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Problem 1.1     [3] 

1.1 A number of common substances are 

Tar Sand 

‘‘Silly Putty’’ Jello 

Modeling clay Toothpaste 

Wax Shaving cream 

Some of these materials exhibit characteristics of both solid and fluid behavior under different conditions. Explain 

and give examples. 

Given: Common Substances  

Tar Sand 

“Silly Putty” Jello 

Modeling clay Toothpaste 

Wax Shaving cream 

Some of these substances exhibit characteristics of solids and fluids under different conditions. 

Find: Explain and give examples. 

Solution: Tar, Wax, and Jello behave as solids at room temperature or below at ordinary pressures. At high 

pressures or over long periods, they exhibit fluid characteristics. At higher temperatures, all three 

liquefy and become viscous fluids. 

Modeling clay and silly putty show fluid behavior when sheared slowly. However, they fracture under suddenly 

applied stress, which is a characteristic of solids. 

Toothpaste behaves as a solid when at rest in the tube. When the tube is squeezed hard, toothpaste “flows” out the 

spout, showing fluid behavior. Shaving cream behaves similarly. 

Sand acts solid when in repose (a sand “pile”). However, it “flows” from a spout or down a steep incline. 



Problem 1.2     [2] 

1.2 Give a word statement of each of the five basic conservation laws stated in Section 1-4, as they apply to a 

system. 

Given: Five basic conservation laws stated in Section 1-4. 

Write: A word statement of each, as they apply to a system.  

Solution: Assume that laws are to be written for a system.  

a. Conservation of mass — The mass of a system is constant by definition. 

b. Newton's second law of motion — The net force acting on a system is directly proportional to the product of the 

system mass times its acceleration. 

c. First law of thermodynamics — The change in stored energy of a system equals the net energy added to the 

system as heat and work. 

d. Second law of thermodynamics — The entropy of any isolated system cannot decrease during any process 

between equilibrium states. 

e. Principle of angular momentum — The net torque acting on a system is equal to the rate of change of angular 

momentum of the system. 



Problem 1.3     [3] 

1.3 Discuss the physics of skipping a stone across the water surface of a lake. Compare these mechanisms with a 

stone as it bounces after being thrown along a roadway. 

Open-Ended Problem Statement: Consider the physics of “skipping” a stone across the water surface of a lake. 

Compare these mechanisms with a stone as it bounces after being thrown along a roadway. 

Discussion: Observation and experience suggest two behaviors when a stone is thrown along a water surface:  

1. If the angle between the path of the stone and the water surface is steep the stone may penetrate the water 

surface. Some momentum of the stone will be converted to momentum of the water in the resulting splash. 

After penetrating the water surface, the high drag* of the water will slow the stone quickly. Then, because the 

stone is heavier than water it will sink. 

2. If the angle between the path of the stone and the water surface is shallow the stone may not penetrate the water 

surface. The splash will be smaller than if the stone penetrated the water surface. This will transfer less 

momentum to the water, causing less reduction in speed of the stone. The only drag force on the stone will be 

from friction on the water surface. The drag will be momentary, causing the stone to lose only a portion of its 

kinetic energy. Instead of sinking, the stone may skip off the surface and become airborne again. 

When the stone is thrown with speed and angle just right, it may skip several times across the water surface. With 

each skip the stone loses some forward speed. After several skips the stone loses enough forward speed to penetrate 

the surface and sink into the water. 

Observation suggests that the shape of the stone significantly affects skipping. Essentially spherical stones may be 

made to skip with considerable effort and skill from the thrower. Flatter, more disc-shaped stones are more likely to 

skip, provided they are thrown with the flat surface(s) essentially parallel to the water surface; spin may be used to 

stabilize the stone in flight. 

By contrast, no stone can ever penetrate the pavement of a roadway. Each collision between stone and roadway will 

be inelastic; friction between the road surface and stone will affect the motion of the stone only slightly. Regardless 

of the initial angle between the path of the stone and the surface of the roadway, the stone may bounce several times, 

then finally it will roll to a stop. 

The shape of the stone is unlikely to affect trajectory of bouncing from a roadway significantly.  



Problem 1.4     [3] 

1.4 The barrel of a bicycle tire pump becomes quite warm during use. Explain the mechanisms responsible for 

the temperature increase. 

Open-Ended Problem Statement: The barrel of a bicycle tire pump becomes quite warm during use. Explain the 

mechanisms responsible for the temperature increase. 

Discussion: Two phenomena are responsible for the temperature increase: (1) friction between the pump piston and 

barrel and (2) temperature rise of the air as it is compressed in the pump barrel. 

Friction between the pump piston and barrel converts mechanical energy (force on the piston moving through a 

distance) into thermal energy as a result of friction. Lubricating the piston helps to provide a good seal with the 

pump barrel and reduces friction (and therefore force) between the piston and barrel. 

Temperature of the trapped air rises as it is compressed. The compression is not adiabatic because it occurs during a 

finite time interval. Heat is transferred from the warm compressed air in the pump barrel to the cooler surroundings. 

This raises the temperature of the barrel, making its outside surface warm (or even hot!) to the touch.  



Problem 1.5 [1]

Given: Data on oxygen tank.

Find: Mass of oxygen.

Solution: Compute tank volume, and then use oxygen density (Table A.6) to find the mass.

The given or available data is: D 500 cm⋅= p 7 MPa⋅= T 25 273+( ) K⋅= T 298K=

RO2 259.8
J

kg K⋅
⋅= (Table A.6)

The governing equation is the ideal gas equation

p ρ RO2⋅ T⋅= and ρ
M
V

=

where V is the tank volume V
π D3
⋅
6

= V
π

6
5 m⋅( )3

×= V 65.4 m3
⋅=

Hence M V ρ⋅=
p V⋅

RO2 T⋅
= M 7 106

×
N

m2
⋅ 65.4× m3

⋅
1

259.8
×

kg K⋅
N m⋅
⋅

1
298

×
1
K
⋅= M 5913kg=



Problem 1.6 [1]

Given: Dimensions of a room

Find: Mass of air

Solution:

Basic equation: ρ
p

Rair T⋅
=

Given or available data p 14.7psi= T 59 460+( )R= Rair 53.33
ft lbf⋅
lbm R⋅
⋅=

V 10 ft⋅ 10× ft⋅ 8× ft⋅= V 800ft3=

Then ρ
p

Rair T⋅
= ρ 0.076

lbm

ft3
= ρ 0.00238

slug

ft3
= ρ 1.23

kg

m3
=

M ρ V⋅= M 61.2 lbm= M 1.90slug= M 27.8kg=



Problem 1.7 [2]

Given: Mass of nitrogen, and design constraints on tank dimensions.

Find: External dimensions.

Solution: Use given geometric data and nitrogen mass, with data from Table A.6.

The given or available data is: M 10 lbm⋅= p 200 1+( ) atm⋅= p 2.95 103
× psi⋅=

T 70 460+( ) K⋅= T 954 R⋅= RN2 55.16
ft lbf⋅
lbm R⋅
⋅= (Table A.6)

The governing equation is the ideal gas equation p ρ RN2⋅ T⋅= and ρ
M
V

=

where V is the tank volume V
π D2
⋅
4

L⋅= where L 2 D⋅=

Combining these equations:

Hence M V ρ⋅=
p V⋅

RN2 T⋅
=

p
RN2 T⋅

π D2
⋅
4

⋅ L⋅=
p

RN2 T⋅
π D2
⋅
4

⋅ 2⋅ D⋅=
p π⋅ D3

⋅
2 RN2⋅ T⋅

=

Solving for D D
2 RN2⋅ T⋅ M⋅

p π⋅

⎛
⎜
⎝

⎞
⎟
⎠

1
3

= D
2
π

55.16×
ft lbf⋅
lbm R⋅
⋅ 954× K⋅ 10× lbm⋅

1
2950

×
in2

lbf
⋅

ft
12 in⋅

⎛⎜
⎝

⎞⎟
⎠

2
×

⎡
⎢
⎣

⎤
⎥
⎦

1
3

=

D 1.12 ft⋅= D 13.5 in⋅= L 2 D⋅= L 27 in⋅=

These are internal dimensions; the external ones are 1/4 in. larger: L 27.25 in⋅= D 13.75 in⋅=



Problem 1.8     [3] 

1.8 Very small particles moving in fluids are known to experience a drag force proportional to speed. Consider a 

particle of net weight W dropped in a fluid. The particle experiences a drag force, FD = kV, where V is the particle 

speed. Determine the time required for the particle to accelerate from rest to 95 percent of its terminal speed, Vt, in 

terms of k, W, and g. 

Given: Small particle accelerating from rest in a fluid. Net weight is W, resisting force FD = kV, where V 

is speed. 

Find: Time required to reach 95 percent of terminal speed, Vt. 

Solution: Consider the particle to be a system. Apply Newton's second law. 

Basic equation: ∑Fy = may 

 

Assumptions: 

1. W is net weight 

2. Resisting force acts opposite to V 

Then Fy y∑ = − = =W kV = ma
dt

m dV W
g

dV
dt

 

or dV
dt

g(1 k
W

V)= −  

Separating variables, dV
1 V

g dtk
W−

=  

Integrating, noting that velocity is zero initially, dV
1 V

W
k

ln(1 k
W

V) gdt gtk
W0

V
V

t

−
= − −

O
QPP

= =z z
0

0
 



or 1 k
W

V e V W
k

1
kgt
W

kgt
W− = = −

L
N
MM

O
Q
PP

− −
; e  

But V→Vt as t→∞, so Vt
W
k= . Therefore V

V
1 e

t

kgt
W= −

−
 

When V
Vt

0.95= , then e 0.05
kgt
W

−
= and kgt

W 3= . Thus t = 3 W/gk 



Problem 1.9     [2] 

1.9 Consider again the small particle of Problem 1.8. Express the distance required to reach 95 percent of its 

terminal speed in terms of g, k, and W. 

Given: Small particle accelerating from rest in a fluid. Net weight is W, resisting force is FD = kV, where 

V is speed. 

Find: Distance required to reach 95 percent of terminal speed, Vt.  

Solution: Consider the particle to be a system.  Apply Newton's second law.  

Basic equation:   ∑Fy = may 

Assumptions:  

1. W is net weight. 

2. Resisting force acts opposite to V. 

Then,  dV W dV
dt g dyF W kV = ma m Vy y= − = =∑     or     V dVk

W g dy1 V− =  

At terminal speed, ay = 0 and W
t kV V= = . Then 

g

V dV1
V g dy1 V− =  

Separating variables 
t

1
V

V dV g dy
1 V

=
−

 

Integrating, noting that velocity is zero initially 

[ ]

0.95
0.95 2

0
0

2 2 2

2 2

2
2

2

ln 111

0.95 ln (1 0.95) ln (1)

0.95 ln 0.05 2.05

2.05 2.05

t

t

V
V

t t
t

t

t t t

t t

t

V dV Vgy VV V
VV

V

gy V V V

gy V V

Wy V
g gt

⎡ ⎤⎛ ⎞
= = − − −⎢ ⎥⎜ ⎟

⎢ ⎥⎝ ⎠⎣ ⎦−

= − − − −

= − + =

∴ = =

∫

 



Problem 1.10 [3]

Given: Data on sphere and formula for drag.

Find: Maximum speed, time to reach 95% of this speed, and plot speed as a function of time.

Solution: Use given data and data in Appendices, and integrate equation of motion by separating variables.

The data provided, or available in the Appendices, are:

ρair 1.17
kg

m3
⋅= μ 1.8 10 5−

×
N s⋅

m2
⋅= ρw 999

kg

m3
⋅= SGSty 0.016= d 0.3 mm⋅=

Then the density of the sphere is ρSty SGSty ρw⋅= ρSty 16
kg

m3
=

The sphere mass is M ρSty
π d3
⋅
6

⋅= 16
kg

m3
⋅ π×

0.0003 m⋅( )3

6
×= M 2.26 10 10−

× kg=

Newton's 2nd law for the steady state motion becomes (ignoring buoyancy effects) M g⋅ 3 π⋅ V⋅ d⋅=

so

Vmax
M g⋅

3 π⋅ μ⋅ d⋅
=

1
3 π⋅

2.26 10 10−
×× kg⋅ 9.81×

m

s2
⋅

m2

1.8 10 5−
× N⋅ s⋅

×
1

0.0003 m⋅
×= Vmax 0.0435

m
s

=

Newton's 2nd law for the general motion is (ignoring buoyancy effects) M
dV
dt

⋅ M g⋅ 3 π⋅ μ⋅ V⋅ d⋅−=

so dV

g
3 π⋅ μ⋅ d⋅

M
V⋅−

dt=

Integrating and using limits V t( )
M g⋅

3 π⋅ μ⋅ d⋅
1 e

3− π⋅ μ⋅ d⋅
M

t⋅
−

⎛
⎜
⎝

⎞
⎟
⎠⋅=



Using the given data

0 0.01 0.02

0.01

0.02

0.03

0.04

0.05

t (s)

V
 (m

/s
)

The time to reach 95% of maximum speed is obtained from M g⋅
3 π⋅ μ⋅ d⋅

1 e

3− π⋅ μ⋅ d⋅
M

t⋅
−

⎛
⎜
⎝

⎞
⎟
⎠⋅ 0.95 Vmax⋅=

so t
M

3 π⋅ μ⋅ d⋅
− ln 1

0.95 Vmax⋅ 3⋅ π⋅ μ⋅ d⋅

M g⋅
−

⎛
⎜
⎝

⎞
⎟
⎠

⋅= Substituting values t 0.0133s=

The plot can also be done in Excel.



Problem 1.11 [4]

Given: Data on sphere and formula for drag.

Find: Diameter of gasoline droplets that take 1 second to fall 25 cm.

Solution: Use given data and data in Appendices; integrate equation of motion by separating variables.

The data provided, or available in the Appendices, are:

μ 1.8 10 5−
×

N s⋅

m2
⋅= ρw 999

kg

m3
⋅= SGgas 0.72= ρgas SGgas ρw⋅= ρgas 719

kg

m3
=

Newton's 2nd law for the sphere (mass M) is (ignoring buoyancy effects) M
dV
dt

⋅ M g⋅ 3 π⋅ μ⋅ V⋅ d⋅−=

so dV

g
3 π⋅ μ⋅ d⋅

M
V⋅−

dt=

Integrating and using limits V t( )
M g⋅

3 π⋅ μ⋅ d⋅
1 e

3− π⋅ μ⋅ d⋅
M

t⋅
−

⎛
⎜
⎝

⎞
⎟
⎠⋅=

Integrating again x t( )
M g⋅

3 π⋅ μ⋅ d⋅
t

M
3 π⋅ μ⋅ d⋅

e

3− π⋅ μ⋅ d⋅
M

t⋅
1−

⎛
⎜
⎝

⎞
⎟
⎠⋅+

⎡⎢
⎢
⎣

⎤⎥
⎥
⎦

⋅=

Replacing M with an expression involving diameter d M ρgas
π d3
⋅
6

⋅= x t( )
ρgas d2

⋅ g⋅

18 μ⋅
t

ρgas d2
⋅

18 μ⋅
e

18− μ⋅

ρgas d2⋅
t⋅

1−

⎛⎜
⎜
⎝

⎞⎟
⎟
⎠⋅+

⎡
⎢
⎢
⎣

⎤
⎥
⎥
⎦

⋅=

This equation must be solved for d so that x 1 s⋅( ) 1 m⋅= .  The answer can be obtained from manual iteration, or by using Excel's
Goal Seek. (See this in the corresponding Excel workbook.)

d 0.109 mm⋅=

0 0.2 0.4 0.6 0.8 1

0.05

0.1

0.15

0.2

0.25

t (s)

x 
(m

)

Note That the particle quickly reaches terminal speed, so that a simpler approximate solution would be to solve Mg = 3πμVd for d,
with V = 0.25 m/s (allowing for the fact that M is a function of d)!



Problem 1.12 [4]

Given: Data on sky diver: M 70 kg⋅= k 0.25
N s2
⋅

m2
⋅=

Find: Maximum speed; speed after 100 m; plot speed as function of time and distance.

Solution: Use given data; integrate equation of motion by separating variables.

Treat the sky diver as a system; apply Newton's 2nd law:

Newton's 2nd law for the sky diver  (mass M) is (ignoring buoyancy effects): M
dV
dt

⋅ M g⋅ k V2
⋅−= (1)

(a) For terminal speed Vt, acceleration is zero, so M g⋅ k V2
⋅− 0= so Vt

M g⋅
k

=

Vt 75 kg⋅ 9.81×
m

s2
⋅

m2

0.25 N⋅ s2
⋅

×
N s2
⋅

kg m×
⋅

⎛⎜
⎜⎝

⎞⎟
⎟⎠

1
2

= Vt 54.2
m
s

=

(b) For V at y = 100 m we need to find V(y).  From (1) M
dV
dt

⋅ M
dV
dy

⋅
dy
dt

⋅= M V⋅
dV
dt

⋅= M g⋅ k V2
⋅−=

Separating variables and integrating:

0

V

V
V

1
k V2
⋅

M g⋅
−

⌠⎮
⎮
⎮
⎮
⌡

d
0

y
yg

⌠
⎮
⌡

d=

so ln 1
k V2
⋅

M g⋅
−

⎛
⎜
⎝

⎞
⎟
⎠

2 k⋅
M

− y= or V2 M g⋅
k

1 e

2 k⋅ y⋅
M

−
−

⎛
⎜
⎝

⎞
⎟
⎠⋅=

Hence V y( ) Vt 1 e

2 k⋅ y⋅
M

−
−

⎛
⎜
⎝

⎞
⎟
⎠

1
2

⋅=

For y = 100 m: V 100 m⋅( ) 54.2
m
s

⋅ 1 e

2− 0.25×
N s2⋅

m2
⋅ 100× m⋅

1
70 kg⋅

×
kg m⋅

s2 N⋅
×

−

⎛
⎜
⎜
⎝

⎞
⎟
⎟
⎠

1
2

⋅= V 100 m⋅( ) 38.8
m
s

⋅=



0 100 200 300 400 500

20

40

60

y(m)

V
(m

/s
)

(c) For V(t) we need to integrate (1) with respect to t: M
dV
dt

⋅ M g⋅ k V2
⋅−=

Separating variables and integrating:

0

V

V
V

M g⋅
k

V2
−

⌠
⎮
⎮
⎮
⌡

d
0

t
t1

⌠
⎮
⌡

d=

so t
1
2

M
k g⋅

⋅ ln

M g⋅
k

V+

M g⋅
k

V−

⎛⎜
⎜
⎜
⎜⎝

⎞⎟
⎟
⎟
⎟⎠

⋅=
1
2

M
k g⋅

⋅ ln
Vt V+

Vt V−

⎛
⎜
⎝

⎞
⎟
⎠

⋅=

Rearranging V t( ) Vt
e
2

k g⋅
M

⋅ t⋅
1−

⎛
⎜
⎝

⎞
⎟
⎠

e
2

k g⋅
M

⋅ t⋅
1+

⎛
⎜
⎝

⎞
⎟
⎠

⋅= or V t( ) Vt tanh Vt
k
M
⋅ t⋅⎛⎜

⎝
⎞⎟
⎠

⋅=

0 5 10 15 20

20

40

60

t(s)

V
(m

/s
)

V t( )

t

The two graphs can also be plotted in Excel.



Problem 1.13 [5]

Given: Data on sky diver: M 70 kg⋅= kvert 0.25
N s2
⋅

m2
⋅= khoriz 0.05

N s2
⋅

m2
⋅= U0 70

m
s

⋅=

Find: Plot of trajectory.

Solution: Use given data; integrate equation of motion by separating variables.

Treat the sky diver as a system; apply Newton's 2nd law in horizontal and vertical directions:

Vertical: Newton's 2nd law for the sky diver  (mass M) is (ignoring buoyancy effects): M
dV
dt

⋅ M g⋅ kvert V2
⋅−= (1)

For V(t) we need to integrate (1) with respect to t:

Separating variables and integrating:

0

V

V
V

M g⋅
kvert

V2
−

⌠⎮
⎮
⎮
⎮
⌡

d
0

t
t1

⌠
⎮
⌡

d=

so t
1
2

M
kvert g⋅

⋅ ln

M g⋅
kvert

V+

M g⋅
kvert

V−

⎛
⎜
⎜
⎜
⎜
⎝

⎞
⎟
⎟
⎟
⎟
⎠

⋅=

Rearranging orV t( )
M g⋅
kvert

e
2

kvert g⋅

M
⋅ t⋅

1−

⎛⎜
⎜⎝

⎞⎟
⎟⎠

e
2

kvert g⋅

M
⋅ t⋅

1+

⎛⎜
⎜⎝

⎞⎟
⎟⎠

⋅= so V t( )
M g⋅
kvert

tanh
kvert g⋅

M
t⋅

⎛
⎜
⎝

⎞
⎟
⎠

⋅=

For y(t) we need to integrate again: dy
dt

V= or y tV
⌠⎮
⎮⌡

d=

y t( )
0

t
tV t( )

⌠
⎮
⌡

d=

0

t

t
M g⋅
kvert

tanh
kvert g⋅

M
t⋅

⎛
⎜
⎝

⎞
⎟
⎠

⋅

⌠⎮
⎮
⎮
⌡

d=
M g⋅
kvert

ln cosh
kvert g⋅

M
t⋅

⎛
⎜
⎝

⎞
⎟
⎠

⎛
⎜
⎝

⎞
⎟
⎠

⋅=

y t( )
M g⋅
kvert

ln cosh
kvert g⋅

M
t⋅

⎛
⎜
⎝

⎞
⎟
⎠

⎛
⎜
⎝

⎞
⎟
⎠

⋅=
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Horizontal: Newton's 2nd law for the sky diver  (mass M) is: M
dU
dt

⋅ khoriz− U2
⋅= (2)

For U(t) we need to integrate (2) with respect to t:

Separating variables and integrating:

U0

U

U
1

U2

⌠⎮
⎮
⎮⌡

d

0

t

t
khoriz

M
−

⌠
⎮
⎮
⌡

d= so
khoriz

M
− t⋅

1
U

−
1

U0
+=

Rearranging or U t( )
U0

1
khoriz U0⋅

M
t⋅+

=

For x(t) we need to integrate again: dx
dt

U= or x tU
⌠⎮
⎮⌡

d=

x t( )
0

t
tU t( )

⌠
⎮
⌡

d=

0

t

t
U0

1
khoriz U0⋅

M
t⋅+

⌠
⎮
⎮
⎮
⎮
⌡

d=
M

khoriz
ln

khoriz U0⋅

M
t⋅ 1+

⎛
⎜
⎝

⎞
⎟
⎠

⋅=

x t( )
M

khoriz
ln

khoriz U0⋅

M
t⋅ 1+

⎛
⎜
⎝

⎞
⎟
⎠

⋅=
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t

Plotting the trajectory:

0 1 2 3

3−

2−

1−

x(km)

y(
km

)

These plots can also be done in Excel.



Problem 1.14 [3]

Given: Data on sphere and terminal speed.

Find: Drag constant k, and time to reach 99% of terminal speed.

Solution: Use given data; integrate equation of motion by separating variables.

The data provided are: M 5 10 11−
⋅ kg⋅= Vt 5

cm
s

⋅=

Newton's 2nd law for the general motion is (ignoring buoyancy effects) M
dV
dt

⋅ M g⋅ k V⋅−= (1)

Newton's 2nd law for the steady state motion becomes (ignoring buoyancy effects) M g⋅ k Vt⋅= so k
M g⋅
Vt

=

k
M g⋅
Vt

= 5 10 11−
× kg⋅ 9.81×

m

s2
⋅

s
0.05 m⋅

×= k 9.81 10 9−
×

N s⋅
m

⋅=

dV

g
k
M

V⋅−
dt=To find the time to reach 99% of Vt, we need V(t).  From 1, separating variables

Integrating and using limits t
M
k

− ln 1
k

M g⋅
V⋅−⎛⎜

⎝
⎞⎟
⎠

⋅=

We must evaluate this when V 0.99 Vt⋅= V 4.95
cm
s

⋅=

t 5 10 11−
× kg⋅

m

9.81 10 9−
× N⋅ s⋅

×
N s2
⋅

kg m⋅
× ln 1 9.81 10 9−

⋅
N s⋅
m

⋅
1

5 10 11−
× kg⋅

×
s2

9.81 m⋅
×

0.0495 m⋅
s

×
kg m⋅

N s2
⋅

×−
⎛⎜
⎜⎝

⎞⎟
⎟⎠

⋅=

t 0.0235s=



Problem 1.15 [5]

Given: Data on sphere and terminal speed from Problem 1.14.

Find: Distance traveled to reach 99% of terminal speed; plot of distance versus time.

Solution: Use given data; integrate equation of motion by separating variables.

The data provided are: M 5 10 11−
⋅ kg⋅= Vt 5

cm
s

⋅=

Newton's 2nd law for the general motion is (ignoring buoyancy effects) M
dV
dt

⋅ M g⋅ k V⋅−= (1)

Newton's 2nd law for the steady state motion becomes (ignoring buoyancy effects) M g⋅ k Vt⋅= so k
M g⋅
Vt

=

k
M g⋅
Vt

= 5 10 11−
× kg⋅ 9.81×

m

s2
⋅

s
0.05 m⋅

×= k 9.81 10 9−
×

N s⋅
m

⋅=

To find the distance to reach 99% of Vt, we need V(y).  From 1: M
dV
dt

⋅ M
dy
dt

⋅
dV
dy

⋅= M V⋅
dV
dy

⋅= M g⋅ k V⋅−=

V dV⋅

g
k
M

V⋅−
dy=Separating variables

Integrating and using limits y
M2 g⋅

k2
− ln 1

k
M g⋅

V⋅−⎛⎜
⎝

⎞⎟
⎠

⋅
M
k

V⋅−=

We must evaluate this when V 0.99 Vt⋅= V 4.95
cm
s

⋅=

y 5 10 11−
× kg⋅( )2 9.81 m⋅

s2
×

m

9.81 10 9−
× N⋅ s⋅

⎛
⎜
⎝

⎞
⎟
⎠

2
×

N s2
⋅

kg m⋅

⎛
⎜
⎝

⎞
⎟
⎠

2

× ln 1 9.81 10 9−
⋅

N s⋅
m

⋅
1

5 10 11−
× kg⋅

×
s2

9.81 m⋅
×

0.0495 m⋅
s

×
kg m⋅

N s2
⋅

×−
⎛⎜
⎜⎝

⎞⎟
⎟⎠

⋅

5− 10 11−
× kg⋅

m

9.81 10 9−
× N⋅ s⋅

×
0.0495 m⋅

s
×

N s2
⋅

kg m⋅
×+

...=

y 0.922 mm⋅=

Alternatively we could use the approach of Problem 1.14 and first find the time to reach terminal speed, and use this time in
y(t) to find the above value of y:

dV

g
k
M

V⋅−
dt=From 1, separating variables

Integrating and using limits t
M
k

− ln 1
k

M g⋅
V⋅−⎛⎜

⎝
⎞⎟
⎠

⋅= (2)



We must evaluate this when V 0.99 Vt⋅= V 4.95
cm
s

⋅=

t 5 10 11−
× kg⋅

m

9.81 10 9−
× N⋅ s⋅

×
N s2
⋅

kg m⋅
× ln 1 9.81 10 9−

⋅
N s⋅
m

⋅
1

5 10 11−
× kg⋅

×
s2

9.81 m⋅
×

0.0495 m⋅
s

×
kg m⋅

N s2
⋅

×−
⎛⎜
⎜⎝

⎞⎟
⎟⎠

⋅= t 0.0235s=

From 2, after rearranging V
dy
dt

=
M g⋅

k
1 e

k
M

− t⋅
−

⎛
⎜
⎝

⎞
⎟
⎠⋅=

Integrating and using limits y
M g⋅

k
t

M
k

e

k
M

− t⋅
1−

⎛
⎜
⎝

⎞
⎟
⎠⋅+

⎡⎢
⎢
⎣

⎤⎥
⎥
⎦

⋅=

y 5 10 11−
× kg⋅

9.81 m⋅

s2
×

m

9.81 10 9−
× N⋅ s⋅

×
N s2
⋅

kg m⋅
× 0.0235 s⋅

5 10 11−
× kg⋅

m

9.81 10 9−
× N⋅ s⋅

×
N s2
⋅

kg m⋅
× e

9.81 10 9−⋅

5 10 11−⋅
− .0235⋅

1−

⎛
⎜
⎜
⎝

⎞
⎟
⎟
⎠⋅+

...⎡
⎢
⎢
⎢
⎢
⎣

⎤
⎥
⎥
⎥
⎥
⎦

⋅=

y 0.922 mm⋅=

0 5 10 15 20 25

0.25

0.5

0.75

1

t (ms)

y 
(m

m
)

This plot can also be presented in Excel.



Problem 1.16     [3] 

1.16 The English perfected the longbow as a weapon after the Medieval period. In the hands of a skilled archer, 

the longbow was reputed to be accurate at ranges to 100 meters or more. If the maximum altitude of an arrow is less 

than h = 10 m while traveling to a target 100 m away from the archer, and neglecting air resistance, estimate the 

speed and angle at which the arrow must leave the bow. Plot the required release speed and angle as a function of 

height h. 

Given: Long bow at range, R = 100 m. Maximum height of arrow is h = 10 m. Neglect air resistance. 

Find: Estimate of (a) speed, and (b) angle, of arrow leaving the bow. 

Plot: (a) release speed, and (b) angle, as a function of h  

Solution: Let V u i v j V i j)0 0 0= + = +0 0 0(cos sinθ θ  

ΣF m mgy
dv
dt= = − , so v = v0 – gt, and tf = 2tv=0 = 2v0/g  

 

Also, mv dv
dy

mg, v dv g dy, 0
v
2

gh0
2

= − = − − = −  

Thus h v 2g0
2=  (1) 

ΣF m du
dt

0, so u u const, and R u t
2u v

g0 0 f
0 0

x = = = = = =  (2) 

From 

1. v 2gh0
2 =  (3) 

2. u gR
2v

gR
2 2gh

u gR
8h0

0
0
2

2
= = ∴ =  



Then V u v gR
8h

2gh and V 2gh gR
8h0

2
0
2

0
2

2

0

2
1
2

= + = + = +
L
NMM

O
QPP

 (4) 

V 2 9.81 m
s

10 m 9.81
8

m
s

100 m 1
10 m

37.7 m s0 2 2
2 2

1
2

= × × + × ×
L
NM

O
QP

=b g  

From Eq. 3 v 2gh V sin sin
2gh
V0 0

1

0
= = = −θ θ,  (5) 

θ = × ×F
HG

I
KJ

L
N
MM

O
Q
PP = °−sin 1 2 9.81 m

s
10 m s

37.7 m
21.8

1
2

 

Plots of V0 = V0(h) {Eq. 4} and θ0 =   θ 0(h) {Eq. 5} are presented below 



Problem 1.17 [2]

Given: Basic dimensions F, L, t and T.

Find: Dimensional representation of quantities below, and typical units in SI and English systems.

Solution:

(a) Power Power
Energy
Time

Force Distance×
Time

==
F L⋅

t
=

N m⋅
s

lbf ft⋅
s

(b) Pressure Pressure
Force
Area

=
F

L2
=

N

m2
lbf

ft2

(c) Modulus of elasticity Pressure
Force
Area

=
F

L2
=

N

m2
lbf

ft2

(d) Angular velocity AngularVelocity
Radians

Time
=

1
t

=
1
s

1
s

(e) Energy Energy Force Distance×= F L⋅= N m⋅ lbf ft⋅

(f) Momentum Momentum Mass Velocity×= M
L
t

⋅=

From Newton's 2nd law Force Mass Acceleration×= so F M
L

t2
⋅= or M

F t2⋅
L

=

Hence Momentum M
L
t

⋅=
F t2⋅ L⋅

L t⋅
= F t⋅= N s⋅ lbf s⋅

(g) Shear stress ShearStress
Force
Area

=
F

L2
=

N

m2
lbf

ft2

(h) Specific heat SpecificHeat
Energy

Mass Temperature×
=

F L⋅
M T⋅

=
F L⋅

F t2⋅
L

⎛
⎜
⎝

⎞
⎟
⎠

T⋅

=
L2

t2 T⋅
=

m2

s2 K⋅

ft2

s2 R⋅

(i) Thermal expansion coefficient ThermalExpansionCoefficient

LengthChange
Length

Temperature
=

1
T

=
1
K

1
R

(j) Angular momentum AngularMomentum Momentum Distance×= F t⋅ L⋅= N m⋅ s⋅ lbf ft⋅ s⋅



Problem 1.18 [2]

Given: Basic dimensions M, L, t and T.

Find: Dimensional representation of quantities below, and typical units in SI and English systems.

Solution:

(a) Power Power
Energy
Time

Force Distance×
Time

==
F L⋅

t
=

From Newton's 2nd law Force Mass Acceleration×= so F
M L⋅

t2
=

Hence Power
F L⋅

t
=

M L⋅ L⋅

t2 t⋅
=

M L2
⋅

t3
=

kg m2
⋅

s3
slugft2⋅

s3

(b) Pressure Pressure
Force
Area

=
F

L2
=

M L⋅

t2 L2
⋅

=
M

L t2⋅
=

kg

m s2
⋅

slug

ft s2
⋅

(c) Modulus of elasticity Pressure
Force
Area

=
F

L2
=

M L⋅

t2 L2
⋅

=
M

L t2⋅
=

kg

m s2
⋅

slug

ft s2
⋅

(d) Angular velocity AngularVelocity
Radians

Time
=

1
t

=
1
s

1
s

(e) Energy Energy Force Distance×= F L⋅=
M L⋅ L⋅

t2
=

M L2
⋅

t2
=

kg m2
⋅

s2
slug ft2⋅

s2

(f) Moment of a force MomentOfForce Force Length×= F L⋅=
M L⋅ L⋅

t2
=

M L2
⋅

t2
=

kg m2
⋅

s2
slug ft2⋅

s2

(g) Momentum Momentum Mass Velocity×= M
L
t

⋅=
M L⋅

t
=

kg m⋅
s

slug ft⋅
s

(h) Shear stress ShearStress
Force
Area

=
F

L2
=

M L⋅

t2 L2
⋅

=
M

L t2⋅
=

kg

m s2
⋅

slug

ft s2
⋅

(i) Strain Strain
LengthChange

Length
=

L
L

= Dimensionless

(j) Angular momentum AngularMomentum Momentum Distance×=
M L⋅

t
L⋅=

M L2
⋅
t

=
kg m2
⋅
s

slugs ft2⋅
s



Problem 1.19 [1]

Given: Pressure, volume and density data in certain units

Find: Convert to different units

Solution:
Using data from tables (e.g. Table G.2)

(a) 1 psi⋅ 1 psi⋅
6895 Pa⋅

1 psi⋅
×

1 kPa⋅
1000 Pa⋅

×= 6.89 kPa⋅=

(b) 1 liter⋅ 1 liter⋅
1 quart⋅

0.946 liter⋅
×

1 gal⋅
4 quart⋅

×= 0.264 gal⋅=

(c) 1
lbf s⋅

ft2
⋅ 1

lbf s⋅

ft2
⋅

4.448 N⋅
1 lbf⋅

×

1
12

ft⋅

0.0254 m⋅

⎛
⎜
⎜
⎝

⎞
⎟
⎟
⎠

2

×= 47.9
N s⋅

m2
⋅=



Problem 1.20 [1]

Given: Viscosity, power, and specific energy data in certain units

Find: Convert to different units

Solution:
Using data from tables (e.g. Table G.2)

(a) 1
m2

s
⋅ 1

m2

s
⋅

1
12

ft⋅

0.0254 m⋅

⎛
⎜
⎜
⎝

⎞
⎟
⎟
⎠

2

×= 10.76
ft2

s
⋅=

(b) 100 W⋅ 100 W⋅
1 hp⋅

746 W⋅
×= 0.134 hp⋅=

(c) 1
kJ
kg
⋅ 1

kJ
kg
⋅

1000 J⋅
1 kJ⋅

×
1 Btu⋅
1055 J⋅

×
0.454 kg⋅

1 lbm⋅
×= 0.43

Btu
lbm
⋅=



Problem 1.21 [1]

Given: Quantities in English Engineering (or customary) units.

Find: Quantities in SI units.

Solution: Use Table G.2 and other sources (e.g., Google)

(a) 100
ft3

m
⋅ 100

ft3

min
⋅

0.0254 m⋅
1 in⋅

12 in⋅
1 ft⋅

×⎛⎜
⎝

⎞⎟
⎠

3
×

1 min⋅
60 s⋅

×= 0.0472
m3

s
⋅=

(b) 5 gal⋅ 5 gal⋅
231 in3

⋅
1 gal⋅

×
0.0254 m⋅

1 in⋅
⎛⎜
⎝

⎞⎟
⎠

3
×= 0.0189 m3

⋅=

(c) 65 mph⋅ 65
mile
hr

⋅
1852 m⋅
1 mile⋅

×
1 hr⋅

3600 s⋅
×= 29.1

m
s

⋅=

(d) 5.4 acres⋅ 5.4 acre⋅
4047 m3

⋅
1 acre⋅

×= 2.19 104
× m2

⋅=



Problem 1.22 [1]

Given: Quantities in SI (or other) units.

Find: Quantities in BG units.

Solution: Use Table G.2.

(a) 50 m2
⋅ 50 m2

⋅
1 in⋅

0.0254 m⋅
1 ft⋅

12 in⋅
×⎛⎜

⎝
⎞⎟
⎠

2
×= 538 ft2⋅=

(b) 250 cc⋅ 250 cm3
⋅

1 m⋅
100 cm⋅

1 in⋅
0.0254 m⋅

×
1 ft⋅

12 in⋅
×⎛⎜

⎝
⎞⎟
⎠

3
×= 8.83 10 3−

× ft3⋅=

(c) 100 kW⋅ 100 kW⋅
1000 W⋅

1 kW⋅
×

1 hp⋅
746 W⋅

×= 134 hp⋅=

(d) 5
lbf s⋅

ft2
⋅ is already in BG units



Problem 1.23 [1]

Given: Acreage of land, and water needs.

Find: Water flow rate (gpm) to water crops.

Solution: Use Table G.2 and other sources (e.g., Google) as needed.

The volume flow rate needed is Q
1.5 in⋅
week

25× acres⋅=

Performing unit conversions Q
1.5 in⋅ 25× acre⋅

week
=

1.5 in⋅ 25× acre⋅
week

4.36 104
× ft2⋅

1 acre⋅
×

12 in⋅
1 ft⋅

⎛⎜
⎝

⎞⎟
⎠

2
×

1 week⋅
7 day⋅

×
1 day⋅
24 hr⋅

×
1 hr⋅

60 min⋅
×=

Q 101 gpm⋅=



Problem 1.24 [2]

Given: Geometry of tank, and weight of propane.

Find: Volume of propane, and tank volume; explain the discrepancy.

Solution: Use Table G.2 and other sources (e.g., Google) as needed.

The author's tank is approximately 12 in in diameter, and the cylindrical part is about 8 in.  The weight of propane specified is 17 lb.

The tank diameter is D 12 in⋅=

The tank cylindrical height is L 8 in⋅=

The mass of propane is mprop 17 lbm⋅=

The specific gravity of propane is SGprop 0.495=

The density of water is ρ 998
kg

m3
⋅=

The volume of propane is given by Vprop
mprop
ρprop

=
mprop

SGprop ρ⋅
=

Vprop 17 lbm⋅
1

0.495
×

m3

998 kg⋅
×

0.454 kg⋅
1 lbm⋅

×
1 in⋅

0.0254 m⋅
⎛⎜
⎝

⎞⎟
⎠

3
×=

Vprop 953 in3
⋅=

The volume of the tank is given by a cylinder diameter D length L, πD2L/4 and a sphere (two halves) given by πD3/6

Vtank
π D2
⋅
4

L⋅
π D3
⋅
6

+=

Vtank
π 12 in⋅( )2
⋅

4
8⋅ in⋅ π

12 in⋅( )3

6
⋅+=

Vtank 1810 in3
⋅=

The ratio of propane to tank volumes is
Vprop
Vtank

53 %⋅=

This seems low, and can be explained by a) tanks are not filled completely, b) the geometry of the tank gave an overestimate of the volume (the
ends are not really hemispheres, and we have not allowed for tank wall thickness).



Problem 1.25     [1] 

1.25 The density of mercury is given as 26.3 slug/ft3. Calculate the specific gravity and the specific volume in 

m3/kg of the mercury. Calculate the specific weight in lbf/ft3 on Earth and on the moon. Acceleration of gravity on 

the moon is 5.47 ft/s2. 

Given: Density of mercury is ρ = 26.3 slug/ft3. 

Acceleration of gravity on moon is gm = 5.47 ft/s2. 

Find: 

a. Specific gravity of mercury. 

b. Specific volume of mercury, in m3/kg. 

c. Specific weight on Earth. 

d. Specific weight on moon. 

Solution: Apply definitions: γ ρ ρ ρ ρ≡ ≡ ≡g SG H O2
, ,v 1  

Thus  
SG = 26.3 slug

ft
ft

1.94 slug
13.6

ft
26.3 slug

(0.3048) m
ft

slug
32.2 lbm

lbm
0.4536 kg

7.37 10 m kg

3

3

3
3

3

3
5 3

× =

= × × × = × −v
 

 

On Earth, γ E 3 2

2
3slug

ft
ft
s

lbf s
slug ft

lbf ft= × ×
⋅
⋅

=26 3 32 2 847. .  

On the moon, γ m 3 2

2
3slug

ft
ft
s

lbf s
slug ft

lbf ft= × ×
⋅
⋅

=26 3 5 47 144. .  

{Note that the mass based quantities (SG and ν) are independent of gravity.} 



Problem 1.26 [1]

Given: Data in given units

Find: Convert to different units

Solution:

(a) 1
in3

min
⋅ 1

in3

min
⋅

0.0254 m⋅
1 in⋅

1000 mm⋅
1 m⋅

×⎛⎜
⎝

⎞⎟
⎠

3
×

1 min⋅
60 s⋅

×= 273
mm3

s
⋅=

(b) 1
m3

s
⋅ 1

m3

s
⋅

1 gal⋅

4 0.000946× m3
⋅

×
60 s⋅
1 min⋅

×= 15850 gpm⋅=

(c) 1
liter
min
⋅ 1

liter
min
⋅

1 gal⋅
4 0.946× liter⋅

×
60 s⋅
1 min⋅

×= 0.264 gpm⋅=

(d) 1 SCFM⋅ 1
ft3

min
⋅

0.0254 m⋅
1
12

ft⋅

⎛
⎜
⎜
⎝

⎞
⎟
⎟
⎠

3
×

60 min⋅
1 hr⋅

×= 1.70
m3

hr
⋅=



Problem 1.27      [1] 

1.27 The kilogram force is commonly used in Europe as a unit of force. (As in the U.S. customary system, where 

1 lbf is the force exerted by a mass of 1 lbm in standard gravity, 1 kgf is the force exerted by a mass of 1 kg in 

standard gravity.) Moderate pressures, such as those for auto or truck tires, are conveniently expressed in units of 

kgf/cm2. Convert 32 psig to these units. 

Given: In European usage, 1 kgf is the force exerted on 1 kg mass in standard gravity. 

Find: Convert 32 psi to units of kgf/cm2.  

Solution: Apply Newton's second law. 

Basic equation: F = ma 

The force exerted on 1 kg in standard gravity is F kg m
s

N s
kg m

N kgf= × ×
⋅
⋅

= =1 9 81 9 81 12

2
. .  

Setting up a conversion from psi to kgf/cm2, 1 1 4 448
2 54

0 0703
2

2 2
lbf
in.

lbf
in.

N
lbf

in
cm

kgf
9.81 N

kgf
cm2 2 2= × × × =. .

( . )
.  

or 1≡
0.0703 kgf cm

psi

2
 

Thus 
32 32

0 0703

32 2 25

2

2

psi psi
kgf cm
psi

psi kgf cm

= ×

=

.

.

 



Problem 1.28 [3]

Given: Information on canal geometry.

Find: Flow speed using the Manning equation, correctly and incorrectly!

Solution: Use Table G.2 and other sources (e.g., Google) as needed.

The Manning equation is V
Rh

2
3 S0

1
2

⋅

n
= which assumes Rh in meters and V in m/s.

The given data is Rh 7.5 m⋅= S0
1
10

= n 0.014=

Hence V
7.5

2
3 1

10
⎛⎜
⎝

⎞⎟
⎠

1
2

⋅

0.014
= V 86.5

m
s

⋅= (Note that we don't cancel units; we just write m/s
next to the answer!  Note also this is a very high
speed due to the extreme slope S0.)

Using the equation incorrectly: Rh 7.5 m⋅
1 in⋅

0.0254 m⋅
×

1 ft⋅
12 in⋅

×= Rh 24.6 ft⋅=

Hence V
24.6

2
3 1

10
⎛⎜
⎝

⎞⎟
⎠

1
2

⋅

0.014
= V 191

ft
s

⋅= (Note that we again don't cancel units; we just
write ft/s next to the answer!)

This incorrect use does not provide the correct answer V 191
ft
s

⋅
12 in⋅
1 ft⋅

×
0.0254 m⋅

1 in⋅
×= V 58.2

m
s

= which is wrong!

This demonstrates that for this "engineering" equation we must be careful in its use!

To generate a Manning equation valid for Rh in ft and V in ft/s, we need to do the following:

V
ft
s

⎛⎜
⎝

⎞⎟
⎠

V
m
s

⎛⎜
⎝

⎞⎟
⎠

1 in⋅
0.0254 m⋅

×
1 ft⋅

12 in⋅
×=

Rh m( )

2
3 S0

1
2

⋅

n
1 in⋅

0.0254 m⋅
1 ft⋅

12 in⋅
×⎛⎜

⎝
⎞⎟
⎠

×=

V
ft
s

⎛⎜
⎝

⎞⎟
⎠

Rh ft( )

2
3 S0

1
2

⋅

n
1 in⋅

0.0254 m⋅
1 ft⋅

12 in⋅
×⎛⎜

⎝
⎞⎟
⎠

2
3

−

×
1 in⋅

0.0254 m⋅
1 ft⋅

12 in⋅
×⎛⎜

⎝
⎞⎟
⎠

×=
Rh ft( )

2
3 S0

1
2

⋅

n
1 in⋅

0.0254 m⋅
1 ft⋅

12 in⋅
×⎛⎜

⎝
⎞⎟
⎠

1
3

×=



In using this equation, we ignore the units and just evaluate the conversion factor 1
.0254

1
12
⋅⎛⎜

⎝
⎞⎟
⎠

1
3

1.49=

Hence V
ft
s

⎛⎜
⎝

⎞⎟
⎠

1.49 Rh ft( )

2
3

⋅ S0

1
2

⋅

n
=

Handbooks sometimes provide this form of the Manning equation for direct use with BG units. In our case we are asked
to instead define a new value for n:

nBG
n

1.49
= nBG 0.0094= where V

ft
s

⎛⎜
⎝

⎞⎟
⎠

Rh ft( )

2
3 S0

1
2

⋅

nBG
=

Using this equation with Rh = 24.6 ft: V
24.6

2
3 1

10
⎛⎜
⎝

⎞⎟
⎠

1
2

⋅

0.0094
= V 284

ft
s

=

Converting to m/s V 284
ft
s

⋅
12 in⋅
1 ft⋅

×
0.0254 m⋅

1 in⋅
×= V 86.6

m
s

= which is the correct answer!



Problem 1.29 [2]

Given: Equation for maximum flow rate.

Find: Whether it is dimensionally correct.  If not, find units of 0.04 term.  Write a BG version of the equation

Solution: Rearrange equation to check units of 0.04 term.  Then use conversions from Table G.2 or other sources (e.g., Google)

"Solving" the equation for the constant 0.04: 0.04
mmax T0⋅

At p0⋅
=

Substituting the units of the terms on the right, the units of the constant are

kg
s

K

1
2

×
1

m2
×

1
Pa

×
kg
s

K

1
2

×
1

m2
×

m2

N
×

N s2
⋅

kg m⋅
×=

K

1
2 s⋅
m

=

Hence the constant is actually c 0.04
K

1
2 s⋅
m

⋅=

For BG units we could start with the equation and convert each term (e.g., At), and combine the result into a new
constant, or simply convert c directly:

c 0.04
K

1
2 s⋅
m

⋅= 0.04
1.8 R⋅

K
⎛⎜
⎝

⎞⎟
⎠

1
2

×
0.0254 m⋅

1 in⋅
×

12 in⋅
1 ft⋅

×=

c 0.0164
R

1
2 s⋅
ft

⋅= so mmax 0.0164
At p0⋅

T0
⋅=  with At in ft2, p0 in lbf/ft2, and T0 in R.

This value of c assumes p is in lbf/ft2.  For p in psi we need an additional conversion:

c 0.0164
R

1
2 s⋅
ft

⋅
12 in⋅
1 ft⋅

⎛⎜
⎝

⎞⎟
⎠

2
×= c 2.36

R

1
2 in2
⋅ s⋅

ft3
⋅= so mmax 2.36

At p0⋅

T0
⋅=  with At in ft2, p0 in psi, and T0 in R.



Problem 1.30

Given: Equation for COP and temperature data.

Find: COPIdeal, EER, and compare to a typical Energy Star compliant EER value. 

Solution: Use the COP equation.  Then use conversions from Table G.2 or other sources (e.g., Google) to find the EER.

The given data is TL 68 460+( ) R⋅= TL 528 R⋅= TH 95 460+( ) R⋅= TH 555 R⋅=

The COPIdeal is COPIdeal
TL

TH TL−
=

525
555 528−

= 19.4=

The EER is a similar measure to COP except the cooling rate (numerator) is in BTU/hr and the electrical input (denominator) is in W:

EERIdeal COPIdeal

BTU
hr
W

×= 19.4
2545

BTU
hr

⋅

746 W⋅
×= 66.2

BTU
hr
W

⋅=

This compares to Energy Star compliant values of about 15 BTU/hr/W!  We have some way to go!  We can define the isentropic efficiency as

ηisen
EERActual
EERIdeal

=

Hence the isentropic efficiency of a very good AC is about 22.5%. 



Problem 1.31 [1]

Given: Equation for drag on a body.

Find: Dimensions of CD. 

Solution: Use the drag equation.  Then "solve" for CD and use dimensions.

The drag equation is FD
1
2

ρ⋅ V2
⋅ A⋅ CD⋅=

"Solving" for CD, and using dimensions CD
2 FD⋅

ρ V2
⋅ A⋅

=

CD
F

M

L3
L
t

⎛⎜
⎝

⎞⎟
⎠

2
× L2

×

=

But, From Newton's 2nd law Force Mass Acceleration⋅= or F M
L

t2
⋅=

Hence CD
F

M

L3
L
t

⎛⎜
⎝

⎞⎟
⎠

2
× L2

×

=
M L⋅

t2
L3

M
×

t2

L2
×

1

L2
×= 0=

The drag coefficient is dimensionless.



Problem 1.32 [1]

Given: Equation for mean free path of a molecule.

Find: Dimensions of C for a diemsionally consistent equation. 

Solution: Use the mean free path equation.  Then "solve" for C and use dimensions.

The mean free path equation is λ C
m

ρ d2
⋅

⋅=

"Solving" for C, and using dimensions C
λ ρ⋅ d2

⋅
m

=

C

L
M

L3
× L2

×

M
= 0=

The drag constant C is dimensionless.



Problem 1.33 [1]

Given: Equation for vibrations.

Find: Dimensions of c, k and f for a dimensionally consistent equation. Also, suitable units in SI and BG systems.

Solution: Use the vibration equation to find the diemsions of each quantity

The first term of the equation is m
d2x

dt2
⋅

The dimensions of this are M
L

t2
×

Each of the other terms must also have these dimensions.

Hence c
dx
dt
⋅

M L⋅

t2
= so c

L
t

×
M L⋅

t2
= and c

M
t

=

k x⋅
M L⋅

t2
= so k L×

M L⋅

t2
= and k

M

t2
=

f
M L⋅

t2
=

Suitable units for c, k, and f are c: kg
s

slug
s

k: kg

s2
slug

s2
f: kg m⋅

s2
slug ft⋅

s2

Note that c is a damping (viscous) friction term, k is a spring constant, and f is a forcing function.  These are more typically expressed using F (
rather than M (mass).  From Newton's 2nd law:

F M
L

t2
⋅= or M

F t2⋅
L

=

Using this in the dimensions and units for c, k, and f we findc
F t2⋅
L t⋅

=
F t⋅
L

= k
F t2⋅

L t2⋅
=

F
L

= f F=

c: N s⋅
m

lbf s⋅
ft

k: N
m

lbf
ft

f: N lbf



Problem 1.34 [1]

Given: Specific speed in customary units

Find: Units; Specific speed in SI units

Solution:

The units are rpm gpm

1
2

⋅

ft

3
4

or ft

3
4

s

3
2

Using data from tables (e.g. Table G.2)

NScu 2000
rpm gpm

1
2

⋅

ft

3
4

⋅=

NScu 2000
rpm gpm

1
2

⋅

ft

3
4

×
2 π⋅ rad⋅

1 rev⋅
×

1 min⋅
60 s⋅

×
4 0.000946× m3

⋅
1 gal⋅

1 min⋅
60 s⋅

⋅
⎛
⎜
⎝

⎞
⎟
⎠

1
2

×

1
12

ft⋅

0.0254 m⋅

⎛
⎜
⎜
⎝

⎞
⎟
⎟
⎠

3
4

×=

NScu 4.06

rad
s

m3

s

⎛
⎜
⎝

⎞
⎟
⎠

1
2

⋅

m

3
4

⋅=



Problem 1.35 [1]

Given: "Engineering" equation for a pump

Find: SI version

Solution:
The dimensions of "1.5" are ft.

The dimensions of "4.5 x 10-5" are ft/gpm2.

Using data from tables (e.g. Table G.2), the SI versions of these coefficients can be obtained

1.5 ft⋅ 1.5 ft⋅
0.0254 m⋅

1
12

ft⋅
×= 0.457 m⋅=

4.5 10 5−
×

ft

gpm2
⋅ 4.5 10 5−

⋅
ft

gpm2
⋅

0.0254 m⋅
1
12

ft⋅
×

1 gal⋅
4 quart⋅

1quart

0.000946 m3
⋅

⋅
60 s⋅
1min
⋅⎛

⎜
⎝

⎞
⎟
⎠

2
×=

4.5 10 5−
⋅

ft

gpm2
⋅ 3450

m

m3

s

⎛
⎜
⎝

⎞
⎟
⎠

2
⋅=

The equation is

H m( ) 0.457 3450 Q
m3

s

⎛
⎜
⎝

⎞
⎟
⎠

⎛
⎜
⎝

⎞
⎟
⎠

2

⋅−=



Problem 1.36     [2] 

1.36 A container weighs 3.5 lbf when empty. When filled with water at 90°F, the mass of the container and its 

contents is 2.5 slug. Find the weight of water in the container, and its volume in cubic feet, using data from 

Appendix A. 

Given: Empty container weighing 3.5 lbf when empty, has a mass of 2.5 slug when filled with water at 

90°F. 

Find: 

a. Weight of water in the container 

b. Container volume in ft3 

Solution: Basic equation: F ma=  

Weight is the force of gravity on a body, W = mg 

Then 

W W W

W W W mg W

W slug ft
s

lbf s
slug ft

lbf lbf

t H O c

H O t c c

H O 2

2

2

2

2

= +

= − = −

= × ×
⋅
⋅

− =2 5 32 2 35 77 0. . . .

 

The volume is given by ∀ = = =
M M g

g
W

g
H O H O H O2 2 2

ρ ρ ρ
 

From Table A.7, ρ = 1.93 slug/ft3 at T = 90°F ∴∀ = × × ×
⋅
⋅

=77 0
193 32 2

124.
. .

.lbf ft
slug

s
ft

slug ft
lbf s

ft
3 2

2
3  



Problem 1.37     [2] 

1.37 Calculate the density of standard air in a laboratory from the ideal gas equation of state. Estimate the 

experimental uncertainty in the air density calculated for standard conditions (29.9 in. of mercury and 59°F) if the 

uncertainty in measuring the barometer height is ±0.1 in. of mercury and the uncertainty in measuring temperature is 

±0.5°F. (Note that 29.9 in. of mercury corresponds to 14.7 psia.) 

Given: Air at standard conditions – p = 29.9 in Hg, T = 59°F 

Uncertainty: in p is ± 0.1 in Hg, in T is ± 0.5°F 

Note that 29.9 in Hg corresponds to 14.7 psia 

Find: 

a. air density using ideal gas equation of state. 

b. estimate of uncertainty in calculated value. 

Solution: ρ

ρ

= = ×
⋅°
⋅

×
°

×

=

p
RT

lbf
in

lb R
ft lbf R

in
ft

lbm ft

2

2

2

3

14 7
533

1
519

144

0 0765

.
.

.

 

The uncertainty in density is given by 

u p
p

u T
T

u

p
p

RT
RT

RT
RT

u

T
T

T p
RT

p
RT

u

p T

1 2

p

T

ρ ρ
ρ

ρ
ρ

ρ
ρ

ρ
ρ

ρ ρ

=
∂
∂
F
HG

I
KJ +

∂
∂
F
HG

I
KJ

L
N
MM

O
Q
PP

∂
∂

= = = =
±

= ±

∂
∂

= −FHG
I
KJ = − = − =

±
+

= ±

2 2

2

1 1 01
29 9

0 334%

1 05
460 59

0 0963%

; .
.

.

; . .

 

Then 
u u u

u lbm ft

p T

3

ρ

ρ

= + −L
NM

O
QP = ± + −

= ± ± × −

d i b g b g b g
e j

2 2
1 2

2 2

4

0 334 0 0963

0 348% 2 66 10

. .

. .
 



Problem 1.38     [2] 

1.38 Repeat the calculation of uncertainty described in Problem 1.37 for air in a freezer. Assume the measured 

barometer height is 759 ± 1 mm of mercury and the temperature is −20 ± 0.5 C. [Note that 759 mm of mercury 

corresponds to 101 kPa (abs).] 

Given: Air at pressure, p = 759 ± 1 mm Hg and temperature, T = –20 ± 0.5°C. 

Note that 759 mm Hg corresponds to 101 kPa. 

Find: 

a. Air density using ideal gas equation of state 

b. Estimate of uncertainty in calculated value 

Solution: ρ = = × ×
⋅
⋅

× =
p

RT
N

m
kg K

N m K
kg m3101 10

287
1

253
1393

2 .  

The uncertainty in density is given by 

u p
p

u T
T

u

p
p

RT
RT

u

T
T

T p
RT

p
RT

u

p T

p

2 T

ρ ρ
ρ

ρ
ρ

ρ
ρ

ρ
ρ

ρ ρ

=
∂
∂
F
HG

I
KJ +

∂
∂
F
HG

I
KJ

L
N
MM

O
Q
PP

∂
∂

= = =
±

= ±

∂
∂

= −FHG
I
KJ = − = − =

±
−

= ±

2 2 1 2

1 1 1
759

0132%

1 0 5
273 20

0198%

/

; .

; . .

 

Then 
u u u

u kg m

p Tρ

ρ

= + −L
NM

O
QP = ± + −

= ± ± × −

d i b g b g b g
e j

2 2
1 2

2 2 1 2

3 3

0132 0198

0 238% 331 10

. .

. .
 



Problem 1.39     [2] 

1.39 The mass of the standard American golf ball is 1.62 ± 0.01 oz and its mean diameter is 1.68 ± 0.01 in. 

Determine the density and specific gravity of the American golf ball. Estimate the uncertainties in the calculated 

values. 

Given: Standard American golf ball: 
m oz to
D in to
= ±
= ±

162 0 01 20 1
168 0 01 20 1
. . ( )
. . . ( )

 

Find: 

a. Density and specific gravity. 

b. Estimate uncertainties in calculated values. 

Solution: Density is mass per unit volume, so  

ρ
π π π

ρ
π

=
∀

= = =

= × × × × =

m m
R

m
D

m
D

oz
in

kg
oz

in.
m

kg m3

4
3

3 3 3

3 3

3

3 3

3
4 2

6

6 162 1
168

0 4536
16 0 0254

1130

( )

.
( . ) .

.
( . )

 

and SG =
H O

kg
m

m
kg2

3
ρ

ρ
= × =1130

1000
113

3
.  

The uncertainty in density is given by u m
m

u D
D

um Dρ ρ
ρ

ρ
ρ

= ±
∂
∂

F
HG

I
KJ +

∂
∂

F
HG

I
KJ

L
N
MM

O
Q
PP

2 2 1 2

 

m
m

m u percent

D
D

D m
D

D
m

m
D

u percent

m

D

ρ
ρ

ρ

ρ
ρ

ρ π
π

π

∂
∂

=
∀
=
∀
∀
= = ± = ±

∂
∂

= −FHG
I
KJ = −FHG

I
KJ = − = ±

1 1 0 01
162

0 617

3 6
6

3 6 3 05954

4

4

; .
.

.

; .
 

Thus 

u u u

u percent kg m

u u percent

m D

SG

ρ

ρ

ρ

= ± + −

= ± + −

= ± ±

= = ± ±

b g b g

b g b g{ }
e j
b g

2 2 1 2

2 2

3

3

0 617 3 0595

189 214

189 0 0214

1
2

. .

. .

. .

 

Finally, ρ = ±
= ±

1130 214 20 1
113 0 0214 20 1

3. ( )
. . ( )

kg m to
SG to

 



Problem 1.40     [2] 

1.40 The mass flow rate in a water flow system determined by collecting the discharge over a timed interval is 0.2 

kg/s. The scales used can be read to the nearest 0.05 kg and the stopwatch is accurate to 0.2 s. Estimate the precision 

with which the flow rate can be calculated for time intervals of (a) 10 s and (b) 1 min. 

Given: Mass flow rate of water determined by collecting discharge over a timed interval is 0.2 kg/s. 

Scales can be read to nearest 0.05 kg. 

Stopwatch can be read to nearest 0.2 s. 

Find: Estimate precision of flow rate calculation for time intervals of (a) 10 s, and (b) 1 min. 

Solution: Apply methodology of uncertainty analysis, Appendix F: 

Computing equations: 

m m
t

u m
m

m
m

u t
m

m
t

um m t

=

= ±
∂
∂∆

F
HG

I
KJ +

∂
∂∆

F
HG

I
KJ

L
N
MM

O
Q
PP

∆
∆

∆ ∆
∆ ∆

2 2
1
2  

Thus ∆
∆

∆
∆ ∆

∆
∆
∆

m
m

m
m

t
t

and t
m

m
t

t
m

m
t

∂
∂∆

= FHG
I
KJ =

∂
∂∆

= −LNM
O
QP = −

1 1 1 1
2

2b g  

The uncertainties are expected to be ± half the least counts of the measuring instruments. 

Tabulating results:  

Time 

Interval, 

∆t(s) 

Error 

in 

∆t(s) 

Uncertainty 

in ∆t 

(percent) 

Water 

Collected, 

∆m(kg) 

Error in 

∆m(kg) 

Uncertainty 

in ∆m 

(percent) 

Uncertainty 

in 

(percent) 

10 ± 0.10 ± 1.0 2.0 ± 0.025 ± 1.25 ± 1.60 

60 ± 0.10 ± 0.167 12.0 ± 0.025 ± 0.208 ± 0.267 

A time interval of about 15 seconds should be chosen to reduce the uncertainty in results to ± 1 percent.  



Problem 1.41     [2] 

1.41 A can of pet food has the following internal dimensions: 102 mm height and 73 mm diameter (each ±1 mm at 

odds of 20 to 1). The label lists the mass of the contents as 397 g. Evaluate the magnitude and estimated uncertainty 

of the density of the pet food if the mass value is accurate to ±1 g at the same odds. 

Given: Pet food can  

H mm to
D mm to
m g to

= ±
= ±
= ±

102 1 20 1
73 1 20 1
397 1 20 1

( )
( )
( )

 

Find: Magnitude and estimated uncertainty of pet food density. 

Solution: Density is  

ρ
π π

ρ ρ=
∀

= = =
m m

R H
m

D H
or m2 D H2

4 ( , , )  

From uncertainty analysis u m
m

u D
D

u H
H

um D Hρ ρ
ρ

ρ
ρ

ρ
ρ

= ±
∂
∂

F
HG

I
KJ +

∂
∂

F
HG

I
KJ +

∂
∂

F
HG

I
KJ

L
N
MM

O
Q
PP

2 2 2
1
2

 

Evaluating, 

m
m

m
D H D H

u

D
D

D m
D H

m
D H

u

H
H

H m
D H

m
D H

u

m

D

H

ρ
ρ

ρ π ρ π

ρ
ρ

ρ π ρ π

ρ
ρ

ρ π ρ π

∂
∂

= = = =
±

= ±

∂
∂

= − = − = − =
±

= ±

∂
∂

= − = − = − =
±

= ±

4 1 1 4
1 1

397
0 252%

2 4 2 1 4 2 1
73

137%

1 4 1 1 4 1 1
102

0 980%

2 2

3 2

2 2 2

m
; .

( ) ( ) ; .

( ) ( ) ; .

 

Substituting 
u

u
ρ

ρ

= ± + − + −

= ±

[( )( . )] [( )( . )] [( )( . )]

.

1 0 252 2 137 1 0 980

2 92

2 2 2
1
2o t

percent
 

∀ = = × × × = ×

=
∀

=
×

× =

−

−

π π

ρ

4 4
73 102 4 27 10

930

2 2 4D H mm mm m
10 mm

m

m 397 g
4.27 10 m

kg
1000 g

kg m

2
3

9 3
3

4 3
3

( ) .
 

Thus ρ = ±930 27 2 20 1. ( )kg m to3  

 



Problem 1.42     [2] 

1.42 The mass of the standard British golf ball is 45.9 ± 0.3 g and its mean diameter is 41.1 ± 0.3 mm. Determine 

the density and specific gravity of the British golf ball. Estimate the uncertainties in the calculated values. 

Given: Standard British golf ball:   
m g to
D mm to
= ±
= ±

459 0 3 20 1
411 0 3 20 1

. . ( )

. . ( )
 

Find: 

a. Density and specific gravity 

b. Estimate of uncertainties in calculated values. 

Solution: Density is mass per unit volume, so  

ρ
π π π

ρ
π

=
∀

= = =

= × × =

m m
R

m
D

m
D

kg m kg m3 3

4
3

3 3 3

3

3
4 2

6

6 0 0459 1
0 0411

1260

( )

.
( . )

 

and SG
H O

kg
m

m
kg2

3= = × =
ρ

ρ
1260

1000
126

3
.  

The uncertainty in density is given by  

u m
m

u D
D

u

m
m

m u

D
D

D m
D

m
D

u

m D

m

4

D

ρ ρ
ρ

ρ
ρ

ρ
ρ

ρ

ρ
ρ

ρ π π ρ

= ±
∂
∂

F
HG

I
KJ +

∂
∂

F
HG

I
KJ

L
N
MM

O
Q
PP

∂
∂

=
∀
=
∀
∀
= = ± = ±

∂
∂

= −FHG
I
KJ = −
F
HG
I
KJ = −

= ± =

2 2 1 2

3

1 1 0 3
459

0 654%

3 6 3 6 3

0 3
411

0 730%

; .
.

.

.
.

.

 

Thus 

u u u

u kg m

u u

m D

SG

ρ

ρ

ρ

= ± + − = ± + −

= ± ±

= = ± ±

[( ) ( ) ] ( . ) [ ( . )]

. ( . )

. ( . )

2 2 1 2 2 2 1 2

3

3 0 654 3 0 730

2 29% 28 9

2 29% 0 0289

o t
 

Summarizing ρ = ±1260 28 9 20 1. ( )kg m to3  

SG to= ±126 0 0289 20 1. . ( )  



Problem 1.43     [3] 

1.43 The mass flow rate of water in a tube is measured using a beaker to catch water during a timed interval. The 

nominal mass flow rate is 100 g/s. Assume that mass is measured using a balance with a least count of 1 g and a 

maximum capacity of 1 kg, and that the timer has a least count of 0.1 s. Estimate the time intervals and uncertainties 

in measured mass flow rate that would result from using 100, 500, and 1000 mL beakers. Would there be any 

advantage in using the largest beaker? Assume the tare mass of the empty 1000 mL beaker is 500 g. 

Given: Nominal mass flow rate of water determined by collecting discharge (in a beaker) over a timed 

interval is m g s= 100  

• Scales have capacity of 1 kg, with least count of 1 g. 

• Timer has least count of 0.1 s. 

• Beakers with volume of 100, 500, 1000 mL are available – tare mass of 1000 mL beaker is 500 g. 

Find: Estimate (a) time intervals, and (b) uncertainties, in measuring mass flow rate from using each of 

the three beakers.  

Solution: To estimate time intervals assume beaker is filled to maximum volume in case of 100 and 500 mL 

beakers and to maximum allowable mass of water (500 g) in case of 1000 mL beaker. 

Then m = m
t

and t m
m m

∆
∆

∆
∆ ∆∀

= =
ρ  

Tabulating results 
∆∀
∆

=
=

100 500 1000
1 5

mL mL mL
t s s 5 s

 

Apply the methodology of uncertainty analysis, Appendix E Computing equation:

 u m
m

m
m

u t
m

m
t

um m t= ±
∂
∂∆

F
HG

I
KJ +

∂
∂∆

F
HG

I
KJ

L
N
MM

O
Q
PP

∆ ∆
∆ ∆

2 2 1 2

 

The uncertainties are expected to be ± half the least counts of the measuring instruments 

 δ δ∆ ∆m g t s= ± =0 5 0 05. .  

∆
∆

∆
∆ ∆

∆
∆

∆

m
m

m
m

t
t

and t
m

m
t

t
m

m
t

=
∂
∂∆

= FHG
I
KJ =

∂
∂∆

= −
L
N
MM

O
Q
PP = −

1 1 1
2

2
b g

b g
 



∴ = ± + −u u um m t∆ ∆b g b g2 2 1 2
 

Tabulating results: 

      Uncertainty  

Beaker 

Volume ∆ ∀ 

(mL) 

Water 

Collected 

∆m(g) 

Error in 

∆m(g) 

Uncertainty 

in ∆m 

(percent) 

Time 

Interval 

∆t(s) 

Error in 

∆t(s) 

in ∆t 

(percent) 

in 

(percent) 

100 100 ± 0.50 ± 0.50 1.0 ± 0.05 ± 5.0 ± 5.03 

500 500 ± 0.50 ± 0.10 5.0 ± 0.05 ± 1.0 ± 1.0 

1000 500 ± 0.50 ± 0.10 5.0 ± 0.05 ± 1.0 ± 1.0 

Since the scales have a capacity of 1 kg and the tare mass of the 1000 mL beaker is 500 g, there is no advantage in 

using the larger beaker. The uncertainty in could be reduced to ± 0.50 percent by using the large beaker if a scale 

with greater capacity the same least count were available 



Problem 1.44     [3] 

1.44 The estimated dimensions of a soda can are D = 66.0 ± 0.5 mm and H = 110 ± 0.5 mm. Measure the mass of 

a full can and an empty can using a kitchen scale or postal scale. Estimate the volume of soda contained in the can. 

From your measurements estimate the depth to which the can is filled and the uncertainty in the estimate. Assume 

the value of SG = 1.055, as supplied by the bottler. 

Given: Soda can with estimated dimensions D = 66.0 ± 0.5 mm, H = 110 ± 0.5 mm. Soda has SG = 1.055 

Find: 

a. volume of soda in the can (based on measured mass of full and empty can). 

b. estimate average depth to which the can is filled and the uncertainty in the estimate. 

Solution: Measurements on a can of coke give  

m g, m g m m m u gf e f e m= ± = ± ∴ = − = ±386 5 050 17 5 050 369. . . .  

u
m
m

m
m

u
m
m

m
m

um
f

f
m

e

e
mf e

= ±
∂
∂

F
HG

I
KJ +

∂
∂

F
HG

I
KJ

L
N
MM

O
Q
PP

2 2 1 2/

 

u
0.5 g

386.5 g
um mf e

= ± = ± = ± =0 00129 050
17 5

0 0286. , .
.

.  

∴ = ± LNM
O
QP + −L
NM

O
QP

R
S|
T|

U
V|
W|

=um
386 5
369

1 0 00129 17 5
369

1 0 0286 0 0019
2 2 1 2

. ( ) ( . ) . ( ) ( . ) .
/

 

Density is mass per unit volume and SG =  ρ/ρΗ2Ο so

 ∀ = = = × × × = × −m m
H O SG

g m
kg

kg
1000 g

m
2ρ ρ

369
1000

1
1055

350 10
3

6 3

.
 

The reference value ρH2O is assumed to be precise. Since SG is specified to three places beyond the decimal point, 

assume uSG = ± 0.001. Then  



u m
v

v
m

u m
SG

v
SG

u u

u or

D L or L
D

m
m

mm
m

mm

v m m SG

v

= ±
∂
∂

F
HG

I
KJ +

∂
∂

F
HG

I
KJ

L
N
MM

O
Q
PP = ± + −

= ± + − =

∀ = =
∀

= ×
×

× =
−

2 2 1 2
2 2 1 2

2 2 1 2

2

2

6 3

2 2

3

1 1

1 0 0019 1 0 001 0 0021 0 21%

4
4 4 350 10

0 066
10

102

/
/

/

[( ) ] [( ) ]

[( ) ( . )] [( ) ( . )] . .

( . )

o t

o t
π

π π

 

u
L

L u D
L

L
D

u

L
L D

D
u

mm
66 mm

D
L

L
D

D D
D

u or 1.53%

L D

D

L

= ±
∀ ∂

∂∀
F
HG

I
KJ

L
N
MM

O
Q
PP +

∂
∂

F
HG

I
KJ

L
N
MM

O
Q
PP

∀ ∂
∂∀

= × = = ± =

∂
∂

=
∀

×
∀

−FHG
I
KJ = −

= ± + − =

∀

2 2 1 2

2

2

2

3

2 2 1 2

4
4 1

05
0 0076

4
4 2 2

1 0 0021 2 0 0076 0 0153

/

/

.
.

[( ) ( . )] [( ) ( . )] .

π
π

π
π

o t

 

Note:  

1. Printing on the can states the content as 355 ml. This suggests that the implied accuracy of the SG value may be 

over stated. 

2. Results suggest that over seven percent of the can height is void of soda. 



Problem 1.45 [3]

Given: Data on water

Find: Viscosity; Uncertainty in viscosity

Solution:

The data is: A 2.414 10 5−
×

N s⋅

m2
⋅= B 247.8 K⋅= C 140 K⋅= T 293 K⋅=

The uncertainty in temperature is uT
0.25 K⋅
293 K⋅

= uT 0.085 %⋅=

Also μ T( ) A 10

B
T C−( )

⋅= Evaluating μ T( ) 1.01 10 3−
×

N s⋅

m2
⋅=

For the uncertainty
T

μ T( )d
d

A B⋅ ln 10( )⋅

10

B
C T− C T−( )2

⋅

−=

Hence u
μ

T( )
T

μ T( ) T
μ T( )d

d
⋅ uT⋅

ln 10( ) B T⋅ uT⋅⋅

C T−( )2
== Evaluating u

μ
T( ) 0.609 %⋅=



Problem 1.46     [3] 

1.46 An enthusiast magazine publishes data from its road tests on the lateral acceleration capability of cars. The 

measurements are made using a 150-ft-diameter skid pad. Assume the vehicle path deviates from the circle by ±2 ft 

and that the vehicle speed is read from a fifth-wheel speed-measuring system to ±0.5 mph. Estimate the 

experimental uncertainty in a reported lateral acceleration of 0.7 g. How would you improve the experimental 

procedure to reduce the uncertainty? 

Given: Lateral acceleration, a = 0.70 g, measured on 150-ft diameter skid pad.  

Path deviation: 2 ft
Vehicle speed: 0.5 mph

measurement uncertainty
±
±

UVW  

Find: 

a. Estimate uncertainty in lateral acceleration. 

b. How could experimental procedure be improved? 

Solution: Lateral acceleration is given by a = V2/R. 

From Appendix F, u u ua v R= ± +[( ) ( ) ] /2 2 2 1 2  

From the given data, V aR; V aR
ft

s
ft ft s2

2

1 2

0 70
32 2

75 411= = = × ×L
NM

O
QP =.

.
. /

/

 

Then u V
V

mi
hr

s
41.1 ft

ft
mi

hr
3600 sv = ± = ± × × × = ±

δ 0 5 5280 0 0178. .  

and u R
R

2 ft
ftR = ± = ± × = ±

δ 1
75

0 0267.  

so u

u percent
a

a

= ± × + = ±

= ±

( . ) ( . ) .

.

/
2 0 0178 0 0267 0 0445

4 45

2 2 1 2

 

Experimental procedure could be improved by using a larger circle, assuming the absolute errors in measurement are 

constant. 



For 

D ft, R ft

V aR
ft

s
ft ft s mph

u
mph

45.8 mph
u

ft
200 ft

u or 2.4 percent

v R

a

= =

= = × ×L
NM

O
QP = =

= ± = ± = ± = ±

= ± × + = ± ±

400 200

0 70
32 2

200 671 458

05
0 0109

2
0 0100

2 0 0109 0 0100 0 0240

2

1 2

2 2 1 2

.
.

. / .

.
. ; .

( . ) ( . ) .

/

/

 



Problem 1.47     [4] 

1.47 Using the nominal dimensions of the soda can given in Problem 1.44, determine the precision with which the 

diameter and height must be measured to estimate the volume of the can within an uncertainty of ±0.5 percent. 

Given: Dimensions of soda can:  

D 66 mm
H 110 mm

=
=

 

 

Find: Measurement precision needed to allow volume to be estimated with an uncertainty of ± 0.5 

percent or less.  

Solution: Use the methods of Appendix F: 

Computing equations: 1
2

2

2 2

H D

D H
4

H Du u u
H D

π

∀

∀ =

⎡ ⎤∂∀ ∂∀⎛ ⎞ ⎛ ⎞= ± +⎢ ⎥⎜ ⎟ ⎜ ⎟∀ ∂ ∀ ∂⎝ ⎠ ⎝ ⎠⎢ ⎥⎣ ⎦

 

Since 
2D H

4
π∀ = , then 

2D
H 4

π∂∀
∂ = and DH

D 2
π∂∀

∂ =  

Let D Du xδ= ± and H Hu xδ= ± , substituting,  

1 1
2 22 2 2 22

2 2

4H D 4D DH 2u
D H 4 H D H 2 D H D

x x x xπ δ π δ δ δ
π π∀

⎡ ⎤ ⎡ ⎤⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎢ ⎥= ± + = ± +⎢ ⎥⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎢ ⎥ ⎢ ⎥⎝ ⎠ ⎣ ⎦⎣ ⎦

 

Solving, 
2 2 2 2

2 22 1 2u ( )
H D H D
x x xδ δ δ∀

⎡ ⎤⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞= + = +⎢ ⎥⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎢ ⎥⎣ ⎦

 



( ) ( )
1 1
2 22 2 2 21 2 1 2H D 110 mm 66 mm

u 0.005 0.158 mm
( ) ( )

xδ ∀= ± = ± = ±
⎡ ⎤ ⎡ ⎤+ +⎣ ⎦ ⎢ ⎥⎣ ⎦

 

Check: 

3
H

3
D

0.158 mmu 1.44 10
H 110 mm

0.158 mmu 2.39 10
D 66 mm

x

x

δ

δ

−

−

= ± = ± = ± ×

= ± = ± = ± ×
 

1 1
2 22 2 2 2

H Du [(u ) (2u ) ] [(0.00144) (0.00478) ] 0.00499∀ = ± + = ± + = ±  

If δx represents half the least count, a minimum resolution of about 2 δx ≈  0.32 mm is needed. 



Problem 1.19
 

Problem 1.48                                                                             [4]



Given data:

H = 57.7 ft
δL = 0.5 ft
δθ = 0.2 deg

For this building height, we are to vary θ (and therefore L ) to minimize the uncertainty u H.



Plotting u H vs θ

θ (deg) u H

5 4.02%
10 2.05%
15 1.42%
20 1.13%
25 1.00%
30 0.95%
35 0.96%
40 1.02%
45 1.11%
50 1.25%
55 1.44%
60 1.70%
65 2.07%
70 2.62%
75 3.52%
80 5.32%
85 10.69%

Optimizing using Solver

θ (deg) u H

31.4 0.947%

To find the optimum θ as a function of building height H  we need a more complex Solver

H  (ft) θ (deg) u H

50 29.9 0.992%
75 34.3 0.877%

100 37.1 0.818%
125 39.0 0.784%
175 41.3 0.747%
200 42.0 0.737%
250 43.0 0.724%
300 43.5 0.717%
400 44.1 0.709%
500 44.4 0.705%
600 44.6 0.703%
700 44.7 0.702%
800 44.8 0.701%
900 44.8 0.700%

1000 44.9 0.700%

Use Solver  to vary ALL θ's to minimize the total u H!

Total u H's:  11.3%

Uncertainty in Height (H  = 57.7 ft) vs θ

0%

2%

4%

6%

8%

10%

12%
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u
H

Optimum Angle vs Building Height

0

10

20

30

40

50

0 100 200 300 400 500 600 700 800 900 1000

H  (ft)

θ 
(d

eg
)



Problem 1.50     [5] 

1.50 In the design of a medical instrument it is desired to dispense 1 cubic millimeter of liquid using a piston-

cylinder syringe made from molded plastic. The molding operation produces plastic parts with estimated 

dimensional uncertainties of ±0.002 in. Estimate the uncertainty in dispensed volume that results from the 

uncertainties in the dimensions of the device. Plot on the same graph the uncertainty in length, diameter, and volume 

dispensed as a function of cylinder diameter D from D = 0.5 to 2 mm. Determine the ratio of stroke length to bore 

diameter that gives a design with minimum uncertainty in volume dispensed. Is the result influenced by the 

magnitude of the dimensional uncertainty? 

Given: Piston-cylinder device to have ∀ = 1 3mm . 

Molded plastic parts with dimensional uncertainties,δ = ± 0.002 in. 

Find: 

a. Estimate of uncertainty in dispensed volume that results from the dimensional uncertainties. 

b. Determine the ratio of stroke length to bore diameter that minimizes u ∀ ; plot of the results. 

c. Is this result influenced by the magnitude of δ? 

Solution: Apply uncertainty concepts from Appendix F: 

Computing equation: ∀ = = ±
∀

∂∀
∂

F
HG

I
KJ +

∀
∂∀
∂

F
HG

I
KJ

L
N
MM

O
Q
PP∀

πD L
4

u L
L

u D
D

u
2

L D;
2 2

1
2

 

From ∀ =∀
∂∀
∂, L
L 1, and D

D∀
∂∀
∂ = 2, so u u uL

2
D∀ = ± +[ ( ) ]2 2 1

2  

The dimensional uncertainty is δ = ± × = ±0 002 0 0508. .in. 25.4 mmmm
in.  

Assume D = 1 mm. Then L mm mm
D mm

= = × × =∀4 4 3 1
2 2 21 127

π π (1)
.

 
u

D
percent

u
L

percent
u

D

L

= ± = ± = ±

= ± = ± = ±

U
V|

W|
= ± +∀

δ

δ

0 0508
1

508

0 0508
127

4 00
4 00 2 5 082 2 1

2

. .

.
.

.
[( . ) ( ( . )) ]  

u percent∀ = ±10 9.  



To minimize u ∀ , substitute in terms of D:

 u u u
L D

D
DL D∀ = ± + = ± FHG

I
KJ + FHG

I
KJ

L
N
MM

O
Q
PP = ±

∀

F
HG
I
KJ + FHG

I
KJ

L

N
MM

O

Q
PP[( ) ( ) ]2 2

2 2 2 2 2

2 2
4

2

1
2

1
2

δ δ π
δ

δ  

This will be minimum when D is such that ∂[]/∂D = 0, or

 ∂
∂

=
∀
F
HG
I
KJ + −FHG

I
KJ = =

∀F
HG
I
KJ =

∀F
HG
I
KJ

[] ( ) ; ;
D

D
D

D D3πδ
δ

π π4
4 2 2 1 0 2 4 2 42

2
3

6
2

1
6

1
3

 

Thus D mm mmopt = ×FHG
I
KJ =2 4 1 122

1
6

1
3

3

π
.  

The corresponding L is L
D

mm
mm

mmopt =
∀

= × × =
4 4 1 1

122
08552

3
2 2π π ( . )

.  

The optimum stroke-to-bore ratio is L D
mm

1.22 mm
see table and plot on next page)opt)

.
. (= =

0855
0 701  

Note that δ drops out of the optimization equation. This optimum L/D is independent of the magnitude of δ 

However, the magnitude of the optimum u ∀ increases as δ increases. 

Uncertainty in volume of cylinder: 
δ =

∀ =

0 002

1 3

. in. 0.0508 mm

mm
 

D (mm) L (mm) L/D (---) uD(%) uL(%) u ∀ ( % ) 

0.5 5.09 10.2 10.2 1.00 20.3 

0.6 3.54 5.89 8.47 1.44 17.0 

0.7 2.60 3.71 7.26 1.96 14.6 

0.8 1.99 2.49 6.35 2.55 13.0 

0.9 1.57 1.75 5.64 3.23 11.7 

1.0 1.27 1.27 5.08 3.99 10.9 

1.1 1.05 0.957 4.62 4.83 10.4 

1.2 0.884 0.737 4.23 5.75 10.2 

1.22 0.855 0.701 4.16 5.94 10.2 

1.3 0.753 0.580 3.91 6.74 10.3 



1.4 0.650 0.464 3.63 7.82 10.7 

1.5 0.566 0.377 3.39 8.98 11.2 

1.6 0.497 0.311 3.18 10.2 12.0 

1.7 0.441 0.259 2.99 11.5 13.0 

1.8 0.393 0.218 2.82 12.9 14.1 

1.9 0.353 0.186 2.67 14.4 15.4 

2.0 0.318 0.159 2.54 16.0 16.7 

2.1 0.289 0.137 2.42 17.6 18.2 

2.2 0.263 0.120 2.31 19.3 19.9 

2.3 0.241 0.105 2.21 21.1 21.6 

2.4 0.221 0.092 2.12 23.0 23.4 

2.5 0.204 0.081 2.03 24.9 25.3 

 

 



Problem 2.1 [1]

Given: Velocity fields

Find: Whether flows are 1, 2 or 3D, steady or unsteady.

Solution:

(1) V
→

V
→

y( )= 1D V
→

V
→

t( )= Unsteady

(2) V
→

V
→

x( )= 1D V
→

V
→

t( )≠ Steady

(3) V
→

V
→

x y, ( )= 2D V
→

V
→

t( )= Unsteady

(4) V
→

V
→

x y, ( )= 2D V
→

V
→

t( )= Unsteady

(5) V
→

V
→

x( )= 1D V
→

V
→

t( )= Unsteady

(6) V
→

V
→

x y, z, ( )= 3D V
→

V
→

t( )≠ Steady

(7) V
→

V
→

x y, ( )= 2D V
→

V
→

t( )= Unsteady

(8) V
→

V
→

x y, z, ( )= 3D V
→

V
→

t( )≠ Steady



 
Problem 2.2                                                                             [2]



Problem 2.3 [1]

Given: Velocity field

Find: Equation for streamlines

0 1 2 3 4 5

1

2

3

4

5
C = 1
C = 2
C = 3
C = 4

Streamline Plots

x (m)

y 
(m

)

Solution:

For streamlines v
u

dy
dx

=
B x⋅ y⋅

A x2
⋅

=
B y⋅
A x⋅

=

So, separating variables dy
y

B
A

dx
x

⋅=

Integrating ln y( )
B
A

ln x( )⋅ c+=
1
2

− ln x( )⋅ c+=

The solution is y
C

x
=

The plot can be easily done in Excel.



 
Problem 2.4                                                                             [2]



t = 0 t =1 s t = 20 s
(### means too large to view)

c = 1 c = 2 c = 3 c = 1 c = 2 c = 3 c = 1 c = 2 c = 3
x y y y x y y y x y y y

0.05 1.00 2.00 3.00 0.05 20.00 40.00 60.00 0.05 ###### ###### ######
0.10 1.00 2.00 3.00 0.10 10.00 20.00 30.00 0.10 ###### ###### ######
0.20 1.00 2.00 3.00 0.20 5.00 10.00 15.00 0.20 ###### ###### ######
0.30 1.00 2.00 3.00 0.30 3.33 6.67 10.00 0.30 ###### ###### ######
0.40 1.00 2.00 3.00 0.40 2.50 5.00 7.50 0.40 ###### ###### ######
0.50 1.00 2.00 3.00 0.50 2.00 4.00 6.00 0.50 ###### ###### ######
0.60 1.00 2.00 3.00 0.60 1.67 3.33 5.00 0.60 ###### ###### ######
0.70 1.00 2.00 3.00 0.70 1.43 2.86 4.29 0.70 ###### ###### ######
0.80 1.00 2.00 3.00 0.80 1.25 2.50 3.75 0.80 86.74 173.47 260.21
0.90 1.00 2.00 3.00 0.90 1.11 2.22 3.33 0.90 8.23 16.45 24.68
1.00 1.00 2.00 3.00 1.00 1.00 2.00 3.00 1.00 1.00 2.00 3.00
1.10 1.00 2.00 3.00 1.10 0.91 1.82 2.73 1.10 0.15 0.30 0.45
1.20 1.00 2.00 3.00 1.20 0.83 1.67 2.50 1.20 0.03 0.05 0.08
1.30 1.00 2.00 3.00 1.30 0.77 1.54 2.31 1.30 0.01 0.01 0.02
1.40 1.00 2.00 3.00 1.40 0.71 1.43 2.14 1.40 0.00 0.00 0.00
1.50 1.00 2.00 3.00 1.50 0.67 1.33 2.00 1.50 0.00 0.00 0.00
1.60 1.00 2.00 3.00 1.60 0.63 1.25 1.88 1.60 0.00 0.00 0.00
1.70 1.00 2.00 3.00 1.70 0.59 1.18 1.76 1.70 0.00 0.00 0.00
1.80 1.00 2.00 3.00 1.80 0.56 1.11 1.67 1.80 0.00 0.00 0.00
1.90 1.00 2.00 3.00 1.90 0.53 1.05 1.58 1.90 0.00 0.00 0.00
2.00 1.00 2.00 3.00 2.00 0.50 1.00 1.50 2.00 0.00 0.00 0.00



Streamline Plot (t = 0)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

0.0 0.5 1.0 1.5 2.0

x

y

c = 1
c = 2
c = 3

Streamline Plot (t = 1 s)
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Problem 2.6 [1]

Given: Velocity field

Find: Whether field is 1D, 2D or 3D; Velocity components at (2,1/2); Equation for streamlines; Plot

Solution:

The velocity field is a function of x and y.  It is therefore 2D.

At point (2,1/2), the velocity components are u a x⋅ y⋅= 2
1

m s⋅
⋅ 2× m⋅

1
2

× m⋅= u 2
m
s

⋅=

v b y2
⋅= 6−

1
m s⋅
⋅

1
2

m⋅⎛⎜
⎝

⎞⎟
⎠

2
×= v

3
2

−
m
s

⋅=

For streamlines v
u

dy
dx

=
b y2
⋅

a x⋅ y⋅
=

b y⋅
a x⋅

=

So, separating variables dy
y

b
a

dx
x

⋅=

Integrating ln y( )
b
a

ln x( )⋅ c+= y C x

b
a

⋅=

The solution is y C x 3−
⋅=

The streamline passing through point (2,1/2) is given by 1
2

C 2 3−
⋅= C

1
2

23
⋅= C 4= y

4

x3
=

1 1.3 1.7 2

4

8

12

16

20
Streamline for C
Streamline for 2C
Streamline for 3C
Streamline for 4C

This can be plotted in Excel.



a = 1
b = 1

C = 0 2 4 6
x y y y y

0.05 0.16 0.15 0.14 0.14
0.10 0.22 0.20 0.19 0.18
0.20 0.32 0.27 0.24 0.21
0.30 0.39 0.31 0.26 0.23
0.40 0.45 0.33 0.28 0.24
0.50 0.50 0.35 0.29 0.25
0.60 0.55 0.37 0.30 0.26
0.70 0.59 0.38 0.30 0.26
0.80 0.63 0.39 0.31 0.26
0.90 0.67 0.40 0.31 0.27
1.00 0.71 0.41 0.32 0.27
1.10 0.74 0.41 0.32 0.27
1.20 0.77 0.42 0.32 0.27
1.30 0.81 0.42 0.32 0.27
1.40 0.84 0.43 0.33 0.27
1.50 0.87 0.43 0.33 0.27
1.60 0.89 0.44 0.33 0.27
1.70 0.92 0.44 0.33 0.28
1.80 0.95 0.44 0.33 0.28
1.90 0.97 0.44 0.33 0.28
2.00 1.00 0.45 0.33 0.28

Streamline Plot
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1.0

1.2

0.0 0.5 1.0 1.5 2.0

x

y

c = 0
c = 2
c = 4
c = 6



A = 10
B = 20
C =

1 2 4 6
x y y y y

0.00 0.50 1.00 2.00 3.00
0.10 0.48 0.95 1.90 2.86
0.20 0.45 0.91 1.82 2.73
0.30 0.43 0.87 1.74 2.61
0.40 0.42 0.83 1.67 2.50
0.50 0.40 0.80 1.60 2.40
0.60 0.38 0.77 1.54 2.31
0.70 0.37 0.74 1.48 2.22
0.80 0.36 0.71 1.43 2.14
0.90 0.34 0.69 1.38 2.07
1.00 0.33 0.67 1.33 2.00
1.10 0.32 0.65 1.29 1.94
1.20 0.31 0.63 1.25 1.88
1.30 0.30 0.61 1.21 1.82
1.40 0.29 0.59 1.18 1.76
1.50 0.29 0.57 1.14 1.71
1.60 0.28 0.56 1.11 1.67
1.70 0.27 0.54 1.08 1.62
1.80 0.26 0.53 1.05 1.58
1.90 0.26 0.51 1.03 1.54
2.00 0.25 0.50 1.00 1.50

Streamline Plot
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1.0

1.5

2.0

2.5

3.0

3.5
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c = 1
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c = 4
c = 6 ((x,y) = (1.2)



Problem 2.9 [2]

Given: Velocity field

Find: Equation for streamline through (1,3)

Solution:

For streamlines v
u

dy
dx

=

A
y

x2
⋅

A
x

=
y
x

=

So, separating variables dy
y

dx
x

=

Integrating ln y( ) ln x( ) c+=

The solution is y C x⋅= which is the equation of a straight line.

For the streamline through point (1,3) 3 C 1⋅= C 3= and y 3 x⋅=

For a particle up
dx
dt

=
A
x

= or x dx⋅ A dt⋅= x 2 A⋅ t⋅ c+= t
x2

2 A⋅
c

2 A⋅
−=

Hence the time for a particle to go from x = 1 to x = 2 m is

Δt t x 2=( ) t x 1=( )−= Δt
2 m⋅( )2 c−

2 A⋅
1 m⋅( )2 c−

2 A⋅
−=

4 m2
⋅ 1 m2

⋅−

2 2×
m2

s
⋅

= Δt 0.75 s⋅=



[3]Problem 2.10

Given: Flow field

Find: Plot of velocity magnitude along axes, and y = x; Equation of streamlines

Solution:

On the x axis, y = 0, so u
K y⋅

2 π⋅ x2 y2
+( )⋅

−= 0= v
K x⋅

2 π⋅ x2 y2
+( )⋅

=
K

2 π⋅ x⋅
=

10− 5− 0 5 10

100−

50−

50

100

x (km)

v(
 m

/s
)

Plotting

The velocity is perpendicular to the axis, is very high close to the origin, and falls off to zero.

This can also be plotted in Excel.

On the y axis, x = 0, so u
K y⋅

2 π⋅ x2 y2
+( )⋅

−=
K

2 π⋅ y⋅
−= v

K x⋅

2 π⋅ x2 y2
+( )⋅

= 0=

10− 5− 0 5 10

100−

50−

50

100

y (km)

u 
( m

/s
)

Plotting

The velocity is perpendicular to the axis, is very high close to the origin, and falls off to zero.



This can also be plotted in Excel.

On the y = x axis u
K x⋅

2 π⋅ x2 x2
+( )⋅

−=
K

4 π⋅ x⋅
−= v

K x⋅

2 π⋅ x2 x2
+( )⋅

=
K

4 π⋅ x⋅
=

The flow is perpendicular to line y = x: Slope of line y = x: 1

Slope of trajectory of motion: u
v

1−=

If we define the radial position: r x2 y2
+= then along y = x r x2 x2

+= 2 x⋅=

Then the magnitude of the velocity along y = x is V u2 v2
+=

K
4 π⋅

1

x2
1

x2
+⋅=

K

2 π⋅ 2⋅ x⋅
=

K
2 π⋅ r⋅

=

Plotting

10− 5− 0 5 10

100−

50−

50

100

r (km)

V
(m

/s
)

This can also be plotted in Excel.

For streamlines v
u

dy
dx

=

K x⋅

2 π⋅ x2 y2+( )⋅

K y⋅

2 π⋅ x2 y2
+( )⋅

−
=

x
y

−=

So, separating variables y dy⋅ x− dx⋅=

Integrating y2

2
x2

2
− c+=

The solution is x2 y2
+ C= which is the equation of a circle.

Streamlines form a set of concentric circles.

This flow models a vortex flow.  See Example 5.6 for streamline plots.  Streamlines are circular, and the velocity approaches infinity as we
approach the center.  In Problem 2.11, we see that the streamlines are also circular.  In a real tornado, at large distances from the center, the
velocities behave as in this problem; close to the center, they behave as in Problem 2.11.



Problem 2.11 [3]

Given: Flow field

Find: Plot of velocity magnitude along axes, and y = x; Equation for streamlines

Solution:

On the x axis, y = 0, so u
M y⋅
2 π⋅

−= 0= v
M x⋅
2 π⋅

=

10− 5− 0 5 10

1000−

500−

500

1000

x (km)

v 
(m

/s
)

Plotting

The velocity is perpendicular to the axis and increases linearly with distance x.

This can also be plotted in Excel.

On the y axis, x = 0, so u
M y⋅
2 π⋅

−= v
M x⋅
2 π⋅

= 0=

10− 5− 0 5 10

1000−

500−

500

1000

y (km)

u 
(m

/s
)

Plotting

The velocity is perpendicular to the axis and increases linearly with distance y.

This can also be plotted in Excel.



On the y = x axis u
M y⋅
2 π⋅

−=
M x⋅
2 π⋅

−= v
M x⋅
2 π⋅

=

The flow is perpendicular to line y = x: Slope of line y = x: 1

Slope of trajectory of motion: u
v

1−=

If we define the radial position: r x2 y2
+= then along y = x r x2 x2

+= 2 x⋅=

Then the magnitude of the velocity along y = x is V u2 v2
+=

M
2 π⋅

x2 x2
+⋅=

M 2⋅ x⋅
2 π⋅

=
M r⋅
2 π⋅

=

10− 5− 0 5 10

1000−

500−

500

1000

r (km)

V
(m

/s
)

Plotting

This can also be plotted in Excel.

For streamlines v
u

dy
dx

=

M x⋅
2 π⋅

M y⋅
2 π⋅

−
=

x
y

−=

So, separating variables y dy⋅ x− dx⋅=

Integrating y2

2
x2

2
− c+=

The solution is x2 y2
+ C= which is the equation of a circle.

The streamlines form a set of concentric circles.

This flow models a rigid body vortex flow.  See Example 5.6 for streamline plots.  Streamlines are circular, and the velocity approaches zer
as we approach the center.  In Problem 2.10, we see that the streamlines are also circular.  In a real tornado, at large distances from the
center, the velocities behave as in Problem 2.10; close to the center, they behave as in this problem.



Problem 2.12 [3]

Given: Flow field

Find: Plot of velocity magnitude along axes, and y = x; Equations of streamlines

Solution:

On the x axis, y = 0, so u
q x⋅

2 π⋅ x2 y2
+( )⋅

−=
q

2 π⋅ x⋅
−= v

q y⋅

2 π⋅ x2 y2
+( )⋅

−= 0=

10− 5− 0 5 10

35−
25−
15−

5−
5

15
25
35

x (km)

u 
(m

/s
)

Plotting

The velocity is very high close to the origin, and falls off to zero.  It is also along the axis.  This can be plotted in Excel.

On the y axis, x = 0, so u
q x⋅

2 π⋅ x2 y2
+( )⋅

−= 0= v
q y⋅

2 π⋅ x2 y2
+( )⋅

−=
q

2 π⋅ y⋅
−=

10− 5− 0 5 10

35−
25−
15−

5−
5

15
25
35

y (km)

v 
(m

/s
)

Plotting

The velocity is again very high close to the origin, and falls off to zero.  It is also along the axis.

This can also be plotted in Excel.  



On the y = x axis u
q x⋅

2 π⋅ x2 x2
+( )⋅

−=
q

4 π⋅ x⋅
−= v

q x⋅

2 π⋅ x2 x2
+( )⋅

−=
q

4 π⋅ x⋅
−=

The flow is parallel to line y = x: Slope of line y = x: 1

Slope of trajectory of motion: v
u

1=

If we define the radial position: r x2 y2
+= then along y = x r x2 x2

+= 2 x⋅=

Then the magnitude of the velocity along y = x is V u2 v2
+=

q
4 π⋅

1

x2
1

x2
+⋅=

q

2 π⋅ 2⋅ x⋅
=

q
2 π⋅ r⋅

=

10− 5− 0 5 10

35−
25−
15−

5−
5

15
25
35

r (km)

V
(m

/s
)

Plotting

This can also be plotted in Excel.

For streamlines v
u

dy
dx

=

q y⋅

2 π⋅ x2 y2
+( )⋅

−

q x⋅

2 π⋅ x2 y2
+( )⋅

−
=

y
x

=

So, separating variables dy
y

dx
x

=

Integrating ln y( ) ln x( ) c+=

The solution is y C x⋅= which is the equation of a straight line.

This flow field corresponds to a sink (discussed in Chapter 6).



 
Problem 2.13                                                                             [2]



t = 0 t =1 s t = 20 s
C = 1 C = 2 C = 3 C = 1 C = 2 C = 3 C = 1 C = 2 C = 3

x y y y x y y y x y y y
0.00 1.00 2.00 3.00 0.000 1.00 1.41 1.73 0.00 1.00 1.41 1.73
0.10 1.00 2.00 3.00 0.025 1.00 1.41 1.73 0.10 1.00 1.41 1.73
0.20 1.00 2.00 3.00 0.050 0.99 1.41 1.73 0.20 1.00 1.41 1.73
0.30 1.00 2.00 3.00 0.075 0.99 1.41 1.73 0.30 0.99 1.41 1.73
0.40 1.00 2.00 3.00 0.100 0.98 1.40 1.72 0.40 0.98 1.40 1.72
0.50 1.00 2.00 3.00 0.125 0.97 1.39 1.71 0.50 0.97 1.40 1.72
0.60 1.00 2.00 3.00 0.150 0.95 1.38 1.71 0.60 0.96 1.39 1.71
0.70 1.00 2.00 3.00 0.175 0.94 1.37 1.70 0.70 0.95 1.38 1.70
0.80 1.00 2.00 3.00 0.200 0.92 1.36 1.69 0.80 0.93 1.37 1.69
0.90 1.00 2.00 3.00 0.225 0.89 1.34 1.67 0.90 0.92 1.36 1.68
1.00 1.00 2.00 3.00 0.250 0.87 1.32 1.66 1.00 0.89 1.34 1.67
1.10 1.00 2.00 3.00 0.275 0.84 1.30 1.64 1.10 0.87 1.33 1.66
1.20 1.00 2.00 3.00 0.300 0.80 1.28 1.62 1.20 0.84 1.31 1.65
1.30 1.00 2.00 3.00 0.325 0.76 1.26 1.61 1.30 0.81 1.29 1.63
1.40 1.00 2.00 3.00 0.350 0.71 1.23 1.58 1.40 0.78 1.27 1.61
1.50 1.00 2.00 3.00 0.375 0.66 1.20 1.56 1.50 0.74 1.24 1.60
1.60 1.00 2.00 3.00 0.400 0.60 1.17 1.54 1.60 0.70 1.22 1.58
1.70 1.00 2.00 3.00 0.425 0.53 1.13 1.51 1.70 0.65 1.19 1.56
1.80 1.00 2.00 3.00 0.450 0.44 1.09 1.48 1.80 0.59 1.16 1.53
1.90 1.00 2.00 3.00 0.475 0.31 1.05 1.45 1.90 0.53 1.13 1.51
2.00 1.00 2.00 3.00 0.500 0.00 1.00 1.41 2.00 0.45 1.10 1.48



Streamline Plot (t = 0)
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Streamline Plot (t = 1s)
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Streamline Plot (t = 20s)
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Problem 2.15 [4]

Given: Pathlines of particles

Find: Conditions that make them satisfy Problem 2.10 flow field; Also Problem 2.11 flow field; Plot pathlines 

Solution:

The given pathlines are xp a− sin ω t⋅( )⋅= yp a cos ω t⋅( )⋅=

The velocity field of Problem 2.10 is u
K y⋅

2 π⋅ x2 y2
+( )⋅

−= v
K x⋅

2 π⋅ x2 y2
+( )⋅

=

If the pathlines are correct we should be able to substitute xp and yp into the velocity field to find the velocity as a function of time:

u
K y⋅

2 π⋅ x2 y2
+( )⋅

−=
K a⋅ cos ω t⋅( )⋅

2 π⋅ a2 sin ω t⋅( )2
⋅ a2 cos ω t⋅( )2

⋅+( )⋅
−=

K cos ω t⋅( )⋅
2 π⋅ a⋅

−= (1)

v
K x⋅

2 π⋅ x2 y2
+( )⋅

=
K a− sin ω t⋅( )⋅( )⋅

2 π⋅ a2 sin ω t⋅( )2
⋅ a2 cos ω t⋅( )2

⋅+( )⋅
−=

K sin ω t⋅( )⋅
2 π⋅ a⋅

−= (2)

We should also be able to find the velocity field as a function of time from the pathline equations (Eq. 2.9):

(2.9)dxp
dt

u=
dxp
dt

v=

u
dxp
dt

= a− ω⋅ cos ω t⋅( )⋅= v
dyp
dt

= a− ω⋅ sin ω t⋅( )⋅= (3)

Comparing Eqs. 1, 2 and 3 u a− ω⋅ cos ω t⋅( )⋅=
K cos ω t⋅( )⋅

2 π⋅ a⋅
−= v a− ω⋅ sin ω t⋅( )⋅=

K sin ω t⋅( )⋅
2 π⋅ a⋅

−=

Hence we see that a ω⋅
K

2 π⋅ a⋅
= or ω

K

2 π⋅ a2
⋅

= for the pathlines to be correct.



The pathlines are

400− 200− 0 200 400

400−

200−

200

400
a = 300 m
a = 400 m
a = 500 m

To plot this in Excel, compute xp and yp for t
ranging from 0 to 60 s, with ω given by the
above formula.  Plot yp versus xp.  Note that
outer particles travel much slower!

This is the free vortex flow discussed in
Example 5.6

The velocity field of Problem 2.11 is u
M y⋅
2 π⋅

−= v
M x⋅
2 π⋅

=

If the pathlines are correct we should be able to substitute xp and yp into the velocity field to find the velocity as a function of time:

u
M y⋅
2 π⋅

−=
M a cos ω t⋅( )⋅( )⋅

2 π⋅
−=

M a⋅ cos ω t⋅( )⋅
2 π⋅

−= (4)

v
M x⋅
2 π⋅

=
M a− sin ω t⋅( )⋅( )⋅

2 π⋅
=

M a⋅ sin ω t⋅( )⋅
2 π⋅

−= (5)

Recall that u
dxp
dt

= a− ω⋅ cos ω t⋅( )⋅= v
dyp
dt

= a− ω⋅ sin ω t⋅( )⋅= (3)

Comparing Eqs. 1, 4 and 5 u a− ω⋅ cos ω t⋅( )⋅=
M a⋅ cos ω t⋅( )⋅

2 π⋅
−= v a− ω⋅ sin ω t⋅( )⋅=

M a⋅ sin ω t⋅( )⋅
2 π⋅

−=

Hence we see that ω
M

2 π⋅
= for the pathlines to be correct.



400− 200− 0 200 400

600−

400−

200−

200

400

a = 300 m
a = 400 m
a = 500 m

The pathlines

To plot this in Excel, compute xp and yp for t
ranging from 0 to 75 s, with ω given by the
above formula.  Plot yp versus xp.  Note that
outer particles travel faster!

This is the forced vortex flow discussed in
Example 5.6

Note that this is rigid body rotation!



Problem 2.16 [2]

Given: Time-varying velocity field

Find: Streamlines at t = 0 s; Streamline through (3,3); velocity vector; will streamlines change with time

Solution:

For streamlines v
u

dy
dx

=
a y⋅ 2 cos ω t⋅( )+( )⋅
a x⋅ 2 cos ω t⋅( )+( )⋅

−=
y
x

−=

At t = 0 (actually all times!) dy
dx

y
x

−=

So, separating variables dy
y

dx
x

−=

Integrating ln y( ) ln x( )− c+=

The solution is y
C
x

= which is the equation of a hyperbola.

For the streamline through point (3,3) C
3
3

= C 1= and y
1
x

=

The streamlines will not change with time since dy/dx does not change with time.

0 1 2 3 4 5

1

2

3

4

5

x

y

At t = 0 u a x⋅ 2 cos ω t⋅( )+( )⋅= 5
1
s
⋅ 3× m⋅ 3×=

u 45
m
s

⋅=

v a− y⋅ 2 cos ω t⋅( )+( )⋅= 5
1
s
⋅ 3× m⋅ 3×=

v 45−
m
s

⋅=

The velocity vector is tangent to the curve;

Tangent of curve at (3,3) is dy
dx

y
x

−= 1−=

Direction of velocity at (3,3) is v
u

1−=
This curve can be plotted in Excel.



 
Problem 2.17                                                                             [3]



 
Problem 2.18                                                                             [3]





Pathline Streamlines
t = 0 t = 1 s t = 2 s

t x y x y x y x y
0.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
0.25 1.00 0.78 1.00 0.78 1.00 0.97 1.00 0.98
0.50 1.01 0.61 1.00 0.61 1.01 0.88 1.01 0.94
0.75 1.03 0.47 1.00 0.47 1.03 0.75 1.03 0.87
1.00 1.05 0.37 1.00 0.37 1.05 0.61 1.05 0.78
1.25 1.08 0.29 1.00 0.29 1.08 0.46 1.08 0.68
1.50 1.12 0.22 1.00 0.22 1.12 0.32 1.12 0.57
1.75 1.17 0.17 1.00 0.17 1.17 0.22 1.17 0.47
2.00 1.22 0.14 1.00 0.14 1.22 0.14 1.22 0.37
2.25 1.29 0.11 1.00 0.11 1.29 0.08 1.29 0.28
2.50 1.37 0.08 1.00 0.08 1.37 0.04 1.37 0.21
2.75 1.46 0.06 1.00 0.06 1.46 0.02 1.46 0.15
3.00 1.57 0.05 1.00 0.05 1.57 0.01 1.57 0.11
3.25 1.70 0.04 1.00 0.04 1.70 0.01 1.70 0.07
3.50 1.85 0.03 1.00 0.03 1.85 0.00 1.85 0.05
3.75 2.02 0.02 1.00 0.02 2.02 0.00 2.02 0.03
4.00 2.23 0.02 1.00 0.02 2.23 0.00 2.23 0.02
4.25 2.47 0.01 1.00 0.01 2.47 0.00 2.47 0.01
4.50 2.75 0.01 1.00 0.01 2.75 0.00 2.75 0.01
4.75 3.09 0.01 1.00 0.01 3.09 0.00 3.09 0.00
5.00 3.49 0.01 1.00 0.01 3.49 0.00 3.49 0.00

Pathline and Streamline Plots

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

x

y

Pathline
Streamline (t = 0)
Streamline (t = 1 s)
Streamline (t = 2 s)



 
Problem 2.20                                                                             [3]



Problem 2.21 [3]

Given: Flow field

Find: Pathline for particle starting at (3,1); Streamlines through same point at t = 1, 2, and 3 s

Solution:
For particle paths dx

dt
u= a x⋅ t⋅= and dy

dt
v= b=

Separating variables and integrating dx
x

a t⋅ dt⋅= or ln x( )
1
2

a⋅ t2⋅ c1+=

dy b dt⋅= or y b t⋅ c2+=

Using initial condition (x,y) = (3,1) and the given values for a and b

c1 ln 3 m⋅( )= and c2 1 m⋅=

The pathline is then x 3 e0.05 t2⋅
⋅= and y 4 t⋅ 1+=

For streamlines (at any time t) v
u

dy
dx

=
b

a x⋅ t⋅
=

So, separating variables dy
b
a t⋅

dx
x

⋅=

Integrating y
b
a t⋅

ln x( )⋅ c+=

We are interested in instantaneous streamlines at various times that always pass through point (3,1).  Using a and b values:

c y
b
a t⋅

ln x( )⋅−= 1
4

0.1 t⋅
ln 3( )⋅−=

The streamline equation is y 1
40
t

ln
x
3
⎛⎜
⎝
⎞⎟
⎠

⋅+=

0 1 2 3 4 5

20−

10−

10

20

30
Pathline
Streamline (t=1)
Streamline (t=2)
Streamline (t=3)

x

y

These curves can be plotted in Excel.



Problem 2.22 [4]

Given: Velocity field

Find: Plot streamlines that are at origin at various times and pathlines that left origin at these times

Solution:

For streamlines v
u

dy
dx

=

v0 sin ω t
x
u0

−⎛
⎜
⎝

⎞
⎟
⎠

⋅⎡
⎢
⎣

⎤
⎥
⎦

⋅

u0
=

So, separating variables (t=const) dy

v0 sin ω t
x
u0

−⎛
⎜
⎝

⎞
⎟
⎠

⋅⎡
⎢
⎣

⎤
⎥
⎦

⋅

u0
dx⋅=

Integrating y

v0 cos ω t
x
u0

−⎛
⎜
⎝

⎞
⎟
⎠

⋅⎡
⎢
⎣

⎤
⎥
⎦

⋅

ω
c+=

Using condition y = 0 when x = 0 y

v0 cos ω t
x
u0

−⎛
⎜
⎝

⎞
⎟
⎠

⋅⎡
⎢
⎣

⎤
⎥
⎦

cos ω t⋅( )−⎡
⎢
⎣

⎤
⎥
⎦

⋅

ω
= This gives streamlines y(x) at each time t

For particle paths, first find x(t) dx
dt

u= u0=

Separating variables and integrating dx u0 dt⋅= or x u0 t⋅ c1+=

Using initial condition x = 0 at t = τ c1 u0− τ⋅= x u0 t τ−( )⋅=

For y(t) we have dy
dt

v= v0 sin ω t
x
u0

−⎛
⎜
⎝

⎞
⎟
⎠

⋅⎡
⎢
⎣

⎤
⎥
⎦

⋅= so dy
dt

v= v0 sin ω t
u0 t τ−( )⋅

u0
−

⎡
⎢
⎣

⎤
⎥
⎦

⋅
⎡
⎢
⎣

⎤
⎥
⎦

⋅=

and dy
dt

v= v0 sin ω τ⋅( )⋅=

Separating variables and integrating dy v0 sin ω τ⋅( )⋅ dt⋅= y v0 sin ω τ⋅( )⋅ t⋅ c2+=

Using initial condition y = 0 at t = τ c2 v0− sin ω τ⋅( )⋅ τ⋅= y v0 sin ω τ⋅( )⋅ t τ−( )⋅=

The pathline is then

x t τ, ( ) u0 t τ−( )⋅= y t τ, ( ) v0 sin ω τ⋅( )⋅ t τ−( )⋅= These terms give the path of a particle (x(t),y(t)) that started at t = τ.



0 1 2 3

0.5−

0.25−

0.25

0.5

Streamline t = 0s
Streamline t = 0.05s
Streamline t = 0.1s
Streamline t = 0.15s
Pathline starting t = 0s
Pathline starting t = 0.05s
Pathline starting t = 0.1s
Pathline starting t = 0.15s

The streamlines are sinusoids; the pathlines are straight (once a water particle is fired it travels in a straight line).

These curves can be plotted in Excel.



Problem 2.23 [5]

Given: Velocity field

Find: Plot streakline for first second of flow

Solution:

Following the discussion leading up to Eq. 2.10, we first find equations for the pathlines in form 

xp t( ) x t x0, y0, t0, ( )= and yp t( ) y t x0, y0, t0, ( )=

where x0, y0 is the position of the particle at t = t0, and re-interprete the results as streaklines

xst t0( ) x t x0, y0, t0, ( )= and yst t0( ) y t x0, y0, t0, ( )=

which gives the streakline at t, where x0, y0 is the point at which dye is released (t0 is varied from 0 to t)

For particle paths, first find x(t) dx
dt

u= u0=

Separating variables and integrating dx u0 dt⋅= or x x0 u0 t t0−( )⋅+=

For y(t) we have dy
dt

v= v0 sin ω t
x
u0

−⎛
⎜
⎝

⎞
⎟
⎠

⋅⎡
⎢
⎣

⎤
⎥
⎦

⋅= so dy
dt

v= v0 sin ω t
x0 u0 t t0−( )⋅+

u0
−

⎡
⎢
⎣

⎤
⎥
⎦

⋅
⎡
⎢
⎣

⎤
⎥
⎦

⋅=

and dy
dt

v= v0 sin ω t0
x0
u0

−
⎛
⎜
⎝

⎞
⎟
⎠

⋅
⎡
⎢
⎣

⎤
⎥
⎦

⋅=

Separating variables and integrating dy v0 sin ω t0
x0
u0

−
⎛
⎜
⎝

⎞
⎟
⎠

⋅
⎡
⎢
⎣

⎤
⎥
⎦

⋅ dt⋅= y y0 v0 sin ω t0
x0
u0

−
⎛
⎜
⎝

⎞
⎟
⎠

⋅
⎡
⎢
⎣

⎤
⎥
⎦

⋅ t t0−( )⋅+=

The streakline is then xst t0( ) x0 u0 t t0−( )+= yst t0( ) y0 v0 sin ω t0
x0
u0

−
⎛
⎜
⎝

⎞
⎟
⎠

⋅
⎡
⎢
⎣

⎤
⎥
⎦

⋅ t t0−( )⋅+=

With x0 y0= 0=

xst t0( ) u0 t t0−( )⋅= yst t0( ) v0 sin ω t0( )⋅⎡⎣ ⎤⎦⋅ t t0−( )⋅=

0 2 4 6 8 10

2−

1−

1

2
Streakline for First Second

x (m)

y 
(m

)

This curve can be plotted in Excel.  For t = 1, t0 ranges from 0 to t.
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Problem 2.27 [3]

Solution The particle starting at t = 3 s follows the particle starting at t = 2 s;
The particle starting at t = 4 s doesn't move!

Pathlines: Starting at t = 0 Starting at t = 1 s Starting at t = 2 s Streakline at t = 4 s

t x y x y x y x y
0.00 0.00 0.00 2.00 2.00
0.20 0.20 0.40 1.80 1.60
0.40 0.40 0.80 1.60 1.20
0.60 0.60 1.20 1.40 0.80
0.80 0.80 1.60 1.20 0.40
1.00 1.00 2.00 0.00 0.00 1.00 0.00
1.20 1.20 2.40 0.20 0.40 0.80 -0.40
1.40 1.40 2.80 0.40 0.80 0.60 -0.80
1.60 1.60 3.20 0.60 1.20 0.40 -1.20
1.80 1.80 3.60 0.80 1.60 0.20 -1.60
2.00 2.00 4.00 1.00 2.00 0.00 0.00 0.00 -2.00
2.20 2.00 3.80 1.00 1.80 0.00 -0.20 0.00 -1.80
2.40 2.00 3.60 1.00 1.60 0.00 -0.40 0.00 -1.60
2.60 2.00 3.40 1.00 1.40 0.00 -0.60 0.00 -1.40
2.80 2.00 3.20 1.00 1.20 0.00 -0.80 0.00 -1.20
3.00 2.00 3.00 1.00 1.00 0.00 -1.00 0.00 -1.00
3.20 2.00 2.80 1.00 0.80 0.00 -1.20 0.00 -0.80
3.40 2.00 2.60 1.00 0.60 0.00 -1.40 0.00 -0.60
3.60 2.00 2.40 1.00 0.40 0.00 -1.60 0.00 -0.40
3.80 2.00 2.20 1.00 0.20 0.00 -1.80 0.00 -0.20
4.00 2.00 2.00 1.00 0.00 0.00 -2.00 0.00 0.00

Pathline and Streakline Plots

-3

-2

-1

0

1

2

3

4

-0.5 0.0 0.5 1.0 1.5 2.0 2.5

x

y

Pathline starting at t = 0
Pathline starting at t = 1 s
Pathline starting at t = 2 s
Streakline at t = 4 s



Problem 2.28 [4]

Given: 2D velocity field

Find: Streamlines passing through (6,6); Coordinates of particle starting at (1,4); that pathlines, streamlines and
streaklines coincide

Solution:

For streamlines v
u

dy
dx

=
b

a y2
⋅

= or ya y2
⋅

⌠⎮
⎮⌡

d xb
⌠⎮
⎮⌡

d=

Integrating a y3
⋅
3

b x⋅ C+=

For the streamline through point (6,6) C 60= and y3 6 x⋅ 180+=

For particle that passed through (1,4) at t = 0 u
dx
dt

= a y2
⋅= x1

⌠⎮
⎮⌡

d x x0−= ta y2
⋅

⌠⎮
⎮⌡

d= but we need y(t)

v
dy
dt

= b= y1
⌠⎮
⎮⌡

d tb
⌠⎮
⎮⌡

d= y y0 b t⋅+= y0 2 t⋅+=

Then x x0−
0

t
ta y0 b t⋅+( )2⋅

⌠
⎮
⌡

d= x x0 a y0
2 t⋅ b y0⋅ t2⋅+

b2 t3⋅
3

+
⎛
⎜
⎝

⎞
⎟
⎠

⋅+=

Hence, with x0 1= y0 4= x 1 16 t⋅+ 8 t2⋅+
4
3

t3⋅+= At  t = 1 s x 26.3 m⋅=

y 4 2 t⋅+= y 6 m⋅=

For particle that passed through (-3,0) at t = 1 y1
⌠⎮
⎮⌡

d tb
⌠⎮
⎮⌡

d= y y0 b t t0−( )⋅+=

x x0−
t0

t
ta y0 b t⋅+( )2⋅

⌠
⎮
⌡

d= x x0 a y0
2 t t0−( )⋅ b y0⋅ t2 t0

2
−⎛

⎝
⎞
⎠⋅+

b2

3
t3 t0

3
−⎛

⎝
⎞
⎠⋅+

⎡
⎢
⎣

⎤
⎥
⎦

⋅+=

Hence, with x0 = -3, y0 = 0 at t0 = 1 x 3−
4
3

t3 1−( )⋅+=
1
3

4 t3⋅ 13−( )⋅= y 2 t 1−( )⋅=

Evaluating at t = 3 x 31.7 m⋅= y 4 m⋅=

This is a steady flow, so pathlines, streamlines and streaklines always coincide
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Data: Using procedure of Appendix A.3:

T (oC) T (K) μ(x105) T (K) T3/2/μ
0 273 1.86E-05 273 2.43E+08

100 373 2.31E-05 373 3.12E+08
200 473 2.72E-05 473 3.78E+08
300 573 3.11E-05 573 4.41E+08
400 673 3.46E-05 673 5.05E+08

The equation to solve for coefficients
S  and b  is

From the built-in Excel Hence:
Linear Regression  functions:

Slope = 6.534E+05 b  = 1.531E-06 kg/m.s.K1/2

Intercept = 6.660E+07 S = 101.9 K
R2 = 0.9996

Plot of Basic Data and Trend Line

0.E+00

1.E+08

2.E+08

3.E+08

4.E+08

5.E+08

6.E+08

0 100 200 300 400 500 600 700 800
T

T3/2/μ

Data Plot
Least Squares Fit

b
ST

b
T

+⎟
⎠
⎞

⎜
⎝
⎛=

123

μ



Problem 2.35 [2]

Given: Velocity distribution between flat plates

Find: Shear stress on upper plate; Sketch stress distribution

Solution:

Basic equation τyx μ
du
dy
⋅=

du
dy

d
dy

umax 1
2 y⋅
h

⎛⎜
⎝

⎞⎟
⎠

2
−

⎡
⎢
⎣

⎤
⎥
⎦

⋅= umax
4

h2
−⎛⎜
⎝

⎞
⎟
⎠

⋅ 2⋅ y⋅=
8 umax⋅ y⋅

h2
−=

τyx
8 μ⋅ umax⋅ y⋅

h2
−=

At the upper surface y
h
2

= and h 0.1 mm⋅= umax 0.1
m
s

⋅= μ 1.14 10 3−
×

N s⋅

m2
⋅= (Table A.8)

Hence τyx 8− 1.14× 10 3−
×

N s⋅

m2
⋅ 0.1×

m
s

⋅
0.1
2

× mm⋅
1 m⋅

1000 mm⋅
×

1
0.1 mm⋅

1000 mm⋅
1 m⋅

×⎛⎜
⎝

⎞⎟
⎠

2
×=

τyx 4.56−
N

m2
⋅=

The upper plate is a minus y surface.  Since τyx < 0, the shear stress on the upper plate must act in the plus x direction.

The shear stress varies linearly with y τyx y( )
8 μ⋅ umax⋅

h2

⎛⎜
⎜⎝

⎞⎟
⎟⎠

− y⋅=

5− 4− 3− 2− 1− 0 1 2 3 4 5

0.05−

0.04−

0.03−

0.02−

0.01−

0.01

0.02

0.03

0.04

0.05

Shear Stress (Pa)

y 
(m

m
)



Problem 2.36 [2]

Given: Velocity distribution between parallel plates

Find: Force on lower plate

Solution:

Basic equations F τyx A⋅= τyx μ
du
dy
⋅=

du
dy

d
dy

umax 1
2 y⋅
h

⎛⎜
⎝

⎞⎟
⎠

2
−

⎡
⎢
⎣

⎤
⎥
⎦

⋅= umax
4

h2
−⎛⎜
⎝

⎞
⎟
⎠

⋅ 2⋅ y⋅=
8 umax⋅ y⋅

h2
−=

so τyx
8 μ⋅ umax⋅ y⋅

h2
−= and F

8 A⋅ μ⋅ umax⋅ y⋅

h2
−=

At the lower surface y
h
2

−= and h 0.1 mm⋅= A 1 m2
⋅=

umax 0.05
m
s

⋅= μ 1.14 10 3−
×

N s⋅

m2
⋅= (Table A.8)

Hence F 8− 1× m2
⋅ 1.14× 10 3−

×
N s⋅

m2
⋅ 0.05×

m
s

⋅
0.1−
2

× mm⋅
1 m⋅

1000 mm⋅
×

1
0.1

1
mm
⋅

1000 mm⋅
1 m⋅

×⎛⎜
⎝

⎞⎟
⎠

2
×=

F 2.28 N⋅= (to the right)



Problem 2.37     [2] 
 
Explain how an ice skate interacts with the ice surface.  What mechanism acts to reduce 
sliding friction between skate and ice? 
 
Open-Ended Problem Statement: Explain how an ice skate interacts with the ice 
surface. What mechanism acts to reduce sliding friction between skate and ice? 
 
Discussion: The normal freezing and melting temperature of ice is 0°C (32°F) at 
atmospheric pressure. The melting temperature of ice decreases as pressure is increased. 
Therefore ice can be caused to melt at a temperature below the normal melting 
temperature when the ice is subjected to increased pressure. 
A skater is supported by relatively narrow blades with a short contact against the ice. The 
blade of a typical skate is less than 3 mm wide. The length of blade in contact with the ice 
may be just ten or so millimeters. With a 3 mm by 10 mm contact patch, a 75 kg skater is 
supported by a pressure between skate blade and ice on the order of tens of megaPascals 
(hundreds of atmospheres). Such a pressure is enough to cause ice to melt rapidly. 
When pressure is applied to the ice surface by the skater, a thin surface layer of ice melts 
to become liquid water and the skate glides on this thin liquid film. Viscous friction is 
quite small, so the effective friction coefficient is much smaller than for sliding friction. 
The magnitude of the viscous drag force acting on each skate blade depends on the speed 
of the skater, the area of contact, and the thickness of the water layer on top of the ice. 
The phenomenon of static friction giving way to viscous friction is similar to the 
hydroplaning of a pneumatic tire caused by a layer of water on the road surface. 



Problem 2.38 [2]

Given: Velocity profile

Find: Plot of velocity profile; shear stress on surface

Solution:

The velocity profile is u
ρ g⋅
μ

h y⋅
y2

2
−

⎛
⎜
⎝

⎞
⎟
⎠

⋅ sin θ( )⋅= so the maximum velocity is at y = h umax
ρ g⋅
μ

h2

2
⋅ sin θ( )⋅=

Hence we can plot u
umax

2
y
h

1
2

y
h

⎛⎜
⎝

⎞⎟
⎠

2
⋅−

⎡
⎢
⎣

⎤
⎥
⎦

⋅=

0 0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

u/umax

y/
h

This graph can be plotted in Excel

The given data is h 0.1 in⋅= μ 2.15 10 3−
×

lbf s⋅

ft2
⋅= θ 45 deg⋅=

Basic equation τyx μ
du
dy
⋅= τyx μ

du
dy
⋅= μ

d
dy
⋅

ρ g⋅
μ

h y⋅
y2

2
−

⎛
⎜
⎝

⎞
⎟
⎠

⋅ sin θ( )⋅= ρ g⋅ h y−( )⋅ sin θ( )⋅=

At the surface y = 0 τyx ρ g⋅ h⋅ sin θ( )⋅=

Hence τyx 0.85 1.94×
slug

ft3
⋅ 32.2×

ft

s2
⋅ 0.1× in⋅

1 ft⋅
12 in⋅

× sin 45 deg⋅( )×
lbf s2

⋅
slug ft⋅

×= τyx 0.313
lbf

ft2
⋅=

The surface is a positive y surface.  Since τyx > 0, the shear stress on the surface must act in the plus x direction.
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Problem 2.41 [2]

Given: Data on tape mechanism

Find: Maximum gap region that can be pulled without breaking tape

Solution:

Basic equation τyx μ
du
dy
⋅= and F τyx A⋅=

Here F is the force on each side of the tape; the total force is then FT 2 F⋅= 2 τyx⋅ A⋅=

c

c

t
y

x

L 

F,V

The velocity gradient is linear as shown du
dy

V 0−
c

=
V
c

=

The area of contact is A w L⋅=

Combining these results

FT 2 μ⋅
V
c

⋅ w⋅ L⋅=

Solving for L L
FT c⋅

2 μ⋅ V⋅ w⋅
=

The given data is FT 25 lbf⋅= c 0.012 in⋅= μ 0.02
slug
ft s⋅

⋅= V 3
ft
s

⋅= w 1 in⋅=

Hence L 25 lbf⋅ 0.012× in⋅
1 ft⋅

12 in⋅
×

1
2

×
1

0.02
×

ft s⋅
slug
⋅

1
3

×
s
ft
⋅

1
1

×
1
in

12 in⋅
1 ft⋅

×
slug ft⋅

s2 lbf⋅
×= L 2.5 ft=



Problem 2.42 [2]

Given: Flow data on apparatus

Find: The terminal velocity of mass m

Solution:

Given data: Dpiston 73 mm⋅= Dtube 75 mm⋅= Mass 2 kg⋅= L 100 mm⋅= SGAl 2.64=

Reference data: ρwater 1000
kg

m3
⋅= (maximum density of water)

From Fig. A.2:, the dynamic viscosity of SAE 10W-30 oil at 25oC is: μ 0.13
N s⋅

m2
⋅=

The terminal velocity of the mass m  is equivalent to the terminal velocity of the piston.  At that terminal speed, the acceleration of the
piston is zero.  Therefore, all forces acting on the piston must be balanced.  This means that the force driving the motion
(i.e. the weight of mass m and the piston) balances the viscous forces acting on the surface of the piston. Thus, at r = Rpiston:

Mass SGAl ρwater⋅
π Dpiston

2
⋅ L⋅

4

⎛⎜
⎜⎝

⎞⎟
⎟⎠

⋅+
⎡⎢
⎢⎣

⎤⎥
⎥⎦

g⋅ τrz A⋅= μ

r
Vz

d
d
⋅

⎛
⎜
⎝

⎞
⎟
⎠

π Dpiston⋅ L⋅( )⋅=

The velocity profile within the oil film is linear ...

Therefore
r
Vz

d
d

V
Dtube Dpiston−

2

⎛
⎜
⎝

⎞
⎟
⎠

=

Thus, the terminal velocity of the piston, V, is:

V
g SGAl ρwater⋅ π⋅ Dpiston

2
⋅ L⋅ 4 Mass⋅+⎛

⎝
⎞
⎠⋅ Dtube Dpiston−( )⋅

8 μ⋅ π⋅ Dpiston⋅ L⋅
=

or V 10.2
m
s

=



Problem 2.43 [3]

Given: Flow data on apparatus

Find: Sketch of piston speed vs time; the time needed for the piston to reach 99% of its new terminal speed.

Solution:

Given data: Dpiston 73 mm⋅= Dtube 75 mm⋅= L 100 mm⋅= SGAl 2.64= V0 10.2
m
s

⋅=

Reference data: ρwater 1000
kg

m3
⋅= (maximum density of water) (From Problem 2.42)

From Fig. A.2, the dynamic viscosity of SAE 10W-30 oil at 25oC is: μ 0.13
N s⋅

m2
⋅=

The free body diagram of the piston after the cord is cut is:

Piston weight: Wpiston SGAl ρwater⋅ g⋅
π Dpiston

2
⋅

4

⎛⎜
⎜⎝

⎞⎟
⎟⎠

⋅ L⋅=

Viscous force: Fviscous V( ) τrz A⋅= or Fviscous V( ) μ
V

1
2

Dtube Dpiston−( )⋅

⎡
⎢
⎢
⎣

⎤
⎥
⎥
⎦

⋅ π Dpiston⋅ L⋅( )⋅=

Applying Newton's second law: mpiston
dV
dt

⋅ Wpiston Fviscous V( )−=

Therefore dV
dt

g a V⋅−= where a
8 μ⋅

SGAl ρwater⋅ Dpiston⋅ Dtube Dpiston−( )⋅
=

If V g a V⋅−= then dX
dt

a−
dV
dt

⋅=

The differential equation becomes dX
dt

a− X⋅= where X 0( ) g a V0⋅−=



The solution to this differential equation is: X t( ) X0 e a− t⋅
⋅= or g a V t( )⋅− g a V0⋅−( ) e a− t⋅

⋅=

Therefore V t( ) V0
g
a

−⎛⎜
⎝

⎞⎟
⎠

e a− t⋅( )
⋅

g
a

+=

Plotting piston speed vs. time (which can be done in Excel)

0 1 2 3

2

4

6

8

10

12
Piston speed vs. time

V t( )

t

The terminal speed of the piston, Vt, is evaluated as t approaches infinity

Vt
g
a

= or Vt 3.63
m
s

=

The time needed for the piston to slow down to within 1% of its terminal velocity is:

t
1
a

ln
V0

g
a

−

1.01 Vt⋅
g
a

−

⎛
⎜
⎜
⎜
⎝

⎞
⎟
⎟
⎟
⎠

⋅= or t 1.93s=
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Problem 2.45 [4]

Ff τ A⋅=

x, V, a

M g⋅

Given: Data on the block and incline

Find: Initial acceleration; formula for speed of block; plot; find speed after 0.1 s.  Find oil viscosity if speed is 0.3 m/s after 0.1 s

Solution:

Given data M 5 kg⋅= A 0.1 m⋅( )2
= d 0.2 mm⋅= θ 30 deg⋅=

From Fig. A.2 μ 0.4
N s⋅

m2
⋅=

Applying Newton's 2nd law to initial instant (no friction)M a⋅ M g⋅ sin θ( )⋅ Ff−= M g⋅ sin θ( )⋅=

so ainit g sin θ( )⋅= 9.81
m

s2
⋅ sin 30 deg⋅( )×= ainit 4.9

m

s2
=

Applying Newton's 2nd law at any instant M a⋅ M g⋅ sin θ( )⋅ Ff−= and Ff τ A⋅= μ
du
dy
⋅ A⋅= μ

V
d
⋅ A⋅=

so M a⋅ M
dV
dt

⋅= M g⋅ sin θ( )⋅
μ A⋅

d
V⋅−=

Separating variables dV

g sin θ( )⋅
μ A⋅
M d⋅

V⋅−
dt=

Integrating and using limits M d⋅
μ A⋅

− ln 1
μ A⋅

M g⋅ d⋅ sin θ( )⋅
V⋅−⎛⎜

⎝
⎞⎟
⎠

⋅ t=

or V t( )
M g⋅ d⋅ sin θ( )⋅

μ A⋅
1 e

μ− A⋅
M d⋅

t⋅
−

⎛
⎜
⎝

⎞
⎟
⎠⋅=

At t = 0.1 s V 5 kg⋅ 9.81×
m

s2
⋅ 0.0002× m⋅ sin 30 deg⋅( )⋅

m2

0.4 N⋅ s⋅ 0.1 m⋅( )2
⋅

×
N s2
⋅

kg m⋅
× 1 e

0.4 0.01⋅
5 0.0002⋅

0.1⋅⎛⎜⎝
⎞⎟⎠

−
−

⎡
⎢
⎣

⎤
⎥
⎦×=

V 0.1 s⋅( ) 0.404
m
s

⋅=



The plot looks like

0 0.2 0.4 0.6 0.8 1

0.5

1

1.5

t (s)

V
 (m

/s
)

To find the viscosity for which V(0.1 s) = 0.3 m/s, we must solve  

V t 0.1 s⋅=( )
M g⋅ d⋅ sin θ( )⋅

μ A⋅
1 e

μ− A⋅
M d⋅

t 0.1 s⋅=( )⋅
−

⎡
⎢
⎣

⎤
⎥
⎦⋅=

The viscosity μ is implicit in this equation, so solution must be found by manual iteration, or by any of a number of classic
root-finding numerical methods, or by using Excel's Goal Seek

Using Excel: μ 1.08
N s⋅

m2
⋅=
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Problem 2.48 [3]

NOTE: Figure is wrong - length is 0.85 m

Given: Data on double pipe heat exchanger

Find: Whether no-slip is satisfied; net viscous force on inner pipe

Solution:
For the oil, the velocity profile is uz r( ) umax 1

r
Rii

⎛
⎜
⎝

⎞
⎟
⎠

2
−

⎡⎢
⎢⎣

⎤⎥
⎥⎦

⋅= where umax
Rii

2
Δp⋅

4 μ⋅ L⋅
=

Check the no-slip condition.  When r Rii= uz Rii( ) umax 1
Rii
Rii

⎛
⎜
⎝

⎞
⎟
⎠

2

−
⎡
⎢
⎢
⎣

⎤
⎥
⎥
⎦

⋅= 0=

For the water, the velocity profile is uz r( )
1

4 μ⋅
Δp
L

⋅ Rio
2 r2
−

Roi
2 Rio

2
−

ln
Rio
Roi

⎛
⎜
⎝

⎞
⎟
⎠

ln
r

Rio
⎛⎜
⎝

⎞⎟
⎠

⋅−
⎛
⎜
⎜
⎜
⎝

⎞
⎟
⎟
⎟
⎠

⋅=

Check the no-slip condition.  When r Roi= uz Roi( ) 1
4 μ⋅

Δp
L

⋅ Rio
2 Roi

2
−

Roi
2 Rio

2
−

ln
Rio
Roi

⎛
⎜
⎝

⎞
⎟
⎠

ln
Roi
Rio

⎛
⎜
⎝

⎞
⎟
⎠

⋅−
⎛
⎜
⎜
⎜
⎝

⎞
⎟
⎟
⎟
⎠

⋅=

uz Roi( ) 1
4 μ⋅

Δp
L

⋅ Rio
2 Roi

2
− Roi

2 Rio
2

−⎛
⎝

⎞
⎠+⎡

⎣
⎤
⎦⋅= 0=



When r Rio= uz Rio( ) 1
4 μ⋅

Δp
L

⋅ Rio
2 Rio

2
−

Roi
2 Rio

2
−

ln
Rio
Roi

⎛
⎜
⎝

⎞
⎟
⎠

ln
Rio
Rio

⎛
⎜
⎝

⎞
⎟
⎠

⋅−
⎛
⎜
⎜
⎜
⎝

⎞
⎟
⎟
⎟
⎠

⋅= 0=

The no-slip condition holds on all three surfaces.

The given data is Rii
7.5 cm⋅

2
3 mm⋅−= Rii 3.45 cm⋅= Rio

7.5 cm⋅
2

= Rio 3.75 cm⋅= Roi
11 cm⋅

2
3 mm⋅−= Roi 5.2 cm⋅=

Δpw 2.5 Pa⋅= Δpoil 8 Pa⋅= L 0.85 m⋅=

The viscosity of water at 10oC is (Fig. A.2) μw 1.25 10 3−
×

N s⋅

m2
⋅=

The viscosity of SAE 10-30 oil at 100oC is (Fig. A.2) μoil 1 10 2−
×

N s⋅

m2
⋅=

For each, shear stress is given by τrx μ
du
dr
⋅=

For water τrx μ

duz r( )

dr
⋅= μw

d
dr
⋅

1
4 μw⋅

Δpw
L

⋅ Rio
2 r2−

Roi
2 Rio

2
−

ln
Rio
Roi

⎛
⎜
⎝

⎞
⎟
⎠

ln
r

Rio
⎛⎜
⎝

⎞⎟
⎠

⋅−
⎛
⎜
⎜
⎜
⎝

⎞
⎟
⎟
⎟
⎠

⋅
⎡
⎢
⎢
⎢
⎣

⎤
⎥
⎥
⎥
⎦

=

τrx
1
4

Δpw
L

⋅ 2− r⋅
Roi

2 Rio
2

−

ln
Rio
Roi

⎛
⎜
⎝

⎞
⎟
⎠

r⋅

−
⎛
⎜
⎜
⎜
⎝

⎞
⎟
⎟
⎟
⎠

⋅=

so on the pipe surface Fw τrx A⋅=
1
4

Δpw
L

⋅ 2− Rio⋅
Roi

2 Rio
2

−

ln
Rio
Roi

⎛
⎜
⎝

⎞
⎟
⎠

Rio⋅

−
⎛
⎜
⎜
⎜
⎝

⎞
⎟
⎟
⎟
⎠

⋅ 2⋅ π⋅ Rio⋅ L⋅=

Fw Δpw π⋅ Rio
2

−
Roi

2 Rio
2

−

2 ln
Rio
Roi

⎛
⎜
⎝

⎞
⎟
⎠

⋅

−
⎛
⎜
⎜
⎜
⎝

⎞
⎟
⎟
⎟
⎠

⋅=

Hence
Fw 2.5

N

m2
⋅ π× 3.75 cm⋅

1 m⋅
100 cm⋅

×⎛⎜
⎝

⎞⎟
⎠

2
−

5.2 cm⋅( )2 3.75 cm⋅( )2
−⎡⎣ ⎤⎦

1 m⋅
100 cm⋅
⎛⎜
⎝

⎞⎟
⎠

2
×

2 ln
3.75
5.2

⎛⎜
⎝

⎞⎟
⎠

⋅
−

⎡⎢
⎢
⎢
⎢
⎣

⎤⎥
⎥
⎥
⎥
⎦

×=

Fw 0.00454N=

This is the force on the r-negative surface of the fluid; on the outer pipe itself we also have Fw 0.00454N=

For oil τrx μ

duz r( )

dr
⋅= μoil

d
dr
⋅ umax 1

r
Rii

⎛
⎜
⎝

⎞
⎟
⎠

2
−

⎡⎢
⎢⎣

⎤⎥
⎥⎦

⋅=
2 μoil⋅ umax⋅ r⋅

Rii
2

−=
Δpoil r⋅

2 L⋅
−=

so on the pipe surface Foil τrx A⋅=
Δpoil Rii⋅

2 L⋅
− 2⋅ π⋅ Rii⋅ L⋅= Δpoil− π⋅ Rii

2
⋅=

This should not be a surprise: the pressure drop just balances the friction!



Hence Foil 8−
N

m2
⋅ π× 3.45 cm⋅

1 m⋅
100 cm⋅

×⎛⎜
⎝

⎞⎟
⎠

2
×= Foil 0.0299− N=

This is the force on the r-positive surface of the fluid; on the pipe it is equal and opposite Foil 0.0299N=

The total force is F Fw Foil+= F 0.0345N=

Note we didn't need the viscosities because all quantities depend on the Δp's!



Problem 2.49 [3]

NOTE: Figure is wrong - length is 0.85 m

Given: Data on counterflow heat exchanger

Find: Whether no-slip is satisfied; net viscous force on inner pipe

Solution:
The analysis for Problem 2.48 is repeated, except the oil flows in reverse, so the pressure drop is -2.5 Pa not 2.5 Pa. 

For the oil, the velocity profile is uz r( ) umax 1
r

Rii

⎛
⎜
⎝

⎞
⎟
⎠

2
−

⎡⎢
⎢⎣

⎤⎥
⎥⎦

⋅= where umax
Rii

2
Δp⋅

4 μ⋅ L⋅
=

Check the no-slip condition.  When r Rii= uz Rii( ) umax 1
Rii
Rii

⎛
⎜
⎝

⎞
⎟
⎠

2

−
⎡
⎢
⎢
⎣

⎤
⎥
⎥
⎦

⋅= 0=

For the water, the velocity profile is uz r( )
1

4 μ⋅
Δp
L

⋅ Rio
2 r2−

Roi
2 Rio

2
−

ln
Rio
Roi

⎛
⎜
⎝

⎞
⎟
⎠

ln
r

Rio

⎛
⎜
⎝

⎞
⎟
⎠

⋅−
⎛
⎜
⎜
⎜
⎝

⎞
⎟
⎟
⎟
⎠

⋅=

Check the no-slip condition.  When r Roi= uz Roi( ) 1
4 μ⋅

Δp
L

⋅ Rio
2 Roi

2
−

Roi
2 Rio

2
−

ln
Rio
Roi

⎛
⎜
⎝

⎞
⎟
⎠

ln
Roi
Rio

⎛
⎜
⎝

⎞
⎟
⎠

⋅−
⎛
⎜
⎜
⎜
⎝

⎞
⎟
⎟
⎟
⎠

⋅=

uz Roi( ) 1
4 μ⋅

Δp
L

⋅ Rio
2 Roi

2
− Roi

2 Rio
2

−⎛
⎝

⎞
⎠+⎡

⎣
⎤
⎦⋅= 0=



When r Rio= uz Rio( ) 1
4 μ⋅

Δp
L

⋅ Rio
2 Rio

2
−

Roi
2 Rio

2
−

ln
Rio
Roi

⎛
⎜
⎝

⎞
⎟
⎠

ln
Rio
Rio

⎛
⎜
⎝

⎞
⎟
⎠

⋅−
⎛
⎜
⎜
⎜
⎝

⎞
⎟
⎟
⎟
⎠

⋅= 0=

The no-slip condition holds on all three surfaces.

The given data is Rii
7.5 cm⋅

2
3 mm⋅−= Rii 3.45 cm⋅= Rio

7.5 cm⋅
2

= Rio 3.75 cm⋅= Roi
11 cm⋅

2
3 mm⋅−= Roi 5.2 cm⋅=

Δpw 2.5− Pa⋅= Δpoil 8 Pa⋅= L 0.85 m⋅=

The viscosity of water at 10oC is (Fig. A.2) μw 1.25 10 3−
×

N s⋅

m2
⋅=

The viscosity of SAE 10-30 oil at 100oC is (Fig. A.2) μoil 1 10 2−
×

N s⋅

m2
⋅=

For each, shear stress is given by τrx μ
du
dr
⋅=

For water τrx μ

duz r( )

dr
⋅= μw

d
dr
⋅

1
4 μw⋅

Δpw
L

⋅ Rio
2 r2−

Roi
2 Rio

2
−

ln
Rio
Roi

⎛
⎜
⎝

⎞
⎟
⎠

ln
r

Rio

⎛
⎜
⎝

⎞
⎟
⎠

⋅−
⎛
⎜
⎜
⎜
⎝

⎞
⎟
⎟
⎟
⎠

⋅
⎡
⎢
⎢
⎢
⎣

⎤
⎥
⎥
⎥
⎦

=

τrx
1
4

Δpw
L

⋅ 2− r⋅
Roi

2 Rio
2

−

ln
Rio
Roi

⎛
⎜
⎝

⎞
⎟
⎠

r⋅

−
⎛
⎜
⎜
⎜
⎝

⎞
⎟
⎟
⎟
⎠

⋅=

so on the pipe surface Fw τrx A⋅=
1
4

Δpw
L

⋅ 2− Rio⋅
Roi

2 Rio
2

−

ln
Rio
Roi

⎛
⎜
⎝

⎞
⎟
⎠

Rio⋅

−
⎛
⎜
⎜
⎜
⎝

⎞
⎟
⎟
⎟
⎠

⋅ 2⋅ π⋅ Rio⋅ L⋅=

Fw Δpw π⋅ Rio
2

−
Roi

2 Rio
2

−

2 ln
Rio
Roi

⎛
⎜
⎝

⎞
⎟
⎠

⋅

−
⎛
⎜
⎜
⎜
⎝

⎞
⎟
⎟
⎟
⎠

⋅=

Hence
Fw 2.5−

N

m2
⋅ π× 3.75 cm⋅( )

1 m⋅
100 cm⋅

×⎡⎢
⎣

⎤⎥
⎦

2
−

5.2 cm⋅( )2 3.75 cm⋅( )2
−⎡⎣ ⎤⎦

1 m⋅
100 cm⋅
⎛⎜
⎝

⎞⎟
⎠

2
×

2 ln
3.75
5.2

⎛⎜
⎝

⎞⎟
⎠

⋅
−

⎡⎢
⎢
⎢
⎢
⎣

⎤⎥
⎥
⎥
⎥
⎦

×=

Fw 0.00454− N=

This is the force on the r-negative surface of the fluid; on the outer pipe itself we also haveFw 0.00454− N=

For oil τrx μ

duz r( )

dr
⋅= μoil

d
dr
⋅ umax 1

r
Rii

⎛
⎜
⎝

⎞
⎟
⎠

2
−

⎡⎢
⎢⎣

⎤⎥
⎥⎦

⋅=
2 μoil⋅ umax⋅ r⋅

Rii
2

−=
Δpoil r⋅

2 L⋅
−=

so on the pipe surface Foil τrx A⋅=
Δpoil Rii⋅

2 L⋅
− 2⋅ π⋅ Rii⋅ L⋅= Δpoil− π⋅ Rii

2
⋅=

This should not be a surprise: the pressure drop just balances the friction!



Hence Foil 8−
N

m2
⋅ π× 3.45 cm⋅

1 m⋅
100 cm⋅

×⎛⎜
⎝

⎞⎟
⎠

2
×= Foil 0.0299− N=

This is the force on the r-positive surface of the fluid; on the pipe it is equal and opposite Foil 0.0299N=

The total force is F Fw Foil+= F 0.0254N=

Note we didn't need the viscosities because all quantities depend on the Δp's!



Problem 2.50 [2]

Given: Flow between two plates

Find: Force to move upper plate; Interface velocity

Solution:
The shear stress is the same throughout (the velocity gradients are linear, and the stresses in the fluid at the interface
must be equal and opposite).

Hence τ μ1
du1
dy

⋅= μ2
du2
dy

⋅= or μ1
Vi
h1
⋅ μ2

V Vi−( )
h2

⋅= where Vi is the interface velocity

Solving for the interface velocity Vi Vi
V

1
μ1
μ2

h2
h1
⋅+

=
1

m
s

⋅

1
0.1
0.15

0.3
0.5
⋅+

= Vi 0.714
m
s

=

Then the force required is F τ A⋅= μ1
Vi
h1
⋅ A⋅= 0.1

N s⋅

m2
⋅ 0.714×

m
s

⋅
1

0.5 mm⋅
×

1000 mm⋅
1 m⋅

× 1× m2
⋅= F 143N=
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Problem 2.55 [4]

Given: Data on the viscometer

Find: Time for viscometer to lose 99% of speed

Solution:

The given data is R 50 mm⋅= H 80 mm⋅= a 0.20 mm⋅= I 0.0273 kg⋅ m2
⋅= μ 0.1

N s⋅

m2
⋅=

The equation of motion for the slowing viscometer is I α⋅ Torque= τ− A⋅ R⋅=

where α is the angular acceleration and τ is the viscous stress, and A is the surface area of the viscometer

The stress is given by τ μ
du
dy
⋅= μ

V 0−
a

⋅=
μ V⋅

a
=

μ R⋅ ω⋅
a

=

where V and ω are the instantaneous linear and angular velocities.

Hence I α⋅ I
dω

dt
⋅=

μ R⋅ ω⋅
a

− A⋅ R⋅=
μ R2
⋅ A⋅

a
ω⋅=

Separating variables dω

ω

μ R2
⋅ A⋅
a I⋅

− dt⋅=

Integrating and using IC ω = ω0 ω t( ) ω0 e

μ R2⋅ A⋅
a I⋅

− t⋅
⋅=

The time to slow down by 99% is obtained from solving 0.01 ω0⋅ ω0 e

μ R2⋅ A⋅
a I⋅

− t⋅
⋅= so t

a I⋅

μ R2
⋅ A⋅

− ln 0.01( )⋅=

Note that A 2 π⋅ R⋅ H⋅= so t
a I⋅

2 π⋅ μ⋅ R3
⋅ H⋅

− ln 0.01( )⋅=

t
0.0002 m⋅ 0.0273⋅ kg⋅ m2

⋅
2 π⋅

−
m2

0.1 N⋅ s⋅
⋅

1

0.05 m⋅( )3
⋅

1
0.08 m⋅
⋅

N s2
⋅

kg m⋅
⋅ ln 0.01( )⋅= t 4.00s=
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Problem 2.58 [3]

Given: Shock-free coupling assembly

Find: Required viscosity

Solution:

Basic equation τrθ μ
du
dr

⋅= Shear force F τ A⋅= Torque T F R⋅= Power P T ω⋅=

Assumptions: Newtonian fluid, linear velocity profile

 

δ 

V1 = ω1R 

V2 = ω2(R + δ) 

τrθ μ
du
dr

⋅= μ
ΔV
Δr

⋅= μ

ω1 R⋅ ω2 R δ+( )⋅−⎡⎣ ⎤⎦
δ

⋅=

τrθ μ

ω1 ω2−( ) R⋅

δ
⋅= Because δ << R

Then P T ω2⋅= F R⋅ ω2⋅= τ A2⋅ R⋅ ω2⋅=
μ ω1 ω2−( )⋅ R⋅

δ
2⋅ π⋅ R⋅ L⋅ R⋅ ω2⋅=

P
2 π⋅ μ⋅ ω2⋅ ω1 ω2−( )⋅ R3

⋅ L⋅

δ
=

Hence μ
P δ⋅

2 π⋅ ω2⋅ ω1 ω2−( )⋅ R3
⋅ L⋅

=

μ
10 W⋅ 2.5× 10 4−

× m⋅
2 π⋅

1
9000

×
min
rev

⋅
1

1000
×

min
rev

⋅
1

.01 m⋅( )3
×

1
0.02 m⋅

×
N m⋅
s W⋅

×
rev

2 π⋅ rad⋅
⎛⎜
⎝

⎞⎟
⎠

2
×

60 s⋅
min

⎛⎜
⎝

⎞⎟
⎠

2
×=

μ 0.202
N s⋅

m2
⋅= μ 2.02poise= which corresponds to SAE 30 oil at 30oC.
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The data is N (rpm) μ (N·s/m2)
10 0.121
20 0.139
30 0.153
40 0.159
50 0.172
60 0.172
70 0.183
80 0.185



The computed data is

ω (rad/s) ω/θ (1/s) η (N·s/m2x103)
1.047 120 121
2.094 240 139
3.142 360 153
4.189 480 159
5.236 600 172
6.283 720 172
7.330 840 183
8.378 960 185

From the Trendline  analysis

k  = 0.0449
n  - 1 = 0.2068

n  = 1.21 The fluid is dilatant

The apparent viscosities at 90 and 100 rpm can now be computed

N (rpm) ω (rad/s) ω/θ (1/s) η (N·s/m2x103)
90 9.42 1080 191

100 10.47 1200 195

Viscosity vs Shear Rate

η = 44.94(ω/θ)0.2068

R2 = 0.9925

10

100

1000

100 1000

Shear Rate ω/θ (1/s)

η 
(N

.s
/m

2 x1
03 ) Data

Power Trendline



Problem 2.62 (In Excel) [3]

Given:Viscometer data
Find: Value of k and n in Eq. 2.17
Solution:
The data is τ  (Pa) du/dy  (s-1)

0.0457 5
0.119 10
0.241 25
0.375 50
0.634 100
1.06 200
1.46 300
1.78 400

Hence we have k  = 0.0162
n  = 0.7934 Blood is pseudoplastic (shear thinning)

We can compute the apparent viscosity from η  = k (du/dy )n -1

du/dy  (s-1) η  (N·s/m2) μ water = 0.001 N·s/m2 at 20oC

5 0.0116
10 0.0101 Hence, blood is "thicker" than water!
25 0.0083
50 0.0072
100 0.0063
200 0.0054
300 0.0050
400 0.0047

Shear Stress vs Shear Strain

τ = 0.0162(du/dy)0.7934

R2 = 0.9902

0.01

0.1

1

10

1 10 100 1000

du/dy  (1/s)

τ 
(P

a)
Data

Power Trendline



Problem 2.63 (In Excel) [4]

Given: Data on insulation material
Find: Type of material; replacement material
Solution:

The velocity gradient is

du/dy  = U/ δ where δ  = 0.001 m

Data and τ  (Pa) U (m/s) du/dy  (s-1)
computations 50 0.000 0

100 0.000 0
150 0.000 0
163 0.005 5
171 0.01 10
170 0.03 25
202 0.05 50
246 0.1 100
349 0.2 200
444 0.3 300

Hence we have a Bingham plastic, with τ y  = 154 Pa
μ p  = 0.963 N·s/m2

At τ  = 450 Pa, based on the linear fit du/dy  = 307 s-1

For a fluid with τ y  = 250 Pa

we can use the Bingham plastic formula to solve for μ p  given τ , τ y  and du/dy  from above

μ p  = 0.652 N·s/m2

Shear Stress vs Shear Strain

Linear data fit:
τ = 0.9632(du/dy ) + 154.34

R2 = 0.9977

0
50

100
150
200
250
300
350
400
450
500

0 50 100 150 200 250 300 350

du/dy  (1/s)

τ 
(P

a)
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Problem 2.66 [4]

 

ds 

AA 

U = ωr

dz 

z 

r 

a 

Section AA 

Given: Conical bearing geometry

Find: Expression for shear stress; Viscous torque on shaft

Solution:

Basic equation τ μ
du
dy
⋅= dT r τ⋅ dA⋅= Infinitesimal shear torque

Assumptions: Newtonian fluid, linear velocity profile (in narrow clearance gap), no slip condition

tan θ( )
r
z

= so r z tan θ( )⋅=

Then τ μ
du
dy
⋅= μ

Δu
Δy
⋅= μ

ω r⋅ 0−( )
a 0−( )

⋅=
μ ω⋅ z⋅ tan θ( )⋅

a
=

As we move up the device, shear stress increases linearly (because rate of shear strain does)

But from the sketch dz ds cos θ( )⋅= dA 2 π⋅ r⋅ ds⋅= 2 π⋅ r⋅
dz

cos θ( )
⋅=

The viscous torque on the element of area is dT r τ⋅ dA⋅= r
μ ω⋅ z⋅ tan θ( )⋅

a
⋅ 2⋅ π⋅ r⋅

dz
cos θ( )
⋅= dT

2 π⋅ μ⋅ ω⋅ z3
⋅ tan θ( )3

⋅
a cos θ( )⋅

dz⋅=

Integrating and using limits z = H and z = 0 T
π μ⋅ ω⋅ tan θ( )3

⋅ H4
⋅

2 a⋅ cos θ( )⋅
=

Using given data, and μ 0.2
N s⋅

m2
⋅= from Fig. A.2

T
π

2
0.2×

N s⋅

m2
⋅ 75×

rev
s

⋅ tan 30 deg⋅( )3
× 0.025 m⋅( )4

×
1

0.2 10 3−
× m⋅

×
1

cos 30 deg⋅( )
×

2 π⋅ rad⋅
rev

×= T 0.0643 N m⋅⋅=
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Problem 2.69 [5]

Given: Geometry of rotating bearing

Find: Expression for shear stress; Maximum shear stress; Expression for total torque; Total torque

Solution:

Basic equation τ μ
du
dy
⋅= dT r τ⋅ dA⋅=

Assumptions: Newtonian fluid, narrow clearance gap, laminar motion

From the figure r R sin θ( )⋅= u ω r⋅= ω R⋅ sin θ( )⋅=
du
dy

u 0−
h

=
u
h

=

h a R 1 cos θ( )−( )⋅+= dA 2 π⋅ r⋅ dr⋅= 2 π⋅ R sin θ( )⋅ R⋅ cos θ( )⋅ dθ⋅=

Then τ μ
du
dy
⋅=

μ ω⋅ R⋅ sin θ( )⋅
a R 1 cos θ( )−( )⋅+

=

To find the maximum τ set
θ

μ ω⋅ R⋅ sin θ( )⋅
a R 1 cos θ( )−( )⋅+
⎡⎢
⎣

⎤⎥
⎦

d
d

0= so R μ⋅ ω⋅ R cos θ( )⋅ R− a cos θ( )⋅+( )⋅

R a+ R cos θ( )⋅−( )2
0=

R cos θ( )⋅ R− a cos θ( )⋅+ 0= θ acos
R

R a+
⎛⎜
⎝

⎞⎟
⎠

= acos
75

75 0.5+
⎛⎜
⎝

⎞⎟
⎠

= θ 6.6 deg⋅=

τ 12.5 poise⋅ 0.1×

kg
m s⋅

poise
⋅ 2× π⋅

70
60
⋅

rad
s

⋅ 0.075× m⋅ sin 6.6 deg⋅( )×
1

0.0005 0.075 1 cos 6.6 deg⋅( )−( )⋅+[ ] m⋅
×

N s2
⋅

m kg⋅
×=

τ 79.2
N

m2
⋅=

The torque is T θr τ⋅ A⋅
⌠⎮
⎮⌡

d=

0

θmax

θ
μ ω⋅ R4

⋅ sin θ( )2
⋅ cos θ( )⋅

a R 1 cos θ( )−( )⋅+

⌠
⎮
⎮
⌡

d= where θmax asin
R0
R

⎛
⎜
⎝

⎞
⎟
⎠

= θmax 15.5 deg⋅=

This integral is best evaluated numerically using Excel, Mathcad, or a good calculator T 1.02 10 3−
× N m⋅⋅=
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Problem 2.71     [2] 
 
Slowly fill a glass with water to the maximum possible level. Observe the water level 
closely. Explain how it can be higher than the rim of the glass. 
 
Open-Ended Problem Statement: Slowly fill a glass with water to the maximum 
possible level before it overflows. Observe the water level closely. Explain how it can be 
higher than the rim of the glass. 
 
Discussion: Surface tension can cause the maximum water level in a glass to be higher 
than the rim of the glass. The same phenomenon causes an isolated drop of water to 
“bead up” on a smooth surface. 
Surface tension between the water/air interface and the glass acts as an invisible 
membrane that allows trapped water to rise above the level of the rim of the glass. The 
mechanism can be envisioned as forces that act in the surface of the liquid above the rim 
of the glass. Thus the water appears to defy gravity by attaining a level higher than the 
rim of the glass. 
To experimentally demonstrate that this phenomenon is the result of surface tension, set 
the liquid level nearly as far above the glass rim as you can get it, using plain water. Add 
a drop of liquid detergent (the detergent contains additives that reduce the surface tension 
of water). Watch as the excess water runs over the side of the glass. 



Problem 2.72 [2]

Given: Data on size of various needles

Find: Which needles, if any, will float

Solution:
For a steel needle of length L, diameter D, density ρs, to float in water with surface tension σ and contact angle θ, the
vertical force due to surface tension must equal or exceed the weight

2 L⋅ σ⋅ cos θ( )⋅ W≥ m g⋅=
π D2
⋅
4

ρs⋅ L⋅ g⋅= or D
8 σ⋅ cos θ( )⋅

π ρs⋅ g⋅
≤

From Table A.4 σ 72.8 10 3−
×

N
m
⋅= θ 0 deg⋅= and for water ρ 1000

kg

m3
⋅=

From Table A.1, for steel SG 7.83=

Hence
8 σ⋅ cos θ( )⋅
π SG⋅ ρ⋅ g⋅

8
π 7.83⋅

72.8× 10 3−
×

N
m
⋅

m3

999 kg⋅
×

s2

9.81 m⋅
×

kg m⋅

N s2
⋅

×= 1.55 10 3−
× m⋅= 1.55 mm⋅=

Hence D < 1.55 mm.  Only the 1 mm needles float (needle length is irrelevant)



Problem 2.73     [5] 
 
Plan an experiment to measure the surface tension of a liquid similar to water. If 
necessary, review the NCFMF video Surface Tension for ideas. Which method would be 
most suitable for use in an undergraduate laboratory? What experimental precision could 
be expected? 
 
Open-Ended Problem Statement: Plan an experiment to measure the surface tension of 
a liquid similar to water. If necessary, review the NCFMF video Surface Tension for 
ideas. Which method would be most suitable for use in an undergraduate laboratory? 
What experimental precision could be expected? 
 
Discussion: Two basic kinds of experiment are possible for an undergraduate laboratory: 
 

1. Using a clear small-diameter tube, compare the capillary rise of the unknown liquid with that of a 
known liquid (compare with water, because it is similar to the unknown liquid). 
 
This method would be simple to set up and should give fairly accurate results. A vertical 
traversing optical microscope could be used to increase the precision of measuring the liquid 
height in each tube. 
 
A drawback to this method is that the specific gravity and co ntact angle of the two liquids must be 
the same to allow the capillary rises to be compared. 
 
The capillary rise would be largest and therefore easiest to measure accurately in a tube with the 
smallest practical diameter. Tubes of several diameters could be used if desired. 
 

2. Dip an object into a pool of test liquid and measure the vertical force required to pull the object 
from the liquid surface. 
 
The object might be made rectangular (e.g., a sheet of plastic material) or circular (e.g., a metal 
ring). The net force needed to pull the same object from each liquid should be proportional to the 
surface tension of each liquid. 
 
This method would be simple to set up. However, the force magnitudes to be measured would be 
quite small. 
 
A drawback to this method is that the contact angles of the two liquids must be the same. 

 
The first method is probably best for undergraduate laboratory use. A quantitative 
estimate of experimental measurement uncertainty is impossible without knowing details 
of the test setup. It might be reasonable to expect results accurate to within ± 10% of the 
true surface tension. 
 
 
 
 
 
 
*Net force is the total vertical force minus the weight of the object.  A buoyancy correction would be 
necessary if part of the object were submerged in the test liquid. 
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Problem 2.75 [2]

Given: Boundary layer velocity profile in terms of constants a, b and c

Find: Constants a, b and c

Solution:

Basic equation u a b
y
δ

⎛⎜
⎝

⎞⎟
⎠

⋅+ c
y
δ

⎛⎜
⎝

⎞⎟
⎠

2
⋅+=

Assumptions: No slip, at outer edge u = U and τ = 0

At y = 0 0 a= a 0=

At y = δ U a b+ c+= b c+ U= (1)

At y = δ τ μ
du
dy
⋅= 0=

0
d
dy

a b
y
δ

⎛⎜
⎝

⎞⎟
⎠

⋅+ c
y
δ

⎛⎜
⎝

⎞⎟
⎠

2
⋅+=

b
δ

2 c⋅
y

δ
2

⋅+=
b
δ

2
c
δ
⋅+= b 2 c⋅+ 0= (2)

From 1 and 2 c U−= b 2 U⋅=

Hence u 2 U⋅
y
δ

⎛⎜
⎝
⎞⎟
⎠

⋅ U
y
δ

⎛⎜
⎝
⎞⎟
⎠

2
⋅−=

u
U

2
y
δ

⎛⎜
⎝
⎞⎟
⎠

⋅
y
δ

⎛⎜
⎝
⎞⎟
⎠

2
−=
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Problem 2.76 [2]

Given: Boundary layer velocity profile in terms of constants a, b and c

Find: Constants a, b and c

Solution:

Basic equation u a b
y
δ

⎛⎜
⎝

⎞⎟
⎠

⋅+ c
y
δ

⎛⎜
⎝

⎞⎟
⎠

3
⋅+=

Assumptions: No slip, at outer edge u = U and τ = 0

At y = 0 0 a= a 0=

At y = δ U a b+ c+= b c+ U= (1)

At y = δ τ μ
du
dy
⋅= 0=

0
d
dy

a b
y
δ

⎛⎜
⎝

⎞⎟
⎠

⋅+ c
y
δ

⎛⎜
⎝

⎞⎟
⎠

3
⋅+=

b
δ

3 c⋅
y2

δ
3

⋅+=
b
δ

3
c
δ
⋅+= b 3 c⋅+ 0= (2)

From 1 and 2 c
U
2

−= b
3
2

U⋅=

Hence u
3 U⋅

2
y
δ

⎛⎜
⎝
⎞⎟
⎠

⋅
U
2

y
δ

⎛⎜
⎝
⎞⎟
⎠

3
⋅−=

u
U

3
2

y
δ

⎛⎜
⎝
⎞⎟
⎠

⋅
1
2

y
δ
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⎝
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3
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Problem 2.77 [1]

Given: Local temperature

Find: Minimum speed for compressibility effects

Solution:
Basic equation V M c⋅= and M 0.3= for compressibility effects

c k R⋅ T⋅= For air at STP, k = 1.40 and R = 286.9J/kg.K (53.33 ft.lbf/lbmoR).

Hence V M c⋅= M k R⋅ T⋅⋅=

V 0.3 1.4 53.33×
ft lbf⋅
lbm R⋅
⋅

32.2 lbm⋅ ft⋅

lbf s2
⋅

× 60 460+( )× R⋅⎡
⎢
⎣

⎤
⎥
⎦

1
2

×
60 mph⋅

88
ft
s

⋅
⋅= V 229 mph⋅=



Problem 2.78 [2]

NOTE: Flow rate should be 0.75
ft3

min
⋅

Given: Geometry of and flow rate through garden hose

Find: At which point becomes turbulent

Solution:

Basic equation For pipe flow (Section 2-6) Re
ρ V⋅ D⋅

μ
= 2300= for transition to turbulence

Also flow rate Q is given by Q
π D2
⋅
4

V⋅=

We can combine these equations and eliminate V to obtain an expression for Re in terms of D

Re
ρ V⋅ D⋅

μ
=

ρ D⋅
μ

4 Q⋅

π D2
⋅

⋅=
4 Q⋅ ρ⋅
π μ⋅ D⋅

= 2300=

Hence D
4 Q⋅ ρ⋅

2300 π⋅ μ⋅
= From Appendix A: ρ 1.94

slug

ft3
⋅= (Approximately)

μ 1.25 10 3−
×

N s⋅

m2
⋅

0.209
lbf s⋅

ft2
⋅

1
N s⋅

m2
⋅

×= (Approximately, from
Fig. A.2)

μ 2.61 10 4−
×

lbf s⋅

ft2
⋅=

Hence D
4

2300 π⋅
0.75 ft3⋅

min
×

1 min⋅
60 s⋅

×
1.94 slug⋅

ft3
×

ft2

2.61 10 4−
⋅ lbf⋅ s⋅

×
lbf s2

⋅
slug ft⋅

×
12 in⋅
1 ft⋅

×= D 0.617 in⋅=

NOTE: For wrong flow
rate, will be 1/10th of
this!The nozzle is tapered: Din 1 in⋅= Dout

Din

4
= Dout 0.5 in⋅= L 5 in⋅=

Linear ratios leads to the distance from Din at which D = 0.617 in
Lturb

L

D Din−

Dout Din−
=

Lturb L
D Din−

Dout Din−
⋅= Lturb 3.83 in⋅= NOTE: For wrong flow

rate, this does not apply!
Flow will not become
turbulent.



Problem 2.79 [3]

Given: Data on supersonic aircraft

Find: Mach number; Point at which boundary layer becomes turbulent

Solution:
Basic equation V M c⋅= and c k R⋅ T⋅= For air at STP, k = 1.40 and R = 286.9J/kg.K (53.33 ft.lbf/lbmoR).

Hence M
V
c

=
V

k R⋅ T⋅
=

At 27 km the temperature is approximately (from Table A.3) T 223.5 K⋅=

M 2700 103
×

m
hr
⋅

1 hr⋅
3600 s⋅

×⎛⎜
⎝

⎞⎟
⎠

1
1.4

1
286.9

×
kg K⋅
N m⋅

⋅
1 N⋅ s2

⋅
kg m⋅

×
1

223.5
×

1
K
⋅

⎛
⎜
⎝

⎞
⎟
⎠

1
2

⋅= M 2.5=

For boundary layer transition, from Section 2-6 Retrans 500000=

Then Retrans
ρ V⋅ xtrans⋅

μ
= so xtrans

μ Retrans⋅

ρ V⋅
=

We need to find the viscosity and density at this altitude and pressure.  The viscosity depends on temperature only, but at 223.5 K = - 50oC,
it is off scale of Fig. A.3.  Instead we need to use formulas as in Appendix A

At this altitude the density is (Table A.3) ρ 0.02422 1.225×
kg

m3
⋅= ρ 0.0297

kg

m3
=

For μ μ
b T

1
2

⋅

1
S
T

+
= where b 1.458 10 6−

×
kg

m s⋅ K

1
2

⋅

⋅= S 110.4 K⋅=

μ 1.459 10 5−
×

kg
m s⋅

= μ 1.459 10 5−
×

N s⋅

m2
⋅=

Hence xtrans 1.459 10 5−
×

kg
m s⋅
⋅ 500000×

1
0.0297

×
m3

kg
⋅

1
2700

×
1

103
×

hr
m
⋅

3600 s⋅
1 hr⋅

×= xtrans 0.327m=



Problem 2.80 [2]

Given: Data on water tube

Find: Reynolds number of flow; Temperature at which flow becomes turbulent

Solution:

Basic equation For pipe flow (Section 2-6) Re
ρ V⋅ D⋅

μ
=

V D⋅
ν

=

At 20oC, from Fig. A.3 ν 9 10 7−
×

m2

s
⋅= and so Re 0.25

m
s

⋅ 0.005× m⋅
1

9 10 7−
×

×
s

m2
⋅= Re 1389=

For the heated pipe Re
V D⋅

ν
= 2300= for transition to turbulence

Hence ν
V D⋅
2300

=
1

2300
0.25×

m
s

⋅ 0.005× m⋅= ν 5.435 10 7−
×

m2

s
=

From Fig. A.3, the temperature of water at this viscosity is approximatelyT 52 C⋅=



Problem 2.81 [2]

Given: Type of oil, flow rate, and tube geometry

Find: Whether flow is laminar or turbulent

Solution:

Data on SAE 30 oil SG or density is limited in the Appendix.  We can Google it or use the following ν
μ

ρ
= so ρ

μ

ν
=

At 100oC, from Figs. A.2 and A.3 μ 9 10 3−
×

N s⋅

m2
⋅= ν 1 10 5−

×
m2

s
⋅=

ρ 9 10 3−
×

N s⋅

m2
⋅

1

1 10 5−
×

×
s

m2
⋅

kg m⋅

s2 N⋅
×= ρ 900

kg

m3
=

Hence SG
ρ

ρwater
= ρwater 1000

kg

m3
⋅= SG 0.9=

The specific weight is γ ρ g⋅= γ 900
kg

m3
⋅ 9.81×

m

s2
⋅

N s2
⋅

kg m⋅
×= γ 8.829 103

×
N

m3
⋅=

For pipe flow (Section 2-6) Q
π D2
⋅
4

V⋅= so V
4 Q⋅

π D2
⋅

=

Q 100 mL⋅
10 6− m3

⋅
1 mL⋅

×
1
9

×
1
s
⋅= Q 1.111 10 5−

×
m3

s
=

Then V
4
π

1.11× 10 5−
×

m3

s
⋅

1
12

1
mm
⋅

1000 mm⋅
1 m⋅

×⎛⎜
⎝

⎞⎟
⎠

2
×= V 0.0981

m
s

=

Hence Re
ρ V⋅ D⋅

μ
=

Re 900
kg

m3
⋅ 0.0981×

m
s

⋅ 0.012× m⋅
1

9 10 3−
×

×
m2

N s⋅
⋅

N s2
⋅

kg m⋅
×= Re 118=

Flow is laminar



Problem 2.82 [2]

Given: Data on seaplane

Find: Transition point of boundary layer

Solution:
For boundary layer transition, from Section 2-6 Retrans 500000=

Then Retrans
ρ V⋅ xtrans⋅

μ
=

V xtrans⋅

ν
= so xtrans

ν Retrans⋅

V
=

At 45oF = 7.2oC (Fig A.3) ν 0.8 10 5−
×

m2

s
⋅

10.8
ft2

s
⋅

1
m2

s
⋅

×= ν 8.64 10 5−
×

ft2

s
⋅=

xtrans 8.64 10 5−
×

ft2

s
⋅ 500000⋅

1
100 mph⋅

×
60 mph⋅

88
ft
s

⋅
×= xtrans 0.295 ft⋅=

As the seaplane touches down:

At 45oF = 7.2oC (Fig A.3) ν 1.5 10 5−
×

m2

s
⋅

10.8
ft2

s
⋅

1
m2

s
⋅

×= ν 1.62 10 4−
×

ft2

s
⋅=

xtrans 1.62 10 4−
×

ft2

s
⋅ 500000⋅

1
100 mph⋅

×
60 mph⋅

88
ft
s

⋅
×= xtrans 0.552 ft⋅=



Problem 2.83 (In Excel) [3]

Given: Data on airliner
Find: Sketch of speed versus altitude (M = const)
Solution:
Data on temperature versus height can be obtained from Table A.3

At 5.5 km the temperature is approximatel 252 K

The speed of sound is obtained from

where k  = 1.4
R  = 286.9 J/kg·K (Table A.6)

c  = 318 m/s

We also have
V  = 700 km/hr

or V  = 194 m/s

Hence M  = V/c  or

M  = 0.611

To compute V  for constant M , we use V  = M · c  = 0.611·c

At a height of 8 km V  = 677 km/hr
NOTE:  Realistically, the aiplane will fly to a maximum height of about 10 km!

z (km) T (K) c (m/s) V (km/hr)
4 262 325 713
5 259 322 709
5 256 320 704
6 249 316 695
7 243 312 686
8 236 308 677
9 230 304 668

10 223 299 658
11 217 295 649
12 217 295 649
13 217 295 649
14 217 295 649
15 217 295 649
16 217 295 649
17 217 295 649
18 217 295 649
19 217 295 649
20 217 295 649
22 219 296 651
24 221 298 654
26 223 299 657
28 225 300 660
30 227 302 663
40 250 317 697
50 271 330 725
60 256 321 705
70 220 297 653
80 181 269 592
90 181 269 592

Speed vs. Altitude
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Problem 2.84     [4] 
 
How does an airplane wing develop lift? 
 
Open-Ended Problem Statement: How does an airplane wing develop lift? 
 
Discussion: The sketch shows the cross-section of a typical airplane wing. The airfoil 
section is rounded at the front, curved across the top, reaches maximum thickness about a 
third of the way back, and then tapers slowly to a fine trailing edge. The bottom of the 
airfoil section is relatively flat. (The discussion below also applies to a symmetric airfoil 
at an angle of incidence that produces lift.)  

  
It is both a popular expectation and an experimental fact that air flows more rapidly over 
the curved top surface of the airfoil section than along the relatively flat bottom. In the 
NCFMF video Flow Visualization, timelines placed in front of the airfoil indicate that 
fluid flows more rapidly along the top of the  section than along the bottom. 
 
In the absence of viscous effects (this is a valid assumption outside the boundary layers 
on the airfoil) pressure falls when flow speed increases. Thus the pressures on the top 
surface of the airfoil where flow speed is higher are lower than the pressures on the 
bottom surface where flow speed does not increase. (Actual pressure profiles measured 
for a lifting section are shown in the NCFMF video Boundary Layer Control.) The 
unbalanced pressures on the top and bottom surfaces of the airfoil section create a net 
force that tends to develop lift on the profile. 

NACA 2412 Wing Section 



Problem 3.1 [2]

Given: Data on nitrogen tank

Find: Mass of nitrogen; minimum required wall thickness

Solution:

Assuming ideal gas behavior: p V⋅ M R⋅ T⋅=

where, from Table A.6, for nitrogen R 297
J

kg K⋅
⋅=

Then the mass of nitrogen is M
p V⋅
R T⋅

=
p

R T⋅
π D3
⋅
6

⎛
⎜
⎝

⎞
⎟
⎠

⋅=

M
25 106
⋅ N⋅

m2
kg K⋅
297 J⋅

×
1

298 K⋅
×

J
N m⋅

×
π 0.75 m⋅( )3
⋅

6
×=

M 62.4kg=

To determine wall thickness, consider a free body diagram for one hemisphere:

ΣF 0= p
π D2
⋅
4

⋅ σc π⋅ D⋅ t⋅−=

where σc is the circumferential stress in the container

Then t
p π⋅ D2

⋅
4 π⋅ D⋅ σc⋅

=
p D⋅
4 σc⋅

=

t 25 106
⋅

N

m2
⋅

0.75 m⋅
4

×
1

210 106
⋅

×
m2

N
⋅=

t 0.0223m= t 22.3mm=



Problem 3.2 [2]

Given: Data on flight of airplane

Find: Pressure change in mm Hg for ears to "pop"; descent distance from 8000 m to cause ears to "pop."

Solution:
Assume the air density is approximately constant constant from 3000 m to 2900 m.
From table A.3

ρSL 1.225
kg

m3
⋅= ρair 0.7423 ρSL⋅= ρair 0.909

kg

m3
=

We also have from the manometer equation, Eq. 3.7

Δp ρair− g⋅ Δz⋅= and also Δp ρHg− g⋅ ΔhHg⋅=

Combining ΔhHg
ρair
ρHg

Δz⋅=
ρair

SGHg ρH2O⋅
Δz⋅= SGHg 13.55=   from Table A.2

ΔhHg
0.909

13.55 999×
100× m⋅= ΔhHg 6.72mm=

For the ear popping descending from 8000 m, again assume the air density is approximately constant constant, this time at 8000
m.
From table A.3

ρair 0.4292 ρSL⋅= ρair 0.526
kg

m3
=

We also have from the manometer equation

ρair8000 g⋅ Δz8000⋅ ρair3000 g⋅ Δz3000⋅=

where the numerical subscripts refer to conditions at 3000m and 8000m.
Hence

Δz8000
ρair3000 g⋅

ρair8000 g⋅
Δz3000⋅=

ρair3000
ρair8000

Δz3000⋅= Δz8000
0.909
0.526

100× m⋅= Δz8000 173m=



Problem 3.3 [3]

Given: Boiling points of water at different elevations

Find: Change in elevation

Solution:

From the steam tables, we have the following data for the boiling point (saturation temperature) of water

Tsat (oF) p (psia)
195 10.39
185 8.39

The sea level pressure, from Table A.3, is

pSL = 14.696 psia

Hence

Tsat (oF) p/pSL

195 0.707
185 0.571

From Table A.3

p/pSL Altitude (m) Altitude (ft)
0.7372 2500 8203
0.6920 3000 9843
0.6492 3500 11484
0.6085 4000 13124
0.5700 4500 14765

Then, any one of a number of Excel  functions can be used to interpolate
(Here we use Excel 's Trendline analysis)

p/pSL Altitude (ft)
0.707 9303 Current altitude is approximately 9303 ft
0.571 14640

The change in altitude is then 5337 ft

Alternatively, we can interpolate for each altitude by using a linear regression between adjacent data points

p/pSL Altitude (m) Altitude (ft) p/pSL Altitude (m) Altitude (ft)
For 0.7372 2500 8203 0.6085 4000 13124

0.6920 3000 9843 0.5700 4500 14765

Then 0.7070 2834 9299 0.5730 4461 14637

The change in altitude is then 5338 ft

Altitude vs Atmospheric Pressure

z  = -39217(p/pSL) + 37029
R2 = 0.999
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Problem 3.5 [2]

Given: Data on system before and after applied force

Find: Applied force

Solution:

Basic equation dp
dy

ρ− g⋅= or, for constant ρ p patm ρ g⋅ y y0−( )⋅−= with p y0( ) patm=

For initial state p1 patm ρ g⋅ h⋅+= and F1 p1 A⋅= ρ g⋅ h⋅ A⋅= (Gage; F1 is hydrostatic upwards force)

For the initial FBD ΣFy 0= F1 W− 0= W F1= ρ g⋅ h⋅ A⋅=

For final state p2 patm ρ g⋅ H⋅+= and F2 p2 A⋅= ρ g⋅ H⋅ A⋅= (Gage; F2 is hydrostatic upwards force)

For the final FBD ΣFy 0= F2 W− F− 0= F F2 W−= ρ g⋅ H⋅ A⋅ ρ g⋅ h⋅ A⋅−= ρ g⋅ A⋅ H h−( )⋅=

F ρH2O SG⋅ g⋅
π D2
⋅
4

⋅ H h−( )⋅=

From Fig. A.1 SG 13.54=

F 1000
kg

m3
⋅ 13.54× 9.81×

m

s2
⋅

π

4
× 0.05 m⋅( )2

× 0.2 0.025−( )× m⋅
N s2
⋅

kg m⋅
×=

F 45.6N=



Problem 3.6 [2]

Given: Data on system

Find: Force on bottom of cube; tension in tether

Solution:

Basic equation dp
dy

ρ− g⋅= or, for constant ρ Δp ρ g⋅ h⋅= where h is measured downwards

The absolute pressure at the interface is pinterface patm SGoil ρ⋅ g⋅ hoil⋅+=

Then the pressure on the lower surface is pL pinterface ρ g⋅ hL⋅+= patm ρ g⋅ SGoil hoil⋅ hL+( )⋅+=

For the cube V 125 mL⋅= V 1.25 10 4−
× m3

⋅=

Then the size of the cube is d V

1
3

= d 0.05m= and the depth in water to the upper surface is hU 0.3 m⋅=

Hence hL hU d+= hL 0.35m= where hL is the depth in water to the lower surface

The force on the lower surface is FL pL A⋅= where A d2
= A 0.0025m2

=

FL patm ρ g⋅ SGoil hoil⋅ hL+( )⋅+⎡⎣ ⎤⎦ A⋅=

FL 101 103
×

N

m2
⋅ 1000

kg

m3
⋅ 9.81×

m

s2
⋅ 0.8 0.5× m⋅ 0.35 m⋅+( )×

N s2
⋅

kg m⋅
×+

⎡⎢
⎢⎣

⎤⎥
⎥⎦

0.0025× m2
⋅=

FL 270.894N= Note: Extra decimals needed for computing T later!

For the tension in the tether, an FBD givesΣFy 0= FL FU− W− T− 0= or T FL FU− W−=

where FU patm ρ g⋅ SGoil hoil⋅ hU+( )⋅+⎡⎣ ⎤⎦ A⋅=



Note that we could instead compute ΔF FL FU−= ρ g⋅ SGoil⋅ hL hU−( )⋅ A⋅= and T ΔF W−=

Using FU

FU 101 103
×

N

m2
⋅ 1000

kg

m3
⋅ 9.81×

m

s2
⋅ 0.8 0.5× m⋅ 0.3 m⋅+( )×

N s2
⋅

kg m⋅
×+

⎡⎢
⎢⎣

⎤⎥
⎥⎦

0.0025× m2
⋅=

FU 269.668N= Note: Extra decimals needed for computing T later!

For the oak block (Table A.1) SGoak 0.77= so W SGoak ρ⋅ g⋅ V⋅=

W 0.77 1000×
kg

m3
⋅ 9.81×

m

s2
⋅ 1.25× 10 4−

× m3
⋅

N s2
⋅

kg m⋅
×= W 0.944N=

T FL FU− W−= T 0.282N=



Problem 3.7 [1]

Given: Pressure and temperature data from balloon

Find: Plot density change as a function of elevation

Solution:

Using the ideal gas equation, ρ = p/RT

p (kPa) T (oC) ρ (kg/m3)
101.4 12.0 1.240
100.8 11.1 1.236
100.2 10.5 1.231
99.6 10.2 1.225
99.0 10.1 1.218
98.4 10.0 1.212
97.8 10.3 1.203
97.2 10.8 1.193
96.6 11.6 1.183
96.0 12.2 1.173
95.4 12.1 1.166

Density Distribution
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Problem 3.8 [2]

Given: Data on tire at 3500 m and at sea level

Find: Absolute pressure at 3500 m; pressure at sea level

Solution:

At an elevation of 3500 m, from Table A.3:

pSL 101 kPa⋅= patm 0.6492 pSL⋅= patm 65.6 kPa⋅=

and we have pg 0.25 MPa⋅= pg 250 kPa⋅= p pg patm+= p 316 kPa⋅=

At sea level patm 101 kPa⋅=

Meanwhile, the tire has warmed up, from the ambient temperature at 3500 m, to 25oC.

At an elevation of 3500 m, from Table A.3 Tcold 265.4 K⋅= and Thot 25 273+( ) K⋅= Thot 298K=

Hence, assuming ideal gas behavior, pV = mRT, and that the tire is approximately a rigid container, the absolute pressure of the
hot tire is

phot
Thot
Tcold

p⋅= phot 354 kPa⋅=

Then the gage pressure is

pg phot patm−= pg 253 kPa⋅=



Problem 3.9 [2]

Given: Properties of a cube floating at an interface

Find: The pressures difference between the upper and lower surfaces; average cube density

Solution:
The pressure difference is obtained from two applications of Eq. 3.7

pU p0 ρSAE10 g⋅ H 0.1 d⋅−( )⋅+= pL p0 ρSAE10 g⋅ H⋅+ ρH2O g⋅ 0.9⋅ d⋅+=

where pU and pL are the upper and lower pressures, p0 is the oil free surface pressure, H is the depth of the interface, and d
is the cube size

Hence the pressure difference is

Δp pL pU−= ρH2O g⋅ 0.9⋅ d⋅ ρSAE10 g⋅ 0.1⋅ d⋅+= Δp ρH2O g⋅ d⋅ 0.9 SGSAE10 0.1⋅+( )⋅=

From Table A.2 SGSAE10 0.92=

Δp 999
kg

m3
⋅ 9.81×

m

s2
⋅ 0.1× m⋅ 0.9 0.92 0.1×+( )×

N s2
⋅

kg m⋅
×= Δp 972Pa=

For the cube density, set up a free body force balance for the cube

ΣF 0= Δp A⋅ W−=

Hence W Δp A⋅= Δp d2
⋅=

ρcube
m

d3
=

W

d3 g⋅
=

Δp d2
⋅

d3 g⋅
=

Δp
d g⋅

=

ρcube 972
N

m2
⋅

1
0.1 m⋅

×
s2

9.81 m⋅
×

kg m⋅

N s2
⋅

×= ρcube 991
kg

m3
=



Problem 3.10 [2]

Given: Properties of a cube suspended by a wire in a fluid

Find: The fluid specific gravity; the gage pressures on the upper and lower surfaces

Solution:

From a free body analysis of the cube: ΣF 0= T pL pU−( ) d2
⋅+ M g⋅−=

where M and d are the cube mass and size and pL and pU are the pressures on the lower and upper surfaces

For each pressure we can use Eq. 3.7 p p0 ρ g⋅ h⋅+=

Hence pL pU− p0 ρ g⋅ H d+( )⋅+⎡⎣ ⎤⎦ p0 ρ g⋅ H⋅+( )−= ρ g⋅ d⋅= SG ρH2O⋅ d⋅=

where H is the depth of the upper surface

Hence the force balance gives SG
M g⋅ T−

ρH2O g⋅ d3
⋅

= SG

2 slug⋅ 32.2×
ft

s2
⋅

lbf s2
⋅

slug ft⋅
× 50.7 lbf⋅−

1.94
slug

ft3
⋅ 32.2×

ft

s2
⋅

lbf s2
⋅

slug ft⋅
× 0.5 ft⋅( )3

×

= SG 1.75=

From Table A.1, the fluid is Meriam blue.

The individual pressures are computed from Eq 3.7

p p0 ρ g⋅ h⋅+= or pg ρ g⋅ h⋅= SG ρH2O⋅ h⋅=

For the upper surface pg 1.754 1.94×
slug

ft3
⋅ 32.2×

ft

s2
⋅

2
3

× ft⋅
lbf s2

⋅
slug ft⋅

×
1 ft⋅

12 in⋅
⎛⎜
⎝

⎞⎟
⎠

2
×= pg 0.507psi=

For the lower surface pg 1.754 1.94×
slug

ft3
⋅ 32.2×

ft

s2
⋅

2
3

1
2

+⎛⎜
⎝

⎞⎟
⎠

× ft⋅
lbf s2

⋅
slug ft⋅

×
1 ft⋅

12 in⋅
⎛⎜
⎝

⎞⎟
⎠

2
×= pg 0.888psi=

Note that the SG calculation can also be performed using a buoyancy approach (discussed later in the chapter):

Consider a free body diagram of the cube: ΣF 0= T FB+ M g⋅−=

where M is the cube mass and FB is the buoyancy force FB SG ρH2O⋅ L3
⋅ g⋅=

Hence T SG ρH2O⋅ L3
⋅ g⋅+ M g⋅− 0= or SG

M g⋅ T−

ρH2O g⋅ L3
⋅

= as before SG 1.75=



Problem 3.11 [2]

Given: Data on air bubble

Find: Bubble diameter as it reaches surface

Solution:

Basic equation dp
dy

ρsea− g⋅= and the ideal gas equation p ρ R⋅ T⋅=
M
V

R⋅ T⋅=

We assume the temperature is constant, and the density of sea water is constant

For constant sea water density p patm SGsea ρ⋅ g⋅ h⋅+= where p is the pressure at any depth h

Then the pressure at the initial depth is p1 patm SGsea ρ⋅ g⋅ h1⋅+=

The pressure as it reaches the surface is p2 patm=

For the bubble p
M R⋅ T⋅

V
= but M and T are constant M R⋅ T⋅ const= p V⋅=

Hence p1 V1⋅ p2 V2⋅= or V2 V1
P1
p2
⋅= or D2

3 D1
3 p1

p2
⋅=

Then the size of the bubble at the surface isD2 D1
p1
p2

⎛
⎜
⎝

⎞
⎟
⎠

1
3

⋅= D1
patm ρsea g⋅ h1⋅+( )

patm

⎡
⎢
⎣

⎤
⎥
⎦

1
3

⋅= D1 1
ρsea g⋅ h1⋅

patm
+

⎛
⎜
⎝

⎞
⎟
⎠

1
3

⋅=

From Table A.2 SGsea 1.025= (This is at 68oF)

D2 0.3 in⋅ 1 1.025 1.94×
slug

ft3
⋅ 32.2×

ft

s2
× 100× ft⋅

in2

14.7 lbf⋅
×

1 ft⋅
12 in⋅

⎛⎜
⎝

⎞⎟
⎠

2
×

lbf s2
⋅

slugft⋅
×+

⎡⎢
⎢⎣

⎤⎥
⎥⎦

1
3

×=

D2 0.477 in⋅=



 
Problem 3.12                                                                             [4]



 
Problem 3.13                                                                             [3]   Part 1/2



 
Problem 3.13                                                                             [4]   Part 2/2



 
Problem 3.14                                                                             [3]



Problem 3.15 [1]

Given: Geometry of straw

Find: Pressure just below the thumb

Solution:

Basic equation dp
dy

ρ− g⋅= or, for constant ρ Δp ρ g⋅ h⋅= where h is measured downwards

This equation only applies in the 6 in of coke in the straw - in the other 11 inches of air the pressure is essentially constant.

The gage pressure at the coke surface is pcoke ρ g⋅ hcoke⋅= assuming coke is about as dense as water (it's actually a bit dens

Hence, with hcoke 6− in⋅= because h is measured downwards

pcoke 1.94−
slug

ft3
⋅ 32.2×

ft

s2
⋅ 6× in⋅

1 ft⋅
12 in⋅

×
lbf s2

⋅
slugft⋅

×=

pcoke 31.2−
lbf

ft2
⋅= pcoke 0.217− psi⋅= gage

pcoke 14.5 psi⋅=



Problem 3.16 [2]

Given: Data on water tank and inspection cover

Find: If the support bracket is strong enough; at what water depth would it fail

Solution:

Basic equation dp
dy

ρ− g⋅= or, for constant ρ Δp ρ g⋅ h⋅= where h is measured downwards

The absolute pressure at the base is pbase patm ρ g⋅ h⋅+= where h 5 m⋅=

The gage pressure at the base is pbase ρ g⋅ h⋅= This is the pressure to use as we have patm on the outside of the cover.

The force on the inspection cover is F pbase A⋅= where A 2.5 cm⋅ 2.5× cm⋅= A 6.25 10 4−
× m2

=

F ρ g⋅ h⋅ A⋅=

F 1000
kg

m3
⋅ 9.81×

m

s2
⋅ 5× m⋅ 6.25× 10 4−

× m2
⋅

N s2
⋅

kg m⋅
×=

F 30.7N=

The bracket is strong enough (it can take 40 N).  To find the maximum depth we start withF 40 N⋅=

h
F

ρ g⋅ A⋅
=

h 40 N⋅
1

1000
×

m3

kg
⋅

1
9.81

×
s2

m
⋅

1

6.25 10 4−
×

×
1

m2
⋅

kg m⋅

N s2
⋅

×=

h 6.52m=
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Problem 3.18 [2]

Given: Data on partitioned tank

Find: Gage pressure of trapped air; pressure to make water and mercury levels equal

Solution:
The pressure difference is obtained from repeated application of Eq. 3.7, or in other words, from Eq. 3.8.  Starting from the
right air chamber

pgage SGHg ρH2O× g× 3 m⋅ 2.9 m⋅−( )× ρH2O g× 1× m⋅−=

pgage ρH2O g× SGHg 0.1× m⋅ 1.0 m⋅−( )×=

pgage 999
kg

m3
⋅ 9.81×

m

s2
⋅ 13.55 0.1× m⋅ 1.0 m⋅−( )×

N s2
⋅

kg m⋅
×= pgage 3.48 kPa⋅=

If the left air pressure is now increased until the water and mercury levels are now equal, Eq. 3.8 leads to

pgage SGHg ρH2O× g× 1.0× m⋅ ρH2O g× 1.0× m⋅−=

pgage ρH2O g× SGHg 1× m⋅ 1.0 m⋅−( )×=

pgage 999
kg

m3
⋅ 9.81×

m

s2
⋅ 13.55 1× m⋅ 1.0 m⋅−( )×

N s2
⋅

kg m⋅
×= pgage 123 kPa⋅=



Problem 3.19 [2]

Given: Data on partitioned tank

Find: Pressure of trapped air required to bring water and mercury levels equal if right air opening is sealed

Solution:
First we need to determine how far each free surface moves.

In the tank of Problem 3.15, the ratio of cross section areas of the partitions is 0.75/3.75 or 1:5.  Suppose the water
surface (and therefore the mercury on the left) must move down distance x to bring the water and mercury levels equal.
Then by mercury volume conservation, the mercury free surface (on the right) moves up (0.75/3.75)x = x/5.  These two
changes in level must cancel the original discrepancy in free surface levels, of (1m + 2.9m) - 3 m = 0.9 m.  Hence x + x/5 =
0.9 m, or x = 0.75 m.  The mercury level thus moves up x/5 = 0.15 m.

Assuming the air (an ideal gas, pV=RT) in the right behaves isothermally, the new pressure there will be

pright
Vrightold
Vrightnew

patm⋅=
Aright Lrightold⋅

Aright Lrightnew⋅
patm⋅=

Lrightold
Lrightnew

patm⋅=

where V, A and L represent volume, cross-section area, and vertical length
Hence

pright
3

3 0.15−
101× kPa⋅= pright 106kPa=

When the water and mercury levels are equal application of Eq. 3.8 gives:

pleft pright SGHg ρH2O× g× 1.0× m⋅+ ρH2O g× 1.0× m⋅−=

pleft pright ρH2O g× SGHg 1.0× m⋅ 1.0 m⋅−( )×+=

pleft 106 kPa⋅ 999
kg

m3
⋅ 9.81×

m

s2
⋅ 13.55 1.0⋅ m⋅ 1.0 m⋅−( )×

N s2
⋅

kg m⋅
×+= pleft 229kPa=

pgage pleft patm−= pgage 229 kPa⋅ 101 kPa⋅−= pgage 128kPa=
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Problem 3.22 [2]

Given: Data on manometer

Find: Deflection due to pressure difference

Solution:

Basic equation dp
dy

ρ− g⋅= or, for constant ρ Δp ρ g⋅ Δh⋅= where h is measured downwards

Starting at p1 pA p1 SGA ρ⋅ g⋅ h l+( )⋅+= where l is the (unknown) distance from the level of the right
interface

Next, from A to B pB pA SGB ρ⋅ g⋅ h⋅−=

Finally, from A to the location of p2 p2 pB SGA ρ⋅ g⋅ l⋅−=

Combining the three equations p2 pA SGB ρ⋅ g⋅ h⋅−( ) SGA ρ⋅ g⋅ l⋅−= p1 SGA ρ⋅ g⋅ h l+( )⋅+ SGB ρ⋅ g⋅ h⋅−⎡⎣ ⎤⎦ SGA ρ⋅ g⋅ l⋅−=

p2 p1− SGA SGB−( ) ρ⋅ g⋅ h⋅=

h
p1 p2−

SGB SGA−( ) ρ⋅ g⋅
=

h 18
lbf

ft2
⋅

1
2.95 0.88−( )

×
1

1.94
×

ft3

slug
⋅

1
32.2

×
s2

ft
⋅

slug ft⋅

s2 lbf⋅
×=

h 0.139 ft⋅= h 1.67 in⋅=
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Problem 3.24 [2]

Given: Data on manometer

Find: Gage pressure at point a

Solution:

Basic equation dp
dy

ρ− g⋅= or, for constant ρ Δp ρ g⋅ Δh⋅= where Δh is height difference

Starting at point a p1 pa ρ g⋅ h1⋅−= where h1 0.125 m⋅ 0.25 m⋅+= h1 0.375m=

Next, in liquid A p2 p1 SGA ρ⋅ g⋅ h2⋅+= where h2 0.25 m⋅=

Finally, in liquid B patm p2 SGB ρ⋅ g⋅ h3⋅−= where h3 0.9 m⋅ 0.4 m⋅−= h3 0.5m=

Combining the three equations patm p1 SGA ρ⋅ g⋅ h2⋅+( ) SGB ρ⋅ g⋅ h3⋅−= pa ρ g⋅ h1⋅− SGA ρ⋅ g⋅ h2⋅+ SGB ρ⋅ g⋅ h3⋅−=

pa patm ρ g⋅ h1 SGA h2⋅− SGB h3⋅+( )⋅+=

or in gage pressures pa ρ g⋅ h1 SGA h2⋅− SGB h3⋅+( )⋅=

pa 1000
kg

m3
⋅ 9.81×

m

s2
⋅ 0.375 0.75 0.25×( )− 1.20 0.5×( )+[ ]× m⋅

N s2
⋅

kg m⋅
×=

pa 7.73 103
× Pa= pa 7.73 kPa⋅= (gage)
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Problem 3.26 [2]

Given: Data on fluid levels in a tank

Find: Air pressure; new equilibrium level if opening appears

Solution:
Using Eq. 3.8, starting from the open side and working in gage pressure

pair ρH2O g× SGHg 0.3 0.1−( )× m⋅ 0.1 m⋅− SGBenzene 0.1× m⋅−⎡⎣ ⎤⎦×=

Using data from Table A.2 pair 999
kg

m3
⋅ 9.81×

m

s2
⋅ 13.55 0.2× m⋅ 0.1 m⋅− 0.879 0.1× m⋅−( )×

N s2
⋅

kg m⋅
×= pair 24.7 kPa⋅=

To compute the new level of mercury in the manometer, assume the change in level from 0.3 m is an increase of  x.  Then,
because the volume of mercury is constant, the tank mercury level will fall by distance (0.025/0.25)2x.  Hence, the gage
pressure at the bottom of the tank can be computed from the left and the right, providing a formula for x

SGHg ρH2O× g× 0.3 m⋅ x+( )× SGHg ρH2O× g× 0.1 m⋅ x
0.025
0.25

⎛⎜
⎝

⎞⎟
⎠

2
⋅−

⎡
⎢
⎣

⎤
⎥
⎦

× m⋅

ρH2O g× 0.1× m⋅ SGBenzene ρH2O× g× 0.1× m⋅++

...=

Hence x
0.1 m⋅ 0.879 0.1× m⋅+ 13.55 0.1 0.3−( )× m⋅+[ ]

1
0.025
0.25

⎛⎜
⎝

⎞⎟
⎠

2
+

⎡
⎢
⎣

⎤
⎥
⎦

13.55×

= x 0.184− m=

(The negative sign indicates the
manometer level actually fell)

The new manometer height is h 0.3 m⋅ x+= h 0.116m=
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Problem 3.32 [3]

Given: Data on inclined manometer

Find: Angle θ for given data; find sensitivity

Solution:

Basic equation dp
dy

ρ− g⋅= or, for constant ρ Δp ρ g⋅ Δh⋅= where Δh is height difference

Under applied pressure Δp SGMer ρ⋅ g⋅ L sin θ( )⋅ x+( )⋅= (1)

From Table A.1 SGMer 0.827=

and Δp = 1 in. of water, or Δp ρ g⋅ h⋅= where h 25 mm⋅= h 0.025m=

Δp 1000
kg

m3
⋅ 9.81×

m

s2
⋅ 0.025× m⋅

N s2
⋅

kg m⋅
×= Δp 245Pa=

The volume of liquid must remain constant, so x Ares⋅ L Atube⋅= x L
Atube
Ares

⋅= L
d
D
⎛⎜
⎝

⎞⎟
⎠

2
⋅= (2)

Combining Eqs 1 and 2 Δp SGMer ρ⋅ g⋅ L sin θ( )⋅ L
d
D
⎛⎜
⎝

⎞⎟
⎠

2
⋅+

⎡
⎢
⎣

⎤
⎥
⎦

⋅=

Solving for θ sin θ( )
Δp

SGMer ρ⋅ g⋅ L⋅
d
D
⎛⎜
⎝

⎞⎟
⎠

2
−=

sin θ( ) 245
N

m2
⋅

1
0.827

×
1

1000
×

m3

kg
⋅

1
9.81

×
s2

m
⋅

1
0.15

×
1
m
⋅

kg m⋅

s2 N⋅
×

8
76
⎛⎜
⎝

⎞⎟
⎠

2
−= 0.186=

θ 11 deg⋅=

The sensitivity is the ratio of manometer deflection to a vertical water manometer

s
L
h

=
0.15 m⋅

0.025 m⋅
= s 6=
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s = L/Δhe = L/(SG h) = 5/SG



 
Problem 3.34                                                                             [3]   Part 1/2
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Problem 3.38 [2]

Fluid 1

Fluid 2

Given: Two fluids inside and outside a tube

Find: An expression for height h; find diameter for h < 10 mm for water/mercury

Solution:

A free-body vertical force analysis for the section of fluid 1 height Δh in the tube below the "free surface" of fluid 2 leads to

F∑ 0= Δp
π D2
⋅
4

⋅ ρ1 g⋅ Δh⋅
π D2
⋅
4

⋅− π D⋅ σ⋅ cos θ( )⋅+=

where Δp is the pressure difference generated by fluid 2 over height Δh, Δp ρ2 g⋅ Δh⋅=

Assumption: Neglect meniscus curvature for column height and volume calculations

Hence Δp
π D2
⋅
4

⋅ ρ1 g⋅ Δh⋅
π D2
⋅
4

⋅− ρ2 g⋅ Δh⋅
π D2
⋅
4

⋅ ρ1 g⋅ Δh⋅
π D2
⋅
4

⋅−= π− D⋅ σ⋅ cos θ( )⋅=

Solving for Δh Δh
4 σ⋅ cos θ( )⋅

g D⋅ ρ2 ρ1−( )⋅
−=

For fluids 1 and 2 being water and mercury (for mercury σ = 375 mN/m and θ = 140o, from Table A.4), solving for D to
make Δh = 10 mm

D
4 σ⋅ cos θ( )⋅

g Δh⋅ ρ2 ρ1−( )⋅
−=

4 σ⋅ cos θ( )⋅
g Δh⋅ ρH2O⋅ SGHg 1−( )⋅

−=

D
4 0.375×

N
m
⋅ cos 140 deg⋅( )×

9.81
m

s2
⋅ 0.01× m⋅ 1000×

kg

m3
⋅ 13.6 1−( )×

−
kg m⋅

N s2
⋅

×= D 0.93mm= D 1 mm⋅≥



Problem 3.39 [2]

 

h2 

h1 

h3 

h4 

x 

Oil 

Air 

Hg 

Given: Data on manometer before and after an "accident"

Find: Change in mercury level

Solution:

Basic equation dp
dy

ρ− g⋅= or, for constant ρ Δp ρ g⋅ Δh⋅= where Δh is height difference

For the initial state, working from right to left patm patm SGHg ρ⋅ g⋅ h3⋅+ SGoil ρ⋅ g⋅ h1 h2+( )⋅−=

SGHg ρ⋅ g⋅ h3⋅ SGoil ρ⋅ g⋅ h1 h2+( )⋅= (1)

Note that the air pocket has no effect!

For the final state, working from right to left patm patm SGHg ρ⋅ g⋅ h3 x−( )⋅+ SGoil ρ⋅ g⋅ h4⋅−=

SGHg ρ⋅ g⋅ h3 x−( )⋅ SGoil ρ⋅ g⋅ h4⋅= (2)

The two unknowns here are the mercury levels before and after (i.e., h3 and x)

Combining Eqs. 1 and 2 SGHg ρ⋅ g⋅ x⋅ SGoil ρ⋅ g⋅ h1 h2+ h4−( )⋅= x
SGoil
SGHg

h1 h2+ h4−( )⋅= (3)

From Table A.1 SGHg 13.55=

The term h1 h2+ h4− is the difference between the total height of
oil before and after the accident

h1 h2+ h4−
ΔV

π d2
⋅
4

⎛
⎜
⎝

⎞
⎟
⎠

=
4
π

1
0.011

1
m
⋅⎛⎜

⎝
⎞⎟
⎠

2
× 3× cc⋅

1 m⋅
100 cm⋅
⎛⎜
⎝

⎞⎟
⎠

3
×= 0.0316 m⋅=

x
1.67
13.55

0.0316× m⋅= x 3.895 10 3−
× m= x 0.389 cm⋅=Then from Eq. 3



p SL = 101 kPa
R  = 286.9 J/kg.K
ρ = 999 kg/m3



The temperature can be computed from the data in the figure
The pressures are then computed from the appropriate equation From Table A.3

z  (km) T  (oC) T  (K) p /p SL z  (km) p /p SL

0.0 15.0 288.0 m = 1.000 0.0 1.000
2.0 2.0 275.00 0.0065 0.784 0.5 0.942
4.0 -11.0 262.0 (K/m) 0.608 1.0 0.887
6.0 -24.0 249.0 0.465 1.5 0.835
8.0 -37.0 236.0 0.351 2.0 0.785

11.0 -56.5 216.5 0.223 2.5 0.737
12.0 -56.5 216.5 T = const 0.190 3.0 0.692
14.0 -56.5 216.5 0.139 3.5 0.649
16.0 -56.5 216.5 0.101 4.0 0.609
18.0 -56.5 216.5 0.0738 4.5 0.570
20.1 -56.5 216.5 0.0530 5.0 0.533
22.0 -54.6 218.4 m = 0.0393 6.0 0.466
24.0 -52.6 220.4 -0.000991736 0.0288 7.0 0.406
26.0 -50.6 222.4 (K/m) 0.0211 8.0 0.352
28.0 -48.7 224.3 0.0155 9.0 0.304
30.0 -46.7 226.3 0.0115 10.0 0.262
32.2 -44.5 228.5 0.00824 11.0 0.224
34.0 -39.5 233.5 m = 0.00632 12.0 0.192
36.0 -33.9 239.1 -0.002781457 0.00473 13.0 0.164
38.0 -28.4 244.6 (K/m) 0.00356 14.0 0.140
40.0 -22.8 250.2 0.00270 15.0 0.120
42.0 -17.2 255.8 0.00206 16.0 0.102
44.0 -11.7 261.3 0.00158 17.0 0.0873
46.0 -6.1 266.9 0.00122 18.0 0.0747
47.3 -2.5 270.5 0.00104 19.0 0.0638
50.0 -2.5 270.5 T = const 0.000736 20.0 0.0546
52.4 -2.5 270.5 0.000544 22.0 0.0400
54.0 -5.6 267.4 m = 0.000444 24.0 0.0293
56.0 -9.5 263.5 0.001956522 0.000343 26.0 0.0216
58.0 -13.5 259.5 (K/m) 0.000264 28.0 0.0160
60.0 -17.4 255.6 0.000202 30.0 0.0118
61.6 -20.5 252.5 0.000163 40.0 0.00283
64.0 -29.9 243.1 m = 0.000117 50.0 0.000787
66.0 -37.7 235.3 0.003913043 0.0000880 60.0 0.000222
68.0 -45.5 227.5 (K/m) 0.0000655 70.0 0.0000545
70.0 -53.4 219.6 0.0000482 80.0 0.0000102
72.0 -61.2 211.8 0.0000351 90.0 0.00000162
74.0 -69.0 204.0 0.0000253
76.0 -76.8 196.2 0.0000180
78.0 -84.7 188.3 0.0000126
80.0 -92.5 180.5 T = const 0.00000861
82.0 -92.5 180.5 0.00000590
84.0 -92.5 180.5 0.00000404
86.0 -92.5 180.5 0.00000276
88.0 -92.5 180.5 0.00000189
90.0 -92.5 180.5 0.00000130



Agreement between calculated and tabulated data is very good (as it should be, considering the table data is also computed!)

Atmospheric Pressure vs Elevation
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σ = 72.8 mN/m
ρ = 1000 kg/m3

Using the formula above

a  (mm) Δh  (mm)
0.10 148
0.15 98.9
0.20 74.2
0.25 59.4
0.30 49.5
0.35 42.4
0.40 37.1
0.45 33.0
0.50 29.7
0.55 27.0
0.60 24.7
0.65 22.8
0.70 21.2
0.75 19.8
1.00 14.8
1.25 11.9
1.50 9.89
1.75 8.48
2.00 7.42

Capillary Height Between Vertical Plates
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Problem 3.42 [2]

Water

Given: Water in a tube or between parallel plates

Find: Height Δh for each system

Solution:

a) Tube: A free-body vertical force analysis for the section of water height Δh above the "free surface" in the tube, as
shown in the figure, leads to

F∑ 0= π D⋅ σ⋅ cos θ( )⋅ ρ g⋅ Δh⋅
π D2
⋅
4

⋅−=

Assumption: Neglect meniscus curvature for column height and volume calculations

Solving for Δh Δh
4 σ⋅ cos θ( )⋅

ρ g⋅ D⋅
=

b) Parallel Plates: A free-body vertical force analysis for the section of water height Δh above the "free surface" between
plates arbitrary width w (similar to the figure above), leads to

F∑ 0= 2 w⋅ σ⋅ cos θ( )⋅ ρ g⋅ Δh⋅ w⋅ a⋅−=

Solving for Δh Δh
2 σ⋅ cos θ( )⋅

ρ g⋅ a⋅
=

For water σ = 72.8 mN/m and θ = 0o (Table A.4), so

a) Tube Δh
4 0.0728×

N
m
⋅

999
kg

m3
⋅ 9.81×

m

s2
⋅ 0.005× m⋅

kg m⋅

N s2
⋅

×= Δh 5.94 10 3−
× m= Δh 5.94mm=

b) Parallel Plates Δh
2 0.0728×

N
m
⋅

999
kg

m3
⋅ 9.81×

m

s2
⋅ 0.005× m⋅

kg m⋅

N s2
⋅

×= Δh 2.97 10 3−
× m= Δh 2.97mm=



Problem 3.43 [3]

Given: Data on isothermal atmosphere

Find: Elevation changes for 2% and 10% density changes; plot of pressure and density versus elevation

Solution:

Basic equation dp
dz

ρ− g⋅= and p ρ R⋅ T⋅=

Assumptions: static, isothermal fluid,; g = constant; ideal gas behavior

Then dp
dz

ρ− g⋅=
p g⋅

Rair T⋅
−= and dp

p
g

Rair T⋅
− dz⋅=

Integrating Δz
Rair T0⋅

g
− ln

p2
p1

⎛
⎜
⎝

⎞
⎟
⎠

⋅= where T T0=

For an ideal with T constant
p2
p1

ρ2 Rair⋅ T⋅

ρ1 Rair⋅ T⋅
=

ρ2
ρ1

= so Δz
Rair T0⋅

g
− ln

ρ2
ρ1

⎛
⎜
⎝

⎞
⎟
⎠

⋅= C− ln
ρ2
ρ1

⎛
⎜
⎝

⎞
⎟
⎠

⋅= (1)

From Table A.6 Rair 53.33
ft lbf⋅
lbm R⋅
⋅=

Evaluating C
Rair T0⋅

g
= 53.33

ft lbf⋅
lbm R⋅
⋅ 85 460+( )× R⋅

1
32.2

×
s2

ft
⋅

32.2 lbm⋅ ft⋅

s2 lbf⋅
×= C 29065 ft⋅=

For a 2% reduction in density
ρ2
ρ1

0.98= so from Eq. 1 Δz 29065− ft⋅ ln 0.98( )⋅= Δz 587 ft⋅=

For a 10% reduction in density
ρ2
ρ1

0.9= so from Eq. 1 Δz 29065− ft⋅ ln 0.9( )⋅= Δz 3062 ft⋅=

To plot 
p2
p1

 and 
ρ2
ρ1

 we rearrange Eq. 1
ρ2
ρ1

p2
p1

= e

Δz
C

−
=



0.4 0.5 0.6 0.8 0.9 1

5000

10000

15000

20000

Pressure or Density Ratio

El
ev

at
io

n 
(f

t)

This plot can be plotted in Excel
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Problem 3.49 [2]

Given: Geometry of chamber system

Find: Pressure at various locations

Solution:

Basic equation dp
dy

ρ− g⋅= or, for constant ρ Δp ρ g⋅ Δh⋅= where Δh is height difference

For point A pA patm ρ g⋅ h1⋅+= or in gage pressure pA ρ g⋅ h1⋅=

Here we have h1 20 cm⋅= h1 0.2m=

pA 1000
kg

m3
⋅ 9.81×

m

s2
⋅ 0.2× m⋅

N s2
⋅

kg m⋅
×= pA 1962Pa= pA 1.96 kPa⋅= (gage)

For the air cavity pair pA SGHg ρ⋅ g⋅ h2⋅−= where h2 10 cm⋅= h2 0.1m=

From Table A.1 SGHg 13.55=

pair 1962
N

m2
⋅ 13.55 1000×

kg

m3
⋅ 9.81×

m

s2
⋅ 0.1× m⋅

N s2
⋅

kg m⋅
×−= pair 11.3− kPa⋅= (gage)

Note that p = constant throughout the air pocket

For point B pB patm SGHg ρ⋅ g⋅ h3⋅+= where h3 15 cm⋅= h3 0.15m=

pB 11300−
N

m2
⋅ 13.55 1000×

kg

m3
⋅ 9.81×

m

s2
⋅ 0.15× m⋅

N s2
⋅

kg m⋅
×+= pB 8.64 kPa⋅= (gage)

For point C pC patm SGHg ρ⋅ g⋅ h4⋅+= where h4 25 cm⋅= h4 0.25m=

pC 11300−
N

m2
⋅ 13.55 1000×

kg

m3
⋅ 9.81×

m

s2
⋅ 0.25× m⋅

N s2
⋅

kg m⋅
×+= pC 21.93 kPa⋅= (gage)

For the second air cavity pair pC SGHg ρ⋅ h5⋅−= where h5 15 cm⋅= h5 0.15m=

pair 21930
N

m2
⋅ 13.55 1000×

kg

m3
⋅ 9.81×

m

s2
⋅ 0.15× m⋅

N s2
⋅

kg m⋅
×−= pair 1.99 kPa⋅= (gage)



Problem 3.50 [2]

 

FR 
dy 

a = 1.25 ft 

SG = 2.5 

y 

b = 1 ft 

y’ 

w 

Given: Geometry of access port

Find: Resultant force and location

Solution:

Basic equation FR Ap
⌠⎮
⎮⌡

d=
dp
dy

ρ g⋅= ΣMs y' FR⋅= FRy
⌠⎮
⎮⌡

d= Ay p⋅
⌠⎮
⎮⌡

d=

or, use computing equations FR pc A⋅= y' yc
Ixx

A yc⋅
+=

We will show both methods

Assumptions: static fluid; ρ = constant; patm on other side

FR Ap
⌠⎮
⎮⌡

d= ASG ρ⋅ g⋅ y⋅
⌠⎮
⎮⌡

d= but dA w dy⋅= and w
b

y
a

= w
b
a

y⋅=

Hence FR
0

a

ySG ρ⋅ g⋅ y⋅
b
a
⋅ y⋅

⌠
⎮
⎮
⌡

d=

0

a

ySG ρ⋅ g⋅
b
a
⋅ y2
⋅

⌠
⎮
⎮
⌡

d=
SG ρ⋅ g⋅ b⋅ a2

⋅
3

=

Alternatively FR pc A⋅= and pc SG ρ⋅ g⋅ yc⋅= SG ρ⋅ g⋅
2
3
⋅ a⋅= with A

1
2

a⋅ b⋅=

Hence FR
SG ρ⋅ g⋅ b⋅ a2

⋅
3

=

For y' y' FR⋅ Ay p⋅
⌠⎮
⎮⌡

d=

0

a

ySG ρ⋅ g⋅
b
a
⋅ y3
⋅

⌠
⎮
⎮
⌡

d=
SG ρ⋅ g⋅ b⋅ a3

⋅
4

= y'
SG ρ⋅ g⋅ b⋅ a3

⋅
4 FR⋅

=
3
4

a⋅=

Alternatively y' yc
Ixx

A yc⋅
+= and Ixx

b a3
⋅
36

= (Google it!)

y'
2
3

a⋅
b a3
⋅
36

2
a b⋅
⋅

3
2 a⋅
⋅+=

3
4

a⋅=

Using given data, and SG = 2.5 (Table A.1) FR
2.5
3

1.94⋅
slug

ft3
⋅ 32.2×

ft

s2
⋅ 1× ft⋅ 1.25 ft⋅( )2

×
lbf s2

⋅
slug ft⋅

×= FR 81.3 lbf⋅=

and y'
3
4

a⋅= y' 0.938 ft⋅=



Problem 3.51 [3]

 

FA 

H = 25 ft 

y R = 10 ft 

h 

A 

B z x 
y 

Given: Geometry of gate

Find: Force FA for equilibrium

Solution:

Basic equation FR Ap
⌠⎮
⎮⌡

d=
dp
dh

ρ g⋅= ΣMz 0=

or, use computing equations FR pc A⋅= y' yc
Ixx

A yc⋅
+= where y would be measured

from the free surface

Assumptions: static fluid; ρ = constant; patm on other side; door is in equilibrium

Instead of using either of these approaches, we note the following, using y as in the sketch

ΣMz 0= FA R⋅ Ay p⋅
⌠⎮
⎮⌡

d= with p ρ g⋅ h⋅= (Gage pressure, since p =
patm on other side)

FA
1
R

Ay ρ⋅ g⋅ h⋅
⌠⎮
⎮⌡

d⋅= with dA r dr⋅ dθ⋅= and y r sin θ( )⋅= h H y−=

Hence FA
1
R 0

π

θ

0

R
rρ g⋅ r⋅ sin θ( )⋅ H r sin θ( )⋅−( )⋅ r⋅

⌠
⎮
⌡

d
⌠
⎮
⌡

d⋅=
ρ g⋅
R

0

π

θ
H R3
⋅
3

sin θ( )⋅
R4

4
sin θ( )2
⋅−

⎛
⎜
⎝

⎞
⎟
⎠

⌠
⎮
⎮
⌡

d⋅=

FR
ρ g⋅
R

2 H⋅ R3
⋅

3
π R4
⋅
8

−
⎛
⎜
⎝

⎞
⎟
⎠

⋅= ρ g⋅
2 H⋅ R2

⋅
3

π R3
⋅
8

−
⎛
⎜
⎝

⎞
⎟
⎠

⋅=

Using given data FR 1.94
slug

ft3
⋅ 32.2×

ft

s2
⋅

2
3

25× ft⋅ 10 ft⋅( )2
×

π

8
10 ft⋅( )3

×−⎡⎢
⎣

⎤⎥
⎦

×
lbf s2

⋅
slug ft⋅

×= FR 7.96 104
× lbf⋅=



Problem 3.52 [3]

Given: Gate geometry

Find: Depth H at which gate tips

Solution:

This is a problem with atmospheric pressure on both sides of the plate, so we can first determine the location of the
center of pressure with respect to the free surface, using Eq.3.11c (assuming depth H)

y' yc
Ixx

A yc⋅
+= and Ixx

w L3
⋅
12

= with yc H
L
2

−=

where L = 1 m is the plate height and w is the plate width

Hence y' H
L
2

−⎛⎜
⎝

⎞⎟
⎠

w L3
⋅

12 w⋅ L⋅ H
L
2

−⎛⎜
⎝

⎞⎟
⎠

⋅
+= H

L
2

−⎛⎜
⎝

⎞⎟
⎠

L2

12 H
L
2

−⎛⎜
⎝

⎞⎟
⎠

⋅
+=

But for equilibrium, the center of force must always be at or below the level of the hinge so that the stop can hold the gate in
place.  Hence we must have

y' H 0.45 m⋅−>

Combining the two equations H
L
2

−⎛⎜
⎝

⎞⎟
⎠

L2

12 H
L
2

−⎛⎜
⎝

⎞⎟
⎠

⋅
+ H 0.45 m⋅−≥

Solving for H H
L
2

L2

12
L
2

0.45 m⋅−⎛⎜
⎝

⎞⎟
⎠

⋅
+≤ H

1 m⋅
2

1 m⋅( )2

12
1 m⋅
2

0.45 m⋅−⎛⎜
⎝

⎞⎟
⎠

×
+≤ H 2.17 m⋅≤



Problem 3.53 [3]

 

W 

h 
L = 3 m 

dF 

y 

L/2 

w = 2 m 

Given: Geometry of plane gate

Find: Minimum weight to keep it closed

Solution:

Basic equation FR Ap
⌠⎮
⎮⌡

d=
dp
dh

ρ g⋅= ΣMO 0=

or, use computing equations FR pc A⋅= y' yc
Ixx

A yc⋅
+=

Assumptions: static fluid; ρ = constant; patm on other side; door is in equilibrium

Instead of using either of these approaches, we note the following, using y as in the sketch

ΣMO 0= W
L
2
⋅ cos θ( )⋅ Fy

⌠⎮
⎮⌡

d=

We also have dF p dA⋅= with p ρ g⋅ h⋅= ρ g⋅ y⋅ sin θ( )⋅= (Gage pressure, since p = patm on other side)

Hence W
2

L cos θ( )⋅
Ay p⋅

⌠⎮
⎮⌡

d⋅=
2

L cos θ( )⋅
yy ρ⋅ g⋅ y⋅ sin θ( )⋅ w⋅

⌠⎮
⎮⌡

d⋅=

W
2

L cos θ( )⋅
Ay p⋅

⌠⎮
⎮⌡

d⋅=
2 ρ⋅ g⋅ w⋅ tan θ( )⋅

L 0

L
yy2⌠

⎮
⌡

d⋅=
2
3

ρ⋅ g⋅ w⋅ L2
⋅ tan θ( )⋅=

Using given data W
2
3

1000⋅
kg

m3
⋅ 9.81×

m

s2
⋅ 2× m⋅ 3 m⋅( )2

× tan 30 deg⋅( )×
N s2
⋅

kg m⋅
×= W 68 kN⋅=
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Problem 3.55 [1]

Given: Geometry of cup

Find: Force on each half of cup

Solution:

Basic equation FR Ap
⌠⎮
⎮⌡

d=
dp
dh

ρ g⋅=

or, use computing equation FR pc A⋅=

Assumptions: static fluid; ρ = constant; patm on other side; cup does not crack!

The force on the half-cup is the same as that on a rectangle of size h 3 in⋅= and w 2.5 in⋅=

FR Ap
⌠⎮
⎮⌡

d= Aρ g⋅ y⋅
⌠⎮
⎮⌡

d= but dA w dy⋅=

Hence FR
0

h
yρ g⋅ y⋅ w⋅

⌠
⎮
⌡

d=
ρ g⋅ w⋅ h2

⋅
2

=

Alternatively FR pc A⋅= and FR pc A⋅= ρ g⋅ yc⋅ A⋅= ρ g⋅
h
2
⋅ h⋅ w⋅=

ρ g⋅ w⋅ h2
⋅

2
=

Using given data FR
1
2

1.94⋅
slug

ft3
⋅ 32.2×

ft

s2
⋅ 2.5× in⋅ 3 in⋅( )2

×
1 ft⋅

12 in⋅
⎛⎜
⎝

⎞⎟
⎠

3
×

lbf s2
⋅

slug ft⋅
×= FR 0.407 lbf⋅=

Hence a teacup is being forced apart by about 0.4 lbf: not much of a force, so a paper cup works!
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Problem 3.57 [3]

 
Ry 

Rx 

FR 

Fn 

Given: Geometry of lock system

Find: Force on gate; reactions at hinge

Solution:

Basic equation FR Ap
⌠⎮
⎮⌡

d=
dp
dh

ρ g⋅=

or, use computing equation FR pc A⋅=

Assumptions: static fluid; ρ = constant; patm on other side

The force on each gate is the same as that on a rectangle of size h D= 10 m⋅= and w
W

2 cos 15 deg⋅( )⋅
=

FR Ap
⌠⎮
⎮⌡

d= Aρ g⋅ y⋅
⌠⎮
⎮⌡

d= but dA w dy⋅=

Hence FR
0

h
yρ g⋅ y⋅ w⋅

⌠
⎮
⌡

d=
ρ g⋅ w⋅ h2

⋅
2

=

Alternatively FR pc A⋅= and FR pc A⋅= ρ g⋅ yc⋅ A⋅= ρ g⋅
h
2

⋅ h⋅ w⋅=
ρ g⋅ w⋅ h2

⋅
2

=

Using given data FR
1
2

1000⋅
kg

m3
⋅ 9.81×

m

s2
⋅

34 m⋅
2 cos 15 deg⋅( )⋅

× 10 m⋅( )2
×

N s2
⋅

kg m⋅
×= FR 8.63 MN⋅=

For the force components Rx and Ry we do the following

ΣMhinge 0= FR
w
2

⋅ Fn w⋅ sin 15 deg⋅( )⋅−= Fn
FR

2 sin 15 deg⋅( )⋅
= Fn 16.7 MN⋅=

ΣFx 0= FR cos 15 deg⋅( )⋅ Rx−= 0= Rx FR cos 15 deg⋅( )⋅= Rx 8.34 MN⋅=

ΣFy 0= Ry− FR sin 15 deg⋅( )⋅− Fn+= 0= Ry Fn FR sin 15 deg⋅( )⋅−= Ry 14.4 MN⋅=

R 8.34 MN⋅ 14.4 MN⋅, ( )= R 16.7 MN⋅=
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Problem 3.61 [1]

Given: Description of car tire

Find: Explanation of lift effect

Solution:

The explanation is as follows: It is true that the pressure in the entire tire is the same everywhere.  However, the tire at the top of the hub
will be essentially circular in cross-section, but at the bottom, where the tire meets the ground, the cross section will be approximately a
flattened circle, or elliptical.  Hence we can explain that the lower cross section has greater upward force than the upper cross section has
downward force (providing enough lift to keep the car up) two ways.  First, the horizontal projected area of the lower ellipse is larger than
that of the upper circular cross section, so that net pressure times area is upwards.  Second, any time you have an elliptical cross section
that's at high pressure, that pressure will always try to force the ellipse to be circular (thing of a round inflated balloon - if you squeeze it it
will resist!).  This analysis ignores the stiffness of the tire rubber, which also provides a little lift.
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Problem 3.63 [3]

 

F1 

D 

L 

y’ 

F2 

Given: Geometry of rectangular gate

Find: Depth for gate to open

Solution:

Basic equation dp
dh

ρ g⋅= ΣMz 0=

Computing equations FR pc A⋅= y' yc
Ixx

A yc⋅
+= Ixx

b D3
⋅
12

=

Assumptions: static fluid; ρ = constant; patm on other side; no friction in hinge

For incompressible fluid p ρ g⋅ h⋅= where p is gage pressure and h is measured downwards

The force on the vertical gate (gate 1) is the same as that on a rectangle of size h = D and width w

Hence F1 pc A⋅= ρ g⋅ yc⋅ A⋅= ρ g⋅
D
2
⋅ D⋅ w⋅=

ρ g⋅ w⋅ D2
⋅

2
=

The location of this force is y' yc
Ixx

A yc⋅
+=

D
2

w D3
⋅
12

1
w D⋅

×
2
D

×+=
2
3

D⋅=

The force on the horizontal gate (gate 2) is due to constant pressure, and is at the centroid

F2 p y D=( ) A⋅= ρ g⋅ D⋅ w⋅ L⋅=

Summing moments about the hinge ΣMhinge 0= F1− D y'−( )⋅ F2
L
2
⋅+= F1− D

2
3

D⋅−⎛⎜
⎝

⎞⎟
⎠

⋅ F2
L
2
⋅+=

F1
D
3

⋅
ρ g⋅ w⋅ D2

⋅
2

D
3

⋅= F2
L
2
⋅= ρ g⋅ D⋅ w⋅ L⋅

L
2
⋅=

ρ g⋅ w⋅ D3
⋅

6
ρ g⋅ D⋅ w⋅ L2

⋅
2

=

D 3 L⋅= 3 5× ft=

D 8.66 ft⋅=



Problem 3.64 [3]

 

h 

D 

FR 

y 

FA 

y’ 

Given: Geometry of gate

Find: Force at A to hold gate closed

Solution:

Basic equation dp
dh

ρ g⋅= ΣMz 0=

Computing equations FR pc A⋅= y' yc
Ixx

A yc⋅
+= Ixx

w L3
⋅
12

=

Assumptions: static fluid; ρ = constant; patm on other side; no friction in hinge

For incompressible fluid p ρ g⋅ h⋅= where p is gage pressure and h is measured downwards

The hydrostatic force on the gate is that on a rectangle of size L and width w.

Hence FR pc A⋅= ρ g⋅ hc⋅ A⋅= ρ g⋅ D
L
2

sin 30 deg⋅( )⋅+⎛⎜
⎝

⎞⎟
⎠

⋅ L⋅ w⋅=

FR 1000
kg

m3
⋅ 9.81×

m

s2
⋅ 1.5

3
2

sin 30 deg⋅( )+⎛⎜
⎝

⎞⎟
⎠

× m⋅ 3× m⋅ 3× m⋅
N s2
⋅

kg m⋅
×= FR 199 kN⋅=

The location of this force is given by y' yc
Ixx

A yc⋅
+=  where y' and y

c
 are measured along the plane of the gate to the free surface

yc
D

sin 30 deg⋅( )
L
2

+= yc
1.5 m⋅

sin 30 deg⋅( )
3 m⋅
2

+= yc 4.5m=

y' yc
Ixx

A yc⋅
+= yc

w L3
⋅
12

1
w L⋅
⋅

1
yc
⋅+= yc

L2

12 yc⋅
+= 4.5 m⋅

3 m⋅( )2

12 4.5⋅ m⋅
+= y' 4.67m=

Taking moments about the hinge ΣMH 0= FR y'
D

sin 30 deg⋅( )
−⎛⎜

⎝
⎞⎟
⎠

⋅ FA L⋅−=

FA FR

y'
D

sin 30 deg⋅( )
−⎛⎜

⎝
⎞⎟
⎠

L
⋅= FA 199 kN⋅

4.67
1.5

sin 30 deg⋅( )
−⎛⎜

⎝
⎞⎟
⎠

3
⋅= FA 111 kN⋅=
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Problem 3.66 [4]

Given: Various dam cross-sections

Find: Which requires the least concrete; plot cross-section area A as a function of α

Solution:
For each case, the dam width b has to be large enough so that the weight of the dam exerts enough moment to balance the
moment due to fluid hydrostatic force(s).  By doing a moment balance this value of b can be found

a) Rectangular dam

Straightforward application of the computing equations of Section 3-5
yields 

FH pc A⋅= ρ g⋅
D
2
⋅ w⋅ D⋅=

1
2

ρ⋅ g⋅ D2
⋅ w⋅=

y' yc
Ixx

A yc⋅
+=

D
2

w D3
⋅

12 w⋅ D⋅
D
2
⋅

+=
2
3

D⋅=

so y D y'−=
D
3

=

Also m ρcement g⋅ b⋅ D⋅ w⋅= SG ρ⋅ g⋅ b⋅ D⋅ w⋅=

Taking moments about O M0.∑ 0= FH− y⋅
b
2

m⋅ g⋅+=

so 1
2

ρ⋅ g⋅ D2
⋅ w⋅⎛⎜

⎝
⎞⎟
⎠

D
3

⋅
b
2

SG ρ⋅ g⋅ b⋅ D⋅ w⋅( )⋅=

Solving for b b
D

3 SG⋅
=

The minimum rectangular cross-section area is A b D⋅=
D2

3 SG⋅
=

For concrete, from Table A.1, SG = 2.4, so A
D2

3 SG⋅
=

D2

3 2.4×
= A 0.373 D2

⋅=



a) Triangular dams

Instead of analysing right-triangles, a general analysis is made, at the
end of which right triangles are analysed as special cases by setting α
= 0 or 1.

Straightforward application of the computing equations of Section 3-5
yields 

FH pc A⋅= ρ g⋅
D
2

⋅ w⋅ D⋅=
1
2

ρ⋅ g⋅ D2
⋅ w⋅=

y' yc
Ixx

A yc⋅
+=

D
2

w D3
⋅

12 w⋅ D⋅
D
2

⋅
+=

2
3

D⋅=

so y D y'−=
D
3

=

Also FV ρ V⋅ g⋅= ρ g⋅
α b⋅ D⋅

2
⋅ w⋅=

1
2

ρ⋅ g⋅ α⋅ b⋅ D⋅ w⋅= x b α b⋅−( )
2
3

α⋅ b⋅+= b 1
α

3
−⎛⎜

⎝
⎞⎟
⎠

⋅=

For the two triangular masses

m1
1
2

SG⋅ ρ⋅ g⋅ α⋅ b⋅ D⋅ w⋅= x1 b α b⋅−( )
1
3

α⋅ b⋅+= b 1
2 α⋅
3

−⎛⎜
⎝

⎞⎟
⎠

⋅=

m2
1
2

SG⋅ ρ⋅ g⋅ 1 α−( )⋅ b⋅ D⋅ w⋅= x2
2
3

b 1 α−( )⋅=

Taking moments about O

M0.∑ 0= FH− y⋅ FV x⋅+ m1 g⋅ x1⋅+ m2 g⋅ x2⋅+=

so 1
2

ρ⋅ g⋅ D2
⋅ w⋅⎛⎜

⎝
⎞⎟
⎠

−
D
3

⋅
1
2

ρ⋅ g⋅ α⋅ b⋅ D⋅ w⋅⎛⎜
⎝

⎞⎟
⎠

b⋅ 1
α

3
−⎛⎜

⎝
⎞⎟
⎠

⋅+

1
2

SG⋅ ρ⋅ g⋅ α⋅ b⋅ D⋅ w⋅⎛⎜
⎝

⎞⎟
⎠

b⋅ 1
2 α⋅
3

−⎛⎜
⎝

⎞⎟
⎠

⋅
1
2

SG⋅ ρ⋅ g⋅ 1 α−( )⋅ b⋅ D⋅ w⋅⎡⎢
⎣

⎤⎥
⎦

2
3
⋅ b 1 α−( )⋅++

... 0=

Solving for b b
D

3 α⋅ α
2

−( ) SG 2 α−( )⋅+
=

For a right triangle with the hypotenuse in contact with the water, α = 1, and

b
D

3 1− SG+
=

D

3 1− 2.4+
= b 0.477 D⋅=

The cross-section area is A
b D⋅

2
= 0.238 D2

⋅= A 0.238 D2
⋅=

For a right triangle with the vertical in contact with the water, α = 0, and



b
D

2 SG⋅
=

D

2 2.4⋅
= b 0.456 D⋅=

The cross-section area is A
b D⋅

2
= 0.228 D2

⋅= A 0.228 D2
⋅=

For a general triangle A
b D⋅

2
=

D2

2 3 α⋅ α
2

−( ) SG 2 α−( )⋅+⋅
= A

D2

2 3 α⋅ α
2

−( ) 2.4 2 α−( )⋅+⋅
=

The final result is A
D2

2 4.8 0.6 α⋅+ α
2

−⋅
=

From the corresponding Excel workbook, the minimum area occurs at α = 0.3

Amin
D2

2 4.8 0.6 0.3×+ 0.32
−⋅

= A 0.226 D2
⋅=

The final results are that a triangular cross-section with α = 0.3 uses the least concrete; the next best is a right triangle
with the vertical in contact with the water; next is the right triangle with the hypotenuse in contact with the water; and
the cross-section requiring the most concrete is the rectangular cross-section.



Solution:
The triangular cross-sections are considered in this workbook

The dimensionless area, A /D 2, is plotted

α A /D 2

0.0 0.2282
0.1 0.2270
0.2 0.2263
0.3 0.2261
0.4 0.2263
0.5 0.2270
0.6 0.2282
0.7 0.2299
0.8 0.2321
0.9 0.2349
1.0 0.2384

Solver  can be used to
find the minimum area

α A /D 2

0.30 0.2261

Dam Cross Section vs Coefficient α

0.224
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0.228

0.230

0.232

0.234

0.236
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0.240

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
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Problem 3.67 [3]

 

F1 

y’ 

F2 

Mg 

y 
x 

Given: Block hinged and floating

Find: SG of the wood

Solution:

Basic equation dp
dh

ρ g⋅= ΣMz 0=

Computing equations FR pc A⋅= y' yc
Ixx

A yc⋅
+=

Assumptions: static fluid; ρ = constant; patm on other side; no friction in hinge

For incompressible fluid p ρ g⋅ h⋅= where p is gage pressure and h is measured downwards

The force on the vertical section is the same as that on a rectangle of height d and width L

Hence F1 pc A⋅= ρ g⋅ yc⋅ A⋅= ρ g⋅
d
2
⋅ d⋅ L⋅=

ρ g⋅ L⋅ d2
⋅

2
=

The location of this force is y' yc
Ixx

A yc⋅
+=

d
2

L d3
⋅
12

1
L d⋅

×
2
d

×+=
2
3

d⋅=

The force on the horizontal section is due to constant pressure, and is at the centroid

F2 p y d=( ) A⋅= ρ g⋅ d⋅ L⋅ L⋅=

Summing moments about the hinge ΣMhinge 0= F1− d y'−( )⋅ F2
L
2
⋅− M g⋅

L
2
⋅+=

Hence F1 d
2
3

d⋅−⎛⎜
⎝

⎞⎟
⎠

⋅ F2
L
2
⋅+ SG ρ⋅ L3

⋅ g⋅
L
2
⋅=

SG ρ⋅ g⋅ L4
⋅

2
ρ g⋅ L⋅ d2

⋅
2

d
3
⋅ ρ g⋅ d⋅ L2

⋅
L
2
⋅+=

SG
1
3

d
L

⎛⎜
⎝

⎞⎟
⎠

3
⋅

d
L

+=

SG
1
3

0.5
1

⎛⎜
⎝

⎞⎟
⎠

3
⋅

0.5
1

+= SG 0.542=



Problem 3.68 [2]

Given: Geometry of dam

Find: Vertical force on dam

Solution:

Basic equation dp
dh

ρ g⋅=

Assumptions: static fluid; ρ = constant

For incompressible fluid p patm ρ g⋅ h⋅+= where h is measured downwards from the free surface

The force on each horizontal section (depth d = 1 ft and width w = 10 ft) is

F p A⋅= patm ρ g⋅ h⋅+( ) d⋅ w⋅=

Hence the total force is FT patm patm ρ g⋅ h⋅+( )+ patm ρ g⋅ 2⋅ h⋅+( )+ patm ρ 3⋅ g⋅ h⋅+( )+ patm ρ g⋅ 4⋅ h⋅+( )+⎡⎣ ⎤⎦ d⋅ w⋅=

where we have used h as the height of the steps

FT d w⋅ 5 patm⋅ 10 ρ⋅ g⋅ h⋅+( )⋅=

FT 1 ft⋅ 10× ft⋅ 5 14.7×
lbf

in2
⋅

12 in⋅
1 ft⋅

⎛⎜
⎝

⎞⎟
⎠

2
× 10 1.94×

slug

ft3
⋅ 32.2×

ft

s2
⋅ 1× ft⋅

lbf s2
⋅

slug ft⋅
×+

⎡⎢
⎢⎣

⎤⎥
⎥⎦

×=

FT 1.12 105
× lbf⋅=



Problem 3.69 [2]

Given: Geometry of dam

Find: Vertical force on dam

Solution:

Basic equation dp
dh

ρ g⋅=

Assumptions: static fluid; ρ = constant; since we are asked for the force of water, we use gage pressures

For incompressible fluid p ρ g⋅ h⋅= where p is gage pressure and h is measured downwards from the free surface

The force on each horizontal section (depth d and width w) is

F p A⋅= ρ g⋅ h⋅ d⋅ w⋅=

Hence the total force is (allowing for the fact that some faces experience an upwards (negative) force)

FT p A⋅= Σ ρ g⋅ h⋅ d⋅ w⋅= ρ g⋅ d⋅ Σ⋅ h w⋅=

Starting with the top and working downwards

FT 1000
kg

m3
⋅ 9.81×

m

s2
⋅ 1× m⋅ 1 m⋅ 4× m⋅( ) 2 m⋅ 2× m⋅( )+ 3 m⋅ 2× m⋅( )− 4 m⋅ 4× m⋅( )−[ ]×

N s2
⋅

kg m⋅
×=

FT 137− kN⋅=

The negative sign indicates a net upwards force (it's actually a buoyancy effect on the three middle sections)
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Problem 3.76 [4]

 

FV

D

y
R

A

x
FH

F1

x y’

FB

W1 

W2

Weights for computing FV

R/2 4R/3π 

WGate

Given: Gate geometry

Find: Force on stop B

Solution:

Basic equations dp
dh

ρ g⋅=

ΣMA 0=

Assumptions: static fluid; ρ = constant; patm on other side

For incompressible fluid p ρ g⋅ h⋅= where p is gage pressure and h is measured downwards

We need to compute force (including location) due to water on curved surface and underneath.  For curved surface we could integrate
pressure, but here we use the concepts that FV (see sketch) is equivalent to the weight of fluid above, and FH is equivalent to the force on
a vertical flat plate.  Note that the sketch only shows forces that will be used to compute the moment at A

For FV FV W1 W2−=

with
W1 ρ g⋅ w⋅ D⋅ R⋅= 1000

kg

m3
⋅ 9.81×

m

s2
⋅ 3× m⋅ 4.5× m⋅ 3× m⋅

N s2
⋅

kg m⋅
×= W1 397 kN⋅=

W2 ρ g⋅ w⋅
π R2
⋅
4

⋅= 1000
kg

m3
⋅ 9.81×

m

s2
⋅ 3× m⋅

π

4
× 3 m⋅( )2

×
N s2
⋅

kg m⋅
×= W2 208 kN⋅=

FV W1 W2−= FV 189 kN⋅=

with x given by FV x⋅ W1
R
2
⋅ W2

4 R⋅
3 π⋅
⋅−= or x

W1
Fv

R
2
⋅

W2
Fv

4 R⋅
3 π⋅
⋅−=

x
397
189

3 m⋅
2

×
208
189

4
3 π⋅

× 3× m⋅−= x 1.75m=

For FH Computing equations FH pc A⋅= y' yc
Ixx

A yc⋅
+=



Hence FH pc A⋅= ρ g⋅ D
R
2

−⎛⎜
⎝

⎞⎟
⎠

⋅ w⋅ R⋅=

FH 1000
kg

m3
⋅ 9.81×

m

s2
⋅ 4.5 m⋅

3 m⋅
2

−⎛⎜
⎝

⎞⎟
⎠

× 3× m⋅ 3× m⋅
N s2
⋅

kg m⋅
×= FH 265 kN⋅=

The location of this force is

y' yc
Ixx

A yc⋅
+= D

R
2

−⎛⎜
⎝

⎞⎟
⎠

w R3
⋅
12

1

w R⋅ D
R
2

−⎛⎜
⎝

⎞⎟
⎠

⋅
×+= D

R
2

−
R2

12 D
R
2

−⎛⎜
⎝

⎞⎟
⎠

⋅
+=

y' 4.5 m⋅
3 m⋅

2
−

3 m⋅( )2

12 4.5 m⋅
3 m⋅
2

−⎛⎜
⎝

⎞⎟
⎠

×
+= y' 3.25m=

The force F1 on the bottom of the gate is F1 p A⋅= ρ g⋅ D⋅ w⋅ R⋅=

F1 1000
kg

m3
⋅ 9.81×

m

s2
⋅ 4.5× m⋅ 3× m⋅ 3× m⋅

N s2
⋅

kg m⋅
×= F1 397 kN⋅=

For the concrete gate (SG = 2.4 from Table A.2)

WGate SG ρ⋅ g⋅ w⋅
π R2
⋅
4

⋅= 2.4 1000⋅
kg

m3
⋅ 9.81×

m

s2
⋅ 3× m⋅

π

4
× 3 m⋅( )2

×
N s2
⋅

kg m⋅
×= WGate 499 kN⋅=

Hence, taking moments about A FB R⋅ F1
R
2
⋅+ WGate

4 R⋅
3 π⋅
⋅− FV x⋅− FH y' D R−( )−[ ]⋅− 0=

FB
4

3 π⋅
WGate⋅

x
R

FV⋅+
y' D R−( )−[ ]

R
FH⋅+

1
2

F1⋅−=

FB
4

3 π⋅
499× kN⋅

1.75
3

189× kN⋅+
3.25 4.5 3−( )−[ ]

3
265× kN⋅+

1
2

397× kN⋅−=

FB 278 kN⋅=
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Problem 3.79 [4]

Given: Sphere with different fluids on each side

Find: Resultant force and direction

Solution:

The horizontal and vertical forces due to each fluid are treated separately.  For each, the horizontal force is equivalent to that
on a vertical flat plate; the vertical force is equivalent to the weight of fluid "above".

For horizontal forces, the computing equation of Section 3-5 is FH pc A⋅=  where A is the area of the equivalent
vertical plate.

For vertical forces, the computing equation of Section 3-5 is FV ρ g⋅ V⋅=  where V is the volume of fluid above the
curved surface.

The data is For water ρ 999
kg

m3
⋅=

For the fluids SG1 1.6= SG2 0.8=

For the weir D 3 m⋅= L 6 m⋅=

(a) Horizontal Forces

For fluid 1 (on the left) FH1 pc A⋅= ρ1 g⋅
D
2
⋅⎛⎜

⎝
⎞⎟
⎠

D⋅ L⋅=
1
2

SG1⋅ ρ⋅ g⋅ D2
⋅ L⋅=

FH1
1
2

1.6⋅ 999⋅
kg

m3
⋅ 9.81⋅

m

s2
⋅ 3 m⋅( )2

⋅ 6⋅ m⋅
N s2
⋅

kg m⋅
⋅= FH1 423kN=

For fluid 2 (on the right) FH2 pc A⋅= ρ2 g⋅
D
4

⋅⎛⎜
⎝

⎞⎟
⎠

D
2

⋅ L⋅=
1
8

SG2⋅ ρ⋅ g⋅ D2
⋅ L⋅=

FH2
1
8

0.8⋅ 999⋅
kg

m3
⋅ 9.81⋅

m

s2
⋅ 3 m⋅( )2

⋅ 6⋅ m⋅
N s2
⋅

kg m⋅
⋅= FH2 52.9kN=

The resultant horizontal force is FH FH1 FH2−= FH 370kN=

(b) Vertical forces

For the left geometry, a "thought experiment" is needed to obtain surfaces with fluid "above" 



Hence FV1 SG1 ρ⋅ g⋅

π D2⋅
4
2

⋅ L⋅=

FV1 1.6 999×
kg

m3
⋅ 9.81×

m

s2
⋅

π 3 m⋅( )2
⋅

8
× 6× m⋅

N s2
⋅

kg m⋅
×= FV1 333kN=

(Note: Use of buoyancy leads to the same result!)

For the right side, using a similar logic

FV2 SG2 ρ⋅ g⋅

π D2⋅
4
4

⋅ L⋅=

FV2 0.8 999×
kg

m3
⋅ 9.81×

m

s2
⋅

π 3 m⋅( )2
⋅

16
× 6× m⋅

N s2
⋅

kg m⋅
×= FV2 83.1kN=

The resultant vertical force is FV FV1 FV2+= FV 416kN=

Finally the resultant force and direction can be computed

F FH
2 FV

2
+= F 557kN=

α atan
FV
FH

⎛
⎜
⎝

⎞
⎟
⎠

= α 48.3deg=
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Problem 3.86 [4]

Given: Geometry of glass observation room

Find: Resultant force and direction

Solution:
The x, y and z components of force due to the fluid are treated separately.  For the x, y components, the horizontal force is
equivalent to that on a vertical flat plate; for the z component, (vertical force) the force is equivalent to the weight of fluid
above.

For horizontal forces, the computing equation of Section 3-5 is FH pc A⋅=  where A is the area of the equivalent
vertical plate.

For the vertical force, the computing equation of Section 3-5 is FV ρ g⋅ V⋅=  where V is the volume of fluid above
the curved surface.

The data is For water ρ 999
kg

m3
⋅=

For the fluid (Table A.2) SG 1.025=

For the aquarium R 1.5 m⋅= H 10 m⋅=

(a) Horizontal Forces

Consider the x component

The center of pressure of the glass is yc H
4 R⋅
3 π⋅

−= yc 9.36m=

Hence FHx pc A⋅= SG ρ⋅ g⋅ yc⋅( ) π R2
⋅
4

⋅=

FHx 1.025 999×
kg

m3
⋅ 9.81×

m

s2
⋅ 9.36× m⋅

π 1.5 m⋅( )2
⋅

4
×

N s2
⋅

kg m⋅
×= FHx 166kN=

The y component is of the same magnitude as the x component

FHy FHx= FHy 166kN=

The resultant horizontal force (at 45o to the x and y axes) is

FH FHx
2 FHy

2
+= FH 235kN=



(b) Vertical forces

The vertical force is equal to the weight of fluid above (a volume defined by a rectangular column minus a segment of a
sphere)

The volume is V
π R2
⋅
4

H⋅

4 π⋅ R3⋅
3
8

−= V 15.9m3
=

Then FV SG ρ⋅ g⋅ V⋅= FV 1.025 999×
kg

m3
⋅ 9.81×

m

s2
⋅ 15.9× m3

⋅
N s2
⋅

kg m⋅
×= FV 160kN=

Finally the resultant force and direction can be computed

F FH
2 FV

2
+= F 284kN=

α atan
FV
FH

⎛
⎜
⎝

⎞
⎟
⎠

= α 34.2deg=

Note that α is the angle the resultant force makes with the horizontal



Problem *3.87 [3]

 

T 

FB 

W 

Given: Data on sphere and weight

Find: SG of sphere; equilibrium position when freely floating

Solution:

Basic equation FB ρ g⋅ V⋅= and ΣFz 0= ΣFz 0= T FB+ W−=

where T M g⋅= M 10 kg⋅= FB ρ g⋅
V
2

⋅= W SG ρ⋅ g⋅ V⋅=

Hence M g⋅ ρ g⋅
V
2

⋅+ SG ρ⋅ g⋅ V⋅− 0= SG
M

ρ V⋅
1
2

+=

SG 10 kg⋅
m3

1000 kg⋅
×

1

0.025 m3
⋅

×
1
2

+= SG 0.9=

The specific weight is γ
Weight
Volume

=
SG ρ⋅ g⋅ V⋅

V
= SG ρ⋅ g⋅= γ 0.9 1000×

kg

m3
⋅ 9.81×

m

s2
⋅

N s2
⋅

kg m⋅
×= γ 8829

N

m3
⋅=

For the equilibriul position when floating, we repeat  the force balance with T = 0

FB W− 0= W FB= with FB ρ g⋅ Vsubmerged⋅=

From references (trying Googling "partial sphere volume") Vsubmerged
π h2
⋅
3

3 R⋅ h−( )⋅=

where h is submerged depth and R is the sphere radius R
3 V⋅
4 π⋅

⎛⎜
⎝

⎞⎟
⎠

1
3

= R
3

4 π⋅
0.025⋅ m3

⋅⎛⎜
⎝

⎞⎟
⎠

1
3

= R 0.181m=

Hence W SG ρ⋅ g⋅ V⋅= FB= ρ g⋅
π h2
⋅
3

⋅ 3 R⋅ h−( )⋅= h2 3 R⋅ h−( )⋅
3 SG⋅ V⋅

π
=

h2 3 0.181⋅ m⋅ h−( )⋅
3 0.9⋅ .025⋅ m3

⋅
π

= h2 0.544 h−( )⋅ 0.0215=

This is a cubic equation for h.  We can keep guessing h values, manually iterate, or use Excel's Goal Seek to find h 0.292 m⋅=
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Problem *3.92 [2]

Given: Geometry of steel cylinder

Find: Volume of water displaced; number of 1 kg wts to make it sink

Solution:

The data is For water ρ 999
kg

m3
⋅=

For steel (Table A.1) SG 7.83=

For the cylinder D 100 mm⋅= H 1 m⋅= δ 1 mm⋅=

The volume of the cylinder is Vsteel δ
π D2
⋅
4

π D⋅ H⋅+
⎛
⎜
⎝

⎞
⎟
⎠

⋅= Vsteel 3.22 10 4−
× m3

=

The weight of the cylinder is W SG ρ⋅ g⋅ Vsteel⋅=

W 7.83 999×
kg

m3
⋅ 9.81×

m

s2
⋅ 3.22× 10 4−

× m3
⋅

N s2
⋅

kg m⋅
×= W 24.7N=

At equilibium, the weight of fluid displaced is equal to the weight of the cylinder

Wdisplaced ρ g⋅ Vdisplaced⋅= W=

Vdisplaced
W
ρ g⋅

= 24.7 N⋅
m3

999 kg⋅
×

s2

9.81 m⋅
×

kg m⋅

N s2
⋅

×= Vdisplaced 2.52L=

To determine how many 1 kg wts will make it sink, we first need to find the extra volume that will need to be dsiplaced

Distance cylinder sank x1
Vdisplaced

π D2
⋅
4

⎛
⎜
⎝

⎞
⎟
⎠

= x1 0.321m=

Hence, the cylinder must be made to sink an additional distance x2 H x1−= x2 0.679m=

We deed to add n weights so that 1 kg⋅ n⋅ g⋅ ρ g⋅
π D2
⋅
4

⋅ x2⋅=

n
ρ π⋅ D2

⋅ x2⋅

4 1 kg⋅×
= 999

kg

m3
⋅

π

4
× 0.1 m⋅( )2

× 0.679× m⋅
1

1 kg⋅
×

N s2
⋅

kg m⋅
×= n 5.33=

Hence we need n 6=  weights to sink the cylinder



Problem *3.93 [2]

V FB 

W = Mg 

y 

FD 

Given: Data on hydrogen bubbles

Find: Buoyancy force on bubble; terminal speed in water

Solution:

Basic equation FB ρ g⋅ V⋅= ρ g⋅
π

6
⋅ d3

⋅= and ΣFy M ay⋅= ΣFy 0= FB FD− W−= for terminal speed

FB 1.94
slug

ft3
⋅ 32.2×

ft

s2
⋅

π

6
× 0.001 in⋅

1 ft⋅
12 in⋅

×⎛⎜
⎝

⎞⎟
⎠

3
×

lbf s2
⋅

slug ft⋅
×= FB 1.89 10 11−

× lbf⋅=

For terminal speed FB FD− W− 0= FD 3 π⋅ μ⋅ V⋅ d⋅= FB= where we have ignored W, the weight of the bubble (at
STP most gases are about 1/1000 the density of water)

Hence V
FB

3 π⋅ μ⋅ d⋅
= with μ 2.10 10 5−

×
lbf s⋅

ft2
⋅= from Table A.7 at 68oF

V 1.89 10 11−
× lbf⋅

1
3 π⋅

×
1

2.10 10 5−
×

×
ft2

lbf s⋅
⋅

1
0.001 in⋅

×
12 in⋅
1 ft⋅

×=

V 1.15 10 3−
×

ft
s

⋅= V 0.825
in

min
⋅=

As noted by Professor Kline in the film "Flow Visualization", bubbles rise slowly!



Problem *3.94     [2] 
 
Gas bubbles are released from the regulator of a submerged scuba diver. What happens to 
the bubbles as they rise through the seawater? Explain. 
 
 
Open-Ended Problem Statement: Gas bubbles are released from the regulator of a 
submerged Scuba diver. What happens to the bubbles as they rise through the seawater? 
 
Discussion: Air bubbles released by a submerged diver should be close to ambient 
pressure at the depth where the diver is swimming. The bubbles are small compared to 
the depth of submersion, so each bubble is exposed to essentially constant pressure.  
Therefore the released bubbles are nearly spherical in shape. 
 
The air bubbles are buoyant in water, so they begin to rise toward the surface. The 
bubbles are quite light, so they reach terminal speed quickly. At low speeds the spherical 
shape should be maintained. At higher speeds the bubble shape may be distorted. 
 
As the bubbles rise through the water toward the surface, the hydrostatic pressure 
decreases. Therefore the bubbles expand as they rise. As the bubbles grow larger, one 
would expect the tendency for distorted bubble shape to be exaggerated. 



Problem *3.86
 

Problem *3.95                                                                             [2]



Problem *3.96 [3]

Given: Data on hot air balloon

Find: Volume of balloon for neutral buoyancy; additional volume for initial acceleration of 0.8 m/s2.

Solution:

Basic equation FB ρatm g⋅ V⋅= and ΣFy M ay⋅=

Hence ΣFy 0= FB Whotair− Wload−= ρatm g⋅ V⋅ ρhotairg⋅ V⋅− M g⋅−= for neutral buoyancy

V
M

ρatm ρhotair−
=

M
patm

R Tatm⋅

patm
R Thotair⋅

−

=
M R⋅
patm

1
1

Tatm

1
Thotair

−

⎛
⎜
⎜
⎝

⎞
⎟
⎟
⎠

⋅=

V 450 kg⋅ 286.9×
N m⋅
kg K⋅
⋅

1

101 103
×

×
m2

N
⋅

1
1

9 273+( ) K⋅
1

70 273+( ) K⋅
−

⎡
⎢
⎢
⎣

⎤
⎥
⎥
⎦

×= V 2027 m3
⋅=

Initial acceleration ΣFy FB Whotair− Wload−= ρatm ρhotair−( ) g⋅ Vnew⋅ M g⋅−= Maccel a⋅= M 2 ρhotair⋅ Vnew⋅+( ) a⋅=

Solving for Vnew ρatm ρhotair−( ) g⋅ Vnew⋅ M g⋅− M 2 ρhotair⋅ Vnew⋅+( ) a⋅=

Vnew
M g⋅ M a⋅+

ρatm ρhotair−( ) g⋅ 2 ρhotair⋅ a⋅−
=

M 1
a
g

+⎛⎜
⎝

⎞⎟
⎠

⋅ R⋅

patm
1

Tatm

1
Thotair

−⎛
⎜
⎝

⎞
⎟
⎠

2
Thotair

a
g
⋅−⎡

⎢
⎣

⎤
⎥
⎦

⋅
=

Vnew 450 kg⋅ 1
0.8
9.81

+⎛⎜
⎝

⎞⎟
⎠

× 286.9×
N m⋅
kg K⋅
⋅

1

101 103
×

×
m2

N
⋅

1
1

9 273+
1

70 273+
−

2
70 273+

0.8
9.81
⋅−⎛⎜

⎝
⎞⎟
⎠

× K⋅=

Vnew 8911 m3
⋅= Hence ΔV Vnew V−= ΔV 6884 m3

⋅=

To make the balloon move up or down during flight, the air needs to be heated to a higher temperature, or let cool (or let in ambient air).
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Problem 3.99 [3]

NEW PROBLEM STATEMENT NEEDED

NOTE: Cross section is 25 cm2

 

(L + c)/2 

L 

c 

FBB 

WB 

FBR 

WR 

L/2 

a 
θ 

Given: Geometry of block and rod

Find: Angle for equilibrium

Solution:

Basic
equations

ΣMHinge 0= FB ρ g⋅ V⋅= (Buoyancy)

The free body diagram is as shown.  FBB and FBR are the buoyancy of the
block and rod, respectively; c is the (unknown) exposed length of the rod

Taking moments about the hinge

WB FBB−( ) L⋅ cos θ( )⋅ FBR
L c+( )

2
⋅ cos θ( )⋅− WR

L
2

⋅ cos θ( )⋅+ 0=

with WB MB g⋅= FBB ρ g⋅ VB⋅= FBR ρ g⋅ L c−( )⋅ A⋅= WR MR g⋅=

Combining equations MB ρ VB⋅−( ) L⋅ ρ A⋅ L c−( )⋅
L c+( )

2
⋅− MR

L
2

⋅+ 0=

We can solve for c ρ A⋅ L2 c2
−( )⋅ 2 MB ρ VB⋅−

1
2

MR⋅+⎛⎜
⎝

⎞⎟
⎠

⋅ L⋅=

c L2 2 L⋅
ρ A⋅

MB ρ VB⋅−
1
2

MR⋅+⎛⎜
⎝

⎞⎟
⎠

⋅−=

c 5 m⋅( )2 2 5× m⋅
m3

1000 kg⋅
×

1
25

×
1

cm2
⋅

100 cm⋅
1 m⋅

⎛⎜
⎝

⎞⎟
⎠

2
× 30 kg⋅ 1000

kg

m3
⋅ 0.025× m3

⋅⎛
⎜
⎝

⎞
⎟
⎠

−
1
2

1.25× kg⋅+⎡
⎢
⎣

⎤
⎥
⎦

×−=

c 1.58m=

Then sin θ( )
a
c

= with a 0.25 m⋅= θ asin
a
c

⎛⎜
⎝

⎞⎟
⎠

= θ 9.1 deg⋅=
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Problem 3.101 [2]

 

(L + c)/2 

L 

c 

FBR 

WR 

L/2 

a 
θ 

Given: Geometry of rod

Find: How much of rod is submerged; force to lift rod out of water

Solution:

Basic
equations

ΣMHinge 0= FB ρ g⋅ V⋅= (Buoyancy)

The free body diagram is as shown.  FBR is the buoyancy of the rod; c is
the (unknown) exposed length of the rod

Taking moments about the hinge

FBR−
L c+( )

2
⋅ cos θ( )⋅ WR

L
2

⋅ cos θ( )⋅+ 0=

with FBR ρ g⋅ L c−( )⋅ A⋅= WR MR g⋅=

Hence ρ− A⋅ L c−( )⋅
L c+( )

2
⋅ MR

L
2

⋅+ 0=

We can solve for c ρ A⋅ L2 c2
−( )⋅ MR L⋅=

c L2 L MR⋅

ρ A⋅
−=

c 5 m⋅( )2 5 m⋅
m3

1000 kg⋅
×

1
25

×
1

cm2
⋅

100 cm⋅
1 m⋅

⎛⎜
⎝

⎞⎟
⎠

2
× 1.25× kg⋅−=

c 4.74m=

Then the submerged length is L c− 0.257m=

To lift the rod out of the water requires a force equal to half the rod weight (the reaction also takes half the weight)

F
1
2

MR⋅ g⋅=
1
2

1.25× kg⋅ 9.81×
m

s2
⋅

N s2
⋅

kg m⋅
×= F 6.1N=
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Problem *3.103 [2]

FB 

W 

H = 2 ft 

θ 

h = 1 in. 

Given: Data on river

Find: Largest diameter of log that will be transported

Solution:

Basic equation FB ρ g⋅ Vsub⋅= and ΣFy 0= ΣFy 0= FB W−=

where FB ρ g⋅ Vsub⋅= ρ g⋅ Asub⋅ L⋅= W SG ρ⋅ g⋅ V⋅= SG ρ⋅ g⋅ A⋅ L⋅=

From references (trying Googling "segment of a circle") Asub
R2

2
θ sin θ( )−( )⋅= where R is the radius and θ is the

included angle

Hence ρ g⋅
R2

2
⋅ θ sin θ( )−( )⋅ L⋅ SG ρ⋅ g⋅ π⋅ R2

⋅ L⋅=

θ sin θ( )− 2 SG⋅ π⋅= 2 0.8× π×=

This equation can be solved by manually iterating, or by using a good calculator, or by using Excel's Goal Seek

θ 239 deg⋅=

From geometry the submerged amount of a log is H h− and also R R cos π
θ

2
−⎛⎜

⎝
⎞⎟
⎠

⋅+

Hence H h− R R cos π
θ

2
−⎛⎜

⎝
⎞⎟
⎠

⋅+=

Solving for R R
H h−

1 cos 180deg
θ

2
−⎛⎜

⎝
⎞⎟
⎠

+
= R

2
1
12

−⎛⎜
⎝

⎞⎟
⎠

ft⋅

1 cos 180
239
2

−⎛⎜
⎝

⎞⎟
⎠

deg⋅⎡⎢
⎣

⎤⎥
⎦

+
= R 1.28 ft⋅=

D 2 R⋅= D 2.57 ft⋅=



Problem *3.104 [4]

FB 

W 
FL 

FU 

Given: Data on sphere and tank bottom

Find: Expression for SG of sphere at which it will float to surface; minimum SG to remain in position

Solution:

Basic equations FB ρ g⋅ V⋅= and ΣFy 0= ΣFy 0= FL FU− FB+ W−=

where FL patm π⋅ a2
⋅= FU patm ρ g⋅ H 2 R⋅−( )⋅+⎡⎣ ⎤⎦ π⋅ a2

⋅=

FB ρ g⋅ Vnet⋅= Vnet
4
3

π⋅ R3
⋅ π a2

⋅ 2⋅ R⋅−=

W SG ρ⋅ g⋅ V⋅= with V
4
3

π⋅ R3
⋅=

Note that we treat the sphere as a sphere with SG, and for fluid effects a sphere minus a cylinder
(buoyancy) and cylinder with hydrostatic pressures

Hence patm π⋅ a2
⋅ patm ρ g⋅ H 2 R⋅−( )⋅+⎡⎣ ⎤⎦ π⋅ a2

⋅− ρ g⋅
4
3

π⋅ R3
⋅ 2 π⋅ R⋅ a2

⋅−⎛⎜
⎝

⎞⎟
⎠

⋅+ SG ρ⋅ g⋅
4
3
⋅ π⋅ R3

⋅− 0=

Solving for SG SG
3

4 π⋅ ρ⋅ g⋅ R3
⋅

π− ρ⋅ g⋅ H 2 R⋅−( )⋅ a2
⋅ ρ g⋅

4
3

π⋅ R3
⋅ 2 π⋅ R⋅ a2

⋅−⎛⎜
⎝

⎞⎟
⎠

⋅+⎡⎢
⎣

⎤⎥
⎦

⋅=

SG 1
3
4

H a2
⋅

R3
⋅−=

SG 1
3
4

2.5× ft⋅ 0.075 in⋅
1 ft⋅

12 in⋅
×⎛⎜

⎝
⎞⎟
⎠

2
×

1
1 in⋅

12 in⋅
1 ft⋅

×⎛⎜
⎝

⎞⎟
⎠

3
×−= SG 0.873=

This is the minimum SG to remain submerged; any SG above this and the sphere remains on the bottom; any SG less than this and the
sphere rises to the surface
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Problem *3.106 [3]

H = 8 ft 

h = 7 ft 

θ = 60o 

Floating Sinking Given: Data on boat

Find: Effective density of water/air bubble mix if boat sinks

Solution:

Basic equations FB ρ g⋅ V⋅= and ΣFy 0=

We can apply the sum of forces for the "floating" free body 

ΣFy 0= FB W−= where FB SGsea ρ⋅ g⋅ Vsubfloat⋅=

Vsubfloat
1
2

h⋅
2 h⋅

tan θ⋅
⎛⎜
⎝

⎞⎟
⎠

⋅ L⋅=
L h2
⋅

tan θ( )
= SGsea 1.024= (Table A.2)

Hence W
SGsea ρ⋅ g⋅ L⋅ h2

⋅

tan θ( )
= (1)

We can apply the sum of forces for the "sinking" free body 

ΣFy 0= FB W−= where FB SGmix ρ⋅ g⋅ Vsub⋅= Vsubsink
1
2

H⋅
2 H⋅

tan θ⋅
⎛⎜
⎝

⎞⎟
⎠

⋅ L⋅=
L H2
⋅

tan θ( )
=

Hence W
SGmix ρ⋅ g⋅ L⋅ H2

⋅

tan θ( )
= (2)

Comparing Eqs. 1 and 2
W

SGsea ρ⋅ g⋅ L⋅ h2
⋅

tan θ( )
=

SGmix ρ⋅ g⋅ L⋅ H2
⋅

tan θ( )
=

SGmix SGsea
h
H
⎛⎜
⎝

⎞⎟
⎠

2
⋅= SGmix 1.024

7
8
⎛⎜
⎝
⎞⎟
⎠

2
×= SGmix 0.784=

The density is ρmix SGmix ρ⋅= ρmix 0.784 1.94×
slug

ft3
⋅= ρmix 1.52

slug

ft3
=



Problem *3.107 [2]

F 

7 in.

FB 

W 

3 in.

1 in. 

D = 4 in. 

Given: Data on inverted bowl and BXYB fluid

Find: Force to hold in place

Solution:

Basic equation FB ρ g⋅ V⋅= and ΣFy 0= ΣFy 0= FB F− W−=

Hence F FB W−=

For the buoyancy force FB SGBXYB ρ⋅ g⋅ Vsub⋅= with Vsub Vbowl Vair+=

For the weight W SGbowl ρ⋅ g⋅ Vbowl⋅=

Hence F SGBXYB ρ⋅ g⋅ Vbowl Vair+( )⋅ SGbowl ρ⋅ g⋅ Vbowl⋅−=

F ρ g⋅ SGBXYB Vbowl Vair+( )⋅ SGbowl Vbowl⋅−⎡⎣ ⎤⎦⋅=

F 1.94
slug

ft3
⋅ 32.2×

ft

s2
⋅ 15.6 56 in3

⋅ 3 1−( ) in⋅
π 4 in⋅( )2
⋅

4
⋅+

⎡
⎢
⎣

⎤
⎥
⎦

× 5.7 56× in3
⋅−

⎡
⎢
⎣

⎤
⎥
⎦

×
1 ft⋅

12 in⋅
⎛⎜
⎝

⎞⎟
⎠

3
×

lbf s2
⋅

slug ft⋅
×=

F 34.2 lbf⋅=



Problem *3.108     [4] 
 
Consider a conical funnel held upside down and submerged slowly in a container of 
water. Discuss the force needed to submerge the funnel if the spout is open to the 
atmosphere. Compare with the force needed to submerge the funnel when the spout 
opening is blocked by a rubber stopper. 
 
 
Open-Ended Problem Statement: Consider a conical funnel held upside down and submerged slowly in a 
container of water. Discuss the force needed to submerge the funnel if the spout is open to the atmosphere. 
Compare with the force needed to submerge the funnel when the spout opening is blocked by a rubber 
stopper. 
 
Discussion: Let the weight of the funnel in air be Wa. Assume the funnel is held with its spout vertical and 
the conical section down. Then Wa will also be vertical. 
 
Two possible cases are with the funnel spout open to atmosphere or with the funnel spout sealed. 
With the funnel spout open to atmosphere, the pressures inside and outside the funnel are equal, so no net 
pressure force acts on the funnel. The force needed to support the funnel will remain constant until it first 
contacts the water. Then a buoyancy force will act vertically upward on every element of volume located 
beneath the water surface. 
 
The first contact of the funnel with the water will be at the widest part of the conical section. The buoyancy 
force will be caused by the volume formed by the funnel thickness and diameter as it begins to enter the 
water. The buoyancy force will reduce the force needed to support the funnel. The buoyancy force will 
increase as the depth of submergence of the funnel increases until the funnel is fully submerged. At that 
point the buoyancy force will be constant and equal to the weight of water displaced by the volume of the 
material from which the funnel is made. 
 
If the funnel material is less dense than water, it would tend to float partially submerged in the water. The 
force needed to support the funnel would decrease to zero and then become negative (i.e., down) to fully 
submerge the funnel. 
 
If the funnel material were denser than water it would not tend to float even when fully submerged. The 
force needed to support the funnel would decrease to a minimum when the funnel became fully submerged, 
and then would remain constant at deeper submersion depths. 
With the funnel spout sealed, air will be trapped inside the funnel. As the funnel is submerged gradually 
below the water surface, it will displace a volume equal to the volume of the funnel material plus the 
volume of trapped air. Thus its buoyancy force will be much larger than when the spout is open to 
atmosphere. Neglecting any change in air volume (pressures caused by submersion should be small 
compared to atmospheric pressure) the buoyancy force would be from the entire volume encompassed by 
the outside of the funnel. Finally, when fully submerged, the volume of the rubber stopper (although small) 
will also contribute to the total buoyancy force acting on the funnel. 



Problem *3.109     [4] 
 
In the ‘‘Cartesian diver’’ child’s toy, a miniature ‘‘diver’’ is immersed in a column of 
liquid. When a diaphragm at the top of the column is pushed down, the diver sinks to the 
bottom. When the diaphragm is released, the diver again rises. Explain how the toy might 
work. 
 
 
Open-Ended Problem Statement: In the “Cartesian diver” child's toy, a miniature 
“diver” is immersed in a column of liquid. When a diaphragm at the top of the column is 
pushed down, the diver sinks to the bottom. When the diaphragm is released, the diver 
again rises. Explain how the toy might work. 
 
Discussion: A possible scenario is for the toy to have a flexible bladder that contains air. 
Pushing down on the diaphragm at the top of the liquid column would increase the 
pressure at any point in the liquid. The air in the bladder would be compressed slightly as 
a result. The volume of the bladder, and therefore its buoyancy, would decrease, causing 
the diver to sink to the bottom of the liquid column. 
 
Releasing the diaphragm would reduce the pressure in the water column. This would 
allow the bladder to expand again, increasing its volume and therefore the buoyancy of 
the diver. The increased buoyancy would permit the diver to rise to the top of the liquid 
column and float in a stable, partially submerged position, on the surface of the liquid. 



Problem *3.110     [4] 
 
A proposed ocean salvage scheme involves pumping air into ‘‘bags’’ placed within and 
around a wrecked vessel on the sea bottom. Comment on the practicality of this plan, 
supporting your conclusions with analyses. 
 
 
Open-Ended Problem Statement: A proposed ocean salvage scheme involves pumping 
air into “bags” placed within and around a wrecked vessel on the sea bottom. Comment 
on the practicality of this plan, supporting your conclusions with analyses. 
 
Discussion: This plan has several problems that render it impractical. First, pressures at 
the sea bottom are very high. For example, Titanic was found in about 12,000 ft of 
seawater. The corresponding pressure is nearly 6,000 psi. Compressing air to this 
pressure is possible, but would require a multi-stage compressor and very high power. 
 
Second, it would be necessary to manage the buoyancy force after the bag and object are 
broken loose from the sea bed and begin to rise toward the surface. Ambient pressure 
would decrease as the bag and artifact rise toward the surface. The air would tend to 
expand as the pressure decreases, thereby tending to increase the volume of the bag. The 
buoyancy force acting on the bag is directly proportional to the bag volume, so it would 
increase as the assembly rises. The bag and artifact thus would tend to accelerate as they 
approach the sea surface. The assembly could broach the water surface with the 
possibility of damaging the artifact or the assembly. 
 
If the bag were of constant volume, the pressure inside the bag would remain essentially 
constant at the pressure of the sea floor, e.g., 6,000 psi for Titanic. As the ambient 
pressure decreases, the pressure differential from inside the bag to the surroundings 
would increase. Eventually the difference would equal sea floor pressure. This probably 
would cause the bag to rupture. 
 
If the bag permitted some expansion, a control scheme would be needed to vent air from 
the bag during the trip to the surface to maintain a constant buoyancy force just slightly 
larger than the weight of the artifact in water. Then the trip to the surface could be 
completed at low speed without danger of broaching the surface or damaging the artifact. 



Problem *3.111 [2]

Given: Steel balls resting in floating plastic shell in a bucket of water

Find: What happens to water level when balls are dropped in water

Solution: Basic equation FB ρ Vdisp⋅ g⋅= W= for a floating body weight W

When the balls are in the plastic shell, the shell and balls displace a volume of water equal to their own weight - a large volume because
the balls are dense.  When the balls are removed from the shell and dropped in the water, the shell now displaces only a small volume of
water, and the balls sink, displacing only their own volume.  Hence the difference in displaced water before and after moving the balls is
the difference between the volume of water that is equal to the weight of the balls, and the volume of the balls themselves.  The amount
of water displaced is significantly reduced, so the water level in the bucket drops.

Volume displaced before moving balls: V1
Wplastic Wballs+

ρ g⋅
=

Volume displaced after moving balls: V2
Wplastic

ρ g⋅
Vballs+=

Change in volume displaced ΔV V2 V1−= Vballs
Wballs

ρ g⋅
−= Vballs

SGballsρ⋅ g⋅ Vballs⋅

ρ g⋅
−=

ΔV Vballs 1 SGballs−( )⋅=

Hence initially a large volume is displaced; finally a small volume is displaced (ΔV < 0 because SGballs > 1)
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Problem *3.114 [2]

Given: Rectangular container with constant acceleration

Find: Slope of free surface

Solution: Basic equation

In components
x

p∂

∂
− ρ gx⋅+ ρ ax⋅=

y
p∂

∂
− ρ gy⋅+ ρ ay⋅=

z
p∂

∂
− ρ gz⋅+ ρ az⋅=

We have ay az= 0= gx g sin θ( )⋅= gy g− cos θ( )⋅= gz 0=

Hence
x

p∂

∂
− ρ g⋅ sin θ( )⋅+ ρ ax⋅= (1)

y
p∂

∂
− ρ g⋅ cos θ( )⋅− 0= (2)

z
p∂

∂
− 0= (3)

From Eq. 3 we can simplify from p p x y, z, ( )= to p p x y, ( )=

Hence a change in pressure is given by dp
x

p∂

∂
dx⋅

y
p∂

∂
dy⋅+=

at the free surfaceAt the free surface p = const., so dp 0=
x

p∂

∂
dx⋅

y
p∂

∂
dy⋅+= or dy

dx
x

p∂

∂

y
p∂

∂

−=

Hence at the free surface, using Eqs 1 and 2 dy
dx

x
p∂

∂

y
p∂

∂

−=
ρ g⋅ sin θ( )⋅ ρ ax⋅−

ρ g⋅ cos θ( )⋅
=

g sin θ( )⋅ ax−

g cos θ( )⋅
=

dy
dx

9.81 0.5( )⋅
m

s2
⋅ 3

m

s2
⋅−

9.81 0.866( )⋅
m

s2
⋅

=

At the free surface, the slope is dy
dx

0.224=



Problem *3.115 [2]

Given: Spinning U-tube sealed at one end

Find: Maximum angular speed for no cavitation

Solution: Basic equation

In components
r
p∂

∂
− ρ ar⋅= ρ−

V2

r
⋅= ρ− ω

2
⋅ r⋅=

z
p∂

∂
ρ− g⋅=

Between D and C, r = constant, so
z

p∂

∂
ρ− g⋅= and so pD pC− ρ− g⋅ H⋅= (1)

Between B and A, r = constant, so
z

p∂

∂
ρ− g⋅= and so pA pB− ρ− g⋅ H⋅= (2)

Between B and C, z = constant, so
r

p∂

∂
ρ ω

2
⋅ r⋅= and so

pB

pC
p1

⌠
⎮
⌡

d
0

L
rρ ω

2
⋅ r⋅

⌠
⎮
⌡

d=

pC pB− ρ ω
2

⋅
L2

2
⋅= (3)Integrating

Since pD = patm, then from Eq 1 pC patm ρ g⋅ H⋅+=

From Eq. 3 pB pC ρ ω
2

⋅
L2

2
⋅−= so pB patm ρ g⋅ H⋅+ ρ ω

2
⋅

L2

2
⋅−=

From Eq. 2 pA pB ρ g⋅ H⋅−= so pA patm ρ ω
2

⋅
L2

2
⋅−=

Thus the minimum pressure occurs at point A (not B)

At 68oF from steam tables, the vapor pressure of water is pv 0.339 psi⋅=

Solving for ω with pA = pv, we obtain ω

2 patm pv−( )⋅

ρ L2
⋅

= 2 14.7 0.339−( )⋅
lbf

in2
⋅

ft3

1.94 slug⋅
×

1

3 in⋅( )2
×

12 in⋅
1 ft⋅

⎛⎜
⎝

⎞⎟
⎠

4
×

slugft⋅

s2 lbf⋅
×

⎡⎢
⎢⎣

⎤⎥
⎥⎦

1
2

=

ω 185
rad
s

⋅= ω 1764 rpm⋅=



Problem *3.116 [2]

Given: Spinning U-tube sealed at one end

Find: Pressure at A; water loss due to leak

Solution: Basic equation

From the analysis of Example Problem 3.10, solving the basic equation, the pressure p at any point (r,z) in a continuous rotating fluid is
given by

p p0
ρ ω

2
⋅
2

r2 r0
2

−⎛
⎝

⎞
⎠⋅+ ρ g⋅ z z0−( )⋅−= (1)

where p0 is a reference pressure at point (r0,z0)

In this case p pA= p0 pD= z zA= zD= z0= H= r 0= r0 rD= L=

The speed of rotation is ω 200 rpm⋅= ω 20.9
rad
s

⋅=

The pressure at D is pD 0 kPa⋅= (gage)

Hence pA
ρ ω

2
⋅
2

L2
−( )⋅ ρ g⋅ 0( )⋅−=

ρ ω
2

⋅ L2
⋅

2
−=

1
2

− 1.94×
slug

ft3
⋅ 20.9

rad
s

⋅⎛⎜
⎝

⎞⎟
⎠

2
× 3 in⋅( )2

×
1 ft⋅

12 in⋅
⎛⎜
⎝

⎞⎟
⎠

4
×

lbf s2
⋅

slug ft⋅
×=

pA 0.18− psi⋅= (gage)

When the leak appears,the water level at A will fall, forcing water out at point D.  Once again, from the analysis of Example
Problem 3.10, we can use Eq 1

In this case p pA= 0= p0 pD= 0= z zA= z0 zD= H= r 0= r0 rD= L=

Hence 0
ρ ω

2
⋅
2

L2
−( )⋅ ρ g⋅ zA H−( )⋅−=

zA H
ω

2 L2
⋅

2 g⋅
−= 12in

1
2

20.9
rad
s

⋅⎛⎜
⎝

⎞⎟
⎠

2
× 3 in⋅( )2

×
s2

32.2 ft⋅
×

1 ft⋅
12 in⋅

×−= zA 6.91 in⋅=

The amount of water lost is Δh H zA−= 12 in⋅ 6.91 in⋅−= Δh 5.09 in⋅=
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Problem *3.119 [3]

Given: Cubical box with constant acceleration

Find: Slope of free surface; pressure along bottom of box

Solution: Basic equation

In components
x

p∂

∂
− ρ gx⋅+ ρ ax⋅=

y
p∂

∂
− ρ gy⋅+ ρ ay⋅=

z
p∂

∂
− ρ gz⋅+ ρ az⋅=

We have ax ax= gx 0= ay 0= gy g−= az 0= gz 0=

Hence
x

p∂

∂
SG− ρ⋅ ax⋅= (1)

y
p∂

∂
SG− ρ⋅ g⋅= (2)

z
p∂

∂
0= (3)

From Eq. 3 we can simplify from p p x y, z, ( )= to p p x y, ( )=

Hence a change in pressure is given by dp
x

p∂

∂
dx⋅

y
p∂

∂
dy⋅+= (4)

At the free surface p = const., so dp 0=
x

p∂

∂
dx⋅

y
p∂

∂
dy⋅+= or dy

dx
x

p∂

∂

y
p∂

∂

−=
ax
g

−=
0.25 g⋅

g
−=

Hence at the free surface dy
dx

0.25−=

The equation of the free surface is then y
x
4

− C+= and through volume conservation the fluid rise in the rear
balances the fluid fall in the front, so at the midpoint the free
surface has not moved from the rest position

For size L 80 cm⋅= at the midpoint x
L
2

= y
L
2

= (box is half filled) L
2

1
4

−
L
2

⋅ C+= C
5
8

L⋅= y
5
8

L⋅
x
4

−=

Combining Eqs 1, 2, and 4 dp SG− ρ⋅ ax⋅ dx⋅ SG ρ⋅ g⋅ dy⋅−= or p SG− ρ⋅ ax⋅ x⋅ SG ρ⋅ g⋅ y⋅− c+=

We have p patm= when x 0= y
5
8

L⋅= so patm SG− ρ⋅ g⋅
5
8

⋅ L⋅ c+= c patm SG ρ⋅ g⋅
5
8

⋅ L⋅+=

p x y, ( ) patm SG ρ⋅
5
8

g⋅ L⋅ ax x⋅− g y⋅−⎛⎜
⎝

⎞⎟
⎠

⋅+= patm SG ρ⋅ g⋅
5
8

L⋅
x
4

− y−⎛⎜
⎝

⎞⎟
⎠

⋅+=

On the bottom y = 0 so p x 0, ( ) patm SG ρ⋅ g⋅
5
8

L⋅
x
4

−⎛⎜
⎝

⎞⎟
⎠

⋅+= 101 0.8 1000×
kg

m3
⋅

N s2
⋅

kg m⋅
× 9.81×

m

s2
⋅

5
8

0.8× m⋅
x
4

−⎛⎜
⎝

⎞⎟
⎠

×
kPa

103 Pa⋅
×+=

p x 0, ( ) 105 1.96 x⋅−= (p in kPa, x in m)
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3.120



Problem 4.1 [1]

Given: Data on mass and spring

Find: Maximum spring compression

Solution:

The given data is M 3 kg⋅= h 5 m⋅= k 400
N
m
⋅=

Apply the First Law of Thermodynamics: for the system consisting of the mass and the spring (the spring has gravitional potential
energy and the spring elastic potential energy)

Total mechanical energy at initial state E1 M g⋅ h⋅=

Total mechanical energy at instant of maximum compression x E2 M g⋅ x−( )⋅
1
2

k⋅ x2
⋅+=

Note: The datum for zero potential is the top of the uncompressed spring

But E1 E2=

so M g⋅ h⋅ M g⋅ x−( )⋅
1
2

k⋅ x2
⋅+=

Solving for x x2 2 M⋅ g⋅
k

x⋅−
2 M⋅ g⋅ h⋅

k
− 0=

x
M g⋅
k

M g⋅
k

⎛⎜
⎝

⎞⎟
⎠

2 2 M⋅ g⋅ h⋅
k

++=

x 3 kg⋅ 9.81×
m

s2
⋅

m
400 N⋅

× 3 kg⋅ 9.81×
m

s2
⋅

m
400 N⋅

×⎛
⎜
⎝

⎞
⎟
⎠

2
2 3× kg⋅ 9.81×

m

s2
⋅ 5× m⋅

m
400 N⋅

×++=

x 0.934m=

Note that ignoring the loss of potential of the mass due to spring compression x gives

x
2 M⋅ g⋅ h⋅

k
= x 0.858m=

Note that the deflection if the mass is dropped from immediately above the spring is

x
2 M⋅ g⋅

k
= x 0.147m=
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Problem 4.3 [2]

Given: Data on Boeing 777-200 jet

Find: Minimum runway length for takeoff

Solution:

Basic equation ΣFx M
dV
dt

⋅= M V⋅
dV
dx

⋅= Ft= constant= Note that the "weight" is already in mass units!

Separating variables M V⋅ dV⋅ Ft dx⋅=

Integrating x
M V2
⋅

2 Ft⋅
=

x
1
2

325× 103
× kg 225

km
hr

1 km⋅
1000 m⋅

×
1 hr⋅

3600 s⋅
×⎛⎜

⎝
⎞⎟
⎠

2
×

1

2 425× 103
×

×
1
N
⋅

N s2
⋅

kg m⋅
×= x 747m=

For time calculation M
dV
dt

⋅ Ft= dV
Ft
M

dt⋅=

Integrating t
M V⋅

Ft
=

t 325 103
× kg 225×

km
hr

1 km⋅
1000 m⋅

×
1 hr⋅

3600 s⋅
×

1

2 425× 103
×

×
1
N
⋅

N s2
⋅

kg m⋅
×= t 23.9 s=

Aerodynamic and rolling resistances would significantly increase both these results
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Problem 4.6 [2]

Given: Data on air compression process

Find: Internal energy change

Solution:

Basic equation δQ δW− dE=

Assumptions:  1) Adiabatic so δQ = 0   2) Stationary system dE =dU   3) Frictionless process δW = pdV = Mpdv

Then dU δW−= M− p⋅ dv⋅=

Before integrating we need to relate p and v.  An adiabatic frictionless (reversible) process is isentropic, which for an ideal gas gives

p vk
⋅ C= where k

cp
cv

=

Hence v C

1
k p

1
k

−
⋅= and dv C

1
k 1

k
⋅ p

1
k

− 1−
⋅ dp⋅=

Substituting du
dU
M

= p− dv⋅= p− C

1
k

⋅
1
k
⋅ p

1
k

− 1−
⋅ dp⋅=

C

1
k

−
k

p

1
k

−
⋅ dp⋅=

Integrating between states 1 and 2

Δu
C

1
k

k 1−
p2

k 1−
k p1

k 1−
k

−

⎛
⎜
⎝

⎞
⎟
⎠⋅=

C

1
k p1

k 1−
k

⋅

k 1−

p2
p1

⎛
⎜
⎝

⎞
⎟
⎠

k 1−
k

1−

⎡
⎢
⎢
⎢
⎣

⎤
⎥
⎥
⎥
⎦

⋅=

But C

1
k p

k 1−
k

⋅ C

1
k p

1
k

−
⋅ p⋅= p v⋅= Rair T⋅=

Hence Δu
Rair T1⋅

k 1−

p2
p1

⎛
⎜
⎝

⎞
⎟
⎠

k 1−
k

1−

⎡
⎢
⎢
⎢
⎣

⎤
⎥
⎥
⎥
⎦

⋅=

From Table A.6 Rair 53.33
ft lbf⋅
lbm R⋅
⋅= and k 1.4=

Δu
1

0.4
53.33×

ft lbf⋅
lbm R⋅
⋅ 68 460+( )× R

3
1
⎛⎜
⎝
⎞⎟
⎠

1.4 1−
1.4

1−

⎡
⎢
⎢
⎣

⎤
⎥
⎥
⎦

×= Δu 2.6 104
×

ft lbf⋅
lbm

⋅=

Δu 33.4
Btu
lbm
⋅= Δu 1073

Btu
slug
⋅= (Using conversions from Table G.2)



Problem 4.7 [2]

Given: Data on cooling of a can of soda in a refrigerator

Find: How long it takes to warm up in a room

Solution:
The First Law of Thermodynamics for the can (either warming or cooling) is

M c⋅
dT
dt

⋅ k− T Tamb−( )⋅= or dT
dt

A− T Tamb−( )⋅= where A
k

M c⋅
=

where M is the can mass, c is the average specific heat of the can and its contents, T is the temperature, and Tamb is the
ambient temperature

Separating variables dT
T Tamb−

A− dt⋅=

Integrating T t( ) Tamb Tinit Tamb−( ) e A− t
⋅+=

where Tinit is the initial temperature.  The available data from the coolling can now be used to obtain a value for constant A

Given data for cooling Tinit 25 273+( ) K⋅= Tinit 298K= Tamb 5 273+( ) K⋅= Tamb 278K=

T 10 273+( ) K⋅= T 283K= when t τ= 10 hr⋅=

Hence A
1
τ

ln
Tinit Tamb−

T Tamb−

⎛
⎜
⎝

⎞
⎟
⎠

⋅=
1

3 hr⋅
1 hr⋅

3600 s⋅
× ln

298 278−
283 278−
⎛⎜
⎝

⎞⎟
⎠

×= A 1.284 10 4−
× s 1−

=

Then, for the warming up process

Tinit 10 273+( ) K⋅= Tinit 283K= Tamb 20 273+( ) K⋅= Tamb 293K=

Tend 15 273+( ) K⋅= Tend 288K=

with Tend Tamb Tinit Tamb−( ) e A− τ
⋅+=

Hence the time τ is τ
1
A

ln
Tinit Tamb−

Tend Tamb−

⎛
⎜
⎝

⎞
⎟
⎠

⋅=
s

1.284 10 4−
⋅

ln
283 293−
288 293−
⎛⎜
⎝

⎞⎟
⎠

⋅= τ 5.40 103
× s= τ 1.50hr=



Problem 4.8 [2]

Given: Data on heat loss from persons, and people-filled auditorium

Find: Internal energy change of air and of system; air temperature rise

Solution:

Basic equation Q W− ΔE=

Assumptions:  1) Stationary system dE =dU   2) No work W = 0

Then for the air ΔU Q= 85
W

person
⋅ 6000× people⋅ 15× min⋅

60 s⋅
min

×= ΔU 459MJ=

For the air and people ΔU Qsurroundings= 0=

The increase in air energy is equal and opposite to the loss in people energy

For the air ΔU Q= but for air (an ideal gas) ΔU M cv⋅ ΔT⋅= with M ρ V⋅=
p V⋅

Rair T⋅
=

Hence ΔT
Q

M cv⋅
=

Rair Q⋅ T⋅

cv p⋅ V⋅
=

From Table A.6 Rair 286.9
J

kg K⋅
⋅= and cv 717.4

J
kg K⋅
⋅=

ΔT
286.9
717.4

459× 106
× J⋅ 20 273+( )× K

1

101 103
×

×
m2

N
⋅

1

3.5 105
×

×
1

m3
⋅= ΔT 1.521K=

This is the temperature change in 15 min.  The rate of change is then ΔT
15 min⋅

6.09
K
hr

=
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Problem 4.10     [3] 
 

 
 
 
 
 
 
 
 
 
 
 

 
 

Given:  Data on velocity field and control volume geometry 
 
Find:  Several surface integrals 
 
Solution: 

 
 

kwdyjwdzAd ˆˆ
1 +−=
r

   kdyjdzAd ˆˆ
1 +−=
r

 
 

jwdzAd ˆ
2 =
r

    jdzAd ˆ
2 =
r

 
 

( )kbjazV ˆˆ +=
r

    ( )kjzV ˆ5ˆ10 +=
r

 
 
 

 
(a) ( ) ( ) dyzdzkdyjdzkjzdAV 510ˆˆˆ5ˆ101 +−=+−⋅+=⋅

r
 

 

(b) 055510 1
0

1

0
2

1

0

1

0
1

1

=+−=+−=⋅ ∫∫∫ yzdyzdzdAV
A

r
 

 
(c) ( ) ( ) zdzjdzkjzdAV 10ˆˆ5ˆ102 =⋅+=⋅

r
 

 
 
(d) ( ) ( ) zdzkjzdAVV 10ˆ5ˆ102 +=⋅

rr
 

 

(e) ( ) ( ) kjkzjzzdzkjzdAVV
A

ˆ25ˆ3.33ˆ25ˆ
3

10010ˆ5ˆ10
1

0

2
1

0

3
1

0
2

2

+=+=+=⋅ ∫∫
rr

 

 
 



Problem 4.11 [3]

Given: Geometry of 3D surface

Find: Volume flow rate and momentum flux through area

kdxdyjdxdzAd ˆˆ +=
r

     
 
 

jbyiaxV ˆˆ −=
r

    jyixV ˆˆ −=
r

 
 
 

We will need the equation of the surface:  yz
2
13−=  or zy 26 −=  

 
 

a) Volume flow rate 
 

 

( ) ( )
( )

( )

s
ft90

s
ft90180

1060261010

ˆˆˆˆ

3

3

3

0

2
3

0

3

0

10

0

3

0

−=

+−=

+−=−−=−=−=

+⋅−=⋅=

∫∫∫ ∫

∫∫

Q

Q

zzdzzydzdxydz

kdxdyjdxdzjyixdAVQ
AA

r

 

 

Solution:

b) Momentum flux 
 

 

( ) ( )( )

( )

( ) ( )

( )( ) ( )( )

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛ ⋅
+−=

+−+−−=

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛ +−+⎟

⎠
⎞⎜

⎝
⎛ −
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
−=

−+−−=

+−=

−−=⋅

∫∫∫

∫∫ ∫

∫∫

3

3

0

323

0
2

10

0

2

3

0

2
3

0

10

0

3

0

2
10

0

3

0

ft
slug in is  if  

s
s

ftslugˆ360ˆ450

ˆ3610810810ˆ91850

ˆ
3
4123610ˆ6

2

ˆ2610ˆ26

ˆ10ˆ

ˆˆ

ρρρ

ρρ

ρρ

ρρ

ρρ

ρρ

ji

ji

jzzzizzx

jdzzidzzdxx

jdzyidxdzxy

ydxdzjyixAdVV
AA

rrr
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Problem 4.13 [3]

Given: Geometry of 3D surface

Find: Surface integrals
 

jdxdzidydzAd ˆˆ −=
r

 
 
 

kcjbyiaxV ˆˆˆ ++−=
r

    kjyixV ˆ5.2ˆ2ˆ2 ++−=
r

 
 
 

We will need the equation of the surface:  xy
2
3

=  or yx
3
2

=  

 

( ) ( )

( )

s
m24

66
4
32

3
12

2
3

3
2

ˆˆˆˆˆ

3

2

0

2
3

0

2
2

0

2

0

2

0

3

0

2

0

2

0

2

0

3

0

−=

−−=

−−=−−=−−=

−⋅++−=⋅

∫ ∫∫ ∫∫ ∫∫ ∫

∫∫

Q

baQ

xbyaxdxdzbydydzadzbydxdzaxdy

jdxdzidydzkcjbyiaxdAV
AA

r

 

Solution:

We will again need the equation of the surface:  xy
2
3

=  or yx
3
2

= , and also dxdy
2
3

=  and ba =  

 

 

( ) ( )( ) ( )
( )( )

( )

( ) ( ) ( )

2

4

22

2

0

22

0

3
2

2

0

3
2

2

0

2

0

2

0

2

0

22
2

0

2

0

22

s
mˆ60ˆ96ˆ64

ˆ12ˆ24ˆ16

2
6ˆ

3
9ˆ

3
6

ˆ3ˆ
2
9ˆ3

3ˆˆ
2
3ˆ

2
3

2
3ˆˆ

2
3ˆ

ˆˆˆ

ˆˆˆˆˆˆˆˆ

kji

kacjaia

xacjxaixa

kdzacxdxjdzdxxaidzdxxa

axdxdzkcjaxiax

xdxdzadxdzaxkcjaxiax

bydxdzaxdydzkcjbyiax

jdxdzidydzkcjbyiaxkcjbyiaxAdVV

A

A

A

AA

−−=

−−=

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
−

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
−

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
=

−−=

−⎟
⎠
⎞

⎜
⎝
⎛ ++−=

⎟
⎠
⎞

⎜
⎝
⎛ −−⎟
⎠
⎞

⎜
⎝
⎛ ++−=

−−++−=

−⋅++−++−=⋅

∫ ∫∫ ∫∫ ∫

∫

∫

∫
∫∫

rrr
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Problem 4.17 [1]

Given: Data on flow through nozzles

Find: Average velocity in head feeder; flow rate

Solution:

Basic equation

CS

V
→

A
→
⋅( )∑ 0=

Assumptions:  1) Steady flow   2) Incompressible flow 3) Uniform flow

Then for the nozzle flow

CS

V
→

A
→
⋅( )∑ Vfeeder− Afeeder⋅ 10 Vnozzle⋅ Anozzle⋅+= 0=

Hence Vfeeder Vnozzle
10 Anozzle⋅

Afeeder
⋅= Vnozzle 10⋅

Dnozzle
Dfeeder

⎛
⎜
⎝

⎞
⎟
⎠

2

⋅=

Vfeeder 10
ft
s

⋅ 10×

1
8
1

⎛
⎜
⎜
⎝

⎞
⎟
⎟
⎠

2

×= Vfeeder 1.56
ft
s

⋅=

The flow rate is Q Vfeeder Afeeder⋅= Vfeeder
π Dfeeder

2
⋅

4
⋅=

Q 1.56
ft
s

⋅
π

4
× 1 in⋅

1 ft⋅
12 in⋅

×⎛⎜
⎝

⎞⎟
⎠

2
×

7.48 gal⋅

1 ft3⋅
×

60 s⋅
1 min⋅

×= Q 3.82 gpm⋅=



Problem 4.18 [3]

Given: Data on flow into and out of tank

Find: Time at which exit pump is switched on; time at which drain is opened; flow rate into drain

Solution:

Basic equation
t
MCV

∂

∂
CS

ρ V
→
⋅ A
→
⋅( )∑+ 0=

Assumptions:  1) Uniform flow   2) Incompressible flow

After inlet pump is on
t
MCV

∂

∂
CS

ρ V
→
⋅ A
→
⋅( )∑+ t

Mtank
∂

∂
ρ Vin⋅ Ain⋅−= 0=

t
Mtank

∂

∂
ρ Atank⋅

dh
dt
⋅= ρ Vin⋅ Ain⋅= where h is the

level of water
in the tank

dh
dt

Vin
Ain

Atank
⋅= Vin

Din
Dtank

⎛
⎜
⎝

⎞
⎟
⎠

2

⋅=

Hence the time to reach hexit = 0.7 m is texit
hexit
dh
dt

=
hexit
Vin

Dtank
Din

⎛
⎜
⎝

⎞
⎟
⎠

2

⋅= texit 0.7 m⋅
1
5

×
s
m
⋅

3 m⋅
0.1 m⋅
⎛⎜
⎝

⎞⎟
⎠

2
×= texit 126s=

After exit pump is on
t
MCV

∂

∂
CS

ρ V
→
⋅ A
→
⋅( )∑+ t

Mtank
∂

∂
ρ Vin⋅ Ain⋅− ρ Vexit⋅ Aexit⋅+= 0= Atank

dh
dt

⋅ Vin Ain⋅ Vexit Aexit⋅−=

dh
dt

Vin
Ain

Atank
⋅ Vexit

Aexit
Atank
⋅−= Vin

Din
Dtank

⎛
⎜
⎝

⎞
⎟
⎠

2

⋅ Vexit
Dexit
Dtank

⎛
⎜
⎝

⎞
⎟
⎠

2

⋅−=

Hence the time to reach hdrain = 2 m is tdrain texit
hdrain hexit−( )

dh
dt

+=
hdrain hexit−( )

Vin
Din

Dtank

⎛
⎜
⎝

⎞
⎟
⎠

2

⋅ Vexit
Dexit
Dtank

⎛
⎜
⎝

⎞
⎟
⎠

2

⋅−

=

tdrain 126 s⋅ 2 0.7−( ) m⋅
1

5
m
s

⋅
0.1 m⋅
3 m⋅

⎛⎜
⎝

⎞⎟
⎠

2
× 3

m
s

⋅
0.08 m⋅

3 m⋅
⎛⎜
⎝

⎞⎟
⎠

2
×−

×+= tdrain 506s=

The flow rate into the drain is equal to the net inflow (the level in the tank is now constant)

Qdrain Vin
π Din

2
⋅

4
⋅ Vexit

π Dexit
2

⋅

4
⋅−= Qdrain 5

m
s

⋅
π

4
× 0.1 m⋅( )2

× 3
m
s

⋅
π

4
× 0.08 m⋅( )2

×−= Qdrain 0.0242
m3

s
=



Problem 4.19 [4]

Warm water 

CS 

Cool water

Moist air 

Given: Data on flow into and out of cooling tower

Find: Volume and mass flow rate of cool water; mass flow rate of moist and dry air

Solution:

Basic equation

CS

ρ V
→
⋅ A
→
⋅( )∑ 0= and at each inlet/exit Q V A⋅=

Assumptions:  1) Uniform flow   2) Incompressible flow

At the cool water exit Qcool V A⋅= Qcool 5.55
ft
s

⋅
π

4
× 0.5 ft⋅( )2

×= Qcool 1.09
ft3

s
= Qcool 489gpm=

The mass flow rate is mcool ρ Qcool⋅= mcool 1.94
slug

ft3
⋅ 1.09×

ft3

s
⋅= mcool 2.11

slug
s

= mcool 2.45 105
×

lb
hr

=

NOTE: Software does not allow dots over terms, so m represents mass flow rate, not mass!

For the air flow we need to use 

CS

ρ V
→
⋅ A
→
⋅( )∑ 0= to balance the water flow

We have mwarm− mcool+ mv+ 0= mv mwarm mcool−= mv 5073
lb
hr

=

This is the mass flow rate of water vapor.  We need to use this to obtain air flow rates.  From psychrometrics x
mv
mair

=

where x is the relative humidity.  It is also known (try Googling "density of moist air") that
ρmoist
ρdry

1 x+

1 x
RH2O
Rair

⋅+

=

We are given ρmoist 0.066
lb

ft3
⋅=

For dry air we could use the ideal gas equation ρdry
p

R T⋅
= but here we use atmospheric air density (Table A.3)

ρdry 0.002377
slug

ft3
⋅= ρdry 0.002377

slug

ft3
⋅ 32.2×

lb
slug
⋅= ρdry 0.0765

lb

ft3
=

Note that moist air is less dense than dry air!



Hence 0.066
0.0765

1 x+

1 x
85.78
53.33
⋅+

= using data from Table A.6

x
0.0765 0.066−

0.066
85.78
53.33
⋅ .0765−

= x 0.354=

Hence
mv

mair
x= leads to mair

mv
x

= mair 5073
lb
hr
⋅

1
0.354

×= mair 14331
lb
hr

=

Finally, the mass flow rate of moist air is mmoist mv mair+= mmoist 19404
lb
hr

=



Problem 4.20 [1]

Given: Data on wind tunnel geometry

Find: Average speeds in wind tunnel

Solution:

Basic equation Q V A⋅=

Assumptions:  1) Steady flow   2) Incompressible flow 3) Uniform flow

Between sections 1 and 2 Q V1 A1⋅= V1
π D1

2
⋅

4
⋅= V2 A2⋅= V2

π D2
2

⋅

4
⋅=

Hence V2 V1
D1
D2

⎛
⎜
⎝

⎞
⎟
⎠

2

⋅= V2 20 mph⋅
5
3

⎛⎜
⎝

⎞⎟
⎠

2
⋅= V2 55.6mph=

Similarly V3 V1
D1
D3

⎛
⎜
⎝

⎞
⎟
⎠

2

⋅= V3 20 mph⋅
5
2

⎛⎜
⎝

⎞⎟
⎠

2
⋅= V3 125mph=



Problem 4.21 [1]

Given: Data on flow through box

Find: Velocity at station 3

Solution:

Basic equation

CS

V
→

A
→
⋅( )∑ 0=

Assumptions:  1) Steady flow   2) Incompressible flow 3) Uniform flow

Then for the box

CS

V
→

A
→
⋅( )∑ V1− A1⋅ V2 A2⋅+ V3 A3⋅+= 0=

Note that the vectors indicate that flow is in at location 1 and out at location 2; we assume outflow at location 3

Hence V3 V1
A1
A3

⋅ V2
A2
A3

⋅−= V3 10
ft
s

⋅
0.5
0.6

× 20
ft
s

⋅
0.1
0.6

×−= V3 5
ft
s

=

Based on geometry Vx V3 sin 60 deg⋅( )⋅= Vx 4.33
ft
s

=

Vy V3− cos 60 deg⋅( )⋅= Vy 2.5−
ft
s

=

V3
→⎯

4.33
ft
s

⋅ 2.5−
ft
s

⋅, ⎛⎜
⎝

⎞⎟
⎠

=



Problem 4.22 [1]

Given: Data on flow through device

Find: Volume flow rate at port 3

Solution:

Basic equation

CS

V
→

A
→
⋅( )∑ 0=

Assumptions:  1) Steady flow   2) Incompressible flow 3) Uniform flow

Then for the box

CS

V
→

A
→
⋅( )∑ V1− A1⋅ V2 A2⋅+ V3 A3⋅+= V1− A1⋅ V2 A2⋅+ Q3+=

Note we assume outflow at port 3

Hence Q3 V1 A1⋅ V2 A2⋅−= Q3 3
m
s

⋅ 0.1× m2
⋅ 10

m
s

⋅ 0.05× m2
⋅−= Q3 0.2−

m3

s
⋅=

The negative sign indicates the flow at port 3 is inwards. Flow rate at port 3 is 0.2 m3/s inwards



Problem 4.23 [1]

Given: Water needs of farmer

Find: Number of 6 in. pipes needed

Solution:

Basic equation Q V A⋅=

Assumptions:  1) Steady flow   2) Incompressible flow 3) Uniform flow

Then Q n V⋅
π D2
⋅
4

⋅= where n is the number of pipes, V is the average velocity in the pipes, and D is the pipe diameter

The flow rate is given by Q
5 acre⋅ 0.25⋅ ft⋅

1 hr⋅
=

5 acre⋅ 0.25⋅ ft⋅
1 hr⋅

43560 ft2⋅
1 acre⋅

×
1 hr⋅

3600 s⋅
×= Data on acres from Googling!

Q 15.1
ft3

s
⋅=

Hence n
4 Q⋅

π V⋅ D2
⋅

= n
4
π

s
10 ft⋅

×
1

0.5 ft⋅
⎛⎜
⎝

⎞⎟
⎠

2
× 15.1×

ft3

s
⋅= n 7.69=

Hence we need at least eight pipes



Problem 4.24 [1]

Given: Data on filling of gas tank

Inflow 

CS 

Rising level 

Find: Cross-section area of tank

Solution:
We can treat this as a steady state problem if we choose a CS as the original volume of
gas in the tank, so that additional gas "leaves" the gas as the gas level in the tank rises, OR
as an unsteady problem if we choose the CS as the entire gas tank.  We choose the latter 

Basic equation
t
MCV

∂

∂
CS

ρ V
→
⋅ A
→
⋅( )∑+ 0=

Assumptions:  1) Incompressible flow 2) Uniform flow

Hence
t
MCV

∂

∂
ρ A⋅

dh
dt
⋅=

CS

ρ V
→
⋅ A
→
⋅( )∑−= ρ Q⋅=

where Q is the gas fill rate, A is the tank cross-section area, and h is the rate of rise in the gas tank

Hence A
Q
dh
dt

= A 5.3
gal
min
⋅

1 ft3⋅
7.48 gal⋅

×
1

4.3
×

min
in

⋅
12 in⋅
1 ft⋅

×= Data on gals from Table G.2

A 1.98 ft2= A 285 in2
= This seems like a reasonable area e.g., 1 ft x 2 ft



Problem 4.25 [1]

Given: Data on filling of a sink

Find: Accumulation rate under various circumstances

Solution:
This is an unsteady problem if we choose the CS as the entire sink

Basic equation
t
MCV

∂

∂
CS

ρ V
→
⋅ A
→
⋅( )∑+ 0=

Assumptions:  1) Incompressible flow

Hence
t
MCV

∂

∂
Accumulationrate=

CS

ρ V
→
⋅ A
→
⋅( )∑−= Inflow Outflow−=

Accumulationrate Inflow Outflow−=

For the first case Accumulationrate 5000
units
hr

⋅ 60
units
min

⋅
60 min⋅

hr
×−= Accumulationrate 1400

units
hr

⋅=

For the second case Accumulationrate 5000
units
hr

⋅ 13
units
min

⋅
60 min⋅

hr
×−= Accumulationrate 4220

units
hr

⋅=

For the third case Outflow Inflow Accumulationrate−=

Outflow 5
units

s
⋅ 4−( )

units
s

⋅−= Outflow 9
units

s
⋅=



Problem 4.26 [1]

Given: Data on filling of a basement during a storm

Find: Flow rate of storm into basement

Solution:
This is an unsteady problem if we choose the CS as the entire basement

Basic equation
t
MCV

∂

∂
CS

ρ V
→
⋅ A
→
⋅( )∑+ 0=

Assumptions:  1) Incompressible flow

Hence
t
MCV

∂

∂
ρ A⋅

dh
dt

⋅=

CS

ρ V
→
⋅ A
→
⋅( )∑−= ρ Qstorm⋅ ρ Qpump⋅−= where A is the basement area and dh/dt is

the rate at which the height of water in the
basement changes.

Qstorm Qpump A
dh
dt

⋅−=or

Qstorm 10
gal
min
⋅ 25 ft⋅ 20× ft⋅

1
12

−
ft
hr
⋅⎛⎜

⎝
⎞⎟
⎠

×
7.48 gal⋅

ft3
×

1 hr⋅
60 min⋅

×−= Data on gals from Table G.2

Qstorm 15.2gpm=



Problem 4.27 [1]

Given: Data on flow through device

Find: Volume flow rate at port 3

Solution:

Basic equation

CS

ρ V
→
⋅ A
→
⋅( )∑ 0=

Assumptions:  1) Steady flow   2) Uniform flow

Then for the box

CS

ρ V
→
⋅ A
→
⋅( )∑ ρu− Vu⋅ Au⋅ ρd Vd⋅ Ad⋅+= 0=

Hence ρu ρd
Vd Ad⋅

Vu Au⋅
⋅= ρu 4

lb

ft3
⋅

10
15

×
1

0.25
×= ρu 10.7

lb

ft3
=



Problem 4.28 [2]

Given: Data on flow through device

Find: Velocity V3; plot V3 against time; find when V3 is zero; total mean flow

Solution:

Governing equation: For incompressible flow (Eq. 4.13) and uniform flow A
→

V
→⌠⎮

⎮
⌡

d V
→

∑ A
→
⋅= 0=

Applying to the device (assuming V3 is out) V1− A1⋅ V2 A2⋅− V3 A3⋅+ 0=

V3
V1 A1⋅ V2 A2⋅+

A3
=

10 e

t
2

−
⋅

m
s

⋅ 0.1× m2
⋅ 2 cos 2 π⋅ t⋅( )⋅

m
s

⋅ 0.2× m2
⋅+

0.15 m2
⋅

=

The velocity at A3 is V3 6.67 e

t
2

−
⋅ 2.67 cos 2 π⋅ t⋅( )⋅+=

The total mean volumetric flow at A3 is

Q
0

∞

tV3 A3⋅
⌠
⎮
⌡

d=
0

∞

t6.67 e

t
2

−
⋅ 2.67 cos 2 π⋅ t⋅( )⋅+

⎛
⎜
⎝

⎞
⎟
⎠ 0.15⋅

⌠
⎮
⎮
⌡

d
m
s

m2
⋅⎛⎜

⎝
⎞⎟
⎠

⋅=

Q
∞t

2− e

t
2

−
⋅

1
5 π⋅

sin 2 π⋅ t⋅( )⋅+

⎛⎜
⎜
⎝

⎞⎟
⎟
⎠

lim
→

2−( )−= 2 m3
⋅= Q 2 m3

⋅=

The time at which V3 first is zero, and the plot of V3 is shown in the corresponding Excel workbook t 2.39 s⋅=



t  (s) V 3 (m/s)
0.00 9.33
0.10 8.50
0.20 6.86
0.30 4.91
0.40 3.30
0.50 2.53
0.60 2.78
0.70 3.87
0.80 5.29
0.90 6.41
1.00 6.71
1.10 6.00
1.20 4.48
1.30 2.66
1.40 1.15
1.50 0.48
1.60 0.84
1.70 2.03
1.80 3.53 The time at which V 3 first becomes zero can be found using Goal Seek
1.90 4.74
2.00 5.12 t (s) V 3 (m/s)
2.10 4.49 2.39 0.00
2.20 3.04
2.30 1.29
2.40 -0.15
2.50 -0.76

Exit Velocity vs Time

-2

0

2

4

6

8

10

0.0 0.5 1.0 1.5 2.0 2.5

t  (s)

V
3 (

m
/s

)



 
Problem 4.29                                                                               [2]



Problem 4.30 [2]

CS 

x 
y 

2h 

Given: Data on flow at inlet and outlet of channel

Find: Find umax

Solution:

0=⋅∫
CS

AdV
rr

ρBasic equation

Assumptions:  1) Steady flow   2) Incompressible flow

Evaluating at 1 and 2 ρ− U⋅ 2⋅ h⋅ w⋅
h−

h
yρ u y( )⋅

⌠
⎮
⌡

d+ 0=

h−

h

yumax 1
y
h

⎛⎜
⎝

⎞⎟
⎠

2
−

⎡
⎢
⎣

⎤
⎥
⎦

⋅
⌠
⎮
⎮
⌡

d 2 h⋅ U⋅=

umax h h−( )−[ ]
h3

3 h2
⋅

h3

3 h2
⋅

−
⎛⎜
⎜⎝

⎞⎟
⎟⎠

−
⎡⎢
⎢⎣

⎤⎥
⎥⎦

−
⎡⎢
⎢⎣

⎤⎥
⎥⎦

⋅ 2 h⋅ U⋅= umax
4
3
⋅ h⋅ 2 h⋅ U⋅=

umax
3
2

U⋅=
3
2

2.5×
m
s

⋅= umax 3.75
m
s

⋅=Hence



Problem 4.31 [2]

Given: Data on flow at inlet and outlet of pipe

Find: Find U

Solution:

Basic equation 0=⋅∫
CS

AdV
rr

ρ

Assumptions:  1) Steady flow   2) Incompressible flow

Evaluating at inlet and exit ρ− U⋅ π⋅ R2
⋅

0

R
rρ u r( )⋅ 2⋅ π⋅ r⋅

⌠
⎮
⌡

d+ 0=

0

R

rumax 1
r
R

⎛⎜
⎝

⎞⎟
⎠

2
−

⎡
⎢
⎣

⎤
⎥
⎦

⋅ 2⋅ r⋅
⌠
⎮
⎮
⌡

d R2 U⋅=

umax R2 1
2

R2
⋅−⎛⎜

⎝
⎞⎟
⎠

⋅ R2 U⋅= U
1
2

umax⋅=

U
1
2

3×
m
s

⋅= U 1.5
m
s

⋅=Hence
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Problem 4.33 [3]

Given: Velocity distribution in annulus

Find: Volume flow rate; average velocity; maximum velocity; plot velocity distribution

Solution:
Governing equation For the flow rate (Eq. 4.14a) and average velocity (Eq. 4.14b) Q A

→
V
→⌠⎮

⎮
⌡

d= Vav
Q
A

=

The given data is Ro 5 mm⋅= Ri 1 mm⋅=
Δp
L

10−
kPa
m

⋅= μ 0.1
N s⋅

m2
⋅= (From Fig. A.2)

u r( )
Δp−

4 μ⋅ L⋅
Ro

2 r2−
Ro

2 Ri
2

−

ln
Ri
Ro

⎛
⎜
⎝

⎞
⎟
⎠

ln
Ro
r

⎛
⎜
⎝

⎞
⎟
⎠

⋅+
⎛
⎜
⎜
⎜
⎝

⎞
⎟
⎟
⎟
⎠

⋅=

The flow rate is Q
Ri

Ro
ru r( ) 2⋅ π⋅ r⋅

⌠
⎮
⌡

d=

Considerable mathematical manipulation leads to Q
Δp π⋅
8 μ⋅ L⋅

Ro
2 Ri

2
−⎛

⎝
⎞
⎠⋅

Ro
2 Ri

2
−⎛

⎝
⎞
⎠

ln
Ro
Ri

⎛
⎜
⎝

⎞
⎟
⎠

Ri
2 Ro

2
+⎛

⎝
⎞
⎠−

⎡
⎢
⎢
⎢
⎣

⎤
⎥
⎥
⎥
⎦

⋅=

Substituting values Q
π

8
10− 103
⋅( )⋅

N

m2 m⋅
⋅

m2

0.1 N⋅ s⋅
⋅ 52 12

−( )⋅
m

1000
⎛⎜
⎝

⎞⎟
⎠

2
⋅

52 12
−

ln
5
1
⎛⎜
⎝
⎞⎟
⎠

52 12
+( )−

⎡⎢
⎢
⎢⎣

⎤⎥
⎥
⎥⎦

⋅
m

1000
⎛⎜
⎝

⎞⎟
⎠

2
⋅=

Q 1.045 10 5−
×

m3

s
= Q 10.45

mL
s

⋅=

The average velocity is Vav
Q
A

=
Q

π Ro
2 Ri

2
−⎛

⎝
⎞
⎠⋅

= Vav
1
π

1.045× 10 5−
×

m3

s
⋅

1

52 12
−

×
1000

m
⎛⎜
⎝

⎞⎟
⎠

2
⋅= Vav 0.139

m
s

=

The maximum velocity occurs when du
dr

0=
x

Δp−
4 μ⋅ L⋅

Ro
2 r2−

Ro
2 Ri

2
−

ln
Ri
Ro

⎛
⎜
⎝

⎞
⎟
⎠

ln
Ro
r

⎛
⎜
⎝

⎞
⎟
⎠

⋅+
⎛
⎜
⎜
⎜
⎝

⎞
⎟
⎟
⎟
⎠

⋅
⎡
⎢
⎢
⎢
⎣

⎤
⎥
⎥
⎥
⎦

d
d

=
Δp

4 μ⋅ L⋅
− 2− r⋅

Ro
2 Ri

2
−⎛

⎝
⎞
⎠

ln
Ri
Ro

⎛
⎜
⎝

⎞
⎟
⎠

r⋅

−
⎡
⎢
⎢
⎢
⎣

⎤
⎥
⎥
⎥
⎦

⋅=

r
Ri

2 Ro
2

−

2 ln
Ri
Ro

⎛
⎜
⎝

⎞
⎟
⎠

⋅

= r 2.73 mm⋅= Substituting in u(r) umax u 2.73 mm⋅( )= 0.213
m
s

⋅=

The maximum velocity using Solver instead, and the plot, are also shown in the corresponding Excel workbook



R o = 5 mm
R i = 1 mm

Δp /L  = -10 kPa/m
μ = 0.1 N.s/m2

r  (mm) u  (m/s)
1.00 0.000
1.25 0.069
1.50 0.120
1.75 0.157
2.00 0.183
2.25 0.201
2.50 0.210
2.75 0.213
3.00 0.210
3.25 0.200
3.50 0.186
3.75 0.166
4.00 0.142
4.25 0.113
4.50 0.079
4.75 0.042
5.00 0.000

The maximum velocity can be found using Solver

r  (mm) u  (m/s)
2.73 0.213

Annular Velocity Distribution

0

1

2

3

4

5

6

0.00 0.05 0.10 0.15 0.20 0.25

u  (m/s)

r 
(m

m
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Problem 4.25
 

Problem 4.34                                                                             [2]



Problem 4.26
 

Problem 4.35                                                                             [2]



Problem 4.27
 

Problem 4.36                                                                             [2]



Problem 4.28
 

Problem 4.37                                                                             [2]



Problem 4.38 [2]

 

Outflow 

CS 

Given: Data on airflow out of tank

Find: Find rate of change of density of air in tank

Solution:

0=⋅+
∂
∂

∫∫
CSCV

AdVVd
t

rr
ρρBasic equation

Assumptions:  1) Density in tank is uniform 2) Uniform flow 3) Air is an ideal gas

Hence Vtank
dρtank

dt
⋅ ρexit V⋅ A⋅+ 0=

dρtank
dt

ρexit V⋅ A⋅

Vtank
−=

pexit V⋅ A⋅

Rair Texit⋅ Vtank⋅
−=

dρtank
dt

300− 103
×

N

m2
⋅ 250×

m
s

⋅ 100× mm2
⋅

1 m⋅
1000 mm⋅

⎛⎜
⎝

⎞⎟
⎠

2
×

1
286.9

×
kg K⋅
N m⋅
⋅

1
20− 273+( ) K⋅

×
1

0.4 m3
⋅

×=

dρtank
dt

0.258−

kg

m3

s
⋅= The mass in the tank is decreasing, as expectedHence



Problem 4.30
 

Problem 4.39                                                                             [2]



Problem 4.32
 

Problem 4.40                                                                             [2]



Problem 4.31
 

Problem 4.41                                                                             [2]



Problem 4.33
 

Problem 4.42                                                                             [2]



Problem 4.35
 

Problem 4.43                                                                             [2]



 
Problem 4.44                                                                             [3]  Part 1/2



Problem 4.44                                                                             [3]  Part 2/2



 
Problem 4.45                                                                             [3]   Part 1/2



 
Problem 4.45                                                                             [3]  Part 2/2



Problem 4.38 Problem 4.46                                                                             [3]



Problem 4.39
 

Problem 4.47                                                                             [3]



Problem 4.40
 

Problem 4.48                                                                             [3]



Problem 4.41  
Problem 4.49                                                                             [3]

P4.48.



Problem 4.42
 

Problem 4.50                                                                             [4]



 
Problem 4.51                                                                             [4]   Part 1/2



 
Problem 4.51                                                                             [4]   Part 2/2



 
Problem 4.52                                                                          [4]  Part 1/2



 
Problem 4.52                                                                             [4]   Part 2/2



Problem 4.53 [3]

Given: Data on flow through a control surface

Find: Net rate of momentum flux

Solution:

∫ ⋅
CS

dAVV
rr

ρBasic equation: We need to evaluate

Assumptions:  1) Uniform flow at each section

From Problem 4.21 V1 10
ft
s

⋅= A1 0.5 ft2⋅= V2 20
ft
s

⋅= A2 0.1 ft2⋅= A3 0.6 ft2⋅= V3 5
ft
s

⋅= It is an outlet

( ) ( ) ( ) ( )[ ] ( )
( ) ( )[ ]

( )[ ] ( )[ ]jAVAViAVAV

AVjViVAVjVAViV

AVjViVAVjVAViV

AVVAVVAVVdAVV
CS

ˆ60cosˆ60sin

ˆ60cosˆ60sinˆˆ

ˆ60cosˆ60sinˆˆ

3
2

32
2

23
2

31
2

1

3333222111

3333222111

333222111

−++−=

−++−=

⋅−+⋅+⋅=

⋅+⋅+⋅=⋅∫

ρρ

ρρρ

ρρρ

ρρρρ
rrrrrr

rrrrrrrrrrr
Then for the control surface

( )[ ]=+− 60sin3
2

31
2

1 AVAVρHence the x component is 65
lbm

ft3
⋅ 102

− 0.5× 52 0.6× sin 60 deg⋅( )×+( )×
ft4

s2
⋅

lbf s2
⋅

lbm ft⋅
× 2406− lbf=

( )[ ]=− 60cos3
2

32
2

2 AVAVρand the y component is 65
lbm

ft3
⋅ 202 0.1× 52 0.6× cos 60 deg⋅( )×−( )×

ft4

s2
⋅

lbf s2
⋅

lbm ft⋅
× 2113 lbf=



Problem 4.54 [3]

CS 

x 
y 

2h 

Given: Data on flow at inlet and outlet of channel

Find: Ratio of outlet to inlet momentum flux

Solution:

∫ ⋅=
Ax dAVu

r
ρmfBasic equation: Momentum flux in x direction at a section

Assumptions:  1) Steady flow   2) Incompressible flow

Evaluating at 1 and 2 mfx1 U ρ⋅ U− 2⋅ h⋅( )⋅ w⋅= mfx1 2 ρ⋅ w⋅ U2
⋅ h⋅=

Hence mfx2
h−

h
yρ u2

⋅ w⋅
⌠
⎮
⌡

d= ρ w⋅ umax
2

⋅

h−

h

y1
y
h
⎛⎜
⎝
⎞⎟
⎠

2
−

⎡
⎢
⎣

⎤
⎥
⎦

2⌠
⎮
⎮
⎮
⌡

d⋅= ρ w⋅ umax
2

⋅

h−

h

y1 2
y
h
⎛⎜
⎝
⎞⎟
⎠

2
⋅−

y
h
⎛⎜
⎝
⎞⎟
⎠

4
+

⎡
⎢
⎣

⎤
⎥
⎦

⌠
⎮
⎮
⌡

d⋅=

mfx2 ρ w⋅ umax
2

⋅ 2 h⋅
4
3

h⋅−
2
5

h⋅+⎛⎜
⎝

⎞⎟
⎠

⋅= ρ w⋅ umax
2

⋅
16
15
⋅ h⋅=

Then the ratio of momentum fluxes is

mfx2
mfx1

16
15

ρ⋅ w⋅ umax
2

⋅ h⋅

2 ρ⋅ w⋅ U2
⋅ h⋅

=
8
15

umax
U

⎛
⎜
⎝

⎞
⎟
⎠

2

⋅=

But, from Problem 4.30 umax
3
2

U⋅=
mfx2
mfx1

8
15

3
2

U⋅

U

⎛
⎜
⎜
⎝

⎞
⎟
⎟
⎠

2

⋅=
6
5

= 1.2=

Hence the momentum increases as it flows in the entrance region of the channel.  This appears to contradict common sense, as
friction should reduce flow momentum.  What happens is the pressure drops significantly along the channel so the net force on the
CV is to the right.



Problem 4.55 [3]

Given: Data on flow at inlet and outlet of pipe

Find: Ratio of outlet to inlet momentum flux

Solution:

∫ ⋅=
Ax dAVu

r
ρmfBasic equation: Momentum flux in x direction at a section

Assumptions:  1) Steady flow   2) Incompressible flow

Evaluating at 1 and 2 mfx1 U ρ⋅ U− π⋅ R2
⋅( )⋅= mfx1 ρ π⋅ U2

⋅ R2
⋅=

Hence mfx2
0

R
rρ u2

⋅ 2⋅ π⋅ r⋅
⌠
⎮
⌡

d= 2 ρ⋅ π⋅ umax
2

⋅

0

R

rr 1
r
R

⎛⎜
⎝

⎞⎟
⎠

2
−

⎡
⎢
⎣

⎤
⎥
⎦

2

⋅

⌠
⎮
⎮
⎮
⌡

d⋅= 2 ρ⋅ π⋅ umax
2

⋅

0

R

yr 2
r3

R2
⋅−

r5

R4
+

⎛⎜
⎜⎝

⎞⎟
⎟⎠

⌠
⎮
⎮
⎮
⌡

d⋅=

mfx2 2 ρ⋅ π⋅ umax
2

⋅
R2

2
R2

2
−

R2

6
+

⎛
⎜
⎝

⎞
⎟
⎠

⋅= ρ π⋅ umax
2

⋅
R2

3
⋅=

Then the ratio of momentum fluxes is

mfx2
mfx1

1
3

ρ⋅ π⋅ umax
2

⋅ R2
⋅

ρ π⋅ U2
⋅ R2

⋅
=

1
3

umax
U

⎛
⎜
⎝

⎞
⎟
⎠

2

⋅=

But, from Problem 4.31 umax 2 U⋅=
mfx2
mfx1

1
3

2 U⋅
U

⎛⎜
⎝

⎞⎟
⎠

2
⋅=

4
3

= 1.33=

Hence the momentum increases as it flows in the entrance region of the pipe  This appears to contradict common sense, as
friction should reduce flow momentum.  What happens is the pressure drops significantly along the pipe so the net force on the
CV is to the right.



Problem 4.48
 

Problem 4.56                                                                             [2]



Problem 4.49
 

Problem 4.57                                                                             [2]



Problem 4.58 [2]

 
CS 

x 

 

y 

Rx U 

Given: Water jet hitting wall

Find: Force generated on wall

Solution:
Basic equation: Momentum flux in x direction

Assumptions:  1) Steady flow   2) Incompressible flow 3) Atmospheric pressure throughout 4) Uniform flow 5) Water leaves vertically

Hence Rx u1 ρ⋅ u1− A1⋅( )⋅= ρ− U2
⋅ A⋅= ρ− U2

⋅
π D2
⋅
4

⋅=

Rx 1.94−
slug

ft3
⋅ 20

ft
s

⋅⎛⎜
⎝

⎞⎟
⎠

2
×

π
1
6

ft⋅⎛⎜
⎝

⎞⎟
⎠

2
⋅

4
×

lbf s2
⋅

slug ft⋅
×= Rx 16.9− lbf⋅=



Problem 4.59 [1]

Given: Fully developed flow in pipe

Find: Why pressure drops if momentum is constant

Solution:
Basic equation: Momentum flux in x direction

Assumptions:  1) Steady flow   2) Fully developed flow

Hence Fx
Δp
L

τw As⋅−= 0= Δp L τw⋅ As⋅=

where Δp is the pressure drop over length L, τw is the wall friction and As is the pipe surface area

The sum of forces in the x direction is zero.  The friction force on the fluid is in the negative x direction, so the net pressure
force must be in the positive direction.  Hence pressure drops in the x direction so that pressure and friction forces balance



Problem 4.60 [2]

Given: Data on flow and system geometry

Find: Force required to hold plug

Solution:

The given data is D1 0.25 m⋅= D2 0.2 m⋅= Q 1.5
m3

s
⋅= p1 3500 kPa⋅= ρ 999

kg

m3
⋅=

Then A1
π D1

2
⋅

4
= A1 0.0491m2

=

A2
π

4
D1

2 D2
2

−⎛
⎝

⎞
⎠⋅= A2 0.0177m2

=

V1
Q
A1

= V1 30.6
m
s

=

V2
Q
A2

= V2 84.9
m
s

=

Governing equation:

Momentum (4.18a)

Applying this to the current system

F− p1 A2⋅+ p2 A2⋅− 0 V1 ρ− V1⋅ A1⋅( )⋅+ V2 ρ V2⋅ A2⋅( )⋅+= and p2 0= (gage)

Hence F p1 A1⋅ ρ V1
2 A1⋅ V2

2 A2⋅−⎛
⎝

⎞
⎠⋅+=

F 3500
kN

m2
× 0.0491⋅ m2

⋅ 999
kg

m3
⋅ 30.6

m
s

⋅⎛⎜
⎝

⎞⎟
⎠

2
0.0491⋅ m2

⋅ 84.9
m
s

⋅⎛⎜
⎝

⎞⎟
⎠

2
0.0177⋅ m2

⋅−
⎡
⎢
⎣

⎤
⎥
⎦

×+= F 90.4kN=



Problem 4.61 [2]

Given: Large tank with nozzle and wire

Find: Tension in wire; plot for range of water depths

Solution:
Basic equation: Momentum flux in x direction for the tank

Assumptions:  1) Steady flow   2) Incompressible flow 3) Atmospheric pressure throughout 4) Uniform flow

Hence Rx T= V ρ⋅ V A⋅( )⋅= ρ V2
⋅ A⋅= ρ 2 g⋅ y⋅( )⋅

π d2
⋅
4

⋅= T
1
2

ρ⋅ g⋅ y⋅ π⋅ d2
⋅= (1)

When y = 0.9 m T
π

2
1000×

kg

m3
⋅ 9.81×

m

s2
⋅ 0.9× m⋅ 0.015 m⋅( )2

×
N s2
⋅

kg m⋅
×= T 3.12N=

0 0.3 0.6 0.9

1

2

3

4

y (m)

T 
(N

)

From Eq 1

This graph can be plotted in Excel



Problem 4.62 [2]

 
CS 

Rx 

V 
y 

Given: Nozzle hitting stationary cart

Find: Value of M to hold stationary; plot M versu θ

Solution:
Basic equation: Momentum flux in x direction for the tank

Assumptions:  1) Steady flow   2) Incompressible flow 3) Atmospheric pressure throughout 4) Uniform flow 5) Exit velocity is V

Hence Rx M− g⋅= V ρ⋅ V− A⋅( )⋅ V cos θ( )⋅ V A⋅( )⋅+= ρ V2
⋅ A⋅ cos θ( ) 1−( )⋅= M

ρ V2
⋅ A⋅

g
1 cos θ( )−( )⋅= (1)

When θ = 40o M
s2

9.81 m⋅
1000×

kg

m3
⋅ 10

m
s

⋅⎛⎜
⎝

⎞⎟
⎠

2
× 0.1× m2

⋅ 1 cos 40 deg⋅( )−( )×= M 238kg=

0 45 90 135 180

1000

2000

3000

Angle (deg)

M
 (k

g)

From Eq 1

This graph can be plotted in Excel



Problem 4.63 [3]

CS 

x 

 

y 

Rx 

V V 

Given: Water jet hitting plate with opening

Find: Force generated on plate; plot force versus diameter d

Solution:
Basic equation: Momentum flux in x direction

Assumptions:  1) Steady flow   2) Incompressible flow 3) Atmospheric pressure throughout 4) Uniform flow

Hence Rx u1 ρ⋅ u1− A1⋅( )⋅ u2 ρ⋅ u2 A2⋅( )⋅+= ρ− V2
⋅

π D2
⋅
4

⋅ ρ V2
⋅

π d2
⋅
4

⋅+= Rx
π ρ⋅ V2

⋅ D2
⋅

4
− 1

d
D
⎛⎜
⎝

⎞⎟
⎠

2
−

⎡
⎢
⎣

⎤
⎥
⎦

⋅= (1)

For given data Rx
π

4
− 1.94⋅

slug

ft3
⋅ 15

ft
s

⋅⎛⎜
⎝

⎞⎟
⎠

2
×

1
3

ft⋅⎛⎜
⎝

⎞⎟
⎠

2
× 1

1
4
⎛⎜
⎝
⎞⎟
⎠

2
−

⎡
⎢
⎣

⎤
⎥
⎦

×
lbf s2

⋅
slug ft⋅

×= Rx 35.7− lbf⋅=

From Eq 1 (using the absolute value of Rx)

0 0.2 0.4 0.6 0.8 1

10

20

30

40

Diameter Ratio (d/D)

Fo
rc

e 
(lb

f)

This graph can be plotted in Excel



Problem 4.64 [3]

 

CS 
Rx 

V 

V 
θ 

y 
x 

Given: Water flowing past cylinder

Find: Horizontal force on cylinder

Solution:
Basic equation: Momentum flux in x direction

Assumptions:  1) Steady flow   2) Incompressible flow 3) Atmospheric pressure throughout 4) Uniform flow

Hence Rx u1 ρ⋅ u1− A1⋅( )⋅ u2 ρ⋅ u2 A2⋅( )⋅+= 0 ρ V− sin θ( )⋅( )⋅ V a⋅ b⋅( )⋅+= Rx ρ− V2
⋅ a⋅ b⋅ sin θ( )⋅=

For given data Rx 1000−
kg

m3
⋅ 3

m
s

⋅⎛⎜
⎝

⎞⎟
⎠

2
× 0.0125× m⋅ 0.0025× m⋅ sin 20 deg⋅( )×

N s2
⋅

kg m⋅
×= Rx 0.0962− N=

This is the force on the fluid (it is to the left).  Hence the force on the cylinder is Rx Rx−= Rx 0.0962N=



Problem 4.65 [5]

 

CS 
x 

y 

Rx 

V 

W 

Given: Water flowing into tank

Find: Mass flow rates estimated by students.  Explain discrepancy

Solution:
Basic equation: Momentum flux in y direction

Assumptions:  1) Steady flow   2) Incompressible flow 3) Atmospheric pressure throughout 4) Uniform flow

For the first student m1
ρ V⋅

t
= where m1 represents mass flow rate (software cannot render a dot above it!)

m1 1.94
slug

ft3
⋅ 15× ft3⋅

1
30 s⋅

×= m1 0.97
slug

s
⋅= m1 31.2

lbm
s

⋅=

For the second student m2
M
t

= where m2 represents mass flow rate

m2 960 lb⋅
1

30 s⋅
×= m2 0.995

slug
s

⋅= m2 32
lbm

s
⋅=

There is a discrepancy because the second student is measuring instantaneous weight PLUS the force generated as the pipe
flow momentum is "killed".
To analyse this we first need to find the speed at which the water stream enters the tank, 5 ft below the pipe exit.  This would be a good
place to use the Bernoulli equation, but this problem is in the set before Bernoulli is covered.  Instead we use the simple concept that the
fluid is falling under gravity (a conclusion supported by the Bernoulli equation).  From the equations for falling under gravity:

Vtank
2 Vpipe

2 2 g⋅ h⋅+=

where Vtank is the speed entering the tank, Vpipe is the speed at the pipe, and h = 5 ft is the distance traveled.  Vpipe is obtained from

Vpipe
m1

ρ

π dpipe
2

⋅

4
⋅

=
4 m1⋅

π ρ⋅ dpipe
2

⋅
=

Vpipe
4
π

31.2×
lbm

s
⋅

ft3

1.94 slug⋅
×

1 slug⋅
32.2 lbm⋅

×
1

1
6

ft⋅

⎛
⎜
⎜
⎝

⎞
⎟
⎟
⎠

2
×= Vpipe 22.9

ft
s

=

Then Vtank Vpipe
2 2 g⋅ h⋅+= Vtank 22.9

ft
s

⋅⎛⎜
⎝

⎞⎟
⎠

2
2 32.2×

ft

s2
⋅ 5× ft+= Vtank 29.1

ft
s

=



We can now use the y momentum equation for the CS shown above

Ry W− Vtank− ρ⋅ Vtank− Atank⋅( )⋅=

where Atank is the area of the water flow as it enters the tank.  But for the water flow Vtank Atank⋅ Vpipe Apipe⋅=

Hence ΔW Ry W−= ρ Vtank⋅ Vpipe⋅
π dpipe

2
⋅

4
⋅=

This equation indicate the instantaneous difference  ΔW between the scale reading (Ry) and the actual weight of water (W) in the tank

ΔW 1.94
slug

ft3
⋅ 29.1×

ft
s

⋅ 22.9×
ft
s

⋅
π

4
×

1
6

ft⋅⎛⎜
⎝

⎞⎟
⎠

2
×

lbf s2
⋅

slug ft⋅
×= ΔW 28.2 lbf=

Hence the scale overestimates the weight of water by 28.2 lbf, or a mass of 28.2 lbm

For the second student M 960 lbm⋅ 28.2 lbm⋅−= 932 lbm⋅=

Hence m2
M
t

= where m2 represents mass flow rate

m2 932 lb⋅
1

30 s⋅
×= m2 0.966

slug
s

⋅= m2 31.1
lbm

s
⋅=

Comparing with the answer obtained from student 1, we see the students now agree!  The discrepancy was entirely caused by the fact that t
second student was measuring the weight of tank water PLUS the momentum lost by the water as it entered the tank!



Problem 4.66 [3]

Rx

V 

y
x

CS

Given: Water tank attached to mass

Find: Whether tank starts moving

Solution:
Basic equation: Momentum flux in x direction for the tank

Assumptions:  1) Steady flow   2) Incompressible flow 3) Atmospheric pressure at exit 4) Uniform flow

Hence Rx V cos θ( )⋅ ρ⋅ V A⋅( )⋅= ρ V2
⋅

π D2
⋅
4

⋅ cos θ( )⋅=

We need to find V.  We could use the Bernoulli equation, but here it is known that V 2 g⋅ h⋅= where h = 4 m is the
height of fluid in the tank

V 2 9.81×
m

s2
⋅ 4× m⋅= V 8.86

m
s

=

Hence Rx 1000
kg

m3
⋅ 8.86

m
s

⋅⎛⎜
⎝

⎞⎟
⎠

2
×

π

4
× 0.04 m⋅( )2

× cos 60 deg⋅( )×= Rx 49.3N=

This force is equal to the tension T in the wire T Rx= T 49.3N=

For the block, the maximum friction force a mass of M = 9 kg can generate is Fmax M g⋅ μ⋅= where μ is static friction

Fmax 9 kg⋅ 9.81×
m

s2
⋅ 0.5×

N s2
⋅

kg m⋅
×= Fmax 44.1N=

Hence the tension T created by the water jet is larger than the maximum friction Fmax; the tank starts to move



Problem 4.67 [4]

FR 

y’

y

x

CS 

Given: Gate held in place by water jet

Find: Required jet speed for various water depths

Solution:
Basic equation: Momentum flux in x direction for the wall

Note: We use this equation ONLY for the jet impacting the wall.  For the hydrostatic force and location we use computing equations

FR pc A⋅= y' yc
Ixx

A yc⋅
+=

Assumptions:  1) Steady flow   2) Incompressible flow 3) Uniform flow

Hence Rx V ρ⋅ V− Ajet⋅( )⋅= ρ− V2
⋅

π D2
⋅
4

⋅=

This force is the force generated by the wall on the jet; the force of the jet hitting the wall is then

Fjet Rx−= ρ V2
⋅

π D2
⋅
4

⋅= where D is the jet diameter

For the hydrostatic force FR pc A⋅= ρ g⋅
h
2
⋅ h⋅ w⋅=

1
2

ρ⋅ g⋅ w⋅ h2
⋅= y' yc

Ixx
A yc⋅

+=
h
2

w h3⋅
12

w h⋅
h
2
⋅

+=
2
3

h⋅=

where h is the water depth and w is the gate width

For the gate, we can take moments about the hinge to obtain Fjet− hjet⋅ FR h y'−( )⋅+ Fjet− hjet⋅ FR
h
3
⋅+= 0=

where hjet is the height of the jet from the ground

Hence Fjet ρ V2
⋅

π D2
⋅
4

⋅ hjet⋅= FR
h
3
⋅=

1
2

ρ⋅ g⋅ w⋅ h2
⋅

h
3
⋅= V

2 g⋅ w⋅ h3
⋅

3 π⋅ D2
⋅ hj⋅

=

For the first case (h = 0.5 m) V
2

3 π⋅
9.81×

m

s2
⋅ 0.5× m⋅ 0.5 m⋅( )3

×
1

0.01 m⋅
⎛⎜
⎝

⎞⎟
⎠

2
×

1
0.5 m⋅

×= V 51
m
s

=

For the second case (h = 0.25 m) V
2

3 π⋅
9.81×

m

s2
⋅ 0.5× m⋅ 0.25 m⋅( )3

×
1

0.01 m⋅
⎛⎜
⎝

⎞⎟
⎠

2
×

1
0.5 m⋅

×= V 18
m
s

=

For the first case (h = 0.6 m) V
2

3 π⋅
9.81×

m

s2
⋅ 0.5× m⋅ 0.6 m⋅( )3

×
1

0.01 m⋅
⎛⎜
⎝

⎞⎟
⎠

2
×

1
0.5 m⋅

×= V 67.1
m
s

=



Problem 4.55
 

Problem 4.68                                                                             [2]



Problem 4.56
 

Problem 4.69                                                                             [2]



Problem 4.70 [3]

Given: Flow into and out of CV

Find: Expressions for rate of change of mass, and force

Solution:
Basic equations: Mass and momentum flux

Assumptions:  1) Incompressible flow 2) Uniform flow

For the mass equation
dMCV

dt
CS

ρ V
→
⋅ A
→
⋅( )∑+

dMCV
dt

ρ V1− A1⋅ V2 A2⋅− V3 A3⋅+ V4 A4⋅+( )⋅+= 0=

dMCV
dt

ρ V1 A1⋅ V2 A2⋅+ V3 A3⋅− V4 A4⋅−( )⋅=

For the x momentum Fx
p1 A1⋅

2
+

5
13

p2⋅ A2⋅+
4
5

p3⋅ A3⋅−
5
13

p4⋅ A4⋅− 0
V1

2
ρ− V1⋅ A1⋅( )⋅+

5
13

V2⋅ ρ− V2⋅ A2⋅( )⋅+

4
5

V3⋅ ρ V3⋅ A3⋅( )⋅
5
13

V3⋅ ρ V3⋅ A3⋅( )⋅++

...=

Fx
p1 A1⋅

2
−

5
13

p2⋅ A2⋅−
4
5

p3⋅ A3⋅+
5
13

p4⋅ A4⋅+ ρ
1

2
− V1

2
⋅ A1⋅

5
13

V2
2

⋅ A2⋅−
4
5

V3
2

⋅ A3⋅+
5
13

V3
2

⋅ A3⋅+⎛
⎜
⎝

⎞
⎟
⎠

⋅+=

For the y momentum Fy
p1 A1⋅

2
+

12
13

p2⋅ A2⋅−
3
5

p3⋅ A3⋅−
12
13

p4⋅ A4⋅+ 0
V1

2
ρ− V1⋅ A1⋅( )⋅+

12
13

V2⋅ ρ− V2⋅ A2⋅( )⋅−

3
5

V3⋅ ρ V3⋅ A3⋅( )⋅
12
13

V3⋅ ρ V3⋅ A3⋅( )⋅−+

...=

Fy
p1 A1⋅

2
−

12
13

p2⋅ A2⋅+
3
5

p3⋅ A3⋅+
12
13

p4⋅ A4⋅− ρ
1

2
− V1

2
⋅ A1⋅

12
13

V2
2

⋅ A2⋅−
3
5

V3
2

⋅ A3⋅+
12
13

V3
2

⋅ A3⋅−⎛
⎜
⎝

⎞
⎟
⎠

⋅+=



 
Problem 4.71                                                                             [2]



Problem 4.72 [2]

Rx 

y 

x 
CS

Given: Water flow through elbow

Find: Force to hold elbow

Solution:
Basic equation: Momentum flux in x direction for the elbow

Assumptions:  1) Steady flow   2) Incompressible flow 3) Atmospheric pressure at exit 4) Uniform flow

Hence Rx p1g A1⋅+ V1 ρ− V1⋅ A1⋅( )⋅ V2 ρ V2⋅ A2⋅( )⋅−= Rx p1g− A1⋅ ρ V1
2 A1⋅ V2

2 A2⋅+⎛
⎝

⎞
⎠⋅−=

From continuity V2 A2⋅ V1 A1⋅= so V2 V1
A1
A2
⋅= V2 10

ft
s

⋅
4
1
⋅= V2 40

ft
s

=

Hence Rx 15−
lbf

in2
⋅ 4× in2

⋅ 1.94
slug

ft3
⋅ 10

ft
s

⋅⎛⎜
⎝

⎞⎟
⎠

2
4⋅ in2
⋅ 40

ft
s

⋅⎛⎜
⎝

⎞⎟
⎠

2
1⋅ in2
⋅+

⎡
⎢
⎣

⎤
⎥
⎦

×
1 ft⋅

12 in⋅
⎛⎜
⎝

⎞⎟
⎠

2
×

lbf s2
⋅

slugft⋅
×−= Rx 86.9− lbf⋅=

The force is to the left: It is needed to hold the elbow on against the high pressure, plus it generates the large change in x momentum



Problem 4.73 [2]

 

Rx 

y 

x CS
 

Given: Water flow through elbow

Find: Force to hold elbow

Solution:
Basic equation: Momentum flux in x direction for the elbow

Assumptions:  1) Steady flow   2) Incompressible flow 3) Uniform flow

Hence Rx p1g A1⋅+ p2g A2⋅+ V1 ρ− V1⋅ A1⋅( )⋅ V2 ρ V2⋅ A2⋅( )⋅−= Rx p1g− A1⋅ p2g A2⋅− ρ V1
2 A1⋅ V2

2 A2⋅+⎛
⎝

⎞
⎠⋅−=

From continuity V2 A2⋅ V1 A1⋅= so V2 V1
A1
A2
⋅= V1

D1
D2

⎛
⎜
⎝

⎞
⎟
⎠

2

⋅= V2 0.8
m
s

⋅
0.2
0.04

⎛⎜
⎝

⎞⎟
⎠

2
⋅= V2 20

m
s

=

Hence Rx 350− 103
×

N

m2
⋅

π 0.2 m⋅( )2
⋅

4
× 75 103

×
N

m2
⋅

π 0.04 m⋅( )2
⋅

4
×−

1000−
kg

m3
⋅ 0.8

m
s

⋅⎛⎜
⎝

⎞⎟
⎠

2
π 0.2 m⋅( )2
⋅

4
× 20

m
s

⋅⎛⎜
⎝

⎞⎟
⎠

2
π .04 m⋅( )2
⋅

4
×+

⎡
⎢
⎣

⎤
⎥
⎦

×
N s2
⋅

kg m⋅
×+

...= Rx 11.6− kN⋅=

The force is to the left: It is needed to hold the elbow on against the high pressures, plus it generates the large change in x momentum



Problem 4.74 [2]

Rx 

y

x

CS

 

Given: Water flow through nozzle

Find: Force to hold nozzle

Solution:
Basic equation: Momentum flux in x direction for the elbow

Assumptions:  1) Steady flow   2) Incompressible flow 3) Uniform flow

Hence Rx p1g A1⋅+ p2g A2⋅+ V1 ρ− V1⋅ A1⋅( )⋅ V2 cos θ( )⋅ ρ V2⋅ A2⋅( )⋅+= Rx p1g− A1⋅ ρ V2
2 A2⋅ cos θ( )⋅ V1

2 A1⋅−⎛
⎝

⎞
⎠⋅+=

From continuity V2 A2⋅ V1 A1⋅= so V2 V1
A1
A2
⋅= V1

D1
D2

⎛
⎜
⎝

⎞
⎟
⎠

2

⋅= V2 1.5
m
s

⋅
30
15
⎛⎜
⎝

⎞⎟
⎠

2
⋅= V2 6

m
s

⋅=

Hence Rx 15− 103
×

N

m2
⋅

π 0.3 m⋅( )2
⋅

4
× 1000

kg

m3
⋅ 6

m
s

⋅⎛⎜
⎝

⎞⎟
⎠

2
π 0.15 m⋅( )2
⋅

4
× cos 30 deg⋅( )⋅ 1.5

m
s

⋅⎛⎜
⎝

⎞⎟
⎠

2
π .3 m⋅( )2
⋅

4
×−

⎡
⎢
⎣

⎤
⎥
⎦

×
N s2
⋅

kg m⋅
×+=

Rx 668− N⋅= The joint is in tension: It is needed to hold the elbow on against the high pressure, plus it
generates the large change in x momentum



Problem 4.61
 

Problem 4.75                                                                             [2]



Problem 4.76 [2]

Rx

y

x

CS 

 

Given: Water flow through orifice plate

Find: Force to hold plate

Solution:
Basic equation: Momentum flux in x direction for the elbow

Assumptions:  1) Steady flow   2) Incompressible flow 3) Uniform flow

Hence Rx p1g A1⋅+ p2g A2⋅− V1 ρ− V1⋅ A1⋅( )⋅ V2 ρ V2⋅ A2⋅( )⋅+= Rx p1g− A1⋅ ρ V2
2 A2⋅ V1

2 A1⋅−⎛
⎝

⎞
⎠⋅+=

From continuity Q V1 A1⋅= V2 A2⋅=

so V1
Q

A1
= 20

ft3

s
⋅

4

π
1
3

ft⋅⎛⎜
⎝

⎞⎟
⎠

2
⋅

×= 229
ft
s

⋅= and V2 V1
A1
A2
⋅= V1

D
d

⎛⎜
⎝

⎞⎟
⎠

2
⋅= 229

ft
s

⋅
4

1.5
⎛⎜
⎝

⎞⎟
⎠

2
×= 1628

ft
s

⋅=

NOTE: problem has an error: Flow rate should be 2 ft3/s not 20 ft3/s!  We will provide answers to both

Hence Rx 200−
lbf

in2
⋅

π 4 in⋅( )2
⋅

4
× 1.94

slug

ft3
⋅ 1628

ft
s

⋅⎛⎜
⎝

⎞⎟
⎠

2
π 1.5 in⋅( )2
⋅

4
× 229

ft
s

⋅⎛⎜
⎝

⎞⎟
⎠

2
π 4 in⋅( )2
⋅

4
×−

⎡
⎢
⎣

⎤
⎥
⎦

×
1 ft⋅

12 in⋅
⎛⎜
⎝

⎞⎟
⎠

2
×

lbf s2
⋅

slugft⋅
×+=

Rx 51707 lbf⋅=

With more realistic velocities

Hence Rx 200−
lbf

in2
⋅

π 4 in⋅( )2
⋅

4
× 1.94

slug

ft3
⋅ 163

ft
s

⋅⎛⎜
⎝

⎞⎟
⎠

2
π 1.5 in⋅( )2
⋅

4
× 22.9

ft
s

⋅⎛⎜
⎝

⎞⎟
⎠

2
π 4 in⋅( )2
⋅

4
×−

⎡
⎢
⎣

⎤
⎥
⎦

×
1 ft⋅

12 in⋅
⎛⎜
⎝

⎞⎟
⎠

2
×

lbf s2
⋅

slug ft⋅
×+=

Rx 1970− lbf⋅=



Problem 4.63 Problem 4.77                                                                             [2]



Problem 4.64  
Problem 4.78                                                                             [2]



Problem 4.79 [2]

Rx

y

x

CS

Ve

Given: Data on rocket motor

Find: Thrust produced

Solution:
Basic equation: Momentum flux in x direction for the elbow

Assumptions:  1) Steady flow   2) Neglect change of momentum within CV 3) Uniform flow

Hence Rx peg Ae⋅− Ve ρe Ve⋅ Ae⋅( )⋅= me Ve⋅= Rx peg Ae⋅ me Ve⋅+=

where peg is the exit pressure (gage), me is the mass flow rate at the exit (software cannot render dot over m!) and Ve is the xit velocity

For the mass flow rate me mnitricacid maniline+= 80
kg
s

⋅ 32
kg
s

⋅+= me 112
kg
s

⋅=

Hence Rx 110 101−( ) 103
×

N

m2
⋅

π 0.6 m⋅( )2
⋅

4
× 112

kg
s

⋅ 180×
m
s

⋅
N s2
⋅

kg m⋅
×+= Rx 22.7kN=



Problem 4.65  
Problem 4.80                                                                             [2]



 
Problem 4.81                                                                             [3]



Problem 4.82 [2]

Given: Data on flow and system geometry

Find: Deflection angle as a function of speed; jet speed for 10o deflection

Solution:

The given data is ρ 999
kg

m3
⋅= A 0.005 m2

⋅= L 2 m⋅= k 1
N
m
⋅= x0 1 m⋅=

Governing equation:

y -momentum (4.18b)

Applying this to the current system in the vertical direction

Fspring V sin θ( )⋅ ρ V⋅ A⋅( )⋅=

But Fspring k x⋅= k x0 L sin θ( )⋅−( )⋅=

Hence k x0 L sin θ( )⋅−( )⋅ ρ V2
⋅ A⋅ sin θ( )⋅=

Solving for θ θ asin
k x0⋅

k L⋅ ρ A⋅ V2
⋅+

⎛⎜
⎜⎝

⎞⎟
⎟⎠

=

For the speed at which θ = 10o, solve V
k x0 L sin θ( )⋅−( )⋅

ρ A⋅ sin θ( )⋅
= V

1
N
m
⋅ 1 2 sin 10 deg⋅( )⋅−( )⋅ m⋅

999
kg

m3
⋅ 0.005⋅ m2

⋅ sin 10 deg⋅( )⋅

kg m⋅

N s2
⋅

⋅= V 0.867
m
s

=

The deflection is plotted in the corresponding Excel workbook, where the above velocity is obtained using Goal Seek



ρ = 999 kg/m3

x o = 1 m To find when θ = 10o, use Goal Seek
L  = 2 m
k  = 1 N/m V (m/s) θ (o)

A  = 0.005 m2 0.867 10

V  (m/s) θ (o)
0.0 30.0
0.1 29.2
0.2 27.0
0.3 24.1
0.4 20.9
0.5 17.9
0.6 15.3
0.7 13.0
0.8 11.1
0.9 9.52
1.0 8.22
1.1 7.14
1.2 6.25
1.3 5.50
1.4 4.87
1.5 4.33
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Problem 4.84 [2]

Rx
CS 

Ry

y

x

Given: Data on nozzle assembly

Find: Reaction force

Solution:
Basic equation: Momentum flux in x and y directions

Assumptions:  1) Steady flow   2) Incompressible flow  CV 3) Uniform flow

For x momentum Rx V2 cos θ( )⋅ ρ V2⋅ A2⋅( )⋅= ρ V2
2

⋅
π D2

2
⋅

4
⋅ cos θ( )⋅=

From continuity A1 V1⋅ A2 V2⋅= V2 V1
A1
A2
⋅= V1

D1
D2

⎛
⎜
⎝

⎞
⎟
⎠

2

⋅= V2 2
m
s

⋅
7.5
2.5

⎛⎜
⎝

⎞⎟
⎠

2
×= V2 18

m
s

=

Hence Rx 1000
kg

m3
⋅ 18

m
s

⋅⎛⎜
⎝

⎞⎟
⎠

2
×

π

4
× 0.025 m⋅( )2

× cos 30 deg⋅( )×
N s2
⋅

kg m⋅
×= Rx 138N=

For y momentum Ry p1 A1⋅− W− ρ Vol⋅ g⋅− V1− ρ− V1⋅ A1⋅( )⋅ V2 sin θ( )⋅ ρ V2⋅ A2⋅( )⋅−=

Ry p1
π D1

2
⋅

4
⋅ W+ ρ Vol⋅ g⋅+

ρ π⋅
4

V1
2 D1

2
⋅ V2

2 D2
2

⋅ sin θ( )⋅−⎛
⎝

⎞
⎠⋅+=

where W 4.5 kg⋅ 9.81×
m

s2
⋅

N s2
⋅

kg m⋅
×= W 44.1N= Vol 0.002 m3

⋅=

Hence Ry 125 103
×

N

m2
⋅

π 0.075 m⋅( )2
⋅

4
× 44.1 N⋅+ 1000

kg

m3
⋅ 0.002× m3

⋅ 9.81×
m

s2
⋅

N s2
⋅

kg m⋅
×+

1000
kg

m3
⋅

π

4
× 2

m
s

⋅⎛⎜
⎝

⎞⎟
⎠

2
0.075 m⋅( )2

× 18
m
s

⋅⎛⎜
⎝

⎞⎟
⎠

2
0.025 m⋅( )2

× sin 30 deg⋅( )×−
⎡
⎢
⎣

⎤
⎥
⎦

×
N s2
⋅

kg m⋅
×+

...=

Ry 554N=
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Problem 4.86 [3]

Given: Data on water jet pump

Find: Speed at pump exit; pressure rise

Solution:
Basic equation: Continuity, and momentum flux in x direction

Assumptions:  1) Steady flow   2) Incompressible flow  CV 3) Uniform flow

From continuity ρ− Vs⋅ As⋅ ρ Vj⋅ Aj⋅− ρ V2⋅ A2⋅+ 0= V2 Vs
As
A2
⋅ Vj

Aj
A2
⋅+= Vs

A2 Aj−

A2

⎛
⎜
⎝

⎞
⎟
⎠

⋅ Vj
Aj
A2
⋅+=

V2 10
ft
s

⋅
0.75 0.1−

0.75
⎛⎜
⎝

⎞⎟
⎠

× 100
ft
s

⋅
0.1
0.75

×+= V2 22
ft
s

=

For x momentum p1 A2⋅ p2 A2⋅− Vj ρ− Vj⋅ Aj⋅( )⋅ Vs ρ− Vs⋅ As⋅( )⋅+ V2 ρ V2⋅ A2⋅( )⋅+=

Δp p2 p1−= ρ Vj
2 Aj

A2
⋅ Vs

2 As
A2
⋅+ V2

2
−

⎛
⎜
⎝

⎞
⎟
⎠

⋅=

Δp 1.94
slug

ft3
⋅ 100

ft
s

⋅⎛⎜
⎝

⎞⎟
⎠

2 0.1
0.75

× 10
ft
s

⋅⎛⎜
⎝

⎞⎟
⎠

2 0.75 0.1−( )
0.75

×+ 22
ft
s

⋅⎛⎜
⎝

⎞⎟
⎠

2
−

⎡
⎢
⎣

⎤
⎥
⎦

×
lbf s2

⋅
slug ft⋅

×=

Hence Δp 1816
lbf

ft2
= Δp 12.6psi=
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Problem 4.89 [3]

Rx y

x 

CS
V2V1

p2p1

Given: Data on adiabatic flow of air

Find: Force of air on pipe

Solution:
Basic equation: Continuity, and momentum flux in x direction, plus ideal gas equation

p ρ R⋅ T⋅=

Assumptions:  1) Steady flow   2) Ideal gas  CV 3) Uniform flow

From continuity ρ1− V1⋅ A1⋅ ρ2 V2⋅ A2⋅+ 0= ρ1 V1⋅ A⋅ ρ2 V2⋅ A⋅= ρ1 V1⋅ ρ2 V2⋅=

For x momentum Rx p1 A⋅+ p2 A⋅− V1 ρ1− V1⋅ A⋅( )⋅ V2 ρ2 V2⋅ A⋅( )⋅+= ρ1 V1⋅ A⋅ V2 V1−( )⋅=

Rx p2 p1−( ) A⋅ ρ1 V1⋅ A⋅ V2 V1−( )⋅+=

For the air ρ1
P1

Rair T1⋅
= ρ1 200 101+( ) 103

×
N

m2
⋅

kg K⋅
286.9 N⋅ m⋅

×
1

60 273+( ) K⋅
×= ρ1 3.15

kg

m3
=

Rx 80 200−( ) 103
×

N

m2
⋅ 0.05× m2

⋅ 3.15
kg

m3
⋅ 150×

m
s

⋅ 0.05× m2
⋅ 300 150−( )×

m
s

⋅
N s2
⋅

kg m⋅
×+=

Hence Rx 2456− N=

This is the force of the pipe on the air; the pipe is opposing flow.  Hence the force of the air on the pipe is Fpipe Rx−=

Fpipe 2456N= The air is dragging the pipe to the right



Problem 4.90 [3]

Rx y

x

CS 
V2V1

p2p1

V3
ρ1 ρ2 

Given: Data on heated flow of gas

Find: Force of gas on pipe

Solution:
Basic equation: Continuity, and momentum flux in x direction

p ρ R⋅ T⋅=

Assumptions:  1) Steady flow   2) Uniform flow

From continuity ρ1− V1⋅ A1⋅ ρ2 V2⋅ A2⋅+ m3+ 0= V2 V1
ρ1
ρ2
⋅

m3
ρ2 A⋅

−= where m3 = 20 kg/s is the mass leaving through
the walls (the software does not allow a dot)

V2 170
m
s

⋅
6

2.75
× 20

kg
s

⋅
m3

2.75 kg⋅
×

1

0.15 m2
⋅

×−= V2 322
m
s

=

For x momentum Rx p1 A⋅+ p2 A⋅− V1 ρ1− V1⋅ A⋅( )⋅ V2 ρ2 V2⋅ A⋅( )⋅+=

Rx p2 p1−( ) ρ2 V2
2

⋅+ ρ1 V1
2

⋅−⎡
⎣

⎤
⎦ A⋅=

Rx 300 400−( ) 103
×

N

m2
⋅ 2.75

kg

m3
⋅ 322

m
s

⋅⎛⎜
⎝

⎞⎟
⎠

2
× 6

kg

m3
⋅ 170

m
s

⋅⎛⎜
⎝

⎞⎟
⎠

2
×−

⎡⎢
⎢⎣

⎤⎥
⎥⎦

N s2
⋅

kg m⋅
×+

⎡⎢
⎢⎣

⎤⎥
⎥⎦

0.15× m2
⋅=

Hence Rx 1760N=
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Problem 4.94 [4]

Given: Data on flow in wind tunnel

Find: Mass flow rate in tunnel; Maximum velocity at section 2; Drag on object

Solution:
Basic equations: Continuity, and momentum flux in x direction; ideal gas equation

p ρ R⋅ T⋅=

Assumptions:  1) Steady flow   2) Uniform density at each section

From continuity mflow ρ1 V1⋅ A1⋅= ρ1 V1⋅
π D1

2
⋅

4
⋅= where mflow is the mass flow rate

We take ambient conditions for the air density ρair
patm

Rair Tatm⋅
= ρair 101000

N

m2
⋅

kg K⋅
286.9 N⋅ m⋅

×
1

293 K⋅
×= ρair 1.2

kg

m3
=

mflow 1.2
kg

m3
⋅ 12.5×

m
s

⋅
π 0.75 m⋅( )2
⋅

4
×= mflow 6.63

kg
s

=

Also
mflow A2ρ2 u2⋅

⌠
⎮
⎮
⌡

d= ρair
0

R

rVmax
r
R
⋅ 2⋅ π⋅ r⋅

⌠
⎮
⎮
⌡

d⋅=
2 π⋅ ρair⋅ Vmax⋅

R 0

R
rr2

⌠
⎮
⌡

d⋅=
2 π⋅ ρair⋅ Vmax⋅ R2

⋅

3
=

Vmax
3 mflow⋅

2 π⋅ ρair⋅ R2
⋅

= Vmax
3

2 π⋅
6.63×

kg
s

⋅
m3

1.2 kg⋅
×

1
0.375 m⋅
⎛⎜
⎝

⎞⎟
⎠

2
×= Vmax 18.8

m
s

=

For x momentum Rx p1 A⋅+ p2 A⋅− V1 ρ1− V1⋅ A⋅( )⋅ A2ρ2 u2⋅ u2⋅
⌠
⎮
⎮
⌡

d+=

Rx p2 p1−( ) A⋅ V1 mflow⋅−

0

R

rρair Vmax
r
R
⋅⎛⎜

⎝
⎞⎟
⎠

2
⋅ 2⋅ π⋅ r⋅

⌠
⎮
⎮
⌡

d+= p2 p1−( ) A⋅ V1 mflow⋅−
2 π⋅ ρair⋅ Vmax

2
⋅

R2 0

R
rr3

⌠
⎮
⌡

d⋅+=

Rx p2 p1−( ) A⋅ V1 mflow⋅−
π

2
ρair⋅ Vmax

2
⋅ R2

⋅+=

We also have p1 ρ g⋅ h1⋅= p1 1000
kg

m3
⋅ 9.81×

m

s2
⋅ 0.03× m⋅= p1 294Pa= p2 ρ g⋅ h2⋅= p2 147 Pa⋅=

Hence Rx 147 294−( )
N

m2
⋅

π 0.75 m⋅( )2
⋅

4
× 6.63−

kg
s

⋅ 12.5×
m
s

⋅
π

2
1.2×

kg

m3
⋅ 18.8

m
s

⋅⎛⎜
⎝

⎞⎟
⎠

2
× 0.375 m⋅( )2

×+
⎡⎢
⎢⎣

⎤⎥
⎥⎦

N s2
⋅

kg m⋅
×+=

Rx 54− N= The drag on the object is equal and opposite Fdrag Rx−= Fdrag 54.1N=



Problem 4.95 [2]

Given: Data on wake behind object

Find: An expression for the drag

Solution:
Governing equation:

Momentum (4.18a)

Applying this to the horizontal motion

F− U ρ− π⋅ 12
⋅ U⋅( )⋅

0

1
ru r( ) ρ⋅ 2⋅ π⋅ r⋅ u r( )⋅

⌠
⎮
⌡

d+= F π ρ U2 2
0

1
rr u r( )2

⋅
⌠
⎮
⌡

d⋅−
⎛⎜
⎜⎝

⎞⎟
⎟⎠

⋅=

F π ρ U2
⋅ 1 2

0

1

rr 1 cos
π r⋅
2

⎛⎜
⎝

⎞⎟
⎠

2
−

⎛
⎜
⎝

⎞
⎟
⎠

2

⋅

⌠
⎮
⎮
⎮
⌡

d⋅−

⎡
⎢
⎢
⎢
⎣

⎤
⎥
⎥
⎥
⎦

⋅=

F π ρ U2
⋅ 1 2

0

1

rr 2 r⋅ cos
π r⋅
2

⎛⎜
⎝

⎞⎟
⎠

2
⋅− r cos

π r⋅
2

⎛⎜
⎝

⎞⎟
⎠

4
⋅+

⌠
⎮
⎮
⌡

d⋅−

⎛⎜
⎜
⎜
⎝

⎞⎟
⎟
⎟
⎠

⋅=

Integrating and using the limits F π ρ U2
⋅ 1

3
8

2

π
2

+⎛
⎜
⎝

⎞
⎟
⎠

−⎡
⎢
⎣

⎤
⎥
⎦

⋅= F
5 π⋅
8

2
π

−⎛⎜
⎝

⎞⎟
⎠

ρ⋅ U2
⋅=



Problem 4.96 [4]

CS 

x 
y 

2h 

Given: Data on flow in 2D channel

Find: Maximum velocity; Pressure drop

Solution:
Basic equations: Continuity, and momentum flux in x direction; ideal gas equation

Assumptions:  1) Steady flow   2) Neglect frition

From continuity
ρ− U1⋅ A1⋅ Aρ u2⋅

⌠
⎮
⎮
⌡

d+ 0=

U1 2⋅ h⋅ w⋅ w

h−

h

yumax 1
y2

h2
−

⎛⎜
⎜⎝

⎞⎟
⎟⎠

⋅
⌠
⎮
⎮
⎮
⌡

d⋅= w umax⋅ h h−( )−[ ]
h
3

h
3

−⎛⎜
⎝

⎞⎟
⎠

−⎡⎢
⎣

⎤⎥
⎦

−⎡⎢
⎣

⎤⎥
⎦

⋅= w umax⋅
4
3
⋅ h⋅=

Hence umax
3
2

U1⋅= umax
3
2

7.5×
m
s

⋅= umax 11.3
m
s

=

For x momentum p1 A⋅ p2 A⋅− V1 ρ1− V1⋅ A⋅( )⋅ A2ρ2 u2⋅ u2⋅
⌠
⎮
⎮
⌡

d+= Note that there is no Rx (no friction)

p1 p2− ρ− U1
2

⋅
w
A

h−

h

yρ umax
2

⋅ 1
y2

h2
−

⎛⎜
⎜⎝

⎞⎟
⎟⎠

2

⋅

⌠
⎮
⎮
⎮
⌡

d⋅+= ρ− U1
2

⋅
ρ umax

2
⋅

h
2 h⋅ 2

2
3

h⋅⎛⎜
⎝

⎞⎟
⎠

⋅− 2
1
5

h⋅⎛⎜
⎝

⎞⎟
⎠

⋅+⎡⎢
⎣

⎤⎥
⎦

⋅+=

Δp p1 p2−= ρ− U1
2

⋅
8
15

ρ⋅ umax
2

⋅+= ρ U1⋅
8
15

3
2
⎛⎜
⎝
⎞⎟
⎠

2
⋅ 1−

⎡
⎢
⎣

⎤
⎥
⎦

⋅=
1
5

ρ⋅ U1⋅=

Hence Δp
1
5

1.24×
kg

m3
⋅ 7.5

m
s

⋅⎛⎜
⎝

⎞⎟
⎠

2
×

N s2
⋅

kg m⋅
×= Δp 14Pa=
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Problem 4.100 [4]

CS

x

y

a

b

d

c 

Ff 

Given: Data on flow of boundary layer

Find: Force on plate per unit width

Solution:
Basic equations: Continuity, and momentum flux in x direction

Assumptions:  1) Steady flow   2) Incompressible 3) No net pressure force

From continuity ρ− U0⋅ w⋅ δ⋅ mbc+
0

δ

yρ u⋅ w⋅
⌠
⎮
⌡

d+ 0= where mbc is the mass flow rate across bc (Note:
sotware cannot render a dot!)

Hence mbc
0

δ

yρ U0 u−( )⋅ w⋅
⌠
⎮
⌡

d=

For x momentum Ff− U0 ρ− U0⋅ w⋅ δ⋅( )⋅ U0 mbc⋅+
0

δ

yu ρ⋅ u⋅ w⋅
⌠
⎮
⌡

d+=
0

δ

yU0
2

− u2
+ U0 U0 u−( )⋅+⎡

⎣
⎤
⎦ w⋅

⌠
⎮
⌡

d=

Then the drag force is Ff
0

δ

yρ u⋅ U0 u−( )⋅ w⋅
⌠
⎮
⌡

d=

0

δ

yρ U0
2

⋅
u

U0
⋅ 1

u
U0

−⎛
⎜
⎝

⎞
⎟
⎠

⋅
⌠
⎮
⎮
⌡

d=

But we have u
U0

3
2

η⋅
1
2

η
3

⋅−= where we have used substitution y δ η⋅=

Ff
w

0

η 1=

ηρ U0
2

⋅ δ⋅
u

U0
⋅ 1

u
U0

−⎛
⎜
⎝

⎞
⎟
⎠

⋅
⌠
⎮
⎮
⌡

d= ρ U0
2

⋅ δ⋅

0

1

η
3
2

η⋅
9
4

η
2

⋅−
1
2

η
3

⋅−
3
2

η
4

⋅+
1
4

η
6

⋅−⎛⎜
⎝

⎞⎟
⎠

⌠
⎮
⎮
⌡

d⋅=

Ff
w

ρ U0
2

⋅ δ⋅
3
4

3
4

−
1
8

−
3
10

+
1
28

−⎛⎜
⎝

⎞⎟
⎠

⋅= 0.139 ρ⋅ U0
2

⋅ δ⋅=

Hence
Ff
w

0.139 0.002377×
slug

ft3
⋅ 30

ft
s

⋅⎛⎜
⎝

⎞⎟
⎠

2
×

0.1
12

× ft⋅
lbf s2

⋅
slug ft⋅

×= (using standard atmosphere density)

Ff
w

2.48 10 3−
×

lbf
ft

⋅=



Problem 4.101 [4]

CS

x

y

a

b

d

c 

Ff 

Given: Data on flow of boundary layer

Find: Force on plate per unit width

Solution:
Basic equations: Continuity, and momentum flux in x direction

Assumptions:  1) Steady flow   2) Incompressible 3) No net pressure force

From continuity ρ− U0⋅ w⋅ δ⋅ mbc+
0

δ

yρ u⋅ w⋅
⌠
⎮
⌡

d+ 0= where mbc is the mass flow rate across bc (Note:
sotware cannot render a dot!)

Hence mbc
0

δ

yρ U0 u−( )⋅ w⋅
⌠
⎮
⌡

d=

For x momentum Ff− U0 ρ− U0⋅ w⋅ δ⋅( )⋅ U0 mbc⋅+
0

δ

yu ρ⋅ u⋅ w⋅
⌠
⎮
⌡

d+=
0

δ

yU0
2

− u2
+ U0 U0 u−( )⋅+⎡

⎣
⎤
⎦ w⋅

⌠
⎮
⌡

d=

Then the drag force is Ff
0

δ

yρ u⋅ U0 u−( )⋅ w⋅
⌠
⎮
⌡

d=

0

δ

yρ U0
2

⋅
u

U0
⋅ 1

u
U0

−⎛
⎜
⎝

⎞
⎟
⎠

⋅
⌠
⎮
⎮
⌡

d=

But we have u
U0

y
δ

= where we have used substitution y δ η⋅=

Ff
w

0

η 1=

ηρ U0
2

⋅ δ⋅
u

U0
⋅ 1

u
U0

−⎛
⎜
⎝

⎞
⎟
⎠

⋅
⌠
⎮
⎮
⌡

d= ρ U0
2

⋅ δ⋅
0

1
ηη 1 η−( )⋅

⌠
⎮
⌡

d⋅=

Ff
w

ρ U0
2

⋅ δ⋅
1
2

1
3

−⎛⎜
⎝

⎞⎟
⎠

⋅=
1
6

ρ⋅ U0
2

⋅ δ⋅=

Hence
Ff
w

1
6

1.225×
kg

m3
⋅ 20

m
s

⋅⎛⎜
⎝

⎞⎟
⎠

2
×

2
1000

× m⋅
N s2
⋅

kg m⋅
×= (using standard atmosphere density)

Ff
w

0.163
N
m
⋅=
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Problem *4.106 [4]

CS 

Given: Air jet striking disk

Find: Manometer deflection; Force to hold disk

Solution:
Basic equations: Hydrostatic pressure,  Bernoulli, and momentum flux in x direction

p
ρ

V2

2
+ g z⋅+ constant=

Assumptions:  1) Steady flow   2) Incompressible 3) No friction 4) Flow along streamline 5) Uniform flow 6) Horizontal flow (gx = 0)

Applying Bernoulli between jet exit and stagnation point

p
ρair

V2

2
+

p0
ρair

0+= p0 p−
1
2

ρair⋅ V2
⋅=

But from hydrostatics p0 p− SG ρ⋅ g⋅ Δh⋅= so Δh

1
2

ρair⋅ V2
⋅

SG ρ⋅ g⋅
=

ρair V2
⋅

2 SG⋅ ρ⋅ g⋅
=

Δh 0.002377
slug

ft3
⋅ 225

ft
s

⋅⎛⎜
⎝

⎞⎟
⎠

2
×

1
2 1.75⋅

×
ft3

1.94 slug⋅
×

s2

32.2 ft⋅
×= Δh 0.55 ft⋅= Δh 6.6 in⋅=

For x momentum Rx V ρair− A⋅ V⋅( )⋅= ρair− V2
⋅

π D2
⋅
4

⋅=

Rx 0.002377−
slug

ft3
⋅ 225

ft
s

⋅⎛⎜
⎝

⎞⎟
⎠

2
×

π
0.5
12

ft⋅⎛⎜
⎝

⎞⎟
⎠

2
⋅

4
×

lbf s2
⋅

slugft⋅
×= Rx 0.164− lbf⋅=

The force of the jet on the plate is then F Rx−= F 0.164 lbf⋅=



Problem *4.107 [2]

CS 

x
y

Rx

 

V, A

Given: Water jet striking surface

Find: Force on surface

Solution:
Basic equations: Momentum flux in x direction

Assumptions:  1) Steady flow   2) Incompressible flow 3) Atmospheric pressure throughout 4) Uniform flow

Hence Rx u1 ρ− u1⋅ A1⋅( )⋅= ρ− V2
⋅ A⋅= ρ−

Q
A

⎛⎜
⎝

⎞⎟
⎠

2
⋅ A⋅=

ρ Q2
⋅
A

−=
4 ρ⋅ Q2

⋅

π D2
⋅

−= where Q is the flow rate

The force of the jet on the surface is then F Rx−=
4 ρ⋅ Q2

⋅

π D2
⋅

=

For a fixed flow rate Q, the force of a jet varies as 
1

D2
: A smaller diameter leads to a larger force.  This is because as

the diameter decreases the speed increases, and the impact force varies as the square of the speed, but linearly with area

For a force of F = 650 N

Q
π D2
⋅ F⋅
4 ρ⋅

= Q
π

4
6

1000
m⋅⎛⎜

⎝
⎞⎟
⎠

2
× 650× N⋅

m3

1000 kg⋅
×

kg m⋅

s2 N⋅
×

1 L⋅

10 3− m3
⋅

×
60 s⋅
1 min⋅

×= Q 257
L

min
⋅=
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Problem *4.109 [3]

CS 

 

Given: Water jet striking disk

Find: Expression for speed of jet as function of height; Height for stationary disk

Solution:
Basic equations: Bernoulli; Momentum flux in z direction

p
ρ

V2

2
+ g z⋅+ constant=

Assumptions:  1) Steady flow   2) Incompressible flow 3) Atmospheric pressure in jet 4) Uniform flow

The Bernoulli equation becomes
V0

2

2
g 0⋅+

V2

2
g h⋅+= V2 V0

2 2 g⋅ h⋅−= V V0
2 2 g⋅ h⋅−=

Hence M− g⋅ w1 ρ− w1⋅ A1⋅( )⋅= ρ− V2
⋅ A⋅=

But from continuity ρ V0⋅ A0⋅ ρ V⋅ A⋅= so V A⋅ V0 A0⋅=

Hence we get M g⋅ ρ V⋅ V⋅ A⋅= ρ V0⋅ A0⋅ V0
2 2 g⋅ h⋅−⋅=

Solving for h h
1

2 g⋅
V0

2 M g⋅
ρ V0⋅ A0⋅
⎛
⎜
⎝

⎞
⎟
⎠

2
−

⎡⎢
⎢⎣

⎤⎥
⎥⎦

⋅=

h
1
2

s2

9.81 m⋅
× 10

m
s

⋅⎛⎜
⎝

⎞⎟
⎠

2
2 kg⋅

9.81 m⋅

s2
×

m3

1000 kg⋅
×

s
10 m⋅

×
4

π
25

1000
m⋅⎛⎜

⎝
⎞⎟
⎠

2
⋅

×
⎡
⎢
⎢
⎢
⎣

⎤
⎥
⎥
⎥
⎦

2

−
⎡
⎢
⎢
⎢
⎣

⎤
⎥
⎥
⎥
⎦

×=

h 4.28m=
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Problem *4.112 [2]

Given: Data on flow and venturi geometry

Find: Force on convergent section

Solution:

The given data is ρ 999
kg

m3
⋅= D 0.1 m⋅= d 0.04 m⋅= p1 600 kPa⋅= V1 5

m
s

⋅=

Then A1
π D2
⋅
4

= A1 0.00785m2
= A2

π

4
d2
⋅= A2 0.00126m2

=

Q V1 A1⋅= Q 0.0393
m3

s
= V2

Q
A2

= V2 31.3
m
s

=

Governing equations:

Bernoulli equation p
ρ

V2

2
+ g z⋅+ const= (4.24)

Momentum (4.18a)

Applying Bernoulli between inlet and throat p1
ρ

V1
2

2
+

p2
ρ

V2
2

2
+=

Solving for p2 p2 p1
ρ

2
V1

2 V2
2

−⎛
⎝

⎞
⎠⋅+= p2 600 kPa⋅ 999

kg

m3
⋅ 52 31.32

−( )×
m2

s2
⋅

N s2
⋅

kg m⋅
×

kN
1000 N⋅

×+= p2 125 kPa⋅=

Applying the horizontal component of momentum

F− p1 A2⋅+ p2 A2⋅− V1 ρ− V1⋅ A1⋅( )⋅ V2 ρ V2⋅ A2⋅( )⋅+= or F p1 A1⋅ p2 A2⋅− ρ V1
2 A1⋅ V2

2 A2⋅−⎛
⎝

⎞
⎠⋅+=

F 600
kN

m2
⋅ 0.00785× m2

⋅ 125
kN

m2
⋅ 0.00126× m2

⋅− 999
kg

m3
⋅ 5

m
s

⋅⎛⎜
⎝

⎞⎟
⎠

2
0.00785⋅ m2

⋅ 31.3
m
s

⋅⎛⎜
⎝

⎞⎟
⎠

2
0.00126⋅ m2

⋅−
⎡
⎢
⎣

⎤
⎥
⎦

×
N s2
⋅

kg m×
⋅+=

F 3.52 kN⋅=
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Problem *4.122 [3]

CS (moves 
at speed U) 

y

x

 

Rx 
Ry

Given: Water jet striking moving vane

Find: Force needed to hold vane to speed U = 5 m/s

Solution:
Basic equations: Momentum flux in x and y directions

Assumptions:  1) Steady flow   2) Incompressible flow 3) Atmospheric pressure in jet 4) Uniform flow 5) Jet relative velocity is constant

Then Rx u1 ρ− V1⋅ A1⋅( )⋅ u2 ρ V2⋅ A2⋅( )⋅+= V U−( )− ρ V U−( )⋅ A⋅[ ]⋅ V U−( ) cos θ( )⋅ ρ V U−( )⋅ A⋅[ ]⋅+=

Rx ρ V U−( )2 A⋅ cos θ( ) 1−( )⋅= A
π

4
40

1000
m⋅⎛⎜

⎝
⎞⎟
⎠

2
⋅= A 1.26 10 3−

× m2
=

Using given data

Rx 1000
kg

m3
⋅ 25 5−( )

m
s

⋅⎡⎢
⎣

⎤⎥
⎦

2
× 1.26× 10 3−

× m2
⋅ cos 150 deg⋅( ) 1−( )×

N s2
⋅

kg m⋅
×= Rx 940− N=

Then Ry v1 ρ− V1⋅ A1⋅( )⋅ v2 ρ V2⋅ A2⋅( )⋅+= 0− V U−( ) sin θ( )⋅ ρ V U−( )⋅ A⋅[ ]⋅+=

Ry ρ V U−( )2 A⋅ sin θ( )⋅= Ry 1000
kg

m3
⋅ 25 5−( )

m
s

⋅⎡⎢
⎣

⎤⎥
⎦

2
× 1.26× 10 3−

× m2
⋅ sin 150 deg⋅( )×

N s2
⋅

kg m⋅
×= Ry 252N=

Hence the force required is 940 N to the left and 252 N upwards to maintain motion at 5 m/s



Problem 4.123 [3]

CS (moves 
at speed U) 

y

x

 

RxRy

Given: Water jet striking moving vane

Find: Force needed to hold vane to speed U = 10 m/s

Solution:
Basic equations: Momentum flux in x and y directions

Assumptions:  1) Steady flow   2) Incompressible flow 3) Atmospheric pressure in jet 4) Uniform flow 5) Jet relative velocity is constant

Then Rx u1 ρ− V1⋅ A1⋅( )⋅ u2 ρ V2⋅ A2⋅( )⋅+= V U−( )− ρ V U−( )⋅ A⋅[ ]⋅ V U−( ) cos θ( )⋅ ρ V U−( )⋅ A⋅[ ]⋅+=

Rx ρ V U−( )2 A⋅ cos θ( ) 1−( )⋅=

Using given data

Rx 1000
kg

m3
⋅ 30 10−( )

m
s

⋅⎡⎢
⎣

⎤⎥
⎦

2
× 0.004× m2

⋅ cos 120 deg⋅( ) 1−( )×
N s2
⋅

kg m⋅
×= Rx 2400− N=

Then Ry v1 ρ− V1⋅ A1⋅( )⋅ v2 ρ V2⋅ A2⋅( )⋅+= 0− V U−( ) sin θ( )⋅ ρ V U−( )⋅ A⋅[ ]⋅+=

Ry ρ V U−( )2 A⋅ sin θ( )⋅= Ry 1000
kg

m3
⋅ 30 10−( )

m
s

⋅⎡⎢
⎣

⎤⎥
⎦

2
× 0.004× m2

⋅ sin 120 deg⋅( )×
N s2
⋅

kg m⋅
×= Ry 1386N=

Hence the force required is 2400 N to the left and 1390 N upwards to maintain motion at 10 m/s
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Problem 4.125 [2]

Given: Data on jet boat

Find: Formula for boat speed; jet speed to double boat speed

Solution:
CV in boat coordinatesGoverning equation:

Momentum (4.26)

Applying the horizontal component of momentum

Fdrag V ρ− Q⋅( )⋅ Vj ρ Q⋅( )⋅+= or, with Fdrag k V2
⋅= k V2

⋅ ρ Q⋅ Vj⋅ ρ Q⋅ V⋅−=

k V2
⋅ ρ Q⋅ V⋅+ ρ Q⋅ Vj⋅− 0=

Solving for V V
ρ Q⋅
2 k⋅

−
ρ Q⋅
2 k⋅

⎛⎜
⎝

⎞⎟
⎠

2 ρ Q⋅ Vj⋅

k
++=

Let α
ρ Q⋅
2 k⋅

=

V α− α
2 2 α⋅ Vj⋅++=

We can use given data at V = 10 m/s to find α V 10
m
s

⋅= Vj 25
m
s

⋅=

10
m
s

⋅ α− α
2 2 25⋅

m
s

⋅ α⋅++= α
2 50 α⋅+ 10 α+( )2

= 100 20 α⋅+ α
2

+= α
10
3

m
s

⋅=

Hence V
10
3

−
100

9
20
3

Vj⋅++=

For V = 20 m/s 20
10
3

−
100

9
20
3

Vj⋅++=
100
9

20
3

Vj⋅+
70
3

= Vj 80
m
s

⋅=
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Problem 4.128 [3]

CS (moves 
at speed U) 

y

x

 

RxRy

Given: Water jet striking moving vane

Find: Expressions for force and power; Show that maximum power is when U = V/3

Solution:
Basic equation: Momentum flux in x direction

Assumptions:  1) Steady flow   2) Incompressible flow 3) Atmospheric pressure in jet 4) Uniform flow 5) Jet relative velocity is constant

Then Rx u1 ρ− V1⋅ A1⋅( )⋅ u2 ρ V2⋅ A2⋅( )⋅+= V U−( )− ρ V U−( )⋅ A⋅[ ]⋅ V U−( ) cos θ( )⋅ ρ V U−( )⋅ A⋅[ ]⋅+=

Rx ρ V U−( )2 A⋅ cos θ( ) 1−( )⋅=

This is force on vane; Force exerted by vane is equal and opposite Fx ρ V U−( )2
⋅ A⋅ 1 cos θ( )−( )⋅=

The power produced is then P U Fx⋅= ρ U⋅ V U−( )2
⋅ A⋅ 1 cos θ( )−( )⋅=

To maximize power wrt to U dP
dU

ρ V U−( )2
⋅ A⋅ 1 cos θ( )−( )⋅ ρ 2( )⋅ 1−( )⋅ V U−( )⋅ U⋅ A⋅ 1 cos θ( )−( )⋅+= 0=

Hence V U− 2 U⋅− V 3 U⋅−= 0= U
V
3

= for maximum power

Note that there is a vertical force, but it generates no power



Problem 4.114  
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Problem 4.130 [3]

CS (moves to 
left at speed Vc) 

y 

x 

 

 

Rx 

Vj + Vc 

Vj + Vc 

t 

R 

Given: Water jet striking moving cone

Find: Thickness of jet sheet; Force needed to move cone

Solution:
Basic equations: Mass conservation; Momentum flux in x direction

Assumptions:  1) Steady flow   2) Incompressible flow 3) Atmospheric pressure in jet 4) Uniform flow 5) Jet relative velocity is constant

Then ρ− V1⋅ A1⋅ ρ V2⋅ A2⋅+ 0= ρ− Vj Vc+( )⋅
π Dj

2
⋅

4
⋅ ρ Vj Vc+( )⋅ 2⋅ π⋅ R⋅ t⋅+ 0= (Refer to sketch)

Hence t
Dj

2

8 R⋅
= t

1
8

4 in⋅( )2
×

1
9 in⋅

×= t 0.222 in=

Using relative velocities, x momentum is

Rx u1 ρ− V1⋅ A1⋅( )⋅ u2 ρ V2⋅ A2⋅( )⋅+= Vj Vc+( )− ρ Vj Vc+( )⋅ Aj⋅⎡⎣ ⎤⎦⋅ Vj Vc+( ) cos θ( )⋅ ρ Vj Vc+( )⋅ Aj⋅⎡⎣ ⎤⎦⋅+=

Rx ρ Vj Vc+( )2 Aj⋅ cos θ( ) 1−( )⋅=

Using given data

Rx 1.94
slug

ft3
⋅ 100 45+( )

ft
s

⋅⎡⎢
⎣

⎤⎥
⎦

2
×

π
4
12

ft⋅⎛⎜
⎝

⎞⎟
⎠

2
⋅

4
× cos 60 deg⋅( ) 1−( )×

lbf s2
⋅

slug ft⋅
×= Rx 1780− lbf⋅=

Hence the force is 1780 lbf to the left; the upwards equals the weight
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Problem 4.138 [4]

Given: Data on vane/slider

Find: Formula for acceleration, speed, and position; plot

Solution:

The given data is ρ 999
kg

m3
⋅= M 30 kg⋅= A 0.005 m2

⋅= V 20
m
s

⋅= μk 0.3=

The equation of motion, from Problem 4.136, is dU
dt

ρ V U−( )2
⋅ A⋅

M
g μk⋅−=

The acceleration is thus a
ρ V U−( )2
⋅ A⋅

M
g μk⋅−=

Separating variables dU

ρ V U−( )2
⋅ A⋅

M
g μk⋅−

dt=

Substitute u V U−= dU du−=
du

ρ A⋅ u2
⋅

M
g μk⋅−

dt−=

u
1

ρ A⋅ u2
⋅

M
g μk⋅−

⎛
⎜
⎝

⎞
⎟
⎠

⌠
⎮
⎮
⎮
⎮
⌡

d
M

g μk⋅ ρ⋅ A⋅
− atanh

ρ A⋅
g μk⋅ M⋅

u⋅
⎛
⎜
⎝

⎞
⎟
⎠

⋅=

and u = V - U so M
g μk⋅ ρ⋅ A⋅

− atanh
ρ A⋅

g μk⋅ M⋅
u⋅

⎛
⎜
⎝

⎞
⎟
⎠

⋅
M

g μk⋅ ρ⋅ A⋅
− atanh

ρ A⋅
g μk⋅ M⋅

V U−( )⋅
⎡
⎢
⎣

⎤
⎥
⎦

⋅=

Using initial conditions M
g μk⋅ ρ⋅ A⋅

− atanh
ρ A⋅

g μk⋅ M⋅
V U−( )⋅

⎡
⎢
⎣

⎤
⎥
⎦

⋅
M

g μk⋅ ρ⋅ A⋅
atanh

ρ A⋅
g μk⋅ M⋅

V⋅
⎛
⎜
⎝

⎞
⎟
⎠

⋅+ t−=

V U−
g μk⋅ M⋅

ρ A⋅
tanh

g μk⋅ ρ⋅ A⋅

M
t⋅ atanh

ρ A⋅
g μk⋅ M⋅

V⋅
⎛
⎜
⎝

⎞
⎟
⎠

+
⎛⎜
⎜⎝

⎞⎟
⎟⎠

⋅=

U V
g μk⋅ M⋅

ρ A⋅
tanh

g μk⋅ ρ⋅ A⋅

M
t⋅ atanh

ρ A⋅
g μk⋅ M⋅

V⋅
⎛
⎜
⎝

⎞
⎟
⎠

+
⎛⎜
⎜⎝

⎞⎟
⎟⎠

⋅−=



Note that atanh
ρ A⋅

g μk⋅ M⋅
V⋅

⎛
⎜
⎝

⎞
⎟
⎠

0.213
π

2
i⋅−=

which is complex and difficult to handle in Excel, so we use the identity atanh x( ) atanh
1
x
⎛⎜
⎝
⎞⎟
⎠

π

2
i⋅−= for x > 1

so U V
g μk⋅ M⋅

ρ A⋅
tanh

g μk⋅ ρ⋅ A⋅

M
t⋅ atanh

1

ρ A⋅
g μk⋅ M⋅

V⋅

⎛⎜
⎜
⎜⎝

⎞⎟
⎟
⎟⎠

+
π

2
i⋅−

⎛
⎜
⎜
⎜
⎝

⎞
⎟
⎟
⎟
⎠

⋅−=

and finally the identity tanh x
π

2
i⋅−⎛⎜

⎝
⎞⎟
⎠

1
tanh x( )

=

to obtain U V

g μk⋅ M⋅

ρ A⋅

tanh
g μk⋅ ρ⋅ A⋅

M
t⋅ atanh

g μk⋅ M⋅

ρ A⋅
1
V
⋅

⎛
⎜
⎝

⎞
⎟
⎠

+
⎛
⎜
⎝

⎞
⎟
⎠

−=

For the position x dx
dt

V

g μk⋅ M⋅

ρ A⋅

tanh
g μk⋅ ρ⋅ A⋅

M
t⋅ atanh

g μk⋅ M⋅

ρ A⋅
1
V
⋅

⎛
⎜
⎝

⎞
⎟
⎠

+
⎛
⎜
⎝

⎞
⎟
⎠

−=

This can be solved analytically, but is quite messy.  Instead, in the corresponding Excel workbook, it is solved numerically
using a simple Euler method.  The complete set of equations is

U V

g μk⋅ M⋅

ρ A⋅

tanh
g μk⋅ ρ⋅ A⋅

M
t⋅ atanh

g μk⋅ M⋅

ρ A⋅
1
V
⋅

⎛
⎜
⎝

⎞
⎟
⎠

+
⎛
⎜
⎝

⎞
⎟
⎠

−=

a
ρ V U−( )2
⋅ A⋅

M
g μk⋅−=

x n 1+( ) x n( ) V

g μk⋅ M⋅

ρ A⋅

tanh
g μk⋅ ρ⋅ A⋅

M
t⋅ atanh

g μk⋅ M⋅

ρ A⋅
1
V
⋅

⎛
⎜
⎝

⎞
⎟
⎠

+
⎛
⎜
⎝

⎞
⎟
⎠

−

⎛
⎜
⎜
⎜
⎜
⎝

⎞
⎟
⎟
⎟
⎟
⎠

Δt⋅+=

The plots are presented in the Excel workbook



The equations are

ρ = 999 kg/m3

μk = 0.3
A  = 0.005 m2

V  = 20 m/s
M  = 30 kg
Δt  = 0.1 s

t  (s) x  (m) U  (m/s) a  (m/s2)
0.0 0.0 0.0 63.7
0.1 0.0 4.8 35.7
0.2 0.5 7.6 22.6
0.3 1.2 9.5 15.5
0.4 2.2 10.8 11.2
0.5 3.3 11.8 8.4
0.6 4.4 12.5 6.4
0.7 5.7 13.1 5.1
0.8 7.0 13.5 4.0
0.9 8.4 13.9 3.3
1.0 9.7 14.2 2.7
1.1 11.2 14.4 2.2
1.2 12.6 14.6 1.9
1.3 14.1 14.8 1.6
1.4 15.5 14.9 1.3
1.5 17.0 15.1 1.1
1.6 18.5 15.2 0.9
1.7 20.1 15.3 0.8
1.8 21.6 15.3 0.7
1.9 23.1 15.4 0.6
2.0 24.7 15.4 0.5
2.1 26.2 15.5 0.4
2.2 27.8 15.5 0.4
2.3 29.3 15.6 0.3
2.4 30.9 15.6 0.3
2.5 32.4 15.6 0.2
2.6 34.0 15.6 0.2
2.7 35.6 15.7 0.2
2.8 37.1 15.7 0.2
2.9 38.7 15.7 0.1
3.0 40.3 15.7 0.1
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Problem 4.133



Problem 4.140 [4]

CS (moves at 
speed 
instantaneous 
speed U) 

y 

x 

 

Given: Water jet striking moving vane/cart assembly

Find: Angle θ at t = 5 s; Plot θ(t)

Solution:
Basic equation: Momentum flux in x direction for accelerating CV

Assumptions:  1) cahnges in CV   2) Incompressible flow 3) Atmospheric pressure in jet 4) Uniform flow 5) Constant jet relative velocity

Then M− arfx⋅ u1 ρ− V1⋅ A1⋅( )⋅ u2 ρ V2⋅ A2⋅( )⋅+= V U−( )− ρ V U−( )⋅ A⋅[ ]⋅ V U−( ) cos θ( )⋅ ρ V U−( )⋅ A⋅[ ]⋅+=

M− arfx⋅ ρ V U−( )2 A⋅ cos θ( ) 1−( )⋅= or cos θ( ) 1
M arfx⋅

ρ V U−( )2
⋅ A⋅

−=

Since arfx constant= then U arfx t⋅= cos θ( ) 1
M arfx⋅

ρ V arfx t⋅−( )2⋅ A⋅
−=

θ acos 1
M arfx⋅

ρ V arfx t⋅−( )2⋅ A⋅
−

⎡
⎢
⎢
⎣

⎤
⎥
⎥
⎦

=

Using given data

θ acos 1 55 kg⋅ 1.5×
m

s2
⋅

m3

1000 kg⋅
×

1

15
m
s

⋅ 1.5
m

s2
⋅ 5× s⋅−⎛

⎜
⎝

⎞
⎟
⎠

2
×

1

0.025 m2
⋅

×−
⎡
⎢
⎢
⎢
⎣

⎤
⎥
⎥
⎥
⎦

= θ 19.7deg= at t = 5 s
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The solution is only valid for θ up to 180o (when t = 9.14 s).  This graph can be plotted in Excel
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Problem 4.148 [4]

Given: Data on vane/slider

Find: Formula for acceleration, speed, and position; plot

Solution:

The given data is ρ 999
kg

m3
⋅= M 30 kg⋅= A 0.005 m2

⋅= V 20
m
s

⋅= k 7.5
N s⋅
m

⋅=

The equation of motion, from Problem 4.147, is dU
dt

ρ V U−( )2
⋅ A⋅

M
k U⋅
M

−=

The acceleration is thus a
ρ V U−( )2
⋅ A⋅

M
k U⋅
M

−=

The differential equation for U can be solved analytically, but is quite messy.  Instead we use a simple numerical method -
Euler's method

U n 1+( ) U n( )
ρ V U−( )2
⋅ A⋅

M
k U⋅
M

−
⎡
⎢
⎣

⎤
⎥
⎦

Δt⋅+= where Δt is the time step

For the position x dx
dt

U=

so x n 1+( ) x n( ) U Δt⋅+=

The final set of equations is

U n 1+( ) U n( )
ρ V U−( )2
⋅ A⋅

M
k U⋅
M

−
⎡
⎢
⎣

⎤
⎥
⎦

Δt⋅+=

a
ρ V U−( )2
⋅ A⋅

M
k U⋅
M

−=

x n 1+( ) x n( ) U Δt⋅+=

The results are plotted in the corresponding Excel workbook



ρ = 999 kg/m3

k  = 7.5 N.s/m
A  = 0.005 m2

V  = 20 m/s
M  = 30 kg
Δt  = 0.1 s

t  (s) x  (m) U  (m/s) a  (m/s2)

0.0 0.0 0.0 66.6
0.1 0.0 6.7 28.0
0.2 0.7 9.5 16.1
0.3 1.6 11.1 10.5
0.4 2.7 12.1 7.30
0.5 3.9 12.9 5.29
0.6 5.2 13.4 3.95
0.7 6.6 13.8 3.01
0.8 7.9 14.1 2.32
0.9 9.3 14.3 1.82
1.0 10.8 14.5 1.43
1.1 12.2 14.6 1.14
1.2 13.7 14.7 0.907
1.3 15.2 14.8 0.727
1.4 16.6 14.9 0.585
1.5 18.1 15.0 0.472
1.6 19.6 15.0 0.381
1.7 21.1 15.1 0.309
1.8 22.6 15.1 0.250
1.9 24.1 15.1 0.203
2.0 25.7 15.1 0.165
2.1 27.2 15.1 0.134
2.2 28.7 15.2 0.109
2.3 30.2 15.2 0.0889
2.4 31.7 15.2 0.0724
2.5 33.2 15.2 0.0590
2.6 34.8 15.2 0.0481
2.7 36.3 15.2 0.0392
2.8 37.8 15.2 0.0319
2.9 39.3 15.2 0.0260
3.0 40.8 15.2 0.0212
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Problem 4.150                                                                             [3]



Problem 4.151 [3]

Given: Data on system

Find: Jet speed to stop cart after 1 s; plot speed & position; maximum x; time to return to origin

Solution:

The given data is ρ 999
kg

m3
⋅= M 100 kg⋅= A 0.01 m2

⋅= U0 5
m
s

⋅=

The equation of motion, from Problem 4.149, is dU
dt

ρ V U+( )2
⋅ A⋅

M
−=

which leads to d V U+( )

V U+( )2
ρ A⋅
M

dt⋅⎛⎜
⎝

⎞⎟
⎠

−=

U V−
V U0+

1
ρ A⋅ V U0+( )⋅

M
t⋅+

+=Integrating and using the IC U = U0 at t = 0

To find the jet speed V to stop the cart after 1 s, solve the above equation for V, with U = 0 and t = 1 s.  (The
equation becomes a quadratic in V).  Instead we use Excel's Goal Seek in the associated workbook

From Excel V 5
m
s

⋅=

For the position x we need to integrate dx
dt

U= V−
V U0+

1
ρ A⋅ V U0+( )⋅

M
t⋅+

+=

The result is x V− t⋅
M

ρ A⋅
ln 1

ρ A⋅ V U0+( )⋅

M
t⋅+

⎡
⎢
⎣

⎤
⎥
⎦

⋅+=

This equation (or the one for U with U = 0) can be easily used to find the maximum value of x by differentiating, as well as the
time for x to be zero again.  Instead we use Excel's Goal Seek and Solver in the associated workbook

From Excel xmax 1.93 m⋅= t x 0=( ) 2.51 s⋅=

The complete set of equations is

U V−
V U0+

1
ρ A⋅ V U0+( )⋅

M
t⋅+

+= x V− t⋅
M

ρ A⋅
ln 1

ρ A⋅ V U0+( )⋅

M
t⋅+

⎡
⎢
⎣

⎤
⎥
⎦

⋅+=

The plots are presented in the Excel workbook



M  = 100 kg
ρ = 999 kg/m3

A  = 0.01 m2

U o = 5 m/s

t  (s) x  (m) U  (m/s) To find V for U = 0 in 1 s, use Goal Seek
0.0 0.00 5.00
0.2 0.82 3.33 t (s) U (m/s) V (m/s)

0.4 1.36 2.14 1.0 0.00 5.00
0.6 1.70 1.25
0.8 1.88 0.56 To find the maximum x , use Solver
1.0 1.93 0.00
1.2 1.88 -0.45 t (s) x (m)

1.4 1.75 -0.83 1.0 1.93
1.6 1.56 -1.15
1.8 1.30 -1.43 To find the time at which x = 0 use Goal Seek
2.0 0.99 -1.67
2.2 0.63 -1.88 t (s) x (m)

2.4 0.24 -2.06 2.51 0.00
2.6 -0.19 -2.22
2.8 -0.65 -2.37
3.0 -1.14 -2.50



Cart Speed U  vs Time
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Problem *4.153 [3]

 

CS moving 
at speed U 

 

Given: Water jet striking moving disk

Find: Acceleration of disk when at a height of 3 m

Solution:
Basic equations: Bernoulli; Momentum flux in z direction (treated as upwards) for linear accelerating CV

p
ρ

V2

2
+ g z⋅+ constant=

Assumptions:  1) Steady flow   2) Incompressible flow 3) Atmospheric pressure in jet 4) Uniform flow(All in jet)

The Bernoulli equation becomes
V0

2

2
g 0⋅+

V1
2

2
g z z0−( )⋅+= V1 V0

2 2 g⋅ z0 z−( )⋅+=

V1 15
m
s

⋅⎛⎜
⎝

⎞⎟
⎠

2
2 9.81×

m

s2
⋅ 0 3−( )⋅ m⋅+= V1 12.9

m
s

=

The momentum equation becomes

W− M arfz⋅− w1 ρ− V1⋅ A1⋅( )⋅ w2 ρ V2⋅ A2⋅( )⋅+= V1 U−( ) ρ− V1 U−( )⋅ A1⋅⎡⎣ ⎤⎦⋅ 0+=

Hence arfz
ρ V1 U−( )2⋅ A1⋅ W−

M
=

ρ V1 U−( )2⋅ A1⋅

M
g−=

ρ V1 U−( )2⋅ A0⋅
V0
V1
⋅

M
g−= using V1 A1⋅ V0 A0⋅=

arfz 1000
kg

m3
⋅ 12.9 5−( )

m
s

⋅⎡⎢
⎣

⎤⎥
⎦

2
× 0.005× m2

⋅
15

12.9
×

1
30 kg⋅

× 9.81
m

s2
⋅−= arfz 2.28

m

s2
=



Problem *4.154 [4]

CS moving 
at speed U 

 

D = 75 mm 

M = 35 kg

Given: Water jet striking disk

Find: Plot mass versus flow rate to find flow rate for a steady height of 3 m

Solution:
Basic equations: Bernoulli; Momentum flux in z direction (treated as upwards)

p
ρ

V2

2
+ g z⋅+ constant=

Assumptions:  1) Steady flow   2) Incompressible flow 3) Atmospheric pressure in jet 4) Uniform flow(All in jet)

The Bernoulli equation becomes
V0

2

2
g 0⋅+

V1
2

2
g h⋅+= V1 V0

2 2 g⋅ h⋅−=

The momentum equation becomes

M− g⋅ w1 ρ− V1⋅ A1⋅( )⋅ w2 ρ V2⋅ A2⋅( )⋅+= V1 ρ− V1⋅ A1⋅( )⋅ 0+=

Hence M
ρ V1

2
⋅ A1⋅

g
= but from continuity V1 A1⋅ V0 A0⋅=

M
ρ V1⋅ V0⋅ A0⋅

g
=

π

4

ρ V0⋅ D0
2

⋅

g
⋅ V0

2 2 g⋅ h⋅−⋅= and also Q V0 A0⋅=

This equation is difficult to solve for V0 for a given M.  Instead we plot first:

0.02 0.03 0.04 0.05 0.06

20

40

60

80

100

Q (cubic meter/s)

M
 (k

g)

This graph can be parametrically plotted in Excel.  The Goal Seek or Solver feature can be used to find Q when M = 35 kg

Q 0.0469
m3

s
⋅=
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Problem 4.159 [3]

y

x
CS at speed U

Ve
Y

X

Given: Data on rocket sled

Find: Minimum fuel to get to 265 m/s

Solution:
Basic equation: Momentum flux in x direction

Assumptions:  1) No resistance   2) pe = patm 3) Uniform flow 4) Use relative velocities

From continuity dM
dt

mrate= constant= so M M0 mrate t⋅−= (Note: Software cannot render a dot!)

Hence from momentum arfx− M⋅
dU
dt

− M0 mrate t⋅−( )⋅= ue ρe Ve⋅ Ae⋅( )⋅= Ve− mrate⋅=

Separating variables dU
Ve mrate⋅

M0 mrate t⋅−
dt⋅=

Integrating U Ve ln
M0

M0 mrate t⋅−

⎛
⎜
⎝

⎞
⎟
⎠

⋅= Ve− ln 1
mrate t⋅

M0
−

⎛
⎜
⎝

⎞
⎟
⎠

⋅= or t
M0

mrate
1 e

U
Ve

−

−

⎛
⎜
⎝

⎞
⎟
⎠⋅=

The mass of fuel consumed is mf mrate t⋅= M0 1 e

U
Ve

−

−

⎛
⎜
⎝

⎞
⎟
⎠⋅=

Hence mf 900 kg⋅ 1 e

265
2750

−
−

⎛
⎜
⎝

⎞
⎟
⎠×= mf 82.7kg=



Problem 4.160 [3]

y

x
CS at speed U

Ve

Y

X

Given: Data on rocket weapon

Find: Expression for speed of weapon; minimum fraction of mass that must be fuel

Solution:
Basic equation: Momentum flux in x direction

Assumptions:  1) No resistance   2) pe = patm 3) Uniform flow 4) Use relative velocities 5) Constant mass flow rate

From continuity dM
dt

mrate= constant= so M M0 mrate t⋅−= (Note: Software cannot render a dot!)

Hence from momentum arfx− M⋅
dU
dt

− M0 mrate t⋅−( )⋅= ue ρe Ve⋅ Ae⋅( )⋅= Ve− mrate⋅=

Separating variables dU
Ve mrate⋅

M0 mrate t⋅−
dt⋅=

Integrating from U = U0 at t = 0 to U = U at t = t

U U0− Ve− ln M0 mrate t⋅−( ) ln M0( )−( )⋅= Ve− ln 1
mrate t⋅

M0
−

⎛
⎜
⎝

⎞
⎟
⎠

⋅=

U U0 Ve ln 1
mrate t⋅

M0
−

⎛
⎜
⎝

⎞
⎟
⎠

⋅−=

Rearranging MassFractionConsumed
mrate t⋅

M0
= 1 e

U U0−( )
Ve

−

−= 1 e

3500 600−( )
6000

−
−= 0.383=

Hence 38.3% of the mass must be fuel to accomplish the task.  In reality, a much higher percentage would be needed due to drag effects
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Problem 4.165 [3]

 y 

x 
CS at speed V 

Ve 
Y 

X 

Given: Data on rocket

Find: Speed after 8 s; Plot of speed versus time

Solution:
Basic equation: Momentum flux in y direction

Assumptions:  1) No resistance   2) pe = patm 3) Uniform flow 4) Use relative velocities 5) Constant mass flow rate

From continuity dM
dt

mrate= constant= so M M0 mrate t⋅−= (Note: Software cannot render a dot!)

Hence from momentum M− g⋅ arfy M⋅− ue ρe Ve⋅ Ae⋅( )⋅= Ve− mrate⋅=

arfy
dV
dt

=
Ve mrate⋅

M
g−=

Ve mrate⋅

M0 mrate t⋅−
g−= (1)Hence

Separating variables dV
Ve mrate⋅

M0 mrate t⋅−
g−

⎛
⎜
⎝

⎞
⎟
⎠

dt⋅=

Integrating from V = at t = 0 to V = V at t = t

V Ve− ln M0 mrate t⋅−( ) ln M0( )−( )⋅ g t⋅−= Ve− ln 1
mrate t⋅

M0
−

⎛
⎜
⎝

⎞
⎟
⎠

⋅ g t⋅−=

V Ve− ln 1
mrate t⋅

M0
−

⎛
⎜
⎝

⎞
⎟
⎠

⋅ g t⋅−= (2)

At t = 8 s V 3000−
m
s

⋅ ln 1 8
kg
s

⋅
1

300 kg⋅
× 8× s⋅−⎛⎜

⎝
⎞⎟
⎠

⋅ 9.81
m

s2
⋅ 8× s⋅−= V 641

m
s

=

The speed and acceleration as functions of time are plotted below.  These are obtained
from Eqs 2 and 1, respectively, and can be plotted in Excel



0 10 20 30

1000

2000

3000

4000

5000

Time (s)

V
 (m

/s
)

0 10 20 30

100

200

300

400

Time (s)

a 
(m

/s
2)



Problem 4.151
 

Problem 4.166                                                                             [3]



Problem 4.167 [4]

CS (moves 
at speed U) 

Ff 
Ry 

y 

x 

Given: Water jet striking moving vane

Find: Plot of terminal speed versus turning angle; angle to overcome static friction

Solution:
Basic equations: Momentum flux in x and y directions

Assumptions:  1) Incompressible flow 2) Atmospheric pressure in jet 3) Uniform flow 4) Jet relative velocity is constant

Then Ff− M arfx⋅− u1 ρ− V1⋅ A1⋅( )⋅ u2 ρ V2⋅ A2⋅( )⋅+= V U−( )− ρ V U−( )⋅ A⋅[ ]⋅ V U−( ) cos θ( )⋅ ρ V U−( )⋅ A⋅[ ]⋅+=

arfx
ρ V U−( )2 A⋅ 1 cos θ( )−( )⋅ Ff−

M
= (1)

Also Ry M g⋅− v1 ρ− V1⋅ A1⋅( )⋅ v2 ρ⋅ V2⋅ A2⋅+= 0 V U−( ) sin θ( )⋅ ρ V U−( )⋅ A⋅[ ]⋅+=

Ry M g⋅ ρ V U−( )2 A⋅ sin θ( )⋅+=

At terminal speed arfx = 0 and Ff = μkRy.  Hence in Eq 1

0
ρ V Ut−( )2⋅ A⋅ 1 cos θ( )−( )⋅ μk M g⋅ ρ V Ut−( )2⋅ A⋅ sin θ( )⋅+⎡

⎣
⎤
⎦⋅−

M
=

ρ V Ut−( )2⋅ A⋅ 1 cos θ( )− μk sin θ( )⋅−( )⋅

M
μk g⋅−=

or V Ut−
μk M⋅ g⋅

ρ A⋅ 1 cos θ( )− μk sin θ( )⋅−( )⋅
= Ut V

μk M⋅ g⋅

ρ A⋅ 1 cos θ( )− μk sin θ( )⋅−( )⋅
−=

The terminal speed as a function of angle is plotted below; it can be generated in Excel
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For the static case Ff μs Ry⋅= and arfx 0= (the cart is about to move, but hasn't)

Substituting in Eq 1, with U = 0

0
ρ V2
⋅ A⋅ 1 cos θ( )− μs ρ V2

⋅ A⋅ sin θ( )⋅ M g⋅+( )⋅−⎡
⎣⋅

M
=

or cos θ( ) μs sin θ( )⋅+ 1
μs M⋅ g⋅

ρ V2
⋅ A⋅

−=

We need to solve this for θ!  This can be done by hand or by using Excel's Goal Seek or Solver θ 19deg=

Note that we need θ = 19o, but once started we can throttle back to about θ = 12.5o and still keep moving!
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Problem 4.171 [5]

 y 

x 
CS at speed V 

Ve 
Y 

X 

Given: Data on rocket

Find: Maximum speed and height; Plot of speed and distance versus time

Solution:
Basic equation: Momentum flux in y direction

Assumptions:  1) No resistance   2) pe = patm 3) Uniform flow 4) Use relative velocities 5) Constant mass flow rate

From continuity dM
dt

mrate= constant= so M M0 mrate t⋅−= (Note: Software cannot render a dot!)

Hence from momentum M− g⋅ arfy M⋅− ue ρe Ve⋅ Ae⋅( )⋅= Ve− mrate⋅=

Hence arfy
dV
dt

=
Ve mrate⋅

M
g−=

Ve mrate⋅

M0 mrate t⋅−
g−=

Separating variables dV
Ve mrate⋅

M0 mrate t⋅−
g−

⎛
⎜
⎝

⎞
⎟
⎠

dt⋅=

Integrating from V = at t = 0 to V = V at t = t

V Ve− ln M0 mrate t⋅−( ) ln M0( )−( )⋅ g t⋅−= Ve− ln 1
mrate t⋅

M0
−

⎛
⎜
⎝

⎞
⎟
⎠

⋅ g t⋅−=

V Ve− ln 1
mrate t⋅

M0
−

⎛
⎜
⎝

⎞
⎟
⎠

⋅ g t⋅−= for t tb≤ (burn time) (1)

To evaluate at tb = 1.7 s, we need Ve and mrate mrate
mf
tb

= mrate
12.5 gm⋅

1.7 s⋅
= mrate 7.35 10 3−

×
kg
s

=

Also note that the thrust Ft is due to
momentum flux from the rocket

Ft mrate Ve⋅= Ve
Ft

mrate
= Ve

5.75 N⋅

7.35 10 3−
×

kg
s

⋅

kg m⋅

s2 N⋅
×= Ve 782

m
s

=

Hence Vmax Ve− ln 1
mrate tb⋅

M0
−

⎛
⎜
⎝

⎞
⎟
⎠

⋅ g tb⋅−=

Vmax 782−
m
s

⋅ ln 1 7.35 10 3−
×

kg
s

⋅
1

0.0696 kg⋅
× 1.7× s⋅−⎛⎜

⎝
⎞⎟
⎠

⋅ 9.81
m

s2
⋅ 1.7× s⋅−= Vmax 138

m
s

=



To obtain Y(t) we set V = dY/dt in Eq 1, and integrate to find

Y
Ve M0⋅

mrate
1

mrate t⋅

M0
−

⎛
⎜
⎝

⎞
⎟
⎠

ln 1
mrate t⋅

M0
−

⎛
⎜
⎝

⎞
⎟
⎠

1−
⎛
⎜
⎝

⎞
⎟
⎠

⋅ 1+
⎡
⎢
⎣

⎤
⎥
⎦

⋅
1
2

g⋅ t2⋅−= t tb≤ tb 1.7 s⋅= (2)

At t = tb Yb 782
m
s

⋅ 0.0696× kg⋅
s

7.35 10 3−
× kg⋅

× 1
0.00735 1.7⋅

0.0696
−⎛⎜

⎝
⎞⎟
⎠

ln 1
.00735 1.7⋅

.0696
−⎛⎜

⎝
⎞⎟
⎠

1−⎛⎜
⎝

⎞⎟
⎠

1+⎡⎢
⎣

⎤⎥
⎦

⋅

1
2

− 9.81×
m

s2
⋅ 1.7 s⋅( )2

×+

...=

Yb 113m=

After burnout the rocket is in free assent.  Ignoring drag V t( ) Vmax g t tb−( )⋅−= (3)

Y t( ) Yb Vmax t tb−( )⋅+
1
2

g⋅ t tb−( )2⋅−= t tb> (4)

The speed and position as functions of time are plotted below.  These are obtained from Eqs 1 through 4, and can be plotted in Excel

0 5 10 15 20

50−

50

100

150
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/s
)
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1000

1500
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Y
 (m

)

Using Solver, or by differentiating y(t) and setting to zero, or by setting V(t) = 0, we find for the maximum yt 15.8 s= ymax 1085m=
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Problem *4.175 [5]

 

CS moving 
at speed U 

 

Given: Water jet striking moving disk

Find: Motion of disk; steady state height

Solution:
Basic equations: Bernoulli; Momentum flux in z direction (treated as upwards) for linear accelerating CV

p
ρ

V2

2
+ g z⋅+ constant=

Assumptions:  1) Steady flow   2) Incompressible flow 3) Atmospheric pressure 4) Uniform flow 5) velocities wrt CV (All in jet)

The Bernoulli equation becomes
V0

2

2
g 0⋅+

V1
2

2
g h⋅+= V1 V0

2 2 g⋅ h⋅−= (1)

V1 15
m
s

⋅⎛⎜
⎝

⎞⎟
⎠

2
2 9.81×

m

s2
⋅ 0 3−( )⋅ m⋅+= V1 12.9

m
s

=

The momentum equation becomes

M− g⋅ M arfz⋅− w1 ρ− V1⋅ A1⋅( )⋅ w2 ρ V2⋅ A2⋅( )⋅+= V1 U−( ) ρ− V1 U−( )⋅ A1⋅⎡⎣ ⎤⎦⋅ 0+=

With arfz
d2h

dt2
= and U

dh
dt

= we get M− g⋅ M
d2h

dt2
⋅− ρ− V1

dh
dt

−⎛⎜
⎝

⎞⎟
⎠

2
⋅ A1⋅=

Using Eq 1, and from continuity V1 A1⋅ V0 A0⋅=

d2h

dt2
V0

2 2 g⋅ h⋅−
dh
dt

−⎛⎜
⎝

⎞⎟
⎠

2 ρ A0⋅ V0⋅

M V0
2 2 g⋅ h⋅−⋅

⋅ g−= (2)

This must be solved numerically!  One approach is to use Euler's method (see the Excel solution)

At equilibrium h h0=
dh
dt

0=
d2h

dt2
0= so

V0
2 2 g⋅ h0⋅−⎛

⎝
⎞
⎠ ρ⋅ A0⋅ V0⋅ M g⋅− 0= and h0

V0
2

2 g⋅
1

M g⋅

ρ V0
2

⋅ A0⋅

⎛⎜
⎜⎝

⎞⎟
⎟⎠

2
−

⎡
⎢
⎢
⎣

⎤
⎥
⎥
⎦

⋅=

Hence h0
1
2

15
m
s

⋅⎛⎜
⎝

⎞⎟
⎠

2
×

s2

9.81 m⋅
× 1 30 kg⋅ 9.81×

m

s2
⋅

m3

1000 kg⋅
×

s
15 m⋅
⎛⎜
⎝

⎞⎟
⎠

2
×

1

.005 m2
⋅

×
⎡⎢
⎢⎣

⎤⎥
⎥⎦

2

−
⎡
⎢
⎢
⎣

⎤
⎥
⎥
⎦

×= h0 10.7m=



Problem *4.175 (In Excel) [3]

Δt  = 0.05 s
A 0 = 0.005 m2

g  = 9.81 m/s2

V  = 15 m/s
M  = 30 kg
ρ  = 1000 kg/m3

t  (s) h  (m) dh/dt  (m/s) d 2h/dt 2 (m/s2)
0.000 2.000 0.000 24.263
0.050 2.000 1.213 18.468
0.100 2.061 2.137 14.311
0.150 2.167 2.852 11.206
0.200 2.310 3.412 8.811
0.250 2.481 3.853 6.917
0.300 2.673 4.199 5.391
0.350 2.883 4.468 4.140
0.400 3.107 4.675 3.100
0.450 3.340 4.830 2.227
0.500 3.582 4.942 1.486
0.550 3.829 5.016 0.854
0.600 4.080 5.059 0.309
0.650 4.333 5.074 -0.161
0.700 4.587 5.066 -0.570
0.750 4.840 5.038 -0.926
0.800 5.092 4.991 -1.236
0.850 5.341 4.930 -1.507
0.900 5.588 4.854 -1.744
0.950 5.830 4.767 -1.951
1.000 6.069 4.669 -2.130
1.050 6.302 4.563 -2.286
1.100 6.530 4.449 -2.420
1.150 6.753 4.328 -2.535
1.200 6.969 4.201 -2.631
1.250 7.179 4.069 -2.711
1.300 7.383 3.934 -2.776
1.350 7.579 3.795 -2.826
1.400 7.769 3.654 -2.864
1.450 7.952 3.510 -2.889
1.500 8.127 3.366 -2.902
1.550 8.296 3.221 -2.904
1.600 8.457 3.076 -2.896
1.650 8.611 2.931 -2.878
1.700 8.757 2.787 -2.850
1.750 8.896 2.645 -2.814
1.800 9.029 2.504 -2.769
1.850 9.154 2.365 -2.716
1.900 9.272 2.230 -2.655
1.950 9.384 2.097 -2.588
2.000 9.488 1.967 -2.514
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*4.179
*4.179

*4.179
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4.137
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Problem *4.165
 

Problem *4.181                                                                             [2]

Example 4.6
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Problem *4.170 Problem *4.185                                                                             [3]



Problem *4.186 [3]

Given: Data on rotating spray system

Find: Torque required to hold stationary; steady-state speed

Solution:

The given data is ρ 999
kg

m3
⋅= mflow 15

kg
s

⋅= D 0.015 m⋅= ro 0.25 m⋅= ri 0.05 m⋅= δ 0.005 m⋅=

Governing equation: Rotating CV

For no rotation (ω = 0) this equation reduces to a single scalar equation

Tshaft A
→

r
→

Vxyz
→⎯⎯

× ρ⋅ Vxyz
→⎯⎯

⋅
⌠
⎮
⎮
⌡

d= or Tshaft 2 δ⋅
ri

ro
rr V⋅ ρ⋅ V⋅

⌠
⎮
⌡

d⋅= 2 ρ⋅ V2
⋅ δ⋅

ri

ro
rr

⌠
⎮
⌡

d⋅= ρ V2
⋅ δ⋅ ro

2 ri
2

−⎛
⎝

⎞
⎠⋅=

where V is the exit velocity with respect to the CV V

mflow
ρ

2 δ⋅ ro ri−( )⋅
=

Hence Tshaft ρ

mflow
ρ

2 δ⋅ ro ri−( )⋅

⎡
⎢
⎢
⎣

⎤
⎥
⎥
⎦

2

⋅ δ⋅ ro
2 ri

2
−⎛

⎝
⎞
⎠⋅= Tshaft

mflow
2

4 ρ⋅ δ⋅

ro ri+( )
ro ri−( )

⋅=

Tshaft
1
4

15
kg
s

⋅⎛⎜
⎝

⎞⎟
⎠

2
×

m3

999 kg⋅
×

1
0.005 m⋅

×
0.25 0.05+( )
0.25 0.05−( )

×= Tshaft 16.9N m⋅=

For the steady rotation speed the equation becomes Vr
→

2 ω

→
⋅ Vxyz

→⎯⎯
×⎛

⎝
⎞
⎠× ρ⋅

⌠
⎮
⎮
⌡

d− A
→

r
→

Vxyz
→⎯⎯

× ρ⋅ Vxyz
→⎯⎯

⋅
⌠
⎮
⎮
⌡

d=

The volume integral term Vr
→

2 ω

→
⋅ Vxyz

→⎯⎯
×⎛

⎝
⎞
⎠× ρ⋅

⌠
⎮
⎮
⌡

d−  must be evaluated for the CV.  The velocity in the CV

varies with r.  This variation can be found from mass conservation

For an infinitesmal CV of length dr and cross-section A at radial position r, if the flow in is Q, the flow out is Q +
dQ, and the loss through the slot is Vδdr.  Hence mass conservation leads to

Q dQ+( ) V δ⋅ dr⋅+ Q− 0=dQ V− δ⋅ dr⋅= Q r( ) V− δ⋅ r⋅ const+=



At the inlet (r = ri) Q Qi=
mflow

2 ρ⋅
=

Hence Q Qi V δ⋅ ri r−( )⋅+=
mflow

2 ρ⋅

mflow
2 ρ⋅ δ⋅ ro ri−( )⋅

δ⋅ ri r−( )⋅+= Q
mflow

2 ρ⋅
1

ri r−

ro ri−
+

⎛
⎜
⎝

⎞
⎟
⎠

⋅=
mflow

2 ρ⋅

ro r−

ro ri−

⎛
⎜
⎝

⎞
⎟
⎠

⋅=

and along each rotor the water speed is v r( )
Q
A

=
mflow
2 ρ⋅ A⋅

ro r−

ro ri−

⎛
⎜
⎝

⎞
⎟
⎠

⋅=

Hence the term - Vr
→

2 ω

→
⋅ Vxyz

→⎯⎯
×⎛

⎝
⎞
⎠× ρ⋅

⌠
⎮
⎮
⌡

d  becomes

Vr
→

2 ω

→
⋅ Vxyz

→⎯⎯
×⎛

⎝
⎞
⎠× ρ⋅

⌠
⎮
⎮
⌡

d− 4 ρ⋅ A⋅ ω⋅
ri

ro
rr v r( )⋅

⌠
⎮
⌡

d⋅= 4 ρ⋅ ω⋅

ri

ro

rr
mflow

2 ρ⋅
⋅

ro r−

ro ri−

⎛
⎜
⎝

⎞
⎟
⎠

⋅
⌠⎮
⎮
⎮⌡

d⋅=

Vr
→

2 ω

→
⋅ Vxyz

→⎯⎯
×⎛

⎝
⎞
⎠× ρ⋅

⌠
⎮
⎮
⌡

d− 2 mflow⋅ ω⋅

ri

ro

rr
ro r−

ro ri−

⎛
⎜
⎝

⎞
⎟
⎠

⋅
⌠⎮
⎮
⎮⌡

d⋅= mflow ω⋅
ro

3 ri
2 2 ri⋅ 3 ro⋅−( )⋅+

3 ro ri−( )⋅
⋅=or

Recall that A
→

r
→

Vxyz
→⎯⎯

× ρ⋅ Vxyz
→⎯⎯

⋅
⌠
⎮
⎮
⌡

d ρ V2
⋅ δ⋅ ro

2 ri
2

−⎛
⎝

⎞
⎠⋅=

Hence equation Vr
→

2 ω

→
⋅ Vxyz

→⎯⎯
×⎛

⎝
⎞
⎠× ρ⋅

⌠
⎮
⎮
⌡

d− A
→

r
→

Vxyz
→⎯⎯

× ρ⋅ Vxyz
→⎯⎯

⋅
⌠
⎮
⎮
⌡

d= becomes

mflow ω⋅
ro

3 ri
2 2 ri⋅ 3 ro⋅−( )⋅+

3 ro ri−( )⋅
⋅ ρ V2

⋅ δ⋅ ro
2 ri

2
−⎛

⎝
⎞
⎠⋅=

Solving for ω ω

3 ro ri−( )⋅ ρ⋅ V2
⋅ δ⋅ ro

2 ri
2

−⎛
⎝

⎞
⎠⋅

mflow ro
3 ri

2 2 ri⋅ 3 ro⋅−( )⋅+⎡
⎣

⎤
⎦⋅

= ω 461 rpm=



Problem *4.187 [3]

Given: Data on rotating spray system

Find: Torque required to hold stationary; steady-state speed

Solution:

The given data is ρ 999
kg

m3
⋅= mflow 15

kg
s

⋅= D 0.015 m⋅= ro 0.25 m⋅= ri 0.05 m⋅= δ 0.005 m⋅=

Governing equation: Rotating CV

For no rotation (ω = 0) this equation reduces to a single scalar equation

Tshaft A
→

r
→

Vxyz
→⎯⎯

× ρ⋅ Vxyz
→⎯⎯

⋅
⌠
⎮
⎮
⌡

d= or Tshaft 2 δ⋅
ri

ro
rr V⋅ ρ⋅ V⋅

⌠
⎮
⌡

d⋅=

where V is the exit velocity with respect to the CV.  We need to find V(r).  To do this we use mass conservation, and the fact
that the distribution is linear

V r( ) Vmax
r ri−( )
ro ri−( )

⋅= and 2
1
2
⋅ Vmax⋅ ro ri−( )⋅ δ⋅

mflow
ρ

=

so V r( )
mflow

ρ δ⋅

r ri−( )
ro ri−( )2

⋅=

Hence Tshaft 2 ρ⋅ δ⋅
ri

ro
rr V2

⋅
⌠
⎮
⌡

d⋅= 2
mflow

2

ρ δ⋅
⋅

ri

ro

rr
r ri−( )

ro ri−( )2
⎡
⎢
⎢
⎣

⎤
⎥
⎥
⎦

2

⋅

⌠⎮
⎮
⎮
⎮⌡

d⋅= Tshaft
mflow

2 ri 3 ro⋅+( )⋅

6 ρ⋅ δ⋅ ro ri−( )⋅
=

Tshaft
1
6

15
kg
s

⋅⎛⎜
⎝

⎞⎟
⎠

2
×

m3

999 kg⋅
×

1
0.005 m⋅

×
0.05 3 0.25⋅+( )
0.25 0.05−( )

×= Tshaft 30 N m⋅⋅=

For the steady rotation speed the equation becomes

Vr
→

2 ω

→
⋅ Vxyz

→⎯⎯
×⎛

⎝
⎞
⎠× ρ⋅

⌠
⎮
⎮
⌡

d− A
→

r
→

Vxyz
→⎯⎯

× ρ⋅ Vxyz
→⎯⎯

⋅
⌠
⎮
⎮
⌡

d=



The volume integral term Vr
→

2 ω

→
⋅ Vxyz

→⎯⎯
×⎛

⎝
⎞
⎠× ρ⋅

⌠
⎮
⎮
⌡

d−  must be evaluated for the CV.  The velocity in the CV

varies with r.  This variation can be found from mass conservation

For an infinitesmal CV of length dr and cross-section A at radial position r, if the flow in is Q, the flow out is Q +
dQ, and the loss through the slot is Vδdr  Hence mass conservation leads to

Q dQ+( ) V δ⋅ dr⋅+ Q− 0= dQ V− δ⋅ dr⋅= Q r( ) Qi δ−

ri

r

r
mflow

ρ δ⋅

r ri−( )
ro ri−( )2

⋅
⌠
⎮
⎮
⎮
⌡

d⋅= Qi

ri

r

r
mflow

ρ

r ri−( )
ro ri−( )2

⋅
⌠
⎮
⎮
⎮
⌡

d−=

At the inlet (r = ri) Q Qi=
mflow

2 ρ⋅
=

Q r( )
mflow

2 ρ⋅
1

r ri−( )2

ro ri−( )2
−

⎡
⎢
⎢
⎣

⎤
⎥
⎥
⎦

⋅=Hence

and along each rotor the water speed is v r( )
Q
A

=
mflow
2 ρ⋅ A⋅

1
r ri−( )2

ro ri−( )2
−

⎡
⎢
⎢
⎣

⎤
⎥
⎥
⎦

⋅=

Hence the term - Vr
→

2 ω

→
⋅ Vxyz

→⎯⎯
×⎛

⎝
⎞
⎠× ρ⋅

⌠
⎮
⎮
⌡

d

becomes

4 ρ⋅ A⋅ ω⋅
ri

ro
rr v r( )⋅

⌠
⎮
⌡

d
⎛
⎜
⎜
⎝

⎞
⎟
⎟
⎠

⋅ 4 ρ⋅ ω⋅

ri

ro

r
mflow

2 ρ⋅
r⋅ 1

r ri−( )2

ro ri−( )2
−

⎡
⎢
⎢
⎣

⎤
⎥
⎥
⎦

⋅

⌠⎮
⎮
⎮
⎮⌡

d⋅=

or 2 mflow⋅ ω⋅

ri

ro

rr 1
ro r−( )2

ro ri−( )2
−⋅

⎡
⎢
⎢
⎣

⎤
⎥
⎥
⎦

⋅

⌠⎮
⎮
⎮
⎮⌡

d⋅ mflow ω⋅
1
6

ro
2

⋅
1
3

ri⋅ ro⋅+
1
2

ri
2

⋅−⎛⎜
⎝

⎞⎟
⎠

⋅=

Recall that A
→

r
→

Vxyz
→⎯⎯

× ρ⋅ Vxyz
→⎯⎯

⋅
⌠
⎮
⎮
⌡

d
mflow

2 ri 3 ro⋅+( )⋅

6 ro ri−( )⋅ ρ⋅ δ⋅
=

Hence equation Vr
→

2 ω

→
⋅ Vxyz

→⎯⎯
×⎛

⎝
⎞
⎠× ρ⋅

⌠
⎮
⎮
⌡

d− A
→

r
→

Vxyz
→⎯⎯

× ρ⋅ Vxyz
→⎯⎯

⋅
⌠
⎮
⎮
⌡

d=

becomes mflow ω⋅
1
6

ro
2

⋅
1
3

ri⋅ ro⋅+
1
2

ri
2

⋅−⎛⎜
⎝

⎞⎟
⎠

⋅
mflow

2 ri 3 ro⋅+( )⋅

6 ro ri−( )⋅ ρ⋅ δ⋅
=

Solving for ω ω

mflow ri 3 ro⋅+( )⋅

ro
2 2 ri⋅ ro⋅+ 3 ri

2
⋅−⎛

⎝
⎞
⎠ ro ri−( )⋅ ρ⋅ δ⋅

= ω 1434 rpm⋅=



 
Problem *4.188                                                                             [3]



 
Problem *4.189                                                                             [3]



Problem *4.175
 

Problem *4.190                                                                             [3]



Problem *4.176
 

Problem *4.191                                                                             [3]



 
Problem *4.192                                                                             [4]



Problem *4.178
 

Problem *4.193                                                                             [4]



Problem *4.179
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Problem *4.181  cont'd
 

Problem *4.196                                                                             [5]   Part 2/2



 
Problem *4.197                                                                             [5]   Part 1/2
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Problem 4.183 Problem 4.198                                                                             [2]



Problem 4.199 [3]

Given: Compressed air bottle

Find: Rate of temperature change

Solution:
Basic equations: Continuity; First Law of Thermodynamics for a CV

Assumptions:  1) Adiabatic   2) No work 3) Neglect KE 4) Uniform properties at exit 5) Ideal gas

From continuity
t
MCV

∂

∂
mexit+ 0= where mexit is the mass flow rate at the exit (Note: Software does not allow a dot!)

t
MCV

∂

∂
mexit−=

From the 1st law 0
t

Mu
⌠⎮
⎮⌡

d∂

∂
u

p
ρ

+⎛⎜
⎝

⎞⎟
⎠

mexit⋅+= u
t
M∂

∂

⎛
⎜
⎝

⎞
⎟
⎠

⋅ M
t
u∂

∂

⎛
⎜
⎝

⎞
⎟
⎠

⋅+ u
p
ρ

+⎛⎜
⎝

⎞⎟
⎠

mexit⋅+=

Hence u mexit−( )⋅ M cv⋅
dT
dt

⋅+ u mexit⋅+
p
ρ

mexit⋅+ 0=
dT
dt

mexit p⋅

M cv⋅ ρ⋅
−=

But M ρ Vol⋅= so dT
dt

mexit p⋅

Vol cv⋅ ρ
2

⋅
−=

For air ρ
p

R T⋅
= ρ 20 106

×
N

m2
⋅

kg K⋅
286.9 N⋅ m⋅

×
1

60 273+( ) K⋅
×= ρ 209

kg

m3
=

Hence dT
dt

0.05−
kg
s

⋅ 20× 106
×

N

m2
⋅

1

0.5 m3
⋅

×
kg K⋅

717.4 N⋅ m⋅
×

m3

209 kg⋅

⎛
⎜
⎝

⎞
⎟
⎠

2

×= 0.064−
K
s

⋅=



Problem 4.200 [3]

Given: Data on centrifugal water pump

Find: Pump efficiency

Solution:
Basic equations:

(4.56)

Δp SGHg ρ⋅ g⋅ Δh⋅= η

Ws
Pin

=

Available data: D1 0.1 m⋅= D2 0.1 m⋅= Q 0.02
m3

s
⋅= Pin 6.75 kW⋅=

ρ 1000
kg

m3
= SGHg 13.6= h1 0.2− m⋅= p2 240 kPa⋅=

Assumptions:  1) Adiabatic  2) Only shaft work  3) Steady  4) Neglect Δu  5) Δz = 0  6) Incompressible  7) Uniform flow

Then Ws− p1 v1⋅
V1

2

2
+

⎛⎜
⎜⎝

⎞⎟
⎟⎠

mrate−( )⋅ p2 v2⋅
V2

2

2
+

⎛⎜
⎜⎝

⎞⎟
⎟⎠

mrate( )⋅+=

Since mrate ρ Q⋅= and V1 V2= (from continuity)

Ws− ρ Q⋅ p2 v2⋅ p1 v1⋅−( )⋅= Q p2 p1−( )⋅=

p1 ρHg g⋅ h⋅= or p1 SGHg ρ⋅ g⋅ h1⋅= p1 26.7− kPa=

Ws Q p1 p2−( )⋅= Ws 5.33− kW= The negative sign indicates work in

η

Ws
Pin

= η 79.0%=
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Problem 4.186
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Problem 4.188
 

Problem 4.203                                                                             [2]



Problem 4.204 [3]

z

x

 V2

 

 

CV (a)

CV (b)zmax

Given: Data on fire boat hose system

Find: Volume flow rate of nozzle; Maximum water height; Force on boat

Solution:
Basic equation: First Law of Thermodynamics for a CV

Assumptions:  1) Neglect losses 2) No work 3) Neglect KE at 1 4) Uniform properties at exit 5) Incompressible 6) patm at 1 and 2

Hence for CV (a) Ws−
V2

2

2
g z2⋅+

⎛⎜
⎜⎝

⎞⎟
⎟⎠

mexit⋅= mexit ρ V2⋅ A2⋅= where mexit is mass flow rate (Note:
Software cannot render a dot!)

Hence, for V2 (to get the flow rate) we need to solve 1
2

V2
2

⋅ g z2⋅+⎛⎜
⎝

⎞⎟
⎠

ρ⋅ V2⋅ A2⋅ Ws−= which is a cubic for V2!

To solve this we could ignore the gravity term, solve for velocity, and then check that the gravity term is in fact minor.
Alternatively we could manually iterate, or use a calculator or Excel, to solve.  The answer is V2 114

ft
s

=

Hence the flow rate is Q V2 A2⋅= V2
π D2

2
⋅

4
⋅= Q 114

ft
s

⋅
π

4
×

1
12

ft⋅⎛⎜
⎝

⎞⎟
⎠

2
×= Q 0.622

ft3

s
= Q 279gpm=

To find zmax, use the first law again to (to CV (b)) to get Ws− g zmax⋅ mexit⋅=

zmax
Ws

g mexit⋅
−=

Ws
g ρ⋅ Q⋅

−= zmax 15 hp⋅

550 ft⋅ lbf⋅
s

1 hp⋅
×

s2

32.2 ft⋅
×

ft3

1.94 slug⋅
×

s

0.622 ft3⋅
×

slug ft⋅

s2 lbf⋅
×= zmax 212ft=

For the force in the x direction when jet is horizontal we need x momentum

Then Rx u1 ρ− V1⋅ A1⋅( )⋅ u2 ρ V2⋅ A2⋅( )⋅+= 0 V2 ρ⋅ Q⋅+= Rx ρ Q⋅ V2⋅=

Rx 1.94
slug

ft3
⋅ 0.622×

ft3

s
⋅ 114×

ft
s

⋅
lbf s2

⋅
slug ft⋅

×= Rx 138 lbf=
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Problem *4.191 cont'd
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Problem 4.192
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Problem 4.192 cont'd
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Problem 5.2 [2]

Given: Velocity fields

Find: Which are 3D incompressible

Solution:
Basic equation:

x
u∂

∂ y
v∂

∂
+

z
w∂

∂
+ 0=

Assumption:  Incompressible flow

a) u x y, z, t, ( ) y2 2 x⋅ z⋅+= v x y, z, t, ( ) 2− y⋅ z⋅ x2 y⋅ z⋅+= w x y, z, t, ( )
1
2

x2
⋅ z2

⋅ x3 y4
⋅+=

x
u x y, z, t, ( )∂

∂
2 z⋅→

y
v x y, z, t, ( )∂

∂
x2 z⋅ 2 z⋅−→

z
w x y, z, t, ( )∂

∂
x2 z⋅→

Hence
x

u∂

∂ y
v∂

∂
+

z
w∂

∂
+ 0= INCOMPRESSIBLE

b) u x y, z, t, ( ) x y⋅ z⋅ t⋅= v x y, z, t, ( ) x− y⋅ z⋅ t2⋅= w x y, z, t, ( )
z2

2
x t2⋅ y t⋅−( )⋅=

x
u x y, z, t, ( )∂

∂
t y⋅ z⋅→

y
v x y, z, t, ( )∂

∂
t2 x⋅ z⋅−→

z
w x y, z, t, ( )∂

∂
z t2 x⋅ t y⋅−( )⋅→

Hence
x

u∂

∂ y
v∂

∂
+

z
w∂

∂
+ 0= INCOMPRESSIBLE

c) u x y, z, t, ( ) x2 y+ z2
+= v x y, z, t, ( ) x y− z+= w x y, z, t, ( ) 2− x⋅ z⋅ y2

+ z+=

x
u x y, z, t, ( )∂

∂
2 x⋅→

y
v x y, z, t, ( )∂

∂
1−→

z
w x y, z, t, ( )∂

∂
1 2 x⋅−→

Hence
x

u∂

∂ y
v∂

∂
+

z
w∂

∂
+ 0= INCOMPRESSIBLE
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Problem 5.4 [2]

Given: x component of velocity

Find: y component for incompressible flow; Valid for unsteady?; How many y components?

Solution:
Basic equation:

x
ρ u⋅( )∂

∂ y
ρ v⋅( )∂

∂
+

z
ρ w⋅( )∂

∂
+

t
ρ

∂

∂
+ 0=

Assumption:  Incompressible flow; flow in x-y plane

Hence
x

u∂

∂ y
v∂

∂
+ 0= or

y
v∂

∂ x
u∂

∂
−=

x
A x⋅ y B−( )⋅[ ]∂

∂
−= A− y B−( )⋅=

Integrating v x y, ( ) yA y B−( )⋅
⌠⎮
⎮⌡

d−= A−
y2

2
B y⋅−

⎛
⎜
⎝

⎞
⎟
⎠

⋅ f x( )+=

This basic equation is valid for steady and unsteady flow (t is not explicit)

There are an infinite number of solutions, since f(x) can be any function of x.  The simplest is f(x) = 0

v x y, ( ) A−
y2

2
B y⋅−

⎛
⎜
⎝

⎞
⎟
⎠

⋅= v x y, ( ) 6 y⋅
y2

2
−=



Problem 5.5 [2]

Given: x component of velocity

Find: y component for incompressible flow; Valid for unsteady? How many y components?

Solution:
Basic equation:

x
ρ u⋅( )∂

∂ y
ρ v⋅( )∂

∂
+

z
ρ w⋅( )∂

∂
+

t
ρ

∂

∂
+ 0=

Assumption:  Incompressible flow; flow in x-y plane

Hence
x

u∂

∂ y
v∂

∂
+ 0= or

y
v∂

∂ x
u∂

∂
−=

x
x3 3 x⋅ y2

⋅−( )∂

∂
−= 3 x2

⋅ 3 y2
⋅−( )−=

Integrating v x y, ( ) y3 x2
⋅ 3 y2

⋅−( )⌠⎮
⎮⌡

d−= 3− x2
⋅ y⋅ y3

+ f x( )+=

This basic equation is valid for steady and unsteady flow (t is not explicit)

There are an infinite number of solutions, since f(x) can be any function of x.  The simplest is f(x) = 0 v x y, ( ) y3 3 x2
⋅ y⋅−=
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Problem 5.7 [2]

Given: y component of velocity

Find: x component for incompressible flow; Simplest x components?

Solution:
Basic equation:

x
ρ u⋅( )∂

∂ y
ρ v⋅( )∂

∂
+

z
ρ w⋅( )∂

∂
+

t
ρ

∂

∂
+ 0=

Assumption:  Incompressible flow; flow in x-y plane

Hence
x

u∂

∂ y
v∂

∂
+ 0= or

x
u∂

∂ y
v∂

∂
−=

y
A x⋅ y⋅ y2 x2

−( )⋅⎡⎣ ⎤⎦
∂

∂
−= A x⋅ y2 x2

−( )⋅ A x⋅ y⋅ 2⋅ y⋅+⎡⎣ ⎤⎦−=

Integrating u x y, ( ) xA 3 x⋅ y2
⋅ x3

−( )⋅
⌠⎮
⎮⌡

d−=
3
2

− A⋅ x2
⋅ y2

⋅
1
4

A⋅ x4
⋅+ f y( )+=

This basic equation is valid for steady and unsteady flow (t is not explicit)

There are an infinite number of solutions, since f(y) can be any function of y.  The simplest is f(y) = 0

u x y, ( )
1
4

A⋅ x4
⋅

3
2

A⋅ x2
⋅ y2

⋅−= u x y, ( )
1
2

x4
⋅ 3 x2

⋅ y2
−=



Problem 5.8 [2]

Given: x component of velocity

Find: y component for incompressible flow; Valid for unsteady? How many y components?

Solution:
Basic equation:

x
ρ u⋅( )∂

∂ y
ρ v⋅( )∂

∂
+

z
ρ w⋅( )∂

∂
+

t
ρ

∂

∂
+ 0=

Assumption:  Incompressible flow; flow in x-y plane

Hence
x

u∂

∂ y
v∂

∂
+ 0= or

y
v∂

∂ x
u∂

∂
−=

x
A e

x
b

⋅ cos
y
b

⎛⎜
⎝

⎞⎟
⎠

⋅

⎛⎜
⎜
⎝

⎞⎟
⎟
⎠

∂

∂
−=

A
b

e

x
b

⋅ cos
y
b

⎛⎜
⎝

⎞⎟
⎠

⋅

⎛⎜
⎜
⎝

⎞⎟
⎟
⎠

−=

Integrating v x y, ( ) y
A
b

e

x
b

⋅ cos
y
b

⎛⎜
⎝

⎞⎟
⎠

⋅

⌠⎮
⎮
⎮
⎮⌡

d−= A− e

x
b

⋅ sin
y
b

⎛⎜
⎝

⎞⎟
⎠

⋅ f x( )+=

This basic equation is valid for steady and unsteady flow (t is not explicit)

There are an infinite number of solutions, since f(x) can be any function of x.  The simplest is f(x) = 0

v x y, ( ) A− e

x
b

⋅ sin
y
b

⎛⎜
⎝

⎞⎟
⎠

⋅= v x y, ( ) 10− e

x
5

⋅ sin
y
5

⎛⎜
⎝

⎞⎟
⎠

⋅=



Problem 5.9 [3]

Given: y component of velocity

Find: x component for incompressible flow; Simplest x component

Solution:
Basic equation:

x
ρ u⋅( )∂

∂ y
ρ v⋅( )∂

∂
+

z
ρ w⋅( )∂

∂
+

t
ρ

∂

∂
+ 0=

Assumption:  Incompressible flow; flow in x-y plane

Hence
x

u∂

∂ y
v∂

∂
+ 0= or

x
u∂

∂ y
v∂

∂
−=

y

2 x⋅ y⋅

x2 y2
+( )2

⎡⎢
⎢⎣

⎤⎥
⎥⎦

∂

∂
−=

2 x⋅ x2 3 y2
⋅−( )⋅

x2 y2
+( )3

⎡
⎢
⎢
⎣

⎤
⎥
⎥
⎦

−=

Integrating u x y, ( ) x
2 x⋅ x2 3 y2

⋅−( )⋅

x2 y2
+( )3

⎡
⎢
⎢
⎣

⎤
⎥
⎥
⎦

⌠
⎮
⎮
⎮
⎮
⌡

d−=
x2 y2

−

x2 y2
+( )2

f y( )+=
x2 y2

+ 2 y2
⋅−

x2 y2
+( )2

f y( )+=

u x y, ( )
1

x2 y2
+

2 y2
⋅

x2 y2
+( )2

− f y( )+=

The simplest form is u x y, ( )
1

x2 y2
+

2 y2
⋅

x2 y2
+( )2

−=

Note: Instead of this approach we could have verified that u and v satisfy continuity

x

1

x2 y2
+

2 y2
⋅

x2 y2
+( )2

−
⎡
⎢
⎢
⎣

⎤
⎥
⎥
⎦

∂

∂ y

2 x⋅ y⋅

x2 y2
+( )2

⎡⎢
⎢⎣

⎤⎥
⎥⎦

∂

∂
+ 0→ However, this does not verify the

solution is the simplest
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Problem 5.13 [3]

Given: Data on boundary layer

Find: y component of velocity ratio; location of maximum value; plot velocity profiles; evaluate at particular point

Solution:

u x y, ( ) U
3
2

y
δ x( )

⎛⎜
⎝

⎞⎟
⎠

⋅
1
2

y
δ x( )

⎛⎜
⎝

⎞⎟
⎠

3
⋅−

⎡
⎢
⎣

⎤
⎥
⎦

⋅= and δ x( ) c x⋅=

so u x y, ( ) U
3
2

y

c x⋅
⎛
⎜
⎝

⎞
⎟
⎠

⋅
1
2

y

c x⋅
⎛
⎜
⎝

⎞
⎟
⎠

3
⋅−

⎡
⎢
⎣

⎤
⎥
⎦

⋅=

For incompressible flow
x

u∂

∂ y
v∂

∂
+ 0=

Hence v x y, ( ) y
x

u x y, ( )d
d

⌠⎮
⎮
⎮
⌡

d−= and du
dx

3
4

U⋅
y3

c3 x

5
2

⋅

y

c x

3
2

⋅

−
⎛⎜
⎜
⎜
⎝

⎞⎟
⎟
⎟
⎠

⋅=

so v x y, ( ) y
3
4

U⋅
y3

c3
x5

2
⋅

y
c

x3

2
⋅−

⎛⎜
⎜⎝

⎞⎟
⎟⎠

⋅

⌠
⎮
⎮
⎮
⌡

d−=

v x y, ( )
3
8

U⋅
y2

c x

3
2

⋅

y4

2 c3
⋅ x

5
2

⋅

−
⎛⎜
⎜
⎜
⎝

⎞⎟
⎟
⎟
⎠

⋅= v x y, ( )
3
8

U⋅
δ

x
⋅

y
δ

⎛⎜
⎝

⎞⎟
⎠

2 1
2

y
δ

⎛⎜
⎝

⎞⎟
⎠

4
⋅−

⎡
⎢
⎣

⎤
⎥
⎦

⋅=

The maximum occurs at y δ= as seen in the corresponding Excel workbook

vmax
3
8

U⋅
δ

x
⋅ 1

1
2

1⋅−⎛⎜
⎝

⎞⎟
⎠

⋅=

At δ 5 mm⋅=  and x 0.5 m⋅= , the maximum vertical velocity is
vmax

U
0.00188=



To find when v /U  is maximum, use Solver

v /U y /d

0.00188 1.0

v /U y /d

0.000000 0.0
0.000037 0.1
0.000147 0.2
0.000322 0.3
0.000552 0.4
0.00082 0.5
0.00111 0.6
0.00139 0.7
0.00163 0.8
0.00181 0.9
0.00188 1.0

Vertical Velocity Distribution In Boundary layer

0.0

0.2

0.4

0.6

0.8

1.0

0.0000 0.0005 0.0010 0.0015 0.0020

v /U

y
/ δ
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Problem 5.17     [5] 
 
Consider a water stream from a jet of an oscillating lawn sprinkler.  Describe the 
corresponding pathline and streakline. 
 
 
Open-Ended Problem Statement: Consider a water stream from a jet of an oscillating 
lawn sprinkler.  Describe the corresponding pathline and streakline. 
 
Discussion: Refer back to the discussion of streamlines, pathlines, and streaklines in 
Section 2-2. 
 
Because the sprinkler jet oscillates, this is an unsteady flow.  Therefore pathlines and 
streaklines need not coincide. 
 
A pathline is a line tracing the path of an individual fluid particle.  The path of each 
particle is determined by the jet angle and the speed at which the particle leaves the jet. 
 
Once a particle leaves the jet it is subject to gravity and drag forces.  If aerodynamic drag 
were negligible, the path of each particle would be parabolic.  The horizontal speed of the 
particle would remain constant throughout its trajectory.  The vertical speed would be 
slowed by gravity until reaching peak height, and then it would become increasingly 
negative until the particle strikes the ground.  The effect of aerodynamic drag is to reduce 
the particle speed.  With drag the particle will not rise as high vertically nor travel as far 
horizontally.  At each instant the particle trajectory will be lower and closer to the jet 
compared to the no-friction case.  The trajectory after the particle reaches its peak height 
will be steeper than in the no-friction case. 
 
A streamline is a line drawn in the flow that is tangent everywhere to the velocity vectors 
of the fluid motion.  It is difficult to visualize the streamlines for an unsteady flow field 
because they move laterally.  However, the streamline pattern may be drawn at an instant. 
 
A streakline is the locus of the present locations of fluid particles that passed a reference 
point at previous times.  As an example, choose the exit of a jet as the reference point.  
Imagine marking particles that pass the jet exit at a given instant and at uniform time 
intervals later.  The first particle will travel farthest from the jet exit and on the lowest 
trajectory; the last particle will be located right at the jet exit.  The curve joining the 
present positions of the particles will resemble a spiral whose radius increases with 
distance from the jet opening. 
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Problem 5.19 [3]

Given: r component of velocity

Find: θ component for incompressible flow; How many θ components

Solution:
Basic equation: 1

r r
ρ r⋅ Vr⋅( )∂

∂
⋅

1
r θ

ρ V
θ

⋅( )∂

∂
⋅+

z
ρ Vz⋅( )∂

∂
+

t
ρ

∂

∂
+ 0=

Assumption:  Incompressible flow; flow in r-θ plane

Hence 1
r r

r Vr⋅( )∂

∂
⋅

1
r θ

V
θ( )∂

∂
⋅+ 0= or

θ

V
θ

∂

∂ r
r Vr⋅( )∂

∂
−=

r

Λ cos θ( )⋅
r

−⎛⎜
⎝

⎞⎟
⎠

∂

∂
−=

Λ cos θ( )⋅

r2
−=

Integrating V
θ

r θ, ( ) θ
Λ cos θ( )⋅

r2

⌠
⎮
⎮
⎮
⌡

d−=
Λ sin θ( )⋅

r2
− f r( )+=

V
θ

r θ, ( )
Λ sin θ( )⋅

r2
− f r( )+=

There are an infinite number of solutions as f(r) can be any function of r

The simplest form is V
θ

r θ, ( )
Λ sin θ( )⋅

r2
−=
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(3.19)
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5.2c.



Problem 5.22 [3]

Given: The velocity field

Find: Whether or not it is a incompressible flow; sketch various streamlines

Solution:

Vr
A
r

= V
θ

B
r

=

For incompressible flow 1
r r

r Vr⋅( )d
d
⋅

1
r θ

V
θ

d
d
⋅+ 0=

1
r r

r Vr⋅( )d
d
⋅ 0=

1
r θ

V
θ

d
d
⋅ 0=

Hence 1
r r

r Vr⋅( )d
d
⋅

1
r θ

V
θ

d
d
⋅+ 0= Flow is incompressible

For the streamlines dr
Vr

r dθ⋅
V

θ

=
r dr⋅
A

r2 dθ⋅
B

=

r
1
r

⌠
⎮
⎮
⌡

d θ
A
B

⌠
⎮
⎮
⌡

d= Integrating ln r( )
A
B

θ⋅ const+=so

4− 2− 0 2 4

4−

2−

2

4

(a)
(b)
(c)

Equation of streamlines is r C e

A
B

θ⋅
⋅=

(a) For A = B = 1 m2/s, passing through point (1m, π/2)

r e
θ

π

2
−

=

(b) For A =  1 m2/s, B = 0 m2/s, passing through point (1m, π/2)

θ
π

2
=

(c) For A =  0 m2/s, B = 1 m2/s, passing through point (1m, π/2)

r 1 m⋅=
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Problem *5.24 [3]

Given: Velocity field

Find: Stream function ψ

Solution:
Basic equation:

x
ρ u⋅( )∂

∂ y
ρ v⋅( )∂

∂
+

z
ρ w⋅( )∂

∂
+

t
ρ

∂

∂
+ 0= u

y
ψ

∂

∂
= v

x
ψ

∂

∂
−=

Assumption:  Incompressible flow; flow in x-y plane

Hence
x

u∂

∂ y
v∂

∂
+ 0= or

x
y 2x 2+( )⋅[ ]∂

∂ y
x x 1+( )⋅ y2

−⎡⎣ ⎤⎦
∂

∂
+ 0→

Hence u y 2 x⋅ 1+( )⋅=
y

ψ
∂

∂
= ψ x y, ( ) yy 2 x⋅ 1+( )⋅

⌠⎮
⎮⌡

d= x y2
⋅

y2

2
+ f x( )+=

and v x x 1+( )⋅ y2
−=

x
ψ

∂

∂
−= ψ x y, ( ) xx x 1+( )⋅ y2

−⎡⎣ ⎤⎦
⌠⎮
⎮⌡

d−=
x3

3
−

x2

2
− x y2

⋅+ g y( )+=

Comparing these f x( )
x3

3
−

x2

2
−= and g y( )

y2

2
=

The stream function is ψ x y, ( )
y2

2
x y2

⋅+
x2

2
−

x3

3
−=

Checking u x y, ( )
y

y2

2
x y2

⋅+
x2

2
−

x3

3
−

⎛
⎜
⎝

⎞
⎟
⎠

∂

∂
= u x y, ( ) y 2 x⋅ y⋅+=→

v x y, ( )
x

y2

2
x y2

⋅+
x2

2
−

x3

3
−

⎛
⎜
⎝

⎞
⎟
⎠

∂

∂
−= v x y, ( ) x2 x+ y2

−=→
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Problem *5.26 [3]

Given: The velocity field

Find: Whether or not it is a incompressible flow; sketch stream function

Solution:

Vr
A
r

= V
θ

B
r

=

For incompressible flow 1
r r

r Vr⋅( )d
d
⋅

1
r θ

V
θ

d
d
⋅+ 0=

1
r r

r Vr⋅( )d
d
⋅ 0=

1
r θ

V
θ

d
d
⋅ 0=

1
r r

r Vr⋅( )d
d
⋅

1
r θ

V
θ

d
d
⋅+ 0= Flow is incompressibleHence

For the stream function
θ

ψ
∂

∂
r Vr⋅= A= ψ A θ⋅ f r( )+=

Integrating
r

ψ
∂

∂
V

θ
−=

B
r

−= ψ B− ln r( )⋅ g θ( )+=

Comparing, stream function is ψ A θ⋅ B ln r( )⋅−=

ψ



Problem *5.27 [3]

Given: Velocity field

Find: Whether it's 1D, 2D or 3D flow; Incompressible or not; Stream function ψ

Solution:
Basic equation:

x
ρ u⋅( )∂

∂ y
ρ v⋅( )∂

∂
+

z
ρ w⋅( )∂

∂
+

t
ρ

∂

∂
+ 0= v

z
ψ

∂

∂
= w

y
ψ

∂

∂
−=

Assumption:  Incompressible flow; flow in y-z plane (u = 0)

Velocity field is a function of y and z only, so is 2D

Check for incompressible
y

v∂

∂ z
w∂

∂
+ 0=

y
y y2 3 z2

⋅−( )⋅⎡⎣ ⎤⎦
∂

∂
3 y2
⋅ 3 z2

⋅−→
z

z z2 3 y2
⋅−( )⋅⎡⎣ ⎤⎦

∂

∂
3 z2
⋅ 3 y2

⋅−→

Hence
y

v∂

∂ z
w∂

∂
+ 0= Flow is INCOMPRESSIBLE

Hence v y y2 3 z2
⋅−( )⋅=

z
ψ

∂

∂
= ψ y z, ( ) zy y2 3 z2

⋅−( )⋅
⌠⎮
⎮⌡

d= y3 z⋅ y z3
⋅− f y( )+=

and w z z2 3 y2
⋅−( )⋅=

y
ψ

∂

∂
−= ψ y z, ( ) yz z2 3 y2

⋅−( )⋅⎡⎣ ⎤⎦
⌠⎮
⎮⌡

d−= y− z3
⋅ z y3

⋅+ g z( )+=

Comparing these f y( ) 0= and g z( ) 0=

The stream function is ψ y z, ( ) z y3
⋅ z3 y⋅−=

Checking u y z, ( )
z

z y3
⋅ z3 y⋅−( )∂

∂
= u y z, ( ) y3 3 y⋅ z2

⋅−=→

w y z, ( )
y

z y3
⋅ z3 y⋅−( )∂

∂
−= w y z, ( ) z3 3 y2

⋅ z⋅−=→
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Problem *5.29 [3]

U 

x 
y 

h 

Given: Linear velocity profile

Find: Stream function ψ; y coordinate for half of flow

Solution:
Basic equations: u

y
ψ

∂

∂
= v

x
ψ

∂

∂
−= and we have u U

y
h

⎛⎜
⎝

⎞⎟
⎠

⋅= v 0=

Assumption:  Incompressible flow; flow in x-y plane

Check for incompressible
x

u∂

∂ y
v∂

∂
+ 0=

x
U

y
h

⋅⎛⎜
⎝

⎞⎟
⎠

∂

∂
0→

y
0∂

∂
0→

Hence
x

u∂

∂ y
v∂

∂
+ 0= Flow is INCOMPRESSIBLE

Hence u U
y
h

⋅=
y

ψ
∂

∂
= ψ x y, ( ) yU

y
h

⋅
⌠
⎮
⎮
⌡

d=
U y2

⋅
2 h⋅

f x( )+=

and v 0=
x

ψ
∂

∂
−= ψ x y, ( ) x0

⌠⎮
⎮⌡

d−= g y( )=

Comparing these f x( ) 0= and g y( )
U y2

⋅
2 h⋅

=

The stream function is ψ x y, ( )
U y2

⋅
2 h⋅

=

For the flow (0 < y < h) Q
0

h
yu

⌠
⎮
⌡

d=
U
h 0

h
yy

⌠
⎮
⌡

d⋅=
U h⋅

2
=

For half the flow rate Q
2 0

hhalf
yu

⌠
⎮
⌡

d=
U
h 0

hhalf
yy

⌠
⎮
⌡

d⋅=
U hhalf

2
⋅

2 h⋅
=

1
2

U h⋅
2

⎛⎜
⎝

⎞⎟
⎠

⋅=
U h⋅

4
=

Hence hhalf
2 1

2
h2

⋅= hhalf
1

2
h⋅=

1.5 m⋅

2 s⋅
= 1.06

m
s

⋅=
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Problem *5.33 [3]

Given: Data on boundary layer

Find: Stream function; locate streamlines at 1/4 and 1/2 of total flow rate

Solution:

u x y, ( ) U
3
2

y
δ

⎛⎜
⎝

⎞⎟
⎠

⋅
1
2

y
δ

⎛⎜
⎝

⎞⎟
⎠

3
⋅−

⎡
⎢
⎣

⎤
⎥
⎦

⋅= and δ x( ) c x⋅=

For the stream function u
y

ψ
∂

∂
= U

3
2

y
δ

⎛⎜
⎝

⎞⎟
⎠

⋅
1
2

y
δ

⎛⎜
⎝

⎞⎟
⎠

3
⋅−

⎡
⎢
⎣

⎤
⎥
⎦

⋅=

Hence ψ yU
3
2

y
δ

⎛⎜
⎝

⎞⎟
⎠

⋅
1
2

y
δ

⎛⎜
⎝

⎞⎟
⎠

3
⋅−

⎡
⎢
⎣

⎤
⎥
⎦

⋅

⌠
⎮
⎮
⎮
⌡

d= ψ U
3
4

y2

δ
⋅

1
8

y4

δ
3

⋅−
⎛⎜
⎜⎝

⎞⎟
⎟⎠

⋅ f x( )+=

Let ψ = 0 = 0 along y = 0, so f(x) = 0, so ψ U δ⋅
3
4

y
δ

⎛⎜
⎝

⎞⎟
⎠

2
⋅

1
8

y
δ

⎛⎜
⎝

⎞⎟
⎠

4
⋅−

⎡
⎢
⎣

⎤
⎥
⎦

⋅=

The total flow rate in the boundary layer is

Q
W

ψ δ( ) ψ 0( )−= U δ⋅
3
4

1
8

−⎛⎜
⎝

⎞⎟
⎠

⋅=
5
8

U⋅ δ⋅=

At 1/4 of the total ψ ψ0− U δ⋅
3
4

y
δ

⎛⎜
⎝

⎞⎟
⎠

2
⋅

1
8

y
δ

⎛⎜
⎝

⎞⎟
⎠

4
⋅−

⎡
⎢
⎣

⎤
⎥
⎦

⋅=
1
4

5
8

U⋅ δ⋅⎛⎜
⎝

⎞⎟
⎠

⋅=

24
y
δ

⎛⎜
⎝

⎞⎟
⎠

2
⋅ 4

y
δ

⎛⎜
⎝

⎞⎟
⎠

4
⋅− 5= or 4 X2

⋅ 24 X⋅− 5+ 0= where X2 y
δ

=

The solution to the quadratic is X
24 242 4 4⋅ 5⋅−−

2 4⋅
= X 0.216= Note that the other root is 24 242 4 4⋅ 5⋅−+

2 4⋅
5.784=

Hence y
δ

X= 0.465=

At 1/2 of the total flow ψ ψ0− U δ⋅
3
4

y
δ

⎛⎜
⎝

⎞⎟
⎠

2
⋅

1
8

y
δ

⎛⎜
⎝

⎞⎟
⎠

4
⋅−

⎡
⎢
⎣

⎤
⎥
⎦

⋅=
1
2

5
8

U⋅ δ⋅⎛⎜
⎝

⎞⎟
⎠

⋅=

12
y
δ

⎛⎜
⎝

⎞⎟
⎠

2
⋅ 2

y
δ

⎛⎜
⎝

⎞⎟
⎠

4
⋅− 5= or 2 X2

⋅ 12 X⋅− 5+ 0= where X2 y
δ

=

The solution to the quadratic is X
12 122 4 2⋅ 5.⋅−−

2 2⋅
= X 0.450= Note that the other root is 12 122 4 2⋅ 5⋅−+

2 2⋅
5.55=

Hence y
δ

X= 0.671=
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Problem 5.36 [3]

Given: Velocity field

Find: Whether flow is incompressible; Acceleration of particle at (2,1)

Solution:
Basic equations

x
u∂

∂ y
v∂

∂
+ 0=

u x y, ( ) A x4 6 x2
⋅ y2

⋅− y4
+( )⋅= v x y, ( ) A 4 x⋅ y3

⋅ 4 x3
⋅ y⋅−( )⋅=

For incompressible flow
x

u∂

∂ y
v∂

∂
+ 0=

Checking
x

A x4 6 x2
⋅ y2

⋅− y4
+( )⋅⎡⎣ ⎤⎦

∂

∂
A 4 x3

⋅ 12 x⋅ y2
⋅−( )⋅→

y
A 4 x⋅ y3

⋅ 4 x3
⋅ y⋅−( )⋅⎡⎣ ⎤⎦

∂

∂
A 4 x3

⋅ 12 x⋅ y2
⋅−( )⋅−→

Hence

x
u∂

∂ y
v∂

∂
+ 0=

The acceleration is given by

For this flow ax u
x

u∂

∂
⋅ v

y
u∂

∂
⋅+=

ax A x4 6 x2
⋅ y2

⋅− y4
+( )⋅

x
A x4 6 x2

⋅ y2
⋅− y4

+( )⋅⎡⎣ ⎤⎦
∂

∂
⋅ A 4 x⋅ y3

⋅ 4 x3
⋅ y⋅−( )⋅

y
A x4 6 x2

⋅ y2
⋅− y4

+( )⋅⎡⎣ ⎤⎦
∂

∂
⋅+=

ax 4 A2
⋅ x⋅ x2 y2

+( )3
⋅=

ay u
x

v∂

∂
⋅ v

y
v∂

∂
⋅+=

ay A x4 6 x2
⋅ y2

⋅− y4
+( )⋅

x
A 4 x⋅ y3

⋅ 4 x3
⋅ y⋅−( )⋅⎡⎣ ⎤⎦

∂

∂
⋅ A 4 x⋅ y3

⋅ 4 x3
⋅ y⋅−( )⋅

y
A 4 x⋅ y3

⋅ 4 x3
⋅ y⋅−( )⋅⎡⎣ ⎤⎦

∂

∂
⋅+=

ay 4 A2
⋅ y⋅ x2 y2

+( )3
⋅=

Hence at (2,1) ax 4
1
4

1

m3 s⋅
⋅⎛

⎜
⎝

⎞
⎟
⎠

2
× 2× m⋅ 2 m⋅( )2 1 m⋅( )2

+⎡⎣ ⎤⎦
3

×= ax 62.5
m

s2
=

ay 4
1
4

1

m3 s⋅
⋅⎛

⎜
⎝

⎞
⎟
⎠

2
× 1× m⋅ 2 m⋅( )2 1 m⋅( )2

+⎡⎣ ⎤⎦
3

×= ay 31.3
m

s2
= a ax

2 ay
2

+= a 69.9
m

s2
=



 
Problem 5.37                                                                             [2]



 
Problem 5.38                                                                             [2]



 
Problem 5.39                                                                             [2]



Problem 5.40 [3]

Given: x component of velocity field

Find: Simplest y component for incompressible flow; Acceleration of particle at (1,3)

Solution:
Basic equations u

y
ψ

∂

∂
= v

x
ψ

∂

∂
−=

We are given u x y, ( ) A x5 10 x3
⋅ y2

⋅− 5 x⋅ y4
⋅+( )⋅=

Hence for incompressible flow ψ x y, ( ) yu
⌠⎮
⎮⌡

d= yA x5 10 x3
⋅ y2

⋅− 5 x⋅ y4
⋅+( )⋅

⌠⎮
⎮⌡

d= A x5 y⋅
10
3

x3
⋅ y3

⋅− x y5
⋅+⎛⎜

⎝
⎞⎟
⎠

⋅ f x( )+=

v x y, ( )
x

ψ xy( )∂

∂
−=

x
A x5 y⋅

10
3

x3
⋅ y3

⋅− x y5
⋅+⎛⎜

⎝
⎞⎟
⎠

⋅ f x( )+⎡⎢
⎣

⎤⎥
⎦

∂

∂
−= A− 5 x4

⋅ y⋅ 10 x2
⋅ y3

⋅− y5
+( )⋅ F x( )+=

Hence v x y, ( ) A− 5 x4
⋅ y⋅ 10 x2

⋅ y3
⋅− y5

+( )⋅ F x( )+= where F(x) is an arbitrary function of x

The simplest is v x y, ( ) A− 5 x4
⋅ y⋅ 10 x2

⋅ y3
⋅− y5

+( )⋅=

The acceleration is given by

For this flow ax u
x

u∂

∂
⋅ v

y
u∂

∂
⋅+=

ax A x5 10 x3
⋅ y2

⋅− 5 x⋅ y4
⋅+( )⋅

x
A x5 10 x3

⋅ y2
⋅− 5 x⋅ y4

⋅+( )⋅⎡⎣ ⎤⎦
∂

∂
⋅ A 5 x4

⋅ y⋅ 10 x2
⋅ y3

⋅− y5
+( )⋅

y
A x5 10 x3

⋅ y2
⋅− 5 x⋅ y4

⋅+( )⋅⎡⎣ ⎤⎦
∂

∂
⋅−=

ax 5 A2
⋅ x⋅ x2 y2

+( )4
⋅=

ay u
x

v∂

∂
⋅ v

y
v∂

∂
⋅+=

ay A x5 10 x3
⋅ y2

⋅− 5 x⋅ y4
⋅+( )⋅

x
A− 5 x4

⋅ y⋅ 10 x2
⋅ y3

⋅− y5
+( )⋅⎡⎣ ⎤⎦

∂

∂
⋅ A 5 x4

⋅ y⋅ 10 x2
⋅ y3

⋅− y5
+( )⋅

y
A− 5 x4

⋅ y⋅ 10 x2
⋅ y3

⋅− y5
+( )⋅⎡⎣ ⎤⎦

∂

∂
⋅−=

ay 5 A2
⋅ y⋅ x2 y2

+( )4
⋅=

Hence at (1,3) ax 5
1
2

1

m4 s⋅
⋅⎛

⎜
⎝

⎞
⎟
⎠

2
× 1× m⋅ 1 m⋅( )2 3 m⋅( )2

+⎡⎣ ⎤⎦
4

×= ax 1.25 104
×

m

s2
=

ay 5
1
2

1

m4 s⋅
⋅⎛

⎜
⎝

⎞
⎟
⎠

2
× 3× m⋅ 1 m⋅( )2 3 m⋅( )2

+⎡⎣ ⎤⎦
4

×= ay 3.75 104
×

m

s2
= a ax

2 ay
2

+= a 3.95 104
×

m

s2
=



Problem 5.41 [2]

Given: Velocity field

Find: Whether flow is incompressible; expression for acceleration; evaluate acceleration along axes and along y = x

Solution:

The given data is A 10
m2

s
⋅= u x y, ( )

A x⋅

x2 y2
+

= v x y, ( )
A y⋅

x2 y2
+

=

For incompressible flow
x

u∂

∂ y
v∂

∂
+ 0=

Hence, checking
x

u∂

∂ y
v∂

∂
+ A−

x2 y2
−( )

x2 y2
+( )2

⋅ A
x2 y2

−( )
x2 y2

+( )2
⋅+= 0= Incompressible flow

The acceleration is given by

For the present steady, 2D flow ax u
du
dx

⋅ v
du
dy

⋅+=
A x⋅

x2 y2
+

A x2 y2
−( )⋅

x2 y2
+( )2

−
⎡
⎢
⎢
⎣

⎤
⎥
⎥
⎦

⋅
A y⋅

x2 y2
+

2 A⋅ x⋅ y⋅

x2 y2
+( )2

−⎡⎢
⎢⎣

⎤⎥
⎥⎦

⋅+= ax
A2 x⋅

x2 y2
+( )2

−=

ay u
dv
dx

⋅ v
dv
dy

⋅+=
A x⋅

x2 y2
+

2 A⋅ x⋅ y⋅

x2 y2
+( )2

−⎡⎢
⎢⎣

⎤⎥
⎥⎦

⋅
A y⋅

x2 y2
+

A x2 y2
−( )⋅

x2 y2
+( )2

⎡
⎢
⎢
⎣

⎤
⎥
⎥
⎦

⋅+= ay
A2 y⋅

x2 y2
+( )2

−=

Along the x axis ax
A2

x3
−=

100

x3
−= ay 0=

Along the y axis ax 0= ay
A2

y3
−=

100

y3
−=

Along the line x = y ax
A2 x⋅

r4
−=

100 x⋅

r4
−= ay

A2 y⋅

r4
−=

100 y⋅

r4
−=

where r x2 y2
+=

For this last case the acceleration along the line x = y is

a ax
2 ay

2
+=

A2

r4
− x2 y2

+⋅=
A2

r3
−=

100

r3
−= a

A2

r3
−=

100

r3
−=

In each case the acceleration vector points towards the origin, proportional to 1/distance3, so the flow field is a radial decelerating flow 
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Problem 5.44 [4]

 

Given: Flow in a pipe with variable diameter

Find: Expression for particle acceleration; Plot of velocity and acceleration along centerline

Solution:
Assumptions: 1) Incompressible flow 2) Flow profile remains unchanged so centerline velocity can represent average velocity

Basic equations Q V A⋅=

For the flow rate Q V A⋅= V
π D2
⋅
4

⋅=

But D Di
Do Di−( )

L
x⋅+= where Di and Do are the inlet and exit diameters, and x is distance

along the pipe of length L: D(0) = Di, D(L) = Do.

Hence Vi
π Di

2
⋅

4
⋅ V

π Di
Do Di−( )

L
x⋅+

⎡
⎢
⎣

⎤
⎥
⎦

2

⋅

4
⋅=

V Vi
Di

2

Di
Do Di−( )

L
x⋅+

⎡
⎢
⎣

⎤
⎥
⎦

2
⋅=

Vi

1

Do
Di

1−
⎛
⎜
⎝

⎞
⎟
⎠

L
x⋅+

⎡⎢
⎢
⎢
⎣

⎤⎥
⎥
⎥
⎦

2
= V x( )

Vi

1

Do
Di

1−
⎛
⎜
⎝

⎞
⎟
⎠

L
x⋅+

⎡⎢
⎢
⎢
⎣

⎤⎥
⎥
⎥
⎦

2
=

Some representative values are V 0 m⋅( ) 1
m
s

= V
L
2

⎛⎜
⎝

⎞⎟
⎠

2.56
m
s

= V L( ) 16
m
s

=

The acceleration is given by

ax
Vi

1

Do
Di

1−
⎛
⎜
⎝

⎞
⎟
⎠

L
x⋅+

⎡⎢
⎢
⎢
⎣

⎤⎥
⎥
⎥
⎦

2 x

Vi

1

Do
Di

1−
⎛
⎜
⎝

⎞
⎟
⎠

L
x⋅+

⎡⎢
⎢
⎢
⎣

⎤⎥
⎥
⎥
⎦

2

⎡⎢
⎢
⎢
⎢
⎢
⎣

⎤⎥
⎥
⎥
⎥
⎥
⎦

∂

∂
⋅=

2 Vi
2

⋅
Do
Di

1−
⎛
⎜
⎝

⎞
⎟
⎠

⋅

L

x
Do
Di

1−
⎛
⎜
⎝

⎞
⎟
⎠

⋅

L
1+

⎡⎢
⎢
⎢
⎣

⎤⎥
⎥
⎥
⎦

5

⋅

−=For this flow ax V
x

V∂

∂
⋅=



ax x( )

2 Vi
2

⋅
Do
Di

1−
⎛
⎜
⎝

⎞
⎟
⎠

⋅

L

x
Do
Di

1−
⎛
⎜
⎝

⎞
⎟
⎠

⋅

L
1+

⎡⎢
⎢
⎢
⎣

⎤⎥
⎥
⎥
⎦

5

⋅

=

Some representative values are ax 0 m⋅( ) 0.75−
m

s2
= ax

L
2

⎛⎜
⎝

⎞⎟
⎠

7.864−
m

s2
= ax L( ) 768−

m

s2
=

The following plots can be done in Excel

0 0.5 1 1.5 2
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15

20

x (m)

V
 (m

/s
)

0 0.5 1 1.5 2

800−
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400−
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a 
(m
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Problem 5.47 [4]

Given: Data on pollution concentration

Find: Plot of concentration; Plot of concentration over time for moving vehicle; Location and value of maximum rate change

Solution:

tz
w

y
v

x
u

Dt
D

∂
∂

+
∂
∂

+
∂
∂

+
∂
∂

=Basic equation: Material derivative

For this case we have u U= v 0= w 0= c x( ) A e

x
a

−
e

x
2 a⋅

−
−

⎛
⎜
⎝

⎞
⎟
⎠⋅=

Hence Dc
Dt

u
dc
dx
⋅= U

x
A e

x
a

−
e

x
2 a⋅

−
−

⎛
⎜
⎝

⎞
⎟
⎠⋅

⎡
⎢
⎣

⎤
⎥
⎦

d
d
⋅=

U A⋅
a

1
2

e

x
2 a⋅

−
⋅ e

x
a

−
−

⎛⎜
⎜
⎝

⎞⎟
⎟
⎠

⋅=

We need to convert this to a function of time.  For this motion u = U so x U t⋅=

Dc
Dt

U A⋅
a

1
2

e

U t⋅
2 a⋅

−
⋅ e

U t⋅
a

−
−

⎛⎜
⎜
⎝

⎞⎟
⎟
⎠

⋅=

The following plots can be done in Excel

0 2 4 6 8 10

3− 10 6−×

2− 10 6−×

1− 10 6−×

x (m)

c 
(p

pm
)



0 0.1 0.2 0.3 0.4 0.5

1− 10 4−×

5− 10 5−×

5 10 5−×

t (s)

D
c/

D
t (

pp
m

/s
)

The maximum rate of change is when

d
dx

Dc
Dt

⎛⎜
⎝

⎞⎟
⎠

d
dx

U A⋅
a

1
2

e

x
2 a⋅

−
⋅ e

x
a

−
−

⎛⎜
⎜
⎝

⎞⎟
⎟
⎠

⋅

⎡⎢
⎢
⎣

⎤⎥
⎥
⎦

⋅= 0=

U A⋅

a2
e

x
a

− 1
4

e

x
2 a⋅

−
⋅−

⎛⎜
⎜
⎝

⎞⎟
⎟
⎠

⋅ 0= or e

x
2 a⋅

− 1
4

=

xmax 2 a⋅ ln 4( )⋅= 2 1× m⋅ ln
1
4
⎛⎜
⎝
⎞⎟
⎠

×= xmax 2.77 m⋅=

tmax
xmax

U
= 2.77 m⋅

s
20 m⋅

×= tmax 0.138 s⋅=

Dcmax
Dt

U A⋅
a

1
2

e

xmax
2 a⋅

−
⋅ e

xmax
a

−
−

⎛
⎜
⎜
⎝

⎞
⎟
⎟
⎠

⋅=

Dcmax
Dt

20
m
s

⋅ 10 5−
× ppm⋅

1
1 m⋅

×
1
2

e

2.77
2 1⋅

−
× e

2.77
1

−
−

⎛⎜
⎜
⎝

⎞⎟
⎟
⎠

×=
Dcmax

Dt
1.25 10 5−

×
ppm

s
⋅=

Note that there is another maximum rate, at t = 0 (x = 0)

Dcmax
Dt

20
m
s

⋅ 10 5−
× ppm⋅

1
1 m⋅

×
1
2

1−⎛⎜
⎝

⎞⎟
⎠

⋅=
Dcmax

Dt
1− 10 4−
×

ppm
s

⋅=
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Problem 5.57 [4]

x 
y 

U 

Given: Flow in boundary layer

Find: Expression for particle acceleration ax; Plot acceleration and find maximum at x = 0.8 m

Solution:
δ c x⋅=Basic equations u

U
2

y
δ

⎛⎜
⎝

⎞⎟
⎠

⋅
y
δ

⎛⎜
⎝

⎞⎟
⎠

2
−=

v
U

δ

x
1
2

y
δ

⎛⎜
⎝

⎞⎟
⎠

⋅
1
3

y
δ

⎛⎜
⎝

⎞⎟
⎠

3
⋅−

⎡
⎢
⎣

⎤
⎥
⎦

⋅=

We need to evaluate ax u
x

u∂

∂
⋅ v

y
u∂

∂
⋅+=

First, substitute λ x y, ( )
y

δ x( )
= so u

U
2 λ⋅ λ

2
−=

v
U

δ

x
1
2

λ⋅
1
3

λ
3

⋅−⎛⎜
⎝

⎞⎟
⎠

⋅=

Then
x

u∂

∂

du
dλ

dλ

dx
⋅= U 2 2 λ⋅−( )⋅

y

δ
2

−⎛
⎜
⎝

⎞
⎟
⎠

⋅
dδ

dx
⋅=

dδ

dx
1
2

c⋅ x

1
2

−
⋅=

x
u∂

∂
U 2 2 λ⋅−( )⋅

λ

δ
−⎛⎜

⎝
⎞⎟
⎠

⋅
1
2

⋅ c⋅ x

1
2

−
⋅= U 2 2 λ⋅−( )⋅

λ

c x

1
2

⋅

−⎛
⎜
⎜
⎝

⎞
⎟
⎟
⎠

⋅
1
2

⋅ c⋅ x

1
2

−
⋅=

x
u∂

∂
U− 2 2 λ⋅−( )⋅

λ

2 x⋅
⋅=

U λ λ
2

−( )⋅
x

−=

y
u∂

∂
U

2
δ

2
y

δ
2

⋅−⎛
⎜
⎝

⎞
⎟
⎠

⋅=
2 U⋅

δ

y
δ

y
δ

⎛⎜
⎝

⎞⎟
⎠

2
−

⎡
⎢
⎣

⎤
⎥
⎦

⋅=
2 U⋅ λ λ

2
−( )⋅

y
=

Hence ax u
x

u∂

∂
⋅ v

y
u∂

∂
⋅+= U 2 λ⋅ λ

2
−( )⋅

U λ λ
2

−( )⋅
x

⎡
⎢
⎣

⎤
⎥
⎦

U
δ

x
⋅

1
2

λ⋅
1
3

λ
3

⋅−⎛⎜
⎝

⎞⎟
⎠

⋅
2 U⋅ λ λ

2
−( )⋅

y

⎡
⎢
⎣

⎤
⎥
⎦

⋅+=

Collecting terms ax
U2

x
λ

2
−

4
3

λ
3

⋅+
1
3

λ
4

⋅−⎛⎜
⎝

⎞⎟
⎠

⋅=
U2

x
y
δ

⎛⎜
⎝

⎞⎟
⎠

2
−

4
3

y
δ

⎛⎜
⎝

⎞⎟
⎠

3
⋅+

1
3

y
δ

⎛⎜
⎝

⎞⎟
⎠

4
⋅−

⎡
⎢
⎣

⎤
⎥
⎦

⋅=

To find the maximum
dax
dλ

0=
U2

x
2− λ⋅ 4 λ

2
⋅+

4
3

λ
3

⋅−⎛⎜
⎝

⎞⎟
⎠

⋅= or 1− 2 λ⋅+
2
3

λ
2

⋅− 0=

The solution of this quadratic (λ < 1) is λ
3 3−

2
= λ 0.634=

y
δ

0.634=



At λ = 0.634 ax
U2

x
0.6342

−
4
3

0.6343
⋅+

1
3

0.6344
⋅−⎛⎜

⎝
⎞⎟
⎠

⋅= 0.116−
U2

x
⋅=

ax 0.116− 6
m
s

⋅⎛⎜
⎝

⎞⎟
⎠

2
×

1
0.8 m⋅

×= ax 5.22−
m

s2
=

The following plot can be done in Excel
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A 0 = 0.5 m2

L  = 5 m
b  = 0.1 m-1

λ = 0.2 s-1

U 0 = 5 m/s

t = 0 5 10 60
x  (m) a x  (m/s2) a x  (m/s2) a x  (m/s2) a x  (m/s2)

0.0 1.00 1.367 2.004 2.50
0.5 1.05 1.552 2.32 2.92
1.0 1.11 1.78 2.71 3.43
1.5 1.18 2.06 3.20 4.07
2.0 1.25 2.41 3.82 4.88
2.5 1.33 2.86 4.61 5.93
3.0 1.43 3.44 5.64 7.29
3.5 1.54 4.20 7.01 9.10
4.0 1.67 5.24 8.88 11.57
4.5 1.82 6.67 11.48 15.03
5.0 2.00 8.73 15.22 20.00

For large time (> 30 s) the flow is essentially steady-state

Acceleration in a Nozzle
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22
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Problem 5.64                                                                             [4]

5.53

5.53

5.53
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Problem 5.66 [2]

Given: Velocity components

Find: Which flow fields are irrotational

Solution:

For a 2D field, the irrotionality the test is
x

v∂

∂ y
u∂

∂
− 0=

(a)
x

v∂

∂ y
u∂

∂
− 3 x2

⋅ y2 2 y⋅−( )+⎡⎣ ⎤⎦ 2 y⋅ x2
−( )−= 4 x2

⋅ y2
+ 4 y⋅−= 0≠ Not irrotional

(b)
x

v∂

∂ y
u∂

∂
− 2 y⋅ 2 x⋅+( ) 2 y⋅ 2 x⋅−( )−= 4 x⋅= 0≠ Not irrotional

(c)
x

v∂

∂ y
u∂

∂
− t2( ) 2( )−= t2 2−= 0≠ Not irrotional

(d)
x

v∂

∂ y
u∂

∂
− 2− y⋅ t⋅( ) 2 x⋅ t⋅( )−= 2− x⋅ t⋅ 2 y⋅ t⋅−= 0≠ Not irrotional



Problem 5.67 [3]

Given: Flow field

Find: If the flow is incompressible and irrotational

Solution:

Basic equations: Incompressibility
x

u∂

∂ y
v∂

∂
+ 0= Irrotationality

x
v∂

∂ y
u∂

∂
− 0=

a) u x y, ( ) x7 21 x5
⋅ y2

⋅− 35 x3
⋅ y4

⋅+ 7 x⋅ y6
⋅−= v x y, ( ) 7 x6

⋅ y⋅ 35 x4
⋅ y3

⋅− 21 x2
⋅ y5

⋅+ y7
−=

x
u x y, ( )∂

∂
7 x6

⋅ 105 x4
⋅ y2

⋅− 105 x2
⋅ y4

⋅+ 7 y6
⋅−→

y
v x y, ( )∂

∂
7 x6
⋅ 105 x4

⋅ y2
⋅− 105 x2

⋅ y4
⋅+ 7 y6

⋅−→

Hence
x

u∂

∂ y
v∂

∂
+ 0≠ COMPRESSIBLE

b) u x y, ( ) x7 21 x5
⋅ y2

⋅− 35 x3
⋅ y4

⋅+ 7 x⋅ y6
⋅−= v x y, ( ) 7 x6

⋅ y⋅ 35 x4
⋅ y3

⋅− 21 x2
⋅ y5

⋅+ y7
−=

x
v x y, ( )∂

∂
42 x5

⋅ y⋅ 140 x3
⋅ y3

⋅− 42 x⋅ y5
⋅+→

y
u x y, ( )∂

∂
− 42 x5

⋅ y⋅ 140 x3
⋅ y3

⋅− 42 x⋅ y5
⋅+→

Hence
x

v∂

∂ y
u∂

∂
− 0≠ ROTATIONAL

Note that if we define v x y, ( ) 7 x6
⋅ y⋅ 35 x4

⋅ y3
⋅− 21 x2

⋅ y5
⋅+ y7

−( )−= then the flow is incompressible and irrotational!
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Problem *5.71 [3]

Given: Stream function

Find: If the flow is incompressible and irrotational

Solution:

Basic equations: Incompressibility
x

u∂

∂ y
v∂

∂
+ 0= Irrotationality

x
v∂

∂ y
u∂

∂
− 0=

Note: The fact that ψ exists means the flow is incompressible, but we check anyway

ψ x y, ( ) x6 15 x4
⋅ y2

⋅− 15 x2
⋅ y4

⋅+ y6
−=

Hence u x y, ( )
y

ψ x y, ( )∂

∂
60 x2

⋅ y3
⋅ 30 x4

⋅ y⋅− 6 y5
⋅−→= v x y, ( )

x
ψ x y, ( )∂

∂
− 60 x3

⋅ y2
⋅ 6 x5

⋅− 30 x⋅ y4
⋅−→=

For incompressibility

x
u x y, ( )∂

∂
120 x⋅ y3

⋅ 120 x3
⋅ y⋅−→

y
v x y, ( )∂

∂
120 x3

⋅ y⋅ 120 x⋅ y3
⋅−→

Hence
x

u∂

∂ y
v∂

∂
+ 0= INCOMPRESSIBLE

For irrotationality

x
v x y, ( )∂

∂
180 x2

⋅ y2
⋅ 30 x4

⋅− 30 y4
⋅−→

y
u x y, ( )∂

∂
− 30 x4

⋅ 180 x2
⋅ y2

⋅− 30 y4
⋅+→

Hence
x

v∂

∂ y
u∂

∂
− 0= IRROTATIONAL



Problem *5.72 [3]

Given: Stream function

Find: If the flow is incompressible and irrotational

Solution:

Basic equations: Incompressibility
x

u∂

∂ y
v∂

∂
+ 0= Irrotationality

x
v∂

∂ y
u∂

∂
− 0=

Note: The fact that ψ exists means the flow is incompressible, but we check anyway

ψ x y, ( ) 3 x5
⋅ y⋅ 10 x3

⋅ y3
⋅− 3 x⋅ y5

⋅+=

Hence u x y, ( )
y

ψ x y, ( )∂

∂
3 x5
⋅ 30 x3

⋅ y2
⋅− 15 x⋅ y4

⋅+→= v x y, ( )
x

ψ x y, ( )∂

∂
− 30 x2

⋅ y3
⋅ 15 x4

⋅ y⋅− 3 y5
⋅−→=

For incompressibility

x
u x y, ( )∂

∂
15 x4

⋅ 90 x2
⋅ y2

⋅− 15 y4
⋅+→

y
v x y, ( )∂

∂
90 x2

⋅ y2
⋅ 15 x4

⋅− 15 y4
⋅−→

Hence
x

u∂

∂ y
v∂

∂
+ 0= INCOMPRESSIBLE

For irrotationality

x
v x y, ( )∂

∂
60 x⋅ y3

⋅ 60 x3
⋅ y⋅−→

y
u x y, ( )∂

∂
− 60 x3

⋅ y⋅ 60 x⋅ y3
⋅−→

Hence
x

v∂

∂ y
u∂

∂
− 0= IRROTATIONAL



Problem *5.73 [2]

Given: The stream function

Find: Whether or not the flow is incompressible; whether or not the flow is irrotational

Solution:

The stream function is ψ
A

2 π⋅ x2 y2
+( )−=

The velocity components are u
dψ

dy
=

A y⋅

π x2 y2
+( )2

= v
dψ

dx
−=

A x⋅

π x2 y2
+( )2

−=

Because a stream function exists, the flow is: Incompressible

Alternatively, we can check with
x

u∂

∂ y
v∂

∂
+ 0=

x
u∂

∂ y
v∂

∂
+

4 A⋅ x⋅ y⋅

π x2 y2
+( )3

−
4 A⋅ x⋅ y⋅

π x2 y2
+( )3

+= 0= Incompressible

For a 2D field, the irrotionality the test is
x

v∂

∂ y
u∂

∂
− 0=

x
v∂

∂ y
u∂

∂
−

A x2 3 y2
⋅−( )⋅

π x2 y2
+( )3⋅

A 3 x2
⋅ y2

−( )⋅

π x2 y2
+( )3⋅

−=
2 A⋅

π x2 y2
+( )2⋅

−= 0≠ Not irrotational
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Problem 5.87

N  = 4
Δx  = 0.333

Eq. 5.34 (LHS) (RHS)
1.000 0.000 0.000 0.000 1
-1.000 1.333 0.000 0.000 0
0.000 -1.000 1.333 0.000 0
0.000 0.000 -1.000 1.333 0

x Inverse Matrix Result Exact Error
0.000 1.000 0.000 0.000 0.000 1.000 1.000 0.000
0.333 0.750 0.750 0.000 0.000 0.750 0.717 0.000
0.667 0.563 0.563 0.750 0.000 0.563 0.513 0.001
1.000 0.422 0.422 0.563 0.750 0.422 0.368 0.001

0.040

N  = 8
Δx  = 0.143

Eq. 5.34 (LHS) (RHS)
1.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1
-1.000 1.143 0.000 0.000 0.000 0.000 0.000 0.000 0
0.000 -1.000 1.143 0.000 0.000 0.000 0.000 0.000 0
0.000 0.000 -1.000 1.143 0.000 0.000 0.000 0.000 0
0.000 0.000 0.000 -1.000 1.143 0.000 0.000 0.000 0
0.000 0.000 0.000 0.000 -1.000 1.143 0.000 0.000 0
0.000 0.000 0.000 0.000 0.000 -1.000 1.143 0.000 0
0.000 0.000 0.000 0.000 0.000 0.000 -1.000 1.143 0

Inverse Matrix
x 1 2 3 4 5 6 7 8 Result Exact Error

0.000 1.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000 1.000 0.000
0.143 0.875 0.875 0.000 0.000 0.000 0.000 0.000 0.000 0.875 0.867 0.000
0.286 0.766 0.766 0.875 0.000 0.000 0.000 0.000 0.000 0.766 0.751 0.000
0.429 0.670 0.670 0.766 0.875 0.000 0.000 0.000 0.000 0.670 0.651 0.000
0.571 0.586 0.586 0.670 0.766 0.875 0.000 0.000 0.000 0.586 0.565 0.000
0.714 0.513 0.513 0.586 0.670 0.766 0.875 0.000 0.000 0.513 0.490 0.000
0.857 0.449 0.449 0.513 0.586 0.670 0.766 0.875 0.000 0.449 0.424 0.000
1.000 0.393 0.393 0.449 0.513 0.586 0.670 0.766 0.875 0.393 0.368 0.000

0.019



N  = 16
Δx  = 0.067 Eq. 5.34 (LHS)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 (RHS)
1 1.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1
2 -1.000 1.067 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0
3 0.000 -1.000 1.067 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0
4 0.000 0.000 -1.000 1.067 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0
5 0.000 0.000 0.000 -1.000 1.067 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0
6 0.000 0.000 0.000 0.000 -1.000 1.067 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0
7 0.000 0.000 0.000 0.000 0.000 -1.000 1.067 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0
8 0.000 0.000 0.000 0.000 0.000 0.000 -1.000 1.067 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0
9 0.000 0.000 0.000 0.000 0.000 0.000 0.000 -1.000 1.067 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0

10 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 -1.000 1.067 0.000 0.000 0.000 0.000 0.000 0.000 0
11 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 -1.000 1.067 0.000 0.000 0.000 0.000 0.000 0
12 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 -1.000 1.067 0.000 0.000 0.000 0.000 0
13 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 -1.000 1.067 0.000 0.000 0.000 0
14 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 -1.000 1.067 0.000 0.000 0
15 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 -1.000 1.067 0.000 0
16 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 -1.000 1.067 0

x Inverse Matrix Result Exact Error
0.000 1.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000 1.000 0.000
0.067 0.938 0.938 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.938 0.936 0.000
0.133 0.879 0.879 0.938 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.879 0.875 0.000
0.200 0.824 0.824 0.879 0.938 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.824 0.819 0.000
0.267 0.772 0.772 0.824 0.879 0.938 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.772 0.766 0.000
0.333 0.724 0.724 0.772 0.824 0.879 0.938 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.724 0.717 0.000
0.400 0.679 0.679 0.724 0.772 0.824 0.879 0.938 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.679 0.670 0.000
0.467 0.637 0.637 0.679 0.724 0.772 0.824 0.879 0.938 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.637 0.627 0.000
0.533 0.597 0.597 0.637 0.679 0.724 0.772 0.824 0.879 0.938 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.597 0.587 0.000
0.600 0.559 0.559 0.597 0.637 0.679 0.724 0.772 0.824 0.879 0.938 0.000 0.000 0.000 0.000 0.000 0.000 0.559 0.549 0.000
0.667 0.524 0.524 0.559 0.597 0.637 0.679 0.724 0.772 0.824 0.879 0.938 0.000 0.000 0.000 0.000 0.000 0.524 0.513 0.000
0.733 0.492 0.492 0.524 0.559 0.597 0.637 0.679 0.724 0.772 0.824 0.879 0.938 0.000 0.000 0.000 0.000 0.492 0.480 0.000
0.800 0.461 0.461 0.492 0.524 0.559 0.597 0.637 0.679 0.724 0.772 0.824 0.879 0.938 0.000 0.000 0.000 0.461 0.449 0.000
0.867 0.432 0.432 0.461 0.492 0.524 0.559 0.597 0.637 0.679 0.724 0.772 0.824 0.879 0.938 0.000 0.000 0.432 0.420 0.000
0.933 0.405 0.405 0.432 0.461 0.492 0.524 0.559 0.597 0.637 0.679 0.724 0.772 0.824 0.879 0.938 0.000 0.405 0.393 0.000
1.000 0.380 0.380 0.405 0.432 0.461 0.492 0.524 0.559 0.597 0.637 0.679 0.724 0.772 0.824 0.879 0.938 0.380 0.368 0.000

0.009

N Δx Error
4 0.333 0.040
8 0.143 0.019
16 0.067 0.009
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Problem 5.88

New Eq. 5.34:

N  = 4
Δx  = 0.333

Eq. 5.34 (LHS) (RHS)
1.000 0.000 0.000 0.000 0
-1.000 1.333 0.000 0.000 0.21813
0.000 -1.000 1.333 0.000 0.41225
0.000 0.000 -1.000 1.333 0.56098

x Inverse Matrix Result Exact Error
0.000 1.000 0.000 0.000 0.000 0.000 0.000 0.000
0.333 0.750 0.750 0.000 0.000 0.164 0.099 0.001
0.667 0.563 0.563 0.750 0.000 0.432 0.346 0.002
1.000 0.422 0.422 0.563 0.750 0.745 0.669 0.001

0.066

N  = 8
Δx  = 0.143

Eq. 5.34 (LHS) (RHS)
1.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0
-1.000 1.143 0.000 0.000 0.000 0.000 0.000 0.000 0.04068
0.000 -1.000 1.143 0.000 0.000 0.000 0.000 0.000 0.08053
0.000 0.000 -1.000 1.143 0.000 0.000 0.000 0.000 0.11873
0.000 0.000 0.000 -1.000 1.143 0.000 0.000 0.000 0.15452
0.000 0.000 0.000 0.000 -1.000 1.143 0.000 0.000 0.18717
0.000 0.000 0.000 0.000 0.000 -1.000 1.143 0.000 0.21599
0.000 0.000 0.000 0.000 0.000 0.000 -1.000 1.143 0.24042

Inverse Matrix
x 1 2 3 4 5 6 7 8 Result Exact Error

0.000 1.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.143 0.875 0.875 0.000 0.000 0.000 0.000 0.000 0.000 0.036 0.019 0.000
0.286 0.766 0.766 0.875 0.000 0.000 0.000 0.000 0.000 0.102 0.074 0.000
0.429 0.670 0.670 0.766 0.875 0.000 0.000 0.000 0.000 0.193 0.157 0.000
0.571 0.586 0.586 0.670 0.766 0.875 0.000 0.000 0.000 0.304 0.264 0.000
0.714 0.513 0.513 0.586 0.670 0.766 0.875 0.000 0.000 0.430 0.389 0.000
0.857 0.449 0.449 0.513 0.586 0.670 0.766 0.875 0.000 0.565 0.526 0.000
1.000 0.393 0.393 0.449 0.513 0.586 0.670 0.766 0.875 0.705 0.669 0.000

0.032

 ( ) ( )iii xxuxu sin211 ⋅Δ=Δ++− −



N  = 16
Δx  = 0.067 Eq. 5.34 (LHS)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 (RHS)
1 1.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0
2 -1.000 1.067 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.00888
3 0.000 -1.000 1.067 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.01773
4 0.000 0.000 -1.000 1.067 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.02649
5 0.000 0.000 0.000 -1.000 1.067 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.03514
6 0.000 0.000 0.000 0.000 -1.000 1.067 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.04363
7 0.000 0.000 0.000 0.000 0.000 -1.000 1.067 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.05192
8 0.000 0.000 0.000 0.000 0.000 0.000 -1.000 1.067 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.05999
9 0.000 0.000 0.000 0.000 0.000 0.000 0.000 -1.000 1.067 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.06779

10 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 -1.000 1.067 0.000 0.000 0.000 0.000 0.000 0.000 0.07529
11 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 -1.000 1.067 0.000 0.000 0.000 0.000 0.000 0.08245
12 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 -1.000 1.067 0.000 0.000 0.000 0.000 0.08925
13 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 -1.000 1.067 0.000 0.000 0.000 0.09565
14 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 -1.000 1.067 0.000 0.000 0.10162
15 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 -1.000 1.067 0.000 0.10715
16 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 -1.000 1.067 0.1122

x Inverse Matrix Result Exact Error
0.000 1.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.067 0.938 0.938 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.008 0.004 0.000
0.133 0.879 0.879 0.938 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.024 0.017 0.000
0.200 0.824 0.824 0.879 0.938 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.048 0.037 0.000
0.267 0.772 0.772 0.824 0.879 0.938 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.078 0.065 0.000
0.333 0.724 0.724 0.772 0.824 0.879 0.938 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.114 0.099 0.000
0.400 0.679 0.679 0.724 0.772 0.824 0.879 0.938 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.155 0.139 0.000
0.467 0.637 0.637 0.679 0.724 0.772 0.824 0.879 0.938 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.202 0.184 0.000
0.533 0.597 0.597 0.637 0.679 0.724 0.772 0.824 0.879 0.938 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.253 0.234 0.000
0.600 0.559 0.559 0.597 0.637 0.679 0.724 0.772 0.824 0.879 0.938 0.000 0.000 0.000 0.000 0.000 0.000 0.308 0.288 0.000
0.667 0.524 0.524 0.559 0.597 0.637 0.679 0.724 0.772 0.824 0.879 0.938 0.000 0.000 0.000 0.000 0.000 0.366 0.346 0.000
0.733 0.492 0.492 0.524 0.559 0.597 0.637 0.679 0.724 0.772 0.824 0.879 0.938 0.000 0.000 0.000 0.000 0.426 0.407 0.000
0.800 0.461 0.461 0.492 0.524 0.559 0.597 0.637 0.679 0.724 0.772 0.824 0.879 0.938 0.000 0.000 0.000 0.489 0.470 0.000
0.867 0.432 0.432 0.461 0.492 0.524 0.559 0.597 0.637 0.679 0.724 0.772 0.824 0.879 0.938 0.000 0.000 0.554 0.535 0.000
0.933 0.405 0.405 0.432 0.461 0.492 0.524 0.559 0.597 0.637 0.679 0.724 0.772 0.824 0.879 0.938 0.000 0.620 0.602 0.000
1.000 0.380 0.380 0.405 0.432 0.461 0.492 0.524 0.559 0.597 0.637 0.679 0.724 0.772 0.824 0.879 0.938 0.686 0.669 0.000

0.016

N Δx Error
4 0.333 0.066
8 0.143 0.032
16 0.067 0.016
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Problem 5.89

New Eq. 5.34:

N  = 4
Δx  = 0.333

Eq. 5.34 (LHS) (RHS)
1.000 0.000 0.000 0.000 2
-1.000 1.333 0.000 0.000 0.03704
0.000 -1.000 1.333 0.000 0.14815
0.000 0.000 -1.000 1.333 0.33333

x Inverse Matrix Result Exact Error
0.000 1.000 0.000 0.000 0.000 2.000 2.000 0.000
0.333 0.750 0.750 0.000 0.000 1.528 1.444 0.002
0.667 0.563 0.563 0.750 0.000 1.257 1.111 0.005
1.000 0.422 0.422 0.563 0.750 1.193 1.000 0.009

0.128

N  = 8
Δx  = 0.143

Eq. 5.34 (LHS) (RHS)
1.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 2
-1.000 1.143 0.000 0.000 0.000 0.000 0.000 0.000 0.00292
0.000 -1.000 1.143 0.000 0.000 0.000 0.000 0.000 0.01166
0.000 0.000 -1.000 1.143 0.000 0.000 0.000 0.000 0.02624
0.000 0.000 0.000 -1.000 1.143 0.000 0.000 0.000 0.04665
0.000 0.000 0.000 0.000 -1.000 1.143 0.000 0.000 0.07289
0.000 0.000 0.000 0.000 0.000 -1.000 1.143 0.000 0.10496
0.000 0.000 0.000 0.000 0.000 0.000 -1.000 1.143 0.14286

Inverse Matrix
x 1 2 3 4 5 6 7 8 Result Exact Error

0.000 1.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 2.000 2.000 0.000
0.143 0.875 0.875 0.000 0.000 0.000 0.000 0.000 0.000 1.753 1.735 0.000
0.286 0.766 0.766 0.875 0.000 0.000 0.000 0.000 0.000 1.544 1.510 0.000
0.429 0.670 0.670 0.766 0.875 0.000 0.000 0.000 0.000 1.374 1.327 0.000
0.571 0.586 0.586 0.670 0.766 0.875 0.000 0.000 0.000 1.243 1.184 0.000
0.714 0.513 0.513 0.586 0.670 0.766 0.875 0.000 0.000 1.151 1.082 0.001
0.857 0.449 0.449 0.513 0.586 0.670 0.766 0.875 0.000 1.099 1.020 0.001
1.000 0.393 0.393 0.449 0.513 0.586 0.670 0.766 0.875 1.087 1.000 0.001

0.057

( ) 2
1 1 iii xxuxu ⋅Δ=Δ++− −



N  = 16
Δx  = 0.067 Eq. 5.34 (LHS)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 (RHS)
1 1.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 2
2 -1.000 1.067 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.0003
3 0.000 -1.000 1.067 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.00119
4 0.000 0.000 -1.000 1.067 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.00267
5 0.000 0.000 0.000 -1.000 1.067 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.00474
6 0.000 0.000 0.000 0.000 -1.000 1.067 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.00741
7 0.000 0.000 0.000 0.000 0.000 -1.000 1.067 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.01067
8 0.000 0.000 0.000 0.000 0.000 0.000 -1.000 1.067 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.01452
9 0.000 0.000 0.000 0.000 0.000 0.000 0.000 -1.000 1.067 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.01896

10 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 -1.000 1.067 0.000 0.000 0.000 0.000 0.000 0.000 0.024
11 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 -1.000 1.067 0.000 0.000 0.000 0.000 0.000 0.02963
12 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 -1.000 1.067 0.000 0.000 0.000 0.000 0.03585
13 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 -1.000 1.067 0.000 0.000 0.000 0.04267
14 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 -1.000 1.067 0.000 0.000 0.05007
15 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 -1.000 1.067 0.000 0.05807
16 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 -1.000 1.067 0.06667

x Inverse Matrix Result Exact Error
0.000 1.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 2.000 2.000 0.000
0.067 0.938 0.938 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.875 1.871 0.000
0.133 0.879 0.879 0.938 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.759 1.751 0.000
0.200 0.824 0.824 0.879 0.938 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.652 1.640 0.000
0.267 0.772 0.772 0.824 0.879 0.938 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.553 1.538 0.000
0.333 0.724 0.724 0.772 0.824 0.879 0.938 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.463 1.444 0.000
0.400 0.679 0.679 0.724 0.772 0.824 0.879 0.938 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.381 1.360 0.000
0.467 0.637 0.637 0.679 0.724 0.772 0.824 0.879 0.938 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.309 1.284 0.000
0.533 0.597 0.597 0.637 0.679 0.724 0.772 0.824 0.879 0.938 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.245 1.218 0.000
0.600 0.559 0.559 0.597 0.637 0.679 0.724 0.772 0.824 0.879 0.938 0.000 0.000 0.000 0.000 0.000 0.000 1.189 1.160 0.000
0.667 0.524 0.524 0.559 0.597 0.637 0.679 0.724 0.772 0.824 0.879 0.938 0.000 0.000 0.000 0.000 0.000 1.143 1.111 0.000
0.733 0.492 0.492 0.524 0.559 0.597 0.637 0.679 0.724 0.772 0.824 0.879 0.938 0.000 0.000 0.000 0.000 1.105 1.071 0.000
0.800 0.461 0.461 0.492 0.524 0.559 0.597 0.637 0.679 0.724 0.772 0.824 0.879 0.938 0.000 0.000 0.000 1.076 1.040 0.000
0.867 0.432 0.432 0.461 0.492 0.524 0.559 0.597 0.637 0.679 0.724 0.772 0.824 0.879 0.938 0.000 0.000 1.056 1.018 0.000
0.933 0.405 0.405 0.432 0.461 0.492 0.524 0.559 0.597 0.637 0.679 0.724 0.772 0.824 0.879 0.938 0.000 1.044 1.004 0.000
1.000 0.380 0.380 0.405 0.432 0.461 0.492 0.524 0.559 0.597 0.637 0.679 0.724 0.772 0.824 0.879 0.938 1.041 1.000 0.000

0.027

N Δx Error
4 0.333 0.128
8 0.143 0.057
16 0.067 0.027
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Problem 5.90

Equation of motion:

New Eq. 5.34:

N  = 4 A  = 0.01 m2

Δt = 0.333 δ = 0.25 mm
Eq. 5.34 (LHS) (RHS) μ = 0.4 N.s/m2

1.000 0.000 0.000 0.000 1 M  = 5 kg
-1.000 2.067 0.000 0.000 0 k  = 3.2 s-1

0.000 -1.000 2.067 0.000 0
0.000 0.000 -1.000 2.067 0

t Inverse Matrix Result Exact Error
0.000 1.000 0.000 0.000 0.000 1.000 1.000 0.000
0.333 0.484 0.484 0.000 0.000 0.484 0.344 0.005
0.667 0.234 0.234 0.484 0.000 0.234 0.118 0.003
1.000 0.113 0.113 0.234 0.484 0.113 0.041 0.001

0.098

N  = 8
Δt = 0.143

Eq. 5.34 (LHS) (RHS)
1.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1
-1.000 1.457 0.000 0.000 0.000 0.000 0.000 0.000 0
0.000 -1.000 1.457 0.000 0.000 0.000 0.000 0.000 0
0.000 0.000 -1.000 1.457 0.000 0.000 0.000 0.000 0
0.000 0.000 0.000 -1.000 1.457 0.000 0.000 0.000 0
0.000 0.000 0.000 0.000 -1.000 1.457 0.000 0.000 0
0.000 0.000 0.000 0.000 0.000 -1.000 1.457 0.000 0
0.000 0.000 0.000 0.000 0.000 0.000 -1.000 1.457 0

Inverse Matrix
t 1 2 3 4 5 6 7 8 Result Exact Error

0.000 1.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000 1.000 0.000
0.143 0.686 0.686 0.000 0.000 0.000 0.000 0.000 0.000 0.686 0.633 0.000
0.286 0.471 0.471 0.686 0.000 0.000 0.000 0.000 0.000 0.471 0.401 0.001
0.429 0.323 0.323 0.471 0.686 0.000 0.000 0.000 0.000 0.323 0.254 0.001
0.571 0.222 0.222 0.323 0.471 0.686 0.000 0.000 0.000 0.222 0.161 0.000
0.714 0.152 0.152 0.222 0.323 0.471 0.686 0.000 0.000 0.152 0.102 0.000
0.857 0.104 0.104 0.152 0.222 0.323 0.471 0.686 0.000 0.104 0.064 0.000
1.000 0.072 0.072 0.104 0.152 0.222 0.323 0.471 0.686 0.072 0.041 0.000

0.052
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N  = 16
Δt = 0.067 Eq. 5.34 (LHS)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 (RHS)
1 1.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1
2 -1.000 1.213 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0
3 0.000 -1.000 1.213 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0
4 0.000 0.000 -1.000 1.213 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0
5 0.000 0.000 0.000 -1.000 1.213 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0
6 0.000 0.000 0.000 0.000 -1.000 1.213 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0
7 0.000 0.000 0.000 0.000 0.000 -1.000 1.213 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0
8 0.000 0.000 0.000 0.000 0.000 0.000 -1.000 1.213 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0
9 0.000 0.000 0.000 0.000 0.000 0.000 0.000 -1.000 1.213 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0

10 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 -1.000 1.213 0.000 0.000 0.000 0.000 0.000 0.000 0
11 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 -1.000 1.213 0.000 0.000 0.000 0.000 0.000 0
12 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 -1.000 1.213 0.000 0.000 0.000 0.000 0
13 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 -1.000 1.213 0.000 0.000 0.000 0
14 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 -1.000 1.213 0.000 0.000 0
15 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 -1.000 1.213 0.000 0
16 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 -1.000 1.213 0

t Inverse Matrix Result Exact Error
0.000 1.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000 1.000 0.000
0.067 0.824 0.824 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.824 0.808 0.000
0.133 0.679 0.679 0.824 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.679 0.653 0.000
0.200 0.560 0.560 0.679 0.824 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.560 0.527 0.000
0.267 0.461 0.461 0.560 0.679 0.824 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.461 0.426 0.000
0.333 0.380 0.380 0.461 0.560 0.679 0.824 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.380 0.344 0.000
0.400 0.313 0.313 0.380 0.461 0.560 0.679 0.824 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.313 0.278 0.000
0.467 0.258 0.258 0.313 0.380 0.461 0.560 0.679 0.824 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.258 0.225 0.000
0.533 0.213 0.213 0.258 0.313 0.380 0.461 0.560 0.679 0.824 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.213 0.181 0.000
0.600 0.175 0.175 0.213 0.258 0.313 0.380 0.461 0.560 0.679 0.824 0.000 0.000 0.000 0.000 0.000 0.000 0.175 0.147 0.000
0.667 0.145 0.145 0.175 0.213 0.258 0.313 0.380 0.461 0.560 0.679 0.824 0.000 0.000 0.000 0.000 0.000 0.145 0.118 0.000
0.733 0.119 0.119 0.145 0.175 0.213 0.258 0.313 0.380 0.461 0.560 0.679 0.824 0.000 0.000 0.000 0.000 0.119 0.096 0.000
0.800 0.098 0.098 0.119 0.145 0.175 0.213 0.258 0.313 0.380 0.461 0.560 0.679 0.824 0.000 0.000 0.000 0.098 0.077 0.000
0.867 0.081 0.081 0.098 0.119 0.145 0.175 0.213 0.258 0.313 0.380 0.461 0.560 0.679 0.824 0.000 0.000 0.081 0.062 0.000
0.933 0.067 0.067 0.081 0.098 0.119 0.145 0.175 0.213 0.258 0.313 0.380 0.461 0.560 0.679 0.824 0.000 0.067 0.050 0.000
1.000 0.055 0.055 0.067 0.081 0.098 0.119 0.145 0.175 0.213 0.258 0.313 0.380 0.461 0.560 0.679 0.824 0.055 0.041 0.000

0.027

N Δt Error
4 0.333 0.098
8 0.143 0.052
16 0.067 0.027
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Problem 5.91

Δx = 0.333

Iteration 0.000 0.333 0.667 1.000
0 1.000 1.000 1.000 1.000 Residuals
1 1.000 0.800 0.800 0.800 0.204
2 1.000 0.791 0.661 0.661 0.127
3 1.000 0.791 0.650 0.560 0.068
4 1.000 0.791 0.650 0.550 0.007
5 1.000 0.791 0.650 0.550 0.000
6 1.000 0.791 0.650 0.550 0.000

Exact 1.000 0.750 0.600 0.500
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Problem 5.92

Δx = 0.0667

Iteration 0.000 0.067 0.133 0.200 0.267 0.333 0.400 0.467 0.533 0.600 0.667 0.733 0.800 0.867 0.933 1.000
0 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1 1.000 0.941 0.941 0.941 0.941 0.941 0.941 0.941 0.941 0.941 0.941 0.941 0.941 0.941 0.941 0.941
2 1.000 0.941 0.889 0.889 0.889 0.889 0.889 0.889 0.889 0.889 0.889 0.889 0.889 0.889 0.889 0.889
3 1.000 0.941 0.888 0.842 0.842 0.842 0.842 0.842 0.842 0.842 0.842 0.842 0.842 0.842 0.842 0.842
4 1.000 0.941 0.888 0.841 0.799 0.799 0.799 0.799 0.799 0.799 0.799 0.799 0.799 0.799 0.799 0.799
5 1.000 0.941 0.888 0.841 0.799 0.761 0.761 0.761 0.761 0.761 0.761 0.761 0.761 0.761 0.761 0.761
6 1.000 0.941 0.888 0.841 0.799 0.760 0.726 0.726 0.726 0.726 0.726 0.726 0.726 0.726 0.726 0.726
7 1.000 0.941 0.888 0.841 0.799 0.760 0.725 0.694 0.694 0.694 0.694 0.694 0.694 0.694 0.694 0.694
8 1.000 0.941 0.888 0.841 0.799 0.760 0.725 0.693 0.664 0.664 0.664 0.664 0.664 0.664 0.664 0.664
9 1.000 0.941 0.888 0.841 0.799 0.760 0.725 0.693 0.664 0.637 0.637 0.637 0.637 0.637 0.637 0.637
10 1.000 0.941 0.888 0.841 0.799 0.760 0.725 0.693 0.664 0.637 0.612 0.612 0.612 0.612 0.612 0.612
11 1.000 0.941 0.888 0.841 0.799 0.760 0.725 0.693 0.664 0.637 0.612 0.589 0.589 0.589 0.589 0.589
12 1.000 0.941 0.888 0.841 0.799 0.760 0.725 0.693 0.664 0.637 0.612 0.589 0.568 0.568 0.568 0.568
13 1.000 0.941 0.888 0.841 0.799 0.760 0.725 0.693 0.664 0.637 0.612 0.589 0.567 0.548 0.548 0.548
14 1.000 0.941 0.888 0.841 0.799 0.760 0.725 0.693 0.664 0.637 0.612 0.589 0.567 0.547 0.529 0.529
15 1.000 0.941 0.888 0.841 0.799 0.760 0.725 0.693 0.664 0.637 0.612 0.589 0.567 0.547 0.529 0.512
16 1.000 0.941 0.888 0.841 0.799 0.760 0.725 0.693 0.664 0.637 0.612 0.589 0.567 0.547 0.529 0.511
17 1.000 0.941 0.888 0.841 0.799 0.760 0.725 0.693 0.664 0.637 0.612 0.589 0.567 0.547 0.529 0.511
18 1.000 0.941 0.888 0.841 0.799 0.760 0.725 0.693 0.664 0.637 0.612 0.589 0.567 0.547 0.529 0.511
19 1.000 0.941 0.888 0.841 0.799 0.760 0.725 0.693 0.664 0.637 0.612 0.589 0.567 0.547 0.529 0.511
20 1.000 0.941 0.888 0.841 0.799 0.760 0.725 0.693 0.664 0.637 0.612 0.589 0.567 0.547 0.529 0.511
21 1.000 0.941 0.888 0.841 0.799 0.760 0.725 0.693 0.664 0.637 0.612 0.589 0.567 0.547 0.529 0.511
22 1.000 0.941 0.888 0.841 0.799 0.760 0.725 0.693 0.664 0.637 0.612 0.589 0.567 0.547 0.529 0.511
23 1.000 0.941 0.888 0.841 0.799 0.760 0.725 0.693 0.664 0.637 0.612 0.589 0.567 0.547 0.529 0.511
24 1.000 0.941 0.888 0.841 0.799 0.760 0.725 0.693 0.664 0.637 0.612 0.589 0.567 0.547 0.529 0.511
25 1.000 0.941 0.888 0.841 0.799 0.760 0.725 0.693 0.664 0.637 0.612 0.589 0.567 0.547 0.529 0.511
26 1.000 0.941 0.888 0.841 0.799 0.760 0.725 0.693 0.664 0.637 0.612 0.589 0.567 0.547 0.529 0.511
27 1.000 0.941 0.888 0.841 0.799 0.760 0.725 0.693 0.664 0.637 0.612 0.589 0.567 0.547 0.529 0.511
28 1.000 0.941 0.888 0.841 0.799 0.760 0.725 0.693 0.664 0.637 0.612 0.589 0.567 0.547 0.529 0.511
29 1.000 0.941 0.888 0.841 0.799 0.760 0.725 0.693 0.664 0.637 0.612 0.589 0.567 0.547 0.529 0.511
30 1.000 0.941 0.888 0.841 0.799 0.760 0.725 0.693 0.664 0.637 0.612 0.589 0.567 0.547 0.529 0.511

Exact 1.000 0.938 0.882 0.833 0.789 0.750 0.714 0.682 0.652 0.625 0.600 0.577 0.556 0.536 0.517 0.500
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Problem 5.93

Δx = 0.667

Iteration 0.000 0.667 1.333 2.000
0 2.000 2.000 2.000 2.000
1 2.000 1.600 1.600 1.600
2 2.000 1.577 1.037 1.037
3 2.000 1.577 0.767 -0.658
4 2.000 1.577 1.211 -5.158
5 2.000 1.577 0.873 1.507
6 2.000 1.577 0.401 -0.017

Exact 2.000 1.633 1.155 0.000

Δx = 0.133

Iteration 0.000 0.133 0.267 0.400 0.533 0.667 0.800 0.933 1.067 1.200 1.333 1.467 1.600 1.733 1.867 2.000
0 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000
1 2.000 1.931 1.931 1.931 1.931 1.931 1.931 1.931 1.931 1.931 1.931 1.931 1.931 1.931 1.931 1.931
2 2.000 1.931 1.859 1.859 1.859 1.859 1.859 1.859 1.859 1.859 1.859 1.859 1.859 1.859 1.859 1.859
3 2.000 1.931 1.859 1.785 1.785 1.785 1.785 1.785 1.785 1.785 1.785 1.785 1.785 1.785 1.785 1.785
4 2.000 1.931 1.859 1.785 1.707 1.707 1.707 1.707 1.707 1.707 1.707 1.707 1.707 1.707 1.707 1.707
5 2.000 1.931 1.859 1.785 1.706 1.625 1.625 1.625 1.625 1.625 1.625 1.625 1.625 1.625 1.625 1.625
6 2.000 1.931 1.859 1.785 1.706 1.624 1.539 1.539 1.539 1.539 1.539 1.539 1.539 1.539 1.539 1.539
7 2.000 1.931 1.859 1.785 1.706 1.624 1.538 1.447 1.447 1.447 1.447 1.447 1.447 1.447 1.447 1.447
8 2.000 1.931 1.859 1.785 1.706 1.624 1.538 1.445 1.348 1.348 1.348 1.348 1.348 1.348 1.348 1.348
9 2.000 1.931 1.859 1.785 1.706 1.624 1.538 1.445 1.346 1.242 1.242 1.242 1.242 1.242 1.242 1.242

10 2.000 1.931 1.859 1.785 1.706 1.624 1.538 1.445 1.346 1.239 1.124 1.124 1.124 1.124 1.124 1.124
11 2.000 1.931 1.859 1.785 1.706 1.624 1.538 1.445 1.346 1.239 1.120 0.991 0.991 0.991 0.991 0.991
12 2.000 1.931 1.859 1.785 1.706 1.624 1.538 1.445 1.346 1.239 1.120 0.984 0.836 0.836 0.836 0.836
13 2.000 1.931 1.859 1.785 1.706 1.624 1.538 1.445 1.346 1.239 1.120 0.984 0.822 0.639 0.639 0.639
14 2.000 1.931 1.859 1.785 1.706 1.624 1.538 1.445 1.346 1.239 1.120 0.984 0.822 0.601 0.329 0.329
15 2.000 1.931 1.859 1.785 1.706 1.624 1.538 1.445 1.346 1.239 1.120 0.984 0.822 0.599 0.899 2.061
16 2.000 1.931 1.859 1.785 1.706 1.624 1.538 1.445 1.346 1.239 1.120 0.984 0.822 0.599 0.363 0.795
17 2.000 1.931 1.859 1.785 1.706 1.624 1.538 1.445 1.346 1.239 1.120 0.984 0.822 0.599 9.602 0.034
18 2.000 1.931 1.859 1.785 1.706 1.624 1.538 1.445 1.346 1.239 1.120 0.984 0.822 0.599 0.572 -0.016
19 2.000 1.931 1.859 1.785 1.706 1.624 1.538 1.445 1.346 1.239 1.120 0.984 0.822 0.599 0.225 -0.034
20 2.000 1.931 1.859 1.785 1.706 1.624 1.538 1.445 1.346 1.239 1.120 0.984 0.822 0.599 0.359 -0.070
21 2.000 1.931 1.859 1.785 1.706 1.624 1.538 1.445 1.346 1.239 1.120 0.984 0.822 0.599 3.969 -0.160
22 2.000 1.931 1.859 1.785 1.706 1.624 1.538 1.445 1.346 1.239 1.120 0.984 0.822 0.599 0.537 -1.332
23 2.000 1.931 1.859 1.785 1.706 1.624 1.538 1.445 1.346 1.239 1.120 0.984 0.822 0.599 0.191 0.797
24 2.000 1.931 1.859 1.785 1.706 1.624 1.538 1.445 1.346 1.239 1.120 0.984 0.822 0.599 0.300 -0.182
25 2.000 1.931 1.859 1.785 1.706 1.624 1.538 1.445 1.346 1.239 1.120 0.984 0.822 0.599 0.600 -0.584
26 2.000 1.931 1.859 1.785 1.706 1.624 1.538 1.445 1.346 1.239 1.120 0.984 0.822 0.599 0.246 1.734
27 2.000 1.931 1.859 1.785 1.706 1.624 1.538 1.445 1.346 1.239 1.120 0.984 0.822 0.599 0.403 0.097
28 2.000 1.931 1.859 1.785 1.706 1.624 1.538 1.445 1.346 1.239 1.120 0.984 0.822 0.599 -0.345 0.178
29 2.000 1.931 1.859 1.785 1.706 1.624 1.538 1.445 1.346 1.239 1.120 0.984 0.822 0.599 -11.373 0.572
30 2.000 1.931 1.859 1.785 1.706 1.624 1.538 1.445 1.346 1.239 1.120 0.984 0.822 0.599 0.623 -19.981
31 2.000 1.931 1.859 1.785 1.706 1.624 1.538 1.445 1.346 1.239 1.120 0.984 0.822 0.599 0.261 0.637
32 2.000 1.931 1.859 1.785 1.706 1.624 1.538 1.445 1.346 1.239 1.120 0.984 0.822 0.599 0.442 -0.234
33 2.000 1.931 1.859 1.785 1.706 1.624 1.538 1.445 1.346 1.239 1.120 0.984 0.822 0.599 -0.013 -1.108
34 2.000 1.931 1.859 1.785 1.706 1.624 1.538 1.445 1.346 1.239 1.120 0.984 0.822 0.599 -0.027 0.255
35 2.000 1.931 1.859 1.785 1.706 1.624 1.538 1.445 1.346 1.239 1.120 0.984 0.822 0.599 -0.059 1.023
36 2.000 1.931 1.859 1.785 1.706 1.624 1.538 1.445 1.346 1.239 1.120 0.984 0.822 0.599 -0.136 -0.366
37 2.000 1.931 1.859 1.785 1.706 1.624 1.538 1.445 1.346 1.239 1.120 0.984 0.822 0.599 -0.414 132.420
38 2.000 1.931 1.859 1.785 1.706 1.624 1.538 1.445 1.346 1.239 1.120 0.984 0.822 0.599 5.624 -0.416
39 2.000 1.931 1.859 1.785 1.706 1.624 1.538 1.445 1.346 1.239 1.120 0.984 0.822 0.599 0.554 27.391
40 2.000 1.931 1.859 1.785 1.706 1.624 1.538 1.445 1.346 1.239 1.120 0.984 0.822 0.599 0.209 0.545
41 2.000 1.931 1.859 1.785 1.706 1.624 1.538 1.445 1.346 1.239 1.120 0.984 0.822 0.599 0.329 -0.510
42 2.000 1.931 1.859 1.785 1.706 1.624 1.538 1.445 1.346 1.239 1.120 0.984 0.822 0.599 0.919 1.749
43 2.000 1.931 1.859 1.785 1.706 1.624 1.538 1.445 1.346 1.239 1.120 0.984 0.822 0.599 0.367 0.802
44 2.000 1.931 1.859 1.785 1.706 1.624 1.538 1.445 1.346 1.239 1.120 0.984 0.822 0.599 -11.148 0.044
45 2.000 1.931 1.859 1.785 1.706 1.624 1.538 1.445 1.346 1.239 1.120 0.984 0.822 0.599 0.624 0.252
46 2.000 1.931 1.859 1.785 1.706 1.624 1.538 1.445 1.346 1.239 1.120 0.984 0.822 0.599 0.262 0.394
47 2.000 1.931 1.859 1.785 1.706 1.624 1.538 1.445 1.346 1.239 1.120 0.984 0.822 0.599 0.443 -2.929
48 2.000 1.931 1.859 1.785 1.706 1.624 1.538 1.445 1.346 1.239 1.120 0.984 0.822 0.599 -0.010 0.542
49 2.000 1.931 1.859 1.785 1.706 1.624 1.538 1.445 1.346 1.239 1.120 0.984 0.822 0.599 -0.019 -0.918
50 2.000 1.931 1.859 1.785 1.706 1.624 1.538 1.445 1.346 1.239 1.120 0.984 0.822 0.599 -0.041 0.322
51 2.000 1.931 1.859 1.785 1.706 1.624 1.538 1.445 1.346 1.239 1.120 0.984 0.822 0.599 -0.090 3.048
52 2.000 1.931 1.859 1.785 1.706 1.624 1.538 1.445 1.346 1.239 1.120 0.984 0.822 0.599 -0.231 -0.180
53 2.000 1.931 1.859 1.785 1.706 1.624 1.538 1.445 1.346 1.239 1.120 0.984 0.822 0.599 -1.171 -0.402
54 2.000 1.931 1.859 1.785 1.706 1.624 1.538 1.445 1.346 1.239 1.120 0.984 0.822 0.599 0.916 -2.886
55 2.000 1.931 1.859 1.785 1.706 1.624 1.538 1.445 1.346 1.239 1.120 0.984 0.822 0.599 0.366 1.025
56 2.000 1.931 1.859 1.785 1.706 1.624 1.538 1.445 1.346 1.239 1.120 0.984 0.822 0.599 -18.029 0.122
57 2.000 1.931 1.859 1.785 1.706 1.624 1.538 1.445 1.346 1.239 1.120 0.984 0.822 0.599 0.614 2.526
58 2.000 1.931 1.859 1.785 1.706 1.624 1.538 1.445 1.346 1.239 1.120 0.984 0.822 0.599 0.256 0.520
59 2.000 1.931 1.859 1.785 1.706 1.624 1.538 1.445 1.346 1.239 1.120 0.984 0.822 0.599 0.426 -0.509
60 2.000 1.931 1.859 1.785 1.706 1.624 1.538 1.445 1.346 1.239 1.120 0.984 0.822 0.599 -0.097 1.962

Exact 2.000 1.932 1.862 1.789 1.713 1.633 1.549 1.461 1.366 1.265 1.155 1.033 0.894 0.730 0.516 0.000
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Problem 5.94

Δt = 1.000 k  = 10 N.s2/m2

M  = 70 kg

Iteration 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0 7.500 7.500 7.500 7.500 7.500 7.500 7.500 7.500 7.500 7.500 7.500 7.500 7.500 7.500 7.500 7.500
1 7.500 4.943 4.943 4.943 4.943 4.943 4.943 4.943 4.943 4.943 4.943 4.943 4.943 4.943 4.943 4.943
2 7.500 4.556 3.496 3.496 3.496 3.496 3.496 3.496 3.496 3.496 3.496 3.496 3.496 3.496 3.496 3.496
3 7.500 4.547 3.153 2.623 2.623 2.623 2.623 2.623 2.623 2.623 2.623 2.623 2.623 2.623 2.623 2.623
4 7.500 4.547 3.139 2.364 2.061 2.061 2.061 2.061 2.061 2.061 2.061 2.061 2.061 2.061 2.061 2.061
5 7.500 4.547 3.139 2.350 1.870 1.679 1.679 1.679 1.679 1.679 1.679 1.679 1.679 1.679 1.679 1.679
6 7.500 4.547 3.139 2.350 1.857 1.536 1.407 1.407 1.407 1.407 1.407 1.407 1.407 1.407 1.407 1.407
7 7.500 4.547 3.139 2.350 1.857 1.525 1.297 1.205 1.205 1.205 1.205 1.205 1.205 1.205 1.205 1.205
8 7.500 4.547 3.139 2.350 1.857 1.525 1.288 1.119 1.051 1.051 1.051 1.051 1.051 1.051 1.051 1.051
9 7.500 4.547 3.139 2.350 1.857 1.525 1.288 1.112 0.982 0.930 0.930 0.930 0.930 0.930 0.930 0.930

10 7.500 4.547 3.139 2.350 1.857 1.525 1.288 1.112 0.976 0.874 0.832 0.832 0.832 0.832 0.832 0.832
11 7.500 4.547 3.139 2.350 1.857 1.525 1.288 1.112 0.976 0.868 0.786 0.752 0.752 0.752 0.752 0.752
12 7.500 4.547 3.139 2.350 1.857 1.525 1.288 1.112 0.976 0.868 0.781 0.713 0.686 0.686 0.686 0.686
13 7.500 4.547 3.139 2.350 1.857 1.525 1.288 1.112 0.976 0.868 0.781 0.709 0.653 0.629 0.629 0.629
14 7.500 4.547 3.139 2.350 1.857 1.525 1.288 1.112 0.976 0.868 0.781 0.709 0.649 0.601 0.581 0.581
15 7.500 4.547 3.139 2.350 1.857 1.525 1.288 1.112 0.976 0.868 0.781 0.709 0.649 0.598 0.557 0.540
16 7.500 4.547 3.139 2.350 1.857 1.525 1.288 1.112 0.976 0.868 0.781 0.709 0.649 0.598 0.554 0.519
17 7.500 4.547 3.139 2.350 1.857 1.525 1.288 1.112 0.976 0.868 0.781 0.709 0.649 0.598 0.554 0.516
18 7.500 4.547 3.139 2.350 1.857 1.525 1.288 1.112 0.976 0.868 0.781 0.709 0.649 0.598 0.554 0.516
19 7.500 4.547 3.139 2.350 1.857 1.525 1.288 1.112 0.976 0.868 0.781 0.709 0.649 0.598 0.554 0.516
20 7.500 4.547 3.139 2.350 1.857 1.525 1.288 1.112 0.976 0.868 0.781 0.709 0.649 0.598 0.554 0.516
21 7.500 4.547 3.139 2.350 1.857 1.525 1.288 1.112 0.976 0.868 0.781 0.709 0.649 0.598 0.554 0.516
22 7.500 4.547 3.139 2.350 1.857 1.525 1.288 1.112 0.976 0.868 0.781 0.709 0.649 0.598 0.554 0.516
23 7.500 4.547 3.139 2.350 1.857 1.525 1.288 1.112 0.976 0.868 0.781 0.709 0.649 0.598 0.554 0.516
24 7.500 4.547 3.139 2.350 1.857 1.525 1.288 1.112 0.976 0.868 0.781 0.709 0.649 0.598 0.554 0.516
25 7.500 4.547 3.139 2.350 1.857 1.525 1.288 1.112 0.976 0.868 0.781 0.709 0.649 0.598 0.554 0.516
26 7.500 4.547 3.139 2.350 1.857 1.525 1.288 1.112 0.976 0.868 0.781 0.709 0.649 0.598 0.554 0.516
27 7.500 4.547 3.139 2.350 1.857 1.525 1.288 1.112 0.976 0.868 0.781 0.709 0.649 0.598 0.554 0.516
28 7.500 4.547 3.139 2.350 1.857 1.525 1.288 1.112 0.976 0.868 0.781 0.709 0.649 0.598 0.554 0.516
29 7.500 4.547 3.139 2.350 1.857 1.525 1.288 1.112 0.976 0.868 0.781 0.709 0.649 0.598 0.554 0.516
30 7.500 4.547 3.139 2.350 1.857 1.525 1.288 1.112 0.976 0.868 0.781 0.709 0.649 0.598 0.554 0.516
31 7.500 4.547 3.139 2.350 1.857 1.525 1.288 1.112 0.976 0.868 0.781 0.709 0.649 0.598 0.554 0.516
32 7.500 4.547 3.139 2.350 1.857 1.525 1.288 1.112 0.976 0.868 0.781 0.709 0.649 0.598 0.554 0.516
33 7.500 4.547 3.139 2.350 1.857 1.525 1.288 1.112 0.976 0.868 0.781 0.709 0.649 0.598 0.554 0.516
34 7.500 4.547 3.139 2.350 1.857 1.525 1.288 1.112 0.976 0.868 0.781 0.709 0.649 0.598 0.554 0.516
35 7.500 4.547 3.139 2.350 1.857 1.525 1.288 1.112 0.976 0.868 0.781 0.709 0.649 0.598 0.554 0.516
36 7.500 4.547 3.139 2.350 1.857 1.525 1.288 1.112 0.976 0.868 0.781 0.709 0.649 0.598 0.554 0.516
37 7.500 4.547 3.139 2.350 1.857 1.525 1.288 1.112 0.976 0.868 0.781 0.709 0.649 0.598 0.554 0.516
38 7.500 4.547 3.139 2.350 1.857 1.525 1.288 1.112 0.976 0.868 0.781 0.709 0.649 0.598 0.554 0.516
39 7.500 4.547 3.139 2.350 1.857 1.525 1.288 1.112 0.976 0.868 0.781 0.709 0.649 0.598 0.554 0.516
40 7.500 4.547 3.139 2.350 1.857 1.525 1.288 1.112 0.976 0.868 0.781 0.709 0.649 0.598 0.554 0.516
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Above values are for v!  To get u we compute u = U - v

Iteration
10 0.000 2.953 4.361 5.150 5.643 5.975 6.212 6.388 6.524 6.626 6.668 6.668 6.668 6.668 6.668 6.668
20 0.000 2.953 4.361 5.150 5.643 5.975 6.212 6.388 6.524 6.632 6.719 6.791 6.851 6.902 6.946 6.984
40 0.000 2.953 4.361 5.150 5.643 5.975 6.212 6.388 6.524 6.632 6.719 6.791 6.851 6.902 6.946 6.984

Exact 0.000 3.879 5.114 5.720 6.081 6.320 6.490 6.618 6.716 6.795 6.860 6.913 6.959 6.998 7.031 7.061
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Problem 6.1 [2]

Given: Velocity field

Find: Acceleration of particle and pressure gradient at (1,1)

Solution:

NOTE: Units of B are s-1 not ft-1s-1

Basic equations

For this flow u x y, ( ) A y2 x2
−( )⋅ B x⋅−= v x y, ( ) 2 A⋅ x⋅ y⋅ B y⋅+=

ax u
x

u∂

∂
⋅ v

y
u∂

∂
⋅+= A y2 x2

−( )⋅ B x⋅−⎡⎣ ⎤⎦
x

A y2 x2
−( )⋅ B x⋅−⎡⎣ ⎤⎦

∂

∂
⋅ 2 A⋅ x⋅ y⋅ B y⋅+( )

y
A y2 x2

−( )⋅ B x⋅−⎡⎣ ⎤⎦
∂

∂
⋅+=

ax B 2 A⋅ x⋅+( ) A x2
⋅ B x⋅+ A y2

⋅+( )⋅=

ay u
x

v∂

∂
⋅ v

y
v∂

∂
⋅+= A y2 x2

−( )⋅ B x⋅−⎡⎣ ⎤⎦
x

2 A⋅ x⋅ y⋅ B y⋅+( )∂

∂
⋅ 2 A⋅ x⋅ y⋅ B y⋅+( )

y
2 A⋅ x⋅ y⋅ B y⋅+( )∂

∂
⋅+=

ay B 2 A⋅ x⋅+( ) B y⋅ 2 A⋅ x⋅ y⋅+( )⋅ 2 A⋅ y⋅ B x⋅ A x2 y2
−( )⋅+⎡⎣ ⎤⎦⋅−=

Hence at (1,1) ax 1 2 1⋅ 1⋅+( )
1
s

⋅ 1 12
⋅ 1 1⋅+ 1 12

⋅+( )×
ft
s

⋅= ax 9
ft

s2
⋅=

ay 1 2 1⋅ 1⋅+( )
1
s

⋅ 1 1⋅ 2 1⋅ 1⋅ 1⋅+( )×
ft
s

⋅ 2 1⋅ 1⋅
1
s

⋅ 1 1⋅ 1 12 12
−( )⋅+⎡⎣ ⎤⎦×

ft
s

⋅−= ay 7
ft

s2
⋅=

a ax
2 ay

2
+= θ atan

ay
ax

⎛
⎜
⎝

⎞
⎟
⎠

= a 11.4
ft

s2
⋅= θ 37.9 deg⋅=

For the pressure gradient

x
p∂

∂
ρ gx⋅ ρ ax⋅−= 2−

slug

ft3
⋅ 9×

ft

s2
⋅

lbf s2
⋅

slug ft⋅
×=

x
p∂

∂
18−

lbf

ft2

ft
⋅= 0.125−

psi
ft

⋅=

y
p∂

∂
ρ gy⋅ ρ ay⋅−= 2

slug

ft3
⋅ 32.2− 7−( )×

ft

s2
⋅

lbf s2
⋅

slug ft⋅
×=

y
p∂

∂
78.4−

lbf

ft2

ft
⋅= 0.544−

psi
ft

⋅=



Problem 6.2 [2]

Given: Velocity field

Find: Acceleration of particle and pressure gradient at (0.7,2)

Solution:

Basic equations

For this flow u x y, ( ) A x⋅ B y⋅−= v x y, ( ) A− y⋅=

ax u
x

u∂

∂
⋅ v

y
u∂

∂
⋅+= A x⋅ B y⋅−( )

x
A x⋅ B y⋅−( )∂

∂
⋅ A− y⋅( )

y
A x⋅ B y⋅−( )∂

∂
⋅+= ax A2 x⋅=

ay u
x

v∂

∂
⋅ v

y
v∂

∂
⋅+= A x⋅ B y⋅−( )

x
A− y⋅( )∂

∂
⋅ A− y⋅( )

y
A− y⋅( )∂

∂
⋅+= ay A2 y⋅=

Hence at (0.7,2) ax
1
s

⎛⎜
⎝

⎞⎟
⎠

2
0.7× m⋅= ax 0.7

m

s2
=

ay
1
s

⎛⎜
⎝

⎞⎟
⎠

2
2× m⋅= ay 2

m

s2
=

a ax
2 ay

2
+= θ atan

ay
ax

⎛
⎜
⎝

⎞
⎟
⎠

= a 2.12
m

s2
= θ 70.7 deg⋅=

For the pressure gradient

x
p∂

∂
ρ gx⋅ ρ ax⋅−= 1000−

kg

m3
⋅ 0.7×

m

s2
⋅

N s2
⋅

kg m⋅
×=

x
p∂

∂
700−

Pa
m

⋅= 0.7−
kPa
m

⋅=

y
p∂

∂
ρ gy⋅ ρ ay⋅−= 1000

kg

m3
⋅ 9.81− 2−( )×

m

s2
⋅

N s2
⋅

kg m⋅
×=

y
p∂

∂
11800−

Pa
m

⋅= 11.8−
kPa
m

⋅=



 
Problem 6.3                                                                             [2]
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Problem 6.5 [2]

Given: Velocity field

Find: Acceleration of particle and pressure gradient at (1,1)

Solution:

Basic equations

For this flow u x y, ( ) A x2 y2
−( )⋅ 3 B⋅ x⋅−= v x y, ( ) 2− A⋅ x⋅ y⋅ 3 B⋅ y⋅+=

ax u
x

u∂

∂
⋅ v

y
u∂

∂
⋅+= A x2 y2

−( )⋅ 3 B⋅ x⋅−⎡⎣ ⎤⎦
x

A x2 y2
−( )⋅ 3 B⋅ x⋅−⎡⎣ ⎤⎦

∂

∂
⋅

2− A⋅ x⋅ y⋅ 3 B⋅ y⋅+( )
y

A x2 y2
−( )⋅ 3 B⋅ x⋅−⎡⎣ ⎤⎦

∂

∂
⋅+

...=

ax 2 A⋅ x⋅ 3 B⋅−( ) A x2
⋅ 3 B⋅ x⋅− A y2

⋅+( )⋅=

ay u
x

v∂

∂
⋅ v

y
v∂

∂
⋅+= A x2 y2

−( )⋅ 3 B⋅ x⋅−⎡⎣ ⎤⎦
x

2− A⋅ x⋅ y⋅ 3 B⋅ y⋅+( )∂

∂
⋅ 2− A⋅ x⋅ y⋅ 3 B⋅ y⋅+( )

y
2− A⋅ x⋅ y⋅ 3 B⋅ y⋅+( )∂

∂
⋅+=

ay 3 B⋅ y⋅ 2 A⋅ x⋅ y⋅−( ) 3 B⋅ 2 A⋅ x⋅−( )⋅ 2 A⋅ y⋅ A x2 y2
−( )⋅ 3 B⋅ x⋅−⎡⎣ ⎤⎦⋅−=

Hence at (1,1) ax 2 1⋅ 1⋅ 3 1⋅−( )
1
s

⋅ 1 12
⋅ 3 1⋅ 1⋅− 1 12

⋅+( )×
ft
s

⋅= ax 1
ft

s2
⋅=

ay 3 1⋅ 1⋅ 2 1⋅ 1⋅ 1⋅−( )
1
s

⋅ 3 1⋅ 2 1⋅ 1⋅−( )×
ft
s

⋅ 2 1⋅ 1⋅
1
s

⋅ 1 12 12
−( )⋅ 3 1⋅ 1⋅−⎡⎣ ⎤⎦×

ft
s

⋅−= ay 7
ft

s2
⋅=

a ax
2 ay

2
+= θ atan

ay
ax

⎛
⎜
⎝

⎞
⎟
⎠

= a 7.1
ft

s2
⋅= θ 81.9 deg⋅=

For the pressure gradient

x
p∂

∂
ρ gx⋅ ρ ax⋅−= 2−

slug

ft3
⋅ 1×

ft

s2
⋅

lbf s2
⋅

slug ft⋅
×=

x
p∂

∂
2−

lbf

ft2

ft
⋅= 0.0139−

psi
ft

⋅=

y
p∂

∂
ρ gy⋅ ρ ay⋅−= 2

slug

ft3
⋅ 32.2− 7−( )×

ft

s2
⋅

lbf s2
⋅

slug ft⋅
×=

y
p∂

∂
78.4−

lbf

ft2

ft
⋅= 0.544−

psi
ft

⋅=



Problem 6.6 [3]

Given: Velocity field

Find: Expressions for local, convective and total acceleration; evaluate at several points; evaluate pressure gradient

Solution:

The given data is A 2
1
s
⋅= ω 1

1
s
⋅= ρ 2

kg

m3
⋅= u A x⋅ sin 2 π⋅ ω⋅ t⋅( )⋅= v A− y⋅ sin 2 π⋅ ω⋅ t⋅( )⋅=

Check for incompressible flow
x

u∂

∂ y
v∂

∂
+ 0=

Hence
x

u∂

∂ y
v∂

∂
+ A sin 2 π⋅ ω⋅ t⋅( )⋅ A sin 2 π⋅ ω⋅ t⋅( )⋅−= 0= Incompressible flow

The governing equation for acceleration is

The local acceleration is then x - component
t
u∂

∂
2 π⋅ A⋅ ω⋅ x⋅ cos 2 π⋅ ω⋅ t⋅( )⋅=

y - component
t
v∂

∂
2− π⋅ A⋅ ω⋅ y⋅ cos 2 π⋅ ω⋅ t⋅( )⋅=

For the present steady, 2D flow, the convective acceleration is

x - component u
x

u∂

∂
⋅ v

y
u∂

∂
⋅+ A x⋅ sin 2 π⋅ ω⋅ t⋅( )⋅ A sin 2 π⋅ ω⋅ t⋅( )⋅( )⋅ A− y⋅ sin 2 π⋅ ω⋅ t⋅( )⋅( ) 0⋅+= A2 x⋅ sin 2 π⋅ ω⋅ t⋅( )2

⋅=

y - component u
x

v∂

∂
⋅ v

y
v∂

∂
⋅+ A x⋅ sin 2 π⋅ ω⋅ t⋅( )⋅ 0⋅ A− y⋅ sin 2 π⋅ ω⋅ t⋅( )⋅( ) A− sin 2 π⋅ ω⋅ t⋅( )⋅( )⋅+= A2 y⋅ sin 2 π⋅ ω⋅ t⋅( )2

⋅=

The total acceleration is then x - component
t
u∂

∂
u

x
u∂

∂
⋅+ v

y
u∂

∂
⋅+ 2 π⋅ A⋅ ω⋅ x⋅ cos 2 π⋅ ω⋅ t⋅( )⋅ A2 x⋅ sin 2 π⋅ ω⋅ t⋅( )2

⋅+=

y - component
t
v∂

∂
u

x
v∂

∂
⋅+ v

y
v∂

∂
⋅+ 2− π⋅ A⋅ ω⋅ y⋅ cos 2 π⋅ ω⋅ t⋅( )⋅ A2 y⋅ sin 2 π⋅ ω⋅ t⋅( )2

⋅+=



Evaluating at point (1,1) at

t 0 s⋅= Local 12.6
m

s2
⋅ and 12.6−

m

s2
⋅ Convective 0

m

s2
⋅ and 0

m

s2
⋅

Total 12.6
m

s2
⋅ and 12.6−

m

s2
⋅

t 0.5 s⋅= Local 12.6−
m

s2
⋅ and 12.6

m

s2
⋅ Convective 0

m

s2
⋅ and 0

m

s2
⋅

Total 12.6−
m

s2
⋅ and 12.6

m

s2
⋅

t 1 s⋅= Local 12.6
m

s2
⋅ and 12.6−

m

s2
⋅ Convective 0

m

s2
⋅ and 0

m

s2
⋅

Total 12.6
m

s2
⋅ and 12.6−

m

s2
⋅

The governing equation (assuming inviscid flow) for computing the pressure gradient is (6.1)

Hence, the components of pressure gradient (neglecting gravity) are 

x
p∂

∂
ρ−

Du
Dt

⋅=
x

p∂

∂
ρ− 2 π⋅ A⋅ ω⋅ x⋅ cos 2 π⋅ ω⋅ t⋅( )⋅ A2 x⋅ sin 2 π⋅ ω⋅ t⋅( )2

⋅+( )⋅=

y
p∂

∂
ρ−

Dv
Dt

⋅=
x

p∂

∂
ρ− 2− π⋅ A⋅ ω⋅ y⋅ cos 2 π⋅ ω⋅ t⋅( )⋅ A2 y⋅ sin 2 π⋅ ω⋅ t⋅( )2

⋅+( )⋅=

Evaluated at (1,1) and time t 0 s⋅= x comp. 25.1−
Pa
m

⋅ y comp. 25.1
Pa
m

⋅

t 0.5 s⋅= x comp. 25.1
Pa
m

⋅ y comp. 25.1−
Pa
m

⋅

t 1 s⋅= x comp. 25.1−
Pa
m

⋅ y comp. 25.1
Pa
m

⋅



Problem 6.7 [2]

Given: Velocity field

Find: Simplest y component of velocity; Acceleration of particle and pressure gradient at (2,1); pressure on x axis

Solution:

Basic equations

For this flow u x y, ( ) A x⋅=
x

u∂

∂ y
v∂

∂
+ 0= so v x y, ( ) y

x
u∂

∂

⌠
⎮
⎮
⎮
⌡

d−= yA
⌠⎮
⎮⌡

d−= A− y⋅ c+=

Hence v x y, ( ) A− y⋅= is the simplest y component of velocity

For acceleration ax u
x

u∂

∂
⋅ v

y
u∂

∂
⋅+= A x⋅

x
A x⋅( )∂

∂
⋅ A− y⋅( )

y
A x⋅( )∂

∂
⋅+= A2 x⋅= ax A2 x⋅=

ay u
x

v∂

∂
⋅ v

y
v∂

∂
⋅+= A x⋅

x
A− y⋅( )∂

∂
⋅ A− y⋅( )

y
A− y⋅( )∂

∂
⋅+= ay A2 y⋅=

Hence at (2,1) ax
2
s

⎛⎜
⎝

⎞⎟
⎠

2
2× m⋅= ay

2
s

⎛⎜
⎝

⎞⎟
⎠

2
1× m⋅= ax 8

m

s2
= ay 4

m

s2
=

a ax
2 ay

2
+= θ atan

ay
ax

⎛
⎜
⎝

⎞
⎟
⎠

= a 8.94
m

s2
= θ 26.6 deg⋅=

For the pressure gradient

x
p∂

∂
ρ gx⋅ ρ ax⋅−= 1.50−

kg

m3
⋅ 8×

m

s2
⋅

N s2
⋅

kg m⋅
×=

x
p∂

∂
12−

Pa
m

⋅=

y
p∂

∂
ρ gy⋅ ρ ay⋅−= 1.50−

kg

m3
⋅ 4×

m

s2
⋅

N s2
⋅

kg m⋅
×=

y
p∂

∂
6−

Pa
m

⋅=

z
p∂

∂
ρ gz⋅ ρ az⋅−= 1.50

kg

m3
× 9.81−( )×

m

s2
⋅

N s2
⋅

kg m⋅
×=

y
p∂

∂
14.7−

Pa
m

⋅=

For the pressure on the x axis dp
x

p∂

∂
= p p0−

0

x
xρ gx⋅ ρ ax⋅−( )

⌠
⎮
⌡

d=
0

x
xρ− A2

⋅ x⋅( )⌠
⎮
⌡

d=
1
2

− ρ⋅ A2
⋅ x2

⋅=

p x( ) p0
1
2

ρ⋅ A2
⋅ x2

⋅−= p x( ) 190 kPa⋅
1
2

1.5⋅
kg

m3
⋅

2
s

⎛⎜
⎝

⎞⎟
⎠

2
×

N s2
⋅

kg m⋅
× x2

×−= p x( ) 190
3

1000
x2

⋅−= (p in kPa, x in m)



Problem 6.8 [3]

Given: Velocity field

Find: Expressions for velocity and acceleration along wall; plot; verify vertical components are zero; plot pressure gradient

Solution:

The given data is q 2

m3

s
m

⋅= h 1 m⋅= ρ 1000
kg

m3
⋅=

u
q x⋅

2 π⋅ x2 y h−( )2
+⎡⎣ ⎤⎦

q x⋅

2 π⋅ x2 y h+( )2
+⎡⎣ ⎤⎦

+= v
q y h−( )⋅

2 π⋅ x2 y h−( )2
+⎡⎣ ⎤⎦

q y h+( )⋅

2 π⋅ x2 y h+( )2
+⎡⎣ ⎤⎦

+=

The governing equation for acceleration is

For steady, 2D flow this reduces to (after considerable math!)

x - component ax u
x

u∂

∂
⋅ v

y
u∂

∂
⋅+=

q2 x⋅ x2 y2
+( )2 h2 h2 4 y2

⋅−( )⋅−
⎡
⎣

⎤
⎦⋅

x2 y h+( )2
+⎡⎣ ⎤⎦

2
x2 y h−( )2

+⎡⎣ ⎤⎦
2

⋅ π
2

⋅

−=

y - component ay u
x

v∂

∂
⋅ v

y
v∂

∂
⋅+=

q2 y⋅ x2 y2
+( )2 h2 h2 4 x2

⋅+( )⋅−
⎡
⎣

⎤
⎦⋅

π
2 x2 y h+( )2

+⎡⎣ ⎤⎦
2

⋅ x2 y h−( )2
+⎡⎣ ⎤⎦

2
⋅

−=

For motion along the wall y 0 m⋅=

u
q x⋅

π x2 h2
+( )⋅

= v 0= (No normal velocity) ax
q2 x⋅ x2 h2

−( )⋅

π
2 x2 h2

+( )3⋅

−= ay 0= (No normal acceleration)



The governing equation (assuming inviscid flow) for computing the pressure gradient is (6.1)

Hence, the component of pressure gradient (neglecting gravity) along the wall is 

x
p∂

∂
ρ−

Du
Dt

⋅=
x

p∂

∂

ρ q2
⋅ x⋅ x2 h2

−( )⋅

π
2 x2 h2

+( )3⋅

=

The plots of velocity, acceleration, and pressure gradient are shown in the associated Excel workbook.  From the plots it is
clear that the fluid experiences an adverse pressure gradient from the origin to x = 1 m, then a negative one promoting fluid
acceleration.  If flow separates, it will likely be in the region x = 0 to x = h.



The velocity, acceleration and pressure gradient are given by

q  = 2 m3/s/m
h  = 1 m
ρ = 1000 kg/m3

x  (m) u  (m/s) a  (m/s2) dp /dx  (Pa/m)

0.0 0.00 0.00000 0.00
1.0 0.32 0.00000 0.00
2.0 0.25 0.01945 -19.45
3.0 0.19 0.00973 -9.73
4.0 0.15 0.00495 -4.95
5.0 0.12 0.00277 -2.77
6.0 0.10 0.00168 -1.68
7.0 0.09 0.00109 -1.09
8.0 0.08 0.00074 -0.74
9.0 0.07 0.00053 -0.53

10.0 0.06 0.00039 -0.39



Velocity Along Wall Near A Source

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0 1 2 3 4 5 6 7 8 9 10

x  (m)

u
 (m

/s
)

Acceleration Along Wall Near A Source

-0.005

0.000

0.005

0.010

0.015

0.020

0.025

0 1 2 3 4 5 6 7 8 9 10

x  (m)

a
 (m

/s
2 )

Pressure Gradient Along Wall

-25

-20

-15

-10

-5

0

5

0 1 2 3 4 5 6 7 8 9 10

x  (m)

dp
/ d

x
 (P

a/
m

)



 
Problem 6.9                                                                             [2]



 
Problem 6.10                                                                             [2]



 
Problem 6.11                                                                             [2]



 
Problem 6.12                                                                             [2]



Problem 6.13 [3]

Given: Velocity field

Find: The acceleration at several points; evaluate pressure gradient

Solution:

The given data is q 2

m3

s
m

⋅= K 1

m3

s
m

⋅= ρ 1000
kg

m3
⋅= Vr

q
2 π⋅ r⋅

−= V
θ

K
2 π⋅ r⋅

=

The governing equations for this 2D flow are

The total acceleration for this steady flow is then

r - component ar Vr r
Vr

∂

∂
⋅

V
θ

r θ

Vr
∂

∂
⋅+= ar

q2

4 π
2

⋅ r3⋅
−=

θ - component
a
θ

Vr r
V

θ

∂

∂
⋅

V
θ

r θ

V
θ

∂

∂
⋅+= a

θ

q K⋅

4 π
2

⋅ r3⋅
=

Evaluating at point (1,0) ar 0.101−
m

s2
= a

θ
0.0507

m

s2
=

Evaluating at point (1,π/2) ar 0.101−
m

s2
= a

θ
0.0507

m

s2
=

Evaluating at point (2,0) ar 0.0127−
m

s2
= a

θ
0.00633

m

s2
=

From Eq. 6.3, pressure gradient is
r
p∂

∂
ρ− ar⋅=

r
p∂

∂

ρ q2
⋅

4 π
2

⋅ r3⋅
=

1
r θ

p∂

∂
⋅ ρ− a

θ
⋅=

1
r θ

p∂

∂
⋅

ρ q⋅ K⋅

4 π
2

⋅ r3⋅
−=

Evaluating at point (1,0)
r
p∂

∂
101

Pa
m

⋅=
1
r θ

p∂

∂
⋅ 50.5−

Pa
m

⋅=

Evaluating at point (1,π/2)
r
p∂

∂
101

Pa
m

⋅=
1
r θ

p∂

∂
⋅ 50.5−

Pa
m

⋅=

Evaluating at point (2,0)
r
p∂

∂
12.7

Pa
m

⋅=
1
r θ

p∂

∂
⋅ 6.33−

Pa
m

⋅=
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Problem 6.15 [4]

Given: Flow in a pipe with variable area

Find: Expression for pressure gradient and pressure; Plot them

Solution:
Assumptions: 1) Incompressible flow 2) Flow profile remains unchanged so centerline velocity can represent average velocity

Basic equations Q V A⋅=

For this 1D flow Q ui Ai⋅= u A⋅= A Ai
Ai Ae−( )

L
x⋅−= so u x( ) ui

Ai
A

⋅= ui
Ai

Ai
Ai Ae−( )

L
x⋅

⎡
⎢
⎣

⎤
⎥
⎦

−

⋅=

ax u
x

u∂

∂
⋅ v

y
u∂

∂
⋅+= ui

Ai

Ai
Ai Ae−( )

L
x⋅

⎡
⎢
⎣

⎤
⎥
⎦

−

⋅
x

ui
Ai

Ai
Ai Ae−( )

L
x⋅

⎡
⎢
⎣

⎤
⎥
⎦

−

⋅
⎡⎢
⎢
⎢
⎣

⎤⎥
⎥
⎥
⎦

∂

∂
⋅=

Ai
2 L2
⋅ ui

2
⋅ Ae Ai−( )⋅

Ai L⋅ Ae x⋅+ Ai x⋅−( )3
=

For the pressure
x

p∂

∂
ρ− ax⋅ ρ gx⋅−=

ρ Ai
2

⋅ L2
⋅ ui

2
⋅ Ae Ai−( )⋅

Ai L⋅ Ae x⋅+ Ai x⋅−( )3
−=

and dp
x

p∂

∂
dx⋅= p pi−

0

x

x
x

p∂

∂

⌠
⎮
⎮
⌡

d=

0

x

x
ρ Ai

2
⋅ L2

⋅ ui
2

⋅ Ae Ai−( )⋅

Ai L⋅ Ae x⋅+ Ai x⋅−( )3
−

⌠⎮
⎮
⎮
⎮⌡

d=

This is a tricky integral, so instead consider the following:
x

p∂

∂
ρ− ax⋅= ρ− u⋅

x
u∂

∂
⋅=

1
2

− ρ⋅
x

u2( )∂

∂
⋅=

Hence p pi−

0

x

x
x

p∂

∂

⌠
⎮
⎮
⌡

d=
ρ

2
−

0

x

x
x

u2( )∂

∂

⌠
⎮
⎮
⌡

d⋅=
ρ

2
u x 0=( )2 u x( )2

−( )⋅=

p x( ) pi
ρ

2
ui

2 u x( )2
−⎛

⎝
⎞
⎠⋅+= which we recognise as the Bernoulli equation!

p x( ) pi
ρ ui

2
⋅

2
1

Ai

Ai
Ai Ae−( )

L
x⋅

⎡
⎢
⎣

⎤
⎥
⎦

−

⎡⎢
⎢
⎢
⎣

⎤⎥
⎥
⎥
⎦

2

−
⎡
⎢
⎢
⎢
⎣

⎤
⎥
⎥
⎥
⎦

⋅+=



The following plots can be done in Excel
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Problem 6.16 [4]

Given: Flow in a pipe with variable area

Find: Expression for pressure gradient and pressure; Plot them

Solution:
Assumptions: 1) Incompressible flow 2) Flow profile remains unchanged so centerline velocity can represent average velocity

Basic equations Q V A⋅=

For this 1D flow Q u0 A0⋅= u A⋅= A x( ) A0 1 e

x
a

−
+ e

x
2 a⋅

−
−

⎛
⎜
⎝

⎞
⎟
⎠⋅=

so u x( ) u0
A0
A

⋅=
u0

1 e

x
a

−
+ e

x
2 a⋅

−
−

⎛
⎜
⎝

⎞
⎟
⎠

=

ax u
x

u∂

∂
⋅ v

y
u∂

∂
⋅+=

u0

1 e

x
a

−
+ e

x
2 a⋅

−
−

⎛
⎜
⎝

⎞
⎟
⎠

x

u0

1 e

x
a

−
+ e

x
2 a⋅

−
−

⎛
⎜
⎝

⎞
⎟
⎠

⎡⎢
⎢
⎢
⎣

⎤⎥
⎥
⎥
⎦

∂

∂
⋅=

u0
2 e

x
2 a⋅

−
⋅ 2 e

x
2 a⋅

−
⋅ 1−

⎛
⎜
⎝

⎞
⎟
⎠⋅

2 a⋅ e

x
a

−
e

x
2 a⋅

−
− 1+

⎛
⎜
⎝

⎞
⎟
⎠

3

⋅

=

For the pressure
x

p∂

∂
ρ− ax⋅ ρ gx⋅−=

ρ u0
2

⋅ e

x
2 a⋅

−
⋅ 2 e

x
2 a⋅

−
⋅ 1−

⎛
⎜
⎝

⎞
⎟
⎠⋅

2 a⋅ e

x
a

−
e

x
2 a⋅

−
− 1+

⎛
⎜
⎝

⎞
⎟
⎠

3

⋅

−=

and dp
x

p∂

∂
dx⋅= p pi−

0

x

x
x

p∂

∂

⌠
⎮
⎮
⌡

d=

0

x

x
ρ u0

2
⋅ e

x
2 a⋅

−
⋅ 2 e

x
2 a⋅

−
⋅ 1−

⎛
⎜
⎝

⎞
⎟
⎠⋅

2 a⋅ e

x
a

−
e

x
2 a⋅

−
− 1+

⎛
⎜
⎝

⎞
⎟
⎠

3

⋅

−

⌠
⎮
⎮
⎮
⎮
⎮
⎮
⌡

d=

This is a tricky integral, so instead consider the following:
x

p∂

∂
ρ− ax⋅= ρ− u⋅

x
u∂

∂
⋅=

1
2

− ρ⋅
x

u2( )∂

∂
⋅=



Hence p pi−

0

x

x
x

p∂

∂

⌠
⎮
⎮
⌡

d=
ρ

2
−

0

x

x
x

u2( )∂

∂

⌠
⎮
⎮
⌡

d⋅=
ρ

2
u x 0=( )2 u x( )2

−( )⋅=

which we recognise as the Bernoulli equation!p x( ) p0
ρ

2
u0

2 u x( )2
−⎛

⎝
⎞
⎠⋅+=

p x( ) p0
ρ u0

2
⋅

2
1

1

1 e

x
a

−
+ e

x
2 a⋅

−
−

⎛
⎜
⎝

⎞
⎟
⎠

⎡
⎢
⎢
⎣

⎤
⎥
⎥
⎦

2
−

⎡⎢
⎢
⎢
⎣

⎤⎥
⎥
⎥
⎦

⋅+=

The following plots can be done in Excel
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Problem 6.17 [3]

Given: Nozzle geometry

Find: Acceleration of fluid particle; Plot; Plot pressure gradient; find L such that pressure gradient < 5 MPa/m in
absolute value

Solution:

The given data is Di 0.1 m⋅= Do 0.02 m⋅= L 0.5 m⋅= Vi 1
m
s

⋅= ρ 1000
kg

m3
⋅=

For a linear decrease in diameter D x( ) Di
Do Di−

L
x⋅+=

From continuity Q V A⋅= V
π

4
⋅ D2

⋅= Vi
π

4
⋅ Di

2
⋅= Q 0.00785

m3

s
=

Hence V x( )
π

4
⋅ D x( )2

⋅ Q= V x( )
4 Q⋅

π Di
Do Di−

L
x⋅+

⎛
⎜
⎝

⎞
⎟
⎠

2

⋅

=

or V x( )
Vi

1
Do Di−

L Di⋅
x⋅+

⎛
⎜
⎝

⎞
⎟
⎠

2
=

The governing equation for this flow is

or, for steady 1D flow, in the notation of the problem

ax V
x

Vd
d
⋅=

Vi

1
Do Di−

L Di⋅
x⋅+

⎛
⎜
⎝

⎞
⎟
⎠

2 x

Vi

1
Do Di−

L Di⋅
x⋅+

⎛
⎜
⎝

⎞
⎟
⎠

2
d
d
⋅= ax x( )

2 Vi
2

⋅ Do Di−( )⋅

Di L⋅ 1
Do Di−( )

Di L⋅
x⋅+

⎡
⎢
⎣

⎤
⎥
⎦

5

⋅

−=

This is plotted in the associated Excel workbook

From Eq. 6.2a, pressure gradient is

x
p∂

∂
ρ− ax⋅=

x
p∂

∂

2 ρ⋅ Vi
2

⋅ Do Di−( )⋅

Di L⋅ 1
Do Di−( )

Di L⋅
x⋅+

⎡
⎢
⎣

⎤
⎥
⎦

5

⋅

=



This is also plotted in the associated Excel workbook.  Note that the pressure gradient is always negative: separation is
unlikely to occur in the nozzle

At the inlet
x

p∂

∂
3.2−

kPa
m

⋅= At the exit
x

p∂

∂
10−

MPa
m

⋅=

To find the length L for which the absolute pressure gradient is no more than 5 MPa/m, we need to solve 

x
p∂

∂
5

MPa
m

⋅≤
2 ρ⋅ Vi

2
⋅ Do Di−( )⋅

Di L⋅ 1
Do Di−( )

Di L⋅
x⋅+

⎡
⎢
⎣

⎤
⎥
⎦

5

⋅

=

with x = L m (the largest pressure gradient is at the outlet)

Hence L
2 ρ⋅ Vi

2
⋅ Do Di−( )⋅

Di
Do
Di

⎛
⎜
⎝

⎞
⎟
⎠

5

⋅
x

p∂

∂
⋅

≥ L 1 m⋅≥

This result is also obtained using Goal Seek in the Excel workbook



The acceleration and pressure gradient are given by

D i  = 0.1 m
D o  = 0.02 m

L  = 0.5 m
V i  = 1 m/s
ρ = 1000 kg/m3

x  (m) a  (m/s2) dp /dx  (kPa/m)

0.000 3.20 -3.20
0.050 4.86 -4.86
0.100 7.65 -7.65 For the length L  required
0.150 12.6 -12.6 for the pressure gradient
0.200 22.0 -22.0 to be less than 5 MPa/m (abs)
0.250 41.2 -41.2 use Goal Seek
0.300 84.2 -84.2
0.350 194 -194 L  = 1.00 m
0.400 529 -529
0.420 843 -843 x  (m) dp /dx (kPa/m)

0.440 1408 -1408 1.00 -5000
0.460 2495 -2495
0.470 3411 -3411
0.480 4761 -4761
0.490 6806 -6806
0.500 10000 -10000
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Problem 6.18 [3]

Given: Diffuser geometry

Find: Acceleration of a fluid particle; plot it; plot pressure gradient; find L such that pressure gradient is less than 25 kPa/m

Solution:

The given data is Di 0.25 m⋅= Do 0.75 m⋅= L 1 m⋅= Vi 5
m
s

⋅= ρ 1000
kg

m3
⋅=

For a linear increase in diameter D x( ) Di
Do Di−

L
x⋅+=

From continuity Q V A⋅= V
π

4
⋅ D2

⋅= Vi
π

4
⋅ Di

2
⋅= Q 0.245

m3

s
=

Hence V x( )
π

4
⋅ D x( )2

⋅ Q= V x( )
4 Q⋅

π Di
Do Di−

L
x⋅+

⎛
⎜
⎝

⎞
⎟
⎠

2

⋅

= or V x( )
Vi

1
Do Di−

L Di⋅
x⋅+

⎛
⎜
⎝

⎞
⎟
⎠

2
=

The governing equation for this flow is

or, for steady 1D flow, in the notation of the problem ax V
x

Vd
d
⋅=

Vi

1
Do Di−

L Di⋅
x⋅+

⎛
⎜
⎝

⎞
⎟
⎠

2 x

Vi

1
Do Di−

L Di⋅
x⋅+

⎛
⎜
⎝

⎞
⎟
⎠

2
d
d
⋅=

Hence ax x( )
2 Vi

2
⋅ Do Di−( )⋅

Di L⋅ 1
Do Di−( )

Di L⋅
x⋅+

⎡
⎢
⎣

⎤
⎥
⎦

5

⋅

−=

This is plotted in the associated Excel workbook

From Eq. 6.2a, pressure gradient is
x

p∂

∂
ρ− ax⋅=

x
p∂

∂

2 ρ⋅ Vi
2

⋅ Do Di−( )⋅

Di L⋅ 1
Do Di−( )

Di L⋅
x⋅+

⎡
⎢
⎣

⎤
⎥
⎦

5

⋅

=

This is also plotted in the associated Excel workbook.  Note that the pressure gradient is adverse: separation is likely to
occur in the diffuser, and occur near the entrance



At the inlet
x

p∂

∂
100

kPa
m

⋅= At the exit
x

p∂

∂
412

Pa
m

⋅=

To find the length L for which the pressure gradient is no more than 25 kPa/m, we need to solve 

x
p∂

∂
25

kPa
m

⋅≤
2 ρ⋅ Vi

2
⋅ Do Di−( )⋅

Di L⋅ 1
Do Di−( )

Di L⋅
x⋅+

⎡
⎢
⎣

⎤
⎥
⎦

5

⋅

=

with x = 0 m (the largest pressure gradient is at the inlet)

Hence L
2 ρ⋅ Vi

2
⋅ Do Di−( )⋅

Di x
p∂

∂
⋅

≥ L 4 m⋅≥

This result is also obtained using Goal Seek in the Excel workbook



a

The acceleration and pressure gradient are given by

D i  = 0.25 m
D o  = 0.75 m

L  = 1 m
V i  = 5 m/s
ρ = 1000 kg/m3

x  (m) a  (m/s2) dp /dx  (kPa/m)

0.00 -100 100
0.05 -62.1 62.1
0.10 -40.2 40.2 For the length L  required
0.15 -26.9 26.93 for the pressure gradient
0.20 -18.59 18.59 to be less than 25 kPa/m
0.25 -13.17 13.17 use Goal Seek
0.30 -9.54 9.54
0.40 -5.29 5.29 L  = 4.00 m
0.50 -3.125 3.125
0.60 -1.940 1.940 x  (m) dp /dx (kPa/m)

0.70 -1.256 1.256 0.0 25.0
0.80 -0.842 0.842
0.90 -0.581 0.581
1.00 -0.412 0.412
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Problem 6.25 [2]

Given: Velocity field for doublet

Find: Expression for pressure gradient

Solution:

Basic equations

For this flow Vr r θ, ( )
Λ

r2
− cos θ( )⋅= V

θ
r θ, ( )

Λ

r2
− sin θ( )⋅= Vz 0=

Hence for r momentum ρ gr⋅
r
p∂

∂
− ρ Vr r

Vr
∂

∂
⋅

V
θ

r θ

Vr
∂

∂
⋅+

V
θ

2

r
−

⎛⎜
⎜
⎝

⎞⎟
⎟
⎠

⋅=

Ignoring gravity

r
p∂

∂
ρ−

Λ

r2
− cos θ( )⋅⎛

⎜
⎝

⎞
⎟
⎠ r

Λ

r2
− cos θ( )⋅⎛

⎜
⎝

⎞
⎟
⎠

∂

∂
⋅

Λ

r2
− sin θ( )⋅⎛

⎜
⎝

⎞
⎟
⎠

r θ

Λ

r2
− cos θ( )⋅⎛

⎜
⎝

⎞
⎟
⎠

∂

∂
⋅+

Λ

r2
− sin θ( )⋅⎛

⎜
⎝

⎞
⎟
⎠

2

r
−

⎡
⎢
⎢
⎢
⎣

⎤
⎥
⎥
⎥
⎦

⋅=
r
p∂

∂

2 Λ
2

⋅ ρ⋅

r5
=

For θ momentum ρ g
θ

⋅
1
r θ

p∂

∂
⋅− ρ Vr r

V
θ

∂

∂
⋅

V
θ

r θ

V
θ

∂

∂
⋅+

Vr V
θ

⋅

r
+

⎛
⎜
⎝

⎞
⎟
⎠

⋅=

Ignoring gravity

θ

p∂

∂
r− ρ⋅

Λ

r2
− cos θ( )⋅⎛

⎜
⎝

⎞
⎟
⎠ r

Λ

r2
− sin θ( )⋅⎛

⎜
⎝

⎞
⎟
⎠

∂

∂
⋅

Λ

r2
− sin θ( )⋅⎛

⎜
⎝

⎞
⎟
⎠

r θ

Λ

r2
− sin θ( )⋅⎛

⎜
⎝

⎞
⎟
⎠

∂

∂
⋅+

Λ

r2
− sin θ( )⋅⎛

⎜
⎝

⎞
⎟
⎠

Λ

r2
− cos θ( )⋅⎛

⎜
⎝

⎞
⎟
⎠

⋅

r
+

⎡
⎢
⎢
⎢
⎣

⎤
⎥
⎥
⎥
⎦

⋅=
θ

p∂

∂
0=

The pressure gradient is purely radial
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Problem 6.28 [3]

Given: Velocity field for free vortex flow in elbow

Find: Similar solution to Example 6.1; find k (above)

Solution:

Basic equation
r
p∂

∂

ρ V2
⋅
r

= with V V
θ

=
c
r

=

Assumptions: 1) Frictionless 2) Incompressible 3) free vortex

For this flow p p θ( )≠ so
r
p∂

∂ r
pd

d
=

ρ V2
⋅
r

=
ρ c2
⋅

r3
=

Hence Δp p2 p1−=

r1

r2

r
ρ c2
⋅

r3

⌠
⎮
⎮
⎮
⌡

d=
ρ c2
⋅
2

1

r1
2

1

r2
2

−⎛⎜
⎜⎝

⎞⎟
⎟⎠

⋅=
ρ c2
⋅ r2

2 r1
2

−⎛
⎝

⎞
⎠⋅

2 r1
2

⋅ r2
2

⋅
= (1)

Next we obtain c in terms of Q

Q A
→

V
→⌠⎮

⎮
⌡

d=
r1

r2
rV w⋅

⌠
⎮
⌡

d=

r1

r2
r

w c⋅
r

⌠
⎮
⎮
⌡

d= w c⋅ ln
r2
r1

⎛
⎜
⎝

⎞
⎟
⎠

⋅=

Hence c
Q

w ln
r2
r1

⎛
⎜
⎝

⎞
⎟
⎠

⋅

=

Using this in Eq 1 Δp p2 p1−=
ρ c2
⋅ r2

2 r1
2

−⎛
⎝

⎞
⎠⋅

2 r1
2

⋅ r2
2

⋅
=

ρ Q2
⋅ r2

2 r1
2

−⎛
⎝

⎞
⎠⋅

2 w2
⋅ ln

r2
r1

⎛
⎜
⎝

⎞
⎟
⎠

2

⋅ r1
2

⋅ r2
2

⋅

=

Solving for Q Q w ln
r2
r1

⎛
⎜
⎝

⎞
⎟
⎠

⋅
2 r1

2
⋅ r2

2
⋅

ρ r2
2 r1

2
−⎛

⎝
⎞
⎠⋅

⋅ Δp⋅= k w ln
r2
r1

⎛
⎜
⎝

⎞
⎟
⎠

⋅
2 r1

2
⋅ r2

2
⋅

ρ r2
2 r1

2
−⎛

⎝
⎞
⎠⋅

⋅=



Problem 6.29

From Example 6.1: or Eq. 1

From Problem 6.28: Eq. 2

Instead of plotting as a function of inner radius we plot as a function of r 2/r1

r2/r1 Eq. 1 Eq. 2 Error
1.01 0.100 0.100 0.0%
1.05 0.226 0.226 0.0%
1.10 0.324 0.324 0.1%
1.15 0.401 0.400 0.2%
1.20 0.468 0.466 0.4%
1.25 0.529 0.526 0.6%
1.30 0.586 0.581 0.9%
1.35 0.639 0.632 1.1%
1.40 0.690 0.680 1.4%
1.45 0.738 0.726 1.7%
1.50 0.785 0.769 2.1%
1.55 0.831 0.811 2.4%
1.60 0.875 0.851 2.8%
1.65 0.919 0.890 3.2%
1.70 0.961 0.928 3.6%
1.75 1.003 0.964 4.0%
1.80 1.043 1.000 4.4%
1.85 1.084 1.034 4.8%
1.90 1.123 1.068 5.2%
1.95 1.162 1.100 5.7%
2.00 1.201 1.132 6.1%
2.05 1.239 1.163 6.6%
2.10 1.277 1.193 7.0%
2.15 1.314 1.223 7.5%
2.20 1.351 1.252 8.0%
2.25 1.388 1.280 8.4%
2.30 1.424 1.308 8.9%
2.35 1.460 1.335 9.4%
2.40 1.496 1.362 9.9%
2.45 1.532 1.388 10.3%
2.50 1.567 1.414 10.8%

0.0%

2.5%

5.0%

7.5%

10.0%

1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6

r2/r1

Er
ro

r
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Problem 6.31 [4]

Given: Velocity field

Find: Constant B for incompressible flow; Acceleration of particle at (2,1); acceleration normal to velocity at (2,1)

Solution:

Basic equations

For this flow u x y, ( ) A x3
⋅ B x⋅ y2

⋅+= v x y, ( ) A y3
⋅ B x2

⋅ y⋅+=

x
u x y, ( )∂

∂ y
v x y, ( )∂

∂
+

x
A x3

⋅ B x⋅ y2
⋅+( )∂

∂ y
A y3

⋅ B x2
⋅ y⋅+( )∂

∂
+= 0=

x
u x y, ( )∂

∂ y
v x y, ( )∂

∂
+ 3 A⋅ B+( ) x2 y2

+( )⋅= 0= Hence B 3− A⋅= B 0.6−
1

m2 s⋅
=

We can write u x y, ( ) A x3
⋅ 3 A⋅ x⋅ y2

⋅−= v x y, ( ) A y3
⋅ 3 A⋅ x2

⋅ y⋅−=

Hence for ax ax u
x

u∂

∂
⋅ v

y
u∂

∂
⋅+= A x3

⋅ 3 A⋅ x⋅ y2
⋅−( )

x
A x3

⋅ 3 A⋅ x⋅ y2
⋅−( )∂

∂
⋅ A y3

⋅ 3 A⋅ x2
⋅ y⋅−( )

y
A x3

⋅ 3 A⋅ x⋅ y2
⋅−( )∂

∂
⋅+=

ax 3 A2
⋅ x⋅ x2 y2

+( )2
⋅=

For ay ay u
x

v∂

∂
⋅ v

y
v∂

∂
⋅+= A x3

⋅ 3 A⋅ x⋅ y2
⋅−( )

x
A y3

⋅ 3 A⋅ x2
⋅ y⋅−( )∂

∂
⋅ A y3

⋅ 3 A⋅ x2
⋅ y⋅−( )

y
A y3

⋅ 3 A⋅ x2
⋅ y⋅−( )∂

∂
⋅+=

ay 3 A2
⋅ y⋅ x2 y2

+( )2
⋅=

Hence at (2,1) ax 3
0.2

m2 s⋅

⎛
⎜
⎝

⎞
⎟
⎠

2
⋅ 2× m⋅ 2 m⋅( )2 1 m⋅( )2

+⎡⎣ ⎤⎦
2

×= ax 6.00
m

s2
⋅=

ay 3
0.2

m2 s⋅

⎛
⎜
⎝

⎞
⎟
⎠

2
⋅ 1× m⋅ 2 m⋅( )2 1 m⋅( )2

+⎡⎣ ⎤⎦
2

×= ay 3.00
m

s2
⋅=

a ax
2 ay

2
+= a 6.71

m

s2
=

We need to find the component of acceleration normal to the velocity vector



Δθ 

V
r

 

ar  

At (2,1) the velocity vector is at angle θvel atan
v
u

⎛⎜
⎝

⎞⎟
⎠

= atan
A y3

⋅ 3 A⋅ x2
⋅ y⋅−

A x3
⋅ 3 A⋅ x⋅ y2

⋅−

⎛⎜
⎜⎝

⎞⎟
⎟⎠

=

θvel atan
13 3 22

⋅ 1⋅−

23 3 2⋅ 12
⋅−

⎛⎜
⎜⎝

⎞⎟
⎟⎠

= θvel 79.7− deg⋅=

At (1,2) the acceleration vector is at
angle

θaccel atan
ay
ax

⎛
⎜
⎝

⎞
⎟
⎠

= θaccel atan
1
2

⎛⎜
⎝

⎞⎟
⎠

= θaccel 26.6 deg⋅=

Hence the angle between the acceleration and velocity vectors is Δθ θaccel θvel−= Δθ 106 deg⋅=

The component of acceleration normal to the velocity is then an a sin Δθ( )⋅= 6.71
m

s2
⋅ sin 106 deg⋅( )⋅= an 6.45

m

s2
⋅=
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Problem 6.34 [4]

Given: x component of velocity field

Find: y component of velocity field; acceleration at several points; estimate radius of curvature; plot streamlines

Solution:

The given data is Λ 2
m3

s
⋅= u

Λ x2 y2
−( )⋅

x2 y2
+( )2

−=

The governing equation (continuity) is 
x

u∂

∂ y
v∂

∂
+ 0=

Hence v y
du
dx

⌠
⎮
⎮
⌡

d−= y
2 Λ⋅ x⋅ x2 3 y2

⋅−( )⋅

x2 y2
+( )3

⌠
⎮
⎮
⎮
⎮
⌡

d−=

Integrating (using an integrating factor) v
2 Λ⋅ x⋅ y⋅

x2 y2
+( )2

−=

Alternatively, we could check that the given velocities u and v satisfy continuity

u
Λ x2 y2

−( )⋅

x2 y2
+( )2

−=
x

u∂

∂

2 Λ⋅ x⋅ x2 3 y2
⋅−( )⋅

x2 y2
+( )3

= v
2 Λ⋅ x⋅ y⋅

x2 y2
+( )2

−=
y

v∂

∂

2 Λ⋅ x⋅ x2 3 y2
⋅−( )⋅

x2 y2
+( )3

−=

so
x

u∂

∂ y
v∂

∂
+ 0=

The governing equation for acceleration is

For steady, 2D flow this reduces to (after considerable math!)

x - component ax u
x

u∂

∂
⋅ v

y
u∂

∂
⋅+=



ax
Λ x2 y2

−( )⋅

x2 y2
+( )2

−
⎡
⎢
⎢
⎣

⎤
⎥
⎥
⎦

2 Λ⋅ x⋅ x2 3 y2
⋅−( )⋅

x2 y2
+( )3

⎡
⎢
⎢
⎣

⎤
⎥
⎥
⎦

⋅
2 Λ⋅ x⋅ y⋅

x2 y2
+( )2

−⎡⎢
⎢⎣

⎤⎥
⎥⎦

2 Λ⋅ y⋅ 3 x2
⋅ y2

−( )⋅

x2 y2
+( )3

⎡
⎢
⎢
⎣

⎤
⎥
⎥
⎦

⋅+= ax
2 Λ

2
⋅ x⋅

x2 y2
+( )3

−=

y - component ay u
x

v∂

∂
⋅ v

y
v∂

∂
⋅+=

ay
Λ x2 y2

−( )⋅

x2 y2
+( )2

−
⎡
⎢
⎢
⎣

⎤
⎥
⎥
⎦

2 Λ⋅ y⋅ 3 x2
⋅ y2

−( )⋅

x2 y2
+( )3

⎡
⎢
⎢
⎣

⎤
⎥
⎥
⎦

⋅
2 Λ⋅ x⋅ y⋅

x2 y2
+( )2

−⎡⎢
⎢⎣

⎤⎥
⎥⎦

2 Λ⋅ y⋅ 3 y2
⋅ x2

−( )⋅

x2 y2
+( )3

⎡
⎢
⎢
⎣

⎤
⎥
⎥
⎦

⋅+= ay
2 Λ

2
⋅ y⋅

x2 y2
+( )3

−=

Evaluating at point (0,1) u 2
m
s

⋅= v 0
m
s

⋅= ax 0
m

s2
⋅= ay 8−

m

s2
⋅=

Evaluating at point (0,2) u 0.5
m
s

⋅= v 0
m
s

⋅= ax 0
m

s2
⋅= ay 0.25−

m

s2
⋅=

Evaluating at point (0,3) u 0.222
m
s

⋅= v 0
m
s

⋅= ax 0
m

s2
⋅= ay 0.0333−

m

s2
⋅=

The instantaneous radius of curvature is obtained from aradial ay−=
u2

r
−= or r

u2

ay
−=

For the three points y 1m= r
2

m
s

⋅⎛⎜
⎝

⎞⎟
⎠

2

8
m

s2
⋅

= r 0.5m=

y 2m= r
0.5

m
s

⋅⎛⎜
⎝

⎞⎟
⎠

2

0.25
m

s2
⋅

= r 1 m=

y 3m= r
0.2222

m
s

⋅⎛⎜
⎝

⎞⎟
⎠

2

0.03333
m

s2
⋅

= r 1.5 m⋅=

The radius of curvature in each case is 1/2 of the vertical distance from the origin.  The streamlines form circles tangent to the x
axis

The streamlines are given by dy
dx

v
u

=

2 Λ⋅ x⋅ y⋅

x2 y2
+( )2

−

Λ x2 y2
−( )⋅

x2 y2
+( )2

−

=
2 x⋅ y⋅

x2 y2
−( )=

so 2− x⋅ y⋅ dx⋅ x2 y2
−( ) dy⋅+ 0=



This is an inexact integral, so an integrating factor is needed

First we try R
1

2− x⋅ y⋅ x
x2 y2

−( )d
d y

2− x⋅ y⋅( )d
d

−
⎡
⎢
⎣

⎤
⎥
⎦

⋅=
2
y

−=

Then the integrating factor is F e

y
2
y

−
⌠
⎮
⎮
⌡

d

=
1

y2
=

The equation becomes an exact integral 2−
x
y
⋅ dx⋅

x2 y2
−( )
y2

dy⋅+ 0=

So u x2−
x
y
⋅

⌠
⎮
⎮
⌡

d=
x2

y
− f y( )+= and u y

x2 y2
−( )
y2

⌠
⎮
⎮
⎮
⌡

d=
x2

y
− y− g x( )+=

Comparing solutions ψ
x2

y
y+= or x2 y2

+ ψ y⋅= const y⋅=

These form circles that are tangential to the x axis, as shown in the associated Excel workbook



This function is computed and plotted below

0.10 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25 2.50 2.75 3.00 3.25 3.50 3.75 4.00 4.25 4.50 4.75 5.00
2.50 62.6 25.3 13.0 9.08 7.25 6.25 5.67 5.32 5.13 5.03 5.00 5.02 5.08 5.17 5.29 5.42 5.56 5.72 5.89 6.07 6.25
2.25 50.7 20.5 10.6 7.50 6.06 5.30 4.88 4.64 4.53 4.50 4.53 4.59 4.69 4.81 4.95 5.10 5.27 5.44 5.63 5.82 6.01
2.00 40.1 16.3 8.50 6.08 5.00 4.45 4.17 4.04 4.00 4.03 4.10 4.20 4.33 4.48 4.64 4.82 5.00 5.19 5.39 5.59 5.80
1.75 30.7 12.5 6.63 4.83 4.06 3.70 3.54 3.50 3.53 3.61 3.73 3.86 4.02 4.19 4.38 4.57 4.77 4.97 5.18 5.39 5.61
1.50 22.6 9.25 5.00 3.75 3.25 3.05 3.00 3.04 3.13 3.25 3.40 3.57 3.75 3.94 4.14 4.35 4.56 4.78 5.00 5.22 5.45
1.25 15.7 6.50 3.63 2.83 2.56 2.50 2.54 2.64 2.78 2.94 3.13 3.32 3.52 3.73 3.95 4.17 4.39 4.62 4.85 5.08 5.31
1.00 10.1 4.25 2.50 2.08 2.00 2.05 2.17 2.32 2.50 2.69 2.90 3.11 3.33 3.56 3.79 4.02 4.25 4.49 4.72 4.96 5.20
0.75 5.73 2.50 1.63 1.50 1.56 1.70 1.88 2.07 2.28 2.50 2.73 2.95 3.19 3.42 3.66 3.90 4.14 4.38 4.63 4.87 5.11
0.50 2.60 1.25 1.00 1.08 1.25 1.45 1.67 1.89 2.13 2.36 2.60 2.84 3.08 3.33 3.57 3.82 4.06 4.31 4.56 4.80 5.05
0.25 0.73 0.50 0.63 0.83 1.06 1.30 1.54 1.79 2.03 2.28 2.53 2.77 3.02 3.27 3.52 3.77 4.02 4.26 4.51 4.76 5.01
0.00 0.10 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25 2.50 2.75 3.00 3.25 3.50 3.75 4.00 4.25 4.50 4.75 5.00

x 
va

lu
es

y values
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Problem 6.36 [5]

Given: Velocity field

Find: Constant B for incompressible flow; Equation for streamline through (1,2); Acceleration of particle; streamline curvature

Solution:

Basic equations

For this flow u x y, ( ) A x4 6 x2
⋅ y2

⋅− y4
+( )⋅= v x y, ( ) B x3 y⋅ x y3

⋅−( )⋅=

x
u x y, ( )∂

∂ y
v x y, ( )∂

∂
+

x
A x4 6 x2

⋅ y2
⋅− y4

+( )⋅⎡⎣ ⎤⎦
∂

∂ y
B x3 y⋅ x y3

⋅−( )⋅⎡⎣ ⎤⎦
∂

∂
+= 0=

x
u x y, ( )∂

∂ y
v x y, ( )∂

∂
+ B x3 3 x⋅ y2

⋅−( )⋅ A 4 x3
⋅ 12 x⋅ y2

⋅−( )⋅+= 4 A⋅ B+( ) x⋅ x2 3 y2
⋅−( )⋅= 0=

Hence B 4− A⋅= B 8−
1

m3 s⋅
=

Hence for ax

ax u
x

u∂

∂
⋅ v

y
u∂

∂
⋅+= A x4 6 x2

⋅ y2
⋅− y4

+( )⋅
x

A x4 6 x2
⋅ y2

⋅− y4
+( )⋅⎡⎣ ⎤⎦

∂

∂
⋅ 4− A⋅ x3 y⋅ x y3

⋅−( )⋅⎡⎣ ⎤⎦
y

A x4 6 x2
⋅ y2

⋅− y4
+( )⋅⎡⎣ ⎤⎦

∂

∂
⋅+=

ax 4 A2
⋅ x⋅ x2 y2

+( )3
⋅=

For ay

ay u
x

v∂

∂
⋅ v

y
v∂

∂
⋅+= A x4 6 x2

⋅ y2
⋅− y4

+( )⋅
x

4− A⋅ x3 y⋅ x y3
⋅−( )⋅⎡⎣ ⎤⎦

∂

∂
⋅ 4− A⋅ x3 y⋅ x y3

⋅−( )⋅⎡⎣ ⎤⎦
y

4− A⋅ x3 y⋅ x y3
⋅−( )⋅⎡⎣ ⎤⎦

∂

∂
⋅+=

ay 4 A2
⋅ y⋅ x2 y2

+( )3
⋅=

For a streamline dy
dx

v
u

= so dy
dx

4− A⋅ x3 y⋅ x y3
⋅−( )⋅

A x4 6 x2
⋅ y2

⋅− y4
+( )⋅

=
4 x3 y⋅ x y3

⋅−( )⋅

x4 6 x2
⋅ y2

⋅− y4
+( )−=

Let u
y
x

=
du
dx

d
y
x

⎛⎜
⎝

⎞⎟
⎠

dx
=

1
x

dy
dx

⋅ y
d

1
x

⎛⎜
⎝

⎞⎟
⎠

dx
⋅+=

1
x

dy
dx

⋅
y

x2
−= so dy

dx
x

du
dx

⋅ u+=



Hence dy
dx

x
du
dx

⋅ u+=
4 x3 y⋅ x y3

⋅−( )⋅

x4 6 x2
⋅ y2

⋅− y4
+( )−=

4 1 u2
−( )⋅

1
u

6 u⋅− u3
+⎛⎜

⎝
⎞⎟
⎠

−= u
4 1 u2

−( )⋅
1
u

6 u⋅− u3
+⎛⎜

⎝
⎞⎟
⎠

+

x
du
dx

⋅ u
4 1 u2

−( )⋅
1
u

6 u⋅− u3
+⎛⎜

⎝
⎞⎟
⎠

+
⎡⎢
⎢
⎢⎣

⎤⎥
⎥
⎥⎦

−=
u u4 10 u2

⋅− 5+( )⋅

u4 6 u2
⋅− 1+

−=

Separating variables dx
x

u4 6 u2
⋅− 1+

u u4 10 u2
⋅− 5+( )⋅

− du⋅= ln x( )
1
5

− ln u5 10 u3
⋅− 5 u⋅+( )⋅ C+=

u5 10 u3
⋅− 5 u⋅+( ) x5

⋅ c= y5 10 y3
⋅ x2

⋅− 5 y⋅ x4
⋅+ const=

For the streamline through (1,2) y5 10 y3
⋅ x2

⋅− 5 y⋅ x4
⋅+ 38−=

Note that it would be MUCH easier to use the stream function method here!

To find the radius of curvature we use an
V2

R
−= or R

V2

an
=

Δθ 

V
r

 

ar  

We need to find the component of acceleration normal to the velocity vector

At (1,2) the velocity vector is at angle θvel atan
v
u

⎛⎜
⎝

⎞⎟
⎠

= atan
4 x3 y⋅ x y3

⋅−( )⋅

x4 6 x2
⋅ y2

⋅− y4
+( )−

⎡⎢
⎢⎣

⎤⎥
⎥⎦

=

θvel atan
4 2 8−( )⋅

1 24− 16+
−⎡⎢

⎣
⎤⎥
⎦

= θvel 73.7− deg⋅=

At (1,2) the acceleration vector is at
angle

θaccel atan
ay
ax

⎛
⎜
⎝

⎞
⎟
⎠

= atan
4 A2

⋅ y⋅ x2 y2
+( )3

⋅

4 A2
⋅ x⋅ x2 y2

+( )3
⋅

⎡⎢
⎢
⎢⎣

⎤⎥
⎥
⎥⎦

= atan
y
x

⎛⎜
⎝

⎞⎟
⎠

=

θaccel atan
2
1

⎛⎜
⎝

⎞⎟
⎠

= θaccel 63.4 deg⋅=

Hence the angle between the acceleration and velocity vectors is Δθ θaccel θvel−= Δθ 137 deg⋅=

The component of acceleration normal to the velocity is then an a sin Δθ( )⋅= where a ax
2 ay

2
+=

At (1,2) ax 4 A2
⋅ x⋅ x2 y2

+( )3
⋅= 500 m7

⋅ A2
×= 500 m7

⋅
2

m3 s⋅

⎛
⎜
⎝

⎞
⎟
⎠

2
×= 2000

m

s2
⋅=

ay 4 A2
⋅ y⋅ x2 y2

+( )3
⋅= 1000 m7

⋅ A2
×= 1000 m7

⋅
2

m3 s⋅

⎛
⎜
⎝

⎞
⎟
⎠

2
×= 4000

m

s2
⋅=

a 20002 40002
+

m

s2
⋅= a 4472

m

s2
= an a sin Δθ( )⋅= an 3040

m

s2
=

u A x4 6 x2
⋅ y2

⋅− y4
+( )⋅= 14−

m
s

⋅= v B x3 y⋅ x y3
⋅−( )⋅= 48

m
s

⋅= V u2 v2
+= 50

m
s

⋅=

Then R
V2

an
= R 50

m
s

⋅⎛⎜
⎝

⎞⎟
⎠

2 1
3040

×
s2

m
⋅= R 0.822m=



Problem 6.37 [1]

Given: Water at speed 10 ft/s

Find: Dynamic pressure in in. Hg

Solution:

Basic equation pdynamic
1
2

ρ⋅ V2
⋅= p ρHg g⋅ Δh⋅= SGHg ρ⋅ g⋅ Δh⋅=

Hence Δh
ρ V2
⋅

2 SGHg⋅ ρ⋅ g⋅
=

V2

2 SGHg⋅ g⋅
=

Δh
1
2

10
ft
s

⋅⎛⎜
⎝

⎞⎟
⎠

2
×

1
13.6

×
s2

32.2 ft⋅
×

12 in⋅
1 ft⋅

×= Δh 1.37 in⋅=
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Problem 6.39 [1]

Given: Velocity of automobile

Find: Estimates of aerodynamic force on hand

Solution:

For air ρ 0.00238
slug

ft3
⋅=

We need an estimate of the area of a typical hand.  Personal inspection indicates that a good approximation is a square of sides
9 cm and 17 cm

A 9 cm⋅ 17× cm⋅= A 153cm2
=

The governing equation is the Bernoulli equation (in coordinates attached to the vehicle)

patm
1
2

ρ⋅ V2
⋅+ pstag=

where V is the free stream velocity

Hence, for pstag on the front side of the hand, and patm on the rear, by assumption,

F pstag patm−( ) A⋅=
1
2

ρ⋅ V2
⋅ A⋅=

(a) V 30 mph⋅=

F
1
2

ρ⋅ V2
⋅ A⋅=

1
2

0.00238×
slug

ft3
⋅ 30 mph⋅

22
ft
s

⋅

15 mph⋅
⋅

⎛
⎜
⎜
⎝

⎞
⎟
⎟
⎠

2

× 153× cm2
⋅

1
12

ft⋅

2.54 cm⋅

⎛
⎜
⎜
⎝

⎞
⎟
⎟
⎠

2

×= F 0.379 lbf=

(b) V 60 mph⋅=

F
1
2

ρ⋅ V2
⋅ A⋅=

1
2

0.00238×
slug

ft3
⋅ 60 mph⋅

22
ft
s

⋅

15 mph⋅
⋅

⎛
⎜
⎜
⎝

⎞
⎟
⎟
⎠

2

× 153× cm2
⋅

1
12

ft⋅

2.54 cm⋅

⎛
⎜
⎜
⎝

⎞
⎟
⎟
⎠

2

×= F 1.52 lbf=



Problem 6.40 [2]

Given: Air jet hitting wall generating pressures

Find: Speed of air at two locations

Solution:

Basic equation p
ρair

V2

2
+ g z⋅+ const= ρair

p
Rair T⋅

= Δp ρHg g⋅ Δh⋅= SGHg ρ⋅ g⋅ Δh⋅=

Assumptions: 1) Incompressible flow 2) Inviscid 3) Steady 4) Along a streamline

Hence, applying Bernoulli between the jet and where it hits the wall directly

patm
ρair

Vj
2

2
+

pwall
ρair

= pwall
ρair Vj

2
⋅

2
= (working in gage pressures)

For air ρair 14.7
lbf

in2
⋅

144 in2
⋅

1 ft2⋅
×

lbm R⋅
53.33 ft⋅ lbf⋅

×
1 slug⋅

32.2 lbm⋅
×

1
50 460+( ) R⋅

×= ρair 2.42 10 3−
×

slug

ft3
=

Hence pwall SGHg ρ⋅ g⋅ Δh⋅=
ρair Vj

2
⋅

2
= so Vj

2 SGHg⋅ ρ⋅ g⋅ Δh⋅

ρair
=

Hence Vj 2 13.6× 1.94×
slug

ft3
⋅

1

2.42 10 3−
×

×
ft3

slug
⋅ 32.2×

ft

s2
⋅ 0.15× in⋅

1ft
12 in⋅

×= Vj 93.7
ft
s

=

Repeating the analysis for the second point

patm
ρair

Vj
2

2
+

pwall
ρair

V2

2
+= V Vj

2 2 pwall⋅

ρair
−= Vj

2 2 SGHg⋅ ρ⋅ g⋅ Δh⋅

ρair
−=

Hence V 93.7
ft
s

⋅⎛⎜
⎝

⎞⎟
⎠

2
2 13.6× 1.94×

slug

ft3
⋅

1

2.42 10 3−
×

×
ft3

slug
⋅ 32.2×

ft

s2
⋅ 0.1× in⋅

1ft
12 in⋅

×−= V 54.1
ft
s

=
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Problem 6.48 [2]

Given: Siphoning of gasoline

Find: Flow rate

Solution:

Basic equation p
ρgas

V2

2
+ g z⋅+ const=

Assumptions: 1) Incompressible flow 2) Inviscid 3) Steady 4) Along a streamline

Hence, applying Bernoulli between the gas tank free surface and the siphon exit

patm
ρgas

patm
ρgas

V2

2
+ g h⋅−= where we assume the tank free surface is slowly changing so Vtank <<,

and h is the difference in levels 

Hence V 2 g⋅ h⋅=

The flow rate is then Q V A⋅=
π D2
⋅
4

2 g⋅ h⋅⋅=

Q
π

4
1 in⋅( )2

×
1 ft2⋅

144 in2
⋅

× 2 32.2×
ft

s2
1
2

× ft⋅×= Q 0.0309
ft3

s
= Q 13.9

gal
min

=



Problem 6.49 [2]

Given: Ruptured pipe

Find: Pressure in tank

Solution:

Basic equation p
ρben

V2

2
+ g z⋅+ const=

Assumptions: 1) Incompressible flow 2) Inviscid 3) Steady 4) Along a streamline

Hence, applying Bernoulli between the pipe and the rise height of the benzene

ppipe
ρben

patm
ρben

g h⋅+= where we assume Vpipe <<, and h is the rise height

Hence ppipe ρben g⋅ h⋅= SGben ρ⋅ g⋅ h⋅= where ppipe is now the gage pressure

From Table A.2 SGben 0.879=

Hence pben 0.879 1.94×
slug

ft3
⋅ 32.2×

ft

s2
⋅ 25× ft⋅

lbf s2
⋅

slugft⋅
×= pben 1373

lbf

ft2
= pben 9.53psi= (gage)



Problem 6.50 [2]

Given: Ruptured Coke can

Find: Pressure in can

Solution:

Basic equation p
ρCoke

V2

2
+ g z⋅+ const=

Assumptions: 1) Incompressible flow 2) Inviscid 3) Steady 4) Along a streamline

Hence, applying Bernoulli between the coke can and the rise height of the coke

pcan
ρCoke

patm
ρCoke

g h⋅+= where we assume VCoke <<, and h is the rise height

Hence pCoke ρCoke g⋅ h⋅= SGCoke ρ⋅ g⋅ h⋅= where ppipe is now the gage pressure

From a web search SGDietCoke 1= SGRegularCoke 1.11=

Hence pDiet 1 1.94×
slug

ft3
⋅ 32.2×

ft

s2
⋅ 20× in⋅

1 ft⋅
12 in⋅

×
lbf s2

⋅
slugft⋅

×= pDiet 104
lbf

ft2
⋅= pDiet 0.723 psi⋅= (gage)

Hence pRegular 1.11 1.94×
slug

ft3
⋅ 32.2×

ft

s2
⋅ 20× in⋅

1 ft⋅
12 in⋅

×
lbf s2

⋅
slugft⋅

×= pRegular 116
lbf

ft2
⋅= pRegular 0.803 psi⋅= (gage)



Problem 6.51 [2]

Given: Flow rate through siphon

Find: Maximum height h to avoid cavitation

Solution:

Basic equation p
ρ

V2

2
+ g z⋅+ const= Q V A⋅=

Assumptions: 1) Incompressible flow 2) Inviscid 3) Steady 4) Along a streamline

From continuity V
Q
A

=
4 Q⋅

π D2
⋅

= V
4
π

0.7×
ft3

s
⋅

1
2 in⋅
⎛⎜
⎝

⎞⎟
⎠

2
×

12 in⋅
1 ft⋅

⎛⎜
⎝

⎞⎟
⎠

2
×= V 32.1

ft
s

=

Hence, applying Bernoulli between the free surface and point A

patm
ρ

pA
ρ

g h⋅+
V2

2
+= where we assume VSurface <<

Hence pA patm ρ g⋅ h⋅− ρ
V2

2
⋅−=

From the steam tables, at 70oF the vapor pressure is pv 0.363 psi⋅=

This is the lowest permissible value of pA

Hence pA pv= patm ρ g⋅ h⋅− ρ
V2

2
⋅−= or h

patm pv−

ρ g⋅
V2

2 g⋅
−=

Hence h 14.7 0.363−( )
lbf

in2
⋅

12 in⋅
1 ft⋅

⎛⎜
⎝

⎞⎟
⎠

2
×

1
1.94

×
ft3

slug
⋅

s2

32.2 ft⋅
×

slug ft⋅

lbf s2
⋅

×
1
2

32.18
ft
s

⎛⎜
⎝

⎞⎟
⎠

2
×

s2

32.2 ft⋅
×−= h 17.0 ft=



Problem 6.52 [2]

 

H = h1 = 

(h2) 

Given: Flow through tank-pipe system

Find: Velocity in pipe; Rate of discharge

Solution:

Basic equation p
ρ

V2

2
+ g z⋅+ const= Δp ρ g⋅ Δh⋅= Q V A⋅=

Assumptions: 1) Incompressible flow 2) Inviscid 3) Steady 4) Along a streamline

Hence, applying Bernoulli between the free surface and the manometer location

patm
ρ

p
ρ

g H⋅−
V2

2
+= where we assume VSurface <<, and H = 4 m

Hence p patm ρ g⋅ H⋅+ ρ
V2

2
⋅−=

For the manometer p patm− SGHg ρ⋅ g⋅ h2⋅ ρ g⋅ h1⋅−= Note that we have water on one side and mercury on
the other of the manometer

Combining equations ρ g⋅ H⋅ ρ
V2

2
⋅− SGHg ρ⋅ g⋅ h2⋅ ρ g⋅ h1⋅−= or V 2 g⋅ H SGHg h2⋅− h2+( )⋅=

Hence V 2 9.81×
m

s2
⋅ 4 13.6 0.15×− 0.75+( )× m⋅= V 7.29

m
s

=

The flow rate is Q V
π D2
⋅
4

⋅= Q
π

4
7.29×

m
s

⋅ 0.05 m⋅( )2
×= Q 0.0143

m3

s
=
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Problem 6.55 [2]

Given: Air flow over a wing

Find: Air speed relative to wing at a point

Solution:

Basic equation p
ρ

V2

2
+ g z⋅+ const= p ρ R⋅ T⋅=

Assumptions: 1) Incompressible flow 2) Inviscid 3) Steady 4) Along a streamline

Hence, applying Bernoulli between the upstream point (1) and the point on the wing (2)

p1
ρ

V1
2

2
+

p2
ρ

V2
2

2
+= where we ignore gravity effects

Hence V2 V1
2 2

p1 p2−( )
ρ

⋅+=

For air ρ
p

R T⋅
= ρ 75 101+( ) 103

×
N

m2
⋅

kg K⋅
286.9 N⋅ m⋅

×
1

4 273+( ) K⋅
×= ρ 2.21

kg

m3
=

Then V 60
m
s

⋅⎛⎜
⎝

⎞⎟
⎠

2
2

m3

2.21 kg⋅
× 75 3−( )× 103

×
N

m2
⋅

kg m⋅

N s2
⋅

×+= V 262
m
s

=

NOTE: At this speed, significant density changes will occur, so this result is not very realistic
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Problem 6.57 [2]

Given: Flow through fire nozzle

Find: Maximum flow rate

Solution:

Basic equation p
ρ

V2

2
+ g z⋅+ const= Q V A⋅=

Assumptions: 1) Incompressible flow 2) Inviscid 3) Steady 4) Along a streamline

Hence, applying Bernoulli between the inlet (1) and exit (2)

p1
ρ

V1
2

2
+

p2
ρ

V2
2

2
+= where we ignore gravity effects

But we have Q V1 A1⋅= V1
π D2
⋅
4

⋅= V2 A2⋅=
π d2
⋅
4

= so V1 V2
d
D
⎛⎜
⎝

⎞⎟
⎠

2
⋅=

V2
2 V2

2 d
D

⎛⎜
⎝

⎞⎟
⎠

4
⋅−

2 p2 p1−( )⋅

ρ
=

Hence V2
2 p1 p2−( )⋅

ρ 1
d
D

⎛⎜
⎝

⎞⎟
⎠

4
−

⎡
⎢
⎣

⎤
⎥
⎦

⋅

=

Then V2 2
ft3

1.94 slug⋅
× 100 0−( )×

lbf

in2
⋅

12 in⋅
1 ft⋅

⎛⎜
⎝

⎞⎟
⎠

2
×

1

1
1
3

⎛⎜
⎝

⎞⎟
⎠

3
−

×
slugft⋅

lbf s2
⋅

×= V2 124
ft
s

⋅=

Q V2
π d2
⋅
4

⋅= Q
π

4
124×

ft
s

⋅
1
12

ft⋅⎛⎜
⎝

⎞⎟
⎠

2
×= Q 0.676

ft3

s
⋅= Q 304

gal
min
⋅=
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Problem 6.60 [3]

Given: Velocity field for plane doublet

Find: Pressure distribution along x axis; plot distribution

Solution:

The given data is Λ 3
m3

s
⋅= ρ 1000

kg

m3
⋅= p0 100 kPa⋅=

From Table 6.1 Vr
Λ

r2
− cos θ( )⋅= V

θ

Λ

r2
− sin θ( )⋅=

where Vr and Vθ are the velocity components in cylindrical coordinates (r,θ).  For points along the x axis, r = x, θ = 0, Vr = u and
Vθ = v = 0

u
Λ

x2
−= v 0=

The governing equation is the Bernoulli equation

p
ρ

1
2

V2
⋅+ g z⋅+ const= where V u2 v2

+=

so (neglecting gravity) p
ρ

1
2

u2
⋅+ const=

Apply this to point arbitrary point (x,0) on the x axis and at infinity

At x → u 0→ p p0→

At point (x,0) u
Λ

x2
−=

Hence the Bernoulli equation becomes

p0
ρ

p
ρ

Λ
2

2 x4
⋅

+= or p x( ) p0
ρ Λ

2
⋅

2 x4
⋅

−=

The plot of pressure is shown in the associated Excel workbook



The given data is

Λ = 3 m3/s
ρ = 1.5 kg/m3

p 0 = 100 kPa

x  (m) p  (Pa)

0.5 99.892
0.6 99.948
0.7 99.972
0.8 99.984
0.9 99.990
1.0 99.993
1.1 99.995
1.2 99.997
1.3 99.998
1.4 99.998
1.5 99.999
1.6 99.999
1.7 99.999
1.8 99.999
1.9 99.999
2.0 100.000

Pressure Distribution Along x  axis

99.8

99.9

99.9

100.0

100.0

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
x  (m)

p
 (k

Pa
)



Problem 6.61 [3]

Given: Velocity field

Find: Pressure distribution along wall; plot distribution; net force on wall

Solution:

The given data is q 2

m3

s
m

⋅= h 1 m⋅= ρ 1000
kg

m3
⋅=

u
q x⋅

2 π⋅ x2 y h−( )2
+⎡⎣ ⎤⎦

q x⋅

2 π⋅ x2 y h+( )2
+⎡⎣ ⎤⎦

+= v
q y h−( )⋅

2 π⋅ x2 y h−( )2
+⎡⎣ ⎤⎦

q y h+( )⋅

2 π⋅ x2 y h+( )2
+⎡⎣ ⎤⎦

+=

The governing equation is the Bernoulli equation

p
ρ

1
2

V2
⋅+ g z⋅+ const= where V u2 v2

+=

Apply this to point arbitrary point (x,0) on the wall and at infinity (neglecting gravity)

At x 0→ u 0→ v 0→ V 0→

At point (x,0) u
q x⋅

π x2 h2
+( )⋅

= v 0= V
q x⋅

π x2 h2
+( )⋅

=

Hence the Bernoulli equation becomes
patm

ρ

p
ρ

1
2

q x⋅

π x2 h2
+( )⋅

⎡
⎢
⎣

⎤
⎥
⎦

2
⋅+=

or (with pressure expressed as gage pressure) p x( )
ρ

2
−

q x⋅

π x2 h2
+( )⋅

⎡
⎢
⎣

⎤
⎥
⎦

2
⋅=

(Alternatively, the pressure distribution could have been obtained from Problem 6.8, where the momentum equation

was used to find the pressure gradient 
x

p∂

∂

ρ q2
⋅ x⋅ x2 h2

−( )⋅

π
2 x2 h2

+( )3⋅

=  along the wall.  Integration of this with respect to x

leads to the same result for p(x))

The plot of pressure is shown in the associated Excel workbook.  From the plot it is clear that the wall experiences a
negative gage pressure on the upper surface (and zero gage pressure on the lower), so the net force on the wall is upwards,
towards the source

The force per width on the wall is given by F
10− h⋅

10 h⋅
xpupper plower−( )

⌠
⎮
⌡

d= F
ρ q2
⋅

2 π
2

⋅
−

10− h⋅

10 h⋅

x
x2

x2 h2
+( )2

⌠
⎮
⎮
⎮
⌡

d⋅=



The integral is x
x2

x2 h2
+( )2

⌠
⎮
⎮
⎮
⎮
⌡

d
atan

x
h
⎛⎜
⎝
⎞⎟
⎠

2 h⋅
x

2 h2
⋅ 2 x2

⋅+
−→

so F
ρ q2
⋅

2 π
2

⋅ h⋅
−

10
101

− atan 10( )+⎛⎜
⎝

⎞⎟
⎠

⋅=

F
1

2 π
2

⋅
− 1000×

kg

m3
⋅ 2

m2

s
⋅

⎛
⎜
⎝

⎞
⎟
⎠

2

×
1

1 m⋅
×

10
101

− atan 10( )+⎛⎜
⎝

⎞⎟
⎠

×
N s2
⋅

kg m⋅
×= F 278−

N
m

=



The given data is

q  = 2 m3/s/m
h  = 1 m
ρ = 1000 kg/m3

x  (m) p  (Pa)

0.0 0.00
1.0 -50.66
2.0 -32.42
3.0 -18.24
4.0 -11.22
5.0 -7.49
6.0 -5.33
7.0 -3.97
8.0 -3.07
9.0 -2.44

10.0 -1.99

Pressure Distribution Along Wall

-60

-50

-40

-30

-20

-10

0
0 1 2 3 4 5 6 7 8 9 10

x  (m)

p
 (P

a)



Problem 6.62 [3]

 

Rx 

 

Given: Flow through fire nozzle

Find: Maximum flow rate

Solution:

Basic equation p
ρ

V2

2
+ g z⋅+ const= Q V A⋅=

Assumptions: 1) Incompressible flow 2) Inviscid 3) Steady 4) Along a streamline

Hence, applying Bernoulli between the inlet (1) and exit (2)

p1
ρ

V1
2

2
+

p2
ρ

V2
2

2
+= where we ignore gravity effects

But we have Q V1 A1⋅= V1
π D2
⋅
4

⋅= V2
π d2
⋅
4

⋅= so V1 V2
d
D

⎛⎜
⎝

⎞⎟
⎠

2
⋅=

V2
2 V2

2 d
D

⎛⎜
⎝

⎞⎟
⎠

4
⋅−

2 p2 p1−( )⋅

ρ
=

Hence V2
2 p1 p2−( )⋅

ρ 1
d
D
⎛⎜
⎝

⎞⎟
⎠

4
−

⎡
⎢
⎣

⎤
⎥
⎦

⋅

=

V2 2
m3

1000 kg⋅
× 700 0−( )× 103

×
N

m2
⋅

1

1
25
75
⎛⎜
⎝

⎞⎟
⎠

4
−

×
kg m⋅

N s2
⋅

×= V2 37.6
m
s

=

Then Q V2
π d2
⋅
4

⋅= Q
π

4
37.6×

m
s

⋅ 0.025 m⋅( )2
×= Q 0.0185

m3

s
⋅= Q 18.5

L
s

⋅=

From x momentum Rx p1 A1⋅+ u1 ρ− V1⋅ A1⋅( )⋅ u2 ρ V2⋅ A2⋅( )⋅+= using gage pressures

Hence Rx p1−
π D2
⋅
4

⋅ ρ Q⋅ V2 V1−( )⋅+= p1−
π D2
⋅
4

⋅ ρ Q⋅ V2⋅ 1
d
D
⎛⎜
⎝

⎞⎟
⎠

2
−

⎡
⎢
⎣

⎤
⎥
⎦

⋅+=

Rx 700− 103
×

N

m2
⋅

π

4
× 0.075 m⋅( )2

⋅ 1000
kg

m3
⋅ 0.0185×

m3

s
⋅ 37.6×

m
s

⋅ 1
25
75
⎛⎜
⎝

⎞⎟
⎠

3
−

⎡
⎢
⎣

⎤
⎥
⎦

×
N s2
⋅

kg m⋅
×+= Rx 2423− N=

This is the force of the nozzle on the fluid; hence the force of the fluid on the nozzle is 2400 N to the right; the nozzle is in tension
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Problem 6.65 [3]

Given: Flow through reducing elbow

Find: Mass flow rate in terms of Δp, T1 and D1 and D2

Solution:

Basic equations: p
ρ

V2

2
+ g z⋅+ const= Q V A⋅=

Assumptions: 1) Incompressible flow 2) Inviscid 3) Steady 4) Along a streamline 5) Ignore elevation change 6) p2 = patm

Available data: Q 20 gpm⋅= Q 0.0446
ft3

s
= D 1.5 in⋅= d 0.5 in⋅= ρ 1.94

slug

ft3
⋅=

From contnuity V1
Q

π D2
⋅
4

⎛
⎜
⎝

⎞
⎟
⎠

= V1 3.63
ft
s

= V2
Q

π d2
⋅
4

⎛
⎜
⎝

⎞
⎟
⎠

= V2 32.7
ft
s

=

Hence, applying Bernoulli between the inlet (1) and exit (2) p1
ρ

V1
2

2
+

p2
ρ

V2
2

2
+=

or, in gage pressures p1g
ρ

2
V2

2 V1
2

−⎛
⎝

⎞
⎠⋅= p1g 7.11psi=

From x-momentum Rx p1g A1⋅+ u1 mrate−( )⋅ u2 mrate( )⋅+= mrate− V1⋅= ρ− Q⋅ V1⋅= because u1 V1= u2 0=

Rx p1g−
π D2
⋅
4

⋅ ρ Q⋅ V1⋅−= Rx 12.9− lbf=

The force on the supply pipe is then Kx Rx−= Kx 12.9 lbf= on the pipe to the right



Problem 6.66 [2]

Given: Flow nozzle

Find: Mass flow rate in terms of Δp, T1 and D1 and D2

Solution:

Basic equation p
ρ

V2

2
+ g z⋅+ const= Q V A⋅=

Assumptions: 1) Incompressible flow 2) Inviscid 3) Steady 4) Along a streamline

Hence, applying Bernoulli between the inlet (1) and exit (2)

p1
ρ

V1
2

2
+

p2
ρ

V2
2

2
+= where we ignore gravity effects

But we have Q V1 A1⋅= V1
π D1

2
⋅

4
⋅= V2

π D2
2

⋅

4
⋅= so V1 V2

D2
D1

⎛
⎜
⎝

⎞
⎟
⎠

2

⋅=

Note that we assume the flow at D2 is at the same pressure as the entire section 2; this will be true if there is turbulent mixing

Hence V2
2 V2

2 D2
D1

⎛
⎜
⎝

⎞
⎟
⎠

4

⋅−
2 p2 p1−( )⋅

ρ
=

V2
2 p1 p2−( )⋅

ρ 1
D2
D1

⎛
⎜
⎝

⎞
⎟
⎠

4

−
⎡
⎢
⎢
⎣

⎤
⎥
⎥
⎦

⋅

=

Then the mass flow rate is mflow ρ V2⋅ A2⋅= ρ

π D2
2

⋅

4
⋅

2 p1 p2−( )⋅

ρ 1
D2
D1

⎛
⎜
⎝

⎞
⎟
⎠

4

−
⎡
⎢
⎢
⎣

⎤
⎥
⎥
⎦

⋅

⋅=
π D2

2
⋅

2 2⋅

Δp ρ⋅

1
D2
D1

⎛
⎜
⎝

⎞
⎟
⎠

4

−
⎡
⎢
⎢
⎣

⎤
⎥
⎥
⎦

⋅=

Using p ρ R⋅ T⋅= mflow
π D2

2
⋅

2 2⋅

Δp p1⋅

R T1⋅ 1
D2
D1

⎛
⎜
⎝

⎞
⎟
⎠

4

−
⎡
⎢
⎢
⎣

⎤
⎥
⎥
⎦

⋅

⋅=

For a flow nozzle mflow k Δp⋅= where k
π D2

2
⋅

2 2⋅

p1

R T1⋅ 1
D2
D1

⎛
⎜
⎝

⎞
⎟
⎠

4

−
⎡
⎢
⎢
⎣

⎤
⎥
⎥
⎦

⋅

⋅=

We can expect the actual flow will be less because there is actually significant loss in the device.  Also the flow will experience a vena co
that the minimum diameter is actually smaller than D2.  We will discuss this device in Chapter 8.



Problem 6.67 [4]

Given: Flow through branching blood vessel

Find: Blood pressure in each branch; force at branch

Solution:

Basic equation p
ρ

V2

2
+ g z⋅+ const=

CV

Q∑ 0= Q V A⋅= Δp ρ g⋅ Δh⋅=

Assumptions: 1) Incompressible flow 2) Inviscid 3) Steady 4) Along a streamline

For Q3 we have

CV

Q∑ Q1− Q2+ Q3+= 0= so Q3 Q1 Q2−= Q3 1.5
L

min
⋅=

We will need each velocity

V1
Q1
A1

=
4 Q1⋅

π D1
2

⋅
= V1

4
π

4×
L

min
⋅

0.001 m3
⋅

1 L⋅
×

1 min⋅
60 s⋅

×
1

0.01 m⋅
⎛⎜
⎝

⎞⎟
⎠

2
×= V1 0.849

m
s

=

Similarly V2
4 Q2⋅

π D2
2

⋅
= V2 0.943

m
s

= V3
4 Q3⋅

π D3
2

⋅
= V3 5.09

m
s

=

Hence, applying Bernoulli between the inlet (1) and exit (2)

p1
ρ

V1
2

2
+

p2
ρ

V2
2

2
+= where we ignore gravity effects

p2 p1
ρ

2
V1

2 V2
2

−⎛
⎝

⎞
⎠⋅+=

p1 SGHg ρ⋅ g⋅ h1⋅= where h1 = 100 mm Hg

p1 13.6 1000×
kg

m3
⋅ 9.81×

m

s2
⋅ 0.1× m⋅

N s2
⋅

kg m⋅
×= p1 13.3 kPa⋅=



Hence p2 13300
N

m2
⋅

1
2

1000⋅
kg

m3
⋅ 0.8492 0.9432

−( )×
m
s

⎛⎜
⎝

⎞⎟
⎠

2
⋅

N s2
⋅

kg m⋅
×+= p2 13.2 kPa⋅=

In mm Hg h2
p2

SGHg ρ⋅ g⋅
= h2

1
13.6

1
1000

×
m3

kg
⋅

s2

9.81 m⋅
× 13200×

N

m2
⋅

kg m⋅

s2 N⋅
×= h2 98.9 mm⋅=

Similarly for exit (3)
p3 p1

ρ

2
V1

2 V3
2

−⎛
⎝

⎞
⎠⋅+=

p3 13300
N

m2
⋅

1
2

1000⋅
kg

m3
⋅ 0.8492 5.092

−( )×
m
s

⎛⎜
⎝

⎞⎟
⎠

2
⋅

N s2
⋅

kg m⋅
×+= p3 706 Pa⋅=

In mm Hg h3
p3

SGHg ρ⋅ g⋅
= h3

1
13.6

1
1000

×
m3

kg
⋅

s2

9.81 m⋅
× 706×

N

m2
⋅

kg m⋅

s2 N⋅
×= h3 5.29 mm⋅=

Note that all pressures are gage.

For x momentum Rx p3 A3⋅ cos 60 deg⋅( )⋅+ p2 A2⋅ cos 45 deg⋅( )⋅− u3 ρ Q3⋅( )⋅ u2 ρ Q2⋅( )⋅+=

Rx p2 A2⋅ cos 45 deg⋅( )⋅ p3 A3⋅ cos 60 deg⋅( )⋅− ρ Q2 V2⋅ cos 45 deg⋅( )⋅ Q3 V3⋅ cos 60 deg⋅( )⋅−( )⋅+=

Rx 13200
N

m2
⋅

π 0.0075 m⋅( )2
⋅

4
× cos 45 deg⋅( )× 706

N

m2
⋅

π 0.0025 m⋅( )2
⋅

4
× cos 60 deg⋅( )×−

1000
kg

m3
⋅ 2.5

L
min
⋅ 0.943⋅

m
s

⋅ cos 45 deg⋅( )⋅ 1.5
L

min
⋅ 5.09⋅

m
s

⋅ cos 60 deg⋅( )⋅−⎛⎜
⎝

⎞⎟
⎠

⋅
10 3− m3

⋅
1 L⋅

×
1 min⋅
60 s⋅

×
N s2
⋅

kg m×
×+

...=

Rx 0.375N=

For y momentum Ry p3 A3⋅ sin 60 deg⋅( )⋅− p2 A2⋅ sin 45 deg⋅( )⋅− v3 ρ Q3⋅( )⋅ v2 ρ Q2⋅( )⋅+=

Ry p2 A2⋅ sin 45 deg⋅( )⋅ p3 A3⋅ sin 60 deg⋅( )⋅+ ρ Q2 V2⋅ sin 45 deg⋅( )⋅ Q3 V3⋅ sin 60 deg⋅( )⋅+( )⋅+=

Ry 13200
N

m2
⋅

π 0.0075 m⋅( )2
⋅

4
× sin 45 deg⋅( )× 706

N

m2
⋅

π 0.0025 m⋅( )2
⋅

4
× sin 60 deg⋅( )⋅+

1000
kg

m3
⋅ 2.5

L
min
⋅ 0.943⋅

m
s

⋅ sin 45 deg⋅( )⋅ 1.5
L

min
⋅ 5.09⋅

m
s

⋅ sin 60 deg⋅( )⋅+⎛⎜
⎝

⎞⎟
⎠

⋅
10 3− m3

⋅
1 L⋅

×
1 min⋅
60 s⋅

×
N s2
⋅

kg m×
×+

...=

Ry 0.553N=
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Problem 6.70 [4]

CS 

x 
y 

Ry 

V 

 

W 

H 

Given: Flow through kitchen faucet

Find: Area variation with height; force to hold plate as function of height

Solution:

Basic equation p
ρ

V2

2
+ g z⋅+ const= Q V A⋅=

Assumptions: 1) Incompressible flow 2) Inviscid 3) Steady 4) Along a streamline

Hence, applying Bernoulli between the faucet (1) and any height y

V1
2

2
g H⋅+

V2

2
g y⋅+= where we assume the water is at patm

Hence V y( ) V1
2 2 g⋅ H y−( )⋅+=

The problem doesn't require a plot, but it looks like V1 0.815
m
s

= V 0 m⋅( ) 3.08
m
s

=

0 5 10 15 20 25 30 35 40 45

1

2

3

4

5

y (cm)

V
 (m

/s
)

The speed increases as y decreases because the fluid particles "trade" potential energy for kinetic, just as a falling solid particle does!

But we have Q V1 A1⋅= V1
π D2
⋅
4

⋅= V A⋅=

Hence A
V1 A1⋅

V
= A y( )

π D1
2

⋅ V1⋅

4 V1
2 2 g⋅ H y−( )⋅+⋅

=



0 0.5 1 1.5

15

30

45

A (cm2)

y 
(c

m
)

The problem doesn't require a plot, but it looks like

A H( ) 1.23cm2
=

A 0( ) 0.325cm2
=

The area decreases as the speed increases.  If the stream falls far enough the flow will change to turbulent.

For the CV above Ry W− uin ρ− Vin⋅ Ain⋅( )⋅= V− ρ− Q⋅( )⋅=

Ry W ρ V2
⋅ A⋅+= W ρ Q⋅ V1

2 2 g⋅ H y−( )⋅+⋅+=

Hence Ry increases in the same way as V as the height y varies; the maximum force is when y = H Rymax W ρ Q⋅ V1
2 2 g⋅ H⋅+⋅+=



Problem 6.71     [4] 
 
An old magic trick uses an empty thread spool and a playing card. The playing card is 
placed against the bottom of the spool. Contrary to intuition, when one blows downward 
through the central hole in the spool, the card is not blown away. Instead it is ‘‘sucked’’ 
up against the spool. Explain. 
 
 
Open-Ended Problem Statement: An old magic trick uses an empty thread spool and a 
playing card. The playing card is placed against the bottom of the spool. Contrary to 
intuition, when one blows downward through the central hole in the spool, the card is not 
blown away. Instead it is ‘‘sucked’’ up against the spool. Explain. 
 
Discussion: The secret to this “parlor trick” lies in the velocity distribution, and hence 
the pressure distribution, that exists between the spool and the playing cards. 
 
Neglect viscous effects for the purposes of discussion.  Consider the space between the 
end of the spool and the playing card as a pair of parallel disks.  Air from the hole in the 
spool enters the annular space surrounding the hole, and then flows radially outward 
between the parallel disks. For a given flow rate of air the edge of the hole is the cross-
section of minimum flow area and therefore the location of maximum air speed. 
 
After entering the space between the parallel disks, air flows radially outward. The flow 
area becomes larger as the radius increases. Thus the air slows and its pressure increases. 
The largest flow area, slowest air speed, and highest pressure between the disks occur at 
the outer periphery of the spool where the air is discharged from an annular area. 
 
The air leaving the annular space between the disk and card must be at atmospheric 
pressure. This is the location of the highest pressure in the space between the parallel 
disks. Therefore pressure at smaller radii between the disks must be lower, and hence the 
pressure between the disks is sub-atmospheric. Pressure above the card is less than 
atmospheric pressure; pressure beneath the card is atmospheric. Each portion of the card 
experiences a pressure difference acting upward. This causes a net pressure force to act 
upward on the whole card. The upward pressure force acting on the card tends to keep it 
from blowing off the spool when air is introduced through the central hole in the spool. 
 
Viscous effects are present in the narrow space between the disk and card. However, they 
only reduce the pressure rise as the air flows outward, they do not dominate the flow 
behavior. 
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Problem 6.73 [4]

CS 

Given: Air jet striking disk

Find: Manometer deflection; Force to hold disk; Force assuming p0 on entire disk; plot pressure distribution

Solution:
Basic equations: Hydrostatic pressure,  Bernoulli, and momentum flux in x direction

Δp SG ρ⋅ g⋅ Δh⋅=
p
ρ

V2

2
+ g z⋅+ constant=

Assumptions:  1) Steady flow   2) Incompressible 3) No friction 4) Flow along streamline 5) Uniform flow 6) Horizontal flow (gx = 0)

Applying Bernoulli between jet exit and stagnation point

patm
ρair

V2

2
+

p0
ρair

0+= p0 patm−
1
2

ρair⋅ V2
⋅=

But from hydrostatics p0 patm− SG ρ⋅ g⋅ Δh⋅= so Δh

1
2

ρair⋅ V2
⋅

SG ρ⋅ g⋅
=

ρair V2
⋅

2 SG⋅ ρ⋅ g⋅
=

Δh 0.002377
slug

ft3
⋅ 225

ft
s

⋅⎛⎜
⎝

⎞⎟
⎠

2
×

1
2 1.75⋅

×
ft3

1.94 slug⋅
×

s2

32.2 ft⋅
×= Δh 0.55 ft⋅= Δh 6.60 in⋅=

For x momentum Rx V ρair− A⋅ V⋅( )⋅= ρair− V2
⋅

π d2
⋅
4

⋅=

Rx 0.002377−
slug

ft3
⋅ 225

ft
s

⋅⎛⎜
⎝

⎞⎟
⎠

2
×

π
0.4
12

ft⋅⎛⎜
⎝

⎞⎟
⎠

2
⋅

4
×

lbf s2
⋅

slug ft⋅
×= Rx 0.105− lbf⋅=

The force of the jet on the plate is then F Rx−= F 0.105 lbf⋅=

The stagnation pressure is p0 patm
1
2

ρair⋅ V2
⋅+=

The force on the plate, assuming stagnation pressure on the front face, is 

F p0 p−( ) A⋅=
1
2

ρair⋅ V2
⋅

π D2
⋅
4

⋅=



F
π

8
0.002377×

slug

ft3
⋅ 225

ft
s

⋅⎛⎜
⎝

⎞⎟
⎠

2
×

7.5
12

ft⋅⎛⎜
⎝

⎞⎟
⎠

2
×

lbf s2
⋅

slug ft⋅
×= F 18.5 lbf=

Obviously this is a huge overestimate!

For the pressure distribution on the disk, we use Bernoulli between the disk outside edge any radius r for radial flow
patm
ρair

1
2

vedge
2

⋅+
p

ρair

1
2

v2
⋅+=

We need to obtain the speed v as a function of radius.  If we assume the flow remains constant thickness h, then

Q v 2⋅ π⋅ r⋅ h⋅= V
π d2
⋅
4

⋅= v r( ) V
d2

8 h⋅ r⋅
⋅=

We need an estimate for h.  As an approximation, we assume that h = d (this assumption will change the scale of p(r) but not the basic shap

Hence v r( ) V
d

8 r⋅
⋅=

Using this in Bernoulli p r( ) patm
1
2

ρair⋅ vedge
2 v r( )2
−⎛

⎝
⎞
⎠⋅+= patm

ρair V2
⋅ d2

⋅

128
4

D2
1

r2
−⎛

⎜
⎝

⎞
⎟
⎠

⋅+=

Expressed as a gage pressure p r( )
ρair V2

⋅ d2
⋅

128
4

D2
1

r2
−⎛

⎜
⎝

⎞
⎟
⎠

⋅=
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p 
(p
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Problem 6.77 [4]

Given: Water flow out of tube

Find: Pressure indicated by gage; force to hold body in place

Solution:
Basic equations: Bernoulli, and momentum flux in x direction

p
ρ

V2

2
+ g z⋅+ constant= Q V A⋅=

Assumptions:  1) Steady flow   2) Incompressible 3) No friction 4) Flow along streamline 5) Uniform flow 6) Horizontal flow (gx = 0)

Applying Bernoulli between jet exit and stagnation point

p1
ρ

V1
2

2
+

p2
ρ

V2
2

2
+=

V2
2

2
= where we work in gage pressure

p1
ρ

2
V2

2 V1
2

−⎛
⎝

⎞
⎠⋅=

But from continuity Q V1 A1⋅= V2 A2⋅= V2 V1
A1
A2
⋅= V1

D2

D2 d2
−

⋅= where D = 2 in and d = 1.5 in

V2 20
ft
s

⋅
22

22 1.52
−

⎛⎜
⎜⎝

⎞⎟
⎟⎠

⋅= V2 45.7
ft
s

=

Hence p1
1
2

1.94×
slug

ft3
⋅ 45.72 202

−( )×
ft
s

⎛⎜
⎝

⎞⎟
⎠

2
⋅

lbf s2
⋅

slugft⋅
×= p1 1638

lbf

ft2
= p1 11.4psi= (gage)

The x mometum is F− p1 A1⋅+ p2 A2⋅− u1 ρ− V1⋅ A1⋅( )⋅ u2 ρ V2⋅ A2⋅( )⋅+=

F p1 A1⋅ ρ V1
2 A1⋅ V2

2 A2⋅−⎛
⎝

⎞
⎠⋅+= using gage pressures

F 11.4
lbf

in2
⋅

π 2 in⋅( )2
⋅

4
× 1.94

slug

ft3
⋅ 20

ft
s

⋅⎛⎜
⎝

⎞⎟
⎠

2
π 2 in⋅( )2
⋅

4
× 45.7

ft
s

⋅⎛⎜
⎝

⎞⎟
⎠

2
π 2 in⋅( )2 1.5 in⋅( )2

−⎡⎣ ⎤⎦⋅
4

×−
⎡
⎢
⎣

⎤
⎥
⎦

×
1 ft⋅

12 in⋅
⎛⎜
⎝

⎞⎟
⎠

2
×

lbf s2
⋅

slugft⋅
×+=

F 14.1 lbf= in the direction shown
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Problem 6.80     [5] 
 
Describe the pressure distribution on the exterior of a multistory building in a steady 
wind. Identify the locations of the maximum and minimum pressures on the outside of 
the building.  Discuss the effect of these pressures on infiltration of outside air into the 
building. 
 
 
Open-Ended Problem Statement: Describe the pressure distribution on the exterior of a 
multistory building in a steady wind. Identify the locations of the maximum and 
minimum pressures on the outside of the building.  Discuss the effect of these pressures 
on infiltration of outside air into the building. 
 
Discussion: A multi-story building acts as a bluff-body obstruction in a thick 
atmospheric boundary layer. The boundary-layer velocity profile causes the air speed 
near the top of the building to be highest and that toward the ground to be lower. 
 
Obstruction of air flow by the building causes regions of stagnation pressure on upwind 
surfaces. The stagnation pressure is highest where the air speed is highest. Therefore the 
maximum surface pressure occurs near the roof on the upwind side of the building. 
Minimum pressure on the upwind surface of the building occurs near the ground where 
the air speed is lowest. 
 
The minimum pressure on the entire building will likely be in the low-speed, low-
pressure wake region on the downwind side of the building. 
 
Static pressure inside the building will tend to be an average of all the surface pressures 
that act on the outside of the building. It is never possible to seal all openings completely. 
Therefore air will tend to infiltrate into the building in regions where the outside surface 
pressure is above the interior pressure, and will tend to pass out of the building in regions 
where the outside surface pressure is below the interior pressure. Thus generally air will 
tend to move through the building from the upper floors toward the lower floors, and 
from the upwind side to the downwind side. 



Problem 6.81     [5] 
 
Imagine a garden hose with a stream of water flowing out through a nozzle. Explain why 
the end of the hose may be unstable when held a half meter or so from the nozzle end. 
 
 
Open-Ended Problem Statement: Imagine a garden hose with a stream of water 
flowing out through a nozzle. Explain why the end of the hose may be unstable when 
held a half meter or so from the nozzle end. 
 
Discussion:  Water flowing out of the nozzle tends to exert a thrust force on the end of the 
hose. The thrust force is aligned with the flow from the nozzle and is directed toward the 
hose. 
 
Any misalignment of the hose will lead to a tendency for the thrust force to bend the hose 
further. This will quickly become unstable, with the result that the free end of the hose 
will “flail” about, spraying water from the nozzle in all directions. 
 
This instability phenomenon can be demonstrated easily in the backyard. However, it will 
tend to do least damage when the person demonstrating it is wearing a bathing suit! 



Problem 6.82     [5] 
 
An aspirator provides suction by using a stream of water flowing through a venturi. 
Analyze the shape and dimensions of such a device. Comment on any limitations on its 
use. 
 
 
Open-Ended Problem Statement: An aspirator provides suction by using a stream of 
water flowing through a venturi. Analyze the shape and dimensions of such a device. 
Comment on any limitations on its use. 
 
Discussion:  The basic shape of the aspirator channel should be a converging nozzle 
section to reduce pressure followed by a diverging diffuser section to promote pressure 
recovery. The basic shape is that of a venturi flow meter. 
 
If the diffuser exhausts to atmosphere, the exit pressure will be atmospheric. The pressure 
rise in the diffuser will cause the pressure at the diffuser inlet (venturi throat) to be below 
atmospheric. 
 
A small tube can be brought in from the side of the throat to aspirate another liquid or gas 
into the throat as a result of the reduced pressure there. 
 
The following comments can be made about limitations on the aspirator:  

1. It is desirable to minimize the area of the aspirator tube compared to the flow area 
of the venturi throat. This minimizes the disturbance of the main flow through the 
venturi and promotes the best possible pressure recovery in the diffuser. 

2. It is desirable to avoid cavitation in the throat of the venturi. Cavitation alters the 
effective shape of the flow channel and destroys the pressure recovery in the 
diffuser. To avoid cavitation, the reduced pressure must always be above the 
vapor pressure of the driver liquid. 

3. It is desirable to limit the flow rate of gas into the venturi throat. A large amount 
of gas can alter the flow pattern and adversely affect pressure recovery in the 
diffuser. 

 
The best combination of specific dimensions could be determined experimentally by a 
systematic study of aspirator performance. A good starting point probably would be to 
use dimensions similar to those of a commercially available venturi flow meter. 
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Problem 6.84     [2] 
 
Carefully sketch the energy grade lines (EGL) and hydraulic grade lines (HGL) for the 
system shown in Fig. 6.6 if the pipe is horizontal (i.e., the outlet is at the base of the 
reservoir), and a water turbine (extracting energy) is located at (a) point , or (b) at point 

.  In Chapter 8 we will investigate the effects of friction on internal flows.  Can you 
anticipate and sketch the effect of friction on the EGL and HGL for cases (a) and (b)? 
 
 

(a) Note that the effect of friction would be that the EGL would tend to drop: 
suddenly at the contraction, gradually in the large pipe, more steeply in the 
small pipe.  The HGL would then “hang” below the HGL in a manner similar 
to that shown. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

EGL 

HGL Turbine 



 
(b) Note that the effect of friction would be that the EGL would tend to drop: 

suddenly at the contraction, gradually in the large pipe, more steeply in the 
small pipe.  The HGL would then  “hang” below the HGL in a manner similar 
to that shown. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

EGL 

HGL Turbine 



Problem 6.85     [2] 
 
 Carefully sketch the energy grade lines (EGL) and hydraulic grade lines (HGL) for the 
system shown in Fig. 6.6 if a pump (adding energy to the fluid) is located at (a) point , 
or (b) at point , such that flow is into the reservoir.  In Chapter 8 we will investigate the 
effects of friction on internal flows.  Can you anticipate and sketch the effect of friction 
on the EGL and HGL for cases (a) and (b)? 
 
 

(a) Note that the effect of friction would be that the EGL would tend to drop from 
right to left: steeply in the small pipe, gradually in the large pipe, and 
suddenly at the expansion.  The HGL would then “hang” below the HGL in a 
manner similar to that shown. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

EGL 

HGL Pump 

Flow 



 
(b) Note that the effect of friction would be that the EGL would tend to drop from 

right to left: steeply in the small pipe, gradually in the large pipe, and 
suddenly at the expansion.  The HGL would then  “hang” below the HGL in a 
manner similar to that shown. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

EGL 

HGL 

Pump 

Flow 



Problem *6.86 [2]

Given: Unsteady water flow out of tube

Find: Pressure in the tank

Solution:
Basic equation: Unsteady Bernoulli

Assumptions:  1) Unsteady flow   2) Incompressible 3) No friction 4) Flow along streamline 5) Uniform flow 6) Horizontal flow (gx = 0)

Applying unsteady Bernoulli between reservoir and tube exit

p
ρ

g h⋅+
V2

2
1

2

s
t
V∂

∂

⌠
⎮
⎮
⌡

d+=
V2

2
dV
dt 1

2
s1

⌠
⎮
⌡

d⋅+= where we work in gage pressure

Hence p ρ
V2

2
g h⋅−

dV
dt

L⋅+
⎛
⎜
⎝

⎞
⎟
⎠

⋅=

Hence p 1.94
slug

ft3
⋅

62

2
32.2 4.5×− 7.5 35×+

⎛
⎜
⎝

⎞
⎟
⎠

×
ft
s

⎛⎜
⎝

⎞⎟
⎠

2
⋅

lbf s2
⋅

slugft⋅
×= p 263

lbf

ft2
⋅= p 1.83 psi⋅= (gage)



Problem *6.87 [2]

Given: Unsteady water flow out of tube

Find: Initial acceleration

Solution:
Basic equation: Unsteady Bernoulli

Assumptions:  1) Unsteady flow   2) Incompressible 3) No friction 4) Flow along streamline 5) Uniform flow 6) Horizontal flow (gx = 0)

Applying unsteady Bernoulli between reservoir and tube exit

p
ρ

g h⋅+

1

2

s
t
V∂

∂

⌠
⎮
⎮
⌡

d=
dV
dt 1

2
s1

⌠
⎮
⌡

d⋅= ax L⋅= where we work in gage pressure

Hence ax
1
L

p
ρ

g h⋅+⎛⎜
⎝

⎞⎟
⎠

⋅=

Hence ax
1

35 ft⋅
3

lbf

in2
⋅

12 in⋅
1 ft⋅

⎛⎜
⎝

⎞⎟
⎠

2
×

ft3

1.94 slug⋅
×

slugft⋅

s2 lbf⋅
× 32.2

ft

s2
⋅ 4.5× ft⋅+

⎡⎢
⎢⎣

⎤⎥
⎥⎦

×= ax 10.5
ft

s2
⋅=

Note that we obtain the same result if we treat the water in the pipe as a single body at rest with gage pressure p + ρgh at the left end!
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Problem *6.90 [4]

Given: Unsteady water flow out of tube

Find: Differential equation for velocity; Integrate; Plot v versus time

Solution:
Basic equation: Unsteady Bernoulli

Assumptions:  1) Unsteady flow   2) Incompressible 3) No friction 4) Flow along streamline 5) Uniform flow 6) Horizontal flow (gx = 0)

Applying unsteady Bernoulli between reservoir and tube exit

p
ρ

g h⋅+
V2

2
1

2

s
t
V∂

∂

⌠
⎮
⎮
⌡

d+=
V2

2
dV
dt 1

2
s1

⌠
⎮
⌡

d⋅+=
V2

2
dV
dt

L⋅+= where we work in gage pressure

Hence dV
dt

V2

2 L⋅
+

1
L

p
ρ

g h⋅+⎛⎜
⎝

⎞⎟
⎠

⋅= is the differential equation for the flow

Separating variables L dV⋅

p
ρ

g h⋅+
V2

2
−

dt=

Integrating and using limits V(0) = 0 and V(t) = V

V t( ) 2
p
ρ

g h⋅+⎛⎜
⎝

⎞⎟
⎠

⋅ tanh

p
ρ

g h⋅+

2 L2
⋅

t⋅

⎛⎜
⎜
⎜⎝

⎞⎟
⎟
⎟⎠

⋅=
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This graph is suitable for plotting in Excel

For large times V 2
p
ρ

g h⋅+⎛⎜
⎝

⎞⎟
⎠

⋅= V 22.6
ft
s

=
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Problem *6.94 [2]

Given: Stream function

Find: If the flow is irrotational; Pressure difference between points (1,4) and (2,1)

Solution:
Basic equations: Incompressibility because ψ exists u

y
ψ

∂

∂
= v

x
ψ

∂

∂
−= Irrotationality

x
v∂

∂ y
u∂

∂
− 0=

ψ x y, ( ) A x2
⋅ y⋅=

u x y, ( )
y

ψ x y, ( )∂

∂
=

y
A x2

⋅ y⋅( )∂

∂
= u x y, ( ) A x2

⋅=

v x y, ( )
x

ψ x y, ( )∂

∂
−=

x
A x2

⋅ y⋅( )∂

∂
−= v x y, ( ) 2− A⋅ x⋅ y⋅=

Hence
x

v x y, ( )∂

∂ y
u x y, ( )∂

∂
− 2− A⋅ y⋅→

x
v∂

∂ y
u∂

∂
− 0≠ so flow is NOT IRROTATIONAL

Since flow is rotational, we must be on same streamline to be able to use Bernoulli

At point (1,4) ψ 1 4, ( ) 4A= and at point (2,1) ψ 2 1, ( ) 4A=

Hence these points are on same streamline so Bernoulli can be used.  The velocity at a point is V x y, ( ) u x y, ( )2 v x y, ( )2
+=

Hence at (1,4) V1
2.5
m s⋅

1 m⋅( )2
×⎡⎢

⎣
⎤⎥
⎦

2
2−

2.5
m s⋅

× 1× m⋅ 4× m⋅⎛⎜
⎝

⎞⎟
⎠

2
+= V1 20.2

m
s

=

Hence at (2,1) V2
2.5
m s⋅

2 m⋅( )2
×⎡⎢

⎣
⎤⎥
⎦

2
2−

2.5
m s⋅

× 2× m⋅ 1× m⋅⎛⎜
⎝

⎞⎟
⎠

2
+= V2 14.1

m
s

=

Using Bernoulli
p1
ρ

1
2

V1
2

⋅+
p2
ρ

1
2

V2
2

⋅+= Δp
ρ

2
V2

2 V1
2

−⎛
⎝

⎞
⎠⋅=

Δp
1
2
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m3
⋅ 14.12 20.22

−( )×
m
s

⎛⎜
⎝

⎞⎟
⎠

2
⋅

N s2
⋅

kg m⋅
×= Δp 126− kPa⋅=
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Problem *6.96 [3]

Given: Data from Table 6.2

Find: Stream function and velocity potential for a source in a corner; plot; velocity along one plane

Solution:

From Table 6.2, for a source at the origin ψ r θ, ( )
q

2 π⋅
θ⋅= ϕ r θ, ( )

q
2 π⋅

− ln r( )⋅=

Expressed in Cartesian coordinates ψ x y, ( )
q

2 π⋅
atan

y
x

⎛⎜
⎝

⎞⎟
⎠

⋅= ϕ x y, ( )
q

4 π⋅
− ln x2 y2

+( )⋅=

To build flow in a corner, we need image sources at three locations so that there is symmetry about both axes.  We need
sources at (h,h), (h,- h), (- h,h), and (- h,- h)

Hence the composite stream function and velocity potential are

ψ x y, ( )
q

2 π⋅
atan

y h−
x h−

⎛⎜
⎝

⎞⎟
⎠

atan
y h+
x h−

⎛⎜
⎝

⎞⎟
⎠

+ atan
y h+
x h+

⎛⎜
⎝

⎞⎟
⎠

+ atan
y h−
x h+

⎛⎜
⎝

⎞⎟
⎠

+⎛⎜
⎝

⎞⎟
⎠

⋅=

ϕ x y, ( )
q

4 π⋅
− ln x h−( )2 y h−( )2

+⎡⎣ ⎤⎦ x h−( )2 y h+( )2
+⎡⎣ ⎤⎦⋅⎡⎣ ⎤⎦⋅

q
4 π⋅

x h+( )2 y h+( )2
+⎡⎣ ⎤⎦⋅ x h+( )2 y h−( )2

+⎡⎣ ⎤⎦⋅−=

By a similar reasoning the horizontal velocity is given by

u
q x h−( )⋅

2 π⋅ x h−( )2 y h−( )2
+⎡⎣ ⎤⎦

q x h−( )⋅

2 π⋅ x h−( )2 y h+( )2
+⎡⎣ ⎤⎦

+
q x h+( )⋅

2 π⋅ x h+( )2 y h+( )2
+⎡⎣ ⎤⎦

+
q x h+( )⋅

2 π⋅ x h+( )2 y h+( )2
+⎡⎣ ⎤⎦

+=

Along the horizontal wall (y = 0)

u
q x h−( )⋅

2 π⋅ x h−( )2 h2
+⎡⎣ ⎤⎦

q x h−( )⋅

2 π⋅ x h−( )2 h2
+⎡⎣ ⎤⎦

+
q x h+( )⋅

2 π⋅ x h+( )2 h2
+⎡⎣ ⎤⎦

+
q x h+( )⋅

2 π⋅ x h+( )2 h2
+⎡⎣ ⎤⎦

+=

or u x( )
q
π

x h−

x h−( )2 h2
+

x h+

x h+( )2 h2
+

+⎡
⎢
⎣

⎤
⎥
⎦

⋅=



#NAME? Stream Function

#NAME? Velocity Potential

Note that the plot is
from x  = 0 to 5 and y  = 0 to 5

y

x

Stream Function

x

y

Velocity Potential



Problem *6.97 [3]

Given: Velocity field of irrotational and incompressible flow

Find: Stream function and velocity potential; plot

Solution:

The velocity field is u
q x⋅

2 π⋅ x2 y h−( )2
+⎡⎣ ⎤⎦

q x⋅

2 π⋅ x2 y h+( )2
+⎡⎣ ⎤⎦

+= v
q y h−( )⋅

2 π⋅ x2 y h−( )2
+⎡⎣ ⎤⎦

q y h+( )⋅

2 π⋅ x2 y h+( )2
+⎡⎣ ⎤⎦

+=

The governing equations are u
y

ψ
∂

∂
= v

x
ψ

∂

∂
−= u

x
ϕ

∂

∂
−= v

y
ϕ

∂

∂
−=

Hence for the stream function ψ yu x y, ( )
⌠⎮
⎮⌡

d=
q

2 π⋅
atan
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x

⎛⎜
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⎠

atan
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x
⎛⎜
⎝

⎞⎟
⎠

+⎛⎜
⎝

⎞⎟
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⋅ f x( )+=

ψ xv x y, ( )
⌠⎮
⎮⌡

d−=
q

2 π⋅
atan

y h−
x

⎛⎜
⎝

⎞⎟
⎠

atan
y h+

x
⎛⎜
⎝

⎞⎟
⎠

+⎛⎜
⎝

⎞⎟
⎠

⋅ g y( )+=

The simplest expression for ψ is ψ x y, ( )
q

2 π⋅
atan

y h−
x

⎛⎜
⎝

⎞⎟
⎠

atan
y h+

x
⎛⎜
⎝

⎞⎟
⎠

+⎛⎜
⎝

⎞⎟
⎠

⋅=

For the stream function ϕ xu x y, ( )
⌠⎮
⎮⌡

d−=
q

4 π⋅
− ln x2 y h−( )2

+⎡⎣ ⎤⎦ x2 y h+( )2
+⎡⎣ ⎤⎦⋅⎡⎣ ⎤⎦⋅ f y( )+=

ϕ yv x y, ( )
⌠⎮
⎮⌡

d−=
q

4 π⋅
− ln x2 y h−( )2

+⎡⎣ ⎤⎦ x2 y h+( )2
+⎡⎣ ⎤⎦⋅⎡⎣ ⎤⎦⋅ g x( )+=

The simplest expression for φ is ϕ x y, ( )
q

4 π⋅
− ln x2 y h−( )2

+⎡⎣ ⎤⎦ x2 y h+( )2
+⎡⎣ ⎤⎦⋅⎡⎣ ⎤⎦⋅=



#NAME? Stream Function

#NAME? Velocity Potential

Note that the plot is
from x  = -2.5 to 2.5 and y  = 0 to 5

x

x

y

Stream Function

Velocity Potential

y



Problem *6.98 [3]

Given: Data from Table 6.2

Find: Stream function and velocity potential for a vortex in a corner; plot; velocity along one plane

Solution:

From Table 6.2, for a vortex at the origin ϕ r θ, ( )
K

2 π⋅
θ⋅= ψ r θ, ( )

K
2 π⋅

− ln r( )⋅=

Expressed in Cartesian coordinates ϕ x y, ( )
q

2 π⋅
atan

y
x

⎛⎜
⎝

⎞⎟
⎠

⋅= ψ x y, ( )
q

4 π⋅
− ln x2 y2

+( )⋅=

To build flow in a corner, we need image vortices at three locations so that there is symmetry about both axes.  We need
vortices at (h,h), (h,- h), (- h,h), and (- h,- h).  Note that some of them must have strengths of - K!

Hence the composite velocity potential and stream function are

ϕ x y, ( )
K

2 π⋅
atan

y h−
x h−

⎛⎜
⎝

⎞⎟
⎠

atan
y h+
x h−

⎛⎜
⎝

⎞⎟
⎠

− atan
y h+
x h+

⎛⎜
⎝

⎞⎟
⎠

+ atan
y h−
x h+

⎛⎜
⎝

⎞⎟
⎠

−⎛⎜
⎝

⎞⎟
⎠

⋅=

ψ x y, ( )
K

4 π⋅
− ln

x h−( )2 y h−( )2
+

x h−( )2 y h+( )2
+

x h+( )2 y h+( )2
+

x h+( )2 y h−( )2
+

⋅
⎡⎢
⎢⎣

⎤⎥
⎥⎦

⋅=

By a similar reasoning the horizontal velocity is given by

u
K y h−( )⋅

2 π⋅ x h−( )2 y h−( )2
+⎡⎣ ⎤⎦

−
K y h+( )⋅

2 π⋅ x h−( )2 y h+( )2
+⎡⎣ ⎤⎦

+
K y h+( )⋅

2 π⋅ x h+( )2 y h+( )2
+⎡⎣ ⎤⎦

−
K y h−( )⋅

2 π⋅ x h+( )2 y h−( )2
+⎡⎣ ⎤⎦

+=

Along the horizontal wall (y = 0)

u
K h⋅

2 π⋅ x h−( )2 h2
+⎡⎣ ⎤⎦

K h⋅

2 π⋅ x h−( )2 h2
+⎡⎣ ⎤⎦

+
K h⋅

2 π⋅ x h+( )2 h2
+⎡⎣ ⎤⎦

−
K h⋅

2 π⋅ x h+( )2 h2
+⎡⎣ ⎤⎦

−=

or u x( )
K h⋅
π

1

x h−( )2 h2
+

1

x h+( )2 h2
+

−⎡
⎢
⎣

⎤
⎥
⎦

⋅=



#NAME? Stream Function

#NAME?

#NAME? Velocity Potential

Note that the plot is
from x  = -5 to 5 and y  = -5 to 5

y

x

x

y

Stream Function

Velocity Potential



 
Problem *6.99 [NOTE: Typographical Error - Wrong Function!]     [2]



Problem *6.100 [2]

Given: Stream function

Find: Velocity field; Show flow is irrotational; Velocity potential

Solution:
Basic equations: Incompressibility because ψ exists u

y
ψ

∂

∂
= v

x
ψ

∂

∂
−= u

x
φ

∂

∂
−= v

y
φ

∂

∂
−=

Irrotationality
x

v∂

∂ y
u∂

∂
− 0=

ψ x y, ( ) x5 10 x3
⋅ y2

⋅− 5 x⋅ y4
⋅+=

u x y, ( )
y

ψ x y, ( )∂

∂
= u x y, ( ) 20 x⋅ y3

⋅ 20 x3
⋅ y⋅−→

v x y, ( )
x

ψ x y, ( )∂

∂
−= v x y, ( ) 30 x2

⋅ y2
⋅ 5 x4

⋅− 5 y4
⋅−→

x
v x y, ( )∂

∂ y
u x y, ( )∂

∂
− 0→ Hence flow is IRROTATIONAL

Hence u
x

φ
∂

∂
−= so φ x y, ( ) xu x y, ( )

⌠⎮
⎮⌡

d− f y( )+= 5 x4
⋅ y⋅ 10 x2

⋅ y3
⋅− f y( )+=

v
y

φ
∂

∂
−= so φ x y, ( ) yv x y, ( )

⌠⎮
⎮⌡

d− g x( )+= 5 x4
⋅ y⋅ 10 x2

⋅ y3
⋅− y5

+ g x( )+=

Comparing, the simplest velocity potential is then φ x y, ( ) 5 x4
⋅ y⋅ 10 x2

⋅ y3
⋅− y5

+=



Problem *6.101                                                                             [2]



Problem *6.102 [2]

Given: Velocity potential

Find: Show flow is incompressible; Stream function

Solution:
Basic equations: Irrotationality because φ exists u

y
ψ

∂

∂
= v

x
ψ

∂

∂
−= u

x
φ

∂

∂
−= v

y
φ

∂

∂
−=

Incompressibility
x

u∂

∂ y
v∂

∂
+ 0=

φ x y, ( ) x6 15 x4
⋅ y2

⋅− 15 x2
⋅ y4

⋅+ y6
−=

u x y, ( )
x

φ x y, ( )∂

∂
−= u x y, ( ) 60 x3

⋅ y2
⋅ 6 x5

⋅− 30 x⋅ y4
⋅−→

v x y, ( )
y

φ x y, ( )∂

∂
−= v x y, ( ) 30 x4

⋅ y⋅ 60 x2
⋅ y3

⋅− 6 y5
⋅+→

Hence
x

u x y, ( )∂

∂ y
v x y, ( )∂

∂
+ 0→ Hence flow is INCOMPRESSIBLE

Hence u
y

ψ
∂

∂
= so ψ x y, ( ) yu x y, ( )

⌠⎮
⎮⌡

d f x( )+= 20 x3
⋅ y3

⋅ 6 x5
⋅ y⋅− 6 x⋅ y5

⋅− f x( )+=

v
x

ψ
∂

∂
−= so ψ x y, ( ) xv x y, ( )

⌠⎮
⎮⌡

d− g y( )+= 20 x3
⋅ y3

⋅ 6 x5
⋅ y⋅− 6 x⋅ y5

⋅− g y( )+=

Comparing, the simplest stream function is then ψ x y, ( ) 20 x3
⋅ y3

⋅ 6 x5
⋅ y⋅− 6 x⋅ y5

⋅−=



Problem *6.103 [4]

Given: Complex function

Find: Show it leads to velocity potential and stream function of irrotational incompressible flow;
Show that df/dz leads to u and v

Solution:
Basic equations: Irrotationality because φ exists u

y
ψ

∂

∂
= v

x
ψ

∂

∂
−= u

x
φ

∂

∂
−= v

y
φ

∂

∂
−=

Incompressibility
x

u∂

∂ y
v∂

∂
+ 0= Irrotationality

x
v∂

∂ y
u∂

∂
− 0=

f z( ) z6
= x i y⋅+( )6

=

Expanding f z( ) x6 15 x4
⋅ y2

⋅− 15 x2
⋅ y4

⋅+ y6
− i 6 x y5

⋅⋅ 6 x5 y⋅⋅+ 20 x3
⋅ y3

⋅−( )⋅+=

We are thus to check the following

φ x y, ( ) x6 15 x4
⋅ y2

⋅− 15 x2
⋅ y4

⋅+ y6
−= ψ x y, ( ) 6 x⋅ y5

⋅ 6 x5
⋅ y⋅+ 20 x3

⋅ y3
⋅−=

u x y, ( )
x

φ x y, ( )∂

∂
−= u x y, ( ) 60 x3

⋅ y2
⋅ 6 x5

⋅− 30 x⋅ y4
⋅−→

v x y, ( )
y

φ x y, ( )∂

∂
−= v x y, ( ) 30 x4

⋅ y⋅ 60 x2
⋅ y3

⋅− 6 y5
⋅+→

An alternative derivation of u and v is

u x y, ( )
y

ψ x y, ( )∂

∂
= u x y, ( ) 6 x5

⋅ 60 x3
⋅ y2

⋅− 30 x⋅ y4
⋅+→

v x y, ( )
x

ψ x y, ( )∂

∂
−= v x y, ( ) 60 x2

⋅ y3
⋅ 30 x4

⋅ y⋅− 6 y5
⋅−→

Note that the values of u and v are of opposite sign using ψ and φ!different which is the same result using φ!  To
resolve this we could either let f = -φ+iψ; altenatively we could use a different definition of φ that many authors use:

u
x

φ
∂

∂
= v

y
φ

∂

∂
=

Hence
x

v x y, ( )∂

∂ y
u x y, ( )∂

∂
− 0→ Hence flow is IRROTATIONAL

Hence
x

u x y, ( )∂

∂ y
v x y, ( )∂

∂
+ 0→ Hence flow is INCOMPRESSIBLE

Next we find df
dz

d z6( )
dz

= 6 z5
⋅= 6 x i y⋅+( )5

⋅= 6 x5
⋅ 60 x3

⋅ y2
⋅− 30 x⋅ y4

⋅+( ) i 30 x4
⋅ y⋅ 6 y5

⋅+ 60 x2 y3
⋅⋅−( )⋅+=

Hence we see df
dz

u i v⋅−= Hence the results are verified; u Re
df
dz

⎛⎜
⎝

⎞⎟
⎠

= and v Im
df
dz

⎛⎜
⎝

⎞⎟
⎠

−=

These interesting results are explained in Problem 6.104!



Problem *6.104 [4]

Given: Complex function

Find: Show it leads to velocity potential and stream function of irrotational incompressible flow;
Show that df/dz leads to u and v

Solution:

Basic equations: u
y

ψ
∂

∂
= v

x
ψ

∂

∂
−= u

x
φ

∂

∂
−= v

y
φ

∂

∂
−=

First consider
x

f∂

∂ x
z∂

∂ z
fd

d
⋅= 1

z
fd

d
⋅=

z
fd

d
= (1) and also

y
f∂

∂ y
z∂

∂ z
fd

d
⋅= i

z
fd

d
⋅= i

z
fd

d
⋅= (2)

Hence 2x
f∂

∂

2

x x
f∂

∂

⎛
⎜
⎝

⎞
⎟
⎠

∂

∂
=

z z
fd

d
⎛
⎜
⎝

⎞
⎟
⎠

d
d

= 2z
fd

d

2
= and 2y

f∂

∂

2

y y
f∂

∂

⎛
⎜
⎝

⎞
⎟
⎠

∂

∂
= i

z
i

z
fd

d
⋅

⎛
⎜
⎝

⎞
⎟
⎠

d
d
⋅= 2z

fd

d

2
−=

Combining 2x
f∂

∂

2

2y
f∂

∂

2
+ 2z

fd

d

2

2z
fd

d

2
−= 0= Any differentiable function f(z) automatically satisfies the Laplace

Equation; so do its real and imaginary parts!

We demonstrate derivation of velocities u and v

From Eq 1
z

fd
d z

φ i ψ⋅+( )d
d

=
x

φ i ψ⋅+( )∂

∂
=

x
φ

∂

∂
i

x
ψ

∂

∂
⋅+= u− i v⋅−=

From Eq 2
z

fd
d z

φ i ψ⋅+( )d
d

=
1
i y

φ i ψ⋅+( )∂

∂
⋅= i−

y
φ

∂

∂
⋅

y
ψ

∂

∂
+= i v⋅ u+=

There appears to be an incompatibilty here,
but many authors define φ as u

x
φ

∂

∂
= v

y
φ

∂

∂
= or in other words, as the negative

of our definition

Alternatively, we can use out φ but set f φ− i ψ⋅+=

Then

From Eq 1
z

fd
d z

φ i ψ⋅+( )d
d

=
x

φ i ψ⋅+( )∂

∂
=

x
φ

∂

∂
i

x
ψ

∂

∂
⋅+= u i v⋅−=

From Eq 2
z

fd
d z

φ i ψ⋅+( )d
d

=
1
i y

φ i ψ⋅+( )∂

∂
⋅= i−

y
φ

∂

∂
⋅

y
ψ

∂

∂
+= i− v⋅ u+=

Hence we have demonstrated that df
dz

u i v⋅−= if we set u
x

φ
∂

∂
= v

y
φ

∂

∂
=
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Problem *6.111     [3] 
 
Consider flow around a circular cylinder with freestream velocity from right to left and a 
counterclockwise free vortex.  Show that the lift force on the cylinder can be expressed as 
FL =  −ρUΓ, as illustrated in Example 6.12. 
 
 
Open-Ended Problem Statement: Consider flow around a circular cylinder with 
freestream velocity from right to left and a counterclockwise free vortex.  Show that the 
lift force on the cylinder can be expressed as FL =  −ρUΓ, as illustrated in Example 6.12. 
 
Discussion:  The only change in this flow from the flow of Example 6.12 is that the 
directions of the freestream velocity and the vortex are changed. This changes the sign of 
the freestream velocity from U to −U and the sign of the vortex strength from K to −K. 
Consequently the signs of both terms in the equation for lift are changed. Therefore the 
direction of the lift force remains unchanged. 
 
The analysis of Example 6.12 shows that only the term involving the vortex strength 
contributes to the lift force. Therefore the expression for lift obtained with the changed 
freestream velocity and vortex strength is identical to that derived in Example 6.12. Thus 
the general solution of Example 6.12 holds for any orientation of the freestream and 
vortex velocities. For the present case, FL = −ρUΓ, as shown for the general case in 
Example 6.12. 
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