impeller outlet to static pressure rise. The head loss through the pump suction and discharge channels is 0.75 times the
 radial component of velocity head leaving the impeller. Estimate the volume flow rate, head rise, power input, and pump efficiency at the maximum efficiency point. Assume the torque to overcome bearing, seal, and spin losses is 10 percent of the ideal torque at $Q=$ $0.065 \mathrm{~m}^{3} / \mathrm{s}$.

Given: Geometry of centrifugal pump with diffuser casing
Find: Flow rate; Theoretical head; Power; Pump efficiency at maximum efficiency point

Solution:

Basic equations: $\quad \dot{W}_{m}=\left(U_{2} V_{t_{2}}-U_{1} V_{t_{1}}\right) \dot{m}$

$$
\begin{equation*}
H=\frac{\dot{W}_{m}}{\dot{m} g}=\frac{1}{g}\left(U_{2} V_{t_{2}}-U_{1} V_{t_{1}}\right) \tag{Eq.10.2b}
\end{equation*}
$$

The given or available data is

$$
\begin{array}{lll}
\rho=1000 \cdot \frac{\mathrm{~kg}}{\mathrm{~m}^{3}} & \mathrm{r}_{2}=7.5 \cdot \mathrm{~cm} & \mathrm{~b}_{2}=2 \cdot \mathrm{~cm} \\
\omega=1750 \cdot \mathrm{rpm} & \omega=183 \cdot \frac{\mathrm{rad}}{\mathrm{~s}} & \beta_{2}=65 \cdot \mathrm{deg} \\
\omega &
\end{array}
$$

Using given data

$$
\mathrm{U}_{2}=\omega \cdot \mathrm{r}_{2}
$$

$$
\mathrm{U}_{2}=13.7 \frac{\mathrm{~m}}{\mathrm{~s}}
$$

Illustrate the procedure with $\quad \mathrm{Q}=0.065 \cdot \frac{\mathrm{~m}^{3}}{\mathrm{~s}}$

From continuity

$$
\mathrm{V}_{\mathrm{n} 2}=\frac{\mathrm{Q}}{2 \cdot \pi \cdot \mathrm{r}_{2} \cdot \mathrm{~b}_{2}} \quad \mathrm{~V}_{\mathrm{n} 2}=6.9 \frac{\mathrm{~m}}{\mathrm{~s}}
$$

From geometry

$$
\mathrm{V}_{\mathrm{t} 2}=\mathrm{U}_{2}-\mathrm{V}_{\mathrm{rb} 2} \cdot \cos \left(\beta_{2}\right)=\mathrm{U}_{2}-\frac{\mathrm{V}_{\mathrm{n} 2}}{\sin \left(\beta_{2}\right)} \cdot \cos \left(\beta_{2}\right)
$$

Hence

$$
\begin{array}{ll}
\mathrm{V}_{\mathrm{t} 2}=\mathrm{U}_{2}-\frac{\mathrm{Q}}{2 \cdot \pi \cdot \mathrm{r}_{2} \cdot \mathrm{~b}_{2}} \cdot \cot \left(\beta_{2}\right) & \mathrm{V}_{\mathrm{t} 2}=10.5 \frac{\mathrm{~m}}{\mathrm{~s}} \quad \mathrm{~V}_{\mathrm{t} 1}=0 \quad \text { (axial inlet) } \\
\mathrm{V}_{2}=\sqrt{\mathrm{V}_{\mathrm{n} 2}^{2}+\mathrm{V}_{\mathrm{t} 2}^{2}} \\
\mathrm{H}_{\text {ideal }}=\frac{\mathrm{U}_{2} \cdot \mathrm{~V}_{\mathrm{t} 2}}{\mathrm{~g}} & \mathrm{~V}_{2}=12.6 \frac{\mathrm{~m}}{\mathrm{~s}} \\
\mathrm{~T}_{\text {friction }}=10 \cdot \% \cdot \frac{\mathrm{~W}_{\text {mideal }}}{\omega}=10 \cdot \% \cdot \frac{\rho \cdot \mathrm{Q} \cdot \mathrm{H}_{\text {ideal }}}{\omega} & \mathrm{H}_{\text {ideal }}=14.8 \cdot \mathrm{~m} \\
& \\
\mathrm{~T}_{\text {friction }}=10 \cdot \% \cdot \frac{\mathrm{Q} \cdot \rho \cdot \mathrm{~g} \cdot \mathrm{H}_{\text {ideal }}}{\omega} & \mathrm{T}_{\text {friction }}=5.13 \mathrm{~N} \cdot \mathrm{~m}
\end{array}
$$

$$
\mathrm{H}_{\text {actual }}=60 \cdot \% \cdot \frac{\mathrm{~V}_{2}^{2}}{2 \cdot g}-0.75 \cdot \frac{\mathrm{~V}_{\mathrm{n} 2}^{2}}{2 \cdot \mathrm{~g}} \quad \mathrm{H}_{\text {actual }}=3.03 \mathrm{~m}
$$

$$
\eta=\frac{\mathrm{Q} \cdot \rho \cdot \mathrm{~g} \cdot \mathrm{H}_{\mathrm{actual}}}{\mathrm{Q} \cdot \rho \cdot \mathrm{~g} \cdot \mathrm{H}_{\mathrm{ideal}}+\omega \cdot \mathrm{T}_{\text {friction }}} \quad \eta=18.7 \%
$$

The above graph can be plotted in Excel. In addition, Solver can be used to vary Q to maximize η. The results are

$$
\begin{array}{lll}
\mathrm{Q}=0.0282 \frac{\mathrm{~m}^{3}}{\mathrm{~s}} & \eta=22.2 \% & \mathrm{H}_{\text {ideal }}=17.3 \mathrm{~m} \\
\mathrm{~W}_{\mathrm{m}}=\mathrm{Q} \cdot \rho \cdot \mathrm{~g} \cdot \mathrm{H}_{\text {ideal }}+\omega \cdot \mathrm{T}_{\text {friction }} & \mathrm{W}_{\mathrm{m}}=5.72 \mathrm{~kW}
\end{array}
$$

Given: Performance curves (Appendix D) for Peerless $4 A E 12$ pump at 1750 and 3550 nominal rpm, with a 12.12 in. impeller.

Find: Obtain and plot curve-fits for total head us. delivery at each speed for this pump.

Solution: Tabulate data from Figs. 0.4 (1750 rpm) and $D .5$ (3550 rpm):

1750 rpm:	$Q(g \mathrm{gm})$	0	200	400	600
$H(f t)$	155	150	137	100	

chrve-fit: $\hat{H}(f t)=156-1.36 \times 10^{-4}[Q(g \mathrm{pm})]^{2} ; r^{2}=0.994$

$3550 \mathrm{rpm}:$| $\hat{H}(f)$ | 156 | 151 | 134 | 107 |
| :---: | :---: | :---: | :---: | :---: |
| | | | | |
| $(g \rho m)$ | 0 | 400 | 800 | 1200 |
| $H(f t)$ | 635 | 620 | 565 | 445 |

Curve-fit: $\hat{H}(f t)=641-1.33 \times 10^{-4}[Q(g p m)]^{2} ; r^{2}=0.994$

$$
\hat{H}(f t) \quad 641 \quad 619 \quad 556 \quad 449
$$

Plot:

Given: Performance curves (Appendix D) for Peerless 16 A 18 B pump at 705 and 880 nominal rpm, with an 18.0 in. diameter impeller.

Find: Obtain and plot curve-fits for total head versus delivers at each speed for this pump.

Solution: Tabulate data from Figs. $0.9(705 \mathrm{rpm})$ and $\mathrm{D} .10(880 \mathrm{rpm})$.

705 rpm:	$Q(g p m)$	0	2000	4000	6000	8000
$H(f t)$	59	56	50	43	32	

Curve-fit: $\hat{H}(f t)=57.8-4.09 \times 10^{-7}[Q(\mathrm{gpm})]^{2} ; r^{2}=0.994$

$880 \mathrm{rpm}:$| $\hat{H}(f t)$ | 57.8 | 56.2 | 51.3 | 43.1 | 31.6 | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | $Q(g \rho m)$
 $H(f t)$ 92 | 2000 | 400 | 6000 | 8000 | 10,000 |
| | | 89 | 84 | 78 | 68 | 50 |

curve-fit: $\hat{H}(f t)=91.5-4.01 \times 10^{-7}[Q(g p m)]^{2} ; r^{2}=0.992$

$\hat{H}(t+)$	91.5	89.9	85.1	77.1	65.9	51.5

Plot:

10.24 Data from tests of a suction pump operated at 1750 rpm with a $35-\mathrm{cm}$ diameter impeller are

Flow rate, $Q\left(\mathrm{~m}^{3} / \mathrm{s} \times 10^{3}\right)$	17	26	38	45	63
Total head, $H(\mathrm{~m})$	60	59	54	50	37
Power input, $\mathscr{P}(\mathrm{kW})$	19	22	26	30	34

Plot the performance curves for this pump; include a curve of efficiency versus volume flow rate. Locate the best efficiency point and specify the pump rating at this point.

Given: Data on suction pump

Find: Plot of performance curves; Best efficiency point

Solution:

Basic equations: $\quad \eta_{\mathrm{p}}=\frac{\mathrm{P}_{\mathrm{h}}}{\mathrm{P}_{\mathrm{m}}} \quad \quad \mathrm{P}_{\mathrm{h}}=\rho \cdot \mathrm{Q} \cdot \mathrm{g} \cdot \mathrm{H} \quad$ (Note: Software cannot render a dot!)

$$
\rho=1000 \mathrm{~kg} / \mathrm{m}^{3}
$$

Fitting a 2nd order polynomial to each set of data we find

$\mathbf{Q}\left(\mathbf{m}^{\mathbf{3}} / \mathbf{s}\right)$	$\boldsymbol{H}(\mathbf{m})$	$\mathcal{P}_{\mathbf{m}}(\mathbf{k W})$	$\mathcal{P}_{\mathbf{h}} \mathbf{(k W)}$	$\boldsymbol{\eta}(\%)$
0.017	60	19	10.0	52.7%
0.026	59	22	15.0	68.4%
0.038	54	26	20.1	77.4%
0.045	50	30	22.1	73.6%
0.063	37	34	22.9	67.3%

$$
\begin{aligned}
H & =-8440 Q^{2}+167 Q+59.9 \\
\eta & =-302 Q^{2}+26.9 Q+0.170
\end{aligned}
$$

Finally, we use Solver to maximize η by varying Q :

$\boldsymbol{Q}\left(\mathbf{m}^{\mathbf{3}} / \mathbf{s}\right)$	$\boldsymbol{H}(\mathbf{m})$	$\eta(\%)$
0.045	50.6	76.9%

10.25 Data from tests of a suction pump operated at 1750 rpm with a $35-\mathrm{cm}$ diameter impeller are

Flow rate, $Q\left(\mathrm{~m}^{3} / \mathrm{s} \times 10^{3}\right)$	18	28	35	50	58	81
Total head, $H(\mathrm{~m})$	62	62	61	57	53	41
Power input, $\mathscr{P}(\mathrm{kW})$	22	26	30	34	37	45

Plot the performance curves for this pump; include a curve of efficiency versus volume flow rate. Locate the best efficiency point and specify the pump rating at this point.

Given: Data on suction pump
Find: Plot of performance curves; Best efficiency point

Solution:

Basic equations: $\quad \eta_{\mathrm{p}}=\frac{\mathrm{P}_{\mathrm{h}}}{\mathrm{P}_{\mathrm{m}}} \quad \quad \mathrm{P}_{\mathrm{h}}=\rho \cdot \mathrm{Q} \cdot \mathrm{g} \cdot \mathrm{H} \quad$ (Note: Software cannot render a dot!)

$$
\rho=1000 \mathrm{~kg} / \mathrm{m}^{3}
$$

$\mathbf{Q}\left(\mathbf{m}^{\mathbf{3}} / \mathbf{s}\right)$	$\boldsymbol{H}(\mathbf{m})$	$\left.\mathcal{P}_{\mathbf{m}} \mathbf{(k W}\right)$	$\mathcal{P}_{\mathbf{h}} \mathbf{(k W)}$	$\boldsymbol{\eta}(\%)$
0.018	62	22	10.9	49.8%
0.028	62	26	17.0	65.5%
0.035	61	30	20.9	69.8%
0.050	57	34	28.0	82.2%
0.058	53	37	30.2	81.5%
0.081	41	45	32.6	72.4%

Fitting a 2nd order polynomial to each set of data we find

$$
\begin{aligned}
H & =-5404 Q^{2}+194 Q+60.5 \\
\eta & =-197 Q^{2}+23.0 Q+0.150
\end{aligned}
$$

Finally, we use Solver to maximize η by varying Q :

$\boldsymbol{Q}\left(\mathbf{m}^{\mathbf{3}} / \mathbf{s}\right)$	$\boldsymbol{H}(\mathbf{m})$	$\eta(\%)$
0.058	53.4	82.1%

Problem 10.26

10.26 Data measured during tests of a centrifugal pump at 2750
rpm are

Parameter	Inlet, Section (1)	Outlet, Section (2)
Gage pressure, $p(\mathrm{psi})$	17.5	75
Elevation above datum, $z(\mathrm{ft})$	8.25	30
Average speed of flow, $\bar{V}(\mathrm{ft} / \mathrm{s})$	9	12

The flow rate is 65 gpm and the torque applied to the pump shaft is $6.25 \mathrm{lbf} \cdot \mathrm{ft}$. Evaluate the total dynamic heads at the pump inlet and outlet, the hydraulic power input to the fluid, and the pump efficiency. Specify the electric motor size needed to drive the pump. If the electric motor efficiency is 85 percent, calculate the electric power requirement.

Given: Data on centrifugal pump

Find: Dynamic head at inlet and exit; Hydraulic power input; Pump efficiency; Motor size; Electric power required

Solution:

Basic equations: $\quad \dot{W}_{h}=\rho Q g H_{p}$

$$
\begin{equation*}
H_{p}=\left(\frac{p}{\rho g}+\frac{\bar{V}^{2}}{2 g}+z\right)_{\text {discharge }}-\left(\frac{p}{\rho g}+\frac{\bar{V}^{2}}{2 g}+z\right)_{\text {suction }} \quad\left(\text { Eq. 10.8b) } \quad \eta_{p}=\frac{\dot{W}_{h}}{\dot{W}_{m}}=\frac{\rho Q g H_{p}}{\omega T}\right. \tag{Eq.10.8c}
\end{equation*}
$$

The given or available data is

$$
\begin{array}{lllll}
\rho=1.94 \cdot \frac{\text { slug }}{\mathrm{ft}^{3}} \quad \omega=2750 \cdot \mathrm{rpm} & \eta_{\mathrm{e}}=85 \cdot \% & \mathrm{Q}=65 \cdot \mathrm{gpm} & \mathrm{Q}=0.145 \cdot \frac{\mathrm{ft}^{3}}{\mathrm{~s}} & \mathrm{~T}=6.25 \cdot \mathrm{lbf} \cdot \mathrm{ft} \\
\mathrm{p}_{1}=17.5 \cdot \mathrm{psi} & \mathrm{z}_{1}=8.25 \cdot \mathrm{ft} & \mathrm{~V}_{1}=9 \cdot \frac{\mathrm{ft}}{\mathrm{~s}} & \mathrm{p}_{2}=75 \cdot \mathrm{psi} & \mathrm{z}_{2}=30 \cdot \mathrm{ft} \\
\text { Then } & \mathrm{H}_{\mathrm{p} 1}=\frac{\mathrm{p}_{1}}{\rho \cdot \mathrm{~g}}+\frac{\mathrm{V}_{1}^{2}}{2 \cdot \mathrm{~g}}+\mathrm{z}_{1} & \mathrm{H}_{\mathrm{p} 1}=49.9 \cdot \mathrm{ft} & \mathrm{H}_{\mathrm{p} 2}=\frac{\mathrm{p}_{2}}{\rho \cdot g}+\frac{\mathrm{V}_{2}^{2}}{2 \cdot \mathrm{~g}}+\mathrm{z}_{2} & \mathrm{~V}_{2}=12 \cdot \frac{\mathrm{ft}}{\mathrm{~s}}
\end{array}
$$

Also, from Eq. 10.8a

$$
\mathrm{W}_{\mathrm{h}}=\rho \cdot \mathrm{g} \cdot \mathrm{Q} \cdot\left(\mathrm{H}_{\mathrm{p} 2}-\mathrm{H}_{\mathrm{p} 1}\right)
$$

$\mathrm{W}_{\mathrm{h}}=1405 \cdot \frac{\mathrm{ft} \cdot \mathrm{lbf}}{\mathrm{s}}$
$\mathrm{W}_{\mathrm{h}}=2.55 \cdot \mathrm{hp}$

The mechanical power in is $\quad W_{\mathrm{m}}=\omega \cdot \mathrm{T}$
$\mathrm{W}_{\mathrm{m}}=1800 \cdot \frac{\mathrm{ft} \cdot \mathrm{lbf}}{\mathrm{s}}$
$\mathrm{W}_{\mathrm{m}}=3.27 \cdot \mathrm{hp}$
We need a 3.5 hp motor
From Eq. 10.8c $\quad \eta_{p}=\frac{W_{h}}{W_{m}} \quad \eta_{p}=78.0 \%$
The input power is then

$$
\mathrm{W}_{\mathrm{e}}=\frac{\mathrm{W}_{\mathrm{m}}}{\eta_{\mathrm{e}}} \quad \mathrm{~W}_{\mathrm{e}}=2117 \cdot \frac{\mathrm{ft} \cdot \mathrm{lbf}}{\mathrm{~s}}
$$

$$
\mathrm{W}_{\mathrm{e}}=3.85 \cdot \mathrm{hp}
$$

$$
\mathrm{W}_{\mathrm{e}}=2.87 \cdot \mathrm{~kW}
$$

10.27 Data measured during tests of a centrifugal pump driven
at 3000 rpm are

Parameter	Inlet, Section (1)	Outlet, Section (2)
Gage pressure, $p(\mathrm{psi})$	12.5	
Elevation above datum, $z(\mathrm{ft})$	6.5	32.5
Average speed of flow, $\bar{V}(\mathrm{ft} / \mathrm{s})$	6.5	15

The flow rate is 65 gpm and the torque applied to the pump shaft is $4.75 \mathrm{lbf} \cdot \mathrm{ft}$. The pump efficiency is 75 percent, and the electric motor efficiency is 85 percent. Find the electric power required, and the gage pressure at section (2).

Given: Data on centrifugal pump

Find: Electric power required; gage pressure at exit

Solution:

Basic equations: $\quad \dot{W}_{h}=\rho Q g H_{p}$

$$
\begin{equation*}
H_{p}=\left(\frac{p}{\rho g}+\frac{\bar{V}^{2}}{2 g}+z\right)_{\text {discharge }}-\left(\frac{p}{\rho g}+\frac{\bar{V}^{2}}{2 g}+z\right)_{\text {suction }} \quad \text { (Eq. 10.8b) } \quad \eta_{p}=\frac{\dot{W}_{h}}{\dot{W}_{m}}=\frac{\rho Q g H_{p}}{\omega T} \tag{Eq.10.8c}
\end{equation*}
$$

The given or available data is

$$
\begin{array}{lllll}
\rho=1.94 \cdot \frac{\text { slug }}{\mathrm{ft}^{3}} & \omega=3000 \cdot \mathrm{rpm} & \eta_{\mathrm{p}}=75 \cdot \% & \eta_{\mathrm{e}}=85 \cdot \% & \mathrm{Q}=65 \cdot \mathrm{gpm} \\
\mathrm{~T}=4.75 \cdot \mathrm{lbf} \cdot \mathrm{ft} & \mathrm{p}_{1}=12.5 \cdot \mathrm{psi} & \mathrm{z}_{1}=6.5 \cdot \mathrm{ft} & \mathrm{~V}_{1}=6.5 \cdot \frac{\mathrm{ft}}{\mathrm{~s}} & \mathrm{z}_{2}=32.5 \cdot \mathrm{ft} \\
\mathrm{Q}=0.145 \cdot \frac{\mathrm{ft}^{3}}{\mathrm{~s}} \\
\hline
\end{array}
$$

From Eq. 10.8c

$$
H_{p}=\frac{\omega \cdot T \cdot \eta_{p}}{\rho \cdot Q \cdot g} \quad H_{p}=124 \cdot \mathrm{ft}
$$

Hence, from Eq. 10.8b

$$
\mathrm{p}_{2}=\mathrm{p}_{1}+\frac{\rho}{2} \cdot\left(\mathrm{~V}_{1}^{2}-\mathrm{V}_{2}^{2}\right)+\rho \cdot \mathrm{g} \cdot\left(\mathrm{z}_{1}-\mathrm{z}_{2}\right)+\rho \cdot \mathrm{g} \cdot \mathrm{H}_{\mathrm{p}} \quad \mathrm{p}_{2}=53.7 \cdot \mathrm{psi}
$$

Also

$$
\mathrm{W}_{\mathrm{h}}=\rho \cdot \mathrm{g} \cdot \mathrm{Q} \cdot \mathrm{H}_{\mathrm{p}}
$$

$$
\mathrm{W}_{\mathrm{h}}=1119 \cdot \frac{\mathrm{ft} \cdot \mathrm{lbf}}{\mathrm{~s}} \quad \mathrm{~W}_{\mathrm{h}}=2.03 \cdot \mathrm{hp}
$$

The shaft work is then

$$
\mathrm{W}_{\mathrm{m}}=\frac{\mathrm{W}_{\mathrm{h}}}{\eta_{\mathrm{p}}}
$$

$$
\mathrm{W}_{\mathrm{m}}=1492 \cdot \frac{\mathrm{ft} \cdot \mathrm{lbf}}{\mathrm{~s}} \quad \mathrm{~W}_{\mathrm{m}}=2.71 \cdot \mathrm{hp}
$$

Hence, electrical input is $\quad W_{e}=\frac{W_{m}}{\eta_{e}}$

Write the turbine specific speed in terms of the power coeffient and the head coefficient
Solution:

$$
N_{5}=w e^{1 / 2} / e^{4_{2}} h^{5 / 4} \ldots 10.18 a
$$

Power coefficient $\pi_{3}=\frac{\beta}{\left(\omega^{3}\right\rangle^{5}}$
Head coefficient $\quad \pi_{2}=\frac{h}{\omega^{2} \nu^{2}}$
Then

$$
\begin{aligned}
& \left.N_{5}=\left[\frac{Q}{p \omega^{3}}\right\rangle^{5}\right]^{1 / 2}\left[\frac{\left.\omega^{2}\right\rangle^{2}}{h}\right]^{5 / 4}=\frac{Q^{1 / 2}}{\left.\rho^{1 / 2} \omega^{3 / 2}\right\rangle^{5 / 2}} \times \frac{\omega^{5 / 2} \theta^{5 / 2}}{h^{5 / 4}}=\frac{Q^{1 / 2} \omega}{\rho^{1 / 2} h^{5 / 4}} \\
& N_{5}=\pi_{3}^{1 / 2} / \pi_{2}^{5 / 4}
\end{aligned}
$$

Write the pump specific speed in terms of the flow coefficient and the head coefficient
Solution:

$$
N_{5}=\frac{w^{1 / 2}}{h^{3 / 4}} \quad \ldots . .\left(n^{1} b a\right)
$$

How coefficient $\pi_{1}=\frac{Q}{\omega\rangle^{3}}$
Head coefficient $\pi_{2}=\frac{h}{\left.w^{2}\right)^{2}}$
Ten

$$
\begin{aligned}
& \lambda_{5}=\left[\frac{Q}{\omega)^{3}}\right]^{1 / 2} \cdot\left[\frac{\omega^{2} \theta^{2}}{h}\right]^{3 / 4}=\frac{Q^{1 / 2}}{\left.\omega^{(2)}\right)^{3 / 2}} \cdot \frac{\left.\omega^{3 / 2}\right)^{3 / 2}}{h^{3 / 4}}=\frac{\omega Q^{1 / 2}}{h^{3 / 4}} \\
& N_{5}=\pi_{1}^{1 / 2} / \pi_{2}^{3 / 4}
\end{aligned}
$$

Given: Kilogram force \equiv force exerted on 1 kg in standard gravity. Metric horsepower (ham) $\geq 75 \mathrm{~m} \cdot \mathrm{kgf} / \mathrm{s}$.

Find: (a) Devebp a conversion relating ham to uss. hp.
(b) Relate specific speed for a hydraulic therbine-expressed is units of rom, him, and m--to the specific speed calculated in U.S. customary units.

Solution:

$$
\begin{aligned}
& 1 \mathrm{hp}(\text { UsS. })=550 \frac{\mathrm{f}+16 f^{5}}{\mathrm{~s}} \times 0.305 \frac{\mathrm{~m}}{\mathrm{ft}} \times 0.4536 \frac{\mathrm{kgf}}{16 \mathrm{t}} \times \frac{\mathrm{hpm} . \mathrm{s}}{75 \mathrm{~m} \cdot \mathrm{kgf}}=1.01 \mathrm{hpm} \\
& N_{s c u}=\frac{N(\theta)^{1 / 2}}{(h)^{5 / 4}}=\frac{N(r \rho m)[\rho(h \rho U s)]^{1 / 2}}{[h(+1)]^{s / 4}} \\
& =N(r \rho m) \frac{[\rho(h \rho U S)]^{1 / 2}}{[f(h \rho m)]^{1 / 2}} \times[\rho(h \rho m)]^{\frac{1}{2}} \times \frac{[h(m)]^{5 / 4}}{[h(f+)]^{5 / 4}} \times \frac{1}{[h(m)]^{5 / 4}} \\
& =N\left(r \rho_{n}\right) \frac{[p(h \rho n)]^{1 / 4}}{[h(m)]^{s_{/ 4}}} \times\left[\frac{p(h \rho \cup s)}{p\left(h p n_{n}\right)}\right]^{1 / 2} \times\left[\frac{h(m)}{h(f+1}\right]^{5 / 4} \\
& =N_{s}(\mathrm{rpm}, h \rho m, m)_{x}(1.01)^{1 / 2}(0.305)^{5 / 4}
\end{aligned}
$$

Nscu $=0.228 \mathrm{Ns}(\mathrm{r} \rho \mathrm{m}, \mathrm{h} \rho \mathrm{m}, \mathrm{m})$

Check: $N=$ irpor, $p=(h, h) h=1 f+N_{s}(U S C S)=1$

$$
\begin{aligned}
& N=/ \mathrm{rpm}, p=1 \mathrm{hpm}, h=1 \mathrm{~m} ; N_{5}=\frac{(1)\left(\frac{1}{1.1)^{1 / 2}}\right.}{(1.30 .)^{5 / 4}}=4.39 \\
& \frac{N_{s}(\text { Uses })}{N_{s}(\mathrm{rpm}, \mathrm{~h} p m, m)}=\frac{1}{4.39}=0.228 \mathrm{vV}
\end{aligned}
$$

Given: Typical performance curves for a centrifugal pump, tested with three different impeller diameters:

Find: (a) Specify the flow nave and head at the best efficiency point (BEP) with a 12 in diameter impeller.
(b) Scale these data to predict the BEP for II in and B in. diameter impellers.
(c) comment on the accuracy of the scaling proced were.

Solution: From the graph, BEP ecus for the lz in. impeller at

$$
Q \simeq 22009 p m \text { and } H \simeq 130 \mathrm{f}
$$

From section 10-4.3, scaling rules are

$$
\begin{aligned}
Q_{2}=Q_{1}\left(\frac{D_{1}}{D_{1}}\right)^{3} ; Q_{11} & =22009 p m\left(\frac{11}{12}\right)^{3}=16909 p m \\
Q_{13} & =22009 p m\left(\frac{13}{12}\right)^{3}=28009 p m \\
H_{2}=H_{1}\left(\frac{D_{2}}{D_{1}}\right)^{2} ; H_{11} & =130 \mathrm{f}+\left(\frac{11}{12}\right)^{2}=109 \mathrm{ft} \\
H_{13} & =130 \mathrm{ft}\left(\frac{3}{12}\right)^{2}=153 \mathrm{~A}
\end{aligned}
$$

Thus BEPH is at $Q=1690 \mathrm{gpm}, \mathrm{H}=109 \mathrm{ft}$
$B E P_{/ 3}$ is at $Q=2800 \mathrm{gpm}, H=153 \mathrm{ft}$

The complete sealing reeks tend to rinove the volume flow rate too far. Accuracy would be improved using $Q_{2}=Q_{1}\left(D_{2} / D_{D}\right)^{2}$, since the impeller width does not change, and $H_{2}=H_{1}\left(D_{2} / D_{1}\right)$) since $H \simeq V^{4}$. with these modified rules.

$$
\left(Q_{11}, H_{11}\right)=1850 \mathrm{~g} \rho \mathrm{~m}, 109 \mathrm{ft} \text { and }\left(Q_{13}, 1+13\right)=2580 \mathrm{~g} 9 \mathrm{~m}, 153 \mathrm{ft}
$$

These modified sealing ports are closer to the measured BEDs.

Problem 10.32

10.32 A small centrifugal pump, when tested at $N=2875 \mathrm{rpm}$ with water, delivered $Q=0.016 \mathrm{~m}^{3} / \mathrm{s}$ and $H=40 \mathrm{~m}$ at its best efficiency point $(\eta=0.70)$. Determine the specific speed of the pump at this test condition. Sketch the impeller shape you expect. Compute the required power input to the pump.

Given: Data on small centrifugal pump
Find: Specific speed; Sketch impeller shape; Required power input

Solution:

Basic equation: $\quad N_{S}=\frac{\omega Q^{1 / 2}}{h^{3 / 4}} \quad$ (Eq. 10.22b) $\quad \eta_{p}=\frac{\dot{W}_{h}}{\dot{W}_{m}}=\frac{\rho Q g H_{p}}{\omega T} \quad$ (Eq. 10.8c)
The given or available data is

$$
\rho=1000 \cdot \frac{\mathrm{~kg}}{\mathrm{~m}^{3}} \quad \omega=2875 \cdot \mathrm{rpm} \quad \eta_{\mathrm{p}}=70 \% \quad \mathrm{Q}=0.016 \cdot \frac{\mathrm{~m}^{3}}{\mathrm{~s}} \quad \mathrm{H}=40 \cdot \mathrm{~m}
$$

Hence

$$
h=g \cdot \mathrm{H}
$$

$\mathrm{h}=392 \frac{\mathrm{~m}^{2}}{\mathrm{~s}^{2}}$
(H is energy/weight. h is energy/mass)
Then $\quad N_{S}=\frac{\omega \cdot Q^{\frac{1}{2}}}{h^{\frac{3}{4}}} \quad N_{S}=0.432$

From the figure we see the impeller will be centrifugal

The power input is (from Eq. 10.8c) $\quad W_{m}=\frac{W_{h}}{\eta_{p}}$

$$
\mathrm{W}_{\mathrm{m}}=\frac{\rho \cdot \mathrm{Q} \cdot \mathrm{~g} \cdot \mathrm{H}}{\eta_{\mathrm{p}}} \quad \mathrm{~W}_{\mathrm{m}}=8.97 \mathrm{~kW}
$$

10.33 A pump with $D=500 \mathrm{~mm}$ delivers $Q=0.725 \mathrm{~m}^{3} / \mathrm{s}$ of water at $H=10 \mathrm{~m}$ at its best efficiency point. If the specific speed of the pump is 1.74 , and the required input power is 90 kW , determine the shutoff head, H_{0}, and best efficiency, η. What type of pump is this? If the pump is now run at 900 rpm , by scaling the performance curve, estimate the new flow rate, head, shutoff head, and required power.

Given: Data on a pump
Find: Shutoff head; best efficiency; type of pump; flow rate, head, shutoff head and power at 900 rpm

Solution:

The given or available data is

$$
\rho=999 \cdot \frac{\mathrm{~kg}}{\mathrm{~m}^{3}} \quad \mathrm{~N}_{\mathrm{s}}=1.74 \quad \mathrm{D}=500 \cdot \mathrm{~mm} \quad \mathrm{Q}=0.725 \cdot \frac{\mathrm{~m}^{3}}{\mathrm{~s}} \quad \mathrm{H}=10 \cdot \mathrm{~m} \quad \mathrm{~W}_{\mathrm{m}}=90 \cdot \mathrm{~kW} \quad \omega^{\prime}=900 \cdot \mathrm{rpm}
$$

The governing equations are

$$
\begin{equation*}
\mathrm{W}_{\mathrm{h}}=\rho \cdot \mathrm{Q} \cdot \mathrm{~g} \cdot \mathrm{H} \tag{10.8a}
\end{equation*}
$$

$$
\begin{align*}
& \mathrm{N}_{\mathrm{s}}=\omega \cdot \mathrm{Q}^{\frac{1}{2}} \mathrm{~h}^{\frac{3}{4}} \tag{7.16a}\\
& \mathrm{H}_{0}=\mathrm{C}_{1}=\frac{\mathrm{U}_{2}^{2}}{\mathrm{~g}}
\end{align*}
$$

(From Eq. 10.7b)

Similarity rules

$$
\begin{equation*}
\frac{\mathrm{Q}_{1}}{\omega_{1} \cdot \mathrm{D}_{1}^{3}}=\frac{\mathrm{Q}_{2}}{\omega_{2} \cdot \mathrm{D}_{2}^{3}} \tag{10.19b}
\end{equation*}
$$

(10.19a) $\frac{\mathrm{h}_{1}}{{\omega_{1}{ }^{2} \cdot \mathrm{D}_{1}{ }^{2}}=\frac{\mathrm{h} 2}{\omega_{2}{ }^{2} \cdot \mathrm{D}_{2}{ }^{2}}}$

$$
\begin{equation*}
\frac{P_{1}}{\rho_{1} \cdot \omega_{1}^{3} \cdot D_{1}^{5}}=\frac{P_{2}}{\rho_{2} \cdot \omega_{2}^{3} \cdot D_{2}^{5}} \tag{10.19a}
\end{equation*}
$$

Hence from Eq. 7.16a $\quad \omega=\frac{\mathrm{N}_{\mathrm{s}} \cdot \mathrm{h}^{\frac{3}{4}}}{\frac{1}{2}} \quad \omega=608 \mathrm{rpm} \quad \omega=63.7 \frac{\mathrm{rad}}{\mathrm{s}}$

$$
\mathrm{h}=\mathrm{g} \cdot \mathrm{H}
$$

$\mathrm{h}=98.1 \frac{\mathrm{~J}}{\mathrm{~kg}}$

From Eq. 10.8a

$$
\mathrm{W}_{\mathrm{h}}=\rho \cdot \mathrm{Q} \cdot \mathrm{~g} \cdot \mathrm{H} \quad \mathrm{~W}_{\mathrm{h}}=71 \mathrm{~kW}
$$

$$
\eta_{p}=78.9 \%
$$

The shutoff head is given by

$$
\eta_{\mathrm{p}}=\frac{\mathrm{w}_{\mathrm{h}}}{\mathrm{w}_{\mathrm{m}}}
$$

$$
\begin{equation*}
\mathrm{H}_{0}=\frac{\mathrm{U}_{2}^{2}}{\mathrm{~g}} \tag{FromEq.10.7b}
\end{equation*}
$$

$$
\mathrm{U}_{2}=\frac{\mathrm{D}}{2} \cdot \omega \quad \mathrm{U}_{2}=15.9 \frac{\mathrm{~m}}{\mathrm{~s}}
$$

Hence

From Eq. 10.19a (with $D_{1}=D_{2}$) $\quad \frac{\mathrm{Q}_{1}}{\omega_{1}}=\frac{\mathrm{Q}_{2}}{\omega_{2}} \quad$ or $\quad \frac{\mathrm{Q}}{\omega}=\frac{\mathrm{Q}^{\prime}}{\omega^{\prime}} \quad \mathrm{Q}^{\prime}=\mathrm{Q} \cdot \frac{\omega^{\prime}}{\omega} \quad \mathrm{Q}^{\prime}=1.07 \frac{\mathrm{~m}^{3}}{\mathrm{~s}}$

From Eq. 10.19b (with $\left.D_{1}=D_{2}\right) \quad \frac{\mathrm{h}_{1}}{\omega_{1}^{2}}=\frac{\mathrm{h}_{2}}{\omega_{2}^{2}} \quad$ or $\quad \frac{\mathrm{H}}{\omega^{2}}=\frac{\mathrm{H}^{\prime}}{\omega^{\prime 2}} \quad H^{\prime}=H \cdot\left(\frac{\omega^{\prime}}{\omega}\right)^{2} \quad H^{\prime}=21.9 \mathrm{~m}$

Also

$$
\frac{\mathrm{H}_{0}}{\omega^{2}}=\frac{\mathrm{H}_{0}^{\prime}}{\omega^{\prime 2}}
$$

$H_{0}^{\prime}=H_{0} \cdot\left(\frac{\omega^{\prime}}{\omega}\right)^{2} \quad H_{0}^{\prime}=56.6 \mathrm{~m}$
(Alternatively, we could have used $\mathrm{H}_{0}{ }_{0}=\frac{\mathrm{U}_{2}{ }^{2}}{\mathrm{~g}}$)

From Eq. 10.19c (with $\left.D_{1}=D_{2}\right) \quad \frac{P_{1}}{\rho \cdot \omega_{1}^{3}}=\frac{\mathrm{P}_{2}}{\rho \cdot \omega_{2}^{3}} \quad$ or $\quad \frac{\mathrm{W}_{\mathrm{m}}}{\omega^{3}}=\frac{\mathrm{W}^{\prime} \mathrm{m}}{\omega^{3}} \quad \quad \mathrm{~W}_{\mathrm{m}}^{\prime}=W_{m} \cdot\left(\frac{\omega^{\prime}}{\omega}\right)^{3} \quad \mathrm{~W}_{\mathrm{m}}^{\prime}=292 \mathrm{~kW}$

Given: Aised-fow purr at $B E P(\eta=0.85)$ has $)=400 \mathrm{~mm}$, and delvers $Q=1.20 \mathrm{~m}^{3} / \mathrm{s}$ at $t=50 \mathrm{~m}$ when operating at $N-1500 \mathrm{pm}$.
(a) Calatate the specific speed of this pump
(b) Estimate te required power input
(c) Determine the curve-Fit parameters using BEt and shut off points.
(d) Scale the performance curve to estimate the flow, head, efficiency, and power required at 750 rpm .
Solution: In S units, $N=157 \mathrm{rad}, Q=1.20 \mathrm{n}^{3} 1 \mathrm{~s}$, and

$$
\begin{aligned}
& h=g H=490 \mathrm{~m}^{2} / \mathrm{s}^{2} \\
& N_{s}=\frac{\omega Q^{1 / 2}}{h^{3 / 4}}=151 \frac{\mathrm{rad}}{s} \times(1.20)^{1 / 2} \frac{\mathrm{~m}^{3 / 2}}{s^{1 / 2}} * \frac{s^{3 / 2}}{(490)^{3 / 4} \mathrm{~m}^{3 / 2}}=1.65 \\
& \dot{w}_{m}=\frac{\dot{w}_{h}}{\eta}=\frac{P Q Q H}{Q_{n}}=\frac{P Q h}{n}
\end{aligned}
$$

ft shutoff, $v_{t_{2}}=U_{2}$. so $H_{0}=\frac{V_{2}^{2}}{g}=\frac{\left(w h_{2}\right)^{2}}{g}$

$$
H_{0}=\left(157 \frac{\mathrm{rad}}{5} \times \frac{0.40 \mathrm{~h}}{2}\right)^{2}+\frac{s^{2}}{9.81 \mathrm{~m}}=100 \mathrm{~m}
$$

Thus, $H=H_{0}-A Q^{2}$ or $A=\left(H_{\infty}-H\right) / Q^{2}$

$$
A=(100-50) m \times(1.20)^{2} \frac{s^{2}}{m^{0}}=34.7 \mathrm{~m}^{-5} s^{2}
$$

or

$$
H_{m}=100-34 \pi\left[s\left(m^{3} L s\right]^{2}\right.
$$

$(1500$ rpm $)$
$+$
\qquad
Ht 750 rpm, $H_{0}^{\prime}=\left(\frac{N^{\prime}}{N}\right)^{2} H_{0}=\left(\frac{5}{1500}\right)^{2} 100=25 \mathrm{~m}$, and $R^{\prime}=A$
Rus

$$
\left.H^{\prime}(n)=25-3 x+2\left[x^{2} / s\right)\right]^{2}
$$

$(750 r p h)$ \qquad
HL SEP, $\quad Q^{\prime}=Q\left(\frac{\omega^{\prime}}{\omega}\right)=1.20 \frac{M^{3}}{s}\left(\frac{750}{500}\right)=0.60 \mathrm{~m}^{3} \mathrm{l}_{\mathrm{s}}$

$$
\begin{aligned}
& H^{\prime}=H\left(\frac{\omega}{\omega}\right)^{2}=50 m\left(\frac{75}{150}\right)^{2}=12.5 m \\
& \eta^{\prime}=\eta=0.85 \\
& Q^{\prime}=\theta\left(\frac{\omega}{\omega}\right)^{3}=6 a 16 \omega\left(\frac{750}{1500}\right)^{3}=8.4 \text { Rn s }
\end{aligned}
$$

Problem 10.35

10.35 A centrifugal water pump operates at 1750 rpm ; the impeller has backward-curved vanes with $\beta_{2}=60^{\circ}$ and $b_{2}=1.25 \mathrm{~cm}$. At a flow rate of $0.025 \mathrm{~m}^{3} / \mathrm{s}$, the radial outlet velocity is $V_{n_{2}}=3.5 \mathrm{~m} / \mathrm{s}$. Estimate the head this pump could deliver at 1150 rpm .

Given: Data on centrifugal pump
Find: Head at 1150 rpm

Solution:

Basic equation: $\quad H=\frac{\dot{W}_{m}}{\dot{m} g}=\frac{1}{g}\left(U_{2} V_{t_{2}}-U_{1} V_{t_{1}}\right) \quad$ (Eq. 10.2c)

The given or available data is

$$
\begin{array}{lll}
\rho=1000 \cdot \frac{\mathrm{~kg}}{\mathrm{~m}^{3}} & \mathrm{Q}=0.025 \cdot \frac{\mathrm{~m}^{3}}{\mathrm{~s}} & \beta_{2}=60 \cdot \mathrm{deg}
\end{array} \quad \mathrm{~b}_{2}=1.25 \cdot \mathrm{~cm}
$$

From continuity

$$
\mathrm{V}_{\mathrm{n} 2}=\frac{\mathrm{Q}}{2 \cdot \pi \cdot \mathrm{r}_{2} \cdot \mathrm{~b}_{2}}
$$

Hence

$$
\mathrm{r}_{2}=\frac{\mathrm{Q}}{2 \cdot \pi \cdot \mathrm{~b}_{2} \cdot \mathrm{~V}_{\mathrm{n} 2}} \quad \mathrm{r}_{2}=0.0909 \mathrm{~m} \quad \mathrm{r}_{2}=9.09 \mathrm{~cm}
$$

Then

$$
\mathrm{V}_{\mathrm{n} 2}^{\prime}=\frac{\omega^{\prime}}{\omega} \cdot \mathrm{V}_{\mathrm{n} 2} \quad \mathrm{~V}_{\mathrm{n} 2}^{\prime}=2.30 \frac{\mathrm{~m}}{\mathrm{~s}}
$$

Also

$$
\mathrm{U}_{2}^{\prime}=\omega^{\prime} \cdot \mathrm{r}_{2}
$$

$$
\mathrm{U}_{2}^{\prime}=11.0 \frac{\mathrm{~m}}{\mathrm{~s}}
$$

From the outlet geometry

$$
\mathrm{V}_{\mathrm{t} 2}^{\prime}=\mathrm{U}_{2}^{\prime}-\mathrm{V}_{\mathrm{n} 2}^{\prime} \cdot \cos \left(\beta_{2}\right) \quad \mathrm{V}_{\mathrm{t} 2}^{\prime}=9.80 \frac{\mathrm{~m}}{\mathrm{~s}}
$$

Finally

$$
\mathrm{H}^{\prime}=\frac{\mathrm{U}^{\prime} \cdot \cdot^{\prime} \mathrm{t} 2}{\mathrm{~g}} \quad \mathrm{H}^{\prime}=10.9 \mathrm{~m}
$$

10.36 A pumping system must be specified for a lift station at a wastewater treatment facility. The average flow rate is 110 million liters per day and the required lift is 10 m . Non-clogging impellers must be used; about 65 percent efficiency is expected. For convenient installation, electric motors of 37.5 kW or less are desired. Determine the number of motor/pump units needed and recommend an appropriate operating speed.

Given: Data on pumping system

Find: \quad Number of pumps needed; Operating speed

Solution:

Basic equations: $\quad W_{h}=\rho \cdot Q \cdot g \cdot H \quad \eta_{p}=\frac{W_{h}}{W_{m}}$
The given or available data is

$$
\rho=1000 \cdot \frac{\mathrm{~kg}}{\mathrm{~m}^{3}} \quad \mathrm{Q}_{\text {total }}=110 \times 10^{6} \cdot \frac{\mathrm{~L}}{\text { day }} \quad \mathrm{Q}_{\text {total }}=1.273 \frac{\mathrm{~m}^{3}}{\mathrm{~s}} \quad \mathrm{H}=10 \cdot \mathrm{~m} \quad \eta=65 \cdot \%
$$

Then for the system

$$
\mathrm{W}_{\mathrm{h}}=\rho \cdot \mathrm{Q}_{\text {total }} \cdot \mathrm{g} \cdot \mathrm{H}
$$

$$
\mathrm{W}_{\mathrm{h}}=125 \cdot \mathrm{~kW}
$$

The required total power is $\quad W_{m}=\frac{W_{h}}{\eta}$

$$
\mathrm{W}_{\mathrm{m}}=192 \cdot \mathrm{~kW}
$$

Hence the total number of pumps must be $\frac{192}{37.5}=5.12$, or at least six pumps
The flow rate per pump will then be $\mathrm{Q}=\frac{\mathrm{Q}_{\text {total }}}{6}$

$$
\mathrm{Q}=0.212 \frac{\mathrm{~m}^{3}}{\mathrm{~s}} \quad \mathrm{Q}=212 \cdot \frac{\mathrm{~L}}{\mathrm{~s}}
$$

From Fig. 10.15 the peak effiiciency is at a specific speed of about

$$
\mathrm{N}_{\mathrm{Scu}}=2000
$$

We also need

$$
\mathrm{H}=32.8 \cdot \mathrm{ft}
$$

$$
\mathrm{Q}=3363 \cdot \mathrm{gpm}
$$

$$
\text { Hence } \quad N=N_{S c u} \cdot \frac{H^{\frac{3}{4}}}{Q^{\frac{1}{2}}} \quad N=473
$$

The nearest standard speed to $\mathrm{N}=473 \mathrm{rpm}$ should be used

10.37 A set of seven 35 hp motor-pump units is used to deliver water through an elevation of 50 ft . The efficiency of the pumps is specified to be 60 percent. Estimate the delivery (gallons per day) and select an appropriate operating speed.

Given: Data on pumping system
Find: Total delivery; Operating speed

Solution:

Basic equations: $\quad W_{h}=\rho \cdot Q \cdot g \cdot H \quad \eta_{p}=\frac{W_{h}}{W_{m}}$
The given or available data is

$$
\rho=1000 \cdot \frac{\mathrm{~kg}}{\mathrm{~m}^{3}} \quad \mathrm{~W}_{\mathrm{m}}=35 \cdot \mathrm{hp} \quad \mathrm{H}=50 \cdot \mathrm{ft} \quad \eta=60 \cdot \%
$$

Then for the system

$$
\mathrm{W}_{\mathrm{mTotal}}=7 \cdot \mathrm{~W}_{\mathrm{m}}
$$

$$
\mathrm{W}_{\mathrm{mTotal}}=245 \cdot \mathrm{hp}
$$

The hydraulic total power is $\mathrm{W}_{\mathrm{hTotal}}=\frac{\mathrm{W}_{\mathrm{mTotal}}}{\eta} \quad \mathrm{W}_{\mathrm{hTotal}}=304 \cdot \mathrm{~kW}$
The total flow rate will then be $\quad \mathrm{Q}_{\text {Total }}=\frac{\mathrm{W}_{\mathrm{hTotal}}}{\rho \cdot \mathrm{g} \cdot \mathrm{H}} \quad \mathrm{Q}_{\text {Total }}=71.95 \cdot \frac{\mathrm{ft}^{3}}{\mathrm{~s}} \quad \mathrm{Q}_{\text {Total }}=32293 \cdot \mathrm{gpm}$
The flow rate per pump is $\quad \mathrm{Q}=\frac{\mathrm{Q}_{\text {Total }}}{6} \quad \mathrm{Q}=12.0 \cdot \frac{\mathrm{ft}^{3}}{\mathrm{~s}} \quad \mathrm{Q}=5382 \cdot \mathrm{gpm}$

From Fig. 10.15 the peak effiiciency is at a specific speed of about

$$
\mathrm{N}_{\mathrm{Scu}}=2500
$$

The nearest standard speed to $\mathrm{N}=641 \mathrm{rpm}$ should be used
Specific speed, $N_{s_{c u}}=\frac{N(\mathrm{rpm})[Q(\mathrm{gpm})]^{1 / 2}}{[H(\mathrm{ft})]^{3 / 4}}$
10.38 Appendix D contains area bound curves for pump model selection and performance curves for individual pump models. Use these data and the similarity rules to predict and plot the curves of head $H(\mathrm{ft})$ versus Q (gpm) of a Peerless Type 10AE12 pump, with impeller diameter $D=12 \mathrm{in}$., for nominal speeds of $1000,1200,1400$, and 1600 rpm .

Given: Data on Peerless Type 10AE12 pump at 1760 rpm
Find: Data at speeds of $1000,1200,1400$, and 1600 rpm

Solution:

The governing equations are the similarity rules

$$
\begin{align*}
& \frac{\mathrm{Q}_{1}}{\omega_{1} \cdot \mathrm{D}_{1}^{3}}=\frac{\mathrm{Q}_{2}}{\omega_{2} \cdot \mathrm{D}_{2}^{3}} \tag{10.19a}\\
& \frac{\mathrm{~h}_{1}}{\omega_{1}^{2} \cdot \mathrm{D}_{1}^{2}}=\frac{\mathrm{h} 2}{\omega_{2}^{2} \cdot \mathrm{D}_{2}^{2}} \tag{10.19b}
\end{align*}
$$

where

$$
\mathrm{h}=\mathrm{g} \cdot \mathrm{H}
$$

For scaling from speed ω_{1} to speed ω_{2}, with $D_{1}=D_{2}$ from Eq. 10.19a

$$
\mathrm{Q}_{2}=\mathrm{Q}_{1} \cdot \frac{\omega_{2}}{\omega_{1}}
$$

and from Eq. 10.19 b

$$
\mathrm{H}_{2}=\mathrm{H}_{1} \cdot\left(\frac{\omega_{2}}{\omega_{1}}\right)^{2}
$$

Speed (rpm) = 1760				Speed (rpm) = 1000		Speed (rpm) = 1200		Speed (rpm) = 1400		Speed (rpm) = 1600	
Q (gal/min)	Q^{2}	H (ft)	H (fit)	Q (gal/min)	H (ft)	$Q(\mathrm{gal} / \mathrm{min})$	H (ft)	Q (gal/min)	$H(\mathrm{ft})$	Q (gal/min)	H (ft)
0	0	170	161	0	52.0	0	74.9	0	102.0	0	133.2
500	250000	160	160	284	51.7	341	74.5	398	101.3	455	132.4
1000	1000000	155	157	568	50.7	682	73.0	795	99.3	909	129.7
1500	2250000	148	152	852	49.0	1023	70.5	1193	96.0	1364	125.4
2000	4000000	140	144	1136	46.6	1364	67.1	1591	91.3	1818	119.2
2500	6250000	135	135	1420	43.5	1705	62.6	1989	85.3	2273	111.4
3000	9000000	123	123	1705	39.7	2045	57.2	2386	77.9	2727	101.7
3500	12250000	110	109	1989	35.3	2386	50.8	2784	69.2	3182	90.4
4000	16000000	95	93	2273	30.2	2727	43.5	3182	59.1	3636	77.2

Data from Fig. D. 8 is "eyeballed"
The fit to data is obtained from a least squares fit to $H=H_{0}-A Q^{2}$

$$
\begin{array}{rc}
H_{0} & =161 \mathrm{ft} \\
A & =4.23 \mathrm{E}-06 \mathrm{ft} /(\mathrm{gal} / \mathrm{min})
\end{array}
$$

Problem 10.39
Given: Area bound curves for pump model selection and performance curves for individual pump models, Appendix D.
Find: Use these data to verify the similarity rules for a peerless Type $4 A E \pi$ pump operated at 1250 and 350 nominal rpm. with 11.00 in. impeller.

Solution: From Figs, D. 4 and D.5, at the best efficiency point (BEP):

The similarity rules are

$$
\frac{Q_{1}}{\omega_{1} D_{1}^{3}}=\frac{Q_{2}}{\omega_{2} D_{2}^{3}}, \frac{H_{1}}{\omega_{2}^{2} D_{1}^{2}}=\frac{H_{2}}{\omega_{2}^{2} D_{2}^{2}}, \frac{\theta_{1}}{\omega_{1}^{3} D_{1}^{S}}=\frac{Q_{2}}{\omega_{2}^{2} D_{2}^{5}} \text {, and } \eta_{1}=\eta_{2}
$$

Evaluating, with $D_{1}=D_{2}$,

$$
\begin{aligned}
& Q_{1}=Q_{2} \frac{\omega_{1}}{\omega_{2}}=970 \mathrm{gpm} \frac{1750 \mathrm{rpm}}{3550 \mathrm{rpm}}=478 \mathrm{gpm} \\
& H_{1}=H_{2}\left(\frac{\omega_{1}}{\omega_{2}}\right)^{2}=430 \mathrm{ft}\left(\frac{1750 \mathrm{rpm}}{3550 \mathrm{rpm}}\right)^{2}=104 \mathrm{ft} \\
& \theta_{1}=\theta_{2}\left(\frac{\omega_{1}}{\omega_{1}}\right)^{3}=135 \mathrm{hp}\left(\frac{1750 \mathrm{rpm}}{3550 \mathrm{rpm}}\right)^{3}=16.2 \mathrm{hp} \\
& \eta_{1}=\eta_{2}=0.74^{+}
\end{aligned}
$$

Comparing shows excellent agreement.

Given: Data from Appendix D for Recess Type $4 A E I 2$ pump.
Find: verity the similarity rules for the effects of diameter change at 1750 and 3550 nominal/ rpm.

Solution: From Figs, D. 4 and D.S at the best efficiency point (BEP):

The similarity rules are:

$$
\frac{Q_{1}}{\omega_{1} D_{1}^{3}}=\frac{Q_{2}}{\omega_{2} D_{2}^{3}} ; \frac{H_{1}}{\omega_{1}^{2} D_{1}^{2}}=\frac{H_{2}}{\omega_{2}^{2} D_{2}^{2}}, \frac{P_{1}}{\omega_{1}^{3} D_{1}^{5}}=\frac{P_{2}}{\omega_{2}^{3} D_{2}^{s}} \text {, and } \eta_{1}=\eta_{2} \text {. }
$$

Evakeatirg, with $\omega_{1}=\omega_{2}=1750 \mathrm{rpm}$,
$Q_{10}=Q_{11}\left(\frac{10}{11}\right)^{3}=353 ; Q_{12}=Q_{11}\left(\frac{12.12}{11}\right)^{3}=629 ; H_{10}=86.0 \mathrm{ft}, H_{12}=126 \mathrm{ft}$ $P_{10}=10.6 \mathrm{hp} ; P_{12}=27.6 \mathrm{hp} ; \eta=$ constant
Evaluating, with $\omega_{1}=\omega_{2}=3550 \mathrm{pm}$,
$Q_{10}=729 \mathrm{gpm}, Q_{12}=1300 \mathrm{gpm} ; H_{10}=355 \mathrm{ft}, H_{12}=522 \mathrm{ft}: \oplus_{10}=83.8 \mathrm{hp}$, $p_{12}=219 \mathrm{hp} ; \eta=$ constant
Comparing results with data shows:
(1) How rate is scaled poorly
(2) head is sealed well
(3) power is scaled poorly (because flow rate is scaled poorly) Better results are obtained using the modified scaling ruts (see p, 526); then $Q \sim D^{2}$ so $Q_{n}=388$ gem and $Q \sim D^{4}$ so $Q_{0}=11.6 \mathrm{hp}$ at 1750 rpm
and

$$
Q_{10}=802 \mathrm{gpm} \text { and } Q_{10}=92.2 \mathrm{hp} \text { at } 3550 \mathrm{rpm} \text {. }
$$

Given: Data in Appendix of or Peerless type 16 A 18 B pump.
Find: Verify the similarity rules for (a) impeller diane ter change and (b) speed change.

Solution: From Figs. D. 9 and D. 10 at the best efficiency point (BEP):

The similarity rules are:

$$
\frac{Q_{1}}{\omega_{1} D_{1}^{3}}=\frac{Q_{2}}{\omega_{2} D_{2}^{3}}, \frac{H_{1}}{\omega_{1}^{2} D_{1}^{2}}=\frac{H_{2}}{\omega_{2}^{2} D_{2}^{2}}, \frac{P_{1}}{\omega_{1}^{3} D_{1}^{5}}=\frac{P_{2}}{\omega_{2}^{3} D_{2}^{5}} \text {, and } \eta_{1}=\eta_{2}
$$

Evaluating with $\omega_{1}=\omega_{2}=705 \mathrm{ram}$,

$$
\begin{aligned}
& Q_{17}=Q_{18}\left(\frac{17}{18}\right)^{3}=5270 g \rho m, Q_{k}=4390 \mathrm{gpm} ; H_{17}=H_{18}\left(\frac{17}{18}\right)^{2}=37.5 \mathrm{ft} \\
& H_{16}=33,2 f+; P_{17}=P_{18}\left(\frac{17}{18}\right)^{5}=57.1 \mathrm{hp}, P_{16}=42.2 \mathrm{hp} ; 7=\text { constant }
\end{aligned}
$$

$A+880 \mathrm{rpm}, Q_{17}=6660 \mathrm{gpm}, Q_{16}=5550 \mathrm{gpm} ; H_{17}=61.5 \mathrm{ft}, H_{16}=54.5 \mathrm{ft}$;

$$
\varphi_{17}=116 \text { hp, } \theta_{16}=86.0 \mathrm{hp}: \eta=\text { constant }
$$

Evaluating with $D_{1}=D_{2}=18.0$ in.

$$
\begin{aligned}
& Q_{705}=Q_{880}\left(\frac{705}{880}\right)=633090 \mathrm{~m} ; H_{705}=1+880\left(\frac{705}{880}\right)^{2}=44.3 \mathrm{ft} ; \\
& P_{705}=P_{880}\left(\frac{705}{880}\right)^{3}=79.7 \mathrm{hp} ; \gamma=\text { constant }
\end{aligned}
$$

Comparing results with data shows at constant speed:
(1) trow rate scales poorly, (2) head scales well, (3) power scapes poorly with changes in diameter.
comparing rescetts with data shows at constant diameter:
all quantities scale well with changes in speed.
Flow rate scaling may be improved using the modified procedure discussed of page 52b, in which $Q \sim D^{2}$ and $\theta \sim D^{4}$.

Given: Performance curves for Reerless Type 16 A $18 B$ pump, Appendix D. (with $O=18.0$ in impeller).
Find: (a) Develop and plot curve-fits for 705 and 880 nominal rpm.
(b) Verify the effect of pump speed on scaling pump curves using the procedure of Example Problem 10.7.

Solution: Tabulate performance data and curve-fits:

705 rpm: | | | | | | | | |
| :--- | :--- | :--- | :--- | :---: | :---: | :---: | :---: |
| | $Q(g p m)$ | 0 | 2000 | 4000 | 6000 | 8000 | $B E P:$ |
| | $H(f t)$ | 57 | 56 | 50 | 43 | 32 | |
| 42 | | | | | | | |

curve-fit: $\hat{H}(f t)=57.8-4.09 \times 10^{-7}[Q(g \rho \mathrm{~m})]^{2} ; r^{2}=0.994$
$\begin{array}{cccccccc}880 \text { rpm: } & Q(g \mathrm{pm}) & 0 & 2000 & 4000 & 6000 & 8000 & \text { REP: } \\ H(f t) & 92 & 89 & 84 & 78 & 68 & & 69\end{array}$
curve-fit: $\hat{H}(f t)=91.5-4.01 \times 10^{-7}[Q(g \rho m)]^{2} ; r^{2}=0.992$
Plot:

Using the procedure of Example Problem 10.7:

$$
\begin{aligned}
& Q_{B^{\prime}}=Q_{B}=0 ; H_{B}=H_{B}\left(\frac{w^{\prime}}{\omega}\right)^{2}=59 \mathrm{ft}\left(\frac{880}{705}\right)^{2}=91.9 \mathrm{ft} \\
& Q_{C^{\prime}}=Q_{C}\left(\frac{\omega^{\prime}}{\omega}\right)=6250 \mathrm{gpm}\left(\frac{880}{705}\right)=7800 \mathrm{gpm} \\
& H_{C^{\prime}}=H_{C}\left(\frac{\omega^{\prime}}{\omega}\right)^{2}=42 \mathrm{ft}\left(\frac{880}{705}\right)^{2}=65.4 \mathrm{ft}
\end{aligned}
$$

Comparing the curve-fit parameters shows good agreement:

$$
\left.\begin{array}{rl}
\hat{H}=H_{0}-A Q^{2} \quad H_{\Delta} & =91.5+\text { compared to } H_{B}^{\prime}=91.9 \mathrm{ft} \\
A^{\prime} & =4.01 \times 10^{-7} \mathrm{ft} /(\mathrm{gpm})^{2} \\
A^{\prime} & =4.09 \times 10^{-7} \mathrm{ft} /(\mathrm{gpm})^{2}
\end{array}\right\} \text { within } 2.0 \%
$$

Given: Performance curves for Peerless T_{y} pe $10 A E I 2$ pump, Appendix D.
Find: (a) Develop and plot a curve-fit for 1760 nominal rpm.
(b) Scale the curve-fit to a pump speed of 1150 nominal rpm, using the procedure of Example Problem 10.7 .

Solution: Tabulate performance data and curve-fit, for $D=12 \mathrm{in}$. diameter impeller at 1760 nominal rpm:

$Q(g p m)$	1500	2000	2500	3000	300	4000
$H(f t)$	148	141	133	123	110	95
$\hat{H}(f t)$	148	141	133	122	110	95.5

$$
\text { Curve-fit: } \begin{aligned}
\hat{H}(f t) & \left.=157-3.83 \times 10^{-6}[Q \lg \rho m)\right]^{2} ; r^{2}=0.999 \\
\text { or } \hat{H} & =H 0-A Q^{2}
\end{aligned}
$$

The similarity rules are

$$
\frac{Q_{1}}{\omega_{1} D_{1}^{3}}=\frac{Q_{2}}{\omega_{2} D_{2}^{3}} ; \frac{H_{1}}{\omega_{1}^{2} D_{1}^{2}}=\frac{H_{2}}{\omega_{2}^{2} D_{2}^{2}}
$$

The pump diameter stays constant, so

$$
Q_{2}=Q_{1}\left(\frac{\omega_{2}}{\omega_{1}}\right) \text { and } H_{2}=H_{1}\left(\frac{\omega_{2}}{\omega_{1}}\right)^{2}=H_{1}\left(\frac{1150}{1760}\right)^{2}=0.427 H_{1}
$$

Following the procedure of Example Problem 10.7, then at 1100 rpm,

$$
\begin{aligned}
\hat{H}(f t) & =0.427 H_{0}-A Q^{2} \\
& =(0.427) 157 f+-3.83 \times 10^{-6}[Q(g p m)]^{2} \\
\hat{H}(f t) & =67.0 f t-3.83 \times 10^{-6}[Q(g p m)]^{2}
\end{aligned}
$$

The plot is:
Performance of Peerless Type 10AE12 Pump

Open-Ended Problem Statement: Problem 10.20 suggests that pump head at best efficiency is typically about 70 percent of shutoff head. Use pump data from Appendix D to evaluate this suggestion. A further suggestion in Section 10-4 is that the appropriate scaling for tests of a pump casing with different impeller diameters is $Q \propto D^{2}$. Use pump data to evaluate this suggestion.
Discussion: Data selected from pump performance curves in Appendix D is tabulated and plotted on the next page. Data were selected at the maximum efficiency point for the largest ($D_{\max }$) and smallest ($D_{\min }$) diameter impellers with which each pump was tested.
The head at the best efficiency point with the largest impeller was selected to compare with the shutoff head for the same impeller. These data are shown in the first graph, where they are compared to the average ratio, $H_{\mathrm{BEP}}=0.766 \mathrm{H}_{0}$. There is some scatter, but the trend of agreement is fairly clear. The actual values suggest a higher ratio than the 0.7 mentioned in Problem 10.20.

The flow rate ratio $Q_{\max } / Q_{\min }$ was compared with the square of the impeller diameter ratio $\left(D_{\max } / D_{\min }\right)^{2}$. These data ratios are shown in the second graph, where they are compared to the correlation line. Agreement is not perfect, but the trend supports a positive correlation of 0.751 . The predicted relationship between diameter and flow rate is $Q_{\max } / Q_{\min }=0.751\left(D_{\max } / D_{\min }\right)^{2}$.
(Use of three significant figures probably is not justified in this problem. The data are read from small graphs in the Appendix that have already been smoothed by the manufacturer. Also there is some uncertainty in selecting the best efficiency point on each curve.)

Sample	Fig.	Model	Speed (rpm)	$\begin{aligned} & H_{0} \\ & \text { (ft) } \end{aligned}$	$H_{\text {bep }}$ (ft)	$\begin{array}{r} H_{\mathrm{se}} / H_{0} \\ (\cdots) \end{array}$
1	D. 3	4AE11	1750	113	95	0.84
2	D. 5	4AE12	3550	636	500	0.79
3	D. 6	6AE14	1750	209	160	0.77
4	D. 7	8AE20G	1770	430	365	0.85
5	D. 8	10AE12	9760	170	112	0.66
6	D. 9	16A18B	705	59	42	0.71
7	D. 10	16A18B	880	92	69	0.75
				Average:		0.766

Fig.	Model	Speed	$D_{\text {min }}$	$Q_{\text {bep }}$	$\dot{D}_{\text {max }}$	$Q_{\text {Bep }}$	$\left(D_{\text {max }} / D_{\text {min }}\right)^{2}$	$Q_{\text {max }} / Q_{\text {min }}$
		(rpm)	(in.)	(gpm)	(in.)	(gpm)	(---)	(--)
D. 3	4AE11	1750	7.62	740	11.25	960	2.2	1.3
D. 5	4AE12	3550	9.5	910	12.12	1040	1.6	1.1
D. 6	6AE14	1750	10.38	1375	14.0	1750	1.8	1.3
D. 7	8AE20G	1770	16.0	2200	20.0	3450	1.6	1.6
D. 8	10AE12	1760	9.0	2500	12.0	3400	1.8	1.4
D. 9	16A18B	705	15.0	5100	18.0	6200	1.4	1.2
D. 10	16A18B	880	15.0	6500	18.0	7900	1.4	1.2
						relation:		0.751

Given: catalog data for centrifugal pump at design conditions:

$$
Q=250 \mathrm{gpm} \quad \Delta p=18.6 \mathrm{psi} \quad N=1750 \mathrm{rpm}
$$

Laboratory flume requires $Q_{f}=200$ gem at $H_{f}=32 f+$ the only quailable motor devebps 3 hp at 1750 rpm .
Find: (a) Is motor suitable?
(b) How might the pump/motor match be improved?

Solution: To obtain efficiency and pump power requirement, find specific speed.

$$
\begin{aligned}
& H=\frac{\Delta p}{\rho g}=18.6 \frac{10 f}{\ln .2} \times \frac{f+a}{62.4 \mathrm{hf}} \times 144 \frac{\mathrm{in}^{2}}{\mathrm{H}^{2}}=42.9 \mathrm{ft} \quad ; Q=\frac{250 \mathrm{gai}}{\mathrm{~min}}=0.557 \mathrm{cts} \\
& N s_{c u}=\frac{N Q^{1 / 2}}{H^{3 / 4}}=\frac{1750 \mathrm{rpm}(250 \mathrm{gpm})^{1 / 2}}{(42.9 \mathrm{ft})^{-3 / 4}}=1650
\end{aligned}
$$

From fig. 10.15, $7 \approx 0.73$. Thus

$$
\dot{w}_{m}=\frac{\dot{w}_{n}}{\eta}=\frac{\rho Q g H}{\eta}=\frac{1}{0.73} \times 62.4 \frac{1 \mathrm{bf}}{\mathrm{fr}} \times 0.557 \frac{\mathrm{ft3}}{\mathrm{~s}} \times 42.9 \mathrm{ft} \times \frac{\mathrm{hp}+\mathrm{s}}{550 \mathrm{f}+.16 \mathrm{f}}=3.71 \mathrm{hp}
$$

The motor is not suitable to drive the pump directly.
The pump at 1750 rpm produces more head and flow than necessary. It may be run at reduced speed, eig, by using a belt drive.
To produce $Q_{f}=200 \mathrm{gpm}$, solve $\frac{Q_{p}}{\omega_{p p_{p}^{3}}}=\frac{Q_{f}}{\omega_{f} D_{f}^{3}} ; \omega_{f}=\frac{200}{251} \times 1750=1400 \mathrm{rpm}$
To produce $H_{f}=32 f_{f}$, solve $\frac{H_{p}}{\omega_{p}^{2} D_{p}^{2}}=\frac{H_{f}}{\omega_{f}^{2} D_{f}} ; \omega_{f}=\sqrt{H_{f}} \omega_{p}=\sqrt{\frac{32}{42.9}} \times 1750=1510 \mathrm{rpp}$
At 150 rom the power requirement will be given by $\frac{P_{\rho}}{\omega p^{3} D_{p} 5}=\frac{P_{f}}{44_{f}^{3} D_{f}}$, so

$$
P_{f}=P_{p}\left(\frac{\omega_{f}}{L_{p}}\right)^{3}=3.71 \mathrm{hp}\left(\frac{1510}{1750}\right)^{3}=2.38 \mathrm{hp}
$$

This is well within the capability of the 3 hp motor. Therefore run pump at 150 pm .

Problem 10.46

10.46 A reaction turbine is designed to produce 17.5 MW at 120 rpm under 45 m of head. Laboratory facilities are available to provide 10 m of head and to absorb 35 kW from the model turbine. Assume comparable efficiencies for the model and prototype turbines. Determine the appropriate model test speed, scale ratio, and volume flow rate.

Given: Data on turbine system
Find: \quad Model test speed; Scale; Volume flow rate

Solution:

Basic equations: $\quad W_{h}=\rho \cdot Q \cdot g \cdot H$

The given or available data is

$$
\eta=\frac{W_{\text {mech }}}{W_{h}} \quad N_{S}=\frac{\omega \cdot P^{\frac{1}{2}}}{\rho^{\frac{1}{2} \cdot h^{\frac{5}{4}}}}
$$

$$
\rho=1000 \cdot \frac{\mathrm{~kg}}{\mathrm{~m}^{3}} \quad \mathrm{~W}_{\mathrm{p}}=17.5 \cdot \mathrm{MW} \quad \mathrm{H}_{\mathrm{p}}=45 \cdot \mathrm{~m} \quad \omega_{\mathrm{p}}=120 \cdot \mathrm{rpm} \quad \mathrm{H}_{\mathrm{m}}=10 \cdot \mathrm{~m} \quad \mathrm{~W}_{\mathrm{m}}=35 \cdot \mathrm{~kW}
$$

where sub p stands for prototype and sub m stands for model

Note that we need h (energy/mass), not H (energy/weight)

Hence for the prototype

$$
\mathrm{N}_{\mathrm{S}}=\frac{\omega_{\mathrm{p}} \cdot \mathrm{~W}_{\mathrm{p}}^{\frac{1}{2}}}{\frac{1}{2} \cdot h_{\mathrm{p}}^{\frac{5}{4}}} \quad \mathrm{~N}_{\mathrm{S}}=0.822
$$

$$
\mathrm{N}_{\mathrm{S}}=\frac{\omega_{\mathrm{m}} \cdot \mathrm{~W}_{\mathrm{m}}^{\frac{1}{2}}}{\rho^{\frac{1}{2}} \cdot \mathrm{~h}_{\mathrm{m}}^{\frac{5}{4}}} \quad \omega_{\mathrm{m}}=\mathrm{N}_{\mathrm{S}} \cdot \frac{\rho^{\frac{1}{2}} \cdot \mathrm{~h}_{\mathrm{m}}^{\frac{5}{4}}}{\mathrm{~W}_{\mathrm{m}}^{\frac{5}{2}}}
$$

$$
\omega_{\mathrm{m}}=42.9 \frac{\mathrm{rad}}{\mathrm{~s}} \quad \omega_{\mathrm{m}}=409 \mathrm{rpm}
$$

Then for the model

$$
h_{p}=H_{p} \cdot g \quad h_{p}=441 \frac{m^{2}}{\mathrm{~s}^{2}} \quad \mathrm{~h}_{\mathrm{m}}=\mathrm{H}_{\mathrm{m}} \cdot \mathrm{~g} \quad \mathrm{~h}_{\mathrm{m}}=98.1 \frac{\mathrm{~m}^{2}}{\mathrm{~s}^{2}}
$$

$\omega_{\mathrm{p}} \frac{1}{2}$

Hence from

$$
\eta=\frac{W_{\text {mech }}}{W_{h}}=\frac{W_{\text {mech }}}{\rho \cdot Q \cdot g \cdot H} \quad Q_{p}=\frac{W_{p}}{\rho \cdot g \cdot H_{p} \cdot \eta} \quad Q_{p}=42.6 \frac{\mathrm{~m}^{3}}{\mathrm{~s}}
$$

and also

$$
\mathrm{Q}_{\mathrm{m}}=\frac{\mathrm{W}_{\mathrm{m}}}{\rho \cdot \mathrm{~g} \cdot \mathrm{H}_{\mathrm{m}} \cdot \eta} \quad \mathrm{Q}_{\mathrm{m}}=0.384 \frac{\mathrm{~m}^{3}}{\mathrm{~s}}
$$

Problem 10.47

10.47 A $1 / 3$ scale model of a centrifugal water pump, when running at $N_{\mathrm{m}}=100 \mathrm{rpm}$, produces a flow rate of $Q_{\mathrm{m}}=1 \mathrm{~m}^{3} / \mathrm{s}$ with a head of $H_{\mathrm{m}}=4.5 \mathrm{~m}$. Assuming the model and prototype efficiencies are comparable, estimate the flow rate, head, and power requirement if the design speed is 125 rpm .

Given: Data on a model pump
Find: \quad Prototype flow rate, head, and power at 125 rpm

Solution:

Basic equation:

$$
\frac{\mathrm{Q}_{1}}{\omega_{1} \cdot \mathrm{D}_{1}{ }^{3}}=\frac{\mathrm{Q}_{2}}{\omega_{2} \cdot \mathrm{D}_{2}{ }^{3}}
$$

The given or available data is

$$
\begin{array}{ll}
\mathrm{N}_{\mathrm{m}}=100 \cdot \mathrm{rpm} & \mathrm{~N}_{\mathrm{p}}=125 \cdot \mathrm{rpm} \\
\mathrm{Q}_{\mathrm{m}}=1 \cdot \frac{\mathrm{~m}^{3}}{\mathrm{~s}} & \mathrm{H}_{\mathrm{m}}=4.5 \cdot \mathrm{~m}
\end{array}
$$

From Eq. 10.8a

$$
\mathrm{W}_{\mathrm{hm}}=\rho \cdot \mathrm{Q}_{\mathrm{m}} \cdot \mathrm{~g} \cdot \mathrm{H}_{\mathrm{m}} \quad \mathrm{~W}_{\mathrm{hm}}=44.1 \cdot \mathrm{~kW}
$$

From Eq. 10.19a (with $\left.D_{m} / D_{p}=1 / 3\right) \quad \frac{Q_{p}}{\omega_{p} \cdot D_{p}^{3}}=\frac{Q_{m}}{\omega_{m} \cdot D_{m}^{3}} \quad$ or $\quad \quad Q_{p}=Q_{m} \cdot \frac{\omega_{p}}{\omega_{m}} \cdot\left(\frac{D_{p}}{D_{m}}\right)^{3}=3^{3} \cdot Q_{m} \cdot \frac{\omega_{p}}{\omega_{m}}$

$$
\mathrm{Q}_{\mathrm{p}}=27 \cdot \mathrm{Q}_{\mathrm{m}} \cdot \frac{\mathrm{~N}_{\mathrm{p}}}{\mathrm{~N}_{\mathrm{m}}} \quad \mathrm{Q}_{\mathrm{p}}=33.8 \frac{\mathrm{~m}^{3}}{\mathrm{~s}}
$$

From Eq. 10.19b (with $D_{\mathrm{m}} / D_{\mathrm{p}}=1 / 3$)

$$
\begin{aligned}
& \frac{h_{p}}{\omega_{p}^{2} \cdot D_{p}^{2}}=\frac{h_{m}}{\omega_{m}^{2} \cdot D_{m}^{2}} \quad \text { or } \quad \frac{\mathrm{g} \cdot \mathrm{H}_{\mathrm{p}}}{\omega_{\mathrm{p}}^{2} \cdot \mathrm{D}_{\mathrm{p}}^{2}}=\frac{\mathrm{g} \cdot \mathrm{H}_{\mathrm{m}}}{\omega_{\mathrm{m}}^{2} \cdot \mathrm{D}_{\mathrm{pm}}^{2}} \\
& \mathrm{H}_{\mathrm{p}}=\mathrm{H}_{\mathrm{m}} \cdot\left(\frac{\omega_{\mathrm{p}}}{\omega_{\mathrm{m}}}\right)^{2} \cdot\left(\frac{\mathrm{D}_{\mathrm{p}}}{\mathrm{D}_{\mathrm{m}}}\right)^{2}=3^{2} \cdot \mathrm{H}_{\mathrm{m}} \cdot\left(\frac{\omega_{\mathrm{p}}}{\omega_{\mathrm{m}}}\right)^{2} \quad \mathrm{H}_{\mathrm{p}}=9 \cdot \mathrm{H}_{\mathrm{m}} \cdot\left(\frac{\mathrm{~N}_{\mathrm{p}}}{\mathrm{~N}_{\mathrm{m}}}\right)^{2} \quad \mathrm{H}_{\mathrm{p}}=63.3 \mathrm{~m}
\end{aligned}
$$

From Eq. 10.19c (with $\left.D_{\mathrm{m}} / D_{\mathrm{p}}=1 / 3\right) \quad \frac{\mathrm{P}_{\mathrm{p}}}{\rho \cdot \omega_{\mathrm{p}}{ }^{3} \cdot \mathrm{D}_{\mathrm{p}}^{5}}=\frac{\mathrm{P}_{\mathrm{m}}}{\rho \cdot \omega_{\mathrm{m}}{ }^{3} \cdot \mathrm{D}_{\mathrm{m}}^{5}} \quad$ or $\quad \mathrm{W}_{\mathrm{hp}}=\mathrm{W}_{\mathrm{hm}} \cdot\left(\frac{\omega_{\mathrm{p}}}{\omega_{\mathrm{m}}}\right)^{3} \cdot\left(\frac{\mathrm{D}_{\mathrm{p}}}{\mathrm{D}_{\mathrm{m}}}\right)^{5}=3^{5} \cdot \mathrm{~W}_{\mathrm{hm}} \cdot\left(\frac{\omega_{\mathrm{p}}}{\omega_{\mathrm{m}}}\right)^{3}$

$$
\mathrm{W}_{\mathrm{hp}}=243 \cdot \mathrm{~W}_{\mathrm{hm}} \cdot\left(\frac{\mathrm{~N}_{\mathrm{p}}}{\mathrm{~N}_{\mathrm{m}}}\right)^{3} \quad \mathrm{~W}_{\mathrm{hp}}=20.9 \cdot \mathrm{MW}
$$

Given: Pump to operate at $Q=250 \mathrm{cts}, H=400 \mathrm{ft}$, and $N=870 \mathrm{rpm}$.
Model test to be run in facility where $Q \leqslant E<t s$ and a 300 hp dynamometer is available. Assume model and prototype efficiencies are comparable.
Find: Appropriate model test speed and scale ratio.
Solution: To obta in homologous operating points, run model test at same specific speed as prototype.

$$
\begin{aligned}
& Q=250 \frac{\mathrm{f+3}}{\mathrm{sec}} \times 7.48 \frac{\mathrm{gat}}{\mathrm{f}^{3}} \times 60 \frac{\mathrm{sec}}{\mathrm{~min}}=112.000 \mathrm{gpm} \\
& N s_{c u}=\frac{N Q^{1 / 2}}{H^{3 / 4}}=\frac{870 \mathrm{r} \mathrm{\rho m}(112,0009 \mathrm{gm})^{1 / 2}}{(400 \mathrm{ft})^{3 / 4}}=3260
\end{aligned}
$$

(The dimensionless specific speed is $N_{s, n d}=3260 / 2733=119$. Figure 10.14 indicates a mixed-flow geometry.) Figure 10.15 indicates $\eta=0.92$ at this N / s. Thus

$$
\dot{w}_{m}=\frac{\dot{u}_{n}}{\eta}=\frac{\rho Q g H}{\eta}=\frac{1}{0.92} \times \frac{62.4 \frac{\mathrm{br}}{f+3} \times 250 \frac{\mathrm{ft}}{\mathrm{~s}} \mathrm{~s}}{} \times 400 \mathrm{ft} \times \frac{\mathrm{hp.s}}{550 \mathrm{f}+.4 f}=12.300 \mathrm{hp}
$$

For the model,

$$
H_{m}=\eta \dot{\omega} m / p 0 g=0.92 \times 300 h p_{\times} \frac{f+3}{62.416 f} \times \frac{5}{5 f+3} \times 550 \frac{\mathrm{ft.16f}}{h p^{\prime}}=487 \mathrm{ft}
$$

To match specific speeds, then

$$
N_{m_{c u}}=N_{s_{c u}} \mathrm{Hmm}_{\mathrm{Qm}^{3 / 4}}^{3 / 4}=3260 \frac{(487 \mathrm{ft})^{3 / 4}}{(2240 \mathrm{gpm})^{1 / 2}}=7140 \mathrm{rpm}
$$

The scale ratio may y be obtained from the scaling laws, For example, since

$$
\frac{Q_{m}}{\omega_{m D_{m}}}=\frac{Q_{p}}{\omega_{p} D_{p}^{3}} \quad \frac{D_{m}}{D_{p}}=\left[\frac{Q_{m}}{Q_{p}} \frac{\omega_{p}}{\omega_{m}}\right]^{\frac{1}{3}}=\left[\frac{1}{50} \times \frac{870}{7140}\right]^{\frac{1}{3}}=0.135
$$

Thus $D_{m}=0.135 D_{P}$ (scale ratio is $1 / 0.135=7.43$ to 1)
Check using the head ratio: $\frac{H_{m}}{\omega_{m m^{2} D_{m}}{ }^{2}}=\frac{H \rho}{\omega_{p}^{2} D_{p}^{2}}$

$$
H m=H \rho\left(\frac{\omega m}{\omega_{\rho}}\right)^{2}\left(\frac{D m}{D \rho}\right)^{2}=400 \mathrm{ft}\left(\frac{1140}{870}\right)^{2}(0.135)^{2}=491 \mathrm{f} \approx 487 \mathrm{ft}
$$

This is acceptable agree mont, considering rowendofferror.
$\left\{\begin{array}{l}\text { Great care would be needed to avoid cavitation in the model } \\ \text { pump at speeds above } 700 \mathrm{rpm} .\end{array}\right.$

Given: Model efficiency using curve-fit: $\eta=a Q-b Q^{3}$, where a and b are constants.

Find: (a) Describe a procedure to evaluate a and 6 from data.
(b) Evaluate using data for peerless type lofEiz pump, with impeller dicinete $D=12.0$ in, operating at 176 rpm .

Solution: From Fig. D.8, data are:

$\eta(0 / 0)$	70	75	80	84	86	86	84
$Q(\mathrm{gpm})$	1850	2100	2400	2780	3100	3700	4075

Two equations are needed to solve for constants a and b directly. A second equation may be obtained by differentiating. At peak efficiency,

$$
\frac{d \eta}{d Q}=a-3 b Q^{2}=0
$$

Assume peak efficiency is 87 percent at 3400 gpm . Then

$$
\begin{aligned}
7 \max & =a Q-6 Q^{3} \\
0 & =a-3 b Q^{2}
\end{aligned}
$$

Substituting from the second equation into the first gives

The curve-fit does a good job near peakefticiency, but tend's to underestimate the measured data elsewhere.
 $r^{2}=0.996$. This underestimates η at $Q>3000$ gpo.
10.50 Sometimes the variation of water viscosity with temperature can be used to achieve dynamic similarity. A model pump delivers 20 gpm of water at $59^{\circ} \mathrm{F}$ against a head of 60 ft , when operating at 3500 rpm . Determine the water temperature that must be used to obtain dynamically similar operation at 1750 rpm . Estimate the volume flow rate and head produced by the pump at the lower-speed test condition. Comment on the NPSH requirements for the two tests.

Given: Data on a model pump
Find: \quad Temperature for dynamically similar operation at 1750 rpm; Flow rate and head; Comment on NPSH

Solution:

Basic equation: $\quad \mathrm{Re}_{1}=\mathrm{Re}_{2} \quad$ and similarity rules $\quad \frac{\mathrm{Q}_{1}}{\omega_{1} \cdot \mathrm{D}_{1}{ }^{3}}=\frac{\mathrm{Q}_{2}}{\omega_{2} \cdot \mathrm{D}_{2}{ }^{3}} \frac{\mathrm{H}_{1}}{\omega_{1}{ }^{2} \cdot \mathrm{D}_{1}{ }^{2}}=\frac{\mathrm{H} 2}{\omega_{2}{ }^{2} \cdot \mathrm{D}_{2}{ }^{2}}$
The given or available data is

$$
\omega_{1}=3500 \cdot \mathrm{rpm}
$$

$\omega_{2}=1750 \cdot \mathrm{rpm}$
$\mathrm{Q}_{1}=20 \cdot \mathrm{gpm}$
$\mathrm{H}_{1}=60 \cdot \mathrm{ft}$

From Table A. 7 at $59^{\circ} \mathrm{F}$

$$
\nu_{1}=1.23 \times 10^{-5} \cdot \frac{\mathrm{ft}^{2}}{\mathrm{~s}}
$$

For $\mathrm{D}=\mathrm{constant} \quad \operatorname{Re}_{1}=\frac{\mathrm{V}_{1} \cdot \mathrm{D}}{\nu_{1}}=\frac{\omega_{1} \cdot \mathrm{D} \cdot \mathrm{D}}{\nu_{1}}=\mathrm{Re}_{2}=\frac{\omega_{2} \cdot \mathrm{D} \cdot \mathrm{D}}{\nu_{2}} \quad$ or $\quad \nu_{2}=\nu_{1} \cdot \frac{\omega_{2}}{\omega_{1}} \quad \nu_{2}=6.15 \times 10^{-6} \cdot \frac{\mathrm{ft}^{2}}{\mathrm{~s}}$
From Table A.7, at $\nu_{2}=6.15 \times 10^{-6} \cdot \frac{\mathrm{ft}^{2}}{\mathrm{~s}}$, we find, by linear interpolation

$$
\mathrm{T}_{2}=110+\frac{(120-110)}{(6.05-6.68)} \cdot(6.15-6.68) \quad \mathrm{T}_{2}=118 \text { degrees } \mathrm{F}
$$

From similar operation $\frac{\mathrm{Q}_{1}}{\omega_{1} \cdot \mathrm{D}^{3}}=\frac{\mathrm{Q}_{2}}{\omega_{2} \cdot \mathrm{D}^{3}} \quad$ or $\quad \mathrm{Q}_{2}=\mathrm{Q}_{1} \cdot \frac{\omega_{2}}{\omega_{1}} \quad \mathrm{Q}_{2}=10 \cdot \mathrm{gpm}$
and also

$$
\frac{\mathrm{H}_{1}}{\omega_{1}^{2} \cdot \mathrm{D}^{2}}=\frac{\mathrm{H}_{2}}{\omega_{2}^{2} \cdot \mathrm{D}^{2}}
$$

$$
\text { or } \quad \mathrm{H}_{2}=\mathrm{H}_{1} \cdot\left(\frac{\omega_{2}}{\omega_{1}}\right)^{2} \quad \mathrm{H}_{2}=15 \cdot \mathrm{ft}
$$

The water at $118^{\circ} \mathrm{F}$ is closer to boiling. The inlet pressure would have to be changed to avoid cavitation. The increase between runs 1 and 2 would have to be $\Delta \mathrm{p}=\mathrm{p}_{\mathrm{v} 2}-\mathrm{p}_{\mathrm{v} 1}$ where $\mathrm{p}_{\mathrm{v} 2}$ and $\mathrm{p}_{\mathrm{v} 1}$ are the vapor pressures at T_{2} and T_{1}. From the steam tables (find them by Googling!)

$$
\mathrm{p}_{\mathrm{v} 1}=0.247 \cdot \mathrm{psi} \quad \mathrm{p}_{\mathrm{v} 2}=1.603 \cdot \mathrm{psi} \quad \Delta \mathrm{p}=\mathrm{p}_{\mathrm{v} 2}-\mathrm{p}_{\mathrm{v} 1} \quad \Delta \mathrm{p}=1.36 \cdot \mathrm{psi}
$$

10.51 A four-stage boiler feed pump has suction and discharge lines of 10 cm and 7.5 cm inside diameter. At 3500 rpm , the pump is rated at $0.025 \mathrm{~m}^{3} / \mathrm{s}$ against a head of 125 m while handling water at $115^{\circ} \mathrm{C}$. The inlet pressure gage, located 50 cm below the impeller centerline, reads 150 kPa . The pump is to be factory certified by tests at the same flow rate, head rise, and speed, but using water at $27^{\circ} \mathrm{C}$. Calculate the NPSHA at the pump inlet in the field installation. Evaluate the suction head that must be used in the factory test to duplicate field suction conditions.

Given: Data on a boiler feed pump
Find: NPSHA at inlet for field temperature water; Suction head to duplicate field conditions

Solution:

Basic equation:

$$
\text { NPSHA }=\mathrm{p}_{\mathrm{t}}-\mathrm{p}_{\mathrm{v}}=\mathrm{p}_{\mathrm{g}}+\mathrm{p}_{\mathrm{atm}}+\frac{1}{2} \cdot \rho \cdot \mathrm{v}^{2}-\mathrm{p}_{\mathrm{v}}
$$

For field conditions $\quad \mathrm{p}_{\mathrm{g}}=\mathrm{p}_{\text {inlet }}+\rho \cdot \mathrm{g} \cdot \mathrm{z}_{\text {inlet }} \quad \mathrm{p}_{\mathrm{g}}=145 \mathrm{kPa}$

From continuity

$$
\mathrm{V}_{\mathrm{S}}=\frac{4 \cdot \mathrm{Q}}{\pi \cdot \mathrm{D}_{\mathrm{s}}^{2}} \quad \mathrm{~V}_{\mathrm{S}}=3.18 \frac{\mathrm{~m}}{\mathrm{~s}}
$$

From steam tables (try Googling!) at $115^{\circ} \mathrm{C} \quad \mathrm{p}_{\mathrm{V}}=169 \cdot \mathrm{kPa}$

Hence

$$
\mathrm{NPSHA}=\mathrm{pg}_{\mathrm{g}}+\mathrm{p}_{\mathrm{atm}}+\frac{1}{2} \cdot \rho \cdot \mathrm{v}_{\mathrm{s}}^{2}-\mathrm{p}_{\mathrm{v}} \quad \mathrm{NPSHA}=82.2 \mathrm{kPa}
$$

Expressed in meters or feet of water

$$
\frac{\mathrm{NPSHA}}{\rho \cdot \mathrm{~g}}=8.38 \mathrm{~m}
$$

$$
\frac{\mathrm{NPSHA}}{\rho \cdot \mathrm{~g}}=27.5 \mathrm{ft}
$$

In the laboratory we must have the same NPSHA. From Table A. 8 (or steam tables - try Googling!) at $27^{\circ} \mathrm{C}$

$$
\mathrm{p}_{\mathrm{v}}=3.57 \cdot \mathrm{kPa}
$$

Hence

$$
\mathrm{Pg}_{\mathrm{g}}=\mathrm{NPSHA}-\mathrm{p}_{\mathrm{atm}}-\frac{1}{2} \cdot \rho \cdot \mathrm{~V}_{\mathrm{s}}^{2}+\mathrm{p}_{\mathrm{v}} \quad \mathrm{p}_{\mathrm{g}}=-20.3 \mathrm{kPa}
$$

The absolute pressure is

$$
\mathrm{pg}_{\mathrm{g}}+\mathrm{p}_{\mathrm{atm}}=80.7 \mathrm{kPa}
$$

10.52 Data from tests of a pump operated at 1500 rpm , with a
$30-\mathrm{cm}$ diameter impeller, are

Flow rate, $Q\left(\mathbf{m}^{\mathbf{3}} / \mathrm{s} \times \mathbf{1 0}^{\mathbf{3}}\right)$	$\mathbf{1 0}$	$\mathbf{2 0}$	$\mathbf{3 0}$	$\mathbf{4 0}$	$\mathbf{5 0}$	$\mathbf{6 0}$	$\mathbf{7 0}$
Net positive suction head required, $N P S R(\mathrm{~m})$	2.2	2.4	2.6	3.1	3.6	4.1	5.1

Develop and plot a curve-fit equation for NPSHR versus volume flow rate in the form NPSHR $=a+b Q^{2}$, where a and b are constants. If the NPSHA $=6 \mathrm{~m}$, estimate the maximum allowable flow rate of this pump.

Given: Data on a NPSHR for a pump

Find: \quad Curve fit; Maximum allowable flow rate

Solution:

$Q\left(\mathrm{~m}^{3} / \mathrm{s} \times 10^{3}\right)$	Q^{2}	$N P S H R(\mathrm{~m})$	$N P S H R(\mathrm{fit})$
10	$1.00 \mathrm{E}+02$	2.2	2.2
20	$4.00 \mathrm{E}+02$	2.4	2.4
30	$9.00 \mathrm{E}+02$	2.6	2.7
40	$1.60 \mathrm{E}+03$	3.1	3.1
50	$2.50 \mathrm{E}+03$	3.6	3.6
60	$3.60 \mathrm{E}+03$	4.1	4.2
70	$4.90 \mathrm{E}+03$	5.1	5.0

The fit to data is obtained from a least squares fit to $N P S H R=a+b Q^{2}$

$$
\begin{aligned}
& a= \\
& b= \\
& b=12.12 \\
& 5.88 \mathrm{E}-04 \mathrm{~m} /\left(\mathrm{m}^{3} / \mathrm{s} \times 10^{3}\right)^{2}
\end{aligned} \quad \begin{array}{|c|c|}
\hline Q\left(\mathrm{~m}^{3} / \mathrm{s} \times 10^{3}\right) & N P S H R(\mathrm{~m}) \\
\hline 81.2 & 6.00 \\
\hline
\end{array}
$$

Open-Ended Problem Statement: A large deep fryer at a snack-food plant contains hot oil that is circulated through a heat exchanger by pumps. Solid particles and water droplets coming from the food product are observed in the flowing oil. What special factors must be considered in specifying the operating conditions for the pumps?
Discussion: Any solid particles must be able to pass through the pumps without clogging. If the particles are large, this may require larger than normal clearances within the pumps.
If the water droplets flashed to steam, they would form local pockets of water vapor. The pockets of water vapor would disrupt the flow patterns in the pumps in the same way as cavitation in a homogeneous liquid. To prevent this "cavitation" from occurring, static pressure everywhere in the flow circuit must be maintained above the saturation pressure of the water droplets at the temperature of the flowing oil.
The net positive suction head at the pump inlets must be sufficiently high to prevent any problems from occurring within the pumps themselves.
The solid particles may act as nucleation sites, which would foster the development of vapor pockets in the flow. This might increase the net positive suction head required by the pump above that measured in tests using water. The system must be sized to maintain a large net positive suction head at the design flow rate.
Finally, the viscosity of the oil must be considered. If viscosity is high, pump performance will be degraded compared to pumping water. Then a larger pump must be specified to handle the flow requirement of the hot oil circulation system.
10.54 The net positive suction head required (NPSHR) by a pump may be expressed approximately as a parabolic function of volume flow rate. The NPSHR for a particular pump operating at 1750 rpm is given as $H_{r}=H_{0}+A Q^{2}$, where $H_{0}=3 \mathrm{~m}$ of water and $A=3000 \mathrm{~m} /\left(\mathrm{m}^{3} / \mathrm{s}\right)^{2}$. Assume the pipe system supplying the pump suction consists of a reservoir, whose surface is 6 m above the pump centerline, a square entrance, 6 m of 15 cm cast-iron pipe, and a 90° elbow. Calculate the maximum volume flow rate at $20^{\circ} \mathrm{C}$ for which the suction head is sufficient to operate this pump without cavitation.

Given: Pump and supply pipe system

Find: Maximum operational flow rate

Solution:

Basic equations:

$$
\begin{array}{ll}
\left(\frac{p_{1}}{\rho}+\alpha_{1} \cdot \frac{V_{1}^{2}}{2}+g \cdot z_{1}\right)-\left(\frac{p_{2}}{\rho}+\alpha_{2} \cdot \frac{V_{2}^{2}}{2}+g \cdot z_{2}\right)=h_{\mathrm{l}} & \mathrm{~h}_{\mathrm{lT}}=\mathrm{f} \cdot \frac{\mathrm{~L}}{\mathrm{D}} \cdot \frac{\mathrm{v}^{2}}{2}+\mathrm{f} \cdot \frac{L_{e}}{\mathrm{D}} \cdot \frac{\mathrm{v}^{2}}{2}+\mathrm{K} \cdot \frac{\mathrm{v}^{2}}{2} \\
& L_{\mathrm{e}} \text { for the elbow, and } \mathrm{K} \text { for the square entrance } \\
\text { NPSHA }=\frac{\mathrm{p}_{\mathrm{t}}-\mathrm{p}_{\mathrm{v}}}{\rho \cdot g} & \mathrm{H}_{\mathrm{r}}=\mathrm{H}_{0}+\mathrm{A} \cdot \mathrm{Q}^{2}
\end{array}
$$

Assumptions: 1) $p_{1}=0$ 2) $\left.\left.V_{1}=03\right) \alpha_{2}=04\right) z_{2}=0$
We must match the NPSHR $\left(=\mathrm{H}_{\mathrm{r}}\right)$ and NPSHA
From the energy equation $\quad g \cdot H-\left(\frac{p_{2}}{\rho}+\frac{V^{2}}{2}\right)=f \cdot \frac{L}{D} \cdot \frac{v^{2}}{2}+f \cdot \frac{L_{e}}{D} \cdot \frac{v^{2}}{2}+K \cdot \frac{v^{2}}{2} \quad \frac{p_{2}}{\rho \cdot g}=H-\frac{v^{2}}{2 \cdot g} \cdot\left[1+f \cdot\left(\frac{L}{D}+\frac{L_{e}}{D}\right)+K\right]$

$$
\text { NPSHA }=\frac{p_{t}-p_{v}}{\rho \cdot g}=\frac{p_{2}}{\rho \cdot g}+\frac{p_{a t m}}{\rho \cdot g}+\frac{\mathrm{V}_{2}^{2}}{2 \cdot g}-\frac{p_{\mathrm{v}}}{\rho \cdot g} \quad \quad \text { NPSHA }=H-\frac{\mathrm{v}^{2}}{2 \cdot g} \cdot\left[f \cdot\left(\frac{\mathrm{~L}}{\mathrm{D}}+\frac{\mathrm{L}_{\mathrm{e}}}{\mathrm{D}}\right)+\mathrm{K}\right]+\frac{\left(\mathrm{p}_{\mathrm{atm}}-\mathrm{p}_{\mathrm{v}}\right)}{\rho \cdot \mathrm{g}}
$$

Given data: Computed results:

$L=6 \mathrm{~m}$	$Q\left(\mathrm{~m}^{3} / \mathrm{s}\right)$	$V(\mathrm{~m} / \mathrm{s})$	Re	f	NPSHA (m)	NPSHR (m)
$e=0.26 \mathrm{~mm}$	0.010	0.566	$8.40 \mathrm{E}+04$	0.0247	16.0	3.30
$D=15$ cm	0.015	0.849	$1.26 \mathrm{E}+05$	0.0241	16.0	3.68
$K_{\text {ent }}=0.5$	0.020	1.13	$1.68 \mathrm{E}+05$	0.0237	15.9	4.20
$L_{e} / D=30$	0.025	1.41	$2.10 \mathrm{E}+05$	0.0235	15.8	4.88
$H_{0}=3 \mathrm{~m}$	0.030	1.70	$2.52 \mathrm{E}+05$	0.0233	15.7	5.70
$A=3000 \mathrm{~m} /\left(\mathrm{m}^{3} / \mathrm{s}\right)^{2}$	0.035	1.98	$2.94 \mathrm{E}+05$	0.0232	15.6	6.68
$H=6 \mathrm{~m}$	0.040	2.26	$3.36 \mathrm{E}+05$	0.0232	15.5	7.80
$p_{\text {atm }}=101 \mathrm{kPa}$	0.045	2.55	$3.78 \mathrm{E}+05$	0.0231	15.4	9.08
$p_{\mathrm{v}}=2.34 \mathrm{kPa}$	0.050	2.83	$4.20 \mathrm{E}+05$	0.0230	15.2	10.5
$\rho=1000 \mathrm{~kg} / \mathrm{m}^{3}$	0.055	3.11	$4.62 \mathrm{E}+05$	0.0230	15.0	12.1
$v=1.01 \mathrm{E}-06 \mathrm{~m}^{2} / \mathrm{s}$	0.060	3.40	$5.04 \mathrm{E}+05$	0.0230	14.8	13.8
	0.065	3.68	$5.46 \mathrm{E}+05$	0.0229	14.6	15.7
	0.070	3.96	$5.88 \mathrm{E}+05$	0.0229	14.4	17.7

Error

0.0625	3.54	$5.25 \mathrm{E}+05$	0.0229	14.7	14.7	0.00

10.55 For the pump and flow system of Problem 10.54 , calculate the maximum flow rate for hot water at various temperatures and plot versus water temperature. (Be sure to consider the density variation as water temperature is varied.)

Given: Pump and supply pipe system

Find: \quad Maximum operational flow rate as a function of temperature

Solution:

Basic equations:

$$
\left.\begin{array}{ll}
\left(\frac{p_{1}}{\rho}+\alpha_{1} \cdot \frac{V_{1}^{2}}{2}+g \cdot z_{1}\right.
\end{array}\right)-\left(\frac{p_{2}}{\rho}+\alpha_{2} \cdot \frac{V_{2}^{2}}{2}+g \cdot z_{2}\right)=h_{1 T} \quad h_{1 T}=f \cdot \frac{L}{D} \cdot \frac{v^{2}}{2}+f \cdot \frac{L_{e}}{D} \cdot \frac{v^{2}}{2}+K \cdot \frac{v^{2}}{2} .
$$

Assumptions: 1) $p_{1}=0$ 2) $\mathrm{V}_{1}=0$ 3) $\alpha_{2}=0$ 4) $\mathrm{z}_{2}=0$

We must match the NPSHR $\left(=\mathrm{H}_{\mathrm{t}}\right)$ and NPSHA

From the energy equation	$g \cdot H-\left(\frac{p_{2}}{\rho}+\frac{v^{2}}{2}\right)=f \cdot \frac{L}{D} \cdot \frac{v^{2}}{2}+f \cdot \frac{L_{e}}{D} \cdot \frac{v^{2}}{2}+K \cdot \frac{V^{2}}{2} \quad \frac{p_{2}}{\rho \cdot g}=H-\frac{V^{2}}{2 \cdot g} \cdot\left[1+f \cdot\left(\frac{L}{D}+\frac{L_{e}}{D}\right)+K\right]$
$N P S H A=\frac{p_{t}-p_{v}}{\rho \cdot g}=\frac{p_{2}}{\rho \cdot g}+\frac{p_{a t m}}{\rho \cdot g}+\frac{V_{2}^{2}}{2 \cdot g}-\frac{p_{v}}{\rho \cdot g} \quad N P S H A=H-\frac{V^{2}}{2 \cdot g} \cdot\left[f \cdot\left(\frac{L}{D}+\frac{L_{e}}{D}\right)+K\right]+\frac{\left(p_{a t m}-p_{v}\right)}{\rho \cdot g}$	

Given data: Computed results:

	T $\left(^{\circ} \mathrm{C}\right.$)	$\boldsymbol{p}_{\mathrm{v}}(\mathrm{kPa})$	$\rho\left(\mathrm{kg} / \mathrm{m}^{3}\right)$	$v\left(\mathrm{~m}^{3} / \mathrm{s}\right)$	$Q\left(\mathrm{~m}^{3} / \mathrm{s}\right)$	$V(\mathrm{~m} / \mathrm{s})$	Re	f	NPSHA (m)	NPSHR (m)	Error
$e=0.26 \mathrm{~mm}$	0	0.661	1000	$1.76 \mathrm{E}-06$	0.06290	3.56	$3.03 \mathrm{E}+05$	0.0232	14.87	14.87	0.00
$D=15 \mathrm{~cm}$	5	0.872	1000	$1.51 \mathrm{E}-06$	0.06286	3.56	$3.53 \mathrm{E}+05$	0.0231	14.85	14.85	0.00
$K_{\text {ent }}=0.5$	10	1.23	1000	$1.30 \mathrm{E}-06$	0.06278	3.55	$4.10 \mathrm{E}+05$	0.0230	14.82	14.82	0.00
$L_{e} / D=30$	15	1.71	999	$1.14 \mathrm{E}-06$	0.06269	3.55	$4.67 \mathrm{E}+05$	0.0230	14.79	14.79	0.00
$H_{0}=3 \mathrm{~m}$	20	2.34	998	$1.01 \mathrm{E}-06$	0.06257	3.54	$5.26 \mathrm{E}+05$	0.0229	14.75	14.75	0.00
$A=3000 \mathrm{~m} /\left(\mathrm{m}^{3} / \mathrm{s}\right)^{2}$	25	3.17	997	$8.96 \mathrm{E}-07$	0.06240	3.53	$5.91 \mathrm{E}+05$	0.0229	14.68	14.68	0.00
$H=6 \mathrm{~m}$	30	4.25	996	8.03E-07	0.06216	3.52	$6.57 \mathrm{E}+05$	0.0229	14.59	14.59	0.00
$p_{\text {atm }}=101 \mathrm{kPa}$	35	5.63	994	$7.25 \mathrm{E}-07$	0.06187	3.50	$7.24 \mathrm{E}+05$	0.0228	14.48	14.48	0.00
$\rho=1000 \mathrm{~kg} / \mathrm{m}^{3}$	40	7.38	992	$6.59 \mathrm{E}-07$	0.06148	3.48	$7.92 \mathrm{E}+05$	0.0228	14.34	14.34	0.00
$v=1.01 \mathrm{E}-06 \mathrm{~m}^{2} / \mathrm{s}$	45	9.59	990	$6.02 \mathrm{E}-07$	0.06097	3.45	$8.60 \mathrm{E}+05$	0.0228	14.15	14.15	0.00
	50	12.4	988	$5.52 \mathrm{E}-07$	0.06031	3.41	$9.27 \mathrm{E}+05$	0.0228	13.91	13.91	0.00
	55	15.8	986	$5.09 \mathrm{E}-07$	0.05948	3.37	$9.92 \mathrm{E}+05$	0.0228	13.61	13.61	0.00
	60	19.9	983	$4.72 \mathrm{E}-07$	0.05846	3.31	$1.05 \mathrm{E}+06$	0.0228	13.25	13.25	0.00
	65	25.0	980	$4.40 \mathrm{E}-07$	0.05716	3.23	$1.10 \mathrm{E}+06$	0.0227	12.80	12.80	0.00
	70	31.2	978	$4.10 \mathrm{E}-07$	0.05548	3.14	$1.15 \mathrm{E}+06$	0.0227	12.24	12.24	0.00
	75	38.6	975	3.85E-07	0.05342	3.02	$1.18 \mathrm{E}+06$	0.0227	11.56	11.56	0.00
	80	47.4	972	$3.62 \mathrm{E}-07$	0.05082	2.88	$1.19 \mathrm{E}+06$	0.0227	10.75	10.75	0.00
	85	57.8	969	$3.41 \mathrm{E}-07$	0.04754	2.69	$1.18 \mathrm{E}+06$	0.0227	9.78	9.78	0.00
	90	70.1	965	$3.23 \mathrm{E}-07$	0.04332	2.45	$1.14 \mathrm{E}+06$	0.0227	8.63	8.63	0.00
	95	84.6	962	$3.06 \mathrm{E}-07$	0.03767	2.13	$1.05 \mathrm{E}+06$	0.0228	7.26	7.26	0.00
	100	101	958	2.92E-07	0.02998	1.70	$8.71 \mathrm{E}+05$	0.0228	5.70	5.70	0.00
	Solve	r to mak	he sum o	bsolute	rrors b	een NP	SHA and	NPS	zero by v	ing the Q 's	0.00

NPSHR increases with temperature because the p_{v} increases; NPHSA decreases because ρ decreases and $\boldsymbol{p}_{\mathrm{v}}$ increases

Problem 10.56
Gwen: Centrifugal pump, operating, at $\lambda=2265 \mathrm{mpn}$, lifts water. Between two resent Sirs connected by two cast-iron pipes in serves..

$$
h_{1}=300 \mathrm{f}, Y_{1}=6 \mathrm{in} ; h_{2}=100 f, D_{2}=3 \mathrm{in} \therefore \mathrm{~b}_{\mathrm{g}}=25 \mathrm{f} .
$$

Find: (a) head requirement, (s) power need, and (c) hourly cos or decucal one ray for $Q=200 \mathrm{gp}$ if electricity costs $12 x$ len, opening $\eta_{n}=0.85$
Solution:
Apply the energy equation to Re total system for steady, incompressible (as using and (B) al fervor surfaces

$$
h_{e T}=f_{1} \frac{V_{1}}{\Sigma_{1}} \frac{V_{2}^{2}}{2}+f_{2}{\frac{L_{2}}{2}}_{V_{2}} \psi_{2}^{2}
$$

Resumptions. (i) $P_{3}=P_{4}=P_{\text {atm }} \psi_{3}=\nu_{4} \neq 0$
(2) neglect minor Losses

$$
\begin{aligned}
& \text { Ron } \\
& \text { Ron } H_{a}=\frac{\partial_{4}-z_{3}}{}+f_{1} \frac{L_{1}}{D_{1}} \frac{\psi_{2}^{2}}{2 g}+f_{2} \frac{L_{2}}{D_{2}} \frac{\psi_{2}^{2}}{2} g \\
& V_{1}=\theta_{1}=200 g_{\operatorname{qal}} \times \frac{\mathrm{Gt}^{3}}{148 \mathrm{gal}} \times \frac{1 \mathrm{hn}}{609} * \pi(0.50)^{2} \mathrm{ft}^{2}=2.27 \mathrm{ftl}_{5}
\end{aligned}
$$

$$
R_{2}=\frac{\sqrt{8}}{8}=2.27 \frac{f}{5} * \frac{6 f}{12} \times 1.23 * 10^{-5} \frac{5}{f_{t^{2}}}=9.23 \times 10^{4}
$$

$R e_{2}=1.85 \times 10^{5}$. Frown Table 81 for cast 1 ion $e=0.00085 \mathrm{k}$

$$
e y_{1}=0.0017, e y_{2}=0.0034
$$

From Eq. 8.37, $f_{1}=0.0244, f_{2}=0.0278$. Substitungito (1)

$$
H_{a}=25 f t+0.024 \times \frac{300 \times 12}{6} \times \frac{(2.21)^{2}}{2} \frac{t^{2}}{s^{2}}+32.2 f t+0.0278 x \frac{50+2}{3} \times \frac{\left(9.08^{2} t^{2}\right.}{2} \frac{t^{2}}{2}+32 \cdot \frac{s^{2}}{H_{a}}
$$

$H_{a}=40.4 \mathrm{ft}$
Specific speed $A_{\text {sou }}=\frac{A^{1 / 2}}{H^{3 / 2}}=\frac{2265(200)^{1 / 2}}{(40,4)^{3 / 4}}=2000$

Cost $=c P_{e}$, Since $c=0.12$ (kwihr q $\eta_{m}=0.85$
Ran $Q_{e}=\frac{Q_{m}}{\eta_{m}}$ and

Given: Water supply for Grand Canon Nation Park, $L=13,200 \mathrm{fe}, Q=600 \mathrm{gph}$
Location V: Colorado River, $z^{\prime}=3734 \mathrm{ft}$
Location 2: Saw Rim : $z_{2}=$ lowlife in storage tank
head loss due to friction is her lg $=290$ fe
Find: (a) estimate dianelur of comenercial steel pipe. (b) purnping power if $r_{p}=0.61$.

Solution:
Apply the energy equation to the total saturn forsteadug incompressible flow using 0 and (1 at inlet and reservoir surface respacturdy
Compesingeq: $\frac{p_{1}}{p g}+\alpha \frac{D_{1}}{2 g}+z_{1}+t_{a}=\frac{t_{2}}{p g}+\alpha_{2} \frac{J_{2}^{2}}{2}+z_{2}+\frac{h^{2}}{g} \quad(10.24 b)$

$$
h_{a_{T}}=f=\frac{2 g}{8} \frac{y^{2}}{2}
$$

Hssumpticis. (i) $\beta_{1}=\beta_{2}=P_{a}$, $\bar{J}_{1}, \bar{J}_{2}=0$ (2) neglect minos loses:

Per

$$
H_{a}=z_{2}-z_{1}+\frac{h_{k}}{g} \cdots . . .(1) \quad \text { and } \quad \frac{k_{2}}{g}=f \frac{y^{2}}{2} \frac{y^{2}}{g}=290 f
$$

Since $f=f(8 e, e f y)$ and y is unknown, we mustiteratx.
For comeraal stars, $e=0.00015 \mathrm{ft}$
The procedure is

- assume D, calculate V, Re; determine $f\left(E^{2} 8.3 a+b\right)$; caluelat' her g and compare to value of z9oft.

$\mathrm{D}(\mathrm{in})$.	$\mathrm{V}(\mathrm{ft} / \mathrm{s})$	Re	f_{0}	$\mathrm{f}^{-0.5}$	f	$\mathrm{~h}_{\mathrm{IT}} / \mathrm{g}(\mathrm{ft})$
12	1.70	$1.46 \mathrm{E}+06$	0.0139	8.517	0.0138	8.2
10	2.45	$1.75 \mathrm{E}+06$	0.0141	8.433	0.0141	20.8
8	3.83	$2.19 \mathrm{E}+06$	0.0146	8.306	0.0145	65.3
6	6.81	$2.92 \mathrm{E}+06$	0.0153	8.111	0.0152	289

$$
R_{u s} P=6.0 \mathrm{in}
$$

Retotal pure tread is $H_{a}=7022-3734+290=3578 \mathrm{f}$.
The pump power is $B_{n}=\frac{v_{4}}{n}=\frac{p g}{n}$

$$
\begin{aligned}
& B_{m}=890 \text { the. }
\end{aligned}
$$

10.58 A centrifugal pump is installed in a piping system with $L=300 \mathrm{~m}$ of $D=40 \mathrm{~cm}$ cast-iron pipe. The downstream reservoir surface is 15 m lower than the upstream reservoir. Determine and plot the system head curve. Find the volume flow rate (magnitude and direction) through the system when the pump is not operating. Estimate the friction loss, power requirement, and hourly energy cost to pump water at $1 \mathrm{~m}^{3} / \mathrm{s}$ through this system.

Given: Pump and reservoir system

Find: System head curve; Flow rate when pump off; Loss, Power required and cost for $1 \mathrm{~m}^{3} / \mathrm{s}$ flow rate

Solution:

Basic equations: $\quad\left(\frac{\mathrm{p}_{1}}{\rho}+\alpha_{1} \cdot \frac{\mathrm{~V}_{1}{ }^{2}}{2}+\mathrm{g} \cdot \mathrm{z}_{1}\right)-\left(\frac{\mathrm{p}_{2}}{\rho}+\alpha_{2} \cdot \frac{\mathrm{~V}_{2}{ }^{2}}{2}+\mathrm{g} \cdot \mathrm{z}_{2}\right)=\mathrm{h}_{\mathrm{lT}}-\mathrm{h}_{\mathrm{p}} \quad \mathrm{h}_{\mathrm{lT}}=\mathrm{f} \cdot \frac{\mathrm{L}}{\mathrm{D}} \cdot \frac{\mathrm{V}^{2}}{2}+\Sigma \cdot \mathrm{K} \cdot \frac{\mathrm{V}^{2}}{2}$ (K for the exit)
where points 1 and 2 are the reservoir free surfaces, and h_{p} is the pump head

$$
\text { Note also } \quad \mathrm{H}=\frac{\mathrm{h}}{\mathrm{~g}} \quad \text { Pump efficiency: } \quad \eta_{\mathrm{p}}=\frac{\mathrm{W}_{\mathrm{h}}}{\mathrm{~W}_{\mathrm{m}}}
$$

Assumptions: 1) $p_{1}=p_{2}=p_{a t m}$ 2) $\left.\left.\left.V_{1}=V_{2}=03\right) \alpha_{2}=04\right) \mathrm{z}_{1}=0, \mathrm{z}_{2}=-15 \cdot \mathrm{~m} 4\right) \mathrm{K}=\mathrm{K}_{\mathrm{ent}}+\mathrm{K}_{\mathrm{ent}}=1.5$
From the energy equatiol $-g \cdot z_{2}=f \cdot \frac{L}{D} \cdot \frac{V^{2}}{2}-h_{p}+K \cdot \frac{V^{2}}{2} \quad h_{p}=g \cdot z_{2}+f \cdot \frac{L}{D} \cdot \frac{V^{2}}{2}+K \cdot \frac{V^{2}}{2} \quad H_{p}=z_{2}+f \cdot \frac{L}{D} \cdot \frac{V^{2}}{2 \cdot g}+K \cdot \frac{V^{2}}{2 \cdot g}$
Given or available data $\mathrm{L}=300 \cdot \mathrm{~m}$
$\mathrm{D}=40 \cdot \mathrm{~cm}$
$\mathrm{e}=0.26 \cdot \mathrm{~mm}$
(Table 8.1)

$$
\begin{equation*}
\rho=1000 \cdot \frac{\mathrm{~kg}}{\mathrm{~m}^{3}} \quad \nu=1.01 \times 10^{-6} \cdot \frac{\mathrm{~m}^{2}}{\mathrm{~s}} \tag{TableA.8}
\end{equation*}
$$

The set of equations to solve for each flow rate Q are

$$
\mathrm{V}=\frac{4 \cdot \mathrm{Q}}{\pi \cdot \mathrm{D}^{2}} \quad \mathrm{Re}=\frac{\mathrm{V} \cdot \mathrm{D}}{\nu} \quad \frac{1}{\sqrt{\mathrm{f}}}=-2.0 \cdot \log \left(\frac{\frac{\mathrm{e}}{\mathrm{D}}}{3.7}+\frac{2.51}{\mathrm{Re} \cdot \sqrt{\mathrm{f}}}\right) \quad \mathrm{H}_{\mathrm{p}}=\mathrm{z}_{2}+\mathrm{f} \cdot \frac{\mathrm{~L}}{\mathrm{D}} \cdot \frac{\mathrm{~V}^{2}}{2 \cdot \mathrm{~g}}+\mathrm{K} \cdot \frac{\mathrm{~V}^{2}}{2 \cdot \mathrm{~g}}
$$

For example, for

$$
\mathrm{Q}=1 \cdot \frac{\mathrm{~m}^{3}}{\mathrm{~s}} \quad \mathrm{~V}=7.96 \cdot \frac{\mathrm{~m}}{\mathrm{~s}} \quad \mathrm{Re}=3.15 \times 10^{6}
$$

$$
\mathrm{f}=0.0179
$$

$$
\mathrm{H}_{\mathrm{p}}=33.1 \cdot \mathrm{~m}
$$

Q (cubic meter/s)

The above graph can be plotted in Excel. In Excel, Solver can be used to find Q for $\mathrm{H}_{\mathrm{p}}=0 \quad \mathrm{Q}=0.557 \frac{\mathrm{~m}^{3}}{\mathrm{~s}} \quad$ (Zero power rate) At $\quad \mathrm{Q}=1 \cdot \frac{\mathrm{~m}^{3}}{\mathrm{~s}} \quad$ we saw that $\quad \mathrm{H}_{\mathrm{p}}=33.1 \cdot \mathrm{~m}$

Assuming optimum efficiency at $\mathrm{Q}=1.59 \times 10^{4} \cdot$ gpm from Fig. $\quad \eta_{p}=92 \cdot \%$
10.15

Then the hydraulic power is $\quad \mathrm{W}_{\mathrm{h}}=\rho \cdot \mathrm{g} \cdot \mathrm{H}_{\mathrm{p}} \cdot \mathrm{Q} \quad \mathrm{W}_{\mathrm{h}}=325 \cdot \mathrm{~kW}$

The pump power is then

$$
\mathrm{W}_{\mathrm{m}}=\frac{\mathrm{W}_{\mathrm{h}}}{\eta_{\mathrm{p}}} \quad \mathrm{~W}_{\mathrm{m}} \cdot 2=706 \cdot \mathrm{~kW}
$$

If electricity is 10 cents per kW -hr then the hourly cost is about $\$ 35$
If electricity is 15 cents per kW -hr then the hourly cost is about \$53
If electricity is 20 cents per kW -hr then the hourly cost is about $\$ 71$

Gwen: Peerless horizontal spit-case 4AE12 purr wit lin deainter impeller, operating at no rpm, lifts water batweentwo resend joins connected by two cation pipes in series

$$
\left.h_{1}=200 \text { ft, },_{1}=4 \mathrm{in} ; h_{2}=200 \text { ft, }\right\rangle_{2}=3 \mathrm{ni} ; H_{z}=10 f
$$

Plot the system head curve and determine the pure operating paint.
Solution:
Apply te energy equation to th to cl system for steady, incoripresible (N) using (3) and (4) at reservoir surface:
Computing eq.:

Assumptions: (1) $Q_{3}=-P_{k}=P_{\text {ate }}, V_{3}=t_{k} \neq 0$
(a) neglect minor bosses

Pen

$$
\begin{equation*}
H_{a}=3-z_{3}+f_{1} \frac{V_{1}^{2}}{D_{1}} \frac{1}{\varepsilon_{q}}+f_{2} \frac{V_{2}}{\theta_{2}} \frac{V_{2}^{2}}{\partial g} \tag{1}
\end{equation*}
$$

$$
\begin{aligned}
& \text { Express } y \text { as a Gurtuen of } a \text {. }
\end{aligned}
$$

$$
\begin{aligned}
& v_{2}=0.0454 \&\left(g p^{m}\right)
\end{aligned}
$$

the friction factor is determined from the Cobbrok eq.

$$
\frac{1}{f^{0}} .5=-2.0 \log \left(\frac{e l y}{37}+\frac{2.51}{\operatorname{Ref} f^{0.5}}\right)
$$

using the equation of tiller for the orianal et male

$$
\begin{equation*}
f_{0}=0.25\left[\log \left(\frac{e l y}{3 n}+\frac{5 . \pi}{R_{e} b_{1}}\right]^{-2}\right. \tag{8,3+1}
\end{equation*}
$$

Assuming $T=59^{\circ} \mathrm{F}, \quad \nabla=1.23 \times 10^{-5} \mathrm{Ct}^{2} \mathrm{I}$ (Table (A.)

$$
R_{e_{1}}=\frac{1}{7}=\frac{4}{12} \times \frac{10^{5}}{1.23} \mathrm{~V}=2.71 \times 10^{4} \mathrm{~V}, \quad R_{e_{2}}=2.03 \times 10^{4} \mathrm{~V}_{2}
$$

For cats iron, $e=0.00085$ f (Table 8N)

$$
\begin{array}{ll}
e_{1}=0.00255 & e y_{y_{2}}=0.00340 \\
H_{a}=10 f+f_{1} \times 9.317 y_{1}^{2}+f_{2} \times 12.42 t_{2}^{2}
\end{array}
$$

The pung curve is obtained frow Fig $\gg 4$

Problem 10.59

$Q(\mathrm{gpm})$	$H_{P}(\mathrm{tt})$
0	126
100	126
200	125
300	120
400	113
500	100
600	85

10.60 A pump transfers water from one reservoir to another through two cast-iron pipes in series. The first is 3000 ft of 9 in . pipe and the second is 1000 ft of 6 in . pipe. A constant flow rate of 75 gpm is tapped off at the junction between the two pipes. Obtain and plot the system head versus flow rate curve. Find the delivery if the system is supplied by the pump of Example 10.7, operating at 1750 rpm .

Given: Data on pump and pipe system

Find: Delivery through system

Solution:

Given or available data:

$L_{1}=$	3000	ft	$v=$	$1.23 \mathrm{E}-05$	$\mathrm{ft}^{2} / \mathrm{s}$ (Table A.7)
$D_{1}=$	9	in	$K_{\text {ent }}=$	0.5	(Fig. 8.14)
$L_{2}=$	1000	ft	$K_{\text {exp }}=$	1	
$D_{2}=$	6	in	$Q_{\text {loss }}=$	75	gpm
e	$=0.00085$	ft (Table 8.1)			

Governing Equations:

For the pump and system

$$
\begin{equation*}
\left(\frac{p_{1}}{\rho}+\alpha_{1} \frac{\bar{V}_{1}^{2}}{2}+g z_{1}\right)-\left(\frac{p_{2}}{\rho}+\alpha_{2} \frac{\bar{V}_{2}^{2}}{2}+g z_{2}\right)=h_{l_{T}}-\Delta h_{\text {pump }} \tag{8.49}
\end{equation*}
$$

where the total head loss is comprised of major and minor losses

$$
\begin{align*}
& h_{l}=f \frac{L}{D} \frac{\bar{V}^{2}}{2} \tag{8.34}\\
& h_{l_{m}}=K \frac{\bar{V}^{2}}{2} \tag{8.40a}
\end{align*}
$$

and the pump head (in energy/mass) is given by (from Example 10.7)

$$
\mathrm{H}_{\text {pump }}(\mathrm{ft})=55.9-3.44 \times 10^{-5} \cdot \mathrm{Q}(\mathrm{gpm})^{2}
$$

Hence, applied between the two reservoir free surfaces ($p_{1}=p_{2}=0, V_{1}=V_{2}=0, z_{1}=z_{2}$) we have

$$
0=h_{\mathrm{h}}-\Delta \mathrm{h}_{\mathrm{pump}}
$$

$$
\mathrm{h}_{\mathrm{TT}}=\mathrm{g} \cdot \mathrm{H}_{\text {system }}=\Delta \mathrm{h}_{\mathrm{pump}}=\mathrm{g} \cdot \mathrm{H}_{\mathrm{pump}}
$$

or

$$
\begin{equation*}
\mathrm{H}_{\mathrm{TT}}=\mathrm{H}_{\mathrm{pump}} \tag{1}
\end{equation*}
$$

where

$$
H_{\mathrm{IT}}=\left(\mathrm{f}_{1} \cdot \frac{\mathrm{~L}_{1}}{\mathrm{D}_{1}}+\mathrm{K}_{\text {ent }}\right) \cdot \frac{\mathrm{V}_{1}^{2}}{2 \cdot g}+\left(\mathrm{f}_{2} \cdot \frac{\mathrm{~L}_{2}}{\mathrm{D}_{2}}+\mathrm{K}_{\text {exit }}\right) \cdot \frac{\mathrm{V}_{2}^{2}}{2}
$$

The system and pump heads are computed and plotted below.
To find the operating condition, Goal Seek is used to vary Q_{1} so that the error between the two heads is zero.

$Q_{1}(\mathrm{gpm})$	$Q_{2}(\mathrm{gpm})$	$V_{1}(\mathrm{ft} / \mathrm{s})$	$V_{2}(\mathrm{ft} / \mathrm{s})$	$R e_{1}$	$R e_{2}$	f_{1}	f_{2}	$H_{\text {1T }}(\mathrm{ft})$	$H_{\text {pump }}(\mathrm{ft})$
100	25	0.504	0.284	30753	11532	0.0262	0.0324	0.498	55.6
200	125	1.01	1.42	61506	57662	0.0238	0.0254	3.13	54.5
300	225	1.51	2.55	92260	103792	0.0228	0.0242	8.27	52.8
400	325	2.02	3.69	123013	149922	0.0222	0.0237	15.9	50.4
500	425	2.52	4.82	153766	196052	0.0219	0.0234	26.0	47.3
600	525	3.03	5.96	184519	242182	0.0216	0.0233	38.6	43.5
700	625	3.53	7.09	215273	288312	0.0215	0.0231	53.6	39.0

$Q_{1}(\mathrm{gpm})$	$Q_{2}(\mathrm{gpm})$	$V_{1}(\mathrm{ft} / \mathrm{s})$	$V_{2}(\mathrm{ft} / \mathrm{s})$	$R e_{1}$	$R e_{2}$	f_{1}	f_{2}	$H_{\text {IT }}(\mathrm{ft})$	$H_{\text {pump }}(\mathrm{ft})$	Error)
627	552	3.162	6.263	192785	254580	0.0216	0.0232	42.4	42.4	0%

Pump and System Heads

10.61 Performance data for a pump are

$\boldsymbol{H}(\mathbf{m})$	27.5	27	25	22	18	13	6.5
$\boldsymbol{Q}\left(\mathbf{m}^{3} / \mathbf{s}\right)$	0	0.025	0.050	0.075	0.100	0.125	0.150

The pump is to be used to move water between two open reservoirs with an elevation increase of 7.5 m . The connecting pipe system consists of 500 m of commercial steel pipe containing two 90° elbows and an open gate valve. Find the flow rate if we use
a) 20 cm, b) 30 cm , and c) 40 cm pipe.

Given: Pump and reservoir/pipe system

Find: Flow rate using different pipe sizes

Solution:

Basic equations: $\quad\left(\frac{p_{1}}{\rho}+\alpha_{1} \cdot \frac{V_{1}^{2}}{2}+g \cdot z_{1}\right)-\left(\frac{p_{2}}{\rho}+\alpha_{2} \cdot \frac{V_{2}^{2}}{2}+g \cdot z_{2}\right)=h_{1 T}-h_{p}$

$$
\begin{aligned}
& h_{1 T}=f \cdot \frac{L}{D} \cdot \frac{v^{2}}{2}+\Sigma \cdot f \cdot \frac{L_{e}}{D} \cdot \frac{v^{2}}{2}+\Sigma \cdot K \cdot \frac{V^{2}}{2} \quad L_{e} \text { for the elbows, and } K \text { for the square entrance and exit } \\
& \text { and also } \quad H=\frac{h}{g}
\end{aligned}
$$

Assumptions: 1) $\left.\left.\left.\left.\left.\mathrm{p}_{1}=\mathrm{p}_{2}=\mathrm{p}_{\mathrm{atm}} 2\right) \mathrm{V}_{1}=\mathrm{V}_{2}=03\right) \alpha=04\right) \mathrm{z}_{1}=0, \mathrm{z}_{2}=7.5 \cdot \mathrm{~m} 4\right) \mathrm{K}=\mathrm{K}_{\text {ent }}+\mathrm{K}_{\text {ent }} 5\right) \frac{\mathrm{L}_{\mathrm{e}}}{\mathrm{D}}$ is for two elbows

Hence

$$
h_{1 T}=f \cdot \frac{L}{D} \cdot \frac{v^{2}}{2}+f \cdot \frac{L_{e}}{D} \cdot \frac{v^{2}}{2}+K \cdot \frac{v^{2}}{2} \quad \text { and also } \quad-z_{2}=h_{1 T}-h_{p} \quad \text { or } \quad h_{1 T}=h_{p}-z_{2}
$$

We want to find a flow that satisfies these equations, rewritten as energy/weight rather than energy/mass

$$
\mathrm{H}_{\mathrm{IT}}=\left[\mathrm{f} \cdot\left(\frac{\mathrm{~L}}{\mathrm{D}}+\frac{\mathrm{L}_{\mathrm{e}}}{\mathrm{D}}\right)+\mathrm{K}\right] \cdot \frac{\mathrm{v}^{2}}{2 \cdot \mathrm{~g}} \quad \quad \mathrm{H}_{1 \mathrm{~T}}+\mathrm{z}_{2}=\mathrm{H}_{\mathrm{p}}
$$

Given or available data (Note: final results will vary depending on fluid data selected):

$$
\begin{array}{rll}
L & =500 & \mathrm{~m} \\
e & =0.046 & \mathrm{~mm} \text { (Table } 8.1) \\
D & =20 & \mathrm{~cm} \tag{Two}\\
v & =1.01 \mathrm{E}-06 \mathrm{~m}^{2} / \mathrm{s} \text { (Table A.8) } \\
\mathrm{z}_{2} & =7.5 \mathrm{~m}
\end{array}
$$

$$
K_{\mathrm{ent}}=0.5
$$

$$
K_{\exp }=1
$$

$$
L_{\mathrm{e}} / D_{\text {elbow }}=60
$$

$$
L_{\mathrm{e}} / D_{\text {valve }}=8
$$

The pump data is curve-fitted to $H_{\text {pump }}=H_{0}-A Q^{2}$.
The system and pump heads are computed and plotted below.
To find the operating condition, Solver is used to vary Q
so that the error between the two heads is minimized.

$Q\left(\mathrm{~m}^{5} / \mathrm{s}\right)$	Q^{2}	$H_{\mathrm{p}}(\mathrm{m})$
0.000	0.00000	27.5
0.025	0.00063	27.0
0.050	0.00250	25.0
0.075	0.00563	22.0
0.100	0.01000	18.0
0.125	0.01563	13.0
0.150	0.02250	6.5

$V(\mathrm{~m} / \mathrm{s})$	$R e$	f
0.00	0	0.0000
0.80	157579	0.0179
1.59	315158	0.0164
2.39	472737	0.0158
3.18	630317	0.0154
3.98	787896	0.0152
4.77	945475	0.0150

H_{p} (fit)	$H_{1 \mathrm{~T}}+z_{2}(\mathrm{~m})$
27	7.5
27	9.0
25	13.1
22	19.7
18	28.7
12.9	40.2
6.5	54.1

$$
\begin{aligned}
H_{0} & =27 \mathrm{~m} \\
A & =9.30 \mathrm{E}+02 /\left(\mathrm{m}^{3} / \mathrm{s}\right)^{2}
\end{aligned}
$$

$Q\left(\mathrm{~m}^{5} / \mathrm{s}\right)$	$V(\mathrm{~m} / \mathrm{s})$	$R e$	f	$H_{\mathrm{p}}(\mathrm{fit})$	$H_{\text {IT }}+z_{2}(\mathrm{~m})$	Error $)$
0.0803	2.56	506221	0.0157	21.4	21.4	0.00%

Repeating for: $\quad D=30 \mathrm{~cm}$

$Q\left(\mathrm{~m}^{3} / \mathrm{s}\right)$	$V(\mathrm{~m} / \mathrm{s})$	$R e$	f	$H_{\mathrm{p}}(\mathrm{fit})$	$H_{\text {IT }}+z_{2}(\mathrm{~m})$	Error $)$
0.1284	1.82	539344	0.0149	12.1	12.1	0.00%

Repeating for: $\quad D=40 \mathrm{~cm}$

$Q\left(\mathrm{~m}^{\mathrm{s}} / \mathrm{s}\right)$	$V(\mathrm{~m} / \mathrm{s})$	$R e$	f	$H_{\mathrm{p}}(\mathrm{fit})$	$H_{\mathrm{lT}}+z_{2}(\mathrm{~m})$	Error)
0.1413	1.12	445179	0.0148	8.9	8.9	0.00%

Problem 10.62

10.62	Performance data for a pump are						
$\boldsymbol{H}(\mathbf{f t})$	179	176	165	145	119	84	43
$\boldsymbol{Q}(\mathbf{g p m})$	0	500	1000	1500	2000	2500	3000

Estimate the delivery when the pump is used to move water between two open reservoirs, through 1200 ft of 12 in . commercial steel pipe containing two 90° elbows and an open gate valve, if the elevation increase is 50 ft . Determine the gate valve loss coefficient needed to reduce the volume flow rate by half.

Given: Data on pump and pipe system

Find: Delivery through system; valve position to reduce delivery by half

Solution:

Given or available data (Note: final results will vary depending on fluid data selected):

$$
\begin{array}{rlrlr}
L & =1200 & \mathrm{ft} & K_{\text {ent }} & =0.5 \\
D & =12 & \text { in } & K_{\text {exp }} & =1 \\
\text { (Fig. 8.14) } \\
e & =0.00015 & \mathrm{ft}(\text { Table 8.1) } & L_{\mathrm{e}} / D_{\text {elbow }} & =30 \\
v & =1.23 \mathrm{E}-05 \mathrm{ft}^{2} / \mathrm{s} \text { (Table A.7) } & L_{\mathrm{e}} / D_{\text {valve }} & =8 & \text { (Table 8.4) }
\end{array}
$$

$$
\Delta z=-50 \quad \mathrm{ft}
$$

Governing Equations:
For the pump and system

$$
\begin{equation*}
\left(\frac{p_{1}}{\rho}+\alpha_{1} \frac{\bar{V}_{1}^{2}}{2}+g z_{1}\right)-\left(\frac{p_{2}}{\rho}+\alpha_{2} \frac{\bar{V}_{2}^{2}}{2}+g z_{2}\right)=h_{l_{T}}-\Delta h_{\text {pump }} \tag{8.49}
\end{equation*}
$$

where the total head loss is comprised of major and minor losses

$$
\begin{align*}
& h_{l}=f \frac{L}{D} \frac{\bar{V}^{2}}{2} \tag{8.34}\\
& h_{l_{m}}=f \frac{L_{e}}{D} \frac{\bar{V}^{2}}{2} \tag{8.40b}\\
& h_{l_{m}}=K \frac{\bar{V}^{2}}{2} \tag{8.40a}
\end{align*}
$$

Hence, applied between the two reservoir free surfaces ($p_{1}=p_{2}=0, V_{1}=V_{2}=0, z_{1}-z_{2}=\Delta z$) we have

$$
\begin{aligned}
& \mathrm{g} \cdot \Delta \mathrm{z}=\mathrm{h}_{\mathrm{TT}}-\Delta \mathrm{h}_{\text {pump }} \\
& \mathrm{h}_{\mathrm{TT}}+\mathrm{g} \cdot \Delta \mathrm{z}=\mathrm{g} \cdot \mathrm{H}_{\text {system }}+\mathrm{g} \cdot \Delta \mathrm{z}=\Delta \mathrm{h}_{\text {pump }}=\mathrm{g} \cdot \mathrm{H}_{\mathrm{pump}}
\end{aligned}
$$

or

$$
\mathrm{H}_{\mathrm{IT}}+\Delta z=\mathrm{H}_{\mathrm{pump}}
$$

where

$$
H_{\mathrm{lT}}=\left[\mathrm{f} \cdot\left(\frac{\mathrm{~L}}{\mathrm{D}}+2 \cdot \frac{\mathrm{~L}_{\mathrm{e}}}{D_{\text {elbow }}}+\frac{\mathrm{L}_{\mathrm{e}}}{\mathrm{D}_{\text {valve }}}\right)+\mathrm{K}_{\text {ent }}+\mathrm{K}_{\text {exit }}\right] \cdot \frac{\mathrm{v}^{2}}{2 \cdot \mathrm{~g}}
$$

The pump data is curve-fitted to $H_{\text {pump }}=H_{0}-A Q^{2}$.
The system and pump heads are computed and plotted below.
To find the operating condition, Solver is used to vary Q
so that the error between the two heads is minimized.

$Q(\mathrm{gpm})$	$Q^{2}(\mathrm{gpm})$	$H_{\mathrm{pump}}(\mathrm{ft})$
0	0	179
500	250000	176
1000	1000000	165
1500	2250000	145
2000	4000000	119
2500	6250000	84
3000	9000000	43

$V(\mathrm{ft} / \mathrm{s})$	$R e$	f
0.00	0	0.0000
1.42	115325	0.0183
2.84	230649	0.0164
4.26	345974	0.0156
5.67	461299	0.0151
7.09	576623	0.0147
8.51	691948	0.0145

$H_{\text {pump }}(\mathrm{fit})$	$H_{\text {lT }}+\Delta z(\mathrm{ft})$
180	50.0
176	50.8
164	52.8
145	56.0
119	60.3
84.5	65.8
42.7	72.4

$$
\begin{aligned}
H_{0} & =180 \mathrm{ft} \\
A & =1.52 \mathrm{E}-05 \mathrm{ft} /(\mathrm{gpm})^{2}
\end{aligned}
$$

$Q(\mathrm{gpm})$	V (ft/s)	$R e$	f	$H_{\text {pump }}$ (fit)	$H_{\text {IT }}+\Delta z(\mathrm{ft})$	Error)
2705	7.67	623829	0.0146	68.3	68.3	0%

Pump and System Heads

For the valve setting to reduce the flow by half, use Solver to vary the value below to minimize the error.
$L_{\mathrm{e}} / D_{\text {valve }}=26858$

$Q(\mathrm{gpm})$	$V(\mathrm{ft} / \mathrm{s})$	$R e$	f	$H_{\text {pump }}$ (fit)	$H_{\text {IT }}+\Delta z(\mathrm{ft})$	Error)
1352	3.84	311914	0.0158	151.7	151.7	0%

10.63 Consider again the pump and piping system of Problem
10.62. Determine the volume flow rate and gate valve loss coefficient for the case of two identical pumps installed in series.

Given: Data on pump and pipe system
Find: Delivery through series pump system; valve position to reduce delivery by half

Solution:

Given or available data (Note: final results will vary depending on fluid data selected):

$L=$	1200	ft	$K_{\text {ent }}=$	0.5	(Fig. 8.14)
$D=$	12	in	$K_{\exp }=$	1	
$e=$	0.00015	ft (Table 8.1)	$L_{\mathrm{e}} / D_{\text {elbow }}=$	30	
$\nu=$	$1.23 \mathrm{E}-05$	ft / s (Table A.7)	$L_{\mathrm{e}} / D_{\text {valve }}=$	8	(Table 8.4)

Governing Equations:
For the pumps and system

$$
\left(\frac{p_{1}}{\rho}+\alpha_{1} \frac{\bar{V}_{1}^{2}}{2}+g z_{1}\right)-\left(\frac{p_{2}}{\rho}+\alpha_{2} \frac{\bar{V}_{2}^{2}}{2}+g z_{2}\right)=h_{l_{T}}-\Delta h_{\text {pump }}
$$

where the total head loss is comprised of major and minor losses

$$
\begin{align*}
& h_{l}=f \frac{L}{D} \frac{\dot{V}^{2}}{2} \tag{8.34}\\
& h_{l_{m}}=f \frac{L_{e}}{D} \frac{\dot{V}^{2}}{2} \tag{8.40b}\\
& h_{l_{m}}=K \frac{\bar{V}^{2}}{2} \tag{8.40a}
\end{align*}
$$

Hence, applied between the two reservoir free surfaces ($\left.p_{1}=p_{2}=0, V_{1}=V_{2}=0, z_{1}-z_{2}=\Delta \mathrm{z}\right)$ we have

$$
\begin{aligned}
& \mathrm{g} \cdot \Delta \mathrm{z}=\mathrm{h}_{\mathrm{TT}}-\Delta \mathrm{h}_{\text {pump }} \\
& \mathrm{h}_{\mathrm{TT}}+\mathrm{g} \cdot \Delta \mathrm{z}=\mathrm{g} \cdot \mathrm{H}_{\text {system }}+\mathrm{g} \cdot \Delta \mathrm{z}=\Delta \mathrm{h}_{\text {pump }}=\mathrm{g} \cdot \mathrm{H}_{\text {pump }}
\end{aligned}
$$

or

$$
\mathrm{H}_{\mathrm{IT}}+\Delta z=\mathrm{H}_{\mathrm{pump}}
$$

where

$$
H_{I T}=\left[f \cdot\left(\frac{L}{D}+2 \cdot \frac{L_{e}}{D_{\text {elbow }}}+\frac{L_{e}}{D_{\text {valve }}}\right)+K_{\text {ent }}+K_{\text {exit }}\right] \cdot \frac{v^{2}}{2 \cdot g}
$$

For pumps in series

$$
\mathrm{H}_{\mathrm{pump}}=2 \cdot \mathrm{H}_{0}-2 \cdot \mathrm{~A} \cdot \mathrm{Q}^{2}
$$

where for a single pump

$$
\mathrm{H}_{\text {pump }}=\mathrm{H}_{0}-\mathrm{A} \cdot \mathrm{Q}^{2}
$$

The pump data is curve-fitted to $H_{\text {pump }}=H_{0}-A Q^{2}$.
The system and pump heads are computed and plotted below.
To find the operating condition, Solver is used to vary Q
so that the error between the two heads is minimized.

$Q(\mathrm{gpm})$	$Q^{2}(\mathrm{gpm})$	$H_{\text {pump }}(\mathrm{ft})$	$H_{\text {pump }}(\mathrm{fit})$	$V(\mathrm{ft} / \mathrm{s})$	$R e$	f
0	0	179	180	0.00	0	0.0000
500	250000	176	176	1.42	115325	0.0183
1000	1000000	165	164	2.84	230649	0.0164
1500	2250000	145	145	4.26	345974	0.0156
2000	4000000	119	119	5.67	461299	0.0151
2500	6250000	84	85	7.09	576623	0.0147
3000	9000000	43	43	8.51	691948	0.0145
3250						
			9.22	749610	0.0144	

$H_{\text {pumps }}$ (par)	$H_{\text {lт }}+\Delta z$ (ft)
359	50.0
351	50.8
329	52.8
291	56.0
237	60.3
169	65.8
85	72.4
38	76.1

$$
\begin{array}{rcl}
H_{0}= & 180 & \mathrm{ft} \\
A= & 1.52 \mathrm{E}-05 & \mathrm{ft} /(\mathrm{gpm})^{2}
\end{array}
$$

$Q(\mathrm{gpm})$	$V(\mathrm{ft} / \mathrm{s})$	$R e$	f	$H_{\text {pumps }}(\mathrm{par})$	$H_{\mathrm{IT}}+\Delta z(\mathrm{ft})$	Error)
3066	8.70	707124	0.0145	73.3	73.3	0%

For the valve setting to reduce the flow by half, useSolver to vary the value below to minimize the error.

$$
L \mathrm{e} / D_{\text {valve }}=50723
$$

$Q(\mathrm{gpm})$	$V(\mathrm{ft} / \mathrm{s})$	$R e$	f	$H_{\text {pumps }}(\mathrm{par})$	$H_{\mathrm{lT}}+\Delta z(\mathrm{ft})$	Error)
1533	4.35	353562	0.0155	287.7	287.7	0%

[^2]Given: Data on pump and pipe system
Find: Delivery through parallel pump system; valve position to reduce delivery by half

Solution:

Given or available data (Note: final results will vary depending on fluid data selected):

$L=$	1200	ft	$K_{\text {ent }}=$	0.5	(Fig. 8.14)
$D=$	12	in	$K_{\text {exp }}=$	1	
$e=$	0.00015	$\mathrm{ft}($ Table 8.1)	$L_{\mathrm{e}} / D_{\text {elbow }}=$	30	
$v=$	$1.23 \mathrm{E}-05$	$\mathrm{ft}^{2} / \mathrm{s}$ (Table A.7)	$L_{\mathrm{e}} / D_{\text {valve }}=$	8	(Table 8.4)

Governing Equations:
For the pumps and system

$$
\left(\frac{p_{1}}{\rho}+\alpha_{1} \frac{\bar{V}_{1}^{2}}{2}+g z_{1}\right)-\left(\frac{p_{2}}{\rho}+\alpha_{2} \frac{\bar{V}_{2}^{2}}{2}+g z_{2}\right)=h_{l_{T}}-\Delta h_{\text {pump }}
$$

where the total head loss is comprised of major and minor losses

$$
\begin{align*}
& h_{l}=f \frac{L}{D} \frac{\bar{V}^{2}}{2} \tag{8.34}\\
& h_{l_{m}}=f \frac{L_{e}}{D} \frac{\bar{V}^{2}}{2} \tag{8.40b}\\
& h_{l_{m}}=K \frac{\bar{V}^{2}}{2}
\end{align*}
$$

Hence, applied between the two reservoir free surfaces ($p_{1}=p_{2}=0, V_{1}=V_{2}=0, z_{1}-z_{2}=\Delta z$) we have

$$
\begin{aligned}
& \mathrm{g} \cdot \Delta \mathrm{z}=\mathrm{h}_{\mathrm{h} T}-\Delta \mathrm{h}_{\text {pump }} \\
& \mathrm{h}_{\mathrm{TT}}+\mathrm{g} \cdot \Delta \mathrm{z}=\mathrm{g} \cdot \mathrm{H}_{\text {system }}+\mathrm{g} \cdot \Delta \mathrm{z}=\Delta \mathrm{h}_{\text {pump }}=\mathrm{g} \cdot \mathrm{H}_{\text {pump }}
\end{aligned}
$$

or

$$
\mathrm{H}_{\mathrm{IT}}+\Delta z=\mathrm{H}_{\mathrm{pump}}
$$

where

$$
\mathrm{H}_{\mathrm{IT}}=\left[\mathrm{f} \cdot\left(\frac{\mathrm{~L}}{\mathrm{D}}+2 \cdot \frac{\mathrm{~L}_{\mathrm{e}}}{\mathrm{D}_{\text {elbow }}}+\frac{\mathrm{L}_{\mathrm{e}}}{\mathrm{D}_{\text {valve }}}\right)+\mathrm{K}_{\text {ent }}+\mathrm{K}_{\text {exit }}\right] \cdot \frac{\mathrm{V}^{2}}{2 \cdot \mathrm{~g}}
$$

For pumps in parallel

$$
\mathrm{H}_{\mathrm{pump}}=\mathrm{H}_{0}-\frac{1}{4} \cdot \mathrm{~A} \cdot \mathrm{Q}^{2}
$$

where for a single pump

$$
\mathrm{H}_{\mathrm{pump}}=\mathrm{H}_{0}-\mathrm{A} \cdot \mathrm{Q}^{2}
$$

The pump data is curve-fitted to $H_{\text {pump }}=H_{0}-A Q^{2}$.
The system and pump heads are computed and plotted below.
To find the operating condition, Solver is used to vary Q
so that the error between the two heads is minimized.

Q (gpm)	Q^{2} (gpm)	$H_{\text {pump }}(\mathrm{ft})$	$H_{\text {pump }}$ (fit)	V (ft/s)	Re	f	$H_{\text {pumps }}$ (par)	$H_{\text {IT }}+\Delta z(f t)$
0	0	179	180	0.00	0	0.0000	180	50.0
500	250000	176	176	1.42	115325	0.0183	179	50.8
1000	1000000	165	164	2.84	230649	0.0164	176	52.8
1500	2250000	145	145	4.26	345974	0.0156	171	56.0
2000	4000000	119	119	5.67	461299	0.0151	164	60.3
2500	6250000	84	85	7.09	576623	0.0147	156	65.8
3000	9000000	43	43	8.51	691948	0.0145	145	72.4
3500				9.93	807273	0.0143	133	80.1
4000				11.35	922597	0.0142	119	89.0
4500				12.77	1037922	0.0141	103	98.9
5000				14.18	1153247	0.0140	85	110.1

$$
\begin{array}{rcl}
H_{0}= & 180 & \mathrm{ft} \\
A= & 1.52 \mathrm{E}-05 & \mathrm{ft} /(\mathrm{gpm})^{2}
\end{array}
$$

$Q(\mathrm{gpm})$	$V(\mathrm{ft} / \mathrm{s})$	$R e$	f	$H_{\text {pumps }}$ (par)	$H_{\mathrm{lT}}+\Delta z(\mathrm{ft})$	Error)
4565	12.95	1053006	0.0141	100.3	100.3	0%

For the valve setting to reduce the flow by half, useSolver to vary the value below to minimize the error.
$L L_{\mathrm{e}} / D_{\text {valve }}=$
9965

$Q(\mathrm{gpm})$	$V(\mathrm{ft} / \mathrm{s})$	$R e$	f	$H_{\text {pumps }}(\mathrm{par})$	$H_{\text {1T }}+\Delta z(\mathrm{ft})$	Error)
2283	6.48	526503	0.0149	159.7	159.7	0%

10.65 The resistance of a given pipe increases with age as deposits form, increasing the roughness and reducing the pipe diameter (see Fig. 8.14). Typical multipliers to be applied to the friction factor are given in [16]:

Pipe Age (years)	Small Pipes, $\mathbf{- 1 0} \mathbf{i n}$.	Large Pipes, 12-60 in.
New	1.00	1.00
10	2.20	1.60
20	5.00	2.00
30	7.25	2.20
40	8.75	2.40
50	9.60	2.86
60	10.0	3.70
70	10.1	4.70

Consider again the pump and piping system of Problem 10.62. Estimate the percentage reductions in volume flow rate that occur after (a) 20 years and (b) 40 years of use, if the pump characteristics remain constant. Repeat the calculation if the pump head is reduced 10 percent after 20 years of use and 25 percent after 40 years.

Given: Data on pump and pipe system, and their aging
Find: \quad Reduction in delivery through system after 20 and 40 years (aging and non-aging pumps)

Solution:

Given or available data (Note: final results will vary depending on fluid data selected) :

$L=$	1200	ft
$D=$	12	in
$e=$	0.00015	ft (Table 8.1)
$v=$	$1.23 \mathrm{E}-05$	$\mathrm{ft}^{2} / \mathrm{s}$ (Table A.7)
$\Delta z=$	-50	ft

$K_{\text {ent }}$	$=$	0.5	(Fig. 8.14)
$K_{\text {exp }}$	$=$	1	
$L_{\mathrm{e}} / D_{\text {elbow }}$	$=$	30	
$L_{\mathrm{e}} / D_{\text {valve }}$	$=$	8	(Table 8.4)

Governing Equations:
For the pump and system

$$
\begin{equation*}
\left(\frac{p_{1}}{\rho}+\alpha_{1} \frac{\bar{V}_{1}^{2}}{2}+g z_{1}\right)-\left(\frac{p_{2}}{\rho}+\alpha_{2} \frac{\bar{V}_{2}^{2}}{2}+g z_{2}\right)=h_{l_{T}}-\Delta h_{\text {pump }} \tag{8.49}
\end{equation*}
$$

where the total head loss is comprised of major and minor losses

$$
\begin{align*}
& h_{l}=f \frac{L}{D} \frac{\bar{V}^{2}}{2} \tag{8.34}\\
& h_{l_{m}}=f \frac{L_{e}}{D} \frac{\bar{V}^{2}}{2} \tag{8.40b}\\
& h_{l_{m}}=K \frac{\bar{V}^{2}}{2}
\end{align*}
$$

Hence, applied between the two reservoir free surfaces ($p_{1}=p_{2}=0, V_{1}=V_{2}=0, z_{1}-z_{2}=\Delta z$) we have

$$
\begin{aligned}
& \mathrm{g} \cdot \Delta \mathrm{z}=\mathrm{h}_{\mathrm{T} T}-\Delta \mathrm{h}_{\text {pump }} \\
& \mathrm{h}_{\mathrm{IT}}+\mathrm{g} \cdot \Delta \mathrm{z}=\mathrm{g} \cdot \mathrm{H}_{\text {system }}+\mathrm{g} \cdot \Delta \mathrm{z}=\Delta \mathrm{h}_{\text {pump }}=\mathrm{g} \cdot \mathrm{H}_{\text {pump }}
\end{aligned}
$$

or

$$
\mathrm{H}_{\mathrm{lT}}+\Delta \mathrm{z}=\mathrm{H}_{\mathrm{pump}}
$$

where

$$
H_{l T}=\left[f \cdot\left(\frac{L}{D}+2 \cdot \frac{L_{e}}{D_{\text {elbow }}}+\frac{L_{e}}{D_{\text {valve }}}\right)+K_{\text {ent }}+K_{\text {exit }}\right] \cdot \frac{\mathrm{V}^{2}}{2 \cdot g}
$$

The pump data is curve-fitted to $H_{\text {pump }}=H_{0}-A Q^{2}$.
The system and pump heads are computed and plotted below.
To find the operating condition, Solver is used to vary Q
so that the error between the two heads is minimized.

New System:

$Q(\mathrm{gpm})$	$Q^{2}(\mathrm{gpm})$	$H_{\text {pump }}(\mathrm{ft})$
0	0	179
500	250000	176
1000	1000000	165
1500	2250000	145
2000	4000000	119
2500	6250000	84
3000	9000000	43

$V(\mathrm{ft} / \mathrm{s})$	$R e$	f
0.00	0	0.0000
1.42	115325	0.0183
2.84	230649	0.0164
4.26	345974	0.0156
5.67	461299	0.0151
7.09	576623	0.0147
8.51	691948	0.0145

$H_{\text {pump }}$ (fit)	$H_{\text {IT }}+\Delta z$ (ft)
180	50.0
176	50.8
164	52.8
145	56.0
119	60.3
84.5	65.8
42.7	72.4

$H_{0}=180 \mathrm{ft}$
$A=1.52 \mathrm{E}-05 \mathrm{ft} /(\mathrm{gpm})^{2}$

Q (gpm)	$V(\mathrm{ft} / \mathrm{s})$	$R e$	f	$H_{\text {pump }}$ (fit)	$H_{\mathrm{IT}}+\Delta z$ (ft)	Error)
2705	7.67	623829	0.0146	68.3	68.3	0%

20-Year Old System:

$f=2.00 f_{\text {new }}$

$Q(\mathrm{gpm})$	$V(\mathrm{ft} / \mathrm{s})$	$R e$	f	$H_{\text {pump }}(\mathrm{fit})$	$H_{\mathrm{lT}}+\Delta z(\mathrm{ft})$	Error)
2541	7.21	586192	0.0295	81.4	81.4	0%

Flow reduction:
163 gpm 6.0\% Loss

40-Year Old System:

$f=2.40 f_{\text {new }}$

$Q(\mathrm{gpm})$	$V(\mathrm{ft} / \mathrm{s})$	$R e$	f	$H_{\text {pump }}(\mathrm{fit})$	$H_{\mathrm{IT}}+\Delta z(\mathrm{ft})$	Error)
2484	7.05	572843	0.0354	85.8	85.8	0%

Flow reduction:
221 gpm
8.2\% Loss

20-Year Old System and Pump:

$f=2.00 f_{\text {new }} \quad H_{\text {pump }}=0.90 H_{\text {new }}$

$Q(\mathrm{gpm})$	$V(\mathrm{ft} / \mathrm{s})$	$R e$	f	$H_{\text {pump }}$ (fit)	$H_{\mathrm{IT}}+\Delta \mathrm{z}$ (ft)	Error)
2453	6.96	565685	0.0296	79.3	79.3	0%

Flow reduction:
252 gpm
9.3\% Loss

40-Year Old System and Pump:

$f=2.40 f_{\text {new }} \quad H_{\text {pump }}=0.75 H_{\text {new }}$

$Q(\mathrm{gpm})$	$V(\mathrm{ft} / \mathrm{s})$	$R e$	f	$H_{\text {pump }}(\mathrm{fit})$	$H_{\mathrm{IT}}+\Delta \mathrm{z}(\mathrm{ft})$	Error)
2214	6.28	510754	0.0358	78.8	78.8	0%

Flow reduction:
490 gpm 18.1\% Loss
10.66 Consider again the pump and piping system of Problem 10.63. Estimate the percentage reductions in volume flow rate that occur after (a) 20 years and (b) 40 years of use, if the pump characteristics remain constant. Repeat the calculation if the pump head is reduced 10 percent after 20 years of use and 25 percent after 40 years. (Use the data of Problem 10.65 for increase in pipe friction factor with age.)

Given: Data on pump and pipe system
Find: Delivery through series pump system; reduction after 20 and 40 years

Solution:

Given or available data (Note: final results will vary depending on fluid data selected) :

$L=$	1200	ft
$D=$	12	in
$e=$	0.00015	ft (Table 8.1)
$v=$	$1.23 \mathrm{E}-05$	$\mathrm{ft}^{2} / \mathrm{s}$ (Table A.7)
$\Delta z=$	-50	ft

$K_{\text {ent }}$	$=$	0.5	(Fig. 8.14)
$K_{\text {exp }}$	$=$	1	
$L_{\mathrm{e}} / D_{\text {elbow }}$	$=$	30	
$L_{\mathrm{e}} / D_{\text {valve }}$	$=$	8	(Table 8.4)

Governing Equations:
For the pumps and system

$$
\left(\frac{p_{1}}{\rho}+\alpha_{1} \frac{\bar{V}_{1}^{2}}{2}+g z_{1}\right)-\left(\frac{p_{2}}{\rho}+\alpha_{2} \frac{\bar{V}_{2}^{2}}{2}+g z_{2}\right)=h_{l_{T}}-\Delta h_{\text {pump }}
$$

where the total head loss is comprised of major and minor losses

$$
\begin{align*}
& h_{l}=f \frac{L}{D} \frac{\bar{V}^{2}}{2} \tag{8.34}\\
& h_{l_{m}}=f \frac{L_{e}}{D} \frac{\bar{V}^{2}}{2} \\
& h_{l_{m}}=K \frac{\dot{V}^{2}}{2}
\end{align*}
$$

Hence, applied between the two reservoir free surfaces ($p_{1}=p_{2}=0, V_{1}=V_{2}=0, z_{1}-z_{2}=\Delta \mathrm{z}$) we have

$$
\mathrm{g} \cdot \Delta \mathrm{z}=\mathrm{h}_{\mathrm{IT}}-\Delta \mathrm{h}_{\text {pump }}
$$

$$
\mathrm{h}_{\mathrm{IT}}+\mathrm{g} \cdot \Delta \mathrm{z}=\mathrm{g} \cdot \mathrm{H}_{\text {system }}+\mathrm{g} \cdot \Delta \mathrm{z}=\Delta \mathrm{h}_{\mathrm{pump}}=\mathrm{g} \cdot \mathrm{H}_{\mathrm{pump}}
$$

or

$$
\mathrm{H}_{\mathrm{lT}}+\Delta \mathrm{z}=\mathrm{H}_{\mathrm{pump}}
$$

where

$$
H_{\mathrm{TT}}=\left[f \cdot\left(\frac{L}{D}+2 \cdot \frac{L_{e}}{D_{\text {elbow }}}+\frac{L_{e}}{D_{\text {valve }}}\right)+K_{\text {ent }}+K_{\text {exit }}\right] \cdot \frac{v^{2}}{2 \cdot g}
$$

For pumps in series
$\mathrm{H}_{\text {pump }}=2 \cdot \mathrm{H}_{0}-2 \cdot \mathrm{~A} \cdot \mathrm{Q}^{2}$
where for a single pump

$$
\mathrm{H}_{\mathrm{pump}}=\mathrm{H}_{0}-\mathrm{A} \cdot \mathrm{Q}^{2}
$$

The pump data is curve-fitted to $H_{\text {pump }}=H_{0}-A Q^{2}$.
The system and pump heads are computed and plotted below.
To find the operating condition, Solver is used to vary Q
so that the error between the two heads is minimized.

$Q(\mathrm{gpm})$	$Q^{2}(\mathrm{gpm})$	$H_{\text {pump }}(\mathrm{ft})$	$H_{\text {pump }}(\mathrm{fit})$	$V(\mathrm{ft} / \mathrm{s})$	$R e$	f					
0	0	179	180	0.00	0	0.0000					
500	250000	176	176	1.42	115325	0.0183					
1000	1000000	165	164	2.84	230649	0.0164					
1500	2250000	145	145	4.26	345974	0.0156					
2000	4000000	119	119	5.67	461299	0.0151					
2500	6250000	84	85	7.09	576623	0.0147					
3000	9000000	43	43	8.51	691948	0.0145					
3250									9.22	749610	0.0144

$H_{\text {pumps }}$ (par)	$H_{\mathrm{lT}}+\Delta z(\mathrm{ft})$
359	50.0
351	50.8
329	52.8
291	56.0
237	60.3
169	65.8
85	72.4
38	76.1

$H_{0}=$	180
$A=$	ft
$1.52 \mathrm{E}-05$	$\mathrm{ft} /(\mathrm{gpm})^{2}$

$Q(\mathrm{gpm})$	$\nabla(\mathrm{ft} / \mathrm{s})$	$R e$	f	$H_{\text {pumps }}(\mathrm{par})$	$H_{\text {lT }}+\Delta z(\mathrm{ft})$	Error)
3066	8.70	707124	0.0145	73.3	73.3	0%

20-Year Old System:
$f=2.00 f_{\text {new }}$

$Q(\mathrm{gpm})$	$V(\mathrm{ft} / \mathrm{s})$	$R e$	f	$H_{\text {pumps }}(\mathrm{par})$	$H_{\mathrm{TT}}+\Delta z(\mathrm{ft})$	Error)
2964	8.41	683540	0.0291	92.1	92.1	0%

Flow reduction:
102 gpm 3.3\% Loss

40-Year Old System:

$f=2.40 f_{\text {new }}$

$Q(\mathrm{gpm})$	$V(\mathrm{ft} / \mathrm{s})$	$R e$	f	$H_{\text {pump }}$ (fit)	$H_{\mathrm{IT}}+\Delta z$ (ft)	Error)
2925	8.30	674713	0.0349	98.9	98.9	0%

Flow reduction:
141 gpm 4.6\% Loss

20-Year Old System and Pumps:

$f=2.00 f_{\text {new }} \quad H_{\text {pump }}=0.90 H_{\text {new }}$

$Q(\mathrm{gpm})$	$\nabla(\mathrm{ft} / \mathrm{s})$	$R e$	f	$H_{\text {pump }}$ (fit)	$H_{\mathrm{lT}}+\Delta z$ (ft)	Error)
2915	8.27	672235	0.0291	90.8	90.8	0%

Flow reduction:
151 gpm 4.9\% Loss

40-Year Old System and Pumps:

$f=2.40 f_{\text {new }} \quad H_{\text {pump }}=0.75 H_{\text {new }}$

$Q(\mathrm{gpm})$	$\nabla(\mathrm{ft} / \mathrm{s})$	$R e$	f	$H_{\text {pump }}$ (fit)	$H_{\mathrm{IT}}+\Delta z(\mathrm{ft})$	Error)
2772	7.86	639318	0.0351	94.1	94.1	0%

Flow reduction:

294 gpm 9.6\% Loss
10.67 Consider again the pump and piping system of Problem 10.64. Estimate the percentage reductions in volume flow rate that occur after (a) 20 years and (b) 40 years of use, if the pump characteristics remain constant. Repeat the calculation if the pump head is reduced 10 percent after 20 years of use and 25 percent after 40 years. (Use the data of Problem 10.65 for increase in pipe friction factor with age.)

Given: Data on pump and pipe system
Find: Delivery through parallel pump system; reduction in delivery after 20 and 40 years

Solution:

Given or available data (Note: final results will vary depending on fluid data selected) :

$L=$	1200	ft	$K_{\text {ent }}=$	0.5	(Fig. 8.14)
$D=$	12	in	$K_{\text {exp }}=$	1	
$e=$	0.00015	$\mathrm{ft}($ Table 8.1)	$L_{\mathrm{e}} / D_{\text {elbow }}=$	30	
$v=$	$1.23 \mathrm{E}-05$	$\mathrm{ft}^{2} / \mathrm{s}$ (Table A.7)	$L_{\mathrm{e}} / D_{\text {valve }}=$	8	(Table 8.4)

Governing Equations:

For the pumps and system

$$
\left(\frac{p_{1}}{\rho}+\alpha_{1} \frac{\bar{V}_{1}^{2}}{2}+g z_{1}\right)-\left(\frac{p_{2}}{\rho}+\alpha_{2} \frac{\bar{V}_{2}^{2}}{2}+g z_{2}\right)=h_{l_{T}}-\Delta h_{\text {pump }}
$$

where the total head loss is comprised of major and minor losses

$$
\begin{align*}
& h_{l}=f \frac{L}{D} \frac{\bar{V}^{2}}{2} \tag{8.34}\\
& h_{l_{m}}=f \frac{L_{e}}{D} \frac{\bar{V}^{2}}{2} \\
& h_{l_{m}}=K \frac{\bar{V}^{2}}{2}
\end{align*}
$$

Hence, applied between the two reservoir free surfaces ($p_{1}=p_{2}=0, V_{1}=V_{2}=0, z_{1}-z_{2}=\Delta z$) we have

$$
\begin{aligned}
& \mathrm{g} \cdot \Delta \mathrm{z}=\mathrm{h}_{\mathrm{IT}}-\Delta \mathrm{h}_{\text {pump }} \\
& \mathrm{h}_{\mathrm{TT}}+\mathrm{g} \cdot \Delta \mathrm{z}=\mathrm{g} \cdot \mathrm{H}_{\text {system }}+\mathrm{g} \cdot \Delta \mathrm{z}=\Delta \mathrm{h}_{\text {pump }}=\mathrm{g} \cdot \mathrm{H}_{\text {pump }}
\end{aligned}
$$

or

$$
\mathrm{H}_{\mathrm{IT}}+\Delta \mathrm{z}=\mathrm{H}_{\mathrm{pump}}
$$

where

$$
H_{l T}=\left[f \cdot\left(\frac{L}{D}+2 \cdot \frac{L_{e}}{D_{\text {elbow }}}+\frac{L_{e}}{D_{\text {valve }}}\right)+K_{\text {ent }}+K_{\text {exit }}\right] \cdot \frac{v^{2}}{2 \cdot g}
$$

For pumps in parallel

$$
\mathrm{H}_{\mathrm{pump}}=\mathrm{H}_{0}-\frac{1}{4} \cdot \mathrm{~A} \cdot \mathrm{Q}^{2}
$$

where for a single pump

$$
\mathrm{H}_{\text {pump }}=\mathrm{H}_{0}-\mathrm{A} \cdot \mathrm{Q}^{2}
$$

The pump data is curve-fitted to $H_{\text {pump }}=H_{0}-A Q^{2}$.
The system and pump heads are computed and plotted below.
To find the operating condition, Solver is used to vary Q
so that the error between the two heads is minimized.

Q (gpm)	Q ${ }^{2}$ (gpm)	$H_{\text {pump }}(\mathrm{ft})$	$H_{\text {pump }}$ (fit)	V (ft/s)	Re	f	$H_{\text {pumps }}$ (par)	$H_{\text {lT }}+\Delta z(\mathrm{ft})$
0	0	179	180	0.00	0	0.0000	180	50.0
500	250000	176	176	1.42	115325	0.0183	179	50.8
1000	1000000	165	164	2.84	230649	0.0164	176	52.8
1500	2250000	145	145	4.26	345974	0.0156	171	56.0
2000	4000000	119	119	5.67	461299	0.0151	164	60.3
2500	6250000	84	85	7.09	576623	0.0147	156	65.8
3000	9000000	43	43	8.51	691948	0.0145	145	72.4
3500				9.93	807273	0.0143	133	80.1
4000				11.35	922597	0.0142	119	89.0
4500				12.77	1037922	0.0141	103	98.9
5000				14.18	1153247	0.0140	85	110.1
$\begin{array}{r} H_{0}= \\ A= \end{array}$	$\begin{gathered} 180 \\ 1.52 \mathrm{E}-05 \end{gathered}$	$\mathrm{t} /(\mathrm{gpm})^{2}$						
Q (gpm)	∇ (ft/s)	Re	f	$H_{\text {pumps }}$ (par)	$H_{\text {IT }}+\Delta z(\mathrm{ft})$	Error)		
4565	12.95	1053006	0.0141	100.3	100.3	0\%		
			1000	Pump an	ystem Hea al/min)			urve Fit ata ad Loss Parallel 5000

20-Year Old System:
$f=2.00 f_{\text {new }}$

$Q(\mathrm{gpm})$	$V(\mathrm{ft} / \mathrm{s})$	$R e$	f	$H_{\mathrm{pumps}}(\mathrm{par})$	$H_{\mathrm{IT}}+\Delta z(\mathrm{ft})$	Error)
3906	11.08	900891	0.0284	121.6	121.6	0%

Flow reduction:
660 gpm 14.4\% Loss

40-Year Old System:

$f=2.40 f_{\text {new }}$

$Q(\mathrm{gpm})$	$V(\mathrm{ft} / \mathrm{s})$	$R e$	f	$H_{\text {pump }}$ (fit)	$H_{\mathrm{lT}}+\Delta z$ (ft)	Error)
3710	10.52	855662	0.0342	127.2	127.2	0%

Flow reduction:
856
18.7\%

20-Year Old System and Pumps:

$f=2.00 f_{\text {new }} \quad H_{\text {pump }}=0.90 H_{\text {new }}$

$Q(\mathrm{gpm})$	$V(\mathrm{ft} / \mathrm{s})$	$R e$	f	$H_{\text {pump }}$ (fit)	$H_{\text {IT }}+\Delta z$ (ft)	Error)
3705	10.51	854566	0.0285	114.6	114.6	0%

Flow reduction:
860 gpm 18.8\% Loss

40-Year Old System and Pumps:

$f=2.40 f_{\text {new }} \quad H_{\text {pump }}=0.75 H_{\text {new }}$

$Q(\mathrm{gpm})$	$V(\mathrm{ft} / \mathrm{s})$	$R e$	f	$H_{\text {pump }}$ (fit)	$H_{\text {lT }}+\Delta z$ (ft)	Error)
3150	8.94	726482	0.0347	106.4	106.4	0%

Flow reduction:
1416 31.0\%

Given: Water supply for Englewnod, Colorado; $L=5800 \mathrm{ft}, D=27 \mathrm{in}$. steel. section : North Platte River at $3:=5280 \mathrm{ft}$.
section 2: Reservoir at $z_{2}=5310 \mathrm{ft}$
Design flow rates: $Q=31$ cts (initial), 38 cts (ultimately).
Find: (a) Calculate and plot the system resistance acre.
(b) Specify an appropriate pumping system.
(c) Estimate power required for steade-state operation at both flow rates.

Solution: Apply the energy equation for steady, incompressible pipe flow.

Sample calculation at $Q=31 \operatorname{cts}(13,900 \mathrm{gpm})$, with $7=70^{\circ} \mathrm{F}, \mathrm{e}=0.0015 \mathrm{ft}(7 a 6 \mathrm{k} 8.1)$

$$
\begin{aligned}
& \bar{V}=\frac{Q}{A}=\frac{4 Q}{\pi D^{2}}=\frac{4}{n} \times 31 \frac{f+3}{S} \times\left(\frac{12}{27}\right)^{2} \frac{1}{f T^{2}}=7.80+f / \mathrm{s} ; \quad R_{e}=\frac{\bar{V} D}{2}=1.64 \times 10^{6} ; \frac{C}{D}=6.67 \times 10^{-5} ; f=0.9124
\end{aligned}
$$

Could Choose two Peerless 16 A 18 B pumps at 880^{+}rom (Fig. O.10) or three 10 AE 44 (6) pumps at 1700 rpm (Fig. 0.2). Efficiency (Fig. 11.15) might be $7 \mathrm{p}=0.91$. Pump power is $\dot{\omega}_{m}=\frac{\dot{\omega}_{n}}{\eta_{p}}=\frac{\rho Q g^{H}}{7 p}=361 \mathrm{hp}(a+Q=38 \mathrm{cfs}), 235 \mathrm{hp}(\mathrm{at} 31 \mathrm{cfs})$

Given: Flow system shown.
Design flow rate: $Q=$ Zoogpm Pipe is commercial steel/, $D=4 \mathrm{in}$.

Solution: Apply the energy equation for steady, incompressible pipe flow.

Assumptions: (1) Reservoirs open to atmosp here, (z) Reservoir velocities negligible.

$$
\text { (3) } T=70^{\circ} \mathrm{F}\left(p_{v}=0.363 \text { psia, Tate A. } 7\right. \text {) }
$$

$A+Q=2009 \rho m(0.446 \mathrm{fta} / \mathrm{s})$, so $\bar{V}=\frac{Q}{A}=\frac{4 Q}{\pi D^{2}}=\frac{4}{\pi} \times 0.446 \frac{+4^{3}}{5} \times\left(\frac{12}{4.002}\right)^{2} \frac{1}{f T^{2}}=5.04 \mathrm{ft} / \mathrm{s}, \mathrm{e}=0.0001 \mathrm{ff}$
Thus $R e=\frac{\overline{V D}}{D}=1.58 \times 10^{5} ; \frac{C}{D}=0.000447 ; f=0.0190$
 entrance, 0.78

For the complete $\leq y s t e m, L_{D}=(1250+5) f+\left(\frac{l 2}{4026}\right) \frac{1}{4}=3740: \frac{L e}{D}=w+55+8^{*}$ (check value

$$
\begin{aligned}
& H_{p}=z_{2}-31+\left[f\left(\frac{L}{D}+\frac{L g}{D}\right)+k\right] \frac{Z^{2}}{2 g}=(289-24)+t+[0.019(3740+138)+0.78+1] 0.394 \mathrm{ft} \\
& H_{p}=295 \mathrm{f} \text { at } 0=20099 \mathrm{~m}
\end{aligned}
$$

From Fig. D.1, a $4 A E i z$ pump (4 in. discharge line) would fit the application. This pump could produce the required bead at a speed between ins and 3500 om (Figs. D. 4 and D.S), but the efficiency may not be acceptable.
\{Consult a complete catalog to make a betterselcetion.\}

Given: Flow system and data of Problem 10.69.

Data for pipe aging from Problem 10.65

Find: (a) select pumps that will maintain system flow rate for 10 and 20 years.
(b) compare delivery to that with purim sized for new pipes only.

Solution: Apply the energy equation for steady, incompressible pipe flow.
 Assumptions: (1) $p_{1} \times p_{2}$ "pate, (2) $\bar{v}_{1}=\bar{v}_{2} \approx 0$, (3) Minor losses as is Problem $10 . b$) Sample calculations at $Q=200 \mathrm{gpm}(0.446 \mathrm{ft3} / \mathrm{s})$ for new pipe, $e=0.00015 \mathrm{f}+(\mathrm{Tab} \mathrm{a} 8.1)$:
$\bar{V}=\frac{Q}{A}=\frac{4 Q}{\pi D^{2}}=\frac{4}{\pi} \times 0.446 \frac{f+}{s} \times\left(\frac{12}{4.026}\right)^{2} \frac{1}{f+4}=5.04 \mathrm{f} / 5 ; \quad R_{C}=1.58 \times 105 ; \frac{C}{D}=2.000447 ; f=0.0170$
For the complete system, $\frac{L}{D}=(1250+5)+t \times\left(\frac{12}{4.026}\right) \frac{1}{f+}=3740 ; \frac{L 6}{D}=138 ; K=1.28$
$H_{\rho}=g_{2}-z_{1}+\left[f\left(\frac{L}{D}+\frac{L}{D}\right)+K\right] \frac{\bar{V}^{2}}{2}=(289-24) f+[0.019(3740+138)+1.28] 0.394+t=295 f+$ plotting results:
Pump
Head,
Hp
$(f+)$

Assicme H at 200 gpm it 70% of H_{0}. Then $\mathrm{H}_{200}=336 \mathrm{ft}, \mathrm{H}_{0}=\frac{1}{0.7} 336 \mathrm{ft} 2480 \mathrm{ft}$ and $H=H_{0}-A Q^{2} ; A=(H 0-H) / Q^{2}=0.3 H 0 / Q^{2}=0.3 \times 480 \mathrm{ft} /(2009 \mathrm{gm})^{2}=3.60 \times 10^{-3 \mathrm{ft} /(\mathrm{gem})^{2} \text {. }}$
sizing the pump for 200 gpo at 40 years would (assuming no change in pump characteristics) produce 206 gpmat 20 years and 222 gpo in the new system.

The extra head (336 ft , compared to 275 ft) at 200 gpm co ld be obtained by increasing impeller diameter about 7 -10\% compared to the plump of Problem 10.69

Given: Flow system of Problem 8.155

$$
D=2.5 \text { in. (nominal) } L=290 \mathrm{ft}
$$

Location	Elevation	Pressure
Entrance	50.0 ft	20 psig
Discharge	94.0 ft	0 psig

2 open gate values, lopen angle value, 7 standard 90° elbows / square-eoged entrance from a reservoir, / free discharge $Q=0.439+t^{3} / \mathrm{s} \quad(Q=197 \mathrm{gpm}) \quad$ Galvanized pipe

Find: (a) seket an appropriate pump.
(b) Check the NPSHR us. The NPSHA for this system.

Solution: Apply the energy equation foe steady, incompressible pipe flow.
Computing equation: $\left.\frac{p_{1}}{\rho g}+\frac{\alpha_{1} \vec{V}_{1}^{2}}{\partial g}+z_{1}+H_{\rho}=\frac{p_{2}}{\rho g}+\frac{\alpha_{2} \bar{v}_{2}^{2}}{\partial g}+z_{2}+\frac{h L T}{g} ; h_{L T}=\left[f\left(\frac{L}{D}+\frac{L 匕}{\bar{D}}\right)+k\right] \frac{\bar{V}}{2}\right]$
Assumptions: (i) $V, \approx n,(z) K_{A T}=0.5,(3) \frac{L}{D}=2(8)+1(150)+7(30)=370 ; D=2.47 \mathrm{in}$.
(4) Galvanized pipe, $e=0.0005 \mathrm{ft}$; $\frac{Q}{D}=\frac{0.0005 \mathrm{ft}}{2.47 \mathrm{in} .} \times \frac{12 \text { in }}{\mathrm{ft}}=0.00243$

Then

$$
\begin{aligned}
& H_{p}=\frac{p_{2}-p_{1}}{\rho g}+\frac{\alpha_{2} \bar{V}_{4}^{2}}{2 g}+z_{2}-z_{1}+\left[f\left(\frac{L}{D}+\frac{L}{D}\right)+k\right] \frac{\bar{V}^{2}}{Z g} ; \bar{V}=\frac{Q}{A}=13.2 f+/ 5 ; R C=\frac{\bar{V} D}{\nu}=2.54 \times 1 \rho_{j}^{5} ; f=0.02 \\
& H_{\rho}=(0-20) \frac{16 f}{1 n x^{1}} \times \frac{i^{2}}{f^{2}} \times \frac{f^{3}}{62.4}+\frac{1}{2} \times(13.2)^{2} \frac{f^{4}}{s^{2}} \times \frac{s^{2}}{32.2 f t}+(94.0-50.0) f t \\
& +\left[0.025\left(\frac{290}{2.47 / 2}+376\right)+0.5\right] \frac{1}{2} \times(3.2)^{2} \frac{f_{4}^{2}}{s^{2}} \cdot \frac{s^{2}}{32.27 t}=123+
\end{aligned}
$$

The plemp requirement is $Q=197 \mathrm{gpm}$ at $H=123 \mathrm{ft}$. This could be supplied by a fer less type $4 A E 12$, pump, with waller $D=11$ in. operating at 1250 rpm .
(This pump may be sightly too large, since this operatitry point is at a flow rate below that for best efficiency.)

The NPSHR for this pump at $Q=197 \mathrm{gpm}$ is about 5 ft .
The NPSHA is $\frac{p_{1}}{f g}+\frac{p_{a t r}}{\rho g}+\frac{\alpha, \bar{v}_{i}}{2 g}-p_{y}=46.2+33.9+2.71-0.782+1=82.0 \mathrm{ft}$
ThUS NPSHA \triangle NPSHR
Cawitation-tree operation is assured.
10.72 Consider the flow system shown in Problem 8.110. Assume the minimum NPSHR at the pump inlet is 15 ft of water. Select a pump appropriate for this application. Use the data for increase in friction factor with pipe age given in Problem 10.65 to determine and compare the system flow rate after 10 years of operation.

Given: Flow from pump to reservoir
Find: \quad Select a pump to satisfy NPSHR

Solution:

Basic equations

$$
\left(\frac{\mathrm{p}_{1}}{\rho}+\alpha \cdot \frac{\mathrm{V}_{1}^{2}}{2}+\mathrm{g} \cdot \mathrm{z}_{1}\right)-\left(\frac{\mathrm{p}_{2}}{\rho}+\alpha \cdot \frac{\mathrm{V}_{2}^{2}}{2}+\mathrm{g} \cdot \mathrm{z}_{2}\right)=\mathrm{h}_{\mathrm{lT}}-\mathrm{h}_{\mathrm{p}} \quad \mathrm{~h}_{\mathrm{lT}}=\mathrm{h}_{\mathrm{l}}+\mathrm{h}_{\mathrm{lm}}=\mathrm{f} \cdot \frac{\mathrm{~L}}{\mathrm{D}} \cdot \frac{\mathrm{~V}_{1}^{2}}{2}+\mathrm{K}_{\mathrm{exit}} \frac{\mathrm{~V}_{1}^{2}}{2}
$$

Assumptions: 1) Steady flow 2) Incompressible flow 3) α at 1 is approximately 14) $V_{2} \ll$
Note that we compute head per unit weight, H, not head per unit mass, h, so the energy equation between Point 1 and the free surface (Point 2) becomes

$$
\left(\frac{p_{1}}{\rho \cdot g}+\frac{v^{2}}{2 \cdot g}\right)-\left(z_{2}\right)=f \cdot \frac{L}{D} \cdot \frac{V^{2}}{2 \cdot g}+K_{e x i t} \frac{V^{2}}{2 \cdot g}-H_{p}
$$

Solving for H_{p}

$$
H_{p}=z_{2}-\frac{p_{1}}{\rho \cdot g}-\frac{v^{2}}{2 \cdot g}+f \cdot \frac{L}{D} \cdot \frac{V^{2}}{2 \cdot g}+K_{e x i t} \frac{V^{2}}{2 \cdot g}
$$

From Table A. $7\left(68^{\circ} \mathrm{F}\right)$

$$
\rho=1.94 \cdot \frac{\mathrm{slug}}{\mathrm{ft}^{3}} \quad \nu=1.08 \times 10^{-5} \cdot \frac{\mathrm{ft}^{2}}{\mathrm{~s}} \quad \mathrm{Re}=\frac{\mathrm{V} \cdot \mathrm{D}}{\nu} \quad \operatorname{Re}=6.94 \times 10^{5}
$$

For commercial steel pipe $\quad e=0.00015 \cdot f t \quad$ (Table 8.1) \quad so $\quad \frac{e}{D}=0.0002$
Flow is turbulent: \quad Given $\quad \frac{1}{\sqrt{f}}=-2.0 \cdot \log \left(\frac{\frac{e}{D}}{3.7}+\frac{2.51}{\operatorname{Re} \cdot \sqrt{f}}\right) \quad f=0.0150$
For the exit

$$
\mathrm{K}_{\mathrm{exit}}=1.0
$$

so we find

$$
H_{p}=z_{2}-\frac{p_{1}}{\rho \cdot g}+f \cdot \frac{L}{D} \cdot \frac{V^{2}}{2 \cdot g}
$$

Note that for an NPSHR of 15 ft this means $\quad \frac{\mathrm{p}_{1}}{\rho \cdot \mathrm{~g}}=15 \cdot \mathrm{ft} \quad H_{p}=\mathrm{z}_{2}-\frac{\mathrm{p}_{1}}{\rho \cdot g}+\mathrm{f} \cdot \frac{\mathrm{L}}{\mathrm{D}} \cdot \frac{\mathrm{V}^{2}}{2 \cdot g} \quad \quad H_{p}=691 \mathrm{ft}$
Note that

$$
\mathrm{Q}=\frac{\pi \cdot \mathrm{D}^{2}}{4} \cdot \mathrm{~V} \quad \mathrm{Q}=4.42 \frac{\mathrm{ft}^{3}}{\mathrm{~s}} \quad \mathrm{Q}=1983 \mathrm{gpm}
$$

For this combination of Q and Hp, from Fig. D. 11 the best pump appears to be a Peerless two-stage 10TU22C operating at 1750 rpm After 10 years, from Problem 10.65, the friction factor will have increased by a factor of $2.2 \mathrm{f}=2.2 \times 0.150 \quad \mathrm{f}=0.330$

We now need to solve $\quad H_{p}=z_{2}-\frac{p_{1}}{\rho \cdot g}+f \cdot \frac{L}{D} \cdot \frac{V^{2}}{2 \cdot g} \quad$ for the new velocity V

$$
\begin{array}{lll}
\mathrm{V}=\sqrt{\frac{2 \cdot \mathrm{D} \cdot \mathrm{~g}}{\mathrm{f} \cdot \mathrm{~L}} \cdot\left(\mathrm{H}_{\mathrm{p}}-\mathrm{z}_{2}+\frac{\mathrm{p}_{1}}{\rho \cdot \mathrm{~g}}\right)} & \mathrm{V}=2.13 \frac{\mathrm{ft}}{\mathrm{~s}} & \text { and } \mathrm{f} \text { will still be } 2.2 \times 0.150 \\
\mathrm{Q}=\frac{\pi \cdot \mathrm{D}^{2}}{4} \cdot \mathrm{~V} & \mathrm{Q}=0.94 \frac{\mathrm{ft}^{3}}{\mathrm{~s}} & \mathrm{Q}=423 \mathrm{gpm}
\end{array} \quad \text { Much less! }
$$

Given: Flow system of Problem 8.156:

$$
\begin{aligned}
& Q=6005 \mathrm{Mm} \\
& \eta \rho \approx 0.70
\end{aligned}
$$

Find: (a) select an appropriate pump.
(b) Compare pump efficiency with estimate in problem.

Assumphons: (1) $p_{1}=p_{2}=p_{a t m},(2) \overline{\mathrm{V}} \approx 0$, (3) Neglect clown and nozzle lasses, (4) $\frac{L e}{D}$ (valve) $=8$

$$
\begin{aligned}
& R C=\frac{\bar{V} D}{2}=15.3 \frac{f t}{S}\left(\frac{4}{12}\right)^{f_{k}} \frac{s}{102 \times 10^{-5 f+4}}=4.77 \times 10^{5} ; \leq m 00 t h ; f=0.013 \quad\left(T=68^{\circ} \mathrm{F}\right) \\
& H_{\rho}=z_{2}-z_{1}+\frac{\alpha_{2} \bar{V}_{2}^{2}}{\bar{z}}+\frac{h \alpha T}{g}=z_{2}-z_{1}+\frac{\bar{V}_{2}^{2}}{2 g}+\left[f\left(\frac{L}{D}+\frac{L \mathcal{L}^{2}}{\bar{D}}\right)+5 K_{j}\right] \frac{\bar{V}^{2}}{z_{g}} \\
& H_{p}=400 \mathrm{ft}+\frac{1}{2} \times(120)^{2} \frac{\mathrm{fth}}{5^{2}} \cdot \frac{\frac{3}{2}^{2}}{3.2 \mathrm{t}+}+\left[0.013\left(\frac{700}{4 / 12}+8\right)+15\right] 3.63 \mathrm{ft}=778 \mathrm{ft}
\end{aligned}
$$

Thus the pump requirement is $H p=7784 a+Q=600 \mathrm{gpm}$. This head is too great to be developed by a single-stage pump (Fig.D.1. From Fig. D.12, the flow could be supplied by a 5 turibe 3 -stage pump, driven $a+$ 1750 rpm .

Single-stage pumps have peak efficiencies of 86 percent at $1750 \mathrm{rpm}($ Fig. D.8).
Thus 70 percent efficiency might be reasonable for a 3 -stage pump, since $(0.86)^{3}=0.636$.

Given: Fire hose and nozzle as shown.
Canvas hose: $D=3 \mathrm{in}$

$$
e=0,001 \not f
$$

Find: (a) Design flow rate
(b) Maximewn nozzle exit speed
(c) Pump selection
(d) Efficiency and power

Solution: Apply the energy equation for pipe flow:
Computing equation: $\left(\frac{p_{1}}{\rho}+\alpha_{1} \frac{\bar{y}^{2}}{2}+g_{p}\right)-\left(\frac{p_{2}}{p}+\alpha_{2} \bar{v}_{2}^{2}+g_{f} b_{1}\right)=h e r=h_{e}+h_{2}^{4}$ $h_{2}=f \frac{V^{2}}{2} \frac{V}{2}^{2}$
Assumptions: (1) $\bar{V}_{1}=\bar{V}_{2},(2) \xi_{1}=z_{2},(3) \mathrm{hem}=0$
Then $\frac{p_{i}}{\rho}-\frac{p_{2}}{\rho}=\frac{\Delta p}{\rho}=f \frac{C}{D} \frac{V^{2}}{2} ; \nabla=\left[\frac{2 D \Delta p}{f \rho L}\right]^{\frac{1}{2}} ; \frac{e}{D}=\frac{0.001 f_{1}}{3 i n} \times 2 \frac{i n}{f t}=0.004 ; f=0.028$ (fully rough)

$$
\begin{aligned}
& \bar{V}=\left[\frac{2}{0.028} \times 3 \text { in. } \times 3(33) \frac{\mathrm{bf}}{\frac{n^{2}}{2}} \times \frac{\mathrm{ft}^{3}}{1.94 \operatorname{sing}} \times \frac{1}{300 \mathrm{ft}} \times 12 \frac{\mathrm{in}}{\mathrm{f}} \times \frac{3 / \mathrm{ug} \cdot \mathrm{ft}}{16 \mathrm{f} . \mathrm{s}^{2}}\right]^{\frac{1}{2}}=20.9 \mathrm{ftls} \\
& Q=\bar{V} A ; A=\frac{\pi D^{2}}{4}=\frac{\pi}{4}\left(\frac{3}{12}\right)^{2} \mathrm{ft}^{2}=0.0491 \mathrm{ft}^{2} \\
& Q=20.9 \frac{4 t}{3} \times 0.0491+4+x 78 \frac{9 a 1}{4+3} \times \frac{60 \mathrm{~s}}{\mathrm{~mm}}=461 \mathrm{gPm} \text { (design flow rate) }
\end{aligned}
$$

Apply Bernoulli to nozzle.

$$
\begin{aligned}
& \frac{p_{1}}{p}+\frac{v_{2}^{2}}{2}+q_{\delta_{2}}=\frac{p_{0} A_{m}^{0}}{p}+\frac{v_{n}^{2}}{2}+g_{b_{n}} ; v_{n}=\left[\frac{2 p_{2}}{p}+v_{2}^{2}\right]^{\frac{1}{2}} \\
& V_{n}=\left[2 \times 100 \frac{104}{\ln 2^{x}} \cdot \frac{f^{3}}{94 \operatorname{sing}} \times 144 \frac{\mathrm{n}^{2}}{\sqrt[f t^{2}]{2}}+(20.9)^{2} \frac{f t^{2}}{s^{2}}\right]^{\frac{1}{2}}=124 \mathrm{ft} / \mathrm{s}
\end{aligned}
$$

The pump head require met (neglecting v and z) will be

$$
H_{p}=\frac{p_{1}-f_{0}}{p g}=(100+3(33)-50] \frac{/(f x}{i n} \times \frac{f+3}{62.4 / b f} \times \frac{144 \mathrm{in}}{\frac{f t}{f t}}=344 \mathrm{ft}
$$

\qquad
From the pump selector chart (Fig. D. D) choose $3, A E 90$ or $4 A E$ lo pump, 3500 rpm . Based on $4 A E / 2$ at 3550 rpm (Fig, D.5), expect $\eta=0.75$

$$
\frac{h p \cdot s}{550 \mathrm{ft} \cdot \mathrm{htt}}=53.4 \mathrm{hp} .
$$

$$
P=\frac{Q \Delta p}{\eta}=\frac{Q \rho g \Delta h}{\eta}=\frac{1}{0.75} \times 20.9 \frac{\mathrm{ft}}{5} \times 0.0491+4 \times 62.4 \frac{\mathrm{hf}}{7.3} \times 344 \mathrm{ft} \times \frac{\mathrm{hp.s}}{550 \mathrm{ft} \cdot \mathrm{ht+}}=53.4 \mathrm{hp} .
$$

10.75 Consider the pipe network of Problem 8.168. Select a pump suitable to deliver a total flow rate of 300 gpm through the pipe network.

Given: Water pipe system

Find: \quad Pump suitable for 300 gpm

Solution:

$\left(\frac{p_{1}}{\rho}+\alpha_{1} \cdot \frac{V_{1}^{2}}{2}+g \cdot z_{1}\right)-\left(\frac{p_{2}}{\rho}+\alpha_{2} \cdot \frac{V_{2}^{2}}{2}+g \cdot z_{2}\right)=h_{1} \quad h_{1 T}=f \cdot \frac{L}{D} \cdot \frac{v^{2}}{2}$
$\mathrm{f}=\frac{64}{\operatorname{Re}} \quad$ (Laminar) $\quad \frac{1}{\sqrt{\mathrm{f}}}=-2.0 \cdot \log \left(\frac{\frac{\mathrm{e}}{\mathrm{D}}}{3.7}+\frac{2.51}{\operatorname{Re} \cdot \sqrt{\mathrm{f}}}\right) \quad$ (Turbulent)

The energy equation can be simplified to

$$
\Delta p=\rho \cdot f \cdot \frac{L}{D} \cdot \frac{V^{2}}{2}
$$

This can be written for each pipe section
Pipe A (first section) $\quad \Delta p_{A}=\rho \cdot f_{A} \cdot \frac{L_{A}}{D_{A}} \cdot \frac{V_{A}{ }^{2}}{2}$

Pipe B (1.5 in branch)

$$
\begin{equation*}
\Delta \mathrm{p}_{\mathrm{B}}=\rho \cdot \mathrm{f}_{\mathrm{B}} \cdot \frac{\mathrm{~L}_{\mathrm{B}}}{\mathrm{D}_{\mathrm{B}}} \cdot \frac{\mathrm{~V}_{\mathrm{B}}^{2}}{2} \tag{2}
\end{equation*}
$$

Pipe C (1 in branch)

$$
\begin{equation*}
\Delta \mathrm{p}_{\mathrm{C}}=\rho \cdot \mathrm{f}_{\mathrm{C}} \cdot \frac{\mathrm{~L}_{\mathrm{C}}}{\mathrm{D}_{\mathrm{C}}} \cdot \frac{\mathrm{~V}_{\mathrm{C}}^{2}}{2} \tag{3}
\end{equation*}
$$

Pipe D (last section)

$$
\begin{equation*}
\Delta \mathrm{p}_{\mathrm{D}}=\rho \cdot \mathrm{f}_{\mathrm{D}} \cdot \frac{\mathrm{~L}_{\mathrm{D}}}{\mathrm{D}_{\mathrm{D}}} \cdot \frac{\mathrm{~V}_{\mathrm{D}}^{2}}{2} \tag{4}
\end{equation*}
$$

In addition we have the following contraints

$$
\begin{align*}
& \mathrm{Q}_{\mathrm{A}}=\mathrm{Q}_{\mathrm{D}}=\mathrm{Q} \tag{5}\\
& \mathrm{Q}=\mathrm{Q}_{\mathrm{B}}+\mathrm{Q}_{\mathrm{C}} \tag{6}\\
& \Delta \mathrm{p}=\Delta \mathrm{p}_{\mathrm{A}}+\Delta \mathrm{p}_{\mathrm{B}}+\Delta \mathrm{p}_{\mathrm{D}} \tag{7}\\
& \Delta \mathrm{p}_{\mathrm{B}}=\Delta \mathrm{p}_{\mathrm{C}} \tag{8}
\end{align*}
$$

We have 2 unknown flow rates (or, equivalently, velocities); We solve the above eight equations simultaneously
Once we compute the flow rates and pressure drops, we can compute data for the pump

$$
\Delta \mathrm{p}_{\text {pump }}=\Delta \mathrm{p} \quad \text { and } \quad \mathrm{Q}_{\text {pump }}=\mathrm{Q}_{\mathrm{A}} \quad \mathrm{~W}_{\text {pump }}=\Delta \mathrm{p}_{\text {pump }} \cdot \mathrm{Q}_{\text {pump }}
$$

Pipe Data:

Pipe	$\boldsymbol{L}(\mathbf{f t})$	$\boldsymbol{D}(\mathbf{1 n})$	$\boldsymbol{e}(\mathbf{f t})$
A	150	1.5	0.00085
B	150	1.5	0.00085
C	150	1	0.00085
D	150	1.5	0.00085

Fluid Properties:

$$
\begin{array}{lcl}
\rho= & 1.94 & \text { slug } / \mathrm{ft}^{3} \\
\mu= & 2.10 \mathrm{E}-05 & \mathrm{lbf} \cdot \mathrm{~s} / \mathrm{ft}^{2}
\end{array}
$$

Flow Rate:

$$
\begin{array}{rlrl}
Q & = & 300 & \mathrm{gpm} \\
& = & 0.668 & \mathrm{ft}^{3} / \mathrm{s}
\end{array}
$$

Flows:

$\boldsymbol{Q}_{\mathrm{A}}\left(\mathbf{f t}^{\mathbf{3}} / \mathbf{s}\right)$	$\boldsymbol{Q}_{\mathbf{B}}\left(\mathbf{f t}^{3} / \mathbf{s}\right)$	$\boldsymbol{Q}_{\mathbf{C}}\left(\mathbf{f t}^{3} / \mathbf{s}\right)$	$\boldsymbol{Q}_{\mathbf{D}}\left(\mathbf{(\mathbf { f t } ^ { 3 } / \mathbf { s })}\right.$
0.668	0.499	0.169	0.668

$\boldsymbol{V}_{\mathbf{A}}(\mathbf{f t} / \mathbf{s})$	$\boldsymbol{V}_{\mathbf{B}}(\mathbf{f t} / \mathbf{s})$	$\boldsymbol{V}_{\mathbf{C}}(\mathbf{f t} / \mathbf{s})$	$\boldsymbol{V}_{\mathbf{D}}(\mathbf{f t} / \mathbf{s})$
54.47	40.67	31.04	54.47

$\boldsymbol{R} \boldsymbol{e}_{\mathbf{A}}$	$\boldsymbol{R} \boldsymbol{e}_{\mathbf{B}}$	$\boldsymbol{R} \boldsymbol{e}_{\mathbf{C}}$	$\boldsymbol{R e}_{\mathbf{D}}$
$6.29 \mathrm{E}+05$	$4.70 \mathrm{E}+05$	$2.39 \mathrm{E}+05$	$6.29 \mathrm{E}+05$

$\boldsymbol{f}_{\mathrm{A}}$	$\boldsymbol{f}_{\mathrm{B}}$	$\boldsymbol{f}_{\mathrm{C}}$	$\boldsymbol{f}_{\mathrm{D}}$
0.0335	0.0336	0.0384	0.0335

Heads:

$\Delta \boldsymbol{p}_{\mathrm{A}}(\mathbf{p s i})$	$\Delta \boldsymbol{p}_{\text {B }}(\mathbf{p s i})$	$\Delta \boldsymbol{p}_{\mathrm{C}}(\mathbf{p s i})$	$\Delta \boldsymbol{p}_{\mathrm{D}}(\mathbf{p s i})$
804.0	448.8	448.8	804.0

Constraints:

Error:

Vary Q_{B} and $Q_{\text {C }}$
using Solver to minimize total error

For the pump: | $\Delta \boldsymbol{p}$ (psi) | \boldsymbol{Q} (gpm) | \mathcal{P} (hp) |
| :---: | :---: | :---: |
| 2057 | 300 | 360 |

This is a very high pressure; a sequence of pumps would be needed
10.76 A pumping system with two different static lifts is shown. Each reservoir is supplied by a line consisting of 300 m of 20 cm cast-iron pipe. Evaluate and plot the system head versus flow curve. Explain what happens when the pump head is less than the height of the upper reservoir. Calculate the flow rate delivered at a pump head of 26 m .

Given:
Pump and supply pipe system
Find: \quad Head versus flow curve; Flow for a head of 26 m

Solution:

Basic equations:

$$
\left(\frac{p_{1}}{\rho}+\alpha_{1} \cdot \frac{V_{1}^{2}}{2}+g \cdot z_{1}\right)-\left(\frac{p_{2}}{\rho}+\alpha_{2} \cdot \frac{V_{2}^{2}}{2}+g \cdot z_{2}\right)=h_{1 T}-h_{p u m p} \quad h_{I T}=f \cdot \frac{L}{D} \cdot \frac{v^{2}}{2}+f \cdot \frac{L_{e}}{D} \cdot \frac{v^{2}}{2}+K \cdot \frac{v^{2}}{2}
$$

Applying to the 24 m branch (branch a) $\quad-\mathrm{g} \cdot \mathrm{H}_{\mathrm{a}}=\mathrm{f} \cdot \frac{\mathrm{L}}{\mathrm{D}} \cdot \frac{\mathrm{V}_{\mathrm{a}}{ }^{2}}{2}+\mathrm{f} \cdot \frac{\mathrm{L}_{\mathrm{e}}}{\mathrm{D}} \cdot \frac{\mathrm{V}_{\mathrm{a}}{ }^{2}}{2}+\mathrm{K} \cdot \frac{\mathrm{V}_{\mathrm{a}}{ }^{2}}{2}-\mathrm{g} \cdot \mathrm{H}_{\text {pump }}$
where $\mathrm{H}_{\mathrm{a}}=24 \cdot \mathrm{~m}$ and $\frac{\mathrm{L}_{\text {ea }}}{\mathrm{D}}$ is due to a standard T branch $(=60)$ and a standard elbow $(=30)$ from Table 8.4, and $\mathrm{K}=\mathrm{K}_{\text {ent }}+\mathrm{K}_{\text {exit }}=1.5$ from Fig. 8.14

$$
\begin{equation*}
H_{\text {pump }}=H_{a}+\left[f \cdot\left(\frac{L}{D}+\frac{L_{e a}}{D}\right)+K\right] \cdot \frac{\mathrm{V}_{\mathrm{a}}}{2 \cdot g} \tag{1}
\end{equation*}
$$

Applying to the 15 m branch (branch b) $\quad \mathrm{H}_{\text {pump }}=\mathrm{H}_{\mathrm{b}}+\left[\mathrm{f} \cdot\left(\frac{\mathrm{L}}{\mathrm{D}}+\frac{\mathrm{L}_{\mathrm{eb}}}{\mathrm{D}}\right)+\mathrm{K}\right] \cdot \frac{\mathrm{V}_{\mathrm{b}}}{2 \cdot \mathrm{~g}}$
where $H_{b}=15 \cdot \mathrm{~m}$ and $\frac{\mathrm{L}_{\mathrm{eb}}}{\mathrm{D}}$ is due to a standard T run $(=20)$ and two standard elbows $(=60)$, and $\mathrm{K}=\mathrm{K}_{\text {ent }}+\mathrm{K}_{\text {exit }}=1.5$

	$H_{\text {pump }}(\mathrm{m})$	$Q\left(\mathrm{~m}^{3} / \mathrm{s}\right)$	$Q_{a}\left(\mathrm{~m}^{3} / \mathrm{s}\right)$	$V_{a}(\mathrm{~m} / \mathrm{s})$	Re_{a}	f_{a}	[$\mathbf{p u m p}^{\text {pum }}$ (Eq. 1)	$Q_{b}\left(\mathrm{~m}^{3} / \mathrm{s}\right)$	$V_{b}(\mathrm{~m} / \mathrm{s})$	$\boldsymbol{R e}{ }_{\text {b }}$	f_{b}	$H_{\text {pump }}($ Eq. 2)	H (Errors)
$e=0.26 \mathrm{~mm}$	24.0	0.070	0.000	0.000	8.62E+00	7.4264	24.0	0.070	2.230	$4.42 \mathrm{E}+05$	0.0215	24.0	0.00
$D=20 \mathrm{~cm}$	24.5	0.088	0.016	0.506	$1.00 \mathrm{E}+05$	0.0231	24.5	0.072	2.292	$4.54 \mathrm{E}+05$	0.0215	24.5	0.00
$K=1.5$	25.0	0.097	0.023	0.72	$1.44 \mathrm{E}+05$	0.0225	25.0	0.074	2.35	$4.66 \mathrm{E}+05$	0.0215	25.0	0.00
$L_{\text {ea }} / D=90$	25.5	0.104	0.028	0.89	$1.77 \mathrm{E}+05$	0.0223	25.5	0.076	2.41	$4.78 \mathrm{E}+05$	0.0215	25.5	0.00
$L_{\text {eb }} / D=80$	26.0	0.110	0.033	1.03	$2.05 \mathrm{E}+05$	0.0221	26.0	0.078	2.47	$4.89 \mathrm{E}+05$	0.0215	26.0	0.00
$H_{a}=24$	26.5	0.116	0.036	1.16	$2.30 \mathrm{E}+05$	0.0220	26.5	0.079	2.52	$5.00 \mathrm{E}+05$	0.0215	26.5	0.00
$H_{b}=15 \mathrm{~m}$	27.0	0.121	0.040	1.27	$2.52 \mathrm{E}+05$	0.0219	27.0	0.081	2.58	$5.11 \mathrm{E}+05$	0.0214	27.0	0.00
$\rho=1000 \mathrm{~kg} / \mathrm{m}^{3}$	27.5	0.126	0.043	1.38	$2.73 \mathrm{E}+05$	0.0218	27.5	0.083	2.63	$5.21 \mathrm{E}+05$	0.0214	27.5	0.00
$v=1.01 \mathrm{E}-06 \mathrm{~m}^{2} / \mathrm{s}$	28.0	0.131	0.046	1.47	$2.92 \mathrm{E}+05$	0.0218	28.0	0.084	2.69	$5.32 \mathrm{E}+05$	0.0214	28.0	0.00
	28.5	0.135	0.049	1.56	$3.10 \mathrm{E}+05$	0.0217	28.5	0.086	2.74	$5.42 \mathrm{E}+05$	0.0214	28.5	0.00
	29.0	0.139	0.052	1.65	$3.27 \mathrm{E}+05$	0.0217	29.0	0.088	2.79	$5.52 \mathrm{E}+05$	0.0214	29.0	0.00
	29.5	0.144	0.054	1.73	$3.43 \mathrm{E}+05$	0.0217	29.5	0.089	2.84	$5.62 \mathrm{E}+05$	0.0214	29.5	0.00
	30.0	0.148	0.057	1.81	$3.59 \mathrm{E}+05$	0.0216	30.0	0.091	2.89	$5.72 \mathrm{E}+05$	0.0214	30.0	0.00

For the pump head less than the upper reservoir head flow will be out of the reservoir (into the lower one)
Total Error: 0.00

Given: Chilled water circulation system of Problem 8.158: $L=3 \mathrm{mi}(15,800 \mathrm{ft}), D=2 \mathrm{ft}(\mathrm{stec} 1), Q=11,200 \mathrm{gpm}$, Loop configuration

Find: (a) select suitable pumps for parallel operation
(b) Calculate power for 3 pumps in parallel.
(d) Calculate volume flow rate and power it lar 2 pumps operate.

Solution: Apply the energy equation for steady, incompressible pipe flow.

Assumptions: (1) $p_{1}=p_{2},(z) \alpha_{1} \bar{v}_{1}^{2}=\alpha_{2} \bar{v}_{2}^{2},(3) z_{1}=z_{2},(4)$ Neglect minor losses, $\frac{L_{D}}{D} \approx 0, k \approx 0$

$$
\bar{V}=\frac{Q}{A}=11,200 \frac{g a 1}{\min } \times \frac{4}{\pi\left(2 j^{2}+4+4\right.} \times \frac{f^{3}}{2.48 \mathrm{gai}} \times \frac{\min }{60 \sec }=7.94 \mathrm{f}+\mathrm{\beta} ; \quad \frac{\bar{V}^{2}}{2 \mathrm{~g}}=\frac{1}{2} \times(7.94)^{2} \frac{f^{2}}{s^{2}} \times \frac{s^{2}}{3 z^{2} .2 \mathrm{ft}}=0.979 \mathrm{ft}
$$

Assume $T=40$ F, so $v=1.64 \times 10^{-5} \mathrm{ft}^{2} / \mathrm{s} ; \quad R e=\frac{\bar{v} D}{\nu}=9.68 \times 10^{5} ; \frac{Q}{D}=7.5 \times 10^{-5} ; f=0.013$

$$
H_{a}=+\frac{L}{D} \frac{V^{2}}{\mathrm{zg}}=0.013 \times \frac{3(5280) \mathrm{ft}}{2 \mathrm{ft}} \times 0.979 \mathrm{ft}=101 \mathrm{ft}
$$

For three pumps in parallel, each will operate at $Q / 3=3730$ gpo. The requirement for each pump is $H=101 \mathrm{ft}$ at $Q=3730 \mathrm{gpm}$. This can be supplied by Peerless Type 10 AEIz pumps with impellers of $D=12 \mathrm{~m}$. diameter, operating at $N=1760$ nominal rpm. The efficiency at this operating point is $\eta \approx 0.85$.
Find operating points graphically for 1,2 , and 3 pumps:

The graphical solution is shown
$Q_{1}=$ not satisfactory, $Q_{2}=9400 \mathrm{gpm}($ marginal $), Q_{3}=11,200 \mathrm{gpm}(\mathrm{OK})$
Assuming $\eta_{p} \approx \dot{\theta}^{\circ} 7$, then $\dot{w}_{m_{1}}=\frac{P Q g H}{\eta} \approx 78 \mathrm{hp}$, $\dot{w}_{m_{2}} \approx 241 \mathrm{hp}$, and $\dot{w}_{m_{3}} \approx 409 \mathrm{hp}$
10.78 Consider the flow system shown in Problem 8.76. Evaluate the NPSHA at the pump inlet. Select a pump appropriate for this application. Use the data on pipe aging from Problem 10.65 to estimate the reduction in flow rate after 10 years of operation.

(4)

Given:

Data on flow from reservoir/pump
Find: Appropriate pump; Reduction in flow after 10 years

Solution:

Basic equation:

$$
\begin{aligned}
& \left(\frac{p_{1}}{\rho \cdot g}+\alpha \cdot \frac{V_{1}^{2}}{2 \cdot g}+z_{1}\right)-\left(\frac{p_{4}}{\rho \cdot g}+\alpha \cdot \frac{V_{4}^{2}}{2 \cdot g}+z_{4}\right)=H_{l T}-H_{p} \\
& H_{l T}=f \cdot \frac{L}{D} \cdot \frac{V^{2}}{2 \cdot g}+f \cdot \frac{L_{e}}{D} \cdot \frac{V^{2}}{2 \cdot g}+K \cdot \frac{V^{2}}{2 \cdot g}
\end{aligned}
$$

Assumptions: 1) Steady flow 2) Incompressible flow 3) α at 1 and 2 is approximately 14) $V_{2}=V_{3}=V_{4}$ (constant area pipe)

Given or available data	$\rho=1000 \cdot \frac{\mathrm{~kg}}{\mathrm{~m}^{3}}$	$\nu=1.01 \times 10^{-6} \cdot \frac{\mathrm{~m}^{2}}{\mathrm{~s}}$	$\mathrm{p}_{\mathrm{V}}=2.34 \cdot \mathrm{kPa}$
$\mathrm{p}_{2}=150 \cdot \mathrm{kPa}$	$\mathrm{P}_{3}=450 \cdot \mathrm{kPa}$	$\mathrm{D}=15 \cdot \mathrm{~cm}$	$\mathrm{e}=0.046 \cdot \mathrm{~mm}$
$\mathrm{z}_{1}=20 \cdot \mathrm{~m}$	$\mathrm{z}_{4}=35 \cdot \mathrm{~m}$	$\mathrm{~V}=\frac{4 \cdot \mathrm{Q}}{\pi \cdot \mathrm{D}^{2}}$	(Table A.8)
		$\mathrm{Q}=0.075 \cdot \frac{\mathrm{~m}^{3}}{\mathrm{~s}}$	

For minor losses we have \quad Four elbows: $\quad \frac{\mathrm{L}_{\mathrm{e}}}{\mathrm{D}}=4 \times 12=48 \quad$ (Fig. 8.16) \quad Square inlet: $\quad \mathrm{K}_{\mathrm{ent}}=0.5$

At the pump inlet

$$
\text { NPSHA }=\frac{\mathrm{p}_{2}+\frac{1}{2} \cdot \rho \cdot \mathrm{~V}^{2}-\mathrm{p}_{\mathrm{V}}}{\rho \cdot \mathrm{~g}}
$$

$$
\mathrm{NPSHA}=16.0 \mathrm{~m}
$$

The head rise through the pump is $H_{p}=\frac{\mathrm{p}_{3}-\mathrm{p}_{2}}{\rho \cdot g} \quad H_{p}=30.6 \mathrm{~m}$
Hence for a flow rate of $\mathrm{Q}=0.075 \frac{\mathrm{~m}^{3}}{\mathrm{~s}}$ or $\mathrm{Q}=1189 \mathrm{gpm}$ and $\mathrm{H}_{\mathrm{p}}=30.6 \mathrm{~m}$ or $\mathrm{H}_{\mathrm{p}}=100 \mathrm{ft}$, from Appendix
D. Fig. D3 a Peerless4AE11 would suffice

We do not know the pipe length L ! Solving the energy equation for it $z_{1}-z_{4}=H_{l T}-H_{p}=f \cdot \frac{L}{D} \cdot \frac{V^{2}}{2 \cdot g}+f \cdot \frac{L_{e}}{D} \cdot \frac{V^{2}}{2 \cdot g}+K_{e n t} \cdot \frac{V^{2}}{2 \cdot g}-H_{p}$
For f

$$
\mathrm{Re}=\frac{\mathrm{V} \cdot \mathrm{D}}{\nu}
$$

$\operatorname{Re}=6.303 \times 10^{5}$
and
$\frac{\mathrm{e}}{\mathrm{D}}=3.07 \times 10^{-4}$

Given

$$
\frac{1}{\sqrt{\mathrm{f}}}=-2.0 \cdot \log \left(\frac{\frac{\mathrm{e}}{\mathrm{D}}}{3.7}+\frac{2.51}{\operatorname{Re} \cdot \sqrt{\mathrm{f}}}\right)
$$

$$
\mathrm{f}=0.0161
$$

Hence, substituting values

$$
\mathrm{L}=\frac{2 \cdot \mathrm{~g} \cdot \mathrm{D}}{\mathrm{f} \cdot \mathrm{~V}^{2}} \cdot\left(\mathrm{z}_{1}-\mathrm{z}_{4}+\mathrm{H}_{\mathrm{p}}\right)-\mathrm{D} \cdot\left(\frac{\mathrm{~L}_{\mathrm{e}}}{\mathrm{D}}\right)-\frac{\mathrm{K}_{\mathrm{ent}} \cdot \mathrm{D}}{\mathrm{f}}
$$

$$
\mathrm{L}=146 \mathrm{~m}
$$

From Problem 10.65 , for a pipe $\mathrm{D}=0.15 \mathrm{~m}$ or $\mathrm{D}=5.91 \mathrm{in}$, the aging over 10 years leads to

$$
\mathrm{f}_{\text {worn }}=2.2 \cdot \mathrm{f}
$$

We need to solve the energy equation for a new V

Hence $\quad \mathrm{Q}_{\text {worn }}=\frac{\pi \cdot \mathrm{D}^{2}}{4} \cdot \mathrm{~V}_{\text {worn }} \quad \mathrm{Q}_{\text {worn }}=0.0510 \frac{\mathrm{~m}^{3}}{\mathrm{~s}}$

$$
\Delta \mathrm{Q}=\mathrm{Q}_{\text {worn }}-\mathrm{Q} \quad \Delta \mathrm{Q}=-0.0240 \frac{\mathrm{~m}^{3}}{\mathrm{~s}}
$$

$$
\frac{\Delta \mathrm{Q}}{\mathrm{Q}}=-32.0 \%
$$

Check f $\quad \operatorname{Re}_{\text {worn }}=\frac{\mathrm{V}_{\text {worn }} \cdot \mathrm{D}}{\nu} \quad$ Given $\quad \frac{1}{\sqrt{\mathrm{f}}}=-2.0 \cdot \log \left(\frac{\frac{\mathrm{e}}{\mathrm{D}}}{3.7}+\frac{2.51}{\operatorname{Re}_{\text {worn }} \cdot \sqrt{\mathrm{f}}}\right)$ $\mathrm{f}=0.0165$

Hence using 2.2×0.0161 is close enough to using 2.2×0.0165

Given: Gasoline pipeline of Problem 8.124:

$$
L=13 \mathrm{~km}, D=0.6 \mathrm{~m}, \Delta p_{12}=1.4 \mathrm{MPa}
$$

$56=0.72$
Roughness equivalent to galvanized iron $(e=0.15 \mathrm{~mm}=0.00015 \mathrm{~m})$
Find: (a) select suitable pumps for parallel operation.
(b) Calculate the power required for 4 pumps in parallel.
(c) Calculate volume flow rate and power with 1,2 , and 3 pumps.

Solution: Apply the energy equation for steady, incompressible pipe flow.
Competing equation: $\frac{p_{i}}{\rho g}+\frac{\alpha_{i} \bar{v}_{i}^{2}}{2 g}+3 i+H_{p}=\frac{p_{j}}{\rho g}+\frac{\alpha_{j} \bar{V}_{j}^{2}}{\partial g}+z j+\frac{h c T}{g} ; h_{e t}=\left[f\left(\frac{L}{D}+\frac{L}{D}\right)+k\right] \frac{\bar{v}^{2}}{2}$
Assumptions: (1) $\nabla_{i}=\nabla_{L_{1}} \alpha_{1}=\alpha_{w}(2) z_{i}=z_{n}$ (3) Neglect minor losses, $\frac{L e}{D} \approx 0, k \approx 0$ Find flow rate to size pump. From 1 to 2, to $=0$, so

$$
D=0.6 \mathrm{~m}_{\mathrm{N}} \frac{\mathrm{ff}}{0.30 \mathrm{~mm}}=1.97 \mathrm{f}
$$

$$
\frac{\rho_{1}}{\rho g}=\frac{p_{2}}{\rho g}+\frac{h_{0} r}{\bar{\sigma}} ; \Delta p=\rho h e r=\rho f \frac{L}{\mathcal{D}} \frac{\vec{v}^{2}}{2} ; \bar{V}=\left[\frac{2 \Delta p D}{\rho f L}\right]^{\frac{1}{2}} \quad \frac{e}{D}=\frac{0.00015 \mathrm{~m}}{0.6 \mathrm{~m}}=2.5 \times 10^{-4}
$$

But $f=f\left(R_{e}, e_{1}\right)$; R_{e} is not known. Choose firm thelly-rough region, $f=0.014$.

Check: $\operatorname{Re}=\frac{V D}{2}=1.8 \frac{f t}{S} \times 1.97 \mathrm{f} \times \frac{\mathrm{S}}{8.6 \times 10^{-6} \mathrm{ft}^{2}}=2.70 \times 10^{6} ; f=0.0146$ (see 10 ta below t)

$$
\bar{V}=\left[\frac{0.014}{0.0146}\right]^{1 / 2} 11.8 \frac{f+}{s}=11.6 \mathrm{ft} / \mathrm{s}, \quad Q=\bar{V} A=35.3 \frac{\mathrm{ft}}{\mathrm{~s}} \mathrm{~s}=15.7009 \mathrm{pm}
$$

For parallel operation with tour pumps, each must $\operatorname{supply} \frac{Q}{4}=3930 \mathrm{gpm}$. The head requenement is $H_{p}=\frac{p_{1}-p_{2}}{\rho g}=204 \frac{\mathrm{bf}}{\frac{1 n^{2}}{2} \times \frac{f^{3}}{(0.72) 62.416 f} \times 144 \dot{n}^{2}}=654 \mathrm{ft}$ (gasoline) This combination of head and flow rate cannot be supplied by a single stage pump. From Fig. D. II, the two-stage Pecrless Type 10 TU ZZC pump may be chosen.
The input power requirement is $\dot{\omega}_{m}=\frac{P Q g H}{7 p}$. Assuring $\eta_{p}=0.65$,

Flow rates with fewer pumps operating may be found from a plot. The pump characteristic may be approximated as (assume $H=0.7 \mathrm{Ho}$):

$$
\hat{H}_{p} \approx 934-1.81 \times 10^{-5} Q^{2} \quad\left\{H_{0}=\frac{654}{0.7}=934 ; B=\frac{H_{0}-H}{Q^{2}}=\frac{(0.3) 934}{(3930)^{2}}=1.81 \times 10^{-5}\right\}
$$

$\left\{\right.$ Note: gasoline is between octane and heptane, Fig. A.3. For $T=15^{\circ} \mathrm{C}, v=8 \times 10^{-7} \frac{\mathrm{~m}^{2}}{\mathrm{~s}}=8.6 \times 10^{-6} \frac{\mathrm{fr}}{\mathrm{s}}$: \}

$$
\begin{aligned}
& \Delta p=1.4 \times 10^{60} \mathrm{~Pa} \times \frac{14.7 \mathrm{psi}}{101 \times 10^{3} \mathrm{~Pa}}=204 \mathrm{psi} ; \rho=0.72 \rho_{\text {io }}=0.72 \times 1.94 \frac{\mathrm{shag}}{\mathrm{ft}}=1.40 \mathrm{~s} / \mathrm{cg} / \mathrm{ft}+
\end{aligned}
$$

Problem 10.79

For two pumps. in parallel/, $\hat{H}=H_{0}-A\left(\frac{Q}{2}\right)^{2} \approx 934-4.54 \times 10^{-10} Q^{2}$ For three pumps in parallel, $\hat{H}=H_{0}-A\left(\frac{Q}{3}\right)^{2} \approx 934-2.02 \times 10^{-6} Q^{2}$ For tow pumps in paralkl, $\hat{H}=H_{0}-A\left(\frac{Q}{4}\right)^{2} \approx 934-1.13 \times 10^{-6} Q^{2}$ The pipe system characteristic is approximately given by

The approximate volume flow rates, heads, and power requirements (assuming $n p=0.65$) are:

Number of Pumps	1	1	2	3	4
				3	4
Flow Rate (gpo)	6710	11,400	14,200	15,700	
Head (ft gasoline)	119	345	531	654	
Power (hp)	224	1100	2110	2880	

Given: Sprinkler system for lakeside home.
(4) sprinkler

$$
Q=10 \mathrm{gpm}, p_{4}=50 \mathrm{psig}, D=1 \mathrm{in} .(\text { nom, gaiviron })
$$

Find: (a) Head loss on suction side of pump.
(b) Gage pressure at pump init.
(c) Hydralic power reqimt for pump.
(d) Change to $D=1.5$ in.?
(e) Pump halfway up hill?

Solution: Assume $T=68^{\circ} \mathrm{F}$, so $\nu=1.08 \times 10^{-5} \neq A^{2} / \mathrm{s}$ (Table $A, 7$).
For lin (nominal) pipe, $D=1.049$ in. (Table 8.5) $\bar{V}=\frac{Q}{A} ; A=\frac{\pi}{4} D^{2}=\frac{\pi}{4}\left(\frac{1.049}{12}\right)^{2}++^{2}=0.00600\left(f^{2}\right.$

$$
\begin{aligned}
& \bar{V}=\frac{Q}{A}=10 \frac{\mathrm{gal}}{\mathrm{~mm}} \times \frac{1}{d .00600 \mathrm{ft}^{2}} \times \frac{\mathrm{ft}^{3}}{7.48 \mathrm{ga}} \times \frac{\mathrm{man}}{60 \mathrm{~s}}=3.71 \mathrm{ft} / \mathrm{s} ; \frac{\bar{V}^{2}}{2}=\frac{1}{2} \times(3.7)^{2} \frac{\mathrm{ff}}{\mathrm{~s}^{2}}=6.90 \mathrm{ft}^{2} / \mathrm{s}^{2} \\
& R e=\frac{\bar{V} P}{\nu}=37 \frac{\mathrm{ft}}{\mathrm{~s}} \times 1.049 \mathrm{in} \times \frac{\mathrm{s}}{1.08 \times 10^{-5} \mathrm{ft}^{2}} \times \frac{\mathrm{ft}}{12 \mathrm{~m}}=3,00 \times 10^{4} ; e=0.0005 \mathrm{ft}(\mathrm{Tableg}, 1)
\end{aligned}
$$

Therefore $\frac{e}{D}=0.0005 \mathrm{ft}_{\times} \frac{1}{1.049 \mathrm{n}} \times \frac{12}{\frac{19}{f t}}=0.00572$ and $f \approx 0.034$ (Fig. 8.,3).
Apply energy equation for steady incompressible pipe flow:
(z) $v_{i}=0$
(3) $3_{1}=0$
(4) $\alpha_{2} \approx 1$

$$
p_{2}(g a g e)=-62 .+\frac{16 f}{f+3}\left(6.88 \frac{\mathrm{ft}^{2}}{3^{2}} \times \frac{s^{2}}{32.2 \mathrm{ft}}+10 \mathrm{ft}+4.67 \mathrm{ft}\right) \frac{\mathrm{ft}^{2}}{144 \mathrm{~m}^{2}}=-6.45 \mathrm{psig}
$$

To find hydraulic power, must know p_{3}. Apply energy equation:

$$
\left(\frac{p_{3}}{\rho g}+\alpha_{3} \frac{b_{3}^{2}}{p_{g}}+z_{3}\right)-\left(\frac{p_{4}}{\rho g}+\alpha_{4} \frac{\bar{V}_{4}}{p_{g}}+z_{4}\right)=h_{T_{34}}=\left(\frac{L_{34}}{D}+2 k_{450}\right) \frac{\bar{b}^{2}}{2 g}
$$

Assumptions: (1) $\bar{V}_{3}=\bar{V}_{4}=\bar{V}=\bar{V}_{2}$

$$
\frac{L 34}{D}=\frac{120 \mathrm{ft}}{1.049 \mathrm{in}} \times 12 \frac{\mathrm{in.}}{\mathrm{f}}=1.370
$$

 since $\bar{V}_{2}=\bar{V}_{3}$ and the elevations are corrected to the pump centerlire ($z_{2}=z_{3}$).

$$
\begin{aligned}
& p_{3}=p_{4}+\rho g\left[\partial_{4}-z 3+\left(+\frac{\angle 34}{D}+2+\frac{L_{0}}{D_{45}}\right) \frac{V^{2}}{2 g}\right] \\
& p_{3}=50 p s i g+62.4 \frac{1 b t}{f+3}\left[(80-10) f+(0.034 *(1370+2 \times 16)) 490 \frac{f^{2}}{s^{2}} \times \frac{s^{2}}{32.2+4}\right] \frac{f^{2}}{144 \mathrm{~m}^{2}}=84.8 \mathrm{psig}
\end{aligned}
$$

$$
\begin{aligned}
& \mu_{2}(g a g e)=-\rho g\left(\frac{\vec{v}_{2}^{2}}{2 g}+g_{2}+H_{\alpha-T}\right) \\
& H_{Q T_{12}}=[0.034(572+30+16)+0.77] 6.88 \frac{4}{5^{2}} \times 32.3^{2} 74
\end{aligned}
$$

From Eq, 10.8a, $\dot{W}_{n}=\rho Q g H_{p}$. Thus $\dot{W}_{h}=\rho g Q H_{p}$

$$
\dot{W}_{h}=62.4 \frac{\mathrm{bf}}{\mathrm{f}} \times 10 \frac{\mathrm{gal}}{\mathrm{~mm}} \times 211 \mathrm{ft} \times \frac{\mathrm{ft}}{7.48 \mathrm{gal}} \times \frac{\mathrm{hp} \cdot \mathrm{~mm}}{33000 \mathrm{f} \cdot 1 \mathrm{bf}}=0.533 \mathrm{hp}
$$

Changing to $D=15 \mathrm{in}$. (nominal) pipe would reduced the mean velocity and hence the head loss and the minor loss. For this pipe $D=1,610$ in. (Table 8.4).

$$
\begin{aligned}
& \operatorname{Re}=\frac{\bar{V} D}{\nu}=1.58 \frac{f}{5} \times \frac{1.61}{12}+\frac{1}{1.08 \times 10^{-54^{2}}}=1.96 \times 10^{4} ; \frac{e}{D}=0.00373 ; 4 \approx 0.032 \text { (F99.8.13) }
\end{aligned}
$$

Thus $\frac{\bar{V}_{2}^{2}}{2 g}=\frac{1}{2} x^{(1.58)^{2}} \frac{\mathrm{ft}^{2}}{s^{2}} \times \frac{s^{2}}{32.2 f^{4}}=0.0388 \mathrm{~A}$

$$
\begin{aligned}
& H_{l T_{2}}=\left(\left(0.031 \times \frac{50}{(1.61 / 12)}+30+16\right)+0.78\right) 0.0388 f=0.534 f+ \\
& H_{l T_{34}}=\left(0.03 / \times\left(\frac{120}{(1.6 / 12)}+2 \times 16\right)\right) 0.0388 f+=1.11 \mathrm{ft} \\
& p_{2}(g a g e)=-\rho g\left(\frac{V_{2}^{2}}{2 g}+32+H_{e 7 / 2}\right) \\
& \left.p_{2} \text { (gage }\right)=-62.4 \frac{1 b f}{f f^{3}}(0.0388+10+0.534) f+\frac{f^{2}}{144 \mathrm{~m}^{2}}=-4.58 \mathrm{psig}
\end{aligned}
$$

and

$$
\begin{aligned}
& p_{3}(g a g e)=p_{4}+p g\left(34-33+t_{4 r_{34}}\right) \\
& p_{3}(g a g e)=50 p 5 i g+b 2.4 \frac{164}{f+3}(80-10+1.11) f_{x} \frac{f^{2}}{14 t^{2}}=80.8 \mathrm{p} n^{2}
\end{aligned}
$$

The pump head is $H_{P}=\frac{f_{3}-p_{2}}{\rho g}=\left(80.8-(-4.56) \frac{1 b f}{17} \times \frac{+43}{62.4 b f} \times \frac{144}{f+2}=197 \mathrm{ft}\right.$
Thus the pump power is $\dot{\omega}_{h}=f g Q H_{p}=0.498 \mathrm{hp}$
The power reduenonis $\Delta \dot{w}_{n}=\frac{\dot{w}_{h}(1,5 \text { in })-\dot{\omega}_{h}(1 \text { in })}{\dot{W}_{h}(1 \text { in })}=-6.7$ percent
The pump show not be moved up the hill. The NPSHA now is

$$
N P S H A=\frac{1}{\rho g}\left[p(a b s)+\rho \frac{\bar{V}_{2}^{2}}{2}-p_{v}\right]=\frac{1}{\rho g}\left[p_{a+m}+p(g a g e)+\frac{\bar{V}_{2}^{2}}{2}-p_{v}\right]
$$

At $T=68^{\circ} F, 7, y=0.339$ psia (Table A.7).

$$
\begin{aligned}
& \text { NPSHA }=18.5 \mathrm{~A} \text { (in. pipe) } 22.6 \mathrm{H} \text { (1.5 in pipe) }
\end{aligned}
$$

This should not be reduced further by raising the pump. If anything, the pump should be lowered to increase NPSHA.

Given: Pump and piping system at lakeside home, as shown.

$$
\begin{aligned}
& \text { Gavanged iron pipe. } \quad A=0.0513 \mathrm{~A}^{2} \\
& D=3 \text { in (nomerial }=3.068 \mathrm{~A} .
\end{aligned}
$$

$$
D=3 \mathrm{in}(\text { normal })=3.069 \mathrm{in}
$$

Find: (a) System head-flow curve
(b) System operating point
(c) Power input if np $=0.8$
(d) sketch of system curve when $3 y=90 f t$
(e) Sketch of sister curve when $\frac{3}{}=75 \mathrm{ft}$, valve

$$
\operatorname{ta}
$$ Elbows-a

sate
 partcosed, and $Q=0.1+43 / \mathrm{s}$.
(f) Which case has higher pump efficiency?

Solution: Apply the energy equation for pipe flow, The pump must overcome the gravity lit plus the head losses in the pipe and fittings.

Assume: (1) Nominal speed is $V=12 \mathrm{ftls}, T=60^{\circ} \mathrm{F}, \nu=1.21 \times 10^{-5} \mathrm{ft} / \mathrm{s}($ Table $A, 7)$
(z) Flow in fully rough $300 \mathrm{c}\left(e=0.0005 f+(7 a b l e 8.1), e_{10}=0.002, f \approx 0.024\right)$
(3) Cases: (1) Water in tank below (3) $\left.\begin{array}{r}\text { (2) water in tank at } 3=90 f+\end{array}\right\}$ Valve open
(3) Valve closed so $Q=0.1 \mathrm{ft}^{2} / \mathrm{s}$, value part closed

Then
and $H_{s}=3 \operatorname{cnd}+22.2 \frac{\nabla^{\frac{6}{2}}}{2 q}$
$A s s l u m e \bar{V}=12 f+1 \mathrm{~s}, Q=2769 \mathrm{pm}, \frac{\bar{V}^{2}}{2 g}=2,24 \mathrm{ft}, H_{5}=70+22,2(2,24)=120 \mathrm{ft}$
Case 1: zed $=$ toft Operating pint: $Q=276$ gm, $H_{p}=H_{s}=120 \mathrm{ft}$

$$
P=\frac{p g Q H}{7 \rho}=62.4 \frac{16 f}{f+3} \times 12.0 \frac{f+}{5} \times 0.0513 f^{2} \times 120 f+\frac{1}{0 . f} \times \frac{h p . s}{550 f+1 b f}=10.5 \mathrm{hp}
$$

Case 2: 3 end $=90 \mathrm{ft} ; H_{s}=90+22.2(2.24)=140 \mathrm{ft}$

$$
\left.H_{s}=90+\frac{50.0[Q(g \rho m)]^{2}}{(276)^{2}(9 p m)^{2}}=90+6.56 \times 10^{-4} Q(\mathrm{~g} \mathrm{\rho m})\right]^{2}
$$

Case 3: $Q=0.1 f 3 / \mathrm{s}=44.9 \mathrm{gpm} ; H_{s}=H_{p} ; A \leq s w n e ~ H e z p=0.7$ to

$$
\begin{aligned}
& H_{p}=H_{0}+\frac{\left(H_{0}-H_{0 p}\right)}{Q_{0 p}} Q^{2}=\frac{120}{0.7}-\frac{(120 / 0.7-120)}{(276)^{2}} Q^{2}=169-6.75 \times 0^{-4} Q^{2} \\
& H_{p}=168+t+Q=449 \mathrm{gpm}
\end{aligned}
$$

\qquad

$$
\begin{aligned}
& H_{l T}=\frac{h_{l}}{g}=\left[k_{e n t}+f\left(\frac{L}{D}+3 \frac{L_{0}}{\bar{D}}(e / b o w)+\frac{L_{e}}{D}(g a+e v a w e)+k_{e x i t}\right] \frac{\bar{V}^{2}}{2 g}\right. \\
& H_{l T}=\left[0.04+0.024\left(\frac{200 f+x}{3.068 \mathrm{~m}} 12 \frac{1}{f+}+3(30)+8\right)+1\right] \frac{\bar{v}^{2}}{2 g}=22.2 \frac{\bar{V}^{2}}{2 g}
\end{aligned}
$$

Water pumped from lake to storage tank on bluff:
Input Data:

$$
\begin{array}{lrll}
\text { Friction factor: } & f= & 0.024 & (-\mathrm{c}) \\
\text { Pipe diameter: } & D= & 3.068 & \text { in. }
\end{array}
$$

Calculated Results:
Pipe area:
$A=0.0513 \mathrm{ft}^{2}$

System Curves for Various Conditions:
Case 1: Case 2:
$\left.\left.\begin{array}{rrrrr} & & & H_{s} & H_{s} \\ Q & V & V^{2} / 2 g & \begin{array}{r}\left(z_{3}=70 \mathrm{ft}\right)\end{array} & \left(z_{3}=90 \mathrm{ft}\right)\end{array}\right] \begin{array}{rrrr}\text { (ft) }\end{array}\right)$

Case 3: Valve partially closed

	H_{s}
Q	$\left(z_{3}=75 \mathrm{ft}\right)$
(gpm)	(ft)
0	75.0
2	78.8
4	90.0
6	109
8	135
10	169

Pump Head Curve:

Problem 10.82
Given: Manufacturer data for submersible pump:

| Discharge Height $(f t)$ | 1 | 2 | 5 | 10 | 15 | 20 | 26.3 |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| Water Flow Rate (gm) | 20.4 | 20 | 19 | 16 | 13 | 8 | 0 |

Find: (a) Plot a performance curve for this pump.
(b) Develop and show a curve-fit to the data.
(c) Calculate and plot the pump delivery versus discharge height for (1) 50^{\prime} of $3 / 4 \mathrm{in}$ garden hose, (2) 50^{\prime} of 1 in . pipe.

Solution: The performance data ane aurve-fit are plotted below:

The energy equation for steads, incompressible pipe flow was used to develop the system curves shown above, for $\Delta z=0$. To obtain delivery versus height, add the elevation change to the head for $\Delta z=0$ to find the new intersection with the pump curve:

The same reset is obtained when the difference between the pump curve and the hose, at a given flow rate, equals Δz.

Given: Swimming pool filtration system of Problem 8.169.
Assume pipe used is $3 / 4$ in. (nominal) smooth pvc plastic.
Pump de livers $Q=30$ gam of water at $75^{\circ} \mathrm{F}$.

Fitter pressure drop is $\Delta p=0.6 Q^{2}$ where Δp is $p s i$ and Q in g pm.

Find: (a) specify speed and impeller diameter of suitable pump.
(b) Estimate pump efticrenas.

Solution: Need head to specify pump. Using $F M$, with $Q=30$ g pm 0.0668 ifs) and $D=0.824$ in. $(0.0687 \mathrm{~A}), \Delta 0_{12}=5.56 \mathrm{pSi}$.

Flow reest split to give same pressure drop in each branch. Assuming Le lo for each elbow is 30 , iteration gives:

$$
\begin{aligned}
& Q_{24}=24.8 \mathrm{gpm}(0.0553 \mathrm{cts}) \text { and } \Delta p=16.69 \rho \mathrm{si} \\
& Q_{23}=5.2 \operatorname{gpm}(0.011 \mathrm{cts}) \text { and } \Delta p=16.2+0.6023=16.8 \mathrm{psi}
\end{aligned}
$$

Neglecting any pressure at the pump inlet, the pump most supply

$$
\Delta p_{p \text { comp }}=\Delta p_{12}+\Delta p_{23}=5.56+16.7=22.3 \text { psi }
$$

The pump head is $H=\frac{\Delta p}{\rho g}=22.3 \frac{1 b f}{12^{2}} \times \frac{f+3}{b \tau .416 f} \times 144+\frac{n^{2}}{f+t^{2}}=51.5 \mathrm{ft}$
This pump. is too small to be found in Fig. D. . Therefore approximate its charactensties cesing N_{s} and H_{0}. Assleme $N=3500 \mathrm{rpm}$:

$$
N s_{c u}=\frac{N Q^{1 / 2}}{H^{3 / 4}}=\frac{3500(30)^{1 / 2}}{(51.5)^{3 / 4}}=997
$$

From Fig. $10.15,7 \approx 0.62$ or less. Assuming $H=0.7$ Ho, then

$$
H=0.7 H_{0}=0.7 \frac{(\omega / R)^{2}}{g} ; R=\frac{1}{\omega}\left(\frac{g H}{0.7}\right)^{\frac{1}{2}}=\frac{5}{367 \mathrm{rad}}\left[32.2 \frac{f+}{s^{2}} \times 51.5+4 \times \frac{1}{0.7}\right]^{\frac{1}{2}}=0.133 \mathrm{ft}
$$

The impeller diavicter is approximately

$$
D=2 R=2 \times 0.133 \mathrm{ft} \times 12 \frac{\mathrm{in}}{\mathrm{ft}}=3.18 \mathrm{in}
$$

The pump power requirement is

$$
\dot{\omega}_{m}=\frac{P Q g H}{7 p}=\frac{1}{0.6} \times 0.0068 \frac{\mathrm{f}^{3}}{5} \times 62.4 \frac{\mathrm{hf}}{\mathrm{ft3}} \times 51.5 \mathrm{f} \times \frac{\mathrm{hp} .5}{550 \mathrm{ft} \cdot 1 \mathrm{bf}}=0.651 \mathrm{hp}
$$

A 3/4 horsepower motor should be used.

Problem 10.84

10.84 Consider the fire hose and nozzle of Problem 8.159. Specify an appropriate pump and impeller diameter to supply four such hoses simultaneously. Calculate the power input to the pump.

Given: Fire nozzle/pump system
Find: Appropriate pump; Impeller diameter; Pump power input needed

Solution:

Basic equations $\quad\left(\frac{p_{2}}{\rho}+\alpha \cdot \frac{V_{2}^{2}}{2}+g \cdot z_{2}\right)-\left(\frac{p_{3}}{\rho}+\alpha \cdot \frac{V_{3}^{2}}{2}+g \cdot z_{3}\right)=h_{l} \quad h_{l}=f \cdot \frac{L}{D} \cdot \frac{V_{2}^{2}}{2} \quad$ for the hose
Assumptions: 1) Steady flow 2) Incompressible flow 3) α at 2 and 3 is approximately 1 4) No minor loss

$$
\left(\frac{\mathrm{p}_{2}}{\rho}+\alpha \cdot \frac{\mathrm{V}_{2}^{2}}{2}+\mathrm{g} \cdot \mathrm{z}_{2}\right)-\left(\frac{\mathrm{p}_{1}}{\rho}+\alpha \cdot \frac{\mathrm{V}_{1}^{2}}{2}+\mathrm{g} \cdot \mathrm{z}_{1}\right)=h_{\text {pump }} \quad \text { for the pump }
$$

Assumptions: 1) Steady flow 2) Incompressible flow 3) α at 1 and 2 is approximately 1 4) No minor loss
The first thing we need is the flow rate. Below we repeat Problem 8.159 calculations
Hence for the hose $\frac{\Delta p}{\rho}=\frac{P_{2}-p_{3}}{\rho}=f \cdot \frac{L}{D} \cdot \frac{V^{2}}{2} \quad$ or $\quad V=\sqrt{\frac{2 \cdot \Delta p \cdot D}{\rho \cdot f \cdot L}}$
We need to iterate to solve this for V because f is unknown until Re is known. This can be done using Excel's Solver, but here:

$$
\begin{array}{lllll}
\Delta \mathrm{p}=750 \cdot \mathrm{kPa} \quad \mathrm{~L}=100 \cdot \mathrm{~m} & \mathrm{e}=0 & \mathrm{D}=3.5 \cdot \mathrm{~cm} & \rho=1000 \cdot \frac{\mathrm{~kg}}{\mathrm{~m}^{3}} & \nu=1.01 \times 10^{-6} \cdot \frac{\mathrm{~m}^{2}}{\mathrm{~s}} \\
\text { Make a guess for } \mathrm{f} \mathrm{f}=0.01 & \mathrm{~V}=\sqrt{\frac{2 \cdot \Delta \mathrm{p} \cdot \mathrm{D}}{\rho \cdot \mathrm{f} \cdot \mathrm{~L}}} & \mathrm{~V}=7.25 \frac{\mathrm{~m}}{\mathrm{~s}} & \mathrm{Re}=\frac{\mathrm{V} \cdot \mathrm{D}}{v} & \mathrm{Re}=2.51 \times 10^{5}
\end{array}
$$

Given

$$
\frac{1}{\sqrt{\mathrm{f}}}=-2.0 \cdot \log \left(\frac{\frac{\mathrm{e}}{\mathrm{D}}}{3.7}+\frac{2.51}{\operatorname{Re} \cdot \sqrt{\mathrm{f}}}\right) \quad \mathrm{f}=0.0150
$$

$$
\mathrm{V}=\sqrt{\frac{2 \cdot \Delta \mathrm{p} \cdot \mathrm{D}}{\rho \cdot \mathrm{f} \cdot \mathrm{~L}}} \quad \mathrm{~V}=5.92 \frac{\mathrm{~m}}{\mathrm{~s}} \quad \mathrm{Re}=\frac{\mathrm{V} \cdot \mathrm{D}}{\nu} \quad \mathrm{Re}=2.05 \times 10^{5}
$$

Given

$$
\mathrm{V}=\sqrt{\frac{2 \cdot \Delta \mathrm{p} \cdot \mathrm{D}}{\rho \cdot \mathrm{f} \cdot \mathrm{~L}}} \quad \mathrm{~V}=5.81 \frac{\mathrm{~m}}{\mathrm{~s}} \quad \operatorname{Re}=\frac{\mathrm{V} \cdot \mathrm{D}}{\nu} \quad \operatorname{Re}=2.01 \times 10^{5}
$$

Given

$$
\frac{1}{\sqrt{\mathrm{f}}}=-2.0 \cdot \log \left(\frac{\frac{\mathrm{e}}{\mathrm{D}}}{3.7}+\frac{2.51}{\operatorname{Re} \cdot \sqrt{\mathrm{f}}}\right) \quad \mathrm{f}=0.0156
$$

$$
\frac{1}{\sqrt{\mathrm{f}}}=-2.0 \cdot \log \left(\frac{\frac{\mathrm{e}}{\mathrm{D}}}{3.7}+\frac{2.51}{\operatorname{Re} \cdot \sqrt{\mathrm{f}}}\right) \quad \mathrm{f}=0.0156
$$

$$
\mathrm{V}=\sqrt{\frac{2 \cdot \Delta \mathrm{p} \cdot \mathrm{D}}{\rho \cdot \mathrm{f} \cdot \mathrm{~L}}} \quad \mathrm{~V}=5.80 \frac{\mathrm{~m}}{\mathrm{~s}}
$$

$\operatorname{Re}=\frac{\mathrm{V} \cdot \mathrm{D}}{\nu} \quad \operatorname{Re}=2.01 \times 10^{5}$

$$
\mathrm{Q}=\frac{\pi \cdot \mathrm{D}^{2}}{4} \cdot \mathrm{~V} \quad \mathrm{Q}=5.578 \times 10^{-3} \frac{\mathrm{~m}^{3}}{\mathrm{~s}} \quad \mathrm{Q}=0.335 \cdot \frac{\mathrm{~m}^{3}}{\mathrm{~min}}
$$

We have

$$
\mathrm{p}_{1}=350 \cdot \mathrm{kPa}
$$

$$
\mathrm{P}_{2}=700 \cdot \mathrm{kPa}+750 \cdot \mathrm{kPa}
$$

$$
\mathrm{p}_{2}=1450 \mathrm{kPa}
$$

For the pump

$$
\left(\frac{p_{2}}{\rho}+\alpha \cdot \frac{V_{2}^{2}}{2}+g \cdot z_{2}\right)-\left(\frac{p_{1}}{\rho}+\alpha \cdot \frac{V_{1}^{2}}{2}+g \cdot z_{1}\right)=h_{p u m p}
$$

so

$$
\mathrm{h}_{\text {pump }}=\frac{\mathrm{p}_{2}-\mathrm{p}_{1}}{\rho} \quad \text { or } \quad H_{\text {pump }}=\frac{\mathrm{p}_{2}-\mathrm{p}_{1}}{\rho \cdot \mathrm{~g}}
$$

$$
\mathrm{H}_{\text {pump }}=112 \mathrm{~m}
$$

We need a pump that can provide a flow of $\mathrm{Q}=0.335 \frac{\mathrm{~m}^{3}}{\mathrm{~min}}$ or $\mathrm{Q}=88.4 \mathrm{gpm}$, with a head of $\mathrm{H}_{\text {pump }}=112 \mathrm{~m}$ or $\mathrm{H}_{\mathrm{pump}}=368 \mathrm{ft}$

From Appendix D, Fig. D. 1 we see that a Peerless 2AE11 can provide this kind of flow/head combination; it could also handle four such hoses (the flow rate would be $4 \cdot \mathrm{Q}=354 \mathrm{gpm}$). An impeller diameter could be chosen from proprietary curves.
The required power input is $\quad W_{m}=\frac{W_{h}}{\eta_{p}} \quad$ where we choose $\eta_{p}=75 . \%$ from Fig. 10.15

$$
\mathrm{W}_{\mathrm{m}}=\frac{\rho \cdot \mathrm{Q} \cdot \mathrm{~g} \cdot \mathrm{H}_{\text {pump }}}{\eta_{\mathrm{p}}} \quad \mathrm{~W}_{\mathrm{m}}=8.18 \mathrm{~kW} \quad \text { for one hose or } \quad 4 \cdot \mathrm{~W}_{\mathrm{m}}=32.7 \mathrm{~kW} \quad \text { for four }
$$

$\mathrm{P}_{\text {required }}=\frac{\mathrm{P}_{\text {pump }}}{\eta} \quad \mathrm{P}_{\text {required }}=\frac{6.14 \cdot \mathrm{~kW}}{70 \cdot \%} \quad \mathrm{P}_{\text {required }}=8.77 \cdot \mathrm{~kW} \quad$ or $\quad 4 \cdot \mathrm{P}_{\text {required }}=35.1 \mathrm{~kW} \quad$ for four
10.85 Performance data for a centrifugal fan of 1 m diameter, tested at 650 rpm , are

Volume flow rate $Q\left(\mathbf{m}^{3} / \mathbf{s}\right)$	3	4	5	6	7	8
Static pressure rise, $\Delta p\left(\mathbf{m m ~} \mathbf{H}_{\mathbf{2}} \mathbf{O}\right)$	53					

Plot the performance data versus volume flow rate. Calculate static efficiency and show the curve on the plot. Find the best efficiency point and specify the fan rating at this point.

Given: Data on centrifugal fan
Find: Plot of performance curves; Best efficiency point

Solution:

Basic equations: $\quad \eta_{\mathrm{p}}=\frac{\mathrm{W}_{\mathrm{h}}}{\mathrm{W}_{\mathrm{m}}} \quad \quad \mathrm{W}_{\mathrm{h}}=\mathrm{Q} \cdot \Delta \mathrm{p} \quad \Delta \mathrm{p}=\rho_{\mathrm{w}} \cdot \mathrm{g} \cdot \Delta \mathrm{h} \quad$ (Note: Software cannot render a dot!)

$$
\rho_{\mathrm{w}}=1000 \mathrm{~kg} / \mathrm{m}^{3}
$$

Fitting a 2nd order polynomial to each set of data we find

$$
\begin{aligned}
& \Delta p=-1.32 Q^{2}+5.85 Q+48.0 \\
& \eta=-0.0426 Q^{2}+0.389 Q-0.0267
\end{aligned}
$$

Finally, we use Solver to maximize η by varying Q :

$\left.\boldsymbol{Q} \mathbf{(m}^{\mathbf{3}} / \mathbf{s}\right)$	$\Delta \boldsymbol{p} \mathbf{(m m)}$	$\eta(\%)$
4.57	47.2	86.1%

10.86 Using the fan of Problem 10.85 determine the minimumsize square sheet-metal duct that will carry a flow of $5.75 \mathrm{~m}^{3} / \mathrm{s}$ over a distance of 15 m . Estimate the increase in delivery if the fan speed is increased to 800 rpm .

Given: Data on centrifugal fan and square metal duct
Find: \quad Minimum duct geometry for flow required; Increase if fan speed is increased

Solution:

Basic equations:	$\eta_{\mathrm{p}}=\frac{\mathrm{W}_{\mathrm{h}}}{\mathrm{~W}_{\mathrm{m}}}$	$\mathrm{W}_{\mathrm{h}}=\mathrm{Q} \cdot \Delta \mathrm{p}$	$\Delta \mathrm{p}=\rho_{\mathrm{w}} \cdot \mathrm{g} \cdot \Delta \mathrm{h}$	(Note: Software cannot render a dot!)
and for the duct	$\Delta \mathrm{p}=\rho_{\mathrm{air}} \cdot \mathrm{f} \cdot \frac{\mathrm{~L}}{\mathrm{D}_{\mathrm{h}}} \cdot \frac{\mathrm{v}^{2}}{2}$	$\mathrm{D}_{\mathrm{h}}=\frac{4 \cdot \mathrm{~A}}{\mathrm{P}}=\frac{4 \cdot \mathrm{H}^{2}}{4 \cdot \mathrm{H}}$		
and fan scaling	$\mathrm{Q}=5.75 \cdot \frac{\mathrm{~m}^{3}}{\mathrm{~s}}$	$\omega=650 \cdot \mathrm{rpm}$	$\omega^{\prime}=800 \cdot \mathrm{rpm}$	$Q^{\prime}=\frac{\omega^{\prime}}{\omega} \cdot \mathrm{Q} \quad \mathrm{Q}^{\prime}=7.08 \frac{\mathrm{~m}^{3}}{\mathrm{~s}}$

$$
\begin{gathered}
\rho_{\mathrm{w}}=1000 \quad \mathrm{~kg} / \mathrm{m}^{3} \\
\rho_{\mathrm{air}}=1.225 \mathrm{~kg} / \mathrm{m}^{3} \\
v_{\text {air }}=1.50 . \mathrm{E}-05 \mathrm{~m}^{2} / \mathrm{s} \\
L=\quad 15 \mathrm{~m}
\end{gathered}
$$

Fitting a 2nd order polynomial to each set of data we find

$$
\Delta p=-1.32 Q^{2}+5.85 Q+48.0
$$

User Solver to vary H so the error in Δp is zero
Assume smooth ducting

Note: Efficiency curve not needed for this problem

	Fan
$\boldsymbol{Q}\left(\mathbf{m}^{\mathbf{3}} / \mathbf{s}\right)$	$\Delta \boldsymbol{p}(\mathbf{m m})$
7.08	23.3

$\boldsymbol{Q}\left(\mathbf{m}^{\mathbf{3}} / \mathbf{s}\right)$	$\boldsymbol{\Delta p}(\mathbf{m m})$	$\mathcal{P}_{\mathbf{m}}(\mathbf{k W})$	$\mathcal{P}_{\mathbf{h}}(\mathbf{k W})$	$\eta(\%)$
3	53	2.05	1.56	76.1%
4	51	2.37	2.00	84.4%
5	45	2.60	2.21	84.9%
6	35	2.62	2.06	78.6%
7	23	2.61	1.58	60.5%
8	11	2.40	0.86	36.0%

	$\boldsymbol{H}(\mathbf{m})$	$\boldsymbol{V}(\mathbf{m} / \mathbf{s})$	$\boldsymbol{R e}$	\boldsymbol{f}
$\boldsymbol{D} \boldsymbol{p}(\mathbf{m m})$				
0.472	31.73	$9.99 . \mathrm{E}+05$	0.0116	23.3

Answers:

$\boldsymbol{Q}\left(\mathbf{m}^{\mathbf{3}} / \mathbf{s}\right)$	$\boldsymbol{H}(\mathbf{m})$			
5.75	0.394	\quad	$\boldsymbol{Q}\left(\mathbf{m}^{\mathbf{3}} / \mathbf{s}\right)$	$\boldsymbol{H}(\mathbf{m})$
:---:	:---:			
7.08	0.472			

Fan Performance Curve

10.87 Consider the fan and performance data of Problem 10.85. At $Q=5.75 \mathrm{~m}^{3} / \mathrm{s}$, the dynamic pressure is equivalent to 4 mm of water. Evaluate the fan outlet area. Plot total pressure rise and input horsepower for this fan versus volume flow rate. Calculate the fan total efficiency and show the curve on the plot. Find the best efficiency point and specify the fan rating at this point.

Given: Data on centrifugal fan

Find: Fan outlet area; Plot total pressure rise and power; Best efficiency point

Solution:

Basic equations: $\quad \eta_{\mathrm{p}}=\frac{\mathrm{W}_{\mathrm{h}}}{\mathrm{W}_{\mathrm{m}}} \quad \quad \mathrm{W}_{\mathrm{h}}=\mathrm{Q} \cdot \Delta \mathrm{p}_{\mathrm{t}} \quad \Delta \mathrm{p}=\rho_{\mathrm{w}} \cdot \mathrm{g} \cdot \Delta \mathrm{h}_{\mathrm{t}} \quad$ (Note: Software cannot render a dot!)

| At $\mathrm{Q}=5.75 \cdot \frac{\mathrm{~m}^{3}}{\mathrm{~s}}$ we have $\mathrm{h}_{\text {dyn }}=4 \cdot \mathrm{~mm}$ | $\mathrm{Q}=\mathrm{V} \cdot \mathrm{A}$ |
| :--- | :--- |\quad and $\quad \mathrm{h}_{\text {dyn }}=\frac{\mathrm{p}_{\text {dyn }}}{\rho_{\mathrm{w}} \cdot \mathrm{g}}=\frac{\rho_{\text {air }}}{\rho_{\mathrm{w}}} \cdot \frac{\mathrm{V}^{2}}{2}$.

$$
\text { The velocity } \mathrm{V} \text { is directly proportional to } \mathrm{Q} \text {, so the dynamic pressure at any flow rate } \mathrm{Q} \text { is } \quad \mathrm{h}_{\mathrm{dyn}}=4 \cdot \mathrm{~mm} \cdot\left(\frac{\mathrm{Q}}{5.75 \cdot \frac{\mathrm{~m}^{3}}{\mathrm{~s}}}\right)^{2}
$$

The total pressure $\Delta \mathrm{h}_{\mathrm{t}}$ will then be

$$
\Delta h_{\mathrm{t}}=\Delta \mathrm{h}+\mathrm{h}_{\mathrm{dyn}}
$$

$$
\Delta \mathrm{h} \text { is the tabulated static pressure rise }
$$

$$
\begin{array}{rcl}
\text { At } Q & =5.75 & \mathrm{~m}^{3} / \mathrm{s} \\
h_{\mathrm{dyn}} & =4 & \mathrm{~mm}
\end{array}
$$

$$
V=8.00 \mathrm{~m} / \mathrm{s}
$$

$$
A=0.71838 \mathrm{~m}^{2}
$$

Fan Performance Curve

 diameter fan wheel. This fan also is manufactured with 1.025 , Static pressure rise, $1.125-1.250-$, and $1.375-\mathrm{m}$ diameter wheels. Pick a standard fan $\Delta p\left(\mathbf{m m ~ H}_{\mathbf{2}} \mathbf{O}\right) \quad \begin{array}{llllllll}53 & 51 & 45 & 35 & 23 & 11\end{array}$ $\begin{array}{lllllllllllllllllllllllllll}\text { to deliver } 14 \mathrm{~m}^{3} / \mathrm{s} \text { against a } 25-\mathrm{mm} \mathrm{H}_{2} \mathrm{O} \text { static pressure rise. As- Power output } \mathscr{P}(\mathbf{k W}) & 2.05 & 2.37 & 2.60 & 2.62 & 2.61 & 2.4\end{array}$ sume standard air at the fan inlet. Determine the required fan speed and the input power needed.

Given: Data on centrifugal fan and various sizes
Find: Suitable fan; Fan speed and input power

Solution:

Basic equations: $\frac{\mathrm{Q}^{\prime}}{\mathrm{Q}}=\left(\frac{\omega^{\prime}}{\omega}\right) \cdot\left(\frac{\mathrm{D}^{\prime}}{\mathrm{D}}\right)^{3} \quad \frac{\mathrm{~h}^{\prime}}{\mathrm{h}}=\left(\frac{\omega^{\prime}}{\omega}\right)^{2} \cdot\left(\frac{\mathrm{D}^{\prime}}{\mathrm{D}}\right)^{2} \quad \frac{\mathrm{P}^{\prime}}{\mathrm{P}}=\left(\frac{\omega^{\prime}}{\omega}\right)^{3} \cdot\left(\frac{\mathrm{D}^{\prime}}{\mathrm{D}}\right)^{5}$
We choose data from the middle of the table above as being in the region of the best efficiency

$$
\mathrm{Q}=5 \cdot \frac{\mathrm{~m}^{3}}{\mathrm{~s}} \quad \mathrm{~h}=45 \cdot \mathrm{~mm} \quad \mathrm{P}=2.62 \cdot \mathrm{~kW} \quad \text { and } \quad \omega=650 \cdot \mathrm{rpm} \quad \mathrm{D}=1 \cdot \mathrm{~m}
$$

The flow and head are

$$
\mathrm{Q}^{\prime}=14 \cdot \frac{\mathrm{~m}^{3}}{\mathrm{~s}} \quad \mathrm{~h}^{\prime}=25 \cdot \mathrm{~mm}
$$

These equations are the scaling laws for scaling from the table data to the new fan. Solving for scaled fan speed, and diameter using the first two equations

$$
\omega^{\prime}=\omega \cdot\left(\frac{Q^{\prime}}{Q^{\prime}}\right)^{\frac{1}{2}} \cdot\left(\frac{h^{\prime}}{h}\right)^{\frac{3}{4}} \quad \omega^{\prime}=250 \mathrm{rpm} \quad \mathrm{D}^{\prime}=\mathrm{D} \cdot\left(\frac{\mathrm{Q}^{\prime}}{\mathrm{Q}}\right)^{\frac{1}{2}} \cdot\left(\frac{h}{h^{\prime}}\right)^{\frac{1}{4}} \quad \mathrm{D}^{\prime}=1.938 \mathrm{~m}
$$

This size is too large; choose (by trial and error)

$$
\begin{aligned}
& \mathrm{Q}=7 \cdot \frac{\mathrm{~m}^{3}}{\mathrm{~s}} \\
& \mathrm{~h}=23 \cdot \mathrm{~mm} \\
& P=2.61 \cdot \mathrm{~kW} \\
& \omega^{\prime}=\omega \cdot\left(\frac{\mathrm{Q}}{\mathrm{Q}^{\prime}}\right)^{\frac{1}{2}} \cdot\left(\frac{\mathrm{~h}^{\prime}}{\mathrm{h}}\right)^{\frac{3}{4}} \quad \omega^{\prime}=489 \mathrm{rpm} \\
& D^{\prime}=D \cdot\left(\frac{Q^{\prime}}{Q}\right)^{\frac{1}{2}} \cdot\left(\frac{h}{h^{\prime}}\right)^{\frac{1}{4}} \quad D^{\prime}=1.385 m
\end{aligned}
$$

Hence it looks like the largest fan (1.375 m) will be the only fit; it must run at about 500 rpm . Note that it will NOT be running at best efficiency. The power will be

$$
\mathrm{P}^{\prime}=\mathrm{P} \cdot\left(\frac{\omega^{\prime}}{\omega}\right)^{3} \cdot\left(\frac{\mathrm{D}^{\prime}}{\mathrm{D}}\right)^{5} \quad \mathrm{P}^{\prime}=5.67 \mathrm{~kW}
$$

Given: Wind tunnel, with I foot square test section, powered by fan below. Tunnel contains two screen, each with $K=0,1 z$, and a differeer between the test section and the $24 \mathrm{in} . \phi$ fan inlet.
(o)

Find: (a) cakulate and plot Δp versus Q.
(b) Estimate the maximum air speed.

Solution: Apply energy
computing equation: $\frac{\phi_{0}}{p}+\frac{\hat{p}_{b}^{2}}{\beta^{2}}+g b_{p}=\frac{p_{1}}{p}+\alpha_{1} \frac{\bar{v}_{1}^{2}}{2}+g b_{1}+h_{e r} ; h_{l t}=\left[f\left(\frac{\psi}{p}+\frac{L b}{p}\right)+k\right] \frac{v^{2}}{2}$ Assurnphons: (1) $\beta_{0}=$ patron, $(2) V_{0} \approx 0, \alpha_{7} \approx 1,(3) z_{0}=z_{1},(4)$ Lasses in diffuser, screens
$\frac{\Delta p_{\text {fan }}}{\rho}=\frac{p_{a t r}-p_{1}}{P}=\frac{V_{1}^{2}}{2}+h_{L T}=\frac{V_{1}^{2}}{2}+\left(2 K_{\text {screen }}+K_{\text {diffuser }}\right) \frac{V^{2}}{2}=\left[2 K_{S}+K_{d}+\left(\frac{A}{A_{1}}\right)^{2}\right] \frac{Q^{2}}{2 A^{2}}$ From continuity, $V A_{1}=V A ; V_{1}^{2}=V^{2}\left(\frac{A}{A_{1}}\right)^{2} ; V=\frac{Q}{A} ; V^{2}=\frac{Q^{2}}{A^{2}} ; A=1 A^{2} ; A=\frac{\pi}{4} D_{1}^{2}=3.44+4$ From Fig. 8.19, $K_{d}=c_{p_{i}}-c_{\rho}=1-\left(\frac{1}{A R}\right)^{2}-0.70=1-\left(\frac{1}{3.14}\right)^{2}-0.70=0.199$

$$
\begin{aligned}
& \Delta h f a n=\frac{\Delta p}{f g}=1.79 \times 10^{-7}\left[Q(6 f m)^{2}\right] \frac{b f f}{f f^{2}} \times \frac{f+3}{62.416 f} \times \frac{12}{\frac{n}{f}}=3.43 \times 10^{-8}\left[Q(c f m)^{2}\right]
\end{aligned}
$$

The resulting curve is plotted above; computed values are tabulated below.
The system will operate where the fan cherve and system curve cross. The approximate operating point is $Q=7400 \mathrm{cfm}$ at $h=1.9 \mathrm{in} . \mathrm{H}_{2} \mathrm{O}$.

The test section speed is
$V=\frac{Q}{A}=7400 \frac{\mathrm{ft3}}{\mathrm{~min}} \times \frac{1}{1 \mathrm{ft}} \times \frac{\mathrm{min}}{60 \leq}=123 \mathrm{ft} / \mathrm{s}$

$Q(1000 \mathrm{cfm})$	1	2	3	4	5	6	7	8	9	10
$\Delta p\left(\mathrm{in} . \mathrm{H}_{2} \mathrm{O}\right)$	0.03	0.14	0.31	0.55	0.86	1.24	1.68	2.20	2.78	3.43

Given: Axial-flow fan and wind tunnel of problem 10.89.
Find: (a) scale performance of fan as it varies with operating speed.
(b) Develop and plot a "calibratio ncurve" showing test section flow speed (misec) versus fan speed (rpm).

Solution: From the solution to Problem 10.89, $\Delta h_{\tan } \propto Q^{2} \propto V^{2}$.
The scaling laws for varying fan speed suggest $Q \propto \omega$ and $p \propto \omega^{2}$.
Thus $\Delta h_{\operatorname{fan}} \propto Q^{2} \propto p \alpha \omega^{2}$ or $Q \propto \omega$. The volume flow rate (and the test section flow speed) should vary directly with w.

From the results of Problem 10.89, V $=123 \mathrm{ft} / \mathrm{s}$ when $N=1835 \mathrm{rpm}$.
Plotting:

The slope of the linear relationship is $\frac{V}{N}=123 \frac{\mathrm{f}}{\frac{5}{5}} \times \frac{1}{1835 \mathrm{rmm}}=0.0670 \mathrm{ft} / \mathrm{s} / \mathrm{rpm}$.
Thus $V(f t / s)=0.0670 \mathrm{~N}(\mathrm{cpm})$

Given: Experimental test data for aircraft engine fuel pump:

Pump supplies the at 450 ph, 150 pig to the controller

Find: (a) Pot curves of fuel presseere versus delivery at the three constant speeds.
(b) Estimate the pump displacement volume per revolution.
(c) calculate volumetric efficiency at ea th point, sketch 7 V contour
(d) Evaluate energy loss due to throttling at 100% speed, thill delivers

Solution:
Back
Pressure, (pig)

For the pump, $\dot{m}=\rho \forall N$, so $\forall=\frac{m}{\rho N}$. Analyzing the 4536 rpm case,
$\forall \approx 1810 \frac{\mathrm{Hbm}}{\mathrm{hr}} \times \frac{9 \mathrm{al}}{6.8 \mathrm{lbm}} \times \frac{\mathrm{rmin}}{453 \mathrm{brev}} \times \frac{\mathrm{t}^{3}}{7.48 \mathrm{ga1}} \times 1728 \frac{\mathrm{~m}^{3}}{\mathrm{ft} 3} \times \frac{\mathrm{hr}}{60 \mathrm{~mm}}=0.226 \mathrm{~m}^{3} / \mathrm{rcv}$ \qquad At constant speed, $\eta_{v}=\frac{\forall a c t u a l}{\forall g \text { geometric }}=\frac{m}{m(p=0)}$, calculation shows η_{V} decreases as speed is reduced. see below.

Energy loss is $\dot{\omega}_{L}=\left(\frac{m_{p}-\dot{m}_{L}}{\rho}\right) p_{L}=(1810-450) \frac{16 \mathrm{~m}}{\mathrm{nr}} \times \frac{9 a 1}{6.8 \mathrm{lbm}} \times 100 \frac{16 t}{1 \mathrm{~m} .2} \times \frac{f+3}{7.48 \mathrm{gat}}$
$\times 144 \frac{\dot{m}^{2}}{f^{2}} \times \frac{h p \cdot s}{550 f t \cdot 16 f} \times \frac{h r}{3600 \leq}$
$\dot{\omega}_{l}=0.292 \mathrm{hp}$
At 453 rpm , the best vokmetric efficiency is
$\eta_{v} \approx \frac{\dot{m}}{\dot{m}(p=0)} \times \frac{4536}{453} \approx \frac{89 p p h}{1810 p p h} \times \frac{4536}{453}=0.0492$, or about 5%
At 4355 rpm,
$\eta_{v} \approx \frac{1730 p p h}{1810 p p h} \times \frac{4536}{4355}=0.996$, om more than 99% (this is doubtful).

Problem 10.92

10.92 The propeller on an airboat used in the Florida Everglades moves air at the rate of $90 \mathrm{lbm} / \mathrm{s}$. When at rest, the speed of the slipstream behind the propeller is 90 mph at a location where the pressure is atmospheric. Calculate (a) the propeller diameter, (b) the thrust produced at rest, and (c) the thrust produced when the airboat is moving ahead at 30 mph if the mass flow rate through the propeller remains constant.

Given: Data on boat and propeller

Find: Propeller diameter; Thrust at rest; Thrust at 30 mph

Solution:

Basic equation: $\quad \vec{F}=\vec{F}_{s}+\vec{F}_{B}=\frac{\partial}{\partial t} \int_{\mathrm{CV}} \vec{V}_{x y z} \rho d \forall+\int_{\mathrm{CS}} \vec{V}_{x y z} \rho \vec{V}_{x y z} \cdot d \vec{A}$

Assumption: 1) Atmospheric pressure on CS 2) Horizontal 3) Steady w.r.t. the CV 4) Use velocities relative to CV
The x-momentum is then $\quad T=u_{1} \cdot\left(-m_{\text {rate }}\right)+u_{4} \cdot\left(m_{\text {rate }}\right)=\left(V_{4}-V_{1}\right) \cdot m_{\text {rate }} \quad$ where $m_{\text {rate }}=90 \cdot \frac{\mathrm{lbm}}{\mathrm{s}}$ is the mass flow rate
It can be shown (see Example 10.13) that $\quad \mathrm{V}=\frac{1}{2} \cdot\left(\mathrm{~V}_{4}+\mathrm{V}_{1}\right)$

For the static case $\quad \mathrm{V}_{1}=0 \cdot \mathrm{mph}$
$\mathrm{V}_{4}=90 \cdot \mathrm{mph}$
so
$\mathrm{V}=\frac{1}{2} \cdot\left(\mathrm{~V}_{4}+\mathrm{V}_{1}\right) \quad \mathrm{V}=45 \mathrm{mph}$
$\rho=0.002377 \cdot \frac{\text { slug }}{\mathrm{ft}^{3}}$

$$
\mathrm{m}_{\text {rate }}=\rho \cdot \mathrm{V} \cdot \mathrm{~A}=\rho \cdot \mathrm{V} \cdot \frac{\pi \cdot \mathrm{D}^{2}}{4} \quad \text { with }
$$

Hence

$$
\mathrm{D}=4.76 \mathrm{ft}
$$

For $V_{1}=0$

$$
\mathrm{T}=\mathrm{m}_{\text {rate }} \cdot\left(\mathrm{V}_{4}-\mathrm{V}_{1}\right) \quad \mathrm{T}=369 \mathrm{lbf}
$$

When in motion $\quad \mathrm{V}_{1}=30 \cdot \mathrm{mph} \quad$ and $\quad \mathrm{V}=\frac{1}{2} \cdot\left(\mathrm{~V}_{4}+\mathrm{V}_{1}\right) \quad$ so $\quad \mathrm{V}_{4}=2 \cdot \mathrm{~V}-\mathrm{V}_{1} \quad \mathrm{~V}_{4}=60 \mathrm{mph}$
Hence for $\mathrm{V}_{1}=30 \mathrm{mph} \quad \mathrm{T}=\mathrm{m}_{\text {rate }} \cdot\left(\mathrm{V}_{4}-\mathrm{V}_{1}\right)$ $\mathrm{T}=123 \mathrm{lbf}$

Problem 10.93

10.93 An air boat in the Florida Everglades is powered by a propeller, with $D=1.5 \mathrm{~m}$, driven at maximum speed, $N=1800 \mathrm{rpm}$, by a 125 kW engine. Estimate the maximum thrust produced by the propeller at (a) standstill and (b) $V=12.5 \mathrm{~m} / \mathrm{s}$.

Given: Data on air boat and propeller
Find: \quad Thrust at rest; Thrust at $12.5 \mathrm{~m} / \mathrm{s}$

Solution:

Assume the aircraft propeller coefficients in Fi.g 10.40 are applicable to this propeller.

At $V=0, J=0$. Extrapolating from Fig. 10.40b $\quad C_{F}=0.16$
We also have

$$
D=1.5 \cdot m \quad n=1800 \cdot \mathrm{rpm} \quad \mathrm{n}=30 \cdot \frac{\mathrm{rev}}{\mathrm{~s}}
$$

and

$$
\rho=1.225 \cdot \frac{\mathrm{~kg}}{\mathrm{~m}^{3}}
$$

The thrust at standstill $(\mathrm{J}=0)$ is found from $\mathrm{F}_{\mathrm{T}}=\mathrm{C}_{\mathrm{F}} \cdot \rho \cdot \mathrm{n}^{2} \cdot \mathrm{D}^{4}$
(Note: n is in rev/s)
$\mathrm{F}_{\mathrm{T}}=893 \mathrm{~N}$
At a speed $\mathrm{V}=12.5 \cdot \frac{\mathrm{~m}}{\mathrm{~s}} \quad \mathrm{~J}=\frac{\mathrm{V}}{\mathrm{n} \cdot \mathrm{D}} \quad \mathrm{J}=0.278 \quad$ and so from Fig. 10.40b $\quad \mathrm{C}_{\mathrm{P}}=0.44 \quad$ and $\quad \mathrm{C}_{\mathrm{F}}=0.145$
The thrust and power at this speed can be found $\quad F_{T}=C_{F} \cdot \rho \cdot n^{2} \cdot D^{4} \quad F_{T}=809 \mathrm{~N} \quad \mathrm{P}=\mathrm{C}_{\mathrm{P}} \cdot \rho \cdot \mathrm{n}^{3} \cdot \mathrm{D}^{5} \quad \mathrm{P}=111 \mathrm{~kW}$
10.94 A jet-propelled aircraft traveling at 450 mph takes in $90 \mathrm{lbm} / \mathrm{s}$ of air and discharges it at 1200 mph relative to the aircraft. Determine the propulsive efficiency (defined as the ratio of the useful work output to the mechanical energy input to the fluid) of the aircraft.

Given: Data on jet-propelled aircraft
Find: Propulsive efficiency

Solution:

Basic equation: $\quad \vec{F}=\vec{F}_{s}+\vec{F}_{B}=\frac{\partial}{\partial t} \int_{\mathrm{CV}} \vec{V}_{x y z} \rho d \forall+\int_{\mathrm{CS}} \vec{V}_{x y z} \rho \vec{V}_{x y z} \cdot d \vec{A}$

$$
\begin{equation*}
\dot{Q}-\dot{W}_{s}-\dot{W}_{\text {shear }}-\dot{W}_{\text {other }}=\frac{\partial}{\partial t} \int_{\mathrm{CV}} e \rho d \forall+\int_{\mathrm{CS}}\left(u+p v+\frac{V^{2}}{2}+g z\right) \rho \vec{V} \cdot d \vec{A} \tag{4.56}
\end{equation*}
$$

Assumption: 1) Atmospheric pressure on CS 2) Horizontal 3) Steady w.r.t. the CV 4) Use velocities relative to CV
The x-momentum is then

$$
-\mathrm{F}_{\mathrm{D}}=\mathrm{u}_{1} \cdot\left(-\mathrm{m}_{\text {rate }}\right)+\mathrm{u}_{4} \cdot\left(\mathrm{~m}_{\text {rate }}\right)=(-\mathrm{U}) \cdot\left(-\mathrm{m}_{\text {rate }}\right)+(-\mathrm{V}) \cdot\left(\mathrm{m}_{\text {rate }}\right)
$$

or

$$
\mathrm{F}_{\mathrm{D}}=\mathrm{m}_{\text {rate }} \cdot(\mathrm{V}-\mathrm{U}) \quad \text { where } \mathrm{m}_{\text {rate }}=90 \cdot \frac{\mathrm{lbm}}{\mathrm{~s}} \text { is the mass flow rate }
$$

The useful work is then

$$
\mathrm{F}_{\mathrm{D}} \cdot \mathrm{U}=\mathrm{m}_{\text {rate }} \cdot(\mathrm{V}-\mathrm{U}) \cdot \mathrm{U}
$$

The energy equation simplifies to $-\mathrm{W}=\left(\frac{\mathrm{U}^{2}}{2}\right) \cdot\left(-\mathrm{m}_{\text {rate }}\right)+\left(\frac{\mathrm{V}^{2}}{2}\right) \cdot\left(\mathrm{m}_{\text {rate }}\right)=\frac{\mathrm{m}_{\text {rate }}}{2} \cdot\left(\mathrm{~V}^{2}-\mathrm{U}^{2}\right)$

Hence

$$
\eta=\frac{\mathrm{m}_{\mathrm{rate}} \cdot(\mathrm{~V}-\mathrm{U}) \cdot \mathrm{U}}{\frac{\mathrm{~m}_{\text {rate }}}{2} \cdot\left(\mathrm{~V}^{2}-\mathrm{U}^{2}\right)}=\frac{2 \cdot(\mathrm{~V}-\mathrm{U}) \cdot \mathrm{U}}{\left(\mathrm{~V}^{2}-\mathrm{U}^{2}\right)}=\frac{2}{1+\frac{\mathrm{V}}{\mathrm{U}}}
$$

With

$$
\mathrm{U}=450 \cdot \mathrm{mph} \quad \text { and } \quad \mathrm{V}=1200 \cdot \mathrm{mph}
$$

$$
\eta=\frac{2}{1+\frac{V}{U}} \quad \eta=54.5 \%
$$

Given: Ship drag data (Figs. 7.2 and 7.3) and dimensions (Problem 9.89i).
Performance characteristics of marine propeller (Fig. 10.40).
Propeller. operates at maximum efficiency when ship steams at maximums speed, $v=37.6 \mathrm{kt}$.

Find: Calculate size, operating speed, and power input for a single propeller to propel this vessel.

Solution: From Problem' 9.89, $L=409 \mathrm{ft}$ and $A=19,500 \mathrm{ft}$. At maximum speed,

$$
V=37.6 \frac{\mathrm{~nm}}{\mathrm{hr}} \times 6076 \frac{\mathrm{ft}}{\mathrm{~nm}} \times \frac{\mathrm{hr}}{3600 \mathrm{~s}}=63.5 \mathrm{ft} / \mathrm{s}
$$

The Froude number is

$$
\text { Fr }=\frac{V}{\sqrt{g L}}=63.5 \frac{f+}{S} \times\left[\frac{s^{2}}{32.2+4} \times \frac{1}{409 f+}\right]^{\frac{1}{2}}=0.553
$$

From Fig. 7.2, $C_{0} \approx 0.0054$. The definition is $C_{D}=\frac{F_{D}}{\frac{1}{2} \rho V^{2} A}$, so

$$
\begin{aligned}
& F_{D}=C_{D} A \frac{1}{2} \varphi V^{2} ; \frac{1}{2} \varphi V^{2}=\frac{1}{2} \times(1.025) 1.94 \frac{5 / 4 g}{f+3} \times(63.5)^{2} \frac{f^{2}}{s^{2}} \times \frac{16 f^{2}}{3 / 4 g \cdot f t}=4010 \mathrm{lbf} / \mathrm{fth} \\
& F_{D}=0.0054 \times 19,500 \mathrm{ft}^{2} \times 4010 \frac{\mathrm{lbf}}{f t^{2}}=422,000 \mathrm{lbf}
\end{aligned}
$$

From Fig. $10.40(a)$, the maximumetficiency is $\eta=0.67$ at $J=0.85$. Then

$$
\begin{equation*}
n D=\frac{V}{J}=63.5 \frac{\mathrm{f}}{\mathrm{~s}} \times \frac{1}{0.85}=74.7 \mathrm{f}+1 \mathrm{~s} \tag{1}
\end{equation*}
$$

since $C_{F}=0.11=\frac{F_{D}}{\rho n^{2} D^{4}}=\frac{F_{D}}{\rho\left(n^{2} D^{2}\right)^{2}}=\frac{F_{D}}{\rho(n D)^{2} D^{2}}$, then

$$
D=\left[\frac{F_{D}}{\rho(n D)+C_{F}}\right]^{\frac{1}{2}}=\left[422,00016 f^{\prime} \times \frac{f+3}{(1.025) 1.94 \operatorname{sicg}} \times \frac{s^{2}}{(74.7)^{2}+4} \times \frac{1}{0.11} \times \frac{5 / 0 g \cdot f^{\prime}}{16 f . s^{2}}\right]^{\frac{1}{2}}=18.6 \mathrm{ft}
$$

From Eq.1,

$$
n=\frac{n D}{D}=74.7 \frac{\mathrm{ft}}{\mathrm{~s}} \times \frac{1}{18.6 \mathrm{ft}}=4.02 \mathrm{rev} / \mathrm{s} \quad(241 \mathrm{rpm})
$$

The input power would be

$$
\theta_{\text {in }}=\frac{P_{\text {our }}}{\eta}=\frac{F_{0} V}{\eta}=422,00016 f \times 63.5 \frac{f t}{5} \times \frac{1}{0.67} \times \frac{h p \cdot s}{550 \mathrm{ft} \cdot 16 \mathrm{f}}=72,700 \text { hp }
$$

10.96 The propulsive efficiency, η, of a propeller is defined as the ratio of the useful work produced to the mechanical energy input to the fluid. Determine the propulsive efficiency of the moving airboat of Problem 10.92. What would be the efficiency if the boat were not moving?

Given: Definition of propulsion efficiency η
Find: $\quad \eta$ for moving and stationary boat

Solution:

Assumption: 1) Atmospheric pressure on CS 2) Horizontal 3) Steady w.r.t. the CV 4) Use velocities relative to CV

The x-momentum (Example 10.3): $\quad \mathrm{T}=\mathrm{u}_{1} \cdot\left(-\mathrm{m}_{\text {rate }}\right)+\mathrm{u}_{4} \cdot\left(\mathrm{~m}_{\text {rate }}\right)=\mathrm{m}_{\text {rate }} \cdot\left(\mathrm{V}_{4}-\mathrm{V}_{1}\right)$

Applying the energy equation to steady, incompressible, uniform flow through the moving CV gives the minimum power input requiremen

$$
\mathrm{P}_{\min }=\mathrm{m}_{\text {rate }} \cdot\left(\frac{\mathrm{v}_{4}^{2}}{2}-\frac{\mathrm{v}_{1}^{2}}{2}\right)
$$

On the other hand, useful work is done at the rate of

$$
\mathrm{P}_{\text {useful }}=\mathrm{V}_{1} \cdot \mathrm{~T}=\mathrm{V}_{1} \cdot \mathrm{~m}_{\text {rate }} \cdot\left(\mathrm{V}_{4}-\mathrm{V}_{1}\right)
$$

Combining these expressions

$$
\eta=\frac{\mathrm{V}_{1} \cdot \mathrm{~m}_{\text {rate }} \cdot\left(\mathrm{V}_{4}-\mathrm{V}_{1}\right)}{\mathrm{m}_{\text {rate }} \cdot\left(\frac{\mathrm{v}_{4}^{2}}{2}-\frac{\mathrm{v}_{1}{ }^{2}}{2}\right)}=\frac{\mathrm{V}_{1} \cdot\left(\mathrm{~V}_{4}-\mathrm{V}_{1}\right)}{\frac{1}{2} \cdot\left(\mathrm{~V}_{4}-\mathrm{V}_{1}\right) \cdot\left(\mathrm{V}_{4}+\mathrm{V}_{1}\right)}
$$

or $\quad \eta=\frac{2 \cdot V_{1}}{V_{1}+V_{4}}$

When in motion	$\mathrm{V}_{1}=30 \cdot \mathrm{mph} \quad$ and $\quad V_{4}=90 \cdot \mathrm{mph}$	$\eta=\frac{2 \cdot V_{1}}{V_{1}+V_{4}}$
For the stationary case	$V_{1}=0 \cdot \mathrm{mph}$	$\eta=\frac{2 \cdot V_{1}}{V_{1}+V_{4}} \quad \eta 0 \%$

Given: Propeller for Gossamer condor human-powered aircraft hat $D=12 \mathrm{ft}$ and rotates $a t N=107 \mathrm{rpm}$.

Additional information on the aircraft in Problem 9.170; $W=200 \mathrm{kf}, W / A=0.4 \mathrm{ltf} / \mathrm{ft}^{2}$, ar $=17$, Ppilat $=0.39 \mathrm{hp}, F_{0}=6 \mathrm{lbf}$ at $v=12 \mathrm{mph}$
Find: Estimate the dimensionless performance characteristics and efficiency of this propeller at cruise conditions.

Solution: From the solution to Problem 9.170, minimum power to propel the aircraft occurs at $V=10.7 \mathrm{mph}(16.0 \mathrm{f} / \mathrm{s})$. Assure this is the cruise condition.

From the given data, $a+12$ mph $(17.6 \mathrm{ft} 1 \mathrm{~s}), F_{0}=616 \mathrm{f}$

$$
\begin{aligned}
& C_{L}=\frac{F_{L}}{\frac{L}{2} e^{2} A}=\frac{W}{g A}=\frac{W / A}{g}=\frac{0.416 f / f_{4}}{0.369 / 6+/ f+4}=1.08 \\
& C_{D}=C_{L} \frac{F_{P}}{F_{L}}=1.08 \frac{6 \mathrm{lbf}}{200 \mathrm{lbf}}=0.0324 \\
& C_{D, 0}=C_{D}-C_{D, i}=C_{D}-\frac{C_{L}^{2}}{\pi a r}=0.0324-\frac{(1.08)^{2}}{\pi(17)}=0.0106
\end{aligned}
$$

$A+V=10.7 \mathrm{mph}(16.0 \mathrm{ft} / \mathrm{s}), q=0.305 \mathrm{Bf} / \mathrm{ft}{ }^{2}$

$$
\begin{aligned}
& C_{L}=\frac{w}{g A}=\frac{w / A}{q}=0.4 \frac{\mathrm{Bf}}{f+4} \times \frac{f+}{0.30 r \mid b f}=1.31: C_{D_{i}}=\frac{C_{L}^{2}}{\pi a r}=0.0321 \\
& C_{D}=C_{D, \rho}+C_{D_{C}}=0.0106+0.0321=0.0427 ; F_{D}=F_{L} \frac{C_{D}}{C_{L}}=20016+\frac{0.0427}{1.31}=6.5216+
\end{aligned}
$$

For the propeller,

$$
\begin{aligned}
& J=\frac{V}{n D}=16.0 \frac{f t}{5} \times\left(\frac{60}{107}\right) \frac{5}{\text { rev }} \times \frac{1}{12.0 f t}=0.748
\end{aligned}
$$

Assume a 30 percent reserve for climbing and maneuvers. Then it no =0.9,

Problem 10.98
Given: Equations for thrust, power, and efficiency of propulsion devices derived in Section 10-5.
Find: (a) Show that for constant thrust, $\eta=\frac{2}{1+\left(1+\frac{F_{T}}{\frac{\rho V^{2}}{2} \frac{\pi D^{2}}{2}}\right)^{\frac{1}{2}}}$
(b) Interpret physically.

Solution: Apply 1-D forms of momentum and energy to CV of Fig.10. 38: Computing equations:
continuity $\dot{m}=\varphi\left(v+\frac{\Delta v}{2}\right) \frac{\pi D^{2}}{4}$
Momentuen $F_{T}=\dot{m} \Delta V$
(10.28)

Energy $\theta_{\text {in }}=\dot{m} v \Delta v\left(1+\frac{\Delta v}{2 v}\right)$

Assumptions: (1) Steady flow, (2) Incompressible flow, (3) Uniform flow, (4) frictionless flow

Propulsion efficiency is $\eta_{p}=\frac{\nabla_{0 u t}}{R_{n}}=\frac{F r V}{\dot{m} V \Delta V\left(1+\frac{\Delta V}{2 v}\right)}=\frac{\dot{m} V \Delta V}{\dot{m} V \Delta V\left(1+\frac{\Delta V}{2 V}\right)}=\frac{1}{1+\frac{\Delta V}{2 V}}$
F_{T} may y be written using continesity as

$$
F_{T}=\dot{m} \Delta V=\rho\left(V+\frac{\Delta V}{2}\right) \frac{\pi D^{2}}{4} \Delta V=2 \varphi V^{2 \pi D^{2}} \frac{4}{4}\left(1+\frac{\Delta V}{2 V}\right)\left(\frac{\Delta V}{2 V}\right)=2 \rho V \frac{4 D^{2}}{4}(1+\lambda) \pi
$$

where $\lambda=\frac{\Delta V}{Z V}$. For constant F_{T}

$$
\lambda^{2}+\lambda-\frac{F_{T}}{\varphi V^{2} \frac{\pi D^{2}}{4}}=0
$$

Solving bia the quadratic equation, and choosing the positive root

$$
\lambda=\frac{-1 \pm \sqrt{1+4 \frac{F_{T}}{2 V^{2} \frac{\pi D^{2}}{4}}}}{2}=\frac{1}{2}\left\{-1+\sqrt{1+\frac{F_{T}}{\rho_{V^{2}}^{2} \frac{\pi D^{2}}{4}}}\right\}
$$

From Eq. 1, $\quad \eta_{p}=\frac{1}{1+\lambda}=\frac{1}{1+\frac{1}{2}\{ \}}=\frac{2}{2+\{ \}}=\frac{2}{1+\left(1+\frac{F T}{\rho \frac{V^{2}}{2} \frac{\pi D^{2}}{4}}\right)^{\frac{1}{2}}}$
The ratio, $F_{T} / \frac{\pi D^{2}}{4}$, may be interpreted as the disk loading: the force devebped per unit area of the actuator disk. Note $\eta_{p} \rightarrow 1$ as $\frac{\pi D^{2}}{4}$ increases.

Given: Preliminary calculations for a hydroelectric powergenenation site show a net head, $H=2350$ fr, is available at water flow rate, $Q=75 \not A^{3} / \mathrm{s}$.

Find: Compare the geometry and efficiency of fetor wheels designed to run at (a) 450 rpm and (6) 600 rpm .

Solution: Apply specific speed equation to classify performance. Computing equation: $N_{c_{c u}}=\frac{N \theta^{1 / 2}}{H^{s / 4}}$ (rpm, hp, and ft units)
From Fig. $10.17, Y_{\text {max }} \approx 0.89$ at $N_{c u}=5$. The output power bused to define $N S_{\text {cal }}$ is

$$
\begin{aligned}
& P_{0 u t}=7 \rho Q g H=0.89_{\kappa} 62.4 \frac{\mathrm{hbf}}{\mathrm{ft}^{3}} \times 75 \frac{\mathrm{ff}}{5} \times 2350 \mathrm{f}+\frac{\mathrm{hp} \mathrm{~s}}{550 \mathrm{ft}+16 \mathrm{f}}=17,800 \mathrm{hp} \\
& \text { At } N=450 \mathrm{rpm} \\
& N_{c}=\frac{450 \mathrm{rpm}(17,800 \mathrm{hp})^{\frac{1}{2}}}{(2350)^{5 / 4}}=3.67,507 \approx 0.88
\end{aligned}
$$

Neglect nozzle losses arid elevation above the tailrace. Then

$$
V_{j} \approx \sqrt{2 g H}=\left[2 \times 32.2 \frac{f+}{s^{2}} \times 2350 \mathrm{ft}\right]^{\frac{1}{2}}=389 \mathrm{ft} / \mathrm{s}
$$

From Fig, $10.10, U=R \omega \approx 0.47 \mathrm{~V}=183 \mathrm{ft} 1 \mathrm{~s}$. Thus

$$
D=2 R=\frac{2\left(0.47 V_{j}\right)}{\omega}=2 \times 183 \frac{\mathrm{ft}}{5} \times \frac{\mathrm{s}}{47.1 \mathrm{rad}}=7.77 \mathrm{ft}
$$

The jet diameter is focend from $Q=V_{j} A_{j}=\pi V_{j} D_{j}^{k} / 4$, so

$$
D_{j}=\sqrt{\frac{4 Q}{\pi v_{j}}}=\left[\frac{4}{\pi} \times 7 \frac{7+3}{5} \times \frac{5}{389 f+}\right]^{\frac{1}{2}}=0.495 f+(5.95 \mathrm{in} .)
$$

The ratio of jet diameter to wheeldiameter is

$$
r=\frac{D_{j}}{D}=\frac{0.495 f t}{7.77 f t}=0.0637 \text { or } 1: 15.7 \text { (this is reasonable) }
$$

Results from similar computations at $N=600$ rem ane:

The unit operating at 600 rpm is closer to $N_{s}=5$, where peak hydracuile efficiency is expected.
10.100 Conditions at the inlet to the nozzle of a Pelton wheel are $p=700 \mathrm{psig}$ and $V=15 \mathrm{mph}$. The jet diameter is $d=7.5 \mathrm{in}$. and the nozzle loss coefficient is $K_{\text {nozzle }}=0.04$. The wheel diameter is $D=8 \mathrm{ft}$. At this operating condition, $\eta=0.86$. Calculate (a) the power output, (b) the normal operating speed, (c) the approximate runaway speed, (d) the torque at normal operating speed, and (e) the approximate torque at zero speed.

Given: Pelton turbine

Find: 1) Power 2) Operating speed 3) Runaway speed 4) Torque 5) Torque at zero speed

Solution:

Basic equations

$$
\begin{array}{ll}
\left(\frac{\mathrm{p}_{1}}{\rho \cdot \mathrm{~g}}+\alpha \cdot \frac{\mathrm{V}_{1}^{2}}{2 \cdot g}+\mathrm{z}_{1}\right)-\left(\frac{\mathrm{p}_{\mathrm{j}}}{\rho \cdot \mathrm{~g}}+\alpha \cdot \frac{\mathrm{V}_{\mathrm{j}}^{2}}{2 \cdot \mathrm{~g}}+\mathrm{z}_{\mathrm{j}}\right)=\frac{\mathrm{h}_{\mathrm{lT}}}{\mathrm{~g}} & \mathrm{~h}_{\mathrm{lT}}=\mathrm{h}_{\mathrm{l}}+\mathrm{h}_{\mathrm{lm}}=\mathrm{K} \cdot \frac{\mathrm{~V}^{2}}{2} \\
\text { and from Example 10.5 } \quad \mathrm{T}_{\text {ideal }}=\rho \cdot \mathrm{Q} \cdot \mathrm{R} \cdot\left(\mathrm{~V}_{\mathrm{j}}-\mathrm{U}\right) \cdot(1-\cos (\theta)) & \theta=165 \cdot \mathrm{deg}
\end{array}
$$

Assumptions: 1) $p_{j}=p_{\text {amt }} 2$) Incompressible flow 3) α at 1 and j is approximately 14) Only minor loss at nozzle 5$) z_{1}=z_{j}$
Given data

$$
\begin{array}{llll}
\mathrm{p}_{1 \mathrm{~g}}=700 \cdot \mathrm{psi} & \mathrm{~V}_{1}=15 \cdot \mathrm{mph} & \mathrm{~V}_{1}=22 \frac{\mathrm{ft}}{\mathrm{~s}} & \eta=86 \cdot \% \\
\mathrm{~d}=7.5 \cdot \mathrm{in} & \mathrm{D}=8 \cdot \mathrm{ft} & \mathrm{R}=\frac{\mathrm{D}}{2} & \mathrm{~K}=0.04 \\
& \rho=1.94 \cdot \frac{\text { slug }}{\mathrm{ft}^{3}}
\end{array}
$$

Then

$$
\frac{p_{1 g}}{\rho \cdot g}+\frac{V_{1}^{2}}{2 \cdot g}-\frac{V_{j}^{2}}{2 \cdot g}=\frac{K}{g} \cdot \frac{V_{j}^{2}}{2} \quad \text { or } \quad V_{j}=\sqrt{\frac{2 \cdot\left(\frac{p_{1 g}}{\rho}+\frac{V_{1}^{2}}{2}\right)}{1+K}} \quad V_{j}=317 \frac{f t}{s}
$$

and

$$
\mathrm{Q}=\mathrm{V}_{\mathrm{j}} \frac{\pi \cdot \mathrm{~d}^{2}}{4}
$$

$$
\mathrm{Q}=97.2 \frac{\mathrm{ft}^{3}}{\mathrm{~s}}
$$

$$
\mathrm{H}=\frac{\mathrm{p}_{1 \mathrm{~g}}}{\rho \cdot g}+\frac{\mathrm{V}_{1}^{2}}{2 \cdot g}
$$

$$
\mathrm{H}=1622 \mathrm{ft}
$$

Hence

$$
P=\eta \cdot \rho \cdot Q \cdot g \cdot \mathrm{H}
$$

$$
\mathrm{P}=15392 \mathrm{hp}
$$

From Fig. 10.10, normal operating speed is around $U=0.47 \cdot V_{j} \quad U=149 \frac{\mathrm{ft}}{\mathrm{s}} \quad \omega=\frac{\mathrm{U}}{\mathrm{R}} \quad \omega=37.2 \frac{\mathrm{rad}}{\mathrm{s}} \quad \omega=356 \mathrm{rpm}$

At runaway

$$
\mathrm{U}_{\mathrm{run}}=\mathrm{V}_{\mathrm{j}}
$$

$$
\omega_{\text {run }}=\frac{U_{\text {run }}}{\left(\frac{D}{2}\right)} \quad \omega_{\text {run }}=79.2 \frac{\mathrm{rad}}{\mathrm{~s}} \quad \omega_{\text {run }}=756 \mathrm{rpm}
$$

From Example $10.5 \quad \mathrm{~T}_{\text {ideal }}=\rho \cdot \mathrm{Q} \cdot \mathrm{R} \cdot\left(\mathrm{V}_{\mathrm{j}}-\mathrm{U}\right) \cdot(1-\cos (\theta)) \quad \mathrm{T}_{\mathrm{ideal}}=2.49 \times 10^{5} \mathrm{ft} \cdot \mathrm{lbf}$
Hence

$$
T=\eta \cdot T_{\text {ideal }}
$$

$$
\mathrm{T}=2.14 \times 10^{5} \mathrm{ft} \cdot \mathrm{lbf}
$$

$$
\text { Stall occurs when } \quad \mathrm{U}=0 \quad \mathrm{~T}_{\text {stall }}=\eta \cdot \rho \cdot \mathrm{Q} \cdot \mathrm{R} \cdot \mathrm{~V}_{\mathrm{j}} \cdot(1-\cos (\theta)) \quad \mathrm{T}_{\text {stall }}=4.04 \times 10^{5} \mathrm{ft} \cdot \mathrm{lbf}
$$

Given: Francis (reaction) turbines at Niagara Falls:

$$
\begin{aligned}
& D_{0}=176 \mathrm{in}, P=72,500 \mathrm{hp}, N=107 \mathrm{rpm}, \eta=0.938, H=214 \mathrm{ft}(\mathrm{kct}) \\
& \text { Penstock has } L=1300 \mathrm{ft} ; H_{\text {oct }}=0.85 \text { Hgross. }
\end{aligned}
$$

Find: (a) calculate specific speed.
(b) Evaluate volume flow rate.
(c) Estimate penstock size.

Solution: $N_{S_{C u}}=\frac{N p^{\frac{1}{2}}}{H^{\frac{5}{4}}}=\frac{107 \mathrm{ppm}(72,503 \mathrm{hp})^{\frac{1}{2}}}{(214 \mathrm{ft})^{\frac{5}{4}}}=35.1$
Efficiency is cletined as $\eta=P / P Q g H$, so

$$
Q=\frac{P}{\eta \rho g H}=\frac{1}{0.938} \times 72,500 h p_{\times} \frac{f+3}{62.416 f} \times \frac{1}{21+f t} \times \frac{550 \mathrm{ft} \cdot 16 f}{h p \cdot \mathrm{f}}=31800 \mathrm{ft} 3 / \mathrm{s}
$$

Apply the definition of head loss: $h_{e T}=g H_{e T}=+\frac{L}{D} \frac{\vec{V}^{2}}{2}$

$$
\begin{aligned}
& H_{l t}=0.15 \text { H }_{\text {gross }}=0.15 \frac{H_{n C t}}{0.85}=0.176 H_{\text {net }}=0.176 \times 214 \mathrm{ft}=37.7 \mathrm{ft} \\
& \bar{V}=\frac{Q}{A}=\frac{4 Q}{\pi D^{2}} ; \bar{V}^{2}=\frac{16 Q^{2}}{\pi^{2} D^{4}} ; g \Delta H=f \frac{L}{D} \frac{V^{2}}{2}=f \frac{L}{D} \frac{8 Q^{2}}{\pi^{2} D^{4}}=\frac{8 f L Q^{2}}{\pi^{2} D^{5}}
\end{aligned}
$$

solving,

$$
D=\left[\frac{8 f L Q^{2}}{\pi^{2} g \Delta H}\right]^{\frac{1}{5}}
$$

(Assume $T=50^{\circ} \mathrm{F}$)

This system is very large, so it is difficult to estimate f. Assuming concrete-lined penstocks, $e=0.01 \mathrm{ft}(\mathrm{Table} 8.1)$. Start with $f=0.01$ to get by iteration (sec below),

$$
D=26.8 \mathrm{ft}
$$

The flow properties are

$$
\bar{V}=56.8 \mathrm{ft} / \mathrm{sec}, R e=1.18 \times 10^{8} \text {, and } f=0.0157
$$

Flow is in the fully rough zone with $e_{1 D}=0.01 / 26.8=0.00037$.
Using $\ell=0.02$ gives $D=28.1 \mathrm{ft}$, so $0 \times 27-28 \mathrm{ft}$
The iterations are: Assumed

$D(\mathrm{ft})$	$V(\mathrm{ft} / \mathrm{s})$	$R e$		\boldsymbol{f}_{0}		$f^{-0.5}$
				Calculated		
24.5	67.5	$1.18 \mathrm{E}+08$	0.0160	7.91	0.0160	24.5
26.9	56.0	$1.08 \mathrm{E}+08$	0.0157	7.99	0.0156	26.9
26.80	56.4	$1.08 \mathrm{E}+08$	0.0157	7.99	0.0157	26.77
26.77	56.5	$1.08 \mathrm{E}+08$	0.0157	7.99	0.0157	26.77
					0.02	28.1

Problem 10.102
Given: Francis turbine Units 19,20 , and 21 at Grand Coulee Dan.
Raved conditions: $O=820,000 \mathrm{~h} \rho, A=72 \mathrm{rAm}, H=285 \mathrm{ft}, \eta=0.95$ Turbines operate from $220<H<355 \mathrm{ft}$.
Find: (a) calculate specific speed at rated conditions.
(6) Estimate maximum water flow rate through each turbine.

Solution: Apply definitions of specific speed and efficiency.
computing equations: $\quad N_{s_{c u}}=\frac{N \sigma^{1 / 2}}{H^{S / 4}} \quad \eta=\frac{\rho}{\rho Q_{\theta} H}$
Thus

$$
N_{\mathrm{cu}}=\frac{72 \mathrm{rpm}(820,000 \mathrm{hp})^{\frac{1}{2}}}{(285+)^{5 / 4}}=55.7
$$

From 7,

$$
Q=\frac{\stackrel{\theta}{\eta \lg }}{}
$$

so Q is maximum at minimum head. Assuming $\eta=0.95$, the

$$
Q \approx \frac{1}{0.95} \times 820,000 h \rho_{\times} \frac{f+3}{62.4 \mathrm{lbf}} \times \frac{1}{220+4} \times 550 \frac{\mathrm{ft} \cdot 16 \mathrm{f}}{h \mathrm{f} \cdot \mathrm{~s}}=34,600 \mathrm{f}^{3} / \mathrm{s}
$$

$\left\{\begin{array}{l}\text { This is an estimate becacese in may not be constant, nor may } \\ \text { it be passible to develop full power at } H=200 f t\end{array}\right\}$

Given: Measured data for reaction heroines at Shasta Dam, Fig. 10.13.
Each turbine is rated at $P=103,000$ hp at $N=138.6$ rom, under a net head of $H=380 \mathrm{ft}$.

Find (a) specific speed at rated condition.
(b) Shaft torque at rated conditions.
(c) Calculate the water flow rate per turbine needed to produce rated output power; plat versus head.

Solution: Apply the definitions of specific speed and efficiency, use data from Fig. 10.13:

Computing equations: $\quad N_{s_{c u}}=\frac{N \rho^{\frac{1}{2}}}{H^{\frac{3}{4}}} \quad \eta=\frac{P}{\theta Q g H} \quad P=\omega T$
At rated conditions, $N_{C u}=\frac{(138.6 \mathrm{rpm})(103,000 h p)^{\frac{1}{2}}}{(380+)^{\frac{5}{4}}}=26.5$

$$
T=\frac{p}{\omega}=103,000 h p \times \frac{s}{14.5 \mathrm{rad}} \times 550 \frac{\mathrm{f} \cdot 1 \mathrm{ht}}{h \rho \cdot \mathrm{~s}}=3.91 \times 10^{6}+4+16 \mathrm{f}
$$

Fid Q from definition of η; at rated conditions, $\eta \approx 0.93$ (Fig. 10.13):

$$
Q=\frac{\rho}{\eta \rho g H}=\frac{1}{0.93} \times 103,000 h p_{\times} \frac{f+3}{62.416 f^{3}} \times \frac{1}{380 f+} \times 550 \frac{\mathrm{ft}+\mathrm{bf}}{h \rho_{15}}=2570 \mathrm{ft}^{3} / \mathrm{s}
$$

Tabulating similar calculations:

Problem 10.104
Given: Data in Fig. 10.11 for Peiton wheel in PG\&E Tiger Creek plant.
Rating is $\rho=36,000$ hp at $N=225$ rpm under $H=1190 \mathrm{ft}$ (net)
Assume reasonable flow angles and nozzle less coefficient.
(a) Determine rotor diameter.
(b) Estimate jet diameter.
(c) Compute volume flow rate of water.

Solution: From Bernoulli, the ideal jet velocity would be $V_{i}=\sqrt{2 g h}$ Assuming $C_{r}=0.98$ (4 percent loss in nozzle), then

$$
V_{j}=C_{v} V_{i}=C_{v} \sqrt{2 g H}=0.98\left[2 \times 32.2 \frac{4}{s} \times 1190 f+\right]^{\frac{1}{2}}=271 \mathrm{ft} 1 \mathrm{~s}
$$

From Fig. $10 \cdot 10, U=R W=0.47 V_{J}$ at optinicem conditions. Then

$$
D=2 R=\frac{2(0.47) V_{2}}{\omega}=0.94 \times 271 \frac{\mathrm{f}}{3} \times \frac{5}{23.6 \mathrm{rad}}=10.8 \mathrm{ft}
$$

From Fig. 11.11, $\eta=0.86$ at full load. Thus

$$
\begin{aligned}
& \eta=\frac{P}{\rho Q g H} ; Q=\frac{p}{\eta \rho g H} ; Q=V_{j} A_{j}=V_{j} \frac{\pi D^{2}}{2} \\
& Q=\frac{1}{0.86} \times 36.000 h p_{\times} \frac{f+3}{62.416 f} \times \frac{1}{1190 \mathrm{ft}} \times 550 \frac{\mathrm{ff} \cdot \mathrm{lbf}}{h \rho / 5}=310 \mathrm{fta} / \mathrm{s} \\
& D_{j}=\left[\frac{4 Q}{\pi v_{j}}\right]^{\frac{1}{2}}=\left[\frac{4}{\pi} \times 310 \frac{\mathrm{ft}}{5} \times \frac{\mathrm{s}}{271 \mathrm{ft}}\right]^{\frac{1}{2}}=1.21 \mathrm{ft}(14.5 \mathrm{in} .)
\end{aligned}
$$

Note $D_{j} / D=1.21 / 10.8=0.112(1 ; 8.93)$.
10.105 An impulse turbine is to develop 15 MW from a single wheel at a location where the net head is 350 m . Determine the appropriate speed, wheel diameter, and jet diameter for single- and multiple-jet operation. Compare with a double-overhung wheel installation. Estimate the required water consumption.

Given: Impulse turbine requirements
Find: 1) Operating speed 2) Wheel diameter 4) Jet diameter 5) Compare to multiple-jet and double-overhung

Solution:

Basic equations: $\quad \mathrm{V}_{\mathrm{j}}=\sqrt{2 \cdot \mathrm{~g} \cdot \mathrm{H}}$

Model as optimum. This means. from Fig. 10.10 $\mathrm{U}=0.47 \cdot \mathrm{~V}_{\mathrm{j}} \quad$ and from Fig. $10.17 \quad \mathrm{~N}_{\mathrm{Scu}}=5 \quad$ with $\quad \eta=89 . \%$

Given or available data $\quad \mathrm{H}=350 \cdot \mathrm{~m} \quad \mathrm{P}=15 \cdot \mathrm{MW} \quad \rho=1.94 \cdot \frac{\mathrm{slug}}{\mathrm{ft}^{3}}$
Then

$$
\mathrm{V}_{\mathrm{j}}=\sqrt{2 \cdot \mathrm{~g} \cdot \mathrm{H}}
$$

$\mathrm{V}_{\mathrm{j}}=82.9 \frac{\mathrm{~m}}{\mathrm{~s}}$
$\mathrm{U}=0.47 \cdot \mathrm{~V}_{\mathrm{j}}$
$\mathrm{U}=38.9 \frac{\mathrm{~m}}{\mathrm{~s}}$
We need to convert from $\mathrm{N}_{\mathrm{Scu}}$ (from Fig. 10.17) to N_{S} (see discussion after Eq. 10.18b). $\quad \mathrm{N}_{\mathrm{S}}=\frac{\mathrm{N}_{\text {Scu }}}{43.46} \quad \mathrm{~N}_{\mathrm{S}}=0.115$
The water consumption is $\quad Q=\frac{P}{\eta \cdot \rho \cdot g \cdot H} \quad Q=4.91 \frac{m^{3}}{s}$
For a single jet $\quad \omega=N_{S} \cdot \frac{\rho^{\frac{1}{2}} \cdot(\mathrm{~g} \cdot \mathrm{H})^{\frac{5}{4}}}{\mathrm{P}^{\frac{1}{2}}} \quad$ (1) $\quad \omega=236 \mathrm{rpm} \quad \mathrm{D}_{\mathrm{j}}=\sqrt{\frac{4 \cdot Q}{\pi \cdot V_{j}}} \quad$ (2) $\quad D_{j}=0.275 \mathrm{~m}$
The wheel radius is

$$
\begin{equation*}
\mathrm{D}=\frac{2 \cdot \mathrm{U}}{\omega} \tag{3}
\end{equation*}
$$

$D=3.16 m$
For multiple (n) jets, we use the power and flow per jet

From Eq 1

$$
\omega_{\mathrm{n}}=\omega \cdot \sqrt{\mathrm{n}} \quad \text { From Eq. } 2 \quad \mathrm{D}_{\mathrm{jn}}=\frac{\mathrm{D}_{\mathrm{j}}}{\sqrt{\mathrm{n}}}
$$

$$
\text { and } \quad \mathrm{D}_{\mathrm{n}}=\frac{\mathrm{D}}{\sqrt{\mathrm{n}}}
$$

from Eq. 3
Results:
$\mathrm{n}=$

1
2
3
4
5

$\omega_{\mathrm{n}}(\mathrm{n})=$

236
333
408
471
527

$\mathrm{D}_{\mathrm{jn}}(\mathrm{n})=$

0.275
0.194
0.159
0.137
0.123

$\mathrm{D}_{\mathrm{n}}(\mathrm{n})=$

3.16
2.23
1.82
1.58
1.41

A double-hung wheel is equivalent to having a single wheel with two jets
10.106 Tests of a model impulse turbine under a net head of 20 m produced the following results:

Wheel Speed (rpm)	No-Load Discharge $\left(\mathrm{m}^{3} / \mathrm{hr}\right)$	Net Brake Scale Reading (N) ($R=\mathbf{2} \mathbf{~ m}$)					
300	10	33	72	107	140	194	233
325	11.4	29	63	96	124	175	213
Discharge ($\mathrm{m}^{3} / \mathrm{hr}$)		44	86	124	157	211	257

Calculate and plot the machine power output and efficiency versus water flow rate.

Given: Data on impulse turbine
Find: Plot of power and efficiency curves

Solution:

Basic equations: $\quad T=F \cdot R \quad \quad \eta=\omega \cdot \frac{P}{\rho \cdot Q \cdot g \cdot H}$

$$
\begin{aligned}
& H=25 \mathrm{~m} \quad \text { NOTE: Earlier printings had } \boldsymbol{H} \text { incorrectly as } \mathbf{2 0} \mathbf{~ m} \text {, which gives efficiencies }>\mathbf{1 0 0 \%} \\
& \rho=1000 \mathrm{~kg} / \mathrm{m}^{3} \\
& R=2.00 \mathrm{~m}
\end{aligned}
$$

$\omega=300$				
$\mathbf{Q} \mathbf{(\mathbf { m } ^ { \mathbf { 3 } } / \mathbf { h r })}$	$\boldsymbol{F} \mathbf{(N)}$	$\boldsymbol{T} \mathbf{(N} \cdot \mathbf{m})$	$\mathcal{P}(\mathbf{k W})$	$\eta(\%)$
44	33	66	2.07	69.2%
86	72	144	4.52	77.2%
124	107	214	6.72	79.6%
157	140	280	8.80	82.2%
211	194	388	12.19	84.8%
257	233	466	14.64	83.6%

$\omega=325$				
$\mathbf{Q} \mathbf{(m} / \mathbf{m r})$	$\boldsymbol{F} \mathbf{(N)}$	$\boldsymbol{T} \mathbf{(N} \cdot \mathbf{m})$	$\mathcal{P}(\mathbf{k W})$	$\eta(\%)$
44	29	58	1.97	65.9%
86	63	126	4.29	73.2%
124	96	192	6.53	77.4%
157	124	248	8.44	78.9%
211	175	350	11.91	82.9%
257	213	426	14.50	82.8%

Problem 10.107
Given: Definition of specific speed for a hydraulic turbine in uss. units:

$$
N_{s_{c u}}=\frac{N(r \rho m)[\theta(n \rho)]^{\frac{1}{2}}}{[h(f+)]^{5 / 4}}
$$

Impulse turbine: $N=400 \mathrm{rprg} H=1190 \mathrm{ft}, \eta=0.86$, with $D_{j}=6$ in.
Find: (a) Develop a conversion from $N s_{\text {cu }}$ to a dimensionkss N_{s} in $S I$ units.
(b) Evaluate N_{s} of twine in U.S. and S.I. cents.
(c) Estimate the whee diameter.

Solution: Apply definitions of specific speed and efficiency. computing equations: $\quad N_{c_{c u}}=\frac{N \theta^{1 / 2}}{H^{5 / 4}} \quad \eta \equiv \frac{\theta}{\rho Q g H} \quad N_{s}=\frac{\omega \theta^{1 / 2}}{\rho^{1 / 2} h^{5 / 4}}$
From diriensional analysis, recall that for pumps, $N_{S}=\frac{N Q^{1 / 2}}{H^{3 / 4}}$ was dimensionless only when H is expressed as $g H$, energy per unit mass. Thus the dimensions are

$$
\left[N_{S}\right]=\left[\frac{N Q^{1 / 2}}{(g H)^{3 / 4}}\right]=\frac{1}{t}\left(\frac{L^{3}}{t}\right)^{\frac{1}{2}}\left(\frac{t^{2}}{L^{2}}\right)^{\frac{3}{4}}=\frac{1}{t} \frac{L^{3 / 2}}{t^{1 / 2}} \frac{t^{3 / 2}}{L^{3 / 2}}=1
$$

To form the $N s$ for turbines, Q must be multiplied by $\rho g H$ to obtain power. Thus for turbines, the dimensionless specific speed is

$$
\left[N_{S}\right]=\left[\frac{N Q^{1 / 2}}{(g H)^{3 / 4}} \times \frac{(\rho g H)^{1 / 2}}{(\rho g)^{1 / 2}}\right]=\left[\frac{N \rho^{1 / 2}}{\rho^{1 / 2}(g H)^{5 / 4}}\right]=\frac{1}{t}\left(\frac{F L}{t} \times \frac{M L}{F t^{2}}\right)^{\frac{1}{2}}\left(\frac{L^{3}}{M}\right)^{\frac{1}{2}}\left(\frac{t^{2}}{L^{2}}\right)^{\frac{5}{4}}=\frac{M^{\frac{1}{2}} L^{\frac{5}{2}} t^{\frac{5}{2}}}{M^{\frac{1}{2}} L^{S^{5 / L} t^{1 / 2}}}=1 V
$$

The simplest way to convert is to evaluate each specific speed, then take the ratio.
The jet speed will be approximately $V=\sqrt{2 g H}=\left[\frac{2 x}{22}, \frac{2 f t}{s^{2}} \times 1190 \mathrm{ft}\right]^{\frac{1}{2}}=277 \mathrm{f} / \mathrm{s}$ and $Q=V \frac{\pi D^{2}}{4}=277 \frac{f 4}{3} \times \frac{\pi}{4}\left(\frac{1}{2}\right)^{2} 4^{+}=54.444^{3} / \mathrm{s}$. Thees

$$
\theta_{0}=\eta p Q g H=0.8 b_{x} 62.4 \frac{\mathrm{ff}}{\mathrm{f}^{3}} \times 54.4 \frac{\mathrm{ft}^{*}}{\mathrm{~s}} \times 1190 \mathrm{f}_{\times} \frac{\mathrm{hp} \cdot \mathrm{~s}}{550 \mathrm{tt} \mathrm{\cdot 16t}}=6320 \mathrm{hp}(4.71 \mathrm{Mw})
$$

For the wheel, $V=0.47 \mathrm{Vj}=$ RN; $R=3.10 \mathrm{ft} ; D=6.20 \mathrm{ft}$

Problem 10.108
Given: Published data for PG\&E Tiger Creek Power Plant:
$H_{\text {gross }}=1219 \mathrm{ft}, Q=750 \mathrm{ftz} / \mathrm{s}, \quad b=58 \mathrm{MW}$ (rating is 60 MW)
Plant is claimed to produce 968 kw.hrlacre.t of water and $336.4 \times 10^{6} \mathrm{kw} \cdot \mathrm{hr} / \mathrm{y}$ r of operation.

Find: (a) Estimate the net head at the site, the turbine specific speed, and the turbine efficiency.
(b) Comment on the internal consistency of the pubiitied data.

Solution: Apply definitions of specific speed and efficiency.
Computing equations: $N_{s_{c u}}=\frac{N \rho^{1 / 2}}{H^{5 / 4}}$

$$
\eta=\frac{p}{\rho \lg H_{n e t}}
$$

Use the operating point to estivate net head. From Fig. 10.11, assume

$$
\begin{aligned}
& \eta=0.87:
\end{aligned}
$$

Thus

$$
\text { Hnet/Hgross }=1050 / 219=0.861 \text { or } 86.1 \text { percent (Reasonable) }
$$

The specific speed should bo $N_{\mathrm{ca}} \approx 5$. Checking,

$$
N=\frac{N_{S} H^{5 / 4}}{P^{1 / 2}}=\frac{5(1050 \mathrm{ft})^{5 / 4}}{\left(77,700 \mathrm{~h}_{\mathrm{P}}\right)^{1 / 2}}=107
$$

This is too low, so the plant must have several turbines. Reducing of to the outplet per turbine would raise N.

Check data consistency:

$$
\left.\begin{array}{rl}
58 \times 10^{6} w_{x} 34 \frac{\mathrm{hr}}{d a_{y}} \times 365 \frac{\mathrm{day}}{y_{r}} & =508 \times 10^{6} \mathrm{kw} \cdot \mathrm{hr} / \mathrm{yr} \\
60 \times 10^{6} \mathrm{w}
\end{array}\right\} \begin{aligned}
\text { goth values are }{ }^{\text {s }} 50 \\
\text { higher than gev ted. }
\end{aligned}
$$

$$
\left.\begin{array}{l}
58 \times 10^{6} w_{\times \frac{3}{} \frac{3}{750+3^{3}} \times \frac{h r}{3600 \leq} \times \frac{43,600 \mathrm{ft}^{3}}{a c r e \cdot f+}}=937 \mathrm{kwihrlacrift} \\
60 \times 10^{60} \mathrm{w}
\end{array}\right\} \begin{aligned}
& \text { Excellent } \\
& \text { agreement }
\end{aligned}
$$

10.109 Design the piping system to supply a water turbine from a mountain reservoir. The reservoir surface is 1000 ft above the turbine site. The turbine efficiency is 80 percent, and it must produce 35 hp of mechanical power. Define the minimum standard-size pipe required to supply water to the turbine and the required volume flow rate of water. Discuss the effects of turbine efficiency, pipe roughness, and installing a diffuser at the turbine exit on the performance of the installation.

Given: Hydraulic turbine site
Find: Minimum pipe size; Fow rate; Discuss

Solution:

Basic equations: $\quad H_{1}=\frac{h_{1}}{g}=\mathrm{f} \cdot \frac{\mathrm{L}}{\mathrm{D}} \cdot \frac{\mathrm{V}^{2}}{2 \cdot \mathrm{~g}} \quad$ and also, from Example 10.15 the optimum is when $\quad H_{1}=\frac{\Delta z}{3}$

As in Fig. 10.41 we assume $\quad \mathrm{L}=2 \cdot \Delta z$

Then, for a given pipe diameter D
and $\quad f=0.02$
$V=\sqrt{\frac{2 \cdot \mathrm{~g} \cdot \mathrm{D} \cdot \mathrm{H}_{1}}{\mathrm{f} \cdot \mathrm{L}}}=\sqrt{\frac{\mathrm{g} \cdot \mathrm{D}}{3 \cdot \mathrm{f}}}$

Also

$$
\mathrm{Q}=\mathrm{V} \cdot \frac{\pi \cdot \mathrm{D}^{2}}{4}
$$

$$
P_{h}=\rho \cdot Q \cdot \frac{V^{2}}{2} \quad P_{m}=\eta \cdot P_{h}
$$

$f=0.02$
$\rho=1.94 \quad$ slug $/ \mathrm{ft}^{3}$
$R=2.00 \mathrm{~m}$
$\eta=80 \%$

$\boldsymbol{D} \mathbf{(i n)}$	$\boldsymbol{V}(\mathbf{m} / \mathbf{s})$	$\boldsymbol{Q} \mathbf{(f t} / \mathbf{s})$	$\mathscr{P}_{\mathbf{h}} \mathbf{(h p)}$	$\mathscr{T}_{\mathbf{m}} \mathbf{(h p)}$
10	21.1	11.5	9.10	7.28
12	23.2	18.2	17.22	13.78
14	25.0	26.7	29.54	23.63
16	26.7	37.3	47.13	37.71
18	28.4	50.1	71.18	56.95
20	29.9	65.2	102.93	82.34

15.7	26.5	35.4	43.75	35.00

Turbine efficiency varies with specific speed (Fig. 10.17). Pipe roughness appears to the $1 / 2$ power, so has a secondary effect. A 20% error in f leads to a 10% change in water speed and 30% change in power.
A Pelton wheel is an impulse turbine that does not flow full of water; it directs the stream with open buckets.
A diffuser could not be used with this system.
Use Goal Seek or Solver to vary D to make $\mathcal{P}_{\mathrm{m}} 35 \mathrm{hp}$!

The smallest standard size is 16 in .

Given: NASA-DOE wind turbine generator at Plum Brook, ohio.
Tho blades, $D=38 \mathrm{~m}_{\mathrm{j}}$ de livens $\mathrm{P}=100 \mathrm{kw}$ when $v \geqslant 29 \mathrm{~km} / \mathrm{hr}$, operating at 40 rpm, with powertrain stficieincy, $\eta=0.75$,
Find: For the maximuen power condition, estimate the rotor tho speed and power coefficient.

Solution: Apply definitions
Computing equations: $U=\omega R \quad X=\omega R / V \quad C_{\rho}=\frac{\rho}{\frac{1}{2} \rho V^{3} \pi R^{2}}$
At $N=40 \mathrm{rpm}$,

$$
\begin{aligned}
& \omega=40 \frac{\mathrm{rev}}{\mathrm{~min}} \times 2 \pi \frac{\mathrm{rad}}{\mathrm{rev}} \times \frac{\mathrm{min}}{60 \mathrm{~S}}=4.19 \mathrm{rad} / \mathrm{s} \\
& U=4.19 \frac{\mathrm{rad}}{\mathrm{~s}} \times\left(\frac{\mathrm{gg}}{2}\right) \mathrm{m}=79.6 \mathrm{~m} / \mathrm{s} \\
& V=29 \frac{\mathrm{~km}}{\mathrm{hr}} \times 1000 \frac{\mathrm{~m}}{\mathrm{~km}} \times \frac{\mathrm{hr}}{3600 \mathrm{~s}}=8.06 \mathrm{~m} / \mathrm{s} \\
& X=U / V=79.618 .06=9.88
\end{aligned}
$$

(obviously X decreases as wind speed goes up.)

$$
\begin{aligned}
& P_{m}=\frac{A R}{0.75}=\frac{1}{0.75} \times 100 \mathrm{~kW}=133 \mathrm{~kW} \\
& \frac{1}{2} \rho V^{3} \pi R^{2}=\frac{\pi}{2} \times 1.23 \frac{\mathrm{~kg}}{\mathrm{~m}^{3}} \times(8.06)^{3} \frac{\mathrm{~m}^{3}}{\mathrm{~s}^{3}} \times\left(\frac{38}{2}\right)^{2} \mathrm{~m}^{2} \times \frac{\mathrm{N} \cdot \mathrm{~s}^{2}}{\mathrm{~kg} \cdot \mathrm{~m}^{2}} \times \frac{\mathrm{W} \cdot \mathrm{~s}}{\mathrm{Nim}}=365 \mathrm{~kL} \\
& C p=\frac{0_{m}}{\frac{1}{2} \rho V^{3} \pi R^{2}}=\frac{133 \mathrm{~kW}}{365 \mathrm{kLU}}=0.364
\end{aligned}
$$

Given: Small hydraulic impulse therbine installation as shown.

$$
\begin{aligned}
& H=300 \mathrm{ft} \\
& L=1000 \mathrm{ft}(\text { webbed steel }) \\
& D=6 \mathrm{in} .3 \mathrm{~d}=2 \mathrm{in} . \\
& k_{\text {nt }}=0.5 \\
& k_{\text {nozzle }}=0.04
\end{aligned}
$$

(a) Find V_{j}, Q_{1}, and θ_{h}

(b) Pot op vs, oj to find optimum d_{j}.
(c) Then explore effects of varying loss coefficients and pipe roughness.

Solution: Apply the energy equation for steady, meompressibk pipe flow computing equation: $\frac{\phi_{1}}{\phi g}+\frac{\alpha_{1} y_{1}}{\gamma_{g}}+z_{1}=\frac{\phi_{2}}{\phi_{g}}+\frac{\alpha_{2} \vec{v}_{2}^{2}}{\frac{2 g}{g}}+z_{2}+\frac{h e r}{g}$; her $=\left[f\left(\frac{L}{D}+\frac{4}{\phi}\right)+k\right] \frac{\sigma^{2}}{2}$
 Then

$$
H=\frac{v_{0}^{2}}{2 g}+\left(f \frac{L}{D}+k_{\text {entrance }}\right) \frac{V^{2}}{z g}+k_{n o z s} k \frac{v_{x}^{2}}{2 g}
$$

From continuity, $\bar{v} A=v A_{j}$, so $\bar{v}=v_{j} A_{j / A}=v_{j}(d / D)^{2} ; \bar{v}^{2}=v_{j}^{2}(d / D)^{4}$, and

$$
H=\left[\left(f \frac{L}{D}+k_{e n} t X \frac{d}{D}\right)^{4}+1+k_{n o z z} l C\right] \frac{v^{2}}{2 g} ; v_{j}=\left[\frac{2 g H}{\left(f \frac{L}{D}+k_{n} t\right)\left(\frac{d}{D}\right)^{4}+1+k_{n}}\right]^{\frac{1}{2}}
$$

Assume $e=0.00015 \mathrm{ft}($ Table 8.1$)$, 50 e $10=0.0003$. From Fig. 8.13 , in the fully rough zone, $f=0.015$. Then for $d=2 \mathrm{im}$.

$$
v_{j}=\left[2 \times 32.2 \frac{\mathrm{ft}}{\mathrm{~s}^{2}} \times 300 \mathrm{ft} \times \frac{1}{\left(0.015 \frac{1000 f t}{0.5 f t}+0.5\right)\left(\frac{2}{6}\right)^{4}+1+0.04}\right]^{\frac{1}{2}}=117 \mathrm{ft} 1 \mathrm{sec}
$$

$\left(\bar{V}=13.0 \mathrm{ft} / \mathrm{s}, R e=\bar{V} / \mathrm{v}=6.05 \times 10^{5}, 50 f=0.016\right.$, which makes $\left.v_{j}=116 \mathrm{ft} / \mathrm{s}.\right)$ The jet flow rate is $Q=V A_{j}=116 \frac{f t}{5} \times \frac{\pi}{4}\left(\frac{2}{12}\right)^{2} \mathrm{fr}^{2}=2.53 \mathrm{ft} 3 / \mathrm{s}$, and the jet power is

Repeating these calculations using a computer program glues:

Peak power, $0, \approx 60.3$ np, occcers for $2.15<\alpha<2.20$ in

Loss coefficients have a minor effect. Making both Kent and $K_{n} z e n$ increases ϕ. by 4.8 percent.

Pipe roughness causes larger changes; increased i2.8 percent with $e=0$ (smooth).

Problem 10.112

10.112 A model of an American multiblade farm windmill is to be built for display. The model, with $D=1 \mathrm{~m}$, is to develop full power at $V=10 \mathrm{~m} / \mathrm{s}$ wind speed. Calculate the angular speed of the model for optimum power generation. Estimate the power output.

Given: Model of farm windmill
Find: Angular speed for optimum power; Power output

Solution:

Basic equations:

$$
\mathrm{C}_{\mathrm{P}}=\frac{\mathrm{P}}{\frac{1}{2} \cdot \rho \cdot \mathrm{~V}^{3} \cdot \pi \cdot \mathrm{R}^{2}}
$$

$$
\mathrm{X}=\frac{\omega \cdot \mathrm{R}}{\mathrm{~V}}
$$

at $\quad \mathrm{X}=0.8$
$\omega=\frac{\mathrm{X} \cdot \mathrm{V}}{\mathrm{R}}$
$\mathrm{V}=10 \cdot \frac{\mathrm{~m}}{\mathrm{~s}}$

$$
\mathrm{P}=\mathrm{C}_{\operatorname{Pmax}} \cdot \frac{1}{2} \cdot \rho \cdot \mathrm{~V}^{3} \cdot \pi \cdot \mathrm{R}^{2}
$$

From Fig. 10.45

$$
\mathrm{C}_{\text {Pmax }}=0.3
$$

$$
1-0.0
$$

Hence, for

$$
\mathrm{P}=144 \mathrm{~W}
$$

-

and we have $\quad \rho=1.225 \cdot \frac{\mathrm{~kg}}{\mathrm{~m}^{3}}$
and
$\mathrm{D}=1 \cdot \mathrm{~m}$
$R=\frac{D}{2} \quad R=0.5 m$

Given: Typical American muttiblade farm windmill, $0=7$ ft, designed to produce maximum power in winds with $V=15 \mathrm{mph}$.

Find: Estimate the rate of water delivery, as a function of the height to which the water is pumped, for this windmill.

Solution: Assume the efficiency trends shown in Fig. 10.45.
Computing equations: $\quad C_{p}=\frac{\theta}{\frac{1}{2 \rho} V^{3} \pi R^{2}} \quad X=\omega R / V$
From Fig. $10.45, C_{p} \max \approx 0.3$ at $X=0.8$. $V=15 \mathrm{mph}(22.0 \mathrm{ft} / \mathrm{s})$. . Then the power developed is

$$
\theta=\frac{\pi}{2} \times 0.3 \times 0.00238 \frac{5 / 4 g}{4^{3}} \times(22.0)^{3} \frac{f^{3}}{4^{3}} \times\left(\frac{7}{2}\right)^{2}+t^{2} \times \frac{16 f s^{2}}{3149 \cdot f+} \times \frac{h \rho \cdot s}{550 f+16 f}=0.266 \mathrm{hp}
$$

Converting this mechanical power to pumping gives hydraulic power as

$$
\begin{aligned}
P_{h}=\rho Q g h & =\eta \theta_{m} \\
\text { Thus } Q h & =\frac{\eta \theta_{m}}{\rho g}=0.7 \times 0.266 h \rho_{\times} \frac{f t^{5}}{62.41 b f^{3}} \times 550 \frac{f+16 f}{h \rho .5} \times 7.48 \frac{\mathrm{gal}}{f+3} \times 100 \frac{\mathrm{~s}}{\mathrm{hmon}} \\
Q h & =737 \mathrm{gpm.f}
\end{aligned}
$$

Q varies inversely with the distance lifted, h. The volume flow rate actually delivered would be kiss, due to suction lift, pipe friction, and minor losses.

Given: Largest known Darrieus verticat-axis wind turbine built by DoE near Sandia, New Mexico, is 60 ft tall and 30 ft diameter; the rotor swept area is $A \approx 1200+{ }^{2}$.

Find: Estimate the maximum power this windmill can produce in a wind with $V=20 \mathrm{mph}(29.3 f+1 s)$.

Solution: Assume the efficiency trends shown in Fig. 10.45. Completing equations: $\quad c_{\rho}=\frac{p}{\frac{1}{2} \rho v^{3} \pi R^{2}} \quad X=\omega R / v$
from Fig. 10.45, CPmax ≈ 0.34 at $X=5.3$. Use suet area in place of πR^{t}

To generate maximum power, the windmill must rotate at

$$
\omega=\frac{X V}{R}=5.3_{x} 29.3 \frac{\mathrm{f}}{5} \times \frac{1}{15 \mathrm{f}+}=10.4 \mathrm{rad} / \mathrm{s} \quad(98.4 \mathrm{rpm})
$$

Given: Section lift and drag coefficient data for a NACA DOIZ section, tested at Re $=6 \times 10^{6}$ with standard roughness:

| Angle of attack, α (deg) | 0 | 2 | 4 | 6 | 8 | 10 | 12 |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| Lift coefficient, $C_{D}(-)$ | 0 | 0.23 | 0.45 | 0.68 | 0.82 | 0.94 | 1.02 |
| Drag coefficient, $C_{D}(-)$ | 0.0098 | 0.0100 | 0.0119 | 0.0147 | 0.0194 | - | - |

Find: (a) Analyze air flow relative to a blade element in a Darricus rotor.
(b) Develop a numerical model for a blade element.
(c) Calculate the power coefficient as a function of tip speed ratio.
(d) Compare with the trend shown in Fig. 10.45.

Solution: consider plan view of rotor element, absolute velocities: completing equations: $F_{L}=C_{L} \frac{1}{2} \rho v_{r}^{2} A_{p}, V_{r}=$ relative velocity

$$
\begin{aligned}
& F_{D}=C_{D} \frac{1}{2} \rho V_{r}^{2} A_{P} \quad A_{p}=\text { plantrim } \\
& A_{s}=\text { swept } \\
& C_{P}=\frac{P}{\frac{1}{2} \rho V^{3} A_{3}} \quad V=\text { wind } \\
& \text { velocity }
\end{aligned}
$$

Resolve to relative velocity, for position shown:

$$
\vec{V}_{a b s}=\vec{V}_{b l a c k}+\vec{V}_{r x 1} ; \vec{V}_{r e 1}=\vec{V}_{a b s}-\vec{V}_{\text {bade }}
$$

To compute Vel, resolve into components along (a) and transverse (t) to the airfoil chord:

$$
\begin{aligned}
& \left.V_{r e 1}\right)_{a}=\omega R+V_{w} \cos \theta \\
& \left.V_{r e t}\right)_{t}=V_{\omega}-\sin \theta \\
& \left.V_{r a 1}=\left[V_{r e 1} \|_{a}^{2}+v_{r e 1}\right)_{t}^{2}\right]^{\frac{1}{2}} \\
& \left.\left.\alpha=\tan ^{-1}\left[V_{r e 1}\right)_{t} / V_{r e 1}\right)_{a}\right]
\end{aligned}
$$

Lift force (F_{L}) is normal to $\vec{V}_{r e i}$ and drag force (Fo) is parallel to \vec{V}_{O}. Thus

$$
T=R\left(F_{L} \sin \alpha-F_{D} \cos \alpha\right) \quad\left(\operatorname{tarque}, T>0 \text { when } F_{L} / F_{D}>\cot \alpha\right)
$$

Both c_{C} and C_{D} nest be modeled as functions of angle of attack, α. From a graph of C_{L} and c_{D} versus α, a satistactorg represeritation is

$$
\begin{aligned}
& C_{L}=0.12 \alpha-0.0026 \mid \alpha / \alpha,-12<\alpha<12 \text { degrees; } C_{L}=0,|\alpha|>12 \text { degrees } \\
& C_{0}=0.00952+1.52 \times 10^{-4} \alpha^{2},-12<\alpha<12 \text { degrees; } C_{D}=0.0314,|\alpha|>12 \text { degrees }
\end{aligned}
$$

(The models in the sta ned region, lolsic degrees, obviocesty are creche.)
sample calculation: choose $R=10 \mathrm{ft}, \mathrm{C}=0.5 \mathrm{ft}, w=1 \mathrm{ft}, x=5, V_{w}=20 \mathrm{mph}$ $A+\theta=30^{\circ}, \omega i t h V_{W}=20 \mathrm{mph}(29.3 \mathrm{ft} / \mathrm{s})$
$X=\omega R / V_{\omega} ; \omega=\frac{X V_{\omega}}{R}=5 \times 29 \cdot 3 \frac{f}{3} \cdot \frac{1}{10 \mathrm{ft}}=14.7 \mathrm{rad} / \mathrm{s} \quad(N=140 \mathrm{rpm})$ $W R=14.7 \frac{\mathrm{rad}}{\mathrm{s}} \times 10 \mathrm{f}=147 \mathrm{ft} 1 \mathrm{~s}$
$\left.V_{\text {re }}\right)_{a}=\omega R+V_{\omega} \cos \theta=147+29.3 \cos 30^{\circ}=172 \mathrm{f}+15$
$\left.V_{\text {rel }}\right)_{t}=V_{u s i n}=29.3 \mathrm{sinc}=14.7 \mathrm{ft} / \mathrm{s}$
$\left.\left.v_{\text {rel }}=\left[V_{\text {re }}\right)_{a}^{2}+v_{\text {rel }}\right)_{t}^{2}\right]^{\frac{1}{2}}=\left[(172)^{2}+(14.7)^{2}\right]^{\frac{1}{2}}=173 \mathrm{ft} / \mathrm{s}$
$\alpha=\tan ^{-1}[$ Vre1/t/Ure1)a $]=\tan ^{-1}(14.7 / 172)=4.88$ degrees
$q=\frac{1}{2} e^{V_{r e 1}^{2}}=\frac{1}{2} \times 0.00238 \frac{\operatorname{sing}}{f^{\prime}} \times(173)^{2} \frac{f^{4}}{5^{2}} \times \frac{16 f \cdot 5^{2}}{\operatorname{sicg} \cdot f t}=35.6 \mathrm{lbf} / \mathrm{ff}^{2}$
Ap (projected area of airfoil section.) $=c \omega=0.5 \mathrm{ft}+1 \mathrm{ft}=0.5 \mathrm{ft}$
$C_{L}=0.12 \alpha-0.0026 / \alpha / \alpha=0.12 \times 4.88-0.0026 / 4.88 / 4.88=0.524$
$C_{D}=0.00952+1.52 \times 10^{-4} \alpha^{2}=0.00952+1.52 \times 10^{-4}(4.88)^{2}=0.0131$
$F_{L}=C_{L q} A_{\rho}=0.524 \times 35.6 \frac{10 f}{f^{2}} \times 0.5 \mathrm{ft}=4.33 \mathrm{Bf} \quad\left\{\bar{F}_{2} / \mathrm{F}_{0}=40.0\right.$
$\left.F_{D}=c_{D} q A_{p}=0.013 \times 35.6 \frac{16 t}{7+4} \times 0.5 \mathrm{ftw}=0.233 \mathrm{kf}\right]$
$T=R\left(12 \sin \alpha-F_{0} \cos \alpha\right)=10 f+\left(9.33 \sin (4.88)-0.233 \cos \left(4.88^{\circ}\right)\right) 16 t=5.62 f \cdot 16 f$
$\infty=\omega T=14.7 \frac{\mathrm{gag}}{s} \cdot 5.62 \mathrm{ft} \cdot 16 \mathrm{t}=82.6 \frac{\mathrm{ft} \cdot 16 \mathrm{f}}{\mathrm{s}}(0.150 \mathrm{mp})$
$C_{p}=\frac{P}{\frac{1}{2} P V_{w}^{3} A_{s}} ; A_{s}=$ area swept byckment $=2 R \omega=2 z_{x} 10 f_{x}$ oft $=20 f_{t}$
$C_{P}=82.6 \frac{f+16 f}{s} \times \frac{f+3}{\left(\frac{1}{2}\right) 0.002385 / 49} \times \frac{s^{3}}{(29.3)^{3} f+3} \times \frac{1}{20 f^{2}} \times \frac{5 / 4 g \cdot f+}{16 f \cdot 5^{2}}=0.138\left(a t \theta=15^{0}\right)$
Obtain \bar{C} for a complete rotor puolcetion by integrating numerically. Such resets are presented on the next page, and plotted versus tip speed ratio, $X=\omega R / V_{\omega}$.

From the plot, \bar{c}_{p} is small at low X. It increases as X is raved, then peaks and decreases again. Comparison with $F i j$. 10.45 shows the trends are similar, but the model predicts useflet power at larger X than observed experimentally. Blade elements at smaller radii on the rotor wuleld produce less pourer, since $\omega=$ constant along rotor. \bar{C}_{p} at large \bar{X} is also sensitive to C_{D}.

Low \bar{c}_{p} at small X occurs because the airfoil is stalled.

Computed results:

Average power coefficient for complete'revolution: Cp, bar $=0.280$

Plotting results of similar calculations at various tio speed ratios give:

Given: Lift and drag data for NACA 23015 aintoil section, Fig. 9.17. Consider two-blade, horizontal-axis wind turbine with this section.

Find: (a) Analyze air flow relative to a blade element in rotating turbine.
(b) Develop numerical model for blade element.
(c) Calculate power coetficicit as a function ot tip speed ratio. (d) Compare with the trend shown in Fig. 10.45.

Soktion: Front view of rotor; blade element shown cros-ikatched:

Rotor

(relative
velocities)
Resolve to relative velocity:

$$
\vec{V}_{a b s}=\vec{V}_{\text {blade element }}+\vec{V}_{r a l}
$$

"
Computing equations:
$F_{L}=C_{L} \frac{1}{2} \ell v_{r}^{2} A_{P} ; V_{r}=$ relative velocity

$$
\beta=\text { blade twist angl }
$$

$$
\alpha=\text { angle of attack }
$$

$$
\vec{V}_{\text {ret }}=\vec{V}_{w}-\vec{V}_{\text {bade }}=\vec{V}_{w}+\left(-\vec{V}_{\text {blade }}\right)
$$

$$
\left\{\begin{array}{r}
\text { Note: } p>0 \text { is required for } \\
\text { windmill to self start }
\end{array}\right\}
$$

$F_{D}=C_{D} \frac{1}{2} \ell V r^{2} A_{P} ; \quad A_{P}=$ platform area
$T=n_{b} r_{m}\left(F \sin \theta-F_{D} \cos \theta\right) ; n_{b}=$ number of blades (2)
$V_{r e l}=\left[\left(\omega r_{m}\right)^{2}+v_{t_{r}}^{2}\right]^{\frac{1}{2}} ; \theta=\tan ^{-1}\left(V_{\omega} / \omega r_{m}\right) ; \alpha=\theta-\beta$
Both c_{1} and c_{D} must bi modeled as functions of angle of attack, α.
From Fig 9.17, satisfactory representation ans:

$$
0 \leqslant \alpha<12^{\circ} \quad C_{L}=0.12+0.107 \alpha \quad 0 \leqslant \alpha<40 \quad C_{D}=0.006+9.55 \times 10^{-5} \alpha
$$

$$
12^{\circ} \leqslant \alpha<18^{\circ} \quad c_{L}=0.12+0.107 \alpha-0.00852(\alpha-12)^{2} \quad 4^{0} \leq \alpha<16^{\circ} c_{D}=a .60 v e+7.72 \times 10^{-5}(\alpha-4)^{2}
$$

$$
18^{\circ} \leqslant \alpha \quad C_{L}=0.2 \quad 11^{\circ} \leqslant \alpha \quad C_{D}=0.02
$$

$\left\{\right.$ Obviocesty both models are crude for $c_{L}\left(\alpha>18^{\circ}\right), c_{0}\left(\alpha>10^{\circ}\right)$, choose $k_{t}=104$, $r_{m}=5.5 \mathrm{ft}, c^{*} 6 \mathrm{in} ., w^{r} * 1 \mathrm{ft}, V_{w}=20 \mathrm{mph}(29.4 \mathrm{ft} / \mathrm{s}), X=5$, and $\beta=50$. Then $\omega=\frac{X v_{d \sigma}}{R_{t}}=5.0 \times 29.4 \frac{f}{\mathrm{~s}} \times \frac{1}{10 \mathrm{ft}}=14.7 \mathrm{rad} / \mathrm{s}(140 \mathrm{rpm}) ; \omega \mathrm{rm}_{\mathrm{m}}=80.9 \mathrm{ft} / \mathrm{s}$

$$
\begin{aligned}
& V_{\mathrm{rel}}=\left[(80.9)^{2}+(24.4)^{2}\right]^{2}=86.1 \mathrm{ft} / \mathrm{s} ; \quad g=\frac{1}{2} \rho v_{\mathrm{rc}}^{2}=8.82 \mathrm{lbf} / \mathrm{ft}^{2} ; A_{p}=\mathrm{ucc}=0.5 \mathrm{ft}^{2} \\
& \theta=\tan ^{-1}(29.4 / 80.9)=20.0^{\circ} ; \alpha=\theta-13=20.0-5.0=15.0^{\circ} ; \epsilon_{1}=1.65 ; c_{0}=0.017 \\
& F_{L}=1.65 \times 8.82 \frac{16 f^{4}}{4} \times 0.5 \mathrm{ft}^{2}=7.28 \mathrm{lbf} ; F_{0}=0.017 \times 8.82 \frac{157}{f^{2}} \times 0.5 \mathrm{ft}=0.07510 \mathrm{f} \\
& T=2 \times 5.54\left(7.28 \times \sin 20^{\circ}-0.075 \cos 20^{\circ}\right) 16 t=26.6 f+16 f
\end{aligned}
$$

Similar calculations for the other blade elements show that torque for the complete propeller is $T_{P}=159 f t i b f$. The power coefficient a

Calculated results ane tabulated on the next page,plotied and discussed below:

Trends shown are simitar to Fig. 10.45. At small X, the blade is entirely stalled so usefuef output is low. At large X, o becomes negative near the tops, reducing ocetplat.

This model does not nekede: (1) axial witerference that reduces nopmat Velocity below Va as loading increases, or (z) swirl introdecec by blade drag. Both these effects neduceperformance. Fro more details, see Division 4 , section X of $[30]$.

Computed rescults:

* Alan T. McDonald
* School of Mechanical Engineering
* Purdue UnIVERSITY
*

Airfoili \quad N			NACA 23015 Section; Chord, $c=6$ in. Tip radius, Rt $=10 \mathrm{ft}$ Twist angle, beta $=5$ degreea				
Blade element: Delta $x, d x=1.00 \mathrm{ft}$							
Input data: Tip spe							
Calculated:							
$\stackrel{\mathrm{Rm}}{(\mathrm{ft})}$	$\begin{aligned} & \text { Vrel } \\ & (\text { ft/s }) \end{aligned}$	alpha (deg)	$\begin{array}{cl} \mathrm{Cl} \\ (--) \end{array}$	$\stackrel{\mathrm{cd}}{(--)}$	$\begin{gathered} \text { FI } \\ (\mathrm{lbf}) \end{gathered}$	$\begin{aligned} & \text { Fd } \\ & (1 \mathrm{bf}) \end{aligned}$	$\underset{(f t-1 b f)}{T}$
1.50	22	48.13	0.20	0.020	0.06	0.006	0.13
2.50	37	33.66	0.20	0.020	0.16	0.016	0.44
3.50	51	24.74	0.20	0.020	0.32	0.032	0.90
4.50	66	18.96	0.20	0.020	0.52	0.052	1.48
5.50	81	14.98	1.65	0.017	6.41	0.067	23.39
6.50	96	12.10	1. 41	0.013	7.69	0.059	28.53
7.50	110	9.93	1.18	0.010	8.55	0.074	31.99
8.50	125	8.24	1.00	0.009	9.31	0.081	34.90
9.50	140	6.89	0.86	0.008	9.95	0.091	37.25

Torque for complete propeller: $T=159.0$ ft-lbf
Power coefficient for windmill: $C p=0.246(---)$
11.1 A 2-m-wide rectangular channel with a bed slope of 0.0005 has a depth of flow of 1.5 m . Manning's roughness coefficient is 0.015 . Determine the steady uniform discharge in the channel.

Given: Rectangular channel flow
Find: Discharge

Solution:

Basic equation: $\quad \mathrm{Q}=\frac{1}{\mathrm{n}} \cdot \mathrm{A} \cdot \mathrm{R}^{\frac{2}{3}} \cdot \mathrm{~S}_{0}{ }^{\frac{1}{2}}$
Note that this is an "engineering" equation, to be used without units!

For a rectangular channel of width $\mathrm{B}_{\mathrm{w}}=2 \cdot \mathrm{~m}$ and depth $\mathrm{y}=1.5 \cdot \mathrm{~m}$ we find from Table 11.2

$$
\mathrm{A}=\mathrm{B}_{\mathrm{W}} \cdot \mathrm{y} \quad \mathrm{~A}=3.00 \cdot \mathrm{~m}^{2} \quad \mathrm{R}=\frac{\mathrm{B}_{\mathrm{W}} \cdot \mathrm{y}}{\mathrm{~B}_{\mathrm{W}}+2 \cdot \mathrm{y}} \quad \mathrm{R}=0.600 \cdot \mathrm{~m}
$$

Manning's roughness coefficient is $\quad \mathrm{n}=0.015$ and $\quad \mathrm{S}_{0}=0.0005$

$$
\mathrm{Q}=\frac{1.49}{\mathrm{n}} \cdot \mathrm{~A} \cdot \mathrm{R}^{\frac{2}{3}} \cdot \mathrm{~S}_{0}^{\frac{1}{2}} \quad \mathrm{Q}=3.18 \cdot \frac{\mathrm{~m}^{3}}{\mathrm{~s}}
$$

Problem 11.2

11.2 Determine the uniform flow depth in a rectangular channel
2.5 m wide with a discharge of $3 \mathrm{~m}^{3} / \mathrm{s}$. The slope is 0.0004 and Manning's roughness factor is 0.015 .

Given: Data on rectangular channel
Find: Depth of flow

Solution:

Basic equation:

$$
\mathrm{Q}=\frac{1}{\mathrm{n}} \cdot \mathrm{~A} \cdot \mathrm{R}^{\frac{2}{3}} \cdot \mathrm{~S}_{0}^{\frac{1}{2}}
$$

Note that this is an "engineering" equation, to be used without units!
For a rectangular channel of width $B_{W}=2.5 \cdot \mathrm{~m}$ and flow rate $\mathrm{Q}=3 \cdot \frac{\mathrm{~m}^{3}}{\mathrm{~s}}$ we find from Table 11.2 $\quad A=B_{W} \cdot y \quad R=\frac{B_{W} \cdot y}{B_{W}+2 \cdot y}$

Manning's roughness coefficient is

$$
\mathrm{n}=0.015 \quad \text { and } \quad \mathrm{S}_{0}=0.0004
$$

Hence the basic equation becomes

$$
\mathrm{Q}=\frac{1}{\mathrm{n}} \cdot \mathrm{~B}_{\mathrm{w}} \cdot \mathrm{y} \cdot\left(\frac{\mathrm{~B}_{\mathrm{w}} \cdot \mathrm{y}}{\mathrm{~B}_{\mathrm{W}}+2 \cdot \mathrm{y}}\right)^{\frac{2}{3}} \cdot \mathrm{~S}_{0}^{\frac{1}{2}}
$$

$$
y \cdot\left(\frac{B_{w} \cdot y}{B_{W}+2 \cdot y}\right)^{\frac{2}{3}}=\frac{\mathrm{Q} \cdot \mathrm{n}}{\mathrm{~B}_{\mathrm{w}} \cdot \mathrm{~S}_{0}^{\frac{1}{2}}}
$$

This is a nonlinear implicit equation for y and must be solved numerically. We can use one of a number of numerical root finding techniques, such as Newton's method, or we can use Excel's Solver or Goal Seek, or we can manually iterate, as below, to make the left side evaluate to $\frac{\mathrm{Q} \cdot \mathrm{n}}{\mathrm{B}_{\mathrm{W}} \cdot \mathrm{S}_{0}{ }^{\frac{1}{2}}}=0.900$.
For $\quad y=1 \quad$ (m) $\quad y \cdot\left(\frac{B_{w} \cdot y}{B_{w}+2 \cdot y}\right)^{\frac{2}{3}}=0.676 \quad$ For $\quad y=1.2$
(m) $\quad y \cdot\left(\frac{B_{w} \cdot y}{B_{w}+2 \cdot y}\right)^{\frac{2}{3}}=0.865$
For $\quad y=1.23 \quad(m) \quad y \cdot\left(\frac{B_{w} \cdot y}{B_{w}+2 \cdot y}\right)^{\frac{2}{3}}=0.894 \quad$ For $\quad y=1.24$
(m) $\quad y \cdot\left(\frac{B_{w} \cdot y}{B_{w}+2 \cdot y}\right)^{\frac{2}{3}}=0.904$

The solution to three figures is

Problem 11.3

11.3 Determine the uniform flow depth in a trapezoidal channel with a bottom width of 8 ft and side slopes of 1 vertical to 2 horizontal. The discharge is $100 \mathrm{ft}^{3} / \mathrm{s}$. Manning's roughness factor is 0.015 and the channel bottom slope is 0.0004 .

Given: Data on trapzoidal channel
Find: Depth of flow

Solution:

Basic equation:

$$
\mathrm{Q}=\frac{1.49}{\mathrm{n}} \cdot \mathrm{~A} \cdot \mathrm{R}^{\frac{2}{3}} \cdot \mathrm{~S}_{0}^{\frac{1}{2}}
$$

Note that this is an "engineering" equation, to be used without units!
For the trapezoidal channel we have $\quad B_{W}=8 \cdot f t \quad \mathrm{Z}=2 \quad \mathrm{Q}=100 \cdot \frac{\mathrm{ft}^{3}}{\mathrm{~s}} \quad \mathrm{~S}_{0}=0.0004$

$$
\mathrm{n}=0.015
$$

Hence from Table 11.2

$$
A=\left(B_{W}+z \cdot y\right) \cdot y=(8+2 \cdot y) \cdot y \quad R=\frac{\left(B_{w}+z \cdot y\right) \cdot y}{B_{W}+2 \cdot y \cdot \sqrt{1+z^{2}}}=\frac{(8+2 \cdot y) \cdot y}{8+2 \cdot y \cdot \sqrt{5}}
$$

Hence

$$
\mathrm{Q}=\frac{1.49}{\mathrm{n}} \cdot \mathrm{~A} \cdot \mathrm{R}^{\frac{2}{3}} \cdot \mathrm{~S}_{0}^{\frac{1}{2}}=\frac{1.49}{0.015} \cdot(8+2 \cdot \mathrm{y}) \cdot \mathrm{y} \cdot\left[\frac{(8+2 \cdot \mathrm{y}) \cdot \mathrm{y}}{8+2 \cdot \mathrm{y} \cdot \sqrt{5}}\right]^{\frac{2}{3}} \cdot 0.0004^{\frac{1}{2}}=100 \quad \text { (Note that we don't use units!) }
$$

Solving for $\mathrm{y} \quad \frac{[(8+2 \cdot \mathrm{y}) \cdot \mathrm{y}]^{\frac{5}{3}}}{2}=50.3$

$$
(8+2 \cdot y \cdot \sqrt{5})^{\frac{-}{3}}
$$

This is a nonlinear implicit equation for y and must be solved numerically. We can use one of a number of numerical root finding techniqu such as Newton's method, or we can use Excel's Solver or Goal Seek, or we can manually iterate, as below.
For $\quad y=2$
(ft) $\quad \frac{[(8+2 \cdot y) \cdot \mathrm{y}]^{\frac{5}{3}}}{\underline{2}}=30.27 \quad$ For $\quad \mathrm{y}=3$
(ft) $\quad \frac{[(8+2 \cdot \mathrm{y}) \cdot \mathrm{y}]^{\frac{5}{3}}}{\frac{2}{3}}=65.8$
$(8+2 \cdot y \cdot \sqrt{5})^{\frac{3}{3}}$
$(8+2 \cdot y \cdot \sqrt{5})^{\overline{3}}$
For $\quad y=2.6 \quad(\mathrm{ft}) \quad \frac{[(8+2 \cdot \mathrm{y}) \cdot \mathrm{y}]^{\frac{5}{3}}}{\frac{2}{2}^{\frac{2}{3}}}=49.81 \quad$ For $\quad \mathrm{y}=2.61 \quad(\mathrm{ft}) \quad \frac{[(8+2 \cdot \mathrm{y}) \cdot \mathrm{y}]^{\frac{5}{3}}}{\frac{2}{\frac{2}{3}}}=50.18$

The solution to three figures is

Problem 11.4

11.4 Determine the uniform flow depth in a trapezoidal channel with a bottom width of 2.5 m and side slopes of 1 vertical to 2 horizontal with a discharge of $3 \mathrm{~m}^{3} / \mathrm{s}$. The slope is 0.0004 and Manning's roughness factor is 0.015 .

Given: Data on trapezoidal channel
Find: Depth of flow

Solution:

Basic equation:

$$
\mathrm{Q}=\frac{1}{\mathrm{n}} \cdot \mathrm{~A} \cdot \mathrm{R}^{\frac{2}{3}} \cdot \mathrm{~S}_{0}^{\frac{1}{2}}
$$

Note that this is an "engineering" equation, to be used without units!
For the trapezoidal channel we have $\quad B_{W}=2.5 \cdot m \quad \mathrm{z}=2 \quad \mathrm{Q}=3 \cdot \frac{\mathrm{~m}^{3}}{\mathrm{~s}} \quad \mathrm{~S}_{0}=0.0004$

$$
\mathrm{n}=0.015
$$

Hence from Table 11.2

$$
A=\left(B_{W}+z \cdot y\right) \cdot y=(8+2 \cdot y) \cdot y \quad R=\frac{\left(B_{w}+z \cdot y\right) \cdot y}{B_{W}+2 \cdot y \cdot \sqrt{1+z^{2}}}=\frac{(2.5+2 \cdot y) \cdot y}{2.5+2 \cdot y \cdot \sqrt{5}}
$$

Hence $\quad \mathrm{Q}=\frac{1}{\mathrm{n}} \cdot \mathrm{A} \cdot \mathrm{R}^{\frac{2}{3}} \cdot \mathrm{~S}_{0}{ }^{\frac{1}{2}}=\frac{1}{0.015} \cdot(2.5+2 \cdot \mathrm{y}) \cdot \mathrm{y} \cdot\left[\frac{(2.5+2 \cdot \mathrm{y}) \cdot \mathrm{y}}{2.5+2 \cdot \mathrm{y} \cdot \sqrt{5}}\right]^{\frac{2}{3}} \cdot 0.0004^{\frac{1}{2}}=3 \quad$ (Note that we don't use units!)
Solving for $\mathrm{y} \quad \frac{[(2.5+2 \cdot \mathrm{y}) \cdot \mathrm{y}]^{\frac{5}{3}}}{(2.5+2 \cdot y \cdot \sqrt{5})^{\frac{2}{3}}}=2.25$
This is a nonlinear implicit equation for y and must be solved numerically. We can use one of a number of numerical root finding techniqu such as Newton's method, or we can use Excel's Solver or Goal Seek, or we can manually iterate, as below.
For $\quad y=1$
(m) $\quad \frac{[(2.5+2 \cdot y) \cdot y]^{\frac{5}{3}}}{\underline{2}}=3.36 \quad$ For $y=0.8$
(m) $\quad \frac{[(2.5+2 \cdot y) \cdot y]^{\frac{5}{3}}}{2}=2.17$
$(2.5+2 \cdot y \cdot \sqrt{5})^{\overline{3}}$
$(2.5+2 \cdot y \cdot \sqrt{5})^{3}$
For $\quad y=0.81 \quad(\mathrm{~m}) \quad \frac{[(2.5+2 \cdot \mathrm{y}) \cdot \mathrm{y}]^{\frac{5}{3}}}{(2.5+2 \cdot \mathrm{y} \cdot \sqrt{5})^{\frac{2}{3}}}=2.23 \quad$ For $\quad \mathrm{y}=0.815 \quad(\mathrm{~m}) \quad \frac{[(2.5+2 \cdot \mathrm{y}) \cdot \mathrm{y}]^{\frac{5}{3}}}{\frac{2^{\frac{2}{3}}}{3}}=2.25$

The solution to three figures is

$$
\mathrm{y}=0.815 \quad(\mathrm{~m})
$$

11.5 A partially open sluice gate in a 3-m-wide rectangular channel carries water at $8.5 \mathrm{~m}^{3} / \mathrm{sec}$. The upstream depth is 2 m . Find the downstream depth and Froude number.

Given: Data on sluice gate
Find: Downstream depth; Froude number

Solution:

Basic equation: $\frac{\mathrm{p}_{1}}{\rho \cdot \mathrm{~g}}+\frac{\mathrm{V}_{1}{ }^{2}}{2 \cdot g}+\mathrm{y}_{1}=\frac{\mathrm{p}_{2}}{\rho \cdot g}+\frac{\mathrm{V}_{2}{ }^{2}}{2 \cdot g}+\mathrm{y}_{2}+\mathrm{h}$

The Bernoulli equation applies because we have steady, incompressible, frictionless flow.

Noting that $\mathrm{p}_{1}=\mathrm{p}_{2}=\mathrm{patm},(1=$ upstream, $2=$ downstream $)$ the Bernoulli equation becomes

$$
\frac{\mathrm{v}_{1}^{2}}{2 \cdot \mathrm{~g}}+\mathrm{y}_{1}=\frac{\mathrm{v}_{2}^{2}}{2 \cdot \mathrm{~g}}+\mathrm{y}_{2}
$$

The given data is $\mathrm{b}=3 \cdot \mathrm{~m}$

$$
\mathrm{y}_{1}=2 \cdot \mathrm{~m}
$$

$$
\mathrm{Q}=8.5 \cdot \frac{\mathrm{~m}^{3}}{\mathrm{~s}}
$$

For mass flow $\quad \mathrm{Q}=\mathrm{V} \cdot \mathrm{A} \quad$ so

$$
\mathrm{V}_{1}=\frac{\mathrm{Q}}{\mathrm{~b} \cdot \mathrm{y}_{1}} \quad \text { and } \quad \mathrm{V}_{2}=\frac{\mathrm{Q}}{\mathrm{~b} \cdot \mathrm{y}_{2}}
$$

Using these in the Bernoulli equation $\frac{\left(\frac{\mathrm{Q}}{\mathrm{b} \cdot \mathrm{y}_{1}}\right)^{2}}{2 \cdot g}+\mathrm{y}_{1}=\frac{\left(\frac{\mathrm{Q}}{\mathrm{b} \cdot \mathrm{y}_{2}}\right)^{2}}{2 \cdot \mathrm{~g}}+\mathrm{y}_{2}$

The only unknown on the right is y_{2}. The left side evaluates to

$$
\frac{\left(\frac{\mathrm{Q}}{\mathrm{~b} \cdot \mathrm{y}_{1}}\right)^{2}}{2 \cdot \mathrm{~g}}+\mathrm{y}_{1}=2.10 \mathrm{~m}
$$

To find y_{2} we need to solve the non-linear equation. We must do this numerically; we may use the Newton method or similar, or Excel's Solver or Goal Seek. Here we interate manually, starting with an arbitrary value less than y_{1}.
For $\quad y_{2}=0.5 \cdot \mathrm{~m} \quad \frac{\left(\frac{\mathrm{Q}}{\mathrm{b} \cdot \mathrm{y}_{2}}\right)^{2}}{2 \cdot g}+\mathrm{y}_{2}=2.14 \mathrm{~m} \quad$ For $\quad \mathrm{y}_{2}=0.51 \cdot \mathrm{~m} \quad \frac{\left(\frac{\mathrm{Q}}{\mathrm{b} \cdot \mathrm{y}_{2}}\right)^{2}}{2 \cdot \mathrm{~g}}+\mathrm{y}_{2}=2.08 \mathrm{~m}$
For $\quad y_{2}=0.505 \cdot \mathrm{~m} \quad \frac{\left(\frac{Q}{b \cdot y_{2}}\right)^{2}}{2 \cdot g}+y_{2}=2.11 \mathrm{~m} \quad$ For $\quad y_{2}=0.507 \cdot m \quad \frac{\left(\frac{Q}{b \cdot y_{2}}\right)^{2}}{2 \cdot g}+y_{2}=2.10 \mathrm{~m}$

Hence $\quad y_{2}=0.507 m$

Then

$$
\mathrm{V}_{2}=\frac{\mathrm{Q}}{\mathrm{~b} \cdot \mathrm{y}_{2}} \quad \mathrm{~V}_{2}=5.59 \frac{\mathrm{~m}}{\mathrm{~s}}
$$

$$
\mathrm{Fr}_{2}=\frac{\mathrm{V}_{2}}{\sqrt{\mathrm{~g} \cdot \mathrm{y}_{2}}}
$$

$$
\mathrm{Fr}_{2}=2.51
$$

11.6 A rectangular flume built of concrete, with 1 ft per 1000 ft slope, is 6 ft wide. Water flows at a normal depth of 3 ft . Compute the discharge.

Given: Data on flume
Find: Discharge

Solution:

Basic equation: $\quad \mathrm{Q}=\frac{1.49}{\mathrm{n}} \cdot \mathrm{A} \cdot \mathrm{R}^{\frac{2}{3}} \cdot \mathrm{~S}_{0}{ }^{\frac{1}{2}}$

Note that this is an "engineering" equation, to be used without units!

For a rectangular channel of width $\mathrm{B}_{\mathrm{w}}=6 \cdot \mathrm{ft}$ and depth $\mathrm{y}=3 \cdot \mathrm{ft}$ we find from Table 11.2

$$
\mathrm{A}=\mathrm{B}_{\mathrm{W}} \cdot \mathrm{y} \quad \mathrm{~A}=18 \cdot \mathrm{ft}^{2} \quad \mathrm{R}=\frac{\mathrm{B}_{\mathrm{w}} \cdot \mathrm{y}}{\mathrm{~B}_{\mathrm{W}}+2 \cdot \mathrm{y}} \quad \mathrm{R}=1.50 \cdot \mathrm{ft}
$$

For concrete (Table 11.1)

$$
\mathrm{n}=0.013 \quad \text { and } \quad \mathrm{S}_{0}=\frac{1 \cdot \mathrm{ft}}{1000 \cdot \mathrm{ft}} \quad \mathrm{~S}_{0}=0.001
$$

$$
\mathrm{Q}=\frac{1.49}{\mathrm{n}} \cdot \mathrm{~A} \cdot \mathrm{R}^{\frac{2}{3}} \cdot \mathrm{~S}_{0}^{\frac{1}{2}} \quad \mathrm{Q}=85.5 \cdot \frac{\mathrm{ft}^{3}}{\mathrm{~s}}
$$

11.7 A rectangular flume built of timber is 3 ft wide. The flume is to handle a flow of $90 \mathrm{ft}^{3} / \mathrm{sec}$ at a normal depth of 6 ft . Determine the slope required.

Given: Data on flume
Find: Slope

Solution:

Basic equation: $\quad \mathrm{Q}=\frac{1.49}{\mathrm{n}} \cdot \mathrm{A} \cdot \mathrm{R}^{\frac{2}{3}} \cdot \mathrm{~S}_{0}{ }^{\frac{1}{2}}$

Note that this is an "engineering" equation, to be used without units!

For a rectangular channel of width $\mathrm{B}_{\mathrm{w}}=3 \cdot \mathrm{ft}$ and depth $\mathrm{y}=6 \cdot \mathrm{ft}$ we find

$$
\mathrm{A}=\mathrm{B}_{\mathrm{W}} \cdot \mathrm{y} \quad \mathrm{~A}=18 \cdot \mathrm{ft}^{2} \quad \mathrm{R}=\frac{\mathrm{B}_{\mathrm{w}} \cdot \mathrm{y}}{\mathrm{~B}_{\mathrm{W}}+2 \cdot \mathrm{y}} \quad \mathrm{R}=1.20 \cdot \mathrm{ft}
$$

For wood (not in Table 11.1) a Google search finds $n=0.012$ to 0.017 ; we use
$\mathrm{n}=0.0145 \quad$ with $\quad \mathrm{Q}=90 \cdot \frac{\mathrm{ft}^{3}}{\mathrm{~s}}$

$$
\mathrm{S}_{0}=\left(\frac{\mathrm{n} \cdot \mathrm{Q}}{1.49 \cdot \mathrm{~A} \cdot \mathrm{R}^{\frac{2}{3}}}\right)^{2} \quad \mathrm{~S}_{0}=1.86 \times 10^{-3}
$$

11.8 A channel with square cross section is to carry $20 \mathrm{~m}^{3} / \mathrm{sec}$ of water at normal depth on a slope of 0.003 . Compare the dimensions of the channel required for (a) concrete and (b) soil cement.

Given: Data on square channel
Find: Dimensions for concrete and soil cement

Solution:

Basic equation: $\quad \mathrm{Q}=\frac{1}{\mathrm{n}} \cdot \mathrm{A} \cdot \mathrm{R}^{\frac{2}{3}} \cdot \mathrm{~S}_{0}{ }^{\frac{1}{2}}$
Note that this is an "engineering" equation, to be used without units!
For a square channel of width B_{w} we find $\quad A=B_{w}{ }^{2} \quad R=\frac{B_{w} \cdot y}{B_{w}+2 \cdot y}=\frac{B_{w}{ }^{2}}{B_{W}+2 \cdot B_{w}}=\frac{B_{W}}{3}$

Hence

$$
\mathrm{Q}=\frac{1}{\mathrm{n}} \cdot \mathrm{~B}_{\mathrm{w}}^{2} \cdot\left(\frac{\mathrm{~B}_{\mathrm{w}}}{3}\right)^{\frac{2}{3}} \cdot \mathrm{~S}_{0}^{\frac{1}{2}}=\frac{\mathrm{S}_{0}^{\frac{1}{2}}}{\mathrm{n}^{\frac{2}{3}}} \cdot \mathrm{~B}_{\mathrm{w}}{ }^{\frac{8}{3}} \quad \text { or } \quad \mathrm{B}_{\mathrm{w}}=\left(\frac{3^{\frac{2}{3}} \cdot \mathrm{Q}}{\frac{\mathrm{~S}_{0}}{2}} \cdot \mathrm{n}\right)^{\frac{3}{8}}
$$

The given data is $\quad Q=20 \cdot \frac{\mathrm{~m}^{3}}{\mathrm{~s}}$
$\mathrm{S}_{0}=0.003$

For concrete, from Table 11.1 (assuming large depth)
$\mathrm{n}=.013$
$B_{W}=2.36 m$

For soil cement from Table 11.1 (assuming large depth)
$\mathrm{n}=.020$

$$
\mathrm{B}_{\mathrm{W}}=2.77 \mathrm{~m}
$$

Problem 11.9

11.9 Water flows in a trapezoidal channel at a normal depth of 1.2 m . The bottom width is 2.4 m and the sides slope at $1: 1\left(45^{\circ}\right)$. The flow rate is $7.1 \mathrm{~m}^{3} / \mathrm{sec}$. The channel is excavated from bare soil. Find the bed slope.

Given: Data on trapezoidal channel
Find: Bed slope

Solution:

Basic equation: $\quad \mathrm{Q}=\frac{1}{\mathrm{n}} \cdot \mathrm{A} \cdot \mathrm{R}^{\frac{2}{3}} \cdot \mathrm{~S}_{0}{ }^{\frac{1}{2}}$

Note that this is an "engineering" equation, to be used without units!
For the trapezoidal channel we have $\quad B_{W}=2.4 \cdot m \quad \mathrm{z}=1 \quad \mathrm{y}=1.2 \cdot \mathrm{~m}=7.1 \cdot \frac{\mathrm{~m}^{3}}{\mathrm{~s}}$

For bare soil (Table 11.1)
$\mathrm{n}=0.020$

Hence from Table 11.2

$$
\mathrm{A}=\left(\mathrm{B}_{\mathrm{w}}+\mathrm{z} \cdot \mathrm{y}\right) \cdot \mathrm{y} \quad \mathrm{~A}=4.32 \mathrm{~m}^{2}
$$

$$
\mathrm{R}=\frac{\left(\mathrm{B}_{\mathrm{w}}+\mathrm{z} \cdot \mathrm{y}\right) \cdot \mathrm{y}}{\mathrm{~B}_{\mathrm{W}}+2 \cdot \mathrm{y} \cdot \sqrt{1+\mathrm{z}^{2}}} \quad \mathrm{R}=0.746 \mathrm{~m}
$$

Hence

$$
\mathrm{S}_{0}=\left(\frac{\mathrm{Q} \cdot \mathrm{n}}{\frac{2}{3}}\right)^{2} \quad \mathrm{~S}_{0}=1.60 \times 10^{-3}
$$

11.10 A triangular channel with side angles of 45° is to carry 10 $\mathrm{m}^{3} / \mathrm{sec}$ at a slope of 0.001 . The channel is concrete. Find the required dimensions.

Given: Data on triangular channel
Find: Required dimensions

Solution:

Basic equation: $\quad \mathrm{Q}=\frac{1}{\mathrm{n}} \cdot \mathrm{A} \cdot \mathrm{R}^{\frac{2}{3}} \cdot \mathrm{~S}_{0}{ }^{\frac{1}{2}}$
Note that this is an "engineering" equation, to be used without units!
For the triangular channel we have $\mathrm{z}=1 \quad \mathrm{~S}_{0}=0.001 \quad \mathrm{Q}=10 \cdot \frac{\mathrm{~m}^{3}}{\mathrm{~s}}$

For concrete (Table 11.1)
$\mathrm{n}=0.013 \quad$ (assuming $\mathrm{y}>60 \mathrm{~cm}$: verify later)

Hence from Table 11.2
$A=z \cdot y^{2}=y^{2} \quad R=\frac{z \cdot y}{2 \cdot \sqrt{1+z^{2}}}=\frac{y}{2 \cdot \sqrt{2}}$

Hence
$\mathrm{Q}=\frac{1}{\mathrm{n}} \cdot \mathrm{A} \cdot \mathrm{R}^{\frac{2}{3}} \cdot \mathrm{~S}_{0}{ }^{\frac{1}{2}}=\frac{1}{\mathrm{n}} \cdot \mathrm{y}^{2} \cdot\left(\frac{\mathrm{y}}{2 \cdot \sqrt{2}}\right)^{\frac{2}{3}} \cdot \mathrm{~S}_{0}=\frac{1}{\mathrm{n}} \cdot \mathrm{y}^{\frac{8}{3}} \cdot\left(\frac{1}{8}\right)^{\frac{1}{3}} \cdot \mathrm{~S}_{0}^{\frac{1}{2}}=\frac{1}{2 \cdot \mathrm{n}} \cdot \mathrm{y}^{\frac{8}{3}} \cdot \mathrm{~S}_{0}{ }^{\frac{1}{2}}$

Solving for y

$$
\mathrm{y}=\left(\frac{2 \cdot \mathrm{n} \cdot \mathrm{Q}}{\sqrt{\mathrm{~S}_{0}}}\right)^{\frac{3}{8}} \quad \mathrm{y}=2.20 \mathrm{~m} \quad \text { (The assumption that } \mathrm{y}>60 \mathrm{~cm} \text { is verified) }
$$

Problem 11.11

11.11 A semicircular trough of corrugated steel, with diameter $D=1 \mathrm{~m}$, carries water at depth $y_{n}=0.25 \mathrm{~m}$. The slope is 0.01 . Find the discharge.

Given: Data on semicircular trough
Find: Discharge

Solution:

Basic equation: $\quad \mathrm{Q}=\frac{1}{\mathrm{n}} \cdot \mathrm{A} \cdot \mathrm{R}^{\frac{2}{3}} \cdot \mathrm{~S}_{0}{ }^{\frac{1}{2}}$

Note that this is an "engineering" equation, to be used without units!

For the semicircular channel $\quad \mathrm{d}_{0}=1 \cdot \mathrm{~m}$
Hence, from geometry $\quad \theta=2 \cdot \operatorname{asin}\left(\frac{y-\frac{d_{0}}{2}}{\frac{d_{0}}{2}}\right)+180 \cdot \operatorname{deg} \quad \theta=120 \cdot \operatorname{deg}$
For corrugated steel, a Google search leads to

Hence from Table 11.2

$$
\begin{array}{ll}
A=\frac{1}{8} \cdot(\theta-\sin (\theta)) \cdot d_{0}^{2} & A=0.154 m^{2} \\
R=\frac{1}{4} \cdot\left(1-\frac{\sin (\theta)}{\theta}\right) \cdot d_{0} & R=0.147 m
\end{array}
$$

Then the discharge is

$$
\mathrm{Q}=\frac{1}{\mathrm{n}} \cdot \mathrm{~A} \cdot \mathrm{R}^{\frac{2}{3}} \cdot \mathrm{~S}_{0}{ }^{\frac{1}{2}} \cdot \frac{\mathrm{~m}^{3}}{\mathrm{~s}}
$$

$$
\mathrm{Q}=0.194 \frac{\mathrm{~m}^{3}}{\mathrm{~s}}
$$

11.12 Find the discharge at which the channel of Problem 11.11 flows full.

Given:
Data on semicircular trough
Find:
Discharge

Solution:

Basic equation: $\quad \mathrm{Q}=\frac{1}{\mathrm{n}} \cdot \mathrm{A} \cdot \mathrm{R}^{\frac{2}{3}} \cdot \mathrm{~S}_{0}{ }^{\frac{1}{2}}$

Note that this is an "engineering" equation, to be used without units!

For the semicircular channe

$$
\mathrm{d}_{0}=1 \cdot \mathrm{~m}
$$

$\theta=180 \cdot \mathrm{deg}$
$S_{0}=0.01$

For corrugated steel, a Google search leads to (Table 11.1)
$\mathrm{n}=0.022$

Hence from Table 11.2

$$
\begin{array}{ll}
\mathrm{A}=\frac{1}{8} \cdot(\theta-\sin (\theta)) \cdot \mathrm{d}_{0}^{2} & \mathrm{~A}=0.393 \mathrm{~m}^{2} \\
\mathrm{R}=\frac{1}{4} \cdot\left(1-\frac{\sin (\theta)}{\theta}\right) \cdot \mathrm{d}_{0} & \mathrm{R}=0.25 \mathrm{~m} \\
\mathrm{Q}=\frac{1}{\mathrm{n}} \cdot \mathrm{~A} \cdot \mathrm{R}^{\frac{2}{3}} \cdot \mathrm{~S}_{0}^{\frac{1}{2}} \cdot \frac{\mathrm{~m}^{3}}{\mathrm{~s}} & \mathrm{Q}=0.708 \frac{\mathrm{~m}^{3}}{\mathrm{~s}}
\end{array}
$$

11.13 The flume of Problem 11.6 is fitted with a new plastic film liner $(n=0.010)$. Find the new depth of flow if the discharge remains constant at $85.5 \mathrm{ft}^{3} / \mathrm{sec}$.

Given: Data on flume with plastic liner
Find: Depth of flow

Solution:

Basic equation:

$$
\mathrm{Q}=\frac{1.49}{\mathrm{n}} \cdot \mathrm{~A} \cdot \mathrm{R}^{\frac{2}{3}} \cdot \mathrm{~S}_{0}^{\frac{1}{2}}
$$

Note that this is an "engineering" equation, to be used without units!
For a rectangular channel of width $\mathrm{B}_{\mathrm{W}}=6 \cdot \mathrm{ft}$ and depth y we find from Table 11.2

$$
A=B_{W} \cdot y=6 \cdot y \quad R=\frac{B_{W} \cdot y}{B_{W}+2 \cdot y}=\frac{6 \cdot y}{6+2 \cdot y}
$$

and also

$$
\mathrm{n}=0.010 \quad \text { and } \quad \mathrm{S}_{0}=\frac{1 \cdot \mathrm{ft}}{1000 \cdot \mathrm{ft}} \quad \mathrm{~S}_{0}=0.001
$$

$$
\begin{aligned}
& \text { Hence } \quad \mathrm{Q}=\frac{1.49}{\mathrm{n}} \cdot \mathrm{~A} \cdot \mathrm{R}^{\frac{2}{3}} \cdot \mathrm{~S}_{0}{ }^{\frac{1}{2}}=\frac{1.49}{0.010} \cdot 6 \cdot \mathrm{y} \cdot\left(\frac{6 \cdot \mathrm{y}}{6+2 \cdot \mathrm{y}}\right)^{\frac{2}{3}} \cdot 0.001^{\frac{1}{2}}=85.5 \\
& \text { Solving for } \mathrm{y} \quad \\
& \\
& (6+2 \cdot \mathrm{y})^{\frac{2}{3}} \\
& 1.49 \cdot .001^{\frac{5}{3}} \cdot 6 \cdot 6^{\frac{1}{3}}
\end{aligned} \frac{85.5 \cdot 0.010}{(6+2 \cdot \mathrm{y})^{\frac{2}{3}}}=0.916
$$

This is a nonlinear implicit equation for y and must be solved numerically. We can use one of a number of numerical root finding techniqu such as Newton's method, or we can use Excel's Solver or Goal Seek, or we can manually iterate, as below. We start with Problem 11.6's depth

$$
\begin{aligned}
& \text { For } y=3 \quad \text { (feet) } \frac{y^{\frac{5}{3}}}{(6+2 \cdot y)^{\frac{2}{3}}}=1.191 \quad \text { For } \quad y=2 \quad \text { (feet) } \quad \frac{y^{\frac{5}{3}}}{(6+2 \cdot y)^{\frac{2}{3}}}=0.684 \\
& \text { For } y=2.5 \quad \text { (feet) } \quad \frac{y^{\frac{5}{3}}}{(6+2 \cdot y)^{\frac{2}{3}}}=0.931 \quad \text { For } \quad y=2.45 \quad \text { (feet) } \quad \frac{y^{\frac{5}{3}}}{(6+2 \cdot y)^{\frac{2}{3}}}=0.906 \\
& \text { For } y=2.47 \quad \text { (feet) } \quad \frac{y^{\frac{5}{3}}}{\frac{2}{3}}=0.916 \quad y=2.47 \quad \text { (feet) }
\end{aligned}
$$

Problem 11.14

11.14 Discharge through the channel of Problem 11.9 is increased to $15 \mathrm{~m}^{3} / \mathrm{sec}$. Find the corresponding normal depth, if the bed slope is 0.00193 .

Given: Data on trapzoidal channel
Find: New depth of flow

Solution:

Basic equation:

$$
\mathrm{Q}=\frac{1}{\mathrm{n}} \cdot \mathrm{~A} \cdot \mathrm{R}^{\frac{2}{3}} \cdot \mathrm{~S}_{0}^{\frac{1}{2}}
$$

Note that this is an "engineering" equation, to be used without units!

For the trapezoidal channel we have

$$
\mathrm{B}_{\mathrm{W}}=2.4 \cdot \mathrm{~m}
$$

$\mathrm{z}=1$
$\mathrm{Q}=15 \cdot \frac{\mathrm{~m}^{3}}{\mathrm{~s}}$
$S_{0}=0.00193$
For bare soil (Table 11.1)

$$
\mathrm{n}=0.020
$$

Hence from Table 11.2

$$
A=\left(B_{W}+z \cdot y\right) \cdot y=(2.4+y) \cdot y \quad R=\frac{\left(B_{W}+z \cdot y\right) \cdot y}{B_{W}+2 \cdot y \cdot \sqrt{1+z^{2}}}=\frac{(2.4+y) \cdot y}{2.4+2 \cdot y \cdot \sqrt{2}}
$$

Hence

$$
\mathrm{Q}=\frac{1}{\mathrm{n}} \cdot \mathrm{~A} \cdot \mathrm{R}^{\frac{2}{3}} \cdot \mathrm{~S}_{0}^{\frac{1}{2}}=\frac{1}{0.020} \cdot(2.4+\mathrm{y}) \cdot \mathrm{y} \cdot\left[\frac{(2.4+\mathrm{y}) \cdot \mathrm{y}}{2.4+2 \cdot \mathrm{y} \cdot \sqrt{2}}\right]^{\frac{2}{3}} \cdot 0.00193^{\frac{1}{2}}=15
$$

(Note that we don't use units!)
Solving for $\mathrm{y} \quad \frac{[(2.4+\mathrm{y}) \cdot \mathrm{y}]^{\frac{5}{3}}}{2}=6.83$

$$
(2.4+2 \cdot \mathrm{y} \cdot \sqrt{2})^{\frac{2}{3}}
$$

This is a nonlinear implicit equation for y and must be solved numerically. We can use one of a number of numerical root finding techniqu such as Newton's method, or we can use Excel's Solver or Goal Seek, or we can manually iterate, as below. We start with a larger depth than Problem 11.9's.
For $\quad y=1.5 \quad(\mathrm{~m}) \quad \frac{[(2.4+y) \cdot \mathrm{y}]^{\frac{5}{3}}}{(2.4+2 \cdot y \cdot \sqrt{2})^{\frac{2}{3}}}=5.37 \quad$ For $\quad y=1.75 \quad(\mathrm{~m}) \quad \frac{[(2.4+y) \cdot y]^{\frac{5}{3}}}{(2.4+2 \cdot y \cdot \sqrt{2})^{\frac{2}{3}}}=7.2$
For $\quad y=1.71 \quad(\mathrm{~m}) \quad \frac{[(2.4+\mathrm{y}) \cdot \mathrm{y}]^{\frac{5}{3}}}{(2.4+2 \cdot \mathrm{y} \cdot \sqrt{2})^{\frac{2}{3}}}=6.89 \quad$ For $\quad \mathrm{y}=1.70 \quad$ (m) $\quad \frac{[(2.4+\mathrm{y}) \cdot \mathrm{y}]^{\frac{5}{3}}}{\frac{2^{\frac{2}{3}}}{3}}=6.82$

The solution to three figures is
11.15 The channel of Problem 11.9 has 0.00193 bed slope. Find the normal depth for the given discharge after a new plastic liner ($n=0.010$) is installed.

Given: Data on trapzoidal channel
Find: New depth of flow

Solution:

Basic equation:

$$
\mathrm{Q}=\frac{1}{\mathrm{n}} \cdot \mathrm{~A} \cdot \mathrm{R}^{\frac{2}{3}} \cdot \mathrm{~S}_{0}^{\frac{1}{2}}
$$

Note that this is an "engineering" equation, to be used without units!

For the trapezoidal channel we have

$$
\mathrm{B}_{\mathrm{W}}=2.4 \cdot \mathrm{~m}
$$

$\mathrm{z}=1$
$\mathrm{Q}=7.1 \cdot \frac{\mathrm{~m}^{3}}{\mathrm{~s}}$
$S_{0}=0.00193$
For bare soil (Table 11.1)

$$
\mathrm{n}=0.010
$$

Hence from Table 11.2

$$
A=\left(B_{W}+z \cdot y\right) \cdot y=(2.4+y) \cdot y \quad R=\frac{\left(B_{W}+z \cdot y\right) \cdot y}{B_{W}+2 \cdot y \cdot \sqrt{1+z^{2}}}=\frac{(2.4+y) \cdot y}{2.4+2 \cdot y \cdot \sqrt{2}}
$$

Hence $\quad \mathrm{Q}=\frac{1}{\mathrm{n}} \cdot \mathrm{A} \cdot \mathrm{R}^{\frac{2}{3}} \cdot \mathrm{~S}_{0}{ }^{\frac{1}{2}}=\frac{1}{0.010} \cdot(2.4+\mathrm{y}) \cdot \mathrm{y} \cdot\left[\frac{(2.4+\mathrm{y}) \cdot \mathrm{y}}{2.4+2 \cdot \mathrm{y} \cdot \sqrt{2}}\right]^{\frac{2}{3}} \cdot 0.00193^{\frac{1}{2}}=7.1 \quad$ (Note that we don't use units!)
Solving for $\mathrm{y} \quad \frac{[(2.4+\mathrm{y}) \cdot \mathrm{y}]^{\frac{5}{3}}}{2}=1.62$

$$
(2.4+2 \cdot \mathrm{y} \cdot \sqrt{2})^{\frac{2}{3}}
$$

This is a nonlinear implicit equation for y and must be solved numerically. We can use one of a number of numerical root finding techniqu such as Newton's method, or we can use Excel's Solver or Goal Seek, or we can manually iterate, as below. We start with a shallower deptl than that of Problem 11.9.
For $\quad \mathrm{y}=1$
(m) $\frac{[(2.4+\mathrm{y}) \cdot \mathrm{y}]^{\frac{5}{3}}}{(2.4+2 \cdot \mathrm{y} \cdot \sqrt{2})^{\frac{2}{3}}}=$
For $y=0.75 \quad(\mathrm{~m}) \quad \frac{[(2.4+y) \cdot \mathrm{y}]^{\frac{5}{3}}}{(2.4+2 \cdot \mathrm{y} \cdot \sqrt{2})^{\frac{2}{3}}}=1.53$
For $\quad y=0.77 \quad(\mathrm{~m}) \quad \frac{[(2.4+\mathrm{y}) \cdot \mathrm{y}]^{\frac{5}{3}}}{(2.4+2 \cdot \mathrm{y} \cdot \sqrt{2})^{\frac{2}{3}}}=1.60 \quad$ For $\quad \mathrm{y}=0.775 \quad(\mathrm{~m}) \quad \frac{[(2.4+\mathrm{y}) \cdot \mathrm{y}]^{\frac{5}{3}}}{\frac{2}{\frac{2}{3}}}=1.62$

The solution to three figures is

$$
\mathrm{y}=0.775 \quad(\mathrm{~m})
$$

11.16 Consider again the semicircular channel of Problem 11.11. Find the normal depth that corresponds to a discharge of $0.3 \mathrm{~m}^{3} / \mathrm{sec}$.

Given: Data on semicircular trough
Find: New depth of flow

Solution:

Basic equation: $\quad \mathrm{Q}=\frac{1}{\mathrm{n}} \cdot \mathrm{A} \cdot \mathrm{R}^{\frac{2}{3}} \cdot \mathrm{~S}_{0}{ }^{\frac{1}{2}}$

Note that this is an "engineering" equation, to be used without units!

For the semicircular channel $\quad d_{0}=1 \cdot m$
$S_{0}=0.01$
$\mathrm{Q}=0.3 \cdot \frac{\mathrm{~m}^{3}}{\mathrm{~s}}$

For corrugated steel, a Google search leads to (Table 11.1)
$\mathrm{n}=0.022$

From Table 11.2

$$
\begin{aligned}
& A=\frac{1}{8} \cdot(\theta-\sin (\theta)) \cdot d_{0}^{2}=\frac{1}{8} \cdot(\theta-\sin (\theta)) \\
& \mathrm{R}=\frac{1}{4} \cdot\left(1-\frac{\sin (\theta)}{\theta}\right) \cdot \mathrm{d}_{0}=\frac{1}{4} \cdot\left(1-\frac{\sin (\theta)}{\theta}\right)
\end{aligned}
$$

Hence

$$
\mathrm{Q}=\frac{1}{\mathrm{n}} \cdot \mathrm{~A} \cdot \mathrm{R}^{\frac{2}{3}} \cdot \mathrm{~S}_{0}^{\frac{1}{2}}=\frac{1}{0.022} \cdot\left[\frac{1}{8} \cdot(\theta-\sin (\theta))\right] \cdot\left[\frac{1}{4} \cdot\left(1-\frac{\sin (\theta)}{\theta}\right)\right]^{\frac{2}{3}} \cdot 0.01^{\frac{1}{2}}=0.3
$$

(Note that we don't use units!'

Solving for θ

$$
\theta^{-\frac{2}{3}} \cdot(\theta-\sin (\theta))^{\frac{5}{3}}=1.33
$$

This is a nonlinear implicit equation for θ and must be solved numerically. We can use one of a number of numerical root finding techniqu such as Newton's method, or we can use Excel's Solver or Goal Seek, or we can manually iterate, as below. We start with a half-full channt

The solution to three figures is $\theta=136 \cdot \mathrm{deg}$

From geometry

$$
\mathrm{y}=\frac{\mathrm{d}_{0}}{2} \cdot\left(1-\cos \left(\frac{\theta}{2}\right)\right) \quad \mathrm{y}=0.313 \mathrm{~m}
$$

11.17 Consider a symmetric open channel of triangular cross section. Show that for a given flow area, the wetted perimeter is minimized when the sides meet at a right angle.

Given: Triangular channel
Find: Proof that wetted perimeter is minimized when sides meet at right angles

Solution:

From Table 11.2

$$
A=z \cdot y^{2}
$$

$$
\mathrm{P}=2 \cdot \mathrm{y} \cdot \sqrt{1+\mathrm{z}^{2}}
$$

We need to vary z to minimize P while keeping A constant, which means thi $y=\sqrt{\frac{A}{z}} \quad$ with $A=$ constant

Hence we eliminate y in the expression for P

$$
P=2 \cdot \sqrt{\frac{A}{z}} \cdot \sqrt{1+z^{2}}=2 \cdot \sqrt{\frac{A \cdot\left(1+z^{2}\right)}{z}}
$$

For optimizing $P \quad \frac{d P}{d z}=\frac{z^{2}-1}{z} \cdot \sqrt{\frac{A}{z \cdot\left(z^{2}+1\right)}}=0 \quad$ or $\quad z=1$

For $\mathrm{z}=1$ we find from the figure that we have the case where the sides are inclined at 45°, so meet at 90°. Note that we have only proved that this is a minimum OR maximum of P! It makes sense that it's the minimum, as, for constant A, we get a huge P if we set z to a large number (almost vertical walls); taking the second derivative at $z=1$ results in a value of $\sqrt{2 \cdot A}$, which is positive, so we DO have a minimum.
11.18 A trapezoidal channel with a bottom width of 20 ft , side slopes of 1 to 2 , channel bottom slope of 0.0016 , and a Manning's n of 0.025 carries a discharge of 400 cfs . Compute the critical depth and velocity of this channel.

Given: Data on trapezoidal channel
Find: Critical depth and velocity

Solution:

Basic equation: $\quad E=y+\frac{V^{2}}{2 \cdot g}$
The given data is: $\quad B_{W}=20 \cdot f t \quad \mathrm{z}=\frac{1}{2} \quad \mathrm{~S}_{0}=0.0016 \quad \mathrm{n}=0.025 \quad \mathrm{Q}=400 \cdot \frac{\mathrm{ft}^{3}}{\mathrm{~s}}$
In terms of flow rate $\quad E=y+\frac{Q^{2}}{2 \cdot A^{2} \cdot g} \quad$ where (Table 11.2) $\quad A=\left(B_{w}+z \cdot y\right) \cdot y$
Hence in terms of y
$E=y+\frac{Q^{2}}{2 \cdot\left(B_{W}+z \cdot y\right)^{2} \cdot y^{2} \cdot g}$
For critical conditions $\frac{d E}{d y}=0=1-\frac{Q^{2} \cdot z}{g \cdot y^{2} \cdot\left(B_{W}+y \cdot z\right)^{3}}-\frac{Q^{2}}{g \cdot y^{3} \cdot\left(B_{W}+y \cdot z\right)^{2}}=1-\frac{B_{w} \cdot Q^{2}}{g \cdot y^{3} \cdot\left(B_{W}+y \cdot z\right)^{3}}$
Hence

$$
\mathrm{g} \cdot \mathrm{y}^{3} \cdot\left(\mathrm{~B}_{\mathrm{w}}+\mathrm{y} \cdot \mathrm{z}\right)^{3}=\mathrm{B}_{\mathrm{w}} \cdot \mathrm{Q}^{2}
$$

The only unknown on the right is y. The right side evaluates to $B_{w} \cdot Q^{2}=3.20 \times 10^{6} \frac{\mathrm{ft}^{7}}{\mathrm{~s}^{2}}$
To find y we need to solve the non-linear equation. We must do this numerically; we may use the Newton method or similar, or Excel's Solver or Goal Seek. Here we interate manually, starting with an arbitrary value

$$
\begin{array}{lllll}
\text { For } \quad y=1 \cdot f t & g \cdot y^{3} \cdot\left(B_{w}+y \cdot z\right)^{3}=2.77 \times 10^{5} \frac{\mathrm{ft}^{7}}{\mathrm{~s}^{2}} & \text { For } \quad \mathrm{y}=2 \cdot \mathrm{ft} & \mathrm{~g} \cdot \mathrm{y}^{3} \cdot\left(\mathrm{~B}_{\mathrm{w}}+\mathrm{y} \cdot \mathrm{z}\right)^{3}=2.38 \times 10 \frac{6 \mathrm{ft}^{7}}{\mathrm{~s}^{2}} \\
\text { For } \quad \mathrm{y}=2.5 \cdot \mathrm{ft} & \mathrm{~g} \cdot \mathrm{y}^{3} \cdot\left(\mathrm{~B}_{\mathrm{w}}+\mathrm{y} \cdot \mathrm{z}\right)^{3}=4.82 \times 10^{6} \frac{\mathrm{ft}^{7}}{\mathrm{~s}^{2}} & \text { For } & \mathrm{y}=2.2 \cdot \mathrm{ft} & \mathrm{~g} \cdot \mathrm{y}^{3} \cdot\left(\mathrm{~B}_{\mathrm{w}}+\mathrm{y} \cdot \mathrm{z}\right)^{3}=3.22 \times 10 \frac{6 \mathrm{ft}^{7}}{2} \\
\text { For } \quad \mathrm{y}=2.19 \cdot \mathrm{ft} & \mathrm{~g} \cdot \mathrm{y}^{3} \cdot\left(\mathrm{~B}_{\mathrm{w}}+\mathrm{y} \cdot \mathrm{z}\right)^{3}=3.17 \times 10^{6} \frac{\mathrm{ft}^{7}}{\mathrm{~s}^{2}} & \text { For } \quad \mathrm{y}=2.20 \cdot \mathrm{ft} & \mathrm{~g} \cdot \mathrm{y}^{3} \cdot\left(\mathrm{~B}_{\mathrm{w}}+\mathrm{y} \cdot \mathrm{z}\right)^{3}=3.22 \times 10^{6} \frac{6 \mathrm{ft}^{7}}{\mathrm{~s}^{2}}
\end{array}
$$

Hence the critical depth is

$$
\mathrm{y}=2.20 \mathrm{ft}
$$

Also $\quad \mathrm{A}=\left(\mathrm{B}_{\mathrm{w}}+\mathrm{z} \cdot \mathrm{y}\right) \cdot \mathrm{y}$
$A=46.4 \mathrm{ft}^{2}$
so critical speed is
$V=\frac{Q}{A} \quad V=8.62 \frac{\mathrm{ft}}{\mathrm{s}}$
11.19 Compute the normal depth and velocity of the channel of Problem 11.18.

Given: Data on trapezoidal channel
Find: Normal depth and velocity

Solution:

Basic equation:

$$
\mathrm{Q}=\frac{1.49}{\mathrm{n}} \cdot \mathrm{~A} \cdot \mathrm{R}^{\frac{2}{3}} \cdot \mathrm{~S}_{0}^{\frac{1}{2}}
$$

Note that this is an "engineering" equation, to be used without units!
For the trapezoidal channel we have $\quad \mathrm{B}_{\mathrm{W}}=20 \cdot \mathrm{ft} \quad \mathrm{z}=\frac{1}{2} \quad \mathrm{Q}=400 \cdot \frac{\mathrm{ft}^{3}}{\mathrm{~s}} \quad \mathrm{~S}_{0}=0.0016 \quad \mathrm{n}=0.025$

Hence from Table 11.2

$$
A=\left(B_{w}+z \cdot y\right) \cdot y=\left(20+\frac{1}{2} \cdot y\right) \cdot y \quad R=\frac{\left(B_{w}+z \cdot y\right) \cdot y}{B_{w}+2 \cdot y \cdot \sqrt{1+z^{2}}}=\frac{\left(20+\frac{1}{2} \cdot y\right) \cdot y}{20+y \cdot \sqrt{5}}
$$

Hence $\quad \mathrm{Q}=\frac{1}{\mathrm{n}} \cdot \mathrm{A} \cdot \mathrm{R}^{\frac{2}{3}} \cdot \mathrm{~S}_{0}^{\frac{1}{2}}=\frac{1}{0.025} \cdot\left(20+\frac{1}{2} \cdot \mathrm{y}\right) \cdot \mathrm{y} \cdot\left[\frac{\left(20+\frac{1}{2} \cdot \mathrm{y}\right) \cdot \mathrm{y}}{20+\mathrm{y} \cdot \sqrt{5}}\right]^{\frac{2}{3}} \cdot 0.0016^{\frac{1}{2}}=400 \quad$ (Note that we don't use units!)
Solving for $\mathrm{y} \quad \frac{\left[\left(20+\frac{1}{2} \cdot \mathrm{y}\right) \cdot \mathrm{y}\right]^{\frac{5}{3}}}{\frac{2}{3}}=250$
This is a nonlinear implicit equation for y and must be solved numerically. We can 1 one of a number of numerical root finding techniques, such as Newton's method, or we can use Excel's Solver or Goal Seek, or we can manually iterate, as below. We start with an arbitrary depth
For $\quad y=5 \quad(f t) \quad \frac{\left[\left(20+\frac{1}{2} \cdot y\right) \cdot y\right]^{\frac{5}{3}}}{2}=265 \quad$ For $\quad y=4.9$
(ft) $\quad \frac{\left[\left(20+\frac{1}{2} \cdot y\right) \cdot y\right]^{\frac{5}{3}}}{2}=256$

$$
(20+y \cdot \sqrt{5})^{\overline{3}}
$$

For $\quad y=4.85 \quad(\mathrm{ft}) \quad \frac{\left[\left(20+\frac{1}{2} \cdot \mathrm{y}\right) \cdot \mathrm{y}\right]^{\frac{5}{3}}}{2}=252 \quad$ For $\quad y=4.83$
(ft) $\frac{\left[\left(20+\frac{1}{2} \cdot \mathrm{y}\right) \cdot \mathrm{y}\right]^{\frac{5}{3}}}{2}=250$
$(20+y \cdot \sqrt{5})^{\frac{2}{3}}$

The solution to three figures is $\mathrm{y}=4.83 \cdot \mathrm{ft}$
Then
$\mathrm{A}=\left(\mathrm{B}_{\mathrm{w}}+\mathrm{z} \cdot \mathrm{y}\right) \cdot \mathrm{y} \quad \mathrm{A}=108 \cdot \mathrm{ft}^{2}$
Finally, the normal velocity is $\quad V=\frac{Q}{A}$

$$
\mathrm{V}=3.69 \cdot \frac{\mathrm{ft}}{\mathrm{~s}}
$$

Problem 11.20

11.20 Derive an expression for the hydraulic radius of a trapezoidal channel with bottom width B_{w} liquid depth y, and side slope angle θ. Verify the equation given in Table 11.2. Plot the ratio R / y for $B_{w}=2 \mathrm{~m}$ with side slope angles of 30° and 60° for $0.5<y<3 \mathrm{~m}$.

Given: Trapezoidal channel
Find: Derive expression for hydraulic radius; Plot R/y versus y for two different side slopes

Solution:

The area is (from simple geometry or Table 11.2)

The wetted perimeter is (from simple geometry or Table 11.2)

Hence the hydraulic radius is $\quad R=\frac{A}{P}=\frac{\left(B_{W}+z \cdot y\right) \cdot y}{B_{W}+2 \cdot y \cdot \sqrt{1+z^{2}}}$

We are to plot

$$
\frac{\mathrm{R}}{\mathrm{y}}=\frac{\left(\mathrm{B}_{\mathrm{w}}+\mathrm{z} \cdot \mathrm{y}\right)}{\mathrm{B}_{\mathrm{W}}+2 \cdot y \cdot \sqrt{1+z^{2}}}
$$

with $\quad \mathrm{B}_{\mathrm{W}}=2 \cdot \mathrm{~m} \quad$ for $\theta=30^{\circ}$ and 60°, and $0.5<\mathrm{y}<3 \mathrm{~m}$.

Note: For $\theta=30^{\circ}$

$$
z=\frac{1}{\tan (30 \cdot \operatorname{deg})}
$$

$$
\mathrm{z}=1.73
$$

Note: For $\theta=60^{\circ}$

$$
z=\frac{1}{\tan (60 \cdot \operatorname{deg})}
$$

$$
\mathrm{z}=0.577
$$

11.20 Derive an expression for the hydraulic radius of a trapezoidal channel with bottom width B_{w} liquid depth y, and side slope angle θ. Verify the equation given in Table 11.2 . Plot the ratio R / y for $B_{w}=2 \mathrm{~m}$ with side slope angles of 30° and 60° for $0.5<y<3 \mathrm{~m}$.

Given: Trapezoidal channel

Find: Derive expression for hydraulic radius; Plot R / y versus y for two different side slopes

Solution:

Given data: $\quad B_{w}=2 m$

We are to plot

$$
\frac{R}{y}=\frac{\left(B_{w}+z \cdot y\right)}{B_{w}+2 \cdot y \cdot \sqrt{1+z^{2}}} \quad \text { with } \quad B_{w}=2 \cdot m \quad \text { for } \theta=30^{\circ} \text { and } 60^{\circ} \text {, and } 0.5<y<3 \mathrm{~m}
$$

Note: For $\theta=30^{\circ}$

$$
z=\frac{1}{\tan (30 \cdot \operatorname{deg})}
$$

$$
z=1.73
$$

Note: For $\theta=60^{\circ}$

$$
z=\frac{1}{\tan (60 \cdot \operatorname{deg})}
$$

$$
z=0.577
$$

Computed results:

	$\boldsymbol{\theta = 3 \mathbf { 3 0 } ^ { \mathbf { 0 } }}$	$\boldsymbol{\theta = \mathbf { 6 0 } ^ { \mathbf { 0 } }}$
	$\mathbf{z}=\mathbf{1 . 7 3}$	$\mathbf{z}=\mathbf{0 . 5 7 7}$
$\boldsymbol{y} \mathbf{(m)}$	$\boldsymbol{R} / \boldsymbol{y}$	$\boldsymbol{R} / \boldsymbol{y}$
0.5	0.717	0.725
0.6	0.691	0.693
0.7	0.669	0.665
0.8	0.651	0.640
0.9	0.636	0.618
1.0	0.622	0.598
1.1	0.610	0.580
1.2	0.600	0.564
1.3	0.591	0.550
1.4	0.582	0.537
1.5	0.575	0.524
1.6	0.568	0.513
1.7	0.562	0.503
1.8	0.556	0.494
1.9	0.551	0.485
2.0	0.546	0.477
2.1	0.542	0.469
2.2	0.538	0.462
2.3	0.534	0.455
2.4	0.531	0.449
2.5	0.527	0.443
2.6	0.524	0.437
2.7	0.522	0.432
2.8	0.519	0.427
2.9	0.516	0.422
3.0	0.514	0.418

Rly versus y for Trapezoidal Channels

0.5
1.0
1.5
2.0
2.5
3.0
y (m)

Problem 11.21

11.21 Verify the equation given in Table 11.2 for the hydraulic radius of a circular channel. Evaluate and plot the ratio R / d_{o}, for liquid depths between 0 and d_{o}.

Given: Circular channel
Find: Derive expression for hydraulic radius; Plot $\mathrm{R} / \mathrm{d}_{0}$ versus d_{0} for a range of depths

Solution:

The area is (from simple geometry or Table 11.2)

$$
\begin{aligned}
& A=\frac{d_{0}^{2}}{8} \cdot \theta+2 \cdot \frac{1}{2} \cdot \frac{d_{0}}{2} \cdot \sin \left(\pi-\frac{\theta}{2}\right) \cdot \frac{d_{0}}{2} \cdot \cos \left(\pi-\frac{\theta}{2}\right)=\frac{d_{0}^{2}}{8} \cdot \theta+\frac{d_{0}^{2}}{4} \cdot \sin \left(\pi-\frac{\theta}{2}\right) \cdot \cos \left(\pi-\frac{\theta}{2}\right) \\
& A=\frac{d_{0}^{2}}{8} \cdot \theta+\frac{d_{0}^{2}}{8} \cdot \sin (2 \cdot \pi-\theta)=\frac{d_{0}^{2}}{8} \cdot \theta-\frac{d_{0}^{2}}{8} \cdot \sin (\theta)=\frac{d_{0}^{2}}{8} \cdot(\theta-\sin (\theta))
\end{aligned}
$$

The wetted perimeter is (from simple geometry or Table 11.2) $P=\frac{d_{0}}{2} \cdot \theta$

Hence the hydraulic radius is

$$
\mathrm{R}=\frac{\mathrm{A}}{\mathrm{P}}=\frac{\frac{\mathrm{d}_{0}^{2}}{8} \cdot(\theta-\sin (\theta))}{\frac{\mathrm{d}_{0}}{2} \cdot \theta}=\frac{1}{4} \cdot\left(1-\frac{\sin (\theta)}{\theta}\right) \cdot \mathrm{d}_{0}
$$

We are to plot

$$
\frac{\mathrm{R}}{\mathrm{~d}_{0}}=\frac{1}{4} \cdot\left(1-\frac{\sin (\theta)}{\theta}\right)
$$

We will need y as a function of $\theta: \quad y=\frac{d_{0}}{2}+\frac{d_{0}}{2} \cdot \cos \left(\pi-\frac{\theta}{2}\right)=\frac{d_{0}}{2} \cdot\left(1-\cos \left(\frac{\theta}{2}\right)\right) \quad$ or $\quad \frac{y}{d_{0}}=\frac{1}{2} \cdot\left(1-\cos \left(\frac{\theta}{2}\right)\right)$

The graph is plotted in the associated Excel workbook
11.21 Verify the equation given in Table 11.2 for the hydraulic radius of a circular channel. Evaluate and plot the ratio R / d_{o}, for liquid depths between 0 and d_{o}.

Given: Circular channel
Find: Derive expression for hydraulic radius; Plot R / d_{0} versus d_{0}

Solution:

Given data

The hydraulic radius is

$$
\mathrm{R}=\frac{1}{4} \cdot\left(1-\frac{\sin (\theta)}{\theta}\right) \cdot \mathrm{d}_{0}
$$

We are to plot

$$
\frac{\mathrm{R}}{\mathrm{~d}_{0}}=\frac{1}{4} \cdot\left(1-\frac{\sin (\theta)}{\theta}\right)
$$

We will need y as a function of $\theta: \quad \mathrm{y}=\frac{\mathrm{d}_{0}}{2}+\frac{\mathrm{d}_{0}}{2} \cdot \cos \left(\pi-\frac{\theta}{2}\right)=\frac{\mathrm{d}_{0}}{2} \cdot\left(1-\cos \left(\frac{\theta}{2}\right)\right) \quad$ or $\quad \frac{\mathrm{y}}{\mathrm{d}_{0}}=\frac{1}{2} \cdot\left(1-\cos \left(\frac{\theta}{2}\right)\right)$

$\boldsymbol{\theta} \mathbf{(}^{\mathbf{0}} \mathbf{)}$	$\boldsymbol{y} / \boldsymbol{d}_{\mathbf{0}}$	$\boldsymbol{R} / \boldsymbol{d}_{\mathbf{0}}$
0	0.000	0.000
20	0.008	0.005
40	0.030	0.020
60	0.067	0.043
80	0.117	0.074
100	0.179	0.109
120	0.250	0.147
140	0.329	0.184
160	0.413	0.219
180	0.500	0.250
200	0.587	0.274
220	0.671	0.292
240	0.750	0.302
260	0.821	0.304
280	0.883	0.300
300	0.933	0.291
320	0.970	0.279
340	0.992	0.264
360	1.000	0.250

R / d_{0} versus $y l d{ }_{0}$ for a Circular Channel

11.22 Determine the cross-section of the greatest hydraulic efficiency for a trapezoidal channel with side slope of 1 vertical to 2 horizontal if the design discharge is $10 \mathrm{~m}^{3} / \mathrm{s}$. The channel slope is 0.001 and Manning's roughness factor is 0.020 .

Given: Data on trapezoidal channel
Find: Geometry for greatest hydraulic efficiency

Solution:

Basic equation: $\quad \mathrm{Q}=\frac{1}{\mathrm{n}} \cdot \mathrm{A} \cdot \mathrm{R}^{\frac{2}{3}} \cdot \mathrm{~S}_{0}{ }^{\frac{1}{2}}$
Note that this is an "engineering" equation, to be used without units!
For the trapezoidal channel we have $\quad \mathrm{z}=2 \quad \mathrm{Q}=10 \cdot \frac{\mathrm{~m}^{3}}{\mathrm{~s}} \quad \mathrm{~S}_{0}=0.001 \quad \mathrm{n}=0.020$

From Table 11.2

$$
\mathrm{A}=\left(\mathrm{B}_{\mathrm{W}}+\mathrm{z} \cdot \mathrm{y}\right) \cdot \mathrm{y} \quad \mathrm{P}=\mathrm{B}_{\mathrm{W}}+2 \cdot \mathrm{y} \cdot \sqrt{1+\mathrm{z}^{2}}
$$

We need to vary B_{w} and y to obtain optimum conditions. These are when the area and perimeter are optimized. Instead of two independent variables B_{w} and y, we eliminate B_{w} by doing the following

$$
B_{W}=\frac{A}{y}-z \cdot y \quad \text { and so } \quad P=\frac{A}{y}-z \cdot y+2 \cdot y \cdot \sqrt{1+z^{2}}
$$

Taking the derivative w.r.t. $y \quad \frac{\partial}{\partial y} P=\frac{1}{y} \cdot \frac{\partial}{\partial y} A-\frac{A}{y^{2}}-z+2 \cdot \sqrt{1+z^{2}}$
But at optimum conditions

$$
\frac{\partial}{\partial \mathrm{y}} \mathrm{P}=0
$$

and

$$
\frac{\partial}{\partial \mathrm{y}} \mathrm{~A}=0
$$

Hence

$$
0=-\frac{\mathrm{A}}{\mathrm{y}^{2}}-\mathrm{z}+2 \cdot \sqrt{1+\mathrm{z}^{2}} \text { or }
$$

$$
A=2 \cdot y^{2} \cdot \sqrt{1+z^{2}}-z \cdot y^{2}
$$

Comparing to

$$
\begin{aligned}
& A=\left(B_{W}+z \cdot y\right) \cdot y \\
& B_{W}=2 \cdot y \cdot \sqrt{1+z^{2}}-2 \cdot z \cdot y
\end{aligned}
$$

we find
$A=\left(B_{w}+z \cdot y\right) \cdot y=2 \cdot y^{2} \cdot \sqrt{1+z^{2}}-z \cdot y^{2}$

Hence

Then

$$
\begin{aligned}
& A=\left(B_{W}+z \cdot y\right) \cdot y=y^{2} \cdot\left(2 \cdot \sqrt{1+z^{2}}-z\right) \\
& P=B_{W}+2 \cdot y \cdot \sqrt{1+z^{2}}=4 \cdot y \cdot \sqrt{1+z^{2}}-2 \cdot z \cdot y
\end{aligned}
$$

$$
R=\frac{A}{P}=\frac{y^{2} \cdot\left(2 \cdot \sqrt{1+z^{2}}-z\right)}{4 \cdot y \cdot \sqrt{1+z^{2}}-2 \cdot z \cdot y}=\frac{\left(2 \cdot \sqrt{1+z^{2}}-z\right)}{4 \cdot \sqrt{1+z^{2}}-2 \cdot z} \cdot y
$$

Hence

$$
\mathrm{Q}=\frac{1}{\mathrm{n}} \cdot \mathrm{~A} \cdot \mathrm{R}^{\frac{2}{3}} \cdot \mathrm{~S}_{0}{ }^{\frac{1}{2}}=\frac{1}{\mathrm{n}} \cdot\left[\mathrm{y}^{2} \cdot\left(2 \cdot \sqrt{1+\mathrm{z}^{2}}-\mathrm{z}\right)\right] \cdot\left[\frac{\left(2 \cdot \sqrt{1+\mathrm{z}^{2}}-\mathrm{z}\right)}{4 \cdot \sqrt{1+\mathrm{z}^{2}}-2 \cdot \mathrm{z}}\right]^{\frac{2}{3}} \cdot \mathrm{~S}_{0}^{\frac{1}{2}}
$$

$$
\mathrm{Q}=\frac{\left(2 \cdot \sqrt{1+\mathrm{z}^{2}}-\mathrm{z}\right)^{\frac{5}{3}} \cdot \mathrm{~S}_{0}^{\frac{1}{2}} \frac{8}{3}}{\mathrm{n} \cdot\left(4 \cdot \sqrt{1+\mathrm{z}^{2}}-2 \cdot \mathrm{z}\right)^{\frac{2}{3}}}
$$

$$
\begin{equation*}
y=\left[\frac{n \cdot\left(4 \cdot \sqrt{1+z^{2}}-2 \cdot z\right)^{\frac{2}{3}}}{\left(2 \cdot \sqrt{1+z^{2}}-z\right)^{\frac{5}{3}} \cdot s_{0}^{\frac{1}{2}}} \cdot\right]^{\frac{3}{8}} \tag{m}
\end{equation*}
$$

$$
\mathrm{y}=1.69
$$

Finally

$$
B_{W}=2 \cdot y \cdot \sqrt{1+z^{2}}-2 \cdot z \cdot y
$$

$$
\mathrm{B}_{\mathrm{w}}=0.799
$$

(m)

Problem 11.23
11.23 For a trapezoidal shaped channel ($n=0.014$ and slope $S_{o}=0.0002$ with a $20-\mathrm{ft}$ bottom width and side slopes of 1 vertical to 1.5 horizontal), determine the normal depth for a discharge of 1000 cfs .

Given: Data on trapezoidal channel
Find: Normal depth

Solution:

Basic equation:

$$
\mathrm{Q}=\frac{1.49}{\mathrm{n}} \cdot \mathrm{~A} \cdot \mathrm{R}^{\frac{2}{3}} \cdot \mathrm{~S}_{0}^{\frac{1}{2}}
$$

Note that this is an "engineering" equation, to be used without units!
For the trapezoidal channel we have $\quad \mathrm{B}_{\mathrm{W}}=20 \cdot \mathrm{ft} \quad \mathrm{z}=1.5 \quad \mathrm{Q}=1000 \cdot \frac{\mathrm{ft}^{3}}{\mathrm{~s}} \quad \mathrm{~S}_{0}=0.0002$

$$
\mathrm{n}=0.014
$$

Hence from Table 11.2

$$
A=\left(B_{W}+z \cdot y\right) \cdot y=(20+1.5 \cdot y) \cdot y \quad R=\frac{\left(B_{W}+z \cdot y\right) \cdot y}{B_{W}+2 \cdot y \cdot \sqrt{1+z^{2}}}=\frac{(20+1.5 \cdot y) \cdot y}{20+2 \cdot y \cdot \sqrt{3.25}}
$$

Hence $\quad \mathrm{Q}=\frac{1.49}{\mathrm{n}} \cdot \mathrm{A} \cdot \mathrm{R}^{\frac{2}{3}} \cdot \mathrm{~S}_{0}{ }^{\frac{1}{2}}=\frac{1.49}{0.014} \cdot(20+1.5 \cdot \mathrm{y}) \cdot \mathrm{y} \cdot\left[\frac{(20+1.5 \cdot \mathrm{y}) \cdot \mathrm{y}}{20+2 \cdot \mathrm{y} \cdot \sqrt{3.25}}\right]^{\frac{2}{3}} \cdot 0.0002^{\frac{1}{2}}=1000$ (Note that we don't use units!',
Solving for $\mathrm{y} \quad \frac{[(20+1.5 \cdot \mathrm{y}) \cdot \mathrm{y}]^{\frac{5}{3}}}{(20+2 \cdot \mathrm{y} \cdot \sqrt{3.25})^{\frac{2}{3}}}=664$
This is a nonlinear implicit equation for y and must be solved numerically. We can use one of a number of numerical root finding techniqu such as Newton's method, or we can use Excel's Solver or Goal Seek, or we can manually iterate, as below.
For $\quad y=7.5$
(ft) $\quad \frac{[(20+1.5 \cdot y) \cdot y]^{\frac{5}{3}}}{2}=684 \quad$ For $\quad y=7.4$
$(20+2 \cdot \mathrm{y} \cdot \sqrt{3.25})^{\frac{2}{3}}$
(ft) $\quad \frac{[(20+1.5 \cdot y) \cdot y]^{\frac{5}{3}}}{2}=667$
$(20+2 \cdot \mathrm{y} \cdot \sqrt{3.25})^{\overline{3}}$
For $\quad y=7.35 \quad(\mathrm{ft}) \quad \frac{[(20+1.5 \cdot \mathrm{y}) \cdot \mathrm{y}]^{\frac{5}{3}}}{(20+2 \cdot \mathrm{y} \cdot \sqrt{3.25})^{\frac{2}{3}}}=658 \quad$ For $\quad \mathrm{y}=7.38 \quad(\mathrm{ft}) \quad \frac{[(20+1.5 \cdot \mathrm{y}) \cdot \mathrm{y}]^{\frac{5}{3}}}{\frac{2}{3}}=663$

The solution to three figures is

$$
\begin{equation*}
y=7.38 \tag{ft}
\end{equation*}
$$

11.24 Show that the best hydraulic trapezoidal section is onehalf of a hexagon.

Given: Trapezoidal channel
Find: Geometry for greatest hydraulic efficiency

Solution:

From Table 11.2

$$
\mathrm{A}=\left(\mathrm{B}_{\mathrm{w}}+\mathrm{z} \cdot \mathrm{y}\right) \cdot \mathrm{y} \quad \mathrm{P}=\mathrm{B}_{\mathrm{w}}+2 \cdot \mathrm{y} \cdot \sqrt{1+\mathrm{z}^{2}}
$$

We need to vary B_{w} and y (and then z !) to obtain optimum conditions. These are when the area and perimeter are optimized. Instead of two independent variables B_{w} and y, we eliminate B_{w} by doing the following

We have proved that the optimum shape is equal side and bottom lengths, with 60 angles i.e., half a hexagon!
11.25 Solve Example 11.4 for discharges of $0,25,75,125$, and $200 \mathrm{ft}^{3} / \mathrm{s}$.

Given: Rectangular channel
Find: Plot of specific energy curves; Critical depths; Critical specific energy

Solution:

Given data: $\quad B=20 \quad \mathrm{ft}$
Specific energy: $\quad E=y+\left(\frac{Q^{2}}{2 g B^{2}}\right) \frac{1}{y^{2}} \quad$ Critical depth: $\quad y_{c}=\left(\frac{Q^{2}}{g B^{2}}\right)^{\frac{1}{3}}$

y (ft)	Specific Energy, E (ft-lb/lb)				
	$\begin{gathered} Q= \\ 0 \end{gathered}$	$\begin{gathered} Q= \\ 25 \end{gathered}$	$\begin{gathered} Q= \\ 75 \end{gathered}$	$\begin{gathered} Q= \\ 125 \end{gathered}$	$\begin{gathered} Q= \\ 200 \end{gathered}$
0.5	0.50	0.60	1.37	2.93	6.71
0.6	0.60	0.67	1.21	2.28	4.91
0.8	0.80	0.84	1.14	1.75	3.23
1.0	1.00	1.02	1.22	1.61	2.55
1.2	1.20	1.22	1.35	1.62	2.28
1.4	1.40	1.41	1.51	1.71	2.19
1.6	1.60	1.61	1.69	1.84	2.21
1.8	1.80	1.81	1.87	1.99	2.28
2.0	2.00	2.01	2.05	2.15	2.39
2.2	2.20	2.21	2.25	2.33	2.52
2.4	2.40	2.40	2.44	2.51	2.67
2.6	2.60	2.60	2.63	2.69	2.83
2.8	2.80	2.80	2.83	2.88	3.00
3.0	3.00	3.00	3.02	3.07	3.17
3.5	3.50	3.50	3.52	3.55	3.63
4.0	4.00	4.00	4.01	4.04	4.10
4.5	4.50	4.50	4.51	4.53	4.58
5.0	5.00	5.00	5.01	5.02	5.06
	$y_{c}(\mathrm{ft})$	0.365	0.759	1.067	1.46
	$E_{c}(\mathrm{ft})$	0.547	1.14	1.60	2.19

11.26 Rework Example 11.5 for a 30 - cm -high hump and a side wall constriction that reduces the channel width to 1.6 m .

Given: Rectangular channel flow with hump and/or side wall restriction
Find: Whether critical flow occurs
Solution:
Basic equations: $\quad y_{C}=\left(\frac{q^{2}}{g}\right)^{\frac{1}{3}} \quad E=y+\frac{Q^{2}}{2 \cdot g \cdot A^{2}} \quad A=B_{w} \cdot y \quad E_{\min }=\frac{3}{2} \cdot y_{C}$
(From Example 11.5)

Given data:

$$
\mathrm{B}_{\mathrm{W}}=2 \cdot \mathrm{~m} \quad \mathrm{y}=1 \cdot \mathrm{~m}
$$

$\Delta \mathrm{z}=30 \cdot \mathrm{~cm}$
$B=1.6 \cdot m$
$\mathrm{Q}=2.4 \cdot \frac{\mathrm{~m}^{3}}{\mathrm{~s}}$
(a) For a hump with $\Delta z=30 \mathrm{~cm}$
$E=y+\frac{Q^{2}}{2 \cdot g \cdot B_{w}^{2}} \cdot \frac{1}{y^{2}} \quad E=1.07 m$

$$
\begin{aligned}
& \mathrm{y}_{\mathrm{C}}=\left[\frac{\left(\frac{\mathrm{Q}}{\mathrm{~B}_{\mathrm{w}}}\right)^{2}}{\mathrm{~g}}\right]^{\frac{1}{3}} \quad \mathrm{y}_{\mathrm{C}}=0.528 \mathrm{~m} \quad \mathrm{E}_{\min }=\frac{3}{2} \cdot \mathrm{y}_{\mathrm{C}} \quad \mathrm{E}_{\min }=0.791 \mathrm{~m} \\
& \Delta \mathrm{z}_{\text {crit }}=\mathrm{E}-\mathrm{E}_{\min } \quad \Delta \mathrm{z}_{\text {crit }}=0.282 \mathrm{~m}
\end{aligned}
$$

Hence we have $\Delta \mathrm{z}=0.3 \mathrm{~m}>\Delta \mathrm{z}_{\text {crit }}=0.282 \mathrm{~m}$ so the hump IS sufficient for critical flow
(b) For the sidewall restriction with $\quad B=1.6 \mathrm{~m}$

$$
\mathrm{y}_{\mathrm{C}}=\left[\frac{\left(\frac{\mathrm{Q}}{\mathrm{~B}}\right)^{2}}{\mathrm{~g}}\right]^{\frac{1}{3}}
$$

$y_{C}=0.612 m$
$\mathrm{E}_{\text {min }}=\frac{3}{2} \cdot \mathrm{y}_{\mathrm{C}} \quad \mathrm{E}_{\text {min }}=0.918 \mathrm{~m}$

Hence we have $\mathrm{E}=1.073 \mathrm{~m}>\mathrm{E}_{\min }=0.918 \mathrm{~m}$ so the restriction is insufficient for critical flow
(a) For both, we can use the minimum energy from case (b) $\quad E_{\min }=0.918 \mathrm{~m}$

$$
\Delta \mathrm{z}_{\text {crit }}=\mathrm{E}-\mathrm{E}_{\min } \quad \Delta \mathrm{z}_{\text {crit }}=0.155 \mathrm{~m}
$$

Hence we have $\Delta \mathrm{z}=0.3 \mathrm{~m}>\Delta \mathrm{z}_{\text {crit }}=0.155 \mathrm{~m}$ so in this case the conditions ARE sufficient for critical flow
11.27 Compute the critical depth for the channel in Problem 11.1.

Given: Rectangular channel flow
Find: Critical depth
Solution:
Solution: $\quad \mathrm{y}_{\mathrm{C}}=\left(\frac{\mathrm{q}^{2}}{\mathrm{~g}}\right)^{\frac{1}{3}} \quad \mathrm{Q}=\frac{1.49}{\mathrm{n}} \cdot \mathrm{A} \cdot \mathrm{R}^{\frac{2}{3}} \cdot \mathrm{~S}_{0}^{\frac{1}{2}}$

For a rectangular channel of width $\mathrm{B}_{\mathrm{w}}=2 \cdot \mathrm{~m}$ and depth $\mathrm{y}=1.5 \cdot \mathrm{~m}$ we find from Table 11.2
$\mathrm{A}=\mathrm{B}_{\mathrm{W}} \cdot \mathrm{y}$
$\mathrm{A}=3.00 \cdot \mathrm{~m}^{2}$
$R=\frac{B_{W} \cdot y}{B_{W}+2 \cdot y}$
$R=0.600 \cdot m$

Manning's roughness coefficient is

$$
\mathrm{n}=0.015 \quad \text { and } \quad \mathrm{S}_{0}=0.0005
$$

$$
\mathrm{Q}=\frac{1.49}{\mathrm{n}} \cdot \mathrm{~A} \cdot \mathrm{R}^{\frac{2}{3}} \cdot \mathrm{~S}_{0}^{\frac{1}{2}}
$$

$$
\mathrm{Q}=3.18 \cdot \frac{\mathrm{~m}^{3}}{\mathrm{~s}}
$$

Hence

$$
\mathrm{q}=\frac{\mathrm{Q}}{\mathrm{~B}_{\mathrm{w}}}
$$

$$
\mathrm{q}=1.59 \frac{\mathrm{~m}^{2}}{\mathrm{~s}}
$$

$$
y_{C}=\left(\frac{q^{2}}{g}\right)^{\frac{1}{3}} \quad y_{C}=0.637 m
$$

Problem 11.28

11.28 Compute the critical depth for the channel in Problem 11.2.

Given: Rectangular channel flow
Find: Critical depth
Solution:

$$
y_{C}=\left(\frac{q^{2}}{g}\right)^{\frac{1}{3}}
$$

Given data:

$$
\mathrm{B}_{\mathrm{w}}=2.5 \cdot \mathrm{~m}
$$

$$
\mathrm{Q}=3 \cdot \frac{\mathrm{~m}^{3}}{\mathrm{~s}}
$$

Hence

$$
\mathrm{q}=\frac{\mathrm{Q}}{\mathrm{~B}_{\mathrm{W}}}
$$

$$
\mathrm{q}=1.2 \frac{\mathrm{~m}^{2}}{\mathrm{~s}}
$$

$$
y_{C}=\left(\frac{q^{2}}{g}\right)^{\frac{1}{3}}
$$

$$
\mathrm{y}_{\mathrm{C}}=0.528 \mathrm{~m}
$$

[^3]
Given: Rectangular channel

Find: Plot of specific force curves

Solution:

Given data:	$B=20 \quad \mathrm{ft}$
Specific force:	$F=\frac{Q^{2}}{g B y}+\frac{B y^{2}}{2}$

y (ft)	Specific Force, \boldsymbol{F} (ft^{3})				
	$\begin{gathered} Q= \\ 0 \end{gathered}$	$\begin{gathered} Q= \\ 25 \end{gathered}$	$\begin{gathered} Q= \\ 75 \end{gathered}$	$\begin{gathered} Q= \\ 125 \end{gathered}$	$\begin{gathered} Q= \\ 200 \end{gathered}$
0.1	0.10	9.80	87.44	242.72	621.22
0.2	0.40	5.25	44.07	121.71	310.96
0.4	1.60	4.03	23.44	62.26	156.88
0.6	3.60	5.22	18.16	44.04	107.12
0.8	6.40	7.61	17.32	36.73	84.04
1.0	10.00	10.97	18.73	34.26	72.11
1.2	14.40	15.21	21.68	34.62	66.16
1.4	19.60	20.29	25.84	36.93	63.97
1.6	25.60	26.21	31.06	40.76	64.42
1.8	32.40	32.94	37.25	45.88	66.91
2.0	40.00	40.49	44.37	52.13	71.06
2.2	48.40	48.84	52.37	59.43	76.63
2.4	57.60	58.00	61.24	67.71	83.48
2.6	67.60	67.97	70.96	76.93	91.49
2.8	78.40	78.75	81.52	87.07	100.58
3.0	90.00	90.32	92.91	98.09	110.70
3.5	122.50	122.78	125.00	129.43	140.25
4.0	160.00	160.24	162.18	166.07	175.53
4.5	202.50	202.72	204.44	207.89	216.30
5.0	250.00	250.19	251.75	254.85	262.42

11.30 Resolve Example 11.7 for a channel bed slope of 0.003 .

Flow downstream of a sluice gate in a wide rectangular channel.
Given: Vena contracta at a sluice gate
Find: \quad Distance from vena contracta at which depth is 0.5 m

Solution:

Basic equations: $E=y+\frac{V^{2}}{2 \cdot g} \quad R=y \quad$ (Wide channel) $S_{f}=\left(\frac{V_{a v e^{\prime}}}{\frac{2}{3}}\right)^{2} \quad \Delta x=\frac{E_{a}-E_{b}}{S_{f}-S_{0}}$
(Some equations from Example 11.7)
Given data: $\quad \mathrm{q}=4.646 \cdot \frac{\frac{\mathrm{~m}^{3}}{\mathrm{~s}}}{\mathrm{~m}} \quad \mathrm{y}_{\mathrm{a}}=0.457 \cdot \mathrm{~m} \quad \mathrm{y}_{\mathrm{b}}=0.5 \cdot m \quad \mathrm{n}=0.020 \quad \mathrm{~S}_{0}=0.003$

Hence we find $\quad \mathrm{V}_{\mathrm{a}}=\frac{\mathrm{q}}{\mathrm{y}_{\mathrm{a}}} \quad \mathrm{V}_{\mathrm{a}}=10.2 \frac{\mathrm{~m}}{\mathrm{~s}} \quad \mathrm{~V}_{\mathrm{b}}=\frac{\mathrm{q}}{\mathrm{y}_{\mathrm{b}}} \quad \quad \mathrm{V}_{\mathrm{b}}=9.29 \frac{\mathrm{~m}}{\mathrm{~s}}$

Then $\quad E_{a}=y_{a}+\frac{V_{a}^{2}}{2 \cdot g} \quad E_{a}=5.73 m \quad E_{b}=y_{b}+\frac{V_{b}^{2}}{2 \cdot g} \quad E_{b}=4.90 m$
and

$$
\mathrm{V}_{\mathrm{ave}}=\frac{\mathrm{V}_{\mathrm{a}}+\mathrm{V}_{\mathrm{b}}}{2} \quad \mathrm{~V}_{\mathrm{ave}}=9.73 \frac{\mathrm{~m}}{\mathrm{~s}}
$$

$$
\mathrm{R}_{\mathrm{a}}=\mathrm{y}_{\mathrm{a}}
$$

$\mathrm{R}_{\mathrm{b}}=\mathrm{y}_{\mathrm{b}}$
$\mathrm{R}_{\mathrm{ave}}=\frac{\mathrm{R}_{\mathrm{a}}+\mathrm{R}_{\mathrm{b}}}{2}$
$\mathrm{R}_{\mathrm{a}}=0.457 \mathrm{~m}$

Then

$$
\left.\mathrm{S}_{\mathrm{f}}=\left(\frac{\mathrm{V}_{\mathrm{ave}^{\cdot n}}}{\frac{2}{3}}\right)^{\mathrm{R}_{\mathrm{ave}}}\right)^{2} \quad \mathrm{~S}_{\mathrm{f}}=0.101
$$

Finally $\quad \Delta \mathrm{x}=\frac{\mathrm{E}_{\mathrm{a}}-\mathrm{E}_{\mathrm{b}}}{\mathrm{S}_{\mathrm{f}}-\mathrm{S}_{0}} \quad \Delta \mathrm{x}=8.40 \mathrm{~m}$
11.31 Once again consider the trapezoidal channel in Problem 11.8 with a dam placed in the channel so that water backs up to a depth of 5 ft immediately behind the dam. How far upstream would you expect the depth to be 4.80 ft ? Consider an energy correction coefficient of 1.1.

Given: Data on trapezoidal channel and dam
Find: Location upstream at which depth is 4.80 ft

Solution:

Basic equations:
From Example $11.7 \quad \Delta x=\frac{\Delta y+\left(\frac{1}{2 \cdot g}-\frac{2}{2 \cdot g}\right)}{S_{0}-S_{f}}$
and $\quad \mathrm{S}_{\mathrm{f}}=\left(\frac{\mathrm{n} \cdot \mathrm{V}}{1.49 \cdot \mathrm{R}^{\frac{2}{3}}}\right)^{2}$
(note the factor 1.49 because this is not SI units)

The given data is: $\quad B_{W}=20 \cdot f t \quad \mathrm{z}=\frac{1}{2} \quad \mathrm{~S}_{0}=0.0016 \quad \mathrm{n}=0.025 \quad \mathrm{Q}=400 \cdot \frac{\mathrm{ft}^{3}}{\mathrm{~s}} \quad \mathrm{y}_{1}=5 \cdot \mathrm{ft} \quad \mathrm{y}_{2}=4.80 \cdot \mathrm{ft}$
We need to modify the specific energy equation to allow for the emergy correction coefficient (Section 8-6): instead of $\frac{\mathrm{V}^{2}}{2 \cdot \mathrm{~g}}$, the kinetic energy per unit weight is $\alpha \cdot \frac{\mathrm{V}^{2}}{2 \cdot g}$ where $\alpha=1.1$

Hence

$$
\Delta x=\frac{\Delta y+\alpha \cdot\left(\frac{v_{1}^{2}}{2 \cdot g}-\frac{\mathrm{V}_{2}^{2}}{2 \cdot g}\right)}{S_{0}-S_{f}}
$$

We need to obtain terms on the right

$$
\mathrm{S}_{0}=0.0016
$$

$\alpha=1.1$
$\Delta \mathrm{y}=\mathrm{y}_{1}-\mathrm{y}_{2}$
$\Delta y=0.200 \mathrm{ft}$

We will need (Table 11.2) $\quad \mathrm{A}=\left(\mathrm{B}_{\mathrm{W}}+\mathrm{z} \cdot \mathrm{y}\right) \cdot \mathrm{y}$

$$
\mathrm{R}=\frac{\left(\mathrm{B}_{\mathrm{w}}+\mathrm{z} \cdot \mathrm{y}\right) \cdot \mathrm{y}}{\mathrm{~B}_{\mathrm{W}}+2 \cdot \mathrm{y} \cdot \sqrt{1+\mathrm{z}^{2}}}
$$

Then

$$
\begin{array}{lll}
\mathrm{V}_{1}=\frac{\mathrm{Q}}{\mathrm{~A}_{1}} & \mathrm{~V}_{1}=\frac{\mathrm{Q}}{\left(\mathrm{~B}_{\mathrm{W}}+\mathrm{z} \cdot \mathrm{y}_{1}\right) \cdot \mathrm{y}_{1}} & \mathrm{~V}_{1}=3.56 \frac{\mathrm{ft}}{\mathrm{~s}} \\
\mathrm{~V}_{2}=\frac{\mathrm{Q}}{\mathrm{~A}_{2}} & \mathrm{~V}_{2}=\frac{\mathrm{Q}}{\left(\mathrm{~B}_{\mathrm{W}}+\mathrm{z} \cdot \mathrm{y}_{2}\right) \cdot \mathrm{y}_{2}} & \mathrm{~V}_{2}=3.72 \frac{\mathrm{ft}}{\mathrm{~s}}
\end{array}
$$

For S_{f} we use averages for V and R (as in Example 11.7)
and

$$
\begin{array}{ll}
\mathrm{V}_{\mathrm{ave}}=\frac{\mathrm{V}_{1}+\mathrm{V}}{2} \mathrm{~V}_{\mathrm{ave}}=1.11 \frac{\mathrm{~m}}{\mathrm{~s}} \\
\mathrm{R}_{1}=\frac{\left(\mathrm{B}_{\mathrm{w}}+\mathrm{z} \cdot \mathrm{y}_{1}\right) \cdot \mathrm{y}_{1}}{\mathrm{~B}_{\mathrm{W}}+2 \cdot \mathrm{y}_{1} \cdot \sqrt{1+\mathrm{z}^{-}}} \mathrm{R}_{1}=3.61 \mathrm{ft} & \mathrm{R}_{2}=\frac{\left(\mathrm{B}_{\mathrm{w}}+\mathrm{z} \cdot \mathrm{y}_{2}\right) \cdot \mathrm{y}_{2}}{\mathrm{~B}_{\mathrm{w}}+2 \cdot \mathrm{y}_{2} \cdot \sqrt{1+\mathrm{z}^{2}}}
\end{array} \quad \mathrm{R}_{2}=3.50 \mathrm{ft}
$$

$$
\mathrm{R}_{\mathrm{ave}}=\frac{\mathrm{R}_{1}+\mathrm{R}_{2}}{2}
$$

$$
\mathrm{R}_{\mathrm{ave}}=3.55 \cdot \mathrm{ft}
$$

Then

Finally

$$
\left.\mathrm{S}_{\mathrm{f}}=\left(\frac{\mathrm{V}_{\mathrm{ave}^{\cdot \mathrm{n}}}}{1.49 \cdot \mathrm{R}_{\mathrm{ave}}}\right)^{\frac{2}{3}}\right)^{2}
$$

$$
\mathrm{S}_{\mathrm{f}}=0.000687
$$

$$
\Delta \mathrm{x}=\frac{\Delta \mathrm{y}+\alpha \cdot\left(\frac{\mathrm{V}_{1}^{2}}{2 \cdot \mathrm{~g}}-\frac{\mathrm{V}_{2}^{2}}{2 \cdot \mathrm{~g}}\right)}{\mathrm{S}_{0}-\mathrm{S}_{\mathrm{f}}}
$$

$$
\Delta \mathrm{x}=197 \mathrm{ft}
$$

Problem 11.32

11.32 A rectangular channel carries a discharge of $10 \mathrm{ft}^{3} / \mathrm{sec}$ per foot of width. Determine the minimum specific energy possible for this flow. Compute the corresponding flow depth and speed.

Given: Data on rectangular channel
Find: Minimum specific energy; Flow depth; Speed

Solution:

Basic equation: $\quad E=y+\frac{V^{2}}{2 \cdot g}$
In Section 11-2 we prove that the minimum specific energy is when we have critical flow; here we rederive the minimum energy point
For a rectangular channel $\quad \mathrm{Q}=\mathrm{V} \cdot \mathrm{B}_{\mathrm{W}} \cdot \mathrm{y} \quad$ or $\quad \mathrm{V}=\frac{\mathrm{Q}}{\mathrm{B}_{\mathrm{W}} \cdot \mathrm{y}} \quad$ with $\quad \frac{\mathrm{Q}}{\mathrm{B}_{\mathrm{W}}}=10 \cdot \frac{\frac{\mathrm{ft}^{3}}{\mathrm{~s}}}{\mathrm{ft}}=$ constant

Hence, using this in Eq. 11.14
$E=y+\left(\frac{Q}{B_{w} \cdot y}\right)^{2} \cdot \frac{1}{2 \cdot g}=y+\left(\frac{Q^{2}}{2 \cdot B_{w}{ }^{2} \cdot g}\right) \cdot \frac{1}{y^{2}}$

E is a minimum when

Note that from Eq. 11.22 we have

$$
\frac{d E}{d y}=1-\left(\frac{Q^{2}}{B_{w}{ }^{2} \cdot g}\right) \cdot \frac{1}{y^{3}}=0 \quad \text { or } \quad y=\left(\frac{Q^{2}}{B_{w}{ }^{2} \cdot g}\right)^{\frac{1}{3}} \quad y=1.46 \cdot f t
$$

Not

$$
y_{C}=\left(\frac{q^{2}}{g}\right)^{\frac{1}{3}}=\left(\frac{Q^{2}}{B_{w}^{2} \cdot g}\right)^{\frac{1}{3}}
$$

which is the same result we derived

The speed is then given by

$$
\mathrm{V}=\frac{\mathrm{Q}}{\mathrm{~B}_{\mathrm{w}} \cdot \mathrm{y}} \quad \mathrm{~V}=6.85 \cdot \frac{\mathrm{ft}}{\mathrm{~s}}
$$

Note that from Eq. 11.20 we also have

$$
\mathrm{V}=\sqrt{\mathrm{g} \cdot \mathrm{D}} \quad \text { where } \mathrm{D} \text { is the hydraulic depth }
$$

$$
\mathrm{D}=\mathrm{y} \quad \mathrm{~V}=\sqrt{\mathrm{g} \cdot \mathrm{D}}
$$

$$
\mathrm{V}=6.85 \cdot \frac{\mathrm{ft}}{\mathrm{~s}}
$$

The minimum energy is then

$$
E_{\min }=y+\frac{V^{2}}{2 \cdot g} \quad E_{\min }=2.19 \cdot f t
$$

11.33 Flow in the channel of Problem $11.32\left(E_{\min }=2.19 \mathrm{ft}\right)$ is to be at twice the minimum specific energy. Compute the alternate depths for this E.

Given: Data on rectangular channel
Find: Depths for twice the minimum energy

Solution:

Basic equation: $\quad E=y+\frac{V^{2}}{2 \cdot g}$
$\begin{array}{ll}\text { For a rectangular channel } & \mathrm{Q}=\mathrm{V} \cdot \mathrm{B}_{\mathrm{w}} \cdot \mathrm{y} \quad \text { or } \quad \mathrm{V}=\frac{\mathrm{Q}}{\mathrm{B}_{\mathrm{W}} \cdot \mathrm{y}} \quad \text { with } \quad \frac{\mathrm{Q}}{\mathrm{B}_{\mathrm{W}}}=10 \cdot \frac{\frac{\mathrm{ft}^{3}}{\mathrm{~s}}}{\mathrm{ft}}=\text { constant } \\ \text { Hence, using this in Eq. } 11.14 & \mathrm{E}=\mathrm{y}+\left(\frac{\mathrm{Q}}{\mathrm{B}_{\mathrm{w}} \cdot \mathrm{y}}\right)^{2} \cdot \frac{1}{2 \cdot \mathrm{~g}}=\mathrm{y}+\left(\frac{\mathrm{Q}^{2}}{2 \cdot \mathrm{~B}_{\mathrm{W}}{ }^{2} \cdot \mathrm{~g}}\right) \cdot \frac{1}{\mathrm{y}^{2}} \quad \text { and } \quad \mathrm{E}=2 \cdot 2.19 \cdot \mathrm{ft} \quad \mathrm{E}=4.38 \cdot \mathrm{ft}\end{array}$
We have a nonlinear implicit equation for $\mathrm{y} y+\left(\frac{\mathrm{Q}^{2}}{2 \cdot \mathrm{~B}_{\mathrm{w}}{ }^{2} \cdot \mathrm{~g}}\right) \cdot \frac{1}{\mathrm{y}^{2}}=\mathrm{E}$
This is a nonlinear implicit equation for y and must be solved numerically. We can use one of a number of numerical root finding techniques, such as Newton's method, or we can use Excel's Solver or Goal Seek, or we can manually iterate, as below. We start with a y larger than the critical, and evaluate the left side of the equation so that it is equal to $\mathrm{E}=4.38 \mathrm{ft}$
$\left.\begin{array}{llll}\text { For } & y=2 \cdot f t & y+\left(\frac{Q^{2}}{2 \cdot B_{w}{ }^{2} \cdot g}\right) \cdot \frac{1}{y^{2}}=2.39 \cdot f t & \text { For } \\ \text { For } & y=4.5 \cdot f t & y+\left(\frac{Q^{2}}{2 \cdot B_{w}{ }^{2} \cdot g}\right) \cdot \frac{1}{y^{2}}=4.58 \cdot f t & \text { For }\end{array} \quad y=4.30 \cdot f t \quad y+\left(\frac{Q^{2}}{2 \cdot B_{w}{ }^{2} \cdot g}\right) \cdot \frac{1}{y^{2}}=4.10 \cdot f t ~ 2 \cdot B_{w}{ }^{2} \cdot g\right) \cdot \frac{1}{y^{2}}=4.38 \cdot f t$
Hence $\quad \mathrm{y}=4.3 \cdot \mathrm{ft}$

For the shallow depth
For $\quad y=1 \cdot f t \quad y+\left(\frac{Q^{2}}{2 \cdot B_{w}{ }^{2} \cdot g}\right) \cdot \frac{1}{y^{2}}=2.55 \cdot f t \quad$ For $\quad y=0.5 \cdot f t \quad y+\left(\frac{Q^{2}}{2 \cdot B_{w}{ }^{2} \cdot g}\right) \cdot \frac{1}{y^{2}}=6.72 \cdot f t$
For $\quad y=0.6 \cdot f t \quad y+\left(\frac{Q^{2}}{2 \cdot B_{w}{ }^{2} \cdot g}\right) \cdot \frac{1}{y^{2}}=4.92 \cdot f t \quad$ For $\quad y=0.65 \cdot f t \quad y+\left(\frac{Q^{2}}{2 \cdot B_{w}{ }^{2} \cdot g}\right) \cdot \frac{1}{y^{2}}=4.33 \cdot f t$
For $\quad y=0.645 \cdot f t y+\left(\frac{Q^{2}}{2 \cdot B_{w}{ }^{2} \cdot g}\right) \cdot \frac{1}{y^{2}}=4.38 \cdot f t \quad$ Hence $\quad y=0.645 \cdot f t$
11.34 Water flows at $300 \mathrm{ft}^{3} / \mathrm{sec}$ in a trapezoidal channel with bottom width of 8 ft . The sides are sloped at 2:1. Find the critical depth for this channel.

Given: Data on trapezoidal channel
Find: Critical depth

Solution:

Basic equation: $\quad E=y+\frac{v^{2}}{2 \cdot g}$
In Section 11-2 we prove that the minimum specific energy is when we have critical flow; here we rederive the minimum energy point

For a trapezoidal channel (Table 11.2) $\quad \mathrm{A}=\left(\mathrm{B}_{\mathrm{W}}+\mathrm{z} \cdot \mathrm{y}\right) \cdot \mathrm{y} \quad$ and $\quad \mathrm{B}_{\mathrm{W}}=8 \cdot \mathrm{ft} \quad \mathrm{z}=0.5$

Hence for V

$$
\mathrm{V}=\frac{\mathrm{Q}}{\mathrm{~A}}=\frac{\mathrm{Q}}{\left(\mathrm{~B}_{\mathrm{w}}+\mathrm{z} \cdot \mathrm{y}\right) \cdot \mathrm{y}} \quad \text { and } \quad \mathrm{Q}=300 \cdot \frac{\mathrm{ft}^{3}}{\mathrm{~s}}
$$

Using this in Eq. 11.14

$$
\mathrm{E}=\mathrm{y}+\left[\frac{\mathrm{Q}}{\left(\mathrm{~B}_{\mathrm{w}}+\mathrm{z} \cdot \mathrm{y}\right) \cdot \mathrm{y}}\right]^{2} \cdot \frac{1}{2 \cdot g}
$$

E is a minimum when

$$
\frac{d E}{d y}=1-\frac{Q^{2} \cdot z}{g \cdot y^{2} \cdot\left(B_{W}+y \cdot z\right)^{3}}-\frac{Q^{2}}{g \cdot y^{3} \cdot\left(B_{W}+y \cdot z\right)^{2}}=0
$$

Hence we obtain for y

$$
\frac{Q^{2} \cdot z}{g \cdot y^{2} \cdot\left(B_{w}+y \cdot z\right)^{3}}+\frac{Q^{2}}{g \cdot y^{3} \cdot\left(B_{w}+y \cdot z\right)^{2}}=1 \quad \text { or } \quad \frac{Q^{2} \cdot\left(B_{w}+2 \cdot y \cdot z\right)}{g \cdot y^{3} \cdot\left(B_{w}+y \cdot z\right)^{3}}=1
$$

This is a nonlinear implicit equation for y and must be solved numerically. We can use one of a number of numerical root finding techniqu such as Newton's method, or we can use Excel's Solver or Goal Seek, or we can manually iterate, as below, to make the left side equal unity

$$
\left.\begin{array}{lll}
\mathrm{y}=1 \cdot \mathrm{ft} & \frac{\mathrm{Q}^{2} \cdot\left(\mathrm{~B}_{\mathrm{W}}+2 \cdot \mathrm{y} \cdot \mathrm{z}\right)}{\mathrm{g} \cdot \mathrm{y}^{3} \cdot\left(\mathrm{~B}_{\mathrm{W}}+\mathrm{y} \cdot \mathrm{z}\right)^{3}}=41 & \mathrm{y}=5 \cdot \mathrm{ft}
\end{array} \frac{\mathrm{Q}^{2} \cdot\left(\mathrm{~B}_{\mathrm{W}}+2 \cdot \mathrm{y} \cdot \mathrm{z}\right)}{\mathrm{g} \cdot \mathrm{y}^{3} \cdot\left(\mathrm{~B}_{\mathrm{W}}+\mathrm{y} \cdot \mathrm{z}\right)^{3}}=0.251\right)
$$

The critical depth is $\quad \mathrm{y}=3.28 \cdot \mathrm{ft}$
11.35 For a channel of nonrectangular cross section, critical depth occurs at minimum specific energy. Obtain a general equation for critical depth in a triangular channel in terms of Q, g, and z.

Given: Triangular channel
Find: Critcal depth

Solution:

Basic equation: $\quad E=y+\frac{V^{2}}{2 \cdot g}$
For a triangular channel (Table 11.2)

$$
A=z \cdot y^{2}
$$

Hence for V

$$
V=\frac{Q}{A}=\frac{Q}{z \cdot y^{2}}
$$

Using this in Eq. 11.14

E is a minimum when

$$
E=y+\left(\frac{Q}{z \cdot y^{2}}\right)^{2} \cdot \frac{1}{2 \cdot g}
$$

$$
\frac{\mathrm{dE}}{\mathrm{dy}}=1-4 \cdot \frac{\mathrm{Q}^{2}}{\mathrm{z}^{2} \cdot \mathrm{y}^{5}} \cdot \frac{1}{2 \cdot \mathrm{~g}}=0
$$

$y=\left(\frac{2 \cdot Q^{2}}{z^{2} \cdot g}\right)^{\frac{1}{5}}$
11.36 For a channel of nonrectangular cross section, critical depth occurs at minimum specific energy. Obtain a general equation for critical depth in a channel of trapezoidal section in terms of Q, g, B_{w}, and z.

Given: Trapezoidal channel
Find: Critcal depth

Solution:

Basic equation: $\quad \mathrm{E}=\mathrm{y}+\frac{\mathrm{V}^{2}}{2 \cdot g}$

The critical depth occurs when the specific energy is minimized

For a trapezoidal channel (Table 11.2)

Hence for V

$$
\mathrm{A}=\left(\mathrm{B}_{\mathrm{W}}+\mathrm{z} \cdot \mathrm{y}\right) \cdot \mathrm{y} \quad \text { and } \quad \mathrm{B}_{\mathrm{W}}=8 \cdot \mathrm{ft} \quad \mathrm{z}=0.5
$$

$\mathrm{V}=\frac{\mathrm{Q}}{\mathrm{A}}=\frac{\mathrm{Q}}{\left(\mathrm{B}_{\mathrm{W}}+\mathrm{z} \cdot \mathrm{y}\right) \cdot \mathrm{y}} \quad$ and $\quad \mathrm{Q}=300 \cdot \frac{\mathrm{ft}^{3}}{\mathrm{~s}}$

Using this in Eq. 11.14
$E=y+\left[\frac{Q}{\left(B_{W}+z \cdot y\right) \cdot y}\right]^{2} \cdot \frac{1}{2 \cdot g}$

E is a minimum when

$$
\frac{d E}{d y}=1-\frac{Q^{2} \cdot z}{g \cdot y^{2} \cdot\left(B_{W}+y \cdot z\right)^{3}}-\frac{Q^{2}}{g \cdot y^{3} \cdot\left(B_{W}+y \cdot z\right)^{2}}=0
$$

Hence we obtain for y

$$
\frac{Q^{2} \cdot z}{g \cdot y^{2} \cdot\left(B_{w}+y \cdot z\right)^{3}}+\frac{Q^{2}}{g \cdot y^{3} \cdot\left(B_{W}+y \cdot z\right)^{2}}=1
$$

This can be simplified to

$$
\frac{Q^{2} \cdot\left(B_{w}+2 \cdot y \cdot z\right)}{g \cdot y^{3} \cdot\left(B_{w}+y \cdot z\right)^{3}}=1
$$

This expression is the simplest one for y ; it is implicit
11.37 Consider the Venturi flume shown. The bed is horizontal and flow may be considered frictionless. The upstream depth is 1 ft and the downstream depth is 0.75 ft . The upstream breadth is 2 ft and the breadth of the throat is 1 ft . Estimate the flow rate through the flume.

Given: Data on venturi flume
Find: Flow rate

Solution:

Basic equation: $\quad \frac{p_{1}}{\rho \cdot g}+\frac{V_{1}^{2}}{2 \cdot g}+y_{1}=\frac{p_{2}}{\rho \cdot g}+\frac{V_{2}^{2}}{2 \cdot g}+y_{2}$
The Bernoulli equation applies because we have steady, incompressible, frictionless flow

At each section $\quad \mathrm{Q}=\mathrm{V} \cdot \mathrm{A}=\mathrm{V} \cdot \mathrm{b} \cdot \mathrm{y} \quad$ or $\quad \mathrm{V}=\frac{\mathrm{Q}}{\mathrm{b} \cdot \mathrm{y}}$

The given data is $\quad b_{1}=2 \cdot \mathrm{ft}$
$\mathrm{y}_{1}=1 \cdot \mathrm{ft}$
$b_{2}=1 \cdot f t$
$\mathrm{y}_{2}=0.75 \cdot \mathrm{ft}$

Hence the Bernoulli equation becomes (with $\mathrm{p}_{1}=\mathrm{p}_{2}=\mathrm{patm}$) $\quad \frac{\left(\frac{\mathrm{Q}}{\mathrm{b}_{1} \cdot \mathrm{y}_{1}}\right)^{2}}{2 \cdot \mathrm{~g}}+\mathrm{y}_{1}=\frac{\left(\frac{\mathrm{Q}}{\mathrm{b}_{2} \cdot \mathrm{y}_{2}}\right)^{2}}{2 \cdot \mathrm{~g}}+\mathrm{y}_{2}$

Solving for $\mathrm{Q} \quad \mathrm{Q}=\sqrt{\frac{2 \cdot \mathrm{~g} \cdot\left(\mathrm{y}_{1}-\mathrm{y}_{2}\right)}{\left(\frac{1}{\mathrm{~b}_{2} \cdot \mathrm{y}_{2}}\right)^{2}-\left(\frac{1}{\mathrm{~b}_{1} \cdot \mathrm{y}_{1}}\right)^{2}}} \quad \mathrm{Q}=3.24 \cdot \frac{\mathrm{ft}^{3}}{\mathrm{~s}}$
11.38 A rectangular channel 10 ft wide carries 100 cfs on a horizontal bed at 1.0 ft depth. A smooth bump across the channel rises 4 in . above the channel bottom. Find the elevation of the liquid free surface above the bump.

Given: Data on rectangular channel and a bump
Find: Elevation of free surface above the bump

Solution:

Basic equation: $\quad \frac{\mathrm{p}_{1}}{\rho \cdot g}+\frac{\mathrm{V}_{1}{ }^{2}}{2 \cdot g}+\mathrm{y}_{1}=\frac{\mathrm{p}_{2}}{\rho \cdot g}+\frac{\mathrm{V}_{2}{ }^{2}}{2 \cdot g}+\mathrm{y}_{2}+\mathrm{h}$

The Bernoulli equation applies because we have steady, incompressible, frictionless flow. Note that at location 2 (the bump), the potential is $\mathrm{y}_{2}+\mathrm{h}$, where h is the bump height

Recalling the specific energy $\quad \mathrm{E}=\frac{\mathrm{V}^{2}}{2 \cdot g}+\mathrm{y} \quad$ and noting that $\mathrm{p}_{1}=\mathrm{p}_{2}=\mathrm{p}_{\mathrm{atm}}$, the Bernoulli equation becomes $\quad \mathrm{E}_{1}=\mathrm{E}_{2}+\mathrm{h}$
At each section $\quad \mathrm{Q}=\mathrm{V} \cdot \mathrm{A}=\mathrm{V} \cdot \mathrm{b} \cdot \mathrm{y} \quad$ or $\quad \mathrm{V}=\frac{\mathrm{Q}}{\mathrm{b} \cdot \mathrm{y}}$
The given data is $\quad b=10 \cdot \mathrm{ft}$
$\mathrm{y}_{1}=1 \cdot \mathrm{ft}$
$h=4 \cdot$ in $\quad Q=100 \cdot \frac{\mathrm{ft}^{3}}{\mathrm{~s}}$
Hence we find $\quad \mathrm{V}_{1}=\frac{\mathrm{Q}}{\mathrm{b} \cdot \mathrm{y}_{1}} \quad \mathrm{~V}_{1}=10 \cdot \frac{\mathrm{ft}}{\mathrm{s}}$
and $\quad E_{1}=\frac{V_{1}^{2}}{2 \cdot g}+y_{1} \quad E_{1}=2.554 \cdot f t$
Hence

$$
\mathrm{E}_{1}=\mathrm{E}_{2}+\mathrm{h}=\frac{\mathrm{V}_{2}^{2}}{2 \cdot \mathrm{~g}}+\mathrm{y}_{2}+\mathrm{h}=\frac{\mathrm{Q}^{2}}{2 \cdot \mathrm{~g} \cdot \mathrm{~b}^{2} \cdot \mathrm{y}_{2}^{2}}+\mathrm{y}_{2}+\mathrm{h}
$$

or

$$
\frac{\mathrm{Q}^{2}}{2 \cdot \mathrm{~g} \cdot \mathrm{~b}^{2} \cdot \mathrm{y}_{2}^{2}}+\mathrm{y}_{2}=\mathrm{E}_{1}-\mathrm{h}
$$

This is a nonlinear implicit equation for y_{2} and must be solved numerically. We can use one of a number of numerical root finding techniques, such as Newton's method, or we can use Excel's Solver or Goal Seek, or we can manually iterate, as below. We select y y_{2} so the left side of the equation equals $\mathrm{E}_{1}-\mathrm{h}=2.22 \cdot \mathrm{ft}$

$$
\begin{array}{llll}
\text { For } & \mathrm{y}_{2}=1 \cdot \mathrm{ft} & \frac{\mathrm{Q}^{2}}{2 \cdot \mathrm{~g} \cdot \mathrm{~b}^{2} \cdot \mathrm{y}_{2}^{2}}+\mathrm{y}_{2}=2.55 \cdot \mathrm{ft} & \text { For } \\
\text { For } & \mathrm{y}_{2}=1.4 \cdot \mathrm{ft} & \frac{\mathrm{Q}_{2}}{2 \cdot \mathrm{Q}^{2} \cdot \mathrm{y}_{2}^{2}}+\mathrm{y}_{2}=2.19 \cdot \mathrm{ft} & \text { For } \\
& \text { Hence } & \mathrm{y}_{2}=1.3 \cdot \mathrm{ft} & \frac{\mathrm{Q}^{2}}{2 \cdot \mathrm{~g} \cdot \mathrm{~b}^{2} \cdot \mathrm{y}_{2}^{2}}+\mathrm{y}_{2}=2.19 \cdot \mathrm{ft} \\
2 \cdot \mathrm{~g} \cdot \mathrm{~b}^{2} \cdot \mathrm{y}_{2}^{2}
\end{array}
$$

Note that $\quad \mathrm{V}_{2}=\frac{\mathrm{Q}}{\mathrm{b} \cdot \mathrm{y}_{2}} \quad \mathrm{~V}_{2}=7.69 \cdot \frac{\mathrm{ft}}{\mathrm{s}}$
so we have $\quad \mathrm{Fr}_{1}=\frac{\mathrm{V}_{1}}{\sqrt{\mathrm{~g} \cdot \mathrm{y}_{1}}} \quad \mathrm{Fr}_{1}=1.76 \quad$ and $\quad \mathrm{Fr}_{2}=\frac{\mathrm{V}_{2}}{\sqrt{\mathrm{~g} \cdot \mathrm{y}_{2}}} \quad \mathrm{Fr}_{2}=1.19$
11.39 A rectangular channel 10 ft wide carries a discharge of 20 $\mathrm{ft}^{3} / \mathrm{sec}$ at 0.9 ft depth. A smooth bump 0.2 ft high is placed on the floor of the channel. Estimate the local change in flow depth caused by the bump.

Given: Data on rectangular channel and a bump
Find: Local change in flow depth caused by the bump

Solution:

Basic equation: $\quad \frac{\mathrm{p}_{1}}{\rho \cdot g}+\frac{\mathrm{V}_{1}{ }^{2}}{2 \cdot g}+\mathrm{y}_{1}=\frac{\mathrm{p}_{2}}{\rho \cdot g}+\frac{\mathrm{V}_{2}{ }^{2}}{2 \cdot g}+\mathrm{y}_{2}+\mathrm{h}$

The Bernoulli equation applies because we have steady, incompressible, frictionless flow. Note that at location 2 (the bump), the potential is $\mathrm{y}_{2}+\mathrm{h}$, where h is the bump height

Recalling the specific energy $\quad \mathrm{E}=\frac{\mathrm{V}^{2}}{2 \cdot g}+\mathrm{y} \quad$ and noting that $\mathrm{p}_{1}=\mathrm{p}_{2}=\mathrm{p}_{\mathrm{atm}}$, the Bernoulli equation becomes $\quad \mathrm{E}_{1}=\mathrm{E}_{2}+\mathrm{h}$
At each section $\quad \mathrm{Q}=\mathrm{V} \cdot \mathrm{A}=\mathrm{V} \cdot \mathrm{b} \cdot \mathrm{y} \quad$ or $\quad \mathrm{V}=\frac{\mathrm{Q}}{\mathrm{b} \cdot \mathrm{y}}$
The given data is $\quad b=10 \cdot \mathrm{ft}$
$\mathrm{y}_{1}=0.9 \cdot \mathrm{ft}$
$h=0.2 \cdot f t$
$Q=20 \cdot \frac{\mathrm{ft}^{3}}{\mathrm{~s}}$
Hence we find $\quad \mathrm{V}_{1}=\frac{\mathrm{Q}}{\mathrm{b} \cdot \mathrm{y}_{1}} \quad \mathrm{~V}_{1}=2.22 \cdot \frac{\mathrm{ft}}{\mathrm{s}}$
and $\quad \mathrm{E}_{1}=\frac{\mathrm{V}_{1}{ }^{2}}{2 \cdot g}+\mathrm{y}_{1} \quad \mathrm{E}_{1}=0.977 \cdot \mathrm{ft}$
Hence

$$
\mathrm{E}_{1}=\mathrm{E}_{2}+\mathrm{h}=\frac{\mathrm{V}_{2}^{2}}{2 \cdot \mathrm{~g}}+\mathrm{y}_{2}+\mathrm{h}=\frac{\mathrm{Q}^{2}}{2 \cdot \mathrm{~g} \cdot \mathrm{~b}^{2} \cdot \mathrm{y}_{2}^{2}}+\mathrm{y}_{2}+\mathrm{h}
$$

or

$$
\frac{\mathrm{Q}^{2}}{2 \cdot \mathrm{~g} \cdot \mathrm{~b}^{2} \cdot \mathrm{y}_{2}^{2}}+\mathrm{y}_{2}=\mathrm{E}_{1}-\mathrm{h}
$$

This is a nonlinear implicit equation for y_{2} and must be solved numerically. We can use one of a number of numerical root finding techniques, such as Newton's method, or we can use Excel's Solver or Goal Seek, or we can manually iterate, as below. We select y y_{2} so the left side of the equation equals $\mathrm{E}_{1}-\mathrm{h}=0.777 \cdot \mathrm{ft}$

$$
\begin{aligned}
& \text { For } \quad \mathrm{y}_{2}=0.9 \cdot \mathrm{ft} \quad \frac{\mathrm{Q}^{2}}{2 \cdot \mathrm{~g} \cdot \mathrm{~b}^{2} \cdot \mathrm{y}_{2}{ }^{2}}+\mathrm{y}_{2}=0.977 \cdot \mathrm{ft} \quad \text { For } \quad \mathrm{y}_{2}=0.5 \cdot \mathrm{ft} \quad \frac{\mathrm{Q}^{2}}{2 \cdot \mathrm{~g} \cdot \mathrm{~b}^{2} \cdot \mathrm{y}_{2}{ }^{2}}+\mathrm{y}_{2}=0.749 \cdot \mathrm{ft} \\
& \text { For } \quad \mathrm{y}_{2}=0.6 \cdot \mathrm{ft} \quad \frac{\mathrm{Q}^{2}}{2 \cdot \mathrm{~g} \cdot \mathrm{~b}^{2} \cdot \mathrm{y}_{2}{ }^{2}}+\mathrm{y}_{2}=0.773 \cdot \mathrm{ft} \quad \text { For } \quad \mathrm{y}_{2}=0.61 \cdot \mathrm{ft} \quad \frac{\mathrm{Q}^{2}}{2 \cdot \mathrm{~g} \cdot \mathrm{~b}^{2} \cdot \mathrm{y}_{2}{ }^{2}}+\mathrm{y}_{2}=0.777 \cdot \mathrm{ft} \\
& \text { Hence } \quad \mathrm{y}_{2}=0.61 \cdot \mathrm{ft} \quad \text { and } \quad \frac{\mathrm{y}_{2}-\mathrm{y}_{1}}{\mathrm{y}_{1}}=-32.2 \%
\end{aligned}
$$

Note that $\quad \mathrm{V}_{2}=\frac{\mathrm{Q}}{\mathrm{b} \cdot \mathrm{y}_{2}} \quad \mathrm{~V}_{2}=3.28 \cdot \frac{\mathrm{ft}}{\mathrm{s}}$
so we have $\quad \operatorname{Fr}_{1}=\frac{\mathrm{V}_{1}}{\sqrt{\mathrm{~g} \cdot \mathrm{y}_{1}}} \quad \mathrm{Fr}_{1}=0.41 \quad$ and $\quad \quad \mathrm{Fr}_{2}=\frac{\mathrm{V}_{2}}{\sqrt{\mathrm{~g} \cdot \mathrm{y}_{2}}} \quad \mathrm{Fr}_{2}=0.74$
11.40 At a section of a $10-\mathrm{ft}$-wide rectangular channel, the depth is 0.3 ft for a discharge of $20 \mathrm{ft}^{3} / \mathrm{sec}$. A smooth bump 0.1 ft high is placed on the floor of the channel. Determine the local change in flow depth caused by the bump.

Given: Data on rectangular channel and a bump
Find: Local change in flow depth caused by the bump

Solution:

Basic equation: $\quad \frac{\mathrm{p}_{1}}{\rho \cdot \mathrm{~g}}+\frac{\mathrm{V}_{1}{ }^{2}}{2 \cdot g}+\mathrm{y}_{1}=\frac{\mathrm{p}_{2}}{\rho \cdot g}+\frac{\mathrm{v}_{2}{ }^{2}}{2 \cdot g}+\mathrm{y}_{2}+\mathrm{h}$

The Bernoulli equation applies because we have steady, incompressible, frictionless flow. Note that at location 2 (the bump), the potential is $\mathrm{y}_{2}+\mathrm{h}$, where h is the bump height

Recalling the specific energy $\quad \mathrm{E}=\frac{\mathrm{V}^{2}}{2 \cdot g}+\mathrm{y} \quad$ and noting that $\mathrm{p}_{1}=\mathrm{p}_{2}=\mathrm{p}_{\mathrm{atm}}$, the Bernoulli equation becomes $\quad \mathrm{E}_{1}=\mathrm{E}_{2}+\mathrm{h}$
At each section $\quad \mathrm{Q}=\mathrm{V} \cdot \mathrm{A}=\mathrm{V} \cdot \mathrm{b} \cdot \mathrm{y} \quad$ or $\quad \mathrm{V}=\frac{\mathrm{Q}}{\mathrm{b} \cdot \mathrm{y}}$
The given data is $\quad b=10 \cdot \mathrm{ft}$
$\mathrm{y}_{1}=0.3 \cdot \mathrm{ft}$
$\mathrm{h}=0.1 \cdot \mathrm{ft}$
$\mathrm{Q}=20 \cdot \frac{\mathrm{ft}^{3}}{\mathrm{~s}}$
Hence we find $\quad \mathrm{V}_{1}=\frac{\mathrm{Q}}{\mathrm{b} \cdot \mathrm{y}_{1}} \quad \mathrm{~V}_{1}=6.67 \cdot \frac{\mathrm{ft}}{\mathrm{s}}$
and $\quad E_{1}=\frac{V_{1}{ }^{2}}{2 \cdot g}+y_{1} \quad E_{1}=0.991 \cdot f t$
Hence

$$
\mathrm{E}_{1}=\mathrm{E}_{2}+\mathrm{h}=\frac{\mathrm{V}_{2}^{2}}{2 \cdot \mathrm{~g}}+\mathrm{y}_{2}+\mathrm{h}=\frac{\mathrm{Q}^{2}}{2 \cdot \mathrm{~g} \cdot \mathrm{~b}^{2} \cdot \mathrm{y}_{2}^{2}}+\mathrm{y}_{2}+\mathrm{h}
$$

or

$$
\frac{\mathrm{Q}^{2}}{2 \cdot \mathrm{~g} \cdot \mathrm{~b}^{2} \cdot \mathrm{y}_{2}^{2}}+\mathrm{y}_{2}=\mathrm{E}_{1}-\mathrm{h}
$$

This is a nonlinear implicit equation for y_{2} and must be solved numerically. We can use one of a number of numerical root finding techniques, such as Newton's method, or we can use Excel's Solver or Goal Seek, or we can manually iterate, as below. We select y y_{2} so the left side of the equation equals $\mathrm{E}_{1}-\mathrm{h}=0.891 \cdot \mathrm{ft}$

$$
\begin{aligned}
& \text { For } \quad \mathrm{y}_{2}=0.3 \cdot \mathrm{ft} \quad \frac{\mathrm{Q}^{2}}{2 \cdot \mathrm{~g} \cdot \mathrm{~b}^{2} \cdot \mathrm{y}_{2}{ }^{2}}+\mathrm{y}_{2}=0.991 \cdot \mathrm{ft} \quad \text { For } \quad \mathrm{y}_{2}=0.35 \cdot \mathrm{ft} \quad \frac{\mathrm{Q}^{2}}{2 \cdot \mathrm{~g} \cdot \mathrm{~b}^{2} \cdot \mathrm{y}_{2}{ }^{2}}+\mathrm{y}_{2}=0.857 \cdot \mathrm{ft} \\
& \text { For } \quad \mathrm{y}_{2}=0.33 \cdot \mathrm{ft} \quad \frac{\mathrm{Q}^{2}}{2 \cdot \mathrm{~g} \cdot \mathrm{~b}^{2} \cdot \mathrm{y}_{2}{ }^{2}}+\mathrm{y}_{2}=0.901 \cdot \mathrm{ft} \quad \text { For } \quad \mathrm{y}_{2}=0.334 \cdot \mathrm{ft} \frac{\mathrm{Q}^{2}}{2 \cdot \mathrm{~g} \cdot \mathrm{~b}^{2} \cdot \mathrm{y}_{2}{ }^{2}}+\mathrm{y}_{2}=0.891 \cdot \mathrm{ft} \\
& \text { Hence } \quad y_{2}=0.334 \cdot \mathrm{ft} \\
& \text { and } \quad \frac{\mathrm{y}_{2}-\mathrm{y}_{1}}{\mathrm{y}_{1}}=11.3 \%
\end{aligned}
$$

Note that $\quad \mathrm{V}_{2}=\frac{\mathrm{Q}}{\mathrm{b} \cdot \mathrm{y}_{2}} \quad \mathrm{~V}_{2}=5.99 \cdot \frac{\mathrm{ft}}{\mathrm{s}}$
so we have $\quad \mathrm{Fr}_{1}=\frac{\mathrm{V}_{1}}{\sqrt{\mathrm{~g} \cdot \mathrm{y}_{1}}} \quad \mathrm{Fr}_{1}=2.15 \quad$ and $\quad \quad \mathrm{Fr}_{2}=\frac{\mathrm{V}_{2}}{\sqrt{\mathrm{~g} \cdot \mathrm{y}_{2}}} \quad \mathrm{Fr}_{2}=1.83$
11.41 Water, at $3 \mathrm{ft} / \mathrm{sec}$ and 2 ft depth, approaches a smooth rise in a wide channel. Estimate the stream depth after the 0.5 ft rise.

Given: Data on wide channel
Find: Stream depth after rise

Solution:

Basic equation: $\quad \frac{p_{1}}{\rho \cdot g}+\frac{V_{1}^{2}}{2 \cdot g}+y_{1}=\frac{p_{2}}{\rho \cdot g}+\frac{V_{2}^{2}}{2 \cdot g}+y_{2}+h$

The Bernoulli equation applies because we have steady, incompressible, frictionless flow. Note that at location 2 (the bump), the potential is $\mathrm{y}_{2}+\mathrm{h}$, where h is the bump height

Recalling the specific energy $\quad \mathrm{E}=\frac{\mathrm{V}^{2}}{2 \cdot g}+\mathrm{y} \quad$ and noting that $\mathrm{p}_{1}=\mathrm{p}_{2}=\mathrm{p}_{\mathrm{atm}}$, the Bernoulli equation becomes $\quad \mathrm{E}_{1}=\mathrm{E}_{2}+\mathrm{h}$
At each section $\quad \mathrm{Q}=\mathrm{V} \cdot \mathrm{A}=\mathrm{V}_{1} \cdot \mathrm{~b} \cdot \mathrm{y}_{1}=\mathrm{V}_{2} \cdot \mathrm{~b} \cdot \mathrm{y}_{2} \quad \mathrm{~V}_{2}=\mathrm{V}_{1} \cdot \frac{\mathrm{y}_{1}}{\mathrm{y}_{2}}$

The given data is

$$
\mathrm{y}_{1}=2 \cdot \mathrm{ft}
$$

$$
\mathrm{V}_{1}=3 \cdot \frac{\mathrm{ft}}{\mathrm{~s}}
$$

$\mathrm{h}=0.5 \cdot \mathrm{ft}$
Hence $\quad E_{1}=\frac{V_{1}^{2}}{2 \cdot g}+y_{1} \quad E_{1}=2.14 \cdot f t$

Then

$$
\mathrm{E}_{1}=\mathrm{E}_{2}+\mathrm{h}=\frac{\mathrm{V}_{2}^{2}}{2 \cdot \mathrm{~g}}+\mathrm{y}_{2}+\mathrm{h}=\frac{\mathrm{V}_{1}^{2} \cdot \mathrm{y}_{1}^{2}}{2 \cdot \mathrm{~g}} \cdot \frac{1}{\mathrm{y}_{2}^{2}}+\mathrm{y}_{2}+\mathrm{h} \quad \text { or } \quad \frac{\mathrm{V}_{1}^{2} \cdot \mathrm{y}_{1}^{2}}{2 \cdot \mathrm{~g}} \cdot \frac{1}{\mathrm{y}_{2}^{2}}+\mathrm{y}_{2}=\mathrm{E}_{1}-\mathrm{h}
$$

This is a nonlinear implicit equation for y_{2} and must be solved numerically. We can use one of a number of numerical root finding techniques, such as Newton's method, or we can use Excel's Solver or Goal Seek, or we can manually iterate, as below. We select y_{2} so the left side of the equation equals $\mathrm{E}_{1}-\mathrm{h}=1.64 \cdot \mathrm{ft}$
For $\quad y_{2}=2 \cdot f t$
$\frac{\mathrm{V}_{1}{ }^{2} \cdot \mathrm{y}_{1}{ }^{2}}{2 \cdot \mathrm{~g}} \cdot \frac{1}{\mathrm{y}_{2}{ }^{2}}+\mathrm{y}_{2}=2.14 \cdot \mathrm{ft}$
For $\quad y_{2}=1.5 \cdot \mathrm{ft}$
$\frac{\mathrm{V}_{1}{ }^{2} \cdot \mathrm{y}_{1}{ }^{2}}{2 \cdot \mathrm{~g}} \cdot \frac{1}{\mathrm{y}_{2}{ }^{2}}+\mathrm{y}_{2}=1.75 \cdot \mathrm{ft}$
For $\quad \mathrm{y}_{2}=1.3 \cdot \mathrm{ft} \quad \frac{\mathrm{V}_{1}{ }^{2} \cdot \mathrm{y}_{1}{ }^{2}}{2 \cdot \mathrm{~g}} \cdot \frac{1}{\mathrm{y}_{2}{ }^{2}}+\mathrm{y}_{2}=1.63 \cdot \mathrm{ft} \quad$ For $\quad \mathrm{y}_{2}=1.31 \cdot \mathrm{ft} \quad \frac{\mathrm{V}_{1}{ }^{2} \cdot \mathrm{y}_{1}{ }^{2}}{2 \cdot \mathrm{~g}} \cdot \frac{1}{\mathrm{y}_{2}{ }^{2}}+\mathrm{y}_{2}=1.64 \cdot \mathrm{ft}$

Hence

$$
\mathrm{y}_{2}=1.31 \cdot \mathrm{ft}
$$

Note that $\quad \mathrm{V}_{2}=\mathrm{V}_{1} \cdot \frac{\mathrm{y}_{1}}{\mathrm{y}_{2}} \quad \mathrm{~V}_{2}=4.58 \cdot \frac{\mathrm{ft}}{\mathrm{s}}$
so we have $\quad \mathrm{Fr}_{1}=\frac{\mathrm{V}_{1}}{\sqrt{\mathrm{~g} \cdot \mathrm{y}_{1}}} \quad \mathrm{Fr}_{1}=0.37 \quad$ and $\quad \mathrm{Fr}_{2}=\frac{\mathrm{V}_{2}}{\sqrt{\mathrm{~g} \cdot \mathrm{y}_{2}}} \quad \mathrm{Fr}_{2}=0.71$

Problem 11.42

11.42 Water issues from a sluice gate at 0.6 m depth. The discharge per unit width is $6.0 \mathrm{~m}^{3} / \mathrm{sec} / \mathrm{m}$. Estimate the water level far upstream where the flow speed is negligible. Calculate the maximum rate of flow per unit width that could be delivered through the sluice gate.

Given: Data on sluice gate
Find: Water level upstream; Maximum flow rate

Solution:

Basic equation: $\quad \frac{\mathrm{p}_{1}}{\rho \cdot g}+\frac{\mathrm{V}_{1}{ }^{2}}{2 \cdot g}+\mathrm{y}_{1}=\frac{\mathrm{p}_{2}}{\rho \cdot g}+\frac{\mathrm{V}_{2}{ }^{2}}{2 \cdot g}+\mathrm{y}_{2}+\mathrm{h}$

The Bernoulli equation applies because we have steady, incompressible, frictionless flow.

Noting that $\mathrm{p}_{1}=\mathrm{p}_{2}=\mathrm{p}_{\mathrm{atm}}$, and V_{1} is approximately zero $(1=$ upstream, $2=$ downstream $)$ the Bernoulli equation becomes

$$
\mathrm{y}_{1}=\frac{\mathrm{v}_{2}^{2}}{2 \cdot \mathrm{~g}}+\mathrm{y}_{2}
$$

The given data is $\frac{\mathrm{Q}}{\mathrm{b}}=6.0 \frac{\mathrm{~m}^{2}}{\mathrm{~s}} \quad \mathrm{y}_{2}=0.6 \cdot \mathrm{~m}$

Hence

$$
\mathrm{Q}=\mathrm{V}_{2} \cdot \mathrm{~A}_{2}=\mathrm{V}_{2} \cdot \mathrm{~b} \cdot \mathrm{y}_{2}
$$

or $\quad \mathrm{V}_{2}=\frac{\mathrm{Q}}{\mathrm{b} \cdot \mathrm{y}_{2}}$
$\mathrm{V}_{2}=10 \frac{\mathrm{~m}}{\mathrm{~s}}$
Then upstream $\quad y_{1}=\left(\frac{\mathrm{V}_{2}{ }^{2}}{2 \cdot g}+y_{2}\right) \quad y_{1}=5.70 \mathrm{~m}$

The maximum flow rate occurs at critical conditions (see Section 11-2), for constant specific energy

In this case $\quad \mathrm{V}_{2}=\mathrm{V}_{\mathrm{C}}=\sqrt{\mathrm{g} \cdot \mathrm{y}_{\mathrm{C}}}$

Hence we find $\quad y_{1}=\frac{V_{C}{ }^{2}}{2 \cdot g}+y_{C}=\frac{g \cdot y_{C}}{2 \cdot g}+y_{C}=\frac{3}{2} \cdot y_{C}$

Hence

$$
\begin{array}{lll}
\mathrm{y}_{\mathrm{C}}=\frac{2}{3} \cdot \mathrm{y}_{1} & \mathrm{y}_{\mathrm{C}}=3.80 \mathrm{~m} & \mathrm{~V}_{\mathrm{C}}=\sqrt{\mathrm{g} \cdot \mathrm{y}_{\mathrm{C}}} \\
\frac{\mathrm{Q}}{\mathrm{~b}}=\mathrm{V}_{\mathrm{C}} \cdot \mathrm{y}_{\mathrm{C}} & \frac{\mathrm{Q}}{\mathrm{~b}}=23.2 \frac{\frac{\mathrm{~m}^{3}}{\mathrm{~s}}}{\mathrm{~m}} & \text { (Maximum flow rate) }
\end{array}
$$

$$
\mathrm{V}_{\mathrm{C}}=6.10 \frac{\mathrm{~m}}{\mathrm{~s}}
$$

11.43 A horizontal rectangular channel 3 ft wide contains a sluice gate. Upstream of the gate the depth is 6 ft ; the depth downstream is 0.9 ft . Estimate the volume flow rate in the channel.

Given: Data on sluice gate
Find:
Flow rate

Solution:

Basic equation: $\quad \frac{\mathrm{p}_{1}}{\rho \cdot g}+\frac{\mathrm{V}_{1}{ }^{2}}{2 \cdot g}+\mathrm{y}_{1}=\frac{\mathrm{p}_{2}}{\rho \cdot g}+\frac{\mathrm{V}_{2}{ }^{2}}{2 \cdot g}+\mathrm{y}_{2}+\mathrm{h}$
The Bernoulli equation applies because we have steady, incompressible, frictionless flow.

Noting that $\mathrm{p}_{1}=\mathrm{p}_{2}=\mathrm{p}_{\text {atm }},(1=$ upstream, $2=$ downstream $)$ the Bernoulli equation becomes

$$
\frac{\mathrm{v}_{1}^{2}}{2 \cdot g}+\mathrm{y}_{1}=\frac{\mathrm{v}_{2}^{2}}{2 \cdot \mathrm{~g}}+\mathrm{y}_{2}
$$

The given data is $\quad b=3 \cdot \mathrm{ft}$
$\mathrm{y}_{1}=6 \cdot \mathrm{ft} \quad \mathrm{y}_{2}=0.9 \cdot \mathrm{ft}$

Also $\quad \mathrm{Q}=\mathrm{V} \cdot \mathrm{A}$
so
$\frac{\left(\frac{\mathrm{Q}}{\mathrm{b} \cdot \mathrm{y}_{1}}\right)^{2}}{2 \cdot g}+\mathrm{y}_{1}=\frac{\left(\frac{\mathrm{Q}}{\mathrm{b} \cdot \mathrm{y}_{2}}\right)^{2}}{2 \cdot g}+\mathrm{y}_{2}$
Solving for $\mathrm{Q} \quad \mathrm{Q}=\sqrt{\frac{2 \cdot \mathrm{~g} \cdot \mathrm{~b}^{2} \cdot \mathrm{y}_{1}{ }^{2} \cdot \mathrm{y}_{2}{ }^{2}}{\mathrm{y}_{1}+\mathrm{y}_{2}}} \quad \mathrm{Q}=49.5 \frac{\mathrm{ft}}{\mathrm{s}}$

Note that

$$
\begin{array}{lll}
\mathrm{V}_{1}=\frac{\mathrm{Q}}{\mathrm{~b} \cdot \mathrm{y}_{1}} & \mathrm{~V}_{1}=2.75 \frac{\mathrm{ft}}{\mathrm{~s}} & \mathrm{Fr}_{1}=\frac{\mathrm{V}_{1}}{\sqrt{\mathrm{~g} \cdot \mathrm{y}_{1}}} \\
\mathrm{~V}_{2}=\frac{\mathrm{Q}}{\mathrm{~b} \cdot \mathrm{y}_{2}} & \mathrm{~V}_{2}=18.3 \frac{\mathrm{ft}}{\mathrm{~s}} & \mathrm{Fr}_{1}=0.198 \\
& & \mathrm{Fr}_{2}=\frac{\mathrm{V}_{2}}{\sqrt{\mathrm{~g} \cdot \mathrm{y}_{2}}}
\end{array}
$$

Problem 11.44

11.44 Consider a $2.45-\mathrm{m}$-wide rectangular channel with a bed slope of 0.0004 and a Manning's roughness factor of 0.015 . A weir is placed in the channel and the depth upstream of the weir is 1.52 m for a discharge of $5.66 \mathrm{~m}^{3} / \mathrm{s}$. Determine if a hydraulic jump forms upstream of the weir.

Given: Data on rectangular channel and weir
Find: If a hydraulic jump forms upstream of the weir
Solution:
Basic equations: $\quad Q=\frac{1}{n} \cdot A \cdot R^{\frac{2}{3}} \cdot S_{0}{ }^{\frac{1}{2}} \quad y_{C}=\left(\frac{q^{2}}{g}\right)^{\frac{1}{3}}$
Note that the Q equation is an "engineering" equation, to be used without units!
For a rectangular channel of width $\mathrm{B}_{\mathrm{W}}=2.45 \cdot \mathrm{~m}$ and depth y we find from Table 11.2

$$
\mathrm{A}=\mathrm{B}_{\mathrm{w}} \cdot \mathrm{y}=2.45 \cdot \mathrm{y} \quad \mathrm{R}=\frac{\mathrm{B}_{\mathrm{w}} \cdot \mathrm{y}}{\mathrm{~B}_{\mathrm{w}}+2 \cdot \mathrm{y}}=\frac{2.45 \cdot \mathrm{y}}{2.45+2 \cdot \mathrm{y}}
$$

and also

$$
\mathrm{n}=0.015 \quad \text { and } \quad \mathrm{S}_{0}=0.0004 \quad \mathrm{Q}=5.66 \cdot \frac{\mathrm{~m}^{\mathrm{s}}}{\mathrm{~s}}
$$

Hence $\quad \mathrm{Q}=\frac{1}{\mathrm{n}} \cdot \mathrm{A} \cdot \mathrm{R}^{\frac{2}{3}} \cdot \mathrm{~S}_{0}{ }^{\frac{1}{2}}=\frac{1}{0.015} \cdot 2.45 \cdot \mathrm{y} \cdot\left(\frac{2.45 \cdot \mathrm{y}}{2.45+2 \cdot \mathrm{y}}\right)^{\frac{2}{3}} \cdot 0.0004^{\frac{1}{2}}=5.66 \quad$ (Note that we don't use units!)
Solving for $\mathrm{y} \quad \frac{\mathrm{y}^{\frac{5}{3}}}{(2.45+2 \cdot \mathrm{y})^{\frac{2}{3}}}=\frac{5.66 \cdot 0.015}{.0004^{\frac{1}{2}} \cdot 2.54 \cdot 2.54^{\frac{2}{3}}} \quad$ or $\quad \frac{\mathrm{y}^{\frac{5}{3}}}{(2.54+2 \cdot \mathrm{y})^{\frac{2}{3}}}=0.898$

This is a nonlinear implicit equation for y and must be solved numerically. We can use one of a number of numerical root finding techniqu such as Newton's method, or we can use Excel's Solver or Goal Seek, or we can manually iterate, as below. We start with the given depth
For $\quad y=1.52 \quad(\mathrm{~m}) \quad \frac{y^{\frac{5}{3}}}{(2.54+2 \cdot y)^{\frac{2}{3}}}=0.639 \quad$ For $\quad y=2$
(m) $\quad \frac{y^{\frac{5}{3}}}{(2.54+2 \cdot y)^{\frac{2}{3}}}=0.908$
For $\quad y=1.95 \quad(\mathrm{~m}) \quad \frac{y^{\frac{5}{3}}}{(2.54+2 \cdot \mathrm{y})^{\frac{2}{3}}}=0.879 \quad$ For $\quad y=1.98 \quad(\mathrm{~m}) \quad \frac{y^{\frac{5}{3}}}{(2.54+2 \cdot y)^{\frac{2}{3}}}=0.896$
$\mathrm{y}=1.98 \quad(\mathrm{~m}) \quad$ This is the normal depth.

We also have the critical depth: $\quad q=\frac{Q}{B_{W}} \quad q=2.31 \frac{m^{2}}{s} \quad y_{C}=\left(\frac{q^{2}}{g}\right)^{\frac{1}{3}} \quad y_{C}=0.816 m$

Hence the given depth is $1.52 \mathrm{~m}>\mathrm{y}_{\mathrm{C}}$, but $1.52 \mathrm{~m}<\mathrm{y}_{\mathrm{n}}$, the normal depth. This implies the flow is subcritical (far enough upstream it is dep 1.98 m), and that it draws down to 1.52 m as it gets close to the wier. There is no jump.
11.45 A hydraulic jump occurs in a rectangular channel 4.0 m wide. The water depth before the jump is 0.4 m and after the jump is 1.7 m . Compute the flow rate in the channel, the critical depth, and the headloss in the jump.

Given: Data on rectangular channel and hydraulic jump
Find: Flow rate; Critical depth; Head loss

Solution:

Basic equations: $\quad \frac{y_{2}}{y_{1}}=\frac{1}{2} \cdot\left(-1+\sqrt{1+8 \cdot \mathrm{Fr}_{1}^{2}}\right) \quad H_{l}=E_{1}-\mathrm{E}_{2}=\left(\mathrm{y}_{1}+\frac{\mathrm{V}_{1}^{2}}{2 \cdot g}\right)-\left(\mathrm{y}_{2}+\frac{\mathrm{V}_{2}{ }^{2}}{2 \cdot g}\right) \quad \mathrm{y}_{\mathrm{C}}=\left(\frac{q^{2}}{g}\right)^{\frac{1}{3}}$

The given data is

$$
\mathrm{b}=4 \cdot \mathrm{~m}
$$

$$
\mathrm{y}_{1}=0.4 \cdot \mathrm{~m}
$$

$\mathrm{y}_{2}=1.7 \cdot \mathrm{~m}$

We can solve for Fr_{1} from the basic equation

$$
\sqrt{1+8 \cdot \mathrm{Fr}_{1}^{2}}=1+2 \cdot \frac{\mathrm{y}_{2}}{\mathrm{y}_{1}}
$$

$$
\mathrm{Fr}_{1}=\sqrt{\frac{\left(1+2 \cdot \frac{\mathrm{y}_{2}}{\mathrm{y}_{1}}\right)^{2}-1}{8}} \quad \mathrm{Fr}_{1}=3.34 \quad \text { and }
$$

$\mathrm{V}_{1}=6.62 \frac{\mathrm{~m}}{\mathrm{~s}}$

Then

$$
\mathrm{Q}=\mathrm{V}_{1} \cdot \mathrm{~b} \cdot \mathrm{y}_{1}
$$

Hence

$$
\mathrm{V}_{1}=\mathrm{Fr}_{1} \cdot \sqrt{\mathrm{~g} \cdot \mathrm{y}_{1}}
$$

$$
\mathrm{Q}=10.6 \cdot \frac{\mathrm{~m}^{3}}{\mathrm{~s}}
$$

$$
\mathrm{q}=\frac{\mathrm{Q}}{\mathrm{~b}}
$$

$$
\mathrm{q}=2.65 \frac{\mathrm{~m}^{2}}{\mathrm{~s}}
$$

The critical depth is

$$
y_{c}=\left(\frac{q^{2}}{g}\right)^{\frac{1}{3}}
$$

$$
\mathrm{y}_{\mathrm{C}}=0.894 \mathrm{~m}
$$

Also

$$
\mathrm{V}_{2}=\frac{\mathrm{Q}}{\mathrm{~b} \cdot \mathrm{y}_{2}}
$$

$\mathrm{V}_{2}=1.56 \frac{\mathrm{~m}}{\mathrm{~s}}$
$\mathrm{Fr}_{2}=\frac{\mathrm{V}_{2}}{\sqrt{\mathrm{~g} \cdot \mathrm{y}_{2}}}$
$\mathrm{Fr}_{2}=0.381$

The energy loss is

$$
H_{l}=\left(y_{1}+\frac{v_{1}^{2}}{2 \cdot g}\right)-\left(y_{2}+\frac{v_{2}^{2}}{2 \cdot g}\right)
$$

$$
\mathrm{H}_{\mathrm{l}}=0.808 \mathrm{~m}
$$

Note that we could use the result of Example 11.9

$$
\mathrm{H}_{\mathrm{l}}=\frac{\left(\mathrm{y}_{2}-\mathrm{y}_{1}\right)^{3}}{4 \cdot \mathrm{y}_{1} \cdot \mathrm{y}_{2}} \quad \mathrm{H}_{\mathrm{l}}=0.808 \mathrm{~m}
$$

11.46 A wide channel carries $20 \mathrm{ft}^{3} / \mathrm{sec}$ per foot of width at a depth of 1 ft at the toe of a hydraulic jump. Determine the depth of the jump and the head loss across it.

Given: Data on wide channel and hydraulic jump
Find: Jump depth; Head loss

Solution:

Basic equations: $\quad \frac{\mathrm{y}_{2}}{\mathrm{y}_{1}}=\frac{1}{2} \cdot\left(-1+\sqrt{1+8 \cdot \mathrm{Fr}_{1}^{2}}\right) \quad \mathrm{H}_{\mathrm{l}}=\mathrm{E}_{1}-\mathrm{E}_{2}=\left(\mathrm{y}_{1}+\frac{\mathrm{V}_{1}^{2}}{2 \cdot g}\right)-\left(\mathrm{y}_{2}+\frac{\mathrm{V}_{2}{ }^{2}}{2 \cdot g}\right)$
The given data is $\frac{\mathrm{Q}}{\mathrm{b}}=20 \frac{\frac{\mathrm{ft}^{3}}{\mathrm{~s}}}{\mathrm{ft}} \quad \mathrm{y}_{1}=1 \cdot \mathrm{ft}$

Also

$$
\mathrm{Q}=\mathrm{V} \cdot \mathrm{~A}=\mathrm{V} \cdot \mathrm{~b} \cdot \mathrm{y}
$$

Hence
$\mathrm{V}_{1}=\frac{\mathrm{Q}}{\mathrm{b} \cdot \mathrm{y}_{1}}$
$\mathrm{V}_{1}=20.0 \frac{\mathrm{ft}}{\mathrm{s}}$
$\mathrm{Fr}_{1}=\frac{\mathrm{V}_{1}}{\sqrt{\mathrm{~g} \cdot \mathrm{y}_{1}}} \quad \quad \mathrm{Fr}_{1}=3.53$

Then

$$
\mathrm{y}_{2}=\frac{\mathrm{y}_{1}}{2} \cdot\left(-1+\sqrt{1+8 \cdot \mathrm{Fr}_{1}^{2}}\right)
$$

$$
\mathrm{y}_{2}=4.51 \mathrm{ft}
$$

$$
\mathrm{V}_{2}=\frac{\mathrm{Q}}{\mathrm{~b} \cdot \mathrm{y}_{2}}
$$

$\mathrm{V}_{2}=4.43 \frac{\mathrm{ft}}{\mathrm{s}}$
$\mathrm{Fr}_{2}=\frac{\mathrm{V}_{2}}{\sqrt{\mathrm{~g} \cdot \mathrm{y}_{2}}}$
$\mathrm{Fr}_{2}=0.368$

The energy loss is $H_{l}=\left(y_{1}+\frac{V_{1}^{2}}{2 \cdot g}\right)-\left(y_{2}+\frac{V_{2}^{2}}{2 \cdot g}\right) \quad H_{l}=2.40 \mathrm{ft}$

Note that we could use the result of Example 11.9 $\quad \mathrm{H}_{\mathrm{l}}=\frac{\left(\mathrm{y}_{2}-\mathrm{y}_{1}\right)^{3}}{4 \cdot \mathrm{y}_{1} \cdot \mathrm{y}_{2}} \quad \mathrm{H}_{\mathrm{l}}=2.40 \mathrm{ft}$
11.47 A hydraulic jump occurs in a wide horizontal channel. The discharge is $30 \mathrm{ft}^{3} / \mathrm{sec}$ per foot of width. The upstream depth is 1.3 ft . Determine the depth of the jump.

Given: Data on wide channel and hydraulic jump
Find: Jump depth

Solution:

Basic equations: $\quad \frac{\mathrm{y}_{2}}{\mathrm{y}_{1}}=\frac{1}{2} \cdot\left(-1+\sqrt{1+8 \cdot \mathrm{Fr}_{1}^{2}}\right)$
The given data is $\frac{\mathrm{Q}}{\mathrm{b}}=30 \frac{\frac{\mathrm{ft}^{3}}{\mathrm{~s}}}{\mathrm{ft}} \quad \mathrm{y}_{1}=1.3 \cdot \mathrm{ft}$
Also

$$
\mathrm{Q}=\mathrm{V} \cdot \mathrm{~A}=\mathrm{V} \cdot \mathrm{~b} \cdot \mathrm{y}
$$

Hence

Then

$$
\mathrm{v}_{1}=\frac{\mathrm{Q}}{\mathrm{~b} \cdot \mathrm{y}_{1}} \quad \mathrm{~V}_{1}=23.1 \frac{\mathrm{ft}}{\mathrm{~s}}
$$

$\mathrm{Fr}_{1}=\frac{\mathrm{V}_{1}}{\sqrt{\mathrm{~g} \cdot \mathrm{y}_{1}}} \quad \quad \mathrm{Fr}_{1}=3.57$

$$
\mathrm{y}_{2}=\frac{\mathrm{y}_{1}}{2} \cdot\left(-1+\sqrt{1+8 \cdot \mathrm{Fr}_{1}^{2}}\right)
$$

$$
\mathrm{y}_{2}=5.94 \mathrm{ft}
$$

Note:

$$
\mathrm{V}_{2}=\frac{\mathrm{Q}}{\mathrm{~b} \cdot \mathrm{y}_{2}}
$$

$$
\mathrm{V}_{2}=5.05 \frac{\mathrm{ft}}{\mathrm{~s}}
$$

$$
\mathrm{Fr}_{2}=\frac{\mathrm{V}_{2}}{\sqrt{\mathrm{~g} \cdot \mathrm{y}_{2}}} \quad \mathrm{Fr}_{2}=0.365
$$

11.48 A hydraulic jump occurs in a rectangular channel. The flow rate is $200 \mathrm{ft}^{3} / \mathrm{sec}$, and the depth before the jump is 1.2 ft . Determine the depth behind the jump and the head loss, if the channel is 10 ft wide.

Given: Data on wide channel and hydraulic jump
Find: Jump depth; Head loss

Solution:

Basic equations: $\quad \frac{\mathrm{y}_{2}}{\mathrm{y}_{1}}=\frac{1}{2} \cdot\left(-1+\sqrt{1+8 \cdot \mathrm{Fr}_{1}^{2}}\right) \quad \mathrm{H}_{\mathrm{l}}=\mathrm{E}_{1}-\mathrm{E}_{2}=\left(\mathrm{y}_{1}+\frac{\mathrm{V}_{1}^{2}}{2 \cdot g}\right)-\left(\mathrm{y}_{2}+\frac{\mathrm{V}_{2}^{2}}{2 \cdot g}\right)$

The given data is $\mathrm{Q}=200 \cdot \frac{\mathrm{ft}^{3}}{\mathrm{~s}} \quad \mathrm{~b}=10 \cdot \mathrm{ft} \quad \mathrm{y}_{1}=1.2 \cdot \mathrm{ft}$

Also

$$
\mathrm{Q}=\mathrm{V} \cdot \mathrm{~A}=\mathrm{V} \cdot \mathrm{~b} \cdot \mathrm{y}
$$

Hence

$$
\mathrm{V}_{1}=\frac{\mathrm{Q}}{\mathrm{~b} \cdot \mathrm{y}_{1}}
$$

$$
\mathrm{V}_{1}=16.7 \cdot \frac{\mathrm{ft}}{\mathrm{~s}}
$$

Then
$\mathrm{V}_{1}=16.7 \cdot \frac{\mathrm{ft}}{\mathrm{s}}$

$$
\mathrm{Fr}_{1}=\frac{\mathrm{V}_{1}}{\sqrt{\mathrm{~g} \cdot \mathrm{y}_{1}}} \quad \mathrm{Fr}_{1}=2.68
$$

$$
\mathrm{y}_{2}=\frac{\mathrm{y}_{1}}{2} \cdot\left(-1+\sqrt{1+8 \cdot \mathrm{Fr}_{1}^{2}}\right)
$$

$$
\mathrm{y}_{2}=3.99 \cdot \mathrm{ft}
$$

$$
\mathrm{V}_{2}=\frac{\mathrm{Q}}{\mathrm{~b} \cdot \mathrm{y}_{2}}
$$

$\mathrm{V}_{2}=5.01 \cdot \frac{\mathrm{ft}}{\mathrm{s}}$
$\mathrm{Fr}_{2}=\frac{\mathrm{V}_{2}}{\sqrt{\mathrm{~g} \cdot \mathrm{y}_{2}}}$
$\mathrm{Fr}_{2}=0.442$

The energy loss is $H_{l}=\left(y_{1}+\frac{\mathrm{V}_{1}^{2}}{2 \cdot g}\right)-\left(y_{2}+\frac{\mathrm{V}_{2}^{2}}{2 \cdot g}\right) \quad \mathrm{H}_{\mathrm{l}}=1.14 \cdot \mathrm{ft}$
Note that we could use the result of Example 11.9 $\quad \mathrm{H}_{\mathrm{l}}=\frac{\left(\mathrm{y}_{2}-\mathrm{y}_{1}\right)^{3}}{4 \cdot \mathrm{y}_{1} \cdot \mathrm{y}_{2}} \quad \mathrm{H}_{\mathrm{l}}=1.14 \cdot \mathrm{ft}$

Problem 11.49
11.49 The hydraulic jump may be used as a crude flow meter. Suppose that in a horizontal rectangular channel 5 ft wide the observed depths before and after a hydraulic jump are 0.66 and 3.0 ft . Find the rate of flow and the head loss.

Given: Data on wide channel and hydraulic jump
Find: Flow rate; Head loss

Solution:

Basic equations: $\quad \frac{\mathrm{y}_{2}}{\mathrm{y}_{1}}=\frac{1}{2} \cdot\left(-1+\sqrt{1+8 \cdot \mathrm{Fr}_{1}^{2}}\right) \quad \mathrm{H}_{\mathrm{l}}=\mathrm{E}_{1}-\mathrm{E}_{2}=\left(\mathrm{y}_{1}+\frac{\mathrm{V}_{1}^{2}}{2 \cdot g}\right)-\left(\mathrm{y}_{2}+\frac{\mathrm{V}_{2}^{2}}{2 \cdot g}\right)$

The given data is $\quad b=5 \cdot \mathrm{ft}$
$y_{1}=0.66 \cdot f t$
$\mathrm{y}_{2}=3.0 \cdot \mathrm{ft}$

We can solve for Fr_{1} from the basic equation

$$
\sqrt{1+8 \cdot \mathrm{Fr}_{1}^{2}}=1+2 \cdot \frac{\mathrm{y}_{2}}{\mathrm{y}_{1}}
$$

$$
\mathrm{Fr}_{1}=\sqrt{\frac{\left(1+2 \cdot \frac{\mathrm{y}_{2}}{\mathrm{y}_{1}}\right)^{2}-1}{8}} \quad \mathrm{Fr}_{1}=3.55 \quad \text { and } \quad \mathrm{Fr}_{1}=\frac{\mathrm{V}_{1}}{\sqrt{\mathrm{~g} \cdot \mathrm{y}_{1}}}
$$

Hence

$$
\mathrm{V}_{1}=\mathrm{Fr}_{1} \cdot \sqrt{\mathrm{~g} \cdot \mathrm{y}_{1}} \quad \mathrm{~V}_{1}=16.4 \cdot \frac{\mathrm{ft}}{\mathrm{~s}}
$$

Then
$\mathrm{Q}=\mathrm{V}_{1} \cdot \mathrm{~b} \cdot \mathrm{y}_{1}$
$Q=54.0 \frac{\mathrm{ft}^{3}}{\mathrm{~s}}$

Also
$\mathrm{V}_{2}=\frac{\mathrm{Q}}{\mathrm{b} \cdot \mathrm{y}_{2}}$
$\mathrm{V}_{2}=3.60 \cdot \frac{\mathrm{ft}}{\mathrm{s}}$
$\mathrm{Fr}_{2}=\frac{\mathrm{V}_{2}}{\sqrt{\mathrm{~g} \cdot \mathrm{y}_{2}}}$
$\mathrm{Fr}_{2}=0.366$

The energy loss is $H_{l}=\left(y_{1}+\frac{\mathrm{V}_{1}^{2}}{2 \cdot g}\right)-\left(y_{2}+\frac{\mathrm{V}_{2}^{2}}{2 \cdot g}\right) \quad \mathrm{H}_{\mathrm{l}}=1.62 \cdot \mathrm{ft}$

Note that we could use the result of Example 11.9

$$
\mathrm{H}_{\mathrm{l}}=\frac{\left(\mathrm{y}_{2}-\mathrm{y}_{1}\right)^{3}}{4 \cdot \mathrm{y}_{1} \cdot \mathrm{y}_{2}} \quad \mathrm{H}_{\mathrm{l}}=1.62 \cdot \mathrm{ft}
$$

11.50 A hydraulic jump occurs on a horizontal apron downstream from a wide spillway, at a location where depth is 0.9 m and speed is $25 \mathrm{~m} / \mathrm{sec}$. Estimate the depth and speed downstream from the jump. Compare the specific energy downstream of the jump to that upstream.

Given: Data on wide spillway flow
Find: Depth after hydraulic jump; Specific energy change

Solution:

Basic equations:

$$
\frac{\mathrm{y}_{2}}{\mathrm{y}_{1}}=\frac{1}{2} \cdot\left(-1+\sqrt{1+8 \cdot \mathrm{Fr}_{1}^{2}}\right) \quad \mathrm{H}_{\mathrm{l}}=\mathrm{E}_{1}-\mathrm{E}_{2}=\left(\mathrm{y}_{1}+\frac{\mathrm{V}_{1}^{2}}{2 \cdot \mathrm{~g}}\right)-\left(\mathrm{y}_{2}+\frac{\mathrm{V}_{2}^{2}}{2 \cdot \mathrm{~g}}\right)
$$

The given data is

$$
\mathrm{y}_{1}=0.9 \cdot \mathrm{~m}
$$

$$
\mathrm{V}_{1}=25 \frac{\mathrm{~m}}{\mathrm{~s}}
$$

Then Fr_{1} is

$$
\mathrm{Fr}_{1}=\frac{\mathrm{V}_{1}}{\sqrt{\mathrm{~g} \cdot \mathrm{y}_{1}}}
$$

$$
\mathrm{Fr}_{1}=8.42
$$

Hence

$$
\mathrm{y}_{2}=\frac{\mathrm{y}_{1}}{2} \cdot\left(-1+\sqrt{1+8 \cdot \mathrm{Fr}_{1}^{2}}\right) \quad \mathrm{y}_{2}=10.3 \mathrm{~m}
$$

Then

$$
\mathrm{Q}=\mathrm{V}_{1} \cdot \mathrm{~b} \cdot \mathrm{y}_{1}=\mathrm{V}_{2} \cdot \mathrm{~b} \cdot \mathrm{y}_{2} \quad \mathrm{~V}_{2}=\mathrm{V}_{1} \cdot \frac{\mathrm{y}_{1}}{\mathrm{y}_{2}}
$$

$$
\mathrm{V}_{2}=2.19 \frac{\mathrm{~m}}{\mathrm{~s}}
$$

For the specific energies $\quad \mathrm{E}_{1}=\mathrm{y}_{1}+\frac{\mathrm{V}_{1}^{2}}{2 \cdot g} \quad \mathrm{E}_{1}=32.8 \mathrm{~m}$

$$
\mathrm{E}_{2}=\mathrm{y}_{2}+\frac{\mathrm{V}_{2}^{2}}{2 \cdot g} \quad \mathrm{E}_{2}=10.5 \mathrm{~m} \quad \frac{\mathrm{E}_{2}}{\mathrm{E}_{1}}=0.321
$$

The energy loss is

$$
\mathrm{H}_{1}=\mathrm{E}_{1}-\mathrm{E}_{2}
$$

$\mathrm{H}_{\mathrm{l}}=22.3 \mathrm{~m}$

Note that we could use the result of Example 11.9

$$
\mathrm{H}_{\mathrm{l}}=\frac{\left(\mathrm{y}_{2}-\mathrm{y}_{1}\right)^{3}}{4 \cdot \mathrm{y}_{1} \cdot \mathrm{y}_{2}}
$$

$$
\mathrm{H}_{\mathrm{l}}=22.3 \cdot \mathrm{~m}
$$

Problem 11.51

11.51 A hydraulic jump occurs in a rectangular channel. The flow rate is $6.5 \mathrm{~m}^{3} / \mathrm{sec}$ and the depth before the jump is 0.4 m . Determine the depth after the jump and the head loss, if the channel is 1 m wide.

Given: Data on rectangular channel flow
Find: Depth after hydraulic jump; Specific energy change

Solution:

Basic equations:

$$
\frac{\mathrm{y}_{2}}{\mathrm{y}_{1}}=\frac{1}{2} \cdot\left(-1+\sqrt{1+8 \cdot \mathrm{Fr}_{1}^{2}}\right) \quad \mathrm{H}_{\mathrm{l}}=\mathrm{E}_{1}-\mathrm{E}_{2}=\left(\mathrm{y}_{1}+\frac{\mathrm{V}_{1}^{2}}{2 \cdot \mathrm{~g}}\right)-\left(\mathrm{y}_{2}+\frac{\mathrm{V}_{2}^{2}}{2 \cdot \mathrm{~g}}\right)
$$

The given data is

$$
\mathrm{y}_{1}=0.4 \cdot \mathrm{~m}
$$

$\mathrm{b}=1 \cdot \mathrm{~m}$
$\mathrm{Q}=6.5 \frac{\mathrm{~m}^{3}}{\mathrm{~s}}$

Then

$$
\mathrm{Q}=\mathrm{V}_{1} \cdot \mathrm{~b} \cdot \mathrm{y}_{1}=\mathrm{V}_{2} \cdot \mathrm{~b} \cdot \mathrm{y}_{2}
$$

$$
\mathrm{V}_{1}=\frac{\mathrm{Q}}{\mathrm{~b} \cdot \mathrm{y}_{1}}
$$

$\mathrm{V}_{1}=16.3 \frac{\mathrm{~m}}{\mathrm{~s}}$

Then Fr_{1} is

$$
\mathrm{Fr}_{1}=\frac{\mathrm{V}_{1}}{\sqrt{\mathrm{~g} \cdot \mathrm{y}_{1}}} \quad \mathrm{Fr}_{1}=8.20
$$

Hence

$$
\mathrm{y}_{2}=\frac{\mathrm{y}_{1}}{2} \cdot\left(-1+\sqrt{1+8 \cdot \mathrm{Fr}_{1}^{2}}\right) \quad \mathrm{y}_{2}=4.45 \mathrm{~m}
$$

and

$$
\mathrm{V}_{2}=\frac{\mathrm{Q}}{\mathrm{~b} \cdot \mathrm{y}_{2}}
$$

$$
\mathrm{V}_{2}=1.46 \frac{\mathrm{~m}}{\mathrm{~s}}
$$

For the specific energies $\quad \mathrm{E}_{1}=\mathrm{y}_{1}+\frac{\mathrm{V}_{1}{ }^{2}}{2 \cdot g} \quad \mathrm{E}_{1}=13.9 \mathrm{~m}$

$$
\mathrm{E}_{2}=\mathrm{y}_{2}+\frac{\mathrm{V}_{2}^{2}}{2 \cdot \mathrm{~g}} \quad \mathrm{E}_{2}=4.55 \mathrm{~m}
$$

The energy loss is

$$
\mathrm{H}_{\mathrm{l}}=\mathrm{E}_{1}-\mathrm{E}_{2}
$$

$$
\mathrm{H}_{\mathrm{l}}=9.31 \mathrm{~m}
$$

Note that we could use the result of Example 11.9

$$
\mathrm{H}_{\mathrm{l}}=\frac{\left(\mathrm{y}_{2}-\mathrm{y}_{1}\right)^{3}}{4 \cdot \mathrm{y}_{1} \cdot \mathrm{y}_{2}}
$$

$$
\mathrm{H}_{\mathrm{l}}=9.31 \cdot \mathrm{~m}
$$

Problem 11.52
[3]
11.52 A rectangular, sharp-crested weir with end contraction is 1.6 m long. How high should it be placed in a channel to maintain an upstream depth of 2.5 m for $0.5 \mathrm{~m}^{3} / \mathrm{s}$ flow rate?

Given: Data on rectangular, sharp-crested weir
Find: Required weir height

Solution:

Basic equations:	$\mathrm{Q}=\mathrm{C}_{\mathrm{d}} \cdot \frac{2}{3} \cdot \sqrt{2 \cdot \mathrm{~g}} \cdot \mathrm{~B}^{\prime} \cdot \mathrm{H}^{\frac{3}{2}}$	where $\quad \mathrm{C}_{\mathrm{d}}=0.62 \quad$ and $\quad \mathrm{B}^{\prime}=\mathrm{B}-0.1 \cdot \mathrm{n} \cdot \mathrm{H} \quad$ with $\quad \mathrm{n}=2$
Given data:	$\mathrm{B}=1.6 \cdot \mathrm{~m}$	$\mathrm{Q}=0.5 \cdot \frac{\mathrm{~m}^{3}}{\mathrm{~s}}$

Hence we find

$$
\mathrm{Q}=\mathrm{C}_{\mathrm{d}} \cdot \frac{2}{3} \cdot \sqrt{2 \cdot \mathrm{~g}} \cdot \mathrm{~B}^{\prime} \cdot \mathrm{H}^{\frac{3}{2}}=\mathrm{C}_{\mathrm{d}} \cdot \frac{2}{3} \cdot \sqrt{2 \cdot \mathrm{~g}} \cdot(\mathrm{~B}-0.1 \cdot \mathrm{n} \cdot \mathrm{H}) \cdot \mathrm{H}^{\frac{3}{2}}
$$

Rearranging

$$
(\mathrm{B}-0.1 \cdot \mathrm{n} \cdot \mathrm{H}) \cdot \mathrm{H}^{\frac{3}{2}}=\frac{3 \cdot \mathrm{Q}}{2 \cdot \sqrt{2 \cdot g} \cdot \mathrm{C}_{\mathrm{d}}}
$$

This is a nonlinear implicit equation for H and must be solved numerically. We can use one of a number of numerical root finding techniq such as Newton's method, or we can use Excel's Solver or Goal Seek, or we can manually iterate, as below.

The right side evaluates to $\frac{3 \cdot \mathrm{Q}}{2 \cdot \sqrt{2 \cdot g} \cdot \mathrm{C}_{\mathrm{d}}}=0.273 \mathrm{~m}^{\frac{5}{2}}$
For $\quad H=1 \cdot m \quad(B-0.1 \cdot n \cdot H) \cdot H^{\frac{3}{2}}=1.40 \mathrm{~m}^{\frac{5}{2}} \quad$ For $\quad H=0.5 \cdot m \quad(B-0.1 \cdot n \cdot H) \cdot H^{\frac{3}{2}}=0.530 \mathrm{~m}^{\frac{5}{2}}$
For
$\mathrm{H}=0.3 \cdot \mathrm{~m}$
$(B-0.1 \cdot n \cdot H) \cdot H^{\frac{3}{2}}=0.253 m^{\frac{5}{2}}$
For $\quad H=0.35 \cdot \mathrm{~m}$
$(B-0.1 \cdot n \cdot H) \cdot H^{\frac{3}{2}}=0.317 m^{\frac{5}{2}}$
For $\quad H=0.31 \cdot m \quad(B-0.1 \cdot n \cdot H) \cdot H^{\frac{3}{2}}=0.265 m^{\frac{5}{2}} \quad$ For $\quad H=0.315 \cdot m \quad(B-0.1 \cdot n \cdot H) \cdot H^{\frac{3}{2}}=0.272 m^{\frac{5}{2}}$

For $\quad H=0.316 \cdot m \quad(B-0.1 \cdot n \cdot H) \cdot H^{\frac{3}{2}}=0.273 m^{\frac{5}{2}} \quad H=0.316 m$

But from the figure
$\mathrm{H}+\mathrm{P}=2.5 \cdot \mathrm{~m}$
$P=2.5 \cdot m-H$
$\mathrm{P}=2.18 \mathrm{~m}$

Problem 11.53

11.53 For a sharp-crested suppressed weir ($C_{w}=3.33$) of length $B=8.0 \mathrm{ft}, P=2.0 \mathrm{ft}$, and $H=1.0 \mathrm{ft}$, determine the discharge over the weir. Neglect the velocity of approach head.

Given: Data on rectangular, sharp-crested weir

Find: Discharge

Solution:

Basic equation: $\quad \mathrm{Q}=\mathrm{C}_{\mathrm{W}} \cdot \mathrm{B} \cdot \mathrm{H}^{\frac{3}{2}} \quad$ where $\quad \mathrm{C}_{\mathrm{W}}=3.33 \quad$ and $\quad \mathrm{B}=8 \cdot \mathrm{ft} \quad \mathrm{P}=2 \cdot \mathrm{ft} \quad \mathrm{H}=1 \cdot \mathrm{ft}$

Note that this is an "engineering" equation, to be used without units!

$$
\mathrm{Q}=\mathrm{C}_{\mathrm{w}} \cdot \mathrm{~B} \cdot \mathrm{H}^{\frac{3}{2}} \quad \mathrm{Q}=26.6 \quad \frac{\mathrm{ft}^{3}}{\mathrm{~s}}
$$

Problem 11.54

11.54 A rectangular sharp-crested weir with end contractions is 1.5 m long. How high should the weir crest be placed in a channel to maintain an upstream depth of 2.5 m for $0.5 \mathrm{~m}^{3} / \mathrm{s}$ flow rate?

Given: Data on rectangular, sharp-crested weir
Find: Required weir height

Solution:

Basic equations:	$\mathrm{Q}=\mathrm{C}_{\mathrm{d}} \cdot \frac{2}{3} \cdot \sqrt{2 \cdot \mathrm{~g}} \cdot \mathrm{~B}^{\prime} \cdot \mathrm{H}^{\frac{3}{2}}$	where $\quad \mathrm{C}_{\mathrm{d}}=0.62 \quad$ and $\quad \mathrm{B}^{\prime}=\mathrm{B}-0.1 \cdot \mathrm{n} \cdot \mathrm{H} \quad$ with $\quad \mathrm{n}=2$
Given data:	$\mathrm{B}=1.5 \cdot \mathrm{~m}$	$\mathrm{Q}=0.5 \cdot \frac{\mathrm{~m}^{3}}{\mathrm{~s}}$

Hence we find

$$
\begin{aligned}
& \mathrm{Q}=\mathrm{C}_{\mathrm{d}} \cdot \frac{2}{3} \cdot \sqrt{2 \cdot \mathrm{~g}} \cdot \mathrm{~B}^{\prime} \cdot \mathrm{H}^{\frac{3}{2}}=\mathrm{C}_{\mathrm{d}} \cdot \frac{2}{3} \cdot \sqrt{2 \cdot \mathrm{~g}} \cdot(\mathrm{~B}-0.1 \cdot \mathrm{n} \cdot \mathrm{H}) \cdot \mathrm{H}^{\frac{3}{2}} \\
& (\mathrm{~B}-0.1 \cdot \mathrm{n} \cdot \mathrm{H}) \cdot \mathrm{H}^{\frac{3}{2}}=\frac{3 \cdot \mathrm{Q}}{2 \cdot \sqrt{2 \cdot \mathrm{~g} \cdot \mathrm{C}_{\mathrm{d}}}}
\end{aligned}
$$

This is a nonlinear implicit equation for H and must be solved numerically. We can use one of a number of numerical root finding techniq such as Newton's method, or we can use Excel's Solver or Goal Seek, or we can manually iterate, as below.

The right side evaluates to $\frac{3 \cdot \mathrm{Q}}{2 \cdot \sqrt{2 \cdot g} \cdot \mathrm{C}_{\mathrm{d}}}=0.273 \cdot \mathrm{~m}^{\frac{5}{2}}$
For $\quad H=1 \cdot m \quad(B-0.1 \cdot n \cdot H) \cdot H^{\frac{3}{2}}=1.30 \cdot \mathrm{~m}^{\frac{5}{2}} \quad$ For $\quad H=0.5 \cdot m \quad(B-0.1 \cdot n \cdot H) \cdot H^{\frac{3}{2}}=0.495 \cdot \mathrm{~m}^{\frac{5}{2}}$

For $\quad H=0.331 \cdot m \quad(B-0.1 \cdot n \cdot H) \cdot H^{\frac{3}{2}}=0.273 \cdot \mathrm{~m}^{\frac{5}{2}} \quad H=0.331 \mathrm{~m}$

But from the figure
$\mathrm{H}+\mathrm{P}=2.5 \cdot \mathrm{~m}$
$\mathrm{P}=2.5 \cdot \mathrm{~m}-\mathrm{H}$
$P=2.17 m$

Problem 11.55

11.55 Determine the head on a $60^{\circ} \mathrm{V}$-notch weir for a discharge of $150 \mathrm{l} / \mathrm{s}$. Take $C_{d}=0.58$.

Given:
Find: Flow head
Solution:
$\begin{aligned} \text { Basic equation: } & \mathrm{Q}=\mathrm{C}_{\mathrm{d}} \cdot \frac{8}{15} \cdot \sqrt{2 \cdot \mathrm{~g}} \cdot \tan \left(\frac{\theta}{2}\right) \cdot \mathrm{H}^{\frac{5}{2}} \quad \text { where } & \mathrm{C}_{\mathrm{d}}=0.58 \\ \mathrm{H} & =\left(\frac{\mathrm{Q}}{\mathrm{C}_{\mathrm{d}} \cdot \frac{8}{15} \cdot \sqrt{2 \cdot g} \cdot \tan \left(\frac{\theta}{2}\right)}\right)^{\frac{2}{5}} & \mathrm{H}=0.514 \mathrm{~m}\end{aligned}$
11.56 The head on a 90° V-notch weir is 1.5 ft . Determine the discharge.

Given: Data on V-notch weir

Find: Discharge

Solution:

Basic equation: $\quad \mathrm{Q}=\mathrm{C}_{\mathrm{w}} \cdot \mathrm{H}^{\frac{5}{2}} \quad$ where $\quad \mathrm{H}=1.5 \cdot \mathrm{ft} \quad \mathrm{C}_{\mathrm{w}}=2.50 \quad$ for $\quad \theta=90 \cdot \mathrm{deg}$

Note that this is an "engineering" equation in which we ignore units!

$$
\mathrm{Q}=\mathrm{C}_{\mathrm{w}} \cdot \mathrm{H}^{\frac{5}{2}} \quad \mathrm{Q}=6.89 \frac{\mathrm{ft}^{3}}{\mathrm{~s}}
$$

11.57 Determine the weir coefficient of a 90° V-notch weir for a head of 180 mm for a flow rate of $20 \mathrm{l} / \mathrm{s}$.

Given:
Data on V-notch weir
Find: Weir coefficient

Solution:

Basic equation: $\quad \mathrm{Q}=\mathrm{C}_{\mathrm{w}} \cdot \mathrm{H}^{\frac{5}{2}} \quad$ where $\quad \mathrm{H}=180 \cdot \mathrm{~mm} \quad \mathrm{Q}=20 \cdot \frac{\mathrm{~L}}{\mathrm{~s}}$

Note that this is an "engineering" equation in which we ignore units!

$$
\mathrm{C}_{\mathrm{w}}=\frac{\mathrm{Q}}{\mathrm{H}^{\frac{5}{2}}} \quad \mathrm{C}_{\mathrm{w}}=1.45
$$

12.1 An air flow in a duct passes through a thick filter. What happens to the pressure, temperature, and density of the air as it does so? Hint: This is a throttling process.

Given: Air flow through a filter
Find: \quad Change in p, T and ρ

Solution:

Basic equations:

$$
\mathrm{h}_{2}-\mathrm{h}_{1}=\mathrm{c}_{\mathrm{p}} \cdot\left(\mathrm{~T}_{2}-\mathrm{T}_{1}\right) \quad \mathrm{p}=\rho \cdot \mathrm{R} \cdot \mathrm{~T}
$$

Assumptions: 1) Ideal gas 2) Throttling process

In a throttling process enthalpy is constant. Hence

$$
\mathrm{h}_{2}-\mathrm{h}_{1}=0
$$

so $\quad T_{2}-T_{1}=0$
or
$\mathrm{T}=$ constant

The filter acts as a resistance through which there is a pressure drop (otherwise there would be no flow. Hence $\quad \mathrm{p}_{2}<\mathrm{p}_{1}$
From the ideal gas equation $\quad \frac{p_{1}}{p_{2}}=\frac{\rho_{1} \cdot T_{1}}{\rho_{2} \cdot T_{2}} \quad$ so $\quad \rho_{2}=\rho_{1} \cdot\left(\frac{T_{1}}{T_{2}}\right) \cdot\left(\frac{p_{2}}{p_{1}}\right)=\rho_{1} \cdot\left(\frac{p_{2}}{p_{1}}\right) \quad$ Hence $\quad \rho_{2}<\rho_{1}$

The governing equation for entropy is
$\Delta \mathrm{s}=\mathrm{C}_{\mathrm{p}} \cdot \ln \left(\frac{\mathrm{T}_{2}}{\mathrm{~T}_{1}}\right)-\mathrm{R} \cdot \ln \left(\frac{\mathrm{p}_{2}}{\mathrm{P}_{1}}\right)$
Hence

$$
\begin{equation*}
\Delta \mathrm{s}=-\mathrm{R} \cdot \ln \left(\frac{\mathrm{p}_{2}}{\mathrm{p}_{1}}\right) \quad \text { and } \quad \frac{\mathrm{p}_{2}}{\mathrm{p}_{1}}<1 \tag{so}
\end{equation*}
$$

$\Delta \mathrm{s}>0$

Entropy increases because throttling is an irreversible adiabatic process

Given: Steady flow trough a turbine. Ar expands from $T_{1}=13008$, $P_{1}=2 S 0 \mathrm{MPa}(\mathrm{abs}) \mathrm{F}_{0} T_{2}=500^{\circ}, P_{2}=10, \mathrm{tta}$.
Find: (a) $u_{2}-u_{1}$ (b) $h_{2}-h_{1}$
(c) $s_{2}-s_{1}$
(d) show process on a T_{s} diagram

Solution:

$$
\begin{aligned}
& \Delta u=u_{2}-u_{1}=c_{v}\left(T_{2}-T_{1}\right)=717+\frac{5}{\mathrm{bg}} \cdot(500-1300) \mathrm{k}=-57+\mathrm{b} / \mathrm{kg}-u_{2}-u_{h} \\
& \Delta h=h_{2}-h_{1}=c_{p}\left(T_{2}-T_{1}\right)=1004 \frac{5}{5 g} \cdot k(-800 k)=-803 \mathrm{~kJ} / \mathrm{kg}-h_{2}-h_{1}
\end{aligned}
$$

To calculate the entropy Change, we use the Tads equation

$$
\begin{align*}
& T d s=d h-v d p=c_{p} d T-R T \frac{d p}{p} \\
& \therefore d s=c_{p} \stackrel{d T}{\gamma}-e^{d p} \frac{d p}{p} \\
& s_{2}-s_{1}=c_{p} \ln \frac{T_{2}}{T_{1}}-R \ln \frac{P_{2}}{P_{1}} \\
& =1004 \frac{\mathrm{~J}}{\operatorname{tg}} \cdot \ln \ln \frac{500+273}{1300+273}-280.9 \frac{\mathrm{~J}}{\operatorname{yg} \cdot \mathrm{~K}} \ln \frac{0.101}{2.0} \\
& s_{2}-s_{1}=(-713.3+856.6) J \log \cdot k=143 J(\lg k \tag{2}
\end{align*}
$$

12.3 A vendor claims that an adiabatic air compressor takes in air at standard atmosphere conditions and delivers the air at 650 kPa (gage) and $285^{\circ} \mathrm{C}$. Is this possible? Justify your answer by calculation. Sketch the process on a Ts diagram.

Given: Data on an air compressor
Find: Whether or not the vendor claim is feasible

Solution:

Basic equation: $\quad \Delta s=c_{p} \cdot \ln \left(\frac{T_{2}}{T_{1}}\right)-\mathrm{R} \cdot \ln \left(\frac{\mathrm{p}_{2}}{\mathrm{P}_{1}}\right)$
The data provided, or available in the Appendices, is:

$$
\begin{array}{ll}
\mathrm{p}_{1}=101 \cdot \mathrm{kPa} & \mathrm{~T}_{1}=(20+273) \cdot \mathrm{K} \\
\mathrm{p}_{2}=(650+101) \cdot \mathrm{kPa} & \mathrm{~T}_{2}=(285+273) \cdot \mathrm{K} \\
\mathrm{c}_{\mathrm{p}}=1004 \cdot \frac{\mathrm{~J}}{\mathrm{~kg} \cdot \mathrm{~K}} & \mathrm{R}=287 \cdot \frac{\mathrm{~J}}{\mathrm{~kg} \cdot \mathrm{~K}} \\
\Delta \mathrm{~s}=\mathrm{c}_{\mathrm{p}} \cdot \ln \left(\frac{\mathrm{~T}_{2}}{\mathrm{~T}_{1}}\right)-\mathrm{R} \cdot \ln \left(\frac{\mathrm{p}_{2}}{\mathrm{p}_{1}}\right) & \Delta \mathrm{s}=71.0 \frac{\mathrm{~J}}{\mathrm{~kg} \cdot \mathrm{~K}}
\end{array}
$$

Then

The second law of thermodynamics states that, for an adiabatic process

$$
\Delta \mathrm{s} \geq 0 \quad \text { or for all real processes } \quad \Delta \mathrm{s}>0
$$

Hence the process is feasible!

Entropy s
12.4 What is the lowest possible delivery temperature generated by an adiabatic air compressor, starting with standard atmosphere conditions and delivering the air at 100 psig ? Sketch the process on a Ts diagram.

Given: Adiabatic air compressor
Find: Lowest delivery temperature; Sketch the process on a Ts diagram

Solution:

Basic equation: $\quad \Delta s=c_{p} \cdot \ln \left(\frac{\mathrm{~T}_{2}}{\mathrm{~T}_{1}}\right)-\mathrm{R} \cdot \ln \left(\frac{\mathrm{P}_{2}}{\mathrm{P}_{1}}\right)$

The lowest temperature implies an ideal (reversible) process; it is also adiabatic, so $\Delta \mathrm{s}=0$, and

$$
\mathrm{T}_{2}=\mathrm{T}_{1} \cdot\left(\frac{\mathrm{p}_{1}}{\mathrm{p}_{2}}\right)^{\frac{1-\mathrm{k}}{\mathrm{k}}}
$$

The data provided, or available in the Appendices, is $\mathrm{p}_{1}=14.7 \cdot \mathrm{psi} \quad \mathrm{p}_{2}=(100+14.7) \cdot \mathrm{psi} \quad \mathrm{T}_{1}=(68+460) \cdot \mathrm{R} \quad \mathrm{k}=1.4$

Hence $\quad \mathrm{T}_{2}=\mathrm{T}_{1} \cdot\left(\frac{\mathrm{p}_{1}}{\mathrm{P}_{2}}\right)^{\frac{1-\mathrm{k}}{\mathrm{k}}} \quad \mathrm{T}_{2}=950 \mathrm{R} \quad \mathrm{T}_{2}=490^{\circ} \mathrm{F}$

The process is

Entropy s
12.5 A test chamber is separated into two equal chambers by a rubber diaphragm. One contains air at $20^{\circ} \mathrm{C}$ and 200 kPa (absolute), and the other has a vacuum. If the diaphragm is punctured, find the pressure and temperature of the air after it expands to fill the chamber. Hint: This is a rapid, violent event, so is irreversible but adiabatic.

Given: Test chamber with two chambers
Find: Pressure and temperature after expansion

Solution:

Basic equation: $\quad \mathrm{p}=\rho \cdot \mathrm{R} \cdot \mathrm{T} \quad \Delta \mathrm{u}=\mathrm{q}-\mathrm{w} \quad$ (First law - closed system) $\quad \Delta \mathrm{u}=\mathrm{c}_{\mathrm{V}} \cdot \Delta \mathrm{T}$

Assumptions: 1) Ideal gas 2) Adiabatic 3) No work
For no work and adiabatic the first law becomes $\quad \Delta \mathrm{u}=0 \quad$ or for an Ideal gas $\quad \Delta \mathrm{T}=0 \quad \mathrm{~T}_{2}=\mathrm{T}_{1}$

We also have

$$
\mathrm{M}=\rho \cdot \mathrm{Vol}=\text { const } \quad \text { and }
$$

$$
\mathrm{Vol}_{2}=2 \cdot \mathrm{Vol}_{1}
$$

so
$\rho_{2}=\frac{1}{2} \cdot \rho_{1}$
From the ideal gas equation $\frac{\mathrm{P}_{2}}{\mathrm{p}_{1}}=\frac{\rho_{2}}{\rho_{1}} \cdot \frac{\mathrm{~T}_{2}}{\mathrm{~T}_{1}}=\frac{1}{2}$
so
$\mathrm{p}_{2}=\frac{1}{2} \cdot \mathrm{p}_{1}$

Hence

$$
\mathrm{T}_{2}=20^{\circ} \mathrm{F}
$$

$$
\mathrm{p}_{2}=\frac{200 \cdot \mathrm{kPa}}{2} \quad \mathrm{p}_{2}=100 \cdot \mathrm{kPa}
$$

Note that

$$
\Delta \mathrm{s}=\mathrm{c}_{\mathrm{p}} \cdot \ln \left(\frac{\mathrm{~T}_{2}}{\mathrm{~T}_{1}}\right)-\mathrm{R} \cdot \ln \left(\frac{\mathrm{p}_{2}}{\mathrm{P}_{1}}\right)=-\mathrm{R} \cdot \ln \left(\frac{1}{2}\right)=0.693 \cdot \mathrm{R} \quad \text { so entropy increases (irreversible adiabatic) }
$$

12.6 An automobile supercharger is a device that pressurizes the air that is used by the engine for combustion to increase the engine power (how does it differ from a turbocharger?). A supercharger takes in air at $70^{\circ} \mathrm{F}$ and atmospheric pressure and boosts it to 200 psig , at an intake rate of $0.5 \mathrm{ft}^{3} / \mathrm{s}$. What are the pressure, temperature, and volume flow rate at the exit? (The relatively high exit temperature is the reason an intercooler is also used.) Assuming a 70% efficiency, what is the power drawn by the supercharger? Hint: the efficiency is defined as the ratio of the isentropic power to actual power.

Given: Supercharger

Find: Pressure, temperature and flow rate at exit; power drawn

Solution:

Basic equation: $\quad \mathrm{p}=\rho \cdot \mathrm{R}_{\mathrm{air}} \cdot \mathrm{T} \quad \Delta \mathrm{s}=\mathrm{c}_{\mathrm{p}} \cdot \ln \left(\frac{\mathrm{T}_{2}}{\mathrm{~T}_{1}}\right)-\mathrm{R} \cdot \ln \left(\frac{\mathrm{p}_{2}}{\mathrm{P}_{1}}\right) \quad$| |
| :--- |
| $\Delta \mathrm{h}=\mathrm{q}-\mathrm{w} \quad$ (First law - open system) |

Assumptions: 1) Ideal gas 2) Adiabatic
In an ideal process (reversible and adiabatic) the first law becomes $\quad \Delta \mathrm{h}=\mathrm{w} \quad$ or for an Ideal gas $\quad \mathrm{w}_{\text {ideal }}=\mathrm{c}_{\mathrm{p}} \cdot \Delta \mathrm{T}$

For an isentropic process

$$
\Delta \mathrm{s}=0=\mathrm{c}_{\mathrm{p}} \cdot \ln \left(\frac{\mathrm{~T}_{2}}{\mathrm{~T}_{1}}\right)-\mathrm{R} \cdot \ln \left(\frac{\mathrm{p}_{2}}{\mathrm{p}_{1}}\right)
$$

$$
\frac{\mathrm{T}_{2}}{\mathrm{~T}_{1}}=\left(\frac{\mathrm{p}_{2}}{\mathrm{p}_{1}}\right)^{\frac{\mathrm{k}-1}{\mathrm{k}}}
$$

The given or available data is $\mathrm{T}_{1}=(70+460) \cdot \mathrm{R}$
$\mathrm{p}_{1}=14.7 \cdot \mathrm{psi}$
$\mathrm{p}_{2}=(200+14.7) \cdot \mathrm{psi} \quad \eta=70 \%$

$$
\mathrm{Q}_{1}=0.5 \cdot \frac{\mathrm{ft}^{3}}{\mathrm{~s}}
$$

$$
\mathrm{k}=1.4 \quad \mathrm{c}_{\mathrm{p}}=0.2399 \cdot \frac{\mathrm{Btu}}{\mathrm{lbm} \cdot \mathrm{R}}
$$

$$
\mathrm{R}_{\mathrm{air}}=53.33 \cdot \frac{\mathrm{ft} \cdot \mathrm{lbf}}{\mathrm{lbm} \cdot \mathrm{R}}
$$

Hecne $\quad \mathrm{T}_{2}=\left(\frac{\mathrm{p}_{2}}{\mathrm{p}_{1}}\right)^{\frac{\mathrm{k}-1}{\mathrm{k}}} \cdot \mathrm{T}_{1}$

$$
\mathrm{T}_{2}=1140 \cdot \mathrm{R}
$$

$$
\mathrm{T}_{2}=681 \cdot{ }^{\circ} \mathrm{F}
$$

$$
\mathrm{p}_{2}=215 \cdot \mathrm{psi}
$$

We also have

$$
\mathrm{m}_{\text {rate }}=\rho_{1} \cdot \mathrm{Q}_{1}=\rho_{2} \cdot \mathrm{Q}_{2}
$$

$$
\mathrm{Q}_{2}=\mathrm{Q}_{1} \cdot \frac{\rho_{1}}{\rho_{2}}
$$

$$
\mathrm{Q}_{2}=\mathrm{Q}_{1} \cdot \frac{\mathrm{p}_{1}}{\mathrm{p}_{2}} \cdot \frac{\mathrm{~T}_{2}}{\mathrm{~T}_{1}}
$$

$$
\mathrm{Q}_{2}=0.0737 \cdot \frac{\mathrm{ft}^{3}}{\mathrm{~s}}
$$

For the power we use

$$
\mathrm{P}_{\text {ideal }}=\mathrm{m}_{\text {rate }} \cdot \mathrm{w}_{\text {ideal }}=\rho_{1} \cdot \mathrm{Q}_{1} \cdot \mathrm{c}_{\mathrm{p}} \cdot \Delta \cdot \mathrm{~T}
$$

From the ideal gas equation $\rho_{1}=\frac{\mathrm{p}_{1}}{\mathrm{R}_{\mathrm{air}} \cdot \mathrm{T}_{1}}$

$$
\rho_{1}=0.00233 \cdot \frac{\text { slug }}{\mathrm{ft}^{3}}
$$

or

$$
\rho_{1}=0.0749 \cdot \frac{\mathrm{lbm}}{\mathrm{ft}^{3}}
$$

Hence

$$
\mathrm{P}_{\text {ideal }}=\rho_{1} \cdot \mathrm{Q}_{1} \cdot \mathrm{c}_{\mathrm{p}} \cdot\left(\mathrm{~T}_{2}-\mathrm{T}_{1}\right)
$$

$$
\mathrm{P}_{\text {ideal }}=5.78 \cdot \mathrm{~kW}
$$

The actual power needed is $\quad P_{\text {actual }}=\frac{P_{\text {ideal }}}{\eta}$

$$
\mathrm{P}_{\text {actual }}=8.26 \cdot \mathrm{~kW}
$$

A supercharger is a pump that forces air into an engine, but generally refers to a pump that is driven directly by the engine, as opposed to a turbocharger that is driven by the pressure of the exhaust gases.

Problem 12.7

12.7 Five kilograms of air is cooled in a closed tank from 250 to
$50^{\circ} \mathrm{C}$. The initial pressure is 3 MPa . Compute the changes in entropy, internal energy, and enthalpy. Show the process state points on a Ts diagram.

Given: Cooling of air in a tank
Find: Change in entropy, internal energy, and enthalpy

Solution:

Basic equation:

$$
\begin{aligned}
& \mathrm{p}=\rho \cdot \mathrm{R} \cdot \mathrm{~T} \\
& \Delta \mathrm{u}=\mathrm{c}_{\mathrm{V}} \cdot \Delta \mathrm{~T}
\end{aligned}
$$

$\Delta \mathrm{s}=\mathrm{c}_{\mathrm{p}} \cdot \ln \left(\frac{\mathrm{T}_{2}}{\mathrm{~T}_{1}}\right)-\mathrm{R} \cdot \ln \left(\frac{\mathrm{P}_{2}}{\mathrm{P}_{1}}\right)$
$\Delta \mathrm{h}=\mathrm{c}_{\mathrm{p}} \cdot \Delta \mathrm{T}$
Assumptions: 1) Ideal gas 2) Constant specific heats
Given or available data $\quad \mathrm{M}=5 \cdot \mathrm{~kg}$
$\mathrm{T}_{1}=(250+273) \cdot \mathrm{K}$
$\mathrm{T}_{2}=(50+273) \cdot \mathrm{K} \quad \mathrm{p}_{1}=3 \cdot \mathrm{MPa}$

$$
\mathrm{c}_{\mathrm{p}}=1004 \cdot \frac{\mathrm{~J}}{\mathrm{~kg} \cdot \mathrm{~K}} \quad \mathrm{c}_{\mathrm{v}}=717.4 \cdot \frac{\mathrm{~J}}{\mathrm{~kg} \cdot \mathrm{~K}} \quad \mathrm{k}=\frac{\mathrm{c}_{\mathrm{p}}}{\mathrm{c}_{\mathrm{V}}} \quad \mathrm{k}=1.4 \quad \mathrm{R}=\mathrm{c}_{\mathrm{p}}-\mathrm{c}_{\mathrm{V}} \quad \mathrm{R}=287 \cdot \frac{\mathrm{~J}}{\mathrm{~kg} \cdot \mathrm{~K}}
$$

For a constant volume process the ideal gas equation gives $\frac{\mathrm{p}_{2}}{\mathrm{p}_{1}}=\frac{\mathrm{T}_{2}}{\mathrm{~T}_{1}} \quad \mathrm{p}_{2}=\frac{\mathrm{T}_{2}}{\mathrm{~T}_{1}} \cdot \mathrm{p}_{1} \quad \mathrm{p}_{2}=1.85 \cdot \mathrm{MPa}$

Then

$$
\begin{array}{ll}
\Delta \mathrm{s}=\mathrm{c}_{\mathrm{p}} \cdot \ln \left(\frac{\mathrm{~T}_{2}}{\mathrm{~T}_{1}}\right)-\mathrm{R} \cdot \ln \left(\frac{\mathrm{p}_{2}}{\mathrm{P}_{1}}\right) & \Delta \mathrm{s}=-346 \cdot \frac{\mathrm{~J}}{\mathrm{~kg} \cdot \mathrm{~K}} \\
\Delta \mathrm{u}=\mathrm{c}_{\mathrm{v}} \cdot\left(\mathrm{~T}_{2}-\mathrm{T}_{1}\right) & \Delta \mathrm{u}=-143 \cdot \frac{\mathrm{~kJ}}{\mathrm{~kg}} \\
\Delta \mathrm{~h}=\mathrm{c}_{\mathrm{p}} \cdot\left(\mathrm{~T}_{2}-\mathrm{T}_{1}\right) & \Delta \mathrm{h}=-201 \cdot \frac{\mathrm{~kJ}}{\mathrm{~kg}} \\
\Delta \mathrm{~S}=\mathrm{M} \cdot \Delta \mathrm{~s} & \Delta \mathrm{~S}=-1729 \cdot \frac{\mathrm{~J}}{\mathrm{~K}} \\
\Delta \mathrm{U}=\mathrm{M} \cdot \Delta \mathrm{u} & \Delta \mathrm{U}=-717 \cdot \mathrm{~kJ} \\
\Delta \mathrm{H}=\mathrm{M} \cdot \Delta \mathrm{~h} & \Delta \mathrm{H}=-1004 \cdot \mathrm{~kJ}
\end{array}
$$

Total amounts are

Problem 12.8

12.8 Air is contained in a piston-cylinder device. The temperature of the air is $100^{\circ} \mathrm{C}$. Using the fact that for a reversible process the heat transfer $q=\int T d s$, compare the amount of heat (J / kg) required to raise the temperature of the air to $1200^{\circ} \mathrm{C}$ at (a) constant pressure and (b) constant volume. Verify your results using the first law of thermodynamics. Plot the processes on a Ts diagram.

Given: Air in a piston-cylinder
Find: \quad Heat to raise temperature to $1200^{\circ} \mathrm{C}$ at a) constant pressure and b) constant volume

Solution:

The data provided, or available in the Appendices, is:

$$
\mathrm{T}_{1}=(100+273) \cdot \mathrm{K} \quad \mathrm{~T}_{2}=(1200+273) \cdot \mathrm{K} \quad \mathrm{R}=287 \cdot \frac{\mathrm{~J}}{\mathrm{~kg} \cdot \mathrm{~K}} \quad \mathrm{c}_{\mathrm{p}}=1004 \cdot \frac{\mathrm{~J}}{\mathrm{~kg} \cdot \mathrm{~K}} \quad \mathrm{c}_{\mathrm{V}}=\mathrm{c}_{\mathrm{p}}-\mathrm{R} \quad \mathrm{c}_{\mathrm{V}}=717 \cdot \frac{\mathrm{~J}}{\mathrm{~kg} \cdot \mathrm{~K}}
$$

a) For a constant pressure process we start with $\quad T \cdot d s=d h-v \cdot d p$

$$
\begin{array}{ll}
\text { Hence, for } p=\text { const. } & \mathrm{ds}=\frac{\mathrm{dh}}{\mathrm{~T}}=\mathrm{c}_{\mathrm{p}} \cdot \frac{\mathrm{dT}}{\mathrm{~T}} \\
\text { But } & \delta \mathrm{q}=\mathrm{T} \cdot \mathrm{ds}
\end{array}
$$

$$
\text { Hence } \quad \delta \mathrm{q}=\mathrm{c}_{\mathrm{p}} \cdot \mathrm{dT}
$$

$$
\mathrm{q}=\int \mathrm{c}_{\mathrm{p}} \mathrm{dT} \quad \mathrm{q}=\mathrm{c}_{\mathrm{p}} \cdot\left(\mathrm{~T}_{2}-\mathrm{T}_{1}\right) \quad \mathrm{q}=1104 \cdot \frac{\mathrm{~kJ}}{\mathrm{~kg}}
$$

b) For a constant volume process we start
$T \cdot d s=d u+p \cdot d v$

$$
\text { Hence, for } v=\text { const. } \quad d s=\frac{d u}{T}=c_{v} \cdot \frac{d T}{T}
$$

But	$\delta q=T \cdot d s$
Hence	$\delta q=c_{v} \cdot d T \quad q=\int c_{v} d T \quad q=c_{v} \cdot\left(T_{2}-T_{1}\right) \quad q=789 \cdot \frac{\mathrm{~kJ}}{\mathrm{~kg}}$

Heating to a higher temperature at constant pressure requires more heat than at constant volume: some of the heat is used to do work in expanding the gas; hence for constant pressure less of the heat is available for raising the temperature.

From the first law: Constant pressure: $\quad \mathrm{q}=\Delta \mathrm{u}+\mathrm{w} \quad$ Constant volume: $\mathrm{q}=\Delta \mathrm{u}$
The two processes can be plotted using Eqs. 11.11b and 11.11a, simplified for the case of constant pressure and constant volume.
a) For constant pressure $\mathrm{s}_{2}-\mathrm{s}_{1}=\mathrm{c}_{\mathrm{p}} \cdot \ln \left(\frac{\mathrm{T}_{2}}{\mathrm{~T}_{1}}\right)-\mathrm{R} \cdot \ln \left(\frac{\mathrm{p}_{2}}{\mathrm{p}_{1}}\right)$
so $\quad \Delta \mathrm{s}=\mathrm{c}_{\mathrm{p}} \cdot \ln \left(\frac{\mathrm{T}_{2}}{\mathrm{~T}_{1}}\right)$
b) For constant volume $\mathrm{s}_{2}-\mathrm{s}_{1}=\mathrm{c}_{\mathrm{v}} \cdot \ln \left(\frac{\mathrm{T}_{2}}{\mathrm{~T}_{1}}\right)+\mathrm{R} \cdot \ln \left(\frac{\mathrm{v}_{2}}{\mathrm{v}_{1}}\right)$
so
$\Delta \mathrm{s}=\mathrm{c}_{\mathrm{v}} \cdot \ln \left(\frac{\mathrm{T}_{2}}{\mathrm{~T}_{1}}\right)$

The processes are plotted in the associated Excel workbook
12.8 Air is contained in a piston-cylinder device. The temperature of the air is $100^{\circ} \mathrm{C}$. Using the fact that for a reversible process the heat transfer $q=\int T d s$, compare the amount of heat (J / kg) required to raise the temperature of the air to $1200^{\circ} \mathrm{C}$ at (a) constant pressure and (b) constant volume. Verify your results using the first law of thermodynamics. Plot the processes on a Ts diagram.

Given: Air in a piston-cylinder
Find: Heat to raise temperature to $1200^{\circ} \mathrm{C}$ at a) constant pressure and b) constant volume; plot

Solution:

The given or available data is:

$T_{1}=$	100	${ }^{\circ} \mathrm{C}$
$T_{2}=$	1200	${ }^{\circ} \mathrm{C}$
$R=$	287	$\mathrm{~J} / \mathrm{kg} . \mathrm{K}$
$c_{\mathrm{p}}=$	1004	$\mathrm{~J} / \mathrm{kg} \cdot \mathrm{K}$
$C_{\mathrm{v}}=$	717	$\mathrm{~J} / \mathrm{kg} . \mathrm{K}$

The equations to be plotted are:
a) For constant pressure $s_{2}-s_{1}=c_{p} \cdot \ln \left(\frac{T_{2}}{T_{1}}\right)-R \cdot \ln \left(\frac{p_{2}}{p_{1}}\right)$
b) For constant volume $\quad s_{2}-s_{1}=c_{v} \cdot \ln \left(\frac{T_{2}}{T_{1}}\right)+R \cdot \ln \left(\frac{v_{2}}{v_{1}}\right)$

$\boldsymbol{T}(\mathbf{K})$	$\mathbf{a}) \boldsymbol{\Delta} \boldsymbol{s} \mathbf{J} / \mathbf{k g} \cdot \mathbf{K})$	$\mathbf{b}) \Delta \boldsymbol{s} \mathbf{J} / \mathbf{k g} \cdot \mathbf{K})$
373	0	0
473	238	170
573	431	308
673	593	423
773	732	522
873	854	610
973	963	687
1073	1061	758
1173	1150	821
1273	1232	880
1373	1308	934

Problem 12.9

12.9 The four-stroke Otto cycle of a typical automobile engine is sometimes modeled as an ideal air-standard closed system. In this simplified system the combustion process is modeled as a heating process, and the exhaust-intake process as a cooling process of the working fluid (air). The cycle consists of: isentropic compression from state (1) $\left(p_{1}=100 \mathrm{kPa}\right.$ (abs), $\left.T_{1}=20^{\circ} \mathrm{C}, \forall_{1}=500 \mathrm{cc}\right)$ to state (2) $\left(\forall_{2}=\forall_{1} / 8.5\right)$; isometric (constant volume) heat addition to state (3) $\left(T_{3}=2750^{\circ} \mathrm{C}\right)$; isentropic expansion to state (4) $\left(\forall_{4}=\forall_{1}\right)$; and isometric cooling back to state (1). Plot the $p \not{ }^{\neq}$and Ts diagrams for this cycle, and find the efficiency, defined as the net work (the cycle area in $p \forall$ space) divided by the heat added.

Given: Data on Otto cycle

Find: \quad Plot of $p V$ and $T s$ diagrams; efficiency

Solution:

The data provided, or available in the Appendices, is:

$$
\begin{aligned}
& \mathrm{c}_{\mathrm{p}}=1004 \cdot \frac{\mathrm{~J}}{\mathrm{~kg} \cdot \mathrm{~K}} \\
& \mathrm{p}_{1}=100 \cdot \mathrm{kPa} \\
& \mathrm{~V}_{4}=\mathrm{V}_{1}
\end{aligned}
$$

$$
\mathrm{R}=287 \cdot \frac{\mathrm{~J}}{\mathrm{~kg} \cdot \mathrm{~K}}
$$

$$
c_{v}=c_{p}-R
$$

$$
\mathrm{p}_{1}=100 \cdot \mathrm{kPa} \quad \mathrm{~T}_{1}=(20+273) \cdot \mathrm{K} \quad \mathrm{~T}_{3}=(2750+273) \cdot \mathrm{K}
$$

$\mathrm{V}_{1}=500 \cdot \mathrm{cc}$
$\mathrm{V}_{2}=\frac{\mathrm{V}_{1}}{8.5} \quad \mathrm{~V}_{2}=58.8 \cdot \mathrm{cc}$

Computed results:

$$
\mathrm{M}=\frac{\mathrm{P}_{1} \cdot \mathrm{~V}_{1}}{\mathrm{R} \cdot \mathrm{~T}_{1}}
$$

$\mathrm{M}=5.95 \times 10^{-4} \mathrm{~kg}$

For process 1-2 we have isentropic behavior $\quad \mathrm{T} \cdot \mathrm{v}^{\mathrm{k}-1}=$ constant $\quad \mathrm{p} \cdot \mathrm{v}^{\mathrm{k}}=$ constant
(12.12 a and 12.12 b)

Hence

$$
\mathrm{T}_{2}=\mathrm{T}_{1} \cdot\left(\frac{\mathrm{~V}_{1}}{\mathrm{~V}_{2}}\right)^{\mathrm{k}-1} \quad \mathrm{~T}_{2}=690 \mathrm{~K}
$$

$\mathrm{p}_{2}=\mathrm{p}_{1} \cdot\left(\frac{\mathrm{~V}_{1}}{\mathrm{~V}_{2}}\right)^{\mathrm{k}}$
$\mathrm{p}_{2}=2002 \cdot \mathrm{kPa}$

The process from 1-2 is

$$
\mathrm{p}(\mathrm{~V})=\mathrm{p}_{1} \cdot\left(\frac{\mathrm{~V}_{1}}{\mathrm{~V}}\right)^{\mathrm{k}} \quad \text { and } \quad \mathrm{s}=\mathrm{constant}
$$

The work is

$$
W_{12}=\left(\int_{V_{1}}^{\mathrm{V}_{2}} \mathrm{p}(\mathrm{~V}) \mathrm{dV}=\frac{\mathrm{p}_{1} \cdot \mathrm{~V}_{1}-\mathrm{p}_{2} \cdot \mathrm{~V}_{2}}{\mathrm{k}-1}\right)
$$

$$
\mathrm{W}_{12}=-169 \mathrm{~J} \quad \mathrm{Q}_{12}=0 \cdot \mathrm{~J}
$$

(Isentropic)

For process 2-3 we have constant volume

$$
\mathrm{V}_{3}=\mathrm{V}_{2}
$$

$\mathrm{V}_{3}=58.8 \cdot \mathrm{cc}$

Hence

$$
\mathrm{p}_{3}=\mathrm{p}_{2} \cdot \frac{\mathrm{~T}_{3}}{\mathrm{~T}_{2}}
$$

$$
\mathrm{p}_{3}=8770 \cdot \mathrm{kPa}
$$

The process from 2-3 is

$$
\mathrm{V}=\mathrm{V}_{2}=\text { constant } \quad \text { and } \quad \Delta \mathrm{s}=\mathrm{c}_{\mathrm{v}} \cdot \ln \left(\frac{\mathrm{~T}}{\mathrm{~T}_{2}}\right) \quad \mathrm{W}_{23}=0 \cdot \mathrm{~J}
$$

(From 12.11a)

$$
\mathrm{Q}_{23}=\mathrm{M} \cdot \Delta \mathrm{u}=\mathrm{M} \cdot \int \mathrm{c}_{\mathrm{v}} \mathrm{dT}
$$

$\mathrm{Q}_{23}=\mathrm{M} \cdot \mathrm{c}_{\mathrm{v}} \cdot\left(\mathrm{T}_{3}-\mathrm{T}_{2}\right) \quad \mathrm{Q}_{23}=995 \mathrm{~J}$

For process 3-4 we again have isentropic behavior

Hence $\quad \mathrm{T}_{4}=\mathrm{T}_{3} \cdot\left(\frac{\mathrm{~V}_{3}}{\mathrm{~V}_{4}}\right)^{\mathrm{k}-1} \quad \mathrm{~T}_{4}=1284 \mathrm{~K}$
The process from 3-4 is $\quad p(V)=p_{3} \cdot\left(\frac{V_{3}}{V}\right)^{k} \quad$ and $\quad s=$ constant

The work is

$$
\mathrm{W}_{34}=\frac{\mathrm{p}_{3} \cdot \mathrm{~V}_{3}-\mathrm{p}_{4} \cdot \mathrm{~V}_{4}}{\mathrm{k}-1}
$$

$W_{34}=742 \mathrm{~J}$
$\mathrm{Q}_{34}=0 \cdot \mathrm{~J}$

For process 4-1 we again have constant volume

The process from 4-1 is

$$
\begin{array}{ll}
\mathrm{V}=\mathrm{V}_{4}=\text { constant } & \Delta \mathrm{s}=\mathrm{c}_{\mathrm{v}} \cdot \ln \left(\frac{\mathrm{~T}}{\mathrm{~T}_{4}}\right) \\
& \text { (From 12.11a) } \\
\mathrm{Q}_{41}=\mathrm{M} \cdot \mathrm{c}_{\mathrm{v}} \cdot\left(\mathrm{~T}_{1}-\mathrm{T}_{4}\right) & \mathrm{Q}_{41}=-422 \mathrm{~J}
\end{array}
$$

The net work is

$$
\mathrm{W}_{\text {net }}=\mathrm{W}_{12}+\mathrm{W}_{23}+\mathrm{W}_{34}+\mathrm{W}_{41} \quad \mathrm{~W}_{\text {net }}=572 \mathrm{~J}
$$

The efficiency is

$$
\eta=\frac{\mathrm{W}_{\mathrm{net}}}{\mathrm{Q}_{23}}
$$

$\eta=57.5 \cdot \%$
$\eta_{\text {Otto }}=1-\frac{1}{\mathrm{r}_{\mathrm{k}-1}}$
where r is the compression ratio

$$
\begin{aligned}
& r=\frac{V_{1}}{V_{2}} \\
& \eta_{\text {Otto }}=57.5 . \%
\end{aligned}
$$

$\mathrm{W}_{41}=0 \cdot \mathrm{~J}$

This is consistent with the expression for the Otto efficiency
$r=8.5$

Plots of the cycle in $p V$ and $T s$ space are shown in the associated Excel workbook
12.9 The four-stroke Otto cycle of a typical automobile engine is sometimes modeled as an ideal air-standard closed system. In this simplified system the combustion process is modeled as a heating process, and the exhaust-intake process as a cooling process of the working fluid (air). The cycle consists of: isentropic compression from state (1) $\left(p_{1}=100 \mathrm{kPa}(\mathrm{abs}), T_{1}=20^{\circ} \mathrm{C}, \forall_{1}=500 \mathrm{cc}\right)$ to state (2) $\left(\forall_{2}=\forall_{1} / 8.5\right)$; isometric (constant volume) heat addition to state (3) $\left(T_{3}=2750^{\circ} \mathrm{C}\right)$; isentropic expansion to state (4) $\left(\forall_{4}=\forall_{1}\right)$; and isometric cooling back to state (1). Plot the $p \ngtr$ and $T s$ diagrams for this cycle, and find the efficiency, defined as the net work (the cycle area in $p \forall$ space) divided by the heat added.

Given: Data on Otto cycle

Find: Plot of $p V$ and $T s$ diagrams; efficiency

Solution:

The given, available, or computed data is:

$$
\begin{array}{rlrl}
R & = & 287 & \mathrm{~J} / \mathrm{kg} \cdot \mathrm{~K} \\
c_{\mathrm{p}} & = & 1004 & \mathrm{~J} / \mathrm{kg} \cdot \mathrm{~K} \\
c_{\mathrm{v}} & = & 717 & \mathrm{~J} / \mathrm{kg} \cdot \mathrm{~K} \\
k & =1.4 &
\end{array}
$$

$T_{1}=$	293	K	$p_{1}=$	100	kPa
$T_{2}=$	690	K	$p_{2}=$	2002	kPa
$T_{3}=$	3023	K	$p_{3}=$	8770	kPa
$T_{4}=$	1284	K	$p_{4}=$	438	kPa

$V_{1}=$	500	cс
$V_{2}=$	58.8	сс
$V_{3}=$	58.8	cс
$V_{4}=$	500	сс

The process from 1-2 is

$$
\mathrm{p}(\mathrm{~V})=\mathrm{p}_{1} \cdot\left(\frac{\mathrm{~V}_{1}}{\mathrm{~V}}\right)^{\mathrm{k}} \quad \text { and } \quad \mathrm{s}=\text { constant }
$$

The process from 2-3 is

$$
\mathrm{V}=\mathrm{V}_{2}=\text { constant } \quad \text { and }
$$

$$
\Delta \mathrm{s}=\mathrm{c}_{\mathrm{v}} \cdot \ln \left(\frac{\mathrm{~T}}{\mathrm{~T}_{2}}\right)
$$

The process from 3-4 is

$$
\begin{array}{lll}
\mathrm{p}(\mathrm{~V})=\mathrm{p}_{3} \cdot\left(\frac{\mathrm{~V}_{3}}{\mathrm{~V}}\right)^{\mathrm{k}} & \text { and } & \mathrm{s}=\text { constant } \\
\mathrm{V}=\mathrm{V}_{4}=\text { constant } & \text { and } & \Delta \mathrm{s}=\mathrm{c}_{\mathrm{V}} \cdot \ln \left(\frac{\mathrm{~T}}{\mathrm{~T}_{4}}\right)
\end{array}
$$

The process from 4-1 is

The computations are:

	V (CC)	p (kPa)	T (K)	S J/kg•K)	Initial entropy is arbitrary Temperatures from Eq. 12.12b
1	500	100	293	100	
	450	116	306	100	
	400	137	320	100	
	350	165	338	100	Uniform temperature steps
	300	204	359	100	
	250	264	387	100	
	200	361	423	100	
	150	540	474	100	
	100	952	558	100	
2	58.8	2002	690	100	
	58.8	2176	750	160	Temperatures from Eq. 12.12b
	58.8	2901	1000	366	
	58.8	3626	1250	526	
	58.8	4352	1500	657	
	58.8	5077	1750	767	
	58.8	5802	2000	863	
	58.8	6527	2250	947	
	58.8	7253	2500	1023	
	58.8	7978	2750	1091	
3	58.8	8770	3023	1159	
	100	4172	2445	1159	Uniform temperature steps
	150	2364	2078	1159	
	200	1580	1852	1159	
	250	1156	1694	1159	
	300	896	1575	1159	
	350	722	1481	1159	
	400	599	1403	1159	
	450	508	1339	1159	
4	500	438	1284	1159	
	500	410	1200	1111	
	500	375	1100	1049	
	500	341	1000	980	
	500	307	900	905	
	500	273	800	820	
	500	239	700	724	
	500	205	600	614	
	500	171	500	483	
	500	137	400	323	
1	500	100	293	100	

12.10 The four-stroke cycle of a typical diesel engine is sometimes modeled as an ideal air-standard closed system. In this simplified system the combustion process is modeled as a heating process, and the exhaust-intake process as a cooling process of the working fluid (air). The cycle consists of: isentropic compression from state (1) $\left(p_{1}=100 \mathrm{kPa}\right.$ (abs), $\left.T_{1}=20^{\circ} \mathrm{C}, \forall_{1}=500 \mathrm{cc}\right)$ to state (2) $\left(\forall_{2}=\forall_{1} / 12.5\right)$; isometric (constant volume) heat addition to state (3) $\left(T_{3}=3000^{\circ} \mathrm{C}\right)$; isobaric heat addition to state (4) $\left(\forall_{4}=1.75 \forall_{3}\right)$; isentropic expansion to state (5); and isometric cooling back to state (1). Plot the $p \nvdash$ and $T s$ diagrams for this cycle, and find the efficiency, defined as the net work (the cycle area in $p \nvdash$ space) divided by the heat added.

Given: Data on diesel cycle

Find: \quad Plot of $p V$ and $T s$ diagrams; efficiency

Solution:

The data provided, or available in the Appendices, is:

$$
\begin{array}{lllll}
\mathrm{c}_{\mathrm{p}}=1004 \cdot \frac{\mathrm{~J}}{\mathrm{~kg} \cdot \mathrm{~K}} & \mathrm{R}=287 \cdot \frac{\mathrm{~J}}{\mathrm{~kg} \cdot \mathrm{~K}} & \mathrm{c}_{\mathrm{v}}=\mathrm{c}_{\mathrm{p}}-\mathrm{R} & \mathrm{c}_{\mathrm{V}}=717 \frac{\mathrm{~J}}{\mathrm{~kg} \cdot \mathrm{~K}} & \mathrm{k}=\frac{\mathrm{c}_{\mathrm{p}}}{\mathrm{c}_{\mathrm{V}}}
\end{array} \mathrm{k}=1.4
$$

$$
\text { Computed results: } \quad \mathrm{M}=\frac{\mathrm{p}_{1} \cdot \mathrm{~V}_{1}}{\mathrm{R} \cdot \mathrm{~T}_{1}} \quad \mathrm{M}=5.95 \times 10^{-4} \mathrm{~kg}
$$

For process 1-2 we have isentropic behavior $\quad \mathrm{T} \cdot \mathrm{v}^{\mathrm{k}-1}=$ constant (12.12a) $\mathrm{p} \cdot \mathrm{v}^{\mathrm{k}}=$ constant
Hence $\quad \mathrm{T}_{2}=\mathrm{T}_{1} \cdot\left(\frac{\mathrm{~V}_{1}}{\mathrm{~V}_{2}}\right)^{\mathrm{k}-1} \quad \mathrm{~T}_{2}=805 \mathrm{~K} \quad \mathrm{p}_{2}=\mathrm{p}_{1} \cdot\left(\frac{\mathrm{~V}_{1}}{\mathrm{~V}_{2}}\right)^{\mathrm{k}} \quad \mathrm{p}_{2}=3435 \mathrm{kPa}$

The process from 1-2 is

$$
\begin{aligned}
& \mathrm{p}(\mathrm{~V})=\mathrm{p}_{1} \cdot\left(\frac{\mathrm{~V}_{1}}{\mathrm{~V}}\right)^{\mathrm{k}} \\
& \mathrm{~W}_{12}=\int_{\mathrm{V}_{1}}^{\mathrm{V}_{2}} \mathrm{p}(\mathrm{~V}) \mathrm{dV}=\frac{\mathrm{p}_{1} \cdot \mathrm{~V}_{1}-\mathrm{p}_{2} \cdot \mathrm{~V}_{2}}{\mathrm{k}-1}
\end{aligned}
$$

$$
\mathrm{s}=\mathrm{constant}
$$

The work is

$$
\mathrm{W}_{12}=-218 \mathrm{~J}
$$

$$
\mathrm{Q}_{12}=0 \cdot \mathrm{~J}
$$

(Isentropic)

For process 2-3 we have constant volume

Hence

$$
\mathrm{p}_{3}=\mathrm{p}_{2} \cdot \frac{\mathrm{~T}_{3}}{\mathrm{~T}_{2}} \quad \mathrm{p}_{3}=13963 \mathrm{kPa}
$$

The process from 2-3 is $\quad \mathrm{V}=\mathrm{V}_{2}=$ constant \quad and $\quad \Delta \mathrm{s}=\mathrm{c}_{\mathrm{v}} \cdot \ln \left(\frac{\mathrm{T}}{\mathrm{T}_{2}}\right) \quad \mathrm{W}_{23}=0 \cdot \mathrm{~J}$
(From Eq. 12.11a)

$$
\mathrm{Q}_{23}=\mathrm{M} \cdot \Delta \mathrm{u}=\mathrm{M} \cdot \int \mathrm{c}_{\mathrm{v}} \mathrm{dT} \quad \mathrm{Q}_{23}=\mathrm{M} \cdot \mathrm{c}_{\mathrm{v}} \cdot\left(\mathrm{~T}_{3}-\mathrm{T}_{2}\right)
$$

For process 3-4 we have constant pressure $\quad \mathrm{p}_{4}=\mathrm{p}_{3} \quad \mathrm{p}_{4}=13963 \mathrm{kPa} \quad \mathrm{T}_{4}=\mathrm{T}_{3} \cdot\left(\frac{\mathrm{~V}_{4}}{\mathrm{~V}_{3}}\right) \quad \mathrm{T}_{4}=5728 \mathrm{~K}$

The process from 3-4 is

$$
\begin{aligned}
& \mathrm{p}=\mathrm{p}_{3}=\text { constant } \\
& \mathrm{W}_{34}=\mathrm{p}_{3} \cdot\left(\mathrm{~V}_{4}-\mathrm{V}_{3}\right)
\end{aligned}
$$

and
$\Delta \mathrm{s}=\mathrm{c}_{\mathrm{p}} \cdot \ln \left(\frac{\mathrm{T}}{\mathrm{T}_{3}}\right)$
(From Eq. 12.11b)
$\mathrm{W}_{34}=419 \mathrm{~J}$
$\mathrm{Q}_{34}=\mathrm{M} \cdot \mathrm{c}_{\mathrm{p}} \cdot\left(\mathrm{T}_{4}-\mathrm{T}_{3}\right)$
$\mathrm{Q}_{34}=1465 \mathrm{~J}$

For process 4-5 we again have isentropic behavior
$\mathrm{T}_{5}=\mathrm{T}_{4} \cdot\left(\frac{\mathrm{~V}_{4}}{\mathrm{~V}_{5}}\right)^{\mathrm{k}-1} \quad \mathrm{~T}_{5}=2607 \mathrm{~K}$

Hence

$$
\mathrm{p}_{5}=\mathrm{p}_{4} \cdot\left(\frac{\mathrm{v}_{4}}{\mathrm{~V}_{5}}\right)^{\mathrm{k}}
$$

$$
\mathrm{p}_{5}=890 \mathrm{kPa}
$$

The process from 4-5 is $\quad \mathrm{p}(\mathrm{V})=\mathrm{p}_{4} \cdot\left(\frac{\mathrm{~V}_{4}}{\mathrm{~V}}\right)^{\mathrm{k}} \quad$ and $\quad \mathrm{s}=$ constant

The work is $\quad \mathrm{W}_{45}=\frac{\mathrm{p}_{4} \cdot \mathrm{~V}_{4}-\mathrm{p}_{5} \cdot \mathrm{~V}_{5}}{\mathrm{k}-1}$
$\mathrm{W}_{45}=1330 \mathrm{~J}$
$\mathrm{Q}_{45}=0 \cdot \mathrm{~J}$

For process 5-1 we again have constant volume

The process from 5-1 is

$$
\left.\begin{array}{lll}
\mathrm{V}=\mathrm{V}_{5}=\text { constant } & \text { and } & \Delta \mathrm{s}=\mathrm{c}_{\mathrm{v}} \cdot \ln \left(\frac{\mathrm{~T}}{\mathrm{~T}_{5}}\right) \\
\text { (From Eq. 12.11a) }
\end{array}\right)
$$

The net work is

$$
\mathrm{W}_{\mathrm{net}}=\mathrm{W}_{12}+\mathrm{W}_{23}+\mathrm{W}_{34}+\mathrm{W}_{45}+\mathrm{W}_{51}
$$

$$
\mathrm{W}_{\mathrm{net}}=1531 \mathrm{~J}
$$

The heat added is

$$
\mathrm{Q}_{\text {added }}=\mathrm{Q}_{23}+\mathrm{Q}_{34} \quad \mathrm{Q}_{\text {added }}=2517 \mathrm{~J}
$$

The efficiency is

$$
\eta=\frac{W_{\text {net }}}{Q_{\text {added }}} \quad \eta=60.8 \%
$$

C

This is consistent with the expression from thermodynamics for the diesel efficiency

$$
\eta_{\text {diesel }}=1-\frac{1}{\mathrm{k}-1} \cdot\left[\frac{\mathrm{r}_{\mathrm{c}}{ }^{\mathrm{k}}-1}{\mathrm{k} \cdot\left(\mathrm{r}_{\mathrm{c}}-1\right)}\right]
$$

where r is the compression ratio

$$
\begin{array}{ll}
\mathrm{r}=\frac{\mathrm{V}_{1}}{\mathrm{~V}_{2}} & \mathrm{r}=12.5 \\
\mathrm{r}_{\mathrm{C}}=\frac{\mathrm{V}_{4}}{\mathrm{~V}_{3}} & \mathrm{r}_{\mathrm{C}}=1.75 \\
& \eta_{\text {diesel }}=58.8 \%
\end{array}
$$

The plots of the cycle in $p V$ and $T s$ space are shown in the associated Excel workbook
12.10 The four-stroke cycle of a typical diesel engine is sometimes modeled as an ideal air-standard closed system. In this simplified system the combustion process is modeled as a heating process, and the exhaust-intake process as a cooling process of the working fluid (air). The cycle consists of: isentropic compression from state (1) $\left(p_{1}=100 \mathrm{kPa}\right.$ (abs), $\left.T_{1}=20^{\circ} \mathrm{C}, \forall_{1}=500 \mathrm{cc}\right)$ to state (2) $\left(\forall_{2}=\forall_{1} / 12.5\right)$; isometric (constant volume) heat addition to state (3) $\left(T_{3}=3000^{\circ} \mathrm{C}\right)$; isobaric heat addition to state (4) $\left(\forall_{4}=1.75 \vdash_{3}\right)$; isentropic expansion to state (5); and isometric cooling back to state (1). Plot the $p \ngtr$ and $T s$ diagrams for this cycle, and find the efficiency, defined as the net work (the cycle area in $p \nvdash$ space) divided by the heat added.

Given: Data on diesel cycle
Find: Plot of $p V$ and $T s$ diagrams; efficiency

Solution:

The given, available, or computed data is:

$R=$	287	J/kg.K						
$c_{\text {p }}=$	1004	J/kg.K						
$c_{\mathrm{v}}=$	717	J/kg.K						
$k=$	1.4							
$T_{1}=$	293	K	$p_{1}=$	100	kPa	$V_{1}=$	500	CC
$T_{2}=$	805	K	$p_{2}=$	3435	kPa	$V_{2}=$	40	CC
$T_{3}=$	3273	K	$p_{3}=$	13963	kPa	$V_{3}=$	40	CC
$T_{4}=$	5728	K	$p_{4}=$	13963	kPa	$V_{4}=$	70	CC
$T_{5}=$	2607	K	$p_{5}=$	890	kPa	$V_{5}=$	500	CC

The process from $1-2$ is

$$
\mathrm{p}(\mathrm{~V})=\mathrm{p}_{1} \cdot\left(\frac{\mathrm{~V}_{1}}{\mathrm{~V}}\right)^{\mathrm{k}}
$$

The process from 2-3 is

$$
\mathrm{V}=\mathrm{V}_{2}=\text { constant }
$$

and
and
The process from 3-4 is

$$
\mathrm{p}=\mathrm{p}_{3}=\text { constant }
$$

The process from 4-5 is

$$
\mathrm{p}(\mathrm{~V})=\mathrm{p}_{4} \cdot\left(\frac{\mathrm{~V}_{4}}{\mathrm{~V}}\right)^{\mathrm{k}}
$$

and
and
The process from $5-1$ is

$$
\mathrm{V}=\mathrm{V}_{5}=\text { constant }
$$

$\Delta s=c_{v} \cdot \ln \left(\frac{T}{T_{2}}\right)$
$\Delta \mathrm{s}=\mathrm{c}_{\mathrm{p}} \cdot \ln \left(\frac{\mathrm{T}}{\mathrm{T}_{3}}\right)$
$s=$ constant

$$
\Delta \mathrm{s}=\mathrm{c}_{\mathrm{v}} \cdot \ln \left(\frac{\mathrm{~T}}{\mathrm{~T}_{5}}\right)
$$

The computations are:

	V (cc)	\boldsymbol{p} (kPa)	T (K)	S J/kg.K)	Initial entropy is arbitrary Temperatures from Eq. 12.12b
1	500	100	293	100	
	400	137	320	100	
	300	204	359	100	Uniform temperature steps
	250	264	387	100	
	200	361	423	100	
	150	540	474	100	
	100	952	558	100	
	75.0	1425	626	100	
	50.0	2514	736	100	
2	40.0	3435	805	100	
	40.0	3840	900	180	Uniform temperature steps
	40.0	4266	1000	255	
	40.0	5333	1250	415	
	40.0	6399	1500	546	
	40.0	7466	1750	657	
	40.0	8532	2000	752	
	40.0	9599	2250	837	
	40.0	10666	2500	912	
	40.0	11732	2750	981	
3	40.0	13963	3273	1105	
	42.8	13963	3500	1173	Temperatures from Eq. 12.12b
	45.8	13963	3750	1242	
	48.9	13963	4000	1307	
	51.9	13963	4250	1368	
	55.0	13963	4500	1425	
	58.1	13963	4750	1479	
	61.1	13963	5000	1531	
	64.2	13963	5250	1580	
	67.2	13963	5500	1627	
4	70.0	13963	5728	1667	
	100	8474	4966	1667	Uniform temperature steps
	150	4803	4222	1667	
	200	3210	3763	1667	
	250	2349	3441	1667	
	300	1820	3199	1667	
	350	1466	3007	1667	
	400	1216	2851	1667	
	450	1031	2720	1667	
5	500	890	2607	1667	
	500	853	2500	1637	
	500	768	2250	1562	
	500	683	2000	1477	
	500	597	1750	1381	
	500	512	1500	1271	
	500	427	1250	1140	
	500	341	1000	980	
	500	256	750	774	
	500	171	500	483	
1	500	100	293	100	

Given: Air compressed from standard conditions to fill tank with $\forall=10 \mathrm{~m}^{3}, p=4.5 \mathrm{MPa}(g a g e)$. Fdealgas. Reversible.

Find: (a) Energy for isothermal compression
(b) Energy for isentropic compression
(c) Energy removed by cooling from (b) to (a)
(d) Sketch TS a for diagrams

Solution: Apply idealgas, energy, isentropic process equations.
Computing equations: $\quad Q-W=\Delta E=m\left(u_{z}-u_{1}\right), W=-\int p d t$

$$
p / \rho^{k}=\text { constant }, \quad p=p R T
$$

The tank contains $m=\rho \forall$

$$
\begin{gathered}
T \\
\frac{\mathrm{~kg}}{\mathrm{~m}^{3}}
\end{gathered}
$$

$$
m=\rho \forall=55.7 \frac{\mathrm{~kg}}{m^{3}} \times 10 \mathrm{~m}^{3}=557 \mathrm{~kg}
$$

For process $1 \rightarrow 2$,

$$
\begin{array}{l|l}
-W=-\int p d t=-m \int p d v=-m \int R T \frac{d p}{p}=-m \operatorname{RT} \ln p_{2} / p_{1} & \infty \\
W_{12}=-557 \mathrm{~kg}_{x} 287 \frac{\mathrm{~J}}{\mathrm{~kg} \cdot \mathrm{k}} \times(273+15) k_{x} \operatorname{hn}\left(\frac{4.5+0,101}{0.101}\right)=176 \mathrm{MJ} \longleftarrow & W_{12} \\
\hline
\end{array}
$$

For process $z \rightarrow z_{3}, \frac{p_{2 s}}{p_{1}}=\left(\frac{p_{23}}{p_{1}}\right)^{k} \rightarrow \frac{T_{2 s}}{T_{1}}=\left(\frac{p_{23}}{p_{1}}\right)^{\frac{k-1}{k}}=\left(\frac{4.601}{0.101}\right)^{0.286}=2.98$

$$
\begin{aligned}
& T_{23}=2.98 T_{1}=2.98(773+15) \mathrm{K}=858 \mathrm{~K} \\
& W_{12 s}=m\left(u_{2 s}-u_{1}\right)-Q_{12 s}^{0}=m c_{v}\left(T_{2 s}-T_{1}\right) \\
& W_{12 s}=557 \mathrm{~kg}_{\times} 0.717 \frac{\mathrm{~kJ}}{\mathrm{~kg} \cdot \mathrm{k}}(858-288) \mathrm{K}=228 \mathrm{MJ}
\end{aligned}
$$

Process $2 \theta \rightarrow 2$ is at constant pressure

$$
\begin{aligned}
Q_{2 s 2} & =m\left(u_{2}-u_{2 s}\right)-w_{2 s 2}=m\left(u_{2}-u_{z s}\right)-m p\left(v_{z}-v_{z s}\right)=m\left(n_{2}-h_{2 s}\right) \\
& =m C p\left(T_{2}-T_{2 s}\right) \\
Q_{z s 2} & =557 \mathrm{~kg} \times 1.00 \frac{\mathrm{~kJ}}{\mathrm{~kg} \cdot \mathrm{~K}} \times(288-858) \mathrm{k}=-317 \mathrm{MJ} \quad \text { (out of air) }
\end{aligned}
$$

Gwen: Steady flow of air, in=0.5kgls, through, a turbine.. at in tet, $\forall, z 0, T,=1300^{\circ} \mathrm{C}, \mathrm{p}_{1}=2.0 \mathrm{mpen}(a b s)$. At outlet, $V_{2}=200 \mathrm{mls}, \hat{R}_{2}=101$ te ta, $T_{2}=500^{\circ} \mathrm{c}$
Find: (a) pow ar produced by the turborie b) labe state points on a T_{s} diagram

Solution:
For an isoritropir expansion trough the turbine,

$$
\begin{aligned}
& T_{2_{5=c}}=T_{1}\left(\frac{p_{2}}{P_{1}}\right)^{\left(k_{k}-1 T_{k}\right.} \\
& T_{2 s=c}=(1300+273) k\left(\frac{0.101 N B a}{2.0 n P_{a}}\right)^{\frac{14-1}{1.4}} \\
& T_{25=c}=670 k\left(397^{\circ} \mathrm{C}\right)
\end{aligned}
$$

Writing the fist law of Permodymamics between the turbine inlet and outlet

$$
\dot{w}+\dot{x}=\dot{m}\left[\left(h_{2}+\frac{v_{2}^{2}}{2}\right)-\left(h_{1}+\frac{v^{2}}{2}\right)\right]^{20}
$$

(Assure $\dot{Q}=0$)
For an ideci gas wit constant specific $h_{\text {gat }}, h_{2}-h_{1}=C_{p}\left(T_{2}-T_{1}\right)$

$$
\begin{aligned}
& \therefore \dot{N}=\dot{m}\left[c_{p}\left(T_{2}-T_{1}\right)-\frac{v_{2}^{2}}{2}\right] \\
& =0.5 \frac{\mathrm{~kg}}{5}\left[1004 \frac{N \cdot n}{\max ^{2}} 73-1573 \mathrm{~K}-\frac{1}{2}(200)^{2} \frac{n^{2}}{5^{2}} \cdot \frac{25^{2}}{\lg ^{2}}\right]
\end{aligned}
$$

$i n=-392 \times 10^{3} \frac{A . n}{s} \quad$ negative sign indicates work out).

$$
\therefore \dot{W}_{\text {out }}=392 \mathrm{k}
$$

Problem 12.13
Given: Natural gas (thermodynamic properties of methane) flows in a pipe of bunter, $y^{\text {In }}$ oi om At compressor inlet: $T,=13^{\circ}$, $U_{1}=32 \mathrm{mls}, p_{i}-e^{\prime} \mathrm{Mia}$ (gage). At compressor outlet, $f_{2}=80 \mathrm{MPa}$ (gage', The compressor efficiency $\mathrm{r}_{\mathrm{l}}=0.85$.
Find: (a) in $(b) T_{2}, H_{2}$ ic i in a) label Elacepoits on T_{5} diagram
Solution:
The mass flow rate is given by $x=$ pit where $p=\frac{f}{E T}$

$$
\therefore \dot{n}=\frac{\rho_{1}}{R I_{1}} \|_{1} \pi \frac{y^{2}}{4}=(500+101) \times 0^{3} \frac{N}{N^{2}} \times \frac{3 g \cdot x}{518 \cdot 3 N M^{2}} \times \frac{1}{256 K^{2}} \times \frac{32}{s} \times \frac{\pi}{4}(0.6)^{2}
$$

$$
m=36.1 \mathrm{~kg} / \mathrm{s}
$$

For an entropic compression

$$
\begin{aligned}
& T_{2=c}=T_{1}\left(\frac{R_{2} R_{1}-\frac{1}{2}}{T_{2}}=286 \mathrm{~K}\left(\frac{8,01 M P_{a}}{0.601 M P_{a}}\right)^{\frac{1.31-1}{31}}=529 \mathrm{~K}\right. \\
& T_{2}=\frac{T_{2}-T_{1}}{T_{2}-T_{1}} \quad \therefore T_{2}-T_{1}=\frac{T_{2_{2}}-T_{1}}{\eta_{c}} \\
& T_{2}=T_{1}+\frac{T_{2}-T_{1}}{\eta_{2}}=286 \mathrm{~K}+\frac{(529-286) \mathrm{K}}{0.85} \\
& T_{2}=572 \mathrm{~K}
\end{aligned}
$$

From continutur, $\dot{r}=P_{1}, A_{1}=P_{2} A_{2} A_{2}$. Assuming $A_{1}=A_{2}$, fen

$$
\begin{equation*}
\psi_{2}=\frac{p_{1}}{p_{2}} \psi_{1}=\frac{p_{1}}{P_{2}} \frac{T_{2}}{T_{1}} \psi_{1}=\frac{0.601}{8.101} \times \frac{572}{286} \times 32 \frac{1}{5}=4.75 \mathrm{~m} \tag{2}
\end{equation*}
$$

Writing the first low of Permodyramics between compressor inlet a ballet

$$
\dot{w}=23 \mathrm{mw} .
$$

$$
\begin{aligned}
& \dot{w}+\dot{\theta}=i=i\left[\left(h_{2}+\frac{k_{2}^{2}}{2}\right)-\left(h_{1}+\frac{\psi_{2}^{2}}{2}\right)\right] \quad(\text { sure } \dot{a}-0) \\
& \dot{w}=\dot{m}\left[\left(h_{2}-h_{1}\right)+\frac{1}{2}\left(\psi_{2}^{2}-v_{1}\right)\right]=\dot{m}\left[c_{p}\left(\tau_{2}-T_{1}\right)+\frac{1}{2}\left(v_{2}^{2}-v_{1}^{2}\right)\right] \\
& \dot{W}=36.7 \frac{\operatorname{kg}}{s}\left[2190 \frac{\operatorname{kin}}{\lg x}(572-286) x+\frac{1}{2}\left\{(4.75)^{2}-(32)^{2} \frac{r^{2}}{s^{2}}+\frac{N . s^{2}}{\frac{g}{g}}\right\}\right] \\
& \text { is }=3607\left[626 \times 10^{3}-501\right] \frac{N+M}{S}
\end{aligned}
$$

Problem 12.14

12.14 Over time the efficiency of the compressor of Problem
12.13 drops. At what efficiency will the power required to attain 8.0 MPa (gage) exceed 30 MW ? Plot the required power and the gas exit temperature as functions of efficiency.

Given: Data on flow through compressor
Find: Efficiency at which power required is 30 MW ; plot required efficiency and exit temperature as functions of efficiency

Solution:

The data provided, or available in the Appendices, is:

$$
\begin{array}{ll}
\mathrm{R}=518.3 \cdot \frac{\mathrm{~J}}{\mathrm{~kg} \cdot \mathrm{~K}} \quad \mathrm{c}_{\mathrm{p}}=2190 \cdot \frac{\mathrm{~J}}{\mathrm{~kg} \cdot \mathrm{~K}} & \mathrm{c}_{\mathrm{V}}=\mathrm{c}_{\mathrm{p}}-\mathrm{R} \quad \mathrm{c}_{\mathrm{V}}=1672 \frac{\mathrm{~J}}{\mathrm{~kg} \cdot \mathrm{~K}} \quad \mathrm{k}=\frac{\mathrm{c}_{\mathrm{p}}}{\mathrm{c}_{\mathrm{v}}} \quad \mathrm{k}=1.31 \\
\mathrm{~T}_{1}=(13+273) \cdot \mathrm{K} & \mathrm{p}_{1}=0.5 \cdot \mathrm{MPa}+101 \cdot \mathrm{kPa} \\
\mathrm{p}_{2}=8 \cdot \mathrm{MPa}+101 \cdot \mathrm{kPa} & \mathrm{~V}_{1}=32 \cdot \frac{\mathrm{~m}}{\mathrm{~s}}
\end{array}
$$

The governing equation is the first law of thermodynamics for the compressor

$$
\mathrm{M}_{\text {flow }}\left[\left(\mathrm{h}_{2}+\frac{\mathrm{V}_{2}^{2}}{2}\right)-\left(\mathrm{h}_{1}+\frac{\mathrm{V}_{1}^{2}}{2}\right)\right]=\mathrm{W}_{\mathrm{comp}} \quad \text { or } \quad \mathrm{W}_{\mathrm{comp}}=\mathrm{M}_{\mathrm{flow}}\left[\mathrm{c}_{\mathrm{p}} \cdot\left(\mathrm{~T}_{2}-\mathrm{T}_{1}\right)+\frac{\mathrm{V}_{2}^{2}-\mathrm{V}_{1}^{2}}{2}\right]
$$

We need to find the mass flow rate and the temperature and velocity at the exit

$$
\mathrm{M}_{\text {flow }}=\rho_{1} \cdot \mathrm{~A}_{1} \cdot \mathrm{~V}_{1}=\frac{\mathrm{p}_{1}}{\mathrm{R} \cdot \mathrm{~T}_{1}} \cdot \frac{\pi}{4} \cdot \mathrm{D}^{2} \cdot \mathrm{~V}_{1} \quad \mathrm{M}_{\text {flow }}=\frac{\mathrm{p}_{1}}{\mathrm{R} \cdot \mathrm{~T}_{1}} \cdot \frac{\pi}{4} \cdot \mathrm{D}^{2} \cdot \mathrm{~V}_{1} \quad \mathrm{M}_{\text {flow }}=36.7 \frac{\mathrm{~kg}}{\mathrm{~s}}
$$

The exit velocity is then given by

$$
\begin{equation*}
\mathrm{M}_{\text {flow }}=\frac{\mathrm{p}_{2}}{\mathrm{R} \cdot \mathrm{~T}_{2}} \cdot \frac{\pi}{4} \cdot \mathrm{D}^{2} \cdot \mathrm{~V}_{2} \quad \mathrm{~V}_{2}=\frac{4 \cdot \mathrm{M}_{\mathrm{flow}} \cdot \mathrm{R} \cdot \mathrm{~T}_{2}}{\pi \cdot \mathrm{p}_{2} \cdot \mathrm{D}^{2}} \tag{1}
\end{equation*}
$$

The exit velocity cannot be computed until the exit temperature is determined!

Using Eq. 1 in the first law

$$
\mathrm{W}_{\text {comp }}=\mathrm{M}_{\text {flow }} \cdot\left[\mathrm{c}_{\mathrm{p}} \cdot\left(\mathrm{~T}_{2}-\mathrm{T}_{1}\right)+\frac{\left(\frac{4 \cdot \mathrm{M}_{\mathrm{flow}} \cdot \mathrm{R} \cdot \mathrm{~T}_{2}}{\pi \cdot \mathrm{p}_{2} \cdot \mathrm{D}^{2}}\right)^{2}-\mathrm{V}_{1}^{2}}{2}\right]
$$

In this complicated expression the only unknown is T_{2}, the exit temperature. The equation is a quadratic, so is solvable explicitly for T_{2}, but instead we use Excel's Goal Seek to find the solution (the second solution is mathematically correct but physically unrealistic - a very large negative absolute temperature). The exit temperature is

$$
\mathrm{T}_{2}=660 \cdot \mathrm{~K}
$$

If the compressor was ideal (isentropic), the exit temperature would be given by
$T \cdot \mathrm{p}^{\frac{1-\mathrm{k}}{\mathrm{k}}}=$ constant

Hence $\quad T_{2 s}=T_{1} \cdot\left(\frac{p_{1}}{p_{2}}\right)^{\frac{1-k}{k}} \quad T_{2 s}=529 \mathrm{~K}$
For a compressor efficiency η, we have $\quad \eta=\frac{h_{2 s}-h_{1}}{h_{2}-h_{1}} \quad$ or $\quad \eta=\frac{T_{2 s}-T_{1}}{T_{2}-T_{1}} \quad \eta=65.1 \%$

To plot the exit temperature and power as a function of efficiency we use

$$
\mathrm{T}_{2}=\mathrm{T}_{1}+\frac{\mathrm{T}_{2 \mathrm{~s}}-\mathrm{T}_{1}}{\eta}
$$

with

$$
\mathrm{V}_{2}=\frac{4 \cdot \mathrm{M}_{\mathrm{flow}} \cdot \mathrm{R} \cdot \mathrm{~T}_{2}}{\pi \cdot \mathrm{p}_{2} \cdot \mathrm{D}^{2}} \quad \text { and } \quad \mathrm{W}_{\mathrm{comp}}=\mathrm{M}_{\mathrm{flow}} \cdot\left[\mathrm{c}_{\mathrm{p}} \cdot\left(\mathrm{~T}_{2}-\mathrm{T}_{1}\right)+\frac{\mathrm{V}_{2}^{2}-\mathrm{V}_{1}^{2}}{2}\right]
$$

The dependencies of T_{2} and $W_{\text {comp }}$ on efficiency are plotted in the associated Excel workbook
12.14 Over time the efficiency of the compressor of Problem
12.13 drops. At what efficiency will the power required to attain
8.0 MPa (gage) exceed 30 MW ? Plot the required power and the gas exit temperature as functions of efficiency.

Given: Data on flow through compressor
Find: Efficiency at which power required is 30 MW ; plot required efficiency and exit temperature as functions of efficiency

Solution:

The given or available data is:

R	$=$	518.3	
$c_{\mathrm{p}}=$	2190	$\mathrm{~J} / \mathrm{kg} \cdot \mathrm{K}$	
$c_{\mathrm{V}}=$	1672	$\mathrm{~J} / \mathrm{kg} \cdot \mathrm{K}$	
$k=$	1.31		
$T_{1}=$	286	K	
$p_{1}=$	601	kPa	
$V_{1}=$	32	$\mathrm{~m} / \mathrm{s}$	
$p_{2}=$	8101	kPa	
$D=$	0.6	$\mathrm{~m} / \mathrm{s}$	
$W_{\text {comp }}=$	30	MW	

Computed results:

$$
\begin{aligned}
& \mathrm{M}_{\text {flow }}=\frac{\mathrm{p}_{1}}{\mathrm{R} \cdot \mathrm{~T}_{1}} \cdot \frac{\pi}{4} \cdot \mathrm{D}^{2} \cdot \mathrm{~V}_{1} \\
& M_{\text {flow }}= \\
& 36.7 \mathrm{~kg} / \mathrm{s} \\
& \mathrm{~W}_{\text {comp }}=\mathrm{M}_{\text {flow }} \cdot\left[\mathrm{c}_{\mathrm{p}} \cdot\left(\mathrm{~T}_{2}-\mathrm{T}_{1}\right)+\frac{\left(\frac{4 \cdot \mathrm{M}_{\text {flow }} \cdot \mathrm{R} \cdot \mathrm{~T}_{2}}{\pi \cdot \mathrm{p}_{2} \cdot \mathrm{D}^{2}}\right)^{2}-\mathrm{V}_{1}^{2}}{2}\right]
\end{aligned}
$$

Use Goal Seek to vary T_{2} below so that the error between the left and right sides is zero!
$T_{2}=660 \quad \mathrm{~K}$

LHS (MW)	RHS (MW)	Error
30.0	30.0	0.00%

$$
\begin{aligned}
T_{2 s} & =T_{1} \cdot\left(\frac{p_{1}}{p_{2}}\right)^{\frac{1-k}{k}} \\
T_{2 s} & =\frac{529}{} K \\
\eta & =\frac{h_{2 s}-h_{1}}{h_{2}-h_{1}} \\
\eta & =65.1 \%
\end{aligned}
$$

$$
\begin{aligned}
& \eta=\frac{\mathrm{T}_{2 \mathrm{~s}}-\mathrm{T}_{1}}{\mathrm{~T}_{2}-\mathrm{T}_{1}} \\
& \mathrm{~V}_{2}=\frac{4 \cdot \mathrm{M}_{\text {flow }} \cdot \mathrm{R} \cdot \mathrm{~T}_{2}}{\pi \cdot \mathrm{p}_{2} \cdot \mathrm{D}^{2}} \\
& \mathrm{~W}_{\text {comp }}=\mathrm{M}_{\text {flow }} \cdot\left[c_{\mathrm{p}} \cdot\left(\mathrm{~T}_{2}-\mathrm{T}_{1}\right)+\frac{\mathrm{V}_{2}^{2}-\mathrm{V}_{1}^{2}}{2}\right]
\end{aligned}
$$

$\boldsymbol{\eta}$	$\boldsymbol{T}_{\mathbf{2}} \mathbf{(K)}$	$\boldsymbol{V}_{\mathbf{2}} \mathbf{(m / s)}$	$\boldsymbol{W}_{\text {comp }} \mathbf{(M W)}$
85%	572	4.75	23
80%	590	4.90	24
70%	634	5.26	28
50%	773	6.41	39
40%	894	7.42	49
35%	981	8.14	56
30%	1097	9.11	65
25%	1259	10.45	78
20%	1503	12.47	98
15%	1908	15.84	130

Given: Balloon inflated isothermally from $r=5$ to $r^{2} 7 \mathrm{in}$.
Flow is $Q=0.10 \mathrm{cfm}$ of stander $\operatorname{air}(59 \mathrm{~F}, 14.7$ psia)
Balloon skin tension is $\sigma=k A$, where $k=200 \mathrm{lbf} / \mathrm{ft} 3$, and $A=$ surface area of balloon.

Find: Time required.
Solution: The mass flow rate is $\dot{m}=\rho_{s t d} Q=$ constant, so Computing equation: $\Delta t=\frac{\Delta m}{\dot{m}} \quad p=\rho R T$
Assume: (1) Standard air, $\rho=0.0765 \mathrm{bm} / \mathrm{ft}^{3}$; (2) Ideal gas Then $\dot{m}=\rho Q=0.0765 \frac{\mathrm{~km}}{\mathrm{ft}^{3}} \times 0.10 \frac{\mathrm{ft}^{3}}{\mathrm{~min}^{3}} \times \frac{\mathrm{min}}{60 \mathrm{~s}}=1.28 \times 10^{-4} 16 \mathrm{~m} \mathrm{~L}$ From a force balance on the balloon:

or $p=p a t m+8 \pi k r$

$$
\left(p-p_{a+m}\right) \pi r^{2}
$$

For $r=\sin , p=14.7+8 \pi_{x} 200 \frac{1 b t}{f^{3}} \cdot \sin \cdot \frac{f+3}{1728 i^{3}}=29.2$ psia

$$
\begin{aligned}
& \rho=\frac{P}{R T}=29.2 \frac{\mathrm{Bf}}{1 \mathrm{H}^{2}} \times \frac{\mathrm{Hm} \cdot \mathrm{R}}{53.3 \mathrm{ft} \cdot \mathrm{Bf}} \times \frac{1}{519^{\circ} R^{144}} \frac{14 \mathrm{~m}^{2}}{\mathrm{ft}^{2}}=0.152 \mathrm{~km} / \mathrm{At}^{3} \\
& \forall=\frac{4}{3} \pi r^{3}=\frac{4 \pi}{3} \times(5)^{3} i^{3} \frac{f+3}{1728 \mathrm{in}}=0.303 \mathrm{ft}^{3} \\
& m=\rho \forall=0.152 \frac{\mathrm{bm}}{\mathrm{ff}^{3}} \times 0.30 .3 \mathrm{ft}^{3}=0.04611 \mathrm{~mm}
\end{aligned}
$$

 Tabulating,

Then $\Delta m=m_{7}-m_{5}=0.152-0.046 / 10 \mathrm{~m}=0.106 \mathrm{l6} \mathrm{~m}$
and

$$
\Delta t=0.106 / 16 \mathrm{~m}_{\times} \frac{\leq}{1.28 \times 10^{-4} \mathrm{~km}}=828 \mathrm{~s} \quad(\simeq 14 \mathrm{~min})
$$

12.16 For the balloon process of Problem 12.15 we could define a "volumetric ratio" as the ratio of the volume of standard air supplied to the volume increase of the balloon, per unit time. Plot this ratio over time as the balloon radius is increased from 5 to 7 inches.

Given: Data on flow rate and balloon properties
Find: "Volumetric efficiency" over time

Solution:

The given or available data is:

R	$=$	53.3	$\mathrm{ft} . \mathrm{lbf} / \mathrm{lb}^{\circ} \mathrm{R}$
$T_{\text {atm }}=$	519	R	
$p_{\text {atm }}=$	14.7	psi	
k	$=$	200	$\mathrm{lbf} / \mathrm{ft}^{3}$
$V_{\text {rate }}=$	0.1	$\mathrm{ft}^{3} / \mathrm{min}$	

Computing equations:

Standard air density	$\rho_{\text {air }}=\frac{\mathrm{p}_{\mathrm{atm}}}{\mathrm{R} \cdot \mathrm{T}_{\mathrm{atm}}}$
Mass flow rate	$\mathrm{M}_{\mathrm{rate}}=\mathrm{V}_{\text {rate }} \cdot \rho_{\mathrm{air}}$
From a force balance on each hemisphere	$\left(\mathrm{p}-\mathrm{p}_{\mathrm{atm}}\right) \cdot \pi \cdot \mathrm{r}^{2}=\sigma \cdot 2 \cdot \pi \cdot \mathrm{r} \quad$ where $\quad \sigma=\mathrm{k} \cdot \mathrm{A}=\mathrm{k} \cdot 4 \cdot \pi \cdot \mathrm{r}^{2}$
Hence	$\mathrm{p}=\mathrm{p}_{\mathrm{atm}}+\frac{2 \cdot \sigma}{\mathrm{r}} \quad \mathrm{p}=\mathrm{p}_{\mathrm{atm}}+8 \cdot \pi \cdot \mathrm{k} \cdot \mathrm{r}$
Density in balloon	$\rho=\frac{\mathrm{p}}{\mathrm{R} \cdot \mathrm{T}_{\mathrm{air}}}$
The instantaneous volume is	$\mathrm{V}_{\mathrm{ball}}=\frac{4}{3} \cdot \pi \cdot \mathrm{r}^{3}$
The instantaneous mass is	$\mathrm{M}_{\mathrm{ball}}=\mathrm{V}_{\mathrm{ball}} \cdot \rho$
The time to fill to radius r from $r=5$ in is	$\mathrm{t}=\frac{\mathrm{M}_{\mathrm{ball}}(\mathrm{r})-\mathrm{M}_{\mathrm{ball}}(\mathrm{r}=5 \text { in })}{\mathrm{M}_{\mathrm{rate}}}$
The volume change between time steps Δt is	$\Delta \mathrm{V}=\mathrm{V}_{\mathrm{ball}}(\mathrm{t}+\Delta \mathrm{t})-\mathrm{V}_{\mathrm{ball}}(\mathrm{t})$

Computed results:

$$
\begin{aligned}
\rho_{\mathrm{air}} & =0.0765 \mathrm{lb} / \mathrm{ft}^{3} \\
M_{\text {rate }} & =0.000128 \mathrm{lb} / \mathrm{s}
\end{aligned}
$$

$\boldsymbol{r}(\mathbf{i n})$	$\boldsymbol{p}(\mathbf{p s i})$	$\boldsymbol{\rho}\left(\mathbf{l b} / \mathbf{f t}^{\mathbf{3}}\right)$	$\boldsymbol{V}_{\text {ball }} \mathbf{(f t}^{\mathbf{3}} \mathbf{)}$	$\boldsymbol{M}_{\text {ball }} \mathbf{(l b)}$	$\boldsymbol{t}(\mathbf{s})$	$\Delta \boldsymbol{V} / \boldsymbol{V}_{\text {rate }}$
5.00	29.2	0.152	0.303	0.0461	0.00	0.00
5.25	30.0	0.156	0.351	0.0547	67.4	42.5%
5.50	30.7	0.160	0.403	0.0645	144	41.3%
5.75	31.4	0.164	0.461	0.0754	229	40.2%
6.00	32.2	0.167	0.524	0.0876	325	39.2%
6.25	32.9	0.171	0.592	0.101	433	38.2%
6.50	33.6	0.175	0.666	0.116	551	37.3%
6.75	34.3	0.179	0.746	0.133	683	36.4%
7.00	35.1	0.183	0.831	0.152	828	35.5%

12.17 A sound pulse level above about 20 Pa can cause permanent hearing damage. Assuming such a sound wave travels through air at $20^{\circ} \mathrm{C}$ and 100 kPa , estimate the density, temperature, and velocity change immediately after the sound wave passes.

Given: Sound wave
Find: Estimate of change in density, temperature, and velocity after sound wave passes

Solution:

Basic equation: $\mathrm{p}=\rho \cdot \mathrm{R} \cdot \mathrm{T} \quad \Delta \mathrm{s}=\mathrm{c}_{\mathrm{p}} \cdot \ln \left(\frac{\mathrm{T}_{2}}{\mathrm{~T}_{1}}\right)-\mathrm{R} \cdot \ln \left(\frac{\mathrm{p}_{2}}{\mathrm{P}_{1}}\right)$

$$
\mathrm{du}=\mathrm{c}_{\mathrm{v}} \cdot \mathrm{dT} \quad \mathrm{dh}=\mathrm{c}_{\mathrm{p}} \cdot \mathrm{dT}
$$

Assumptions: 1) Ideal gas 2) Constant specific heats 3) Isentropic process 4) infinitesimal changes
Given or available data

$$
\begin{array}{clll}
\qquad \mathrm{T}_{1}=(20+273) \cdot \mathrm{K} & \mathrm{p}_{1}=100 \cdot \mathrm{kPa} \quad \mathrm{dp}=20 \cdot \mathrm{~Pa} & \mathrm{k}=1.4 & \mathrm{R}=286.9 \frac{\mathrm{~J}}{\mathrm{~kg} \cdot \mathrm{~K}} \\
\mathrm{c}=\sqrt{\mathrm{k} \cdot \mathrm{R} \cdot \mathrm{~T}_{1}} & \mathrm{c}=343 \frac{\mathrm{~m}}{\mathrm{~s}} & & \\
\text { For small changes, from Section } 11-2 & \mathrm{dp}=\mathrm{c}^{2} \cdot \mathrm{~d} \rho \quad \text { so } \mathrm{d} \rho=\frac{\mathrm{dp}}{\mathrm{c}^{2}} & \mathrm{~d} \rho=1.70 \times 10^{-4} \cdot \frac{\mathrm{~kg}}{\mathrm{~m}^{3}} & \text { a very small change! }
\end{array}
$$

The air density is $\rho_{1}=\frac{\mathrm{P}_{1}}{\mathrm{R} \cdot \mathrm{T}_{1}} \quad \rho_{1}=1.19 \frac{\mathrm{~kg}}{\mathrm{~m}^{3}}$
Then

$$
\mathrm{dV}_{\mathrm{x}}=\frac{1}{\rho_{1} \cdot \mathrm{c}} \cdot \mathrm{dp} \quad \quad \mathrm{dV}_{\mathrm{x}}=0.049 \frac{\mathrm{~m}}{\mathrm{~s}} \quad \text { This is the velocity of the air after the sound wave! }
$$

For the change in temperature we start with the ideal gas equation $\quad \mathrm{p}=\rho \cdot \mathrm{R} \cdot \mathrm{T} \quad$ and differentiate $\mathrm{dp}=\mathrm{d} \rho \cdot \mathrm{R} \cdot \mathrm{T}+\rho \cdot \mathrm{R} \cdot \mathrm{dT}$
Dividing by the ideal gas equation we find $\frac{d p}{p}=\frac{d \rho}{\rho}+\frac{d T}{T}$
Hence

$$
\mathrm{dT}=\mathrm{T}_{1} \cdot\left(\frac{\mathrm{dp}}{\mathrm{p}_{1}}-\frac{\mathrm{d} \rho}{\rho_{1}}\right)
$$

$\mathrm{dT}=0.017 \mathrm{~K}$
$\mathrm{dT}=0.030 \cdot \Delta^{\circ} \mathrm{F} \quad$ a very small change $!$
12.18 The bulk modulus E_{v} of a material indicates how hard it is to compress the material; a large E_{v} indicates the material requires a large pressure to compress. Is air "stiffer" when suddenly or slowly compressed? To answer this, find expressions in terms of instantaneous pressure p for the bulk modulus of air (kPa) when it is a) rapidly compressed and b) slowly compressed. Hint: Rapid compression is approximately isentropic (it is adiabatic because it is too quick for heat transfer to occur), and slow compression is isothermal (there is plenty of time for the air to equilibrate to ambient temperature).

Given: Sound wave

Find: Estimate of change in density, temperature, and velocity after sound wave passes

Solution:

Basic equations: $\quad \mathrm{p}=\rho \cdot \mathrm{R} \cdot \mathrm{T}$

$$
\mathrm{E}_{\mathrm{V}}=\frac{\mathrm{dp}}{\frac{\mathrm{~d} \rho}{\rho}}
$$

Assumptions: 1) Ideal gas 2) Constant specific heats 3) Infinitesimal changes
To find the bulk modulus we need $\frac{d p}{d \rho} \quad$ in $\quad E_{V}=\frac{d p}{\frac{d \rho}{\rho}}=\rho \cdot \frac{d p}{d \rho}$
For rapid compression (isentropic) $\frac{p}{\rho k}=$ const and so $\quad \frac{d p}{d \rho}=k \cdot \frac{p}{\rho}$
Hence

$$
\mathrm{E}_{\mathrm{V}}=\rho \cdot\left(\mathrm{k} \cdot \frac{\mathrm{p}}{\rho}\right) \quad \quad \mathrm{E}_{\mathrm{V}}=\mathrm{k} \cdot \mathrm{p}
$$

For gradual compression (isothermal) we can use the ideal gas equation

$$
p=\rho \cdot R \cdot T \quad \text { so }
$$

$$
\mathrm{dp}=\mathrm{d} \rho \cdot \mathrm{R} \cdot \mathrm{~T}
$$

Hence

$$
E_{V}=\rho \cdot(R \cdot T)=p
$$

$$
E_{V}=p
$$

We conclude that the "stiffness" (E_{v}) of air is equal to kp when rapidly compressed and p when gradually compressed. To give an idea of v
For water $\quad E_{V}=2.24 \cdot \mathrm{GPa}$
$\begin{array}{llll}\text { For air }(\mathrm{k}=1.4) \text { at } \mathrm{p}=101 \cdot \mathrm{kPa} & \text { Rapid compression } & \mathrm{E}_{\mathrm{V}}=\mathrm{k} \cdot \mathrm{p} & \mathrm{E}_{\mathrm{V}}=141 \cdot \mathrm{kPa} \\ & \text { Gradual compression } & \mathrm{E}_{\mathrm{V}}=\mathrm{p} & \mathrm{E}_{\mathrm{V}}=101 \cdot \mathrm{kPa}\end{array}$

Problem 12.19

12.19 You have designed a device for determining the bulk modulus, E_{v}, of a material. It works by measuring the time delay between sending a sound wave into a sample of the material and receiving the wave after it travels through the sample and bounces back. As a test, you use a 1 m rod of steel ($E_{v} \approx 200 \mathrm{GN} / \mathrm{m}^{2}$). What time delay should your device indicate? You now test a 1 m rod (1 cm diameter) of an unknown material and find a time delay of 0.5 ms . The mass of the rod is measured to be 0.25 kg . What is this material's bulk modulus?

Given: Device for determining bulk modulus
Find: Time delay; Bulk modulus of new material

Solution:

Basic equation: $\quad c=\sqrt{\frac{E_{V}}{\rho}}$

Hence for given data $\quad \mathrm{E}_{\mathrm{V}}=200 \cdot \frac{\mathrm{GN}}{\mathrm{m}^{2}} \quad \mathrm{~L}=1 \cdot \mathrm{~m} \quad$ and for steel $\quad \mathrm{SG}=7.83 \quad \rho_{\mathrm{W}}=1000 \cdot \frac{\mathrm{~kg}}{\mathrm{~m}^{3}}$

For the steel

$$
c=\sqrt{\frac{E_{v}}{S G \cdot \rho_{W}}} \quad c=5054 \frac{m}{s}
$$

Hence the time to travel distance L is
$\Delta \mathrm{t}=\frac{\mathrm{L}}{\mathrm{c}} \quad \Delta \mathrm{t}=1.98 \times 10^{-4} \mathrm{~s} \quad \Delta \mathrm{t}=0.198 \mathrm{~ms} \quad \Delta \mathrm{t}=198 \mu \mathrm{~s}$

For the unknown material

$$
\mathrm{M}=0.25 \cdot \mathrm{~kg}
$$

$\mathrm{D}=1 \cdot \mathrm{~cm}$
$\Delta \mathrm{t}=0.5 \cdot \mathrm{~ms}$

The density is then

$$
\rho=\frac{M}{L \cdot \frac{\pi \cdot D^{2}}{m^{3}}} \quad \rho=3183 \frac{\mathrm{~kg}}{\mathrm{~m}^{3}}
$$

The speed of sound in it is
$c=\frac{L}{\Delta t}$
$\mathrm{c}=2000 \frac{\mathrm{~m}}{\mathrm{~s}}$

Hence th bulk modulus is

$$
E_{v}=\rho \cdot c^{2} \quad E_{v}=12.7 \frac{G N}{m^{2}}
$$

12.20 Dolphins often hunt by listening for sounds made by their prey. They "hear" with the lower jaw, which conducts the sound vibrations to the middle ear via a fat-filled cavity in the lower jaw bone. If the prey is 1000 m away, how long after a sound is made does a dolphin hear it? Assume the seawater is at $20^{\circ} \mathrm{C}$.

Given: Hunting dolphin
Find: \quad Time delay before it hears prey at 1000 m

Solution:

Basic equation: $\quad c=\sqrt{\frac{\mathrm{E}_{\mathrm{V}}}{\rho}}$

Given (and Table A.2) data
$\mathrm{L}=1000 \cdot \mathrm{~m}$
SG $=1.025$
$\mathrm{E}_{\mathrm{V}}=2.42 \cdot \frac{\mathrm{GN}}{\mathrm{m}^{2}}$
$\rho_{\mathrm{W}}=1000 \cdot \frac{\mathrm{~kg}}{\mathrm{~m}^{3}}$

For the seawater

$$
c=\sqrt{\frac{E_{V}}{S G \cdot \rho_{W}}} \quad c=1537 \frac{m}{s}
$$

Hence the time for sound to travel distance L is

$$
\Delta \mathrm{t}=\frac{\mathrm{L}}{\mathrm{c}}
$$

$$
\Delta \mathrm{t}=0.651 \cdot \mathrm{~s}
$$

$$
\Delta \mathrm{t}=651 \cdot \mathrm{~ms}
$$

Problem 12.21

12.21 A submarine sends a sonar signal to detect the enemy. The reflected wave returns after 25 s . Estimate the separation between the submarines. (As an approximation assume the seawater is at $20^{\circ} \mathrm{C}$.)

Given: Submarine sonar
Find: Separation between submarines

Solution:

Basic equation: $\quad c=\sqrt{\frac{E_{V}}{\rho}}$

Given (and Table A.2) data

$$
\Delta \mathrm{t}=25 \cdot \mathrm{~s}
$$

$\mathrm{SG}=1.025$
$\mathrm{E}_{\mathrm{V}}=2.42 \cdot \frac{\mathrm{GN}}{\mathrm{m}^{2}}$
$\rho_{\mathrm{W}}=1000 \cdot \frac{\mathrm{~kg}}{\mathrm{~m}^{3}}$
For the seawater $\quad c=\sqrt{\frac{E_{V}}{S G \cdot \rho_{W}}} \quad c=1537 \frac{m}{s}$
Hence the distance sound travels in time Δt is

The distance between submarines is half of this
$\mathrm{L}=\mathrm{c} \cdot \Delta \mathrm{t}$
$\mathrm{L}=38.4 \mathrm{~km}$
$x=\frac{L}{2}$
$\mathrm{x}=19.2 \mathrm{~km}$

Problem 12.22

12.22 An airplane flies at 400 mph at 1600 ft altitude on a standard day. The plane climbs to $50,000 \mathrm{ft}$ and flies at 725 mph . Calculate the Mach number of flight in both cases.

Given: Airplane cruising at two different elevations
Find: Mach numbers
Solution:

Given: The Lockheed se-71 aircraft is thought to cruse at $M=3.3$ at altitude $z=85,000 \mathrm{ft}$.
Find: (a) speed of sound and flight speed for ese conditions. b) Compare spent to muzzles speed (Moombec) of a $30-\mathrm{d}$. rifle bullet.

Solution:
At altitude, $Z=85.000 \mathrm{~A} \times 0.3048 \frac{\mathrm{~A}}{\mathrm{~A}}=25.9 \mathrm{~km}$
From Table A. $3, T=222 K$

$$
\begin{aligned}
& V=M_{C}=3.3 \times 298 \mathrm{Mls}=9.87 \mathrm{mls} \\
& \frac{t}{t_{\text {balt }}}=\frac{987}{700}=1.41
\end{aligned}
$$

Given: Boeing 727 cruises at 520 mither at an altitude of 33,00 ft on a standard day
Find: (a) cruise Mach number of te aircraft. (b) Flight speed corresponding to $M_{\text {max }}=0.9$

Solution:
At $33,00 \mathrm{ft}, z=10.06 \mathrm{tm}$. From Table A.3, $T=223 \mathrm{~K}$.

$$
\begin{aligned}
& \text { Ten, } c=\sqrt{\operatorname{ker}}=\left[1,4 \times 28 \frac{4 m}{\operatorname{kg} k} \times 223 \mathrm{k} \times \frac{\operatorname{kg} m 7^{1 / 2}}{\sqrt{2}]^{2}}\right]^{2}=299 \mathrm{mls} \\
& V=520 \frac{\mathrm{mi}}{\mathrm{hr}} \cdot 5280 \frac{\mathrm{ft}}{\mathrm{ri}} \cdot \frac{\mathrm{hr}}{36000} \times 0.3048 \frac{\mathrm{n}}{\mathrm{ft}}=232 \mathrm{~m} / \mathrm{s} \\
& M=\frac{y}{c}=\frac{232 \mathrm{mls}}{299 \mathrm{Mls}}=0.276
\end{aligned}
$$

At $M=0.90$

$$
V=M c=0.90 \times 299 M l=269 \mathrm{mls}(603 \mathrm{mph}) \quad 寸
$$

12.25 Investigate the effect of altitude on Mach number by plotting the Mach number of a 500 mph airplane as it flies at altitudes ranging from sea level to 10 km .

Given: Airplane cruising at 550 mph
Find: Mach number versus altitude

Solution:

Basic equation: $\quad \mathrm{c}=\sqrt{\mathrm{k} \cdot \mathrm{R} \cdot \mathrm{T}} \quad \mathrm{M}=\frac{\mathrm{V}}{\mathrm{c}}$

$$
\begin{aligned}
V & =500 \mathrm{mph} \\
R & =286.90 \mathrm{~J} / \mathrm{kg} \cdot \mathrm{~K} \\
k & =1.40
\end{aligned}
$$

(Table A.6)

Data on temperature versus height obtained from Table A. 3

$\mathbf{z} \mathbf{(m)}$	$\mathbf{T} \mathbf{(K)}$	\boldsymbol{C} (m/s)	\boldsymbol{C} (mph)	\boldsymbol{M}
0	288.2	340	661	0.756
500	284.9	338	658	0.760
1000	281.7	336	654	0.765
1500	278.4	334	650	0.769
2000	275.2	332	646	0.774
2500	271.9	330	642	0.778
3000	268.7	329	639	0.783
3500	265.4	326	635	0.788
4000	262.2	325	631	0.793
4500	258.9	322	627	0.798
5000	255.7	320	623	0.803
6000	249.2	316	615	0.813
7000	242.7	312	607	0.824
8000	236.2	308	599	0.835
9000	229.7	304	590	0.847
10000	223.3	299	582	0.859

12.26 You are watching a July 4th fireworks display from a distance of one mile. How long after you see an explosion do you hear it? You also watch New Year's fireworks (same place and distance). How long after you see an explosion do you hear it? Assume it's $75^{\circ} \mathrm{F}$ in July and $5^{\circ} \mathrm{F}$ in January.

Given: Fireworks displays!
Find: How long after seeing them do you hear them?

Solution:

Basic equation: $\quad \mathrm{c}=\sqrt{\mathrm{k} \cdot \mathrm{R} \cdot \mathrm{T}}$

Assumption: Speed of light is essentially infinite (compared to speed of sound)

The given or available data is	$\mathrm{T}_{\text {July }}=(75+460) \cdot \mathrm{R}$	$\mathrm{L}=1 \cdot \mathrm{mi}$	$\mathrm{k}=1.4$	$\mathrm{R}_{\text {air }}=53.33 \cdot \frac{\mathrm{ft} \cdot \mathrm{lbf}}{\mathrm{lbm} \cdot \mathrm{R}}$
Hence	$\mathrm{c}_{\text {July }}=\sqrt{\mathrm{k} \cdot \mathrm{R}_{\text {air }} \cdot \mathrm{T}_{\text {July }}}$	$\mathrm{c}_{\mathrm{July}}=1134 \frac{\mathrm{ft}}{\mathrm{~s}}$		
Then the time is	$\Delta \mathrm{t}_{\mathrm{July}}=\frac{\mathrm{L}}{\mathrm{C}_{\mathrm{July}}}$	$\Delta \mathrm{t}_{\text {July }}=4.66 \mathrm{~s}$		
In January	$\mathrm{T}_{\text {Jan }}=(5+460) \cdot \mathrm{R}$			
Hence	$\mathrm{c}_{\mathrm{Jan}}=\sqrt{\mathrm{k} \cdot \mathrm{R}_{\mathrm{air}} \cdot \mathrm{T}_{\mathrm{Jan}}}$	$\mathrm{C}_{\text {Jan }}=1057 \frac{\mathrm{ft}}{\mathrm{s}}$		
Then the time is	$\Delta \mathrm{t}_{\mathrm{Jan}}=\frac{\mathrm{L}}{\mathrm{C}_{\mathrm{Jan}}}$	$\Delta \mathrm{t}_{\text {Jan }}=5.00 \mathrm{~s}$		

12.27 Use data for specific volume to calculate and plot the speed of sound in saturated liquid water over the temperature range from 0 to $200^{\circ} \mathrm{C}$.

Given: Data on water specific volume
Find: Speed of sound over temperature range

Solution:

$\begin{array}{ll}\text { Basic equation: } & \mathrm{c}=\sqrt{\frac{\partial}{\partial \rho} \mathrm{p}}\end{array}$ at isentropic conditions
We use compressed liquid data at adjacent pressures of 5 MPa and 10 MPa , and estimate the change in density between these pressures from the corresponding specific volume changes

$$
\Delta \mathrm{p}=\mathrm{p}_{2}-\mathrm{p}_{1} \quad \Delta \rho=\frac{1}{\mathrm{v}_{2}}-\frac{1}{\mathrm{v}_{1}} \quad \text { and } \quad \mathrm{c}=\sqrt{\frac{\Delta \mathrm{p}}{\Delta \rho}} \quad \text { at each temperature }
$$

$p_{2}=$	10	MPa
$p_{1}=$	5	MPa
$\Delta p=$	5	MPa

Data on specific volume versus temperature can be obtained fro any good thermodynamics text (try the Web!)

	$\boldsymbol{p}_{\mathbf{1}}$	$\boldsymbol{p}_{\mathbf{2}}$		
$\left.\boldsymbol{T} \mathbf{(}^{\mathbf{0}} \mathbf{C}\right)$	$\boldsymbol{v}\left(\mathbf{m}^{\mathbf{3}} / \mathbf{k g}\right)$	$\boldsymbol{v}\left(\mathbf{m}^{\mathbf{3}} / \mathbf{k g}\right)$	$\Delta \rho\left(\mathbf{k g} / \mathbf{m}^{\mathbf{3}}\right)$	$\boldsymbol{c}(\mathbf{m} / \mathbf{s})$
0	0.0009977	0.0009952	2.52	1409
20	0.0009996	0.0009973	2.31	1472
40	0.0010057	0.0010035	2.18	1514
60	0.0010149	0.0010127	2.14	1528
80	0.0010267	0.0010244	2.19	1512
100	0.0010410	0.0010385	2.31	1470
120	0.0010576	0.0010549	2.42	1437
140	0.0010769	0.0010738	2.68	1366
160	0.0010988	0.0010954	2.82	1330
180	0.0011240	0.0011200	3.18	1254
200	0.0011531	0.0011482	3.70	1162

Gwen: Perwation of sonic speed (Eq. 12.18, Section 12-2)
Rederive assuming direction of Glued notion behind te wave is $d N_{x}$ to the right.
Solution:

(b) Irnetral of moving wite

Apply continuity to et bs

$$
\begin{aligned}
& 0=\{-|p c A|]+\left\{(p+d p)\left(c+d V_{1}\right) \|\right\}, \\
& o=-p \in A+p \in A+p d V_{1} R+c A d p+d p d t_{t}=0
\end{aligned}
$$

$$
p d v_{n}+c d p=0 \quad \text { or } \quad d v_{n}=-\frac{c}{p} d p \ldots \ldots \text { (i) }
$$

Applying x-momestun equation to save ct guvs

$$
\begin{align*}
& \left\{\mathrm{m}_{i}=\bar{n}_{\text {out }}\right\} \text {. } \\
& \text { - AdP }=\text { PAC d } N_{k} \text {, and } \tag{2}
\end{align*}
$$

Containing equations (i) and (c) we obtain

$$
-\frac{c}{p} d p=-\frac{d p}{p c}
$$

$o r$

$$
c^{2}=\frac{d \rho}{d \rho}
$$

This is same resent as detoured in the derivation of' 'Section 12-2 with the direction of the fluid motion behind the wove to thelert
12.29 Compute the speed of sound at sea level in standard air.

By scanning data from Table A. 3 into your PC (or using Fig. 3.3),
evaluate the speed of sound and plot for altitudes to 90 km .

Given: Data on atmospheric temperature variation with altitude
Find: \quad Sound of speed at sea level; plot speed as function of altitude

Solution

The given or available data is:

$$
\begin{array}{rlr}
R= & 286.9 & \mathrm{~J} / \mathrm{kg} \cdot \mathrm{~K} \\
k= & 1.4 &
\end{array}
$$

Computing equation:

$$
c=\sqrt{k R T}
$$

Computed results:
(Only partial data is shown in table)

$\mathbf{Z}(\mathbf{m})$	$\boldsymbol{T} \mathbf{(K)}$	$\boldsymbol{c}(\mathbf{m} / \mathbf{s})$
0	288.2	340
500	284.9	338
1000	281.7	336
1500	278.4	334
2000	275.2	332
2500	271.9	330
3000	268.7	329
3500	265.4	326
4000	262.2	325
4500	258.9	322
5000	255.7	320
6000	249.2	316
7000	242.7	312
8000	236.2	308
9000	229.7	304
10000	223.3	299

12.30 The temperature varies linearly from sea level to approximately 11 km altitude in the standard atmosphere. Evaluate the lapse rate-the rate of decrease of temperature with altitude-in the standard atmosphere. Derive an expression for the rate of change of sonic speed with altitude in an ideal gas under standard atmospheric conditions. Evaluate and plot from sea level to 10 km altitude.

Given: Data on atmospheric temperature variation with altitude

Find: Lapse rate; plot of rate of change of sonic speed with altitude

Solution:

The given or available data is:

$$
\begin{array}{rlll}
R= & 286.9 & \mathrm{~J} / \mathrm{kg} . \mathrm{K} \\
k= & 1.4 & \\
T_{0}= & 288.2 & \mathrm{~K} \\
T_{10 \mathrm{k}}= & 223.3 & \mathrm{~K}
\end{array}
$$

Computing equations:

$$
\text { For a linear temperature variation } \quad \mathrm{T}=\mathrm{T}_{0}+\mathrm{m} \cdot \mathrm{z}
$$

$$
\frac{\mathrm{dT}}{\mathrm{dz}}=\mathrm{m}=\frac{\mathrm{T}-\mathrm{T}_{0}}{\mathrm{z}} \quad \text { which can be evaluated at } \mathrm{z}=10 \mathrm{~km}
$$

For an ideal gas

$$
\mathrm{c}=\sqrt{\mathrm{k} \cdot \mathrm{R} \cdot \mathrm{~T}}=\sqrt{\mathrm{k} \cdot \mathrm{R} \cdot\left(\mathrm{~T}_{0}+\mathrm{m} \cdot \mathrm{z}\right)}
$$

Hence

$$
\frac{\mathrm{dc}}{\mathrm{dz}}=\frac{\mathrm{m} \cdot \mathrm{k} \cdot \mathrm{R}}{2 \cdot \mathrm{c}}
$$

Computed results:

$$
m=-0.00649 \mathrm{~K} / \mathrm{m} \quad \text { (Using } T \text { at } z=10 \mathrm{~km})
$$

$\mathbf{z}(\mathbf{k m})$	$\boldsymbol{T}(\mathbf{K})$	$\left.\boldsymbol{d c} / \mathbf{d z} \mathbf{(s}^{\mathbf{- 1}}\right)$
0	288.2	-0.00383
1	281.7	-0.00387
2	275.2	-0.00392
3	268.7	-0.00397
4	262.2	-0.00402
5	255.8	-0.00407
6	249.3	-0.00412
7	242.8	-0.00417
8	236.3	-0.00423
9	229.8	-0.00429
10	223.3	-0.00435

12.31 Air at $77^{\circ} \mathrm{F}$ flows at $M=1.9$. Determine the air speed and the Mach angle.

Given: \quad Air flow at $\mathrm{M}=1.9$
Find: Air speed; Mach angle

Solution:

Basic equations:	$\mathrm{c}=\sqrt{\mathrm{k} \cdot \mathrm{R} \cdot \mathrm{T}}$	$\mathrm{M}=\frac{\mathrm{V}}{\mathrm{c}}$	$\alpha=\mathrm{asin}\left(\frac{1}{\mathrm{M}}\right)$
The given or available data is	$\mathrm{T}=(77+460) \cdot \mathrm{R}$	$\mathrm{M}=1.9$	$\mathrm{k}=1.4$
Hence	$\mathrm{c}=\sqrt{\mathrm{k} \cdot \mathrm{R}_{\mathrm{air}} \cdot \mathrm{T}}$	$\mathrm{c}=1136 \cdot \frac{\mathrm{ft}}{\mathrm{s}}$	
Then the air speed is	$\mathrm{V}=\mathrm{M} \cdot \mathrm{c}$	$\mathrm{V}=2158 \frac{\mathrm{ft}}{\mathrm{s}}$	$\mathrm{V}=1471 \mathrm{mph}$
The Mach angle is given by	$\alpha=\mathrm{asin}\left(\frac{1}{\mathrm{M}}\right)$	$\alpha=31.83 \cdot \frac{\mathrm{ft} \cdot \mathrm{lbf}}{\mathrm{lbm} \cdot \mathrm{R}}$	

Problem 12.32
Gwen：Gas at $P=50$ pisa $\quad p=0.27 \mathrm{bm} / \mathrm{ft}^{3}$ Projectile fired into gas Total angle of Mack cone is 20° Find：speed of projectile relative to zoos
Solution：
Basic equation：$P=p R T$
Definitions $=\operatorname{sn} \alpha=\frac{1}{n} \quad M=\frac{4}{c}$
Computing ec，$c=\sqrt{\text { ERE }}$
Assumption：ideal gas

$$
\begin{aligned}
& \sin \alpha=\frac{1}{M} \quad M=\frac{1}{\sin \alpha}=\frac{1}{\sin 10^{\circ}}=5 \cdot-76 \\
& c=[k e T]^{H_{2}}=\left[b \frac{p}{e}\right]^{A_{2}}
\end{aligned}
$$

$$
\begin{aligned}
& c=1100 \text { 化列 } \\
& M=\frac{y}{c}: V=m c=5,36 \times 110 \mathrm{ft}_{\mathrm{f}}=6320 \mathrm{ft}
\end{aligned}
$$

Problem 12.33
Gwen: Photo of bullet moving Prang standard air shows Mack angle, $\alpha=32^{\circ}$
Find: Speed of bullet
Solution:
Computing equations, $\quad \sin \alpha=\frac{1}{m} \quad c=\sqrt{k R T}$
Assumptions: ") ar behaves as an ideal gas (a) constant specific heats.

$$
M=\frac{1}{\sin d}, M=\frac{y}{c} \quad \therefore \quad v=c M=\frac{c}{\sin \alpha}
$$

Since $c=\sqrt{R T}$, then

Given: A schlieren photograph taken in the NTF shows a Mach angle, $\alpha=57^{\circ}$, $D_{\text {at }}$ a location where $T=-27^{\circ} F$ and $p=1,3$ psia.
Find: (a) Pe local Mach nuriver and flow speed (b) The unit Reynolds number for the flow

Solution:

$$
\begin{aligned}
& \sin \alpha=\frac{1}{M} \quad \therefore M=\frac{1}{\sin \alpha}=\frac{1}{\sin 57^{\circ}}=1.19
\end{aligned}
$$

$$
\begin{aligned}
& V=M C=1.19\left(6-i 6 \mathrm{ft} \mathrm{l}_{5}\right)=804 \mathrm{ft} \mathrm{ls}_{\mathrm{s}} \\
& R_{e x}=\frac{e v x}{\mu}
\end{aligned}
$$

From Eq. A.I (Appendix F)

$$
\begin{aligned}
& \mu=\frac{b T^{\prime \prime}}{1+5 . T} \quad \begin{aligned}
\quad & =1.4 .58 \times 10^{-6} \quad \mathrm{~kg} / \mathrm{m} .6 . \mathrm{K}^{1 / 2} \\
s & =110.4 \mathrm{~K}
\end{aligned} \\
& T \text { in } k \\
& T=-2 \pi b F=-b r e=10 b k . \\
& \mu=1.4 .58 \times 10^{-6} \frac{\mathrm{ka}}{M .5 . \mathrm{N}^{12}}(10 b k)^{1 / 2} \times \frac{1}{1+\frac{\mathrm{Ma.4}}{106}}=7.35 \times 10^{-6} \mathrm{~kg} \ln \mathrm{~m} \\
& \mu=7.35 \times 10^{-6} \frac{\mathrm{gg}}{M .5} \times \frac{N . s^{2}}{\lg \cdot \mathrm{~m}} \times \frac{2.089 \times 10^{-2} \mathrm{bf} \cdot \mathrm{~s} / \mathrm{ft}^{2}}{1 N \cdot \mathrm{~s}} \\
& \mu=1.54 \times 10^{-7} \quad 6.5 / \mathrm{ft}^{2}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{R_{e}}{x}=3.00 \times 10^{6} \mathrm{ft}^{-1}=9.84 \times 10^{6} \mathrm{~m}^{-1} \quad \mathrm{Rel}_{x}
\end{aligned}
$$

Problem 12.35
Given: An aircraft flies at $M=1.4$ al elevation $z=200 \mathrm{n}$ The air temperature is $35^{\circ} \mathrm{C}$
Find: (a) air speed of aircraft
b) tame between instant when aircraft passes directly overhead and instant when Mach cone passes a point on the ground.
Solution: Assume $T=$ constant over $200 n$ elation.

$$
T=35 \mathrm{c}=308 \mathrm{k}
$$

$$
c=\sqrt{\operatorname{ke} T}=\left[1.4 \times 287 \frac{\mathrm{AM}}{\operatorname{kg} \cdot \mathrm{~K}} \times 308 \mathrm{k} \times \frac{\operatorname{kg} \cdot \mathrm{m}^{2} \mathrm{~s}^{2}}{]^{1 / 2}}=352 \mathrm{~m} / \mathrm{s}\right.
$$

$$
v=M c=14 \times 352 \mathrm{mls}=493 \mathrm{mls}
$$

From the instant the ourcraf is directly overhead with the Mack cone reaches the ground, He plane travels a distance Δt at speed $V=493$ ms

$$
\begin{gathered}
\sin \alpha=\frac{1}{M}=\frac{1}{14}=0.743 \\
\alpha=45.0^{\circ}
\end{gathered}
$$

$$
\frac{h}{\Delta x}=\tan \alpha \quad \therefore \Delta h=\frac{h}{\tan \alpha}=\frac{200 m}{\tan 45.6^{\circ}}=196 m
$$

Since the plane moves at constant spear V

$$
\begin{align*}
\Delta x=V \Delta t \text { and } \Delta t & =\frac{\Delta t}{y}=\frac{196 m}{493 m} 1 \mathrm{~m} \\
\Delta t & =0.398 \mathrm{~s}
\end{align*}
$$

12.36 While jogging on the beach (it's a warm summer day, about $30^{\circ} \mathrm{C}$) a high-speed jet flies overhead. You guesstimate it's at an altitude of about 3500 m , and count off about 5 s before you hear it. Estimate the speed and Mach number of the jet.

Given: High-speed jet flying overhead
Find: Estimate speed and Mach number of jet

Solution:

$\begin{array}{llll}\text { Basic equations: } & \mathrm{c}=\sqrt{\mathrm{k} \cdot \mathrm{R} \cdot \mathrm{T}} & \mathrm{M}=\frac{\mathrm{V}}{\mathrm{c}} & \alpha=\operatorname{asin}\left(\frac{1}{\mathrm{M}}\right) \\ \text { Given or available data } & \mathrm{T}=(30+273) \cdot \mathrm{K} & \mathrm{h}=3500 \cdot \mathrm{~m} & \mathrm{k}=1.4\end{array} \quad \mathrm{R}=286.9 \frac{\mathrm{~J}}{\mathrm{~kg} \cdot \mathrm{~K}}$
The time it takes to fly from directly overhead to where you hear it is $\quad \Delta \mathrm{t}=5 \cdot \mathrm{~s}$
The distance traveled, moving at speed V , is

$$
\begin{equation*}
\mathrm{x}=\mathrm{V} \cdot \Delta \mathrm{t} \tag{1}
\end{equation*}
$$

The Mach angle is related to height h and distance x by $\quad \tan (\alpha)=\frac{\sin (\alpha)}{\cos (\alpha)}=\frac{h}{x}=\frac{h}{V \cdot \Delta t}$
and also we have
$\sin (\alpha)=\frac{1}{M}=\frac{c}{V}$

Dividing Eq. 2 by Eq 1

$$
\cos (\alpha)=\frac{\mathrm{c}}{\mathrm{~V}} \cdot \frac{\mathrm{~V} \cdot \Delta \mathrm{t}}{\mathrm{~h}}=\frac{\mathrm{c} \cdot \Delta \mathrm{t}}{\mathrm{~h}}
$$

Note that we could have written this equation from geometry directly!

We have	$\mathrm{c}=\sqrt{\mathrm{k} \cdot \mathrm{R} \cdot \mathrm{T}}$	$\mathrm{c}=349 \frac{\mathrm{~m}}{\mathrm{~s}}$	so
Hence	$\mathrm{M}=\frac{1}{\sin (\alpha)}$	$\mathrm{M}=1.15$	$\alpha=\operatorname{acos}\left(\frac{\mathrm{c} \cdot \Delta \mathrm{t}}{\mathrm{h}}\right) \quad \alpha=60.1 \cdot \mathrm{deg}$
Then the speed is	V	$=\mathrm{M} \cdot \mathrm{c}$	$\mathrm{V}=402 \frac{\mathrm{~m}}{\mathrm{~s}}$

Note that we assume the temperature of the air is uniform. In fact the temperature will vary over 3500 m , so the Mach cone will be curved. This speed and Mach number are only rough estimates

Given: Aircraft passes overhead at an altitude of 3 kn , travelling at $M=1,35$. The our temperature is constant at $T=308$ and a head wind blows at tais $=10 \mathrm{ml}$.

Find: (a) the airspeed of the aircraft
(b) time between instant when aircraft passes directly overhead and instant when sound reaches the ground.
Solution:

$$
\begin{aligned}
& T=\text { constant }=20^{\circ} \mathrm{C}=293 \mathrm{~K} \\
& c=(k e t)^{4_{2}}=\left(1.4 \times 249 \frac{\mathrm{Nm}}{\left.\mathrm{~kg} \cdot \mathrm{k} \times 293 \mathrm{k} \times \frac{\mathrm{kg} \mathrm{M}}{\mathrm{k} 5^{2}}\right)^{4_{2}}=343 \mathrm{M} l_{\mathrm{s}}}\right. \\
& V=M c=1.5 \times 343 \frac{n}{\mathrm{sc}}=515 \mathrm{mls}
\end{aligned}
$$

The airspeed is the velocity of \$e plane relative to the air The ground speed is then $\vec{V}_{Q}=\vec{V}_{\text {air }}+\vec{V}_{p l a}$
From the instant the aircraft is directly overhead until the thad cone reaches te ground. the plane travels a distance, \rangle, At speech $V_{p}=485 \mathrm{mls}$.

Re value of the time, t, is then $t=P / y_{p}$
Since tie air temperature is constant, the roach Arse is straight and $y=h / \tan \alpha$; where $\alpha=\sin ^{\prime \prime}(1 / m)$

$$
\alpha=\sin ^{\prime}\left(\frac{1}{4}\right)=\sin ^{\prime}\left(\frac{1}{1.5}\right)=41.8^{\circ}
$$

Ten.

$$
t=\frac{y}{y_{f}}=\frac{h}{\tan \alpha} \frac{1}{V_{f}}=\frac{3000 n}{\tan 41.8} \times \frac{s}{485 m}=6.92 \mathrm{~s}
$$

12.38 A supersonic aircraft flies at 3 km altitude at a speed of $1000 \mathrm{~m} / \mathrm{s}$ on a standard day. How long after passing directly above a ground observer is the sound of the aircraft heard by the ground observer?

Given: Supersonic aircraft flying overhead
Find: Time at which airplane heard

Solution:

Basic equations:	$\mathrm{c}=\sqrt{\mathrm{k} \cdot \mathrm{R} \cdot \mathrm{T}}$	$\mathrm{M}=\frac{\mathrm{V}}{\mathrm{c}}$	$\alpha=\operatorname{asin}\left(\frac{1}{\mathrm{M}}\right)$
Given or available data	$\mathrm{V}=1000 \cdot \frac{\mathrm{~m}}{\mathrm{~s}}$	$\mathrm{~h}=3 \cdot \mathrm{~km}$	$\mathrm{k}=1.4$

The time it takes to fly from directly overhead to where you hear it is
$\Delta t=\frac{\mathrm{X}}{\mathrm{V}}$
If the temperature is constant then

$$
x=\frac{h}{\tan (\alpha)}
$$

The temperature is not constant so the Mach line will not be straight. We can find a range of Δt by considering the temperature range
At $\mathrm{h}=3 \mathrm{~km}$ we find from Table A. 3 that $\quad \mathrm{T}=268.7 \cdot \mathrm{~K}$

Using this temperature	$\mathrm{c}=\sqrt{\mathrm{k} \cdot \mathrm{R} \cdot \mathrm{T}}$	$\mathrm{c}=329 \frac{\mathrm{~m}}{\mathrm{~s}}$	and	$\mathrm{M}=\frac{\mathrm{V}}{\mathrm{c}}$	$\mathrm{M}=3.04$	
Hence	$\alpha=\operatorname{asin}\left(\frac{1}{M}\right)$	$\alpha=19.2 \mathrm{deg}$	$x=\frac{h}{\tan (\alpha)}$	$\mathrm{x}=8625 \mathrm{~m}$	$\Delta \mathrm{t}=\frac{\mathrm{X}}{\mathrm{V}}$	$\Delta \mathrm{t}=8.62 \mathrm{~s}$

At sea level we find from Table A. 3 that
Using this temperature
Hence

$$
\mathrm{c}=\sqrt{\mathrm{k} \cdot \mathrm{R} \cdot \mathrm{~T}}
$$

$$
\mathrm{T}=288.2 \cdot \mathrm{~K}
$$

$\alpha=\operatorname{asin}\left(\frac{1}{M}\right)$
$\mathrm{c}=340 \frac{\mathrm{~m}}{\mathrm{~s}}$
and
$\mathrm{M}=\frac{\mathrm{V}}{\mathrm{c}}$
$M=2.94$
$\alpha=19.9 \operatorname{deg} \quad x=\frac{h}{\tan (\alpha)} \quad x=8291 m$

$$
\Delta t=\frac{x}{V} \quad \Delta t=8.29 \mathrm{~s}
$$

Thus we conclude that the time is somwhere between 8.62 and 8.29 s . Taking an average
$\Delta t=8.55 \cdot \mathrm{~s}$
12.39 For the conditions of Problem 12.38 , find the location at which the sound wave that first reaches the ground observer was emitted.

Given: Supersonic aircraft flying overhead
Find: Location at which first sound wave was emitted

Solution:

Basic equations:	$\mathrm{c}=\sqrt{\mathrm{k} \cdot \mathrm{R} \cdot \mathrm{T}}$	$\mathrm{M}=\frac{\mathrm{V}}{\mathrm{c}}$	$\alpha=\operatorname{asin}\left(\frac{1}{\mathrm{M}}\right)$
Given or available data	$\mathrm{V}=1000 \cdot \frac{\mathrm{~m}}{\mathrm{~s}}$	$\mathrm{~h}=3 \cdot \mathrm{~km}$	$\mathrm{k}=1.4$

We need to find $\Delta \mathrm{x}$ as shown in the figure

$$
\Delta \mathrm{x}=\mathrm{h} \cdot \tan (\alpha)
$$

The temperature is not constant so the Mach line will not be straight (α is not constant). We can find a range of α and Δx by considering the temperature range

At $\mathrm{h}=3 \mathrm{~km}$ we find from Table A. 3 that $\quad \mathrm{T}=268.7 \cdot \mathrm{~K}$

Using this temperature	$c=\sqrt{\mathrm{k} \cdot \mathrm{R} \cdot \mathrm{T}}$	$\mathrm{c}=329 \frac{\mathrm{~m}}{\mathrm{~s}}$	and
Hence	$\alpha=\operatorname{asin}\left(\frac{1}{\mathrm{M}}\right)$	$\alpha=19.2 \mathrm{deg}$	$\Delta x=h \cdot \tan (\alpha)$

At sea level we find from Table A. 3 that
$\mathrm{T}=288.2 \cdot \mathrm{~K}$

Using this temperature
$\mathrm{c}=\sqrt{\mathrm{k} \cdot \mathrm{R} \cdot \mathrm{T}}$
$\mathrm{c}=340 \frac{\mathrm{~m}}{\mathrm{~s}}$
and
$\mathrm{M}=\frac{\mathrm{V}}{\mathrm{c}} \quad \mathrm{M}=2.94$
Hence
$\alpha=\operatorname{asin}\left(\frac{1}{M}\right)$
$\alpha=19.9 \mathrm{deg}$
$\Delta \mathrm{x}=\mathrm{h} \cdot \tan (\alpha)$
$\Delta \mathrm{x}=1085 \mathrm{~m}$

Thus we conclude that the distance is somwhere between 1043 and 1085 m . Taking an average
$\Delta \mathrm{x}=1064 \cdot \mathrm{~m}$

Given: Concorde supersonic transport cruises ot $M=2 z$ at an altitude $h=$ IV em on a standard days.
PH $t=0$, plane is directly overhead.
Find: value of t when aircraft is firithearo.
Solution:
 $V=M c=2.2 \times 29.5 \mathrm{mls}=649 \mathrm{ml}$.
If the speck of sound were constant all He way to the ground the Mach tie would Remand straight the Mack angle. * would be constant with

$$
x=\sin ^{-}\left(\frac{1}{M}\right)=\sin ^{\prime}\left(\frac{1}{2}\right)=27^{\circ}
$$

Then from the diagram $\rangle=h=\frac{h}{\tan \alpha}$
and $t=\frac{y}{4}=\frac{h}{\tan \alpha} y=\frac{17000 m}{\tan 22^{\circ}} \times \frac{1}{649} \frac{\sec }{n}=51.4 \mathrm{~s}$
However, the spar of sound varies over the altitude because the temperature varies with altitude.

At sea level $T=288.2 \mathrm{~K}$

Re corresponding value of Maxi number for $V=64 a$ nits is

$$
\begin{aligned}
& M=\frac{1}{c}=\frac{649}{346}=1.91 \\
& \alpha=\sin ^{\prime}\left(\frac{1}{M}\right)=\sin ^{\prime}\left(\frac{1}{1.91}\right)=316^{\circ}
\end{aligned}
$$

Thus, if the spot of sound were constant (at Me sea terse)) value over the entire altitude, then

$$
t=y=\frac{h}{\tan \alpha y}=\frac{11000 m}{\tan 31.6} \times \frac{5}{649 \mathrm{~m}}=42.6 \mathrm{~s}
$$

We can ottar a better approtinale by considering the variation of temperature with altitude.

From Table A. 3

$$
n t_{n} \leq y<20 \mathrm{kn}_{n} \quad T=2 b_{n} \mathrm{~K}
$$

$0<y \leq n k+\quad T$ varies linearly will y

$$
T=T_{0}-b_{y} \quad \Delta \quad T_{0}=288.2 k
$$

Since T is constant. for $y>y_{0}=1$ ben, the second approximation which assumes the Mach line ot sea level for otybuin gives the minimum time

$$
\begin{aligned}
& \lambda_{1}=\frac{h_{1}}{\tan \alpha_{1}}=\frac{6 t_{0}}{\tan 20^{\circ}}=4, त l_{n} \\
& y_{2}=\frac{h_{2}}{\tan \alpha_{2}}=\frac{11 \mathrm{~km}}{\tan 31.60}=n .88 \mathrm{~km} \\
& y=y+y_{2} \\
& t=\frac{y}{4}=\frac{29.65 t m}{6.49 .715}=457 \mathrm{~s}
\end{aligned}
$$

Consequently

$$
45 \pi \leq t \leq 514 \leq
$$

Since the two Jalues are reasonably dose, it is appropriate to take the average value and soy ti $48.5=$

Problem 12.41

12.41 The airflow around an automobile is assumed to be incompressible. Investigate the validity of this assumption for an automobile traveling at 60 mph . (Relative to the automobile the minimum air velocity is zero, and the maximum is approximately 120 mph.$)$

Given: Speed of automobile
Find: Whether flow can be considered incompressible

Solution:

Consider the automobile at rest with 60 mph air flowing over it. Let state 1 be upstream, and point 2 the stagnation point on the automobile

The data provided, or available in the Appendices, is:

$$
\mathrm{R}=287 \cdot \frac{\mathrm{~J}}{\mathrm{~kg} \cdot \mathrm{~K}} \quad \mathrm{k}=1.4 \quad \mathrm{~V}_{1}=60 \cdot \mathrm{mph} \quad \mathrm{p}_{1}=101 \cdot \mathrm{kPa} \quad \mathrm{~T}_{1}=(20+273) \cdot \mathrm{K}
$$

The basic equation for the density change is

$$
\begin{equation*}
\frac{\rho_{0}}{\rho}=\left[1+\frac{(\mathrm{k}-1)}{2} \cdot \mathrm{M}^{2}\right]^{\frac{1}{\mathrm{k}-1}} \tag{12.20c}
\end{equation*}
$$

or

$$
\rho_{0}=\rho_{1} \cdot\left[1+\frac{(\mathrm{k}-1)}{2} \cdot \mathrm{M}_{1}^{2}\right]^{\frac{1}{\mathrm{k}-1}}
$$

$$
\rho_{1}=\frac{\mathrm{P}_{1}}{\mathrm{R} \cdot \mathrm{~T}_{1}}
$$

$$
\rho_{1}=1.201 \frac{\mathrm{~kg}}{\mathrm{~m}^{3}}
$$

For the Mach number we need c

$$
\mathrm{c}_{1}=\sqrt{\mathrm{k} \cdot \mathrm{R} \cdot \mathrm{~T}_{1}}
$$

$$
c_{1}=343 \frac{\mathrm{~m}}{\mathrm{~s}}
$$

$$
\mathrm{V}_{1}=26.8 \frac{\mathrm{~m}}{\mathrm{~s}}
$$

$$
\mathrm{M}_{1}=\frac{\mathrm{V}_{1}}{\mathrm{c}_{1}}
$$

$$
\mathrm{M}_{1}=0.0782
$$

$$
\rho_{0}=\rho_{1} \cdot\left(1+\frac{\mathrm{k}-1}{2} \cdot \mathrm{M}_{1}^{2}\right)^{\frac{1}{\mathrm{k}-1}} \quad \rho_{0}=1.205 \frac{\mathrm{~kg}}{\mathrm{~m}^{3}} \quad \text { The percentage change in density is } \quad\left|\frac{\rho_{0}-\rho_{1}}{\rho_{0}}\right|=0.305 \%
$$

This is an insignificant change, so the flow can be considered incompressible. Note that $M<0.3$, the usual guideline for incompressibility

For the maximum speed present

$$
\mathrm{V}_{1}=120 \cdot \mathrm{mph} \quad \mathrm{~V}_{1}=53.6 \frac{\mathrm{~m}}{\mathrm{~s}} \quad \mathrm{M}_{1}=\frac{\mathrm{V}_{1}}{\mathrm{c}_{1}} \quad \mathrm{M}_{1}=0.156
$$

$$
\rho_{0}=\rho_{1} \cdot\left(1+\frac{\mathrm{k}-1}{2} \cdot \mathrm{M}_{1}^{2}\right)^{\frac{1}{\mathrm{k}-1}} \quad \rho_{0}=1.216 \frac{\mathrm{~kg}}{\mathrm{~m}^{3}} \quad \text { The percentage change in density is } \quad\left|\frac{\rho_{0}-\rho_{1}}{\rho_{0}}\right|=1.21 \%
$$

This is still an insignificant change, so the flow can be considered incompressible.
12.42 Opponents of supersonic transport aircraft claim that sound waves can be refracted in the upper atmosphere and that, as a result, sonic booms can be heard several hundred miles away from the ground track of the aircraft. Explain the phenomenon of sound wave refraction.

Given:

Supersonic transport aircraft
Find: Explanation of sound wave refraction

Solution:

A sound wave is refracted when the speed of sound varies with altitude in the atmosphere. (The variation in sound speed is caused by temperature variations in the atmosphere, as shown in Fig. 3.3)

Imagine a plane wave front that initially is vertical. When the wave encounters a region where the temperature increase with altitude (such as between 20.1 km and 47.3 km altitude in Fig. 3.3), the sound speed increases with elevation. Therefore the upper portion of the wave travels faster than the lower portion. The wave front turns gradually and the sound wave follows a curved path through the atmosphere. Thus a wave that initially is horizontal bends and follows a curved path, tending to reach the ground some distance from the source.

The curvature and the path of the sound could be calculated for any specific temperature variation in the atmosphere. However, the required analysis is beyond the scope of this text.
12.43 Plot the percentage discrepancy between the density at the stagnation point and the density at a location where the Mach number is M, of a compressible flow, for Mach numbers ranging from 0.05 to 0.95 . Find the Mach numbers at which the discrepancy is 1 percent, 5 percent, and 10 percent.

Given: Mach number range from 0.05 to 0.95

Find: Plot of percentage density change; Mach number for $1 \%, 5 \%$, and 10% change

Solution:

The given or available data is:

$$
k=\quad 1.4
$$

Computing equation:

$$
\begin{equation*}
\frac{\rho_{0}}{\rho}=\left[1+\frac{(k-1)}{2} \cdot M^{2}\right]^{\frac{1}{k-1}} \tag{12.20c}
\end{equation*}
$$

Hence
so

$$
\begin{aligned}
& \frac{\Delta \rho}{\rho_{0}}=\frac{\rho_{0}-\rho}{\rho_{0}}=1-\frac{\rho}{\rho_{0}} \\
& \frac{\Delta \rho}{\rho_{0}}=1-\left[1+\frac{(\mathrm{k}-1)}{2} \cdot \mathrm{M}^{2}\right]^{\frac{1}{1-\mathrm{k}}}
\end{aligned}
$$

Computed results:

\boldsymbol{M}	$\Delta \rho / \rho_{\mathbf{0}}$
0.05	0.1%
0.10	0.5%
0.15	1.1%
0.20	2.0%
0.25	3.1%
0.30	4.4%
0.35	5.9%
0.40	7.6%
0.45	9.4%
0.50	11%
0.55	14%
0.60	16%
0.65	18%
0.70	21%
0.75	23%
0.80	26%
0.85	29%
0.90	31%
0.95	34%

To find M for specific density changes use Goal Seek repeatedly

\boldsymbol{M}	$\Delta \boldsymbol{\rho} / \rho_{\mathbf{o}}$
0.142	1%
0.322	5%
0.464	10%

Note: Based on ρ (not ρ_{0}) the results are:

0.142	0.314	0.441

12.44 An aircraft flies at $250 \mathrm{~m} / \mathrm{s}$ in air at 28 kPa and $-50^{\circ} \mathrm{C}$.

Find the stagnation pressure at the nose of the aircraft.

Given: Aircraft flying at $250 \mathrm{~m} / \mathrm{s}$

Find: Stagnation pressure

Solution:

Basic equations:
$\mathrm{c}=\sqrt{\mathrm{k} \cdot \mathrm{R} \cdot \mathrm{T}}$
$M=\frac{V}{c} \quad \frac{p_{0}}{p}=\left(1+\frac{\mathrm{k}-1}{2} \cdot M^{2}\right)^{\frac{k}{\mathrm{k}-1}}$

Given or available data

$$
\mathrm{V}=250 \cdot \frac{\mathrm{~m}}{\mathrm{~s}} \quad \mathrm{~T}=(-50+273) \cdot \mathrm{K} \quad \mathrm{p}=28 \cdot \mathrm{kPa} \quad \mathrm{k}=1.4 \quad \mathrm{R}=286.9 \frac{\mathrm{~J}}{\mathrm{~kg} \cdot \mathrm{~K}}
$$

First we need

$$
\mathrm{c}=\sqrt{\mathrm{k} \cdot \mathrm{R} \cdot \mathrm{~T}}
$$

$\mathrm{c}=299 \frac{\mathrm{~m}}{\mathrm{~s}}$
then
$M=\frac{V}{c}$
$\mathrm{M}=0.835$

Finally we solve for p_{0}
$p_{0}=p \cdot\left(1+\frac{\mathrm{k}-1}{2} \cdot \mathrm{M}^{2}\right)^{\frac{\mathrm{k}}{\mathrm{k}-1}}$

$$
\mathrm{P}_{0}=44.2 \mathrm{kPa}
$$

12.45 Compute the air density in the undisturbed air, and at the stagnation point, of Problem 12.44. What is the percentage increase in density? Can we approximate this as an incompressible flow?

Given: Pressure data on aircraft in flight
Find: Change in air density; whether flow can be considered incompressible

Solution:

The data provided, or available in the Appendices, is:

$$
\mathrm{k}=1.4 \quad \mathrm{p}_{0}=48 \cdot \mathrm{kPa} \quad \mathrm{p}=27.6 \cdot \mathrm{kPa} \quad \mathrm{~T}=(-55+273) \cdot \mathrm{K}
$$

Governing equation (assuming isentropic flow):

$$
\frac{p}{\rho^{k}}=\text { constant }
$$

Hence $\quad \frac{\rho}{\rho_{0}}=\left(\frac{\mathrm{p}}{\mathrm{P}_{0}}\right)^{\frac{1}{\mathrm{k}}}$
so

$$
\frac{\Delta \rho}{\rho}=\frac{\rho_{0}-\rho}{\rho}=\frac{\rho_{0}}{\rho}-1=\left(\frac{\mathrm{p}_{0}}{\mathrm{p}}\right)^{\frac{1}{\mathrm{k}}}-1
$$

$$
\frac{\Delta \rho}{\rho}=48.5 \cdot \% \quad \text { NOT an incompressible flow! }
$$

12.46 Find the ratio of static to total pressure for a car moving at 55 mph at sea level and an airplane moving at 550 mph at $30,000 \mathrm{ft}$.

Given: Car at sea level and aircraft flying at $30,000 \mathrm{ft}$
Find: Ratio of static to total pressure in each case

Solution:

Basic equations:

$$
\mathrm{c}=\sqrt{\mathrm{k} \cdot \mathrm{R} \cdot \mathrm{~T}}
$$

$$
\mathrm{M}=\frac{\mathrm{V}}{\mathrm{c}}
$$

$$
\frac{\mathrm{p}_{0}}{\mathrm{p}}=\left(1+\frac{\mathrm{k}-1}{2} \cdot \mathrm{M}^{2}\right)^{\frac{\mathrm{k}}{\mathrm{k}-1}}
$$

Given or available data

$$
\begin{array}{ll}
\mathrm{V}_{\mathrm{car}}=55 \cdot \mathrm{mph} & \mathrm{~V}_{\mathrm{car}}=80.7 \frac{\mathrm{ft}}{\mathrm{~s}} \\
\mathrm{k}=1.4 & \mathrm{R}_{\mathrm{air}}=53.33 \cdot \frac{\mathrm{ft} \cdot \mathrm{lbf}}{\mathrm{lbm} \cdot \mathrm{R}}
\end{array}
$$

$$
\mathrm{V}_{\text {plane }}=550 \cdot \mathrm{mph}
$$

$$
\mathrm{V}_{\text {plane }}=807 \frac{\mathrm{ft}}{\mathrm{~s}}
$$

At sea level, from Table A. $3 \quad \mathrm{~T}=288.2 \cdot \mathrm{~K}$
or
$\mathrm{T}=519 \mathrm{R}$

Hence

$$
\mathrm{c}=\sqrt{\mathrm{k} \cdot \mathrm{R}_{\mathrm{air}} \cdot \mathrm{~T}} \quad \mathrm{c}=1116 \frac{\mathrm{ft}}{\mathrm{~s}} \quad \mathrm{M}_{\mathrm{car}}=\frac{\mathrm{V}_{\mathrm{car}}}{\mathrm{c}} \quad \mathrm{M}_{\mathrm{car}}=0.0723
$$

The pressure ratio is

$$
\frac{\mathrm{p}}{\mathrm{p}_{0}}=\left(1+\frac{\mathrm{k}-1}{2} \cdot \mathrm{M}_{\mathrm{car}}^{2}\right)^{-\frac{\mathrm{k}}{\mathrm{k}-1}}=0.996
$$

Note that the Bernoulli equation would give the same result!
At $\mathrm{h}=30000 \cdot \mathrm{ft}$ or $\mathrm{h}=9144 \mathrm{~m}$,interpolating from Table A. 3

$$
\mathrm{T}=229.7 \cdot \mathrm{~K}+\frac{(223.3-229.7) \cdot \mathrm{K}}{(10000-9000)} \cdot(9144-9000) \quad \mathrm{T}=229 \mathrm{~K} \quad \mathrm{~T}=412 \mathrm{R}
$$

Hence

$$
\mathrm{c}=\sqrt{\mathrm{k} \cdot \mathrm{R}_{\mathrm{air}} \cdot \mathrm{~T}} \quad \mathrm{c}=995 \frac{\mathrm{ft}}{\mathrm{~s}} \quad \mathrm{M}_{\text {plane }}=\frac{\mathrm{V}_{\text {plane }}}{\mathrm{c}} \quad \mathrm{M}_{\text {plane }}=0.811
$$

The pressure ratio is

$$
\frac{\mathrm{p}}{\mathrm{P}_{0}}=\left(1+\frac{\mathrm{k}-1}{2} \cdot \mathrm{M}_{\text {plane }^{2}}\right)^{-\frac{\mathrm{k}}{\mathrm{k}-1}}=0.649
$$

Problem 12.47

12.47 For an aircraft traveling at $M=2$ at an elevation of 12 km , find the dynamic and stagnation pressures.

Given: Aircraft flying at 12 km
Find: Dynamic and stagnation pressures

Solution:

Solution:			k	
Basic equations:	$\mathrm{c}=\sqrt{\mathrm{k} \cdot \mathrm{R} \cdot \mathrm{T}} \quad \mathrm{M}=\frac{\mathrm{V}}{\mathrm{c}}$	$\frac{\mathrm{p}_{0}}{\mathrm{p}}=\left(1+\frac{\mathrm{k}-}{2}\right.$	$\left.M^{2}\right)^{\overline{k-1}}$	$\mathrm{P}_{\text {dyn }}=\frac{1}{2} \cdot \rho \cdot \mathrm{~V}^{2}$
Given or available data	$\mathrm{M}=2 \quad \mathrm{~h}=12 \cdot \mathrm{~km}$	$\mathrm{k}=1.4$	$\mathrm{R}=286.9 \cdot \frac{\mathrm{~J}}{\mathrm{~kg} \cdot \mathrm{~K}}$	
	$\rho_{\mathrm{SL}}=1.225 \cdot \frac{\mathrm{~kg}}{\mathrm{~m}^{3}} \quad \mathrm{P}_{\mathrm{SL}}=101.3 \cdot \mathrm{kPa}$			
At $\mathrm{h}=12 \mathrm{~km}$,from Table A. 3	$\rho=0.2546 \cdot \rho_{\mathrm{SL}} \quad \rho=0.312 \frac{\mathrm{~kg}}{\mathrm{~m}^{3}}$	$\mathrm{p}=0.1915 \cdot \mathrm{p}_{\text {SL }}$	$\mathrm{p}=19.4 \mathrm{kPa}$	$\mathrm{T}=216.7 \cdot \mathrm{~K}$
Hence	$\mathrm{P}_{0}=\mathrm{p} \cdot\left(1+\frac{\mathrm{k}-1}{2} \cdot \mathrm{M}^{2}\right)^{\overline{\mathrm{k}-1}}$	$\mathrm{p}_{0}=152 \mathrm{kPa}$		
Also	$\mathrm{c}=\sqrt{\mathrm{k} \cdot \mathrm{R} \cdot \mathrm{T}} \quad \mathrm{c}=295 \frac{\mathrm{~m}}{\mathrm{~s}}$	$\mathrm{V}=\mathrm{M} \cdot \mathrm{C}$	$\mathrm{V}=590 \frac{\mathrm{~m}}{\mathrm{~s}}$	
Hence	$\mathrm{P}_{\text {dyn }}=\frac{1}{2} \cdot \rho \cdot \mathrm{~V}^{2} \quad \mathrm{P}_{\text {dyn }}=54.3 \mathrm{kPa}$			

Problem 12.48
Given: Boou moung krougn Shana, ki our at 200 mls Find: Stagnation pressurc, assuming (a) in compressiove flow b) sompressibie - kow

Solution.
For Sundara ose, $P=$ bot $k P_{a}, T=15^{\circ} \mathrm{C}$
Somputing equations. $P_{0}=p+\frac{1}{2} p v^{2}$ (ncompressible)

$$
\frac{P_{0}}{ק}=\left[1+\frac{k_{-1}}{2} N^{2}\right]^{t /(t)} \text { (compressible). }
$$

(a) Incompressible flow

$$
\begin{aligned}
& \left.P_{0}=p+\frac{1}{2} p v^{2}=101 E P a+\frac{1}{E} \times 1.225 \frac{t_{a}}{m^{3}} \times 200\right)_{b^{2}}^{n^{2}} \times \frac{A \cdot g^{2}}{g_{9}+1} \times \frac{8 P_{a}}{10^{3}} \frac{n^{2}}{N} \\
& P_{0}=125.5 \mathrm{k} P_{a}
\end{aligned}
$$

b. Comprestivie fow

$$
\begin{aligned}
& M=\frac{200}{340}=0.588 \\
& \left.P_{0}=P\left[1+k-\frac{1}{2} M^{2}\right]^{p / 8.1}=101 \mathrm{kPa}[1+0.210 .588)\right]^{3}=127.6 \mathrm{kPa}
\end{aligned}
$$

Given: Flow of standard air, $V=600$ its Find: P_{0}, ho, To

Solution:
Comping equaiuons:

$$
\begin{aligned}
& \frac{P_{0}}{\nabla}=\left[1+\frac{B-1}{2} M^{2}\right]^{2 i c h} \\
& \frac{T_{A}}{T}=1+\frac{B-1}{2} M^{2} \\
& c=\sqrt{k R T}
\end{aligned}
$$

Assumption: air bénaves as an ideal gas $\quad e_{1}=1.4$

$$
\begin{aligned}
& M=\frac{y}{c}=\frac{600}{340}=1.76 \\
& P_{0}=P\left[1+\frac{k-1}{2} M^{2}\right]^{A_{t-1}}=101 E P_{a}\left(1+0.2\left(1.10_{1}^{-3.5}=546+P_{0}\right.\right. \\
& T_{0}=T\left[1+\frac{2}{2} x^{2}\right]=282 x^{2} 1+0.2(16)^{2}=466 x \\
& d h=c_{p} d T \text { For } \mathrm{ap}_{\mathrm{p}}=\text { conair }
\end{aligned}
$$

$$
\begin{aligned}
& h_{0}-h=m a+3 \lg
\end{aligned}
$$

Problem 12.50
Gwer: Yc-io areraft crusies at altitude, $z=12 \mathrm{~lm}$ on a standard day. $p_{0}=29.6$ Ela $-p_{5} 19.4$ tp

Find: (a) M (c) To (onourcraft)

Solution:
 Solung the firstequation for M

$$
M=\left\{\left(\frac{2}{2-1)}\left[\left(\frac{20}{+1}\right)^{\frac{1}{2}}-1\right]\right\}=\left\{\frac{2}{1 .+1}\left[\left(\frac{29.60}{19.4}\right)^{\frac{14-1}{1.4}}-1\right]\right\}^{1 / 2}=0.801 \ldots m\right.
$$

At $z=12 \mathrm{kn}, T=2.7 \mathrm{k}$, (Table R. 3)

$$
\begin{aligned}
& V=M_{C}=0.801 \times 295 \mathrm{Mis}=236 \mathrm{mls} \\
& T_{0}=T\left(1+\frac{k-1}{2} n^{2}\right)=2.6_{0} \cdot \pi\left[1+\frac{4.4-1}{2}(0.801)^{2}\right]=245 k
\end{aligned}
$$

12.51 An aircraft cruises at $M=0.65$ at 10 km altitude on a standard day. The aircraft speed is deduced from measurement of the difference between the stagnation and static pressures. What is the value of this difference? Compute the air speed from this actual difference assuming (a) compressibility and (b) incompressibility. Is the discrepancy in air-speed computations significant in this case?

Given: Mach number of aircraft

Find: Pressure difference; air speed based on a) compressible b) incompressible assumptions

Solution:

The data provided, or available in the Appendices, is:

$$
\mathrm{R}=287 \cdot \frac{\mathrm{~J}}{\mathrm{~kg} \cdot \mathrm{~K}} \quad \mathrm{c}_{\mathrm{p}}=1004 \cdot \frac{\mathrm{~J}}{\mathrm{~kg} \cdot \mathrm{~K}} \quad \mathrm{k}=1.4 \quad \mathrm{M}=0.65
$$

From Table A.3, at 10 km altitude

$$
\mathrm{T}=223.3 \cdot \mathrm{~K}
$$

$$
\mathrm{p}=0.2615 \cdot 101 \cdot \mathrm{kPa}
$$

$\mathrm{p}=26.4 \mathrm{kPa}$
The governing equation for pressure change is: $\quad \frac{\mathrm{P}_{0}}{\mathrm{p}}=\left(1+\frac{\mathrm{k}-1}{2} \cdot \mathrm{M}^{2}\right)^{\frac{\mathrm{k}}{\mathrm{k}-1}}$
Hence $\quad \mathrm{P}_{0}=\mathrm{p} \cdot\left(1+\frac{\mathrm{k}-1}{2} \cdot \mathrm{M}^{2}\right)^{\frac{\mathrm{k}}{\mathrm{k}-1}} \quad \mathrm{P}_{0}=35.1 \mathrm{kPa}$
The pressure difference is

$$
\mathrm{P}_{0}-\mathrm{p}=8.67 \mathrm{kPa}
$$

a) Assuming compressibility
$\mathrm{c}=\sqrt{\mathrm{k} \cdot \mathrm{R} \cdot \mathrm{T}}$

$$
\mathrm{c}=300 \frac{\mathrm{~m}}{\mathrm{~s}}
$$

$\mathrm{V}=\mathrm{M} \cdot \mathrm{C}$
$\mathrm{V}=195 \frac{\mathrm{~m}}{\mathrm{~s}}$
b) Assuming incompressibility

Here the Bernoulli equation applies in the form $\quad \frac{p}{\rho}+\frac{\mathrm{V}^{2}}{2}=\frac{\mathrm{P}_{0}}{\rho} \quad$ so $\quad V=\sqrt{\frac{2 \cdot\left(\mathrm{P}_{0}-\mathrm{p}\right)}{\rho}}$
For the density

$$
\rho=\frac{\mathrm{p}}{\mathrm{R} \cdot \mathrm{~T}}
$$

$\rho=0.412 \frac{\mathrm{~kg}}{\mathrm{~m}^{3}}$
$\mathrm{V}=\sqrt{\frac{2 \cdot\left(\mathrm{P}_{0}-\mathrm{p}\right)}{\rho}}$

Hence

$$
\mathrm{V}=205 \frac{\mathrm{~m}}{\mathrm{~s}}
$$

In this case the error at $M=0.65$ in computing the speed of the aircraft using Bernoulli equation is

$$
\frac{205-195}{195}=5.13 \%
$$

Problem 12.52
Given: The Anglo-Frerch" Concorde" cruises at $M=2.2$ at an altiture, $z=20 \mathrm{~cm}$.
Find: (a) c (b) $\&$ (c) α (d) Naximuri To on aircraft

Solution:
At $z=20 \mathrm{ln}, T=26.7 \mathrm{k}$ (Table A.3).

$$
\begin{aligned}
& c=(k R T)^{1 / 2}=\left[M+2869 \frac{k \cdot m}{k} \times 2.16 i k \times \frac{k g}{k \cdot 5^{2}}\right]^{1 / 2}=295 \mathrm{mb} \\
& v=M_{c}=2.2 \times 295 \mathrm{Mts}=649 \mathrm{mls} \\
& \alpha=\sin ^{-1}\left(\frac{1}{n}\right)=\operatorname{sen}^{-1}\left(\frac{1}{2} 2\right)=22.0^{\circ} \\
& T_{0}=T\left(1+k \frac{1}{2} M^{2}\right)=216.2 k\left[1+\frac{(1,4-1)}{2}(2.2)^{2}\right]=426 \mathrm{k}
\end{aligned}
$$

12.53 Modern high-speed aircraft use "air data computers" to compute air speed from measurement of the difference between the stagnation and static pressures. Plot, as a function of actual Mach number M, for $M=0.1$ to $M=0.9$, the percentage error in computing the Mach number assuming incompressibility (i.e., using the Bernoulli equation), from this pressure difference. Plot the percentage error in speed, as a function of speed, of an aircraft cruising at 12 km altitude, for a range of speeds corresponding to the actual Mach number ranging from $M=0.1$ to $M=0.9$.

Given: Flight altitude of high-speed aircraft
Find: Mach number and aircraft speed errors assuming incompressible flow; plot
Solution:
The governing equation for pressure change is: $\frac{p_{0}}{p}=\left(1+\frac{k-1}{2} \cdot M^{2}\right)^{\frac{k}{k-1}}$

Hence

$$
\begin{equation*}
\Delta \mathrm{p}=\mathrm{p}_{0}-\mathrm{p}=\mathrm{p} \cdot\left(\frac{\mathrm{p}_{0}}{\mathrm{p}}-1\right) \quad \Delta \mathrm{p}=\mathrm{p} \cdot\left[\left(1+\frac{\mathrm{k}-1}{2} \cdot \mathrm{~m}^{2}\right)^{\frac{\mathrm{k}}{\mathrm{k}-1}}-1\right] \tag{12.20a}
\end{equation*}
$$

For each Mach number the actual pressure change can be computed from Eq. 1
Assuming incompressibility, the Bernoulli equation applies in the form $\quad \frac{\mathrm{p}}{\rho}+\frac{\mathrm{V}^{2}}{2}=\frac{\mathrm{p}_{0}}{\rho} \quad$ so $\quad \mathrm{V}=\sqrt{\frac{2 \cdot\left(\mathrm{P}_{0}-\mathrm{p}\right)}{\rho}}=\sqrt{\frac{2 \cdot \Delta \mathrm{p}}{\rho}}$
and the Mach number based on this is $\quad M_{\text {incomp }}=\frac{V}{c}=\frac{\sqrt{\frac{2 \cdot \Delta p}{\rho}}}{\sqrt{k \cdot R \cdot T}}=\sqrt{\frac{2 \cdot \Delta p}{k \cdot \rho \cdot R \cdot T}}$

Using Eq. 1

$$
\mathrm{M}_{\mathrm{incomp}}=\sqrt{\frac{2}{\mathrm{k}} \cdot\left[\left(1+\frac{\mathrm{k}-1}{2} \cdot \mathrm{M}^{2}\right)^{\frac{\mathrm{k}}{\mathrm{k}-1}}-1\right]}
$$

The error in using Bernoulli to estimate the Mach number is

$$
\frac{\Delta \mathrm{M}}{\mathrm{M}}=\frac{\mathrm{M}_{\mathrm{incomp}-\mathrm{M}}^{\mathrm{M}}}{\mathrm{M}}
$$

For errors in speed:
Actual speed:

$$
\mathrm{V}=\mathrm{M} \cdot \mathrm{c}
$$

$$
\mathrm{V}=\mathrm{M} \cdot \sqrt{\mathrm{k} \cdot \mathrm{R} \cdot \mathrm{~T}}
$$

Speed assuming incompressible flow:

$$
\mathrm{V}_{\mathrm{inc}}=\mathrm{M}_{\mathrm{incomp}} \sqrt{\mathrm{k} \cdot \mathrm{R} \cdot \mathrm{~T}}
$$

The error in using Bernoulli to estimate the speed from the pressure difference is $\frac{\Delta \mathrm{V}}{\mathrm{V}}=\frac{\mathrm{V}_{\text {incomp }}-\mathrm{V}}{\mathrm{V}}$

The computations and plots are shown in the associated Excel workbook
12.53 Modern high-speed aircraft use "air data computers" to compute air speed from measurement of the difference between the stagnation and static pressures. Plot, as a function of actual Mach number M, for $M=0.1$ to $M=0.9$, the percentage error in computing the Mach number assuming incompressibility (i.e., using the Bernoulli equation), from this pressure difference. Plot the percentage error in speed, as a function of speed, of an aircraft cruising at 12 km altitude, for a range of speeds corresponding to the actual Mach number ranging from $M=0.1$ to $M=0.9$.

Given: Flight altitude of high-speed aircraft
Find: Mach number and aircraft speed errors assuming incompressible flow; plot

Solution:

The given or available data is:

```
R= 286.9 J/kg.K
k= 1.4
T= 216.7 K (At 12 km, Table A.3)
```

Computing equations:
$M_{\text {incomp }}=\sqrt{\frac{2}{k} \cdot\left[\left(1+\frac{\mathrm{k}-1}{2} \cdot \mathrm{M}^{2}\right)^{\frac{\mathrm{k}}{\mathrm{k}-1}}-1\right]}$
$\frac{\Delta \mathrm{M}}{\mathrm{M}}=\frac{\mathrm{M}_{\text {incomp }}-\mathrm{M}}{\mathrm{M}}$
$\mathrm{V}=\mathrm{M} \cdot \sqrt{\mathrm{k} \cdot \mathrm{R} \cdot \mathrm{T}}$
$\mathrm{V}_{\text {inc }}=\mathrm{M}_{\text {incomp }} \sqrt{\mathrm{k} \cdot \mathrm{R} \cdot \mathrm{T}}$
$\frac{\Delta V}{V}=\frac{V_{\text {incomp }}-V}{V}$

Computed results:

$c=295 \mathrm{~m} / \mathrm{s}$

\boldsymbol{M}	\boldsymbol{M} incomp	$\Delta \boldsymbol{M} / \boldsymbol{M}$	$\boldsymbol{V}(\mathbf{m} / \mathbf{s})$	\boldsymbol{V} incomp (m/s)	$\Delta \boldsymbol{V} / \boldsymbol{V}$
0.1	0.100	0.13%	29.5	29.5	0.13%
0.2	0.201	0.50%	59.0	59.3	0.50%
0.3	0.303	1.1%	88.5	89.5	1.1%
0.4	0.408	2.0%	118	120	2.0%
0.5	0.516	3.2%	148	152	3.2%
0.6	0.627	4.6%	177	185	4.6%
0.7	0.744	6.2%	207	219	6.2%
0.8	0.865	8.2%	236	255	8.2%
0.9	0.994	10.4%	266	293	10.4%

Problem 12.54

12.54 A supersonic wind tunnel test section is designed to have $M=2.5$ at $15^{\circ} \mathrm{C}$ and 35 kPa (abs). The fluid is air. Determine the required inlet stagnation conditions, T_{0} and p_{0}. Calculate the required mass flow rate for a test section area of $0.175 \mathrm{~m}^{2}$.

Given: Wind tunnel at $\mathrm{M}=2.5$
Find: \quad Stagnation conditions; mass flow rate

Solution:

Basic equations:
$\mathrm{c}=\sqrt{\mathrm{k} \cdot \mathrm{R} \cdot \mathrm{T}}$
$M=\frac{V}{c}$
$\frac{\mathrm{p}_{0}}{\mathrm{p}}=\left(1+\frac{\mathrm{k}-1}{2} \cdot \mathrm{M}^{2}\right)^{\frac{\mathrm{k}}{\mathrm{k}-1}} \quad \frac{\mathrm{~T}_{0}}{\mathrm{~T}}=1+\frac{\mathrm{k}-1}{2} \cdot \mathrm{M}^{2}$

Given or available data

$$
\begin{array}{ll}
\mathrm{M}=2.5 & \mathrm{~T}=(15+273) \cdot \mathrm{K} \\
\mathrm{k}=1.4 & \mathrm{R}=286.9 \cdot \frac{\mathrm{~J}}{\mathrm{~kg} \cdot \mathrm{~K}}
\end{array}
$$

$$
\mathrm{p}=35 \cdot \mathrm{kPa}
$$

Then

$$
\mathrm{T}_{0}=648 \mathrm{~K}
$$

$$
\mathrm{T}_{0}=375 \cdot{ }^{\circ} \mathrm{C}
$$

Also

$$
\mathrm{T}_{0}=\mathrm{T} \cdot\left(1+\frac{\mathrm{k}-1}{2} \cdot \mathrm{M}^{2}\right)
$$

$$
\mathrm{p}_{0}=\mathrm{p} \cdot\left(1+\frac{\mathrm{k}-1}{2} \cdot \mathrm{M}^{2}\right)^{\frac{\mathrm{k}}{\mathrm{k}-1}}
$$

The mass flow rate is given by

$$
\mathrm{m}_{\text {rate }}=\rho \cdot \mathrm{A} \cdot \mathrm{~V}
$$

We need

$$
\mathrm{c}=\sqrt{\mathrm{k} \cdot \mathrm{R} \cdot \mathrm{~T}}
$$

$\mathrm{c}=340 \frac{\mathrm{~m}}{\mathrm{~s}}$
$\mathrm{V}=\mathrm{M} \cdot \mathrm{C}$
$\mathrm{V}=850 \frac{\mathrm{~m}}{\mathrm{~s}}$
and also

$$
\rho=\frac{\mathrm{p}}{\mathrm{R} \cdot \mathrm{~T}} \quad \rho=0.424 \frac{\mathrm{~kg}}{\mathrm{~m}^{3}}
$$

Then

$$
\mathrm{m}_{\text {rate }}=\rho \cdot \mathrm{A} \cdot \mathrm{~V} \quad \mathrm{~m}_{\text {rate }}=63.0 \frac{\mathrm{~kg}}{\mathrm{~s}}
$$

Problem 12.55
Given: steady air flow through a constant area duct. properties change due to friction, but flow is adiabatic.
Find: (a) Show that the energy equation reduces to

$$
h_{1}+\frac{v_{1}^{2}}{2}=h_{2}+\frac{v_{2}^{2}}{2}=\text { constant }
$$

(b) Show that for adiabatic flow $\frac{T_{0}}{T}=1+\frac{k-1}{2} M^{2}$
(c) Effects on T_{0}, p_{0}.

Solution: Apply the energy equation to the $C V$ shown:

Assumptions: (1) $\dot{Q}=0$ (adiabatic)

(2) $\dot{U}_{s}=0$
(3) $W_{\text {shear }}=0$
(4) Steady flow
(5) Uniform flow at each section
(b) Neglect Δz

Then

$$
0=\left(u_{1}+p_{1} v_{1}+\frac{v_{1}^{2}}{2}\right)\left\{-\left|p_{1} v_{1} A\right|\right\}+\left(u_{2}+p_{2} v_{2}+\frac{v_{2}^{2}}{2}\right)\left\{\rho_{2} v_{2} A \mid\right\}
$$

But $n \equiv u+p v$, and $\left|\rho_{1} v_{1} A\right|=\left|f_{2} v_{2} A\right|=\left|\rho v_{A}\right|=\dot{m}$, so

$$
h_{1}+\frac{v_{1}^{2}}{2}=h_{2}+\frac{v_{2}^{2}}{2}=h+\frac{v^{2}}{2}=h_{0}=\text { constant }
$$

Assumption (7) Ideal gas; $h_{0}-h=C_{p}\left(T_{0}-T\right), C_{p}=\frac{k \widehat{e}, c^{2}=k R T}{k-1}$
Thus $\quad C_{p} T_{0}=C_{p} T+\frac{V^{2}}{2}$

$$
\frac{T_{0}}{T}=1+\frac{V^{2}}{2 \mathcal{C}_{0} T}=1+\frac{(k-1) V^{2}}{2 k R T}=1+\frac{k-1}{2} \frac{V^{2}}{C^{2}}=1+\frac{k-1}{2} M^{2}
$$

From the energy equation, $T_{0_{1}}=T_{0 z}=T_{0}=$ constant
The to diagram is

since flow is frictional, $a_{2}>\infty$. Therefore $p_{p_{2}}<p_{01}$

1	A_{2}

12.56 A new design for a supersonic transport is tested in a wind tunnel at $M=1.8$. Air is the working fluid. The stagnation temperature and pressure for the wind tunnel are 200 psia and $500^{\circ} \mathrm{F}$, respectively. The model wing area is $100 \mathrm{in}^{2}$. The measured lift and drag are $12,000 \mathrm{lbf}$ and 1600 lbf , respectively. Find the lift and drag coefficients.

Given: Wind tunnel test of supersonic transport
Find: Lift and drag coefficients

Solution:

Basic equations:

$$
\mathrm{c}=\sqrt{\mathrm{k} \cdot \mathrm{R} \cdot \mathrm{~T}}
$$

$$
\mathrm{M}=\frac{\mathrm{V}}{\mathrm{c}} \quad \frac{\mathrm{p}_{0}}{\mathrm{p}}=\left(1+\frac{\mathrm{k}-1}{2} \cdot \mathrm{M}^{2}\right)^{\frac{\mathrm{k}}{\mathrm{k}-1}}
$$

$$
\frac{\mathrm{T}_{0}}{\mathrm{~T}}=1+\frac{\mathrm{k}-1}{2} \cdot \mathrm{M}^{2}
$$

$$
\mathrm{C}_{\mathrm{L}}=\frac{\mathrm{F}_{\mathrm{L}}}{\frac{1}{2} \cdot \rho \cdot \mathrm{~V}^{2} \cdot \mathrm{~A}} \quad \mathrm{C}_{\mathrm{D}}=\frac{\mathrm{F}_{\mathrm{D}}}{\frac{1}{2} \cdot \rho \cdot \mathrm{~V}^{2} \cdot \mathrm{~A}}
$$

Given or available data

$$
\mathrm{M}=1.8 \quad \mathrm{~T}_{0}=(500+460) \cdot \mathrm{R} \quad \mathrm{P}_{0}=200 \cdot \mathrm{psi} \quad \mathrm{~F}_{\mathrm{L}}=12000 \cdot \mathrm{lbf} \quad \mathrm{~F}_{\mathrm{D}}=1600 \cdot \mathrm{lbf}
$$

$$
\mathrm{A}=100 \cdot \mathrm{in}^{2}
$$

$$
\mathrm{k}=1.4 \quad \mathrm{R}_{\text {air }}=53.33 \cdot \frac{\mathrm{ft} \cdot \mathrm{lbf}}{\mathrm{lbm} \cdot \mathrm{R}}
$$

We need local conditions $\quad \mathrm{p}=\mathrm{p}_{0} \cdot\left(1+\frac{\mathrm{k}-1}{2} \cdot \mathrm{M}^{2}\right)^{-\frac{\mathrm{k}}{\mathrm{k}-1}} \quad \mathrm{p}=34.8 \mathrm{psi}$

$$
\mathrm{T}=\frac{\mathrm{T}_{0}}{1+\frac{\mathrm{k}-1}{2} \cdot \mathrm{M}^{2}} \quad \mathrm{~T}=583 \mathrm{R} \quad \mathrm{~T}=123^{\circ} \mathrm{F}
$$

Then

$$
\mathrm{c}=\sqrt{\mathrm{k} \cdot \mathrm{R}_{\mathrm{air}} \cdot \mathrm{~T}}
$$

$\mathrm{c}=1183 \frac{\mathrm{ft}}{\mathrm{s}}$
$\mathrm{c}=807 \mathrm{mph}$
and

$$
\mathrm{V}=\mathrm{M} \cdot \mathrm{C}
$$

$$
\mathrm{V}=2129 \frac{\mathrm{ft}}{\mathrm{~s}} \quad \mathrm{~V}=1452 \mathrm{mph}
$$

We also need

$$
\rho=\frac{\mathrm{p}}{\mathrm{R}_{\mathrm{air}} \cdot \mathrm{~T}}
$$

$$
\rho=0.00501 \frac{\text { slug }}{\mathrm{ft}^{3}}
$$

Finally

$$
\begin{array}{ll}
\mathrm{C}_{\mathrm{L}}=\frac{\mathrm{F}_{\mathrm{L}}}{\frac{1}{2} \cdot \rho \cdot \mathrm{~V}^{2} \cdot \mathrm{~A}} & \mathrm{C}_{\mathrm{L}}=1.52 \\
\mathrm{C}_{\mathrm{D}}=\frac{\mathrm{F}_{\mathrm{D}}}{\frac{1}{2} \cdot \rho \cdot \mathrm{~V}^{2} \cdot \mathrm{~A}} & \mathrm{C}_{\mathrm{D}}=0.203
\end{array}
$$

Given: For aircraft flying at supersonic speeds, the lift and drag coefficients are function of M only.

Aircraft: $s=75 \mathrm{~m}, y=780 \mathrm{mts}, z=20 \mathrm{~mm}$
Modal: $\quad s=0 a_{m}$, $T=10^{\circ} \mathrm{C}, f=10$ kia (abs)
Find: a) ar speed for model tet
b) stagnation temperature for mode tet
(c) stagnation pressure for model test

Solution:
At $z=20 \mathrm{kn}, T=2 i b i \mathrm{k}$ (Table A.今).

Thus for aircraft, $M=\frac{y}{C}=\frac{180}{295}=2.64$
Ais then number mut be duplicated in the mode'test. In fie tunnel.

$$
\begin{align*}
& \therefore V=M C=2 . k 4(327 M / s)=890 \mathrm{mk} \\
& \frac{T_{0}}{T}-1+\frac{Q_{-1}}{2} n^{2} \quad \therefore T_{0}=T\left(1+\frac{t-1}{2}+n^{2}\right) \\
& T_{0}=283 k\left[1+\frac{(1+4-1)}{2}(2.64)^{2}\right]=672 k \tag{0}\\
& \frac{p_{0}}{p}=\left[1+\frac{b-1}{2} M^{2}\right]^{k-1} \quad \therefore-p_{0}=-p\left[1+\frac{k-1}{2} \mu^{2}\right]^{k / k-1} \\
& P_{0}=10 k t_{a}\left[1+0.2(2.6 t)^{2}\right]^{3.5}-212+b_{0}
\end{align*}
$$

Gwen: The hocked "Blackbird" aircraft is thought to cruse at $M=3.3$ at attitwice, $z=26 \mathrm{tm}$.

Becoutic the spend is supersonic, a normal shock occurs in front of a total -head tube. The stagnation pressure decreases by 74.7 percent across: the sisek
Find: (a) V b) P_{0} c) P_{0} on aureraft d) T_{0} on aircraft
Solution:
AL attitude $z=8 \ell_{n}, T=222.5 K, f\left(P_{5 k}=0.0216\right.$ (Table A.3).

$$
\begin{align*}
& c=(k R T)^{1_{2}}=\left[1.4 \times 286.9 \frac{\mathrm{Nim}}{\mathrm{~kg} \cdot \mathrm{~K}^{2}}+222.5 \mathrm{~K}+\frac{\mathrm{kg} \cdot \mathrm{~m}}{5.2^{2}}\right]^{1 / 2}=299 \mathrm{mls} \\
& V=M_{C}=3.3 \times 279 \mathrm{mls}=987 \mathrm{mls}
\end{align*}
$$

The stagnation pressure ahead of the shock (designated po.) is gwenclby

$$
\begin{align*}
& P_{0}=0.0216 \times 10.3 \operatorname{CPa}\left[1+\frac{(1.4-1)}{2}(3.3)^{2}\right]^{\frac{1.4}{0.4}}=12568 \tag{Pos}
\end{align*}
$$

Designating the sta nation pressure behind Re Shock as $P_{o_{2}}$, Men

$$
\begin{aligned}
& \frac{P_{0}-P_{O_{2}}}{-P_{01}}=0.247 \text { or } P_{O_{2}}=P_{0_{1}}-0.747 P_{O_{1}}=0.253 P_{01} \\
& f_{\mathrm{O}_{2}}=0.253 \times 125 \mathrm{~Pa}=34.6 \mathrm{PPa} \ldots \mathrm{P}_{0}
\end{aligned}
$$

The stagnation temperature does not Sarge across a Shock.

$$
T_{0}=T\left[1+\frac{k-1}{2} n^{2}\right]=222.5 k\left[1+\frac{(1.4-1)}{2}(3.3)^{2}\right]=\operatorname{7on} k
$$

12.59 Air flows in an insulated duct. At point (1) the conditions are $M_{1}=0.1, T_{1}=20^{\circ} \mathrm{C}$, and $p_{1}=1.0 \mathrm{MPa}$ (abs). Downstream, at point (2), because of friction the conditions are $M_{2}=0.7$, $T_{2}=-5.62^{\circ} \mathrm{C}$, and $p_{2}=136.5 \mathrm{kPa}$ (abs). (Four significant figures are given to minimize roundoff errors.) Compare the stagnation temperatures at points (1) and (2), and explain the result. Compute the stagnation pressures at points (1) and (2). Can you explain how it can be that the velocity increases for this frictional flow? Should this process be isentropic or not? Justify your answer by computing the change in entropy between points (1) and (2). Plot static and stagnation state points on a Ts diagram.

Given: Data on air flow in a duct

Find: Stagnation pressures and temperatures; explain velocity increase; isentropic or not?

Solution:

The data provided, or available in the Appendices, is:

$$
\begin{array}{rlll}
\mathrm{R}=287 \cdot \frac{\mathrm{~J}}{\mathrm{~kg} \cdot \mathrm{~K}} & \mathrm{c}_{\mathrm{p}}=1004 \cdot \frac{\mathrm{~J}}{\mathrm{~kg} \cdot \mathrm{~K}} & \mathrm{k}=1.4 & \\
\mathrm{M}_{1}=0.1 & \mathrm{~T}_{1}=(20+273) \cdot \mathrm{K} & \mathrm{p}_{1}=1000 \cdot \mathrm{kPa} & \mathrm{M}_{2}=0.7
\end{array} \mathrm{~T}_{2}=(-5.62+273) \cdot \mathrm{K} \quad \mathrm{p}_{2}=136.5 \cdot \mathrm{kPa}
$$

For stagnation temperatures: $\quad \mathrm{T}_{01}=\mathrm{T}_{1} \cdot\left(1+\frac{\mathrm{k}-1}{2} \cdot \mathrm{M}_{1}{ }^{2}\right) \quad \mathrm{T}_{01}=293.6 \mathrm{~K} \quad \mathrm{~T}_{01}=20.6 \cdot \mathrm{C}$

$$
\mathrm{T}_{02}=\mathrm{T}_{2} \cdot\left(1+\frac{\mathrm{k}-1}{2} \cdot \mathrm{M}_{2}^{2}\right) \quad \mathrm{T}_{02}=293.6 \mathrm{~K} \quad \mathrm{~T}_{02}=20.6 \cdot \mathrm{C}
$$

(Because the stagnation temperature is constant, the process is adiabatic)
For stagnation pressures: $\quad \mathrm{P}_{01}=\mathrm{p}_{1} \cdot\left(1+\frac{\mathrm{k}-1}{2} \cdot \mathrm{M}_{1}\right)^{\frac{\mathrm{k}}{\mathrm{k}-1}} \quad \mathrm{P}_{01}=1.01 \cdot \mathrm{MPa}$

$$
\mathrm{P}_{02}=\mathrm{p}_{2} \cdot\left(1+\frac{\mathrm{k}-1}{2} \cdot \mathrm{M}_{2}^{2}\right)^{\frac{\mathrm{k}}{\mathrm{k}-1}} \quad \mathrm{P}_{02}=189 \cdot \mathrm{kPa}
$$

The entropy change is: $\quad \Delta \mathrm{s}=\mathrm{c}_{\mathrm{p}} \cdot \ln \left(\frac{\mathrm{T}_{2}}{\mathrm{~T}_{1}}\right)-\mathrm{R} \cdot \ln \left(\frac{\mathrm{p}_{2}}{\mathrm{P}_{1}}\right) \quad \Delta \mathrm{s}=480 \cdot \frac{\mathrm{~J}}{\mathrm{~kg} \cdot \mathrm{~K}}$

Note that

$$
\mathrm{V}_{1}=\mathrm{M}_{1} \cdot \sqrt{\mathrm{k} \cdot \mathrm{R} \cdot \mathrm{~T}_{1}} \quad \mathrm{~V}_{1}=34.3 \frac{\mathrm{~m}}{\mathrm{~s}}
$$

$$
\mathrm{V}_{2}=\mathrm{M}_{2} \cdot \sqrt{\mathrm{k} \cdot \mathrm{R} \cdot \mathrm{~T}_{2}}
$$

$$
\mathrm{V}_{2}=229 \frac{\mathrm{~m}}{\mathrm{~s}}
$$

Although there is friction, suggesting the flow should decelerate, because the static pressure drops so much, the net effect is flow acceleration!

The entropy increases because the process is adiabatic but irreversible (friction).
From the second law of thermodynamics $\mathrm{ds} \geq \frac{\delta \mathrm{q}}{\mathrm{T}}$: becomes ds >0
12.60 Air is cooled as it flows without friction at a rate of 0.05 kg / s in a duct. At point (1) the conditions are $M_{1}=0.5, T_{1}=500^{\circ} \mathrm{C}$, and $p_{1}=500 \mathrm{kPa}$ (abs). Downstream, at point (2), the conditions are $M_{2}=0.2, T_{2}=-18.57^{\circ} \mathrm{C}$, and $p_{2}=639.2 \mathrm{kPa}$ (abs). (Four significant figures are given to minimize roundoff errors.) Compare the stagnation temperatures at points (1) and (2), and explain the result. Compute the rate of cooling. Compute the stagnation pressures at points (1) and (2). Should this process be isentropic or not? Justify your answer by computing the change in entropy between points (1) and (2). Plot static and stagnation state points on a $T s$ diagram.

Given: Data on air flow in a duct
Find: Stagnation temperatures; explain; rate of cooling; stagnation pressures; entropy change

Solution:

The data provided, or available in the Appendices, is: $\quad \mathrm{R}=287 \cdot \frac{\mathrm{~J}}{\mathrm{~kg} \cdot \mathrm{~K}} \quad \mathrm{c}_{\mathrm{p}}=1004 \cdot \frac{\mathrm{~J}}{\mathrm{~kg} \cdot \mathrm{~K}} \quad \mathrm{k}=1.4$

$$
\left.\begin{array}{llll}
& \mathrm{T}_{1}=(500+273) \cdot \mathrm{K} & \mathrm{p}_{1}=500 \cdot \mathrm{kPa} & \mathrm{~T}_{2}=(-18.57+273) \cdot \mathrm{K}
\end{array} \mathrm{p}_{2}=639.2 \cdot \mathrm{kPa}\right)
$$

The fact that the stagnation temperature (a measure of total energy) decreases suggests cooling is taking place.

For the heat transfer:

$$
\mathrm{Q}=\mathrm{M}_{\mathrm{rate}} \cdot \mathrm{C}_{\mathrm{p}} \cdot\left(\mathrm{~T}_{02}-\mathrm{T}_{01}\right) \quad \mathrm{Q}=-27.9 \mathrm{~kW}
$$

For stagnation pressures: $\quad \mathrm{p}_{01}=\mathrm{p}_{1} \cdot\left(1+\frac{\mathrm{k}-1}{2} \cdot \mathrm{M}_{1}{ }^{2}\right)^{\frac{\mathrm{k}}{\mathrm{k}-1}} \quad \mathrm{P}_{01}=593 \mathrm{kPa}$

$$
\mathrm{p}_{02}=\mathrm{p}_{2} \cdot\left(1+\frac{\mathrm{k}-1}{2} \cdot \mathrm{M}_{2}^{2}\right)^{\frac{\mathrm{k}}{\mathrm{k}-1}} \quad \mathrm{p}_{02}=657 \mathrm{kPa}
$$

The entropy change is:

$$
\Delta \mathrm{s}=\mathrm{c}_{\mathrm{p}} \cdot \ln \left(\frac{\mathrm{~T}_{2}}{\mathrm{~T}_{1}}\right)-\mathrm{R} \cdot \ln \left(\frac{\mathrm{p}_{2}}{\mathrm{P}_{1}}\right) \quad \Delta \mathrm{s}=-1186 \frac{\mathrm{~J}}{\mathrm{~kg} \cdot \mathrm{~K}}
$$

The entropy decreases because the process is a cooling process (Q is negative).
From the second law of thermodynamics: ds $\geq \frac{\delta q}{T}$ becomes ds \geq-ve
Hence, if the process is reversible, the entropy must decrease; if it is irreversible, it may increase or decrease
 area, $A=0.05 m^{2}$, 25 ESun Fhaid is air

Fina: Po, Pron, To, Toz, $S_{2}-s_{1}$
Sdution:
Computingequations: $\quad \frac{\square}{\overline{2}}=1+\frac{1}{2} n^{2}$

$$
\left.\frac{P_{0}}{2}=1+\frac{c}{2} n^{2}\right]^{t h}
$$

Atsumptiens: in $\varepsilon=0$ (adatatic (bow) s) uniforn (ow deach section
$\therefore \quad \therefore+2=0$
b) $\Delta z=0$
3) $\mathrm{H}_{\text {tema }}=0$
(.) idect oas, $k=1.4$
4) Steacur Sow
(i) $A_{1}=A_{2}=A=$ constant

Fron contriuty, $\left.0=-\left\langle p_{1} \psi_{1} 4\right\}+p_{2} t_{2} t\right\}$ or $p_{1} t_{1}=p_{2} t_{2}$
Ten, wsing how urs.

$$
h_{1}+\frac{y_{1}^{2}}{2}=h_{0}=h_{2}+\frac{y_{2}}{2}=n_{0_{2}} \text { or } h_{0_{1}}=h_{0_{2}}
$$

For an ideal gne wik contarivechfe reats, Tor $=T_{0}=344 \mathrm{k}$

Ren.

$$
A_{2}=\frac{d_{2}}{c_{2}}=\frac{280}{350}=0.99
$$

$$
P_{0_{2}}=P_{2}\left[1+\frac{6-1}{2} M^{2}\right]^{4 t_{-1}}=95.66 b^{2}\left[1+0.2(0.98)^{2}\right]^{3.5}
$$

$$
T d s=d h-v d p=C_{p} d T-\frac{R T}{P} d p
$$

$$
P_{0_{2}}=145 \hat{S}+\ldots P_{02}
$$

$$
d s=C_{0} \frac{d T}{T}-E \frac{d \theta}{P}=d s_{0}=-K \frac{d R_{0}}{F_{0}}
$$

$$
s_{0_{2}}-s_{0_{1}}=S_{2}-S_{1}=-k \ln P_{0_{2}}
$$

$$
s_{2}-s_{1}=-28 \cdot \frac{5}{\lg \cdot k} \ln \frac{143}{223}=0.124 \frac{\mathrm{kS}}{\frac{\mathrm{~g} \cdot \mathrm{~K}}{2}-s_{2}-s_{1}}
$$

$$
\begin{aligned}
& M_{1}=\frac{V_{1}}{c_{1}}=\frac{46}{366}=0.399 \quad T_{0}=T_{1}\left[1 \cdot \frac{k-1}{2} M_{1}^{2}\right]=333 k(1+0 \cdot 2(0.39)]=344 k \\
& P_{0}=P_{1}\left[h^{2} M_{1}^{2}\right]^{4+1}=200^{6}\left(1+0.2(0.3)^{2}\right]^{35}=236 \mathrm{k}+
\end{aligned}
$$

$$
\begin{aligned}
& T_{1}=60^{\circ} \mathrm{c}
\end{aligned}
$$

$$
\begin{aligned}
& \psi_{1}=14 b_{0} \mathrm{~m} / \mathrm{s} \\
& p_{2}=95.6 \text { ct (abs) } \\
& v_{2}=28 \mathrm{mis}
\end{aligned}
$$

Problem 12.62

12.62 Air flows steadily through a constant-area duct. At section (1), the air is at 400 kPa (abs), 325 K , and $150 \mathrm{~m} / \mathrm{s}$. As a result of heat transfer and friction, the air at section (2) downstream is at 275 kPa (abs), 450 K . Calculate the heat transfer per kilogram of air between sections (1) and (2), and the stagnation pressure at section (2).

Given: Air flow in duct with heat transfer and friction
Find: Heat transfer; Stagnation pressure at location 2

Solution:

Gwen: Air passes through a normal shock in a supersonic wind tunnel Conditions upstream (state 0) and downstream (stale es) of pe stock are giver below.

$$
\begin{array}{r|r}
M_{1}=1.8 \\
T_{1}=26 \mathrm{~K} & M_{2}=0.6065 \\
T_{1}=10 k P_{a}(\mathrm{abos}) & T_{2}=413.6 \mathrm{~K} . \\
0 & P_{2}=36.13 \mathrm{kPa}(\mathrm{abs}) \\
& \text { B } .
\end{array}
$$

Find: $T_{O_{1}}, P_{D_{1}}, T_{O_{2}}, P_{O_{2}}, s_{2}-s_{1}$
Solution:
Computing equations: $\frac{T_{0}}{=}=1+\frac{l_{1}}{2} M^{2} \quad-\frac{p_{0}}{-p}=\left[1+\frac{l_{-1}}{2} r^{2}\right]^{H / l_{-1}}$
(Flow through the shock is adiabatic, $T_{O_{2}}=T_{V}$)

$$
s_{2}-s_{1}=59.6 \mathrm{~J} \operatorname{lgg} \cdot x+s_{2}-s_{3}
$$

$$
\begin{aligned}
& \left.P_{O_{2}}=P_{2}\left[1+\frac{k_{-1}}{2} M_{2}^{2}\right]^{8 / t+1}=36.13 k R_{a}\left[1+0.2(0.6165)^{2}\right]^{3.5}=46.7 k P_{a}(a t) \quad-P_{02}\right) \\
& T d s=d h-v d p=C_{p} d T-R T \frac{d \rho}{p} \\
& d s=c_{p} \frac{d T}{T}-R \frac{d p}{p} \\
& S_{2}-S_{1}=S_{O_{2}}-S_{O_{1}}=-R H_{N} \frac{P_{O_{2}}}{P_{01}} \\
& =-287 \frac{\mathrm{~J}}{8 g} \cdot \mathrm{k} \ln \frac{46.69}{57.46}
\end{aligned}
$$

$$
\begin{align*}
& T_{0}=T_{1}\left[1+\frac{k-1}{2} M_{1}^{2}\right]=270 k\left[1+0.2(1.8)^{2}\right]=445 \mathrm{~K} \\
& \rightarrow \bar{T}_{2} \\
& P_{0}=P_{1}\left[1+\frac{k-1}{2} n_{1}\right]^{b_{h} h}=10.0 t P_{2}\left[1+0.2(1.8)^{2}\right]^{3.5}=57.5\left(P_{a}(a b s) \quad-P_{0}\right. \\
& T_{O_{2}}=T_{2}\left[1+\frac{l-1}{2} M_{2}^{2}\right]=413.6 k\left[1+0.2(0.6165)^{2}\right]=4 k 5 \mathrm{~K} \tag{0}
\end{align*}
$$

12.64 Air enters a turbine at $M_{1}=0.4, T_{1}=1250^{\circ} \mathrm{C}$, and $p_{1}=$ 625 kPa (abs). Conditions leaving the turbine are $M_{2}=0.8, T_{2}=$ $650^{\circ} \mathrm{C}$, and $p_{2}=20 \mathrm{kPa}$ (abs). Evaluate local isentropic stagnation conditions (a) at the turbine inlet and (b) at the turbine outlet. Calculate the change in specific entropy across the turbine. Plot static and stagnation state points on a Ts diagram.

Given: Air flow through turbine
Find: Stagnation conditions at inlet and exit; change in specific entropy; Plot on Ts diagram
Solution:
Basic equations: $\quad \frac{\mathrm{p}_{0}}{\mathrm{p}}=\left(1+\frac{\mathrm{k}-1}{2} \cdot \mathrm{~m}^{2}\right)^{\frac{\mathrm{k}}{\mathrm{k}-1}}$
$\frac{\mathrm{T}_{0}}{\mathrm{~T}}=1+\frac{\mathrm{k}-1}{2} \cdot \mathrm{M}^{2} \quad \Delta \mathrm{~s}=\mathrm{c}_{\mathrm{p}} \cdot \ln \left(\frac{\mathrm{T}_{2}}{\mathrm{~T}_{1}}\right)-\mathrm{R} \cdot \ln \left(\frac{\mathrm{p}_{2}}{\mathrm{P}_{1}}\right)$
Given or available data

$$
\begin{array}{lll}
\mathrm{M}_{1}=0.4 & \mathrm{p}_{1}=625 \cdot \mathrm{kPa} & \mathrm{~T}_{1}=(1250+273) \cdot \mathrm{K} \\
\mathrm{M}_{2}=0.8 & \mathrm{p}_{2}=20 \cdot \mathrm{kPa} & \mathrm{~T}_{2}=(650+273) \cdot \mathrm{K} \\
\mathrm{c}_{\mathrm{p}}=1004 \cdot \frac{\mathrm{~J}}{\mathrm{~kg} \cdot \mathrm{~K}} & \mathrm{k}=1.4 & \mathrm{R}=286.9 \cdot \frac{\mathrm{~J}}{\mathrm{~kg} \cdot \mathrm{~K}}
\end{array}
$$

Then

$$
\begin{array}{ll}
\mathrm{T}_{01}=\mathrm{T}_{1} \cdot\left(1+\frac{\mathrm{k}-1}{2} \cdot \mathrm{M}_{1}^{2}\right) & \mathrm{T}_{01}=1572 \mathrm{~K} \\
\mathrm{P}_{01}=\mathrm{p}_{1} \cdot\left(1+\frac{\mathrm{k}-1}{2} \cdot \mathrm{M}_{1}^{2}\right)^{\frac{\mathrm{k}}{\mathrm{k}-1}} & \mathrm{P}_{01}=698 \cdot \mathrm{kPa} \\
\mathrm{~T}_{02}=\mathrm{T}_{2} \cdot\left(1+\frac{\mathrm{k}-1}{2} \cdot \mathrm{M}_{2}^{2}\right)^{2} & \mathrm{~T}_{02}=1041 \mathrm{~K} \\
\mathrm{P}_{02}=\mathrm{p}_{2} \cdot\left(1+\frac{\mathrm{k}-1}{2} \cdot \mathrm{M}_{2}^{2}\right)^{\frac{\mathrm{k}}{\mathrm{k}-1}} & \mathrm{P}_{02}=30 \cdot \mathrm{kPa} \\
\Delta \mathrm{~s}=\mathrm{c}_{\mathrm{p}} \cdot \ln \left(\frac{\mathrm{~T}_{2}}{\mathrm{~T}_{1}}\right)-\mathrm{R} \cdot \ln \left(\frac{\mathrm{p}_{2}}{\mathrm{P}_{1}}\right) & \Delta \mathrm{s}=485 \cdot \frac{\mathrm{~J}}{\mathrm{~kg} \cdot \mathrm{~K}}
\end{array}
$$

$$
\mathrm{T}_{01}=1299 \cdot{ }^{\circ} \mathrm{C}
$$

$$
\mathrm{T}_{02}=768 \cdot{ }^{\circ} \mathrm{C}
$$

Given: Boeing 747 eruisirig $a t M=0.87$ at $z=13 \mathrm{~km}$, std day. Window located where $M=0 . z$ elative to surface. cabin pressurize o to equivalent of $z=2.5 \mathrm{~km}$, std. day.
Find: Pressure difference across window.
Solution: Apply isentropic stagnation relations.
Computing equation: $p_{0}=p\left(1+\frac{k-1}{2} \mu_{2}\right)^{k / k-1}$
Assumptions: (1) Ideal gas
(2) Isentropic flow

Consider observer on aircraft: air is decelerated isentropically from $M_{\infty}=0.87$ to $M=0.2$.

From Table A.3:
Calculated: $p=\left(\frac{p_{0}}{p_{0}}\right) p_{0}$

$$
\frac{\begin{array}{c}
\text { Altitude } \\
(\mathrm{km})
\end{array}}{\begin{array}{cc}
p / p_{0} \\
(-\cdots)
\end{array}} \frac{\begin{array}{c}
p \\
(\mathrm{kPa})
\end{array}}{\begin{array}{l}
2.5 \\
13.0
\end{array}} \begin{aligned}
& 0.7372 \\
& 0.1636
\end{aligned} \quad \begin{aligned}
& 74.7 \\
& 16.6
\end{aligned} \quad p_{0}=101.3 \mathrm{kRa}
$$

For isentropic stagnation:

$$
p_{0}=p_{\infty}\left(1+\frac{k-1}{2} M_{\infty}^{2}\right)^{k / k-1}=16.6 \mathrm{kPa}\left(1+\frac{1.4-1}{2}(0.87)^{2}\right)^{3.5}=27.2 \mathrm{kPa}(a b 1)
$$

From stagnation to $M=0.2$:

$$
p_{\text {out }}=\frac{p_{0}}{\left(1+\frac{k-1}{2} M^{2}\right)^{k / k-1}}=\frac{27.2 k p_{a}}{\left(1+0.2(0.2)^{2}\right)^{3.5}}=26.5 \mathrm{kPa}(a 6 s)
$$

Pressure difference across window is:

$$
\Delta p=p_{\text {in }}-p_{\text {but }}=(74.7-26.5) \mathrm{kPa}=48.2 \mathrm{kPa}
$$

\{Inside pressure is higher; window force is toward outside.\} The corresponding is diagram is:

12.66 If a window of the cockpit in Problem 12.65 develops a tiny leak the air will start to rush out at critical speed. Find the mass flow rate if the leak area is $1 \mathrm{~mm}^{2}$.

Given: Air flow leak in window of airplane
Find: Mass flow rate
Solution:
Basic equations:

$$
\mathrm{m}_{\text {rate }}=\rho \cdot \mathrm{V} \cdot \mathrm{~A}
$$

$$
\mathrm{V}_{\text {crit }}=\sqrt{\frac{2 \cdot \mathrm{k}}{\mathrm{k}+1} \cdot \mathrm{R} \cdot \mathrm{~T}_{0}} \quad \frac{\rho_{0}}{\rho_{\text {crit }}}=\left(\frac{\mathrm{k}+1}{2}\right)^{\frac{1}{\mathrm{k}-1}}
$$

The interior conditions are the stagnation conditions for the flow

Given or available data $\quad T_{0}=271.9 \cdot \mathrm{~K}$

$$
\rho_{\mathrm{SL}}=1.225 \cdot \frac{\mathrm{~kg}}{\mathrm{~m}^{3}}
$$

$\rho_{0}=0.7812 \cdot \rho_{\mathrm{SL}}$
$\rho_{0}=0.957 \frac{\mathrm{~kg}}{\mathrm{~m}^{3}}$
(Above data from Table A. 3 at an altitude of 2500 m)
$\mathrm{A}=1 \cdot \mathrm{~mm}^{2}$
$c_{p}=1004 \cdot \frac{\mathrm{~J}}{\mathrm{~kg} \cdot \mathrm{~K}}$
$\mathrm{k}=1.4$
$\mathrm{R}=286.9 \cdot \frac{\mathrm{~J}}{\mathrm{~kg} \cdot \mathrm{~K}}$

Then

$$
\rho_{\text {crit }}=\frac{\rho_{0}}{\left(\frac{\mathrm{k}+1}{2}\right)^{\frac{1}{\mathrm{k}-1}}}
$$

$\rho_{\text {crit }}=0.607 \frac{\mathrm{~kg}}{\mathrm{~m}^{3}}$
$\mathrm{V}_{\text {crit }}=\sqrt{\frac{2 \cdot \mathrm{k}}{\mathrm{k}+1} \cdot \mathrm{R} \cdot \mathrm{T}_{0}} \quad \mathrm{~V}_{\text {crit }}=302 \frac{\mathrm{~m}}{\mathrm{~s}}$

The mass flow rate is

$$
\mathrm{m}_{\text {rate }}=\rho_{\text {crit }} \cdot \mathrm{V}_{\text {crit }} \cdot \mathrm{A} \quad \mathrm{~m}_{\text {rate }}=1.83 \times 10^{-4} \frac{\mathrm{~kg}}{\mathrm{~s}}
$$

Given A 0_{2} cartridge contanic an $x^{T} p_{0}=45$ nita gage:
and $T_{0}=25^{\circ} \mathrm{C}$.
Find: F $^{*}, e^{*}$, V Rat correspond to Fess A agnation conditions Solution:
Computing rapations: $\frac{T_{s}}{T}=1+\frac{t_{-1}}{2} M \quad \frac{p_{0}}{p}=\left(1+\frac{b_{-1}}{2} M^{2}\right)^{4 / l_{-1}}$ For $\mathrm{CO}_{2}, \mathrm{E}=1.29$. Ft critical conditions, $M=1$

$$
\begin{aligned}
& \therefore \rho^{*}=\frac{p_{0}^{+}}{1.826}=\frac{45.101 \text { Meta }}{1.8 \mathrm{k}}=24.1 \mathrm{MPa}(\mathrm{abs}) \mathrm{p} p^{+}
\end{aligned}
$$

12.68 The gas storage reservoir for a high-speed wind tunnel contains helium at 3600 R and 725 psig. Calculate the critical conditions (temperature, pressure, and flow speed) that correspond to these stagnation conditions.

Given: Data on helium in reservoir
Find: Critical conditions

Solution:

The data provided, or available in the Appendices, is:

$$
\begin{aligned}
& \mathrm{R}_{\mathrm{He}}=386.1 \cdot \frac{\mathrm{ft} \cdot \mathrm{lbf}}{\mathrm{lbm} \cdot \mathrm{R}} \quad \mathrm{k}=1.66 \quad \mathrm{~T}_{0}=3600 \cdot \mathrm{R} \\
& \frac{\mathrm{~T}_{0}}{\mathrm{~T}_{\text {crit }}}=\frac{\mathrm{k}+1}{2} \\
& \mathrm{~T}_{\text {crit }}=\frac{\mathrm{T}_{0}}{\frac{\mathrm{k}+1}{2}} \\
& \frac{\mathrm{p}_{0}}{\mathrm{p}_{\text {crit }}}=\left(\frac{\mathrm{k}+1}{2}\right)^{\frac{\mathrm{k}}{\mathrm{k}-1}} \\
& \mathrm{p}_{\text {crit }}=\frac{\mathrm{p}_{0}}{\left(\frac{\mathrm{k}+1}{2}\right)^{\frac{\mathrm{k}}{\mathrm{k}-1}}} \quad \mathrm{p}_{\text {crit }}=361 \mathrm{psi} \\
& \mathrm{~V}_{\text {crit }}=\sqrt{\mathrm{k} \cdot \mathrm{R}_{\mathrm{He}} \cdot \mathrm{~T}_{\text {crit }}} \quad \mathrm{V}_{\text {crit }}=7471 \frac{\mathrm{ft}}{\mathrm{~s}}
\end{aligned}
$$

Gwen: Stagnation conditions in a solid prepellant rocket notor are $P_{0}=3000 \mathrm{~K}$ and $P_{0}=45$ Mila gage). Fssume ideal gas buhawior wif $k=323 \mathrm{~J} / \mathrm{kgh} p=$ R. k. The Mach numbet is unity at the froat है te nogat.
Find: $T_{2}, \phi_{t}, \psi_{t}$
Solution:
Computing equations: $\frac{T_{0}}{T}=1+\frac{b_{2}}{2} n^{2} \quad P_{0}=\left(1+\frac{b-1}{2} n^{2}\right)^{t_{t-1}}$ Hssume flow to troatis sartropic.
ft Rroct, r゙=:

$$
\begin{aligned}
& T_{0 t}=T_{t}\left(1+\frac{1}{2}\right)=1.1 T_{t} \quad \therefore T_{t}=\frac{T_{0}}{1.1}=\frac{30.00 k}{1.10}=2730 K_{t} \quad T_{t} \\
& \frac{P_{0}}{P_{t}}=\left(1 h^{2} \frac{1}{2}\right)^{b_{h+1}}=\left(1, \frac{1.2}{O 2}=1.77 i_{0}\right. \\
& \therefore P_{t}=\frac{P_{0}}{1.776}=\frac{45.101 \text { Miba }}{1.77 i 6}=25.5 \mathrm{MPa}(\text { ács }) \quad P_{t}
\end{aligned}
$$

12.70 The hot gas stream at the turbine inlet of a JT9-D jet engine is at $1500^{\circ} \mathrm{C}, 140 \mathrm{kPa}$ (abs), and $M=0.32$. Calculate the critical conditions (temperature, pressure, and flow speed) that correspond to these conditions. Assume the fluid properties of pure air.

Given: Data on hot gas stream
Find: Critical conditions

Solution:

The data provided, or available in the Appendices, is:

$$
\begin{array}{clll}
\mathrm{R}=287 \cdot \frac{\mathrm{~J}}{\mathrm{~kg} \cdot \mathrm{~K}} & \mathrm{k}=1.4 & \mathrm{~T}_{0}=(1500+273) \cdot \mathrm{K} & \mathrm{~T}_{0}=1773 \mathrm{~K} \quad \mathrm{p}_{0}=140 \cdot \mathrm{kPa} \\
\text { For critical conditions } & \frac{\mathrm{T}_{0}}{\mathrm{~T}_{\text {crit }}}=\frac{\mathrm{k}+1}{2} & \mathrm{~T}_{\text {crit }}=\frac{\mathrm{T}_{0}}{\frac{\mathrm{k}+1}{2}} & \mathrm{~T}_{\text {crit }}=1478 \mathrm{~K} \\
& \frac{\mathrm{p}_{0}}{\mathrm{P}_{\text {crit }}}=\left(\frac{\mathrm{k}+1}{2}\right)^{\frac{\mathrm{k}}{\mathrm{k}-1}} & \mathrm{p}_{\text {crit }}=\frac{\mathrm{p}_{0}}{} \\
\mathrm{~V}_{\text {crit }} & =\sqrt{\mathrm{k} \cdot \mathrm{R} \cdot \mathrm{~T}_{\text {crit }}} & \mathrm{V}_{\text {crit }}=770 \frac{\mathrm{~m}}{\mathrm{~s}} & \mathrm{p}_{\text {crit }}=74.0 \mathrm{kPa} \quad
\end{array}
$$

13.1 Air is extracted from a large tank in which the temperature and pressure are $70^{\circ} \mathrm{C}$ and 101 kPa (abs), respectively, through a nozzle. At one location in the nozzle the static pressure is 25 kPa and the diameter is 15 cm . What is the mass flow rate? Assume isentropic flow.

Given: Air extracted from a large tank

Find: Mass flow rate

Solution:

Basic equations:

$$
\mathrm{h}_{1}+\frac{\mathrm{V}_{1}^{2}}{2}=\mathrm{h}_{2}+\frac{\mathrm{V}_{2}^{2}}{2} \quad \frac{\mathrm{p}}{\rho^{k}}=\text { const }
$$

$\mathrm{T} \cdot \mathrm{p}^{\frac{(1-\mathrm{k})}{\mathrm{k}}}=$ const

Given or available data

$$
\begin{array}{ll}
\mathrm{T}_{0}=(70+273) \cdot \mathrm{K} & \mathrm{p}_{0}=101 \cdot \mathrm{kPa} \\
\mathrm{D}=15 \cdot \mathrm{~cm} & \mathrm{c}_{\mathrm{p}}=1004 \cdot \frac{\mathrm{~J}}{\mathrm{~kg} \cdot \mathrm{~K}}
\end{array}
$$

$$
\mathrm{p}=25 \cdot \mathrm{kPa}
$$

$$
\mathrm{k}=1.4
$$

$$
\mathrm{R}=286.9 \cdot \frac{\mathrm{~J}}{\mathrm{~kg} \cdot \mathrm{~K}}
$$

The mass flow rate is given by

$$
\mathrm{m}_{\text {rate }}=\rho \cdot \mathrm{A} \cdot \mathrm{~V}
$$

$$
\mathrm{A}=\frac{\pi \cdot \mathrm{D}^{2}}{4}
$$

$$
\mathrm{A}=0.0177 \mathrm{~m}^{2}
$$

We need the density and velocity at the nozzle. In the tank $\quad \rho_{0}=\frac{\mathrm{P}_{0}}{\mathrm{R} \cdot \mathrm{T}_{0}}$
$\rho_{0}=1.026 \frac{\mathrm{~kg}}{\mathrm{~m}^{3}}$
From the isentropic relation $\quad \rho=\rho_{0} \cdot\left(\frac{\mathrm{p}}{\mathrm{P}_{0}}\right)^{\frac{1}{\mathrm{k}}} \quad \rho=0.379 \frac{\mathrm{~kg}}{\mathrm{~m}^{3}}$
We can apply the energy equation between the tank (stagnation conditions) and the point in the nozzle to find the velocity

$$
\mathrm{h}_{0}=\mathrm{h}+\frac{\mathrm{V}^{2}}{2} \quad \mathrm{~V}=\sqrt{2 \cdot\left(\mathrm{~h}_{0}-\mathrm{h}\right)}=\sqrt{2 \cdot \mathrm{c}_{\mathrm{p}} \cdot\left(\mathrm{~T}_{0}-\mathrm{T}\right)}
$$

Fot T we again use insentropic relations

$$
\mathrm{T}=\mathrm{T}_{0} \cdot\left(\frac{\mathrm{p}_{0}}{\mathrm{p}}\right)^{\frac{(1-\mathrm{k})}{\mathrm{k}}} \quad \mathrm{~T}=230.167 \mathrm{~K} \quad \mathrm{~T}=-43.0 \cdot{ }^{\circ} \mathrm{C}
$$

Then

$$
\mathrm{V}=\sqrt{2 \cdot \mathrm{c}_{\mathrm{p}} \cdot\left(\mathrm{~T}_{0}-\mathrm{T}\right)} \quad \mathrm{V}=476 \frac{\mathrm{~m}}{\mathrm{~s}}
$$

The mass flow rate is

$$
\mathrm{m}_{\text {rate }}=\rho \cdot \mathrm{A} \cdot \mathrm{~V}
$$

$m_{\text {rate }}=3.18 \frac{\mathrm{~kg}}{\mathrm{~s}}$

Note that the flow is supersonic at this point

$$
\mathrm{c}=\sqrt{\mathrm{k} \cdot \mathrm{c}}=304 \frac{\mathrm{~m}}{\mathrm{~s}}
$$

$$
\mathrm{M}=\frac{\mathrm{V}}{\mathrm{c}}
$$

$$
\mathrm{M}=1.57
$$

Hence we must have a converging-diverging nozzle

Problem 13.2

Given: Steam flows steadily and isentropically trough a nople

$$
\begin{array}{ll}
T_{0}=900 \mathrm{~F} \\
P_{0}=900 \text { psia } & P_{1}=600 \text { psia } \\
D_{1}=0.188 \mathrm{in}
\end{array}
$$

(nozzle shape unspecified)
Find: $V_{1}, M_{1}, i n$, passage shape
Solution:
Basic equations: $\quad h_{1}+\frac{V^{2}}{2}=h+\frac{V^{2}}{2}=h_{0}=$ constant

$$
p A V=\text { constant }=i
$$

Assumptions: (1) steady flow
(2) isentropic flow
(3) uniform flow al a section
(4) superheated steam can be treated as an ideal

$$
\text { gas, } R=85.8 \mathrm{ft} \cdot \text { or } / \mathrm{I}_{\mathrm{n}} i R, k=1.28
$$

(5) $\quad g=0$

Frons steam tables for superheated vapor with $T_{0}=900 \mathrm{~F}, B_{0}=900$ psia,

$$
h_{0}=1451.8 \text { Btu } 116 \mathrm{~m} \quad s_{0}=1.6257 \text { Btulibnie }
$$

From steam tables for superheated vapor with $s_{1}=1.6257$ BTu limit, and $P_{1}=600$ psia

$$
T_{1}=780^{\circ} \mathrm{F}, \quad h_{1}=1396.5 \text { Btullbm, } v_{1}=1.167 \mathrm{ft}^{3} / 1 \mathrm{bon}
$$

From the first low,

$$
\begin{aligned}
& V_{1}=1660 \mathrm{ft} l_{\mathrm{s}} \\
& \dot{m}=p A t=\frac{1}{v} \pi \frac{y^{2}}{4} \nu=\frac{1 \mathrm{bm}}{1.167 \mathrm{ft}^{3}} \times \frac{\pi}{4} \times\left(\frac{0.188)^{2}}{12}\right)^{\prime} \mathrm{ft}^{2} \times 1.16 \mathrm{~b} 0 \frac{\mathrm{ft}}{\mathrm{~s}}=\left.0.274 \mathrm{ibm}\right|_{s}
\end{aligned}
$$

$$
\begin{aligned}
& c_{1}=\left.2110 \mathrm{ft}\right|_{\mathrm{s}} \\
& M_{1}=V_{M_{1}}=\frac{660}{2110}=0.787
\end{aligned}
$$

Since M, <1.0, passage converges as shown above

Problem 13.3

13.3 Steam flows steadily and isentropically through a nozzle. At an upstream section where the speed is negligible, the temperature and pressure are $450^{\circ} \mathrm{C}$ and 6 MPa (abs). At a section where the nozzle diameter is 2 cm , the steam pressure is 2 MPa (abs.). Determine the speed and Mach number at this section and the mass flow rate of steam. Sketch the passage shape.

Given: Steam flow through a nozzle
Find: \quad Speed and Mach number; Mass flow rate; Sketch the shape

Solution:

Basic equations: $\quad \mathrm{m}_{\text {rate }}=\rho \cdot \mathrm{V} \cdot \mathrm{A} \quad \mathrm{h}_{1}+\frac{\mathrm{V}_{1}{ }^{2}}{2}=\mathrm{h}_{2}+\frac{\mathrm{V}_{2}{ }^{2}}{2}$

Assumptions: 1) Steady flow 2) Isentropic 3) Uniform flow 4) Superheated steam can be treated as ideal gas

Given or available data

$$
\begin{array}{lll}
\mathrm{T}_{0}=(450+273) \cdot \mathrm{K} & \mathrm{p}_{0}=6 \cdot \mathrm{MPa} & \mathrm{p}=2 \cdot \mathrm{MPa} \\
\mathrm{D}=2 \cdot \mathrm{~cm} & \mathrm{k}=1.30 & \mathrm{R}=461.4 \cdot \frac{\mathrm{~J}}{\mathrm{~kg} \cdot \mathrm{~K}}
\end{array}
$$

(Table A.6)

From the steam tables (try finding interactive ones on the Web!), at stagnation conditions

$$
\mathrm{s}_{0}=6720 \cdot \frac{\mathrm{~J}}{\mathrm{~kg} \cdot \mathrm{~K}} \quad \mathrm{~h}_{0}=3.302 \times 10^{6} \cdot \frac{\mathrm{~J}}{\mathrm{~kg}}
$$

Hence at the nozzle section

$$
\mathrm{s}=\mathrm{s}_{0}=6720 \cdot \frac{\mathrm{~J}}{\mathrm{~kg} \cdot \mathrm{~K}} \text { and } \quad \mathrm{p}=2 \mathrm{MPa}
$$

From these values we find from the steam tables that
$\mathrm{T}=289^{\circ} \mathrm{C}$
$\mathrm{h}=2.997 \times 10^{6} \cdot \frac{\mathrm{~J}}{\mathrm{~kg}}$
$\mathrm{v}=0.1225 \cdot \frac{\mathrm{~m}^{3}}{\mathrm{~kg}}$
Hence the first law becomes

$$
\mathrm{V}=\sqrt{2 \cdot\left(\mathrm{~h}_{0}-\mathrm{h}\right)}
$$

$$
\mathrm{V}=781 \frac{\mathrm{~m}}{\mathrm{~s}}
$$

The mass flow rate is given by

$$
\mathrm{m}_{\text {rate }}=\rho \cdot \mathrm{A} \cdot \mathrm{~V}=\frac{\mathrm{A} \cdot \mathrm{~V}}{\mathrm{v}}
$$

$$
\mathrm{A}=\frac{\pi \cdot \mathrm{D}^{2}}{4}
$$

$$
\mathrm{A}=3.14 \times 10^{-4} \mathrm{~m}^{2}
$$

Hence

$$
\mathrm{m}_{\text {rate }}=\frac{\mathrm{A} \cdot \mathrm{~V}}{\mathrm{v}}
$$

$$
\mathrm{m}_{\text {rate }}=2.00 \frac{\mathrm{~kg}}{\mathrm{~s}}
$$

For the Mach number we need

$$
\mathrm{c}=\sqrt{\mathrm{k} \cdot \mathrm{R} \cdot \mathrm{~T}}
$$

$$
\mathrm{c}=581 \frac{\mathrm{~m}}{\mathrm{~s}}
$$

$$
\mathrm{M}=\frac{\mathrm{V}}{\mathrm{c}}
$$

$$
\mathrm{M}=1.35
$$

The flow is supersonic starting from rest, so must be converging-diverging

Problem 13.4

13.4 At a section in a passage, the pressure is $150 \mathrm{kPa}(\mathrm{abs})$, the temperature is $10^{\circ} \mathrm{C}$, and the speed is $120 \mathrm{~m} / \mathrm{s}$. For isentropic flow of air, determine the Mach number at the point where the pressure is 50 kPa (abs). Sketch the passage shape.

Given: Air flow in a passage
Find: Mach number; Sketch shape

Solution:

Basic equations:

$$
\frac{\mathrm{P}_{0}}{\mathrm{p}}=\left(1+\frac{\mathrm{k}-1}{2} \cdot \mathrm{M}^{2}\right)^{\frac{\mathrm{k}}{\mathrm{k}-1}} \quad \mathrm{c}=\sqrt{\mathrm{k} \cdot \mathrm{R} \cdot \mathrm{~T}}
$$

Given or available data

$$
\begin{aligned}
& \mathrm{T}_{1}=(10+273) \cdot \mathrm{K} \\
& \mathrm{p}_{2}=50 \cdot \mathrm{kPa}
\end{aligned}
$$

$$
\mathrm{p}_{1}=150 \cdot \mathrm{kPa}
$$

$$
\mathrm{V}_{1}=120 \cdot \frac{\mathrm{~m}}{\mathrm{~s}}
$$

$\mathrm{k}=1.4$
$\mathrm{R}=286.9 \cdot \frac{\mathrm{~J}}{\mathrm{~kg} \cdot \mathrm{~K}}$
The speed of sound at state 1 is

$$
\mathrm{c}_{1}=\sqrt{\mathrm{k} \cdot \mathrm{R} \cdot \mathrm{~T}_{1}}
$$

$$
c_{1}=337 \frac{\mathrm{~m}}{\mathrm{~s}}
$$

Hence

$$
\mathrm{M}_{1}=\frac{\mathrm{V}_{1}}{\mathrm{c}_{1}}
$$

$$
\mathrm{M}_{1}=0.356
$$

For isentropic flow stagnation pressure is constant. Hence at state 2
$\frac{\mathrm{P}_{0}}{\mathrm{p}_{2}}=\left(1+\frac{\mathrm{k}-1}{2} \cdot \mathrm{M}_{2}{ }^{2}\right)^{\frac{\mathrm{k}}{\mathrm{k}-1}}$

Hence

$$
\mathrm{p}_{0}=\mathrm{p}_{1} \cdot\left(1+\frac{\mathrm{k}-1}{2} \cdot \mathrm{M}_{1}^{2}\right)^{\frac{\mathrm{k}}{\mathrm{k}-1}}
$$

$\mathrm{P}_{0}=164 \mathrm{kPa}$

Solving for $\mathrm{M}_{2} \quad \mathrm{M}_{2}=\sqrt{\frac{2}{\mathrm{k}-1} \cdot\left[\left(\frac{\mathrm{p}_{0}}{\mathrm{p}_{2}}\right)^{\frac{\mathrm{k}-1}{\mathrm{k}}}-1\right]}$
$M_{2}=1.42$

Hence, as we go from subsonic to supersonic we must have a converging-diverging nozzle

13.5 At a section in a passage, the pressure is 30 psia , the temperature is $100^{\circ} \mathrm{F}$, and the speed is $1750 \mathrm{ft} / \mathrm{s}$. At a section downstream the Mach number is 2.5 . Determine the pressure at this downstream location for isentropic flow of air. Sketch the passage shape.

Given: Data on flow in a passage
Find: Pressure at downstream location

Solution:

The given or available data is:

R	$=$	53.33	$\mathrm{ft} \cdot \mathrm{lbf} / \mathrm{lbm} \cdot{ }^{\circ} \mathrm{R}$
k	$=$	1.4	
T_{1}	$=$	560	${ }^{\mathrm{o}} \mathrm{R}$
$p_{1}=$	30	psi	
$V_{1}=$	1750	ft / s	
M_{2}	$=$	2.5	

Equations and Computations:
From T_{1} and Eq. 12.18

$$
c=\sqrt{k R T}
$$

$c_{1}=1160 \mathrm{ft} / \mathrm{s}$

Then $\quad M_{1}=\quad 1.51$

From M_{1} and p_{1}, and Eq. 13.7a
(using built-in function $\operatorname{Isenp}(M, k)$)

$$
\begin{aligned}
& \frac{p_{0}}{p}=\left[1+\frac{k-1}{2} M^{2}\right]^{k /(k-1)} \\
& p_{01}=111 \quad \mathrm{psi}
\end{aligned}
$$

For isentropic flow $\left(p_{01}=p_{02}\right)$

$$
p_{02}=\quad 111 \quad \text { psi }
$$

From M_{2} and p_{02}, and Eq. 13.7a
(using built-in function $\operatorname{Isenp}(M, k)$)

$$
p_{2}=\quad 6.52 \quad \mathrm{psi}
$$

13.6 Air flows isentropically through a converging-diverging nozzle from a large tank containing air at $250^{\circ} \mathrm{C}$. At two locations where the area is $1 \mathrm{~cm}^{2}$, the static pressures are 200 kPa and 50 kPa . Find the mass flow rate, the throat area, and the Mach numbers at the two locations.

Given: Data on flow in a nozzle
Find: Mass flow rate; Throat area; Mach numbers

Solution:

The given or available data is:

| $R=$ | 286.9 | $\mathrm{~J} / \mathrm{kg} \cdot \mathrm{K}$ |
| ---: | :---: | :--- | :--- |
| $k=$ | 1.4 | |
| $T_{0}=$ | 523 | K |
| $p_{1}=$ | 200 | kPa |
| $A=$ | 1 | $\mathrm{~cm}^{2}$ |

$p_{2}=50 \mathrm{kPa}$

Equations and Computations:

We don't know the two Mach numbers. We do know for each that Eq. 13.7a applies:

$$
\frac{p_{0}}{p}=\left[1+\frac{k-1}{2} M^{2}\right]^{k /(k-1)}
$$

Hence we can write two equations, but have three unknowns $\left(M_{1}, M_{2}\right.$, and $\left.p_{0}\right)$!

We also know that states 1 and 2 have the same area. Hence we can write Eq. 13.7d twice:

$$
\frac{A}{A^{*}}=\frac{1}{M}\left[\frac{1+\frac{k-1}{2} M^{2}}{\frac{k+1}{2}}\right]^{(k+1) / 2(k-1)}
$$

We now have four equations for four unknowns $\left(A^{*}, M_{1}, M_{2}\right.$, and $\left.p_{0}\right)$!
We make guesses (using Solver) for M_{1} and M_{2}, and make the errors in computed A^{*} and p_{0} zero.

For:	$M_{1}=$	0.512	$M_{2}=$	1.68	Errors
from Eq. 13.7a:	$p_{0}=$	239	kPa	$p_{0}=$	239
aPa	0.00%				
and from Eq. 13.7d:	$A^{*}=$	0.759	$\mathrm{~cm}^{2}$	$A^{*}=$	0.759
$\mathrm{~cm}^{2}$	0.00%				

Note that the throat area is the critical area

The stagnation density is then obtained from the ideal gas equation

$$
\rho_{0}=1.59 \quad \mathrm{~kg} / \mathrm{m}^{3}
$$

The density at critical state is obtained from Eq. 13.7a (or 12.22c)

$$
\rho^{*}=1.01 \quad \mathrm{~kg} / \mathrm{m}^{3}
$$

The velocity at critical state can be obtained from Eq. 12.23)

$$
\begin{aligned}
V^{*} & =c^{*}=\sqrt{\frac{2 k}{k+1} R T_{0}} \\
V^{*} & =418 \quad \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

The mass flow rate is $\rho * V^{*} A *$

$$
m_{\text {rate }}=0.0321 \mathrm{~kg} / \mathrm{s}
$$

Problem 13.7.

Given: Steady, isentropic flow of air through a passage

$$
V_{2}=519 \mathrm{~m} \mathrm{~s}_{\mathrm{s}}
$$

(passage shape unspecified)
Find: M_{2}, shape of passage
Solution:
Basic equations: $h_{1}+\frac{V_{1}^{2}}{2}=h_{2}+\frac{V_{2}^{2}}{2}$
Assumptions: (1) steady flow
(a) isentropic flow
(3) uniform flow al a section
(4) $\Delta z=0$
(5) ideal gas
$M_{2}=\frac{V_{2}}{c_{2}}$ where $c_{2}=\left(k e T_{2}\right)^{1 / 2}$. Hence T_{2} must be found

$$
\begin{aligned}
& h_{2}=h_{1}+\frac{1}{2}\left(\psi_{1}^{2}-v_{2}^{2}\right)
\end{aligned}
$$

$$
\begin{aligned}
& T_{2}=T_{1}+\frac{1}{2 c_{p}}\left(\nu_{1}^{2}-V_{2}^{2}\right) \\
& =333 k+\left[(732)^{2}-(519)^{2}\right] \frac{\mu^{2}}{\delta^{2}} \times \frac{1}{2} \times \frac{\mathrm{kg} \cdot k}{10^{3} N \cdot+1} \times \frac{N \cdot \varepsilon^{2}}{\mathrm{~kg} \cdot{ }^{2}} \\
& T_{2}=466 \mathrm{~K}
\end{aligned}
$$

$$
\begin{align*}
& M_{2}=\frac{V_{2}}{c_{2}}=\frac{519}{433}=1.20 \tag{2}
\end{align*}
$$

Since $M_{2}<M_{1}$ and $M_{2}>1.0$, then passage from (1) to (8) is a supersonic diffuser as shown above

13.8 Air flows steadily and isentropically through a passage at $150 \mathrm{lbm} / \mathrm{s}$. At the section where the diameter is $D=3 \mathrm{ft}, M=1.75$, $T=32^{\circ} \mathrm{F}$, and $p=25 \mathrm{psia}$. Determine the speed and cross-sectional area downstream where $T=225^{\circ} \mathrm{F}$. Sketch the flow passage.

Given: Air flow in a passage
Find: Speed and area downstream; Sketch flow passage
Solution:

For isentropic flow stagnation conditions are constant. Hence

$$
\mathrm{M}_{2}=\sqrt{\frac{2}{\mathrm{k}-1} \cdot\left(\frac{\mathrm{~T}_{0}}{\mathrm{~T}_{2}}-1\right)} \quad \mathrm{M}_{2}=0.889
$$

We also have

$$
\mathrm{c}_{2}=\sqrt{\mathrm{k} \cdot \mathrm{R}_{\mathrm{air}} \cdot \mathrm{~T}_{2}} \quad \mathrm{c}_{2}=1283 \frac{\mathrm{ft}}{\mathrm{~s}}
$$

Hence

$$
\mathrm{V}_{2}=\mathrm{M}_{2} \cdot \mathrm{c}_{2} \quad \mathrm{~V}_{2}=1141 \frac{\mathrm{ft}}{\mathrm{~s}}
$$

From state 1

$$
A_{\text {crit }}=\frac{A_{1} \cdot M_{1}}{\left(\frac{1+\frac{\mathrm{k}-1}{2} \cdot \mathrm{M}_{1}^{2}}{\frac{\mathrm{k}+1}{2}}\right)^{\frac{\mathrm{k}+1}{2 \cdot(\mathrm{k}-1)}}}
$$

$A_{\text {crit }}=5.10 \mathrm{ft}^{2}$
$\mathrm{A}_{2}=5.15 \mathrm{ft}^{2}$
Hence at state 2

$$
A_{2}=\frac{A_{\text {crit }}}{\mathrm{M}_{2}} \cdot\left(\frac{1+\frac{\mathrm{k}-1}{2} \cdot \mathrm{M}_{2}^{2}}{\frac{\mathrm{k}+1}{2}}\right)^{\frac{\mathrm{k}+1}{2 \cdot(\mathrm{k}-1)}}
$$

Hence, as we go from supersonic to subsonic we must have a converging-diverging diffuser

Problem 13.9

Given: Steady, isentropic flow of air through a passage

$$
\begin{aligned}
& T_{1}=2 \mathrm{C}^{\circ} \\
& P_{1}=60 \mathrm{~km} \\
& V_{1}=48 \mathrm{bm} / \mathrm{s} \\
& R_{1}=0.0 \mathrm{~m}^{2}
\end{aligned}
$$

$$
P_{2}=78,8 \mathrm{bPa}
$$

(passage shape unspecified)
Find: M_{2}
Solution:
Computing equations: $\quad \vec{p}_{0}=\left[1+k_{-\frac{1}{2}} m^{2}\right]^{k / k-1} \quad c=\sqrt{k R T}$.
Assumptions: (i) steady flow
(3) uniform flow at a section
(a) isentropic flow
(4) ideal gas

For isentropic flow, $P_{O_{1}}=P_{0_{2}}=P_{D_{0}}=$ constant

$$
\begin{aligned}
& M_{1}=\frac{V_{1}}{C_{1}} \quad c_{1}=\left(k E T_{1}\right)^{1 / 2}=\left(1.4 \times 2087 \frac{N \cdot n}{\lg \cdot \mathrm{~K}} \times 300 \mathrm{~K} \times \frac{\mathrm{kg} \cdot \mathrm{n}}{\mathrm{~N} \cdot 6^{2}}\right)^{1 / 2}=347 \mathrm{~m} / \mathrm{s} \\
& M_{1}=\frac{V_{1}}{C_{1}}=\frac{486}{347}=1.40 \quad P_{0}=P_{1}\left[1+\frac{k-1}{2} M_{1}^{2}\right]^{k l k-1}=60 k P_{0}\left[1+0.2(1.40)^{2}\right]^{3.5} \\
& P_{0_{1}}=191 \mathrm{tPa} \\
& \frac{P_{O_{2}}}{P_{2}}=\left[1+k_{-1}^{2} m_{2}^{2}\right]^{k / k_{-1}} \quad P_{O_{2}}=P_{O_{1}} \\
& M_{2}=\left\{\frac{2}{k-1}\left[\left(\frac{P_{01}}{P_{2}}\right)^{k+1 / 2}-1\right]\right\}^{1 / 2}=\left\{\frac{2}{0.4}\left[\left(\frac{191}{88.8}\right)^{0.266}-1\right]\right\}^{1 / 2}=1.20 \ldots M_{2}
\end{aligned}
$$

Since $M_{2}<M_{1}$ and $M_{2}>1.0$, then passage from (1) to (2) is a supersonic diffuser as shown above

13.10 For isentropic flow of air, at a section in a passage, $A=$ $0.25 \mathrm{~m}^{2}, p=15 \mathrm{kPa}(\mathrm{abs}), T=10^{\circ} \mathrm{C}$, and $V=590 \mathrm{~m} / \mathrm{s}$. Find the Mach number and the mass flow rate. At a section downstream the temperature is $137^{\circ} \mathrm{C}$ and the Mach number is 0.75 . Determine the cross-sectional area and pressure at this downstream location. Sketch the passage shape.

Given: Data on flow in a passage

Find: Flow rate; area and pressure at downstream location; sketch passage shape

Solution:

The given or available data is:

$$
\begin{array}{rlrl}
R= & 286.9 & \mathrm{~J} / \mathrm{kg} \cdot \mathrm{~K} \\
k= & 1.4 & \\
A_{1}= & 0.25 & \mathrm{~m}^{2} \\
T_{1}= & 283 & \mathrm{~K} \\
p_{1}= & 15 & \mathrm{kPa} \\
V_{1}= & 590 & \mathrm{~m} / \mathrm{s} \\
T_{2}= & 410 & \\
M_{2}= & 0.75 &
\end{array}
$$

Equations and Computations:

From T_{1} and Eq. $12.18 \quad c=\sqrt{k R T}$

$$
c_{1}=337 \quad \mathrm{~m} / \mathrm{s}
$$

Then

$$
M_{1}=\quad 1.75
$$

Because the flow decreases isentropically from supersonic to subsonic the passage shape must be convergent-divergent

From p_{1} and T_{1} and the ideal gas equation

$$
\rho_{1}=0.185 \quad \mathrm{~kg} / \mathrm{m}^{3}
$$

The mass flow rate is $m_{\text {rate }}=\rho_{1} A_{1} V_{1}$

$$
m_{\text {rate }}=27.2 \mathrm{~kg} / \mathrm{s}
$$

From M_{1} and A_{1}, and Eq. 13.7d
(using built-in function $\operatorname{Isen} A(M, k)$)

$$
\begin{gather*}
\frac{A}{A^{*}}=\frac{1}{M}\left[\frac{1+\frac{k-1}{2} M^{2}}{\frac{k+1}{2}}\right]^{(k+1) / 2(k-1)} \tag{13.7d}\\
A^{*}=0.180 \mathrm{~m}^{2}
\end{gather*}
$$

From M_{2} and A^{*}, and Eq. 13.7d
(using built-in function $\operatorname{Isen} A(M, k)$)

$$
A_{2}=0.192 \quad \mathrm{~m}^{2}
$$

From M_{1} and p_{1}, and Eq. 13.7a
(using built-in function Isenp (M, k))

$$
\begin{align*}
\frac{p_{0}}{p} & =\left[1+\frac{k-1}{2} M^{2}\right]^{k /(k-1)} \tag{13.7a}\\
p_{01} & =79.9 \mathrm{kPa}
\end{align*}
$$

For isentropic flow ($p_{01}=p_{02}$)

$$
p_{02}=\quad 79.9 \quad \mathrm{kPa}
$$

From M_{2} and p_{02}, and Eq. 13.7a
(using built-in function Isenp (M, k))

$$
p_{2}=\quad 55.0 \quad \mathrm{kPa}
$$

13.11 Atmospheric air (101 kPa and $20^{\circ} \mathrm{C}$) is drawn into a receiving pipe via a converging nozzle. The throat cross-section diameter is 1 cm . Plot the mass flow rate delivered for the receiv-
ing pipe pressure ranging from 100 kPa down to 5 kPa .

Given: Flow in a converging nozzle to a pipe
Find: Plot of mass flow rate

Solution:

The given or available data is $\quad R=287 \mathrm{~J} / \mathrm{kg} \cdot \mathrm{K}$

$$
\begin{aligned}
k & =1.4 \\
T_{0} & =293 \mathrm{~K} \\
p_{0} & =101 \mathrm{kPa} \\
D_{\mathrm{t}} & =1 \mathrm{~cm} \\
A_{\mathrm{t}} & =0.785 \mathrm{~cm}^{2}
\end{aligned}
$$

Equations and Computations:
The critical pressure is given by $\quad \frac{p_{0}}{p^{*}}=\left[\frac{k+1}{2}\right]^{k(k-1)}$

$$
p^{*}=53.4 \mathrm{kPa}
$$

Hence for $p=100 \mathrm{kPa}$ down to this pressure the flow gradually increases; then it is constant

p (kPa)	M $($ Eq. 13.7a) $)$	$T(\mathrm{~K})$ $($ Eq. 13.7 b$)$	c $(\mathrm{~m} / \mathrm{s})$	$V=M \cdot c$ $(\mathrm{~m} / \mathrm{s})$	$\rho=p / R T$ $\left(\mathrm{~kg} / \mathrm{m}^{4}\right)$	Flow $(\mathrm{kg} / \mathrm{s})$
100	0.119	292	343	41	1.19	0.00383
99	0.169	291	342	58	1.18	0.00539
98	0.208	290	342	71	1.18	0.00656
97	0.241	290	341	82	1.17	0.00753
96	0.270	289	341	92	1.16	0.00838
95	0.297	288	340	101	1.15	0.0091
90	0.409	284	337	138	1.11	0.0120
85	0.503	279	335	168	1.06	0.0140
80	0.587	274	332	195	1.02	0.0156
75	0.666	269	329	219	0.971	0.0167
70	0.743	264	326	242	0.925	0.0176
65	0.819	258	322	264	0.877	0.0182
60	0.896	252	318	285	0.828	0.0186
55	0.974	246	315	306	0.778	0.0187
53.4	1.000	244	313	313	0.762	0.0187
53	1.000	244	313	313	0.762	0.0187
52	1.000	244	313	313	0.762	0.0187
51	1.000	244	313	313	0.762	0.0187
50	1.000	244	313	313	0.762	0.0187

Using critical conditions, and Eq. 13.9 for mass flow rate:

53.4	1.000	244	313	313	0.762	0.0185

(Note: discrepancy in mass flow rate is due to round-off error)
13.12 Repeat Problem 13.11 if the converging nozzle is replaced with a converging-diverging nozzle with an exit diameter of 2.5 cm (same throat area).

Given: Flow in a converging-diverging nozzle to a pipe
Find: Plot of mass flow rate

Solution:

The given or available data is

$$
\begin{array}{rllll}
R & = & 286.9 & \mathrm{~J} / \mathrm{kg} \cdot \mathrm{~K} & \\
k & =1.4 & & & \\
T_{0} & =293 & \mathrm{~K} & & \\
p_{0} & =101 & \mathrm{kPa} & D e= & 2.5 \\
D_{\mathrm{t}} & =1 & \mathrm{~cm} & \mathrm{~cm} \\
A_{\mathrm{t}} & =0.785 & \mathrm{~cm}^{2} & A_{\mathrm{e}}=4.909 & \mathrm{~cm}^{2}
\end{array}
$$

Equations and Computations:

The critical pressure is given by

$$
\begin{equation*}
\frac{p_{0}}{p^{*}}=\left[\frac{k+1}{2}\right]^{k /(k-1)} \tag{12.22a}
\end{equation*}
$$

$$
p^{*}=53.4 \quad \mathrm{kPa} \quad \text { This is the minimum throat pressure }
$$

For the CD nozzle, we can compute the pressure at the exit required for this to happen

$$
\begin{array}{rlrlll}
A^{*} & =0.785 & \mathrm{~cm}^{2} & \left(=A_{\mathrm{t}}\right) & & \\
A_{\mathrm{e}} / A^{*} & =6.25 & & & \\
M_{\mathrm{e}} & =0.0931 & \text { or } & & 3.41 & \\
\text { (Eq. 13.7d) } \\
p_{\mathrm{e}} & =100.4 & \text { or } & & 67.2 & \\
\text { kPa (Eq. 13.7a) }
\end{array}
$$

Hence we conclude flow occurs in regimes iii down to v (Fig. 13.8); the flow is ALWAYS choked!

p^{*} (kPa)	M $13.7 \mathrm{a})$	$T^{*}(\mathrm{~K})$ $(\mathrm{Eq} 13.7 \mathrm{~b})$.	c^{*} $(\mathrm{~m} / \mathrm{s})$	$V^{*}=c^{*}$ $(\mathrm{~m} / \mathrm{s})$	$\rho=p / R T$ $\left(\mathrm{~kg} / \mathrm{m}^{3}\right)$	Flow $(\mathrm{kg} / \mathrm{s})$
53.4	1.000	244	313	313	0.762	0.0187

(Note: discrepancy in mass flow rate is due to round-off error) 0.0185
(Using Eq. 13.9)
13.13 A passage is designed to expand air isentropically to atmospheric pressure from a large tank in which properties are held constant at $40^{\circ} \mathrm{F}$ and 45 psia . The desired flow rate is 2.25 $\mathrm{lbm} / \mathrm{s}$. Assuming the passage is 20 ft long, and that the Mach number increases linearly with position in the passage, plot the crosssectional area and pressure as functions of position.

Given: Data on tank conditions; isentropic flow
Find: Plot cross-section area and pressure distributions

Solution:

The given or available data is:

R	$=$	53.33	
$\mathrm{ft} \cdot \mathrm{lbf} / \mathrm{lbm} \cdot{ }^{\circ} \mathrm{R}$			
k	$=$	1.4	
T_{0}	$=$	500	
${ }^{\circ} \mathrm{R}$			
p_{0}	$=$	45	
p_{e}	$=$	14.7	
psia			
$m_{\text {rate }}$	$=$	2.25	
		$\mathrm{lbm} / \mathrm{s}$	

Equations and Computations:

From p_{0}, p_{e} and Eq. 13.7a (using built-in function $\operatorname{IsenMfromp}(\mathrm{M}, \mathrm{k})$)

$$
\begin{align*}
& \frac{p_{0}}{p}=\left[1+\frac{k-1}{2} M^{2}\right]^{k /(k-1)} \tag{13.7a}\\
& M_{\mathrm{e}}=1.37
\end{align*}
$$

Because the exit flow is supersonic, the passage must be a CD nozzle We need a scale for the area.
From $p_{0}, T_{0}, m_{\text {flow }}$, and Eq. 13.10c

$$
\begin{equation*}
\dot{m}_{\text {choked }}=76.6 \frac{A_{t} p_{0}}{\sqrt{T_{0}}} \tag{13.10c}
\end{equation*}
$$

Then

$$
A_{\mathrm{t}}=A^{*}=0.0146 \quad \mathrm{ft}^{2}
$$

For each M, and A^{*}, and Eq. 13.7d
(using built-in function $\operatorname{Isen} A(M, k)$

$$
\begin{equation*}
\frac{A}{A^{*}}=\frac{1}{M}\left[\frac{1+\frac{k-1}{2} M^{2}}{\frac{k+1}{2}}\right]^{(k+1) / 2(k-1)} \tag{13.7d}
\end{equation*}
$$

we can compute each area A.

From each M, and p_{0}, and Eq. 13.7a
(using built-in function $\operatorname{Isenp}(M, k)$
we can compute each pressure p.

\boldsymbol{L} (ft)	\boldsymbol{M}	$\boldsymbol{A}\left(\mathbf{f t}^{\mathbf{}}\right.$)	\boldsymbol{p} (psia)
1.00	0.069	0.1234	44.9
1.25	0.086	0.0989	44.8
1.50	0.103	0.0826	44.7
1.75	0.120	0.0710	44.5
2.00	0.137	0.0622	44.4
2.50	0.172	0.0501	44.1
3.00	0.206	0.0421	43.7
4.00	0.274	0.0322	42.7
5.00	0.343	0.0264	41.5
6.00	0.412	0.0227	40.0
7.00	0.480	0.0201	38.4
8.00	0.549	0.0183	36.7
9.00	0.618	0.0171	34.8
10.00	0.686	0.0161	32.8
11.00	0.755	0.0155	30.8
12.00	0.823	0.0150	28.8
13.00	0.892	0.0147	26.8
14.00	0.961	0.0146	24.9
$\mathbf{1 4 . 6}$	$\mathbf{1 . 0 0 0}$	$\mathbf{0 . 0 1 4 6}$	23.8
16.00	1.098	0.0147	21.1
17.00	1.166	0.0149	19.4
18.00	1.235	0.0152	17.7
19.00	1.304	0.0156	16.2
20.00	1.372	0.0161	14.7

Problem 13.14

13.14 Air flows isentropically through a converging nozzle into a receiver in which the absolute pressure is 35 psia . The air enters the nozzle with negligible speed at a pressure of 60 psia and a temperature of $200^{\circ} \mathrm{F}$. Determine the mass flow rate through the nozzle for a throat diameter of 4 in.

Given: Air flow in a converging nozzle
Find: Mass flow rate

Solution:

Basic equations: $\quad m_{\text {rate }}=\rho \cdot V \cdot A \quad p=\rho \cdot R \cdot T$

Given or available data $\mathrm{P}_{\mathrm{b}}=35 \cdot \mathrm{psi}$
$p_{0}=60 \cdot p s i$
$T_{0}=(200+460) \cdot R \quad D_{t}=4 \cdot$ in

$$
\mathrm{k}=1.4
$$

$\mathrm{R}_{\mathrm{air}}=53.33 \cdot \frac{\mathrm{ft} \cdot \mathrm{lbf}}{\mathrm{lbm} \cdot \mathrm{R}}$
$\mathrm{A}_{\mathrm{t}}=\frac{\pi}{4} \cdot \mathrm{D}_{\mathrm{t}}^{2}$
$A_{t}=0.0873 \cdot f t^{2}$

Since $\quad \frac{\mathrm{P}_{\mathrm{b}}}{\mathrm{P}_{0}}=0.583 \quad$ is greater than 0.528 , the nozzle is not choked and $\quad \mathrm{P}_{\mathrm{t}}=\mathrm{p}_{\mathrm{b}}$

Hence

$$
\mathrm{M}_{\mathrm{t}}=\sqrt{\frac{2}{\mathrm{k}-1} \cdot\left[\left(\frac{\mathrm{p}_{0}}{\mathrm{p}_{\mathrm{t}}}\right)^{\frac{\mathrm{k}-1}{\mathrm{k}}}-1\right]}
$$

$$
\mathrm{M}_{\mathrm{t}}=0.912
$$

and

$$
\begin{array}{lll}
\mathrm{T}_{\mathrm{t}}=\frac{\mathrm{T}_{0}}{1+\frac{\mathrm{k}-1}{2} \cdot \mathrm{M}_{\mathrm{t}}^{2}} & \mathrm{~T}_{\mathrm{t}}=566 \cdot \mathrm{R} & \mathrm{~T}_{\mathrm{t}}=106 \cdot{ }^{\circ} \mathrm{F} \\
\mathrm{c}_{\mathrm{t}}=\sqrt{\mathrm{k} \cdot \mathrm{R}_{\mathrm{air}} \cdot \mathrm{~T}_{\mathrm{t}}} & \mathrm{~V}_{\mathrm{t}}=\mathrm{c}_{\mathrm{t}} & \mathrm{~V}_{\mathrm{t}}=1166 \cdot \frac{\mathrm{ft}}{\mathrm{~s}} \\
\rho_{\mathrm{t}}=\frac{\mathrm{p}_{\mathrm{t}}}{\mathrm{R}_{\mathrm{air}} \cdot \mathrm{~T}_{\mathrm{t}}} & \rho_{\mathrm{t}}=5.19 \times 10^{-3} \cdot \frac{\mathrm{slug}}{\mathrm{ft}^{3}} & \\
\mathrm{~m}_{\text {rate }}=\rho_{\mathrm{t}} \cdot \mathrm{~A}_{\mathrm{t}} \cdot \mathrm{~V}_{\mathrm{t}} & \mathrm{~m}_{\text {rate }}=0.528 \cdot \frac{\mathrm{slug}}{\mathrm{~s}} & \mathrm{~m}_{\text {rate }}=17 \cdot 0 \cdot \frac{\mathrm{lbm}}{\mathrm{~s}}
\end{array}
$$

Problem 13.15

13.15 Air flows isentropically through a converging nozzle into a receiver where the pressure is 250 kpa (abs). If the pressure is 350 kpa (abs) and the speed is $150 \mathrm{~m} / \mathrm{s}$ at the nozzle location where the Mach number is 0.5 , determine the pressure, speed, and Mach number at the nozzle throat.

Given: Isentropic air flow in converging nozzle
Find: Pressure, speed and Mach number at throat

Solution:

Basic equations:

$$
\frac{\mathrm{T}_{0}}{\mathrm{~T}}=1+\frac{\mathrm{k}-1}{2} \cdot \mathrm{M}^{2}
$$

$\frac{p_{0}}{p}=\left(1+\frac{\mathrm{k}-1}{2} \cdot \mathrm{M}^{2}\right)^{\frac{\mathrm{k}}{\mathrm{k}-1}}$

Given or available data

$$
\begin{array}{ll}
\mathrm{p}_{1}=350 \cdot \mathrm{kPa} & \mathrm{~V}_{1}=150 \cdot \frac{\mathrm{~m}}{\mathrm{~s}} \\
\mathrm{k}=1.4 & \mathrm{R}=286.9 \cdot \frac{\mathrm{~J}}{\mathrm{~kg} \cdot \mathrm{~K}}
\end{array}
$$

$$
\mathrm{M}_{1}=0.5
$$

$\mathrm{P}_{\mathrm{b}}=250 \cdot \mathrm{kPa}$

The flow will be choked if $\mathrm{pb}_{\mathrm{b}} / \mathrm{p}_{0}<0.528$

Hence
so

$$
\begin{array}{ll}
\mathrm{p}_{0}=\mathrm{p}_{1} \cdot\left(1+\frac{\mathrm{k}-1}{2} \cdot \mathrm{M}_{1}^{2}\right)^{\frac{\mathrm{k}}{\mathrm{k}-1}} & \mathrm{p}_{0}=415 \mathrm{kPa}
\end{array} \frac{\mathrm{p}_{\mathrm{b}}}{\mathrm{p}_{0}}=0.602
$$

Also

Then

Hence

$$
\mathrm{T}_{\mathrm{t}}=\frac{\mathrm{T}_{0}}{1+\frac{\mathrm{k}-1}{2} \cdot \mathrm{M}_{\mathrm{t}}^{2}}
$$

$\begin{array}{ll}\mathrm{T}_{1}=\frac{1}{\mathrm{k} \cdot \mathrm{R}} \cdot\left(\frac{\mathrm{V}_{1}}{\mathrm{M}_{1}}\right)^{2} & \mathrm{~T}_{1}=224 \mathrm{~K} \\ \mathrm{~T}_{0}=235 \mathrm{~K} & \mathrm{~T}_{0}=-37.9^{\circ} \mathrm{C}\end{array}$
(Not choked)

$$
\mathrm{M}_{\mathrm{t}}=\sqrt{\frac{2}{\mathrm{k}-1} \cdot\left[\left(\frac{\mathrm{p}_{0}}{\mathrm{p}_{\mathrm{t}}}\right)^{\frac{\mathrm{k}-1}{\mathrm{k}}}-1\right]} \quad \mathrm{M}_{\mathrm{t}}=0.883
$$

$$
\mathrm{V}_{1}=\mathrm{M}_{1} \cdot \mathrm{c}_{1}=\mathrm{M}_{1} \cdot \sqrt{\mathrm{k} \cdot \mathrm{R} \cdot \mathrm{~T}_{1}} \quad \text { or } \quad \mathrm{T}_{1}=\frac{1}{\mathrm{k} \cdot \mathrm{R}} \cdot\left(\frac{\mathrm{~V}_{1}}{\mathrm{M}_{1}}\right)^{2} \quad \mathrm{~T}_{1}=224 \mathrm{~K} \quad \mathrm{~T}_{1}=-49.1^{\circ} \mathrm{C}
$$

$$
\mathrm{T}_{0}=\mathrm{T}_{1} \cdot\left(1+\frac{\mathrm{k}-1}{2} \cdot \mathrm{M}_{1}^{2}\right)
$$

$c_{t}=\sqrt{k \cdot R \cdot T_{t}}$
$c_{t}=286 \frac{\mathrm{~m}}{\mathrm{~s}}$

Finally
$\mathrm{V}_{\mathrm{t}}=\mathrm{M}_{\mathrm{t}} \cdot \mathrm{c}_{\mathrm{t}}$
$\mathrm{V}_{\mathrm{t}}=252 \frac{\mathrm{~m}}{\mathrm{~s}}$
13.16 Air is flowing steadily through a series of three tanks. The first very large tank contains air at 650 kPa and $35^{\circ} \mathrm{C}$. Air flows from it to a second tank through a converging nozzle with exit area $1 \mathrm{~cm}^{2}$. Finally the air flows from the second tank to a third very large tank through an identical nozzle. The flow rate through the two nozzles is the same, and the flow in them is isentropic. The pressure in the third tank is 65 kPa . Find the mass flow rate, and the pressure in the second tank.

Given: Data on three tanks

Find: Mass flow rate; Pressure in second tank

Solution:

The given or available data is:

R	$=$	286.9	$\mathrm{~J} / \mathrm{kg} \cdot \mathrm{K}$
$k=$	1.4		
A_{t}	$=$	1	$\mathrm{~cm}^{2}$

We need to establish whether each nozzle is choked. There is a large total pressure drop so this is likely.
However, BOTH cannot be choked and have the same flow rate. This is because Eq. 13.9a, below

$$
\begin{equation*}
\dot{m}_{\text {choked }}=0.04 \frac{A_{e} p_{0}}{\sqrt{T_{0}}} \tag{13.9b}
\end{equation*}
$$

indicates that the choked flow rate depends on stagnation temperature (which is constant) but also stagnation pressure, which drops because of turbulent mixing in the middle chamber. Hence BOTH nozzles cannot be choked. We assume the second one only is choked (why?) and verify later.

Temperature and pressure in tank 1:	$T_{01}=$	308	K
	$p_{01}=$	650	kPa
We make a guess at the pressure at the first nozzle exit:	$p_{\text {e1 }}=$	527	kPa
NOTE: The value shown is the final answer! It was obtained using Solver!			
This will also be tank 2 stagnation pressure:	$p_{02}=$	527	kPa
Pressure in tank 3:	$p_{3}=$	65	kPa

Equations and Computations:

From the $p_{\mathrm{e} 1}$ guess and Eq. 13.17a:	$M_{\mathrm{e} 1}=$	0.556		
Then at the first throat (Eq.13.7b):	$T_{\mathrm{e} 1}=$	290	K	
The density at the first throat (Ideal Gas) is:	$\rho_{\mathrm{e} 1}=$	6.33	$\mathrm{~kg} / \mathrm{m}^{3}$	
Then c at the first throat (Eq. 12.18) is:	$C_{\mathrm{e} 1}=$	341	$\mathrm{~m} / \mathrm{s}$	
Then V at the first throat is:	$V_{\mathrm{e} 1}=$	190	$\mathrm{~m} / \mathrm{s}$	
Finally the mass flow rate is:	$m_{\text {rate }}=$	0.120	$\mathrm{~kg} / \mathrm{s}$	First Nozzle!

For the presumed choked flow at the second nozzle we use Eq. 13.9a, with $T_{01}=T_{02}$ and p_{02} :

$$
m_{\text {rate }}=0.120 \quad \mathrm{~kg} / \mathrm{s} \quad \text { Second Nozzle! }
$$

For the guess value for $p_{\text {e1 }}$ we compute the error between the two flow rates:

$$
\Delta m_{\text {rate }}=0.000 \mathrm{~kg} / \mathrm{s}
$$

Use Solver to vary the guess value for $p_{\text {e1 }}$ to make this error zero!
Note that this could also be done manually.

Given: Fir flows isentropically through a converging nozzle, discharging to the atmosphere

$$
\begin{aligned}
& T_{1}=20^{\circ} \mathrm{C} \\
& P_{1}=250 \mathrm{ba} \\
& V_{1}=20 \mathrm{mls} \\
& \rightarrow(1) \quad P_{b}=P_{a t h}=101 \mathrm{~Pa}
\end{aligned}
$$

Find: Pt
Solution:
Computing equations: $\quad \frac{P_{0}}{T}=[14 \cos]^{t / 6-1} \quad c=\sqrt{b \cdot i t}$
Assumptions (u) steady flow
(a) Bratiopic flow in the norite
(3) uniform flow at a section
(4) ideal gas

The nogzive will be coked, lie Maw i. if $P_{0}=0.528$

$$
\begin{aligned}
& m_{1}=\frac{V_{1}^{c}}{c_{1}} \quad c_{1}=\sqrt{k E T}=\left(1.4 \times 287 \frac{N M}{k_{2}^{k}} \times 293 k \times \frac{\operatorname{kan}^{2}}{\sqrt{s^{2}}}\right)^{1 / 2}=343 \mathrm{mls} \\
& M_{1}=\frac{\psi_{1}}{c_{1}}=\frac{200}{343}=0.583
\end{aligned}
$$

Then, $P_{0}=\frac{101}{315}=0.321<0.52 \% \quad \therefore M_{4}=1.0$
For $M_{t}=1.0 \quad P_{t}=0.528 \quad P_{0}=0.528 P_{0}=0.528 \times 351 P_{2}=166 P_{0}$

Problem 13.18.

Given: Isentropic flow of air from a large tank through a converging nozzle discharges to atshosphere.

$$
\begin{aligned}
& T_{0}=550^{\circ} \mathrm{C} \\
& P_{n}=650 \mathrm{kRa} \text { (abs) } \quad P_{b}=P_{a t m}=101 \mathrm{kPa} \text { (abs). }
\end{aligned}
$$

Find: in
Solution:
Basic equations: $\quad \dot{m}=p V A=$ canst $\quad P=P R T$
Computing equations: $\quad T_{0}=\cdots \frac{1}{2} M^{2} \quad \frac{P_{0}}{P}=\left[1+\frac{b-1}{2} M^{2}\right]^{k / l-1} \quad c=\sqrt{k R T}$
Assumptions: (1) steady flow
(3) uniform flow at a section
(a) isentropic flow in nozzle
(4) ideal gas

Since $\left.P_{b}\right|_{p_{0}}=\frac{101}{650}=0.155<0.528$, the nozzle is choked and $M_{t}=1.0$
From the contriuity equation in $=P^{N A}$ and hence we need to determine ρ_{t} and V_{t}

$$
\begin{aligned}
& \frac{T_{0}}{T}=1+k_{-1}^{-1} M^{2} ; \quad T_{t}=\frac{T_{0}}{1+\frac{k_{-1}^{2}}{2} M_{t}^{2}}=\frac{823 \mathrm{~K}}{1+0.2(1.0)^{2}}=686 \mathrm{~K} \\
& V_{t}=M_{t} c_{t}=M_{t}\left(E R T_{t}\right)^{1 / 2}=1.0\left(1.4 \times 287 \frac{N . n}{\lg ^{2}} \times 686 \mathrm{~K} \times \frac{\mathrm{kg} \cdot \mathrm{n}}{\sqrt{s^{2}}}\right)^{1 / 2}=525 \mathrm{~m} / \mathrm{s} \\
& \frac{P_{0}}{P}=\left[1+k-\frac{1}{2} M^{2}\right]^{k / 8-1} ; P_{t}=\frac{P_{0}}{\left[1+\frac{k-1}{2} M_{t}^{2}\right]^{k / R}}=\frac{650 \mathrm{kPa}}{\left[1+0.2(1.0)^{2}\right]^{3.5}}=343 \mathrm{kPa} \\
& P_{t}=\frac{P_{t}}{R T_{t}}=343 \times 10^{3} \frac{\mathrm{~N}}{\mathrm{~m}^{2}} \times \frac{\mathrm{gg} \cdot \mathrm{~K}}{287 \mathrm{~N} . \mathrm{M}} \times \frac{1}{686 \mathrm{~K}}=1.74 \mathrm{~kg} / \mathrm{m}^{3}
\end{aligned}
$$

Finally

$$
\dot{m}=p_{t} V_{t} A_{t}=1.74 \frac{\mathrm{~kg}}{\mathrm{~m}^{3}} \times 525 \frac{\mathrm{~m}}{\mathrm{~s}} \times 6 \times 10^{-4} \mathrm{~m}^{2}=0.548 \mathrm{~kg} / \mathrm{s}
$$

\qquad

13.19 Air flowing isentropically through a converging nozzle discharges to the atmosphere. At a section the area is $A=0.05 \mathrm{~m}^{2}$, $T=3.3^{\circ} \mathrm{C}$, and $V=200 \mathrm{~m} / \mathrm{s}$. If the flow is just choked, find the pressure and the Mach number at this location. What is the throat area? What is the mass flow rate?

Given: Data on converging nozzle; isentropic flow

Find: Pressure and Mach number; throat area; mass flow rate

Solution:

The given or available data is:

$$
\begin{array}{rlll}
R= & 286.9 & \mathrm{~J} / \mathrm{kg} \cdot \mathrm{~K} \\
k= & 1.4 & \\
A_{1}= & 0.05 & \mathrm{~m}^{2} \\
T_{1}= & 276.3 & \mathrm{~K} \\
V_{1}= & 200 & \mathrm{~m} / \mathrm{s} \\
p_{\text {atm }}= & 101 & \mathrm{kPa}
\end{array}
$$

Equations and Computations:

From T_{1} and Eq. 12.18

$$
\begin{equation*}
c=\sqrt{k R T} \tag{12.18}
\end{equation*}
$$

$$
c_{1}=333 \quad \mathrm{~m} / \mathrm{s}
$$

Then

$$
M_{1}=\quad 0.60
$$

To find the pressure, we first need the stagnation pressure.
If the flow is just choked

$$
p_{\mathrm{e}}=\quad p_{\mathrm{atm}}=\quad p^{*}=101 \mathrm{kPa}
$$

From $p_{\mathrm{e}}=p^{*}$ and Eq. 12.22a

$$
\begin{align*}
& \frac{p_{0}}{p^{*}}=\left[\frac{k+1}{2}\right]^{k /(k-1)} \tag{12.22a}\\
& p_{0}=191 \mathrm{kPa}
\end{align*}
$$

From M_{1} and p_{0}, and Eq. 13.7a
(using built-in function Isenp (M, k)

$$
\begin{equation*}
\frac{p_{0}}{p}=\left[1+\frac{k-1}{2} M^{2}\right]^{k /(k-1)} \tag{13.7a}
\end{equation*}
$$

Then

$$
p_{1}=\quad 150 \quad \mathrm{kPa}
$$

The mass flow rate is $m_{\text {rate }}=\rho_{1} A_{1} V_{1}$

Hence, we need ρ_{1} from the ideal gas equation.

$$
\rho_{1}=1.89 \quad \mathrm{~kg} / \mathrm{m}^{3}
$$

The mass flow rate $m_{\text {rate }}$ is then

$$
m_{\text {rate }}=\quad 18.9 \quad \mathrm{~kg} / \mathrm{s}
$$

The throat area $A_{\mathrm{t}}=A^{*}$ because the flow is choked.
From M_{1} and A_{1}, and Eq. 13.7d
(using built-in function IsenA (M, k)

$$
\begin{align*}
& \frac{A}{A^{*}}=\frac{1}{M}\left[\frac{1+\frac{k-1}{2} M^{2}}{\frac{k+1}{2}}\right]^{(k+1) / 2(k-1)} \tag{13.7d}\\
& A^{*}=0.0421 \mathrm{~m}^{2} \\
& A_{\mathrm{t}}=0.0421 \mathrm{~m}^{2}
\end{align*}
$$

Problem 13.20
Given: Flaw of air from stagnation state trough a converging nozzle discharges to the atmosphere. Pe 225 fPa gang

$$
\begin{aligned}
& T_{0}=15^{\circ} \mathrm{C} \ll P_{b}=101 \text { eta } \\
& \text { P } \\
& A_{e}=0.001 \mathrm{~m}^{2} \\
& P_{2}=325 t P_{a}\left(g a_{\theta}\right)=4202+2(a b s)
\end{aligned}
$$

Find: P_{0}, in
Solution:
Basic equation: $\quad i n=p^{A Y} \quad P=\rho^{R T}$
Computing equations: $\quad \frac{P_{0}}{P}=\left[1+\frac{1}{2} M^{2}\right]^{f t e-1} \quad T_{0}=1+\frac{k}{2}=M^{2}$
Assumptions: (4) steady fou
(3) uniform flow at a section
(2) isentropic flow
(4) ideal gas behavior

Since $P_{e}>P_{b}$, nozzle is Choked and $M_{e}=1.0$

$$
\begin{aligned}
& P_{0}=P_{e}\left[1+\frac{1-1}{2} M_{e}^{2}\right]^{4 / t-1}=42 b \cdot \sin [1+0.2]^{25}=80 b B_{a} . \\
& \frac{T_{0}}{T_{e}}=1+Q_{-1}^{2} n_{e}^{2} \quad \therefore T_{e}=\frac{T_{0}}{1.2}=\frac{288 k}{1.2}=240 k
\end{aligned}
$$

$$
\begin{aligned}
& \rho_{e}=\frac{\rho_{e}}{R T_{e}}=426 \times 10^{3} \frac{\mathrm{~N}}{\mathrm{~N}^{2}}+\frac{\mathrm{gg}}{28 \mathrm{~J}} \times \frac{1}{240 k} \times \frac{\mathrm{J}}{N}=6.18 \mathrm{~kg} / \mathrm{m}^{3}
\end{aligned}
$$

Ron.

$$
m=\rho_{e} d_{e} A_{e}=6.18 \frac{\mathrm{~kg}_{3}}{7^{3}} \times 31 \frac{n}{5} \times 0.001 \mathrm{~m}^{2}=1.92 \mathrm{~kg} \mathrm{k}
$$

For steady flow, $n=1192 \mathrm{~kg}_{\mathrm{g}} l_{s}$ must be supplied to the tank

Te costespending udume flow rats of standard fir is 0

$$
\begin{aligned}
& \text { standard on } 150 \\
& Q=\frac{M}{\rho_{s h n}}=1.92 \frac{\mathrm{~kg}}{\mathrm{~s}} \times 6.18 \frac{n^{3}}{g} \\
& Q=0.31 \mathrm{~m}^{3} l_{\mathrm{s}}
\end{aligned}
$$

Gwen: Isentropic how of wir trounh a comwerging nozze discharge, bo a bach prescué Pb.

$$
\begin{array}{ll}
T_{0}=350 \% & M_{1}=0.5 \\
T_{0}=6504 P_{0}^{2} & M_{1}=3600^{2} m^{2}
\end{array}
$$

$$
P_{b}=270 \mathrm{iRa}
$$

(1) 3

Fins A_{2}
Solution
Computing equations:

$$
\begin{aligned}
& \left.P_{0}\right|_{p}=\left[1+\frac{k-1}{2} M^{2}\right]^{(t-1} \\
& \frac{A}{A^{*}}=\frac{1}{M}\left[\frac{1+\frac{1}{2} M^{2}}{1+\frac{k}{2}}\right]^{(t+1) l_{2}(t-1)} \quad(12, b)
\end{aligned}
$$

Pssumptions: is teady flow
(2) isentrepic Elow in rozale
(3) uriform Sow at a section
(H) ideal gas

Sance $P_{b}{P_{p}}_{0} \frac{270 t f_{a}}{650 t t_{a}}=0.45<0.528$, the rogete is chobed and $M_{t}=1.0$
Fron $E_{\text {q }} 12.6$ wih $M_{1}=0.5, \quad A_{1} h^{+}=1.340$
Ren $A_{t}=P^{*}=A_{1} / 1.340=\frac{2.6 \times 60^{-3} \mathrm{n}^{2}}{1.340}=1.24 \times 10^{-3} \mathrm{~m}^{2}$ \qquad

Problem 13.22

Given: Reversible, adiabatic flow of air from a large tank through a converging nozzle discharges to atmosphere.

$$
\begin{aligned}
& T_{0}=600 k \\
& P_{0}=600 k P_{a}
\end{aligned} \quad P_{b}=P_{a t m}=101 \cdot B_{a}
$$

(6)

Find : (a) range of tank pressure, Po, for which $M_{t}=1.0$ (b) in for conditions given

Solution:
Basic equations: $\quad \dot{M}=P V A=$ constr. \quad PaRT
Computing equations: $\frac{T_{0}}{V}=1+\frac{1}{2} M^{2}$
Assumptions: (1) steady flow
(3) uniform flow at a section
(2) isentropic flow in nozzle
(4) ideal gas

The nozzle will be choked, we $M_{2}=1.0$ for $P_{b} / P_{0} \leq 0.528$
Since $P_{b}=101 \mathrm{EPa}$, nozzle is choked for

$$
\begin{equation*}
P_{0} \geq \frac{P_{b}}{0.528}=\frac{101 \mathrm{kPa}}{0.528}=191 \mathrm{kPa} \tag{0}
\end{equation*}
$$

Thus for $P_{0}=600 \mathrm{kPa}, M_{t}=1.0$

$$
\begin{aligned}
& V_{t}=M_{t} c_{t}=M_{t}\left(\operatorname{kRT} T_{t}\right)^{1 / 2}=1.0\left(1.4+287 \frac{\mathrm{~N} \cdot \mathrm{M}}{\mathrm{gg}^{k}} \times 500 \mathrm{~K} \times \frac{\mathrm{kg} \cdot \mathrm{M}}{\mathrm{~N} \cdot \mathrm{~s}^{2}}\right)^{1 / 2}=448 \mathrm{~m} / \mathrm{s} \\
& \frac{P_{0}}{P}=\left[1+\frac{k-1}{2} M^{2}\right]^{4 / k_{-1}} ; P_{t}=\frac{P_{0}}{\left[1+\frac{k}{\frac{1}{2}} M_{t}^{2}\right]^{2}}=\frac{600 \mathrm{kPa}}{\left[1+0.2(1.0)^{2}\right]^{3,5}}=317 \mathrm{kPa} \\
& P_{t}=\frac{P_{t}}{R T_{t}}=317 \times 10^{3} \frac{\mathrm{~N}}{\mathrm{~m}^{2}} \times \frac{\operatorname{kg} \cdot \mathrm{K}}{287 \mathrm{~N} . \mathrm{m}^{2}} \times \frac{1}{500 \mathrm{~K}}=\left.2.21 \mathrm{~kg}\right|_{M^{3}}
\end{aligned}
$$

Finally,

$$
m=p_{t} V_{t} A_{t}=2.21 \frac{\mathrm{~kg}}{\mathrm{~m}^{3}} \times 448 \frac{\mathrm{~m}}{\mathrm{~s}} \times 1.29 \times 10^{-3} \mathrm{~m}^{2}=1.28 \mathrm{~kg} / \mathrm{s}
$$

\qquad

13.23 Air at $0^{\circ} \mathrm{C}$ is contained in a large tank on the space shuttle.

A converging section with exit area $1 \times 10^{-3} \mathrm{~m}^{2}$ is attached to the tank, through which the air exits to space at a rate of $2 \mathrm{~kg} / \mathrm{s}$. What are the pressure in the tank, and the pressure, temperature, and speed at the exit?

Given: Temperature in and mass flow rate from a tank
Find: Tank pressure; pressure, temperature and speed at exit

Solution:

The given or available data is:

| $R=$ | 286.9 | $\mathrm{~J} / \mathrm{kg} \cdot \mathrm{K}$ |
| ---: | :--- | :---: | :--- |
| $k=$ | 1.4 | |
| $T_{0}=$ | 273 | K |
| $A_{\mathrm{t}}=$ | 0.001 | $\mathrm{~m}^{2}$ |
| $m_{\text {rate }}=$ | 2 | $\mathrm{~kg} / \mathrm{s}$ |

Equations and Computations:

To find the exit pressure we use the ideal gas equation after first finding the exit density.
The mass flow rate is $m_{\text {rate }}=\rho_{\mathrm{e}} A_{\mathrm{e}} V_{\mathrm{e}}$
Hence $\quad \rho_{\mathrm{e}}=6.62 \quad \mathrm{~kg} / \mathrm{m}^{3}$

From the ideal gas equation $p_{\mathrm{e}}=\rho_{\mathrm{e}} R T_{\mathrm{e}}$

$$
p_{\mathrm{e}}=\quad 432 \quad \mathrm{kPa}
$$

From $p_{\mathrm{e}}=p^{*}$ and Eq. 12.22a

$$
\begin{gathered}
\frac{p_{0}}{p^{*}}=\left[\frac{k+1}{2}\right]^{k /(k-1)} \\
\left.p_{0}=\quad 812.22 \mathrm{a}\right) \\
\quad 817
\end{gathered}
$$

We can check our results:
From $p_{0}, T_{0}, A_{\mathrm{t}}$, and Eq. 13.9a

$$
\begin{equation*}
\dot{m}_{\text {choked }}=A_{e} p_{0} \sqrt{\frac{k}{R T_{0}}}\left(\frac{2}{k+1}\right)^{(k+1) / 2(k-1)} \tag{13.9a}
\end{equation*}
$$

Then

$$
\begin{array}{lll}
m_{\text {choked }}= & 2.00 & \mathrm{~kg} / \mathrm{s} \\
m_{\text {choked }}= & m_{\text {rate }} & \text { Correct! }
\end{array}
$$

Problem 13.24

13.24 A large tank initially is evacuated to -10 kPa (gage). (Ambient conditions are 101 kPa at $20^{\circ} \mathrm{C}$.) At $t=0$, an orifice of 5 mm diameter is opened in the tank wall; the vena contracta area is 65 percent of the geometric area. Calculate the mass flow rate at which air initially enters the tank. Show the process on a $T s$ diagram. Make a schematic plot of mass flow rate as a function of time. Explain why the plot is nonlinear.

Given: Isentropic air flow into a tank

Find: Initial mass flow rate; Ts process; explain nonlinear mass flow rate

Solution:

The Ts diagram will be a vertical line (T decreases and $\mathrm{s}=\mathrm{const}$). After entering the tank there will be turbulent mixing (s increases) and t comes to rest (T increases). The mass flow rate versus time will look like the curved part of Fig. 13.6b; it is nonlinear because V AND $\rho \mathrm{v}_{\mathrm{i}}$
13.25 A-50 cm diameter spherical cavity initially is evacuated. The cavity is to be filled with air for a combustion experiment. The pressure is to be 45 kPa (abs), measured after its temperature reaches $T_{\text {atm }}$. Assume the valve on the cavity is a converging nozzle with throat diameter of 1 mm , and the surrounding air is at standard conditions. For how long should the valve be opened to achieve the desired final pressure in the cavity? Calculate the entropy change for the air in the cavity.

Given: Spherical cavity with valve

Find: Time to reach desired pressure; Entropy change
Solution:
Basic equations: $\quad \frac{\mathrm{T}_{0}}{\mathrm{~T}}=1+\frac{\mathrm{k}-1}{2} \cdot \mathrm{M}^{2} \quad \frac{\mathrm{p}_{0}}{\mathrm{p}}=\left(1+\frac{\mathrm{k}-1}{2} \cdot \mathrm{M}^{2}\right)^{\frac{\mathrm{k}}{\mathrm{k}-1}}$

$$
\Delta \mathrm{s}=\mathrm{c}_{\mathrm{p}} \cdot \ln \left(\frac{\mathrm{~T}_{2}}{\mathrm{~T}_{1}}\right)-\mathrm{R} \cdot \ln \left(\frac{\mathrm{p}_{2}}{\mathrm{p}_{1}}\right)
$$

$$
\mathrm{p}=\rho \cdot \mathrm{R} \cdot \mathrm{~T} \quad \mathrm{c}=\sqrt{\mathrm{k} \cdot \mathrm{R} \cdot \mathrm{~T}}
$$

$$
m_{\text {rate }}=\rho \cdot A \cdot V \quad m_{\text {choked }}=A_{t} \cdot P_{0} \cdot \sqrt{\frac{k}{R \cdot T_{0}}} \cdot\left(\frac{2}{k+1}\right)^{\frac{k+1}{2 \cdot(k-1)}}
$$

Given or available data $\quad \mathrm{P}_{0}=101 \cdot \mathrm{kPa} \quad \mathrm{T}_{\text {atm }}=(20+273) \cdot \mathrm{K} \quad \mathrm{T}_{0}=\mathrm{T}_{\text {atm }} \quad \mathrm{d}=1 \cdot \mathrm{~mm} \quad \mathrm{D}=50 \cdot \mathrm{~cm}$

$$
\mathrm{P}_{\mathrm{f}}=45 \cdot \mathrm{kPa} \quad \mathrm{~T}_{\mathrm{f}}=\mathrm{T}_{\mathrm{atm}} \quad \mathrm{k}=1.4 \quad \mathrm{R}=286.9 \cdot \frac{\mathrm{~J}}{\mathrm{~kg} \cdot \mathrm{~K}} \quad \mathrm{c}_{\mathrm{p}}=1004 \cdot \frac{\mathrm{~J}}{\mathrm{~kg} \cdot \mathrm{~K}}
$$

Then the inlet area is

$$
\mathrm{A}_{\mathrm{t}}=\frac{\pi}{4} \cdot \mathrm{~d}^{2} \quad \mathrm{~A}_{\mathrm{t}}=0.785 \mathrm{~mm}^{2}
$$ and tank volume is $\mathrm{V}=\frac{\pi}{3} \cdot \mathrm{D}^{3}$

$V=0.131 \mathrm{~m}^{3}$
The flow will be choked if $\mathrm{p}_{\mathrm{b}} / \mathrm{p}_{0}<0.528$; the MAXIMUM back pressure is $\quad \mathrm{P}_{\mathrm{b}}=\mathrm{p}_{\mathrm{f}} \quad$ so $\quad \frac{\mathrm{p}_{\mathrm{b}}}{\mathrm{P}_{0}}=0.446 \quad$ (Choked) The final density is $\quad \rho_{f}=\frac{\mathrm{P}_{\mathrm{f}}}{\mathrm{R} \cdot \mathrm{T}_{\mathrm{f}}} \quad \quad \rho_{\mathrm{f}}=0.535 \frac{\mathrm{~kg}}{\mathrm{~m}^{3}} \quad$ and final mass is $\mathrm{M}=\rho_{\mathrm{f}} \cdot \mathrm{V} \quad \mathrm{M}=0.0701 \mathrm{~kg}$

Since the mass flow rate is constant (flow is always choked)

$$
\mathrm{M}=\mathrm{m}_{\text {rate }} \cdot \Delta \mathrm{t} \quad \text { or } \quad \Delta \mathrm{t}=\frac{\mathrm{M}}{\mathrm{~m}_{\text {rate }}}
$$

Hence

$$
\Delta \mathrm{t}=\frac{\mathrm{M}}{\mathrm{~m}_{\mathrm{rate}}}
$$

$$
\Delta t=374 \mathrm{~s}
$$

$$
\Delta t=6.23 \mathrm{~min}
$$

The air in the tank will be cold when the valve is closed. Because $\rho=M / V$ is constant, $p=\rho R T=$ const $\times T$, so as the temperature rises to ambient, the pressure will rise too.

For the entropy change during the charging process is given by $\Delta s=c_{p} \cdot \ln \left(\frac{T_{2}}{T_{1}}\right)-R \cdot \ln \left(\frac{\mathrm{p}_{2}}{\mathrm{P}_{1}}\right)$ where $\mathrm{T}_{1}=\mathrm{T}_{\text {atm }} \quad \mathrm{T}_{2}=\mathrm{T}_{\text {atm }}$ and

$$
\mathrm{p}_{1}=\mathrm{p}_{0} \quad \mathrm{p}_{2}=\mathrm{p}_{\mathrm{f}} \quad \text { Hence }
$$

$$
\Delta \mathrm{s}=\mathrm{c}_{\mathrm{p}} \cdot \ln \left(\frac{\mathrm{~T}_{2}}{\mathrm{~T}_{1}}\right)-\mathrm{R} \cdot \ln \left(\frac{\mathrm{p}_{2}}{\mathrm{P}_{1}}\right) \quad \Delta \mathrm{s}=232 \frac{\mathrm{~J}}{\mathrm{~kg} \cdot \mathrm{~K}}
$$

Given: Isentropir flow of air from a tatastank frowin a converging nozte tischarges to the utmosphere

$$
M_{1}=0.2 \quad F_{b}=10, k+a
$$

$$
A_{2}=0.05 \mathrm{~m}^{2}
$$

Find: Magnituac arch direction of Cotce reoured vo reep naghe in place Solulion:

Bask equalions: $F_{S_{2}}=P_{1} A_{1}-P_{2} A_{2}-P_{\text {atr }}\left(A_{1}-A_{2}\right)-R_{4}=M_{1}\left(X_{2}-H_{1}\right)$

$$
\dot{m}=p 4 A=\text { const } \quad P=p e T
$$

Fesumptions: is steady flow
3) uniform flow at a section (2) seribopic flow a ideal gaw

$$
\begin{aligned}
& \left.T_{n}=T_{0} /\left[H_{E} M_{n}^{2}\right]=300 \mathrm{k} / \mathrm{L}_{2}+0.210 .901\right)^{2}=258 \mathrm{~K}
\end{aligned}
$$

$$
\begin{aligned}
& \dot{M}=p_{2} V_{2} f_{2}=1.36 \frac{\mathrm{ka}^{3}}{\mathrm{~m}^{3}} \times 29 \frac{\mathrm{~m}}{\mathrm{~s}} \times 0.015 \mathrm{~m}^{2}=5.92 \mathrm{gg} \mathrm{I}_{\mathrm{s}} \\
& T_{1}=T_{0}\left[\left[H_{2} M_{1}^{2}\right]=300 \alpha /\left[1+0.2(0.2)_{2}^{2}=398 \mathrm{~K}\right.\right.
\end{aligned}
$$

$$
\begin{aligned}
& P_{1}=P_{0} /\left[V_{1} t_{1}^{2} M_{1}^{2}\right]^{1 / 2}=11 P_{0} /\left[1+0.2(0.2)^{2}\right]^{2.5}=16 b P_{a} \\
& R_{1}=\frac{P_{1}}{R T}=16 \times 10^{3} \frac{N}{n^{2}}+\frac{\operatorname{kg} \cdot \mathrm{k}}{287 H_{n}}+\frac{1}{298 k}=1.94 \cdot \mathrm{~kg}_{2} \mathrm{~m}^{2} \\
& A_{1}=F / P_{1} H_{1}=5.92 \frac{\frac{\mathrm{~kg}}{5}}{5}+1.94 \frac{n^{3}}{g_{g}} \times \frac{5}{69.2 m}=0.0441 n^{2}
\end{aligned}
$$

$$
\begin{aligned}
& =(166-101) \times 10^{3} \frac{\mathrm{~d}}{\mathrm{~m}^{2}} \times 0.0441 \mathrm{~m}^{2}-5.92 \frac{\lg }{\mathrm{~s}}(290-69.2) \frac{\mathrm{m}}{\mathrm{~s}} \times \frac{\mathrm{N} \cdot \mathrm{~s}^{2}}{\frac{2 g}{m}} \\
& R_{4}=1560 M \text { (to the veft) }
\end{aligned}
$$

Given: "Rocket" cart propelled by compressed air, converging nozzle.
Initially in tank, $p_{0}=1.3 \mathrm{MPa}(a b s), T_{0}=20^{\circ} \mathrm{C}, M_{0}=25 \mathrm{~kg}$ $A_{e}=30 \mathrm{~mm}{ }^{2} ; F=6 \mathrm{~N}$, aerodynamic drag is negligible.

Find: (a) Pressure in exit plane.
(b) Mass flow rate of air through nozzle.
(c) Acceleration of assembly.
(d) Static and stagnation states on is diagram.

Solution: Assume steady, one-dimensionas flow of an ideal gas.
Computing equations: $\frac{T_{0}}{T}=1+\frac{k-1}{2} M^{2} ; \frac{p_{0}}{p}=\left(1+\frac{k-1}{2} M^{2}\right)^{\frac{k}{k-} ;} ; c=\sqrt{k R T} ; p=\rho R T$
Check for choking: $\frac{\text { pate }}{100}=\frac{101 \times 10^{3}}{1.3 . \times 10^{6}}=0.0777<0.528$, so choked. $M_{e}=1$
Thus

Apply momentum to firid accekration of assemble.

Assume: (4) Horizontal; (s) u ≈ 0 within $C V$; (5) Uniform flow at exit.
Then $-F_{R}+\left(p_{e}-p_{a+m}\right) A_{e}-M a_{r f}=u_{e}\{+\dot{m}\}=-V_{e} \dot{m}$

$$
u_{e}=-v_{e}
$$

$$
a_{r f_{x}}=\frac{V_{e} \dot{m}-F R+\left(p_{e}-p_{a+m}\right) A e}{M}=\left[313 \frac{m}{5}=0.0921 \frac{\mathrm{~kg}}{5}-6 \mathrm{~N}+(687-101) 10^{3} \frac{\mathrm{~N}}{m^{2}} \times 30 \times 10^{-6} \mathrm{~m}^{2}\right]
$$

Given: Steady, isentropic flow of air Duct area to be reduced as mucin as possible without reducing Sowrate.

Finds: (a) To (b) " $4 A$ possible, (c) V_{2} and P_{2}

$$
\begin{aligned}
& P_{1}=3006 R_{a} \\
& M_{1}=0.5 \\
& A_{1}=5 \times 10 \mathrm{a}^{2} \\
& M=0.2 \lg _{\mathrm{g}}
\end{aligned}
$$

Solution:
Basic equations: $\quad \dot{M}=p r A \quad P=p R T$

$$
\begin{equation*}
\frac{A}{A^{*}}=\frac{1}{M}\left[\frac{1+\frac{2-1}{2} M^{2}}{1+\frac{k_{-1}^{2}}{2}}\right]^{(k+i) / 2(k-1)} \tag{12.7d}
\end{equation*}
$$

Assumptions: i) steady flow
(2) (sontropic Cos
(3) uniform flow at a section (4) ideal gas

To determine To, we first need to find T_{1}

$$
m_{1}=P_{1} V_{1} H_{1}=\frac{P_{1}}{\left.K_{1} M, C_{1} A_{1}=\frac{P_{1}}{R T_{1}} M_{1}(R R)^{\prime / 2} A_{1}=P_{1} A_{1} A_{1}\left(R_{R}\right)^{1 / 2}\right)}
$$

Soloing forT.

$$
\begin{aligned}
& T_{1}=439 k \\
& -T_{0}=T_{1}\left[1+\frac{-1}{2} M^{2}\right]=439 k\left[1+0,2(0.5)^{2}\right]=4 b 1 K
\end{aligned}
$$

Makinum area seduction occurs $W_{\text {Pere }} M_{2}=1$.
For $M_{1}=0.5$, from Eq $\left.12.7 d \quad A_{A}\right|_{A}=1.34 \quad \therefore A^{*}=A_{2}=\frac{A_{1}}{\sqrt{3} 34}=3.73 \times 10^{4} \mathrm{~m}^{2}$

$$
\begin{aligned}
& T_{2}=T_{0} /\left[1_{1} \frac{k_{2}}{2} M_{2}^{2}\right]=4 b / K /\left[1+0.2(1)^{2}\right]=384 K
\end{aligned}
$$

$$
\begin{aligned}
& v_{2}=393 \mathrm{~m} t_{5} \\
& -P_{01}=-P_{02}=P_{1}\left[1+e_{-1} M^{2}\right]^{4 / 2+}=300 k P_{a}\left[1+0.2(0.5)^{2}\right]^{3.5}=356 \mathrm{P} P_{a} \\
& P_{2}=P_{02} /\left[1+\frac{k_{2}}{2} n_{2}^{2}\right]^{k_{k-1}}=356 \mathrm{~Pa} /\left[1+0.2(1)^{2}\right]^{3.5}-188 \mathrm{PR} \mathrm{~Pa}
\end{aligned}
$$

13.29 An air-jet-driven experimental rocket of 25 kg mass is to be launched from the space shuttle into space. The temperature of the air in the rocket's tank is $125^{\circ} \mathrm{C}$. A converging section with exit area $25 \mathrm{~mm}^{2}$ is attached to the tank, through which the air exits to space at a rate of $0.05 \mathrm{~kg} / \mathrm{s}$. What is the pressure in the tank, and the pressure, temperature, and air speed at the exit when the rocket is first released? What is the initial acceleration of the rocket?

Given: Air-driven rocket in space

Find: Tank pressure; pressure, temperature and speed at exit; initial acceleration

Solution:

The given or available data is:

$$
\begin{array}{rlcl}
R & = & 286.9 & \\
k & = & 1 . \mathrm{kg} \cdot \mathrm{~K} \\
T_{0} & = & & \\
A_{\mathrm{t}}= & & 25 & \\
M & = & & \mathrm{K} \\
M m^{2} \\
m_{\text {rate }} & = & & 0.05
\end{array}
$$

Equations and Computations:
Because $p_{\mathrm{b}}=0$

$$
p_{\mathrm{e}}=p^{*}
$$

Hence the flow is choked!

Hence $\quad T_{\mathrm{e}}=T^{*}$

From T_{0}, and Eq. 12.22b

$$
\begin{array}{ll}
\frac{T_{0}}{T^{*}}=\frac{k+1}{2} & (12.2 \tag{12.22b}\\
T^{*}= & 332
\end{array} \quad \mathrm{~K}, ~ \begin{array}{cc}
332 & \mathrm{~K} \\
T_{\mathrm{e}}= & { }^{\circ} \mathrm{C}
\end{array}
$$

To find the exit pressure we use the ideal gas equation after first finding the exit density.
The mass flow rate is $m_{\text {rate }}=\rho_{\mathrm{e}} A_{\mathrm{e}} V_{\mathrm{e}}$

Hence $\quad \rho_{\mathrm{e}}=0.0548 \mathrm{~kg} / \mathrm{m}^{3}$

From the ideal gas equation $p_{\mathrm{e}}=\rho_{\mathrm{e}} R T_{\mathrm{e}}$

$$
p_{\mathrm{e}}=\quad 5.21 \quad \mathrm{kPa}
$$

From $p_{\mathrm{e}}=p^{*}$ and Eq. 12.22a

$$
\begin{gathered}
\frac{p_{0}}{p^{*}}=\left[\frac{k+1}{2}\right]^{k(k-1)} \\
p_{0}=\quad 9.87 \mathrm{kPa}
\end{gathered}
$$

We can check our results:
From $p_{0}, T_{0}, A_{\mathrm{t}}$, and Eq. 13.9a

$$
\begin{equation*}
\dot{m}_{\text {choked }}=A_{e} p_{0} \sqrt{\frac{k}{R T_{0}}}\left(\frac{2}{k+1}\right)^{(k+1) / 2(k-1)} \tag{13.9a}
\end{equation*}
$$

Then

$$
\begin{array}{lcl}
m_{\text {choked }}= & 0.050 & \mathrm{~kg} / \mathrm{s} \\
m_{\text {choked }}= & m_{\text {rate }} & \text { Correct }!
\end{array}
$$

The initial acceleration is given by:

$$
\begin{align*}
& \qquad \vec{F}-\int_{\mathrm{CV}} \vec{a}_{r f} \rho d \forall=\frac{\partial}{\partial t} \int_{\mathrm{CV}} \vec{V}_{x y z} \rho d \forall+\int_{\mathrm{CS}} \vec{V}_{x y z} \rho \vec{V}_{x y z} \cdot d \vec{A} \tag{4.33}\\
& \text { which simplifies to: } p_{e} A_{t}-M a_{x}=m_{r a t e} V \quad \text { or: } \quad a_{x}=\frac{m_{r a t e} V+p_{e} A_{t}}{M} \\
& a_{\mathrm{x}}=1.25 \quad \mathrm{~m} / \mathrm{s}^{2}
\end{align*}
$$

13.30 A cylinder of gas used for welding contains helium at 20 MPa (gage) and room temperature. The cylinder is knocked over, its valve is broken off, and gas escapes through a converging passage. The minimum flow diameter is 10 mm at the outlet section where the gas flow is uniform. Find (a) the mass flow rate at which gas leaves the cylinder and (b) the instantaneous acceleration of the cylinder (assume the cylinder axis is horizontal and its mass is 65 kg). Show static and stagnation states and the process path on a Ts diagram.

Given: Gas cylinder with broken valve
Find: Mass flow rate; acceleration of cylinder

$$
\begin{align*}
& \text { Solution: } \\
& \text { Basic equations: } \quad \begin{array}{ll}
\qquad \begin{array}{l}
\mathrm{T} \\
\mathrm{~T}
\end{array}=1+\frac{\mathrm{k}-1}{2} \cdot \mathrm{M}^{2} \quad \frac{\mathrm{p}_{0}}{\mathrm{p}}=\left(1+\frac{\mathrm{k}-1}{2} \cdot \mathrm{M}^{2}\right)^{\frac{\mathrm{k}}{\mathrm{k}-1}} \mathrm{p}=\rho \cdot \mathrm{R} \cdot \mathrm{~T} \\
\vec{F}_{S}+\vec{F}_{B}-\int_{\mathrm{CV}} \vec{a}_{r f} \rho d \forall=\frac{\partial}{\partial t} \int_{\mathrm{CV}} \vec{V}_{x y z} \rho d \forall \int_{\mathrm{CS}} \vec{V}_{x y z} \rho \vec{V}_{x y z} \cdot d \vec{A}
\end{array}
\end{align*}
$$

Solution:

Solution:

$$
\mathrm{c}=\sqrt{\mathrm{k} \cdot \mathrm{R} \cdot \mathrm{~T}}
$$

$$
\mathrm{m}_{\text {rate }}=\rho \cdot \mathrm{A} \cdot \mathrm{~V}
$$

Given or available data $\mathrm{p}_{\mathrm{atm}}=101 \cdot \mathrm{kPa} \quad \mathrm{P}_{0}=20 \cdot \mathrm{MPa} \quad \mathrm{T}_{0}=(20+273) \cdot \mathrm{K} \quad \mathrm{k}=1.4 \quad \mathrm{R}=286 \cdot 9 \cdot \frac{\mathrm{~J}}{\mathrm{~kg} \cdot \mathrm{~K}}$

$$
\mathrm{d}=10 \cdot \mathrm{~mm} \quad \text { so the nozzle area is } \quad \mathrm{A}_{\mathrm{e}}=\frac{\pi}{4} \cdot \mathrm{~d}^{2} \quad \mathrm{~A}_{\mathrm{e}}=78.5 \cdot \mathrm{~mm}^{2} \quad \mathrm{M}_{\mathrm{CV}}=65 \cdot \mathrm{~kg}
$$

The flow will be choked if $\mathrm{p}_{\mathrm{b}} / \mathrm{p}_{0}<0.528$:

$$
\mathrm{p}_{\mathrm{b}}=\mathrm{p}_{\mathrm{atm}} \quad \text { so } \quad \frac{\mathrm{p}_{\mathrm{b}}}{\mathrm{p}_{0}}=5.05 \times 10^{-3}
$$

(Choked: Critical conditions)
$\begin{array}{ll}\text { The exit temperature is } & \mathrm{T}_{\mathrm{e}}=\frac{\mathrm{T}_{0}}{\left(1+\frac{\mathrm{k}-1}{2}\right)}\end{array} \quad \mathrm{T}_{\mathrm{e}}=244 \mathrm{~K}$
The exit pressure is $\quad \mathrm{P}_{\mathrm{e}}=\frac{\mathrm{P}_{0}}{\frac{\mathrm{k}}{\mathrm{k}-1}} \quad \mathrm{P}_{\mathrm{e}}=10.6 \cdot \mathrm{MPa} \quad$ and exit density is $\quad \rho_{\mathrm{e}}=\frac{\mathrm{P}_{\mathrm{e}}}{\mathrm{R} \cdot \mathrm{T}_{\mathrm{e}}} \quad \rho_{\mathrm{e}}=151 \frac{\mathrm{~kg}}{\mathrm{~m}^{3}}$

$$
\left(1+\frac{\mathrm{k}-1}{2}\right)^{\frac{\mathrm{K}}{\mathrm{k}-1}}
$$

Then

$$
\mathrm{m}_{\text {rate }}=\rho_{\mathrm{e}} \cdot \mathrm{~A}_{\mathrm{e}} \cdot \mathrm{~V}_{\mathrm{e}} \quad \mathrm{~m}_{\text {rate }}=3.71 \frac{\mathrm{~kg}}{\mathrm{~s}}
$$

The momentum equation (Eq. 4.33) simplifies to

$$
\left(\mathrm{p}_{\mathrm{e}}-\mathrm{p}_{\mathrm{atm}}\right) \cdot \mathrm{A}_{\mathrm{e}}-\mathrm{M}_{\mathrm{CV}} \cdot \mathrm{a}_{\mathrm{x}}=-\mathrm{V}_{\mathrm{e}} \cdot \mathrm{~m}_{\text {rate }}
$$

Hence

$$
\mathrm{a}_{\mathrm{x}}=\frac{\left(\mathrm{p}_{\mathrm{e}}-\mathrm{p}_{\mathrm{atm}}\right) \cdot \mathrm{A}_{\mathrm{e}}+\mathrm{V}_{\mathrm{e}} \cdot \mathrm{~m}_{\text {rate }}}{\mathrm{M}_{\mathrm{CV}}} \quad \mathrm{a}_{\mathrm{x}}=30.5 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}
$$

The process is isentropic, followed by nonisentropic expansion to atmospheric pressure

Problem 13.31

Given: Isentropic flow of air through a converging nozzle discharges to atmosphere; nozzle is bolted to a targe tank.

Find: Force in bolts

$$
\begin{aligned}
& P_{b}=P_{a t n}=14.7 \text { psia } \\
& A_{2}=1.0 \text { in }^{2} \\
& A_{1}=10.0 \mathrm{in}^{2}
\end{aligned}
$$

Solution:
Basic equations: $F_{S_{4}}=P_{1} A_{1}-P_{2} A_{2}-B_{a t m}\left(A_{1}-A_{2}\right)-R_{x}=\dot{m}\left(X_{2}-V_{1}\right)$

$$
\dot{m}=P V A=\text { const } \quad P=p R T
$$

Computing equations:

$$
\frac{T_{0}}{\bar{T}}=1+\frac{b_{-1}}{\frac{1}{2}} M^{2}
$$

$$
\frac{P_{0}}{p}=\left[1+\frac{k-1}{\frac{-1}{2}} n^{2}\right]^{k} / l_{-1}
$$

Assumptions: (1) steady flow
(a) isentropic flow in nozzle
(4) $F_{3_{4}}=0$
(3) uniform flow at a section
(5) $V, \neq 0$

First check for choking
$P_{P_{0}}=\frac{14.7}{50}=0.294<0.528$ and hence the nozzle is choked.
$M_{2}=1.0$ and $P_{2}=0.528 P_{8}=0.528(50$ psia $)=26.4$ psia

T

$$
\begin{aligned}
& T_{0} / T=1+k_{\frac{1}{2}}^{-1} M^{2} ; \quad T_{2}=T_{0} /\left[1+\frac{k_{2}^{-1}}{2} M_{2}^{2}\right]=560^{\circ} R /\left[1+0,2(1.0)^{2}\right]=467^{\circ} R
\end{aligned}
$$

$$
\begin{aligned}
& \dot{m}=p_{2} ل_{2} A_{2}=0.153 \frac{1 \mathrm{bm}}{\mathrm{ft}^{3}} \times 1060 \frac{\mathrm{ft}}{\mathrm{~s}} \times 1.0 \mathrm{in}^{2} \times \frac{\mathrm{fr}^{2}}{\mathrm{HV}^{2} \mathrm{in}^{2}}=\left.1.13 \mathrm{bm}\right|_{5} \\
& R_{k}=P_{1} A_{1}-P_{2} A_{2}-P_{\text {atm }}\left(A_{1}-A_{2}\right)-\dot{m}\left(V_{2}-\psi_{1}\right)^{20}=P_{1} A_{1}-P_{2 g} A_{2}-\dot{m} V_{2}
\end{aligned}
$$

$$
\begin{aligned}
& R_{L}=30416 f \text { Since } R_{x} \text { acts to the left on by, bolts are in tension }
\end{aligned}
$$

13.32 An insulated spherical air tank with diameter $D=2 \mathrm{~m}$ is used in a blowdown installation. Initially the tank is charged to 2.75 MPa (abs) at 450 K . The mass flow rate of air from the tank is a function of time; during the first 30 s of blowdown 30 kg of air leaves the tank. Determine the air temperature in the tank after 30 s of blowdown. Estimate the nozzle throat area.

Given: Spherical air tank

Find: Air temperature after 30s; estimate throat area

Solution:

Basic equations:

$$
\begin{equation*}
\frac{\mathrm{T}_{0}}{\mathrm{~T}}=1+\frac{\mathrm{k}-1}{2} \cdot \mathrm{M}^{2} \quad \frac{\mathrm{p}}{\rho^{k}}=\text { const } \tag{4.12}
\end{equation*}
$$

$$
\frac{\partial}{\partial \mathrm{t}} \int \rho \mathrm{dV}_{\mathrm{CV}}+\int \quad \overrightarrow{\mathrm{V}} \overrightarrow{\mathrm{dA}} \mathrm{CS}=0
$$

Assumptions: 1) Large tank (stagnation conditions) 2) isentropic 3) uniform flow
$\begin{array}{llll}\text { Given or available data } & \mathrm{p}_{\mathrm{atm}}=101 \cdot \mathrm{kPa} & \mathrm{p}_{1}=2.75 \cdot \mathrm{MPa} & \mathrm{T}_{1}=450 \cdot \mathrm{~K}\end{array} \mathrm{D}=2 \cdot \mathrm{~m} \quad \mathrm{~V}=\frac{\pi}{6} \cdot \mathrm{D}^{3} \quad \mathrm{~V}=4.19 \cdot \mathrm{~m}^{3}$.
The flow will be choked if $\mathrm{p}_{\mathrm{b}} / \mathrm{p}_{1}<0.528$: $\quad \mathrm{p}_{\mathrm{b}}=\mathrm{p}_{\mathrm{atm}} \quad$ so $\quad \frac{\mathrm{p}_{\mathrm{b}}}{\mathrm{p}_{1}}=0.037 \quad$ (Initially choked: Critical conditions)

We need to see if the flow is still choked after 30s
The initial (State 1) density and mass are $\quad \rho_{1}=\frac{\mathrm{p}_{1}}{\mathrm{R} \cdot \mathrm{T}_{1}} \quad \rho_{1}=21.3 \frac{\mathrm{~kg}}{\mathrm{~m}^{3}} \quad \mathrm{M}_{1}=\rho_{1} \cdot \mathrm{~V} \quad \mathrm{M}_{1}=89.2 \mathrm{~kg}$

The final (State 2) mass and density are then

$$
\mathrm{M}_{2}=\mathrm{M}_{1}-\Delta \mathrm{M} \quad \mathrm{M}_{2}=59.2 \mathrm{~kg} \quad \rho_{2}=\frac{\mathrm{M}_{2}}{\mathrm{~V}} \quad \rho_{2}=14.1 \frac{\mathrm{~kg}}{\mathrm{~m}^{3}}
$$

For an isentropic process $\quad \frac{\mathrm{p}}{\rho^{k}}=$ const \quad so $\quad \mathrm{p}_{2}=\mathrm{p}_{1} \cdot\left(\frac{\rho_{2}}{\rho_{1}}\right)^{\mathrm{k}} \quad \mathrm{p}_{2}=1.55 \cdot \mathrm{MPa} \quad \frac{\mathrm{P}_{\mathrm{b}}}{\mathrm{p}_{2}}=0.0652 \quad$ (Still choked)
The final temperature is $\quad \mathrm{T}_{2}=\frac{\mathrm{p}_{2}}{\rho_{2} \cdot \mathrm{R}} \quad \mathrm{T}_{2}=382 \mathrm{~K} \quad \mathrm{~T}_{2}=109 \cdot{ }^{\circ} \mathrm{C}$
To estimate the throat area we use $\quad \frac{\Delta M}{\Delta t}=m_{\text {tave }}=\rho_{\text {tave }} \cdot A_{t} \cdot V_{\text {tave }} \quad$ or $\quad A_{t}=\frac{\Delta M}{\Delta t \cdot \rho_{\text {tave }} \cdot V_{\text {tave }}}$
where we use average values of density and speed at the throat.

The average stagnation temperature is

The average stagnation pressure is

$$
\begin{array}{ll}
\mathrm{T}_{\text {0ave }}=\frac{\mathrm{T}_{1}+\mathrm{T}_{2}}{2} & \mathrm{~T}_{\text {0ave }}=416 \mathrm{~K} \\
\mathrm{p}_{\text {0ave }}=\frac{\mathrm{p}_{1}+\mathrm{p}_{2}}{2} & \mathrm{p}_{\text {0ave }}=2.15 \cdot \mathrm{MPa}
\end{array}
$$

Hence the average temperature and pressure (critical) at the throat are

$$
\mathrm{T}_{\text {tave }}=\frac{\mathrm{T}_{\text {0ave }}}{\left(1+\frac{\mathrm{k}-1}{2}\right)} \quad \mathrm{T}_{\text {tave }}=347 \mathrm{~K} \quad \text { and } \quad \mathrm{p}_{\text {tave }}=\frac{\mathrm{P}_{0 \text { ave }}}{\left(1+\frac{\mathrm{k}-1}{2}\right)^{\frac{\mathrm{k}}{\mathrm{k}-1}}} \quad \mathrm{p}_{\text {tave }}=1.14 \cdot \mathrm{MPa}
$$

$$
\text { Hence } \quad \mathrm{V}_{\text {tave }}=\sqrt{\mathrm{k} \cdot \mathrm{R} \cdot \mathrm{~T}_{\text {tave }}} \quad \mathrm{V}_{\text {tave }}=373 \frac{\mathrm{~m}}{\mathrm{~s}} \quad \rho_{\text {tave }}=\frac{\mathrm{P}_{\text {tave }}}{\mathrm{R} \cdot \mathrm{~T}_{\text {tave }}} \quad \rho_{\text {tave }}=11.4 \frac{\mathrm{~kg}}{\mathrm{~m}^{3}}
$$

Finally

$$
\mathrm{A}_{\mathrm{t}}=\frac{\Delta \mathrm{M}}{\Delta \mathrm{t} \cdot \rho_{\text {tave }} \cdot \mathrm{V}_{\text {tave }}} \quad \mathrm{A}_{\mathrm{t}}=2.35 \times 10^{-4} \mathrm{~m}^{2} \quad \mathrm{~A}_{\mathrm{t}}=235 \cdot \mathrm{~mm}^{2}
$$

This corresponds to a diameter

$$
\mathrm{D}_{\mathrm{t}}=\sqrt{\frac{4 \cdot \mathrm{~A}_{\mathrm{t}}}{\pi}} \quad \mathrm{D}_{\mathrm{t}}=0.0173 \mathrm{~m} \quad \mathrm{D}_{\mathrm{t}}=17.3 \cdot \mathrm{~mm}
$$

The process is isentropic, followed by nonisentropic expansion to atmospheric pressure

Problem 13.33

13.33 An ideal gas, with $k=1.25$, flows isentropically through the converging nozzle shown and discharges into a large duct where the pressure is $p_{2}=25 \mathrm{psia}$. The gas is not air and the gas constant, R, is unknown. Flow is steady and uniform at all crosssections. Find the exit area of the nozzle, A_{2}, and the exit speed, V_{2}.

Given: Ideal gas flow in a converging nozzle
Find: Exit area and speed

Solution:

Basic equations:

$$
\frac{\mathrm{T}_{0}}{\mathrm{~T}}=1+\frac{\mathrm{k}-1}{2} \cdot \mathrm{M}^{2} \quad \frac{\mathrm{p}_{0}}{\mathrm{p}}=\left(1+\frac{\mathrm{k}-1}{2} \cdot \mathrm{M}^{2}\right)^{\frac{\mathrm{k}}{\mathrm{k}-1}}
$$

$$
\frac{\mathrm{A}}{\mathrm{~A}_{\text {crit }}}=\frac{1}{\mathrm{M}} \cdot\left(\frac{1+\frac{\mathrm{k}-1}{2} \cdot \mathrm{M}^{2}}{\frac{\mathrm{k}+1}{2}}\right)^{\frac{\mathrm{k}+1}{2 \cdot(\mathrm{k}-1)}}
$$

Given or available data $\quad \mathrm{p}_{1}=35 \cdot \mathrm{psi} \quad \rho_{1}=0.1 \cdot \frac{\mathrm{lbm}}{\mathrm{ft}^{3}} \quad \mathrm{~V}_{1}=500 \cdot \frac{\mathrm{ft}}{\mathrm{s}}$

$$
\mathrm{A}_{1}=1 \cdot \mathrm{ft}^{2} \quad \mathrm{p}_{2}=25 \cdot \mathrm{psi} \quad \mathrm{k}=1.25
$$

Check for choking:
$\mathrm{c}_{1}=\sqrt{\mathrm{k} \cdot \mathrm{R} \cdot \mathrm{T}_{1}}$ or, replacing R using the ideal gas equation $c_{1}=\sqrt{k \cdot \frac{p_{1}}{\rho_{1}}} \quad c_{1}=1424 \frac{\mathrm{ft}}{\mathrm{s}}$

Hence

$$
\mathrm{M}_{1}=\frac{\mathrm{V}_{1}}{\mathrm{c}_{1}} \quad \mathrm{M}_{1}=0.351
$$

Then

$$
\mathrm{p}_{0}=\mathrm{p}_{1} \cdot\left(1+\frac{\mathrm{k}-1}{2} \cdot \mathrm{M}_{1}^{2}\right)^{\frac{\mathrm{k}}{\mathrm{k}-1}}
$$

$$
\mathrm{P}_{0}=37.8 \mathrm{psi}
$$

The critical pressure is then $\quad \mathrm{p}_{\text {crit }}=\frac{\mathrm{p}_{0}}{\frac{\mathrm{k}}{k-1}} \quad \mathrm{p}_{\text {crit }}=21.0 \mathrm{psi} \quad$ Hence $\mathrm{p}_{2}>\mathrm{p}_{\text {crit }}$, so NOT choked

$$
\left(\frac{\mathrm{k}+1}{2}\right)^{\frac{\mathrm{k}}{\mathrm{k}-1}}
$$

Then we have $\quad \mathrm{M}_{2}=\sqrt{\frac{2}{\mathrm{k}-1} \cdot\left[\left(\frac{\mathrm{p}_{0}}{\mathrm{p}_{2}}\right)^{\frac{\mathrm{k}-1}{\mathrm{k}}}-1\right]}$

$$
\mathrm{M}_{2}=0.830
$$

$$
A_{2}=\frac{A_{\text {crit }}}{M_{2}} \cdot\left(\frac{1+\frac{k-1}{2} \cdot M_{2}^{2}}{\frac{k+1}{2}}\right)^{\frac{k+1}{2 \cdot(k-1)}} A_{2}=0.573 \mathrm{ft}^{2}
$$

For isentropic flow

$$
\mathrm{p} \cdot \rho^{\mathrm{k}}=\mathrm{const}
$$

so
$\rho_{2}=\rho_{1} \cdot\left(\frac{\mathrm{p}_{1}}{\mathrm{p}_{2}}\right)^{\frac{1}{\mathrm{k}}}$
$\rho_{2}=0.131 \frac{\mathrm{lbm}}{\mathrm{ft}^{3}}$

Finally from continuity

$$
\rho \cdot \mathrm{A} \cdot \mathrm{~V}=\text { const }
$$

so $\quad V_{2}=V_{1} \cdot \frac{A_{1} \cdot \rho_{1}}{A_{2} \cdot \rho_{2}}$

$$
\mathrm{V}_{2}=667 \frac{\mathrm{ft}}{\mathrm{~s}}
$$

Given: Jettranspor aircraft cruses at ll k. altitude. Initial cabin conditions are $T_{i}=25 \mathrm{C}$, $P_{i}=2.5 \mathrm{~lm}$ altitude Cabin volume $t=2.5 \mathrm{~m}^{3}$. Air escapes through a small hole with effective flow area, $A=0.002 n^{2}$

Find: Tine required for cabin pressure to decrease by 40 percent - At cabin pressure as a function of tune.

Solution:
Basic equations: $\quad \frac{\partial}{2 t} C_{c u} p^{d t}+Y_{c s} p^{\vec{v}} \cdot d \vec{A}=0$

$$
\frac{p}{p^{k}}=\text { constant } \quad P=p e T
$$

Assumptions: (i) nodal flow as isentropic flow through a converging nozzle.
(a) asswhe uniform properties within the cabin, isentropic expansion.
(3) ideal gas behavior

Stagnation conditions within the cabin are

$$
\begin{aligned}
& T_{T_{i}}=298 \mathrm{~K} \quad P_{i}=P_{\text {atm }} \text { at } 2.5 \mathrm{~lm}=74.78 P_{a} \text { (Table A.3) } \\
& P_{6}=0.60 P_{i}=44.8 \mathrm{EPa}
\end{aligned}
$$

Back pressure $P_{5}=P_{\text {atm }}$ at $11 R_{n}=22.7$ bRa
Then $\left.P_{b}\right|_{p_{L}}=0.304$ and $\left.P_{b}\right|_{P_{f}}=0.507$. How is S oked
Note: conditions in cabin are stagnation conditions.
From contriuty.

$$
\begin{aligned}
\frac{\partial}{\partial t} \int_{c} p^{d} t d & =-\int_{c s} p \vec{V} \cdot d \vec{A}=-p_{e} \psi_{e} A_{e} \\
+\frac{d p}{d t} & =-\rho_{e} \lambda_{e} A_{e} .
\end{aligned}
$$

For hoked flow, $M_{4}=1.0$

$$
\begin{aligned}
& \frac{p_{e}}{p_{e}}\left[1+\frac{k_{-1}^{2}}{\frac{1}{2}} M_{e}^{2}\right]^{\frac{1}{k}-1}=(1.20)^{2.5}=1.5774 \quad \therefore p_{e}=0.6339 p \\
& \frac{T_{e}}{T_{e}}=1+\frac{1}{2} M_{e}^{2}=1.2 \quad \therefore T_{e}=0.8333 T \\
& v_{e}=\left(2 R T_{e}\right)^{1 / 2}=(k R)^{1 / 2}(0.8333 T)^{1 / 2}=0.9129(k e)^{1 / 2} T^{1 / 2}
\end{aligned}
$$

Then

$$
\begin{aligned}
& +\frac{d p}{d t}=-p_{e} H_{e} H_{e}-0.6339 p(0.918)\left(k_{e}\right)^{1 / 2} T^{1 / 2} H_{e} \\
& +\frac{d p}{d t}=-0.5787\left(k_{k}\right)^{1 / 2} H_{e} p T^{1 / 2}
\end{aligned}
$$

For an isentropic expansion p and T can be related

$$
f_{l_{2}}=\text { cons }=\frac{p R T}{p^{t}} \quad \therefore p^{(1-R)} T=\text { constant }
$$

Hen, $\quad p^{(1-t)} T=p_{i}^{(1 \cdot t)} T_{i}$ or $T=T_{i}\left(\frac{p}{i}\right)^{(1-b)}$ and $T^{\prime / 2}=\frac{T_{i}^{1 / 2}}{p_{i}^{(t-1) / 2}} p^{(t-1) / 2}$ Substituting we obtain

$$
\begin{aligned}
& +\frac{d p}{d t}=-0.5787(R R)^{1 / 2} A_{e} \rho \frac{T_{L}^{1 / 2}}{p_{i}^{(R) /)_{2}} \rho^{(t}}
\end{aligned}
$$

$$
\begin{aligned}
& \text { To integrate, we write } \\
& \left.\left.-c, t=\int p^{-\frac{(k+1)}{2}} d p=\frac{1}{1-\left(\frac{p+1}{2}\right.} p^{1-\frac{(p+1)}{2}}\right]_{p_{i}}^{p i}=\frac{2}{(1-k)} p^{\left(1-\frac{1}{2}\right)}\right]_{p_{i}}^{p f}
\end{aligned}
$$

$$
\begin{aligned}
& c_{1} t=\left(\frac{2}{(k-1)} \operatorname{pi}^{(i k) / 2}\left[\left(\frac{p_{i}}{e_{6}}\right)^{\left(k-X_{2}\right.}-1\right]\right.
\end{aligned}
$$

$$
\begin{aligned}
& 0.5187(k R)^{1 / 2} \frac{H_{e}}{4} T_{i}^{1 / 2} t=\frac{2}{\left(k_{2}-1\right)}\left[\left(\frac{p_{i}}{p_{f}}\right)^{\frac{(k-1)}{2}}-1\right]
\end{aligned}
$$

Since $P P^{p^{2}}=$ cost, $\quad p_{i}=\left(\frac{p_{i}}{-p_{f}}\right)^{L_{k}}$.

Substituting numerical values

$$
\begin{aligned}
& 0.5787\left[1.4 \times 287 \frac{N .4}{\lg \times 2} \times 29 \mathrm{k} \times \frac{\lg . \mathrm{m}}{\hat{N} \mathrm{~s}^{2}}\right]^{1 / 2} 0.002 \mathrm{~m}^{2} \times \frac{1}{25 \mathrm{~m}^{3}} t \\
&=\frac{2}{0.4}\left[\left(\frac{1}{0.6}\right)^{0.1429}-1\right] \\
& 0.0602 t=0.3786 \\
& t=23.6 \mathrm{~s} .
\end{aligned}
$$

Equation 1 is plotted using Excel
Note that it's easier to compute t from p values!

$\boldsymbol{t}(\mathbf{s})$	$\boldsymbol{p}(\mathrm{kPa})$
0.000	74.7
1.03	73
2.27	71
3.56	69
4.89	67
6.26	65
7.69	63
9.17	61
10.7	59
12.3	57
14.0	55
15.7	53
17.5	51
19.4	49
21.4	47
23.6	44.8
25.6	43
27.9	41
30.4	39
33.0	37
35.7	35
38.6	33
41.8	31
45.2	29
48.8	27
52.8	25
57.2	23
62.0	21
67.4	19
73.5	17
80.5	15
90.0	12.7

Cabin Pressure versus Time t

Given: Lace modulated tank, pressurized to bo kra (gage), supplying air to conveying rozzk with discharge to atmosphere. initial femerathe in tank is $127^{\circ} \mathrm{C}$.

Fine: (a) Initial Mach number at nozz/c exit plane,
(b) pin exit piave whey, flow starts.
(c) How exit plane pressure varies unto tine
(d) How flow rate varies with tine.
(e) Air teniperatue ir tank when flow rate approaches zero.

Solution: Assume stagnation conditions in tank; $p_{z}=$ farm. Then

Exit plan c pressure decreases with time, astimptotically approaching path.

Fou rate varices similarly.
Which flow rate approaches 3 bro, $\mathrm{p}_{\mathrm{p}} \rightarrow$ path. Assurietanic orinawes as a reversible adiabatic process. Thus

$$
\frac{p_{t}}{p_{0}}=\left(\frac{T_{f}}{T_{0}}\right)^{\frac{h}{k}=}
$$

Thus $T_{f}=T_{0}\left(\frac{p_{4}}{p_{0}}\right)^{\frac{k-1}{r}}=(273+127) K\left(\frac{101.3}{620+1013}\right)^{0.286}=228 \mathrm{~K}$

$$
T_{f}=(228-273)^{\circ} \mathrm{C}=-45^{\circ} \mathrm{C}
$$

The Is diagrain for air in the taw le is: 2
The Is diagiens for air flowing from the tank are:

While choked
$\left(-x_{\mu}>\operatorname{tath} /\right.$, \rightarrow

13.36 A converging-diverging nozzle is attached to a very large tank of air in which the pressure is 150 kPa and the temperature is $35^{\circ} \mathrm{C}$. The nozzle exhausts to the atmosphere where the pressure is 101 kPa . The exit diameter of the nozzle is 2.75 cm . What is the flow rate through the nozzle? Assume the flow is isentropic.

Given: CD nozzle attached to large tank
Find: Flow rate

Solution:

Basic equations:

$$
\frac{\mathrm{T}_{0}}{\mathrm{~T}}=1+\frac{\mathrm{k}-1}{2} \cdot \mathrm{M}^{2} \quad \frac{\mathrm{p}_{0}}{\mathrm{p}}=\left(1+\frac{\mathrm{k}-1}{2} \cdot \mathrm{M}^{2}\right)^{\frac{\mathrm{k}}{\mathrm{k}-1}}
$$

$$
\mathrm{m}_{\text {rate }}=\rho \cdot \mathrm{V} \cdot \mathrm{~A}
$$

Given or available data

$$
\mathrm{p}_{0}=150 \cdot \mathrm{kPa}
$$

$\mathrm{T}_{0}=(35+273) \cdot \mathrm{K}$
$\mathrm{p}_{\mathrm{e}}=101 \cdot \mathrm{kPa}$
$\mathrm{D}=2.75 \cdot \mathrm{~cm}$
$\mathrm{k}=1.4$
$\mathrm{R}=286.9 \cdot \frac{\mathrm{~J}}{\mathrm{~kg} \cdot \mathrm{~K}}$
$\mathrm{A}_{\mathrm{e}}=\frac{\pi}{4} \cdot \mathrm{D}^{2}$
$\mathrm{A}_{\mathrm{e}}=5.94 \mathrm{~cm}^{2}$

For isentropic flow

$$
\mathrm{M}_{\mathrm{e}}=\sqrt{\frac{2}{\mathrm{k}-1} \cdot\left[\left(\frac{\mathrm{p}_{0}}{\mathrm{p}_{\mathrm{e}}}\right)^{\frac{\mathrm{k}-1}{\mathrm{k}}}-1\right]}
$$

$$
\mathrm{M}_{\mathrm{e}}=0.773
$$

Then

$$
\mathrm{T}_{\mathrm{e}}=\frac{\mathrm{T}_{0}}{\left(1+\frac{\mathrm{k}-1}{2} \cdot \mathrm{M}_{\mathrm{e}}^{2}\right)}
$$

$$
\mathrm{T}_{\mathrm{e}}=275 \mathrm{~K} \quad \mathrm{~T}_{\mathrm{e}}=1.94^{\circ} \mathrm{C}
$$

Also

$$
\begin{array}{ll}
\mathrm{c}_{\mathrm{e}}=\sqrt{\mathrm{k} \cdot \mathrm{R} \cdot \mathrm{~T}_{\mathrm{e}}} & \mathrm{c}_{\mathrm{e}}=332 \frac{\mathrm{~m}}{\mathrm{~s}} \\
\rho_{\mathrm{e}}=\frac{\mathrm{p}_{\mathrm{e}}}{\mathrm{R} \cdot \mathrm{~T}_{\mathrm{e}}} & \rho_{\mathrm{e}}=1.28 \frac{\mathrm{~kg}}{\mathrm{~m}^{3}}
\end{array}
$$

Finally

$$
\mathrm{m}_{\text {rate }}=\rho_{\mathrm{e}} \cdot \mathrm{~V}_{\mathrm{e}} \cdot \mathrm{~A}_{\mathrm{e}} \quad \mathrm{~m}_{\text {rate }}=0.195 \frac{\mathrm{~kg}}{\mathrm{~s}}
$$

13.37 At the design condition of the system of Problem 13.36, the exit Mach number is $M_{\mathrm{e}}=2.0$. Find the pressure in the tank of Problem 13.36 (keeping the temperature constant) for this condition. What is the flow rate? What is the throat area?

Given: Design condition in a converging-diverging nozzle

Find: Tank pressure; flow rate; throat area

Solution:

The given or available data is:

R	$=$	53.33	
k	$=$	1.4	
T_{0}	$=$	560	
$A_{\mathrm{e}} \mathrm{R}$	$=$	1	in^{2}
p_{b}	$=$	14.7	
M_{e}	$=$	2	

Equations and Computations:

At design condition

$$
\begin{array}{lcl}
p_{\mathrm{e}}= & p_{\mathrm{b}} & \\
p_{\mathrm{e}}= & 14.7 & \text { psia }
\end{array}
$$

From M_{e} and p_{e}, and Eq. 13.7a
(using built-in function Isenp (M, k)

$$
\begin{align*}
& \frac{p_{0}}{p}=\left[1+\frac{k-1}{2} M^{2}\right]^{k /(k-1)} \tag{13.7a}\\
& p_{0}=\quad 115 \quad \text { psia }
\end{align*}
$$

From M_{e} and A_{e}, and Eq. 13.7d
(using built-in function $\operatorname{Isen} A(M, k)$

Hence

$$
\begin{gather*}
\frac{A}{A^{*}}=\frac{1}{M}\left[\frac{1+\frac{k-1}{2} M^{2}}{\frac{k+1}{2}}\right]^{(k+1) / 2(k-1)} \tag{13.7d}\\
A^{*}=0.593 \mathrm{in}^{2} \\
A_{\mathrm{t}}
\end{gather*}
$$

From $p_{0}, T_{0}, A_{\mathrm{t}}$, and Eq. 13.10a

$$
\begin{align*}
\dot{m}_{\text {choked }} & =A_{t} p_{0} \sqrt{\frac{k}{R T_{0}}}\left(\frac{2}{k+1}\right)^{(k+1) / 2(k-1)} \tag{13.10a}\\
m_{\text {choked }} & =1.53 \mathrm{lb} / \mathrm{s}
\end{align*}
$$

Given: Air escapes from high-pressure bicycle tire through hole having $D=0.254 \mathrm{~mm}, p_{1}=620 \mathrm{kPa}$ (gage), and $T=27^{\circ} \mathrm{C}$, which remains constant. Internal volume of tire is $\forall=4.26 \times 10^{-4} \mathrm{~m}^{3}$, and also is constant.

Find: (a) Time needed for p in tire to drop to 310 kPa (gage).
(b) Entropy change of air in tire. during this process.
(c) Sketch a Ts diagram showing states and process paths. Plot -pressure as a function of time
Solution: Apply continuity equation, isentropic relationships.
Basic equations: $0=\frac{\partial}{\partial t} \int_{C V} \rho d \forall+\int_{C S} \rho \vec{V} \cdot d \vec{A} \quad \frac{T_{0}}{T}=\left(1+\frac{k-1}{2} M^{2}\right) ; \frac{p_{0}}{\rho}=\left(\frac{T_{1}}{T}\right)^{\frac{1}{k-1}}$
Check for choking: $\frac{\text { paten }}{\text { pain }}=\frac{101}{310+101}=0.246<0.528$ so always choked.
Thus $\dot{m}=\rho^{*} V^{*} A^{*}$. Assume: (1) Uniform density in tire: $\int_{C V}=\rho \psi^{*}$
(2) Uniform flow at throat
(3) Isentropic process to throat.

Then

$$
0=\forall \frac{d \rho}{d t_{0}}+\rho^{*} V^{t} A_{c}
$$

But $\rho^{*}=\frac{\rho}{\left(1+\frac{k-1}{2} M_{*}^{2}\right)^{1 / k-1}}=\frac{\rho}{(1.2)^{2.5}}=0.634 \rho$
So $\quad \frac{d \rho}{\rho}=-0.634 \frac{V^{*} A e}{\forall} d t$
Integrating, $\ln \frac{\rho_{2}}{\rho_{1}}=-0.634 \frac{V^{*} A e}{\forall} t=\ln \frac{p_{2}}{p_{1}}$ since $T=\operatorname{constant}$
Thus

$$
\begin{align*}
& t=-\frac{\forall}{0.634 V * A_{e}} \ln \frac{p_{2}}{p_{1}} \tag{1}\\
& V^{*}=C^{*}=\sqrt{k R T^{*}}=\left[1.4 \times 287 \frac{\mathrm{~N} \cdot \mathrm{~m}}{\mathrm{~kg} \cdot \mathrm{~K}} \times \frac{273+27}{1.2} \mathrm{~K}_{\times} \frac{\mathrm{kg} \cdot \mathrm{~m}}{\mathrm{~N} \cdot \mathrm{~s}^{2}}\right]^{1 / 2}=317 \mathrm{~m} / \mathrm{s} \\
& A^{*}=\frac{\pi D^{2}}{4}=\frac{\pi}{4}(0.000254)^{2} \mathrm{~m}^{2}=5.07 \times 10^{-8} \mathrm{~m}^{2} \\
& t=-\frac{1}{0.634} \times 4.26 \times 10^{-4} \mathrm{~m}^{3} \times \frac{\mathrm{s}}{317 \mathrm{~m}} \times \frac{1}{5.07 \times 10^{-8} \mathrm{~m}^{2}} \times \ln \left(\frac{30+101}{620+101}\right)=23.5 \mathrm{~s}
\end{align*}
$$

Ts diagram:

Process (1) \rightarrow (2) in tire

Process (isentropic) (1) \rightarrow (+ (moving to) (2) \rightarrow (*) in converging passage.

In tire,

$$
\Delta \Delta=\operatorname{coln} T_{T_{1}}^{\pi}-\operatorname{sen} \frac{p_{2}}{p_{1}}=-287 \frac{\mathrm{~N} \cdot \mathrm{~m}}{\operatorname{kg} \cdot k} \times \ln \frac{(310+101)}{(620+101)}=16 / J(k g \cdot k)
$$

Equation 1 is plotted using Excel
Note that it's easier to compute t from p values!

Given: Convergine-divenging nozzle with Malign $=3.0$ and A. $=250 \mathrm{~mm}$. Nozzle bolted to sidle of large tank with $7 \mathrm{p}=4$ is ipa (gage) and $T=750 \mathrm{k}$. Flow in nozzit is isentropic.
Find: (a) Pressure in nozzle exit pane.
(b) Mass flow rate in nozzle.
(c) Sheteh Ts diagram: label tank, throat, exit, and ambient.

Solution: Assume stagnation concitonis at tank, isentropic flow is nozzle.
Computing equation: $\frac{p_{0}}{p}=\left(1+\frac{k-1}{2} M^{2}\right)^{\frac{k}{k-i}} ; \frac{T_{0}}{T}=1+\frac{k-1}{2} M^{2} ; c=\sqrt{k R T}$ For $\mathrm{Me}_{e}=3.0, \frac{p_{0}}{p_{e}}=\left[1+\frac{k-1}{z}(3.0)^{2}\right]^{\frac{k}{k-1}}=36.7$

$$
p_{e}=\frac{p_{0}}{36.7}=\frac{\left(45 \times 10^{\dot{a}+101 \times 10^{3}}\right) P_{a}}{36.7}=125 \times P_{a}(a b s) \text { or } 24 k p_{a}(g a g e) \quad p_{e}
$$

$$
\begin{aligned}
& T_{e}=\frac{T_{0}}{1+k_{2}^{2}(3.0)^{*}}=\frac{750 \mathrm{~K}}{1+0.2(3)^{2}}=268 \mathrm{~K} \\
& C_{e}=\sqrt{k R T_{e}}=\left[1.4 \times 287 \frac{\mathrm{Nm}}{\mathrm{~kg} \cdot \mathrm{~K}} \times 268 \mathrm{~K} \times \frac{\mathrm{kg} \cdot \mathrm{~N}}{\mathrm{~N} \cdot \mathrm{~S}^{2}}\right]^{14}=328 \mathrm{~m} / \mathrm{s} \\
& \rho_{e}=\frac{R e}{R T_{e}}=125 \times 10=\frac{\mathrm{N}}{\mathrm{~N}^{2}} \times \frac{\mathrm{kg} \cdot \mathrm{~K}}{287 \mathrm{~N} \cdot \mathrm{~m}} \times \frac{1}{268 \mathrm{~K}}=1.63 \mathrm{ka} / \mathrm{m}^{3}
\end{aligned}
$$

Finally; ${ }^{\operatorname{la}}=\mathrm{Me} c_{e}=3.0 \times 33 \mathrm{~m} / \mathrm{s}=984 \mathrm{mis}$

$$
\dot{m}=\rho_{Q} V_{C} A_{c}=1.63 \frac{\mathrm{~kg}}{m^{3}} \times 984 \frac{\mathrm{cn}}{\mathrm{~s}} \times 250 \mathrm{~mm}^{+} \times \frac{m^{2}}{10^{6} \mathrm{~mm}^{2}}=0.401 \mathrm{~kg} / \mathrm{s}
$$

Ts diagram:

$$
\begin{aligned}
& 0=\text { tank conditions } \\
& *=\text { throat conditions } \\
& e=\text { exit plane conditions }
\end{aligned}
$$

Problem 13.40
Given: Isentropic flow of air from a large tank through a convergingdivergnig nozzle discharges to a back pressure, Pb.

Find: in, A.
Solution
Computing equations: $T_{0} \frac{T_{1}}{1}=1+\frac{k-1}{2} n^{2}, \frac{p_{0}}{p_{p}}=\left[1+\frac{k-1}{2} H^{2}\right]^{2 / f}$

Assumptions: (1) steady flow
(3) uniform flow at a section
(a) isentropic fou
(H) ideal gas

$$
\begin{aligned}
& P_{0} 1 p=\left[1+\frac{k-1}{2} M^{2}\right]^{f / k-1} ; M_{1}=\left\{\frac{2}{k-1}\left[\left(\frac{p_{0}}{p_{1}}\right)^{b-1 k}-1\right]\right\}^{1 / 2}=\left\{\frac{2}{0.4}\left[\left(\frac{80}{12.9}\right)^{0.206}-1\right]\right]^{1 / 2}=1.85 \\
& T_{0} I T=1+\frac{1-1}{2} M^{2} \quad ; \quad T_{1}=\frac{T_{0}}{1+\frac{k^{-1} M_{1}^{2}}{2}}=\frac{520^{\circ} R}{1+0.2(1.85)^{2}}=309^{\circ} R
\end{aligned}
$$

Since $M_{1}=1.85$; nozzle must be choked and $M_{t}=1.0 ; R_{t}=A^{*}$
For $M_{1}=1.85$, from Eqia.ib (and Fig. $), \quad A_{1}\left(A^{*}=1.496 ; \therefore A_{1}=2.99 u^{2}\right.$

Problem 13.4V

Given: Isentropic flow of air from stagnation state through a converging-diverging nozzle as shown.

$$
P_{0}=7.2 \mathrm{MPa}(a b s)
$$

Find: V_{1}, in
Solution:
Basic equations: $\quad i=P J F . \quad P=P R T$
Computing equations: $\quad \frac{T_{0}}{T}=1+k_{-1}^{2} M^{2} \quad \frac{P_{0}}{P}=\left[1+\frac{k_{-1}^{2}}{2} M^{2}\right]^{d / 1-1}$
Assumptions: (i) steady flow
(3) uniform flow at a section
(a) isentropic flow (4) ideal gas

$$
\begin{align*}
& \frac{T_{0}}{T}=1+k_{-1}^{2} M^{2} ; T_{1}=\frac{T_{0}}{1+\frac{1}{2} M^{2}}=\frac{1100 K}{1+0.2(4.0)^{2}}=262 K \\
& V_{1}=M_{1} C_{1}=M_{1}\left(k R T_{1}\right)^{1 / 2}=4.0\left(1.4+287 \frac{N_{1} M}{\frac{k g}{2 . K}} \times 262 k \times \frac{k_{G} . M}{N_{16}}\right)^{1 / 2}=1300 M l_{5} \tag{1}
\end{align*}
$$

Since $M_{1}=4.0$, nozzle must be choked and $M_{t}=1.0$

$$
\dot{m}=f_{t} V_{t} A_{t}=14.4 \frac{\mathrm{~kg}}{\mathrm{~m}^{3}} \times 607 \frac{\mathrm{~m}}{5} \times 0.01 \mathrm{~m}^{2}=87.4 \mathrm{~kg} / \mathrm{s}
$$

$$
\begin{aligned}
& P_{t}=\frac{P_{0}}{\left[1+\frac{1}{\frac{1}{2}} M_{t}^{2}\right]^{4}(a-1}=\frac{7.2 \times 10^{6} \mathrm{~Pa}}{\left[1+0.2(1.0)^{2}\right]^{3.5}}=3.80 \mathrm{MPa} \\
& T_{t}=\frac{T_{0}}{1+\frac{k-1}{2} M_{t}^{2}}=\frac{1100 k}{1+0.2(10)^{2}}=917 k \\
& P_{t}=\frac{P_{t}}{R T_{t}}=3.80 \times 10^{6} \frac{N}{n^{2}} \times \frac{\operatorname{tg} \cdot k}{2.87 . M^{2}} \times \frac{1}{917 k}=14.4 \mathrm{~kg} / \mathrm{m}^{3} \\
& V_{t}=M_{t} C_{t}=M_{t}\left(k R T_{t}\right)^{1 / 2}=1.0\left(1.4 \times 287 \frac{\mathrm{~N} \cdot \mathrm{n}}{\mathrm{~kg} \cdot \mathrm{~K}} \times 917 \mathrm{~K} \times \frac{\mathrm{kg} \cdot \mathrm{M}}{N \cdot \mathrm{~s}^{2}}\right)^{1 / 2}=607 \mathrm{mls}
\end{aligned}
$$

Problem 13.42
Given: Isentropic flow of air from stagnation state through a converging- diverging nozzle to a back pressure, P_{b}.

$$
\begin{array}{ll}
T_{0}=115^{\circ} \mathrm{C} \\
P_{0}=1.1 \mathrm{MPa}(a b s) \\
i=2.0 \mathrm{bg} l_{s}
\end{array}
$$

Find: A_{t}, F_{1}
Solution:
Compatingequations: $\frac{T_{0}}{T}=1+\frac{k-1}{\frac{1}{2} n^{2},} \frac{\rho_{0}}{-p}=\left[1+\frac{k-1}{2} M^{2}\right]^{k / k-1}$

$$
\frac{A}{A^{n}}=\frac{1}{M}\left[\frac{1+\frac{1}{2} r^{2}}{1+\frac{1}{2}}\right]^{(k+1)} / 2(t-1)
$$

Assumptions: (1) steady flow
(3) uniform flow at a section
(a) isentropic flow (4) ideal gas

$$
\begin{align*}
& P_{0} \left\lvert\, p=\left[1+\frac{k-1}{2} M^{2}\right]^{k / k-1}\right. ; \quad M_{1}=\left\{\frac{2}{k-1}\left[\left(\frac{p_{0}}{p_{1}}\right)^{k-1}-1\right]\right\}^{1_{2}}=\left\{\frac{2}{0.4}\left[\left(\frac{1.1}{0.141}\right)^{0.28 b}-1\right]\right\}^{1 / 2}=2.0 \\
& T_{0} / T=1+\frac{k-1}{2} M^{2} ; \quad T_{1}=\frac{T_{0}}{1+\frac{k-1}{2} M_{1}^{2}}=\frac{388 k}{1+0.2(2.0)^{2}}=2.16 K \\
& V_{1}=M_{1} C_{1}=M_{1}\left(k R T_{1}\right)^{1 / 2}=2,0\left(1,4 \times 287 \frac{\mathrm{~N} \cdot \mathrm{~m}}{\mathrm{~kg} \cdot \mathrm{~K}} \times 216 \mathrm{~K} * \frac{\mathrm{~kg} \cdot \mathrm{M}}{\mathrm{~N}_{1} \mathrm{~s}^{2}}\right)^{1 / 2}=589 \mathrm{nls} \\
& p_{1}=\frac{P_{1}}{R r_{1}}=141 \times 10^{3} \frac{\mathrm{~N}}{\mathrm{~m}^{2}} \times \frac{\mathrm{kg} \cdot \mathrm{k}}{287 \mathrm{~N} \cdot M} \times \frac{1}{2 i b k}=2.21 \mathrm{~kg} / \mathrm{m}^{3} \\
& A_{1}=\frac{\dot{m}}{p_{1} \nu_{1}}=2.0 \frac{\mathrm{~kg}}{\mathrm{~s}} \times 2.27 \frac{\mathrm{~m}^{3}}{\mathrm{~kg}} \times 589 \mathrm{~m}=1.50 \times 10^{-3} \mathrm{~m}^{2} \tag{A.}
\end{align*}
$$

For $M_{1}=2.0$, from Eq. 12.6 and $F_{g . E .1,} A_{1} / A^{*}=1.688$

$$
\text { Then } A_{t}=A^{*}=A \cdot M .688=8.89 \times 10^{-4} \mathrm{~m}^{2}
$$

Given: Isentropic flow of air from a large tank through a converging-diverging nozzle disforging to atmosphere

Find: (a) m

(b) effect on in of raising To to 2000 k
(c) plot $\dot{H}(T)$ for $500^{\circ} \mathrm{K} \leqslant T \leqslant 2000 \mathrm{~N}$

Solution:
Basic equations: $\quad i=p v A \quad P=P R T$
Computing equations: $\frac{T_{0}}{T}=1+\frac{k-1}{2} M^{2} \quad \frac{P_{0}}{P_{i}}=\left[1+\frac{k}{2} M^{2}\right]^{k / l_{2-1}}$
Assumptions: (1) steady flow
(a) isentr-Spic flow
(3) uniform flow at a section (4) deal gas
$\dot{m}=$ pete A_{e} If T_{0} is increased by a factor of 4 , inolaing pressures constant)
(i) T_{e} will increase by a factor of 4 (since Tole = cons)
(2) V_{e} " " ${ }^{(1)}{ }^{2}$ (since $V_{e} \times T_{e}^{\prime \prime 2}$)
(3) P_{e} " decrease" " "." 4 (since $p_{+}-{ }^{\prime \prime} T_{e}$)

Thus the mass flow rate, in, will decrease by a factor of 2

The calculations from page 1 are repeated for various T_{0} values and plotted using Excel

$T_{0}\left({ }^{\circ} \mathrm{R}\right)$	$T_{e}\left({ }^{\circ} \mathrm{R}\right)$	$\rho_{\mathrm{e}}\left(\mathrm{lbm} / \mathrm{ft}^{3}\right)$	$\mathrm{V}_{\mathrm{e}}(\mathrm{ft} / \mathrm{s})$	$\mathrm{m}_{\text {rate }}(\mathrm{lbm} / \mathrm{s})$
500	222	0.179	1827	3.57
550	244	0.162	1916	3.40
600	267	0.149	2001	3.26
650	289	0.137	2083	3.13
700	311	0.128	2161	3.02
750	333	0.119	2237	2.92
800	356	0.112	2311	2.82
850	378	0.105	2382	2.74
900	400	0.0993	2451	2.66
950	422	0.0941	2518	2.59
1000	444	0.0894	2583	2.52
1050	467	0.0851	2647	2.46
1100	489	0.0812	2710	2.41
1150	511	0.0777	2770	2.35
1200	533	0.0745	2830	2.30
1250	556	0.0715	2888	2.26
1300	578	0.0687	2946	2.21
1350	600	0.0662	3002	2.17
1400	622	0.0638	3057	2.13
1450	644	0.0616	3111	2.10
1500	667	0.0596	3164	2.06
1550	689	0.0577	3216	2.03
1600	711	0.0558	3268	2.00
1650	733	0.0542	3319	1.97
1700	756	0.0526	3368	1.94
1750	778	0.0511	3418	1.91
1800	800	0.0496	3466	1.88
1850	822	0.0483	3514	1.86
1900	844	0.0470	3561	1.83
1950	867	0.0458	3608	1.81
2000	889	0.0447	3654	1.79

13.44 A small, solid fuel rocket motor is tested on a thrust stand. The chamber pressure and temperature are 4 MPa and 3250 K . The propulsion nozzle is designed to expand the exhaust gases isentropically to a pressure of 75 kPa . The nozzle exit diameter is 25 cm . Treat the gas as ideal with $k=1.25$ and $R=300 \mathrm{~J} /(\mathrm{kg} \cdot \mathrm{K})$. Determine the mass flow rate of propellant gas and the thrust force exerted against the test stand.

Given: Rocket motor on test stand

Find: Mass flow rate; thrust force

Solution:

Basic equations:

$$
\frac{\mathrm{T}_{0}}{\mathrm{~T}}=1+\frac{\mathrm{k}-1}{2} \cdot \mathrm{M}^{2} \quad \frac{\mathrm{p}_{0}}{\mathrm{p}}=\left(1+\frac{\mathrm{k}-1}{2} \cdot \mathrm{M}^{2}\right)^{\frac{\mathrm{k}}{\mathrm{k}-1}} \quad \mathrm{p}=\rho \cdot \mathrm{R} \cdot \mathrm{~T} \quad \mathrm{c}=\sqrt{\mathrm{k} \cdot \mathrm{R} \cdot \mathrm{~T}} \quad \mathrm{~m}_{\mathrm{rate}}=\rho \cdot \mathrm{A} \cdot \mathrm{~V}
$$

$$
\left(\mathrm{p}_{\mathrm{atm}}-\mathrm{p}_{\mathrm{e}}\right) \cdot \mathrm{A}_{\mathrm{e}}+\mathrm{R}_{\mathrm{x}}=\mathrm{m}_{\text {rate }} \cdot \mathrm{V}_{\mathrm{e}} \quad \text { Momentum for pressure } \mathrm{p}_{\mathrm{e}} \text { and velocity } \mathrm{V}_{\mathrm{e}} \text { at exit; } \mathrm{R}_{\mathrm{x}} \text { is the reaction for }
$$

Given or available data

$$
\begin{array}{lllll}
\mathrm{p}_{\mathrm{e}}=75 \cdot \mathrm{kPa} & \mathrm{p}_{\mathrm{atm}}=101 \cdot \mathrm{kPa} \quad \mathrm{p}_{0}=4 \cdot \mathrm{MPa} & \mathrm{~T}_{0}=3250 \cdot \mathrm{~K} & \mathrm{k}=1.25 & \mathrm{R}=300 \cdot \frac{\mathrm{~J}}{\mathrm{~kg} \cdot \mathrm{~K}} \\
\mathrm{~d}=25 \cdot \mathrm{~cm} & \text { so the nozzle exit area is } & \mathrm{A}_{\mathrm{e}}=\frac{\pi}{4} \cdot \mathrm{~d}^{2} & \mathrm{~A}_{\mathrm{e}}=491 \cdot \mathrm{~cm}^{2}
\end{array}
$$

From the pressures $\quad M_{e}=\sqrt{\frac{2}{k-1} \cdot\left[\left(\frac{p_{0}}{p_{e}}\right)^{\frac{k-1}{k}}-1\right] \quad M_{e}=3.12}$
The exit temperature is $T_{e}=\frac{T_{0}}{\left(1+\frac{\mathrm{k}-1}{2} \cdot \mathrm{M}_{\mathrm{e}}{ }^{2}\right)} \quad \mathrm{T}_{\mathrm{e}}=1467 \mathrm{~K} \quad \mathrm{c}_{\mathrm{e}}=\sqrt{\mathrm{k} \cdot \mathrm{R} \cdot \mathrm{T}_{\mathrm{e}}} \quad \mathrm{c}_{\mathrm{e}}=742 \frac{\mathrm{~m}}{\mathrm{~s}}$
The exit speed is

$$
\mathrm{V}_{\mathrm{e}}=\mathrm{M}_{\mathrm{e}} \cdot \mathrm{c}_{\mathrm{e}}
$$

$$
\mathrm{V}_{\mathrm{e}}=2313 \frac{\mathrm{~m}}{\mathrm{~s}}
$$

and

$$
\rho_{\mathrm{e}}=\frac{\mathrm{Pe}}{\mathrm{R} \cdot \mathrm{~T}_{\mathrm{e}}} \quad \rho_{\mathrm{e}}=0.170 \cdot \frac{\mathrm{~kg}}{\mathrm{~m}^{3}}
$$

Then

$$
\mathrm{m}_{\text {rate }}=\rho_{\mathrm{e}} \cdot \mathrm{~A}_{\mathrm{e}} \cdot \mathrm{~V}_{\mathrm{e}} \quad \mathrm{~m}_{\text {rate }}=19.3 \frac{\mathrm{~kg}}{\mathrm{~s}}
$$

The momentum equation (Eq. 4.33) simplifies to

$$
\left(\mathrm{p}_{\mathrm{e}}-\mathrm{p}_{\mathrm{atm}}\right) \cdot \mathrm{A}_{\mathrm{e}}-\mathrm{M}_{\mathrm{CV}} \cdot \mathrm{a}_{\mathrm{X}}=-\mathrm{V}_{\mathrm{e}} \cdot \mathrm{~m}_{\text {rate }}
$$

Hence

$$
\mathrm{R}_{\mathrm{x}}=\left(\mathrm{p}_{\mathrm{e}}-\mathrm{p}_{\mathrm{atm}}\right) \cdot \mathrm{A}_{\mathrm{e}}+\mathrm{V}_{\mathrm{e}} \cdot \mathrm{~m}_{\text {rate }} \quad \mathrm{R}_{\mathrm{X}}=43.5 \cdot \mathrm{kN}
$$

Given: Flow of nitrogen through a converging-diverging nozzle leaves nozzle at atmospheric pressure, exhaust cringes on vertical flat plate.

$$
T_{0}=400 \mathrm{~K}
$$

$$
P_{0}=371 \mathrm{kPa}
$$

$$
A_{1}=0.003 \mathrm{n}^{2}
$$

Find: Force required to hold the plate.
Solution:
Basic equations: $F_{s_{h}}=-R_{x}=-m v_{1} \quad$ (momentum eq for (v shown)

$$
\dot{m}=P V A=\text { cont }
$$

$$
P=p R T
$$

Computing equations: $\frac{T_{0}}{\bar{T}}=1+\frac{k-1}{2} M^{2}$
Assumptions: (1) steady flow
(i) isentropic flow in nozzle
(4) Pate over entire cs
(a) isentropic flow in nozzle (5) $F_{B x}=0$
(3) uniform flow al a section (b) ideal gas

$$
\frac{P_{0}}{p}=\left[1+\frac{k_{-1}}{2} M^{2}\right]^{b / k-1}
$$

(3) uniform flow al a section (b) ideal gas, $k=1.40$

$$
\begin{aligned}
& \frac{P_{0}}{p}=\left[1+\frac{k-1}{2} M^{2}\right]^{k k-1} ; \quad M_{1}=\left\{\frac{2}{k-1}\left[\left(\frac{P_{0}^{0}}{p_{1}}\right)^{k-1 k}-1\right]\right\}^{1 / 2}=\left\{\frac{2}{0.4}\left[\left(\frac{371}{101}\right)^{0.286}-1\right]\right\}^{1 / 2}=1.50 \\
& \frac{T_{0}}{T}=1+k_{-1}^{2} M_{1}^{2} ; \quad T_{1}=\frac{T_{0}}{1+\frac{k_{2}}{2} M_{1}^{2}}=\frac{400 k}{1+0.2(1.50)^{2}}=276 \mathrm{~K} \\
& V_{1}=M_{1} c_{1}=M_{1}\left(k R T_{1}\right)^{1 / 2}=1.5\left(1.4 \times 297 \frac{\mathrm{Nim}}{\mathrm{~kg} k} \times 276 \mathrm{k} \times \frac{\mathrm{kg} \cdot \mathrm{n}}{N \cdot \mathrm{~s}^{2}}\right)^{1 / 2}=508 \mathrm{mls} \\
& p_{1}=\frac{p_{1}}{k T}=101 \times 10^{3} \frac{\mathrm{~N}}{\mathrm{n}^{2}}+\frac{\mathrm{bg} \mathrm{H}_{1} \mathrm{~K}}{297 \mathrm{~N} . \mathrm{M}_{1}} \times \frac{1}{2 \pi 60}=1.23 \mathrm{gg/m}{ }^{3} . \\
& m=p \cdot N_{1} A_{1}=1.23 \frac{8}{m^{3}} \times 508 \frac{\mathrm{~m}}{\mathrm{~s}} \times 0.003 \mathrm{~m}^{2}=1.87 \mathrm{~kg} l_{\mathrm{s}} \\
& R_{x}=i V_{1}=1.87 \frac{\mathrm{gg}}{5} \times 508 \frac{\mathrm{~m}}{5} \times \frac{\mathrm{N}_{6}^{2}}{\lg \cdot \mathrm{M}}=950 \mathrm{~N} \text { (to the left shown). } R_{x}
\end{aligned}
$$

Problem 13.46
Given: Liquid rocket motor deigned to expand ekauct gases isentropically to design back pressure. Corresponding to an altitude of $10,000 \mathrm{~m}$. Trust produced is 100 kN . Exhaust gases treated as water vapor and ideal gas behavior assumed

Find: (a) \dot{m} (b) H_{e} (c) H_{e} / A_{t}
Solution
Basic equations: $F_{s_{2}}=R_{2}=i V_{e} \quad \dot{m}=p V R \quad P=p R T$

$$
\begin{equation*}
\frac{A}{A^{*}}=\frac{1}{M}\left[\frac{1+k_{-1}^{-1} M^{2}}{1+k_{-1}^{2}}\right](k+1) l_{2(k-1)} \tag{12.6}
\end{equation*}
$$

Assumptions: (1) steady flow
(4) hest specified at attitude
(2) isentropic flow
(5) $F_{B_{4}}=0$
(3) uniform Alow at a section (1) ideal gas, $k=1.3, k=461 \mathrm{M}$ g. k

$$
\begin{aligned}
& \left.e_{0}\right|_{p}=\left[1-\frac{e_{-1}}{2} M^{2}\right]^{1 / k-1} ; M_{e}=\left\{\frac{2}{k-1}\left[\left(\frac{e_{0}}{p}\right)^{\frac{k}{E}}-1\right]^{1 / 2}=\left\{\frac{2}{0.30}\left[\left(\frac{690}{2.64}\right)^{0.231}-1\right]\right]^{1 / 2}=4.18\right. \\
& T_{0} / T=1+\frac{t^{-}}{2} M^{2} ; \quad T_{e}=\frac{T_{0}}{1+\frac{1}{-1} \frac{1}{2} T_{2}^{2}}=\frac{3300 K}{1+0.15(4 . i 8)^{2}}=911 K
\end{aligned}
$$

$$
\begin{aligned}
& R_{x}=\dot{M} \lambda_{e} ; \quad \dot{m}=\frac{R_{0}}{V_{e}}=10^{5} \mathrm{~N} \times 3090 \frac{\mathrm{~s}}{} \times \frac{\mathrm{kg} \cdot \mathrm{H}}{\mathrm{~F}^{2}}=32.4 \mathrm{gg} \mathrm{~g}_{\mathrm{s}} \\
& f_{e}=\frac{P_{e}}{R T_{e}}=26.4 \times 10^{3} \frac{\mathrm{~N}}{H^{2}} \times 4 b \frac{\mathrm{~g} k}{\mathrm{~N}} \times \frac{1}{911}=6.29 \times 10^{-2} \mathrm{~kg} / \mathrm{m}^{3} \\
& \dot{m}=P_{e} t_{e} A_{c} ; A_{c}=\frac{i n}{P_{e} t_{e}}=32.4 \frac{\mathrm{lg}}{3} \times 6.29+0^{-2} \lg ^{3} \times 3090 \mathrm{~m}=0.61 \mathrm{~m}^{2} H_{e} \\
& \text { For } M_{e}=4.18 \text {, from } E_{q} 12.6, A_{d} / A^{4}=A_{d} / A_{t}=19.4
\end{aligned}
$$

Given: Small roxie motor, fueled with H_{2} and O_{2}, is tested on thrust stand at a simulated altitude of 10 km . Combustion product is water vapor which may bo treated as un ideal gas.

$$
\begin{aligned}
& M_{a}=3.5 \\
& R_{c}=100 \mathrm{~m}^{2} \\
& P_{b}=P_{\text {at }} 10 \mathrm{in} \text { atturit }
\end{aligned}
$$

Find: (a) te bi in c) force on tech stand
Solution:
Basic equations: $\quad i=P V A, \quad P=p E T$
Assumptions: (i) steady flow
(e) vertropic flow
(3) deal gas totruior

$$
k=1, R=4.61=\mid \mathrm{lg} k
$$

ft io tm attitude $f_{6}=2 b .5 \mathrm{P} \mathrm{Pa}_{a}$ (Table 9,3$)$
Emanate design pressure at ext

$$
P_{0}=\left[1,\left(k_{-1}\right) m^{2}\right]^{1 / 6} \quad \therefore \quad P_{d}=\frac{q .10 \times 10^{6} h_{2}}{\left[1+0.15(3.5)^{2}\right] .332}=88.3 \mathrm{ePa}(a b s)
$$

Since $P_{b}<P_{d}, P_{e}=t_{t}=88.3 \mathrm{kPa}_{a}$ \qquad

$$
\begin{aligned}
& i=\rho_{e} v_{4} f_{e}=0.362 \frac{\mathrm{gg}}{\mathrm{~m}^{2}} \times 1910 \frac{\mathrm{~m}}{\mathrm{~s}} \times 100 \mathrm{~mm}^{2} \times \frac{n^{2}}{1 \mathrm{Cmm}^{2}}=0.499 \mathrm{~kg} / \mathrm{s}
\end{aligned}
$$

To determine force on tet stand apply el momentum equation to ct shown

$$
R_{x}+P_{b} A_{e}-P_{e} A_{c}=\text { in } \psi_{e}
$$

Force on tet stand is $k_{n}=-k_{k}$

$$
\begin{aligned}
& \therefore k_{t}=-R_{4}=-i n \nu_{e}-\beta_{e}\left(p_{e}-p_{b}\right)
\end{aligned}
$$

$$
\begin{aligned}
& k_{x}=-1,026 \mathrm{~N} \text { (to left) }
\end{aligned}
$$

13.48 $\mathrm{A} \mathrm{CO}_{2}$ cartridge is used to propel a small rocket cart. Compressed gas, stored at 35 MPa and $20^{\circ} \mathrm{C}$, is expanded through a smoothly contoured converging nozzle with 0.5 mm throat diameter. The back pressure is atmospheric. Calculate the pressure at the nozzle throat. Evaluate the mass flow rate of carbon dioxide through the nozzle. Determine the thrust available to propel the cart. How much would the thrust increase if a diverging section were added to the nozzle to expand the gas to atmospheric pressure? What is the exit area? Show stagnation states, static states, and the processes on a Ts diagram.

Given: Compressed CO_{2} in a cartridge expanding through a nozzle
Find: Throat pressure; Mass flow rate; Thrust; Thrust increase with diverging section; Exit area

Solution:

Basic equations: $\quad F_{x}=F_{S_{x}}+F_{B_{x}}=\frac{\partial}{\partial t} \int_{\mathrm{CV}} u \rho d \forall+\int_{\mathrm{CS}} u \rho \vec{V} \cdot d \vec{A}$

Assumptions: 1) Isentropic flow 2) Stagnation in cartridge 3) Ideal gas 4) Uniform flow

Given or available data: $\mathrm{k}=1.29 \quad \mathrm{R}=188.9 \cdot \frac{\mathrm{~J}}{\mathrm{~kg} \cdot \mathrm{~K}} \quad \mathrm{p}_{\mathrm{atm}}=101 \cdot \mathrm{kPa}$

$$
\mathrm{P}_{0}=35 \cdot \mathrm{MPa} \quad \mathrm{~T}_{0}=(20+273) \cdot \mathrm{K} \quad \mathrm{~d}_{\mathrm{t}}=0.5 \cdot \mathrm{~mm}
$$

From isentropic relations $\mathrm{p}_{\text {crit }}=\frac{\mathrm{p}_{0}}{\mathrm{k}} \quad \mathrm{p}_{\text {crit }}=19.2 \mathrm{MPa}$

$$
\left(1+\frac{\mathrm{k}-1}{2}\right)^{\frac{\mathrm{K}}{\mathrm{k}-1}}
$$

Since $\mathrm{p}_{\mathrm{b}} \ll \mathrm{p}_{\text {crit }}$, then $\quad \mathrm{p}_{\mathrm{t}}=\mathrm{p}_{\text {crit }}$

$$
\mathrm{p}_{\mathrm{t}}=19.2 \mathrm{MPa}
$$

Throat is critical so

$$
m_{\text {rate }}=\rho_{\mathrm{t}} \cdot \mathrm{~V}_{\mathrm{t}} \cdot \mathrm{~A}_{\mathrm{t}}
$$

$$
\mathrm{T}_{\mathrm{t}}=\frac{\mathrm{T}_{0}}{1+\frac{\mathrm{k}-1}{2}} \quad \mathrm{~T}_{\mathrm{t}}=256 \mathrm{~K}
$$

$$
\mathrm{V}_{\mathrm{t}}=\sqrt{\mathrm{k} \cdot \mathrm{R} \cdot \mathrm{~T}_{\mathrm{t}}}
$$

$$
\mathrm{V}_{\mathrm{t}}=250 \frac{\mathrm{~m}}{\mathrm{~s}}
$$

$$
\mathrm{A}_{\mathrm{t}}=\frac{\pi \cdot \mathrm{d}_{\mathrm{t}}^{2}}{4}
$$

$$
\mathrm{A}_{\mathrm{t}}=1.963 \times 10^{-7} \mathrm{~m}^{2}
$$

$$
\rho_{\mathrm{t}}=\frac{\mathrm{p}_{\mathrm{t}}}{\mathrm{R} \cdot \mathrm{~T}_{\mathrm{t}}}
$$

$$
\rho_{\mathrm{t}}=396 \frac{\mathrm{~kg}}{\mathrm{~m}^{3}}
$$

$$
\mathrm{m}_{\text {rate }}=\rho_{\mathrm{t}} \cdot \mathrm{~V}_{\mathrm{t}} \cdot \mathrm{~A}_{\mathrm{t}}
$$

$$
\mathrm{m}_{\text {rate }}=0.0194 \frac{\mathrm{~kg}}{\mathrm{~s}}
$$

For 1D flow with no body force the momentum equation reduces to $R_{x}-p_{\text {tgage }} \cdot A_{t}=m_{\text {rate }} \cdot V_{t} \quad p_{\text {tgage }}=p_{t}-p_{\text {atm }}$

$$
\mathrm{R}_{\mathrm{x}}=\mathrm{m}_{\text {rate }} \cdot \mathrm{V}_{\mathrm{t}}+\mathrm{p}_{\text {tgage }} \cdot \mathrm{A}_{\mathrm{t}} \quad \mathrm{R}_{\mathrm{x}}=8.60 \mathrm{~N}
$$

When a diverging section is added the nozzle can exit to atmospheric pressu $\mathrm{p}_{\mathrm{e}}=\mathrm{p}_{\text {atm }}$

Hence the Mach number at exit is

$$
\begin{array}{ll}
\mathrm{M}_{\mathrm{e}}=\left[\frac{2}{\mathrm{k}-1} \cdot\left[\left(\frac{\mathrm{p}_{0}}{\mathrm{p}_{\mathrm{e}}}\right)^{\frac{\mathrm{k}-1}{\mathrm{k}}}-1\right]^{\frac{1}{2}}\right. \\
\mathrm{T}_{\mathrm{e}}=\frac{\mathrm{T}_{0}}{1+\frac{\mathrm{k}-1}{2} \cdot \mathrm{M}_{\mathrm{e}}^{2}} & \mathrm{~T}_{\mathrm{e}}=78.7 \mathrm{~K} \\
\mathrm{c}_{\mathrm{e}}=\sqrt{\mathrm{k} \cdot \mathrm{R} \cdot \mathrm{~T}_{\mathrm{e}}} & \mathrm{c}_{\mathrm{e}}=138 \frac{\mathrm{~m}}{\mathrm{~s}} \\
\mathrm{~V}_{\mathrm{e}}=\mathrm{M}_{\mathrm{e}} \cdot \mathrm{c}_{\mathrm{e}} & \mathrm{~V}_{\mathrm{e}}=600 \frac{\mathrm{~m}}{\mathrm{~s}}
\end{array}
$$

$$
\mathrm{M}_{\mathrm{e}}=4.334
$$

The mass flow rate is unchanged (choked flow)

$$
\text { From the momentum equation } \quad \mathrm{R}_{\mathrm{x}}=\mathrm{m}_{\mathrm{rate}} \cdot \mathrm{~V}_{\mathrm{e}} \quad \mathrm{R}_{\mathrm{x}}=11.67 \mathrm{~N}
$$

The percentage increase in thrust is $\frac{11.67 \cdot \mathrm{~N}-8.60 \cdot \mathrm{~N}}{8.60 \cdot \mathrm{~N}}=35.7 \%$

The exit area is obtained from

$$
\begin{array}{lll}
\mathrm{m}_{\text {rate }}=\rho_{\mathrm{e}} \cdot \mathrm{~V}_{\mathrm{e}} \cdot \mathrm{~A}_{\mathrm{e}} \text { and } & \rho_{\mathrm{e}}=\frac{\mathrm{P}_{\mathrm{e}}}{\mathrm{R} \cdot \mathrm{~T}_{\mathrm{e}}} & \rho_{\mathrm{e}}=6.79 \frac{\mathrm{~kg}}{\mathrm{~m}^{3}} \\
\mathrm{~A}_{\mathrm{e}}=\frac{\mathrm{m}_{\mathrm{rate}}}{\rho_{\mathrm{e}} \cdot \mathrm{~V}_{\mathrm{e}}} & \mathrm{~A}_{\mathrm{e}}=4.77 \times 10^{-6} \mathrm{~m}^{2} & \mathrm{~A}_{\mathrm{e}}=4.77 \mathrm{~mm}^{2}
\end{array}
$$

13.49 Consider the converging-diverging option of Problem 13.48. To what pressure would the compressed gas need to be raised (keeping the temperature at $20^{\circ} \mathrm{C}$) to develop a thrust of 15 N ? (Assume isentropic flow.)

Given: CO_{2} cartridge and convergent nozzle

Find: Tank pressure to develop thrust of 15 N

Solution:

The given or available data is:

$$
\begin{array}{rlll}
R= & 188.9 & \mathrm{~J} / \mathrm{kg} \cdot \mathrm{~K} \\
k= & 1.29 & \\
T_{0}= & 293 & \mathrm{~K} \\
p_{\mathrm{b}}= & 101 & \mathrm{kPa} \\
D_{\mathrm{t}} & = & 0.5 & \mathrm{~mm}
\end{array}
$$

Equations and Computations:

$$
A_{\mathrm{t}}=0.196 \mathrm{~mm}^{2}
$$

The momentum equation gives

$$
R_{\mathrm{x}}=m_{\text {flow }} V_{\mathrm{e}}
$$

Hence, we need $m_{\text {flow }}$ and V_{e}

For isentropic flow $\quad p_{\mathrm{e}}=p_{\mathrm{b}}$

$$
p_{\mathrm{e}}=101 \mathrm{kPa}
$$

If we knew p_{0} we could use it and p_{e}, and Eq. 13.7 a , to find M_{e}.

Once M_{e} is known, the other exit conditions can be found.

Make a guess for \boldsymbol{p}_{0}, and eventually use Goal Seek (see below).

$$
p_{0}=44.6 \quad \mathrm{MPa}
$$

From p_{0} and $p_{\text {e }}$, and Eq. 13.7a
(using built-in function IsenMfromp (M, k)

$$
\begin{align*}
& \frac{p_{0}}{p}=\left[1+\frac{k-1}{2} M^{2}\right]^{k /(k-1)} \tag{13.7a}\\
& M_{\mathrm{e}}=4.5
\end{align*}
$$

From M_{e} and T_{0} and Eq. 13.7b
(using built-in function $\operatorname{Isen} T(M, k)$

$$
\begin{align*}
\frac{T_{0}}{T} & =1+\frac{k-1}{2} M^{2} \tag{13.7b}\\
T_{\mathrm{e}} & =74.5 \mathrm{~K}
\end{align*}
$$

From T_{e} and Eq. 12.18

$$
\begin{equation*}
c=\sqrt{k R T} \tag{12.18}
\end{equation*}
$$

$c_{\mathrm{e}}=134.8 \mathrm{~m} / \mathrm{s}$

Then $\quad V_{\mathrm{e}}=606 \mathrm{~m} / \mathrm{s}$

The mass flow rate is obtained from $p_{0}, T_{0}, A_{\mathrm{t}}$, and Eq. 13.10a

$$
\begin{align*}
\dot{m}_{\text {choked }} & =A_{t} p_{0} \sqrt{\frac{k}{R T_{0}}}\left(\frac{2}{k+1}\right)^{(k+1) / 2(k-1)} \tag{13.10a}\\
m_{\text {choked }} & =0.0248 \mathrm{~kg} / \mathrm{s}
\end{align*}
$$

Finally, the momentum equation gives

$$
\begin{array}{rlr}
R_{\mathrm{x}} & =m_{\text {flow }} V_{\mathrm{e}} \\
& =15.0 \quad \mathrm{~N}
\end{array}
$$

We need to set R_{x} to 15 N . To do this use Goal Seek to vary p_{0} to obtain the result!

Problem 13.50
13.50 Room air is drawn into an insulated duct of constant area through a smoothly contoured converging nozzle. Room conditions are $T=80^{\circ} \mathrm{F}$ and $p=14.7 \mathrm{psia}$. The duct diameter is $D=1 \mathrm{in}$. The pressure at the duct inlet (nozzle outlet) is $p_{1}=13 \mathrm{psia}$. Find (a) the mass flow rate in the duct and (b) the range of exit pressures for which the duct exit flow is choked.

Given: Air flow in an insulated duct
Find: Mass flow rate; Range of choked exit pressures

Solution:

Basic equations: $\quad \frac{\mathrm{T}_{0}}{\mathrm{~T}}=1+\frac{\mathrm{k}-1}{2} \cdot \mathrm{M}^{2} \quad \mathrm{c}=\sqrt{\mathrm{k} \cdot \mathrm{R} \cdot \mathrm{T}}$
$\frac{A}{A_{\text {crit }}}=\frac{1}{M} \cdot\left(\frac{1+\frac{\mathrm{k}-1}{2} \cdot \mathrm{M}^{2}}{\frac{\mathrm{k}+1}{2}}\right)^{\frac{\mathrm{k}+1}{2 \cdot(\mathrm{k}-1)}}$
Given or available data

$$
\begin{array}{ll}
\mathrm{T}_{0}=(80+460) \cdot \mathrm{R} & \mathrm{p}_{0}=14.7 \cdot \mathrm{psi} \\
\mathrm{k}=1.4 & \mathrm{R}_{\text {air }}=53.33 \cdot \frac{\mathrm{ft} \cdot \mathrm{lbf}}{\mathrm{lbm} \cdot \mathrm{R}}
\end{array}
$$

$\mathrm{p}_{1}=13 \cdot \mathrm{psi}$
D $=1 \cdot$ in

Assuming isentropic flow, stagnation conditions are constant. Hence

$$
M_{1}=\sqrt{\frac{2}{k-1} \cdot\left[\left(\frac{p_{0}}{p_{1}}\right)^{\frac{k-1}{k}}-1\right] \quad \mathrm{M}_{1}=0.423 \quad T_{1}=\frac{T_{0}}{1+\frac{\mathrm{k}-1}{2} \cdot M_{1}^{2}} \quad T_{1}=521 \cdot \mathrm{R} \quad T_{1}=61.7 \cdot{ }^{\circ} \mathrm{F}}
$$

$$
\begin{array}{lll}
\mathrm{c}_{1} & =\sqrt{\mathrm{k} \cdot \mathrm{R}_{\mathrm{air}} \cdot \mathrm{~T}_{1}} & \mathrm{c}_{1}=341 \frac{\mathrm{~m}}{\mathrm{~s}} \\
\text { Also } & \rho_{1}=\frac{\mathrm{p}_{1}}{\mathrm{R}_{\mathrm{air}} \cdot \mathrm{~T}_{1}} & \rho_{1}=0.0673 \cdot \frac{\mathrm{lbm}}{\mathrm{ft}^{3}}
\end{array}
$$

Hence

$$
\mathrm{m}_{\text {rate }}=\rho_{1} \cdot \mathrm{~V}_{1} \cdot \mathrm{~A} \quad \mathrm{~m}_{\text {rate }}=0.174 \cdot \frac{\mathrm{lbm}}{\mathrm{~s}}
$$

$$
\text { When flow is choked } \quad \mathrm{M}_{2}=1 \quad \mathrm{~T}_{2}=\frac{\mathrm{T}_{0}}{1+\frac{\mathrm{k}-1}{2}} \quad \mathrm{~T}_{2}=450 \cdot \mathrm{R} \quad \mathrm{~T}_{2}=-9.7 \cdot{ }^{\circ} \mathrm{F}
$$

We also have

$$
\mathrm{c}_{2}=\sqrt{\mathrm{k} \cdot \mathrm{R}_{\mathrm{air}} \cdot \mathrm{~T}_{2}} \quad \mathrm{c}_{2}=1040 \cdot \frac{\mathrm{ft}}{\mathrm{~s}}
$$

$\mathrm{V}_{2}=\mathrm{c}_{2}$
$\mathrm{V}_{2}=1040 \cdot \frac{\mathrm{ft}}{\mathrm{s}}$

From continuity

$$
\rho_{1} \cdot \mathrm{~V}_{1}=\rho_{2} \cdot \mathrm{~V}_{2} \quad \rho_{2}=\rho_{1} \cdot \frac{\mathrm{~V}_{1}}{\mathrm{~V}_{2}}
$$

$$
\rho_{2}=0.0306 \cdot \frac{\mathrm{lbm}}{\mathrm{ft}^{3}}
$$

Hence

$$
\mathrm{p}_{2}=\rho_{2} \cdot \mathrm{R}_{\mathrm{air}} \cdot \mathrm{~T}_{2} \quad \mathrm{p}_{2}=5.11 \cdot \mathrm{psi}
$$

The flow will therefore choke for any back pressure (pressure at the exit) less than or equal to this pressure
(From Fanno line function $\frac{\mathrm{P}_{1}}{\mathrm{p}_{\text {crit }}}=2.545 \quad$ at $\quad \mathrm{M}_{1}=0.423 \quad$ so $\quad \mathrm{p}_{\text {crit }}=\frac{\mathrm{P}_{1}}{2.545} \quad \quad \mathrm{p}_{\text {crit }}=5.11 \mathrm{psi} \quad$ Check!)
13.51 Air from a large reservoir at 25 psia and $250^{\circ} \mathrm{F}$ flows isentropically through a converging nozzle into an insulated pipe at 24 psia. The pipe flow experiences friction effects. Obtain a plot of the $T s$ diagram for this flow, until $M=1$. Also plot the pressure and speed distributions from the entrance to the location at which $M=1$.

Given: Air flow from converging nozzle into pipe
Find: Plot Ts diagram and pressure and speed curves

Solution:

The given or available data is:

R	$=$	53.33	$\mathrm{ft} \cdot \mathrm{lbf} / \mathrm{lbm} \cdot{ }^{\circ} \mathrm{R}$
k	$=$	1.4	
c_{p}	$=$	0.2399	$\mathrm{Btu} / \mathrm{lbm} \cdot{ }^{\circ} \mathrm{R}$
	187	$\mathrm{ft} \cdot \mathrm{lbf} / \mathrm{lbm} \cdot{ }^{\circ} \mathrm{R}$	
T_{0}	$=$	710	${ }^{\circ} \mathrm{R}$
p_{0}	$=$	25	psi
p_{e}	$=$	24	psi

Equations and Computations:

| From p_{0} and p_{e}, and Eq. 13.7a
 (using built-in function $\operatorname{IsenMfromp}(M, k))$ | $M_{\mathrm{e}}=$ | 0.242 |
| :--- | :--- | :--- | :--- |

We can now use Fanno-line relations to compute values for a range of Mach numbers:

13.52 Repeat Problem 13.51 except the nozzle is now a conver-
ging-diverging nozzle delivering the air to the pipe at 2.5 psia .

Given: Air flow from converging-diverging nozzle into pipe
Find: Plot Ts diagram and pressure and speed curves

Solution:

The given or available data is: | R | $=$ | 53.33 | $\mathrm{ft} \cdot \mathrm{lbf} / \mathrm{lbm} \cdot{ }^{\circ} \mathrm{R}$ |
| ---: | :--- | ---: | :--- |
| k | $=$ | 1.4 | |
| c_{p} | $=$ | 0.2399 | $\mathrm{Btu} / \mathrm{lbm} \cdot{ }^{\circ} \mathrm{R}$ |
| | | 187 | $\mathrm{ft} \cdot \mathrm{lbf} / \mathrm{lbm} \cdot{ }^{\circ} \mathrm{R}$ |
| T_{0} | $=$ | 710 | ${ }^{\circ} \mathrm{R}$ |
| p_{0} | $=$ | 25 | psi |
| p_{e} | $=$ | 2.5 | psi |

Equations and Computations:

From p_{0} and p_{e}, and Eq. 13.7a (using built-in function IsenMfromp $(M, k))$	$M_{\mathrm{e}}=$	2.16	
Using built-in function IsenT (M, k)	$T_{\mathrm{e}}=$	368	${ }^{\circ} \mathrm{R}$
Using $p_{\mathrm{e}}, M_{\mathrm{e}}$, and function Fannop (M, k)	$p^{*}=$	6.84	psi
Using $T_{\mathrm{e}}, M_{\mathrm{e}}$, and function FannoT (M, k)	$T^{*}=$	592	${ }^{\circ} \mathrm{R}$

We can now use Fanno-line relations to compute values for a range of Mach numbers:

M	T/T*	$T\left({ }^{\circ} \mathrm{R}\right)$	$c(\mathrm{ft} / \mathrm{s})$	V (ft/s)	p / p^{*}	p (psi)	Δs $\left(\mathrm{ft} \cdot \mathrm{lbf} / \mathrm{lbm} \cdot{ }^{\circ} \mathrm{R}\right)$ $\mathrm{Eq} .(12.11 \mathrm{~b})$
2.157	0.622	368	940	2028	0.37	2.5	0.00
2	0.667	394	974	1948	0.41	2.8	7.18
1.99	0.670						
1.98	0.673				Curve	nno)	
1.97	0.676						
1.96	0.679						
1.95	0.682						
1.94	0.685				-	-	-
1.93	0.688						
1.92	0.691						
1.91	0.694					-	-
1.9	0.697	$\boldsymbol{T}\left({ }^{\circ} \mathrm{R}\right)$					\square
1.89	0.700				,		
1.88	0.703				-		
1.87	0.706						
1.86	0.709						
1.85	0.712						
1.84	0.716						
1.83	0.719			10	15	20	2530
1.82	0.722						
1.81	0.725					f/bm ${ }^{\circ}$	
1.8	0.728						
1.79	0.731	433	1020	1826	0.48	3.3	16.08
1.78	0.735	435	1022	1819	0.48	3.3	16.48
1.77	0.738	436	1024	1813	0.49	3.3	16.88
1.76	0.741	438	1027	1807	0.49	3.3	17.27
1.75	0.744	440	1029	1801	0.49	3.4	17.66
1.74	0.747	442	1031	1794	0.50	3.4	18.05
1.73	0.751	444	1033	1788	0.50	3.4	18.44
1.72	0.754	446	1036	1781	0.50	3.5	18.82
1.71	0.757	448	1038	1775	0.51	3.5	19.20
1.7	0.760	450	1040	1768	0.51	3.5	19.58

Given: Fanm line flow apparates in laborators, smooth bnass thebe fed by converging no33le.

$$
T=23^{\circ} \mathrm{C}
$$

$$
h_{\text {barometer }}=255.1 \mathrm{mmH}
$$

Find: (a) M
(b) Mass flow rate in tube

(c) p_{2}

Solution: Apply equations for steady, to compressible flow:
Completing equations: $T_{0}=T\left(1+\frac{k-1}{2} M z\right.$) \{Entine flow adiabatic $\}$

$$
\left.P_{0}=p\left(1+\frac{k-1}{2} M^{2}\right)^{\frac{k}{k-1}} \text { \{Isentropic in nozzic }\right\}
$$

Assume: (1) Stagnation conditions in laboratorey
(2) Ideal gas

Then

$$
\begin{aligned}
& \frac{p_{0}}{p_{1}}=\left(1+\frac{k-1}{2} M_{1}^{2}\right)^{\frac{k}{k}-1}=\frac{755.1 \mathrm{~mm}+\mathrm{g}}{(255.1-20.8) \mathrm{mm}} 1 / \mathrm{g} \\
&=1.03 \\
& M_{1}=\left\{\frac { 2 } { k - 1 } \left[\left(\frac{p_{0}}{p_{1}}\right)^{\left.\left.\frac{k-1}{k}-1\right]\right\}^{1 / 2}=\left\{5\left[\left(\frac{755.1}{734.3}\right)^{0.286}-1\right]\right\}^{1 / 2}=0.200}\right.\right.
\end{aligned}
$$

From contioneity, $\dot{m}=\rho_{1} V_{1} A_{1} ; \rho_{1}=\frac{\rho_{1}}{R T}$

Since $T_{0}=$ constant, $T_{2}=T_{0} /\left(1+\frac{k-7}{2} \mu_{2}{ }^{2}\right)=287 \mathrm{~K} ; \mathrm{C}_{2}=340 \mathrm{~m} / \mathrm{s} ; \quad V_{2}=M_{2} c_{2}=1,36 \mathrm{~m} / \mathrm{s}$

$$
P_{2}=P_{1} \frac{V_{1}}{V_{2}}=1.15 \frac{\mathrm{~kg}}{m^{3}} \times \frac{68.8}{136}=0.582 \mathrm{~kg} / \mathrm{m}^{3}
$$

Then $D_{2}=\rho_{2} R T_{2}$

$$
p_{c}=0.58 \frac{\mathrm{~kg}}{\mathrm{~m}^{3}} \times 287 \frac{\mathrm{Nrom}}{\mathrm{~kg} \cdot \mathrm{k}} \times 287 \mathrm{~K}=47.9 \mathrm{kPa}(a 6 \mathrm{~s})
$$

$4 p_{2}$

$$
\begin{aligned}
& p_{1}=\left(H g g h_{1}=(13.5) 1000 \frac{\mathrm{~kg}}{\mathrm{~m}^{3}} \times 9.8 \frac{\mathrm{~m}}{\mathrm{~s}^{2}} \times 0.734 \mathrm{~m}_{\times 1 \mathrm{Ng}} \mathrm{Ng}^{2}=97.2 \mathrm{kPa}(\mathrm{abs})\right. \\
& T_{1}=\frac{T_{0}}{1+\frac{k_{2} M_{i}^{2}}{2}}=\frac{(273+23) K}{1+0.2(0.200)^{2}}=294 \mathrm{~K} ; C_{1}=\sqrt{k R T_{1}}=344 \mathrm{~m} / \mathrm{s} \\
& p_{1}=97.2 \times 10^{3} \frac{\mathrm{~N}}{\mathrm{~m}^{2}} \times \frac{\mathrm{kg} \cdot \mathrm{~K}}{287 \mathrm{Nim}} \times \frac{1}{294 \mathrm{~K}}=1.15 \mathrm{~kg} / \mathrm{m}^{3} \\
& V_{t}=M_{1} C_{1}=0.200 \times 344 \mathrm{~m} / \mathrm{s}=68.8 \mathrm{~m} / \mathrm{s} \\
& A_{1}=\frac{\pi D^{2}}{4}=\frac{\pi}{4}(0.00716)^{2} m^{2}=4.03 \times 10^{-5} \mathrm{~m}^{2} \\
& \dot{m}=1.15 \frac{\mathrm{~kg}}{\mathrm{~m}^{3}} \times 68.8 \frac{\mathrm{~m}}{\mathrm{~s}} \times 4.03 \times 10^{-5} \mathrm{~m}^{2}=3.19 \times 10^{-3} \mathrm{~kg} / \mathrm{s}
\end{aligned}
$$

13.54 Air flows steadily and adiabatically from a large tank through a converging nozzle connected to an insulated constantarea duct. The nozzle may be considered frictionless. Air in the tank is at $p=145 \mathrm{psia}$ and $T=250^{\circ} \mathrm{F}$. The absolute pressure at the nozzle exit (duct inlet) is 125 psia. Determine the pressure at the end of the duct, if the temperature there is $150^{\circ} \mathrm{F}$. Find the entropy increase.

Given: Air flow in a converging nozzle and insulated duct
Find: Pressure at end of duct; Entropy increase

Solution:

Basic equations:

$$
\begin{aligned}
& \text { Solution: } \\
& \begin{array}{lll}
\text { Basic equations: } & \frac{T_{0}}{T}=1+\frac{\mathrm{k}-1}{2} \cdot \mathrm{M}^{2} & \frac{\mathrm{p}_{0}}{\mathrm{p}}=\left(1+\frac{\mathrm{k}-1}{2} \cdot \mathrm{M}^{2}\right)^{\frac{\mathrm{k}}{\mathrm{k}-1}}
\end{array} \\
& \text { Given or available data } \\
& \mathrm{T}_{0}=(250+460) \cdot \mathrm{R}
\end{aligned} \quad \mathrm{P}_{0}=145 \cdot \mathrm{psi} \quad \mathrm{c}_{\mathrm{p}} \cdot \ln \left(\frac{\mathrm{~T}_{2}}{\mathrm{~T}_{1}}\right)-\mathrm{R}_{\mathrm{air}} \cdot \ln \left(\frac{\mathrm{p}_{2}}{\mathrm{p}_{1}}\right) \quad \mathrm{c}=\sqrt{\mathrm{k} \cdot \mathrm{R} \cdot \mathrm{~T}} .
$$

Assuming isentropic flow in the nozzle

$$
M_{1}=\sqrt{\frac{2}{k-1}} \cdot\left[\left(\frac{\mathrm{p}_{0}}{\mathrm{p}_{1}}\right)^{\frac{\mathrm{k}-1}{\mathrm{k}}}-1\right] \quad \mathrm{M}_{1}=0.465 \quad \mathrm{~T}_{1}=\frac{\mathrm{T}_{0}}{1+\frac{\mathrm{k}-1}{2} \cdot \mathrm{M}_{1}^{2}} \quad \mathrm{~T}_{1}=681 \cdot \mathrm{R} \quad \mathrm{~T}_{1}=221 \cdot{ }^{\circ} \mathrm{F}
$$

In the duct T_{0} (a measure of total energy) is constant, so $M_{2}=\sqrt{\frac{2}{k-1}} \cdot\left[\left(\frac{T_{0}}{T_{2}}\right)-1\right] \quad M_{2}=0.905$
At each location

$$
\begin{array}{llll}
\mathrm{c}_{1}=\sqrt{\mathrm{k} \cdot \mathrm{R}_{\mathrm{air}} \cdot \mathrm{~T}_{1}} & \mathrm{c}_{1}=1279 \cdot \frac{\mathrm{ft}}{\mathrm{~s}} & \mathrm{~V}_{1}=\mathrm{M}_{1} \cdot \mathrm{c}_{1} & \mathrm{~V}_{1}=595 \cdot \frac{\mathrm{ft}}{\mathrm{~s}} \\
\mathrm{c}_{2}=\sqrt{\mathrm{k} \cdot \mathrm{R}_{\mathrm{air}} \cdot \mathrm{~T}_{2}} & \mathrm{c}_{2}=1211 \cdot \frac{\mathrm{ft}}{\mathrm{~s}} & \mathrm{~V}_{2}=\mathrm{M}_{2} \cdot \mathrm{c}_{2} & \mathrm{~V}_{2}=1096 \cdot \frac{\mathrm{ft}}{\mathrm{~s}}
\end{array}
$$

Also

$$
\rho_{1}=\frac{\mathrm{p}_{1}}{\mathrm{R}_{\mathrm{air}} \cdot \mathrm{~T}_{1}} \quad \rho_{1}=0.4960 \cdot \frac{\mathrm{lbm}}{\mathrm{ft}^{3}}
$$

Hence

$$
\mathrm{m}_{\text {rate }}=\rho_{1} \cdot \mathrm{~V}_{1} \cdot \mathrm{~A}=\rho_{2} \cdot \mathrm{~V}_{2} \cdot \mathrm{~A}
$$

$$
\rho_{2}=\rho_{1} \cdot \frac{\mathrm{~V}_{1}}{\mathrm{~V}_{2}}
$$

$$
\rho_{2}=0.269 \cdot \frac{\mathrm{lbm}}{\mathrm{ft}^{3}}
$$

Then

$$
\mathrm{p}_{2}=\rho_{2} \cdot \mathrm{R}_{\mathrm{air}} \cdot \mathrm{~T}_{2}
$$

$$
\mathrm{p}_{2}=60.8 \cdot \mathrm{psi} \quad \text { Finally }
$$

$$
\Delta \mathrm{s}=\mathrm{c}_{\mathrm{p}} \cdot \ln \left(\frac{\mathrm{~T}_{2}}{\mathrm{~T}_{1}}\right)-\mathrm{R}_{\mathrm{air}} \cdot \ln \left(\frac{\mathrm{P}_{2}}{\mathrm{P}_{1}}\right) \quad \Delta \mathrm{s}=0.0231 \cdot \frac{\mathrm{Btu}}{\mathrm{lbm} \cdot \mathrm{R}}
$$

(Note: Using Fanno line relations, at $\quad \mathrm{M}_{1}=0.465 \quad \frac{\mathrm{~T}_{1}}{\mathrm{~T}_{\text {crit }}}=1.150 \quad \mathrm{~T}_{\text {crit }}=\frac{\mathrm{T}_{1}}{1.150} \quad \mathrm{~T}_{\text {crit }}=329 \mathrm{~K}$

$$
\frac{\mathrm{p}_{1}}{\mathrm{p}_{\text {crit }}}=2.306 \quad \mathrm{p}_{\text {crit }}=\frac{\mathrm{p}_{1}}{2.3060} \quad \mathrm{p}_{\text {crit }}=54.2 \cdot \mathrm{psi}
$$

$$
\text { Then } \quad \frac{\mathrm{T}_{2}}{\mathrm{~T}_{\text {crit }}}=1.031 \quad \text { so } \quad \mathrm{M}_{2}=0.907 \quad \frac{\mathrm{p}_{2}}{\mathrm{p}_{\text {crit }}}=1.119 \quad \mathrm{p}_{2}=1.119 \cdot \mathrm{p}_{\text {crit }} \quad \mathrm{p}_{2}=60.7 \cdot \mathrm{psi} \quad \text { Check!) }
$$

Problem 13.55
Given: Steady flow of air through an msulated pipe

Find: (a) $P_{\text {min }}$ (b) $V_{\text {max }}$, in pipe
Solution:
Basic equations: \quad in $=P V F \quad P=P R T$
Computing equations: $T_{0} K=1+k_{\frac{k}{2}} M^{2}, T_{0}=$ constant
Assumptions: in steady flow
(3) uniform flow at a section
(2) adiabatic flow (4) ideal gas

$$
\begin{aligned}
& \dot{m}=P_{1, ~} ; \quad ; A=\pi r^{2} l_{4} \\
& V_{1}=\frac{4 \mathrm{~m}}{\pi)^{2} p_{1}}=\frac{4}{\pi} \times 600 \frac{\mathrm{~mm}}{\mathrm{~min}} \times\left(\frac{12}{4}\right)^{2} \frac{1}{f t^{2}} \times \frac{f^{3}}{0.500 \mathrm{~lm}} \times \frac{\mathrm{nin}}{608}=229 \mathrm{ft} / \mathrm{s}
\end{aligned}
$$

$$
\begin{aligned}
& M_{1}=\frac{229}{1140}=0.201
\end{aligned}
$$

Since M, M.O, The minimum pressure and max velocity occur for $M_{2}=1.0$

$$
\begin{aligned}
& T_{0} \left\lvert\, T=1+\frac{k-1}{2} M^{2}\right. ; \quad T_{2}=\frac{1+k \frac{1}{2} M_{1}^{2}}{1+\frac{T_{1}}{2} M_{2}^{2}}=\frac{1+0.2(0.201)^{2}}{1+0.2(1.0)^{2}}=0.840 \\
& T_{2}=0.840\left(T_{1}\right)=0.840(540 \mathrm{R})=454 \mathrm{R}
\end{aligned}
$$

$$
\begin{aligned}
& m=p_{1} V_{1} A=p_{2} V_{2} A \quad \therefore p_{2}=\frac{V_{1}}{V_{2}} p_{1}=\frac{229}{1040} \times 0.500 \frac{\lim }{f_{3}^{3}}=0.110 \mathrm{lbm} / \mathrm{fl}^{3}
\end{aligned}
$$

*Fann-hine Flow Functions
From Appendix E with $M_{1}=0.20$,

$$
\begin{array}{ll}
T_{1} T^{*}=1.191(12.18 a) & \therefore T_{2}=T^{*}=453^{\circ} \mathrm{R} \\
P_{1} I_{P}^{*}=5.456(12.188) & \therefore P_{2}=P^{*}=18.3 \text {-psia } \\
V_{1} V_{V^{*}}=0.2182(12.18 \mathrm{c}) & \therefore V_{2}=V^{*}=1050 \mathrm{ftl}
\end{array}
$$

Problem 13.56
Given: Compressible flow through long tube (7.ibmmind). Fir from atmosphere drown throng h by vacumen pung downstream. As back pressure is towered, pressure distribution along tube ganges until $P_{b}=6 a b$ mint g (vacurri)
Find: (a) in max (b) be (c) $s_{e}-s_{i}$
Solution:
Basic equations: $i=p / A \quad p=p R T \quad T d s=d h-v d p$ Computing equation: $\quad \frac{T_{0}}{T}=1+\frac{b_{-1}}{2} M^{2} \quad \frac{p_{0}}{p}=\left(\frac{T_{0}}{T}\right)^{b_{e-1}}$
Assumptions: (1) steady flow
(a) ideal gas
(3) adiabatic flow through tube
(4) uniform flow at a section

Since pressure distribution does not charge when po reaches $62 b \mathrm{mill} g$ (vacuum). How is choked, $M_{e}=1.0$ and $p_{e}=p_{b}$

$$
\begin{aligned}
& \begin{array}{l}
P_{c}=P_{\text {aam }}-2 g \Delta h=101 \times 10^{3} \frac{N}{N^{2}}-13.55 \times 999 \frac{\mathrm{lg}}{\mathrm{n}^{3}} \times 9.81 \frac{1}{\mathrm{~N}^{2}} \times 0.626 m \times \frac{1.5}{8 g}=17.87 \times 0^{3} \frac{\mathrm{~N}}{\mathrm{~m}^{2}}
\end{array} \\
& T_{e}=\frac{T_{0}}{\left(1+t_{2}^{1} M_{e}^{2}\right.}=\frac{(273+20) \mathrm{K}}{1+0.2}=244 \mathrm{~K} \\
& \rho_{e}=\frac{\rho_{e}^{2}}{k T_{e}}=12.87 \times 10^{3} \frac{\mathrm{~N}}{\mathrm{~m}^{2}} \times \frac{\mathrm{fg} \cdot \mathrm{~K}}{287 \mathrm{~N}} \times \frac{1}{244 \mathrm{~K}}=0.255 \mathrm{~kg} \mathrm{~m}^{3}
\end{aligned}
$$

$$
\begin{aligned}
& \dot{M}=P_{e} \psi_{e} A=0.255 \frac{\mathrm{lg}}{n^{3}} \times 313 \frac{\mathrm{M}}{\mathrm{~s}} \times \frac{\pi}{4}(0.00716 \mathrm{n})^{2}=\left.0.00321 \mathrm{~kg}\right|_{\mathrm{s}} \\
& P_{0 e}=P_{e}\left(1+\frac{k_{\frac{1}{2}}^{2}}{M_{e}^{2}}\right)^{H k-1}=17.87 \mathrm{kPa}(1+0.2)^{3.5}=33.8 \mathrm{kPa}(\text { abs }) \longrightarrow P_{\text {oe }}
\end{aligned}
$$

For an ideal gas, the Tads equation can be written as

$$
T d s=d h-v d p=C_{p} d T-R T \frac{d p}{p} \quad \therefore d s=C_{p} \frac{d T}{T}-R \frac{d p}{p}
$$

Then, $s_{e}-s_{1}=s_{0_{e}}-s_{o_{1}}=c+\ln \frac{T_{2}}{T_{0}}-R \ln \frac{P_{02}}{P_{0}}$

$$
\begin{equation*}
s_{e}-s_{1}=-2.87 \frac{\mathrm{~J}}{\lg \cdot k} \ln \left(\frac{33.8}{101}\right)=314 \mathrm{~J} / \lg \cdot k \tag{e}
\end{equation*}
$$

13.57 A converging-diverging nozzle discharges air into an insulated pipe with area $A=1 \mathrm{in}^{2}$. At the pipe inlet, $p=18.5 \mathrm{psia}, T=100^{\circ} \mathrm{F}$, and $M=2.0$. For shockless flow to a Mach number of unity at the pipe exit, calculate the exit temperature, the net force of the fluid on the pipe, and the entropy change.

Given: Air flow in a CD nozzle and insulated duct
Find: Temperature at end of duct; Force on duct; Entropy increase

Solution:

Basic equations:

$$
\begin{aligned}
& \mathrm{F}_{\mathrm{S}}=\mathrm{p}_{1} \cdot \mathrm{~A}-\mathrm{p}_{2} \cdot \mathrm{~A}+\mathrm{R}_{\mathrm{x}}=\mathrm{m}_{\text {rate }} \cdot\left(\mathrm{V}_{2}-\mathrm{V}_{1}\right) \quad \frac{\mathrm{T}_{0}}{\mathrm{~T}}=1+\frac{\mathrm{k}-1}{2} \cdot \mathrm{M}^{2} \quad \Delta \mathrm{~s}=\mathrm{c}_{\mathrm{p}} \cdot \ln \left(\frac{\mathrm{~T}_{2}}{\mathrm{~T}_{1}}\right)-\mathrm{R}_{\text {air }} \cdot \ln \left(\frac{\mathrm{p}_{2}}{\mathrm{P}_{1}}\right) \\
& \mathrm{p}_{1}=18.5 \cdot \mathrm{psi} \\
& M_{1}=2 \\
& M_{2}=1 \\
& \mathrm{~A}=1 \cdot \mathrm{in}^{2} \\
& \mathrm{k}=1.4 \\
& c_{p}=0.2399 \cdot \frac{\mathrm{Btu}}{\mathrm{lbm} \cdot \mathrm{R}} \\
& \mathrm{R}_{\mathrm{air}}=53.33 \cdot \frac{\mathrm{ft} \cdot \mathrm{lbf}}{\mathrm{lbm} \cdot \mathrm{R}}
\end{aligned}
$$

Given or available data $\quad T_{1}=(100+460) \cdot \mathrm{R}$

Assuming isentropic flow in the nozzle

$$
\frac{\mathrm{T}_{0}}{\mathrm{~T}_{1}} \cdot \frac{\mathrm{~T}_{2}}{\mathrm{~T}_{0}}=\frac{1+\frac{\mathrm{k}-1}{2} \cdot \mathrm{M}_{1}^{2}}{1+\frac{\mathrm{k}-1}{2} \cdot \mathrm{M}_{2}^{2}} \text { so } \quad \mathrm{T}_{2}=\mathrm{T}_{1} \cdot \frac{1+\frac{\mathrm{k}-1}{2} \cdot \mathrm{M}_{1}^{2}}{1+\frac{\mathrm{k}-1}{2} \cdot \mathrm{M}_{2}^{2}} \quad \mathrm{~T}_{2}=840 \cdot \mathrm{R} \quad \mathrm{~T}_{2}=380 \cdot{ }^{\circ} \mathrm{F}
$$

Also $\quad \mathrm{c}_{1}=\sqrt{\mathrm{k} \cdot \mathrm{R}_{\mathrm{air}} \cdot \mathrm{T}_{1}} \quad \mathrm{~V}_{1}=\mathrm{M}_{1} \cdot \mathrm{c}_{1}$
$\mathrm{V}_{1}=2320 \cdot \frac{\mathrm{ft}}{\mathrm{s}}$
$\mathrm{c}_{2}=\sqrt{\mathrm{k} \cdot \mathrm{R}_{\mathrm{air}} \mathrm{T}_{2}} \quad \mathrm{~V}_{2}=\mathrm{M}_{2} \cdot \mathrm{c}_{2}$
$\mathrm{V}_{2}=1421 \cdot \frac{\mathrm{ft}}{\mathrm{s}}$
$\rho_{1}=\frac{\mathrm{p}_{1}}{\mathrm{R}_{\mathrm{air}} \cdot \mathrm{T}_{1}} \quad \rho_{1}=0.0892 \cdot \frac{\mathrm{lbm}}{\mathrm{ft}^{3}} \quad \quad \mathrm{~m}_{\text {rate }}=\rho_{1} \cdot \mathrm{~V}_{1} \cdot \mathrm{~A}=\rho_{2} \cdot \mathrm{~V}_{2} \cdot \mathrm{~A}_{2} \quad$ so $\quad \rho_{2}=\rho_{1} \cdot \frac{\mathrm{~V}_{1}}{\mathrm{~V}_{2}} \quad \rho_{2}=0.146 \cdot \frac{\mathrm{lbm}}{\mathrm{ft}^{3}}$
$\mathrm{m}_{\text {rate }}=\rho_{1} \cdot \mathrm{~V}_{1} \cdot \mathrm{~A} \quad \mathrm{~m}_{\text {rate }}=1.44 \cdot \frac{\mathrm{lbm}}{\mathrm{s}}$
$\mathrm{P}_{2}=\rho_{2} \cdot \mathrm{R}_{\mathrm{air}} \cdot \mathrm{T}_{2}$
$\mathrm{p}_{2}=45.3 \cdot \mathrm{psi}$

Hence

$$
\mathrm{R}_{\mathrm{x}}=\left(\mathrm{p}_{2}-\mathrm{p}_{1}\right) \cdot \mathrm{A}+\mathrm{m}_{\text {rate }} \cdot\left(\mathrm{V}_{2}-\mathrm{V}_{1}\right)
$$

$R_{X}=-13.3 \cdot \mathrm{lbf}$
(Force is to the right)

Finally

$$
\Delta \mathrm{s}=\mathrm{c}_{\mathrm{p}} \cdot \ln \left(\frac{\mathrm{~T}_{2}}{\mathrm{~T}_{1}}\right)-\mathrm{R}_{\mathrm{air}} \cdot \ln \left(\frac{\mathrm{p}_{2}}{\mathrm{p}_{1}}\right) \quad \Delta \mathrm{s}=0.0359 \cdot \frac{\mathrm{Btu}}{\mathrm{lbm} \cdot \mathrm{R}}
$$

(Note: Using Fanno line relations, at $\quad \mathrm{M}_{1}=2 \quad \frac{\mathrm{~T}_{1}}{\mathrm{~T}_{\mathrm{crit}}}=\frac{\mathrm{T}_{1}}{\mathrm{~T}_{2}}=0.6667$
$\mathrm{T}_{2}=\frac{\mathrm{T}_{1}}{0.667} \quad \mathrm{~T}_{2}=840 \cdot \mathrm{R}$

$$
\frac{\mathrm{P}_{1}}{\mathrm{p}_{\text {crit }}}=\frac{\mathrm{P}_{1}}{\mathrm{P}_{2}}=0.4083 \quad \mathrm{p}_{2}=\frac{\mathrm{p}_{1}}{0.4083} \quad \mathrm{p}_{2}=45.3 \cdot \mathrm{psi}
$$

Check!)

Problem 13.58
Given: Air, at $2 \hat{\circ}$ and 101 kpa , is drawn through a converging nozzle into a long, 20 mm diameter, insulated tube. Ht the nozzle outlet (tube inlet) $T_{1}=99$, is kea

$$
\begin{aligned}
& T_{0}=200 \\
& P_{0}=1 a b+a
\end{aligned}
$$

Find: (a) in (b) T^{+}and p^{*} for nozzle (isentropic flow)
(c) T^{*} and p^{*} for adiabatic tube flow

Solution:
Basic equations: $\quad-P=p R T \quad M=p H A$
computing equations: $\frac{T_{0}^{0}}{T}=1+\frac{l_{1}}{2} M^{2} \quad P^{4 /}-P_{-\frac{0}{P}}=\left(\frac{T_{0}}{T}\right)^{k / t_{-1}}$
Assumptions: (i) steady flow (2) ideal gas
(3) uniform flow at a section
(H) isentropic flow in nozzle, adiabatic flow in tube.

Since flow in nozzle is isentropic, $T_{0}=T_{0}$ and $P_{0}=p_{0}$
(b) For isentropic flow, $T_{0}=1+\frac{k-1}{\frac{1}{2}}=1.20 \quad \therefore T^{*}=\frac{T_{0}}{1.20}=\frac{293 \mathrm{~K}}{1.20}=244 \mathrm{~K}, \quad T_{5=0}^{*}$
(c) For Faro lune flow $T_{0}^{\imath}=T_{0}$,

$$
\therefore T^{*}=T_{\text {cen }}^{+}=244 \mathrm{~K}
$$

\qquad

\qquad

* Famo-Line Flow Functions (Appendix E.2)

$$
\text { For } \left.A_{1}=0.151, E_{q_{0}} 12.18 d g \text { gee, } P_{1}\right)_{p}=7.238
$$

$$
\therefore e^{*}=13.12+a, r
$$

$$
\begin{align*}
& p_{1}=\frac{p_{1}}{R_{1}}=99.4 \times 10^{3} \frac{\mathrm{H}}{\mathrm{~N}^{2}}+\frac{\mathrm{bg} . \mathrm{K}}{287 \mathrm{M}^{2}} \times \frac{1}{291.7 \mathrm{k}}=1.187 \mathrm{~kg} / \mathrm{m}^{3} \\
& i=p . N_{1} H_{1}=1.187 \frac{\mathrm{~kg}}{\mathrm{~m}^{3}}+517 \frac{n}{5}+\frac{\pi}{4}(0.020 n)^{2}=0.0193 \mathrm{gg}_{6} \tag{tabular}
\end{align*}
$$

Given: Air flow through nozzle then duet, from tank at $15^{\circ} \mathrm{C}$ with variable pressure. The duct exnacests to atmosphere. When $M_{2}=1: \quad T_{0}=15^{\circ} \mathrm{C}$

$$
0=0.249 \mathrm{in}
$$

Find: (a) Tank presscere, pot

$$
p_{1}=53.2 p \operatorname{sia}
$$

(b) $T_{2}, p_{o z}$, and $r n$.
(c) Show on a ts diagram the effect of raising to $p_{0}=100$ psia
(d) Plot pressure distribution vs. distance

Solution: Assume conditions in tank are stagnation properties; flow is isentropic in nozzle, reno flow in duct.
Basic equations: $T_{0}=T\left(1+\frac{k-1}{2} M^{2}\right)=$ cons (energy $)$

$$
p_{0}=p\left(1+\frac{k+1}{2} M^{2}\right)^{\frac{k}{k}} \text { (isentropic) }
$$

Assume steady, iD compressible frow, with constant stagnation temperature, $T_{0}=15^{\circ} \mathrm{C}\left(59^{\circ} \mathrm{F}\right)$

$$
\begin{aligned}
& T_{0}=(460+59)^{0} R=519^{\circ} R \\
& p_{0_{t}}=p_{1}\left(1+\frac{k-1, h_{1}^{2}}{2}\right)^{\frac{k}{k-1}}=53.2 \rho \operatorname{sia}\left(1+0.2(0,3)^{2}\right)^{3.5}=56.4 \mathrm{psio}
\end{aligned}
$$

$p_{1}=14.7$ psia
$M_{1}=0.30$
$\left.M_{2}=1.\right)$ At exit plane, $M_{2}=1$
$T_{2}=\frac{T_{0}}{\left(1+\frac{k-1}{2} M_{2}{ }^{2}\right)}=\frac{59^{\circ} R}{1+0.2(1)^{2}}=433^{\circ} R$
$p_{02}=p_{2}\left(1+\frac{k-1}{2} M_{2}^{2}\right)^{\frac{k}{k-1}}=14.7$ psia $\left(1+0.2(1)^{2}\right)^{35}=27.8$ psia
At exit plane, $V=V^{*}=C^{*}=\sqrt{k R T^{*}}=1020 \mathrm{f} / \mathrm{l}$

When f_{4} is increased, density and mass flow rate increase. Flow will shift to a new Fanno line as shown dashed in the is diagram above.
T_{0} is fixed, so T^{*} remains fixed. $\left\{\begin{array}{l}\text { Since } p \text { and } m \text { increase, } \\ p_{2}>p_{2}-p_{a t m} \text {. The plot of } \\ p \text { us. } x \text { is as shown. }\end{array}\right\}$

$$
\begin{aligned}
& \dot{m}=\rho_{2} V_{2} A=0.0917 \frac{4 \mathrm{~m}}{f+3} \times 1020 \frac{4}{s} \times \frac{\pi}{4}\left(\frac{0.244}{12}\right)^{2} \mathrm{ft}^{4}=0.0316 \mathrm{lbm} / \mathrm{s}
\end{aligned}
$$

Problem 13.60

Given: Adiabatic flow of air in a constant-area duct with friction

$A=1.0 \mathrm{~F}^{2}$

Find: Friction force exerted on the find by the pipe
Solution:
Basic equations: $F_{S_{2}}=P, A-P_{2} R-F_{f}=$ in $\left(V_{2}-V_{1}\right)$
Computing equations: $T_{0} / T=1+k_{-1}^{-1} M^{2} \quad P_{0}\left|p=\left[1+\frac{b_{-1}^{-1} M^{2}}{}\right]^{7}\right| l_{-1}^{m}=p / A$
Assumptions: (1) steady flow
(a) adiabatic flow, $T_{0}=\cos t$
(3) uniform flow at a section
(4) $F_{B_{x}}=0$
(5) ideal gas

$$
\begin{aligned}
& P_{0} / p=\left[1 a^{k-1} m^{2}\right]^{k / 2-1}
\end{aligned}
$$

$$
\begin{aligned}
& T_{0} T_{T}=1^{k-1} \mu^{2} \quad T_{1}=\frac{T_{0}}{1+\frac{k}{2} n!}=\frac{500^{\circ} \mathrm{R}}{1+0.2(0.20)^{2}}=455^{\circ} \mathrm{Q}
\end{aligned}
$$

$$
\begin{aligned}
& \dot{m}=P . V, A=0.428 \frac{1 \mathrm{bm}}{f t^{3}} \times 732 \frac{\mathrm{t}}{6} \times 1.0 \mathrm{ft}^{2}=313 \mathrm{lbn} / \mathrm{s} \\
& T_{0} 1 T=W^{k}-\frac{1}{2} M^{2}, T_{O_{2}}=T_{0}, \quad T_{2}=\frac{T_{0}}{1+k_{-1}^{2} M_{2}^{2}}=\frac{500^{\circ} R}{1 \cdot 0.2(1.0)^{2}}=417^{\circ} \mathrm{R}
\end{aligned}
$$

$$
\begin{aligned}
& \dot{m}=p_{1}, V_{1} A=p_{2} V_{2} A \quad p_{2}=\frac{V_{1}}{V_{2} p_{1}}=\frac{732}{1000} \times 0.4281 \mathrm{~lm} /_{\mathrm{ft}^{3}}=0.313 \mathrm{~lm} / \mathrm{ft}^{3}
\end{aligned}
$$

Solving the momentum equation for F_{f}

$$
\begin{aligned}
& F_{4}=\left(P_{1}-P_{2}\right) A-\dot{M}\left(\psi_{2}-v_{1}\right)
\end{aligned}
$$

F_{f} is the force on the control volume from the surroundings. Consequently, F_{f} is the force on the fluid from the pipe: Fo opposes the Srotion

*Fanno-hine Flow Functions
From Appendix E. 2 with $M_{1}=0,10$,

$$
\begin{aligned}
& -P_{1} l_{-P^{+}}=1.493 \text { (12.18d) } \quad \therefore-P^{*}=P_{2}=48.3 \text { psia } \\
& V_{1} V_{v}=0.332(12.180) \quad \therefore V^{*}=V_{2}=1000 \mathrm{At}
\end{aligned}
$$

Given: Supersonic wisd thermel with colidithons shown, no shocks.
system is insulated.
Find: (a) $T_{2},(b) /_{2},(d) a_{2}-\Delta_{1}$
(d) Ts diagram

$$
T_{0}=295 K
$$

Flow

$$
p_{0}=101 \mathrm{kPa}
$$

Solution: Consider steady, T-D, comp. Flow, dear gas.
Computing equations: $T_{0}=T\left(1+\frac{k^{-1}}{2} M^{2}\right): p_{0}=p\left(1+\frac{k-1}{z} M^{2}\right)^{k / k-1}$ ($\Delta=$ constr)

$$
T d \omega=d h-v d p \quad \rho V A=\text { constant }
$$

Assumptions: (1) Isentropic flow in nozzle
(2) Insulated, so $T_{0}=$ constant

Then $T_{2}=\frac{T}{1+\frac{k-1}{2} M_{2}^{2}}=\frac{295 \mathrm{~K}}{1+0.2(1.1)^{2}}=238 \mathrm{~K}$
From continuity, $\rho_{1} V_{1}=R_{2} V_{2}$, since $A_{1}=A_{2}$. $B u+V=M C=M \sqrt{k R T}$ and $\hat{p}=p l k r$, so

$$
\frac{p_{1}}{R r_{1}} M_{1} \sqrt{K R T_{1}}=\frac{p_{2}}{R T_{2}} M_{2} \sqrt{k R r_{2}} ; \frac{p_{1}}{\sqrt{T_{1}}} M_{1}=\frac{p_{2}}{\sqrt{T_{2}}} M_{2} ; p_{2}=p_{1} \frac{M_{1}}{M_{2} \sqrt{\frac{T_{2}}{T_{1}}}}
$$

From isentropic relatoris,

$$
T_{i}=\frac{T_{0}}{1+\frac{k-1}{2} M_{1}^{2}}=\frac{295 k}{1+0.2(2 \cdot 1)^{2}}=157 k ; p_{1}=\frac{F_{0}}{\left(1+\frac{k_{1}-1}{2} m_{1}^{2}\right)^{k / k-1}}=\frac{101 \mathrm{kPa}}{(1.88)^{3.5}}=11.1 \mathrm{kpa}
$$

Thus $p_{2}=\frac{2.1}{1.1} \sqrt{\frac{238 K}{157 k}} 11.1 \mathrm{kPa}=26.1 \mathrm{kPa}(\mathrm{abs})$

$$
d v=\frac{d h}{T}-v \frac{d p}{T}=C_{p} \frac{d T}{T}-\frac{R T}{P} \frac{d p}{T}=C_{p} \frac{d T}{T}-R \frac{d p}{P}
$$

The To diagram is

* Fanno-Line Flow Functions (Appendix E. L):

For.

$$
\begin{aligned}
& M_{1}=z_{1}, E_{4}, 12.180 \text { gives } p_{1} / p^{*}=0.380, \text { so } p_{2}-26.1 \mathrm{kFe}(a .6 s) \\
& M_{2}=1.1
\end{aligned}
$$

Problem 13.62
Given: Fanmo line flow apparatus in laboratory, smooth bracstube fed by converanig nozelis.

$h_{1}=-1.1 .8 \mathrm{mmHg}$

$$
m_{2}=1.0
$$

Find: a) M, (b) i_{2}
(c) $T_{2}, P_{O_{2}}$

Solution: "Compressible flow functions to be used

Hssumptuons: (i) Sleady Flow
(2) isentrexic flow in noeste
(3) adiabalc "in ducter
4) $i_{H_{s}}=w_{G_{\text {ras }}}=0$
(5) $\quad \mathrm{C}=0$
(b) Wealigac our (i) urifore (bow at a scction

$$
\frac{f_{1}}{f_{0}}=\frac{f_{1}}{p_{\text {an }}}=\frac{\rho g \Delta h_{1}}{\rho g \Delta h_{\text {an }}}=\frac{(760-1.8) m m}{760 \mathrm{~mm}}=0.9845
$$

From Ape Enl (Eq.N.MD) $M_{1}=0.150$

From Apepen (Ef.MMB), $T_{1} T_{0}=0.7555 \quad \therefore T_{1}=294 K$
From Ape.E.z, with $n_{1}=0.150$

$$
\begin{aligned}
& -P_{P_{P}^{*}}=7.287, \quad T_{1} T^{*}=1.195, \quad \frac{F \ln A}{D}=27.93 \\
& P_{2}=-P^{*}=13.60 \text { and } P_{D_{2}}=\frac{P_{2}}{0.5283}=2.57 \mathrm{kPa}, T_{2}^{*}=T_{2}=247 \mathrm{~K}
\end{aligned}
$$

$$
f=f\left(R_{s}\right) \quad R_{e}=\frac{e \cdot t i>}{\mu}
$$

$$
p_{1}=\frac{p_{1}}{R_{1}}=99.1+10 \frac{3}{n^{2}} \times \frac{50}{287} n^{2} \times \frac{1}{294 k}=1.7 \mathrm{kgh}^{3}
$$

$$
R_{e_{1}}=2.2 b \times 10^{4}
$$

Fron Fig. 8.13, Friction factar $f=0.0245$

$$
\therefore G_{12}=27.9 \frac{y}{y}=27.9 \times 7.4 .10^{3} n \cdot \frac{1}{0.6245}
$$

$$
h_{12}=8.2 m
$$

13.63 For the conditions of Problem 13.54, find the length, L, of commercial steel pipe of 2 in . diameter between sections (1) and (2).

(1)

Given: Air flow in a converging nozzle and insulated duct
Find: Length of pipe

Solution:

Basic equations: Fanno-line flow equations, and friction factor

Given or available data $\quad \mathrm{T}_{0}=(250+460) \cdot \mathrm{R} \quad \mathrm{P}_{0}=145 \cdot \mathrm{psi} \quad \mathrm{p}_{1}=125 \cdot \mathrm{psi} \quad \mathrm{T}_{2}=(150+460) \cdot \mathrm{R}$
$\mathrm{D}=2 \cdot \mathrm{in} \quad \mathrm{k}=1.4 \quad \mathrm{c}_{\mathrm{p}}=0.2399 \cdot \frac{\mathrm{Btu}}{\mathrm{lbm} \cdot \mathrm{R}} \quad \mathrm{R}_{\mathrm{air}}=53.33 \cdot \frac{\mathrm{ft} \cdot \mathrm{lbf}}{\mathrm{lbm} \cdot \mathrm{R}}$

From isentropic relations

$$
\mathrm{M}_{1}=\left[\frac{2}{\mathrm{k}-1} \cdot\left[\left(\frac{\mathrm{p}_{0}}{\mathrm{p}_{1}}\right)^{\frac{\mathrm{k}-1}{\mathrm{k}}}-1\right]^{\frac{1}{2}} \quad \mathrm{M}_{1}=0.465\right.
$$

$$
\frac{\mathrm{T}_{0}}{\mathrm{~T}_{1}}=1+\frac{\mathrm{k}-1}{2} \cdot \mathrm{M}_{1}^{2} \quad \text { so } \quad \mathrm{T}_{1}=\frac{\mathrm{T}_{0}}{\left(1+\frac{\mathrm{k}-1}{2} \cdot \mathrm{M}_{1}^{2}\right)} \quad \mathrm{T}_{1}=681 \cdot \mathrm{R} \quad \mathrm{~T}_{1}=221 \cdot{ }^{\circ} \mathrm{F}
$$

Then for Fanno-line flow

$$
\frac{\mathrm{f}_{\text {ave }} \cdot \mathrm{L}_{\max 1}}{\mathrm{D}_{\mathrm{h}}}=\frac{1-\mathrm{M}_{1}^{2}}{\mathrm{k} \cdot \mathrm{M}_{1}^{2}}+\frac{\mathrm{k}+1}{2 \cdot \mathrm{k}} \cdot \ln \left[\frac{(\mathrm{k}+1) \cdot \mathrm{M}_{1}^{2}}{2 \cdot\left(1+\frac{\mathrm{k}-1}{2} \cdot \mathrm{M}_{1}^{2}\right)}\right]=1.3923
$$

$$
\frac{\mathrm{p}_{1}}{\mathrm{p}_{\text {crit }}}=\frac{\mathrm{p}_{1}}{\mathrm{p}_{2}}=\frac{1}{\mathrm{M}_{1}} \cdot\left(\frac{\frac{\mathrm{k}+1}{2}}{1+\frac{\mathrm{k}-1}{2} \cdot \mathrm{M}_{1}^{2}}\right)^{\frac{1}{2}}=2.3044 \quad \frac{\mathrm{~T}_{1}}{\mathrm{~T}_{\text {crit }}}=\frac{\frac{\mathrm{k}+1}{2}}{1+\frac{\mathrm{k}-1}{2} \cdot \mathrm{M}_{1}^{2}}=1.150 \quad \mathrm{~T}_{\text {crit }}=\frac{\mathrm{T}_{1}}{1.150}
$$

$$
\mathrm{p}_{\text {crit }}=\frac{\mathrm{P}_{1}}{2.3044} \quad \mathrm{p}_{\text {crit }}=54.2 \cdot \mathrm{psi} \quad \mathrm{~T}_{\text {crit }}=592 \cdot \mathrm{R} \quad \mathrm{~T}_{\text {crit }}=132 \cdot{ }^{\circ} \mathrm{F}
$$

Also, for $\quad \frac{\mathrm{T}_{2}}{\mathrm{~T}_{\text {crit }}}=1.031 \quad \frac{\mathrm{~T}_{2}}{\mathrm{~T}_{\text {crit }}}=\frac{\frac{\mathrm{k}+1}{2}}{1+\frac{\mathrm{k}-1}{2} \cdot \mathrm{M}_{2}^{2}} \quad$ leads to $\quad \mathrm{M}_{2}=\sqrt{\frac{2}{\mathrm{k}-1} \cdot\left(\frac{\mathrm{k}+1}{2} \cdot \frac{\mathrm{~T}_{\text {crit }}}{\mathrm{T}_{2}}-1\right)} \quad \mathrm{M}_{2}=0.906$

Then

$$
\frac{\mathrm{f}_{\mathrm{ave}} \cdot \mathrm{~L}_{\max 2}}{\mathrm{D}_{\mathrm{h}}}=\frac{1-\mathrm{M}_{2}^{2}}{\mathrm{k} \cdot \mathrm{M}_{2}^{2}}+\frac{\mathrm{k}+1}{2 \cdot \mathrm{k}} \cdot \ln \left[\frac{(\mathrm{k}+1) \cdot \mathrm{M}_{2}^{2}}{2 \cdot\left(1+\frac{\mathrm{k}-1}{2} \cdot \mathrm{M}_{2}^{2}\right)}\right]=0.01271
$$

Also

$$
\rho_{1}=\frac{\mathrm{p}_{1}}{\mathrm{R}_{\mathrm{air}} \cdot \mathrm{~T}_{1}} \quad \rho_{1}=0.496 \frac{\mathrm{lbm}}{\mathrm{ft}^{3}} \quad \mathrm{~V}_{1}=\mathrm{M}_{1} \cdot \sqrt{\mathrm{k} \cdot \mathrm{R}_{\mathrm{air}} \cdot \mathrm{~T}_{1}} \quad \mathrm{~V}_{1}=595 \frac{\mathrm{ft}}{\mathrm{~s}}
$$

For air at $\mathrm{T}_{1}=221^{\circ} \mathrm{F}$, from Table A.9 (approximately) $\quad \mu=4.48 \times 10^{-7} \cdot \frac{\mathrm{lbf} \cdot \mathrm{s}}{\mathrm{ft}^{2}} \quad$ so $\quad \operatorname{Re}_{1}=\frac{\rho_{1} \cdot \mathrm{~V}_{1} \cdot \mathrm{D}}{\mu}$
For commercial steel pipe (Table 8.1) $\quad e=0.00015 \cdot \mathrm{ft} \quad \frac{\mathrm{e}}{\mathrm{D}}=9 \times 10^{-4} \quad$ and $\quad \operatorname{Re}_{1}=3.41 \times 10^{6}$

Hence at this Reynolds number and roughness (Eq. 8.37) $\quad \mathrm{f}=0.01924$

Combining results $\quad L_{12}=\frac{\mathrm{D}}{\mathrm{f}} \cdot\left(\frac{\mathrm{f}_{\text {ave }} \cdot \mathrm{L}_{\text {max2 }}}{\mathrm{D}_{\mathrm{h}}}-\frac{\mathrm{f}_{\text {ave }} \cdot \mathrm{L}_{\text {max1 }}}{\mathrm{D}_{\mathrm{h}}}\right)=\frac{\frac{2}{12} \cdot \mathrm{ft}}{.01924} \cdot(1.3923-0.01271) \quad \mathrm{L}_{12}=12.0 \cdot \mathrm{ft}$

These calculations are a LOT easier using the Excel Add-ins!

Problem Bibl.

Given: Adiabatic flow of air in a constant-area duct

Find: T_{2}, h_{12}
Solution:

* Compressible flow furtion to be used in the solution

Assumptions:
(i) steady flow
(3) uniform flow at a section
(2) adiabatic flow
(4) ideal gas

$$
\text { For } \left.\left.P_{2}\right|_{P^{*}}=\frac{1.26}{0.592}=2.128 \text {. From } A_{\text {pe }} E .2, M_{2}=0.502,\left.T_{2}\right|_{T}=1.142, \mathcal{f}_{5}^{1+44}\right]_{2}=1.053
$$

$$
\begin{equation*}
T_{2}=1.142 T=1.142(402 K)=459 K \tag{2}
\end{equation*}
$$

$R_{e}=P_{i} \frac{\sqrt{y}}{\mu}$. To obtain μ at 200 C , use Sutherland correlation (Appendix H)
with el $y=0.0003$, from Fig. 8.13, friction factor, $f=0.0141$

$$
\begin{equation*}
f^{-} L_{12}=3.356 \quad, \quad .12=3.356 \frac{y}{4}=\frac{3.356}{0.017} \times 0.15 \mathrm{~m}=34.2 \mathrm{~m} \tag{12}
\end{equation*}
$$

T

$$
\begin{aligned}
& R_{e}=P \cdot \frac{1.9}{\mu}=14.7 \frac{\mathrm{~kg}}{\mathrm{~m}^{3}} \times 140 \frac{\mathrm{H}}{\mathrm{~s}} \times 1.5 \times 10^{-1} \mathrm{~m} \times \frac{\mathrm{h}^{2}}{2.57 \times 10^{-5} \mathrm{~N} .5}=1.20 \times 10^{7}
\end{aligned}
$$

$$
\begin{aligned}
& p_{1}=\frac{P_{1}}{k T}=2.0 \times 10^{6} \frac{\mathrm{~N}}{\mathrm{~N}^{2}} \times \frac{\mathrm{lg} \cdot \mathrm{~K}}{287 \mathrm{~N} \cdot \mathrm{n}} \times \frac{1}{473 \mathrm{~K}}=14.7 \mathrm{gg} / \mathrm{m}^{3}
\end{aligned}
$$

$$
\begin{aligned}
& \left.M_{1}=\frac{y_{1}}{c_{1}} \quad c_{1}=\left(k R T_{1}\right)^{1 / 2}=\left(1.4+287 \frac{\mathrm{kim}}{\mathrm{~kg} k} \times 473 \mathrm{k} \times \frac{\mathrm{kg}, \mathrm{~m}}{\mathrm{~h}^{2}}\right)^{1 / 2}=436 \mathrm{~m}\right)_{\mathrm{s}} \\
& M_{1}=\frac{140}{436}=0.321 \quad \text { From Appendix E.2, wit } A_{1}=0.321 \text {, } \\
& \left.T_{1} T^{+}=1.176 \quad P_{1}\left[p^{*}=3.378 \quad \text { fhman } 1\right\rangle\right]_{1}=4.409 \\
& \therefore T^{*}=402 \mathrm{~K}, P^{+}=0.592 \mathrm{MPa} .
\end{aligned}
$$

Given: Adiabatic flow of air in a constant area duct wit friction
 circular duct:

$$
A=1,0 f^{2}
$$

commercial sled

Find: hie
Plot: $P(x), M(x)$
Solution:
Compressible flow functions to be used in Pe solution
Assumptions: ") steady flow
(3) uniform frow atasaction
(2) adiabatic $f_{a}, T_{0}=\cos (4)$ ideal gas

For $M_{1}=0.10$, from Appendix $E A, T_{1}=1.098$ (M, T_{1}) $\therefore T_{1}=455^{\circ}$

$$
P_{0} P_{P_{1}}=1.387 \quad(11+7 a) \therefore P_{1}=12.1 . p \operatorname{sia}
$$

Form, $=0.70$, from Appendix $E .2, \quad P .1 p^{n}=1.493(12.18 d) \therefore p^{*}=48.3$ psia $\left.f_{\text {max }}\right)_{n}=0.2081(12.17)$
For $M_{2}=1.0, \bar{f}_{\text {man }} \theta_{h}=0$

$$
\therefore \bar{F}_{12} D_{n}=0.2081
$$

$\bar{f}=f($ he, e $\hat{y})$

$$
f=\frac{\pi y^{2}}{4} \quad \therefore V=\left(\frac{A R}{k}\right)^{h_{2}}=\left[\frac{4}{\pi} \times 1.0 \mathrm{ft}^{2}\right]^{1_{2}}=1.13 \mathrm{ft}
$$

For commercial ster from Table q. $e=0.00015 \mathrm{fe} \therefore \frac{e}{y}=0.00013$

$$
\begin{aligned}
& T_{1}=455^{\circ} R=-5^{\circ} F=-20^{\circ} C=253 \mathrm{~K} .
\end{aligned}
$$

From the Sutherland correlation, $\mu=\frac{b T^{1 / 2}}{1+s / T}$ (A.).

$$
\begin{aligned}
& R_{e}=3.24 \times 10
\end{aligned}
$$

From Fig 8.13, fruition factor $f=0.0125$

$$
f_{9} \frac{12}{9}=0.2081 \quad \therefore h_{12}=\frac{0.20817}{f}=\frac{0.2081}{0.0125} \times 1.13 f t=18.8 f \frac{f}{f}
$$

To plot $p(x), M(x)$

- assure values of $M, 0.70 \leq m \leq 1.00$
- calculate corresponding flip from Eq. 12.17
- solve for corresponding f $\Delta u l y$ where $\Delta L=\alpha$, assuming constant $\frac{f}{f}$
- Calculate corresponding Pl p* from Eq. $12.18 d$

Problem 13 lb e

Given: Fir flow in a smooth, insulated, constant-areatube Inlet condition's as given in Example P'obstem 13.8

s^{*} is the entropy at the condition where $M=1.0$ Plot: the Fannolvie $\left[T T_{0} u_{s}\left(s-s^{*}\right) / C_{p}\right]$ for $0.19 \leq M \leq 1.0$
Solution:

- Compressible flow functions be used in the solution Basic equations: $T d s=d h-v d P, \quad P=p R T$

$$
\begin{aligned}
& T d s=d h-v d P=c_{p} d T-\frac{1}{P} d P \quad d s=c_{p} \frac{d T}{T}-\frac{d P}{P} \\
& S-S^{*}=S_{0}-S_{0}^{*}=C_{P} \int_{T_{0}^{*}}^{T_{T}^{*}} \frac{d T}{T}-R \int_{P_{0}^{*}}^{P_{0}} \frac{d P}{P}=C_{p} \ln \frac{T_{0}^{*}}{T_{0}^{*}}-R \ln \frac{P_{0}}{P_{0}^{*}}=-\left(C_{P}-C_{V}\right) \ln \frac{P_{0}}{P_{0}^{*}} \\
& \frac{5-s^{+}}{C_{p}}=-\frac{\left(C_{p}-C_{5}\right)}{C_{p}} \ln \frac{P_{0}}{P_{0}^{*}}=-\frac{\left(k_{k}\right)}{k} \ln \frac{P_{0}}{P_{0}^{*}}=-\frac{0.4}{1.4} \ln \frac{P_{0}^{*}}{P_{0}^{*}}=-0.286 \ln _{p_{0}} P_{0}^{*}
\end{aligned}
$$

For a gwen value of M, $T_{0} T_{0}$ is found from Appendix $E .1$ ($11.17 b_{1}$) Pol po" "" ". "R (12.18e)

Gwen: Air flow in a smoof insulated, conatat-area tube as given in Example 13.7

Plot: $P(x), T(x), M(x)$ us whity from pipe whet to choked condition Solution: Compressible flow furtions to be used on the solution Assumptions. (1) steak flow it uniform flow al a section 2) isentropic flow in neuter 5 ideal gas
3, $2=0$ in duet

Front the solution of Example 13.7 we know fat
$M_{1}=0.190, T_{1}=2.94 \mathrm{~K}, P_{1}=98.8 \mathrm{kPo}, \mathrm{P}_{0}=10 \mathrm{kPa}, \vec{f}=0.023 \mathrm{k}$
To delorme $P(-), T(-), M(t)$, we Appendix $E=2$

M	$(f L D)_{M}$	$\Delta(f L D)$	x JD	T / T^{*}	$T(K)$	$P^{*} P^{*}$	$P(k P a)$
0.19	16.38	0	0	1.191	294	5.745	98
0.30	5.30	11.08	469	1.179	291	3.619	62
0.40	2.31	14.07	596	1.163	287	2.696	46
0.50	1.07	15.31	649	1.143	282	2.138	37
0.60	0.49	15.88	673	1.119	276	1.763	30
0.70	0.21	16.17	685	1.093	270	1.493	26
0.80	0.07	16.30	691	1.064	263	1.289	22
0.90	0.01	16.36	693	1.033	255	1.129	19
1.00	0.00	16.38	694	1.000	247	1.000	17

Given: Fans line flow for air ; s" is the entropy at the condition where $M=1.0$.

Phot: Faro line for Mach numbers in the range $0.14 M<3.0, T^{T}$ as $\frac{5-s^{2}}{C_{p}}$ Solution:

Compressible flow functions to be used in the solution Basic equalise: Tads = th-sdp, $P=p k$

$$
\begin{aligned}
& T d s=d h-v d P=c_{p} d T-\frac{1}{p} d P \quad i \quad d s=C_{p} \frac{d T}{T}-\frac{d P}{\frac{p}{p}}
\end{aligned}
$$

For a gwen value of M, use Appendix E.2 to determine $T^{\prime}{ }^{*}(12180) \cdot e_{0} 1 e_{0}^{*}(12.18 e)$

M	T / T^{*}	P_{0} / P_{0}^{*}	$\left(s_{-s}\right) / c_{p}$
0.10	1.198	5.822	-0.504
0.14	1.196	4.182	-0.409
0.20	1.190	2.964	-0.311
0.30	1.179	2.035	-0.203
0.40	1.163	1.500	-0.133
0.50	1.143	1.340	-0.084
0.60	1.119	1.188	-0.049
0.70	1.093	1.094	-0.026
0.80	1.064	1.038	-0.011
0.90	1.033	1.009	-0.003
1.00	1.000	1.000	0.000
1.20	0.932	1.030	-0.009
1.40	0.862	1.115	-0.031
1.60	0.794	1.250	-0.064
1.80	0.728	1.439	-0.104
2.00	0.667	1.688	-0.150
2.20	0.610	2.005	-0.199
2.40	0.558	2.403	-0.251
2.60	0.510	2.896	-0.304
2.80	0.467	3.500	-0.358
3.00	0.429	4.235	-0.413

Problem 13.69
Gwen: Air flows trough an insulated constantiarea duct $(\rangle=2.12 \mathrm{ft}, \mathrm{e} p=0.002$, $\mathrm{h}_{\mathrm{n}}=40 \mathrm{ft}$ with conditions at sections' $D:(B)$ as 'shown.

Find: (a) Is it possible to solve for M and M_{2} ? Prove answer graphically
(b) Find in Fund T_{a}

Solution:
T

s
(a) It is possible to solve for M, and M_{2} There is a different fane fine for each different flow rale (or M. - need to find the value of M, PAL gives fe pressure drop $\mathrm{P}_{1} \mathrm{P}_{2}$ Over $P_{\text {re }}$ Venge Liz
(b) Procedure for trial and error solution is to assume M, and calculate P_{2}
Use Fanrol-line flow fund tors of Appendix E-2.
Assume M,
determine p^{*}, Appendix $E(12 \cdot 18 \alpha)$

$$
\bar{f}=10 \pm \text { " }(12.17)
$$

$$
f=f(k e)
$$

- calcite fin ty and $f(f))_{2}=f(b)$, - fils
- knowing $f\left(y_{2}\right)_{2}$, therate (12, $)$ to determine k
- daterfine P_{2} 'from $V_{2}(12.18 d)$ and Check vsknown f_{2} Repeat with another assured Nature of N.
Additional computing equations:

From Table RA, $\mu=3.97 \times 10^{-7}$ Ifs $1 f^{2}$

For $M_{1}=0.4, \operatorname{Re}=3.0 \times 10^{\circ}, W i t i e^{2} y=0.002$, Fig. $8.13 g g_{0} f=0.023$ Assure f is constant.

Iterate to determine M_{2} for known M_{1}

M_{1}	$\left(\mathrm{~L}_{\mathrm{m}} \mathrm{D}\right)_{2}$	$\left(\mathrm{M}_{2}\right)_{\text {quass }}$		$\left(\mathrm{fL}_{m} / \mathrm{D}\right)_{2}$
0.400	1.875	0.427	0.211	1.870
0.450	1.132	0.483	0.278	1.128
0.500	0.635	0.568	0.364	0.633
0.510	0.556	0.585	0.384	0.553

$$
\begin{aligned}
& M_{1}=0.515 \quad T_{1}=1.41, T_{2}=1.23, \therefore T_{2}=0.984 \\
& T_{2}=551^{\circ} R
\end{aligned}
$$

Problem 13.70

13.70 Air brought into a tube through a converging-diverging nozzle initially has stagnation temperature and pressure of 550 K and 1.35 MPa (abs.). Flow in the nozzle is isentropic; flow in the tube is adiabatic. At the junction between the nozzle and tube the pressure is 15 kPa . The tube is 1.5 m long and 2.5 cm in diameter. If the outlet Mach number is unity, find the average friction factor over the tube length. Calculate the change in pressure between the tube inlet and discharge.

Given: Air flow through a CD nozzle and tube.
Find: Average friction factor; Pressure drop in tube

Solution:

Assumptions: 1) Isentropic flow in nozzle 2) Adiabatic flow in tube 3) Ideal gas 4) Uniform flow
Given or available data: $\mathrm{k}=1.40$
$\mathrm{R}=286.9 \cdot \frac{\mathrm{~J}}{\mathrm{~kg} \cdot \mathrm{~K}}$
$p_{1}=15 \cdot \mathrm{kPa} \quad$ where State 1 is the nozzle exit

$$
\mathrm{P}_{0}=1.35 \cdot \mathrm{MPa} \quad \mathrm{~T}_{0}=550 \cdot \mathrm{~K} \quad \mathrm{D}=2.5 \cdot \mathrm{~cm} \quad \mathrm{~L}=1.5 \cdot \mathrm{~m}
$$

From isentropic relations $M_{1}=\left[\frac{2}{k-1} \cdot\left[\left(\frac{p_{0}}{p_{1}}\right)^{\frac{k-1}{k}}-1\right]\right]^{\frac{1}{2}} \quad M_{1}=3.617$

Then for Fanno-line flow (for choking at the exit)

Hence

$$
\begin{aligned}
& \frac{\mathrm{f}_{\text {ave }} \cdot \mathrm{L}_{\text {max }}}{\mathrm{D}_{\mathrm{h}}}=\frac{1-\mathrm{M}_{1}^{2}}{\mathrm{k} \cdot \mathrm{M}_{1}{ }^{2}}+\frac{\mathrm{k}+1}{2 \cdot \mathrm{k}} \cdot \ln \left[\frac{(\mathrm{k}+1) \cdot \mathrm{M}_{1}^{2}}{2 \cdot\left(1+\frac{\mathrm{k}-1}{2} \cdot \mathrm{M}_{1}^{2}\right)}\right]=0.599 \\
& \mathrm{f}_{\text {ave }}=\frac{\mathrm{D}}{\mathrm{~L}} \cdot\left[\frac{1-\mathrm{M}_{1}{ }^{2}}{\mathrm{k} \cdot \mathrm{M}_{1}{ }^{2}}+\frac{\mathrm{k}+1}{2 \cdot \mathrm{k}} \cdot \ln \left[\frac{(\mathrm{k}+1) \cdot \mathrm{M}_{1}{ }^{2}}{2 \cdot\left(1+\frac{\mathrm{k}-1}{2} \cdot \mathrm{M}_{1}{ }^{2}\right)}\right]\right] \quad \mathrm{f}_{\text {ave }}=0.0100 \\
& \frac{\mathrm{p}_{1}}{\mathrm{p}_{\text {crit }}}=\frac{\mathrm{p}_{1}}{\mathrm{p}_{2}}=\frac{1}{\mathrm{M}_{1}} \cdot\left(\frac{\frac{\mathrm{k}+1}{2}}{1+\frac{\mathrm{k}-1}{2} \cdot \mathrm{M}_{1}{ }^{2}}\right)^{\frac{1}{2}}=0.159 \\
& \mathrm{p}_{2}=\frac{\mathrm{p}_{1}}{\left[\frac{1}{\mathrm{M}_{1}} \cdot\left(\frac{\frac{\mathrm{k}+1}{2}}{1+\frac{\mathrm{k}-1}{2} \cdot \mathrm{M}_{1}^{2}}\right)^{\frac{1}{2}}\right]} \\
& \Delta \mathrm{p}=\mathrm{p}_{1}-\mathrm{p}_{2} \\
& \mathrm{P}_{2}=94.2 \mathrm{kPa} \\
& \Delta \mathrm{p}=-79.2 \mathrm{kPa}
\end{aligned}
$$

These calculations are a LOT easier using the Excel Add-ins!
13.71 For the conditions of Problem 13.57, determine the duct length. Assume the duct is circular and made from commercial steel. Plot the variations of pressure and Mach number versus distance along the duct.

(1)

Given: Air flow in a CD nozzle and insulated duct
Find: \quad Duct length; Plot of M and p

Solution:

Basic equations: Fanno-line flow equations, and friction factor
Given or available data $\mathrm{T}_{1}=(100+460) \cdot \mathrm{R}$
$\mathrm{p}_{1}=18.5 \cdot \mathrm{psi}$
$\mathrm{M}_{1}=2 \quad \mathrm{M}_{2}=1$
$\mathrm{A}=1 \cdot \mathrm{in}^{2}$
$\mathrm{k}=1.4$

$$
\mathrm{c}_{\mathrm{p}}=0.2399 \cdot \frac{\mathrm{Btu}}{\mathrm{lbm} \cdot \mathrm{R}}
$$

$$
\mathrm{R}_{\mathrm{air}}=53.33 \cdot \frac{\mathrm{ft} \cdot \mathrm{lbf}}{\mathrm{lbm} \cdot \mathrm{R}}
$$

Then for Fanno-line flow at $\mathrm{M}_{1}=2$

$$
\begin{aligned}
& \frac{\mathrm{p}_{1}}{\mathrm{p}_{\text {crit }}}=\frac{\mathrm{p}_{1}}{\mathrm{p}_{2}}=\frac{1}{\mathrm{M}_{1}} \cdot\left(\frac{\frac{\mathrm{k}+1}{2}}{1+\frac{\mathrm{k}-1}{2} \cdot \mathrm{M}_{1}^{2}}\right)^{\frac{1}{2}}=0.4082 \quad \frac{\mathrm{f}_{\text {ave }} \cdot \mathrm{L}_{\max 1}}{\mathrm{D}_{\mathrm{h}}}=\frac{1-\mathrm{M}_{1}^{2}}{\mathrm{k} \cdot \mathrm{M}_{1}^{2}}+\frac{\mathrm{k}+1}{2 \cdot \mathrm{k}} \cdot \ln \left[\frac{(\mathrm{k}+1) \cdot \mathrm{M}_{1}^{2}}{2 \cdot\left(1+\frac{\mathrm{k}-1}{2} \cdot \mathrm{M}_{1}^{2}\right)}\right]=0.3050 \\
& \text { so } \quad \quad \mathrm{p}_{\text {crit }}=\frac{\mathrm{p}_{1}}{0.4082} \quad \mathrm{p}_{\text {crit }}=45.3 \cdot \mathrm{psi}
\end{aligned}
$$

and at $\mathrm{M}_{2}=1 \quad \frac{\mathrm{f}_{\text {ave }} \cdot \mathrm{L}_{\max 2}}{\mathrm{D}_{\mathrm{h}}}=\frac{1-\mathrm{M}_{2}{ }^{2}}{\mathrm{k} \cdot \mathrm{M}_{2}{ }^{2}}+\frac{\mathrm{k}+1}{2 \cdot \mathrm{k}} \cdot \ln \left[\frac{(\mathrm{k}+1) \cdot \mathrm{M}_{2}{ }^{2}}{2 \cdot\left(1+\frac{\mathrm{k}-1}{2} \cdot \mathrm{M}_{2}{ }^{2}\right)}\right]=0$

Also

$$
\rho_{1}=\frac{\mathrm{p}_{1}}{\mathrm{R}_{\mathrm{air}} \cdot \mathrm{~T}} \rho_{1}=0.089 \cdot \frac{\mathrm{lbm}}{\mathrm{ft}^{3}} \quad \mathrm{~V}_{1}=\mathrm{M}_{1} \cdot \sqrt{\mathrm{k} \cdot \mathrm{R}_{\mathrm{air}} \cdot \mathrm{~T}_{1}} \quad \mathrm{~V}_{1}=2320 \cdot \frac{\mathrm{ft}}{\mathrm{~s}} \quad \mathrm{D}=\sqrt{\frac{4 \cdot \mathrm{~A}}{\pi}} \quad \mathrm{D}=1.13 \cdot \mathrm{in}
$$

For air at $\mathrm{T}_{1}=100 \cdot{ }^{\circ} \mathrm{F}$, from Table A. 9

$$
\mu=3.96 \times 10^{-7} \cdot \frac{\mathrm{lbf} \cdot \mathrm{~s}}{\mathrm{ft}^{2}} \quad \text { so } \quad \mathrm{Re}_{1}=\frac{\rho_{1} \cdot \mathrm{~V}_{1} \cdot \mathrm{D}}{\mu}
$$

For commercial steel pipe (Table 8.1) $\quad e=0.00015 \cdot f t$

$$
\frac{\mathrm{e}}{\mathrm{D}}=1.595 \times 10^{-3} \quad \text { and } \quad \mathrm{Re}_{1}=1.53 \times 10^{6}
$$

Hence at this Reynolds number and roughness (Eq. 8.37)

$$
\mathrm{f}=.02222
$$

Combining results $\quad \mathrm{L}_{12}=\frac{\mathrm{D}}{\mathrm{f}} \cdot\left(\frac{\mathrm{f}_{\text {ave }} \cdot \mathrm{L}_{\text {max } 2}}{\mathrm{D}_{\mathrm{h}}}-\frac{\mathrm{f}_{\text {ave }} \cdot \mathrm{L}_{\text {max } 1}}{\mathrm{D}_{\mathrm{h}}}\right)=\frac{\frac{1.13}{12} \cdot \mathrm{ft}}{.02222} \cdot(0.3050-0) \quad \mathrm{L}_{12}=1.29 \cdot \mathrm{ft} \quad \mathrm{L}_{12}=15.5 \cdot \mathrm{in}$

These calculations are a LOT easier using the Excel Add-ins! The M and p plots are shown in the associated Excel workbook
13.71 For the conditions of Problem 13.57, determine the duct length. Assume the duct is circular and made from commercial steel. Plot the variations of pressure and Mach number versus distance along the duct.

Given: Air flow in a CD nozzle and insulated duct

Find: \quad Duct length; Plot of M and p

Solution:

The given or available data is: $\quad f=0.0222$

$$
p^{*}=45.3 \mathrm{kPa}
$$

$$
D=1.13 \text { in }
$$

M	$f L_{\max } / D$	$\Delta f L_{\max } / D$	x (in)	p / p^{*}	p (psi)
2.00	0.305	0.000	0	0.408	18.49
1.95	0.290	0.015	0.8	0.423	19.18
1.90	0.274	0.031	1.6	0.439	19.90
1.85	0.258	0.047	2.4	0.456	20.67
1.80	0.242	0.063	3.2	0.474	21.48
1.75	0.225	0.080	4.1	0.493	22.33
1.70	0.208	0.097	4.9	0.513	23.24
1.65	0.190	0.115	5.8	0.534	24.20
1.60	0.172	0.133	6.7	0.557	25.22
1.55	0.154	0.151	7.7	0.581	26.31
1.50	0.136	0.169	8.6	0.606	27.47
1.45	0.118	0.187	9.5	0.634	28.71
1.40	0.100	0.205	10.4	0.663	30.04
1.35	0.082	0.223	11.3	0.695	31.47
1.30	0.065	0.240	12.2	0.728	33.00
1.25	0.049	0.256	13.0	0.765	34.65
1.20	0.034	0.271	13.8	0.804	36.44
1.15	0.021	0.284	14.5	0.847	38.37
1.10	0.010	0.295	15.0	0.894	40.48
1.05	0.003	0.302	15.4	0.944	42.78
1.00	0.000	0.305	15.5	1.000	45.30

Fanno Line Flow Curves(M and p)

Problem 1302

Given: Flow of air from a large tank ($p_{0}=1.0$ Mpalabs), $T_{0}=295 \mathrm{~K}$) through a $c \rightarrow$ nozzle to a constant area duct. Properties

Find: (a) p_{2}
(b) L_{1-2}
(C) $\mathrm{S}_{2}-\mathrm{S}_{1}$

Solution: * Compressible flow furctionsto be used in solution.
Assumptions: (i) steady flow (2) wiform flow at a section
(3) seritropic flow in nozzle, adiabatic flow in duct
(H) ideal gas
(a)

For App. E. 2 for $M=2.1$

$$
\begin{aligned}
& \left.R_{0}\right|_{p} ^{*}=1.837 \\
& -p_{1} p_{0}^{2}=0.3802
\end{aligned}
$$

$$
\therefore P_{0}^{*}=544.4 \mathrm{BPa}
$$

$$
\text { for } \begin{array}{rll}
M_{2}=1.4 & P_{2} l p^{2}=0 & =0.3802
\end{array} \therefore-64=287.1 \mathrm{kPa} .
$$

(b) From Apple.2 for $M_{1}=2.1, \quad \bar{f}$ row $1 D_{h}=0.3339$

$$
\begin{aligned}
M_{2} & =1.4,\left.f_{\text {max }}\right|_{n}=0.09974 \\
\therefore f_{\text {in }} l_{n} & =0.3339-0.09974=0.2342
\end{aligned}
$$

To obtain his, we need $f ; f=f\left(R_{e}\right), c_{e}=\frac{p l y}{\mu}$. \{use conditions at (1)\}
To obtain μ at 56.7 K , use Sutherland correlation (Appendix A)
$R_{e}=1.80 \times 10^{7}$. For smooch pipe from Fig 8.13 friction factor, f $=0.007$

$$
\begin{aligned}
& \mu=\frac{b T^{1 / 2}}{1+51 T}=1.458 \times 10^{-6} \frac{k}{n \cdot 5} \times k^{1 / 2} \times(156 i k)^{1 / 2} \times \frac{1}{1+\frac{110.4}{156.7}}=1.071 \times 10^{-5} \frac{N \cdot \mathrm{~s}}{\mathrm{~m}^{2}}
\end{aligned}
$$

$$
\begin{aligned}
& \text { From App.E.I for } M_{1}=2.1 \quad T T_{0}=0.5314 \quad \therefore T_{1}=156 i 7 K
\end{aligned}
$$

Problem *13.73

*13.73 In long, constant-area pipelines, as used for natural gas, temperature is constant. Assume gas leaves a pumping station at 350 kPa and $20^{\circ} \mathrm{C}$ at $M=0.10$. At the section along the pipe where the pressure has dropped to 150 kPa , calculate the Mach number of the flow. Is heat added to or removed from the gas over the length between the pressure taps? Justify your answer: Sketch the process on a $T s$ diagram. Indicate (qualitatively) $T_{0_{1}}, T_{0_{2}}$, and $p_{0_{2}}$.

Given: Isothermal air flow in a duct
Find: Downstream Mach number; Direction of heat transfer; Plot of Ts diagram

Solution:

Basic equations: $\quad \mathrm{h}_{1}+\frac{\mathrm{V}_{1}^{2}}{2}+\frac{\delta \mathrm{Q}}{\mathrm{dm}}=\mathrm{h}_{2}+\frac{\mathrm{V}_{2}^{2}}{2} \quad \frac{\mathrm{~T}_{0}}{\mathrm{~T}}=1+\frac{\mathrm{k}-1}{2} \cdot \mathrm{M}^{2} \quad \mathrm{~m}_{\text {rate }}=\rho \cdot \mathrm{V} \cdot \mathrm{A}$
Given or available data

$$
\mathrm{T}_{1}=(20+273) \cdot \mathrm{K}
$$

$\mathrm{p}_{1}=350 \cdot \mathrm{kPa}$
$\mathrm{M}_{1}=0.1$
$\mathrm{p}_{2}=150 \cdot \mathrm{kPa}$

From continuity

$$
\mathrm{m}_{\text {rate }}=\rho_{1} \cdot \mathrm{~V}_{1} \cdot \mathrm{~A}=\rho_{2} \cdot \mathrm{~V}_{2} \cdot \mathrm{~A}
$$

so
$\rho_{1} \cdot \mathrm{~V}_{1}=\rho_{2} \cdot \mathrm{~V}_{2}$

Also

$$
\mathrm{p}=\rho \cdot \mathrm{R} \cdot \mathrm{~T} \quad \text { and }
$$

$$
\mathrm{M}=\frac{\mathrm{V}}{\mathrm{c}} \quad \text { or } \quad \mathrm{V}=\mathrm{M} \cdot \mathrm{c}
$$

Hence continuity becomes $\frac{\mathrm{P}_{1}}{\mathrm{R} \cdot \mathrm{T}_{1}} \cdot \mathrm{M}_{1} \cdot \mathrm{c}_{1}=\frac{\mathrm{P}_{2}}{\mathrm{R} \cdot \mathrm{T}_{2}} \cdot \mathrm{M}_{2} \cdot \mathrm{C}_{2}$

Since

$$
\mathrm{T}_{1}=\mathrm{T}_{2} \quad \mathrm{c}_{1}=\mathrm{c}_{2}
$$

so
$\mathrm{p}_{1} \cdot \mathrm{M}_{1}=\mathrm{p}_{2} \cdot \mathrm{M}_{2}$

Hence

$$
\mathrm{M}_{2}=\frac{\mathrm{p}_{1}}{\mathrm{p}_{2}} \cdot \mathrm{M}_{1} \quad \mathrm{M}_{2}=0.233
$$

From energy

$$
\frac{\delta \mathrm{Q}}{\mathrm{dm}}=\left(\mathrm{h}_{2}+\frac{\mathrm{V}_{2}^{2}}{2}\right)-\left(\mathrm{h}_{1}+\frac{\mathrm{V}_{1}^{2}}{2}\right)=\mathrm{h}_{02}-\mathrm{h}_{01}=\mathrm{c}_{\mathrm{p}} \cdot\left(\mathrm{~T}_{02}-\mathrm{T}_{01}\right)
$$

But at each state

$$
\frac{\mathrm{T}_{0}}{\mathrm{~T}}=1+\frac{\mathrm{k}-1}{2} \cdot \mathrm{M}^{2} \quad \text { or } \quad \mathrm{T}_{0}=\mathrm{T} \cdot\left(1+\frac{\mathrm{k}-1}{2} \cdot \mathrm{M}^{2}\right)
$$

Since $T=$ const, but $M_{2}>M_{1}$, then $T_{02}>T_{01}$, and
$\frac{\delta \mathrm{Q}}{\mathrm{dm}}>0 \quad$ so energy is ADDED to the system

Problem *13.74

*13.74 Air enters a $15-\mathrm{cm}$ diameter pipe at $15^{\circ} \mathrm{C}, 1.5 \mathrm{MPa}$, and $60 \mathrm{~m} / \mathrm{s}$. The average friction factor is 0.013 . Flow is isothermal. Calculate the local Mach number and the distance from the entrance of the channel, at the point where the pressure reaches 500
kPa .
Given: Isothermal air flow in a pipe
Find: Mach number and location at which pressure is 500 kPa

Solution:

Basic equations:	$\mathrm{m}_{\text {rate }}=\rho \cdot \mathrm{V} \cdot \mathrm{A}$	$\mathrm{p}=\rho \cdot \mathrm{R} \cdot \mathrm{T}$	$\frac{\mathrm{f} \cdot \mathrm{~L}_{\max }}{\mathrm{D}}=\frac{1-\mathrm{k} \cdot \mathrm{M}^{2}}{\mathrm{k} \cdot \mathrm{M}^{2}}+$	$\left.\mathrm{k} \cdot \mathrm{M}^{2}\right)$	
Given or available data	$\mathrm{T}_{1}=(15+273) \cdot \mathrm{K}$	$\mathrm{p}_{1}=1.5 \cdot \mathrm{MPa}$	$\mathrm{V}_{1}=60 \cdot \frac{\mathrm{~m}}{\mathrm{~s}}$	$\mathrm{f}=0.013$	$\mathrm{p}_{2}=500 \cdot \mathrm{kPa}$
	$\mathrm{D}=15 \cdot \mathrm{~cm}$	$\mathrm{k}=1.4$	$\mathrm{R}=286.9 \cdot \frac{\mathrm{~J}}{\mathrm{~kg} \cdot \mathrm{~K}}$		
From continuity	$\rho_{1} \cdot \mathrm{~V}_{1}=\rho_{2} \cdot \mathrm{~V}_{2}$	or	$\frac{\mathrm{p}_{1}}{\mathrm{~T}_{1}} \cdot \mathrm{~V}_{1}=\frac{\mathrm{p}_{2}}{\mathrm{~T}_{2}} \cdot \mathrm{~V}_{2}$		
Since	$\mathrm{T}_{1}=\mathrm{T}_{2}$	and	$\mathrm{V}=\mathrm{M} \cdot \mathrm{c}=\mathrm{M} \cdot \sqrt{\mathrm{k} \cdot \mathrm{R} \cdot \mathrm{T}}$	$\mathrm{M}_{2}=\mathrm{M}_{1} \cdot \frac{\mathrm{p}_{1}}{\mathrm{p}_{2}}$	
	$\mathrm{c}_{1}=\sqrt{\mathrm{k} \cdot \mathrm{R} \cdot \mathrm{T}_{1}}$	$\mathrm{c}_{1}=340 \frac{\mathrm{~m}}{\mathrm{~s}}$	$\mathrm{M}_{1}=\frac{\mathrm{V}_{1}}{\mathrm{c}_{1}}$	$\mathrm{M}_{1}=0.176$	
Then	$\mathrm{M}_{2}=\mathrm{M}_{1} \cdot \frac{\mathrm{p}_{1}}{\mathrm{p}_{2}}$	$\mathrm{M}_{2}=0.529$			
At $\mathrm{M}_{1}=0.176$	$\frac{\mathrm{f} \cdot \mathrm{~L}_{\max 1}}{\mathrm{D}}=\frac{1-\mathrm{k} \cdot \mathrm{M}}{\mathrm{k} \cdot \mathrm{M}_{1}{ }^{2}}$	$+\ln \left(\mathrm{k} \cdot \mathrm{M}_{1}^{2}\right)=1$			
At $\mathrm{M}_{2}=0.529$	$\frac{\mathrm{f} \cdot \mathrm{~L}_{\max 2}}{\mathrm{D}}=\frac{1-\mathrm{k} \cdot \mathrm{M}}{\mathrm{k} \cdot \mathrm{M}_{2}{ }^{2}}$	$+\ln \left(\mathrm{k} \cdot \mathrm{M}_{2}^{2}\right)=0$			
Hence	$\frac{\mathrm{f} \cdot \mathrm{~L}_{12}}{\mathrm{D}}=\frac{\mathrm{f} \cdot \mathrm{~L}_{\max 2}}{\mathrm{D}}-\frac{\mathrm{f} \cdot \mathrm{~L}_{\max 1}}{\mathrm{D}}=18.819-0.614=18.2$				
	$L_{12}=18.2 \cdot \frac{D}{f}$	$L_{12}=210 \mathrm{~m}$			

Given: fir enters a constant area Comet al conditions shown and procedce to choking under isothermal flow conditions.

Find: limiting pressure, i_{2}
Compare with fin for frictional adiabatic flow
Solution:
Bask e equations: $\quad h_{1}+\frac{y^{2}}{2}+\frac{\delta \theta}{d r}=h_{2}+\frac{v_{2}^{2}}{2} \quad \hat{h}=p+1$
Computing equation: $T_{0} f=1 *^{k+} N^{2}$
Hssurnptions: in steady flow
(2) ideal gas.
(3) uniforming (How at a section (4) for in shear $=0$

$$
\begin{align*}
& M_{1}=\frac{V_{1}}{C_{1}}=\frac{350}{1260}=0.278 \\
& v_{2}=M_{2} c_{2}=M_{2} c_{1}=\frac{1}{\sqrt{14}} \times 2 a^{2} 0 \mathrm{ft} \mathrm{I}_{\mathrm{s}}=1060 \mathrm{ft} \\
& p_{1} V_{1}=P_{2} V_{2} \text { or } \frac{P_{1}}{R T_{1}} V_{1}=\frac{f_{2}}{R T_{2}} V_{2} \tag{i}
\end{align*}
$$

Spice $T_{1}=T_{2}, \quad-p_{2}=p_{1} V_{1}=600$ psia $\times \frac{350}{1000}=195$ psia $-p_{2}{ }_{2} T=c$
For adiabatic flow $T_{0}=$ constant and $M_{2}=10$

$$
\begin{gathered}
T_{0_{2}}=T_{0}=T_{1}\left(1+\frac{k-1}{2} M_{1}^{2}\right)=T_{2}\left(1+\frac{k-1}{2} M_{2}^{2}\right) \\
\frac{T_{2}}{T_{1}}=\frac{1+0.2(0.218)^{2}}{1+0.2}=0.946 \\
T_{2}=558^{\circ} \mathrm{R} \\
V_{2}=c_{2}=\left(28 T_{2}\right)^{1 / 2}=(1.4 \times 53.3 \times 558+32.2)^{4 / 2}=160 \mathrm{~F}_{1} / \mathrm{l}
\end{gathered}
$$

From continuity (Eq.i)

$$
-p_{2}=-p_{1} \frac{V_{1}}{V_{2}} \frac{T_{2}}{T_{1}}=600 p \operatorname{sia} \times \frac{350}{160} \times 0.846
$$

$P_{2}=153$ psia

Given: fir enters a clean steel pipe of lent $L=950$ ft and diameter $y=5.25 \mathrm{in}$. at $p \mathrm{p}$ conditions shown.

Find: pressure drop, $p_{1}-p_{2}$, assuring (a) ricompressible (b) isothermal, and (c) adiabate flow

Solution:
Basic equations: $\quad i=p+A \quad=p=R T$
Computing equations:

$$
\begin{aligned}
& p_{1}-P_{2}=\rho f \frac{f^{2}}{2} \quad(\rho=\text { constant }) . \\
& \epsilon \frac{h_{\text {max }}}{\nabla}=\frac{1-k m^{2}}{E M^{2}}+\ln k M^{2} \quad(T=\text { constant }) \\
& \frac{\bar{f} \operatorname{pos}}{y}=\frac{1-m^{2}}{k m^{2}}+\frac{f+1}{2 k} \ln \left[\frac{(k+1) m^{2}}{2\left(1+\frac{k-1}{2} m^{2}\right)}\right] \\
& (\alpha=0)
\end{aligned}
$$

$p_{1}=\frac{p_{1}}{R_{1}}=120 \frac{b f}{i^{2}} \frac{44 i^{2}}{f^{2}} \times 53.3 \frac{b_{n} \cdot 8}{f_{i} b^{2}} \times 548 \mathrm{k}=0.600 \mathrm{bm} / \mathrm{ft}^{3}$

$R_{e}=1.6 a \cdot 1 b^{k}$
For commercial Stab (Table 8.) , $e=0.00015$ ft. $\therefore \quad e_{y}=0.00034$ From Fig. $8.13, f=0.0155$
(a) For incompressible flow

$$
\begin{aligned}
& -p_{1}-p_{2}=13.9 \text { psia } \\
& \left(P_{1}-P_{2}\right) \rho=-
\end{aligned}
$$

(b) For isothermal flow

$$
\begin{aligned}
& M_{1}=\frac{W_{1}}{C_{1}}=\frac{80}{1140}=0.062
\end{aligned}
$$

At state $D\left(f^{\frac{\operatorname{lngax}}{y}}\right)_{1}=\frac{1-8 m_{1}^{2}}{k M_{1}^{2}}+\ln \ln r_{1}^{2}$

$$
\begin{aligned}
& =\frac{1-1.4(0.0102)^{2}}{1.4(0.0102)^{2}}\left[1.4(0.0102)^{2}\right] \\
\left.\left.f^{\operatorname{lng}}\right\rangle\right) & =139
\end{aligned}
$$

$$
\begin{aligned}
& f^{\frac{-12}{\nu}}=0.0155 \times \frac{950.12}{5.25}=33.6 \\
& \left.\therefore f^{-\frac{m a x}{~}}\right)_{2}=139-33.6=105=\frac{1-k M_{2}^{2}}{k M_{2}^{2}}+\ln \ell_{2}^{2}
\end{aligned}
$$

Trial and error solution for H_{2}

$\frac{N_{2}}{0.10}$	$\frac{f-\operatorname{Lat}}{8} l_{2}$
0.08	66.2
0.081	103
0.0805	105

$$
v_{2}=r_{2} c_{2}=M_{2} c_{1}=0.0805 \times 1140 f t_{5}=91.8 \mathrm{ft} l_{\mathrm{s}}
$$

$$
p_{1} V_{1}=p_{2} V_{2} \quad \text { or } \quad P_{1} V_{1}=\frac{p_{2}}{T_{2}} \forall_{2} \ldots .61
$$

Since $T_{2}=T_{1}, P_{2}=P_{1} V_{V_{2}}=120$ psia $\times \frac{80}{81.8}=105$ psia

$$
\begin{equation*}
f_{1}-f_{2}=15.0 p s i a \tag{2}
\end{equation*}
$$

(c) For adiabatic flow $\quad M_{1}=0.0702$

$$
\begin{aligned}
& \left.f^{\operatorname{lng}} \frac{8}{8}\right)_{1}=\frac{1-(0.0102)^{2}}{1.4(0.010)^{2}}+\frac{1.4+1}{2(1.4)} \ln \left[\frac{12.4)(0.0102)^{2}}{2\left(1+0.2(0.0102)^{2}\right.}\right]=139.8 \\
& \left.\therefore f^{(2 n n t}\right)_{2}=139.8-33 . k=106.2=\frac{1-M_{2}^{2}}{1.4 M_{2}^{2}}+\frac{2.4}{2.8} \ln \left[\frac{2.4 M_{2}^{2}}{2\left(1+0.2 M^{2}\right)}\right]
\end{aligned}
$$

Trial and error solution for M_{2}

$\frac{M_{2}}{0.085}$	$\left.\frac{(24.1}{8}\right)_{2}$
0.080	96.7
0.0802	106.2

For adiabatic flow, $T_{0}=\operatorname{constar}$

$$
\begin{aligned}
& \therefore \quad \frac{T_{2}}{{ }_{1}}=\frac{1+\frac{k-1}{2} M_{1}^{2}}{1+\frac{1-1}{2} M_{2}^{2}}=\frac{1+0.2(0.0702)^{2}}{1+0.2(0.0802)^{2}}=1.00 \\
& \therefore v_{2}=M_{2} c_{2}=M_{2} c_{1}=0.0802 \times 1140 \text { At sec }=91.4 \mathrm{Al}
\end{aligned}
$$

From coktnuty (E qu $)$

$$
\begin{align*}
p_{2} & =p_{1} \frac{V_{2}}{V_{2}}=120 p s i a+\frac{80}{814}=105 \text { psia } \\
\therefore p_{1}-p_{2} & =15.0 p s i a \tag{2}
\end{align*}
$$

Note: P_{2} is essentially Pe same for spffermal ard adiabatic flor the value is higher til for incompressible fla

Given: Natural gas (molecular mass $M_{m}=18, k=1,3$) is pumped through a constant area pipe $(\nu)=36$ in $)$ for a distofice $L=40$ miles

$$
\begin{aligned}
& D=36 \text { in } \\
& T=78 F=\text { cont. }
\end{aligned}
$$

$p_{1} \leqslant 90 p$ ing $\quad p_{2} 210$ posing
Find: Volume flowrate, Q (ft^{3} day @ 28 F and \atm)
Solution:
Basic equations: $\quad \dot{m}=P N A \quad P=P R T$
Computing equation: $f^{\frac{\text { max }}{}}=\frac{1-k M^{2}}{k M^{2}}+\ln \mathrm{Em}^{2}$
Then, $\left.\left.\left.f^{\frac{h_{i}}{D}}=f^{\text {Lax }}\right)_{1}-f^{\text {Lax }}\right\rangle\right)_{2}=\frac{1-k M_{1}^{2}}{k M_{1}^{2}}-\frac{1-k M_{2}^{2}}{k M_{2}^{2}}+\ln \frac{M_{1}^{2}}{M_{2}^{2}}$
Since information on pressures is known, we relate P and M From the ideal gas equation of state, for $T=$ constant $\quad p_{1}=\frac{p_{1}}{p_{2}}$ From the continuity equation $P_{P_{2}}=J_{2}$ and for $T=$ constant, $V_{1} V_{1}=\frac{M_{2}}{M_{1}}$ Hence $\frac{P_{1}}{P_{2}}=\frac{M_{2}}{M_{1}}$ and $M_{2}=\frac{P_{1}}{P_{2}} M_{1}$
Substituting for M_{2} into the equation for $f \frac{h i n}{\text { in }}$ and rearranging we obtain

$$
f \frac{L_{2}^{2}}{D_{n}}=\frac{1-\left(P_{2}\left(p_{1}\right)^{2}\right.}{E M_{1}^{2}}-\ln \left(\frac{P_{1}}{P_{2}}\right)^{2}
$$

Solving this equation for M_{1}, then

$$
M_{1}=\left\{\frac{1}{k}\left[\frac{1-\left(P_{P_{1}}\right)^{2}}{f \frac{L_{2}}{D_{n}}+\ln \left(P_{P_{2}}\right)^{2}}\right]\right\}^{1 / 2}
$$

$$
\overline{O_{h}}=40 \mathrm{ri} \times 5280 \frac{\mathrm{ft}}{r_{i}} \times \frac{1}{3 \mathrm{ft}}=70,400
$$

Assume pipe is commercial steel. From Table $8.1, e=0.00015 \mathrm{ft}$ and hence $e_{y}=0.00005$. Assume $R_{e}>3.0 \times 10^{7}$, then $f=0.0105$. Solving for M_{1},

$$
\begin{aligned}
& M_{1}=\left\{\frac{1}{1.3}\left[\frac{1-\left(\frac{24.7}{104,7}\right)^{2}}{0.0105(70,400)+\ln \left(\frac{104,7}{24,7}\right)}\right]\right\}^{1 / 2}=0.0313
\end{aligned}
$$

$$
\begin{aligned}
& V_{1}=M_{1} C_{1}=0.0313 \times 1380 \mathrm{fts}=43.2 \mathrm{ft} \mathrm{ls}_{\mathrm{s}} \\
& p_{1}=\frac{R_{1}}{R T_{1}}=104.7 \frac{\mathrm{ibf}}{\mathrm{in}^{2}} \times \frac{1 \mathrm{bn} \cdot \mathrm{R}}{85.8 \mathrm{ftibr}} \times \frac{1}{530 \mathrm{R}} \times 144 \frac{\mathrm{in}^{2}}{\mathrm{ft}^{2}}=0.332 \mathrm{ibm} / \mathrm{ft}^{3}
\end{aligned}
$$

Check assumption on Re; from Fig ala (for nethend), $\mu=1.08 \times 10^{-5} \times 2.040 \times 60$ br. $\|_{s t^{2}}$

,13.78 Air from a large reservoir at 25 psia and $250^{\circ} \mathrm{F}$ flows isentropically through a converging nozzle into a frictionless pipe at 24 psia . The flow is heated as it flows along the pipe. Obtain a plot of the $T s$ diagram for this flow, until $M=1$. Also plot the pressure and speed distributions from the entrance to the location at which $M=1$.

Given: Air flow from converging nozzle into heated pipe
Find: Plot Ts diagram and pressure and speed curves

Solution:

The given or available data is:

R	$=$	53.33	$\mathrm{ft} \cdot \mathrm{lbf} / \mathrm{lbm} \cdot{ }^{\circ} \mathrm{R}$
k	$=$	1.4	
c_{p}	$=$	0.2399	$\mathrm{Btu} / \mathrm{lbm} \cdot{ }^{\circ} \mathrm{R}$
		187	$\mathrm{ft} \cdot \mathrm{lbf} / \mathrm{lbm} \cdot{ }^{\circ} \mathrm{R}$
T_{0}	$=$	710	
p_{0}	$=$	25	
p_{e}	$=$	24	psi
		psi	

Equations and Computations:
From p_{0} and $p_{\text {e }}$, and Eq. 13.7a
(using built-in function IsenMfromp (M, k))

Using built-in function $\operatorname{Isen} T(M, k) \quad T_{e}=\quad 702 \quad{ }^{\circ} \mathrm{R}$
Using $p_{\mathrm{e}}, M_{\mathrm{e}}$, and function Rayp $(M, k) \quad p^{*}=10.82 \quad \mathrm{psi}$

Using $T_{\mathrm{e}}, M_{\mathrm{e}}$, and function $\operatorname{RayT}(M, k) \quad T^{*}=2432 \quad{ }^{\circ} \mathrm{R}$

We can now use Rayleigh-line relations to compute values for a range of Mach numbers:

13.79 Repeat Problem 13.78 except the nozzle is now a convergingdiverging nozzle delivering the air to the pipe at 2.5 psia .

Given: Air flow from converging-diverging nozzle into heated pipe
Find: Plot Ts diagram and pressure and speed curves

Solution:

The given or available data is: | R | $=$ | 53.33 | $\mathrm{ft} \cdot \mathrm{lbf} / \mathrm{lbm} \cdot{ }^{\circ} \mathrm{R}$ |
| ---: | :--- | ---: | :--- |
| k | $=$ | 1.4 | |
| c_{p} | $=$ | 0.2399 | $\mathrm{Btu} / \mathrm{lbm} \cdot{ }^{\circ} \mathrm{R}$ |
| | | 187 | $\mathrm{ft} \cdot \mathrm{lbf} / \mathrm{lbm} \cdot{ }^{\circ} \mathrm{R}$ |
| T_{0} | $=$ | 710 | ${ }^{\circ} \mathrm{R}$ |
| p_{0} | $=$ | 25 | psi |
| p_{e} | $=$ | 2.5 | psi |

Equations and Computations:

From p_{0} and p_{e}, and Eq. 13.7a (using built-in function IsenMfromp (M, k))	$M_{\mathrm{e}}=$	2.16	
Using built-in function IsenT (M, k)	$T_{\mathrm{e}}=$	368	${ }^{\circ} \mathrm{R}$
Using $p_{\mathrm{e}}, M_{\mathrm{e}}$, and function $\operatorname{Rayp}(M, k)$	$p^{*}=$	7.83	psi
Using $T_{\mathrm{e}}, M_{\mathrm{e}}$, and function $\operatorname{Ray} T(M, k)$	$T^{*}=$	775	${ }^{\circ} \mathrm{R}$

We can now use Rayleigh-line relations to compute values for a range of Mach numbers:

M	T/T*	$T\left({ }^{\circ} \mathrm{R}\right)$	c (ft / s)	V (ft/s)	p / p^{*}	p (psi)	Δ $\left(\mathrm{ft} \cdot \mathrm{lbf} / \mathrm{lbm} \cdot{ }^{\circ} \mathrm{R}\right)$ Eq. $(12.11 \mathrm{~b})$
2.157	0.475	368	940	2028	0.32	2.5	0.00
2	0.529	410	993	1985	0.36	2.8	13.30
1.99	0.533						
1.98	0.536				urve	leigh)	
1.97	0.540						
1.96	0.544						
1.95	0.548						
1.94	0.552						\square
1.93	0.555					-	[
1.92	0.559					-	$\square-$
1.91	0.563					-	\bigcirc
1.9	0.567	$\boldsymbol{T}\left({ }^{\circ} \mathrm{R}\right){ }^{5}$		-		-	-
1.89	0.571						
1.88	0.575						
1.87	0.579						
1.86	0.584		-				
1.85	0.588						
1.84	0.592						
1.83	0.596			20	30	40	5060
1.82	0.600						
1.81	0.605					$f / 1 b^{\circ} \mathrm{R}$	
1.8	0.609						
1.79	0.613	475	1069	1913	0.44	3.4	31.06
1.78	0.618	479	1073	1909	0.44	3.5	31.90
1.77	0.622	482	1076	1905	0.45	3.5	32.73
1.76	0.626	485	1080	1901	0.45	3.5	33.57
1.75	0.631	489	1084	1897	0.45	3.6	34.40
1.74	0.635	492	1088	1893	0.46	3.6	35.23
1.73	0.640	496	1092	1889	0.46	3.6	36.06
1.72	0.645	499	1096	1885	0.47	3.7	36.89
1.71	0.649	503	1100	1880	0.47	3.7	37.72
1.7	0.654	507	1104	1876	0.48	3.7	38.54

Given. Frickonest (bow of aur "reur" a condarin aren dut

Finc: Sklam, Prep
Ssution:
Basic equalions: $h_{1} \cdot \frac{\nu_{1}^{2}}{\frac{2}{2}}+\frac{80}{d m}=h_{2}+\frac{y^{2}}{2} \quad P_{1} R-P_{2} R=\dot{M}\left(\psi_{2}-v_{1}\right)$
Computino equation: $T_{0} I_{T}=1+\frac{1}{E} M^{2}$
Assumptions: (A) stead, flow
5) $F_{z_{x}}=0$

(2) Fridionlew flow
13) uniform fiaw at a saction
m) ideai gas
b: ins $_{5}=$ insmear $=0$
(i) $\mathrm{L}_{2}=0$

$$
T \quad \bar{R}_{0_{2}} T_{O_{2}}
$$

$$
s
$$

From Appendin E.3

- for $M=0.5,-1-p+=1.75(12.300)$

$$
\therefore-p^{*}=6 a+2
$$

- For $A_{2}=0.90, P_{2} p_{p}^{*}=1.125(12.300)$

$$
\therefore-p_{2}=b a b p_{a}=p_{1}-p_{2}=404 k p_{a}
$$

$$
\begin{aligned}
& h_{1}+\frac{v_{1}^{2}}{2}+\frac{d \operatorname{da}}{d n}=h_{2}+\frac{y_{2}^{2}}{z}
\end{aligned}
$$

$$
\begin{aligned}
& T_{2}=\frac{T_{02}}{1+\frac{1}{E_{2}} H_{2}^{2}}=\frac{428 K}{1+0.2(0.90)^{2}}=411 \alpha
\end{aligned}
$$

$$
\begin{aligned}
& T_{O_{1}}=333 \mathrm{~K} \quad \leq-\cdots T_{0_{4}=478 \mathrm{~K}} \\
& P_{1}=40 \mathrm{MBa} \text { (abs) } \\
& M_{2}=0,0 \\
& M_{1}=0.50
\end{aligned}
$$

Given: Frictionless flow of air firougn a constant area duct

$$
\begin{array}{ll}
T_{1}=50 \mathrm{c} \\
R_{1}=2 \mathrm{Kkgh}^{3} \\
M_{1}=0.30 & P_{2}=150 \times \mathrm{C}_{0} \\
0 & M_{2}=0.60
\end{array}
$$

Find: Soldm, sz-s,
Solution:

Tds: $=d h-v d P$
Computina x_{0} pationg $T_{0} T=1$, N^{2}
Fissumptions: in stasisi flow
2. Fridisiless पíow
(3) uniform flow at a sertion
(4) idos gas

$$
p_{1}=p_{2} v_{2} \quad p_{2}=\frac{p_{2}}{k_{2}} \quad, \quad d_{2}=M_{2} c_{2}=M\left(\operatorname{le} c_{2}\right)^{l_{2}}
$$

$\therefore P_{1} H_{1}=\frac{P_{2}}{R_{2}} M\left(R_{2} C_{2}\right)^{2}=P_{2} x_{2}\left(\frac{R_{2}}{R T_{2}}\right)^{1}$. Solung for T2.

$T_{2}=-26 k$.

$T_{0,}=\left[1+\frac{Q_{2}}{2} M^{2}\right]=323 k\left[1+0.2(0.3)^{2}\right]=329 K$
$T_{O_{2}}=T_{2}\left[1, k_{2}^{2} M_{2}^{2}\right]=72 k_{2}\left[1+0.2(5.6)^{2}\right]=778 K$

* Romlingh-Live Fow Funtion (App E.3)

For $M_{1}=0.30$ To $T_{0}^{*}=0.34 b a$ $\therefore \vec{C}_{0}=94 g \mathrm{~K}$

$$
T . I_{T^{*}}=0.4089
$$

$$
\therefore r^{*}=790 \mathrm{~K}
$$

$$
p, 1 p^{+}=2.131
$$

$$
\therefore P^{*}=93.9 r 8 \mathrm{C} .
$$

For $M_{2}=0.160 \quad T_{0_{2}} T_{0}^{+}=0.8189$ $\therefore T_{0_{2}}=7.76$

$$
\begin{aligned}
& T_{2} T^{*}=0.966 \quad \therefore T_{2}=72 k k \\
& P_{2} t^{4}=1.5 a b \quad \therefore P_{2}=1506 k
\end{aligned}
$$

Hote: In using the fow furchois it is not recessary to knew $f_{2}=1504 \mathrm{fa}$

$$
\begin{aligned}
& \text { (} n \text { (b) } 8=0
\end{aligned}
$$

Problem 13.82

13.82 Air flows through a 5 -cm-inside diameter pipe with negligible friction. Inlet conditions are $T_{1}=15^{\circ} \mathrm{C}, p_{1}=1 \mathrm{MPa}$ (abs), and $M_{1}=0.35$. Determine the heat exchange per pound of air required to produce $M_{2}=1.0$ at the pipe exit, where $p_{2}=500 \mathrm{kPa}$.

Given: Frictionless air flow in a pipe
Find: \quad Heat exchange per lb (or kg) at exit, where 500 kPa

Solution:

Basic equations: $\mathrm{m}_{\text {rate }}$	$=\rho \cdot \mathrm{V} \cdot \mathrm{A} \quad \mathrm{p}=\rho \cdot \mathrm{R}$	$\frac{\delta Q}{d m}=c_{p} \cdot\left(\mathrm{~T}_{02}-\mathrm{T}_{01}\right)$	(Energy) $\mathrm{p}_{1}-$	$\mathrm{V}_{1} \cdot\left(\mathrm{~V}_{2}-\mathrm{V}_{1}\right)$	(Momentum)
Given or available data	$\mathrm{T}_{1}=(15+273) \cdot \mathrm{K}$	$\mathrm{p}_{1}=1 \cdot \mathrm{MPa}$	$\mathrm{M}_{1}=0.35$	$\mathrm{p}_{2}=500 \cdot \mathrm{kPa}$	$\mathrm{M}_{2}=1$
	$\mathrm{D}=5 \cdot \mathrm{~cm}$	$\mathrm{k}=1.4$	$c_{p}=1004 \cdot \frac{\mathrm{~J}}{\mathrm{~kg} \cdot \mathrm{~K}}$	$\mathrm{R}=286.9 \cdot \frac{\mathrm{~J}}{\mathrm{~kg} \cdot \mathrm{~K}}$	
At section 1	$\rho_{1}=\frac{\mathrm{P}_{1}}{\mathrm{R} \cdot \mathrm{T}_{1}}$	$\rho_{1}=12.1 \frac{\mathrm{~kg}}{\mathrm{~m}^{3}}$	$\mathrm{c}_{1}=\sqrt{\mathrm{k} \cdot \mathrm{R} \cdot \mathrm{T}_{1}}$	$\mathrm{c}_{1}=340 \frac{\mathrm{~m}}{\mathrm{~s}}$	
	$\mathrm{V}_{1}=\mathrm{M}_{1} \cdot \mathrm{c}_{1}$	$\mathrm{V}_{1}=119 \frac{\mathrm{~m}}{\mathrm{~s}}$			
From momentum	$\mathrm{V}_{2}=\frac{\mathrm{p}_{1}-\mathrm{P}_{2}}{\rho_{1} \cdot \mathrm{~V}_{1}}+\mathrm{V}_{1}$	$\mathrm{V}_{2}=466 \frac{\mathrm{~m}}{\mathrm{~s}}$			
From continuity	$\rho_{1} \cdot \mathrm{~V}_{1}=\rho_{2} \cdot \mathrm{~V}_{2}$	$\rho_{2}=\rho_{1} \cdot \frac{\mathrm{~V}_{1}}{\mathrm{~V}_{2}}$	$\rho_{2}=3.09 \frac{\mathrm{~kg}}{\mathrm{~m}^{3}}$		
Hence	$\mathrm{T}_{2}=\frac{\mathrm{P}_{2}}{\rho_{2} \cdot \mathrm{R}}$	$\mathrm{T}_{2}=564 \mathrm{~K}$	$\mathrm{T}_{2}=291{ }^{\circ} \mathrm{C}$		
and	$\mathrm{T}_{02}=\mathrm{T}_{2} \cdot\left(1+\frac{\mathrm{k}-}{2}\right.$		$\mathrm{T}_{02}=677 \mathrm{~K}$	$\mathrm{T}_{02}=403^{\circ} \mathrm{C}$	
with	$\mathrm{T}_{01}=\mathrm{T}_{1} \cdot\left(1+\frac{\mathrm{k}-}{2}\right.$		$\mathrm{T}_{01}=295 \mathrm{~K}$	$\mathrm{T}_{01}=21.9^{\circ} \mathrm{C}$	
Then	$\frac{\delta \mathrm{Q}}{\mathrm{dm}}=\mathrm{c}_{\mathrm{p}} \cdot\left(\mathrm{~T}_{02}-\mathrm{T}_{0}\right.$	$164 \cdot \frac{\mathrm{Btu}}{\mathrm{lbm}}=383 \cdot \frac{\mathrm{~kJ}}{\mathrm{~kg}}$			

(Note: Using Rayleigh line functions, for $\mathrm{M}_{1}=0.35 \frac{\mathrm{~T}_{0}}{\mathrm{~T}_{0 \text { crit }}}=0.4389$
so $\quad T_{0 \text { crit }}=\frac{T_{01}}{0.4389} \quad T_{0 \text { crit }}=672 \mathrm{~K}$ close to $\mathrm{T}_{2} \ldots$ Check!)
13.83 Liquid Freon, used to cool electronic components, flows steadily into a horizontal tube of constant diameter, $D=0.65 \mathrm{in}$. Heat is transferred to the flow, and the liquid boils and leaves the tube as vapor. The effects of friction are negligible compared with the effects of heat addition. Flow conditions are shown. Find (a) the rate of heat transfer and (b) the pressure difference, $p_{1}-p_{2}$.

$\begin{aligned} h_{1} & =25 \mathrm{Btu} / \mathrm{lbm} \\ \rho_{1} & =100 \mathrm{Ibm} / \mathrm{ft}^{3} \\ \dot{m} & =1.85 \mathrm{lbm} / \mathrm{s}\end{aligned}$
$h_{2}=65 \mathrm{Btu} / \mathrm{lbm}^{3}$
$\rho_{2}=100 \mathrm{lbm} / \mathrm{ft}^{3}$

Given: Frictionless flow of Freon in a tube
Find: Heat transfer; Pressure drop
NOTE: ρ_{2} is NOT as stated; see below

Solution:

Basic equations: $\mathrm{m}_{\text {rate }}=\rho \cdot \mathrm{V} \cdot \mathrm{A} \quad \mathrm{p}=\rho \cdot \mathrm{R} \cdot \mathrm{T}$	$\mathrm{Q}=\mathrm{m}_{\text {rate }} \cdot\left(\mathrm{h}_{02}-\mathrm{h}_{01}\right) \quad \mathrm{h}_{0}=\mathrm{h}+\frac{\mathrm{V}^{2}}{2}$	$\mathrm{P}_{1}-\mathrm{P}_{2}=\rho_{1} \cdot \mathrm{~V}_{1}$.
Given or available data $\mathrm{h}_{1}=25 \cdot \frac{\mathrm{Btu}}{\mathrm{lbm}}$	$\rho_{1}=100 \cdot \frac{\mathrm{lbm}}{\mathrm{ft}^{3}} \quad \mathrm{~h}_{2}=65 \cdot \frac{\mathrm{Btu}}{\mathrm{lbm}}$	$\rho_{2}=0.850 \cdot \frac{\mathrm{lbm}}{\mathrm{ft}^{3}}$
$\mathrm{D}=0.65 \cdot \mathrm{in}$	$\mathrm{A}=\frac{\pi}{4} \cdot \mathrm{D}^{2} \quad \mathrm{~A}=0.332 \mathrm{in}^{2}$	$\mathrm{m}_{\text {rate }}=1.85 \cdot \frac{\mathrm{lbm}}{\mathrm{s}}$
Then $\quad \mathrm{V}_{1}=\frac{\mathrm{m}_{\text {rate }}}{\rho_{1} \cdot \mathrm{~A}}$	$\mathrm{V}_{1}=8.03 \frac{\mathrm{ft}}{\mathrm{s}} \quad \mathrm{h}_{01}=\mathrm{h}_{1}+\frac{\mathrm{V}_{1}{ }^{2}}{2}$	$\mathrm{h}_{01}=25.0 \frac{\mathrm{Btu}}{\mathrm{lbm}}$
$\mathrm{V}_{2}=\frac{\mathrm{m}_{\text {rate }}}{\rho_{2} \cdot \mathrm{~A}}$	$\mathrm{V}_{2}=944 \frac{\mathrm{ft}}{\mathrm{s}} \quad \mathrm{h}_{02}=\mathrm{h}_{2}+\frac{\mathrm{V}_{2}{ }^{2}}{2}$	$\mathrm{h}_{02}=82.8 \frac{\mathrm{Btu}}{\mathrm{lbm}}$

The heat transfer is $\quad \mathrm{Q}=\mathrm{m}_{\text {rate }} \cdot\left(\mathrm{h}_{02}-\mathrm{h}_{01}\right)$

$$
\mathrm{Q}=107 \frac{\mathrm{Btu}}{\mathrm{~s}}
$$

(74 Btu/s with the wrong $\rho_{2}!$)

The pressure drop is

$$
\Delta \mathrm{p}=\rho_{1} \cdot \mathrm{~V}_{1} \cdot\left(\mathrm{~V}_{2}-\mathrm{V}_{1}\right)
$$

$$
\Delta \mathrm{p}=162 \mathrm{psi}
$$

(-1 psi with the wrong $\rho_{2}!$)

Problem 13.84
Given: Fricturnies flow of our in a contantiorea burt

Find: a) V_{2} and T_{2} bs \dot{s}
Solution:
Basic equations: $\quad h_{1} \cdot \frac{y_{2}^{2}}{E_{2}}+\frac{\delta \theta}{d m}=h_{2}+\frac{y_{2}^{2}}{2} \quad$ PA -PR $R=A\left(v_{2}-\psi_{1}\right)$ computing equation: $T_{\overline{7}}=1 \cdot \frac{8_{-1}^{2}}{2} n^{2}$
Assumptions: in steady, Trow uniform flow at a section s) ideal gas

$$
\begin{aligned}
& V_{2}=1520 \mathrm{ft} \mathrm{l}_{\mathrm{s}}
\end{aligned}
$$

From continuity $p_{2}=\frac{y_{1}}{J_{2}} p_{1}=\frac{219}{520} \times 0.081 \frac{b 4}{f^{2}}=0.017 \operatorname{ban}_{4} L_{t^{3}}$

$$
\begin{aligned}
& T_{0}=T_{1}\left(1+H^{2} H^{3}\right)=500\left[1+0.2\left(0,2^{2}\right)^{2}\right]=504^{\circ} \mathrm{K}
\end{aligned}
$$

$$
\begin{aligned}
& M_{2}=\frac{d_{2}}{C_{2}}=\frac{15 i 0}{2360}=0.644 \quad T_{O_{2}}=T_{2}\left[1+\frac{t_{2}}{2}+H_{2}^{2}\right]=2306[1+0.2(0.644)]=25008
\end{aligned}
$$

Since $h_{0}=h+\frac{y^{2}}{2}$, the energy eq, can be written as $\frac{s a}{4 n}=h_{0_{2}}$ - h_{0}

$$
\begin{aligned}
& \dot{Q}=740 \text { Btuls }
\end{aligned}
$$

At (E) $p_{2} 1 p^{*}=1.55 \quad \therefore A_{2}=0.646$
5
$A l=0 T_{O_{2}} T_{0}^{\circ}=0.8644, \therefore T_{O_{2}}=2560^{\circ} \mathrm{R}$ and $T_{2} K^{2}=0.9408 \quad \therefore T_{2}=2280^{\circ} \mathrm{R}$

Problem 13.85

Given：Frictionless flow of air through a constant area duct．

$$
T_{1}=52^{\circ} \mathrm{C}
$$

$$
P_{1}=60 \text { (kPalabs) }
$$

$$
\begin{array}{ll}
T_{2}=45^{\circ} \mathrm{C} & \text { in }=1.42 \mathrm{~kg} \mathrm{ls}^{2} \\
M_{2}=1.0 & y=100 \mathrm{~mm}
\end{array}
$$

（1）
Find：$\delta Q_{\text {ld }}, s_{2}-S_{1}, P_{O_{1}}-P_{O_{2}}$
Solution：
Basic equations：$h_{1}+\frac{V_{1}^{2}}{2}+\frac{\delta Q}{d m}=h_{2}+\frac{J_{2}^{2}}{2} \quad T d s=d h-v d P$

$$
\text { Computing equations: } T_{0} T T=1+\frac{k-1}{2} M^{2}
$$

$$
\left.P_{0}\right|_{P}=\left[1+\frac{k-1}{2} M^{2}\right]^{k \mid t-1}
$$

Assumptions: (i) steady flow
（a）frictionless flow
（4）ideal gas
（5）$W_{5}=W^{\prime} G_{\text {ghat }}=0$
T

＊Raylrigh－Line Flow Functions．
From Appendix $E .3$ for $M_{1}=0.71 B$

$$
\begin{aligned}
& T_{0} 1 T_{0}^{*}=0.954(12.30 d) \therefore T_{0}^{*}=T_{0_{2}}=381 \mathrm{~K} \\
& P_{0} 1 P_{0}^{*}=1.024(12.300) \therefore P_{0}^{*}=P_{O_{2}}=87.4 \mathrm{kha} \\
& P_{1} 1 P^{*}=1.299(12.300) \therefore P^{*}=-P_{2}=46.2 \mathrm{kPa}
\end{aligned}
$$

$$
\begin{aligned}
& A=\frac{\pi D^{2}}{4}=\frac{\pi}{4}(0.1)^{2} n^{2}=7.85 \times 10^{-3} n^{2} \\
& P=P R T \quad P_{1}=\frac{P_{1}}{R T}=60 \times 10^{3} \frac{\mathrm{~N}}{\mathrm{~m}^{2}} \times \frac{\mathrm{lq} / \mathrm{K}}{287 \mathrm{~N} \cdot \mathrm{M}} \times \frac{1}{325 K}=0.643 \mathrm{kgh} \mathrm{~m}^{3} \\
& i=P U A \quad V_{1}=\frac{m}{p,}=1.42 \frac{\mathrm{~kg}}{\mathrm{~s}} \times \frac{n^{3}}{0.643 \mathrm{~kg}} \times \frac{1}{7.85 \times 10^{-3} \mathrm{n}^{2}}=\left.281 \mathrm{n}\right|_{\mathrm{s}}
\end{aligned}
$$

$$
\begin{aligned}
& n=p_{1} N_{A} A=p_{2} V_{2} R ; p_{2}=\frac{V_{1}}{V_{2}} p_{1}=\frac{281}{357} \times\left. 0.643 \mathrm{gg}\right|_{n^{3}}=0.506 \mathrm{~kg} / n^{3} \\
& P=P R T \quad P_{2}=P_{2} R T_{2}=0.50 \mathrm{log} \frac{\mathrm{~kg}}{\mathrm{~m}^{3}} \times 287 \frac{\mathrm{NM}}{\mathrm{~kg} \cdot \mathrm{~K}} \times 318 \mathrm{~K}=46.2 \mathrm{kPa} \text {. } \\
& T d s=d h-25 d P=C_{p} d T-\frac{1}{p} d P \quad d s=C_{p} \frac{d T}{T}-R \frac{d P}{p}
\end{aligned}
$$

$$
\begin{aligned}
& \text { (3) uniform flow at a section } \\
& \text { (b) } b z=0 \\
& T_{0} 1 T=1+\frac{1-1}{2} M^{2} \quad T_{0,}=T_{1}\left[1+\frac{k}{\frac{1}{2}} M_{1}^{2}\right]=325 K\left[1+0.2(0,72)^{2}\right]=364 K \\
& T_{O_{2}}=T_{2}\left[1+\frac{1-1}{2} M_{2}^{2}\right]=318 \times\left[1+0.2(1.0)^{2}\right]=382 K \\
& h_{1}+\frac{v_{2}^{2}}{2}+\frac{\delta Q}{d x}=h_{2}+\frac{v_{2}^{2}}{2} \\
& \frac{\delta Q}{\delta_{m}}=h_{O_{2}}-h_{O_{1}}=C_{p}\left(T_{O_{2}}-T_{0_{1}}\right)=1.0 \frac{\mathrm{~kJ}}{\mathrm{Eq}_{\mathrm{q}} \cdot \mathrm{~K}}(382-364) \mathrm{K}=\left.\left.18 \mathrm{~kJ}\right|_{\mathrm{kg}} \quad \delta \mathrm{o}\right|_{\mathrm{dm}} \\
& P_{0} \left\lvert\, p=\left[1+\frac{k_{2}}{2} n^{2}\right]^{t}\right. \\
& P_{0}=P_{1}\left[1+P_{2}^{2} M_{1}\right]^{b / l_{1}}=60 \mathrm{~b} P_{a}\left[1+0.2(0.778)^{2}\right]^{35}=89.5 \mathrm{bla} \\
& P_{a_{2}}=P_{2}\left[1+\frac{b_{1}}{2} M_{2}^{2}\right]^{4 l}=46.2 \mathrm{bla}\left[1+0.2(1.0)^{2}\right]^{3.5}=87.5 \mathrm{bk} \\
& P_{a_{1}}-P_{0_{2}}=(89.5-87.5) P_{a_{0}}=2.0 \mathrm{BPa} \quad P_{a_{0}}-P_{0_{2}}
\end{aligned}
$$

Gwen: Combuster modeled as fritusniess fow Covan a constant area suct wit nea tramsin He-fuel ratio is larae man, so preperves are "ose of our

$$
\begin{aligned}
& T_{1}=1200^{\circ} \mathrm{R} \quad T_{2}=840^{\circ} \mathrm{R}
\end{aligned}
$$

$$
\begin{aligned}
& v_{1}=609 l_{\mathrm{h}} \frac{1}{D}--\frac{1}{0}=\frac{1}{(2)}
\end{aligned}
$$

Heaing salue of the axel $s 18.000$ Stultom.
Find: a) f_{2} b) α (c) infmat
Solution:
Basce rquations: $h_{1}+\frac{\nu_{2}^{2}}{2}+\frac{\delta Q}{d N}=h_{2}+\frac{\psi_{2}^{2}}{2} \quad$ PA- $P_{2} A=\hat{n}\left(\psi_{2}-\psi_{1}\right)$
Computing equation: $\quad T_{0}=\| \frac{1}{2} M^{2}$
Assumpluant " Eleady flow as fritioniles flow
(3) deat gat properis are Mose four
4) uniforr fow at a section

$$
\begin{aligned}
& \left.T_{O_{2}}=T_{2}\left[1+b_{-1} M_{2}^{2}\right]=184 a_{-}^{-} 1+0.2(0.47 b)^{2}\right]=19.20^{\circ} \mathrm{R}
\end{aligned}
$$

$$
\therefore=2270 \text { shuls }
$$

$$
\begin{aligned}
& M_{\text {f }} \text { in }_{\text {aus }}=0.26 / 15=0.0684
\end{aligned}
$$

$$
\begin{aligned}
& -p_{2}=p_{1}-\frac{\dot{m}_{4}}{H}\left(\psi_{2}-\psi_{1}\right)=p_{1}-p_{1} v_{1}\left(\psi_{2}-\psi_{1}\right)
\end{aligned}
$$

Rayleigh-Line Flow Functions (Appe.E.3) For $\overrightarrow{r a}_{14}=0.35$,

$$
\begin{aligned}
& T_{0} T_{0}=0.4389(12.30 d) \quad \therefore T_{0}^{+}=2940^{\circ} \mathrm{R} \\
& T_{1} / T^{*}=0.5141(12.30 b) \quad \therefore T^{*}=2450^{\circ} \mathrm{R} \\
& p_{1} 1 p^{*}=2.0487(12.300) \quad \therefore p^{*}=14.7 \text {-psin } \\
& \text { For } M_{h}=0.4 r_{0} \\
& T_{02} T_{0}=0.6551 \quad \therefore T_{0_{2}}=1930^{\circ} \mathrm{R} \\
& T_{2} K^{*}=0.7522 \quad \therefore T_{2}=1840^{\circ} R \\
& P_{2} \mid e^{*}=1.822 \quad \therefore \theta_{2}=209 \text { paia }
\end{aligned}
$$

13.87 Consider frictionless flow of air in a duct with $D=10$ cm . At section (1), the temperature and pressure are $0^{\circ} \mathrm{C}$ and 70 kPa ; the mass flow rate is $0.5 \mathrm{~kg} / \mathrm{s}$. How much heat may be added without choking the flow? Evaluate the resulting change in stagnation pressure.

Given: Frictionless flow of air in a duct
Find: Heat transfer without choking flow; change in stagnation pressure

Solution:

Basic equations:

$$
\begin{array}{ll}
\frac{\mathrm{T}_{0}}{\mathrm{~T}}=1+\frac{\mathrm{k}-1}{2} \cdot \mathrm{M}^{2} & \frac{\mathrm{p}_{0}}{\mathrm{p}}=\left(1+\frac{\mathrm{k}-1}{2} \cdot \mathrm{M}^{2}\right)^{\frac{\mathrm{k}}{\mathrm{k}-1}} \\
\mathrm{p}_{1}-\mathrm{p}_{2}=\frac{\mathrm{m}_{\text {rate }}}{\mathrm{A}} \cdot\left(\mathrm{~V}_{2}-\mathrm{V}_{1}\right) & \frac{\delta \mathrm{Q}}{\mathrm{dm}}=\mathrm{c}_{\mathrm{p}} \cdot\left(\mathrm{~T}_{02}-\mathrm{T}_{01}\right)
\end{array}
$$

Given or available data $\mathrm{T}_{1}=(0+273) \cdot \mathrm{K}$

$$
\mathrm{p}_{1}=70 \cdot \mathrm{kPa}
$$

$$
\mathrm{m}_{\text {rate }}=0.5 \cdot \frac{\mathrm{~kg}}{\mathrm{~s}}
$$

$$
\mathrm{D}=10 \cdot \mathrm{~cm}
$$

$\mathrm{A}=\frac{\pi}{4} \cdot \mathrm{D}^{2}$

$$
\mathrm{A}=78.54 \mathrm{~cm}^{2} \quad \mathrm{k}=1.4
$$

$$
\mathrm{M}_{2}=1
$$

$$
c_{p}=1004 \cdot \frac{\mathrm{~J}}{\mathrm{~kg} \cdot \mathrm{~K}}
$$

$$
\mathrm{R}=286.9 \cdot \frac{\mathrm{~J}}{\mathrm{~kg} \cdot \mathrm{~K}}
$$

At state 1

$$
\rho_{1}=\frac{\mathrm{P}_{1}}{\mathrm{R} \cdot \mathrm{~T}_{1}}
$$

$$
\rho_{1}=0.894 \frac{\mathrm{~kg}}{\mathrm{~m}^{3}}
$$

$$
\mathrm{c}_{1}=\sqrt{\mathrm{k} \cdot \mathrm{R} \cdot \mathrm{~T}_{1}}
$$

$$
\mathrm{c}_{1}=331 \frac{\mathrm{~m}}{\mathrm{~s}}
$$

From continuity

$$
\mathrm{V}_{1}=\frac{\mathrm{m}_{\text {rate }}}{\rho_{1} \cdot \mathrm{~A}} \quad \mathrm{~V}_{1}=71.2 \frac{\mathrm{~m}}{\mathrm{~s}} \quad \text { then } \quad \mathrm{M}_{1}=\frac{\mathrm{V}_{1}}{\mathrm{c}_{1}} \quad \mathrm{M}_{1}=0.215
$$

From momentum

Hence

$$
p_{1}-p_{2}=\frac{m_{\text {rate }}}{A} \cdot\left(V_{2}-V_{1}\right)=\rho_{2} \cdot V_{2}^{2}-\rho_{1} \cdot V_{1}^{2} \quad \text { but } \quad \rho \cdot V^{2}=\rho \cdot c^{2} \cdot M^{2}=\frac{p}{R \cdot T} \cdot k \cdot R \cdot T \cdot M^{2}=k \cdot p \cdot M^{2}
$$

$$
\mathrm{p}_{1}-\mathrm{p}_{2}=\mathrm{k} \cdot \mathrm{p}_{2} \cdot \mathrm{M}_{2}^{2}-\mathrm{k} \cdot \mathrm{p}_{1} \cdot \mathrm{M}_{1}^{2} \quad \text { or } \quad \mathrm{p}_{2}=\mathrm{p}_{1} \cdot\left(\frac{1+\mathrm{k} \cdot \mathrm{M}_{1}^{2}}{1+\mathrm{k} \cdot \mathrm{M}_{2}^{2}}\right)
$$

$$
\mathrm{p}_{2}=31.1 \mathrm{kPa}
$$

From continuity

$$
\rho_{1} \cdot \mathrm{~V}_{1}=\frac{\mathrm{P}_{1}}{\mathrm{R} \cdot \mathrm{~T}_{1}} \cdot \mathrm{M}_{1} \cdot \mathrm{c}_{1}=\frac{\mathrm{p}_{1}}{\mathrm{R} \cdot \mathrm{~T}_{1}} \cdot \mathrm{M}_{1} \cdot \sqrt{\mathrm{k} \cdot \mathrm{R} \cdot \mathrm{~T}_{1}}=\sqrt{\frac{\mathrm{k}}{\mathrm{R}}} \cdot \frac{\mathrm{P}_{1} \cdot \mathrm{M}_{1}}{\sqrt{\mathrm{~T}_{1}}}=\rho_{2} \cdot \mathrm{~V}_{2}=\sqrt{\frac{\mathrm{k}}{\mathrm{R}} \cdot \frac{\mathrm{p}_{2} \cdot \mathrm{M}_{2}}{\sqrt{\mathrm{~T}_{2}}}}
$$

Hence

$$
\frac{\mathrm{p}_{1} \cdot \mathrm{M}_{1}}{\sqrt{\mathrm{~T}_{1}}}=\frac{\mathrm{p}_{2} \cdot \mathrm{M}_{2}}{\sqrt{\mathrm{~T}_{2}}} \quad \mathrm{~T}_{2}=\mathrm{T}_{1} \cdot\left(\frac{\mathrm{p}_{2}}{\mathrm{p}_{1}} \cdot \frac{\mathrm{M}_{2}}{\mathrm{M}_{1}}\right)^{2} \quad \mathrm{~T}_{2}=1161 \mathrm{~K} \quad \mathrm{~T}_{2}=888^{\circ} \mathrm{C}
$$

Then

$$
\begin{array}{lll}
\mathrm{T}_{02}=\mathrm{T}_{2} \cdot\left(1+\frac{\mathrm{k}-1}{2} \cdot \mathrm{M}_{2}^{2}\right) & \mathrm{T}_{02}=1394 \mathrm{~K} & \mathrm{~T}_{01}=\mathrm{T}_{1} \cdot\left(1+\frac{\mathrm{k}-1}{2} \cdot \mathrm{M}_{1}^{2}\right)^{2} \quad \mathrm{~T}_{01}=276 \mathrm{~K} \\
\mathrm{p}_{02}=\mathrm{p}_{2} \cdot\left(1+\frac{\mathrm{k}-1}{2} \cdot \mathrm{M}_{2}^{2}\right)^{\frac{\mathrm{k}}{\mathrm{k}-1}} & \mathrm{p}_{02}=58.8 \mathrm{kPa} & \mathrm{p}_{01}=\mathrm{p}_{1} \cdot\left(1+\frac{\mathrm{k}-1}{2} \cdot \mathrm{M}_{1}^{2}\right)^{\frac{\mathrm{k}}{\mathrm{k}-1}} \quad \mathrm{p}_{01}=72.3 \mathrm{kPa}
\end{array}
$$

Finally

$$
\frac{\delta \mathrm{Q}}{\mathrm{dm}}=\mathrm{c}_{\mathrm{p}} \cdot\left(\mathrm{~T}_{02}-\mathrm{T}_{01}\right)=1.12 \cdot \frac{\mathrm{MJ}}{\mathrm{~kg}} \quad \Delta \mathrm{p}_{0}=\mathrm{p}_{02}-\mathrm{p}_{01} \quad \Delta \mathrm{p}_{0}=-13.5 \mathrm{kPa}
$$

(Using Rayleigh functions, at $M_{1}=0.215 \quad \frac{T_{01}}{T_{0 \text { crit }}}=\frac{T_{01}}{T_{02}}=0.1975 \quad T_{02}=\frac{T_{01}}{0.1975} \quad T_{02}=1395 \mathrm{~K} \quad \begin{aligned} & \text { and ditto for } p_{02} \\ & \text {...Check!) }\end{aligned}$

Given: Frictionless how of air throuah a contank-area duct supplied by a convergng- awerging nozie

Find: V_{2}, M_{2}, baldm
Solution.
Basic rquations: $h_{1}+\frac{y_{1}^{2}}{幺} \cdot \frac{d e}{d m}=h_{2}+\frac{v_{2}^{2}}{2}$

Computing equation $\quad T_{0} I T=1+\frac{1}{2} n^{2}$
Assumptions: in Eleadi Alow
(2) Crictiontess flow
3) unifoxm flow at ascilion
a. ideak gos
(5) $F_{I_{x}}=0$
(b) $w_{s}=$ whear $=0$
(1) $E=0$

$$
T_{0} T=\frac{k-1}{E_{2} M^{2}} \quad T_{1}=\frac{T_{0}}{1+\frac{k_{2}}{Z_{1}} L_{1}}=\frac{0700 k}{1+0.2(30)^{2}}=250 \mathrm{k}
$$

3
$\left(e_{1}-P_{2}\right) A=P, \psi_{1} A\left(\psi_{2}-\psi_{1}\right) \quad \therefore \psi_{2}=\psi_{1}+\frac{\left(e_{1}-P_{2}\right)}{Q_{1} \psi_{1}}$. Soluing for ψ_{2},
\qquad
From continuity, $\rho_{2}=\rho_{1} \frac{y_{1}}{y_{4}}=0.304 \frac{\mathrm{~kg}}{n^{3}} \times \frac{951}{96}=0.334 \mathrm{gq} / \mathrm{m}^{3}$

T: Rayleig -hre Flow Furtuons (Appondix E.3)

$$
\begin{aligned}
& \text { For } N_{1}=3.0, T_{0}, T_{0}^{*}=0.6540, T_{0}^{*}=1060 \mathrm{~K} \\
& T_{1} 1 T^{*}=0.2803 \therefore T^{*}=892 \mathrm{~K} \\
& -Q_{1} 1 p^{*}=0.765 \therefore-p^{*}=124 \mathrm{kfa} \\
& \forall 1 v^{2}=1.588 \quad \therefore v^{2}=599 \mathrm{Mb}_{5}
\end{aligned}
$$

R sactun for $\rightarrow 2 / p^{*}=0.3742$

$$
\begin{aligned}
& M_{2}=1.866 \\
& T_{02} T_{0}=0.800 \quad \therefore T_{02}=856 k \\
& T_{2} / T_{2}=0.342 \quad \therefore T_{2}=483 k \\
& T_{2} \mid T^{2}=1.447 \quad \therefore V_{2}=867 \mathrm{kl} .
\end{aligned}
$$

Problem 13.89
Given: Frictionless flow of air through a constant area duct.

Find: $M_{2}, T_{2}, T_{02}, \dot{Q}$

Solution:
*Compressible flow function's (Append dix E) to be used in solution Basic equation: $h_{1}+\frac{V_{1}^{2}}{2}+\frac{\delta Q}{d i n}=h_{2}+\frac{y_{2}^{2}}{2}$
Assumptions: in steady flow
(a) frictionless flow
(5) $F_{B_{x}}=0$
(3) uniform flow at a section
(4) ideal gas
$h=0.02 \mathrm{~m}^{2}$
$n=1.83 \mathrm{gg} \mathrm{l}_{\mathrm{c}}$
(6) $w_{s}=w_{\text {shear }}=0$
(7) $g=0$

$$
\begin{aligned}
& p_{1}=\frac{P_{1}}{R_{1}}=126 \times 10^{3} \frac{1}{n^{2}} \times \frac{\tan k}{287 N \cdot n} \times \frac{1}{533 k}=0.8237 \operatorname{tg}_{n} h^{3} \\
& \dot{m}=\text { p.v.A } \quad V_{1}=\frac{\dot{\tilde{m}}}{p_{1 H}}=1.83 \frac{\mathrm{~kg}}{\mathrm{~s}} \times \frac{m^{3}}{0.8237 \mathrm{~kg}} \times \frac{1}{0.02 m^{2}}=11 \mathrm{n} l_{\mathrm{s}}
\end{aligned}
$$

$$
\begin{aligned}
& M_{1}=\frac{111}{463}=0.240 \\
& \text { From App.E.I, } T_{0,1}\left(T_{1}=1.012(11.36) \quad \therefore T_{01}=539 \mathrm{~K}\right. \\
& \text { From App E.3, } T_{0} \cdot T_{0}^{*}=0.2395(12.300), T_{1} T^{*}=0.28+1(12.300), P . V_{0}^{*}=2.221(12.300) \\
& \therefore T_{0}^{+}=2250 \mathrm{~K} \quad \vec{T}^{*}=1876 \mathrm{~K} \quad P^{*}=56.73 \mathrm{kPa}
\end{aligned}
$$

At section (2) $\quad \frac{P_{2}}{F_{2}}=\frac{101}{\text { Shins }}=1.180$ From Arp F. 3 (Eq.12.30.0), $A=0.50$ \qquad Also, $T_{02} / T_{0}=0.6 a m(12300), T_{2} / k=0.1901$. Therefore: $T_{O_{2}}=1556 k, T_{2}=1480 \mathrm{~K}, T_{0_{2}} T_{2}$

$$
\begin{gathered}
\dot{Q}=m \frac{\delta Q}{d M}=m(h \\
\dot{Q}=1.86 \mathrm{~mJ} / \mathrm{s}
\end{gathered}
$$

Problem 13.90

Given: Frictionless flow of air through a constant area duct.

$$
m=1.42 \operatorname{lgg} l_{\sec }
$$

$$
D=100 \mathrm{~mm}
$$

Find: bold, fluid properties at section (8)
Solution:
Compressible flow functions (Appendix E) to be used in solution Basic equation: $h_{1}+\frac{V_{2}^{2}}{2}+\frac{6 q}{d n}=h_{2}+\frac{v_{2}^{2}}{2}$
Assumptions: (1) steady flow
(3) frictionless flow
(4) ideal gas
(3) uniform flow at a section
(5) $w_{s}=w_{\text {Shear }}=0$
(b) $b=0$

From App E.N, $\quad T_{1} T_{0}=0.8925 \quad{ }^{H} P_{P_{0}}=0.6717 \quad \therefore T_{0}=364 \mathrm{~K}, P_{0}=89.3 \mathrm{kPa}$

$$
\begin{aligned}
& \therefore T_{\mathrm{O}_{2}}=382 \mathrm{~K}, P_{\mathrm{O}_{2}}=87.2 \mathrm{kPa}, T_{2}=318 \mathrm{~K}, P_{2}=46.1 \mathrm{kPa}, P_{2}=0.50 \mathrm{~h}^{\mathrm{h}} \mathrm{~m}, V_{2}=358 \frac{\mathrm{k}}{\mathrm{~s}}-()_{2} \\
& \mathrm{SQ}_{\mathrm{m}}=h_{\mathrm{O}_{2}}-h_{0_{1}}=c_{p}\left(T_{0_{2}}-T_{01}\right)=1.0 \frac{\mathrm{bJ}}{\mathrm{~kg}} \mathrm{~K}(382-364) \mathrm{k}=18.0^{\mathrm{kJ}} \operatorname{l\mathrm {lgg}} \mathrm{~m} \quad \mathrm{dol} / \mathrm{dm}
\end{aligned}
$$

$$
\begin{aligned}
& A=\frac{\pi P^{2}}{4}=\frac{\pi}{4}(0.1)^{2} \mathrm{~m}^{2}=7.85 \times 10^{-3} \mathrm{~m}^{2} \\
& p=p R T \\
& p_{1}=\frac{P_{1}}{R_{1}}=60+10^{3} \frac{\mathrm{~N}}{n^{2}} \times \frac{\mathrm{kg} \cdot \mathrm{k}}{287 \mathrm{H}_{n}} \times \frac{1}{325 k}=0.643 \mathrm{gg}_{n^{3}} \\
& \dot{m}=p 4 \mathrm{p} \quad V_{1}=\frac{\dot{m}}{\rho^{f A}}=1.42 \frac{\mathrm{~kg}}{\mathrm{~s}} \times 0 . \frac{n^{3}}{643 \mathrm{~g}} \times \frac{1}{7.85 \times 10^{-3} \mathrm{~m}^{2}}=281 \mathrm{ml} \\
& A_{1}=\frac{H_{1}}{c_{1}} \quad c_{1}=\left(k R T_{1}\right)^{1 / 2}=\left(1.4 \times 287 \frac{\mathrm{~N} . \mathrm{m}}{\mathrm{~kg} \mathrm{~K}^{2}} \times 32.5 \mathrm{k} \times \frac{\mathrm{kg} \cdot \mathrm{~m}}{\sqrt{1.6^{2}}}\right)^{1 / 2}=362 \mathrm{nb} \\
& M_{1}=\frac{V_{1}}{C_{1}}=\frac{2.81}{3 b_{2}}=0.776
\end{aligned}
$$

Problem 13,91

Given: Frictionless flow of air through a constant area duct

Find: $\delta Q l_{d m}, s_{2}-s_{1}, P_{0}-P_{O_{2}}$
Solution:
*Compressible flow functions (AppendinE) to be used in solution Basic equations: $h_{1} \cdot \frac{y_{1}^{2}}{2}+\frac{\delta_{0}}{d m}=h_{2}+\frac{y_{2}^{2}}{2}$
$T d s=d h-v d P$
Assumptions: (1) sleady flow
(a) frictiontess flow
(4) ideal oos
(3) uniform flow at a section
(5) $\mathrm{w}_{s}=$ instear $^{\text {sen }}=0$
(b) $\Delta z=0$

Fron Hpp.E.3 $T_{0},\left.\right|_{T_{0}}=0.3469(12.30 d), p_{0}, l_{0}^{*}=1.199(12.300)$

$$
\therefore T_{0}^{*}=948 \mathrm{~K} \quad P_{0}^{*}=178 \mathrm{kPa}
$$

$M_{2}=0.60$ From App.E. $3 \quad T_{O_{2}} 1 T_{0}^{*}=0.8189$ (12.30d); $P_{O_{2}} / P_{0}^{*}=1.075$ (12.308)

$$
\therefore T_{O_{2}}=77 b k \quad P_{O_{2}}=191 \mathrm{kta}
$$

$$
P_{0_{1}}-P_{\mathrm{O}_{2}}=(213-191) l P_{a}=22 \mathrm{kPa}
$$

$$
\frac{\operatorname{lo}}{\lg \cdot k}(776-329) k=447 \mathrm{~kJ} \log
$$

$$
d s=c_{p} \frac{d T}{T}-R \frac{d P}{5}
$$

$$
S_{2}-s_{1}=S_{O_{2}}-s_{0_{1}}=\int_{S_{0_{1}}}^{S_{0_{2}}} d s=\int_{T_{0_{1}}}^{T_{0_{2}}} C_{p} \frac{d T}{T}-\int_{P_{0_{1}}}^{P_{O_{2}}} R \frac{d P}{p}=T_{O_{2}}^{T_{0_{1}}}-R \ln \frac{P_{O_{2}}}{P_{O_{1}}}
$$

$S_{2}-S_{1}=1.0 \frac{\mathrm{~kJ}}{\frac{\mathrm{~kg}}{\mathrm{k}}} \ln \frac{776}{329}-0.287 \frac{\mathrm{~kg}}{\mathrm{~kg} \cdot \mathrm{~K}} \ln \frac{191}{213}=0.889$
$b=\log _{k}$

$$
\left.\delta_{0}\right|_{d_{m}}=h_{0_{2}}-h_{0_{1}}=c_{p}\left(T_{0_{2}}-T_{0}\right)=1.0 \frac{\mathrm{bJ}_{0} \cdot k}{}(776-329)_{x}=447 \mathrm{~kJ} / \log \quad \delta_{d m}
$$

$T d s=d h-v d p=c_{p} d T-\frac{1}{p} d p$

$$
\begin{aligned}
& d s=c_{p} \frac{d T}{T}-R \\
& R \frac{d P}{p}=c_{p} h \\
& \frac{191}{213}=0.889
\end{aligned}
$$

T

$$
\begin{aligned}
& P_{1}=R . R T=2.6 \frac{\mathrm{~kg}}{\mathrm{M}^{3}} \times 2.87 \frac{\mathrm{~N} \cdot \mathrm{~N}}{\mathrm{~kg} \mathrm{~K}^{K}} \times 323 \mathrm{~K}=200 \mathrm{kPa} \\
& M_{1}=0.30 \text { From A-pe Eil } T_{1} T_{0_{1}}=0.9823\left(11-1 b_{b}\right) \text {, Pithes } 0.9395 \text { (IN1/D) } \\
& \therefore T_{0}=329 \mathrm{~K} \quad P_{0}=213 \mathrm{kPa}
\end{aligned}
$$

Problem 13.92
Gwen: Fir enters an engine combustion chamber where heat is added during a frictionless process in a tube with constant area, $A=0.01 \mathrm{~m}^{2}$. Conditions are as shown.

Find: (a) M_{2} (b) P_{1}.
(c) $\mathrm{PO}_{2}-\mathrm{PO}_{\mathrm{N}}$

Solution: * Compressible flow functions (Appendi xe) to be used in solution Basic equations: $h_{\Delta_{1}}+\frac{b Q}{d m}=h_{o_{2}}$

$$
\dot{H}=p Y A \quad p=p E T
$$

Assumptions:
(1) steady flow
(2) Frictionless flow
(3) ideal gas (4) uniform flow at a section

$$
\text { (5) } i_{s}=\text { ins hear }^{2}=0
$$

From the energy equation, $\dot{Q}=i\left(h_{0_{2}}-h_{0_{1}}\right)=i c_{p}\left(T_{0_{2}}-T_{0}\right)$

$$
\therefore T_{O_{2}}=T_{01}+\frac{Q}{M C_{4}}=427 k+40+10^{3} w \times \frac{5}{0.5 \mathrm{gg}^{2}} \times \frac{\mathrm{g} \cdot \mathrm{~K}}{10045} \times \frac{\mathrm{s}}{\mathrm{~W} \cdot 5}=1232 \mathrm{~K}
$$

$H_{C}^{\prime} M_{1}=0.3$, from App $E .3$, $T_{0 .} T_{0}^{+}=0.3469 \quad \therefore T_{0}^{*}=1231 \mathrm{~K}$
Since $T_{0} z T_{0}^{t}$, then $M_{2}=1.0$
$\therefore t_{2}=-p^{*}=22.9$ t pa
From thepardix E. 3 for $M_{1}=0.3, p_{1} 1 p^{4}=2.131 \therefore P_{1}=48.8 \mathrm{tpa} p_{1}$

$$
" \text { " } " \text { " } M=0.3, f_{1} p_{0}=0.9395 \quad \therefore P_{0}=51.9 \text { \&a. }
$$

From Appendix ENl for $M_{2}=1.0, \quad P_{2} / P_{O_{2}}=0.5283 \quad \therefore P_{O_{2}}=43.3 \mathrm{kPa}$.

$$
\left.\begin{array}{rl}
\therefore P_{0_{2}}-P_{0} & =(43.3-51.9) b P_{a}
\end{array}\right)=-8.6 \text { kP a } \quad \begin{aligned}
\Delta P_{0} & \left.=-\frac{8.6}{51.9}=-0.166 \text { (or }-1.6 .6_{0}^{\circ} b\right)
\end{aligned}
$$

T

ΔP_{0}
(1)
s
13.93 Flow in a gas turbine combustor is modeled as steady, one-dimensional, frictionless heating of air in a channel of constant area. For a certain process, the inlet conditions are $500^{\circ} \mathrm{C}$, 1.5 MPa (abs), and $M=0.5$. Calculate the maximum possible heat addition. Find all fluid properties at the outlet section and the reduction in stagnation pressure. Show the process path on a Ts diagram, indicating all static and stagnation state points.

Given: Data on flow through gas turbine combustor
Find: Maximum heat addition; Outlet conditions; Reduction in stagnation pressure; Plot of process

Solution:

The given or available data is:

R	$=$	286.9	$\mathrm{~J} / \mathrm{kg} \cdot \mathrm{K}$
k	$=$	1.4	
c_{p}	$=$	1004	$\mathrm{~J} / \mathrm{kg} \cdot \mathrm{K}$
T_{1}	$=$	773	
K			
p_{1}	$=$	1.5	
M_{1}	$=$	0.5	

Equations and Computations:

| From | $p_{1}=\rho_{1} R T_{1}$ | $\rho_{1}=6.76$ | $\mathrm{~kg} / \mathrm{m}^{3}$ |
| :--- | :--- | :--- | :--- | :--- |
| From | $V_{1}=M_{1} \sqrt{k R T_{1}}$ | $V_{1}=6279$ | $\mathrm{~m} / \mathrm{s}$ |

Using built-in function $\operatorname{Isen} T(\mathrm{M}, \mathrm{k})$:

$$
T_{01} / T_{1}=1.05 \quad T_{01}=812 \mathrm{~K}
$$

Using built-in function Isenp (M, k):

$$
p_{01} / p_{1}=1.19 \quad p_{01}=1.78 \quad \mathrm{MPa}
$$

For maximum heat transfer: $\quad M_{2}=1$

Using built-in function $\operatorname{rayT0}(\mathrm{M}, \mathrm{k}), \operatorname{rayp} 0(\mathrm{M}, \mathrm{k}), \operatorname{ray} T(\mathrm{M}, \mathrm{k}), \operatorname{rayp}(\mathrm{M}, \mathrm{k}), \operatorname{rayV}(\mathrm{M}, \mathrm{k})$:

$T_{01} / T_{0}{ }^{*}=$	0.691	$T_{0}{ }^{*}=$	1174	K	$\left(=T_{02}\right)$
$p_{01} / p_{0}{ }^{*}=$	1.114	$p_{0}{ }^{*}=$	1.60	MPa	$\left(=p_{02}\right)$
$T / T^{*}=$	0.790	$T^{*}=$	978	K	$\left(=T_{02}\right)$
$p / p^{*}=$	1.778	$p^{*}=$	0.844	MPa	$\left(=p_{2}\right)$
$\rho^{*} / \rho=$	0.444	$\rho^{*}=$	3.01	$\mathrm{~kg} / \mathrm{m}^{3}$	$\left(=\rho_{2}\right)$

Note that at state 2 we have critical conditions!
$\begin{array}{lllll}\text { Hence: } & p_{012}-p_{01}= & -0.182 & \mathrm{MPa} & -182\end{array}$

From the energy equation: $\quad \frac{\delta Q}{d m}=c_{p}\left(T_{02}-T_{01}\right)$

$$
\delta Q / d m=364 \quad \mathrm{~kJ} / \mathrm{kg}
$$

Gwen: Combustor modeled as frictionless Row through a constantarea duet with heat addition. Air fuel ratio is large enough so properties are these of air

Find: a) $T_{2}, P_{2}, p_{2}, M_{2}$
(b) \dot{Q}

Solution: (using confressible flow functions - Appendix E)
Basic equation: $h_{1}+\frac{V_{2}^{2}}{2}+\frac{\delta \theta}{\delta / 2}=h_{E}+\frac{v_{2}^{2}}{2} \quad-p=p t \quad \quad i=p 4 A$
Assumptions: i) steady flow (a) frictionless flow
(3) death gas, properties are hose of our
(4) uniform flow at a section
(5) $w_{s}=i_{\text {shans }}=0$

$$
P T_{P_{0}}=0.9395 \quad \therefore P_{0}=212.9 \text { psia. }
$$

From continuity,$p_{1} H_{1}=p_{2} H_{2}$

At section (3) $\quad y_{2} / y^{*}=2000 / 2193=0,9120$
From Ape E. $3 \quad M_{2}=0.90$

$$
\begin{align*}
& T_{02}\left|T_{0}^{*}=0.9921, P_{0}\right| p_{0}^{*}=1.005, T_{2} T_{T}^{*}=1.025, T_{2} \mid p_{1}^{*}=1.125 \tag{2}\\
& \therefore T_{O_{2}}=2380 \mathrm{R}, P_{0_{2}}=78 \text { psia, } T_{2}=2050 \mathrm{R}, P_{2}=106 \text { qua, } T_{0}, P_{P_{2}} T_{2}
\end{align*}
$$

From the energy equation,

$$
\begin{aligned}
& \dot{Q}=\text { in }^{\delta Q_{Q}}=p_{N}, A\left(h_{O_{2}}-h_{O_{1}}\right)=p, \forall, A C_{p}\left(T_{O_{2}}-T_{O_{1}}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \dot{Q}=5.16 \times 10^{4} \mathrm{Btu} l_{\mathrm{s}} \quad \dot{Q}
\end{aligned}
$$

Gwen: Steachy flow combustor operating under conditions shown? Assume thermodynamic prepertive are those of pure air.

Find: (a) To z
(b) M_{2}
(c) Soldo, \dot{Q}
(d) $\dot{a} 1 \dot{a}_{\text {max }}$

$T_{1}=604 \mathrm{~K}$
$P_{1}=557 \mathrm{kPa}$ (abs)
$\mathrm{M}_{1}=0.4$

(2) $T_{2}=900 \mathrm{~K}$

Solution:
(using comprasibly flow functions- Appendix E)
Basie equations: $\quad h_{1}+\frac{V_{1}^{2}}{2}+\frac{\delta Q}{d m}=h_{2}+\frac{y_{2}^{2}}{2} \quad$ in $=p+A \quad-p=p A_{1}$
Assumptions: (1) steady flow is ideal gas
(3) unifier flow at a section
(4) $\dot{\omega}_{s}=\omega_{\text {shear }}=0$

$$
\begin{aligned}
& M=P, H=3.2, \frac{\mathrm{~kg}}{m^{3}} \times 197 \frac{n}{s} \times 0.0185 n^{2}=11.2 \mathrm{lg} \mathrm{ls}
\end{aligned}
$$

From App. Ell at M, $=0.4$, $T_{1} T_{0}=0.969 \quad \therefore T_{0,}=623 \mathrm{~K}$

$$
\therefore T^{*}=982 \text { and } T_{0}^{*}=1180 \mathrm{~K}
$$

At section (3) $T_{2}=900 \mathrm{~K} \quad \therefore\left(T T^{*}\right)_{2}=0.9 i b$
From He. E. 3, $M_{2}=0.60, T_{\left.0, H_{0}\right)_{2}}=0.8189$

$$
\therefore T_{0_{2}}=a b b k, M_{2}=0.60 \& M_{2} T_{02}
$$

From the energy equation.

$$
\begin{aligned}
& \dot{Q}=i \frac{\delta Q}{d x}=\| i \frac{\mathrm{~kg}_{\mathrm{g}}}{\mathrm{sec}} \times 343 \frac{\mathrm{~kJ}}{\mathrm{~kg}}=406 \frac{\mathrm{~kJ}}{\mathrm{sec}}=4010 \mathrm{kw}+\frac{Q}{\mathrm{Q}} \\
& \text { The heat transfer may be expressed } \\
& \text { as a fraction of the maximum } \\
& \text { possible treat addition } \\
& \frac{\text { Suldn }}{(\text { soldntha }}=\frac{T_{O_{2}-T_{01}}^{T_{0}-T_{0}}}{T_{0}}=\frac{9 d_{0}-623}{1180-623}=0.610 \ldots
\end{aligned}
$$

Given: Supersonic wind tunnel, with test section Mach number $M=3$, is supplied from a high-pressure tank of ar at $25^{\circ} \mathrm{C}$. Fur from Me tori is heated in a short, constant area section upstrear of fie converging-dwerging nozzle which feeds pe test set tret treed addition $\dot{Q}=10 \mathrm{kN}$ is sufficient to ensure $T>O^{\circ} \mathrm{C}$ at the entrance to the test section

Find: $(a) T_{0}$
(b) in max
(c) A_{e} / A_{t}

Solution:

(wing compressible flow functues)
$T_{e} \geqslant 273 \mathrm{~K}$
Base equations:

$$
h_{1}+\frac{y_{1}^{2}}{2}+\frac{\delta \theta}{d m}=h_{2}+\frac{y_{2}^{2}}{2}
$$

$$
\text { in=ply } \quad e=p R 1
$$

Assumptions:
(i) steady flow (2) uniform flow at a section
(3) Fretefriless flow in the heater
(4) "sertropic Tow Trough fie nozzle
(5) deal gas
(b) $\mathrm{w}_{s}=\mathrm{i}_{\text {Sn ear }}=0^{\text {ob }}$
$T_{0 .}=T=298 \mathrm{k}$
From Appendix EN at $H=3, T\left(T_{0}=0.357 \mathrm{C}, A_{e} / A_{A}^{*}=A_{e} / A_{2}=4.23\right.$, $\frac{A_{t}}{A_{t}}$ with $T_{e}=213 k, T_{O_{2}}=T_{0_{2}}=273 k 10.3501=76 k K \ldots T_{02}$
From the ervergy equation $\quad \frac{\delta Q}{d N}=h_{0_{2}}-h_{0_{1}}=C_{p}\left(T_{0_{2}}-T_{0_{0}}\right)$ Since $Q=$ in $\frac{S Q}{d M}$, then $i n=\frac{\dot{Q}}{C_{p}\left(T_{O_{2}}-T_{0}\right)}$
and

Given: Frictionless flow of air in a constant-area duct, discharging to atmospheric pressure, with the flow conditions shown.

-

Patm(outslide)
Find: (a) Compare p_{2} with atmospheric press cere.
(b) Is M_{2} greater than, equal to, or less than unity?
(c) Sketch p vs. x along the channel.

Solution: Apply equations for Raykigh line flow of an ideal gas.
Basic equations: $\quad C_{P} T_{o_{1}}+\frac{\delta Q}{d m}=C_{D} T_{o_{2}} \quad p_{1} A-p_{1} A=\dot{m}\left(V_{L}-V_{1}\right)$
Computing equation: $T_{0}=T\left(1+\frac{k-1}{2} M^{2}\right)$
Assumptions: (I) Steady flow
(5) $F_{B_{x}}=0$
(2) Frictionless flow
(6) $\dot{\omega}_{s}=\omega_{\text {shear }}=0$
(3) Uniform flow at each section
(7) $\Delta z=0$
(4) Ideal gas

The minimum possible Mach number for supersonic flow with heating is Maw 1 .

$$
\begin{aligned}
& T_{D_{1}}=T_{1}\left(1+\frac{L_{1}}{2} M^{2}\right)=215^{\circ} R\left(1+0.2(3.0)^{2}\right)=613^{\circ} R \\
& T_{D_{2}}=T_{D_{1}}+\frac{1}{C_{0}} \frac{\delta Q}{d m}=6.3^{\circ} R+\frac{1 b m}{0.240 B+\mu} \times 48.5 \frac{B+C}{16 m}=815^{\circ} R
\end{aligned}
$$

Check for $M_{2}=1.0: T_{2}=\frac{T_{02}}{1+0.2(i)^{2}}=\frac{815 \mathrm{R}}{1.2}=679^{\circ} \mathrm{R}$

$$
V_{2}=c_{2}=\sqrt{k R T_{2}}=1,280 \mathrm{ft} / \mathrm{s}
$$

Thus $p_{2}=p_{1}+\frac{\dot{m}}{A}\left(v_{1}-V_{2}\right)=p_{1}+p_{1} v_{1}\left(v_{1}-v_{2}\right)$

$$
\begin{aligned}
& V_{1}=M_{1} C_{1}=M_{1} \sqrt{K R T_{1}}=3.0 \times 719 \frac{\mathrm{ft}}{\mathrm{~s}}=2,160 \mathrm{ft} / \mathrm{s} ; \quad \rho_{1}=\frac{p_{1}}{R T_{1}}=0.0217 / 6 \mathrm{~m} / \mathrm{fr}{ }^{3}
\end{aligned}
$$

Thus if $M_{2}=1.0$, the $p_{2}<$ fate, which is not possible tor sonic flow. Therefore
$p_{2}<p_{a+m}$ and $M_{2}>1.0$ for this flow.
The pressure vs distance plot is:
$\left\{\begin{array}{l}\text { This problem could be solved } \\ \text { quantitatively, but only by either }\end{array}\right\}$.
iteration or θ_{g} use of compressible flow

For $M_{1}=3.0$, from App. $E_{1} 3: \frac{T_{0}}{T_{0}^{*}}=0.6540$, and $\frac{p}{p^{*}}=0.1765$
Thus $T_{0}^{*}=\frac{T_{01}}{\left(T_{0} T_{0}^{*}\right)_{1}}=\frac{613^{\circ} \mathrm{R}}{0.655_{0}}=937^{\circ} \mathrm{R}:{p^{*}}^{*}=\frac{p_{1}}{\left(p_{1} P^{*}\right)}=\frac{1.73 \rho \operatorname{sia}}{0.1765^{\circ}}=9.80 \mathrm{psia}$
At section 2, $T_{02}=815 R$ and $\frac{T_{02}}{T_{0}{ }^{4}}=\frac{815^{\circ} R}{937^{\circ} R}=0.870$
From App. E. 3 this corresponds to $M_{2}=1.74$. At this Mach number, $\frac{p}{p}=0.4581$.
Thus $p_{2}=p^{*}\left(\frac{p}{p^{*}}\right)_{2}=9.80 \rho s i a_{x} 0.4581=4.49 \rho \operatorname{sia}$
$\left\{\right.$ These calculations confirm that $M_{z}>1$ and $p_{2}<$ fath. $\}$

Given: Arcratt cabin pressurization $\leq 4 \operatorname{stem}, \dot{m}=0.75 \mathrm{Bm} / \mathrm{s}$
Cruise is $M=0.85$ at $z=40,000$ ft (State 1)
Air slowed sentropicaliz to 100 ft ls w.r.toplane (state Z) Air compressed adiabatzaily to presseere equivalent to 8,000 ff altitrede; $\Delta T=170^{\circ} \mathrm{F}($ state 3$) ; v_{3} \simeq v_{2}$

Air is cooled at constant pressleve, with nevil isle friction to $70^{\circ} \mathrm{F}$ (state 4); $V_{4} \simeq$ U

Find: (a) sketch a syitem diagram, labeling ali components.
(b) Determine static and stagnation temperatures at each cross-section.
(c) Evarceate compressor work added and heat rejected in cooing process.

Solution: From the standard atmosphere, at $z_{1}=40,000 \mathrm{ft}$, $T_{1}=-70^{\circ} \%$ and $p_{1}=2.73$ psia

$$
\begin{aligned}
& C_{1}=\sqrt{k R T_{1}}=\left[1.4 \times 53.3 \frac{f+16 f}{16 m} \times(460-70)^{\circ} R_{\times} 32.2 \frac{16 m}{5 / 109} \times \frac{5 / \mathrm{kg} \cdot f+}{167 \cdot \mathrm{~g}}\right]^{\frac{1}{2}}=968 \frac{\mathrm{ft}}{5} \\
& V_{1}=M_{1} C_{1}=0.85 \times 968 \frac{f t}{5}=823 \mathrm{ft} / \mathrm{s}
\end{aligned}
$$

For isentropic deceleration $T_{D_{1}}=T_{1}+\frac{V_{1}^{2}}{2 \varphi_{p}}=T_{D 2}=T_{2}+\frac{v_{2}{ }^{2}}{2 C_{p}}$

$$
\begin{aligned}
& T_{2}=T_{1}+\frac{1}{Z c_{p}}\left(V_{1}^{2}-V_{2}^{2}\right)
\end{aligned}
$$

For isentropic deceleration,

$$
p_{2}=p_{1}\left(\frac{T_{2}}{T_{1}}\right)^{k / k-1}=2.73 \text { psia }\left(\frac{445}{340}\right)^{3.5}=4.33 \text { psia }
$$

The compressor nouses the air the equivalent of $z_{3}=z_{4}=8,000 f t$; from the Standard Atmosphere

$$
p_{3}=p_{4}=10.92 p s i a ; p_{03}=p_{3}\left(1+\frac{k-1}{2} M_{3}^{2}\right)^{\frac{k}{k-1}}=10.92\left(1+0.2\left(0.0823^{2 i}\right)^{3.5}=10.97 p \operatorname{sia}\right.
$$

Assume $V_{2} \simeq V_{3} \simeq V_{4}$ sirice no other data are known. The system is

Evaluating properties: $T_{01}=T_{1}\left(1+\frac{k^{-1}}{2} M_{1}^{2}\right)=390^{\circ} R\left(1+0.2(0.8)^{2}\right)=446^{\circ} R+T_{D 2}$

$$
\begin{aligned}
& P_{D_{1}}=p_{1}\left(1+\frac{k-1}{2} M_{1}^{2}\right)^{\frac{k}{k-1}}=2.73 \text { psia }\left(1+0.2(0.85)^{2}\right)^{3.5}=4.38 \mathrm{psia}=p_{02} \\
& T_{3}=T_{2}+170^{\circ} R=445+170^{\circ} \mathrm{K}=65^{\circ} \mathrm{R} ; T_{03}=T_{\Delta t}+170^{\circ} \mathrm{R}=611^{\circ} \mathrm{R}\left(\text { since } V_{2} \simeq \text { cost }\right)
\end{aligned}
$$

From: the every equation

$$
\begin{align*}
& \dot{\omega}_{i n}=\dot{m}\left(h_{3}-h_{2}\right)=\dot{m} \varphi\left(T_{3}-T_{2}\right) \\
& \dot{w}_{\text {in }}=0.75 \frac{\mathrm{~km}}{\mathrm{~S}} \times 2.240 \frac{\mathrm{Btu}}{16 \mathrm{miR}}\left(170 \rho_{R_{x}} 778 \frac{\mathrm{ft} \cdot 1 \mathrm{Lt}}{\mathrm{Bth}} \times \frac{\mathrm{hp} .5}{550 \mathrm{ft} \cdot 14 \mathrm{f}}=43.3 \mathrm{hp}\right. \\
& \dot{Q}_{i n}=\dot{m}\left(h_{4}-h_{3}\right)=\dot{m} c_{p}\left(T_{4}-T_{3}\right) \tag{out}
\end{align*}
$$

The entropy changes are computed using \bar{d} do $=$ dh-volp, as

The $1 s$ diagram is:

Problem 13.99

13.99 Testing of a demolition explosion is to be evaluated. Sensors indicate that the shock wave generated at the instant of explosion is 30 MPa (abs). If the explosion occurs in air at $20^{\circ} \mathrm{C}$ and 101 kPa , find the speed of the shock wave, and the temperature and speed of the air just after the shock passes. As an approximation assume $k=1.4$. (Why is this an approximation?)

Given: Normal shock due to explosion
Find: Shock speed; temperature and speed after shock \xrightarrow{V}

Solution:

Shock at rest

Basic equations:

$$
\begin{array}{ll}
\mathrm{M}_{2}^{2}=\frac{\mathrm{M}_{1}^{2}+\frac{2}{\mathrm{k}-1}}{\left(\frac{2 \cdot k}{\mathrm{k}-1}\right) \cdot \mathrm{M}_{1}^{2}-1} & \mathrm{~V}=\mathrm{M} \cdot \mathrm{c}=\mathrm{M} \cdot \sqrt{\mathrm{k} \cdot \mathrm{R} \cdot \mathrm{~T}} \\
\frac{\mathrm{p}_{2}}{\mathrm{p}_{1}}=\frac{2 \cdot \mathrm{k}}{\mathrm{k}+1} \cdot \mathrm{M}_{1}{ }^{2}-\frac{\mathrm{k}-1}{\mathrm{k}+1} & \frac{\mathrm{~T}_{2}}{\mathrm{~T}_{1}}=\frac{\left(1+\frac{\mathrm{k}-1}{2} \cdot \mathrm{M}_{1}{ }^{2}\right) \cdot\left(\mathrm{k} \cdot \mathrm{M}_{1}{ }^{2}-\frac{\mathrm{k}-1}{2}\right)}{\left(\frac{\mathrm{k}+1}{2}\right)^{2} \cdot \mathrm{M}_{1}{ }^{2}}
\end{array}
$$

Given or available data $\mathrm{k}=1.4 \quad \mathrm{R}=286.9 \cdot \frac{\mathrm{~J}}{\mathrm{~kg} \cdot \mathrm{~K}} \quad \mathrm{p}_{2}=30 \cdot \mathrm{MPa} \quad \mathrm{p}_{1}=101 \cdot \mathrm{kPa} \quad \mathrm{T}_{1}=(20+273) \cdot \mathrm{K}$

From the pressure ratio $\quad \mathrm{M}_{1}=\sqrt{\left(\frac{\mathrm{k}+1}{2 \cdot k}\right) \cdot\left(\frac{\mathrm{p}_{2}}{\mathrm{p}_{1}}+\frac{\mathrm{k}-1}{\mathrm{k}+1}\right)} \quad \mathrm{M}_{1}=16.0$

Then we have

$$
\begin{aligned}
\mathrm{T}_{2} & =\mathrm{T}_{1} \cdot \frac{\left(1+\frac{\mathrm{k}-1}{2} \cdot \mathrm{M}_{1}^{2}\right) \cdot\left(\mathrm{k} \cdot \mathrm{M}_{1}^{2}-\frac{\mathrm{k}-1}{2}\right)}{\left(\frac{\mathrm{k}+1}{2}\right)^{2} \cdot \mathrm{M}_{1}^{2}} \\
\mathrm{M}_{2} & =\sqrt{\frac{\mathrm{M}_{1}^{2}+\frac{2}{\mathrm{k}-1}}{\left(\frac{2 \cdot \mathrm{k}}{\mathrm{k}-1}\right) \cdot \mathrm{M}_{1}^{2}-1}}
\end{aligned} \mathrm{~T}_{2}=14790 \mathrm{~K} \quad \mathrm{~T}_{2}=14517 \cdot{ }^{\circ} \mathrm{C}
$$

Then the speed of the shock $\left(V_{\mathrm{S}}=V_{1}\right)$ is

$$
\mathrm{V}_{1}=\mathrm{M}_{1} \cdot \sqrt{\mathrm{k} \cdot \mathrm{R} \cdot \mathrm{~T}_{1}} \quad \mathrm{~V}_{1}=5475 \frac{\mathrm{~m}}{\mathrm{~s}} \quad \mathrm{~V}_{\mathrm{s}}=\mathrm{V}_{1} \quad \mathrm{~V}_{\mathrm{s}}=5475 \frac{\mathrm{~m}}{\mathrm{~s}}
$$

After the shock $\left(V_{2}\right)$ the speed is

$$
\mathrm{V}_{2}=\mathrm{M}_{2} \cdot \sqrt{\mathrm{k} \cdot \mathrm{R} \cdot \mathrm{~T}_{2}} \quad \mathrm{~V}_{2}=930 \frac{\mathrm{~m}}{\mathrm{~s}}
$$

But we have

$$
\mathrm{V}_{2}=\mathrm{V}_{\mathrm{s}}-\mathrm{V} \quad \mathrm{~V}=\mathrm{V}_{\mathrm{s}}-\mathrm{V}_{2} \quad \mathrm{~V}=4545 \frac{\mathrm{~m}}{\mathrm{~s}}
$$

These results are unrealistic because at the very high post-shock temperatures experienced, the specific heat ratio will NOT be constant! The extremely high initial air velocity and temperature will rapidly decrease as the shock wave expands in a spherical manner and thus weakens.
13.100 A large tank containing air at 125 psia and $175^{\circ} \mathrm{F}$ is attached to a converging-diverging nozzle that has a throat area of $1.5 \mathrm{in}^{2}$ through which the air is exiting. A normal shock sits at a point in the nozzle where the area is $2.5 \mathrm{in}^{2}$. The nozzle exit area is $3.5 \mathrm{in}^{2}$. What are the Mach numbers just after the shock and at the exit? What are the stagnation and static pressures before and after the shock?

Given: C-D nozzle with normal shock

Find: Mach numbers at the shock and at exit; Stagnation and static pressures before and after the shock

Solution:

$$
\frac{A}{A_{\text {crit }}}=\frac{1}{M} \cdot\left(\frac{1+\frac{\mathrm{k}-1}{2} \cdot \mathrm{M}^{2}}{\frac{\mathrm{k}+1}{2}}\right)^{\frac{\mathrm{k}+1}{2 \cdot(\mathrm{k}-1)}} \quad \frac{\mathrm{p}_{0}}{\mathrm{p}}=\left(1+\frac{\mathrm{k}-1}{2} \cdot \mathrm{M}^{2}\right)^{\frac{\mathrm{k}}{\mathrm{k}-1}}
$$

Basic equations: Isentropic flow $\quad \frac{A}{A_{\text {crit }}}=\frac{1}{M} \cdot\left(\frac{1+\frac{\mathrm{k}-1}{2} \cdot \mathrm{M}^{2}}{\frac{\mathrm{k}+1}{2}}\right)^{2 \cdot(\mathrm{k}-1)}$

$$
\frac{\mathrm{p}_{02}}{\mathrm{p}_{01}}=\frac{\left(\frac{\frac{\mathrm{k}+1}{2} \cdot \mathrm{M}_{1}^{2}}{1+\frac{\mathrm{k}-1}{2} \cdot \mathrm{M}_{1}^{2}}\right)^{\frac{\mathrm{k}}{\mathrm{k}-1}}}{\left(\frac{2 \cdot \mathrm{k}}{\mathrm{k}+1} \cdot \mathrm{M}_{1}^{2}-\frac{\mathrm{k}-1}{\mathrm{k}+1}\right)^{\frac{1}{\mathrm{k}-1}}}
$$

$$
\left.\begin{array}{llll}
\text { Given or available data } & \mathrm{k}=1.4 & \mathrm{R}_{\mathrm{air}}=53.33 \cdot \frac{\mathrm{ft} \cdot \mathrm{lbf}}{\mathrm{lbm} \cdot \mathrm{R}} & \mathrm{P}_{01}=125 \cdot \mathrm{psi}
\end{array} \mathrm{~T}_{0}=(175+460) \cdot \mathrm{R}\right)
$$

Because we have a normal shock the CD must be accelerating the flow to supersonic so the throat is at critical state.

$$
A_{\text {crit }}=A_{t}
$$

At the shock we have $\frac{A_{s}}{A_{\text {crit }}}=1.667$
At this area ratio we can find the Mach number before the shock from the isentropic relation $\frac{A_{s}}{A_{\text {crit }}}=\frac{1}{M_{1}} \cdot\left(\frac{1+\frac{\mathrm{k}-1}{2} \cdot \mathrm{M}_{1}^{2}}{\frac{\mathrm{k}+1}{2}}\right)^{\frac{\mathrm{k}+1}{2 \cdot(\mathrm{k}-1)}}$
Solving iteratively (or using Excel's Solver, or even better the function isenMsupfromA from the Web site!)

$$
\mathrm{M}_{1}=1.985
$$

The stagnation pressure before the shock was given:

$$
\mathrm{P}_{01}=125 \mathrm{psi}
$$

The static pressure is then

$$
\mathrm{p}_{1}=\frac{\mathrm{p}_{01}}{\left(1+\frac{\mathrm{k}-1}{2} \cdot \mathrm{M}_{1}^{2}\right)^{\frac{\mathrm{k}}{\mathrm{k}-1}}}
$$

$$
\mathrm{p}_{1}=16.4 \mathrm{psi}
$$

After the shock we have $\quad M_{2}=\sqrt{\frac{M_{1}{ }^{2}+\frac{2}{k-1}}{\left(\frac{2 \cdot k}{k-1}\right) \cdot M_{1}{ }^{2}-1}}$

$$
\mathrm{M}_{2}=0.580
$$

$$
\mathrm{P}_{02}=\mathrm{P}_{01} \cdot \frac{\left(\frac{\frac{\mathrm{k}+1}{2} \cdot \mathrm{M}_{1}^{2}}{1+\frac{\mathrm{k}-1}{2} \cdot \mathrm{M}_{1}^{2}}\right)^{\frac{\mathrm{k}}{\mathrm{k}-1}}}{\left(\frac{2 \cdot \mathrm{k}}{\mathrm{k}+1} \cdot \mathrm{M}_{1}^{2}-\frac{\mathrm{k}-1}{\mathrm{k}+1}\right)^{\frac{1}{\mathrm{k}-1}}}
$$

Also

$$
\mathrm{P}_{02}=91.0 \mathrm{psi}
$$

and

$$
\mathrm{p}_{2}=\mathrm{p}_{1} \cdot\left(\frac{2 \cdot \mathrm{k}}{\mathrm{k}+1} \cdot \mathrm{M}_{1}^{2}-\frac{\mathrm{k}-1}{\mathrm{k}+1}\right)
$$

$$
\mathrm{p}_{2}=72.4 \mathrm{psi}
$$

Finally, for the Mach number at the exit, we could find the critical area change across the shock; instead we find the new critical area from isentropic conditions at state 2.

$$
A_{\text {crit2 }}=A_{s} \cdot M_{2} \cdot\left(\frac{1+\frac{\mathrm{k}-1}{2} \cdot M_{2}^{2}}{\frac{\mathrm{k}+1}{2}}\right)^{-\frac{\mathrm{k}+1}{2 \cdot(\mathrm{k}-1)}} \quad A_{\text {crit2 }}=2.06 \mathrm{in}^{2}
$$

At the exit we have $\quad \frac{\mathrm{A}_{\mathrm{e}}}{\mathrm{A}_{\text {crit2 }}}=1.698$
At this area ratio we can find the Mach number before the shock from the isentropic relation $\frac{A_{e}}{A_{c r i t 2}}=\frac{1}{M_{e}} \cdot\left(\frac{1+\frac{\mathrm{k}-1}{2} \cdot \mathrm{M}_{\mathrm{e}}^{2}}{\frac{\mathrm{k}+1}{2}}\right)^{\frac{\mathrm{k} \cdot(\mathrm{k}-1)}{2}}$

Solving iteratively (or using Excel's Solver, or even better the function isenMsubfromA from the Web site!)

$$
\mathrm{M}_{\mathrm{e}}=0.369
$$

These calculations are obviously a LOT easier using the Excel functions available on the Web site!
13.101 A normal shock occurs when a pitot-static tube is inserted into a supersonic wind tunnel. Pressures measured by the tube are $p_{0_{2}}=10$ psia and $p_{2}=8$ psia. Before the shock, $T_{1}=285^{\circ} \mathrm{R}$ and $p_{1}=1.5 \mathrm{psia}$. Calculate the air speed in the wind tunnel.

Given: Normal shock near pitot tube

Find: Air speed

Solution:

Basic equations: $\quad \mathrm{p}_{1}-\mathrm{p}_{2}=\rho_{1} \cdot \mathrm{~V}_{1} \cdot\left(\mathrm{~V}_{2}-\mathrm{V}_{1}\right)$
(Momentum)
$\frac{\mathrm{p}_{0}}{\mathrm{p}}=\left(1+\frac{\mathrm{k}-1}{2} \cdot \mathrm{M}^{2}\right)^{\frac{\mathrm{k}}{\mathrm{k}-1}}$

Given or available data $\mathrm{T}_{1}=285 \cdot \mathrm{R}$
$\mathrm{p}_{1}=1.75 \cdot \mathrm{psi}$
$\mathrm{P}_{02}=10 \cdot \mathrm{psi} \quad \mathrm{P}_{2}=8 \cdot \mathrm{psi}$

$$
\mathrm{k}=1.4 \quad \mathrm{R}_{\mathrm{air}}=53.33 \cdot \frac{\mathrm{ft} \cdot \mathrm{lbf}}{\mathrm{lbm} \cdot \mathrm{R}}
$$

At state 2

$$
\mathrm{M}_{2}=\sqrt{\frac{2}{\mathrm{k}-1} \cdot\left[\left(\frac{\mathrm{p}_{02}}{\mathrm{p}_{2}}\right)^{\frac{\mathrm{k}-1}{\mathrm{k}}}-1\right]}
$$

$$
\mathrm{M}_{2}=0.574
$$

From momentum

$$
\begin{aligned}
& \mathrm{p}_{1}-\mathrm{p}_{2}=\rho_{2} \cdot \mathrm{~V}_{2}^{2}-\rho_{1} \cdot \mathrm{~V}_{1}^{2} \\
& \mathrm{p}_{1}-\mathrm{p}_{2}=\mathrm{k} \cdot \mathrm{p}_{2} \cdot \mathrm{M}_{2}^{2}-\mathrm{k} \cdot \mathrm{p}_{1} \cdot \mathrm{M}_{1}^{2}
\end{aligned}
$$

but
$\rho \cdot \mathrm{V}^{2}=\rho \cdot \mathrm{c}^{2} \cdot \mathrm{M}^{2}=\frac{\mathrm{p}}{\mathrm{R} \cdot \mathrm{T}} \cdot \mathrm{k} \cdot \mathrm{R} \cdot \mathrm{T} \cdot \mathrm{M}^{2}=\mathrm{k} \cdot \mathrm{p} \cdot \mathrm{M}^{2}$
or
$\mathrm{p}_{1} \cdot\left(1+\mathrm{k} \cdot \mathrm{M}_{1}^{2}\right)=\mathrm{p}_{2} \cdot\left(1+\mathrm{k} \cdot \mathrm{M}_{2}{ }^{2}\right)$

Hence

$$
\mathrm{M}_{1}=\sqrt{\frac{1}{\mathrm{k}} \cdot\left[\frac{\mathrm{p}_{2}}{\mathrm{p}_{1}} \cdot\left(1+\mathrm{k} \cdot \mathrm{M}_{2}^{2}\right)-1\right]}
$$

$\mathrm{M}_{1}=2.01$

Also

$$
\mathrm{c}_{1}=\sqrt{\mathrm{k} \cdot \mathrm{R}_{\mathrm{air}} \cdot \mathrm{~T}_{1}}
$$

$c_{1}=827 \frac{\mathrm{ft}}{\mathrm{s}}$

Then

$$
\mathrm{V}_{1}=\mathrm{M}_{1} \cdot \mathrm{c}_{1}
$$

$V_{1}=1666 \frac{\mathrm{ft}}{\mathrm{s}}$

Note: With $\mathrm{p}_{1}=1.5$ psi we obtain
(Using normal shock functions, for $\frac{\mathrm{p}_{2}}{\mathrm{p}_{1}}=4.571$ we find

Problem Bung

Given: Steady flow of air through a constant area duct.

Find: P_{2}, M_{2}, sketch pressure distribution
Solution:
Basic equation: $h_{1}+\frac{V_{2}^{2}}{2}=h_{2}+\frac{\nu_{2}^{2}}{2}$
Assumptions: (i) steady flow
(4) $y=0$
(2) uniform flow at a suction
(5) ideal gas
(3) $Q=w_{s}$. in shear $=0$
(b) $A_{1}=A_{2}=A$

$$
\begin{aligned}
& h_{1}+\frac{v_{1}^{2}}{2}=h_{2}+\frac{V_{2}^{2}}{2} \quad T_{2}=T_{1}+\frac{1}{2 C_{p}}\left(\psi_{1}^{2}-V_{2}^{2}\right)
\end{aligned}
$$

$$
\begin{aligned}
& T_{2}=982^{\circ} R
\end{aligned}
$$

$$
\begin{align*}
& M_{2}=\frac{1080}{1540}=0.701 \tag{2}
\end{align*}
$$

From continuity $\quad p_{1} V_{1}=p_{2} J_{2} \quad p_{2}=V_{V_{2}} P_{1}=\frac{V_{1}}{V_{2}} \frac{P_{1}}{R T_{1}}$

$$
p_{2}=\frac{2400}{1080} \times 35.9 \frac{\mathrm{bb}}{\mathrm{~m}^{2}} \times \frac{\operatorname{brik}}{53.3 \mathrm{f} .6 t} \times \frac{1}{6008} \times \frac{144 \mathrm{in}^{2}}{\mathrm{ft}^{2}}=0.359 \mathrm{lbm}_{\mathrm{t}} / \mathrm{ft}^{3}
$$

T
(b)

(b)

Gisen: Atobai-presure prok is placed in a suparsone $G_{o w}, M=2.0$.

Solution:
Compating equations: $p\left(1+E n^{2}\right)=$ const Ucross shoucu)

$$
\frac{T_{0}}{T}=1 \cdot b_{-1}^{2} n^{2} \quad \frac{p_{0}}{p}=\left(\frac{T_{0}}{T}\right)^{b / k_{-1}}
$$

Assumptions: is steadu fow s) wriform flow ait asection
(2) deal $\overrightarrow{p a r}$

Across the srock $-p\left(1+\operatorname{Ren}^{2}\right)=\cot$

$$
\because \quad \not \quad P_{0}, P_{0}=\operatorname{cord} .
$$

(1)

Compressible Fhow Furction (trpendixe) For $M=2.0$, from Hep Ei4

$$
\begin{aligned}
& n_{2}=0.37(12.34 b) \\
& P_{2} H_{1}=4.50(12.56) \quad \therefore P_{1}=1.28 \text { pen } \\
& P_{02} \mid p_{0}=0.721(12.37) \\
& \text { For } M_{1}=2,0 \text {, from App. } E 1
\end{aligned}
$$

Note. In using the tables it is not necsssary to knou the downstrean May number.

$$
\begin{aligned}
& T_{0}=T_{1}\left(W^{R}+N_{2}^{2}\right)=530^{\circ}\left[1+0.2(2)^{2}\right]=54^{\circ} R
\end{aligned}
$$

$$
\begin{aligned}
& T_{0_{2}}=T_{0_{1}}=954 k .
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{H}_{1}=2.0 \quad \mathrm{M}_{2}=0.5 \mathrm{n}^{4} \\
& T_{1}=33 \stackrel{8 e}{N} 1, \stackrel{f_{2}}{=}=5,76 \text { pio } \\
& \text { nomal shock }
\end{aligned}
$$

```
13.104 Air approaches a normal shock at \(M_{1}=2.5\), with
\(T_{0_{1}}=1250^{\circ} \mathrm{R}\) and \(p_{1}=20 \mathrm{psia}\). Determine the speed and tem-
perature of the air leaving the shock and the entropy change across
the shock.
```

Given: Normal shock

Find: Speed and temperature after shock; Entropy change

Solution:

The given or available data is: | R | $=$ | 53.33 | $\mathrm{ft} \cdot \mathrm{lbf} / \mathrm{lbm} \cdot \mathrm{R}$ | 0.0685 | $\mathrm{Btu} / \mathrm{lbm} \cdot \mathrm{R}$ |
| ---: | :--- | :---: | :--- | :--- | :--- |
| k | $=$ | 1.4 | | | |
| c_{p} | $=$ | 0.2399 | $\mathrm{Btu} / \mathrm{lbm} \cdot \mathrm{R}$ | | |
| T_{01} | $=$ | 1250 | ${ }^{\circ} \mathrm{R}$ | | |
| p_{1} | $=$ | 20 | psi | | |
| M_{1} | $=$ | 2.5 | | | |

Equations and Computations:

From | $p_{1}=\rho_{1} R T_{1}$ | $\rho_{1}=300.02 \mathrm{~kg} / \mathrm{m}^{3}$ |
| ---: | :--- |
| | $V_{1}=364$ |

Using built-in function IsenT (M,k):

$$
T_{01} / T_{1}=
$$

$$
\begin{array}{ccc}
T_{1}= & 556 \\
96
\end{array}{ }^{\circ} \mathrm{R}
$$

Using built-in function NormM2fromM (M,k):

$$
M_{2}=0.513
$$

Using built-in function NormTfromM (M,k):

$$
T_{2} / T_{1}=\quad 2.14
$$

$T_{2}=$	1188
728	${ }^{\circ} \mathrm{R}$

Using built-in function NormpfromM (M,k):

$$
p_{2} / p_{1}=7.13
$$

$$
p_{2}=
$$

143 psi

From $\quad V_{2}=M_{2} \sqrt{k R T_{2}} \quad V_{2}=867 \quad \mathrm{ft} / \mathrm{s}$
From $\quad \Delta s=c_{p} \ln \left(\frac{T_{2}}{T_{1}}\right)-R \ln \left(\frac{p_{2}}{p_{1}}\right)$

$$
\Delta s=\begin{array}{cl}
0.0476 & \mathrm{Btu} / \mathrm{lbm} \cdot \mathrm{R} \\
37.1 & \mathrm{ft} \cdot \mathrm{lbf} / \mathrm{lbm} \cdot \mathrm{R}
\end{array}
$$

Problem 13.105

Given: Fir flow through a normal shock as shown:

$$
\begin{aligned}
& T_{1}=35^{\circ} \mathrm{C} \\
& P_{1}=228 \mathrm{RRa}(\mathrm{abs}) \\
& \psi_{1}=704 \mathrm{nlsec}
\end{aligned}
$$

Find: $T_{2}, P_{O_{2}}$
Solution:
Compressible flow functions (Appendix E) to be used in solution Assumptions: (i) steady flow
(5) $F_{B_{2}}=0$
(a) uniform flow at a section
(b) no friction forces
(3) $Q=\dot{w}_{s}=\dot{w}_{\text {hear }}=0$
(7) ideal gas
(4) $\Delta_{z}=0$
(8) $A_{1}=A_{2}=A$

$$
\begin{aligned}
& M_{1}=\frac{704}{352}=2.00 \\
& \text { From App.E.l } \quad \text { P. }_{P_{0}}=0.1278 \\
& \text { From ApplE. } 4 \quad P_{02} l_{P_{0}}=0.7209 \quad T_{2} L_{T_{1}}=1.687
\end{aligned}
$$

$$
T_{2}=\frac{T_{2}}{T_{1}} \cdot T_{1}=1.687 \times 308 \mathrm{~K}=520 \mathrm{~K}
$$

$P_{O_{2}}=\frac{P_{02}}{P_{0_{1}}} \times \frac{P_{O_{1}}}{P_{1}} \cdot P_{1}=0.7209 \times \frac{1}{0.1218} \times 229 \mathrm{tPa}=1.29 \mathrm{MPa}\left(a b_{6}\right)$
T

13.106 A normal shock stands in a constant-area duct. Air approaches the shock with $T_{0_{1}}=550 \mathrm{~K}, p_{0_{1}}=650 \mathrm{kPa}(\mathrm{abs})$, and $M_{1}=2.5$. Determine the static pressure downstream from the shock. Compare the downstream pressure with that reached by decelerating isentropically to the same subsonic Mach number.

Given: Normal shock

Find: Pressure after shock; Compare to isentropic deceleration

Solution:

The given or available data is:

R	$=$	286.9	$\mathrm{~J} / \mathrm{kg} \cdot \mathrm{K}$
k	$=$	1.4	
T_{01}	$=$	550	K
p_{01}	$=$	650	kPa
M_{1}	$=$	2.5	

Equations and Computations:

Using built-in function $\operatorname{Isenp}(\mathrm{M}, \mathrm{k})$:

$$
p_{01} / p_{1}=17.09 \quad p_{1}=38 \mathrm{kPa}
$$

Using built-in function NormM2fromM (M,k):

$$
M_{2}=0.513
$$

Using built-in function NormpfromM (M,k):

$$
p_{2} / p_{1}=7.13 \quad p_{2}=271 \mathrm{kPa}
$$

Using built-in function $\operatorname{Isenp}(\mathrm{M}, \mathrm{k})$ at M_{2} :

$$
p_{02} / p_{2}=1.20
$$

But for the isentropic case: $\quad p_{02}=p_{01}$

Hence for isentropic deceleration:
$p_{2}=543 \mathrm{kPa}$
13.107 A normal shock occurs in air at a section where $V_{1}=$ $2000 \mathrm{mph}, T_{1}=-15^{\circ} \mathrm{F}$, and $p_{1}=5 \mathrm{psia}$. Determine the speed and Mach number downstream from the shock, and the change in stagnation pressure across the shock.

Given: Normal shock

Find: Speed and Mach number after shock; Change in stagnation pressure

Solution:

R	$=$	53.33	$\mathrm{ft} \cdot \mathrm{lbf} / \mathrm{lbm} \cdot \mathrm{R}$	0.0685	$\mathrm{Btu} / \mathrm{lbm} \cdot \mathrm{R}$	
k	$=$	1.4				
T_{1}	$=$	445	${ }^{\circ} \mathrm{R}$			
p_{1}	$=$	5	psi			
V_{1}	$=$	2000	mph	2933	ft / s	

Equations and Computations:

From	$c_{1}=\sqrt{k R T_{1}}$	$c_{1}=$	1034	
Then		$M_{1}=$	2.84	

Using built-in function NormM2fromM (M,k):

$$
M_{2}=0.486
$$

Using built-in function NormdfromM (M, k) :

$$
\rho_{2} / \rho_{1}=\quad 3.70
$$

Using built-in function NormpOfromM (M,k):

$$
p_{02} / p_{01}=0.378
$$

Then $V_{2}=\frac{\rho_{1}}{\rho_{2}} V_{1} \quad V_{2}=541 \mathrm{mph} \quad 793 \mathrm{ft} / \mathrm{s}$
Using built-in function $\operatorname{Isenp}(\mathrm{M}, \mathrm{k})$ at M_{1} :

$$
p_{01} / p_{1}=\quad 28.7
$$

From the above ratios and given p_{1} :

$$
\begin{array}{rlrl}
p_{01} & = & 143 & \\
p_{02} & = & 54.2 & \\
\mathrm{psi} \\
p_{01}-p_{02} & = & 89.2 & \\
\mathrm{psi}
\end{array}
$$

13.108 Air approaches a normal shock with $T_{1}=-7.5^{\circ} \mathrm{F}, p_{1}=$ 14.7 psia , and $V_{1}=1750 \mathrm{mph}$. Determine the speed immediately downstream from the shock and the pressure change across the shock. Calculate the corresponding pressure change for a frictionless, shockless deceleration between the same speeds.

Given: Normal shock

Find: Speed; Change in pressure; Compare to shockless deceleration

Solution:

The given or available data is:

R	$=$	53.33	$\mathrm{ft} \cdot \mathrm{lbf} / \mathrm{lbm} \cdot \mathrm{R}$	0.0685	$\mathrm{Btu} / \mathrm{lbm} \cdot \mathrm{R}$
$k=$	1.4				
$T_{1}=$	452.5	${ }^{\mathrm{o}} \mathrm{R}$			
$p_{1}=$	14.7	psi			
$V_{1}=$	1750	mph	2567	ft / s	

Equations and Computations:

From	$c_{1}=\sqrt{k R T_{1}}$	$c_{1}=$	1043	ft / s
Then		$M_{1}=$	2.46	

Using built-in function NormM2fromM (M,k):

$$
M_{2}=0.517
$$

Using built-in function NormdfromM (M, k) :

$$
\rho_{2} / \rho_{1}=\quad 3.29
$$

Using built-in function NormpfromM (M,k):

$$
p_{2} / p_{1}=6.90 \quad p_{2}=101 \mathrm{psi}
$$

$p_{2}-p_{1}=86.7 \quad \mathrm{psi}$

Then $V_{2}=\frac{\rho_{1}}{\rho_{2}} V_{1} \quad V_{2}=532 \mathrm{mph} \quad 781 \mathrm{ft} / \mathrm{s}$
Using built-in function $\operatorname{Isenp}(\mathrm{M}, \mathrm{k})$ at M_{1} :

$$
p_{01} / p_{1}=\quad 16.1
$$

Using built-in function $\operatorname{Isenp}(\mathrm{M}, \mathrm{k})$ at M_{2} :

$$
p_{02} / p_{2}=1.20
$$

From above ratios and p_{1}, for isentropic flow $\left(p_{0}=\right.$ const $): \quad p_{2}=197 \quad \mathrm{psi}$

$$
p_{2}-p_{1}=182 \quad \mathrm{psi}
$$

Gwen: Supersonic ourcraft cruises at $M=2.2$ os 12 in atitude Normai - veck stande in frent of a pitoltube innc senses a tagnation presture. Po.

Find: (a) To. po. (b) poe
Solution:
Compressible flow furdions (Appendite) tobe usedin soltion Assumptions: (i) steady fow
(2) uniform flow at a section
(3) thin Shock
(4) ideakgas

Use table 4,2 to determine propertice et state \mathbb{C} HL Iz Cm altude,

$$
T_{1}=2 b_{0} i k \quad p_{1}=19+k a
$$

Frem Apep. En, for M, $=2 . i$,

$$
\begin{aligned}
& T_{1} T_{0}=0.508 \quad \therefore T_{0}=426 \\
& p_{1} \mathrm{P}_{8}=0.09 .352 \\
& \therefore R_{0}=207
\end{aligned}
$$

From App.EA, for $M_{1}=2.2, M_{2}=0.5441$

$$
\begin{equation*}
P_{0_{2}+P_{0}}=0.6280 \quad \therefore P_{0_{2}}=180 \text { Pa (ass) } \tag{2}
\end{equation*}
$$

Problem 13.110

Given: Concorde flew at $M=2.2$ at an altitude of 20 tm. In the engine intel system the our is decelerated isentropically to a local Poach number of 1.3 ; air undergoes a normal shock and then decelerates isentropically to $n=0.4$.

(1) (2)
(3)

Find: T_{3}, P_{3}, P_{03}
Solution:
Compressible flow functions (Appendix E) to be used in solution
Assumptions: in steady flow
(a) ideal gas
(3) flow is isentropic except across the shock.

At co ln altitude $T_{\infty}=277 k, P_{\infty}=5.53 \mathrm{kPa}$. (Table A.3)

From Pep. E.4, $\quad M_{2}=0.786 \quad P_{02} T_{P_{0}}=0.9794 \quad T_{i}=1.191 \quad P_{1} \quad P_{2}=1.805$

$$
\therefore P_{O_{2}}=57.9 \mathrm{kP}, T_{2}=380 \mathrm{~K}, P_{2}=38.4 \mathrm{kPa}
$$

$$
\begin{equation*}
P_{O_{3}}=P_{O_{2}}=57 . a b P_{a} \tag{3}
\end{equation*}
$$

$M_{3}=0.4$ From App. En,

$$
\left.{ }^{T_{3}}\right|_{T_{\infty}}=\left.0.9690 \quad{ }_{3}\right|_{P_{0_{3}}}=0.8956 .
$$

$$
\begin{array}{c|c}
\therefore T_{3}=414 K . & T_{3} \\
P_{3}=0.8956 P_{0_{3}}=0.89 .5 b P_{O_{2}}=51.9 \text { EPa (abs). } & P_{3} \\
\hline
\end{array}
$$

(abs)
\qquad

Gwen: Supersonic aircraft The at 3500 ff Normal sock stands in rent of stagnation tempersituse probe Prose reads

$$
\begin{array}{r}
T_{0}=4205 \\
T_{1} \\
p_{1}
\end{array}
$$

Find: is $M_{1},{ }^{\prime}$, b) f_{2}, e_{0}.
Solution:
Compressible flow functions (Apperdintitobe used in solution Assumptions: is steady flow (c) uniform flaw at a section

$$
\text { (3) fin Stock, } k_{t}=0
$$

(4) dead gas

Use tater $A .3$ to detcomure properties a state $(\mathbb{A}$.

$$
\text { Altitude }=350003 \text { it } 5.2042 \frac{2}{7}=10.670 \mathrm{~m}
$$

From Trick 5.3 T. $2-10, K=-54^{\circ} \mathrm{C}=-65^{\circ} \mathrm{F}$

At state σ, $T_{1} T_{0}=2951_{880}=0.4489$
From toper, for $T^{\prime} T_{T_{0}}=0.4489, \quad M_{1}=2.48$ M

From App, E., for $M_{1}=2.48, P_{1} P_{\infty}=0.06038 \therefore f_{0}=57.4$ psi From App. E.H, for $M_{1}=2.4 .8, M_{2}=0.5149$

$$
\begin{aligned}
& f_{O_{2}} 1 P_{0}=0.50 \pi 1 \quad \therefore P_{02}=29,1 \text { psalm } \\
& -P_{2}{ }^{\prime} P_{1}=7.009 \\
& \therefore P_{2}=24.3 \text {-psia }
\end{aligned}
$$

$T \quad \angle P P_{0} \quad P_{0}=\operatorname{lont}$.

13.112 Equations 13.41 are a useful set of equations for analyzing flow through a normal shock. Derive another useful equation, the Rankine-Hugoniot relation,

$$
\frac{p_{2}}{p_{1}}=\frac{(k+1) \frac{\rho_{2}}{\rho_{1}}-(k-1)}{(k+1)-(k-1) \frac{\rho_{2}}{\rho_{1}}}
$$

and use it to find the density ratio for air as $p_{2} / p_{1} \rightarrow \infty$.
Given: Normal shock
Find: Rankine-Hugoniot relation

Solution:

Basic equations: \quad Momentum: $\mathrm{p}_{1}+\rho_{1} \cdot \mathrm{~V}_{1}{ }^{2}=\mathrm{p}_{2}+\rho_{2} \cdot \mathrm{v}_{2}^{2} \quad$ Mass: $\quad \rho_{1} \cdot \mathrm{~V}_{1}=\rho_{2} \cdot \mathrm{~V}_{2}$
Energy: $\quad \mathrm{h}_{1}+\frac{1}{2} \cdot \mathrm{~V}_{1}{ }^{2}=\mathrm{h}_{2}+\frac{1}{2} \cdot \mathrm{~V}_{2}{ }^{2} \quad$ Ideal Gas: $\mathrm{p}=\rho \cdot \mathrm{R} \cdot \mathrm{T}$

From the energy equation

$$
\begin{equation*}
2 \cdot\left(\mathrm{~h}_{2}-\mathrm{h}_{1}\right)=2 \cdot \mathrm{c}_{\mathrm{p}} \cdot\left(\mathrm{~T}_{2}-\mathrm{T}_{1}\right)=\mathrm{v}_{1}^{2}-\mathrm{V}_{2}^{2}=\left(\mathrm{v}_{1}-\mathrm{V}_{1}\right) \cdot\left(\mathrm{v}_{1}+\mathrm{v}_{2}\right) \tag{1}
\end{equation*}
$$

From the momentum equation

$$
\mathrm{p}_{2}-\mathrm{p}_{1}=\rho_{1} \cdot \mathrm{~V}_{1}^{2}-\rho_{2} \cdot \mathrm{~V}_{2}^{2}=\rho_{1} \cdot \mathrm{~V}_{1} \cdot\left(\mathrm{~V}_{1}-\mathrm{V}_{2}\right) \quad \text { where we have used the mass equation }
$$

Hence

$$
v_{1}-v_{2}=\frac{p_{2}-p_{1}}{\rho_{1} \cdot v_{1}}
$$

Using this in Eq $1 \quad 2 \cdot \mathrm{c}_{\mathrm{p}} \cdot\left(\mathrm{T}_{2}-\mathrm{T}_{1}\right)=\frac{\mathrm{p}_{2}-\mathrm{p}_{1}}{\rho_{1} \cdot \mathrm{~V}_{1}} \cdot\left(\mathrm{~V}_{1}+\mathrm{V}_{2}\right)=\frac{\mathrm{p}_{2}-\mathrm{p}_{1}}{\rho_{1}} \cdot\left(1+\frac{\mathrm{V}_{2}}{\mathrm{~V}_{1}}\right)=\frac{\mathrm{p}_{2}-\mathrm{p}_{1}}{\rho_{1}} \cdot\left(1+\frac{\rho_{1}}{\rho_{2}}\right)=\left(\mathrm{p}_{2}-\mathrm{p}_{1}\right) \cdot\left(\frac{1}{\rho_{1}}+\frac{1}{\rho_{2}}\right)$
where we again used the mass equation
Using the idea gas equation $\quad 2 \cdot c_{p} \cdot\left(\frac{p_{2}}{\rho_{2} \cdot R}-\frac{p_{1}}{\rho_{1} \cdot R}\right)=\left(p_{2}-p_{1}\right) \cdot\left(\frac{1}{\rho_{1}}+\frac{1}{\rho_{2}}\right)$
Dividing by p_{1} and multiplying by ρ_{2}, and using $R=c_{p}-c_{v}, k=c_{p} / c_{v}$

$$
2 \cdot \frac{\mathrm{c}_{\mathrm{p}}}{\mathrm{R}} \cdot\left(\frac{\mathrm{p}_{2}}{\mathrm{p}_{1}}-\frac{\rho_{2}}{\rho_{1}}\right)=2 \cdot \frac{\mathrm{k}}{\mathrm{k}-1} \cdot\left(\frac{\mathrm{p}_{2}}{\mathrm{p}_{1}}-\frac{\rho_{2}}{\rho_{1}}\right)=\left(\frac{\mathrm{p}_{2}}{\mathrm{p}_{1}}-1\right) \cdot\left(\frac{\rho_{2}}{\rho_{1}}+1\right)
$$

Collecting terms

$$
\frac{\mathrm{p}_{2}}{\mathrm{p}_{1}} \cdot\left(\frac{2 \cdot \mathrm{k}}{\mathrm{k}-1}-1-\frac{\rho_{2}}{\rho_{1}}\right)=\frac{2 \cdot \mathrm{k}}{\mathrm{k}-1} \cdot \frac{\rho_{2}}{\rho_{1}}-\frac{\rho_{2}}{\rho_{1}}-1
$$

$$
\frac{\mathrm{p}_{2}}{\mathrm{p}_{1}}=\frac{\frac{2 \cdot \mathrm{k}}{\mathrm{k}-1} \cdot \frac{\rho_{2}}{\rho_{1}}-\frac{\rho_{2}}{\rho_{1}}-1}{\left(\frac{2 \cdot \mathrm{k}}{\mathrm{k}-1}-1-\frac{\rho_{2}}{\rho_{1}}\right)}=\frac{\frac{(k+1)}{(k-1)} \cdot \frac{\rho_{2}}{\rho_{1}}-1}{\frac{(k+1)}{(k-1)}-\frac{\rho_{2}}{\rho_{1}}} \quad \text { or } \quad \frac{\mathrm{p}_{2}}{\mathrm{p}_{1}}=\frac{(k+1) \cdot \frac{\rho_{2}}{\rho_{1}}-(k-1)}{(k+1)-(k-1) \cdot \frac{\rho_{2}}{\rho_{1}}}
$$

For an infinite pressure ratio

$$
(k+1)-(k-1) \cdot \frac{\rho_{2}}{\rho_{1}}=0 \quad \text { or } \quad \frac{\rho_{2}}{\rho_{1}}=\frac{k+1}{k-1}
$$

Given: Supar:sone wowk twamel, supplied wift our A To = Fook and $P_{0}=1.0 \mathrm{Mta}$ (ás; is to operate A a test setwon mosinuriber. M=2.2. Romal Crock ttands in exit plane of riet nogete.

Finci: a) Mra
b) $p_{\text {za }}$
(c) P_{020}
d) A_{5}

Solution:
Compressible flow furtions (Hppenhixe) to be used in solutian. Assurptions: (i) steady flow (a) uniforn dow at a section
(3) vartropic Alow in nogzles, adiabotic fowacross shod
(4) ideal gos

At $A_{2 u}=2.2$, from Ape EA, $P_{2 m} t_{0}=0.09352 \therefore \rho_{2 u}=93.5 \mathrm{kfa}$
ft $M_{2 \mu}=2.2$, from Atef $E .4, M_{2 \alpha}=0.547(1234 b)$. \qquad

$$
\begin{array}{ll}
P_{2} \mid P_{1}=5.480 & \therefore P_{2 d}=512+P_{a_{2}} \\
-P_{O_{2}} \mid P_{D_{2}}=0.62 .81 & \therefore P_{D_{2 d}}=6288 P_{a} \quad P_{0_{d d}}
\end{array}
$$

Ht $H_{2,4}=2.2$, from Hef E. , $H_{2}\left|A_{A}^{*}=A_{2}\right| H_{1}=2.005 \therefore H_{2}=0.1404 \mathrm{~m}^{2}$

Given: Supersonic wind thennel starting as shown.

$$
\begin{aligned}
& A_{t}=1.25 f^{2} \\
& A_{1}=A_{2}=3.05 \mathrm{ft}^{4} \\
& M_{\text {design }}=2.50
\end{aligned}
$$

$$
\begin{aligned}
& T_{0}=1080 \mathrm{R} \\
& p_{0}=115 \mathrm{psia}
\end{aligned}
$$

Find: (a) Minimum possible A_{d} at this condition.
(b) Entropy increase across the shock.

Solution: Use functions for steads, one-dimensional compressible flow. Computing equations: A / A^{*} vs. M from isentropic flow functions (Ap p.E.I) p_{02} / p_{0}, us. M from shock flow functions (App, E.4)

Assumptions: (1) steady flow
(5) Adiabatic flow
(z) Uniform flow at each section
(b) $F_{B_{x}}=0$
(3) Ideal gas
(7) $\Delta z=0$
(4) Isentropic except across shock

Then from App. E.1, $M_{1}=2.416 a+\frac{A_{1}}{A^{*}}=\frac{A_{1}}{A_{t}}=\frac{3.054^{2}}{1.25 f^{*}}=2.44$.
From App. E.4, at $M_{1}=2.416, \frac{p_{02}}{p_{01}}=0.5395$. Thus Pod $=0.5345 p_{01}=62.0$ psia.
For adiabatic flow, $T_{0}=$ constant $a n d T^{*}=\frac{T_{0}}{1.2}=\frac{1080 R}{1.2}=900 R=$ constant
From continuity, $\dot{m}=\rho_{t} A_{t} V_{t}=\rho_{d} V_{d} A_{d}$, substituting $\rho=\frac{p}{R T}$ and $V=M \sqrt{k R r}$,

$$
\begin{aligned}
& \frac{p_{t}}{R_{t}} \sqrt{k R T_{t}} A_{t}=\frac{p_{d}}{R T_{d}} \sqrt{k R T_{d}} A_{d} ; A_{d}=A_{t} \frac{p_{t}}{p_{d}}=A_{t} \frac{p_{a t}}{p_{d d}}=\frac{A_{t}}{0.5395} \\
& A_{d}=\frac{1.25 \mathrm{f}^{2}}{0.535}=2.32 \mathrm{ft}^{2}
\end{aligned}
$$

From the Gibes equation,

$$
\begin{aligned}
& T d \Delta=d h-r d p ; d \Delta=C_{p} \frac{d T}{T}-R \frac{d p}{D} \\
& \Delta \Delta=C_{\rho} \ell w \frac{T_{0}}{T_{01}}-R \ln \frac{P_{D_{2}}}{T_{D_{1}}}
\end{aligned}
$$

Since $T_{0}=$ constant, $\ln \left(T_{2} / T_{01}\right)=0$, and

$$
\Delta \Delta=-53.3 \frac{\mathrm{ft.16f}}{16 \mathrm{~m} \cdot R} \times 2 \mathrm{~m}(0.5395) \times \frac{B+u}{778 \mathrm{f}+16 \mathrm{f}}=0.0423 \mathrm{Btu} / 16 \mathrm{~m} \cdot \mathrm{R}
$$

∞

Problem 13.115
Given: Aircraft in supersonic flight on standard day Total - head tube senses stagnation pressure.
Mach number computed

$$
\uparrow \rightleftharpoons V=659 m \mid s
$$

$$
q^{\prime}=10 \mathrm{~km}
$$ assuming $s=c$,ie ignoring

shock in front of tube
Find: (a) flight Macon number
(b) pressure censed by total-head tube (c) air speed computed assuming $s=$ constant

Solution: (using compressible flow functions-Appendix E)
From Table $A .3$ at $z=10 \mathrm{~km}, T=223.3 \mathrm{k}, \rightarrow P_{s_{2}}=0.2615$
Thus $T=222 k \quad, f=0.2615 f_{51}=0.2615 \times 101.3 t P_{a}=26.5 \mathrm{fla}$

$$
\frac{M_{2}}{M_{1}}
$$

$$
M_{1}=\frac{V_{1}}{C_{1}}=\frac{659}{299}-2.20 \ldots M_{1}
$$

From Ape EA at $H_{1}=2.20, ~ P l P_{0}=0.09352 \therefore P_{0_{1}}=283 \mathrm{kPa}$
From Peep Est at $M_{1}=2.20, P_{O_{2}} l_{P_{0}}=0.6281,\left.P_{2}\right|_{P_{1}}=5.480$

$$
\therefore P_{0_{2}}=0.6281 P_{0_{1}}=0.6281+1836 f_{a}=1784 P_{a}(a b s)+P_{2}
$$

If Mach number is calculated neglecting the shock then M is calculated with $P=2 b=E P_{a}$ and $P_{P}=178$ t P_{a}.
For $P / P_{0}=26.5 / 78=0.149$, from Ftp. Enl, $M=1.90$

$$
H_{S_{s}}=A_{S}=1.90 \times 297 \mathrm{~m} t_{s}=568 \mathrm{~m} \mathrm{ls}_{\mathrm{s}}
$$

Problem 13.1tb

Given: Supersonic aircraft cruses at $M=2.7$ at 60,000 fl altitude Normal shock stands in front of a pitot tube which senses a stagnation pressure of 10.4 psia.

Find: (a) T_{2}, p_{2}
(b) $p_{O_{2}}-p_{0}$
(c) $s_{2}-s_{1}$

Solution.
Compressible flow functions (Appendi xE) to be used in solution Basic equation: $T d s=d h-v d p$
Assumptions: (1) steady flow (2) uniform flow at a section
(3) Min shock, $h_{x}=0$
(4) ideal gas

Use table A. 3 to determine properties at state (1)
Altitude $=60.000 \mathrm{ft} \times 0.30 \mathrm{~m} \frac{\mathrm{n}}{\mathrm{ft}}=18.290 \mathrm{~m}$
Frontable H3 $\quad T_{1}=216.7 \mathrm{~K}=-56.3^{\circ} \mathrm{C}=-69^{\circ} \mathrm{F}$

$$
t_{1}=7.25 \times 10^{3} \frac{\mathrm{~N}}{\mathrm{~m}^{2}} \times \frac{16 \mathrm{C}}{4.448 \mathrm{~N}} \times\left(\frac{0.3048 \mathrm{~m}}{\mathrm{ft}}\right)^{2}=15116 / \mathrm{ft}^{2}
$$

From App. E.1 for $M_{1}=2.7 \quad p_{1} 1 p_{0}=0.04295 \quad \therefore p_{0}=24.4 \mathrm{~A} / \mathrm{H}_{\mathrm{in}^{2}}$
From Ape. E.4 for $M_{1}=2.7, M_{2}=0.4956$

$$
\begin{align*}
& -P_{O_{2}} 1 p_{O_{1}}=0.4236 \quad \therefore p_{0_{2}}=10.3 \text { psia } \\
& T_{2} I_{T_{1}}=2.343 \\
& \therefore T_{2}=a, b R \\
& P_{2} \text { Le }_{1}=8.338 \\
& \therefore e_{2}=8.74 \text {-psia. } \\
& p_{2} \\
& -P_{O_{2}}-P_{0}=10.3 \text { psi }-24.4-p s i=-14.1 p s i \tag{02}
\end{align*}
$$

From the $T d s$ equation, $T d s=d h-v d p=C_{p} d T-R T \frac{d p}{p}$

$$
\therefore d s=C_{p} \frac{d T}{T}-R \frac{d f^{\prime}}{F}
$$

Then $S_{2}-S_{1}=S_{O_{2}}-s_{O_{1}}=C_{p} \ln \frac{T_{02}^{2}}{T_{01}}-\ln \frac{P_{0_{2}}^{-}}{P_{0_{1}}}$

Gwen: Supersonic ourcrof flies at $M=27$ at Estm alliude. Air is shourd :sentropicaily in met sustem to $M=1.3$. F normal Stock sceurs at Wat ocation. Folowing the shock, the flow is dechertited adiabaticaitg, but not isentrepicaily, to $p=104$ हfe and. $\pi=0.4$

$$
\begin{array}{ll}
M_{1}=2.7 \\
T_{1}=2 W_{0}, & M_{2}=1.3 \\
0 & M_{4}=0.4 \\
0 & P_{4}=104 \mathrm{~Pa}(\mathrm{Pab})
\end{array}
$$

Find: a To
b) $e_{3}-p_{2}$
c) $\mathrm{S}_{4}-\mathrm{S}_{1}$
d) Pom

Compressibie flow functions (Appendix e) to be ucatinsolution Assumptions: () steadue (law (e) uniform flow at a section

$$
3 \operatorname{cin}_{5}=\operatorname{coc}, A_{2}=H_{3}
$$

(4) deal nas

For $M, 2$, from Pppe. $T_{0}, T_{1}=2.458 \quad \therefore T_{0,}=533 \mathrm{~K}$

$$
P_{0_{1}} \mid P_{1}=23.283 \quad \therefore P_{0}=128.8 \mathrm{kPo}
$$

Notr: $T_{0}=$ constart, $P_{0}=P_{0}$
For $M_{2}=1.3$, fromftef En, $T_{O_{2}} T_{2}=1.338 \quad \therefore T_{2}=398 \mathrm{~K}$

$$
e_{s_{2}} \mid e_{2}=2.371 \quad p_{2}^{2}=46.48 \mathrm{ela}
$$

For $M_{2}=1.3$, from Appe E.M, $M_{3}=0.78$,

$$
\begin{aligned}
& +_{3}{ }^{3} p_{2}=1.805 \\
& \rho_{0_{3}} / e_{02}=0.9794 \\
& T_{3} / T_{2}=1.191 \\
& p_{3}-p_{2}=83.9-46.518=37.4 \text { b } p_{a} \\
& \therefore P_{3}=83.98 P_{a} \\
& \left.f_{O_{3}}=12\right)_{0} E_{2} \\
& T_{3}=474 K .
\end{aligned}
$$

For $M_{4}=0.4$, from $A_{p p E}$, $\quad P_{\text {elp }}=1.47 \quad \therefore f_{0}=$ ib tepa

$$
s_{4}-s_{1}=s_{o_{4}}-s_{0_{1}}=c_{p} \ln T_{O_{0}}-R \ln \frac{P_{04}}{P_{01}}=-287 \frac{J}{\lg \times k} \ln \frac{16}{129}
$$

$$
S_{4-5}=-30.5 \mathrm{Jlg} x
$$

Sus.

Problem 13.118

Given: Steady, adiabatri flow of air through a convergingdiverging nozzle with a normal shock in the exit plane

$$
A_{1} l a_{t}=3.5
$$

Find: P_{2}, V_{2}
Solution:

- Compressible flow tables to be used in the solution

Assumptions: (1) steady flow
(3) idreatgas
(2) uniform flow at a section (4) isentropic flow exceptacioss the shock
$A . \mid A^{*}=3.5$
From Fig. Enl and Equ.2.to, Mi =2.80; Ten $T_{1} 1 T_{0}=0.389 \mathrm{M} \quad P_{1} P_{0_{0}}=0.03685$

$$
\therefore T_{1}=112 \mathrm{~K} \quad P_{1}=3.72 \mathrm{tPa}(\mathrm{abs})
$$

For $M_{1}=2.80$, from App. $E .4, M_{2}=0.488 \quad T_{2} / T_{1}=2.451 \quad P_{2} l P_{1}=8.980$

$$
\begin{aligned}
& \therefore P_{2}=8.98 \mathrm{P},=8.98 \times 3.72 \mathrm{PRa}=33.4 \mathrm{lla} \text { (abs) } \\
& T_{2}=2.451 T_{1}=275 \mathrm{~K}
\end{aligned}
$$

Gwen: Bast wave propagate outward from an sufiesion. Modal "t wave as strong normal hock: Waw rem travels at $M=16$ throng woderbith -ur

Find: a) the relative to wove b) the retire to around.
Solution:
Compressible flow functions (Appendix E) to be used in solution
Atsumphons: (1) steady how as seen by an descries on if te wave
(2) whrorm flow at a taction

3 Fin shock, $R_{n}=0$
(in) anal gat
Ht shote (1)

For $M_{1}=N_{0}$, From Appendix E,

$$
V_{1} V_{2}=p_{2} p_{1}=2.032
$$

$$
\therefore \vec{v}_{2}=368 i_{s}
$$

The wove moves to Re rind at $V_{1}=544$ miss. Air moves to the left with respect to fe wow at $\psi_{2 \text { se }}=2 b 8 \mathrm{ml}$

$$
\begin{equation*}
\vec{v}_{2 a b s}=\vec{v}_{2 \text { wave }}+\vec{v}_{2 g b}=-544_{i}+268^{2}=-2 b_{b}^{2} M l_{s} \tag{v}
\end{equation*}
$$

\{relatwe to ground, air behind wave moves to right.

Given: Steady, adiabatle air flow fron a reservoir through a comergingdivergina nozbe with a siock preserit.

$$
\begin{aligned}
& P_{2}=132 \mathrm{~kb} .6 \mathrm{bi} \\
& P_{1}=68 \cdot \mathrm{kk} \\
& P_{3}=180 \mathrm{kh}
\end{aligned}
$$

Find: (a) H_{2} (b) H_{2} (c) $\mathrm{s}_{2}-s_{1}$ (d) Skeld t_{2} diagrax
Sdution: Compressble flow functions (Appendix E) to be used in soltion
Assumptions: A) steady flow (3) uniform flow at each section
(2) ideal gas
(4) isentrapic flow, ekeet across shock

From Arep.E.1 $M=1.50$
From App.E. 4 . ${ }^{*}, M_{1}=1.50, M_{2}=0.701$ \qquad

$$
\begin{aligned}
& -P_{2} l_{1}=2.458 \quad \therefore P_{2}=167 \text { Efa (abs) } \\
& -P_{02} l_{0}=0.9288
\end{aligned}
$$

$$
P_{2}
$$

From the Tds equation. $T d s=d h-r d p=C_{p} d T-e T \frac{d t}{p}$

0

$$
\begin{align*}
& \therefore d s=c_{p} d t-R \quad d f \\
& s_{2}-s_{1}=s_{o_{2}-S_{m_{1}}}=C_{p} h \frac{T_{1} D_{2}}{T_{0}}-R G \frac{p_{02}}{p_{0}} \tag{2}
\end{align*}
$$

Given：C－D nozzle expanding air as shown．

$$
\begin{aligned}
& T_{0}=250^{\circ} \mathrm{F} \\
& P_{0}=50.5 \rho \operatorname{sia}
\end{aligned}
$$

Find：（a）Exit Mach number．
（b）Mass flow rate．
Solution：Use functris for steady，one－dimensional compressible flow． Computing equations：$A / A^{*}, p / p_{0}$ ，and T / T_{0} from isentropic（Appendix E．1）

Assumptions：（1）steady flow
（4）Ideal gas
（2）Uniform flow at each section
（5）$F_{B_{x}}=0$
（3）Isentropic if no shock
（b）$\Delta z=0$
Check the exit condition：$\frac{A e}{A^{*}}=\frac{A e}{A t}=\frac{0.917}{0.801}=1.145 \rightarrow M_{e}=1.452($ App．E．1，Eq． 12,6$)$
Also from App．$E_{1}, a+M=1.452, \frac{p}{p_{0}}=0.2919 ; p_{c}=0.7919 p_{0}=14.74$ psia．
Thus pe is just sightly above pate $=14.7$ psia；flow at exit is supersonic， so $M_{t}=1.0$ ．From continuity

$$
\dot{m}=\rho_{t} V_{t} A_{t}=\frac{p_{t}}{R T_{t}} M_{t} \sqrt{k R T_{t}} A_{t}=p_{t} \sqrt{\frac{k}{R T_{t}}} A_{t}
$$

From App．E． 1, at $M=1, T / T_{0}=0.8333$ and $p / p_{0}=0.5283,50$

$$
\begin{aligned}
& T_{t}=0.8333_{x}(460+250)^{\circ} \mathrm{N}=592^{\circ} \mathrm{R} \text { and } p_{t}=0.5283_{x} 50.5 \text { psia }=26.7 \text { psia }
\end{aligned}
$$

$$
\begin{aligned}
& \dot{m}=0.808 \mathrm{lbm} / \mathrm{s}
\end{aligned}
$$

\｛Flow in the nozzle is just slightly underexpanded，since pexit＞pack \}

Problem * 13.122

Given: Steady, adiabatic air flow from a reservoir through a convergying-diverging nogive.

$$
\begin{array}{llll}
F_{t}=1.0 \mathrm{in}^{2} \\
\mathrm{~A}_{\mathrm{e}}=1.58 \mathrm{in}^{2} & p_{0} & T_{0} \\
T_{0}=60 \mathrm{~h} & V_{0} \approx 0
\end{array}
$$

Fig. 3, wo Pressure distributions for flow in a converging-diverging nozzle as a function of back pressure.

Find: Me al deng conditions; P_{b} corresponding to regime boundaries of Solution: Fig l2.20, sketch $P(t)$

Compressible flow functions (Appendix E) to be used in solution Assumptions:
(i) steady flow
(3) uniform Row it a section
(4) isentropic flow except across a shock

For $A_{e} \mid A^{*}=1.58$, from Fig. Ell and Equaib,

$$
\begin{array}{ll}
M_{e}=0.403 & P_{U} P_{0}=0.8940 \\
M_{e}=1.92 & P_{e} / P_{0}=0.1441 \tag{Me}
\end{array}
$$

$$
\text { or } m_{e}=1.92
$$

Ter $P_{b_{1}}=\frac{P_{e}}{P_{0}} \cdot P_{0}=0.8940 \times 100$ psia $=89.4$ psia

$$
P_{b_{3}}=\frac{P_{e_{3}}}{P_{0}} \cdot P_{0}=0.1447 \times 100 \text { psia }=14.5 \text { psia }
$$

For $M_{e}=1.92$, from $A_{\text {pe. }} E 4, P_{2}=4.045$

$$
P_{b_{2}}=\frac{P_{2}}{P_{1}} \times P_{e_{3}}=4.045 \times 14.5 \text { psia }=58.6 \text { psia }
$$

T

Problem 13.123

Given: Steady, adiabatic air flow from a reservoir through a converging- diverging nozzle; nozzle is designed to discharge to atrospere de

$$
H_{e} l A_{t}=4.0
$$

Fig. 13 -xx Pressure distributions for flow in a converging-diverging nozzle as a function of back pressure.
Find: Me at design conditions, $P_{0} ; P_{b}$ corresponding to regime boundaries or Fig le. 20 , sketch $P(t)$
Solution:
Compressible flow functions (Appendix E) to be used in solution
Assumptions: (1) steady flow (2) ideal gas.
(3) uniform flow at a section
(4) isentropic flow except across a shock

For $A_{e} / A^{*}=4.00$,
from Fig.E.l 'and Eq. 12.6',

$$
\begin{array}{ll}
M_{e}=2.94 & P_{P_{0}}=0.0298 \\
\propto \quad M_{e}=0.147 & P V_{0}=0.9887
\end{array}
$$

then

$$
\begin{aligned}
& M_{e d}=2194 \quad P_{0 d}=\frac{P_{2}}{0.0298}=\frac{1018 P_{1}}{0.0298}=3.39 \mathrm{MPa} \text { (dar) } \quad M_{e} P_{0} \\
& P_{b}=\frac{P_{a 1}}{P_{0}}+P_{0}=0.9887 \times 3.39 \mathrm{MPa}=3.35 \mathrm{MPa}(a b s) \quad P_{b} \\
& P_{b_{3}}=101 P_{2 a}\left(a b p_{1} \quad P_{b_{3}}\right.
\end{aligned}
$$

For $M_{e}=2.94$ from App.E.4, $P_{2} t_{1}=9.918$

$$
P_{b_{2}}=\frac{P_{2}}{P_{1}} \times P_{e_{3}}=9.918 \times 101 P_{a}=1.00 \times P_{a}(a b s) \quad P_{b_{2}}
$$

$T \quad \frac{P_{0}}{P_{b_{1}}}$
13.124 A normal shock occurs in the diverging section of a converging-diverging nozzle where $A=25 \mathrm{~cm}^{2}$ and $M=2.75$. Upstream, $T_{0}=550 \mathrm{~K}$ and $p_{0}=700 \mathrm{kPa}$ (abs). The nozzle exit area is $40 \mathrm{~cm}^{2}$. Assume the flow is isentropic except across the shock. Determine the nozzle exit pressure, throat area, and mass flow rate.

Given: Normal shock in CD nozzle
Find: Exit pressure; Throat area; Mass flow rate

Solution:

The given or available data is:

R	$=$	286.9	$\mathrm{~J} / \mathrm{kg} \cdot \mathrm{K}$
k	$=$	1.4	
T_{01}	$=$	550	K
p_{01}	$=$	700	kPa
M_{1}	$=$	2.75	
A_{1}	$=$	25	$\mathrm{~cm}^{2}$
A_{e}	$=$	40	$\mathrm{~cm}^{2}$

Equations and Computations (assuming State 1 and 2 before and after the shock):

Using built-in function $\operatorname{Isenp}(\mathrm{M}, \mathrm{k})$:

$$
p_{01} / p_{1}=25.14 \quad p_{1}=28 \mathrm{kPa}
$$

Using built-in function $\operatorname{Isen} T(\mathrm{M}, \mathrm{k})$:

$$
T_{01} / T_{1}=2.51 \quad T_{1}=219 \mathrm{~K}
$$

Using built-in function IsenA (M, k):

$$
A_{1} / A_{1}^{*}=3.34 \quad A_{1}^{*}=A_{\mathrm{t}}=7.49 \quad \mathrm{~cm}^{2}
$$

Then from the Ideal Gas equation:

	$\rho_{1}=0.4433$	$\mathrm{~kg} / \mathrm{m}^{3}$	
Also:	$c_{1}=$	297	$\mathrm{~m} / \mathrm{s}$
So:	$V_{1}=$	815	$\mathrm{~m} / \mathrm{s}$
Then the mass flow rate is:	$m_{\text {rate }}=$	$\rho_{1} V_{1} A_{1}$	
	$m_{\text {rate }}=$	0.904	$\mathrm{~kg} / \mathrm{s}$

For the normal shock:
Using built-in function NormM2fromM (M,k):

$$
M_{2}=0.492
$$

Using built-in function NormpOfromM (M, k) at M_{1} :

$$
p_{02} / p_{01}=0.41 \quad p_{02}=284 \mathrm{kPa}
$$

For isentropic flow after the shock:
Using built-in function IsenA (M,k):

$$
\begin{array}{lrcl}
& A_{2} / A_{2}^{*}= & 1.356 \\
\text { But: } & A_{2} & = & A_{1} \\
\text { Hence: } & A_{2}^{*} & = & 18.44
\end{array} \mathrm{~cm}^{2}
$$

Using built-in function IsenAMsubfromA (Aratio,k):

$$
\text { For: } \quad A_{\mathrm{e}} / A_{2}^{*}=2.17 \quad M_{\mathrm{e}}=0.279
$$

Using built-in function $\operatorname{Isenp}(\mathrm{M}, \mathrm{k})$:

$$
p_{02} / p_{\mathrm{e}}=1.06 \quad p_{\mathrm{e}}=269 \mathrm{kPa}
$$

Given: Steady adrabaike air Sow rer a reseriors troug a converging inveremg nozie with a sox' present

$$
T_{0}=60^{\circ} \mathrm{c}
$$

$$
r_{0}=1000 \text { kt }(a b)
$$

$$
\begin{aligned}
& M_{1}=2.42 \\
& R_{e} \mid F_{2}=4.0
\end{aligned}
$$

(5
©
Find P_{b}, sketci te pressure intributuon.
Solution.
Compresible tow functions (A.penaire to be used in solution Assumptions in Steodu Tow (i) uniforkfiow at a sutwo
\because ideat an
\because untrofie fow exech acros the hoct
Bi M $\quad m_{1}=2.42$
$M_{2}=0 . E 21$ Fronfpp.E.I, $A_{2}, R_{2}^{*}=1.301-H_{1} M_{2}^{*}$
Then $\frac{A_{e}}{H_{2}}=\frac{A_{0}}{A_{1}^{*}}+\frac{A_{1}^{*}}{A_{1}}+\frac{A_{1}}{A_{2}^{*}}=4.0 \times \frac{1}{2.448}=1.301=2.126$
 Ren $P_{b}=P_{e}=0.9441 \%_{0}=0.94 \times 1 \times 3 \times 1 \mathrm{Va}=301$ 有a

$$
\begin{aligned}
& \text { From frep. El, } \quad P P_{0}=0.0 i d 30 \\
& A_{1} \mid n_{1}=F_{1}{ }^{\prime} n_{1}=3.448 \\
& \text { - } P_{1}=32.8 \text { k } P_{1}(a b s) \\
& \text { From App. E.H, } \quad M_{2}=0.521 \quad P_{2} l_{1}=\text { bo. } 6666 \quad P_{02} P_{0_{0}}=0.5218 \\
& \therefore P_{2}=26542(\operatorname{dos}) \quad P_{O_{2}}=319 t P_{a}(605)
\end{aligned}
$$

Problem 13 rial

Given: Steady, adiabatic air flow from a reservoir trough a converging diverging nozzle; nozzle is designed to disc targe to atmospheric pressure

$$
P_{0}=7 A_{0} \mathrm{lRa}(\text { abs })
$$

$$
\begin{aligned}
& P_{1}=160 \mathrm{CDa}(\mathrm{abs}) \\
& A_{1}=A_{2}=600 \mathrm{~mm}^{2}
\end{aligned}
$$

Find: P_{b}, A_{3}, A_{t}
Solution:
Compressible flow functions (Appendices) to be used in solution Assumptions: (1) steady flow (2) uniform flow at a section
(3) ideal gas
(4) isentropic flow except across the shock.
At design conditions,

$$
P_{3} \int_{0}=1011900=0.1218, \text { From } H_{p p E E 1,} M_{3 \text { design, }}=2.00 \quad \frac{A_{3}}{A_{t}}=1.688
$$

Ft section (1), $P_{V}=\frac{160}{190}=0.2025$. FronPPp. EN, $M_{1}=1.70 \quad{ }_{P_{0}} A_{H_{1}}=1.338$

$$
A_{t}=A_{1}^{*}=\frac{A_{1}}{\sqrt{1.338}}=\frac{6.00 m^{2}}{1.338}=448 \mathrm{~mm}^{2}
$$

\qquad
Then $A_{3}=1.688 \mathrm{~F}_{\mathrm{t}}=1.688\left(448 \mathrm{~mm}^{2}\right)=756 \mathrm{~mm}^{2}$
$M_{1}=1.70$: From App. E.4, $M_{2}=0.641 \quad P_{0_{2}} f_{O_{0}}=0.8557 \quad P_{2} l_{P_{1}}=3.205$

$$
\therefore P_{0_{2}}=676 \mathrm{PPa}(\mathrm{abs}) \quad P_{2}=513 \mathrm{kPa}(\mathrm{abs})
$$

$M_{2}=0.641$. From App. E1, $\left.\quad A_{2}\right|_{A_{2}}=1.145 \quad \therefore A_{2}^{*}=\frac{A_{2}}{1.45}=524 \mathrm{~mm}^{2}$ $F_{3} / R_{2}=\frac{750}{52 M}=1.443$. From $F_{1 g} E_{11}$ and $F_{g} 12.6, M_{3}=0.453 ; P_{3}=0.8688$

$$
\therefore P_{b}=P_{3}=0.8668 P_{0_{3}}=0.8688 P_{0_{2}}=587 \mathrm{RPa}(\mathrm{abs})
$$

P_{b}

Problem 13.127

Given: Steady, adiabatic flow of air through a convergrig-diverging nozzle Quit a shock present: $P_{0} \mid P_{0}=0.830$. Ht dish conditions $P_{e} 1 P_{0}=0.1278$

$$
P_{b} t_{P_{a_{1}}}=P_{b_{0}} t_{o_{1}}=0.8300
$$

Find: M,
Solution:
Compressible flow functions (Appendix E) to be used in solution Assumptions: in steady flow (e) uniform flow at a saturn
(3) ideal gas
(4) isentropic flow except across the shock
At design conditions, $P_{e} t P_{0}=0.1278$
From App E. , $M_{d}=2.0$ and $A_{e} / A_{i}=1.688$.

$$
\frac{A_{2}^{*}}{A_{i}^{*}}=\frac{A_{2}^{*}}{A_{2}} \times \frac{A_{1}}{A_{1}^{*}}
$$

We thus have a trial and error solution to determine M,

$$
\therefore M_{1}=1.50
$$

T

Given: Air flow through a converging-diverging no zz/c. Ae $/ A_{t}=3.5$.

Find: Range to back pressure for which a normal shock will occur in the nozzic, and the corresponding riant tlowrate.

Solution: Use compressible flow functionsin solution.
computing equation: $\dot{m}=\rho V A$

$$
\begin{aligned}
\text { Hsscuiptioni: (1) steady flow } & \text { (s) Uniform flow at a section } \\
\text { (2) Idealgas } & \text { (4) Isentropic, except across shock }
\end{aligned}
$$

it isrmal shack will occur within the nozzle for back pressure conditions in Regina II of Fig. 12,20 . For isentropic flow, with he lat $=3.5$, from Fig. E.I and E4, 12,6,

$$
\frac{M}{\substack{0.169 \\
2.80}} \frac{p / p_{0}}{0.9858} \quad \frac{p_{b}}{0.03685} \quad \begin{aligned}
& 99.6 \mathrm{kPa}
\end{aligned}
$$

From Appendix E.4,

$$
\frac{M_{1}}{2.80} \frac{M_{2}}{0.4882} \quad \frac{p_{1} / p_{1}}{8.980}
$$

Thus $\quad \phi_{6}=p_{2}=t_{0} \frac{t_{1}}{\phi_{0}} \frac{p_{2}}{p_{1}}=101 \mathrm{kAa}(c .03655)(8.980)=33.4 \mathrm{kPa}$
$33.4 \mathrm{kPa}<p_{b}<99.6 \mathrm{kPa}(\mathrm{kbs})$ (for normal shock in $1203 z^{\prime} \mathrm{c}$)
Flow is choked throughout this regime. Thus

$$
\begin{aligned}
& \dot{m}=\rho_{t} V_{t} A_{t} \quad \rho_{t}=\frac{p_{t}}{R T_{t}}=(0.5283) 1.01 \times 10^{5} \frac{\mu}{m^{2}} \times \frac{\mathrm{kg} \cdot \mathrm{k}}{287 N \cdot \mathrm{~m}^{2}} \frac{1}{(0.8333) 288 \mathrm{~K}}=0.775 \mathrm{~kg}
\end{aligned}
$$

$$
\begin{aligned}
& \dot{m}=0.775 \frac{\mathrm{~kg}}{\mathrm{~m}^{3}} \times 311 \frac{\mathrm{~m}}{-} \times 500 \mathrm{~mm}^{2} \times \frac{m^{2}}{10^{6} \mathrm{~mm}^{2}}=0.121 \frac{\mathrm{~kg}}{\mathrm{~s}}
\end{aligned}
$$

Given: Convenging-diverging nozzle with $\mathrm{Ae}_{\mathrm{L}} / A_{t}=1.633$, designed to operate at atmospheric pressure at the exit plane.

Find: Ranges of stagnation pressure for inhich nozzle will be free from shocks.

Sniution: Use connicssibic flow tables in solution.
Assume flow in nozzle is isentropic when shock-free. Tim Appendix E1 and Eq, 12.6 ,

$\frac{M}{1.96}$		p / p_{0}
	0.1360	A / A^{*}
0.38		1.633
0.40	0.9052	1.659
	0.8956	1.590

ht oftigi condinois, te $=1.96$, and

$$
p_{0} \geqslant \frac{k z}{\left(p_{p_{0} j_{e}}\right.}=\frac{101 \mathrm{kPa}}{0.1360}=743 \mathrm{kPa}(a b s)
$$

By iteration, then the give i area patio corresponds to isentropic choked flow with $M_{e}=0.388$ and $\left(p / p_{0}\right)=0.90 / 4$. The corresporiting stagnation pressure is

$$
p_{0}=\frac{-p_{e}}{\left(p / p_{0}\right)}=\frac{101 k \beta_{0}}{0.9014}=112 \mathrm{kpa}(a b s)
$$

Flow will be isentropic and shock-free for
(a) $p a r m<p_{0}<112 \mathrm{kPa}(a, s) \quad(0<M<0.388)$
(b) $\quad p_{0}>743 \mathrm{kPa}(a b s) \quad\left(M_{c}=1.96\right)$

The corresponding Ts diagrams are:

Given: Air flow through a converging-diverging nozzle. $A_{c} / A_{t}=1.87$.

$$
\begin{aligned}
& T_{0}=240^{\circ} \mathrm{F} \\
& p_{0}=100 \text { psia }
\end{aligned}
$$

Find: Mach number and flow velocity in exit plane. Solution: Use compressible flow functions in solution. Assume ideal gas.

For isentropic flow through the nozzle to $A_{c} / A_{t}=1.87$, from Fig, E.I and Eq.12.6,

Neither of these conditions matches the back pressure. Check the case of a shock (at $M=2,12$) in the exit plane. From Appendix E.4,

$$
\frac{M_{1}}{2.12} \quad \frac{M_{2}}{0.5583} \quad \frac{p_{2} / p_{1}}{5.077}
$$

Then $p_{e}=5.077 p_{d}=5.077(10.6 p s i a)=53.8$ psia.
The back pressure of 40 psia is therefore between the design pressure and the pressure that would exist downstream from a norma' shock in the exit plane. The flow is in regime III of Fig.12.20: supersonic in the exit plane with external compression. Thus

$$
\begin{aligned}
M_{e}= & M_{d}=2.12 \\
V_{e}= & M_{e} C_{e}=M_{e} \sqrt{K R T_{e}} \\
& T_{e}=\frac{T}{T_{0}} T_{0}=0.5266(460+240)^{\circ} R=369^{\circ} \mathrm{R} \\
V_{e}= & 2.12\left[1.4 \times 53.3 \frac{\mathrm{ft} \cdot 16 f}{16 \mathrm{~m} \cdot \mathrm{R}} \times 369^{\circ} R^{\circ} \times 32.2 \frac{\mathrm{~km}}{\mathrm{slug}} \times \frac{\mathrm{sing} \cdot \mathrm{ft}}{1 \mathrm{bf} \cdot \mathrm{~s}^{2}}\right]^{\frac{1}{2}}=2000 \frac{\mathrm{ft}}{\mathrm{~S}}
\end{aligned}
$$

The T_{s} diagram is

Gwen: Steade adiatatic flow of air throun a conmerging-duergina nozge with sreck in dwerging esction under conditions shown

$$
\begin{aligned}
& A_{1}=\eta_{2}=4.0 \mathrm{i}^{2} \\
& M_{1}=2.0 \\
& A_{3}=6.0 \mathrm{~m}^{2}
\end{aligned}
$$

Fina: i_{3}
Solution:
Compressinte fow functions (Appendix En) to be used in sotution
Rosumplions: (i) steady flow (3) uriform flow at enc scrision (2) ideal gas (4) ientropic flow, escept across Shock.

For $M=2.0$, From fepe.E. $P_{1} f_{0}=0.1218 \quad \therefore P_{1}=12 i n 8$ psia.
For $M_{1}=2.0$, from App.E.4, $M_{2}=0.577$
$p_{2} 1 f_{1}=4.50 \quad \therefore-p_{2}=57.5$-psa

$$
f_{02} l p_{01}=0,200 \quad \therefore P_{5_{2}}=72.1 \text { psia }
$$

For $M_{2}=0.5774$, from Ape. Fil, $A_{2} \mid A_{2}^{*}=1.2 i b, \therefore A_{2}=3.288 \mathrm{in}^{2}$ Ten $\mathrm{A}_{3}\left\{_{\mathrm{H}_{2}}=60013.288=1.825\right.$
Wh $A_{3} l_{R^{2}}=1.825$, From App, E. (Frge. Eand Eq. Eq. $^{\prime}$) $M_{3}=0.340$ wif $M_{3}=0.340$, from ftepe.E, $\mathrm{P}_{\mathrm{O}_{3}}{h_{e_{3}}=1.083}$

$$
P_{3}=\frac{P_{03}}{1.083}=\frac{P_{02}}{1.083}=\frac{-12.1}{1.083}=\text { pbib.psia. }
$$

Problem 13.132
Given: Flow through a sonverging-diverging nozzle, $p_{b}=p^{*}$ Find: sketch (a) mass flow rate us. Pressure ratio
(b) pressure us distance along nozzle
(c) Ts diagram

Solution: When $p_{0}=p^{*}$, flow in the nozzle will be choked and a shock will stand in the diverging section.

(t) (e)

Problem 13.133
Given: Steadu, adicitaik out kow from b reservor freug: a converen a merana nozix with a sook present

$$
M_{*} \text { orsury }=2.94
$$

$$
M_{1}=2 m
$$

e)

Find P_{b}, skeich fe frestury distioniad.
Solution:
Compressist Sautables (Appendix E) to be used in solution
Assumptions: (1) Steady flow (3) uniform flow at each section (2) ideak gas it isentropic iow, exap across sode.

For $M_{1}=2.42$, from Appendix E.t, - P, $_{1} f_{0}=0.0 b_{0}=0$

$$
A_{1}, A:=2.448
$$

For $\mathrm{H}_{1}=242$, From Appandix E.4,

$$
\begin{aligned}
& M_{2}=0.521 \\
& -P_{5_{2}} 1 P_{0}=0.5318 \\
& P_{2}=P_{1}=6.666
\end{aligned}
$$

For $M_{2}=0.521$, from Appondixet, $A_{2} I_{A_{2}}=A_{1} I_{Q_{2}}^{*}=1.302$
Ros, $\frac{A_{2}}{A_{2}}=\frac{H_{0}}{A_{1}} \times \frac{A_{1}}{A_{1}} \times \frac{A_{1}}{A_{2}}=3.99 a_{2} \frac{1}{2.448} \times 1.302=2.127$

$$
\therefore-P_{b}=-P_{e}=P_{e}+P_{02} \times P_{0}=0.9+4+1 \times 0.5348 \times 10008 P_{a}=301
$$

$T \mid P_{0} \quad$ To

Given: Steady, adiabatic flow of our Prough a converging-duerging nozzle with shock in duerging section under conditions shown.

(e)

$$
\begin{aligned}
& M_{1}=3.0 \\
& H_{1}=R_{t}=500 \mathrm{~m}^{2} \\
& H_{e}=600 \mathrm{~mm}^{2}
\end{aligned}
$$

Find: $M_{2}, P_{0_{2}}, P_{2}, A_{t}, S_{2}-S_{1}$, Me
Solution:
Compressible flow functions (Appendix E) to be used in solution Assumptions: (i) steady flow (3) uniform flow at each section (2) deal gas (4) i entropic Glow, eveplacrass Shock.

For $M_{1}=3.0$, from Appendix $E, l, P_{1} l p_{0}=0.02722, P_{1}=29.97 t P_{a}$

$$
, A_{1} / A^{*}=4.235 \quad \therefore A^{*}=A_{t}=118 \mathrm{~mm}^{2} \& A_{t}
$$

For $M_{1}=3.0$, from Ape
Since $T_{O_{2}}=T_{0}$, , her

$$
A_{2} l A_{2}^{*}=1.391 \quad \therefore A_{2}^{*}=359.5 \mathrm{~mm}^{2}
$$

AT $M_{2}=0.475$, from HPPES $\quad A_{2} H_{2}^{*}=1.391 \quad \therefore A_{2}^{*}=359.5 \mathrm{~mm}^{2}$ At ext Ae $_{H_{2}}=\frac{600}{359.5}=1.669$. From App E.1 $\left(F_{\text {gE }} N\right) \cdot$ Eg $12 . b$ $M_{e}=0.377$

$$
T
$$

$$
\begin{aligned}
& M_{2}=0.47 \\
& p_{02} f f_{01}=0.3 \\
& -P_{2} \mid f_{1}=10 . \\
& -R \ln P_{O_{2}}= \\
& 0 \text { RJ leg. }
\end{aligned}
$$

\qquad

The actual exit Mach number would be higher than the estimate based on isentropic flow downstream from the shock.
Flow downstream from the shock is subsonic. Flow slows in the diverging passage, which acts as a subsonic diffuser, causing pressure to increase in the direction of flow.

The result will be rapid growth of boundary layers on the channel walls. The boundary layers reduce the effective flow area of the passage. Because the boundary layers thicken rapidly, the area ratio for slowing the flow will be less than for isentropic flow. Therefore the actual flow will not slow as much as the isentropic model predicts.
The actual exit Mach number will be higher than the estimate based on isentropic flow.

Open-Ended Problem Statement: A supersonic wind tunnel must have two throats, with the second throat larger than the first. Explain why this must be so.

Discussion: The first throat is located in the supersonic nozzle from which flow enters the test section. The second throat is located in the supersonic diffuser that slows flow leaving the test section to subsonic speed for re-compression and re-circulation.

The second throat must be larger than the first for two reasons. First, it is impossible to slow a real flow to a Mach number of exactly one in a supersonic diffuser. The minimum Mach number that can be achieved with stable flow is about $M=1.3$. Therefore even if the flow were isentropic everywhere the second throat would have to be larger than the first by the area ratio A / A^{*} corresponding to $M=1.3$ at the throat.

The second reason is that flow is not isentropic through the tunnel. Some friction exists, which must reduce the stagnation pressure of the flow stream. This also reduces the stagnation density. Therefore a larger area is needed to carry the mass flow at any given flow speed.
For these reasons the second throat area must be larger than the first throat area.

Given: A normal shock stands in a section of insulated constant-area duct; conditions immediately upstreas and downstream of the sock she denoted by subscripts, z and 3 , respectively.
Flow in the duct is frictional
Conditions at (sone distance upstream) are $T_{1}=478 \mathrm{R}$ and at (s) (some distance downstream) are $T_{H}=7$ sob and $M_{4}=1.0$

Find: ai Sketch pressure distribution all the duct (b) Sketch a Ts diagram

Solution:

For adiabatic flow, $T_{0}=$ constant (from energy eq.). Thus, $T_{0,}=T_{04}=T_{4}\left[1+\frac{k_{-1}}{2} M_{4}^{2}\right]=750^{\circ} R[1.2]=9.00^{\circ} R$
Since $T_{0}=T_{1}\left[1+\frac{b_{2}}{2} m_{1}^{2}\right]$, hen

$$
M_{1}^{2}=\frac{2}{k-1}\left[T_{01},-1\right]=\frac{2}{0.4}\left[\frac{900 k}{400}-1\right]=4.51
$$

$$
m_{1}=\sqrt{4.57}=2.14
$$

\qquad

Given: Flow with shock in insulated constant-area duct, as shown.

$$
\begin{aligned}
& T_{1}=668^{\circ} \mathrm{R} \\
& P_{D_{1}}=78.2 \mathrm{psia} \\
& M_{1}=2.05
\end{aligned}
$$

$$
T_{2}=388 \mathrm{~F}
$$

Find: (a) speed before shock, V_{2}.

$$
M_{4}=1.0
$$

(b) Entropy change, $A_{4}-a_{1}$.

Solution: Use functions for steady, one-dimensional compressible flow.
Computing equations: $\frac{T}{T_{0}}$ from isentropic function(Appendix $E .1$)

$$
\frac{p}{p^{*}} \text { from Fanm-line functions (Appendix E.2) }
$$

Assumptions: (1) steady flow
(4) Fannoline flow
(2) Uniform flow at earn cross-section
(5) $F_{B_{X}}=0$
(3) Ideal gas
(b) $\Delta z=0$

For adiabatic flow on Fanno line and across shock, $T_{0}=$ Constant. At $M_{1}=2.05, T / T_{0}=0.5433\left(E_{q}, 11,17 b\right)$. Thus

$$
T_{0}=T_{01}=\frac{T_{1}}{\left(T T_{0}\right)}=\frac{668^{\circ} \mathrm{R}}{0.5433}=1230^{\circ} \mathrm{R}
$$

Using $T_{2}=388 F\left(848^{\circ} \mathrm{R}\right), T_{T_{0}}=\frac{848^{\circ} \mathrm{R}}{1730^{\circ} \mathrm{R}}=0.6894$ and $M_{L}=1.50$ (Table E, I).

Flow nicest stay on the same Fino line. Thus $\left(p_{1} / p_{0}^{*}\right)_{1}=1.760$ at $M_{1}=2.05$, (Equiv. 18e). Thus

$$
p_{0}^{*}=\frac{p_{01}}{\left(A_{0} / p_{0}^{*}\right)_{1}}=\frac{78.2 p_{0} i a}{1.760}=44.4 p^{2} i a
$$

From the Gibbs equation

$$
\begin{aligned}
& T d A=d h-V d p ; d s=C_{\rho} \frac{d T}{T}-R \cdot \frac{d p}{p} \\
& \Delta \Delta=C_{\rho} \ln \frac{T_{D 4}^{0}}{T_{01}}-R \ln \frac{A_{04}}{A_{01}}
\end{aligned}
$$

$\left\{\begin{array}{l}\left\{\begin{array}{l}\text { This problem could be solved without using functiongbut the solution } \\ \text { would require more calculations. }\end{array}\right. \\ \hline\end{array}\right.$

$$
\begin{aligned}
& V_{2}=2 / 40 \mathrm{f}+1 \mathrm{~s}
\end{aligned}
$$

Problem 13.138

13.138 Show that as the upstream Mach number approaches infinity, the Mach number after an oblique shock becomes

$$
M_{2} \approx \sqrt{\frac{k-1}{2 k \sin ^{2}(\beta-\theta)}}
$$

Given: Normal shock
Find: Approximation for downstream Mach number as upstream one approaches infinity

Solution:

Basic equations:

$$
\begin{equation*}
\mathrm{M}_{2 \mathrm{n}}^{2}=\frac{\mathrm{M}_{1 \mathrm{n}}{ }^{2}+\frac{2}{\mathrm{k}-1}}{\left(\frac{2 \cdot \mathrm{k}}{\mathrm{k}-1}\right) \cdot \mathrm{M}_{1 \mathrm{n}}{ }^{2}-1} \quad \text { (13.48a) } \quad \mathrm{M}_{2 \mathrm{n}}=\mathrm{M}_{2} \cdot \sin (\beta-\theta) \tag{13.48a}
\end{equation*}
$$

Combining the two equations

$$
M_{2}=\frac{M_{2 n}}{\sin (\beta-\theta)}=\frac{\sqrt{\frac{M_{1 n}{ }^{2}+\frac{2}{k-1}}{\left(\frac{2 \cdot k}{k-1}\right) \cdot M_{1 n^{2}-1}^{2}}}}{\sin (\beta-\theta)}=\sqrt{\frac{M_{1 n^{2}}{ }^{2}+\frac{2}{k-1}}{\left[\left(\frac{2 \cdot k}{k-1}\right) \cdot M_{1 n^{2}}{ }^{2}-1\right] \cdot \sin (\beta-\theta)^{2}}}
$$

$$
\mathrm{M}_{2}=\sqrt{\frac{1+\frac{2}{(\mathrm{k}-1) \cdot \mathrm{M}_{1 \mathrm{n}}^{2}}}{\left[\left(\frac{2 \cdot \mathrm{k}}{\mathrm{k}-1}\right)-\frac{1}{\mathrm{M}_{1 \mathrm{n}}^{2}}\right] \cdot \sin (\beta-\theta)^{2}}}
$$

As M_{1} goes to infinity, so does $M_{1 \mathrm{n}}$, so

$$
M_{2}=\sqrt{\frac{1}{\left(\frac{2 \cdot k}{k-1}\right) \cdot \sin (\beta-\theta)^{2}}} \quad M_{2}=\sqrt{\frac{k-1}{2 \cdot k \cdot \sin (\beta-\theta)^{2}}}
$$

13.139 Supersonic air flow at $M_{1}=2.5$ and 80 kPa (abs) is deflected by an oblique shock with angle $\beta=35^{\circ}$. Find the Mach number and pressure after the shock, and the deflection angle. Compare these results to those obtained if instead the flow had experienced a normal shock. What is the smallest possible value of angle β for this upstream Mach number?

Given: Data on an oblique shock

Find: Mach number and pressure downstream; compare to normal shock

Solution:

The given or available data is:

$$
\begin{array}{rlll}
R= & 286.9 & \mathrm{~J} / \mathrm{kg} \cdot \mathrm{~K} \\
k= & 1.4 & \\
p_{1}= & 80 & \mathrm{kPa} \\
M_{1}= & 2.5 & \\
\beta= & 35 & \mathrm{o}
\end{array}
$$

Equations and Computations:

From M_{1} and β

$$
\begin{array}{rll}
M_{1 n} & =1.43 \\
M_{1 t} & =2.05
\end{array}
$$

From $\mathrm{M}_{1 \mathrm{n}}$ and p_{1}, and Eq. 13.48d
(using built-in function NormpfromM (M, k))

$$
\begin{align*}
\frac{p_{2}}{p_{1}} & =\frac{2 k}{k+1} M_{1_{n}}^{2}-\frac{k-1}{k+1} \tag{13.48d}\\
p_{2} & =178.6 \mathrm{kPa}
\end{align*}
$$

The tangential velocity is unchanged

$$
V_{\mathrm{t} 1}=\quad V_{\mathrm{t} 2}
$$

Hence

$$
\begin{aligned}
c_{\mathrm{t} 1} M_{\mathrm{t} 1} & =\quad c_{\mathrm{t} 2} M_{\mathrm{t} 2} \\
\left(T_{1}\right)^{1 / 2} M_{\mathrm{t} 1} & =\left(T_{2}\right)^{1 / 2} M_{\mathrm{t} 2} \\
M_{2 \mathrm{t}} & =\left(T_{1} / T_{2}\right)^{1 / 2} M_{\mathrm{t} 1}
\end{aligned}
$$

From $\mathrm{M}_{1 \mathrm{n}}$, and Eq. 13.48c
(using built-in function NormTfromM (M, k))

$$
T_{2} / T_{1}=1.28
$$

Hence

$$
M_{2 \mathrm{t}}=1.81
$$

Also, from $\mathrm{M}_{1 \mathrm{n}}$, and Eq. 13.48a
(using built-in function NormM2fromM (M, k))

$$
\begin{align*}
M_{2_{n}}^{2} & =\frac{M_{1_{n}}^{2}+\frac{2}{k-1}}{\frac{2 k}{k-1} M_{1_{n}}^{2}-1} \tag{13.48a}\\
M_{2 \mathrm{n}} & =0.726
\end{align*}
$$

The downstream Mach number is then

$$
\begin{aligned}
& M_{2}=\left(M_{2 \mathrm{t}}^{2}+M_{2 \mathrm{n}}^{2}\right)^{1 / 2} \\
& M_{2}= \\
& 1.95
\end{aligned}
$$

Finally, from geometry

$$
V_{2 \mathrm{n}}=V_{2} \sin (\beta-\theta)
$$

Hence

$$
\theta=\beta-\sin ^{-1}\left(V_{2 \mathrm{n}} / V_{2}\right)
$$

or

$$
\begin{aligned}
& \theta=\beta-\sin ^{-1}\left(M_{2 \mathrm{n}} / M_{2}\right) \\
& \theta=13.2
\end{aligned}
$$

For the normal shock:

From M_{1} and p_{1}, and Eq. 13.48d
(using built-in function $\operatorname{NormpfromM(M,k))~}$

$$
p_{2}=\quad 570 \quad \mathrm{kPa}
$$

Also, from M_{1}, and Eq. 13.48a
(using built-in function $\operatorname{NormM2fromM(M,k))~}$

$$
M_{2}=0.513
$$

For the minimum β :
The smallest value of β is when the shock is a Mach wave (no deflection)

$$
\begin{aligned}
& \beta=\sin ^{-1}\left(1 / M_{1}\right) \\
& \beta=23.6
\end{aligned}
$$

13.140 Consider supersonic flow of air at $M_{1}=3.0$. What is the range of possible values of the oblique shock angle β ? For this range of β, plot the pressure ratio across the shock.

Given: Oblique shock in flow at $M=3$

Find: Minimum and maximum β, plot of pressure rise across shock

Solution:

The given or available data is:

$$
\begin{array}{rlcl}
R & = & 286.9 & \mathrm{~J} / \mathrm{kg} . \mathrm{K} \\
k & = & 1.4 & \\
M_{1} & & 3 &
\end{array}
$$

Equations and Computations:

The smallest value of β is when the shock is a Mach wave (no deflection)

The largest value is

$$
\begin{aligned}
& \beta=\sin ^{-1}\left(1 / M_{1}\right) \\
& \beta=19.5 \\
& \beta=90.0
\end{aligned}
$$

The normal component of Mach number is

$$
\begin{equation*}
M_{1 \mathrm{n}}=M_{1} \sin (\beta) \tag{13.47a}
\end{equation*}
$$

For each $\beta, \mathrm{p}_{2} / \mathrm{p}_{1}$ is obtained from M1n, and Eq. 13.48 d
(using built-in function NormpfromM (M,k))

$$
\begin{equation*}
\frac{p_{2}}{p_{1}}=\frac{2 k}{k+1} M_{1_{n}}^{2}-\frac{k-1}{k+1} \tag{13.48d}
\end{equation*}
$$

Computed results:

$\boldsymbol{\beta} \mathbf{(}^{\mathbf{0}} \mathbf{)}$	$\boldsymbol{M}_{\mathbf{1 n}}$	$\boldsymbol{p}_{\mathbf{2}} / \boldsymbol{p}_{\mathbf{1}}$
19.5	1.00	1.00
20	1.03	1.06
30	1.50	2.46
40	1.93	4.17
50	2.30	5.99
60	2.60	7.71
70	2.82	9.11
75	2.90	9.63
80	2.95	10.0
85	2.99	10.3
90	3.00	10.3


```
13.141 The air velocities before and after an oblique shock are
\(1250 \mathrm{~m} / \mathrm{s}\) and \(650 \mathrm{~m} / \mathrm{s}\), respectively, and the deflection angle is
\(\theta=35^{\circ}\). Find the oblique shock angle \(\beta\), and the pressure ratio
across the shock.
```

Given: Velocities and deflection angle of an oblique shock

Find: \quad Shock angle β; pressure ratio across shock

Solution:

The given or available data is:

$$
\begin{array}{rlcl}
R= & 286.9 & \mathrm{~J} / \mathrm{kg} \cdot \mathrm{~K} \\
k= & 1.4 & \\
V_{1}= & 1250 & \mathrm{~m} / \mathrm{s} \\
V_{2}= & 650 & \mathrm{~m} / \mathrm{s} \\
\theta= & 35 & 0
\end{array}
$$

Equations and Computations:

From geometry we can write two equations for tangential velocity:

For $V_{1 t}$

$$
\begin{equation*}
V_{1 \mathrm{t}}=V_{1} \cos (\beta) \tag{1}
\end{equation*}
$$

For $V_{2 t}$

$$
\begin{equation*}
V_{2 \mathrm{t}}=V_{2} \cos (\beta-\theta) \tag{2}
\end{equation*}
$$

For an oblique shock $V_{2 \mathrm{t}}=V_{1 \text { t }}$, so Eqs. 1 and 2 give

$$
\begin{equation*}
V_{1} \cos (\beta)=V_{2} \cos (\beta-\theta) \tag{3}
\end{equation*}
$$

Solving for β

$$
\begin{aligned}
& \beta=\tan ^{-1}\left(\left(V_{1}-V_{2} \cos (\theta)\right) /\left(V_{2} \sin (\theta)\right)\right) \\
& \beta=62.5 \quad \circ
\end{aligned}
$$

(Alternatively, solve Eq. 3 using Goal Seek!)

For p_{2} / p_{1}, we need $M_{1 \mathrm{n}}$ for use in Eq. 13.48d

$$
\begin{equation*}
\frac{p_{2}}{p_{1}}=\frac{2 k}{k+1} M_{1_{n}}^{2}-\frac{k-1}{k+1} \tag{13.48d}
\end{equation*}
$$

We can compute M_{1} from θ and β, and Eq. 13.49
(using built-in function Theta (M, β, k))

$$
\begin{equation*}
\tan \theta=\frac{2 \cot \beta\left(M_{1}^{2} \sin ^{2} \beta-1\right)}{M_{1}^{2}(k+\cos 2 \beta)+2} \tag{13.49}
\end{equation*}
$$

For

$$
\begin{aligned}
\theta & = & 35.0 & \circ \\
\beta & = & 62.5 & \circ \\
M_{1} & = & 3.19 &
\end{aligned}
$$

This value of M_{1} was obtained by using Goal Seek:
Vary M_{1} so that θ becomes the required value.
(Alternatively, find M_{1} from Eq. 13.49 by explicitly solving for it!)

We can now find $M_{1 n}$ from M_{1}. From M_{1} and Eq. 13.47a

$$
\begin{equation*}
M_{1 \mathrm{n}}=M_{1} \sin (\beta) \tag{13.47a}
\end{equation*}
$$

Hence $\quad M_{1 \mathrm{n}}=\quad 2.83$

Finally, for p_{2} / p_{1}, we use $M_{1 \mathrm{n}}$ in Eq. 13.48d
(using built-in function NormpfromM (M, k)

$$
p_{2} / p_{1}=\quad 9.15
$$

Problem 13.142

13.142 The temperature and Mach number before an oblique shock are $T_{1}=10^{\circ} \mathrm{C}$ and $M_{1}=3.25$, respectively, and the pressure ratio across the shock is 5 . Find the deflection angle, θ, the shock angle, β, and the Mach number after the shock, M_{2}.

Given: Data on an oblique shock

Find: Deflection angle θ; shock angle β; Mach number after shock

Solution:

The given or available data is:

R	$=$	286.9	$\mathrm{~J} / \mathrm{kg} \cdot \mathrm{K}$
k	$=$	1.4	
M_{1}	$=$	3.25	
$T_{1}=$	283	K	
$p_{2} / p_{1}=$	5		

Equations and Computations:
From p_{2} / p_{1}, and Eq. 13.48d
(using built-in function NormpfromM (M, k)
and Goal Seek or Solver)

$$
\begin{equation*}
\frac{p_{2}}{p_{1}}=\frac{2 k}{k+1} M_{1_{n}}^{2}-\frac{k-1}{k+1} \tag{13.48d}
\end{equation*}
$$

For

$$
\begin{aligned}
& p_{2} / p_{1}= \\
& M_{1 \mathrm{n}}= \\
& 2.00 \\
&
\end{aligned}
$$

From M_{1} and $M_{1 \mathrm{n}}$, and Eq 13.47a

$$
\begin{equation*}
M_{1 \mathrm{n}}=M_{1} \sin (\beta) \tag{13.47a}
\end{equation*}
$$

$$
\beta=\quad 40.4
$$

From M_{1} and β, and Eq. 13.49
(using built-in function Theta (M, β, k)

$$
\begin{align*}
\tan \theta & =\frac{2 \cot \beta\left(M_{1}^{2} \sin ^{2} \beta-1\right)}{M_{1}^{2}(k+\cos 2 \beta)+2} \tag{13.49}\\
\theta & =23.6
\end{align*}
$$

To find M_{2} we need $M_{2 \mathrm{n}}$. From $M_{1 \mathrm{n}}$, and Eq. 13.48a
(using built-in function NormM2fromM (M, k))

$$
\begin{align*}
M_{2_{n}}^{2} & =\frac{M_{1_{n}}^{2}+\frac{2}{k-1}}{\frac{2 k}{k-1} M_{1_{n}}^{2}-1} \tag{13.48a}\\
M_{2 \mathrm{n}} & =0.561
\end{align*}
$$

The downstream Mach number is then obtained from
from $M_{2 n}, \theta$ and β, and Eq. 13.47b

$$
\begin{equation*}
M_{2 \mathrm{n}}=M_{2} \sin (\beta-\theta) \tag{13.47b}
\end{equation*}
$$

Hence

$$
M_{2}=\quad 1.94
$$

13.143 An airfoil at zero angle of attack has a sharp leading edge with an included angle of 20°. It is being tested over a range of speeds in a wind tunnel. The air temperature upstream is maintained at $15^{\circ} \mathrm{C}$. Determine the Mach number and corresponding air speed at which a detached normal shock first attaches to the leading edge, and the angle of the resulting oblique shock. Plot the oblique shock angle β as a function of upstream Mach number M_{1}, from the minimum attached-shock value through $M_{1}=7$.

Given: Airfoil with included angle of 20°
Find: Mach number and speed at which oblique shock forms

Solution:

The given or available data is:

$R=$	286.9	$\mathrm{~J} / \mathrm{kg} \cdot \mathrm{K}$
$k=$	1.4	
$T_{1}=$	288	K
$\theta=$	10	0

Equations and Computations:

Fig. 13.29 Oblique shock deflection angle.

From Fig. 13.29 the smallest Mach number for which an oblique shock exists at a deflection $\theta=10^{\circ}$ is approximately $M_{1}=1.4$.

By trial and error, a more precise answer is (using built-in function Theta (M, β, k)

| $M_{1}=$ | 1.42 | |
| ---: | :--- | ---: | :--- |
| $\beta=$ | 67.4 | ${ }^{0}$ |
| $\theta=$ | 10.00 | ${ }^{0}$ |
| | | |
| $c_{1}=$ | 340 | $\mathrm{~m} / \mathrm{s}$ |
| $V_{1}=$ | 483 | $\mathrm{~m} / \mathrm{s}$ |

A suggested procedure is:

1) Type in a guess value for M_{1}
2) Type in a guess value for β
3) Compute θ from Eq. 13.49
(using built-in function Theta (M, β, k))

$$
\begin{equation*}
\tan \theta=\frac{2 \cot \beta\left(M_{1}^{2} \sin ^{2} \beta-1\right)}{M_{1}^{2}(k+\cos 2 \beta)+2} \tag{13.49}
\end{equation*}
$$

4) Use Solver to maximize θ by varying β
5) If θ is not 10°, make a new guess for M_{1}
6) Repeat steps $1-5$ until $\theta=10^{\circ}$

Computed results:

M_{1}	β (${ }^{\circ}$)	$\theta\left({ }^{\circ}\right.$)	Error
1.42	67.4	10.0	0.0\%
1.50	56.7	10.0	0.0\%
1.75	45.5	10.0	0.0\%
2.00	39.3	10.0	0.0\%
2.25	35.0	10.0	0.0\%
2.50	31.9	10.0	0.0\%
3.00	27.4	10.0	0.0\%
4.00	22.2	10.0	0.0\%
5.00	19.4	10.0	0.0\%
6.00	17.6	10.0	0.0\%
7.00	16.4	10.0	0.0\%

To compute this table:

1) Type the range of M_{1}
2) Type in guess values for β
3) Compute θ from Eq. 13.49
(using built-in function Theta (M, β, k)
4) Compute the absolute error between each θ and $\theta=10^{\circ}$
5) Compute the sum of the errors
6) Use Solver to minimize the sum by varying the β values (Note: You may need to interactively type in new β values
if Solver generates β values that lead to no θ, or to
β values that correspond to a strong rather than weak shock)

13.144 An airfoil has a sharp leading edge with an included angle of $\delta=60^{\circ}$. It is being tested in a wind tunnel running at $1200 \mathrm{~m} / \mathrm{s}$ (the air pressure and temperature upstream are 75 kPa and $3.5^{\circ} \mathrm{C}$). Plot the pressure and temperature in the region adjacent to the upper surface as functions of angle of attack, α, ranging from $\alpha=0^{\circ}$ to 30°. What are the maximum pressure and temperature? (Ignore the possibility of a detached shock developing if α is too large; see Problem 13.145.)

Given: Airfoil with included angle of 60°

Find: Plot of temperature and pressure as functions of angle of attack

Solution:

The given or available data is:

| $R=$ | 286.9 | $\mathrm{~J} / \mathrm{kg} . \mathrm{K}$ |
| ---: | :---: | :--- | :--- |
| $k=$ | 1.4 | |
| $T_{1}=$ | 276.5 | K |
| $p_{1}=$ | 75 | kPa |
| $V_{1}=$ | 1200 | $\mathrm{~m} / \mathrm{s}$ |
| $\delta=$ | 60 | \circ |

Equations and Computations:

From T_{1}	$c_{1}=$	$333 \mathrm{~m} / \mathrm{s}$
Then	$M_{1}=$	3.60

Computed results:

To compute this table:

1) Type the range of α
2) Type in guess values for β
3) Compute $\theta_{\text {Needed }}$ from $\theta=\delta / 2-\alpha$
4) Compute θ from Eq. 13.49 (using built-in function Theta (M, β, k)
5) Compute the absolute error between each θ and $\theta_{\text {Needed }}$
6) Compute the sum of the errors
7) Use Solver to minimize the sum by varying the β values (Note: You may need to interactively type in new β values if Solver generates β values that lead to no θ)
8) For each $\alpha, M_{1 \mathrm{n}}$ is obtained from M_{1}, and Eq. 13.47a
9) For each α, p_{2} is obtained from $p_{1}, M_{1 n}$, and Eq. 13.48 d (using built-in function $\operatorname{NormpfromM(M,k))~}$
10) For each α, T_{2} is obtained from $T_{1}, M_{1 \mathrm{n}}$, and Eq. 13.48c (using built-in function NormTfromM (M, k))

13.145 The airfoil of Problem 13.144 will develop a detached shock on the lower surface if the angle of attack, α, exceeds a certain value. What is this angle of attack? Plot the pressure and temperature in the region adjacent to the lower surface as functions of angle of attack, α, ranging from $\alpha=0^{\circ}$ to the angle at which the shock becomes detached. What are the maximum pressure and temperature?

Given: Airfoil with included angle of 60°
Find: Angle of attack at which oblique shock becomes detached

Solution:

The given or available data is:

$R=$	286.9	$\mathrm{~J} / \mathrm{kg} \cdot \mathrm{K}$	
k	$=$	1.4	
$T_{1}=$	276.5	K	
$p_{1}=$	75	kPa	
$V_{1}=$	1200	$\mathrm{~m} / \mathrm{s}$	
$\delta=$	60	o	

Equations and Computations:

From T_{1}	$c_{1}=$	$333 \mathrm{~m} / \mathrm{s}$
Then	$M_{1}=$	3.60

From Fig. 13.29, at this Mach number the smallest deflection angle for which an oblique shock exists is approximately $\theta=35^{\circ}$.

Fig. 13.29 Oblique shock deflection angle.
By using Solver , a more precise answer is
(using built-in function Theta (M, β, k)

$$
\begin{aligned}
M_{1} & = & 3.60 & \\
\beta & = & 65.8 & \circ \\
\theta & = & 37.3 & \circ
\end{aligned}
$$

A suggested procedure is:

1) Type in a guess value for β
2) Compute θ from Eq. 13.49
(using built-in function Theta (M, β, k))

$$
\begin{equation*}
\tan \theta=\frac{2 \cot \beta\left(M_{1}^{2} \sin ^{2} \beta-1\right)}{M_{1}^{2}(k+\cos 2 \beta)+2} \tag{13.49}
\end{equation*}
$$

3) Use Solver to maximize θ by varying β

For a deflection angle θ the angle of attack α is

$$
\begin{aligned}
& \alpha=\theta-\delta / 2 \\
& \alpha=7.31
\end{aligned}
$$

$\alpha\left({ }^{0}\right)$	$\beta\left({ }^{\text {c }}\right.$)	$\theta\left({ }^{\circ}\right.$) Needed	$\theta\left({ }^{\mathbf{0}}\right.$)	Error	$M_{1 n}$	$\boldsymbol{p}_{2}(\mathbf{k P a})$	$\mathrm{T}_{2}\left({ }^{0} \mathrm{C}\right)$
0.00	47.1	30.0	30.0	0.0\%	2.64	597	357
1.00	48.7	31.0	31.0	0.0\%	2.71	628	377
2.00	50.4	32.0	32.0	0.0\%	2.77	660	397
3.00	52.1	33.0	33.0	0.0\%	2.84	695	418
4.00	54.1	34.0	34.0	0.0\%	2.92	731	441
5.50	57.4	35.5	35.5	0.0\%	3.03	793	479
5.75	58.1	35.8	35.7	0.0\%	3.06	805	486
6.00	58.8	36.0	36.0	0.0\%	3.08	817	494
6.25	59.5	36.3	36.2	0.0\%	3.10	831	502
6.50	60.4	36.5	36.5	0.0\%	3.13	845	511
6.75	61.3	36.8	36.7	0.0\%	3.16	861	521
7.00	62.5	37.0	37.0	0.0\%	3.19	881	533
7.25	64.4	37.3	37.2	0.0\%	3.25	910	551
7.31	65.8	37.3	37.3	0.0\%	3.28	931	564

$$
\text { Sum: } 0.0 \%
$$

Max: | 931 | 564 |
| :--- | :--- |

To compute this table:

1) Type the range of α
2) Type in guess values for β
3) Compute $\theta_{\text {Needed }}$ from $\theta=\alpha+\delta / 2$
4) Compute θ from Eq. 13.49
(using built-in function Theta (M, β, k)
5) Compute the absolute error between each θ and $\theta_{\text {Needed }}$
6) Compute the sum of the errors
7) Use Solver to minimize the sum by varying the β values
(Note: You may need to interactively type in new β values
if Solver generates β values that lead to no θ)
8) For each $\alpha, M_{1 \mathrm{n}}$ is obtained from M_{1}, and Eq. 13.47a
9) For each α, p_{2} is obtained from $p_{1}, M_{1 n}$, and Eq. 13.48 d (using built-in function $\operatorname{NormpfromM}(M, k)$)
10) For each α, T_{2} is obtained from $T_{1}, M_{1 n}$, and Eq. 13.48c
(using built-in function NormTfromM (M, k))

Problem 13.146

13.146 The wedge-shaped airfoil shown has chord $c=1.5 \mathrm{~m}$ and included angle $\delta=7^{\circ}$. Find the lift per unit span at a Mach number of 2.75 in air for which the static pressure is 70 kPa .

Given: Data on airfoil flight
Find: Lift per unit span

Solution:

The given or available data is:

| $R=$ | 286.9 | $\mathrm{~J} / \mathrm{kg} \cdot \mathrm{K}$ |
| ---: | :--- | :---: | :--- |
| $k=$ | 1.4 | |
| $p_{1}=$ | 70 | kPa |
| $M_{1}=$ | 2.75 | |
| $\delta=$ | 7 | o |
| $c=$ | 1.5 | m |

Equations and Computations:

The lift per unit span is

$$
\begin{equation*}
L=\left(p_{\mathrm{L}}-p_{\mathrm{U}}\right) c \tag{1}
\end{equation*}
$$

(Note that p_{L} acts on area $c / \cos (\delta)$, but its normal component is multiplied by $\cos (\delta)$)

For the upper surface:

$$
\begin{array}{lll}
p_{\mathrm{U}}= & p_{1} \\
p_{\mathrm{U}}= & 70.0 & \mathrm{kPa}
\end{array}
$$

For the lower surface:

We need to find $M_{1 n}$

The deflection angle is

$$
\begin{aligned}
& \theta=\delta \\
& \theta=\quad 7
\end{aligned}
$$

From M_{1} and θ, and Eq. 13.49
(using built-in function Theta (M, β, k)

$$
\begin{equation*}
\tan \theta=\frac{2 \cot \beta\left(M_{1}^{2} \sin ^{2} \beta-1\right)}{M_{1}^{2}(k+\cos 2 \beta)+2} \tag{13.49}
\end{equation*}
$$

For | θ | $=$ | 7.0 | 0 |
| :--- | :--- | :--- | :--- |
| β | $=$ | 26.7 | o |

(Use Goal Seek to vary β so that $\theta=\delta$)

From M_{1} and β
$M_{1 \mathrm{n}}=\quad 1.24$

From $M_{1 \mathrm{n}}$ and p_{1}, and Eq. 13.48d
(using built-in function NormpfromM (M, k))

$$
\begin{align*}
& \frac{p_{2}}{p_{1}}=\frac{2 k}{k+1} M_{1_{n}}^{2}-\frac{k-1}{k+1} \tag{13.48d}\\
& p_{2}= \\
& 113
\end{align*}
$$

From Eq 1
13.147 The wedge-shaped airfoil shown has chord $c=2 \mathrm{~m}$ and angles $\delta_{\text {lower }}=15^{\circ}$ and $\delta_{\text {upper }}=5^{\circ}$. Find the lift per unit span at a Mach number of 2.75 in air at a static pressure of 75 kPa .

Given: Data on airfoil flight

Find: Lift per unit span

Solution:

The given or available data is:

$R=$	286.9	$\mathrm{~J} / \mathrm{kg} \cdot \mathrm{K}$	
$k=$	1.4		
$p_{1}=$	75	kPa	
$M_{1}=$	2.75		
$\delta_{\mathrm{U}}=$	5	0	
$\delta_{\mathrm{L}}=$	15	0	
c	$=$	2	m

Equations and Computations:

The lift per unit span is

$$
\begin{equation*}
L=\left(p_{\mathrm{L}}-p_{\mathrm{U}}\right) c \tag{1}
\end{equation*}
$$

(Note that each p acts on area $c / \cos (\delta)$, but its normal component is multiplied by $\cos (\delta)$)

For the upper surface:

We need to find $M_{1 n(U)}$

The deflection angle is

$$
\theta_{\mathrm{U}}=\quad \delta_{\mathrm{U}}
$$

$$
\theta_{U}=\quad 5 \quad{ }^{\circ}
$$

From M_{1} and θ_{U}, and Eq. 13.49
(using built-in function Theta (M, β, k))

$$
\begin{equation*}
\tan \theta=\frac{2 \cot \beta\left(M_{1}^{2} \sin ^{2} \beta-1\right)}{M_{1}^{2}(k+\cos 2 \beta)+2} \tag{13.49}
\end{equation*}
$$

For

$$
\begin{array}{lll}
\theta_{\mathrm{U}}= & 5.00 & \circ \\
\beta_{\mathrm{U}}= & 25.1 & \circ
\end{array}
$$

(Use Goal Seek to vary β_{U} so that $\theta_{\mathrm{U}}=\delta_{\mathrm{U}}$)

From M_{1} and $\beta_{\mathrm{U}} \quad M_{1 \mathrm{n}(\mathrm{U})}=1.16$

From $M_{1 \mathrm{n}(\mathrm{U})}$ and p_{1}, and Eq. 13.48d
(using built-in function NormpfromM (M,k))

$$
\begin{align*}
& \frac{p_{2}}{p_{1}}=\frac{2 k}{k+1} M_{1_{n}}^{2}-\frac{k-1}{k+1} \tag{13.48d}\\
& p_{2}=106 \mathrm{kPa} \\
& p_{\mathrm{U}}=\quad p_{2} \\
& p_{\mathrm{U}}=106 \mathrm{kPa}
\end{align*}
$$

For the lower surface:

We need to find $M_{1 n(\mathrm{~L})}$

The deflection angle is $\theta_{\mathrm{L}}=\quad \delta_{\mathrm{L}}$ $\theta_{\mathrm{L}}=\quad 15$

From M_{1} and θ_{L}, and Eq. 13.49
(using built-in function Theta (M, β, k))

For | $\theta_{\mathrm{L}}=$ | 15.00 | ${ }^{\circ}$ |
| :--- | :--- | :--- |
| $\beta_{\mathrm{L}}=$ | 34.3 | ${ }^{\circ}$ |

(Use Goal Seek to vary β_{L} so that $\theta_{\mathrm{L}}=\delta_{\mathrm{L}}$)

From M_{1} and $\beta_{\mathrm{L}} \quad M_{1 \mathrm{n}(\mathrm{L})}=1.55$

From $M_{1 \mathrm{n}(\mathrm{L})}$ and p_{1}, and Eq. 13.48d
(using built-in function NormpfromM (M, k))

$$
\begin{array}{rlr}
p_{2}= & 198 & \mathrm{kPa} \\
p_{\mathrm{L}}= & p_{2} & \\
p_{\mathrm{L}}= & 198 & \mathrm{kPa} \\
L & = & 183
\end{array} \mathrm{kN} / \mathrm{m} \mathrm{l} .
$$

13.148 An oblique shock causes a flow that was at $M=4$ and a static pressure of 75 kPa to slow down to $M=2.5$. Find the deflection angle and the static pressure after the shock.

Given: Oblique shock Mach numbers

Find: Deflection angle; Pressure after shock

Solution:

The given or available data is:

$$
\begin{array}{rcc}
k= & 1.4 & \\
p_{1}= & 75 & \mathrm{kPa} \\
M_{1}= & 4 & \\
M_{2} & = & 2.5
\end{array}
$$

Equations and Computations:

We make a guess for β :

$$
\beta=\quad 33.6 \quad \text { o }
$$

From M_{1} and β, and Eq. 13.49 (using built-in function Theta (M, β, k)

$$
\begin{align*}
\tan \theta & =\frac{2 \cot \beta\left(M_{1}^{2} \sin ^{2} \beta-1\right)}{M_{1}^{2}(k+\cos 2 \beta)+2} \tag{13.49}\\
\theta & =21.0
\end{align*}
$$

From M_{1} and $\beta \quad M_{1 \mathrm{n}}=2.211$
From M_{2}, θ, and β
$M_{2 \mathrm{n}}=0.546$
(1)

We can also obtain $M_{2 \mathrm{n}}$ from Eq. 13.48a (using built-in function normM2fromM (M, k)

$$
\begin{gather*}
M_{2_{n}}^{2}=\frac{M_{1_{n}}^{2}+\frac{2}{k=1}}{\frac{2 k}{k=1} M_{1_{n}}^{2}=1} \tag{13.48a}\\
M_{2 \mathrm{n}}=0.546 \tag{2}
\end{gather*}
$$

We need to manually change β so that Eqs. 1 and 2 give the same answer.
Alternatively, we can compute the difference between 1 and 2 , and use Solver to vary β to make the difference zero

$$
\text { Error in } M_{2 \mathrm{n}}=0.00 \%
$$

Then p_{2} is obtained from Eq. 13.48 d (using built-in function normpfromm (M, k)

$$
\begin{align*}
& \frac{p_{2}}{p_{1}}=\frac{2 k}{k+1} M_{1_{n}}^{2}-\frac{k-1}{k+1} \tag{13.48d}\\
& p_{2}=415 \mathrm{kPa}
\end{align*}
$$

13.149 The geometry of the fuselage and engine cowling near the inlet to the engine of a supersonic fighter aircraft is designed so that the incoming air at $M=3$ is deflected 7.5 degrees, and then experiences a normal shock at the engine entrance. If the incoming air is at 50 kPa , what is the pressure of the air entering the engine? What would be the pressure if the incoming air was slowed down by only a normal shock?

Given: Air flow into engine

Find: Pressure of air in engine; Compare to normal shock

Solution:

The given or available data is:

$$
\begin{array}{rlrl}
k & = & 1.4 & \\
p_{1} & = & 50 & \mathrm{kPa} \\
M_{1} & = & 3 & \\
\theta & & & 7.5
\end{array}
$$

Equations and Computations:

Assuming isentropic flow deflection

$$
\begin{aligned}
& p_{0}=\text { constant } \\
& p_{02}=\quad p_{01}
\end{aligned}
$$

For p_{01} we use Eq. 13.7a (using built-in function $\operatorname{Isenp}(M, k)$)

$$
\begin{align*}
& \frac{p_{0}}{p}=\left[1+\frac{k-1}{2} M^{2}\right]^{k /(k-1)} \tag{13.7a}\\
& p_{01}=1837 \\
& p_{02}=\quad 1837
\end{align*}
$$

For the deflection

$$
\theta=\quad 7.5 \quad 0
$$

From M_{1} and Eq. 13.55 (using built-in function $\operatorname{Omega}(M, k)$)

$$
\begin{gather*}
\boldsymbol{\omega}=\sqrt{\frac{k+1}{k-1}} \tan ^{-1}\left(\sqrt{\frac{k-1}{k+1}\left(M^{2}-1\right)}\right)-\tan ^{-1}\left(\sqrt{M^{2}-1}\right) \tag{13.55}\\
\omega_{1}=\quad 49.8
\end{gather*}
$$

Deflection =
$\omega_{2}-\omega_{1}=\omega\left(M_{2}\right)-\omega\left(M_{1}\right)$

Applying Eq. 1
$\omega_{2}=$ $\omega_{1}-\theta$
(Compression!)
$\omega_{2}=\quad 42.3$

From ω_{2}, and Eq. 13.55 (using built-in function $\operatorname{Omega}(M, k)$)

For | ω_{2} | $=42.3$ | |
| ---: | :--- | ---: |
| M_{2} | $=0$ | 2.64 |

(Use Goal Seek to vary M_{2} so that ω_{2} is correct)

Hence for p_{2} we use Eq. 13.7a
(using built-in function $\operatorname{Isenp}(M, k)$)

$$
\begin{aligned}
& p_{2}=p_{02} /\left(p_{02} / p_{2}\right) \\
& p_{2}=86.8 \quad \mathrm{kPa}
\end{aligned}
$$

For the normal shock (2 to 3) $\quad M_{2}=\quad 2.64$

From M_{2} and p_{2}, and Eq. 13.41d (using built-in function $\operatorname{NormpfromM}(M, k)$)

$$
\begin{align*}
& \frac{p_{2}}{p_{1}}=\frac{2 k}{k+1} M_{1}^{2}-\frac{k-1}{k+1} \tag{13.41d}\\
& p_{3}=690 \mathrm{kPa}
\end{align*}
$$

For slowing the flow down from M_{1} with only a normal shock, using Eq. 13.41d

$$
p=\quad 517 \quad \mathrm{kPa}
$$

13.150 Air flows isentropically at $M=2.5$ in a duct. There is a 7.5° contraction that triggers an oblique shock, which in turn reflects off a wall generating a second oblique shock. This second shock is necessary so the flow ends up flowing parallel to the channel walls after the two shocks. Find the Mach number and pressure in the contraction and downstream of the contraction. (Note that the convex corner will have expansion waves to re-
 direct the flow along the upper wall.)

Given: Air flow in a duct

Find: Mach number and pressure at contraction and downstream;

Solution:

The given or available data is:

$k=$	1.4	
$M_{1}=$	2.5	
$\theta=$	7.5	0
$p_{1}=$	50	kPa

Equations and Computations:

For the first oblique shock (1 to 2) we need to find β from Eq. 13.49

$$
\begin{equation*}
\tan \theta=\frac{2 \cot \beta\left(M_{1}^{2} \sin ^{2} \beta-1\right)}{M_{1}^{2}(k+\cos 2 \beta)+2} \tag{13.49}
\end{equation*}
$$

We choose β by iterating or by using Goal Seek to target θ (below) to equal the given θ Using built-in function theta (M, β, k)

$$
\begin{array}{lll}
\theta= & 7.50 & 0 \\
\beta= & 29.6 & 0
\end{array}
$$

Then $M_{1 n}$ can be found from geometry (Eq. 13.47a)

$$
M_{1 \mathrm{n}}=1.233
$$

Then $M_{2 n}$ can be found from Eq. 13.48a)
Using built-in function NormM2fromM (M,k)

$$
\begin{align*}
M_{2_{n}} & =f\left(M_{1_{n}}\right) \tag{13.48a}\\
M_{2 \mathrm{n}} & =0.822
\end{align*}
$$

Then, from $M_{2 \mathrm{n}}$ and geometry (Eq. 13.47b)

$$
M_{2}=\quad 2.19
$$

From $M_{1 \mathrm{n}}$ and Eq. 13.48d (using built-in function $\operatorname{NormpfromM(M,k))~}$

$$
\begin{align*}
\frac{p_{2}}{p_{1}} & =f\left(M_{1_{n}}\right) \tag{13.48d}\\
p_{2} / p_{1} & = \\
p_{2} & = \\
80.40 & \text { Pressure ratio }
\end{align*}
$$

We repeat the analysis of states 1 to 2 for states 2 to 3 , to analyze the second oblique shock
We choose β for M_{2} by iterating or by using Goal Seek to target θ (below) to equal the given θ Using built-in function theta (M, β, k)

$$
\begin{array}{lll}
\theta= & 7.50 & \circ \\
\beta= & 33.5 & \circ
\end{array}
$$

Then $M_{2 n}$ (normal to second shock!) can be found from geometry (Eq. 13.47a)

$$
M_{2 \mathrm{n}}=1.209
$$

Then $M_{3 n}$ can be found from Eq. 13.48a)
Using built-in function NormM2fromM (M,k)

$$
M_{3 n}=0.837
$$

Then, from $M_{3 n}$ and geometry (Eq. 13.47b)

$$
M_{3}=\quad 1.91
$$

From $M_{2 n}$ and Eq. 13.48d (using built-in function $\operatorname{NormpfromM(M,k))~}$

$$
\begin{array}{rlr}
p_{3} / p_{2} & = & 1.54 \\
p_{3} & = & \text { Pressure ratio } \\
124
\end{array}
$$

13.151 A flow at $M=2.5$ is deflected by a combination of interacting oblique shocks as shown. The first shock pair is aligned at 50° to the flow. A second oblique shock pair deflects the flow again so it ends up parallel to the original flow. If the pressure before any deflections is 50 kPa , find the pressure after two deflections.

NOTE: Angle is $\mathbf{3 0}^{\circ}$ not 50° !

Given: Air flow in a duct

Find: Mach number and pressure at contraction and downstream;

Solution:

The given or available data is:

$k=$	1.4	
$M_{1}=$	2.5	
$\beta=$	30	0
$p_{1}=$	50	kPa

Equations and Computations:

For the first oblique shock (1 to 2) we find θ from Eq. 13.49

$$
\begin{equation*}
\tan \theta=\frac{2 \cot \beta\left(M_{1}^{2} \sin ^{2} \beta-1\right)}{M_{1}^{2}(k+\cos 2 \beta)+2} \tag{13.49}
\end{equation*}
$$

Using built-in function theta (M, β, k)

$$
\theta=\quad 7.99 \quad 0
$$

Also, $M_{1 \mathrm{n}}$ can be found from geometry (Eq. 13.47a)

$$
M_{1 \mathrm{n}}=1.250
$$

Then $M_{2 \mathrm{n}}$ can be found from Eq. 13.48a)
Using built-in function NormM2fromM (M, k)

$$
\begin{align*}
& M_{2_{n}}=f\left(M_{1_{n}}\right) \tag{13.48a}\\
& M_{2 \mathrm{n}}=0.813
\end{align*}
$$

Then, from $M_{2 n}$ and geometry (Eq. 13.47b)

$$
M_{2}=\quad 2.17
$$

From $M_{1 \mathrm{n}}$ and Eq. 13.48d (using built-in function $\operatorname{NormpfromM(M,k))~}$

$$
\begin{equation*}
\frac{p_{2}}{p_{1}}=f\left(M_{1_{n}}\right) \tag{13.48d}
\end{equation*}
$$

p_{2} / p_{1}	$=$	1.66
p_{2}	$=$	Pressure ratio
82.8		

We repeat the analysis for states 1 to 2 for 2 to 3 , for the second oblique shock
We choose β for M_{2} by iterating or by using Goal Seek to target θ (below) to equal the previous θ Using built-in function theta (M, β, k)

$$
\begin{array}{lll}
\theta= & 7.99 & \circ \\
\beta= & 34.3 & \circ
\end{array}
$$

Then $M_{2 n}$ (normal to second shock!) can be found from geometry (Eq. 13.47a)

$$
M_{2 \mathrm{n}}=1.22
$$

Then $M_{3 n}$ can be found from Eq. 13.48a)
Using built-in function NormM2fromM (M, k)

$$
M_{3 n}=0.829
$$

Then, from $M_{3 n}$ and geometry (Eq. 13.47b)

$$
M_{3}=\quad 1.87
$$

From $M_{2 n}$ and Eq. 13.48d (using built-in function $\operatorname{NormpfromM(M,k))~}$

$$
\begin{array}{rll}
p_{3} / p_{2}= & 1.58 \\
p_{3} & = & \text { Pressure ratio } \\
130 &
\end{array}
$$

13.152 Air flows at Mach number of 1.5 , static pressure 95 kPa , and is expanded by angles $\theta_{1}=15^{\circ}$ and $\theta_{2}=15^{\circ}$, as shown. Find the pressure changes.

Given: Deflection of air flow

Find: Pressure changes

Solution:

The given or available data is:

$$
\begin{array}{rlll}
R= & 286.9 & \mathrm{~J} / \mathrm{kg} . \mathrm{K} \\
k= & 1.4 & \\
p= & 95 & \mathrm{kPa} \\
M= & 1.5 & \\
\theta_{1}= & 15 & \mathrm{o} \\
\theta_{2}= & 15 & \mathrm{o}
\end{array}
$$

Equations and Computations:

We use Eq. 13.55

$$
\begin{equation*}
\omega=\sqrt{\frac{k+1}{k-1}} \tan ^{-1}\left(\sqrt{\frac{k-1}{k+1}\left(M^{2}-1\right)}\right)-\tan ^{-1}\left(\sqrt{M^{2}-1}\right) \tag{13.55}
\end{equation*}
$$

and

$$
\begin{equation*}
\text { Deflection }=\quad \omega_{\mathrm{a}}-\omega_{\mathrm{b}}=\omega\left(M_{\mathrm{a}}\right)-\omega\left(M_{\mathrm{b}}\right) \tag{1}
\end{equation*}
$$

From M and Eq. 13.55 (using built-in function $\operatorname{Omega}(M, k)$)

$$
\omega=\quad 11.9 \quad \circ
$$

For the first deflection:

Applying Eq. 1

$$
\begin{array}{ll}
\theta_{1}= & \omega_{1}-\omega \\
\omega_{1}= & \theta_{1}+\omega \\
\omega_{1}= & 26.9
\end{array}
$$

From ω_{1}, and Eq. 13.55
(using built-in function Omega (M, k))

For

$$
\begin{array}{rlr}
\omega_{1}= & 26.9 \\
M_{1}= & 2.02
\end{array}
$$

(Use Goal Seek to vary M_{1} so that ω_{1} is correct)

Hence for p_{1} we use Eq. 13.7a

$$
\begin{equation*}
\frac{p_{0}}{p}=\left[1+\frac{k-1}{2} M^{2}\right]^{k /(k-1)} \tag{13.7a}
\end{equation*}
$$

The approach is to apply Eq. 13.7a twice, so that (using built-in function Isenp (M, k))

$$
\begin{aligned}
& p_{1}=p\left(p_{0} / p\right) /\left(p_{0} / p_{1}\right) \\
& p_{1}=-43.3 \mathrm{kPa}
\end{aligned}
$$

For the second deflection:

We repeat the analysis of the first deflection

Applying Eq. 1

$$
\begin{aligned}
& \theta_{2}+\theta_{1}= \\
& \omega_{2}-\omega \\
& \omega_{2}=\theta_{2}+\theta_{1}+\omega \\
& \omega_{2}=41.9
\end{aligned}
$$

(Note that instead of working from the initial state to state 2 we could have worked from state 1 to state 2 because the entire flow is isentropic)

From ω_{2}, and Eq. 13.55
(using built-in function Omega (M, k))

For

$$
\begin{array}{rlr}
\omega_{2}= & 41.9 \\
M_{2}= & 2.62
\end{array}
$$

(Use Goal Seek to vary M_{2} so that ω_{2} is correct)

Hence for p_{2} we use Eq. 13.7a
(using built-in function $\operatorname{Isenp}(M, k)$)

$$
\begin{aligned}
& p_{2}=p\left(p_{0} / p\right) /\left(p_{0} / p_{2}\right) \\
& p_{2}=\quad 16.9 \mathrm{kPa}
\end{aligned}
$$

Problem 13.153

13.153 Find the incoming and intermediate Mach numbers and static pressures if, after two expansions of $\theta_{1}=15^{\circ}$ and $\theta_{2}=15^{\circ}$, the Mach number is 4 and static pressure is 10 kPa .

Given: Deflection of air flow

Find: Mach numbers and pressures

Solution

The given or available data is:

$R=$	286.9	$\mathrm{~J} / \mathrm{kg} \cdot \mathrm{K}$
$k=$	1.4	
$p_{2}=$	10	kPa
$M_{2}=$	4	
$\theta_{1}=$	15	0
$\theta_{2}=$	15	\circ

Equations and Computations:

We use Eq. 13.55

$$
\begin{equation*}
\omega=\sqrt{\frac{k+1}{k-1}} \tan ^{-1}\left(\sqrt{\frac{k-1}{k+1}\left(M^{2}-1\right)}\right)-\tan ^{-1}\left(\sqrt{M^{2}-1}\right) \tag{13.55}
\end{equation*}
$$

and

$$
\begin{equation*}
\text { Deflection }=\quad \omega_{\mathrm{a}}-\omega_{\mathrm{b}}=\omega\left(M_{\mathrm{a}}\right)-\omega\left(M_{\mathrm{b}}\right) \tag{1}
\end{equation*}
$$

From M and Eq. 13.55 (using built-in function $\operatorname{Omega}(M, k)$)

$$
\omega_{2}=65.8 \quad \circ
$$

For the second deflection:

Applying Eq. 1

$$
\begin{aligned}
& \omega_{1}=\omega_{2}-\theta_{2} \\
& \omega_{1}=\quad 50.8
\end{aligned}
$$

From ω_{1}, and Eq. 13.55
(using built-in function Omega (M, k))

For

$$
\begin{array}{rlrl}
\omega_{1} & = & 50.8 & 0 \\
M_{1} & = & 3.05
\end{array}
$$

(Use Goal Seek to vary M_{1} so that ω_{1} is correct)

Hence for p_{1} we use Eq. 13.7a

$$
\begin{equation*}
\frac{p_{0}}{p}=\left[1+\frac{k-1}{2} M^{2}\right]^{k /(k-1)} \tag{13.7a}
\end{equation*}
$$

The approach is to apply Eq. 13.7a twice, so that (using built-in function Isenp (M, k))

$$
\begin{aligned}
& p_{1}=p_{2}\left(p_{0} / p_{2}\right) /\left(p_{0} / p_{1}\right) \\
& p_{1}=\quad 38.1 \mathrm{kPa}
\end{aligned}
$$

For the first deflection:

We repeat the analysis of the second deflection

Applying Eq. 1

$$
\begin{aligned}
\theta_{2}+\theta_{1} & =\omega_{2}-\omega \\
\omega & =\omega_{2}-\left(\theta_{2}+\theta_{1}\right) \\
\omega & =35.8
\end{aligned}
$$

(Note that instead of working from state 2 to the initial state we could have worked from state 1 to the initial state because the entire flow is isentropic)

From ω, and Eq. 13.55
(using built-in function $\operatorname{Omega}(M, k)$)

For	ω	$=$	$35.8 \quad{ }^{\circ}$
M	$=$	2.36	

(Use Goal Seek to vary M so that ω is correct)

Hence for p we use Eq. 13.7a
(using built-in function $\operatorname{Isenp}(M, k)$)

$$
\begin{aligned}
& p=p_{2}\left(p_{0} / p_{2}\right) /\left(p_{0} / p\right) \\
& p= \\
& 110 \quad \mathrm{kPa}
\end{aligned}
$$

13.154 Compare the static and stagnation pressures produced by (a) an oblique shock and (b) isentropic compression waves as they each deflect a flow at a Mach number of 3.5 through a deflection angle of 35° in air for which the static pressure is 50 kPa .

Given: Mach number and deflection angle
Find: Static and stagnation pressures due to: oblique shock; compression wave

Solution:

The given or available data is:

| $R=$ | 286.9 | $\mathrm{~J} / \mathrm{kg} . \mathrm{K}$ |
| ---: | :--- | :--- | :--- |
| $k=$ | 1.4 | |
| $p_{1}=$ | 50 | kPa |
| $M_{1}=$ | 3.5 | |
| $\theta=$ | 35 | o |

Equations and Computations:

For the oblique shock:

We need to find $M_{1 n}$

The deflection angle is $\quad \theta=35 \quad{ }^{\circ}$

From M_{1} and θ, and Eq. 13.49
(using built-in function Theta (M, β, k))

$$
\begin{equation*}
\tan \theta=\frac{2 \cot \beta\left(M_{1}^{2} \sin ^{2} \beta-1\right)}{M_{1}^{2}(k+\cos 2 \beta)+2} \tag{13.49}
\end{equation*}
$$

$$
\text { For } \begin{aligned}
\theta & = & 35.0 & { }^{\circ} \\
\beta & = & 57.2 & { }^{\circ}
\end{aligned}
$$

(Use Goal Seek to vary β so that $\theta=35^{\circ}$)

From M_{1} and $\beta \quad M_{1 \mathrm{n}}=\quad 2.94$

From $M_{1 \mathrm{n}}$ and p_{1}, and Eq. 13.48d
(using built-in function NormpfromM (M, k))

$$
\begin{align*}
& \frac{p_{2}}{p_{1}}=\frac{2 k}{k+1} M_{1_{n}}^{2}-\frac{k-1}{k+1} \tag{13.48d}\\
& p_{2}=496 \mathrm{kPa}
\end{align*}
$$

To find M_{2} we need $M_{2 \mathrm{n}}$. From $M_{1 \mathrm{n}}$, and Eq. 13.48a
(using built-in function NormM2fromM (M, k))

$$
\begin{align*}
M_{2_{n}}^{2} & =\frac{M_{1_{n}}^{2}+\frac{2}{k-1}}{\frac{2 k}{k-1} M_{1_{n}}^{2}-1} \tag{13.48a}\\
M_{2 \mathrm{n}} & =0.479
\end{align*}
$$

The downstream Mach number is then obtained from from $M_{2 n}, \theta$ and β, and Eq. 13.47b

$$
\begin{equation*}
M_{2 \mathrm{n}}=M_{2} \sin (\beta-\theta) \tag{13.47b}
\end{equation*}
$$

Hence

$$
M_{2}=\quad 1.27
$$

For p_{02} we use Eq. 12.7a
(using built-in function $\operatorname{Isenp}(M, k)$)

$$
\begin{align*}
& \frac{p_{0}}{p}=\left[1+\frac{k-1}{2} M^{2}\right]^{k /(k-1)} \tag{13.7a}\\
& p_{02}=p_{2} /\left(p_{02} / p_{2}\right) \\
& p_{02}=1316 \mathrm{kPa}
\end{align*}
$$

For the isentropic compression wave:

For isentropic flow

$$
\begin{aligned}
& p_{0}=\text { constant } \\
& p_{02}=\quad p_{01}
\end{aligned}
$$

For p_{01} we use Eq. 13.7a
(using built-in function $\operatorname{Isenp}(M, k)$)

$$
\begin{array}{lll}
p_{01}= & 3814 & \mathrm{kPa} \\
p_{02}= & 3814 & \mathrm{kPa}
\end{array}
$$

(Note that for the oblique shock, as required by Eq. 13.48b

$$
\begin{align*}
& \frac{p_{0_{2}}}{p_{0_{1}}}=\frac{\left[\frac{\frac{k+1}{2} M_{1_{n}}^{2}}{1+\frac{k-1}{2} M_{1_{n}}^{2}}\right]^{k /(k-1)}}{\left[\frac{2 k}{k+1} M_{1_{n}}^{2}-\frac{k-1}{k+1}\right]^{1 /(k-1)}} \tag{13.48b}\\
& p_{02} / p_{01}=0.345 \\
& \text { (using built-in function NormpOfromM }(M, k)
\end{align*}
$$

$$
\begin{gathered}
p_{02} / p_{01}=0.345 \\
\text { (using } p_{02} \text { from the shock and } p_{01} \text {) }
\end{gathered}
$$

For the deflection	θ	$=-\theta$	(Compression)
θ	$=-35.0$	\circ	

We use Eq. 13.55

$$
\begin{equation*}
\omega=\sqrt{\frac{k+1}{k-1}} \tan ^{-1}\left(\sqrt{\frac{k-1}{k+1}\left(M^{2}-1\right)}\right)-\tan ^{-1}\left(\sqrt{M^{2}-1}\right) \tag{13.55}
\end{equation*}
$$

and

$$
\begin{equation*}
\text { Deflection }=\quad \omega_{2}-\omega_{1}=\omega\left(M_{2}\right)-\omega\left(M_{1}\right) \tag{1}
\end{equation*}
$$

From M_{1} and Eq. 13.55 (using built-in function $\operatorname{Omega}(M, k)$)

$$
\omega_{1}=\quad 58.5 \quad \circ
$$

Applying Eq. 1

$$
\begin{aligned}
& \omega_{2}=\omega_{1}+\theta \\
& \omega_{2}=\quad 23.5
\end{aligned}
$$

From ω_{2}, and Eq. 13.55
(using built-in function Omega (M, k))

For

$$
\begin{array}{rlr}
\omega_{2} & = & 23.5 \\
M_{2} & = & 1.90
\end{array}
$$

(Use Goal Seek to vary M_{2} so that $\omega_{2}=23.5^{\circ}$)

Hence for p_{2} we use Eq. 13.7a
(using built-in function $\operatorname{Isenp}(M, k)$)

$$
\begin{aligned}
& p_{2}=p_{02} /\left(p_{02} / p_{2}\right) \\
& p_{2}=\quad 572 \mathrm{kPa}
\end{aligned}
$$

13.155 Consider the wedge-shaped airfoil of Problem 13.146. Suppose the oblique shock could be replaced by isentropic compression waves. Find the lift per unit span at the Mach number of 2.75 in air for which the static pressure is 70 kPa .

Given: Wedge-shaped airfoil

Find: Lift per unit span assuming isentropic flow

Solution:

The given or available data is:

$$
\begin{array}{rlrl}
R & = & 286.9 & \mathrm{~J} / \mathrm{kg} \cdot \mathrm{~K} \\
k= & 1.4 & \\
p= & 70 & \mathrm{kPa} \\
M= & 2.75 & \\
\delta= & 7 & \mathrm{o} \\
c & = & 1.5 & \mathrm{~m}
\end{array}
$$

Equations and Computations:

The lift per unit span is

$$
\begin{equation*}
L=\left(p_{\mathrm{L}}-p_{\mathrm{U}}\right) c \tag{1}
\end{equation*}
$$

(Note that p_{L} acts on area $c / \cos (\delta)$, but its normal component is multiplied by $\cos (\delta)$)

For the upper surface:

$$
\begin{array}{lll}
p_{\mathrm{U}}= & p \\
p_{\mathrm{U}}= & 70 & \mathrm{kPa}
\end{array}
$$

For the lower surface:

$$
\begin{array}{ll}
\theta= & -\delta \\
\theta= & -7.0
\end{array}
$$

We use Eq. 13.55

$$
\begin{equation*}
\boldsymbol{\omega}=\sqrt{\frac{k+1}{k-1}} \tan ^{-1}\left(\sqrt{\frac{k-1}{k+1}\left(M^{2}-1\right)}\right)-\tan ^{-1}\left(\sqrt{M^{2}-1}\right) \tag{13.55}
\end{equation*}
$$

and

$$
\begin{equation*}
\text { Deflection }=\quad \omega_{\mathrm{L}}-\omega=\omega\left(M_{\mathrm{L}}\right)-\omega(M) \tag{2}
\end{equation*}
$$

From M and Eq. 13.55 (using built-in function $\operatorname{Omega}(M, k)$)

$$
\omega=\quad 44.7 \quad \circ
$$

Applying Eq. 2

$$
\begin{aligned}
\theta & =\omega_{\mathrm{L}}-\omega \\
\omega_{\mathrm{L}} & =\quad \theta+\omega \\
\omega_{\mathrm{L}} & =37.7
\end{aligned}
$$

From $\omega_{\text {L }}$, and Eq. 13.55
(using built-in function Omega (M, k))

For

$$
\begin{array}{rlrl}
\omega_{\mathrm{L}} & =37.7 & 0 \\
M_{\mathrm{L}} & = & 2.44
\end{array}
$$

(Use Goal Seek to vary M_{L} so that ω_{L} is correct)

Hence for $p_{\text {L }}$ we use Eq. 13.7a

$$
\begin{equation*}
\frac{p_{0}}{p}=\left[1+\frac{k-1}{2} M^{2}\right]^{k /(k-1)} \tag{13.7a}
\end{equation*}
$$

The approach is to apply Eq. 13.7a twice, so that (using built-in function $\operatorname{Isenp}(M, k)$)

From Eq 1

$$
\begin{array}{rl}
p_{\mathrm{L}} & =p\left(p_{0} / p\right) /\left(p_{0} / p_{\mathrm{L}}\right) \\
p_{\mathrm{L}} & =113 \\
L & =\mathrm{kPa} \\
L & 64.7 \\
\mathrm{kN} / \mathrm{m}
\end{array}
$$

13.156 Find the lift and drag per unit span on the airfoil shown for flight at a Mach number of 1.75 in air for which the static pressure is 50 kPa . The chord length is 1 m .

Given: Mach number and airfoil geometry
Find: Lift and drag per unit span

Solution:

The given or available data is:

R	$=$	286.9	$\mathrm{~J} / \mathrm{kg} . \mathrm{K}$
$k=$	1.4		
$p_{1}=$	50	kPa	
$M_{1}=$	1.75		
$\alpha=$	18	o	
$c=$	1	m	

Equations and Computations:
The net force per unit span is $\quad F=\left(p_{\mathrm{L}}-p_{\mathrm{U}}\right) c$
Hence, the lift force per unit span is

$$
\begin{equation*}
L=\left(p_{\mathrm{L}}-p_{\mathrm{U}}\right) c \cos (\alpha) \tag{1}
\end{equation*}
$$

The drag force per unit span is

$$
\begin{equation*}
D=\left(p_{\mathrm{L}}-p_{\mathrm{U}}\right) c \sin (\alpha) \tag{2}
\end{equation*}
$$

For the lower surface (oblique shock):

We need to find $M_{1 n}$
The deflection angle is

$$
\begin{array}{ll}
\theta= & \alpha \\
\theta= & 18
\end{array}
$$

From M_{1} and θ, and Eq. 13.49
(using built-in function Theta (M, β, k))

$$
\begin{equation*}
\tan \theta=\frac{2 \cot \beta\left(M_{1}^{2} \sin ^{2} \beta-1\right)}{M_{1}^{2}(k+\cos 2 \beta)+2} \tag{13.49}
\end{equation*}
$$

For

$$
\begin{array}{lll}
\theta= & 18.0 & \circ \\
\beta= & 62.9 & \circ
\end{array}
$$

(Use Goal Seek to vary β so that θ is correct)

From M_{1} and β

$$
M_{1 \mathrm{n}}=1.56
$$

From $M_{1 \mathrm{n}}$ and p_{1}, and Eq. 13.48d
(using built-in function NormpfromM (M, k))

$$
\begin{aligned}
& \frac{p_{2}}{p_{1}}=\frac{2 k}{k+1} M_{1_{n}}^{2}-\frac{k-1}{k+1} \\
& p_{2}=133.2 \mathrm{kPa} \\
& p_{\mathrm{L}}=p_{2} \\
& p_{\mathrm{L}}=133.2 \mathrm{kPa}
\end{aligned}
$$

For the upper surface (isentropic expansion wave):
For isentropic flow $\quad p_{0}=$ constant 1

For p_{01} we use Eq. 13.7a
(using built-in function Isenp (M, k))

$$
\begin{equation*}
\frac{p_{0}}{p}=\left[1+\frac{k-1}{2} M^{2}\right]^{k /(k-1)} \tag{13.7a}
\end{equation*}
$$

$p_{01}=$	266	kPa
$p_{02}=$	266	kPa

For the deflection
$\theta=\quad \alpha \quad$ (Compression) $\theta=18.0 \quad 0$

We use Eq. 13.55

$$
\begin{equation*}
\boldsymbol{\omega}=\sqrt{\frac{k+1}{k-1}} \tan ^{-1}\left(\sqrt{\frac{k-1}{k+1}\left(M^{2}-1\right)}\right)-\tan ^{-1}\left(\sqrt{M^{2}-1}\right) \tag{13.55}
\end{equation*}
$$

and

$$
\begin{equation*}
\text { Deflection }=\quad \omega_{2}-\omega_{1}=\omega\left(M_{2}\right)-\omega\left(M_{1}\right) \tag{3}
\end{equation*}
$$

From M_{1} and Eq. 13.55 (using built-in function Omega (M, k))

$$
\omega_{1}=\quad 19.3 \quad \circ
$$

Applying Eq. 3
$\omega_{2}=\omega_{1}+\theta$
$\omega_{2}=37.3 \quad{ }^{\circ}$

From ω_{2}, and Eq. 13.55 (using built-in function $\operatorname{Omega}(M, k)$)

For

$$
\begin{aligned}
& \omega_{2}=37.3 \\
& M_{2}=0 \\
& 2.42
\end{aligned}
$$

(Use Goal Seek to vary M_{2} so that ω_{2} is correct)

Hence for p_{2} we use Eq. 13.7a
(using built-in function $\operatorname{Isenp}(M, k)$)

From Eq. 1
From Eq. 2
$L=110.0 \quad \mathrm{kN} / \mathrm{m}$
$D=\quad 35.7 \quad \mathrm{kN} / \mathrm{m}$
13.157 Plot the lift and drag per unit span, and the lift/drag ratio, as functions of angle of attack for $\alpha=0^{\circ}$ to 18°, for the airfoil shown, for flight at a Mach number of 1.75 in air for which the static pressure is 50 kPa . The chord length is 1 m .

Given: Mach number and airfoil geometry

Find: Plot of lift and drag and lift/drag versus angle of attack

Solution:

The given or available data is:

$$
\begin{array}{rcll}
k= & 1.4 & & \\
p_{1}= & 50 & \mathrm{kPa} \\
M_{1}= & 1.75 & \\
\alpha= & 12 & 0 \\
c= & 1 & \mathrm{~m}
\end{array}
$$

Equations and Computations:
The net force per unit span is

$$
F=\left(p_{\mathrm{L}}-p_{\mathrm{U}}\right) c
$$

Hence, the lift force per unit span is

$$
\begin{equation*}
L=\left(p_{\mathrm{L}}-p_{\mathrm{U}}\right) c \cos (\alpha) \tag{1}
\end{equation*}
$$

The drag force per unit span is

$$
\begin{equation*}
D=\left(p_{\mathrm{L}}-p_{\mathrm{U}}\right) c \sin (\alpha) \tag{2}
\end{equation*}
$$

For each angle of attack the following needs to be computed:

For the lower surface (oblique shock):

We need to find $M_{1 n}$
Deflection $\quad \theta=\quad \alpha$

From M_{1} and θ, and Eq. 13.49
(using built-in function Theta (M, β, k))

$$
\begin{equation*}
\tan \theta=\frac{2 \cot \beta\left(M_{1}^{2} \sin ^{2} \beta-1\right)}{M_{1}^{2}(k+\cos 2 \beta)+2} \tag{13.49}
\end{equation*}
$$

$$
\text { find } \quad \beta
$$

(Use Goal Seek to vary β so that θ is the correct value)

From M_{1} and β find $M_{1 \mathrm{n}}$

From $M_{1 \mathrm{n}}$ and p_{1}, and Eq. 13.48d
(using built-in function $\operatorname{NormpfromM}(M, k)$)

$$
\begin{equation*}
\frac{p_{2}}{p_{1}}=\frac{2 k}{k+1} M_{1_{n}}^{2}-\frac{k-1}{k+1} \tag{13.48d}
\end{equation*}
$$

find $\quad p_{2}$
and $\quad p_{\mathrm{L}}=\quad p_{2}$

For the upper surface (isentropic expansion wave):

For isentropic flow $\quad p_{0}=$ constant

$$
p_{02}=p_{01}
$$

For p_{01} we use Eq. 13.7a
(using built-in function $\operatorname{Isenp}(M, k)$)

$$
\begin{equation*}
\frac{p_{0}}{p}=\left[1+\frac{k-1}{2} M^{2}\right]^{k /(k-1)} \tag{13.7a}
\end{equation*}
$$

$$
\text { find } p_{02}=266 \quad \mathrm{kPa}
$$

Deflection $\quad \theta=\quad \alpha$
we use Eq. 13.55

$$
\begin{equation*}
\omega=\sqrt{\frac{k+1}{k-1}} \tan ^{-1}\left(\sqrt{\frac{k-1}{k+1}\left(M^{2}-1\right)}\right)-\tan ^{-1}\left(\sqrt{M^{2}-1}\right) \tag{13.55}
\end{equation*}
$$

and

$$
\begin{equation*}
\text { Deflection }=\quad \omega_{2}-\omega_{1}=\omega\left(M_{2}\right)-\omega\left(M_{1}\right) \tag{3}
\end{equation*}
$$

From M_{1} and Eq. 13.55 (using built-in function $\operatorname{Omega}(M, k)$)
find

$$
\omega_{1}=\quad 19.3
$$

Applying Eq. 3

$$
\begin{equation*}
\omega_{2}=\omega_{1}+\theta \tag{4}
\end{equation*}
$$

From ω_{2}, and Eq. 12.55 (using built-in function $\operatorname{Omega}(M, k)$)

$$
\text { From } \omega_{2} \quad \text { find } \quad M_{2}
$$

(Use Goal Seek to vary M_{2} so that ω_{2} is the correct value)

Hence for p_{2} we use Eq. 13.7a
(using built-in function $\operatorname{Isenp}(M, k)$)

$$
\begin{aligned}
& p_{2}=p_{02} /\left(p_{02} / p_{2}\right) \\
& p_{\mathrm{U}}=\quad p_{2}
\end{aligned}
$$

Finally, from Eqs. 1 and 2, compute L and D
Computed results:

$\alpha\left({ }^{\circ}\right.$)	β (${ }^{\circ}$)	$\theta\left({ }^{\circ}\right.$)	Error	$M_{1 \mathrm{n}}$	$\boldsymbol{p}_{\text {L }}(\mathrm{kPa})$	$\omega_{2}\left({ }^{\text { }}\right.$)	ω_{2} from $M_{2}\left({ }^{\text {0 }}\right.$)	Error	M_{2}	$\boldsymbol{p}_{\mathrm{U}}(\mathrm{kPa})$	L (kN/m)	D (kN/m)	L/D
0.50	35.3	0.50	0.0\%	1.01	51.3	19.8	19.8	0.0\%	1.77	48.7	2.61	0.0227	115
1.00	35.8	1.00	0.0\%	1.02	52.7	20.3	20.3	0.0\%	1.78	47.4	5.21	0.091	57.3
1.50	36.2	1.50	0.0\%	1.03	54.0	20.8	20.8	0.0\%	1.80	46.2	7.82	0.205	38.2
2.00	36.7	2.00	0.0\%	1.05	55.4	21.3	21.3	0.0\%	1.82	45.0	10.4	0.364	28.6
4.00	38.7	4.00	0.0\%	1.09	61.4	23.3	23.3	0.0\%	1.89	40.4	20.9	1.46	14.3
5.00	39.7	5.00	0.0\%	1.12	64.5	24.3	24.3	0.0\%	1.92	38.3	26.1	2.29	11.4
10.00	45.5	10.0	0.0\%	1.25	82.6	29.3	29.3	0.0\%	2.11	28.8	53.0	9.35	5.67
15.00	53.4	15.0	0.0\%	1.41	106.9	34.3	34.3	0.0\%	2.30	21.3	82.7	22.1	3.73
16.00	55.6	16.0	0.0\%	1.44	113.3	35.3	35.3	0.0\%	2.34	20.0	89.6	25.7	3.49
16.50	56.8	16.5	0.0\%	1.47	116.9	35.8	35.8	0.0\%	2.36	19.4	93.5	27.7	3.38
17.00	58.3	17.0	0.0\%	1.49	121.0	36.3	36.3	0.0\%	2.38	18.8	97.7	29.9	3.27
17.50	60.1	17.5	0.0\%	1.52	125.9	36.8	36.8	0.0\%	2.40	18.2	102.7	32.4	3.17
18.00	62.9	18.0	0.0\%	1.56	133.4	37.3	37.3	0.0\%	2.42	17.6	110	35.8	3.08
		Sum:	0.0\%	Sum: 0.0%									

To compute this table:

1) Type the range of α
2) Type in guess values for β
3) Compute θ from Eq. 13.49
(using built-in function Theta (M, β, k)
4) Compute the absolute error between each θ and α
5) Compute the sum of the errors
6) Use Solver to minimize the sum by varying the β values (Note: You may need to interactively type in new β values if Solver generates β values that lead to no θ)
7) For each $\alpha, M_{1 n}$ is obtained from M_{1}, and Eq. 13.47a
8) For each α, p_{L} is obtained from $p_{1}, M_{1 \mathrm{n}}$, and Eq. 13.48 d (using built-in function $\operatorname{NormpfromM}(M, k)$)
9) For each α, compute ω_{2} from Eq. 4
10) For each α, compute ω_{2} from M_{2}, and Eq. 13.55 (using built-in function Omega (M, k))
11) Compute the absolute error between the two values of ω_{2}
12) Compute the sum of the errors
13) Use Solver to minimize the sum by varying the M_{2} values (Note: You may need to interactively type in new M_{2} values) if Solver generates β values that lead to no θ)
14) For each α, p_{U} is obtained from p_{02}, M_{2}, and Eq. 13.47a (using built-in function $\operatorname{Isenp}(M, k)$)
15) Compute L and D from Eqs. 1 and 2

13.158 Find the drag coefficient of the symmetric, zero angle of attack airfoil shown for a Mach number of 2.0 in air for which the static pressure is 95 kPa and temperature is $0^{\circ} \mathrm{C}$. The included angles at the nose and tail are each 10°.

Given: Mach number and airfoil geometry
Find: Drag coefficient

Solution:

The given or available data is:

R	$=$	286.9	$\mathrm{~J} / \mathrm{kg} \cdot \mathrm{K}$
$k=$	1.4		
$p_{1}=$	95	kPa	
$M_{1}=$	2		
$\alpha=$	0	\circ	
$\delta=$	10	\circ	

Equations and Computations:

The drag force is

$$
\begin{equation*}
D=\left(p_{\mathrm{F}}-p_{\mathrm{R}}\right) c \operatorname{stan}(\delta / 2) \tag{1}
\end{equation*}
$$

(s and c are the span and chord)

This is obtained from the following analysis
Airfoil thickness (frontal area) $=2 s(c / 2 \tan (\delta / 2))$

$$
\text { Pressure difference acting on frontal area }=\left(p_{\mathrm{F}}-p_{\mathrm{R}}\right)
$$

(p_{F} and p_{R} are the pressures on the front and rear surfaces)

The drag coefficient is

$$
\begin{equation*}
C_{\mathrm{D}}=D /\left(1 / 2 \rho V^{2} A\right) \tag{2}
\end{equation*}
$$

But it can easily be shown that

$$
\rho V^{2}=p k M^{2}
$$

Hence, from Eqs. 1 and 2

$$
\begin{equation*}
C_{\mathrm{D}}=\left(p_{\mathrm{F}}-p_{\mathrm{R}}\right) \tan (\delta / 2) /\left(1 / 2 p k M^{2}\right) \tag{3}
\end{equation*}
$$

For the frontal surfaces (oblique shocks):

We need to find $M_{1 n}$

The deflection angle is

$$
\begin{aligned}
& \theta= \\
& \theta= \\
& \theta=5
\end{aligned}
$$

From M_{1} and θ, and Eq. 13.49
(using built-in function Theta (M, β, k))

$$
\begin{equation*}
\tan \theta=\frac{2 \cot \beta\left(M_{1}^{2} \sin ^{2} \beta-1\right)}{M_{1}^{2}(k+\cos 2 \beta)+2} \tag{13.49}
\end{equation*}
$$

For

$$
\begin{array}{lcc}
\theta= & 5.0 & \circ \\
\beta= & 34.3 & \circ
\end{array}
$$

(Use Goal Seek to vary β so that $\theta=5^{\circ}$)
From M_{1} and β
$M_{1 \mathrm{n}}=$
1.13

From $M_{1 \mathrm{n}}$ and p_{1}, and Eq. 13.48d
(using built-in function $\operatorname{NormpfromM}(M, k)$)

$$
\begin{align*}
& \frac{p_{2}}{p_{1}}=\frac{2 k}{k+1} M_{1_{n}}^{2}-\frac{k-1}{k+1} \tag{13.48d}\\
& p_{2}=\quad 125.0 \quad \mathrm{kPa} \\
& p_{\mathrm{F}}=\quad p_{2} \\
& p_{\mathrm{F}}=\quad 125.0 \\
& \mathrm{kPa}
\end{align*}
$$

To find M_{2} we need $M_{2 \mathrm{n}}$. From $M_{1 \mathrm{n}}$, and Eq. 13.48a
(using built-in function $\operatorname{NormM2fromM}(M, k)$)

$$
\begin{align*}
& M_{2_{n}}^{2}=\frac{M_{1_{n}}^{2}+\frac{2}{k-1}}{\frac{2 k}{k-1} M_{1_{n}}^{2}-1} \tag{13.48a}\\
& M_{2 \mathrm{n}}=0.891
\end{align*}
$$

The downstream Mach number is then obtained from
from $M_{2 \mathrm{n}}, \theta$ and β, and Eq. 13.47b

$$
\begin{equation*}
M_{2 \mathrm{n}}=M_{2} \sin (\beta-\theta) \tag{13.47b}
\end{equation*}
$$

Hence

$$
M_{2}=\quad 1.82
$$

For p_{02} we use Eq. 13.7a
(using built-in function $\operatorname{Isenp}(M, k)$)

$$
\begin{align*}
& \frac{p_{0}}{p}=\left[1+\frac{k-1}{2} M^{2}\right]^{k /(k-1)} \tag{13.7a}\\
& p_{02}=742 \mathrm{kPa}
\end{align*}
$$

For the rear surfaces (isentropic expansion waves):

Treating as a new problem
Here: $\quad M_{1}$ is the Mach number after the shock
and M_{2} is the Mach number after the expansion wave
p_{01} is the stagnation pressure after the shock
and p_{02} is the stagnation pressure after the expansion wave

$$
\begin{aligned}
& M_{1}=M_{2} \text { (shock) } \\
& M_{1}=1.82 \\
& p_{01}=p_{02} \text { (shock) } \\
& p_{01}=\quad 742 \quad \mathrm{kPa}
\end{aligned}
$$

For isentropic flow $\quad p_{0}=$ constant

$p_{02}=$	p_{01}	
$p_{02}=$	742	kPa

For the deflection $\quad \theta=\delta$

$$
\theta=\quad 10.0 \quad \circ
$$

We use Eq. 13.55

$$
\begin{equation*}
\omega=\sqrt{\frac{k+1}{k-1}} \tan ^{-1}\left(\sqrt{\frac{k-1}{k+1}\left(M^{2}-1\right)}\right)-\tan ^{-1}\left(\sqrt{M^{2}-1}\right) \tag{13.55}
\end{equation*}
$$

and

$$
\begin{equation*}
\text { Deflection }=\quad \omega_{2}-\omega_{1}=\omega\left(M_{2}\right)-\omega\left(M_{1}\right) \tag{3}
\end{equation*}
$$

From M_{1} and Eq. 13.55 (using built-in function $\operatorname{Omega}(M, k)$)

$$
\omega_{1}=\quad 21.3 \quad 0
$$

Applying Eq. 3

$$
\begin{aligned}
& \omega_{2}=\omega_{1}+\theta \\
& \omega_{2}=31.3
\end{aligned}
$$

From ω_{2}, and Eq. 13.55 (using built-in function Omega(M, k))

For

$$
\begin{array}{rlr}
\omega_{2} & & 31.3 \\
M_{2} & = & 0 \\
2.18
\end{array}
$$

(Use Goal Seek to vary M_{2} so that $\omega_{2}=31.3^{\circ}$)

Hence for p_{2} we use Eq. 13.7a
(using built-in function $\operatorname{Isenp}(M, k)$)

$$
\begin{aligned}
& p_{2}=p_{02} /\left(p_{02} / p_{2}\right) \\
& p_{2}= \\
& 71.2 \\
& p_{\mathrm{R}}= \\
& p_{2} \\
& p_{\mathrm{R}}= \\
& \mathrm{kPa} \\
&
\end{aligned}
$$

Finally, from Eq. 1

$$
C_{\mathrm{D}}=0.0177
$$

13.159 Find the lift and drag coefficients of the airfoil of Problem 13.158 if the airfoil now has an angle of attack of 12°.

Given: Mach number and airfoil geometry

Find: Lift and Drag coefficients

Solution:

The given or available data is:

| $R=$ | 286.9 | $\mathrm{~J} / \mathrm{kg} \cdot \mathrm{K}$ |
| ---: | :--- | :--- | :--- |
| $k=$ | 1.4 | |
| $p_{1}=$ | 95 | kPa |
| $M_{1}=$ | 2 | |
| $\alpha=$ | 12 | \circ |
| $\delta=$ | 10 | \circ |

Equations and Computations:

Following the analysis of Example 13.14
the force component perpendicular to the major axis, per area, is

$$
\begin{equation*}
F_{\mathrm{V}} / s C=1 / 2\left\{\left(p_{\mathrm{FL}}+p_{\mathrm{RL}}\right)-\left(p_{\mathrm{FU}}+p_{\mathrm{RU}}\right)\right\} \tag{1}
\end{equation*}
$$

and the force component parallel to the major axis, per area, is

$$
\begin{equation*}
F_{\mathrm{H}} / \mathrm{sC}=1 / 2 \tan (\delta / 2)\left\{\left(p_{\mathrm{FU}}+p_{\mathrm{FL}}\right)-\left(p_{\mathrm{RU}}+p_{\mathrm{RL}}\right)\right\} \tag{2}
\end{equation*}
$$

using the notation of the figure above.
(s and c are the span and chord)
The lift force per area is

$$
\begin{equation*}
F_{\mathrm{L}} / s c=\left(F_{\mathrm{V}} \cos (\alpha)-F_{\mathrm{H}} \sin (\alpha)\right) / \mathrm{sc} \tag{3}
\end{equation*}
$$

The drag force per area is

$$
\begin{equation*}
F_{\mathrm{D}} / s c=\left(F_{\mathrm{V}} \sin (\alpha)+F_{\mathrm{H}} \cos (\alpha)\right) / s c \tag{4}
\end{equation*}
$$

The lift coefficient is

$$
\begin{equation*}
C_{\mathrm{L}}=F_{\mathrm{L}} /\left(1 / 2 \rho V^{2} A\right) \tag{5}
\end{equation*}
$$

But it can be shown that

$$
\begin{equation*}
\rho V^{2}=p k M^{2} \tag{6}
\end{equation*}
$$

Hence, combining Eqs. 3, 4, 5 and 6

$$
\begin{equation*}
C_{\mathrm{L}}=\left(F_{\mathrm{V}} / \operatorname{sc} \cos (\alpha)-F_{\mathrm{H}} / \operatorname{sc} \sin (\alpha)\right) /\left(1 / 2 p k M^{2}\right) \tag{7}
\end{equation*}
$$

Similarly, for the drag coefficient

$$
\begin{equation*}
C_{\mathrm{D}}=\left(F_{\mathrm{V}} / \operatorname{sc} \sin (\alpha)+F_{\mathrm{H}} / \operatorname{sc} \cos (\alpha)\right) /\left(1 / 2 p k M^{2}\right) \tag{8}
\end{equation*}
$$

For surface FL (oblique shock):

We need to find $M_{1 n}$

The deflection angle is

$$
\theta=\quad \alpha+\delta / 2
$$

$$
\theta=\quad 17
$$

From M_{1} and θ, and Eq. 13.49
(using built-in function Theta (M, β, k))

$$
\begin{equation*}
\tan \theta=\frac{2 \cot \beta\left(M_{1}^{2} \sin ^{2} \beta-1\right)}{M_{1}^{2}(k+\cos 2 \beta)+2} \tag{13.49}
\end{equation*}
$$

For \quad| θ | $=$ | $17.0 \quad{ }^{\circ}$ | |
| ---: | :--- | ---: | :--- |
| β | $=$ | 48.2 | ${ }^{\circ}$ |

(Use Goal Seek to vary β so that $\theta=17^{\circ}$)

From M_{1} and β

$$
M_{1 \mathrm{n}}=1.49
$$

From $M_{1 \mathrm{n}}$ and p_{1}, and Eq. 13.48d
(using built-in function $\operatorname{NormpfromM}(M, k)$)

$$
\begin{align*}
& \frac{p_{2}}{p_{1}}=\frac{2 k}{k+1} M_{1_{n}}^{2}-\frac{k-1}{k+1} \tag{13.48d}\\
& p_{2}=230.6 \mathrm{kPa} \\
& p_{\mathrm{FL}}=p_{2} \\
& p_{\mathrm{FL}}=230.6 \mathrm{kPa}
\end{align*}
$$

To find M_{2} we need $M_{2 n}$. From $M_{1 n}$, and Eq. 13.48a
(using built-in function NormM2fromM (M, k))

$$
\begin{align*}
& M_{2_{n}}^{2}=\frac{M_{1_{n}}^{2}+\frac{2}{k-1}}{\frac{2 k}{k-1} M_{1_{n}}^{2}-1} \tag{13.48a}\\
& M_{2 \mathrm{n}}=0.704
\end{align*}
$$

The downstream Mach number is then obtained from
from $M_{2 \mathrm{n}}, \theta$ and β, and Eq. 13.47b

$$
\begin{equation*}
M_{2 \mathrm{n}}=M_{2} \sin (\beta-\theta) \tag{13.47b}
\end{equation*}
$$

Hence

$$
M_{2}=\quad 1.36
$$

For p_{02} we use Eq. 13.7a
(using built-in function $\operatorname{Isenp}(M, k)$)

$$
\begin{align*}
& \frac{p_{0}}{p}=\left[1+\frac{k-1}{2} M^{2}\right]^{k /(k-1)} \tag{13.7a}\\
& p_{02}=\quad 693 \mathrm{kPa}
\end{align*}
$$

For surface RL (isentropic expansion wave):

Treating as a new problem

Here: $\quad M_{1}$ is the Mach number after the shock and M_{2} is the Mach number after the expansion wave p_{01} is the stagnation pressure after the shock and p_{02} is the stagnation pressure after the expansion wave

	$M_{1}=M_{2}$ (shock)		
	$M_{1}=$	1.36	
	$p_{01}=$	(shock)	
	$p_{01}=$	693	kPa
For isentropic flow	$p_{0}=$	tant	
	$p_{02}=$	p_{01}	
	$p_{02}=$	693	kPa
For the deflection	$\theta=$	δ	
	$\theta=$	10.0	0

We use Eq. 13.55

$$
\begin{equation*}
\omega=\sqrt{\frac{k+1}{k-1}} \tan ^{-1}\left(\sqrt{\frac{k-1}{k+1}\left(M^{2}-1\right)}\right)-\tan ^{-1}\left(\sqrt{M^{2}-1}\right) \tag{13.55}
\end{equation*}
$$

and

$$
\begin{equation*}
\text { Deflection }=\quad \omega_{2}-\omega_{1}=\omega\left(M_{2}\right)-\omega\left(M_{1}\right) \tag{3}
\end{equation*}
$$

From M_{1} and Eq. 13.55 (using built-in function $\operatorname{Omega}(M, k)$)

$$
\omega_{1}=\quad 7.8 \quad{ }^{\circ}
$$

Applying Eq. 3

$$
\begin{aligned}
& \omega_{2}=\omega_{1}+\theta \\
& \omega_{2}=17.8
\end{aligned}
$$

From ω_{2}, and Eq. 13.55 (using built-in function $\operatorname{Omega}(M, k)$)

For

$$
\begin{array}{rlr}
\omega_{2} & =17.8 \\
M_{2} & = & 1.70
\end{array}
$$

(Use Goal Seek to vary M_{2} so that $\omega_{2}=17.8^{\circ}$)

Hence for p_{2} we use Eq. 13.7a
(using built-in function $\operatorname{Isenp}(M, k)$)

$$
\begin{aligned}
p_{2} & =p_{02} /\left(p_{02} / p_{2}\right) \\
p_{2} & =141 \mathrm{kPa} \\
p_{\mathrm{RL}} & =p_{2} \\
p_{\mathrm{RL}} & =141 \mathrm{kPa}
\end{aligned}
$$

For surface FU (isentropic expansion wave):

$$
M_{1}=\quad 2.0
$$

For isentropic flow

$$
p_{0}=\text { constant }
$$

$$
p_{02}=\quad p_{01}
$$

For p_{01} we use Eq. 13.7a
(using built-in function $\operatorname{Isenp}(M, k)$)

$p_{01}=$	743	
$p_{02}=$	743	kPa

For the deflection $\quad \theta=\alpha-\delta / 2$ $\theta=\quad 7.0 \quad$ o

We use Eq. 13.55
and

$$
\begin{equation*}
\text { Deflection }=\quad \omega_{2}-\omega_{1}=\omega\left(M_{2}\right)-\omega\left(M_{1}\right) \tag{3}
\end{equation*}
$$

From M_{1} and Eq. 13.55 (using built-in function $\operatorname{Omega}(M, k)$)

Applying Eq. 3

$$
\omega_{2}=\omega_{1}+\theta
$$

$$
\omega_{2}=\quad 33.4 \quad{ }^{\circ}
$$

From ω_{2}, and Eq. 13.55 (using built-in function Omega(M, k))

For

$$
\begin{array}{rlr}
\omega_{2} & =33.4 \\
M_{2} & = & 2.27
\end{array}
$$

(Use Goal Seek to vary M_{2} so that $\omega_{2}=33.4^{\circ}$)

Hence for p_{2} we use Eq. 13.7a
(using built-in function $\operatorname{Isenp}(M, k)$)

$$
\begin{aligned}
p_{2} & =p_{02} /\left(p_{02} / p_{2}\right) \\
p_{2} & =62.8 \mathrm{kPa} \\
p_{\mathrm{FU}} & =p_{2} \\
p_{\mathrm{FU}} & =62.8 \mathrm{kPa}
\end{aligned}
$$

For surface RU (isentropic expansion wave):

Treat as a new problem.
Flow is isentropic so we could analyse from region FU to RU but instead analyse from region 1 to region RU.

$$
M_{1}=2.0
$$

For isentropic flow

$$
\begin{aligned}
& p_{0}=\text { constant } \\
& p_{02}=\quad p_{01}
\end{aligned}
$$

$$
\begin{array}{rlrl}
p_{01} & = & 743 & \mathrm{kPa} \\
p_{02} & = & 743 & \mathrm{kPa} \\
\theta & = & \alpha+\delta / 2 & \\
\theta & =17.0 & { }^{\circ}
\end{array}
$$

We use Eq. 13.55
and

$$
\begin{equation*}
\text { Deflection }=\quad \omega_{2}-\omega_{1}=\omega\left(M_{2}\right)-\omega\left(M_{1}\right) \tag{3}
\end{equation*}
$$

From M_{1} and Eq. 13.55 (using built-in function $\operatorname{Omega}(M, k)$)

$$
\omega_{1}=\quad 26.4 \quad \circ
$$

Applying Eq. 3

$$
\begin{array}{ll}
\omega_{2}= & \omega_{1}+\theta \\
\omega_{2}= & 43.4
\end{array}
$$

From ω_{2}, and Eq. 13.55 (using built-in function Omega(M, k))

For

$$
\begin{array}{rlr}
\omega_{2} & =43.4 \\
M_{2} & =0 \\
2.69
\end{array}
$$

(Use Goal Seek to vary M_{2} so that $\omega_{2}=43.4^{\circ}$)

Hence for p_{2} we use Eq. 13.7a
(using built-in function $\operatorname{Isenp}(M, k)$)

p_{2}	$=p_{02} /\left(p_{02} / p_{2}\right)$
p_{2}	$=32.4 \mathrm{kPa}$
p_{RU}	$=p_{2}$
p_{RU}	$=32.4 \mathrm{kPa}$

The four pressures are:

$p_{\mathrm{FL}}=$	230.6	kPa
$p_{\mathrm{RL}}=$	140.5	kPa
$p_{\mathrm{FU}}=$	62.8	kPa
$p_{\mathrm{RU}}=$	32.4	kPa

From Eq 1
$F_{\mathrm{V} / \mathrm{SC}}=138 \mathrm{kPa}$

From Eq $2 \quad F_{H} / S C=\quad 5.3 \mathrm{kPa}$
From Eq $7 \quad C_{\mathrm{L}}=\quad 0.503$

From Eq $8 \quad C_{\mathrm{D}}=\quad 0.127$

[^0]: 7.30 The diameter, d, of the dots made by an ink jet printer depends on the ink viscosity, μ, density, ρ, and surface tension, σ, the nozzle diameter, D, the distance, L, of the nozzle from the paper surface, and the ink jet velocity, V. Use dimensional analysis to find the Π parameters that characterize the ink jet's behavior.

[^1]: 7.33 The diameter, d, of bubbles produced by a bubble-making toy depends on the soapy water viscosity, μ, density, ρ, and surface tension, σ, the ring diameter, D, and the pressure differential, Δp, generating the bubbles. Use dimensional analysis to find the Π parameters that characterize this phenomenon.

[^2]: 10.64 Consider again the pump and piping system of Problem 10.62. Determine the volume flow rate and gate valve loss coefficient for the case of two identical pumps installed in parallel.

[^3]: 11.29 Rework Example 11.6 with discharges of $0,25,75,125$,
 and 200 cfs .

