SOLUTION MANUAL FOR

Problem 1.1

$\mathbf{1 . 1}$ A number of common substances are	
Tar	Sand
"Silly Putty",	Jello
Modeling clay	Toothpaste
Wax	Shaving cream

Some of these materials exhibit characteristics of both solid and fluid behavior under different conditions. Explain and give examples.

Given: Common Substances

Tar	Sand
"Silly Putty"	Jello
Modeling clay	Toothpaste
Wax	Shaving cream

Some of these substances exhibit characteristics of solids and fluids under different conditions.
Find: Explain and give examples.
Solution: Tar, Wax, and Jello behave as solids at room temperature or below at ordinary pressures. At high pressures or over long periods, they exhibit fluid characteristics. At higher temperatures, all three liquefy and become viscous fluids.

Modeling clay and silly putty show fluid behavior when sheared slowly. However, they fracture under suddenly applied stress, which is a characteristic of solids.

Toothpaste behaves as a solid when at rest in the tube. When the tube is squeezed hard, toothpaste "flows" out the spout, showing fluid behavior. Shaving cream behaves similarly.

Sand acts solid when in repose (a sand "pile"). However, it "flows" from a spout or down a steep incline.

Problem 1.2

1.2 Give a word statement of each of the five basic conservation laws stated in Section 1-4, as they apply to a system.

Given: Five basic conservation laws stated in Section 1-4.

Write: A word statement of each, as they apply to a system.

Solution: Assume that laws are to be written for a system.
a. Conservation of mass - The mass of a system is constant by definition.
b. Newton's second law of motion - The net force acting on a system is directly proportional to the product of the system mass times its acceleration.
c. First law of thermodynamics - The change in stored energy of a system equals the net energy added to the system as heat and work.
d. Second law of thermodynamics - The entropy of any isolated system cannot decrease during any process between equilibrium states.
e. Principle of angular momentum - The net torque acting on a system is equal to the rate of change of angular momentum of the system.
1.3 Discuss the physics of skipping a stone across the water surface of a lake. Compare these mechanisms with a stone as it bounces after being thrown along a roadway.

Open-Ended Problem Statement: Consider the physics of "skipping" a stone across the water surface of a lake.
Compare these mechanisms with a stone as it bounces after being thrown along a roadway.
Discussion: Observation and experience suggest two behaviors when a stone is thrown along a water surface:

1. If the angle between the path of the stone and the water surface is steep the stone may penetrate the water surface. Some momentum of the stone will be converted to momentum of the water in the resulting splash. After penetrating the water surface, the high drag* of the water will slow the stone quickly. Then, because the stone is heavier than water it will sink.
2. If the angle between the path of the stone and the water surface is shallow the stone may not penetrate the water surface. The splash will be smaller than if the stone penetrated the water surface. This will transfer less momentum to the water, causing less reduction in speed of the stone. The only drag force on the stone will be from friction on the water surface. The drag will be momentary, causing the stone to lose only a portion of its kinetic energy. Instead of sinking, the stone may skip off the surface and become airborne again.

When the stone is thrown with speed and angle just right, it may skip several times across the water surface. With each skip the stone loses some forward speed. After several skips the stone loses enough forward speed to penetrate the surface and sink into the water.

Observation suggests that the shape of the stone significantly affects skipping. Essentially spherical stones may be made to skip with considerable effort and skill from the thrower. Flatter, more disc-shaped stones are more likely to skip, provided they are thrown with the flat surface(s) essentially parallel to the water surface; spin may be used to stabilize the stone in flight.

By contrast, no stone can ever penetrate the pavement of a roadway. Each collision between stone and roadway will be inelastic; friction between the road surface and stone will affect the motion of the stone only slightly. Regardless of the initial angle between the path of the stone and the surface of the roadway, the stone may bounce several times, then finally it will roll to a stop.

The shape of the stone is unlikely to affect trajectory of bouncing from a roadway significantly.

Problem 1.4

1.4 The barrel of a bicycle tire pump becomes quite warm during use. Explain the mechanisms responsible for the temperature increase.

Open-Ended Problem Statement: The barrel of a bicycle tire pump becomes quite warm during use. Explain the mechanisms responsible for the temperature increase.

Discussion: Two phenomena are responsible for the temperature increase: (1) friction between the pump piston and barrel and (2) temperature rise of the air as it is compressed in the pump barrel.

Friction between the pump piston and barrel converts mechanical energy (force on the piston moving through a distance) into thermal energy as a result of friction. Lubricating the piston helps to provide a good seal with the pump barrel and reduces friction (and therefore force) between the piston and barrel.

Temperature of the trapped air rises as it is compressed. The compression is not adiabatic because it occurs during a finite time interval. Heat is transferred from the warm compressed air in the pump barrel to the cooler surroundings. This raises the temperature of the barrel, making its outside surface warm (or even hot!) to the touch.

Problem 1.5

1.5 A spherical tank of inside diameter 500 cm contains com-
pressed oxygen at 7 MPa and $25^{\circ} \mathrm{C}$. What is the mass of oxygen?

Given: Data on oxygen tank.
Find: Mass of oxygen.
Solution: Compute tank volume, and then use oxygen density (Table A.6) to find the mass.

The given or available data is: $\mathrm{D}=500 \cdot \mathrm{~cm} \quad \mathrm{p}=7 \cdot \mathrm{MPa} \quad \mathrm{T}=(25+273) \cdot \mathrm{K} \quad \mathrm{T}=298 \mathrm{~K}$

$$
\mathrm{R}_{\mathrm{O} 2}=259.8 \cdot \frac{\mathrm{~J}}{\mathrm{~kg} \cdot \mathrm{~K}} \quad \text { (Table A.6) }
$$

The governing equation is the ideal gas equation

$$
\mathrm{p}=\rho \cdot \mathrm{R}_{\mathrm{O} 2} \cdot \mathrm{~T} \quad \text { and } \rho=\frac{\mathrm{M}}{\mathrm{~V}}
$$

where V is the tank volume

$$
\mathrm{V}=\frac{\pi \cdot \mathrm{D}^{3}}{6}
$$

$\mathrm{V}=\frac{\pi}{6} \times(5 \cdot \mathrm{~m})^{3} \quad \mathrm{~V}=65.4 \cdot \mathrm{~m}^{3}$

Hence

$$
\mathrm{M}=\mathrm{V} \cdot \rho=\frac{\mathrm{p} \cdot \mathrm{~V}}{\mathrm{R}_{\mathrm{O} 2} \cdot \mathrm{~T}} \quad \mathrm{M}=7 \times 10^{6} \cdot \frac{\mathrm{~N}}{\mathrm{~m}^{2}} \times 65.4 \cdot \mathrm{~m}^{3} \times \frac{1}{259.8} \cdot \frac{\mathrm{~kg} \cdot \mathrm{~K}}{\mathrm{~N} \cdot \mathrm{~m}} \times \frac{1}{298} \cdot \frac{1}{\mathrm{~K}} \quad \mathrm{M}=5913 \mathrm{~kg}
$$

Problem 1.6

1.6 Make a guess at the order of magnitude of the mass (e.g., $0.01,0.1,1.0,10,100$, or 1000 lbm or kg) of standard air that is in a room 10 ft by 10 ft by 8 ft , and then compute this mass in lbm and kg to see how close your estimate was.

Given: Dimensions of a room
Find: Mass of air

Solution:

Basic equation: $\quad \rho=\frac{\mathrm{p}}{\mathrm{R}_{\mathrm{air}} \cdot \mathrm{T}}$

Given or available data

Then

$$
\mathrm{p}=14.7 \mathrm{psi} \quad \mathrm{~T}=(59+460) \mathrm{R} \quad \mathrm{R}_{\mathrm{air}}=53.33 \cdot \frac{\mathrm{ft} \cdot \mathrm{lbf}}{\mathrm{lbm} \cdot \mathrm{R}}
$$

$\mathrm{V}=10 \cdot \mathrm{ft} \times 10 \cdot \mathrm{ft} \times 8 \cdot \mathrm{ft}$
$\mathrm{V}=800 \mathrm{ft}^{3}$
$\rho=\frac{\mathrm{p}}{\mathrm{R}_{\mathrm{air}} \cdot \mathrm{T}}$
$\rho=0.076 \frac{\mathrm{lbm}}{\mathrm{ft}^{3}}$
$M=61.2 \mathrm{lbm}$
$M=\rho \cdot V$
-
$M=1.90$ slug
$\mathrm{M}=27.8 \mathrm{~kg}$

Problem 1.7

1.7 A cylindrical tank for containing 10 lbm of compressed nitrogen at a pressure of 200 atm (gage) and $70^{\circ} \mathrm{F}$ must be designed. The design constraints are that the length must be twice the diameter and the wall thickness must be $\frac{1}{4} \mathrm{in}$. What are the external dimensions?

Given: Mass of nitrogen, and design constraints on tank dimensions.
Find: External dimensions.
Solution: Use given geometric data and nitrogen mass, with data from Table A.6.

The given or available data is: $\quad \mathrm{M}=10 \cdot \mathrm{lbm} \quad \mathrm{p}=(200+1) \cdot \mathrm{atm} \quad \mathrm{p}=2.95 \times 10^{3} \cdot \mathrm{psi}$

$$
\mathrm{T}=(70+460) \cdot \mathrm{K} \quad \mathrm{~T}=954 \cdot \mathrm{R} \quad \mathrm{R}_{\mathrm{N} 2}=55.16 \cdot \frac{\mathrm{ft} \cdot \mathrm{lbf}}{\mathrm{lbm} \cdot \mathrm{R}} \quad \text { (Table A.6) }
$$

The governing equation is the ideal gas equation $\quad \mathrm{p}=\rho \cdot \mathrm{R}_{\mathrm{N} 2} \cdot \mathrm{~T} \quad$ and $\quad \rho=\frac{\mathrm{M}}{\mathrm{V}}$
where V is the tank volume

$$
\mathrm{V}=\frac{\pi \cdot \mathrm{D}^{2}}{4} \cdot \mathrm{~L} \quad \text { where } \quad \mathrm{L}=2 \cdot \mathrm{D}
$$

Combining these equations:

Hence

$$
\mathrm{M}=\mathrm{V} \cdot \rho=\frac{\mathrm{p} \cdot \mathrm{~V}}{\mathrm{R}_{\mathrm{N} 2} \cdot \mathrm{~T}}=\frac{\mathrm{p}}{\mathrm{R}_{\mathrm{N} 2} \cdot \mathrm{~T}} \cdot \frac{\pi \cdot \mathrm{D}^{2}}{4} \cdot \mathrm{~L}=\frac{\mathrm{p}}{\mathrm{R}_{\mathrm{N} 2} \cdot \mathrm{~T}} \cdot \frac{\pi \cdot \mathrm{D}^{2}}{4} \cdot 2 \cdot \mathrm{D}=\frac{\mathrm{p} \cdot \pi \cdot \mathrm{D}^{3}}{2 \cdot \mathrm{R}_{\mathrm{N} 2} \cdot \mathrm{~T}}
$$

Solving for D

$$
\begin{array}{ll}
\mathrm{D}=\left(\frac{2 \cdot \mathrm{R}_{\mathrm{N} 2} \cdot \mathrm{~T} \cdot \mathrm{M}}{\mathrm{p} \cdot \pi}\right)^{\frac{1}{3}} & \mathrm{D}=\left[\frac{2}{\pi} \times 55.16 \cdot \frac{\mathrm{ft} \cdot \mathrm{lbf}}{\mathrm{lbm} \cdot \mathrm{R}} \times 954 \cdot \mathrm{~K} \times 10 \cdot \mathrm{lbm} \times \frac{1}{2950} \cdot \frac{\mathrm{in}^{2}}{\mathrm{lbf}} \times\left(\frac{\mathrm{ft}}{12 \cdot \mathrm{in}}\right)^{2}\right]^{\frac{1}{3}} \\
\mathrm{D}=1.12 \cdot \mathrm{ft} \quad \mathrm{D}=13.5 \cdot \mathrm{in} & \mathrm{~L}=2 \cdot \mathrm{D} \quad \mathrm{~L}=27 \cdot \mathrm{in}
\end{array}
$$

These are internal dimensions; the external ones are $1 / 4 \mathrm{in}$. larger: $\mathrm{L}=27.25 \cdot \mathrm{in} \quad \mathrm{D}=13.75 \cdot \mathrm{in}$
1.8 Very small particles moving in fluids are known to experience a drag force proportional to speed. Consider a particle of net weight W dropped in a fluid. The particle experiences a drag force, $F_{D}=k V$, where V is the particle speed. Determine the time required for the particle to accelerate from rest to 95 percent of its terminal speed, V_{t}, in terms of k, W, and g.

Given: Small particle accelerating from rest in a fluid. Net weight is W , resisting force $F_{\mathrm{D}}=\mathrm{kV}$, where V is speed.

Find: Time required to reach 95 percent of terminal speed, V_{t}.
Solution: Consider the particle to be a system. Apply Newton's second law.

Basic equation: $\sum F_{y}=\mathrm{ma}_{y}$

Assumptions:

1. W is net weight
2. Resisting force acts opposite to V

Then

$$
\sum F_{y}=\mathrm{W}-\mathrm{kV}=\mathrm{ma}_{y}=\mathrm{m} \frac{\mathrm{dV}}{\mathrm{dt}}=\frac{\mathrm{W}}{\mathrm{~g}} \frac{\mathrm{dV}}{\mathrm{dt}}
$$

or
$\frac{\mathrm{dV}}{\mathrm{dt}}=\mathrm{g}\left(1-\frac{\mathrm{k}}{\mathrm{W}} \mathrm{V}\right)$

Separating variables,

$$
\frac{d V}{1-\frac{k}{W} V}=g d t
$$

Integrating, noting that velocity is zero initially, $\left.\quad \int_{0}^{V} \frac{d V}{1-\frac{k}{W} V}=-\frac{W}{k} \ln \left(1-\frac{k}{W} V\right)\right]_{0}^{V}=\int_{0}^{t} g d t=g t$

$$
1-\frac{\mathrm{k}}{\mathrm{~W}} \mathrm{~V}=\mathrm{e}^{-\frac{\mathrm{kgt}}{\mathrm{~W}}} ; \mathrm{V}=\frac{\mathrm{W}}{\mathrm{k}}\left[1-\mathrm{e}^{-\frac{\mathrm{kgt}}{\mathrm{~W}}}\right]
$$

But $\mathrm{V} \rightarrow \mathrm{V}_{\mathrm{t}}$ as $\mathrm{t} \rightarrow \infty$, so $\mathrm{V}_{\mathrm{t}}=\frac{\mathrm{W}}{\mathrm{k}}$. Therefore $\quad \frac{\mathrm{V}}{\mathrm{V}_{\mathrm{t}}}=1-\mathrm{e}^{-\frac{\mathrm{kgt}}{\mathrm{W}}}$

When $\frac{\mathrm{v}}{\mathrm{v}_{\mathrm{t}}}=0.95$, then $\mathrm{e}^{-\frac{\mathrm{kgt}}{\mathrm{W}}}=0.05$ and $\frac{\mathrm{kgt}}{\mathrm{W}}=3$. Thus $\mathrm{t}=3 \mathrm{~W} / \mathrm{gk}$

Problem 1.9

1.9 Consider again the small particle of Problem 1.8. Express the distance required to reach 95 percent of its terminal speed in terms of g, k, and W.

Given: Small particle accelerating from rest in a fluid. Net weight is W , resisting force is $F_{\mathrm{D}}=\mathrm{kV}$, where

V is speed.
Find: \quad Distance required to reach 95 percent of terminal speed, V_{t}.

Solution: Consider the particle to be a system. Apply Newton's second law.
Basic equation: $\quad \sum \mathrm{F}_{y}=\mathrm{ma}_{y}$

Assumptions:

1. W is net weight.
2. Resisting force acts opposite to V .

Then, $\quad \sum \mathrm{F}_{y}=\mathrm{W}-\mathrm{kV}=\mathrm{ma}_{y}=\mathrm{m} \frac{\mathrm{dV}}{\mathrm{dt}}=\frac{\mathrm{W}}{\mathrm{g}} \mathrm{V} \frac{\mathrm{dV}}{\mathrm{dy}} \quad$ or $\quad 1-\frac{\mathrm{k}}{\mathrm{W}} \mathrm{V}=\frac{\mathrm{V}}{\mathrm{g}} \frac{\mathrm{dV}}{\mathrm{dy}}$

At terminal speed, $\mathrm{a}_{\mathrm{y}}=0$ and $\mathrm{V}=\mathrm{V}_{\mathrm{t}}=\frac{\mathrm{w}}{\mathrm{k}}$. Then $1-\frac{\mathrm{V}}{\mathrm{V}_{\mathrm{g}}}=\frac{1}{\mathrm{~g}} \mathrm{~V} \frac{\mathrm{dV}}{\mathrm{dy}}$

Separating variables $\frac{V d V}{1-\frac{1}{V_{t}} V}=g d y$
Integrating, noting that velocity is zero initially

$$
\begin{aligned}
g y & =\int_{0}^{0.95 V_{t}} \frac{V d V}{1-\frac{1}{V_{t}} V}=\left[-V V_{t}-V_{t}^{2} \ln \left(1-\frac{V}{V_{t}}\right)\right]_{0}^{0.95 V_{t}} \\
g y & =-0.95 V_{t}^{2}-V_{t}^{2} \ln (1-0.95)-V_{t}^{2} \ln (1) \\
g y & =-V_{t}^{2}[0.95+\ln 0.05]=2.05 V_{t}^{2} \\
& \therefore y=\frac{2.05}{g} V_{t}^{2}=2.05 \frac{W^{2}}{g t^{2}}
\end{aligned}
$$

1.10 For a small particle of styrofoam $\left(1 \mathrm{lbm} / \mathrm{ft}^{3}\right)$ (spherical, with diameter $d=0.3 \mathrm{~mm}$) falling in standard air at speed V, the drag is given by $F_{D}=3 \pi \mu V d$, where μ is the air viscosity. Find the maximum speed starting from rest, and the time it takes to reach 95% of this speed. Plot the speed as a function of time.

Given: Data on sphere and formula for drag.

Find: Maximum speed, time to reach 95% of this speed, and plot speed as a function of time.

Solution: Use given data and data in Appendices, and integrate equation of motion by separating variables.

The data provided, or available in the Appendices, are:

$$
\rho_{\text {air }}=1.17 \cdot \frac{\mathrm{~kg}}{\mathrm{~m}^{3}} \quad \mu=1.8 \times 10^{-5} \cdot \frac{\mathrm{~N} \cdot \mathrm{~s}}{\mathrm{~m}^{2}} \quad \rho_{\mathrm{W}}=999 \cdot \frac{\mathrm{~kg}}{\mathrm{~m}^{3}} \quad \mathrm{SG}_{\text {Sty }}=0.016 \quad \mathrm{~d}=0.3 \cdot \mathrm{~mm}
$$

Then the density of the sphere is $\quad \rho_{\text {Sty }}=\mathrm{SG}_{\text {Sty }} \rho_{\mathrm{W}} \quad \quad \rho_{\text {Sty }}=16 \frac{\mathrm{~kg}}{\mathrm{~m}^{3}}$

The sphere mass is

$$
\mathrm{M}=\rho_{\mathrm{Sty}} \cdot \frac{\pi \cdot \mathrm{~d}^{3}}{6}=16 \cdot \frac{\mathrm{~kg}}{\mathrm{~m}^{3}} \times \pi \times \frac{(0.0003 \cdot \mathrm{~m})^{3}}{6} \quad \mathrm{M}=2.26 \times 10^{-10} \mathrm{~kg}
$$

Newton's 2nd law for the steady state motion becomes (ignoring buoyancy effects)

$$
\mathrm{M} \cdot \mathrm{~g}=3 \cdot \pi \cdot \mathrm{~V} \cdot \mathrm{~d}
$$

so
$\mathrm{V}_{\text {max }}=\frac{\mathrm{M} \cdot \mathrm{g}}{3 \cdot \pi \cdot \mu \cdot \mathrm{~d}}=\frac{1}{3 \cdot \pi} \times 2.26 \times 10^{-10} \cdot \mathrm{~kg} \times 9.81 \cdot \frac{\mathrm{~m}}{\mathrm{~s}^{2}} \times \frac{\mathrm{m}^{2}}{1.8 \times 10^{-5} \cdot \mathrm{~N} \cdot \mathrm{~s}} \times \frac{1}{0.0003 \cdot \mathrm{~m}} \quad \mathrm{~V}_{\max }=0.0435 \frac{\mathrm{~m}}{\mathrm{~s}}$

Newton's 2nd law for the general motion is (ignoring buoyancy effects)
$\mathrm{M} \cdot \frac{\mathrm{dV}}{\mathrm{dt}}=\mathrm{M} \cdot \mathrm{g}-3 \cdot \pi \cdot \mu \cdot \mathrm{~V} \cdot \mathrm{~d}$
so

$$
\frac{d V}{g-\frac{3 \cdot \pi \cdot \mu \cdot d}{M} \cdot V}=\mathrm{dt}
$$

Integrating and using limits

$$
\mathrm{V}(\mathrm{t})=\frac{\mathrm{M} \cdot \mathrm{~g}}{3 \cdot \pi \cdot \mu \cdot \mathrm{~d}} \cdot\left(1-\mathrm{e}^{\frac{-3 \cdot \pi \cdot \mu \cdot \mathrm{~d}}{\mathrm{M}} \cdot \mathrm{t}}\right)
$$

Using the given data

The time to reach 95% of maximum speed is obtained from
$\frac{\mathrm{M} \cdot \mathrm{g}}{3 \cdot \pi \cdot \mu \cdot \mathrm{~d}} \cdot\left(1-\mathrm{e}^{\frac{-3 \cdot \pi \cdot \mu \cdot \mathrm{~d}}{\mathrm{M}} \cdot \mathrm{t}}\right)=0.95 \cdot \mathrm{~V}_{\max }$
so $\quad \mathrm{t}=-\frac{\mathrm{M}}{3 \cdot \pi \cdot \mu \cdot \mathrm{~d}} \cdot \ln \left(1-\frac{0.95 \cdot \mathrm{~V}_{\max } \cdot 3 \cdot \pi \cdot \mu \cdot \mathrm{~d}}{\mathrm{M} \cdot \mathrm{g}}\right) \quad$ Substituting values $\quad \mathrm{t}=0.0133 \mathrm{~s}$

The plot can also be done in Excel.
1.11 In a combustion process, gasoline particles are to be dropped in air. The particles must drop at least 25 cm in 1 s . Find the diameter d of droplets required for this. (The drag on these particles is given by $F_{D}=3 \pi \mu V d$, where V is the particle speed and μ is the air viscosity. To solve this problem use Excel's Goal Seek.)

Given: Data on sphere and formula for drag.
Find: \quad Diameter of gasoline droplets that take 1 second to fall 25 cm .
Solution: Use given data and data in Appendices; integrate equation of motion by separating variables.

The data provided, or available in the Appendices, are:

$$
\mu=1.8 \times 10^{-5} \cdot \frac{\mathrm{~N} \cdot \mathrm{~s}}{\mathrm{~m}^{2}} \quad \rho_{\mathrm{W}}=999 \cdot \frac{\mathrm{~kg}}{\mathrm{~m}^{3}} \quad \mathrm{SG}_{\text {gas }}=0.72 \quad \rho_{\text {gas }}=\mathrm{SG}_{\text {gas }} \cdot \rho_{\mathrm{W}} \quad \rho_{\text {gas }}=719 \frac{\mathrm{~kg}}{\mathrm{~m}^{3}}
$$

Newton's 2nd law for the sphere (mass M) is (ignoring buoyancy effects) $M \cdot \frac{d V}{d t}=M \cdot g-3 \cdot \pi \cdot \mu \cdot V \cdot d$
so

Integrating and using limits

$$
\frac{d V}{g-\frac{3 \cdot \pi \cdot \mu \cdot d}{M} \cdot V}=\mathrm{dt}
$$

$$
V(t)=\frac{M \cdot g}{3 \cdot \pi \cdot \mu \cdot d} \cdot\left(1-e^{\frac{-3 \cdot \pi \cdot \mu \cdot d}{M} \cdot t}\right)
$$

Integrating again

$$
x(t)=\frac{M \cdot g}{3 \cdot \pi \cdot \mu \cdot d} \cdot\left[t+\frac{M}{3 \cdot \pi \cdot \mu \cdot d} \cdot\left(e^{\frac{-3 \cdot \pi \cdot \mu \cdot d}{M} \cdot t}-1\right)\right]
$$

Replacing M with an expression involving diameter d

$$
\mathrm{M}=\rho_{\mathrm{gas}} \cdot \frac{\pi \cdot \mathrm{~d}^{3}}{6} \quad \mathrm{x}(\mathrm{t})=\frac{\rho_{\mathrm{gas}} \cdot \mathrm{~d}^{2} \cdot \mathrm{~g}}{18 \cdot \mu} \cdot\left[\mathrm{t}+\frac{\rho_{\mathrm{gas}} \cdot \mathrm{~d}^{2}}{18 \cdot \mu} \cdot\left(\mathrm{e}^{\frac{-18 \cdot \mu}{\rho_{\mathrm{gas}} \cdot \mathrm{~d}^{2}}}-\mathrm{t}-1\right)\right]
$$

This equation must be solved for d so that $\mathrm{x}(1 \cdot \mathrm{~s})=1 \cdot \mathrm{~m}$. The answer can be obtained from manual iteration, or by using Excel's Goal Seek. (See this in the corresponding Excel workbook.)

$$
\mathrm{d}=0.109 \cdot \mathrm{~mm}
$$

Note That the particle quickly reaches terminal speed, so that a simpler approximate solution would be to solve $M g=3 \pi \mu V d$ for d, with $V=0.25 \mathrm{~m} / \mathrm{s}$ (allowing for the fact that M is a function of d)!
1.12 A sky diver with a mass of 70 kg jumps from an aircraft.

The aerodynamic drag force acting on the sky diver is known to be $F_{D}=k V^{2}$, where $k=0.25 \mathrm{~N} \cdot \mathrm{~s}^{2} / \mathrm{m}^{2}$. Determine the maximum speed of free fall for the sky diver and the speed reached after 100 m of fall. Plot the speed of the sky diver as a function of time and as a function of distance fallen.
Given:
Data on sky diver:
$\mathrm{M}=70 \cdot \mathrm{~kg}$

$$
\mathrm{k}=0.25 \cdot \frac{\mathrm{~N} \cdot \mathrm{~s}^{2}}{\mathrm{~m}^{2}}
$$

Find: Maximum speed; speed after 100 m ; plot speed as function of time and distance.

Solution: Use given data; integrate equation of motion by separating variables.

Treat the sky diver as a system; apply Newton's 2nd law:

Newton's 2nd law for the sky diver (mass M) is (ignoring buoyancy effects): $\quad \mathrm{M} \cdot \frac{\mathrm{dV}}{\mathrm{dt}}=\mathrm{M} \cdot \mathrm{g}-\mathrm{k} \cdot \mathrm{V}^{2}$
(a) For terminal speed V_{t}, acceleration is zero, so $\mathrm{M} \cdot \mathrm{g}-\mathrm{k} \cdot \mathrm{V}^{2}=0 \quad$ so $\quad V_{t}=\sqrt{\frac{\mathrm{M} \cdot \mathrm{g}}{\mathrm{k}}}$

$$
\mathrm{V}_{\mathrm{t}}=\left(75 \cdot \mathrm{~kg} \times 9.81 \cdot \frac{\mathrm{~m}}{\mathrm{~s}^{2}} \times \frac{\mathrm{m}^{2}}{0.25 \cdot \mathrm{~N} \cdot \mathrm{~s}^{2}} \cdot \frac{\mathrm{~N} \cdot \mathrm{~s}^{2}}{\mathrm{~kg} \times \mathrm{m}}\right)^{\frac{1}{2}} \quad \mathrm{~V}_{\mathrm{t}}=54.2 \frac{\mathrm{~m}}{\mathrm{~s}}
$$

(b) For V at $y=100 \mathrm{~m}$ we need to find $V(y)$. From (1) $M \cdot \frac{d V}{d t}=M \cdot \frac{d V}{d y} \cdot \frac{d y}{d t}=M \cdot V \cdot \frac{d V}{d t}=M \cdot g-k \cdot V^{2}$

Separating variables and integrating: $\quad \int_{0}^{V} \frac{V}{1-\frac{k \cdot V^{2}}{M \cdot g}} d V=\int_{0}^{y} g d y$
so

$$
\ln \left(1-\frac{\mathrm{k} \cdot \mathrm{~V}^{2}}{\mathrm{M} \cdot \mathrm{~g}}\right)=-\frac{2 \cdot \mathrm{k}}{\mathrm{M}} \mathrm{y} \quad \text { or } \quad \mathrm{V}^{2}=\frac{\mathrm{M} \cdot \mathrm{~g}}{\mathrm{k}} \cdot\left(1-\mathrm{e}^{-\frac{2 \cdot \mathrm{k} \cdot \mathrm{y}}{\mathrm{M}}}\right)
$$

$$
V(y)=V_{t} \cdot\left(1-e^{-\frac{2 \cdot k \cdot y}{M}}\right)^{\frac{1}{2}}
$$

(c) For $V(t)$ we need to integrate (1) with respect to $t: \quad M \cdot \frac{d V}{d t}=M \cdot g-k \cdot V^{2}$

Separating variables and integrating: $\quad \int_{0}^{V} \frac{V}{\frac{M \cdot g}{k}-V^{2}} d V=\int_{0}^{t} 1 d t$
so $\quad \mathrm{t}=\frac{1}{2} \cdot \sqrt{\frac{\mathrm{M}}{\mathrm{k} \cdot \mathrm{g}}} \cdot \ln \left(\left|\frac{\sqrt{\frac{\mathrm{M} \cdot \mathrm{g}}{\mathrm{k}}}+\mathrm{V}}{\sqrt{\frac{\mathrm{M} \cdot \mathrm{g}}{\mathrm{k}}}-\mathrm{V}}\right|\right)=\frac{1}{2} \cdot \sqrt{\frac{\mathrm{M}}{\mathrm{k} \cdot \mathrm{g}}} \cdot \ln \left(\frac{\left|\mathrm{V}_{\mathrm{t}}+\mathrm{V}\right|}{\left|\mathrm{V}_{\mathrm{t}}-\mathrm{V}\right|}\right)$

Rearranging $\quad V(t)=V_{t} \cdot \frac{\left(e^{2 \cdot \sqrt{\frac{\mathrm{k} \cdot \mathrm{g}}{\mathrm{M}}} \cdot \mathrm{t}}-1\right)}{\left(\mathrm{e}^{2 \cdot \sqrt{\frac{\mathrm{k} \cdot \mathrm{g}}{\mathrm{M}}} \cdot \mathrm{t}}+1\right)} \quad$ or $\quad \mathrm{V}(\mathrm{t})=\mathrm{V}_{\mathrm{t}} \cdot \tanh \left(\mathrm{V}_{\mathrm{t}} \cdot \frac{\mathrm{k}}{\mathrm{M}} \cdot \mathrm{t}\right)$

The two graphs can also be plotted in Excel.
1.13 For Problem 1.12, the initial horizontal speed of the skydiver is $70 \mathrm{~m} / \mathrm{s}$. As she falls, the k value for the vertical drag remains as before, but the value for horizontal motion is $k=0.05$ $\mathrm{N} \cdot \mathrm{s} / \mathrm{m}^{2}$. Compute and plot the 2D trajectory of the skydiver.

Given: Data on sky diver: $\quad M=70 \cdot \mathrm{~kg} \quad \mathrm{k}_{\text {vert }}=0.25 \cdot \frac{\mathrm{~N} \cdot \mathrm{~s}^{2}}{\mathrm{~m}^{2}} \quad \mathrm{k}_{\text {horiz }}=0.05 \cdot \frac{\mathrm{~N} \cdot \mathrm{~s}^{2}}{\mathrm{~m}^{2}} \quad U_{0}=70 \cdot \frac{\mathrm{~m}}{\mathrm{~s}}$
Find: Plot of trajectory.

Solution: Use given data; integrate equation of motion by separating variables.

Treat the sky diver as a system; apply Newton's 2nd law in horizontal and vertical directions:

Vertical: Newton's 2nd law for the sky diver (mass M) is (ignoring buoyancy effects):

$$
\begin{equation*}
\mathrm{M} \cdot \frac{\mathrm{dV}}{\mathrm{dt}}=\mathrm{M} \cdot \mathrm{~g}-\mathrm{k}_{\mathrm{vert}} \cdot \mathrm{~V}^{2} \tag{1}
\end{equation*}
$$

For $V(t)$ we need to integrate (1) with respect to t :

Separating variables and integrating: $\quad \int_{0}^{V} \frac{V}{\frac{M \cdot g}{k_{v e r t}}-V^{2}} d V=\int_{0}^{t} 1 d t$
so

$$
\mathrm{t}=\frac{1}{2} \cdot \sqrt{\frac{\mathrm{M}}{\mathrm{k}_{\mathrm{vert}} \cdot \mathrm{~g}}} \cdot \ln \left(\left|\frac{\sqrt{\frac{\mathrm{M} \cdot \mathrm{~g}}{\mathrm{k}_{\mathrm{vert}}}}+\mathrm{V}}{\sqrt{\frac{\mathrm{M} \cdot \mathrm{~g}}{\mathrm{k}_{\mathrm{vert}}}}-\mathrm{V}}\right|\right)
$$

Rearranging $\quad V(t)=\sqrt{\frac{\mathrm{M} \cdot \mathrm{g}}{\mathrm{k}_{\text {vert }}}} \cdot \frac{\left(\mathrm{e}^{2 \cdot \sqrt{\frac{\mathrm{k}_{\text {vert }} \cdot \mathrm{g}}{\mathrm{M}}} \cdot \mathrm{t}}-1\right)}{\left.2 \cdot \sqrt{\frac{\mathrm{k}_{\text {vert }} \cdot g}{\mathrm{M}} \cdot \mathrm{t}}\right)} \quad$ so $\quad \mathrm{V}(\mathrm{t})=\sqrt{\frac{\mathrm{M} \cdot \mathrm{g}}{\mathrm{k}_{\mathrm{vert}}} \cdot \tanh \left(\sqrt{\frac{\mathrm{k}_{\mathrm{vert}} \cdot \mathrm{g}}{\mathrm{M}}} \cdot \mathrm{t}\right)}$

For $y(t)$ we need to integrate again: $\quad \frac{\mathrm{dy}}{\mathrm{dt}}=\mathrm{V} \quad$ or $\quad \mathrm{y}=\int \mathrm{Vdt}$
$y(t)=\int_{0}^{t} V(t) d t=\int_{0}^{t} \sqrt{\frac{M \cdot g}{k_{v e r t}}} \cdot \tanh \left(\sqrt{\frac{k_{\text {vert } \cdot g}^{M}}{M}} \cdot t\right) d t=\sqrt{\frac{M \cdot g}{k_{v e r t}}} \cdot \ln \left(\cosh \left(\sqrt{\frac{k_{\text {vert } \cdot g}^{M}}{M}} \cdot t\right)\right)$
$y(t)=\sqrt{\frac{\mathrm{M} \cdot \mathrm{g}}{\mathrm{k}_{\mathrm{vert}}}} \cdot \ln \left(\cosh \left(\sqrt{\frac{\mathrm{k}_{\text {vert }} \cdot \mathrm{g}}{\mathrm{M}}} \cdot \mathrm{t}\right)\right)$

t(s)

Horizontal: Newton's 2nd law for the sky diver (mass M) is:

$$
\begin{equation*}
\mathrm{M} \cdot \frac{\mathrm{dU}}{\mathrm{dt}}=-\mathrm{k}_{\text {horiz }} \cdot \mathrm{U}^{2} \tag{2}
\end{equation*}
$$

For $U(t)$ we need to integrate (2) with respect to t :

Separating variables and integrating: $\quad \int_{U_{0}}^{U} \frac{1}{U^{2}} d U=\int_{0}^{t}-\frac{k_{\text {horiz }}}{M} d t \quad$ so $\quad-\frac{k_{\text {horiz }}}{M} \cdot t=-\frac{1}{U}+\frac{1}{U_{0}}$

Rearranging

 or$$
\mathrm{U}(\mathrm{t})=\frac{\mathrm{U}_{0}}{1+\frac{\mathrm{k}_{\text {horiz }} \cdot \mathrm{U}_{0}}{\mathrm{M}} \cdot \mathrm{t}}
$$

For $x(t)$ we need to integrate again: $\quad \frac{\mathrm{dx}}{\mathrm{dt}}=\mathrm{U} \quad$ or $\quad \mathrm{x}=\int \mathrm{U} d t$

$$
\begin{aligned}
& \mathrm{x}(\mathrm{t})=\int_{0}^{\mathrm{t}} \mathrm{U}(\mathrm{t}) \mathrm{dt}=\int_{0}^{\mathrm{t}} \frac{\mathrm{U}_{0}}{1+\frac{\mathrm{k}_{\text {horiz }} \cdot \mathrm{U}_{0}}{\mathrm{M}} \cdot \mathrm{t}} \mathrm{dt}=\frac{\mathrm{M}}{\mathrm{k}_{\text {horiz }}} \cdot \ln \left(\frac{\mathrm{k}_{\text {horiz }} \cdot \mathrm{U}_{0}}{\mathrm{M}} \cdot \mathrm{t}+1\right) \\
& \mathrm{x}(\mathrm{t})=\frac{\mathrm{M}}{\mathrm{k}_{\text {horiz }}} \cdot \ln \left(\frac{\mathrm{k}_{\text {horiz }} \cdot \mathrm{U}_{0}}{\mathrm{M}} \cdot \mathrm{t}+1\right)
\end{aligned}
$$

Plotting the trajectory:

$x(\mathrm{~km})$

These plots can also be done in Excel.
1.14 In a pollution control experiment, minute solid particles (typical mass $5 \times 10^{-11} \mathrm{~kg}$) are dropped in the air. The terminal speed of the particles is measured to be $5 \mathrm{~cm} / \mathrm{s}$. The drag on these particles is given by $F_{D}=k V^{\iota}$, where V is the particle instantaneous speed. Find the value of constant k. Find the time required to reach 99 percent of terminal speed.

Given:

 Data on sphere and terminal speed.Find: \quad Drag constant k, and time to reach 99% of terminal speed.

Solution: Use given data; integrate equation of motion by separating variables.

The data provided are: $\quad \mathrm{M}=5 \cdot 10^{-11} \cdot \mathrm{~kg} \quad \mathrm{~V}_{\mathrm{t}}=5 \cdot \frac{\mathrm{~cm}}{\mathrm{~s}}$

Newton's 2nd law for the general motion is (ignoring buoyancy effects)

$$
\begin{equation*}
\mathrm{M} \cdot \frac{\mathrm{dV}}{\mathrm{dt}}=\mathrm{M} \cdot \mathrm{~g}-\mathrm{k} \cdot \mathrm{~V} \tag{1}
\end{equation*}
$$

Newton's 2nd law for the steady state motion becomes (ignoring buoyancy effects) $\quad \mathrm{M} \cdot \mathrm{g}=\mathrm{k} \cdot \mathrm{V}_{\mathrm{t}} \quad$ so $\quad \mathrm{k}=\frac{\mathrm{M} \cdot \mathrm{g}}{\mathrm{V}_{\mathrm{t}}}$
$\mathrm{k}=\frac{\mathrm{M} \cdot \mathrm{g}}{\mathrm{V}_{\mathrm{t}}}=5 \times 10^{-11} \cdot \mathrm{~kg} \times 9.81 \cdot \frac{\mathrm{~m}}{\mathrm{~s}^{2}} \times \frac{\mathrm{s}}{0.05 \cdot \mathrm{~m}} \quad \mathrm{k}=9.81 \times 10^{-9} \cdot \frac{\mathrm{~N} \cdot \mathrm{~s}}{\mathrm{~m}}$

To find the time to reach 99% of V_{t}, we need $V(t)$. From 1, separating variables

$$
\frac{\mathrm{dV}}{\mathrm{~g}-\frac{\mathrm{k}}{\mathrm{M}} \cdot \mathrm{~V}}=\mathrm{dt}
$$

Integrating and using limits $\quad \mathrm{t}=-\frac{\mathrm{M}}{\mathrm{k}} \cdot \ln \left(1-\frac{\mathrm{k}}{\mathrm{M} \cdot \mathrm{g}} \cdot \mathrm{V}\right)$

We must evaluate this when $\quad \mathrm{V}=0.99 \cdot \mathrm{~V}_{\mathrm{t}} \quad \mathrm{V}=4.95 \cdot \frac{\mathrm{~cm}}{\mathrm{~s}}$
$\mathrm{t}=5 \times 10^{-11} \cdot \mathrm{~kg} \times \frac{\mathrm{m}}{9.81 \times 10^{-9} \cdot \mathrm{~N} \cdot \mathrm{~s}} \times \frac{\mathrm{N} \cdot \mathrm{s}^{2}}{\mathrm{~kg} \cdot \mathrm{~m}} \cdot \ln \left(1-9.81 \cdot 10^{-9} \cdot \frac{\mathrm{~N} \cdot \mathrm{~s}}{\mathrm{~m}} \times \frac{1}{5 \times 10^{-11} \cdot \mathrm{~kg}} \times \frac{\mathrm{s}^{2}}{9.81 \cdot \mathrm{~m}} \times \frac{0.0495 \cdot \mathrm{~m}}{\mathrm{~s}} \times \frac{\mathrm{kg} \cdot \mathrm{m}}{\mathrm{N} \cdot \mathrm{s}^{2}}\right)$
$\mathrm{t}=0.0235 \mathrm{~s}$
1.15 For Problem 1.14, find the distance the particles travel before reaching 99 percent of terminal speed. Plot the distanced traveled as a function of time.

Given: Data on sphere and terminal speed from Problem 1.14.
Find: \quad Distance traveled to reach 99% of terminal speed; plot of distance versus time.

Solution: Use given data; integrate equation of motion by separating variables.

The data provided are: $\quad \mathrm{M}=5 \cdot 10^{-11} \cdot \mathrm{~kg} \quad \mathrm{~V}_{\mathrm{t}}=5 \cdot \frac{\mathrm{~cm}}{\mathrm{~s}}$

Newton's 2nd law for the general motion is (ignoring buoyancy effects)
$M \cdot \frac{d V}{d t}=M \cdot g-k \cdot V$
$\mathrm{M} \cdot \mathrm{g}=\mathrm{k} \cdot \mathrm{V}_{\mathrm{t}} \quad$ so $\quad \mathrm{k}=\frac{\mathrm{M} \cdot \mathrm{g}}{\mathrm{V}_{\mathrm{t}}}$
$\mathrm{k}=\frac{\mathrm{M} \cdot \mathrm{g}}{\mathrm{V}_{\mathrm{t}}}=5 \times 10^{-11} \cdot \mathrm{~kg} \times 9.81 \cdot \frac{\mathrm{~m}}{\mathrm{~s}^{2}} \times \frac{\mathrm{s}}{0.05 \cdot \mathrm{~m}} \quad \mathrm{k}=9.81 \times 10^{-9} \cdot \frac{\mathrm{~N} \cdot \mathrm{~s}}{\mathrm{~m}}$
To find the distance to reach 99% of V_{t}, we need $V(y)$. From 1: $\quad M \cdot \frac{d V}{d t}=M \cdot \frac{d y}{d t} \cdot \frac{d V}{d y}=M \cdot V \cdot \frac{d V}{d y}=M \cdot g-k \cdot V$
Separating variables $\quad \frac{V \cdot d V}{g-\frac{k}{M} \cdot V}=d y$
Integrating and using limits $\quad y=-\frac{M^{2} \cdot g}{k^{2}} \cdot \ln \left(1-\frac{k}{M \cdot g} \cdot V\right)-\frac{M}{k} \cdot V$
We must evaluate this when

$$
\mathrm{V}=0.99 \cdot \mathrm{~V}_{\mathrm{t}} \quad \mathrm{~V}=4.95 \cdot \frac{\mathrm{~cm}}{\mathrm{~s}}
$$

$\mathrm{y}=\left(5 \times 10^{-11} \cdot \mathrm{~kg}\right)^{2} \times \frac{9.81 \cdot \mathrm{~m}}{\mathrm{~s}^{2}} \times\left(\frac{\mathrm{m}}{9.81 \times 10^{-9} \cdot \mathrm{~N} \cdot \mathrm{~s}}\right)^{2} \times\left(\frac{\mathrm{N} \cdot \mathrm{s}^{2}}{\mathrm{~kg} \cdot \mathrm{~m}}\right)^{2} \cdot \ln \left(1-9.81 \cdot 10^{-9} \cdot \frac{\mathrm{~N} \cdot \mathrm{~s}}{\mathrm{~m}} \times \frac{1}{5 \times 10^{-11} \cdot \mathrm{~kg}} \times \frac{\mathrm{s}^{2}}{9.81 \cdot \mathrm{~m}} \times \frac{0.0495 \cdot \mathrm{~m}}{\mathrm{~s}} \times \frac{\mathrm{kg} \cdot \mathrm{m}}{\mathrm{N} \cdot \mathrm{s}^{2}}\right) \ldots$
$+-5 \times 10^{-11} \cdot \mathrm{~kg} \times \frac{\mathrm{m}}{9.81 \times 10^{-9} \cdot \mathrm{~N} \cdot \mathrm{~s}} \times \frac{0.0495 \cdot \mathrm{~m}}{\mathrm{~s}} \times \frac{\mathrm{N} \cdot \mathrm{s}^{2}}{\mathrm{~kg} \cdot \mathrm{~m}}$
$\mathrm{y}=0.922 \cdot \mathrm{~mm}$
Alternatively we could use the approach of Problem 1.14 and first find the time to reach terminal speed, and use this time in $y(t)$ to find the above value of y :

From 1, separating variables

$$
\frac{\mathrm{dV}}{\mathrm{~g}-\frac{\mathrm{k}}{\mathrm{M}} \cdot \mathrm{~V}}=\mathrm{dt}
$$

Integrating and using limits $\quad t=-\frac{M}{k} \cdot \ln \left(1-\frac{\mathrm{k}}{\mathrm{M} \cdot \mathrm{g}} \cdot \mathrm{V}\right)$

We must evaluate this when $\quad \mathrm{V}=0.99 \cdot \mathrm{~V}_{\mathrm{t}} \quad \mathrm{V}=4.95 \cdot \frac{\mathrm{~cm}}{\mathrm{~s}}$
$\mathrm{t}=5 \times 10^{-11} \cdot \mathrm{~kg} \times \frac{\mathrm{m}}{9.81 \times 10^{-9} \cdot \mathrm{~N} \cdot \mathrm{~s}} \times \frac{\mathrm{N} \cdot \mathrm{s}^{2}}{\mathrm{~kg} \cdot \mathrm{~m}} \cdot \ln \left(1-9.81 \cdot 10^{-9} \cdot \frac{\mathrm{~N} \cdot \mathrm{~s}}{\mathrm{~m}} \times \frac{1}{5 \times 10^{-11} \cdot \mathrm{~kg}} \times \frac{\mathrm{s}^{2}}{9.81 \cdot \mathrm{~m}} \times \frac{0.0495 \cdot \mathrm{~m}}{\mathrm{~s}} \times \frac{\mathrm{kg} \cdot \mathrm{m}}{\mathrm{N} \cdot \mathrm{s}^{2}}\right) \quad \mathrm{t}=0.0235 \mathrm{~s}$

From 2, after rearranging

$$
V=\frac{d y}{d t}=\frac{M \cdot g}{k} \cdot\left(1-e^{-\frac{\mathrm{k}}{\mathrm{M}} \cdot \mathrm{t}}\right)
$$

Integrating and using limits $\quad y=\frac{M \cdot g}{k} \cdot\left[t+\frac{M}{k} \cdot\left(e^{-\frac{k}{M} \cdot t}-1\right)\right]$
$\mathrm{y}=5 \times 10^{-11} \cdot \mathrm{~kg} \times \frac{9.81 \cdot \mathrm{~m}}{\mathrm{~s}^{2}} \times \frac{\mathrm{m}}{9.81 \times 10^{-9} \cdot \mathrm{~N} \cdot \mathrm{~s}} \times \frac{\mathrm{N} \cdot \mathrm{s}^{2}}{\mathrm{~kg} \cdot \mathrm{~m}} \cdot[0.0235 \cdot \mathrm{~s} \ldots$

$$
+5 \times 10^{-11} \cdot \mathrm{~kg} \times \frac{\mathrm{m}}{9.81 \times 10^{-9} \cdot \mathrm{~N} \cdot \mathrm{~s}} \times \frac{\mathrm{N} \cdot \mathrm{~s}^{2}}{\mathrm{~kg} \cdot \mathrm{~m}} \cdot\left(\mathrm{e}^{-\frac{9.81 \cdot 10^{-9}}{5 \cdot 10^{-11}} \cdot 0235}-1\right)
$$

$\mathrm{y}=0.922 \cdot \mathrm{~mm}$

This plot can also be presented in Excel.

Problem 1.16

1.16 The English perfected the longbow as a weapon after the Medieval period. In the hands of a skilled archer, the longbow was reputed to be accurate at ranges to 100 meters or more. If the maximum altitude of an arrow is less than $h=10 \mathrm{~m}$ while traveling to a target 100 m away from the archer, and neglecting air resistance, estimate the speed and angle at which the arrow must leave the bow. Plot the required release speed and angle as a function of height h.

Given: Long bow at range, $\mathrm{R}=100 \mathrm{~m}$. Maximum height of arrow is $\mathrm{h}=10 \mathrm{~m}$. Neglect air resistance.

Find: Estimate of (a) speed, and (b) angle, of arrow leaving the bow.

Plot: (a) release speed, and (b) angle, as a function of h
Solution: Let $\overrightarrow{V_{0}}=u_{0} \hat{i}+v_{0} \hat{j}=V_{0}\left(\cos \theta_{0} \hat{i}+\sin \theta_{0} \hat{\mathrm{j}}\right)$

$$
\Sigma \mathrm{F}_{\mathrm{y}}=\mathrm{m} \frac{\mathrm{dv}}{\mathrm{dt}}=-\mathrm{mg} \text {, so } \mathrm{v}=\mathrm{v}_{0}-\mathrm{gt} \text {, and } \mathrm{t}_{\mathrm{f}}=2 \mathrm{t}_{\mathrm{v}=0}=2 \mathrm{v}_{0} / \mathrm{g}
$$

Also,

$$
m v \frac{d v}{d y}=-m g, v d v=-g d y, 0-\frac{v_{0}^{2}}{2}=-g h
$$

Thus

$$
\begin{equation*}
\mathrm{h}=\mathrm{v}_{0}^{2} / 2 \mathrm{~g} \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
\Sigma \mathrm{F}_{x}=\mathrm{m} \frac{\mathrm{du}}{\mathrm{dt}}=0 \text {, so } \mathrm{u}=\mathrm{u}_{0}=\text { const, and } \mathrm{R}=\mathrm{u}_{0} \mathrm{t}_{\mathrm{f}}=\frac{2 \mathrm{u}_{0} \mathrm{v}_{0}}{\mathrm{~g}} \tag{2}
\end{equation*}
$$

From

1. $\mathrm{v}_{0}^{2}=2 \mathrm{gh}$
2. $\mathrm{u}_{0}=\frac{\mathrm{gR}}{2 \mathrm{v}_{0}}=\frac{g R}{2 \sqrt{2 g h}} \quad \therefore \mathrm{u}_{0}^{2}=\frac{\mathrm{gR}^{2}}{8 \mathrm{~h}}$

Then $\quad V_{0}^{2}=u_{0}^{2}+v_{0}^{2}=\frac{g R^{2}}{8 \mathrm{~h}}+2 g h$ and $V_{0}=\left[2 g h+\frac{g R R^{2}}{8 \mathrm{~h}}\right]^{\frac{1}{2}}$

$$
\mathrm{V}_{0}=\left[2 \times 9.81 \frac{\mathrm{~m}}{\mathrm{~s}^{2}} \times 10 \mathrm{~m}+\frac{9.81}{8} \frac{\mathrm{~m}}{\mathrm{~s}^{2}} \times(100)^{2} \mathrm{~m}^{2} \times \frac{1}{10 \mathrm{~m}}\right]^{\frac{1}{2}}=37.7 \mathrm{~m} / \mathrm{s}
$$

From Eq. $3 \quad \mathrm{v}_{0}=\sqrt{2 \mathrm{gh}}=\mathrm{V}_{0} \sin \theta, \theta=\sin ^{-1} \frac{\sqrt{2 \mathrm{gh}}}{\mathrm{V}_{0}}$

$$
\theta=\sin ^{-1}\left[\left(2 \times 9.81 \frac{\mathrm{~m}}{\mathrm{~s}} \times 10 \mathrm{~m}\right)^{\frac{1}{2}} \frac{\mathrm{~s}}{37.7 \mathrm{~m}}\right]=21.8^{\circ}
$$

Plots of $\mathrm{V}_{0}=\mathrm{V}_{0}(\mathrm{~h})\{$ Eq. 4$\}$ and $\theta_{0}=\theta_{0}(\mathrm{~h})\{\mathrm{Eq} .5\}$ are presented below

Eq. 4: Initial Speed vs. Max. Height

Eq. 5: Initial Angle vs. Max. Height

1.17 For each quantity listed, indicate dimensions using force as
a primary dimension, and give typical SI and English units:
a. Power
b. Pressure
c. Modulus of elasticity
d. Angular velocity
e. Energy
f. Momentum
g. Shear stress
h. Specific heat
i. Thermal expansion coefficient
j. Angular momentum

Given: Basic dimensions F, L, t and T.

Find: Dimensional representation of quantities below, and typical units in SI and English systems.

Solution:

(a) Power

$$
\text { Power }=\frac{\text { Energy }}{\text { Time }}=\frac{\text { Force } \times \text { Distance }}{\text { Time }}=\frac{\mathrm{F} \cdot \mathrm{~L}}{\mathrm{t}}
$$

$$
\frac{\mathrm{N} \cdot \mathrm{~m}}{\mathrm{~s}} \quad \frac{\mathrm{lbf} \cdot \mathrm{ft}}{\mathrm{~s}}
$$

(b) Pressure

$$
\text { Pressure }=\frac{\text { Force }}{\text { Area }}=\frac{F}{L^{2}}
$$

$$
\frac{\mathrm{N}}{\mathrm{~m}^{2}} \quad \frac{\mathrm{lbf}}{\mathrm{ft}^{2}}
$$

(c) Modulus of elasticity

$$
\text { Pressure }=\frac{\text { Force }}{\text { Area }}=\frac{\mathrm{F}}{\mathrm{~L}^{2}}
$$

$$
\frac{\mathrm{N}}{\mathrm{~m}^{2}} \quad \frac{\mathrm{lbf}}{\mathrm{ft}^{2}}
$$

(d) Angular velocity

AngularVelocity $=\frac{\text { Radians }}{\text { Time }}=\frac{1}{t}$
$\frac{1}{\mathrm{~s}} \quad \frac{1}{\mathrm{~s}}$
(e) Energy

Energy $=$ Force \times Distance $=F \cdot L$
$\mathrm{N} \cdot \mathrm{m}$
lbf•ft
(f) Momentum
(g) Shear stress

Momentum $=$ Mass \times Velocity $=M \cdot \frac{L}{t}$
From Newton's 2nd law \quad Force $=$ Mass \times Acceleration so $\quad F=M \cdot \frac{L}{t^{2}} \quad$ or $\quad M=\frac{F \cdot t^{2}}{L}$
Hence \quad Momentum $=\mathrm{M} \cdot \frac{\mathrm{L}}{\mathrm{t}}=\frac{\mathrm{F} \cdot \mathrm{t}^{2} \cdot \mathrm{~L}}{\mathrm{~L} \cdot \mathrm{t}}=\mathrm{F} \cdot \mathrm{t}$
$\mathrm{N} \cdot \mathrm{s} \quad \mathrm{lbf} \cdot \mathrm{s}$

ShearStress $=\frac{\text { Force }}{\text { Area }}=\frac{F}{L^{2}}$
$\frac{\mathrm{N}}{\mathrm{m}^{2}} \quad \frac{\mathrm{lbf}}{\mathrm{ft}^{2}}$
(h) Specific heat

SpecificHeat $=\frac{\text { Energy }}{\text { Mass } \times \text { Temperature }}=\frac{\mathrm{F} \cdot \mathrm{L}}{\mathrm{M} \cdot \mathrm{T}}=\frac{\mathrm{F} \cdot \mathrm{L}}{\left(\frac{\mathrm{F} \cdot \mathrm{t}^{2}}{\mathrm{~L}}\right) \cdot \mathrm{T}}=\frac{\mathrm{L}^{2}}{\mathrm{t}^{2} \cdot \mathrm{~T}}$
$\frac{m^{2}}{s^{2} \cdot K}$
$\frac{\mathrm{ft}^{2}}{\mathrm{~s}^{2} \cdot \mathrm{R}}$

LengthChange

$\frac{1}{\mathrm{~K}} \quad \frac{1}{\mathrm{R}}$

AngularMomentum $=$ Momentum \times Distance $=$ F $\cdot \mathrm{t} \cdot \mathrm{L}$
$\mathrm{N} \cdot \mathrm{m} \cdot \mathrm{s}$
$\mathrm{lbf} \cdot \mathrm{ft} \cdot \mathrm{s}$
1.18 For each quantity listed, indicate dimensions using mass as
a primary dimension, and give typical SI and English units:
a. Power
b. Pressure
c. Modulus of elasticity
d. Angular velocity
e. Energy
f. Moment of a force
g. Momentum
h. Shear stress
i. Strain
j. Angular momentum

Given: Basic dimensions $\mathrm{M}, \mathrm{L}, \mathrm{t}$ and T .
Find: Dimensional representation of quantities below, and typical units in SI and English systems.

Solution:

(a) Power \quad Power $=\frac{\text { Energy }}{\text { Time }}=\frac{\text { Force } \times \text { Distance }}{\text { Time }}=\frac{F \cdot L}{t}$
(b) Pressure
(c) Modulus of elasticity
(d) Angular velocity
(e) Energy
(f) Moment of a force

From Newton's 2nd law \quad Force $=$ Mass \times Acceleration so $\quad F=\frac{M \cdot L}{t^{2}}$
Hence Power $=\frac{F \cdot L}{t}=\frac{M \cdot L \cdot L}{t^{2} \cdot t}=\frac{M \cdot L^{2}}{t^{3}}$
$\frac{\mathrm{kg} \cdot \mathrm{m}^{2}}{\mathrm{~s}^{3}} \quad \frac{\text { slugft }^{2}}{\mathrm{~s}^{3}}$
Pressure $=\frac{\text { Force }}{\text { Area }}=\frac{F}{L^{2}}=\frac{M \cdot L}{t^{2} \cdot L^{2}}=\frac{M}{L \cdot t^{2}}$
Pressure $=\frac{\text { Force }}{\text { Area }}=\frac{\mathrm{F}}{\mathrm{L}^{2}}=\frac{\mathrm{M} \cdot \mathrm{L}}{\mathrm{t}^{2} \cdot \mathrm{~L}^{2}}=\frac{\mathrm{M}}{\mathrm{L} \cdot \mathrm{t}^{2}}$
$\frac{\mathrm{kg}}{\mathrm{m} \cdot \mathrm{s}^{2}} \quad \frac{\mathrm{slug}}{\mathrm{ft} \cdot \mathrm{s}^{2}}$
$\frac{\mathrm{kg}}{\mathrm{m} \cdot \mathrm{s}^{2}} \quad \frac{\mathrm{slug}}{\mathrm{ft} \cdot \mathrm{s}^{2}}$
$\begin{array}{ll}\frac{1}{\mathrm{~s}} & \frac{1}{\mathrm{~s}}\end{array}$
$\frac{\mathrm{kg} \cdot \mathrm{m}^{2}}{\mathrm{~s}^{2}} \quad \frac{\text { slug } \cdot \mathrm{ft}^{2}}{\mathrm{~s}^{2}}$
$\frac{\mathrm{kg} \cdot \mathrm{m}^{2}}{\mathrm{~s}^{2}} \quad \frac{\text { slug } \cdot \mathrm{ft}^{2}}{\mathrm{~s}^{2}}$
(g) Momentum
(h) Shear stress

AngularVelocity $=\frac{\text { Radians }}{\text { Time }}=\frac{1}{\mathrm{t}}$
Energy $=$ Force \times Distance $=F \cdot L=\frac{M \cdot L \cdot L}{t^{2}}=\frac{M \cdot L^{2}}{t^{2}}$
$\frac{\mathrm{kg} \cdot \mathrm{m}}{\mathrm{s}} \quad \frac{\text { slug. } \mathrm{ft}}{\mathrm{s}}$
$\frac{\mathrm{kg}}{\mathrm{m} \cdot \mathrm{s}^{2}} \quad \frac{\mathrm{slug}}{\mathrm{ft} \cdot \mathrm{s}^{2}}$
(i) Strain
(j) Angular momentum

MomentOfForce $=$ Force \times Length $=F \cdot L=\frac{M \cdot L \cdot L}{t^{2}}=\frac{M \cdot L^{2}}{t^{2}}$
Momentum $=$ Mass \times Velocity $=M \cdot \frac{L}{t}=\frac{M \cdot L}{t}$
ShearStress $=\frac{\text { Force }}{\text { Area }}=\frac{F}{L^{2}}=\frac{M \cdot L}{t^{2} \cdot L^{2}}=\frac{M}{L \cdot t^{2}}$
Strain $=\frac{\text { LengthChange }}{\text { Length }}=\frac{L}{L}$
Dimensionless
$\frac{\mathrm{kg} \cdot \mathrm{m}^{2}}{\mathrm{~s}} \quad \frac{\text { slugs } \cdot \mathrm{ft}^{2}}{\mathrm{~s}}$
1.19 Derive the following conversion factors:
a. Convert a pressure of 1 psi to kPa .
b. Convert a volume of 1 liter to gallons.
c. Convert a viscosity of $1 \mathrm{lbf} \cdot \mathrm{s} / \mathrm{ft}^{2}$ to $\mathrm{N} \cdot \mathrm{s} / \mathrm{m}^{2}$.

Given: Pressure, volume and density data in certain units
Find: Convert to different units

Solution:

Using data from tables (e.g. Table G.2)
(a) $\quad 1 \cdot \mathrm{psi}=1 \cdot \mathrm{psi} \times \frac{6895 \cdot \mathrm{~Pa}}{1 \cdot \mathrm{psi}} \times \frac{1 \cdot \mathrm{kPa}}{1000 \cdot \mathrm{~Pa}}=6.89 \cdot \mathrm{kPa}$
(b) $\quad 1 \cdot$ liter $=1 \cdot$ liter $\times \frac{1 \cdot \text { quart }}{0.946 \cdot \text { liter }} \times \frac{1 \cdot \text { gal }}{4 \cdot \text { quart }}=0.264 \cdot$ gal
(c)

$$
1 \cdot \frac{\mathrm{lbf} \cdot \mathrm{~s}}{\mathrm{ft}^{2}}=1 \cdot \frac{\mathrm{lbf} \cdot \mathrm{~s}}{\mathrm{ft}^{2}} \times \frac{4.448 \cdot \mathrm{~N}}{1 \cdot \mathrm{lbf}} \times\left(\frac{\frac{1}{12} \cdot \mathrm{ft}}{0.0254 \cdot \mathrm{~m}}\right)^{2}=47.9 \cdot \frac{\mathrm{~N} \cdot \mathrm{~s}}{\mathrm{~m}^{2}}
$$

1.20 Derive the following conversion factors:
a. Convert a viscosity of $1 \mathrm{~m}^{2} / \mathrm{s}$ to $\mathrm{ft}^{2} / \mathrm{s}$.
b. Convert a power of 100 W to horsepower.
c. Convert a specific energy of $1 \mathrm{~kJ} / \mathrm{kg}$ to $\mathrm{Btu} / \mathrm{lbm}$.

Given: Viscosity, power, and specific energy data in certain units
Find: Convert to different units

Solution:

Using data from tables (e.g. Table G.2)
(a) $1 \cdot \frac{\mathrm{~m}^{2}}{\mathrm{~s}}=1 \cdot \frac{\mathrm{~m}^{2}}{\mathrm{~s}} \times\left(\frac{\frac{1}{12} \cdot \mathrm{ft}}{0.0254 \cdot \mathrm{~m}}\right)^{2}=10.76 \cdot \frac{\mathrm{ft}^{2}}{\mathrm{~s}}$
(b) $\quad 100 \cdot \mathrm{~W}=100 \cdot \mathrm{~W} \times \frac{1 \cdot \mathrm{hp}}{746 \cdot \mathrm{~W}}=0.134 \cdot \mathrm{hp}$
(c) $\quad 1 \cdot \frac{\mathrm{~kJ}}{\mathrm{~kg}}=1 \cdot \frac{\mathrm{~kJ}}{\mathrm{~kg}} \times \frac{1000 \cdot \mathrm{~J}}{1 \cdot \mathrm{~kJ}} \times \frac{1 \cdot \mathrm{Btu}}{1055 \cdot \mathrm{~J}} \times \frac{0.454 \cdot \mathrm{~kg}}{1 \cdot \mathrm{lbm}}=0.43 \cdot \frac{\mathrm{Btu}}{\mathrm{lbm}}$
1.21 Express the following in SI units:
a. $100 \mathrm{cfm}\left(\mathrm{ft}^{3} / \mathrm{min}\right)$
b. 5 gal
c. 65 mph
d. 5.4 acres

Given: Quantities in English Engineering (or customary) units.
Find: Quantities in SI units.

Solution: Use Table G. 2 and other sources (e.g., Google)
(a)

$$
100 \cdot \frac{\mathrm{ft}^{3}}{\mathrm{~m}}=100 \cdot \frac{\mathrm{ft}^{3}}{\min } \times\left(\frac{0.0254 \cdot \mathrm{~m}}{1 \cdot \mathrm{in}} \times \frac{12 \cdot \mathrm{in}}{1 \cdot \mathrm{ft}}\right)^{3} \times \frac{1 \cdot \mathrm{~min}}{60 \cdot \mathrm{~s}}=0.0472 \cdot \frac{\mathrm{~m}^{3}}{\mathrm{~s}}
$$

(b) $\quad 5 \cdot \mathrm{gal}=5 \cdot \mathrm{gal} \times \frac{231 \cdot \mathrm{in}^{3}}{1 \cdot \mathrm{gal}} \times\left(\frac{0.0254 \cdot \mathrm{~m}}{1 \cdot \mathrm{in}}\right)^{3}=0.0189 \cdot \mathrm{~m}^{3}$
(c)
$65 \cdot \mathrm{mph}=65 \cdot \frac{\mathrm{mile}}{\mathrm{hr}} \times \frac{1852 \cdot \mathrm{~m}}{1 \cdot \mathrm{mile}} \times \frac{1 \cdot \mathrm{hr}}{3600 \cdot \mathrm{~s}}=29.1 \cdot \frac{\mathrm{~m}}{\mathrm{~s}}$
(d)

$$
5.4 \cdot \text { acres }=5.4 \cdot \text { acre } \times \frac{4047 \cdot \mathrm{~m}^{3}}{1 \cdot \text { acre }}=2.19 \times 10^{4} \cdot \mathrm{~m}^{2}
$$

1.22 Express the following in BG units:
a. $50 \mathrm{~m}^{2}$
b. 250 cc
c. 100 kW
d. $5 \mathrm{lbf} \cdot \mathrm{s} / \mathrm{ft}^{2}$

Given: Quantities in SI (or other) units.
Find: Quantities in BG units.

Solution: Use Table G.2.

(a)

$$
50 \cdot \mathrm{~m}^{2}=50 \cdot \mathrm{~m}^{2} \times\left(\frac{1 \cdot \mathrm{in}}{0.0254 \cdot \mathrm{~m}} \times \frac{1 \cdot \mathrm{ft}}{12 \cdot \mathrm{in}}\right)^{2}=538 \cdot \mathrm{ft}^{2}
$$

(b)

$$
250 \cdot \mathrm{cc}=250 \cdot \mathrm{~cm}^{3} \times\left(\frac{1 \cdot \mathrm{~m}}{100 \cdot \mathrm{~cm}} \times \frac{1 \cdot \mathrm{in}}{0.0254 \cdot \mathrm{~m}} \times \frac{1 \cdot \mathrm{ft}}{12 \cdot \mathrm{in}}\right)^{3}=8.83 \times 10^{-3} \cdot \mathrm{ft}^{3}
$$

(c)

$$
100 \cdot \mathrm{~kW}=100 \cdot \mathrm{~kW} \times \frac{1000 \cdot \mathrm{~W}}{1 \cdot \mathrm{~kW}} \times \frac{1 \cdot \mathrm{hp}}{746 \cdot \mathrm{~W}}=134 \cdot \mathrm{hp}
$$

(d)

$$
5 \cdot \frac{\mathrm{lbf} \cdot \mathrm{~s}}{\mathrm{ft}^{2}} \quad \text { is already in BG units }
$$

Problem 1.23

1.23 A farmer needs $1 \frac{1}{2} \mathrm{in}$. of rain per week on his farm, with

25 acres of crops. If there is a drought, how much water (gpm)
will have to be pumped in to maintain his crops?
Given: Acreage of land, and water needs.
Find: Water flow rate (gpm) to water crops.
Solution: Use Table G. 2 and other sources (e.g., Google) as needed.
The volume flow rate needed is $\quad \mathrm{Q}=\frac{1.5 \cdot \mathrm{in}}{\text { week }} \times 25 \cdot$ acres
Performing unit conversions $\quad \mathrm{Q}=\frac{1.5 \cdot \mathrm{in} \times 25 \cdot \text { acre }}{\text { week }}=\frac{1.5 \cdot \mathrm{in} \times 25 \cdot \text { acre }}{\text { week }} \times \frac{4.36 \times 10^{4} \cdot \mathrm{ft}^{2}}{1 \cdot \mathrm{acre}} \times\left(\frac{12 \cdot \mathrm{in}}{1 \cdot \mathrm{ft}}\right)^{2} \times \frac{1 \cdot \text { week }}{7 \cdot \text { day }} \times \frac{1 \cdot \mathrm{day}}{24 \cdot \mathrm{hr}} \times \frac{1 \cdot \mathrm{hr}}{60 \cdot \mathrm{~min}}$ $\mathrm{Q}=101 \cdot \mathrm{gpm}$
1.24 While you're waiting for the ribs to cook, you muse about the propane tank of your barbecue. You're curious about the volume of propane versus the actual tank size. Find the liquid propane volume when full (the weight of the propane is specified on the tank). Compare this to the tank volume (take some measurements, and approximate the tank shape as a cylinder with a hemisphere on each end). Explain the discrepancy.

Given: Geometry of tank, and weight of propane.

Find: Volume of propane, and tank volume; explain the discrepancy.
Solution: Use Table G. 2 and other sources (e.g., Google) as needed.
The author's tank is approximately 12 in in diameter, and the cylindrical part is about 8 in . The weight of propane specified is 17 lb .
The tank diameter is
$D=12 \cdot$ in
The tank cylindrical height is
$\mathrm{L}=8 \cdot \mathrm{in}$
The mass of propane is
$m_{\text {prop }}=17 \cdot \mathrm{lbm}$
The specific gravity of propane is

$$
\mathrm{SG}_{\text {prop }}=0.495
$$

The density of water is

$$
\rho=998 \cdot \frac{\mathrm{~kg}}{\mathrm{~m}^{3}}
$$

The volume of propane is given by

$$
\begin{aligned}
& \mathrm{V}_{\text {prop }}=\frac{\mathrm{m}_{\text {prop }}}{\rho_{\text {prop }}}=\frac{\mathrm{m}_{\text {prop }}}{S G_{\text {prop }} \cdot \rho} \\
& \mathrm{V}_{\text {prop }}=17 \cdot \mathrm{lbm} \times \frac{1}{0.495} \times \frac{\mathrm{m}^{3}}{998 \cdot \mathrm{~kg}} \times \frac{0.454 \cdot \mathrm{~kg}}{1 \cdot \mathrm{lbm}} \times\left(\frac{1 \cdot \mathrm{in}}{0.0254 \cdot \mathrm{~m}}\right)^{3} \\
& \mathrm{~V}_{\text {prop }}=953 \cdot \mathrm{in}^{3}
\end{aligned}
$$

The volume of the tank is given by a cylinder diameter D length $L, \pi D^{2} L / 4$ and a sphere (two halves) given by $\pi D^{3 / 6}$

$$
\begin{aligned}
& \mathrm{V}_{\text {tank }}=\frac{\pi \cdot \mathrm{D}^{2}}{4} \cdot \mathrm{~L}+\frac{\pi \cdot \mathrm{D}^{3}}{6} \\
& \mathrm{~V}_{\text {tank }}=\frac{\pi \cdot(12 \cdot \mathrm{in})^{2}}{4} \cdot 8 \cdot \mathrm{in}+\pi \cdot \frac{(12 \cdot \mathrm{in})^{3}}{6} \\
& \mathrm{~V}_{\text {tank }}=1810 \cdot \mathrm{in}^{3}
\end{aligned}
$$

The ratio of propane to tank volumes is $\frac{\mathrm{V}_{\text {prop }}}{\mathrm{V}_{\text {tank }}}=53 . \%$
This seems low, and can be explained by a) tanks are not filled completely, b) the geometry of the tank gave an overestimate of the volume (th ends are not really hemispheres, and we have not allowed for tank wall thickness).

Problem 1.25

1.25 The density of mercury is given as 26.3 slug $/ \mathrm{ft}^{3}$. Calculate the specific gravity and the specific volume in $\mathrm{m}^{3} / \mathrm{kg}$ of the mercury. Calculate the specific weight in $\mathrm{lbf} / \mathrm{ft}^{3}$ on Earth and on the moon. Acceleration of gravity on the moon is $5.47 \mathrm{ft} / \mathrm{s}^{2}$.

Given: \quad Density of mercury is $\rho=26.3$ slug/ $/ \mathrm{ft}^{3}$.
Acceleration of gravity on moon is $\mathrm{g}_{\mathrm{m}}=5.47 \mathrm{ft} / \mathrm{s}^{2}$.

Find:

a. Specific gravity of mercury.
b. Specific volume of mercury, in $\mathrm{m}^{3} / \mathrm{kg}$.
c. Specific weight on Earth.
d. Specific weight on moon.

Solution: Apply definitions: $\gamma \equiv \rho \mathrm{g}, v \equiv 1 / \rho, \mathrm{SG} \equiv \rho / \rho_{\mathrm{H}_{2} \mathrm{O}}$

Thus

$$
\mathrm{SG}=26.3 \frac{\mathrm{slug}}{\mathrm{ft}^{3}} \times \frac{\mathrm{ft}^{3}}{1.94 \mathrm{slug}}=13.6
$$

$$
v=\frac{\mathrm{ft}^{3}}{26.3 \mathrm{slug}} \times(0.3048)^{3} \frac{\mathrm{~m}^{3}}{\mathrm{ft}^{3}} \times \frac{\text { slug }}{32.2 \mathrm{lbm}} \times \frac{\mathrm{lbm}}{0.4536 \mathrm{~kg}}=7.37 \times 10^{-5} \mathrm{~m}^{3} / \mathrm{kg}
$$

On Earth, $\quad \gamma_{\mathrm{E}}=26.3 \frac{\mathrm{slug}}{\mathrm{ft}^{3}} \times 32.2 \frac{\mathrm{ft}}{\mathrm{s}^{2}} \times \frac{\mathrm{lbf} \cdot \mathrm{s}^{2}}{\mathrm{slug} \cdot \mathrm{ft}}=847 \mathrm{lbf} / \mathrm{ft}^{3}$

On the moon, $\quad \gamma_{\mathrm{m}}=26.3 \frac{\mathrm{slug}}{\mathrm{ft}^{3}} \times 5.47 \frac{\mathrm{ft}}{\mathrm{s}^{2}} \times \frac{\mathrm{lbf} \cdot \mathrm{s}^{2}}{\mathrm{slug} \cdot \mathrm{ft}}=144 \mathrm{lbf} / \mathrm{ft}^{3}$
\{Note that the mass based quantities (SG and v) are independent of gravity.\}

Problem 1.26

1.26 Derive the following conversion factors:
a. Convert a volume flow rate in in. ${ }^{3} / \mathrm{min}$ to $\mathrm{mm}^{3} / \mathrm{s}$.
b. Convert a volume flow rate in cubic meters per second to gpm (gallons per minute).
c. Convert a volume flow rate in liters per minute to gpm (gallons per minute).
d. Convert a volume flow rate of air in standard cubic feet per minute (SCFM) to cubic meters per hour. A standard cubic foot of gas occupies one cubic foot at standard temperature and pressure ($T=15^{\circ} \mathrm{C}$ and $p=101.3 \mathrm{kPa}$ absolute).

Given: Data in given units

Find: Convert to different units
Solution:
(a) $1 \cdot \frac{\mathrm{in}^{3}}{\mathrm{~min}}=1 \cdot \frac{\mathrm{in}^{3}}{\mathrm{~min}} \times\left(\frac{0.0254 \cdot \mathrm{~m}}{1 \cdot \mathrm{in}} \times \frac{1000 \cdot \mathrm{~mm}}{1 \cdot \mathrm{~m}}\right)^{3} \times \frac{1 \cdot \mathrm{~min}}{60 \cdot \mathrm{~s}}=273 \cdot \frac{\mathrm{~mm}^{3}}{\mathrm{~s}}$
(b) $1 \cdot \frac{\mathrm{~m}^{3}}{\mathrm{~s}}=1 \cdot \frac{\mathrm{~m}^{3}}{\mathrm{~s}} \times \frac{1 \cdot \mathrm{gal}}{4 \times 0.000946 \cdot \mathrm{~m}^{3}} \times \frac{60 \cdot \mathrm{~s}}{1 \cdot \mathrm{~min}}=15850 \cdot \mathrm{gpm}$
(c) $\quad 1 \cdot \frac{\text { liter }}{\min }=1 \cdot \frac{\text { liter }}{\min } \times \frac{1 \cdot \mathrm{gal}}{4 \times 0.946 \cdot \mathrm{liter}} \times \frac{60 \cdot \mathrm{~s}}{1 \cdot \mathrm{~min}}=0.264 \cdot \mathrm{gpm}$
(d) $\quad 1 \cdot \mathrm{SCFM}=1 \cdot \frac{\mathrm{ft}^{3}}{\min } \times\left(\frac{0.0254 \cdot \mathrm{~m}}{\frac{1}{12} \cdot \mathrm{ft}}\right)^{3} \times \frac{60 \cdot \mathrm{~min}}{1 \cdot \mathrm{hr}}=1.70 \cdot \frac{\mathrm{~m}^{3}}{\mathrm{hr}}$
1.27 The kilogram force is commonly used in Europe as a unit of force. (As in the U.S. customary system, where 1 lbf is the force exerted by a mass of 1 lbm in standard gravity, 1 kgf is the force exerted by a mass of 1 kg in standard gravity.) Moderate pressures, such as those for auto or truck tires, are conveniently expressed in units of $\mathrm{kgf} / \mathrm{cm}^{2}$. Convert 32 psig to these units.

Given: In European usage, 1 kgf is the force exerted on 1 kg mass in standard gravity.

Find: \quad Convert 32 psi to units of $\mathrm{kgf} / \mathrm{cm}^{2}$.
Solution: Apply Newton's second law.

Basic equation: $\mathrm{F}=\mathrm{ma}$

The force exerted on 1 kg in standard gravity is

$$
\mathrm{F}=1 \mathrm{~kg} \times 9.81 \frac{\mathrm{~m}}{\mathrm{~s}^{2}} \times \frac{\mathrm{N} \cdot \mathrm{~s}^{2}}{\mathrm{~kg} \cdot \mathrm{~m}}=9.81 \mathrm{~N}=1 \mathrm{kgf}
$$

Setting up a conversion from psi to $\mathrm{kgf} / \mathrm{cm}^{2}, \quad 1 \frac{\mathrm{lbf}}{\mathrm{in.}^{2}}=1 \frac{\mathrm{lbf}}{\mathrm{in} .^{2}} \times 4.448 \frac{\mathrm{~N}}{\mathrm{lbf}} \times \frac{\mathrm{in}^{2}{ }^{2}}{(2.54)^{2} \mathrm{~cm}^{2}} \times \frac{\mathrm{kgf}}{9.81 \mathrm{~N}}=0.0703 \frac{\mathrm{kgf}}{\mathrm{cm}^{2}}$
or
$1 \equiv \frac{0.0703 \mathrm{kgf} / \mathrm{cm}^{2}}{\mathrm{psi}}$

Thus

$$
32 \mathrm{psi}=32 \mathrm{psi} \times \frac{0.0703 \mathrm{kgf} / \mathrm{cm}^{2}}{\mathrm{psi}}
$$

$$
32 \mathrm{psi}=2.25 \mathrm{kgf} / \mathrm{cm}^{2}
$$

1.28 In Section 1-6 we learned that the Manning equation computes the flow speed $V(\mathrm{~m} / \mathrm{s})$ in a canal made from unfinished concrete, given the hydraulic radius $R_{h}(\mathrm{~m})$, the channel slope S_{0}, and a Manning resistance coefficient constant value $n \approx 0.014$. For a canal with $R_{h}=7.5 \mathrm{~m}$ and a slope of $1 / 10$, find the flow speed. Compare this result with that obtained using the same n value, but with R_{h} first converted to ft , with the answer assumed to be in ft / s. Finally, find the value of n if we wish to correctly use the equation for BG units (and compute V to check!)

Given: Information on canal geometry.
Find: Flow speed using the Manning equation, correctly and incorrectly!
Solution: Use Table G. 2 and other sources (e.g., Google) as needed.
The Manning equation is $\quad \mathrm{V}=\frac{\mathrm{R}_{\mathrm{h}}^{\frac{2^{3}}{3}} \cdot \mathrm{~S}_{0}^{\frac{1}{2}}}{\mathrm{n}} \quad$ which assumes R_{h} in meters and V in m / s.

The given data is

$$
\mathrm{R}_{\mathrm{h}}=7.5 \cdot \mathrm{~m} \quad \mathrm{~S}_{0}=\frac{1}{10} \quad \mathrm{n}=0.014
$$

Hence

$$
V=\frac{7.5^{\frac{2}{3}} \cdot\left(\frac{1}{10}\right)^{\frac{1}{2}}}{0.014} \quad V=86.5 \cdot \frac{\mathrm{~m}}{\mathrm{~s}}
$$

(Note that we don't cancel units; we just write m/s next to the answer! Note also this is a very high speed due to the extreme slope S_{0}.)

Using the equation incorrectly: $\mathrm{R}_{\mathrm{h}}=7.5 \cdot \mathrm{~m} \times \frac{1 \cdot \mathrm{in}}{0.0254 \cdot \mathrm{~m}} \times \frac{1 \cdot \mathrm{ft}}{12 \cdot \mathrm{in}} \quad \mathrm{R}_{\mathrm{h}}=24.6 \cdot \mathrm{ft}$

Hence

$$
\mathrm{V}=\frac{24.6^{\frac{2}{3}} \cdot\left(\frac{1}{10}\right)^{\frac{1}{2}}}{0.014} \quad \mathrm{~V}=191 \cdot \frac{\mathrm{ft}}{\mathrm{~s}}
$$

(Note that we again don't cancel units; we just write ft / s next to the answer!)

This incorrect use does not provide the correct answer $\quad \mathrm{V}=191 \cdot \frac{\mathrm{ft}}{\mathrm{s}} \times \frac{12 \cdot \mathrm{in}}{1 \cdot \mathrm{ft}} \times \frac{0.0254 \cdot \mathrm{~m}}{1 \cdot \mathrm{in}} \quad \mathrm{V}=58.2 \frac{\mathrm{~m}}{\mathrm{~s}} \quad$ which is wrong!
This demonstrates that for this "engineering" equation we must be careful in its use!
To generate a Manning equation valid for R_{h} in ft and V in ft / s, we need to do the following:

$$
\begin{aligned}
& \mathrm{V}\left(\frac{\mathrm{ft}}{\mathrm{~s}}\right)=\mathrm{V}\left(\frac{\mathrm{~m}}{\mathrm{~s}}\right) \times \frac{1 \cdot \mathrm{in}}{0.0254 \cdot \mathrm{~m}} \times \frac{1 \cdot \mathrm{ft}}{12 \cdot \mathrm{in}}=\frac{\mathrm{R}_{\mathrm{h}}(\mathrm{~m})^{\frac{2}{3}} \cdot \mathrm{~S}_{0}{ }^{\frac{1}{2}}}{\mathrm{n}} \times\left(\frac{1 \cdot \mathrm{in}}{0.0254 \cdot \mathrm{~m}} \times \frac{1 \cdot \mathrm{ft}}{12 \cdot \mathrm{in}}\right) \\
& \mathrm{V}\left(\frac{\mathrm{ft}}{\mathrm{~s}}\right)=\frac{\mathrm{R}_{\mathrm{h}}(\mathrm{ft})^{\frac{2}{3}} \cdot \mathrm{~S}_{0}^{\frac{1}{2}}}{\mathrm{n}} \times\left(\frac{1 \cdot \mathrm{in}}{0.0254 \cdot \mathrm{~m}} \times \frac{1 \cdot \mathrm{ft}}{12 \cdot \mathrm{in}}\right)^{-\frac{2}{3}} \times\left(\frac{1 \cdot \mathrm{in}}{0.0254 \cdot \mathrm{~m}} \times \frac{1 \cdot \mathrm{ft}}{12 \cdot \mathrm{in}}\right)=\frac{\mathrm{R}_{\mathrm{h}}(\mathrm{ft})^{\frac{2}{3}} \cdot \mathrm{~S}_{0}^{\frac{1}{2}}}{\mathrm{n}} \times\left(\frac{1 \cdot \mathrm{in}}{0.0254 \cdot \mathrm{~m}} \times \frac{1 \cdot \mathrm{ft}}{12 \cdot \mathrm{in}}\right)^{\frac{1}{3}}
\end{aligned}
$$

In using this equation, we ignore the units and just evaluate the conversion factor $\left(\frac{1}{.0254} \cdot \frac{1}{12}\right)^{\frac{1}{3}}=1.49$
Hence $\quad V\left(\frac{\mathrm{ft}}{\mathrm{s}}\right)=\frac{1.49 \cdot \mathrm{R}_{\mathrm{h}}(\mathrm{ft})^{\frac{2}{3}} \cdot \mathrm{~S}_{0}{ }^{\frac{1}{2}}}{\mathrm{n}}$
Handbooks sometimes provide this form of the Manning equation for direct use with BG units. In our case we are asked to instead define a new value for n :

$\mathrm{n}_{\mathrm{BG}}=\frac{\mathrm{n}}{1.49}$	$\mathrm{n}_{\mathrm{BG}}=0.0094$	where
Using this equation with $\mathrm{Rh}=24.6 \mathrm{ft}:$	$\mathrm{V}=\frac{24.6^{\frac{2}{3}} \cdot\left(\frac{1}{10}\right)^{\frac{1}{2}}}{0.0094}$	
Converting to m / s	$\mathrm{V}=284 \cdot \frac{\mathrm{ft}}{\mathrm{s}} \times \frac{12 \cdot \mathrm{in}}{1 \cdot \mathrm{ft}} \times \frac{\mathrm{R}_{\mathrm{h}}(\mathrm{ft})^{\frac{2}{3}} \cdot \mathrm{~S}_{0}^{\frac{1}{2}}}{\mathrm{n}_{\mathrm{BG}}}$	
$1 \cdot \mathrm{in}$	$\mathrm{V}=284 \frac{\mathrm{ft}}{\mathrm{s}}$	
	$\mathrm{V}=86.6 \frac{\mathrm{~m}}{\mathrm{~s}} \quad$ which is the correct answer!	

1.29 The maximum theoretical flow rate $(\mathrm{kg} / \mathrm{s})$ through a super-
sonic nozzle is

$$
\dot{m}_{\max }=0.04 \frac{A_{t} p_{0}}{\sqrt{T_{0}}}
$$

where $A_{t}\left(\mathrm{~m}^{2}\right)$ is the nozzle throat area, $p_{0}(\mathrm{~Pa})$ is the tank pressure, and $T_{0}(\mathrm{~K})$ is the tank temperature. Is this equation dimensionally correct? If not, find the units of the 0.04 term. Write the equivalent equation in BG units.

Given: Equation for maximum flow rate.
Find: Whether it is dimensionally correct. If not, find units of 0.04 term. Write a BG version of the equation
Solution: Rearrange equation to check units of 0.04 term. Then use conversions from Table G. 2 or other sources (e.g., Google)
"Solving" the equation for the constant 0.04: $\quad 0.04=\frac{m_{\max } \cdot \sqrt{\mathrm{T}_{0}}}{\mathrm{~A}_{\mathrm{t}} \cdot \mathrm{P}_{0}}$
Substituting the units of the terms on the right, the units of the constant are

Hence the constant is actually

$$
\begin{aligned}
& \frac{\mathrm{kg}}{\mathrm{~s}} \times \mathrm{K}^{\frac{1}{2}} \times \frac{1}{\mathrm{~m}^{2}} \times \frac{1}{\mathrm{~Pa}}=\frac{\mathrm{kg}}{\mathrm{~s}} \times \mathrm{K}^{\frac{1}{2}} \times \frac{1}{\mathrm{~m}^{2}} \times \frac{\mathrm{m}^{2}}{\mathrm{~N}} \times \frac{\mathrm{N} \cdot \mathrm{~s}^{2}}{\mathrm{~kg} \cdot \mathrm{~m}}=\frac{\mathrm{K}^{\frac{1}{2}} \cdot \mathrm{~s}}{\mathrm{~m}} \\
& \mathrm{c}=0.04 \cdot \frac{\mathrm{~K}^{\frac{1}{2}} \cdot \mathrm{~s}}{\mathrm{~m}}
\end{aligned}
$$

For BG units we could start with the equation and convert each term (e.g., A_{t}), and combine the result into a new constant, or simply convert c directly:

$$
\begin{aligned}
& \mathrm{c}=0.04 \cdot \frac{\mathrm{~K}^{\frac{1}{2}} \cdot \mathrm{~s}}{\mathrm{~m}}=0.04 \times\left(\frac{1.8 \cdot \mathrm{R}}{\mathrm{~K}}\right)^{\frac{1}{2}} \times \frac{0.0254 \cdot \mathrm{~m}}{1 \cdot \mathrm{in}} \times \frac{12 \cdot \mathrm{in}}{1 \cdot \mathrm{ft}} \\
& \mathrm{c}=0.0164 \cdot \frac{\mathrm{R}^{\frac{1}{2}} \cdot \mathrm{~s}}{\mathrm{ft}} \quad \text { so } \quad \mathrm{m}_{\max }=0.0164 \cdot \frac{\mathrm{~A}_{\mathrm{t}} \cdot \mathrm{P}_{0}}{\sqrt{\mathrm{~T}_{0}}} \quad \text { with } \mathrm{A}_{\mathrm{t}} \text { in } \mathrm{ft}^{2}, \mathrm{p}_{0} \text { in } \mathrm{lbf} / \mathrm{ft}^{2}, \text { and } \mathrm{T}_{0} \text { in } \mathrm{R} .
\end{aligned}
$$

This value of c assumes p is in $\mathrm{lbf} / \mathrm{ft}^{2}$. For p in psi we need an additional conversion:
$\mathrm{c}=0.0164 \cdot \frac{\mathrm{R}^{\frac{1}{2}} \cdot \mathrm{~s}}{\mathrm{ft}} \times\left(\frac{12 \cdot \mathrm{in}}{1 \cdot \mathrm{ft}}\right)^{2} \quad \mathrm{c}=2.36 \cdot \frac{\mathrm{R}^{\frac{1}{2}} \cdot \mathrm{in}^{2} \cdot \mathrm{~s}}{\mathrm{ft}^{3}} \quad$ so $\quad \mathrm{m}_{\max }=2.36 \cdot \frac{\mathrm{~A}_{\mathrm{t}} \cdot \mathrm{P}_{0}}{\sqrt{\mathrm{~T}_{0}}} \quad$ with A_{t} in $\mathrm{ft}^{2}, \mathrm{p}_{0}$ in psi , and T_{0} in R.

Problem 1.30

1.30 From thermodynamics, we know that the coefficient of per-
formance of an ideal air conditioner is given by

$$
\operatorname{COP}_{\text {Ideal }}=\frac{T_{L}}{T_{H}-T_{L}}
$$

where T_{L} and T_{H} are the room and outside temperatures (absolute). If an AC is to keep a room at $68^{\circ} \mathrm{F}$ when it is $95^{\circ} \mathrm{F}$ outside, find the $C O P_{\text {Ideal }}$. Convert to an $E E R$ value, and compare this to a typical Energy Star compliant EER value.

Given: Equation for COP and temperature data.
Find: $\quad \mathrm{COP}_{\text {Ideal }}$, EER, and compare to a typical Energy Star compliant EER value.
Solution: Use the COP equation. Then use conversions from Table G. 2 or other sources (e.g., Google) to find the EER.
The given data is $\quad \mathrm{T}_{\mathrm{L}}=(68+460) \cdot \mathrm{R} \quad \mathrm{T}_{\mathrm{L}}=528 \cdot \mathrm{R} \quad \mathrm{T}_{\mathrm{H}}=(95+460) \cdot \mathrm{R} \quad \mathrm{T}_{\mathrm{H}}=555 \cdot \mathrm{R}$
The $\mathrm{COP}_{\text {Ideal }}$ is $\quad \mathrm{COP}_{\text {Ideal }}=\frac{\mathrm{T}_{\mathrm{L}}}{\mathrm{T}_{\mathrm{H}}-\mathrm{T}_{\mathrm{L}}}=\frac{525}{555-528}=19.4$
The EER is a similar measure to COP except the cooling rate (numerator) is in BTU/hr and the electrical input (denominator) is in W :

$$
\mathrm{EER}_{\mathrm{Ideal}}=\mathrm{COP}_{\mathrm{Ideal}} \times \frac{\frac{\mathrm{BTU}}{\mathrm{hr}}}{\mathrm{~W}}=19.4 \times \frac{2545 \cdot \frac{\mathrm{BTU}}{\mathrm{hr}}}{746 \cdot \mathrm{~W}}=66.2 \cdot \frac{\frac{\mathrm{BTU}}{\mathrm{hr}}}{\mathrm{~W}}
$$

This compares to Energy Star compliant values of about $15 \mathrm{BTU} / \mathrm{hr} / \mathrm{W}$! We have some way to go! We can define the isentropic efficiency as

$$
\eta_{\text {isen }}=\frac{E E R_{\text {Actual }}}{E E R_{\text {Ideal }}}
$$

Hence the isentropic efficiency of a very good AC is about 22.5\%.
1.31 In Chapter 9 we will study aerodynamics and learn that the drag force F_{D} on a body is given by

$$
F_{D}=\frac{1}{2} \rho V^{2} A C_{D}
$$

Hence the drag depends on speed V, fluid density ρ, and body size (indicated by frontal area A) and shape (indicated by drag coefficient C_{D}). What are the dimensions of C_{D} ?

Given: Equation for drag on a body.

Find: \quad Dimensions of C_{D}.

Solution: Use the drag equation. Then "solve" for CD and use dimensions.
The drag equation is

$$
\begin{aligned}
& \mathrm{F}_{\mathrm{D}}=\frac{1}{2} \cdot \rho \cdot \mathrm{~V}^{2} \cdot \mathrm{~A} \cdot \mathrm{C}_{\mathrm{D}} \\
& \mathrm{C}_{\mathrm{D}}=\frac{2 \cdot \mathrm{~F}_{\mathrm{D}}}{\rho \cdot \mathrm{~V}^{2} \cdot \mathrm{~A}} \\
& \mathrm{C}_{\mathrm{D}}=\frac{\mathrm{F}}{\frac{\mathrm{M}}{\mathrm{~L}^{3}} \times\left(\frac{\mathrm{L}}{\mathrm{t}}\right)^{2} \times \mathrm{L}^{2}}
\end{aligned}
$$

"Solving" for C_{D}, and using dimensions $\quad C_{D}=\frac{2 \cdot F_{D}}{\rho \cdot V^{2} \cdot A}$

But, From Newton's 2nd law \quad Force $=$ Mass•Acceleration \quad or $\quad \mathrm{M} \cdot \frac{\mathrm{L}}{\mathrm{t}^{2}}$
Hence

$$
C_{D}=\frac{F}{\frac{M}{L^{3}} \times\left(\frac{L}{t}\right)^{2} \times L^{2}}=\frac{M \cdot L}{t^{2}} \times \frac{L^{3}}{M} \times \frac{t^{2}}{L^{2}} \times \frac{1}{L^{2}}=0
$$

The drag coefficient is dimensionless.
1.32 The mean free path λ of a molecule of gas is the average distance it travels before collision with another molecule. It is given by

$$
\lambda=C \frac{m}{\rho d^{2}}
$$

where m and d are the molecule's mass and diameter, respectively, and ρ is the gas density. What are the dimensions of constant C for a dimensionally consistent equation?

Given: Equation for mean free path of a molecule.
Find: Dimensions of C for a diemsionally consistent equation.
Solution: Use the mean free path equation. Then "solve" for C and use dimensions.
The mean free path equation is

$$
\begin{aligned}
& \lambda=C \cdot \frac{m}{\rho \cdot d^{2}} \\
& C=\frac{\lambda \cdot \rho \cdot \mathrm{d}^{2}}{\mathrm{~m}} \\
& C=\frac{\mathrm{L} \times \frac{\mathrm{M}}{L^{3}} \times \mathrm{L}^{2}}{M}=0
\end{aligned}
$$

The drag constant C is dimensionless.
1.33 An important equation in the theory of vibrations is

$$
m \frac{d^{2} x}{d t^{2}}+c \frac{d x}{d t}+k x=f(t)
$$

where $m(\mathrm{~kg})$ is the mass and $x(\mathrm{~m})$ is the position at time $t(\mathrm{~s})$.
For a dimensionally consistent equation, what are the dimensions of c, k, and f ? What would be suitable units for c, k, and f in the SI and BG systems?

Given: Equation for vibrations.

Find: Dimensions of c, k and f for a dimensionally consistent equation. Also, suitable units in SI and BG systems.
Solution: Use the vibration equation to find the diemsions of each quantity
The first term of the equation is $\quad m \cdot \frac{d^{2} x}{d t^{2}}$
The dimensions of this are

$$
M \times \frac{L}{t^{2}}
$$

Each of the other terms must also have these dimensions.

Hence

$$
\begin{array}{llll}
c \cdot \frac{d x}{d t}=\frac{M \cdot L}{t^{2}} & \text { so } & c \times \frac{L}{t}=\frac{M \cdot L}{t^{2}} & \text { and } \\
k \cdot x=\frac{M \cdot L}{t^{2}} & \text { so } & k \times L=\frac{M}{t} \\
t^{2} & \text { and } & k=\frac{M}{t^{2}} \\
& & f=\frac{M \cdot L}{t^{2}}
\end{array}
$$

Suitable units for c, k, and f are $\mathrm{c}: \quad \frac{\mathrm{kg}}{\mathrm{s}} \quad \frac{\text { slug }}{\mathrm{s}} \quad \mathrm{k}: \quad \frac{\mathrm{kg}}{\mathrm{s}^{2}} \quad \frac{\mathrm{slug}}{\mathrm{s}^{2}} \quad \mathrm{f}: \quad \frac{\mathrm{kg} \cdot \mathrm{m}}{\mathrm{s}^{2}} \quad \frac{\mathrm{slug} \cdot \mathrm{ft}}{\mathrm{s}^{2}}$
Note that c is a damping (viscous) friction term, k is a spring constant, and f is a forcing function. These are more typically expressed using F । rather than M (mass). From Newton's 2nd law:

$$
\mathrm{F}=\mathrm{M} \cdot \frac{\mathrm{~L}}{\mathrm{t}^{2}} \quad \text { or }
$$

Using this in the dimensions and units for c , k , and f we fin $\mathrm{c}=\frac{\mathrm{F} \cdot \mathrm{t}^{2}}{\mathrm{~L} \cdot \mathrm{t}}=\frac{\mathrm{F} \cdot \mathrm{t}}{\mathrm{L}} \quad \mathrm{k}=\frac{\mathrm{F} \cdot \mathrm{t}^{2}}{\mathrm{~L} \cdot \mathrm{t}^{2}}=\frac{\mathrm{F}}{\mathrm{L}} \quad \mathrm{f}=\mathrm{F}$

$$
\begin{array}{llllllll}
\mathrm{c}: & \frac{\mathrm{N} \cdot \mathrm{~s}}{\mathrm{~m}} \quad \frac{\mathrm{lbf} \cdot \mathrm{~s}}{\mathrm{ft}} \quad \mathrm{k}: & \frac{\mathrm{N}}{\mathrm{~m}} & \frac{\mathrm{lbf}}{\mathrm{ft}} \quad \mathrm{f}: & \mathrm{N} & \mathrm{lbf}
\end{array}
$$

Problem 1.34

1.34 A parameter that is often used in describing pump performance is the specific speed, $N_{S_{c u}}$, given by

$$
N_{s_{c u}}=\frac{N(\mathrm{rpm})[Q(\mathrm{gpm})]^{1 / 2}}{[H(\mathrm{ft})]^{3 / 4}}
$$

What are the units of specific speed? A particular pump has a specific speed of 2000 . What will be the specific speed in SI units (angular velocity in rad/s)?

Given: Specific speed in customary units
Find: Units; Specific speed in SI units

Solution:

The units are $\frac{\mathrm{rpm} \cdot \mathrm{gpm}^{\frac{1}{2}}}{\mathrm{ft}^{\frac{3}{4}}} \quad$ or $\quad \frac{\mathrm{ft}^{\frac{3}{4}}}{\frac{3}{2}}$

Using data from tables (e.g. Table G.2)

$$
\begin{aligned}
& \mathrm{N}_{\mathrm{Scu}}=2000 \cdot \frac{\mathrm{rpm} \cdot \mathrm{gpm}^{\frac{1}{2}}}{\frac{3}{4}} \\
& \mathrm{~N}_{\mathrm{Scu}}=2000 \times \frac{\mathrm{rpm} \cdot \mathrm{gpm}^{\frac{3}{2}}}{\frac{3}{4}} \times \frac{2 \cdot \pi \cdot \mathrm{rad}}{1 \cdot \mathrm{rev}} \times \frac{1 \cdot \mathrm{~min}}{60 \cdot \mathrm{~s}} \times\left(\frac{4 \times 0.000946 \cdot \mathrm{~m}^{3}}{1 \cdot \mathrm{gal}} \cdot \frac{1 \cdot \mathrm{~min}}{60 \cdot \mathrm{~s}}\right)^{\frac{1}{2}} \times\left(\frac{\frac{1}{12} \cdot \mathrm{ft}}{0.0254 \cdot \mathrm{~m}}\right)^{\frac{3}{4}} \\
& \mathrm{~N}_{\mathrm{Scu}}=4.06 \cdot \frac{\mathrm{rad}}{\mathrm{~s}} \cdot\left(\frac{\mathrm{~m}^{3}}{\mathrm{~s}}\right)^{\frac{3}{2}} \\
& \frac{\mathrm{~m}^{4}}{4}
\end{aligned}
$$

Problem 1.35

1.35 A particular pump has an "engineering" equation form of the performance characteristic equation given by $H(\mathrm{ft})=1.5-$ $4.5 \times 10^{-5}[Q(\mathrm{gpm})]^{2}$, relating the head H and flow rate Q. What are the units of the coefficients 1.5 and 4.5×10^{-5} ? Derive an SI version of this equation.

Given: "Engineering" equation for a pump
Find: SI version

Solution:

The dimensions of "1.5" are ft .
The dimensions of " 4.5×10^{-5} " are $\mathrm{ft} / \mathrm{gpm}^{2}$.

Using data from tables (e.g. Table G.2), the SI versions of these coefficients can be obtained

$$
\begin{aligned}
& 1.5 \cdot \mathrm{ft}=1.5 \cdot \mathrm{ft} \times \frac{0.0254 \cdot \mathrm{~m}}{\frac{1}{12} \cdot \mathrm{ft}}=0.457 \cdot \mathrm{~m} \\
& 4.5 \times 10^{-5} \cdot \frac{\mathrm{ft}}{\mathrm{gpm}^{2}}=4.5 \cdot 10^{-5} \cdot \frac{\mathrm{ft}}{\mathrm{gpm}^{2}} \times \frac{0.0254 \cdot \mathrm{~m}}{\frac{1}{12} \cdot \mathrm{ft}} \times\left(\frac{1 \cdot \mathrm{gal}}{4 \cdot \mathrm{quart}} \cdot \frac{1 \text { quart }}{0.000946 \cdot \mathrm{~m}^{3}} \cdot \frac{60 \cdot \mathrm{~s}}{1 \mathrm{~min}}\right)^{2}
\end{aligned}
$$

$$
4.5 \cdot 10^{-5} \cdot \frac{\mathrm{ft}}{\mathrm{gpm}^{2}}=3450 \cdot \frac{\mathrm{~m}}{\left(\frac{\mathrm{~m}^{3}}{\mathrm{~s}}\right)^{2}}
$$

The equation is

$$
\mathrm{H}(\mathrm{~m})=0.457-3450 \cdot\left(\mathrm{Q}\left(\frac{\mathrm{~m}^{3}}{\mathrm{~s}}\right)\right)^{2}
$$

Problem 1.36

1.36 A container weighs 3.5 lbf when empty. When filled with water at $90^{\circ} \mathrm{F}$, the mass of the container and its contents is 2.5 slug. Find the weight of water in the container, and its volume in cubic feet, using data from Appendix A.

Given: Empty container weighing 3.5 lbf when empty, has a mass of 2.5 slug when filled with water at $90^{\circ} \mathrm{F}$.

Find:

a. Weight of water in the container
b. Container volume in ft^{3}

Solution: Basic equation: $\quad \mathrm{F}=\mathrm{ma}$

Weight is the force of gravity on a body, $\mathrm{W}=\mathrm{mg}$

Then

$$
\begin{aligned}
& \mathrm{W}_{\mathrm{t}}=\mathrm{W}_{\mathrm{H}_{2} \mathrm{O}}+\mathrm{W}_{\mathrm{c}} \\
& \mathrm{~W}_{\mathrm{H}_{2} \mathrm{O}}=\mathrm{W}_{\mathrm{t}}-\mathrm{W}_{\mathrm{c}}=\mathrm{mg}-\mathrm{W}_{\mathrm{c}} \\
& \mathrm{~W}_{\mathrm{H}_{2} \mathrm{O}}=2.5 \mathrm{slug} \times 32.2 \frac{\mathrm{ft}}{\mathrm{~s}^{2}} \times \frac{\mathrm{lbf} \cdot \mathrm{~s}^{2}}{\mathrm{slug} \cdot \mathrm{ft}}-3.5 \mathrm{lbf}=77.0 \mathrm{lbf}
\end{aligned}
$$

The volume is given by

$$
\forall=\frac{\mathrm{M}_{\mathrm{H}_{2} \mathrm{O}}}{\rho}=\frac{\mathrm{M}_{\mathrm{H}_{2} \mathrm{O}} \mathrm{~g}}{\rho \mathrm{~g}}=\frac{\mathrm{W}_{\mathrm{H}_{2} \mathrm{O}}}{\rho \mathrm{~g}}
$$

From Table A.7, $\rho=1.93$ slug/ft ${ }^{3}$ at $\mathrm{T}=90^{\circ} \mathrm{F}$
$\therefore \forall=77.0 \mathrm{lbf} \times \frac{\mathrm{ft}^{3}}{1.93 \mathrm{slug}} \times \frac{\mathrm{s}^{2}}{32.2 \mathrm{ft}} \times \frac{\mathrm{slug} \cdot \mathrm{ft}}{\mathrm{lbf} \cdot \mathrm{s}^{2}}=1.24 \mathrm{ft}^{3}$

Problem 1.37

1.37 Calculate the density of standard air in a laboratory from the ideal gas equation of state. Estimate the experimental uncertainty in the air density calculated for standard conditions (29.9 in. of mercury and $59^{\circ} \mathrm{F}$) if the uncertainty in measuring the barometer height is $\pm 0.1 \mathrm{in}$. of mercury and the uncertainty in measuring temperature is $\pm 0.5^{\circ} \mathrm{F}$. (Note that 29.9 in . of mercury corresponds to 14.7 psia.)

Given: \quad Air at standard conditions $-\mathrm{p}=29.9$ in $\mathrm{Hg}, \mathrm{T}=59^{\circ} \mathrm{F}$
Uncertainty: in p is ± 0.1 in Hg , in T is $\pm 0.5^{\circ} \mathrm{F}$
Note that 29.9 in Hg corresponds to 14.7 psia

Find:

a. air density using ideal gas equation of state.
b. estimate of uncertainty in calculated value.

Solution: $\quad \rho=\frac{\mathrm{p}}{\mathrm{RT}}=14.7 \frac{\mathrm{lbf}}{\mathrm{in}^{2}} \times \frac{\mathrm{lb} \cdot{ }^{\circ} \mathrm{R}}{53.3 \mathrm{ft} \cdot \mathrm{lbf}} \times \frac{1}{519^{\circ} \mathrm{R}} \times 144 \frac{\mathrm{in}^{2}}{\mathrm{ft}^{2}}$

$$
\rho=0.0765 \mathrm{lbm} / \mathrm{ft}^{3}
$$

$$
\mathrm{u}_{\rho}=\left[\left(\frac{\mathrm{p}}{\rho} \frac{\partial \rho}{\partial \mathrm{p}} \mathrm{u}_{\mathrm{p}}\right)^{2}+\left(\frac{\mathrm{T}}{\rho} \frac{\partial \rho}{\partial \mathrm{~T}} \mathrm{u}_{\mathrm{T}}\right)^{2}\right]^{1 / 2}
$$

The uncertainty in density is given by $\quad \frac{\mathrm{p}}{\rho} \frac{\partial \rho}{\partial \mathrm{p}}=\mathrm{RT} \frac{1}{\mathrm{RT}}=\frac{\mathrm{RT}}{\mathrm{RT}}=1 ; \quad \mathrm{u}_{\mathrm{p}}=\frac{ \pm 0.1}{29.9}= \pm 0.334 \%$

$$
\frac{\mathrm{T}}{\rho} \frac{\partial \rho}{\partial \mathrm{~T}}=\frac{\mathrm{T}}{\rho}\left(-\frac{\mathrm{p}}{\mathrm{RT}^{2}}\right)=-\frac{\mathrm{p}}{\rho \mathrm{RT}}=-1 ; \quad \mathrm{u}_{\mathrm{T}}=\frac{ \pm 0.5}{460+59}= \pm 0.0963 \%
$$

$$
\mathrm{u}_{\rho}=\left[\left(\mathrm{u}_{\mathrm{p}}\right)^{2}+\left(-\mathrm{u}_{\mathrm{T}}\right)^{2}\right]^{1 / 2}= \pm\left[(0.334)^{2}+(-0.0963)^{2}\right]
$$

$$
\mathrm{u}_{\rho}= \pm 0.348 \%\left(\pm 2.66 \times 10^{-4} \mathrm{lbm} / \mathrm{ft}^{3}\right)
$$

Problem 1.38

1.38 Repeat the calculation of uncertainty described in Problem 1.37 for air in a freezer. Assume the measured barometer height is $759 \pm 1 \mathrm{~mm}$ of mercury and the temperature is $-20 \pm 0.5 \mathrm{C}$. [Note that 759 mm of mercury corresponds to 101 kPa (abs).]

Given: Air at pressure, $p=759 \pm 1 \mathrm{~mm}$ Hg and temperature, $\mathrm{T}=-20 \pm 0.5^{\circ} \mathrm{C}$.
Note that 759 mm Hg corresponds to 101 kPa .

Find:

a. Air density using ideal gas equation of state
b. Estimate of uncertainty in calculated value

Solution: $\quad \rho=\frac{\mathrm{p}}{\mathrm{RT}}=101 \times 10^{3} \frac{\mathrm{~N}}{\mathrm{~m}^{2}} \times \frac{\mathrm{kg} \cdot \mathrm{K}}{287 \mathrm{~N} \cdot \mathrm{~m}} \times \frac{1}{253 \mathrm{~K}}=1.39 \mathrm{~kg} / \mathrm{m}^{3}$

$$
\mathrm{u}_{\rho}=\left[\left(\frac{\mathrm{p}}{\rho} \frac{\partial \rho}{\partial \mathrm{p}} \mathrm{u}_{\mathrm{p}}\right)^{2}+\left(\frac{\mathrm{T}}{\rho} \frac{\partial \rho}{\partial \mathrm{~T}} \mathrm{u}_{\mathrm{T}}\right)^{2}\right]^{1 / 2}
$$

The uncertainty in density is given by

$$
\begin{aligned}
& \frac{\mathrm{p}}{\rho} \frac{\partial \rho}{\partial \mathrm{p}}=\mathrm{RT} \frac{1}{\mathrm{RT}}=1 ; \quad \mathrm{u}_{\mathrm{p}}=\frac{ \pm 1}{759}= \pm 0.132 \% \\
& \frac{\mathrm{~T}}{\rho} \frac{\partial \rho}{\partial \mathrm{~T}}=\frac{\mathrm{T}}{\rho}\left(-\frac{\mathrm{p}}{\mathrm{RT}^{2}}\right)=-\frac{\mathrm{p}}{\rho \mathrm{RT}}=-1 ; \quad \mathrm{u}_{\mathrm{T}}=\frac{ \pm 0.5}{273-20}= \pm 0.198 \% \\
& \mathrm{u}_{\rho}=\left[\left(\mathrm{u}_{\mathrm{p}}\right)^{2}+\left(-\mathrm{u}_{\mathrm{T}}\right)^{2}\right]^{1 / 2}= \pm\left[(0.132)^{2}+(-0.198)^{2}\right]^{1 / 2} \\
& \mathrm{u}_{\rho}= \pm 0.238 \% \quad\left(\pm 3.31 \times 10^{-3} \mathrm{~kg} / \mathrm{m}^{3}\right)
\end{aligned}
$$

1.39 The mass of the standard American golf ball is $1.62 \pm 0.01 \mathrm{oz}$ and its mean diameter is 1.68 ± 0.01 in. Determine the density and specific gravity of the American golf ball. Estimate the uncertainties in the calculated values.
Given:
Standard American golf ball:

$$
\begin{aligned}
& \mathrm{m}=1.62 \pm 0.01 \mathrm{oz} \quad(20 \text { to } 1) \\
& \mathrm{D}=1.68 \pm 0.01 \text { in. } \quad(20 \text { to } 1)
\end{aligned}
$$

Find:

a. Density and specific gravity.
b. Estimate uncertainties in calculated values.

Solution: Density is mass per unit volume, so

$$
\begin{aligned}
& \rho=\frac{\mathrm{m}}{\forall}=\frac{\mathrm{m}}{\frac{4}{3} \pi \mathrm{R}^{3}}=\frac{3}{4 \pi} \frac{\mathrm{~m}}{(\mathrm{D} / 2)^{3}}=\frac{6}{\pi} \frac{\mathrm{~m}}{\mathrm{D}^{3}} \\
& \rho=\frac{6}{\pi} \times 1.62 \mathrm{oz} \times \frac{1}{(1.68)^{3} \mathrm{in.}^{3}} \times \frac{0.4536 \mathrm{~kg}}{16 \mathrm{oz}} \times \frac{\mathrm{in} .^{3}}{(0.0254)^{3} \mathrm{~m}^{3}}=1130 \mathrm{~kg} / \mathrm{m}^{3}
\end{aligned}
$$

and

$$
\mathrm{SG}=\frac{\rho}{\rho \mathrm{H}_{2} \mathrm{O}}=1130 \frac{\mathrm{~kg}}{\mathrm{~m}^{3}} \times \frac{\mathrm{m}^{3}}{1000 \mathrm{~kg}}=1.13
$$

The uncertainty in density is given by $\quad \mathrm{u}_{\rho}= \pm\left[\left(\frac{\mathrm{m}}{\rho} \frac{\partial \rho}{\partial \mathrm{m}} \mathrm{u}_{\mathrm{m}}\right)^{2}+\left(\frac{\mathrm{D}}{\rho} \frac{\partial \rho}{\partial \mathrm{D}} \mathrm{u}_{\mathrm{D}}\right)^{2}\right]^{1 / 2}$
$\frac{\mathrm{m}}{\rho} \frac{\partial \rho}{\partial \mathrm{m}}=\frac{\mathrm{m}}{\rho} \frac{1}{\forall}=\frac{\forall}{\forall}=1 ; \mathrm{u}_{\mathrm{m}}= \pm \frac{0.01}{1.62}= \pm 0.617$ percent
$\frac{\mathrm{D}}{\rho} \frac{\partial \rho}{\partial \mathrm{D}}=\frac{\mathrm{D}}{\rho}\left(-3 \frac{6}{\pi} \frac{\mathrm{~m}}{\mathrm{D}^{4}}\right)=\frac{\pi \mathrm{D}^{4}}{6 \mathrm{~m}}\left(-3 \frac{6}{\pi} \frac{\mathrm{~m}}{\mathrm{D}^{4}}\right)=-3 ; \mathrm{u}_{\mathrm{D}}= \pm 0.595$ percent
$\mathrm{u}_{\rho}= \pm\left[\left(\mathrm{u}_{\mathrm{m}}\right)^{2}+\left(-3 \mathrm{u}_{\mathrm{D}}\right)^{2}\right]^{1 / 2}$

$$
= \pm\left\{(0.617)^{2}+\left[-3(0.595)^{2}\right]\right\}^{\frac{1}{2}}
$$

$$
\mathrm{u}_{\rho}= \pm 1.89 \text { percent }\left(\pm 21.4 \mathrm{~kg} / \mathrm{m}^{3}\right)
$$

$$
\mathrm{u}_{\mathrm{SG}}=\mathrm{u}_{\rho}= \pm 1.89 \operatorname{percent}(\pm 0.0214)
$$

Finally,

$$
\begin{aligned}
\rho & =1130 \pm 21.4 \mathrm{~kg} / \mathrm{m}^{3}(20 \text { to } 1) \\
\mathrm{SG} & =1.13 \pm 0.0214(20 \text { to } 1)
\end{aligned}
$$

1.40 The mass flow rate in a water flow system determined by collecting the discharge over a timed interval is 0.2 kg / s. The scales used can be read to the nearest 0.05 kg and the stopwatch is accurate to 0.2 s . Estimate the precision with which the flow rate can be calculated for time intervals of (a) 10 s and (b) 1 min .

Given: Mass flow rate of water determined by collecting discharge over a timed interval is $0.2 \mathrm{~kg} / \mathrm{s}$.

Scales can be read to nearest 0.05 kg .
Stopwatch can be read to nearest 0.2 s .
Find: Estimate precision of flow rate calculation for time intervals of (a) 10 s , and (b) 1 min .

Solution: Apply methodology of uncertainty analysis, Appendix F:

$$
\dot{\mathrm{m}}=\frac{\Delta \mathrm{m}}{\Delta \mathrm{t}}
$$

Computing equations:

$$
\mathrm{u}_{\dot{\mathrm{m}}}= \pm\left[\left(\frac{\Delta \mathrm{m}}{\dot{\mathrm{~m}}} \frac{\partial \dot{\mathrm{~m}}}{\partial \Delta \mathrm{~m}} \mathrm{u}_{\Delta \mathrm{m}}\right)^{2}+\left(\frac{\Delta \mathrm{t}}{\dot{\mathrm{~m}}} \frac{\partial \dot{\mathrm{~m}}}{\partial \Delta \mathrm{t}} \mathrm{u}_{\Delta \mathrm{t}}\right)^{2}\right]^{\frac{1}{2}}
$$

Thus

$$
\frac{\Delta \mathrm{m}}{\dot{\mathrm{~m}}} \frac{\partial \dot{\mathrm{~m}}}{\partial \Delta \mathrm{~m}}=\Delta \mathrm{t}\left(\frac{1}{\Delta \mathrm{t}}\right)=1 \quad \text { and } \quad \frac{\Delta \mathrm{t}}{\dot{\mathrm{~m}}} \frac{\partial \dot{\mathrm{~m}}}{\partial \Delta \mathrm{t}}=\frac{\Delta \mathrm{t}^{2}}{\Delta \mathrm{~m}}\left[(-1) \frac{\Delta \mathrm{m}}{\Delta \mathrm{t}^{2}}\right]=-1
$$

The uncertainties are expected to be \pm half the least counts of the measuring instruments.
Tabulating results:

Time	Error	Uncertainty	Water		Uncertainty	Uncertainty
Interval,	in	in $\Delta \mathbf{t}$	Collected,	Error in	in $\Delta \mathbf{m}$	in mh
$\Delta \mathbf{t}(\mathbf{s})$	$\Delta \mathbf{t}(\mathbf{s})$	(percent)	$\Delta \mathbf{m}(\mathbf{k g})$	$\Delta \mathbf{m}(\mathbf{k g})$	(percent)	(percent)
10	± 0.10	± 1.0	2.0	± 0.025	± 1.25	± 1.60
60	± 0.10	± 0.167	12.0	± 0.025	± 0.208	± 0.267

A time interval of about 15 seconds should be chosen to reduce the uncertainty in results to ± 1 percent.

Problem 1.41

1.41 A can of pet food has the following internal dimensions: 102 mm height and 73 mm diameter (each $\pm 1 \mathrm{~mm}$ at odds of 20 to 1). The label lists the mass of the contents as 397 g . Evaluate the magnitude and estimated uncertainty of the density of the pet food if the mass value is accurate to $\pm 1 \mathrm{~g}$ at the same odds.

Given: Pet food can

$$
\begin{array}{lr}
\mathrm{H}=102 \pm 1 \mathrm{~mm} & (20 \text { to } 1) \\
\mathrm{D}=73 \pm 1 \mathrm{~mm} & \text { (20 to } 1) \\
\mathrm{m}=397 \pm 1 \mathrm{~g} & \text { (20 to } 1)
\end{array}
$$

Find: Magnitude and estimated uncertainty of pet food density.
Solution: Density is

$$
\rho=\frac{\mathrm{m}}{\forall}=\frac{\mathrm{m}}{\pi \mathrm{R}^{2} \mathrm{H}}=\frac{4}{\pi} \frac{\mathrm{~m}}{\mathrm{D}^{2} \mathrm{H}} \quad \text { or } \quad \rho=\rho(\mathrm{m}, \mathrm{D}, \mathrm{H})
$$

From uncertainty analysis

Evaluating,

$$
\frac{\mathrm{m}}{\rho} \frac{\partial \rho}{\partial \mathrm{~m}}=\frac{\mathrm{m}}{\rho} \frac{4}{\pi} \frac{1}{\mathrm{D}^{2} \mathrm{H}}=\frac{1}{\rho} \frac{4 \mathrm{~m}}{\pi \mathrm{D}^{2} \mathrm{H}}=1 ; \quad \mathrm{u}_{\mathrm{m}}=\frac{ \pm 1}{397}= \pm 0.252 \%
$$

$$
\frac{\mathrm{D}}{\rho} \frac{\partial \rho}{\partial \mathrm{D}}=\frac{\mathrm{D}}{\rho}(-2) \frac{4 \mathrm{~m}}{\pi \mathrm{D}^{3} \mathrm{H}}=(-2) \frac{1}{\rho} \frac{4 \mathrm{~m}}{\pi \mathrm{D}^{2} \mathrm{H}}=-2 ; \quad \mathrm{u}_{\mathrm{D}}=\frac{ \pm 1}{73}= \pm 1.37 \%
$$

$$
\frac{\mathrm{H}}{\rho} \frac{\partial \rho}{\partial \mathrm{H}}=\frac{\mathrm{H}}{\rho}(-1) \frac{4 \mathrm{~m}}{\pi \mathrm{D}^{2} \mathrm{H}^{2}}=(-1) \frac{1}{\rho} \frac{4 \mathrm{~m}}{\pi \mathrm{D}^{2} \mathrm{H}}=-1 ; \quad \mathrm{u}_{\mathrm{H}}=\frac{ \pm 1}{102}= \pm 0.980 \%
$$

Substituting
$\mathrm{u}_{\rho}= \pm\left\{[(1)(0.252)]^{2}+[(-2)(1.37)]^{2}+[(-1)(0.980)]^{2}\right\}^{\frac{1}{2}}$
$\mathrm{u}_{\rho}= \pm 2.92$ percent

$$
\begin{aligned}
& \forall=\frac{\pi}{4} \mathrm{D}^{2} \mathrm{H}=\frac{\pi}{4} \times(73)^{2} \mathrm{~mm}^{2} \times 102 \mathrm{~mm} \times \frac{\mathrm{m}^{3}}{10^{9} \mathrm{~mm}^{3}}=4.27 \times 10^{-4} \mathrm{~m}^{3} \\
& \rho=\frac{\mathrm{m}}{\forall}=\frac{397 \mathrm{~g}}{4.27 \times 10^{-4} \mathrm{~m}^{3}} \times \frac{\mathrm{kg}}{1000 \mathrm{~g}}=930 \mathrm{~kg} / \mathrm{m}^{3}
\end{aligned}
$$

Thus

$$
\rho=930 \pm 27.2 \mathrm{~kg} / \mathrm{m}^{3}(20 \text { to } 1)
$$

1.42 The mass of the standard British golf ball is $45.9 \pm 0.3 \mathrm{~g}$ and its mean diameter is $41.1 \pm 0.3 \mathrm{~mm}$. Determine the density and specific gravity of the British golf ball. Estimate the uncertainties in the calculated values.

Given: \quad Standard British golf ball: \quad	$m=45.9 \pm 0.3 g$	$(20$ to 1$)$
$D=41.1 \pm 0.3 \mathrm{~mm}$	$(20$ to 1$)$	

Find:

a. Density and specific gravity
b. Estimate of uncertainties in calculated values.

Solution: Density is mass per unit volume, so

$$
\begin{aligned}
& \rho=\frac{\mathrm{m}}{\forall}=\frac{\mathrm{m}}{\frac{4}{3} \pi \mathrm{R}^{3}}=\frac{3}{4 \pi} \frac{\mathrm{~m}}{(\mathrm{D} / 2)^{3}}=\frac{6}{\pi} \frac{\mathrm{~m}}{\mathrm{D}^{3}} \\
& \rho=\frac{6}{\pi} \times 0.0459 \mathrm{~kg} \times \frac{1}{(0.0411)^{3}} \mathrm{~m}^{3}=1260 \mathrm{~kg} / \mathrm{m}^{3}
\end{aligned}
$$

and

$$
\mathrm{SG}=\frac{\rho}{\rho \mathrm{H}_{2} \mathrm{O}}=1260 \frac{\mathrm{~kg}}{\mathrm{~m}^{3}} \times \frac{\mathrm{m}^{3}}{1000 \mathrm{~kg}}=1.26
$$

$$
\mathrm{u}_{\rho}= \pm\left[\left(\frac{\mathrm{m}}{\rho} \frac{\partial \rho}{\partial \mathrm{~m}} \mathrm{u}_{\mathrm{m}}\right)^{2}+\left(\frac{\mathrm{D}}{\rho} \frac{\partial \rho}{\partial \mathrm{D}} \mathrm{u}_{\mathrm{D}}\right)^{2}\right]^{1 / 2}
$$

The uncertainty in density is given by

$$
\frac{\mathrm{m}}{\rho} \frac{\partial \rho}{\partial \mathrm{~m}}=\frac{\mathrm{m}}{\rho} \frac{1}{\forall}=\frac{\forall}{\forall}=1 ; \quad \mathrm{u}_{\mathrm{m}}= \pm \frac{0.3}{45.9}= \pm 0.654 \%
$$

$$
\begin{aligned}
\frac{\mathrm{D}}{\rho} \frac{\partial \rho}{\partial \mathrm{D}} & =\frac{\mathrm{D}}{\rho}\left(-3 \frac{6}{\pi} \frac{\mathrm{~m}}{\mathrm{D}^{4}}\right)=-3\left(\frac{6 \mathrm{~m}}{\pi \mathrm{D}^{3} \rho}\right)=-3 \\
\mathrm{u}_{\mathrm{D}} & = \pm \frac{0.3}{41.1}=0.730 \%
\end{aligned}
$$

$$
\mathrm{u}_{\rho}= \pm\left[\left(\mathrm{u}_{\mathrm{m}}\right)^{2}+\left(-3 \mathrm{u}_{\mathrm{D}}\right)^{2}\right]^{1 / 2}= \pm\left\{(0.654)^{2}+[-3(0.730)]^{2}\right\}^{1 / 2}
$$

Thus

$$
\mathrm{u}_{\rho}= \pm 2.29 \%\left(\pm 28.9 \mathrm{~kg} / \mathrm{m}^{3}\right)
$$

$$
\mathrm{u}_{\mathrm{SG}}=\mathrm{u}_{\rho}= \pm 2.29 \%(\pm 0.0289)
$$

Summarizing

$$
\rho=1260 \pm 28.9 \mathrm{~kg} / \mathrm{m}^{3}(20 \text { to } 1)
$$

$$
\mathrm{SG}=1.26 \pm 0.0289(20 \text { to } 1)
$$

1.43 The mass flow rate of water in a tube is measured using a beaker to catch water during a timed interval. The nominal mass flow rate is $100 \mathrm{~g} / \mathrm{s}$. Assume that mass is measured using a balance with a least count of 1 g and a maximum capacity of 1 kg , and that the timer has a least count of 0.1 s . Estimate the time intervals and uncertainties in measured mass flow rate that would result from using 100, 500, and 1000 mL beakers. Would there be any advantage in using the largest beaker? Assume the tare mass of the empty 1000 mL beaker is 500 g .

Given: Nominal mass flow rate of water determined by collecting discharge (in a beaker) over a timed interval is $\dot{\mathrm{m}}=100 \mathrm{~g} / \mathrm{s}$

- Scales have capacity of 1 kg , with least count of 1 g .
- Timer has least count of 0.1 s .
- Beakers with volume of $100,500,1000 \mathrm{~mL}$ are available - tare mass of 1000 mL beaker is 500 g .

Find: Estimate (a) time intervals, and (b) uncertainties, in measuring mass flow rate from using each of the three beakers.

Solution: To estimate time intervals assume beaker is filled to maximum volume in case of 100 and 500 mL beakers and to maximum allowable mass of water $(500 \mathrm{~g})$ in case of 1000 mL beaker.

Then

$$
\dot{\mathrm{m}}=\frac{\Delta \mathrm{m}}{\Delta \mathrm{t}} \quad \text { and } \quad \Delta \mathrm{t}=\frac{\Delta \mathrm{m}}{\dot{\mathrm{~m}}}=\frac{\rho \Delta \forall}{\dot{\mathrm{m}}}
$$

Tabulating results

$$
\begin{aligned}
& \Delta \forall=100 \mathrm{~mL} 500 \mathrm{~mL} 1000 \mathrm{~mL} \\
& \Delta \mathrm{t}=1 \mathrm{~s} \quad 5 \mathrm{~s} \quad 5 \mathrm{~s}
\end{aligned}
$$

Apply the methodology of uncertainty analysis, Appendix E Computing equation:

$$
\mathrm{u}_{\dot{\mathrm{m}}}= \pm\left[\left(\frac{\Delta \mathrm{m}}{\dot{\mathrm{~m}}} \frac{\partial \dot{\mathrm{~m}}}{\partial \Delta \mathrm{~m}} \mathrm{u}_{\Delta \mathrm{m}}\right)^{2}+\left(\frac{\Delta \mathrm{t}}{\dot{\mathrm{~m}}} \frac{\partial \dot{\mathrm{~m}}}{\partial \Delta \mathrm{t}} \mathrm{u}_{\Delta \mathrm{t}}\right)^{2}\right]^{1 / 2}
$$

The uncertainties are expected to be \pm half the least counts of the measuring instruments

$$
\begin{aligned}
& \delta \Delta \mathrm{m}= \pm 0.5 \mathrm{~g} \quad \delta \Delta \mathrm{t}=0.05 \mathrm{~s} \\
& \frac{\Delta \mathrm{~m}}{\dot{\mathrm{~m}}}=\frac{\partial \dot{\mathrm{m}}}{\partial \Delta \mathrm{~m}}=\Delta \mathrm{t}\left(\frac{1}{\Delta \mathrm{t}}\right)=1 \quad \text { and } \quad \frac{\Delta \mathrm{t}}{\dot{\mathrm{~m}}} \frac{\partial \dot{\mathrm{~m}}}{\partial \Delta \mathrm{t}}=\frac{(\Delta \mathrm{t})^{2}}{\Delta \mathrm{~m}}\left[-\frac{\Delta \mathrm{m}}{(\Delta \mathrm{t})^{2}}\right]=-1
\end{aligned}
$$

$$
\therefore \mathrm{u}_{\dot{\mathrm{m}}}= \pm\left[\left(\mathrm{u}_{\Delta \mathrm{m}}\right)^{2}+\left(-\mathrm{u}_{\Delta \mathrm{t}}\right)^{2}\right]^{1 / 2}
$$

Tabulating results:

						Uncertainty	
Beaker	Water	Error in	Uncertainty	Time	Error in	in $\Delta \mathrm{t}$	in min
Volume $\Delta \forall$	Collected	$\Delta \mathrm{m}(\mathrm{g})$	in $\Delta \mathrm{m}$	Interval	$\Delta \mathrm{t}(\mathrm{s})$	(percent)	(percent)
(mL)	$\Delta \mathrm{m}(\mathrm{g})$		(percent)	$\Delta \mathrm{t}(\mathrm{s})$			
100	100	± 0.50	± 0.50	1.0	± 0.05	± 5.0	± 5.03
500	500	± 0.50	± 0.10	5.0	± 0.05	± 1.0	± 1.0
1000	500	± 0.50	± 0.10	5.0	± 0.05	± 1.0	± 1.0

Since the scales have a capacity of 1 kg and the tare mass of the 1000 mL beaker is 500 g , there is no advantage in using the larger beaker. The uncertainty in mcould be reduced to ± 0.50 percent by using the large beaker if a scale with greater capacity the same least count were available

Problem 1.44

1.44 The estimated dimensions of a soda can are $D=66.0 \pm 0.5 \mathrm{~mm}$ and $H=110 \pm 0.5 \mathrm{~mm}$. Measure the mass of a full can and an empty can using a kitchen scale or postal scale. Estimate the volume of soda contained in the can. From your measurements estimate the depth to which the can is filled and the uncertainty in the estimate. Assume the value of $\mathrm{SG}=1.055$, as supplied by the bottler.

Given: \quad Soda can with estimated dimensions $D=66.0 \pm 0.5 \mathrm{~mm}, \mathrm{H}=110 \pm 0.5 \mathrm{~mm}$. Soda has SG $=1.055$

Find:

a. volume of soda in the can (based on measured mass of full and empty can).
b. estimate average depth to which the can is filled and the uncertainty in the estimate.

Solution: Measurements on a can of coke give

$$
\begin{aligned}
& \mathrm{m}_{\mathrm{f}}=386.5 \pm 0.50 \mathrm{~g}, \quad \mathrm{~m}_{\mathrm{e}}=17.5 \pm 0.50 \mathrm{~g} \therefore \mathrm{~m}=\mathrm{m}_{\mathrm{f}}-\mathrm{m}_{\mathrm{e}}=369 \pm \mathrm{u}_{\mathrm{m}} \mathrm{~g} \\
& \mathrm{u}_{\mathrm{m}}= \pm\left[\left(\frac{\mathrm{m}_{\mathrm{f}}}{\mathrm{~m}} \frac{\partial \mathrm{~m}}{\partial \mathrm{~m}_{\mathrm{f}}} \mathrm{u}_{\mathrm{m}_{\mathrm{f}}}\right)^{2}+\left(\frac{\mathrm{m}_{\mathrm{e}}}{\mathrm{~m}} \frac{\partial \mathrm{~m}}{\partial \mathrm{~m}_{\mathrm{e}}} \mathrm{u}_{\mathrm{m}_{\mathrm{e}}}\right)^{2}\right]^{1 / 2} \\
& \mathrm{u}_{\mathrm{m}_{\mathrm{f}}}= \pm \frac{0.5 \mathrm{~g}}{386.5 \mathrm{~g}}= \pm 0.00129, \quad \mathrm{u}_{\mathrm{m}_{\mathrm{e}}}= \pm \frac{0.50}{17.5}=0.0286 \\
& \therefore \mathrm{u}_{\mathrm{m}}= \pm\left\{\left[\frac{386.5}{369}(1)(0.00129)\right]^{2}+\left[\frac{17.5}{369}(-1)(0.0286)\right]^{2}\right\}^{1 / 2}=0.0019
\end{aligned}
$$

Density is mass per unit volume and $\mathrm{SG}=\rho / \mathrm{\rho H}_{2} \mathrm{O}$ so

$$
\forall=\frac{\mathrm{m}}{\rho}=\frac{\mathrm{m}}{\rho \mathrm{H}_{2} \mathrm{O} \mathrm{SG}}=369 \mathrm{~g} \times \frac{\mathrm{m}^{3}}{1000 \mathrm{~kg}} \times \frac{1}{1.055} \times \frac{\mathrm{kg}}{1000 \mathrm{~g}}=350 \times 10^{-6} \mathrm{~m}^{3}
$$

The reference value $\mathrm{\rho H}_{2} \mathrm{O}$ is assumed to be precise. Since SG is specified to three places beyond the decimal point, assume $u_{\text {SG }}= \pm 0.001$. Then

$$
\begin{aligned}
& \mathrm{u}_{\mathrm{v}}= \pm\left[\left(\frac{\mathrm{m}}{\mathrm{v}} \frac{\partial \mathrm{v}}{\partial \mathrm{~m}} \mathrm{u}_{\mathrm{m}}\right)^{2}+\left(\frac{\mathrm{m}}{\mathrm{SG}} \frac{\partial \mathrm{v}}{\partial \mathrm{SG}}\right)^{2}\right]^{1 / 2}= \pm\left\{\left[(1) \mathrm{u}_{\mathrm{m}}\right]^{2}+\left[(-1) \mathrm{u}_{\mathrm{SG}}\right]^{2}\right\}^{1 / 2} \\
& \mathrm{u}_{\mathrm{v}}= \pm\left\{[(1)(0.0019)]^{2}+[(-1)(0.001)]^{2}\right\}^{1 / 2}=0.0021 \text { or } 0.21 \% \\
& \forall=\frac{\pi \mathrm{D}^{2}}{4} \mathrm{~L} \text { or } \mathrm{L}=\frac{4 \forall}{\pi \mathrm{D}^{2}}=\frac{4}{\pi} \times \frac{350 \times 10^{-6} \mathrm{~m}^{3}}{(0.066)^{2} \mathrm{~m}^{2}} \times \frac{10^{3} \mathrm{~mm}}{\mathrm{~m}}=102 \mathrm{~mm} \\
& \quad \mathrm{u}_{\mathrm{L}}= \pm\left[\left(\frac{\forall}{\mathrm{L}} \frac{\partial \mathrm{~L}}{\partial \forall} \mathrm{u}_{\forall}\right)^{2}\right]+\left[\left(\frac{\mathrm{D}}{\mathrm{~L}} \frac{\partial \mathrm{~L}}{\partial \mathrm{D}} \mathrm{u}_{\mathrm{D}}\right)^{2}\right]^{1 / 2} \\
& \forall \frac{\partial \mathrm{~L}}{\mathrm{~L}} \frac{\pi \forall}{\partial \forall}=\frac{\pi \mathrm{D}^{2}}{4} \times \frac{4}{\pi \mathrm{D}^{2}}=1 \mathrm{u}_{\mathrm{D}}= \pm \frac{0.5 \mathrm{~mm}}{66 \mathrm{~mm}}=0.0076 \\
& \frac{\mathrm{D}}{\mathrm{~L}} \frac{\partial \mathrm{~L}}{\partial \mathrm{D}}=\mathrm{D} \frac{\pi \mathrm{D}^{2}}{4 \forall} \times \frac{4 \forall}{\pi}\left(-\frac{2}{\mathrm{D}^{3}}\right)=-2 \\
& \mathrm{u}_{\mathrm{L}}= \pm\left\{[(1)(0.0021)]^{2}+[(-2)(0.0076)]^{2}\right\}^{1 / 2}=0.0153 \text { or } 1.53 \%
\end{aligned}
$$

Note:

1. Printing on the can states the content as 355 ml . This suggests that the implied accuracy of the SG value may be over stated.
2. Results suggest that over seven percent of the can height is void of soda.

Problem 1.45

1.45 From Appendix A, the viscosity $\mu\left(\mathrm{N} \cdot \mathrm{s} / \mathrm{m}^{2}\right)$ of water at temperature $\mathrm{T}(\mathrm{K})$ can be computed from $\mu=A 10^{B /(T-C)}$, where $A=2.414 \times 10^{-5} \mathrm{~N} \cdot \mathrm{~s} / \mathrm{m}^{2}, B=247.8 \mathrm{~K}$, and $C=140 \mathrm{~K}$. Determine the viscosity of water at $20^{\circ} \mathrm{C}$, and estimate its uncertainty if the uncertainty in temperature measurement is $\pm 0.25^{\circ} \mathrm{C}$.

Given: Data on water
Find: Viscosity; Uncertainty in viscosity

Solution:

The data is: $\quad A=2.414 \times 10^{-5} \cdot \frac{\mathrm{~N} \cdot \mathrm{~s}}{\mathrm{~m}^{2}} \quad \mathrm{~B}=247.8 \cdot \mathrm{~K} \quad \mathrm{C}=140 \cdot \mathrm{~K} \quad \mathrm{~T}=293 \cdot \mathrm{~K}$

The uncertainty in temperature is
$\mathrm{u}_{\mathrm{T}}=\frac{0.25 \cdot \mathrm{~K}}{293 \cdot \mathrm{~K}} \quad \mathrm{u}_{\mathrm{T}}=0.085 \cdot \%$

Also

$$
\mu(T)=A \cdot 10^{\frac{B}{(T-C)}} \quad \quad \quad \text { Evaluating } \quad \mu(T)=1.01 \times 10^{-3} \cdot \frac{\mathrm{~N} \cdot \mathrm{~s}}{\mathrm{~m}^{2}}
$$

For the uncertainty

$$
\frac{\mathrm{d}}{\mathrm{dT}} \mu(\mathrm{~T})=-\frac{\mathrm{A} \cdot \mathrm{~B} \cdot \ln (10)}{10^{\frac{\mathrm{B}}{\mathrm{C}-\mathrm{T}}} \cdot(\mathrm{C}-\mathrm{T})^{2}}
$$

Hence

$$
\mathrm{u}_{\mu}(\mathrm{T})=\left|\frac{\mathrm{T}}{\mu(\mathrm{~T})} \cdot \frac{\mathrm{d}}{\mathrm{dT}} \mu(\mathrm{~T}) \cdot \mathrm{u}_{\mathrm{T}}\right|=\frac{\ln (10) \cdot\left|\mathrm{B} \cdot \mathrm{~T} \cdot \mathrm{u}_{\mathrm{T}}\right|}{(|\mathrm{C}-\mathrm{T}|)^{2}} \quad \text { Evaluating } \quad \mathrm{u}_{\mu}(\mathrm{T})=0.609 \cdot \%
$$

Problem 1.46

1.46 An enthusiast magazine publishes data from its road tests on the lateral acceleration capability of cars. The measurements are made using a 150 -ft-diameter skid pad. Assume the vehicle path deviates from the circle by $\pm 2 \mathrm{ft}$ and that the vehicle speed is read from a fifth-wheel speed-measuring system to $\pm 0.5 \mathrm{mph}$. Estimate the experimental uncertainty in a reported lateral acceleration of 0.7 g . How would you improve the experimental procedure to reduce the uncertainty?

Given: Lateral acceleration, $\mathrm{a}=0.70 \mathrm{~g}$, measured on $150-\mathrm{ft}$ diameter skid pad.
$\left.\begin{array}{l}\text { Path deviation: } \pm 2 \mathrm{ft} \\ \text { Vehicle speed: } \pm 0.5 \mathrm{mph}\end{array}\right\}$ measurement uncertainty

Find:

a. Estimate uncertainty in lateral acceleration.
b. How could experimental procedure be improved?

Solution: Lateral acceleration is given by $a=V^{2} / R$.
From Appendix F, $u_{a}= \pm\left[\left(2 u_{v}\right)^{2}+\left(u_{R}\right)^{2}\right]^{1 / 2}$
From the given data, $\quad V^{2}=a R ; \quad V=\sqrt{a R}=\left[0.70 \times \frac{32.2 \mathrm{ft}}{\mathrm{s}^{2}} \times 75 \mathrm{ft}\right]^{1 / 2}=41.1 \mathrm{ft} / \mathrm{s}$

Then

$$
\mathrm{u}_{\mathrm{v}}= \pm \frac{\delta \mathrm{V}}{\mathrm{~V}}= \pm 0.5 \frac{\mathrm{mi}}{\mathrm{hr}} \times \frac{\mathrm{s}}{41.1 \mathrm{ft}} \times 5280 \frac{\mathrm{ft}}{\mathrm{mi}} \times \frac{\mathrm{hr}}{3600 \mathrm{~s}}= \pm 0.0178
$$

and
so

$$
\mathrm{u}_{\mathrm{R}}= \pm \frac{\delta \mathrm{R}}{\mathrm{R}}= \pm 2 \mathrm{ft} \times \frac{1}{75 \mathrm{ft}}= \pm 0.0267
$$

$$
u_{a}= \pm\left[(2 \times 0.0178)^{2}+(0.0267)^{2}\right]^{1 / 2}= \pm 0.0445
$$

$$
\mathrm{u}_{\mathrm{a}}= \pm 4.45 \text { percent }
$$

Experimental procedure could be improved by using a larger circle, assuming the absolute errors in measurement are constant.

$$
\mathrm{D}=400 \mathrm{ft}, \quad \mathrm{R}=200 \mathrm{ft}
$$

For

$$
\mathrm{V}=\sqrt{\mathrm{aR}}=\left[0.70 \times \frac{32.2 \mathrm{ft}}{\mathrm{~s}^{2}} \times 200 \mathrm{ft}\right]^{1 / 2}=67.1 \mathrm{ft} / \mathrm{s}=45.8 \mathrm{mph}
$$

$$
\mathrm{u}_{\mathrm{v}}= \pm \frac{0.5 \mathrm{mph}}{45.8 \mathrm{mph}}= \pm 0.0109 ; \mathrm{u}_{\mathrm{R}}= \pm \frac{2 \mathrm{ft}}{200 \mathrm{ft}}= \pm 0.0100
$$

$$
u_{a}= \pm\left[(2 \times 0.0109)^{2}+(0.0100)^{2}\right]^{1 / 2}= \pm 0.0240 \text { or } \pm 2.4 \text { percent }
$$

1.47 Using the nominal dimensions of the soda can given in Problem 1.44, determine the precision with which the diameter and height must be measured to estimate the volume of the can within an uncertainty of ± 0.5 percent.

Given: Dimensions of soda can:

$$
\begin{aligned}
& \mathrm{D}=66 \mathrm{~mm} \\
& \mathrm{H}=110 \mathrm{~mm}
\end{aligned}
$$

Find: Measurement precision needed to allow volume to be estimated with an uncertainty of ± 0.5 percent or less.

Solution: Use the methods of Appendix F:

$$
\forall=\frac{\pi \mathrm{D}^{2} \mathrm{H}}{4}
$$

Computing equations:

$$
\mathrm{u}_{\forall}= \pm\left[\left(\frac{\mathrm{H}}{\forall} \frac{\partial \forall}{\partial \mathrm{H}} \mathrm{u}_{\mathrm{H}}\right)^{2}+\left(\frac{\mathrm{D}}{\forall} \frac{\partial \forall}{\partial \mathrm{D}} \mathrm{u}_{\mathrm{D}}\right)^{2}\right]^{\frac{1}{2}}
$$

Since $\forall=\frac{\pi \mathrm{D}^{2} \mathrm{H}}{4}$, then $\frac{\partial \forall}{\partial \mathrm{H}}=\frac{\pi \mathrm{D}^{2}}{4}$ and $\frac{\partial \forall}{\partial \mathrm{D}}=\frac{\pi \mathrm{DH}}{2}$
Let $\mathrm{u}_{\mathrm{D}}= \pm \frac{\delta x}{\mathrm{D}}$ and $\mathrm{u}_{\mathrm{H}}= \pm \frac{\delta x}{\mathrm{H}}$, substituting,

$$
\mathrm{u}_{\forall}= \pm\left[\left(\frac{4 \mathrm{H}}{\pi \mathrm{D}^{2} \mathrm{H}} \frac{\pi \mathrm{D}^{2}}{4} \frac{\delta x}{\mathrm{H}}\right)^{2}+\left(\frac{4 \mathrm{D}}{\pi \mathrm{D}^{2} \mathrm{H}} \frac{\pi \mathrm{DH}}{2} \frac{\delta x}{\mathrm{D}}\right)^{2}\right]^{\frac{1}{2}}= \pm\left[\left(\frac{\delta x}{\mathrm{H}}\right)^{2}+\left(\frac{2 \delta x}{\mathrm{D}}\right)^{2}\right]^{\frac{1}{2}}
$$

Solving,

$$
\mathrm{u}_{\forall}^{2}=\left(\frac{\delta x}{\mathrm{H}}\right)^{2}+\left(\frac{2 \delta x}{\mathrm{D}}\right)^{2}=(\delta x)^{2}\left[\left(\frac{1}{\mathrm{H}}\right)^{2}+\left(\frac{2}{\mathrm{D}}\right)^{2}\right]
$$

$$
\begin{aligned}
& \delta x= \pm \frac{\mathrm{u}_{\forall}}{\left[\left(\frac{1}{\mathrm{H}}\right)^{2}+\left(\frac{2}{\mathrm{D}}\right)^{2}\right]^{\frac{1}{2}}}= \pm \frac{0.005}{\left[\left(\frac{1}{110 \mathrm{~mm}}\right)^{2}+\left(\frac{2}{66 \mathrm{~mm}}\right)^{2}\right]^{\frac{1}{2}}}= \pm 0.158 \mathrm{~mm} \\
& \mathrm{u}_{\mathrm{H}}= \pm \frac{\delta x}{\mathrm{H}}= \pm \frac{0.158 \mathrm{~mm}}{110 \mathrm{~mm}}= \pm 1.44 \times 10^{-3}
\end{aligned}
$$

Check:

$$
\begin{aligned}
& \mathrm{u}_{\mathrm{D}}= \pm \frac{\delta x}{\mathrm{D}}= \pm \frac{0.158 \mathrm{~mm}}{66 \mathrm{~mm}}= \pm 2.39 \times 10^{-3} \\
& \mathrm{u}_{\forall}= \pm\left[\left(\mathrm{u}_{\mathrm{H}}\right)^{2}+\left(2 \mathrm{u}_{\mathrm{D}}\right)^{2}\right]^{\frac{1}{2}}= \pm\left[(0.00144)^{2}+(0.00478)^{2}\right]^{\frac{1}{2}}= \pm 0.00499
\end{aligned}
$$

If δx represents half the least count, a minimum resolution of about $2 \delta x \approx 0.32 \mathrm{~mm}$ is needed.

Given: American golf ball, $m=1.62 \pm 0.0103, D=1.68 \mathrm{in}$.
Find: Precision to which D must be measured to estimate density within uncertainty of ± 1 percent.
Solution: Apply uncertainty concepts
Definition: Density, $\rho \equiv \frac{m}{\forall} \quad \forall=\frac{4}{3} \pi R^{3}=\frac{\pi D^{3}}{6}$
computing equation: $u_{R}= \pm\left[\left(\frac{x_{1}}{R} \frac{\partial R}{\partial x_{1}} u_{x_{1}}\right)^{2}+\cdots\right]^{1 / 2}$
From the definition, $\rho=\frac{m}{\pi D^{3 / 6}}=\frac{6 m}{\pi D^{3}}=\rho(m, D)$
Thus $\frac{m}{\rho} \frac{\partial \rho}{\partial m}=1$ and $\frac{D}{\rho} \frac{\partial \rho}{\partial D}=3$, so

$$
\begin{aligned}
& u_{p}= \pm\left[\left(1 u_{m}\right)^{2}+\left(3 u_{D}\right)^{2}\right]^{1 / 2} \\
& u_{\rho}^{2}=u_{m}^{2}+9 u_{D}^{2}
\end{aligned}
$$

Solving, $u_{D}= \pm \frac{1}{3}\left[u_{c}^{2}-u_{m}^{2}\right]^{\frac{1}{2}}$
From the data given, $u_{p}= \pm 0.0100$

$$
\begin{gathered}
u_{m}=\frac{ \pm 0.0103}{1.620 z}= \pm 0.00617 \\
u_{D}= \pm \frac{1}{3}\left[(0.0100)^{2}-(0.00617)^{2}\right]^{\frac{1}{2}}= \pm 0.00262 \text { or } \pm 0.262 \%
\end{gathered}
$$

since $u_{D}= \pm \frac{\delta D}{D}$, then

$$
\delta D= \pm D u_{D}= \pm 1.68 \mathrm{in}_{\times} 0.00262= \pm 0.00441 \mathrm{in} .
$$

The ball diameter must be measured to a precision of ± 0.00441 in. $(\pm 0.112 \mathrm{~mm})$ or better to estimate dessity within ± 1 percent. A micrometer or caliper could be used.
1.49 The height of a building may be estimated by measuring the horizontal distance to a point on the ground and the angle from this point to the top of the building. Assuming these measurements are $L=100 \pm 0.5 \mathrm{ft}$ and $\theta=30 \pm 0.2$ degrees, estimate the height H of the building and the uncertainty in the estimate. For the same building height and measurement uncertainties, use Excel's Solver to determine the angle (and the corresponding distance from the building) at which measurements should be made to minimize the uncertainty in estimated height. Evaluate and plot the optimum measurement angle as a function of building height for $50 \leqslant H \leqslant 1000 \mathrm{ft}$.

Given: Data on length and angle measurements
Find: Height; Angle for minimum uncertainty in height; Plot

Solution:

The data is:	$\mathrm{L}=100 \cdot \mathrm{ft}$	$\delta \mathrm{L}=0.5 \cdot \mathrm{ft}$	$\theta=30 \cdot \mathrm{deg}$
Uncertainties:	$\mathrm{u}_{\mathrm{L}}=\frac{\delta \mathrm{L}}{\mathrm{L}}$	$\mathrm{u}_{\mathrm{L}}=0.5 \%$	$\mathrm{u}_{\theta}=\frac{\delta \theta}{\theta}$
The height is:	$\mathrm{H}=\mathrm{L} \cdot \tan (\theta)$	$\mathrm{H}=57.7 \mathrm{ft}$	$\mathrm{u}_{\theta}=0.6 \cdot \mathrm{deg}$
Hence with	$\frac{\partial}{\partial \mathrm{L}} \mathrm{H}=\tan (\theta)$	$\frac{\partial}{\partial \theta} \mathrm{H}=\mathrm{L} \cdot\left(1+\tan (\theta)^{2}\right)$	$\mathrm{u}_{\mathrm{H}}=\sqrt{\left(\frac{\mathrm{L}}{\mathrm{H}} \cdot \frac{\partial}{\partial \mathrm{L}} \mathrm{H} \cdot \mathrm{u}_{\mathrm{L}}\right)^{2}+\left(\frac{\theta}{\mathrm{H}} \cdot \frac{\partial}{\partial \theta} \mathrm{H} \cdot \mathrm{u}_{\theta}\right)^{2}}$
Evaluatainty	$\mathrm{u}_{\mathrm{H}}=\sqrt{\left(\frac{\mathrm{L}}{\mathrm{H}} \cdot \tan (\theta) \cdot \mathrm{u}_{\mathrm{L}}\right)^{2}+\left[\frac{\mathrm{L} \cdot \theta}{\mathrm{H}} \cdot\left(1+\tan (\theta)^{2}\right) \cdot \mathrm{u}_{\theta}\right]^{2}}$		
	$\mathrm{u}_{\mathrm{H}}=0.949 \%$	and	$\delta \mathrm{H}=\mathrm{u}_{\mathrm{H}} \cdot \mathrm{H}$

The height is then $\mathrm{H}=57.7 \mathrm{ft}+/-\delta \mathrm{H}=0.548 \mathrm{ft}$
To plot u_{H} versus θ for a given H we need to replace L, u_{L} and u_{θ} with functions of θ. Doing this and simplifying
$\mathrm{u}_{\mathrm{H}}(\theta)=\sqrt{\left(\tan (\theta) \cdot \frac{\delta \mathrm{L}}{\mathrm{H}}\right)^{2}+\left[\frac{\delta \theta}{\tan (\theta)} \cdot\left(1+\tan (\theta)^{2}\right)\right]^{2}}$

Given data:

$H=$	57.7	ft
δL	$=$	0.5
ft		
$\delta \theta$	$=$	0.2

For this building height, we are to vary θ (and therefore L) to minimize the uncertainty u_{H}.

Plotting u_{H} vs θ

θ (deg)	$\boldsymbol{u}_{\mathbf{H}}$
5	4.02%
10	2.05%
15	1.42%
20	1.13%
25	1.00%
30	0.95%
35	0.96%
40	1.02%
45	1.11%
50	1.25%
55	1.44%
60	1.70%
65	2.07%
70	2.62%
75	3.52%
80	5.32%
85	10.69%

Optimizing using Solver

θ (deg)	$\boldsymbol{u}_{\boldsymbol{H}}$
31.4	0.947%

To find the optimum θ as a function of building height H we need a more complexSolver

$\boldsymbol{H}(\mathbf{f t})$	$\theta(\mathbf{d e g})$	$\boldsymbol{u}_{\mathbf{H}}$
50	29.9	0.992%
75	34.3	0.877%
100	37.1	0.818%
125	39.0	0.784%
175	41.3	0.747%
200	42.0	0.737%
250	43.0	0.724%
300	43.5	0.717%
400	44.1	0.709%
500	44.4	0.705%
600	44.6	0.703%
700	44.7	0.702%
800	44.8	0.701%
900	44.8	0.700%
1000	44.9	0.700%

Use Solver to vary ALL θ 's to minimize the total u_{H} !

Total u_{H} 's: 11.3%
1.50 In the design of a medical instrument it is desired to dispense 1 cubic millimeter of liquid using a pistoncylinder syringe made from molded plastic. The molding operation produces plastic parts with estimated dimensional uncertainties of ± 0.002 in. Estimate the uncertainty in dispensed volume that results from the uncertainties in the dimensions of the device. Plot on the same graph the uncertainty in length, diameter, and volume dispensed as a function of cylinder diameter D from $D=0.5$ to 2 mm . Determine the ratio of stroke length to bore diameter that gives a design with minimum uncertainty in volume dispensed. Is the result influenced by the magnitude of the dimensional uncertainty?

Given: Piston-cylinder device to have $\forall=1 \mathrm{~mm}^{3}$.
Molded plastic parts with dimensional uncertainties, $\delta= \pm 0.002$ in.

Find:

a. Estimate of uncertainty in dispensed volume that results from the dimensional uncertainties.
b. Determine the ratio of stroke length to bore diameter that minimizes u_{\forall}; plot of the results.
c. Is this result influenced by the magnitude of δ ?

Solution: Apply uncertainty concepts from Appendix F:
Computing equation: $\quad \forall=\frac{\pi \mathrm{D}^{2} \mathrm{~L}}{4} ; \mathrm{u}_{\forall}= \pm\left[\left(\frac{\mathrm{L}}{\forall} \frac{\partial \forall}{\partial \mathrm{L}} \mathrm{u}_{\mathrm{L}}\right)^{2}+\left(\frac{\mathrm{D}}{\forall} \frac{\partial \forall}{\partial \mathrm{D}} \mathrm{u}_{\mathrm{D}}\right)^{2}\right]^{\frac{1}{2}}$
From $\forall, \frac{\mathrm{L}}{\forall} \frac{\partial \forall}{\partial \mathrm{L}}=1$, and $\frac{\mathrm{D}}{\forall} \frac{\partial \forall}{\partial \mathrm{D}}=2$, so $\mathrm{u}_{\forall}= \pm\left[\mathrm{u}_{\mathrm{L}}^{2}+\left(2 \mathrm{u}_{\mathrm{D}}\right)^{2}\right]^{\frac{1}{2}}$
The dimensional uncertainty is $\delta= \pm 0.002 \mathrm{in} . \times 25.4 \frac{\mathrm{~mm}}{\mathrm{in} .}= \pm 0.0508 \mathrm{~mm}$
Assume $\mathrm{D}=1 \mathrm{~mm}$. Then $\mathrm{L}=\frac{4 \forall}{\pi \mathrm{D}^{2}}=\frac{4}{\pi} \times 1 \mathrm{~mm}^{3} \times \frac{1}{(1)^{2} \mathrm{~mm}^{2}}=1.27 \mathrm{~mm}$

$$
\left.\begin{array}{l}
\mathrm{u}_{\mathrm{D}}= \pm \frac{\delta}{\mathrm{D}}= \pm \frac{0.0508}{1}= \pm 5.08 \text { percent } \\
\mathrm{u}_{\mathrm{L}}= \pm \frac{\delta}{\mathrm{L}}= \pm \frac{0.0508}{1.27}= \pm 4.00 \text { percent }
\end{array}\right\} \mathrm{u}_{\forall}= \pm\left[(4.00)^{2}+(2(5.08))^{2}\right]^{\frac{1}{2}}
$$

To minimize u_{\forall}, substitute in terms of D :

$$
\mathrm{u}_{\forall}= \pm\left[\left(\mathrm{u}_{\mathrm{L}}\right)^{2}+\left(2 \mathrm{u}_{\mathrm{D}}\right)^{2}\right]= \pm\left[\left(\frac{\delta}{\mathrm{L}}\right)^{2}+\left(2 \frac{\delta}{\mathrm{D}}\right)^{2}\right]^{\frac{1}{2}}= \pm\left[\left(\frac{\pi \mathrm{D}^{2}}{4 \forall} \delta\right)^{2}+\left(2 \frac{\delta}{\mathrm{D}}\right)^{2}\right]^{\frac{1}{2}}
$$

This will be minimum when D is such that $\partial[] / \partial \mathrm{D}=0$, or

$$
\begin{aligned}
& \frac{\partial[]}{\partial \mathrm{D}}=\left(\frac{\pi \delta}{4 \forall}\right)^{2} 4 \mathrm{D}^{3}+(2 \delta)^{2}\left(-2 \frac{1}{\mathrm{D}^{3}}\right)=0 ; \mathrm{D}^{6}=2\left(\frac{4 \forall}{\pi}\right)^{2} ; \mathrm{D}=2^{\frac{1}{6}}\left(\frac{4 \forall}{\pi}\right)^{\frac{1}{3}} \\
& \mathrm{D}_{\mathrm{opt}}=2^{\frac{1}{6}}\left(\frac{4}{\pi} \times 1 \mathrm{~mm}^{3}\right)^{\frac{1}{3}}=1.22 \mathrm{~mm}
\end{aligned}
$$

Thus

The corresponding L is

$$
\mathrm{L}_{\mathrm{opt}}=\frac{4 \forall}{\pi \mathrm{D}^{2}}=\frac{4}{\pi} \times 1 \mathrm{~mm}^{3} \times \frac{1}{(1.22)^{2} \mathrm{~mm}^{2}}=0.855 \mathrm{~mm}
$$

The optimum stroke-to-bore ratio is $\mathrm{L} / \mathrm{D})_{\text {opt }}=\frac{0.855 \mathrm{~mm}}{1.22 \mathrm{~mm}}=0.701$ (see table and plot on next page)

Note that δ drops out of the optimization equation. This optimum L / D is independent of the magnitude of δ However, the magnitude of the optimum u_{\forall} increases as δ increases.

Uncertainty in volume of cylinder:

$$
\begin{aligned}
& \delta=0.002 \text { in. } \quad 0.0508 \mathrm{~mm} \\
& \forall=\quad 1 \mathrm{~mm}^{3}
\end{aligned}
$$

$D(\mathbf{m m})$	$L(\mathbf{m m})$	$L / D(--)$	$u_{\mathrm{D}}(\%)$	$\boldsymbol{u}_{\mathrm{L}}(\%)$	$\boldsymbol{u}_{\forall}(\%)$
0.5	5.09	10.2	10.2	1.00	20.3
0.6	3.54	5.89	8.47	1.44	17.0
0.7	2.60	3.71	7.26	1.96	14.6
0.8	1.99	2.49	6.35	2.55	13.0
0.9	1.57	1.75	5.64	3.23	11.7
1.0	1.27	1.27	5.08	3.99	10.9
1.1	1.05	0.957	4.62	4.83	10.4
1.2	0.884	0.737	4.23	5.75	10.2
1.22	0.855	0.701	4.16	5.94	10.2
1.3	0.753	0.580	3.91	6.74	10.3

1.4	0.650	0.464	3.63	7.82	10.7
1.5	0.566	0.377	3.39	8.98	11.2
1.6	0.497	0.311	3.18	10.2	12.0
1.7	0.441	0.259	2.99	11.5	13.0
1.8	0.393	0.218	2.82	12.9	14.1
1.9	0.353	0.186	2.67	14.4	15.4
2.0	0.318	0.159	2.54	16.0	16.7
2.1	0.289	0.137	2.42	17.6	18.2
2.2	0.263	0.120	2.31	19.3	19.9
2.3	0.241	0.105	2.21	21.1	21.6
2.4	0.221	0.092	2.12	23.0	23.4
2.5	0.204	0.081	2.03	24.9	25.3

2.1 For the velocity fields given below, determine:
a. whether the flow field is one-, two-, or threedimensional, and why.
b. whether the flow is steady or unsteady, and why.
c. (The quantities a and b are constants.)
(1) $\vec{V}=\left[a y^{2} e^{-b t}\right] \hat{i}$
(2) $\vec{V}=a x^{2} \hat{i}+b x \hat{j}+c \hat{k}$
(3) $\vec{V}=a x y \hat{i}-b y t \hat{j}$
(4) $\vec{V}=a x \hat{i}-b y \hat{j}+c t \hat{k}$
(5) $\vec{V}=\left[a e^{-b x}\right] \hat{i}+b t^{2} \hat{j}$
(6) $\vec{V}=a\left(x^{2}+y^{2}\right)^{1 / 2}\left(1 / z^{3}\right) \hat{k}$
(7) $\vec{V}=(a x+t) \hat{i}-b y^{2} \hat{j}$
(8) $\vec{V}=a x^{2} \hat{i}+b x z \hat{j}+c y \hat{k}$

Given: Velocity fields
Find: Whether flows are 1, 2 or 3D, steady or unsteady.

Solution:

(1) $\quad \vec{V}=\vec{V}(y)$
1D
$\overrightarrow{\mathrm{V}}=\overrightarrow{\mathrm{V}}(\mathrm{t})$
Unsteady
(2) $\quad \overrightarrow{\mathrm{V}}=\overrightarrow{\mathrm{V}}(\mathrm{x})$
1D
$\overrightarrow{\mathrm{V}} \neq \overrightarrow{\mathrm{V}}(\mathrm{t})$
Steady
(3)
$\overrightarrow{\mathrm{V}}=\overrightarrow{\mathrm{V}}(\mathrm{x}, \mathrm{y})$
2D
$\vec{V}=\vec{V}$
Unsteady
$\overrightarrow{\mathrm{V}}=\overrightarrow{\mathrm{V}}(\mathrm{t})$
Unsteady
$\overrightarrow{\mathrm{V}}=\overrightarrow{\mathrm{V}}(\mathrm{x}, \mathrm{y})$
2D
$\mathrm{V}=\mathrm{V}(\mathrm{t})$
$\overrightarrow{\mathrm{V}}=\overrightarrow{\mathrm{V}}(\mathrm{t})$
Unsteady
(5) $\quad \vec{V}=\vec{V}(x)$
1D
$\mathrm{V}=\mathrm{V}(\mathrm{t}$
(6)
$\overrightarrow{\mathrm{V}}=\overrightarrow{\mathrm{V}}(\mathrm{x}, \mathrm{y}, \mathrm{z})$
3D
$\overrightarrow{\mathrm{V}} \neq \overrightarrow{\mathrm{V}}(\mathrm{t})$
Steady
(7) $\quad \vec{V}=\vec{V}(x, y)$
2D
(8) $\quad \vec{V}=\vec{V}(x, y, z)$
3D
$\overrightarrow{\mathrm{V}}=\overrightarrow{\mathrm{V}}(\mathrm{t})$
$\overrightarrow{\mathrm{V}} \rightarrow \overrightarrow{\mathrm{V}}$
Unsteady
$\overrightarrow{\mathrm{V}} \neq \overrightarrow{\mathrm{V}}(\mathrm{t})$
Steady

Problem 2.2
Given: Viscous liquid sheared between parallel I disks. Upper disk rotates, lower fixed.
velocity field is $\vec{V}=\hat{e}_{\theta} r \omega z / h$.

Find: (a) Dimensions of velocity field.
(b) satisfy physical boundary conditions.

Solution: To find dimensions, compare to $\vec{V}=\vec{V}(x, y, z)$ form.
The given field is $\vec{V}=\vec{V}(r, z)$. Two space coordinates are included, so field is 2-D.
$\stackrel{\longleftrightarrow}{\text { no-slip condition: }}$
(1) At lower disk, $\vec{V}=0$, since stationary.

$$
z=0 \text {, so } \quad \vec{V}=\hat{e}_{\theta} r w(0) / n=0 \quad \therefore \text { satisfied }
$$

(2) At upper disk, $\vec{V}=\hat{e} p r w$, since it rotates as a solid body.

$$
z=h \text {, so } \vec{v}=\hat{e}_{\theta} r \omega(h) / h=\hat{e}_{0} r \omega \therefore \text { satisfied }
$$

Problem 2.3

2.3 For the velocity field $\vec{V}=A x^{2} \hat{j}+B x y \hat{j}$, where $A=1$ $\mathrm{m}^{-1} \mathrm{~s}^{-1}, B=-1 / 2 \mathrm{~m}^{-1} \mathrm{~s}^{-1}$, and the coordinates are measured in meters, obtain an equation for the flow streamlines. Plot several streamlines for positive y.

Given: Velocity field
Find: Equation for streamlines
Solution:

Streamline Plots

Problem 2.4
Given: Velocity field, $\vec{V}=a x \hat{\imath}-b y \hat{\jmath} \quad\left(a=b=1 \sec ^{-1}\right)$
Find: Equation for the flow streamlines, and
Plot: Representaive streamlines for $x \geq 0$ and $y \geq 0$
Solution:
The slope of the streamlines in the $x y$ plane is given by

$$
\frac{d y}{d x}=\frac{v}{u}
$$

For $\vec{v}=a x i-b y \hat{\jmath}$, then $u=a x, v=-b y$. Hence

$$
\frac{d y}{d x}=\frac{v}{u}=-\frac{b}{a} \frac{y}{x}
$$

To solve the differential equation, separate variables and integrate

$$
\int \frac{d y}{y}=-\int \frac{b}{a} \frac{d x}{x}
$$

$$
\ln y=-\frac{b}{a} \ln x+\text { constant }
$$

$\ln y=\ln x^{-\frac{b}{a}}+\ln c \quad$ where constant $=\ln c$
Then

$$
y=c x^{-\frac{b}{a}}
$$

or alternately $x=\left(\frac{y}{c}\right)^{-\frac{a}{b}}=\left(\frac{c}{y}\right)^{\frac{y}{b}}$
For a given velocity field, the constants a and b are fixed. Different streamlines are obtained by assigning different values to the constant of integration, C

Since $a=b=1 \sec ^{-1}$, then alb $=1$, and the streamlines are given by the equation

$$
y=c x^{-1}=\frac{c}{x} \quad \text { or } \quad x=\frac{c}{y}
$$

For $c=0 \quad y=0$ for all x and $x=0$ for all y.

The equation $y=\frac{c}{x}$ is the equation of a hyper sola.
Curves are shown for different values of c

Problem 2.5
2.5 A velocity field is given by $\vec{V}=a x \hat{i}-b t y \hat{j}$, where $a=1 \mathrm{~s}^{-1}$
and $b=1 \mathrm{~s}^{-2}$. Find the equation of the streamlines at any time t.
Plot several streamlines in the first quadrant at $t=0 \mathrm{~s}, t=1 \mathrm{~s}$,
and $t=20 \mathrm{~s}$.
Given: Velocity field
Find: \quad Equation for streamlines; Plot streamlines

Solution:

For streamlines

$$
\frac{\mathrm{v}}{\mathrm{u}}=\frac{\mathrm{dy}}{\mathrm{dx}}=\frac{-\mathrm{b} \cdot \mathrm{t} \cdot \mathrm{y}}{\mathrm{a} \cdot \mathrm{x}}
$$

So, separating variables

$$
\frac{\mathrm{dy}}{\mathrm{y}}=\frac{-\mathrm{b} \cdot \mathrm{t}}{\mathrm{a}} \cdot \frac{\mathrm{dx}}{\mathrm{x}}
$$

Integrating

The solution is

$$
\begin{aligned}
& \ln (\mathrm{y})=\frac{-\mathrm{b} \cdot \mathrm{t}}{\mathrm{a}} \cdot \ln (\mathrm{x}) \\
& \mathrm{y}=\mathrm{c} \cdot \mathrm{x}^{\frac{-\mathrm{b}}{\mathrm{a}} \cdot \mathrm{t}}
\end{aligned}
$$

For $t=0 \mathrm{~s} \quad \mathrm{y}=\mathrm{c} \quad$ For $t=1 \mathrm{~s} \quad \mathrm{y}=\frac{\mathrm{c}}{\mathrm{x}} \quad$ For $t=20 \mathrm{~s} \quad \mathrm{y}=\mathrm{c} \cdot \mathrm{x}-20$

$$
\mathbf{t}=\mathbf{0}
$$

$\mathbf{c}=\mathbf{1}$			
$\mathbf{x}=\mathbf{2}$	$\mathbf{c}=\mathbf{3}$		
0.05	\mathbf{y}	\mathbf{y}	\mathbf{y}
0.10	1.00	2.00	3.00
0.20	1.00	2.00	3.00
0.30	1.00	2.00	3.00
0.40	1.00	2.00	3.00
0.50	1.00	2.00	3.00
0.60	1.00	2.00	3.00
0.70	1.00	2.00	3.00
0.80	1.00	2.00	3.00
0.90	1.00	2.00	3.00
1.00	1.00	2.00	3.00
1.10	1.00	2.00	3.00
1.20	1.00	2.00	3.00
1.30	1.00	2.00	3.00
1.40	1.00	2.00	3.00
1.50	1.00	2.00	3.00
1.60	1.00	2.00	3.00
1.70	1.00	2.00	3.00
1.80	1.00	2.00	3.00
1.90	1.00	2.00	3.00
2.00	1.00	2.00	3.00

$\mathrm{t}=1 \mathrm{~s}$
(\#\#\# means too large to view)

$\mathbf{x}=\mathbf{1}$	$\mathbf{c}=\mathbf{2}$	$\mathbf{c}=\mathbf{3}$	
\mathbf{x}	\mathbf{y}	\mathbf{y}	\mathbf{y}
0.05	20.00	40.00	60.00
0.10	10.00	20.00	30.00
0.20	5.00	10.00	15.00
0.30	3.33	6.67	10.00
0.40	2.50	5.00	7.50
0.50	2.00	4.00	6.00
0.60	1.67	3.33	5.00
0.70	1.43	2.86	4.29
0.80	1.25	2.50	3.75
0.90	1.11	2.22	3.33
1.00	1.00	2.00	3.00
1.10	0.91	1.82	2.73
1.20	0.83	1.67	2.50
1.30	0.77	1.54	2.31
1.40	0.71	1.43	2.14
1.50	0.67	1.33	2.00
1.60	0.63	1.25	1.88
1.70	0.59	1.18	1.76
1.80	0.56	1.11	1.67
1.90	0.53	1.05	1.58
0.10	$\# \# \# \# \# \#$	$\# \# \# \# \# \#$	$\# \# \# \# \# \#$
0.30	$\# \# \# \# \# \#$	$\# \# \# \# \# \#$	$\# \# \# \# \# \#$
2.00	0.50	1.00	1.50
0.40	$\# \# \# \# \# \#$	$\# \# \# \# \# \# \#$	$\# \# \# \# \# \#$
0.50	$\# \# \# \# \# \#$	$\# \# \# \# \# \#$	$\# \# \# \# \# \# \#$
0.60	$\# \# \# \# \# \#$	$\# \# \# \# \# \#$	$\# \# \# \# \# \#$
0.70	$\# \# \# \# \# \#$	$\# \# \# \# \# \#$	$\# \# \# \# \# \#$
0.80	86.74	173.47	260.21
0.90	8.23	16.45	24.68
1.00	1.00	2.00	3.00
1.10	0.15	0.30	0.45
1.20	0.03	0.05	0.08
1.30	0.01	0.01	0.02
1.40	0.00	0.00	0.00
1.50	0.00	0.00	0.00
1.60	0.00	0.00	0.00
1.70	0.00	0.00	0.00
1.80	0.00	0.00	0.00
1.90	0.00	0.00	0.00
2.00	0.00	0.00	0.00

Problem 2.6

2.6 A velocity field is specified as $\vec{V}=a x y \hat{i}+b y^{2} \hat{j}$, where $a=2$ $\mathrm{m}^{-1} \mathrm{~s}^{-1}, b=-6 \mathrm{~m}^{-1} \mathrm{~s}^{-1}$, and the coordinates are measured in meters. Is the flow field one-, two-, or three-dimensional? Why? Calculate the velocity components at the point ($2,1 / 2$). Develop an equation for the streamline passing through this point. Plot several streamlines in the first quadrant including the one that passes through the point $(2,1 / 2)$.

Given: Velocity field

Find: \quad Whether field is 1D, 2D or 3D; Velocity components at (2,1/2); Equation for streamlines; Plot

Solution:

The velocity field is a function of x and y. It is therefore 2D.
At point (2,1/2), the velocity components are $\mathrm{u}=\mathrm{a} \cdot \mathrm{x} \cdot \mathrm{y}=2 \cdot \frac{1}{\mathrm{~m} \cdot \mathrm{~s}} \times 2 \cdot \mathrm{~m} \times \frac{1}{2} \cdot \mathrm{~m} \quad \mathrm{u}=2 \cdot \frac{\mathrm{~m}}{\mathrm{~s}}$

$$
\mathrm{v}=\mathrm{b} \cdot \mathrm{y}^{2}=-6 \cdot \frac{1}{\mathrm{~m} \cdot \mathrm{~s}} \times\left(\frac{1}{2} \cdot \mathrm{~m}\right)^{2} \quad \mathrm{v}=-\frac{3}{2} \cdot \frac{\mathrm{~m}}{\mathrm{~s}}
$$

For streamlines

$$
\frac{v}{u}=\frac{d y}{d x}=\frac{b \cdot y^{2}}{a \cdot x \cdot y}=\frac{b \cdot y}{a \cdot x}
$$

So, separating variables $\frac{d y}{y}=\frac{b}{a} \cdot \frac{d x}{x}$

Integrating

$$
\ln (y)=\frac{b}{a} \cdot \ln (x)+c
$$

$$
\mathrm{y}=\mathrm{C} \cdot \mathrm{x}^{\frac{\mathrm{b}}{\mathrm{a}}}
$$

The solution is

$$
y=C \cdot x^{-3}
$$

The streamline passing through point $(2,1 / 2)$ is given by

$$
\frac{1}{2}=\mathrm{C} \cdot 2^{-3}
$$

$C=\frac{1}{2} \cdot 2^{3}$
$C=4$
$y=\frac{4}{x^{3}}$

This can be plotted in Excel.
2.7 A velocity field is given by $\vec{V}=a x^{3} \hat{i}+b x y^{3} \hat{j}$, where $a=1$ $\mathrm{m}^{-2} \mathrm{~s}^{-1}$ and $b=1 \mathrm{~m}^{-3} \mathrm{~s}^{-1}$. Find the equation of the streamlines.
Plot several streamlines in the first quadrant.

Given: Velocity field

Find: Equation for streamlines; Plot streamlines

Solution:

Streamlines are given by	$\frac{v}{u}=\frac{d y}{d x}=\frac{b \cdot x \cdot y^{3}}{a \cdot x^{3}}$
So, separating variables	$\frac{d y}{3}=\frac{b \cdot d x}{a \cdot x^{2}}$
Integrating	$-\frac{1}{2 \cdot y^{2}}=\frac{b}{a} \cdot\left(-\frac{1}{x}\right)+C$

The solution is

$$
y=\frac{1}{\sqrt{2 \cdot\left(\frac{b}{a \cdot x}+C\right)}}
$$

Note: For convenience the sign of C is changed.
$\mathbf{a}=1$
$\mathbf{b}=\mathbf{1}$

$\mathbf{C}=$	$\mathbf{0}$	$\mathbf{2}$	$\mathbf{4}$	$\mathbf{6}$
\mathbf{X}	\mathbf{y}	\mathbf{y}	\mathbf{y}	\mathbf{y}
0.05	0.16	0.15	0.14	0.14
0.10	0.22	0.20	0.19	0.18
0.20	0.32	0.27	0.24	0.21
0.30	0.39	0.31	0.26	0.23
0.40	0.45	0.33	0.28	0.24
0.50	0.50	0.35	0.29	0.25
0.60	0.55	0.37	0.30	0.26
0.70	0.59	0.38	0.30	0.26
0.80	0.63	0.39	0.31	0.26
0.90	0.67	0.40	0.31	0.27
1.00	0.71	0.41	0.32	0.27
1.10	0.74	0.41	0.32	0.27
1.20	0.77	0.42	0.32	0.27
1.30	0.81	0.42	0.32	0.27
1.40	0.84	0.43	0.33	0.27
1.50	0.87	0.43	0.33	0.27
1.60	0.89	0.44	0.33	0.27
1.70	0.92	0.44	0.33	0.28
1.80	0.95	0.44	0.33	0.28
1.90	0.97	0.44	0.33	0.28
2.00	1.00	0.45	0.33	0.28

,2.8 A flow is described by the velocity field $\vec{V}=(A x+B) \hat{i}+$ $(-A y) \hat{j}$, where $A=10 \mathrm{ft} / \mathrm{s} / \mathrm{ft}$ and $B=20 \mathrm{ft} / \mathrm{s}$. Plot a few streamlines in the $x y$ plane, including the one that passes through the point $(x, y)=(1,2)$.

Given: Velocity field
Find: Plot streamlines

Solution:

Streamlines are given by

$$
\frac{\mathrm{v}}{\mathrm{u}}=\frac{\mathrm{dy}}{\mathrm{dx}}=\frac{-\mathrm{A} \cdot \mathrm{y}}{\mathrm{~A} \cdot \mathrm{x}+\mathrm{B}}
$$

So, separating variables

$$
\frac{d y}{-A \cdot y}=\frac{d x}{A \cdot x+B}
$$

Integrating

$$
-\frac{1}{\mathrm{~A}} \ln (\mathrm{y})=\frac{1}{\mathrm{~A}} \cdot \ln \left(\mathrm{x}+\frac{\mathrm{B}}{\mathrm{~A}}\right)
$$

The solution is

$$
y=\frac{C}{x+\frac{B}{A}}
$$

For the streamline that passes through point $(x, y)=(1,2)$

$$
C=y \cdot\left(x+\frac{B}{A}\right)=2 \cdot\left(1+\frac{20}{10}\right)=6 \quad y=\frac{6}{x+\frac{20}{10}}
$$

$$
y=\frac{6}{x+2}
$$

$A=10$
$B=20$
$C=$

\mathbf{x}				
\mathbf{x}	\mathbf{y}	\mathbf{y}	$\mathbf{4}$	$\mathbf{6}$
0.00	0.50	1.00	2.00	3.00
0.10	0.48	0.95	1.90	2.86
0.20	0.45	0.91	1.82	2.73
0.30	0.43	0.87	1.74	2.61
0.40	0.42	0.83	1.67	2.50
0.50	0.40	0.80	1.60	2.40
0.60	0.38	0.77	1.54	2.31
0.70	0.37	0.74	1.48	2.22
0.80	0.36	0.71	1.43	2.14
0.90	0.34	0.69	1.38	2.07
1.00	0.33	0.67	1.33	2.00
1.10	0.32	0.65	1.29	1.94
1.20	0.31	0.63	1.25	1.88
1.30	0.30	0.61	1.21	1.82
1.40	0.29	0.59	1.18	1.76
1.50	0.29	0.57	1.14	1.71
1.60	0.28	0.56	1.11	1.67
1.70	0.27	0.54	1.08	1.62
1.80	0.26	0.53	1.05	1.58
1.90	0.26	0.51	1.03	1.54
2.00	0.25	0.50	1.00	1.50

Problem 2.9

2.9 The velocity for a steady, incompressible flow in the $x y$ plane is given by $\vec{V}=\hat{i} A / x+\hat{j} A y / x^{2}$, where $A=2 \mathrm{~m}^{2} / \mathrm{s}$, and the coordinates are measured in meters. Obtain an equation for the streamline that passes through the point $(x, y)=(1,3)$. Calculate the time required for a fluid particle to move from $x=1 \mathrm{~m}$ to $x=2 \mathrm{~m}$ in this flow field.

Given: Velocity field
Find: \quad Equation for streamline through $(1,3)$

Solution:

For streamlines

$$
\frac{v}{u}=\frac{d y}{d x}=\frac{A \cdot \frac{y}{x^{2}}}{\frac{A}{x}}=\frac{y}{x}
$$

$$
\frac{\mathrm{dy}}{\mathrm{y}}=\frac{\mathrm{dx}}{\mathrm{x}}
$$

Integrating $\quad \ln (\mathrm{y})=\ln (\mathrm{x})+\mathrm{c}$
The solution is $\quad y=C \cdot x \quad$ which is the equation of a straight line.

For the streamline through point $(1,3) \quad 3=C \cdot 1 \quad C=3 \quad$ and $\quad y=3 \cdot x$

For a particle

$$
\mathrm{u}_{\mathrm{p}}=\frac{\mathrm{dx}}{\mathrm{dt}}=\frac{\mathrm{A}}{\mathrm{x}} \quad \text { or } \quad \mathrm{x} \cdot \mathrm{dx}=\mathrm{A} \cdot \mathrm{dt} \quad \mathrm{x}=\sqrt{2 \cdot \mathrm{~A} \cdot \mathrm{t}+\mathrm{c}}
$$

$t=\frac{x^{2}}{2 \cdot A}-\frac{c}{2 \cdot A}$

Hence the time for a particle to go from $\mathrm{x}=1$ to $\mathrm{x}=2 \mathrm{~m}$ is
$\Delta \mathrm{t}=\mathrm{t}(\mathrm{x}=2)-\mathrm{t}(\mathrm{x}=1)$

$$
\Delta t=\frac{(2 \cdot m)^{2}-c}{2 \cdot A}-\frac{(1 \cdot m)^{2}-c}{2 \cdot A}=\frac{4 \cdot m^{2}-1 \cdot m^{2}}{2 \times 2 \cdot \frac{m^{2}}{s}}
$$

2.10 The flow field for an atmospheric flow is given by

$$
\vec{V}=-\frac{K y}{2 \pi\left(x^{2}+y^{2}\right)} \hat{i}+\frac{K x}{2 \pi\left(x^{2}+y^{2}\right)} \hat{j}
$$

where $K=5 \times 10^{4} \mathrm{~m}^{2} / \mathrm{s}$ and the x and y coordinates are parallel to the local latitude and longitude. Plot the velocity magnitude along the x axis, along the y axis, and along the line $y=x$. For each plot use the range $-10 \mathrm{~km} \leq x$ or $y \leq 10 \mathrm{~km}$, excluding $|x|$ or $|y| \leq 100 \mathrm{~m}$. Find the equation for the streamlines and sketch several of them. What does this flow field model?

Given: Flow field

Find: Plot of velocity magnitude along axes, and $y=x$; Equation of streamlines

Solution:

On the x axis, $\mathrm{y}=0$, so

$$
u=-\frac{\mathrm{K} \cdot \mathrm{y}}{2 \cdot \pi \cdot\left(\mathrm{x}^{2}+\mathrm{y}^{2}\right)}=0 \quad \mathrm{v}=\frac{\mathrm{K} \cdot \mathrm{x}}{2 \cdot \pi \cdot\left(\mathrm{x}^{2}+\mathrm{y}^{2}\right)}=\frac{\mathrm{K}}{2 \cdot \pi \cdot \mathrm{x}}
$$

Plotting

$$
\underbrace{\text { (i) }}_{\square}
$$

The velocity is perpendicular to the axis, is very high close to the origin, and falls off to zero.
This can also be plotted in Excel.
On the y axis, $\mathrm{x}=0$, so

$$
u=-\frac{\mathrm{K} \cdot \mathrm{y}}{2 \cdot \pi \cdot\left(\mathrm{x}^{2}+\mathrm{y}^{2}\right)}=-\frac{\mathrm{K}}{2 \cdot \pi \cdot \mathrm{y}} \quad \mathrm{v}=\frac{\mathrm{K} \cdot \mathrm{x}}{2 \cdot \pi \cdot\left(\mathrm{x}^{2}+\mathrm{y}^{2}\right)}=0
$$

Plotting

$$
\underbrace{\text { En }}_{=}
$$

The velocity is perpendicular to the axis, is very high close to the origin, and falls off to zero.

This can also be plotted in Excel.

On the $\mathrm{y}=\mathrm{x}$ axis

$$
u=-\frac{\mathrm{K} \cdot \mathrm{x}}{2 \cdot \pi \cdot\left(\mathrm{x}^{2}+\mathrm{x}^{2}\right)}=-\frac{\mathrm{K}}{4 \cdot \pi \cdot x} \quad \mathrm{v}=\frac{\mathrm{K} \cdot \mathrm{x}}{2 \cdot \pi \cdot\left(\mathrm{x}^{2}+\mathrm{x}^{2}\right)}=\frac{\mathrm{K}}{4 \cdot \pi \cdot x}
$$

The flow is perpendicular to line $y=x$:
Slope of line $\mathrm{y}=\mathrm{x}$:

Slope of trajectory of motion: $\frac{\mathrm{u}}{\mathrm{v}}=-1$
If we define the radial position:

$$
r=\sqrt{x^{2}+y^{2}} \quad \text { then along } y=x \quad r=\sqrt{x^{2}+x^{2}}=\sqrt{2} \cdot x
$$

Then the magnitude of the velocity along $y=x$ is $V=\sqrt{u^{2}+v^{2}}=\frac{K}{4 \cdot \pi} \cdot \sqrt{\frac{1}{x^{2}}+\frac{1}{x^{2}}}=\frac{\mathrm{K}}{2 \cdot \pi \cdot \sqrt{2} \cdot x}=\frac{\mathrm{K}}{2 \cdot \pi \cdot r}$

Plotting

This can also be plotted in Excel.

For streamlines

$$
\frac{v}{u}=\frac{d y}{d x}=\frac{\frac{K \cdot x}{2 \cdot \pi \cdot\left(x^{2}+y^{2}\right)}}{-\frac{K \cdot y}{2 \cdot \pi \cdot\left(x^{2}+y^{2}\right)}}=-\frac{x}{y}
$$

So, separating variables
$y \cdot d y=-x \cdot d x$

Integrating

$$
\frac{y^{2}}{2}=-\frac{x^{2}}{2}+c
$$

The solution is

$$
x^{2}+y^{2}=C
$$ which is the equation of a circle.

Streamlines form a set of concentric circles.

This flow models a vortex flow. See Example 5.6 for streamline plots. Streamlines are circular, and the velocity approaches infinity as we approach the center. In Problem 2.11, we see that the streamlines are also circular. In a real tornado, at large distances from the center, the velocities behave as in this problem; close to the center, they behave as in Problem 2.11.
2.11 The flow field for an atmospheric flow is given by

$$
\vec{V}=-\frac{M y}{2 \pi} \hat{i}+\frac{M x}{2 \pi} \hat{j}
$$

where $M=0.5 \mathrm{~s}^{-1}$ and the x and y coordinates are parallel to the local latitude and longitude. Plot the velocity magnitude along the x axis, along the y axis, and along the line $y=x$. For each plot use the range $-10 \mathrm{~km} \leq x$ or $y \leq 10 \mathrm{~km}$, excluding $|x|$ or $|y| \leq 100 \mathrm{~m}$. Find the equation for the streamlines and sketch several of them. What does this flow field model?

Given: Flow field
Find: Plot of velocity magnitude along axes, and $y=x$; Equation for streamlines

Solution:

On the x axis, $\mathrm{y}=0$, so

$$
\mathrm{u}=-\frac{\mathrm{M} \cdot \mathrm{y}}{2 \cdot \pi}=0 \quad \mathrm{v}=\frac{\mathrm{M} \cdot \mathrm{x}}{2 \cdot \pi}
$$

Plotting

The velocity is perpendicular to the axis and increases linearly with distance x.
This can also be plotted in Excel.
On the y axis, $\mathrm{x}=0$, so

$$
\mathrm{u}=-\frac{\mathrm{M} \cdot \mathrm{y}}{2 \cdot \pi}
$$

$$
\mathrm{v}=\frac{\mathrm{M} \cdot \mathrm{x}}{2 \cdot \pi}=0
$$

Plotting

The velocity is perpendicular to the axis and increases linearly with distance y.
This can also be plotted in Excel.
On the $\mathrm{y}=\mathrm{x}$ axis
$u=-\frac{\mathrm{M} \cdot \mathrm{y}}{2 \cdot \pi}=-\frac{\mathrm{M} \cdot \mathrm{x}}{2 \cdot \pi} \quad \mathrm{v}=\frac{\mathrm{M} \cdot \mathrm{x}}{2 \cdot \pi}$

The flow is perpendicular to line $\mathrm{y}=\mathrm{x}$:
Slope of line $y=x$:
1

Slope of trajectory of motion: $\frac{u}{v}=-1$
If we define the radial position:

$$
r=\sqrt{x^{2}+y^{2}} \quad \text { then along } y=x \quad r=\sqrt{x^{2}+x^{2}}=\sqrt{2} \cdot x
$$

Then the magnitude of the velocity along $y=x$ is $V=\sqrt{u^{2}+v^{2}}=\frac{M}{2 \cdot \pi} \cdot \sqrt{x^{2}+x^{2}}=\frac{M \cdot \sqrt{2} \cdot x}{2 \cdot \pi}=\frac{M \cdot r}{2 \cdot \pi}$
Plotting

This can also be plotted in Excel.

For streamlines

$$
\frac{v}{u}=\frac{d y}{d x}=\frac{\frac{M \cdot x}{2 \cdot \pi}}{-\frac{M \cdot y}{2 \cdot \pi}}=-\frac{x}{y}
$$

So, separating variables $y \cdot d y=-x \cdot d x$

Integrating

$$
\frac{y^{2}}{2}=-\frac{x^{2}}{2}+c
$$

The solution is

$$
x^{2}+y^{2}=C \quad \text { which is the equation of a circle. }
$$

The streamlines form a set of concentric circles.
This flow models a rigid body vortex flow. See Example 5.6 for streamline plots. Streamlines are circular, and the velocity approaches zel as we approach the center. In Problem 2.10, we see that the streamlines are also circular. In a real tornado, at large distances from the center, the velocities behave as in Problem 2.10; close to the center, they behave as in this problem.

Problem 2.12

2.12 A flow field flow is given by

$$
\vec{V}=-\frac{q x}{2 \pi\left(x^{2}+y^{2}\right)} \hat{i}-\frac{q y}{2 \pi\left(x^{2}+y^{2}\right)} \hat{j}
$$

where $q=2 \times 10^{4} \mathrm{~m}^{2} / \mathrm{s}$. Plot the velocity magnitude along the x axis, along the y axis, and along the line $y=x$. For each plot use the range $-10 \mathrm{~km} \leq x$ or $y \leq 10 \mathrm{~km}$, excluding $|x|$ or $|y| \leq 100 \mathrm{~m}$.
Find the equation for the streamlines and sketch several of them. What does this flow field model?

Given: Flow field
Find: \quad Plot of velocity magnitude along axes, and $y=x$; Equations of streamlines

Solution:

On the x axis, $\mathrm{y}=0$, so

$$
u=-\frac{q \cdot x}{2 \cdot \pi \cdot\left(x^{2}+y^{2}\right)}=-\frac{q}{2 \cdot \pi \cdot x} \quad v=-\frac{q \cdot y}{2 \cdot \pi \cdot\left(x^{2}+y^{2}\right)}=0
$$

Plotting

$$
\begin{aligned}
& \text { En } \\
& \mathrm{x} \text { (km) }
\end{aligned}
$$

The velocity is very high close to the origin, and falls off to zero. It is also along the axis. This can be plotted in Excel.
On the y axis, $\mathrm{x}=0$, so

$$
\mathrm{u}=-\frac{\mathrm{q} \cdot \mathrm{x}}{2 \cdot \pi \cdot\left(\mathrm{x}^{2}+\mathrm{y}^{2}\right)}=0 \quad \mathrm{v}=-\frac{\mathrm{q} \cdot \mathrm{y}}{2 \cdot \pi \cdot\left(\mathrm{x}^{2}+\mathrm{y}^{2}\right)}=-\frac{\mathrm{q}}{2 \cdot \pi \cdot \mathrm{y}}
$$

Plotting

The velocity is again very high close to the origin, and falls off to zero. It is also along the axis.
This can also be plotted in Excel.

On the $\mathrm{y}=\mathrm{x}$ axis $\quad \mathrm{u}=-\frac{\mathrm{q} \cdot \mathrm{x}}{2 \cdot \pi \cdot\left(\mathrm{x}^{2}+\mathrm{x}^{2}\right)}=-\frac{\mathrm{q}}{4 \cdot \pi \cdot \mathrm{x}} \quad \mathrm{v}=-\frac{\mathrm{q} \cdot \mathrm{x}}{2 \cdot \pi \cdot\left(\mathrm{x}^{2}+\mathrm{x}^{2}\right)}=-\frac{\mathrm{q}}{4 \cdot \pi \cdot \mathrm{x}}$
The flow is parallel to line $\mathrm{y}=\mathrm{x}$:
Slope of line $\mathrm{y}=\mathrm{x}$:
1

$$
\text { Slope of trajectory of motion: } \frac{\mathrm{v}}{\mathrm{u}}=1
$$

If we define the radial position:

$$
r=\sqrt{x^{2}+y^{2}} \quad \text { then along } y=x \quad r=\sqrt{x^{2}+x^{2}}=\sqrt{2} \cdot x
$$

Then the magnitude of the velocity along $\mathrm{y}=\mathrm{x}$ is $\mathrm{V}=\sqrt{\mathrm{u}^{2}+\mathrm{v}^{2}}=\frac{\mathrm{q}}{4 \cdot \pi} \cdot \sqrt{\frac{1}{x^{2}}+\frac{1}{x^{2}}}=\frac{\mathrm{q}}{2 \cdot \pi \cdot \sqrt{2} \cdot \mathrm{x}}=\frac{\mathrm{q}}{2 \cdot \pi \cdot \mathrm{r}}$

Plotting

r (km)

This can also be plotted in Excel.

For streamlines

$$
\frac{\mathrm{v}}{\mathrm{u}}=\frac{\mathrm{dy}}{\mathrm{dx}}=\frac{-\frac{\mathrm{q} \cdot \mathrm{y}}{2 \cdot \pi \cdot\left(\mathrm{x}^{2}+\mathrm{y}^{2}\right)}}{-\frac{\mathrm{q} \cdot \mathrm{x}}{2 \cdot \pi \cdot\left(\mathrm{x}^{2}+\mathrm{y}^{2}\right)}}=\frac{\mathrm{y}}{\mathrm{x}}
$$

So, separating variables

$$
\frac{\mathrm{dy}}{\mathrm{y}}=\frac{\mathrm{dx}}{\mathrm{x}}
$$

Integrating
$\ln (y)=\ln (x)+c$

The solution is
$y=C \cdot x \quad$ which is the equation of a straight line.
This flow field corresponds to a sink (discussed in Chapter 6).

Given: Vebcity field $\vec{V}=a x i-b y j$, where $a=b=1 s^{-1}$. Find: (a) Show that, particle motion is described by the -bt parametric equations $x_{p}=c \cdot e^{a t}$ and $y_{p}=c_{c} e^{-s t}$
(b) Obtain equation of pattinine for particle located at (1,2) at $t=0$
(c) Compare pathline with streamline though same point

Solution
(a) A particle mourning in the velocity field $\overrightarrow{\vec{b}}=a x i-b y \hat{j}$ will have velocity components $u=a x, v=-b y$
Rus $u_{p}=\frac{d x}{d t}=a x$ or $\frac{d x}{x}=a d t$ and $\left(\frac{d x}{x}=\int a d t\right.$ _.li $)$

$$
v_{p}=\frac{d y}{d t}=-b y \text { or } \frac{d y}{y}=-b d t \text { and }\left(\frac{d y}{y}=-(b d t+(2))\right.
$$

Integrating Eqs. (1) and (2) we obtain

$$
\left.\begin{array}{lll}
\ln x=a t+\ln c_{1} & \text { or } \frac{x}{c_{1}}=e^{a t} & \text { and } x=c_{1} e^{a t} \\
\ln y=-b t+\ln c_{2} & \text { or } \frac{y}{c_{2}}=e^{-b t} & \text { and } y=c_{2} e^{-b t}
\end{array}\right\} \text {-aet }
$$

(b) To dotain the equation of the patilnie we eliminate t from the parametric equations.

$$
\begin{array}{lll}
x=c_{1} e^{a t} & \therefore \ln \frac{x}{c_{1}}=a t & \text { or } t=\frac{1}{a} \ln \frac{x}{c_{1}} \\
y=c_{2} e^{-b t} & \therefore \ln \frac{y}{c_{2}}=-b t & \text { or } t=-\frac{1}{b} \ln \frac{y}{c_{2}}
\end{array}
$$

Equating expressions for t, we obtain

$$
\frac{1}{a} \ln \frac{x}{c_{1}}=-\frac{1}{b} \ln \frac{y}{c_{k}} \quad \text { or }-\frac{b}{a} \ln \frac{x}{c_{1}}=\ln \frac{y}{c_{2}}
$$

Thus $\left(\frac{x}{c_{1}}\right)^{-b / a}=\frac{y}{c_{2}}$ or $y\left(\frac{x}{c_{1}}\right)^{b / a}=c_{2}$
At $t=0 \quad x-1=c_{1}, y=2=c_{2}$. Since $a=b$, then the pathline of the particle is $x y=2$. Pauline
(c) The streamline in the $x-y$ plane has slope $\frac{d y}{d x}=\frac{v}{u}=-\frac{b}{a} \frac{y}{x}$ The $\frac{d y}{y}+\frac{b}{a} \frac{d x}{x}=0$. This can be integrated to obtain $\ln y+\frac{b}{a} \ln x=$ constant $=\ln c$
Simplifying we obtain $y r^{\text {bla }}=c$. With $b=a$, the equation fr a se streanlnie Trough part $(1,2)$ is then $x y=2$ Streamline
2.14 A velocity field is given by $\vec{V}=a y t \hat{i}-b x \hat{j}$, where $a=1$ s^{-2} and $b=4 \mathrm{~s}^{-1}$. Find the equation of the streamlines at any
time t. Plot several streamlines at $t=0 \mathrm{~s}, t=1 \mathrm{~s}$, and $t=20 \mathrm{~s}$.

Given:

Velocity field
Find: Equation of streamlines; Plot streamlines

Solution:

Streamlines are given by	$\frac{\mathrm{v}}{\mathrm{u}}=\frac{\mathrm{dy}}{\mathrm{dx}}=\frac{-\mathrm{b} \cdot \mathrm{x}}{\mathrm{a} \cdot \mathrm{y} \cdot \mathrm{t}}$
So, separating variables	a.t. $\cdot \mathrm{dy}=-\mathrm{b} \cdot \mathrm{x} \cdot \mathrm{dx}$
Integrating	$\frac{1}{2} \cdot \mathrm{a} \cdot \mathrm{t} \cdot \mathrm{y}^{2}=-\frac{1}{2} \cdot \mathrm{~b} \cdot \mathrm{x}^{2}+\mathrm{C}$
The solution is	$\mathrm{y}=\sqrt{\mathrm{C}-\frac{\mathrm{b} \cdot \mathrm{x}^{2}}{\mathrm{a} \cdot \mathrm{t}}}$

For $t=0 \mathrm{~s} \quad \mathrm{x}=\mathrm{c} \quad$ For $t=1 \mathrm{~s} \quad \mathrm{y}=\sqrt{\mathrm{C}-4 \cdot \mathrm{x}^{2}} \quad$ For $t=20 \mathrm{~s} \quad \mathrm{y}=\sqrt{\mathrm{C}-\frac{\mathrm{x}^{2}}{5}}$
$\mathbf{t}=\mathbf{0}$
$\mathrm{C}=1 \quad \mathrm{C}=2 \quad \mathrm{C}=3$

\mathbf{x}	\mathbf{y}	\mathbf{y}	\mathbf{y}
0.00	1.00	2.00	3.00
0.10	1.00	2.00	3.00
0.20	1.00	2.00	3.00
0.30	1.00	2.00	3.00
0.40	1.00	2.00	3.00
0.50	1.00	2.00	3.00
0.60	1.00	2.00	3.00
0.70	1.00	2.00	3.00
0.80	1.00	2.00	3.00
0.90	1.00	2.00	3.00
1.00	1.00	2.00	3.00
1.10	1.00	2.00	3.00
1.20	1.00	2.00	3.00
1.30	1.00	2.00	3.00
1.40	1.00	2.00	3.00
1.50	1.00	2.00	3.00
1.60	1.00	2.00	3.00
1.70	1.00	2.00	3.00
1.80	1.00	2.00	3.00
1.90	1.00	2.00	3.00
2.00	1.00	2.00	3.00

$t=1 \mathrm{~s}$

\mathbf{x}	\mathbf{y}	\mathbf{y}	\mathbf{y}
0.000	1.00	1.41	1.73
0.025	1.00	1.41	1.73
0.050	0.99	1.41	1.73
0.075	0.99	1.41	1.73
0.100	0.98	1.40	1.72
0.125	0.97	1.39	1.71
0.150	0.95	1.38	1.71
0.175	0.94	1.37	1.70
0.200	0.92	1.36	1.69
0.225	0.89	1.34	1.67
0.250	0.87	1.32	1.66
0.275	0.84	1.30	1.64
0.300	0.80	1.28	1.62
0.325	0.76	1.26	1.61
0.350	0.71	1.23	1.58
0.375	0.66	1.20	1.56
0.400	0.60	1.17	1.54
0.425	0.53	1.13	1.51
0.450	0.44	1.09	1.48
0.475	0.31	1.05	1.45
0.500	0.00	1.00	1.41

$\mathrm{t}=20 \mathrm{~s}$

\mathbf{x}	$\mathbf{C}=\mathbf{1}$	$\mathbf{C}=\mathbf{y}$	$\mathbf{C}=\mathbf{y}$
0.00	1.00	1.41	1.73
0.10	1.00	1.41	1.73
0.20	1.00	1.41	1.73
0.30	0.99	1.41	1.73
0.40	0.98	1.40	1.72
0.50	0.97	1.40	1.72
0.60	0.96	1.39	1.71
0.70	0.95	1.38	1.70
0.80	0.93	1.37	1.69
0.90	0.92	1.36	1.68
1.00	0.89	1.34	1.67
1.10	0.87	1.33	1.66
1.20	0.84	1.31	1.65
1.30	0.81	1.29	1.63
1.40	0.78	1.27	1.61
1.50	0.74	1.24	1.60
1.60	0.70	1.22	1.58
1.70	0.65	1.19	1.56
1.80	0.59	1.16	1.53
1.90	0.53	1.13	1.51
2.00	0.45	1.10	1.48

Problem 2.15

2.15 Verify that $x_{p}=-a \sin (\omega t), y_{p}=a \cos (\omega t)$ is the equation for the pathlines of particles for the flow field of Problem 2.10. Find the frequency of motion ω as a function of the amplitude of motion, a, and K. Verify that $x_{p}=-a \sin (\omega t), y_{p}=a \cos (\omega t)$ is also the equation for the pathlines of particles for the flow field of Problem 2.11, except that ω is now a function of M. Plot typical pathlines for both flow fields and discuss the difference.

Given: Pathlines of particles
Find: \quad Conditions that make them satisfy Problem 2.10 flow field; Also Problem 2.11 flow field; Plot pathlines

Solution:

The given pathlines are

$$
x_{p}=-a \cdot \sin (\omega \cdot t) \quad y_{p}=a \cdot \cos (\omega \cdot t)
$$

The velocity field of Problem 2.10 is

$$
u=-\frac{\mathrm{K} \cdot \mathrm{y}}{2 \cdot \pi \cdot\left(\mathrm{x}^{2}+\mathrm{y}^{2}\right)} \quad \mathrm{v}=\frac{\mathrm{K} \cdot \mathrm{x}}{2 \cdot \pi \cdot\left(\mathrm{x}^{2}+\mathrm{y}^{2}\right)}
$$

If the pathlines are correct we should be able to substitute x_{p} and y_{p} into the velocity field to find the velocity as a function of time:

$$
\begin{align*}
& \mathrm{u}=-\frac{\mathrm{K} \cdot \mathrm{y}}{2 \cdot \pi \cdot\left(\mathrm{x}^{2}+\mathrm{y}^{2}\right)}=-\frac{\mathrm{K} \cdot \mathrm{a} \cdot \cos (\omega \cdot \mathrm{t})}{2 \cdot \pi \cdot\left(\mathrm{a}^{2} \cdot \sin (\omega \cdot t)^{2}+\mathrm{a}^{2} \cdot \cos (\omega \cdot \mathrm{t})^{2}\right)}=-\frac{\mathrm{K} \cdot \cos (\omega \cdot \mathrm{t})}{2 \cdot \pi \cdot \mathrm{a}} \tag{1}\\
& \mathrm{v}=\frac{\mathrm{K} \cdot \mathrm{x}}{2 \cdot \pi \cdot\left(\mathrm{x}^{2}+\mathrm{y}^{2}\right)}=-\frac{\mathrm{K} \cdot(-\mathrm{a} \cdot \sin (\omega \cdot \mathrm{t}))}{2 \cdot \pi \cdot\left(\mathrm{a}^{2} \cdot \sin (\omega \cdot \mathrm{t})^{2}+\mathrm{a}^{2} \cdot \cos (\omega \cdot t)^{2}\right)}=-\frac{\mathrm{K} \cdot \sin (\omega \cdot \mathrm{t})}{2 \cdot \pi \cdot \mathrm{a}} \tag{2}
\end{align*}
$$

We should also be able to find the velocity field as a function of time from the pathline equations (Eq. 2.9):

$$
\begin{array}{ll}
\frac{\mathrm{dx}_{\mathrm{p}}}{\mathrm{dt}}=\mathrm{u} & \frac{\mathrm{dx}_{\mathrm{p}}}{\mathrm{dt}}=\mathrm{v} \\
\mathrm{u}=\frac{\mathrm{dx}}{\mathrm{p}} \\
\mathrm{dt} & =-\mathrm{a} \cdot \omega \cdot \cos (\omega \cdot \mathrm{t}) \tag{3}
\end{array} \quad \mathrm{v}=\frac{\mathrm{dy}_{\mathrm{p}}}{\mathrm{dt}}=-\mathrm{a} \cdot \omega \cdot \sin (\omega \cdot \mathrm{t}) .
$$

Comparing Eqs. 1, 2 and 3

$$
\mathrm{u}=-\mathrm{a} \cdot \omega \cdot \cos (\omega \cdot \mathrm{t})=-\frac{\mathrm{K} \cdot \cos (\omega \cdot \mathrm{t})}{2 \cdot \pi \cdot \mathrm{a}}
$$

$$
\mathrm{v}=-\mathrm{a} \cdot \omega \cdot \sin (\omega \cdot \mathrm{t})=-\frac{\mathrm{K} \cdot \sin (\omega \cdot \mathrm{t})}{2 \cdot \pi \cdot \mathrm{a}}
$$

Hence we see that

$$
a \cdot \omega=\frac{K}{2 \cdot \pi \cdot a} \quad \text { or }
$$

$\omega=\frac{\mathrm{K}}{2 \cdot \pi \cdot \mathrm{a}^{2}} \quad$ for the pathlines to be correct.

The pathlines are

To plot this in Excel, compute x_{p} and y_{p} for t ranging from 0 to 60 s , with ω given by the above formula. Plot y_{p} versus x_{p}. Note that outer particles travel much slower!

This is the free vortex flow discussed in Example 5.6

The velocity field of Problem 2.11 is

$$
\mathrm{u}=-\frac{\mathrm{M} \cdot \mathrm{y}}{2 \cdot \pi} \quad \mathrm{v}=\frac{\mathrm{M} \cdot \mathrm{x}}{2 \cdot \pi}
$$

If the pathlines are correct we should be able to substitute x_{p} and y_{p} into the velocity field to find the velocity as a function of time:

$$
\begin{align*}
& u=-\frac{\mathrm{M} \cdot \mathrm{y}}{2 \cdot \pi}=-\frac{\mathrm{M} \cdot(\mathrm{a} \cdot \cos (\omega \cdot \mathrm{t}))}{2 \cdot \pi}=-\frac{\mathrm{M} \cdot \mathrm{a} \cdot \cos (\omega \cdot \mathrm{t})}{2 \cdot \pi} \tag{4}\\
& \mathrm{v}=\frac{\mathrm{M} \cdot \mathrm{x}}{2 \cdot \pi}=\frac{\mathrm{M} \cdot(-\mathrm{a} \cdot \sin (\omega \cdot \mathrm{t}))}{2 \cdot \pi}=-\frac{\mathrm{M} \cdot \mathrm{a} \cdot \sin (\omega \cdot \mathrm{t})}{2 \cdot \pi} \tag{5}
\end{align*}
$$

Recall that

$$
\mathrm{u}=\frac{\mathrm{dx}_{\mathrm{p}}}{\mathrm{dt}}=-\mathrm{a} \cdot \omega \cdot \cos (\omega \cdot \mathrm{t}) \quad \mathrm{v}=\frac{\mathrm{dy}_{\mathrm{p}}}{\mathrm{dt}}=-\mathrm{a} \cdot \omega \cdot \sin (\omega \cdot \mathrm{t})
$$

Comparing Eqs. 1, 4 and 5

$$
\mathrm{u}=-\mathrm{a} \cdot \omega \cdot \cos (\omega \cdot \mathrm{t})=-\frac{\mathrm{M} \cdot \mathrm{a} \cdot \cos (\omega \cdot \mathrm{t})}{2 \cdot \pi}
$$

$$
\mathrm{v}=-\mathrm{a} \cdot \omega \cdot \sin (\omega \cdot \mathrm{t})=-\frac{\mathrm{M} \cdot \mathrm{a} \cdot \sin (\omega \cdot \mathrm{t})}{2 \cdot \pi}
$$

Hence we see that $\quad \omega=\frac{M}{2 \cdot \pi} \quad$ for the pathlines to be correct.

The pathlines

Note that this is rigid body rotation!

To plot this in Excel, compute x_{p} and y_{p} for t ranging from 0 to 75 s , with ω given by the above formula. Plot y_{p} versus x_{p}. Note that outer particles travel faster!

This is the forced vortex flow discussed in Example 5.6

Problem 2.16

2.16 Air flows downward toward an infinitely wide horizontal flat plate. The velocity field is given by $\vec{V}=(a x \hat{i}-a y \hat{j})(2+\cos \omega t)$, where $a=5 \mathrm{~s}^{-1}, \omega=2 \pi \mathrm{~s}^{-1}, x$ and y (measured in meters) are horizontal and vertically upward, respectively, and t is in s. Obtain an algebraic equation for a streamline at $t=0$. Plot the streamline that passes through point $(x, y)=(3,3)$ at this instant. Will the streamline change with time? Explain briefly. Show the velocity vector on your plot at the same point and time. Is the velocity vector tangent to the streamline? Explain.

Given: Time-varying velocity field
Find: \quad Streamlines at $\mathrm{t}=0 \mathrm{~s}$; Streamline through (3,3); velocity vector; will streamlines change with time

Solution:

For streamlines

$$
\frac{v}{u}=\frac{d y}{d x}=-\frac{a \cdot y \cdot(2+\cos (\omega \cdot t))}{a \cdot x \cdot(2+\cos (\omega \cdot t))}=-\frac{y}{x}
$$

At $\mathrm{t}=0$ (actually all times!)

$$
\frac{d y}{d x}=-\frac{y}{x}
$$

So, separating variables

$$
\frac{\mathrm{dy}}{\mathrm{y}}=-\frac{\mathrm{dx}}{\mathrm{x}}
$$

Integrating
$\ln (y)=-\ln (x)+c$

The solution is

For the streamline through point $(3,3)$
$y=\frac{C}{x} \quad$ which is the equation of a hyperbola.

$$
\mathrm{C}=\frac{3}{3} \quad \mathrm{C}=1 \quad \text { and } \quad \mathrm{y}=\frac{1}{\mathrm{x}}
$$

The streamlines will not change with time since dy/dx does not change with time.

This curve can be plotted in Excel.

Given: Velocity field $\vec{V}=B+(1+A t) i+c y j$, with $A=0.55^{-1}$, $B=C=1 s^{\prime \prime}$; coordinates measured in meters.
Plot: the pathline of the particle that passed through the point $(1,1,0)$ at time $t=0$. Compare with' the streamlines through the same point at the instants $t=0,1$, and $2 s$
Solution:
For a particle, $u=\frac{d x}{d t}$ and $v=\left.d y\right|_{d t}$

$$
\left.\begin{array}{l}
u=B_{x}(1+A t)=\frac{d x}{d t}, \quad\left(\frac{d x}{x}=\int_{0}^{t} B(1+A t) d t\right. \\
\ln \frac{x}{x_{0}}=B\left[t+\frac{1}{2} A t^{2}\right]_{0}^{t}=B\left[t+\frac{1}{2} A t^{2}\right] \quad \therefore x=x_{0} e^{B\left(t+\frac{1}{2} A t^{2}\right)} \\
v=c y=d y / d t, \quad \int_{0}^{t} c d t=\int_{0}^{y} \frac{d y}{y} \quad \therefore y=y_{0} e^{c t}
\end{array}\right\}
$$

The patiline may be plotted by varying ta shown below The streamline is found (at given t) from $\frac{d y}{d x}$) spramlire $=\frac{v}{u}$. then

$$
\frac{d y}{d x}=\frac{C y}{3 x(1+A t)} \quad \text { and }(1+A t) \frac{d y}{y}=\frac{C}{B} \frac{d x}{x}
$$

and

$$
(1+A t) \ln y=\frac{c}{B} \ln x+\ln c, \quad c, x^{c l s}=y^{(1+R t)}
$$

Streamline through pat $(1,1,0)$ gives $C_{1}=1$. Then on substituting for A, B, and C we obtain

$$
x=y^{(1+0.5 t)}
$$

at $t=0, x=y . y_{1}$

$$
\begin{array}{ll}
t=1 s, & x=y^{1.5} \\
t=2 s, & x=y^{2}
\end{array}
$$

Given: Velocity field $\vec{V}=A \hat{i}+B t \hat{j}$, where $A=2 m l s$, $B=0.6 \mathrm{~m} / \mathrm{s}^{2}$, and coordinates are in meters.
Find: (a) position functions for particle located at (x_{0}, y_{0}) $=1,1$ at time $t=0$
(b) algebraic expression for pathline of particle of part (a).
Plot: te patine and compare with streamline trough the same point at $t=0,1,25$.
Solution:
For a particle $u=\frac{d t}{d t}$ and $v=\frac{d y}{d t}$
Men,

$$
\begin{array}{ll}
u=A=d x l_{d t}, & \left(\begin{array}{l}
d \\
d
\end{array}=\int_{0}^{t} d t\right.
\end{array} \quad \text { and } x=x_{0}+A t
$$

Subsituting values for $A_{0}^{A_{0}}, B,{ }_{0}$, and yo, then

$$
x=1+2 t \text { and } y=1+0.30 t^{2}-x, y
$$

(b) To determine the gathine for the particle we eliminate t from the paremetric equations of part (a) From Eq. E_{0}, $t=\left(x-x_{0}\right) / A$. Substituting into Eq.(b), ten

$$
\begin{equation*}
y-y_{0}=\frac{B\left(x-x_{0}\right)^{2}}{2 R^{2}} \tag{2}
\end{equation*}
$$

substituting nurrerical values,
(c) The steaming is found (at given) from $\left.\left.d y\right|_{d x}\right)_{s}=\frac{v}{u}$

$$
\left.\frac{d y}{d x}\right)_{\text {Streamline }}=\frac{v}{u}=\frac{B t}{A}
$$

$$
\therefore y=\frac{B t}{R} x+C
$$

Through paint $(1,1)$

$$
\begin{aligned}
& c=1-\frac{0.10}{2} t=1-0.3 t \\
& y=1+0.3 t(x-1)
\end{aligned}
$$

STreamline trough(1,)
Q

$$
\begin{aligned}
& t=0, y=1 \\
& t=1 s, y=1+0.3 \cdot(x-1) \\
& t=2 s, y=1+0.6(x-1)
\end{aligned}
$$

,2.19 A velocity field is given by $\vec{V}=a x t \hat{i}-b y \hat{j}$, where $a=0.1$ s^{-2} and $b=1 \mathrm{~s}^{-1}$. For the particle that passes through the point $(x, y)=(1,1)$ at instant $t=0 \mathrm{~s}$, plot the pathline during the interval from $t=0$ to $t=3 \mathrm{~s}$. Compare with the streamlines plotted through the same point at the instants $t=0,1$, and 2 s .

Given: Velocity field

Find: Plot pathlines and streamlines

Solution:

Pathlines are given by	$\frac{\mathrm{dx}}{\mathrm{dt}}=\mathrm{u}=\mathrm{a} \cdot \mathrm{x} \cdot \mathrm{t}$	$\frac{\mathrm{dy}}{\mathrm{dt}}=\mathrm{v}=$
So, separating variables	$\frac{\mathrm{dx}}{\mathrm{x}}=\mathrm{a} \cdot \mathrm{t} \cdot \mathrm{dt}$	$\frac{d y}{y}=-b \cdot c$
Integrating	$\ln (\mathrm{x})=\frac{1}{2} \cdot \mathrm{a} \cdot \mathrm{t}^{2}+\mathrm{c}_{1}$	$\ln (\mathrm{y})=-\mathrm{b}$
For initial position ($\mathrm{x}_{0} ; \mathrm{y}_{0}$)	$x=x_{0} \cdot e^{\frac{a}{2} \cdot t^{2}}$	$y=y_{0} \cdot e^{-}$
Using the given data, and IC $\left(\mathrm{x}_{0}, \mathrm{y}_{0}\right)=(1,1)$ at $\mathrm{t}=0$		
	$x=e^{0.05 \cdot t^{2}}$	$y=e^{-t}$
Streamlines are given by	$\frac{\mathrm{v}}{\mathrm{u}}=\frac{\mathrm{dy}}{\mathrm{dx}}=\frac{-\mathrm{b} \cdot \mathrm{y}}{\mathrm{a} \cdot \mathrm{x} \cdot \mathrm{t}}$	
So, separating variables	$\frac{d y}{y}=-\frac{b}{a \cdot t} \cdot \frac{d x}{x}$	
Integrating	$\ln (y)=-\frac{\mathrm{b}}{\mathrm{a} \cdot \mathrm{t}} \cdot \ln (\mathrm{x})+\mathrm{C}$	
	- b	
The solution is	$y=C \cdot x^{a \cdot t}$	
For streamline at $(1,1)$ at $t=0 \mathrm{~s}$	$\mathrm{x}=\mathrm{c}$	
For streamline at (1,1) at $t=1 \mathrm{~s}$	$y=x^{-10}$	
For streamline at (1,1) at $t=2 \mathrm{~s}$	$y=x^{-5}$	

Pathline
 Streamlines

\mathbf{t}	\mathbf{x}	\mathbf{y}
0.00	1.00	1.00
0.25	1.00	0.78
0.50	1.01	0.61
0.75	1.03	0.47
1.00	1.05	0.37
1.25	1.08	0.29
1.50	1.12	0.22
1.75	1.17	0.17
2.00	1.22	0.14
2.25	1.29	0.11
2.50	1.37	0.08
2.75	1.46	0.06
3.00	1.57	0.05
3.25	1.70	0.04
3.50	1.85	0.03
3.75	2.02	0.02
4.00	2.23	0.02
4.25	2.47	0.01
4.50	2.75	0.01
4.75	3.09	0.01
5.00	3.49	0.01

$\mathbf{t}=\mathbf{0}$	
\mathbf{x}	\mathbf{y}
1.00	1.00
1.00	0.78
1.00	0.61
1.00	0.47
1.00	0.37
1.00	0.29
1.00	0.22
1.00	0.17
1.00	0.14
1.00	0.11
1.00	0.08
1.00	0.06
1.00	0.05
1.00	0.04
1.00	0.03
1.00	0.02
1.00	0.02
1.00	0.01
1.00	0.01
1.00	0.01
1.00	0.01

x	y
1.00	1.00
1.00	0.97
1.01	0.88
1.03	0.75
1.05	0.61
1.08	0.46
1.12	0.32
1.17	0.22
1.22	0.14
1.29	0.08
1.37	0.04
1.46	0.02
1.57	0.01
1.70	0.01
1.85	0.00
2.02	0.00
2.23	0.00
2.47	0.00
2.75	0.00
3.09	0.00
3.49	0.00

x	y
1.00	1.00
1.00	0.98
1.01	0.94
1.03	0.87
1.05	0.78
1.08	0.68
1.12	0.57
1.17	0.47
1.22	0.37
1.29	0.28
1.37	0.21
1.46	0.15
1.57	0.11
1.70	0.07
1.85	0.05
2.02	0.03
2.23	0.02
2.47	0.01
2.75	0.01
3.09	0.00
3.49	0.00

Gwen: Velocity field $\vec{V}=a x i+b y(1+c t) j$, where $a=b=2 \bar{j}^{\prime}$, $c=0.45^{\prime}$, and coordinates are measured in meters
Plot: the pathiline (during the interval $o \leq t \leq 1.5 s$) of the particle that passed trough the point $(1, y)=(1,1)$ at time $t=0$.
Compare with the streamline plotted trough the same point at $t=0.1$, and 1.5 s
Solution:
For a particle, $u=\left.d x\right|_{d T}$ and $v=d y / \pi$ then $u=\left.d x\right|_{d t}=a x, \quad\left(\frac{d y}{x}=\int_{0}^{t} x d t, \ln \frac{x}{x_{0}}=a_{0}^{t}, x=h_{0} e^{a t}\right.$ Also $v=$ dylat $=b_{y}(1+c t)$,

$$
\left.\ln \right|_{y_{0}}=b\left(t+\frac{1}{2} c t^{2}\right) \quad y_{0} 0 \quad y=y_{0} e^{b\left(t+\frac{1}{2} c t^{2}\right)}
$$

Substituting for a, b, c, t_{0}, and y_{0}

$$
x=e^{2 t}, y=e^{\left(2 t+0.4 t^{2}\right)},(x, y) \text { patine }
$$

The streamline is found (at given t) from $\left.d y /_{d x}\right\rangle_{s}=v / u$. then $\frac{d y}{d x}=\frac{b y(1+c t)}{a x}, \int_{y_{0}}^{y} \frac{d y}{y}=\int \frac{b(1+c t)}{a} \frac{d x}{x}, \ln \frac{y}{y_{0}}=\frac{b(1+c t}{a} h \frac{x}{x_{0}}$

$$
\begin{aligned}
& y=y_{0}\left(\frac{x}{x_{0}}\right)^{b(1+k)} \frac{y_{0}}{a} \text {. substituting for } a, b, c, \text { to }_{0} \text { and } y_{0} \\
& y=x^{(1+0, i t)} \text { streamline }
\end{aligned}
$$

$$
\text { fit }=0, y=x
$$

$$
t=15, \quad y=x^{1.4}
$$

$$
t=1.5 s, y=t^{1.6}
$$

Problem 2.21

2.21 Consider the flow field $\vec{V}=a x t \hat{i}+b \hat{j}$, where $a=0.1 \mathrm{~s}^{-2}$ and $b=4 \mathrm{~m} / \mathrm{s}$. Coordinates are measured in meters. For the particle that passes through the point $(x, y)=(3,1)$ at the instant $t=0$, plot the pathline during the interval from $t=0$ to 3 s . Compare this pathline with the streamlines plotted through the same point at the instants $t=1,2$, and 3 s .

Given:
Flow field
Find: \quad Pathline for particle starting at (3,1); Streamlines through same point at $\mathrm{t}=1,2$, and 3 s

Solution:

For particle paths

$$
\begin{array}{lll}
\frac{d x}{d t}=\mathrm{u}=\mathrm{a} \cdot \mathrm{x} \cdot \mathrm{t} & \text { and } & \frac{\mathrm{dy}}{\mathrm{dt}}=\mathrm{v}=\mathrm{b} \\
\frac{\mathrm{dx}}{\mathrm{x}}=\mathrm{a} \cdot \mathrm{t} \cdot \mathrm{dt} & \text { or } & \ln (\mathrm{x})=\frac{1}{2} \cdot \mathrm{a} \cdot \mathrm{t}^{2}+\mathrm{c}_{1} \\
\mathrm{dy}=\mathrm{b} \cdot \mathrm{dt} & \text { or } & \mathrm{y}=\mathrm{b} \cdot \mathrm{t}+\mathrm{c}_{2}
\end{array}
$$

Separating variables and integrating

Using initial condition $(x, y)=(3,1)$ and the given values for a and b

	$c_{1}=\ln (3 \cdot m)$
The pathline is then	$x=3 \cdot e^{0.05 \cdot t^{2}}$
For streamlines (at any time $t)$	$\frac{v}{u}=\frac{d y}{d x}=\frac{b}{a \cdot x \cdot t}$
So, separating variables	$d y=\frac{b}{a \cdot t} \cdot \frac{d x}{x}$
Integrating	$y=\frac{b}{a \cdot t} \cdot \ln (x)+c$

We are interested in instantaneous streamlines at various times that always pass through point (3,1). Using a and b values:

$$
\mathrm{c}=\mathrm{y}-\frac{\mathrm{b}}{\mathrm{a} \cdot \mathrm{t}} \cdot \ln (\mathrm{x})=1-\frac{4}{0.1 \cdot \mathrm{t}} \cdot \ln (3)
$$

The streamline equation is

$$
\mathrm{y}=1+\frac{40}{\mathrm{t}} \cdot \ln \left(\frac{\mathrm{x}}{3}\right)
$$

2.22 Consider the garden hose of Fig. 2.5. Suppose the velocity field is given by $\vec{V}=u_{0} \hat{i}+v_{0} \sin \left[\omega\left(t-x / u_{0}\right)\right] \hat{j}$, where the x direction is horizontal and the origin is at the mean position of the hose, $u_{0}=10 \mathrm{~m} / \mathrm{s}, v_{0}=2 \mathrm{~m} / \mathrm{s}$, and $\omega=5$ cycle/s. Find and plot on one graph the instantaneous streamlines that pass through the origin at $t=0 \mathrm{~s}, 0.05 \mathrm{~s}, 0.1 \mathrm{~s}$, and 0.15 s . Also find and plot on one graph the pathlines of particles that left the origin at the same four times.

Given: Velocity field
Find: Plot streamlines that are at origin at various times and pathlines that left origin at these times

Solution:

For streamlines	$\frac{\mathrm{v}}{\mathrm{u}}=\frac{\mathrm{dy}}{\mathrm{dx}}=\frac{\mathrm{v}_{0} \cdot \sin \left[\omega \cdot\left(\mathrm{t}-\frac{\mathrm{x}}{\mathrm{u}_{0}}\right)\right]}{\mathrm{u}_{0}}$	
So, separating variables ($\mathrm{t}=$ const)	$d y=\frac{\mathrm{v}_{0} \cdot \sin \left[\omega \cdot\left(\mathrm{t}-\frac{\mathrm{x}}{\mathrm{u}_{0}}\right)\right]}{\mathrm{u}_{0}} \cdot d x$	
Integrating	$\mathrm{y}=\frac{\mathrm{v}_{0} \cdot \cos \left[\omega \cdot\left(\mathrm{t}-\frac{\mathrm{x}}{\mathrm{u}_{0}}\right)\right]}{\omega}+\mathrm{c}$	
Using condition $\mathrm{y}=0$ when $\mathrm{x}=0$	$\mathrm{y}=\frac{\mathrm{v}_{0} \cdot\left[\cos \left[\omega \cdot\left(\mathrm{t}-\frac{\mathrm{x}}{\mathrm{u}_{0}}\right)\right]-\cos (\omega \cdot \mathrm{t})\right]}{\omega}$	This gives streamlines $\mathrm{y}(\mathrm{x})$ at each tim
For particle paths, first find $\mathrm{x}(\mathrm{t})$	$\frac{\mathrm{dx}}{\mathrm{dt}}=\mathrm{u}=\mathrm{u}_{0}$	
Separating variables and integrating	$\mathrm{dx}=\mathrm{u}_{0} \cdot \mathrm{dt} \quad$ or	$\mathrm{x}=\mathrm{u}_{0} \cdot \mathrm{t}+\mathrm{c}_{1}$
Using initial condition $\mathrm{x}=0$ at $\mathrm{t}=\tau$	$\mathrm{c}_{1}=-\mathrm{u}_{0} \cdot \tau$	$\mathrm{x}=\mathrm{u}_{0} \cdot(\mathrm{t}-\tau)$
For $\mathrm{y}(\mathrm{t})$ we have	$\frac{\mathrm{dy}}{\mathrm{dt}}=\mathrm{v}=\mathrm{v}_{0} \cdot \sin \left[\omega \cdot\left(\mathrm{t}-\frac{\mathrm{x}}{\mathrm{u}_{0}}\right)\right] \quad \text { so }$	$\frac{d y}{d t}=v=v_{0} \cdot \sin \left[\omega \cdot\left[t-\frac{u_{0} \cdot(t-\tau)}{u_{0}}\right]\right]$
and	$\frac{\mathrm{dy}}{\mathrm{dt}}=\mathrm{v}=\mathrm{v}_{0} \cdot \sin (\omega \cdot \tau)$	
Separating variables and integrating	$\mathrm{dy}=\mathrm{v}_{0} \cdot \sin (\omega \cdot \tau) \cdot \mathrm{dt}$	$y=v_{0} \cdot \sin (\omega \cdot \tau) \cdot t+c_{2}$
Using initial condition $\mathrm{y}=0$ at $\mathrm{t}=\tau$	$\mathrm{c}_{2}=-\mathrm{v}_{0} \cdot \sin (\omega \cdot \tau) \cdot \tau$	$y=v_{0} \cdot \sin (\omega \cdot \tau) \cdot(t-\tau)$

The pathline is then
$\mathrm{x}(\mathrm{t}, \tau)=\mathrm{u}_{0} \cdot(\mathrm{t}-\tau) \quad \mathrm{y}(\mathrm{t}, \tau)=\mathrm{v}_{0} \cdot \sin (\omega \cdot \tau) \cdot(\mathrm{t}-\tau) \quad$ These terms give the path of a particle $(\mathrm{x}(\mathrm{t}), \mathrm{y}(\mathrm{t}))$ that started at $\mathrm{t}=\tau$.

The streamlines are sinusoids; the pathlines are straight (once a water particle is fired it travels in a straight line).
These curves can be plotted in Excel.
2.23 Using the data of Problem 2.22, find and plot the streakline
shape produced after the first second of flow.

Given: Velocity field

Find: Plot streakline for first second of flow

Solution:

Following the discussion leading up to Eq. 2.10, we first find equations for the pathlines in form

$$
\mathrm{x}_{\mathrm{p}}(\mathrm{t})=\mathrm{x}\left(\mathrm{t}, \mathrm{x}_{0}, \mathrm{y}_{0}, \mathrm{t}_{0}\right) \quad \text { and } \quad \mathrm{y}_{\mathrm{p}}(\mathrm{t})=\mathrm{y}\left(\mathrm{t}, \mathrm{x}_{0}, \mathrm{y}_{0}, \mathrm{t}_{0}\right)
$$

where $\mathrm{x}_{0}, \mathrm{y}_{0}$ is the position of the particle at $\mathrm{t}=\mathrm{t}_{0}$, and re-interprete the results as streaklines

$$
\mathrm{x}_{\mathrm{st}}\left(\mathrm{t}_{0}\right)=\mathrm{x}\left(\mathrm{t}, \mathrm{x}_{0}, \mathrm{y}_{0}, \mathrm{t}_{0}\right) \quad \text { and } \quad \mathrm{y}_{\text {st }}\left(\mathrm{t}_{0}\right)=\mathrm{y}\left(\mathrm{t}, \mathrm{x}_{0}, \mathrm{y}_{0}, \mathrm{t}_{0}\right)
$$

which gives the streakline at t, where $\mathrm{x}_{0}, \mathrm{y}_{0}$ is the point at which dye is released (t_{0} is varied from 0 to t)
For particle paths, first find $\mathrm{x}(\mathrm{t}) \quad \frac{\mathrm{dx}}{\mathrm{dt}}=\mathrm{u}=\mathrm{u}_{0}$
Separating variables and integrating

$$
\mathrm{dx}=\mathrm{u}_{0} \cdot \mathrm{dt} \quad \text { or } \quad \mathrm{x}=\mathrm{x}_{0}+\mathrm{u}_{0} \cdot\left(\mathrm{t}-\mathrm{t}_{0}\right)
$$

For $\mathrm{y}(\mathrm{t})$ we have
$\frac{d y}{d t}=v=v_{0} \cdot \sin \left[\omega \cdot\left(t-\frac{x}{u_{0}}\right)\right] \quad$ so $\quad \frac{d y}{d t}=v=v_{0} \cdot \sin \left[\omega \cdot\left[t-\frac{x_{0}+u_{0} \cdot\left(t-t_{0}\right)}{u_{0}}\right]\right]$
and

Separating variables and integrating

$$
\frac{d y}{d t}=v=v_{0} \cdot \sin \left[\omega \cdot\left(t_{0}-\frac{x_{0}}{u_{0}}\right)\right]
$$

$d y=v_{0} \cdot \sin \left[\omega \cdot\left(t_{0}-\frac{x_{0}}{u_{0}}\right)\right] \cdot d t$
$y=y_{0}+v_{0} \cdot \sin \left[\omega \cdot\left(t_{0}-\frac{x_{0}}{u_{0}}\right)\right] \cdot\left(t-t_{0}\right)$
The streakline is then
$\mathrm{x}_{\mathrm{St}}\left(\mathrm{t}_{0}\right)=\mathrm{x}_{0}+\mathrm{u}_{0}\left(\mathrm{t}-\mathrm{t}_{0}\right)$
$y_{\text {St }}\left(t_{0}\right)=y_{0}+v_{0} \cdot \sin \left[\omega \cdot\left(t_{0}-\frac{x_{0}}{u_{0}}\right)\right] \cdot\left(t-t_{0}\right)$
With
$\mathrm{x}_{0}=\mathrm{y}_{0}=0$
$\mathrm{x}_{\mathrm{st}}\left(\mathrm{t}_{0}\right)=\mathrm{u}_{0} \cdot\left(\mathrm{t}-\mathrm{t}_{0}\right)$
$\mathrm{y}_{\mathrm{st}}\left(\mathrm{t}_{0}\right)=\mathrm{v}_{0} \cdot \sin \left[\omega \cdot\left(\mathrm{t}_{0}\right)\right] \cdot\left(\mathrm{t}-\mathrm{t}_{0}\right)$

Streakline for First Second

$x(m)$
This curve can be plotted in Excel. For $\mathrm{t}=1, \mathrm{t}_{0}$ ranges from 0 to t .

Given: Velocity field $\vec{V}=B+(1+A t) i+C y j$ with $A=0.55^{\prime}$, $B=C=Q_{s}{ }^{\prime \prime}$; coordinates measured in meters

Plot: the streak line formed by particles that passed though port $\left(x_{0}, y_{0}, z_{0}\right)=(1,1,0)$ during interval from $E=0$ to $t=3 s$.
Compare with streamlines trough part at $t=$ 0.1 , and 25

Solution
Streakline at $t=3 s$ connects particles that passed trough paint ($1,1,0$) at earlier times $t_{0}=0,1$, and is
For a particle, $u=\frac{d t}{d t}$ and $v=\left.\frac{d y}{l}\right|_{d}$

$$
\begin{align*}
& \text { Hen }=B x(1+A t)=\frac{d t}{d t}, \quad \int_{x_{0}}^{x} \frac{d x}{x}=\int_{t_{0}}^{t} B(1+H t) d T \\
& \therefore \ln \frac{x}{x_{0}}=B\left[t+\frac{1}{2} A t^{2}\right]^{t}=B\left[\left(t-t_{0}\right)+\frac{1}{2} A B\left(t^{2}-t_{0}^{2}\right)\right] \\
& x=t_{0} e^{B\left[\left(t-t_{0}\right)+\frac{1}{2} A B\left(t^{2}-t_{0}^{2}\right)\right.} \\
& \text { Also } v=C_{y}=\left.d y\right|_{d t} ^{t}, \quad \int_{t_{0}}^{t} c d t=\left(y_{0} \frac{d y}{y}, \quad \therefore y=y_{0} e^{c\left(t-t_{0}\right)}\right. \tag{1a}
\end{align*}
$$ The velocity vector is tangent to the streamline $\left.\frac{d y}{d x}\right|_{\text {streanivie }}=\frac{v}{u}=\frac{C y}{B x(1+A t)}$ and $(1+A t) \frac{d y}{y}=\frac{c}{B} \frac{d x}{x}$

Then

$$
(1+A t) \ln y=\frac{c}{B} \ln x+\ln c \text {, and } c_{1} x^{c(B}=y^{(1+A t)}
$$

Streamline trig pant $(1,1, \delta)$ guts $C_{1}=1$. Then on substituting for H, B, and C we dothan

$$
x=y^{(1+0.5 t)}
$$

At $\left.\begin{array}{ll}t=0 & x=y \\ t=1 s & t=y^{\prime \prime s} \\ x=t^{2}\end{array}\right\} \begin{aligned} & \text { These streamlines though }(1, i, 0) \\ & \text { are shown the ph }\end{aligned}$
$t=2 s \quad x=y^{2} \quad \delta$ are shown on the plot
Points on the strenkivie hawk coordinates given by Eggs la ib

$$
x=x_{0} e^{B\left[(t-t)+\frac{1}{2} A B\left(t^{2}-t_{0}^{2}\right)\right.}
$$

$$
y=y_{0} e^{c}
$$

Substituting for Cor $^{A}, B$, and C

$$
x=t_{0} e^{[t u t i n g} \text { for }(t) \cdot \text { and } c \cdot 0.25\left(t^{2}-t_{0}^{2}\right) \quad y=y_{0} e^{\left(t-t_{0}\right)}
$$

The streakinie trough $\left(x_{0}, y_{0}\right)=(1, i)$ at tire $t=3 s$ is. obtained by substinking to $=1, y_{0}=1, t=3 s$ and varying to in these equations.

$$
\begin{aligned}
& \text { Thus, } x=e^{\left[\left(3-t_{0}\right)+0.25\left(a-t_{0}^{2}\right)\right.} \\
& \qquad y=e^{\left(3-t_{0}\right)} \\
& \text { give paris (obtained by varying to on the streoulire } \\
& \text { through. }(1,1,0) \text { at } t=3 s \text {. }
\end{aligned}
$$

Given: Velocity field $\left.\vec{V}=a x(1+b t) i+c y^{n}\right)$, where $a=c=1 s^{-1}$, $b=0.2 \overbrace{}^{\prime}$, and coordinates are measured in meters.
Pot: the streakline that passes through the pant $\left(t_{0}, y_{0}\right)=(1,1)$ during the interval $0 \leq t \leq 3 s$.
Compare with the streamlines plotted through the same point at too, 1, and ins
Solution:
Streakline at $t=3 s$ connects particles that passed thong? pant (to, yo at earlier tries $r=0,1,2$, and zs.
For a particle, $u=d x l_{a t}$ and $v=d y l d t$

$$
\begin{aligned}
& \text { Then } u=a x(1+b t)=\frac{d t}{d t} \text { and } \int_{x_{0}}^{x} \frac{d x}{x}=\int_{r}^{t} a(1+b t) d t \\
& \ln \frac{x}{x_{0}}=a\left(t+\frac{b}{2} t^{2}\right]_{r}^{t}=a\left[(t-r)+\frac{b}{2}\left(t^{2}-r^{2}\right)\right] \\
& x=x_{0} e^{a\left[(t-)^{r}+\frac{b}{2}\left(t^{2}-r^{2}\right)\right]} \\
& \text { Also } v=\frac{d y}{a t}=c y, \int_{y_{0}}^{y} \frac{d y}{y}=\int_{r}^{t} d t \quad \ln \frac{y}{y_{0}}=c(t-r), y=y_{0} e^{c(t-r)}
\end{aligned}
$$

Substituting for a, b, c, tho and yo, gives
$\left[t-1,-0 .\left(t^{2}-r^{2}\right)\right.$

$$
x=e^{[t-1)+0 .\left(t^{2}-t^{2}\right)}, y=e^{(t-1)}, e^{(x, y)} \text { streakline }
$$

The streaMline may be plotted by substituting values for r in the range $0 S_{r} \leqslant 3 s$ as shown below
The streamline is found (at given) from $\left.\left.d y\right|_{d x}\right)_{s}=\frac{v}{u}$ Tues

$$
\begin{aligned}
& \left.d y\right|_{d x}=\frac{c y}{a-(1+b t)} \text { and } \int_{y_{0}}^{y} \frac{d y}{y}=\int_{-\frac{x}{a(1+b t)}} \frac{d x}{x} \\
& \ln \frac{y}{y_{0}}=\frac{c}{a(1+b t)} \ln \frac{1}{x}_{0} \quad \text { or } y=y_{0}\left[\frac{x}{x}\right]^{c / a(1+b t)}
\end{aligned}
$$

Substituting values for to, yo, a, b, c, then

$$
y=x^{1 /(1+0.2 t)} \text { or } x=y^{(1+0.2 t)} \text { streamline }
$$

At $t=0, \quad x=y$

$$
\begin{array}{ll}
t=1 s, & x=y_{1,2} \\
t=2 s, & x=y^{1.4}
\end{array}
$$

Given: Velocity field $\vec{V}=a+t i+b j$, where $a=0.25^{-1}$ $b=1 \mathrm{mts}$, and coordinates are in meters.

Plot: the pathline (during the interval $0 \leq t \leq 35$) of the particle that passed trough the point $\left(x_{0}, y_{0}\right)=$ $(1,2)$ at time $t=0$
Compare with the streakline through the same point at the instant $t=3 \mathrm{~s}$.
Solution:
The pathline and streakline are based on parametric equations for a particle.

For a particle $u=d x / d t$ and $v=d y / d t$
then

$$
\begin{aligned}
& u=\frac{d y}{d t}=a x t, \int_{t_{0}}^{t} \frac{d x}{x}=\int_{t_{0}}^{t} a t d t, \ln \frac{x}{x_{0}}=\frac{1}{2} a\left(t^{2}-t_{0}^{2}\right) \\
& x=x_{0} e^{\frac{1}{2} a\left(t^{2}-t_{0}^{2}\right)^{2}} y
\end{aligned}
$$

Also $v=\left.d y\right|_{d t}=b, \int_{y_{0}}^{y} d y=\left(b_{t_{0}}^{t} d t, y_{0}=y_{0}+b\left(t-t_{0}\right)\right.$
In the above equations, tho, yo are coordinates of partide at to
(a) The pattline is obtained by following the particle that passed through the pant $\left.\hat{c}_{0}, y_{0}\right)=\left(1\right.$, a) at time $t_{0}=0$ The $\left.\begin{array}{rl}x & =x_{0} e^{\frac{1}{2} a t^{2}}\end{array}=e^{0.1 t^{2}}\right\}$ \qquad
The patiline may be plotted by varying t $(0 \leq t \leq 3 s)$ as
shown below
bo The streakline is dolained by locating (and connecting) at time $t=3 s$, all the particles that passed through the part ($\left.x_{0}, y_{0}\right)=(1,2)$ al some earlier time to the

$$
\left.\begin{array}{l}
x=t_{0} e^{\frac{1}{2} a\left(a-t_{0}^{2}\right)}=e^{0.1\left(a-t_{0}^{2}\right)} \\
y=y_{0}+b\left(t-t_{0}\right)=2+\left(3-t_{0}\right)=5-t_{0}
\end{array}\right\} \text { - (ty) streakline }
$$

The streakiline may be plotted by varying to $\left(0 \leqslant t_{0} \leqslant 35\right)$ as shown below.

2.27 Tiny hydrogen bubbles are being used as tracers to visual-
ize a flow. All the bubbles are generated at the origin $(x=0$,
$y=0$). The velocity field is unsteady and obeys the equations:

$$
\begin{array}{lll}
u=1 \mathrm{~m} / \mathrm{s} & v=2 \mathrm{~m} / \mathrm{s} & 0 \leq t<2 \mathrm{~s} \\
u=0 & v=-1 \mathrm{~m} / \mathrm{s} & 0 \leq t \leq 4 \mathrm{~s}
\end{array}
$$

Plot the pathlines of bubbles that leave the origin at $t=0,1,2,3$, and 4 s . Mark the locations of these five bubbles at $t=4 \mathrm{~s}$. Use a dashed line to indicate the position of a streakline at $t=4 \mathrm{~s}$.

Solution

The particle starting at $\mathrm{t}=3 \mathrm{~s}$ follows the particle starting at $\mathrm{t}=2 \mathrm{~s}$;
The particle starting at $\mathrm{t}=4 \mathrm{~s}$ doesn't move!

Pathlines	Starting at $\mathbf{t}=0$		Starting at $\mathbf{t}=1 \mathrm{~s}$		Starting at $\mathrm{t}=2 \mathrm{~s}$		Streakline at $\mathrm{t}=$	
t	\mathbf{x}	y	X	y	X	y	\mathbf{x}	y
0.00	0.00	0.00					2.00	2.00
0.20	0.20	0.40					1.80	1.60
0.40	0.40	0.80					1.60	1.20
0.60	0.60	1.20					1.40	0.80
0.80	0.80	1.60					1.20	0.40
1.00	1.00	2.00	0.00	0.00			1.00	0.00
1.20	1.20	2.40	0.20	0.40			0.80	-0.40
1.40	1.40	2.80	0.40	0.80			0.60	-0.80
1.60	1.60	3.20	0.60	1.20			0.40	-1.20
1.80	1.80	3.60	0.80	1.60			0.20	-1.60
2.00	2.00	4.00	1.00	2.00	0.00	0.00	0.00	-2.00
2.20	2.00	3.80	1.00	1.80	0.00	-0.20	0.00	-1.80
2.40	2.00	3.60	1.00	1.60	0.00	-0.40	0.00	-1.60
2.60	2.00	3.40	1.00	1.40	0.00	-0.60	0.00	-1.40
2.80	2.00	3.20	1.00	1.20	0.00	-0.80	0.00	-1.20
3.00	2.00	3.00	1.00	1.00	0.00	-1.00	0.00	-1.00
3.20	2.00	2.80	1.00	0.80	0.00	-1.20	0.00	-0.80
3.40	2.00	2.60	1.00	0.60	0.00	-1.40	0.00	-0.60
3.60	2.00	2.40	1.00	0.40	0.00	-1.60	0.00	-0.40
3.80	2.00	2.20	1.00	0.20	0.00	-1.80	0.00	-0.20
4.00	2.00	2.00	1.00	0.00	0.00	-2.00	0.00	0.00

Problem 2.28

2.28 A flow is described by velocity field, $\vec{V}=a y^{2} \hat{i}+b \hat{j}$, where $a=1 \mathrm{~m}^{-1} \mathrm{~s}^{-1}$ and $b=2 \mathrm{~m} / \mathrm{s}$. Coordinates are measured in meters. Obtain the equation for the streamline passing through point $(6,6)$. At $t=1 \mathrm{~s}$, what are the coordinates of the particle that passed through point $(1,4)$ at $t=0$? At $t=3 \mathrm{~s}$, what are the coordinates of the particle that passed through point $(-3,0) 2 \mathrm{~s}$ earlier? Show that pathlines, streamlines, and streaklines for this flow coincide.

Given: 2D velocity field

Find: \quad Streamlines passing through (6,6); Coordinates of particle starting at (1,4); that pathlines, streamlines and streaklines coincide

Solution:

For streamlines

$$
\frac{v}{u}=\frac{d y}{d x}=\frac{b}{a \cdot y^{2}} \quad \text { or } \quad \int a \cdot y^{2} d y=\int b d x
$$

Integrating

$$
\frac{a \cdot y^{3}}{3}=b \cdot x+C
$$

For the streamline through point $(6,6)$

$$
C=60 \text { and }
$$

$$
y^{3}=6 \cdot x+180
$$

For particle that passed through $(1,4)$ at $t=0$

$$
\mathrm{u}=\frac{\mathrm{dx}}{\mathrm{dt}}=\mathrm{a} \cdot \mathrm{y}^{2} \quad \int 1 \mathrm{dx}=\mathrm{x}-\mathrm{x}_{0}=\int \mathrm{a} \cdot \mathrm{y}^{2} \mathrm{dt} \quad \text { but we need } \mathrm{y}(\mathrm{t})
$$

$$
\mathrm{v}=\frac{\mathrm{dy}}{\mathrm{dt}}=\mathrm{b} \quad \int 1 \mathrm{dy}=\int \mathrm{bdt} \quad \mathrm{y}=\mathrm{y}_{0}+\mathrm{b} \cdot \mathrm{t}=\mathrm{y}_{0}+2 \cdot \mathrm{t}
$$

Then

$$
x-x_{0}=\int_{0}^{t} a \cdot\left(y_{0}+b \cdot t\right)^{2} d t \quad x=x_{0}+a \cdot\left(y_{0}^{2} \cdot t+b \cdot y_{0} \cdot t^{2}+\frac{b^{2} \cdot t^{3}}{3}\right)
$$

Hence, with $\quad x_{0}=1 \quad y_{0}=4$
$\mathrm{x}=1+16 \cdot \mathrm{t}+8 \cdot \mathrm{t}^{2}+\frac{4}{3} \cdot \mathrm{t}^{3}$
At $t=1 \mathrm{~s}$
$x=26.3 \cdot m$
$y=4+2 \cdot t$
$y=6 \cdot m$

For particle that passed through $(-3,0)$ at $t=1 \quad \int 1 d y=\int b d t \quad y=y_{0}+b \cdot\left(t-t_{0}\right)$

$$
x-x_{0}=\int_{t_{0}}^{t} a \cdot\left(y_{0}+b \cdot t\right)^{2} d t
$$

$$
x=x_{0}+a \cdot\left[y_{0}^{2} \cdot\left(t-t_{0}\right)+b \cdot y_{0} \cdot\left(t^{2}-t_{0}^{2}\right)+\frac{b^{2}}{3} \cdot\left(t^{3}-t_{0}^{3}\right)\right]
$$

Hence, with $x_{0}=-3, y_{0}=0$ at $t_{0}=1$

$$
x=-3+\frac{4}{3} \cdot\left(t^{3}-1\right)=\frac{1}{3} \cdot\left(4 \cdot t^{3}-13\right) \quad y=2 \cdot(t-1)
$$

Evaluating at $\mathrm{t}=3$

$$
\mathrm{x}=31.7 \cdot \mathrm{~m}
$$

$$
\mathrm{y}=4 \cdot \mathrm{~m}
$$

This is a steady flow, so pathlines, streamlines and streaklines always coincide

Given: Velocity field in ry plane, $\vec{v}=a \hat{\imath}+b x \hat{\jmath}$, where $a=2 \mathrm{~m} / \mathrm{s}$ and $b=1 \mathrm{~s}^{-1}$

Find: (a) Equation for strearrline through $(x, y)=(2,5)$.
(b) At $t=25$, coordinates of particle $(0,4)$ at $t=0$.
(c) At $t=35$, coordinates of particle $(1,4,25)$ at $t=1 \mathrm{~s}$.
(d) compare pathline, streamline, streakline.

Solution: For a streamline $\frac{d x}{u}=\frac{d y}{v}$
For $\vec{V}=a \hat{\imath}+b x \hat{\jmath}, u=a$ and $v=b x$, so $\frac{d x}{a}=\frac{d y}{b x}$ or

$$
x d x=\frac{a}{b} d y
$$

Integrating

$$
\frac{x^{2}}{2}=\frac{a}{b} y+c^{\prime} \text { or } y=\frac{b}{2 a} x^{2}+c
$$

Evaluating c at $(x, y)=(2,5)$,

$$
c=y-\frac{6}{2 a} x^{2}=5 m-\frac{1}{2} \times \frac{1}{5} \times \frac{5}{2 m}(2 m)^{2}=4 m
$$

Streamline through $(x, y)=(2,5)$ is $y=\frac{x^{2}}{4}+4$
To beat particles, derive parametric equations

$$
\begin{aligned}
& u_{p}=\frac{d x}{d t}=a, \quad d x=a d t, \quad a n d x-x_{0}=a\left(t-t_{0}\right) \\
& v_{p}=\frac{d y}{d t}=b x, \quad d y=b x d t=b\left(x_{0}+a t-a t_{0}\right) \\
& y-y_{0}=b x_{0}\left(t-t_{0}\right)+\frac{a}{2}\left(t^{2}-t_{0}^{2}\right)-a t_{0}\left(t-t_{0}\right)
\end{aligned}
$$

For the partick at $\left(x_{0}, y_{0}\right)=(0,4)$ at $t=0$,

$$
\begin{array}{ll}
x=0+a t & \text { so at } t=2 s, \quad x=2 \frac{m}{s} x, 2 s=4 m \\
y=4+\frac{a t^{2}}{2} & \text { so at } t=2 s, y=4+\frac{1}{2} \times \frac{2 m}{5} \times(2)^{2} \\
y=8 m
\end{array}
$$

Problem 2.29
For the particle at $(x, y)=(1,4.25)$ at $t=15$,

$$
\begin{aligned}
x & =x_{0}+a\left(t-t_{0}\right)=1+a(t-1) \\
& \text { so at } t=33, \quad x=1+2 \frac{m}{s}(3-1) s=5 \mathrm{~m} \\
y= & y_{0}+b x_{0}\left(t-t_{0}\right)+\frac{a}{2}\left(t^{2}-t_{0}^{2}\right)-a t_{0}\left(t-t_{0}\right) \\
= & 4.25+\frac{1}{s} \times 1 m_{x}(t-1)+\frac{1}{2} \times 2 \frac{m}{s}\left(t^{2}-1\right)-2 \frac{m}{s} \times 1 \mathrm{~s}(t-1)
\end{aligned}
$$

so at $t=3 \mathrm{~s}, y=4.25+2+8-4=10.25 \mathrm{~m}$

All these points lie on the same stream line, as shown below:

For this steady flow, streamlines, pathlines, and streaklinis coincide, as expected.

Given: Velocity field $\vec{V}=a y \hat{\imath}+b t \hat{\jmath}$, where $a=1 s^{-1}, b=0.5 \mathrm{~m} / \mathrm{s}^{2}, t$ in s.
Find: (a) At $t=2 s$, particle that passed $(1,2)$ at $t=0 \mathrm{~s}$
(b) At $t=33$, partick that passed $(1,2)$ at $t=2 s$
(c) Plot pathline ard streakline through (1, 2); compare with streamlines at $t=0,1,2 \mathrm{~s}$.

Solution: Pathline and streakline are based on parametric equations for a particle. Thus

$$
v=\frac{d y}{d t}=b t \text {, so } \quad d y=b t d t \text {, and } y-y_{0}=\frac{b}{2}\left(t^{2}-t_{0}^{2}\right)
$$

and $u=\frac{d x}{d t}=a y=a\left[y+\frac{b}{z}\left(t^{2}-t_{0}^{2}\right)\right]$
so

$$
x]_{x_{0}}^{x}=a\left[y_{0} t+\frac{b}{2}\left(\frac{t^{3}}{3}-t_{0}^{2} t\right)\right]_{t_{0}}^{t} ; x=x_{0}+a y_{0}\left(t-t_{0}\right)+\frac{a b}{2}\left(\frac{t^{3}-t_{0}^{3}}{3}+t_{0}^{2}\left(t_{0}-t\right)\right)
$$

where x_{0} to are coordinates of particle at to.
For $(a), t_{0}=0$, and $\left(x_{0}, y_{0}\right)=(1,2)$. Thus at $t=2 s, y=y_{0}+\frac{b t^{2}}{2}$

$$
\begin{array}{ll}
y=2 m+\frac{1}{2} \times 0.5 \frac{m}{s^{2}} \times(2)^{2} s^{2}=3.00 m \\
x=1 m+\frac{1}{s} \times 2 m(2-0) s+\frac{1}{2} \times \frac{1}{s} \times 0.5 \frac{m}{s^{2}}\left(\frac{(2)^{3}-0}{3}+0\right) s^{3}=5.67 m \quad t_{0}=0 \quad \text { (a) } \quad \text { At } t=2 s,(x, 4)=
\end{array} \quad(5,67,3.00) \mathrm{m}
$$

For $(b), t_{0}=2 s$, and $\left(x_{0}, y_{0}\right)=(1,2)$. Thus at $t=3 s$, the partick is at

$$
\begin{aligned}
& y(3)=2 m+\frac{1}{2} \times 0.5 \frac{m}{s^{2}}\left[(3)^{2}-(2)^{2}\right] s^{2}=3.25 m \quad \text { At } t=33 \\
& x(3)=1 m+\frac{1}{s} \times 2 m(3-2) s+\frac{1}{2} \times \frac{1}{s} \times 0.5 \frac{m}{s^{2}}\left(\frac{(3)^{3}-(2)^{3}}{3}+(2)^{2}(2-3)\right) s^{3}=3.58 \mathrm{~m}
\end{aligned}
$$

$$
\text { At } t=33, t_{0}=23(6)
$$

$$
(x, y)=
$$

For (c), the streakline mae, be plotted at any t by valuing to, as show in on the next page.
The streamline is found $\left(a+\right.$ given t) from $\frac{d x}{u}=\frac{d y}{2}$
Substituting $u=a y$ and $v=b t, \quad d x=\frac{a y}{b t} d y$ or $y^{2}=\frac{2 b t}{a} x+c$
Thus $c=y_{0}^{2}-2 b t x$
Thus $c=y_{0}{ }^{2}-\frac{2 b t}{a} x_{0}$
For $t=0, y^{2}=c$; at $\left(x_{0}, y_{0}\right)=(1,2)$, then $c=4$

$$
\begin{align*}
& t=1, y^{2}=\frac{2 b}{a} x+c ; \text { at }\left(x_{0}, y_{0}\right)=(1,2) \text {, then } c=3 \tag{c}\\
& t=2, y^{2}=\frac{4 b}{a} x+c ; \text { at }(x, y)=(1,2), c=2 \text {; for } t=3 s, c=1
\end{align*}
$$

Recall $\vec{v}=a y \hat{\imath}+b t \hat{\jmath}$, where $a=1 s^{-1}, b=0.5 \mathrm{~m} / \mathrm{s}^{2},\left(x_{0}, y_{0}\right)=(1,2) \mathrm{m}$.
Part (a): Pathime of particle located at $\left(x_{0}, y_{0}\right)$ at $t_{0}=0 \mathrm{~s}$:

$\mathrm{t}_{0}(\mathrm{~s})$	$\mathrm{t}(\mathrm{s})$	$x(\mathrm{~m})$	$\mathrm{y}(\mathrm{m})$
0	0	1.00	2.00
0	1	3.08	2.25
0	2	5.67	3.00
0	3	9.25	4.25

Part (b): Pathline of particle located at $\left(x_{0}, y_{0}\right)$ at $t_{0}=2 s$:

$t_{0}(\mathrm{~s})$	$t(\mathrm{~s})$	$x(\mathrm{~m})$	$y(\mathrm{~m})$
2	2	1.00	2.00
2	3	3.58	3.25
2	4	7.67	5.00

Part (c): streamlines through point $\left(x_{0}, y_{0}\right)$ at $t=0,1,2$, and 35 :

	$\mathrm{t}(\mathrm{s})$	0	1	2	3
	$\mathrm{c}=$	4.0	3.0	2.0	1.0
$\mathrm{t}_{0}(\mathrm{~s})$	$\mathrm{x}(\mathrm{m})$	$\mathrm{y}(\mathrm{m})$	$\mathrm{y}(\mathrm{m})$	$\mathrm{y}(\mathrm{m})$	$\mathrm{y}(\mathrm{m})$
0	1	2.00	2.00	2.00	2.00
0	2	2.00	2.24	2.45	2.65
0	3	2.00	2.45	2.83	3.16
0	4	2.00	2.65	3.16	3.61
0	5	2.00	2.83	3.46	4.00
0	6	2.00	3.00	3.74	4.36
0	7	2.00	3.16	4.00	4.69
0	8	2.00	3.32	4.24	5.00
0	9	2.00	3.46	4.47	5.29
0	10	2.00	3.61	4.69	5.57

Streakline at $t=33$ of particles that passed thrue point (x_{0}, y_{0}):

$\mathrm{t}_{0}(\mathrm{~s})$	$\mathrm{t}(\mathrm{s})$	$\mathrm{x}(\mathrm{m})$	$\mathrm{y}(\mathrm{m})$
0	3	9.25	4.25
1	3	6.67	4.00
2	3	3.58	3.25
3	3	1.00	2.00

Given: Velocity field $\vec{V}=a t i+b j$, where $a=0.4 \mathrm{~m} / \mathrm{s}^{2}, b=2 \mathrm{mls}$, and coordinates are measured in meters

Find: (a) At $t=2 s$, coordinates of particle that passed trough, $\left(x_{0}, y_{0}\right)=(2,1)$ at $t=0$
b) At $t=3 s^{\text {, coordinates of the particle that passed }}$ trough' (ψ_{0}, y_{0} at $t=2 s$
Plot: the patiline and streakline through paint (2,1); compare with the streamlines through he same point at $t=0,1,25$
Solution:
The pathline and streakine are based on parametric equations for a particle.

For a particle $u=d x l_{d t}$ and $v=d_{y} l_{d t}$
Rus

$$
\begin{align*}
& u=\frac{d x}{d t}=a t,\left(\begin{array}{l}
d x=\left\{\begin{array}{l}
t \\
d
\end{array} t,\right. \\
t_{0}
\end{array}, x=t_{0}+\frac{1}{2} a\left(t^{2}-t_{0}^{2}\right)\right. \tag{1a}\\
& v=\frac{d y}{d t}=b, \quad\binom{\frac{y}{t}}{d y}\left(b_{0} d t, y=y_{0}+b\left(t-t_{0}\right)\right. \tag{b}
\end{align*}
$$

In the above equations, to, yo are coordinates of the particle at time to
(a) The patine is obtained by following the particle that passed thong the part $\left.f_{0}, y_{0}\right)=(2,1)$ at time to $=0$ Thus $\left.\begin{array}{rl}x & =v_{0}+\frac{1}{2} a t^{2}=2+0.2 t^{2} \\ y & =y_{0}+b t=1+2 t\end{array}\right\}$ (x, y) parting
fit $t=2 s$, particle is at $(2, y)=(2.8,5) \mathrm{m}$
the patiline may be plotted by varying t $(0 \leqslant t \leqslant 3 s)$
as shown betas
b) The streakline is obtained by locating (and connecting) at time $t=35$, all the particles Fat passed trough the pain $\left(y_{0} y_{0}\right)=(2,1)$ al some earlier time to The $\left.\begin{array}{rl}x=t_{0}+\frac{1}{2} a\left(a-t_{0}^{2}\right) & =2+0.2\left(a-t_{0}^{2}\right) \\ y=y_{0}+b\left(t-t_{0}\right) & =1+2\left(3-t_{0}\right)\end{array}\right\}(t, y)$ streathens
At $t=2 \mathrm{~s}$, particle is at $(x, y)=(3,3)$ \qquad the streaking may be plated by varying to (otto 535) as shown below.
The streamline is found (at guvent) from $\left.\left.d y\right|_{d t}\right)_{s}=\frac{v}{u}$

$$
\text { Ter, }\left.d y\right|_{d x}=\frac{b}{a t}, \int_{y_{0}}^{y} d y=\int_{x_{0}}^{x} \frac{b}{a t} d x, y-y_{0}=\frac{b}{a t}\left(x-x_{0}\right)
$$

Streanivie tang pant (2,i) gives $y-1=\frac{b}{a t}(x-2)$

$$
\begin{aligned}
& y=1+\frac{5(x-2)}{t} \text { or } x \\
& \text { at } t=0, \quad x=2 \\
& t=1, \quad y=5 x-9 \\
& t=2, \quad y=2 \cdot 5+-4
\end{aligned}
$$

Problem 2.32
Given: Variation of air viscosity with temperature (absolute)

$$
\begin{aligned}
& \mu=\frac{b T^{1 / 2}}{1+s / T} \\
& \text { where } b=1.458 \times 10^{-6} \mathrm{~kg} / \mathrm{m} . \mathrm{s} \cdot \mathrm{~K}^{1 / 2}, s=110.4 \mathrm{~K}
\end{aligned}
$$

Find: Equation for calculating air viscosity in British Gravitational writs as a function of absdute temperature in degrees Rankine. Check result using data from Appendix A
Solution:
Convert constants.

$$
\begin{aligned}
& b=2.27 \times 10^{-8} 1 b t . s / f t^{2} \cdot \circ R^{l}{ }^{k} \\
& s=110.4 k \times \frac{90 R}{5 k}=198.7^{\circ} R
\end{aligned}
$$

Then in British Gravitational Units

$$
\mu=\frac{2.27+10^{-8} T^{1 / 2}}{1+198.2 T}
$$

where units of $\operatorname{are}^{\circ} R ; \mu$ is in ibfis/fte
Evaluate at $T=80^{\circ} \mathrm{F}\left(5397^{\circ} \mathrm{R}\right)$

$$
\mu=\frac{2.27 \times 10^{-8} \times(539.2)^{112}}{1+198.7 / 539.7}=3.855 \times 10^{-2} \text { ibf.s } / \mathrm{ft}^{2}
$$

From Table A.9 (Appendix A) at $T=80^{\circ} \mathrm{F}$

$$
\mu=3.86 \times 10^{-2} 110 f . s / \mathrm{ft}^{2} \quad V \text { check. }
$$

Problem 2.33
Given: Variation of air viscosity with temperature (absolute) is

$$
\mu=\frac{b T^{-1}}{1+s K}
$$

where $b=1.458 \times 10^{-6} \frac{\mathrm{~kg}}{\mathrm{~m} \cdot \mathrm{~s} \cdot \mathrm{~K}^{1 / 2}}$

$$
s=110.4 \mathrm{k}
$$

Find: Equation for kinematic viscosity of air (in SI units) as a function of temperature al atmospheric pressure. Assure ideal gas behavior. Check result using data from Appendix A .
Solution:
For an ideal gas, $P=p R T$. From Table Alt, $R=286.9$ An $/ \mathrm{kg} . \mathrm{K}$
The kinematic viscosity, $\bar{\exists} \equiv \mu / \rho$

$$
\therefore J=\frac{\mu}{p}=\frac{\mu R T}{p}=\frac{R T}{-P} \frac{b T^{1 / 2}}{1+s / T}=\frac{R b}{p} \frac{T^{3 / 2}}{1+s k}=\frac{b^{\prime} T^{3 / 2}}{1+s / T}
$$

$$
b^{\prime}=4.129 \times 10^{-9} \quad \mathrm{~m}^{2} / \mathrm{s} \cdot \mathrm{k}^{3 / 2}
$$

$$
\therefore V=\frac{b^{\prime} T^{3 / 2}}{1+s / T}
$$

where $b^{\prime}=4.129 \times 10^{-9} \mathrm{~m}^{2} / \mathrm{s} \cdot \mathrm{k}^{3 / 2}, s=110.4 \mathrm{k}$. units of T are $(k): V$ is in $\mathrm{m}^{2} / \mathrm{s}$
Evaluate at $T=20^{\circ} \mathrm{C}=293.2 \mathrm{~K}$

$$
V=\frac{4.129 \times 10^{-9}(293.2)^{3 / 2}}{1+110.4 / 293.2}=1.500 \times 10^{-5} \mathrm{~m}^{2} l_{\mathrm{s}}
$$

From. Table Avo (Appendix A) at $T=20^{\circ} \mathrm{C}$

$$
J=1.51+10^{-5} \mathrm{~m}^{2} l_{\mathrm{s}} \quad \text { 人 Check }
$$

2.34 Some experimental data for the viscosity of helium at 1 atm are

$\boldsymbol{T},{ }^{\circ} \mathbf{C}$	0	100	200	300	400
$\mu, \mathrm{~N} \cdot \mathrm{~s} / \mathrm{m}^{2}\left(\times \mathbf{1 0}^{\mathbf{5}}\right)$	1.86	2.31	2.72	3.11	3.46

Using the approach described in Appendix A-3, correlate these data to the empirical Sutherland equation

$$
\mu=\frac{b T^{1 / 2}}{1+S / T}
$$

(where T is in kelvin) and obtain values for constants b and S.

Given: Viscosity data

Find: Obtain values for coefficients in Sutherland equation

Solution:

Data:

Using procedure of Appendix A.3:

$\mathbf{T}\left({ }^{\circ} \mathbf{C}\right)$	$\mathbf{T}(\mathbf{K})$	$\mu\left(\mathbf{x 1 0} \mathbf{}^{\mathbf{5}}\right)$
0	273	$1.86 \mathrm{E}-05$
100	373	$2.31 \mathrm{E}-05$
200	473	$2.72 \mathrm{E}-05$
300	573	$3.11 \mathrm{E}-05$
400	673	$3.46 \mathrm{E}-05$

$\mathbf{T}(\mathbf{K})$	$\mathbf{T}^{3 / 2} / \boldsymbol{\mu}$
273	$2.43 \mathrm{E}+08$
373	$3.12 \mathrm{E}+08$
473	$3.78 \mathrm{E}+08$
573	$4.41 \mathrm{E}+08$
673	$5.05 \mathrm{E}+08$

The equation to solve for coefficients
S and b is

$$
\frac{T^{3 / 2}}{\mu}=\left(\frac{1}{b}\right) T+\frac{S}{b}
$$

From the built-in Excel
Linear Regression functions:

$$
\begin{aligned}
\text { Slope } & =6.534 \mathrm{E}+05 \\
\text { Intercept } & =6.660 \mathrm{E}+07 \\
\mathrm{R}^{2} & =0.9996
\end{aligned}
$$

2.35 The velocity distribution for laminar flow between parallel plates is given by

$$
\frac{u}{u_{\max }}=1-\left(\frac{2 y}{h}\right)^{2}
$$

where h is the distance separating the plates and the origin is placed midway between the plates. Consider a flow of water at $15^{\circ} \mathrm{C}$, with $u_{\max }=0.10 \mathrm{~m} / \mathrm{s}$ and $h=0.1 \mathrm{~mm}$. Calculate the shear stress on the upper plate and give its direction. Sketch the variation of shear stress across the channel.

Given: Velocity distribution between flat plates
Find: Shear stress on upper plate; Sketch stress distribution

Solution:

Basic equation $\quad \tau_{\mathrm{yx}}=\mu \cdot \frac{\mathrm{du}}{\mathrm{dy}}$

$$
\frac{\mathrm{du}}{\mathrm{dy}}=\frac{\mathrm{d}}{\mathrm{dy}} \mathrm{u}_{\max }\left[1-\left(\frac{2 \cdot \mathrm{y}}{\mathrm{~h}}\right)^{2}\right]=\mathrm{u}_{\max }\left(-\frac{4}{\mathrm{~h}^{2}}\right) \cdot 2 \cdot \mathrm{y}=-\frac{8 \cdot \mathrm{u}_{\max } \cdot \mathrm{y}}{\mathrm{~h}^{2}}
$$

$$
\tau_{\mathrm{yx}}=-\frac{8 \cdot \mu \cdot \mathrm{u}_{\max } \cdot \mathrm{y}}{\mathrm{~h}^{2}}
$$

At the upper surface $\quad \mathrm{y}=\frac{\mathrm{h}}{2} \quad$ and $\quad \mathrm{h}=0.1 \cdot \mathrm{~mm} \quad \mathrm{u}_{\max }=0.1 \cdot \frac{\mathrm{~m}}{\mathrm{~s}} \quad \mu=1.14 \times 10^{-3} \cdot \frac{\mathrm{~N} \cdot \mathrm{~s}}{\mathrm{~m}^{2}}$
Hence $\quad \tau_{\mathrm{yx}}=-8 \times 1.14 \times 10^{-3} \cdot \frac{\mathrm{~N} \cdot \mathrm{~s}}{\mathrm{~m}^{2}} \times 0.1 \cdot \frac{\mathrm{~m}}{\mathrm{~s}} \times \frac{0.1}{2} \cdot \mathrm{~mm} \times \frac{1 \cdot \mathrm{~m}}{1000 \cdot \mathrm{~mm}} \times\left(\frac{1}{0.1 \cdot \mathrm{~mm}} \times \frac{1000 \cdot \mathrm{~mm}}{1 \cdot \mathrm{~m}}\right)^{2}$

$$
\tau_{\mathrm{yx}}=-4.56 \cdot \frac{\mathrm{~N}}{\mathrm{~m}^{2}}
$$

The upper plate is a minus y surface. Since $\tau_{\mathrm{yx}}<0$, the shear stress on the upper plate must act in the plus x direction.
The shear stress varies linearly with y $\quad \tau_{y x}(y)=-\left(\frac{8 \cdot \mu \cdot u_{\max }}{h^{2}}\right) \cdot y$

Shear Stress (Pa)
2.36 The velocity distribution for laminar flow between parallel plates is given by

$$
\frac{u}{u_{\max }}=1-\left(\frac{2 y}{h}\right)^{2}
$$

where h is the distance separating the plates and the origin is placed midway between the plates. Consider flow of water at $15^{\circ} \mathrm{C}$ with maximum speed of $0.05 \mathrm{~m} / \mathrm{s}$ and $h=0.1 \mathrm{~mm}$. Calculate the force on a $1 \mathrm{~m}^{2}$ section of the lower plate and give its direction.

Given: Velocity distribution between parallel plates
Find: Force on lower plate

Solution:

Basic equations

$$
\begin{aligned}
& \mathrm{F}=\tau_{\mathrm{yx}} \cdot \mathrm{~A} \\
& \frac{\mathrm{du}}{\mathrm{dy}}=\frac{\mathrm{d}}{\mathrm{dy}} \mathrm{u}_{\max }\left[1-\left(\frac{2 \cdot \mathrm{y}}{\mathrm{~h}}\right)^{2}\right]={u_{\mathrm{mx}}}^{2} \cdot \mu \cdot \frac{\mathrm{du}}{\mathrm{dy}} \\
& \left.\tau_{\mathrm{yx}}=-\frac{8 \cdot \mu \cdot \mathrm{u}_{\max } \mathrm{y}}{\mathrm{~h}^{2}} \quad-\frac{4}{\mathrm{~h}^{2}}\right) \cdot 2 \cdot \mathrm{y}=-\frac{8 \cdot \mathrm{u}_{\max } \cdot \mathrm{y}}{\mathrm{~h}^{2}} \\
& \text { and } \quad \mathrm{F}=-\frac{8 \cdot \mathrm{~A} \cdot \mu \cdot \mathrm{u}_{\max } \mathrm{y}}{\mathrm{~h}^{2}}
\end{aligned}
$$

so

At the lower surface

$$
\mathrm{y}=-\frac{\mathrm{h}}{2} \quad \text { and } \quad \mathrm{h}=0.1 \cdot \mathrm{~mm} \quad \mathrm{~A}=1 \cdot \mathrm{~m}^{2}
$$

$$
\mathrm{u}_{\max }=0.05 \cdot \frac{\mathrm{~m}}{\mathrm{~s}} \quad \mu=1.14 \times 10^{-3} \cdot \frac{\mathrm{~N} \cdot \mathrm{~s}}{\mathrm{~m}^{2}} \quad \text { (Table A.8) }
$$

Hence

$$
\begin{aligned}
& \mathrm{F}=-8 \times 1 \cdot \mathrm{~m}^{2} \times 1.14 \times 10^{-3} \cdot \frac{\mathrm{~N} \cdot \mathrm{~s}}{\mathrm{~m}^{2}} \times 0.05 \cdot \frac{\mathrm{~m}}{\mathrm{~s}} \times \frac{-0.1}{2} \cdot \mathrm{~mm} \times \frac{1 \cdot \mathrm{~m}}{1000 \cdot \mathrm{~mm}} \times\left(\frac{1}{0.1} \cdot \frac{1}{\mathrm{~mm}} \times \frac{1000 \cdot \mathrm{~mm}}{1 \cdot \mathrm{~m}}\right)^{2} \\
& \mathrm{~F}=2.28 \cdot \mathrm{~N} \quad \text { (to the right) }
\end{aligned}
$$

Explain how an ice skate interacts with the ice surface. What mechanism acts to reduce sliding friction between skate and ice?

Open-Ended Problem Statement: Explain how an ice skate interacts with the ice surface. What mechanism acts to reduce sliding friction between skate and ice?

Discussion: The normal freezing and melting temperature of ice is $0^{\circ} \mathrm{C}\left(32^{\circ} \mathrm{F}\right)$ at atmospheric pressure. The melting temperature of ice decreases as pressure is increased. Therefore ice can be caused to melt at a temperature below the normal melting temperature when the ice is subjected to increased pressure.
A skater is supported by relatively narrow blades with a short contact against the ice. The blade of a typical skate is less than 3 mm wide. The length of blade in contact with the ice may be just ten or so millimeters. With a 3 mm by 10 mm contact patch, a 75 kg skater is supported by a pressure between skate blade and ice on the order of tens of megaPascals (hundreds of atmospheres). Such a pressure is enough to cause ice to melt rapidly. When pressure is applied to the ice surface by the skater, a thin surface layer of ice melts to become liquid water and the skate glides on this thin liquid film. Viscous friction is quite small, so the effective friction coefficient is much smaller than for sliding friction. The magnitude of the viscous drag force acting on each skate blade depends on the speed of the skater, the area of contact, and the thickness of the water layer on top of the ice. The phenomenon of static friction giving way to viscous friction is similar to the hydroplaning of a pneumatic tire caused by a layer of water on the road surface.
2.38 Crude oil, with specific gravity $\mathrm{SG}=0.85$ and viscosity $\mu=2.15 \times 10^{-3} \mathrm{lbf} \cdot \mathrm{s} / \mathrm{ft}^{2}$, flows steadily down a surface inclined $\theta=45$ degrees below the horizontal in a film of thickness $h=0.1$
in . The velocity profile is given by

$$
u=\frac{\rho g}{\mu}\left(h y-\frac{y^{2}}{2}\right) \sin \theta
$$

(Coordinate x is along the surface and y is normal to the surface.)
Plot the velocity profile. Determine the magnitude and direction of the shear stress that acts on the surface.

Given: Velocity profile
Find: Plot of velocity profile; shear stress on surface

Solution:

The velocity profile is

$$
\mathrm{u}=\frac{\rho \cdot \mathrm{g}}{\mu} \cdot\left(\mathrm{~h} \cdot \mathrm{y}-\frac{\mathrm{y}^{2}}{2}\right) \cdot \sin (\theta) \quad \text { so the maximum velocity is at } \mathrm{y}=\mathrm{h} \quad \mathrm{u}_{\max }=\frac{\rho \cdot \mathrm{g}}{\mu} \cdot \frac{\mathrm{~h}^{2}}{2} \cdot \sin (\theta)
$$

Hence we can plot

$$
\frac{\mathrm{u}}{\mathrm{u}_{\max }}=2 \cdot\left[\frac{\mathrm{y}}{\mathrm{~h}}-\frac{1}{2} \cdot\left(\frac{\mathrm{y}}{\mathrm{~h}}\right)^{2}\right]
$$

This graph can be plotted in Excel

The given data is	$\mathrm{h}=0.1 \cdot \mathrm{in} \quad \mu=2.15 \times 10^{-3} \cdot \frac{\mathrm{lbf} \cdot \mathrm{s}}{\mathrm{ft}^{2}} \quad \theta=45 \cdot \mathrm{deg}$
Basic equation	$\tau_{\mathrm{yx}}=\mu \cdot \frac{\mathrm{du}}{\mathrm{dy}} \quad \tau_{\mathrm{yx}}=\mu \cdot \frac{\mathrm{du}}{\mathrm{dy}}=\mu \cdot \frac{\mathrm{d}}{\mathrm{dy}} \frac{\rho \cdot \mathrm{g}}{\mu} \cdot\left(\mathrm{h} \cdot \mathrm{y}-\frac{\mathrm{y}^{2}}{2}\right) \cdot \sin (\theta)=\rho \cdot \mathrm{g} \cdot(\mathrm{h}-\mathrm{y}) \cdot \sin (\theta)$
At the surface $\mathrm{y}=0$	$\tau_{\mathrm{yx}}=\rho \cdot \mathrm{g} \cdot \mathrm{h} \cdot \sin (\theta) \quad$
Hence	$\tau_{\mathrm{yx}}=0.85 \times 1.94 \cdot \frac{\mathrm{slug}}{\mathrm{ft}^{3}} \times 32.2 \cdot \frac{\mathrm{ft}}{\mathrm{s}^{2}} \times 0.1 \cdot \mathrm{in} \times \frac{1 \cdot \mathrm{ft}}{12 \cdot \mathrm{in}} \times \sin (45 \cdot \mathrm{deg}) \times \frac{\mathrm{lbf} \cdot \mathrm{s}^{2}}{\mathrm{slng} \cdot \mathrm{ft}} \quad \tau_{\mathrm{yx}}=0.313 \cdot \frac{\mathrm{lbf}}{\mathrm{ft}^{2}}$

The surface is a positive y surface. Since $\tau_{\mathrm{yx}}>0$, the shear stress on the surface must act in the plus x direction.

Problem 2.39
Given: Skater, of wright $w=100 \mathrm{lbf}$ glides on one skate at speed' $V=20^{\circ} \mathrm{ft} / \mathrm{s}$. skate blade, of length $t=11.5$ in and width $w=0.125$ in. glides or thin film of waler of height $h=5.15 \times 10^{-5} \mathrm{im}$.
Find: the deceleration of the skater due to viscous shear.
Solution:
Model flow as one-dimensional strear flow

Assumptions: I Newtonian Fluid
2. Linear velocity profile
3. Neglect end effects.

From Table H.7, Appendix H, at $32^{\circ} \mathrm{F}$

$$
\begin{aligned}
& \mu=3.66 \times 10^{-5} \quad \text { bff.s } / \mathrm{ft}^{2} \\
& v_{y t}=\mu \frac{d u}{d y}=\mu \frac{V}{h}=3.66 \times 10^{-5} \frac{b f .5}{f t^{2}} \times 20 \frac{\mathrm{ft}}{\mathrm{~s}} \times 5.75 \times 10^{-5} \mathrm{in} \times \frac{12 n}{f t} \\
& v_{y t}=153 \mathrm{bf} /_{\mathrm{ft}^{2}} \\
& \sum F_{x}=M a_{x} \quad \therefore v_{y x} A=-\frac{w}{g} a_{x} \\
& a_{2}=-\frac{T_{y L A}}{W} g=-\frac{T_{y 2} L \omega g}{w} \\
& =-153 \frac{06 f}{\mathrm{ft}^{2}} \times 11.5 i n+0.125 i \pi+32.2 \frac{\mathrm{ft}}{\mathrm{~s}^{2}} \times \frac{1}{1001 b f} \times \frac{\mathrm{ft}^{2}}{1+H^{2}} \\
& a_{n}=-0.491 \mathrm{ftl} s^{2}
\end{aligned}
$$

Given: Block of weight ollof, 10 in on each edge, is pulled up a plane, inclined at 25° to the horizontal, over a film of SAE Now oil al 1007 . The speed of the block is constant at 2 ftls and the oil film thickness is 0.001 in. Velocity profile in film is linear
Find: Force required.
Solution:
Since the block is moving at constant velocity, U, then $\sum \vec{F}_{e}=0$ Consider the forces along the direction of motion and look at a free body diagram of the block.

Since $\sum F_{x}=0$, then $F-f-w \sin \theta=0$
Now the friction force, $f=Y_{A}$
where $v=\mu \frac{d \mu}{d y}$
For small gap (linear velocity profile) $\quad T=\mu \frac{U}{a}$
Hence

$$
f=\psi A=\mu \frac{J}{d} A
$$

and

$$
F-\mu \frac{U}{d} A-W \sin \theta=0
$$

Thus

$$
F=\mu \frac{v}{a} A+w \sin \theta
$$

From Fig. A.2, Appendix A, for SAEION oil @ $100^{\circ} F\left(38^{\circ} \mathrm{C}\right), \mu=3.7 \times 10^{-2} \mathrm{~N} \cdot \mathrm{~s} / \mathrm{m}^{2}$

$$
\begin{aligned}
F & =\mu \frac{U}{d} R+w \sin \theta \\
& =3.7 \times 10^{2} \frac{\lambda .5}{M^{2}} \times 2.09 \times 10^{-2} \frac{\mathrm{lbf} .5}{f t^{2}} \cdot \frac{m^{2}}{A .5} \times 2 \frac{4}{s} \times(10)^{2} i^{2} \times \frac{1}{0.001 i n} \times \frac{\sqrt{1}}{12 i n}+1016 f \sin 25^{\circ} \\
F & =17.1 \mathrm{lbf}
\end{aligned}
$$

2.41 Tape is to be coated on both sides with glue by drawing it through a narrow gap. The tape is 0.015 in . thick and 1.00 in . wide. It is centered in the gap with a clearance of 0.012 in . on each side. The glue, of viscosity $\mu=0.02$ slug/(ft $\cdot \mathrm{s}$), completely fills the space between the tape and gap. If the tape can withstand a maximum tensile force of 25 lbf , determine the maximum gap region through which it can be pulled at a speed of $3 \mathrm{ft} / \mathrm{s}$.

Given: Data on tape mechanism
Find: Maximum gap region that can be pulled without breaking tape

Solution:

Basic equation

$$
\tau_{y x}=\mu \cdot \frac{d u}{d y} \quad \text { and } \quad \mathrm{F}=\tau_{y x} \cdot A
$$

Here F is the force on each side of the tape; the total force is then

$$
\mathrm{F}_{\mathrm{T}}=2 \cdot \mathrm{~F}=2 \cdot \tau_{\mathrm{yx}} \cdot \mathrm{~A}
$$

The velocity gradient is linear as shown $\frac{d u}{d y}=\frac{V-0}{c}=\frac{V}{c}$
The area of contact is $\quad \mathrm{A}=\mathrm{w} \cdot \mathrm{L}$

Combining these results
$\mathrm{F}_{\mathrm{T}}=2 \cdot \mu \cdot \frac{\mathrm{~V}}{\mathrm{c}} \cdot \mathrm{w} \cdot \mathrm{L}$

Solving for L

$$
\mathrm{L}=\frac{\mathrm{F}_{\mathrm{T} \cdot \mathrm{C}}}{2 \cdot \mu \cdot \mathrm{~V} \cdot \mathrm{~W}}
$$

The given data is

$$
\mathrm{F}_{\mathrm{T}}=25 \cdot \mathrm{lbf} \quad \mathrm{c}=0.012 \cdot \mathrm{in} \quad \mu=0.02 \cdot \frac{\mathrm{slug}}{\mathrm{ft} \cdot \mathrm{~s}}
$$

$\mathrm{V}=3 \cdot \frac{\mathrm{ft}}{\mathrm{s}}$
$\mathrm{w}=1 \cdot \mathrm{in}$

Hence

$$
\mathrm{L}=25 \cdot \mathrm{lbf} \times 0.012 \cdot \mathrm{in} \times \frac{1 \cdot \mathrm{ft}}{12 \cdot \mathrm{in}} \times \frac{1}{2} \times \frac{1}{0.02} \cdot \frac{\mathrm{ft} \cdot \mathrm{~s}}{\mathrm{slug}} \times \frac{1}{3} \cdot \frac{\mathrm{~s}}{\mathrm{ft}} \times \frac{1}{1} \frac{1}{\mathrm{in}} \times \frac{12 \cdot \mathrm{in}}{1 \cdot \mathrm{ft}} \times \frac{\mathrm{slug} \cdot \mathrm{ft}}{\mathrm{~s}^{2} \cdot \mathrm{lbf}}
$$

$\mathrm{L}=2.5 \mathrm{ft}$
2.42 A 73-mm-diameter aluminum $(\mathrm{SG}=2.64)$ piston of $100-\mathrm{mm}$ length resides in a stationary $75-\mathrm{mm}$-inner-diameter steel tube lined with SAE $10 \mathrm{~W}-30$ oil at $25^{\circ} \mathrm{C}$. A mass $m=2 \mathrm{~kg}$ is suspended from the free end of the piston. The piston is set into motion by cutting a support cord. What is the terminal velocity of mass m ? Assume a linear velocity profile within the oil.

Given: Flow data on apparatus

Find: \quad The terminal velocity of mass m

Solution:

Given data:

$$
\mathrm{D}_{\text {piston }}=73 \cdot \mathrm{~mm}
$$

$$
\mathrm{D}_{\text {tube }}=75 \cdot \mathrm{~mm}
$$

$$
\text { Mass }=2 \cdot \mathrm{~kg}
$$

$\mathrm{L}=100 \cdot \mathrm{~mm}$
$\mathrm{SG}_{\mathrm{Al}}=2.64$
Reference data: $\quad \rho_{\text {water }}=1000 \cdot \frac{\mathrm{~kg}}{\mathrm{~m}^{3}} \quad$ (maximum density of water)
From Fig. A.2:, the dynamic viscosity of SAE $10 \mathrm{~W}-30$ oil at $25^{\circ} \mathrm{C}$ is: $\quad \mu=0.13 \cdot \frac{\mathrm{~N} \cdot \mathrm{~s}}{\mathrm{~m}^{2}}$
The terminal velocity of the mass m is equivalent to the terminal velocity of the piston. At that terminal speed, the acceleration of the piston is zero. Therefore, all forces acting on the piston must be balanced. This means that the force driving the motion (i.e. the weight of mass m and the piston) balances the viscous forces acting on the surface of the piston. Thus, at $r=R_{\text {piston: }}$

$$
\left[\text { Mass }+\mathrm{SG}_{\mathrm{Al}} \cdot \rho_{\text {water }} \cdot\left(\frac{\pi \cdot \mathrm{D}_{\text {piston }}{ }^{2} \cdot \mathrm{~L}}{4}\right)\right] \cdot \mathrm{g}=\tau_{\mathrm{rz}} \cdot \mathrm{~A}=\left(\mu \cdot \frac{\mathrm{d}}{\mathrm{dr}} \mathrm{~V}_{\mathrm{Z}}\right) \cdot\left(\pi \cdot \mathrm{D}_{\text {piston }} \cdot \mathrm{L}\right)
$$

The velocity profile within the oil film is linear ...

Therefore

$$
\frac{\mathrm{d}}{\mathrm{dr}} \mathrm{~V}_{\mathrm{z}}=\frac{\mathrm{V}}{\left(\frac{\mathrm{D}_{\text {tube }}-\mathrm{D}_{\text {piston }}}{2}\right)}
$$

Thus, the terminal velocity of the piston, V, is:

or

$$
\mathrm{V}=\frac{\mathrm{g} \cdot\left(\mathrm{SG}_{\mathrm{Al}} \cdot \rho_{\text {water }} \cdot \pi \cdot \mathrm{D}_{\text {piston }}{ }^{2} \cdot \mathrm{~L}+4 \cdot \text { Mass }\right) \cdot\left(\mathrm{D}_{\text {tube }}-\mathrm{D}_{\text {piston }}\right)}{8 \cdot \mu \cdot \pi \cdot \mathrm{D}_{\text {piston }} \cdot \mathrm{L}}
$$

$$
\mathrm{V}=10.2 \frac{\mathrm{~m}}{\mathrm{~s}}
$$

2.43 The piston in Problem 2.42 is traveling at terminal speed. The mass m now disconnects from the piston. Plot the piston speed vs. time. How long does it take the piston to come within 1 percent of its new terminal speed?

Given: Flow data on apparatus

Find: \quad Sketch of piston speed vs time; the time needed for the piston to reach 99% of its new terminal speed.

Solution:

$$
\text { Given data: } \quad \mathrm{D}_{\text {piston }}=73 \cdot \mathrm{~mm} \quad \mathrm{D}_{\text {tube }}=75 \cdot \mathrm{~mm} \quad \mathrm{~L}=100 \cdot \mathrm{~mm} \quad \mathrm{SG}_{\mathrm{Al}}=2.64 \quad \mathrm{~V}_{0}=10.2 \cdot \frac{\mathrm{~m}}{\mathrm{~s}}
$$

Reference data: $\quad \rho_{\text {water }}=1000 \cdot \frac{\mathrm{~kg}}{\mathrm{~m}^{3}} \quad$ (maximum density of water)
(From Problem 2.42)

From Fig. A.2, the dynamic viscosity of SAE $10 \mathrm{~W}-30$ oil at $25^{\circ} \mathrm{C}$ is: $\quad \mu=0.13 \cdot \frac{\mathrm{~N} \cdot \mathrm{~s}}{\mathrm{~m}^{2}}$

The free body diagram of the piston after the cord is cut is:

Piston weight:

$$
\mathrm{W}_{\text {piston }}=\mathrm{SG}_{\mathrm{Al}} \cdot \rho_{\text {water }} \cdot \mathrm{g} \cdot\left(\frac{\pi \cdot \mathrm{D}_{\text {piston }}{ }^{2}}{4}\right) \cdot \mathrm{L}
$$

Viscous force:

$$
\mathrm{F}_{\mathrm{viscous}}(\mathrm{~V})=\tau_{\mathrm{rz}} \cdot \mathrm{~A}
$$

or

$$
\mathrm{F}_{\text {viscous }}(\mathrm{V})=\mu \cdot\left[\frac{\mathrm{V}}{\frac{1}{2} \cdot\left(\mathrm{D}_{\text {tube }}-\mathrm{D}_{\text {piston }}\right)}\right] \cdot\left(\pi \cdot \mathrm{D}_{\text {piston }} \mathrm{L}\right)
$$

Applying Newton's second law:

$$
\mathrm{m}_{\text {piston }} \cdot \frac{\mathrm{dV}}{\mathrm{dt}}=\mathrm{W}_{\text {piston }}-\mathrm{F}_{\text {viscous }}(\mathrm{V})
$$

Therefore

$$
\frac{\mathrm{dV}}{\mathrm{dt}}=\mathrm{g}-\mathrm{a} \cdot \mathrm{~V} \quad \text { where }
$$

$$
\mathrm{a}=\frac{8 \cdot \mu}{\mathrm{SG}_{\mathrm{Al}^{\cdot}} \rho_{\text {water }} \mathrm{D}_{\text {pistor }}\left(\mathrm{D}_{\text {tube }}-\mathrm{D}_{\text {piston }}\right)}
$$

If

$$
\mathrm{V}=\mathrm{g}-\mathrm{a} \cdot \mathrm{~V} \quad \text { then } \quad \frac{\mathrm{dX}}{\mathrm{dt}}=-\mathrm{a} \cdot \frac{\mathrm{dV}}{\mathrm{dt}}
$$

The differential equation becomes

$$
\frac{\mathrm{dX}}{\mathrm{dt}}=-\mathrm{a} \cdot \mathrm{X} \quad \text { where } \quad \mathrm{X}(0)=\mathrm{g}-\mathrm{a} \cdot \mathrm{~V}_{0}
$$

The solution to this differential equation is: $\quad X(t)=X_{0} \cdot e^{-a \cdot t} \quad$ or $\quad g-a \cdot V(t)=\left(g-a \cdot V_{0}\right) \cdot e^{-a \cdot t}$
Therefore

$$
\mathrm{V}(\mathrm{t})=\left(\mathrm{V}_{0}-\frac{\mathrm{g}}{\mathrm{a}}\right) \cdot \mathrm{e}^{(-\mathrm{a} \cdot \mathrm{t})}+\frac{\mathrm{g}}{\mathrm{a}}
$$

Plotting piston speed vs. time (which can be done in Excel)
Piston speed vs. time

The terminal speed of the piston, V_{t}, is evaluated as t approaches infinity

$$
\mathrm{V}_{\mathrm{t}}=\frac{\mathrm{g}}{\mathrm{a}} \quad \text { or } \quad \mathrm{V}_{\mathrm{t}}=3.63 \frac{\mathrm{~m}}{\mathrm{~s}}
$$

The time needed for the piston to slow down to within 1% of its terminal velocity is:

$$
\mathrm{t}=\frac{1}{\mathrm{a}} \cdot \ln \left(\frac{\mathrm{~V}_{0}-\frac{\mathrm{g}}{\mathrm{a}}}{1.01 \cdot \mathrm{~V}_{\mathrm{t}}-\frac{\mathrm{g}}{\mathrm{a}}}\right) \quad \text { or } \quad \mathrm{t}=1.93 \mathrm{~s}
$$

Given: Block of mass M slides on thin film of oil of thickness h. Contact area of block is A. At time $t=0$, mass m is released from rest. $M=5 \mathrm{~kg}, m=1 \mathrm{~kg}, A=25 \mathrm{~cm}^{2}, h=0.5 \mathrm{~m}$

Find: (a) Expression for viscous force on block when moving at speed V
(b) Differential equation governing block speed as a function of time
(c) Expression for block spaced $V=V(t)$; plot
(d) If $v=1 \mathrm{mls}$ at $t=1 \mathrm{~s}$, find μ

Solution:
Basic equations: $T_{y x}=\mu \frac{d u}{d y} \quad \Sigma \vec{\Sigma}=\overrightarrow{m a}^{\prime}$

Assumptions: (1) Newtonian flied
(a) Linear velocity profile in oil film.

Then, $F_{v}=T A=\mu \frac{d u}{d y} A=\mu \frac{\Delta u}{\Delta y} A=\mu \frac{V}{h} A$
For the block, $\Sigma F_{x}=F_{t}-F_{v}=M \frac{d v_{t}}{d t}$
For the falling mass $\Sigma F_{y}=m g-F_{t}=m \frac{d t_{m}}{d t}$, or

$$
\begin{equation*}
F_{t}=m g-n \frac{d k_{c m}}{d t} \tag{2}
\end{equation*}
$$

Since $V_{b}=V_{f m}=V$, then substituting from Eq. (2) ito (i) gives

$$
m g-m \frac{d V}{d t}-F_{v}=m \frac{d V}{d t}=m g-m \frac{d v}{d t}-\mu \frac{D}{h} A
$$

Finally,

$$
m g-\mu \frac{V}{n} A=(M+m) \frac{d V}{d t}
$$

To solve we separate variables and integrate

$$
\begin{aligned}
& \left.t=\int_{0}^{t} d t=\int_{0}^{V} \frac{(M+M)}{m g-\mu \frac{V}{h} A}=-(M+m) \frac{h}{\mu A} \ln \left(m g-\mu \frac{\mu A}{h}\right)\right]_{0}^{V} \\
& t=-(M+M) \frac{h}{\mu H} \ln \left(1-\frac{\mu v A}{m g h}\right) \\
& \text { Taking anti logarithms, } \\
& 1-\frac{\mu V A}{M g h}=e^{-\frac{\mu R t}{(M+M)},} \\
& \text { Solving for } V \text {, } \\
& V=\frac{m g h}{\mu A}\left(1-e^{-\frac{\mu R t}{(m+n)}}\right)
\end{aligned}
$$

Te velocity increases exponentially to $V_{\text {max }}=\frac{m_{h}}{\mu f}$

Problem 2.45

2.45 A block 0.1 m square, with 5 kg mass, slides down a smooth incline, 30° below the horizontal, on a film of SAE 30 oil at $20^{\circ} \mathrm{C}$ that is 0.20 mm thick. If the block is released from rest at $t=0$, what is its initial acceleration? Derive an expression for the speed of the block as a function of time. Plot the curve for $V(t)$. Find the speed after 0.1 s . If we want the mass to instead reach a speed of $0.3 \mathrm{~m} / \mathrm{s}$ at this time, find the viscosity μ of the oil we
 would have to use.

Given: Data on the block and incline
Find: Initial acceleration; formula for speed of block; plot; find speed after 0.1 s . Find oil viscosity if speed is $0.3 \mathrm{~m} / \mathrm{s}$ after 0.1 s

Solution:

Given data
$M=5 \cdot \mathrm{~kg}$
$A=(0.1 \cdot m)^{2}$
$\mathrm{d}=0.2 \cdot \mathrm{~mm}$
$\theta=30 \cdot \operatorname{deg}$
From Fig. A. 2

$$
\mu=0.4 \cdot \frac{\mathrm{~N} \cdot \mathrm{~s}}{\mathrm{~m}^{2}}
$$

Applying Newton's 2nd law to initial instant (no frictic $\mathrm{M} \cdot \mathrm{a}=\mathrm{M} \cdot \mathrm{g} \cdot \sin (\theta)-\mathrm{F}_{\mathrm{f}}=\mathrm{M} \cdot \mathrm{g} \cdot \sin (\theta)$

The plot looks like

To find the viscosity for which $\mathrm{V}(0.1 \mathrm{~s})=0.3 \mathrm{~m} / \mathrm{s}$, we must solve

$$
\mathrm{V}(\mathrm{t}=0.1 \cdot \mathrm{~s})=\frac{\mathrm{M} \cdot \mathrm{~g} \cdot \mathrm{~d} \cdot \sin (\theta)}{\mu \cdot \mathrm{A}} \cdot\left[1-\mathrm{e}^{\frac{-\mu \cdot \mathrm{A}}{\mathrm{M} \cdot \mathrm{~d}} \cdot(\mathrm{t}=0.1 \cdot \mathrm{~s})}\right]
$$

The viscosity μ is implicit in this equation, so solution must be found by manual iteration, or by any of a number of classic root-finding numerical methods, or by using Excel's Goal Seek

Using Excel:

$$
\mu=1.08 \cdot \frac{\mathrm{~N} \cdot \mathrm{~s}}{\mathrm{~m}^{2}}
$$

Problem 2.46
Given: Block of mass M moves at steady speed IT under influence of constant force F_{1} on a the film of oil of thickness h and viscosity μ; block is square, $a \mathrm{Mm}$ on a side.
Find: (a) Magnitude and direction of shear stress acting on bottom of block and supporting plate.
(b) Expression for time required to lose 959 of its initial speed when force is suddenly removed
(c) Expect shape of speed vs time curve.

Solution:
Basic equations: $\sqrt{y}_{y x}=\mu \frac{d u}{d y} \quad \Sigma \vec{F}=\overrightarrow{m a}$
Assumptions: (i) Newtonian fluid

(2) Linear velocity profile in oil film

$$
\begin{equation*}
v_{y x}=\mu \frac{d \mu}{d \underline{y}}=\mu \frac{\Delta u}{\Delta y}=\mu \frac{J}{h} \tag{yx}
\end{equation*}
$$

Bytom of block is $-y$ surface, so ${ }^{-} y$ - acts to left Plate surface is $+y$ surface, so T_{y} k acts to right
Vistas shias force on block is $F_{v}=r A=Y a^{2}=\frac{\mu-V_{a}^{2 a}}{n}$ When $F_{\text {}}$ is removed, block slows under action of F_{v}

$$
\sum F_{x}=m \frac{d J}{d t}=-F_{v}=-\mu \frac{J_{a}^{2}}{h}
$$

Separating variables and integrating we have

$$
\int_{-T}^{T} \frac{d v}{v}=-\int_{0}^{t} \mu \frac{a^{2}}{m h} d t
$$

then

$$
\ln \frac{U_{i}}{\Xi_{i}}=-\mu a^{2} m_{h} \quad \ldots .(i)
$$

and

$$
t=-\frac{m}{\mu a^{2}} \ln \frac{U}{U_{i}}
$$

For- to fo $_{i}=0.05$

$$
t=3.0 \frac{m h}{\mu a^{2}}
$$

From Eq.(i) we can write

$$
U=U, e^{-\frac{\mu a^{2} t}{h}}
$$

the speed thus decreases exponentially with time.

Given: Wire, of diameter d, is to be coated witt varnish by drawing it through a circwas die of diameter, \%, and length, L

$$
d=0.9 \mathrm{~mm}, y=1.0 \mathrm{~mm}, t=50 \mathrm{~mm}
$$

Varnish, $\mu=20$ centipoise fils the space between wire and die wire is 'Grown thong at speed, $V=50 \mathrm{mle}$

Find: Force required to pull the wire
Solution:

$$
\sum F_{x}=m a_{x}
$$

Since $V_{\text {wire }}=$ constant, applied force must be sufficient to balance friction form, fr
$F_{f}=\gamma A$ where $\gamma=\mu \frac{d u}{d r}$ and $R=\langle d h$
Assuming a linear velocity distribution in varnish

$$
\left.r_{s}=\mu \frac{d u_{1}}{d s}\right)_{s}=\mu \frac{V_{N_{2}-V_{\left.d\right|_{2}}}^{\gamma_{2}-d I_{2}}=-\mu \frac{V}{(\lambda-d) / 2}, 2}{}
$$

negative stress on positive r sur face must act in negative
x direction)

$$
\begin{aligned}
& F-F_{f}=0 \\
& F=T A=\mu \frac{2 V}{(1,-d)} \times K d L \\
& F=20 \mathrm{cp} \times \frac{g h}{100 \mathrm{cmisice}} \times 2 \pi \times 50 \frac{\mathrm{~m}}{\mathrm{~s}} \times 0.9 \mathrm{~mm} \times 50 \mathrm{~mm} \times \frac{1}{0.1 \mathrm{~mm}} \times \frac{\mathrm{cm}}{\operatorname{lomm}} \times \frac{\mathrm{lg}}{\operatorname{locgg}} \times \frac{N . \mathrm{s}^{2}}{\operatorname{tg} \cdot m}
\end{aligned}
$$

$$
F=2.83 \mathrm{~N}
$$

2.48 A double-pipe heat exchanger consists of two concentric fluid-carrying pipes used to transfer heat between nonmixing fluids. The figure shown below is a full-section view of a $0.85-\mathrm{m}$ length of the double-pipe apparatus.
SAE10W-30 oil at $100^{\circ} \mathrm{C}$ flows through the $7.5-\mathrm{cm}$-outerdiameter inside pipe. Water at $10^{\circ} \mathrm{C}$ flows through the annulus between the inside pipe and the 11 -cm-outer-diameter outside pipe. The wall thickness of each pipe is 3 mm . The theoretical velocity profiles for laminar flow through a pipe and annulus are:
Inner pipe: $\quad u_{z}(r)=u_{\max }\left[1-\left(\frac{r}{R_{i, \text { inside }}}\right)^{2}\right]$

$$
\text { where: } u_{\max }=\frac{R_{i, \text { inside }}^{2} \Delta P}{4 \mu L}
$$

Annulus: $\quad u_{z}(r)=\frac{1}{4 \mu}\left(\frac{\Delta P}{L}\right)$

$$
\times\left[R_{i, \text { outside }}^{2}-r^{2}-\frac{R_{o, \text { inside }}^{2}-R_{i, \text { outside }}^{2}}{\ln \left(\frac{R_{i, \text { outside }}}{R_{o, \text { inside }}}\right)} \cdot \ln \left(\frac{r}{R_{i, \text { outside }}}\right)\right]
$$

NOTE: Figure is wrong - length is 0.85 m

Show that the no-slip condition is satisfied by these expressions. The pressure drop across the given length is 2.5 Pa and 8 Pa for the water and oil flows, respectively. If both flows are in the same direction (along the $+z$ axis), what is the net viscous force acting on the inner pipe?

Given: Data on double pipe heat exchanger
Find: Whether no-slip is satisfied; net viscous force on inner pipe

Solution:

For the oil, the velocity profile is

$$
\mathrm{u}_{\mathrm{z}}(\mathrm{r})=\mathrm{u}_{\max }\left[1-\left(\frac{\mathrm{r}}{\mathrm{R}_{\mathrm{ii}}}\right)^{2}\right] \quad \text { where } \quad \mathrm{u}_{\max }=\frac{\mathrm{R}_{\mathrm{ii}}^{2} \cdot \Delta \mathrm{p}}{4 \cdot \mu \cdot \mathrm{~L}}
$$

Check the no-slip condition. When $r=R_{i i}$

For the water, the velocity profile is

$$
\mathrm{u}_{\mathrm{z}}(\mathrm{r})=\frac{1}{4 \cdot \mu} \cdot \frac{\Delta \mathrm{p}}{\mathrm{~L}} \cdot\left(\mathrm{R}_{\mathrm{io}}{ }^{2}-\mathrm{r}^{2}-\frac{\mathrm{R}_{\mathrm{oi}}^{2}-\mathrm{R}_{\mathrm{io}}{ }^{2}}{\ln \left(\frac{\mathrm{R}_{\mathrm{io}}}{\mathrm{R}_{\mathrm{oi}}}\right)} \cdot \ln \left(\frac{\mathrm{r}}{\mathrm{Rio}}\right)\right)
$$

Check the no-slip condition. When $r=R_{\text {oi }}$

$$
\mathrm{u}_{\mathrm{z}}\left(\mathrm{R}_{\mathrm{oi}}\right)=\frac{1}{4 \cdot \mu} \cdot \frac{\Delta \mathrm{p}}{\mathrm{~L}} \cdot\left(\mathrm{R}_{\mathrm{io}}{ }^{2}-\mathrm{R}_{\mathrm{oi}}{ }^{2}-\frac{\mathrm{R}_{\mathrm{oi}}^{2}-\mathrm{R}_{\mathrm{io}}{ }^{2}}{\ln \left(\frac{\mathrm{R}_{\mathrm{io}}}{\mathrm{R}_{\mathrm{oi}}}\right)} \cdot \ln \left(\frac{\mathrm{R}_{\mathrm{oi}}}{\mathrm{Rio}}\right)\right)
$$

$$
\mathrm{u}_{\mathrm{z}}\left(\mathrm{R}_{\mathrm{oi}}\right)=\frac{1}{4 \cdot \mu} \cdot \frac{\Delta \mathrm{p}}{\mathrm{~L}} \cdot\left[\mathrm{R}_{\mathrm{io}}{ }^{2}-\mathrm{R}_{\mathrm{oi}}^{2}+\left(\mathrm{R}_{\mathrm{oi}}^{2}-\mathrm{R}_{\mathrm{io}}{ }^{2}\right)\right]=0
$$

When $\quad \mathrm{r}=\mathrm{R}_{\mathrm{io}} \quad \mathrm{u}_{\mathrm{z}}\left(\mathrm{R}_{\mathrm{io}}\right)=\frac{1}{4 \cdot \mu} \cdot \frac{\Delta \mathrm{p}}{\mathrm{L}} \cdot\left(\mathrm{R}_{\mathrm{io}}{ }^{2}-\mathrm{R}_{\mathrm{io}}{ }^{2}-\frac{\mathrm{R}_{\mathrm{oi}}^{2}-\mathrm{R}_{\mathrm{io}}^{2}}{\ln \left(\frac{\mathrm{R}_{\mathrm{io}}}{\mathrm{R}_{\mathrm{oi}}}\right)} \cdot \ln \left(\frac{\mathrm{R}_{\mathrm{io}}}{\mathrm{R}_{\mathrm{io}}}\right)\right)=0$
The no-slip condition holds on all three surfaces.
The given data is $\quad \mathrm{R}_{\mathrm{ii}}=\frac{7.5 \cdot \mathrm{~cm}}{2}-3 \cdot \mathrm{~mm} \quad \mathrm{R}_{\mathrm{ii}}=3.45 \cdot \mathrm{~cm} \quad \mathrm{R}_{\mathrm{io}}=\frac{7.5 \cdot \mathrm{~cm}}{2} \quad \mathrm{R}_{\mathrm{io}}=3.75 \cdot \mathrm{~cm} \quad \mathrm{R}_{\mathrm{oi}}=\frac{11 \cdot \mathrm{~cm}}{2}-3 \cdot \mathrm{~mm} \quad \mathrm{R}_{\mathrm{oi}}=5.2 \cdot \mathrm{~cm}$

$$
\Delta \mathrm{p}_{\mathrm{W}}=2.5 \cdot \mathrm{~Pa} \quad \Delta \mathrm{p}_{\text {oil }}=8 \cdot \mathrm{~Pa} \quad \mathrm{~L}=0.85 \cdot \mathrm{~m}
$$

The viscosity of water at $10^{\circ} \mathrm{C}$ is (Fig. A.2)

$$
\mu_{\mathrm{w}}=1.25 \times 10^{-3} \cdot \frac{\mathrm{~N} \cdot \mathrm{~s}}{\mathrm{~m}^{2}}
$$

The viscosity of SAE $10-30$ oil at $100^{\circ} \mathrm{C}$ is (Fig. A.2)

$$
\mu_{\text {oil }}=1 \times 10^{-2} \cdot \frac{\mathrm{~N} \cdot \mathrm{~s}}{\mathrm{~m}^{2}}
$$

For each, shear stress is given by $\quad \tau_{r x}=\mu \cdot \frac{d u}{d r}$

For water
so on the pipe surface

Hence

$$
\begin{aligned}
& \tau_{r X}=\mu \cdot \frac{\mathrm{du}_{\mathrm{Z}}(\mathrm{r})}{\mathrm{dr}}=\mu_{\mathrm{W}} \cdot \frac{\mathrm{~d}}{\mathrm{dr}}\left[\frac{1}{4 \cdot \mu_{\mathrm{W}}} \cdot \frac{\Delta \mathrm{p}_{\mathrm{W}}}{\mathrm{~L}} \cdot\left(\mathrm{R}_{\mathrm{io}}{ }^{2}-\mathrm{r}^{2}-\frac{\mathrm{R}_{\mathrm{oi}}{ }^{2}-\mathrm{R}_{\mathrm{io}}{ }^{2}}{\ln \left(\frac{\mathrm{R}_{\mathrm{io}}}{\mathrm{R}_{\mathrm{oi}}}\right)} \cdot \ln \left(\frac{\mathrm{r}}{\mathrm{Rio}}\right)\right]\right. \\
& \tau_{\mathrm{rX}}=\frac{1}{4} \cdot \frac{\Delta \mathrm{p}_{\mathrm{W}}}{\mathrm{~L}} \cdot\left(-2 \cdot \mathrm{r}-\frac{\mathrm{R}_{\mathrm{oi}}{ }^{2}-\mathrm{R}_{\mathrm{io}}{ }^{2}}{\ln \left(\frac{\mathrm{R}_{\mathrm{io}}}{\mathrm{R}_{\mathrm{oi}}}\right) \cdot \mathrm{r}}\right) \\
& \mathrm{F}_{\mathrm{W}}=\tau_{\mathrm{rx}} \cdot \mathrm{~A}=\frac{1}{4} \cdot \frac{\Delta \mathrm{p}_{\mathrm{W}}}{\mathrm{~L}} \cdot\left(-2 \cdot \mathrm{R}_{\mathrm{io}}-\frac{\mathrm{R}_{\mathrm{oi}}{ }^{2}-\mathrm{R}_{\mathrm{io}}{ }^{2}}{\ln \left(\frac{\mathrm{R}_{\mathrm{io}}}{\mathrm{R}_{\mathrm{oi}}}\right) \cdot \mathrm{R}_{\mathrm{io}}}\right) \cdot 2 \cdot \pi \cdot \mathrm{R}_{\mathrm{io}} \cdot \mathrm{~L} \\
& \mathrm{~F}_{\mathrm{W}}=\Delta \mathrm{p}_{\mathrm{W}} \cdot \pi \cdot\left(-\mathrm{R}_{\mathrm{io}}^{2}-\frac{\mathrm{R}_{\mathrm{oi}}^{2}-\mathrm{R}_{\mathrm{io}}{ }^{2}}{2 \cdot \ln \left(\frac{\mathrm{R}_{\mathrm{io}}}{\mathrm{R}_{\mathrm{oi}}}\right)}\right) \\
& \mathrm{F}_{\mathrm{W}}=2.5 \cdot \frac{\mathrm{~N}}{\mathrm{~m}^{2}} \times \pi \times\left[-\left(3.75 \cdot \mathrm{~cm} \times \frac{1 \cdot \mathrm{~m}}{100 \cdot \mathrm{~cm}}\right)^{2}-\frac{\left[(5.2 \cdot \mathrm{~cm})^{2}-(3.75 \cdot \mathrm{~cm})^{2}\right] \times\left(\frac{1 \cdot \mathrm{~m}}{100 \cdot \mathrm{~cm}}\right)^{2}}{2 \cdot \ln \left(\frac{3.75}{5.2}\right)}\right] \\
& \mathrm{F}_{\mathrm{w}}=0.00454 \mathrm{~N}
\end{aligned}
$$

This is the force on the r-negative surface of the fluid; on the outer pipe itself we also have $F_{W}=0.00454 \mathrm{~N}$

For oil

$$
\begin{aligned}
& \tau_{\mathrm{rx}}=\mu \cdot \frac{\mathrm{du}_{\mathrm{z}}(\mathrm{r})}{\mathrm{dr}}=\mu_{\mathrm{oil}} \cdot \frac{\mathrm{~d}}{\mathrm{dr}} \mathrm{u}_{\mathrm{max}} \cdot\left[1-\left(\frac{\mathrm{r}}{\mathrm{R}_{\mathrm{ii}}}\right)^{2}\right]=-\frac{2 \cdot \mu_{\mathrm{oil}} \cdot \mathrm{u}_{\mathrm{max}} \cdot \mathrm{r}}{\mathrm{R}_{\mathrm{ii}}^{2}}=-\frac{\Delta \mathrm{p}_{\mathrm{oil}} \cdot \mathrm{r}}{2 \cdot \mathrm{~L}} \\
& \mathrm{~F}_{\mathrm{oil}}=\tau_{\mathrm{rx}} \cdot \mathrm{~A}=-\frac{\Delta \mathrm{p}_{\mathrm{oil}} \cdot \mathrm{Rii}}{2 \cdot \mathrm{~L}} \cdot 2 \cdot \pi \cdot \mathrm{R}_{\mathrm{ii}} \cdot \mathrm{~L}=-\Delta \mathrm{p}_{\mathrm{oil}} \cdot \pi \cdot \mathrm{R}_{\mathrm{ii}}^{2}
\end{aligned}
$$

This should not be a surprise: the pressure drop just balances the friction!

Hence

$$
\mathrm{F}_{\text {oil }}=-8 \cdot \frac{\mathrm{~N}}{\mathrm{~m}^{2}} \times \pi \times\left(3.45 \cdot \mathrm{~cm} \times \frac{1 \cdot \mathrm{~m}}{100 \cdot \mathrm{~cm}}\right)^{2} \quad \mathrm{~F}_{\text {oil }}=-0.0299 \mathrm{~N}
$$

This is the force on the r-positive surface of the fluid; on the pipe it is equal and opposite

The total force is

$$
\mathrm{F}=\mathrm{F}_{\mathrm{w}}+\mathrm{F}_{\mathrm{oil}}
$$

$$
\mathrm{F}=0.0345 \mathrm{~N}
$$

Note we didn't need the viscosities because all quantities depend on the $\Delta \mathrm{p}$'s!
2.49 Repeat Problem 2.48 assuming a counterflow arrangement, where the oil flows in the $+z$ direction and the water flows in the $-z$ direction.

SAE10W-30 oil at $100^{\circ} \mathrm{C}$ flows through the $7.5-\mathrm{cm}$-outerdiameter inside pipe. Water at $10^{\circ} \mathrm{C}$ flows through the annulus between the inside pipe and the 11 -cm-outer-diameter outside pipe. The wall thickness of each pipe is 3 mm . The theoretical velocity profiles for laminar flow through a pipe and annulus are:
Inner pipe: $\quad u_{z}(r)=u_{\max }\left[1-\left(\frac{r}{R_{i, \text { inside }}}\right)^{2}\right]$

$$
\text { where: } u_{\max }=\frac{R_{i, \text { inside }}^{2} \Delta P}{4 \mu L}
$$

Annulus: $\quad u_{z}(r)=\frac{1}{4 \mu}\left(\frac{\Delta P}{L}\right)$

$$
\times\left[R_{i, \text { outside }}^{2}-r^{2}-\frac{R_{o, \text { inside }}^{2}-R_{i, \text { outside }}^{2}}{\ln \left(\frac{R_{i, \text { outside }}}{R_{o, \text { inside }}}\right)} \cdot \ln \left(\frac{r}{R_{i, \text { outside }}}\right)\right]
$$

NOTE: Figure is wrong - length is 0.85 m
Show that the no-slip condition is satisfied by these expressions. The pressure drop across the given length is 2.5 Pa and 8 Pa for the water and oil flows, respectively. If both flows are in the same direction (along the $+z$ axis), what is the net viscous force acting on the inner pipe?

Given: Data on counterflow heat exchanger
Find: Whether no-slip is satisfied; net viscous force on inner pipe

Solution:

The analysis for Problem 2.48 is repeated, except the oil flows in reverse, so the pressure drop is -2.5 Pa not 2.5 Pa.

For the oil, the velocity profile is

Check the no-slip condition. When $r=R_{i i}$

For the water, the velocity profile is

$$
\mathrm{u}_{\mathrm{z}}(\mathrm{r})=\mathrm{u}_{\max }\left[1-\left(\frac{\mathrm{r}}{\mathrm{R}_{\mathrm{ii}}}\right)^{2}\right] \quad \text { where } \quad \mathrm{u}_{\max }=\frac{\mathrm{R}_{\mathrm{ii}}{ }^{2} \cdot \Delta \mathrm{p}}{4 \cdot \mu \cdot \mathrm{~L}}
$$

$$
\mathrm{r}=\mathrm{R}_{\mathrm{ii}}
$$

$$
\mathrm{u}_{\mathrm{z}}\left(\mathrm{R}_{\mathrm{ii}}\right)=\mathrm{u}_{\max } \cdot\left[1-\left(\frac{\mathrm{R}_{\mathrm{ii}}}{\mathrm{R}_{\mathrm{ii}}}\right)^{2}\right]=0
$$

$$
\mathrm{u}_{\mathrm{z}}(\mathrm{r})=\frac{1}{4 \cdot \mu} \cdot \frac{\Delta \mathrm{p}}{\mathrm{~L}} \cdot\left(\mathrm{R}_{\mathrm{io}}{ }^{2}-\mathrm{r}^{2}-\frac{\mathrm{R}_{\mathrm{oi}}^{2}-\mathrm{R}_{\mathrm{io}}^{2}}{\ln \left(\frac{\mathrm{R}_{\mathrm{io}}}{\mathrm{R}_{\mathrm{oi}}}\right)} \cdot \ln \left(\frac{\mathrm{r}}{\mathrm{R}_{\mathrm{io}}}\right)\right)
$$

Check the no-slip condition. When $r=R_{o i}$

$$
\mathrm{u}_{\mathrm{z}}\left(\mathrm{R}_{\mathrm{oi}}\right)=\frac{1}{4 \cdot \mu} \cdot \frac{\Delta \mathrm{p}}{\mathrm{~L}} \cdot\left[\mathrm{R}_{\mathrm{io}}{ }^{2}-\mathrm{R}_{\mathrm{oi}}{ }^{2}+\left(\mathrm{R}_{\mathrm{oi}}{ }^{2}-\mathrm{R}_{\mathrm{io}}{ }^{2}\right)\right]=0
$$

When $\quad r=R_{i o} \quad u_{z}\left(R_{i o}\right)=\frac{1}{4 \cdot \mu} \cdot \frac{\Delta p}{L} \cdot\left(R_{i o}{ }^{2}-R_{i o}{ }^{2}-\frac{R_{o i}{ }^{2}-R_{i o}{ }^{2}}{\ln \left(\frac{R_{i o}}{R_{0 i}}\right)} \cdot \ln \left(\frac{R_{i o}}{R_{i o}}\right)\right)=0$
The no-slip condition holds on all three surfaces.
The given data is $\quad R_{\text {ii }}=\frac{7.5 \cdot \mathrm{~cm}}{2}-3 \cdot \mathrm{~mm} \quad \mathrm{R}_{\text {ii }}=3.45 \cdot \mathrm{~cm} \quad \mathrm{R}_{\text {io }}=\frac{7.5 \cdot \mathrm{~cm}}{2} \quad \mathrm{R}_{\text {io }}=3.75 \cdot \mathrm{~cm} \quad \mathrm{R}_{\text {oi }}=\frac{11 \cdot \mathrm{~cm}}{2}-3 \cdot \mathrm{~mm} \quad \mathrm{R}_{\text {oi }}=5.2 \cdot \mathrm{~cm}$

$$
\Delta \mathrm{p}_{\mathrm{w}}=-2.5 \cdot \mathrm{~Pa} \quad \Delta \mathrm{p}_{\text {oil }}=8 \cdot \mathrm{~Pa} \quad \mathrm{~L}=0.85 \cdot \mathrm{~m}
$$

The viscosity of water at $10^{\circ} \mathrm{C}$ is (Fig. A.2)

$$
\begin{aligned}
& \mu_{\mathrm{w}}=1.25 \times 10^{-3} \cdot \frac{\mathrm{~N} \cdot \mathrm{~s}}{\mathrm{~m}^{2}} \\
& \mu_{\text {oil }}=1 \times 10^{-2} \cdot \frac{\mathrm{~N} \cdot \mathrm{~s}}{\mathrm{~m}^{2}}
\end{aligned}
$$

The viscosity of SAE $10-30$ oil at $100^{\circ} \mathrm{C}$ is (Fig. A.2)

For each, shear stress is given by $\quad \tau_{\mathrm{rx}}=\mu \cdot \frac{\mathrm{du}}{\mathrm{dr}}$

For water

$$
\tau_{\mathrm{rx}}=\mu \cdot \frac{\mathrm{du}_{\mathrm{z}}(\mathrm{r})}{\mathrm{dr}}=\mu_{\mathrm{w}} \cdot \frac{\mathrm{~d}}{\mathrm{dr}}\left[\frac{1}{4 \cdot \mu_{\mathrm{w}}} \cdot \frac{\Delta \mathrm{p}_{\mathrm{w}}}{\mathrm{~L}} \cdot\left(\mathrm{R}_{\mathrm{io}}^{2}-\mathrm{r}^{2}-\frac{\mathrm{R}_{\mathrm{oi}}^{2}-\mathrm{R}_{\mathrm{io}}{ }^{2}}{\ln \left(\frac{\mathrm{R}_{\mathrm{io}}}{\mathrm{R}_{\mathrm{oi}}}\right)} \cdot \ln \left(\frac{\mathrm{r}}{\mathrm{R}_{\mathrm{io}}}\right)\right)\right]
$$

$$
\tau_{\mathrm{rX}}=\frac{1}{4} \cdot \frac{\Delta \mathrm{p}_{\mathrm{w}}}{\mathrm{~L}} \cdot\left(-2 \cdot \mathrm{r}-\frac{\mathrm{R}_{\mathrm{oi}}{ }^{2}-\mathrm{R}_{\mathrm{io}}{ }^{2}}{\ln \left(\frac{\mathrm{R}_{\mathrm{io}}}{\mathrm{R}_{\mathrm{oi}}}\right) \cdot \mathrm{r}}\right)
$$

so on the pipe surface

Hence

$$
\begin{aligned}
& \mathrm{F}_{\mathrm{w}}=\tau_{\mathrm{rx}} \cdot \mathrm{~A}=\frac{1}{4} \cdot \frac{\Delta \mathrm{p}_{\mathrm{W}}}{\mathrm{~L}} \cdot\left(-2 \cdot \mathrm{R}_{\mathrm{io}}-\frac{\mathrm{R}_{\mathrm{oi}}^{2}-\mathrm{R}_{\mathrm{io}}{ }^{2}}{\ln \left(\frac{\mathrm{R}_{\mathrm{io}}}{\mathrm{R}_{\mathrm{oi}}}\right) \cdot \mathrm{R}_{\mathrm{io}}}\right) \cdot 2 \cdot \pi \cdot \mathrm{R}_{\mathrm{io}} \cdot \mathrm{~L} \\
& \mathrm{~F}_{\mathrm{W}}=\Delta \mathrm{p}_{\mathrm{w}} \cdot \pi \cdot\left(-\mathrm{R}_{\mathrm{io}}{ }^{2}-\frac{\mathrm{R}_{\mathrm{oi}}{ }^{2}-\mathrm{R}_{\mathrm{io}}{ }^{2}}{2 \cdot \ln \left(\frac{\mathrm{R}_{\mathrm{io}}}{\mathrm{R}_{\mathrm{oi}}}\right)}\right) \\
& \mathrm{F}_{\mathrm{w}}=-2.5 \cdot \frac{\mathrm{~N}}{\mathrm{~m}^{2}} \times \pi \times\left[-\left[(3.75 \cdot \mathrm{~cm}) \times \frac{1 \cdot \mathrm{~m}}{100 \cdot \mathrm{~cm}}\right]^{2}-\frac{\left[(5.2 \cdot \mathrm{~cm})^{2}-(3.75 \cdot \mathrm{~cm})^{2}\right] \times\left(\frac{1 \cdot \mathrm{~m}}{100 \cdot \mathrm{~cm})^{2}}\right.}{2 \cdot \ln \left(\frac{3.75}{5.2}\right)}\right]
\end{aligned}
$$

$$
\mathrm{F}_{\mathrm{w}}=-0.00454 \mathrm{~N}
$$

This is the force on the r -negative surface of the fluid; on the outer pipe itself we also have $\mathrm{F}_{\mathrm{w}}=-0.00454 \mathrm{~N}$
For oil

$$
\begin{aligned}
& \tau_{\mathrm{rx}}=\mu \cdot \frac{\mathrm{du}_{\mathrm{z}}(\mathrm{r})}{\mathrm{dr}}=\mu_{\mathrm{oil}} \cdot \frac{\mathrm{~d}}{\mathrm{dr}} \mathrm{u}_{\mathrm{max}} \cdot\left[1-\left(\frac{\mathrm{r}}{\mathrm{R}_{\mathrm{ii}}}\right)^{2}\right]=-\frac{2 \cdot \mu_{\mathrm{oil}} \cdot \mathrm{u}_{\mathrm{max}} \cdot \mathrm{r}}{\mathrm{R}_{\mathrm{ii}}^{2}}=-\frac{\Delta \mathrm{p}_{\mathrm{oil}} \cdot \mathrm{r}}{2 \cdot \mathrm{~L}} \\
& \mathrm{~F}_{\mathrm{oil}}=\tau_{\mathrm{rx}} \cdot \mathrm{~A}=-\frac{\Delta \mathrm{p}_{\mathrm{oil}} \cdot \mathrm{Rii}}{2 \cdot \mathrm{~L}} \cdot 2 \cdot \pi \cdot \mathrm{R}_{\mathrm{ii}} \mathrm{~L}=-\Delta \mathrm{p}_{\mathrm{oil}} \cdot \pi \cdot \mathrm{R}_{\mathrm{ii}}^{2}
\end{aligned}
$$

This should not be a surprise: the pressure drop just balances the friction!

Hence

$$
\mathrm{F}_{\text {oil }}=-8 \cdot \frac{\mathrm{~N}}{\mathrm{~m}^{2}} \times \pi \times\left(3.45 \cdot \mathrm{~cm} \times \frac{1 \cdot \mathrm{~m}}{100 \cdot \mathrm{~cm}}\right)^{2} \quad \mathrm{~F}_{\text {oil }}=-0.0299 \mathrm{~N}
$$

This is the force on the r-positive surface of the fluid; on the pipe it is equal and opposite

The total force is

$$
\mathrm{F}=\mathrm{F}_{\mathrm{W}}+\mathrm{F}_{\mathrm{oil}}
$$

$$
\mathrm{F}=0.0254 \mathrm{~N}
$$

Note we didn't need the viscosities because all quantities depend on the $\Delta \mathrm{p}$'s!

Problem 2.50

2.50 Fluids of viscosities $\mu_{1}=0.1 \mathrm{~N} \cdot \mathrm{~s} / \mathrm{m}^{2}$ and $\mu_{2}=0.15 \mathrm{~N} \cdot \mathrm{~s} / \mathrm{m}^{2}$ are contained between two plates (each plate is $1 \mathrm{~m}^{2}$ in area). The thicknesses are $h_{1}=0.5 \mathrm{~mm}$ and $h_{2}=0.3 \mathrm{~mm}$, respectively. Find the force F to make the upper plate move at a speed of $1 \mathrm{~m} / \mathrm{s}$. What is the fluid velocity at the interface between the two fluids?

Given: Flow between two plates
Find: Force to move upper plate; Interface velocity

Solution:

The shear stress is the same throughout (the velocity gradients are linear, and the stresses in the fluid at the interface must be equal and opposite).

Hence $\quad \tau=\mu_{1} \cdot \frac{d u_{1}}{d y}=\mu_{2} \cdot \frac{{d u_{2}}_{d y}^{d y} \quad \text { or } \quad \mu_{1} \cdot \frac{V_{i}}{h_{1}}=\mu_{2} \cdot \frac{\left(V-V_{i}\right)}{h_{2}} \quad \text { where } V_{i} \text { is the interface velocity }}{}$
Solving for the interface velocity $\mathrm{V}_{\mathrm{i}} \quad \mathrm{V}_{\mathrm{i}}=\frac{\mathrm{V}}{1+\frac{\mu_{1}}{\mu_{2}} \cdot \frac{\mathrm{~h}_{2}}{\mathrm{~h}_{1}}}=\frac{1 \cdot \frac{\mathrm{~m}}{\mathrm{~s}}}{1+\frac{0.1}{0.15} \cdot \frac{0.3}{0.5}}$
$\mathrm{V}_{\mathrm{i}}=0.714 \frac{\mathrm{~m}}{\mathrm{~s}}$

Then the force required is

$$
\mathrm{F}=\tau \cdot \mathrm{A}=\mu_{1} \cdot \frac{\mathrm{~V}_{\mathrm{i}}}{\mathrm{~h}_{1}} \cdot \mathrm{~A}=0.1 \cdot \frac{\mathrm{~N} \cdot \mathrm{~s}}{\mathrm{~m}^{2}} \times 0.714 \cdot \frac{\mathrm{~m}}{\mathrm{~s}} \times \frac{1}{0.5 \cdot \mathrm{~mm}} \times \frac{1000 \cdot \mathrm{~mm}}{1 \cdot \mathrm{~m}} \times 1 \cdot \mathrm{~m}^{2} \quad \mathrm{~F}=143 \mathrm{~N}
$$

Given: Concentric cylinder viscometer

$$
R_{i}=37.5 \mathrm{~mm}, d=0.02 \mathrm{~mm}, h=150 \mathrm{mn}
$$

Inner cylinder rotates at $\omega=100 \mathrm{rpm}$, weer torque, $T=0.021$ NiM
Find: Viscosity of liquid in clearance gap.
Solution
The imposed torque must balance the resisting toque of the shear force. The shear force is given by $F=T_{A}$ where $A=2 \pi R h_{h}$
For a Newtonian fluid $r=\mu \frac{d y}{d y}$
Sic the verity profile is assumed to be linear, $r=\mu \frac{V}{d}$ where Y is the tangential velocity of the ines cylinder, $V=R_{i} w$
Thus,

$$
F=\gamma R=\mu \frac{y}{d} 2 \pi R_{i} h=\frac{2 \pi \mu R_{2}^{2} \omega h}{d}
$$

and the torque $T=R F=\frac{2 \pi \mu R^{3}, \omega h}{\alpha}$
Solving for μ,

$$
\begin{aligned}
\mu= & \frac{T d}{2 \pi R_{L}^{3} \omega h}=0.021 \mathrm{~N} . \mathrm{m} \times 0.2 \mathrm{~mm} \times \frac{1}{2 \pi} \times \frac{1}{(3.5)^{3} \mathrm{~mm}^{3}} \times \frac{\mathrm{min}}{100 \mathrm{~m}} \times \frac{1}{150 \mathrm{~mm}} \\
& \times \frac{\mathrm{rev}}{2 \times \mathrm{rad}} \times \frac{60.5}{\mathrm{~min}} \times(1000)^{3} \frac{\mathrm{~m}^{3}}{\mathrm{~m}^{3}}
\end{aligned}
$$

Given: Concentric cylinder viscometer $R=2.0 \mathrm{in} \quad d=0.001 \mathrm{in} \quad h=8 \mathrm{in}$. Inner cylinder rotates at 400 rpm Gap filled with castor oil at 90F.
Determine: Torque required to rotate the inner cylinder

Solution:
The required torque must balance the resisting torque of the shear force The shear force is given by $F=r A$ where $H=2 k R h$
For a Newtonian fluid $f=\mu \frac{d u}{d y}$
For small gap (linear profile) $v=\mu \frac{V}{d}$.
where $V=$ tangential velocity of inner cylvider = kw
Hence

$$
F=r_{A}=\mu \frac{R \omega}{d} 2 \pi R h=\frac{2 \pi \mu R^{2} \omega h}{d}
$$

and the torque $T=R F=\frac{2 \pi \mu R^{3} \omega h}{d}$
From Fig A.2, for castor ail at $90 \%\left(32^{\circ} \mathrm{C}\right), \mu=3.80 \times 10^{-1} \mathrm{~N} . \mathrm{s}^{2} \mathrm{~m}^{2}$

- Substituting numerical values.

$$
\begin{aligned}
T=\frac{2 \pi \mu \cdot R^{3} \omega h}{d}=2 k \times 3.80 \times 10^{-1} & \frac{\mathrm{N.s}}{\mathrm{~m}^{2}} \times 2.09 \times 10^{-2} \frac{16 f \cdot \mathrm{~s} \cdot \mathrm{~m}^{2}}{\mathrm{ft}^{2} \cdot \mathrm{~N} \cdot \mathrm{~s}} \times(2.0)^{3} \mathrm{in}^{3} \times \frac{400 \mathrm{red}}{\mathrm{~min}} \times 8 \mathrm{in} \times \frac{1}{10^{-3} \mathrm{i}} \\
& \times 2 \pi \frac{\mathrm{rad}}{\mathrm{res}} \times \frac{\mathrm{min}}{60 \mathrm{~s}} \times \frac{\mathrm{ft}^{3}}{1728 \mathrm{~m}^{3}}
\end{aligned}
$$

$$
T=77.4 \mathrm{ft} \cdot 10 f
$$

Given: Concentric-cylinder viscometer, driven by falling mass.

$$
\begin{array}{ll}
M=0.10 \mathrm{~kg} & r=25 \mathrm{~mm} \\
R=50 \mathrm{~mm} & a=0.20 \mathrm{~mm} \\
H=80 \mathrm{~mm} & V_{m}=30 \mathrm{~mm} / \mathrm{s}
\end{array}
$$

After starting transient, $V_{m}=$ const.
Find: (a) An alge brail expression for viscosity of the liquid, in terms
 of M, g, V_{m}, r, R, a, and H.
(b) Evaluate using the data given.

Solution: Apply Newton's law of viscosity.
Basic equations: $\tau=\mu \frac{d u}{d y} \quad \Sigma M=0 \quad T=\tau A R$
Assumptions: (1) Newtonian liquid
(2) Narrow gap, so linear velocity profile
(3) Steady angu lar speed
summing torques on the rotor

$$
\Sigma M=M \operatorname{Ig}-\tau A R=I \not \alpha^{=0(3)}=0 ; \quad A=2 \pi R H
$$

Because $a \ll R$, treat the gap as plane. Then

$$
\tau=\mu \frac{d u}{d y}=\mu \frac{\Delta u}{\Delta y}=\mu \frac{v-0}{a-0}=\mu \frac{U}{a}=\frac{\mu v_{m} R}{a r}
$$

Substituting,

$$
M g r-\frac{\mu V_{m} R}{a r} 2 \pi R H R=M g r-\frac{2 \pi \mu V_{m} R^{3} H}{a r}=0
$$

so

$$
\mu=\frac{M g r^{2} a}{2 \pi V m R^{3} H}
$$

Evaluating for the given data

$$
\begin{aligned}
\mu= & \frac{1}{2 \pi} \times 0.10 \mathrm{~kg}_{\times} 9.81 \frac{\mathrm{~m}}{\mathrm{~s}^{2}} \times(0.025)^{2} \mathrm{~m}_{\times}^{2} \times 0.0002 \mathrm{~m}_{\times} \times \frac{\mathrm{s}}{0.030 \mathrm{~m}} \\
& \times \frac{1}{(0.050)^{3} \mathrm{~m}^{3}} \times \frac{1}{0.080 \mathrm{~m}} \times \frac{\mathrm{Ns}}{\mathrm{~kg} \cdot \mathrm{~m}} \\
\mu= & 0.0651 \mathrm{~N} \cdot \mathrm{~s} / \mathrm{m}^{2}(65.1 \mathrm{mpa} \cdot \mathrm{~s})
\end{aligned}
$$

Given: Shaft turning inside stationary journal as shown, $N=20$ rps.

$$
\text { Torque, } T=0.0036 \mathrm{~N} \cdot \mathrm{~m}
$$

Find: Estimate viscosity of oil.
Solution: Basic equation $\tau_{y x}=\mu \frac{d u}{d y}$ Assumptions: (1) Newtonian fluid
(2) Gap is narrow, so velocity profile is linear, $\frac{d u}{d y} \approx \frac{\Delta u}{\Delta y}$

Then

Shear stress is

$$
\tau_{y x} \approx \mu \frac{\Delta u}{\Delta y}=\mu \frac{U}{t}=\frac{\mu \omega D}{2 t}
$$

Neglecting end effects, torque is

$$
T=F R=\tau_{y x} A R=\tau_{y x}(\pi D L) \frac{D}{2}=\frac{\mu \pi \omega D^{3} L}{4 t}
$$

solving for viscosity

$$
\begin{aligned}
\mu & =\frac{4 t T}{\pi \omega D^{3} L} \\
& =\frac{4}{\pi} \times 0.2 \mathrm{~mm} \times 0.0036 \mathrm{~N} \cdot m_{\times} \frac{5}{20 \mathrm{rev}} \times \frac{1}{(18)^{3} \mathrm{~mm}^{3}} \times \frac{1}{60 \mathrm{~mm}} \times \frac{\mathrm{rev}}{2 \pi r a d} \times(1000)^{3} \frac{\mathrm{~mm}^{3}}{\mathrm{~m}^{3}} \\
\mu & =0.0208 \mathrm{~N} \cdot \mathrm{~S} / \mathrm{m}^{2}
\end{aligned}
$$

$\left\{\begin{array}{l}\text { From Fig. A.z, this oil appears some what less viscous than SAE lOW, } \\ \text { assuming the oil is at room temperature. }\end{array}\right\}$
2.55 The viscometer of Problem 2.53 is being used to verify that the viscosity of a particular fluid is $\mu=0.1 \mathrm{~N} \cdot \mathrm{~s} / \mathrm{m}^{2}$. Unfortunately the cord snaps during the experiment. How long will it take the cylinder to lose 99% of its speed? The moment of inertia of the cylinder/pulley system is $0.0273 \mathrm{~kg} \cdot \mathrm{~m}^{2}$.

Given: Data on the viscometer

Find: Time for viscometer to lose 99\% of speed

Solution:

The given data is $\quad \mathrm{R}=50 \cdot \mathrm{~mm} \quad \mathrm{H}=80 \cdot \mathrm{~mm} \quad \mathrm{a}=0.20 \cdot \mathrm{~mm} \quad \mathrm{I}=0.0273 \cdot \mathrm{~kg} \cdot \mathrm{~m}^{2} \quad \mu=0.1 \cdot \frac{\mathrm{~N} \cdot \mathrm{~s}}{\mathrm{~m}^{2}}$
The equation of motion for the slowing viscometer is $\quad \mathrm{I} \cdot \alpha=$ Torque $=-\tau \cdot \mathrm{A} \cdot \mathrm{R}$
where α is the angular acceleration and τ is the viscous stress, and A is the surface area of the viscometer

The stress is given by

$$
\tau=\mu \cdot \frac{d u}{d y}=\mu \cdot \frac{V-0}{a}=\frac{\mu \cdot V}{a}=\frac{\mu \cdot R \cdot \omega}{a}
$$

where V and ω are the instantaneous linear and angular velocities.

Hence

$$
\mathrm{I} \cdot \alpha=\mathrm{I} \cdot \frac{\mathrm{~d} \omega}{\mathrm{dt}}=-\frac{\mu \cdot \mathrm{R} \cdot \omega}{\mathrm{a}} \cdot \mathrm{~A} \cdot \mathrm{R}=\frac{\mu \cdot \mathrm{R}^{2} \cdot \mathrm{~A}}{\mathrm{a}} \cdot \omega
$$

Separating variables

$$
\frac{\mathrm{d} \omega}{\omega}=-\frac{\mu \cdot \mathrm{R}^{2} \cdot \mathrm{~A}}{\mathrm{a} \cdot \mathrm{I}} \cdot \mathrm{dt}
$$

Integrating and using IC $\omega=\omega_{0}$

$$
\omega(t)=\omega_{0} \cdot e^{-\frac{\mu \cdot R^{2} \cdot A}{a \cdot I} \cdot t}
$$

The time to slow down by 99% is obtained from solving

$$
0.01 \cdot \omega_{0}=\omega_{0} \cdot e^{-\frac{\mu \cdot \mathrm{R}^{2} \cdot \mathrm{~A}}{\mathrm{a} \cdot \mathrm{I}} \cdot \mathrm{t}}
$$

$$
\text { so } \quad t=-\frac{\mathrm{a} \cdot \mathrm{I}}{\mu \cdot \mathrm{R}^{2} \cdot \mathrm{~A}} \cdot \ln (0.01)
$$

Note that

$$
\begin{array}{ll}
\mathrm{A}=2 \cdot \pi \cdot \mathrm{R} \cdot \mathrm{H} \quad \text { so } & \mathrm{t}=-\frac{\mathrm{a} \cdot \mathrm{I}}{2 \cdot \pi \cdot \mu \cdot \mathrm{R}^{3} \cdot \mathrm{H}} \cdot \ln (0.01) \\
\mathrm{t}=-\frac{0.0002 \cdot \mathrm{~m} \cdot 0.0273 \cdot \mathrm{~kg} \cdot \mathrm{~m}^{2}}{2 \cdot \pi} \cdot \frac{\mathrm{~m}^{2}}{0.1 \cdot \mathrm{~N} \cdot \mathrm{~s}} \cdot \frac{1}{(0.05 \cdot \mathrm{~m})^{3}} \cdot \frac{1}{0.08 \cdot \mathrm{~m}} \cdot \frac{\mathrm{~N} \cdot \mathrm{~s}^{2} \mathrm{~kg} \cdot \mathrm{~m}}{} \cdot \ln (0.01) & \mathrm{t}=4.00 \mathrm{~s}
\end{array}
$$

Given: Thin otter cylinder (mass, m_{2}, and radius R) of a concentrice-Eylinder viscometer is driven by the falling mass. M,. Searance between outer cylvides and stationary inner cylinder is a. Beortig friction, air resistance and has of liquid in the viscometer may be neglected
Find: (a) algebraic expression for the torque due to viscous shear acting on cylinder at angular speed $\omega_{\text {. }}$ (b) differential equation and softtion for ω (t) (c) expression for $W_{\text {max }}$

Solution:
Basic equations: $\tau=\mu \frac{d u}{d y}$

$$
\Sigma F=m a, \quad \Sigma M=I_{\alpha}
$$

Assure: (1) Newtonian fluid (2) IIriear velocity profile

$$
\begin{aligned}
& T=\mu \frac{d u}{d y}=\mu \frac{V}{a}=\frac{\mu R \omega}{a} \\
& T=Y R R=\frac{\mu R \omega}{a}(2 \pi R h) R \\
& T=\frac{2 \pi R^{3} \mu h}{a} \omega
\end{aligned}
$$

During acceleration, let the tension in the cord be F_{c}

For the cylinder $\sum M=F_{C} R-T=I \alpha=M_{2} R^{2} \frac{d \omega}{d t}$
For the mass $\Sigma F_{y}=m, g-F_{c}=m a=, m_{1} \frac{d y}{d t}=m R \frac{d w}{d t} \cdots$ (R)

$$
\therefore F_{c}=m \cdot g-m \cdot R \frac{d \omega}{d t}
$$

Substituting into eq. (i)

$$
\begin{aligned}
& \text { stituting into eq .(i) } \\
& m_{1} \pi^{3} \mu h \\
& a \\
&
\end{aligned}=\left(m,+m_{2} R^{2} \frac{d w}{d t}\right.
$$

Let $m_{1} g R=b,-2 \pi R^{3} \mu h l_{a}=c, \quad\left(m_{1}+m_{2}\right) R^{2}=f$
Then, $b+c \omega=f \frac{d \omega}{d t}$ or $\int_{0}^{t} \frac{1}{f} d t=\int_{0}^{\omega}(b+c \omega)$
Integrating, $\left.\quad \frac{1}{f} t=\frac{1}{c} \ln (b+c \omega)\right]_{0}^{\circ}=\frac{1}{c} \ln \frac{(b+c \omega)}{b}=\frac{1}{c} \ln \left(1+\frac{c}{b^{4}}\right)$.

$$
\frac{c}{f} t=\ln \left(1+\frac{c}{b} \omega\right)^{f} \Rightarrow e^{\frac{c}{f} t}=\left(1+\frac{c}{b} \omega\right) \Rightarrow w=\frac{b}{c}\left(e^{\frac{c}{t} t}-1\right)
$$

Substituting for b, c, and r^{3}

$$
\omega=\frac{m, g R a}{2 \pi R^{3} \mu h}\left(1-e^{\frac{-2 \pi R^{3} \mu h}{a\left(n-m 2 R^{2} t\right.}}\right)=\frac{m g a}{2 \pi R^{2} \mu h}\left[1-e^{-\frac{2 \pi R \mu h}{a\left(n, n_{2} t\right.}}\right]
$$

wet
Maximum ω occurs at $t \rightarrow \infty$

$$
w_{m a x}=\frac{m g a}{2 \pi k^{2} \mu h}
$$

Given: Circular aluminum shaft in journal. symmetric clearance gap filled with SAE low- 30 at $30^{\circ} \mathrm{C}$. shaft turned by mass and cord.

Find: (a) Develop and solve a differential equation for angular speed as a function of time.
(b) Calculate maximum angular speed.
(c) Estimate time seeded to reach 95 percent of maximums speed.

Solution: Apply summation of torques and Newton's second lace.
Basic equations: $\Sigma T=I \frac{d \omega}{d t} \quad \Sigma F=m \frac{d V}{d t} \quad V=R \omega$
For the mass:

For the shaft:

$$
\begin{align*}
& \Sigma T=t R-T_{\text {viscous }}=I \frac{d \omega}{d t} \tag{2}\\
& T_{\text {viscous }}=T R A=\mu \frac{V}{a} R 2 \pi R L=\frac{2 \pi \mu \omega R^{3} L}{a}
\end{align*}
$$

Assume: (1)Newtonian liquid, (2) Small gap, (3) Linear Photic
Then Eq. 2 becomes $\quad t R-\frac{2 \pi \mu R^{3} L}{a} \omega=I \frac{d \omega}{d t} ; \quad I=\frac{1}{2} M R^{2}$
Multiplying Eq. 1 by R and combining with Eq. 3 gives

$$
\begin{equation*}
m g R-m R^{2} \frac{d \omega}{d t}-2 \pi \frac{\mu R^{3} L}{a} \omega=I \frac{d \omega}{d t} \text { or } m g R-\frac{2 T \mu R^{3} L}{a} \omega=\left(I+m R^{2}\right) \frac{d \omega}{d t} \tag{4}
\end{equation*}
$$

This may be written $A-B \omega=C \frac{d \omega}{d t}$ where $A=m g R, B=\frac{2 \pi \mu R^{3} L}{a}, C=I+m R^{2}$ Separating variables $\frac{d \omega}{A-B \omega}=\frac{d t}{C}$
Integrating $\left.\int_{0}^{\omega} \frac{d \omega}{A-B \omega}=-\frac{1}{B} \ln (A-B \omega)\right]_{0}^{\omega}=-\frac{1}{B} \ln \left(1-\frac{B \omega}{A}\right)=\int_{0}^{t} \frac{d t}{C}=\frac{t}{C}$
Simplifying $1-\frac{B \omega}{A}=e^{-B t / c}$ or $\omega=\frac{A}{B}\left[1-e^{-B t / c}\right]$
The maximum angular speed $(t \rightarrow \infty)$ is $\omega=A / B$.

$$
\begin{aligned}
& A=m g R=0.010 \mathrm{~kg}_{\times} 9.81 \frac{\mathrm{~m}}{\mathrm{~s}^{2}} \times 0.025 \mathrm{~m}_{\times} \frac{\mathrm{Nis}^{2}}{\mathrm{~kg} \mathrm{~m}}=2.45 \times 10^{-3} \mathrm{~N} 1 \mathrm{~m} \\
& B=\frac{2 \pi \mu R^{3} L}{a}=2 \pi_{x} 0.095 \frac{\mathrm{~kg}}{\mathrm{~m} \cdot \mathrm{~s}} \times(0.005)^{3} \mathrm{~m}_{x}^{3} 0.050 \mathrm{~m}_{\times} \times \frac{1}{0.0005 \mathrm{~m}} \times \frac{\mathrm{N} \cdot \mathrm{~s}^{2}}{\mathrm{~kg} \cdot \mathrm{~m}}=9.33 \times 10^{-4} \mathrm{~N} \cdot \mathrm{~m} \cdot \mathrm{~s}
\end{aligned}
$$

Evaluating, $\omega_{\max }=\frac{A}{B}=2.45 \times 10^{-3} \mathrm{~N} \cdot \mathrm{~m}_{\times} \frac{1}{9.33 \times 10^{-4} \mathrm{~N} \cdot \mathrm{~m} \cdot \mathrm{sec}}=2.63 \mathrm{rad} / \mathrm{s}$
Thus

$$
\omega_{\text {max }}=2.63 \frac{\mathrm{rad}}{\mathrm{~s}} \times \frac{\mathrm{rev}}{i \pi \mathrm{rad}} \times 60 \frac{\mathrm{~s}}{\operatorname{man}}=25.1 \mathrm{rpm}
$$

From Eq. $5, \omega=0.95 \omega_{\max }$ when $e^{-B t / C}=0.05$, or $B t K \simeq 3 ; t \simeq \frac{3 C}{B}$

$$
\begin{aligned}
& C=I+m R^{2}=\frac{1}{2} M R^{2}+m R^{2}=\left(\frac{1}{2} M+m\right) R^{2} \\
& M=\pi R^{2}(1.5 L+L) \rho=2.5 \pi R^{2} L 56 \rho \omega \\
& M=2.5 \pi_{x}(0.025)^{2} m^{2} \times 0.050 m_{x}(2.64) 1000 \frac{\mathrm{~kg}}{m^{3}}=0.648 \mathrm{~kg} \\
& C=\left(\frac{1}{2} \times 0.648 \mathrm{~kg}+0.010 \mathrm{~kg}\right)(0.025)^{2} m^{2}=2.09 \times 10^{-4} \mathrm{~kg} \mathrm{~m}^{2}
\end{aligned}
$$

Thus

$$
t_{95}=3 \times 2.09 \times 10^{-4} \mathrm{~kg} 1 \mathrm{~m}^{2} \times \frac{1}{9.33 \times 10^{-4} \mathrm{~N} \cdot \mathrm{~m} \cdot \mathrm{~s}} \cdot \frac{\mathrm{~N}^{2} \mathrm{~s}^{2}}{\mathrm{~kg} \cdot \mathrm{~m}}=0.671 \mathrm{~s}
$$

$\left\{\begin{array}{l}\text { The terminal speed could have been computed from Eq. } 4 \text { by } \\ \text { setting dw/dt } \rightarrow 0 \text {, without solving the differential equation. }\end{array}\right\}$

Problem 2.58

2.58 A shock-free coupling for a low-power mechanical drive is to be made from a pair of concentric cylinders. The annular space between the cylinders is to be filled with oil. The drive must transmit power, $\mathscr{P}=10 \mathrm{~W}$. Other dimensions and properties are as shown. Neglect any bearing friction and end effects. Assume the minimum practical gap clearance δ for the device is $\delta=0.25$ mm . Dow manufactures silicone fluids with viscosities as high as 10^{6} centipoise. Determine the viscosity that should be specified to satisfy the requirement for this device.

Given: Shock-free coupling assembly
Find: Required viscosity

Solution:

Basic equation $\quad \tau_{\mathrm{r} \theta}=\mu \cdot \frac{\mathrm{du}}{\mathrm{dr}} \quad$ Shear force $\quad \mathrm{F}=\tau \cdot \mathrm{A} \quad$ Torque $\mathrm{T}=\mathrm{F} \cdot \mathrm{R} \quad$ Power $\quad \mathrm{P}=\mathrm{T} \cdot \omega$
Assumptions: Newtonian fluid, linear velocity profile

$$
\begin{aligned}
& \tau_{\mathrm{r} \theta}=\mu \cdot \frac{\mathrm{du}}{\mathrm{dr}}=\mu \cdot \frac{\Delta \mathrm{V}}{\Delta \mathrm{r}}=\mu \cdot \frac{\left[\omega_{1} \cdot \mathrm{R}-\omega_{2} \cdot(\mathrm{R}+\delta)\right]}{\delta} \\
& \tau_{\mathrm{r} \theta}=\mu \cdot \frac{\left(\omega_{1}-\omega_{2}\right) \cdot \mathrm{R}}{\delta} \quad \text { Because } \delta \ll \mathrm{R}
\end{aligned}
$$

Then

$$
\begin{aligned}
& P=T \cdot \omega_{2}=\mathrm{F} \cdot \mathrm{R} \cdot \omega_{2}=\tau \cdot \mathrm{A}_{2} \cdot \mathrm{R} \cdot \omega_{2}=\frac{\mu \cdot\left(\omega_{1}-\omega_{2}\right) \cdot \mathrm{R}}{\delta} \cdot 2 \cdot \pi \cdot \mathrm{R} \cdot \mathrm{~L} \cdot \mathrm{R} \cdot \omega_{2} \\
& \mathrm{P}=\frac{2 \cdot \pi \cdot \mu \cdot \omega_{2} \cdot\left(\omega_{1}-\omega_{2}\right) \cdot \mathrm{R}^{3} \cdot \mathrm{~L}}{\delta}
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \mu=\frac{\mathrm{P} \cdot \delta}{2 \cdot \pi \cdot \omega_{2} \cdot\left(\omega_{1}-\omega_{2}\right) \cdot \mathrm{R}^{3} \cdot \mathrm{~L}} \\
& \mu=\frac{10 \cdot \mathrm{~W} \times 2.5 \times 10^{-4} \cdot \mathrm{~m}}{2 \cdot \pi} \times \frac{1}{9000} \cdot \frac{\mathrm{~min}}{\mathrm{rev}} \times \frac{1}{1000} \cdot \frac{\mathrm{~min}}{\mathrm{rev}} \times \frac{1}{(.01 \cdot \mathrm{~m})^{3}} \times \frac{1}{0.02 \cdot \mathrm{~m}} \times \frac{\mathrm{N} \cdot \mathrm{~m}}{\mathrm{~s} \cdot \mathrm{~W}} \times\left(\frac{\mathrm{rev}}{2 \cdot \pi \cdot \mathrm{rad}}\right)^{2} \times\left(\frac{60 \cdot \mathrm{~s}}{\mathrm{~min}}\right)^{2}
\end{aligned}
$$

$$
\mu=0.202 \cdot \frac{\mathrm{~N} \cdot \mathrm{~s}}{\mathrm{~m}^{2}} \quad \mu=2.02 \text { poise } \quad \text { which corresponds to SAE } 30 \text { oil at } 30^{\circ} \mathrm{C} \text {. }
$$

Given: Parallel-disk apparatus as shown.
Find: (a) Algebraic expression for shear stress at any radial location.
(b) Expression for the torque needed to turn the upper disk.
Solution: use riv,z coordinates at right: Basic equations:

$$
\begin{aligned}
& \tau_{z \theta}=\mu \frac{d v_{\theta}}{d z} \\
& d T=r d F=r \tau_{z \theta} d A
\end{aligned}
$$

Assumptions: (1) Newtonian fluid
(2) No-slip condition
(3) Linear velocity profile (is narrow gap)

The vebcity at any radial location on the rotating disk is $V_{\theta}=\omega r$. since the velocity profile is linear, then

$$
\tau_{z \theta}=\mu \frac{d v_{\theta}}{d z}=\mu \frac{\Delta v}{\Delta z}=\mu \frac{(\omega r-0)}{(h-0)}=\frac{\mu \omega r}{h}
$$

and

$$
d T=r \tau_{z \theta} d A=r \mu \frac{\omega r}{h} 2 \pi r d r=\frac{2 \pi \mu \omega r^{3}}{h} d r
$$

Integrating

$$
\begin{aligned}
& \left.T=\int_{A} d T=\int_{0}^{R} \frac{2 \pi \mu \omega r^{3}}{h} d r=\frac{\pi \mu \omega r^{4}}{2 h}\right]_{0}^{R} \\
& T=\frac{\pi \mu \omega R^{4}}{2 h}
\end{aligned}
$$

The device could not be used to measure tie viscosity of a non-Neutonian flied because the applied shear stress is not uniform. It varies from zero at the center of the disks to $\mu \omega R / h$ at the edge

Problem 2.60
Given: Cone and plate viscometer shown. Apex of cone just touches the plate, θ is very small
Find: (a) Derive an expression for the shear rate in the liquid that fils the gap
(b) Evaluate the torque on the driven
 cone in terms of the shear stress and geometry of the system.
Solution:
Since the angle θ is very small, the average gap width is also very small.

It is reasonable to assume a linear velocity profile across the gap and to neglect end effects
The shear (deformation) rate is given by

$$
\dot{\gamma}=\frac{\Delta y}{d y}=\frac{\Delta u}{\Delta y}
$$

At any radius, r,
the velocity $U=\omega r$ and
the gap width $h=r \tan \theta$

$$
\therefore \dot{\gamma}=\frac{\omega r}{r \tan \theta}=\frac{\omega}{\tan \theta}
$$

Since θ is very small, $\tan \theta=\theta$ and

$$
\dot{\gamma}=\frac{\omega}{\theta}
$$

Note: The shear rate is nidependent of r. The entire sample is subjected to the same shear rate.

The torque on the drwen cone is gwen by

$$
T=\int r . d F \text { where } d F=T_{y-} d A
$$

Since $\dot{\gamma}$ is a constant (for a given w) then $T_{y}=$ constant and

$$
\begin{gathered}
T=\int r d F=\int_{a} r_{y} T_{y} d A=T_{y x} \int_{0}^{e} r 2 \pi r d r \\
T=\frac{2 \pi}{3} R^{3} T_{y t}
\end{gathered}
$$

2.61 The viscometer of Problem 2.60 is used to measure the apparent viscosity of a fluid. The data below are obtained. What kind of non-Newtonian fluid is this? Find the values of k and n used in Eqs. 2.16 and 2.17 in defining the apparent viscosity of a fluid. (Assume θ is 0.5 degrees.) Predict the viscosity at 90 and 100 rpm .

Speed (rpm)	10	20	30	40	50	60	70	80
$\mu\left(\mathbf{N} \cdot \mathrm{~s} / \mathbf{m}^{2}\right)$	0.121	0.139	0.153	0.159	0.172	0.172	0.183	0.185

Given: Data on the viscometer

Find: \quad The values of coefficients k and n; determine the kind of non-Newtonial fluid it is; estimate viscosity at 90 and 100 rpm

Solution:

The velocity gradient at any radius r is

$$
\frac{\mathrm{du}}{\mathrm{dy}}=\frac{\mathrm{r} \cdot \omega}{\mathrm{r} \cdot \tan (\theta)}
$$

where $\omega(\mathrm{rad} / \mathrm{s})$ is the angular velocity
$\omega=\frac{2 \cdot \pi \cdot \mathrm{~N}}{60} \quad$ where N is the speed in rpm
For small $\theta, \tan (\theta)$ can be replace with θ, so

$$
\frac{\mathrm{du}}{\mathrm{dy}}=\frac{\omega}{\theta}
$$

From Eq 2.11.
$k \cdot\left(\left|\frac{d u}{d y}\right|\right)^{n-1} \frac{d u}{d y}=\eta \cdot \frac{d u}{d y}$
where η is the apparent viscosity. Hence

$$
\eta=\mathrm{k} \cdot\left(\frac{\mathrm{du}}{\mathrm{dy}}\right)^{\mathrm{n}-1}=\mathrm{k} \cdot\left(\frac{\omega}{\theta}\right)^{\mathrm{n}-1}
$$

The data is

$\mathbf{N}(\mathbf{r p m})$	$\mu\left(\mathbf{N} \cdot \mathbf{s} / \mathbf{m}^{\mathbf{2}}\right)$
10	0.121
20	0.139
30	0.153
40	0.159
50	0.172
60	0.172
70	0.183
80	0.185

The computed data is

ω (rad/s)	$\omega / \boldsymbol{\theta} \mathbf{(1 / s)}$	$\eta\left(\mathbf{N} \cdot \mathbf{s} \mathbf{m}^{\mathbf{2}} \mathbf{x 1 0}^{\mathbf{3}}\right)$
1.047	120	121
2.094	240	139
3.142	360	153
4.189	480	159
5.236	600	172
6.283	720	172
7.330	840	183
8.378	960	185

From the Trendline analysis

$$
\begin{aligned}
k & =0.0449 \\
n-1 & =0.2068
\end{aligned}
$$

$$
n=1.21 \quad \text { The fluid is dilatant }
$$

The apparent viscosities at 90 and 100 rpm can now be computed

$\mathbf{N}(\mathbf{r p m})$	$\omega(\mathbf{r a d} / \mathbf{s})$	$\omega / \theta(\mathbf{1} / \mathbf{s})$	$\eta\left(\mathbf{N} \cdot \mathbf{s} / \mathbf{m}^{\mathbf{2}} \mathbf{x 1 0} \mathbf{3}^{\mathbf{3}}\right)$
90	9.42	1080	191
100	10.47	1200	195

2.62 A viscometer is used to measure the viscosity of a patient's blood. The deformation rate (shear rate)-shear stress data is shown below. Plot the apparent viscosity versus deformation rate. Find the value of k and n in Eq. 2.17, and from this examine the aphorism "Blood is thicker than water."

$d u / d y\left(\mathbf{s}^{-1}\right)$	5	10	25	50	100	200	300	400
$\tau(\mathbf{P a})$	0.0457	0.119	0.241	0.375	0.634	1.06	1.46	1.78

Given: Viscometer data
Find: Value of k and n in Eq. 2.17

Solution:

The data is

$\tau \mathbf{(P a)}$	$\mathbf{d u} / \mathbf{d y} \mathbf{~ (~}^{-\mathbf{1}} \mathbf{)}$
0.0457	5
0.119	10
0.241	25
0.375	50
0.634	100
1.06	200
1.46	300
1.78	400

Hence we have

$$
k=0.0162
$$

$$
n=0.7934 \quad \text { Blood is pseudoplastic (shear thinning) }
$$

We can compute the apparent viscosity fron

du/dy $\left.\mathbf{~ s}^{-\mathbf{1}}\right)$	$\eta \mathbf{(\mathbf { N } \cdot \mathbf { s } / \mathbf { m } ^ { 2 })}$
5	0.0116
10	0.0101
25	0.0083
50	0.0072
100	0.0063
200	0.0054
300	0.0050
400	0.0047

$$
\eta=\quad k(d u / d y)^{n-1}
$$

$$
\mu_{\text {water }}=0.001 \mathrm{~N} \cdot \mathrm{~s} / \mathrm{m}^{2} \text { at } 20^{\circ} \mathrm{C}
$$

Hence, blood is "thicker" than water!

Problem 2.63 (In Excel)

2.63 An insulation company is examining a new material for extruding into cavities. The experimental data is given below for the speed U of the upper plate, which is separated from a fixed lower plate by a $1-\mathrm{mm}$-thick sample of the material, when a given shear stress is applied. Determine the type of material. If a replacement material with a minimum yield stress of 250 Pa is needed, what viscosity will the material need to have the same behavior as the current material at a shear stress of 450 Pa ?

$\tau(\mathbf{P a})$	50	100	150	163	171	170	202	246	349	444
$\boldsymbol{U}(\mathbf{m} / \mathbf{s})$	0	0	0	0.005	0.01	0.025	0.05	0.1	0.2	0.3

Given:	Data on insulation material
Find:	Type of material; replacement material
Solution:	

The velocity gradient is

$$
d u / d y=U / \delta \quad \text { where } \delta=\quad 0.001 \mathrm{~m}
$$

Data and computations

$\tau(\mathrm{Pa})$	$\boldsymbol{U}(\mathrm{m} / \mathbf{s})$	$\mathbf{d u} / \mathbf{d} \boldsymbol{\mathbf { ~ } ^ { \mathbf { - 1 } } \mathbf {) }}$
50	0.000	0
100	0.000	0
150	0.000	0
163	0.005	5
171	0.01	10
170	0.03	25
202	0.05	50
246	0.1	100
349	0.2	200
444	0.3	300

Hence we have a Bingham plastic, with

At $\tau=450 \mathrm{~Pa}$, based on the linear fit

For a fluid with

$\tau_{y}=$	154	Pa
$\mu_{p}=$	0.963	$\mathrm{~N} \cdot \mathrm{~s} / \mathrm{m}^{2}$

$d u / d y=$	307	$\mathrm{~s}^{-1}$
$\tau_{y}=$	250	Pa

we can use the Bingham plastic formula to solve for μ_{p} given τ, τ_{y} and $d u / d y$ from above

$$
\mu_{p}=\quad 0.652 \quad \mathrm{~N} \cdot \mathrm{~s} / \mathrm{m}^{2}
$$

Problem 2.64
Given: Viscous clutch made from pair of closely spaced disks.
Input speed, ω_{i}
output speed, ω_{0}
Viscous oil in gap, μ

Find algebraic expressions in terms of μ, R, a, ω_{i}, and ω_{0} for:
(a) Torque transmitted, T
(b) Power transmitted
(c) Slip ratio, $s=\Delta \omega / \omega_{i}$, in terms of T
(d) Efficiency, η, in terms of Δ, w_{i}, and T

Solution: Apply Newton's law of viscosity
Basicequations: $\tau=\mu \frac{d u}{d y} \quad d F=\tau d A \quad d T=r d F$
Assumptions: (1) Newtonian liquid
(2) Narrow gap so velocity profile is linear

Consider a segment of plates:

$$
\begin{aligned}
& \tau=\mu \frac{d u}{d y}=\mu \frac{\Delta u}{\Delta y}=\mu \frac{r\left(\omega_{i}-\omega_{0}\right)}{a} \\
& d A=r d r d \theta
\end{aligned}
$$

End View

Bottom view

$$
d F=\tau d A=\frac{\mu r \Delta \omega}{a} r d r d v=\frac{\mu \Delta \omega}{a} r^{2} d r d \theta ; d T ; r d F=\frac{\mu \Delta \omega}{a} r^{3} d r d \theta
$$

Integrating

$$
\begin{aligned}
& T=\int_{0}^{2 \pi} \int_{0}^{R} d T=\frac{\mu \Delta \omega}{a} \int_{0}^{2 \pi} \int_{0}^{R} r^{3} d r d o=\frac{2 \pi \mu \Delta \omega}{a} \int_{0}^{R} r^{3} d r=\frac{\pi \mu \Delta \omega R^{4}}{2 a} \\
& P_{0}=T \omega_{0}=\frac{\pi \mu \omega_{0} \Delta \omega R^{4}}{2 a} \text { (owe rtransmitted) } \\
& A=\frac{\Delta \omega}{\omega_{i}}=\frac{2 a T}{\pi \mu R^{4} \omega_{i}} \\
& \text { Efficiency is } \eta=\frac{P_{0 \omega}}{P_{0 \omega} \text { our in }}=\frac{T \omega_{0}}{T \omega_{i}}=\frac{\omega_{0}}{\omega_{i}}, \text { But } \omega_{0}=\omega_{i}-\Delta \omega, \text { so } \\
& \eta=\frac{\omega_{i}-\Delta \omega}{\omega_{i}}=1-\frac{\Delta \omega}{\omega_{i}}=1-\infty
\end{aligned}
$$

Problem 2.65
Given: Concertric-chlinider viscometer shown When inner Cylinder rotates at angular speed w viscous retarding torque arises around circumference of inner cylinder and or cylinder

Find: (a) expression for viscous torque due to gap of width, a
to emprosion for viscous torque on baton due to gap of wide b
(c) For Tpotom /Tannulus 50.01 , plot ola us geometric variables.
(d) What are desani implications?

Problem 2.66

2.66 A conical pointed shaft turns in a conical bearing. The gap between shaft and bearing is filled with heavy oil having the viscosity of SAE 30 at $30^{\circ} \mathrm{C}$. Obtain an algebraic expression for the shear stress that acts on the surface of the conical shaft. Calculate the viscous torque that acts on the shaft.

Given: Conical bearing geometry
Find: Expression for shear stress; Viscous torque on shaft

Solution:

Basic equation $\quad \tau=\mu \cdot \frac{d u}{d y} \quad d T=r \cdot \tau \cdot d A \quad$ Infinitesimal shear torque
Assumptions: Newtonian fluid, linear velocity profile (in narrow clearance gap), no slip condition

$$
\begin{array}{ll}
\tan (\theta)=\frac{\mathrm{r}}{\mathrm{z}} & \text { so } \\
\text { Then } \quad \tau=\mu \cdot \frac{\mathrm{du}}{\mathrm{dy}}=\mu \cdot \frac{\Delta \mathrm{u}}{\Delta \mathrm{y}}=\mu \cdot \frac{(\omega \cdot \tan (\theta)}{(\mathrm{a}-0)}=\frac{\mu \cdot \omega \cdot \mathrm{z} \cdot \tan (\theta)}{\mathrm{a}}
\end{array}
$$

As we move up the device, shear stress increases linearly (because rate of shear strain does)
But from the sketch $\mathrm{dz}=\mathrm{ds} \cdot \cos (\theta)$

$$
\mathrm{dA}=2 \cdot \pi \cdot \mathrm{r} \cdot \mathrm{ds}=2 \cdot \pi \cdot \mathrm{r} \cdot \frac{\mathrm{dz}}{\cos (\theta)}
$$

The viscous torque on the element of area is

$$
\mathrm{dT}=\mathrm{r} \cdot \tau \cdot \mathrm{dA}=\mathrm{r} \cdot \frac{\mu \cdot \omega \cdot \mathrm{z} \cdot \tan (\theta)}{\mathrm{a}} \cdot 2 \cdot \pi \cdot \mathrm{r} \cdot \frac{\mathrm{dz}}{\cos (\theta)} \quad \mathrm{dT}=\frac{2 \cdot \pi \cdot \mu \cdot \omega \cdot \mathrm{z}^{3} \cdot \tan (\theta)^{3}}{\mathrm{a} \cdot \cos (\theta)} \cdot \mathrm{dz}
$$

Integrating and using limits $\mathrm{z}=\mathrm{H}$ and $\mathrm{z}=0 \quad \mathrm{~T}=\frac{\pi \cdot \mu \cdot \omega \cdot \tan (\theta)^{3} \cdot \mathrm{H}^{4}}{2 \cdot \mathrm{a} \cdot \cos (\theta)}$
Using given data, and $\quad \mu=0.2 \cdot \frac{N \cdot s}{\mathrm{~m}^{2}} \quad$ from Fig. A. 2
$\mathrm{T}=\frac{\pi}{2} \times 0.2 \cdot \frac{\mathrm{~N} \cdot \mathrm{~s}}{\mathrm{~m}^{2}} \times 75 \cdot \frac{\mathrm{rev}}{\mathrm{s}} \times \tan (30 \cdot \mathrm{deg})^{3} \times(0.025 \cdot \mathrm{~m})^{4} \times \frac{1}{0.2 \times 10^{-3} \cdot \mathrm{~m}} \times \frac{1}{\cos (30 \cdot \mathrm{deg})} \times \frac{2 \cdot \pi \cdot \mathrm{rad}}{\mathrm{rev}}$
$\mathrm{T}=0.0643 \cdot \mathrm{~N} \cdot \mathrm{~m}$

Problem 2.67
Given: Concentric - cylinder viscometer, liquid similar to water. Goal is to obtain ± 1 percent accuracy in viscosity value.
specify: Configuration and dimensions to achieve $\pm 1 \%$ measurement. Parameter to be measured to compute viscosity.

Solution: Apply definition of Newtonian fluid Computing equation: $\tau=\mu \frac{d u}{d y}$

Assumptions: (1) steady
(2) Newtonian liquid
(3) Narrow gap, so "unroll" it
(4) Linear velocity profile in gap

(5) Neglect end effects

$$
u=v \frac{y}{a}=\omega R \frac{y}{a} ; \frac{d u}{d y}=\frac{\omega R}{a}
$$

Thus $\tau=\mu \frac{d u}{d y}=\mu \frac{\omega R}{Q}$ and torque on rotor is $T=R \tau A$, where $A=2 \pi R H$ Consequently $T=R \mu \frac{\omega R}{a} 2 \pi R H=\frac{2 \pi \mu \omega R^{3} H}{a}$, or

$$
\mu=\frac{T a}{2 \pi \omega R^{3} H}
$$

From this equation the uncertainty in μ is (see Appendix F),

$$
u_{u}= \pm\left[u_{T}^{2}+u_{a}^{2}+u_{w}^{2}+\left(3 u_{R}\right)^{2}+u_{H}^{2}\right]^{\frac{1}{2}}= \pm\left[13 u^{2}\right]^{\frac{1}{2}}= \pm 3.61 u
$$

if the uncertainty of each parameter equals u. Thus

$$
u= \pm \frac{u_{\mu}}{3.61}= \pm \frac{1 \text { percent }}{3.61}= \pm 0.277 \text { percent }
$$

Typical dimensions for a bench-top unit might be

$$
H=200 \mathrm{~mm}, R=75 \mathrm{~mm}, a=0.02 \mathrm{~mm}, \text { and } \omega=10.5 \mathrm{rad} / \mathrm{s}(100 \mathrm{rpm})
$$

From Appendix A, Table A.8, water has $\mu=1.00 \times 10^{-3} \mathrm{~N} \cdot \mathrm{~s} / \mathrm{m}^{2}$ at $T=20^{\circ} \mathrm{C}$. The corresponding torque would be

$$
T=2 \pi_{\times} 1.00 \times 10^{-3} \frac{\mathrm{~N} .5}{\mathrm{~m}^{2}} \times \frac{10.5}{\mathrm{~s}} \times(0.075)^{3} \mathrm{~m}^{3} \times 0.2 \mathrm{~m}_{\times} \frac{1}{0.00002 \mathrm{~m}}=0.278 \mathrm{~N} \cdot \mathrm{~m}
$$

It should be possible to measure this torque quite accurately.
$\left\{\begin{array}{l}\text { Many details would need to be considered (e.g. bearings, temperature rise, } \\ \text { etc.) to produce a workable device. }\end{array}\right\}$

Problem 2.68
Given: Spherical thrust bearing shown:

Find: Obtain and plot an algebraic expression for the torque on the spherical member, as a function of α.

Solution: Apply definitions
Computing equations: $\tau=\mu \frac{d u}{d y} \quad T=\int_{A} r t d A$
Assumptions: (1) Newtonian fluid, (z) Narrow gap, (3) Laminar flow
From the figure, $r=R \sin \theta \quad u=\omega r=\omega R \sin \theta$

$$
\begin{aligned}
& \tau=\mu \frac{d u}{d y}=\mu\left(\frac{u-\theta}{h}\right)=\mu \frac{u}{h}=\mu \frac{\omega R \sin \theta}{h} \\
& d A=2 \pi r R d \theta=2 \pi R^{2} \sin \theta d \theta
\end{aligned}
$$

Thus

$$
\begin{aligned}
& T=\int_{0}^{\alpha} R \sin \theta\left(\frac{\mu \omega R \sin \theta}{h}\right) 2 \pi R^{2} \sin \theta d \theta=\frac{2 \pi \mu \omega R^{4}}{h} \int_{0}^{\alpha} \sin ^{3} \theta d \theta \\
& T=\frac{2 \pi \mu \omega R^{4}}{h}\left[\frac{\cos ^{3} \theta}{3}-\cos \theta\right]_{0}^{\alpha}=\frac{2 \pi \mu \omega R^{4}}{h}\left[\frac{\cos ^{3} \alpha}{3}-\cos \alpha+\frac{2}{3}\right]
\end{aligned}
$$

To plot, normalize to $\left[T / \frac{2 \pi \mu \omega R^{4}}{h}\right]=\left[\frac{\cos ^{3} \alpha}{3}-\cos \alpha+\frac{2}{3}\right]$

$$
\left\{\text { Check dimensions: }\left[\frac{\mu \omega R^{4}}{n}\right]=\frac{F_{t}}{L^{2}} \times \frac{1}{t} \times L^{4} \times \frac{1}{L}=F L v v\right\}
$$

2.69 A cross section of a rotating bearing is shown. The spherical member rotates with angular speed ω, a small distance, a, above the plane surface. The narrow gap is filled with viscous oil, having $\mu=1250 \mathrm{cp}$. Obtain an algebraic expression for the shear stress acting on the spherical member. Evaluate the maximum shear stress that acts on the spherical member for the conditions shown. (Is the maximum necessarily located at the maximum radius?) Develop an algebraic expression (in the form of an integral) for the total viscous shear torque that acts on the spherical member. Calculate the torque using the dimensions shown.

Given: Geometry of rotating bearing

Find: Expression for shear stress; Maximum shear stress; Expression for total torque; Total torque

Solution:

Basic equation $\quad \tau=\mu \cdot \frac{\mathrm{du}}{\mathrm{dy}} \quad \mathrm{dT}=\mathrm{r} \cdot \tau \cdot \mathrm{dA}$
Assumptions: Newtonian fluid, narrow clearance gap, laminar motion
From the figure $\quad r=R \cdot \sin (\theta) \quad u=\omega \cdot r=\omega \cdot R \cdot \sin (\theta) \quad \frac{d u}{d y}=\frac{u-0}{h}=\frac{u}{h}$

Then

$$
h=\mathrm{a}+\mathrm{R} \cdot(1-\cos (\theta)) \quad \mathrm{dA}=2 \cdot \pi \cdot \mathrm{r} \cdot \mathrm{dr}=2 \cdot \pi \mathrm{R} \cdot \sin (\theta) \cdot \mathrm{R} \cdot \cos (\theta) \cdot \mathrm{d} \theta
$$

$$
\tau=\mu \cdot \frac{d u}{d y}=\frac{\mu \cdot \omega \cdot R \cdot \sin (\theta)}{a+R \cdot(1-\cos (\theta))}
$$

To find the maximum τ set $\frac{d}{d \theta}\left[\frac{\mu \cdot \omega \cdot R \cdot \sin (\theta)}{a+R \cdot(1-\cos (\theta))}\right]=0 \quad$ so $\quad \frac{R \cdot \mu \cdot \omega \cdot(R \cdot \cos (\theta)-R+a \cdot \cos (\theta))}{(R+a-R \cdot \cos (\theta))^{2}}=0$

$$
\mathrm{R} \cdot \cos (\theta)-\mathrm{R}+\mathrm{a} \cdot \cos (\theta)=0 \quad \theta=\operatorname{acos}\left(\frac{\mathrm{R}}{\mathrm{R}+\mathrm{a}}\right)=\operatorname{acos}\left(\frac{75}{75+0.5}\right) \quad \theta=6.6 \cdot \mathrm{deg}
$$

$\tau=12.5 \cdot$ poise $\times 0.1 \cdot \frac{\frac{\mathrm{~kg}}{\mathrm{~m} \cdot \mathrm{~s}}}{\text { poise }} \times 2 \cdot \pi \cdot \frac{70}{60} \cdot \frac{\mathrm{rad}}{\mathrm{s}} \times 0.075 \cdot \mathrm{~m} \times \sin (6.6 \cdot \mathrm{deg}) \times \frac{1}{[0.0005+0.075 \cdot(1-\cos (6.6 \cdot \mathrm{deg}))] \cdot \mathrm{m}} \times \frac{\mathrm{N} \cdot \mathrm{s}^{2}}{\mathrm{~m} \cdot \mathrm{~kg}}$ $\tau=79.2 \cdot \frac{\mathrm{~N}}{\mathrm{~m}^{2}}$
The torque is $\quad T=\int r \cdot \tau \cdot A d \theta=\int_{0}^{\theta_{\max }} \frac{\mu \cdot \omega \cdot R^{4} \cdot \sin (\theta)^{2} \cdot \cos (\theta)}{a+R \cdot(1-\cos (\theta))} d \theta \quad$ where $\quad \theta_{\max }=\operatorname{asin}\left(\frac{R_{0}}{R}\right) \quad \theta_{\max }=15.5 \cdot d e g$

This integral is best evaluated numerically using Excel, Mathcad, or a good calculator $\quad \mathrm{T}=1.02 \times 10^{-3} \cdot \mathrm{~N} \cdot \mathrm{~m}$

Given: Small gas bubbles form in soda when opened; $D=0.1 \mathrm{~mm}$.
Find: Estimate pressure difference from inside to outside such a bubble.
Solution: consider a free-body diagram of half a bubble: Two forces act:

Pressure: $\quad F_{p}=\frac{\Delta p \pi D^{2}}{4}$

surface tension: $F_{\sigma}=\sigma \pi D$
summing forces for equilibrium

$$
\Sigma F_{x}=F_{p}-F_{\sigma}=\Delta p \frac{\pi D^{2}}{4}-\sigma \pi D=0
$$

so $\frac{\Delta p D}{4}-\sigma=0$ or $\Delta p=\frac{4 \sigma}{D}$
Assuming soda-gas interface is similar to water-air, then $\sigma=72.8 \mathrm{mN} / \mathrm{m}$, and

$$
\Delta p=4 \times 72.8 \times 10^{-3} \frac{\mathrm{~N}}{\mathrm{~m}} \times \frac{1}{0.1 \times 10^{-3} \mathrm{~m}}=2.91 \times 10^{3} \frac{\mathrm{~N}}{\mathrm{~m}^{2}}=2.91 \mathrm{kPa}
$$

Slowly fill a glass with water to the maximum possible level. Observe the water level closely. Explain how it can be higher than the rim of the glass.

Open-Ended Problem Statement: Slowly fill a glass with water to the maximum possible level before it overflows. Observe the water level closely. Explain how it can be higher than the rim of the glass.

Discussion: Surface tension can cause the maximum water level in a glass to be higher than the rim of the glass. The same phenomenon causes an isolated drop of water to "bead up" on a smooth surface.
Surface tension between the water/air interface and the glass acts as an invisible membrane that allows trapped water to rise above the level of the rim of the glass. The mechanism can be envisioned as forces that act in the surface of the liquid above the rim of the glass. Thus the water appears to defy gravity by attaining a level higher than the rim of the glass.
To experimentally demonstrate that this phenomenon is the result of surface tension, set the liquid level nearly as far above the glass rim as you can get it, using plain water. Add a drop of liquid detergent (the detergent contains additives that reduce the surface tension of water). Watch as the excess water runs over the side of the glass.
2.72 You intend to gently place several steel needles on the free surface of the water in a large tank. The needles come in two lengths: Some are 5 cm long, and some are 10 cm long. Needles of each length are available with diameters of $1 \mathrm{~mm}, 2.5 \mathrm{~mm}$, and 5 mm . Make a prediction as to which needles, if any, will float.

Given: Data on size of various needles
Find: Which needles, if any, will float

Solution:

For a steel needle of length L, diameter D, density ρ_{s}, to float in water with surface tension σ and contact angle θ, the vertical force due to surface tension must equal or exceed the weight

$$
2 \cdot \mathrm{~L} \cdot \sigma \cdot \cos (\theta) \geq \mathrm{W}=\mathrm{m} \cdot \mathrm{~g}=\frac{\pi \cdot \mathrm{D}^{2}}{4} \cdot \rho_{\mathrm{S}} \cdot \mathrm{~L} \cdot \mathrm{~g} \quad \text { or } \quad \mathrm{D} \leq \sqrt{\frac{8 \cdot \sigma \cdot \cos (\theta)}{\pi \cdot \rho_{\cdot} \cdot g}}
$$

From Table A. $4 \quad \sigma=72.8 \times 10^{-3} \cdot \frac{\mathrm{~N}}{\mathrm{~m}} \quad \theta=0 \cdot \mathrm{deg} \quad$ and for water $\quad \rho=1000 \cdot \frac{\mathrm{~kg}}{\mathrm{~m}^{3}}$
From Table A.1, for steel \quad SG $=7.83$
Hence $\quad \sqrt{\frac{8 \cdot \sigma \cdot \cos (\theta)}{\pi \cdot S G \cdot \rho \cdot g}}=\sqrt{\frac{8}{\pi \cdot 7.83} \times 72.8 \times 10^{-3} \cdot \frac{\mathrm{~N}}{\mathrm{~m}} \times \frac{\mathrm{m}^{3}}{999 \cdot \mathrm{~kg}} \times \frac{\mathrm{s}^{2}}{9.81 \cdot \mathrm{~m}} \times \frac{\mathrm{kg} \cdot \mathrm{m}}{\mathrm{N} \cdot \mathrm{s}^{2}}}=1.55 \times 10^{-3} \cdot \mathrm{~m}=1.55 \cdot \mathrm{~mm}$
Hence $D<1.55 \mathrm{~mm}$. Only the 1 mm needles float (needle length is irrelevant)

Plan an experiment to measure the surface tension of a liquid similar to water. If necessary, review the NCFMF video Surface Tension for ideas. Which method would be most suitable for use in an undergraduate laboratory? What experimental precision could be expected?

Open-Ended Problem Statement: Plan an experiment to measure the surface tension of a liquid similar to water. If necessary, review the NCFMF video Surface Tension for ideas. Which method would be most suitable for use in an undergraduate laboratory? What experimental precision could be expected?

Discussion: Two basic kinds of experiment are possible for an undergraduate laboratory:

1. Using a clear small-diameter tube, compare the capillary rise of the unknown liquid with that of a known liquid (compare with water, because it is similar to the unknown liquid).

This method would be simple to set up and should give fairly accurate results. A vertical traversing optical microscope could be used to increase the precision of measuring the liquid height in each tube.

A drawback to this method is that the specific gravity and co ntact angle of the two liquids must be the same to allow the capillary rises to be compared.

The capillary rise would be largest and therefore easiest to measure accurately in a tube with the smallest practical diameter. Tubes of several diameters could be used if desired.
2. Dip an object into a pool of test liquid and measure the vertical force required to pull the object from the liquid surface.

The object might be made rectangular (e.g., a sheet of plastic material) or circular (e.g., a metal ring). The net force needed to pull the same object from each liquid should be proportional to the surface tension of each liquid.

This method would be simple to set up. However, the force magnitudes to be measured would be quite small.

A drawback to this method is that the contact angles of the two liquids must be the same.
The first method is probably best for undergraduate laboratory use. A quantitative estimate of experimental measurement uncertainty is impossible without knowing details of the test setup. It might be reasonable to expect results accurate to within $\pm 10 \%$ of the true surface tension.

[^0]Given: Water, with bulk modulus assumed constant.
Find: (a) Percent change in density at 100 atm
(b) Plot percent change vs, phpatm up to 50,000 psi.
(a) comment on assumption of const ant de nisity.

Solution: By definition, $E_{v}=\frac{d p}{d p / p}$. Assume $E_{v}=$ constant. Then

$$
\frac{d \rho}{\rho}=\frac{d p}{E_{v}}
$$

Integrating, from p_{0} to f gives $\ln \frac{\rho}{\rho_{0}}=\frac{p-p_{0}}{\epsilon_{v}}=\frac{\Delta p}{E_{v}}$, so $\frac{\rho}{\rho_{0}}=e^{\Delta p / E_{v}}$ The relative change in density is

$$
\frac{\Delta \rho}{\rho_{0}}=\frac{\rho-f_{0}}{\rho_{0}}=\frac{\rho}{\rho_{0}}-1=e^{\Delta p / E_{v}-1}
$$

From Table $A, I, \varepsilon_{2}=2.24 \mathrm{GPa}$ for water at $20^{\circ} \mathrm{C}$.
For $p=100 \mathrm{~atm}$ (gage), $\Delta p=100 \mathrm{~atm}$, so

$$
\frac{\Delta \rho}{\rho_{0}}=\exp \left(100 \mathrm{~atm} \times \frac{1}{2.24 \times 10^{7} \mathrm{~Pa}} \times 101.325 \times 10^{3} \frac{\mathrm{pa}}{2 \mathrm{tm}}\right)-1=0.00453, \text { or } 0.453 \%
$$

For $\Delta p=50,000 p s i$,

$$
\frac{\Delta \varphi}{\rho_{0}}=\exp \left(50,000 \mathrm{psi} \times \frac{1}{2.24 \times 10^{9} \mathrm{pa}} \times \frac{101.325 \times 10^{3} \mathrm{pa}}{14.696 \mathrm{psi}}\right)-1=0.166 \text { or } 116.6 \%
$$

Thus constant density is not a reasonable assumption for a cutting jet operating at 50,000 psi. Constant density (5% change) would be reasonable up to $\Delta p \approx 16,000$ psi.

Problem 2.75

2.75 The viscous boundary layer velocity profile shown in Fig.
2.15 can be approximated by a parabolic equation,

$$
u(y)=a+b\left(\frac{y}{\delta}\right)+c\left(\frac{y}{\delta}\right)^{2}
$$

The boundary condition is $u=U$ (the free stream velocity) at the boundary edge δ (where the viscous friction becomes zero). Find the values of a, b, and c.

Given: Boundary layer velocity profile in terms of constants a, b and c
Find: Constants a, b and c

Solution:

Basic equation $\quad u=a+b \cdot\left(\frac{\mathrm{y}}{\delta}\right)+\mathrm{c} \cdot\left(\frac{\mathrm{y}}{\delta}\right)^{2}$
Assumptions: No slip, at outer edge $\mathrm{u}=\mathrm{U}$ and $\tau=0$
At $\mathrm{y}=0$

$$
0=\mathrm{a}
$$

$$
\mathrm{a}=0
$$

At $y=\delta$

$$
\begin{equation*}
U=a+b+c \tag{1}
\end{equation*}
$$

$$
\mathrm{b}+\mathrm{c}=\mathrm{U}
$$

At $y=\delta$

$$
\tau=\mu \cdot \frac{d u}{d v}=0
$$

$$
\begin{equation*}
0=\frac{\mathrm{d}}{\mathrm{dy}} \mathrm{a}+\mathrm{b} \cdot\left(\frac{\mathrm{y}}{\delta}\right)+\mathrm{c} \cdot\left(\frac{\mathrm{y}}{\delta}\right)^{2}=\frac{\mathrm{b}}{\delta}+2 \cdot \mathrm{c} \cdot \frac{\mathrm{y}}{\delta^{2}}=\frac{\mathrm{b}}{\delta}+2 \cdot \frac{\mathrm{c}}{\delta} \quad \mathrm{~b}+2 \cdot \mathrm{c}=0 \tag{2}
\end{equation*}
$$

From 1 and 2
$\mathrm{c}=-\mathrm{U}$
$\mathrm{b}=2 \cdot \mathrm{U}$

Hence

$$
\mathrm{u}=2 \cdot \mathrm{U} \cdot\left(\frac{\mathrm{y}}{\delta}\right)-\mathrm{U} \cdot\left(\frac{\mathrm{y}}{\delta}\right)^{2} \quad \frac{\mathrm{u}}{\mathrm{U}}=2 \cdot\left(\frac{\mathrm{y}}{\delta}\right)-\left(\frac{\mathrm{y}}{\delta}\right)^{2}
$$

Problem 2.76

2.76 The viscous boundary layer velocity profile shown in Fig.
2.15 can be approximated by a cubic equation,

$$
u(y)=a+b\left(\frac{y}{\delta}\right)+c\left(\frac{y}{\delta}\right)^{3}
$$

The boundary condition is $u=U$ (the free stream velocity) at the boundary edge δ (where the viscous friction becomes zero). Find the values of a, b, and c.

Given: Boundary layer velocity profile in terms of constants a, b and c
Find: Constants a, b and c

Solution:

Basic equation $\quad u=a+b \cdot\left(\frac{y}{\delta}\right)+c \cdot\left(\frac{y}{\delta}\right)^{3}$
Assumptions: No slip, at outer edge $\mathrm{u}=\mathrm{U}$ and $\tau=0$
At $\mathrm{y}=0$

$$
0=\mathrm{a}
$$

$$
\mathrm{a}=0
$$

At $\mathrm{y}=\delta$

$$
\begin{equation*}
\mathrm{U}=\mathrm{a}+\mathrm{b}+\mathrm{c} \tag{1}
\end{equation*}
$$

$$
b+c=U
$$

At $\mathrm{y}=\delta$

$$
\tau=\mu \cdot \frac{\mathrm{du}}{\mathrm{dy}}=0
$$

$$
\begin{equation*}
0=\frac{\mathrm{d}}{\mathrm{dy}} \mathrm{a}+\mathrm{b} \cdot\left(\frac{\mathrm{y}}{\delta}\right)+\mathrm{c} \cdot\left(\frac{\mathrm{y}}{\delta}\right)^{3}=\frac{\mathrm{b}}{\delta}+3 \cdot \mathrm{c} \cdot \frac{\mathrm{y}^{2}}{\delta^{3}}=\frac{\mathrm{b}}{\delta}+3 \cdot \frac{\mathrm{c}}{\delta} \quad \mathrm{~b}+3 \cdot \mathrm{c}=0 \tag{2}
\end{equation*}
$$

From 1 and 2

$$
\mathrm{c}=-\frac{\mathrm{U}}{2} \quad \mathrm{~b}=\frac{3}{2} \cdot \mathrm{U}
$$

Hence

$$
\mathrm{u}=\frac{3 \cdot \mathrm{U}}{2} \cdot\left(\frac{\mathrm{y}}{\delta}\right)-\frac{\mathrm{U}}{2} \cdot\left(\frac{\mathrm{y}}{\delta}\right)^{3} \quad \frac{\mathrm{u}}{\mathrm{U}}=\frac{3}{2} \cdot\left(\frac{\mathrm{y}}{\delta}\right)-\frac{1}{2} \cdot\left(\frac{\mathrm{y}}{\delta}\right)^{3}
$$

2.77 At what minimum speed (in mph) would an automobile have to travel for compressibility effects to be important? Assume the local air temperature is $60^{\circ} \mathrm{F}$.

Given: Local temperature

Find: Minimum speed for compressibility effects

Solution:

Basic equation

$$
\begin{array}{ll}
\mathrm{V}=\mathrm{M} \cdot \mathrm{c} \quad \text { and } & \mathrm{M}=0.3 \quad \text { for compressibility effects } \\
\mathrm{c}=\sqrt{\mathrm{k} \cdot \mathrm{R} \cdot \mathrm{~T}} & \text { For air at } \mathrm{STP}, \mathrm{k}=1.40 \text { and } \mathrm{R}=286.9 \mathrm{~J} / \mathrm{kg} \cdot \mathrm{~K}\left(53.33 \mathrm{ft} . \mathrm{lbf} / \mathrm{lbm}{ }^{\circ} \mathrm{R}\right) .
\end{array}
$$

$$
\text { Hence } \quad \mathrm{V}=\mathrm{M} \cdot \mathrm{c}=\mathrm{M} \cdot \sqrt{\mathrm{k} \cdot \mathrm{R} \cdot \mathrm{~T}}
$$

$$
\mathrm{V}=0.3 \times\left[1.4 \times 53.33 \cdot \frac{\mathrm{ft} \cdot \mathrm{lbf}}{\mathrm{lbm} \cdot \mathrm{R}} \times \frac{32.2 \cdot \mathrm{lbm} \cdot \mathrm{ft}}{\mathrm{lbf} \cdot \mathrm{~s}^{2}} \times(60+460) \cdot \mathrm{R}\right]^{\frac{1}{2}} \cdot \frac{60 \cdot \mathrm{mph}}{88 \cdot \frac{\mathrm{ft}}{\mathrm{~s}}} \quad \mathrm{~V}=229 \cdot \mathrm{mph}
$$

Problem 2.78

2.78 Water flows through a $1-\mathrm{in}$. ID garden hose at a rate of $0.075 \mathrm{ft}^{3} / \mathrm{min}$. A 5 -in.-long, cone-shaped nozzle is attached to the hose to accelerate the flow. If the nozzle reduces the flow area by a factor of 4 , at what distance from the inlet of the nozzle does the flow become turbulent? Assume the water temperature is $60^{\circ} \mathrm{F}$.

NOTE: Flow rate should be $\quad 0.75 \cdot \frac{\mathrm{ft}^{3}}{\mathrm{~min}}$

Given: Geometry of and flow rate through garden hose
Find: At which point becomes turbulent

Solution:

Basic equation

$$
\begin{array}{ll}
\text { For pipe flow (Section 2-6) } & \mathrm{Re}=\frac{\rho \cdot \mathrm{V} \cdot \mathrm{D}}{\mu}=2300 \quad \text { for transition to turbulence } \\
\text { Also flow rate } \mathrm{Q} \text { is given by } & \mathrm{Q}=\frac{\pi \cdot \mathrm{D}^{2}}{4} \cdot \mathrm{~V}
\end{array}
$$

We can combine these equations and eliminate V to obtain an expression for Re in terms of D

$$
\mathrm{Re}=\frac{\rho \cdot \mathrm{V} \cdot \mathrm{D}}{\mu}=\frac{\rho \cdot \mathrm{D}}{\mu} \cdot \frac{4 \cdot \mathrm{Q}}{\pi \cdot \mathrm{D}^{2}}=\frac{4 \cdot \mathrm{Q} \cdot \rho}{\pi \cdot \mu \cdot \mathrm{D}}=2300
$$

Hence

$$
\mathrm{D}=\frac{4 \cdot \mathrm{Q} \cdot \rho}{2300 \cdot \pi \cdot \mu} \quad \text { From Appendix A: } \quad \rho=1.94 \cdot \frac{\operatorname{slug}}{\mathrm{ft}^{3}} \quad \text { (Approximately) }
$$

$\mu=1.25 \times 10^{-3} \cdot \frac{\mathrm{~N} \cdot \mathrm{~s}}{\mathrm{~m}^{2}} \times \frac{0.209 \cdot \frac{\mathrm{lbf} \cdot \mathrm{s}}{\mathrm{ft}^{2}}}{1 \cdot \frac{\mathrm{~N} \cdot \mathrm{~s}}{\mathrm{~m}^{2}}}$
(Approximately, from

$$
\mu=2.61 \times 10^{-4} \cdot \frac{\mathrm{lbf} \cdot \mathrm{~s}}{\mathrm{ft}^{2}}
$$

Hence

$$
\mathrm{D}=\frac{4}{2300 \cdot \pi} \times \frac{0.75 \cdot \mathrm{ft}^{3}}{\min } \times \frac{1 \cdot \mathrm{~min}}{60 \cdot \mathrm{~s}} \times \frac{1.94 \cdot \mathrm{slug}}{\mathrm{ft}^{3}} \times \frac{\mathrm{ft}^{2}}{2.61 \cdot 10^{-4} \cdot \mathrm{lbf} \cdot \mathrm{~s}} \times \frac{\mathrm{lbf} \cdot \mathrm{~s}^{2}}{\mathrm{slug} \cdot \mathrm{ft}} \times \frac{12 \cdot \mathrm{in}}{1 \cdot \mathrm{ft}} \quad \mathrm{D}=0.617 \cdot \mathrm{in}
$$

NOTE: For wrong flow
The nozzle is tapered: $D_{\text {in }}=1 \cdot$ in $\quad D_{\text {out }}=\frac{D_{\text {in }}}{\sqrt{4}} \quad D_{\text {out }}=0.5 \cdot$ in $\quad L=5 \cdot$ in rate, will be 1/10th of this!

Linear ratios leads to the distance from $D_{\text {in }}$ at which $D=0.617$ in

$$
\frac{L_{\text {turb }}}{\mathrm{L}}=\frac{\mathrm{D}-\mathrm{D}_{\text {in }}}{\mathrm{D}_{\text {out }}-\mathrm{D}_{\text {in }}}
$$

$$
\mathrm{L}_{\text {turb }}=\mathrm{L} \cdot \frac{\mathrm{D}-\mathrm{D}_{\text {in }}}{\mathrm{D}_{\text {out }}-\mathrm{D}_{\text {in }}} \quad \quad \mathrm{L}_{\text {turb }}=3.83 \cdot \text { in }
$$

NOTE: For wrong flow rate, this does not apply! Flow will not become turbulent.

Problem 2.79

2.79 A supersonic aircraft travels at $2700 \mathrm{~km} / \mathrm{hr}$ at an altitude of 27 km . What is the Mach number of the aircraft? At what approximate distance measured from the leading edge of the aircraft's wing does the boundary layer change from laminar to turbulent?

Given: Data on supersonic aircraft
Find: Mach number; Point at which boundary layer becomes turbulent

Solution:

Basic equation $\quad V=M \cdot c \quad$ and $\quad c=\sqrt{\mathrm{k} \cdot \mathrm{R} \cdot \mathrm{T}} \quad$ For air at $\mathrm{STP}, \mathrm{k}=1.40$ and $\mathrm{R}=286.9 \mathrm{~J} / \mathrm{kg} \cdot \mathrm{K}\left(53.33 \mathrm{ft} . \mathrm{lbf} / \mathrm{lbm}{ }^{\circ} \mathrm{R}\right)$.

Hence

$$
\mathrm{M}=\frac{\mathrm{V}}{\mathrm{c}}=\frac{\mathrm{V}}{\sqrt{\mathrm{k} \cdot \mathrm{R} \cdot \mathrm{~T}}}
$$

At 27 km the temperature is approximately (from Table A.3) $\quad \mathrm{T}=223.5 \cdot \mathrm{~K}$

$$
\mathrm{M}=\left(2700 \times 10^{3} \cdot \frac{\mathrm{~m}}{\mathrm{hr}} \times \frac{1 \cdot \mathrm{hr}}{3600 \cdot \mathrm{~s}}\right) \cdot\left(\frac{1}{1.4} \times \frac{1}{286.9} \cdot \frac{\mathrm{~kg} \cdot \mathrm{~K}}{\mathrm{~N} \cdot \mathrm{~m}} \times \frac{1 \cdot \mathrm{~N} \cdot \mathrm{~s}^{2}}{\mathrm{~kg} \cdot \mathrm{~m}} \times \frac{1}{223.5} \cdot \frac{1}{\mathrm{~K}}\right)^{\frac{1}{2}} \quad \mathrm{M}=2.5
$$

For boundary layer transition, from Section 2-6 $\quad \mathrm{Re}_{\text {trans }}=500000$

Then

$$
\text { Re }_{\text {trans }}=\frac{\rho \cdot \mathrm{V} \cdot \mathrm{x}_{\text {trans }}}{\mu} \quad \text { so } \quad \mathrm{x}_{\text {trans }}=\frac{\mu \cdot \mathrm{Re}_{\text {trans }}}{\rho \cdot \mathrm{V}}
$$

We need to find the viscosity and density at this altitude and pressure. The viscosity depends on temperature only, but at $223.5 \mathrm{~K}=-50^{\circ} \mathrm{C}$: it is off scale of Fig. A.3. Instead we need to use formulas as in Appendix A

At this altitude the density is (Table A.3)

$$
\rho=0.02422 \times 1.225 \cdot \frac{\mathrm{~kg}}{\mathrm{~m}^{3}} \quad \rho=0.0297 \frac{\mathrm{~kg}}{\mathrm{~m}^{3}}
$$

For μ

$$
\begin{array}{ll}
\mu=\frac{\mathrm{b} \cdot \mathrm{~T}^{\frac{1}{2}}}{1+\frac{\mathrm{S}}{\mathrm{~T}}} \quad \text { where } & \mathrm{b}=1.458 \times 10^{-6} \cdot \frac{\mathrm{~m}^{\mathrm{s}}}{\mathrm{~kg}} \\
\mu=1.459 \times 10^{-5} \frac{\mathrm{~kg}}{\mathrm{~m} \cdot \mathrm{~s}} & \mu=1.459 \times 10^{-5} \cdot \frac{\mathrm{~N} \cdot \mathrm{~s}}{\mathrm{~m}^{2}}
\end{array}
$$

Hence

$$
\mathrm{x}_{\text {trans }}=1.459 \times 10^{-5} \cdot \frac{\mathrm{~kg}}{\mathrm{~m} \cdot \mathrm{~s}} \times 500000 \times \frac{1}{0.0297} \cdot \frac{\mathrm{~m}^{3}}{\mathrm{~kg}} \times \frac{1}{2700} \times \frac{1}{10^{3}} \cdot \frac{\mathrm{hr}}{\mathrm{~m}} \times \frac{3600 \cdot \mathrm{~s}}{1 \cdot \mathrm{hr}} \quad \mathrm{x}_{\text {trans }}=0.327 \mathrm{~m}
$$

2.80 What is the Reynolds number of water at $20^{\circ} \mathrm{C}$ flowing at $0.25 \mathrm{~m} / \mathrm{s}$ through a $5-\mathrm{mm}$-diameter tube? If the pipe is now heated, at what mean water temperature will the flow transition to turbulence? Assume the velocity of the flow remains constant.

Given: Data on water tube
Find: Reynolds number of flow; Temperature at which flow becomes turbulent

Solution:

Basic equation \quad For pipe flow (Section 2-6) $\quad \operatorname{Re}=\frac{\rho \cdot \mathrm{V} \cdot \mathrm{D}}{\mu}=\frac{\mathrm{V} \cdot \mathrm{D}}{\nu}$

At $20^{\circ} \mathrm{C}$, from Fig. A. $3 \quad v=9 \times 10^{-7} \cdot \frac{\mathrm{~m}^{2}}{\mathrm{~s}} \quad$ and so $\quad \operatorname{Re}=0.25 \cdot \frac{\mathrm{~m}}{\mathrm{~s}} \times 0.005 \cdot \mathrm{~m} \times \frac{1}{9 \times 10^{-7}} \cdot \frac{\mathrm{~s}}{\mathrm{~m}^{2}} \quad \mathrm{Re}=1389$
For the heated pipe $\quad \operatorname{Re}=\frac{\mathrm{V} \cdot \mathrm{D}}{\nu}=2300 \quad$ for transition to turbulence
Hence $\quad \nu=\frac{\mathrm{V} \cdot \mathrm{D}}{2300}=\frac{1}{2300} \times 0.25 \cdot \frac{\mathrm{~m}}{\mathrm{~s}} \times 0.005 \cdot \mathrm{~m} \quad \nu=5.435 \times 10^{-7} \frac{\mathrm{~m}^{2}}{\mathrm{~s}}$
From Fig. A.3, the temperature of water at this viscosity is approximately $\mathrm{T}=52 \cdot \mathrm{C}$

Problem 2.81

2.81 SAE 30 oil at $100^{\circ} \mathrm{C}$ flows through a 12 -mm-diameter stainless-steel tube. What is the specific gravity and specific weight of the oil? If the oil discharged from the tube fills a $100-\mathrm{mL}$ graduated cylinder in 9 seconds, is the flow laminar or turbulent?

Given: Type of oil, flow rate, and tube geometry
Find: Whether flow is laminar or turbulent

Solution:

Data on SAE 30 oil SG or density is limited in the Appendix. We can Google it or use the following

$$
\nu=\frac{\mu}{\rho} \quad \text { so } \quad \rho=\frac{\mu}{\nu}
$$

At $100^{\circ} \mathrm{C}$, from Figs. A. 2 and A. $3 \quad \mu=9 \times 10^{-3} \cdot \frac{\mathrm{~N} \cdot \mathrm{~s}}{\mathrm{~m}^{2}} \quad \nu=1 \times 10^{-5} \cdot \frac{\mathrm{~m}^{2}}{\mathrm{~s}}$

$$
\rho=9 \times 10^{-3} \cdot \frac{\mathrm{~N} \cdot \mathrm{~s}}{\mathrm{~m}^{2}} \times \frac{1}{1 \times 10^{-5}} \cdot \frac{\mathrm{~s}}{\mathrm{~m}^{2}} \times \frac{\mathrm{kg} \cdot \mathrm{~m}}{\mathrm{~s}^{2} \cdot \mathrm{~N}} \quad \rho=900 \frac{\mathrm{~kg}}{\mathrm{~m}^{3}}
$$

Hence

$$
\mathrm{SG}=\frac{\rho}{\rho_{\text {water }}} \quad \rho_{\text {water }}=1000 \cdot \frac{\mathrm{~kg}}{\mathrm{~m}^{3}}
$$

$$
\mathrm{SG}=0.9
$$

The specific weight is

$$
\gamma=\rho \cdot g
$$

$\gamma=900 \cdot \frac{\mathrm{~kg}}{\mathrm{~m}^{3}} \times 9.81 \cdot \frac{\mathrm{~m}}{\mathrm{~s}^{2}} \times \frac{\mathrm{N} \cdot \mathrm{s}^{2}}{\mathrm{~kg} \cdot \mathrm{~m}}$
$\gamma=8.829 \times 10^{3} \cdot \frac{\mathrm{~N}}{\mathrm{~m}^{3}}$

For pipe flow (Section 2-6)

$$
\mathrm{Q}=100 \cdot \mathrm{~mL} \times \frac{10^{-6} \cdot \mathrm{~m}^{3}}{1 \cdot \mathrm{~mL}} \times \frac{1}{9} \cdot \frac{1}{\mathrm{~s}}
$$

$$
\mathrm{Q}=1.111 \times 10^{-5} \frac{\mathrm{~m}^{3}}{\mathrm{~s}}
$$

Then

$$
\mathrm{Q}=\frac{\pi \cdot \mathrm{D}^{2}}{4} \cdot \mathrm{~V} \quad \text { so } \quad \mathrm{V}=\frac{4 \cdot \mathrm{Q}}{\pi \cdot \mathrm{D}^{2}}
$$

$$
\mathrm{V}=\frac{4}{\pi} \times 1.11 \times 10^{-5} \cdot \frac{\mathrm{~m}^{3}}{\mathrm{~s}} \times\left(\frac{1}{12} \cdot \frac{1}{\mathrm{~mm}} \times \frac{1000 \cdot \mathrm{~mm}}{1 \cdot \mathrm{~m}}\right)^{2}
$$

$$
\mathrm{V}=0.0981 \frac{\mathrm{~m}}{\mathrm{~s}}
$$

Hence

$$
\operatorname{Re}=\frac{\rho \cdot \mathrm{V} \cdot \mathrm{D}}{\mu}
$$

$$
\operatorname{Re}=900 \cdot \frac{\mathrm{~kg}}{\mathrm{~m}^{3}} \times 0.0981 \cdot \frac{\mathrm{~m}}{\mathrm{~s}} \times 0.012 \cdot \mathrm{~m} \times \frac{1}{9 \times 10^{-3}} \cdot \frac{\mathrm{~m}^{2}}{\mathrm{~N} \cdot \mathrm{~s}} \times \frac{\mathrm{N} \cdot \mathrm{~s}^{2}}{\mathrm{~kg} \cdot \mathrm{~m}} \quad \mathrm{Re}=118
$$

Flow is laminar

Problem 2.82

2.82 A seaplane is flying at 100 mph through air at $45^{\circ} \mathrm{F}$. At what distance from the leading edge of the underside of the fuselage does the boundary layer transition to turbulence? How does this boundary layer transition change as the underside of the fuselage touches the water during landing? Assume the water temperature is also $45^{\circ} \mathrm{F}$.

Given: Data on seaplane
Find: Transition point of boundary layer

Solution:

For boundary layer transition, from Section 2-6 $\quad \mathrm{Re}_{\text {trans }}=500000$

Then

At $45^{\circ} \mathrm{F}=7.2^{\circ} \mathrm{C}$ (Fig A.3)

$$
\begin{array}{ll}
\mathrm{Re}_{\text {trans }}=\frac{\rho \cdot \mathrm{V} \cdot \mathrm{x}_{\text {trans }}}{\mu}=\frac{\mathrm{V} \cdot \mathrm{x}_{\text {trans }}}{\nu} \quad \text { so } \quad \mathrm{x}_{\text {trans }}=\frac{\nu \cdot \mathrm{Re}_{\text {trans }}}{\mathrm{V}} \\
\nu=0.8 \times 10^{-5} \cdot \frac{\mathrm{~m}^{2}}{\mathrm{~s}} \times \frac{10.8 \cdot \frac{\mathrm{ft}^{2}}{\mathrm{~s}}}{1 \cdot \frac{\mathrm{~m}^{2}}{\mathrm{~s}}} & \nu=8.64 \times 10^{-5} \cdot \frac{\mathrm{ft}^{2}}{\mathrm{~s}} \\
\mathrm{x}_{\text {trans }}=8.64 \times 10^{-5} \cdot \frac{\mathrm{ft}^{2}}{\mathrm{~s}} \cdot 500000 \times \frac{1}{100 \cdot \mathrm{mph}} \times \frac{60 \cdot \mathrm{mph}}{88 \cdot \frac{\mathrm{ft}}{\mathrm{~s}}} \quad \quad \mathrm{x}_{\text {trans }}=0.295 \cdot \mathrm{ft}
\end{array}
$$

As the seaplane touches down:

At $45^{\circ} \mathrm{F}=7.2^{\circ} \mathrm{C}$ (Fig A.3)

$$
\begin{array}{ll}
\nu=1.5 \times 10^{-5} \cdot \frac{\mathrm{~m}^{2}}{\mathrm{~s}} \times \frac{10.8 \cdot \frac{\mathrm{ft}^{2}}{\mathrm{~s}}}{1 \cdot \frac{\mathrm{~m}^{2}}{\mathrm{~s}}} \\
\mathrm{x}_{\text {trans }}=1.62 \times 10^{-4} \cdot \frac{\mathrm{ft}^{2}}{\mathrm{~s}} \cdot 500000 \times \frac{1}{100 \cdot \mathrm{mph}} \times \frac{60 \cdot \mathrm{mph}}{88 \cdot \frac{\mathrm{ft}}{\mathrm{~s}}} \quad v=1.62 \times 10^{-4} \cdot \frac{\mathrm{ft}^{2}}{\mathrm{~s}}
\end{array}
$$

2.83 An airliner is cruising at an altitude of 5.5 km with a speed of $700 \mathrm{~km} / \mathrm{hr}$. As the airliner increases its altitude, it adjusts its speed so that the Mach number remains constant. Provide a sketch of speed vs. altitude. What is the speed of the airliner at an altitude of 8 km ?

Given:	Data on airliner
Find:	Sketch of speed versus altitude ($\mathrm{M}=$ const)
Solution:	

Data on temperature versus height can be obtained from Table A. 3
At 5.5 km the temperature is approximate 252 K
The speed of sound is obtained from $_{C}=\sqrt{k \cdot R \cdot T}$
where

$$
\begin{array}{rlrl}
k & =1.4 \\
R & =286.9 & \mathrm{~J} / \mathrm{kg} . \\
c & =318 & \mathrm{~m} / \mathrm{s}
\end{array}
$$

$$
R=286.9 \quad \mathrm{~J} / \mathrm{kg} \cdot \mathrm{~K} \quad \text { (Table A.6) }
$$

We also have

$$
V=700 \quad \mathrm{~km} / \mathrm{hr}
$$

or $\quad V=194 \quad \mathrm{~m} / \mathrm{s}$
Hence $M=V / c$ or

$$
M=0.611
$$

To compute V for constant M, we use $\quad V=M \cdot c=0.611 \cdot c$
At a height of $8 \mathrm{~km} \quad V=677 \quad \mathrm{~km} / \mathrm{hr}$
NOTE: Realistically, the aiplane will fly to a maximum height of about 10 km !

z (km)	T (K)	c (m/s)	V (km/hr)
4	262	325	713
5	259	322	709
5	256	320	704
6	249	316	695
7	243	312	686
8	236	308	677
9	230	304	668
10	223	299	658
11	217	295	649
12	217	295	649
13	217	295	649
14	217	295	649
15	217	295	649
16	217	295	649
17	217	295	649
18	217	295	649
19	217	295	649
20	217	295	649
22	219	296	651
24	221	298	654
26	223	299	657
28	225	300	660
30	227	302	663
40	250	317	697
50	271	330	725
60	256	321	705
70	220	297	653
80	181	269	592
90	181	269	592

How does an airplane wing develop lift?

Open-Ended Problem Statement: How does an airplane wing develop lift?
Discussion: The sketch shows the cross-section of a typical airplane wing. The airfoil section is rounded at the front, curved across the top, reaches maximum thickness about a third of the way back, and then tapers slowly to a fine trailing edge. The bottom of the airfoil section is relatively flat. (The discussion below also applies to a symmetric airfoil at an angle of incidence that produces lift.)

NACA 2412 Wing Section

It is both a popular expectation and an experimental fact that air flows more rapidly over the curved top surface of the airfoil section than along the relatively flat bottom. In the NCFMF video Flow Visualization, timelines placed in front of the airfoil indicate that fluid flows more rapidly along the top of the section than along the bottom.

In the absence of viscous effects (this is a valid assumption outside the boundary layers on the airfoil) pressure falls when flow speed increases. Thus the pressures on the top surface of the airfoil where flow speed is higher are lower than the pressures on the bottom surface where flow speed does not increase. (Actual pressure profiles measured for a lifting section are shown in the NCFMF video Boundary Layer Control.) The unbalanced pressures on the top and bottom surfaces of the airfoil section create a net force that tends to develop lift on the profile.
3.1 Compressed nitrogen is stored in a spherical tank of diameter $D=0.75 \mathrm{~m}$. The gas is at an absolute pressure of 25 MPa and a temperature of $25^{\circ} \mathrm{C}$. What is the mass in the tank? If the maximum allowable wall stress in the tank is 210 MPa , find the minimum theoretical wall thickness of the tank.

Given: Data on nitrogen tank
Find: Mass of nitrogen; minimum required wall thickness

Solution:

Assuming ideal gas behavior:

$$
\mathrm{p} \cdot \mathrm{~V}=\mathrm{M} \cdot \mathrm{R} \cdot \mathrm{~T}
$$

where, from Table A.6, for nitrogen

$$
\mathrm{R}=297 \cdot \frac{\mathrm{~J}}{\mathrm{~kg} \cdot \mathrm{~K}}
$$

Then the mass of nitrogen is

$$
\begin{aligned}
& M=\frac{p \cdot V}{R \cdot T}=\frac{p}{R \cdot T} \cdot\left(\frac{\pi \cdot \mathrm{D}^{3}}{6}\right) \\
& M=\frac{25 \cdot 10^{6} \cdot \mathrm{~N}}{\mathrm{~m}^{2}} \times \frac{\mathrm{kg} \cdot \mathrm{~K}}{297 \cdot \mathrm{~J}} \times \frac{1}{298 \cdot \mathrm{~K}} \times \frac{\mathrm{J}}{\mathrm{~N} \cdot \mathrm{~m}} \times \frac{\pi \cdot(0.75 \cdot \mathrm{~m})^{3}}{6} \\
& M=62.4 \mathrm{~kg}
\end{aligned}
$$

To determine wall thickness, consider a free body diagram for one hemisphere:

$$
\Sigma \mathrm{F}=0=\mathrm{p} \cdot \frac{\pi \cdot \mathrm{D}^{2}}{4}-\sigma_{\mathrm{c}} \cdot \pi \cdot \mathrm{D} \cdot \mathrm{t}
$$

where σ_{C} is the circumferential stress in the container

Then

$$
\begin{aligned}
& t=\frac{p \cdot \pi \cdot D^{2}}{4 \cdot \pi \cdot D \cdot \sigma_{C}}=\frac{p \cdot D}{4 \cdot \sigma_{C}} \\
& t=25 \cdot 10^{6} \cdot \frac{N}{m^{2}} \times \frac{0.75 \cdot m}{4} \times \frac{1}{210 \cdot 10^{6}} \cdot \frac{m^{2}}{N} \\
& \mathrm{t}=0.0223 \mathrm{~m} \quad \mathrm{t}=22.3 \mathrm{~mm}
\end{aligned}
$$

3.2 Ear "popping" is an unpleasant phenomenon sometimes experienced when a change in pressure occurs, for example in a fast-moving elevator or in an airplane. If you are in a two-seater airplane at 3000 m and a descent of 100 m causes your ears to "pop," what is the pressure change that your ears "pop" at, in millimeters of mercury? If the airplane now rises to 8000 m and again begins descending, how far will the airplane descend before your ears "pop" again? Assume a U.S. Standard Atmosphere.

Given: Data on flight of airplane
Find: Pressure change in mm Hg for ears to "pop"; descent distance from 8000 m to cause ears to "pop."

Solution:

Assume the air density is approximately constant constant from 3000 m to 2900 m .
From table A. 3

$$
\rho_{\mathrm{SL}}=1.225 \cdot \frac{\mathrm{~kg}}{\mathrm{~m}^{3}} \quad \quad \rho_{\mathrm{air}}=0.7423 \cdot \rho_{\mathrm{SL}} \quad \rho_{\mathrm{air}}=0.909 \frac{\mathrm{~kg}}{\mathrm{~m}^{3}}
$$

We also have from the manometer equation, Eq. 3.7

Combining

$$
\Delta \mathrm{p}=-\rho_{\mathrm{air}} \cdot \mathrm{~g} \cdot \Delta \mathrm{z} \quad \text { and also } \quad \Delta \mathrm{p}=-\rho_{\mathrm{Hg}} \cdot \mathrm{~g} \cdot \Delta \mathrm{~h}_{\mathrm{Hg}}
$$

$$
\begin{array}{rlr}
\Delta \mathrm{h}_{\mathrm{Hg}}=\frac{\rho_{\mathrm{air}}}{\rho_{\mathrm{Hg}}} \cdot \Delta \mathrm{z}=\frac{\rho_{\mathrm{air}}}{\mathrm{SG}} \cdot \mathrm{Hg} \cdot \rho_{\mathrm{H} 2 \mathrm{O}} & \Delta \mathrm{z} & \mathrm{SG}_{\mathrm{Hg}}=13.55 \text { from Table A. } 2 \\
\Delta \mathrm{~h}_{\mathrm{Hg}}=\frac{0.909}{13.55 \times 999} \times 100 \cdot \mathrm{~m} & \Delta \mathrm{~h}_{\mathrm{Hg}}=6.72 \mathrm{~mm}
\end{array}
$$

For the ear popping descending from 8000 m , again assume the air density is approximately constant constant, this time at 8000 m.

From table A. 3

$$
\rho_{\mathrm{air}}=0.4292 \cdot \rho_{\mathrm{SL}} \quad \quad \rho_{\mathrm{air}}=0.526 \frac{\mathrm{~kg}}{\mathrm{~m}^{3}}
$$

We also have from the manometer equation

$$
\rho_{\text {air } 8000} \cdot g \cdot \Delta z_{8000}=\rho_{\mathrm{air} 3000} \cdot \mathrm{~g} \cdot \Delta \mathrm{z}_{3000}
$$

where the numerical subscripts refer to conditions at 3000 m and 8000 m . Hence

$$
\Delta \mathrm{z}_{8000}=\frac{\rho_{\text {air3000 }} \cdot \mathrm{g}}{\rho_{\text {air } 8000} \cdot \mathrm{~g}} \cdot \Delta \mathrm{z}_{3000}=\frac{\rho_{\text {air } 3000}}{\rho_{\text {air } 8000}} \cdot \Delta \mathrm{z}_{3000} \quad \Delta \mathrm{z}_{8000}=\frac{0.909}{0.526} \times 100 \cdot \mathrm{~m} \quad \Delta \mathrm{z}_{8000}=173 \mathrm{~m}
$$

3.3 When you are on a mountain face and boil water, you notice that the water temperature is $195^{\circ} \mathrm{F}$. What is your approximate altitude? The next day, you are at a location where it boils at $185^{\circ} \mathrm{F}$. How high did you climb between the two days? Assume a U.S. Standard Atmosphere.

Given: Boiling points of water at different elevations

Find: Change in elevation

Solution:

From the steam tables, we have the following data for the boiling point (saturation temperature) of water

$\mathbf{T}_{\text {sat }}\left({ }^{\circ} \mathbf{F}\right)$	$\mathbf{p}(\mathbf{p s i a})$
195	10.39
185	8.39

The sea level pressure, from Table A.3, is

$$
\begin{array}{lll}
\mathrm{P}_{\mathrm{SL}}= & 14.696 & \text { psia }
\end{array}
$$

Hence

From Table A. 3

$\mathbf{p} / \mathbf{p}_{\mathbf{s L}}$	Altitude (m)	Altitude (ft)
0.7372	2500	8203
0.6920	3000	9843
0.6492	3500	11484
0.6085	4000	13124
0.5700	4500	14765

Then, any one of a number of Excel functions can be used to interpolate
(Here we use Excel 's Trendline analysis)

$\mathbf{p} / \mathbf{p}_{\mathbf{S L}}$	Altitude (ft)
0.707	9303
0.571	14640

Current altitude is approximately $\quad 9303 \mathrm{ft}$

The change in altitude is then 5337 ft
Alternatively, we can interpolate for each altitude by using a linear regression between adjacent data points

For

$\mathbf{p} / \mathbf{p}_{\mathbf{S L}}$	Altitude (m)	Altitude (ft)
0.7372	2500	8203
0.6920	3000	9843

$\mathbf{p} / \mathbf{p}_{\text {SL }}$	Altitude (m)	Altitude (ft)
0.6085	4000	13124
0.5700	4500	14765

Then

0.7070	2834	9299

0.5730	4461	14637

The change in altitude is then 5338 ft

Given: Pure water on a standard day
Find: Boiling temperature at (a) 1000 m , and (b) 2000 m . Compare with sea level value

Solution
We can determine the atmospheric pressure at the given altitudes from table A. 3 , Appendix A

| Elevation
 (n) | P_{0} | P | $\left(8 P_{a}\right)$ |
| :---: | :---: | :---: | :---: | | $T_{\text {scat }}^{*}$ |
| :---: |
| |
| 0 |

Pata from Stean Tables gives $T_{\text {sat }}$

\{Ther data show that Tsat drops about $3.4^{\circ} \mathrm{C} / 1000 n$ \}
3.5 The tube shown is filled with mercury at $20^{\circ} \mathrm{C}$. Calculate the force applied to the piston.

Given: Data on system before and after applied force
Find: Applied force

Solution:

Basic equation	$\frac{d p}{d y}=-\rho \cdot g \quad$ or, for constant ρ	$p=p_{\text {atm }}-\rho \cdot \mathrm{g} \cdot\left(\mathrm{y}-\mathrm{y}_{0}\right)$	with $\mathrm{p}\left(\mathrm{y}_{0}\right)=\mathrm{p}_{\text {atm }}$
For initial state	$\mathrm{p}_{1}=\mathrm{patm}+\rho \cdot \mathrm{g} \cdot \mathrm{h}$ and	$\mathrm{F}_{1}=\mathrm{p}_{1} \cdot \mathrm{~A}=\rho \cdot \mathrm{g} \cdot \mathrm{h} \cdot \mathrm{A}$	(Gage; F_{1} is hydrostatic upwards force)
For the initial FBD	$\Sigma \mathrm{F}_{\mathrm{y}}=0 \quad \mathrm{~F}_{1}-\mathrm{W}=0$	$\mathrm{W}=\mathrm{F}_{1}=\rho \cdot \mathrm{g} \cdot \mathrm{h} \cdot \mathrm{A}$	
For final state	$\mathrm{p}_{2}=\mathrm{patm}+\rho \cdot \mathrm{g} \cdot \mathrm{H}$ and	$\mathrm{F}_{2}=\mathrm{p}_{2} \cdot \mathrm{~A}=\rho \cdot \mathrm{g} \cdot \mathrm{H} \cdot \mathrm{A}$	(Gage; F_{2} is hydrostatic upwards force)

For the final FBD

$$
\begin{aligned}
& \Sigma \mathrm{F}_{\mathrm{y}}=0 \quad \mathrm{~F}_{2}-\mathrm{W}-\mathrm{F}=0 \\
& \mathrm{~F}=\rho_{\mathrm{H} 2 \mathrm{O}} \cdot \mathrm{SG} \cdot \mathrm{~g} \cdot \frac{\pi \cdot \mathrm{D}^{2}}{4} \cdot(\mathrm{H}-\mathrm{h})
\end{aligned}
$$

$$
\mathrm{F}=\mathrm{F}_{2}-\mathrm{W}=\rho \cdot \mathrm{g} \cdot \mathrm{H} \cdot \mathrm{~A}-\rho \cdot \mathrm{g} \cdot \mathrm{~h} \cdot \mathrm{~A}=\rho \cdot \mathrm{g} \cdot \mathrm{~A} \cdot(\mathrm{H}-\mathrm{h})
$$

From Fig. A. 1

$$
S G=13.54
$$

$$
\mathrm{F}=1000 \cdot \frac{\mathrm{~kg}}{\mathrm{~m}^{3}} \times 13.54 \times 9.81 \cdot \frac{\mathrm{~m}}{\mathrm{~s}^{2}} \times \frac{\pi}{4} \times(0.05 \cdot \mathrm{~m})^{2} \times(0.2-0.025) \cdot \mathrm{m} \times \frac{\mathrm{N} \cdot \mathrm{~s}^{2}}{\mathrm{~kg} \cdot \mathrm{~m}}
$$

$$
F=45.6 \mathrm{~N}
$$

3.6 A $125-\mathrm{mL}$ cube of solid oak is held submerged by a tether as shown. Calculate the actual force of the water on the bottom surface of the cube and the tension in the tether.

Given:
Data on system
Find: Force on bottom of cube; tension in tether

Solution:

Basic equation $\quad \frac{\mathrm{dp}}{\mathrm{dy}}=-\rho \cdot \mathrm{g} \quad$ or, for constant $\rho \quad \Delta \mathrm{p}=\rho \cdot \mathrm{g} \cdot \mathrm{h} \quad$ where h is measured downwards

The absolute pressure at the interface is

$$
\mathrm{p}_{\text {interface }}=\mathrm{p}_{\mathrm{atm}}+\mathrm{SG}_{\mathrm{oil}} \cdot \rho \cdot \mathrm{~g} \cdot \mathrm{~h}_{\mathrm{oil}}
$$

Then the pressure on the lower surface is $\mathrm{P}_{\mathrm{L}}=\mathrm{p}_{\text {interface }}+\rho \cdot \mathrm{g} \cdot \mathrm{h}_{\mathrm{L}}=\mathrm{p}_{\mathrm{atm}}+\rho \cdot \mathrm{g} \cdot\left(\mathrm{SG}_{\text {oil }} \cdot \mathrm{h}_{\mathrm{oil}}+\mathrm{h}_{\mathrm{L}}\right)$

For the cube

$$
\begin{array}{ll}
\mathrm{V}=125 \cdot \mathrm{~mL} & \mathrm{~V}=1.25 \times 10^{-4} \cdot \mathrm{~m}^{3} \\
\mathrm{~d}=\mathrm{V}^{\frac{1}{3}} & \mathrm{~d}=0.05 \mathrm{~m}
\end{array} \text { and the depth in water to the upper surface is } \mathrm{h}_{\mathrm{U}}=0.3 \cdot \mathrm{~m}
$$

Then the size of the cube is

Hence

$$
\mathrm{h}_{\mathrm{L}}=\mathrm{h}_{\mathrm{U}}+\mathrm{d} \quad \mathrm{~h}_{\mathrm{L}}=0.35 \mathrm{~m} \quad \text { where } \mathrm{h}_{\mathrm{L}} \text { is the depth in water to the lower surface }
$$

The force on the lower surface is

$$
\begin{aligned}
& \mathrm{F}_{\mathrm{L}}=\mathrm{p}_{\mathrm{L}} \cdot \mathrm{~A} \quad \mathrm{~A}=\mathrm{d}^{2} \quad \mathrm{~A}=0.0025 \mathrm{~m}^{2} \\
& \mathrm{~F}_{\mathrm{L}}=\left[\mathrm{p}_{\mathrm{atm}}+\rho \cdot \mathrm{g} \cdot\left(\mathrm{SG}_{\mathrm{oil}} \cdot \mathrm{~h}_{\mathrm{oil}}+\mathrm{h}_{\mathrm{L}}\right)\right] \cdot \mathrm{A} \\
& \mathrm{~F}_{\mathrm{L}}=\left[101 \times 10^{3} \cdot \frac{\mathrm{~N}}{\mathrm{~m}^{2}}+1000 \cdot \frac{\mathrm{~kg}}{\mathrm{~m}^{3}} \times 9.81 \cdot \frac{\mathrm{~m}}{\mathrm{~s}^{2}} \times(0.8 \times 0.5 \cdot \mathrm{~m}+0.35 \cdot \mathrm{~m}) \times \frac{\mathrm{N} \cdot \mathrm{~s}^{2}}{\mathrm{~kg} \cdot \mathrm{~m}}\right] \times 0.0025 \cdot \mathrm{~m}^{2} \\
& \mathrm{~F}_{\mathrm{L}}=270.894 \mathrm{~N} \quad \text { Note: Extra decimals needed for computing T later! }
\end{aligned}
$$

For the tension in the tether, an FBD gives $\Sigma \mathrm{F}_{\mathrm{y}}=0 \quad \mathrm{~F}_{\mathrm{L}}-\mathrm{F}_{\mathrm{U}}-\mathrm{W}-\mathrm{T}=0 \quad$ or $\quad \mathrm{T}=\mathrm{F}_{\mathrm{L}}-\mathrm{F}_{\mathrm{U}}-\mathrm{W}$
where $\mathrm{F}_{\mathrm{U}}=\left[\mathrm{p}_{\mathrm{atm}}+\rho \cdot \mathrm{g} \cdot\left(\mathrm{SG}_{\text {oil }} \cdot \mathrm{h}_{\text {oil }}+\mathrm{h}_{\mathrm{U}}\right)\right] \cdot \mathrm{A}$

Note that we could instead compute Using F_{U}

$$
\Delta \mathrm{F}=\mathrm{F}_{\mathrm{L}}-\mathrm{F}_{\mathrm{U}}=\rho \cdot \mathrm{g} \cdot \mathrm{SG}_{\mathrm{oil}} \cdot\left(\mathrm{~h}_{\mathrm{L}}-\mathrm{h}_{\mathrm{U}}\right) \cdot \mathrm{A} \quad \text { and } \quad \mathrm{T}=\Delta \mathrm{F}-\mathrm{W}
$$

$$
\mathrm{F}_{\mathrm{U}}=\left[101 \times 10^{3} \cdot \frac{\mathrm{~N}}{\mathrm{~m}^{2}}+1000 \cdot \frac{\mathrm{~kg}}{\mathrm{~m}^{3}} \times 9.81 \cdot \frac{\mathrm{~m}}{\mathrm{~s}^{2}} \times(0.8 \times 0.5 \cdot \mathrm{~m}+0.3 \cdot \mathrm{~m}) \times \frac{\mathrm{N} \cdot \mathrm{~s}^{2}}{\mathrm{~kg} \cdot \mathrm{~m}}\right] \times 0.0025 \cdot \mathrm{~m}^{2}
$$

$$
\mathrm{F}_{\mathrm{U}}=269.668 \mathrm{~N} \quad \text { Note: Extra decimals needed for computing } \mathrm{T} \text { later! }
$$

For the oak block (Table A.1)

$$
\begin{aligned}
& \mathrm{SG}_{\text {oak }}=0.77 \quad \text { so } \quad \mathrm{W}=\mathrm{SG}_{\text {oak }} \cdot \rho \cdot \mathrm{g} \cdot \mathrm{~V} \\
& \mathrm{~W}=0.77 \times 1000 \cdot \frac{\mathrm{~kg}}{\mathrm{~m}^{3}} \times 9.81 \cdot \frac{\mathrm{~m}}{\mathrm{~s}^{2}} \times 1.25 \times 10^{-4} \cdot \mathrm{~m}^{3} \times \frac{\mathrm{N} \cdot \mathrm{~s}^{2}}{\mathrm{~kg} \cdot \mathrm{~m}} \quad \mathrm{~W}=0.944 \mathrm{~N} \\
& \mathrm{~T}=\mathrm{F}_{\mathrm{L}}-\mathrm{F}_{\mathrm{U}}-\mathrm{W} \quad \mathrm{~T}=0.282 \mathrm{~N}
\end{aligned}
$$

3.7 The following pressure and temperature measurements were taken by a meteorological balloon rising through the lower atmosphere:

$\boldsymbol{p}\left(\mathbf{\text { in } \mathbf { 1 0 } ^ { \mathbf { 3 } } \mathbf { ~ P a })}\right.$	$\boldsymbol{T}\left(\right.$ in $\left.^{\circ} \mathbf{C}\right)$
101.4	12.0
100.8	11.1
100.2	10.5
99.6	10.2
99.0	10.1
98.4	10.0

$\boldsymbol{p}\left(\mathbf{\text { in }} \mathbf{1 0}^{\mathbf{3}} \mathbf{~ P a}\right)$	$\boldsymbol{T}\left(\right.$ in $\left.^{\circ} \mathbf{C}\right)$
97.8	10.3
97.2	10.8
96.6	11.6
96.0	12.2
95.4	12.1

The initial values (top of table) correspond to ground level. Using the ideal gas law $\left(p=\rho R T\right.$ with $\mathrm{R}=287 \mathrm{~m}^{2} /\left(\mathrm{s}^{2} \cdot \mathrm{~K}\right)$, compute and plot the variation of air density (in $\mathrm{kg} / \mathrm{m}^{3}$) with height.

Given: Pressure and temperature data from balloon

Find: Plot density change as a function of elevation

Solution:

Using the ideal gas equation, $\rho=\mathrm{p} / \mathrm{RT}$

$\mathbf{p}(\mathbf{k P a})$	$\mathbf{T}\left({ }^{\mathbf{0}} \mathbf{C}\right)$	$\rho\left(\mathrm{kg} / \mathbf{m}^{\mathbf{3}}\right)$
101.4	12.0	1.240
100.8	11.1	1.236
100.2	10.5	1.231
99.6	10.2	1.225
99.0	10.1	1.218
98.4	10.0	1.212
97.8	10.3	1.203
97.2	10.8	1.193
96.6	11.6	1.183
96.0	12.2	1.173
95.4	12.1	1.166

Problem 3.8

3.8 Your pressure gage indicates that the pressure in your cold tires is 0.25 MPa (gage) on a mountain at an elevation of 3500 m . What is the absolute pressure? After you drive down to sea level, your tires have warmed to $25^{\circ} \mathrm{C}$. What pressure does your gage now indicate? Assume a U.S. Standard Atmosphere.

Given: Data on tire at 3500 m and at sea level
Find: \quad Absolute pressure at 3500 m ; pressure at sea level

Solution:

At an elevation of 3500 m , from Table A.3:

$$
\mathrm{p}_{\mathrm{SL}}=101 \cdot \mathrm{kPa} \quad \mathrm{p}_{\mathrm{atm}}=0.6492 \cdot \mathrm{p}_{\mathrm{SL}} \quad \mathrm{p}_{\mathrm{atm}}=65.6 \cdot \mathrm{kPa}
$$

and we have

$$
\mathrm{p}_{\mathrm{g}}=0.25 \cdot \mathrm{MPa}
$$

$$
\mathrm{p}_{\mathrm{g}}=250 \cdot \mathrm{kPa}
$$

$\mathrm{p}=\mathrm{p}_{\mathrm{g}}+\mathrm{p}_{\mathrm{atm}}$
$\mathrm{p}=316 \cdot \mathrm{kPa}$

At sea level

$$
\mathrm{p}_{\mathrm{atm}}=101 \cdot \mathrm{kPa}
$$

Meanwhile, the tire has warmed up, from the ambient temperature at 3500 m , to $25^{\circ} \mathrm{C}$.
At an elevation of 3500 m , from Table A. $3 \mathrm{~T}_{\text {cold }}=265.4 \cdot \mathrm{~K} \quad$ and $\quad \mathrm{T}_{\text {hot }}=(25+273) \cdot \mathrm{K} \quad \mathrm{T}_{\text {hot }}=298 \mathrm{~K}$

Hence, assuming ideal gas behavior, $p V=m R T$, and that the tire is approximately a rigid container, the absolute pressure of the hot tire is

$$
\mathrm{P}_{\text {hot }}=\frac{\mathrm{T}_{\text {hot }}}{\mathrm{T}_{\text {cold }}} \cdot \mathrm{p} \quad \quad \mathrm{P}_{\text {hot }}=354 \cdot \mathrm{kPa}
$$

Then the gage pressure is

$$
\mathrm{pg}_{\mathrm{g}}=\mathrm{p}_{\mathrm{hot}}-\mathrm{p}_{\mathrm{atm}} \quad \mathrm{pg}_{\mathrm{g}}=253 \cdot \mathrm{kPa}
$$

3.9 A hollow metal cube with sides 100 mm floats at the interface between a layer of water and a layer of SAE 10 W oil such that 10% of the cube is exposed to the oil. What is the pressure difference between the upper and lower horizontal surfaces? What is the average density of the cube?

Given: Properties of a cube floating at an interface
Find: The pressures difference between the upper and lower surfaces; average cube density

Solution:

The pressure difference is obtained from two applications of Eq. 3.7

$$
\mathrm{P}_{\mathrm{U}}=\mathrm{p}_{0}+\rho_{\mathrm{SAE} 10} \cdot \mathrm{~g} \cdot(\mathrm{H}-0.1 \cdot \mathrm{~d}) \quad \mathrm{p}_{\mathrm{L}}=\mathrm{p}_{0}+\rho_{\mathrm{SAE} 10} \cdot \mathrm{~g} \cdot \mathrm{H}+\rho_{\mathrm{H} 2 \mathrm{O}} \cdot \mathrm{~g} \cdot 0.9 \cdot \mathrm{~d}
$$

where p_{U} and p_{L} are the upper and lower pressures, p_{0} is the oil free surface pressure, H is the depth of the interface, and d is the cube size

Hence the pressure difference is

$$
\Delta \mathrm{p}=\mathrm{p}_{\mathrm{L}}-\mathrm{p}_{\mathrm{U}}=\rho_{\mathrm{H} 2 \mathrm{O}} \cdot \mathrm{~g} \cdot 0.9 \cdot \mathrm{~d}+\rho_{\mathrm{SAE} 10} \cdot \mathrm{~g} \cdot 0.1 \cdot \mathrm{~d} \quad \Delta \mathrm{p}=\rho_{\mathrm{H} 2 \mathrm{O}} \cdot \mathrm{~g} \cdot \mathrm{~d} \cdot\left(0.9+\mathrm{SG}_{\mathrm{SAE} 10} \cdot 0.1\right)
$$

From Table A. $2 \quad$ SG $_{\text {SAE10 }}=0.92$

$$
\Delta \mathrm{p}=999 \cdot \frac{\mathrm{~kg}}{\mathrm{~m}^{3}} \times 9.81 \cdot \frac{\mathrm{~m}}{\mathrm{~s}^{2}} \times 0.1 \cdot \mathrm{~m} \times(0.9+0.92 \times 0.1) \times \frac{\mathrm{N} \cdot \mathrm{~s}^{2}}{\mathrm{~kg} \cdot \mathrm{~m}} \quad \Delta \mathrm{p}=972 \mathrm{~Pa}
$$

For the cube density, set up a free body force balance for the cube

$$
\Sigma \mathrm{F}=0=\Delta \mathrm{p} \cdot \mathrm{~A}-\mathrm{W}
$$

Hence

$$
\begin{aligned}
& \mathrm{W}=\Delta \mathrm{p} \cdot \mathrm{~A}=\Delta \mathrm{p} \cdot \mathrm{~d}^{2} \\
& \rho_{\text {cube }}=\frac{\mathrm{m}}{\mathrm{~d}^{3}}=\frac{\mathrm{W}}{\mathrm{~d}^{3} \cdot \mathrm{~g}}=\frac{\Delta \mathrm{p} \cdot \mathrm{~d}^{2}}{\mathrm{~d}^{3} \cdot \mathrm{~g}}=\frac{\Delta \mathrm{p}}{\mathrm{~d} \cdot \mathrm{~g}} \\
& \rho_{\text {cube }}=972 \cdot \frac{\mathrm{~N}}{\mathrm{~m}^{2}} \times \frac{1}{0.1 \cdot \mathrm{~m}} \times \frac{\mathrm{s}^{2}}{9.81 \cdot \mathrm{~m}} \times \frac{\mathrm{kg} \cdot \mathrm{~m}}{\mathrm{~N} \cdot \mathrm{~s}^{2}} \quad \rho_{\text {cube }}=991 \frac{\mathrm{~kg}}{\mathrm{~m}^{3}}
\end{aligned}
$$

3.10 A cube with 6 in . sides is suspended in a fluid by a wire. The top of the cube is horizontal and 8 in . below the free surface. If the cube has a mass of 2 slugs and the tension in the wire is $T=50.7$ lbf, compute the fluid specific gravity, and from this determine the fluid. What are the gage pressures on the upper and lower surfaces?

Given: Properties of a cube suspended by a wire in a fluid
Find: The fluid specific gravity; the gage pressures on the upper and lower surfaces

Solution:

From a free body analysis of the cube: $\quad \Sigma \mathrm{F}=0=\mathrm{T}+\left(\mathrm{P}_{\mathrm{L}}-\mathrm{p}_{\mathrm{U}}\right) \cdot \mathrm{d}^{2}-\mathrm{M} \cdot \mathrm{g}$
where M and d are the cube mass and size and p_{L} and p_{U} are the pressures on the lower and upper surfaces
For each pressure we can use Eq. $3.7 \quad \mathrm{p}=\mathrm{p}_{0}+\rho \cdot \mathrm{g} \cdot \mathrm{h}$

Hence

$$
\mathrm{P}_{\mathrm{L}}-\mathrm{P}_{\mathrm{U}}=\left[\mathrm{P}_{0}+\rho \cdot g \cdot(\mathrm{H}+\mathrm{d})\right]-\left(\mathrm{P}_{0}+\rho \cdot \mathrm{g} \cdot \mathrm{H}\right)=\rho \cdot \mathrm{g} \cdot \mathrm{~d}=\mathrm{SG} \cdot \rho_{\mathrm{H} 2 \mathrm{O}} \cdot \mathrm{~d}
$$

where H is the depth of the upper surface

Hence the force balance gives

$$
\mathrm{SG}=\frac{\mathrm{M} \cdot \mathrm{~g}-\mathrm{T}}{\rho_{\mathrm{H} 2 \mathrm{O}} \cdot \mathrm{~g} \cdot \mathrm{~d}^{3}}
$$

$$
\mathrm{SG}=\frac{2 \cdot \operatorname{slug} \times 32.2 \cdot \frac{\mathrm{ft}}{\mathrm{~s}^{2}} \times \frac{\mathrm{lbf} \cdot \mathrm{~s}^{2}}{\mathrm{slug} \cdot \mathrm{ft}}-50.7 \cdot \mathrm{lbf}}{1.94 \cdot \frac{\mathrm{slug}}{\mathrm{ft}^{3}} \times 32.2 \cdot \frac{\mathrm{ft}}{\mathrm{~s}^{2}} \times \frac{\mathrm{lbf} \cdot \mathrm{~s}^{2}}{\mathrm{slng} \cdot \mathrm{ft}} \times(0.5 \cdot \mathrm{ft})^{3}} \quad \mathrm{SG}=1.75
$$

From Table A.1, the fluid is Meriam blue.
The individual pressures are computed from Eq 3.7

$$
\mathrm{p}=\mathrm{p}_{0}+\rho \cdot \mathrm{g} \cdot \mathrm{~h} \text { or } \quad \mathrm{p}_{\mathrm{g}}=\rho \cdot \mathrm{g} \cdot \mathrm{~h}=\mathrm{SG} \cdot \rho_{\mathrm{H} 2 \mathrm{O}} \cdot \mathrm{~h}
$$

For the upper surface

$$
\mathrm{pg}_{\mathrm{g}}=1.754 \times 1.94 \cdot \frac{\mathrm{slug}}{\mathrm{ft}^{3}} \times 32.2 \cdot \frac{\mathrm{ft}}{\mathrm{~s}^{2}} \times \frac{2}{3} \cdot \mathrm{ft} \times \frac{\mathrm{lbf} \cdot \mathrm{~s}^{2}}{\mathrm{slug} \cdot \mathrm{ft}} \times\left(\frac{1 \cdot \mathrm{ft}}{12 \cdot \mathrm{in}}\right)^{2}
$$

$$
\mathrm{P}_{\mathrm{g}}=0.507 \mathrm{psi}
$$

For the lower surface

$$
\mathrm{pg}_{\mathrm{g}}=1.754 \times 1.94 \cdot \frac{\mathrm{slug}}{\mathrm{ft}^{3}} \times 32.2 \cdot \frac{\mathrm{ft}}{\mathrm{~s}^{2}} \times\left(\frac{2}{3}+\frac{1}{2}\right) \cdot \mathrm{ft} \times \frac{\mathrm{lbf} \cdot \mathrm{~s}^{2}}{\text { slug. } \mathrm{ft}} \times\left(\frac{1 \cdot \mathrm{ft}}{12 \cdot \mathrm{in}}\right)^{2} \quad \mathrm{p}_{\mathrm{g}}=0.888 \mathrm{psi}
$$

Note that the SG calculation can also be performed using a buoyancy approach (discussed later in the chapter):

Consider a free body diagram of the cube:

$$
\begin{aligned}
& \Sigma \mathrm{F}=0=\mathrm{T}+\mathrm{F}_{\mathrm{B}}-\mathrm{M} \cdot \mathrm{~g} \\
& \mathrm{~F}_{\mathrm{B}}=\mathrm{SG} \cdot \rho_{\mathrm{H} 2 \mathrm{O}} \cdot \mathrm{~L}^{3} \cdot \mathrm{~g}
\end{aligned}
$$

where M is the cube mass and F_{B} is the buoyancy force

Hence

$$
\mathrm{T}+\mathrm{SG} \cdot \rho_{\mathrm{H} 2 \mathrm{O}} \cdot \mathrm{~L}^{3} \cdot \mathrm{~g}-\mathrm{M} \cdot \mathrm{~g}=0
$$

$$
\text { or } \quad \mathrm{SG}=\frac{\mathrm{M} \cdot \mathrm{~g}-\mathrm{T}}{\rho_{\mathrm{H} 2 \mathrm{O}} \cdot \mathrm{~g} \cdot \mathrm{~L}^{3}} \quad \text { as before }
$$

$$
\mathrm{SG}=1.75
$$

3.11 An air bubble, 0.3 in . in diameter, is released from the regulator of a scuba diver swimming 100 ft below the sea surface. (The water temperature is $86^{\circ} \mathrm{F}$.) Estimate the diameter of the bubble just before it reaches the water surface.

Given: Data on air bubble
Find: Bubble diameter as it reaches surface

Solution:

Basic equation $\quad \frac{d p}{d y}=-\rho_{\text {sea }} \cdot g \quad$ and the ideal gas equation $\quad p=\rho \cdot R \cdot T=\frac{M}{V} \cdot R \cdot T$

We assume the temperature is constant, and the density of sea water is constant

For constant sea water density

$$
\mathrm{p}=\mathrm{p}_{\mathrm{atm}}+\mathrm{SG}_{\mathrm{sea}} \cdot \rho \cdot \mathrm{~g} \cdot \mathrm{~h}
$$

where p is the pressure at any depth h

Then the pressure at the initial depth is

$$
\mathrm{p}_{1}=\mathrm{p}_{\mathrm{atm}}+\mathrm{SG}_{\mathrm{sea}} \cdot \rho \cdot \mathrm{~g} \cdot \mathrm{~h}_{1}
$$

The pressure as it reaches the surface is $\quad \mathrm{p}_{2}=\mathrm{p}_{\mathrm{atm}}$

For the bubble

$$
\mathrm{p}=\frac{\mathrm{M} \cdot \mathrm{R} \cdot \mathrm{~T}}{\mathrm{~V}} \quad \text { but } \mathrm{M} \text { and } \mathrm{T} \text { are constant } \quad \mathrm{M} \cdot \mathrm{R} \cdot \mathrm{~T}=\text { const }=\mathrm{p} \cdot \mathrm{~V}
$$

Hence

$$
\mathrm{p}_{1} \cdot \mathrm{~V}_{1}=\mathrm{p}_{2} \cdot \mathrm{~V}_{2} \quad \text { or } \quad \mathrm{V}_{2}=\mathrm{V}_{1} \cdot \frac{\mathrm{P}_{1}}{\mathrm{p}_{2}} \quad \text { or } \quad \mathrm{D}_{2}^{3}=\mathrm{D}_{1} \cdot \frac{\mathrm{p}_{1}}{\mathrm{p}_{2}}
$$

Then the size of the bubble at the surface $\mathrm{j} \mathrm{D}_{2}=\mathrm{D}_{1} \cdot\left(\frac{\mathrm{p}_{1}}{\mathrm{p}_{2}}\right)^{\frac{1}{3}}=\mathrm{D}_{1} \cdot\left[\frac{\left(\mathrm{patm}+\rho_{\text {sea }} \cdot \mathrm{g} \cdot \mathrm{h}_{1}\right)}{\mathrm{p}_{\text {atm }}}\right]^{\frac{1}{3}}=\mathrm{D}_{1} \cdot\left(1+\frac{\rho_{\text {sea }} \cdot \mathrm{g} \cdot \mathrm{h}_{1}}{\mathrm{p}_{\mathrm{atm}}}\right)^{\frac{1}{3}}$

From Table A. 2

$$
\begin{aligned}
& \mathrm{SG}_{\text {sea }}=1.025 \quad\left({\text { This is at } 68^{\circ} \mathrm{F} \text {) }}^{\mathrm{D}_{2}=0.3 \cdot \mathrm{in} \times\left[1+1.025 \times 1.94 \cdot \frac{\mathrm{slug}}{\mathrm{ft}^{3}} \times 32.2 \times \frac{\mathrm{ft}}{\mathrm{~s}^{2}} \times 100 \cdot \mathrm{ft} \times \frac{\mathrm{in}^{2}}{14.7 \cdot \mathrm{lbf}} \times\left(\frac{1 \cdot \mathrm{ft}}{12 \cdot \mathrm{in}}\right)^{2} \times \frac{\mathrm{lbf} \cdot \mathrm{~s}^{2}}{\mathrm{slugft}}\right]^{\frac{1}{3}}}\right. \\
& \mathrm{D}_{2}=0.477 \cdot \mathrm{in}
\end{aligned}
$$

Given: Model behavior of seawater by assuming constant bulk modulus

Find: (a) expression density as a function of depth , h. (b) Show that result hay be written as
e the constant b
(c) evaluate the constant b.
(d) use results of (b) to obtain equation for $-p(h)$
(e) determine percent error in predicted pressure at $=1000 \mathrm{~m}$

Solution: From Table A.2, App. A, SG) $=1.225, E_{0}=2.42 \mathrm{Galm}{ }^{2}$
Basic equation: $\frac{d p}{d h}=p q$ Definition: $E_{v}=\frac{d p}{d p} p$
Then, $\quad d p=p g_{p} d h=E_{v} \frac{d p}{p} \quad$ and $\quad \frac{d p}{p^{2}}=E_{v} d h$
Integrating, $\quad \int_{p_{0}}^{p} \frac{d p_{2}}{p^{2}}=\int_{0}^{h} \frac{g}{\bar{E}_{v}} d h \quad$ and $\left.-\frac{1}{p}\right]_{p_{0}}^{p}=\frac{g h}{E_{v}}$
Then, $\frac{g h}{E_{v}}=-\frac{1}{p}+\frac{1}{p_{0}}=\frac{-p_{0}+p}{p p_{0}}$ or $p-p_{0}=p \rho_{0} \frac{g h}{E_{v}}$

$$
\begin{equation*}
\therefore p\left(1-p_{0} \frac{g h}{E_{v}}\right)=p_{0} \quad \text { and } \quad f_{0}=\frac{1}{\left\{1-\frac{p_{0} g h}{f_{v}}\right\}} \tag{h}
\end{equation*}
$$

For $\frac{p_{0} g}{E_{v}}<1, \frac{f}{\rho_{0}} 21+\frac{p_{0} g}{E_{0}} h$
Thus,

$$
p^{2}=p_{0}+\frac{p_{0}^{2} g}{E_{v}} h=p_{0}+b h \quad \text { where } b=\frac{p_{0}^{2} g}{E_{v}} \text {. }
$$

Sine $d P=p g a t h$, then an approximate expression for $p(h)$ is

$$
\left.\begin{array}{l}
p-p_{a t h}=\left(p_{a t h}^{c}=\left(\left(p_{0}+b h\right) g d h=\left(p_{0} h+\frac{b h^{2}}{2}\right) g\right.\right. \\
-p_{\text {approx }}=-p_{a t h}+\left(p_{0} h+\frac{p_{0}^{2} g h^{2}}{E_{v}}\right) g=p_{a t m}+p_{0} h g\left[1+p_{0} g h\right] \\
E_{v}
\end{array}\right] p_{\text {app pox }}
$$

The exact solution for $P(h)$ is obtained by utilizing the exact equation for $p(h)$. Thus.

$$
\begin{aligned}
& -p_{-p a t h}=\int_{p_{a t a}}^{p} d p=\int_{p_{0}}^{p} E_{v} \frac{d p}{p}=E_{v} \ln \frac{p_{0}}{p_{0}}
\end{aligned}
$$

Substituting numerical values, $p_{\text {approx }}=P_{\text {atman }}+9.851 \mathrm{MPa}$

$$
\text { error }=\frac{P_{\text {etait }}-P_{\text {app }}}{P_{\text {enact }}}=\frac{10.016-9.851}{10.076}=0.0224=2.24_{\text {enact }}^{\circ}=P_{2 \text { an }}+10.076 \text { vila } \quad \text { error }
$$

Gwen: Behavior of seawater to be modeled by assuming constant bulk modulus

Find: Te percent deviations in (a) density and b) pressure, at depth $h=10 \mathrm{~km}$, as compare e to values obtained assuming constant density.
Plot: the results over range of $0 \leqslant h \leqslant 10 \mathrm{~km}$
Solution
Basie equation: $\frac{d p}{d h}=p g \quad$ Definition: $E_{v}=\frac{d p}{d p l}$ ${ }^{\frac{\nabla}{\bar{*}} t_{h}} T_{e n}, d p=p g d h=\frac{d p}{e} E_{v}$ and $\int_{p_{0}}^{p} \frac{d \rho}{e^{2}}=\int_{0}^{h} \frac{g d h}{E_{v}}$
We obtain
hen

$$
\left.-\frac{1}{p}\right]_{p_{0}}^{p}=-\frac{1}{p}+\frac{1}{p_{0}}=\frac{-p_{0}+p}{p p_{0}}=\frac{g h}{E_{v}} \text { or } p-p_{0}=p p_{0} \frac{g h}{E_{v}}
$$

$$
p\left(1-\frac{\rho_{0 g h}}{E_{v}}\right)=p_{0} \quad \text { and } \quad \frac{f}{p_{0}}=\left(\frac{1}{\left(1-\frac{\operatorname{pogh}_{v}}{E_{v}}\right)}\right.
$$

Finally, $\frac{\Delta p}{p_{0}}=\frac{p-p_{0}}{p_{0}}=\frac{p_{0}-1}{p_{0}}=\frac{p_{0} g h \mid E v}{\left(1-p_{0} g h / E_{v} h\right.} \ldots \ldots$ (i)
To determine an expression for the percent deviation in pressure we write $\left(_{d p}^{-p} E_{v} \int_{f_{0}}^{f}\left(\frac{d p}{f}\right.\right.$
Ten $p-p_{a t h}=E_{s, ~} \ln p^{\prime} p_{0} p_{0}^{h}$
For $p=$ constant, $\int_{p a m}^{e} d p=f_{0} \int_{0}^{h} d h$ and p-path $=p g h$,
Then $\frac{p_{-}-p_{p=c}}{p_{p=c}}=\frac{\Delta p_{p}}{p_{p=0}}=\frac{E_{r} \ln p_{p o}-p g h}{p_{0} g h}=\frac{E_{v}}{p_{0} g h} \ln f_{0} p_{0}$
From Table $A . z$ for scawater $S G=1.025, E_{v}=2.42 \mathrm{Gm} / \mathrm{M}^{2}$. Then

$$
\frac{E_{v}}{\rho \cdot g}=2.42 \times 10^{a} \frac{n}{y^{2}} \times \frac{1}{(1000)(1.025)} \frac{n^{3}}{n_{g}} \times 2.81 \frac{s^{2}}{n} \times \frac{\operatorname{kg} \cdot n}{5.5^{2}} \times \frac{\mathrm{kr}}{10^{3} n}=240.7 \mathrm{~km}
$$

substituting into eqs (i) and (a)

$$
\begin{align*}
& \frac{\Delta p}{\rho_{0}}=\frac{4.155 \times 10^{-3} h}{1-4.155 \times 10^{-3} h} \ldots(1 a) \tag{la}\\
& \frac{\Delta p}{\rho_{p}}=\frac{240.7}{h} \ln \left[\frac{1}{1-4.155 \times 10^{-3} h}\right]-1 \ldots(2 a)
\end{align*}
$$

At $h=10 \mathrm{ln}, \frac{\Delta p}{p_{0}}=0.0434$ or $4.344^{\circ} 6$ \qquad

$$
\frac{\Delta p_{i}}{\varepsilon_{0}}=0.0215 \text { or } 2.15 \text { ? }
$$

Bob expo and berle. are plated as a function or depp h (in tan blow.
Re computing equations are

$$
\begin{aligned}
& \left.\Delta p\right|_{p_{0}}=\frac{\hat{p}_{0} h / E_{v}}{\left(1-\log / E_{v}\right.} \\
& \left.\Delta p\right|_{-p_{0}}=\frac{E_{v}}{\rho_{0} h} \ln f_{0}-1
\end{aligned}
$$

Density and pressure variation of seawater:

Problem 3.14
Given: Cylindrical cup lowered slowly beneath pool surface.

Find: Expression for y in terms of h and H. Plot: $y / H \mathrm{vs} . h / H$.
Solution: Apply deal gas and hydrostatic equations.
Basic equations: $p \forall=m$ RT $\quad \frac{d p}{d t}=\rho g$
Assumptions: (1) $T=$ constant
(2) Static liquid
(3) Incompressible liquid

Using (1), $p \forall=p_{a} \frac{\pi D^{2}}{4} H=p \frac{\pi D^{2}}{4}(H-y)$; or $p_{a} H=p(H-y)$
Integrating $\frac{d p}{d h}=f g$ gives $p-p a=\rho g(h-y)$ in container.
Thus

$$
p_{a} H=\left[p_{a}+\rho g(n-y)\right](H-y)=p_{a} H-p_{a} y+\rho g(n-y)(H-y)
$$

Expandirig,

$$
0=\rho g h H-\rho g h y-\rho g y H+\rho g y^{2}-p a y
$$

or

$$
0=h H-\left[(h+H)+\frac{p a}{\rho g}\right] y+y^{2}
$$

Using the quadratic equation

$$
y=\frac{h+H+p a / p g-\sqrt{\left[h+H+\frac{p a}{\rho g}\right]^{2}-4 h H}}{2}
$$

(Note $y \leqslant H$, so the mirius sign must be used.) In terms of y / H, this becomes

$$
\left.\frac{y}{H}=\frac{\frac{h}{H}+1+\frac{p_{a}}{\rho g} H}{}-\sqrt{\left[\frac{h}{H}+1+\frac{p_{a}}{\rho g H}\right]^{2}-4 \frac{h}{H}}\right) 2
$$

3.15 You close the top of your straw using your thumb and lift it out of your glass containing Coke. Holding it vertically, the total length of the straw is 17 in ., but the Coke held in the straw is in the bottom 6 in . What is the pressure in the straw just below your thumb? Ignore any surface tension effects.

Given: Geometry of straw

Find: Pressure just below the thumb

Solution:

Basic equation $\quad \frac{d p}{d y}=-\rho \cdot g \quad$ or, for constant $\rho \quad \Delta p=\rho \cdot g \cdot h \quad$ where h is measured downwards

This equation only applies in the 6 in of coke in the straw - in the other 11 inches of air the pressure is essentially constant.

The gage pressure at the coke surface is

$$
\mathrm{p}_{\text {coke }}=\rho \cdot \mathrm{g} \cdot \mathrm{~h}_{\text {coke }}
$$

Hence, with $\quad h_{\text {coke }}=-6 \cdot$ in \quad because h is measured downwards

$$
\begin{aligned}
& \mathrm{P}_{\text {coke }}=-1.94 \cdot \frac{\mathrm{slug}}{\mathrm{ft}^{3}} \times 32.2 \cdot \frac{\mathrm{ft}}{\mathrm{~s}^{2}} \times 6 \cdot \mathrm{in} \times \frac{1 \cdot \mathrm{ft}}{12 \cdot \mathrm{in}} \times \frac{\mathrm{lbf} \cdot \mathrm{~s}^{2}}{\mathrm{slugft}} \\
& \mathrm{P}_{\text {coke }}=-31.2 \cdot \frac{\mathrm{lbf}}{\mathrm{ft}^{2}} \quad \mathrm{P}_{\text {coke }}=-0.217 \cdot \mathrm{psi} \quad \text { gage } \\
& \mathrm{P}_{\text {coke }}=14.5 \cdot \mathrm{psi}
\end{aligned}
$$

3.16 A water tank filled with water to a depth of 5 m has an inspection cover ($2.5 \mathrm{~cm} \times 2.5 \mathrm{~cm}$ square) at its base, held in place by a plastic bracket. The bracket can hold a load of 40 N . Is the bracket strong enough? If it is, what would the water depth have to be to cause the bracket to break?

Given: Data on water tank and inspection cover

Find: If the support bracket is strong enough; at what water depth would it fail

Solution:

Basic equation $\quad \frac{\mathrm{dp}}{\mathrm{dy}}=-\rho \cdot \mathrm{g} \quad$ or, for constant $\rho \quad \Delta \mathrm{p}=\rho \cdot \mathrm{g} \cdot \mathrm{h} \quad$ where h is measured downwards

The absolute pressure at the base is

$$
\mathrm{P}_{\text {base }}=\mathrm{p}_{\text {atm }}+\rho \cdot \mathrm{g} \cdot \mathrm{~h} \quad \text { where } \quad \mathrm{h}=5 \cdot \mathrm{~m}
$$

The gage pressure at the base is

$$
\mathrm{P}_{\text {base }}=\rho \cdot \mathrm{g} \cdot \mathrm{~h} \quad \text { This is the pressure to use as we have } \mathrm{Patm} \text { on the outside of the cover. }
$$

The force on the inspection cover is

$$
\begin{aligned}
& \mathrm{F}=\mathrm{P}_{\text {base }} \cdot \mathrm{A} \quad \text { where } \quad \mathrm{A}=2.5 \cdot \mathrm{~cm} \times 2.5 \cdot \mathrm{~cm} \quad \mathrm{~A}=6.25 \times 10^{-4} \mathrm{~m}^{2} \\
& \mathrm{~F}=\rho \cdot \mathrm{g} \cdot \mathrm{~h} \cdot \mathrm{~A} \\
& \mathrm{~F}=1000 \cdot \frac{\mathrm{~kg}}{\mathrm{~m}^{3}} \times 9.81 \cdot \frac{\mathrm{~m}}{\mathrm{~s}^{2}} \times 5 \cdot \mathrm{~m} \times 6.25 \times 10^{-4} \cdot \mathrm{~m}^{2} \times \frac{\mathrm{N} \cdot \mathrm{~s}^{2}}{\mathrm{~kg} \cdot \mathrm{~m}} \\
& \mathrm{~F}=30.7 \mathrm{~N}
\end{aligned}
$$

The bracket is strong enough (it can take 40 N). To find the maximum depth we start wil $\mathrm{F}=40 \cdot \mathrm{~N}$

$$
\begin{aligned}
& \mathrm{h}=\frac{\mathrm{F}}{\rho \cdot \mathrm{~g} \cdot \mathrm{~A}} \\
& \mathrm{~h}=40 \cdot \mathrm{~N} \times \frac{1}{1000} \cdot \frac{\mathrm{~m}^{3}}{\mathrm{~kg}} \times \frac{1}{9.81} \cdot \frac{\mathrm{~s}^{2}}{\mathrm{~m}} \times \frac{1}{6.25 \times 10^{-4}} \cdot \frac{1}{\mathrm{~m}^{2}} \times \frac{\mathrm{kg} \cdot \mathrm{~m}}{\mathrm{~N} \cdot \mathrm{~s}^{2}} \\
& \mathrm{~h}=6.52 \mathrm{~m}
\end{aligned}
$$

Given: Container of mercury with vertical tubes $d_{l}=39.5 \mathrm{~mm}$ and $d_{2}=12.7 \mathrm{~mm}$.

Brass cylinder with $D=37.5 \mathrm{~mm}$ and $H=76.2 \mathrm{~mm}$ is introduced into larger tube, where it floats.

Find: (a) Pressure on bottom of
 cylinder.
(b) New equilibrium level, h, of mercury.

Solution: Analyze free-body diagram of cylinder, apply hydrostatics.
Computing equations: $\sum F_{z}=0 ; \frac{d p}{d z}=-\rho g ; \rho=s G \rho H_{2} 0$ Assumptions: (1) Static liquid
(2) Incompressible liquid

For the cylinder $\Sigma F_{z}=\beta \frac{\pi D^{2}}{4}-P_{\text {brass }} g \frac{\pi D^{2}}{4} H=0$ Thus $\quad \rho=\rho_{\text {brass }} g H=5 G_{\text {brass }} \rho_{H 20} g H$

From. Table $A, 1$, $S G_{\text {brass }}=8.55$ at $20^{\circ} \mathrm{C}$, 30

$$
p=8.55 \times 1000 \frac{\mathrm{~kg}}{\mathrm{~m}^{3}} \times 9.81 \frac{\mathrm{~m}}{\mathrm{~s}^{2}} \times 0.0762 \mathrm{~m} \times \frac{\mathrm{N} \cdot \mathrm{~s}^{2}}{\mathrm{~kg} \cdot \mathrm{~m}}=6.39 \mathrm{kPa}(\text { gage })
$$

This pressure must be produced by a column of mercury $h+x$ in height. Thus, using $S G G H g$ from Table A.I,

$$
p=\rho_{H_{g}} g(h+x)=G_{\text {Hg }} \rho_{H_{2}} g(h+x)=S G_{\text {brass }} \rho_{H_{2} O} g H
$$

Thus $h+x=\frac{5 G_{\text {brass }}}{5 G \mathrm{Hg}} \mathrm{H}=\frac{8.55}{13.55} \mathrm{H}=0.631 \mathrm{H}$
But the volume of mercury must remain constant. Therefore

$$
\frac{\pi D^{2}}{4} x=\frac{\pi\left(d_{1}^{2}-D^{2}\right)}{4} h+\frac{\pi d_{2}^{2}}{4} h \text { or } x\left[\left(\frac{d_{1}}{D}\right)^{2}-1+\left(\frac{d_{2}}{D}\right)^{2}\right]=0,224 \mathrm{~h}
$$

Substituting into Eq.1,

$$
\begin{aligned}
& h+x=h+0.224 h=1.224 h=0.631 \mathrm{H} \quad \text { or } h=\frac{0.631}{1.224} \mathrm{H}=0.516 \mathrm{H} \\
& \mathrm{~h}=39.3 \mathrm{~mm}
\end{aligned}
$$

Problem 3.18

3.18 A partitioned tank as shown contains water and mercury. What is the gage pressure in the air trapped in the left chamber? What pressure would the air on the left need to be pumped to in order to bring the water and mercury free surfaces level?

Given: Data on partitioned tank
Find: Gage pressure of trapped air; pressure to make water and mercury levels equal

Solution:

The pressure difference is obtained from repeated application of Eq. 3.7, or in other words, from Eq. 3.8. Starting from the right air chamber

$$
\begin{aligned}
& \text { Pgage }=\mathrm{SG}_{\mathrm{Hg}} \times \rho_{\mathrm{H} 2 \mathrm{O}} \times \mathrm{g} \times(3 \cdot \mathrm{~m}-2.9 \cdot \mathrm{~m})-\rho_{\mathrm{H} 2 \mathrm{O}} \times \mathrm{g} \times 1 \cdot \mathrm{~m} \\
& \text { pgage }=\rho_{\mathrm{H} 2 \mathrm{O}} \times \mathrm{g} \times\left(\mathrm{SG}_{\mathrm{Hg}} \times 0.1 \cdot \mathrm{~m}-1.0 \cdot \mathrm{~m}\right) \\
& \text { pgage }=999 \cdot \frac{\mathrm{~kg}}{\mathrm{~m}^{3}} \times 9.81 \cdot \frac{\mathrm{~m}}{\mathrm{~s}^{2}} \times(13.55 \times 0.1 \cdot \mathrm{~m}-1.0 \cdot \mathrm{~m}) \times \frac{\mathrm{N} \cdot \mathrm{~s}^{2}}{\mathrm{~kg} \cdot \mathrm{~m}} \quad \text { Pgage }=3.48 \cdot \mathrm{kPa}
\end{aligned}
$$

If the left air pressure is now increased until the water and mercury levels are now equal, Eq. 3.8 leads to

$$
\begin{aligned}
& \text { Pgage }=\mathrm{SG}_{\mathrm{Hg}} \times \rho_{\mathrm{H} 2 \mathrm{O}} \times \mathrm{g} \times 1.0 \cdot \mathrm{~m}-\rho_{\mathrm{H} 2 \mathrm{O}} \times \mathrm{g} \times 1.0 \cdot \mathrm{~m} \\
& \text { Pgage }=\rho_{\mathrm{H} 2 \mathrm{O}} \times \mathrm{g} \times\left(\mathrm{SG}_{\mathrm{Hg}} \times 1 \cdot \mathrm{~m}-1.0 \cdot \mathrm{~m}\right) \\
& \text { Pgage }=999 \cdot \frac{\mathrm{~kg}}{\mathrm{~m}^{3}} \times 9.81 \cdot \frac{\mathrm{~m}}{\mathrm{~s}^{2}} \times(13.55 \times 1 \cdot \mathrm{~m}-1.0 \cdot \mathrm{~m}) \times \frac{\mathrm{N} \cdot \mathrm{~s}^{2}}{\mathrm{~kg} \cdot \mathrm{~m}} \quad \text { Pgage }=123 \cdot \mathrm{kPa}
\end{aligned}
$$

3.19 In the tank of Problem 3.18, if the opening to atmosphere on the right chamber is first sealed, what pressure would the air on the left now need to be pumped to in order to bring the water and mercury free surfaces level? (Assume the air trapped in the right chamber behaves isothermally.)

Given: Data on partitioned tank
Find: Pressure of trapped air required to bring water and mercury levels equal if right air opening is sealed

Solution:

First we need to determine how far each free surface moves.
In the tank of Problem 3.15, the ratio of cross section areas of the partitions is $0.75 / 3.75$ or $1: 5$. Suppose the water surface (and therefore the mercury on the left) must move down distance x to bring the water and mercury levels equal. Then by mercury volume conservation, the mercury free surface (on the right) moves up $(0.75 / 3.75) x=x / 5$. These two changes in level must cancel the original discrepancy in free surface levels, of $(1 \mathrm{~m}+2.9 \mathrm{~m})-3 \mathrm{~m}=0.9 \mathrm{~m}$. Hence $x+x / 5=$ 0.9 m , or $x=0.75 \mathrm{~m}$. The mercury level thus moves up $x / 5=0.15 \mathrm{~m}$.

Assuming the air (an ideal gas, $p V=R T$) in the right behaves isothermally, the new pressure there will be

$$
\mathrm{p}_{\text {right }}=\frac{\mathrm{V}_{\text {rightold }}}{\text { Vrightnew }} \cdot \mathrm{p}_{\text {atm }}=\frac{\mathrm{A}_{\text {right }} \cdot \mathrm{L}_{\text {rightold }}}{\mathrm{A}_{\text {right }} \cdot \mathrm{L}_{\text {rightnew }}} \cdot \mathrm{p}_{\text {atm }}=\frac{\mathrm{L}_{\text {rightold }}}{\mathrm{L}_{\text {rightnew }}} \cdot \mathrm{p}_{\text {atm }}
$$

where V, A and L represent volume, cross-section area, and vertical length
Hence

$$
\mathrm{p}_{\text {right }}=\frac{3}{3-0.15} \times 101 \cdot \mathrm{kPa}
$$

$$
\mathrm{P}_{\text {right }}=106 \mathrm{kPa}
$$

When the water and mercury levels are equal application of Eq. 3.8 gives:

$$
\begin{aligned}
& \mathrm{p}_{\text {left }}=\mathrm{p}_{\text {right }}+\mathrm{SG}_{\mathrm{Hg}} \times \rho_{\mathrm{H} 2 \mathrm{O}} \times \mathrm{g} \times 1.0 \cdot \mathrm{~m}-\rho_{\mathrm{H} 2 \mathrm{O}} \times \mathrm{g} \times 1.0 \cdot \mathrm{~m} \\
& \mathrm{P}_{\text {left }}=\mathrm{p}_{\text {right }}+\rho_{\mathrm{H} 2 \mathrm{O}} \times \mathrm{g} \times\left(\mathrm{SG}_{\mathrm{Hg}} \times 1.0 \cdot \mathrm{~m}-1.0 \cdot \mathrm{~m}\right) \\
& \mathrm{P}_{\text {left }}=106 \cdot \mathrm{kPa}+999 \cdot \frac{\mathrm{~kg}}{\mathrm{~m}^{3}} \times 9.81 \cdot \frac{\mathrm{~m}}{\mathrm{~s}^{2}} \times(13.55 \cdot 1.0 \cdot \mathrm{~m}-1.0 \cdot \mathrm{~m}) \times \frac{\mathrm{N} \cdot \mathrm{~s}^{2}}{\mathrm{~kg} \cdot \mathrm{~m}} \\
& \text { Pgage }=\mathrm{p}_{\text {left }}-\mathrm{p}_{\text {atm }} \quad \text { Pgage }=229 \cdot \mathrm{kPa}-101 \cdot \mathrm{kPa} \\
& \mathrm{P}_{\text {left }}=229 \mathrm{kPa} \\
& \text { Pgage }=128 \mathrm{kPa}
\end{aligned}
$$

Given: U-tube manometer, partially filled with water, then $\forall_{0 i 1}=3.25 \mathrm{~cm}^{3}$ of Miriam red oil is added to the left side.

Find: Equilibrium height, H, when both legs are open to atmosphere.
Solution: Apply basic pressure-height relation.
Basic equation: $\frac{d p}{d h}=+\rho g$
Assumptions: (1) Incompressible liquid
(2) 1 measured down

Integration gives

$$
p_{2}-p_{1}=\rho g\left(h_{2}-h_{1}\right)
$$

Thus

$$
\begin{aligned}
& p_{B}=p_{A}+\rho_{\text {oi j }} g L \\
& p_{D}=p_{C}+\rho_{w a t e r} g(L-H)
\end{aligned}
$$

since $p_{A}=p_{C}=p_{\text {atom }}$, then

Coil $g L=\rho_{\text {water }}(L-H)$
or

$$
S G_{D i l} L=L-H
$$

Thus

$$
H=L\left(1-S G_{0 i 1}\right)
$$

From the volume of oil, $\forall=\frac{\pi D^{2}}{4}<$, so

$$
L=\frac{4 \forall}{\pi D^{2}}=\frac{4}{\pi} \times 3.25 \mathrm{~cm}^{3} \times \frac{1}{(6.35)^{2} \mathrm{~mm}^{2}} \times(10)^{3} \frac{\mathrm{~mm}^{3}}{\mathrm{~cm}^{3}}=103 \mathrm{~mm}
$$

Finally, since $S G=0.827$ (Table A.1, Appendix A), then

$$
H=103 \mathrm{~mm}(1-0.827)=17.8 \mathrm{~mm}
$$

Problem 3.21
Given: Two-fluid manometer shown
Find: Pressure difference, $P_{1}-P_{2}$
Solution:
Basic equation: $\quad \frac{d p}{d h}=p g$
Assumptions: (1) static liquid

(2) incompressible
(3) $g=$ constant

Then, $d p=p g d h$ and $\Delta p=p g \Delta h$
starting at point (1) and progressing to point (3 we

$$
\begin{aligned}
\therefore \rho_{1}-P_{2} & =\rho_{c t} g l-\rho_{H_{2}} g l=s G_{c t} p_{H_{20}} g l-\rho_{H_{20}} g l \\
-P_{1}-P_{2} & =p_{H_{2} O} g l\left(s G_{c t}-1\right)
\end{aligned}
$$

From Table A.2, Appendix A, $S G_{\text {ct }}=1.595$

$$
\begin{aligned}
& \therefore P_{1}-P_{2}=1000 \frac{\mathrm{lg}}{\mathrm{~m}^{3}} \times 9.81 \frac{\mathrm{~m}}{\mathrm{~s}^{2}} \times 10.2 \mathrm{~mm} \times \frac{\mathrm{n}}{10^{2} \mathrm{~mm}}(1.595-1) \frac{\mathrm{N.s}^{2}}{\mathrm{kgm}^{\mathrm{m}}} \\
& -p_{1}-p_{2}=59.5 N / m^{2}
\end{aligned}
$$

3.22 The manometer shown contains two liquids. Liquid A has $\mathrm{SG}=0.88$ and liquid B has $\mathrm{SG}=2.95$. Calculate the deflection, h, when the applied pressure difference is $p_{1}-p_{2}=18 \mathrm{lbf} / \mathrm{ft}^{2}$.

Given: Data on manometer

Find: Deflection due to pressure difference

Solution:

Basic equation $\quad \frac{\mathrm{dp}}{\mathrm{dy}}=-\rho \cdot \mathrm{g} \quad$ or, for constant $\rho \quad \Delta \mathrm{p}=\rho \cdot \mathrm{g} \cdot \Delta \mathrm{h} \quad$ where h is measured downwards

Starting at $\mathrm{p}_{1} \quad \mathrm{p}_{\mathrm{A}}=\mathrm{p}_{1}+\mathrm{SG}_{\mathrm{A}} \cdot \rho \cdot \mathrm{g} \cdot(\mathrm{h}+\mathrm{l}) \quad$ where l is the (unknown) distance from the level of the right interface

Next, from A to B

$$
\mathrm{p}_{\mathrm{B}}=\mathrm{p}_{\mathrm{A}}-\mathrm{SG}_{\mathrm{B}} \cdot \rho \cdot \mathrm{~g} \cdot \mathrm{~h}
$$

Finally, from A to the location of p_{2}

$$
\mathrm{p}_{2}=\mathrm{p}_{\mathrm{B}}-\mathrm{SG}_{\mathrm{A}} \cdot \rho \cdot \mathrm{~g} \cdot \mathrm{l}
$$

Combining the three equations

$$
\begin{aligned}
& \mathrm{p}_{2}=\left(\mathrm{p}_{\mathrm{A}}-\mathrm{SG} \mathrm{~B}_{\mathrm{B}} \cdot \rho \cdot \mathrm{~g} \cdot \mathrm{~h}\right)-\mathrm{SG} \mathrm{~A}_{\mathrm{A}} \cdot \rho \cdot \mathrm{~g} \cdot \mathrm{l}=\left[\mathrm{p}_{1}+\mathrm{SG} \mathrm{~A}_{\mathrm{A}} \cdot \rho \cdot \mathrm{~g} \cdot(\mathrm{~h}+\mathrm{l})-\mathrm{SG}_{\mathrm{B}} \cdot \rho \cdot \mathrm{~g} \cdot \mathrm{~h}\right]-\mathrm{SG}_{\mathrm{A}} \cdot \rho \cdot \mathrm{~g} \cdot \mathrm{l} \\
& \mathrm{P}_{2}-\mathrm{p}_{1}=\left(\mathrm{SG}_{\mathrm{A}}-\mathrm{SG} \mathrm{l}_{\mathrm{B}}\right) \cdot \rho \cdot \mathrm{g} \cdot \mathrm{~h} \\
& \mathrm{~h}=\frac{\mathrm{p}_{1}-\mathrm{p}_{2}}{\left(\mathrm{SG} \mathrm{~B}_{\mathrm{B}}-\mathrm{SG} A\right) \cdot \rho \cdot \mathrm{g}} \\
& \mathrm{~h}=18 \cdot \frac{\mathrm{lbf}}{\mathrm{ft}^{2}} \times \frac{1}{(2.95-0.88)} \times \frac{1}{1.94} \cdot \frac{\mathrm{ft}^{3}}{\mathrm{slug}} \times \frac{1}{32.2} \cdot \frac{\mathrm{~s}^{2}}{\mathrm{ft}} \times \frac{\mathrm{slug} \cdot \mathrm{ft}}{2} \\
& \mathrm{~s}^{2} \cdot \mathrm{lbf} \\
& \mathrm{~h}=0.139 \cdot \mathrm{ft} \quad \mathrm{~h}=1.67 \cdot \mathrm{in}
\end{aligned}
$$

Given: Two fluid manometer contains water and Kerosene. With both tubes open to atmosphere, the free surface elevations differ by $H_{0}=20.0 \mathrm{~mm}$
Find: Elevation difference, H between free-surface of flung when a gage pressure of 98.0 Pa is Lepplred to the right tube.
Solution:
Basic equation: $\frac{d p}{d h}=p g ; \Delta p=p g \Delta h$ Assumptions: in static fluid
(2) gravity is the only

When the gage pressure $\Delta p=98.0$ Pa is applied to the right tube, the water in the right tube is displaced downward a distance, t; the kerosene in the left tube is displaced upward the same distance, l.

Under the applied gage pressure, ΔP, the elevation difference, H, is

$$
A=H_{0}+2 l
$$

Since points $A \cdot D$ are at the same elevation in the same flue $p_{a}=p_{8}$.

Initially (left diagram), $P_{A}=p_{0} g\left(H_{0}+H_{1}\right), P_{B}=p g H_{1}$ and hence

$$
p+g\left(H_{0}+H_{1}\right)=p g H_{1}
$$

or

$$
\begin{aligned}
& \therefore H_{1}=\frac{P_{2} H_{0}}{P-P_{2}}=\frac{S G_{1} H_{0}}{\left(1-S G_{2}\right)} \quad \text {. From table A.2, } S G_{2}=0.82 \\
& \therefore H_{1}=\frac{0.82}{(1-0.82)} 20 \mathrm{~mm}=91.1 \mathrm{~mm} \ldots-
\end{aligned}
$$

$$
\begin{aligned}
& \text { Under the applied pressure } \Delta P \text { (right diagron). } \\
& P_{A}=p g\left(H_{0}+H_{1}\right)+p g l, P_{D}=A p+p g\left(H_{1}-l\right) \text {. } \\
& \therefore S G_{t}\left(H_{0}+H_{1}\right)+l=\frac{\Delta p}{p g}+\left(H_{1}, l\right) \\
& \text { Solving for } l \text {. } \\
& l=\frac{1}{2}\left[H_{1}+\frac{\Delta P}{P g}-S G_{2}\left(H_{0}+H_{1}\right)\right] \\
& =\frac{1}{2}\left[91.1 m m+\frac{98 n}{m^{2}}+\frac{n^{3}}{a 9 a g g} \times \frac{3^{2}}{9.81 m} \times \frac{\operatorname{kgm}}{N . s^{2}} \times \frac{10^{3} m m}{m}-0.82(20+91.1) m p\right] \\
& l=5 \mathrm{~mm}
\end{aligned}
$$

$$
H=H_{0}+2 l=30 \mathrm{~mm}
$$

3.24 Determine the gage pressure in psig at point a, if liquid A has $\mathrm{SG}=0.75$ and liquid B has $\mathrm{SG}=1.20$. The liquid surrounding point a is water and the tank on the left is open to the atmosphere.

Given: Data on manometer

Find: Gage pressure at point a

Solution:

Basic equation $\quad \frac{d p}{d y}=-\rho \cdot g \quad$ or, for constant $\rho \quad \Delta \mathrm{p}=\rho \cdot g \cdot \Delta \mathrm{~h} \quad$ where $\Delta \mathrm{h}$ is height difference

Starting at point a

$$
\mathrm{p}_{1}=\mathrm{p}_{\mathrm{a}}-\rho \cdot \mathrm{g} \cdot \mathrm{~h}_{1}
$$

where
$\mathrm{h}_{1}=0.125 \cdot \mathrm{~m}+0.25 \cdot \mathrm{~m} \quad \mathrm{~h}_{1}=0.375 \mathrm{~m}$

Next, in liquid A

$$
\mathrm{p}_{2}=\mathrm{p}_{1}+\mathrm{SG}_{\mathrm{A}} \cdot \rho \cdot \mathrm{~g} \cdot \mathrm{~h}_{2} \quad \text { where } \quad \mathrm{h}_{2}=0.25 \cdot \mathrm{~m}
$$

Finally, in liquid B

$$
\mathrm{p}_{\mathrm{atm}}=\mathrm{p}_{2}-\mathrm{SG} \mathrm{~B}_{\mathrm{B}} \cdot \rho \cdot \mathrm{~g} \cdot \mathrm{~h}_{3} \quad \text { where } \quad \mathrm{h}_{3}=0.9 \cdot \mathrm{~m}-0.4 \cdot \mathrm{~m} \quad \mathrm{~h}_{3}=0.5 \mathrm{~m}
$$

Combining the three equations

$$
\mathrm{p}_{\mathrm{atm}}=\left(\mathrm{p}_{1}+\mathrm{SG} \mathrm{~A}_{\mathrm{A}} \cdot \rho \cdot g \cdot \mathrm{~h}_{2}\right)-\mathrm{SG} \mathrm{~B}_{\mathrm{B}} \cdot \rho \cdot \mathrm{~g} \cdot \mathrm{~h}_{3}=\mathrm{p}_{\mathrm{a}}-\rho \cdot \mathrm{g} \cdot \mathrm{~h}_{1}+\mathrm{SG}_{A} \cdot \rho \cdot g \cdot \mathrm{~h}_{2}-\mathrm{SG} \mathrm{~B}_{\mathrm{B}} \cdot \rho \cdot \mathrm{~g} \cdot \mathrm{~h}_{3}
$$

$$
\mathrm{p}_{\mathrm{a}}=\mathrm{p}_{\mathrm{atm}}+\rho \cdot \mathrm{g} \cdot\left(\mathrm{~h}_{1}-\mathrm{SG}_{\mathrm{A}} \cdot \mathrm{~h}_{2}+\mathrm{SG}_{\mathrm{B}} \cdot \mathrm{~h}_{3}\right)
$$

or in gage pressures

$$
\begin{aligned}
& \mathrm{p}_{\mathrm{a}}=\rho \cdot \mathrm{g} \cdot\left(\mathrm{~h}_{1}-\mathrm{SG}_{\mathrm{A}} \cdot \mathrm{~h}_{2}+\mathrm{SG}_{\mathrm{B}} \cdot \mathrm{~h}_{3}\right) \\
& \mathrm{p}_{\mathrm{a}}=1000 \cdot \frac{\mathrm{~kg}}{\mathrm{~m}^{3}} \times 9.81 \cdot \frac{\mathrm{~m}}{\mathrm{~s}^{2}} \times[0.375-(0.75 \times 0.25)+(1.20 \times 0.5)] \cdot \mathrm{m} \times \frac{\mathrm{N} \cdot \mathrm{~s}^{2}}{\mathrm{~kg} \cdot \mathrm{~m}} \\
& \mathrm{p}_{\mathrm{a}}=7.73 \times 10^{3} \mathrm{~Pa} \quad \quad \mathrm{p}_{\mathrm{a}}=7.73 \cdot \mathrm{kPa} \quad \text { (gage) }
\end{aligned}
$$

Given: Two-fluid manometer; oil is second fluid.
Find: $S G$ needed for 10 to 1 amplification.
Solution: Basic equation $\frac{d p}{d z}=-\rho g$
Assumptions: (1) Static liquid
(2) Incompressible

Then $d p=\rho g d h$

$$
p=p_{0}+\rho g h
$$

For left leg, $p_{a}=p_{a t m}+p_{H_{2}} g h_{A}$

$$
\begin{equation*}
p_{b}=p_{a}-p_{H_{2} O} g l=p_{a t r o n}+\rho_{H_{2} O} g\left(h_{A}-l\right) \tag{1}
\end{equation*}
$$

For right leg,

$$
\begin{align*}
& p_{a}=p_{a t m}+\rho_{t_{2} o g} h_{s} \\
& p_{b}=p_{a}-S G_{0 i 1} p_{H_{1} 0} g l=p_{a t m}+\rho_{t_{2} 0} g\left(h_{B}-S G_{0 i 1} l\right) \tag{2}
\end{align*}
$$

Combining,

$$
p_{\mathrm{gam}}^{1}+p_{H_{20}} g\left(n_{A}-l\right)=\operatorname{pag}_{\mathrm{A}}+\rho_{H_{L O}} g\left(n_{B}-5 G_{0 i 1} l\right)
$$

or

$$
h_{A}-l=h_{B}-s G_{0 i 1} l ; h_{A}-h_{B}=\Delta h=l\left(1-s G_{0 i 1}\right)
$$

Finally

$$
s G_{0 i 1}=1-\frac{\Delta h}{l}=1-\frac{1}{10}=0.900
$$

3.26 Consider a tank containing mercury, water, benzene, and air as shown. Find the air pressure (gage). If an opening is made in the top of the tank, find the equilibrium level of the mercury in the manometer.

Given: Data on fluid levels in a tank
Find: Air pressure; new equilibrium level if opening appears

Solution:

Using Eq. 3.8, starting from the open side and working in gage pressure

$$
\mathrm{p}_{\text {air }}=\rho_{\mathrm{H} 2 \mathrm{O}} \times \mathrm{g} \times\left[\mathrm{SG}_{\mathrm{Hg}} \times(0.3-0.1) \cdot \mathrm{m}-0.1 \cdot \mathrm{~m}-\mathrm{SG}_{\text {Benzene }} \times 0.1 \cdot \mathrm{~m}\right]
$$

Using data from Table A. $2 \quad \mathrm{p}_{\text {air }}=999 \cdot \frac{\mathrm{~kg}}{\mathrm{~m}^{3}} \times 9.81 \cdot \frac{\mathrm{~m}}{\mathrm{~s}^{2}} \times(13.55 \times 0.2 \cdot \mathrm{~m}-0.1 \cdot \mathrm{~m}-0.879 \times 0.1 \cdot \mathrm{~m}) \times \frac{\mathrm{N} \cdot \mathrm{s}^{2}}{\mathrm{~kg} \cdot \mathrm{~m}} \quad \mathrm{p}_{\text {air }}=24.7 \cdot \mathrm{kPa}$

To compute the new level of mercury in the manometer, assume the change in level from 0.3 m is an increase of x. Then, because the volume of mercury is constant, the tank mercury level will fall by distance $(0.025 / 0.25)^{2} x$. Hence, the gage pressure at the bottom of the tank can be computed from the left and the right, providing a formula for x

$$
\begin{aligned}
\mathrm{SG}_{\mathrm{Hg}} \times \rho_{\mathrm{H} 2 \mathrm{O}} \times \mathrm{g} \times(0.3 \cdot \mathrm{~m}+\mathrm{x})= & \mathrm{SG}_{\mathrm{Hg}} \times \rho_{\mathrm{H} 2 \mathrm{O}} \times \mathrm{g} \times\left[0.1 \cdot \mathrm{~m}-\mathrm{x} \cdot\left(\frac{0.025}{0.25}\right)^{2}\right] \cdot \mathrm{m} \ldots \\
& +\rho_{\mathrm{H} 2 \mathrm{O}} \times \mathrm{g} \times 0.1 \cdot \mathrm{~m}+\mathrm{SG}_{\text {Benzene }} \times \rho_{\mathrm{H} 2 \mathrm{O}} \times \mathrm{g} \times 0.1 \cdot \mathrm{~m}
\end{aligned}
$$

Hence

$$
\mathrm{x}=\frac{[0.1 \cdot \mathrm{~m}+0.879 \times 0.1 \cdot \mathrm{~m}+13.55 \times(0.1-0.3) \cdot \mathrm{m}]}{\left[1+\left(\frac{0.025}{0.25}\right)^{2}\right] \times 13.55}
$$

$$
\mathrm{x}=-0.184 \mathrm{~m}
$$

(The negative sign indicates the manometer level actually fell)

The new manometer height is $\mathrm{h}=0.3 \cdot \mathrm{~m}+\mathrm{x}$

$$
\mathrm{h}=0.116 \mathrm{~m}
$$

Given: Water flow in an inclined pipe as shown.
Pressure difference, $P_{A}-P_{B}$ measured with two-f fid manometer $h=5 f, h=6 . i n$.
Find: Pressure difference, $P_{n}-P_{B}$.
Solution:

Basic equation: $\frac{d p}{d h}=p g$. where h is measured positive dawn Assumptions: (i) static liquid
(a) incompressible
(3) $y=$ constant

Men,

$$
d p=p g d h \text { and } \Delta p=p g \Delta h
$$

Start at p_{A} and progress trough manometer to p_{P}

$$
\begin{aligned}
&-p_{A}+p_{H_{2}} g h \sin 30^{\circ}+p_{H_{10}} g a+p_{H_{20} g h}-p_{H_{H} g} g h-p H_{10} g a=p_{B} \\
&-P_{A}-p_{B}=p_{H_{y}} g h-p_{H_{2}} g h-p_{H_{12} g h} \sin 30^{\circ} \\
&=s C_{H_{g}} p_{H_{2}} g h-p_{H_{20}} g h-p_{H_{20}} g h \sin 30^{\circ} \\
& P_{A}-p_{B}=p_{H_{2}} g\left[h\left(s \sigma_{H_{g}}-1\right)-L \sin 30^{\circ}\right]
\end{aligned}
$$

From Table A.2, 56 ny $=13.55$
Men.

$$
\begin{aligned}
& \left.P_{A} \cdot P_{B}=1.94 \text { slug } \frac{3 t^{2}}{32.2 \frac{f t}{s^{2}}[0.5 f t}(13.55-1)-5 f \sin 30^{\circ}\right]+\frac{16 . s^{2}}{f . S t u g} \\
& P_{A}-P_{B}=236 \text { lof } / \mathrm{ft}^{2}(1.64+p i i)
\end{aligned}
$$

Given: A U-tube manometer is connected to the open tank filled with water as shown (manometer fluid is merriam blue)

$$
\lambda_{1}=2.5 \mathrm{~m}, y_{2}=0.2 \mathrm{n}, d=0.2 \mathrm{~m}
$$

Find: The manometer deflection, l.

Solution:
Basic equation $\frac{d p}{d h}=p g$

For $\gamma=$ constant $\Delta P=\rho g \Delta h$
Then, beginning at the free surface and accounting for the changes in pressure with elevation,

$$
\begin{aligned}
& P_{\text {aah }}+\left(P_{1}-P_{\text {atm }}\right)+\left(P_{2}-P_{1}\right)=P_{2}=P_{\text {atm }} \\
& p_{H_{2}} g\left[\left(\theta_{1}-\theta_{2}\right)+d+\frac{l}{2}\right]-p_{n t} g l=0 \\
& \left(D_{1} \cdot D_{2}\right)+d+\frac{l}{2}=\frac{p_{n b}}{\sum_{n+\infty}} l=(S \cdot G)_{n b} l
\end{aligned}
$$

and

$$
\begin{aligned}
& l=\frac{\left(\theta_{1}-\theta_{2}\right)+d}{\left[(s . G)_{m b}-\frac{1}{2}\right]} \quad(\text { Front Table } \quad \text { R.1. Appendix } A, \\
& \text { SG }=1.75 .) \\
& l=\frac{(2.5-0.7) m+0.2 m}{(1.75-0.5)} \\
& l=1.6 \mathrm{~m}
\end{aligned}
$$

Given: Reservoir manometer with vertical tubes $D=18 \mathrm{~mm}$ and $d=6 \mathrm{~mm}$ diameter. Gage liquid is Marian red oil.

Find: (a) Algebraic expression for deflection L in small the be when gage pressure Δp is applied to the reservoir.
(b) Evaluate L when Δp is equivalent to $25 \mathrm{~mm} \mathrm{H}_{2} \mathrm{O}$ (gage).

Solution: Use the diagram of Example Problem 3, 2, apply hydrostatics.
Computing equations: $\frac{d p}{d h}=+\rho g ; \Delta p=\rho g \Delta h ; \rho=3 G \rho H_{2} O$ Assumptions: (1) Static liquid
(2) Incompressible liquid

Then $\Delta p=$ foil $g(x+L)$
From conservation of volume,

$$
\frac{\pi D^{2}}{4} x=\frac{\pi d^{2}}{4} L ; \quad x=\left(\frac{d}{D}\right)^{2} L
$$

so

$$
\Delta p=\rho \text { water } g \Delta h=\text { foil } g\left[\left(\frac{d}{D}\right)^{2} L+L\right]=\rho_{0 i l} g L\left[1+\left(\frac{d}{D}\right)^{2}\right]
$$

solving for L,

$$
L=\frac{\Delta p}{p_{0 i l} g\left[1+(d / D)^{2}\right]}
$$

Substituting $\Delta p=\operatorname{pwaterg} \Delta h$,

$$
L=\frac{\text { Pwater } g \Delta h}{S G_{0 i l} P_{w a t e r} g\left[1+\left(d_{D}\right)^{2}\right]}=\frac{\Delta h}{S \varepsilon_{0 i 1}\left[1+(d / D)^{c}\right]}
$$

Evaluating, with $\leq 6_{0 i 1}=0.827$ (Table A.1),

$$
L=\frac{25.0 \mathrm{~mm}}{0.827\left[1+(6 / 18)^{2}\right]}=27.2 \mathrm{~mm}
$$

$\left\{\right.$ Note: $A \equiv \frac{L}{\Delta h_{e}}=\frac{27.2 \mathrm{~mm}}{25.0 \mathrm{~mm}}=1.09$ for this manometer. $\}$

Given: A U-tube manometer is connected to a closed tank filled with water as shown. The manometer fluid is Hg .

$$
D_{1}=2.5 \mathrm{~m}, D_{2}=0.7 \mathrm{~m}, d=0.2 \mathrm{~m}
$$

At the water surface $P_{0}=0.5$ atm (gage)
Find: The manometer deflection l.
Solution
Basic equation $\quad \frac{d R}{d h}=p g$

$$
\text { For } \gamma=\text { constant } \quad \Delta P=p g \Delta h
$$

Then, beginning at the free surface and accounting
for pressure changes with elevation for pressure changes with elevation,

$$
\begin{aligned}
& P_{0}+\left(P_{1}-P_{0}\right)+\left(P_{2}-P_{1}\right)=P_{2}=P_{01 n} \\
& P_{0}+p_{H_{2} 0} g\left[\left(D_{1}-P_{2}\right)+d+\frac{l}{2}\right]-p_{H_{g} g} g l=P_{\text {am }} \\
& \frac{P_{0}-P_{a d n}}{p_{H_{1} 0} g}+\left(D_{1}-\nabla_{2}\right)+d+\frac{l}{2}=\frac{p_{H_{g} g}}{P_{H_{2} 0 g}} l=(5, G)_{\mathrm{Hg}} l
\end{aligned}
$$

and

$$
\begin{aligned}
& l=\frac{\left(P_{0}-P_{d n}\right) / p_{H_{2}} 0 g+\left(D_{1}-\lambda_{2}\right)+d}{(5 . G)_{\text {ugh }}-0.5}
\end{aligned}
$$

$$
\begin{aligned}
& l=0.546 \mathrm{~m}
\end{aligned}
$$

Given: Reservoir manometer with dimensions shown Manometer fluid sG $=0.827$

Find: required distance between marks on vertical scale for : in of water ΔP

Solution:
Basic equation: $\quad \frac{d P}{d z}=-\gamma$
Assumptions: (i) static fluid
(2) gravity is only body force
(3) Z axis directed vertically

$$
d P=-\gamma d z
$$

For constant $\gamma, \quad \Delta P=P_{1}-P_{2}=-\gamma\left(z_{1}-z_{2}\right)$
Under applied pressure $\Delta P=\gamma_{0.1}(x+h)$
But conditions of problem require $\Delta P=\gamma_{\mathrm{H}_{2} \mathrm{O}} t$ where $t=1$ in

$$
\therefore \gamma_{\text {oil }}(x+h)=\gamma_{\mathrm{H}_{2} \mathrm{O}} l
$$

Since the volume of the dilmust remain constant

$$
\begin{aligned}
& x A_{\text {res }}=h A_{\text {tube }} \\
& \therefore x=h \frac{A_{\text {tube }}}{A_{\text {res }}}
\end{aligned}
$$

and

$$
\begin{aligned}
& \gamma_{0 i l}\left(h \frac{A_{t}}{A_{r}}+h\right)=\gamma_{H_{2 O}} l \\
& \therefore \frac{h}{l}=\frac{\gamma_{H_{2 O}}}{\gamma_{011}}\left(\frac{1}{\left.\frac{A_{t}}{A_{r}}+1\right)=\frac{1}{S G_{01}\left[\left(\frac{\partial_{t}}{D_{r}}\right)^{2}+1\right]}}\right. \\
& \frac{h}{l}=\frac{1}{0.827\left[\left(\frac{3}{16} \times \frac{8}{5}\right)^{2}+1\right]}=\frac{1}{0.827\left[(0.3)^{2}+1\right]} \\
& \frac{h}{l}=1.11
\end{aligned}
$$

For $l=1.0$ in as given, then $h=1.11 \mathrm{in}$.

Problem 3.32

3.32 The inclined-tube manometer shown has $D=76 \mathrm{~mm}$ and $d=8 \mathrm{~mm}$, and is filled with Meriam red oil. Compute the angle, θ, that will give a $15-\mathrm{cm}$ oil deflection along the inclined tube for an applied pressure of 25 mm of water (gage). Determine the sensitivity of this manometer.

Given: Data on inclined manometer

Find: Angle θ for given data; find sensitivity

Solution:

Basic equation $\quad \frac{d p}{d y}=-\rho \cdot g \quad$ or, for constant $\rho \quad \Delta p=\rho \cdot g \cdot \Delta h \quad$ where Δh is height difference
Under applied pressure

$$
\begin{equation*}
\Delta \mathrm{p}=\mathrm{SG}_{\mathrm{Mer}} \cdot \rho \cdot \mathrm{~g} \cdot(\mathrm{~L} \cdot \sin (\theta)+\mathrm{x}) \tag{1}
\end{equation*}
$$

From Table A. 1

$$
\mathrm{SG}_{\mathrm{Mer}}=0.827
$$

and $\Delta \mathrm{p}=1 \mathrm{in}$. of water, or

$$
\Delta \mathrm{p}=\rho \cdot \mathrm{g} \cdot \mathrm{~h} \quad \text { where } \quad \mathrm{h}=25 \cdot \mathrm{~mm} \quad \mathrm{~h}=0.025 \mathrm{~m}
$$

$$
\begin{equation*}
\Delta \mathrm{p}=1000 \cdot \frac{\mathrm{~kg}}{\mathrm{~m}^{3}} \times 9.81 \cdot \frac{\mathrm{~m}}{\mathrm{~s}^{2}} \times 0.025 \cdot \mathrm{~m} \times \frac{\mathrm{N} \cdot \mathrm{~s}^{2}}{\mathrm{~kg} \cdot \mathrm{~m}} \quad \Delta \mathrm{p}=245 \mathrm{~Pa} \tag{2}
\end{equation*}
$$

The volume of liquid must remain constant, so $x \cdot A_{\text {res }}=L \cdot A_{\text {tube }} \quad x=L \cdot \frac{A_{\text {tube }}}{A_{\text {res }}}=L \cdot\left(\frac{d}{D}\right)^{2}$

Combining Eqs 1 and 2

$$
\begin{aligned}
& \Delta p=\mathrm{SG}_{\mathrm{Me} \cdot} \cdot \rho \cdot \mathrm{~g} \cdot\left[\mathrm{~L} \cdot \sin (\theta)+\mathrm{L} \cdot\left(\frac{\mathrm{~d}}{\mathrm{D}}\right)^{2}\right] \\
& \sin (\theta)=\frac{\Delta \mathrm{p}}{\mathrm{SG}} \mathrm{Mer} \cdot \rho \cdot \mathrm{~g} \cdot \mathrm{~L} \\
& \left.\sin (\theta)=245 \cdot \frac{\mathrm{~d}}{\mathrm{~m}^{2}}\right)^{2} \times \frac{1}{0.827} \times \frac{1}{1000} \cdot \frac{\mathrm{~m}^{3}}{\mathrm{~kg}} \times \frac{1}{9.81} \cdot \frac{\mathrm{~s}^{2}}{\mathrm{~m}} \times \frac{1}{0.15} \cdot \frac{1}{\mathrm{~m}} \times \frac{\mathrm{kg} \cdot \mathrm{~m}}{\mathrm{~s}^{2} \cdot \mathrm{~N}}-\left(\frac{8}{76}\right)^{2}=0.186
\end{aligned}
$$

Solving for θ

$$
\theta=11 \cdot \operatorname{deg}
$$

The sensitivity is the ratio of manometer deflection to a vertical water manometer

$$
\mathrm{s}=\frac{\mathrm{L}}{\mathrm{~h}}=\frac{0.15 \cdot \mathrm{~m}}{0.025 \cdot \mathrm{~m}} \quad \mathrm{~s}=6
$$

Problem 3.33
Given: Inclined manometer as shown

$$
D=a b \mathrm{~mm}, d=8 \mathrm{~mm}
$$

Angle θ is such that liquid deflection is five times that of U-tube manometer under sane applied pressure difference

Find: angle, θ and manometer sensitivity
Solution:
Basic equation $\quad \frac{d p}{d z}=-p g$
Then $d p=-p g d z$ and for constant p

$$
\Delta P=P_{1}-P_{2}=-p g\left(z_{1}-z_{2}\right)
$$

For the inclined manometer,

$$
P_{1}-P_{\text {atm }}=p g(L \cdot \sin \theta+x)
$$

Since the volume of the oil mut remain constant,

$$
\begin{aligned}
& x A_{\text {res }}=L A_{\text {tube }} \\
& x=L \frac{A_{t u k}}{A_{\text {res }}}=L\left(\frac{d}{j}\right)^{2}
\end{aligned}
$$

Ten

$$
\left.P_{1}-P_{a t}=\rho g(l \sin \theta+x)=p g\left(\sin \theta+h\left(\frac{d}{\eta}\right)^{2}\right)\right)=p g\left(\sin \theta+\left(\frac{d}{b}\right)^{2}\right)
$$

For a U-tube manometer

$$
P_{1}-P_{a t m}=-p g\left(z_{1}-z_{2}\right)=p g h .
$$

Hence,

$$
\frac{\left(P_{1}-P_{a h h}\right)_{\text {val }}}{\left(P_{1}-P_{a h h}\right)_{0-t w e}}=\frac{\rho g h\left[\sin \theta+\left(\frac{d}{\partial}\right)^{2}\right]}{\rho g h}
$$

For same applied pressure and $L / h=5$

$$
\begin{aligned}
1= & 5\left[\sin \theta+\left(\frac{d}{y}\right)^{2}\right] \\
\theta= & \sin ^{-1}\left[0.2-\left(\frac{d}{y}\right)^{2}\right]=\sin ^{-1}\left[0.2-\left(\frac{8}{a b}\right)^{2}\right]=11.1^{\circ} \\
& s=L / \Delta h_{e}=L /(\text { SG h })=5 / \mathrm{SG}
\end{aligned}
$$

Given: U-tube manometer with tubes of different diameter and two liquids, as shown.
Find: (a) the deflection, h, for $\Delta t=250 \mathrm{Nl} \mathrm{m}^{2}$
b) the sensitivity of the manometer
Plot: the man oncter senisturity as a function of $d_{2} l d$. Solution:
Solution: Basic equation: $\frac{d f}{d z}=-p a$
Assumptions: (I) static liquid (ai) incompressible
Integration the basic equation from reference state at go to generalctates at z_{-p} aves

$$
\underline{z}_{-p}-p_{0}=-p g(z-z 0)=p g\left(z 0^{-z}\right)
$$

From the left diagram $\quad f_{A} p_{a t m}=f_{w} g l_{1}=p_{0} g l_{2}$
From the rigi diagram

$$
\Delta p=p_{w g}\left(l_{4}-l_{3}\right)+p_{0} l_{2}^{0}=p_{w g}\left(l_{4}+l_{1}-l_{3}\right)
$$

Define $l_{w}=l_{1}-l_{3}$. Note $l_{4}=h$. Then $\Delta p=f_{w g}\left(h+h_{2}\right)$...s. $)$ We can relate l_{w} to h by recognizing tie volume of water must be conserved $\therefore \pi \frac{d^{2}}{4} l_{\omega}=\pi \frac{d_{2}}{4} h$ and $l_{\omega}=h\left(\frac{d_{2}}{d_{1}}\right)^{2}$

Substituting into Ea. $^{\text {i }}$ gives

$$
\Delta p=p_{w} g\left[h+h\left(\frac{d_{2}}{d_{1}}\right)^{2}\right]=p_{w} g h\left[1+\left(\frac{\left.d_{2}\right)^{2}}{d_{1}}\right]\right.
$$

Solving for h,

$$
\begin{aligned}
& h=\frac{\Delta p}{p_{0} g\left[1+\left(\left.d_{2}\right|_{d}\right)^{2}\right]}=250 \frac{n}{m^{2}} \times \frac{m^{3}}{999 \mathrm{tg}} \times \frac{s^{2}}{9.8 \mathrm{~m}} \times \frac{1}{\left.1+(1.51 .0)^{2}\right]} \times \frac{\lg \cdot \mathrm{n}}{\sqrt{s^{2}}} \times \frac{0^{3} \mathrm{~mm}}{m} \\
& h=7.85 \mathrm{~mm}
\end{aligned}
$$

(b) The senstunty of the manometer is defined as

$$
\begin{aligned}
s & =\frac{h}{\Delta h_{e}}=\frac{0 \text { dual deflection }}{\text { equivalent } \Delta h_{H_{2} O}} \quad \text { where } \Delta p=p_{i_{20}} g \text { the } \\
\therefore s & =\frac{h}{\Delta h_{e}}=\frac{1}{\left[1+\left(d_{2} \mid d\right)^{2}\right]}=\frac{1}{\left(1+(1.5)^{2}\right.}=0.308
\end{aligned}
$$

The design is a poor one The sensituritu could be improved by inter charging d_{2} and d_{1}, line having $d_{2} \mid d_{1}<1.0$ as shown in the plot below

$$
S=\frac{1}{\left[1+\left(d_{2} / d_{1}\right)^{2}\right]}
$$

The manometer sensituity, as a function of diameter ratio dz ld, is shown below

Given: Barometer with 6.5 in of water on top of the $T=70^{\circ} \mathrm{F}$ M colum of height 28.35 in ; ; Temperature
Find: (a) Barometric pressure in psia.
(b) Effect of increase in ambient temperature ito $T_{a}=85^{\circ} \mathrm{F}$ on length of mercury column for same barometric pressure.
Solution:
Basic equation: $\frac{d p}{d h}=p g$
Assumptions: (i) static liquid
(a) incompressible
(3) $g=$ constant

Th. $d p=p g d h$ and $\Delta p=p g \Delta h$

Start at the free surface of the mercury ($p=p_{\text {atm }}$) and progress through t the barometer to P_{v} (vapor pressure of the water?

$$
\begin{aligned}
& p_{\text {aten }}-p_{\text {reg }} h_{1}-p_{H_{2}} g h_{2}=p_{v} \\
& -p_{\text {aaa }}=p_{\text {tog }} h_{1}+p_{H_{20}} g h_{2}+p_{v}=p_{A_{20}} S G_{H g} h_{1}+p_{A_{20} g} g h_{2}+p_{v} \\
& p_{\text {aton }}=p_{H_{20}} g\left[S \sigma_{0+g} h_{1}+h_{2}\right]+p_{v}
\end{aligned}
$$

From Table A.2, $S G_{u g}=13.55$
Evaluating.

$$
\begin{aligned}
P_{\text {atm }}= & 1.93 \text { slug } \\
& \left.+32.2 \frac{f t}{s^{2}}[13.55 \times 28.35 n+6.5 n] \frac{f t}{12 i n} \times \frac{f^{2}}{14 n^{2}} \times \frac{16\left(s^{2}\right.}{f(.) L u g}\right] \\
& +0.36 \text { psia } \\
P_{\text {atm }}= & 14.4 \text { psia }
\end{aligned}
$$

At $T=85^{\circ} \mathrm{F}$, the vapor pressure of water is estimated (from Table Ri,) to be $z 0.100$ psia. For the same barometric pressure the length of the mercury column would be shorter al the higher ambient temperature.

Given: Sealed tank of crass-section A and height, $h=3.0 \mathrm{~m}$ is filled with water io a depth, $_{1} D_{1}=2.5 n$.

Water dranis slowly from the. tank until system athens equilibrium $<$
U-tube manometer is connected to tank as shown. (manometer fluid is merion blue, $s .6=1.75$).

$$
D_{1}=2.5 \mathrm{~m}, D_{2}=0.7 \mathrm{~m}, d=0.2 \mathrm{~m}
$$

Find: Te manometer deflection, l, under equilibrium conditions
Solution:
Basic equations: $\quad \frac{d P}{d h}=P Q \quad P \psi=$ MRS
For $\gamma=$ constant $\Delta P=p g \Delta h$
To determine the surface pressure Pounder equilibrion conditions treat air above water as an ideal gas

$$
\begin{aligned}
& \frac{P_{0} t_{a}}{P_{0} t_{0}}=\frac{M R T_{a}}{M R T_{0}} \quad \text { Assuming } T_{a}=T_{0} \text {, then } \\
& P_{0}=\frac{t_{a}}{4_{0}} P_{a}=\frac{A\left(L-D_{1}\right)}{A(L-H)} P_{a}=\frac{\left(L-D_{1}\right)}{(L-H)} P_{a}
\end{aligned}
$$

Under equilibrium conditions, $P_{0}+P_{H_{2}} \circ g H=P_{a}$
Hence, $\frac{\left(L-D_{1}\right)}{(L-H)} P_{a}+P_{H_{2}} g H=P_{a}$ or $\rho_{H_{2}} \circ g H^{2}-H\left(P_{a}+P_{H_{2}} \circ g()+D_{1} P_{a}=10\right.$

$$
\begin{aligned}
& \text { and } \\
& H=\frac{\left(P_{a}+\rho_{10} g h\right) \pm \sqrt{\left.\left(P_{a}+p_{\mu_{20}} g h\right)^{2}-4 \rho_{H_{2}} g\right)_{1} P_{a}}}{2 \rho_{\mu_{0}} g}
\end{aligned}
$$

$H=10.9 n$ or $2.36 n$. From physical considerations $H=2.36 \mathrm{~m}$

$$
P_{0}=\frac{\left.(L-)_{1}\right)}{(L-H)} P_{a}=\frac{(3.0-2.5)}{(3.0-2.36)} \times 1.01 \times 10^{5} \mathrm{~N}_{n^{2}}=7.89 \times 10^{4} \mathrm{~N}_{n^{2}}
$$

For the manometer, $P_{0}+\left(P_{1}-P_{0}\right)+\left(P_{2}-P_{1}\right)=P_{2}=P_{\text {atm }}$

$$
\begin{aligned}
& P_{0}+P_{N_{2} O} g\left(H-P_{2}+d-\frac{l_{2}}{2}\right)+p_{n+} g l=P_{a l n} \\
& \frac{P_{\text {ot }}-P_{0}}{P H_{2} O g}-H+H_{2}-d=(S . G)_{\text {nb }} l-\frac{l}{2}=l\left[(S . G)_{n b}-0.5\right]
\end{aligned}
$$

Problem 3.37
Given: Water column standing at $\Delta h=50 \mathrm{~mm}$ in $D=2.5 \mathrm{~mm}$ glass tube.
Find: (a) column height if surface tension were zero.
(b) Column height in $D=1$ mon tube.

Solution: Assume column height is sum of capillary rise and rise cacesed by, pressure difference,

$$
\Delta h=\Delta h_{c}+\Delta h_{p}
$$

Choose a free-body diagram of the for analysis:

$$
\Sigma F_{z}=\pi D \sigma \cos \theta-\frac{\pi D^{2}}{4} \rho g \Delta h_{c}=0
$$

Assumptions: (1) Neglect volume under meniscus
(2) Sup remains constant

Then $\Delta h_{c}=\frac{4 \sigma}{\rho g D} \cos \theta$

$m g=\rho g \forall$

For water (Table A.4), $\sigma=72.8 \mathrm{mN} / \mathrm{m}$ and $\theta \approx 0,50 \cos \theta=1$, and

$$
\Delta h_{c}=\frac{4 \sigma}{\rho g D}
$$

For the $D=2.5 \mathrm{~mm}$ tube,

$$
\Delta h_{c}=4 \times 72.8 \times 10^{-3} \frac{N_{1}}{m} \times \frac{\mathrm{m}^{3}}{999 \mathrm{~kg}^{2}} \times \frac{\mathrm{s}^{2}}{9.81 \mathrm{~m}^{2}} \times \frac{1}{0.0025 \mathrm{~m}^{2}} \times \frac{\mathrm{kg} \mathrm{~m}}{11 . \mathrm{s}^{2}}=0.0119 \mathrm{~m} \text { or } 11.9 \mathrm{~mm}
$$

Then

$$
\Delta h_{p}=\Delta h-\Delta h_{c}=(50.0-11 A) \mathrm{mm}=38.1 \mathrm{~mm}(\sigma=0)
$$

For the $D=1.0 \mathrm{~mm}$ thebe,

$$
\Delta h_{c}=4 \times 72.8 \times 10^{-3} \frac{\mathrm{~N}}{\mathrm{~m}} \times \frac{\mathrm{m}^{3}}{999 \mathrm{~kg}^{2}} \times \frac{\mathrm{s}^{2}}{9.81 \mathrm{~m}^{2}} \times \frac{1}{0.001 \mathrm{~m}} \times \frac{\mathrm{kg} \mathrm{~m}}{\mathrm{~N} . \mathrm{s}^{2}}=0.0297 \mathrm{~m} \text { or } 24.7 \mathrm{~mm}
$$

So

$$
\Delta h=\Delta h_{c}+\Delta h_{p}=(29.7+38.1) \mathrm{mm}=67.8 \mathrm{~mm}(D=1.0 \mathrm{~mm}+w b e)
$$

3.38 Consider a small diameter open-ended tube inserted at the interface between two immiscible fluids of different densities. Derive an expression for the height difference Δh between the interface level inside and outside the tube in terms of tube diameter D, the two fluid densities, ρ_{1} and ρ_{2}, and the surface tension σ and angle θ for the two fluids' interface. If the two fluids are water and mercury, find the tube diameter such that $\Delta h<10 \mathrm{~mm}$.

Given: Two fluids inside and outside a tube
Find: \quad An expression for height h; find diameter for $h<10 \mathrm{~mm}$ for water/mercury

Solution:

A free-body vertical force analysis for the section of fluid 1 height Δh in the tube below the "free surface" of fluid 2 leads to

$$
\sum \mathrm{F}=0=\Delta \mathrm{p} \cdot \frac{\pi \cdot \mathrm{D}^{2}}{4}-\rho_{1} \cdot \mathrm{~g} \cdot \Delta \mathrm{~h} \cdot \frac{\pi \cdot \mathrm{D}^{2}}{4}+\pi \cdot \mathrm{D} \cdot \sigma \cdot \cos (\theta)
$$

where Δp is the pressure difference generated by fluid 2 over height $\Delta h, \quad \Delta \mathrm{p}=\rho_{2} \cdot \mathrm{~g} \cdot \Delta \mathrm{~h}$
Assumption: Neglect meniscus curvature for column height and volume calculations
Hence

$$
\Delta \mathrm{p} \cdot \frac{\pi \cdot \mathrm{D}^{2}}{4}-\rho_{1} \cdot \mathrm{~g} \cdot \Delta \mathrm{~h} \cdot \frac{\pi \cdot \mathrm{D}^{2}}{4}=\rho_{2} \cdot \mathrm{~g} \cdot \Delta \mathrm{~h} \cdot \frac{\pi \cdot \mathrm{D}^{2}}{4}-\rho_{1} \cdot \mathrm{~g} \cdot \Delta \mathrm{~h} \cdot \frac{\pi \cdot \mathrm{D}^{2}}{4}=-\pi \cdot \mathrm{D} \cdot \sigma \cdot \cos (\theta)
$$

Solving for $\Delta h \quad \Delta h=-\frac{4 \cdot \sigma \cdot \cos (\theta)}{g \cdot D \cdot\left(\rho_{2}-\rho_{1}\right)}$
For fluids 1 and 2 being water and mercury (for mercury $\sigma=375 \mathrm{mN} / \mathrm{m}$ and $\theta=140^{\circ}$, from Table A.4), solving for D to make $\Delta \mathrm{h}=10 \mathrm{~mm}$

$$
\begin{aligned}
& D=-\frac{4 \cdot \sigma \cdot \cos (\theta)}{\mathrm{g} \cdot \Delta \mathrm{~h} \cdot\left(\rho_{2}-\rho_{1}\right)}=-\frac{4 \cdot \sigma \cdot \cos (\theta)}{\mathrm{g} \cdot \Delta \mathrm{~h} \cdot \rho_{\mathrm{H} 2 \mathrm{O} \cdot\left(\mathrm{SG}_{\mathrm{Hg}}-1\right)}} \\
& D=-\frac{4 \times 0.375 \cdot \frac{\mathrm{~N}}{\mathrm{~m}} \times \cos (140 \cdot \mathrm{deg})}{9.81 \cdot \frac{\mathrm{~m}}{\mathrm{~s}^{2}} \times 0.01 \cdot \mathrm{~m} \times 1000 \cdot \frac{\mathrm{~kg}}{\mathrm{~m}^{3}} \times(13.6-1)} \times \frac{\mathrm{kg} \cdot \mathrm{~m}}{\mathrm{~N} \cdot \mathrm{~s}^{2}} \quad \mathrm{D}=0.93 \mathrm{~mm} \quad \mathrm{D} \geq 1 \cdot \mathrm{~mm}
\end{aligned}
$$

3.39 You have a manometer consisting of a tube that is $1.1-\mathrm{cm}$ ID. On one side the manometer leg contains mercury, 10 cc of an oil ($\mathrm{SG}=1.67$), and 3 cc of air as a bubble in the oil. The other leg just contains mercury. Both legs are open to the atmosphere and are in a static condition. An accident occurs in which 3 cc of the oil and the air bubble are removed from the one leg. How much do the mercury height levels change?

Given: Data on manometer before and after an "accident"
Find: Change in mercury level

Solution:

Basic equation $\quad \frac{d p}{d y}=-\rho \cdot g \quad$ or, for constant $\rho \quad \Delta p=\rho \cdot g \cdot \Delta h \quad$ where Δh is height difference
For the initial state, working from right to left $\quad \mathrm{p}_{\mathrm{atm}}=\mathrm{patm}+\mathrm{SG}_{\mathrm{Hg}} \cdot \rho \cdot g \cdot \mathrm{~h}_{3}-\mathrm{SG}_{\mathrm{oil}} \cdot \rho \cdot g \cdot\left(\mathrm{~h}_{1}+\mathrm{h}_{2}\right)$

$$
\begin{equation*}
\mathrm{SG}_{\mathrm{Hg}} \cdot \rho \cdot g \cdot \mathrm{~h}_{3}=\mathrm{SG}_{\mathrm{oil}} \cdot \rho \cdot \mathrm{~g} \cdot\left(\mathrm{~h}_{1}+\mathrm{h}_{2}\right) \tag{1}
\end{equation*}
$$

Note that the air pocket has no effect!
For the final state, working from right to left

$$
\begin{align*}
& \mathrm{P}_{\mathrm{atm}}=\mathrm{p}_{\mathrm{atm}}+\mathrm{SG} \text { Hg } \cdot \rho \cdot \mathrm{g} \cdot\left(\mathrm{~h}_{3}-\mathrm{x}\right)-\mathrm{SG}_{\mathrm{oil}} \cdot \rho \cdot \mathrm{~g} \cdot \mathrm{~h}_{4} \\
& \mathrm{SG}_{\mathrm{Hg}} \cdot \rho \cdot \mathrm{~g} \cdot\left(\mathrm{~h}_{3}-\mathrm{x}\right)=\mathrm{SG}_{\mathrm{oil}} \cdot \rho \cdot g \cdot \mathrm{~h}_{4} \tag{2}
\end{align*}
$$

The two unknowns here are the mercury levels before and after (i.e., h_{3} and x)

Combining Eqs. 1 and 2

$$
\begin{equation*}
\mathrm{SG}_{\mathrm{Hg}} \cdot \rho \cdot \mathrm{~g} \cdot \mathrm{x}=\mathrm{SG}_{\mathrm{oil}} \cdot \rho \cdot \mathrm{~g} \cdot\left(\mathrm{~h}_{1}+\mathrm{h}_{2}-\mathrm{h}_{4}\right) \quad \mathrm{x}=\frac{\mathrm{SG}_{\mathrm{oil}}}{\mathrm{SG}_{\mathrm{Hg}}} \cdot\left(\mathrm{~h}_{1}+\mathrm{h}_{2}-\mathrm{h}_{4}\right) \tag{3}
\end{equation*}
$$

From Table A. 1

$$
\mathrm{SG}_{\mathrm{Hg}}=13.55
$$

The term

Then from Eq. 3
$h_{1}+h_{2}-h_{4} \quad$ is the difference between the total height of oil before and after the accident

$$
\mathrm{h}_{1}+\mathrm{h}_{2}-\mathrm{h}_{4}=\frac{\Delta \mathrm{V}}{\left(\frac{\pi \cdot \mathrm{~d}^{2}}{4}\right)}=\frac{4}{\pi} \times\left(\frac{1}{0.011} \cdot \frac{1}{\mathrm{~m}}\right)^{2} \times 3 \cdot \mathrm{cc} \times\left(\frac{1 \cdot \mathrm{~m}}{100 \cdot \mathrm{~cm}}\right)^{3}=0.0316 \cdot \mathrm{~m}
$$

$$
\mathrm{x}=\frac{1.67}{13.55} \times 0.0316 \cdot \mathrm{~m} \quad \mathrm{x}=3.895 \times 10^{-3} \mathrm{~m} \quad \mathrm{x}=0.389 \cdot \mathrm{~cm}
$$

3.40 Based on the atmospheric temperature data of the U.S.

Standard Atmosphere of Fig. 3.3, compute and plot the pressure variation with altitude, and compare with the pressure data of Table A. 3 .

Given: Atmospheric temperature data
Find: \quad Pressure variation; compare to Table A. 3
Solution:
From Section 3-3:

$$
\frac{\mathrm{dp}}{\mathrm{dz}}=-\rho \cdot z
$$

For a linear temperature variation

$$
\mathrm{m}=-\frac{\mathrm{d} T}{\mathrm{dz}}=\text { const }
$$

For isothermal conditions (Example 3.4)

$$
\begin{aligned}
& \mathrm{p}=\mathrm{p}_{0} \cdot\left(\frac{\mathrm{~T}}{\mathrm{~T}_{0}}\right)^{\frac{\mathrm{g}}{\mathrm{~m} \cdot \mathrm{R}}} \\
& \mathrm{p}=\mathrm{p}_{0} \cdot \mathrm{e}^{-\frac{\mathrm{g} \cdot\left(\mathrm{z}-\mathrm{z}_{0}\right)}{\mathrm{R} \cdot \mathrm{~T}}}
\end{aligned}
$$

In these equations $\mathrm{p}_{0}, \mathrm{~T}_{0}$, and z_{0} are reference conditions

$$
\begin{array}{rcl}
p_{\mathrm{SL}}= & 101 & \mathrm{kPa} \\
R= & 286.9 & \mathrm{~J} / \mathrm{kg} \cdot \mathrm{~K} \\
\rho= & 999 & \mathrm{~kg} / \mathrm{m}^{3}
\end{array}
$$

The temperature can be computed from the data in the figure
The pressures are then computed from the appropriate equation

z (km)	T (${ }^{\circ}$)	T (K)		$p / p_{\text {sL }}$
0.0	15.0	288.0	$\begin{gathered} \hline m= \\ 0.0065 \\ (\mathrm{~K} / \mathrm{m}) \end{gathered}$	1.000
2.0	2.0	275.00		0.784
4.0	-11.0	262.0		0.608
6.0	-24.0	249.0		0.465
8.0	-37.0	236.0		0.351
11.0	-56.5	216.5		0.223
12.0	-56.5	216.5	T = const	0.190
14.0	-56.5	216.5		0.139
16.0	-56.5	216.5		0.101
18.0	-56.5	216.5		0.0738
20.1	-56.5	216.5		0.0530
22.0	-54.6	218.4	$\begin{gathered} m= \\ -0.000991736 \\ (\mathrm{~K} / \mathrm{m}) \end{gathered}$	0.0393
24.0	-52.6	220.4		0.0288
26.0	-50.6	222.4		0.0211
28.0	-48.7	224.3		0.0155
30.0	-46.7	226.3		0.0115
32.2	-44.5	228.5		0.00824
34.0	-39.5	233.5	$\begin{gathered} m= \\ -0.002781457 \\ (\mathrm{~K} / \mathrm{m}) \end{gathered}$	0.00632
36.0	-33.9	239.1		0.00473
38.0	-28.4	244.6		0.00356
40.0	-22.8	250.2		0.00270
42.0	-17.2	255.8		0.00206
44.0	-11.7	261.3		0.00158
46.0	-6.1	266.9		0.00122
47.3	-2.5	270.5		0.00104
50.0	-2.5	270.5	T = const	0.000736
52.4	-2.5	270.5		0.000544
54.0	-5.6	267.4	$\begin{gathered} m= \\ 0.001956522 \\ (\mathrm{~K} / \mathrm{m}) \end{gathered}$	0.000444
56.0	-9.5	263.5		0.000343
58.0	-13.5	259.5		0.000264
60.0	-17.4	255.6		0.000202
61.6	-20.5	252.5		0.000163
64.0	-29.9	243.1	$\begin{gathered} m= \\ 0.003913043 \\ (\mathrm{~K} / \mathrm{m}) \end{gathered}$	0.000117
66.0	-37.7	235.3		0.0000880
68.0	-45.5	227.5		0.0000655
70.0	-53.4	219.6		0.0000482
72.0	-61.2	211.8		0.0000351
74.0	-69.0	204.0		0.0000253
76.0	-76.8	196.2		0.0000180
78.0	-84.7	188.3		0.0000126
80.0	-92.5	180.5	T = const	0.00000861
82.0	-92.5	180.5		0.00000590
84.0	-92.5	180.5		0.00000404
86.0	-92.5	180.5		0.00000276
88.0	-92.5	180.5		0.00000189
90.0	-92.5	180.5		0.00000130

From Table A. 3

$\boldsymbol{z} \mathbf{(k m})$	$\boldsymbol{p} \boldsymbol{p}_{\mathbf{s L}}$
0.0	1.000
0.5	0.942
1.0	0.887
1.5	0.835
2.0	0.785
2.5	0.737
3.0	0.692
3.5	0.649
4.0	0.609
4.5	0.570
5.0	0.533
6.0	0.466
7.0	0.406
8.0	0.352
9.0	0.304
10.0	0.262
11.0	0.224
12.0	0.192
13.0	0.164
14.0	0.140
15.0	0.120
16.0	0.102
17.0	0.0873
18.0	0.0747
19.0	0.0638
20.0	0.0546
22.0	0.0400
24.0	0.0293
26.0	0.0216
28.0	0.0160
30.0	0.0118
40.0	0.00283
50.0	0.000787
60.0	0.000222
70.0	0.0000545
90.0	0.0000102
	0.00000162
10	

Atmospheric Pressure vs Elevation

Agreement between calculated and tabulated data is very good (as it should be, considering the table data is also computed!)
3.41 Two vertical glass plates $300 \mathrm{~mm} \times 300 \mathrm{~mm}$ are placed in an open tank containing water. At one end the gap between the plates is 0.1 mm , and at the other it is 2 mm . Plot the curve of water height between the plates from one end of the pair to the other.

Given: Geometry of vertical plates

Find: Curve of water height due to capillary action

Solution:

Parallel Plates: A free-body vertical force analysis for the section of water height Δh above the "free surface" between plates arbitrary width w (similar to the figure above), leads to

$$
\sum \mathrm{F}=0=2 \cdot \mathrm{w} \cdot \sigma \cdot \cos (\theta)-\rho \cdot \mathrm{g} \cdot \Delta \mathrm{~h} \cdot \mathrm{w} \cdot \mathrm{a}
$$

Solving for $\Delta h \quad \Delta \mathrm{~h}=\frac{2 \cdot \sigma \cdot \cos (\theta)}{\rho \cdot \mathrm{g} \cdot \mathrm{a}}$
For water $\sigma=72.8 \mathrm{mN} / \mathrm{m}$ and $\theta=0^{\circ}$ (Table A.4), so

$$
\begin{array}{lll}
\sigma= & 72.8 & \mathrm{mN} / \mathrm{m} \\
\rho= & 1000 & \mathrm{~kg} / \mathrm{m}^{3}
\end{array}
$$

Using the formula above

$\mathbf{a}(\mathbf{m m})$	$\Delta \boldsymbol{h}(\mathbf{m m})$
0.10	148
0.15	98.9
0.20	74.2
0.25	59.4
0.30	49.5
0.35	42.4
0.40	37.1
0.45	33.0
0.50	29.7
0.55	27.0
0.60	24.7
0.65	22.8
0.70	21.2
0.75	19.8
1.00	14.8
1.25	11.9
1.50	9.89
1.75	8.48
2.00	7.42

Capillary Height Between Vertical Plates

3.42 Compare the height due to capillary action of water exposed to air in a circular tube of diameter $D=0.5 \mathrm{~mm}$, and between two infinite vertical parallel plates of gap $a=0.5 \mathrm{~mm}$.

Given: Water in a tube or between parallel plates
Find: \quad Height Δh for each system

Solution:

a) Tube: A free-body vertical force analysis for the section of water height Δh above the "free surface" in the tube, as shown in the figure, leads to

$$
\sum \mathrm{F}=0=\pi \cdot \mathrm{D} \cdot \sigma \cdot \cos (\theta)-\rho \cdot g \cdot \Delta h \cdot \frac{\pi \cdot \mathrm{D}^{2}}{4}
$$

Assumption: Neglect meniscus curvature for column height and volume calculations

Solving for Δh

$$
\Delta \mathrm{h}=\frac{4 \cdot \sigma \cdot \cos (\theta)}{\rho \cdot g \cdot \mathrm{D}}
$$

b) Parallel Plates: A free-body vertical force analysis for the section of water height Δh above the "free surface" between plates arbitrary width w (similar to the figure above), leads to

$$
\sum \mathrm{F}=0=2 \cdot \mathrm{w} \cdot \sigma \cdot \cos (\theta)-\rho \cdot \mathrm{g} \cdot \Delta \mathrm{~h} \cdot \mathrm{w} \cdot \mathrm{a}
$$

Solving for $\Delta h \quad \Delta h=\frac{2 \cdot \sigma \cdot \cos (\theta)}{\rho \cdot g \cdot a}$

For water $\sigma=72.8 \mathrm{mN} / \mathrm{m}$ and $\theta=0^{\circ}$ (Table A.4), so
a) Tube
b) Parallel Plates

$$
\begin{aligned}
\Delta \mathrm{h} & =\frac{4 \times 0.0728 \cdot \frac{\mathrm{~N}}{\mathrm{~m}}}{999 \cdot \frac{\mathrm{~kg}}{\mathrm{~m}^{3}} \times 9.81 \cdot \frac{\mathrm{~m}}{\mathrm{~s}^{2}} \times 0.005 \cdot \mathrm{~m}} \times \frac{\mathrm{kg} \cdot \mathrm{~m}}{\mathrm{~N} \cdot \mathrm{~s}^{2}} \\
\Delta \mathrm{~h} & =\frac{2 \times 0.0728 \cdot \frac{\mathrm{~N}}{\mathrm{~m}}}{999 \cdot \frac{\mathrm{~kg}}{\mathrm{~m}^{3}} \times 9.81 \cdot \frac{\mathrm{~m}}{\mathrm{~s}^{2}} \times 0.005 \cdot \mathrm{~m}} \times \frac{\mathrm{kg} \cdot \mathrm{~m}}{\mathrm{~N} \cdot \mathrm{~s}^{2}}
\end{aligned}
$$

$$
\Delta \mathrm{h}=5.94 \times 10^{-3} \mathrm{~m} \quad \Delta \mathrm{~h}=5.94 \mathrm{~mm}
$$

$$
\Delta \mathrm{h}=2.97 \times 10^{-3} \mathrm{~m}
$$

$$
\Delta \mathrm{h}=2.97 \mathrm{~mm}
$$

3.43 On a certain calm day, a mild inversion causes the atmospheric temperature to remain constant at $85^{\circ} \mathrm{F}$ between sea level and $16,000 \mathrm{ft}$ altitude. Under these conditions, (a) calculate the elevation change for which a 2 percent reduction in air pressure occurs, (b) determine the change of elevation necessary to effect a 10 percent reduction in density, and (c) plot p_{2} / p_{1} and ρ_{2} / ρ_{1} as a function of Δz.

Given: Data on isothermal atmosphere

Find: Elevation changes for 2% and 10% density changes; plot of pressure and density versus elevation

Solution:

Basic equation $\frac{d p}{d z}=-\rho \cdot g \quad$ and $\quad \mathrm{p}=\rho \cdot \mathrm{R} \cdot \mathrm{T}$
Assumptions: static, isothermal fluid,; $\mathrm{g}=$ constant; ideal gas behavior

Then

$$
\frac{\mathrm{dp}}{\mathrm{dz}}=-\rho \cdot \mathrm{g}=-\frac{\mathrm{p} \cdot \mathrm{~g}}{\mathrm{R}_{\mathrm{air}} \cdot \mathrm{~T}} \quad \text { and } \quad \frac{\mathrm{dp}}{\mathrm{p}}=-\frac{\mathrm{g}}{\mathrm{R}_{\mathrm{ai} \cdot} \cdot \mathrm{~T}} \cdot \mathrm{dz}
$$

Integrating

$$
\Delta \mathrm{z}=-\frac{\mathrm{R}_{\mathrm{ai} \cdot} \cdot \mathrm{~T}_{0}}{\mathrm{~g}} \cdot \ln \left(\frac{\mathrm{p}_{2}}{\mathrm{P}_{1}}\right) \quad \text { where } \quad \mathrm{T}=\mathrm{T}_{0}
$$

For an ideal with T constant

$$
\begin{equation*}
\frac{\mathrm{p}_{2}}{\mathrm{p}_{1}}=\frac{\rho_{2} \cdot \mathrm{R}_{\mathrm{air}} \cdot \mathrm{~T}}{\rho_{1} \cdot \mathrm{R}_{\mathrm{air}} \cdot \mathrm{~T}}=\frac{\rho_{2}}{\rho_{1}} \quad \text { so } \quad \Delta \mathrm{z}=-\frac{\mathrm{R}_{\mathrm{air}} \cdot \mathrm{~T}_{0}}{\mathrm{~g}} \cdot \ln \left(\frac{\rho_{2}}{\rho_{1}}\right)=-\mathrm{C} \cdot \ln \left(\frac{\rho_{2}}{\rho_{1}}\right) \tag{1}
\end{equation*}
$$

From Table A. 6

$$
\mathrm{R}_{\mathrm{air}}=53.33 \cdot \frac{\mathrm{ft} \cdot \mathrm{lbf}}{\mathrm{lbm} \cdot \mathrm{R}}
$$

Evaluating

$$
\mathrm{C}=\frac{\mathrm{R}_{\mathrm{ai}} \cdot \mathrm{~T}_{0}}{\mathrm{~g}}=53.33 \cdot \frac{\mathrm{ft} \cdot \mathrm{lbf}}{\mathrm{lbm} \cdot \mathrm{R}} \times(85+460) \cdot \mathrm{R} \times \frac{1}{32.2} \cdot \frac{\mathrm{~s}^{2}}{\mathrm{ft}} \times \frac{32.2 \cdot \mathrm{lbm} \cdot \mathrm{ft}}{\mathrm{~s}^{2} \cdot \mathrm{lbf}} \quad \mathrm{C}=29065 \cdot \mathrm{ft}
$$

$$
\frac{\rho_{2}}{\rho_{1}}=0.98 \quad \text { so from Eq. } 1 \quad \Delta \mathrm{z}=-29065 \cdot \mathrm{ft} \cdot \ln (0.98) \quad \Delta \mathrm{z}=587 \cdot \mathrm{ft}
$$

For a 10% reduction in density $\quad \frac{\rho_{2}}{\rho_{1}}=0.9 \quad$ so from Eq. $1 \quad \Delta \mathrm{z}=-29065 \cdot \mathrm{ft} \cdot \ln (0.9) \quad \Delta \mathrm{z}=3062 \cdot \mathrm{ft}$
To plot $\frac{\mathrm{p}_{2}}{\mathrm{p}_{1}}$ and $\frac{\rho_{2}}{\rho_{1}}$ we rearrange Eq. $1 \quad \frac{\rho_{2}}{\rho_{1}}=\frac{\mathrm{p}_{2}}{\mathrm{p}_{1}}=\mathrm{e}^{-\frac{\Delta \mathrm{z}}{\mathrm{C}}}$

This plot can be plotted in Excel

Given: Martian atmosphere behaves as an ideal gas, $T=$ constant

$$
M_{m}=32.0, T=200 \mathrm{k}, g=3.92 \mathrm{mls}, p_{0}=0.015 \mathrm{~kg} / \mathrm{m}^{2}
$$

Find: Density at $z=20 \mathrm{~km}$.
plot: the ratio plpo (ratio of denisty to surface density) Us z; compare with earth's atmosphere
Solution:
Basic equations: $\quad \frac{d p}{d z}=-p g ; \quad P=p R T ; \quad R=R_{u} \mid M_{m}$
Assumptions: (i) static fluid
(a) 9 constant
(3) Seal gas.

Since $T=$ constant, $d p=d(p R T)=R T d p_{z}$

$$
\begin{align*}
& \frac{d p}{d z}=R T \frac{d p}{d z}=-p g \quad \text { and } \quad \int_{p_{0}}^{p} \frac{d p}{p}=-\int_{0}^{z} \frac{g}{R T} d z \\
& \ln \frac{f_{2}}{\rho_{0}}=-g z / R T \quad \text { and } \quad \frac{p_{0}}{p_{0}}=e^{-\left.\frac{g z}{}\right|_{R T}} \tag{1}
\end{align*}
$$

Evaluating

$$
\begin{aligned}
& R=\frac{R_{\mu}}{M_{n}}=8314.3 \frac{\mathrm{~N} . \mathrm{M}}{\mathrm{~kg} \mathrm{mde}^{\prime} \cdot \mathrm{k}} \times \frac{\text { Egndc }}{32.0 \mathrm{~kg}}=260 \frac{\mathrm{~N} . \mathrm{M}}{\mathrm{~kg} \cdot \mathrm{~K}} \\
& p=0.015 \frac{\mathrm{lg}}{\mathrm{~m}^{3}} \times \exp \left[-3.92 \frac{\mu}{\mathrm{~s}^{2}} \times 20 \times 10^{3} m \times \frac{\mathrm{kg} \cdot \mathrm{k}}{260 \mathrm{Nm}}+\frac{1}{200 k} \times \frac{N .5^{2}}{\mathrm{~kg} \cdot \mathrm{~m}}\right] \\
& p=0.00332 \mathrm{~kg} \backslash \mathrm{~m}^{3} \times \quad p z=20 \mathrm{Qm}
\end{aligned}
$$

For the Martian atmosphere, Eq.' ques $p_{p_{0}}=e^{-0.0754} z^{(\mathrm{km})}$ For the cart's atmosphere. plo is given in Table A. 3 Both plo variations are plotted below
Note from the plot:

- on Mars $f^{\prime} f_{0}=0.221$ at $z=20 \mathrm{~km}$, whereas
, on Earl, $\rho^{\prime} p_{0}=0.073$ at $z=20 \mathrm{fm}$
The difference is caused by (a) the larger grouty on Fart, and (s) temperature decrease will altitude in our atmospreric.

Density vs. elevation in Martian and Earth atmospheres:

Elevation Change $\Delta \boldsymbol{z}$	Density Ratio $($ Earth $)$	Density Ratio $($ Mars $)$
(m)	$\rho / \rho_{\text {SL }}$ $(---)$	$\rho / \rho_{\text {SL }}$ $(---)$
0	1.000	1.00
2000	0.8217	0.860
4000	0.6689	0.740
6000	0.5389	0.636
8000	0.4292	0.547
10000	0.3376	0.470
12000	0.2546	0.405
14000	0.1860	0.348
16000	0.1359	0.299
18000	0.09930	0.257
20000	0.07258	0.221

Given: fitmospherie conditions at ground level $(z=0)$ in Denver, Colorado are $P_{0}=83.2 \mathrm{k} \mathrm{Pa}, T_{0}=25^{\circ} \mathrm{C}$. Pikiés peak is at elevation $z=2690 \mathrm{~m}$
Find: Pressure on Pike's peak assuming (a) an incompressible, and b an adiabatic atmosphere.
Pot: -plop vs z for bot cases.
Solution:
Basic equations: $\left.\quad d p\right|_{d z}=-p q ; p=p e t$

Assumptions: (i) static fluid (a) $g=$ constant
(3) ideal gas behavior
(a) For an incompressible atmosphere $\int_{p_{0}}^{d} p=-\int_{0}^{z} \rho_{0}^{z} d z$
b) For an adiabatic atmosphere $p / p_{p}=\operatorname{constant,} p=p_{0}\left(\left.p p_{0}\right|^{1 / Q}\right.$

$$
\frac{d p}{d z}=-p g=-g p_{0}\left(\frac{p}{p_{0}}\right)^{\prime k} d z \quad \text { or } \int_{-p_{0}}^{p} \frac{d p}{p^{\prime p}}=-\int_{0}^{p} p_{0} p_{0}^{-i k} g d z
$$

$\begin{aligned} & \text { and } \\ & \left(\frac{k}{k-1}\right)\end{aligned} p_{0}^{(k-1)} l_{k}\left[\left.\left(\frac{p}{p_{0}}\right)^{(k-1)}\right|_{k}-1\right]=-p_{0} p_{0}^{-k_{k}} g z$

$$
\left.\left(\frac{p}{p_{0}}\right)^{(k-1)}\right|_{k}=1-\frac{(k-1)}{k} p_{0}^{--\|_{t}-\left.(k-1)\right|_{k}} \quad \operatorname{pog} z=1-\frac{(k-1)}{k} p_{0}^{-1} p_{0} z
$$

and $\frac{p_{0}}{\rho_{0}}=\left[1-\frac{(k-1)}{k} \frac{\rho_{0}}{p_{0}} g\right]^{k k_{k-1}}=\left[1-\frac{(k-1)}{k} \frac{g g^{2}}{k_{0}}\right]_{\ldots-1}^{k / p_{k-1}} \ldots \ldots(2)$
Evaluating at $z=2690 \mathrm{~m}$

$$
p p=60.2 \mathrm{kPa}
$$

The pressure ratio plo Us z is plotted for an incompressible atmosphere (E_{g}. and an adiabatic atmosphere ($E q$. 2 below Incomprebsiblecase $\quad \|_{p_{0}}=[1-0.115 z]_{3.5}$ (zing kn). Adiabatic case

$$
\left.p\right|_{p_{0}}=[1-0.0328 z]^{3.5}(z i n \cdot m)
$$

$$
\begin{aligned}
& -p-p_{0}=p g z=p_{0} g z=p_{0} g z \quad \text { and } p_{0} p_{0}=p_{0}\left[1-\frac{g z}{R T_{0}}\right] \\
& \text { ft } z=2690 \mathrm{~m}
\end{aligned}
$$

Pressure ratio vs. elevation above Denver:

Elevation z	Elevation above Denver	Pressure Ratio $(T=C)$	Pressure Ratio (adiabatic)
(m)	z	p / p_{0}	p / p_{0}
	(m)	(---)	(---)
0	-1610	1.185	1.20
500	-1110	1.127	1.13
1000	-610	1.070	1.07
1500	-110	1.013	1.01
2000	390	0.955	0.956
2500	890	0.898	0.902
3000	1390	0.841	0.849
3500	1890	0.783	0.800
4000	2390	0.726	0.752
4300	2690	0.691	0.724
4500	2890	0.669	0.706
5000	3390	0.611	0.662

Given: Door, of width $b=1 \mathrm{~m}$, located in plane vertical wall of water tank is hinged along upper edge.

$$
D_{1}=1 m, \theta_{L}=1.5 m
$$

Atmospheric pressure acts on outer surface of door: fore F is applied at lower applied at lower edge to heep door closed

Find: (a) Force F, if $P_{s}=p_{a}$,
(b) Force F, if $f_{s}=0.5$ atm.

Pot: ${ }^{\prime} l_{F_{0}}$ over range of $P_{s} \mid P_{\text {atm. }}$. (F_{0} is force required when $\left.p_{S}=p_{\text {atm }}\right)$
Solution:
Basie equations: $\frac{d p}{d h}=p g ; \quad F_{k}=\int P d A 1 ; \quad \sum H_{z}=0$
Assumptions: (i) static fluid (2) $f=$ constant
(3) door is in equiliortion

Since $\sum H_{z}=0$ for equilibrium, taking moments about the hinge.

$$
\begin{aligned}
\sum M_{3}=0=F L-\int y P d A & =F L-\int_{0}^{2} y P D d y \\
\text { and } & F=\frac{1}{L} \int_{0} y P b d y
\end{aligned}
$$

Note: We will detain a general expression for F(needed for the plot) and then simplify for cases (a) and (b)
Since $d p=p g d h$, then $p=-p_{s}+p g h$

$$
h=D+y \text { and hance }-p=-p_{s}+p g(\nu+y) \text {. }
$$

Because path acts on the ailside of the door, ts is the surface gage pressure.
From Eq (i), $F=\frac{1}{L} \int_{0}^{h} y\left[p_{s}+p g(i+y)\right] b d y$

$$
\begin{align*}
& F=\frac{b}{h}\left[p_{\operatorname{tg}} \frac{y^{2}}{2}+p g\left(\frac{\nu y^{2}}{2}+\frac{y^{3}}{3}\right]_{0}^{2}\right. \\
& F=\frac{b}{L}\left[-P_{s g} \frac{L^{2}}{2}+p g\left(\frac{L^{2}}{2}+\frac{L^{3}}{3}\right)\right]=b\left[-P_{s g} \frac{2}{2}+p g h\left(\frac{P}{2}+\frac{t}{3}\right)\right] \tag{a}
\end{align*}
$$

(a) for $-P_{s}=p_{a t m}, P_{s g}=0$

$$
\begin{align*}
& F_{0}=\operatorname{pgh} L\left(\frac{2}{2}+\frac{4}{3}\right) \tag{3}\\
& F_{0}=\frac{998 \mathrm{gg}}{\mathrm{n}^{3}} \times \frac{9.81 \mathrm{~m}}{\mathrm{~s}^{2}} \times 1 \mathrm{~m} \times 1.5 \mathrm{~m}\left(\frac{1}{2}+\frac{1.5 \mu}{3}\right) \times \frac{\sqrt{15^{2}}}{\mathrm{kgm}} \times \frac{\mathrm{kN}}{10^{3} \mathrm{~N}}=14.7 \mathrm{kN}
\end{align*}
$$

(b) For $P_{\text {log }}=0.5 \mathrm{~atm}$ (50.6 (pa) , from $E_{g}(2)$

$$
\begin{aligned}
& F=\quad p_{5 g}^{b} \frac{b}{2}+p g h\left(\frac{2}{2}+\frac{b}{3}\right) \\
& F=\quad 50.6 \frac{12}{M^{2}} \times 1 m+1 . \frac{5 \mu}{2}+14.7 \mathrm{kN}=52.7 \mathrm{kN}
\end{aligned}
$$

From Eqs (2) and (3) we can write

$$
\frac{F}{F_{0}}=\frac{\phi\left[p_{s g} \frac{2}{2}+p g L\left(\frac{p}{2}+\frac{\hbar}{3}\right)\right]}{\operatorname{pghL}\left(\frac{y}{2}+\frac{L}{3}\right)}=1+\frac{-p_{s g}}{2 \operatorname{pg}\left(\frac{1}{2}+\frac{h}{3}\right]}
$$

Substituting values

Open-Ended Problem Statement: A hydropneumatic elevator consists of a piston-cylinder assembly to lift the elevator cab. Hydraulic oil, stored in an accumulator tank pressurized by air, is valved to the piston as needed to lift the elevator. When the elevator descends, oil is returned to the accumulator. Design the least expensive accumulator that can satisfy the system requirements. Assume the lift is 3 floors, the maximum load is 10 passengers, the maximum system pressure is 800 kPa (gage). For column bending strength, the piston diameter must be at least 150 mm . The elevator cab and piston have a combined mass of $3,000 \mathrm{~kg}$, and are to be purchased. Perform the analysis needed to define, as a function of system operating pressure, the piston diameter, the accumulator volume and diameter, and the wall thickness. Discuss safety features that your company should specify for the complete elevator system. Would it be preferable to use a completely pneumatic design or a completely hydraulic design? Why?

Discussion: The design requirements are specified, except that a typical floor height is about 12 ft , making the total required lift about 36 ft .)

A spreadsheet was used to calculate the system properties for various pressures. Results are presented on the next page, followed by a sample calculation.

Total cost dropped quickly as system pressure was increased. A shallow minimum was reached in the $100-110$ psig range.
The lowest-cost solution was obtained at a system pressure of about 100 psig . At this pressure, the reservoir of 140 gal required a 3.30 ft diameter pressure sphere with a 0.250 in . wall thickness. The welding cost was $\$ 311$ and the material cost $\$ 433$, for a total cost of $\$ 744$.

Accumulator wall thickness was constrained at 0.250 in . for pressures below 100 psi ; it increased for higher pressures (this caused the discontinuity in slope of the curve at 100 psig). The mass of steel became constant above 110 psig.
No allowance was made for the extra volume needed to pressurize the accumulator.
Fail-safe design is essential for an elevator to be used by the public. The control circuitry should be redundant. Failures must be easy to spot. For this reason, hydraulic actuation is good: leaks will be readily apparent. The final design must be reviewed, approved, and stamped by a professional engineer since the design involves public safety.

The terminology used in the solution is defined in Table 1.
Table 1. Symbols, definitions, and units

Symbol	Definition	Units
p	system pressure	psig
A_{p}	area of lift piston	in^{2}
$F_{\text {oil }}$	volume of oil	gal
D_{s}	diameter of (spherical) accumulator	ft
t	wall thickness of spherical accumulator	in.
A_{w}	area of weld	in.
C_{w}	cost of weld	$\$$
M_{s}	mass of (steel) accumulator	lbm
C_{s}	cost of steel	$\$$
C_{t}	total cost	$\$$

Results of the system simulation and sample calculations are presented on the next page.

Table 2. Results of system simulation
Input Data

Results:

Fig. 1 Total cost versus system pressure

Sample Calculation ($p=20$ prig):
$W_{t}=p A_{p} ; A_{p}=\frac{w_{t}}{p}=750016 f_{\times} \frac{\text { in }^{2}}{20 \mathrm{lbf}}=375 \mathrm{in}^{2}$
$\forall_{0 i 1}=A_{p L}=375 \operatorname{in}^{2} \times \frac{1}{36 \mathrm{ft}^{2}} \times \frac{\mathrm{ft}^{2}}{144 \mathrm{~min}^{2}} \times 7.48 \mathrm{gal} \frac{\mathrm{ft}^{3}}{}=701 \mathrm{gal}$
$\forall_{0 i 1}=\forall_{s}=\frac{4 \pi R^{3}}{3}=\frac{\pi D_{3}^{3}}{6} ; D_{s}=\left(\frac{6 t_{0}, 1 / 3}{\pi}=\left(\frac{6}{\pi} \times 7019 a 1 \times \frac{\mathrm{ft}^{3}}{7.489 a 1}\right)^{1 / 3}=5.64 \mathrm{ft}\right.$
From a force balance on the sphere:

Problem 3.47
Thus $p \frac{\pi D_{s}^{2}}{4}=\pi D_{s} t \sigma$, so $t=\frac{p}{\sigma} \frac{D_{s}}{4}=\frac{1}{4} \times 20 \frac{16 f}{m_{1}^{2}} \times \frac{\text { in. }^{2}}{400016 f} \times 5.64 f_{x} \frac{12 \frac{\mathrm{in}}{f t}}{f}=0.0846 \mathrm{in}$. Therefore $t=t_{\text {min }}=0.250 \mathrm{in}$.

$$
\begin{aligned}
& A_{w}=\pi D_{s} t=\pi_{x} 5.64 \mathrm{ft}_{x} 0.25 \mathrm{in} \times 12 \frac{\mathrm{in}}{\mathrm{ff}_{t}}=106 \mathrm{in}^{2} \\
& c_{w}=\frac{\$ 5.00}{1 n^{2}} \times 106 \mathrm{in}^{2}=\$ 531 \\
& M_{s}=4 \pi R_{s}^{2} t \rho_{s}=\pi D_{s}^{2} t s G_{s} \rho_{H_{2}}=\pi_{x}(5.64)^{2} f_{+}^{2}=0.25 \mathrm{in} \times 7.8 \times 62.4 \frac{1 \mathrm{bm}}{f+3} \times \frac{f t}{12 \mathrm{in} .}=1012 \mathrm{lb} \mathrm{~m} \\
& c_{s}=\frac{\$ 1,25}{10 \mathrm{~m}} \times 1012 \mathrm{16m}=\$ 1265
\end{aligned}
$$

and

$$
c_{t}=c_{w}+c_{s}=\$ 531+51265=51,796
$$

Given: Door located in plane vertical wall of water tank as shown

$$
a=1.5 m, b=1 m, c=1 m
$$

Atmospheric' pressure acts on acer surface of door

Find: (a) For $p_{s}=$ pate, resultant force on door and line of action of force
(b) Resultant force and line of action if $p_{s}=0.3$ atm (gag)

Plot: $F I F$ and y'lye over range of p_{s} ipatm. (Fo is resultant force when $-P_{s}=P_{a t u}$, y_{c} is y coordinate of centroid)
Solution:
Bask equations: $\frac{d p}{d y}=p g ; F_{R}=\int_{A} p d A ; y^{\prime} F_{R}=\int y p d F$ Assumptions: (i) static liquid
(2) in compressible liquid

Note: We will obtain a general expressions for Fandy' (needed for the plot) and then simply for cases (a) deb)
Since $d p=p g d y$ then $p=f_{s}$ tpgy
Because Paten acts on the atiside or the door, then P_{s} is the surface gage pressure

$$
\begin{align*}
& F_{R}=\left\langle-p d A=\int_{c}^{(c+a)}-p b d y=\int_{c}^{c+a}\left(p_{s}+p g y\right) b d y=b\left[p_{s} y+p g^{y^{2}}\right]_{c}^{c+a}\right. \\
& \begin{array}{l}
F_{R}=b\left[P_{S} a+\frac{P a}{2}\left\{(c+a)^{2}-c^{2}\right\}\right]=b\left[f_{S} a+P \frac{p}{2}\left(a^{2}+2\right.\right. \\
y^{\prime} F_{R}=\int y P d H \text { and } y^{\prime}=\frac{1}{F_{R}} \int_{c}^{c+a}\left(y_{S}+p g y\right) b d y
\end{array} \tag{1}\\
& y^{\prime}=\frac{b}{F_{R}}\left[-p_{5} \frac{y^{2}}{2}+\operatorname{pg} \frac{y^{3}}{3}\right]_{c}^{c+a} \\
& y^{\prime}=\frac{b}{F_{R}}\left[\frac{p_{s}}{2}\left\{(c+a)^{2}-c^{2}\right\}+\frac{p g}{3}\left\{(c+a)^{3}-c^{3}\right\}\right.
\end{align*}
$$

(a) For $t_{s}=0$ (gage) then
from $E_{q} \cdot 1 \quad F_{R}=p \frac{g b}{2}\left(a^{2}+2 a c\right)$.

From Eq. 2

$$
\begin{aligned}
& y^{\prime}=\frac{b}{F_{R 0}} \frac{p g}{3}\left[(c+a)^{3}-c^{3}\right] \\
& y^{\prime}=\frac{1 m}{25 i n k} \times \frac{99}{3} \frac{k_{3}}{n^{3}} \times 9.81 \frac{m}{s^{2}}\left[(2.5)^{3}-1\right] \mathrm{m}^{3} \frac{\mathrm{~N}^{2}}{\mathrm{~kg}} \times \frac{\mathrm{bm}}{\mathrm{~b}^{3} N^{2}}=1.86 \mathrm{~m} .
\end{aligned}
$$

(b) For $P_{5}=0.3$ atm (gage) $h_{\text {an }}$
from Eg.' $\quad F_{R}=b\left[e_{S} a+p \frac{g}{2}\left(a^{2}+2 a c\right)\right]$

$$
\begin{aligned}
& F_{R}=71.2 \mathrm{k} \\
& y^{\prime}=\frac{b}{F_{R}}\left[\frac{p_{3}}{2}\left\{(c+a)^{2}-c^{2}\right\}+\frac{9}{3}\left\{(c+a)^{3}-c^{3}\right\}\right. \\
& y^{\prime}=\frac{1 m}{71.2 k N}\left[\frac{1}{2} \times 0.3 a t m \times 1.01 \times \frac{0^{3} N}{m^{2}, \operatorname{atm}}\left\{(2.5)^{2}-1\right\}+\frac{1}{3}+\frac{9.9 g_{g}}{m^{3}} \times 9.81 \frac{m}{s^{2}} \times\left\{(2.5)^{3}-1\right\}^{3} m^{3}\right. \\
& \left.\times \frac{M, s^{2}}{k g M}\right] \frac{k N}{10^{3} N} \\
& y^{\prime}=1.79 m
\end{aligned}
$$

The value of $F \backslash F_{0}$ is obtained from $F_{q}: 1$ and $F_{R_{0}}=25 i \mathrm{kN}$.
with F in kn, P_{s} in atm
The phots are Shawn below
Note: Te force on the gate increases lineark wi increase in surface pressure.
The tine of action of te resultant force is always below tire centroid of the gate; y'lys apprasker withe as the surface pressure is increased.

Problem 3.48

Force ratio and line of action ratio vs. surface pressure:

3.49 Find the pressures at points A, B, and C, as shown, and in the two air cavities.

Given: Geometry of chamber system

Find: Pressure at various locations

Solution:

Basic equation	$\frac{d p}{d y}=-\rho \cdot g \quad$ or, for constant ρ	$\Delta \mathrm{p}=\rho \cdot \mathrm{g} \cdot \Delta \mathrm{h}$	where $\Delta \mathrm{h}$ is height difference
For point A	$\mathrm{P}_{\mathrm{A}}=\mathrm{p}_{\mathrm{atm}}+\rho \cdot \mathrm{g} \cdot \mathrm{h}_{1} \quad$ or in gage pressure	$\mathrm{p}_{\mathrm{A}}=\rho \cdot \mathrm{g} \cdot \mathrm{h}_{1}$	
Here we have	$\mathrm{h}_{1}=20 \cdot \mathrm{~cm}$	$\mathrm{h}_{1}=0.2 \mathrm{~m}$	
	$\mathrm{p}_{\mathrm{A}}=1000 \cdot \frac{\mathrm{~kg}}{\mathrm{~m}^{3}} \times 9.81 \cdot \frac{\mathrm{~m}}{\mathrm{~s}^{2}} \times 0.2 \cdot \mathrm{~m} \times \frac{\mathrm{N} \cdot \mathrm{~s}^{2}}{\mathrm{~kg} \cdot \mathrm{~m}}$	$\mathrm{P}_{\mathrm{A}}=1962 \mathrm{~Pa}$	$\mathrm{p}_{\mathrm{A}}=1.96 \cdot \mathrm{kPa} \quad$ (gage)
For the air cavity	$\mathrm{p}_{\text {air }}=\mathrm{p}_{\mathrm{A}}-\mathrm{SG}_{\mathrm{Hg}} \cdot \rho \cdot \mathrm{g} \cdot \mathrm{h}_{2} \quad$ where	$\mathrm{h}_{2}=10 \cdot \mathrm{~cm}$	$\mathrm{h}_{2}=0.1 \mathrm{~m}$
From Table A. 1	$\mathrm{SG}_{\mathrm{Hg}}=13.55$		
	$\mathrm{P}_{\text {air }}=1962 \cdot \frac{\mathrm{~N}}{\mathrm{~m}^{2}}-13.55 \times 1000 \cdot \frac{\mathrm{~kg}}{\mathrm{~m}^{3}} \times 9.81$	0.1.m $\times \frac{\mathrm{N} \cdot \mathrm{s}^{2}}{\mathrm{~kg} \cdot \mathrm{~m}}$	$\mathrm{P}_{\text {air }}=-11.3 \cdot \mathrm{kPa} \quad$ (gage)

Note that $\mathrm{p}=$ constant throughout the air pocket
For point B

$$
\begin{array}{lll}
\mathrm{P}_{\mathrm{B}}=\mathrm{p}_{\mathrm{atm}}+\mathrm{SG}_{\mathrm{Hg}} \cdot \rho \cdot \mathrm{~g} \cdot \mathrm{~h}_{3} \quad \text { where } & \mathrm{h}_{3}=15 \cdot \mathrm{~cm} & \mathrm{~h}_{3}=0.15 \mathrm{~m} \\
\mathrm{P}_{\mathrm{B}}=-11300 \cdot \frac{\mathrm{~N}}{\mathrm{~m}^{2}}+13.55 \times 1000 \cdot \frac{\mathrm{~kg}}{\mathrm{~m}^{3}} \times 9.81 \cdot \frac{\mathrm{~m}}{\mathrm{~s}^{2}} \times 0.15 \cdot \mathrm{~m} \times \frac{\mathrm{N} \cdot \mathrm{~s}^{2}}{\mathrm{~kg} \cdot \mathrm{~m}} & \mathrm{P}_{\mathrm{B}}=8.64 \cdot \mathrm{kPa} \tag{gage}
\end{array}
$$

For point C

$$
\begin{aligned}
& \mathrm{P}_{\mathrm{C}}=\mathrm{p}_{\mathrm{atm}}+\mathrm{SG}_{\mathrm{Hg}} \cdot \rho \cdot \mathrm{~g} \cdot \mathrm{~h}_{4} \quad \text { where } \quad \mathrm{h}_{4}=25 \cdot \mathrm{~cm} \\
& \mathrm{P}_{\mathrm{C}}=-11300 \cdot \frac{\mathrm{~N}}{\mathrm{~m}^{2}}+13.55 \times 1000 \cdot \frac{\mathrm{~kg}}{\mathrm{~m}^{3}} \times 9.81 \cdot \frac{\mathrm{~m}}{\mathrm{~s}^{2}} \times 0.25 \cdot \mathrm{~m} \times \frac{\mathrm{N} \cdot \mathrm{~s}^{2}}{\mathrm{~kg} \cdot \mathrm{~m}}
\end{aligned}
$$

$\mathrm{h}_{4}=0.25 \mathrm{~m}$ $\mathrm{P}_{\mathrm{C}}=21.93 \cdot \mathrm{kPa}$
(gage)

For the second air cavity $\mathrm{p}_{\text {air }}=\mathrm{p}_{\mathrm{C}}-\mathrm{SG}_{\mathrm{Hg}} \cdot \rho \cdot \mathrm{h}_{5} \quad$ where $\quad \mathrm{h}_{5}=15 \cdot \mathrm{~cm} \quad \mathrm{~h}_{5}=0.15 \mathrm{~m}$

$$
\mathrm{p}_{\text {air }}=21930 \cdot \frac{\mathrm{~N}}{\mathrm{~m}^{2}}-13.55 \times 1000 \cdot \frac{\mathrm{~kg}}{\mathrm{~m}^{3}} \times 9.81 \cdot \frac{\mathrm{~m}}{\mathrm{~s}^{2}} \times 0.15 \cdot \mathrm{~m} \times \frac{\mathrm{N} \cdot \mathrm{~s}^{2}}{\mathrm{~kg} \cdot \mathrm{~m}} \quad \mathrm{p}_{\text {air }}=1.99 \cdot \mathrm{kPa}
$$

(gage)
3.50 A triangular access port must be provided in the side of a form containing liquid concrete. Using the coordinates and dimensions shown, determine the resultant force that acts on the port and its point of application.

Given: Geometry of access port

Find: Resultant force and location

Solution:

Basic equation

$$
\mathrm{F}_{\mathrm{R}}=\int \mathrm{pdA} \quad \frac{\mathrm{dp}}{\mathrm{dy}}=\rho \cdot \mathrm{g}
$$

$$
\Sigma \mathrm{M}_{\mathrm{s}}=\mathrm{y}^{\prime} \cdot \mathrm{F}_{\mathrm{R}}=\int \mathrm{ydF}_{\mathrm{R}}=\int \mathrm{y} \cdot \mathrm{pdA}
$$

or, use computing equations
$\mathrm{F}_{\mathrm{R}}=\mathrm{p}_{\mathrm{C}} \cdot \mathrm{A}$ $y^{\prime}=y_{C}+\frac{I_{X x}}{A \cdot y_{C}}$
We will show both methods
Assumptions: static fluid; $\rho=$ constant; Patm on other side

$$
\mathrm{F}_{\mathrm{R}}=\int \mathrm{pdA}=\int \mathrm{SG} \cdot \rho \cdot \mathrm{~g} \cdot \mathrm{ydA} \quad \text { but } \quad \mathrm{dA}=\mathrm{w} \cdot \mathrm{dy} \quad \text { and } \quad \frac{\mathrm{w}}{\mathrm{~b}}=\frac{\mathrm{y}}{\mathrm{a}} \quad \mathrm{w}=\frac{\mathrm{b}}{\mathrm{a}} \cdot \mathrm{y}
$$

Hence

$$
\mathrm{F}_{\mathrm{R}}=\int_{0}^{\mathrm{a}} \mathrm{SG} \cdot \rho \cdot \mathrm{~g} \cdot \mathrm{y} \cdot \frac{\mathrm{~b}}{\mathrm{a}} \cdot \mathrm{y} d \mathrm{dy}=\int_{0}^{\mathrm{a}} \mathrm{SG} \cdot \rho \cdot \mathrm{~g} \cdot \frac{\mathrm{~b}}{\mathrm{a}} \cdot \mathrm{y}^{2} \mathrm{dy}=\frac{\mathrm{SG} \cdot \rho \cdot \mathrm{~g} \cdot \mathrm{~b} \cdot \mathrm{a}^{2}}{3}
$$

Alternatively $\quad \mathrm{F}_{\mathrm{R}}=\mathrm{p}_{\mathrm{C}} \cdot \mathrm{A} \quad$ and $\quad \mathrm{p}_{\mathrm{C}}=\mathrm{SG} \cdot \rho \cdot \mathrm{g} \cdot \mathrm{y}_{\mathrm{C}}=\mathrm{SG} \cdot \rho \cdot \mathrm{g} \cdot \frac{2}{3} \cdot \mathrm{a} \quad$ with $\quad \mathrm{A}=\frac{1}{2} \cdot \mathrm{a} \cdot \mathrm{b}$
Hence $\quad F_{R}=\frac{\mathrm{SG} \cdot \rho \cdot \mathrm{g} \cdot \mathrm{b} \cdot \mathrm{a}^{2}}{3}$
For $y^{\prime} \quad y^{\prime} \cdot F_{R}=\int y \cdot p d A=\int_{0}^{a} S G \cdot \rho \cdot g \cdot \frac{b}{a} \cdot y^{3} d y=\frac{S G \cdot \rho \cdot g \cdot b \cdot a^{3}}{4} \quad y^{\prime}=\frac{S G \cdot \rho \cdot g \cdot b \cdot a^{3}}{4 \cdot F_{R}}=\frac{3}{4} \cdot a$
Alternatively $\quad y^{\prime}=y_{C}+\frac{\mathrm{I}_{\mathrm{Xx}}}{A \cdot y_{C}} \quad$ and $\quad \mathrm{I}_{\mathrm{Xx}}=\frac{\mathrm{b} \cdot \mathrm{a}^{3}}{36} \quad$ (Google it!)

$$
y^{\prime}=\frac{2}{3} \cdot a+\frac{b \cdot a^{3}}{36} \cdot \frac{2}{a \cdot b} \cdot \frac{3}{2 \cdot a}=\frac{3}{4} \cdot a
$$

Using given data, and SG $=2.5$ (Table A.1) $\quad \mathrm{F}_{\mathrm{R}}=\frac{2.5}{3} \cdot 1.94 \cdot \frac{\mathrm{slug}}{\mathrm{ft}^{3}} \times 32.2 \cdot \frac{\mathrm{ft}}{\mathrm{s}^{2}} \times 1 \cdot \mathrm{ft} \times(1.25 \cdot \mathrm{ft})^{2} \times \frac{\mathrm{lbf} \cdot \mathrm{s}^{2}}{\mathrm{slug} \cdot \mathrm{ft}} \quad \mathrm{F}_{\mathrm{R}}=81.3 \cdot \mathrm{lbf}$ and $\quad y^{\prime}=\frac{3}{4} \cdot a \quad y^{\prime}=0.938 \cdot f t$
3.51 Semicircular plane gate $A B$ is hinged along B and held by horizontal force F_{A} applied at A. The liquid to the left of the gate is water. Calculate the force F_{A} required for equilibrium.

Given:
Geometry of gate
Find:
Force F_{A} for equilibrium

Solution:

Basic equation

$$
\mathrm{F}_{\mathrm{R}}=\int \mathrm{pdA} \quad \frac{\mathrm{dp}}{\mathrm{dh}}=\rho \cdot \mathrm{g} \quad \Sigma \mathrm{M}_{\mathrm{Z}}=0
$$

or, use computing equations

$$
\mathrm{F}_{\mathrm{R}}=\mathrm{p}_{\mathrm{C}} \cdot \mathrm{~A} \quad \mathrm{y}^{\prime}=\mathrm{y}_{\mathrm{C}}+\frac{\mathrm{I}_{\mathrm{xx}}}{\mathrm{~A} \cdot \mathrm{y}_{\mathrm{C}}}
$$

where y would be measured from the free surface

Assumptions: static fluid; $\rho=$ constant; $\mathrm{P}_{\text {atm }}$ on other side; door is in equilibrium
Instead of using either of these approaches, we note the following, using y as in the sketch

$$
\Sigma \mathrm{M}_{\mathrm{Z}}=0 \quad \mathrm{~F}_{\mathrm{A}} \cdot \mathrm{R}=\int \mathrm{y} \cdot \mathrm{pdA} \quad \text { with } \quad \mathrm{p}=\rho \cdot \mathrm{g} \cdot \mathrm{~h} \quad \begin{aligned}
& \text { (Gage pressure, since } \mathrm{p}= \\
& \text { Patm on other side) }
\end{aligned}
$$

$F_{A}=\frac{1}{R} \cdot \int y \cdot \rho \cdot g \cdot h d A \quad$ with $\quad d A=r \cdot d r \cdot d \theta \quad$ and $\quad y=r \cdot \sin (\theta) \quad h=H-y$

Hence

$$
F_{A}=\frac{1}{R} \cdot \int_{0}^{\pi} \int_{0}^{R} \rho \cdot g \cdot r \cdot \sin (\theta) \cdot(H-r \cdot \sin (\theta)) \cdot r d r d \theta=\frac{\rho \cdot g}{R} \cdot \int_{0}^{\pi}\left(\frac{H \cdot R^{3}}{3} \cdot \sin (\theta)-\frac{R^{4}}{4} \cdot \sin (\theta)^{2}\right) d \theta
$$

$$
\mathrm{F}_{\mathrm{R}}=\frac{\rho \cdot \mathrm{g}}{\mathrm{R}} \cdot\left(\frac{2 \cdot \mathrm{H} \cdot \mathrm{R}^{3}}{3}-\frac{\pi \cdot \mathrm{R}^{4}}{8}\right)=\rho \cdot \mathrm{g} \cdot\left(\frac{2 \cdot \mathrm{H} \cdot \mathrm{R}^{2}}{3}-\frac{\pi \cdot \mathrm{R}^{3}}{8}\right)
$$

Using given data $\quad \mathrm{F}_{\mathrm{R}}=1.94 \cdot \frac{\mathrm{slug}}{\mathrm{ft}^{3}} \times 32.2 \cdot \frac{\mathrm{ft}}{\mathrm{s}^{2}} \times\left[\frac{2}{3} \times 25 \cdot \mathrm{ft} \times(10 \cdot \mathrm{ft})^{2}-\frac{\pi}{8} \times(10 \cdot \mathrm{ft})^{3}\right] \times \frac{\mathrm{lbf} \cdot \mathrm{s}^{2}}{\mathrm{slug} \cdot \mathrm{ft}} \quad \mathrm{F}_{\mathrm{R}}=7.96 \times 10^{4} \cdot \mathrm{lbf}$
3.52 A rectangular gate (width $w=2 \mathrm{~m}$) is hinged as shown, with a stop on the lower edge. At what depth H will the gate tip?

Given:
Gate geometry
Find: \quad Depth H at which gate tips

Solution:

This is a problem with atmospheric pressure on both sides of the plate, so we can first determine the location of the center of pressure with respect to the free surface, using Eq.3.11c (assuming depth H)

$$
\mathrm{y}^{\prime}=\mathrm{y}_{\mathrm{C}}+\frac{\mathrm{I}_{\mathrm{xx}}}{\mathrm{~A} \cdot \mathrm{y}_{\mathrm{C}}} \quad \text { and } \quad \mathrm{I}_{\mathrm{xx}}=\frac{\mathrm{w} \cdot \mathrm{~L}^{3}}{12} \quad \text { with } \quad \mathrm{y}_{\mathrm{C}}=\mathrm{H}-\frac{\mathrm{L}}{2}
$$

where $L=1 \mathrm{~m}$ is the plate height and w is the plate width

Hence

$$
\mathrm{y}^{\prime}=\left(\mathrm{H}-\frac{\mathrm{L}}{2}\right)+\frac{\mathrm{w} \cdot \mathrm{~L}^{3}}{12 \cdot \mathrm{w} \cdot \mathrm{~L} \cdot\left(\mathrm{H}-\frac{\mathrm{L}}{2}\right)}=\left(\mathrm{H}-\frac{\mathrm{L}}{2}\right)+\frac{\mathrm{L}^{2}}{12 \cdot\left(\mathrm{H}-\frac{\mathrm{L}}{2}\right)}
$$

But for equilibrium, the center of force must always be at or below the level of the hinge so that the stop can hold the gate in place. Hence we must have

$$
y^{\prime}>\mathrm{H}-0.45 \cdot \mathrm{~m}
$$

Combining the two equations $\left(H-\frac{L}{2}\right)+\frac{\mathrm{L}^{2}}{12 \cdot\left(\mathrm{H}-\frac{\mathrm{L}}{2}\right)} \geq \mathrm{H}-0.45 \cdot \mathrm{~m}$

Solving for H

$$
\mathrm{H} \leq \frac{\mathrm{L}}{2}+\frac{\mathrm{L}^{2}}{12 \cdot\left(\frac{\mathrm{~L}}{2}-0.45 \cdot \mathrm{~m}\right)}
$$

$$
\mathrm{H} \leq \frac{1 \cdot \mathrm{~m}}{2}+\frac{(1 \cdot \mathrm{~m})^{2}}{12 \times\left(\frac{1 \cdot \mathrm{~m}}{2}-0.45 \cdot \mathrm{~m}\right)} \quad \mathrm{H} \leq 2.17 \cdot \mathrm{~m}
$$

3.53 A plane gate of uniform thickness holds back a depth of water as shown. Find the minimum weight needed to keep the gate closed.

Given: Geometry of plane gate

Find: Minimum weight to keep it closed

Solution:

Basic equation

$$
\mathrm{F}_{\mathrm{R}}=\int \mathrm{pdA} \quad \frac{\mathrm{dp}}{\mathrm{dh}}=\rho \cdot \mathrm{g} \quad \Sigma \mathrm{M}_{\mathrm{O}}=0
$$

or, use computing equations

Assumptions: static fluid; $\rho=$ constant; Patm on other side; door is in equilibrium

Instead of using either of these approaches, we note the following, using y as in the sketch

$$
\Sigma \mathrm{M}_{\mathrm{O}}=0 \quad \mathrm{~W} \cdot \frac{\mathrm{~L}}{2} \cdot \cos (\theta)=\int \mathrm{ydF}
$$

We also have

$$
\mathrm{dF}=\mathrm{p} \cdot \mathrm{dA} \quad \text { with } \quad \mathrm{p}=\rho \cdot \mathrm{g} \cdot \mathrm{~h}=\rho \cdot \mathrm{g} \cdot \mathrm{y} \cdot \sin (\theta)
$$

(Gage pressure, since $\mathrm{p}=\mathrm{patm}$ on other side)

Hence

$$
\mathrm{W}=\frac{2}{\mathrm{~L} \cdot \cos (\theta)} \cdot \int \mathrm{y} \cdot \mathrm{p} d \mathrm{~A}=\frac{2}{\mathrm{~L} \cdot \cos (\theta)} \cdot \int \mathrm{y} \cdot \rho \cdot \mathrm{~g} \cdot \mathrm{y} \cdot \sin (\theta) \cdot \mathrm{w} d \mathrm{~d}
$$

$$
\mathrm{W}=\frac{2}{\mathrm{~L} \cdot \cos (\theta)} \cdot \int \mathrm{y} \cdot \mathrm{pdA}=\frac{2 \cdot \rho \cdot \mathrm{~g} \cdot \mathrm{w} \cdot \tan (\theta)}{\mathrm{L}} \cdot \int_{0}^{\mathrm{L}} \mathrm{y}^{2} \mathrm{dy}=\frac{2}{3} \cdot \rho \cdot \mathrm{~g} \cdot \mathrm{w} \cdot \mathrm{~L}^{2} \cdot \tan (\theta)
$$

Using given data

$$
\mathrm{W}=\frac{2}{3} \cdot 1000 \cdot \frac{\mathrm{~kg}}{\mathrm{~m}^{3}} \times 9.81 \cdot \frac{\mathrm{~m}}{\mathrm{~s}^{2}} \times 2 \cdot \mathrm{~m} \times(3 \cdot \mathrm{~m})^{2} \times \tan (30 \cdot \mathrm{deg}) \times \frac{\mathrm{N} \cdot \mathrm{~s}^{2}}{\mathrm{~kg} \cdot \mathrm{~m}}
$$

$$
\mathrm{W}=68 \cdot \mathrm{kN}
$$

Given: serii-aylindrical trough, partly filled with water to depth d. Find: (a) General expressions for F_{R} and y^{\prime} on end of trough, if open to atmosphere.
(b) Plots of results vs, d / R for $0 \leq d / \mathbb{c} \leq 1$.

Solution: Apply basic equations for hydrostatics of incompressible liquid.
Computing equations: $p=\rho g h \quad F_{R}=\int_{A} p d A \quad g^{\prime} F_{R}=\int_{A} y p d A$
Assumptions: (1) Static liquid

$$
\begin{aligned}
& \text { (2) } \varphi=\text { constant } \\
& p=\rho g h=\rho g[y-(R-d)] \\
& =\operatorname{Pg} R\left[\frac{y}{R}-\left(1-\frac{d}{R}\right)\right]=\rho g R(\cos \theta-\cos \alpha) \\
& d A=\omega d y=2 R \sin \theta d y ; y=R \cos \theta \\
& h=y-(R-d) \\
& \cos \alpha=\frac{R-d}{R}=1-\frac{d}{R} \\
& \omega=2 R \sin \theta \\
& F_{R}=\int_{R-d}^{R} p \omega d y=\int_{R-d}^{R} \rho g R(\cos \theta-\cos \alpha) 2 R \sin \theta(-R \sin \theta) d \theta
\end{aligned}
$$

The new limits are $y=R \rightarrow \theta=0$ and $y=R-d \rightarrow \theta=\alpha$, so

$$
\begin{aligned}
& F_{R}=2 \rho g R^{3} \int_{\alpha}^{0}\left(-\sin ^{2} \theta \cos \theta+\sin ^{2} \theta \cos \alpha\right) d \theta=2 \rho g R \int_{0}^{3}\left(\sin ^{2} \theta \cos \theta-\sin ^{2} \theta \cos \alpha\right) d \theta \\
& =2 \rho g R^{3}\left[\frac{\sin ^{3} \theta}{3}-\cos \alpha\left(\frac{\theta}{2}-\frac{\sin 2 \theta}{4}\right)\right]_{0}^{\alpha}=2 \rho g R^{3}\left[\frac{\sin ^{3} \theta}{3}-\cos \alpha\left(\frac{\theta}{2}-\frac{\sin \theta \cos \theta}{2}\right)\right]_{0}^{\alpha} \\
& F_{R}=2 \rho g R^{3}\left[\frac{\sin ^{3} \alpha}{3}-\cos \alpha\left(\frac{\alpha}{2}-\frac{\sin \alpha \cos \alpha}{2}\right)\right] \\
& y^{\prime} F_{R}=\int_{R-d}^{R} y p u d d y=\int_{R-d}^{R} R \cos \theta \rho g R(\cos \theta-\cos \alpha) 2 R \sin \theta(-R \sin \theta) d \theta \\
& =2 \rho g R^{4} \int_{0}^{\alpha} \sin ^{2} \theta \cos \theta(\cos \theta-\cos \alpha) d \theta=2 \rho g R^{4} \int_{0}^{\alpha}\left(\sin ^{2} \theta \cos ^{2} \theta-\cos \alpha \sin ^{2} \theta \cos \theta\right) d \theta \\
& =2 \rho g R^{4}\left[\frac{1}{8}\left(\theta-\frac{\sin 4 \theta}{4}\right)-\cos \alpha \frac{\sin ^{3} \theta}{3}\right]_{0}^{\alpha} \\
& y^{\prime} F_{R}=2 \rho g R^{4}\left[\frac{1}{8}\left(\alpha-\sin \frac{4 \alpha}{4}\right)-\cos \alpha \frac{\sin ^{3} \alpha}{3}\right] \\
& \text { and } \\
& y^{\prime}=\frac{y^{\prime} F_{R}}{F_{R}} \text { or } y^{\prime} / R=\frac{y^{\prime} F_{R}}{R F_{R}}
\end{aligned}
$$

Resultant force and line of action on end semi-cylindrical water trough:

d / R	$\alpha(\mathrm{rad})$	$\alpha(\mathrm{deg})$	$F_{\mathrm{R}} / \rho g R^{3}$	$y^{\prime} F_{\mathrm{R}} / \rho g R^{4}$	$\boldsymbol{y} / / R$
0	0.001	0.08	$7.54 \mathrm{E}-16$	$7.54 \mathrm{E}-16$	1.000
0.05	0.318	18.2	0.000419	0.000410	0.979
0.1	0.451	25.8	0.00236	0.00226	0.957
0.2	0.644	36.9	0.0132	0.0121	0.915
0.3	0.795	45.6	0.0360	0.0314	0.873
0.4	0.927	53.1	0.0730	0.0606	0.831
0.5	1.05	60.0	0.126	0.0994	0.790
0.6	1.16	66.4	0.196	0.147	0.749
0.7	1.27	72.5	0.285	0.202	0.708
0.8	1.37	78.5	0.392	0.262	0.668
0.9	1.47	84.3	0.520	0.326	0.628
1.0	1.57	90.0	0.667	0.393	0.589

3.55 For a mug of tea ($21 / 2 \mathrm{in}$. diameter), imagine it cut symmetrically in half by a vertical plane. Find the force that each half experiences due to a 3-in. depth of tea.

Given: Geometry of cup
Find: Force on each half of cup

Solution:

Basic equation	$\mathrm{F}_{\mathrm{R}}=\int \mathrm{pdA}$	$\frac{\mathrm{dp}}{\mathrm{dh}}=\rho \cdot \mathrm{g}$
or, use computing equation	$\mathrm{F}_{\mathrm{R}}=\mathrm{p}_{\mathrm{C}} \cdot \mathrm{A}$	

Assumptions: static fluid; $\rho=$ constant; Patm on other side; cup does not crack!
The force on the half-cup is the same as that on a rectangle of size $h=3 \cdot \mathrm{in} \quad$ and $\quad \mathrm{w}=2.5 \cdot \mathrm{in}$

	$\mathrm{F}_{\mathrm{R}}=\int_{\mathrm{l}} \mathrm{pdA}=\int \rho \cdot g \cdot \mathrm{ydA} \quad$ but $\mathrm{dA}=\mathrm{w} \cdot \mathrm{dy}$
Hence	$\mathrm{F}_{\mathrm{R}}=\int_{0}^{\mathrm{h}} \rho \cdot \mathrm{g} \cdot \mathrm{y} \cdot \mathrm{wdy}=\frac{\rho \cdot \mathrm{g} \cdot \mathrm{w} \cdot \mathrm{h}^{2}}{2}$
Alternatively	$\mathrm{F}_{\mathrm{R}}=\mathrm{p}_{\mathrm{C}} \cdot \mathrm{A} \quad$ and $\quad \mathrm{F}_{\mathrm{R}}=\mathrm{p}_{\mathrm{C}} \cdot \mathrm{A}=\rho \cdot \mathrm{g} \cdot \mathrm{y}_{\mathrm{C}} \cdot \mathrm{A}=\rho \cdot \mathrm{g} \cdot \frac{\mathrm{h}}{2} \cdot \mathrm{~h} \cdot \mathrm{w}=\frac{\rho \cdot \mathrm{g} \cdot \mathrm{w} \cdot \mathrm{h}^{2}}{2}$
Using given data	$\mathrm{F}_{\mathrm{R}}=\frac{1}{2} \cdot 1.94 \cdot \frac{\mathrm{slug}}{\mathrm{ft}^{3}} \times 32.2 \cdot \frac{\mathrm{ft}}{\mathrm{s}^{2}} \times 2.5 \cdot \mathrm{in} \times(3 \cdot \mathrm{in})^{2} \times\left(\frac{1 \cdot \mathrm{ft}}{12 \cdot \mathrm{in}}\right)^{3} \times \frac{\mathrm{lbf} \cdot \mathrm{s}^{2}}{\mathrm{slng} \cdot \mathrm{ft}} \quad \mathrm{F}_{\mathrm{R}}=0.407 \cdot \mathrm{lbf}$

Hence a teacup is being forced apart by about 0.4 lbf : not much of a force, so a paper cup works!

Given: Window, in shape of isosceles triangle and hinged at the top is located in the vertical wall of a form that contains concrete.

Find: The minimum force applied at y needed to keep the window closed.

Plot: the results over the range of concrete depth $0 \leq c \leq a$
Solution:
Basic equations: $\frac{d f}{d h}=p g, F=(P d A, \Sigma M=0$
Assumptions: (1) static fluid a) $p=\operatorname{constant}$
(3) Pate acts at the free surface and on the outside of the window.
then $d p=p g$ dh gives $p=p g(h-d)$ for $h>d$ and $f=0$ for $h L d$ where $d=a-c$
Summoning moments about the hinge

$$
F_{V}=\frac{1}{a}\left(h P d F=\frac{1}{a} \int_{d}^{a} h p g(h-d)\right. \text { wd h }
$$

From the law of similar triangles

$$
\begin{align*}
& F_{\nabla}=\frac{b}{a^{2}} p g \int_{d}^{a} h(h-d)(a-h) d h \quad\left\{p=\text { sGcorade } f_{H 20}\right\} \\
& F_{D}=\frac{b}{a^{2}} p g \int_{d}^{a}\left[-h^{3}+h^{2}(a+d)-a d h\right] d h \\
& F_{\nabla}=\frac{b}{a^{2}} p g\left[-\frac{h^{4}}{4}+\frac{h^{3}}{3}(a+d)-\frac{1}{2} a h^{2}\right]_{d}^{a} \\
& F_{D}=\frac{b}{a^{2}} p g\left[-\frac{1}{4}\left(a^{4}-d^{4}\right)+\frac{1}{3}\left(a^{3}-d^{3}\right)(a+d)-\frac{1}{2} a d\left(a^{2}-d^{2}\right)\right. \tag{i}\\
& F_{D}=b p g a^{2}\left[-\frac{1}{4}\left(1-\frac{d^{4}}{a^{4}}\right)+\frac{1}{3}\left(1-\frac{d^{3}}{a^{3}}\right)\left(1+\frac{d}{a}\right)-\frac{1}{2} \frac{d}{a}\left(1-\frac{d^{2}}{a^{2}}\right)\right]
\end{align*}
$$

Evaluating with $p=S G_{\text {core }} P_{H_{20}} \quad(S G=2.5$-Table A.I)

$$
b p g a^{2}=0.3 m \times 2.5 \times 10^{3} \frac{\mathrm{~kg}}{\mathrm{H}^{3}} \times 9.81 \frac{\mu}{g^{2}} \times(0.4)^{2} m^{2}+\frac{\mathbf{N}^{2}}{\mathrm{~kg} \cdot M}=1177 N
$$

For $a=0.4 \mathrm{~m}, c=0.25 \mathrm{~m}, \quad d=a-c=0.5 \mathrm{5m}, \frac{d}{a}=0.375$ The term [] in Eq. ' has a value of 0.0280

Then for the conditions given

$$
F_{D}=1177 N \times 0.0280=33.0 \mathrm{~N}
$$

To plot F_{y} vs cha for $0 \leq c \leq a$, recognize
. Since $d=a-c$, then $\frac{d}{a}=1-\frac{c}{a}$
and

The results are plotted below
Hinge force vs. concrete depth ratio:

3.57 Gates in the Poe Lock at Sault Ste. Marie, Michigan, close a channel $W=34 \mathrm{~m}$ wide, $L=360 \mathrm{~m}$ long, and $D=10 \mathrm{~m}$ deep. The geometry of one pair of gates is shown; each gate is hinged at the channel wall. When closed, the gate edges are forced together at the center of the channel by water pressure. Evaluate the force exerted by the water on gate A. Determine the magnitude and direction of the force components exerted by the gate on the hinge. (Neglect the weight of the gate.)

Given: Geometry of lock system
Find: Force on gate; reactions at hinge

Solution:

Basic equation	$\mathrm{F}_{\mathrm{R}}=\int \mathrm{pdA}$	$\frac{\mathrm{dp}}{\mathrm{dh}}=\rho \cdot \mathrm{g}$
or, use computing equation	$\mathrm{F}_{\mathrm{R}}=\mathrm{p}_{\mathrm{C}} \cdot \mathrm{A}$	

Assumptions: static fluid; $\rho=$ constant; Patm on other side

The force on each gate is the same as that on a rectangle of size
$\mathrm{h}=\mathrm{D}=10 \cdot \mathrm{~m} \quad$ and
$\mathrm{w}=\frac{\mathrm{W}}{2 \cdot \cos (15 \cdot \operatorname{deg})}$

$$
\mathrm{F}_{\mathrm{R}}=\int \mathrm{pdA}=\int \rho \cdot g \cdot \mathrm{ydA} \quad \text { but } \quad \mathrm{dA}=\mathrm{w} \cdot \mathrm{dy}
$$

Hence

$$
\mathrm{F}_{\mathrm{R}}=\int_{0}^{\mathrm{h}} \rho \cdot \mathrm{~g} \cdot \mathrm{y} \cdot \mathrm{w} \mathrm{dy}=\frac{\rho \cdot \mathrm{g} \cdot \mathrm{w} \cdot \mathrm{~h}^{2}}{2}
$$

Alternatively

$$
\mathrm{F}_{\mathrm{R}}=\mathrm{p}_{\mathrm{C}} \cdot \mathrm{~A} \quad \text { and } \quad \mathrm{F}_{\mathrm{R}}=\mathrm{p}_{\mathrm{C}} \cdot \mathrm{~A}=\rho \cdot \mathrm{g} \cdot \mathrm{y}_{\mathrm{C}} \cdot \mathrm{~A}=\rho \cdot \mathrm{g} \cdot \frac{\mathrm{~h}}{2} \cdot \mathrm{~h} \cdot \mathrm{w}=\frac{\rho \cdot \mathrm{g} \cdot \mathrm{w} \cdot \mathrm{~h}^{2}}{2}
$$

Using given data

$$
\mathrm{F}_{\mathrm{R}}=\frac{1}{2} \cdot 1000 \cdot \frac{\mathrm{~kg}}{\mathrm{~m}^{3}} \times 9.81 \cdot \frac{\mathrm{~m}}{\mathrm{~s}^{2}} \times \frac{34 \cdot \mathrm{~m}}{2 \cdot \cos (15 \cdot \mathrm{deg})} \times(10 \cdot \mathrm{~m})^{2} \times \frac{\mathrm{N} \cdot \mathrm{~s}^{2}}{\mathrm{~kg} \cdot \mathrm{~m}} \quad \mathrm{~F}_{\mathrm{R}}=8.63 \cdot \mathrm{MN}
$$

For the force components R_{x} and R_{y} we do the following

$$
\begin{array}{lll}
\Sigma \mathrm{M}_{\text {hinge }}=0=\mathrm{F}_{\mathrm{R}} \cdot \frac{\mathrm{w}}{2}-\mathrm{F}_{\mathrm{n}} \cdot \mathrm{~W} \cdot \sin (15 \cdot \mathrm{deg}) & \mathrm{F}_{\mathrm{n}}=\frac{\mathrm{F}_{\mathrm{R}}}{2 \cdot \sin (15 \cdot \mathrm{deg})} & \mathrm{F}_{\mathrm{n}}=16.7 \cdot \mathrm{MN} \\
\Sigma \mathrm{~F}_{\mathrm{X}}=0=\mathrm{F}_{\mathrm{R}} \cdot \cos (15 \cdot \mathrm{deg})-\mathrm{R}_{\mathrm{X}}=0 & \mathrm{R}_{\mathrm{X}}=\mathrm{F}_{\mathrm{R}} \cdot \cos (15 \cdot \mathrm{deg}) & \mathrm{R}_{\mathrm{x}}=8.34 \cdot \mathrm{MN} \\
\Sigma \mathrm{~F}_{\mathrm{y}}=0=-\mathrm{R}_{\mathrm{y}}-\mathrm{F}_{\mathrm{R}} \cdot \sin (15 \cdot \mathrm{deg})+\mathrm{F}_{\mathrm{n}}=0 & \mathrm{R}_{\mathrm{y}}=\mathrm{F}_{\mathrm{n}}-\mathrm{F}_{\mathrm{R}} \cdot \sin (15 \cdot \mathrm{deg}) & \mathrm{R}_{\mathrm{y}}=14 \cdot 4 \cdot \mathrm{MN} \\
\mathrm{R}=(8.34 \cdot \mathrm{MN}, 14 \cdot 4 \cdot \mathrm{MN}) & \mathrm{R}=16.7 \cdot \mathrm{MN} &
\end{array}
$$

Given: hquid concrete poured between vertical forms as shown
Find: (a) Resultant force on form
(b) Line of application

Solution:
Basic equation: $\frac{d p}{d y}=p g$
Computing equations:

$$
F_{2}=-P_{c} A \quad(3.14) ; y^{\prime}=y_{c}+\frac{I A x}{F_{2}} \quad(3.15 a) ; x^{\prime}=x_{c}+\frac{I_{2 x}}{F y_{c}}
$$

For the rectangular plate: $x_{c}=2.5 m, x_{2}=1.5 m$.

$$
I_{i x}=\frac{1}{12} w H^{3}, I_{i z}=0
$$

Assumptions: in static liquid (2) nocompresible liquid (3) Path acts at free surface and on the
vertical form.

Then on integrating $d p=p g d y$, we obtain $p=p g y$

$$
\begin{aligned}
& F_{R}=P_{c} A=p g y_{c} A=p g y_{c} w H=S G_{c o r} P_{H_{\infty}} y_{c} w A
\end{aligned}
$$

$$
\begin{aligned}
& F_{R}=552 \mathrm{kN} \\
& y^{\prime}=y_{c}+\frac{F_{i \pi}}{F_{y}}=y_{c}+\frac{1}{12} \frac{W H^{3}}{w+y_{2}}=y_{c}+\frac{1}{12} \frac{H^{2}}{y_{c}}=1.5 m+\frac{1}{12} \frac{(3 m)^{2}}{1.5 m}=2.0 m \\
& x^{\prime}=x_{c}=2.5 m
\end{aligned}
$$

Line of application is through $\left(x^{\prime}, y^{\prime}\right)=(2.5,2.0) m$ (xi')

Given: Door as shown in the figure; x axis is along the hinge From Ex. Prod 3.6, pressure in liquid is $-P>P_{\text {gag }}$ A

Find: Force required to heep door shut by considering the distributed force to be the sum of a force F. Caused by wiform gage pressure, and force F_{2} caused by lie higid).
Solution:

$F_{1}=-P_{0} A=100 \frac{b f}{f t} \times 3 f+2 f=600$ lb $\left\{\right.$ applied at $\left(x^{\prime}, z\right)=(1,0,-5) \frac{1}{}$

$$
F_{2}=P_{c} A=p g h_{c} L b=\gamma h_{c} L b=100 \frac{b}{f+3} \cdot 1.5 f t \times 3 f+2 f t=9001 b r .
$$

For the rectangular door $I_{n \dot{x}}=\frac{1}{12} b l^{3}$

$$
h_{h}^{\prime}=h_{c}+\frac{I_{c} i}{h_{c}}=h_{c}+\frac{1}{12} \frac{b^{3}}{6} h_{c}=h_{c}+\frac{1}{12} \frac{1}{h_{c}}=1.5 m+\frac{1}{12} \frac{(3 n)^{2}}{1.5 n}=2.0 n
$$

The free-body diagram of the door is then

$$
\begin{aligned}
\Sigma M_{a_{x}} & =0=L F_{t}-F_{1}\left(L-h_{1}^{\prime}\right)-F_{2}\left(L-h_{2}^{\prime}\right) \\
F_{t} & =F_{1}\left(1-\frac{h_{1}^{\prime}}{2}\right)+F_{2}\left(1-\frac{h_{2}}{L}\right) \\
& =60016\left(1-\frac{1 \cdot 3}{3.0}\right)+900\left(b\left(1-\frac{2}{3}\right)\right. \\
F_{t} & =6001 b
\end{aligned}
$$

Given: Circular aces port, of diaineter $d=o i b m$, in side of water standpipe, of diameter. $D=7 \mathrm{~m}$, is held in place by eight bolts evenly spared ground circumference of fe port.
Canter of the portis bated al distance $L=12 \mathrm{~m}$ below the free surface of the water

Find: (a) Total force on the port (b) Appropriate bolt diameter

Solution:
Basie equations: $\quad \frac{d e}{d h}=\rho g, \sigma=\frac{F}{A}$
Computing equation: $F_{k}=P A$
Assumptions: (1) static fluid
(2) r incompressible
(3) Force distributed uniforming aver te bot to
(4) appropriate working stress for steelbolls is $\sigma=100$ Nita
(5) Pate acts of free surface and on the outside of the port.
Then on integrating $d P=p g d h$ we obtain $p=p g h$

$$
\begin{aligned}
& F_{2}=P_{c} A=\rho g h c \pi R^{2}=p g h \pi e^{2} \\
& F_{2}=999 \frac{\mathrm{eg}_{3}}{M^{3}}+9.8 \frac{1}{s^{2}}+12 m+\pi+(0.3 m)^{2}+\frac{A . s^{2}}{k^{2}}=33.3 \mathrm{en} \\
& \sigma=\frac{F}{A} \text { where } A(\text { total area of bolts })=8+\frac{\pi d b^{2}}{4}
\end{aligned}
$$

Ten

$$
\begin{aligned}
& \sigma=\frac{F}{2 \pi} d b^{2} \\
& d b=\left[\frac{F}{2 \pi \sigma}\right]^{1 / 2}=\left[\frac{33.3+10^{3} \pi}{2 \pi}+{n^{8}}^{\mu^{2}} \times 10^{6} \frac{\mathrm{~mm}^{2}}{m^{2}}\right]^{1 / 2}=7.28 \mathrm{~mm}
\end{aligned}
$$

3.61 What holds up a car on its rubber tires? Most people would tell you that it is the air pressure inside the tires. However, the air pressure is the same all around the hub (inner wheel), and the air pressure inside the tire therefore pushes down from the top as much as it pushes up from below, having no net effect on the hub. Resolve this paradox by explaining where the force is that keeps the car off the ground.

Given: Description of car tire
Find: Explanation of lift effect

Solution:

The explanation is as follows: It is true that the pressure in the entire tire is the same everywhere. However, the tire at the top of the hub will be essentially circular in cross-section, but at the bottom, where the tire meets the ground, the cross section will be approximately a flattened circle, or elliptical. Hence we can explain that the lower cross section has greater upward force than the upper cross section has downward force (providing enough lift to keep the car up) two ways. First, the horizontal projected area of the lower ellipse is larger than that of the upper circular cross section, so that net pressure times area is upwards. Second, any time you have an elliptical cross section that's at high pressure, that pressure will always try to force the ellipse to be circular (thing of a round inflated balloon - if you squeeze it it will resist!). This analysis ignores the stiffness of the tire rubber, which also provides a little lift.

Given: Gate $A \propto$, hinged along 0 , has wide $b=$ Soft; when t $^{\prime}$ of gate may be neglected. Gate is sealed at C
Find: Force in bars $A B$
Solution:

Babe equations: $\quad d p=p g ; \sum r_{z}=0$
Computing equations: $F_{e^{2}}=P_{c A} ; y^{\prime}=y_{i}+T_{i=}^{y_{c}} ; I_{i k}=\frac{b b^{3}}{12}$
Assumptions: () static liquid (a) $p=$ constant
(3) Paten orts at free surface and on outside of gate
(4) no resisting moment in hinge along o
(5) no vertical resisting force atc

Then on integrating $d P=$ path, we detain $p=$ pah The free body diagram of the gate is as shown.

F_{1} is resultant of distribuiled force on h. uniform fore on h_{2}
$F_{\text {he }}$ is fore of bars
C_{X} is force from seal at C

$$
F_{1}=-P_{c} A_{1}=p g h_{c} b_{1}
$$

$$
h_{1}^{\prime}=h_{c}+\frac{b h^{3}}{2 h h_{c} b h}=\frac{h_{1}}{2}+\frac{h^{2}}{12} \times h_{1}=\frac{h}{2}+\frac{h}{6}=\frac{2}{3} h-\frac{2}{3} \times 12 a=8 f t
$$

$$
F_{L}=P_{c} A_{2}=p g h_{c} b h_{2}=p g h h_{1}
$$

$$
F_{2}=1.94 \frac{s l u g}{63^{3}} \times 32.2 \frac{t}{5^{2}} \times 12 f+6 f t \times 6 f=27.0 \times 10^{3} \text { bf } .
$$

Since the gressure is uniform over surface (s), the force F_{2}
acts at the centroid of the surface, , ie ' $t_{2}=h_{2} l_{2}=3 f$
Then summing moments about o gives

The bar $H B$ is $i n$ compression

$$
\begin{aligned}
& F_{A B}=1800 \text { for. }
\end{aligned}
$$

3.63 As water rises on the left side of the rectangular gate, the gate will open automatically. At what depth above the hinge will this occur? Neglect the mass of the gate.

Given: Geometry of rectangular gate
Find: Depth for gate to open

Solution:

Basic equation $\quad \frac{\mathrm{dp}}{\mathrm{dh}}=\rho \cdot \mathrm{g} \quad \Sigma \mathrm{M}_{\mathrm{Z}}=0$

Computing equations

$$
\mathrm{y}^{\prime}=\mathrm{y}_{\mathrm{C}}+\frac{\mathrm{I}_{\mathrm{xx}}}{\mathrm{~A} \cdot \mathrm{y}_{\mathrm{C}}}
$$

$$
\mathrm{I}_{\mathrm{xx}}=\frac{\mathrm{b} \cdot \mathrm{D}^{3}}{12}
$$

Assumptions: static fluid; $\rho=$ constant; $\mathrm{P}_{\text {atm }}$ on other side; no friction in hinge
For incompressible fluid $\quad \mathrm{p}=\rho \cdot \mathrm{g} \cdot \mathrm{h} \quad$ where p is gage pressure and h is measured downwards
The force on the vertical gate (gate 1) is the same as that on a rectangle of size $h=D$ and width w

Hence

$$
\begin{aligned}
& F_{1}=p_{C} \cdot A=\rho \cdot g \cdot y_{C} \cdot A=\rho \cdot g \cdot \frac{D}{2} \cdot D \cdot w=\frac{\rho \cdot g \cdot w \cdot D^{2}}{2} \\
& y^{\prime}=y_{C}+\frac{I_{X x}}{A \cdot y_{C}}=\frac{D}{2}+\frac{w \cdot D^{3}}{12} \times \frac{1}{w \cdot D} \times \frac{2}{D}=\frac{2}{3} \cdot D
\end{aligned}
$$

The location of this force is

The force on the horizontal gate (gate 2) is due to constant pressure, and is at the centroid

$$
F_{2}=p(y=D) \cdot A=\rho \cdot g \cdot D \cdot w \cdot L
$$

Summing moments about the hinge

$$
\begin{aligned}
& \Sigma M_{\text {hinge }}=0=-F_{1} \cdot\left(D-y^{\prime}\right)+F_{2} \cdot \frac{L}{2}=-F_{1} \cdot\left(D-\frac{2}{3} \cdot \mathrm{D}\right)+\mathrm{F}_{2} \cdot \frac{\mathrm{~L}}{2} \\
& \mathrm{~F}_{1} \cdot \frac{\mathrm{D}}{3}=\frac{\rho \cdot \mathrm{g} \cdot \mathrm{w} \cdot \mathrm{D}^{2}}{2} \cdot \frac{\mathrm{D}}{3}=\mathrm{F}_{2} \cdot \frac{\mathrm{~L}}{2}=\rho \cdot \mathrm{g} \cdot \mathrm{D} \cdot \mathrm{w} \cdot \mathrm{~L} \cdot \frac{\mathrm{~L}}{2} \\
& \frac{\rho \cdot \mathrm{~g} \cdot \mathrm{w} \cdot \mathrm{D}^{3}}{6}=\frac{\rho \cdot \mathrm{g} \cdot \mathrm{D} \cdot \mathrm{w} \cdot \mathrm{~L}^{2}}{2} \\
& D=\sqrt{3} \cdot \mathrm{~L}=\sqrt{3} \times 5 \mathrm{ft} \\
& D=8.66 \cdot \mathrm{ft}
\end{aligned}
$$

3.64 The gate shown is hinged at H. The gate is 3 m wide normal to the plane of the diagram. Calculate the force required at A to hold the gate closed.

Given: Geometry of gate
Find: Force at A to hold gate closed

Solution:

Basic equation $\quad \frac{\mathrm{dp}}{\mathrm{dh}}=\rho \cdot \mathrm{g} \quad \Sigma \mathrm{M}_{\mathrm{Z}}=0$

Computing equations $\quad \mathrm{F}_{\mathrm{R}}=\mathrm{p}_{\mathrm{C}} \cdot \mathrm{A} \quad \mathrm{y}^{\prime}=\mathrm{y}_{\mathrm{C}}+\frac{\mathrm{I}_{\mathrm{Xx}}}{\mathrm{A} \cdot \mathrm{y}_{\mathrm{C}}} \quad \mathrm{I}_{\mathrm{Xx}}=\frac{\mathrm{w} \cdot \mathrm{L}^{3}}{12}$
Assumptions: static fluid; $\rho=$ constant; Patm on other side; no friction in hinge
For incompressible fluid $\quad \mathrm{p}=\rho \cdot \mathrm{g} \cdot \mathrm{h} \quad$ where p is gage pressure and h is measured downwards
The hydrostatic force on the gate is that on a rectangle of size L and width w.
Hence

$$
\begin{aligned}
& \mathrm{F}_{\mathrm{R}}=\mathrm{p}_{\mathrm{C}} \cdot \mathrm{~A}=\rho \cdot \mathrm{g} \cdot \mathrm{~h}_{\mathrm{C}} \cdot \mathrm{~A}=\rho \cdot \mathrm{g} \cdot\left(\mathrm{D}+\frac{\mathrm{L}}{2} \cdot \sin (30 \cdot \mathrm{deg})\right) \cdot \mathrm{L} \cdot \mathrm{w} \\
& \mathrm{~F}_{\mathrm{R}}=1000 \cdot \frac{\mathrm{~kg}}{\mathrm{~m}^{3}} \times 9.81 \cdot \frac{\mathrm{~m}}{\mathrm{~s}^{2}} \times\left(1.5+\frac{3}{2} \sin (30 \cdot \mathrm{deg})\right) \cdot \mathrm{m} \times 3 \cdot \mathrm{~m} \times 3 \cdot \mathrm{~m} \times \frac{\mathrm{N} \cdot \mathrm{~s}^{2}}{\mathrm{~kg} \cdot \mathrm{~m}} \quad \mathrm{~F}_{\mathrm{R}}=199 \cdot \mathrm{kN}
\end{aligned}
$$

The location of this force is given by $y^{\prime}=y_{C}+\frac{I_{x x}}{A \cdot y_{C}}$ where y^{\prime} and y_{c} are measured along the plane of the gate to the free surface

$$
\begin{aligned}
& y_{C}=\frac{D}{\sin (30 \cdot d e g)}+\frac{L}{2} \quad y_{C}=\frac{1.5 \cdot \mathrm{~m}}{\sin (30 \cdot d e g)}+\frac{3 \cdot \mathrm{~m}}{2} \quad y_{C}=4.5 \mathrm{~m} \\
& y^{\prime}=y_{C}+\frac{I_{x x}}{A \cdot y_{C}}=y_{C}+\frac{\mathrm{w} \cdot \mathrm{~L}^{3}}{12} \cdot \frac{1}{\mathrm{w} \cdot \mathrm{~L}} \cdot \frac{1}{y_{C}}=y_{C}+\frac{L^{2}}{12 \cdot y_{C}}=4.5 \cdot \mathrm{~m}+\frac{(3 \cdot \mathrm{~m})^{2}}{12 \cdot 4.5 \cdot \mathrm{~m}} \quad y^{\prime}=4.67 \mathrm{~m}
\end{aligned}
$$

Taking moments about the hinge $\quad \Sigma \mathrm{M}_{\mathrm{H}}=0=\mathrm{F}_{\mathrm{R}} \cdot\left(\mathrm{y}^{\prime}-\frac{\mathrm{D}}{\sin (30 \cdot \mathrm{deg})}\right)-\mathrm{F}_{\mathrm{A}} \cdot \mathrm{L}$

$$
F_{A}=F_{R} \cdot \frac{\left(y^{\prime}-\frac{D}{\sin (30 \cdot d e g)}\right)}{L} \quad F_{A}=199 \cdot k N \cdot \frac{\left(4.67-\frac{1.5}{\sin (30 \cdot d e g)}\right)}{3} \quad F_{A}=111 \cdot \mathrm{kN}
$$

Problem 3.65
Given: Gate shown has wide $b=3 \mathrm{~m}$ i mass of gate is negligible.
Gate is in equilibrium
Find, Water depth, d
Solution:
Basie equation: $\frac{d p}{d h}=p q \quad \sum M_{z}=0$
Computing equations: $F_{R}=P_{A A} ; y^{\prime}=y_{c}+\frac{I_{k}}{y_{-A}} ; I_{R}=\frac{b h^{3}}{\sqrt{2}}$
Assumptions: (1) static liquid (e) $p=$ constant
(3) Path acts at free surface and on underside of gate
Ten on integrating $d p=p g a t h$, we obtain $p=p g h$
where l is lent of gate in contact wit te wo r

The free body diagram of the gate is as shown.
 Summing moments about A

$$
\begin{aligned}
& \sum M_{g}=0=T L-\left(l-y^{\prime}\right) F_{R} \quad T=M_{g} \\
& M g h=\left(l-y^{\prime}\right) F_{g}=\left(\frac{d}{\sin \theta}-\frac{2 d}{3 \sin \theta}\right) \frac{p g b d^{2}}{2 \sin \theta} \\
& M g h=\frac{1}{3} \frac{d}{\sin \theta} \times \frac{p b d^{2}}{2 \sin \theta}=\frac{p g b d^{3}}{6 \sin ^{2} \theta} \\
& d^{3}=\frac{6 \sin ^{2} \theta m}{\rho^{b}}
\end{aligned}
$$

$$
d=\left[6+\sin ^{2} 60^{\circ} \times 2500 \lg \times 5 m \times \frac{\mathrm{aq口}^{3}}{\frac{\mathrm{~g}^{3}}{}} \times \frac{1}{3 m}\right]^{1 / 3}=2.66 \mathrm{~m} .
$$

$$
\begin{aligned}
& F_{R}=\rho_{c} A=p g h_{c} A \quad h_{c}=\frac{d}{2} \quad, A=b \times \frac{d}{\sin \theta} \\
& F_{h}=\rho g \frac{d}{2} \frac{d b}{\sin \theta}=\frac{\rho g+d^{2}}{2 \sin \theta} \\
& y^{\prime}=y_{c}+\frac{I_{B}}{y_{c} A}=y_{c}+\frac{1}{\varepsilon_{2}} \frac{b l^{3}}{y_{c} d b} \\
& y^{\prime}=y_{c}+\frac{p^{2}}{12 y_{c}} \quad l=\frac{d}{\sin \theta}, y_{c}=\frac{l}{2}=\frac{d}{2 \sin \theta} \\
& y^{\prime}=\frac{d}{2 \sin \theta}+\frac{1}{1}\left(\frac{d}{\sin \theta}\right)^{2} \frac{2 \sin \theta}{d}=\frac{d}{2 \sin \theta}+\frac{d}{6 \sin \theta}=\frac{2 d}{3 \sin \theta}
\end{aligned}
$$

3.66 A solid concrete dam is to be built to hold back a depth D of water. For ease of construction the walls of the dam must be planar. Your supervisor asks you to consider the following dam cross-sections: a rectangle, a right triangle with the hypotenuse in contact with the water, and a right triangle with the vertical in contact with the water. She wishes you to determine which of these would require the least amount of concrete. What will your report say? You decide to look at one more possibility: a nonright triangle, as shown. Develop and plot an expression for the crosssection area A as a function of a, and find the minimum cross-
 sectional area.

Given: Various dam cross-sections

Find: \quad Which requires the least concrete; plot cross-section area A as a function of α

Solution:

For each case, the dam width b has to be large enough so that the weight of the dam exerts enough moment to balance the moment due to fluid hydrostatic force(s). By doing a moment balance this value of b can be found
a) Rectangular dam

Straightforward application of the computing equations of Section 3-5 yields

$$
\begin{aligned}
& \mathrm{F}_{\mathrm{H}}=\mathrm{p}_{\mathrm{C}} \cdot \mathrm{~A}=\rho \cdot \mathrm{g} \cdot \frac{\mathrm{D}}{2} \cdot \mathrm{w} \cdot \mathrm{D}=\frac{1}{2} \cdot \rho \cdot \mathrm{~g} \cdot \mathrm{D}^{2} \cdot \mathrm{w} \\
& \mathrm{y}^{\prime}=\mathrm{y}_{\mathrm{C}}+\frac{\mathrm{I}_{\mathrm{xx}}}{\mathrm{~A} \cdot \mathrm{y}_{\mathrm{C}}}=\frac{\mathrm{D}}{2}+\frac{\mathrm{w} \cdot \mathrm{D}^{3}}{12 \cdot \mathrm{w} \cdot \mathrm{D} \cdot \frac{\mathrm{D}}{2}}=\frac{2}{3} \cdot \mathrm{D}
\end{aligned}
$$

so

$$
\mathrm{y}=\mathrm{D}-\mathrm{y}^{\prime}=\frac{\mathrm{D}}{3}
$$

Also
$\mathrm{m}=\rho_{\text {cement }} \cdot \mathrm{g} \cdot \mathrm{b} \cdot \mathrm{D} \cdot \mathrm{w}=\mathrm{SG} \cdot \rho \cdot \mathrm{g} \cdot \mathrm{b} \cdot \mathrm{D} \cdot \mathrm{w}$

Taking moments about O

$$
\sum \mathrm{M}_{0 .}=0=-\mathrm{F}_{\mathrm{H}} \cdot \mathrm{y}+\frac{\mathrm{b}}{2} \cdot \mathrm{~m} \cdot \mathrm{~g}
$$

so

$$
\left(\frac{1}{2} \cdot \rho \cdot \mathrm{~g} \cdot \mathrm{D}^{2} \cdot \mathrm{w}\right) \cdot \frac{\mathrm{D}}{3}=\frac{\mathrm{b}}{2} \cdot(\mathrm{SG} \cdot \rho \cdot \mathrm{~g} \cdot \mathrm{~b} \cdot \mathrm{D} \cdot \mathrm{w})
$$

Solving for b

$$
\mathrm{b}=\frac{\mathrm{D}}{\sqrt{3 \cdot \mathrm{SG}}}
$$

The minimum rectangular cross-section area is

$$
\mathrm{A}=\mathrm{b} \cdot \mathrm{D}=\frac{\mathrm{D}^{2}}{\sqrt{3 \cdot \mathrm{SG}}}
$$

For concrete, from Table A.1, SG = 2.4, so

$$
\mathrm{A}=\frac{\mathrm{D}^{2}}{\sqrt{3 \cdot \mathrm{SG}}}=\frac{\mathrm{D}^{2}}{\sqrt{3 \times 2.4}}
$$

$$
\mathrm{A}=0.373 \cdot \mathrm{D}^{2}
$$

a) Triangular dams

Instead of analysing right-triangles, a general analysis is made, at the end of which right triangles are analysed as special cases by setting α $=0$ or 1 .

Straightforward application of the computing equations of Section 3-5 yields

$$
\begin{aligned}
& \mathrm{F}_{\mathrm{H}}=\mathrm{p}_{\mathrm{C}} \cdot \mathrm{~A}=\rho \cdot \mathrm{g} \cdot \frac{\mathrm{D}}{2} \cdot \mathrm{w} \cdot \mathrm{D}=\frac{1}{2} \cdot \rho \cdot \mathrm{~g} \cdot \mathrm{D}^{2} \cdot \mathrm{w} \\
& \mathrm{y}^{\prime}=\mathrm{y}_{\mathrm{C}}+\frac{\mathrm{I}_{\mathrm{Xx}}}{\mathrm{~A} \cdot \mathrm{y}_{\mathrm{C}}}=\frac{\mathrm{D}}{2}+\frac{\mathrm{w} \cdot \mathrm{D}^{3}}{12 \cdot \mathrm{w} \cdot \mathrm{D} \cdot \frac{\mathrm{D}}{2}}=\frac{2}{3} \cdot \mathrm{D}
\end{aligned}
$$

so

$$
\mathrm{y}=\mathrm{D}-\mathrm{y}^{\prime}=\frac{\mathrm{D}}{3}
$$

Also

$$
\mathrm{F}_{\mathrm{V}}=\rho \cdot \mathrm{V} \cdot \mathrm{~g}=\rho \cdot \mathrm{g} \cdot \frac{\alpha \cdot \mathrm{~b} \cdot \mathrm{D}}{2} \cdot \mathrm{w}=\frac{1}{2} \cdot \rho \cdot \mathrm{~g} \cdot \alpha \cdot \mathrm{~b} \cdot \mathrm{D} \cdot \mathrm{w} \quad \mathrm{x}=(\mathrm{b}-\alpha \cdot \mathrm{b})+\frac{2}{3} \cdot \alpha \cdot \mathrm{~b}=\mathrm{b} \cdot\left(1-\frac{\alpha}{3}\right)
$$

For the two triangular masses

$$
\begin{array}{ll}
\mathrm{m}_{1}=\frac{1}{2} \cdot \mathrm{SG} \cdot \rho \cdot \mathrm{~g} \cdot \alpha \cdot \mathrm{~b} \cdot \mathrm{D} \cdot \mathrm{w} & \mathrm{x}_{1}=(\mathrm{b}-\alpha \cdot \mathrm{b})+\frac{1}{3} \cdot \alpha \cdot \mathrm{~b}=\mathrm{b} \cdot\left(1-\frac{2 \cdot \alpha}{3}\right) \\
\mathrm{m}_{2}=\frac{1}{2} \cdot \mathrm{SG} \cdot \rho \cdot \mathrm{~g} \cdot(1-\alpha) \cdot \mathrm{b} \cdot \mathrm{D} \cdot \mathrm{w} & \mathrm{x}_{2}=\frac{2}{3} \cdot \mathrm{~b}(1-\alpha)
\end{array}
$$

Taking moments about O

$$
\sum \mathrm{M}_{0 .}=0=-\mathrm{F}_{\mathrm{H}} \cdot \mathrm{y}+\mathrm{F}_{\mathrm{V}} \cdot \mathrm{x}+\mathrm{m}_{1} \cdot \mathrm{~g} \cdot \mathrm{x}_{1}+\mathrm{m}_{2} \cdot \mathrm{~g} \cdot \mathrm{x}_{2}
$$

So

$$
\begin{aligned}
& -\left(\frac{1}{2} \cdot \rho \cdot g \cdot \mathrm{D}^{2} \cdot \mathrm{w}\right) \cdot \frac{\mathrm{D}}{3}+\left(\frac{1}{2} \cdot \rho \cdot g \cdot \alpha \cdot \mathrm{~b} \cdot \mathrm{D} \cdot \mathrm{w}\right) \cdot \mathrm{b} \cdot\left(1-\frac{\alpha}{3}\right) \cdots \\
& +\left(\frac{1}{2} \cdot \mathrm{SG} \cdot \rho \cdot \mathrm{~g} \cdot \alpha \cdot \mathrm{~b} \cdot \mathrm{D} \cdot \mathrm{w}\right) \cdot \mathrm{b} \cdot\left(1-\frac{2 \cdot \alpha}{3}\right)+\left[\frac{1}{2} \cdot \mathrm{SG} \cdot \rho \cdot \mathrm{~g} \cdot(1-\alpha) \cdot \mathrm{b} \cdot \mathrm{D} \cdot \mathrm{w}\right] \cdot \frac{2}{3} \cdot \mathrm{~b}(1-\alpha)
\end{aligned}
$$

Solving for b

$$
b=\frac{D}{\sqrt{\left(3 \cdot \alpha-\alpha^{2}\right)+S G \cdot(2-\alpha)}}
$$

For a right triangle with the hypotenuse in contact with the water, $\alpha=1$, and

$$
\mathrm{b}=\frac{\mathrm{D}}{\sqrt{3-1+\mathrm{SG}}}=\frac{\mathrm{D}}{\sqrt{3-1+2.4}} \quad \mathrm{~b}=0.477 \cdot \mathrm{D}
$$

The cross-section area is

$$
\mathrm{A}=\frac{\mathrm{b} \cdot \mathrm{D}}{2}=0.238 \cdot \mathrm{D}^{2} \quad \mathrm{~A}=0.238 \cdot \mathrm{D}^{2}
$$

For a right triangle with the vertical in contact with the water, $\alpha=0$, and

$$
\mathrm{b}=\frac{\mathrm{D}}{\sqrt{2 \cdot \mathrm{SG}}}=\frac{\mathrm{D}}{\sqrt{2 \cdot 2.4}} \quad \mathrm{~b}=0.456 \cdot \mathrm{D}
$$

The cross-section area is

$$
\mathrm{A}=\frac{\mathrm{b} \cdot \mathrm{D}}{2}=0.228 \cdot \mathrm{D}^{2} \quad \mathrm{~A}=0.228 \cdot \mathrm{D}^{2}
$$

For a general triangle

$$
A=\frac{b \cdot D}{2}=\frac{D^{2}}{2 \cdot \sqrt{\left(3 \cdot \alpha-\alpha^{2}\right)+S G \cdot(2-\alpha)}}
$$

$$
A=\frac{D^{2}}{2 \cdot \sqrt{\left(3 \cdot \alpha-\alpha^{2}\right)+2.4 \cdot(2-\alpha)}}
$$

The final result is

$$
\mathrm{A}=\frac{\mathrm{D}^{2}}{2 \cdot \sqrt{4.8+0.6 \cdot \alpha-\alpha^{2}}}
$$

From the corresponding Excel workbook, the minimum area occurs at $\alpha=0.3$

$$
\mathrm{A}_{\min }=\frac{\mathrm{D}^{2}}{2 \cdot \sqrt{4.8+0.6 \times 0.3-0.3^{2}}} \quad \mathrm{~A}=0.226 \cdot \mathrm{D}^{2}
$$

The final results are that a triangular cross-section with $\alpha=0.3$ uses the least concrete; the next best is a right triangle with the vertical in contact with the water; next is the right triangle with the hypotenuse in contact with the water; and the cross-section requiring the most concrete is the rectangular cross-section.
3.66 A solid concrete dam is to be built to hold back a depth D of water. For ease of construction the walls of the dam must be planar. Your supervisor asks you to consider the following dam cross-sections: a rectangle, a right triangle with the hypotenuse in contact with the water, and a right triangle with the vertical in contact with the water. She wishes you to determine which of these would require the least amount of concrete. What will your report say? You decide to look at one more possibility: a nonright triangle, as shown. Develop and plot an expression for the crosssection area A as a function of a, and find the minimum cross-
 sectional area.

Given: Various dam cross-sections
Find: \quad Which requires the least concrete; plot cross-section area A as a function of α

Solution:

The triangular cross-sections are considered in this workbook

The final result is

$$
\mathrm{A}=\frac{\mathrm{D}^{2}}{2 \sqrt{4.8+0.6 \cdot \alpha-\alpha^{2}}}
$$

The dimensionless area, A / D^{2}, is plotted

α	$\boldsymbol{A} / \boldsymbol{D}^{\mathbf{2}}$
0.0	0.2282
0.1	0.2270
0.2	0.2263
0.3	0.2261
0.4	0.2263
0.5	0.2270
0.6	0.2282
0.7	0.2299
0.8	0.2321
0.9	0.2349
1.0	0.2384

Solver can be used to find the minimum area

α	$\boldsymbol{A} / \boldsymbol{D}^{\mathbf{2}}$
0.30	0.2261

Dam Cross Section vs Coefficient α

3.67 A long, square wooden block is pivoted along one edge. The block is in equilibrium when immersed in water to the depth shown. Evaluate the specific gravity of the wood, if friction in the pivot is negligible.

Given: Block hinged and floating
Find: SG of the wood

Solution:

Basic equation	$\frac{\mathrm{dp}}{\mathrm{dh}}=\rho \cdot \mathrm{g}$	$\Sigma \mathrm{M}_{\mathrm{z}}=0$
Computing equations	$\mathrm{F}_{\mathrm{R}}=\mathrm{p}_{\mathrm{C}} \cdot \mathrm{A}$	$\mathrm{y}^{\prime}=\mathrm{y}_{\mathrm{C}}+\frac{\mathrm{I}_{\mathrm{xx}}}{\mathrm{A} \cdot \mathrm{y}_{\mathrm{C}}}$

Assumptions: static fluid; $\rho=$ constant; $\mathrm{P}_{\text {atm }}$ on other side; no friction in hinge
For incompressible fluid $\quad \mathrm{p}=\rho \cdot \mathrm{g} \cdot \mathrm{h} \quad$ where p is gage pressure and h is measured downwards
The force on the vertical section is the same as that on a rectangle of height d and width L

Hence

$$
\begin{aligned}
& F_{1}=p_{C} \cdot A=\rho \cdot g \cdot y_{C} \cdot A=\rho \cdot g \cdot \frac{d}{2} \cdot d \cdot L=\frac{\rho \cdot g \cdot L \cdot d^{2}}{2} \\
& y^{\prime}=y_{C}+\frac{I_{X x}}{A \cdot y_{C}}=\frac{d}{2}+\frac{L \cdot d^{3}}{12} \times \frac{1}{L \cdot d} \times \frac{2}{d}=\frac{2}{3} \cdot d
\end{aligned}
$$

The location of this force is

The force on the horizontal section is due to constant pressure, and is at the centroid

$$
F_{2}=p(y=d) \cdot A=\rho \cdot g \cdot d \cdot L \cdot L
$$

Summing moments about the hinge

Hence

$$
\begin{aligned}
& \Sigma \mathrm{M}_{\text {hinge }}=0=-\mathrm{F}_{1} \cdot\left(\mathrm{~d}-\mathrm{y}^{\prime}\right)-\mathrm{F}_{2} \cdot \frac{\mathrm{~L}}{2}+\mathrm{M} \cdot \mathrm{~g} \cdot \frac{\mathrm{~L}}{2} \\
& \mathrm{~F}_{1} \cdot\left(\mathrm{~d}-\frac{2}{3} \cdot \mathrm{~d}\right)+\mathrm{F}_{2} \cdot \frac{\mathrm{~L}}{2}=\mathrm{SG} \cdot \rho \cdot \mathrm{~L}^{3} \cdot \mathrm{~g} \cdot \frac{\mathrm{~L}}{2}
\end{aligned}
$$

$$
\frac{\mathrm{SG} \cdot \rho \cdot \mathrm{~g} \cdot \mathrm{~L}^{4}}{2}=\frac{\rho \cdot \mathrm{g} \cdot \mathrm{~L} \cdot \mathrm{~d}^{2}}{2} \cdot \frac{\mathrm{~d}}{3}+\rho \cdot \mathrm{g} \cdot \mathrm{~d} \cdot \mathrm{~L}^{2} \cdot \frac{\mathrm{~L}}{2}
$$

$$
\mathrm{SG}=\frac{1}{3} \cdot\left(\frac{\mathrm{~d}}{\mathrm{~L}}\right)^{3}+\frac{\mathrm{d}}{\mathrm{~L}}
$$

$$
\mathrm{SG}=\frac{1}{3} \cdot\left(\frac{0.5}{1}\right)^{3}+\frac{0.5}{1}
$$

$$
\mathrm{SG}=0.542
$$

3.68 For the geometry shown, what is the vertical force on the dam? The steps are 1 ft high, 1 ft deep, and 10 ft wide.

Given: Geometry of dam

Find: Vertical force on dam

Solution:

Basic equation $\quad \frac{\mathrm{dp}}{\mathrm{dh}}=\rho \cdot g$
Assumptions: static fluid; $\rho=$ constant

For incompressible fluid $\quad \mathrm{p}=\mathrm{p}_{\mathrm{atm}}+\rho \cdot \mathrm{g} \cdot \mathrm{h} \quad$ where h is measured downwards from the free surface

The force on each horizontal section (depth $\mathrm{d}=1 \mathrm{ft}$ and width $\mathrm{w}=10 \mathrm{ft}$) is

$$
\mathrm{F}=\mathrm{p} \cdot \mathrm{~A}=\left(\mathrm{p}_{\mathrm{atm}}+\rho \cdot \mathrm{g} \cdot \mathrm{~h}\right) \cdot \mathrm{d} \cdot \mathrm{w}
$$

Hence the total force is

$$
\mathrm{F}_{\mathrm{T}}=\left[\mathrm{p}_{\mathrm{atm}}+\left(\mathrm{p}_{\mathrm{atm}}+\rho \cdot \mathrm{g} \cdot \mathrm{~h}\right)+\left(\mathrm{p}_{\mathrm{atm}}+\rho \cdot \mathrm{g} \cdot 2 \cdot \mathrm{~h}\right)+(\mathrm{patm}+\rho \cdot 3 \cdot \mathrm{~g} \cdot \mathrm{~h})+(\mathrm{patm}+\rho \cdot \mathrm{g} \cdot 4 \cdot \mathrm{~h})\right] \cdot \mathrm{d} \cdot \mathrm{w}
$$

where we have used h as the height of the steps

$$
\begin{aligned}
& \mathrm{F}_{\mathrm{T}}=\mathrm{d} \cdot \mathrm{w} \cdot(5 \cdot \mathrm{patm}+10 \cdot \rho \cdot \mathrm{~g} \cdot \mathrm{~h}) \\
& \mathrm{F}_{\mathrm{T}}=1 \cdot \mathrm{ft} \times 10 \cdot \mathrm{ft} \times\left[5 \times 14.7 \cdot \frac{\mathrm{lbf}}{\mathrm{in}^{2}} \times\left(\frac{12 \cdot \mathrm{in}}{1 \cdot \mathrm{ft}}\right)^{2}+10 \times 1.94 \cdot \frac{\mathrm{slug}}{\mathrm{ft}^{3}} \times 32.2 \cdot \frac{\mathrm{ft}}{\mathrm{~s}^{2}} \times 1 \cdot \mathrm{ft} \times \frac{\mathrm{lbf} \cdot \mathrm{~s}^{2}}{\mathrm{slug} \cdot \mathrm{ft}}\right] \\
& \mathrm{F}_{\mathrm{T}}=1.12 \times 10^{5} \cdot \mathrm{lbf}
\end{aligned}
$$

3.69 For the dam shown, what is the vertical force of the water on the dam?

Front

Side

Given: Geometry of dam
Find: Vertical force on dam

Solution:

Basic equation $\quad \frac{\mathrm{dp}}{\mathrm{dh}}=\rho \cdot \mathrm{g}$
Assumptions: static fluid; $\rho=$ constant; since we are asked for the force of water, we use gage pressures

For incompressible fluid $\quad \mathrm{p}=\rho \cdot \mathrm{g} \cdot \mathrm{h} \quad$ where p is gage pressure and h is measured downwards from the free surface

The force on each horizontal section (depth d and width w) is

$$
\mathrm{F}=\mathrm{p} \cdot \mathrm{~A}=\rho \cdot \mathrm{g} \cdot \mathrm{~h} \cdot \mathrm{~d} \cdot \mathrm{w}
$$

Hence the total force is (allowing for the fact that some faces experience an upwards (negative) force)

$$
\mathrm{F}_{\mathrm{T}}=\mathrm{p} \cdot \mathrm{~A}=\Sigma \rho \cdot \mathrm{g} \cdot \mathrm{~h} \cdot \mathrm{~d} \cdot \mathrm{w}=\rho \cdot \mathrm{g} \cdot \mathrm{~d} \cdot \Sigma \mathrm{~h} \cdot \mathrm{w}
$$

Starting with the top and working downwards

$$
\begin{aligned}
& \mathrm{F}_{\mathrm{T}}=1000 \cdot \frac{\mathrm{~kg}}{\mathrm{~m}^{3}} \times 9.81 \cdot \frac{\mathrm{~m}}{\mathrm{~s}^{2}} \times 1 \cdot \mathrm{~m} \times[(1 \cdot \mathrm{~m} \times 4 \cdot \mathrm{~m})+(2 \cdot \mathrm{~m} \times 2 \cdot \mathrm{~m})-(3 \cdot \mathrm{~m} \times 2 \cdot \mathrm{~m})-(4 \cdot \mathrm{~m} \times 4 \cdot \mathrm{~m})] \times \frac{\mathrm{N} \cdot \mathrm{~s}^{2}}{\mathrm{~kg} \cdot \mathrm{~m}} \\
& \mathrm{~F}_{\mathrm{T}}=-137 \cdot \mathrm{kN}
\end{aligned}
$$

The negative sign indicates a net upwards force (it's actually a buoyancy effect on the three middle sections)

Given: Parabolic gate, hriged at O, has width $B=2 \mathrm{~m}$.

$$
c=0.25 \mathrm{~m}^{-1}, D=2 \mathrm{~m}, H=3 \mathrm{~m}
$$

Find: (a) Magnitude and line of action of vertical force on gate due to water (b) Horizontal force applied at H° needed for equilibrium

(c) Vertical force applied at A needed for equilibrium
Solution:
Basic equations: $\frac{d p}{d h}=p g, \sum M_{0_{z}}=0, F_{v}=\int p d F_{y}, i F_{v}=\int x d F_{y}$ computing equations $F_{H}=-p_{c} A, h^{\prime}=h_{c}+\frac{F_{4}}{h_{c} A}$
Assumptions: (1) static liquid (a) $p=$ constant
(3) Patm acts on the surface of the water and along the outside surface of the gats.
Ten on integrating $d p=p g a h$, we obtain $p=p g h$
(a) $F_{y}=\left(p d A_{y}=\int_{0}^{\sqrt{x / c}} p g h d x=\int_{0}^{\sqrt{g} c} p g(p-y) b d x=\int_{0}^{\sqrt{p /}} p g\left(y-c x^{2}\right) b d x\right.$

$$
\begin{equation*}
F_{V}=p g b\left[\nu x-\frac{c x^{3}}{3}\right]_{0}^{\sqrt{1 / 2}}=p g b\left[\frac{\nu^{3 / 2}}{c^{1 / 2}}-\frac{c}{3}\left(\frac{\nu^{3 / 2}}{c}\right)^{3}\right]=\frac{2}{3} \frac{g^{g} b^{12}}{c^{3 / 2}} \tag{1}
\end{equation*}
$$

$$
\left.x^{\prime}=\frac{1}{F} \int_{0}^{\sqrt{2}} x \lg (1)-c x^{2}\right) b d x
$$

$$
x^{\prime}=\frac{b \rho g}{F_{y}}\left[D \frac{x^{2}}{2}-\frac{c x^{4}}{4}\right]_{0}^{\sqrt{x_{c}}}=\frac{b p g}{F_{v}}\left[\frac{\partial}{2} \times \frac{2}{c}-\frac{c \frac{2}{2}^{2}}{c^{2}}\right]=\frac{b p g}{F} \frac{y^{2}}{4 c}
$$

$$
F_{V}=\frac{2}{3} \times 999 \frac{\mathrm{gg}_{3}}{\mathrm{~m}^{3}} \times 9.8 \frac{\mathrm{~s}}{\mathrm{~s}^{2}} \times 2 m \times(2 m)^{3 / 2}\left(0 . \frac{m}{25}\right)^{0.5} \times \frac{\mathrm{Ns}^{2}}{\frac{\mathrm{~kg}}{\mathrm{~m}}}=\frac{73.9 \mathrm{kN} .}{\sqrt{7 / c}} .
$$

Substituting for F, from Eg.'

$$
x^{\prime}=\frac{\phi(g)^{2}}{4 c} \times \frac{3}{2} \frac{c^{1 / 2}}{p g b)^{3 / 2}}=\frac{3}{8}\left(\frac{D}{c}\right)^{1 / 2}=\frac{3}{8}\left[2 m \times \frac{m}{0.25}\right]^{1 / 2}=1.0 b m
$$

In order to sum moments about part o to find the required force at A required for equilibrium we need to find the horizontal force of the water on the gate and its line of action

Problem 3.70

$$
\begin{aligned}
& \left.F_{H}=p_{c} A=\rho g h_{c} b\right\rangle=\rho g b \frac{D^{-}}{2} \quad\left\{h_{c}=\lambda_{2}\right\} \\
& F_{H}=999 \frac{\mathrm{~kg}}{M^{3}}+9.81 \frac{m}{s^{2}} \times 2 \mu \times \frac{(2 \mu)^{2}}{2}+\frac{\lambda^{2} 5^{2}}{\mathrm{~kg}^{2}}=39.2 \mathrm{kN} \\
& \left.\left.h^{\prime}=h_{c}+\frac{V_{i i}}{\pi h_{c}}=h_{c}+\frac{\nu^{2}}{12 h_{c}} \quad\left\{I_{i x}=\frac{b}{12}\right\rangle^{3} \quad \text { and } A=b\right\rangle\right\} \text {. } \\
& h^{\prime}=\frac{2}{2}+\frac{D^{2}}{12}+\frac{2}{>} \quad\left\{h_{c}=\frac{D}{2}\right\} \\
& \left.h^{\prime}=\frac{2}{3}\right\rangle=\frac{4}{3} m
\end{aligned}
$$

(b) Horizontal force applied at A for equilibrium

$$
\begin{aligned}
& \sum M_{0}=0=F_{H} H-F_{V}+F_{H}\left(D-H^{\prime}\right) \\
& F_{A}=\frac{1}{H}\left[F_{V} x^{\prime}+F_{H}\left(D-h^{\prime}\right)\right] \\
& =\frac{1}{3 m}\left[73,9 \operatorname{Ca} \times 1,06 m+39,2 \operatorname{cn}+\left(2-\frac{4}{3}\right) m\right] \\
& F_{A_{H}}=34.8 \mathrm{kN}
\end{aligned}
$$

(c) Vertical force applied at A for equilibrivin

$$
\begin{aligned}
& \Sigma M_{0}=0=F_{H} h-F_{V} \chi^{\prime}-F_{H}\left(\nu-h^{\prime}\right) \\
& F_{A}=\frac{1}{L}\left[F_{H} X^{\prime}+F_{H}\left(D-h^{\prime}\right)\right] \\
& L=x @ y=H \text {. Since } y=C H^{2} \\
& h=\sqrt{\frac{H}{c}}=\left[3 m \times 0 . \frac{m}{25}\right]^{12}=3.46 \mathrm{~m} \\
& F_{a}=\frac{1}{3.46 m}\left[73.9 \mathrm{~m} N \times . .6 \mathrm{~m}+39.2 \mathrm{~km} \times\left(2-\frac{4}{3}\right) m\right] \\
& F_{A_{y}}=30.2 \mathrm{EN}
\end{aligned}
$$

Problem 3.71
Given: Gate, hinged at 0 , has wide be 1.5 m

$$
\begin{aligned}
& a=1.0 \mathrm{~m}^{-2}, D=1.20 \mathrm{~m}, \\
& H=1.40 \mathrm{~m}
\end{aligned}
$$

Find: (a) Magnitude and moment afoul of vertical force on gate due to water
(b) Horizontal force applied at A needed for equilibrium

Solution
Basic equations: $\frac{d p}{d h}=p g, F_{v}=\int p d A_{y}, i F_{v}=\int x d F_{v}$

$$
y^{\prime} F_{H}=\int y d F_{H}, F_{H}=\int P d A_{2}, \sum M_{O_{z}}=0
$$

Assumptions: (1) static lIquid (a) $p=$ constant
(3) Pate acts on the surface of the water and along the top surface of the gate
Ten on integrating $d p=p g t h$, we obtain $p=p g h$

$$
\begin{aligned}
& F_{y}=\int P A A_{y}=\int p h b d x \\
& h=>-y \quad x=a y^{3} \quad d x=3 a y^{2} d y
\end{aligned}
$$

$$
F_{v}=\int_{0}^{1} p g(y-y) b 3 a y^{2} d y
$$

$$
\begin{aligned}
& T y_{y}^{4} \\
& F_{y}=3 p g b a\left[D \frac{y^{2}}{3}-y^{4}\right]_{0}^{y}=3 \rho g b a \frac{D^{4}}{12}=\rho g b a \frac{2^{4}}{4}, ~
\end{aligned}
$$

$$
F_{y}=999 \frac{\mathrm{~kg}}{\mathrm{~m}^{3}} \times 9.81 \frac{\mathrm{~m}}{\mathrm{~s}^{2}} \times 1.5 \mathrm{~m} \times \frac{1.0}{m^{2}} \times\left(1.2 \frac{0 \mu}{4}\right)^{4} \times \frac{\delta^{2}}{\mathrm{~kg} . \mathrm{M}}=7.62 \mathrm{kN}+F_{y}
$$

The moment of F_{s} about O is given by

$$
x^{\prime} F_{y}=3.7 b \mathrm{kN} . \mathrm{m}
$$

$$
\begin{aligned}
& x F_{V}=\int x d F_{V}=\int x \cdot P d A_{y}=\int x p g h b d x \\
& =p g b \int_{0}^{p} a y^{3}(D-y) 3 a y^{2} d y=3 p g b a^{2} \int_{0}^{7} y^{5}(p-y) d y \\
& =3 p g b a^{2}\left[\eta y^{b}-y^{2}\right]_{0}^{>}=p g \frac{\left.a^{2}\right\rangle^{2}}{14}
\end{aligned}
$$

From the free body diagram of the gate

$$
\begin{aligned}
& \sum M_{O_{z}}=\dot{x}^{\prime} F_{V}+y^{\prime} F_{H}-H F_{A} \\
& y^{\prime} F_{H}=\int y d F_{H}=\int y P d A_{A}=\int y \rho g h b d y=p g b \int_{0}^{D} y(p-y) d y \\
& =p g b\left[\frac{2 y^{2}}{2}-y^{3}\right]_{0}^{9}=\operatorname{cgb} \frac{x^{3}}{6}
\end{aligned}
$$

$$
\begin{aligned}
& \text { Ra } \\
& F_{A}=\frac{1}{H}\left[\dot{X} F_{V}+\dot{y} F_{A}\right]=\frac{1}{140 m}[3,2 b+4.23] \text { aAM } \\
& F_{A}=\sin \mathrm{kN} .
\end{aligned}
$$

Problem 3.72
Given: Liquid concrete is poured into form shown; width $w=4.25 \mathrm{~m}$
Find. Magnitude and line of action of vertical force on form

Solution:
Basic equations: $\frac{d p}{d h}=p g, \quad F_{v}=\left(p d f_{y}, \quad x_{v}=\left(x d F_{v}\right.\right.$
Assumptions: (i) static liquid (a) $p=$ constant
(3) Pate acts on the liquid surface andalong the outside of the form.
then on integrating $d P=p g d h$, we obtain $p=p g h$

$$
\begin{aligned}
& F_{v}=\int_{\pi / 2} p d A_{y}=(p g h d A \sin \theta \\
& d A=\omega R d \theta, h=R-y=R-R \sin \phi \\
& F_{J}=\int_{0}^{\pi / 2} p g R(1-\sin \theta) \sin \theta \omega R d \theta=\rho g R^{2} \omega \int_{0}^{\alpha / 2}\left(\sin \theta-\sin ^{2} \theta\right) d \theta . \\
& F_{U}=\rho g R^{2} \omega\left[-\cos \theta-\frac{\theta}{2}+\frac{\sin 2 \theta}{4}\right]_{0}^{\pi / 2}=\rho g R^{2} \omega\left[-0+1-\frac{\pi}{4}+0+0-0\right] \\
& F_{V}=p g R^{2} \omega\left(1-\frac{\pi}{4}\right) \quad\left\{p=S G p_{1+20} ; S G=2.5 \text { (Table } A . C\right) \\
& F_{y}=2.5 \times 1000 \lg _{\mathrm{m}^{3}} \times 9.81 \frac{\mathrm{~m}}{\mathrm{~s}^{2}} \times(0.313 \mathrm{~m})^{2}+4.25 m\left(1-\frac{\pi}{4}\right) \times \frac{\mathrm{N.5}}{\mathrm{bg}^{2}} \\
& F_{J}=2.19 \mathrm{kN} \\
& F_{V} \\
& x^{\prime} F_{V}=\rho g e^{2} w \int_{0}^{\pi / 2} x\left(\sin \theta-\sin ^{2} \theta\right) d \theta=\rho g \rho^{2} \omega \int_{0}^{\pi / 2} R \cos \theta\left(\sin \theta-\sin ^{2} \theta\right) d \theta \\
& =\rho g R^{3} \omega \int_{0}^{-i / 2}\left(\sin \theta \cos \theta-\sin ^{2} \theta \cos \theta\right) d \theta=p g R^{3} \omega\left[\frac{\sin ^{2} \theta}{2}-\frac{\sin ^{3} \theta}{3}\right]_{0}^{\pi / 2} \\
& x^{\prime} F_{v}=\rho g k^{3} \omega\left[\frac{1}{2}-\frac{1}{3}\right]=\operatorname{ggk^{3}} \omega \\
& x^{\prime}=\frac{\rho g R^{3} w}{6 F_{0}}=\frac{\rho g R^{3} \omega}{6} \times \frac{1}{p g R^{2} w\left(1-\frac{\pi}{4}\right)}=\frac{R}{6\left(1-\frac{\pi}{4}\right)}=\frac{0.313 M}{6(1-\pi / 4)} \\
& x^{\prime}=0.243 \mathrm{~m}
\end{aligned}
$$

Given: Gate formed in the shape of a circular are has width of w mites. hquid is water; dept $h=k$

Find: (a) magnitude and direction of the net vélica force component due to fivers acting on the gate
(b) line of action of vertical component of the force.

Solution
Basic equators: $\quad \vec{F}_{R}=-\left(P \vec{A} \quad \frac{d P}{d y}=p g\right.$
Assumptions: in static flue

(2) $p=$ constant
(3) y is measured positwe downward from free sur fork

$$
\vec{F}_{R y}=\vec{F}_{R} \cdot j=\int d \vec{F} \cdot j=-\int P d F \cdot j=-\int P d A \sin \theta=-\int_{0}^{\Gamma} \sin \theta \omega R d \theta
$$

We can obtain an expression for p as a function of y

$$
\frac{d p}{d y}=p g \quad d p=p g d y \quad \text { and } p-p_{0}=\int_{p_{0}}^{d p}=\int_{0}^{y} p g d y=p q y
$$

Since atmospheric pressure acts at the free surface and on tie back surface of the gate, then, the appropriate expression for P is $P=p q y$ Alone the surface of the gate,

$$
y=R \sin \theta-\underset{N}{\pi / 2} \text { and mere } P=p R \sin \theta
$$

thus.

$$
\begin{aligned}
& \left.F_{R y}=\cdots \int_{0}^{L_{2}} p \sin \theta \omega k d \theta=-\left.\rho g \omega R^{2}\right|_{0} ^{\pi / 2} \sin ^{2} \theta d \theta=-\rho g \omega k^{2} e^{\rho}-\frac{\sin 2 \theta}{4}\right]_{0}^{\pi / 2} \\
& F_{k y}=-\frac{p g \omega k^{2} \pi}{4},\left\{F_{\text {by acts upward }\}}\right.
\end{aligned}
$$

For any element of surface area, $d \vec{A}$, the farce $d \vec{F}$, acts norma to the surface. Thus each dr has a lime of action thrown the origin Consequently, the lime of action of \vec{F}_{8} must also be trough the origin.

We can fond the line of action of F_{k} by recognizing that the nomen of $F_{\text {ry }}$ about an aus trough the origin Rust be equal to the sum ofothe moments of dry cost the same axis:

$$
\begin{aligned}
& x^{\prime} F_{R y}=\int x d F_{y}=\int x(-P d f \sin \theta)=-(x p d f \sin \theta \\
& x^{\prime} F_{R y}=-\int_{0}^{\pi / 2} R \cos \theta p g \sin \theta \omega R d \theta \sin \theta=-p g \omega R^{3} \int_{0}^{\pi / 2} \sin ^{2} \theta \cos \theta d \theta \\
& x^{\prime}=-\frac{\rho g R^{3}}{F_{R y}} \int_{0}^{\pi / 2} \sin ^{2} \theta \cos \theta d t=\frac{-p g \omega R^{3}}{-\frac{p g \omega R^{2} r}{4}}\left[\frac{1}{3} \sin ^{3} \theta\right]_{0}^{\pi / 2} \\
& x^{\prime}=\frac{4 R}{3 x}
\end{aligned}
$$

Gwen: Open tank as shown width of curved surface $b=10 f t$
Find: (a) vertical force component. Fry, on curved surface
b. line of action of Fey

Solution:

Basic equation: $\vec{F}_{R}=-\left(P d \vec{A} \quad \frac{d P}{d f}=\gamma \quad \vec{r}^{\prime} \times \vec{F}_{R}=\int \vec{r} \times \vec{d} \vec{F}=-\int \vec{r} \times P \overrightarrow{d A}\right.$ Assumptions: il static fluid
(2) gravity is only body force
(3) $\quad \gamma=$ con start $=62.4 \mid b f / \mathrm{ft}^{3}$
(4) h is measured positive downward from free surface

$$
F_{e_{y}}=\vec{F}_{R} \cdot \hat{\jmath}=-\int P d \vec{d} \cdot \hat{\jmath}=-\int P d A_{y}=-\int P b d x
$$

We can obtain an expression for p as a function of y

$$
\frac{d P}{d h}=\gamma \quad d P=\gamma d h \quad P-P_{0}=\int_{P_{0}}^{P} d P=\int_{0}^{h} \gamma d h=\gamma h
$$

Since atmospheric pressure acts at the free surface and on the underside of The curved surface, then the appropriate expression for P is $p=8 h$

Now, $h=L-y, \quad \therefore=\gamma(L-y)$
$F_{R_{y}}=-\int P b d x=-\int x(L-y) b d x$. Along the surface $y=\left(R^{2}-x^{2}\right)^{1 / 2}$ and so

$$
\begin{aligned}
& F_{R y}=-\gamma b \int_{0}^{R}\left\{L-\left(R^{2}-x^{2}\right)^{1 / 2}\right\} d x=-\gamma b\left[L x-\frac{1}{2}\left(x \sqrt{R^{2}-x^{2}}+R^{2} \arcsin \frac{x}{R}\right]_{0}^{R}\right. \\
& =-8 b\left\{L R-\frac{1}{2}\left(R^{2} \arcsin 1\right)+\frac{1}{2} R^{2} \arcsin 0\right\}=\gamma b R\left\{L-\frac{R}{2} \arcsin 1\right\} \\
& =-8 b R\left\{L-R \frac{\pi}{4}\right\} \\
& F_{R_{y}}=-62.4 \frac{b r}{{f t^{3}}^{3}} \times 10 f t+4 f t \times\left\{10 f t-4 f t \times \frac{\pi}{4}\right\}=-17,100 \mathrm{bf} \text { (yeats downward) } \quad F_{R y} \\
& x^{\prime} \hat{\imath} \times F_{R_{y}} \hat{\jmath}=\int x \hat{\imath} \times d F_{r_{y}} \hat{\jmath}=\int x i \times\left(-P d R_{y} \hat{\jmath}\right)=-\int x \hat{\imath} \times P b d x \hat{\jmath} \\
& x^{\prime} F_{R_{y}} \hat{e}_{2}=-\hat{l} \int x P b d x \\
& x^{\prime}=-\frac{1}{F_{R y}} \int_{0}^{R} x P b d x=-\frac{1}{F_{R y}} \int_{0}^{R} x \gamma(L-y) b d x=-\frac{\gamma b}{F_{R y}} \int_{0}^{R} x\left\{L-\left(R^{2}-x^{2}\right)^{1 / 2}\right\} d x \\
& =-\frac{\gamma b}{F_{R_{y}}}\left[L \frac{x^{2}}{2}+\frac{1}{3} \sqrt{\left(R^{2}-x^{2}\right)^{3}}\right]_{0}^{R}=-\frac{\gamma b}{F_{R_{y}}}\left[L \frac{R^{2}}{2}-\frac{1}{3} R^{3}\right]=-\frac{\delta b R^{2}}{F_{R_{y}}}\left[\frac{L}{2}-\frac{R}{3}\right] \\
& x^{\prime}=-62.4 \frac{b f}{f t^{3}} \times 10 f \times(4)^{2} f t^{2} \times \frac{1}{(-17,100) 1 b f}\left[\frac{10 f t}{2}-\frac{4 f t}{3}\right] \\
& x^{\prime}=2.14 \mathrm{ft}
\end{aligned}
$$

Given: Dam with cross-section shown (wide b = Son)
Find: (a) Magnitude and line of action of Vertical force on dam due to water.
(b) If it is possible for water force to overturn the dan

Solution:

Baric equations: $\frac{d f}{d h}=p g, F_{V}=\int-P d A_{y}, x^{\prime} F_{y}=\int x d F_{y}, \Sigma A_{z}=0$ Computing equations: $F_{H}=-P_{C} A, h^{\prime}=h_{C}+\frac{F_{\text {iA }}}{h_{C A}}$
Assumptions: (1) static fluid (a) $p=$ constant
(3) Paten acts on the surface of the water and on the back side of the dan
Then on integrating $d p=$ gath we obtain $p=p g h$

$$
\begin{gathered}
F_{V}=\int-P d A_{y}=\int_{x_{A}}^{x_{B}} \rho g h b d x=\rho g b \int_{x_{H}}^{x_{3}}(A-y) d x \\
y(x-F)=B \text { so } y=\left(\frac{B}{x-A)}\right.
\end{gathered}
$$

$$
F_{V}=g g^{H_{B}} \int_{A}^{t_{B}}\left(H-\frac{B}{(x-A)}\right) d x
$$

$$
=9 g b^{A}\left[H_{x}-B \ln (x-A)_{h_{a}}^{H_{3}}\right.
$$

$$
F_{U}=p g b\left[H\left(x_{3}-x_{A}\right)-B \ln \frac{\left(X_{B}-A\right)}{\left(X_{A}-P\right)}\right.
$$

$$
F_{v}=999 \frac{\lg }{n^{3}}+9.81 \frac{m}{s^{2}} \times 50 m\left[2.5 m(2.2-0.76) m-0.9 m^{2} \ln \left(\frac{(2.2-0.4)}{(0.16-0.4)}\right] \frac{\mathrm{Ns}^{2}}{8 \cdot g}\right.
$$

$$
F_{v}=1.05 \times 10^{6} \lambda
$$

$$
\dot{x} F_{v}=\int x F_{v}=\int_{x_{A}}^{\infty}+\rho g b\left(H-\frac{B}{(x-A)} d x=p g \int_{t_{A}}^{t_{0}}\left[A x-\frac{3 x}{(x-A)}\right] d x\right.
$$

$$
x^{\prime} F_{J}=P g b\left[H \frac{x^{2}}{2}-B x-B R \ln (x-A)\right]_{x_{A}}^{x_{B}}
$$

$x^{\prime} F_{V}=p g b\left[\frac{H}{2}\left(x_{B}^{2}-x_{A}^{2}\right)-3\left(x_{B}-h_{A}\right)-8 A \ln \left(x_{B}-A\right)\right]$
$\left.\left.x_{A}-A\right)\right] \ldots\left(\frac{12}{M^{3}} \times \frac{999}{3^{2}} \times 50 m\left\{\frac{2.5 M}{2}\left[(2.12)^{2} M^{2}-\left(0 . b_{0}\right)^{2}-0.9 m^{2}\left(2.2-0.7 A_{M}\right.\right.\right.\right.$ $\left.-0.9 m^{2}+0.4 m \ln \frac{2.2-0.4}{0.36-0.4}\right\} \frac{2.5^{2}}{\lg / \mathrm{m}} \times \frac{1}{1.05} \times 6^{6} \mathrm{~N}$

$$
x^{\prime}=1.61 m .
$$

3.76 A gate, in the shape of a quarter-cylinder, hinged at A and sealed at B, is 3 m wide. The bottom of the gate is 4.5 m below the water surface. Determine the force on the stop at B if the gate is made of concrete; $R=3 \mathrm{~m}$.

Given: Gate geometry
Find: Force on stop B

Solution:

Basic equations

$$
\begin{aligned}
& \frac{\mathrm{dp}}{\mathrm{dh}}=\rho \cdot \mathrm{g} \\
& \Sigma \mathrm{M}_{\mathrm{A}}=0
\end{aligned}
$$

Assumptions: static fluid; $\rho=$ constant; Patm on other side

For incompressible fluid $\quad \mathrm{p}=\rho \cdot \mathrm{g} \cdot \mathrm{h} \quad$ where p is gage pressure and h is measured downwards
We need to compute force (including location) due to water on curved surface and underneath. For curved surface we could integrate pressure, but here we use the concepts that F_{V} (see sketch) is equivalent to the weight of fluid above, and F_{H} is equivalent to the force on a vertical flat plate. Note that the sketch only shows forces that will be used to compute the moment at A

For F_{V}

$$
\mathrm{F}_{\mathrm{V}}=\mathrm{W}_{1}-\mathrm{W}_{2}
$$

with

$$
\begin{aligned}
& \mathrm{W}_{1}=\rho \cdot \mathrm{g} \cdot \mathrm{w} \cdot \mathrm{D} \cdot \mathrm{R}=1000 \cdot \frac{\mathrm{~kg}}{\mathrm{~m}^{3}} \times 9.81 \cdot \frac{\mathrm{~m}}{\mathrm{~s}^{2}} \times 3 \cdot \mathrm{~m} \times 4.5 \cdot \mathrm{~m} \times 3 \cdot \mathrm{~m} \times \frac{\mathrm{N} \cdot \mathrm{~s}^{2}}{\mathrm{~kg} \cdot \mathrm{~m}} \quad \mathrm{~W}_{1}=397 \cdot \mathrm{kN} \\
& \mathrm{~W}_{2}=\rho \cdot \mathrm{g} \cdot \mathrm{w} \cdot \frac{\pi \cdot \mathrm{R}^{2}}{4}=1000 \cdot \frac{\mathrm{~kg}}{\mathrm{~m}^{3}} \times 9.81 \cdot \frac{\mathrm{~m}}{\mathrm{~s}^{2}} \times 3 \cdot \mathrm{~m} \times \frac{\pi}{4} \times(3 \cdot \mathrm{~m})^{2} \times \frac{\mathrm{N} \cdot \mathrm{~s}^{2}}{\mathrm{~kg} \cdot \mathrm{~m}} \quad \mathrm{~W}_{2}=208 \cdot \mathrm{kN} \\
& \mathrm{~F}_{\mathrm{V}}=\mathrm{W}_{1}-\mathrm{W}_{2} \quad \quad \mathrm{~F}_{\mathrm{V}}=189 \cdot \mathrm{kN}
\end{aligned}
$$

with x given by $\quad \mathrm{F}_{\mathrm{V}} \cdot \mathrm{x}=\mathrm{W}_{1} \cdot \frac{\mathrm{R}}{2}-\mathrm{W}_{2} \cdot \frac{4 \cdot \mathrm{R}}{3 \cdot \pi} \quad$ or $\quad \mathrm{x}=\frac{\mathrm{W}_{1}}{\mathrm{~F}_{\mathrm{V}}} \cdot \frac{\mathrm{R}}{2}-\frac{\mathrm{W}_{2}}{\mathrm{~F}_{\mathrm{V}}} \cdot \frac{4 \cdot \mathrm{R}}{3 \cdot \pi}$

$$
x=\frac{397}{189} \times \frac{3 \cdot m}{2}-\frac{208}{189} \times \frac{4}{3 \cdot \pi} \times 3 \cdot m \quad x=1.75 m
$$

For $F_{H} \quad$ Computing equations $\quad F_{H}=p_{C} \cdot A \quad y^{\prime}=y_{C}+\frac{I_{X x}}{A \cdot y_{C}}$

Hence

$$
\begin{aligned}
& \mathrm{F}_{\mathrm{H}}=\mathrm{p}_{\mathrm{C}} \cdot \mathrm{~A}=\rho \cdot \mathrm{g} \cdot\left(\mathrm{D}-\frac{\mathrm{R}}{2}\right) \cdot \mathrm{w} \cdot \mathrm{R} \\
& \mathrm{~F}_{\mathrm{H}}=1000 \cdot \frac{\mathrm{~kg}}{\mathrm{~m}^{3}} \times 9.81 \cdot \frac{\mathrm{~m}}{\mathrm{~s}^{2}} \times\left(4.5 \cdot \mathrm{~m}-\frac{3 \cdot \mathrm{~m}}{2}\right) \times 3 \cdot \mathrm{~m} \times 3 \cdot \mathrm{~m} \times \frac{\mathrm{N} \cdot \mathrm{~s}^{2}}{\mathrm{~kg} \cdot \mathrm{~m}} \quad \mathrm{~F}_{\mathrm{H}}=265 \cdot \mathrm{kN}
\end{aligned}
$$

The location of this force is

$$
\begin{aligned}
& y^{\prime}=y_{C}+\frac{I_{x x}}{A \cdot y_{C}}=\left(D-\frac{R}{2}\right)+\frac{w \cdot R^{3}}{12} \times \frac{1}{w \cdot R \cdot\left(D-\frac{R}{2}\right)}=D-\frac{R}{2}+\frac{R^{2}}{12 \cdot\left(D-\frac{R}{2}\right)} \\
& y^{\prime}=4.5 \cdot \mathrm{~m}-\frac{3 \cdot \mathrm{~m}}{2}+\frac{(3 \cdot \mathrm{~m})^{2}}{12 \times\left(4.5 \cdot \mathrm{~m}-\frac{3 \cdot m}{2}\right)}
\end{aligned}
$$

The force F_{1} on the bottom of the gate is $\mathrm{F}_{1}=\mathrm{p} \cdot \mathrm{A}=\rho \cdot \mathrm{g} \cdot \mathrm{D} \cdot \mathrm{w} \cdot \mathrm{R}$

$$
\mathrm{F}_{1}=1000 \cdot \frac{\mathrm{~kg}}{\mathrm{~m}^{3}} \times 9.81 \cdot \frac{\mathrm{~m}}{\mathrm{~s}^{2}} \times 4.5 \cdot \mathrm{~m} \times 3 \cdot \mathrm{~m} \times 3 \cdot \mathrm{~m} \times \frac{\mathrm{N} \cdot \mathrm{~s}^{2}}{\mathrm{~kg} \cdot \mathrm{~m}}
$$

$$
\mathrm{F}_{1}=397 \cdot \mathrm{kN}
$$

For the concrete gate ($\mathrm{SG}=2.4$ from Table A.2)

$$
\mathrm{W}_{\text {Gate }}=\mathrm{SG} \cdot \rho \cdot \mathrm{~g} \cdot \mathrm{w} \cdot \frac{\pi \cdot \mathrm{R}^{2}}{4}=2.4 \cdot 1000 \cdot \frac{\mathrm{~kg}}{\mathrm{~m}^{3}} \times 9.81 \cdot \frac{\mathrm{~m}}{\mathrm{~s}^{2}} \times 3 \cdot \mathrm{~m} \times \frac{\pi}{4} \times(3 \cdot \mathrm{~m})^{2} \times \frac{\mathrm{N} \cdot \mathrm{~s}^{2}}{\mathrm{~kg} \cdot \mathrm{~m}} \quad \quad \mathrm{~W}_{\text {Gate }}=499 \cdot \mathrm{kN}
$$

Hence, taking moments about $A \quad F_{B} \cdot R+F_{1} \cdot \frac{R}{2}-W_{G a t e} \cdot \frac{4 \cdot R}{3 \cdot \pi}-F_{V} \cdot x-F_{H} \cdot\left[y^{\prime}-(D-R)\right]=0$

$$
\begin{aligned}
& \mathrm{F}_{\mathrm{B}}=\frac{4}{3 \cdot \pi} \cdot \mathrm{~W}_{\mathrm{Gate}}+\frac{\mathrm{x}}{\mathrm{R}} \cdot \mathrm{~F}_{\mathrm{V}}+\frac{\left[\mathrm{y}^{\prime}-(\mathrm{D}-\mathrm{R})\right]}{\mathrm{R}} \cdot \mathrm{~F}_{\mathrm{H}}-\frac{1}{2} \cdot \mathrm{~F}_{1} \\
& \mathrm{~F}_{\mathrm{B}}=\frac{4}{3 \cdot \pi} \times 499 \cdot \mathrm{kN}+\frac{1.75}{3} \times 189 \cdot \mathrm{kN}+\frac{[3.25-(4.5-3)]}{3} \times 265 \cdot \mathrm{kN}-\frac{1}{2} \times 397 \cdot \mathrm{kN} \\
& \mathrm{~F}_{\mathrm{B}}=278 \cdot \mathrm{kN}
\end{aligned}
$$

Given: Tainter gate as shown
Find: Force of the water acting on the gate.
Solution:

Basic equations: $\quad d F=P d H ; \frac{d p}{d h}=p q$
Assumptions: (i) static fluid
(2) $p=$ constant
(3) Paton acts at free surface and on surface orate

For $p=$ cont, $\quad\left(d p=\int \rho g d h \quad y(e) d s \cdot p \cdot p a t m=\rho g h=p g R \sin \theta\right.$
$d F_{H}=d F \cos \theta=-P d A \cos \theta=\rho g R \sin \theta w h d \theta \cos \theta \quad\{d A=w R d \theta\}$
$F_{H}=\int d F_{H}=\int_{0}^{\theta}$ ggwe $R^{2} \sin \theta \cos \theta d \theta \quad$ where $\theta=\sin ^{-1} \frac{10}{20}=30^{\circ}$
$F_{H}=\rho g \omega R^{2} \int_{0}^{30^{\circ}} \sin \theta \cos \theta d \theta=\rho g \omega R^{2}\left[\frac{\sin ^{2} \theta}{2}\right]_{0}^{30^{\circ}}=\frac{\rho g \omega R^{2}}{8}$
$F_{H}=\frac{1}{8} \times 999 \frac{\mathrm{~kg}}{\mathrm{M}^{3}} \times 9.81 \frac{\mathrm{M}}{\mathrm{sec}^{2}} \times 35 \mathrm{~m} \times(20 \mathrm{~m})^{2} \times \frac{\mathrm{N} \cdot \mathrm{sec}^{2}}{\mathrm{~kg} \cdot \mathrm{M}}=1.72 \times 10 \mathrm{~N} \ldots$
$d F_{1}=d F \sin \theta=P d A \sin \theta=P g R \sin \theta$ oRd $\theta \sin \theta$

Srice the gate surface in contact with the water is a circular are, all elements, dr, of the force and hence the line of action of the resultant force must pass through the pivot. Thus

$$
\begin{aligned}
& F_{R}=\left[F_{H}^{2}+F_{V}^{2}\right]^{\prime \prime} \\
& F_{R} \\
& F_{Q} F_{H}+F_{V}
\end{aligned}
$$

\qquad

$$
\alpha=\tan ^{-1} \frac{F_{H}}{F_{R}}=\tan ^{-1} \frac{1.22}{17.2}
$$

$$
\alpha=19.9^{\circ}
$$

\qquad
Fr passes through pivot at angle α to the horizontal

$$
\begin{aligned}
& \left.F_{\nu}=\int d F_{4}=\rho g \omega R^{2} \int_{0}^{30^{\circ}} \operatorname{sen}^{2} \theta d \theta=\rho g \omega R^{2}\left[\frac{\theta}{2}-\frac{\sin 2 \theta}{4}\right]_{0}^{\pi}\right]_{0} \\
& F_{1}=\rho g \omega R^{2}\left[\frac{\pi}{12}-\frac{0.866}{4}\right]=0.0453 \mathrm{pqwe}^{2} \\
& F_{V}=0.0453 \times 999 \frac{\mathrm{~kg}}{\mathrm{~m}^{3}} \times 9.81 \frac{\mathrm{~m}}{\mathrm{~s}^{2}} \times 35 \mathrm{~m} \times(20 \mathrm{~m})^{2} \times \frac{\mathrm{N} .5^{2}}{\mathrm{~kg} \mathrm{~m}}=6.22 \times 10^{6} \mathrm{~N}
\end{aligned}
$$

Given: Cylindrical weir of radius, $R=1.5 n$ and length, $h=b m$ as shown Liquid is water

$$
D_{1}=3 \mathrm{~m} \quad y_{2}=1.5 \mathrm{~m}
$$

Find: Magnitude and direction of resultant fore of water on the weir

Solution:
Basic equations: $\vec{F}_{R}=-\left(P d \vec{F} \quad \frac{d P}{d h}=p g\right.$
Assumptions: is static fund
(2) $p=$ constant
(3) h is measured positive down from free surface

$$
\begin{aligned}
& F_{R e}=\int d F_{x}=\vec{F}_{R} \cdot \hat{j}=\int \vec{F} \cdot \vec{L}=-\left(P d \vec{A}=-\int P d A \cos (90+\theta)=\int P d A \sin \theta\right. \\
& F_{R_{y}}=\int d F_{y}=\vec{F}_{R} \cdot j=\int d \vec{F} \cdot j=-\left(P d \vec{F}^{\prime} \cdot j=-\int P d A \cos \theta\right.
\end{aligned}
$$

Since dA = LCd.

$$
F_{R-1}=\int_{0}^{3 \pi / 2} P L R \sin \theta d \theta \text { and } F_{k y}=-\int_{0}^{3 \pi / 2} P L R \cos \theta d \theta
$$

We can obtain an expression for P as a function of h

$$
\frac{d P}{d h}=p g \quad d P=p g^{s h} \quad \text { and } \quad P-P_{0}=\int_{p_{0}}^{p} d p=\int_{0}^{h} p q d h=p g^{h}
$$

Since atmosphere pressure acts over the frt quadrant of tie cylinder and both free surfaces, the appropriate expression for P is $P=p g h$.

For

$$
0 \leq \theta \leq \pi, \quad h_{1}=R-R \cos \theta=R(1-\cos \theta) \text { and hence } P_{1}=p g R(1-\cos \theta)
$$

$r \leq \theta \leq \frac{3 \pi}{2}$, $h_{2}=-R \cos \theta$ and hence $P_{2}=-p Q R \cos \theta$

$$
\begin{aligned}
& F_{R 2}=\int_{0}^{3 \pi / 2} P L R \sin \theta d \theta=\int_{0}^{\pi} p g_{2 \pi / 2}^{(1-\cos \theta) L R \sin \theta d \theta+\int_{\pi}^{3 \pi / 2}(-p \theta \cos \theta) L R \sin \theta d \theta} \\
& =\left.\rho g^{2} L\right|_{0} ^{\pi}(1-\cos \theta) \sin \theta d \theta-\left.p g^{k^{2} L}\right|_{\pi} ^{3 \pi / 2} \cos \theta \sin \theta d e \\
& =p g g^{2} L\left[-\cos \theta-\frac{1}{2} \sin ^{2} \theta\right]_{\theta}^{\pi}-\operatorname{pgR}^{2} L\left[\frac{1}{2} \sin ^{2} \theta\right]_{\pi}^{3 \pi / 2}=\operatorname{pg}^{2} L\left[2-\frac{1}{2}\right]=\frac{3}{2} \operatorname{pg}^{2} h \\
& F_{R+1}=\frac{3}{2} \times 999 \frac{\mathrm{ka}}{\mathrm{n}^{3}} \times 9.81 \frac{\mathrm{n}}{\mathrm{~s}^{2}} \times(1.5)^{2} \mathrm{~m}^{2} \times 6 \mathrm{~m} \times \frac{\mathrm{N} \cdot \mathrm{~s}^{2}}{\mathrm{~kg} \cdot \mathrm{~m}}=198 \mathrm{kN} \\
& F_{R y}=-\int_{0}^{3 \pi / 2} P L R \cos \theta=-\int_{0}^{\pi} p g(1-\cos \theta) L R \cos \theta d \theta-\int_{\pi}^{3 \pi / 2}(-p g h \cos) L R \cos \theta d \theta \\
& =-p g R^{2} L \int_{0}^{\pi}(1-\cos \theta) \cos \theta d \theta+\left.p g R^{2} L\right|_{\pi} ^{3 \pi / 2} \cos \theta d \theta
\end{aligned}
$$

$$
\begin{aligned}
& \vec{F}_{R_{1}}=i F_{R_{m}}+j F_{R_{y}}=198 i+312 j l_{N} \\
& F_{k}=\sqrt{F_{R_{m}}^{2}+F_{R_{y}}^{2}}=\left[(198)^{2}+(312)^{1 / 2} k_{N}=370 \mathrm{kN}\right.
\end{aligned}
$$

Since all elements of fore $\overrightarrow{d F}$ are normal to the surface, the direction α,

$$
\sum_{F_{k x}} F_{B_{y}} \quad \alpha=\left.\tan F_{k y}\right|_{R_{k}}=\tan 312 / 198=57.6^{2}
$$

3.79 Consider the cylindrical weir of diameter 3 m and length 6 m . If the fluid on the left has a specific gravity of 1.6 , and on the right has a specific gravity of 0.8 , find the magnitude and direction of the resultant force.

Given: Sphere with different fluids on each side
Find: Resultant force and direction

Solution:

The horizontal and vertical forces due to each fluid are treated separately. For each, the horizontal force is equivalent to that on a vertical flat plate; the vertical force is equivalent to the weight of fluid "above".

For horizontal forces, the computing equation of Section $3-5$ is $\mathrm{F}_{\mathrm{H}}=\mathrm{p}_{\mathrm{C}} \cdot \mathrm{A}$ where A is the area of the equivalent vertical plate.

For vertical forces, the computing equation of Section $3-5$ is $\mathrm{F}_{\mathrm{V}}=\rho \cdot \mathrm{g} \cdot \mathrm{V}$ where V is the volume of fluid above the curved surface.

The data is

$$
\begin{array}{lll}
\text { For water } & \rho=999 \cdot \frac{\mathrm{~kg}}{\mathrm{~m}^{3}} & \\
\text { For the fluids } & \mathrm{SG}_{1}=1.6 & \mathrm{SG}_{2}=0.8 \\
\text { For the weir } & \mathrm{D}=3 \cdot \mathrm{~m} & \mathrm{~L}=6 \cdot \mathrm{~m}
\end{array}
$$

(a) Horizontal Forces

For fluid 1 (on the left)

$$
\begin{array}{ll}
\mathrm{F}_{\mathrm{H} 1}=\mathrm{p}_{\mathrm{C}} \cdot \mathrm{~A}=\left(\rho_{1} \cdot \mathrm{~g} \cdot \frac{\mathrm{D}}{2}\right) \cdot \mathrm{D} \cdot \mathrm{~L}=\frac{1}{2} \cdot \mathrm{SG}_{1} \cdot \rho \cdot \mathrm{~g} \cdot \mathrm{D}^{2} \cdot \mathrm{~L} & \\
\mathrm{~F}_{\mathrm{H} 1}=\frac{1}{2} \cdot 1.6 \cdot 999 \cdot \frac{\mathrm{~kg}}{\mathrm{~m}^{3}} \cdot 9.81 \cdot \frac{\mathrm{~m}}{\mathrm{~s}^{2}} \cdot(3 \cdot \mathrm{~m})^{2} \cdot 6 \cdot \mathrm{~m} \cdot \frac{\mathrm{~N} \cdot \mathrm{~s}^{2}}{\mathrm{~kg} \cdot \mathrm{~m}} & \mathrm{~F}_{\mathrm{H} 1}=423 \mathrm{kN}
\end{array}
$$

For fluid 2 (on the right)

$$
\begin{array}{ll}
\mathrm{F}_{\mathrm{H} 2}=\mathrm{p}_{\mathrm{C}} \cdot \mathrm{~A}=\left(\rho_{2} \cdot \mathrm{~g} \cdot \frac{\mathrm{D}}{4}\right) \cdot \frac{\mathrm{D}}{2} \cdot \mathrm{~L}=\frac{1}{8} \cdot \mathrm{SG}_{2} \cdot \rho \cdot \mathrm{~g} \cdot \mathrm{D}^{2} \cdot \mathrm{~L} & \\
\mathrm{~F}_{\mathrm{H} 2}=\frac{1}{8} \cdot 0.8 \cdot 999 \cdot \frac{\mathrm{~kg}}{\mathrm{~m}^{3}} \cdot 9.81 \cdot \frac{\mathrm{~m}}{\mathrm{~s}^{2}} \cdot(3 \cdot \mathrm{~m})^{2} \cdot 6 \cdot \mathrm{~m} \cdot \frac{\mathrm{~N} \cdot \mathrm{~s}^{2}}{\mathrm{~kg} \cdot \mathrm{~m}} & \mathrm{~F}_{\mathrm{H} 2}=52.9 \mathrm{kN}
\end{array}
$$

The resultant horizontal force is

$$
\mathrm{F}_{\mathrm{H}}=\mathrm{F}_{\mathrm{H} 1}-\mathrm{F}_{\mathrm{H} 2}
$$

$$
\mathrm{F}_{\mathrm{H}}=370 \mathrm{kN}
$$

(b) Vertical forces

For the left geometry, a "thought experiment" is needed to obtain surfaces with fluid "above"

Hence

$$
\begin{aligned}
& \mathrm{F}_{\mathrm{V} 1}=\mathrm{SG}_{1} \cdot \rho \cdot \mathrm{~g} \cdot \frac{\frac{\pi \cdot \mathrm{D}^{2}}{4}}{2} \cdot \mathrm{~L} \\
& \mathrm{~F}_{\mathrm{V} 1}=1.6 \times 999 \cdot \frac{\mathrm{~kg}}{\mathrm{~m}^{3}} \times 9.81 \cdot \frac{\mathrm{~m}}{\mathrm{~s}^{2}} \times \frac{\pi \cdot(3 \cdot \mathrm{~m})^{2}}{8} \times 6 \cdot \mathrm{~m} \times \frac{\mathrm{N} \cdot \mathrm{~s}^{2}}{\mathrm{~kg} \cdot \mathrm{~m}} \quad \mathrm{~F}_{\mathrm{V} 1}=333 \mathrm{kN}
\end{aligned}
$$

(Note: Use of buoyancy leads to the same result!)
For the right side, using a similar logic

$$
\begin{aligned}
& \mathrm{F}_{\mathrm{V} 2}=\mathrm{SG}_{2} \cdot \rho \cdot \mathrm{~g} \cdot \frac{\frac{\pi \cdot \mathrm{D}^{2}}{4}}{4} \cdot \mathrm{~L} \\
& \mathrm{~F}_{\mathrm{V} 2}=0.8 \times 999 \cdot \frac{\mathrm{~kg}}{\mathrm{~m}^{3}} \times 9.81 \cdot \frac{\mathrm{~m}}{\mathrm{~s}^{2}} \times \frac{\pi \cdot(3 \cdot \mathrm{~m})^{2}}{16} \times 6 \cdot \mathrm{~m} \times \frac{\mathrm{N} \cdot \mathrm{~s}^{2}}{\mathrm{~kg} \cdot \mathrm{~m}}
\end{aligned}
$$

$$
\mathrm{F}_{\mathrm{V} 2}=83.1 \mathrm{kN}
$$

The resultant vertical force is $\quad \mathrm{F}_{\mathrm{V}}=\mathrm{F}_{\mathrm{V} 1}+\mathrm{F}_{\mathrm{V} 2}$

Finally the resultant force and direction can be computed

$$
\begin{aligned}
& \mathrm{F}=\sqrt{\mathrm{F}_{\mathrm{H}}^{2}+\mathrm{F}_{\mathrm{V}}^{2}} \\
& \alpha=\operatorname{atan}\left(\frac{\mathrm{F}_{\mathrm{V}}}{\mathrm{~F}_{\mathrm{H}}}\right)
\end{aligned}
$$

$$
\mathrm{F}=557 \mathrm{kN}
$$

$$
\alpha=48.3 \mathrm{deg}
$$

Problem 3.80
Given: Cylindrical log floating against dam.
Find: (a) Mass per unit length
(b) Contact force per unit length.

Solution: Use hydrostatic equations Basic equations: $\frac{d p}{d h}=\rho g \quad d F=p d A$

Assumptions: (1) Stat ic liquid
(2) Incompressible
(3) Neglect pate (it actsevergwhere)

Then
(3)

$$
\begin{aligned}
& \quad p-p_{0}=\rho g h=\rho g R(1-\cos \theta) \\
& \quad d F=p d A=\rho \omega R d \theta, d F H=d F \sin \theta, d F_{V}=d F \cos \theta \\
& F_{H}=\int_{0}^{3 \pi / 2} \rho g R(1-\cos \theta) \omega R \sin \theta d \theta=\rho g \omega R^{2}\left[-\cos \theta-\frac{\sin ^{2} \theta}{2}\right]_{0}^{3 \pi / 2}=\rho g \omega R^{2}\left[-\frac{(-1)^{2}}{2}-(-1)\right] \\
& F_{H}=\frac{1}{2} \rho g \omega R^{2} \quad \frac{F_{H}}{\omega}=\frac{1}{2} \rho g R^{2} \\
& F_{V}=\int_{0}^{3 \pi / 2} \rho g R(1-\cos \theta) \omega R \cos \theta d \theta=\int_{0}^{3 \pi / 2} \rho g \omega R^{2}\left(\cos \theta-\frac{1+\cos 2 \theta}{2}\right) d \theta \\
& F_{V}= \\
& \rho g \omega R^{2}\left[\sin \theta-\frac{\theta+\frac{1}{2} \sin 2 \theta}{2}\right]_{0}^{3 \pi / 2}=\rho g \omega R^{2}\left[-1-\frac{3 \pi}{4}\right]=-\rho g \omega R^{2}\left[1+\frac{3 \pi}{4}\right]
\end{aligned}
$$

From a free-body diagram of the \log

$$
\begin{aligned}
& \Sigma F_{y}=-m g-F_{v}=0 \quad m=-\frac{\sqrt{g}}{g}=\rho \omega R^{2}\left[1+\frac{3 \pi}{4}\right] \\
& \frac{m}{\omega}=\rho R^{2}\left[1+\frac{3 \pi}{4}\right]
\end{aligned}
$$

check:

$$
\begin{aligned}
& F_{H}=p_{C} A=\rho g \frac{R}{2} \omega R=\frac{1}{2} \rho g \omega R^{2}, \\
& F_{V}=-\rho g \forall-\rho g\left[R^{2}-\frac{\pi R^{2}}{4}\right] \omega=-\rho g \omega\left[-\pi R^{2}-R^{2}+\frac{\pi R^{2}}{4}\right]=-\rho g \omega R^{2}\left[1+\frac{3 \pi}{4}\right] V
\end{aligned}
$$

Given: Curved surface, in shape of quarter cylinder, with radius $h=0.750 \mathrm{~m} C_{\text {and }}$ width $W=3.55 \mathrm{~m}$; water stands to depth $H=0.65 \mathrm{~cm}$
Find: Magnitude and line of action of: af vertical force, and (b) horizontal force on the curved surface.
Solution:
Basic equations: $\quad \frac{d f}{d h}=\rho g, \quad F_{V}=\left\langle\rho d H_{y}, \quad \dot{ } F_{V}=\int^{\lambda} x \lambda F_{V}\right.$ Computing equations: $F_{A}=-P_{c} A, h^{\prime}=h_{c}+\frac{I_{2}}{h_{C} A}$ Assumptions: (i) static liquid (2) $p=$ constant
(3) - Pate acts at free surface of the water

Ten on integrating $d t=$ pah, we obtain $p=p g h$.
From the geometry $h=H-R \sin \theta, y=R \sin \theta, x=R \cos \theta$

$$
\theta_{1}=\sin ^{-1} H /_{R} \quad d A=m R d \theta
$$

$$
F_{y}=\left(\rho d H_{y}=\left(\rho g h d A \sin \theta=\int_{0}^{\theta} p g(H-R \sin \theta) \sin \theta w h d \theta\right.\right.
$$

$$
F_{V}=\rho g W R \int_{0}^{\theta}\left(H \sin \theta-R \sin ^{2} \theta\right) d \theta=\rho g \omega R\left[-H \cos \theta-R\left(\frac{\theta}{2}-\frac{\sin 2 \theta}{4}\right)\right]_{0}^{\theta_{1}}
$$

$$
\begin{equation*}
F_{V}=\operatorname{pg} \omega R\left[H\left(1-\cos \theta_{1}\right)-R\left(\frac{\theta_{1}}{2}-\frac{\sin 2 \theta_{1}}{4}\right)\right] \tag{i}
\end{equation*}
$$

Evaluating for $\theta_{1}=\sin ^{-1} \frac{H}{R}=\sin ^{-1} \frac{0.650}{0.750}=60^{\circ}(\pi / 3)$.

$$
\begin{aligned}
& F_{v}=\frac{999}{\frac{\mathrm{lg}}{\mathrm{~h}^{2}}} \times \frac{9.81 \mathrm{~m}}{\mathrm{~s}^{2}} \times 3.55 \mathrm{~m} \times 0.75 \mathrm{~m}\left[0.65 \mathrm{~m}\left(1-\cos 60^{\circ}\right)-0.75 \mathrm{~m}\left(\frac{\pi}{6}-\frac{\sin 120^{\circ}}{4}\right)\right] \frac{\lambda^{2}}{\mathrm{bg}^{2}} \mathrm{~m} \\
& F_{v}=2.47 \mathrm{kN} \\
& F_{4} \\
& x^{\prime} F_{1}=\rho g \operatorname{lon} \int_{0}^{\theta_{1}} R \cos \theta\left(H \sin \theta-R \sin ^{2} \theta\right) d \theta=p g w R^{2} \int_{0}^{\theta}\left(H \sin \theta \cos \theta-R \sin ^{2} \theta \cos \theta\right) d \theta \\
& x F_{0}=p g \omega R^{2}\left[H \frac{\sin ^{2} \theta}{2}-R^{\sin ^{3} \theta} \frac{\operatorname{s}^{2}}{3}\right]_{0}^{\theta} \\
& x^{\prime}=\frac{P G M R^{2}}{F_{V}}\left[\frac{H}{2} \sin ^{2} \theta,-\frac{R}{3} \sin ^{2} \theta_{0}\right]-\quad-\quad \text { (2) }
\end{aligned}
$$

$$
\begin{align*}
& x^{\prime}=0.645 \mathrm{~m} \\
& F_{H}=P_{c} A=p g h_{c} H W=p g \frac{H}{2} H w=\frac{p g H^{2} w}{2} \tag{H}
\end{align*}
$$

$$
\begin{aligned}
& h^{\prime}=h_{c}+\frac{T_{-A}}{h_{c}}=h_{c}+\frac{1}{12} H_{c} H^{3}=\frac{H}{2}+\frac{1}{12} \frac{H^{\prime} H^{3}}{\frac{H}{2}}=\frac{H}{2}+\frac{H}{6}=\frac{2}{3} H \\
& y^{\prime}=H-h^{\prime}=H-\frac{2}{3} H=\frac{1}{3} H \\
& y^{\prime}=\frac{1}{3} H=\frac{1}{3} \times 0.650 m=0.21
\end{aligned}
$$

The computing equations for the plot are:

$$
\begin{aligned}
& \theta_{1}=\sin ^{-1} H T_{R} \\
& F_{V}=\operatorname{\rho g} R^{2}\left[\frac{H}{R}\left(1-\cos \theta_{1}\right)-\frac{\theta_{1}}{2}+\frac{\sin 2 \theta_{1}}{4}\right] \\
& x^{\prime}=\frac{\rho R^{3} \sin ^{2} \theta_{1}}{F_{V}}\left[\frac{1}{2} \frac{H}{R}-\frac{1}{3} \sin \theta_{1}\right] \\
& F_{H}=\frac{\rho g H^{2} W}{2} \\
& y^{\prime}=\frac{H}{3}
\end{aligned}
$$

Gwen: Curved surface, in shape of quarter cylinder, with radius $R=0.3 \mathrm{~m}$ and wide $w=1.25 \mathrm{~m}$ is filled to depth $H=0.24 \mathrm{~m}$ wit liquid concrete.

Find: (a) Magnitude, and bl line of action, or the vertical force on the form from the concrete.
Plot: Fy and x ' over the range of dept $O \leq H \leq R$
Solution:
Baste equations: $\frac{d p}{d h}=p g, \quad F_{V}=\int P d F_{y}, \quad x^{\prime} F_{V}=\int x d F_{V}$
Assumptions: (i) static liquid (2) $p=\operatorname{constan}$
(3) Pate acts at surface of concrete

Hen on integrating $d p=p g d h$, we obtain $p=p g h$

$$
F_{V}=\int \rho d A_{y}=\int \rho g h d A \sin \theta \quad d A=w f d \theta
$$

From the geometry: $\quad y=k \sin \theta, h=y-d, \quad d=f-t$ $F_{V}=\int_{\theta,}^{\pi / 2} \rho g(R \sin \theta-d) \sin \theta w l d \theta \quad$ where $\theta_{1}=\sin ^{-1} \frac{d}{R}$

$$
F_{v}=p g R w \int_{\theta_{1}}^{\pi / 2}\left(R \sin ^{2} \theta-d \sin \theta\right) d \theta=p g R w\left[R\left(\frac{\theta}{2}-\frac{\sin 2 \theta}{4}\right)+d \cos \theta\right]_{\theta_{1}}^{\pi / 2}
$$

$$
\begin{aligned}
& F_{V}=\operatorname{pgN}\left[R\left(\frac{\pi}{4}-\frac{\theta_{1}}{2}+\frac{\sin 2 \theta_{1}}{4}\right)-d \cos \theta_{1}\right] \\
& \text { Evaluating, } \theta_{1}=\sin ^{\prime} \frac{d}{R}=\sin ^{\prime} \frac{0.3-0.24}{0.30}=11.5^{\circ} \\
& p=s G p_{12} 0 \quad\{s G=2.50 \text {, Table } A .1)
\end{aligned}
$$

$$
\begin{aligned}
& x^{\prime} F_{v}=\rho g R W \int_{\theta_{1}}^{\pi / 2} x\left(R \sin ^{2} \theta-d \sin \theta\right) d \theta=\rho g^{2} w \int_{\theta_{1}}^{d / 2}\left(R \sin ^{2} \theta \cos \theta-d \sin \theta \cos \theta\right) d \theta \\
& =\rho g R^{2} N\left[R \frac{\sin ^{3} \theta}{3}+\frac{d \cos ^{2} \theta}{2}\right]_{0}^{\pi / 2} \\
& x^{\prime} F_{\nu}=\rho g^{2} w\left[\frac{R}{3}\left(1-\sin ^{3} \theta_{1}\right)-\frac{d}{2} \cos ^{2} \theta_{1}\right]
\end{aligned}
$$

$$
\begin{aligned}
& \left.x^{\prime}=s G \rho_{+\infty} \frac{g R^{2} \omega}{F_{\nu}}\left[\frac{R}{3}\left(1-\sin ^{3} \theta_{1}\right)-\frac{d}{2} \cos ^{2} \theta_{1}\right] \ldots \ldots \ldots \ldots\right)
\end{aligned}
$$

$$
\begin{aligned}
& {\left[\frac{0.3 m}{3}\left(1-\sin ^{3} 11.5^{\circ}\right)-\frac{0.06 m}{2} \cos ^{2} 11.5\right]}
\end{aligned}
$$

$$
x^{\prime}=0.120 \times 1 \times x^{\prime}
$$

Te computing equations for the required plots are:

$$
\begin{aligned}
& \theta_{1}=\sin ^{-1} \frac{R-A}{R}-\sin ^{-1}\left(1-\frac{H}{R}\right) \\
& F_{V}=S G \rho_{H+\infty} g R^{2} W\left[\frac{\pi}{4}-\frac{\theta_{1}}{2}+\frac{\sin 2 \theta_{1}}{4}-\left(1-\frac{H}{R}\right) \cos \theta_{1}\right] \ldots \ldots-(1 a) \\
& \left.x^{\prime}=56 \frac{P_{H_{20}} g R^{3} N}{F=}\left[\frac{1}{3}\left(1-\sin ^{3} \theta_{1}\right)-\frac{1}{2}\left(1-\frac{H}{R}\right) \cos ^{2} \theta_{1}\right]-1-12\right)
\end{aligned}
$$

Force and line of action vs. liquid concrete depth:

Radius:	$R=$	0.3	m
Specific gravity:	$S G=$	2.5	-
Width:	$W=$	1.25	m

Given: Model cross section of canoe. by $y=a t^{2}$, where $a=3.89 \mathrm{~m}^{-1}$; costdinates are in meters. Assure constant wide $k=$ o low over entire longil

$$
l=5.25 \mathrm{~m}
$$

Find: Expression relating total mass of canoe and contents to distance d; determine maximum allowable total mass without swamping te canoe.
Solution:
At any value of d the wight of the canoe and 'ts contents is balasiced by the net vesical force of the water on the canoe.
Basic equations $\frac{\partial f}{d h}=p g, F_{v}=\int p d f y$
Assumptions: (1) static liquid (a) $p=$ constant
(3) Pate acts at free surface of te water and on inner surface of canoe.
Ten on integrating de $=$ pa ch, we oblavi $p=p a t$

$$
F_{y}=\left(\operatorname{edt} y_{y}=\left\{\operatorname{egh} h^{\prime} d x \text { where } h=(H-d)-y\right.\right.
$$

$y=a x^{2}$, HE surface $y=H-d \quad \therefore \quad x=\sqrt{\frac{A-d}{a}}$

$$
F_{4}=2 \int_{0}^{\frac{(H-\alpha)}{a}} p g\left[(H-d)-a x^{2}\right] h d x=2 p g L\left[(H-d) x-a \frac{x^{3}}{3}\right]_{0}^{\frac{1-d}{a}}
$$

$$
F_{1}=2 \operatorname{pg} h\left[\frac{(t-d)^{3 / 2}}{\sqrt{a}}-\frac{a}{3} \frac{(t-d)^{3 / 2}}{a^{32}}\right]=\frac{2 \operatorname{ggh}}{\sqrt{a}}(H-d)^{3 / 2}\left[1-\frac{1}{3}\right]
$$

$$
F_{v}=\frac{4}{3} \frac{p g}{\sqrt{a}}(t-d)^{3 / 2}=M g
$$

$$
\therefore M=\frac{4 p \operatorname{L}(H-\alpha)^{3 / 2}}{3 \sqrt{a}}
$$

At $d=0, x=W l_{2}, y=A=0.35 \mathrm{~m}$
For $d=0, M=\frac{4}{3} \times 99 \frac{1 g}{m^{3}} \times 5.25 m,(0.35 m)^{3 / 2} \times\left(\frac{m}{3.89}\right)^{4 / 2}=734 \mathrm{~kg}$ his dose not provide any cushion from swamping. Set $d=0.050 \mathrm{~m}$

$$
M=\frac{4}{3} \times 999 \frac{\mathrm{gg}}{m^{3}} \times 5.25 m \times(0.30 m)^{3 / 2} \times\left(\frac{m}{3.89}\right)^{1 / 2}=583 \mathrm{gq} m
$$

The answer dearly depends on the allowed risk of swamping

Given: Cylinder, of mass M, length, and radius f, is hinged along it's length and Emersed in an incompressible. liquid to depth H.
Find: a general expression for the cyrider specific gravity as \& function of $\alpha \& H / R$ needed to hold the cylinder in equilibrium for $0 \leqslant x \leqslant 1$.

Solution: Apply fluid statics
Basic eqs. $\therefore \quad \frac{d p}{d h}=p q, \quad F=\int P d A, \quad \Sigma M=0$
Assumptions: in static liquid
(2) $p=$ constant

$$
\therefore P=p g h
$$

For 0 sd st, FH causes no net moment about 0

$d F_{y}=d F \cos \theta=-p d A \cos \theta=p g h \omega R d \theta \cos \theta$

$$
h+R(1-\cos \theta)=H, \quad \therefore h=H-R(1-\cos \theta) \text {. }
$$

$d F_{V}=\rho g[H-R(1-\cos \theta)] \omega R \cos \theta d \theta=\rho g \omega R^{2}\left[\frac{H}{R}-(1-\cos \theta)\right] \cos \theta d \theta$

$$
d F_{v}=p g \omega R^{2}\left[(\alpha-1) \cos \theta+\cos ^{2} \theta\right] d \theta=p g \omega R^{2}\left[(\alpha-1) \cos \theta+\frac{1+\cos 2 \theta}{2}\right]
$$

For $\alpha \leq 1, F_{H}=0$, and

$$
\begin{aligned}
F_{H}= & \int_{-\theta_{\text {max }}}^{\theta_{\text {max }}} d F_{y}=2 \int_{0}^{\theta_{\text {max }}} d F_{v} \text { where } \cos \theta_{\text {max }}=\frac{R-H}{R}=1-\alpha \\
F_{y}= & 2 \rho g \theta^{2} \int_{0}^{\theta_{\text {max }}}\left[(\alpha-1) \cos \theta+\frac{1}{2}+\frac{1}{2} \cos 2 \theta\right] d \theta \\
F_{U}= & 2 p g \omega R^{2}[(1-\alpha) \\
& \sin \theta_{\text {max }}=\sqrt{1-\cos ^{2} \theta_{\text {max }}}=\left[1-(1-\alpha)^{2}\right]^{11_{2}}=\left[1-1+2 \alpha-\alpha^{2}\right]^{1 / 2}=\sqrt{\alpha(2-\alpha)} \\
& \sin 2 \theta_{\text {max }}=2 \sin \theta_{\text {max }} \cos \theta_{\text {max }}=2 \sqrt{\alpha(2-\alpha)}(1-\alpha)
\end{aligned}
$$

Then,

$$
\begin{aligned}
& F_{N}=2 p g \omega R^{2}\left[(\alpha-1) \sqrt{\alpha(2-\alpha)}+\frac{1}{2} \cos ^{-1}(1-\alpha)+\frac{1}{2}(1-\alpha) \sqrt{\alpha(2-\alpha)}\right] \\
& F_{V}=2 p g \omega R^{2}\left[\frac{1}{2} \cos ^{-1}(1-\alpha)-\frac{1}{2}(1-\alpha) \sqrt{\alpha(2-\alpha)}\right. \\
& F_{V}=p g \omega R^{2}\left[\cos ^{-1}(1-\alpha)-(1-\alpha) \sqrt{\alpha(2-\alpha)}\right]-\ldots
\end{aligned}
$$

The line of action of the vertical force due to the liquid is though the centroid of the displaced liquid, ie. through the center of the cylinder

The weight of the cylinder in gwen by

$$
w=m g=p_{c}+g=s G p \pi R^{2} w^{v} g
$$

the where $s G=$ center of the cylinder gravity force acts thing

$$
\begin{aligned}
& \sum M_{0}=W R-F_{y} R=0 \quad \therefore \quad W=F_{y} \text { and } \\
& S G R \pi R^{\alpha} A g=p g \omega R^{2}\left[\cos ^{-1}(1-\alpha)-(1-\alpha) \sqrt{\alpha(2-\alpha)}\right. \\
& S G=\frac{1}{\pi}\left[\cos ^{-1}(1-\alpha)+(\alpha-1) \sqrt{\alpha(2-\alpha)} \quad \text { SG }(0 \leq \alpha \leq 1)\right.
\end{aligned}
$$

Tabulating values.

Given: Canoe, modelled as a right circular semi-cylindrical shell, floats in water of depth, d. The shell has outer radius, $R=0.35 \mathrm{~m}$ and length, $L=5.25 \mathrm{~m}$.
Find:(a) a general algebraic expression for the maximum total mass that can be floated, as a function of dept and
(b) evaluate for the quin conditions witt $d=0.245 \mathrm{~m}$

Plot: the results over therarge of water depth $0 \leqslant d \leqslant R$.
Solution:
Basic equations: $\frac{d p}{d y}=p g: P=f x_{n}+p g y ; \quad F_{k}=\int p d A$
End view of canoe

Assumptions: (i) static liquid
(2) Pate acts on bot riside e outside surfaces.

Geometry $y=y(t)$ for gwen d

$$
\begin{aligned}
& y=d-(R-R \cos \theta)=d-R+R \cos \theta \\
& \theta_{\text {max }}=\cos ^{-1} \frac{R-d}{R}
\end{aligned}
$$

A fld of the canoe gives $\sum F_{y}=0=M g-F_{y}$
where F_{y} is the vertical force of the water on the canoe

$$
\begin{aligned}
& F_{V}=\int d F_{y}=\int d F \cos \theta=\left(\rho d A \cos \theta=\int_{A} \theta_{\text {max }} \rho g L L d \theta \cos \theta\right. \\
& F_{V}=2 \int_{0} \rho g \max \left[R\left[(d-R) \cos \theta+R \cos ^{2} \theta\right] d E\right. \\
& F_{U}=2 \rho g h k\left[(d-R) \sin \theta+R\left(\frac{\theta}{2}+\frac{\sin 2 \theta}{4}\right)\right]_{0}^{\theta_{\text {max }}} \\
& F_{U}=2 \rho g h R\left[(d-R) \sin \theta_{\text {max }}+R\left(\frac{\theta_{\text {max }}}{2}+\frac{\sin 2 \theta_{\text {max }}}{4}\right)\right] \\
& -1(R-d)
\end{aligned}
$$

where $\theta_{\text {max }}=\cos ^{-1}\left(\frac{(R-d)}{R}\right.$.
Since $M=F_{\nu} / g$

$$
\begin{equation*}
M=2 p h R\left[(d-R) \sin \theta_{\text {max }}+R\left(\frac{\theta_{\text {max }}}{2}+\frac{\sin 2 \theta_{\text {mat }}}{4}\right)\right] \tag{d}
\end{equation*}
$$

For $R=0.35 m, L=5.25 \mathrm{~m}$ and $d=0.245 \mathrm{~m}$,

$$
\begin{aligned}
\theta_{\text {max }} & \left.=\cos ^{-1} \frac{(R-i)}{R}=\cos ^{-1} \frac{(0.35-0.245)}{0.35}=\cos ^{-1} 0.30=72.5^{\circ}\right] \\
\theta_{\text {max }} & =0.403 \pi \\
M & =2+999 \mathrm{~kg} \times 5.25 \mathrm{~m} \times 0.35 \mathrm{~m}\left[(0.245-0.35) \sin 22.5+0.35\left(\frac{0.4+3 \pi}{2}+\frac{1}{4} \operatorname{smn} 4\right)\right] M \\
M & =631 \mathrm{~kg}
\end{aligned}
$$

The computing equations for the plot are

Mass of canoe vs. depth of submersion ratio:

Density:	$\rho=$	999	$\mathrm{~kg} / \mathrm{m}^{3}$	
Length:	$L=$	5.25	m	
Radius:	$R=$	0.35	m	
$d(\mathrm{~m})$	$d / R(---)$	$\theta_{\max }$ (rad)	$\theta_{\max }$ (deg)	Mass (kg)
0	0	0	0	0
0.035	0.10	0.45	25.8	37.7
0.070	0.20	0.64	36.9	105
0.105	0.30	0.80	45.6	190
0.140	0.40	0.93	53.1	287
0.175	0.50	1.05	60.0	395
0.210	0.60	1.16	66.4	509
0.245	0.70	1.27	72.5	630
0.280	0.80	1.37	78.5	754
0.315	0.90	1.47	84.3	881
0.350	1.00	1.57	90.0	1009

3.86 A glass observation room is to be installed at the corner of the bottom of an aquarium. The aquarium is filled with seawater to a depth of 10 m . The glass is a segment of a sphere, radius 1.5 m , mounted symmetrically in the corner. Compute the magnitude and direction of the net force on the glass structure.

Given: Geometry of glass observation room
Find: Resultant force and direction

Solution:

The x, y and z components of force due to the fluid are treated separately. For the x, y components, the horizontal force is equivalent to that on a vertical flat plate; for the z component, (vertical force) the force is equivalent to the weight of fluid above.

For horizontal forces, the computing equation of Section $3-5$ is $\mathrm{F}_{\mathrm{H}}=\mathrm{p}_{\mathrm{C}} \cdot \mathrm{A}$ where A is the area of the equivalent vertical plate.

For the vertical force, the computing equation of Section $3-5$ is $\mathrm{F}_{\mathrm{V}}=\rho \cdot g \cdot \mathrm{~V}$ where V is the volume of fluid above the curved surface.

The data is For water $\quad \rho=999 \cdot \frac{\mathrm{~kg}}{\mathrm{~m}^{3}}$
For the fluid (Table A.2) \quad SG $=1.025$
For the aquarium $\quad R=1.5 \cdot \mathrm{~m} \quad H=10 \cdot \mathrm{~m}$
(a) Horizontal Forces

Consider the x component
The center of pressure of the glass is

$$
\mathrm{y}_{\mathrm{C}}=\mathrm{H}-\frac{4 \cdot \mathrm{R}}{3 \cdot \pi} \quad \mathrm{y}_{\mathrm{C}}=9.36 \mathrm{~m}
$$

Hence $\quad \mathrm{F}_{\mathrm{Hx}}=\mathrm{p}_{\mathrm{C}} \cdot \mathrm{A}=\left(\mathrm{SG} \cdot \rho \cdot \mathrm{g} \cdot \mathrm{y}_{\mathrm{C}}\right) \cdot \frac{\pi \cdot \mathrm{R}^{2}}{4}$

$$
\mathrm{F}_{\mathrm{Hx}}=1.025 \times 999 \cdot \frac{\mathrm{~kg}}{\mathrm{~m}^{3}} \times 9.81 \cdot \frac{\mathrm{~m}}{\mathrm{~s}^{2}} \times 9.36 \cdot \mathrm{~m} \times \frac{\pi \cdot(1.5 \cdot \mathrm{~m})^{2}}{4} \times \frac{\mathrm{N} \cdot \mathrm{~s}^{2}}{\mathrm{~kg} \cdot \mathrm{~m}} \quad \quad \mathrm{~F}_{\mathrm{Hx}}=166 \mathrm{kN}
$$

The y component is of the same magnitude as the x component

$$
\mathrm{F}_{\mathrm{Hy}}=\mathrm{F}_{\mathrm{Hx}}
$$

$$
\mathrm{F}_{\mathrm{Hy}}=166 \mathrm{kN}
$$

The resultant horizontal force (at 45° to the x and y axes) is

$$
\mathrm{F}_{\mathrm{H}}=\sqrt{\mathrm{F}_{\mathrm{Hx}}^{2}+\mathrm{F}_{\mathrm{Hy}}^{2}}
$$

$$
\mathrm{F}_{\mathrm{H}}=235 \mathrm{kN}
$$

(b) Vertical forces

The vertical force is equal to the weight of fluid above (a volume defined by a rectangular column minus a segment of a sphere)

The volume is $\quad \mathrm{V}=\frac{\pi \cdot \mathrm{R}^{2}}{4} \cdot \mathrm{H}-\frac{\frac{4 \cdot \pi \cdot \mathrm{R}^{3}}{3}}{8} \quad \mathrm{~V}=15.9 \mathrm{~m}^{3}$

Then

$$
\mathrm{F}_{\mathrm{V}}=\mathrm{SG} \cdot \rho \cdot \mathrm{~g} \cdot \mathrm{~V}
$$

$$
\mathrm{F}_{\mathrm{V}}=1.025 \times 999 \cdot \frac{\mathrm{~kg}}{\mathrm{~m}^{3}} \times 9.81 \cdot \frac{\mathrm{~m}}{\mathrm{~s}^{2}} \times 15.9 \cdot \mathrm{~m}^{3} \times \frac{\mathrm{N} \cdot \mathrm{~s}^{2}}{\mathrm{~kg} \cdot \mathrm{~m}} \quad \mathrm{~F}_{\mathrm{V}}=160 \mathrm{kN}
$$

Finally the resultant force and direction can be computed

$$
\begin{aligned}
\mathrm{F} & =\sqrt{\mathrm{F}_{\mathrm{H}}^{2}+\mathrm{F}_{\mathrm{V}}^{2}} & \mathrm{~F}=284 \mathrm{kN} \\
\alpha & =\operatorname{atan}\left(\frac{\mathrm{F}_{\mathrm{V}}}{\mathrm{~F}_{\mathrm{H}}}\right) & \alpha=34.2 \mathrm{deg}
\end{aligned}
$$

Note that α is the angle the resultant force makes with the horizontal
*3.87 Find the specific weight of the sphere shown if its volume is $0.025 \mathrm{~m}^{3}$. State all assumptions. What is the equilibrium position of the sphere if the weight is removed?

Given: Data on sphere and weight
Find: \quad SG of sphere; equilibrium position when freely floating

Solution:

Basic equation

$$
\begin{aligned}
& \mathrm{F}_{\mathrm{B}}=\rho \cdot \mathrm{g} \cdot \mathrm{~V} \quad \text { and } \quad \Sigma \mathrm{F}_{\mathrm{Z}}=0 \quad \Sigma \mathrm{~F}_{\mathrm{Z}}=0=\mathrm{T}+\mathrm{F}_{\mathrm{B}}-\mathrm{W} \\
& \text { where } \quad \mathrm{T}=\mathrm{M} \cdot \mathrm{~g} \quad \mathrm{M}=10 \cdot \mathrm{~kg} \quad \mathrm{~F}_{\mathrm{B}}=\rho \cdot \mathrm{g} \cdot \frac{\mathrm{~V}}{2} \quad \mathrm{~W}=\mathrm{SG} \cdot \rho \cdot \mathrm{~g} \cdot \mathrm{~V}
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \mathrm{M} \cdot \mathrm{~g}+\rho \cdot \mathrm{g} \cdot \frac{\mathrm{~V}}{2}-\mathrm{SG} \cdot \rho \cdot \mathrm{~g} \cdot \mathrm{~V}=0 \quad \mathrm{SG}=\frac{\mathrm{M}}{\rho \cdot \mathrm{~V}}+\frac{1}{2} \\
& \mathrm{SG}=10 \cdot \mathrm{~kg} \times \frac{\mathrm{m}^{3}}{1000 \cdot \mathrm{~kg}} \times \frac{1}{0.025 \cdot \mathrm{~m}^{3}}+\frac{1}{2} \quad \mathrm{SG}=0.9
\end{aligned}
$$

The specific weight is $\quad \gamma=\frac{\text { Weight }}{\text { Volume }}=\frac{\mathrm{SG} \cdot \rho \cdot \mathrm{g} \cdot \mathrm{V}}{\mathrm{V}}=\mathrm{SG} \cdot \rho \cdot \mathrm{g} \quad \gamma=0.9 \times 1000 \cdot \frac{\mathrm{~kg}}{\mathrm{~m}^{3}} \times 9.81 \cdot \frac{\mathrm{~m}}{\mathrm{~s}^{2}} \times \frac{\mathrm{N} \cdot \mathrm{s}^{2}}{\mathrm{~kg} \cdot \mathrm{~m}}$

$$
\gamma=8829 \cdot \frac{\mathrm{~N}}{\mathrm{~m}^{3}}
$$

For the equilibriul position when floating, we repeat the force balance with $\mathrm{T}=0$

$$
\mathrm{F}_{\mathrm{B}}-\mathrm{W}=0 \quad \mathrm{~W}=\mathrm{F}_{\mathrm{B}} \quad \text { with } \quad \mathrm{F}_{\mathrm{B}}=\rho \cdot \mathrm{g} \cdot \mathrm{~V}_{\text {submerged }}
$$

From references (trying Googling "partial sphere volume") $\quad \mathrm{V}_{\text {submerged }}=\frac{\pi \cdot \mathrm{h}^{2}}{3} \cdot(3 \cdot \mathrm{R}-\mathrm{h})$
where h is submerged depth and R is the sphere radius

$$
\mathrm{R}=\left(\frac{3 \cdot \mathrm{~V}}{4 \cdot \pi}\right)^{\frac{1}{3}} \quad \mathrm{R}=\left(\frac{3}{4 \cdot \pi} \cdot 0.025 \cdot \mathrm{~m}^{3}\right)^{\frac{1}{3}} \quad \mathrm{R}=0.181 \mathrm{~m}
$$

$$
\begin{array}{ll}
\mathrm{W}=\mathrm{SG} \cdot \rho \cdot \mathrm{~g} \cdot \mathrm{~V}=\mathrm{F}_{\mathrm{B}}=\rho \cdot \mathrm{g} \cdot \frac{\pi \cdot \mathrm{~h}^{2}}{3} \cdot(3 \cdot \mathrm{R}-\mathrm{h}) & \mathrm{h}^{2} \cdot(3 \cdot \mathrm{R}-\mathrm{h})=\frac{3 \cdot \mathrm{SG} \cdot \mathrm{~V}}{\pi} \\
\mathrm{~h}^{2} \cdot(3 \cdot 0.181 \cdot \mathrm{~m}-\mathrm{h})=\frac{3 \cdot 0.9 \cdot \cdot 025 \cdot \mathrm{~m}^{3}}{\pi} & \mathrm{~h}^{2} \cdot(0.544-\mathrm{h})=0.0215
\end{array}
$$

This is a cubic equation for h. We can keep guessing h values, manually iterate, or use Excel's Goal Seek to find $\quad \mathrm{h}=0.292 \cdot \mathrm{~m}$

Given: Hydronter, as shown, submerged in nitric acid, $\mathrm{s} . \mathrm{Q}=1.5$ When innersed in water, $h=0$ and immersed volume is 15 cm .
Stem diameter $d=6 \mathrm{~mm}$.
Find: The distance, h
Solution:
Basic equation: $\vec{F}=\overrightarrow{M a}=0$
Computing equation, $F_{\text {buaganyy }}=\operatorname{pg}_{\mathrm{t}}^{\mathrm{t}} \mathrm{i}$ i
Assumptions: (1) static conditions
(a) $p=$ constant

$$
\Sigma \vec{F}=0=\overrightarrow{M g}_{g}+\vec{F}_{\text {buayaray }}
$$

Using the data gwen for waiter, we can calculate M

$$
-M g+F_{b}=0 \quad M=\frac{F_{6}}{g}=p_{N_{2} 0} H_{A_{2} O}
$$

When immerse in nitric acid

$$
M=p_{n, a} \forall_{n, a} \quad \text { where } t_{n, a}=t_{w_{20}}-\frac{\pi d^{2} h}{4}
$$

Since the mass is tie same in both cause

$$
\begin{aligned}
& M=p_{120} \psi_{m_{20}}=p_{n, a}\left(\psi_{m_{00}}-\frac{\pi d^{2} h}{4}\right) \\
& \frac{\pi d^{2} h}{4}=t_{H_{20} O}-\frac{\rho_{H_{10}}}{p_{n, 0}} t_{m_{20}}=\psi_{m_{20}}\left(1-\frac{1}{5, G_{n, 0}}\right) \\
& h=\frac{4 \psi_{* \infty}}{\pi d^{2}}\left(1-\frac{1}{s \cdot G_{n a}}\right) \\
& h=\frac{4}{k} \times 15 \mathrm{~cm}^{3} \times \frac{1}{b^{2} \mathrm{~mm}^{2}}\left(1-\frac{1}{1.5}\right) \times \frac{1000 \mathrm{~m}^{3}}{\mathrm{~cm}^{3}}=171 \mathrm{~mm}
\end{aligned}
$$

Given: Iceberg floating in sea water
Find: Quantify the statement" only the tip of an iceberg
Solution:
A footing body is buoyed up by a force equal to the weight of the displaced liquid

$$
\begin{aligned}
& \sum F_{z}=0=F_{b}-m g \\
& F_{b}=p_{0} t_{\text {sud }} g \quad m=p^{*} \text { total. } \\
& \therefore p_{s} t_{\text {sin }} g=p^{t_{\text {ut }}} g
\end{aligned}
$$

where $\rho^{*}=p_{t+5}$ at $4 C$.

$$
\begin{aligned}
& t_{\text {sub }}=t_{\text {tot }} \frac{\text { Spice }}{\text { SG sw }}
\end{aligned}
$$

$$
\begin{aligned}
& \therefore \frac{t_{n t z u b}}{t_{t}}=1-\frac{5 G_{16}}{S G_{s}}=1-\frac{0.917}{1.025} \\
& \frac{\text { tndand }}{t_{\text {tot }}}=0.105 \quad\left(0^{\circ} b \text { shows }\right)
\end{aligned}
$$

Given: Specific gravity of a person is to be determined from measurements of weight in air and the net weight when totally immersed in water.

Find: Expression for the specific gravity of a person from
Solution:

For equilibrium $\sum F_{y}=0$

$$
\begin{aligned}
& F_{n d t}=n g-F_{b} \\
& F_{b}=p_{n_{10}} g+\quad F_{a i r}=r g \\
& \therefore F_{n t t}=F_{a i r}-p_{H_{2} 0} g t \quad \text { and } t=\frac{F_{\text {air }}-F_{n t}}{p_{n-0} g}
\end{aligned}
$$

$$
F_{\text {air }}=m g=p^{+} g=\frac{f}{p_{20}}\left(F_{\text {air }}-F_{\text {net }}\right)
$$

Let $p^{*}=p_{H_{20}}$ at us. Ten

$$
F_{\text {air }}=\frac{p^{\prime} p^{*}}{p w_{20}\left(p^{*}\right.}\left(F_{a i r}-F_{\text {net }}\right)=\frac{S G_{0}}{S G_{a, 0}}\left(F_{a i r}-F_{\text {nat }}\right) .
$$

Solving for SG,

$$
S G=S G_{142} \frac{F_{\text {air }}}{\left(F_{\text {air }}-F_{\text {ret }}\right)}
$$

Given: Experiment performed by Archimedes to identify the material content of King Hero's crown.

Measured weight of crown in air, W_{a}, and in water, Ww.
Find: Expression for specific gravity of crown as function of Wa and Ww.
Solletion: Apply principle of bousancy to free-body of crown:
Computing equation: $F_{B}=\rho_{H_{2} \mathrm{O}} g^{\forall}$
Assumptions: (1) Static liquid
(2) Incompressible liquid

Free-body diagram of crown in water:

$$
\Sigma F_{3}=W_{w}-M g+F_{B}=m a_{z}=0
$$

or

$$
W_{W r}-M g+\rho_{H L O} \forall g=0
$$

For the crown in dir, W_{a} a Mg
combining, $w_{L J}-w_{A}+p_{H_{20}} g \forall$, so $\forall=\frac{w_{a}-w_{L J}}{p_{H_{2} O g}}$
The crown's density is $f_{c}=\frac{M}{\forall}=\frac{W_{a}}{g^{\forall}}=\rho_{120} \frac{W_{a}}{W_{a}-W_{w a}}$
The crown's specific gravity is $S G=\frac{P_{c}}{P_{H_{2} \mathrm{O}}}=\frac{W_{a}}{W_{a}-W_{w}}$
$\left\{\begin{array}{c}\text { Note : by definition, } S G=\rho / \rho_{1+w}\left(4^{\circ} \mathrm{C}\right) \text {, } \leq \text { the measured temperature of } \\ \text { water and data from Table } A .7 \text { or } A .8 \text { may be used to correct } \\ \text { the density to } 4{ }^{\circ} \mathrm{C} .\end{array}\right.$
*3.92 An open tank is filled to the top with water. A steel cylindrical container, wall thickness $\delta=1 \mathrm{~mm}$, outside diameter $D=$ 100 mm , and height $H=1 \mathrm{~m}$, with an open top, is gently placed in the water. What is the volume of water that overflows from the tank? How many 1 kg weights must be placed in the container to make it sink? Neglect surface tension effects.

Given: Geometry of steel cylinder
Find: \quad Volume of water displaced; number of 1 kg wts to make it sink

Solution:

The data i

$$
\begin{array}{ll}
\text { For water } & \rho=999 \cdot \frac{\mathrm{~kg}}{\mathrm{~m}^{3}} \\
\text { For steel (Table A.1) } & \mathrm{SG}=7.83 \\
\text { For the cylinder } & \mathrm{D}=100 \cdot \mathrm{~mm}
\end{array}
$$

$$
\mathrm{H}=1 \cdot \mathrm{~m}
$$

$$
\delta=1 \cdot \mathrm{~mm}
$$

The volume of the cylinder is

$$
\mathrm{V}_{\text {steel }}=\delta \cdot\left(\frac{\pi \cdot \mathrm{D}^{2}}{4}+\pi \cdot \mathrm{D} \cdot \mathrm{H}\right) \quad \mathrm{V}_{\text {steel }}=3.22 \times 10^{-4} \mathrm{~m}^{3}
$$

The weight of the cylinder is

$$
\mathrm{W}=\mathrm{SG} \cdot \rho \cdot \mathrm{~g} \cdot \mathrm{~V}_{\text {steel }}
$$

$$
\mathrm{W}=7.83 \times 999 \cdot \frac{\mathrm{~kg}}{\mathrm{~m}^{3}} \times 9.81 \cdot \frac{\mathrm{~m}}{\mathrm{~s}^{2}} \times 3.22 \times 10^{-4} \cdot \mathrm{~m}^{3} \times \frac{\mathrm{N} \cdot \mathrm{~s}^{2}}{\mathrm{~kg} \cdot \mathrm{~m}} \quad \mathrm{~W}=24.7 \mathrm{~N}
$$

At equilibium, the weight of fluid displaced is equal to the weight of the cylinder

$$
\begin{aligned}
& \mathrm{W}_{\text {displaced }}=\rho \cdot \mathrm{g} \cdot \mathrm{~V}_{\text {displaced }}=\mathrm{W} \\
& \mathrm{~V}_{\text {displaced }}=\frac{\mathrm{W}}{\rho \cdot \mathrm{~g}}=24.7 \cdot \mathrm{~N} \times \frac{\mathrm{m}^{3}}{999 \cdot \mathrm{~kg}} \times \frac{\mathrm{s}^{2}}{9.81 \cdot \mathrm{~m}} \times \frac{\mathrm{kg} \cdot \mathrm{~m}}{\mathrm{~N} \cdot \mathrm{~s}^{2}} \quad \mathrm{~V}_{\text {displaced }}=2.52 \mathrm{~L}
\end{aligned}
$$

To determine how many 1 kg wts will make it sink, we first need to find the extra volume that will need to be dsiplaced
Distance cylinder sank

$$
\mathrm{x}_{1}=\frac{\mathrm{V}_{\text {displaced }}}{\left(\frac{\pi \cdot \mathrm{D}^{2}}{4}\right)} \quad \mathrm{x}_{1}=0.321 \mathrm{~m}
$$

Hence, the cylinder must be made to sink an additional distance

$$
\mathrm{x}_{2}=\mathrm{H}-\mathrm{x}_{1}
$$

$$
\mathrm{x}_{2}=0.679 \mathrm{~m}
$$

We deed to add n weights so that $\quad 1 \cdot \mathrm{~kg} \cdot \mathrm{n} \cdot \mathrm{g}=\rho \cdot \mathrm{g} \cdot \frac{\pi \cdot \mathrm{D}^{2}}{4} \cdot \mathrm{x}_{2}$

$$
\mathrm{n}=\frac{\rho \cdot \pi \cdot \mathrm{D}^{2} \cdot \mathrm{x}_{2}}{4 \times 1 \cdot \mathrm{~kg}}=999 \cdot \frac{\mathrm{~kg}}{\mathrm{~m}^{3}} \times \frac{\pi}{4} \times(0.1 \cdot \mathrm{~m})^{2} \times 0.679 \cdot \mathrm{~m} \times \frac{1}{1 \cdot \mathrm{~kg}} \times \frac{\mathrm{N} \cdot \mathrm{~s}^{2}}{\mathrm{~kg} \cdot \mathrm{~m}} \quad \mathrm{n}=5.33
$$

Hence we need $n=6$ weights to sink the cylinder
*3.93 Hydrogen bubbles are used to visualize water flow streaklines in the video, Flow Visualization. A typical hydrogen bubble diameter is $d=0.001 \mathrm{in}$. The bubbles tend to rise slowly in water because of buoyancy; eventually they reach terminal speed relative to the water. The drag force of the water on a bubble is given by $F_{D}=3 \pi \mu V d$, where μ is the viscosity of water and V is the bubble speed relative to the water. Find the buoyancy force that acts on a hydrogen bubble immersed in water. Estimate the terminal speed of a bubble rising in water.

Given: Data on hydrogen bubbles
Find: Buoyancy force on bubble; terminal speed in water

Solution:

$$
\begin{aligned}
& \text { Basic equation } \\
& \mathrm{F}_{\mathrm{B}}=\rho \cdot \mathrm{g} \cdot \mathrm{~V}=\rho \cdot \mathrm{g} \cdot \frac{\pi}{6} \cdot \mathrm{~d}^{3} \quad \text { and } \quad \Sigma \mathrm{F}_{\mathrm{y}}=\mathrm{M} \cdot \mathrm{a}_{\mathrm{y}} \quad \Sigma \mathrm{~F}_{\mathrm{y}}=0=\mathrm{F}_{\mathrm{B}}-\mathrm{F}_{\mathrm{D}}-\mathrm{W} \quad \text { for terminal speed } \\
& \mathrm{F}_{\mathrm{B}}=1.94 \cdot \frac{\mathrm{slug}}{\mathrm{ft}^{3}} \times 32.2 \cdot \frac{\mathrm{ft}}{\mathrm{~s}^{2}} \times \frac{\pi}{6} \times\left(0.001 \cdot \mathrm{in} \times \frac{1 \cdot \mathrm{ft}}{12 \cdot \mathrm{in}}\right)^{3} \times \frac{\mathrm{lbf} \cdot \mathrm{~s}^{2}}{\mathrm{slug} \cdot \mathrm{ft}} \quad \mathrm{~F}_{\mathrm{B}}=1.89 \times 10^{-11} \cdot \mathrm{lbf} \\
& \text { For terminal speed } \\
& \mathrm{F}_{\mathrm{B}}-\mathrm{F}_{\mathrm{D}}-\mathrm{W}=0 \quad \mathrm{~F}_{\mathrm{D}}=3 \cdot \pi \cdot \mu \cdot \mathrm{~V} \cdot \mathrm{~d}=\mathrm{F}_{\mathrm{B}} \\
& \text { where we have ignored } \mathrm{W} \text {, the weight of the bubble (at } \\
& \text { STP most gases are about } 1 / 1000 \text { the density of water) } \\
& \text { Hence } \\
& \mathrm{V}=\frac{\mathrm{F}_{\mathrm{B}}}{3 \cdot \pi \cdot \mu \cdot \mathrm{~d}} \quad \text { with } \quad \mu=2.10 \times 10^{-5} \cdot \frac{\mathrm{lbf} \cdot \mathrm{~s}}{\mathrm{ft}^{2}} \quad \text { from Table A. } 7 \text { at } 68^{\circ} \mathrm{F} \\
& \mathrm{~V}=1.89 \times 10^{-11} \cdot \mathrm{lbf} \times \frac{1}{3 \cdot \pi} \times \frac{1}{2.10 \times 10^{-5}} \cdot \frac{\mathrm{ft}^{2}}{\mathrm{lbf} \cdot \mathrm{~s}} \times \frac{1}{0.001 \cdot \mathrm{in}} \times \frac{12 \cdot \mathrm{in}}{1 \cdot \mathrm{ft}} \\
& \mathrm{~V}=1.15 \times 10^{-3} \cdot \frac{\mathrm{ft}}{\mathrm{~s}} \quad \mathrm{~V}=0.825 \cdot \frac{\mathrm{in}}{\mathrm{~min}}
\end{aligned}
$$

As noted by Professor Kline in the film "Flow Visualization", bubbles rise slowly!

Gas bubbles are released from the regulator of a submerged scuba diver. What happens to the bubbles as they rise through the seawater? Explain.

Open-Ended Problem Statement: Gas bubbles are released from the regulator of a submerged Scuba diver. What happens to the bubbles as they rise through the seawater?

Discussion: Air bubbles released by a submerged diver should be close to ambient pressure at the depth where the diver is swimming. The bubbles are small compared to the depth of submersion, so each bubble is exposed to essentially constant pressure. Therefore the released bubbles are nearly spherical in shape.

The air bubbles are buoyant in water, so they begin to rise toward the surface. The bubbles are quite light, so they reach terminal speed quickly. At low speeds the spherical shape should be maintained. At higher speeds the bubble shape may be distorted.

As the bubbles rise through the water toward the surface, the hydrostatic pressure decreases. Therefore the bubbles expand as they rise. As the bubbles grow larger, one would expect the tendency for distorted bubble shape to be exaggerated.

Given: Balloons with hot air, helium, and hydrogen. Claim lift per cubic foot of $0.018,0.066$, and $0.071 \mathrm{lbf} / \mathrm{ft}^{3}$ for respective gores, with air heated to 15° F over ambient.
Find: (a) Evaluate claims
(b) Compare air at 20° F above ambient.

Solution: Assume ambient conditions are STP, peas $=$ pair, and apply ideal gar equation of state.
(Use data from Table A.b.)
Basic equations: Lift $=$ paingt-pgas $g t, p=\rho R T$
Then

$$
\text { Lift } / \forall=g\left(\rho_{a}-\rho_{g}\right)=\rho_{a g}\left(1-\frac{\rho_{g}}{\rho_{a}}\right)=\rho_{a g}\left(1-\frac{R_{a} T_{a}}{R_{g} T_{g}}\right) ; \rho_{a g}=0.07 b 5 \frac{b_{b}}{f+p}
$$

For hetiven

$$
\begin{aligned}
& \frac{L}{\forall}=0.076 \frac{16 f}{f 3}\left[1-53.33 \frac{f+1 / 6 f}{16 m \cdot R^{\prime}} \times(460+59) R_{\times} \frac{16 m \cdot R}{386: 1 f+16 f \times(460+59 F)}\right] \\
& \frac{L}{\forall}=0.0659 \mathrm{lbf} / \mathrm{ft}^{3} \quad \text { (rocends to } 0.066 \text {) }
\end{aligned}
$$

For hydrogen

$$
\frac{L}{\forall}=0.0765 \frac{\mathrm{bf}}{\mathrm{f}^{3}}\left(1-\frac{53.33}{766.5}\right)=0.0712 \mathrm{lbf} / \mathrm{ft}^{3}(\text { (rounds to } 0.071)
$$

For air at $150^{\circ} \mathrm{F}$ above ambient,

$$
\frac{L}{\forall}=0.0765 \frac{16 f}{f^{3}}\left[1-\frac{53.33(460+59)}{53.33(460+59+150)}\right]=0.0172 \mathrm{lbf} / \mathrm{ft}^{3}
$$

For air at $250^{\circ} \mathrm{F}$ above ambient,

$$
\frac{L}{\dot{H}}=0.0765 \frac{\mathrm{Bff}}{\mathrm{f}} 3=\left[1-\frac{53.33(460+59)}{53.33(460+59+250)}\right]=0.0249 \mathrm{Bf} / \mathrm{A}^{3}
$$

Agreement with claims is good.
Air at $\Delta T=250^{\circ} \mathrm{F}$ gives 45 percent more lift than at $\Delta T=100^{\circ} \mathrm{F}$. \{Hotair balloon needs $40,2 \mathrm{f}^{3} / 16 f$ of $11 \dot{f}+$ at $\left.\Delta=250^{\circ} \%!\right\}$
*3.96 A hot air balloon is designed to lift a basket, two people, three gallons of fuel, a pair of binoculars, a camera, a GPS, a cell phone, a pair of blankets, twelve candy bars, and the components of the balloon itself (fabric, ropes, and torch). The total mass is estimated at 450 kg . The rides are planned in summer morning hours when the air temperature is about $9^{\circ} \mathrm{C}$. The torch will warm the air inside the balloon to a temperature of $70^{\circ} \mathrm{C}$. Both inside and outside pressures will be "standard" (101 kPa). What volume of hot air should the balloon hold to create neutral buoyancy? What additional volume will ensure a vertical take-off acceleration of $0.8 \mathrm{~m} / \mathrm{s}^{2}$? For this, consider that both balloon and inside air have to be accelerated, as well as some of the surrounding air (to make way for the balloon). The rule of thumb is that the total mass subject to acceleration is the mass of the balloon, all its appurtenances, and twice its volume of air. Given that the volume of hot air is fixed during flight, what can the balloonists do when they want to go down?

Given: Data on hot air balloon

Find: Volume of balloon for neutral buoyancy; additional volume for initial acceleration of $0.8 \mathrm{~m} / \mathrm{s}^{2}$.

Solution:

Basic equation

$$
\mathrm{F}_{\mathrm{B}}=\rho_{\mathrm{atm}} \cdot \mathrm{~g} \cdot \mathrm{~V} \quad \text { and } \quad \Sigma \mathrm{F}_{\mathrm{y}}=\mathrm{M} \cdot \mathrm{a}_{\mathrm{y}}
$$

Hence

$$
\begin{aligned}
& \Sigma \mathrm{F}_{\mathrm{y}}=0=\mathrm{F}_{\mathrm{B}}-\mathrm{W}_{\text {hotair }}-\mathrm{W}_{\text {load }}=\rho_{\text {atm }} \cdot \mathrm{g} \cdot \mathrm{~V}-\rho_{\text {hotair }} \mathrm{g} \cdot \mathrm{~V}-\mathrm{M} \cdot \mathrm{~g} \quad \text { for neutral buoyancy } \\
& \mathrm{V}=\frac{\mathrm{M}}{\rho_{\mathrm{atm}}-\rho_{\text {hotair }}}=\frac{\mathrm{M}}{\frac{\mathrm{P}_{\text {atm }}}{\mathrm{R} \cdot \mathrm{~T}_{\mathrm{atm}}}-\frac{\mathrm{P}_{\text {atm }}}{\mathrm{R} \cdot \mathrm{~T}_{\text {hotair }}}}=\frac{\mathrm{M} \cdot \mathrm{R}}{\mathrm{p}_{\text {atm }}} \cdot\left(\frac{1}{\frac{1}{\mathrm{~T}_{\text {atm }}}-\frac{1}{\mathrm{~T}_{\text {hotair }}}}\right) \\
& \mathrm{V}=450 \cdot \mathrm{~kg} \times 286.9 \cdot \frac{\mathrm{~N} \cdot \mathrm{~m}}{\mathrm{~kg} \cdot \mathrm{~K}} \times \frac{1}{101 \times 10^{3}} \cdot \frac{\mathrm{~m}^{2}}{\mathrm{~N}} \times\left[\frac{1}{\frac{1}{}-\frac{1}{\mathrm{~V}}=2027 \cdot \mathrm{~m}^{3}}\right.
\end{aligned}
$$

Initial acceleration $\quad \Sigma \mathrm{F}_{\mathrm{y}}=\mathrm{F}_{\mathrm{B}}-\mathrm{W}_{\text {hotair }}-\mathrm{W}_{\text {load }}=\left(\rho_{\mathrm{atm}}-\rho_{\text {hotair }}\right) \cdot \mathrm{g} \cdot \mathrm{V}_{\text {new }}-\mathrm{M} \cdot \mathrm{g}=\mathrm{M}_{\text {accel }} \cdot \mathrm{a}=\left(\mathrm{M}+2 \cdot \rho_{\text {hotair }} \cdot \mathrm{V}_{\text {new }}\right) \cdot \mathrm{a}$
Solving for $\mathrm{V}_{\text {new }}$

$$
\begin{aligned}
& \left(\rho_{\text {atm }}-\rho_{\text {hotair }}\right) \cdot g \cdot V_{\text {new }}-M \cdot g=\left(M+2 \cdot \rho_{\text {hotair }} \cdot V_{\text {new }}\right) \cdot a \\
& V_{\text {new }}=\frac{M \cdot g+M \cdot a}{\left(\rho_{\text {atm }}-\rho_{\text {hotair }}\right) \cdot g-2 \cdot \rho_{\text {hotair }} \cdot a}=\frac{M \cdot\left(1+\frac{a}{g}\right) \cdot R}{p_{\text {atm }} \cdot\left[\left(\frac{1}{T_{\text {atm }}}-\frac{1}{T_{\text {hotair }}}\right)-\frac{2}{T_{\text {hotair }}} \cdot \frac{a}{g}\right]} \\
& \mathrm{V}_{\text {new }}=450 \cdot \mathrm{~kg} \times\left(1+\frac{0.8}{9.81}\right) \times 286.9 \cdot \frac{\mathrm{~N} \cdot \mathrm{~m}}{\mathrm{~kg} \cdot \mathrm{~K}} \times \frac{1}{101 \times 10^{3}} \cdot \frac{\mathrm{~m}^{2}}{\mathrm{~N}} \times \frac{1}{\left(\frac{1}{9+273}-\frac{1}{70+273}-\frac{2}{70+273} \cdot \frac{0.8}{9.81}\right)} \cdot \mathrm{K} \\
& \mathrm{~V}_{\text {new }}=8911 \cdot \mathrm{~m}^{3} \quad \text { Hence } \quad \Delta \mathrm{V}=\mathrm{V}_{\text {new }}-\mathrm{V} \quad \Delta \mathrm{~V}=6884 \cdot \mathrm{~m}^{3}
\end{aligned}
$$

To make the balloon move up or down during flight, the air needs to be heated to a higher temperature, or let cool (or let in ambient air).

Given: Spherical balloon of diameter, I, and skin thickness $t=0.013 \mathrm{~mm}$, filled with helium listed a payload of moss $M=230 \mathrm{~kg}$ to an altitude of 49 km . At altitude,

$$
P=0.95 \mathrm{mbar} \text { and } T=-20 \mathrm{C}
$$

The hellion temperature to $-10^{\circ} \mathrm{C}$. The specific gravity of the skin material

Find: The diameter and moss of the balloon.
Solution: Basic equation $\sum \vec{F}=m \vec{a}=0$
Assumptions. in static equilibrium at attitude of 49 km
(2) air and heluim exhibit ideal gas behavior .

$$
\begin{aligned}
& \Sigma F_{z}=0=F_{\text {biog }}-M_{t_{k} g}-M_{s g}-M_{g}=\operatorname{pourg}^{t_{b}}-p_{m_{0}} g \psi_{b}-p_{s} *_{s}-M_{g} \\
& 0=t_{b}\left(p_{\text {ans }}-p_{H_{2}}\right)-p_{5} A_{s} t-M=\frac{4}{3} \pi R^{3}\left(p_{\text {air }}-p_{a_{t}}\right)-p_{5} 4 \pi R^{2} t-M \\
& \left.0=\frac{\pi \partial^{3}}{b}\left(\rho_{a i r}-p_{m e}\right)-p_{s} \pi\right\rangle^{2} t-M
\end{aligned}
$$

This is a cubic equation which requires an iterative solution

$$
\begin{aligned}
& \pi D^{2}\left[\frac{\theta}{6}\left(p_{\text {air }}-p_{m}\right)-p_{s} t\right]-M=0 \\
& \text { Solving for }>\text {. }
\end{aligned}
$$

From the ideal gas low,

Substituting into the expression for 9

$$
\begin{aligned}
& \eta=6\left[\frac{1}{\pi)^{2}} \times 230 \mathrm{lg} \times \frac{n^{3}}{4.4 \times 10^{-4} \mathrm{gg}}+(1.28) 999 \lg _{3}^{n^{3}} \times 1.3 \times 10^{-5} \mathrm{~m} \times \frac{n^{3}}{n .4 \times 10^{-4} \mathrm{tg}}\right] \\
& \left.y=\left[\frac{38.5 \times 10^{4}}{2^{2}}+87.5\right] \text { where }\right\rangle \text { is in meters }
\end{aligned}
$$

Organizing Calculations: Guess $)(m)=100120116$

$$
\text { R.HS } \times 126: 14116.1
$$

$$
\begin{aligned}
& \therefore y=46 m \\
& M_{b}=p_{s}^{d}=f_{s} A_{s} t=p_{5} \pi y^{2} t=1.28 \times 999 \frac{4 g}{m^{3}} \times\left(4 b^{2} n^{2} \times 1.3 \times 10^{-5} \mathrm{n}\right. \\
& M_{0}=703 \mathrm{~kg}
\end{aligned}
$$

Given: A pressurized helium balloon is bo be designed to lift a payload of mos, M? to an altitude or 40 km , Stere

$$
P=3.0 \text { mbar and } T=-25^{\circ} \mathrm{C}
$$

Re balloon skin has a specific gravity, $5 . G=1.28$ and thickness, $t=0.015 \mathrm{~m}$ The gage pressure of the helium is 0.45 mbar . The allowable tensile stress in the balloon skin is $J=62 \mathrm{mi} / \mathrm{m}^{2}$

Find: (a) Maximum balloon diameter
(b) Payload, M

Solution:
Basic equation: $\Sigma \vec{F}=\vec{a}=0$
Assumptions: ") static equilibrium at altitude.
(2) air and hellion exhibit ideal

M gas behavior
The balloon diameter is tithed by tensile stress

$$
\begin{aligned}
\Sigma F=0 & =\frac{\pi D^{2}}{4} \Delta P-\pi D t \sigma \\
D_{\text {max }} & =\frac{4 t \sigma}{\Delta P}
\end{aligned}
$$

$$
\text { Pax }=4 \times 150 \times 10^{-5} n \times 62 \times 10^{6} \frac{\mathrm{~N}}{\mathrm{~m}^{2}} \times 0.45 \times 10^{-3} \text { bar } \times \frac{\operatorname{bar} n^{2}}{10^{5} \mathrm{~N}}
$$

Deane 82.7 m

$$
\begin{aligned}
& F_{\text {briny }}-H_{\text {ma }} g=\left(p_{\text {air }}-p_{m_{e}}\right) g 寸=\left(p_{\text {air }}-p_{\text {me }}\right) g \frac{\pi y^{3}}{6} \\
& \left.M_{5}=\rho_{5} t_{4}=\rho_{5} R_{5} t_{3}=\rho_{5} \pi\right\rangle^{2} t
\end{aligned}
$$

$$
\begin{aligned}
\therefore M & \left.=\frac{F_{\text {bay }}-M_{b}}{}=\left(p_{\text {air }}-p_{r_{e}}\right) \frac{\pi y^{3}}{6}-p_{s} \pi\right)^{2} t \\
M & =\pi)^{2}\left[\left(p_{a i x}-p_{\text {Ne }}\right) \frac{2}{6}-p_{s} t\right]^{2}
\end{aligned}
$$

From ideal gas law

Then,

$$
\begin{aligned}
& M=(62.7)^{2} n^{2}\left[(42.1-6.69) \times 10^{-4} \frac{6 g}{m} \times \frac{827 n}{6}-1.28 \times 9.99 \frac{68}{n^{3}} \times 1.5 \times 10^{-5} n\right] \\
& M=637 \mathrm{~kg}
\end{aligned}
$$

*3.99 A block of mass 30 kg and volume $0.025 \mathrm{~m}^{3}$ is allowed to sink in water as shown. A circular rod 5 m long and $20 \mathrm{~cm}^{2}$ in cross section is attached to the weight and also to the wall. If the rod mass is 1.25 kg , what will be the angle, θ, for equilibrium?

NEW PROBLEM STATEMENT NEEDED
NOTE: Cross section is $25 \mathrm{~cm}^{2}$

Given: Geometry of block and rod
Find: Angle for equilibrium

Solution:

Basic

$$
\Sigma \mathrm{M}_{\text {Hinge }}=0
$$

equations

$$
F_{B}=\rho \cdot g \cdot V \quad \text { (Buoyancy) }
$$

The free body diagram is as shown. F_{BB} and F_{BR} are the buoyancy of the block and rod, respectively; c is the (unknown) exposed length of the rod

Taking moments about the hinge

$$
\left(\mathrm{W}_{\mathrm{B}}-\mathrm{F}_{\mathrm{BB}}\right) \cdot \mathrm{L} \cdot \cos (\theta)-\mathrm{F}_{\mathrm{BR}} \cdot \frac{(\mathrm{~L}+\mathrm{c})}{2} \cdot \cos (\theta)+\mathrm{W}_{\mathrm{R}} \cdot \frac{\mathrm{~L}}{2} \cdot \cos (\theta)=0
$$

with

$$
\mathrm{W}_{\mathrm{B}}=\mathrm{M}_{\mathrm{B}} \cdot \mathrm{~g} \quad \mathrm{~F}_{\mathrm{BB}}=\rho \cdot \mathrm{g} \cdot \mathrm{~V}_{\mathrm{B}}
$$

$F_{B R}=\rho \cdot g \cdot(L-c) \cdot A$
$\mathrm{W}_{\mathrm{R}}=\mathrm{M}_{\mathrm{R}} \cdot \mathrm{g}$

Combining equations $\left(M_{B}-\rho \cdot V_{B}\right) \cdot L-\rho \cdot A \cdot(L-c) \cdot \frac{(L+c)}{2}+M_{R} \cdot \frac{L}{2}=0$

We can solve for c

$$
\begin{aligned}
& \rho \cdot A \cdot\left(L^{2}-c^{2}\right)=2 \cdot\left(M_{B}-\rho \cdot V_{B}+\frac{1}{2} \cdot M_{R}\right) \cdot L \\
& c=\sqrt{L^{2}-\frac{2 \cdot L}{\rho \cdot A} \cdot\left(M_{B}-\rho \cdot V_{B}+\frac{1}{2} \cdot M_{R}\right)} \\
& c=\sqrt{(5 \cdot \mathrm{~m})^{2}-2 \times 5 \cdot \mathrm{~m} \times \frac{\mathrm{m}^{3}}{1000 \cdot \mathrm{~kg}} \times \frac{1}{25} \cdot \frac{1}{\mathrm{~cm}^{2}} \times\left(\frac{100 \cdot \mathrm{~cm}}{1 \cdot \mathrm{~m}}\right)^{2} \times\left[30 \cdot \mathrm{~kg}-\left(1000 \cdot \frac{\mathrm{~kg}}{\mathrm{~m}^{3}} \times 0.025 \cdot \mathrm{~m}^{3}\right)+\frac{1}{2} \times 1.25 \cdot \mathrm{~kg}\right]} \\
& c=1.58 \mathrm{~m}
\end{aligned}
$$

Then

$$
\sin (\theta)=\frac{\mathrm{a}}{\mathrm{c}} \quad \text { with } \quad \mathrm{a}=0.25 \cdot \mathrm{~m}
$$

$$
\theta=\operatorname{asin}\left(\frac{\mathrm{a}}{\mathrm{c}}\right) \quad \theta=9.1 \cdot \operatorname{deg}
$$

Given: Glass hydrometer used to measure $S G$ of liquids.
Stem has $D=6 \mathrm{~mm}$; distance between marks on stem is $d=3 \mathrm{~mm}$ per $0.1 \leq G$

Hydrometer floats in ethyl alcohol (assume contact angle is \&f). Find: Magnitude of error introduced by surface tension.

Solution: Consider a free-bockg diagram of the floating hydrometer Surface tension will cause the hydrometer to sink Δ h lower into the liquid. Thus for this change,

$$
\Sigma F_{z}=\Delta F_{B}-F_{\sigma}=m a_{z}=0
$$

Computing equation: $\Delta F_{B}=\rho g \Delta \forall$
Assumptions: (I)static liquid (z) Incompressible liquid

Then $\Delta t=\frac{\pi D^{2}}{4} \Delta h$ and $\Delta F_{3}=\rho \frac{\pi D^{2}}{4} \Delta h$

and $F_{d}=\pi D \sigma \cos \theta=\pi D \sigma$
Combining $\rho g \frac{\pi D^{2}}{4} \Delta h=\pi D \sigma$ or $\Delta h=\frac{4 \sigma}{\rho g D}=\frac{4 \sigma}{S G \rho H_{2} \alpha g D}$
From Table $A, 2,5 G=0.789$ and from Table $A .4, \sigma=2 x, 3 \mathrm{mN} / \mathrm{m}$ for ethano1,so

$$
\Delta h=\frac{4}{0.789} \times 22.3 \times 10^{-3} \frac{\mathrm{~N}}{\mathrm{~m}} \times \frac{\mathrm{m}^{3}}{1000 \mathrm{~kg}} \times \frac{\mathrm{s}^{2}}{9.81 \mathrm{~m}} \times \frac{1}{0.006} \times \frac{\mathrm{kg} \cdot \mathrm{~m}}{\mathrm{~N} \cdot \mathrm{~s}^{\mathrm{L}}}=1.92 \times 10^{-3} \mathrm{~m}
$$

Thus the change in 56 will be

$$
\Delta S G=1.92 \times 10^{-3} m_{\times} \frac{0.156}{3 \mathrm{~mm}} \times 1000 \frac{\mathrm{~mm}}{\mathrm{~m}}=0.0640
$$

$\left\{\begin{array}{l}\text { From the diagram, surface tension acts to cause the hydrometer to }\end{array}\right.$ float bower in the liquid. Therefore surface tension results in an indicated ss smaller then the actual so.

Problem 3.101

*3.101 If the mass M in Problem 3.99 is released from the rod, at equilibrium how much of the rod will remain submerged? What will be the minimum required upward force at the tip of the rod to just lift it out of the water?

Given: Geometry of rod
Find: How much of rod is submerged; force to lift rod out of water

Solution:

Basic equations

$$
\Sigma \mathrm{M}_{\text {Hinge }}=0
$$

$$
\mathrm{F}_{\mathrm{B}}=\rho \cdot g \cdot \mathrm{~V}
$$

(Buoyancy)

The free body diagram is as shown. F_{BR} is the buoyancy of the rod; c is the (unknown) exposed length of the rod

Taking moments about the hinge

$$
-\mathrm{F}_{\mathrm{BR}} \cdot \frac{(\mathrm{~L}+\mathrm{c})}{2} \cdot \cos (\theta)+\mathrm{W}_{\mathrm{R}} \cdot \frac{\mathrm{~L}}{2} \cdot \cos (\theta)=0
$$

with

$$
\mathrm{F}_{\mathrm{BR}}=\rho \cdot \mathrm{g} \cdot(\mathrm{~L}-\mathrm{c}) \cdot \mathrm{A} \quad \mathrm{~W}_{\mathrm{R}}=\mathrm{M}_{\mathrm{R}} \cdot \mathrm{~g}
$$

Hence

$$
-\rho \cdot A \cdot(L-c) \cdot \frac{(L+c)}{2}+M_{R} \cdot \frac{L}{2}=0
$$

We can solve for c

$$
\rho \cdot A \cdot\left(L^{2}-c^{2}\right)=M_{R} \cdot L
$$

$$
\mathrm{c}=\sqrt{\mathrm{L}^{2}-\frac{\mathrm{L} \cdot \mathrm{M}_{\mathrm{R}}}{\rho \cdot \mathrm{~A}}}
$$

$$
\mathrm{c}=\sqrt{(5 \cdot \mathrm{~m})^{2}-5 \cdot \mathrm{~m} \times \frac{\mathrm{m}^{3}}{1000 \cdot \mathrm{~kg}} \times \frac{1}{25} \cdot \frac{1}{\mathrm{~cm}^{2}} \times\left(\frac{100 \cdot \mathrm{~cm}}{1 \cdot \mathrm{~m}}\right)^{2} \times 1.25 \cdot \mathrm{~kg}}
$$

$$
\mathrm{c}=4.74 \mathrm{~m}
$$

Then the submerged length is

$$
\mathrm{L}-\mathrm{c}=0.257 \mathrm{~m}
$$

To lift the rod out of the water requires a force equal to half the rod weight (the reaction also takes half the weight)

$$
\mathrm{F}=\frac{1}{2} \cdot \mathrm{M}_{\mathrm{R}} \cdot \mathrm{~g}=\frac{1}{2} \times 1.25 \cdot \mathrm{~kg} \times 9.81 \cdot \frac{\mathrm{~m}}{\mathrm{~s}^{2}} \times \frac{\mathrm{N} \cdot \mathrm{~s}^{2}}{\mathrm{~kg} \cdot \mathrm{~m}} \quad \mathrm{~F}=6.1 \mathrm{~N}
$$

Given: Sphere partially immersed in liquid of specific gravity, $S G$.
Find: (a) Formula, algebraic expression for buoyancy force, as a function of submersion depth, d, for $0 \leqslant d \leqslant R$.
(b) Plot of results over range of liquid depth.

Solution: Apply fluid statics Basic equations: $\frac{d p}{d h}=\rho g$

$$
d F=p d A
$$

Assumptions: (1)Static liquid
(2) Incompressible, so $p=p_{0}+\rho g h$
(3) Negket pate since it acts everywhere

Then $d F_{V}=\cos \theta p d A ; p=\rho g h ; d=h+R(1-\cos \theta) ; h=d-R(1-\cos \theta)$

$$
\begin{gathered}
d A=2 \pi(R \sin \theta) R d \theta=2 \pi R^{2} \sin \theta d \theta \\
d F_{V}=\cos \theta \rho g[d-R(1-\cos \theta)] 2 \pi R^{2} \sin \theta d \theta=2 \pi R^{3}\left[\frac{d}{R}-(1-\cos \theta)\right] \cos \theta \cos \theta d \theta \rho g
\end{gathered}
$$

Now

$$
\begin{aligned}
& F_{V}=\int_{A} d F_{V}=\int_{0}^{8 \max } 2 \pi R^{3}\left[\frac{d}{R}-(1-\cos \theta)\right] \sin \theta \cos \theta d \theta \rho g \\
& F_{V}=2 \pi R^{3}\left[(1-d / R) \frac{\cos ^{2} \theta}{2}-\frac{\cos ^{2} \theta}{3}\right]_{0}^{\theta \max } \rho g \quad ; \rho=S G \rho \rho_{H 2 O}
\end{aligned}
$$

$A+\theta_{\text {max }}, \cos \theta_{\text {max }}=\frac{R-d}{R}=1-d / R$, so

$$
\begin{aligned}
& F_{V}=2 \pi \rho g R^{3}\left\{\left(1-\frac{d}{R}\right)\left[(1-d / R)^{2} / 2-1 / 2\right]-\frac{(1-d / R)^{3}}{3}+\frac{1}{3}\right\} \\
& F_{V}=2 \pi \rho g R^{3}\left[\frac{1}{6}\left(1-\frac{d}{R}\right)^{3}-\frac{1}{2}\left(1-\frac{d}{R}\right)+\frac{1}{3}\right]
\end{aligned}
$$

Dividing both sides by the vertical force on a fully submerged sphere,

$$
\begin{aligned}
& \frac{F_{V}}{\rho g \frac{4 \pi R^{3}}{3}}=\frac{3}{2}\left[\frac{1}{6}()^{3}-\frac{1}{2}()+\frac{1}{3}\right] \\
& \text { where }()=\left(1-\frac{d}{R}\right) .
\end{aligned}
$$

*3.103 In a logging operation, timber floats downstream to a lumber mill. It is a dry year, and the river is running low, as low as 2 feet in some locations. What is the largest diameter log that may be transported in this fashion (leaving a minimum 1 in . clearance between the \log and the bottom of the river)? For the wood, $\mathrm{SG}=0.8$.

Given: Data on river

Find: Largest diameter of log that will be transported

Solution:

Basic equation

$$
\mathrm{F}_{\mathrm{B}}=\rho \cdot \mathrm{g} \cdot \mathrm{~V}_{\mathrm{sub}} \quad \text { and } \quad \Sigma \mathrm{F}_{\mathrm{y}}=0 \quad \Sigma \mathrm{~F}_{\mathrm{y}}=0=\mathrm{F}_{\mathrm{B}}-\mathrm{W}
$$

where

$$
F_{B}=\rho \cdot g \cdot V_{\text {sub }}=\rho \cdot g \cdot A_{\text {sub }} \cdot \mathrm{L} \quad W=\text { SG } \cdot \rho \cdot g \cdot V=\mathrm{SG} \cdot \rho \cdot g \cdot \mathrm{~A} \cdot \mathrm{~L}
$$

From references (trying Googling "segment of a circle") $\quad A_{s u b}=\frac{R^{2}}{2} \cdot(\theta-\sin (\theta))$
where R is the radius and θ is the included angle

Hence

$$
\begin{aligned}
& \rho \cdot g \cdot \frac{\mathrm{R}^{2}}{2} \cdot(\theta-\sin (\theta)) \cdot \mathrm{L}=\mathrm{SG} \cdot \rho \cdot \mathrm{~g} \cdot \pi \cdot \mathrm{R}^{2} \cdot \mathrm{~L} \\
& \theta-\sin (\theta)=2 \cdot \mathrm{SG} \cdot \pi=2 \times 0.8 \times \pi
\end{aligned}
$$

This equation can be solved by manually iterating, or by using a good calculator, or by using Excel's Goal Seek

$$
\theta=239 \cdot \operatorname{deg}
$$

From geometry the submerged amount of a log is $\mathrm{H}-\mathrm{h}$ and also

$$
\mathrm{R}+\mathrm{R} \cdot \cos \left(\pi-\frac{\theta}{2}\right)
$$

Hence

$$
\mathrm{H}-\mathrm{h}=\mathrm{R}+\mathrm{R} \cdot \cos \left(\pi-\frac{\theta}{2}\right)
$$

Solving for R

$$
\begin{aligned}
& \mathrm{R}=\frac{\mathrm{H}-\mathrm{h}}{1+\cos \left(180 \mathrm{deg}-\frac{\theta}{2}\right)} \quad \mathrm{R}=\frac{\left(2-\frac{1}{12}\right) \cdot \mathrm{ft}}{1+\cos \left[\left(180-\frac{239}{2}\right) \cdot \mathrm{deg}\right]} \quad \mathrm{R}=1.28 \cdot \mathrm{ft} \\
& \mathrm{D}=2 \cdot \mathrm{R} \quad \mathrm{D}=2.57 \cdot \mathrm{ft}
\end{aligned}
$$

*3.104 A sphere of radius R, made from material of specific gravity SG, is submerged in a tank of water. The sphere is placed over a hole, of radius a, in the tank bottom. Develop a general expression for the range of specific gravities for which the sphere will float to the surface. For the dimensions given, determine the minimum SG required for the sphere to remain in the position shown.

Given: Data on sphere and tank bottom

Find: Expression for SG of sphere at which it will float to surface; minimum SG to remain in position

Solution:

Basic equations

$$
\mathrm{F}_{\mathrm{B}}=\rho \cdot \mathrm{g} \cdot \mathrm{~V} \quad \text { and } \quad \Sigma \mathrm{F}_{\mathrm{y}}=0 \quad \Sigma \mathrm{~F}_{\mathrm{y}}=0=\mathrm{F}_{\mathrm{L}}-\mathrm{F}_{\mathrm{U}}+\mathrm{F}_{\mathrm{B}}-\mathrm{W}
$$

where

$$
\mathrm{F}_{\mathrm{L}}=\mathrm{p}_{\mathrm{atm}} \cdot \pi \cdot \mathrm{a}^{2}
$$

$$
\mathrm{F}_{\mathrm{U}}=\left[\mathrm{p}_{\mathrm{atm}}+\rho \cdot \mathrm{g} \cdot(\mathrm{H}-2 \cdot \mathrm{R})\right] \cdot \pi \cdot \mathrm{a}^{2}
$$

$$
\begin{array}{lll}
\mathrm{F}_{\mathrm{B}}=\rho \cdot \mathrm{g} \cdot \mathrm{~V}_{\text {net }} & \mathrm{V}_{\text {net }}=\frac{4}{3} \cdot \pi \cdot \mathrm{R}^{3}-\pi \cdot \mathrm{a}^{2} \cdot 2 \cdot \mathrm{R} \\
\mathrm{~W}=\mathrm{SG} \cdot \rho \cdot \mathrm{~g} \cdot \mathrm{~V} \quad \text { with } & \mathrm{V}=\frac{4}{3} \cdot \pi \cdot \mathrm{R}^{3}
\end{array}
$$

Note that we treat the sphere as a sphere with SG, and for fluid effects a sphere minus a cylinder (buoyancy) and cylinder with hydrostatic pressures

Hence

$$
\mathrm{P}_{\mathrm{atm}} \cdot \pi \cdot \mathrm{a}^{2}-\left[\mathrm{P}_{\mathrm{atm}}+\rho \cdot \mathrm{g} \cdot(\mathrm{H}-2 \cdot \mathrm{R})\right] \cdot \pi \cdot \mathrm{a}^{2}+\rho \cdot \mathrm{g} \cdot\left(\frac{4}{3} \cdot \pi \cdot \mathrm{R}^{3}-2 \cdot \pi \cdot \mathrm{R} \cdot \mathrm{a}^{2}\right)-\mathrm{SG} \cdot \rho \cdot \mathrm{~g} \cdot \frac{4}{3} \cdot \pi \cdot \mathrm{R}^{3}=0
$$

Solving for SG

$$
\begin{aligned}
& \mathrm{SG}=\frac{3}{4 \cdot \pi \cdot \rho \cdot \mathrm{~g} \cdot \mathrm{R}^{3}} \cdot\left[-\pi \cdot \rho \cdot \mathrm{g} \cdot(\mathrm{H}-2 \cdot \mathrm{R}) \cdot \mathrm{a}^{2}+\rho \cdot \mathrm{g} \cdot\left(\frac{4}{3} \cdot \pi \cdot \mathrm{R}^{3}-2 \cdot \pi \cdot \mathrm{R} \cdot \mathrm{a}^{2}\right)\right] \\
& \mathrm{SG}=1-\frac{3}{4} \cdot \frac{\mathrm{H} \cdot \mathrm{a}^{2}}{\mathrm{R}^{3}} \\
& \mathrm{SG}=1-\frac{3}{4} \times 2.5 \cdot \mathrm{ft} \times\left(0.075 \cdot \mathrm{in} \times \frac{1 \cdot \mathrm{ft}}{12 \cdot \mathrm{in}}\right)^{2} \times\left(\frac{1}{1 \cdot \mathrm{in}} \times \frac{12 \cdot \mathrm{in}}{1 \cdot \mathrm{ft}}\right)^{3} \quad \mathrm{SG}=0.873
\end{aligned}
$$

This is the minimum SG to remain submerged; any SG above this and the sphere remains on the bottom; any SG less than this and the sphere rises to the surface

Given: Cylindrical timber, $y=0.3 \mathrm{~m}$ and $h=4 \mathrm{~m}$ is weighted on Truer end so it 'Boats vertically with sn submerged in sea water.
When displaced vertic ally from equilibrium position the timber oscillates in a vertical direction upon release
Find: Estimate frequency of oscillation (Neglect any viscous
effects or water notion)
Solution:
At equilibrwn

$$
\begin{gathered}
\sum F_{y}=0=F_{b}-m g=p^{R d}-m g \\
\therefore M=\frac{p+\frac{R d}{g}}{}
\end{gathered}
$$

For displacement

$$
\begin{aligned}
& \text { uplacemert } F_{y}=m \frac{d y}{d^{2}}=m \ddot{y} \\
& F_{b}-m g=m \ddot{y} \text {. Were } F_{b}=p A(d-y) \\
& \therefore p A(d-y)-m g=m \ddot{y} \\
& \quad p A d-p a y-p \frac{d a}{g} g=m y
\end{aligned}
$$

$$
\begin{aligned}
& m \ddot{y}+p^{R} y=0 \\
& \ddot{y}+\frac{p R}{m} y=0=\ddot{y}=0, w^{2} y=0
\end{aligned}
$$

where $\omega^{2}=\frac{p^{R}}{p_{M}}=\frac{p^{A} g}{p^{A} d}=\frac{g}{d}$

$$
\begin{aligned}
& w=\left(\frac{g}{d}\right)^{1 / 2}=\left[9.81 \frac{n}{s^{2}} \times \frac{1}{3 n}\right]^{1 / 2}=1.81 \mathrm{rad} / \mathrm{s}= \\
& f=\frac{w}{2 \pi}=1.81 \frac{\mathrm{rad}}{\mathrm{~s}} \times \frac{\text { che be }}{2 \pi \mathrm{rad}}=0.288 \text { cydels } \\
& f=\frac{1}{f}=3.47 \mathrm{~s}
\end{aligned}
$$

*3.106 You are in the Bermuda Triangle when you see a bubble plume eruption (a large mass of air bubbles, similar to a foam) off to the side of the boat. Do you want to head toward it and be part of the action? What is the effective density of the water and air bubbles in the drawing on the right that will cause the boat to sink? Your boat is 10 ft long, and weight is the same in both cases.

Given:

Data on boat

Find: Effective density of water/air bubble mix if boat sinks

Solution:

Basic equations $\quad \mathrm{F}_{\mathrm{B}}=\rho \cdot \mathrm{g} \cdot \mathrm{V} \quad$ and $\quad \Sigma \mathrm{F}_{\mathrm{y}}=0$

We can apply the sum of forces for the "floating" free body

Floating

$$
\Sigma \mathrm{F}_{\mathrm{y}}=0=\mathrm{F}_{\mathrm{B}}-\mathrm{W} \quad \text { where } \quad \mathrm{F}_{\mathrm{B}}=\mathrm{SG}_{\text {sea }} \cdot \rho \cdot \mathrm{g} \cdot \mathrm{~V}_{\text {subfloat }}
$$

$$
\mathrm{V}_{\text {subfloat }}=\frac{1}{2} \cdot \mathrm{~h} \cdot\left(\frac{2 \cdot \mathrm{~h}}{\tan \cdot \theta}\right) \cdot \mathrm{L}=\frac{\mathrm{L} \cdot \mathrm{~h}^{2}}{\tan (\theta)} \quad \mathrm{SG}_{\text {sea }}=1.024
$$

(Table A.2)
Hence $\quad W=\frac{\mathrm{SG}_{\text {sea }} \cdot \rho \cdot \mathrm{g} \cdot \mathrm{L} \cdot \mathrm{h}^{2}}{\tan (\theta)}$

We can apply the sum of forces for the "sinking" free body

$$
\begin{align*}
& \qquad \begin{array}{l}
\Sigma \mathrm{F}_{\mathrm{y}}=0=\mathrm{F}_{\mathrm{B}}-\mathrm{W} \quad \text { where } \quad \mathrm{F}_{\mathrm{B}}=\mathrm{SG}_{\operatorname{mix}} \cdot \rho \cdot \mathrm{g} \cdot \mathrm{~V}_{\text {sub }} \quad \mathrm{V}_{\text {subsink }}=\frac{1}{2} \cdot \mathrm{H} \cdot\left(\frac{2 \cdot \mathrm{H}}{\tan \cdot \theta}\right) \cdot \mathrm{L}=\frac{\mathrm{L} \cdot \mathrm{H}^{2}}{\tan (\theta)} \\
\text { Hence } \quad \mathrm{W}=\frac{\mathrm{SG}}{\text { mix }} \boldsymbol{\operatorname { t a n } (\theta)} \mathrm{g} \cdot \mathrm{~L} \cdot \mathrm{H}^{2}
\end{array} \quad \text { (2) }
\end{align*}
$$

Comparing Eqs. 1 and 2

$$
\begin{aligned}
& \mathrm{W}=\frac{\mathrm{SG}_{\mathrm{sea}} \cdot \rho \cdot \mathrm{~g} \cdot \mathrm{~L} \cdot \mathrm{~h}^{2}}{\tan (\theta)}=\frac{\mathrm{SG}}{\text { mix }} \cdot \rho \cdot \mathrm{g} \cdot \mathrm{~L} \cdot \mathrm{H}^{2} \\
& \tan (\theta) \\
& \mathrm{SG}_{\text {mix }}=\mathrm{SG}_{\text {sea }} \cdot\left(\frac{\mathrm{h}}{\mathrm{H}}\right)^{2} \quad \mathrm{SG}_{\text {mix }}=1.024 \times\left(\frac{7}{8}\right)^{2} \quad \mathrm{SG}_{\text {mix }}=0.784
\end{aligned}
$$

The density is

$$
\rho_{\operatorname{mix}}=\mathrm{SG}_{\operatorname{mix}} \cdot \rho
$$

$$
\rho_{\text {mix }}=0.784 \times 1.94 \cdot \frac{\text { slug }}{\mathrm{ft}^{3}}
$$

$$
\rho_{\mathrm{mix}}=1.52 \frac{\text { slug }}{\mathrm{ft}^{3}}
$$

*3.107 A bowl is inverted symmetrically and held in BXYB fluid, $\mathrm{SG}=15.6$, to a depth of 7 in . measured along the centerline of the bowl from the bowl rim. The bowl height is 3 in ., and the BXYB fluid rises 1 in . inside the bowl. The bowl is unique: Its base is 4 in . inside diameter, and it is made from an old clay recipe, $\mathrm{SG}=5.7$. The volume of the bowl is about $56 \mathrm{in}^{3}$. What is the force required to hold it in place?

Given: Data on inverted bowl and BXYB fluid
Find: Force to hold in place

Solution:

Basic equation

$$
\mathrm{F}_{\mathrm{B}}=\rho \cdot \mathrm{g} \cdot \mathrm{~V} \quad \text { and } \quad \Sigma \mathrm{F}_{\mathrm{y}}=0 \quad \Sigma \mathrm{~F}_{\mathrm{y}}=0=\mathrm{F}_{\mathrm{B}}-\mathrm{F}-\mathrm{W}
$$

Hence

$$
\mathrm{F}=\mathrm{F}_{\mathrm{B}}-\mathrm{W}
$$

For the buoyancy force

$$
\mathrm{F}_{\mathrm{B}}=\mathrm{SG}_{\mathrm{BXYB}} \cdot \rho \cdot g \cdot \mathrm{~V}_{\text {sub }}
$$ with

$$
\mathrm{V}_{\text {sub }}=\mathrm{V}_{\text {bowl }}+\mathrm{V}_{\mathrm{air}}
$$

For the weight

$$
\mathrm{W}=\mathrm{SG} \text { bowl } \cdot \rho \cdot \mathrm{g} \cdot \mathrm{~V}_{\mathrm{bowl}}
$$

Hence

$$
\begin{aligned}
& \mathrm{F}=\mathrm{SG} \\
& \mathrm{~F}=\rho \mathrm{BXB} \cdot \rho \cdot \mathrm{~g} \cdot\left(\mathrm{~V}_{\mathrm{bowl}}+\mathrm{V}_{\mathrm{air}}\right)-\mathrm{SG}_{\mathrm{bowl}} \cdot \rho \cdot \mathrm{~g} \cdot \mathrm{~V}_{\mathrm{bowl}} \\
& \left.\mathrm{~F}=1.94 \cdot \frac{\mathrm{slug}}{\mathrm{ft}^{3}} \times 32.2 \cdot \frac{\mathrm{ft}}{\mathrm{~s}^{2}} \times\left[15.6 \times\left[56 \cdot \mathrm{in}^{3}+(3-1) \cdot \mathrm{in} \cdot \frac{\pi \cdot(4 \cdot \mathrm{in})^{2}}{4}\right]-5.7 \times 56 \cdot \mathrm{~V}_{\mathrm{bowl}}{ }^{3}+\mathrm{V}_{\mathrm{air}}\right)-\mathrm{SG}_{\mathrm{bowl}} \cdot \mathrm{~V}_{\mathrm{bowl}}\right] \times\left(\frac{1 \cdot \mathrm{ft}}{12 \cdot \mathrm{in}}\right)^{3} \times \frac{\mathrm{lbf} \cdot \mathrm{~s}^{2}}{\mathrm{slug} \cdot \mathrm{ft}}
\end{aligned}
$$

$$
\mathrm{F}=34.2 \cdot \mathrm{lbf}
$$

Consider a conical funnel held upside down and submerged slowly in a container of water. Discuss the force needed to submerge the funnel if the spout is open to the atmosphere. Compare with the force needed to submerge the funnel when the spout opening is blocked by a rubber stopper.

Open-Ended Problem Statement: Consider a conical funnel held upside down and submerged slowly in a container of water. Discuss the force needed to submerge the funnel if the spout is open to the atmosphere. Compare with the force needed to submerge the funnel when the spout opening is blocked by a rubber stopper.

Discussion: Let the weight of the funnel in air be W_{a}. Assume the funnel is held with its spout vertical and the conical section down. Then W_{a} will also be vertical.

Two possible cases are with the funnel spout open to atmosphere or with the funnel spout sealed. With the funnel spout open to atmosphere, the pressures inside and outside the funnel are equal, so no net pressure force acts on the funnel. The force needed to support the funnel will remain constant until it first contacts the water. Then a buoyancy force will act vertically upward on every element of volume located beneath the water surface.

The first contact of the funnel with the water will be at the widest part of the conical section. The buoyancy force will be caused by the volume formed by the funnel thickness and diameter as it begins to enter the water. The buoyancy force will reduce the force needed to support the funnel. The buoyancy force will increase as the depth of submergence of the funnel increases until the funnel is fully submerged. At that point the buoyancy force will be constant and equal to the weight of water displaced by the volume of the material from which the funnel is made.

If the funnel material is less dense than water, it would tend to float partially submerged in the water. The force needed to support the funnel would decrease to zero and then become negative (i.e., down) to fully submerge the funnel.

If the funnel material were denser than water it would not tend to float even when fully submerged. The force needed to support the funnel would decrease to a minimum when the funnel became fully submerged, and then would remain constant at deeper submersion depths.
With the funnel spout sealed, air will be trapped inside the funnel. As the funnel is submerged gradually below the water surface, it will displace a volume equal to the volume of the funnel material plus the volume of trapped air. Thus its buoyancy force will be much larger than when the spout is open to atmosphere. Neglecting any change in air volume (pressures caused by submersion should be small compared to atmospheric pressure) the buoyancy force would be from the entire volume encompassed by the outside of the funnel. Finally, when fully submerged, the volume of the rubber stopper (although small) will also contribute to the total buoyancy force acting on the funnel.

In the '"Cartesian diver" child's toy, a miniature "diver"' is immersed in a column of liquid. When a diaphragm at the top of the column is pushed down, the diver sinks to the bottom. When the diaphragm is released, the diver again rises. Explain how the toy might work.

Open-Ended Problem Statement: In the "Cartesian diver" child's toy, a miniature "diver" is immersed in a column of liquid. When a diaphragm at the top of the column is pushed down, the diver sinks to the bottom. When the diaphragm is released, the diver again rises. Explain how the toy might work.

Discussion: A possible scenario is for the toy to have a flexible bladder that contains air. Pushing down on the diaphragm at the top of the liquid column would increase the pressure at any point in the liquid. The air in the bladder would be compressed slightly as a result. The volume of the bladder, and therefore its buoyancy, would decrease, causing the diver to sink to the bottom of the liquid column.

Releasing the diaphragm would reduce the pressure in the water column. This would allow the bladder to expand again, increasing its volume and therefore the buoyancy of the diver. The increased buoyancy would permit the diver to rise to the top of the liquid column and float in a stable, partially submerged position, on the surface of the liquid.

A proposed ocean salvage scheme involves pumping air into 'bags'" placed within and around a wrecked vessel on the sea bottom. Comment on the practicality of this plan, supporting your conclusions with analyses.

Open-Ended Problem Statement: A proposed ocean salvage scheme involves pumping air into "bags" placed within and around a wrecked vessel on the sea bottom. Comment on the practicality of this plan, supporting your conclusions with analyses.

Discussion: This plan has several problems that render it impractical. First, pressures at the sea bottom are very high. For example, Titanic was found in about $12,000 \mathrm{ft}$ of seawater. The corresponding pressure is nearly 6,000 psi. Compressing air to this pressure is possible, but would require a multi-stage compressor and very high power.

Second, it would be necessary to manage the buoyancy force after the bag and object are broken loose from the sea bed and begin to rise toward the surface. Ambient pressure would decrease as the bag and artifact rise toward the surface. The air would tend to expand as the pressure decreases, thereby tending to increase the volume of the bag. The buoyancy force acting on the bag is directly proportional to the bag volume, so it would increase as the assembly rises. The bag and artifact thus would tend to accelerate as they approach the sea surface. The assembly could broach the water surface with the possibility of damaging the artifact or the assembly.

If the bag were of constant volume, the pressure inside the bag would remain essentially constant at the pressure of the sea floor, e.g., 6,000 psi for Titanic. As the ambient pressure decreases, the pressure differential from inside the bag to the surroundings would increase. Eventually the difference would equal sea floor pressure. This probably would cause the bag to rupture.

If the bag permitted some expansion, a control scheme would be needed to vent air from the bag during the trip to the surface to maintain a constant buoyancy force just slightly larger than the weight of the artifact in water. Then the trip to the surface could be completed at low speed without danger of broaching the surface or damaging the artifact.
*3.111 Three steel balls (each about half an inch in diameter) lie at the bottom of a plastic shell floating on the water surface in a partially filled bucket. Someone removes the steel balls from the shell and carefully lets them fall to the bottom of the bucket, leaving the plastic shell to float empty. What happens to the water level in the bucket? Does it rise, go down, or remain unchanged? Explain.

Given: Steel balls resting in floating plastic shell in a bucket of water
Find: What happens to water level when balls are dropped in water
Solution: Basic equation $\quad F_{B}=\rho \cdot V_{\text {disp }} \cdot \mathrm{g}=\mathrm{W} \quad$ for a floating body weight W
When the balls are in the plastic shell, the shell and balls displace a volume of water equal to their own weight - a large volume because the balls are dense. When the balls are removed from the shell and dropped in the water, the shell now displaces only a small volume of water, and the balls sink, displacing only their own volume. Hence the difference in displaced water before and after moving the balls is the difference between the volume of water that is equal to the weight of the balls, and the volume of the balls themselves. The amount of water displaced is significantly reduced, so the water level in the bucket drops.

Volume displaced before moving balls: $\quad \mathrm{V}_{1}=\frac{\mathrm{W}_{\text {plastic }}+\mathrm{W}_{\text {balls }}}{\rho \cdot g}$

Volume displaced after moving balls: $\quad \mathrm{V}_{2}=\frac{\mathrm{W}_{\text {plastic }}}{\rho \cdot g}+\mathrm{V}_{\text {balls }}$

Change in volume displaced

$$
\begin{aligned}
& \Delta \mathrm{V}=\mathrm{V}_{2}-\mathrm{V}_{1}=\mathrm{V}_{\text {balls }}-\frac{\mathrm{W}_{\text {balls }}}{\rho \cdot g}=\mathrm{V}_{\text {balls }}-\frac{\mathrm{SG}_{\text {balls }} \rho \cdot \mathrm{g} \cdot \mathrm{~V}_{\text {balls }}}{\rho \cdot \mathrm{g}} \\
& \Delta \mathrm{~V}=\mathrm{V}_{\text {balls }} \cdot\left(1-\mathrm{SG}_{\text {balls }}\right)
\end{aligned}
$$

Hence initially a large volume is displaced; finally a small volume is displaced ($\Delta \mathrm{V}<0$ because $\mathrm{SG}_{\text {balls }}>1$)

Given: Cylindrical container rotating as in Example 3.10

$$
\begin{aligned}
& R=0.5 \mathrm{ft} \\
& h_{0}=4 \mathrm{in} .
\end{aligned}
$$

Determine: (a) value of w such that h, $=0$ (b) if solution is dependent on p

Solution:

In order to obtain the solution we need an expression for the shape of the free surface in terms of ω, r, and ho The required expression was derived in Example 3.10 . Te equation is

$$
z=h_{0}-\frac{(\omega R)^{2}}{2 g}\left[\frac{1}{2}-\left(\frac{r}{R}\right)^{2}\right]
$$

Since $h_{1}=0$ corresponds to $z=0$ and $r=0$ we must determine ω such that

$$
0=h_{0}-\frac{(\omega R)^{2}}{4 g}
$$

Solving for w,

$$
\begin{aligned}
\omega & =\frac{2}{R} \sqrt{g^{h}} \\
& =\frac{2}{0.5 \mathrm{ft}}\left(32.2 \frac{\mathrm{ft}}{\mathrm{~s}^{2}} \times 4 \mathrm{in} \times \frac{\mathrm{ft}}{12 \mathrm{in}}\right)^{1 / 2} \\
& =4 \times 3.28 \frac{1}{\mathrm{~s}} \\
\omega & =\left.13.1 \mathrm{rad}\right|_{\mathrm{s}}
\end{aligned}
$$

The solution is independent of p spice the equation of the free surface is independent of p.

Problem *3.113
Given: V-tube accekrometer

Find: Acceleration in terms of h, L

Solution: Apply x, y components of hydrostatic equation. Basic equations:

$$
\begin{array}{lll}
-\frac{\partial p}{\partial x}+\rho g_{x}=\rho a_{x} & a_{x}=a & g_{x}=0 \\
-\frac{\partial p}{\partial y}+\rho g_{y}=\rho a_{y} & a_{y}=0 & g_{y}=-g
\end{array}
$$

Assumptions: (1) Neglect sloshing
(2) Ignore corners

Then $\frac{\partial p}{\partial x}=-\rho a, \frac{\partial p}{\partial y}=-\rho g$. Evaluate Δp from left leg to right:

$$
\begin{aligned}
d p & =\frac{\partial p}{\partial x} d x+\frac{\partial p}{\partial y} d y \\
\Delta p & =\frac{\partial p}{\partial x} \Delta x+\frac{\partial p}{\partial y} \Delta y \\
& =(-\varphi g)(-b)+(-\rho a)(-L)+(-\rho g)(b+h) \\
\Delta p & =f a L-\rho g h=0
\end{aligned}
$$

Solving,

$$
a=g\left(\frac{h}{L}\right)
$$

Problem *3.114

*3.114 A rectangular container of water undergoes constant acceleration down an incline as shown. Determine the slope of the free surface using the coordinate system shown.

Given: Rectangular container with constant acceleration
Find: Slope of free surface
Solution: Basic equation $-\nabla p+\rho \vec{g}=\rho \vec{a}$
In components $\quad-\frac{\partial}{\partial x} p+\rho \cdot g_{x}=\rho \cdot a_{x} \quad-\frac{\partial}{\partial y} p+\rho \cdot g_{y}=\rho \cdot a_{y} \quad-\frac{\partial}{\partial z} p+\rho \cdot g_{z}=\rho \cdot a_{z}$

We have

$$
a_{y}=a_{z}=0
$$

$$
g_{X}=g \cdot \sin (\theta)
$$

$$
g_{y}=-g \cdot \cos (\theta)
$$

$$
\mathrm{g}_{\mathrm{z}}=0
$$

Hence

$$
\begin{equation*}
-\frac{\partial}{\partial \mathrm{x}} \mathrm{p}+\rho \cdot \mathrm{g} \cdot \sin (\theta)=\rho \cdot \mathrm{a}_{\mathrm{x}} \tag{3}
\end{equation*}
$$

(1) $-\frac{\partial}{\partial y} p-\rho \cdot g \cdot \cos (\theta)=0$
(2) $-\frac{\partial}{\partial \mathrm{z}} \mathrm{p}=0$

From Eq. 3 we can simplify from

$$
p=p(x, y, z) \quad \text { to } \quad p=p(x, y)
$$

Hence a change in pressure is given by

$$
\mathrm{dp}=\frac{\partial}{\partial \mathrm{x}} \mathrm{p} \cdot \mathrm{dx}+\frac{\partial}{\partial \mathrm{y}} \mathrm{p} \cdot \mathrm{dy}
$$

At the free surface $p=$ const., so

$$
\mathrm{dp}=0=\frac{\partial}{\partial \mathrm{x}} \mathrm{p} \cdot \mathrm{dx}+\frac{\partial}{\partial \mathrm{y}} \mathrm{p} \cdot \mathrm{dy} \quad \text { or } \quad \frac{\mathrm{dy}}{\mathrm{dx}}=-\frac{\frac{\partial}{\partial \mathrm{x}} \mathrm{p}}{\frac{\partial}{\partial \mathrm{y}} \mathrm{p}}
$$

at the free surface

Hence at the free surface, using Eqs 1 and 2

$$
\begin{aligned}
& \frac{d y}{d x}=-\frac{\frac{\partial}{\partial x} p}{\frac{\partial}{\partial y} p}=\frac{\rho \cdot g \cdot \sin (\theta)-\rho \cdot a_{x}}{\rho \cdot g \cdot \cos (\theta)}=\frac{g \cdot \sin (\theta)-a_{x}}{g \cdot \cos (\theta)} \\
& \frac{d y}{d x}=\frac{9.81 \cdot(0.5) \cdot \frac{\mathrm{m}}{\mathrm{~s}^{2}}-3 \cdot \frac{m}{\mathrm{~s}^{2}}}{9.81 \cdot(0.866) \cdot \frac{\mathrm{m}}{\mathrm{~s}^{2}}}
\end{aligned}
$$

At the free surface, the slope is

$$
\frac{\mathrm{dy}}{\mathrm{dx}}=0.224
$$

Problem *3.115

*3.115 The U-tube shown is filled with water at $T=68^{\circ} \mathrm{F}$. It is sealed at A and open to the atmosphere at D. The tube is rotated about vertical axis $A B$. For the dimensions shown, compute the maximum angular speed if there is to be no cavitation.

Given: Spinning U-tube sealed at one end
Find: Maximum angular speed for no cavitation
Solution: Basic equation $\quad-\nabla p+\rho \vec{g}=\rho \vec{a}$
In components $\quad-\frac{\partial}{\partial r} p=\rho \cdot a_{r}=-\rho \cdot \frac{V^{2}}{r}=-\rho \cdot \omega^{2} \cdot r \quad \frac{\partial}{\partial z} p=-\rho \cdot g$
Between D and C, $r=$ constant, so $\quad \frac{\partial}{\partial z} p=-\rho \cdot g \quad$ and so $\quad \mathrm{p}_{\mathrm{D}}-\mathrm{p}_{\mathrm{C}}=-\rho \cdot \mathrm{g} \cdot \mathrm{H}$
Between B and $A, r=$ constant, so $\quad \frac{\partial}{\partial z} p=-\rho \cdot g \quad$ and so $\quad p_{A}-p_{B}=-\rho \cdot g \cdot H$
Between B and C, $\mathrm{z}=$ constant, so $\quad \frac{\partial}{\partial r} \mathrm{p}=\rho \cdot \omega^{2} \cdot \mathrm{r} \quad$ and so $\quad \int_{\mathrm{PB}_{\mathrm{B}}}^{\mathrm{PC}} 1 \mathrm{dp}=\int_{0}^{\mathrm{L}} \rho \cdot \omega^{2} \cdot \mathrm{rdr}$

Integrating

$$
\begin{equation*}
\mathrm{P}_{\mathrm{C}}-\mathrm{P}_{\mathrm{B}}=\rho \cdot \omega^{2} \cdot \frac{L^{2}}{2} \tag{3}
\end{equation*}
$$

Since $P_{D}=P_{a t m}$, then from Eq 1

$$
\mathrm{p}_{\mathrm{C}}=\mathrm{p}_{\mathrm{atm}}+\rho \cdot \mathrm{g} \cdot \mathrm{H}
$$

From Eq. 3

$$
\mathrm{P}_{\mathrm{B}}=\mathrm{p}_{\mathrm{C}}-\rho \cdot \omega^{2} \cdot \frac{\mathrm{~L}^{2}}{2}
$$

so $\quad \mathrm{P}_{\mathrm{B}}=\mathrm{p}_{\mathrm{atm}}+\rho \cdot g \cdot \mathrm{H}-\rho \cdot \omega^{2} \cdot \frac{L^{2}}{2}$

From Eq. 2

$$
\mathrm{p}_{\mathrm{A}}=\mathrm{p}_{\mathrm{B}}-\rho \cdot \mathrm{g} \cdot \mathrm{H}
$$

$$
\text { so } \quad p_{A}=p_{a t m}-\rho \cdot \omega^{2} \cdot \frac{L^{2}}{2}
$$

Thus the minimum pressure occurs at point A (not B)
At $68^{\circ} \mathrm{F}$ from steam tables, the vapor pressure of water is

$$
\mathrm{p}_{\mathrm{v}}=0.339 \cdot \mathrm{psi}
$$

Solving for ω with $\mathrm{p}_{\mathrm{A}}=\mathrm{p}_{\mathrm{v}}$, we obtain $\omega=\sqrt{\frac{2 \cdot\left(\mathrm{patm}-\mathrm{p}_{\mathrm{v}}\right)}{\rho \cdot \mathrm{L}^{2}}}=\left[2 \cdot(14.7-0.339) \cdot \frac{\mathrm{bf}}{\mathrm{in}^{2}} \times \frac{\mathrm{ft}^{3}}{1.94 \cdot \mathrm{slug}} \times \frac{1}{\left(3 \cdot \mathrm{in}^{2}\right)^{2}} \times\left(\frac{12 \cdot \mathrm{in}}{1 \cdot \mathrm{ft}}\right)^{4} \times \frac{\text { slugft }}{\mathrm{s}^{2} \cdot \mathrm{lbf}}\right]^{\frac{1}{2}}$

$$
\omega=185 \cdot \frac{\mathrm{rad}}{\mathrm{~s}} \quad \omega=1764 \cdot \mathrm{rpm}
$$

*3.116 If the U-tube of Problem 3.115 is spun at 200 rpm , what will be the pressure at A ? If a small leak appears at A, how much water will be lost at D ?

Given: Spinning U-tube sealed at one end
Find: Pressure at A; water loss due to leak
Solution: Basic equation $\quad-\nabla p+\rho \vec{g}=\rho \vec{a}$
From the analysis of Example Problem 3.10, solving the basic equation, the pressure p at any point (r, z) in a continuous rotating fluid is given by

$$
\begin{equation*}
\mathrm{p}=\mathrm{p}_{0}+\frac{\rho \cdot \omega^{2}}{2} \cdot\left(\mathrm{r}^{2}-\mathrm{r}_{0}^{2}\right)-\rho \cdot \mathrm{g} \cdot\left(\mathrm{z}-\mathrm{z}_{0}\right) \tag{1}
\end{equation*}
$$

where p_{0} is a reference pressure at point $\left(r_{0}, z_{0}\right)$

In this case $\quad \mathrm{p}=\mathrm{p}_{\mathrm{A}} \quad \mathrm{p}_{0}=\mathrm{p}_{\mathrm{D}} \quad \mathrm{z}=\mathrm{z}_{\mathrm{A}}=\mathrm{z}_{\mathrm{D}}=\mathrm{z}_{0}=\mathrm{H} \quad \mathrm{r}=0 \quad \mathrm{r}_{0}=\mathrm{r}_{\mathrm{D}}=\mathrm{L}$
The speed of rotation is

$$
\omega=200 \cdot \mathrm{rpm} \quad \omega=20.9 \cdot \frac{\mathrm{rad}}{\mathrm{~s}}
$$

The pressure at D is

$$
\mathrm{P}_{\mathrm{D}}=0 \cdot \mathrm{kPa} \quad \text { (gage) }
$$

Hence

$$
\begin{aligned}
& \mathrm{p}_{\mathrm{A}}=\frac{\rho \cdot \omega^{2}}{2} \cdot\left(-\mathrm{L}^{2}\right)-\rho \cdot \mathrm{g} \cdot(0)=-\frac{\rho \cdot \omega^{2} \cdot \mathrm{~L}^{2}}{2}=-\frac{1}{2} \times 1.94 \cdot \frac{\mathrm{slug}}{\mathrm{ft}^{3}} \times\left(20.9 \cdot \frac{\mathrm{rad}}{\mathrm{~s}}\right)^{2} \times(3 \cdot \mathrm{in})^{2} \times\left(\frac{1 \cdot \mathrm{ft}}{12 \cdot \mathrm{in}}\right)^{4} \times \frac{\mathrm{lbf} \cdot \mathrm{~s}^{2}}{\mathrm{slug} \cdot \mathrm{ft}} \\
& \mathrm{p}_{\mathrm{A}}=-0.18 \cdot \mathrm{psi} \quad \text { (gage) }
\end{aligned}
$$

When the leak appears,the water level at A will fall, forcing water out at point D. Once again, from the analysis of Example Problem 3.10, we can use Eq 1

In this case

$$
\mathrm{p}=\mathrm{p}_{\mathrm{A}}=0 \quad \mathrm{p}_{0}=\mathrm{p}_{\mathrm{D}}=0 \quad \mathrm{z}=\mathrm{z}_{\mathrm{A}} \quad \mathrm{z}_{0}=\mathrm{z}_{\mathrm{D}}=\mathrm{H} \quad \mathrm{r}=0 \quad \mathrm{r}_{0}=\mathrm{r}_{\mathrm{D}}=\mathrm{L}
$$

Hence

$$
0=\frac{\rho \cdot \omega^{2}}{2} \cdot\left(-L^{2}\right)-\rho \cdot g \cdot\left(\mathrm{z}_{\mathrm{A}}-\mathrm{H}\right)
$$

$$
\mathrm{z}_{\mathrm{A}}=\mathrm{H}-\frac{\omega^{2} \cdot \mathrm{~L}^{2}}{2 \cdot \mathrm{~g}}=12 \mathrm{in}-\frac{1}{2} \times\left(20.9 \cdot \frac{\mathrm{rad}}{\mathrm{~s}}\right)^{2} \times(3 \cdot \mathrm{in})^{2} \times \frac{\mathrm{s}^{2}}{32.2 \cdot \mathrm{ft}} \times \frac{1 \cdot \mathrm{ft}}{12 \cdot \mathrm{in}} \quad \mathrm{z}_{\mathrm{A}}=6.91 \cdot \mathrm{in}
$$

The amount of water lost is $\Delta \mathrm{h}=\mathrm{H}-\mathrm{z}_{\mathrm{A}}=12 \cdot \mathrm{in}-6.91 \cdot$ in
$\Delta \mathrm{h}=5.09 \cdot \mathrm{in}$

Given: Centrifugal micromanoneter consists of pair of parallt disks that rotate to develop a radial pressure difference. There is no flow between the disks.

Find: (a) An expression for the pressure difference, DP, as a function of w, R, and p
(b) Find ω if $\Delta P=8$ in $\mathrm{H}_{2}^{\prime} \mathrm{O}$ and $\mathrm{R}=50 \mathrm{~mm}$

Solution:
Basic equation: $-\nabla p+p \vec{g}=\overrightarrow{p a}$
(r component) $-\frac{\partial P}{\partial r}+P g_{c}=p a_{r}$
Assumptions: in standard air between disks

(a) 5 horizontal $s 0 g_{c}=0$
(3) rigid body motion, $\infty \quad a_{r}=\frac{-y^{2}}{r}=-\frac{(r w)^{2}}{r}=-r w^{2}$

Ten
(pis a constant)
Separating variables and integrating, we detain

$$
\begin{aligned}
& \int_{p}^{P R E} d p=p w^{2} \int_{0}^{e} r d r \\
& \Delta P=\frac{p \omega^{2} R^{2}}{2}
\end{aligned}
$$

ΔP
Then

$$
\omega^{2}=\frac{2 \Delta P}{P^{2}}
$$

Where $\Delta t=P H_{0} g$ oh and $t_{1}=8 \times 10^{-6} \mathrm{~m}$

$$
\begin{align*}
\omega^{2} & =\frac{2 \rho n_{0} g h}{\rho R^{2}} \\
& =2 \times \frac{999 g g h^{3}}{1.225} g^{3} / n^{3}
\end{align*} 9.81 \frac{n}{s^{2}} \times 8 \times 6^{6} N \times \frac{1}{(0.05)^{2} m^{2}} .
$$

Problem *3.118
Giver: Test tube with water
Find: (a) Radial acceleration
(b) Radial pressure gradient, alar
(c) Maximum pressure on bottom.

Solution: Apply equation for rigid-body motion
Baric equation: $-\nabla p+\rho \vec{g}=f \vec{a}$

$$
(r \text { component })-\frac{\partial p}{\partial r}+\rho g r=p a_{r}
$$

Assumptions: (I) Rigid-bocty motion, so ar $=-\frac{v^{2}}{r}=-\frac{\left(\omega^{2}\right)^{2}}{r}=-r \omega^{2}$
(z) r horizontal, to gr $=0$

Then $\frac{\partial \rho}{\partial r}=-\rho a_{r}=-\rho\left(-r \omega^{2}\right)=\rho r \omega^{2}$
Integrating, $\left.p_{1}-p,=\int_{1}^{2} \frac{\partial p}{\partial r} d r=\int_{r}^{r_{2}} \rho r \omega^{2}=\rho \frac{r^{2} \omega^{2}}{2}\right]_{r_{1}}^{r_{2}}=\frac{1}{2} \rho \omega^{2}\left(r_{2}^{2}-r_{1}^{2}\right)$

$$
k_{\max }=p_{1}-p_{1}=\frac{1}{2} \times \frac{999 \mathrm{~kg}}{\mathrm{~m}^{3}} \times \frac{(1000)^{2}}{\mathrm{~s}^{2}} \times\left[(0.130)^{2}-(0.05)^{2}\right]_{\mathrm{m}^{2}} \times \frac{\mathrm{Nss}^{2}}{\mathrm{kgm}}=7.19 \mathrm{MPa}
$$

*3.119 A cubical box, 80 cm on a side, half-filled with oil ($\mathrm{SG}=$ 0.80), is given a constant horizontal acceleration of 0.25 g parallel to one edge. Determine the slope of the free surface and the pressure along the horizontal bottom of the box.

Given: Cubical box with constant acceleration
Find: Slope of free surface; pressure along bottom of box
Solution: Basic equation $-\nabla p+\rho \vec{g}=\rho \vec{a}$

Hence at the free surface $\quad \frac{d y}{d x}=-0.25$

The equation of the free surface is then $\quad y=-\frac{x}{4}+C \quad$ and through volume conservation the fluid rise in the rear balances the fluid fall in the front, so at the midpoint the free surface has not moved from the rest position

For size $\quad L=80 \cdot \mathrm{~cm} \quad$ at the midpoint $\quad x=\frac{L}{2} \quad y=\frac{L}{2} \quad$ (box is half filled) $\quad \frac{L}{2}=-\frac{1}{4} \cdot \frac{L}{2}+C \quad C=\frac{5}{8} \cdot L \quad y=\frac{5}{8} \cdot L-\frac{x}{4}$

Combining Eqs 1, 2, and 4

$$
\mathrm{dp}=-\mathrm{SG} \cdot \rho \cdot \mathrm{a}_{\mathrm{x}} \cdot \mathrm{dx}-\mathrm{SG} \cdot \rho \cdot \mathrm{~g} \cdot \mathrm{dy} \quad \text { or } \quad \mathrm{p}=-\mathrm{SG} \cdot \rho \cdot \mathrm{a}_{\mathrm{x}} \cdot \mathrm{x}-\mathrm{SG} \cdot \rho \cdot \mathrm{~g} \cdot \mathrm{y}+\mathrm{c}
$$

We have $\quad \mathrm{p}=\mathrm{p}_{\text {atm }} \quad$ when $\quad \mathrm{x}=0 \quad \mathrm{y}=\frac{5}{8} \cdot \mathrm{~L} \quad$ so $\quad \mathrm{p}_{\text {atm }}=-\mathrm{SG} \cdot \rho \cdot \mathrm{g} \cdot \frac{5}{8} \cdot \mathrm{~L}+\mathrm{c} \quad \mathrm{c}=\mathrm{p}_{\mathrm{atm}}+\mathrm{SG} \cdot \rho \cdot \mathrm{g} \cdot \frac{5}{8} \cdot \mathrm{~L}$

$$
p(x, y)=p_{a t m}+\text { SG } \cdot \rho \cdot\left(\frac{5}{8} \cdot g \cdot L-a_{x} \cdot x-g \cdot y\right)=p_{a t m}+S G \cdot \rho \cdot g \cdot\left(\frac{5}{8} \cdot L-\frac{x}{4}-y\right)
$$

On the bottom $y=0$ so $p(x, 0)=p_{a t m}+S G \cdot \rho \cdot g \cdot\left(\frac{5}{8} \cdot L-\frac{x}{4}\right)=101+0.8 \times 1000 \cdot \frac{\mathrm{~kg}}{\mathrm{~m}^{3}} \times \frac{\mathrm{N} \cdot \mathrm{s}^{2}}{\mathrm{~kg} \cdot \mathrm{~m}} \times 9.81 \cdot \frac{\mathrm{~m}}{\mathrm{~s}^{2}} \times\left(\frac{5}{8} \times 0.8 \cdot \mathrm{~m}-\frac{\mathrm{x}}{4}\right) \times \frac{\mathrm{kPa}}{10^{3} \cdot \mathrm{~Pa}}$

$$
p(x, 0)=105-1.96 \cdot x \quad(p \text { in kPa, } x \text { in } m)
$$

Gwen: Rectangular container of base dimensions $0.4 m \times 6.2 m$ and height $0.4 m$ is filled with water to a dept, $d=0.2 \mathrm{~m}$
Mass or empty container is $M_{c}=10 \mathrm{lg}$
Container slides down an incing, $\theta=30^{\circ}$

Coefficient of sliding friction is 0.30
Find: The angle of the weer surface relative to the horizontal
Solution:
Basic equations: $\quad-\nabla p+\vec{p}=M \vec{a} \quad \Sigma \vec{F}=\vec{a}$
Assumptions: (1) fluid moves as solid body, ie no sloshing Writing component equations,

$$
\begin{array}{ll}
-\frac{\partial p}{\partial x}=p a_{x} & \frac{\partial y}{\partial x}=-p a_{x} \\
-\frac{\partial p}{\partial y}-p g=p a_{y} & \frac{\partial y}{\partial y}=-p\left(g+a_{y}\right)
\end{array}
$$

$P=P(t, y) \quad d P=\frac{\partial p}{\partial x} d t+\frac{\partial P}{\partial y}$ dy. Along the water surface $d P=0$

$$
\frac{d y}{d x}=\frac{-x b^{2}}{2 x i d y}=-\frac{a_{x}}{g+a_{y}}
$$

To determine a_{2} and a_{y} consider the container and coribents

$$
M=M_{c}+M_{H_{L} O}=M_{c}+p^{-1}=10 \mathrm{tg}+99 . \frac{1}{n^{3}} \times 0.4 n \times 0.2 \mathrm{~cm} \times 0 . \mathrm{cn}
$$

$$
M=26 \mathrm{~kg}
$$

$$
\Sigma F_{y^{\prime}}=0=N-M_{g} \cos \theta
$$

$$
N=M g \cos \theta=26 \operatorname{g} \times 9.81 \frac{n}{5^{2}} \times \cos 30^{\circ} \times \frac{N \cdot s^{2}}{g g^{(2}}=221 N
$$

$$
\Sigma F_{x^{\prime}}=M a_{1}=M g \sin 30^{\circ}-F_{f}=M_{g} \sin 30^{\circ}-\mu N
$$

$$
\begin{aligned}
& a_{i}=g \sin 30^{\circ}-\mu \frac{N}{M}=9.8 \frac{1}{5^{2}} \sin 30^{\circ}-0.3+221 N \times \frac{1}{2669} \times \frac{\lg \cdot M}{N+6^{2}} \\
& a_{i}=2.36 m \mathrm{sec}^{2}
\end{aligned}
$$

Then

$$
\begin{aligned}
& a_{x}=a_{i} \cos \theta=2.36 \frac{4}{26}+\cos 30^{\circ}=2.04 \mathrm{~m} \mathrm{~s}^{2} \\
& a_{y}=-a_{x} \sin \theta=-2.36 \frac{\mathrm{n}}{6 t^{2}} \times \sin 30^{\circ}=-1.18 \mathrm{~m} 1 \mathrm{~s}^{2}
\end{aligned}
$$

and

$$
\begin{gathered}
\frac{d y}{d x}=\frac{-a x}{g+a y}=-\frac{2.04}{9.81-1.18}=-0.236 \\
x=\tan ^{\circ} 0.236=13.3^{\circ}
\end{gathered}
$$

Gwen: Rectangular container of base dimensions $0.4 n \times 8.2 m$ and hight $0.4 m$ is filled with water to a depth, $d=0.2 \mathrm{~m}$ Mass of empty container is $M_{2}=10 \mathrm{~kg}$ Container slides down an incline, $\theta=38$ withat friction

Find: (a) The angle of the water surface relative to the horizontal. (b) Slope of the free surface for the same acceleration. Le p the plank

Solution:
Bask equations: $-\nabla \vec{p}=\vec{Q}=M \vec{a} \quad \sum \vec{F} \times M \vec{a}$
Assumptions : (i) fluid moves as solid body, ie no sloshing
Writing component equations,

$$
\begin{array}{ll}
-\frac{\partial}{\partial x}=p a_{x} & \frac{\partial p}{\partial x}=-p a_{x} \\
-\frac{\partial p}{\partial y}=p q=p a_{y} & \frac{\partial p}{\partial y}=-p\left(g+a_{y}\right)
\end{array}
$$

$P=P(x, y) \quad d P=\frac{\partial P}{\partial x} d x+\frac{\partial y}{\partial y} d y \quad$ Along the wailer surface, $d P=0$

$$
\frac{d y}{d x}=\frac{-\partial P b x}{\partial P l \partial y}=-\frac{a_{x}}{\left(g+a_{y}\right)}
$$

For motion without friction

$$
\begin{aligned}
\Sigma F_{i} & =M a_{2}^{\prime}=M g \sin \theta \quad \therefore a_{i}=g \sin \theta \\
a_{1} & =a_{x} \cos \theta=g \sin \theta \cos \theta \\
a_{y} & =-a_{i} \sin \theta=-g \sin ^{2} \theta \\
\frac{d y}{d x} & =-\frac{a_{x}}{\left(g+a_{y}\right)}=-\frac{g \sin \theta \cos \theta}{\left.g-g \sin ^{2} \theta\right)}=-\frac{\sin \theta}{\cos \theta}=-\tan \theta \\
d y & =-\tan 30^{\circ}=-0.577 \\
\alpha & =\tan ^{-1} 0.577=30^{\circ} .
\end{aligned}
$$

For the same acceleration up the incline, $a_{x}=-g \sin \theta \cos \theta a_{y}=g \sin ^{2} \theta$

$$
\begin{aligned}
\frac{d y}{d x}=\frac{-a x}{\left(g+a_{y}\right)} & =\frac{g \sin \theta \cos \theta}{\left(g+g \sin ^{2} \theta\right)}=\frac{\sin \theta \cos \theta}{1+\sin ^{2} \theta}=\frac{\sin 30 \cos 30}{1+\sin ^{2} 30} \\
\frac{d y}{d x} & =0.346
\end{aligned}
$$

Given: Gas centrifuge, with maximum peripheral specie, $V_{\text {max }}=300$ mise contains uranuin herafluoride gas $(M=352 \mathrm{fg}(\mathrm{kgnol})$ at 325 C .
Find: (a) pevolop an expression for ratio of maximum pressure to pressure at centrifuge avis
(b) Evaluate for gwen conditions?

Solution:
Basic equation: $-\nabla p+\overrightarrow{p g}=\overrightarrow{p a} \quad p=p R T$ (r component) $-\frac{\partial p}{2 r}+p g_{r}=p a_{r}$
Assumptions: (1) ideal gas behavior, $T=$ constant
(a) 5 horizontal, so $g_{r}=0$
(3) rigid body motion, so

$$
a_{r}=-\frac{\nu^{2}}{r}=-\frac{(r w)^{2}}{r}=-1 r \omega^{2}
$$

Ten $\frac{\partial P}{\partial r}=-\rho a_{r}=p r \omega^{2}=\frac{P}{R T} r \omega^{2}$
Separating variables and vitegroting, we detain

$$
\begin{align*}
& \int_{P_{1}}^{L_{2}} \frac{d P}{P}=\frac{\omega^{2}}{R T} \int_{r_{1}=0}^{r_{2}} \begin{array}{l}
r d r \\
r_{2}
\end{array} \frac{\omega^{2}}{R_{T}^{2}} r_{2}^{2} \quad \psi_{\text {max }}=\omega r_{2} \\
& \ln P_{2}=\frac{L_{1}^{2}}{2 k T} \\
& \frac{p_{2}}{p_{1}}=e^{\frac{\gamma_{\text {max }}^{2}}{2 k T}} \tag{2}
\end{align*}
$$

$$
\begin{aligned}
& \therefore \frac{P_{2}}{P_{1}}=e^{3.86}=24.2
\end{aligned}
$$

Given: Pail, if in diameter and If t deep, weighs 3 br and contains 8 in of water.
Pail is swung in a vertical exile of 3 radius and a speed of 15 \& fl .
Water moves as solid body Poi of interest is top of trajectory
Determine: (a) tension in string
(b) pressure on pail bot bon from water

Solution
Assumption center of mass of bucket and of water are located at $5=3 f t$ where $V=$ row $=15$: fils

Summing forces in radial direction

$$
\begin{aligned}
& a_{\sum} F_{r} e_{r}=m_{b} a_{b r} k_{r}+m_{w} a_{\omega_{r}} e_{r} \\
& -T-\left(m_{b}+m_{\omega}\right) g=m_{b} a_{b_{r}}+m_{w} a_{\omega_{r}} \\
& a_{b_{r}}=a_{\omega_{r}}=-\omega^{2} r=-\frac{v^{2}}{r} \\
& \therefore T=\left(\frac{\nu^{2}}{r}-g\right)\left(m_{b}+m_{\omega}\right)
\end{aligned}
$$

where
Then

$$
\begin{aligned}
& m_{\omega}=p_{\omega}+\omega=p_{\omega} \frac{\pi d^{2} h}{4}=1.94 \frac{\operatorname{slog}}{6} \times \cdot \frac{1 G^{2}}{4} \times 8 \mathrm{in} \times \frac{f t}{12 n}=1.02 \mathrm{~d} \operatorname{sig}
\end{aligned}
$$

w er

In the water $-\nabla \vec{p}+\vec{p}=p \vec{a}$ writing the component in the s direction

$$
\begin{aligned}
& -\frac{\partial p}{\partial r}-p g=p a_{r}=-p \frac{\nu^{2}}{r}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{\partial p}{\partial r}=\left.83.0{ }^{b f}\right|_{f t^{3}}
\end{aligned}
$$

Assuming that ${ }^{2 p}$ lar is constant firougout the water then

$$
\begin{aligned}
& P_{\text {bonbon }} \cong P_{\text {surface }}+\frac{\partial T}{2 r} \Delta r \\
& P_{\text {bottom }}=P_{\text {dan }}+83,0 \frac{b r}{f 0} \times 8 i n \times \frac{f}{12 n}=P_{\text {atm }}+55.3 \frac{b t}{f_{t}} \\
& P_{\text {bothon }}-P_{\text {atm }}=55.3 \text { lift }(\text { gag })
\end{aligned}
$$

Given: soft drink can at outer edge of merry-g0-round.

Find: (a) Stope of free surface
(b) Spin rate to spill
(c) Likelihood of spilling vs. slipping

Solution: Assume rigid-body motion
Basic equation: $-\nabla p+\rho \vec{g}=p \vec{a}_{r} \quad a_{r}=-\frac{V^{2}}{r}=-\frac{(r \omega)^{2}}{r}=-r \omega^{2}$

$$
\left.\begin{array}{l}
-\frac{\partial p}{\partial r}+\rho g_{r}=\rho a_{r} \\
-\frac{\partial p}{\partial z}+\rho g_{z}=\rho \phi_{z}=0(s)
\end{array}\right\} \begin{aligned}
& \frac{\partial p}{\partial r}=-\rho a_{r}=\rho r \omega^{2} \\
& \frac{\partial p}{\partial z}=+\rho q_{z}=-\rho g
\end{aligned}
$$

Assumptions: (1) Rigid -body motion, (2) $\mathrm{gr}_{r}=0,(3) a_{z}=0,(4) g_{z}=-g$ Then $p=p(r, z)$ so $d p=\frac{\partial p}{\partial r} d r+\frac{\partial p}{\partial z} d z$
$d p=0$ along free surface, so $\frac{d z}{d r}=-\frac{\partial p b r}{\partial p p z}=-\frac{\rho r \omega^{2}}{-\rho g}=\frac{r \omega^{2}}{g}$

$$
\begin{aligned}
& w=0.3 \frac{\mathrm{rev}}{\mathrm{sec}} \times 2 \pi \frac{\mathrm{rad}}{\mathrm{rev}}=1.88 \mathrm{rad} / \mathrm{s} \\
& \left(\frac{d z}{d r}\right)_{\text {surface }}=1.5 \mathrm{~m}_{\times}(1.88)^{2} \frac{\mathrm{rad}^{2}}{\mathrm{~s}^{2}} \times \frac{\mathrm{s}^{2}}{9.81 \mathrm{~m}}=0.540
\end{aligned}
$$

To spill, slope must be $\left|\frac{\prime}{\prime}\right| H \quad{ }_{D}+1 / D=120 / 65=1.85$
Thus $\omega=\left[\frac{g}{r} \frac{d z}{d r}\right]^{1 / 2}=\left[9.81 \frac{\mathrm{~m}}{5^{2}} \times 1.85 \times \frac{1}{1,5 \mathrm{~m}}\right]^{1 / 2}=3.48 \mathrm{rad} / \mathrm{s}$
This is nearly double the speed.
The coefficient of static friction between the can and surface is probably $\mu_{s} \leqslant 0.5$.
Thus the can would likely not spill or tip: it would slide off

Open-Ended Problem Statement: When a water polo ball is submerged below the surface in a swimming pool and released from rest, it is observed to pop out of the water. How would you expect the height to which it rises above the water to vary with depth of submersion below the surface? Would you expect the same results for a beach ball? For a table-tennis ball?

Discussion: Separate the problem into two parts: (1) motion of the ball in water below the pool surface, and (2) motion of the ball in air above the pool surface.

Below the pool water surface the motion of each ball is controlled by buoyancy force and inertia. For small depths of submersion ball speed upon reaching the pool surface will be small. As depth is increased, ball speed will increase until terminal speed in water is approached. For large depths, the actual depth will be irrelevant because the ball will reach terminal speed before reaching the pool water surface. All three balls are relatively light for their diameters, so terminal speed in water should be reached quickly. The depth of submersion needed to reach terminal speed should be fairly small, perhaps 1 meter or less. ${ }^{1}$

Buoyancy is proportional to volume and inertia is proportional to mass. The ball with the largest volume per unit mass should accelerate most quickly to terminal speed. This probably will be the beach ball, followed by the table-tennis ball and the water polo ball.

The ball with the largest diameter has the smallest frontal area per unit volume; the terminal speed should be highest for this ball. The beach ball should have the highest terminal speed, followed by the water polo ball and the table-tennis ball.

Above the pool water surface the motion of each ball is controlled by aerodynamic drag force, gravity force, and inertia (see equation below). Without aerodynamic drag, the height above the pool water surface reached by each ball would depend only its initial speed. ${ }^{2}$ Aerodynamic drag reduces the height reached by each ball.

Aerodynamic drag force is proportional to frontal area. The heaviest ball per unit frontal area (probably the water polo ball) should reach the maximum height and the lightest ball per unit frontal area (probably the beach ball) should reach the minimum height.

$$
\begin{align*}
& \Sigma F_{y}=-F_{D}-m g=m a_{y}=m \frac{d V}{d t} \\
& -C_{D} A \frac{1}{2} \rho V^{2}-m g=m \frac{d V}{d t} \text {, since } F_{D}=C_{D} A \frac{L}{2} \rho V^{2} \\
& -\frac{C_{D A} \frac{1}{2} P V^{*}}{m}-g=\frac{d V}{d t}=V \frac{d V}{d y} \tag{1}
\end{align*}
$$

Separating variables $\frac{V d v}{1+\frac{c_{D} A \rho}{m g} \frac{v^{2}}{2}}=-g d y$
Integrating, $\frac{m g}{\rho c_{0} A} e_{w}\left[1+\frac{\rho C_{D A}}{m g} \frac{v^{2}}{2}\right]_{v_{0}}^{0}=-\frac{m g}{\rho c_{D A}} e_{n v}\left[1+\frac{\rho C_{D A} A}{m g} \frac{v_{0}^{2}}{2}\right]=-g g_{\text {max }}$
${ }^{1}$ The initial water depth required to reach terminal speed may be calculated using the methods of Chapter 9.
2 The maximum height reached by a ball in air with aerodynamic drag may be calculated using the methods of Chapter 9.

Thus $y_{m a x}=\frac{m}{\rho C_{D} A} \ln \left[1+\frac{\rho C_{D} A}{m g} \frac{V_{0}{ }^{2}}{2}\right]=\frac{m}{\rho C_{D} A} \ln \left[1+\frac{\digamma_{D_{0}}}{m g}\right]$
With no aerodynamic drag, Eq. 1 reduces to

$$
-m g=m v \frac{d v}{d y} \quad \text { or } \quad v d v=-g d y
$$

Integrating from V_{0} to $\left.0, \quad \frac{V^{2}}{2}\right]_{V_{0}}^{0}=-g$ max

$$
y_{\text {max }}=\frac{v_{0}^{2}}{2 g}
$$

Check the limiting value predicted by eq, z as $C_{0} \rightarrow 0$:

$$
\lim _{C_{D} \rightarrow 0} y \text { max }=\lim _{C_{D} \rightarrow 0} \frac{m}{\varphi C_{D A}} \frac{\rho C_{D A}}{m g} \frac{V_{0}^{2}}{2}=\frac{V_{0}^{2}}{2 g} v v
$$

Gwen: A steel liner of length, $L=2 \mathrm{~m}$, outer radius $r_{0}=0.15 \mathrm{~m}$, and inner radius $r_{i}=8.10 m$ is to be formed in a spinning horizontal mold. To insure wiform thickness the minium radial acceleration should be 10 g . For steel, S.G $=7.8$.
Finis: (a) The required angular selocital (b) Re maximum and Finimem pressures on the surface of the mold.
Solution:
Basic equation: $\nabla-\vec{p}+\vec{g}=\overrightarrow{p a}$

Writing component equations,

$$
\begin{aligned}
& -\frac{\partial p}{\partial r}+p g_{r}=p a_{r} \quad \text { and } \frac{\partial p}{\partial r}=p g_{r}-p a r=p(-g \cos \theta)-p\left(-r \omega^{2}\right)=p r \omega^{2}-p g \cos \theta \\
& -\frac{1}{r} \frac{\partial p}{\partial \theta}+p g_{\theta}=0 \quad \text { and } \frac{\partial p}{\partial \theta}=p g_{\theta} r=p g \sin \theta r
\end{aligned}
$$

Then, $d P=\frac{\partial p}{\partial r} d r+\frac{\partial P}{2 \theta} d \theta=\left(p r \omega^{2}-p g \cos \right) d r+p g r \sin \theta d \theta$

$$
\therefore-p=-p a t m+p \omega^{2} \frac{\left(r^{2}-r\right.}{2}-p g \cos \theta(r-r)+f(\theta) \text {. Ten, }
$$

$$
\frac{\partial p}{\partial \theta}=p g \sin \theta(r-r)+\frac{d f}{d \theta}=p g \sin \theta r
$$

Hence, $\frac{d r}{d \theta}=p g \sin \theta r_{i}$ and $f=-p a r i \cos \theta+c$

$$
\therefore p=-p_{a t m}+p \omega^{2}\left(r^{2}-r^{2}\right)-p g \cos \theta\left(r-r_{i}\right)-p g r_{i} \cos \theta+c
$$

At $r=5$, te $=-p_{\text {atm }}$ for any value or θ, Hence, $c=p g r i \cos \theta$ and

$$
p=p_{a t m}+p w^{2}\left(r^{2}-\frac{r_{i}^{2}}{2}-p g \cos \theta\left(r-r_{i}\right)\right.
$$

Minimises value of $a_{r}=10 g=r w^{2}$ occurs at r_{i} for given w. Hence,

$$
\omega_{\text {min }}=\left[\frac{\log }{r_{i}}\right]^{1 / 2}=\left[10 \times 9.81 \frac{\mathrm{~m}^{2}}{\mathrm{~s}^{2}} \cdot \frac{1}{0.10 \mathrm{n}}\right]^{1 / 2}=31.3 \mathrm{rad} l_{\mathrm{s}}
$$

\qquad
Pax on the surface of the Mold $\left(r=r_{0}\right)$ occurs at $\theta=\pi$

$$
\begin{aligned}
& P_{\text {max }}-P_{\text {atm }}=\frac{p_{0}^{4}}{2}\left(r_{0}^{2}-r_{i}^{2}\right)-p g \cos \theta\left(r-r_{i}\right) \text {. }
\end{aligned}
$$

$$
\begin{aligned}
& \text { min on the surface of the mold }\left(r=r_{0}\right) \text { occurs of } \theta=0 \\
& p_{\text {min }}-p_{\text {atm }}=p_{u_{2}^{2}}^{2}\left(r_{0}^{2}-r_{2}^{2}\right)-\rho g \cos \theta\left(r-r_{i}\right)
\end{aligned}
$$

Open-Ended Problem Statement: The analysis of problem 3.120 suggests that it maybe possible to determine the coefficient of sliding friction between two surfaces by measuring the slope of the free surface in a liquid-filled container sliding down an inclined surface. Investigate the feasibility of this idea.

Discussion: A certain minimum angle of inclination would be needed to overcome static friction and start the container into motion down the incline. Once the container is in motion, the retarding force would be provided by sliding (dynamic) friction. The coefficient of dynamic friction usually is smaller than the static friction coefficient. Thus the container would continue to accelerate as it moved down the incline. This acceleration would provide a nonzero slope to the free surface of the liquid in the container.

In principle the slope could be measured and the coefficient of dynamic friction calculated. In practice several problems would arise.

To calculate dynamic friction coefficient one must assume the liquid moves as a solid body (i.e., that there is no sloshing). This condition could only be achieved if there were minimum initial disturbance and the sliding distance were long.

It would be difficult to measure the slope of the free surface of liquid in the moving container. Images made with a video camera or digital still camera might be processed to obtain the required slope information.

$$
\begin{aligned}
& \Sigma F_{y}=N-m g \cos \theta ; N=m g \cos \theta \\
& \Sigma F_{x}=m g \sin \theta-F_{f}=m a_{x} ; F_{f}=\mu_{k} N=\mu_{x} m g \cos \theta \\
& a_{x}=g \sin \theta-\mu_{k} g \cos \theta=g\left(\sin \theta-\mu_{k} \cos \alpha\right)
\end{aligned}
$$

For static liquid

$$
\begin{array}{ll}
-\frac{\partial p}{\partial x}+\rho g \sin \theta=\rho a_{x}=\rho g\left(\sin \theta>\mu_{k} \cos \theta\right) & ; \frac{\partial p}{\partial x}=\rho g \mu_{k} \cos \theta \\
-\frac{\partial p}{\partial y}-\operatorname{cg} \cos \theta=\rho \alpha_{y}^{\prime \prime} & ; \frac{\partial p}{\partial y}=-\rho g \cos \theta
\end{array}
$$

For the tine surface, $d p=\frac{\partial p}{\partial x} d x+\frac{\partial p}{\partial y} d y=0$, so $\frac{d y}{d x}=-\frac{\partial p / \partial x}{\partial p \partial y}$
Thus $\frac{d y}{d x}=-\frac{\rho g \mu_{k} \cos \theta}{-\rho g \cos \theta}=\mu_{k} ; \alpha=\tan ^{-1}\left(\mu_{k}\right)$
Since it was necessary to make the container slip on the surface,

$$
\theta>\tan ^{-1}\left(\mu_{5}\right)>\tan ^{-1}\left(\mu_{n}\right)=\alpha
$$

Thus $\alpha<\theta$, as shown in the sketch above.
4.1 A mass of 3 kg falls freely a distance of 5 m before contact-
ing a spring attached to the ground. If the spring stiffness is 400
N / m, what is the maximum spring compression?

Given: Data on mass and spring
Find: Maximum spring compression

Solution:

The given data is
$M=3 \cdot \mathrm{~kg}$
$h=5 \cdot m$
$\mathrm{k}=400 \cdot \frac{\mathrm{~N}}{\mathrm{~m}}$

Apply the First Law of Thermodynamics: for the system consisting of the mass and the spring (the spring has gravitional potential energy and the spring elastic potential energy)

Total mechanical energy at initial state

$$
\mathrm{E}_{1}=\mathrm{M} \cdot \mathrm{~g} \cdot \mathrm{~h}
$$

Total mechanical energy at instant of maximum compression x

$$
E_{2}=M \cdot g \cdot(-x)+\frac{1}{2} \cdot k \cdot x^{2}
$$

Note: The datum for zero potential is the top of the uncompressed spring
But

$$
\begin{aligned}
& \mathrm{E}_{1}=\mathrm{E}_{2} \\
& \mathrm{M} \cdot \mathrm{~g} \cdot \mathrm{~h}=\mathrm{M} \cdot \mathrm{~g} \cdot(-\mathrm{x})+\frac{1}{2} \cdot \mathrm{k} \cdot \mathrm{x}^{2}
\end{aligned}
$$

so

Solving for x

$$
\begin{aligned}
& x^{2}-\frac{2 \cdot M \cdot g}{k} \cdot x-\frac{2 \cdot \mathrm{M} \cdot \mathrm{~g} \cdot \mathrm{~h}}{\mathrm{k}}=0 \\
& x=\frac{\mathrm{M} \cdot \mathrm{~g}}{\mathrm{k}}+\sqrt{\left(\frac{\mathrm{M} \cdot \mathrm{~g}}{\mathrm{k}}\right)^{2}+\frac{2 \cdot \mathrm{M} \cdot \mathrm{~g} \cdot \mathrm{~h}}{\mathrm{k}}} \\
& x=3 \cdot \mathrm{~kg} \times 9.81 \cdot \frac{\mathrm{~m}}{\mathrm{~s}^{2}} \times \frac{\mathrm{m}}{400 \cdot \mathrm{~N}}+\sqrt{\left(3 \cdot \mathrm{~kg} \times 9.81 \cdot \frac{\mathrm{~m}}{\mathrm{~s}^{2}} \times \frac{\mathrm{m}}{400 \cdot \mathrm{~N}}\right)^{2}+2 \times 3 \cdot \mathrm{~kg} \times 9.81 \cdot \frac{\mathrm{~m}}{\mathrm{~s}^{2}} \times 5 \cdot \mathrm{~m} \times \frac{\mathrm{m}}{400 \cdot \mathrm{~N}}} \\
& x=0.934 \mathrm{~m}
\end{aligned}
$$

Note that ignoring the loss of potential of the mass due to spring compression x gives

$$
\mathrm{x}=\sqrt{\frac{2 \cdot \mathrm{M} \cdot \mathrm{~g} \cdot \mathrm{~h}}{\mathrm{k}}} \quad \mathrm{x}=0.858 \mathrm{~m}
$$

Note that the deflection if the mass is dropped from immediately above the spring is

$$
\mathrm{x}=\frac{2 \cdot \mathrm{M} \cdot \mathrm{~g}}{\mathrm{k}} \quad \mathrm{x}=0.147 \mathrm{~m}
$$

Given: Six-pack cooled from $25^{\circ} \mathrm{C}$ to $5^{\circ} \mathrm{C}$ in freezer.
Find: Change in specific entropy.
Solution: Apply the Td equation.
Basic equation: $T d u=d u+p d f^{n o(1)}$
Assumptions: (1) Neglect voluone change
Then

$$
T d u=d u=C_{V} d T
$$

or

$$
d \Delta=c_{v} \frac{d T}{7}
$$

Integrating,

$$
\begin{aligned}
& \Delta_{2}-A_{1}=C_{V} \ln \left(\frac{T_{2}}{T_{1}}\right) \\
&=\frac{1 \mathrm{kcal}}{\mathrm{~kg} \cdot \mathrm{~K}} \times \ln \left(\frac{273+5}{273+25}\right) \times 4190 \mathrm{~J} \\
& \mathrm{kan} \\
& A_{2}-\alpha_{1}=-0.291 \mathrm{~kJ} / \mathrm{kg} \cdot \mathrm{~K}
\end{aligned}
$$

Problem 4.3

4.3 A fully loaded Boeing 777-200 jet transport aircraft weighs
$325,000 \mathrm{~kg}$. The pilot brings the 2 engines to full takeoff thrust of 450 kN each before releasing the brakes. Neglecting aerodynamic and rolling resistance, estimate the minimum runway length and time needed to reach a takeoff speed of 225 kph . Assume engine thrust remains constant during ground roll.

Given: Data on Boeing 777-200 jet
Find: Minimum runway length for takeoff

Solution:

Basic equation $\quad \Sigma \mathrm{F}_{\mathrm{x}}=\mathrm{M} \cdot \frac{\mathrm{dV}}{\mathrm{dt}}=\mathrm{M} \cdot \mathrm{V} \cdot \frac{\mathrm{dV}}{\mathrm{dx}}=\mathrm{F}_{\mathrm{t}}=$ constant \quad Note that the "weight" is already in mass units!
Separating variables $\quad M \cdot V \cdot d V=F_{t} \cdot d x$

Integrating

$$
x=\frac{M \cdot V^{2}}{2 \cdot F_{t}}
$$

$$
\mathrm{x}=\frac{1}{2} \times 325 \times 10^{3} \mathrm{~kg} \times\left(225 \frac{\mathrm{~km}}{\mathrm{hr}} \times \frac{1 \cdot \mathrm{~km}}{1000 \cdot \mathrm{~m}} \times \frac{1 \cdot \mathrm{hr}}{3600 \cdot \mathrm{~s}}\right)^{2} \times \frac{1}{2 \times 425 \times 10^{3}} \cdot \frac{1}{\mathrm{~N}} \times \frac{\mathrm{N} \cdot \mathrm{~s}^{2}}{\mathrm{~kg} \cdot \mathrm{~m}}
$$

For time calculation

$$
\mathrm{M} \cdot \frac{\mathrm{dV}}{\mathrm{dt}}=\mathrm{F}_{\mathrm{t}} \quad \mathrm{dV}=\frac{\mathrm{F}_{\mathrm{t}}}{\mathrm{M}} \cdot \mathrm{dt}
$$

Integrating

$$
\begin{aligned}
& t=\frac{M \cdot V}{F_{t}} \\
& t=325 \times 10^{3} \mathrm{~kg} \times 225 \frac{\mathrm{~km}}{\mathrm{hr}} \times \frac{1 \cdot \mathrm{~km}}{1000 \cdot \mathrm{~m}} \times \frac{1 \cdot \mathrm{hr}}{3600 \cdot \mathrm{~s}} \times \frac{1}{2 \times 425 \times 10^{3}} \cdot \frac{1}{\mathrm{~N}} \times \frac{\mathrm{N} \cdot \mathrm{~s}^{2}}{\mathrm{~kg} \cdot \mathrm{~m}}
\end{aligned}
$$

$$
\mathrm{t}=23.9 \mathrm{~s}
$$

Aerodynamic and rolling resistances would significantly increase both these results

Given: Small steel ball of radius, r; atop large sphere of radius, R, begins to roll. Neglect rolling and air resistance.

Find: Location where ball hoses contact and becomes a projectile.
Solution: Sum forces in n direction

$$
\Sigma F_{n}=F_{n}-m g \cos \theta=m a_{n}
$$

$$
a_{n}=-\frac{V^{2}}{(2+r)}
$$

Contact is lost when $F_{n} \rightarrow 0$, or

$$
-m g \cos \theta=-m \frac{V^{2}}{(R+r)}
$$

or

$$
v^{2}=(R+r) g \cos \theta
$$

Energy must be conserved if there is no resistance. Thus

$$
E=m g z+m \frac{V^{2}}{z}=m g(R+r) \cos \theta+m \frac{v^{2}}{2}=E_{0}=m g(R+r)
$$

Thus from energy considerations

$$
\begin{equation*}
v^{2}=2 g(R+r)(1-\cos \theta) \tag{z}
\end{equation*}
$$

Combining Eggs. I and 2 ,

$$
V^{2}=2 g(R+r)(1-\cos \theta)=(R+r) g \cos \theta
$$

or $\quad z(1-\cos \theta)=2-z \cos \theta=\cos \theta$
Thus $\cos \theta=\frac{2}{3}$ and $\theta=\cos ^{-1}\left(\frac{2}{3}\right)=48.2$ degrees

Problem 4.5
Given: Acto skiet to stop in 50 meters be icuel rond with $4=0.6$. Find: Initial speced.

Solection: Mpply Neuton's serand law to a system (achta).
Basic equations: $\quad \sum F_{x}=m a_{x}=\frac{w d z_{x}}{d t^{2}}$
$A \sec m p+i \sin :(\sigma) F_{f}=$ cu
(2) Neghect air resistare

Than $\Sigma F_{x}=-F_{f}=-\mu W=\frac{W}{g} \frac{d^{2} x}{d t^{2}}$
or $\quad \frac{d^{2} x}{d t^{2}}=-\mu g$
Integrating,

$$
\begin{equation*}
\frac{d x}{d t}=-\operatorname{Lg} t+c_{1}=-\operatorname{cog} t+v_{0} \tag{1}
\end{equation*}
$$

since $V=V_{0}$ at $t=0$. Integratigg again,

$$
\begin{equation*}
x=-\frac{1}{2} \operatorname{cg} t^{2}+v_{0} t+c_{2}=-\frac{1}{2} \operatorname{cog} t^{2}+v_{0} t \tag{Z}
\end{equation*}
$$

$\operatorname{since} x=0$ at $t=0$.
Now at $x=4, \frac{d x}{d t}=0$, and $t=t_{f}$. Fron Eq. ,

$$
0=-4 g t_{f}+v_{0} \quad \text { or } \quad t_{f}=\frac{v_{0}}{\omega_{g}}
$$

Sucstituating inta by, 2 , evalcacated at $t=t_{t}$,

$$
\begin{aligned}
& L=-\frac{1}{2} \operatorname{Leg} t_{4}^{2}+v_{0} t_{f}=-\frac{1}{2} \lg \frac{v_{0}}{\left(u_{g}\right)^{2}}+v_{0} \frac{v_{0}}{\operatorname{lig}} \\
& L=-\frac{1}{2} \frac{v_{0}^{2}}{\lg }+\frac{v_{0}^{2}}{\log }=\frac{1}{2} v_{0}^{2}
\end{aligned}
$$

Solving, $V_{0}=\sqrt{2 \log 2}=\sqrt{2(0.6) 9.81 m \times 50 m}=24.2 \mathrm{~m} / \mathrm{s}$
or

$$
V_{0}=24 . \frac{3 m}{5} \times \frac{k m}{100 m} \times 560 \frac{5}{n}=87.6 \mathrm{~km} / \mathrm{hr}
$$

Problem 4.6

4.6 Air at $68^{\circ} \mathrm{F}$ and an absolute pressure of 1 atm is compressed adiabatically, without friction, to an absolute pressure of 3 atm .
Determine the internal energy change.

Given: Data on air compression process

Find: Internal energy change

Solution:

Basic equation

$$
\delta \mathrm{Q}-\delta \mathrm{W}=\mathrm{dE}
$$

Assumptions: 1) Adiabatic so $\delta Q=\begin{array}{lll}0 & \text { 2) Stationary system } d E=d U & 3) \text { Frictionless process } \delta W=p d V=M p d v\end{array}$
Then

$$
\mathrm{dU}=-\delta \mathrm{W}=-\mathrm{M} \cdot \mathrm{p} \cdot \mathrm{dv}
$$

Before integrating we need to relate p and v. An adiabatic frictionless (reversible) process is isentropic, which for an ideal gas gives

$$
\mathrm{p} \cdot \mathrm{v}^{\mathrm{k}}=\mathrm{C} \quad \text { where } \quad \mathrm{k}=\frac{\mathrm{c}_{\mathrm{p}}}{\mathrm{c}_{\mathrm{v}}}
$$

Hence $\quad v=C^{\frac{1}{k}} \cdot p^{-\frac{1}{k}} \quad$ and $\quad d v=C^{\frac{1}{k}} \cdot \frac{1}{k} \cdot p^{-\frac{1}{k}-1} \cdot d p$

Substituting

$$
\mathrm{du}=\frac{\mathrm{dU}}{\mathrm{M}}=-\mathrm{p} \cdot \mathrm{dv}=-\mathrm{p} \cdot \mathrm{C}^{\frac{1}{\mathrm{k}}} \cdot \frac{1}{\mathrm{k}} \cdot \mathrm{p}^{-\frac{1}{\mathrm{k}}-1} \cdot \mathrm{dp}=\frac{-\mathrm{C}^{\frac{1}{\mathrm{k}}}}{\mathrm{k}} \cdot \mathrm{p}^{-\frac{1}{\mathrm{k}}} \cdot \mathrm{dp}
$$

Integrating between states

$$
\begin{aligned}
& \Delta \mathrm{u}=\frac{\mathrm{C}^{\frac{1}{k}}}{\mathrm{k}-1} \cdot\left(\mathrm{p}_{2}^{\frac{\mathrm{k}-1}{\mathrm{k}}}-\mathrm{p}_{1}^{\frac{\mathrm{k}-1}{\mathrm{k}}}\right)=\frac{\mathrm{C}^{\frac{1}{\mathrm{k}}} \cdot \mathrm{p}_{1}^{\frac{\mathrm{k}-1}{\mathrm{k}}}}{\mathrm{k}-1} \cdot\left[\left(\frac{\mathrm{p}_{2}}{\mathrm{p}_{1}}\right)^{\frac{\mathrm{k}-1}{\mathrm{k}}}-1\right] \\
& \mathrm{C}^{\frac{1}{\mathrm{k}}} \cdot \mathrm{p}^{\frac{\mathrm{k}-1}{\mathrm{k}}}=\mathrm{C}^{\frac{1}{\mathrm{k}}} \cdot \mathrm{p}^{-\frac{1}{\mathrm{k}}} \cdot \mathrm{p}=\mathrm{p} \cdot \mathrm{v}=\mathrm{R}_{\mathrm{air}} \cdot T
\end{aligned}
$$

Hence

$$
\Delta \mathrm{u}=\frac{\mathrm{R}_{\mathrm{air}} \cdot \mathrm{~T}_{1}}{\mathrm{k}-1} \cdot\left[\left(\frac{\mathrm{p}_{2}}{\mathrm{p}_{1}}\right)^{\frac{\mathrm{k}-1}{\mathrm{k}}}-1\right]
$$

From Table A. $6 \quad \mathrm{R}_{\text {air }}=53.33 \cdot \frac{\mathrm{ft} \cdot \mathrm{lbf}}{\mathrm{lbm} \cdot \mathrm{R}} \quad$ and $\quad \mathrm{k}=1.4$

$$
\Delta \mathrm{u}=\frac{1}{0.4} \times 53.33 \cdot \frac{\mathrm{ft} \cdot \mathrm{lbf}}{\mathrm{lbm} \cdot \mathrm{R}} \times(68+460) \mathrm{R} \times\left[\left(\frac{3}{1}\right)^{\frac{1.4-1}{1.4}}-1\right] \quad \Delta \mathrm{u}=2.6 \times 10^{4} \cdot \frac{\mathrm{ft} \cdot \mathrm{lbf}}{\mathrm{lbm}}
$$

$$
\Delta \mathrm{u}=33.4 \cdot \frac{\mathrm{Btu}}{\mathrm{lbm}} \quad \Delta \mathrm{u}=1073 \cdot \frac{\mathrm{Btu}}{\mathrm{slug}} \quad \quad \text { (Using conversions from Table G.2) }
$$

4.7 In an experiment with a can of soda, it took 3 hr to cool from an initial temperature of $75^{\circ} \mathrm{F}$ to $50^{\circ} \mathrm{F}$ in a $40^{\circ} \mathrm{F}$ refrigerator. If the can is now taken from the refrigerator and placed in a room at $68^{\circ} \mathrm{F}$, how long will the can take to reach $60^{\circ} \mathrm{F}$? You may assume that for both processes the heat transfer is modeled by $\dot{Q} \approx k\left(T-T_{\mathrm{amb}}\right)$, where T is the can temperature, $T_{\text {amb }}$ is the ambient temperature, and k is a heat transfer coefficient.

Given:

Data on cooling of a can of soda in a refrigerator
Find: How long it takes to warm up in a room

Solution:

The First Law of Thermodynamics for the can (either warming or cooling) is

$$
\mathrm{M} \cdot \mathrm{c} \cdot \frac{\mathrm{dT}}{\mathrm{dt}}=-\mathrm{k} \cdot\left(\mathrm{~T}-\mathrm{T}_{\mathrm{amb}}\right) \quad \text { or } \quad \frac{\mathrm{dT}}{\mathrm{dt}}=-\mathrm{A} \cdot\left(\mathrm{~T}-\mathrm{T}_{\mathrm{amb}}\right) \quad \text { where } \quad \mathrm{A}=\frac{\mathrm{k}}{\mathrm{M} \cdot \mathrm{c}}
$$

where M is the can mass, c is the average specific heat of the can and its contents, T is the temperature, and T_{amb} is the ambient temperature

Separating variables $\frac{\mathrm{dT}}{\mathrm{T}-\mathrm{T}_{\mathrm{amb}}}=-\mathrm{A} \cdot \mathrm{dt}$
Integrating

$$
\mathrm{T}(\mathrm{t})=\mathrm{T}_{\mathrm{amb}}+\left(\mathrm{T}_{\mathrm{init}}-\mathrm{T}_{\mathrm{amb}}\right) \cdot \mathrm{e}^{-\mathrm{At}}
$$

where $T_{\text {init }}$ is the initial temperature. The available data from the coolling can now be used to obtain a value for constant A

Given data for cooling

$$
\mathrm{T}_{\text {init }}=(25+273) \cdot \mathrm{K}
$$

$\mathrm{T}_{\text {init }}=298 \mathrm{~K}$
$\mathrm{T}_{\mathrm{amb}}=(5+273) \cdot \mathrm{K}$
$\mathrm{T}_{\mathrm{amb}}=278 \mathrm{~K}$

$$
\begin{array}{lcl}
\mathrm{T}=(10+273) \cdot \mathrm{K} & \mathrm{~T}=283 \mathrm{~K} & \mathrm{when} \\
\mathrm{~A}=\frac{1}{\tau} \cdot \ln \left(\frac{\mathrm{~T}_{\mathrm{init}}-\mathrm{T}_{\mathrm{amb}}}{\mathrm{~T}-\mathrm{T}_{\mathrm{amb}}}\right)=\frac{1}{3 \cdot \mathrm{hr}} \times \frac{1 \cdot \mathrm{hr}}{3600 \cdot \mathrm{~s}} \times \ln \left(\frac{298-278}{283-278}\right) & \mathrm{A}=1.284 \times 10^{-4}-1
\end{array}
$$

Hence

Then, for the warming up process

$$
\begin{array}{lll}
\mathrm{T}_{\text {init }}=(10+273) \cdot \mathrm{K} & \mathrm{~T}_{\mathrm{init}}=283 \mathrm{~K} & \mathrm{~T}_{\mathrm{amb}}=(20+273) \cdot \mathrm{K} \quad \mathrm{~T}_{\mathrm{amb}}=293 \mathrm{~K} \\
\mathrm{~T}_{\mathrm{end}}=(15+273) \cdot \mathrm{K} & \mathrm{~T}_{\mathrm{end}}=288 \mathrm{~K} &
\end{array}
$$

with

$$
\mathrm{T}_{\mathrm{end}}=\mathrm{T}_{\mathrm{amb}}+\left(\mathrm{T}_{\mathrm{init}}-\mathrm{T}_{\mathrm{amb}}\right) \cdot \mathrm{e}^{-\mathrm{A} \tau}
$$

Hence the time τ is

$$
\tau=\frac{1}{\mathrm{~A}} \cdot \ln \left(\frac{\mathrm{~T}_{\mathrm{init}}-\mathrm{T}_{\mathrm{amb}}}{\mathrm{~T}_{\mathrm{end}}-\mathrm{T}_{\mathrm{amb}}}\right)=\frac{\mathrm{s}}{1.284 \cdot 10^{-4}} \cdot \ln \left(\frac{283-293}{288-293}\right) \quad \tau=5.40 \times 10^{3} \mathrm{~s} \quad \tau=1.50 \mathrm{hr}
$$

Problem 4.8

4.8 The average rate of heat loss from a person to the surroundings when not actively working is about 85 W . Suppose that in an auditorium with volume of approximately $3.5 \times 10^{5} \mathrm{~m}^{3}$, containing 6000 people, the ventilation system fails. How much does the internal energy of the air in the auditorium increase during the first 15 min after the ventilation system fails? Considering the auditorium and people as a system, and assuming no heat transfer to the surroundings, how much does the internal energy of the system change? How do you account for the fact that the temperature of the air increases? Estimate the rate of temperature rise under these conditions.

Given: Data on heat loss from persons, and people-filled auditorium
Find: Internal energy change of air and of system; air temperature rise

Solution:

Basic equation

$$
\mathrm{Q}-\mathrm{W}=\Delta \mathrm{E}
$$

Assumptions: 1) Stationary system dE =dU 2) No work $W=0$

Then for the air $\quad \Delta \mathrm{U}=\mathrm{Q}=85 \cdot \frac{\mathrm{~W}}{\text { person }} \times 6000 \cdot$ people $\times 15 \cdot \mathrm{~min} \times$
For the air and people $\quad \Delta \mathrm{U}=\mathrm{Q}_{\text {Surroundings }}=0$
The increase in air energy is equal and opposite to the loss in people energy

$$
\Delta \mathrm{U}=459 \mathrm{MJ}
$$

For the air

$$
\begin{aligned}
& \Delta \mathrm{U}=\mathrm{Q} \quad \text { but for air } \\
& \Delta \mathrm{T}=\frac{\mathrm{Q}}{\mathrm{M} \cdot \mathrm{c}_{\mathrm{V}}}=\frac{\mathrm{R}_{\mathrm{air}} \cdot \mathrm{Q} \cdot \mathrm{~T}}{\mathrm{c}_{\mathrm{V}} \cdot \mathrm{p} \cdot \mathrm{~V}}
\end{aligned}
$$

Hence

$$
\mathrm{R}_{\text {air }}=286.9 \cdot \frac{\mathrm{~J}}{\mathrm{~kg} \cdot \mathrm{~K}} \quad \text { and } \quad \mathrm{c}_{\mathrm{v}}=717.4 \cdot \frac{\mathrm{~J}}{\mathrm{~kg} \cdot \mathrm{~K}}
$$

$$
\Delta \mathrm{T}=\frac{286.9}{717.4} \times 459 \times 10^{6} \cdot \mathrm{~J} \times(20+273) \mathrm{K} \times \frac{1}{101 \times 10^{3}} \cdot \frac{\mathrm{~m}^{2}}{\mathrm{~N}} \times \frac{1}{3.5 \times 10^{5}} \cdot \frac{1}{\mathrm{~m}^{3}} \quad \Delta \mathrm{~T}=1.521 \mathrm{~K}
$$

This is the temperature change in 15 min . The rate of change is then $\frac{\Delta \mathrm{T}}{15 \cdot \mathrm{~min}}=6.09 \frac{\mathrm{~K}}{\mathrm{hr}}$

Given: Aluminum beverage can, $m_{c}=209, D=65 \mathrm{~mm}, H=120 \mathrm{~mm}$. Maximum contents level is hoax, when $\forall_{b}=354 \mathrm{~mL}$ of beverage.
sG of overage is 1.05 .
Find: (a) Center of mass, yo, vs. level, h.
(b) Level for least tendency to tip.
(c) Minimum coefficient of friction, μ_{s}, for fall can to tip, not slide.
(d) Plot $\left.\mu_{s}\right)_{m i n i m u m ~}$ for can to tip (rot slide)
as a function of beverage level in can.

Solution: $M_{b}=36 \varphi \forall_{b}=1.05 \times 1.0 \mathrm{~g} \frac{\mathrm{~cm}^{2}}{} \times 354 \mathrm{~mL} \times \frac{\mathrm{cm}^{3}}{\mathrm{~mL}}=372 \mathrm{~g}(\mathrm{max})$

$$
h_{\text {max }}=\frac{\forall_{b}}{A}=\frac{4 \forall_{b}}{\pi D^{2}}=\frac{4}{\pi} \times 354 \mathrm{~mL}_{\times} \frac{1}{(6.5)^{2} \mathrm{~cm}^{2}} \times \frac{\mathrm{cm}^{3}}{\mathrm{~mL}^{3}} \times 10 \mathrm{~mm} \frac{107 \mathrm{~mm}}{\mathrm{~cm}}=10
$$

At any level, $m_{b}=\frac{h}{h_{\text {max }}} M_{b} ; m_{b}(g)=\frac{h(m m)}{107 \mathrm{~mm}} \times 3729=3.47 \mathrm{~h}(\mathrm{~mm})$
From moment considerations,

$$
\begin{aligned}
y_{c} M & =\frac{h}{2} m_{b}+\frac{H}{2} m_{c}=\frac{1}{2}[h(3.47 h)+120(20)]=\frac{1}{2}\left(3.47 h^{2}+2400\right) \\
M & =m_{b}+m_{c}=3.47 h+20
\end{aligned}
$$

$$
y_{c}=\frac{3.47 h^{2}+2400}{6.94 h+40}(h \text { in } \mathrm{mm})
$$

Tendency to tip will be least when te is a minimum. Thus

$$
\frac{d y_{c}}{d h}=\frac{2(3.47 h)}{6.94 h+40}+(-16.95) \frac{3.47 h^{2}+2400}{(6.94 h+40)^{2}}=\frac{24.1 h^{2}+278 h-16,700}{(6.94 h+40)^{2}}=0
$$

Using the quadratic formula,

Draw a free-body diagram of the can at tipping:

$$
\begin{aligned}
\sum F_{x}= & F_{f}=m a_{x} \\
\sum F_{y}= & F_{n}-m g=m a_{y}=0 \\
& F_{n}=m g
\end{aligned}
$$

since $F_{f} \leqslant \mu_{s} F_{n}$, then $\mu_{s} F_{n} \geqslant$ max
Summing moments about point 0 :

To
or $\quad y_{c} m a_{x}=\frac{D}{2} F_{n}$
But max $\leq \mu_{s} F_{n}, \leq 0$

$$
y_{c} \mu_{s} F_{n} \geqslant \frac{D}{2} F_{n}
$$

Theses to tip

$$
\mu_{s} \geqslant \frac{D}{2 g<}
$$

Plotting,

For the full can with yo $=53.8 \mathrm{~mm}$,

$$
\mu_{s} \geqslant \frac{1}{2} \times 65 \mathrm{~mm} \times \frac{1}{53.8 \mathrm{~mm}}=0.604
$$

\qquad
This value is mech higher than the can could develop. Therefore the can will not tip; it will slide.

The corresponding acceleration is $\dot{a}_{x} \exists \mu_{s} g=0.593 \mathrm{~m} / \mathrm{s}^{2}$
4.10 The velocity field in the region shown is given by $\vec{V}=a z \hat{j}+b \hat{k}$, where $a=10 \mathrm{~s}^{-1}$ and $b=5 \mathrm{~m} / \mathrm{s}$. For the $1 \mathrm{~m} \times 1$ m triangular control volume (depth $w=1 \mathrm{~m}$ perpendicular to the diagram), an element of area (1) may be represented by $w(-d z \hat{j}+d y \hat{k})$ and an element of area (2) by $w d z \hat{j}$.
a. Find an expression for $\vec{V} \cdot d \vec{A}_{1}$.
b. Evaluate $\int_{A_{1}} \vec{V} \cdot d \vec{A}_{1}$.
c. Find an expression for $\vec{V} \cdot d \vec{A}_{2}$.
d. Find an expression for $\vec{V}\left(\vec{V} \cdot d \vec{A}_{2}\right)$.
e. Evaluate $\int_{A_{2}} \vec{V}\left(\vec{V} \cdot d \vec{A}_{2}\right)$.

Given: Data on velocity field and control volume geometry
Find: Several surface integrals

Solution:

$$
\begin{array}{ll}
d \vec{A}_{1}=-w d z \hat{j}+w d y \hat{k} & d \vec{A}_{1}=-d z \hat{j}+d y \hat{k} \\
d \vec{A}_{2}=w d z \hat{j} & d \vec{A}_{2}=d z \hat{j} \\
\vec{V}=(a z \hat{j}+b \hat{k}) & \vec{V}=(10 z \hat{j}+5 \hat{k})
\end{array}
$$

(a) $\vec{V} \cdot d A_{1}=(10 z \hat{j}+5 \hat{k}) \cdot(-d z \hat{j}+d y \hat{k})=-10 z d z+5 d y$
(b)

$$
\int_{A_{1}} \vec{V} \cdot d A_{1}=-\int_{0}^{1} 10 z d z+\int_{0}^{1} 5 d y=-\left.5 z^{2}\right|_{0} ^{1}+\left.5 y\right|_{0} ^{1}=0
$$

(c) $\vec{V} \cdot d A_{2}=(10 z \hat{j}+5 \hat{k}) \cdot(d z \hat{j})=10 z d z$
(d) $\vec{V}\left(\vec{V} \cdot d A_{2}\right)=(10 z \hat{j}+5 \hat{k}) 10 z d z$
(e) $\quad \int_{A_{2}} \vec{V}\left(\vec{V} \cdot d A_{2}\right)=\int_{0}^{1}(10 z \hat{j}+5 \hat{k}) 10 z d z=\left.\frac{100}{3} z^{3} \hat{j}\right|_{0} ^{1}+\left.25 z^{2} \hat{k}\right|_{0} ^{1}=33.3 \hat{j}+25 \hat{k}$
4.11 The shaded area shown is in a flow where the velocity field is given by $\vec{V}=a x \hat{i}-b y \hat{j} ; a=b=1 \mathrm{~s}^{-1}$, and the coordinates are measured in meters. Evaluate the volume flow rate and the momentum flux through the shaded area.

Given:
Geometry of 3D surface
Find: \quad Volume flow rate and momentum flux through area
Solution:

$$
\begin{array}{ll}
d \vec{A}=d x d z \hat{j}+d x d y \hat{k} & \\
\vec{V}=a x \hat{i}-b y \hat{j} & \vec{V}=x \hat{i}-y \hat{j}
\end{array}
$$

We will need the equation of the surface: $z=3-\frac{1}{2} y$ or $y=6-2 z$
a) Volume flow rate

$$
\begin{aligned}
Q & =\int_{A} \vec{V} \cdot d A=\int_{A}(x \hat{i}-y \hat{j}) \cdot(d x d z \hat{j}+d x d y \hat{k}) \\
& =\int_{0}^{10} \int_{0}^{3}-y d z d x=\int_{0}^{3}-10 y d z=\int_{0}^{3}-10(6-2 z) d z=-60 z+\left.10 z^{2}\right|_{0} ^{3} \\
Q & =(-180+90) \frac{\mathrm{ft}^{3}}{\mathrm{~s}} \\
Q & =-90 \frac{\mathrm{ft}^{3}}{\mathrm{~s}}
\end{aligned}
$$

b) Momentum flux

$$
\begin{aligned}
\rho \int_{A} \vec{V}(\vec{V} \cdot d \vec{A}) & =\rho \int_{A}(x \hat{i}-y \hat{j})(-y d x d z) \\
& =\rho \int_{0}^{10} \int_{0}^{3}(-x y) d z d x \hat{i}+\rho \int_{0}^{3} 10 y^{2} d z \hat{j} \\
& =-\rho \int_{0}^{10} x d x \int_{0}^{3}(6-2 z) d z \hat{i}+\rho \int_{0}^{3} 10(6-2 z)^{2} d z \hat{j} \\
& =\rho\left(-\left.\frac{x^{2}}{2}\right|_{0} ^{10}\right)\left(6 z-\left.z^{2}\right|_{0} ^{3}\right) \hat{i}+\rho\left(\left.10\left(36 z-12 z^{2}+\frac{4}{3} z^{3}\right)\right|_{0} ^{3}\right) \hat{j} \\
& =\rho(-50)(18-9) \hat{i}+\rho(10(108-108+36)) \hat{j} \\
& =-450 \rho \hat{i}+360 \hat{\rho} \quad\left(\frac{\mathrm{slug} \cdot \mathrm{ft} / \mathrm{s}}{\mathrm{~s}} \text { if } \rho \text { is in } \frac{\mathrm{slug}}{\mathrm{ft}^{3}}\right)
\end{aligned}
$$

Problem 4.12
Given: Control volume with linear velocity distribution across surface (1) as shown; width = w.
Find: al Volume flow rate, and (b) Momentum flux,

Solution:
Te volume flow rate is $Q=\langle\vec{V} \cdot d \vec{A}$ fit surface $0, \vec{V}=\frac{v}{h} y^{i}$ and $d A=-N d y i$
Rus

$$
\left.Q=\int_{y=0}^{h} \frac{y}{h} y i \cdot(-w d y i)=-\frac{W}{h} \int_{y-\infty}^{h} y d y=-\frac{N_{w} y^{2}}{h}\right]_{0}^{h}
$$

$$
Q=-\frac{1}{2} \text { thu. hume foo rato }
$$

Te momenturn flux is given by $n \cdot f=\langle\vec{V}(\vec{v} \cdot \overrightarrow{d A})$ Thus.

$$
\begin{aligned}
& m . \int_{0}^{h} \frac{v}{h} y^{i}\left(-p \frac{j w}{h} y d y\right)=-p \frac{v^{2} w}{h^{2}} i \int_{0}^{h} y^{2} d y=-p^{\frac{\nu^{2}}{h^{2}} i} \frac{y^{2}}{3} \int_{0}^{h} \\
& \text { m.f }=-\frac{1}{3} p v^{2} w h i
\end{aligned}
$$

Problem 4.13

4.13 The area shown shaded is in a flow where the velocity field is given by $\vec{V}=-a x \hat{i}+b y \hat{j}+c \hat{k} ; a=b=2 \mathrm{~s}^{-1}$ and $c=2.5 \mathrm{~m} / \mathrm{s}$. Write a vector expression for an element of the shaded area. Evaluate the integrals $\int \vec{V} \cdot d \vec{A}$ and $\int \vec{V}(\vec{V} \cdot d \vec{A})$ over the shaded area.

Given: Geometry of 3D surface
Find: Surface integrals
Solution:

$$
\begin{array}{ll}
d \vec{A}=d y d z \hat{i}-d x d z \hat{j} \\
\vec{V}=-a x \hat{i}+b y \hat{j}+c \hat{k} & \vec{V}=-2 x \hat{i}+2 y \hat{j}+2.5 \hat{k}
\end{array}
$$

We will need the equation of the surface: $y=\frac{3}{2} x$ or $x=\frac{2}{3} y$

$$
\begin{aligned}
\int_{A} \vec{V} \cdot d A & =\int_{A}(-a x \hat{i}+b y \hat{j}+c \hat{k}) \cdot(d y d z \hat{i}-d x d z \hat{j}) \\
& =\int_{0}^{2} \int_{0}^{3}-a x d y d z-\int_{0}^{2} \int_{0}^{2} b y d x d z=-a \int_{0}^{2} d z \int_{0}^{3} \frac{2}{3} y d y-b \int_{0}^{2} d z \int_{0}^{2} \frac{3}{2} x d x=-\left.2 a \frac{1}{3} y^{2}\right|_{0} ^{3}-\left.2 b \frac{3}{4} x^{2}\right|_{0} ^{2} \\
Q & =(-6 a-6 b) \\
Q & =-24 \frac{\mathrm{~m}^{3}}{\mathrm{~s}}
\end{aligned}
$$

We will again need the equation of the surface: $y=\frac{3}{2} x$ or $x=\frac{2}{3} y$, and also $d y=\frac{3}{2} d x$ and $a=b$

$$
\begin{aligned}
\int_{A} \vec{V}(\vec{V} \cdot d \vec{A}) & =\int_{A}(-a x \hat{i}+b y \hat{j}+c \hat{k})(-a x \hat{i}+b y \hat{j}+c \hat{k}) \cdot(d y d z \hat{i}-d x d z \hat{j}) \\
& =\int_{A}(-a x \hat{i}+b y \hat{j}+c \hat{k})(-a x d y d z-b y d x d z) \\
& =\int_{A}\left(-a x \hat{i}+\frac{3}{2} a x \hat{j}+c \hat{k}\right)\left(-a x \frac{3}{2} d x d z-a \frac{3}{2} x d x d z\right) \\
& =\int_{A}\left(-a x \hat{i}+\frac{3}{2} a x \hat{j}+c \hat{k}\right)(-3 a x d x d z) \\
& =3 \int_{0}^{2} \int_{0}^{2} a^{2} x^{2} d x d z \hat{i}-\frac{9}{2} \int_{0}^{2} \int_{0}^{2} a^{2} x^{2} d x d z \hat{j}-3 \int_{0}^{2} \int_{0}^{2} a c x d x d z \hat{k} \\
& =(6)\left(\left.a^{2} \frac{x^{3}}{3}\right|_{0} ^{2}\right) \hat{i}-(9)\left(\left.a^{2} \frac{x^{3}}{3}\right|_{0} ^{2}\right) \hat{j}-(6)\left(\left.a c \frac{x^{2}}{2}\right|_{0} ^{2}\right) \\
& =16 a^{2} \hat{i}-24 a^{2} \hat{j}-12 a c \hat{k} \\
& =64 \hat{i}-96 \hat{j}-60 \hat{k} \frac{\mathrm{~m}^{4}}{\mathrm{~s}^{2}}
\end{aligned}
$$

Given: Flow and $C V$ of Problem 4.12, as shown

Find: Expression for kinetic energy flux throcegh crosssection (1) of CV.
Solution: Kinetic energy flux is decried as kef $=\int_{A} \frac{V^{2}}{2} p \vec{V} \cdot d \vec{A}$ Model the velocity profit as $a=v \frac{y}{h}$, Then

$$
\vec{V}=u \hat{\imath}=V \frac{\zeta}{h} \hat{c} ; V^{2}=V^{2}\left(\frac{y}{h}\right)^{2}
$$

Since flow is into the $C V, \vec{V} \cdot d \vec{A}=-u d A=-V \frac{Y}{h} w d y$
substitheting,

$$
\begin{aligned}
\text { Let } & =\int_{A} \frac{V^{2}}{2}\left(\frac{y}{h}\right)^{2}\left\{-\rho v \frac{y}{h} w d c\right\}=-\frac{\rho v^{3} \omega}{2 h^{3}} \int_{0}^{h} g^{3} d y \\
& =-\frac{\rho v^{3} w}{2 h^{3}}\left[\frac{y^{4}}{4}\right]_{0}^{h}
\end{aligned}
$$

$$
k e t=-\rho \frac{v^{3} w h}{8}
$$

check dimensions:

$$
[\text { Kef }]=\frac{M}{L^{3}}\left(\frac{L}{t}\right)^{3} L L=\frac{M L^{2}}{t^{3}} \times \frac{F t^{2}}{M L}=\frac{F L}{t}=\frac{\text { Emerge }}{\text { Tine }} w
$$

Problem 4.15
Given: Velocity distribution for laminar flow in a long circular

$$
\vec{V}=u \hat{\imath}=u_{\max }\left[1-\left(\frac{r}{Q}\right)^{2}\right] \hat{\imath}
$$

where R is the tube radios:

Evaluate: (a) Te Jolvere flow rate and (b) the momerturn flit, trough a section normal to the pipe acis.
Solution: Te soleure flaw rate is gwen by

$$
\begin{align*}
& \int_{A_{\text {tube }}} \vec{V} \cdot d \vec{A}=\int_{0}^{R} u_{\operatorname{ran}}\left[1-\left(\frac{r}{R}\right)^{2}\right] \hat{\imath} \cdot 2 \pi r d r^{r} \quad \quad\left\{A=\pi r^{2}, d A=2 \pi r d r\right\} \\
& =u_{\max } 2 r \int_{0}^{e}\left[1-\left(\frac{r}{R}\right)^{2}\right] r d r=u_{\max } 2 r \int_{0}^{R}\left[r-\frac{r^{3}}{R^{2}}\right] d r \\
& =u_{\text {max }} 2 \pi\left[\frac{r^{2}}{2}-\frac{r^{4}}{4 R^{2}}\right]_{0}^{R}=u_{\max } 2 \pi\left[\frac{R^{2}}{2}-\frac{R^{2}}{4}\right] \\
& \int_{R_{\text {tube }}} \vec{V} \cdot \overrightarrow{d A}=\frac{1}{2} u_{\text {max }} \pi R^{2}
\end{align*}
$$

Te mornenture flux is gwen by

$$
\begin{aligned}
& \int_{F_{\text {amber }}} \vec{V}(\vec{V} \cdot \overrightarrow{d P})=\int_{0}^{R} u_{\text {max }}\left[1-\left(\frac{R}{R}\right)^{2}\right] \hat{L}\left\{u_{\max }\left[1-\left(\frac{\pi}{R}\right)^{2}\right) \hat{i} \cdot 2 x+d t i\right\} \\
& =\int_{0}^{e} u_{\max }\left[1-\left(\frac{R}{R}\right)^{2}\right] i\left\{u_{\max } 2 r\left[r-\frac{r^{3}}{R^{2}}\right] d r\right\} \\
& =u_{\text {max }}^{2} 2 \pi \int_{0}^{R}\left(r-\frac{2 r^{3}}{R^{2}}+\frac{r^{5}}{R^{m}}\right) d r \hat{\imath} \\
& =u_{\max }^{2} 2 r\left[\frac{5^{2}}{2}-\frac{5^{4}}{2 R^{2}}+\frac{5^{m}}{6 R^{k}}\right]_{0}^{k} \hat{L} \\
& =u_{\text {max }}^{2} 2 \times R^{2}\left[\frac{1}{2}-\frac{1}{2}+\frac{1}{6}\right] \hat{L} \\
& \int \vec{V}(\vec{V} \cdot \overrightarrow{d F})=\frac{1}{3} u_{\text {max }}^{2} \pi R^{2} \hat{\imath} \quad \text { momentary } f u x
\end{aligned}
$$

Problem 4.16
Given: Velocity profile in a circular tube,

$$
\vec{V}=\mu \hat{\imath}=u_{\max }\left[1-\left(\frac{r}{R}\right)^{2}\right] \hat{\imath}
$$

Find: Expression for kinetic energy flux, kef $=\int_{\overrightarrow{2}}^{\frac{V^{2}}{2} p \vec{v} \cdot d \vec{A}}$ Solution: $v^{2}=\vec{v} \cdot \vec{v}=u_{\max }^{2}\left[1-\left(\frac{r}{R}\right)^{2}\right]^{2}=u_{\max }^{2}\left[1-2\left(\frac{r}{R}\right)^{2}+\left(\frac{r}{R}\right)^{4}\right]$

$$
\begin{aligned}
& d \vec{A}=2 \pi r d r \hat{\imath} \\
& \vec{V} \cdot d \vec{A}=2 \pi r U_{\max }\left[1-\left(\frac{r}{R}\right)^{2}\right]
\end{aligned}
$$

Then

$$
\begin{aligned}
\text { kef } & =\int_{0}^{R} \frac{u_{\max }^{2}}{\not Z}\left[1-2\left(\frac{r}{R}\right)^{2}+\left(\frac{r}{R}\right)^{4}\right] \rho \not d^{2} u_{\max }\left[1-\left(\frac{r}{R}\right)^{2}\right] d r \\
& =\pi \rho u_{\max }^{3} \int_{0}^{R}\left[1-3\left(\frac{r}{R}\right)^{2}+3\left(\frac{r}{R}\right)^{4}-\left(\frac{r}{R}\right)^{6}\right] r d r \\
& =\pi \rho u_{\max }^{3} R^{2} \int_{0}^{1}\left[1-3\left(\frac{r}{R}\right)^{2}+3\left(\frac{r}{R}\right)^{4}-\left(\frac{r}{R}\right)^{6}\right] G d\left(\frac{r}{R}\right) \\
& =\pi \rho u_{\max }^{3} R^{2}\left[\frac{1}{2}\left(\frac{r}{R}\right)^{2}-\frac{3}{4}\left(\frac{r}{R}\right)^{4}+\frac{1}{2}\left(\frac{r}{R}\right)^{6}-\frac{1}{8}\left(\frac{r}{R}\right)^{8}\right]_{0}^{1} \\
& =\pi R^{2} \rho u_{\max }^{2}\left[\frac{1}{2}-\frac{3}{4}+\frac{1}{2}-\frac{1}{8}\right]
\end{aligned}
$$

$$
\text { kef }=\frac{\pi R^{2} \rho u^{3} \max }{8}
$$

Problem 4.17

4.17 A farmer is spraying a liquid through 10 nozzles, $1 / 8$ th in. ID, at an average exit velocity of $10 \mathrm{ft} / \mathrm{s}$. What is the average velocity in the $1-\mathrm{in}$. ID head feeder? What is the system flow rate, in gpm?

Given: Data on flow through nozzles

Find: Average velocity in head feeder; flow rate

Solution:

Basic equation $\quad \sum_{\mathrm{CS}}(\overrightarrow{\mathrm{V}} \cdot \overrightarrow{\mathrm{A}})=0$
Assumptions: 1) Steady flow 2) Incompressible flow 3) Uniform flow
Then for the nozzle flow $\sum_{\mathrm{CS}}\left(\begin{array}{c}\overrightarrow{\mathrm{V}} \cdot \overrightarrow{\mathrm{A}}\end{array}\right)=-\mathrm{V}_{\text {feeder }} \cdot \mathrm{A}_{\text {feeder }}+10 \cdot \mathrm{~V}_{\text {nozzle }} \cdot \mathrm{A}_{\text {nozzle }}=0$

Hence

$$
\begin{aligned}
& \mathrm{V}_{\text {feeder }}=\mathrm{V}_{\text {nozzle }} \cdot \frac{10 \cdot \mathrm{~A}_{\text {nozzle }}}{\mathrm{A}_{\text {feeder }}}=\mathrm{V}_{\text {nozzle }} \cdot 10 \cdot\left(\frac{\mathrm{D}_{\text {nozzle }}}{\mathrm{D}_{\text {feeder }}}\right)^{2} \\
& \mathrm{~V}_{\text {feeder }}=10 \cdot \frac{\mathrm{ft}}{\mathrm{~s}} \times 10 \times\left(\frac{\frac{1}{8}}{1}\right)^{2}
\end{aligned} \quad \mathrm{~V}_{\text {feeder }}=1.56 \cdot \frac{\mathrm{ft}}{\mathrm{~s}} .
$$

The flow rate is

$$
\begin{aligned}
& \mathrm{Q}=\mathrm{V}_{\text {feeder }} \cdot \mathrm{A}_{\text {feeder }}=\mathrm{V}_{\text {feeder }} \cdot \frac{\pi \cdot \mathrm{D}_{\text {feeder }}}{4} \\
& \mathrm{Q}=1.56 \cdot \frac{\mathrm{ft}}{\mathrm{~s}} \times \frac{\pi}{4} \times\left(1 \cdot \mathrm{in} \times \frac{1 \cdot \mathrm{ft}}{12 \cdot \mathrm{in}}\right)^{2} \times \frac{7.48 \cdot \mathrm{gal}}{1 \cdot \mathrm{ft}^{3}} \times \frac{60 \cdot \mathrm{~s}}{1 \cdot \mathrm{~min}}
\end{aligned}
$$

4.18 A cylindrical holding water tank has a 3 m ID , and a height of 3 m . There is one inlet of diameter 10 cm , an exit of diameter 8 cm , and a drain. The tank is initially empty when the inlet pump is turned on, producing an average inlet velocity of $5 \mathrm{~m} / \mathrm{s}$. When the level in the tank reaches 0.7 m , the exit pump turns on, causing flow out of the exit; the exit average velocity is $3 \mathrm{~m} / \mathrm{s}$. When the water level reaches 2 m the drain is opened such that the level remains at 2 m . Find (a) the time at which the exit pump is switched on, (b) the time at which the drain is opened, and (c) the flow rate into the drain $\left(\mathrm{m}^{3} / \mathrm{min}\right)$.

Given: Data on flow into and out of tank

Find: \quad Time at which exit pump is switched on; time at which drain is opened; flow rate into drain

Solution:

Basic equation $\quad \frac{\partial}{\partial t} \mathrm{M}_{\mathrm{CV}}+\sum_{\mathrm{CS}}(\rho \cdot \overrightarrow{\mathrm{V} \cdot \mathrm{A}})=0$
Assumptions: 1) Uniform flow 2) Incompressible flow
After inlet pump is on $\frac{\partial}{\partial t} M_{C V}+\sum_{C S}\binom{\vec{~} \cdot \overrightarrow{\mathrm{C}}}{\rho \cdot \mathrm{V} \cdot \mathrm{A}}=\frac{\partial}{\partial \mathrm{t}} \mathrm{M}_{\operatorname{tank}}-\rho \cdot \mathrm{V}_{\mathrm{in}} \cdot \mathrm{A}_{\text {in }}=0 \quad \frac{\partial}{\partial \mathrm{t}} \mathrm{M}_{\operatorname{tank}}=\rho \cdot \mathrm{A}_{\operatorname{tank}} \cdot \frac{\mathrm{dh}}{\mathrm{dt}}=\rho \cdot \mathrm{V}_{\text {in }} \cdot A_{\text {in }}$
where h is the level of water $\frac{d h}{d t}=V_{i n} \cdot \frac{A_{i n}}{A_{\operatorname{tank}}}=V_{i n} \cdot\left(\frac{D_{\text {in }}}{D_{\operatorname{tank}}}\right)^{2}$ in the tank

Hence the time to reach $h_{\text {exit }}=0.7 m$ is $\quad t_{\text {exit }}=\frac{h_{\text {exit }}}{\frac{d h}{d t}}=\frac{h_{\text {exit }}}{V_{\text {in }}} \cdot\left(\frac{D_{\text {tank }}}{D_{\text {in }}}\right)^{2} \quad t_{\text {exit }}=0.7 \cdot \mathrm{~m} \times \frac{1}{5} \cdot \frac{\mathrm{~s}}{\mathrm{~m}} \times\left(\frac{3 \cdot \mathrm{~m}}{0.1 \cdot m}\right)^{2} \quad t_{\text {exit }}=126 \mathrm{~s}$
After exit pump is on $\quad \frac{\partial}{\partial t} M_{C V}+\sum_{C S}(\rho \cdot \vec{V} \cdot \vec{A})=\frac{\partial}{\partial t} M_{\text {tank }}-\rho \cdot V_{i n} \cdot A_{i n}+\rho \cdot V_{\text {exit }} \cdot A_{\text {exit }}=0 \quad A_{\text {tank }} \cdot \frac{d h}{d t}=V_{i n} \cdot A_{i n}-V_{\text {exit }} \cdot A_{\text {exit }}$

$$
\frac{d h}{d t}=V_{\text {in }} \cdot \frac{A_{\text {in }}}{A_{\text {tank }}}-V_{\text {exit }} \cdot \frac{A_{\text {exit }}}{A_{\text {tank }}}=V_{\text {in }} \cdot\left(\frac{D_{\text {in }}}{D_{\text {tank }}}\right)^{2}-V_{\text {exit }} \cdot\left(\frac{D_{\text {exit }}}{D_{\text {tank }}}\right)^{2}
$$

Hence the time to reach $h_{\text {drain }}=2 m$ is $\quad t_{\text {drain }}=t_{\text {exit }}+\frac{\left(h_{\text {drain }}-h_{\text {exit }}\right)}{\frac{d h}{d t}}=\frac{\left(h_{\text {drain }}-h_{\text {exit }}\right)}{V_{\text {in }} \cdot\left(\frac{D_{\text {in }}}{D_{\text {tank }}}\right)^{2}-V_{\text {exit }} \cdot\left(\frac{D_{\text {exit }}}{D_{\text {tank }}}\right)^{2}}$

$$
\mathrm{t}_{\text {drain }}=126 \cdot \mathrm{~s}+(2-0.7) \cdot \mathrm{m} \times \frac{1}{5 \cdot \frac{\mathrm{~m}}{\mathrm{~s}} \times\left(\frac{0.1 \cdot \mathrm{~m}}{3 \cdot \mathrm{~m}}\right)^{2}-3 \cdot \frac{\mathrm{~m}}{\mathrm{~s}} \times\left(\frac{0.08 \cdot \mathrm{~m}}{3 \cdot \mathrm{~m}}\right)^{2}}
$$

$$
\mathrm{t}_{\text {drain }}=506 \mathrm{~s}
$$

The flow rate into the drain is equal to the net inflow (the level in the tank is now constant)

$$
\mathrm{Q}_{\text {drain }}=\mathrm{V}_{\mathrm{in}} \cdot \frac{\pi \cdot \mathrm{D}_{\text {in }}^{2}}{4}-\mathrm{V}_{\text {exit }} \cdot \frac{\pi \cdot \mathrm{D}_{\text {exit }}^{2}}{4} \quad \mathrm{Q}_{\text {drain }}=5 \cdot \frac{\mathrm{~m}}{\mathrm{~s}} \times \frac{\pi}{4} \times(0.1 \cdot \mathrm{~m})^{2}-3 \cdot \frac{\mathrm{~m}}{\mathrm{~s}} \times \frac{\pi}{4} \times(0.08 \cdot \mathrm{~m})^{2} \quad \mathrm{Q}_{\text {drain }}=0.0242 \frac{\mathrm{~m}^{3}}{\mathrm{~s}}
$$

4.19 A wet cooling tower cools warm water by spraying it into a forced dry-air flow. Some of the water evaporates in this air and is carried out of the tower into the atmosphere; the evaporation cools the remaining water droplets, which are collected at the exit pipe (6 in . ID) of the tower. Measurements indicate the warm water mass flow rate is $250,000 \mathrm{lb} / \mathrm{hr}$, and the cool water $\left(70^{\circ} \mathrm{F}\right)$ flows at an average speed of $5.55 \mathrm{ft} / \mathrm{s}$ in the exit pipe. The flow rate of the moist air is to be obtained from measurements of the velocity at four points, each representing $1 / 4$ of the air stream cross-sectional area of $13.2 \mathrm{ft}^{2}$. The moist air density is $0.066 \mathrm{lb} / \mathrm{ft}^{3}$. Find (a) the volume and mass flow rates of the cool water, (b) the mass flow rate of the moist air, and (c) the mass flow rate of the dry air.

Given: Data on flow into and out of cooling tower
Find: \quad Volume and mass flow rate of cool water; mass flow rate of moist and dry air

Solution:

Basic equation $\quad \sum_{\mathrm{CS}}\left(\begin{array}{r}\overrightarrow{\mathrm{V}} \cdot \overrightarrow{\mathrm{A}})=0 \quad \text { and at each inlet/exit } \quad \mathrm{Q}=\mathrm{V} \cdot \mathrm{A}\end{array}\right.$
Assumptions: 1) Uniform flow 2) Incompressible flow
$\begin{array}{llll}\text { At the cool water exit } & \mathrm{Q}_{\mathrm{cool}}=\mathrm{V} \cdot \mathrm{A} & \mathrm{Q}_{\mathrm{cool}}=5.55 \cdot \frac{\mathrm{ft}}{\mathrm{s}} \times \frac{\pi}{4} \times(0.5 \cdot \mathrm{ft})^{2} & \mathrm{Q}_{\mathrm{cool}}=1.09 \frac{\mathrm{ft}^{3}}{\mathrm{~s}} \quad \mathrm{Q}_{\mathrm{cool}}=489 \mathrm{gpm} \\ \text { The mass flow rate is } & \mathrm{m}_{\mathrm{cool}}=\rho \cdot \mathrm{Q}_{\mathrm{cool}} & \mathrm{m}_{\mathrm{cool}}=1.94 \cdot \frac{\mathrm{slug}}{\mathrm{ft}^{3}} \times 1.09 \cdot \frac{\mathrm{ft}^{3}}{\mathrm{~s}} & \mathrm{~m}_{\mathrm{cool}}=2.11 \frac{\mathrm{slug}}{\mathrm{s}}\end{array} \quad \mathrm{m}_{\mathrm{cool}}=2.45 \times 10^{5} \frac{\mathrm{lb}}{\mathrm{hr}}$
NOTE: Software does not allow dots over terms, so m represents mass flow rate, not mass!
For the air flow we need to use $\quad \sum_{\mathrm{CS}}(\rho \cdot \overrightarrow{\mathrm{V}} \cdot \overrightarrow{\mathrm{A}})=0 \quad$ to balance the water flow
We have

$$
-\mathrm{m}_{\mathrm{warm}}+\mathrm{m}_{\mathrm{cool}}+\mathrm{m}_{\mathrm{v}}=0 \quad \mathrm{~m}_{\mathrm{v}}=\mathrm{m}_{\mathrm{warm}}-\mathrm{m}_{\mathrm{cool}}
$$

$$
\mathrm{m}_{\mathrm{v}}=5073 \frac{\mathrm{lb}}{\mathrm{hr}}
$$

This is the mass flow rate of water vapor. We need to use this to obtain air flow rates. From psychrometrics $x=\frac{m_{v}}{m_{\text {air }}}$
where x is the relative humidity. It is also known (try Googling "density of moist air") that

$$
\frac{\rho_{\text {moist }}}{\rho_{\mathrm{dry}}}=\frac{1+\mathrm{x}}{1+\mathrm{x} \cdot \frac{\mathrm{R}_{\mathrm{H} 2 \mathrm{O}}}{\mathrm{R}_{\mathrm{air}}}}
$$

We are given $\quad \rho_{\text {moist }}=0.066 \cdot \frac{\mathrm{lb}}{\mathrm{ft}^{3}}$
For dry air we could use the ideal gas equation $\rho_{d r y}=\frac{P}{R \cdot T} \quad$ but here we use atmospheric air density (Table A.3)

$$
\rho_{\mathrm{dry}}=0.002377 \cdot \frac{\mathrm{slug}}{\mathrm{ft}^{3}} \quad \rho_{\mathrm{dry}}=0.002377 \cdot \frac{\operatorname{slug}}{\mathrm{ft}^{3}} \times 32.2 \cdot \frac{\mathrm{lb}}{\mathrm{slug}} \quad \quad \rho_{\mathrm{dry}}=0.0765 \frac{\mathrm{lb}}{\mathrm{ft}^{3}}
$$

Note that moist air is less dense than dry air!

Hence $\quad \frac{0.066}{0.0765}=\frac{1+\mathrm{x}}{1+\mathrm{x} \cdot \frac{85.78}{53.33}} \quad$ using data from Table A. 6

$$
\mathrm{x}=\frac{0.0765-0.066}{0.066 \cdot \frac{85.78}{53.33}-.0765} \quad \mathrm{x}=0.354
$$

Hence $\quad \frac{\mathrm{m}_{\mathrm{v}}}{\mathrm{m}_{\mathrm{air}}}=\mathrm{x} \quad$ leads to $\quad \mathrm{m}_{\mathrm{air}}=\frac{\mathrm{m}_{\mathrm{v}}}{\mathrm{x}} \quad \mathrm{m}_{\mathrm{air}}=5073 \cdot \frac{\mathrm{lb}}{\mathrm{hr}} \times \frac{1}{0.354} \quad \mathrm{~m}_{\text {air }}=14331 \frac{\mathrm{lb}}{\mathrm{hr}}$

Finally, the mass flow rate of moist air is

$$
\mathrm{m}_{\text {moist }}=\mathrm{m}_{\mathrm{v}}+\mathrm{m}_{\mathrm{air}} \quad \mathrm{~m}_{\text {moist }}=19404 \frac{\mathrm{lb}}{\mathrm{hr}}
$$

Problem 4.20

4.20 A university laboratory wishes to build a wind tunnel with variable speeds. Rather than use a variable speed fan, it is proposed to build the tunnel with a sequence of three circular test sections: Section 1 will have a diameter of 5 ft , Section 2 a diameter of 3 ft , and Section 3 a diameter of 2 ft . If the average speed in Section 1 is 20 mph , what will be the speeds in the other two sections? What will be the flow rate $\left(\mathrm{ft}^{3} / \mathrm{min}\right)$?

Given: Data on wind tunnel geometry
Find: \quad Average speeds in wind tunnel

Solution:

Basic equation $\quad \mathrm{Q}=\mathrm{V} \cdot \mathrm{A}$

Assumptions: 1) Steady flow 2) Incompressible flow 3) Uniform flow

Between sections 1 and 2

$$
\mathrm{Q}=\mathrm{V}_{1} \cdot \mathrm{~A}_{1}=\mathrm{V}_{1} \cdot \frac{\pi \cdot \mathrm{D}_{1}^{2}}{4}=\mathrm{V}_{2} \cdot \mathrm{~A}_{2}=\mathrm{V}_{2} \cdot \frac{\pi \cdot \mathrm{D}_{2}^{2}}{4}
$$

Hence

$$
\mathrm{V}_{2}=\mathrm{V}_{1} \cdot\left(\frac{\mathrm{D}_{1}}{\mathrm{D}_{2}}\right)^{2} \quad \mathrm{~V}_{2}=20 \cdot \mathrm{mph} \cdot\left(\frac{5}{3}\right)^{2} \quad \mathrm{~V}_{2}=55.6 \mathrm{mph}
$$

Similarly

$$
\mathrm{V}_{3}=\mathrm{V}_{1} \cdot\left(\frac{\mathrm{D}_{1}}{\mathrm{D}_{3}}\right)^{2} \quad \mathrm{~V}_{3}=20 \cdot \mathrm{mph} \cdot\left(\frac{5}{2}\right)^{2} \quad \mathrm{~V}_{3}=125 \mathrm{mph}
$$

4.21 Fluid with $65 \mathrm{lbm} / \mathrm{ft}^{3}$ density is flowing steadily through the rectangular box shown. Given $A_{1}=0.5 \mathrm{ft}^{2}, A_{2}=0.1 \mathrm{ft}^{2}, A_{3}=$ $0.6 \mathrm{ft}^{2}, \vec{V}_{1}=10 \hat{\hat{i}} \mathrm{ft} / \mathrm{s}$, and $\vec{V}_{2}=20 \hat{j} \mathrm{ft} / \mathrm{s}$, determine velocity \vec{V}_{3}.

Given: Data on flow through box
Find: Velocity at station 3

Solution:

Basic equation $\quad \sum_{\mathrm{CS}}(\overrightarrow{\mathrm{V}} \cdot \overrightarrow{\mathrm{A}})=0$
Assumptions: 1) Steady flow 2) Incompressible flow 3) Uniform flow
Then for the box $\quad \sum_{C S}(\vec{V} \cdot \overrightarrow{\mathrm{~V}})=-V_{1} \cdot A_{1}+V_{2} \cdot A_{2}+V_{3} \cdot A_{3}=0$
Note that the vectors indicate that flow is in at location 1 and out at location 2; we assume outflow at location 3

Hence

$$
\mathrm{V}_{3}=\mathrm{V}_{1} \cdot \frac{\mathrm{~A}_{1}}{\mathrm{~A}_{3}}-\mathrm{V}_{2} \cdot \frac{\mathrm{~A}_{2}}{\mathrm{~A}_{3}}
$$

$V_{3}=10 \cdot \frac{\mathrm{ft}}{\mathrm{s}} \times \frac{0.5}{0.6}-20 \cdot \frac{\mathrm{ft}}{\mathrm{s}} \times \frac{0.1}{0.6}$
$\mathrm{V}_{3}=5 \frac{\mathrm{ft}}{\mathrm{s}}$

Based on geometry

$$
\begin{aligned}
& \mathrm{V}_{\mathrm{x}}=\mathrm{V}_{3} \cdot \sin (60 \cdot \mathrm{deg}) \\
& \mathrm{V}_{\mathrm{y}}=-\mathrm{V}_{3} \cdot \cos (60 \cdot \mathrm{deg}) \\
& \overrightarrow{\mathrm{V}_{3}}=\left(4.33 \cdot \frac{\mathrm{ft}}{\mathrm{~s}},-2.5 \cdot \frac{\mathrm{ft}}{\mathrm{~s}}\right)
\end{aligned}
$$

$$
\mathrm{V}_{\mathrm{x}}=4.33 \frac{\mathrm{ft}}{\mathrm{~s}}
$$

$$
V_{y}=-2.5 \frac{\mathrm{ft}}{\mathrm{~s}}
$$

4.22 Consider steady, incompressible flow through the device shown. Determine the magnitude and direction of the volume flow rate through port 3 .

Given: Data on flow through device
Find: Volume flow rate at port 3

Solution:

Basic equation $\quad \sum_{\mathrm{CS}}(\overrightarrow{\mathrm{V}} \cdot \overrightarrow{\mathrm{A}})=0$
Assumptions: 1) Steady flow 2) Incompressible flow 3) Uniform flow
Then for the box $\quad \sum_{C S}\binom{\vec{V} \cdot \vec{A}}{\mathrm{~V} \cdot \mathrm{~A}}=-V_{1} \cdot A_{1}+V_{2} \cdot A_{2}+V_{3} \cdot A_{3}=-V_{1} \cdot A_{1}+V_{2} \cdot A_{2}+Q_{3}$
Note we assume outflow at port 3
Hence $\quad \mathrm{Q}_{3}=\mathrm{V}_{1} \cdot \mathrm{~A}_{1}-\mathrm{V}_{2} \cdot \mathrm{~A}_{2} \quad \mathrm{Q}_{3}=3 \cdot \frac{\mathrm{~m}}{\mathrm{~s}} \times 0.1 \cdot \mathrm{~m}^{2}-10 \cdot \frac{\mathrm{~m}}{\mathrm{~s}} \times 0.05 \cdot \mathrm{~m}^{2} \quad \mathrm{Q}_{3}=-0.2 \cdot \frac{\mathrm{~m}^{3}}{\mathrm{~s}}$
The negative sign indicates the flow at port 3 is inwards.
Flow rate at port 3 is $0.2 \mathrm{~m}^{3} / \mathrm{s}$ inwards
4.23 A rice farmer needs to fill her 5 acre field with water to a depth of 3 in . in 1 hr . How many 6 in . diameter supply pipes are needed if the average velocity in each must be less than $10 \mathrm{ft} / \mathrm{s}$?

Given: Water needs of farmer

Find: \quad Number of 6 in. pipes needed

Solution:

Basic equation $\quad \mathrm{Q}=\mathrm{V} \cdot \mathrm{A}$
Assumptions: 1) Steady flow 2) Incompressible flow 3) Uniform flow
Then $\quad \mathrm{Q}=\mathrm{n} \cdot \mathrm{V} \cdot \frac{\pi \cdot \mathrm{D}^{2}}{4} \quad$ where n is the number of pipes, V is the average velocity in the pipes, and D is the pipe diameter
The flow rate is given by $\quad \mathrm{Q}=\frac{5 \cdot \mathrm{acre} \cdot 0.25 \cdot \mathrm{ft}}{1 \cdot \mathrm{hr}}=\frac{5 \cdot \mathrm{acre} \cdot 0.25 \cdot \mathrm{ft}}{1 \cdot \mathrm{hr}} \times \frac{43560 \cdot \mathrm{ft}^{2}}{1 \cdot \mathrm{acre}} \times \frac{1 \cdot \mathrm{hr}}{3600 \cdot \mathrm{~s}} \quad$ Data on acres from Googling!
$\begin{aligned} \mathrm{Q} & =15.1 \cdot \frac{\mathrm{ft}^{3}}{\mathrm{~s}} \\ \text { Hence } \quad \mathrm{n}=\frac{4 \cdot \mathrm{Q}}{\pi \cdot \mathrm{V} \cdot \mathrm{D}^{2}} \quad \mathrm{n} & =\frac{4}{\pi} \times \frac{\mathrm{s}}{10 \cdot \mathrm{ft}} \times\left(\frac{1}{0.5 \cdot \mathrm{ft}}\right)^{2} \times 15.1 \cdot \frac{\mathrm{ft}^{3}}{\mathrm{~s}}\end{aligned}$
Hence we need at least eight pipes

Problem 4.24

4.24 You are filling your car with gasoline at a rate of 5.3 gals/ min . Although you can't see it, the gasoline is rising in the tank at a rate of 4.3 in. per minute. What is the horizontal cross-sectional area of your gas tank? Is this a realistic answer?

Given: Data on filling of gas tank
Find: Cross-section area of tank

Solution:

We can treat this as a steady state problem if we choose a CS as the original volume of gas in the tank, so that additional gas "leaves" the gas as the gas level in the tank rises, OR as an unsteady problem if we choose the CS as the entire gas tank. We choose the latter

Basic equation $\frac{\partial}{\partial \mathrm{t}} \mathrm{M}_{\mathrm{CV}}+\sum_{\mathrm{CS}}(\underset{\mathrm{C}}{\overrightarrow{\mathrm{V}} \cdot \overrightarrow{\mathrm{A}})=0}$

Assumptions: 1) Incompressible flow 2) Uniform flow

Hence

$$
\frac{\partial}{\partial \mathrm{t}} \mathrm{M}_{\mathrm{CV}}=\rho \cdot \mathrm{A} \cdot \frac{\mathrm{dh}}{\mathrm{dt}}=-\sum_{\mathrm{CS}}(\underset{\vec{~}}{\mathrm{H}} \rho \cdot \mathrm{~V} \cdot \mathrm{~A})=\rho \cdot \mathrm{Q}
$$

where Q is the gas fill rate, A is the tank cross-section area, and h is the rate of rise in the gas tank
Hence

$$
\begin{array}{ll}
\mathrm{A}=\frac{\mathrm{Q}}{\frac{\mathrm{dh}}{\mathrm{dt}}} & \mathrm{~A}=5.3 \cdot \frac{\mathrm{gal}}{\min } \times \frac{1 \cdot \mathrm{ft}^{3}}{7.48 \cdot \mathrm{gal}} \times \frac{1}{4.3} \cdot \frac{\mathrm{~min}}{\mathrm{in}} \times \frac{12 \cdot \mathrm{in}}{1 \cdot \mathrm{ft}} \quad \text { Data on gals from Table } \mathrm{G} .2 \\
\mathrm{~A}=1.98 \mathrm{ft}^{2} & \mathrm{~A}=285 \mathrm{in}^{2} \quad \text { This seems like a reasonable area e.g., } 1 \mathrm{ft} \times 2 \mathrm{ft}
\end{array}
$$

Problem 4.25

4.25 For your sink at home, the flow rate in is 5000 units/hr. Accumulation is 2500 units. What is the accumulation rate if the outflow is 60 units/min? Suddenly, the outflow becomes 13 units/ min : What is the accumulation rate? At another time, the flow rate in is 5 units $/ \mathrm{sec}$. The accumulation is 50 units. The accumulation rate is -4 units $/ \mathrm{sec}$. What is the flow rate out?

Given: Data on filling of a sink
Find: Accumulation rate under various circumstances

Solution:

This is an unsteady problem if we choose the CS as the entire sink
Basic equation $\quad \frac{\partial}{\partial \mathrm{t}} \mathrm{M}_{\mathrm{CV}}+\sum_{\mathrm{CS}}\binom{\overrightarrow{\mathrm{C}} \cdot \overrightarrow{\mathrm{A}}}{\rho \cdot \mathrm{V} \cdot \mathrm{A}}=0$
Assumptions: 1) Incompressible flow

Hence

$$
\frac{\partial}{\partial \mathrm{t}} \mathrm{M}_{\mathrm{CV}}=\text { Accumulationrate }=-\sum_{\mathrm{CS}}\binom{\overrightarrow{-}}{\rho \cdot \mathrm{V} \cdot \mathrm{~A}}=\text { Inflow }- \text { Outflow }
$$

Accumulationrate $=$ Inflow - Outflow
For the first case
For the second case Accumulationrate $=5000 \cdot \frac{\text { units }}{\mathrm{hr}}-13 \cdot \frac{\mathrm{units}}{\min } \times \frac{60 \cdot \mathrm{~min}}{\mathrm{hr}} \quad$ Accumulationrate $=4220 \cdot \frac{\text { units }}{\mathrm{hr}}$
For the third case \quad Outflow $=$ Inflow - Accumulationrate

$$
\text { Outflow }=5 \cdot \frac{\text { units }}{\mathrm{s}}-(-4) \cdot \frac{\text { units }}{\mathrm{s}} \quad \text { Outflow }=9 \cdot \frac{\text { units }}{\mathrm{s}}
$$

Problem 4.26

4.26 You are trying to pump storm water out of your basement during a storm. The pump can extract 10 gpm . The water level in the basement is now sinking about $1 \mathrm{in} . / \mathrm{hr}$. What is the flow rate (gpm) from the storm into the basement? The basement is 25 ft by 20 ft .

Given: Data on filling of a basement during a storm
Find: Flow rate of storm into basement

Solution:

This is an unsteady problem if we choose the CS as the entire basement

Basic equation

$$
\frac{\partial}{\partial \mathrm{t}} \mathrm{M}_{\mathrm{CV}}+\sum_{\mathrm{CS}}(\underset{\mathrm{CS}}{ }(\rho \cdot \mathrm{~V} \cdot \mathrm{~A})=0
$$

Assumptions: 1) Incompressible flow

Hence
or

$$
\begin{array}{ll}
\frac{\partial}{\partial \mathrm{t}} \mathrm{M}_{\mathrm{CV}}=\rho \cdot \mathrm{A} \cdot \frac{\mathrm{dh}}{\mathrm{dt}}=-\sum_{\mathrm{CS}}(\rho \cdot \overrightarrow{\mathrm{~V}} \cdot \overrightarrow{\mathrm{~A}})=\rho \cdot \mathrm{Q}_{\text {storm }}-\rho \cdot \mathrm{Q}_{\mathrm{pump}} & \begin{array}{l}
\text { where } \mathrm{A} \text { is the basement area and } \mathrm{dh} / \mathrm{dt} \text { is } \\
\text { the rate at which the height of water in the } \\
\text { basement changes. }
\end{array} \\
\mathrm{Q}_{\mathrm{storm}}=\mathrm{Q}_{\mathrm{pump}}-\mathrm{A} \cdot \frac{\mathrm{dh}}{\mathrm{dt}} & \\
\mathrm{Q}_{\text {storm }}=10 \cdot \frac{\mathrm{gal}}{\mathrm{~min}}-25 \cdot \mathrm{ft} \times 20 \cdot \mathrm{ft} \times\left(-\frac{1}{12} \cdot \frac{\mathrm{ft}}{\mathrm{hr}}\right) \times \frac{7.48 \cdot \mathrm{gal}}{\mathrm{ft}^{3}} \times \frac{1 \cdot \mathrm{hr}}{60 \cdot \mathrm{~min}} & \text { Data on gals from Table G. } 2
\end{array}
$$

Problem 4.27

4.27 In steady-state flow downstream, the density is $4 \mathrm{lb} / \mathrm{ft}^{3}$, the velocity is $10 \mathrm{ft} / \mathrm{sec}$, and the area is $1 \mathrm{ft}^{2}$. Upstream, the velocity is $15 \mathrm{ft} / \mathrm{sec}$, and the area is $0.25 \mathrm{ft}^{2}$. What is the density upstream?

Given: Data on flow through device

Find: Volume flow rate at port 3

Solution:

Basic equation $\quad \sum_{\mathrm{CS}}(\rho \cdot \overrightarrow{\mathrm{V}} \cdot \overrightarrow{\mathrm{A}})=0$
Assumptions: 1) Steady flow 2) Uniform flow
Then for the box $\quad \sum_{C S}\binom{\vec{r}}{\rho \cdot V \cdot A}=-\rho_{u} \cdot V_{u} \cdot A_{u}+\rho_{d} \cdot V_{d} \cdot A_{d}=0$
Hence

$$
\rho_{\mathrm{u}}=\rho_{\mathrm{d}} \cdot \frac{\mathrm{~V}_{\mathrm{d}} \cdot \mathrm{~A}_{\mathrm{d}}}{\mathrm{~V}_{\mathrm{u}} \cdot \mathrm{~A}_{\mathrm{u}}} \quad \quad \rho_{\mathrm{u}}=4 \cdot \frac{\mathrm{lb}}{\mathrm{ft}^{3}} \times \frac{10}{15} \times \frac{1}{0.25} \quad \rho_{\mathrm{u}}=10.7 \frac{\mathrm{lb}}{\mathrm{ft}^{3}}
$$

4.28 In the incompressible flow through the device shown, velocities may be considered uniform over the inlet and outlet sections. The following conditions are known: $A_{1}=0.1 \mathrm{~m}^{2}, A_{2}=0.2$ $\mathrm{m}^{2}, A_{3}=0.15 \mathrm{~m}^{2}, V_{1}=10 e^{-t / 2} \mathrm{~m} / \mathrm{s}$, and $V_{2}=2 \cos (2 \pi t) \mathrm{m} / \mathrm{s}(t$ in seconds). Obtain an expression for the velocity at section (3), and plot V_{3} as a function of time. At what instant does V_{3} first be-
 come zero? What is the total mean volumetric flow at section (3)?

Given: Data on flow through device

Find: \quad Velocity V_{3}; plot V_{3} against time; find when V_{3} is zero; total mean flow

Solution:

Governing equation: For incompressible flow (Eq. 4.13) and uniform flow

$$
\int \overrightarrow{\mathrm{V} \mathrm{dA}}=\sum \overrightarrow{\mathrm{V}} \cdot \overrightarrow{\mathrm{~A}}=0
$$

Applying to the device (assuming V_{3} is out) $\quad-\mathrm{V}_{1} \cdot \mathrm{~A}_{1}-\mathrm{V}_{2} \cdot \mathrm{~A}_{2}+\mathrm{V}_{3} \cdot \mathrm{~A}_{3}=0$

$$
\begin{aligned}
& V_{3}=\frac{V_{1} \cdot A_{1}+V_{2} \cdot A_{2}}{A_{3}}=\frac{10 \cdot e^{-\frac{t}{2}} \cdot \frac{\mathrm{~m}}{\mathrm{~s}} \times 0.1 \cdot \mathrm{~m}^{2}+2 \cdot \cos (2 \cdot \pi \cdot \mathrm{t}) \cdot \frac{\mathrm{m}}{\mathrm{~s}} \times 0.2 \cdot \mathrm{~m}^{2}}{0.15 \cdot \mathrm{~m}^{2}} \\
& \mathrm{~V}_{3}=6.67 \cdot \mathrm{e}^{-\frac{\mathrm{t}}{2}}+2.67 \cdot \cos (2 \cdot \pi \cdot \mathrm{t})
\end{aligned}
$$

The total mean volumetric flow at A_{3} is

$$
\begin{aligned}
& Q=\int_{0}^{\infty} V_{3} \cdot A_{3} d t=\int_{0}^{\infty}\left(6.67 \cdot e^{-\frac{t}{2}}+2.67 \cdot \cos (2 \cdot \pi \cdot t)\right) \cdot 0.15 d t \cdot\left(\frac{m}{s} \cdot m^{2}\right) \\
& Q=\lim _{t \rightarrow \infty}\left(-2 \cdot e^{-\frac{t}{2}}+\frac{1}{5 \cdot \pi} \cdot \sin (2 \cdot \pi \cdot t)\right)-(-2)=2 \cdot m^{3}
\end{aligned}
$$

The time at which V_{3} first is zero, and the plot of V_{3} is shown in the corresponding Excel workbook $\quad \mathrm{t}=2.39 \cdot \mathrm{~s}$
4.28 In the incompressible flow through the device shown, velocities may be considered uniform over the inlet and outlet sections. The following conditions are known: $A_{1}=0.1 \mathrm{~m}^{2}, A_{2}=0.2$ $\mathrm{m}^{2}, A_{3}=0.15 \mathrm{~m}^{2}, V_{1}=10 e^{-t / 2} \mathrm{~m} / \mathrm{s}$, and $V_{2}=2 \cos (2 \pi t) \mathrm{m} / \mathrm{s}(t$ in seconds). Obtain an expression for the velocity at section (3), and plot V_{3} as a function of time. At what instant does V_{3} first be-
 come zero? What is the total mean volumetric flow at section (3)?

Given:
 Data on flow through device

Find:
Velocity V_{3}; plot V_{3} against time; find when V_{3} is zero; total mean flow

Solution:

$$
\text { The velocity at } A_{3} \text { is } \quad \mathrm{V}_{3}=6.67 \cdot \mathrm{e}^{-\frac{\mathrm{t}}{2}}+2.67 \cdot \cos (2 \cdot \pi \cdot \mathrm{t})
$$

$\boldsymbol{t}(\mathbf{s})$	$\boldsymbol{V}_{\mathbf{3}} \mathbf{(m / s)}$
0.00	9.33
0.10	8.50
0.20	6.86
0.30	4.91
0.40	3.30
0.50	2.53
0.60	2.78
0.70	3.87
0.80	5.29
0.90	6.41
1.00	6.71
1.10	6.00
1.20	4.48
1.30	2.66
1.40	1.15
1.50	0.48
1.60	0.84
1.70	2.03
1.80	3.53
1.90	4.74
2.00	5.12
2.10	4.49
2.20	3.04
2.30	1.29
2.40	-0.15
2.50	-0.76

The time at which V_{3} first becomes zero can be found using Goal Seek

$\mathbf{t}(\mathbf{s})$	$\left.\boldsymbol{V}_{\mathbf{3}} \mathbf{(m / s}\right)$
2.39	0.00

Problem 4.29
Given: Dill flow down inclined plane.

$$
u=\frac{\rho g \sin \theta}{\mu}\left(h y-\frac{y^{2}}{z}\right)
$$

Find: Mass flow rate per unit width.
Solution: At the dashed cross-section, $\dot{m}=\int p u d A$
$d A=$ moly, where $w=$ width

$$
\begin{aligned}
& \dot{m}=\int_{0}^{h} \rho \frac{\rho g \sin \theta}{\mu}\left(h y-\frac{y^{2}}{2}\right) \omega d y=\frac{\rho^{2} g \sin \theta}{\mu} \int_{0}^{h}\left(h y-\frac{y^{2}}{2}\right) \omega d y \\
& \dot{m}=\frac{\rho^{2} g \sin \theta}{\mu}\left[\frac{h y^{2}}{2}-\frac{y^{3}}{6}\right]_{0}^{h}=\frac{\rho^{2} g \sin \theta \omega}{\mu} \frac{h^{3}}{3}=\frac{\rho^{2} g \sin \theta \omega h^{3}}{3 \mu} \\
& \text { Thus }
\end{aligned}
$$

$$
\dot{m} / \omega_{0}=\frac{\rho^{2} g \sin \theta h^{3}}{3 \mu}
$$

4.30 Water enters a wide, flat channel of height $2 h$ with a uniform velocity of $2.5 \mathrm{~m} / \mathrm{s}$. At the channel outlet the velocity distribution is given by

$$
\frac{u}{u_{\max }}=1-\left(\frac{y}{h}\right)^{2}
$$

where y is measured from the centerline of the channel. Determine
 the exit centerline velocity, $u_{\text {max }}$.

Given: Data on flow at inlet and outlet of channel
Find: Find $u_{\max }$

Solution:

Basic equation $\int_{C S} \rho \vec{V} \cdot d \vec{A}=0$
Assumptions: 1) Steady flow 2) Incompressible flow
Evaluating at 1 and $2 \quad-\rho \cdot \mathrm{U} \cdot 2 \cdot \mathrm{~h} \cdot \mathrm{w}+\int_{-h}^{h} \rho \cdot \mathrm{u}(\mathrm{y}) \mathrm{dy}=0$
$\int_{-h}^{h} u_{\max }\left[1-\left(\frac{y}{h}\right)^{2}\right] d y=2 \cdot h \cdot U$
$u_{\max }\left[[h-(-h)]-\left[\frac{h^{3}}{3 \cdot h^{2}}-\left(-\frac{h^{3}}{3 \cdot h^{2}}\right)\right]\right]=2 \cdot h \cdot U$
$\mathrm{u}_{\mathrm{max}} \frac{4}{3} \cdot \mathrm{~h}=2 \cdot \mathrm{~h} \cdot \mathrm{U}$

Hence

$$
\mathrm{u}_{\max }=\frac{3}{2} \cdot \mathrm{U}=\frac{3}{2} \times 2.5 \cdot \frac{\mathrm{~m}}{\mathrm{~s}}
$$

$$
\mathrm{u}_{\max }=3.75 \cdot \frac{\mathrm{~m}}{\mathrm{~s}}
$$

Problem 4.31

4.31 Water flows steadily through a pipe of length L and radius $R=75 \mathrm{~mm}$. Calculate the uniform inlet velocity, U, if the velocity distribution across the outlet is given by

$$
u=u_{\max }\left[1-\frac{r^{2}}{R^{2}}\right]
$$

and $u_{\text {max }}=3 \mathrm{~m} / \mathrm{s}$.
Given: Data on flow at inlet and outlet of pipe
Find: \quad Find U

Solution:

Basic equation $\int_{C S} \rho \vec{V} \cdot d \vec{A}=0$
Assumptions: 1) Steady flow 2) Incompressible flow
Evaluating at inlet and exit $-\rho \cdot \mathrm{U} \cdot \pi \cdot \mathrm{R}^{2}+\int_{0}^{\mathrm{R}} \rho \cdot \mathrm{u}(\mathrm{r}) \cdot 2 \cdot \pi \cdot \mathrm{r} d r=0$
$\int_{0}^{\mathrm{R}} \mathrm{u}_{\max }\left[1-\left(\frac{\mathrm{r}}{\mathrm{R}}\right)^{2}\right] \cdot 2 \cdot \mathrm{rdr}=\mathrm{R}^{2} \cdot \mathrm{U}$
$\mathrm{u}_{\max }\left(\mathrm{R}^{2}-\frac{1}{2} \cdot \mathrm{R}^{2}\right)=\mathrm{R}^{2} \cdot \mathrm{U}$
$\mathrm{U}=\frac{1}{2} \cdot \mathrm{u}_{\max }$

Hence
$\mathrm{U}=\frac{1}{2} \times 3 \cdot \frac{\mathrm{~m}}{\mathrm{~s}}$
$\mathrm{U}=1.5 \cdot \frac{\mathrm{~m}}{\mathrm{~s}}$

Given: Incompressible flow in a diverging channel, as shown.

$$
\begin{aligned}
& V_{1}=\text { constant } \\
& V_{2}=V_{m} \cos \left(\frac{\pi y}{2 H}\right)
\end{aligned}
$$

Solution: Apply conservation of mass using the CV shown.
Basic equation: $0=\frac{d A^{* 0}}{\# t} \int_{C v} \rho d t+\int_{C S} \rho \vec{v} \cdot d \vec{A}$
Assumptions: (1) Steady flow
(2) Uniform flow at section 1
(3) Incompressible flow

Then $D=\{-|\phi v, A|\}+,\int_{-H}^{H} \phi v_{2} w d y$
since $A_{1}=\omega H_{1}$ then $V_{1} w H=\int_{-H}^{H} V_{m} \cos \left(\frac{\pi}{2} \frac{y}{H}\right) w d y=2 \int_{0}^{H} V_{m} \cos \left(\frac{\pi}{2} \frac{y}{H}\right) d d y$
so

$$
V_{1} H=2 V_{m}\left(\frac{2 H}{\pi}\right) \int_{0}^{H} \cos \left(\frac{\pi}{2} \frac{y}{H}\right) d\left(\frac{\pi}{2} \frac{y}{H}\right)=\frac{4 V_{m} H}{\pi}\left[\sin \left(\frac{\pi}{2} \frac{y}{H}\right)\right]_{0}^{H}=\frac{4 v_{m} H}{\pi}
$$

Thus $\quad V_{m}=\frac{\pi}{4} V_{1}$
4.33 The velocity profile for laminar flow in an annulus is given by

$$
u(r)=-\frac{\Delta p}{4 \mu L}\left[R_{o}^{2}-r^{2}+\frac{R_{o}^{2}-R_{i}^{2}}{\ln \left(R_{i} / R_{o}\right)} \ln \frac{R_{o}}{r}\right]
$$

where $\Delta p / L=-10 \mathrm{kPa} / \mathrm{m}$ is the pressure gradient, μ is the viscosity (SAE 10 oil at $20^{\circ} \mathrm{C}$), and $R_{o}=5 \mathrm{~mm}$ and $R_{i}=1 \mathrm{~mm}$ are the outer and inner radii. Find the volume flow rate, the average velocity, and
 the maximum velocity. Plot the velocity distribution.

Given: Velocity distribution in annulus

Find: Volume flow rate; average velocity; maximum velocity; plot velocity distribution

Solution:

Governing equation
For the flow rate (Eq. 4.14a) and average velocity (Eq. 4.14b)

$$
\mathrm{Q}=\int \overrightarrow{\mathrm{V} \mathrm{dA}}
$$

$\mathrm{V}_{\mathrm{av}}=\frac{\mathrm{Q}}{\mathrm{A}}$

The given data is

$$
\begin{align*}
& \mathrm{R}_{\mathrm{o}}=5 \cdot \mathrm{~mm} \tag{FromFig.A.2}\\
& \mathrm{u}(\mathrm{r})=\frac{-\Delta \mathrm{p}}{4 \cdot \mu \cdot \mathrm{~L}} \cdot\left(\mathrm{R}_{\mathrm{o}}{ }^{2}-1 \cdot \mathrm{r}^{2}+\frac{\mathrm{R}_{\mathrm{o}}{ }^{2}-\mathrm{R}_{\mathrm{i}}^{2}}{\ln \left(\frac{\mathrm{R}_{\mathrm{i}}}{\mathrm{R}_{\mathrm{o}}}\right)} \cdot \ln \left(\frac{\mathrm{R}_{\mathrm{o}}}{\mathrm{r}}\right)\right) \\
& \mathrm{L})
\end{align*}
$$

The flow rate is

$$
\mathrm{Q}=\int_{\mathrm{R}_{\mathrm{i}}}^{\mathrm{R}_{\mathrm{O}}} \mathrm{u}(\mathrm{r}) \cdot 2 \cdot \pi \cdot \mathrm{rdr}
$$

Considerable mathematical manipulation leads to

$$
\mathrm{Q}=\frac{\Delta \mathrm{p} \cdot \pi}{8 \cdot \mu \cdot \mathrm{~L}} \cdot\left(\mathrm{R}_{\mathrm{o}}^{2}-\mathrm{R}_{\mathrm{i}}^{2}\right) \cdot\left[\frac{\left(\mathrm{R}_{\mathrm{o}}^{2}-\mathrm{R}_{\mathrm{i}}^{2}\right)}{\ln \left(\frac{\mathrm{R}_{\mathrm{o}}}{\mathrm{R}_{\mathrm{i}}}\right)}-\left(\mathrm{R}_{\mathrm{i}}^{2}+\mathrm{R}_{\mathrm{o}}^{2}\right)\right]
$$

Substituting values

$$
\begin{aligned}
& \mathrm{Q}=\frac{\pi}{8} \cdot\left(-10 \cdot 10^{3}\right) \cdot \frac{\mathrm{N}}{\mathrm{~m}^{2} \cdot \mathrm{~m}} \cdot \frac{\mathrm{~m}^{2}}{0.1 \cdot \mathrm{~N} \cdot \mathrm{~s}} \cdot\left(5^{2}-1^{2}\right) \cdot\left(\frac{\mathrm{m}}{1000}\right)^{2} \cdot\left[\frac{5^{2}-1^{2}}{\ln \left(\frac{5}{1}\right)}-\left(5^{2}+1^{2}\right)\right] \cdot\left(\frac{\mathrm{m}}{1000}\right)^{2} \\
& \mathrm{Q}=1.045 \times 10^{-5} \frac{\mathrm{~m}^{3}}{\mathrm{~s}} \quad \mathrm{Q}=10.45 \cdot \frac{\mathrm{~mL}}{\mathrm{~s}}
\end{aligned}
$$

The average velocity is $\mathrm{V}_{\mathrm{av}}=\frac{\mathrm{Q}}{\mathrm{A}}=\frac{\mathrm{Q}}{\pi \cdot\left(\mathrm{R}_{\mathrm{o}}{ }^{2}-\mathrm{R}_{\mathrm{i}}{ }^{2}\right)} \quad \quad \mathrm{V}_{\mathrm{av}}=\frac{1}{\pi} \times 1.045 \times 10^{-5} \cdot \frac{\mathrm{~m}^{3}}{\mathrm{~s}} \times \frac{1}{5^{2}-1^{2}} \cdot\left(\frac{1000}{\mathrm{~m}}\right)^{2} \quad \mathrm{~V}_{\mathrm{av}}=0.139 \frac{\mathrm{~m}}{\mathrm{~s}}$
The maximum velocity occurs when $\left.\frac{\mathrm{du}}{\mathrm{dr}}=0=\frac{\mathrm{d}}{\mathrm{dx}}\left[\frac{-\Delta \mathrm{p}}{4 \cdot \mu \cdot \mathrm{~L}} \cdot\left(\mathrm{R}_{\mathrm{o}}{ }^{2}-\mathrm{r}^{2}+\frac{\mathrm{R}_{\mathrm{o}}{ }^{2}-\mathrm{R}_{\mathrm{i}}{ }^{2}}{\ln \left(\frac{\mathrm{R}_{\mathrm{i}}}{\mathrm{R}_{\mathrm{o}}}\right)} \cdot \ln \left(\frac{\mathrm{R}_{\mathrm{o}}}{\mathrm{r}}\right)\right)\right]=-\frac{\Delta \mathrm{p}}{4 \cdot \mu \cdot \mathrm{~L}} \cdot\left[-2 \cdot \mathrm{r}-\frac{\left(\mathrm{R}_{\mathrm{o}}{ }^{2}-\mathrm{R}_{\mathrm{i}}{ }^{2}\right)}{\ln \left(\frac{\mathrm{R}_{\mathrm{i}}}{\mathrm{R}_{\mathrm{o}}}\right)}\right] \cdot \mathrm{r}\right]$

$$
r=\sqrt{\frac{R_{i}{ }^{2}-R_{o}{ }^{2}}{2 \cdot \ln \left(\frac{R_{i}}{\mathrm{D}}\right)}} \quad \mathrm{r}=2.73 \cdot \mathrm{~mm} \quad \text { Substituting in } \mathrm{u}(\mathrm{r}) \quad \mathrm{u}_{\max }=\mathrm{u}(2.73 \cdot \mathrm{~mm})=0.213 \cdot \frac{\mathrm{~m}}{\mathrm{~s}}
$$

The maximum velocity using Solver instead, and the plot, are also shown in the corresponding Excel workbook
4.33 The velocity profile for laminar flow in an annulus is given by

$$
u(r)=-\frac{\Delta p}{4 \mu L}\left[R_{o}^{2}-r^{2}+\frac{R_{o}^{2}-R_{i}^{2}}{\ln \left(R_{i} / R_{o}\right)} \ln \frac{R_{o}}{r}\right]
$$

where $\Delta p / L=-10 \mathrm{kPa} / \mathrm{m}$ is the pressure gradient, μ is the viscosity (SAE 10 oil at $20^{\circ} \mathrm{C}$), and $R_{o}=5 \mathrm{~mm}$ and $R_{i}=1 \mathrm{~mm}$ are the outer and inner radii. Find the volume flow rate, the average velocity, and
 the maximum velocity. Plot the velocity distribution.
Given:
Velocity distribution in annulus

Find: Volume flow rate; average velocity; maximum velocity; plot velocity distribution

Solution:

R_{o}	$=$	5	mm
R_{i}	$=$	1	mm
$\Delta p / L$	$=$	-10	$\mathrm{kPa} / \mathrm{m}$
μ	$=$	0.1	$\mathrm{~N} . \mathrm{s} / \mathrm{m}^{2}$

$\boldsymbol{r}(\mathbf{m m})$	$\boldsymbol{u}(\mathbf{m} / \mathbf{s})$
1.00	0.000
1.25	0.069
1.50	0.120
1.75	0.157
2.00	0.183
2.25	0.201
2.50	0.210
2.75	0.213
3.00	0.210
3.25	0.200
3.50	0.186
3.75	0.166
4.00	0.142
4.25	0.113
4.50	0.079
4.75	0.042
5.00	0.000

The maximum velocity can be found using Solver

$r(\mathbf{m m})$	$\boldsymbol{u}(\mathbf{m} / \mathbf{s})$
2.73	0.213

Problem 4.34
Given: Two-dimensional reducing bend as shown.
Find: Magnitude and direction of uniform velocity at section (3).
Solution: Apply conservation of mass using cu shown.
Basic equation:

$$
0=\frac{1}{=0(1)} \int_{c v} \rho d t+\int_{c s} p \vec{v} \cdot d \vec{A}
$$

Assumptions: (1) Steady flow
(2) Incompress ible flow
(3) Uniform flow at (2) and (3)

Then

$$
0=\int_{C S} \vec{V} \cdot d \vec{A}=\int_{A_{1}} \vec{V}_{1} \cdot d \vec{A}_{1}+\vec{V}_{2} \cdot \vec{A}_{2}+\vec{V}_{3} \cdot \vec{A}_{3}
$$

or

$$
\begin{aligned}
& \vec{V}_{3} \cdot \vec{A}_{3}=-\int_{A_{1}} \overrightarrow{V_{1}} \cdot d \overrightarrow{A_{1}}-\vec{V}_{2} \cdot \vec{A}_{2}=+\int_{0}^{h_{1}} V_{12 \max } \frac{g}{h_{1}} \omega d y-V_{2} w h_{2} \\
& \vec{V}_{3} \cdot \overrightarrow{A_{3}}=V_{1} \max \omega\left[\frac{y^{2}}{z h_{1}}\right]_{0}^{h_{1}}-V_{2} \omega h_{2}=\frac{V_{1} \max w h_{1}}{2}-V_{2} w h_{2}
\end{aligned}
$$

so

$$
\frac{\vec{V}_{3} \cdot \overrightarrow{A_{3}}}{w}=\frac{1}{2} \times 10 \frac{f_{t}}{5} \times 2 f t-15 \frac{f t}{5} \times 1 f_{t}=-5 f+2 / \mathrm{s}
$$

Since $\vec{V}_{3} \cdot \vec{A}_{3}<0$, flow at (3) is into the $C V$
Thus $\quad \frac{V_{3} \cdot \vec{A}_{3}}{\omega}=-\frac{V_{3} A_{3}}{\omega}=-\frac{V_{3} \omega_{3} h_{3}}{\omega}=-V_{3} h_{3}=-5 \mathrm{ft}^{2} / \mathrm{s}$

$$
V_{3}=\frac{1}{h_{3}} \times 5 \frac{\mathrm{ft}^{2}}{S}=\frac{1}{1.5 \mathrm{ft}} \times 5 \frac{\mathrm{ft}^{2}}{5}=3.33 \mathrm{ft} / \mathrm{s} \quad \text { (into }(v)
$$

Given: Water flow in the two -dimensional square channel shount.

$$
v_{\text {max }}=2 v_{\text {min }}, v=7.5 \mathrm{mls}, h=7.5 \mathrm{~mm}
$$

Find: $v_{\text {min }}$
Solution: Apply conservation of mass to the cV shown. Basic equation:

$$
o=\frac{z}{\partial t} \int_{c v}^{o(i)} p d t+\int_{c s} \overrightarrow{p v} \cdot \overrightarrow{d t}
$$

Assumptions: (i) steady frow
(2) incompressible flow
(2) uniform flow al section (1)

Ken

$$
\begin{aligned}
& o=\vec{V}_{1} \cdot \overrightarrow{A_{1}}+\left(\vec{V}_{2} \cdot d H_{2}\right. \\
& o=-0 w h+\int_{0}^{h} v w d t
\end{aligned}
$$

Te velocity distribution across the exit at (s) is linear

$$
\begin{aligned}
& v_{2}=v_{\text {max }}-\left(v_{\max }-v_{\min }\right) \frac{x}{h}=2 v_{\min }-v_{\min } \frac{x}{h}=v_{\min }\left(2-\frac{x}{h}\right) \\
& \therefore v_{w h}=\int_{0}^{h} v_{\min }\left(2-\frac{x}{h}\right) w d x=v_{\min } w\left[2 x-\frac{x^{2}}{2 h}\right]_{0}^{h} \\
& v_{0} h=v_{\min } w\left[2 h-\frac{h}{2}\right]=\frac{3}{2} v_{\min } w K \\
& \therefore v_{\min }=\frac{2}{3} U=\frac{2}{3} \times 7.5 \frac{h}{5}=5.0 \mathrm{~m} l_{2}
\end{aligned}
$$

Gwen: Water flows in a porous round tube of diameter $D=60 \mathrm{~mm}$. At the pipe net the flow is uniform wit $Y_{1}=7.0$ mlsec. Flow out through he porow wall is radial and axisymetric wi velorty distribution

$$
v=v_{0}\left[1-\left(\frac{2}{2}\right)^{2}\right]
$$

where $V_{0}=0.03 \mathrm{mls}$ and $L=0.950 \mathrm{~m}$.
Find: the mass flow rate, \dot{m}_{2}, riside the tube at $x=h$
Solution:
Basic equation: $o=\vec{\partial} \int_{c t} p d t+\int_{c S} p \overrightarrow{d H}$

Then

$$
\begin{aligned}
& 0=\int_{A_{1}} \vec{p} \cdot \overrightarrow{d \vec{H}}+\int_{A_{2}} \overrightarrow{\vec{J}} \cdot \overrightarrow{d \vec{H}}+\int_{A_{\text {arc }}} \overrightarrow{p \vec{J}} \cdot \overrightarrow{d \vec{H}} \\
& =-\left|p+A_{1}\right|+i n_{2}+\int_{0}^{1} p \psi_{0}\left[1-\left(\frac{x^{2}}{2}\right]\right] 2 \pi R d x \\
& r_{2}=p N_{1}-2 * R p h_{0} \int_{0}^{2}\left[1-\frac{x^{2}}{2}\right] d x \\
& =P N \pi V^{2}-2 \pi R P_{0}\left[x-\frac{t^{3}}{3 L^{2}}\right]_{0}^{2} \\
& =\frac{\pi}{4} p V_{V}^{2}-\frac{4}{3} \pi R V_{0} h \\
& \dot{m}_{2}=\frac{\pi}{4} \times \frac{99\left(\frac{4 g}{m^{3}} \times 7.0 \frac{n}{s}\right.}{(0.06)^{2} m^{2}-\frac{4}{3} \pi \times 0.03 m \times 99 \frac{4 g}{m^{3}} \times 0.03 m} \frac{0.9 .5 m}{5} \\
& i_{2}=19.8 \frac{\mathrm{tg}}{\mathrm{~s}}-3.6 \mathrm{gg} \frac{\mathrm{~g}}{\mathrm{~s}}=10.2 \mathrm{tg}
\end{aligned}
$$

Given: A hydraulic accumulator, designed to reduce pressure pulsations in a hydraulic system, is operating under conditions Shown, a el given instant.
Find: Rate at which accurntator gains or loses hydraulic il.
Solution:
Use the control volurre shown
Basic equation:

$$
o=\frac{\partial}{\partial t} \int_{c \rightarrow 1}^{v} p d t \cdot \int_{c s} \overrightarrow{p^{v}} \cdot \overrightarrow{d A}
$$

Assumptions: (1) uniform flow at section (3)
(a) $p=$ constant

Then,

$$
0=\frac{\partial}{\partial t}\left(M_{c t}\right)+\int_{A_{1}}\left\{-\left|p H_{1} d A_{1}\right|+\int_{A_{2}}\left\{\mid p A_{2} d A_{2}\right\}\right.
$$

But $S_{R,}, P^{\prime}, d H_{1}=P Q, \quad$ Where $Q=$ volurve flowrate and $p=S G P_{2} O$
So $o=\frac{\partial}{a t} M_{c a}-\rho_{1}+\mathcal{Q}_{2} H_{2}$
σ

$$
\begin{aligned}
& \frac{\partial A_{0}}{\partial t}=p\left(Q_{1}-b_{2} A_{2}\right) \\
& =S G P_{4_{2}}\left(Q_{1}-V_{2} \pi T^{2} \frac{V_{2}}{4}\right) \quad \text { where } S G=0.88 \text { (Table A. } 2 \text {) }
\end{aligned}
$$

(Mass is decreasing in the (t)
Source $M_{c t}=$ pail tail

$$
\begin{aligned}
& \frac{\partial H_{c u}}{\partial t}=\frac{\partial}{\partial t}\left(\rho_{a} t_{0 i}\right)=\operatorname{pail}^{\frac{\partial t_{a}}{\partial t}}=\operatorname{\partial G_{ai}} \rho_{A_{2}} \frac{\partial t_{0 i}}{\partial t}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{\partial t}{\partial t} a t=-2.43 \times 10^{2} \frac{4^{3}}{s} \text { or } 0.181 \text { gels }
\end{aligned}
$$

4.38 A tank of $0.4 \mathrm{~m}^{3}$ volume contains compressed air. A valve is opened and air escapes with a velocity of $250 \mathrm{~m} / \mathrm{s}$ through an opening of $100 \mathrm{~mm}^{2}$ area. Air temperature passing through the opening is $-20^{\circ} \mathrm{C}$ and the absolute pressure is 300 kPa . Find the rate of change of density of the air in the tank at this moment.

Given: Data on airflow out of tank
Find: \quad Find rate of change of density of air in tank

Solution:

Basic equation

$$
\frac{\partial}{\partial t} \int_{C V} \rho d \forall+\int_{C S} \rho \vec{V} \cdot d \vec{A}=0
$$

Assumptions: 1) Density in tank is uniform 2) Uniform flow 3) Air is an ideal gas
Hence

$$
\begin{aligned}
& \mathrm{V}_{\text {tank }} \frac{\mathrm{d} \rho_{\text {tank }}}{\mathrm{dt}}+\rho_{\text {exit }} \mathrm{V} \cdot \mathrm{~A}=0 \quad \frac{\mathrm{~d} \rho_{\text {tank }}}{\mathrm{dt}}=-\frac{\rho_{\text {exit }} \mathrm{V} \cdot \mathrm{~A}}{\mathrm{~V}_{\text {tank }}}=-\frac{\mathrm{P}_{\text {exit }} \cdot \mathrm{V} \cdot \mathrm{~A}}{\mathrm{R}_{\text {air }} \mathrm{T}_{\text {exit }} \mathrm{V}_{\text {tank }}} \\
& \frac{\mathrm{d} \rho_{\text {tank }}}{\mathrm{dt}}=-300 \times 10^{3} \cdot \frac{\mathrm{~N}}{\mathrm{~m}^{2}} \times 250 \cdot \frac{\mathrm{~m}}{\mathrm{~s}} \times 100 \cdot \mathrm{~mm}^{2} \times\left(\frac{1 \cdot \mathrm{~m}}{1000 \cdot \mathrm{~mm}}\right)^{2} \times \frac{1}{286.9} \cdot \frac{\mathrm{~kg} \cdot \mathrm{~K}}{\mathrm{~N} \cdot \mathrm{~m}} \times \frac{1}{(-20+273) \cdot \mathrm{K}} \times \frac{1}{0.4 \cdot \mathrm{~m}^{3}} \\
& \text { Hence } \quad \frac{\mathrm{d} \rho_{\operatorname{tank}}}{\mathrm{dt}}=-0.258 \cdot \frac{\frac{\mathrm{~kg}}{\mathrm{~m}^{3}}}{\mathrm{~s}} \quad \text { The mass in the tank is decreasing, as expected }
\end{aligned}
$$

Problem 4.39
Given: hquid davis from a tank trough a long circular tube. Flow is laminar; velocity prorite ot tube discharge is given by

$$
u=u_{\max }\left[1-\left(\frac{r}{R}\right)^{2}\right]
$$

Find: (a) Show that $\bar{V}=0.5 u_{\text {max }}$ at any instant
(b) rate of Change of liquid level in tanktuthen $u_{m a n}=0.155 \mathrm{~m} / \mathrm{s}$

Solution:
(a) The average velocity \bar{J} is defied as ala.

Srice $Q=\int u d A, d A=2 \pi r d r$ and $A=\pi R^{2}$, then

$$
\begin{aligned}
& \bar{V}=\frac{\theta}{R}=\frac{1}{\pi R^{2}} \int_{0}^{R} u_{\max }\left[1-\left(\frac{r}{R}\right)^{2}\right] 2 \pi r d r=\frac{2 u_{\max }}{R^{2}} \int_{0}^{R}\left[1-\left(\frac{R}{R}\right)^{2}\right] r d r \\
& \bar{V}=\frac{2 u_{\text {max }}}{R^{2}} R^{2} \int_{0}^{1}\left[1-\left(\frac{r^{2}}{R}\right]\left(\frac{r}{R}\right)^{2} d\left(\frac{r}{R}\right)=2 u_{\max }\left[\frac{1}{2}\left(\frac{r}{R}\right)^{2}-\frac{1}{4}\left(\frac{r}{R}\right)^{4}\right]_{0}^{1}\right.
\end{aligned}
$$

$$
\bar{V}=\frac{1}{2} u_{n a x}
$$

(b) Apply conservation of mass to the cl shown

Basic equation: $\quad 0=\frac{3}{2 t} \int_{c a} p d t+\int_{c s} \vec{p} \cdot \overrightarrow{d A}$
Assumptions', (i) neglect ar entering the cl (a) ncompressible flab.

R en

$$
\begin{aligned}
& 0=\rho_{l} \frac{\partial}{\partial t} \forall_{c 4}+\left\{\mid \rho_{e} \bar{v} A_{e}\right\}=\rho_{l} \frac{\partial t}{\partial t}\left[\frac{\pi)^{2}}{4} h+h \pi^{2}\right]+\bar{p} \pi R^{2} \\
& 0=\frac{\pi y^{2}}{4} \frac{d h}{d t}+\overline{4} \pi R^{2} \quad \text { (ole } \frac{d x}{d t}=0 \text {) } \\
& \therefore \quad \frac{d h}{d t}=-4 \bar{N}\left(\frac{R}{S}\right)^{2} \quad \text { But } \bar{V}=\frac{1}{2} u_{\text {max }} \text { and here } \\
& \frac{d h}{d t}=-2 l_{\max }\left(\frac{5}{y}\right)^{2}=-2 \times 0.55 \frac{m}{5} \times\left(\frac{0.05 m}{0.30 m}\right)^{2} \times 1000 \frac{\mathrm{~mm}}{m} \\
& \frac{d h}{d t}=-8 . b_{0} \mathrm{~mm}_{\mathrm{s}} \text { (level is falling) }
\end{aligned}
$$

Problem 4.40
Given: A A flow through tank with conditions shown at time, t_{0}.

$$
\begin{aligned}
& V_{1}=15 \mathrm{ft} / \mathrm{s} \\
& A_{1}=0.2 \mathrm{ft} \\
& \rho_{1}=0.03 \frac{\mathrm{shg}}{\mathrm{ft}^{3}}
\end{aligned}
$$

Find: $\frac{\partial P}{\partial t}$ in tank at time, t_{s}.
Solution: Apply conservation of mass, using CV shown. Basic equation: $\quad 0=\frac{\partial}{\partial t} \int_{c v} \rho d t+\int_{c S} \rho \vec{V} \cdot d \vec{A}$

Assumptions: (1) Density is uniform in tank, so $\frac{\partial}{\partial t} \int_{\langle v} \rho d \forall=\frac{\partial}{\partial t}\left(\rho_{0} \forall\right)$
(2) Flow is uniform at inlet and outlet sections.

Then

$$
\begin{aligned}
0=\frac{\partial}{\partial t}\left(\rho_{0} \forall\right)+\rho_{1} \vec{V}_{1} \cdot \vec{A}_{1}+f_{0} \vec{V}_{2} \cdot \vec{A}_{2} \\
=0 \\
0=f_{0} \frac{\partial \forall}{\partial t}+\forall \frac{\partial \rho_{0}}{\partial t}-\left.\right|_{\rho_{1}} V_{1} A_{1}\left|+f_{0} V_{2} A_{2}\right|
\end{aligned}
$$

or

$$
\frac{\partial \rho_{0}}{\partial t}=\frac{\left|\rho_{1}, V_{1} A_{1} /-f_{0} V_{2} A_{2}\right|}{\forall}
$$

Substituting magnitudes

$$
\begin{aligned}
& \frac{\partial f_{0}}{\partial t}=\frac{1}{20 f+3}\left[\frac{0.03 \mathrm{sfug}}{f+3} \frac{15 f+}{s} \times 0.2 f^{2}-\frac{0.025 \operatorname{lng}}{f+3} \times \frac{5 f t}{s} \times 0.4 f+2\right] \\
& \frac{\partial f_{0}}{\partial t}=2.50 \times 10^{-3} s / 4 g\left(f_{t}^{3} \cdot s\right)
\end{aligned}
$$

$\left\{\right.$ Note since $\frac{\partial f_{0}}{\partial t}>0$, mass in tank increases $\}$

Given: Rectangular tank, wit dimensions $H=230 \mathrm{~mm}$, $\mathrm{H}=150 \mathrm{~mm}$, $L=236 \mathrm{Hm}$, supplies water to an outlet tube of diameter, ${ }^{8}=6.35 \mathrm{~mm}$. When the tank is half full the flow' in the tube is at Reynolds number $R_{e}=2000$. At this nistant there is no water flow into the tank.

Find: the rate of charge of water level in the tank at this instant.

Solution:

Apply conservation of mass to ct which ridudas tank and tube. Base equation:
Definition: $\left.R_{e}=p\right)^{0}=\frac{\partial}{\partial t} \int_{c \rightarrow 1} p d t+\int_{c s} \vec{p} \cdot \overrightarrow{d A}$
Assumption: (i) uniform flow at exit of tube
(2) incompressible flow
(3) neglect au r entering the control volume

Then,

$$
\begin{aligned}
& 0=\text { th } \frac{d h}{d t}+\bar{V}_{0} \pi R^{2} \quad \text { (note } m_{1}=\text { constant) } \\
& \therefore \quad \frac{d h}{d t}=-{ }^{-}+\frac{\pi^{2}}{4}
\end{aligned}
$$

To find \bar{V} use the definition of R_{e}

$$
V_{0}=\frac{\operatorname{Re} J}{V}
$$

For water at $20 \mathrm{c} \quad 7=1 \times 10^{-6} \mathrm{~m}^{2} _{\mathrm{sec}}$ (Table A.8)

$$
\begin{aligned}
& \psi_{0}=2000 \times 1 \times 10^{-6} \frac{n^{2}}{\sec } \times \frac{1}{6.35} \times 10^{3} \mathrm{~m}=0.315 \mathrm{~m} \|_{\mathrm{sec}} \\
& \frac{d h}{d t}=-V_{0} \frac{\pi)^{2}}{4 W h}=-\frac{0.35}{4} \frac{\pi}{4 \times c} \times \frac{\pi(6.35)^{2} \times 2 m^{2}}{150 m+230 m} \times 10^{3} \frac{m+1}{4} \\
& \left.\frac{d h}{d t}=-0.289 \mathrm{~mm}\right\rangle_{\mathrm{sec}} \text { (falling) }
\end{aligned}
$$

Problem 4.42
Given: Circular tank, with $D=1$ ft draining through a hole in its bottom. Fluid is water

Find: Rate of change of water level at the instant shown.

Solution: Apply conservation of mass to $c v$ shown. Note section (2) cuts below free surface, $50 \vec{v}_{2}$ corresponds to free surface
 velocity; volume of CV is constant.

$$
0=\frac{\partial}{\partial t} \int_{c v}^{=o(1)} \rho d \forall+\int_{c s} \rho \vec{v} \cdot d \vec{A}
$$

Assumptions: (1) Incompressible flow, so unsteady term is zero, since volurve of $C V$ is fixed
(2) Uniform flow at each section

Then

$$
0=\rho \vec{V} \cdot \vec{A}_{1}+\rho \vec{V}_{2} \cdot \vec{A}_{2}=\dot{m}_{1}+\rho \vec{V}_{2} \cdot \vec{A}_{2}
$$

and

$$
\vec{V}_{2} \cdot \vec{A}_{2}=-\frac{\dot{m}_{1}}{\rho}=-4.0 \frac{\mathrm{~kg}}{\mathrm{~s}} \times \frac{m^{3}}{999 \mathrm{~kg}^{2}}=-0.004 \mathrm{~m}^{3} / \mathrm{s}
$$

since $\vec{V}_{2} \cdot \vec{A}_{2}<0$, flow at section (2) is into CV. Therefore

$$
V_{2}=\frac{\left|V_{2} A_{2}\right|}{A_{2}}=0.004 \frac{m^{3}}{3} \times \frac{4}{\pi} \times \frac{1}{(0.3)^{2} m^{2}}=0.0566 \mathrm{~m} / \mathrm{s}
$$

The water level is falling at $56.6 \mathrm{~mm} / \mathrm{s}$.

$$
\vec{V}_{S}=-V_{2} \hat{\jmath}=-56.6 \hat{\mathrm{~mm}} / \mathrm{s}
$$

Given: Lake being drained at 2,000 cubic feet per second (ifs). Level falls at 1 ft per 8 hr. Normal flow rate is 290 cfs .
Find: (a) Actual flow rate during draining (gals).
(b) Estimate surface area of lake.

Solution: convert units

$$
Q=2000 \frac{\mathrm{ft}^{3}}{\mathrm{~s}}=2000 \frac{\mathrm{ft}^{3}}{\mathrm{~s}} \times 7.48 \frac{\mathrm{gal}}{\mathrm{ft}^{3}}=1.50 \times 10^{4} \mathrm{gal} / \mathrm{s}
$$

Apply conservation of mass using $C V$ shown:

Basic equation: $0=\frac{\partial}{\partial t} \int_{C V} \rho d t+\int_{C S} \rho \vec{V} \cdot d \vec{A}$
Assumption: (1) $\rho=$ constant
Then

$$
\begin{aligned}
& \frac{d t}{d t}=A \frac{d h}{d t}=-\int_{C S} \vec{V} \cdot d \vec{A}=-Q_{0}+Q_{i} \\
& A=-\frac{Q_{a}-Q_{i}}{d h / d t}=-\frac{\Delta Q}{d h / d t} ; \Delta Q=Q_{0}-Q_{i}
\end{aligned}
$$

But $\Delta Q=1,710 \mathrm{ft}^{3} / \mathrm{s}$ and $\mathrm{dh} / \mathrm{dt}=-1 \mathrm{ft} / 8 \mathrm{hr}$, since decreasing.
Thus

$$
A=-1,710 \frac{\mathrm{ft} 3}{3} \times \frac{8 \mathrm{hr}}{-1 \mathrm{ft}} \times 3600 \frac{\mathrm{~s}}{\mathrm{hr}}=4.92 \times 10^{7} \mathrm{ft}^{2}
$$

Since 1 acre $=43,600 \mathrm{ft}$,

$$
A=4.92 \times 10^{7} \mathrm{f}^{2} \times \frac{\text { acre }}{43,600 \mathrm{ft}^{4}} \approx 1,130 \text { acres }
$$

since 1 square mile $=640$ acres, the lake surface area is slightly less than a square miles!

Problem 4.44
Gwen: Cylindrical tank, draining by gravity as shown; initial Reptidis yo
Find: water depth at $t=12 \mathrm{~s}$
Plot: (a) ylyo vs t for $0.1 \leqslant y_{0} \leqslant 1 m$ and $>1 d=10$
(b) ylyo vs for $2 \leqslant D \mid \alpha \leqslant 10$ and $y_{0}=0.4 \mathrm{~m}$

Solution:
Apply conservation of Mass using CV shown Basic equation: $0=\frac{\partial}{\partial t} \int_{c y} p d t+\int_{c s} \overrightarrow{\vec{V}} \cdot \overrightarrow{d A}$
Assumptions: (i) incompressible flow (a) uniform flow at each section
(3) neglect pair compared to $\mathrm{fH}_{2} \mathrm{O}$

For the cl, $d t=A_{t} d y$, so
or

$$
0=p A_{t} \frac{d y}{d t}+p A_{2} V_{2}=A_{t} \frac{d y}{d t}+A_{2} \sqrt{2 g y}
$$

Separating variables,

$$
\frac{d y}{y^{1 / 2}}=-\sqrt{2 g} \frac{A_{2}}{A_{t}} d t
$$

Integrating from y_{0} at $t=0$ to y at t

$$
\begin{aligned}
& \int_{y_{0}}^{y} y^{\prime^{\prime / 2}} d y=2\left[y^{\prime / 2}-y_{0}^{\prime \prime 2}\right]=-\sqrt{2 g} \frac{A_{2}}{F_{t}} t \\
& \frac{y^{1 / 2}}{y_{0}^{12}}=1-\sqrt{\frac{9}{2} y_{0}} A_{2}^{A_{t}} \quad \text { or } \quad y=y_{0}\left[1-\sqrt{\frac{g}{2 y_{0}}}\left(\frac{d}{\sqrt{2}}\right)^{2} t\right]_{-1}^{2} \\
& \text { At } t=12 \mathrm{sec} \\
& y=0.4 m\left[1-\left(\frac{9.81}{2} \frac{m}{s^{2}} \times \frac{1}{0.4 m}\right)^{1 / 2}\left(\frac{5 m m}{50 m m}\right)^{2} 12 s^{2}=0.134 m, \quad y_{t=2}=\right. \\
& \text { For } \quad \text { old }=10, \quad E_{q} \cdot \text {, ques } \\
& \frac{y}{y_{0}}=\left[1-2.215 \times 10^{-2} \quad y_{0}^{-1 / 2} t\right]^{2}
\end{aligned}
$$

For $y_{0}=0.4 \mathrm{~m}$, Eq.l gives

$$
\frac{y}{y_{0}}=\left[1-\frac{3.502}{(y / d)^{2}} t\right]^{2}
$$

The variation of ylyo with t is plotted below for: . $l_{d}=10$ and $0.1 L_{y} \leqslant 1.0 \mathrm{~m}$

$$
\text { - } y_{0}=0.4 m \text { and } 2 \leq 11 d \leq 10
$$

$y_{0}(m)=$
0.1
0.3
$1 \mathrm{D} / \mathrm{d}(---)=$
2
5
10

Time, $t(\mathrm{~s}) \quad y / y_{0}(--) \quad y / y_{0}(--) \quad y / y_{0}(--) \quad$ Time, $t(s) \quad y / y_{0}(--) \quad y / y_{0}(--)^{\prime} \quad y / y_{0}(---)$

0	1.000	1.000	1.000	0	1.000	1.000	1.000
2	0.739	0.845	0.913	0.5	0.316	0.865	0.965
4	0.518	0.703	0.831	1	0.016	0.739	0.931
6	0.336	0.574	0.752	1.1	0.001	0.716	0.924
8	0.193	0.458	0.677	2		0.518	0.865
10	0.090	0.355	0.606	3		0.336	0.801
12	0.025	0.265	0.539	4		0.193	0.739
14	0.000	0.188	0.476	5	0.090	0.680	
16		0.125	0.417	6		0.025	0.624
18		0.074	0.362	7		0.000	0.570
20		0.037	0.310	10		0.422	
22		0.012	0.263	12		0.336	
24		0.001	0.219	14		0.260	
26			0.180	16		0.193	
28			0.144	18		0.137	
30			0.113	20		0.090	
32			0.085	22		0.053	
34		0.061	24			0.025	
36		0.041	26			0.000	
38		0.025	28				
40		0.013					
45		0.000					

Given: Cylindrical tank, draining by gravity as shown; initial pi is yo.
Find: Time to drain tank to depth $y=20 \mathrm{~mm}$
Mot: Time t to drown the tank (to $y=20 \mathrm{~mm}$) as a function of पhyo for $0.1 \leqslant y_{0} \leq 1 m$ wife di ls as a parameter for $0.1 \leqslant d \mid y \leqslant 0.5$

Sdution:
Apply conservation of mass using $C V$ shown.
Basic equation: $\quad 0=\frac{\partial}{\partial t} \int_{c u} p d^{t}+S_{c \leq s} \vec{P} \cdot \overrightarrow{d A}$
Assumptions: (i) incompressible flow
(a) uniform flow at each section.
(3) neglect pair compared to pH 2O

For the cv, $d \theta=A_{t} d y$, so

$$
\begin{aligned}
& \text { or } 0=\frac{\partial}{\partial t} \int_{0}^{y} \rho_{H_{20}} A_{t} d y+p_{m 00} \Delta_{2} A_{2}=A_{t} \frac{d y}{d t}+A_{2} \sqrt{2 g y}
\end{aligned}
$$

Separating variables,

$$
\frac{d y}{y^{\prime} \cdot 1_{2}}=-\sqrt{2 g} \frac{R_{2}}{H_{t}} d t
$$

Integrating from y_{0} at $t=0$ to y at t

$$
\begin{align*}
& \int_{y_{0}}^{y} \frac{d y}{y^{\prime 2}}=2\left[y^{1 / 2}-y_{0}^{1 / 2}\right]=-\sqrt{2 g} \frac{A_{2}}{A_{1}} t \\
& -\sqrt{2 g} \frac{R_{2}}{R_{t}} t=2 y_{0}^{1 / 2}\left[\left(\frac{y_{0}}{y_{0}}\right)^{1 / 2}-1\right] \text { or } t=\sqrt{\frac{2 y_{0}}{g}}\left(\frac{\lambda}{d}\right)^{2}\left[1-\left(\frac{y}{y_{0}}\right)^{\prime 1_{2}}\right] \text {. } \tag{i}
\end{align*}
$$

Evaluating at $u=20 \mathrm{~mm}$

$$
t=\left[2 \times 0.4 \mathrm{~m} \times \frac{s^{2}}{9.8 \mathrm{~m}}\right]^{42}\left[\frac{50 \mathrm{~mm}}{5 \mathrm{~mm}}\right]^{2}\left[1-\left(\frac{0.02 m}{0.40 \mathrm{~m}}\right)^{1 / 2}\right]=22.2 \mathrm{~s} \quad t_{y=20 \mathrm{~mm}}
$$

Time is plotted as a function of y l yo $(y=20 \mathrm{~mm})$. with dy as a parameter.

Draining of a cylindrical liquid tank:

Input Data:

| Initial height: | y_{0} | 0.4 | m | | | |
| :--- | ---: | ---: | :--- | :--- | :--- | :--- | :--- |
| Diameter ratio: | D / d | 20 | | 10 | 5 | --- |

Calculated Results:

Given: Water flows into the top of a conical flab at a constant rate of $Q=3.25 \times 1{ }^{-1} \frac{3}{1}$ hr Water drains at trough the round opening of diameter $d=7.35 \mathrm{~m}$ at the apes of the cone; the flow speed at the exit is $V=$ (Ray) where y is the water dept above the ext pentane. At the instant of iNterest the water depth $t=31.8 \mathrm{~mm}$ and the corresponding diameter $D=29.4 \mathrm{~mm}$
Find: Ft Pe instant of interest:
(a) find the volume flow rate from the bolton of Pw e flack (b) evaluate the direction and rate of Sarge of water surface level
Solution: Apply continuity to the CV Shown.
Basic eq.: $o=\frac{\partial}{a} t \int_{c} p d t+\int_{0} \vec{N} \cdot \overrightarrow{d H}$
Assumptions: in uniform flow at eadisection (a) neglect mas of air.

Then

$$
\begin{align*}
& Q_{\text {out }}=H_{0} H_{0}=(2 g H)^{1 / 2} \frac{\pi d^{2}}{4} \\
& Q_{\text {out }}=\left[2 \times 9.8 \frac{n^{2}}{2^{1}} \times 0.0318 n\right]^{\frac{\pi}{4}} \frac{\pi}{4} \times(0.00735)^{2} \mathrm{~m}^{2} \\
& Q_{\text {out }}=3.61 \times 10^{3} \mathrm{~m}^{3} \operatorname{lom}^{3}\left(0.130 \mathrm{~m}^{3}\right)
\end{align*}
$$

From eq. (i)

$$
\left.\frac{d t}{d t}\right)_{\text {waller }}=Q_{\text {in }}-Q_{\text {out }}
$$

$t=\frac{1}{3}$ area of base x attitude $z \frac{1}{3} \pi R^{2} y$
Since $R=y \tan \theta, \quad t=\frac{1}{3} \pi y^{3} \tan ^{2} \theta$

$$
\begin{aligned}
& \frac{d t}{d t}=\frac{1}{3} x \tan ^{2} \theta \times 3 y^{2} \frac{d y}{d t}=\pi y^{2} \tan ^{2} \theta \frac{d y}{d t}=\pi R^{2} \frac{d y}{d t} \\
& \therefore \quad \frac{d y}{d t}=\frac{\operatorname{Qin}-\operatorname{Qon}}{\pi R^{2}}=\frac{4}{\pi)^{2}}(\operatorname{Qin}-\operatorname{Qou}) \\
& \left.=\frac{4}{r^{2}} \times 0.0294\right)^{2} m^{2}\left(3.75 \times 60^{-2}-0.130\right) \frac{n^{3}}{k^{-}} \times \frac{h r}{36002} \\
& \frac{d y}{d t}=-0.0532 \text { min (surface notes downward) } \quad \frac{d y}{d t}
\end{aligned}
$$

Given: Conical funnel draining through small hole. $\quad D=70 \mathrm{~mm}$

$$
V_{e}=\sqrt{2 g y}
$$

Find: Rate of change of surface level when $y=H / z$.

Solution: Apply conservation of mass.
(1) Choose CV with top jest below swerface level.

Basic equation: $\quad 0=\vec{A} \int_{C V} \rho d \forall+\int_{C S} \rho \vec{V} \cdot d \vec{A}$
Assumptions: (1) $p=$ constant, $\forall=$ cons, so $\partial t=0$
(2) Uniform flow at each section.

Thus

$$
V_{s}=V_{e}\left(\frac{d}{D / 2}\right)^{2}=\sqrt{2 g \frac{H}{2}} 4\left(\frac{d}{D}\right)^{2}=4 \sqrt{g H}\left(\frac{d}{D}\right)^{2}=-\frac{d y}{d t} \text { (since } y \text { decreases) }
$$

But $\tan \theta=\frac{D / 2}{H}$ so $H=\frac{D}{2 \tan \theta}=\frac{0.070 \mathrm{~m}}{2 \tan 15^{\circ}}=0.131 \mathrm{~m}$
substituting,

$$
\frac{d y}{d t}=-4 \sqrt{9.81 \frac{\mathrm{~m}}{s^{2}} \times 0.131 \mathrm{~m}}\left(\frac{0.00312 \mathrm{~m}}{0.070 \mathrm{~m}}\right)^{2} 1000 \frac{\mathrm{~mm}}{\mathrm{~m}}=-9.01 \mathrm{~mm} / \mathrm{s}
$$

Alternate solution: Choose CV (2) enclosing entire funnel.
Basic equation: $0=\frac{\partial}{\partial t} \int_{C V} \rho d \forall+\int_{C S} \rho \vec{V} \cdot d \vec{A}$
Assumptions: (1) $\rho=$ constant, but \forall changes (Note: $\forall=\frac{\pi}{3} r^{2} h$ tr ea cone.)
(i) Neglect air
(3) Uniform flow at outlet section

Then

$$
o=\hat{p} \frac{\partial}{\partial x} \forall_{H_{20}}+\left\{+\mid \hat{V_{\text {out }}} v_{<A C l}\right\} \text { or } \frac{d \psi}{d t}=-V_{e} A_{e}
$$

The volume of water is $\forall=\frac{\pi}{3} r^{2} h=\frac{\pi}{3}(y \tan \theta)^{2} y=\frac{\pi y^{3} \tan \theta}{3}$ so $\frac{d t}{d t}=\pi y^{2} \tan ^{2} \theta \frac{d y}{d t}=\pi\left(\frac{D}{4}\right)^{2} \frac{d y}{d t}$ and $\frac{\pi D^{2}}{16} \frac{d y}{d t}=-V e \operatorname{Ae}=-\sqrt{2 g y} \frac{\pi d^{2}}{4}$ Finally, since $y=H / 2, \frac{d y}{d t}=-4 \sqrt{2 g H}\left(\frac{d}{D}\right)^{2}$ as before.
$\left\{\begin{array}{c}\text { Note: Flow is not steady, in either } C V \text {. The do term vanishes for } C V(1) \\ \text { because there is no change in mass inside the } C V\end{array}\right\}$

Given: Steady flow of water past a porous flat plate. Suction is constant. Velocity profile at section co is

$$
\frac{u}{U_{\infty}}=3\left(\frac{y}{\delta}\right)-2\left(\frac{y}{\delta}\right)^{1.5}
$$

Find: Mass flow nate across section bc.
Solution: Apply conservation of mass using the $C V$ shown.
Basic equation:

$$
0=\frac{\partial}{\partial t} \int_{c v} \rho d \forall+\int_{c s} \rho \vec{v} \cdot d \vec{A}
$$

Assumptions: (1) Steady flow
(z) Incompressible flow
(3) $\vec{V}=-v_{0} \hat{j}$ along da

Then

$$
D=\int_{c s} \rho \vec{V} \cdot d \vec{A}=\int_{a b} \rho \vec{V} \cdot d \vec{A}+\dot{m}_{b c}+\int_{c d_{r}} \rho \vec{V} \cdot d \vec{A}+\int_{d a} \rho \vec{V} \cdot d \vec{A}
$$

or

$$
0=-\rho U_{\infty} u r \delta+\dot{m b c}+\int_{0}^{\delta} \rho v_{\infty}\left[3\left(\frac{y}{\delta}\right)-z\left(\frac{y}{\delta}\right)^{\prime N}\right] \omega d y+\rho v_{0} \omega L
$$

Thus

$$
\begin{aligned}
\dot{m_{b c}} & \left.=\rho U_{\infty} \omega \delta-\rho U_{\infty} \omega \delta \int_{D}^{1}\left[\frac{3}{\delta}\right)-2\left(\frac{y}{\delta}\right)^{1.5}\right] d\left(\frac{y}{\delta}\right)-\rho v_{0} \omega L \\
& =\rho \omega r\left\{U_{\infty} \delta-U_{\infty} \delta\left[\frac{3}{2}\left(\frac{4}{\delta}\right)^{2}-\frac{2}{2.5}\left(\frac{y}{\delta}\right)^{1.5}\right]_{0}^{1}-v_{0} L\right\} \\
& =\rho \omega\left[U_{\infty} \delta-U_{\infty} \delta\left(\frac{3}{2}-\frac{2}{2.5}\right)-v_{0} L\right]=\rho \omega\left(0.3 U_{\infty} \delta-v_{0} L\right) \\
& =999 \frac{\mathrm{~kg}}{m^{3}} \times 1.5 \mathrm{~m}\left(0.3 \times 3 \frac{m}{5} \times 0.0015 m-0.0002 m \times 2 m\right) \\
\dot{m}_{b c} & =1.42 \mathrm{~kg} / \mathrm{s} \quad(m>0,30 \text { out of } \mathrm{cV})
\end{aligned}
$$

Given: steady incompressible flow of air on porous surface shown in Fig. P4.48., Velocity profile at, downstream end is parabolic. Uniform suction is applied along ad.
Find: (a) volume flow rate across $c d$.
(b) Volurne flow rate through porous surface (ad).
(c) brume flow rate across $b c$.

Solution: Apply conservation of mass to CV shown.

Basic equation:

$$
0=\frac{\partial}{\partial x} \int_{C V}^{=0 t i} \rho d t+\int_{C S} \rho \vec{V} \cdot d \vec{A}
$$

Assumptions: (1) Incompressible flow
(2) Parabolic profile at section cd: $\frac{u}{U_{\infty}}=2\left(\frac{y}{\delta}\right)-\left(\frac{y}{\delta}\right)^{2}$

Then $0=\int_{c s} \vec{V} \cdot d \vec{A}=Q_{a b}+Q_{b c}+Q_{c d}+Q_{d a}$

$$
\begin{align*}
Q_{c d} & =\int_{C d} \vec{V} \cdot d \vec{A}=\int_{0}^{\delta} u \omega d y=\omega U_{\infty} \delta \int_{0}^{1} \frac{u}{\vec{V}} d\left(\frac{y}{\delta}\right)=\omega v_{\infty} \delta \int_{0}^{1}\left[2\left(\frac{y}{\delta}\right)-\left(\frac{y}{\delta}\right)^{2}\right] d\left(\frac{y}{\delta}\right) \tag{1}\\
& =w U_{\infty} \delta\left[\left(\frac{y}{\delta}\right)^{2}-\frac{1}{3}\left(\frac{y}{\delta}\right)^{3}\right]_{0}^{1}=\frac{2}{3} w \delta U_{\infty} \\
Q_{c d} & =\frac{2}{3} \times 1.5 m_{\times 0} \times 0015 m_{x} \frac{3 m}{s}=4.50 \times 10^{-3} m^{2} / 1 \text { (out of }(v)
\end{align*}
$$

Flow across ad is uniform, so

$$
\begin{aligned}
& Q_{\text {ad }}=\vec{V} \cdot \vec{A}=V \hat{\jmath} \cdot \omega L(-\hat{j})=-v \omega L \\
& Q_{\text {ad }}=-0.2 \frac{\mathrm{~mm}}{\mathrm{~s}} \times 1.5 m_{\times} 2 \mathrm{~m}_{\times} \frac{\mathrm{m}}{1000 \mathrm{~mm}}=6.00 \times 10^{-4} \mathrm{~m} / \mathrm{s} \text { (out of }(V)
\end{aligned}
$$

Finally, from Eq. 1,

$$
\begin{equation*}
Q_{b c}=-Q_{a b}-Q_{c d}-Q_{c a} \tag{2}
\end{equation*}
$$

But $Q_{a b}=\vec{v}_{\infty} \cdot \vec{A}_{a b}=V_{\infty} \hat{\imath} \cdot \omega \delta(-\hat{i})--\omega \delta U_{\infty}$

$$
Q_{a b}=-1.5 m_{\times} 0.0015 m_{\times} \frac{3}{5}=-6.75 \times 10^{-3} m^{3} / \mathrm{s}(\text { into } \mathrm{cv})
$$

substituting into Eq. 2 ,

$$
\begin{aligned}
& Q_{b c}=\left[-\left(-6.75 \times 10^{-3}\right)-4.50 \times 10^{-3}-6.00 \times 10^{-4}\right] \mathrm{m} / \mathrm{s} \\
& Q_{b c}=1.65 \times 10^{-3} \mathrm{~m}^{3} / \mathrm{s} \text { (out of }(\mathrm{v})
\end{aligned}
$$

Given: Tank containing brine with steady inlet stream of water. Initial density is $\rho_{i}>\rho_{H_{2} O}$.

Find: (a) Rate of change of liquid density in tank.
(b) Time required to reach density, f_{f}, where $p_{i}>f_{f}>\rho_{H_{2} O}$.

Solution: Apply conservation of mass using the CV shown.
Basic equation:

$$
0=\frac{\partial}{\partial t} \int_{c v} \rho d t+\int_{c s} \rho \vec{v} \cdot d \vec{A}
$$

Assumptions: (1) $\forall_{\text {tank }}=$ constant

(z) p uniform in tank
(3) Uniform flows at inset and outlet sections
Then $V_{1} A_{1}=V_{2} A_{2}$ since tank volume is constant, and

$$
0=\frac{\partial}{\partial t} \int_{c V} \rho d \forall+\rho V A-\rho_{H O} V A=\frac{\partial}{\partial t} \rho \forall+\left(\rho-\rho_{H_{2} O}\right) V A=\forall \frac{d}{d t}+\left(\rho-\rho_{H_{2} O}\right) V A
$$

so that

$$
\frac{d p}{d t}=-\frac{\left(p-\rho_{H_{2}} 0\right) V A}{\forall}
$$

Separating variables,

$$
\frac{d \rho}{\rho-\rho_{H_{2} o}}=-\frac{V A}{\forall} d t
$$

Integrating from p_{i} at $t=0$ to p_{f} at t,

$$
\left.\int_{\rho_{i}}^{\rho_{f}} \frac{\partial \rho}{\rho-\rho_{H_{2} O}}=\ln \left(\rho-\rho_{H_{1} O}\right)\right]_{\rho_{i}}^{\rho_{f}}=\ln \left(\frac{\rho_{f}-\rho_{H_{0}}}{\rho_{i}-\rho_{H_{2} 0}}\right)=\int_{0}^{t}-\frac{V A}{\forall} d t=-\frac{V A}{\forall} t
$$

Finally,

$$
t=-\frac{V}{V A} \ln \left(\frac{\rho_{f}-\rho_{M_{1} O}}{\rho_{i}-\rho_{H_{1} 0}}\right)
$$

$\left\{\right.$ Note that $\rho_{f} \rightarrow \rho_{\text {Ho }}$ asymptotically as $\left.t \rightarrow \infty.\right\}$

Gwen: Funnel of liquid draining through a small hole of diameter $d=5 \mathrm{~mm}$ (area, A) as shown; y_{0} is initial depth
Find: (a) Expression for time to drain (b) Expression for result in terms of

- initial volume t_{0}, and
- initial volume ficus rate $Q_{0}=A V_{0}=A \sqrt{2 a_{0} y_{0}}$

Phot: t as a function of yo $0.15 y_{0}=(n)$ with angle θ as a parameter for $05^{\circ} \leqslant \theta \leqslant 85^{\circ}$.
Solution
Apply conservation of mass using it shown. Basic equation: $0=\frac{\partial}{\partial t} C_{c u} p d t+C_{c s} p \vec{V} \cdot \overrightarrow{d A}$
Assumptions: (i) Incompressible flow
(2) Uniform flow at each section

Ten.
(3) Neglect pair compared to pHo

For the 0 ,
Rus

$$
d t=A, d y=\pi r^{2} d y=\pi(y \tan \theta)^{2} d y ; t=\pi \tan ^{2} \theta \frac{y^{3}}{3}
$$

$$
\begin{aligned}
0 & =p_{20} \frac{2}{2 t}\left(\pi \tan ^{2} \theta \frac{y^{3}}{3}\right)+p_{20}+\sqrt{2 g} y \\
0 & =\pi \tan ^{2} \theta y^{2} \frac{d y}{d t}+a \sqrt{2 g} y^{1 / 2}
\end{aligned}
$$

Separating variables, $\quad y^{3 / 2} d y=\frac{-\sqrt{2 g} A}{\pi \tan ^{2} \theta} d t$
Integrating from y_{0} at $t=0$ to 0 th,

$$
\int_{y_{0}}^{\infty} y^{3 / 2} d y=\frac{2}{5}\left(-y_{0}^{512}\right)=-\frac{\sqrt{2 g} A}{x \tan ^{2} \theta} t
$$

or

$$
t=\frac{2}{5} \frac{\pi \tan ^{2} \theta y_{0}^{5 / 2}}{\sqrt{2 g} F}
$$

But $t_{0}=\pi \tan ^{2} \theta \frac{y_{0}^{3}}{3}$ and $Q_{0}=A V_{0}=A \sqrt{2 g y_{0}}$, so $t=\frac{2}{5} \frac{\pi \tan ^{2} \theta y_{0}^{5 / 2}}{\sqrt{2 g} A}+\frac{3}{3} \cdot \frac{y_{0}^{1 / 2}}{y_{0} 1_{2}}=\frac{6}{3} \frac{H_{0}}{Q_{0}}$ Since $A=\frac{\pi d^{2}}{4}$, we can write.

$$
t=\frac{2}{5} \frac{x \tan ^{2} \theta y_{0}^{5} l_{2}}{\sqrt{2 g} \frac{\pi d^{2}}{4}}=\frac{8}{5} \frac{\tan ^{2} \theta y_{0} s_{2}}{d^{2} \sqrt{2 g}}
$$

t is plotted as a function of yo will θ as a parameter Draining of a conical liquid tank:

Input Data:

$$
\text { Orifice diameter: } \quad d=3 \mathrm{~mm}
$$

Calculated Results:

Given: The instantaneous leakage mass fla o rate in from a bicycle tire is proportional to the air density f in fe tire and to the gage pressure pis the tire
fir in te tires nearly isothermal (because the leakage rate is slow).
 and the intual rate of pressure loss is 1psilyay
Find: a Pressure in the tire after 30 days
b) Accuracy of rube of thumb whicksongs a tire loses pressure at the rate of apandelpsi a day.
Plot: The pressure as a function of time over the zodasis', show rule of fins recut for comparison
Solution:
Apply conservation of mass to tire as the $\langle V, \#>$ Basic equation: $0=\frac{3}{2 t} \int_{\omega_{N}} p d t+\int_{c} \vec{N} \cdot \overrightarrow{d t}$
Assumptions: (1) uniform properties in tire.
(3) $\frac{a r}{T}$ inside cis behaves as idealigas
(3) $T=$ constant $t=$ cortant

Then we can write

$$
\begin{equation*}
o=t \frac{\partial p}{\partial t}+i n=+\frac{\partial p}{\partial t}+c(p-p a t) p \tag{1}
\end{equation*}
$$

But $p=p l k T$ and $\frac{\partial t}{3 t}=\frac{1}{k T} \frac{d f}{d}$, so

$$
0=\frac{t}{R T} \frac{d p}{d t}+\frac{c p}{R T}(-p-p a t+)
$$

$A L t=0,-P=p_{0}$ and $\left.d P l_{d t}=d P l_{d t}\right)_{0}$.

$$
\left.\left.0=+\frac{d p}{d t}\right)_{0}+c p_{0}\left(p_{0}-p_{a n}\right) \text { and } c=-\frac{t}{-P_{0}\left(p_{0}\right.} f_{i d n}\right) d p p_{0}
$$

Substituting into Eq'i we stour

$$
o=\frac{d p}{d t}-\left.\frac{p\left(-p-p_{a}+\right)}{p_{0}\left(f_{0}-p_{0} t h\right)} \frac{d p}{d t}\right|_{0}
$$

Separating variable c and tregrating

$$
\begin{aligned}
& \int_{p_{0}}^{p} \frac{\left.d p-p-p_{d t h}\right)}{P(P)} \frac{d p / d t)_{0}}{p_{0}\left(p_{c}-p_{a t h}\right)} \int_{0}^{t} d t \\
& \frac{1}{P_{\text {aton }}}\left[\ln \frac{P_{0}\left(P_{-}-P_{a t}\right)}{P\left(P_{0}-P_{t a t h}\right)}\right]=\frac{\left.d p l_{a t}\right)_{0}}{P_{0}\left(p_{0}-P_{a t a}\right)} t
\end{aligned}
$$

Toking astilgas.
where

$$
Q_{2}=\frac{d p l d t_{0}}{p_{0}\left(P_{0} / P_{a m}-1\right)}=-\frac{1 p_{1}}{p_{0}}+\frac{6.85+p_{a}}{101+p_{a}} \frac{1}{(201101-1)}
$$

Pen

$$
x=-0.00 \text { bob day }
$$

$$
\frac{P_{a}}{p}=1-\left(\frac{\left.P_{0}-P_{a}\right)}{P_{0}} e^{t t}\right.
$$

and

$$
\varphi=\frac{\rho_{a}^{2} M}{1-\left(P_{0}-P_{a}\right)} \frac{P_{0}}{t}
$$

Evaluating ot t $=30$ days.

$$
\rho=\frac{10<d+a}{1-\frac{600}{70} e^{-30}}=544+\infty+e_{t=30 d a y}
$$

Rule of theme gus $P=P=-6.895 \frac{b p_{0} t}{\text { day }}$

$$
A t t=30 \text { days } \quad P=400 R f_{0}-20 t t_{0}=4 a 3+6,
$$

Pe rube of Rums predicts a larger presume boss Results for bot models are presented below

4.53 Evaluate the net rate of flux of momentum out through the control surface of Problem 4.21.

Given: Data on flow through a control surface
Find: \quad Net rate of momentum flux

Solution:

Basic equation: We need to evaluate $\int_{C S} \vec{V} \rho \vec{V} \cdot d A$
Assumptions: 1) Uniform flow at each section
From Problem $4.21 \quad \mathrm{~V}_{1}=10 \cdot \frac{\mathrm{ft}}{\mathrm{s}} \quad \mathrm{A}_{1}=0.5 \cdot \mathrm{ft}^{2} \quad \mathrm{~V}_{2}=20 \cdot \frac{\mathrm{ft}}{\mathrm{s}} \quad \mathrm{A}_{2}=0.1 \cdot \mathrm{ft}^{2} \quad A_{3}=0.6 \cdot \mathrm{ft}^{2} \quad V_{3}=5 \cdot \frac{\mathrm{ft}}{\mathrm{s}} \quad$ It is an outlet
Then for the control surface $\int_{C S} \vec{V} \rho \vec{V} \cdot d A=\vec{V}_{1} \rho \vec{V}_{1} \cdot \vec{A}_{1}+\vec{V}_{2} \rho \vec{V}_{2} \cdot \vec{A}_{2}+\vec{V}_{3} \rho \vec{V}_{3} \cdot \vec{A}_{3}$

$$
\begin{aligned}
& =V_{1} \hat{i} \rho\left(\vec{V}_{1} \cdot \vec{A}_{1}\right)+V_{2} \hat{j} \rho\left(\vec{V}_{2} \cdot \vec{A}_{2}\right)+\left[V_{3} \sin (60) \hat{i}-V_{3} \cos (60) \hat{j}\right] \rho\left(\vec{V}_{3} \cdot \vec{A}_{3}\right) \\
& =-V_{1} \hat{i} \rho V_{1} A_{1}+V_{2} \hat{j} \rho V_{2} A_{2}+\left[V_{3} \sin (60) \hat{i}-V_{3} \cos (60) \hat{j}\right] \rho V_{3} A_{3} \\
& =\rho\left[-V_{1}^{2} A_{1}+V_{3}^{2} A_{3} \sin (60)\right] \hat{i}+\rho\left[V_{2}^{2} A_{2}-V_{3}^{2} A_{3} \cos (60)\right] \hat{j}
\end{aligned}
$$

Hence the x component is $\rho\left[-V_{1}^{2} A_{1}+V_{3}^{2} A_{3} \sin (60)\right]=\quad 65 \cdot \frac{\mathrm{lbm}}{\mathrm{ft}^{3}} \times\left(-10^{2} \times 0.5+5^{2} \times 0.6 \times \sin (60 \cdot \mathrm{deg})\right) \cdot \frac{\mathrm{ft}^{4}}{\mathrm{~s}^{2}} \times \frac{\mathrm{lbf} \cdot \mathrm{s}^{2}}{\mathrm{lbm} \cdot \mathrm{ft}}=-2406 \mathrm{lbf}$
and the y component is $\quad \rho\left[V_{2}^{2} A_{2}-V_{3}^{2} A_{3} \cos (60)\right]=\quad 65 \cdot \frac{\mathrm{lbm}}{\mathrm{ft}^{3}} \times\left(20^{2} \times 0.1-5^{2} \times 0.6 \times \cos (60 \cdot \mathrm{deg}) \cdot \frac{\mathrm{ft}^{4}}{\mathrm{~s}^{2}} \times \frac{\mathrm{lbf} \cdot \mathrm{s}^{2}}{\mathrm{lbm} \cdot \mathrm{ft}}=2113 \mathrm{lbf}\right.$

Problem 4.54

4.54 For the conditions of Problem 4.30, evaluate the ratio of the x-direction momentum flux at the channel outlet to that at the inlet.

Given: Data on flow at inlet and outlet of channel
Find: \quad Ratio of outlet to inlet momentum flux

Solution:

Basic equation: Momentum flux in x direction at a section $\mathrm{mf}_{x}=\int_{A} u \rho \vec{V} \cdot d A$
Assumptions: 1) Steady flow 2) Incompressible flow
Evaluating at 1 and $2 \quad \mathrm{mf}_{\mathrm{x} 1}=\mathrm{U} \cdot \rho \cdot(-\mathrm{U} \cdot 2 \cdot \mathrm{~h}) \cdot \mathrm{w} \quad\left|\mathrm{mf}_{\mathrm{x} 1}\right|=2 \cdot \rho \cdot \mathrm{w} \cdot \mathrm{U}^{2} \cdot \mathrm{~h}$

Hence

$$
\begin{aligned}
& \mathrm{mf}_{\mathrm{x} 2}=\int_{-\mathrm{h}}^{\mathrm{h}} \rho \cdot \mathrm{u}^{2} \cdot \mathrm{w} \mathrm{dy}=\rho \cdot \mathrm{w} \cdot \mathrm{u}_{\max }^{2} \int_{-\mathrm{h}}^{\mathrm{h}}\left[1-\left(\frac{\mathrm{y}}{\mathrm{~h}}\right)^{2}\right]^{2} \mathrm{dy}=\rho \cdot \mathrm{w} \cdot \mathrm{u}_{\max }^{2} \cdot \int_{-\mathrm{h}}^{\mathrm{h}}\left[1-2 \cdot\left(\frac{\mathrm{y}}{\mathrm{~h}}\right)^{2}+\left(\frac{\mathrm{y}}{\mathrm{~h}}\right)^{4}\right] \mathrm{dy} \\
& \left|\mathrm{mf}_{\mathrm{x} 2}\right|=\rho \cdot \mathrm{w} \cdot \mathrm{u}_{\max }^{2} \cdot\left(2 \cdot \mathrm{~h}-\frac{4}{3} \cdot \mathrm{~h}+\frac{2}{5} \cdot \mathrm{~h}\right)=\rho \cdot \mathrm{w} \cdot \mathrm{u}_{\max }^{2} \cdot \frac{16}{15} \cdot \mathrm{~h}
\end{aligned}
$$

Then the ratio of momentum fluxes is

$$
\frac{\left|\mathrm{mf}_{\mathrm{x} 2}\right|}{\left|\mathrm{mf}_{\mathrm{x} 1}\right|}=\frac{\frac{16}{15} \cdot \rho \cdot \mathrm{w} \cdot \mathrm{u}_{\max ^{2}}{ }^{2} \mathrm{~h}}{2 \cdot \rho \cdot \mathrm{w} \cdot \mathrm{U}^{2} \cdot \mathrm{~h}}=\frac{8}{15} \cdot\left(\frac{\mathrm{u}_{\mathrm{max}}}{\mathrm{U}}\right)^{2}
$$

But, from Problem $4.30 \quad u_{\max }=\frac{3}{2} \cdot \mathrm{U}$

$$
\frac{\left|\mathrm{mf}_{\mathrm{x} 2}\right|}{\left|\mathrm{mf}_{\mathrm{x} 1}\right|}=\frac{8}{15} \cdot\left(\frac{\frac{3}{2} \cdot \mathrm{U}}{\mathrm{U}}\right)^{2}=\frac{6}{5}=1.2
$$

Hence the momentum increases as it flows in the entrance region of the channel. This appears to contradict common sense, as friction should reduce flow momentum. What happens is the pressure drops significantly along the channel so the net force on the CV is to the right.
4.55 For the conditions of Problem 4.31, evaluate the ratio of the x-direction momentum flux at the pipe outlet to that at the inlet.

Given: Data on flow at inlet and outlet of pipe
Find: \quad Ratio of outlet to inlet momentum flux

Solution:

Basic equation: Momentum flux in x direction at a section $\mathrm{mf}_{x}=\int_{A} u \rho \vec{V} \cdot d A$
Assumptions: 1) Steady flow 2) Incompressible flow
Evaluating at 1 and 2

$$
\mathrm{mf}_{\mathrm{x} 1}=\mathrm{U} \cdot \rho \cdot\left(-\mathrm{U} \cdot \pi \cdot \mathrm{R}^{2}\right) \quad\left|\mathrm{mf}_{\mathrm{x} 1}\right|=\rho \cdot \pi \cdot \mathrm{U}^{2} \cdot \mathrm{R}^{2}
$$

Hence

$$
\begin{aligned}
& \operatorname{mf}_{x 2}=\int_{0}^{R} \rho \cdot u^{2} \cdot 2 \cdot \pi \cdot r d r=2 \cdot \rho \cdot \pi \cdot u_{\max }^{2} \cdot \int_{0}^{R} r \cdot\left[1-\left(\frac{r}{R}\right)^{2}\right]^{2} d r=2 \cdot \rho \cdot \pi \cdot u_{\max }^{2} \cdot \int_{0}^{R}\left(r-2 \cdot \frac{r^{3}}{R^{2}}+\frac{r^{5}}{R^{4}}\right) d y \\
& \left|\operatorname{mf}_{x 2}\right|=2 \cdot \rho \cdot \pi \cdot u_{\max }^{2} \cdot\left(\frac{R^{2}}{2}-\frac{R^{2}}{2}+\frac{R^{2}}{6}\right)=\rho \cdot \pi \cdot u_{\max }^{2} \cdot \frac{R^{2}}{3}
\end{aligned}
$$

Then the ratio of momentum fluxes is

$$
\frac{\left|\mathrm{mf}_{\mathrm{x} 2}\right|}{\left|\mathrm{mf}_{\mathrm{x} 1}\right|}=\frac{\frac{1}{3} \cdot \rho \cdot \pi \cdot \mathrm{u}_{\max }^{2} \cdot \mathrm{R}^{2}}{\rho \cdot \pi \cdot \mathrm{U}^{2} \cdot \mathrm{R}^{2}}=\frac{1}{3} \cdot\left(\frac{\mathrm{u}_{\max }}{\mathrm{U}}\right)^{2}
$$

But, from Problem 4.31

$$
\mathrm{u}_{\max }=2 \cdot \mathrm{U}
$$

$$
\frac{\left|\mathrm{mf}_{\mathrm{x} 2}\right|}{\left|\mathrm{mf}_{\mathrm{x} 1}\right|}=\frac{1}{3} \cdot\left(\frac{2 \cdot \mathrm{U}}{\mathrm{U}}\right)^{2}=\frac{4}{3}=1.33
$$

Hence the momentum increases as it flows in the entrance region of the pipe This appears to contradict common sense, as friction should reduce flow momentum. What happens is the pressure drops significantly along the pipe so the net force on the CV is to the right.

Gwen: Two-dimensional reducing bend shown has wide $\omega=3 \mathrm{ft}$.
$V_{3}=3.33 \mathrm{ft} l_{\mathrm{s}}$ into CN (from Problem 4.24)

Find: Momentum flux through the

Solution:
The momerturn flux is defined as mi $=(\vec{V}(p \vec{V}, d \vec{H})$ Te net momentum that trough the $c t$ is

$$
m \cdot f=\int_{a_{1}} \vec{J}(p \vec{v} \cdot d \vec{A})+\int_{h_{2}} \vec{J}(p \overrightarrow{\vec{v}} \cdot d A)+\int_{H_{3}}^{\vec{J}}(\vec{p} \cdot d \vec{A})
$$

where $\left.\vec{J}_{1}=v_{\max } \frac{y_{n}}{i}, \vec{J}_{2}=-v_{2}^{2}\right\rangle, \vec{v}_{3}=-v_{3}(\cos \theta \hat{i}+\sin \theta \hat{j})$

$$
V_{\text {man }}=10 \mathrm{ft} l_{\mathrm{s}}, V_{2}=15 \mathrm{Als}, V_{3}=3.33 \mathrm{fts}
$$

Assumptions: (1) incompressible flow
(2) fluid is water
(3) uniform flow at (2) and (e) (gwen)

$$
\begin{align*}
& \left.C_{A}, \vec{V}(p \vec{j} \cdot \overrightarrow{d A})=-i p_{1}^{2} \max ^{\frac{k}{h^{2}}} \cdot \frac{y^{3}}{3}\right]_{0}^{h_{1}}=-i p^{2} M_{\operatorname{man}} \frac{w h}{3} \tag{i}\\
& \int_{p_{2}} J(p \vec{j} \cdot d \vec{H})=\vec{v}_{2}\left|p v_{2} h_{2} w\right|=-v_{2}^{r}\left|p v_{2} h_{2} w\right|=-j p v_{2}^{2} h_{2} w \tag{l}\\
& \int_{A_{3}} \vec{v}(p \vec{v} \cdot d \vec{A})=\vec{V}_{3}\left(-\left\langle p v_{3} h_{3} w\right)=-v_{3}(\cos \theta i+\sin \theta j)\left(-\mid p v_{3} h_{3} w\right)\right. \\
& \zeta_{A_{3}} \vec{J}(p \vec{d} \cdot \vec{A})=p v_{3}^{2} h_{3} w(\cos \theta i+\sin \theta j) \cdots(3) \\
& m \in=i\left[p v_{3}^{2} h_{3} w \cos \theta-p v^{2} \operatorname{man} \frac{h_{1}}{3}\right]+j\left[p_{3}^{2} h_{3} w \sin \theta-p v_{2}^{2} h_{2} w\right] \\
& m . f=p w\left\{\left[V_{3}^{2} h_{3} \cos \theta-V_{1 \max }^{2} \frac{h_{1}}{3}\right] i+\left[v_{3}^{2} h_{3} \sin \theta-v_{2}^{2} h_{2}\right] j\right\}
\end{align*}
$$

Evaluating

$$
\begin{aligned}
& m . f=-340 i-1230 j 16 f
\end{aligned}
$$

Given: Water flow in the two-dimensional square Channel shown

$$
\begin{aligned}
& v=7.5 \mathrm{mls}, h=w=75.5 \mathrm{~mm} \\
& v_{\text {max }}=2 v_{\text {min }} \\
& v_{\text {min }}=5.0 \mathrm{mls} \\
& \text { (from Problem } 4.25 \text {) }
\end{aligned}
$$

Find: Momentum flux trough the Charnel; conment on expected outlet pressure (relative' to pressure at the inlet.
Solution:
The momentum flux is defined as $m \cdot f=(\vec{v}(\vec{p} \cdot d \vec{p})$ the net momentum flux through the cis

$$
m \cdot f=C_{A_{1}} \vec{J}\left(\overrightarrow{p^{J}} \cdot \overrightarrow{d A}\right)+\int_{A_{2}} \vec{V}\left(p^{\vec{V}} \cdot \overrightarrow{d A}\right)
$$

where $\vec{V}_{1}=\tau 讠, \vec{v}_{2}=\left\{v_{\text {max }}-\left(v_{\text {max }}-v_{\text {min }}\right) \frac{k}{n}\right\} j$

$$
\left.J_{2}=\left\{2 v_{\min }-v_{\min }^{n}\right\}\right\}=v_{\min }\left(2-\frac{x}{n}\right) \hat{j}
$$

Assumptions:

$$
\begin{aligned}
& S_{A_{1}} \vec{V}\left(p^{V} \cdot d \vec{A}\right)=\vec{J},\left\{-|p \forall, A,|=-p v^{2} h^{2} i\right. \\
& \int_{r_{2}} \bar{J}(p \bar{J} \cdot \vec{d})=\int_{0}^{h} v_{\min }\left(2-\frac{x}{h}\right) j p v_{\min }\left(2-\frac{k}{h}\right) h d x \\
& =j p v_{\min }^{2} h \int_{0}^{h}\left(4-4 \frac{x}{n}+\frac{x^{2}}{h^{2}}\right) d x \\
& =j p v^{2}{ }^{2} h\left[4 x-2 \frac{x^{2}}{h}+\frac{k^{3}}{3 h^{2}}\right]_{0}^{h}=j p v^{2} \operatorname{man}^{2}\left[x h-2 h+\frac{h}{3}\right] \\
& =j \frac{7}{3} p v_{\min }^{2} h^{2} \\
& \therefore m m_{1}=-p v^{2} h^{2} i+\frac{7}{3} \rho v^{2} \sin ^{2} h^{2} j=p h^{2}\left[-v^{2} i+\frac{7}{3} v_{\min j}^{2} j\right]
\end{aligned}
$$

Evaluating

$$
\begin{align*}
& M . f=999 \frac{g g}{m^{3}} \times(0.0755)^{2} m^{2}\left[-(7.5)^{2} \frac{m^{2}}{s^{2}} i+\frac{7}{3}(5)^{2} \frac{m^{2}}{5^{2}}\right]+\frac{N .5^{2}}{\mathrm{bg} m} \\
& m . f=-320 i+332 \hat{j} \tag{mi.}
\end{align*}
$$

For viscous (really) flew friction causes a pressure drop in the direction of Now (Staple rs) For flow in a bend streamline curvaluere results in a pressure gradient normal to the flow (Esupterb)

Problem 4.58

4.58 What force (lbf) will a horizontal 2-in.-diameter stream of water moving at $20 \mathrm{ft} / \mathrm{s}$ generate upon hitting a vertical flat plate?

Given: Water jet hitting wall

Find: Force generated on wall

Solution:

Basic equation: Momentum flux in x direction

$$
F_{x}=F_{S_{x}}+F_{B_{x}}=\frac{\partial}{\partial t} \int_{\mathrm{CV}} u \rho d \nvdash+\int_{\mathrm{CS}} u \rho \vec{V} \cdot d \vec{A}
$$

Assumptions: 1) Steady flow 2) Incompressible flow 3) Atmospheric pressure throughout 4) Uniform flow 5) Water leaves vertically
Hence

$$
\begin{aligned}
& \mathrm{R}_{\mathrm{x}}=\mathrm{u}_{1} \cdot \rho \cdot\left(-\mathrm{u}_{1} \cdot \mathrm{~A}_{1}\right)=-\rho \cdot \mathrm{U}^{2} \cdot \mathrm{~A}=-\rho \cdot \mathrm{U}^{2} \cdot \frac{\pi \cdot \mathrm{D}^{2}}{4} \\
& \mathrm{R}_{\mathrm{x}}=-1.94 \cdot \frac{\mathrm{slug}}{\mathrm{ft}^{3}} \times\left(20 \cdot \frac{\mathrm{ft}}{\mathrm{~s}}\right)^{2} \times \frac{\pi \cdot\left(\frac{1}{6} \cdot \mathrm{ft}\right)^{2}}{4} \times \frac{\mathrm{lbf} \cdot \mathrm{~s}^{2}}{\mathrm{slug} \cdot \mathrm{ft}} \quad \mathrm{R}_{\mathrm{x}}=-16.9 \cdot \mathrm{lbf}
\end{aligned}
$$

4.59 Considering that in the fully developed region of a pipe, the integral of the axial momentum is the same at all cross sections, explain the reason for the pressure drop along the pipe.

Given: Fully developed flow in pipe

Find: Why pressure drops if momentum is constant

Solution:

Basic equation: Momentum flux in x direction

$$
F_{x}=F_{S_{x}}+F_{B_{x}}=\frac{\partial}{\partial t} \int_{\mathrm{CV}} u \rho d \nvdash+\int_{\mathrm{CS}} u \rho \vec{V} \cdot d \vec{A}
$$

Assumptions: 1) Steady flow 2) Fully developed flow
Hence $\quad \mathrm{F}_{\mathrm{x}}=\frac{\Delta \mathrm{p}}{\mathrm{L}}-\tau_{\mathrm{w}} \cdot \mathrm{A}_{\mathrm{S}}=0 \quad \Delta \mathrm{p}=\mathrm{L} \cdot \tau_{\mathrm{W}} \cdot \mathrm{A}_{\mathrm{S}}$
where $\Delta \mathrm{p}$ is the pressure drop over length $\mathrm{L}, \tau_{\mathrm{w}}$ is the wall friction and As is the pipe surface area
The sum of forces in the x direction is zero. The friction force on the fluid is in the negative x direction, so the net pressure force must be in the positive direction. Hence pressure drops in the x direction so that pressure and friction forces balance
4.60 Find the force required to hold the plug in place at the exit of the water pipe. The flow rate is $1.5 \mathrm{~m}^{3} / \mathrm{s}$, and the upstream pressure is 3.5 MPa .

Given: Data on flow and system geometry

Find: Force required to hold plug

Solution:

The given data is

$$
\mathrm{D}_{1}=0.25 \cdot \mathrm{~m}
$$

$\mathrm{D}_{2}=0.2 \cdot \mathrm{~m}$
$\mathrm{Q}=1.5 \cdot \frac{\mathrm{~m}^{3}}{\mathrm{~s}}$
$\mathrm{p}_{1}=3500 \cdot \mathrm{kPa}$
$\rho=999 \cdot \frac{\mathrm{~kg}}{\mathrm{~m}^{3}}$
Then

$$
\begin{array}{ll}
\mathrm{A}_{1}=\frac{\pi \cdot \mathrm{D}_{1}^{2}}{4} & \mathrm{~A}_{1}=0.0491 \mathrm{~m}^{2} \\
\mathrm{~A}_{2}=\frac{\pi}{4} \cdot\left(\mathrm{D}_{1}^{2}-\mathrm{D}_{2}^{2}\right) & \mathrm{A}_{2}=0.0177 \mathrm{~m}^{2} \\
\mathrm{~V}_{1}=\frac{\mathrm{Q}}{\mathrm{~A}_{1}} & \mathrm{~V}_{1}=30.6 \frac{\mathrm{~m}}{\mathrm{~s}} \\
\mathrm{~V}_{2}=\frac{\mathrm{Q}}{\mathrm{~A}_{2}} & \mathrm{~V}_{2}=84.9 \frac{\mathrm{~m}}{\mathrm{~s}}
\end{array}
$$

Governing equation:

Momentum

$$
\begin{equation*}
F_{x}=F_{S_{x}}+F_{B_{x}}=\frac{\partial}{\partial t} \int_{\mathrm{CV}} u \rho d \forall+\int_{\mathrm{CS}} u \rho \vec{V} \cdot d \vec{A} \tag{4.18a}
\end{equation*}
$$

Applying this to the current system

Hence

$$
-F+p_{1} \cdot A_{2}-p_{2} \cdot A_{2}=0+V_{1} \cdot\left(-\rho \cdot V_{1} \cdot A_{1}\right)+V_{2} \cdot\left(\rho \cdot V_{2} \cdot A_{2}\right) \quad \text { and } \quad p_{2}=0 \quad \text { (gage) }
$$

$$
\mathrm{F}=\mathrm{p}_{1} \cdot \mathrm{~A}_{1}+\rho \cdot\left(\mathrm{V}_{1}^{2} \cdot \mathrm{~A}_{1}-\mathrm{V}_{2}^{2} \cdot \mathrm{~A}_{2}\right)
$$

$$
\mathrm{F}=3500 \times \frac{\mathrm{kN}}{\mathrm{~m}^{2}} \cdot 0.0491 \cdot \mathrm{~m}^{2}+999 \cdot \frac{\mathrm{~kg}}{\mathrm{~m}^{3}} \times\left[\left(30.6 \cdot \frac{\mathrm{~m}}{\mathrm{~s}}\right)^{2} \cdot 0.0491 \cdot \mathrm{~m}^{2}-\left(84.9 \cdot \frac{\mathrm{~m}}{\mathrm{~s}}\right)^{2} \cdot 0.0177 \cdot \mathrm{~m}^{2}\right] \quad \mathrm{F}=90.4 \mathrm{kN}
$$

Problem 4.61

4.61 A large tank of height $h=1 \mathrm{~m}$ and diameter $D=0.75 \mathrm{~m}$ is affixed to a cart as shown. Water issues from the tank through a nozzle of diameter $d=15 \mathrm{~mm}$. The speed of the liquid leaving the tank is approximately $V=\sqrt{2 g y}$ where y is the height from the nozzle to the free surface. Determine the tension in the wire when $y=0.9 \mathrm{~m}$. Plot the tension in the wire as a function of water
 depth for $0 \leq y \leq 0.9 \mathrm{~m}$.

Given: Large tank with nozzle and wire
Find: Tension in wire; plot for range of water depths

Solution:

Basic equation: Momentum flux in x direction for the tank $F_{x}=F_{S_{x}}+F_{B_{x}}=\frac{\partial}{\partial t} \int_{\mathrm{CV}} u \rho d \forall+\int_{\mathrm{CS}} u \rho \vec{V} \cdot d \vec{A}$
Assumptions: 1) Steady flow 2) Incompressible flow 3) Atmospheric pressure throughout 4) Uniform flow
Hence

$$
\begin{equation*}
\mathrm{R}_{\mathrm{X}}=\mathrm{T}=\mathrm{V} \cdot \rho \cdot(\mathrm{~V} \cdot \mathrm{~A})=\rho \cdot \mathrm{V}^{2} \cdot \mathrm{~A}=\rho \cdot(2 \cdot \mathrm{~g} \cdot \mathrm{y}) \cdot \frac{\pi \cdot \mathrm{d}^{2}}{4} \quad \mathrm{~T}=\frac{1}{2} \cdot \rho \cdot \mathrm{~g} \cdot \mathrm{y} \cdot \pi \cdot \mathrm{~d}^{2} \tag{1}
\end{equation*}
$$

When $\mathrm{y}=0.9 \mathrm{~m} \quad \mathrm{~T}=\frac{\pi}{2} \times 1000 \cdot \frac{\mathrm{~kg}}{\mathrm{~m}^{3}} \times 9.81 \cdot \frac{\mathrm{~m}}{\mathrm{~s}^{2}} \times 0.9 \cdot \mathrm{~m} \times(0.015 \cdot \mathrm{~m})^{2} \times \frac{\mathrm{N} \cdot \mathrm{s}^{2}}{\mathrm{~kg} \cdot \mathrm{~m}}$

$$
\mathrm{T}=3.12 \mathrm{~N}
$$

From Eq 1

This graph can be plotted in Excel

Problem 4.62

4.62 A jet of water issuing from a stationary nozzle at $10 \mathrm{~m} / \mathrm{s}\left(A_{j}=\right.$ $0.1 \mathrm{~m}^{2}$) strikes a turning vane mounted on a cart as shown. The vane turns the jet through angle $\theta=40^{\circ}$. Determine the value of M required to hold the cart stationary. If the vane angle θ is adjustable, plot the mass, M, needed to hold the cart stationary versus θ for $0 \leq \theta \leq 180^{\circ}$.

Given: Nozzle hitting stationary cart
Find: \quad Value of M to hold stationary; plot M versu θ

Solution:

Basic equation: Momentum flux in x direction for the tank $F_{x}=F_{S_{x}}+F_{B_{x}}=\frac{\partial}{\partial t} \int_{\mathrm{CV}} u \rho d \forall+\int_{\mathrm{CS}} u \rho \vec{V} \cdot d \vec{A}$
Assumptions: 1) Steady flow 2) Incompressible flow 3) Atmospheric pressure throughout 4) Uniform flow 5) Exit velocity is V
Hence

$$
\begin{array}{ll}
\text { Hence } \quad R_{X}=-M \cdot g=V \cdot \rho \cdot(-V \cdot A)+V \cdot \cos (\theta) \cdot(V \cdot \mathrm{~A})=\rho \cdot \mathrm{V}^{2} \cdot \mathrm{~A} \cdot(\cos (\theta)-1) & \mathrm{M}=\frac{\rho \cdot \mathrm{V}^{2} \cdot \mathrm{~A}}{\mathrm{~g}} \cdot(1-\cos (\theta)) \tag{1}\\
\text { When } \theta=40^{\circ} \quad \mathrm{M}=\frac{\mathrm{s}^{2}}{9.81 \cdot \mathrm{~m}} \times 1000 \cdot \frac{\mathrm{~kg}}{\mathrm{~m}^{3}} \times\left(10 \cdot \frac{\mathrm{~m}}{\mathrm{~s}}\right)^{2} \times 0.1 \cdot \mathrm{~m}^{2} \times(1-\cos (40 \cdot \mathrm{deg})) & \mathrm{M}=238 \mathrm{~kg}
\end{array}
$$

From Eq 1

This graph can be plotted in Excel

Problem 4.63

4.63 A vertical plate has a sharp-edged orifice at its center. A water jet of speed V strikes the plate concentrically. Obtain an expression for the external force needed to hold the plate in place, if the jet leaving the orifice also has speed V. Evaluate the force for $V=15 \mathrm{ft} / \mathrm{s}, D=4 \mathrm{in}$., and $d=1 \mathrm{in}$. Plot the required force as a function of diameter ratio for a suitable range of diameter d.

Given: Water jet hitting plate with opening

Find: \quad Force generated on plate; plot force versus diameter d

Solution:

Basic equation: Momentum flux in x direction

$$
F_{x}=F_{S_{x}}+F_{B_{x}}=\frac{\partial}{\partial t} \int_{\mathrm{CV}} u \rho d \forall+\int_{\mathrm{CS}} u \rho \vec{V} \cdot d \vec{A}
$$

Assumptions: 1) Steady flow 2) Incompressible flow 3) Atmospheric pressure throughout 4) Uniform flow
Hence

$$
\begin{equation*}
\mathrm{R}_{\mathrm{x}}=\mathrm{u}_{1} \cdot \rho \cdot\left(-\mathrm{u}_{1} \cdot \mathrm{~A}_{1}\right)+\mathrm{u}_{2} \cdot \rho \cdot\left(\mathrm{u}_{2} \cdot \mathrm{~A}_{2}\right)=-\rho \cdot \mathrm{V}^{2} \cdot \frac{\pi \cdot \mathrm{D}^{2}}{4}+\rho \cdot \mathrm{V}^{2} \cdot \frac{\pi \cdot \mathrm{~d}^{2}}{4} \tag{1}
\end{equation*}
$$

$$
\mathrm{R}_{\mathrm{X}}=-\frac{\pi \cdot \rho \cdot \mathrm{V}^{2} \cdot \mathrm{D}^{2}}{4} \cdot\left[1-\left(\frac{\mathrm{d}}{\mathrm{D}}\right)^{2}\right]
$$

For given data

$$
\mathrm{R}_{\mathrm{x}}=-\frac{\pi}{4} \cdot 1.94 \cdot \frac{\mathrm{slug}}{\mathrm{ft}^{3}} \times\left(15 \cdot \frac{\mathrm{ft}}{\mathrm{~s}}\right)^{2} \times\left(\frac{1}{3} \cdot \mathrm{ft}\right)^{2} \times\left[1-\left(\frac{1}{4}\right)^{2}\right] \times \frac{\mathrm{lbf} \cdot \mathrm{~s}^{2}}{\mathrm{slng} \cdot \mathrm{ft}} \quad \mathrm{R}_{\mathrm{x}}=-35.7 \cdot \mathrm{lbf}
$$

From Eq 1 (using the absolute value of R_{x})

This graph can be plotted in Excel

Problem 4.64

4.64 A circular cylinder inserted across a stream of flowing water deflects the stream through angle θ, as shown. (This is termed the "Coanda effect.") For $a=12.5 \mathrm{~mm}, b=2.5 \mathrm{~mm}$, $V=3 \mathrm{~m} / \mathrm{s}$, and $\theta=20^{\circ}$, determine the horizontal component of the force on the cylinder caused by the flowing water.

Given: Water flowing past cylinder
Find: Horizontal force on cylinder

Solution:

Basic equation: Momentum flux in x direction

$$
F_{x}=F_{S_{x}}+F_{B_{x}}=\frac{\partial}{\partial t} \int_{\mathrm{CV}} u \rho d \forall+\int_{\mathrm{CS}} u \rho \vec{V} \cdot d \vec{A}
$$

Assumptions: 1) Steady flow 2) Incompressible flow 3) Atmospheric pressure throughout 4) Uniform flow

Hence $\quad \mathrm{R}_{\mathrm{X}}=\mathrm{u}_{1} \cdot \rho \cdot\left(-\mathrm{u}_{1} \cdot \mathrm{~A}_{1}\right)+\mathrm{u}_{2} \cdot \rho \cdot\left(\mathrm{u}_{2} \cdot \mathrm{~A}_{2}\right)=0+\rho \cdot(-\mathrm{V} \cdot \sin (\theta)) \cdot(\mathrm{V} \cdot \mathrm{a} \cdot \mathrm{b})$
$R_{X}=-\rho \cdot V^{2} \cdot a \cdot b \cdot \sin (\theta)$
For given data $\quad R_{x}=-1000 \cdot \frac{\mathrm{~kg}}{\mathrm{~m}^{3}} \times\left(3 \cdot \frac{\mathrm{~m}}{\mathrm{~s}}\right)^{2} \times 0.0125 \cdot \mathrm{~m} \times 0.0025 \cdot \mathrm{~m} \times \sin (20 \cdot \mathrm{deg}) \times \frac{\mathrm{N} \cdot \mathrm{s}^{2}}{\mathrm{~kg} \cdot \mathrm{~m}}$
$R_{X}=-0.0962 N$

This is the force on the fluid (it is to the left). Hence the force on the cylinder is $\quad R_{X}=-R_{X} \quad R_{X}=0.0962 N$
4.65 In a laboratory experiment, the water flow rate is to be measured catching the water as it vertically exits a pipe into an empty open cylindrical (3-ft diameter) tank that is on a zeroed balance. The tank bottom is 5 ft directly below the pipe exit, and the pipe diameter is 2 in . One student obtains a flow rate by noting that after 30 seconds the volume of water (at $50^{\circ} \mathrm{F}$) in the tank was $15 \mathrm{ft}^{3}$. Another student obtains a flow rate by reading the instantaneous weight of 960 lb indicated at the 30 -second point. Find the mass flow rate each student computes. Why do they disagree? Which one is more accurate? Show that the magnitude of the discrepancy can be explained by any concept you may have.

Given: Water flowing into tank

Find: Mass flow rates estimated by students. Explain discrepancy

Solution:

Basic equation: Momentum flux in y directiop $F_{y}=F_{S_{y}}+F_{B_{y}}=\frac{\partial}{\partial t} \int_{\mathrm{CV}} v \rho d \forall+\int_{\mathrm{CS}} v \rho \vec{V} \cdot d \vec{A}$
Assumptions: 1) Steady flow 2) Incompressible flow 3) Atmospheric pressure throughout 4) Uniform flow
For the first student $\quad m_{1}=\frac{\rho \cdot V}{t} \quad$ where m_{1} represents mass flow rate (software cannot render a dot above it!)

$$
\mathrm{m}_{1}=1.94 \cdot \frac{\mathrm{slug}}{\mathrm{ft}^{3}} \times 15 \cdot \mathrm{ft}^{3} \times \frac{1}{30 \cdot \mathrm{~s}} \quad \mathrm{~m}_{1}=0.97 \cdot \frac{\mathrm{slug}}{\mathrm{~s}} \quad \mathrm{~m}_{1}=31.2 \cdot \frac{\mathrm{lbm}}{\mathrm{~s}}
$$

For the second student

$$
\begin{array}{ll}
m_{2}=\frac{M}{t} \quad \text { where } m_{2} \text { represents mass flow rate } & \\
m_{2}=960 \cdot l \mathrm{lb} \times \frac{1}{30 \cdot \mathrm{~s}} \quad \mathrm{~m}_{2}=0.995 \cdot \frac{\text { slug }}{\mathrm{s}} \quad \mathrm{~m}_{2}=32 \cdot \frac{\mathrm{lbm}}{\mathrm{~s}}
\end{array}
$$

There is a discrepancy because the second student is measuring instantaneous weight PLUS the force generated as the pipe flow momentum is "killed".
To analyse this we first need to find the speed at which the water stream enters the tank, 5 ft below the pipe exit. This would be a good place to use the Bernoulli equation, but this problem is in the set before Bernoulli is covered. Instead we use the simple concept that the fluid is falling under gravity (a conclusion supported by the Bernoulli equation). From the equations for falling under gravity:

$$
\mathrm{V}_{\mathrm{tank}}^{2}=\mathrm{V}_{\mathrm{pipe}}{ }^{2}+2 \cdot \mathrm{~g} \cdot \mathrm{~h}
$$

where $V_{\text {tank }}$ is the speed entering the tank, $V_{\text {pipe }}$ is the speed at the pipe, and $h=5 \mathrm{ft}$ is the distance traveled. $\mathrm{V}_{\text {pipe }}$ is obtained from

Then

$$
\begin{aligned}
& \mathrm{V}_{\text {pipe }}=\frac{\mathrm{m}_{1}}{\rho \cdot \frac{\pi \cdot \mathrm{~d}_{\text {pipe }}^{2}}{4}}=\frac{4 \cdot \mathrm{~m}_{1}}{\pi \cdot \rho \cdot \mathrm{~d}_{\text {pipe }}^{2}} \\
& \mathrm{~V}_{\text {pipe }}=\frac{4}{\pi} \times 31.2 \cdot \frac{\mathrm{lbm}}{\mathrm{~s}} \times \frac{\mathrm{ft}^{3}}{1.94 \cdot \mathrm{slug}} \times \frac{1 \cdot \mathrm{slug}}{32.2 \cdot \mathrm{lbm}} \times\left(\frac{1}{\left.\frac{1}{6} \cdot \mathrm{ft}\right)^{2}} \quad \mathrm{~V}_{\text {pipe }}=22.9 \frac{\mathrm{ft}}{\mathrm{~s}}\right. \\
& \mathrm{V}_{\text {tank }}=\sqrt{\mathrm{V}_{\text {pipe }}{ }^{2}+2 \cdot \mathrm{~g} \cdot \mathrm{~h}} \quad \mathrm{~V}_{\text {tank }}=\sqrt{\left(22.9 \cdot \frac{\mathrm{ft}}{\mathrm{~s}}\right)^{2}+2 \times 32.2 \cdot \frac{\mathrm{ft}}{\mathrm{~s}^{2}} \times 5 \mathrm{ft}} \quad \mathrm{~V}_{\text {tank }}=29.1 \frac{\mathrm{ft}}{\mathrm{~s}}
\end{aligned}
$$

We can now use the y momentum equation for the CS shown above

$$
\mathrm{R}_{\mathrm{y}}-\mathrm{W}=-\mathrm{V}_{\operatorname{tank}} \cdot \rho \cdot\left(-\mathrm{V}_{\operatorname{tank}} \cdot \mathrm{A}_{\operatorname{tank}}\right)
$$

where A_{tank} is the area of the water flow as it enters the tank. But for the water flow

$$
\mathrm{V}_{\operatorname{tank}} \cdot \mathrm{A}_{\operatorname{tank}}=\mathrm{V}_{\mathrm{pipe}} \cdot \mathrm{~A}_{\text {pipe }}
$$

Hence

$$
\Delta \mathrm{W}=\mathrm{R}_{\mathrm{y}}-\mathrm{W}=\rho \cdot \mathrm{V}_{\text {tank }} \cdot \mathrm{V}_{\text {pipe }} \cdot \frac{\pi \cdot \mathrm{d}_{\text {pipe }}{ }^{2}}{4}
$$

This equation indicate the instantaneous difference $\Delta \mathrm{W}$ between the scale reading (R_{y}) and the actual weight of water (W) in the tank

$$
\Delta \mathrm{W}=1.94 \cdot \frac{\mathrm{slug}}{\mathrm{ft}^{3}} \times 29.1 \cdot \frac{\mathrm{ft}}{\mathrm{~s}} \times 22.9 \cdot \frac{\mathrm{ft}}{\mathrm{~s}} \times \frac{\pi}{4} \times\left(\frac{1}{6} \cdot \mathrm{ft}\right)^{2} \times \frac{\mathrm{lbf} \cdot \mathrm{~s}^{2}}{\mathrm{slug} \cdot \mathrm{ft}} \quad \Delta \mathrm{~W}=28.2 \mathrm{lbf}
$$

Hence the scale overestimates the weight of water by 28.2 lbf , or a mass of 28.2 lbm
For the second student $\quad \mathrm{M}=960 \cdot \mathrm{lbm}-28.2 \cdot \mathrm{lbm}=932 \cdot \mathrm{lbm}$

$$
\text { Hence } \begin{aligned}
\mathrm{m}_{2} & =\frac{\mathrm{M}}{\mathrm{t}} & & \text { where } \mathrm{m}_{2} \text { represents mass flow rate } \\
\mathrm{m}_{2} & =932 \cdot \mathrm{lb} \times \frac{1}{30 \cdot \mathrm{~s}} & \mathrm{~m}_{2}=0.966 \cdot \frac{\mathrm{slug}}{\mathrm{~s}} & \mathrm{~m}_{2}=31 \cdot 1 \cdot \frac{\mathrm{lbm}}{\mathrm{~s}}
\end{aligned}
$$

Comparing with the answer obtained from student 1, we see the students now agree! The discrepancy was entirely caused by the fact that t second student was measuring the weight of tank water PLUS the momentum lost by the water as it entered the tank!

Problem 4.66

4.66 A tank of water sits on a cart with frictionless wheels as shown. The cart is attached using a cable to a 9 kg mass, and the coefficient of static friction of the mass with the ground is 0.5 . At time $t=0$, a second cable is used to remove a gate blocking the tank exit. Will the resulting exit flow be sufficient to start the tank moving? (Assume the water flow is frictionless.)

Given: Water tank attached to mass
Find: Whether tank starts moving

Solution:

Basic equation: Momentum flux in x direction for the tank $F_{x}=F_{S_{x}}+F_{B_{x}}=\frac{\partial}{\partial t} \int_{\mathrm{CV}} u \rho d \forall+\int_{\mathrm{CS}} u \rho \vec{V} \cdot d \vec{A}$
Assumptions: 1) Steady flow 2) Incompressible flow 3) Atmospheric pressure at exit 4) Uniform flow
Hence $\quad \mathrm{R}_{\mathrm{X}}=\mathrm{V} \cdot \cos (\theta) \cdot \rho \cdot(\mathrm{V} \cdot \mathrm{A})=\rho \cdot \mathrm{V}^{2} \cdot \frac{\pi \cdot \mathrm{D}^{2}}{4} \cdot \cos (\theta)$
We need to find V. We could use the Bernoulli equation, but here it is known that

$$
\mathrm{V}=\sqrt{2 \cdot \mathrm{~g} \cdot \mathrm{~h}}
$$

$$
\mathrm{V}=\sqrt{2 \times 9.81 \cdot \frac{\mathrm{~m}}{\mathrm{~s}^{2}} \times 4 \cdot \mathrm{~m}} \quad \mathrm{~V}=8.86 \frac{\mathrm{~m}}{\mathrm{~s}}
$$

Hence $\quad \mathrm{R}_{\mathrm{X}}=1000 \cdot \frac{\mathrm{~kg}}{\mathrm{~m}^{3}} \times\left(8.86 \cdot \frac{\mathrm{~m}}{\mathrm{~s}}\right)^{2} \times \frac{\pi}{4} \times(0.04 \cdot \mathrm{~m})^{2} \times \cos (60 \cdot \mathrm{deg})$
$R_{X}=49.3 N$

This force is equal to the tension T in the wire

$$
\mathrm{T}=\mathrm{R}_{\mathrm{X}}
$$

$$
\mathrm{T}=49.3 \mathrm{~N}
$$

For the block, the maximum friction force a mass of $M=9 \mathrm{~kg}$ can generate is

$$
\mathrm{F}_{\max }=\mathrm{M} \cdot \mathrm{~g} \cdot \mu \quad \text { where } \mu \text { is static friction }
$$

$$
\mathrm{F}_{\max }=9 \cdot \mathrm{~kg} \times 9.81 \cdot \frac{\mathrm{~m}}{\mathrm{~s}^{2}} \times 0.5 \times \frac{\mathrm{N} \cdot \mathrm{~s}^{2}}{\mathrm{~kg} \cdot \mathrm{~m}}
$$

$$
\mathrm{F}_{\max }=44.1 \mathrm{~N}
$$

Hence the tension T created by the water jet is larger than the maximum friction $F_{\text {max }}$; the tank starts to move
4.67 A gate is 0.5 m wide and 0.6 m tall, and is hinged at the bottom. On one side the gate holds back a $0.5-\mathrm{m}$ deep body of water. On the other side, a $10-\mathrm{cm}$ diameter water jet hits the gate at a height of 0.5 m . What jet speed V is required to hold the gate vertical? What will the speed be if the body of water is lowered to 0.25 m ? What will the speed be if the water level is at the top of the gate?

Given: Gate held in place by water jet

Find: \quad Required jet speed for various water depths

Solution:

Basic equation: Momentum flux in x direction for the wall $F_{x}=F_{S_{x}}+F_{B_{x}}=\frac{\partial}{\partial t} \int_{\mathrm{CV}} u \rho d \forall+\int_{\mathrm{CS}} u \rho \vec{V} \cdot d \vec{A}$
Note: We use this equation ONLY for the jet impacting the wall. For the hydrostatic force and location we use computing equations

$$
\mathrm{F}_{\mathrm{R}}=\mathrm{p}_{\mathrm{C}} \cdot \mathrm{~A} \quad \mathrm{y}^{\prime}=\mathrm{y}_{\mathrm{C}}+\frac{\mathrm{I}_{\mathrm{xx}}}{\mathrm{~A} \cdot \mathrm{y}_{\mathrm{C}}}
$$

Assumptions: 1) Steady flow 2) Incompressible flow 3) Uniform flow
Hence $\quad \mathrm{R}_{\mathrm{X}}=\mathrm{V} \cdot \rho \cdot\left(-\mathrm{V} \cdot \mathrm{A}_{\mathrm{jet}}\right)=-\rho \cdot \mathrm{V}^{2} \cdot \frac{\pi \cdot \mathrm{D}^{2}}{4}$
This force is the force generated by the wall on the jet; the force of the jet hitting the wall is then

$$
\mathrm{F}_{\mathrm{jet}}=-\mathrm{R}_{\mathrm{X}}=\rho \cdot \mathrm{V}^{2} \cdot \frac{\pi \cdot \mathrm{D}^{2}}{4}
$$

where D is the jet diameter

For the hydrostatic force

$$
\mathrm{F}_{\mathrm{R}}=\mathrm{p}_{\mathrm{C}} \cdot \mathrm{~A}=\rho \cdot \mathrm{g} \cdot \frac{\mathrm{~h}}{2} \cdot \mathrm{~h} \cdot \mathrm{w}=\frac{1}{2} \cdot \rho \cdot \mathrm{~g} \cdot \mathrm{w} \cdot \mathrm{~h}^{2}
$$

where h is the water depth and w is the gate width

$$
\mathrm{y}^{\prime}=\mathrm{y}_{\mathrm{C}}+\frac{\mathrm{I}_{\mathrm{xx}}}{\mathrm{~A} \cdot \mathrm{y}_{\mathrm{C}}}=\frac{\mathrm{h}}{2}+\frac{\frac{\mathrm{w} \cdot \mathrm{~h}^{3}}{12}}{\mathrm{w} \cdot \mathrm{~h} \cdot \frac{\mathrm{~h}}{2}}=\frac{2}{3} \cdot \mathrm{~h}
$$

For the gate, we can take moments about the hinge to obtain

$$
-\mathrm{F}_{\mathrm{jet}} \cdot \mathrm{~h}_{\mathrm{jet}}+\mathrm{F}_{\mathrm{R}} \cdot\left(\mathrm{~h}-\mathrm{y}^{\prime}\right)=-\mathrm{F}_{\mathrm{jet}} \cdot \mathrm{~h}_{\mathrm{jet}}+\mathrm{F}_{\mathrm{R}} \cdot \frac{\mathrm{~h}}{3}=0
$$

where $h_{\text {jet }}$ is the height of the jet from the ground

Hence

$$
F_{\text {jet }}=\rho \cdot \mathrm{V}^{2} \cdot \frac{\pi \cdot \mathrm{D}^{2}}{4} \cdot \mathrm{~h}_{\text {jet }}=\mathrm{F}_{\mathrm{R}} \cdot \frac{\mathrm{~h}}{3}=\frac{1}{2} \cdot \rho \cdot \mathrm{~g} \cdot \mathrm{w} \cdot \mathrm{~h}^{2} \cdot \frac{\mathrm{~h}}{3}
$$

$$
V=\sqrt{\frac{2 \cdot g \cdot w^{3} \cdot h^{3}}{3 \cdot \pi \cdot D^{2} \cdot h_{j}}}
$$

For the first case $(\mathrm{h}=0.5 \mathrm{~m})$

$$
\mathrm{V}=\sqrt{\frac{2}{3 \cdot \pi} \times 9.81 \cdot \frac{\mathrm{~m}}{\mathrm{~s}^{2}} \times 0.5 \cdot \mathrm{~m} \times(0.5 \cdot \mathrm{~m})^{3} \times\left(\frac{1}{0.01 \cdot \mathrm{~m}}\right)^{2} \times \frac{1}{0.5 \cdot \mathrm{~m}}}
$$

$$
\mathrm{V}=51 \frac{\mathrm{~m}}{\mathrm{~s}}
$$

For the second case $(\mathrm{h}=0.25 \mathrm{~m})$

$$
\mathrm{V}=\sqrt{\frac{2}{3 \cdot \pi} \times 9.81 \cdot \frac{\mathrm{~m}}{\mathrm{~s}^{2}} \times 0.5 \cdot \mathrm{~m} \times(0.25 \cdot \mathrm{~m})^{3} \times\left(\frac{1}{0.01 \cdot \mathrm{~m}}\right)^{2} \times \frac{1}{0.5 \cdot \mathrm{~m}}}
$$

$$
\mathrm{V}=18 \frac{\mathrm{~m}}{\mathrm{~s}}
$$

For the first case ($\mathrm{h}=0.6 \mathrm{~m}$)

$$
\mathrm{V}=\sqrt{\frac{2}{3 \cdot \pi} \times 9.81 \cdot \frac{\mathrm{~m}}{\mathrm{~s}} \times 0.5 \cdot \mathrm{~m} \times(0.6 \cdot \mathrm{~m})^{3} \times\left(\frac{1}{0.01 \cdot \mathrm{~m}}\right)^{2} \times \frac{1}{0.5 \cdot \mathrm{~m}}} \quad \mathrm{~V}=67.1 \frac{\mathrm{~m}}{\mathrm{~s}}
$$

Given: Farmer purchases 675 kg of bulk grain. The grain is loaded into a pickup truck from a hopper as shown. Grain flow is terminated when the scale reading reaches the desired gross value.

Find: The true payload.

$$
\left.\begin{array}{l}
D=0.3 \mathrm{~m} \\
\rho=600 \mathrm{~kg} / \mathrm{m}^{3}
\end{array}\right)
$$

Solution: Apply the y component of momentum equation using CV shown.

Basic equation:

Assumptions: (i) No net pressure force; $F_{s y}=R_{y}$
Then
(2) Neglect v inside cV
(3) Uniform flow of grain at inlet section (9)

$$
\begin{aligned}
R_{y}-\left(M_{t}+M_{e}\right) g=v_{1} & \{-|\dot{m}|\} \\
v_{1} & =-v_{1}=-\frac{\dot{m}}{\rho A}
\end{aligned}
$$

or

$$
R_{y}=\left(M_{t}+M c\right) g+\frac{\dot{m}^{2}}{\mu A} \text { (indicated during grain flow) }
$$

Loading is terminated when

$$
\frac{R_{y}}{g}-M_{t}=M_{t}+\frac{\dot{m}^{2}}{f g A}=675 \mathrm{~kg}
$$

Thus

$$
\begin{aligned}
M_{l} & =675 \mathrm{~kg}-\frac{\dot{m}^{2}}{f g A} \\
& =675 \mathrm{~kg}-(40)^{2} \frac{\mathrm{~kg}^{2}}{s^{2}} \times \frac{\mathrm{m}^{3}}{600 \mathrm{~kg}^{2}} \times \frac{\mathrm{s}^{2}}{9.81 \mathrm{~m}} \times \frac{4}{\pi} \frac{1}{(0.3)^{2} \mathrm{~m}^{2}} \\
M_{\ell} & =671 \mathrm{~kg}
\end{aligned}
$$

Given: Water flow through a fine hose and nozzle.

Find: (a) Coupling force, R_{x}
(b) Indicate if in tension or compression.

Solution: Apply continuity and x component of momentum equation to inertial av shown; use gage pressures to cance/patm.

$$
\begin{aligned}
& =0(1) \\
& 0=\frac{\partial}{\partial t} \int_{c v} f d t+\int_{c s} f \vec{V} \cdot d \vec{A} \\
& =O(4)=0(1) \\
& F_{s_{x}}+F_{B_{x}}^{A}=\frac{\partial}{\partial t} \int_{c v} u_{f} \sigma \cdot t+\int_{c s} u_{\rho} \vec{v} \cdot d \vec{A}
\end{aligned}
$$

Basic equations:

Assumptions: (I) Steady frow
(2) Uniform frow at each section
(3) Incompressible flow

$$
\text { (t) } F_{E_{x}}=0
$$

Then

$$
\begin{aligned}
& O=\left\{-/ P V_{1} A_{1} /\right\}+\left\{/ \rho V_{2} A_{1} /\right\}=-\rho V_{1} A_{1}+\rho V_{2} A_{1} \\
& V_{1}=V_{2} \frac{A_{2}}{A_{1}}=V_{2}\left(\frac{D_{2}}{D_{1}}\right)^{2}=32 \frac{\mathrm{~m}}{3} \times\left(\frac{25 \mathrm{~mm}}{75 \mathrm{~mm}}\right)^{2}=3.56 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

and

$$
\begin{aligned}
& R_{x}+\not p_{g} A_{1}=u_{1}\left\{-\left|f \vee_{1} A_{1}\right|\right\}+u_{2}\left\{\left|f v_{2} A_{2}\right|\right\} \\
& u_{1}=v_{1} \quad u_{2}=v_{2} \\
& R_{x}=-\psi_{1} A_{1}-V_{1} f V_{1} A_{1}+V_{2} f V_{2} A_{2}=-\psi_{1 g} A_{1}+f V_{2} A_{2}\left(V_{2}-V_{1}\right) \\
& =-510 \times 10^{3} \frac{\mathrm{~N}}{\mathrm{~m}^{2}} \times \frac{\pi}{4}(0.075)^{2} \mathrm{~m}^{2}+499 \frac{\mathrm{~kg}}{\mathrm{~m}^{3}} \times \frac{32 \mathrm{~m}}{\mathrm{~s}} \times \frac{\pi}{4}(0.025)^{2} \mathrm{~m}^{2}(32.0-3.56) \frac{\mathrm{m}}{\mathrm{~s}} \times \frac{\mathrm{N} \cdot \mathrm{~s}^{2}}{\mathrm{~kg} \cdot \mathrm{~m}^{2}} \\
& R_{x}=-1.81 \mathrm{kN} \text { (Cc. force on } C V \text { is to the left) }
\end{aligned}
$$

Thus the coup ting must Le w tension.
4.70 Obtain expressions for the rate of change in mass of the control volume shown, as well as the horizontal and vertical forces required to hold it in place, in terms of $p_{1}, A_{1}, V_{1}, p_{2}, A_{2}$, $V_{2}, p_{3}, A_{3}, V_{3}, p_{4}, A_{4}, V_{4}$, and the constant density ρ.

Given: Flow into and out of CV
Find: Expressions for rate of change of mass, and force

Solution:

Basic equations: Mass and momentum flux $\frac{\partial}{\partial t} \int_{\mathrm{CV}} \rho d \forall+\int_{\mathrm{CS}} \rho \vec{V} \cdot d \vec{A}=0$

$$
\begin{aligned}
& F_{x}=F_{S_{x}}+F_{B_{x}}=\frac{\partial}{\partial t} \int_{\mathrm{CV}} u \rho d \forall+\int_{\mathrm{CS}} u \rho \vec{V} \cdot d \vec{A} \\
& F_{y}=F_{S_{y}}+F_{B_{y}}=\frac{\partial}{\partial t} \int_{\mathrm{CV}} v \rho d \forall+\int_{\mathrm{CS}} v \rho \vec{V} \cdot d \vec{A}
\end{aligned}
$$

Assumptions: 1) Incompressible flow 2) Uniform flow
For the mass equation $\frac{\mathrm{dM}_{C V}}{d t}+\sum_{\mathrm{CS}}(\rho \cdot \vec{V} \cdot \overrightarrow{\mathrm{~A}})=\frac{\mathrm{dM}_{\mathrm{CV}}}{\mathrm{dt}}+\rho \cdot\left(-\mathrm{V}_{1} \cdot A_{1}-V_{2} \cdot A_{2}+V_{3} \cdot A_{3}+V_{4} \cdot A_{4}\right)=0$

$$
\frac{\mathrm{dM}_{\mathrm{CV}}}{\mathrm{dt}}=\rho \cdot\left(\mathrm{V}_{1} \cdot \mathrm{~A}_{1}+\mathrm{V}_{2} \cdot \mathrm{~A}_{2}-\mathrm{V}_{3} \cdot \mathrm{~A}_{3}-\mathrm{V}_{4} \cdot \mathrm{~A}_{4}\right)
$$

For the x momentum

$$
\begin{aligned}
\mathrm{F}_{\mathrm{X}}+\frac{\mathrm{P}_{1} \cdot \mathrm{~A}_{1}}{\sqrt{2}}+\frac{5}{13} \cdot \mathrm{P}_{2} \cdot \mathrm{~A}_{2}-\frac{4}{5} \cdot \mathrm{P}_{3} \cdot \mathrm{~A}_{3}-\frac{5}{13} \cdot \mathrm{P}_{4} \cdot \mathrm{~A}_{4}= & 0+\frac{\mathrm{V}_{1}}{\sqrt{2}} \cdot\left(-\rho \cdot \mathrm{V}_{1} \cdot \mathrm{~A}_{1}\right)+\frac{5}{13} \cdot \mathrm{~V}_{2} \cdot\left(-\rho \cdot \mathrm{V}_{2} \cdot \mathrm{~A}_{2}\right) \ldots \\
& +\frac{4}{5} \cdot \mathrm{~V}_{3} \cdot\left(\rho \cdot \mathrm{~V}_{3} \cdot \mathrm{~A}_{3}\right)+\frac{5}{13} \cdot \mathrm{~V}_{3} \cdot\left(\rho \cdot \mathrm{~V}_{3} \cdot \mathrm{~A}_{3}\right)
\end{aligned}
$$

$$
\mathrm{F}_{\mathrm{x}}=-\frac{\mathrm{p}_{1} \cdot \mathrm{~A}_{1}}{\sqrt{2}}-\frac{5}{13} \cdot \mathrm{P}_{2} \cdot \mathrm{~A}_{2}+\frac{4}{5} \cdot \mathrm{P}_{3} \cdot \mathrm{~A}_{3}+\frac{5}{13} \cdot \mathrm{p}_{4} \cdot \mathrm{~A}_{4}+\rho \cdot\left(-\frac{1}{\sqrt{2}} \cdot \mathrm{~V}_{1}{ }^{2} \cdot \mathrm{~A}_{1}-\frac{5}{13} \cdot \mathrm{~V}_{2}{ }^{2} \cdot \mathrm{~A}_{2}+\frac{4}{5} \cdot \mathrm{~V}_{3}{ }^{2} \cdot \mathrm{~A}_{3}+\frac{5}{13} \cdot \mathrm{~V}_{3}{ }^{2} \cdot \mathrm{~A}_{3}\right)
$$

For the y momentum $\quad F_{y}+\frac{\mathrm{p}_{1} \cdot \mathrm{~A}_{1}}{\sqrt{2}}-\frac{12}{13} \cdot \mathrm{p}_{2} \cdot \mathrm{~A}_{2}-\frac{3}{5} \cdot \mathrm{p}_{3} \cdot \mathrm{~A}_{3}+\frac{12}{13} \cdot \mathrm{p}_{4} \cdot \mathrm{~A}_{4}=0+\frac{\mathrm{V}_{1}}{\sqrt{2}} \cdot\left(-\rho \cdot \mathrm{V}_{1} \cdot \mathrm{~A}_{1}\right)-\frac{12}{13} \cdot \mathrm{~V}_{2} \cdot\left(-\rho \cdot \mathrm{V}_{2} \cdot \mathrm{~A}_{2}\right) \ldots$ $+\frac{3}{5} \cdot \mathrm{~V}_{3} \cdot\left(\rho \cdot \mathrm{~V}_{3} \cdot \mathrm{~A}_{3}\right)-\frac{12}{13} \cdot \mathrm{~V}_{3} \cdot\left(\rho \cdot \mathrm{~V}_{3} \cdot \mathrm{~A}_{3}\right)$

$$
\mathrm{F}_{\mathrm{y}}=-\frac{\mathrm{p}_{1} \cdot \mathrm{~A}_{1}}{\sqrt{2}}+\frac{12}{13} \cdot \mathrm{P}_{2} \cdot \mathrm{~A}_{2}+\frac{3}{5} \cdot \mathrm{P}_{3} \cdot \mathrm{~A}_{3}-\frac{12}{13} \cdot \mathrm{P}_{4} \cdot \mathrm{~A}_{4}+\rho \cdot\left(-\frac{1}{\sqrt{2}} \cdot \mathrm{~V}_{1}{ }^{2} \cdot \mathrm{~A}_{1}-\frac{12}{13} \cdot \mathrm{~V}_{2}{ }^{2} \cdot \mathrm{~A}_{2}+\frac{3}{5} \cdot \mathrm{~V}_{3}{ }^{2} \cdot \mathrm{~A}_{3}-\frac{12}{13} \cdot \mathrm{~V}_{3}{ }^{2} \cdot \mathrm{~A}_{3}\right)
$$

Problem 4.71
Given: Circular dish with central orifice struck concentrically by water jet as shown
Find: (a) Expression for force needed to hold te dish in place.
(b) Value of force for $V=5 \mathrm{mls}$, $D=100 \mathrm{~mm}$, and $d=20 \mathrm{~mm}$

Pot: required force as a function of θ $\left(0 \leq \theta \leq 90^{\circ}\right.$) with all as a parameter.
Solution:
Apply the + component of the momentum equation to the inertial (1) Ethoun.

Basic equation: $F_{s_{x}}+P_{B_{x}}^{=0(2)}=3 \int_{0 y}^{\infty} u p^{\prime} t+\int_{\text {cs }} u(\vec{p} \cdot d \vec{F})$
Assumptions: (i) atmospheric pressure acts on all cusurfacs
(2) $F_{8}=0$
(3) steady flow
(4) unifoft flow areal section
(5) Negmpressible flow

Res.
(b) noclarge in get speed ondish: $\forall_{1}=V_{2}=V_{3}=V$

$$
\begin{align*}
& R_{1}=u_{1}\left\{-\left\{p v_{1} A_{1}\right\}\right\}+u_{2}\left\{\mid p v_{2} A_{2}\right\}+u_{3}\left\{1 p v_{3} H_{3}\right\} / \\
& u_{1}=v \quad A_{1}=\frac{\pi y^{2}}{4} \quad u_{2}=v \quad A_{2}=\frac{\pi d^{2}}{4} \quad u_{3}=-\lambda \sin \theta A_{3}=R_{1}-A_{2} \\
& R_{4}=-p v^{2} \frac{\pi y^{2}}{4}+p v^{2} \pi \frac{d^{2}}{4}-p v^{2} \sin \theta \frac{\pi}{4}\left(D^{2}-d^{2}\right)=p v^{2} \frac{\pi}{4}(1+\sin \theta)\left(d^{2}-s^{2}\right) \\
& R_{x}=-p v^{2} \frac{\pi y^{2}}{4}(1+\sin \theta)\left[1-\left(\frac{d^{2}}{D}\right)\right] \tag{x}
\end{align*}
$$

Since $R^{\prime}<0$, it must be applied to te left. R is putted as a function of θ for different values of dis

Problem 4.72

4.72 Water is flowing steadily through the 180° elbow shown. At the inlet to the elbow the gage pressure is 15 psi . The water discharges to atmospheric pressure. Assume properties are uniform over the inlet and outlet areas: $A_{1}=4 \mathrm{in} .^{2}, A_{2}=1 \mathrm{in} .^{2}$, and $V_{1}=$ $10 \mathrm{ft} / \mathrm{s}$. Find the horizontal component of force required to hold the elbow in place.

Given: Water flow through elbow
Find: Force to hold elbow

Solution:

Basic equation: Momentum flux in x direction for the elbow $F_{x}=F_{S_{x}}+F_{B_{x}}=\frac{\partial}{\partial t} \int_{\mathrm{CV}} u \rho d \nvdash+\int_{\mathrm{CS}} u \rho \vec{V} \cdot d \vec{A}$
Assumptions: 1) Steady flow 2) Incompressible flow 3) Atmospheric pressure at exit 4) Uniform flow
Hence

$$
R_{X}+p_{1 g} \cdot A_{1}=V_{1} \cdot\left(-\rho \cdot V_{1} \cdot A_{1}\right)-V_{2} \cdot\left(\rho \cdot V_{2} \cdot A_{2}\right) \quad R_{X}=-p_{1 g} \cdot A_{1}-\rho \cdot\left(V_{1}^{2} \cdot A_{1}+V_{2}^{2} \cdot A_{2}\right)
$$

The force is to the left: It is needed to hold the elbow on against the high pressure, plus it generates the large change in x momentum

Problem 4.73

4.73 A 180° elbow takes in water at an average velocity of 0.8 m / s and a pressure of 350 kPa (gage) at the inlet, where the diameter is 0.2 m . The exit pressure is 75 kPa , and the diameter is 0.04 m . What is the force required to hold the elbow in place?

Given: Water flow through elbow
Find: Force to hold elbow

Solution:

Basic equation: Momentum flux in x direction for the elbow $F_{x}=F_{S_{x}}+F_{B_{x}}=\frac{\partial}{\partial t} \int_{\mathrm{CV}} u \rho d \forall+\int_{\mathrm{CS}} u \rho \vec{V} \cdot d \vec{A}$
Assumptions: 1) Steady flow 2) Incompressible flow 3) Uniform flow
Hence

$$
R_{x}+p_{1 g} \cdot A_{1}+p_{2 g} \cdot A_{2}=V_{1} \cdot\left(-\rho \cdot V_{1} \cdot A_{1}\right)-V_{2} \cdot\left(\rho \cdot V_{2} \cdot A_{2}\right) \quad R_{x}=-p_{1 g} \cdot A_{1}-p_{2 g} \cdot A_{2}-\rho \cdot\left(V_{1}^{2} \cdot A_{1}+V_{2}^{2} \cdot A_{2}\right)
$$

From continuity $V_{2} \cdot A_{2}=V_{1} \cdot A_{1} \quad$ so $\quad V_{2}=V_{1} \cdot \frac{A_{1}}{A_{2}}=V_{1} \cdot\left(\frac{D_{1}}{D_{2}}\right)^{2} \quad V_{2}=0.8 \cdot \frac{m}{s} \cdot\left(\frac{0.2}{0.04}\right)^{2} \quad V_{2}=20 \frac{m}{s}$
Hence $\quad \mathrm{R}_{\mathrm{x}}=-350 \times 10^{3} \cdot \frac{\mathrm{~N}}{\mathrm{~m}^{2}} \times \frac{\pi \cdot(0.2 \cdot \mathrm{~m})^{2}}{4}-75 \times 10^{3} \cdot \frac{\mathrm{~N}}{\mathrm{~m}^{2}} \times \frac{\pi \cdot(0.04 \cdot \mathrm{~m})^{2}}{4} \ldots \quad \quad \mathrm{R}_{\mathrm{X}}=-11.6 \cdot \mathrm{kN}$

$$
+-1000 \cdot \frac{\mathrm{~kg}}{\mathrm{~m}^{3}} \times\left[\left(0.8 \cdot \frac{\mathrm{~m}}{\mathrm{~s}}\right)^{2} \times \frac{\pi \cdot(0.2 \cdot \mathrm{~m})^{2}}{4}+\left(20 \cdot \frac{\mathrm{~m}}{\mathrm{~s}}\right)^{2} \times \frac{\pi \cdot(.04 \cdot \mathrm{~m})^{2}}{4}\right] \times \frac{\mathrm{N} \cdot \mathrm{~s}^{2}}{\mathrm{~kg} \cdot \mathrm{~m}}
$$

The force is to the left: It is needed to hold the elbow on against the high pressures, plus it generates the large change in x momentum

Problem 4.74

4.74 Water flows steadily through the nozzle shown, discharging to atmosphere. Calculate the horizontal component of force in the flanged joint. Indicate whether the joint is in tension or compression.

Given: Water flow through nozzle
Find: Force to hold nozzle

Solution:

Basic equation: Momentum flux in x direction for the elbow $\quad F_{x}=F_{S_{x}}+F_{B_{x}}=\frac{\partial}{\partial t} \int_{\mathrm{CV}} u \rho d \forall+\int_{\mathrm{CS}} u \rho \vec{V} \cdot d \vec{A}$
Assumptions: 1) Steady flow 2) Incompressible flow 3) Uniform flow
Hence

$$
\mathrm{R}_{\mathrm{x}}+\mathrm{p}_{1 \mathrm{~g}} \cdot \mathrm{~A}_{1}+\mathrm{p}_{2 \mathrm{~g}} \cdot \mathrm{~A}_{2}=\mathrm{V}_{1} \cdot\left(-\rho \cdot \mathrm{V}_{1} \cdot \mathrm{~A}_{1}\right)+\mathrm{V}_{2} \cdot \cos (\theta) \cdot\left(\rho \cdot \mathrm{V}_{2} \cdot \mathrm{~A}_{2}\right)
$$

$$
\mathrm{R}_{\mathrm{x}}=-\mathrm{p}_{1 \mathrm{~g}} \cdot \mathrm{~A}_{1}+\rho \cdot\left(\mathrm{V}_{2}^{2} \cdot \mathrm{~A}_{2} \cdot \cos (\theta)-\mathrm{V}_{1}^{2} \cdot \mathrm{~A}_{1}\right)
$$

From continuity $V_{2} \cdot A_{2}=V_{1} \cdot A_{1} \quad$ so $\quad V_{2}=V_{1} \cdot \frac{A_{1}}{A_{2}}=V_{1} \cdot\left(\frac{D_{1}}{D_{2}}\right)^{2} \quad V_{2}=1.5 \cdot \frac{m}{s} \cdot\left(\frac{30}{15}\right)^{2} \quad V_{2}=6 \cdot \frac{m}{s}$
Hence $\quad R_{x}=-15 \times 10^{3} \cdot \frac{\mathrm{~N}}{\mathrm{~m}^{2}} \times \frac{\pi \cdot(0.3 \cdot \mathrm{~m})^{2}}{4}+1000 \cdot \frac{\mathrm{~kg}}{\mathrm{~m}^{3}} \times\left[\left(6 \cdot \frac{\mathrm{~m}}{\mathrm{~s}}\right)^{2} \times \frac{\pi \cdot(0.15 \cdot \mathrm{~m})^{2}}{4} \cdot \cos (30 \cdot \mathrm{deg})-\left(1.5 \cdot \frac{\mathrm{~m}}{\mathrm{~s}}\right)^{2} \times \frac{\pi \cdot(.3 \cdot \mathrm{~m})^{2}}{4}\right] \times \frac{\mathrm{N} \cdot \mathrm{s}^{2}}{\mathrm{~kg} \cdot \mathrm{~m}}$
$\mathrm{R}_{\mathrm{X}}=-668 \cdot \mathrm{~N} \quad$ The joint is in tension: It is needed to hold the elbow on against the high pressure, plus it generates the large change in x momentum

Problem 4.75
Given: Two-deriensional square bend shown is a segment of a larger Camel, hes in horizontal plane.

$$
\begin{aligned}
& u=7.5 \mathrm{mls}, h=w=75.5 \mathrm{~mm}
\end{aligned}
$$

$$
\begin{aligned}
& v_{\text {max }}=2 v_{\text {min }} ; v_{\text {min }}=5.0 \text { ils (from Problem } 4.25 \text {) }{ }_{R_{y}}^{-\frac{1}{4}}
\end{aligned}
$$

Find: Force required to hold the band in place.
Solution:
Basic equation: $\vec{F}_{s}+\vec{F}_{B}=\frac{\overrightarrow{y y}}{\overrightarrow{2}} \vec{C}_{c u}$ pdt $\cdot C_{c} \vec{V}(p \vec{V}, \overrightarrow{d A})$
Assumptions: (i) steady flow
(2) $F_{B_{x}}=F_{B_{y}}=0$
(3) incompressible flow
(4) atmospheric pressure ads on outside surfaces.

Rex-monertum equation becomes

$$
\begin{aligned}
& \left.R_{4}+P_{1} A_{1}+58_{2}=\int_{c s} u(p \vec{U} \cdot d \vec{A})=U\left\{-\mid p \cup A_{1}\right)\right\} \\
& R_{x}=-P_{1} A_{1}-p i J^{2} R_{1}=-h^{2}\left(P_{1}+p v^{2}\right)
\end{aligned}
$$

The y-momentum equation becomes

$$
\begin{aligned}
& R_{y}-\vec{R}_{2} A_{z}+F F_{y}^{=062}=\int_{c s} v(p \vec{V} \cdot \overrightarrow{d A}) \\
& v_{2}=v_{2}=v_{\max }-\left(v_{\max }-v_{\min }\right)^{\frac{t}{h}}=2 v_{\min }-v_{\min } \frac{x}{h}=v_{\operatorname{man}}\left(2-\frac{x}{h}\right) \\
& R_{y}-P_{2} A_{2}=\int_{0}^{h} v_{\min }\left(2-\frac{t}{h}\right) \rho v_{\min }\left(2-\frac{t}{h}\right) h d x \\
& R_{y}=P_{2} A_{2}+p r^{2}{ }^{2} h\left(\int_{0}^{h}\left(4-4 \frac{t}{h}+\frac{k^{2}}{h^{2}}\right) d x\right. \\
& =P_{2} A_{2}+P v_{\min }^{2} h\left[4 t-2 \frac{x^{2}}{h}+\frac{x^{3}}{3 h^{2}}\right]_{0}^{h} \\
& R_{y}=P_{2} A_{2}+p v^{2} \min \left[4 h-2 h+\frac{h}{3}\right]=-P_{2} A_{2}+\frac{7}{3} p v^{2}{ }^{2} h^{2} \\
& R_{y}=h^{2}\left(p_{2}+\frac{7}{3}\left(v_{\operatorname{man}}^{2}\right)\right.
\end{aligned}
$$

$$
\begin{aligned}
& R_{y}=498 \mathrm{~N} \\
& \therefore \vec{R}=-742+498 j N+\vec{R}
\end{aligned}
$$

Problem 4.76

4.76 A flat plate orifice of 2 in . diameter is located at the end of a 4-in. diameter pipe. Water flows through the pipe and orifice at $20 \mathrm{ft}^{3} / \mathrm{s}$. The diameter of the water jet downstream from the orifice is 1.5 in . Calculate the external force required to hold the orifice in place. Neglect friction on the pipe wall.

Given: Water flow through orifice plate
Find: Force to hold plate

Solution:

Basic equation: Momentum flux in x direction for the elbow $\quad F_{x}=F_{S_{x}}+F_{B_{x}}=\frac{\partial}{\partial t} \int_{\mathrm{CV}} u \rho d \forall+\int_{\mathrm{CS}} u \rho \vec{V} \cdot d \vec{A}$
Assumptions: 1) Steady flow 2) Incompressible flow 3) Uniform flow
Hence $\quad R_{x}+p_{1 g} \cdot A_{1}-p_{2 g} \cdot A_{2}=V_{1} \cdot\left(-\rho \cdot V_{1} \cdot A_{1}\right)+V_{2} \cdot\left(\rho \cdot V_{2} \cdot A_{2}\right) \quad R_{x}=-p_{1 g} \cdot A_{1}+\rho \cdot\left(V_{2}{ }^{2} \cdot A_{2}-V_{1}^{2} \cdot A_{1}\right)$

From continuity $\mathrm{Q}=\mathrm{V}_{1} \cdot \mathrm{~A}_{1}=\mathrm{V}_{2} \cdot \mathrm{~A}_{2}$
so $\quad V_{1}=\frac{Q}{A_{1}}=20 \cdot \frac{\mathrm{ft}^{3}}{\mathrm{~s}} \times \frac{4}{\pi \cdot\left(\frac{1}{3} \cdot \mathrm{ft}\right)^{2}}=229 \cdot \frac{\mathrm{ft}}{\mathrm{s}} \quad$ and $\quad \mathrm{V}_{2}=\mathrm{V}_{1} \cdot \frac{\mathrm{~A}_{1}}{\mathrm{~A}_{2}}=\mathrm{V}_{1} \cdot\left(\frac{\mathrm{D}}{\mathrm{d}}\right)^{2}=229 \cdot \frac{\mathrm{ft}}{\mathrm{s}} \times\left(\frac{4}{1.5}\right)^{2}=1628 \cdot \frac{\mathrm{ft}}{\mathrm{s}}$
NOTE: problem has an error: Flow rate should be $2 \mathrm{ft}^{3} / \mathrm{s}$ not $20 \mathrm{ft}^{3} / \mathrm{s}$! We will provide answers to both

Hence $\quad \mathrm{R}_{\mathrm{X}}=-200 \cdot \frac{\mathrm{lbf}}{\mathrm{in}^{2}} \times \frac{\pi \cdot(4 \cdot \mathrm{in})^{2}}{4}+1.94 \cdot \frac{\mathrm{slug}}{\mathrm{ft}^{3}} \times\left[\left(1628 \cdot \frac{\mathrm{ft}}{\mathrm{s}}\right)^{2} \times \frac{\pi \cdot(1.5 \cdot \mathrm{in})^{2}}{4}-\left(229 \cdot \frac{\mathrm{ft}}{\mathrm{s}}\right)^{2} \times \frac{\pi \cdot(4 \cdot \mathrm{in})^{2}}{4}\right] \times\left(\frac{1 \cdot \mathrm{ft}}{12 \cdot \mathrm{in}}\right)^{2} \times \frac{\mathrm{lbf} \cdot \mathrm{s}^{2}}{\mathrm{slug} \mathrm{ft}}$
$\mathrm{R}_{\mathrm{X}}=51707 \cdot \mathrm{lbf}$
With more realistic velocities
Hence $\quad \mathrm{R}_{\mathrm{X}}=-200 \cdot \frac{\mathrm{lbf}}{\mathrm{in}^{2}} \times \frac{\pi \cdot(4 \cdot \mathrm{in})^{2}}{4}+1.94 \cdot \frac{\operatorname{slug}}{\mathrm{ft}^{3}} \times\left[\left(163 \cdot \frac{\mathrm{ft}}{\mathrm{s}}\right)^{2} \times \frac{\pi \cdot(1.5 \cdot \mathrm{in})^{2}}{4}-\left(22.9 \cdot \frac{\mathrm{ft}}{\mathrm{s}}\right)^{2} \times \frac{\pi \cdot(4 \cdot \mathrm{in})^{2}}{4}\right] \times\left(\frac{1 \cdot \mathrm{ft}}{12 \cdot \mathrm{in}}\right)^{2} \times \frac{\mathrm{lbf} \cdot \mathrm{s}^{2}}{\mathrm{slug} \cdot \mathrm{ft}}$
$R_{X}=-1970 \cdot l b f$

Given: Spray system, of mass $M=0.200 \mathrm{lbn}$ and internal volume $t=$ ep is operates under steady stale conditions shown.

Find: the vertical force exerted on the supply pipe by the spray system
Solution:
Apply the y component of the momentum equation to the fixed
 control volume shown.
Basic Equation:

$$
\begin{equation*}
F_{3 y}+F_{b y}=\frac{\partial}{2 t} \int_{c u}^{0} \int_{c s}^{0} \tag{i}
\end{equation*}
$$

Assumptions: il steady flow
(2) inco-pressible flow
(3) uniform flow a each section
(4) calculation of surface forces is simplified trough use of gage pressures

$$
o=-\left|p\left\langle 1 R_{1}\right)^{\prime}+\left|p V_{2} A_{2}\right| \text { and } V_{1}=V_{2} \frac{H_{2}}{A_{1}}=\sqrt{A_{1}}\right.
$$

The momentum flux is

Then from eq (i) we can write

$$
R_{y}=-1.70 \text { Br }
$$

The force of the spray system on the supply pipe is

$$
k_{y}=-R_{y}=1 i>0 \text { Vf upward) }
$$

$$
\begin{aligned}
& R_{y}+R_{g}{ }^{p}-p^{+} g-M_{g}=p^{2} a\left(1-\frac{a}{H}\right) \text {. Solving for } R_{y} \text {, } \\
& R_{y}=-p_{1} g+p^{\prime} g+p^{n} g+p^{2} a\left(1-\frac{\alpha}{A}\right)
\end{aligned}
$$

$$
\begin{aligned}
& C_{c s} v \vec{p} \cdot \overrightarrow{d H}=v_{1}\left\{-\mid p V_{1}, H_{1}\right\}+v_{2}\left\{\left(p V_{1} H_{2}\right\}=V_{1}\left(-p V_{1},\right)_{1}\right)+V(p v a) \\
& =V^{\frac{a}{A}}(-p v a)+V(p \vee a)=p V^{2} a\left(1-\frac{a}{\vec{A}}\right)
\end{aligned}
$$

Problem 4.78
Given: Flow through semi-circular nozzle, as shown.
Find: (a) Volume flow rate
(b) y-component of force required to 401 d in place

Solution: Choose $C V$ and coordinates shown. Apply continuity and momentum equation in y-direction.

Basic equations: $\quad Q=\int_{A} \vec{V} \cdot d \vec{A}$

$$
\begin{gathered}
=o(z)=0(3) \\
F_{s y}+F_{B y}=\frac{d y}{\partial t} \int_{c v} v \rho d t+\int_{c s} v \rho \vec{v} \cdot d \vec{A}
\end{gathered}
$$

Assumptions: (1) Flow uniform across exit section
(2) $F_{B y}=0$
(3) Steady flow

At $\operatorname{section}$ (2), $\vec{V} \cdot d \vec{A}=V$ et $d \theta$, since flow out of $c V$. Then

$$
\begin{aligned}
& Q=\int_{-\pi / 2}^{\pi / 2} v R t d \theta=\operatorname{vRt}[\theta]_{-\pi / 2}^{\pi / 2}=V R t \pi \\
& Q=15 \frac{m}{5} \times 0.3 m_{\times} 0.03 m_{x} \pi=0.424 \mathrm{~m}^{3} / \mathrm{s}
\end{aligned}
$$

From momentum

$$
R_{y}=\int_{c s} v \rho \vec{v} \cdot d \vec{A}=\int_{A_{1}} v \cdot\left\{-\left|\rho V, d A_{1}\right|\right\}+\int_{A_{2}} v_{2}\left\{+\left|\rho V_{2} d A_{2}\right|\right\}
$$

with

$$
v_{1}=0
$$

$$
v_{2}=V \cos \theta
$$

$$
\begin{aligned}
& R_{y}=\int_{-\pi / 2}^{\pi / 2} V \cos \theta \rho V R t d \theta=\rho v^{2} R t[\sin \theta]_{-\pi / 2}^{\pi / 2}=2 \rho v^{2} R t \\
& R_{y}=2 \times 999 \frac{\mathrm{~kg}}{\mathrm{~m}^{3}} \times(15)^{2} \frac{\mathrm{~m}^{2}}{5 \times 2} \times 0.3 m_{\times} 0.03 \mathrm{~m}_{\times} \times \frac{\mathrm{N} \cdot \mathrm{~s}^{2}}{\mathrm{~kg} \cdot \mathrm{~m}}=4.05 \mathrm{kN}
\end{aligned}
$$

Problem 4.79

4.79 At rated thrust, a liquid-fueled rocket motor consumes 80 kg / s of nitric acid as oxidizer and $32 \mathrm{~kg} / \mathrm{s}$ of aniline as fuel. Flow leaves axially at $180 \mathrm{~m} / \mathrm{s}$ relative to the nozzle and at 110 kPa . The nozzle exit diameter is $D=0.6 \mathrm{~m}$. Calculate the thrust produced by the motor on a test stand at standard sea-level pressure.

Given: Data on rocket motor
Find: Thrust produced

Solution:

Basic equation: Momentum flux in x direction for the elbow

$$
F_{x}=F_{S_{x}}+F_{B_{x}}=\frac{\partial}{\partial t} \int_{\mathrm{CV}} u \rho d \forall+\int_{\mathrm{CS}} u \rho \vec{V} \cdot d \vec{A}
$$

Assumptions: 1) Steady flow 2) Neglect change of momentum within CV 3) Uniform flow
Hence

$$
\mathrm{R}_{\mathrm{x}}-\mathrm{p}_{\mathrm{eg}} \cdot \mathrm{~A}_{\mathrm{e}}=\mathrm{V}_{\mathrm{e}} \cdot\left(\rho_{\mathrm{e}} \cdot \mathrm{~V}_{\mathrm{e}} \cdot \mathrm{~A}_{\mathrm{e}}\right)=\mathrm{m}_{\mathrm{e}} \cdot \mathrm{~V}_{\mathrm{e}} \quad \mathrm{R}_{\mathrm{x}}=\mathrm{p}_{\mathrm{eg}} \cdot \mathrm{~A}_{\mathrm{e}}+\mathrm{m}_{\mathrm{e}} \cdot \mathrm{~V}_{\mathrm{e}}
$$

where p_{eg} is the exit pressure (gage), m_{e} is the mass flow rate at the exit (software cannot render dot over $\mathrm{m}!$) and V_{e} is the xit velocity
For the mass flow rate

$$
\begin{array}{ll}
\mathrm{m}_{\mathrm{e}}=\mathrm{m}_{\text {nitricacid }}+\mathrm{m}_{\text {aniline }}=80 \cdot \frac{\mathrm{~kg}}{\mathrm{~s}}+32 \cdot \frac{\mathrm{~kg}}{\mathrm{~s}} & \mathrm{~m}_{\mathrm{e}}=112 \cdot \frac{\mathrm{~kg}}{\mathrm{~s}} \\
\mathrm{R}_{\mathrm{x}}=(110-101) \times 10^{3} \cdot \frac{\mathrm{~N}}{\mathrm{~m}^{2}} \times \frac{\pi \cdot(0.6 \cdot \mathrm{~m})^{2}}{4}+112 \cdot \frac{\mathrm{~kg}}{\mathrm{~s}} \times 180 \cdot \frac{\mathrm{~m}}{\mathrm{~s}} \times \frac{\mathrm{N} \cdot \mathrm{~s}^{2}}{\mathrm{~kg} \cdot \mathrm{~m}} & \mathrm{R}_{\mathrm{x}}=22.7 \mathrm{kN}
\end{array}
$$

Hence

Problem 4.80
Given: Jet engine on test stand. Fuel sirs vertically at rate

Find: (a) Air flow rate do Estimate of engine

Solution:
Apply x-component of the momentum equation to ct sown

$$
i_{\text {air }}=p, H_{1}, p=p l e l
$$

Assumptions: (i) $F_{0-1}=0$
(a) steady flow
(3) unifort flow at init and actret sections.
(4) our behaves as ideal gas: $T=70^{\circ} \mathrm{F}$
(5) fuel esters vertically (given)

$$
\begin{aligned}
& M_{\text {air }}=P, V_{A}=0.0644 \frac{\mathrm{BH}}{f t^{3}} \times 500 \frac{f}{3} \times 64 \mathrm{ft}^{2}=2060 \mathrm{bm} / \mathrm{s} \mathrm{~m}
\end{aligned}
$$

From the x-mometum equation

$$
\begin{aligned}
& \text { the n-mometum equation } \\
& R_{1}-p_{1} h_{1}+g_{2} g_{2}=0=u_{1}\left\{-m_{1}\right\}+u_{2}\left\{m_{2}\right\}+\mu_{f}\left\{-m_{f}\right\} \\
& u_{1}=-v_{1}, u_{2}=-u_{2}, m_{2}=n_{1}+m_{f}
\end{aligned}
$$

Also thrust $T=k_{x}$ (force of engine on surroundings) $=-R_{x}$
so

$$
\begin{aligned}
& -T-p_{B_{g}} A_{1}=\dot{m}_{1} v_{1}-\dot{r}_{2} v_{2}=\dot{m}_{1} \psi_{1}-\left(1.02 m_{1}\right)_{2} \\
& T=i_{1}\left(1.02 V_{2}-V_{1}\right)-e_{1} g A_{1}
\end{aligned}
$$

$$
\begin{aligned}
& T=65,400 \mathrm{bf}
\end{aligned}
$$

Given: Incompressible, frictionless flow through a sudden expansion as shown.
Show: Pressure rise, $\Delta f=-p_{2}-f_{1}$, is given by

$$
\frac{\Delta p^{2}}{2 p^{3}}=2\left(\frac{d}{D}\right)^{2}\left[1-\left(\frac{d}{D}\right)^{2}\right]
$$

Plot: Re nondemensional pressure rise vs dis to determine fie optimum dy and corresponding nohderensioral pressure rise
Solution:
Apply x component of momentum $=0$ equation, using fixed cu shown
Basil equation: $F_{s_{x}}+Z_{B_{x}}=\vec{A}(2) \sum_{c y} u p d y+S_{c s} u(p \vec{v} \cdot d \vec{d})$
Assumptions: (i) no friction, so surface force ductopressure only
(2) $F_{B x}=0$
(3) s beady flaw (4) incompressible flow (quiver)
(S) urifofn flow at sections (0) and (B)
(b) uniform pressure f. onertical surface of expansion
Then,

$$
\left.\rho_{1} F_{2}-\rho_{2} A_{2}=u_{1}\left\{-\mid p \bar{v}_{1} H_{1}\right\}+u_{2}\left\{\mid p \bar{v}_{2} A_{2}\right\}\right\} \quad u_{1}=\bar{v}_{1}, u_{2}=\bar{V}_{2}
$$

From conturiuty for uniform flow, in $=P A_{1} \bar{V}_{1}=p A_{2} \bar{A}_{2} ; \bar{H}_{2}=\bar{V}_{1} A_{1} \vec{R}_{2}$

$$
\varphi_{2}-p_{1}=p_{1}^{2} \frac{A_{1}}{F_{2}}\left(1-\bar{J}_{2}\right)=p \bar{V}_{1}^{2} \frac{F_{1}}{F_{2}}\left(1-\frac{A_{2}}{F_{2}}\right) \text {. }
$$

and

$$
\frac{\varphi_{2}-P_{1}}{\frac{1}{2} P_{1}^{2}}=\frac{A_{1}}{A_{2}}\left(1-\frac{A_{1}}{A_{2}}\right)=2\left(\frac{d}{D}\right)^{2}\left[1-\left(\frac{d}{D}\right)^{2}\right]
$$

From the plat below we see that $\frac{\Delta t}{\frac{s}{2} p^{-i}}$. has an optionum value of 20.5 at $\alpha 1, y=0.70$
Note: As expected

- for $d=\bar{D}, \Delta F=0$ for strichtupipe - for $\frac{d}{\Delta} \rightarrow 0, \Delta P=0$ for free jet Also note that the location of section (3) would have to be Chosen with care to make assumption (5) reascrable
4.82 A free jet of water with constant cross-section area $0.005 \mathrm{~m}^{2}$ is deflected by a hinged plate of length 2 m supported by a spring with spring constant $k=1 \mathrm{~N} / \mathrm{m}$ and uncompressed length $x_{0}=1 \mathrm{~m}$. Find and plot the deflection angle θ as a function of jet speed V. What jet speed has a deflection of 10° ?

Given:
 Data on flow and system geometry

Find: Deflection angle as a function of speed; jet speed for 10° deflection

Solution:

The given data is

$$
\rho=999 \cdot \frac{\mathrm{~kg}}{\mathrm{~m}^{3}} \quad \mathrm{~A}=0.005 \cdot \mathrm{~m}^{2}
$$

$\mathrm{L}=2 \cdot \mathrm{~m}$
$\mathrm{k}=1 \cdot \frac{\mathrm{~N}}{\mathrm{~m}}$
$\mathrm{x}_{0}=1 \cdot \mathrm{~m}$
Governing equation:
y-momentum

$$
\begin{equation*}
F_{y}=F_{S_{y}}+F_{B_{y}}=\frac{\partial}{\partial t} \int_{\mathrm{CV}} v \rho d \forall+\int_{\mathrm{CS}} v \rho \vec{V} \cdot d \vec{A} \tag{4.18b}
\end{equation*}
$$

Applying this to the current system in the vertical direction

$$
\mathrm{F}_{\text {spring }}=\mathrm{V} \cdot \sin (\theta) \cdot(\rho \cdot \mathrm{V} \cdot \mathrm{~A})
$$

But

$$
\mathrm{F}_{\text {spring }}=\mathrm{k} \cdot \mathrm{x}=\mathrm{k} \cdot\left(\mathrm{x}_{0}-\mathrm{L} \cdot \sin (\theta)\right)
$$

Hence

$$
\mathrm{k} \cdot\left(\mathrm{x}_{0}-\mathrm{L} \cdot \sin (\theta)\right)=\rho \cdot \mathrm{V}^{2} \cdot \mathrm{~A} \cdot \sin (\theta)
$$

Solving for θ

$$
\theta=\operatorname{asin}\left(\frac{\mathrm{k} \cdot \mathrm{x}_{0}}{\mathrm{k} \cdot \mathrm{~L}+\rho \cdot \mathrm{A} \cdot \mathrm{~V}^{2}}\right)
$$

For the speed at which $\theta=10^{\circ}$, solve $\quad V=\sqrt{\frac{k \cdot\left(x_{0}-L \cdot \sin (\theta)\right)}{\rho \cdot A \cdot \sin (\theta)}}$

$$
V=\sqrt{\frac{1 \cdot \frac{\mathrm{~N}}{\mathrm{~m}} \cdot(1-2 \cdot \sin (10 \cdot \mathrm{deg})) \cdot \mathrm{m}}{999 \cdot \frac{\mathrm{~kg}}{\mathrm{~m}^{3}} \cdot 0.005 \cdot \mathrm{~m}^{2} \cdot \sin (10 \cdot \mathrm{deg})} \cdot \frac{\mathrm{kg} \cdot \mathrm{~m}}{\mathrm{~N} \cdot \mathrm{~s}^{2}}} \quad \mathrm{~V}=0.867 \frac{\mathrm{~m}}{\mathrm{~s}}
$$

The deflection is plotted in the corresponding Excel workbook, where the above velocity is obtained using Goal Seek
4.82 A free jet of water with constant cross-section area $0.005 \mathrm{~m}^{2}$ is deflected by a hinged plate of length 2 m supported by a spring with spring constant $k=1 \mathrm{~N} / \mathrm{m}$ and uncompressed length $x_{0}=1 \mathrm{~m}$. Find and plot the deflection angle θ as a function of jet speed V. What jet speed has a deflection of 10° ?

Given: Data on flow and system geometry
Find: \quad Deflection angle as a function of speed; jet speed for 10° deflection

Solution:

Solving for $\theta \quad \theta=\operatorname{asin}\left(\frac{k \cdot x_{0}}{k \cdot L+\rho \cdot A \cdot V^{2}}\right)$

ρ	$=$	999	$\mathrm{~kg} / \mathrm{m}^{3}$
x_{0}	$=$	1	m
L	$=$	2	m
k	$=$	1	$\mathrm{~N} / \mathrm{m}$
A	$=$	To find when $\theta=10^{\circ}$, use Goal Seek	
	0.005	$\mathrm{~m}^{2}$	
$\boldsymbol{V (m / \mathbf { s })}$	$\theta\left({ }^{\circ}\right)$		
0.867	10		

$\boldsymbol{V} \mathbf{(m / s)}$	$\left.\theta \mathbf{(}^{\circ}\right)$
0.0	30.0
0.1	29.2
0.2	27.0
0.3	24.1
0.4	20.9
0.5	17.9
0.6	15.3
0.7	13.0
0.8	11.1
0.9	9.52
1.0	8.22
1.1	7.14
1.2	6.25
1.3	5.50
1.4	4.87
1.5	4.33

Given: Conical spray head discharging water, as shown.
Find: (a) Thickness of spray sheet at $R=400 \mathrm{~mm}$ radicis.
(b) Axial force exerted on supply pipe.

Solution: Apply continuity and the x Component of the momentum equation, using the $C V, C S$ shown.

Basic equation:

$$
F_{3_{x}}+F \dot{f}=\frac{d}{=0(1)}=\frac{q}{p t} \int_{c v} u p d t+\int_{c s} u p \vec{v} \cdot d \vec{A}
$$

Assumptions: (1) $F_{B x}=0$
(z) Steady flow,
(3) Incompressible flow
(4) Uniform flow at each section
(5) Use gage pressure to cancel/ Patm

From continuity.

$$
V_{1}=\frac{Q}{A_{1}}=\frac{4 Q}{\pi D_{1}^{2}}=\frac{4}{\pi} \times 0.03 \frac{\mathrm{~m}^{3}}{\sec \times \frac{1}{(0.3)^{2} \mathrm{~m}^{2}}}=0.424 \mathrm{~m} / \mathrm{s}
$$

Assume velocity in jet sheet is constant at $V=10 \mathrm{~m} / \mathrm{s}$. Then

$$
Q=2 \pi R t V ; \quad t=\frac{Q}{2 \pi R V}=\frac{1}{2 \pi} \times \frac{0.03}{\frac{m^{3}}{3}} \times \frac{1}{0.4 \mathrm{~m}^{2}} \times \frac{3}{10 \mathrm{~m}} \times 1000 \frac{\mathrm{~mm}}{\mathrm{~m}}=1.19 \mathrm{~mm}
$$

from momentum,

$$
\begin{aligned}
R_{x}+p_{1} A_{1}= & u_{1}\{-\rho Q\}+u_{2}\{+\rho Q\} \\
& u_{1}=v_{1} \quad u_{2}=-v \sin \theta \\
R_{x}+p_{1} A_{1}= & -\left(v_{1}+v \sin \theta\right) p Q
\end{aligned}
$$

or

$$
\begin{aligned}
R_{x} & =-p \cdot g A_{1}-\left(V_{1}+V s i n Q\right) \rho Q \\
& =-(150-101) 10^{3} \frac{\mathrm{~N}}{m^{2}} \times \frac{\pi}{4}(0.3)^{2} m^{2}-\left(0.424+10 . \ln 30^{\circ}\right) \times m \times 994 \frac{\mathrm{~kg}}{\mathrm{~m}^{3}} \times 0.03 \mathrm{~m} \\
R_{x} & =-3.63 \mathrm{kN}
\end{aligned}
$$

But R_{x} is force on $C V$; force on supply pipe is K_{x},

$$
K_{x}=-R_{x}=3.63 \mathrm{kN} \text { (to the right) }
$$

Problem 4.84

4.84 A curved nozzle assembly that discharges to the atmosphere is shown. The nozzle mass is 4.5 kg and its internal volume is $0.002 \mathrm{~m}^{3}$. The fluid is water. Determine the reaction force exerted by the nozzle on the coupling to the inlet pipe.

Given: Data on nozzle assembly
Find: Reaction force

Solution:

Basic equation: Momentum flux in x and y directions $F_{x}=F_{S_{x}}+F_{B_{x}}=\frac{\partial}{\partial t} \int_{\mathrm{CV}} u \rho d \forall+\int_{\mathrm{CS}} u \rho \vec{V} \cdot d \vec{A}$

$$
F_{y}=F_{S_{y}}+F_{B_{y}}=\frac{\partial}{\partial t} \int_{\mathrm{CV}} v \rho d \forall+\int_{\mathrm{CS}} v \rho \vec{V} \cdot d \vec{A}
$$

Assumptions: 1) Steady flow 2) Incompressible flow CV 3) Uniform flow

For x momentum

$$
R_{X}=V_{2} \cdot \cos (\theta) \cdot\left(\rho \cdot V_{2} \cdot A_{2}\right)=\rho \cdot V_{2}^{2} \cdot \frac{\pi \cdot D_{2}^{2}}{1} \cdot \cos (\theta)
$$

From continuity

$$
\mathrm{A}_{1} \cdot \mathrm{~V}_{1}=\mathrm{A}_{2} \cdot \mathrm{~V}_{2} \quad \mathrm{~V}_{2}=\mathrm{V}_{1} \cdot \frac{\mathrm{~A}_{1}}{\mathrm{~A}_{2}}=\mathrm{V}_{1} \cdot\left(\frac{\mathrm{D}_{1}}{\mathrm{D}_{2}}\right)^{2} \quad \mathrm{~V}_{2}=2 \cdot \frac{\mathrm{~m}}{\mathrm{~s}} \times\left(\frac{7.5}{2.5}\right)^{2} \quad \mathrm{~V}_{2}=18 \frac{\mathrm{~m}}{\mathrm{~s}}
$$

Hence

$$
\mathrm{R}_{\mathrm{X}}=1000 \cdot \frac{\mathrm{~kg}}{\mathrm{~m}^{3}} \times\left(18 \cdot \frac{\mathrm{~m}}{\mathrm{~s}}\right)^{2} \times \frac{\pi}{4} \times(0.025 \cdot \mathrm{~m})^{2} \times \cos (30 \cdot \mathrm{deg}) \times \frac{\mathrm{N} \cdot \mathrm{~s}^{2}}{\mathrm{~kg} \cdot \mathrm{~m}}
$$

$$
\mathrm{R}_{\mathrm{X}}=138 \mathrm{~N}
$$

For y momentum

$$
\begin{aligned}
& \mathrm{R}_{\mathrm{y}}-\mathrm{p}_{1} \cdot \mathrm{~A}_{1}-\mathrm{W}-\rho \cdot \mathrm{Vol} \cdot \mathrm{~g}=-\mathrm{V}_{1} \cdot\left(-\rho \cdot \mathrm{V}_{1} \cdot \mathrm{~A}_{1}\right)-\mathrm{V}_{2} \cdot \sin (\theta) \cdot\left(\rho \cdot \mathrm{V}_{2} \cdot \mathrm{~A}_{2}\right) \\
& \mathrm{R}_{\mathrm{y}}=\mathrm{p}_{1} \cdot \frac{\pi \cdot \mathrm{D}_{1}^{2}}{4}+\mathrm{W}+\rho \cdot \mathrm{Vol} \cdot \mathrm{~g}+\frac{\rho \cdot \pi}{4} \cdot\left(\mathrm{~V}_{1}^{2} \cdot \mathrm{D}_{1}^{2}-\mathrm{V}_{2}^{2} \cdot \mathrm{D}_{2}^{2} \cdot \sin (\theta)\right)
\end{aligned}
$$

where

$$
\mathrm{W}=4.5 \cdot \mathrm{~kg} \times 9.81 \cdot \frac{\mathrm{~m}}{\mathrm{~s}^{2}} \times \frac{\mathrm{N} \cdot \mathrm{~s}^{2}}{\mathrm{~kg} \cdot \mathrm{~m}} \quad \mathrm{~W}=44.1 \mathrm{~N} \quad \mathrm{Vol}=0.002 \cdot \mathrm{~m}^{3}
$$

Hence

$$
\begin{aligned}
\mathrm{R}_{\mathrm{y}}= & 125 \times 10^{3} \cdot \frac{\mathrm{~N}}{\mathrm{~m}^{2}} \times \frac{\pi \cdot(0.075 \cdot \mathrm{~m})^{2}}{4}+44.1 \cdot \mathrm{~N}+1000 \cdot \frac{\mathrm{~kg}}{33} \times 0.002 \cdot \mathrm{~m}^{3} \times 9.81 \cdot \frac{\mathrm{~m}}{\mathrm{~s}^{2}} \times \frac{\mathrm{N} \cdot \mathrm{~s}^{2}}{\mathrm{~kg} \cdot \mathrm{~m}} \ldots \\
& +1000 \cdot \frac{\mathrm{~kg}}{\mathrm{~m}^{3}} \times \frac{\pi}{4} \times\left[\left(2 \cdot \frac{\mathrm{~m}}{\mathrm{~s}}\right)^{2} \times(0.075 \cdot \mathrm{~m})^{2}-\left(18 \cdot \frac{\mathrm{~m}}{\mathrm{~s}}\right)^{2} \times(0.025 \cdot \mathrm{~m})^{2} \times \sin (30 \cdot \mathrm{deg})\right] \times \frac{\mathrm{N} \cdot \mathrm{~s}^{2}}{\mathrm{~kg} \cdot \mathrm{~m}} \\
& \quad \mathrm{R}_{\mathrm{y}}=554 \mathrm{~N}
\end{aligned}
$$

Given: Flow through reducer in gasoline piping system, as shown.

$$
M=25 \mathrm{~kg} \quad \forall=0.2 \mathrm{~m}^{3}
$$

Find: Force needed to hold reducer in place.

Solution: Apply the x and y
components of the more ntcem equation, using the CV and coordinates shown. Use gage pressures to cancel path.

Basic equations:

$$
\begin{gathered}
=o(1)=o(z) \\
F_{s x}+F_{\phi x}=\frac{2}{\partial t} \int_{c v} u \rho d \forall+\int_{c s} u \rho \vec{v} \cdot d \vec{A} \\
F_{s y}+F_{B y}=\frac{v^{\prime}}{p t} \int_{c v} v \rho d \forall+\int_{c s} v \rho \vec{V} \cdot d \vec{A}
\end{gathered}
$$

Assumptions: (1) $F_{B x}=0$
(2) Steady flow
(3) Uniform flow at each section
(4) Incompressible flow, $36=0.72$ \{Table A.2, Appendix A\}

From the x component of momentum,

$$
\begin{gathered}
R_{x}+p_{1 g} A_{1}-p_{2 g} A_{2}=u_{1}\left\{-\left|\rho v_{1} A_{1}\right|\right\}+u_{2}\left\{+\left|\rho v_{2} A_{2}\right|\right\}=\left(v_{2}-v_{1}\right) \rho v_{1} A_{1} \\
u_{1}=v_{1} \quad u_{2}=v_{2}
\end{gathered}
$$

$$
\begin{aligned}
R_{x}= & p_{2 g} A_{2}-p_{1} g A_{1}+\left(\bar{V}_{2}-\bar{V}_{1}\right) \rho \bar{V}_{1} A_{1} \quad \text { Note } \rho=56 \rho \mathrm{H}_{2} 0 \\
= & (109-101) 10^{3} \frac{\mathrm{~N}}{\mathrm{~m}^{2}} \times \frac{\pi}{4}(0.2)^{2} \mathrm{~m}^{2}-58.7 \times 10^{3} \frac{\mathrm{~N}}{\mathrm{~m}^{2}} \times \frac{\pi}{4}(0.4)^{2} \mathrm{~m}^{2} \\
& +(12-3) \frac{m}{\mathrm{~S}} \times(0.72) 1000 \frac{\mathrm{~kg}}{\mathrm{~m}^{3}} \times 3 \frac{\mathrm{~m}}{\mathrm{~S}} \times \frac{\pi}{4}(0.4)^{2} \mathrm{~m}^{2} \times \frac{\mathrm{N} \cdot \mathrm{~s}^{2}}{\mathrm{~kg} \cdot \mathrm{~m}}
\end{aligned}
$$

$R_{x}=-4.68 \mathrm{kN}$ (force must be applied to left)
From the y component of momentiem,

Problem 4.86

4.86 A water jet pump has jet area $0.1 \mathrm{ft}^{2}$ and jet speed $100 \mathrm{ft} / \mathrm{s}$. The jet is within a secondary stream of water having speed $V_{s}=$ $10 \mathrm{ft} / \mathrm{s}$. The total area of the duct (the sum of the jet and secondary stream areas) is $0.75 \mathrm{ft}^{2}$. The water is thoroughly mixed and leaves the jet pump in a uniform stream. The pressures of the jet and secondary stream are the same at the pump inlet. Determine
 the speed at the pump exit and the pressure rise, $p_{2}-p_{1}$.

Given: Data on water jet pump

Find: \quad Speed at pump exit; pressure rise

Solution:

Basic equation: Continuity, and momentum flux in x direction

$$
\frac{\partial}{\partial t} \int_{\mathrm{CV}} \rho d \forall+\int_{\mathrm{CS}} \rho \vec{V} \cdot d \vec{A}=0 \quad F_{x}=F_{S_{x}}+F_{B_{x}}=\frac{\partial}{\partial t} \int_{\mathrm{CV}} u \rho d \forall+\int_{\mathrm{CS}} u \rho \vec{V} \cdot d \vec{A}
$$

Assumptions: 1) Steady flow 2) Incompressible flow CV 3) Uniform flow

$$
\begin{aligned}
& \text { From continuity } \\
& -\rho \cdot V_{S} \cdot A_{s}-\rho \cdot V_{j} \cdot A_{j}+\rho \cdot V_{2} \cdot A_{2}=0 \\
& \mathrm{~V}_{2}=10 \cdot \frac{\mathrm{ft}}{\mathrm{~s}} \times\left(\frac{0.75-0.1}{0.75}\right)+100 \cdot \frac{\mathrm{ft}}{\mathrm{~s}} \times \frac{0.1}{0.75} \quad \mathrm{~V}_{2}=22 \frac{\mathrm{ft}}{\mathrm{~s}} \\
& \text { For x momentum } \quad \mathrm{P}_{1} \cdot \mathrm{~A}_{2}-\mathrm{p}_{2} \cdot \mathrm{~A}_{2}=\mathrm{V}_{\mathrm{j}} \cdot\left(-\rho \cdot \mathrm{V}_{\mathrm{j}} \cdot \mathrm{~A}_{\mathrm{j}}\right)+\mathrm{V}_{\mathrm{s}} \cdot\left(-\rho \cdot \mathrm{V}_{\mathrm{s}} \cdot \mathrm{~A}_{\mathrm{s}}\right)+\mathrm{V}_{2} \cdot\left(\rho \cdot \mathrm{~V}_{2} \cdot \mathrm{~A}_{2}\right) \\
& \Delta \mathrm{p}=\mathrm{p}_{2}-\mathrm{p}_{1}=\rho \cdot\left(\mathrm{V}_{\mathrm{j}}^{2} \cdot \frac{\mathrm{~A}_{\mathrm{j}}}{\mathrm{~A}_{2}}+\mathrm{V}_{\mathrm{s}}^{2} \cdot \frac{\mathrm{~A}_{\mathrm{s}}}{A_{2}}-\mathrm{V}_{2}^{2}\right) \\
& \Delta \mathrm{p}=1.94 \cdot \frac{\operatorname{slug}}{\mathrm{ft}^{3}} \times\left[\left(100 \cdot \frac{\mathrm{ft}}{\mathrm{~s}}\right)^{2} \times \frac{0.1}{0.75}+\left(10 \cdot \frac{\mathrm{ft}}{\mathrm{~s}}\right)^{2} \times \frac{(0.75-0.1)}{0.75}-\left(22 \cdot \frac{\mathrm{ft}}{\mathrm{~s}}\right)^{2}\right] \times \frac{\mathrm{lbf} \cdot \mathrm{~s}^{2}}{\text { slug} \cdot \mathrm{ft}} \\
& \text { Hence } \\
& \Delta \mathrm{p}=1816 \frac{\mathrm{lbf}}{\mathrm{ft}^{2}} \\
& \Delta \mathrm{p}=12.6 \mathrm{psi}
\end{aligned}
$$

Given: Reducing blow shown.
Fluid is water.
Find: Force components needed to keep elbow from moving.

$p_{1}=200 \mathrm{kPa}(\mathrm{abs})$
$A_{1}=0.0182 \mathrm{~m}^{2}$
$A_{1}=0.0182 \mathrm{~m}^{2}$
R_{y}

Solution: Apply the x and y components of the momentum equation using the cs and CV shown.硸 Basic equations:

$$
\begin{aligned}
& F_{s x}+F_{B x}^{=0(4)}=\frac{\partial f}{\partial t} \int_{C v}^{=0(1)} u \rho d t+\int_{c s} u \rho \vec{v} \cdot d \vec{A} \\
& F_{s y}+F_{B y}=\frac{\partial t}{\partial t} \int_{C v} v \rho d \psi+\int_{c s} v \rho \vec{V} \cdot d \vec{A}
\end{aligned}
$$

Assumptions: (1) steady flow
(3) Use gage press cures
(2) Uniform flow at each section
(4) \times horizontal
$x \operatorname{comp:} \quad R_{x}+p_{1 g} A_{1}-p_{2 g} A_{2} \cos \theta=u_{1}\{-|\rho Q|\}+u_{2}\{+|\rho Q|\}$

$$
u_{1}=v_{1} \quad u_{2}=v_{2} \cos \theta
$$

$$
\begin{array}{rlrl}
R_{x}= & \left(-V_{1}+V_{2} \cos \theta\right) \rho Q-p_{1 g} A_{1}+p_{2 g} A_{2} \cos \theta & V_{1}=\frac{Q}{A_{1}}=0.11 \frac{\mathrm{~m}^{3}}{\mathrm{~s}} \times \frac{1}{0.0181 \mathrm{~m}^{2}}=6.04 \frac{\mathrm{~m}}{\mathrm{~s}} \\
= & \left(-6.04 \frac{\mathrm{~m}}{\mathrm{~s}}+13.6 \frac{\mathrm{~m}}{\mathrm{~s}} \times \cos 30^{\circ}\right) 999 \frac{\mathrm{~kg}}{\mathrm{~m}^{3}} & & V_{2}=\frac{Q}{A_{2}}=0.11 \frac{\mathrm{~m}^{3}}{\mathrm{~s}} \times \frac{1}{0.0081 \mathrm{~m}^{2}}=13.6 \frac{\mathrm{~m}}{\mathrm{~s}} \\
& \times 0.11 \frac{\mathrm{~m}^{3}}{\mathrm{~s}} \times \frac{\mathrm{N} \cdot \mathrm{~s}^{2}}{\mathrm{~kg} \cdot \mathrm{~m}}-(200-101) 10 \frac{\mathrm{M}}{\mathrm{~m}^{2}} \times 0.018 \mathrm{~m}^{2}+(120-101) 10^{3} \frac{\mathrm{~N}}{\mathrm{~m}^{2}} \times 0.0081 \mathrm{~m}^{2} \times 0530 \\
R_{x}= & +631-1800+133 \mathrm{~N}=-1040 \mathrm{~N}
\end{array}
$$

$y \operatorname{comp:} \quad R_{y}+\operatorname{pog}_{2} A_{2} \sin \theta-M g-\rho \forall g=v_{1}\{-|\rho Q|\}+v_{L}\{+|\rho Q|\}$

$$
v_{1}=0 \quad v_{2}=-v_{2} \sin \theta
$$

$$
\begin{aligned}
R_{y}= & -V_{2} \sin \theta \rho Q+M g+\rho \forall g-p_{2} g A_{2} \sin \theta \\
= & -13.6 \frac{\mathrm{~m}}{\mathrm{~s}} \times \sin 30^{\circ} \times 999 \frac{\mathrm{~kg}}{\mathrm{~m}^{3}} \times 0.11 \frac{\mathrm{~m}^{3}}{\mathrm{~s}} \times \frac{\mathrm{N} \cdot \mathrm{~s}^{2}}{\mathrm{~kg} \cdot \mathrm{~m}}+10 \mathrm{~kg}_{x} 9.81 \frac{\mathrm{~m}}{\mathrm{~s}^{2}} \times \frac{\mathrm{N} \cdot \mathrm{~s}^{2}}{\mathrm{~kg} \cdot \mathrm{~m}} \\
& +999 \frac{\mathrm{~kg}}{\mathrm{~m}^{3}} \times 0.006 \mathrm{~m}^{3} \times 9.81 \frac{\mathrm{~m}}{\mathrm{~s}^{2}} \times \frac{\mathrm{N} \cdot \mathrm{~s}^{2}}{\mathrm{~kg} \cdot \mathrm{~m}}-(120-101) 1^{2} \frac{\mathrm{~N}}{\mathrm{~m}^{2}} \times 0.0081 \mathrm{~m}^{2} \times \sin ^{\circ} 30^{\circ} \\
R_{y}= & -747+98.1+58.8-77=-667 \mathrm{~N}
\end{aligned}
$$

$\left\{\begin{array}{l}R_{x} \text { and } R_{y} \text { are the horizontal and vertical components of free that } \\ \text { must be supplied by the adjacent pipes to keep the elbow (the control } \\ \text { volume) from moving. }\end{array}\right\}$

Given: Monotube boiler, as shown.

$$
\dot{m}=0.3 \mathrm{lbm} / \mathrm{s} \quad p_{t}=500 \text { psia }
$$

$$
p_{2}=400 \mathrm{psig}, \rho_{2}=0.024 \mathrm{~s} / \mathrm{mg} / f^{3}
$$

Find: Magnitude and direction of force exerted by fluid on tube.
Solution: Apply the x component of the momentum equation, using the $C V$ and coordinates shown.

Basic equation:

$$
\begin{gathered}
=\alpha(1)=o(2) \\
F_{s_{x}}+F_{\beta_{x}}=\frac{\hat{d}^{+}}{\beta+} \int_{c v} u p d \psi+\int_{c s} u \rho \vec{v} \cdot d \vec{A}
\end{gathered}
$$

Assumptions: (1) $F_{B x}=0$
(2) Steady flow
(3) Uniform flow at each section
(4) Use gage pressures to cancel/ patron

From continuity,

$$
\dot{m}=\rho_{1} v_{1} A_{1}=\rho_{2} v_{2} A_{2} ; A=\text { constant, so } \rho_{1} v_{1}=\rho_{2} v_{2} \text {. Thus }
$$

and

$$
\begin{aligned}
& V_{1}=\frac{\dot{m}}{\rho_{1} A}=0.3 \frac{\mathrm{lbm}}{5} \times \frac{\mathrm{f+3}}{1.94 .5 \mathrm{seg}} \times \frac{4}{\pi} \frac{1}{(0.375)^{2} \mathrm{~m}^{2}} \times \frac{\mathrm{slug}}{52.216 \mathrm{~m}} \times \frac{144 \dot{n}^{2}}{\mathrm{ft}^{2}}=6.26 \mathrm{ft} / \mathrm{s} \\
& V_{2}=V_{1} \frac{\rho_{1}}{\rho_{2}}=6.26 \frac{\mathrm{ft}}{5} \times 1.94 \frac{\mathrm{shg}}{\mathrm{f}^{3}} \times \frac{\mathrm{f}^{3}}{0.024 \mathrm{skg}}=506 \mathrm{ft} / \mathrm{s}
\end{aligned}
$$

From momentum,

$$
\begin{aligned}
& R_{x}+\operatorname{pig} A_{1}-p_{2} g A_{2}=u_{1}\{-\dot{m}\}+u_{2}\{+\dot{m}\}=\left(V_{2}-V_{1}\right) \dot{m} \\
& u_{1}=v_{1} \quad u_{2}=v_{2} \\
& R_{x}=\left(p_{z g}-p_{1 g}\right) A+\left(v_{z}-V_{1}\right) \dot{m} \\
& =[400-(500-14.7)] \frac{16 f}{1 n .^{2}} \times \frac{\pi}{4}(0.375)^{2} n^{2}+(506-6.26) \frac{f t}{5} \times 0.3 \frac{16 m}{5} \times \frac{5 / 49}{32.215 m} \\
& \times \frac{1 b f \cdot s^{2}}{\sin g \cdot f f} \\
& R_{x}=-4.77 \mathrm{lbf}
\end{aligned}
$$

But R_{x} is force on $C V$; force on pipe is K_{x},

$$
\left.k_{x}=-R_{x}=4.77 \text { if (to right }\right)
$$

Problem 4.89

4.89 Consider the steady adiabatic flow of air through a long straight pipe with $0.05 \mathrm{~m}^{2}$ cross-sectional area. At the inlet, the air is at 200 kPa (gage), $60^{\circ} \mathrm{C}$ and has a velocity of $150 \mathrm{~m} / \mathrm{s}$. At the exit, the air is at 80 kPa and has a velocity of $300 \mathrm{~m} / \mathrm{s}$. Calculate the axial force of the air on the pipe. (Be sure to make the direction clear.)

Given: Data on adiabatic flow of air
Find: Force of air on pipe

Solution:

Basic equation: Continuity, and momentum flux in x direction, plus ideal gas equation

$$
\frac{\partial}{\partial t} \int_{\mathrm{CV}} \rho d \forall+\int_{\mathrm{CS}} \rho \vec{V} \cdot d \vec{A}=0 \quad F_{x}=F_{S_{x}}+F_{B_{x}}=\frac{\partial}{\partial t} \int_{\mathrm{CV}} u \rho d \forall+\int_{\mathrm{CS}} u \rho \vec{V} \cdot d \vec{A} \quad \mathrm{p}=\rho \cdot \mathrm{R} \cdot \mathrm{~T}
$$

Assumptions: 1) Steady flow 2) Ideal gas CV 3) Uniform flow

From continuity $-\rho_{1} \cdot \mathrm{~V}_{1} \cdot \mathrm{~A}_{1}+\rho_{2} \cdot \mathrm{~V}_{2} \cdot \mathrm{~A}_{2}=0 \quad \quad \rho_{1} \cdot \mathrm{~V}_{1} \cdot \mathrm{~A}=\rho_{2} \cdot \mathrm{~V}_{2} \cdot \mathrm{~A} \quad \rho_{1} \cdot \mathrm{~V}_{1}=\rho_{2} \cdot \mathrm{~V}_{2}$
For x momentum $\quad \mathrm{R}_{\mathrm{x}}+\mathrm{p}_{1} \cdot \mathrm{~A}-\mathrm{p}_{2} \cdot \mathrm{~A}=\mathrm{V}_{1} \cdot\left(-\rho_{1} \cdot \mathrm{~V}_{1} \cdot \mathrm{~A}\right)+\mathrm{V}_{2} \cdot\left(\rho_{2} \cdot \mathrm{~V}_{2} \cdot \mathrm{~A}\right)=\rho_{1} \cdot \mathrm{~V}_{1} \cdot \mathrm{~A} \cdot\left(\mathrm{~V}_{2}-\mathrm{V}_{1}\right)$

$$
\mathrm{R}_{\mathrm{X}}=\left(\mathrm{p}_{2}-\mathrm{p}_{1}\right) \cdot \mathrm{A}+\rho_{1} \cdot \mathrm{~V}_{1} \cdot \mathrm{~A} \cdot\left(\mathrm{~V}_{2}-\mathrm{V}_{1}\right)
$$

For the air

$$
\begin{aligned}
& \rho_{1}=\frac{\mathrm{P}_{1}}{\mathrm{R}_{\mathrm{ai} \cdot} \cdot \mathrm{~T}_{1}} \quad \rho_{1}=(200+101) \times 10^{3} \cdot \frac{\mathrm{~N}}{\mathrm{~m}^{2}} \times \frac{\mathrm{kg} \cdot \mathrm{~K}}{286.9 \cdot \mathrm{~N} \cdot \mathrm{~m}} \times \frac{1}{(60+273) \cdot \mathrm{K}} \quad \rho_{1}=3.15 \frac{\mathrm{~kg}}{\mathrm{~m}^{3}} \\
& \mathrm{R}_{\mathrm{X}}=(80-200) \times 10^{3} \cdot \frac{\mathrm{~N}}{\mathrm{~m}^{2}} \times 0.05 \cdot \mathrm{~m}^{2}+3.15 \cdot \frac{\mathrm{~kg}}{\mathrm{~m}^{3}} \times 150 \cdot \frac{\mathrm{~m}}{\mathrm{~s}} \times 0.05 \cdot \mathrm{~m}^{2} \times(300-150) \cdot \frac{\mathrm{m}}{\mathrm{~s}} \times \frac{\mathrm{N} \cdot \mathrm{~s}^{2}}{\mathrm{~kg} \cdot \mathrm{~m}}
\end{aligned}
$$

Hence $\quad R_{X}=-2456 \mathrm{~N}$
This is the force of the pipe on the air; the pipe is opposing flow. Hence the force of the air on the pipe is $\quad F_{\text {pipe }}=-R_{X}$

$$
F_{\text {pipe }}=2456 \mathrm{~N} \quad \text { The air is dragging the pipe to the right }
$$

Problem 4.90

4.90 A gas flows steadily through a heated porous pipe of constant $0.15 \mathrm{~m}^{2}$ cross-sectional area. At the pipe inlet, the absolute pressure is 400 kPa , the density is $6 \mathrm{~kg} / \mathrm{m}^{3}$, and the mean velocity is $170 \mathrm{~m} / \mathrm{s}$. The fluid passing through the porous wall leaves in a direction normal to the pipe axis, and the total flow rate through the porous wall is $20 \mathrm{~kg} / \mathrm{s}$. At the pipe outlet, the absolute pressure is 300 kPa and the density is $2.75 \mathrm{~kg} / \mathrm{m}^{3}$. Determine the axial force of the fluid on the pipe.

Given: Data on heated flow of gas
Find: \quad Force of gas on pipe

Solution:

Basic equation: Continuity, and momentum flux in x direction

$$
\frac{\partial}{\partial t} \int_{\mathrm{CV}} \rho d \forall+\int_{\mathrm{CS}} \rho \vec{V} \cdot d \vec{A}=0 \quad F_{x}=F_{S_{x}}+F_{B_{x}}=\frac{\partial}{\partial t} \int_{\mathrm{CV}} u \rho d \forall+\int_{\mathrm{CS}} u \rho \vec{V} \cdot d \vec{A} \quad \mathrm{p}=\rho \cdot \mathrm{R} \cdot \mathrm{~T}
$$

Assumptions: 1) Steady flow 2) Uniform flow

$$
\text { where } \mathrm{m}_{3}=20 \mathrm{~kg} / \mathrm{s} \text { is the mass leaving througl }
$$

Hence

$$
R_{X}=1760 N
$$

$$
\begin{aligned}
& \text { From continuity } \quad-\rho_{1} \cdot V_{1} \cdot A_{1}+\rho_{2} \cdot V_{2} \cdot A_{2}+m_{3}=0 \quad V_{2}=V_{1} \cdot \frac{\rho_{1}}{\rho_{2}}-\frac{m_{3}}{\rho_{2} \cdot A} \\
& \mathrm{~V}_{2}=170 \cdot \frac{\mathrm{~m}}{\mathrm{~s}} \times \frac{6}{2.75}-20 \cdot \frac{\mathrm{~kg}}{\mathrm{~s}} \times \frac{\mathrm{m}^{3}}{2.75 \cdot \mathrm{~kg}} \times \frac{1}{0.15 \cdot \mathrm{~m}^{2}} \quad \mathrm{~V}_{2}=322 \frac{\mathrm{~m}}{\mathrm{~s}} \\
& \text { For x momentum } \\
& R_{X}+p_{1} \cdot A-p_{2} \cdot A=V_{1} \cdot\left(-\rho_{1} \cdot V_{1} \cdot A\right)+V_{2} \cdot\left(\rho_{2} \cdot V_{2} \cdot A\right) \\
& R_{x}=\left[\left(p_{2}-p_{1}\right)+\rho_{2} \cdot V_{2}^{2}-\rho_{1} \cdot V_{1}^{2}\right] \cdot A \\
& R_{X}=\left[(300-400) \times 10^{3} \cdot \frac{\mathrm{~N}}{\mathrm{~m}^{2}}+\left[2.75 \cdot \frac{\mathrm{~kg}}{\mathrm{~m}^{3}} \times\left(322 \cdot \frac{\mathrm{~m}}{\mathrm{~s}}\right)^{2}-6 \cdot \frac{\mathrm{~kg}}{\mathrm{~m}^{3}} \times\left(170 \cdot \frac{\mathrm{~m}}{\mathrm{~s}}\right)^{2}\right] \times \frac{\mathrm{N} \cdot \mathrm{~s}^{2}}{\mathrm{~kg} \cdot \mathrm{~m}}\right] \times 0.15 \cdot \mathrm{~m}^{2}
\end{aligned}
$$

Gives: Water flow discharging nonuriformly from slot, as shown.

$$
p_{k z}=30 \mathrm{kPa}
$$

Find: (a) Volume flow rate.
(b) Frees to hold pipe.

Solution: Apply x, y components

Thickness, $t=15 \mathrm{~mm}$ of momentum, using the $C V$, as shown.

Basic equations:
$=0(1)=0$

Assumptions: (1) $F_{B x}=F_{B y}=0$
(2) Steady flow
(3) Uniform flow at inlet section
(4) Use gage pressures to cancel/ patron

From continuity.

$$
\begin{aligned}
Q=\bar{V} A & =\frac{1}{2}\left(v_{1}+V_{2}\right) L t=\frac{1}{2}(7.5+11.3) \frac{m}{5} \times 1 m_{*} 0.015 \mathrm{~m}=0.141 \mathrm{~m}^{3} / \mathrm{s} \\
V_{3} & =\frac{Q}{A_{3}}=0.141 \frac{\mathrm{~m}^{3}}{\mathrm{~s}} \times \frac{4}{\pi} \frac{1}{(0.15)^{2} \mathrm{~m}^{2}}=7.98 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

From x momentum, since flow leaves slot vertically $(u=0)$,

$$
\begin{aligned}
& R_{x}+p_{3 g} A_{3}=u_{3}\{-\rho Q\}=-V_{3} \rho Q ; R_{x}=-p 3 g A_{3}-V_{3} \rho Q \\
& R_{x}=-30 \times 10^{3} \frac{N}{m^{2}} \times \frac{\pi}{4}(0.15)^{2} m^{2}-7.98 \frac{m^{3}}{3} \times 999 \frac{\mathrm{~kg}}{m^{3}} \times 0.141 \frac{m^{3}}{3} \times \frac{N \cdot s_{2}^{2}}{\mathrm{~kg} \cdot \mathrm{~m}} \\
& R_{x}=-1.65 \mathrm{kN}(t o l \mathrm{ltt})
\end{aligned}
$$

From y momentum, since $v_{3}=0$,

$$
R_{y}=-1.34 \mathrm{kN} \text { (down) }
$$

\{A moment also would be required at the coupling. \} ~

$$
\begin{aligned}
& R_{y}=\hat{\psi}_{3}^{=0}\{-\rho Q\}+\int_{0}^{L} v \rho v t d x=-\rho t \int_{0}^{L}\left(v_{1}+\frac{V_{2}-v_{1}}{L} x\right)^{2} d x \\
& =-\rho t\left[v_{1}^{2} x+2 v_{1}\left(\frac{v_{2}-v_{1}}{L}\right) \frac{x^{2}}{2}+\left(\frac{v_{2}-v_{1}}{L}\right)^{2} \frac{x^{3}}{3}\right]_{0}^{L} \\
& =-949 \frac{\mathrm{~kg}}{\mathrm{~m}^{3}}, 0.015 \mathrm{~m}\left[(7.5)^{2} \frac{\mathrm{~m}^{2}}{\mathrm{~s}^{2}}+7.5 \frac{\mathrm{~m}}{\mathrm{~s}},(11.3-7.5) \frac{\mathrm{m}}{5} \times \frac{1}{1 \mathrm{~m}} \times(1)^{2} \mathrm{~m}^{2}\right. \\
& \left.\left.+(11.3-7.5)^{2} m^{2} \times \frac{1}{5^{2}} \times \frac{(1)^{2} m^{2}}{3}\right)^{3}\right]
\end{aligned}
$$

Given: Steady flow of water through square channel shown $v_{\text {max }}=2 v_{\text {min }}, U=7.5$ mils, $P_{1}=185$ klalgage),$P_{2}=p_{\text {and }}$

$$
M_{c}=2.05 \mathrm{~kg}, t_{c}=0.00355 \mathrm{~m}^{3}, h=-5.5 \mathrm{~mm}=\mathrm{w}
$$

Find: Force exerted by channel assembly on the supply duct.
Solution: Apply conservation of mas momentum equations to the celt shown.
Basic equations: (A)

Assumptions:
(1) steady flow (2) incompressible flow (3) uniform flow at inlet
(4) use gage pressures.

From continuity, $0=\vec{V}_{1} \cdot \vec{A}_{1}+\vec{V}_{2} \cdot \overrightarrow{d B}_{2}=-0 w h+\int_{0}^{h} v_{w} d x$

$$
\therefore v h=C_{0}^{h} v d x=\int_{0}^{h} v_{\min }\left(2-\frac{h^{h}}{h}\right) d x=v_{\min }\left[2 x-\frac{h^{2}}{2 h}\right]_{0}^{h}=\frac{3}{2} v_{\min } h
$$

and

$$
v_{\text {min }}=\frac{2}{3} v=\frac{2}{3} \times 7.5 \frac{\mathrm{~m}}{5}=5.0 \mathrm{mls}
$$

From Eq. 2 ,

$$
K_{x}=-R_{1}=799 \mathrm{~N} \text { (on supply duct to the right) }
$$

$$
\begin{aligned}
& \text { From Eq. } 3 \text {, } \\
& \begin{array}{l}
R_{y}-M_{c g}, p+g=7 R_{1}\left\{-p v A_{1}\right\} .+\int_{0}^{h} v_{2}\left\{p v_{2} w d x\right\}
\end{array} \\
& R_{y}-N_{c g}-p+g=\int_{0}^{h} v_{\min }\left(2-\frac{h}{h}\right) p^{0} v_{\min }\left(2-\frac{x}{h}\right) w d x \\
& =p v^{2} \operatorname{mon} w\left(\int_{0}^{k}\left(4-4 \frac{h}{h}+\frac{k^{2}}{h^{2}}\right) d x\right. \\
& =p v_{\text {min }}^{2} w\left[4 x-2 \frac{k^{2}}{h}+\frac{3^{3}}{3 h^{2}}\right]_{0}^{h}=p v_{\text {min }}^{2} h \frac{7}{3}
\end{aligned}
$$

$$
\begin{aligned}
& R_{y}=(20.1+34.8+332)^{N 3}=387 N\left(\operatorname{con}(v)^{3}\right. \\
& k_{y}=-R_{y}=-387 \mathrm{~N} \text { (on supply duct, down) }
\end{aligned}
$$

$$
\begin{aligned}
& R_{x}=-P_{1} g H_{1}-p^{2} A_{1}=-(185-10) 10^{3} \frac{d}{n^{2}}(0.0755)^{2} n^{2}-99 \frac{\operatorname{tg}}{n^{3}}(7.5)^{2} \frac{\mu^{2}}{5^{2}}(0.0155)^{2} n^{2} \\
& R_{x}=-479 N-320 \frac{\mathrm{~kg} n}{\xi^{2}} \cdot \frac{\mathrm{~N}^{2} \mathrm{~s}^{2}}{\mathrm{bg}}=-479 \mathrm{~N}-320 \mathrm{~N}=-799 \mathrm{~N}
\end{aligned}
$$

$$
\begin{align*}
& 0=\overrightarrow{z t} X_{\text {on }}^{0 d t}+\int \overrightarrow{p d} \cdot \overrightarrow{d A} \\
& F_{s_{2}}+F_{x}=\frac{3}{2 t} \int_{0}^{0} u p d t+C_{0} u p \overrightarrow{d P} \\
& F_{s y}+F_{y}=\overrightarrow{2 x} \int_{a v}^{c} v^{\prime} p d t+\int_{c^{v}}{ }^{c} \vec{p} \cdot \overrightarrow{d A} \tag{3}
\end{align*}
$$

Given: Nozzle discharging flat, radial sheet of water, as shown.
Find: Axial force of nozzle on compiling.

$$
D_{1}=35 \mathrm{~mm}
$$

Solution: Apply the x component of momentum, using $c v$ and coordinates shown.

Basic equation:

$$
F_{S_{k}}+F_{A_{x}}^{=O(\prime)}=\frac{A}{\phi t} \int_{c v}^{=\alpha(2)} u \rho d \psi+\int_{c s} u \rho \vec{v} \cdot d \vec{A}
$$

Assumptions: (1) $F_{B x}=0$
(z) Steady flow
(3) Uniform flow at each section
(4) Use gage pressure to cancel path

From continuity

$$
\begin{aligned}
& Q=V_{1} A_{1}=V_{2} A_{2}=V_{2} \pi R t=\pi_{x} 10 \frac{\mathrm{~m}}{\mathrm{sec}} \times 0.05 \mathrm{~m}_{\kappa} 0.0015 \mathrm{~m}=0.00236 \mathrm{~m} / \mathrm{s} \\
& V_{1}=\frac{Q}{A_{1}}=\frac{4 Q}{\pi D_{1}^{2}}=\frac{4}{\pi} \times 0.00236 \mathrm{~m}^{3} \frac{1}{\sec } \times \frac{1}{(0.035)^{2} \mathrm{~m}^{2}}=2.45 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

From momentuen

$$
\left\{\text { Note } A_{1}=\frac{\pi D^{2}}{4}=0,000962 \mathrm{~m}^{2}\right\}
$$

$$
\begin{gathered}
R_{x}+p_{1} g A_{1}=u_{1}\{-\rho Q\}+\int_{A_{2}} u_{2} \rho V_{2} d A_{2} \\
u_{1}=V_{1} \quad u_{2}=V_{2} \cos \theta ; d A_{2}=R t d \theta \\
\int_{A_{2}}=\int_{-\pi / 2}^{\pi / 2} V_{2} \cos \theta \rho V_{2} R t d \theta=2 \rho V_{2}^{2} R t \int_{0}^{\pi / 2} \cos \theta d \theta=2 \rho V_{2}^{2} R t
\end{gathered}
$$

Thus

$$
\begin{aligned}
& R_{X}=-\rho_{\lg } A_{1}-V_{1} \rho Q+2 \rho V_{2}^{2} R t \\
& =-(150-100) 10^{3} \frac{\mathrm{~N}}{\mathrm{~m}^{2}} \times 0.000962 \mathrm{~m}^{2}-2.45 \frac{\mathrm{~m}}{\mathrm{sec}^{2}} \times 999 \frac{\mathrm{~kg}}{\mathrm{~m}^{3}} \times 0.00256 \frac{\mathrm{ma}^{3}}{\mathrm{sec}^{3}} \times \frac{\mathrm{N}^{\mathrm{kg} \cdot \mathrm{sec}}}{}{ }^{2} \\
& +z_{x} \cdot 994 \frac{\mathrm{~kg}^{3}}{\mathrm{~m}^{3}}(10)^{2} \frac{\mathrm{~m}^{2}}{\sec ^{2}} \times 0.05 \mathrm{~m}_{x} 0.0015 \mathrm{~m}_{\times} \frac{\mathrm{N} \cdot \sec ^{2}}{\mathrm{~kg} \cdot \mathrm{~m}} \\
& R_{x}=-37.9 N
\end{aligned}
$$

But R_{x} is force on $C V$; force on coupling is K_{x},

$$
k_{x}=-R_{x}=37.9 \mathrm{~N}(\text { to right })
$$

4.94 A small round object is tested in a $0.75-\mathrm{m}$ diameter wind tunnel. The pressure is uniform across sections (1) and (2). The upstream pressure is $30 \mathrm{~mm} \mathrm{H}_{2} \mathrm{O}$ (gage), the downstream pressure is $15 \mathrm{~mm} \mathrm{H}_{2} \mathrm{O}$ (gage), and the mean air speed is $12.5 \mathrm{~m} / \mathrm{s}$. The velocity profile at section (2) is linear; it varies from zero at the tunnel centerline to a maximum at the tunnel wall. Calculate (a) the mass flow rate in the wind tunnel, (b) the maximum velocity at section (2), and (c) the drag of the object and its supporting vane. Neglect viscous resistance at the tunnel wall.

Given: Data on flow in wind tunnel
Find: Mass flow rate in tunnel; Maximum velocity at section 2; Drag on object

Solution:

Basic equations: Continuity, and momentum flux in x direction; ideal gas equation

$$
\frac{\partial}{\partial t} \int_{\mathrm{CV}} \rho d \forall+\int_{\mathrm{CS}} \rho \vec{V} \cdot d \vec{A}=0 \quad F_{x}=F_{S_{x}}+F_{B_{x}}=\frac{\partial}{\partial t} \int_{\mathrm{CV}} u \rho d \forall+\int_{\mathrm{CS}} u \rho \vec{V} \cdot d \vec{A} \quad \mathrm{p}=\rho \cdot \mathrm{R} \cdot \mathrm{~T}
$$

Assumptions: 1) Steady flow 2) Uniform density at each section

$$
\begin{aligned}
& \text { From continuity } \quad \mathrm{m}_{\text {flow }}=\rho_{1} \cdot \mathrm{~V}_{1} \cdot \mathrm{~A}_{1}=\rho_{1} \cdot \mathrm{~V}_{1} \cdot \frac{\pi \cdot \mathrm{D}_{1}{ }^{2}}{4} \quad \text { where } \mathrm{m}_{\text {flow }} \text { is the mass flow rate } \\
& \text { We take ambient conditions for the air density } \quad \rho_{\text {air }}=\frac{\mathrm{P}_{\mathrm{atm}}}{\mathrm{R}_{\mathrm{air}} \cdot \mathrm{~T}_{\text {atm }}} \quad \rho_{\text {air }}=101000 \cdot \frac{\mathrm{~N}}{\mathrm{~m}^{2}} \times \frac{\mathrm{kg} \cdot \mathrm{~K}}{286.9 \cdot \mathrm{~N} \cdot \mathrm{~m}} \times \frac{1}{293 \cdot \mathrm{~K}} \quad \rho_{\text {air }}=1.2 \frac{\mathrm{~kg}}{\mathrm{~m}^{3}} \\
& \mathrm{~m}_{\text {flow }}=1.2 \cdot \frac{\mathrm{~kg}}{\mathrm{~m}^{3}} \times 12.5 \cdot \frac{\mathrm{~m}}{\mathrm{~s}} \times \frac{\pi \cdot(0.75 \cdot \mathrm{~m})^{2}}{4} \quad \mathrm{~m}_{\text {flow }}=6.63 \frac{\mathrm{~kg}}{\mathrm{~s}} \\
& \text { Also } \\
& \mathrm{m}_{\text {flow }}=\int \rho_{2} \cdot \mathrm{u}_{2} \mathrm{dA}_{2}=\rho_{\text {air }} \int_{0}^{\mathrm{R}} \mathrm{~V}_{\text {max }} \cdot \frac{\mathrm{r}}{\mathrm{R}} \cdot 2 \cdot \pi \cdot \mathrm{rdr}=\frac{2 \cdot \pi \cdot \rho_{\text {air }} \cdot V_{\text {max }}}{\mathrm{R}} \cdot \int_{0}^{\mathrm{R}} \mathrm{r}^{2} \mathrm{dr}=\frac{2 \cdot \pi \cdot \rho_{\text {air }} \cdot \mathrm{V}_{\text {max }} \cdot R^{2}}{3} \\
& \mathrm{~V}_{\text {max }}=\frac{3 \cdot \mathrm{~m}_{\text {flow }}}{2 \cdot \pi \cdot \rho_{\text {air }} \cdot \mathrm{R}^{2}} \quad \mathrm{~V}_{\text {max }}=\frac{3}{2 \cdot \pi} \times 6.63 \cdot \frac{\mathrm{~kg}}{\mathrm{~s}} \times \frac{\mathrm{m}^{3}}{1.2 \cdot \mathrm{~kg}} \times\left(\frac{1}{0.375 \cdot \mathrm{~m}}\right)^{2} \quad \quad \mathrm{~V}_{\max }=18.8 \frac{\mathrm{~m}}{\mathrm{~s}}
\end{aligned}
$$

For x momentum $\quad R_{x}+p_{1} \cdot A-p_{2} \cdot A=V_{1} \cdot\left(-\rho_{1} \cdot V_{1} \cdot A\right)+\int \rho_{2} \cdot u_{2} \cdot u_{2} d A_{2}$
$R_{X}=\left(p_{2}-p_{1}\right) \cdot A-V_{1} \cdot m_{\text {flow }}+\int_{0}^{R} \rho_{\text {air }} \cdot\left(V_{\text {max }} \cdot \frac{r}{R}\right)^{2} \cdot 2 \cdot \pi \cdot r d r=\left(p_{2}-p_{1}\right) \cdot A-V_{1} \cdot m_{\text {flow }}+\frac{2 \cdot \pi \cdot \rho_{\text {air }} \cdot V_{\text {max }}^{2}}{R^{2}} \cdot \int_{0}^{R} r^{3} d r$

$$
\mathrm{R}_{\mathrm{x}}=\left(\mathrm{p}_{2}-\mathrm{p}_{1}\right) \cdot \mathrm{A}-\mathrm{V}_{1} \cdot \mathrm{~m}_{\mathrm{flow}}+\frac{\pi}{2} \cdot \rho_{\mathrm{air}} \cdot \mathrm{~V}_{\max }^{2} \cdot \mathrm{R}^{2}
$$

We also have

$$
\begin{aligned}
& \mathrm{p}_{1}=\rho \cdot \mathrm{g} \cdot \mathrm{~h}_{1} \quad \mathrm{p}_{1}=1000 \cdot \frac{\mathrm{~kg}}{\mathrm{~m}^{3}} \times 9.81 \cdot \frac{\mathrm{~m}}{\mathrm{~s}^{2}} \times 0.03 \cdot \mathrm{~m} \quad \mathrm{p}_{1}=294 \mathrm{~Pa} \quad \mathrm{p}_{2}=\rho \cdot \mathrm{g} \cdot \mathrm{~h}_{2} \quad \mathrm{P}_{2}=147 \cdot \mathrm{~Pa} \\
& \mathrm{R}_{\mathrm{X}}=(147-294) \cdot \frac{\mathrm{N}}{\mathrm{~m}^{2}} \times \frac{\pi \cdot(0.75 \cdot \mathrm{~m})^{2}}{4}+\left[-6.63 \cdot \frac{\mathrm{~kg}}{\mathrm{~s}} \times 12.5 \cdot \frac{\mathrm{~m}}{\mathrm{~s}}+\frac{\pi}{2} \times 1.2 \cdot \frac{\mathrm{~kg}}{\mathrm{~m}^{3}} \times\left(18.8 \cdot \frac{\mathrm{~m}}{\mathrm{~s}}\right)^{2} \times(0.375 \cdot \mathrm{~m})^{2}\right] \times \frac{\mathrm{N} \cdot \mathrm{~s}^{2}}{\mathrm{~kg} \cdot \mathrm{~m}} \\
& \mathrm{R}_{\mathrm{X}}=-54 \mathrm{~N} \quad \text { The drag on the object is equal and opposite } \quad \mathrm{F}_{d r a g}=-\mathrm{R}_{\mathrm{X}} \quad
\end{aligned}
$$

Hence
4.95 The horizontal velocity in the wake behind an object in an air stream of velocity U is given by

$$
\begin{array}{ll}
u(r)=U\left[1-\cos ^{2}\left(\frac{\pi r}{2}\right)\right] & |r| \leq 1 \\
u(r)=U & |r|>1
\end{array}
$$

where r is the non-dimensional radial coordinate, measure perpendicular to the flow. Find an expression for the drag on the object.

Given: Data on wake behind object
Find: An expression for the drag

Solution:

Governing equation:
Momentum

$$
\begin{equation*}
F_{x}=F_{S_{x}}+F_{B_{x}}=\frac{\partial}{\partial t} \int_{\mathrm{CV}} u \rho d \forall+\int_{\mathrm{CS}} u \rho \vec{V} \cdot d \vec{A} \tag{4.18a}
\end{equation*}
$$

Applying this to the horizontal motion

$$
\begin{aligned}
& -\mathrm{F}=\mathrm{U} \cdot\left(-\rho \cdot \pi \cdot 1^{2} \cdot \mathrm{U}\right)+\int_{0}^{1} \mathrm{u}(\mathrm{r}) \cdot \rho \cdot 2 \cdot \pi \cdot \mathrm{r} \cdot \mathrm{u}(\mathrm{r}) \mathrm{dr} \\
& \mathrm{~F}=\pi \rho \cdot \mathrm{U}^{2} \cdot\left(1-2 \cdot \int_{0}^{1} \mathrm{r} \cdot\left(1-\cos \left(\frac{\pi \cdot r}{2}\right)^{2}\right)^{2} \mathrm{dr}\right] \\
& \mathrm{F}=\pi \rho \cdot \mathrm{U}^{2} \cdot\left(1-2 \cdot \int_{0}^{1} \mathrm{r}-2 \cdot \mathrm{r} \cdot \cos \left(\frac{\pi \cdot r}{2}\right)^{2}+r \cdot \cos \left(\frac{\pi \cdot r}{2}\right)^{4} \mathrm{dr}\right)
\end{aligned}
$$

Integrating and using the limits $\mathrm{F}=\pi \rho \cdot \mathrm{U}^{2} \cdot\left[1-\left(\frac{3}{8}+\frac{2}{\pi^{2}}\right)\right]$
$\mathrm{F}=\left(\frac{5 \cdot \pi}{8}-\frac{2}{\pi}\right) \cdot \rho \cdot \mathrm{U}^{2}$

Problem 4.96

4.96 An incompressible fluid flows steadily in the entrance region of a two-dimensional channel of height $2 h$. The uniform velocity at the channel entrance is $U_{1}=7.5 \mathrm{~m} / \mathrm{s}$. The velocity distribution at a section downstream is

$$
\frac{u}{u_{\max }}=1-\left[\frac{y}{h}\right]^{2}
$$

Evaluate the maximum velocity at the downstream section. Calculate the pressure drop that would exist in the channel if viscous friction at the walls could be neglected.

Given: Data on flow in 2D channel
Find: Maximum velocity; Pressure drop

Solution:

Basic equations: Continuity, and momentum flux in x direction; ideal gas equation

$$
\frac{\partial}{\partial t} \int_{\mathrm{CV}} \rho d \forall+\int_{\mathrm{CS}} \rho \vec{V} \cdot d \vec{A}=0 \quad F_{x}=F_{S_{x}}+F_{B_{x}}=\frac{\partial}{\partial t} \int_{\mathrm{CV}} u \rho d \forall+\int_{\mathrm{CS}} u \rho \vec{V} \cdot d \vec{A}
$$

Assumptions: 1) Steady flow 2) Neglect frition
From continuity

$$
\begin{aligned}
& -\rho \cdot U_{1} \cdot A_{1}+\int \rho \cdot u_{2} d A=0 \\
& U_{1} \cdot 2 \cdot h \cdot w=w \cdot \int_{-h}^{h} u_{\max }\left(1-\frac{y^{2}}{h^{2}}\right) d y=w \cdot u_{\max }\left[[h-(-h)]-\left[\frac{h}{3}-\left(-\frac{h}{3}\right)\right]\right]=w \cdot u_{\max } \cdot \frac{4}{3} \cdot h
\end{aligned}
$$

Hence

$$
\mathrm{u}_{\max }=\frac{3}{2} \cdot \mathrm{U}_{1} \quad \mathrm{u}_{\max }=\frac{3}{2} \times 7.5 \cdot \frac{\mathrm{~m}}{\mathrm{~s}} \quad \mathrm{u}_{\max }=11.3 \frac{\mathrm{~m}}{\mathrm{~s}}
$$

For x momentum $\quad \mathrm{p}_{1} \cdot \mathrm{~A}-\mathrm{p}_{2} \cdot \mathrm{~A}=\mathrm{V}_{1} \cdot\left(-\rho_{1} \cdot V_{1} \cdot \mathrm{~A}\right)+\int \rho_{2} \cdot \mathrm{u}_{2} \cdot \mathrm{u}_{2} \mathrm{dA}_{2} \quad$ Note that there is no R_{x} (no friction)

Hence

$$
\begin{aligned}
& \mathrm{p}_{1}-\mathrm{p}_{2}=-\rho \cdot \mathrm{U}_{1}^{2}+\frac{\mathrm{w}}{\mathrm{~A}} \cdot \int_{-\mathrm{h}}^{\mathrm{h}} \rho \cdot \mathrm{u}_{\max }^{2} \cdot\left(1-\frac{\mathrm{y}^{2}}{\mathrm{~h}^{2}}\right)^{2} \mathrm{dy}=-\rho \cdot \mathrm{U}_{1}^{2}+\frac{\rho \cdot \mathrm{u}_{\max }}{\mathrm{h}} \cdot\left[2 \cdot \mathrm{~h}-2 \cdot\left(\frac{2}{3} \cdot \mathrm{~h}\right)+2 \cdot\left(\frac{1}{5} \cdot \mathrm{~h}\right)\right] \\
& \Delta \mathrm{p}=\mathrm{p}_{1}-\mathrm{p}_{2}=-\rho \cdot \mathrm{U}_{1}^{2}+\frac{8}{15} \cdot \rho \cdot \mathrm{u}_{\max }{ }^{2}=\rho \cdot \mathrm{U}_{1} \cdot\left[\frac{8}{15} \cdot\left(\frac{3}{2}\right)^{2}-1\right]=\frac{1}{5} \cdot \rho \cdot \mathrm{U}_{1} \\
& \Delta \mathrm{p}=\frac{1}{5} \times 1.24 \cdot \frac{\mathrm{~kg}}{\mathrm{~m}^{3}} \times\left(7.5 \cdot \frac{\mathrm{~m}}{\mathrm{~s}}\right)^{2} \times \frac{\mathrm{N} \cdot \mathrm{~s}^{2}}{\mathrm{~kg} \cdot \mathrm{~m}} \quad \Delta \mathrm{p}=14 \mathrm{~Pa}
\end{aligned}
$$

Given: Incompressible flow in entrance region of circular tube of radices, R.

Find: (a) Maximum velocity at Section (2).
(6) Pressure drop if viscous friction could be neglected.

Solution: Apply continuity and the x direction momentum equations. Use the $C V$ and $C S$ shown.

Basic equations:

$$
u_{z}=u_{\max }\left[1-\left(\frac{r}{R}\right)^{2}\right]
$$

$$
\begin{aligned}
& i c \text { equations: } \quad 0=\frac{d f}{t} \int_{c v}^{=o(1)} \rho d t+\int_{c s} \rho \vec{v} \cdot d \vec{A} \\
& =o(3)=o(1) \\
& r_{s_{x}}+F f_{p_{x}}=\frac{A}{\phi t} \int_{c v} u p d t+\int_{c s} u \rho \vec{v} \cdot d \vec{A}
\end{aligned}
$$

Assumptions: (1) Steady flow
(5) Incompressible flow
(2) Uniform flow at section (1)
(3) $F_{B x}=0$
(4) Neglect friction at duet wall

Then

$$
0=\left\{-\mid \rho U, \pi R^{2} /\right\}+\int_{0}^{R} \rho u_{\max }\left[1-\left(\frac{r}{R}\right)^{2}\right] 2 \pi r d r
$$

or $\quad \pi \rho U, R^{2}=2 \pi \rho u_{\text {max }} R^{2} \int_{0}^{1 /}\left[1-\left(\frac{r}{R}\right) *\right]\left(\frac{r}{R}\right) d\left(\frac{r}{R}\right)=2 \pi \rho u_{\text {max }} R^{2}\left[\frac{1}{2}\left(\frac{r}{R}\right)^{2}-\frac{1}{4}\left(\frac{r}{R}\right)^{4}\right]_{0}^{1}$
Thus $u_{\text {max }}=2 U_{i}=2 \times 30 \frac{f t}{5}=60 \mathrm{ft} / \mathrm{s}$
From the momentum equation,

or

$$
\begin{gathered}
p_{1} \pi R^{2}-p_{2} \pi R^{2}=u_{1}\left\{-\rho V_{1} \pi R^{2}\right\}+\int_{0}^{R} u_{2} \rho u_{2} d A_{2}=-\rho U_{1} \pi R^{2}+\rho u_{m a x}^{2} 2 \pi R_{0}^{2}\left[1-\left(\frac{c_{1}}{R}\right)^{2}\right](\mathcal{R}) d\left(\frac{1}{k}\right. \\
u_{1}=U_{1} \quad u_{2}=u_{\max }\left[1-\left(\frac{\left.\left.C_{1}\right)^{2}\right]}{}\right.\right.
\end{gathered}
$$

$$
p_{1}-p_{2}=-\rho U_{1}^{2}+2 \rho u_{\max }^{2} \int_{0}^{1}\left(1-\eta^{2}\right)^{2} \eta d \eta ; \eta=\frac{\Gamma}{R}
$$

But $\left.\int_{0}^{1}\left(1-\eta^{2}\right) \eta d \eta=\int_{0}^{1}\left(1-2 \eta^{2}+\eta^{4}\right) \eta d \eta=\frac{1}{2} \eta^{2}-\frac{1}{2} \eta^{4}+\frac{1}{6} \eta^{6}\right]_{0}^{1}=\frac{1}{6}$
$a n \sigma u_{\max }^{2}=\left(2 U_{1}\right)^{2}=4 U_{1}^{2}, 30$

$$
\begin{aligned}
p_{1}-p_{2} & =-\rho U_{1}^{2}+\frac{8}{6} \rho \sigma_{1}^{2}=\rho U_{1}^{2}\left(\frac{4}{3}-1\right)=\frac{1}{3} \rho \sigma_{1}^{2} \\
& =\frac{1}{3} \times 0.075 \frac{16 m}{f^{3}} \times(30)^{2} \frac{f^{2}}{5} \times \frac{514 g}{32.216 m} \times \frac{1 b f s^{2}}{314 g \cdot 4} \\
p_{1}-p_{2} & =0.699 \mathrm{lbf} / A_{4}^{2}
\end{aligned}
$$

Problem 4.98
Given: Uniform flow into, fully developed flow from duct shown.

Air

$$
\begin{aligned}
& \frac{u(r)}{U_{L}}=1-\left(\frac{r}{R}\right)^{2} \text { at (2) } \\
& p_{1}-p_{2}=1.92 \mathrm{~N} / \mathrm{m}^{2}
\end{aligned}
$$

Find: Total force exerted by tube on the flowing air.
Solution: APply continuity and momentum to $C V, C S$ shown.
Basic equations:

$$
\begin{aligned}
& \text { 15: } \quad 0=\frac{\partial 1}{\partial t} \int_{C V}^{=0(1)} \rho d t+\int_{C S} \rho \vec{V} \cdot d \vec{A} \\
& F_{S x}+F F_{B_{x}}^{=0(4)}=\frac{\partial t}{\phi t} \int_{C V} u \rho d \forall+\int_{C S} u \rho \vec{v} \cdot d \vec{A}
\end{aligned}
$$

Assumptions: (1) steady flow
(3) Uniform flow at inlet
(2) Incompressible flow
(4) $F_{B X}=0$

Then

$$
\begin{aligned}
& 0=\left\{-\left|\rho U_{1} A_{1}\right|\right\}+\int_{(2)} \rho u d A=-\rho U_{1} \pi R^{2}+\int_{0}^{R} \rho U_{C}\left[1-\left(\frac{\hat{R}^{2}}{2}\right] z \pi r d r\right. \\
& 0=-\rho U_{1} \pi R^{2}+2 \rho \pi R^{2} \sigma_{C} \int_{0}^{1}\left(1-\lambda^{2}\right) \lambda d \lambda \text { or } 0=-U_{1}+2 U_{C}\left[\frac{\Lambda^{2}}{2}-\frac{\lambda^{4}}{4}\right]_{0}^{\prime}
\end{aligned}
$$

Thus $0=-U_{1}+\frac{1}{2} U_{c}$ or $U_{c}=2 U_{1} \quad(\lambda=r / R)$
From momentum $R_{x}+p_{1} A_{1}-p_{2} A_{2}=u_{1}\left\{-\left|\rho U_{1} A_{1}\right|\right\}+\left\{u_{2}\left\{+\rho u_{2} d A_{2}\right\}\right.$

$$
u_{1}=U_{1} \quad u_{2}=U_{c}\left[1-\left(\frac{r}{R}\right)^{2}\right]
$$

30

$$
\begin{aligned}
\int_{(2)} & =\int_{0}^{R} v_{c}\left[1-\left(\hat{R}^{2}\right]\right] \rho U_{d}\left[1-\left(c_{R}\right)^{2}\right] z \pi r d r=2 \pi \rho U_{c}^{2} R^{2} \int_{0}^{1}\left(1-\lambda^{2}\right)\left(1-\lambda^{2}\right) \lambda d \lambda \\
& =2 \pi \rho U_{c}^{2} R^{2} \int_{0}^{1}\left(1-2 \lambda^{2}+\lambda^{4}\right) \lambda d \lambda=2 \pi \rho J_{c} R^{2}\left[\frac{\lambda^{2}}{2}-\frac{\lambda^{4}}{2}+\frac{\lambda^{6}}{6}\right]_{0}^{1}=\frac{1}{3} \pi \rho U_{c}^{2} R^{2}
\end{aligned}
$$

Substituting,

$$
\begin{aligned}
R_{x} & +\left(-p_{1}-p_{2}\right) \pi R^{2}=-\pi \rho U_{1}^{2} R^{2}+\frac{1}{3} \pi \rho U_{c}^{2} R^{2}=-\pi \rho U_{1}^{2} R^{2}+\frac{1}{3} \pi \rho\left(2 U_{1}\right)^{2} R^{2} \\
R_{x} & =-\left(p_{1}-p_{2}\right) \frac{\pi D^{2}}{4}+\frac{1}{3} \rho U_{1}^{2} \frac{\pi D^{2}}{4} \\
& =-1.92 \frac{\mathrm{~N}}{\mathrm{~m}^{2}} \times(0.025)^{2} m^{2}+\frac{1}{3} \times 1.23 \frac{\mathrm{~kg}^{3}}{\mathrm{~m}^{3}} \times(0.870)^{2} \frac{\mathrm{~m}^{2}}{\mathrm{~s}^{2}} \times \frac{\pi}{4}(0.025)^{2} \mathrm{~m}_{\times}^{2} \frac{\mathrm{~V}_{\mathrm{s}} \mathrm{~s}^{2}}{\mathrm{~kg}} \\
R_{x} & =-7.90 \times 10^{-4} N(\text { to left on } \mathrm{cv} \text {, since }<0)
\end{aligned}
$$

Given: Incompressible flow in boundary layer.

$$
\begin{aligned}
& w=0.6 \mathrm{~m} \\
& U=30 \mathrm{~m} / \mathrm{s} \\
& \rho=1.24 \mathrm{~kg} / \mathrm{m}^{3}
\end{aligned}
$$

Find: (a) Show that drag, $D=\int_{0}^{\delta} u(v-u) w r d y$
(b) Evaluate for conditions shown.

Solution: Apply continuity and x component of momentuen using CV shown. Basic equations: $\quad 0=\frac{\partial d}{\partial t} \int_{C v}^{=o(1)} f^{d} t+\int_{c s} \rho \vec{v} \cdot d \vec{A}$

$$
F_{s x}+F f_{x}^{=0(3)}=\frac{t^{(0}(1)}{\partial t} \int_{c v} u p d t+\int_{C S} u p \vec{v} \cdot d \vec{A}
$$

Assumptions: (1) Steady flow
(2) No net pressure force; $F_{S_{x}}=-F_{f}$
(3) $F_{B_{x}}=0$
(4) Uniform flow at section (46)
(5) Incompressible flow

Then from continuitity

$$
0=\{-/ \rho u w \delta \mid\}+\left\{\mid \int_{0}^{\delta} \rho u w d y /\right\}+\dot{m}_{B C} ; \delta=\int_{0}^{\delta} d y ; \dot{m}_{B C}=\rho \int_{0}^{\delta}(U-u) w d y
$$

From momentum

$$
\begin{aligned}
& -F_{f}=U\{-|f U u \delta|\}+\left\{\int_{0}^{\delta} p u^{2} w d y /\right\}+U \dot{m}_{B C}=\rho \int_{0}^{\delta}\left[-U^{2}+u^{2}+U(\sigma-u)\right] w d y \\
& \text { Drag }=F_{f}=\int_{0}^{\delta} f u(U-u) u d y
\end{aligned}
$$

At CD, $\frac{u}{v}=2\left(\frac{y}{\delta}\right)-\left(\frac{y}{\delta}\right)^{2}=2 \eta-\eta^{2} ; d y=\delta d\left(\frac{y}{\delta}\right)=\delta d \eta$

$$
\begin{aligned}
\text { Drag } & =\int_{0}^{\delta} \rho U\left[2\left(\frac{y}{\delta}\right)-\left(\frac{y}{\delta}\right)^{2}\right]\left(U-U\left[z\left(\frac{y}{\delta}\right)-\left(\frac{y}{\delta}\right)^{2}\right]\right) \omega d y=\rho U^{2} \omega \sigma \delta \int_{0}^{1}\left(2 \eta-\eta^{2}\right)\left(1-2 \eta+\eta^{2}\right) d \eta \\
& =\rho U^{2} \omega \delta \delta \int_{0}^{1}\left(2 \eta-5 \eta^{2}+4 \eta^{3}-\eta^{4}\right) d \eta=\rho U^{2} u \delta\left[\eta^{2}-\frac{5}{3} \eta^{3}+\eta^{4}-\frac{1}{5} \eta^{5}\right]_{0}^{1} \\
& =\frac{2}{15} \rho U^{2} \omega \delta
\end{aligned}
$$

$$
\text { Drag }=\frac{2}{15} \times 1.24 \frac{\mathrm{~kg}}{\mathrm{~m}^{3}} \times(30)^{2} \frac{\mathrm{~m}^{2}}{\mathrm{~s}^{2}} \times 0.6 \mathrm{~m} \times 0.005 \mathrm{~m}_{\times} \frac{\mathrm{N} \cdot \mathrm{~s}^{2}}{\mathrm{~kg} \cdot \mathrm{~m}}=0.446 \mathrm{~N}
$$

4.100 Air at standard conditions flows along a flat plate. The undisturbed freestream speed is $U_{0}=30 \mathrm{ft} / \mathrm{s}$. At $L=6 \mathrm{in}$. downstream from the leading edge of the plate, the boundary-layer thickness is $\delta=0.1 \mathrm{in}$. The velocity profile at this location is

$$
\frac{u}{U_{0}}=\frac{3}{2} \frac{y}{\delta}-\frac{1}{2}\left[\frac{y}{\delta}\right]^{3}
$$

Calculate the horizontal component of force per unit width required to hold the plate stationary.

Given: Data on flow of boundary layer
Find: Force on plate per unit width

Solution:

Basic equations: Continuity, and momentum flux in x direction

$$
\frac{\partial}{\partial t} \int_{\mathrm{CV}} \rho d \forall+\int_{\mathrm{CS}} \rho \vec{V} \cdot d \vec{A}=0 \quad F_{x}=F_{S_{x}}+F_{B_{x}}=\frac{\partial}{\partial t} \int_{\mathrm{CV}} u \rho d \forall+\int_{\mathrm{CS}} u \rho \vec{V} \cdot d \vec{A}
$$

Assumptions: 1) Steady flow 2) Incompressible 3) No net pressure force
From continuity $\quad-\rho \cdot \mathrm{U}_{0} \cdot \mathrm{w} \cdot \delta+\mathrm{m}_{\mathrm{bc}}+\int_{0}^{\delta} \rho \cdot \mathrm{u} \cdot \mathrm{w}$ dy $=0 \quad \begin{aligned} & \text { where } \mathrm{m}_{\mathrm{bc}} \text { is the mass flow rate across bc (Note: } \\ & \text { sotware cannot render a dot!) }\end{aligned}$ sotware cannot render a dot!)

Hence

$$
\mathrm{m}_{\mathrm{bc}}=\int_{0}^{\delta} \rho \cdot\left(\mathrm{U}_{0}-\mathrm{u}\right) \cdot \mathrm{w} \mathrm{dy}
$$

For x momentum

$$
-\mathrm{F}_{\mathrm{f}}=\mathrm{U}_{0} \cdot\left(-\rho \cdot \mathrm{U}_{0} \cdot \mathrm{w} \cdot \delta\right)+\mathrm{U}_{0} \cdot \mathrm{~m}_{\mathrm{bc}}+\int_{0}^{\delta} \mathrm{u} \cdot \rho \cdot \mathrm{u} \cdot \mathrm{w} d y=\int_{n}^{\delta}\left[-\mathrm{U}_{0}^{2}+\mathrm{u}^{2}+\mathrm{U}_{0} \cdot\left(\mathrm{U}_{0}-\mathrm{u}\right)\right] \cdot \mathrm{w} d y
$$

Then the drag force is $F_{f}=\int_{0}^{\delta} \rho \cdot u \cdot\left(U_{0}-u\right) \cdot w d y=\int_{0}^{\delta} \rho \cdot U_{0}^{2} \cdot \frac{u}{U_{0}} \cdot\left(1-\frac{u}{U_{0}}\right) d y$
But we have $\quad \frac{\mathrm{u}}{\mathrm{U}_{0}}=\frac{3}{2} \cdot \eta-\frac{1}{2} \cdot \eta^{3} \quad$ where we have used substitution $\quad y=\delta \cdot \eta$

$$
\frac{\mathrm{F}_{\mathrm{f}}}{\mathrm{w}}=\int_{0}^{\eta=1} \rho \cdot \mathrm{U}_{0}^{2} \cdot \delta \cdot \frac{\mathrm{u}}{\mathrm{U}_{0}} \cdot\left(1-\frac{\mathrm{u}}{\mathrm{U}_{0}}\right) \mathrm{d} \eta=\rho \cdot \mathrm{U}_{0}^{2} \cdot \delta \cdot \int_{0}^{1}\left(\frac{3}{2} \cdot \eta-\frac{9}{4} \cdot \eta^{2}-\frac{1}{2} \cdot \eta^{3}+\frac{3}{2} \cdot \eta^{4}-\frac{1}{4} \cdot \eta^{6}\right) \mathrm{d} \eta
$$

$$
\frac{\mathrm{F}_{\mathrm{f}}}{\mathrm{w}}=\rho \cdot \mathrm{U}_{0}^{2} \cdot \delta \cdot\left(\frac{3}{4}-\frac{3}{4}-\frac{1}{8}+\frac{3}{10}-\frac{1}{28}\right)=0.139 \cdot \rho \cdot \mathrm{U}_{0}^{2} \cdot \delta
$$

Hence

$$
\begin{aligned}
& \frac{\mathrm{F}_{\mathrm{f}}}{\mathrm{w}}=0.139 \times 0.002377 \cdot \frac{\operatorname{slug}}{\mathrm{ft}^{3}} \times\left(30 \cdot \frac{\mathrm{ft}}{\mathrm{~s}}\right)^{2} \times \frac{0.1}{12} \cdot \mathrm{ft} \times \frac{\mathrm{lbf} \cdot \mathrm{~s}^{2}}{\mathrm{slug} \cdot \mathrm{ft}} \quad \quad \text { (using standard atmosphere density) } \\
& \frac{\mathrm{F}_{\mathrm{f}}}{\mathrm{w}}=2.48 \times 10^{-3} \cdot \frac{\mathrm{lbf}}{\mathrm{ft}}
\end{aligned}
$$

4.101 Air at standard conditions flows along a flat plate. The undisturbed freestream speed is $U_{0}=20 \mathrm{~m} / \mathrm{s}$. At $L=0.4 \mathrm{~m}$ downstream from the leading edge of the plate, the boundary-layer thickness is $\delta=2 \mathrm{~mm}$. The velocity profile at this location is approximated as $u / U_{0}=y / \delta$. Calculate the horizontal component of force per unit width required to hold the plate stationary.

Given: Data on flow of boundary layer
Find: Force on plate per unit width

Solution:

Basic equations: Continuity, and momentum flux in x direction

$$
\frac{\partial}{\partial t} \int_{\mathrm{CV}} \rho d \forall+\int_{\mathrm{CS}} \rho \vec{V} \cdot d \vec{A}=0 \quad F_{x}=F_{S_{x}}+F_{B_{x}}=\frac{\partial}{\partial t} \int_{\mathrm{CV}} u \rho d \forall+\int_{\mathrm{CS}} u \rho \vec{V} \cdot d \vec{A}
$$

Assumptions: 1) Steady flow 2) Incompressible 3) No net pressure force
$\begin{array}{ll}\text { From continuity } \quad-\rho \cdot \mathrm{U}_{0} \cdot \mathrm{w} \cdot \delta+\mathrm{m}_{\mathrm{bc}}+\int_{0}^{\delta} \rho \cdot \mathrm{u} \cdot \mathrm{w} d y=0 & \begin{array}{l}\text { where } \mathrm{m}_{\mathrm{bc}} \text { is the mass flow rate across bc (Note: } \\ \text { sotware cannot render a dot!) }\end{array}\end{array}$

Hence

$$
\mathrm{m}_{\mathrm{bc}}=\int_{0}^{\delta} \rho \cdot\left(\mathrm{U}_{0}-\mathrm{u}\right) \cdot \mathrm{w} d y
$$

For x momentum $\quad-F_{f}=U_{0} \cdot\left(-\rho \cdot U_{0} \cdot w \cdot \delta\right)+U_{0} \cdot m_{b c}+\int_{0}^{\delta} u \cdot \rho \cdot u \cdot w d y=\int_{n}^{\delta}\left[-U_{0}^{2}+u^{2}+U_{0} \cdot\left(U_{0}-u\right)\right] \cdot w d y$
Then the drag force is $F_{f}=\int_{0}^{\delta} \rho \cdot u \cdot\left(U_{0}-u\right) \cdot w d y=\int_{0}^{\delta} \rho \cdot U_{0}^{2} \cdot \frac{u}{U_{0}} \cdot\left(1-\frac{u}{U_{0}}\right) d y$
But we have

$$
\begin{aligned}
& \frac{\mathrm{u}}{\mathrm{U}_{0}}=\frac{\mathrm{y}}{\delta} \quad \text { where we have used substitution } \quad \mathrm{y}=\delta \cdot \eta \\
& \frac{\mathrm{F}_{\mathrm{f}}}{\mathrm{w}}=\int_{0}^{\eta=1} \rho \cdot \mathrm{U}_{0}^{2} \cdot \delta \cdot \frac{\mathrm{u}}{\mathrm{U}_{0}} \cdot\left(1-\frac{\mathrm{u}}{\mathrm{U}_{0}}\right) \mathrm{d} \eta=\rho \cdot \mathrm{U}_{0}^{2} \cdot \delta \cdot \int_{0}^{1} \eta \cdot(1-\eta) \mathrm{d} \eta \\
& \frac{\mathrm{~F}_{\mathrm{f}}}{\mathrm{w}}=\rho \cdot \mathrm{U}_{0}^{2} \cdot \delta \cdot\left(\frac{1}{2}-\frac{1}{3}\right)=\frac{1}{6} \cdot \rho \cdot \mathrm{U}_{0}^{2} \cdot \delta \\
& \frac{\mathrm{~F}_{\mathrm{f}}}{\mathrm{w}}=\frac{1}{6} \times 1.225 \cdot \frac{\mathrm{~kg}}{\mathrm{~m}^{3}} \times\left(20 \cdot \frac{\mathrm{~m}}{\mathrm{~s}}\right)^{2} \times \frac{2}{1000} \cdot \mathrm{~m} \times \frac{\mathrm{N} \cdot \mathrm{~s}^{2}}{\mathrm{~kg} \cdot \mathrm{~m}} \\
& \frac{\mathrm{~F}_{\mathrm{f}}}{\mathrm{w}}=0.163 \cdot \frac{\mathrm{~N}}{\mathrm{~m}}
\end{aligned}
$$

Hence

Gwen: Flow offlat jet over sharp-edged splitter plate, as shown. Neglect friction force between water and plate; $0 \leqslant \alpha \leq 0.5$.
Find: (a) Expression for angle θ as a function of α
(b) Expression for Force R_{x} needed to holdspliter plate in -place.
Plo: both θ and R_{α} as functions of θ.
Solution
Apply the x and y components of the momentum equation to fie cl shown.
Basic equations:

$$
\begin{aligned}
& F F_{y}=(\underline{z})=0(3)=\frac{\partial}{\partial y} X_{\omega}^{\prime} v p d t+\int_{v} v(p \vec{v} \cdot d \vec{A})
\end{aligned}
$$

Assumptions: (i) no net pressure forces on cl
(2) no friction y direction, so $F_{s y}=0$
(3) neglect body forces
(4) steady floss
(5) no Sarge in jet speed: $V_{1}=V_{2}=V_{3}=V$
(6) uniform ina at each section

Then from the y equation

$$
\begin{aligned}
& 0=v_{1}\left\{-\left\{p v_{1} A_{1} \|_{\}}+v_{2}\left\{\left|p v_{2} A_{2}\right|\right\}+v_{2}\left\{\left|p v_{3} A_{3}\right\rangle\right\}\right.\right. \\
& v_{i}=0 \\
& A_{1}=w h \\
& v_{2}=U \sin \theta
\end{aligned}
$$

$\{w$ is depp
Tun:

$$
0=0+p v^{2} \sin \theta w(1-\alpha) h-p v^{2} w \alpha h
$$

$$
\begin{equation*}
\sin \theta=\frac{p v^{2} w \alpha h}{p v^{2} w(1-\alpha)}=\frac{\alpha}{(1-\alpha)} ; \theta=\sin ^{-1}\left(\frac{\alpha}{1-\alpha)}\right. \tag{x}
\end{equation*}
$$

From the t equation

$$
\begin{gathered}
R_{h}=u_{1}\left\{-\left|p_{1} v_{1} A_{1}\right\rangle+u_{2}\left\{\left(p_{2} v_{2} A_{2}\right\}+u_{3}\left\{1 p_{3} v_{3} H_{3}\right\}\right\}\right. \\
u_{1}=v \quad u_{2}=v \cos \theta \quad u_{3}=0 \\
R_{h}=-p v^{2} w h+p v^{2} \cos \theta w(1-\alpha) h=p v^{2} w h[\cos \theta(1-\alpha)-1]
\end{gathered}
$$

But $\cos \theta=\left(1-\sin ^{2} \theta\right)^{1 / 2}=\left(1-\frac{\alpha^{2}}{(1-\alpha)^{2}}\right)^{1 / 2}=\frac{(1-2 \alpha)^{1 / 2}}{(1-\alpha)}$

$$
\therefore R_{x}=-p \nu^{2} \text { ph }\left[1-(1-2 \alpha)^{1 / 2}\right]^{\left.(1-\alpha)^{2}\right)}\left(R_{x}<0 \text {; sotole to } R^{(1-\alpha)} R_{x}\right.
$$

$\left\{\right.$ Ales : $^{2}=0, R_{4}=0 v ; \alpha=\frac{1}{2}, R_{k}=-p^{2}$ whr $\}$

Plots of: $\theta=\sin ^{-1}\left(\frac{\alpha}{1-\alpha}\right)$ and

$$
\frac{R_{x}}{R_{\alpha \alpha=0.5}}=1-\sqrt{1-2 \alpha}
$$

are

 stinted below

Flow deflection by sharp-edged splitter:
$\alpha=$ fraction of jet intercepted by splitter
Calculated Results: Deflection angle

Calculated Results: Force over maximum force

Given: Plane jet striking inclined plate, as shown. No frictional force along plate surface.

Find: (a) Expression for h_{2} / h as a flenction of θ.
(b) Plot of resceits.
(c) comment on limiting cases, $\theta=0$ and $\theta=90^{\circ}$.

Solution: Apply the x component of the momentum equation using the $C V$ and coordinates shown.

Basic equation:

$$
\begin{aligned}
& =o(1)=\alpha(2)=0(3) \\
& F f_{x}+F \neq x=\frac{d}{d t} \int_{c v} u p d t+\int_{c s} u f \vec{v} \cdot d \vec{A}
\end{aligned}
$$

Assumptions: (1) No surface force on CV
(2) Neglect body forces

(3) Steady flow
(4) No change in jet speck: $V_{1}=V_{2}=V_{3}=V$
(5) Uniform flow at each section

From continuity for uniform incon,pessible flow $0=-\rho v h^{\prime}+p v \omega h_{z}+p / w h_{3}$ or

$$
h_{1}=h_{2}+h_{3}=h_{1} \text { or } h_{3}=h_{1}-h_{2}
$$

From momentum

$$
\begin{aligned}
& 0=u_{1}\left\{-\left|\rho v \omega_{1}\right|\right\}+u_{2}\left\{+\left|\rho v \omega_{2}\right|\right\}+u_{3}\left\{+\left|\rho v h_{1}\right|\right\} \\
& u_{1}=v \sin \theta \quad u_{2}=v \quad u_{3}=-v \\
& 0=-\rho v^{2} \sin 0 \omega_{1} h_{1}+\rho v^{2} \omega_{0} h_{2}-\rho v^{2} \omega h_{3}
\end{aligned}
$$

substituting from continuity and simplifying

$$
0=-\sin \theta h_{1}+h_{2}-\left(h_{1}-h_{2}\right) \text { so } \frac{h_{2}}{h_{1}}=\frac{h_{2}}{h_{1}}=\frac{1+\sin \theta}{2}
$$

plot:

At $\theta=0, \frac{h_{2}}{h}=0.5$; flow is equally spit when plate is 1 to jet.
At $\theta=90^{\circ} ; \frac{h_{2}}{h}=1.0$; plate has no effect on flow.

Gwen: Model gas flow in a propulsion nozzle as a spherical source; $V_{e}=$ constant

Find: (a) Expression for axial thrust, T_{a}, and compare to the -18 approximation. 'T $=$ il le
b) Percent error for $\alpha=15^{\circ}$.

Pot: the percent error us α for $0 \leqslant \alpha \leqslant 22.5^{\circ}$.
Solution:
Apply definitions $i n=\int_{R} p u d t, T_{a}=$ Supudf, Usespherically
symmetric flow. syminetric flow.

Te mass flow rate is [assuming $\left.p_{e} \neq p_{e}(B)\right]$ - α

$$
\left.\dot{m}=\int_{A} p u d A=\int_{0}^{\alpha} p_{e} \nu_{e}(2 \pi R \sin \theta) R d \theta=2 \pi p_{e} \nu_{e} R^{2}\left[-\cos E_{0}^{\alpha}=2 \pi p_{e}\right)^{2} e^{2}(1-\cos)\right)
$$

The one-duriensional approximation for thrust is then

$$
\begin{equation*}
T=M V_{e}=2 \pi p_{e} \psi_{e}^{2} R^{2}(i-\cos \alpha) . \tag{1-2}
\end{equation*}
$$

The axial thrust is guienby

The error in the one-dumensional approximation is

$$
\left.e=\frac{T_{1-}-T_{a}}{T_{a}}=\frac{T_{0}}{T_{a}}=\frac{2 \pi p_{0}^{2} p^{2}(1-\cos +1}{\pi p_{e} t^{2} p^{2} \sin ^{2} \alpha}-1=\frac{2(1-\cos \alpha)}{\sin ^{2} \alpha}-1\right)
$$

Tie parcostersor is pitted os a functor of

$$
e_{5}=\frac{2(1-\cos 5)}{\sin ^{2} 15}-1
$$

$$
e_{45}=0.0173 \text { or } 173 b^{0} e^{5}
$$

$$
\begin{aligned}
& T_{a}=2 \pi p_{0}^{2} e^{2}\left[\sin ^{2} \frac{\theta^{2}}{2}\right]_{0}^{2}=\pi p_{e}^{2} R^{2} \sin ^{2} d \quad T_{a}
\end{aligned}
$$

Given: Tanks and flat plate shown.
Find: Minimum height h needed to keep plate in place.

Solution: Apply Bernovili and momentum equations, use CV enclosing plate, as shown.

Basic equations: $\frac{p}{\rho}+\frac{V^{2}}{2}+g z=$ constant

$$
F_{s x}+F \hat{A}_{x}^{=o(5)}=\frac{\partial f}{\partial t} \int_{C v}^{+o(1)} u f d \forall+\int_{c s} u f \vec{v} \cdot d \vec{A}
$$

Assumptions: (i) steady flow
(2) Incompressible flow
(3) Flow a long a streamline
(4) No friction
(5) $F_{B x}=0$

Apply Bernowlic from water surface to jet

$$
\frac{p q}{p}+\frac{v^{2}}{p}+g h=\frac{p}{p}+\frac{v^{2}}{2}+g(o) \text { so that } v^{2}=2 g h \text { or } v=\sqrt{2 g h}
$$

From flueior statics, $p_{3 g}=\rho g H$
From momentum

$$
\begin{gathered}
-\mu_{3 g} A=-\rho g H A=u_{1}\{-\rho \vee A\}+u_{2}\{+\rho \vee A\}=-\rho v^{2} A \\
u_{1}=V \quad u_{2}=0
\end{gathered}
$$

Thus, using Bernoulli,

$$
\rho g H A=\rho V^{2} A=\rho(2 g h) A=2 \rho g h A
$$

and

$$
h=\frac{H}{z}
$$

Problem *4.106
*4.106 A horizontal axisymmetric jet of air with 0.5 in. diameter strikes a stationary vertical disk of 8 in . diameter. The jet speed is $225 \mathrm{ft} / \mathrm{s}$ at the nozzle exit. A manometer is connected to the center of the disk. Calculate (a) the deflection, h, if the manometer liquid has $\mathrm{SG}=1.75$ and (b) the force exerted by the jet on the disk.

Given: Air jet striking disk

Find: Manometer deflection; Force to hold disk

Solution:

Basic equations: Hydrostatic pressure, Bernoulli, and momentum flux in x direction

$$
\frac{\mathrm{p}}{\rho}+\frac{\mathrm{V}^{2}}{2}+\mathrm{g} \cdot \mathrm{z}=\text { constant } \quad F_{x}=F_{S_{x}}+F_{B_{x}}=\frac{\partial}{\partial t} \int_{\mathrm{CV}} u \rho d \forall+\int_{\mathrm{CS}} u \rho \vec{V} \cdot d \vec{A}
$$

Assumptions: 1) Steady flow 2) Incompressible 3) No friction 4) Flow along streamline 5) Uniform flow 6) Horizontal flow ($\mathrm{gx}=0$) Applying Bernoulli between jet exit and stagnation point

$$
\frac{\mathrm{p}}{\rho_{\mathrm{air}}}+\frac{\mathrm{v}^{2}}{2}=\frac{\mathrm{p}_{0}}{\rho_{\mathrm{air}}}+0 \quad \mathrm{P}_{0}-\mathrm{p}=\frac{1}{2} \cdot \rho_{\mathrm{air}} \cdot \mathrm{~V}^{2}
$$

But from hydrostatics

$$
\mathrm{P}_{0}-\mathrm{p}=\mathrm{SG} \cdot \rho \cdot \mathrm{~g} \cdot \Delta \mathrm{~h} \quad \text { so }
$$

$$
\Delta \mathrm{h}=\frac{\frac{1}{2} \cdot \rho_{\mathrm{air}} \cdot \mathrm{~V}^{2}}{\mathrm{SG} \cdot \rho \cdot \mathrm{~g}}=\frac{\rho_{\mathrm{air}} \cdot \mathrm{~V}^{2}}{2 \cdot \mathrm{SG} \cdot \rho \cdot \mathrm{~g}}
$$

$$
\Delta \mathrm{h}=0.002377 \cdot \frac{\operatorname{slug}}{\mathrm{ft}^{3}} \times\left(225 \cdot \frac{\mathrm{ft}}{\mathrm{~s}}\right)^{2} \times \frac{1}{2 \cdot 1.75} \times \frac{\mathrm{ft}^{3}}{1.94 \cdot \mathrm{slug}} \times \frac{\mathrm{s}^{2}}{32.2 \cdot \mathrm{ft}} \quad \Delta \mathrm{~h}=0.55 \cdot \mathrm{ft} \quad \Delta \mathrm{~h}=6.6 \cdot \mathrm{in}
$$

For x momentum

$$
\begin{aligned}
& \mathrm{R}_{\mathrm{X}}=\mathrm{V} \cdot\left(-\rho_{\mathrm{air}} \cdot \mathrm{~A} \cdot \mathrm{~V}\right)=-\rho_{\mathrm{air}} \cdot \mathrm{~V}^{2} \cdot \frac{\pi \cdot \mathrm{D}^{2}}{4} \\
& \mathrm{R}_{\mathrm{X}}=-0.002377 \cdot \frac{\operatorname{slug}}{\mathrm{ft}^{3}} \times\left(225 \cdot \frac{\mathrm{ft}}{\mathrm{~s}}\right)^{2} \times \frac{\pi \cdot\left(\frac{0.5}{12} \cdot \mathrm{ft}\right)^{2}}{4} \times \frac{\mathrm{lbf} \cdot \mathrm{~s}^{2}}{\mathrm{slugft}} \quad \mathrm{R}_{\mathrm{X}}=-0.164 \cdot \mathrm{lbf}
\end{aligned}
$$

The force of the jet on the plate is then $F=-R_{X}$

$$
\mathrm{F}=0.164 \cdot \mathrm{lbf}
$$

*4.107 Students are planning a mock battle with water hoses on a campus lawn. The engineering students know that in order to have a greater impact on the adversary, it is advantageous to adjust the hose nozzle to create a narrower jet. How do they know this? Explain in terms of the force generated by a horizontal water jet impacting on a fixed vertical plane.

If 650 N is the maximum force that human skin can tolerate over a small area without damage, what is the maximum safe water flow (in liters per minute) that can be supplied to each hose when the minimum exit diameter of the nozzles is 6 mm ?

Given: Water jet striking surface

Find: Force on surface

Solution:

Basic equations: Momentum flux in x direction $F_{x}=F_{S_{x}}+F_{B_{x}}=\frac{\partial}{\partial t} \int_{\mathrm{CV}} u \rho d \forall+\int_{\mathrm{CS}} u \rho \vec{V} \cdot d \vec{A}$
Assumptions: 1) Steady flow 2) Incompressible flow 3) Atmospheric pressure throughout 4) Uniform flow
Hence

$$
R_{X}=u_{1} \cdot\left(-\rho \cdot u_{1} \cdot A_{1}\right)=-\rho \cdot V^{2} \cdot A=-\rho \cdot\left(\frac{Q}{A}\right)^{2} \cdot A=-\frac{\rho \cdot Q^{2}}{A}=-\frac{4 \cdot \rho \cdot Q^{2}}{\pi \cdot D^{2}} \quad \text { where } Q \text { is the flow rate }
$$

The force of the jet on the surface is then $F=-R_{X}=\frac{4 \cdot \rho \cdot Q^{2}}{\pi \cdot D^{2}}$
For a fixed flow rate Q , the force of a jet varies as $\frac{1}{\mathrm{D}^{2}}$: A smaller diameter leads to a larger force. This is because as the diameter decreases the speed increases, and the impact force varies as the square of the speed, but linearly with area

For a force of $\mathrm{F}=650 \mathrm{~N}$

$$
\mathrm{Q}=\sqrt{\frac{\pi \cdot \mathrm{D}^{2} \cdot \mathrm{~F}}{4 \cdot \rho}}
$$

$$
\mathrm{Q}=\sqrt{\frac{\pi}{4} \times\left(\frac{6}{1000} \cdot \mathrm{~m}\right)^{2} \times 650 \cdot \mathrm{~N} \times \frac{\mathrm{m}^{3}}{1000 \cdot \mathrm{~kg}} \times \frac{\mathrm{kg} \cdot \mathrm{~m}}{\mathrm{~s}^{2} \cdot \mathrm{~N}}} \times \frac{1 \cdot \mathrm{~L}}{10^{-3} \cdot \mathrm{~m}^{3}} \times \frac{60 \cdot \mathrm{~s}}{1 \cdot \mathrm{~min}} \quad \mathrm{Q}=257 \cdot \frac{\mathrm{~L}}{\mathrm{~min}}
$$

Given: Jet flowing downward, striking horizontal disk, as shown.

Find: (a) Velocity in jet $a \pm h$.
(b) Expression for force to hold disk.
(c) Evaluate for $h=3.0 \mathrm{~m}$.

Solution: Apply Bernoulli and momentum equations. Use CV shown.

Basic equations: $\frac{\not p(5)}{p}+\frac{v^{2}}{2}+g z=$ constant

$$
\begin{gathered}
=0(b)=0(1) \\
F_{s z}+1=\hat{p}_{z}=\frac{d^{t}}{q^{t}} \int_{c v} w p d t+\int_{c s} w p \vec{v} \cdot d \vec{A}
\end{gathered}
$$

Assumptions: (1) Steady flow
(2) Incompressible flow
(3) Flow along a stream line
(4) Frictionless flow
(5) Atmospheric pressure along jet
(6) Neglect water on plate; $F_{3}=0$
(7) Uniform flow at each section

The Bernoulli equation becomes

$$
\frac{v_{0}^{2}}{2}+g h=\frac{v^{2}}{2}+g(0) \quad \text { or } \quad v^{2}=v_{0}^{2}+2 g h ; \quad v=\sqrt{V_{0}^{2}+2 g h}
$$

From the momentum equation

$$
\begin{gathered}
R_{z}=w_{1}\{-\rho \vee A\}+w_{2}\left\{+\rho \vee \circ A_{0}\right\}=+\rho V^{z} A \\
w_{1}=-V \quad w_{2}=0
\end{gathered}
$$

But from continuity, $\dot{m}=\rho V_{0} A_{0}=\rho V A$. Thus $V A=V_{0} A_{0}$, and

$$
R_{z}=\rho V_{0} A_{0} V=\rho V_{0} A_{0} \sqrt{V_{0}^{2}+2 g h}
$$

At $h=3.0 \mathrm{~m}$,

$$
\begin{array}{ll}
R_{z}=999 \frac{\mathrm{~kg}}{\mathrm{~m}^{3}} \times \frac{2.5 \mathrm{~m}}{\mathrm{~s}} \times \frac{\pi}{4}(0.015)^{2} \mathrm{~m}^{2}\left[(2.5)^{2} \frac{\mathrm{~m}^{2}}{\mathrm{~s}^{2}}+2 \times 9.81 \frac{\mathrm{~m}}{5^{2}} \times 3.0 \mathrm{~m}\right]^{1 / 2} \frac{\mathrm{Ng} \cdot \mathrm{~s}^{2}}{\mathrm{~kg} \cdot \mathrm{~m}} \\
R_{z}=3.56 \cdot \mathrm{~N} \text { (upward force) }
\end{array}
$$

Problem *4.109

*4.109 A 2-kg disk is constrained horizontally but is free to move vertically. The disk is struck from below by a vertical jet of water. The speed and diameter of the water jet are $10 \mathrm{~m} / \mathrm{s}$ and 25 mm at the nozzle exit. Obtain a general expression for the speed of the water jet as a function of height, h. Find the height to which the disk will rise and remain stationary.

Given: Water jet striking disk

Find: Expression for speed of jet as function of height; Height for stationary disk

Solution:

Basic equations: Bernoulli; Momentum flux in z direction

$$
\frac{\mathrm{p}}{\rho}+\frac{\mathrm{V}^{2}}{2}+\mathrm{g} \cdot \mathrm{z}=\text { constant } \quad F_{z}=F_{S_{z}}+F_{B_{z}}=\frac{\partial}{\partial t} \int_{\mathrm{CV}} w \rho d \forall+\int_{\mathrm{CS}} w \rho \vec{V} \cdot d \vec{A}
$$

Assumptions: 1) Steady flow 2) Incompressible flow 3) Atmospheric pressure in jet 4) Uniform flow
The Bernoulli equation becomes $\frac{\mathrm{V}_{0}^{2}}{2}+\mathrm{g} \cdot 0=\frac{\mathrm{V}^{2}}{2}+\mathrm{g} \cdot \mathrm{h} \quad \mathrm{V}^{2}=\mathrm{V}_{0}{ }^{2}-2 \cdot \mathrm{~g} \cdot \mathrm{~h} \quad \mathrm{~V}=\sqrt{\mathrm{V}_{0}^{2}-2 \cdot \mathrm{~g} \cdot \mathrm{~h}}$
Hence

$$
-M \cdot g=w_{1} \cdot\left(-\rho \cdot w_{1} \cdot A_{1}\right)=-\rho \cdot V^{2} \cdot A
$$

But from continuity

$$
\rho \cdot \mathrm{V}_{0} \cdot \mathrm{~A}_{0}=\rho \cdot \mathrm{V} \cdot \mathrm{~A} \quad \text { so } \mathrm{V} \cdot \mathrm{~A}=\mathrm{V}_{0} \cdot \mathrm{~A}_{0}
$$

Hence we get

$$
\mathrm{M} \cdot \mathrm{~g}=\rho \cdot \mathrm{V} \cdot \mathrm{~V} \cdot \mathrm{~A}=\rho \cdot \mathrm{V}_{0} \cdot \mathrm{~A}_{0} \cdot \sqrt{\mathrm{~V}_{0}^{2}-2 \cdot \mathrm{~g} \cdot \mathrm{~h}}
$$

Solving for h

$$
\mathrm{h}=\frac{1}{2 \cdot \mathrm{~g}} \cdot\left[\mathrm{~V}_{0}^{2}-\left(\frac{\mathrm{M} \cdot \mathrm{~g}}{\rho \cdot \mathrm{~V}_{0} \cdot \mathrm{~A}_{0}}\right)^{2}\right]
$$

$$
\mathrm{h}=\frac{1}{2} \times \frac{\mathrm{s}^{2}}{9.81 \cdot \mathrm{~m}} \times\left[\left(10 \cdot \frac{\mathrm{~m}}{\mathrm{~s}}\right)^{2}-\left[2 \cdot \mathrm{~kg} \times \frac{9.81 \cdot \mathrm{~m}}{\mathrm{~s}^{2}} \times \frac{\mathrm{m}^{3}}{1000 \cdot \mathrm{~kg}} \times \frac{\mathrm{s}}{10 \cdot \mathrm{~m}} \times \frac{4}{\pi \cdot\left(\frac{25}{1000} \cdot \mathrm{~m}\right)^{2}}\right]^{2}\right]
$$

$\mathrm{h}=4.28 \mathrm{~m}$

Given: water jet supporting conical object, as shown.
Find: (a) Combined mass of cone and water, M, supported.
(b) Estimate mass of water in CV.

Solution: Apply continuity, Bernoulli, and momentum equations using cv shown.
Basic equations: $0=\frac{d}{d} \int_{C V}^{=0(1)} \rho d t+\int_{C s} \rho \vec{v} \cdot d \vec{A}$

$$
\begin{aligned}
& p_{1}^{(6)}+\frac{V_{1}^{2}}{2}+g z_{1}=\frac{\dot{t}_{2}^{\prime}(6)}{p}+\frac{V_{2}^{2}}{2}+g z_{2} \\
& F_{S_{3}}^{A}=D(6)
\end{aligned}
$$

Assumptions: (1) Steady flow

$\left.\begin{array}{l}\text { (2) No friction } \\ \text { (3) Flow a long a streamline } \\ \text { (4) Incompressible flow }\end{array}\right\}$
 required for Bernoulli
(4) Incompressible flow
(5) uniform flow at each crosi-section
(6) $F_{s z}=0$ since parm acts everywhere

Then

$$
\Delta=\left\{-\left|\rho V_{1} A_{1}\right|\right\}+\left\{+\left|\rho V_{2} A_{2}\right|\right\} \text { so } V_{1} A_{1}=V_{2} A_{2}
$$

From Bernoulli

$$
\frac{V_{1}^{2}}{2}+g z_{1}=\frac{V_{2}^{2}}{2}+g z_{2}=\frac{V_{0}^{2}}{2}=\frac{V_{2}^{2}}{2}+g H ; V_{2}^{2}=V_{0}^{2}-2 g H
$$

From momentum

$$
\begin{aligned}
F_{B z}=\int_{L S} w \rho \vec{V} \cdot d \vec{A}=-M g= & w_{1}\left\{-\left|\rho v_{1} A_{1}\right|\right\}+w_{2}\left\{+\left|\rho v_{2} A_{2}\right|\right\} \\
& w_{1}=v_{0} \quad w_{2}=V_{2} \cos \theta
\end{aligned}
$$

or

$$
-M g=-V_{0} \rho V_{1} A_{1}+V_{2} \cos \theta \rho V_{2} A_{2}=\rho V_{0} A_{1}\left(V_{2} \cos \theta-V_{0}\right)
$$

so

$$
M=\frac{\left(V_{0}-V_{2} \cos \theta\right) \rho V_{0} A_{1}}{g}
$$

From Bernoulli

$$
V_{2}=\left(V_{0}^{2}-2 g H\right)^{1 / 2}=\left[(10)^{2} \mathrm{~m}^{2}-2 \times 9.81 \frac{\mathrm{~s}}{\mathrm{~s}^{2}} \times 1 \mathrm{~m}\right]^{1 / 2}=8.97 \mathrm{~m} / \mathrm{s}
$$

substituting

$$
\begin{aligned}
& M=\left(10.0 \frac{\mathrm{~m}}{\mathrm{~s}}-8.97 \frac{\mathrm{~m}}{\mathrm{~s}} \times \cos 30^{\circ}\right)^{499} \frac{\mathrm{~kg}}{\mathrm{~m}^{3}} \times 10 \frac{\mathrm{~m}}{\mathrm{~s}} \times \frac{\pi}{4}(0.050)^{2} \mathrm{~m}^{2} \times \frac{\mathrm{s}^{2}}{9.81 \mathrm{~m}} \\
& M=4.46 \mathrm{~kg} \text { (total mass in } \mathrm{cV} \text { water }+ \text { object) }
\end{aligned}
$$

To find mass of water in cV , we have 3 options:
(1) assume area of jet is constant

$$
M=\rho \forall \simeq \rho A, H=999 \frac{\mathrm{~kg}}{\mathrm{~m}^{3}} \times \frac{\pi}{4}(0.05)^{2} m_{x}^{2} 1 \mathrm{~m}=1.96 \mathrm{~kg}
$$

(2) use a cv that encloses the free jet only

Continuity $V_{1} A_{1}=V_{2} A_{2}$
Bernoulli $V_{2}=\left(V_{1}^{2}-2 g H\right)^{1 / 2}$
Momentum $\left.-M_{\omega r g}=\omega_{1}\left\{-\left|\rho v_{1} A_{1}\right|\right\}+\omega_{2}\left\{+\mid \rho v_{2} A_{2} 1\right]\right\}$

$$
W_{1}=V_{1}=V_{0} \quad W_{2}=V_{2}
$$

Substituting in momenturn

$$
\begin{aligned}
-M_{\omega} g & =V_{0}\left(-\rho V_{0} A_{1}\right)+V_{2}\left(+\rho V_{0} A_{1}\right)=\rho V_{0} A_{1}\left(V_{2}-V_{0}\right) \\
M_{\omega} & =\frac{\rho V_{0} A_{1}\left(V_{0}-V_{e}\right)}{g} \\
& =999 \frac{\mathrm{~kg}}{\mathrm{~m}^{3}} \times 10 \frac{\mathrm{~m}}{\mathrm{~s}} \times \frac{\pi}{4}(0.05)^{2} \mathrm{~m}^{2}\left(10-8.47 \frac{\mathrm{~m}}{\mathrm{~s}} \times \frac{\mathrm{s}^{2}}{9.81 \mathrm{~m}}\right. \\
M_{\omega} & =2.06 \mathrm{~kg}
\end{aligned}
$$

(3) Evaluate the area at each crosi-section using Bernoulli and continuity, then integrate to find \forall.

$$
\begin{aligned}
& V A=V_{0} A_{1}=\left(V_{0}^{2}-2 g z\right)^{1 / 2} A=V_{0} A_{1} \text { so } A=\frac{V_{0} A_{1}}{\left(V_{0}^{2}-2 g z\right)^{1 / 2}} \\
& \forall=\int_{0}^{H} A d z=\int_{0}^{H} \frac{V_{0} A_{1}}{\left(V_{0}^{2}-2 g z\right)^{1 / 2}} d z=A_{1} \int_{0}^{H} \frac{V_{0}^{2}}{2 g} \frac{1}{\left(1-\frac{2 g z}{\left.V_{0}\right)^{1 / 2}} d\left(\frac{2 g z}{V_{0}^{2}}\right)\right.}
\end{aligned}
$$

This can be integrated. Let $r=1-2 g z / v_{0}^{2}$, so $\int=\int \frac{-d r}{N^{1 / 2}}$
Then $\forall=A, \frac{V_{0}^{2}}{2 g}\left[-2\left(1-\frac{2 g z}{V_{0}}\right)^{1 / 2}\right]_{3=0}^{3-h}=\frac{A_{1}}{g}\left[V_{0}^{2}-V_{0}\left(V_{0}^{2}-2 g h\right)^{1 / 2}\right]$
and

$$
M_{W}=\rho_{\psi}=\frac{\rho A_{1} Y_{0}\left(V_{0}-V_{2}\right)}{g}=2.06 \mathrm{~kg} \text { (same as (2) above) }
$$

Thus the mass of the cone is $M_{c}=M-M_{\omega}=2.40 \mathrm{~kg}$.
(Note: If V_{0} were smaller or H langer, V_{c} would differ more from V_{0} and the jet area would increase significantly.

Given: Stream of air at standard conditions strikes a curved vane. stagnation tube with water-filled manometer in exit plane.

Find: (a) speed of air leaving nozzle.
(b) Horizontal component of force exerted on vane by jet.
(c) comment on each assumption used to solve this probiern.

Solution: Apply the definition of stagnation pressure and the x component of the momentum equation.
By definition $p_{0}=p+\frac{1}{2} \rho_{\text {air }} v^{2}$
From fluid statics, $p_{0}-p=p_{\text {water }} g \Delta h$
Combining, f water $g \Delta h=\frac{1}{2} \rho_{\text {air }} v^{2}$ or $V=\sqrt{\frac{2 \rho \text { water } g \Delta h}{\rho_{\text {air }}}}$

$$
V=\left[2 \times 1.44 \frac{\operatorname{sing}}{\mathrm{ft}^{3}} \times 32.2 \frac{\mathrm{ft}}{\mathrm{~s}^{2}} \times 7 \mathrm{in} \times \frac{\mathrm{ft}}{} \times \frac{3}{0.0023851 .2 \mathrm{f}} \times \frac{\mathrm{ft}}{12 \mathrm{in}}\right]^{\frac{1}{2}}=175 \mathrm{ft} / \mathrm{s}
$$

The momentum equation is

$$
F_{s x}+F_{p_{x}}^{=\rho(z)}=\frac{\partial{ }^{4}}{d t} \int_{c u}^{\infty o(s)} u \rho d \forall+\int_{c s} u \rho \vec{v} \cdot d \vec{A}
$$

Assumptions: (1) No net pressure force
(2) $F_{B_{x}}=0$
(3) Steady flow
(4) Uniform flow

(5) Constant speed on vane

Then

$$
\begin{gathered}
R_{x}=u_{1}\{-\rho \vee A\}+u_{2}\{\rho \vee A\}=-\rho v^{2} A(1+\cos \theta) \\
u_{1}=v \quad u_{2}=-v \cos \theta \\
R_{x}=-0.00238 \frac{\operatorname{sicg}}{f+3} \times(175)^{2} \frac{f t^{2}}{s^{2}} \times \frac{\pi}{4}\left(\frac{z}{12}\right)^{2} f++\left(1+\cos 30^{\circ}\right)=-2.97 \mathrm{lbf}
\end{gathered}
$$

Force of air on vane is $k_{x}=-k_{x}=+2.97$ lb (to right)

Comments on each assumption used to solve this problem:

- Frictionless flow in the nozzle is a good assumption.
- Incompressible flow is a good assumption for this low-speed flow.
- No horizontal component of body force is exact.
- No net pressure force on the control volume is exact.
- Frictionless flow along the vane is not realistic; air flow along the vane would be slowed by friction, reducing the momentum flux at the exit.
*4.112 A Venturi meter installed along a water pipe consists of a convergent section, a constant-area throat, and a divergent section. The pipe diameter is $D=100 \mathrm{~mm}$ and the throat diameter is $d=$ 40 mm . Find the net fluid force acting on the convergent section if the water pressure in the pipe is 600 kPa (gage) and the average velocity is $5 \mathrm{~m} / \mathrm{s}$. For this analysis neglect viscous effects.

Given:
 Data on flow and venturi geometry

Find: Force on convergent section

Solution:

The given data is

$$
\rho=999 \cdot \frac{\mathrm{~kg}}{\mathrm{~m}^{3}} \quad \mathrm{D}=0.1 \cdot \mathrm{~m}
$$

$\mathrm{d}=0.04 \cdot \mathrm{~m}$
$p_{1}=600 \cdot \mathrm{kPa}$
$\mathrm{V}_{1}=5 \cdot \frac{\mathrm{~m}}{\mathrm{~s}}$

Then

$$
\begin{array}{lll}
\mathrm{A}_{1}=\frac{\pi \cdot \mathrm{D}^{2}}{4} & \mathrm{~A}_{1}=0.00785 \mathrm{~m}^{2} & \mathrm{~A}_{2}=\frac{\pi}{4} \cdot \mathrm{~d}^{2}
\end{array} \mathrm{~A}_{2}=0.00126 \mathrm{~m}^{2} \mathrm{C}
$$

Governing equations:
Bernoulli equation $\frac{p}{\rho}+\frac{\mathrm{V}^{2}}{2}+\mathrm{g} \cdot \mathrm{z}=$ const

Momentum

$$
F_{x}=F_{S_{x}}+F_{B_{x}}=\frac{\partial}{\partial t} \int_{\mathrm{CV}} u \rho d \forall+\int_{\mathrm{CS}} u \rho \vec{V} \cdot d \vec{A}
$$

Applying Bernoulli between inlet and throat $\quad \frac{\mathrm{p}_{1}}{\rho}+\frac{\mathrm{V}_{1}{ }^{2}}{2}=\frac{\mathrm{p}_{2}}{\rho}+\frac{\mathrm{V}_{2}{ }^{2}}{2}$
Solving for $\mathrm{p}_{2} \quad \mathrm{p}_{2}=\mathrm{p}_{1}+\frac{\rho}{2} \cdot\left(\mathrm{~V}_{1}{ }^{2}-\mathrm{V}_{2}{ }^{2}\right) \quad \mathrm{p}_{2}=600 \cdot \mathrm{kPa}+999 \cdot \frac{\mathrm{~kg}}{\mathrm{~m}^{3}} \times\left(5^{2}-31.3^{2}\right) \cdot \frac{\mathrm{m}^{2}}{\mathrm{~s}^{2}} \times \frac{\mathrm{N} \cdot \mathrm{s}^{2}}{\mathrm{~kg} \cdot \mathrm{~m}} \times \frac{\mathrm{kN}}{1000 \cdot \mathrm{~N}} \quad \mathrm{p}_{2}=125 \cdot \mathrm{kPa}$
Applying the horizontal component of momentum

$$
\begin{aligned}
& -F+p_{1} \cdot A_{2}-p_{2} \cdot A_{2}=V_{1} \cdot\left(-\rho \cdot V_{1} \cdot A_{1}\right)+V_{2} \cdot\left(\rho \cdot V_{2} \cdot A_{2}\right) \quad \text { or } \quad F=p_{1} \cdot A_{1}-p_{2} \cdot A_{2}+\rho \cdot\left(V_{1}^{2} \cdot A_{1}-V_{2}^{2} \cdot A_{2}\right) \\
& F=600 \cdot \frac{\mathrm{kN}}{\mathrm{~m}^{2}} \times 0.00785 \cdot \mathrm{~m}^{2}-125 \cdot \frac{\mathrm{kN}}{\mathrm{~m}^{2}} \times 0.00126 \cdot \mathrm{~m}^{2}+999 \cdot \frac{\mathrm{~kg}}{\mathrm{~m}^{3}} \times\left[\left(5 \cdot \frac{\mathrm{~m}}{\mathrm{~s}}\right)^{2} \cdot 0.00785 \cdot \mathrm{~m}^{2}-\left(31.3 \cdot \frac{\mathrm{~m}}{\mathrm{~s}}\right)^{2} \cdot 0.00126 \cdot \mathrm{~m}^{2}\right] \cdot \frac{\mathrm{N} \cdot \mathrm{~s}^{2}}{\mathrm{~kg} \times \mathrm{m}}
\end{aligned}
$$

$$
\mathrm{F}=3.52 \cdot \mathrm{kN}
$$

Given: Plane nozzle discharging water steadily, striking an inclined plate.

Neglect friction in no $33 / \mathrm{le}$ and along plate surface.
Find: (a) Minimum gage pressure at nozzle int.
(b) Magnitude and direction of force exerted by water stream on plate.
(c) sketch pressure distribution on plate. Explain why the pressure distribution
 is shaped as sou show it.
Solution: Apply continuity, Bernoulli, and momentum equations using the $C V$ and coordinates shown.
Basic equations: $\quad V_{1} A_{1}=V_{c} A_{2} \quad \frac{p_{1}}{\rho}+\frac{V_{1}^{2}}{2}+g g_{1}=\frac{p_{2}}{\rho}+\frac{V_{2}^{2}}{2}+g z_{2}$

$$
R_{y}+F_{B y}^{=o(6)}=\frac{d}{H} \int_{C v}^{o o(3)} v \rho d \forall+\int_{C s} v \rho \vec{v} \cdot d \vec{A}
$$

Assumptions: (1) Frictionless flow
(2) Incompressible flow
(3) Steady flow
(4) Flow along a streamline
(s) Uniform flow at each section

Then from continuity $V_{1}=\frac{A_{2}}{A_{1}} V_{2}=\frac{W}{W} V_{2}=\frac{12.7 \mathrm{~mm}}{51.8 \mathrm{~mm}} \times 12.2 \frac{\mathrm{~m}}{\mathrm{~s}}=2.99 \mathrm{~m} / \mathrm{s}$
From Bernoulli $p_{i g}=\frac{p}{2}\left(v_{2}^{2}-v_{1}^{2}\right)-\rho g\left(z_{1}-z_{2}\right)+p_{i g}=0 ; z_{1}-z_{2}=h$

$$
p_{1 g}=\left[\frac{1}{2} \times 999 \frac{\mathrm{~kg}}{\mathrm{~m}^{2}} \times\left[(12.2)^{2}-(2.99)^{2}\right] \frac{\mathrm{m}^{2}}{\mathrm{~s}^{2}}-999 \frac{\mathrm{~kg}}{\mathrm{~m}^{3}} x^{9.81} \frac{\mathrm{~m}}{\mathrm{~s}} \times 0.15 \mathrm{~m}\right] \frac{\mathrm{N} \cdot \mathrm{~s}}{\mathrm{~kg} \cdot \mathrm{~m}}=68.4 \mathrm{kPa}(\mathrm{gage}) \mathrm{p}_{\mathrm{k}}
$$

Calculate V_{3} in the abrense of the plate using Bernoulli $\left(p_{1}=p_{3}\right)$

$$
V_{3}=\sqrt{V_{2}^{2}+2 g H}=\left[(12.2)^{2} \frac{\mathrm{~m}^{2}}{\mathrm{~s}^{2}}+2 \times 9.81 \frac{\mathrm{~m}}{\mathrm{~s}^{2}} \times 4.85 \mathrm{~m}\right]^{\frac{1}{2}}=15.6 \mathrm{~m} / \mathrm{s}
$$

From move notum: $R_{x}=0$ since there is no friction on the plate surface.
Assumptions: (6) Neglect mass of plate and of water on plate.
(7) Atmospheric pressure acts on entire $C v_{i} F_{s y}=R_{y}$

Then

$$
\begin{aligned}
& R_{y}=v_{3}\left\{-\dot{m}_{3}\right\}+y_{4}\left\{+\dot{m}_{4}\right\}+4_{5}^{0}\left\{+\dot{m}_{5}\right\}=V_{3} \cos \theta f Q_{1} \operatorname{since} v_{3}=-V_{3} \cos \mathrm{c} \\
& R_{y}=15.6 \frac{\mathrm{~m}}{\mathrm{~s}} \times \cos 30^{\circ} \times 949 \frac{\mathrm{~kg}}{\mathrm{~m}^{3}} \times 0.0155 \frac{\mathrm{~m}^{3}}{\mathrm{~s}} \times \frac{\mathrm{N} \cdot \mathrm{~s}^{2}}{\mathrm{~kg} \cdot \mathrm{~m}}=209 \mathrm{~N} ; K_{y}=-R_{y}=-209 \mathrm{~N} \quad K_{y}
\end{aligned}
$$

Pressure is maximum at stagnation, minimum (patron) at (4) and (5).
Pressure at (a) is higher than at (b) because of streamline curvature.

Given: Egyptian water Clock. Surface level drops at rate, $A=$ constant.

Find: (a) Expression for $n(h)$.
(b) Volume needed for n hours' operation.

Solution: Apply conservation of mass and the Bernoulli equation.

Basic equations: $0=\frac{\partial}{\partial t} \int_{C V} \rho d t+\int_{C S} \rho \vec{V} \cdot d \vec{A}$

$$
\frac{p}{\rho}+\frac{v^{2}}{z}+g z=\text { const ant }
$$

Assumptions: (1) Quasi-steady flow; $\frac{\partial}{\partial t}$ s mall
(2) Incompressible flow
(3) Uniform flow at each cross section
(4) Flow along a streamline
(5) No friction
(b) Pair << PHo

Writing Bernoulli from the liquid surface to the jet exit,

$$
p \frac{p a t m}{p}+\frac{p^{2}}{2}+g n=\frac{p a t m}{p}+\frac{v^{2}}{2}+g(0) ;
$$

For $a \ll v$, then $V=\sqrt{2 g h}$.
For the CV, or

$$
0=\rho \frac{d \psi}{d t}+\rho V A=\rho \pi \Lambda^{2} \frac{d h}{d t}+\rho \sqrt{2 g h} A=0
$$

But h decreases, so $\frac{d h}{d t}=-2$. Thus

$$
\pi n^{2} A=\sqrt{2 g h} A \text { or } \Lambda=\sqrt[4]{2 g} \sqrt{\frac{A}{\pi \Delta}} h^{1 / 4}
$$

For n hours 'operation, $H=n a$, and

$$
\forall=\int_{0}^{H} \pi \Lambda^{2} d h=\int_{0}^{n a} \sqrt{2 g h} \frac{A}{A} d h=\frac{2 A}{3 A} \sqrt{2 g}(n A)^{a / 2}
$$

or

$$
\forall=\frac{2 A \sqrt{2 g} n^{3 / 2}, a^{1 / 2}}{3}
$$

\qquad
Check dimensions:

$$
[\forall]=L^{3}=\left[A \sqrt{9} n^{2 / 2} A^{1 / 2}\right]=L^{2} L^{1 / 2} t^{2 / 2} L^{1 / 2}=L^{3}
$$

Problem *4.115
Given: Low-speed jet of incompressible I quid moving upward from nozzle.

Find: Expressions for $V(z), A(z)$.
Location where $V=0$.
Solution: Apply cont inuity and momentum equation using CV shown.

Basic equations:

$$
\begin{aligned}
& 0=\frac{d}{\partial t} \int_{C v} \rho d t+\int_{c s} \rho \vec{v} \cdot d \vec{A} \\
&=o(4,5) \\
& F_{\beta_{3}}+F_{B z}=\frac{\partial v}{A} \int_{c_{v}}^{=D(1)} \omega \rho d \psi+\int_{c s} \omega \rho \vec{V} \cdot d \vec{A}
\end{aligned}
$$

Assumptions: (1) Steady flow
(2) Incompressible flow
(s) Uniform flow at cachisection
(4) Maim acts everywhere $\} F_{3}=0$
(5) No friction

Then

$$
0=\int_{c s} \vec{V} \cdot d \vec{A}=\{-V A\}+\{+(V+d V)(A+d A)\} ; V_{A}=V_{0} A_{0}=\text { constant }
$$

From momentum,

$$
-\rho g\left(A+\frac{d A}{z}\right) d z=V\{-\rho V A\}+(V+d V)\{+\rho(V+d V)(A+d A)\}=\rho V A d V
$$

since $d V d A<d A$. Also, since $d A d z \ll d z$, the left side is - f g $A d z$.
Thus

$$
-\rho g A d z=\rho V A d V \quad \text { or } \quad V d V=-g d z
$$

Integrating from V_{0} at $z_{0}=0$ to V at z,

$$
\left.\int_{V_{0}}^{v} v d v=\frac{v^{2}}{2}\right]_{v_{0}}^{v}=\frac{v^{2}}{2}-\frac{v_{0}^{2}}{2}=\int_{z_{0}}^{z}-g d z=-g\left(z-z_{0}\right)=-g z
$$

Thus $V^{2}=V_{0}^{2}-2 g z$ or $V(z)=\sqrt{V_{0}^{2}-2 g z}$ since $V A=V_{0} A_{0}$, then $A=A_{0} \frac{V_{0}}{V}$

$$
A(z)=A_{0} \frac{V_{0}}{\sqrt{V_{0}^{2}-2 g z}}=\frac{A_{0}}{\sqrt{1-2 g z / V_{0}^{2}}}
$$

Solving for z at $v=0$,

$$
z=\frac{V_{0}^{2}}{\partial g}
$$

Given: Low-speed jet of incompressible liquid moving downward from nozzle.

Find: Expressions for $V(z), A(z)$. Location where $A=A_{0} / 2$.

Solution: Apply continuity and momentum equations using CV shown.

Basic equations:

$$
\begin{aligned}
& 0=\frac{\vec{v}^{2}}{\partial t} \int_{c v} \rho d \forall+\int_{c s} \rho \vec{V} \cdot d \vec{A} \\
& \begin{array}{l}
=o(4, s) \quad=o(1) \\
F F_{3}+F_{8 z}=\frac{F^{*}}{d t} \int_{c v} w_{p} d \forall+\int_{c s} \omega p \vec{v} \cdot d \vec{A}
\end{array}
\end{aligned}
$$

Assumptions: (1) Steady flow.
(2) Incompressible flow
(3) Uniform flow at each section
(4) Patm acts everywhere $\} F_{y_{3}}=0$
(5) No friction

Then

$$
0=\int_{C s} \vec{V} \cdot d \vec{A}=\{-V A\}+\{+(V+d V)(A+d A)\} ; V A=V_{0} A_{0}=\text { constant }
$$

from momentum,

$$
\rho g\left(A+\frac{d A}{2}\right) d z=V\{-\rho V A\}+(V+d V)\{-\rho(V+d V)(A+d A)\}=\rho V A d V
$$

since $d V d A \ll d A$. Also, since $d A d z \ll d z$, the left side is eg $A d z$.
Thus

$$
\rho g A d z=\rho V A d V \text { or } \quad V d V=g d z
$$

Integrating from V_{0} at $z_{0}=0$ to V at 3 ,

$$
\left.\int_{V_{0}}^{V} V d V=\frac{V^{2}}{2}\right]_{V_{0}}^{V}=\frac{V^{2}}{2}-\frac{V_{0}^{2}}{2}=\int_{z_{0}}^{z} g d z=g\left(z-z_{0}\right)=g z
$$

Thus

$$
V^{2}=V_{0}^{2}+2 g z \text { or } V(z)=\sqrt{V_{0}^{2}+2 g z}
$$

since $V A=V_{0} A_{0}, A=A_{0} \frac{V_{0}}{V}$

$$
A(z)=A_{0} \frac{V_{0}}{\sqrt{V_{0}^{2}+2 g z}}=\frac{A_{0}}{\sqrt{1+2 g z / V_{0}^{2}}}
$$

Solving for z,

$$
z=\frac{V_{0}^{2}}{2 g}\left[\left(\frac{A_{0}}{A}\right)^{2}-1\right] \text {; for } \frac{A}{A_{0}}=\frac{1}{2}, \frac{A_{0}}{A}=2 \text {, and } z_{1 / 2}=\frac{3 V_{0}^{2}}{2 g}
$$

Given: Uniform flow in narrow gap between parallel plates, as shown.

Fluid in gap has only horizontal motion. Find: Expression for $N(x)$.

Assumptions: (1) Steady flow
(2) Incompressible flow
(3) Uniform flow at each section
(4) Neglect friction
(5) $F_{B_{x}}=0$

Then

$$
\begin{aligned}
& O=\int_{\omega} \vec{V} \cdot \alpha \vec{A}=\{-V \omega h\}+\left\{-\frac{Q}{\omega L} \omega d x\right\}+\{(v+d v) \omega h\} ; w h d v=\frac{Q}{L} d x \\
& V=\frac{Q}{w h} \frac{x}{L}+C ; C=0 \operatorname{since} v(0)=0 ; V(x)=\frac{Q}{w h} \frac{x}{L}
\end{aligned}
$$

From momenterm,

$$
\begin{array}{r}
p w h-(p+d p) w h=u_{x}\{-\rho v w h\}+u_{d x}\left\{-\rho \frac{Q}{\omega h} w d x\right\}+u_{x}+d x\{+\rho(v+d v) 4 \sigma h\} \\
u_{x}=v \quad u_{d x}=0 \quad u_{x}+d x=v+d v
\end{array}
$$

From continuity, $(v+d v)$ wi $=V$ oh $+Q \frac{d x}{L}$, so

$$
\begin{aligned}
-d p w h & =-\rho V^{2} w h+0+(V+d V)\left(V \omega h+Q \frac{d x}{L}\right)_{f} \\
& =-\rho v^{2} \omega h+\rho V^{2} \omega h+\rho V \omega h d V+V \rho Q \frac{d x}{L}+\rho Q d V \frac{d x}{L}
\end{aligned}
$$

Neglecting products of differentials ($d v d x \ll d x$), and with $d V=\frac{Q}{w h} \frac{d x}{L}$

$$
\begin{aligned}
& -d p=\rho V d V+\frac{V \rho Q}{W h} \frac{d x}{L}=\rho V \frac{Q}{\text { wh }} \frac{d x}{L}+\frac{V \rho Q}{w h} \frac{d x}{L}=2 \rho \frac{Q}{\text { who }} \frac{x}{L} \frac{Q}{\text { Who }} \frac{d x}{L} \\
& -d p=2 \rho\left(\frac{Q}{\text { whL }}\right)^{2} x d x \quad \quad \rho(x)=-\rho\left(\frac{Q}{\text { NhL }}\right)^{2} x^{2}+C
\end{aligned}
$$

If $p(0)=p_{0}$, then $\left.\left.\left.p(x)=p_{0}-f\left(\frac{1}{20}\right)^{2}\right)^{(2)}\right)^{2}\right)^{2}$

Given: Uniform flow in narrow gap between parallel disks, as shown.
Liquid in gap in as only radial motion.

Find: Expression for $p(r)$; plot
Solution: Apply continceity and
momentum equations to the differential CV shown.

Basic equations:

$$
F_{s r}+F_{\beta r}=\frac{\partial(s)}{\partial t} \int_{c u} V_{r p} \rho(1)+\int_{c s} V_{r} p \vec{V} \cdot d \vec{A}
$$

$$
=D(s) \quad=O(1)
$$

$$
\frac{d}{d t} \int_{c v}^{=o(1)} p d \forall+\int_{c s} \rho \vec{v} \cdot d \vec{A}
$$

Assumptions: (1) Steady flow
(2) Incompressible flow
(3) Uniform flow at each section
(4) Neglect friction
(6) For $=0$
(7) $\sin \frac{d t}{2}=\frac{d \theta}{2}$

Then

$$
O=\int_{c s} \vec{V} \cdot d \vec{A}=\{-p V h r d \theta\}+\{p(v+\alpha V) h(r+d r) d v\} ; V_{r}=\text { constant }
$$

From momentum.

$$
\text { For } r=R, Q=V_{R} 2 \pi r h \text {, so } V_{R}=Q / 2 \pi R h
$$

$$
\begin{aligned}
& \text { phr } \theta+z\left(p+\frac{d p}{2}\right) h d r \sin \frac{d \theta}{2}-(p+d p) h(r+d r) d \theta \\
&=v\{-\rho v h r d \theta\}+(v+d v)\{\rho(v+d v) h(r+d r) d \theta\} \\
& \text { phrdo}+p p / r d \theta+\frac{1}{2} d p h d r d \theta-(p r+p \not \theta r+r \phi p+d r d p) h d \theta \\
&=d v(\rho v h r d \theta) \quad\{\text { Note terms in braces are equal. }\}
\end{aligned}
$$

Assuming. products of differentials are much smaller than single differentials,

$$
-r d p h d \theta=d V(p \vee n d \theta) \text { or } d p=-\rho V d V
$$

Integrating, $p(r)-p(R)=-\rho \frac{V^{2}}{2}+\frac{\rho V_{R}^{2}}{2}$ or $p(r)-p_{a t m}=\rho_{2}\left(V_{R}^{2}-v^{2}\right)$
since $V_{R}=\frac{Q}{2 \pi R_{h}}$, and $V_{r}=$ constant, $\frac{V}{V_{R}}=\frac{R}{r}$, so $\quad=\frac{\rho V_{R}^{2}}{2}\left[1-\left(\frac{V}{V_{R}}\right)^{2}\right]$

$$
p(r)-p a t m=\frac{Q}{2}\left(\frac{Q}{2 \pi R h}\right)^{2}\left[1-\left(\frac{R}{r}\right)^{2}\right]
$$

Note sirice $r<R$, that $p(r)<$ pate between the disks.

The pressure distribution is computed and plotted in Excel:

r / R	\boldsymbol{P}
0.15	-43.4
0.20	-24.0
0.25	-15.0
0.30	-10.1
0.35	-7.16
0.40	-5.25
0.45	-3.94
0.50	-3.00
0.55	-2.31
0.60	-1.78
0.65	-1.37
0.70	-1.04
0.75	-0.78
0.80	-0.563
0.85	-0.384
0.90	-0.235
0.95	-0.108
1.00	0.000

Pressure Distribution Between Parallel Disks

Given: Narrow gap between parallel disks filled with liquid.
At $t=0^{+}$, upper disk begins to move downward at V_{0}.
Neglect viscous effects; flow uniform in horizontal direction.
Find: Expression for velocity field, $V(r)$. Note flow is not steady.
Solution: Apply continuity, using the deformable CV shown.
Basic equation:

$$
0=\frac{\partial}{\partial t} \int_{c_{V}} \rho d \forall+\int_{c s} \rho \vec{V} \cdot d \vec{A}
$$

Assumptions: (1) Incompressible flow

(2) Uniform flow at each cross section

Then

$$
0=\frac{\partial}{\partial t} \int_{C V} d \forall+\int_{C S} \vec{V} \cdot d \vec{A}=\frac{\partial}{\partial t} \int_{c v} d t+V 2 \pi r h
$$

But

$$
\int_{c v} d t=\pi r^{2} h \text {, so } \frac{\partial}{\partial t} \int_{c v} d v=\frac{\partial}{\partial t}\left(\pi r^{2} h\right)=\pi r^{2} \frac{d h}{d t}
$$

Thus

$$
0=\pi r^{2} \frac{d h}{d t}+V z \pi r h=\pi r^{2}\left(-V_{0}\right)+V z \pi r h
$$

so

$$
V(r)=V_{0} \frac{r}{2 h}
$$

If V_{0} is constant, so $h=h_{0}-V_{0} t$, and

$$
V(r, t)=\frac{V_{0} r}{2\left(h_{0}-V_{0} t\right)} \quad \text { for } t<\frac{h_{0}}{V_{0}}
$$

Given: Liquid falling vertically into short, horizontal, rectangular open channel. Neglect viscous effects.

Find: (a) Expression for h_{1} in terms of h_{z}, a, and b.
(b) Sketch surface profile, $h(x)$.

Solution: Apply continuity and momentum equations to (i) finite CV, and (ii) differential $C V$, as shown.
Basic equations:

$$
\begin{aligned}
& \text { quations: } \quad 0=\frac{d}{\partial t} \int_{c u}^{=o(1)} p d t+\int_{c s} \rho \vec{v} \cdot d \vec{A} \\
& =o(b) \\
& F_{s x}+F \hat{k}_{x}=\frac{\partial t}{t} \int_{c v} u \rho d t+\int_{c s} u \rho \vec{v} \cdot d \vec{A}
\end{aligned}
$$

Assumptions: (1) Steady flow
(2) Incompressible flow
(8) Uniform flow at each section
(4) Hydrostatic pressure distribution; $F_{p}(h)=\rho q G \frac{h^{2}}{2}$
(5) No friction on bed
(6) Horizontal bed; $F_{B_{x}}=0$

Then for finite $C V$ shown,

$$
0=\int_{c s} \vec{V} \cdot d \vec{A}=-Q+V_{2} b h_{2} ; V_{2}=\frac{Q}{b h_{2}}
$$

From momentum

$$
\begin{gathered}
\rho g b \frac{h_{1}^{2}}{2}-\rho g b \frac{h_{2}^{2}}{2}=u_{1}\{0\}+u_{2}\{+\rho Q\}+u_{3}\{-\rho Q\} \\
u_{2}=V_{2} \quad u_{3}=0 \\
\frac{\rho g b}{2}\left(h_{1}^{2}-h_{2}^{2}\right)=V_{2} \rho Q=\frac{Q}{b h_{2}} \rho Q=\frac{\rho Q^{2}}{b h_{2}} ; h_{1}=\sqrt{h_{2}^{2}+\frac{2 Q^{2}}{g b^{2} h_{2}}}
\end{gathered}
$$

Fordifferential CV shown,

$$
\begin{aligned}
& \Delta=\int_{C S} \vec{V} \cdot d \vec{A}=\{-V b h\}+\left\{-\frac{Q}{b L} b d x\right\}+\{+(V+d V) b(h+d h)\} \\
& 0=-\frac{Q}{L} d x+b(h d V+V d h)=-\frac{Q}{L} d x+b d(h V) ; \frac{d(h V)}{d x}=\frac{Q}{L}
\end{aligned}
$$

From momentum,

$$
\rho g b \frac{h^{2}}{2}-\rho g b \frac{(h+d h)^{2}}{2}=v\{-\rho v b h\}+o\left\{-\rho \frac{Q}{L} d x\right\}+(v+d v)\{+\rho(v+d v) b(h+d h)\}
$$

Using continuity,

$$
\frac{\rho g}{2} 6(-2 h d h+d h d h)=-\rho v^{2} b h+(v+d v)\left\{\rho V b h+\rho \frac{p Q}{L} d x\right\}
$$

$-\rho g b h d h=-\rho \psi^{2} b h+\rho \psi^{2} b h+\rho v b h d v+\frac{\rho Q}{L} \quad v d x+\frac{\rho Q}{L} d v \int_{0}^{\ll d x}$
or

$$
-g h d h=v h d v+\frac{Q}{b L} v d x
$$

From continuity, $V h d v=-v^{2} d^{\prime} h+\frac{Q}{b L} v d x$, so

$$
-g h d h=-v^{2} d h+\frac{2 Q}{6 L} v d x
$$

Solving,

$$
\begin{aligned}
& \frac{d h}{d x}\left(v^{2}-g h\right)=\frac{2 Q}{b L} v \\
& \frac{d h}{d x}=\frac{2 Q v}{b L\left(v^{2}-g h\right)}=\frac{2 Q v}{b L g h\left(v^{2} / g h-1\right)}
\end{aligned}
$$

From finite $C v$ analysis, $h_{1}>h_{2}$, so $\frac{d h}{d x}<0$. Thus $V^{2} / g h<1$. As x increases, $v \mu$ and $h \downarrow$. Therefore

$$
\frac{v^{2}}{g h} \uparrow, \frac{v}{h} \uparrow \text {, and }\left|\frac{d h}{d x}\right| \uparrow \text {. }
$$

sketch:

Open-Ended Problem Statement: Design a clepsydra (Egyptian water clock) - a vessel from which water drains by gravity through a hole in the bottom and time is indicated by the level of the remaining water. Specify the dimensions of the vessel and the size of the drain hole; indicate the amount of water needed to fill the vessel, and at what interval it must be filled. Plot the vessel shape. (This is an open-ended problem when choosing dimensions for a specific application.)

Discussion: The original Egyptian water clock was an open water-filled vessel with an orifice in the bottom. The vessel shape was designed so that the water level dropped at a constant rate during use.
Water leaves the orifice at higher speed when the water level within the vessel is high, and at lower speed when the water level within the vessel is low. The size of the orifice is constant. Thus the instantaneous volume flow rate depends on the water level in the vessel.
The rate at which the water level falls in the vessel depends on the volume flow rate and the area of the water surface. The surface area at each water level must be chosen so that the water level within the vessel decreases at a constant rate. The continuity and Bernoulli equations can be applied to determine the required vessel shape so that the water surface level drops at a constant rate.
Use the CV and notation shown (Problem 4.97):
Solution: Basic equations are

$$
\begin{aligned}
& 0=\frac{2}{\partial t} \int_{c v} \rho d t+\int_{C s} \rho \vec{V} \cdot d t \\
& \frac{p}{\rho}+\frac{v^{2}}{z}+g z=\text { constant }
\end{aligned}
$$

Assumptions: (1) Quasi-sthady flow
(2) Incompressible flow
(3) Uniform flow at each cross-section
(4) Flow along a streaming
(5) No friction
(6) $P_{\text {air }} \ll \rho_{H_{2} O}$

Writing Bernoulie from the liquid skeface to the jet exit,

$$
\frac{p d+m}{A}+\frac{a^{2}}{2}+g n=\frac{p g+m}{p}+\frac{v^{2}}{2}+g(0)
$$

For $\alpha \ll V$, then $V=\sqrt{2 g h}$
For the $C V$,

$$
O=\frac{\partial}{\partial t} \int_{V \text { air }} \text { fair } d \forall+\frac{\partial}{\partial t} \int_{\forall \mu_{H_{4} O}(b)} \rho_{H_{2} O} d \forall+\left\{-\left|\rho_{4}\right|{ }_{i r}^{\ll \rho_{H_{20}}(6)} A_{1} \mid\right\}+\left\{\left|\rho_{H_{2} O} V A\right|\right\}
$$

or $\quad 0=\rho \frac{d \forall}{d t}+\rho \vee A=\rho \pi r^{2} \frac{d h}{d t}+\rho \sqrt{2 g h} A$
But h decreases, so $\frac{d h}{d t}=-a$. Thus

$$
\pi \Lambda^{2} A=\sqrt{2 g h} A \quad \text { or } \quad \Omega=\sqrt[4]{2 g} \sqrt{\frac{A}{\pi A}} h^{1 / 4}
$$

For n hours operation, $H=n A$, and

$$
\forall=\int_{0}^{H} \pi n^{2} d h=\int_{0}^{n a} \sqrt{2 g h} \frac{A}{2} d h=\frac{2 A}{3 A} \sqrt{2 g}(n \alpha)^{3 / 2}
$$

or

$$
\forall=\frac{2 A \sqrt{2 g} n^{3 / 2} a^{1 / 2}}{3}
$$

Evaluating and plotting:

Input Parameters:
Maximum water height:
Number of hours' duration:

$$
\begin{array}{rll}
H= & 0.5 & \mathrm{~m} \\
n= & 24 & \mathrm{hr}
\end{array}
$$

Dimensionless Shape Actual Shape

4.122 A jet of water is directed against a vane, which could be a blade in a turbine or in any other piece of hydraulic machinery. The water leaves the stationary $40-\mathrm{mm}$ diameter nozzle with a speed of $25 \mathrm{~m} / \mathrm{s}$ and enters the vane tangent to the surface at A. The inside surface of the vane at B makes angle $\theta=150^{\circ}$ with the x direction. Compute the force that must be applied to maintain the vane speed constant at $U=5 \mathrm{~m} / \mathrm{s}$.

Given: Water jet striking moving vane

Find: \quad Force needed to hold vane to speed $U=5 \mathrm{~m} / \mathrm{s}$

Solution:

Basic equations: Momentum flux in x and y directions $F_{x}=F_{S_{x}}+F_{B_{x}}=\frac{\partial}{\partial t} \int_{\mathrm{CV}} u \rho d \forall+\int_{\mathrm{CS}} u \rho \vec{V} \cdot d \vec{A}$

$$
F_{y}=F_{S_{y}}+F_{B_{y}}=\frac{\partial}{\partial t} \int_{\mathrm{CV}} v \rho d \forall+\int_{\mathrm{CS}} v \rho \vec{V} \cdot d \vec{A}
$$

Assumptions: 1) Steady flow 2) Incompressible flow 3) Atmospheric pressure in jet 4) Uniform flow 5) Jet relative velocity is constant

Then

$$
\begin{array}{ll}
R_{X}=u_{1} \cdot\left(-\rho \cdot V_{1} \cdot A_{1}\right)+u_{2} \cdot\left(\rho \cdot V_{2} \cdot A_{2}\right)=-(V-U) \cdot[\rho \cdot(V-U) \cdot A]+(V-U) \cdot \cos (\theta) \cdot[\rho \cdot(V-U) \cdot A] \\
R_{X}=\rho(V-U)^{2} \cdot A \cdot(\cos (\theta)-1) & A=\frac{\pi}{4} \cdot\left(\frac{40}{1000} \cdot m\right)^{2}
\end{array}
$$

Using given data

Then

$$
\begin{aligned}
& R_{x}=1000 \cdot \frac{\mathrm{~kg}}{\mathrm{~m}^{3}} \times\left[(25-5) \cdot \frac{\mathrm{m}}{\mathrm{~s}}\right]^{2} \times 1.26 \times 10^{-3} \cdot \mathrm{~m}^{2} \times(\cos (150 \cdot \mathrm{deg})-1) \times \frac{\mathrm{N} \cdot \mathrm{~s}^{2}}{\mathrm{~kg} \cdot \mathrm{~m}} \\
& R_{X}=-940 N \\
& R_{y}=v_{1} \cdot\left(-\rho \cdot V_{1} \cdot A_{1}\right)+v_{2} \cdot\left(\rho \cdot V_{2} \cdot A_{2}\right)=-0+(V-U) \cdot \sin (\theta) \cdot[\rho \cdot(V-U) \cdot A] \\
& R_{y}=\rho(V-U)^{2} \cdot A \cdot \sin (\theta) \quad R_{y}=1000 \cdot \frac{\mathrm{~kg}}{\mathrm{~m}^{3}} \times\left[(25-5) \cdot \frac{\mathrm{m}}{\mathrm{~s}}\right]^{2} \times 1.26 \times 10^{-3} \cdot \mathrm{~m}^{2} \times \sin (150 \cdot \mathrm{deg}) \times \frac{\mathrm{N} \cdot \mathrm{~s}^{2}}{\mathrm{~kg} \cdot \mathrm{~m}} \quad \mathrm{R}_{\mathrm{y}}=252 \mathrm{~N}
\end{aligned}
$$

Hence the force required is 940 N to the left and 252 N upwards to maintain motion at $5 \mathrm{~m} / \mathrm{s}$
4.123 Water from a stationary nozzle impinges on a moving vane with turning angle $\theta=120^{\circ}$. The vane moves away from the nozzle with constant speed, $U=10 \mathrm{~m} / \mathrm{s}$, and receives a jet that leaves the nozzle with speed $V=30 \mathrm{~m} / \mathrm{s}$. The nozzle has an exit area of $0.004 \mathrm{~m}^{2}$. Find the force that must be applied to maintain the vane speed constant.

Given: Water jet striking moving vane

Find: \quad Force needed to hold vane to speed $U=10 \mathrm{~m} / \mathrm{s}$

Solution:

Basic equations: Momentum flux in x and y directions $F_{x}=F_{S_{x}}+F_{B_{x}}=\frac{\partial}{\partial t} \int_{\mathrm{CV}} u \rho d \forall+\int_{\mathrm{CS}} u \rho \vec{V} \cdot d \vec{A}$

$$
F_{y}=F_{S_{y}}+F_{B_{y}}=\frac{\partial}{\partial t} \int_{\mathrm{CV}} v \rho d \forall+\int_{\mathrm{CS}} v \rho \vec{V} \cdot d \vec{A}
$$

Assumptions: 1) Steady flow 2) Incompressible flow 3) Atmospheric pressure in jet 4) Uniform flow 5) Jet relative velocity is constant
Then

$$
\begin{aligned}
& R_{X}=u_{1} \cdot\left(-\rho \cdot V_{1} \cdot A_{1}\right)+u_{2} \cdot\left(\rho \cdot V_{2} \cdot A_{2}\right)=-(V-U) \cdot[\rho \cdot(V-U) \cdot A]+(V-U) \cdot \cos (\theta) \cdot[\rho \cdot(V-U) \cdot A] \\
& R_{X}=\rho(V-U)^{2} \cdot A \cdot(\cos (\theta)-1)
\end{aligned}
$$

Using given data

$$
\mathrm{R}_{\mathrm{X}}=1000 \cdot \frac{\mathrm{~kg}}{\mathrm{~m}^{3}} \times\left[(30-10) \cdot \frac{\mathrm{m}}{\mathrm{~s}}\right]^{2} \times 0.004 \cdot \mathrm{~m}^{2} \times(\cos (120 \cdot \mathrm{deg})-1) \times \frac{\mathrm{N} \cdot \mathrm{~s}^{2}}{\mathrm{~kg} \cdot \mathrm{~m}}
$$

$$
R_{X}=-2400 N
$$

Then

$$
\begin{aligned}
& R_{y}=v_{1} \cdot\left(-\rho \cdot V_{1} \cdot A_{1}\right)+v_{2} \cdot\left(\rho \cdot V_{2} \cdot A_{2}\right)=-0+(V-U) \cdot \sin (\theta) \cdot[\rho \cdot(V-U) \cdot A] \\
& R_{y}=\rho(V-U)^{2} \cdot A \cdot \sin (\theta) \quad R_{y}=1000 \cdot \frac{\mathrm{~kg}}{\mathrm{~m}^{3}} \times\left[(30-10) \cdot \frac{\mathrm{m}}{\mathrm{~s}}\right]^{2} \times 0.004 \cdot \mathrm{~m}^{2} \times \sin (120 \cdot \operatorname{deg}) \times \frac{\mathrm{N} \cdot \mathrm{~s}^{2}}{\mathrm{~kg} \cdot \mathrm{~m}} \quad \quad R_{y}=1386 \mathrm{~N}
\end{aligned}
$$

Hence the force required is 2400 N to the left and 1390 N upwards to maintain motion at $10 \mathrm{~m} / \mathrm{s}$

Given: Circular dish and jet moving as shown.

Find: Force required to maintain dish motion.

Solution: Apply continuity and x

momentum equation to $C V$
moving with dish as shown.
Basic equations:

$$
\begin{aligned}
&=o(1) \\
& 0=\frac{\partial f}{\partial t} \int_{c v} \rho d t+\int_{\operatorname{cs}} \rho \overrightarrow{V x y z} \cdot \overrightarrow{d A} \\
&=o(3)=o(1) \\
& F_{s x}+F_{\phi x}=\frac{d}{\partial t} \int_{c v} u_{x y z} \rho d \forall+\int_{c s} u_{x y z} \rho \vec{V} \cdot d \vec{A}
\end{aligned}
$$

Assumptions: (1) steady flow w.r.t. CV
(2) No pressure forces on CV
(3) Horizontal; $F_{B_{x}}=0$
(4) Uniform flow at each section
(5) No change in speed of jet relative to vane
(6) Incompressible flow

Then

$$
\begin{aligned}
& 0=\int_{c S} \vec{V}_{x 93} \cdot d \vec{A}=(V-U)\left(-\frac{\pi D^{2}}{4}+\frac{\pi d^{2}}{4}+A_{3,4}\right) \\
& A_{3,4}=\frac{\pi}{4}\left(0^{2}-d^{2}\right)=\frac{\pi}{4}\left[(0.020)^{2}-(0.010)^{2}\right] m^{2}=2.36 \times 10^{-4} \mathrm{~m}^{2}
\end{aligned}
$$

From the momentum equation

$$
\begin{aligned}
& R_{x}=u_{1}\left\{-p(V-U) \frac{\pi \theta^{2}}{4}\right\}+u_{2}\left\{+\rho(V-v) \frac{\pi d^{2}}{4}\right\}+u_{3}\left\{+\rho(v-v) A_{3,4}\right\} \\
& u_{1}=V-U \\
& u_{2}=V-U \\
& u_{3}=-(V-V) \cos 40^{\circ} \\
& R_{x}=-\rho(V-U)^{2} \frac{\pi D^{2}}{4}+\rho(V-V)^{2} \frac{\pi d^{2}}{4}-\rho(V-U)^{2} \frac{\pi}{4}\left(D^{2}-d^{2}\right) \cos 40^{\circ} \\
& =-\rho(V-U)^{2} \frac{\pi}{4}\left(D^{2}-d^{2}\right)\left(1+\cos 40^{\circ}\right) \\
& =-999 \frac{\mathrm{~kg}}{\mathrm{~m}^{3}} \times(35-15)^{2} \frac{m^{2}}{\mathrm{~s}^{2}} \times 2.36 \times 10^{-4} \mathrm{~m}^{2}\left(1+\cos 40^{\circ}\right) \times \frac{\mathrm{N} \mathrm{~s}^{2}}{\mathrm{~kg} \cdot \mathrm{~m}}
\end{aligned}
$$

$E_{x}=-167 \mathrm{~N}$ (force must be applied to right)
$\left\{\begin{array}{l}\text { Note: } R_{y}=M g \text { since there is no net momentumtiux in the } \\ y \text {-direction. }\end{array}\right\}$
4.125 A jet boat takes in water at a constant volumetric rate Q through side vents and ejects it at a high jet speed V_{j} at the rear. A variable-area exit orifice controls the jet speed. The drag on the boat is given by $F_{\text {drag }} \approx k V^{2}$, where V is the boat speed. Find an expression for the steady speed V. If a jet speed $V_{\mathrm{j}}=25 \mathrm{~m} / \mathrm{s}$ produces a boat speed of $10 \mathrm{~m} / \mathrm{s}$, what jet speed will be required to double the boat speed?

Given: Data on jet boat

Find: Formula for boat speed; jet speed to double boat speed

Solution:

Governing equation:
Momentum

$$
\begin{equation*}
\vec{F}=\vec{F}_{S}+\vec{F}_{B}=\frac{\partial}{\partial t} \int_{\mathrm{CV}} \vec{V}_{x y z} \rho d \forall+\int_{\mathrm{CS}} \vec{V}_{x y z} \rho \vec{V}_{x y z} \cdot d \vec{A} \tag{4.26}
\end{equation*}
$$

Applying the horizontal component of momentum

$$
\mathrm{F}_{\mathrm{drag}}=\mathrm{V} \cdot(-\rho \cdot \mathrm{Q})+\mathrm{V}_{\mathrm{j}} \cdot(\rho \cdot \mathrm{Q}) \quad \text { or, with } \quad \mathrm{F}_{\mathrm{drag}}=\mathrm{k} \cdot \mathrm{~V}^{2} \quad \mathrm{k} \cdot \mathrm{~V}^{2}=\rho \cdot \mathrm{Q} \cdot \mathrm{~V}_{\mathrm{j}}-\rho \cdot \mathrm{Q} \cdot \mathrm{~V}
$$

$$
\mathrm{k} \cdot \mathrm{~V}^{2}+\rho \cdot \mathrm{Q} \cdot \mathrm{~V}-\rho \cdot \mathrm{Q} \cdot \mathrm{~V}_{\mathrm{j}}=0
$$

Solving for $V \quad V=-\frac{\rho \cdot Q}{2 \cdot k}+\sqrt{\left(\frac{\rho \cdot Q}{2 \cdot k}\right)^{2}+\frac{\rho \cdot Q \cdot V_{j}}{k}}$
Let

$$
\begin{aligned}
& \alpha=\frac{\rho \cdot Q}{2 \cdot k} \\
& V=-\alpha+\sqrt{\alpha^{2}+2 \cdot \alpha \cdot V_{j}}
\end{aligned}
$$

We can use given data at $V=10 \mathrm{~m} / \mathrm{s}$ to find α

$$
\mathrm{V}=10 \cdot \frac{\mathrm{~m}}{\mathrm{~s}} \quad \mathrm{~V}_{\mathrm{j}}=25 \cdot \frac{\mathrm{~m}}{\mathrm{~s}}
$$

$$
10 \cdot \frac{\mathrm{~m}}{\mathrm{~s}}=-\alpha+\sqrt{\alpha^{2}+2 \cdot 25 \cdot \frac{\mathrm{~m}}{\mathrm{~s}} \cdot \alpha}
$$

$\alpha^{2}+50 \cdot \alpha=(10+\alpha)^{2}=100+20 \cdot \alpha+\alpha^{2}$ $\alpha=\frac{10}{3} \cdot \frac{\mathrm{~m}}{\mathrm{~s}}$

Hence $\quad V=-\frac{10}{3}+\sqrt{\frac{100}{9}+\frac{20}{3} \cdot V_{j}}$

For $V=20 \mathrm{~m} / \mathrm{s}$

$$
20=-\frac{10}{3}+\sqrt{\frac{100}{9}+\frac{20}{3} \cdot \mathrm{~V}_{\mathrm{j}}} \quad \frac{100}{9}+\frac{20}{3} \cdot \mathrm{~V}_{\mathrm{j}}=\frac{70}{3}
$$

$$
\mathrm{V}_{\mathrm{j}}=80 \cdot \frac{\mathrm{~m}}{\mathrm{~s}}
$$

Given: Jet of oil ($S G=0.8$) striking moving vane.

Find: Force needed to maintain vane speed constant.
Solution: Apply x component of momentum equation to moving cV shown.
Basic equation: $F_{s_{x}}+F_{\beta_{x}}^{=\alpha(z)}=\frac{\partial}{\partial t} \int_{c v}^{-o(z)} u_{x y z} p d r+\int_{e_{s}} u_{x y y} \rho \vec{v}_{x y z} \cdot d \vec{A}$
Assumptions: (1) No net pressure force on $C V$; $F_{x}=R_{x}$
(2) $F_{B x}=0$
(3) steady flow
(4) Flow uniform at each section
(5) Jet area and speed relative to vane are constant

The subscript byz is a reminder that all velocities must be evaluated relative to the CV . Then

$$
\begin{gathered}
R_{x}=u_{1}\{-|p(v+v) A|\}+u_{2}\{|\rho(v+v) A|\} \\
u_{1}=v+v \quad u_{2}=-(v+v)
\end{gathered}
$$

and

$$
\begin{aligned}
& R_{x}=-\rho(V+U)^{2} A-\rho(V+U)^{2} A=-2 \rho(V+U)^{2} A=-256 f_{100}(V+U)^{2} A \\
& R_{x}=-2(0.8) 999 \frac{\mathrm{~kg}}{\mathrm{~m}^{2}}(20+10)^{2} \frac{\mathrm{~m}^{2}}{s^{2}} \times 1200 \mathrm{~mm}^{2} \times \frac{m^{2}}{10^{6} \mathrm{~mm}^{2}} \times \frac{\mathrm{N} \cdot \mathrm{~s}^{2}}{\mathrm{~kg} \cdot \mathrm{~m}}=-1.73 \mathrm{kN}
\end{aligned}
$$

This force must be applied to the left on the vane.
$\left\{\right.$ Note $R_{y}=m g$ since there are no vertical components of velocity. \} ~

Given: Aircraft scooping water from lake:

$$
1620 \mathrm{gal} \text { in } 12 \mathrm{sec}
$$

Find: Added thrust needed to maintain steady aircraft speed during scooping.

Solution: Use CV moving with aireratt, as shown. Apply momentum. Basic equation: $\quad F_{S x}+F F_{\beta_{x}}^{=0(1)}=\frac{1}{\phi} \int_{C v}^{\approx o(2)} u_{x y z} \rho d \forall+\int_{C S} u_{x y z} \rho \vec{v}_{x y z} \cdot d A$
Assumptions: (1) Horizontal motion, so $F_{B X}=\Delta$
(2) Neglect $u_{x y / 2}$ with in the $C V$
(3) Uniform flow at inlet cross-section
(4) Neglect hydrostatic Pressure

Then

$$
\begin{gathered}
R_{x}=u_{1}\left\{-\left|\rho Q_{1}\right|\right\}=-U(-\rho Q)=+U \rho Q \\
u_{1}=-U
\end{gathered}
$$

From data given

$$
Q=\frac{\Delta U}{\Delta t}=\frac{16209 \mathrm{al}^{2}}{12 \mathrm{sec}} \times \frac{\mathrm{f+3}}{7.489 \mathrm{~g}}=18.0 \mathrm{ft} 3 / \mathrm{s}
$$

For an aircraft speed of $U=75 \mathrm{mph}(110 \mathrm{ft} / \mathrm{s})$

$$
R_{x}=110 \frac{\mathrm{ft}}{\mathrm{~s}} \times 1.94 \frac{\mathrm{~s} / \mathrm{ug}^{3}}{\mathrm{f} 3} \times 18.0 \frac{\mathrm{ft3}}{\mathrm{~s}} \times \frac{16 \mathrm{f} \cdot \mathrm{~s}^{2}}{\mathrm{~S} / \mathrm{cg} \cdot \mathrm{ft}}=3,840 \mathrm{lbf}
$$

For a range of aircraft speeds:

$\left\{\begin{array}{l}\text { Thus at } 60 \text { mph the added thrust is } 3,070 \mathrm{lbf} \text {, while at } 125 \mathrm{mph} \\ \text { the added thrust is } 6,400 \mathrm{lbf} \text {. }\end{array}\right.$
4.128 Consider a single vane, with turning angle θ, moving horizontally at constant speed, U, under the influence of an impinging jet as in Problem 4.123. The absolute speed of the jet is V. Obtain general expressions for the resultant force and power that the vane could produce. Show that the power is maximized when $U=V / 3$.

Given: Water jet striking moving vane

Find: \quad Expressions for force and power; Show that maximum power is when $U=V / 3$

Solution:

Basic equation: Momentum flux in x direction $F_{x}=F_{S_{x}}+F_{B_{x}}=\frac{\partial}{\partial t} \int_{\mathrm{CV}} u \rho d \forall+\int_{\mathrm{CS}} u \rho \vec{V} \cdot d \vec{A}$
Assumptions: 1) Steady flow 2) Incompressible flow 3) Atmospheric pressure in jet 4) Uniform flow 5) Jet relative velocity is constant Then

$$
\begin{aligned}
& R_{X}=u_{1} \cdot\left(-\rho \cdot V_{1} \cdot A_{1}\right)+u_{2} \cdot\left(\rho \cdot V_{2} \cdot A_{2}\right)=-(V-U) \cdot[\rho \cdot(V-U) \cdot A]+(V-U) \cdot \cos (\theta) \cdot[\rho \cdot(V-U) \cdot A] \\
& R_{X}=\rho(V-U)^{2} \cdot A \cdot(\cos (\theta)-1)
\end{aligned}
$$

This is force on vane; Force exerted by vane is equal and opposite
The power produced is then
$\mathrm{F}_{\mathrm{X}}=\rho \cdot(\mathrm{V}-\mathrm{U})^{2} \cdot \mathrm{~A} \cdot(1-\cos (\theta))$

To maximize power wrt to $\mathrm{U} \quad \frac{\mathrm{dP}}{\mathrm{dU}}=\rho \cdot(\mathrm{V}-\mathrm{U})^{2} \cdot \mathrm{~A} \cdot(1-\cos (\theta))+\rho \cdot(2) \cdot(-1) \cdot(\mathrm{V}-\mathrm{U}) \cdot \mathrm{U} \cdot \mathrm{A} \cdot(1-\cos (\theta))=0$
Hence

$$
\mathrm{V}-\mathrm{U}-2 \cdot \mathrm{U}=\mathrm{V}-3 \cdot \mathrm{U}=0 \quad \mathrm{U}=\frac{\mathrm{V}}{3} \quad \text { for maximum power }
$$

Note that there is a vertical force, but it generates no power

Given: Circular dish with $D=0.15 \mathrm{~m}$ and jet ass shown.

Find: (a) Thickness of jet sheet at $R=75 \mathrm{~mm}$.
(b) Horizontal tore required to maintain dist motion.

Solution: Apply the momentum equation to a CV moving
 with the dish, as shown.

Basic equation:

$$
F_{s x}+F_{\phi x}^{=0(z)}=\frac{\hat{1}}{=0(3)} \int_{c v} u_{x y z f} d \forall+\int_{C s} u_{x y z} \rho \vec{v}_{x y y}+d \vec{A}
$$

Assumptions: (1) No pressure forces
(2) Horizontal; $F_{3_{x}}=0$
(3) Steady flow wir.t. CV
(4) Uniform flow at each section
(5) Use relative velocities
(b) No change in relative velocity on the dish

Then

$$
\begin{aligned}
R_{x}= & u_{1}\{-\rho(V-v) A\}+u_{2}\{+\rho(V+V) A\} \\
& u_{1}=V-v \quad u_{2}=-(V-V) \cos \theta \\
R_{x}= & -\rho(V-U)^{2} A-\rho(V-v)^{2} A \cos \theta=-\rho(V-U)^{2} A(1+\cos \theta) \\
= & -999 \frac{\mathrm{~kg}}{\mathrm{~m}^{3}}(45-10)^{2} \frac{\mathrm{~m}^{2}}{\mathrm{~s}^{2}} \times \frac{\pi}{4}(0.050)^{2} \mathrm{~m}^{2}\left(1+\cos 40^{\circ}\right) \frac{\mathrm{N} \cdot \mathrm{~s}^{2}}{\mathrm{~kg} \cdot m} \\
R_{x}= & -4.24 \mathrm{kN} \text { (force must act to right) }
\end{aligned}
$$

Apply conservation of mass to determine the jet sheet thickness:
Basic equation: $0=\frac{\partial}{\partial t} \int_{C v} p d \psi+\int_{C S} \ell \vec{V} \cdot d \vec{A}$
Using the above assumptions, then

$$
\begin{aligned}
& 0=-\rho V_{1} A_{1}+\rho U_{2} A_{2} \\
& V_{1}=V-U ; \quad V_{2}=V-V ; A_{1}=\frac{\pi d^{2}}{4} ; A_{2}=2 \pi R_{t}
\end{aligned}
$$

Therefore $A_{1}=A_{2}=\frac{\pi d^{2}}{4}=2 \pi R t$, and $t=\frac{d^{2}}{8 R}$

$$
t=\frac{1}{8} \times(0.050)^{2} m^{2} \times \frac{1}{0.075 \mathrm{~m}}=4.17 \times 10^{-3} \mathrm{~m} \text { or } 4.17 \mathrm{~mm}
$$

4.130 Water, in a 4-in. diameter jet with speed of $100 \mathrm{ft} / \mathrm{s}$ to the right, is deflected by a cone that moves to the left at $45 \mathrm{ft} / \mathrm{s}$. Determine (a) the thickness of the jet sheet at a radius of 9 in . and (b) the external horizontal force needed to move the cone.

Given: Water jet striking moving cone

Find: Thickness of jet sheet; Force needed to move cone

Solution:

Basic equations: Mass conservation; Momentum flux in x direction

$$
\frac{\partial}{\partial t} \int_{\mathrm{CV}} \rho d \forall+\int_{\mathrm{CS}} \rho \vec{V} \cdot d \vec{A}=0 \quad F_{x}=F_{S_{x}}+F_{B_{x}}=\frac{\partial}{\partial t} \int_{\mathrm{CV}} u \rho d \forall+\int_{\mathrm{CS}} u \rho \vec{V} \cdot d \vec{A}
$$

Assumptions: 1) Steady flow 2) Incompressible flow 3) Atmospheric pressure in jet 4) Uniform flow 5) Jet relative velocity is constant

$$
\begin{array}{lll}
\text { Then } & -\rho \cdot \mathrm{V}_{1} \cdot \mathrm{~A}_{1}+\rho \cdot \mathrm{V}_{2} \cdot \mathrm{~A}_{2}=0 & -\rho \cdot\left(\mathrm{V}_{\mathrm{j}}+\mathrm{V}_{\mathrm{c}}\right) \cdot \frac{\pi \cdot \mathrm{D}_{\mathrm{j}}^{2}}{4}+\rho \cdot\left(\mathrm{V}_{\mathrm{j}}+\mathrm{V}_{\mathrm{c}}\right) \cdot 2 \cdot \pi \cdot \mathrm{R} \cdot \mathrm{t}=0 \\
\text { Hence } & \mathrm{t}=\frac{\mathrm{D}_{\mathrm{j}}^{2}}{8 \cdot R} & \mathrm{t}=\frac{1}{8} \times(4 \cdot \mathrm{in})^{2} \times \frac{1}{9 \cdot \text { in }}
\end{array}
$$

Using relative velocities, x momentum is

$$
\begin{aligned}
& R_{X}=u_{1} \cdot\left(-\rho \cdot V_{1} \cdot A_{1}\right)+u_{2} \cdot\left(\rho \cdot V_{2} \cdot A_{2}\right)=-\left(V_{j}+V_{c}\right) \cdot\left[\rho \cdot\left(V_{j}+V_{c}\right) \cdot A_{j}\right]+\left(V_{j}+V_{c}\right) \cdot \cos (\theta) \cdot\left[\rho \cdot\left(V_{j}+V_{c}\right) \cdot A_{j}\right] \\
& R_{X}=\rho\left(V_{j}+V_{c}\right)^{2} \cdot A_{j} \cdot(\cos (\theta)-1)
\end{aligned}
$$

Using given data

$$
\mathrm{R}_{\mathrm{X}}=1.94 \cdot \frac{\mathrm{slug}}{\mathrm{ft}^{3}} \times\left[(100+45) \cdot \frac{\mathrm{ft}}{\mathrm{~s}}\right]^{2} \times \frac{\pi \cdot\left(\frac{4}{12} \cdot \mathrm{ft}\right)^{2}}{4} \times(\cos (60 \cdot \mathrm{deg})-1) \times \frac{\mathrm{lbf} \cdot \mathrm{~s}^{2}}{\mathrm{slug} \cdot \mathrm{ft}} \quad \mathrm{R}_{\mathrm{x}}=-1780 \cdot \mathrm{lbf}
$$

Hence the force is 1780 lbf to the left; the upwards equals the weight

Given: Series of vanes struck by continuous jet, as shown.

Find: (a) Nozzle angle, α.
(b) Force to hold vane speed constant.

Solution: Apply momentum equation using $C V$ moving with vanes as shown.

Basic equation:

$$
=O(z)=O(3)
$$

$$
F_{s x}+F_{\sigma_{x}}^{1}=\frac{\partial f}{\partial t} \int_{c v} u_{x y z} \rho d t+\int_{c s} u_{x y z} \rho \vec{v}_{x y z} \cdot d \vec{A}
$$

Assumptions: (1) No pressure forces
(2) Horizontal; $F_{B_{x}}=0$
(3) Steady flow w.r.t. CV
(4) Uniform flow at each section
(5) No change in relative velocity on vane
(6) Flow enters and leaves tangent to vanes

The nozzle angle may, be obtained from trigonometry. The in kt velocity relationship is shown in the sketch:

From the law of sines,

From the sketch, $90^{\circ}=\alpha+\beta+0$, , so $\alpha=90^{\circ}-\beta-\theta_{1}=90^{\circ}-30^{\circ}-30^{\circ}=30^{\circ}$

$$
\stackrel{0}{1 / 5}
$$

From momentum equation (note all of \dot{m} flews across vanes)

$$
\begin{gathered}
R_{x}=u_{1}\{-\dot{m}\}+u_{2}\{\dot{m}\}=V_{r b} \sin \theta(-\dot{m})-V_{r_{b}} \sin \theta_{2}(\dot{m})=V_{r b} \dot{m}\left(-\sin \theta_{1}-\sin \theta_{2}\right) \\
u_{1}=V_{r b} \sin \theta_{1} \quad u_{2}=-V_{r b} \sin \theta_{2} ; \quad R_{y}=\dot{m} V_{r b}\left(-\cos \theta_{1}+\cos \theta_{2}\right)
\end{gathered}
$$

Thus, since $\dot{m}=\rho Q$,

$$
\begin{aligned}
R_{x} & =V_{r b \rho Q}\left(-\sin \theta_{1}-\sin \theta_{2}\right) \\
& =50 \frac{\mathrm{~m}}{\mathrm{~s}} \times 499 \frac{\mathrm{~kg}}{\mathrm{~m}^{3}} \times 0.170 \frac{\mathrm{~m}^{3}}{\mathrm{~s}}\left(-\sin 30^{\circ}-\sin 45^{\circ}\right) \times \frac{\mathrm{N} \cdot \mathrm{~s}^{2}}{\mathrm{~kg} \cdot \mathrm{~m}} \\
R_{x} & =-10.3 \mathrm{kN} \text { (to left) }
\end{aligned}
$$

$\left\{\right.$ Note: The net force on the $C V$ in the y-direction is $R_{y}=-1.35 \mathrm{kN}$. \}

Given: series of vases struck by continuous jet, as shown.

Find: For $\alpha \approx 0\left(\theta, \approx 40^{\circ}\right)$, vane speed, U, to maximize power produced by vane.

Solution: Apply momentum equation using CV moving with vanes, as shown.

Basic equation:

$$
F_{s x}+F_{4 x}^{=o(z)}=\frac{\partial d^{p}}{=o(3)} \int_{c v} u_{x y z} \rho d t+\int_{c s} u_{x y 3} \rho \vec{v}_{x y y} \cdot d \vec{A}
$$

Asscemptions: (1) Nopressere forces
(2) Horizontal; $F_{B x}=0$
(3) steady flow w. r.t. CV
(4) Uniform flow ateachsection
(5) No Change in relative velocity on vane
(6) Flow enters and leaves tangent to vanes

For $\propto \approx 0, V_{r b} \approx V-U_{\text {; }}$ the momentum equation becomes

$$
\begin{gathered}
R_{x}=u_{1}\{-\dot{m}\}+u_{2}\{+\dot{m}\}=-\dot{m}(V-U)-\dot{m}(V-O) \sin \theta_{2}=-\dot{m}(V-\sigma)\left(1+\sin \theta_{2}\right) \\
u_{1} \approx V_{r b} \approx V-U ; u_{2} \approx-V_{r b} \sin \theta_{2} \approx-(V-U) \sin \theta_{2}
\end{gathered}
$$

The vane system produces force, $K_{x}=-R_{x}$, and power $P=K_{x} U$. Thus

$$
\begin{equation*}
P=k_{x} U=-R_{x} U=\dot{m}(V-U) U\left(1+\sin \theta_{2}\right) \tag{1}
\end{equation*}
$$

To find maximum power, set $\frac{d P}{d V}=0$

$$
\frac{d \vec{V}}{d V}=\dot{m}(-1) U\left(1+\sin \theta_{2}\right)+\dot{m}(V-U)(1)\left(1+\sin \theta_{2}\right)=\dot{m}(V-2 V)\left(1+\sin \theta_{2}\right)
$$

Thus power is maximized when $V-Z U=0$, or $U=\frac{V}{2}$ (for $P_{\max }$)
\{Note from Eq. I that $\mathrm{O}_{2} \rightarrow 90^{\circ}$ increases power also.\}

$$
\left\{\begin{array}{l}
\text { Note also that } K_{y} x-R_{y}=-\dot{m} V_{r b} \cos \theta_{2} \text { but this tore does not } \\
\text { produce power. }
\end{array}\right.
$$

Given: Cart propelled by steady water jet, as shown.
Total resistance to motion is

$$
F_{D}=k U^{2}
$$

where $k=0.92 \frac{\mathrm{~N} \cdot \mathrm{~s}^{2}}{\mathrm{~m}^{2}}$
Find: Acceleration of cart at instant when $U=10 \mathrm{~m} / \mathrm{s}$.

(1)

Solution: Apply the momentum equation using $C V$ and $C s$ shown. Basic equation:

$$
F_{s x}+F_{\beta_{x}}^{=0(z)}-\int_{c v} a_{r} f_{x} \rho d \forall=\frac{d}{\phi t} \int_{C v}^{\approx 0(z)} u_{x i d} \rho d \forall+\int_{c s} u_{x s g} \rho \vec{V} \cdot d \vec{A}
$$

Assumptions: (1) Only resistance is $F_{D} ; F_{s x}=-F_{D}=-k U^{2}$
(2) Horizontal; $F_{B x}=0$
(3) Neglect du/ot of mass of water in CV
(4) No Change in speed w. in to vane
(5) Uniform flow at each crosi-section

Then

$$
-k v^{2}-a r f_{x} M_{c v}=u_{1}\left\{-\rho(v-v)_{A}\right\}+u_{z}\left\{+\rho(v-v)_{A}\right\}
$$

Measure u wir.to $c v: \quad u_{1}=v-U \quad u_{2}=-(v-v) \sin \theta$

$$
-k U^{2}-a_{r f} M_{c v}=-\rho(v-V)^{2} A-\rho(v-U)^{2} A \sin \theta=-\rho(v-U)^{2} A(1+\sin \theta)
$$

so

$$
\begin{aligned}
& \quad a_{r} f_{x}=\frac{1}{M}\left[\rho(v-v)^{2} A(1+\sin \theta)-k V^{2}\right] \\
& =\frac{1}{15 k g}\left[999 \frac{\mathrm{~kg}}{\mathrm{~m}^{3}}(30-10)^{2} \frac{\mathrm{~m}^{2}}{\mathrm{~s}^{2}} \frac{\pi}{4}(0.025)^{2} \mathrm{~m}^{2}\left(1+\sin 30^{9}\right)-0.92 \frac{\mathrm{~N} \cdot \mathrm{~s}^{2}}{\mathrm{~m}^{2}} \times(10)^{\left.\frac{2 \mathrm{~m}^{2}}{\sec ^{2}} \times \frac{\mathrm{kg} \cdot \mathrm{~m}}{\mathrm{~N}^{2}}\right]}\right. \\
& a_{r f_{x}}=13.5 \mathrm{~m} / \mathrm{s}^{2} \text { (to right) art }
\end{aligned}
$$

Given: Splitter dividing flow into two flat streams, as shown.
Find: (a) Mass flow rate ratio, $\dot{m}_{2} / \dot{m}_{3}$, so net vertical force is zero.
(b) Horizontal force need to maintain constant speed.

Solution: Apply x and y components of momentum to cV drawn with boundaries 1 to flows, as shown.

Basic equations:

Assumptions: (1) No pressure forces
(2) Neglect mass of water on vane
(3) Steady flow wi to vane
(4) Uniform flow at each section
(5) No change in speed w.r. to vane

Then

$$
0=\int_{c s} v \rho \vec{v} \cdot d \vec{A}=v_{1}\left\{-\dot{m}_{1}\right\}+v_{2}\left\{+\dot{m}_{2}\right\}+v_{3}\left\{+\dot{m}_{3}\right\}
$$

Measure W.r.tocv:

$$
v_{1}=0
$$

$$
v_{2}=V-U
$$

$$
v_{3}=-(v-v) \sin \theta
$$

so $\quad 0=(V-U) \dot{m}_{2}-(V-V) \sin \theta \dot{m}_{3} ; \frac{\dot{m}_{2}}{\dot{m}_{3}}=\sin \theta=\frac{1}{2}$

$$
\frac{\frac{1}{2}}{\left.\dot{m}_{2}\right\}+u_{3}\left\{+\dot{m}_{3}\right\}}
$$

and

$$
F_{s x}=\int_{c s} u_{\rho} \vec{v} \cdot d \vec{A}=R_{x}=u_{1}\left\{-\dot{m}_{1}\right\}+u_{2}\left\{+\dot{m}_{2}\right\}+u_{3}\left\{+\dot{m}_{3}\right\}
$$

Measure w.r. to cv:

$$
u_{1}=V-v \quad u_{2}=0 \quad u_{3}=(V-U) \cos \theta
$$

$$
R_{x}=(V-v)\left(-\dot{m}_{1}\right)+(v-v) \cos \theta\left(\dot{m}_{3}\right)=(V-v)\left(\dot{m}_{3} \cos \theta-\dot{m}_{1}\right)
$$

From continuity $O=-\dot{m}_{1}+\dot{m}_{2}+\dot{m}_{3}=-\dot{m}_{1}+\frac{\dot{m}_{3}}{2}+\dot{m}_{3} ; \dot{m}_{3}=\frac{2}{3} \dot{m}_{\text {, }}$,

$$
\begin{aligned}
& R_{x}=(V-v)\left(\frac{2}{3} m_{1} \cos \theta-\dot{m}_{1}\right)=(V \cdot V) \dot{m}_{1}\left(\frac{2 \cos \theta}{3}-1\right) \\
& R_{x}=(25-10) \frac{\mathrm{m}}{\mathrm{~s}} \times 999 \frac{\mathrm{~kg}}{\mathrm{~m}^{3}} \times(25-10) \frac{\mathrm{m}}{\mathrm{~s}} \times 7.85 \times 10^{-5} \mathrm{~m}^{2}\left(\frac{2}{3} \cos 30^{\circ}-1\right) \frac{\mathrm{N} \cdot \mathrm{~s}^{2}}{\mathrm{~kg} \cdot \mathrm{~m}} \\
& R_{x}=-7.46 \mathrm{~N} \text { (to left) }
\end{aligned}
$$

Force must be applied to left to maintain vane speed constant;
if R_{x} were zero, vane would accelerate.

Given: Hydraulic catapult of Problem 4.133, rolling on
level track with negligible resistance, speed U.

Find: Time required to accelerate from rest to $U=V / 2$.

Solution: Apply x component of money anthem equation to accelerating $C V$.
Basic

Assumptions: (1) $F_{S_{x}}=0$, since no pressure forces, no resistance
(2) $F B_{x}=0$, since horizontal
(3) Neglect mass of water on vane.
(4) Uniform flow in jet
(5) No change in relative velocity on vane

Then

$$
\begin{gathered}
-a_{r x_{x}} M_{c v}=u_{1}\{-\rho(v-v) A\}+u_{2}\{+\rho(v-v) A\}=-(1+\sin v) \rho(v-v)^{2} A \\
u_{1}=v-v \quad u_{2}=-(v-v) \sin \theta
\end{gathered}
$$

so $\quad \frac{d U}{d t}=\frac{\rho A(1+\sin \theta)}{M}(V-U)^{2}$
To integrate, note since $V=$ constant, $d(V-U)=-d U$, so

$$
-\int_{0}^{v / 2} \frac{d(v-u)}{(v-u)^{2}}=\int_{0}^{t} \frac{\rho A(1+\sin \theta)}{M} d t
$$

or $\left.\quad \frac{1}{V-U}\right]_{U=0}^{U=V / 2}=\frac{2}{V}-\frac{1}{V}=\frac{1}{V}=\rho \frac{\rho(1+\sin (v)}{M} t$
Thus

$$
\begin{aligned}
t & =\frac{M}{\rho v A(1+\sin v)} \\
& =15.0 \mathrm{~kg} \times \frac{\mathrm{m}^{3}}{499 \mathrm{~kg}} \times \frac{\mathrm{s}}{30.0 \mathrm{~m}} \times \frac{4}{\pi(0.025)^{2} \mathrm{~m}} * \frac{1}{(1+\sin 30 \%)} \\
t & =0.680 \mathrm{~s}
\end{aligned}
$$

Given: Vane/slider assembly moving under influence of jet.

Find: Terminal speed.
Solution: Apply x momentum equation to linearly accelerating $C V$.

Basic equation:

$$
F_{s_{x}}+F_{\neq A_{x}}^{=o(1)}-\int_{c v} a_{r f_{x}} \rho d \forall=\frac{\partial f}{\partial t} \int_{c_{v}} u_{x y z} \rho(v)
$$

Assumptions: (1) Horizontal motion, so $F_{B_{x}}=0$
(2) Neglect mass of liquid on vane, $u \approx 0$ on vane
(3) Uniform flow at each section
(4) Measure velocities relative to CV

Then

$$
\begin{gathered}
-M g \mu_{k}-a_{r f x} M=u_{1}\{-|\rho(V-V) A|\}+u_{2}\left\{+\dot{m}_{2}\right\}+u_{3}\left\{+\dot{m}_{3}\right\} \\
u_{1}=V-V \quad u_{2}=0 \quad u_{3}=0 \\
-M g \mu_{k}-M \frac{d U}{a t}=-\rho(V-U)^{2} A
\end{gathered}
$$

or

$$
\frac{d U}{d t}=\frac{P(V-U)^{2} A}{M}-g \mu_{k}
$$

At terminal speed, $d U / d t=0$ and $U=U_{t}$, so

$$
O=\frac{\rho\left(V-U_{t}\right)^{2} A}{M}-g \mu_{k} \quad \text { or } \quad V-U_{t}=\sqrt{\frac{M g \mu_{k}}{\rho A}}
$$

and

$$
\begin{aligned}
U_{t} & =V-\sqrt{\frac{M g \mu_{k}}{\rho A}} \\
& =20 \frac{\mathrm{~m}}{\mathrm{~s}}-\left[30 \mathrm{~kg} \times 9.81 \frac{\mathrm{~m}}{\mathrm{~s}^{2}} \times 0.3 \times \frac{\mathrm{m}^{3}}{999 \mathrm{~kg}^{2}} \frac{1}{0.005 \mathrm{~m}^{2}}\right]^{1 / 2} \\
U_{t} & =15.8 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

Given: Cart propelled by a horizontal liquid jet of constant speed. Neglect resistance along horizontal track.

Initial mass is M_{0}.

Find: (a) A general expression for speed, v, as cart accelerates from rest.
(b) V for $U=1.5 \mathrm{mls}$ \& $t=30 \mathrm{~s}$

Solution:
a) Apply x component of momentum equation using linearly accelerating $C V$ shown.
Basic equation: $\quad F_{f x}^{=0(1)}+F_{\dot{\beta} x}^{=0(2)}-\int_{C V} a_{f f} f f d t=\frac{\partial^{A}}{\partial t} \int_{C V}^{o(3)} u_{x y \beta} f d t+\int_{C s} u_{x y z} f \vec{v}_{x y / 3} \cdot d \vec{A}$
Assumptions: (1) No resistance
(2) $F_{E_{x}}=0$ since track is horizontal
(3) Neglect $\omega_{x_{y} g}$ within CV
(4) Uniform flow at jet exit

Then

$$
\begin{gathered}
-a_{r f_{x}} M=u\{|\rho V A|\}=-\rho V^{2} A \\
u=-V
\end{gathered}
$$

From continuity, $M=M_{0}-\dot{m} t=M_{0}-\rho V A t \cdot U \operatorname{sing} a_{r f x}=\frac{d V}{d t}$,

$$
\frac{d V}{d t}=\frac{\rho V^{2} A}{M_{0}-\rho V A t}
$$

Separating variables and integrating,

$$
\int_{0}^{U} d V=V=\int_{0}^{t} \frac{\rho V^{2} A d t}{M_{0}-\rho V A t}=-\left.V \ln \left(M_{0}-\rho V A t\right)\right|_{0} ^{t}=V \ln \left(\frac{M_{0}}{M_{0}-\rho V A t}\right)
$$

or

$$
\frac{U}{V}=\ln \left(\frac{M_{0}}{M_{0}-\rho V A t}\right)
$$

Check dimensions: [flat] $=\frac{M}{L^{3}} \frac{L}{L} L^{2} t=M$ V
b) Using the given data in Excel (with Solver) fee de space for $\mathcal{S}=1.5 \mathrm{M}$, $0 t=30 \mathrm{~s}$ is $V=0.01 \mathrm{~m}$
4.138 For the vane/slider problem of Problem 4.136, find and plot expressions for the acceleration, speed, and position of the slider as a function of time.

Given:
 Data on vane/slider

Find: Formula for acceleration, speed, and position; plot

Solution:

The given data is

$$
\rho=999 \cdot \frac{\mathrm{~kg}}{\mathrm{~m}^{3}} \quad \mathrm{M}=30 \cdot \mathrm{~kg}
$$

$\mathrm{A}=0.005 \cdot \mathrm{~m}^{2}$
$\mathrm{V}=20 \cdot \frac{\mathrm{~m}}{\mathrm{~s}}$
$\mu_{\mathrm{k}}=0.3$
The equation of motion, from Problem 4.136, is $\frac{d U}{d t}=\frac{\rho \cdot(\mathrm{V}-\mathrm{U})^{2} \cdot \mathrm{~A}}{\mathrm{M}}-\mathrm{g} \cdot \mu_{\mathrm{k}}$
The acceleration is thus $\quad \mathrm{a}=\frac{\rho \cdot(\mathrm{V}-\mathrm{U})^{2} \cdot \mathrm{~A}}{\mathrm{M}}-\mathrm{g} \cdot \mu_{\mathrm{k}}$
Separating variables $\frac{d U}{\frac{\rho \cdot(V-U)^{2} \cdot A}{M}-g \cdot \mu_{k}}=d t$

Substitute

$$
\mathrm{u}=\mathrm{V}-\mathrm{U} \quad \mathrm{dU}=-\mathrm{du} \quad \frac{\mathrm{du}}{\frac{\rho \cdot \mathrm{~A} \cdot \mathrm{u}^{2}}{\mathrm{M}}-\mathrm{g} \cdot \mu_{\mathrm{k}}}=-\mathrm{dt}
$$

$$
\int \frac{1}{\left(\frac{\rho \cdot \mathrm{~A} \cdot \mathrm{u}^{2}}{\mathrm{M}}-\mathrm{g} \cdot \mu_{\mathrm{k}}\right)} \mathrm{du}=-\sqrt{\frac{\mathrm{M}}{\mathrm{~g} \cdot \mu_{\mathrm{k}} \cdot \rho \cdot \mathrm{~A}}} \cdot \operatorname{atanh}\left(\sqrt{\left.\frac{\rho \cdot \mathrm{~A}}{\mathrm{~g} \cdot \mu_{\mathrm{k}} \cdot \mathrm{M}} \cdot \mathrm{u}\right)}\right.
$$

and $\mathrm{u}=\mathrm{V}-\mathrm{U}$ so

$$
\mathrm{V}-\mathrm{U}=\sqrt{\frac{\mathrm{g} \cdot \mu_{\mathrm{k}} \cdot \mathrm{M}}{\rho \cdot \mathrm{~A}}} \cdot \tanh \left(\sqrt{\frac{\mathrm{~g} \cdot \mu_{\mathrm{k} \cdot} \cdot \rho \cdot \mathrm{~A}}{\mathrm{M}}} \cdot \mathrm{t}+\operatorname{atanh}\left(\sqrt{\frac{\rho \cdot \mathrm{A}}{\mathrm{~g} \cdot \mu_{\mathrm{k}} \cdot \mathrm{M}}} \cdot \mathrm{~V}\right)\right)
$$

$$
U=V-\sqrt{\frac{g \cdot \mu_{k} \cdot \mathrm{M}}{\rho \cdot \mathrm{~A}}} \cdot \tanh \left(\sqrt{\frac{\mathrm{~g} \cdot \mu_{\mathrm{k}} \cdot \rho \cdot \mathrm{~A}}{\mathrm{M}}} \cdot \mathrm{t}+\operatorname{atanh}\left(\sqrt{\frac{\rho \cdot \mathrm{A}}{\mathrm{~g} \cdot \mu_{\mathrm{k}} \cdot \mathrm{M}}} \cdot \mathrm{~V}\right)\right)
$$

Note that

$$
\operatorname{atanh}\left(\sqrt{\frac{\rho \cdot \mathrm{A}}{\mathrm{~g} \cdot \mu_{\mathrm{k}} \cdot \mathrm{M}}} \cdot \mathrm{~V}\right)=0.213-\frac{\pi}{2} \cdot \mathrm{i}
$$

which is complex and difficult to handle in Excel, so we use the identity

$$
\operatorname{atanh}(\mathrm{x})=\operatorname{atanh}\left(\frac{1}{\mathrm{x}}\right)-\frac{\pi}{2} \cdot \mathrm{i} \quad \text { for } \mathrm{x}>1
$$

so

$$
\mathrm{U}=\mathrm{V}-\sqrt{\frac{\mathrm{g} \cdot \mu_{\mathrm{k}} \cdot \mathrm{M}}{\rho \cdot \mathrm{~A}}} \cdot \tanh \left(\sqrt{\frac{\mathrm{~g} \cdot \mu_{\mathrm{k}} \cdot \rho \cdot \mathrm{~A}}{\mathrm{M}}} \cdot \mathrm{t}+\operatorname{atanh}\left(\frac{1}{\sqrt{\frac{\rho \cdot \mathrm{~A}}{\mathrm{~g} \cdot \mu_{\mathrm{k}} \cdot \mathrm{M}}} \cdot \mathrm{~V}}\right)-\frac{\pi}{2} \cdot \mathrm{i}\right)
$$

and finally the identity

$$
\tanh \left(\mathrm{x}-\frac{\pi}{2} \cdot \mathrm{i}\right)=\frac{1}{\tanh (\mathrm{x})}
$$

to obtain

$$
\mathrm{U}=\mathrm{V}-\frac{\sqrt{\frac{\mathrm{g} \cdot \mu_{\mathrm{k}} \cdot \mathrm{M}}{\rho \cdot \mathrm{~A}}}}{\tanh \left(\sqrt{\frac{\mathrm{~g} \cdot \mu_{\mathrm{k}} \cdot \rho \cdot \mathrm{~A}}{\mathrm{M}}} \cdot \mathrm{t}+\operatorname{atanh}\left(\sqrt{\frac{\mathrm{g} \cdot \mu_{\mathrm{k}} \cdot \mathrm{M}}{\rho \cdot \mathrm{~A}} \cdot \frac{1}{\mathrm{~V}}}\right)\right)}
$$

$$
\frac{\mathrm{dx}}{\mathrm{dt}}=\mathrm{V}-\frac{\sqrt{\frac{\mathrm{g} \cdot \mu_{\mathrm{k}} \cdot \mathrm{M}}{\rho \cdot \mathrm{~A}}}}{\tanh \left(\sqrt{\frac{\mathrm{~g} \cdot \mu_{\mathrm{k} \cdot} \cdot \rho \cdot \mathrm{~A}}{\mathrm{M}}} \cdot \mathrm{t}+\operatorname{atanh}\left(\sqrt{\frac{\mathrm{g} \cdot \mu_{\mathrm{k}} \cdot \mathrm{M}}{\rho \cdot \mathrm{~A}}} \cdot \frac{1}{\mathrm{~V}}\right)\right)}
$$

This can be solved analytically, but is quite messy. Instead, in the corresponding Excel workbook, it is solved numerically using a simple Euler method. The complete set of equations is

The plots are presented in the Excel workbook

$$
\begin{aligned}
& \mathrm{U}=\mathrm{V}-\frac{\sqrt{\frac{\mathrm{g} \cdot \mu_{\mathrm{k}} \cdot \mathrm{M}}{\rho \cdot \mathrm{~A}}}}{\tanh \left(\sqrt{\frac{\mathrm{~g} \cdot \mu_{\mathrm{k}} \cdot \rho \cdot \mathrm{~A}}{\mathrm{M}}} \cdot \mathrm{t}+\operatorname{atanh}\left(\sqrt{\left.\frac{\mathrm{g} \cdot \mu_{\mathrm{k}} \cdot \mathrm{M}}{\rho \cdot \mathrm{~A}} \cdot \frac{1}{\mathrm{~V}}\right)}\right)\right.} \\
& \mathrm{a}=\frac{\rho \cdot(\mathrm{V}-\mathrm{U})^{2} \cdot \mathrm{~A}}{\mathrm{M}}-\mathrm{g} \cdot \mu_{\mathrm{k}} \\
& x(n+1)=x(n)+\left(V-\frac{\sqrt{\frac{g \cdot \mu_{k} \cdot \mathrm{M}}{\rho \cdot \mathrm{~A}}}}{\tanh \left(\sqrt{\frac{g \cdot \mu_{\mathrm{k}} \cdot \rho \cdot \mathrm{~A}}{\mathrm{M}}} \cdot \mathrm{t}+\operatorname{atanh}\left(\sqrt{\frac{\mathrm{g} \cdot \mu_{\mathrm{k}} \cdot \mathrm{M}}{\rho \cdot \mathrm{~A}} \cdot \frac{1}{\mathrm{~V}}}\right)\right)}\right) \cdot \Delta \mathrm{t}
\end{aligned}
$$

4.138 For the vane/slider problem of Problem 4.136, find and plot expressions for the acceleration, speed, and position of the slider as a function of time.	$\begin{aligned} & \begin{array}{l} \rho=999 \mathrm{~kg} / \mathrm{m}^{3} \\ V=20 \mathrm{~m} / \mathrm{s} \end{array} \\ & A=0.005 \mathrm{~m}^{2} \end{aligned}$	$M=30 \mathrm{~kg}$	$\longrightarrow U$ $\mu_{k}=0.30$

Given:
Data on vane/slider
Find: Formula for acceleration, speed, and position; plot
Solution:
The equations are

$$
\begin{aligned}
& \mathrm{U}=\mathrm{V}-\frac{\sqrt{\frac{g \cdot \mu_{k} \cdot \mathrm{M}}{\rho \cdot \mathrm{~A}}}}{\tanh \left(\sqrt{\frac{g \cdot \mu_{k} \cdot \rho \cdot \mathrm{~A}}{\mathrm{M}}} \cdot \mathrm{t}+\operatorname{atanh}\left(\sqrt{\frac{g \cdot \mu_{k} \cdot \mathrm{M}}{\rho \cdot \mathrm{~A}} \cdot \frac{1}{\mathrm{~V}}}\right)\right)} \\
& \mathrm{a}=\frac{\rho \cdot(\mathrm{V}-\mathrm{U})^{2} \cdot \mathrm{~A}}{\mathrm{M}}-\mathrm{g} \cdot \mu_{\mathrm{k}} \\
& \mathrm{x}(\mathrm{n}+1)=\mathrm{x}(\mathrm{n})+\left(\mathrm{V}-\frac{\sqrt{\frac{\mathrm{g} \cdot \mu_{k} \cdot \mathrm{M}}{\rho \cdot A}}}{\tanh \left(\sqrt{\frac{g \cdot \mu_{k} \cdot \rho \cdot \mathrm{~A}}{\mathrm{M}}} \cdot \mathrm{t}+\operatorname{atanh}\left(\sqrt{\frac{g \cdot \mu_{k} \cdot \mathrm{M}}{\rho \cdot \mathrm{~A}} \cdot \frac{1}{\mathrm{~V}}}\right)\right)}\right) \cdot \Delta \mathrm{t}
\end{aligned}
$$

Given: Hydraulic catapult of Problem 4.133 rolling on level track with resistance, $F_{D}=k U^{2}$ speed $U_{\text {, }}$ starting from rest at $t=0$.

Find: (a) when acceleration is maximum ${ }^{x}$
(b) Sketch of a cceleration vs. time
(c) Value of θ to maximize acceleration, why?
(d) If U will ever reach V_{j} explanation

Solution: Apply x component of momentum equation to accelerating Cv.

Assumptions: (1) $F_{S_{x}}=-F_{D}=-k U^{2}$, where $k=0.92 \mathrm{~N} \cdot \mathrm{~s}^{2} / \mathrm{m}^{2}$
(2) $F_{B x}=0$, since horizontal
(3) Neglect mass of water on vane
(4) Uniform flow in jet

Then
(5) No change in relative velocity on vane

$$
\begin{aligned}
&-k U^{2}-a_{1+} M_{c v}= u_{1}\{-\rho(v-u) A\}+u_{2}\{+\rho(v-v) A\}=-(1+\sin v) \rho(v-v)^{2} A \\
& u_{1}=v-u \quad u_{2}=-(v-u) \sin v
\end{aligned}
$$

so

$$
\begin{equation*}
\frac{d U}{d t}=\frac{\rho A(1+\sin \theta)}{M}(v-u)^{2}-k U^{2} / M \tag{1}
\end{equation*}
$$

(a) Acceleration is maximum at $t=0$, when $U=0$
(b) Acceleration us. time will be

(c) From Eq. $1, d u / d t$ is maximum when $\theta=\pi / 2$ and $\sin \theta=1$
(d) From Ea.i, $\frac{d U}{d t}$ will go to zero when $U<V$; this will be the terminal speed for the cart, U_{t}. From Ea. $1, \frac{d U}{d t}=0$ when

$$
P A(1+\sin \theta)(v-u)^{2}=k v^{2}
$$

or

$$
U=\frac{\left[\frac{f(1(1+\sin \theta)}{k}\right]^{1 / 2}}{1+\left[\frac{f(A(1+\sin \theta)}{k}\right]^{1 / 2}} \mathrm{~V}=0.472 \mathrm{~V}
$$

U will be asymptotic to V.
4.140 The acceleration of the vane/cart assembly of Problem 4.123 is to be controlled as it accelerates from rest by changing the vane angle, θ. A constant acceleration, $a=1.5 \mathrm{~m} / \mathrm{s}^{2}$, is desired. The water jet leaves the nozzle of area $A=0.025 \mathrm{~m}^{2}$, with speed $V=15 \mathrm{~m} / \mathrm{s}$. The vane/cart assembly has a mass of 55 kg ; neglect friction. Determine θ at $t=5 \mathrm{~s}$. Plot $\theta(t)$ for the given constant acceleration over a suitable range of t.

Given: Water jet striking moving vane/cart assembly
Find: \quad Angle θ at $t=5 \mathrm{~s}$; Plot $\theta(\mathrm{t})$

Solution:

Basic equation: Momentum flux in x direction for accelerating CV

$$
F_{S_{x}}+F_{B_{x}}-\int_{\mathrm{CV}} a_{r f_{x}} \rho d \forall=\frac{\partial}{\partial t} \int_{\mathrm{CV}} u_{x y z} \rho d \forall+\int_{\mathrm{CS}} u_{x y z} \rho \vec{V}_{x y z} \cdot d \vec{A}
$$

Assumptions: 1) cahnges in CV 2) Incompressible flow 3) Atmospheric pressure in jet 4) Uniform flow 5) Constant jet relative velocity
Then

$$
\begin{aligned}
& -\mathrm{M} \cdot \mathrm{a}_{\mathrm{rfx}}=\mathrm{u}_{1} \cdot\left(-\rho \cdot \mathrm{V}_{1} \cdot \mathrm{~A}_{1}\right)+\mathrm{u}_{2} \cdot\left(\rho \cdot \mathrm{~V}_{2} \cdot \mathrm{~A}_{2}\right)=-(\mathrm{V}-\mathrm{U}) \cdot[\rho \cdot(\mathrm{V}-\mathrm{U}) \cdot \mathrm{A}]+(\mathrm{V}-\mathrm{U}) \cdot \cos (\theta) \cdot[\rho \cdot(\mathrm{V}-\mathrm{U}) \cdot \mathrm{A}] \\
& -\mathrm{M} \cdot \mathrm{a}_{\mathrm{rfx}}=\rho(\mathrm{V}-\mathrm{U})^{2} \cdot \mathrm{~A} \cdot(\cos (\theta)-1) \quad \text { or } \quad \cos (\theta)=1-\frac{\mathrm{M} \cdot \mathrm{a}_{\mathrm{rfx}}}{\rho \cdot(\mathrm{~V}-\mathrm{U})^{2} \cdot \mathrm{~A}}
\end{aligned}
$$

Since

$$
\begin{aligned}
& \mathrm{a}_{\mathrm{rfx}}=\text { constant then } \\
& \theta=\operatorname{acos}\left[1-\frac{\mathrm{M} \cdot \mathrm{a}_{\mathrm{rfx}}}{\rho \cdot\left(\mathrm{~V}-\mathrm{a}_{\mathrm{rfx}} \cdot \mathrm{t}\right)^{2} \cdot \mathrm{~A}}\right]
\end{aligned}
$$

Using given data

$$
\theta=\operatorname{acos}\left[1-55 \cdot \mathrm{~kg} \times 1.5 \cdot \frac{\mathrm{~m}}{\mathrm{~s}^{2}} \times \frac{\mathrm{m}^{3}}{1000 \cdot \mathrm{~kg}} \times \frac{1}{\left(15 \cdot \frac{\mathrm{~m}}{\mathrm{~s}}-1.5 \cdot \frac{\mathrm{~m}}{\mathrm{~s}^{2}} \times 5 \cdot \mathrm{~s}\right)^{2}} \times \frac{1}{0.025 \cdot \mathrm{~m}^{2}}\right] \quad \theta=19.7 \mathrm{deg} \quad \text { at } \mathrm{t}=5 \mathrm{~s}
$$

Time t (s)

The solution is only valid for θ up to 180° (when $\mathrm{t}=9.14 \mathrm{~s}$). This graph can be plotted in Excel

Given: Vaned cart rolling with negligible resistance.

$$
a_{r t_{x}}=2 \mathrm{~m} / \mathrm{s}^{2}=\text { constant }
$$

Jet area is $A(t)$, programmed.

Find: (a) Expression for $A(t)$ at cart.
(b) $5 k e t c h$ for $t \leqslant 4 \mathrm{~s}$.
(c) Evaluate at $t=2 \mathrm{~s}$.

Solution: Apply x momentum to $C V$ with linear acceleration.
Basic equation:

Assumptions: (1) No resistance to motion
(2) Horizontal motion, so $F_{B_{x}}=0$
(3) Neglect mass of liquid in CV
(4) Uniform flow at each section
(5) All velocitie's measured relative to $C V$
(6) No change in stream area or speed on vane

Then (with $a_{r_{x}}=a$)

$$
\begin{array}{r}
-a M=u_{1}\{-|\rho(V-U) A|\}+u_{2}\{+|\rho(V-v) A|\}=-\frac{3}{2} \rho(V-V)^{2} A \\
u_{1}=V-v \quad u_{2}=(V-U) \cos 120^{\circ}=-\frac{1}{2}(V-U)
\end{array}
$$

Since $a=$ constant, $U=a t$, and

$$
A=A(t)=\frac{2 a M}{3 \rho(V-a t)^{2}}
$$

At $t=0, A(0)=A_{0}=\frac{2 a M}{3 \rho V^{2}}$. Thus $\frac{A}{A_{0}}=\frac{1}{(l-a t / V)^{2}}$.
sketch:

At $t=2 \mathrm{sec}$,

$$
A=\frac{2}{3} \times 2 \frac{m}{s^{2}} \times 3 \mathrm{~kg} \times \frac{\mathrm{m}^{3}}{999 \mathrm{~kg}} \frac{1}{\left[10 \frac{\mathrm{~m}}{\mathrm{~s}}-2 \frac{\mathrm{~m}}{\mathrm{~s}^{2}} \times 25\right]^{2}} \times 10^{6} \frac{\mathrm{~mm}^{2}}{\mathrm{~m}^{2}}=111 \mathrm{~mm}{ }^{2}
$$

Given: Rocket sled with water scop brake. $W=10,000 \mathrm{lbf}$

scoop immersed in trough is $w=6 \mathrm{in}$. wide, $h=3$ in deep.
Find: Time needed to decelerate to 20 mph . Plot: Speedusitime.
Solution: Apply x component of momentum equation to linearly accelerating cV. Basic equation is

$$
F_{S_{x}}^{=}+F_{B_{x}}^{A}-\int_{c v} a_{r f x} \rho d \psi=\frac{\partial}{\partial t} \int_{c v} u_{x y 3} p d \psi+\int_{c s} u_{x y z} p \vec{v}_{x y z} \cdot d \vec{a}
$$

Assumptions:
(1) $F_{5 x}=0$
(2) $F e_{x}=0$
(3) Neglect $u_{x i z}$ and its rate of change in CV
(4) Uniform flow at each section
(5) Speed of water relative to sled is constant

Then

$$
\begin{aligned}
& -a_{f_{x}} M=u_{1}\{-|\rho 0 w h|\}+u_{2}\{\mid \rho U w h /\} ; u_{1}=v, u_{2}=-v \cos \theta \\
& -a_{r f x} \frac{w}{g}=-\rho U^{2} w h(1+\cos 0), \text { or } a_{r f x}=\frac{\rho g U^{2} w h(1+\cos \theta)}{w}
\end{aligned}
$$

Now $a_{r f x}=-\frac{d U}{d t}$, because of coordinate choice. Thus

$$
\frac{d U}{U^{2}}=-\frac{\gamma w h}{w}(1+\cos \theta) d t
$$

and

$$
\begin{equation*}
\int_{U_{i}}^{U} \frac{\partial U}{U^{2}}=-\frac{1}{U}+\frac{1}{U_{i}}=-\frac{\gamma w h}{w}(1+\cos \theta) t \tag{1}
\end{equation*}
$$

Solving for t,

$$
\begin{aligned}
t & =\left[\frac{1}{U}-\frac{1}{U_{i}}\right] \frac{w}{8 w h\left(1+\cos \omega^{2}\right)} \\
& =\left[\frac{1}{20}-\frac{1}{600}\right] \frac{h r}{m i} \times \frac{m i}{5280+t^{2}} \times 3600 \frac{s}{h r} \times \frac{t^{2}}{62.416 f^{2}} \times \frac{1}{6 i n} \times \frac{1}{3 n} \times \frac{144 n^{2}}{f^{2}} \times \frac{10,000184}{1+\cos 30^{\circ}} \\
t & =22.6 \mathrm{~s}
\end{aligned}
$$

The plot is presented on the next page.
solving Eq. 1 for σ,

$$
\begin{align*}
\frac{1}{v} & =\frac{1}{U_{i}}+\frac{\gamma^{2} \omega h}{w}(1+\cos \theta) t=\frac{w+\gamma \gamma^{\prime} \omega h v_{i}(1+\cos \theta) t}{w U_{i}} \\
\text { or } v & =\frac{w U_{i}}{w+\gamma^{\prime} \omega h U_{i}(1+\cos \theta) t} \tag{z}
\end{align*}
$$

Ploting,

Given: Rocket sled slowed by scoop in water trough.
Aerodynamic drag proportional to U^{2} At $U_{0}=300 \mathrm{~m} / \mathrm{s}, F_{0}=90 \mathrm{kN}$. Scoop width, $w=0.3 \mathrm{~m}$

Find: Depth of scoop immersion to slow to $100 \mathrm{~m} / \mathrm{s}$ in trough length, L.
Solution: Apply x component of momentum equation using linearly accelerating $C V$ shown.
Basic equation: $F_{s x}+F_{\phi x}^{=0(1)}-\int_{C V} a_{r f x} \rho d \forall=\frac{\partial^{4}}{\alpha t} \int_{C v}^{o(z)} u_{x y z} \rho d \forall+\int_{C s} u_{x y 3} \rho \vec{V}_{x y z} \cdot d \vec{A}$ Assumptions: (1) $F_{B_{x}}=0$
(2) Neglect rate of change of u in $C v$
(3) un form flow at each section
(4) No Change in relative speed of liquid crossing scoop

Then

$$
\begin{gathered}
-F_{D}-\operatorname{Marfx}:=u_{1}\{-|\rho U w h|\}+u_{2}\{|\rho U w h|\} ; h=s c o o p \text { immersion } \\
u_{1}=-U \quad u_{2}=U \cos \theta
\end{gathered}
$$

But $F_{D}=k U^{2} ; k=\frac{F D_{0}}{U_{0}^{2}}=90 \mathrm{kN} \times \frac{\mathrm{s}^{2}}{(300)^{2} \mathrm{~m}^{2}} \times \frac{10^{3} \mathrm{~N}}{\mathrm{kN}} \times \frac{\mathrm{kg} \cdot \mathrm{m}}{\mathrm{N} \cdot \mathrm{s}^{2}}=1.00 \mathrm{~kg} / \mathrm{m}$

$$
-k U^{2}-M \frac{d U}{d t}=\rho U^{2} w h(1+\cos \theta) \text {, since } a_{r f}=d U / d t,
$$

Thus $-M \frac{d \sigma}{d t}=[k+\rho \omega h(1+\cos \theta)] U^{2}=-M U \frac{d U}{d x}$ or $\frac{d U}{U}=-c d X$, where $c=\frac{k+\rho \omega+h(1+\cos \theta)}{M}$
Integrating, $\ln \frac{U}{U_{0}}=-C X$, so $C=-\frac{1}{X} \ln \frac{U}{U_{0}}$

$$
C=-\frac{1}{800 \mathrm{~m}} \ln \left(\frac{100}{300}\right)=1.37 \times 10^{-3} \mathrm{~m}^{-1}
$$

solving for $h, h=\frac{M c-k}{\rho \omega(1+\cos \theta)}$

$$
\begin{aligned}
& h=\left[8000 \mathrm{~kg}_{\times} \frac{1.37 \times 10^{-3}}{\mathrm{~m}}-1.00 \frac{\mathrm{~kg}}{\mathrm{~m}}\right] \frac{\mathrm{m}^{3}}{999 \mathrm{~kg}} \times \frac{1}{0.3 \mathrm{~m}} \times \frac{1}{\left(1+\cos 30^{\circ}\right)}=0.0179 \mathrm{~m} \\
& h=17.9 \mathrm{~mm}
\end{aligned}
$$

Given: Vehicle accelerated from rest by a hydraulic cataperte. Neglect resistance.

Fino: Vehicle speed at $t=5$ sec. Plot: Vehiclespeceusitime.
Solution: Apply x component of momentum Equation using the linearly accierating $C v$ shown above.
Basic equation: $F_{x}^{=0(1)}+F_{p x}^{=0(2)}-\int_{c v} a_{i x} p d t=\frac{q}{q} \int_{c v} u_{x y 3} p d y+\int_{c s} u_{x y 3} p \vec{v}_{x y 3} \cdot d \vec{d}$
Assumptions: (1) $F_{x}=0$
(2) $F_{B x}=0$
(3) Neglect rims of liquid and rate of change of is in CV
(4) Uniform flow at each section
(5) Jet area and speed with respect to vehicle are constant

Then

$$
-M a_{F} f_{x}=-M \frac{d U}{d t}=u_{1}\left\{-\mid \rho(V W|A|\}+u_{z}\{|f(V-U) A|\}\right.
$$

$$
u_{1}=V-U \quad \quad u_{2}=-(v \cdot v)
$$

00

$$
\frac{d t}{d t}=\frac{2 G(V-U)^{2} A}{M}
$$

Note that $d V=-d(V-U)$, and separate variables to obtain

$$
-\frac{d(v-U)}{(V-t)^{2}}=\frac{2 \rho A}{M} d t
$$

Integrate from $U=0$ at $t=0$ to U at t,

$$
\left.\int_{V-V-V}^{V-U}-\frac{d(v-U)}{(V-U)^{2}}=\frac{1}{V-U}\right]_{V}^{V-r}=\frac{1}{V-U}-\frac{1}{V}=\frac{V-(V-v)}{V(V-U)}=\frac{U}{V(V-U)}=\frac{2 C+}{M} t
$$

Solving,

$$
\begin{equation*}
U=(V-U) \frac{2 f V A}{M} \quad \text { ir } \quad U=V\left[\frac{2 f V A}{1+\frac{2 f V A}{M} t}\right] \tag{1}
\end{equation*}
$$

For the given conditions at $t=s s$,

$$
\begin{aligned}
& \frac{2 \rho V A}{M} t=2 \times 999 \frac{\mathrm{~kg}}{m^{3}} \times \frac{30 \mathrm{~m}}{\mathrm{~s}} \times 0.001 \mathrm{~m} \times 5 \mathrm{~s} \times \frac{1}{100 \mathrm{~kg}}=3.00 \\
& U=30 \mathrm{~m}
\end{aligned}\left[\frac{3.00}{1+3.00}\right]=22.5 \mathrm{~m} / \mathrm{s}
$$

The plat is on the next page.

Problem 4.144

[3] Part 2/2
The speed vs time plot is

Problem 4.145
Given: Cart accelerated from rest by hydraulic cat poult.

$$
F_{0}=k \sigma^{2} ; k=2.0 \mathrm{~N} \cdot \mathrm{~s}^{2} / \mathrm{m}^{2}=
$$

Find: (a) Expression for acceleration in terms of speed, U.
(b) Evaluate at $U=10 \mathrm{~m} / \mathrm{s}$.

(c) Fraction of v_{t}.

Solution: Apply x momentum for av with linear acceleration.
Basic equation:

$$
F_{s_{x}}+F_{B_{x}}-\int_{c v} \operatorname{arr}_{x \rho} \rho d t=\frac{\partial}{\partial t} \int_{C v} u_{x y z} \rho d v+\int_{C S} u_{x y 3 \rho} \rho \vec{v}_{x, y} \cdot d \vec{A}
$$

Assumptions: (1) Horizontal, $F_{B_{x}}=0$
(2) Neglect mass of liquid in Cv (components of u cancel)
(3) Uniform flow at each section
(4) Measure all velocities relative to the CV
(5) No change in stream area or speed on vane

Then

$$
-k v^{2}-a f_{x} M=u_{1}\{-|\rho(v-v) A|\}+u_{2}\{+|\rho(v-v) A|\}=-2 \rho(v-v)^{2} A
$$

$$
u_{1}=v-v \quad u_{2}=-(v-v)
$$

or

$$
a r f_{x}=\frac{d U}{d t}=\frac{2 e(V-V)^{2} A-k U^{2}}{M}
$$

At $U=10 \mathrm{~m} / \mathrm{sec}$

Given: Small waned cart rolling on level track, struck by a watervet, as shown. At $t=0, U_{0}=12.5 \mathrm{~m} / \mathrm{sec}$. Neglect air resistance and rolling resistance.

Find: (a) Time and (b) distance
needed to bring cart to rest, and (c) plot af $V(t), x(t)$.

Solution: Apply x component of momentum using cs and CV shower.

Assumptions: (I) No resistance; $F_{x}=0$
(2) Horizontal; $F_{B_{x}}=0$
(3) Neglect mass of water on vane: ∂, $2 t 0$
(4) No change in speed wirto vane
(5) Uniform flow at each cross-section

Then

$$
\begin{align*}
& -a_{r f} M_{c v}=u_{1}\{-|p(v+v) A|\}+u_{2}\{+|p(v+u) A|\} \\
& a_{r} f_{x}=\frac{d U}{d t} \quad u_{1}=-(v+u) \quad u_{2}=-(v+u) \cos \theta \quad\left(\omega_{1}, \dot{2}+v\right) \tag{i}
\end{align*}
$$

So $\quad-\frac{d V}{d t} M=\rho(V+U)^{2} A-\rho(V+U)^{2} A \cos \theta=\rho(V+U)^{2} A(1-\cos \theta)$
Note $V=$ constant, so $d u=d(v+0)$. Substituting

$$
\begin{equation*}
-\frac{d(v+u)}{(v+u)^{2}}=\frac{e A(1-\cos \theta)}{M} d t \tag{2}
\end{equation*}
$$

Integrate from J_{0} at $t=0$ to stop, when $V=0$

$$
\left.\frac{1}{V+U}\right]_{U=U_{5}}^{U=0}=\frac{1}{V}-\frac{1}{V+U_{0}}=\frac{V+U_{0}-V}{V\left(V+U_{0}\right)}=\frac{U_{0}}{V\left(V+U_{0}\right)}=\frac{\rho A(1-\cos \theta) t}{M}
$$

Thus $t=\frac{U_{0} M}{\rho\left(V+U_{0}\right) V A(1-\cos \theta)}$

$$
\begin{aligned}
& =12.5 \frac{m}{\sec } \times 10.5 k g \times \frac{m^{3}}{999 k 9} \times \frac{\sec }{(12.5+8.25) m} \times \frac{\sec }{8.25 m^{2}} \times \frac{1}{900 \times 10^{-6} m^{2}} \times \frac{1}{\left(1-\cos 00^{\circ}\right)} \\
t & =1.71 \sec (t o s t o p)
\end{aligned}
$$

To find distance note $\frac{d U}{d t}=\frac{d U}{d t} \frac{d 0}{d t}=\frac{d U}{d U} U=U \frac{d U}{d D}: \operatorname{so}$ Tm Eq.

$$
\begin{equation*}
-U \frac{d U}{d 0} M=\rho(v+U)^{2} A(1-\cos \theta) \tag{3}
\end{equation*}
$$

Separating variables $\quad \frac{U d U}{(V+J)^{2}}=-\frac{(A(1-\cos \theta)}{M} d \alpha$

Equation 3 may be integrated. Using tables, and integrating from is at $t=0$ to $\operatorname{stop}(w h e n U=0)$,

$$
\left.\int_{U_{0}^{-}}^{0} \frac{U d U}{(v+U)^{2}}=\left[\ln (V+U)+\frac{v}{V+U}\right]_{U_{0}}^{0}=\ln \left(\frac{V}{V+U_{3}}\right)+\frac{V}{V}-\frac{V}{V+U_{0}}=-\frac{\rho A(1-\cos)}{M}\right)_{\alpha}
$$

simplitynig and solving for ,

$$
\begin{aligned}
A & \left.=-\frac{M}{\rho A(1-\cos)} \ln \left(\frac{V}{V+U_{0}}\right)+1-\frac{V}{V+V_{5}}\right) \\
& =-10.5 k 9 \times \frac{m^{3}}{994 k 9} \times \frac{1}{900 \times 10^{-6} m^{2}} \times \frac{1}{\left(1-\cos 60^{0}\right)}\left[\ln (8.25+12.5)+1-\frac{8.25}{8.25+12.5}\right] \\
A & =7.4 \mathrm{~m}(t 0 s+p)
\end{aligned}
$$

From Eq. 2 the general solution is

$$
\left.\int_{v_{0}}^{v}-\frac{d(v+u)}{(v+u)^{2}}=\frac{1}{v+u}\right]_{U_{0}}^{v}=\frac{1}{v+u}-\frac{1}{v+c_{0}}=\frac{\left(v+u_{0}\right)-(v+u)}{(v+v)(v+(b)}=\frac{\rho A(1-\cos \theta) t}{M}=a t
$$

Thus $u_{0}-u=a(v+u)\left(v+v_{0}\right) t=a v\left(v+u_{0}\right) t+a v\left(v+u_{0}\right) t \quad\left\{\right.$ Let $\left.b=v+v_{0}\right\}$
Simplifywig, $U=\frac{V_{0}-a v b t}{1+a b t}$
Acceleration is found from Eq.

$$
a_{x}=\frac{d U}{d t}=\frac{\rho A\left(1-\cos (v)(v+U)^{2}\right.}{M}=a(v+u)^{2}
$$

Integrate Eq, 4 to get $X(t)$:

$$
\begin{aligned}
& U=\frac{d X}{d t}=\frac{U_{0}-a b v t}{1+a b t} \\
& d \bar{X}=\frac{U_{0}}{1+a b t} d t-\frac{a b v t}{1+a b t} d t
\end{aligned}
$$

Integrating

$$
\begin{aligned}
& \left.X=\frac{b b}{a b} \ln (1+a b t)\right]_{0}^{t}-\frac{V}{a b} \int_{0}^{t} \frac{x}{1+x} d x=\left[\frac{b_{0}}{a b} \ln (1+a b t)-\frac{V}{a b}(1+a b t-\ln (1+a t t)]_{0}^{t}\right. \\
& X=\frac{V_{0}}{a b} \ln (1+a b t)-\frac{V}{a b}[a b t-\ln (1+a b t)]
\end{aligned}
$$

Numerical values and plots are on the next page.

Acceleration, Velocity, and Position of Cart vs. Time:

$\stackrel{\text { N }}{ }$		
	$\bar{\square} \mathrm{E}$	
		S $\begin{aligned} & \text { © } \\ & \stackrel{y}{E} \end{aligned}$

rad

degrees
$\mathrm{kg} / \mathrm{m}^{3}$
m^{-1}
$\mathrm{~m} / \mathrm{s}$
※

Problem 4.147
Given: Vane/slider assembly moving under influence of jet.

$$
F_{R}=k U_{;} k=7.5 \mathrm{~N} \cdot \mathrm{~s} / \mathrm{m}
$$

Find: (a) Accekration at instant when $U=10 \mathrm{~m} / \mathrm{s}$.

(b) Terminal speed of slider.

Solution: Apply x momentum equation to linearly accelerating $C V$.
Basic equation:

$$
F_{s_{x}}+F F_{\beta_{x}}^{=0(1)}-\int_{N} a_{r_{x}} \rho d t=\frac{\partial}{\tilde{p}} \int_{C v}^{\approx 0(z)} u_{x y z} \rho d v+\int_{c s} u_{x y 3} \rho \vec{v}_{x y b} \cdot d \vec{A}
$$

Assumptions: (1) Horizontah so $F_{B_{x}}=0$
(2) Neglect mass of liquid on vane, uso on vane
(3) Uniform flow at each section
(4) Measure velocities relative to CV

Then

$$
\begin{gathered}
-k U-a_{f_{x} M}=u_{1}\{-|\rho(v-U) A|\}+u_{2}\left\{+\dot{m}_{2}\right\}+u_{3}\left\{+\dot{m}_{3}\right\} \\
u_{1}=V-U \quad u_{2}=0 \quad u_{3}=0 \\
-k U-M \frac{d U}{d t}=-\rho(V-U)^{2} A
\end{gathered}
$$

or

$$
\begin{aligned}
\frac{d U}{d t} & =\frac{\rho(V-U)^{2} A}{M}-\frac{k U}{M} \\
& =999 \frac{\mathrm{~kg}}{m^{3}}(20-10)^{2} \frac{\mathrm{~m}^{2}}{\mathrm{~s}^{2}} \times 0.005 m^{2} \times \frac{1}{30 \mathrm{~kg}}-7.5 \frac{\mathrm{~N} \cdot \mathrm{~S}}{m} \times 10 \frac{\mathrm{~m}}{3} \times \frac{1}{30 \mathrm{~kg}} \times \frac{\mathrm{kg} \cdot \mathrm{~m}}{\mathrm{~N} \cdot \mathrm{~s}^{2}}
\end{aligned}
$$

$$
\frac{d U}{d t}=14.2 \mathrm{~m} / \mathrm{s}^{2}
$$

(at $U=10 \mathrm{~m} / \mathrm{s}$)
At terminal speed, $U=U_{t}$ and $d U / d t=0$, so

$$
\begin{aligned}
& 0=\frac{\rho(V-U)^{2} A}{M}-\frac{k U}{M} \text { or } V^{2}-2 U V+U^{2}-\frac{k}{\rho A} U=0 \\
& U^{2}=\left(2 V+\frac{k}{\rho A}\right) U+V^{2}=0 \\
& U=\frac{2 V+k / \rho A \pm \sqrt{(2 V+k / \rho A)^{2}-4 V^{2}}}{2}=V\left\{\left(1+\frac{k}{2 \rho V A}\right) \pm \sqrt{\left(1+\frac{k}{2 \rho V A}\right)^{2}-1}\right\} \\
& 1+\frac{k}{2 \rho V A}=1+\frac{1}{2} \times 7.5 \frac{\mathrm{~N} \cdot \mathrm{~s}}{m}=\frac{m 3}{499 \mathrm{~kg}} \times \frac{\mathrm{s}}{20 \mathrm{~m}} \times \frac{1}{0.005 \mathrm{~m}^{2}}=\frac{k g \cdot m}{N \cdot \mathrm{~s}^{2}}=1.0375 \\
& U=V\left\{1.0375 \pm \sqrt{(1.0375)^{2}-1}\right\}=0.761 \mathrm{~V}=0.76 / \times 20 \frac{\mathrm{~m}}{5}=15.2 \mathrm{~m} / \mathrm{s} \\
&\left\{\text { The negative root was chosen so } U_{t}<V, \text { as required. }\right\}
\end{aligned}
$$

4.148 For the vane/slider problem of Problem 4.147, find and plot expressions for the acceleration, speed, and position of the slider as functions of time. (Consider numerical integration.)

Given: Data on vane/slider

Find: Formula for acceleration, speed, and position; plot

Solution:

The given data is $\quad \rho=999 \cdot \frac{\mathrm{~kg}}{\mathrm{~m}^{3}} \quad \mathrm{M}=30 \cdot \mathrm{~kg} \quad \mathrm{~A}=0.005 \cdot \mathrm{~m}^{2} \quad \mathrm{~V}=20 \cdot \frac{\mathrm{~m}}{\mathrm{~s}} \quad \mathrm{k}=7.5 \cdot \frac{\mathrm{~N} \cdot \mathrm{~s}}{\mathrm{~m}}$
The equation of motion, from Problem 4.147, is $\frac{d U}{d t}=\frac{\rho \cdot(V-U)^{2} \cdot A}{M}-\frac{k \cdot U}{M}$

The acceleration is thus $a=\frac{\rho \cdot(V-U)^{2} \cdot A}{M}-\frac{k \cdot U}{M}$
The differential equation for U can be solved analytically, but is quite messy. Instead we use a simple numerical method Euler's method

$$
\mathrm{U}(\mathrm{n}+1)=\mathrm{U}(\mathrm{n})+\left[\frac{\rho \cdot(\mathrm{V}-\mathrm{U})^{2} \cdot \mathrm{~A}}{\mathrm{M}}-\frac{\mathrm{k} \cdot \mathrm{U}}{\mathrm{M}}\right] \cdot \Delta \mathrm{t} \quad \text { where } \Delta \mathrm{t} \text { is the time step }
$$

For the position x

$$
\frac{\mathrm{dx}}{\mathrm{dt}}=\mathrm{U}
$$

so

$$
\mathrm{x}(\mathrm{n}+1)=\mathrm{x}(\mathrm{n})+\mathrm{U} \cdot \Delta \mathrm{t}
$$

The final set of equations is

$$
\begin{aligned}
& U(n+1)=U(n)+\left[\frac{\rho \cdot(V-U)^{2} \cdot A}{M}-\frac{k \cdot U}{M}\right] \cdot \Delta t \\
& a=\frac{\rho \cdot(V-U)^{2} \cdot A}{M}-\frac{k \cdot U}{M} \\
& x(n+1)=x(n)+U \cdot \Delta t
\end{aligned}
$$

The results are plotted in the corresponding Excel workbook
4.148 For the vane/slider problem of Problem 4.147, find and
plot expressions for the acceleration, speed, and position of the
slider as functions of time. (Consider numerical integration.)

Given: Data on vane/slider
Find: \quad Formula for acceleration, speed, and position; plot

Solution:

The final set of equations is

$$
\begin{aligned}
& U(n+1)=U(n)+\left[\frac{\rho \cdot(V-U)^{2} \cdot A}{M}-\frac{k \cdot U}{M}\right] \cdot \Delta t \\
& a=\frac{\rho \cdot(V-U)^{2} \cdot A}{M}-\frac{k \cdot U}{M} \\
& x(n+1)=x(n)+U \cdot \Delta t
\end{aligned}
$$

$\rho=$	999	$\mathrm{~kg} / \mathrm{m}^{3}$
$k=$	7.5	$\mathrm{~N} . \mathrm{s} / \mathrm{m}$
$A=$	0.005	$\mathrm{~m}^{2}$
$V=$	20	$\mathrm{~m} / \mathrm{s}$
$M=$	30	kg
$\Delta t=$	0.1	s

$\boldsymbol{t} \mathbf{(s)}$	$\boldsymbol{x} \mathbf{(m)}$	$\boldsymbol{U}(\mathbf{m} / \mathbf{s})$	$\boldsymbol{a}\left(\mathbf{m} / \mathbf{s}^{\mathbf{2}}\right)$
0.0	0.0	0.0	66.6
0.1	0.0	6.7	28.0
0.2	0.7	9.5	16.1
0.3	1.6	11.1	10.5
0.4	2.7	12.1	7.30
0.5	3.9	12.9	5.29
0.6	5.2	13.4	3.95
0.7	6.6	13.8	3.01
0.8	7.9	14.1	2.32
0.9	9.3	14.3	1.82
1.0	10.8	14.5	1.43
1.1	12.2	14.6	1.14
1.2	13.7	14.7	0.907
1.3	15.2	14.8	0.727
1.4	16.6	14.9	0.585
1.5	18.1	15.0	0.472
1.6	19.6	15.0	0.381
1.7	21.1	15.1	0.309
1.8	22.6	15.1	0.250
1.9	24.1	15.1	0.203
2.0	25.7	15.1	0.165
2.1	27.2	15.1	0.134
2.2	28.7	15.2	0.109
2.3	30.2	15.2	0.0889
2.4	31.7	15.2	0.0724
2.5	33.2	15.2	0.0590
2.6	34.8	15.2	0.0481
2.7	36.3	15.2	0.0392
2.8	37.8	15.2	0.0319
2.9	39.3	15.2	0.0260
3.0	40.8	15.2	0.0212

Position x vs Time							
Velocity U vs Time							

Given: Block and jet as shown.
Jet strikes block at $t>0$.
Find: (a) Expression for acceleration.
(b) Time at which $U=0$.

Solution: Apply x momentum equation
to linearly's accelerating $C V$.
Basic equation:

Assumptions: (1) No pressure or friction forces, so $F_{3 x}=0$
(z) Horizontal, so $\mathrm{F}_{\mathrm{B}_{x}}=0$
(3) Neglect mass of liquid in $\angle v, u \approx 0$ in $C v$
(4) Uniform flow at each section
(5) Measure velocities's relative to CV

Then

$$
\begin{array}{r}
-M a_{f_{x}}=-M \frac{d V}{d t}=u_{1}\{-|\rho(V+\sigma) A|\}+u_{2}\left\{+\dot{m}_{2}\right\}+u_{3}\left\{+\dot{m}_{3}\right\} \\
u_{1}=-(V+V) \quad u_{2}=0 \quad u_{3}=0
\end{array}
$$

or

$$
\frac{d U}{d t}=-\frac{\rho(V+U)^{2} A}{M}
$$

But, since $V=$ constant, $d U=d(V+U)$, so

$$
\frac{d(V+U)}{(V+U)^{2}}=-\frac{P A}{M} d t
$$

Integrating from U_{0} at $t=0$ to $U=0$ at t

$$
\left.\int_{V+U_{0}}^{V} \frac{d(V+(V)}{(V+V)^{2}}=-\frac{1}{(V+V)}\right]_{V+U_{0}}^{V}=-\frac{1}{V}+\frac{1}{V+U_{0}}=\frac{-U_{0}}{V\left(V+U_{0}\right)}=-\frac{\rho A t}{M}
$$

Solving, $t=\frac{M U_{0}}{\rho V A\left(V+U_{0}\right)}=\frac{M}{\rho V A\left(1+V / U_{0}\right)}$

Given: Block rolling between opposing jets, as shown.
speed is to at $t=0$.
There is no resistance for $t>0$.

Find: (a) Expression for acceleration, $a(t)$.
(b) Expression for speed, $U(t)$.

Solution: Apply x momentum to linearly accelerating $C V$.
Basic equation:

Assumptions: (1) No pressure or friction farces, so $F_{3 x}=0$
(2) Horizontal, so $F_{B_{x}}=0$
(3) Neglect mass of liquid in CV ; usO in CV
(4) Uniform flow at each section
(5) Measure velocities relative to CV

Then

$$
\begin{aligned}
& -a n x_{x} M=-M \frac{d V}{d t}=u_{1}\{-|\rho(V-U) A|\}+u_{2}\{-|\rho(V+U) A|\}+u_{3}\left\{\dot{m}_{g}\right\}+u_{4}\left\{\dot{m}_{4}\right\} \\
& u_{1}=v-v \quad u_{2}=-(v+v) \quad u_{3}=0 \quad u_{4}=0
\end{aligned}
$$

or

$$
-M \frac{d U}{d t}=\rho A\left[-(V-U)^{2}+(V+U)^{2}\right]=\rho A[4 U V]=4 \rho V A V
$$

Thus $\quad \frac{d U}{U}=-\frac{4 \rho V A}{M} d t$
Integrating $\left.\int_{U_{0}}^{U} \frac{d U}{U}=\ln U\right]_{U_{0}}^{U}=\ln \frac{U}{U_{0}}=-\frac{4 e V A}{M} t$
or

$$
U(t)=U_{0} e^{-\frac{4 \rho V A}{M} t}
$$

Also

$$
a(t)=\frac{d U}{d t}=-\frac{4 \rho V A}{M} U_{0} e^{-\frac{4 \mu A}{M} t}
$$

,4.151 Consider the diagram of Problem 4.149. If $M=100 \mathrm{~kg}$, $\rho=999 \mathrm{~kg} / \mathrm{m}^{3}$, and $A=0.01 \mathrm{~m}^{2}$, find the jet speed V required for the cart to be brought to rest after one second if the initial speed of the cart is $U_{0}=5 \mathrm{~m} / \mathrm{s}$. For this condition, plot the speed U and position x of the cart as functions of time. What is the maximum value of x, and how long does the cart take to return to its initial
 position?

Given:

 Data on systemFind: Jet speed to stop cart after 1 s ; plot speed \& position; maximum x ; time to return to origin

Solution:

The given data is

$$
\rho=999 \cdot \frac{\mathrm{~kg}}{\mathrm{~m}^{3}} \quad \mathrm{M}=100 \cdot \mathrm{~kg}
$$

$$
\mathrm{A}=0.01 \cdot \mathrm{~m}^{2}
$$

$$
\mathrm{U}_{0}=5 \cdot \frac{\mathrm{~m}}{\mathrm{~s}}
$$

The equation of motion, from Problem 4.149, is $\frac{d U}{d t}=-\frac{\rho \cdot(V+U)^{2} \cdot A}{M}$
which leads to $\quad \frac{d(V+U)}{(V+U)^{2}}=-\left(\frac{\rho \cdot A}{M} \cdot d t\right)$

Integrating and using the IC $U=U_{0}$ at $t=0$

$$
\mathrm{U}=-\mathrm{V}+\frac{\mathrm{V}+\mathrm{U}_{0}}{1+\frac{\rho \cdot \mathrm{A} \cdot\left(\mathrm{~V}+\mathrm{U}_{0}\right)}{\mathrm{M}} \cdot \mathrm{t}}
$$

To find the jet speed V to stop the cart after 1 s , solve the above equation for V, with $U=0$ and $t=1 \mathrm{~s}$. (The equation becomes a quadratic in V). Instead we use Excel's Goal Seek in the associated workbook

From Excel

$$
\mathrm{V}=5 \cdot \frac{\mathrm{~m}}{\mathrm{~s}}
$$

For the position x we need to integrate

$$
\frac{\mathrm{dx}}{\mathrm{dt}}=\mathrm{U}=-\mathrm{V}+\frac{\mathrm{V}+\mathrm{U}_{0}}{1+\frac{\rho \cdot \mathrm{A} \cdot\left(\mathrm{~V}+\mathrm{U}_{0}\right)}{\mathrm{M}} \cdot \mathrm{t}}
$$

The result is

$$
x=-V \cdot t+\frac{M}{\rho \cdot A} \cdot \ln \left[1+\frac{\rho \cdot A \cdot\left(V+U_{0}\right)}{M} \cdot t\right]
$$

This equation (or the one for U with $U=0$) can be easily used to find the maximum value of x by differentiating, as well as the time for x to be zero again. Instead we use Excel's Goal Seek and Solver in the associated workbook

From Excel

$$
\mathrm{x}_{\max }=1.93 \cdot \mathrm{~m} \quad \mathrm{t}(\mathrm{x}=0)=2.51 \cdot \mathrm{~s}
$$

The complete set of equations is

$$
U=-V+\frac{V+U_{0}}{1+\frac{\rho \cdot A \cdot\left(V+U_{0}\right)}{M} \cdot t} \quad x=-V \cdot t+\frac{M}{\rho \cdot A} \cdot \ln \left[1+\frac{\rho \cdot A \cdot\left(V+U_{0}\right)}{M} \cdot t\right]
$$

The plots are presented in the Excel workbook
4.151 Consider the diagram of Problem 4.149. If $M=100 \mathrm{~kg}$, $\rho=999 \mathrm{~kg} / \mathrm{m}^{3}$, and $A=0.01 \mathrm{~m}^{2}$, find the jet speed V required for the cart to be brought to rest after one second if the initial speed of the cart is $U_{0}=5 \mathrm{~m} / \mathrm{s}$. For this condition, plot the speed U and position x of the cart as functions of time. What is the maximum value of x, and how long does the cart take to return to its initial position?

Given: Data on system

Find: Jet speed to stop cart after 1 s ; plot speed \& position; maximum x ; time to return to origin

Solution:

The complete set of equations is

$$
U=-V+\frac{V+U_{0}}{1+\frac{\rho \cdot A \cdot\left(V+U_{0}\right)}{M} \cdot t} \quad x=-V \cdot t+\frac{M}{\rho \cdot A} \cdot \ln \left[1+\frac{\rho \cdot A \cdot\left(V+U_{0}\right)}{M} \cdot t\right]
$$

$$
\begin{array}{rll}
M= & 100 & \mathrm{~kg} \\
\rho= & 999 & \mathrm{~kg} / \mathrm{m}^{3} \\
A= & 0.01 & \mathrm{~m}^{2} \\
U_{\mathrm{o}} & =5 & \mathrm{~m} / \mathrm{s}
\end{array}
$$

$\boldsymbol{t} \mathbf{(s)}$	$\boldsymbol{X} \mathbf{(m)}$	$\boldsymbol{U}(\mathbf{m} / \mathbf{s})$
0.0	0.00	5.00
0.2	0.82	3.33
0.4	1.36	2.14
0.6	1.70	1.25
0.8	1.88	0.56
1.0	1.93	0.00
1.2	1.88	-0.45
1.4	1.75	-0.83
1.6	1.56	-1.15
1.8	1.30	-1.43
2.0	0.99	-1.67
2.2	0.63	-1.88
2.4	0.24	-2.06
2.6	-0.19	-2.22
2.8	-0.65	-2.37
3.0	-1.14	-2.50

To find V for $U=0$ in 1 s , use Goal Seek

$\boldsymbol{t}(\mathbf{s})$	$\boldsymbol{U}(\mathbf{m} / \mathbf{s})$	$\boldsymbol{V}(\mathbf{m} / \mathbf{s})$
1.0	0.00	5.00

To find the maximum x, use Solver

$\boldsymbol{t} \mathbf{(S)}$	$\boldsymbol{x} \mathbf{(m)}$
1.0	1.93

To find the time at which $x=0$ use Goal Seek

$\boldsymbol{t} \mathbf{(\mathbf { s })}$	$\boldsymbol{x} \mathbf{(m)}$
2.51	0.00

Given: Block rolling between opposing jets, as shown.

At $t=0$, block moves at $\psi_{6}=10 \frac{\mathrm{~m}}{\mathrm{~s}}$ starting from $X=0$.

Find: (a) Time to reduce speed to
 $v=0.5 \mathrm{~m} / \mathrm{s}$.
(b) Position at that instant.

Solution: Apply x momentum equation to linearly accelerating CV.
Basic equation:

Assumptions: (1) No pressure or friction forces, so $E_{s_{x}}=0$
(z) Horizontal, so $F_{B x}=0$
(3) Neglect mass of liquid in $\mathrm{CV} ; \mu \approx 0$ in Cv
(4) Uniform flow at each section
(5) Measure velocities relative to CV

Then

$$
\begin{array}{r}
-a_{n x_{2}} M=-M \frac{d V}{d t}=u_{1}\left\{-\left|\rho(v-V)_{A}\right|\right\}+u_{2}\{-|\rho(V+V) A|\}+u_{3}\left\{\dot{m}_{3}\right\}+u_{4}\left\{\dot{n}_{4}\right\} \\
u_{1}=V-v \quad u_{2}=-(v+v) \quad u_{3}=0 \quad u_{4}=0
\end{array}
$$

or

$$
-M \frac{d U}{d t}=\rho A\left[-(V-V)^{2}+(V+U)^{2}\right]=\rho A[4 v V]=4 \rho V A U
$$

Thus

$$
\begin{equation*}
\frac{d U}{U}=-\frac{4 \rho V_{A}}{M} d t \tag{1}
\end{equation*}
$$

Integrating, $\left.\int_{v_{0}}^{U} \frac{d V}{U}=\ln U\right]_{V_{0}}^{U}=\ln \frac{V}{U_{0}}=-\frac{4 \mu V A}{M} t$
Thus $t=-\frac{M}{4 \rho V A} \ln \frac{V}{V_{0}}=-\frac{1}{4} \times \frac{M}{\rho V A} \ln \frac{0.5}{10}=0.750 \frac{\mathrm{M}}{\rho V A}$
From Eq.1, $U(t)=\frac{d X}{d t}=U_{0} e^{-\frac{4 e V A}{M} t}$
Integrating, $\left.X=\int_{0}^{X} d X=\int_{0}^{t} U_{0} e^{-\frac{4 \rho V A}{M}} t t=-\frac{M U_{0}}{4 \rho V A} e^{-\frac{4 \rho V A}{M} t}\right]_{0}^{t}$
$X=\frac{M U_{0}}{4 \rho V A}\left[1-e^{-\frac{\mu \rho V_{A}}{M} t}\right]=\frac{0.95}{4} \frac{M U_{0}}{\rho V A}=0.238 \frac{M U_{0}}{\rho V A}$,$X$

Problem *4.153

*4.153 A vertical jet of water impinges on a horizontal disk as shown. The disk assembly mass is 30 kg . When the disk is 3 m above the nozzle exit, it is moving upward at $U=5 \mathrm{~m} / \mathrm{s}$. Compute the vertical acceleration of the disk at this instant.

Given: Water jet striking moving disk
Find: \quad Acceleration of disk when at a height of 3 m

Solution:

Basic equations: Bernoulli; Momentum flux in z direction (treated as upwards) for linear accelerating CV

$$
\frac{\mathrm{p}}{\rho}+\frac{\mathrm{V}^{2}}{2}+\mathrm{g} \cdot \mathrm{z}=\text { constant } \quad F_{S_{z}}+F_{B_{z}}-\int_{\mathrm{CV}} a_{r f_{z}} \rho d \forall=\frac{\partial}{\partial t} \int_{\mathrm{CV}} w_{x y z} \rho d \forall+\int_{\mathrm{CS}} w_{x y z} \rho \vec{V}_{x y z} \cdot d \vec{A}
$$

Assumptions: 1) Steady flow 2) Incompressible flow 3) Atmospheric pressure in jet 4) Uniform fl(odll in jet)
The Bernoulli equation becomes $\quad \frac{\mathrm{V}_{0}{ }^{2}}{2}+\mathrm{g} \cdot 0=\frac{\mathrm{V}_{1}{ }^{2}}{2}+\mathrm{g} \cdot\left(\mathrm{z}-\mathrm{z}_{0}\right) \quad \mathrm{V}_{1}=\sqrt{\mathrm{V}_{0}{ }^{2}+2 \cdot \mathrm{~g} \cdot\left(\mathrm{z}_{0}-\mathrm{z}\right)}$

$$
\mathrm{V}_{1}=\sqrt{\left(15 \cdot \frac{\mathrm{~m}}{\mathrm{~s}}\right)^{2}+2 \times 9.81 \cdot \frac{\mathrm{~m}}{\mathrm{~s}} \cdot(0-3) \cdot \mathrm{m}} \quad \mathrm{~V}_{1}=12.9 \frac{\mathrm{~m}}{\mathrm{~s}}
$$

The momentum equation becomes

$$
-\mathrm{W}-\mathrm{M} \cdot \mathrm{a}_{\mathrm{rfz}}=\mathrm{w}_{1} \cdot\left(-\rho \cdot \mathrm{V}_{1} \cdot \mathrm{~A}_{1}\right)+\mathrm{w}_{2} \cdot\left(\rho \cdot \mathrm{~V}_{2} \cdot \mathrm{~A}_{2}\right)=\left(\mathrm{V}_{1}-\mathrm{U}\right) \cdot\left[-\rho \cdot\left(\mathrm{V}_{1}-\mathrm{U}\right) \cdot \mathrm{A}_{1}\right]+0
$$

Hence $\quad a_{r f z}=\frac{\rho \cdot\left(V_{1}-U\right)^{2} \cdot A_{1}-W}{M}=\frac{\rho \cdot\left(V_{1}-U\right)^{2} \cdot A_{1}}{M}-g=\frac{\rho \cdot\left(V_{1}-U\right)^{2} \cdot A_{0} \cdot \frac{V_{0}}{V_{1}}}{M}-g \quad$ using $\quad V_{1} \cdot A_{1}=V_{0} \cdot A_{0}$

$$
\mathrm{a}_{\mathrm{rfz}}=1000 \cdot \frac{\mathrm{~kg}}{\mathrm{~m}^{3}} \times\left[(12.9-5) \cdot \frac{\mathrm{m}}{\mathrm{~s}}\right]^{2} \times 0.005 \cdot \mathrm{~m}^{2} \times \frac{15}{12.9} \times \frac{1}{30 \cdot \mathrm{~kg}}-9.81 \cdot \frac{\mathrm{~m}}{\mathrm{~s}^{2}} \quad \mathrm{a}_{\mathrm{rfz}}=2.28 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}
$$

Problem *4.154

*4.154 A vertical jet of water leaves a $75-\mathrm{mm}$ diameter nozzle. The jet impinges on a horizontal disk (see Problem 4.153). The disk is constrained horizontally but is free to move vertically. The mass of the disk is 35 kg . Plot disk mass versus flow rate to determine the water flow rate required to suspend the disk 3 m above the jet exit plane.

Given: Water jet striking disk

Find: Plot mass versus flow rate to find flow rate for a steady height of 3 m

Solution:

Basic equations: Bernoulli; Momentum flux in z direction (treated as upwards)

$$
\frac{\mathrm{p}}{\rho}+\frac{\mathrm{V}^{2}}{2}+\mathrm{g} \cdot \mathrm{z}=\text { constant } \quad F_{z}=F_{S_{z}}+F_{B_{z}}=\frac{\partial}{\partial t} \int_{\mathrm{CV}} w \rho d \forall+\int_{\mathrm{CS}} w \rho \vec{V} \cdot d \vec{A}
$$

Assumptions: 1) Steady flow 2) Incompressible flow 3) Atmospheric pressure in jet 4) Uniform fl(adll in jet)
The Bernoulli equation becomes $\quad \frac{\mathrm{V}_{0}{ }^{2}}{2}+\mathrm{g} \cdot 0=\frac{\mathrm{V}_{1}{ }^{2}}{2}+\mathrm{g} \cdot \mathrm{h} \quad \mathrm{V}_{1}=\sqrt{\mathrm{V}_{0}{ }^{2}-2 \cdot \mathrm{~g} \cdot \mathrm{~h}}$
The momentum equation becomes

$$
\begin{array}{rll}
& -\mathrm{M} \cdot \mathrm{~g}=\mathrm{w}_{1} \cdot\left(-\rho \cdot \mathrm{V}_{1} \cdot \mathrm{~A}_{1}\right)+\mathrm{w}_{2} \cdot\left(\rho \cdot \mathrm{~V}_{2} \cdot \mathrm{~A}_{2}\right)=\mathrm{V}_{1} \cdot\left(-\rho \cdot \mathrm{V}_{1} \cdot \mathrm{~A}_{1}\right)+0 & \\
\text { Hence } \quad & \text { but from continuity } & \mathrm{V}_{1} \cdot \mathrm{~A}_{1}=\mathrm{V}_{0} \cdot \mathrm{~A}_{0} \\
& \mathrm{~g} \cdot \mathrm{~V}_{1} \cdot \mathrm{~A}_{1} \\
\mathrm{M}=\frac{\rho \cdot \mathrm{V}_{1} \cdot \mathrm{~V}_{0} \cdot \mathrm{~A}_{0}}{\mathrm{~g}}=\frac{\pi}{4} \cdot \frac{\rho \cdot \mathrm{~V}_{0} \cdot \mathrm{D}_{0}^{2}}{\mathrm{~g}} \cdot \sqrt{\mathrm{~V}_{0}^{2}-2 \cdot \mathrm{~g} \cdot \mathrm{~h}} \quad \text { and also } & \mathrm{Q}=\mathrm{V}_{0} \cdot \mathrm{~A}_{0}
\end{array}
$$

This equation is difficult to solve for V_{0} for a given M . Instead we plot first:

This graph can be parametrically plotted in Excel. The Goal Seek or Solver feature can be used to find Q when M = 35 kg

$$
\mathrm{Q}=0.0469 \cdot \frac{\mathrm{~m}^{3}}{\mathrm{~s}}
$$

Problem 4.155
Given: Racket shed on horizontal track, sowed by retro- rocket.
Initial mass $M_{0}=1500 \mathrm{~kg}$ Initiaispeced $U_{0}=500 \mathrm{~m} / \mathrm{s}$
Mass fou rate
$\dot{m}=7.75 \mathrm{~kg} / \mathrm{s}$
Exhaust speed $V_{e}=2500 \mathrm{~m} / \mathrm{s}$
Firing time $\quad t_{b o}=20.0 \mathrm{~s}$
Neglect aerodynamic drag and rolling resistance.
Find: (a) Algebraic expression for sled speed U as a function of t.
(b) Speed at end of retro-rocket firing.

Solution: Apply x-component of momentum equation to the /nearly accelerating $C V$ shown.
From continuity,

$$
M_{C V}=M_{0}-\dot{r} t, t<t_{b 0}
$$

Assumptions: (1) No pressure, drag, or rolling resistance so $F_{s x}=0$
(2) Horizontal motion, $30 F_{B_{x}}=0$
(3) Negket unsteady effects within CV
(4) Uniform flow at no 33^{l} ex exit plane
(5) $p_{e}=p_{a t m}$

Then $-a_{r f_{x}} M_{C V}=u_{e}\{+\dot{m}\}=+V_{e \dot{m}}$ or $\frac{d U}{d t}=-\frac{V_{e} \dot{m}}{M_{A V}}=-\frac{V_{e} \dot{m}}{M_{0}-\dot{r} t}$

$$
u_{e}=v_{e}
$$

Thus $d U=V_{e}\left(\frac{-\dot{m} d t}{M_{0} \dot{m} t}\right)$ and $U-V_{b}=V_{e} \ln \left(M_{0}-\dot{m} t\right)_{0}^{t}=V_{e} \ln \left(1-\frac{\dot{m} t}{M_{0}}\right)$

$$
U(t)=U_{0}+V_{e} \ln \left(1-\frac{\dot{m}^{t}}{M_{0}}\right) ; t<t_{b_{0}}
$$

At $t_{b 0}, U\left(t_{b 0}\right)=500 \frac{\mathrm{~m}}{\mathrm{~s}}+2500 \frac{\mathrm{~m}}{\mathrm{~s}} \times \ln \left(1-7.75 \frac{\mathrm{~kg}}{\mathrm{~s}} \times 20.0 \mathrm{~s}_{\times} \frac{1}{1500 \mathrm{~kg}}\right)$

$$
U\left(t_{\infty}\right)=227 \mathrm{~m} / \mathrm{s}
$$

Problem 4.156
Given: space capsule in levelfight above atmosphere.

$$
\begin{aligned}
& U_{0}=8.0 \cdot \mathrm{~km} / \mathrm{s} \\
& M_{0}=1600 \mathrm{~kg} \\
& \dot{m}=8 \mathrm{~kg} / \mathrm{s} \\
& V_{e}=3000 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

Find: Tine to reduce speed to $U=5.00 \mathrm{~km} / \mathrm{s}$.
Solution: Apply x component of momentwen to cv with linear acceleration.
Basic equation:

$$
\begin{aligned}
& =\alpha(1)=o(z) \\
& F_{x}+F_{\phi x}-\int_{c v} a_{r f x} \rho d t=\frac{\partial}{\partial t} \int_{c v} \hat{\tilde{f}}_{x y z}^{o(4)} \\
&
\end{aligned}
$$

Asscemptions: (1) No resistance; $F_{3 x}=0$
(2) Itorizontal; $F_{B x}=0$
(3) Use velocities measured relative to CV
(4) Neglect velocity within CV
(5) Uniform flow at exit plane with negligible pe (given)

From continuity,

$$
\frac{d M}{d t}=\frac{\partial}{\partial t} \int_{C v} \rho d t=-\int_{C S} \rho \vec{V}_{x y z} \cdot d \vec{A}=-\dot{m} ; M(t)=M_{0}-\dot{m} t
$$

From momentum,

$$
-a_{r f_{x} M}=-\frac{d V}{d t}\left(M_{0}-\dot{m} t\right)=u_{e}\{+\dot{m}\}=V_{e} \dot{m}
$$

Thus

$$
\frac{d U}{d t}=-\frac{V_{e} \dot{m}}{M_{0}-\dot{m} t}
$$

$$
u_{e}=v_{e}
$$

Integrating, $\left.U-U_{0}=V_{e} \int_{0}^{t} \frac{-\dot{m} d t}{M_{0}-\dot{m} t}=V_{e} \ln \left(M_{0}-\dot{m} t\right)\right]_{0}^{t}=V_{e} \ln \left(\frac{M_{0}-\dot{m} t}{M_{0}}\right)$
Solving for t,

$$
\begin{aligned}
& \text { In for t, } \quad \frac{M_{0}-m^{\circ} t}{M_{0}}=e^{\frac{U-U_{0}}{V_{e}}} ; M_{0}-\dot{m} t=M_{0} e^{v-V_{5} / V_{e}} \\
& =\frac{M_{0}}{\dot{m}}\left(1-e^{\left.U-v_{0} / V_{e}\right)}\right. \\
& =1600 \mathrm{~kg} \times \frac{\mathrm{s}}{8 \mathrm{~kg}}\left\{1-e^{\left.\left[(5.00-8.0) \frac{\mathrm{km}}{\mathrm{~s}} \times \frac{5}{3000 \mathrm{~m}} \times 1000 \frac{\mathrm{~m}}{\mathrm{~km}}\right]\right\}}\right.
\end{aligned}
$$

$$
t=\frac{M_{0}}{\dot{m}}\left(1-e^{U-v_{0} / v_{2}}\right)
$$

$$
t=126 \mathrm{~s}
$$

Given: Rocket sled accelerates from rest on a level trade. Initial Mass $M_{0}=600 \mathrm{~kg}$, includes fuel- $M_{E}=150 \mathrm{~kg}$ The rocket motor burns fuel at rate in $=150 \mathrm{~kg}$. Exhaust gases leave nozzle uniformly and axially at ethpspheric pressure whf $\mathrm{he}^{2}=2900 \mathrm{Mf}$ relative to the nozzle. Neglect our and rolling resistance.
Find: (a) Maximum speed reached by the sled.
(b) Maximum acceleration of shed during he run.

Pot: The sled speed and acceleration as functions of time
Solution:
Apply the nomertux equation to linearly accelerating ch chow
 Assumptions: (t) no net -pressure forces ($P_{2}=P$ atm, given)
(a) horizontal motion, $F_{2}=0$
(3) neglect 2 lat in cu
(4) unform axial et

From continuty, $M=M_{0}-\operatorname{sen}^{2}$, her Y Ye
$-a_{x+} M=-\frac{d t}{d t}\left(m_{0}-i t\right)=u_{e}\{\dot{m}\}=-v_{e} m \ldots(N)$
Separating variables,

$$
d v=v_{e} \frac{m d t}{M_{0}-m t}
$$

Integrating from $U=0$ at $t=0$ to U att gives

$$
\begin{equation*}
\left.v=-V_{e} \ln \left(m_{0}-n t\right)\right]_{0}^{t}=-V_{e} \ln \frac{\left(m_{0}-i n t\right)}{m_{0}}=V_{e} \ln \frac{A_{0}}{\left(M_{0}-i n t\right)} \tag{a}
\end{equation*}
$$

The speed is a maximum at burnout. At burnout $M_{f}=0$ and $M=M_{0}-M t=450$ eg

At burnout, $t=\frac{M_{f} \backslash \text { intual }}{\text { incult }}=150 \lg +\frac{5}{15 g}=105$
Then from E_{q}. 2

$$
U_{\max }=2900 \frac{\mathrm{k}}{\mathrm{~s}} \ln \frac{600 \mathrm{~kg}}{450 \mathrm{~kg}}=\left.834 \mathrm{~m}\right|_{\mathrm{s}}
$$

From Eq. E he acceleration is $^{d t}=\frac{M_{1}}{d t}$ the maximum accleratuo occurs at the instant prior to burn out

The sled speed as a function of tine is

$$
J=k \ln \frac{M_{0}}{\left(m_{0}-i n t\right)} \quad \text { for } 0 \text { sttios }
$$

$$
U=\text { constant }=834 \mathrm{~m} / \mathrm{s} \quad \text { for } t>10 \text { (neglecting resistances) }
$$

the sled acceleration is given by

Acceleration and Velocity vs. Time for Rocket Sled:
Input Data:

$$
\begin{array}{rccl}
M_{0}= & 600 & \mathrm{~kg} \\
m(\text { dot })= & 15 & \mathrm{~kg} / \mathrm{s} \\
V_{\mathrm{e}}= & 2900 & \mathrm{~m} / \mathrm{s}
\end{array}
$$

Calculated Results:		
Time, \mathbf{t}		
(\mathbf{s})	Acceleration,	
0	VUldt $\left(\mathbf{m} / \mathbf{s}^{2}\right)$	Velocity, U $(\mathrm{~m} / \mathrm{s})$
0	72.5	0
1	74.4	73.4
2	76.3	149
3	78.4	226
4	80.6	306
5	82.9	387
6	85.3	471
7	87.9	558
8	90.6	647
9	93.5	739
10	96.7	834

$$
\begin{aligned}
& \frac{d t}{d t}=\frac{n_{t}}{\left.M_{0}-i t\right)} \quad \text { for } o t=10 s \\
& \frac{d t}{d t}=0 \text { for trios. }
\end{aligned}
$$

Given: Rocket sled with initial mass of 4 metric tons, includinal Aton of fuel. 'Htion resistance is given by keto where $t=75 \mathrm{w} / \mathrm{m} / \mathrm{s}$.

Find: Sled speed ios after starting from rest, a Tran
Fd: sled speed and acceleration as functions of time.
Solution:
Apply the x component of the momentum equation to linearly accelerating CV shown

Assumptions: (i) $P_{R}=P_{\text {atm }}$ (giver) so $F_{S, 2}=-F_{R}$
(2) $F_{B_{x}}=0$
(3) neglect unsteady effects within $C t$.
(4) uniform flow at exit plane

Ter.

$$
\left\{F_{R}=k_{0} 0, u_{2}=-v_{k}\right\}
$$

From continuity, $y=M_{0}$-int. Substituting wiN $a_{r}=\frac{d y}{d t}$

$$
\begin{aligned}
& -k_{0} J-\left(m_{0}-n t\right) \frac{d J}{d t}=-V_{e} m
\end{aligned}
$$

Integrating, $\left.\left.\frac{1}{k} \ln \left(V_{\mathrm{E}} \dot{r}-k_{U}\right)\right]_{0}^{u}=\frac{1}{m} \ln \left(M_{0}-m t\right)\right]_{0}^{t}$ and $\ln \frac{\left(V_{e} M-k\right)}{V_{e} M}=\ln \left(1-\frac{k_{0}}{J_{e} m}\right)=\ln \frac{\left.M_{0}-n t\right)}{M_{0}}=\frac{k}{M} \ln \left(1-\frac{M t}{M_{0}}\right)$
Then $1-\frac{k J}{v_{e} m}=\left(1-\frac{n t}{M_{0}}\right)$ km and

$$
\begin{equation*}
J=\frac{v_{0} i}{k}\left[1-\left.\left(1-\frac{n t}{r_{0}}\right)\right|_{i n}\right] \tag{i}
\end{equation*}
$$

ft $t=10 s$

$$
\begin{aligned}
& U=281 \mathrm{mls}
\end{aligned}
$$

Note hat all fuel would be expended at $\left.t_{b_{0}}=\frac{M_{f}}{m}=1000 g_{x} \frac{s}{i s b}\right]$ ie. at $t=13.3 \mathrm{~s}$.
Te sled speed as a function of time is then

The speed recalls a maximin at $t=13.3_{5}$ and decays

The sled acceleration is greer by

$$
\frac{d 0}{d t}=\frac{v_{4}-k y}{M_{0}-M t} \text { for otthis }
$$

$A t t \geq 13.35 \quad \forall_{e}=0$ and

$$
\frac{d J}{d t}=\frac{-2 T}{M_{0}-M_{G u l}}
$$

Note that for $t>H_{b o}=13.35, \quad \frac{d v}{d t}=-\frac{B_{0}}{M_{b o}}$ and

$$
\frac{d v}{v}=-\frac{1}{M_{b_{0}}} d t \quad \ln \frac{V}{U_{b_{0}}}=-\frac{\left(t-t_{b_{0}}\right)}{M_{b_{0}}}
$$

$$
\text { and } U=U_{b_{0}} e^{-k\left(t-t_{b_{0}}\right)} /_{M_{b_{0}}}
$$

$t(\mathrm{~s})$	$U(\mathrm{~m} / \mathrm{s})$	$d U / d t\left(\mathrm{~m} / \mathrm{s}^{2}\right)$
0.0	0.0	28.1
1.0	28.1	28.1
2.0	56.3	28.1
3.0	84.4	28.1
4.0	113	28.1
5.0	141	28.1
6.0	169	28.1
7.0	197	28.1
8.0	225	28.1
9.0	253	28.1
10.0	281	28.1
11.0	309	28.1
12.0	338	28.1
13.2	371	28.1
13.3	375	28.1
14.0	369	-9.22
15.0	360	-8.99
16.0	351	-8.77
17.0	342	-8.55
18.0	334	-8.34
19.0	325	-8.14
20.0	317	-7.94

Velocity \& Acceleration of a Rocket Sled

4.159 A rocket sled with initial mass of 900 kg is to be accelerated on a level track. The rocket motor burns fuel at constant rate $\dot{m}=13.5 \mathrm{~kg} / \mathrm{s}$. The rocket exhaust flow is uniform and axial. Gases leave the nozzle at $2750 \mathrm{~m} / \mathrm{s}$ relative to the nozzle, and the pressure is atmospheric. Determine the minimum mass of rocket fuel needed to propel the sled to a speed of $265 \mathrm{~m} / \mathrm{s}$ before burnout occurs. As a first approximation, neglect resistance forces.

Given: Data on rocket sled
Find: Minimum fuel to get to $265 \mathrm{~m} / \mathrm{s}$

Solution:

Basic equation: Momentum flux in x direction $F_{S_{x}}+F_{B_{x}}-\int_{\mathrm{CV}} a_{r f_{x}} \rho d \forall=\frac{\partial}{\partial t} \int_{\mathrm{CV}} u_{x y z} \rho d \forall+\int_{\mathrm{CS}} u_{x y z} \rho \vec{V}_{x y z} \cdot d \vec{A}$
Assumptions: 1) No resistance 2) $\mathrm{pe}_{\mathrm{e}}=\mathrm{p}_{\mathrm{atm}}$ 3) Uniform flow 4) Use relative velocities
From continuity $\quad \frac{\mathrm{dM}}{\mathrm{dt}}=\mathrm{m}_{\text {rate }}=$ constant \quad so $\quad \mathrm{M}=\mathrm{M}_{0}-\mathrm{m}_{\text {rate }} \cdot \mathrm{t} \quad$ (Note: Software cannot render a dot!)
Hence from momentum $\quad-a_{r f x} \cdot M=-\frac{d U}{d t} \cdot\left(M_{0}-m_{r a t e} \cdot t\right)=u_{e} \cdot\left(\rho_{e} \cdot V_{e} \cdot A_{e}\right)=-V_{e} \cdot m_{\text {rate }}$

Separating variables

$$
\mathrm{dU}=\frac{\mathrm{V}_{\mathrm{e}} \cdot \mathrm{~m}_{\text {rate }}}{\mathrm{M}_{0}-\mathrm{m}_{\text {rate }} \cdot \mathrm{t}} \cdot \mathrm{dt}
$$

Integrating
$\mathrm{U}=\mathrm{V}_{\mathrm{e}} \cdot \ln \left(\frac{\mathrm{M}_{0}}{\mathrm{M}_{0}-\mathrm{m}_{\text {rate }} \cdot \mathrm{t}}\right)=-\mathrm{V}_{\mathrm{e}} \cdot \ln \left(1-\frac{\mathrm{m}_{\text {rate }} \cdot \mathrm{t}}{\mathrm{M}_{0}}\right)$
or $\quad t=\frac{\mathrm{M}_{0}}{\mathrm{~m}_{\text {rate }}} \cdot\left(1-e^{-\frac{\mathrm{U}}{\mathrm{V}_{\mathrm{e}}}}\right)$

The mass of fuel consumed is

$$
\mathrm{m}_{\mathrm{f}}=\mathrm{m}_{\text {rate }} \cdot \mathrm{t}=\mathrm{M}_{0} \cdot\left(1-\mathrm{e}^{-\frac{\mathrm{U}}{\mathrm{~V}_{\mathrm{e}}}}\right)
$$

Hence

$$
\mathrm{m}_{\mathrm{f}}=900 \cdot \mathrm{~kg} \times\left(1-\mathrm{e}^{-\frac{265}{2750}}\right)
$$

$$
\mathrm{m}_{\mathrm{f}}=82.7 \mathrm{~kg}
$$

4.160 A rocket motor is used to accelerate a kinetic energy weapon to a speed of 3500 mph in horizontal flight. The exit stream leaves the nozzle axially and at atmospheric pressure with a speed of 6000 mph relative to the rocket. The rocket motor ignites upon release of the weapon from an aircraft flying horizontally at $U_{0}=600 \mathrm{mph}$. Neglecting air resistance, obtain an algebraic expression for the speed reached by the weapon in level flight. Determine the minimum fraction of the initial mass of the weapon that must be fuel to accomplish the desired acceleration.

Given: Data on rocket weapon
Find: Expression for speed of weapon; minimum fraction of mass that must be fuel

Solution:

Basic equation: Momentum flux in x direction $F_{S_{x}}+F_{B_{x}}-\int_{\mathrm{CV}} a_{r f_{x}} \rho d \forall=\frac{\partial}{\partial t} \int_{\mathrm{CV}} u_{x y z} \rho d \forall+\int_{\mathrm{CS}} u_{x y z} \rho \vec{V}_{x y z} \cdot d \vec{A}$
Assumptions: 1) No resistance 2) $\mathrm{pe}_{\mathrm{e}}=\mathrm{p}_{\mathrm{atm}} 3$) Uniform flow 4) Use relative velocities 5) Constant mass flow rate
From continuity $\quad \frac{d M}{d t}=m_{\text {rate }}=$ constant \quad so $\quad M=M_{0}-m_{r a t e} \cdot t \quad$ (Note: Software cannot render a dot!)
Hence from momentum $-a_{r f x} \cdot M=-\frac{d U}{d t} \cdot\left(M_{0}-m_{\text {rate }} \cdot t\right)=u_{e} \cdot\left(\rho_{e} \cdot V_{e} \cdot A_{e}\right)=-V_{e} \cdot m_{\text {rate }}$
Separating variables $\quad d U=\frac{V_{e} \cdot m_{\text {rate }}}{M_{0}-m_{\text {rate }} \cdot t} \cdot d t$
Integrating from $\mathrm{U}=\mathrm{U}_{0}$ at $\mathrm{t}=0$ to $\mathrm{U}=\mathrm{U}$ at $\mathrm{t}=\mathrm{t}$

$$
\begin{aligned}
& U-U_{0}=-V_{e} \cdot\left(\ln \left(M_{0}-m_{r a t e} \cdot t\right)-\ln \left(M_{0}\right)\right)=-V_{e} \cdot \ln \left(1-\frac{\mathrm{m}_{\mathrm{rate}^{\cdot t}}}{\mathrm{M}_{0}}\right) \\
& U=U_{0}-V_{e} \cdot \ln \left(1-\frac{\mathrm{m}_{\text {rate }} \cdot \mathrm{t}}{\mathrm{M}_{0}}\right) \\
& \text { MassFractionConsumed }=\frac{\mathrm{m}_{\text {rate }} \cdot \mathrm{t}}{\mathrm{M}_{0}}=1-\mathrm{e}^{-\frac{\left(\mathrm{U}-\mathrm{U}_{0}\right)}{\mathrm{V}_{\mathrm{e}}}}=1-\mathrm{e}^{-\frac{(3500-600)}{6000}}=0.383
\end{aligned}
$$

Rearranging

Hence 38.3% of the mass must be fuel to accomplish the task. In reality, a much higher percentage would be needed due to drag effects

Given: Rocket sled moving on level track without resistance Irital Mass, $M_{0}=3000 \mathrm{~kg}$ (victudes $M_{\text {fud }}=1000 \mathrm{lg}$ g

$$
V_{e}=2500 \mathrm{~m} / \mathrm{s} ; p_{e}=p_{2 t \mathrm{~m}}
$$

Fuel consumption, $\dot{M}=15$ Egls
Find: Acceleration and speed of sleet at (1)
Phot: sled speed and acceleration as functions of time.
Solution:
Apply x component of momentum to linearly accelerating CV;, he continuity to find MAt)

Assumptions: (i) $F_{s y}=0$, no resistance Given
(a) $F_{B_{2}}=0$, horizontal
(3) neglect plat inside CV
(4) wiform flow at nozzle exit
(5) $p_{e}=p_{a t y}$ (given)

From contininty, $0=\frac{\partial m}{\partial t}+\{+|m|\}=\frac{d M}{d t}+\dot{M}$ or $d x=-i n d t$ Integrating, $S_{M_{0}}^{M} d M=M-M_{0}=C_{0}^{t}-m d t-m t$ or $M=M_{0}-i t$
From the momentum equation
Rus

$$
-a_{r} s_{x} m=-a_{r}\left(M_{0}-i n t\right)=u_{1}\left\{+H_{i}\right\}=-\psi_{e} \text { ir } \quad\left\{u_{1}=-\psi_{\}}\right\}
$$

$$
\left.a_{r-x}=\frac{d J}{d t}=\frac{t_{e} i n}{M_{0}-i n t}\right)
$$

At $t=10 \mathrm{~s}$

$$
\frac{d u}{\text { at }}=2500 \frac{\mathrm{~m}}{\mathrm{~s}} \times 7 \frac{5 \lg }{\mathrm{~s}} \times \frac{1}{3000 \operatorname{tg}-75 \lg \times 10 \mathrm{~s}}=\left.83.3 \mathrm{~m}\right|_{8} ^{2} \operatorname{arfl}^{2}
$$

From E_{q}.,$\quad d u=V_{e} \frac{\dot{r} d t}{M_{0}-i n t}$
Integrating from $U=0$ at $t=0$ to U at traves

$$
\begin{aligned}
& U=-v_{e} \ln \left(M_{0}-i t\right) J_{0}^{t}=-V_{e} \ln \frac{\left(M_{0}-n t\right)}{M_{0}} \\
& U=V_{e} \ln \frac{M_{0}}{\left(M_{0}-i t\right)}-\quad
\end{aligned}
$$

$A t t=105$
$U=2500 \frac{h}{s} \ln \frac{3000 \mathrm{la}}{3000 \mathrm{~g}-\mathrm{Y} \frac{\mathrm{lag} \times 105}{\frac{5}{6}}}=719 \mathrm{mls}$
Note that all fuel would be expended at tho $\frac{M_{6}}{n}=1000 \mathrm{gg}$. $\frac{5}{754}$

$$
\text { ie ot } t_{0.0}=13.3 \mathrm{~s}
$$

Re sled speed as a function of time is ten $J=H_{e} \ln \frac{t_{0}}{\left.t_{0}-i n t\right)}$ for $t \leq 13.35$

$$
J=J_{\text {mar }}=10.0 \text { mys for } t \geq 13.35
$$

Re sled acceleration is gwen by

$$
\begin{aligned}
& \frac{d U}{d t}=\frac{M v_{e}}{\left(M_{0}-i n t\right) \quad \text { for } 0 \leq t \leq 13.35} \\
& \frac{d J}{d t}=0 \quad \text { for } t \geq 13.35
\end{aligned}
$$

Acceleration and Speed vs. Time for Rocket Sled:

Input Data:

$$
\begin{array}{rcll}
M_{0} & =3000 & \mathrm{~kg} \\
m(\operatorname{dot}) & = & 75 & \mathrm{~kg} / \mathrm{s} \\
V_{\mathrm{e}} & = & 2500 & \mathrm{~m} / \mathrm{s}
\end{array}
$$

Calculated Results:

Given: Rocket-propelled motorcycle, to jump, standing start, level.
Speed needed $U_{j}=875 \mathrm{~km} / \mathrm{hr}$ Rocketexhaustspeed $U_{e}=2510 \mathrm{~m} / \mathrm{s}$
Total mass $\quad M_{B}=375 \mathrm{~kg}$ (without fuel)
Find: Minimum fuel mass needed to reach V_{j}.
Solution: Apply x-component of momentum equation to linearly accelerating iv shown.
From continuity,

$$
M_{C V}=M_{0}-\dot{m} t
$$

Basic
equation:

Assumptions: (1) Neglect air and rolling resistance
(2) Level track, so $F_{B_{x}}=0$
(3) Neglect unsteady effects with in CV
(4) Uniform flow at nozzle exit plane
(5) pe-patom

Then

$$
\begin{aligned}
-a_{r f} M_{c v}= & u_{e}\{t \dot{m}\}=-V_{e} \dot{m} \text { or } \quad \frac{d U}{d t}=\frac{V_{e} \dot{m}}{M_{e v}}=\frac{V_{e} \dot{m}}{M_{0}-\dot{m} t} \\
& u_{e}=-V_{e}
\end{aligned}
$$

separating variables and integrating.

$$
d U=-V_{e}\left(\frac{-\dot{m} d t}{M_{0}-\dot{n} t}\right) \quad \text { or } \quad U_{j}=-V_{e} \ln \left(M_{0}-\dot{m} t\right)_{0}^{t}=V_{e} \ln \left(\frac{M_{0}}{M_{0}-\dot{m} t}\right)
$$

But $M_{0}=M_{B}+M_{F}$ and $M_{F}=\dot{m} t$, so

$$
\frac{V_{j}}{V_{e}}=\ln \left(\frac{M_{B}+M_{F}}{M_{B}}\right)=\ln \left(1+\frac{M_{F}}{M_{B}}\right) ; 1+\frac{M_{F}}{M_{B}}=e^{U_{1} / V_{C}} ; \frac{M_{P}}{M_{B}}=e^{U / V_{e}-1}
$$

Finally, $M_{p}=M_{B}\left(e^{\text {The }}-1\right)$

$$
\begin{aligned}
& M_{F}=375 \mathrm{~kg} \times \exp \left[875 \frac{\mathrm{~km}}{\mathrm{hr}} \times \frac{\mathrm{s}}{2510 \mathrm{~m}} \times 1000 \frac{\mathrm{~m}}{\mathrm{~km}} \times \frac{\mathrm{hr}}{3600 \mathrm{~s}}-1\right] \\
& M_{F}=38.1 \mathrm{~kg}
\end{aligned}
$$

The fuel mass required is about to percent of the mass of the mofrcyele and rider.

Given: Home made rocket launched vertically from rest. $M_{0}=20 \mathrm{~km}$, of which 15 lbm is fuel
$\dot{m}=0.5 \mathrm{lbm} / \mathrm{s}$
$V_{e}=6500$ ft ls (relative to rocket)
$p_{e}=p a t m$ Neglect aerodynamic drag.

Find: (a) speed at $t=20$ s. Plot: speed and

(b) Height at $t=20 \mathrm{~s}$. height as

 functions of time. $\rightarrow X$Solution: Apply y-component of momentum
equation to accelerating iv using os shown.

Basic equation:

$$
\begin{aligned}
& F_{s y}^{\prime}+F_{a_{y}}-\int_{c v} a_{r f y} \rho d t=\frac{\partial 0}{\partial t} \int_{c v} v_{x y z} p d t+\int_{c s} v_{x y d} \rho \vec{V}_{x y \partial} \cdot d \vec{A}
\end{aligned}
$$

Assumptions: (1) Neglect air resistance; pe = patm (given)
(2) Neglect $v_{x y z}$ and $\partial / \partial t$ within $C V$
(3) Uniform flow at nozzle exit section

Then
and

$$
F_{B y}-a_{r f y} M=-M g-M a r f_{y}=v_{e}\{+\dot{m}\}=-V_{e} \dot{m}
$$

$$
a_{i f y}=\frac{d V}{d t}=\frac{V e \dot{m}}{M}-g
$$

Introducing $M=M_{0}-\dot{m} t$ and separating variables,

$$
d V=\left(\frac{V e \dot{m}}{M_{0}-\dot{m} t}-g\right) d t
$$

Integrating from rest at $t=0$

$$
\left.V=\int_{0}^{t}\left(\frac{V e \dot{n}}{M_{0}-\dot{n} t}-g\right) d t=-V_{\operatorname{l}} \ln \left(M_{0}-\dot{n} t\right)\right]_{0}^{t}-g t
$$

or

$$
\begin{equation*}
V=V_{e} \ln \left(\frac{M_{0}}{M_{0}-\dot{r} t}\right)-g t \tag{1}
\end{equation*}
$$

At $t=20 \mathrm{sec}$,

$$
\begin{aligned}
& V=6500 \frac{\mathrm{ft}}{\mathrm{~s}} \ln \left(\frac{20 \mathrm{lbm}}{20 \mathrm{lbm}-0.5 \frac{1 \mathrm{~m}}{\mathrm{~s}} \times 20 \mathrm{~s}}\right)-32.2 \frac{\mathrm{t}}{\mathrm{~s}^{2}} \times 20 \mathrm{~s} \\
& V(20 \mathrm{~s})=3,860 \mathrm{tt} / \mathrm{s}
\end{aligned}
$$

To find height, note $V=\frac{d Y}{d t}$. Substitute into Eq. I to obtain

$$
\frac{d Y}{d t}=V_{e} \ln \left(\frac{M_{0}}{M_{0}-\dot{m} t}\right)-g t=-V_{e} \ln \left(1-\frac{\dot{m} t}{M_{0}}\right)-g t
$$

Let $n=1-\frac{\dot{m} t}{M_{0}}$, and $d n=-\frac{\dot{m}}{M_{0}} d t$, then

$$
d Y=-V e \ln s d t-g t d t=+\frac{V e n}{\dot{r}} \ln \ln d n-g t d t
$$

Integrating from $Y=0$ at $t=0$,

$$
\begin{aligned}
Y & =\int_{0}^{t} \frac{V_{e} M_{0}}{m} \ln \mu d \mu-\frac{1}{2} g t^{2}=\frac{V e}{m}\left[\Lambda C_{n}-\mu\right]_{0}^{t}-\frac{1}{2} g t^{2} \\
& =\left.\frac{V_{e} M_{0}}{\dot{m}}\left\{\left(1-\frac{\dot{m} t}{M_{0}}\right)\left[\ln \left(1-\frac{\dot{m} t}{M_{0}}\right)-1\right]\right\}\right|_{0} ^{t}-\frac{1}{2} g t^{2} \\
Y & =\frac{V_{e} M_{0}}{\dot{m}}\left\{\left(1-\frac{\dot{m} t}{M_{0}}\right)\left[\ln \left(1-\frac{\dot{m} t}{M_{0}}\right)-1\right]+1\right\}-\frac{1}{2} g t^{2} \\
\text { At } t & =20 \mathrm{~s}, \\
1-\frac{\dot{m} t}{M_{0}} & =1-0.5 \frac{\mathrm{~km}}{\mathrm{~s}} \times 20 \leq \times \frac{1}{20 \mathrm{Hm}}=\frac{1}{2}
\end{aligned}
$$

so

$$
\begin{aligned}
& Y=\frac{6500 f t}{s} \times 2016 \mathrm{~m} \times \frac{5}{5} \lim \left\{\left(\frac{1}{2}\right)\left[\ln \left(\frac{1}{2}\right)-1\right]+1\right\}-\frac{1}{2} \times \frac{32.2 \mathrm{ft}}{\mathrm{~s}^{2}}(20)^{2} \mathrm{~s}^{2} \\
& Y=33,500 \mathrm{ft}
\end{aligned}
$$

Given: Liquid-fueled rocket lounchad fron-pad at sealevel

$$
M_{0}=30,000 \mathrm{lg}
$$

in $=2450 \mathrm{eg} / \mathrm{s}$
$V_{e}=2270 \mathrm{hls}$
$-P_{e}=$ bbol P_{a} (abo) Elit plane deaneter, $P_{e}=2.6 \mathrm{bn}$
Find: acceleration at lift-off expression for rockel speed, $V(t)$

Solution: Apply y conponent of momentuen equation to CS With lnear acceleration

Assumptiois: (1) $F_{\text {yy }}$ due to pressure, P_{a} tm asemered constant, realect air resistance
(2) reghect rabe of slange of monertuen niside d (3) Whiforn flow at exit

Ren, $\left(P_{e}-e_{\text {ath }}\right) A_{e}-M_{g}-a_{r} f_{y} n=v_{e}\{+i n\}=-i k_{e}$
Solung for ary,

$$
a_{a r y}=\frac{d U}{d t}=\frac{1}{n}\left[i n v_{e}+\left(P_{e}-P_{a n}\right) A_{e}\right]-g \ldots \sin
$$

$M=M(t)$. Fron conservation of mass $\frac{\partial}{\partial t} \int_{\text {cu }} P^{d+}+\int_{\text {pul }} \cdot \overrightarrow{d i}=0$ then $\overrightarrow{a r}_{\text {an }} p d t=\frac{d n}{d t}=-C_{c s} p \vec{v} \cdot \overrightarrow{d A}=-i_{c}$ (constant) Hence $M(t)=M_{0}-i n t$, and
\qquad
At lift-off, $L=0, M=M_{0}$

$$
a r r_{y}=169 \mathrm{nis}^{2}
$$

$$
\begin{aligned}
& a_{-} f_{y}=\frac{1}{M}\left[\dot{M} \psi_{e}+\left(p_{x}-p_{a} t_{n}\right) A_{e}\right]-g
\end{aligned}
$$

$$
\begin{aligned}
& a_{r f y}=\frac{d U}{d t}=\frac{\text { inte }_{2}}{M_{0}-i n t}+\frac{\left(P_{2}-P_{2 h}\right) n_{c}}{M_{0}-h_{i} t}-g \\
& v=\int_{0}^{0} d v=\int_{0}^{t} \frac{i n t_{2}}{H_{0}-n t} d t+\int_{0}^{0} \frac{\left(p_{2}-P_{a}\right) R_{2}}{M_{0}-n t} d t-\int_{0}^{t} g d t \\
& V=-v_{e} \ln \left[\frac{\mu_{0}-i n t}{M_{0}}\right]-\frac{\left(e_{0}-p_{d-1} H_{t}\right.}{i n} \ln \left[\frac{N_{0}-i n t}{M_{0}}\right]-g t \\
& U=-\left[H_{2}+\frac{\left(P_{2}-P_{0} L_{m}\right) A_{2}}{i n}\right] \ln \left[\frac{M_{0}-n_{t} t}{M_{0}}\right]-g L
\end{aligned}
$$

Problem 4.165

4.165 Neglecting air resistance, what speed would a vertically directed rocket attain in 8 s if it starts from rest, has initial mass of 300 kg , burns $8 \mathrm{~kg} / \mathrm{s}$, and ejects gas at atmospheric pressure with a speed of $3000 \mathrm{~m} / \mathrm{s}$ relative to the rocket? Plot the rocket speed as a function of time.

Given:

Data on rocket
Find: \quad Speed after 8 s ; Plot of speed versus time

Solution:

Basic equation: Momentum flux in y direction $F_{S_{y}}+F_{B_{y}}-\int_{\mathrm{CV}} a_{r f_{y}} \rho d \forall=\frac{\partial}{\partial t} \int_{\mathrm{CV}} v_{x y z} \rho d \forall+\int_{\mathrm{CS}} v_{x y z} \rho \vec{V}_{x y z} \cdot d \vec{A}$
Assumptions: 1) No resistance 2) $\mathrm{p}_{\mathrm{e}}=\mathrm{patm}$ 3) Uniform flow 4) Use relative velocities 5) Constant mass flow rate
From continuity $\quad \frac{d M}{d t}=m_{\text {rate }}=$ constant \quad so $\quad M=M_{0}-m_{\text {rate }} \cdot t \quad$ (Note: Software cannot render a dot!)
Hence from momentum $-\mathrm{M} \cdot \mathrm{g}-\mathrm{a}_{\mathrm{rfy}} \mathrm{M}=\mathrm{u}_{\mathrm{e}} \cdot\left(\rho_{\mathrm{e}} \cdot \mathrm{V}_{\mathrm{e}} \cdot \mathrm{A}_{\mathrm{e}}\right)=-\mathrm{V}_{\mathrm{e}} \cdot \mathrm{m}_{\text {rate }}$

Hence

$$
\begin{equation*}
a_{\text {rfy }}=\frac{d V}{d t}=\frac{V_{e} \cdot m_{\text {rate }}}{M}-g=\frac{V_{e} \cdot m_{\text {rate }}}{M_{0}-m_{\text {rate }} \cdot t}-g \tag{1}
\end{equation*}
$$

Separating variables $\quad d V=\left(\frac{V_{e} \cdot m_{\text {rate }}}{M_{0}-m_{\text {rate }} \cdot t}-g\right) \cdot d t$

Integrating from $\mathrm{V}=$ at $\mathrm{t}=0$ to $\mathrm{V}=\mathrm{V}$ at $\mathrm{t}=\mathrm{t}$

$$
\begin{align*}
& \mathrm{V}=-\mathrm{V}_{\mathrm{e}} \cdot\left(\ln \left(\mathrm{M}_{0}-\mathrm{m}_{\text {rate }} \cdot \mathrm{t}\right)-\ln \left(\mathrm{M}_{0}\right)\right)-\mathrm{g} \cdot \mathrm{t}=-\mathrm{V}_{\mathrm{e}} \cdot \ln \left(1-\frac{\mathrm{m}_{\mathrm{rate}} \cdot \mathrm{t}}{\mathrm{M}_{0}}\right)-\mathrm{g} \cdot \mathrm{t} \\
& \mathrm{~V}=-\mathrm{V}_{\mathrm{e}} \cdot \ln \left(1-\frac{\mathrm{m}_{\text {rate }} \cdot \mathrm{t}}{\mathrm{M}_{0}}\right)-\mathrm{g} \cdot \mathrm{t} \tag{2}
\end{align*}
$$

At $t=8 \mathrm{~s}$

$$
\mathrm{V}=-3000 \cdot \frac{\mathrm{~m}}{\mathrm{~s}} \cdot \ln \left(1-8 \cdot \frac{\mathrm{~kg}}{\mathrm{~s}} \times \frac{1}{300 \cdot \mathrm{~kg}} \times 8 \cdot \mathrm{~s}\right)-9.81 \cdot \frac{\mathrm{~m}}{\mathrm{~s}^{2}} \times 8 \cdot \mathrm{~s}
$$

$$
\mathrm{V}=641 \frac{\mathrm{~m}}{\mathrm{~s}}
$$

The speed and acceleration as functions of time are plotted below. These are obtained from Eqs 2 and 1, respectively, and can be plotted in Excel

Problem 4.166

Open-Ended Problem Statement: Inflate a toy balloon with air and release it. Watch as the balloon darts about the room. Explain what causes the phenomena you see.

Discussion: Air blown into a balloon to inflate it must be compressed to overcome the skin's resistance to stretching. (Remember how hard it is to create enough pressure to "start" the inflation process!) After decreasing briefly, the required pressure seems to increase as inflation of the balloon continues.

As the balloon is inflated, the skin stretches and stores energy. When the inflated balloon is released, the stored energy in the skin forces the compressed air out the open mouth of the balloon. The expansion of the compressed air to the lower surrounding atmospheric pressure creates a highspeed jet of air, which propels the relatively light balloon initially at a high speed.

The moving balloon is unstable because it has a poor aerodynamic shape. Therefore it darts about in a random pattem. The balloon keeps moving as long as it contains pressurized air to act as a propulsion jet. However, it is not long before the energy stored in the skin is exhausted and the air in the balloon is reduced to atmospheric pressure.

When the balloon reaches atmospheric pressure it is slowed by aerodynamic drag. Finally the empty, wrinkled balloon simply falls to the floor.

Some toys that use a balloon for propulsion are available. Most have stabilizing surfaces. It is instructive to study these toys carefully to understand how each works, and why each toy is shaped the way it is.
4.167 The vane/cart assembly of mass $M=30 \mathrm{~kg}$, shown in Problem 4.123, is driven by a water jet. The water leaves the stationary nozzle of area $A=0.02 \mathrm{~m}^{2}$, with a speed of $20 \mathrm{~m} / \mathrm{s}$. The coefficient of kinetic friction between the assembly and the surface is 0.10 . Plot the terminal speed of the assembly as a function of vane turning angle, θ, for $0 \leq \theta \leq \pi / 2$. At what angle does the assembly begin to move if the coefficient of static friction is 0.15 ?

Given:

Water jet striking moving vane
Find: Plot of terminal speed versus turning angle; angle to overcome static friction

Solution:

Basic equations: Momentum flux in x and y directions

$$
\begin{aligned}
& F_{S_{x}}+F_{B_{x}}-\int_{\mathrm{CV}} a_{r f_{x}} \rho d \forall=\frac{\partial}{\partial t} \int_{\mathrm{CV}} u_{x y z} \rho d \forall+\int_{\mathrm{CS}} u_{x y z} \rho \vec{V}_{x y z} \cdot d \vec{A} \\
& F_{S_{y}}+F_{B_{y}}-\int_{\mathrm{CV}} a_{r f_{y}} \rho d \forall=\frac{\partial}{\partial t} \int_{\mathrm{CV}} v_{x y z} \rho d \forall+\int_{\mathrm{CS}} v_{x y z} \rho \vec{V}_{x y z} \cdot d \vec{A}
\end{aligned}
$$

Assumptions: 1) Incompressible flow 2) Atmospheric pressure in jet 3) Uniform flow 4) Jet relative velocity is constant

Then

$$
\begin{align*}
& -F_{f}-M \cdot a_{r f x}=u_{1} \cdot\left(-\rho \cdot V_{1} \cdot A_{1}\right)+u_{2} \cdot\left(\rho \cdot V_{2} \cdot A_{2}\right)=-(V-U) \cdot[\rho \cdot(V-U) \cdot A]+(V-U) \cdot \cos (\theta) \cdot[\rho \cdot(V-U) \cdot A] \\
& a_{r f x}=\frac{\rho(V-U)^{2} \cdot A \cdot(1-\cos (\theta))-F_{f}}{M} \tag{1}
\end{align*}
$$

Also

$$
\begin{aligned}
& R_{y}-M \cdot g=v_{1} \cdot\left(-\rho \cdot V_{1} \cdot A_{1}\right)+v_{2} \cdot \rho \cdot V_{2} \cdot A_{2}=0+(V-U) \cdot \sin (\theta) \cdot[\rho \cdot(V-U) \cdot A] \\
& R_{y}=M \cdot g+\rho(V-U)^{2} \cdot A \cdot \sin (\theta)
\end{aligned}
$$

At terminal speed $\mathrm{a}_{\mathrm{rfx}}=0$ and $\mathrm{F}_{\mathrm{f}}=\mu_{\mathrm{k}} \mathrm{R}_{\mathrm{y}}$. Hence in Eq 1

$$
\begin{aligned}
& 0=\frac{\rho \cdot\left(\mathrm{V}-\mathrm{U}_{\mathrm{t}}\right)^{2} \cdot \mathrm{~A} \cdot(1-\cos (\theta))-\mu_{\mathrm{k}} \cdot\left[\mathrm{M} \cdot \mathrm{~g}+\rho \cdot\left(\mathrm{V}-\mathrm{U}_{\mathrm{t}}\right)^{2} \cdot \mathrm{~A} \cdot \sin (\theta)\right]}{\mathrm{M}}=\frac{\rho \cdot\left(\mathrm{V}-\mathrm{U}_{\mathrm{t}}\right)^{2} \cdot \mathrm{~A} \cdot\left(1-\cos (\theta)-\mu_{\mathrm{k}} \cdot \sin (\theta)\right)}{\mathrm{M}}-\mu_{\mathrm{k}} \cdot g \\
& \mathrm{~V}-\mathrm{U}_{\mathrm{t}}=\sqrt{\frac{\mu_{\mathrm{k}} \cdot \mathrm{M} \cdot \mathrm{~g}}{\rho \cdot \mathrm{~A} \cdot\left(1-\cos (\theta)-\mu_{\mathrm{k}} \cdot \sin (\theta)\right)}}
\end{aligned}
$$

or

The terminal speed as a function of angle is plotted below; it can be generated in Excel

For the static case $\quad \mathrm{F}_{\mathrm{f}}=\mu_{\mathrm{s}} \cdot \mathrm{R}_{\mathrm{y}} \quad$ and $\quad \mathrm{a}_{\mathrm{rfx}}=0 \quad$ (the cart is about to move, but hasn't)

Substituting in Eq 1, with $\mathrm{U}=0$

$$
\begin{aligned}
& 0=\frac{\rho \cdot \mathrm{V}^{2} \cdot \mathrm{~A} \cdot\left[1-\cos (\theta)-\mu_{\mathrm{s}} \cdot\left(\rho \cdot \mathrm{~V}^{2} \cdot \mathrm{~A} \cdot \sin (\theta)+\mathrm{M} \cdot \mathrm{~g}\right)\right.}{\mathrm{M}} \\
& \cos (\theta)+\mu_{\mathrm{s}} \cdot \sin (\theta)=1-\frac{\mu_{\mathrm{s}} \cdot \mathrm{M} \cdot \mathrm{~g}}{\rho \cdot \mathrm{~V}^{2} \cdot \mathrm{~A}}
\end{aligned}
$$

We need to solve this for θ ! This can be done by hand or by using Excel's Goal Seek or Solver $\quad \theta=19$ deg

Note that we need $\theta=19^{\circ}$, but once started we can throttle back to about $\theta=12.5^{\circ}$ and still keep moving!

Given: Vehicle accelerated from rest by a hydraulic catapult. Neglect res is stance.

Find: (a) Expression for accekration at any time, t.
(b) Time required to reach $U=V / 2$.

Solution: Apply x component of momentum equation using linearly accelerating CV shown above.

Assumptions: (1) $F_{3 x}=0$
(2) $F_{A_{x}}=0$
(3) Neglect mass of liquid and rate of Change of u in CV
(4) Uniform flow at each section
(5) Jet area and speed with respect to vehicle are co nstant

Then

$$
\begin{array}{r}
-M a_{n f_{x}}=-M \frac{d U}{\sigma t}=u_{1}\{-|\rho(v-U) A|\}+u_{2}\{|\rho(v-U) A|\} \\
u_{1}=v-v \quad u_{2}=-(v-v)
\end{array}
$$

or

$$
a r_{x}=\frac{d U}{d t}=\frac{2 \rho(V-U)^{2} A}{M} \quad ; \quad \frac{d U}{(V-U)^{2}}=\frac{2 \rho A}{M} d t \quad ;-\frac{d(V-U)}{(V-U)^{2}}=\frac{2 \rho A}{M} d t
$$

To obtain $a_{r f_{x}}(t)$, we must first find $v(t)$. Integrating from $v=0$ at $t=0$ to v at t,

$$
\left.\int_{V-v=V}^{V-V}-\frac{d(V-U)}{(V-v)^{4}}=\frac{1}{V-v}\right]_{v}^{V-U}=\frac{1}{V-V}-\frac{1}{V}=\frac{V-(V-U)}{V(V-U)}=\frac{2 \rho A}{M} t ; \frac{U}{V-U}=\frac{2 \rho V A}{M} t
$$

solving,

$$
U=(V-v) \frac{2 \rho V A}{M} t, \quad U=V \frac{\frac{2 \rho V A}{M} t}{1+\frac{2 \rho V A}{M} t} \text { and } V-V=V\left[1-\frac{\frac{2 \rho V A}{M} t}{1+\frac{2 \rho V A}{M} t}\right]
$$

Substituting,

$$
a_{r f}=\frac{2 \rho v^{2} A}{M}\left[1-\frac{\frac{2 \rho V A}{M} t}{1+\frac{2 f V A}{M} t}\right]^{2}=\frac{2 \rho V^{2} A}{M}\left[\frac{1}{1+\frac{2 f V A}{M} t}\right]^{2}
$$

The tine to reach $U=V / 2$ is

$$
\frac{U}{V}=\frac{1}{2}=\frac{2 \frac{\rho V A}{M} t}{1+\frac{2 \rho V A}{M} t} \text { or } t=\frac{M}{2 \rho V A}
$$

Check: $\left[\frac{M}{\rho V A}\right]=M \frac{L^{3}}{M} \frac{t}{L} \frac{1}{L^{2}}=t v ;\left[\frac{\rho V^{2} A}{M}\right]=\frac{M}{L^{3}} \frac{L^{2}}{t^{2}} L^{2} \frac{L}{M}=\frac{L}{t^{2}} v$

Given: Moving tank slowed by lowering scoop into water trough. Initial mass and speed are M_{0} and U_{0}, respectively. Neglect external forces due to pressure or friction. Track is horizontal.

Find: (a) Apply continuity and momentum to show $U=U_{0} M_{0} / M$.
(b) Obtain a general expression for $t(t)$.

Solution: Apply continuity and momentum equations to linearly accelerating CV shown.
Basic equations: $0=\frac{\partial}{\partial t} \int_{C V} \rho d t+\int_{c s} \rho \vec{V}_{x y z} \cdot d \vec{A}$

$$
F f_{x}^{=0(1)}+F f_{x}^{d}-\int_{e v} a(2) \quad a f_{x} \rho d t=\frac{\partial}{\partial t} \int_{c v} \psi_{x y z \rho}^{\approx o(3)} \rho d \psi+\int_{2} u_{x y z} \rho \vec{V}_{x y z} \cdot d \vec{A}
$$

Assumptions: (1) $F_{s x}=0$
(2) $F_{B_{x}}=0$
(s) Neglect u within $C V$
(4) Uniform flow across inlet section

From continuity

$$
0=\frac{\partial}{\partial t} M_{c u}+\{-|\rho U A|\} \text { or } \frac{d M}{d t}=\rho U A
$$

From momentum

$$
-a_{f f} M=-\frac{d U}{d t} M=u\{-|\rho U A|\}=U_{\rho} U A, \text { since } u=-U
$$

But from continuity, PUA $=\frac{d M}{d t}$, so

$$
M \frac{d V}{d t}+V \frac{d M}{d t}=0 \quad \text { or } \quad U M=\operatorname{constan} t=U_{0} M_{0} ; \quad U=V_{0} M_{0} / M
$$

substituting $M=M_{0} U_{0} / V$ into momentum, $-\frac{d U}{d t} \frac{M_{0} U_{0}}{V}=P U^{-} A$, or

$$
\frac{d V}{V^{-3}}=-\frac{P A}{U_{0} M_{0}} d t
$$

Integrating, $\left.\int_{V_{0}}^{V^{+}} \frac{d V}{V^{3}}=-\frac{1}{2} \frac{1}{V^{2}}\right]_{V_{0}}^{V^{(}}=-\frac{1}{2}\left(\frac{1}{V^{2}}-\frac{1}{V_{0}^{2}}\right)=-\int_{0}^{t} \frac{\rho A}{V_{0} M_{0}} d t=-\frac{\rho A}{U_{0} M_{0}} t$ Solving for U,

$$
U=\frac{U_{0}}{\left[1+\frac{2 p U_{0} A}{M_{0}} t\right]^{\frac{1}{2}}}
$$

Given: Tank driven by jet along horizontal track. Neglect resistance. Acceleration is from rest. Initial mass is Mo. Track horizontal.

Find: (a) Apply continuity and momentum to show $M=M_{0} V /(V-v)$
(b) General expression for V / V as a function of time.

Solution: Apply continuity and x component of momentum equation to linearly accelerating CV shown.
Basic equations: $\quad 0=\frac{\partial}{\partial t} \int_{C v} \rho d t+\int_{C s} \rho \vec{V}_{x y s} \cdot d \vec{A}$

$$
\begin{aligned}
& =O(1)=\alpha(2) \quad \simeq o(3) \\
& F_{f_{x}}^{1}+F_{Q x}^{A}-\int_{C_{v}} a_{r f_{x}} \rho d \psi=\frac{\partial}{\partial t} \int_{C V} \hat{\psi}_{x y z} \rho d \psi+\int_{C s} u_{x y y} \rho \vec{V}_{x y z} \cdot d \vec{A}
\end{aligned}
$$

Assumptions: (1) $F_{S_{x}}=0$
(2) $F_{i_{x}}=0$
(3) Neglect u within cv
(4) Uniform flow in jet

From continceity

$$
0=\frac{\partial}{\partial t} M_{C V}+\{-|\rho(V-V) A|\} \quad \text { or } \quad \frac{d M}{d t}=\rho(V-V) A
$$

From momentum

$$
-a f_{x} M=-\frac{d U}{d t} M=u\{-|\rho(V-V) A|\}=(V-V)[-\rho(V-V) A] ; u=V-V
$$

But from continuity, $p(V-V) A=\frac{d M}{d t}$, and $d V=-d(V-V)$, so

$$
-\frac{d V}{d t} M=\frac{d(V-U)}{d t} M=-(V-V) \frac{d M}{d t} \text { or } M(V-V)=\text { constant }=M 0 V
$$

Thus $M=M_{0} V /(V-V)$
Substituting into momentum, $-\frac{d V}{d t} M=\frac{d(V-U)}{d t} \frac{M_{0} V}{(V-U)}=-\rho(V-V)^{2} A$, or

$$
\frac{d(V-v)}{(V-v)^{3}}=-\frac{\rho A}{V M_{0}} d t
$$

Integrating, $\int_{V}^{V-v} \frac{d(V-(v)}{(V-v)^{3}}=-\frac{1}{2}\left[\frac{1}{(V-V)^{2}}-\frac{1}{V^{2}}\right]=-\int_{0}^{t} \frac{\rho A}{V M_{0}} d t=-\frac{f A}{V M_{0}} t$
Solving,

$$
\frac{U}{V}=\left\{1-\frac{1}{\left[1+\frac{2 p V A}{M_{0}} t\right]^{1 / 2}}\right\}
$$

4.171 A model solid propellant rocket has a mass of 69.6 g , of which 12.5 g is fuel. The rocket produces 5.75 N of thrust for a duration of 1.7 s . For these conditions, calculate the maximum speed and height attainable in the absence of air resistance. Plot the rocket speed and the distance traveled as functions of time.

Given:

Data on rocket
Find: \quad Maximum speed and height; Plot of speed and distance versus time

Solution:

Basic equation: Momentum flux in y direction $F_{S_{y}}+F_{B_{y}}-\int_{\mathrm{CV}} a_{r f_{y}} \rho d \forall=\frac{\partial}{\partial t} \int_{\mathrm{CV}} v_{x y z} \rho d \forall+\int_{\mathrm{CS}} v_{x y z} \rho \vec{V}_{x y z} \cdot d \vec{A}$
Assumptions: 1) No resistance 2) $\mathrm{pe}_{\mathrm{e}}=\mathrm{p}_{\mathrm{atm}}$ 3) Uniform flow 4) Use relative velocities 5) Constant mass flow rate
From continuity $\quad \frac{d M}{d t}=m_{\text {rate }}=$ constant \quad so $\quad M=M_{0}-m_{\text {rate }} \cdot \mathrm{t} \quad$ (Note: Software cannot render a dot!)
Hence from momentum $-\mathrm{M} \cdot \mathrm{g}-\mathrm{a}_{\mathrm{rfy}} \cdot \mathrm{M}=\mathrm{u}_{\mathrm{e}} \cdot\left(\rho_{\mathrm{e}} \cdot \mathrm{V}_{\mathrm{e}} \cdot \mathrm{A}_{\mathrm{e}}\right)=-\mathrm{V}_{\mathrm{e}} \cdot \mathrm{m}_{\text {rate }}$

Hence

$$
a_{\text {rfy }}=\frac{d V}{d t}=\frac{V_{e} \cdot m_{\text {rate }}}{M}-g=\frac{V_{e} \cdot m_{\text {rate }}}{M_{0}-m_{\text {rate }} \cdot t}-g
$$

Separating variables $\quad d V=\left(\frac{V_{e} \cdot m_{\text {rate }}}{\mathrm{M}_{0}-\mathrm{m}_{\text {rate }} \cdot \mathrm{t}}-\mathrm{g}\right) \cdot \mathrm{dt}$
Integrating from $\mathrm{V}=$ at $\mathrm{t}=0$ to $\mathrm{V}=\mathrm{V}$ at $\mathrm{t}=\mathrm{t}$

$$
\begin{align*}
& \mathrm{V}=-\mathrm{V}_{\mathrm{e}} \cdot\left(\ln \left(\mathrm{M}_{0}-\mathrm{m}_{\text {rate }} \cdot \mathrm{t}\right)-\ln \left(\mathrm{M}_{0}\right)\right)-\mathrm{g} \cdot \mathrm{t}=-\mathrm{V}_{\mathrm{e}} \cdot \ln \left(1-\frac{\mathrm{m}_{\text {rate }} \cdot \mathrm{t}}{\mathrm{M}_{0}}\right)-\mathrm{g} \cdot \mathrm{t} \\
& \mathrm{~V}=-\mathrm{V}_{\mathrm{e}} \cdot \ln \left(1-\frac{\mathrm{m}_{\text {rate }} \cdot \mathrm{t}}{\mathrm{M}_{0}}\right)-\mathrm{g} \cdot \mathrm{t} \quad \text { for } \quad \mathrm{t} \leq \mathrm{t}_{\mathrm{b}} \quad \text { (burn time) } \tag{1}
\end{align*}
$$

To evaluate at $\mathrm{t}_{\mathrm{b}}=1.7 \mathrm{~s}$, we need V_{e} and $\mathrm{m}_{\text {rate }} \quad \mathrm{m}_{\text {rate }}=\frac{\mathrm{m}_{\mathrm{f}}}{\mathrm{t}_{\mathrm{b}}} \quad \mathrm{m}_{\text {rate }}=\frac{12.5 \cdot \mathrm{gm}}{1.7 \cdot \mathrm{~s}} \quad \mathrm{~m}_{\text {rate }}=7.35 \times 10^{-3} \frac{\mathrm{~kg}}{\mathrm{~s}}$
Also note that the thrust F_{t} is due to momentum flux from the rocket

$$
\mathrm{F}_{\mathrm{t}}=\mathrm{m}_{\text {rate }} \cdot \mathrm{V}_{\mathrm{e}} \quad \mathrm{~V}_{\mathrm{e}}=\frac{\mathrm{F}_{\mathrm{t}}}{\mathrm{~m}_{\text {rate }}} \quad \mathrm{V}_{\mathrm{e}}=\frac{5.75 \cdot \mathrm{~N}}{7.35 \times 10^{-3} \cdot \frac{\mathrm{~kg}}{\mathrm{~s}}} \times \frac{\mathrm{kg} \cdot \mathrm{~m}}{\mathrm{~s} \cdot \mathrm{~N}} \quad \mathrm{~V}_{\mathrm{e}}=782 \frac{\mathrm{~m}}{\mathrm{~s}}
$$

Hence

$$
\begin{aligned}
& \mathrm{V}_{\text {max }}=-\mathrm{V}_{\mathrm{e}} \cdot \ln \left(1-\frac{\mathrm{m}_{\text {rate }} \cdot \mathrm{t}_{\mathrm{b}}}{\mathrm{M}_{0}}\right)-\mathrm{g} \cdot \mathrm{t}_{\mathrm{b}} \\
& \mathrm{~V}_{\max }=-782 \cdot \frac{\mathrm{~m}}{\mathrm{~s}} \cdot \ln \left(1-7.35 \times 10^{-3} \cdot \frac{\mathrm{~kg}}{\mathrm{~s}} \times \frac{1}{0.0696 \cdot \mathrm{~kg}} \times 1.7 \cdot \mathrm{~s}\right)-9.81 \cdot \frac{\mathrm{~m}}{\mathrm{~s}^{2}} \times 1.7 \cdot \mathrm{~s} \quad \mathrm{~V}_{\max }=138 \frac{\mathrm{~m}}{\mathrm{~s}}
\end{aligned}
$$

To obtain $\mathrm{Y}(\mathrm{t})$ we set $\mathrm{V}=\mathrm{dY} / \mathrm{dt}$ in Eq 1, and integrate to find

$$
\begin{aligned}
\mathrm{Y}= & \frac{\mathrm{V}_{\mathrm{e}} \cdot \mathrm{M}_{0}}{\mathrm{~m}_{\mathrm{rate}}} \cdot\left[(1 - \frac { \mathrm { m } _ { \mathrm { rate } } \cdot \mathrm { t } } { \mathrm { M } _ { 0 } }) \cdot \left(\operatorname { l n } \left(1-\frac{\left.\left.\left.\mathrm{m}_{\mathrm{rate} \cdot \mathrm{t}}^{\mathrm{M}_{0}}\right)-1\right)+1\right]-\frac{1}{2} \cdot \mathrm{~g} \cdot \mathrm{t}^{2} \quad \mathrm{t} \leq \mathrm{t}_{\mathrm{b}} \quad \mathrm{t}_{\mathrm{b}}=1.7 \cdot \mathrm{~s}}{\mathrm{Y}_{\mathrm{b}}=}\right.\right.\right. \\
& 782 \cdot \frac{\mathrm{~m}}{\mathrm{~s}} \times 0.0696 \cdot \mathrm{~kg} \times \frac{\mathrm{s}}{7.35 \times 10^{-3} \cdot \mathrm{~kg}} \cdot\left[\left(1-\frac{0.00735 \cdot 1.7}{0.0696}\right)\left(\ln \left(1-\frac{.00735 \cdot 1.7}{.0696}\right)-1\right)+1\right] \ldots \\
& \quad+-\frac{1}{2} \times 9.81 \cdot \frac{\mathrm{~m}}{2} \times(1.7 \cdot \mathrm{~s})^{2} \\
\mathrm{Y}_{\mathrm{b}}= & 113 \mathrm{~m}
\end{aligned}
$$

After burnout the rocket is in free assent. Ignoring drag

$$
\begin{align*}
& \mathrm{V}(\mathrm{t})=\mathrm{V}_{\max }-\mathrm{g} \cdot\left(\mathrm{t}-\mathrm{t}_{\mathrm{b}}\right) \tag{3}\\
& \mathrm{Y}(\mathrm{t})=\mathrm{Y}_{\mathrm{b}}+\mathrm{V}_{\max } \cdot\left(\mathrm{t}-\mathrm{t}_{\mathrm{b}}\right)-\frac{1}{2} \cdot \mathrm{~g} \cdot\left(\mathrm{t}-\mathrm{t}_{\mathrm{b}}\right)^{2} \quad \mathrm{t}>\mathrm{t}_{\mathrm{b}} \tag{4}
\end{align*}
$$

The speed and position as functions of time are plotted below. These are obtained from Eqs 1 through 4, and can be plotted in Excel

Time (s)

Using Solver, or by differentiating $y(t)$ and setting to zero, or by setting $V(t)=0$, we find for the maximun $t=15.8 \mathrm{~s}$

$$
\mathrm{y}_{\max }=1085 \mathrm{~m}
$$

Given: Small rocket "jet pack" used to lift astronaut above Earth. Exhaust jet speed is constant but mass flow rate varies.
Find: (a) Algebraic expression for mass flow rate needed to hover.
(b) Maximum hover time.

Solution: APply continuity and momentum using CV \&Cs shown.
Basic equation: $F_{p_{y}}^{=\alpha(1)}+F_{B y}-\int_{C y} A_{1}^{=0(2)}$

$$
=\frac{1}{t} \int_{C V}^{\infty} v_{x y z}^{\prime(3)} \rho d v+\int_{C S} v_{x y /} p \vec{v} \cdot d \vec{A}
$$

Assumptions: (1) Hover; $F_{\text {ty }}=0$
(2) arty $=0$
(3) Neglect $\%$ in CV
(4) Uniform flow exhowt

Then

$$
\begin{aligned}
& V_{e}=2940 \mathrm{~m} / \mathrm{s} \\
& M_{0}=130 \mathrm{~kg} \\
& M_{f}=40 \mathrm{~kg}
\end{aligned}
$$

$$
\begin{aligned}
-M g= & v_{1}\{+\dot{m}\} \\
& v_{1}=-v_{c} \\
-M g= & -v_{c} \dot{m}
\end{aligned}
$$

$$
\dot{m}=\frac{M g}{V_{e}}
$$

From conservation of mass, $O=\frac{\partial}{\partial t} \int_{C V} \rho d \psi+\int_{C S} \rho \vec{r} \cdot d \vec{A}=\frac{d M}{d t}+\dot{m}$ so $\quad \frac{d M}{d t}=-\dot{m}=-\frac{M g}{V_{e}} \quad$ or $\quad \frac{d M}{M}=-\frac{g}{V_{e}} d t$
Integrating from M_{0} at $t=0$ to $M_{0}-M_{f}$ at t,

$$
\left.\int_{M_{0}}^{M_{0}-M_{f}} \frac{d M}{M_{1}}=\ln M\right]_{M_{0}}^{M_{0}-M_{f}}=\ln \left(\frac{M_{0}-M_{t}}{M_{0}}\right)=\ln \left(1-\frac{M_{f}}{M_{0}}\right)=-\frac{g_{t}}{V_{e}}
$$

Solving fort,

$$
\begin{aligned}
& t=-\frac{V_{e}}{g} \ln \left(1-\frac{M_{f}}{M_{0}}\right)=-2940 \frac{\mathrm{~m}}{\mathrm{~s}} \times \frac{\mathrm{s}^{2}}{9.81 \mathrm{~m}} \ln \left(1-\frac{40 \mathrm{~kg}}{130 \mathrm{~kg}}\right) \\
& t=110 \mathrm{~s} \quad \text { (hover time) }
\end{aligned}
$$

Open-Ended Problem Statement: Several toy manufacturers sell water "rockets" that consist of plastic tanks to be partially filled with water and then pressurized with air. Upon release, the compressed air forces water out the nozzle rapidly, propelling the rocket. You are asked to help specify optimum conditions for this water-jet propulsion system. To simplify the analysis, consider horizontal motion only. Perform the analysis and design needed to define the acceleration performance of the compressed air/water-propelled rocket. Identify the fraction of tank volume that initially should be filled with compressed air to achieve optimum performance (i.e., maximum speed from the water charge). Describe the effect of varying the initial air pressure in the tank.

Discussion: The process may be modeled as a polytropic expansion of the trapped air which forces water out the jet nozzle, causing the "rocket" to accelerate. The polytropic exponent may be varied to model anything from an isothermal expansion process ($n=1$) to an adiabatic expansion process ($n=k$), which is more likely to be an accurate model for the sudden expansion of the air.
Speed of the water jet leaving the "rocket" is proportional to the square root of the pressure difference between the tank and atmosphere.
Qualitatively it is apparent that the smaller the initial volume fraction of trapped air, the larger will be the expansion ratio of the air, and the more rapid will be the pressure reduction as the air expands. This will cause the water jet speed to drop rapidly. The combination of low water jet speed and relatively large mass of water will produce sluggish acceleration.

Increasing the initial volume fraction of air will reduce the expansion ratio, so higher pressure will be maintained longer in the tank and the water jet will maintain higher speed longer. This combined with the relatively small mass of water in the tank will produce rapid acceleration.

If the initial volume fraction of air is too large, all water will be expended before the air pressure is reduced significantly. In this situation, some of the stored energy of the air will be dissipated in a relatively ineffective air jet. Consequently, for any initial pressure in the tank, there is an optimum initial air fraction.

This problem cannot be solved in closed form because of the varying air pressure, mass flow rate, and mass of water in the tank;. it can only be solved numerically. One possible integration scheme is to increment time and solve for all properties of the system at each instant. The drawback to this scheme is that the water is unlikely to be exhausted at an even increment of time. A second scheme is to increment the volume of water remaining and solve for properties using the average flow rate during the interval. This scheme is outlined below.

Model the airlwater jet-propelled "rocket" using the CV and oordinates shown.
First choose dimensions and mass of "rocket" to be simeclated:

Input Data:

Jet diameter:	$D_{\mathrm{i}}=$	0.003	m
Tank diameter:	$D_{\mathrm{t}}=$	0.035	m
Tank length:	$L=$	0.1	m
Tank mass:	$M_{\mathrm{t}}=$	0.01	kg
Polytropic exponent:	$n=$	1.4	-

Next choose intial conditions for the simubation (ser sample caleutations below):

Problem *4.173

Initial Conditions:

Air fraction in tank:	$\alpha=$	0.5	-
Tank pressure:	$\rho_{0}=$	200	kPa (gage)
Volume increment:	$\Delta \alpha=$	0.02	--

Compute reference parameters:

Calculated Parameters:

Jet area:	$A_{1}=7.07 \mathrm{E}-06 \mathrm{~m}^{2}$
Tank volume:	$\forall_{\mathrm{t}}=9.62 \mathrm{E}-05 \mathrm{~m}^{3}$
Initial air volume:	$\forall_{0}=4.81 \mathrm{E}-05 \mathrm{~m}^{3}$
Initial water mass:	$M_{0}=0.0481 \mathrm{~kg}$

(these cere used in the spreadsheet below.)

Then decrease the waterfraction in the tank beef $\Delta \alpha$:
Calculated Results:

The computation is made as follows:
(1) Decrease α by $\Delta \alpha$
(2) Complete p from $p=p o\left(\frac{t_{0}}{\forall}\right)^{n}$

$$
p=(200+101.325) k p a\left(\frac{0.50}{0.52}\right)^{1.4}-101.325=183.9 \mathrm{kPa}(g a g e)
$$

(3) Use Bernow li to calculate jet spec t

$$
V_{j}=\sqrt{\frac{2 \Delta p}{\rho}}=\left[2 \times 183.9 \times 10^{3} \frac{\mu_{1}}{m^{2}} \times \frac{m^{3}}{999 k} \times \frac{k g 1 m}{1 / s^{4}}\right]^{\frac{1}{2}}=19.10 \mathrm{~m} / \mathrm{s}^{*}
$$

(4) Calculate water mass using ox.
(5) Use conservation of mass to complete mass flow rate

$$
\therefore=\rho V_{j} A_{j}=999 \frac{\mathrm{~kg}}{\mathrm{~m}^{3}} \times 19.10 \frac{\mathrm{~m}}{\mathrm{~s}} \times 7.07 \times 10^{-6} \mathrm{~m}^{2}=0.1349 \mathrm{~kg} \mathrm{k}
$$

(6) Use the avenge mass thew rate deeming the interval to approximate at:

$$
\Delta t=\frac{\Delta m}{d m / d t}=\frac{\Delta m}{m}=(0.0481-0.0461) \lg \times \frac{s}{0.138 \mathrm{~kg}}=0.01449 \mathrm{~s}^{*}
$$

(7) Use momentwem to compete acceleration (note M M Mw + M):

$$
\Delta_{f_{x}}=\frac{m v_{j}}{M}=0.135 \frac{\mathrm{~kg}}{\mathrm{~s}} \times 19.2 \frac{\mathrm{~m}}{\mathrm{~s}} \times \frac{1}{0.0461+0.0100 \mathrm{~kg}}=46.2 \mathrm{~m} / \mathrm{s}^{3^{*}}
$$

(s) Finally: use average acceleration to get speed

$$
U=U_{0}+\vec{a} \Delta t=0+48.1 \frac{\mathrm{~m}}{s^{2}} \times 0.0 .39 \mathrm{~s}=0.669 \mathrm{~m} / \mathrm{s}
$$

[^1]Repeat these cakculations until water is depleted or air pressure falls to zero, as shown below:

Water Fraction, $\forall_{w} / V_{1}(--)$	Gage Pressure, $p(\mathrm{kPa})$	Water Mass, M_{w} (kg)	Jet Speed, $V_{1}(\mathrm{~m} / \mathrm{s})$	Flow Rate, $d m / d t$ (kg/s)	Time Interval, Δt	Current Time, $t(s)$	"Rocket" Accel., a ($\mathrm{m} / \mathrm{s}^{2}$)	"Rocket" Speed, U (m / s)
0.50	200	0.0481	20.0	0.141	0	0	48.7	0
0.48	184	0.0461	19.2	0.135	0.0139	0.0139	47.5	0.668
0.46	169	0.0442	18.4	0.130	0.0145	0.0284	45.2	1.34
0.44	156	0.0423	17.7	0.125	0.0151	0.0435	43.1	2.01
0.42	143	0.0404	16.9	0.120	0.0157	0.0592	41.2	2.67
0.40	132	0.0384	16.3	0.115	0.0164	0.0756	39.4	3.33
0.38	122	0.0365	15.6	0.110	0.0171	0.0927	37.8	3.99
0.36	112	0.0346	15.0	0.106	0.0178	0.110	36.2	4.65
0.34	103	0.0327	14.4	0.101	0.0186	0.129	34.8	5.31
0.32	94.6	0.0308	13.8	0.0972	0.0194	0.148	33.5	5.97
0.30	86.8	0.0288	13.2	0.0931	0.0202	0.169	32.2	6.63
0.28	79.5	0.0269	12.6	0.0891	0.0211	0.190	31.0	7.30
0.26	72.7	0.0250	12.1	0.0852	0.0221	0.212	29.9	7.97
0.24	66.3	0.0231	11.5	0.0814	0.0231	0.235	28.9	8.65
0.22	60.4	0.0211	11.0	0.0776	0.0242	0.259	27.9	9.34
0.20	54.7	0.0192	10.5	0.0739	-0.0254	0.284	26.9	10.0
0.18	49.4	0.0173	9.95	0.0702	0.0267	0.311	26.0	10.7
0.16	44.4	0.0154	9.43	0.0666	- 0.0281	0.339	25.2	11.5
0.14	39.7	0.0135	8.92	0.0630	- 0.0297	0.369	24.3	12.2
0.12	35.2	0.0115	8.40	0.0593	- 0.0314	0.400	23.5	12.9
0.10	31.0	0.00961	7.88	0.0556	- 0.0334	0.434	22.7	13.7
0.08	27.0	0.00769	7.35	0.0519	- 0.0357	0.469	22.0	14.5
0.06	23.2	0.00577	6.81	0.0481	$1 \quad 0.0384$	0.508	21.2	15.3
0.04	19.6	0.00384	6.26	0.0442	20.0416	0.550	20.4	16.2
0.02	16.1	0.00192	5.68	0.0401	10.0456	0.595	19.5	17.1
0.00	12.9	0.0000	5.07	0.0358	$8 \quad 0.0506$	0.646	18.6	18.1

In this simulation, the water is depleted when $t \approx 0.65 \mathrm{~s} ; V_{\max }=18.1 \mathrm{~m} / \mathrm{s}$.
Varying the initial air fraction produces the following:

For this combination of pardmeters, a peak speed of about $20.8 \mathrm{~m} / \mathrm{s}$ is attained with an initial air fraction of about 0.66 .

Given: Vertical jet impinging an disk.
Disk is unconstrained vertically.
Find: (a) Differential equation for $h(t)$, if disk released from $H>h_{0}$, where h_{0} is equilibrium height.
(b) sketch $h(t)$ and explain.

Solution: Apply Bernoulli equation to jet, then y momentum equation to cv with linear acceleration. Basic equations:

$$
\begin{aligned}
& \begin{array}{r}
\frac{p p_{0}^{1}}{p}+\frac{v_{0}^{2}}{2}+g \hat{\beta}_{0}^{m=0}=\frac{\hat{p}_{1}}{p}+\frac{v_{1}^{2}}{2}+g z_{1}, \\
=o(6)
\end{array}
\end{aligned}
$$

Assumptions: (1) Steady flow
(z) Incompress isle flow
(3) No friction
(4) Flow along a streamline
(5) $p_{1}=A_{0}=$ pate
(6) No presscere force on $C V_{,}, s o F_{3 y}=0$
(7) Neglect mass of liquid in CV and $v \approx 0$ in CV
(8) Uniform flow at each section
(9) Measure velocitre's relative to CV

From momentum

$$
\begin{array}{r}
-\left(M+m_{w}^{*}\right) g-a_{r r_{y}}\left(M+m_{w}^{*}\right)=v_{1}^{*}\left\{-\left|\rho\left(V_{1}-v\right) A_{1}\right|\right\}+v_{2}^{*}\left\{\dot{m}_{2}\right\} \\
v_{1}=V_{1}-U \quad v_{2} \approx 0
\end{array}
$$

With $a_{n y y}=\frac{d^{2} h}{d t^{2}}, \tau=\frac{d h}{d t}$, then

$$
-M g-M \frac{d^{2} h}{d t^{2}}=-\rho\left(V_{1}-\frac{d h}{d t}\right)^{2} A_{1}
$$

But from Bernoulli, $\frac{V_{1}^{2}}{2}=\frac{V_{0}^{2}}{2}-g z_{1}$, so $V_{1}=\sqrt{V_{0}^{+}-2 g h}$, since $z, h(t)$ Also from continuity, $V, A_{1}=V_{0} A_{0}$, so $A_{1}=A_{0} V_{6} / V_{1}$. substituting

$$
\frac{d^{z} h}{d t^{2}}=\rho\left(\sqrt{V_{0}^{2}-2 g h}-\frac{d h}{d t}\right)^{2} \frac{A_{0} V_{0}}{M \sqrt{V_{0}^{2}-2 g h}}-g
$$

At equilibrium h eight, $h=h_{0}$, $\frac{d h}{d t}=0$, and $\frac{d^{2} h}{d t^{2}}=0$. Then

$$
\rho \sqrt{V_{0}^{2}-2 g h_{0}} A_{0} V_{0}-M g=0
$$

Thus $V_{0}^{2}-2 g h_{0}=\left(\frac{M g}{\rho V_{0} A_{0}}\right)^{2}$

Problem *4.174

[5] Part 2/2
This may be solved to obtain

$$
h_{0}=\frac{V_{0}^{2}}{2 g}\left[1-\left(\frac{M g}{P V_{0}^{2} A_{0}}\right)^{2}\right]=\frac{V_{0}^{2}}{2 g}\left[1-\left(\frac{M g}{\dot{m} V_{0}}\right)^{2}\right]
$$

When released, $H>h_{0}$, and $d h / d t=0$. Because the equation ford $d^{2} h / c^{2}{ }^{2}$ is nonlinear, oscillations will occur. The expected behavior is sketched below:

Notes: (1) Expect oscillations
(2) $\Delta h_{3}<\Delta h_{2}<\Delta h_{\text {, dee to nonlinear equation }}$
*4.175 Consider the configuration of the vertical jet impinging on a horizontal disk shown in Problem 4.153. Assume the disk is released from rest at an initial height of 2 m above the jet exit plane. Solve for the subsequent motion of this disk. Identify the steadystate height of the disk.

Given: Water jet striking moving disk

Find: Motion of disk; steady state height

Solution:

Basic equations: Bernoulli; Momentum flux in z direction (treated as upwards) for linear accelerating CV

$$
\frac{\mathrm{p}}{\rho}+\frac{\mathrm{V}^{2}}{2}+\mathrm{g} \cdot \mathrm{z}=\text { constant } \quad F_{S_{z}}+F_{B_{z}}-\int_{\mathrm{CV}} a_{r f_{z}} \rho d \forall=\frac{\partial}{\partial t} \int_{\mathrm{CV}} w_{x y z} \rho d \forall+\int_{\mathrm{CS}} w_{x y z} \rho \vec{V}_{x y z} \cdot d \vec{A}
$$

Assumptions: 1) Steady flow 2) Incompressible flow 3) Atmospheric pressure 4) Uniform flow 5) velocities wrt CV (All in jet)
The Bernoulli equation becomes $\quad \frac{\mathrm{V}_{0}{ }^{2}}{2}+\mathrm{g} \cdot 0=\frac{\mathrm{V}_{1}{ }^{2}}{2}+\mathrm{g} \cdot \mathrm{h}$

$$
\begin{equation*}
\mathrm{v}_{1}=\sqrt{\mathrm{v}_{0}^{2}-2 \cdot \mathrm{~g} \cdot \mathrm{~h}} \tag{1}
\end{equation*}
$$

$$
\mathrm{V}_{1}=\sqrt{\left(15 \cdot \frac{\mathrm{~m}}{\mathrm{~s}}\right)^{2}+2 \times 9.81 \cdot \frac{\mathrm{~m}}{\mathrm{~s}^{2}} \cdot(0-3) \cdot \mathrm{m}} \quad \mathrm{~V}_{1}=12.9 \frac{\mathrm{~m}}{\mathrm{~s}}
$$

The momentum equation becomes

$$
\begin{aligned}
& -\mathrm{M} \cdot \mathrm{~g}-\mathrm{M} \cdot \mathrm{a}_{\mathrm{rfz}}=\mathrm{w}_{1} \cdot\left(-\rho \cdot \mathrm{V}_{1} \cdot \mathrm{~A}_{1}\right)+\mathrm{w}_{2} \cdot\left(\rho \cdot \mathrm{~V}_{2} \cdot \mathrm{~A}_{2}\right)=\left(\mathrm{V}_{1}-\mathrm{U}\right) \cdot\left[-\rho \cdot\left(\mathrm{V}_{1}-\mathrm{U}\right) \cdot \mathrm{A}_{1}\right]+0 \\
& \text { With } \quad \mathrm{a}_{\mathrm{rfz}}=\frac{\mathrm{d}^{2} \mathrm{~h}}{\mathrm{dt}^{2}} \quad \text { and } \quad \mathrm{U}=\frac{\mathrm{dh}}{\mathrm{dt}} \quad \text { we get } \quad-\mathrm{M} \cdot \mathrm{~g}-\mathrm{M} \cdot \frac{\mathrm{~d}^{2} \mathrm{~h}}{\mathrm{dt}^{2}}=-\rho \cdot\left(\mathrm{V}_{1}-\frac{\mathrm{dh}}{\mathrm{dt}}\right)^{2} \cdot \mathrm{~A}_{1}
\end{aligned}
$$

Using Eq 1, and from continuity $\mathrm{V}_{1} \cdot \mathrm{~A}_{1}=\mathrm{V}_{0} \cdot \mathrm{~A}_{0}$

$$
\begin{equation*}
\frac{\mathrm{d}^{2} \mathrm{~h}}{\mathrm{dt}^{2}}=\left(\sqrt{\mathrm{V}_{0}^{2}-2 \cdot \mathrm{~g} \cdot \mathrm{~h}}-\frac{\mathrm{dh}}{\mathrm{dt}}\right)^{2} \cdot \frac{\rho \cdot \mathrm{~A}_{0} \cdot \mathrm{~V}_{0}}{\mathrm{M} \cdot \sqrt{\mathrm{~V}_{0}^{2}-2 \cdot \mathrm{~g} \cdot \mathrm{~h}}}-\mathrm{g} \tag{2}
\end{equation*}
$$

This must be solved numerically! One approach is to use Euler's method (see the Excel solution)
At equilibrium $h=h_{0} \quad \frac{d h}{d t}=0 \quad \frac{d^{2} h}{d t^{2}}=0$

$$
\sqrt{\left(\mathrm{V}_{0}{ }^{2}-2 \cdot \mathrm{~g} \cdot \mathrm{~h}_{0}\right)} \cdot \rho \cdot \mathrm{A}_{0} \cdot \mathrm{~V}_{0}-\mathrm{M} \cdot \mathrm{~g}=0 \quad \text { and } \quad \mathrm{h}_{0}=\frac{\mathrm{V}_{0}^{2}}{2 \cdot \mathrm{~g}} \cdot\left[1-\left(\frac{\mathrm{M} \cdot \mathrm{~g}}{\rho \cdot \mathrm{~V}_{0}^{2} \cdot \mathrm{~A}_{0}}\right)^{2}\right]
$$

Hence

$$
\mathrm{h}_{0}=\frac{1}{2} \times\left(15 \cdot \frac{\mathrm{~m}}{\mathrm{~s}}\right)^{2} \times \frac{\mathrm{s}^{2}}{9.81 \cdot \mathrm{~m}} \times\left[1-\left[30 \cdot \mathrm{~kg} \times 9.81 \cdot \frac{\mathrm{~m}}{\mathrm{~s}^{2}} \times \frac{\mathrm{m}^{3}}{1000 \cdot \mathrm{~kg}} \times\left(\frac{\mathrm{s}}{15 \cdot \mathrm{~m}}\right)^{2} \times \frac{1}{.005 \cdot \mathrm{~m}^{2}}\right]^{2}\right] \quad \mathrm{h}_{0}=10.7 \mathrm{~m}
$$

Problem *4.175 (In Excel)

Given: Small solid fuel rocket motor on test stand. The fuel bums uniformly at $A=12.7 \mathrm{~mm} / \mathrm{s}$. Exhaust gases leave at ambient pressure.

Treat combustion products as ideal gas with molecular mass, $M_{m}=25.8$.

Find: (a) Evaluate nate of change of mass and of linear momentum with in racket motor.
(b) Express rate of Change of momentum as a percentage of thrust.

Solution: Apply continuity and x component of momentum equations using fixed CV shown.

Basic equations:

$$
\begin{aligned}
& 0=\frac{\partial}{\partial t} \int_{C v} \rho d v+\int_{C S} \rho \vec{v} \cdot d \vec{A} \\
& F_{\Delta x}+F_{d x}=o(z)=\frac{\partial}{\partial t} \int_{C v} u \rho d t+\int_{c s} u \rho \vec{v} \cdot \overrightarrow{d A}
\end{aligned}
$$

Assumptions: (1) No net pressure force; $F_{s_{x}}=R_{x}$
(2) $\mathrm{FB}_{x}=0$
(3) All properties constant at each point, except at surface where combustion takes place
(4) Uniform flowat exit section

The continuity equation becomes

$$
\begin{aligned}
& 0=\frac{\partial f}{\partial t} \int_{I}^{=\alpha(z)} \rho d t+\frac{\partial}{\partial t} \int_{a}^{l} \rho_{g} A d x+\frac{\partial}{\partial t} \int_{l}^{b} \rho_{f} A d x+\left\{\left|f_{c} V_{c} A c\right|\right\} \\
& 0=\frac{\partial}{\partial t}\left[\rho_{g} A(l-a)\right]+\frac{\partial}{\partial t}\left[f_{f} A(b-c)\right]+\dot{m}_{e}=\left(\rho_{g}-f_{f}\right) A \frac{d l}{\partial t}+\dot{m}_{c}
\end{aligned}
$$

or

$$
\dot{m}_{e}=\left(p_{f}-f_{g}\right) A \frac{d c}{d t}=\left(p_{f}-f_{g}\right) A A
$$

For an ideal gas.
so

$$
\dot{m}_{e}=(1660-6) \frac{\mathrm{kg}^{3}}{\mathrm{~m}^{3}} \times \frac{\pi}{4}(0.1)^{2} m_{*}^{2} 0.0127 \frac{m}{\mathrm{~s}}=0.165 \mathrm{~kg} / \mathrm{s}
$$

Mass flow is out, so $\frac{\partial M c y}{\partial t}=-0.165 \mathrm{~kg} / \mathrm{s}$
From the momentum equation.

$$
\begin{aligned}
& R_{x}=\frac{\partial f}{d t} \int_{工}^{=o(3)} u \rho d \psi+\frac{\partial}{\partial t} \int_{a}^{l} u_{g} f_{g} A d x+\frac{\partial}{\partial t} \int_{L}^{b} i_{f}^{0} \rho_{f} A d x+u_{c}\left\{\left.\right|_{c} \rho_{e} V_{c} A_{c} \mid\right\} \\
& =\frac{\partial}{\partial t}\left[u_{g} \beta_{g} A(l-a)\right]+u_{e} \dot{m}_{e} ; u_{g}=-V_{g} \text { and } u_{e}=-V_{e} \\
& R_{x}=-f_{g} V_{g} A \frac{d l}{d t}-V_{e} \dot{m}_{e}=-f_{g} V_{g} A L-V_{e} \dot{m}_{e}
\end{aligned}
$$

But from continuity, $p_{g} V_{g} A=\dot{m}_{e}$, since no mass accumulates in region I of the CV. Thus

$$
R_{x}=-\dot{m}_{e}\left(v_{c}+\infty\right)
$$

R_{x} is the force on the CV. The thrust is

$$
\begin{aligned}
& K_{x}=\text { Thrust }=-R_{x}=\dot{m}_{c}\left(V_{c}+.4\right) \\
& K_{x}=0.165 \frac{\mathrm{~kg}}{3}(2750+0.0127) \frac{m}{3} \times \frac{\mathrm{N} \cdot \mathrm{~s}^{2}}{\mathrm{~kg} \cdot \mathrm{~m}}=454 \mathrm{~N}
\end{aligned}
$$

The rate of change of linear momentum within the CV is

$$
\frac{\partial P_{\mathrm{x}} c v}{\partial t}=-\dot{m}_{c e}=-0.165 \frac{\mathrm{~kg}}{\mathrm{~s}} \times 0.0127 \frac{\mathrm{~m}}{\mathrm{~s}} \times \frac{\mathrm{N} \cdot \mathrm{~s}^{2}}{\mathrm{~kg} \cdot \mathrm{~m}}=-2.10 \mathrm{mN}
$$

The ratio of rate of change of linear momentum to thrust is

$$
\frac{\frac{\partial P_{x c}}{\partial t}}{K_{x}}=\frac{-\dot{m}_{e} s}{\dot{m}_{e}\left(V_{c}+a\right)}=-\frac{a}{\left(V_{e}+a\right)}=-\frac{0.0127 \frac{m}{3}}{(2750+0.0127) \frac{m}{s}}=-4.62 \times 10^{-6}
$$

or

$$
\frac{\frac{\partial P_{x c v}}{\partial t}}{K_{x}}=-4.62 \times 10^{-4} \text { percent }
$$

$\left\{\begin{array}{l}\text { Neglecting the unsteady momentum term in the analysis of } \\ \text { this rocket motor wound cause an error of approximately } \\ \text { I part in } 217,000 \text {. The assumption that orev } / 2 t=0 \text { is } \\ \text { certainly justified for engineering work. }\end{array}\right\}$

Open-Ended Problem Statement: The capability of the Aircraft Landing Loads and Traction Facility at NASA's Langley Research Center is to be upgraded. The facility consists of a railmounted carriage propelled by a water jet issuing from a pressurized tank. (The setup is identical in concept to the hydraulic catapult of Problem 4.133 The $49,000 \mathrm{~kg}$ carriage must accelerate to 220 knots in 122 m . (The vane turning angle is 170°.) Identify a range of water jet sizes and speeds needed to accomplish this performance. Specify the recommended operating pressure for the water jet system and determine the shape and estimated size of tankage to contain the pressurized water.
Discussion: The analysis of Example
4.11 forms the basis for the solution outlined below. Use a control volume attached to and moving with the carriage to analyze the motion. Neglect aerodynamic and rolling resistance to obtain a best-case solution. Solve the resulting differential equation of motion for carriage speed and position as functions of time, and for speed as a function of position along the rails.
Computing equations are summarized and results tabulated below. As shown in Example 4.11, analysis of the carriage motion results in the differential equation

$$
\begin{equation*}
\frac{d U}{d t}=\frac{e\left(V_{j}-U\right)^{2}(1-\cos \theta)}{M 1} \tag{1}
\end{equation*}
$$

Integrating with respect to time gives carriage speed versus time

$$
\begin{equation*}
U=V_{j} \frac{b t}{1+b t} \tag{2}
\end{equation*}
$$

where parameter b is

$$
\begin{equation*}
b=\frac{e V_{j} A_{j}(1-\cos \theta)}{M} \tag{3}
\end{equation*}
$$

Equation 2 is integrated to obtain carriage position versus time

$$
\begin{equation*}
x=V_{j}\left[t-\frac{\ln (1+b t)}{b}\right] \tag{4}
\end{equation*}
$$

Substitute $d U / d t=U d U / d x$ and integrate Eq. 1 for distance traveled versus carriage speed

$$
\begin{equation*}
x=\frac{\overrightarrow{V_{j}}}{6}\left[\ln \left(1-U_{/ V_{j}}\right)+\frac{1}{1-U_{/ V_{j}}}-1\right] \tag{5}
\end{equation*}
$$

Relate jet speed to water tank pressure using the Bernoulli equation

$$
\begin{equation*}
V_{j}=\sqrt{2 \Delta p / \rho} \tag{6}
\end{equation*}
$$

The required volume of water is computed as follows:

1. Assume a range of tank pressures.
2. Compute the jet speed corresponding to each tank pressure from Eq. 6.
3. Solve for parameter b from Eq. 5 using the known maximum speed and specified distance.
4. Obtain jet area from Eq. 3.
5. Compute the time required to accelerate the carriage from Eq. 2 .
6. Calculate jet diameter from jet area.
7. Compute the required volume of water from the product of mass flow rate and acceleration time.

The optimum operating pressure requires the least costly tankage. (Assume the most efficient spherical shape for pressurized tankage and constant tank pressure during acceleration.) Tankage calculations are organized as follows:

1. Obtain tank diameter from tank volume.
2. Calculate wall thickness from a force balance on the thin wall of the tank.
3. Calculate steel volume from tank surface area and wall thickness.
4. Assume steel cost is proportional to steel volume.

Sample Calculation: assume $p=6000$ ping

$$
t=\frac{1}{b}\left(\frac{v N_{j}}{1-U N_{j}}\right)=\frac{s}{0.359} \times \frac{0.393}{1-0.393}=1.85 \mathrm{~s}
$$

$$
Q=V_{f} A=944 \frac{f t}{s} \times 0.343 f^{2}+7.48 \frac{\mathrm{gal}}{\mathrm{ft3}}=2280 \mathrm{gal} / \mathrm{s}
$$

$$
\forall=Q t=2280 \frac{9 Q^{\prime}}{\mathrm{s}} \times 1.85 \mathrm{~s}=4220 \mathrm{ga}
$$

$$
D=(6 \mathrm{t} / \pi)^{1 / 3}=\left(\frac{6}{\pi} \times 4220 \mathrm{gal} \times \frac{\mathrm{ft}^{3}}{7.4891}\right)^{1 / 3}=10.3 \mathrm{ft}
$$

$$
\Delta p \frac{\pi D^{2}}{4}=\pi D t ; t=\frac{p D}{4 \sigma}=\frac{1}{4} \times 6000 \frac{\mathrm{lbf}}{1 \mathrm{~m}^{2}} \times 10.3 \mathrm{ft} \times \frac{\mathrm{in}^{2}}{40,000 \mathrm{lbf}} \times \frac{12 \mathrm{im}}{\mathrm{ft}}=4.64 \mathrm{in}
$$

$$
\forall_{S t e e 1}=\pi D^{2} t=\pi_{x}(10.3)^{2} A^{2} \times 4.64 i n_{x} \frac{f t}{1210}=129 \mathrm{ft}^{3}
$$

Discussion: The results show the stee/volume plummets as tank pressure is raised, with a broad minimum between 3,000 and 4000 pi lg.

$$
\begin{aligned}
& V_{j}=\left[2 \times 6000 \frac{\mathrm{lbf}}{\mathrm{in}} \times \frac{\mathrm{ft3}}{1.94 \operatorname{sing}} \times \frac{144 \mathrm{in}^{2}}{\mathrm{ft}^{2}} \times \frac{3 / \mathrm{ug} \cdot \mathrm{ft}^{2}}{16 \mathrm{f} \cdot \mathrm{~s}^{2}}\right]^{\frac{1}{2}}=944 \mathrm{ft} / \mathrm{s} ; \frac{U}{V_{j}}=\frac{371}{944}=0.393 \\
& b=944 \frac{f t}{5} \times \frac{1}{400 \mathrm{ft}}\left[\ln (1-0.393)+\frac{1}{1-0.393}-1\right]=0.350 \mathrm{~s}^{-1} \\
& A_{j}=\frac{b M}{\rho V_{j}(1-\cos \theta)}=\frac{0,350}{5} \times 3350 \sin 9 \times \frac{f+3}{1.94 \operatorname{sing}} \times \frac{s}{944 f_{t}}\left(1-\cos 170^{\circ}\right)=0.323 \mathrm{ft}^{2} \\
& D=\sqrt{\frac{4 A}{\pi}}=\left[\frac{4}{\pi} \times 0.323 \mathrm{f}_{\times}^{2} \times 14 \frac{\mathrm{in}^{2}}{f+\alpha}\right]^{\frac{1}{2}}=7.69 \mathrm{in} .
\end{aligned}
$$

Input Data:	M	$=$	49000	kg	3355
	slug				
U	$=$	220	kt	371.3	ft / s
X	$=$	122	m	400.3	ft
	$\theta=$	170	degrees		

Calculated Results:

Jet Pressure (psig)	Jet Speed (ft's)	Parameter b $\left(s^{-1}\right)$	Jet Area ($\mathrm{ft}^{\mathbf{2}}$)	Jet Diameter (in.)	Flow Rate (gal/s)	Flow Time (s)	Water Volume (gal)
6000	944	0.351	0.324	7.70	2285	1.85	4227
5500	904	0.380	0.367	8.20	2477	1.84	4546
5000	862	0.417	0.421	8.79	2715	1.82	4936
4500	817	0.463	0.494	9.51	3019	1.80	5426
4000	771	0.525	0.593	10.4	3419	1.77	6061
3500	721	0.610	0.737	11.6	3973	1.74	6924
3000	667	0.736	0.961	13.3	4797	1.70	8174
2500	609	0.944	1.35	15.7	6155	1.65	10172
2000	545	1.35	2.17	19.9	8830	1.58	13942
1500	472	2.53	4.67	29.3	16490	1.46	24061
1000	385	22.4	50.6	96.3	145835	1.19	173113

Jet Pressure (psig)	Water Volume (gal)	Tank Diameter (ft)	Wall Thickness (in.)	Steel Volume $\left(\mathrm{ft}^{3}\right)$		Steel Mass (ton)
6000	4227	10.3	4.6	127.2	30.9	
5500	4546	10.5	4.3	125.4	30.5	
5000	4936	10.8	4.1	123.7	30.1	
4500	5426	11.1	3.8	122.4	29.8	
4000	6061	11.6	3.5	121.5	29.6	
3500	6924	12.1	3.2	121.5	29.6	
3000	8174	12.8	2.9	122.9	29.9	
2500	10172	13.7	2.6	127.5	31.0	
2000	13942	15.3	2.3	139.8	34.0	
1500	24061	18.3	2.1	180.9	44.0	
1000	173113	35.4	2.7	867.9	211.2	

Open-Ended Problem Statement: A classroom demonstration of linear momentum is planned, using a water-jet propulsion system for a cart traveling on a horizontal linear air track. The track is 5 m long, and the cart mass is 155 g . The objective of the design is to obtain the best performance for the cart, using 1 L of water contained in an open cylindrical tank made from plastic sheet with density of $0.0819 \mathrm{~g} / \mathrm{cm}^{2}$. For stability, the maximum height of the water tank cannot exceed 0.5 m . The diameter of the smoothly rounded water jet may not exceed 10 percent of the tank diameter. Determine the best dimensions for the tank and the water jet by modeling the system performance. Plot acceleration, velocity, and distance as functions of time. Find the optimum dimensions of the water tank and jet opening from the tank. Discuss the limitations on your analysis. Discuss how the assumptions affect the predicted performance of the cart. Would the actual performance of the cart be better or worse than predicted? Why? What factors account for the difference(s)?

Discussion: This solution is an extension of Problem *4.179. The analyses for tank level, acceleration, and velocity are identical; please refer to the solution for Problem *4.179 for equations describing each of these variables as functions of time.

One new feature of this problem is computation of distance traveled. Equation 7 of Problem *4.179, could be integrated in closed form to provide an equation for distance traveled as a function of time. However, the integral would be messy, and it would provide little insight into the dependence on key parameters. Consequently, a numerical analysis has been chosen in this problem. The results are presented in the plots and spreadsheet on the next page.

We have chosen to define velocity as the output to be maximized.
A second new feature of this problem is the geometric constraints: the maximum track length is 5 m . Intuitively jet diameter should be chosen as the largest possible fraction of tank diameter for optimum performance. Using the spreadsheet to vary $\beta=d / D$ verifies that this is the case. Therefore we have used the maximum allowable ratio, $\beta=0.1$, for all computations.
Tank height should be a factor in performance. Intuition suggests that increasing tank height should improve performance. Using the spreadsheet shows a very weak dependence on tank height. Performance is best at smaller tank heights, corresponding to the minimum tank mass.

As tank height is decreased, diameter increases because tank volume is held constant. Since diameter ratio is constant, then jet diameter increases with decreasing tank height. This effect almost overshadows the effect of tank height.
The principal limitations on the analysis are the assumptions of negligible motion resistance and no slope to the free surface of water in the tank. Actual performance of the cart would likely be less than predicted because of motion resistance.

Distance is modered as

$$
x_{i+1}=x_{i}+U_{i} \Delta t+\frac{1}{2} a_{x, i} \Delta t^{2}
$$

The accuracy of this model for position is consistent with the accuracy of modeling the water-jet propulsion system.

Analysis of Cart Propelled by Gravity-Driven Water Jet:
Input Data:

$g=$	9.81	$\mathrm{~m} / \mathrm{s}^{2}$	Acceleration of gravity
H	$=500$	mm	Height of tank
$M_{\mathrm{c}}=$	0.155	kg	Mass of cart
$\forall=$	1.00	L	Tank volume
$\beta=$	0.100	$(--)$	Ratio of jet diameter to tank diameter
$\rho=$	999	$\mathrm{~kg} / \mathrm{m}^{3}$	Density of water
$\rho^{\prime \prime}=$	0.819	$\mathrm{~kg} / \mathrm{m}^{2}$	(Area) density of tank material

Calculated Parameters:

$a=$	0.471	(--)	$\left(a^{2}=\right.$) Ratio of mass of tank to initial mass of water
$b=$	0.0313	s^{-1}	Geometric parameter of solution
$d=$	5.05	mm	Diameter of water jet
$D=$	50.5	mm	Diameter of tank
$M_{0}=$	1.00	kg	Initial mass of water in tank
$M_{\mathrm{p}}=$	0.0666	kg	Mass of plastic in tank
$M_{t}=$	0.222	kg	Mass of plastic tank plus cart

Time,	Level, y / H	Accel., ${ }^{\text {a }}$ \%	Velocity, u	Position,
(s)	(--)	$\left(\mathrm{m} / \mathrm{s}^{2}\right)$	(m/s)	(m)
0	1	0.161	0	0
0.5	0.903	0.160	0.080	0.0201
1.0	0.810	0.159	0.160	0.080
1.5	0.723	0.158	0.239	0.180
2.0	0.640	0.157	0.317	0.319
2.5	0.563	0.156	0.395	0.497
3.0	0.490	0.154	0.473	0.714
3.5	0.423	0.153	0.550	0.97
4.0	0.360	0.152	0.626	1.26
4.5	0.303	0.151	0.702	1.60
5.0	0.250	0.150	0.777	1.97
5.5	0.203	0.148	0.852	2.37
6.0	0.160	0.147	0.925	2.82
6.5	0.123	0.145	1.00	3.30
7.0	0.0900	0.144	1.07	3.82
7.5	0.0625	0.142	1.14	4.37
8.0	0.0400	0.141	1.21	4.96
8.03	0.0388	0.141	1.22	5.00
9.0	0.0100	0.137	1.35	
9.5	0.0025	0.135	1.42	
10.0	0.0000	0.133	1.49	

Open-Ended Problem Statement: Analyze the design and optimize the performance of a cart propelled along a horizontal track by a water jet that issues under gravity from an open cylindrical tank carried on board the cart. (A water-jet-propelled cart is shown in the diagram for Problei 4.137..) Neglect any change in slope of the liquid free surface in the tank during acceleration. Analyze the motion of the cart along a horizontal track, assuming it starts from rest and begins to accelerate when water starts to flow from the jet. Derive algebraic equations or solve numerically for the acceleration and speed of the cart as functions of time. Present results as plots of acceleration and speed versus time, neglecting the mass of the tank. Determine the dimensions of a tank of minimum mass required to accelerate the cart from rest along a horizontal track to a specified speed in a specified time interval.

Discussion: This problem solution consists of two parts. The first is to analyze the acceleration and velocity of a cart propelled by a gravity-driven water jet. The second is to optimize the dimensions of the cart and jet to accelerate to a specified speed in a specified time interval.
To analyze the problem, apply conservation of mass and the Bernoulli equation to the draining of the tank, then apply the x component of the momentum equation for a control volume to analyze the resulting linear acceleration. A representative plot of the results is presented below.
To optimize the performance of the water-jet-propelled cart, manipulate the solution dimensions until the best performance is attained.

Input Data:

$d=$	10	mm	
$D=$	100	mm	Diameter of water jet
$g=$	9.81	$\mathrm{ft} / \mathrm{s}^{2}$	
$H=$	Acceleration of gravity		
M_{t}	$=0$	150	mm
ρ	$=9.001$	kg	Height of tank
ρ	999	$\mathrm{~kg} / \mathrm{m}^{3}$	
Mass of tank			
Density of water			

Calculated Parameters:

$a=$	0.029	$(-)$	
$b=$	0.0572	$\left.\mathrm{~s}^{2}=\right)$ Ratio of mass of tank to initial mass of water	
M_{0}	$=1.18$		Geometric parameter of solution
β	$=$	0.1	$(-)$

Calculated Results:

Time,	Level Ratio,	Accel.,	Velocity,
t	y / H	a_{x}	U
$(\mathrm{~s})$	$(--)$	$\left(\mathrm{m} / \mathbf{s}^{2}\right)$	$(\mathrm{m} / \mathrm{s})$
0	1	0.196	0
1	0.810	0.196	0.196
2	0.640	0.196	0.392
3	0.490	0.196	0.588
4	0.360	0.196	0.784
5	0.250	0.196	0.980
6	0.160	0.196	1.176
7	0.0900	0.196	1.37
8	0.0400	0.196	1.57
9	0.0100	0.196	1.76
10	0	0.195	1.96

Given: Cart, propelled by water jet, accelerates along horizontal track.
Find: (a) Analyze motion, derive algebraic equations for acceleration and speed of cart as functions of time (b) Plot acceleration and speed us. time.

Solution: Apply conservation of mass, Bernoulli, and momentum equations.

Basic equations:

$$
\begin{aligned}
& D=\frac{\partial}{\partial t} \int_{C V} \rho d t+\int_{C S} \rho \vec{V} \cdot d \vec{A} \\
& \frac{p_{j}}{\rho}+\frac{v_{j}^{2}}{2}+g y_{j}^{=0(8)}=\frac{p}{p}+\frac{v^{2}}{2}+g y \\
& \begin{array}{l}
F_{p_{x}}+F_{\Delta A_{x}}^{2}-\int_{C v} a_{r f} \rho d \forall=\frac{\partial f}{\partial t} \int_{C}^{0(11)} u \rho d \forall+\int_{c S} u \rho \vec{v} \cdot d \vec{A}
\end{array} \\
& M_{t}=\text { mass of tank, art } \\
& \beta=\frac{d}{D}
\end{aligned}
$$

Assumptions: (1) Uniform flow from exit jet (2) Neglect air in Cv

$$
\begin{equation*}
\left.0=\frac{\partial}{\partial t}\left(\varphi A_{t} y\right)+\left\{+\mid \rho V_{j} A_{j}\right)\right\}=\rho A_{t} \frac{d y}{d t}+\rho V_{j} A_{j}=-\rho A_{t} V+\rho V_{j} A_{j} \tag{1}
\end{equation*}
$$

Thus $V=V_{j} \frac{A_{j}}{A_{t}}=V_{j}\left(\frac{d}{D}\right)^{2}=\beta^{2} V_{j}$
(3) No slope to free surface (given)
(4) Quasi-steady flow
(5) Frictionless flow
(6) Incompressible flow
(7) Flow along a streamline
(8) $p=p_{j}=p_{a t m}$
(9) $y_{j}=\Delta$

From Bernoulli, $\frac{V_{j}^{2}}{2}=\frac{v^{2}}{2}+g y$ or $v_{j}^{2}-v^{2}=2 g y$
substituting from (2), $v_{j}^{2}-\beta^{4} v_{j}^{2}=v_{j}^{2}\left(1-\beta^{4}\right)=\lg y ; v_{j}^{2}=\frac{29 y}{\left(1-\beta^{4}\right)}$
Substituting into (1), $\frac{d y}{d t}=-\beta^{2} V_{j}=-\beta^{2} \frac{\sqrt{2 g y}}{\left(1-\beta^{4}\right)}$ or $\frac{d y}{y^{1 / 2}}=-\frac{p^{2} \sqrt{2 g}}{1 \beta^{4}} d t$ Integrating, $\left.2 y^{1 / 2}\right]_{y_{0}}^{y}=-\frac{\beta^{2} \sqrt{2 g}}{\left(1-\beta^{4}\right)} t \quad$ or $\quad y^{1 / 2}-y_{0}^{1 / 2}=-\frac{\beta^{2} \sqrt{2 g}}{2\left(1-\beta^{4}\right)} t$
Thus $\left(\frac{y}{y_{0}}\right)^{1 / 2}=1-\left[\frac{g \beta^{4}}{2 y_{0}\left(1-\beta^{4}\right)}\right]^{1 / 2} t=1-b t ; b=\left[\frac{g \beta^{4}}{2 y_{0}\left(1-\beta^{4}\right)}\right]^{1 / 2}$

From momentum (10) $F_{S_{x}}=0$; no resistance
(ii) $F_{B_{x}}=0$; horizontal motion
(12) $u \approx 0$ in $c v$, so $\partial b t \approx 0$

Then

$$
\begin{align*}
& -a_{r f_{x}} M(t)=u_{j}\left\{+\left|\rho v_{j} A_{j}\right|\right\}=-\rho v_{j}^{2} A_{j} \tag{5}\\
& \operatorname{arf_{x}}=\frac{d U}{d t} \quad u_{j}=-v_{j}
\end{align*}
$$

But from $(4), M(t)=M_{t}+\rho A_{t} y=M_{t}+\rho A_{t} y_{0}(1-b t)^{2}$
From (3), $v_{j}^{2}=\frac{2 g y}{1-\beta^{4}}=\frac{2 g}{1-\beta^{4}} y_{0}(1-6 t)^{2}$
Substituting into (5)

$$
\frac{d U}{d t}\left[M_{t}+\rho A_{t} y_{0}(1-b t)^{2}\right]=\rho A_{j} \frac{2 g}{1-\beta^{4}} y_{0}(1-b t)^{2}=\rho A_{t} y_{0} \frac{2 g \beta^{2}}{1-\beta^{4}}(1-b t)^{2}
$$

Define $M_{0}=$ initial mass of water $=\rho A_{t} y_{0}$. Then

$$
\frac{d U}{d t}\left[M_{t}+M_{0}(1-b t)^{2}\right]=M_{0} \frac{2 g \beta^{2}}{1-\beta^{4}}(1-b t)^{2}
$$

or

$$
\begin{equation*}
\frac{d \sigma}{d t}=\frac{2 g \beta^{2}}{1-\beta^{4}} \frac{M_{0}(1-b t)^{2}}{M_{t}+M_{0}(1-b t)^{2}} \tag{6}
\end{equation*}
$$

To integrate, let $\lambda=1-b t$, $d r=-b d t$, and $a^{2}=M_{t} / M_{0}$. Then

$$
\begin{aligned}
U & =\int_{0}^{U} d U=\frac{2 g \beta^{2}}{1-\beta^{4}}\left(-\frac{1}{b}\right) \int_{0}^{t} \frac{r^{2}}{a^{2}+r^{2}} d r=-\frac{2 g \beta^{2}}{1-\beta^{4}} \frac{1}{b}\left[1-a \tan ^{-}\left(\frac{n}{a}\right)\right]_{0}^{t} \\
& =-\frac{2 g \beta^{2}}{1-\beta^{4}} \frac{1}{b}\left[(1-b t)-a \tan ^{-1}\left(\frac{1-b t}{a}\right)\right]_{0}^{t} \\
U & =-\frac{2 g \beta^{2}}{1-\beta^{4}} \frac{1}{b}\left[(1-b t)-a \tan ^{-1}\left(\frac{1-b t}{a}\right)-1+a \tan ^{-1}\left(\frac{1}{a}\right)\right]
\end{aligned}
$$

Simplifying, then

$$
\begin{gather*}
U=\frac{2 g \beta^{2}}{1-\beta^{4}}\left\{t+\frac{a}{b}\left[\tan ^{-1}\left(\frac{1-b t}{a}\right)-\tan ^{-1}\left(\frac{1}{a}\right)\right]\right\} \tag{7}\\
a^{2}=\frac{M_{t}}{M_{0}} ; b=\left[\frac{g \beta^{4}}{2 y_{0}\left(1-\beta^{4}\right)}\right]^{1 / 2}
\end{gather*}
$$

Given: cart, propelled by water jet, accelerating on horizontal track.

$$
\begin{align*}
& \frac{d U}{d t}=\frac{2 g \beta^{2}}{1-\beta^{4}} \frac{(1-b t)^{2}}{a^{2}+(1-b t)^{2}} \tag{I}\\
& U(t)=\frac{2 g \beta^{2}}{1-\beta^{4}}\left\{t+\frac{a}{b}\left[\tan ^{-1}\left(\frac{1-b t}{a}\right)-\tan ^{-1}\left(\frac{1}{a}\right)\right]\right\} \tag{2}\\
& \beta=\frac{d}{D}, a^{2}=\frac{M_{t}}{M_{0}}, b=\left[\frac{g \beta^{4}}{2 y_{0}\left(1-\beta^{4}\right)}\right]^{1 / 2}
\end{align*}
$$

Find: (a) Shape for tank of minimum mass for given volume.
(b) Minimum water volume to reach $U=2.5 \mathrm{~m} / \mathrm{sec}$ in $t=25 \mathrm{sec}$.

Solution: mass of tank is $M=\rho_{t} A_{s} t$, where $t=$ thickness of wall

$$
A_{S}=A_{\text {bottorn }}+\text { Acylinder }=\pi \frac{D^{2}}{4}+\pi D H
$$

since volume is $\forall=\frac{\pi D^{2}}{4} H$, then $H=\frac{4 \forall}{\pi D^{2}}$, and

$$
A_{s}=\frac{\pi D^{2}}{4}+\pi D\left(\frac{4 \forall}{\pi D^{2}}\right)=\frac{\pi D^{2}}{4}+\frac{4 \forall}{D}
$$

To minimize, set $d A_{s} / d D=0$

$$
\frac{d A_{s}}{d D}=\frac{\pi D}{2}+(-1) \frac{4 \psi}{D^{2}}=0 \text { so } D^{3}=\frac{8 \psi}{\pi} \text { or } D=\left(\frac{8 \psi}{\pi}\right)^{1 / 3}
$$

Then $\forall=\frac{\pi D^{2} H}{4}=\frac{\pi D^{3}}{8}$ so $\frac{H}{D}=\frac{1}{2}$
The tank mass per volume for optincem H / D is

$$
m=\frac{M}{\forall}=\frac{\rho_{t}\left(\frac{\pi D^{2}}{4}+\pi D H\right) t}{\frac{\pi D^{2}}{4} H}=\rho_{t}\left(\frac{t}{H}+\frac{4 t}{D}\right)=\rho_{t} \frac{t}{H}\left(1+4 \frac{H}{D}\right)=3 \rho_{t} \frac{t}{H}
$$

Therefore mass depends on $\rho_{t} t$ for a given volume. The minimum mass is achieved for the smallest combination of p_{t} and t.

$$
\begin{equation*}
a^{2}=\frac{M_{t}}{M_{0}}=\frac{M_{t}}{\rho t}=\frac{3 \rho_{t}}{\rho} \frac{t}{1 t}=3 S G\left(\frac{t}{H}\right) \tag{s}
\end{equation*}
$$

which still depends on volume, since it contains H.
The best solution strategy seems to be: pick \forall, calculate H, D, β, a, and b, then plot U(t).

Problem *4.180
Given: Irrigation sprinkler mounted on cart

$$
\begin{array}{ll}
V=40 \mathrm{~m} & \theta=30 \\
& \theta=50 \mathrm{~m} \\
\text { flow is water } \\
h=3 \mathrm{~m} & \\
h=350 \mathrm{~kg}
\end{array}
$$

Find: (a) Magnitude of moment which tends to overturn the cart
(b) Value of V tocouse inpenderig
motion; nature of impending motion.
(c) Effect on jet indination oftesults

Pot: Jetvelocity as a function of θ for the case of impending Frolion
Solution:

Apply moment of momentuen equation, using fixed $C D$ shown at kef Origin of coordinates is on ground at left Steel of cart. Wite this coordinate system counterchekwise moments are postie about the z axis).
Basic equation:

Evaluating, $\dot{m}_{2}=p A_{2} V_{2}=p \frac{\pi)^{2}}{4} V_{2}$

$$
i_{2}=999 \frac{\mathrm{~kg}}{M_{3}} \times \frac{\pi}{4}(0.05)^{2} \times 40 \frac{\mathrm{~m}}{5}=78.5 \mathrm{~kg} \mathrm{~m}_{\mathrm{s}}
$$

hen wit $v_{2}=40 \mathrm{Mls}$

$$
\begin{aligned}
& \text { Moment from } g^{t}=78.5 \frac{9 g}{5} \times \frac{40 \pi}{5} \times \frac{15^{2}}{\operatorname{kg} \cdot m}\left[3 m \cos 30^{\circ}-4 \frac{5 m}{2} \sin 30^{\circ}\right] \\
& \text { Mozart jet }=6.98^{\circ} \text { fut.m } \\
& \text { Manet }
\end{aligned}
$$

For the case of irparding tipping (about pout 3)
$N_{4} \rightarrow 0$ and from Eq.
$N_{4} \rightarrow 0$ and from Eq.E

$$
-\frac{w_{1}}{2}+g+h_{2} \sqrt{2}\left[h \cos \theta-\frac{w}{2} \sin \theta\right]=0
$$

To solve for J_{2}, write $\dot{N}=p A_{2} \lambda_{2}$

$$
\begin{align*}
& \left.v_{2}^{2}=\frac{\omega A g}{2 \rho_{2}\left[h \cos \theta-\frac{n}{2}\right.} \sin \theta\right] \tag{3}\\
& V_{2}^{2}=\frac{1.5 m}{2} \times 350 \operatorname{tg}+9.8 \frac{1}{5^{2}} \times 999 \mathrm{~m}^{3} \times \frac{1}{1.96} \times 0^{3} m^{2} \times \frac{1}{(3 \cos 30-0.5 \operatorname{sen} 30)+1} \\
& V_{2}^{2}=592 \mathrm{~m}^{2} \mathrm{~s}^{2} \\
& \therefore v_{2}=24.3 \mathrm{mls} \\
& V_{2}
\end{align*}
$$

Pus the ratimuen speed allowable without tipping is less than the value suggested..
the impending motion will be tipping spice $f_{3}<\mu N_{3}$

From the x momentum equation
From the y momentum equation
For tipping $\mu>0.377$

From Eq. 2 we see that as θ increases the tendency to tip deereases
For impendurig motion from Eg. 3.

$$
V=\left\{\frac{w M_{g}}{2 \rho A_{2}\left[h \cos \theta-\frac{w}{2} \sin \theta\right]}\right\}^{1 / 2}
$$

$$
\begin{aligned}
& f_{3}=m v_{2} \cos \theta \\
& N_{3}=M g+i v_{2} \sin \theta
\end{aligned}
$$

Given: The 90° reducing elbow of - Example 4.6 discharges to atmosphere. section (2) is locate of 0.3 m to the right of section (1).
Find: Estimate the moment exerted by the flange on the elbow.
Solution: Apply moment of momentum, using the CV and CS Shown.
From Example Problem $4.7, \vec{V}_{2}=-16 \mathrm{j} \mathrm{m} / \mathrm{s}, A_{1}=0.01 \mathrm{~m}^{2}$
Steady flow, $A_{2}=0.0025 \mathrm{~m}^{2}$
Basic equation (fixed CV):

$$
\begin{aligned}
& \text { asic equation (fixed CV): } \\
& \vec{r} \times \vec{r}_{s}+\int_{c v} \vec{r} \left\lvert\, \vec{g} \rho d \forall+\vec{r}_{s v} \hat{q}_{a f t}^{=0(2)}=\frac{d}{\Delta \int_{c}} \int_{C v}^{=0(3)} \vec{r} \times \vec{v} \rho d \forall+\int_{c s} \vec{r} \times \vec{v} \rho \vec{v} \cdot d \vec{A}\right.
\end{aligned}
$$

Assumptions: (1) Neglect body forces
(5) Incompressible flow
(2) No shafts, so That r $=0$
(3) Steady flow (gives)
(4) Uniform flow at each cross section

Then

$$
\begin{align*}
&\left.\vec{M}_{\text {flange }}=\vec{r}_{\times} \times \vec{F}_{3}\right\}_{\text {flange }}=\vec{r}_{1} \times \vec{V}_{1}\left\{-\rho V_{1} A_{1}\right\}+\vec{r}_{2} \times \vec{V}_{2}\left\{+\rho V_{2} A_{2}\right\} \tag{1}\\
& \vec{r}_{1}=0 \quad \\
&\left.\vec{r}_{2}=a \hat{\imath}-6 \hat{\jmath}\right\} \vec{r}_{2} \times \vec{V}_{2}=-a V_{2} \hat{k}+0
\end{align*}
$$

Substituting into Eq.I,

$$
\begin{aligned}
\vec{M}_{\text {flange }} & =-a v_{2} \hat{k}\left\{+\rho v_{2} A_{2}\right\}=-a \rho v_{2}^{2} A_{2} \hat{k} \\
& =0.3 \mathrm{~m}_{\star} 999 \frac{\mathrm{~kg}}{\mathrm{~m}^{3}} \times(6)^{2} \frac{\mathrm{~m}^{2}}{\mathrm{~s}^{2}} \times 0.0025 \mathrm{~m}^{2} \times \frac{\mathrm{N} \cdot \mathrm{~s}^{2}}{\mathrm{~kg} \cdot \mathrm{~m}}(-\hat{k})
\end{aligned}
$$

$$
\vec{M}_{\text {flange }}=-192 \hat{k} \mathrm{~N} \cdot \mathrm{~m}
$$

This is the torque that must be exerted on the $C V$ by the flange. \{since $\vec{M}_{\text {flange }}$ is in the $-\hat{k}$ direction, it must act cw in the xy-plane. $\}$

Given (rude oil ($56=0.95$) flew through a pipe assembly in the horizontal configuration shown.

$$
Q=0.58 \mathrm{~m}^{3} / \mathrm{s}
$$

Find: Force and torque exerted by assembly on its scepports.

Solution: No momentum components exist in the 4 direction. Apply x component of linear momentum and the momentof momentum equations using the Cv shown. Location of coordinates is arbitrary; for simplicity, choose
(1) $p_{1}=345 \mathrm{kpa}$ (gage)

(2)

$$
p_{2}=332 \mathrm{kPa}(g a g e)
$$ as shown.

Basic equations: $F_{S_{x}}+F_{F_{x}}^{=o(1)}=\frac{\partial f}{\partial t} \int_{C v}^{=o(2)} u \rho d \psi+\int_{c s} u \rho \vec{v} \cdot d \vec{A}$

Assumptions: (1) $F_{g_{x}}=0 ; \vec{g}$ acts in z direction
(2) Steady flow
(3) Uniform flow at each section
(4) No 3 component of $\vec{r} \times \vec{g}$
(5) $\vec{T}_{\text {shaft }}=0$

From momentum equation.

$$
A=\frac{\pi D^{2}}{4}=\frac{\pi}{4}(0.25)^{2} m^{2}=0.049 \mathrm{~m}^{2}
$$

$$
R_{x_{1}}+R_{x_{2}}+p_{1} A-p_{2} A=u_{1}\{-\dot{m}\}+u_{2}\{\dot{m}\}=0 ; R_{x_{1}}+R_{x_{2}}=\left(p_{2}-p_{1}\right) A
$$

From moment of momentum,

$$
\begin{aligned}
& \vec{r}_{1} \times\left(R_{x_{1}}+p_{1} A\right) \hat{\imath}+\vec{q}_{2} \times\left(R_{x_{L}}-p_{L}\right) \hat{\imath}=\vec{r}_{1} \times V, \hat{\imath}\{-\dot{m}\}+\vec{R}_{\vec{p}} \times V_{2} \hat{\imath}\{\dot{m}\} ; \vec{r}_{1}=L \hat{\jmath}, \vec{r}_{1} \times \hat{\imath}=-L \hat{k} \\
& -L\left(R_{x},+\rho, A\right) \hat{k}=-L V,(-\dot{m}) \hat{k}=L V \dot{m} \hat{k}=L \frac{Q}{A}(\rho Q) \hat{k}=L \rho Q^{2} \hat{k}
\end{aligned}
$$

$$
\begin{aligned}
& R_{X_{2}}=\left(p_{2}-p_{1}\right) A-R_{x}=p_{2} A-p_{1} A+\frac{\rho Q^{2}}{A}+\beta_{2} A=p_{2} A+\frac{P Q^{2}}{A} \\
& =3.32 \times 10^{5} \frac{\mathrm{M}}{\mathrm{~m}^{2}} \times 0.049 \mathrm{~m}^{2}+0.95 \times 999 \frac{\mathrm{~kg}}{\mathrm{~m}^{3}} \times(0.58)^{2} \frac{\mathrm{~m}^{6}}{\mathrm{~s}^{2}} \times \frac{1}{0.049 \cdot 2^{2}} \times \frac{\mathrm{N} \cdot \mathrm{~s}^{2}}{\frac{\mathrm{~kg}}{} \mathrm{~m}}=22.8 \mathrm{kN} \\
& \vec{r} \times \vec{F}_{s}=\vec{r}_{1} \times R_{x, \hat{C}}=L \hat{j} \times R_{x_{i}} \hat{L}=-L R_{x_{i}} \hat{k}=-20 m_{x}(-46.0) \mathrm{kN} \hat{k}=468 \hat{k} \mathrm{kN} \cdot \mathrm{~m}
\end{aligned}
$$

These are fores and torque on $C V$. The corrmponding reactions eve:

$$
\begin{aligned}
& K_{x_{1}}=-R_{x_{1}}=23.4 \mathrm{kN}, K_{x_{2}}=-R_{x_{2}}=-22.8 \mathrm{kN} \\
& \vec{M}=-\vec{r} \times \overrightarrow{F_{3}}=-468 \hat{k} \mathrm{kN} \cdot \mathrm{~m} \quad \text { (ie. clockwise) }
\end{aligned}
$$

Given: Simplified lawn sprinkler rotating in horizontal plane, $Q=4.5 \mathrm{gal} / \mathrm{min}$.
water discharges horizontally from jets. Neglect pint friction, inertia of sprinkler.

Firid: (a) Torque needed to hold at $\omega=0$.
(b) Angular acceleration when torque is removed.

Solution: Choose rotating CV. Apply angular momentum principle, E9, 4,53, Basic equation: $\vec{r} \times \vec{f}_{s}^{* \infty(1)}+\int_{Q} \vec{F}^{*} \times \vec{g} p(z)+\vec{T}_{s h a f t}$

$$
\begin{aligned}
& -\int_{v^{2}} \vec{r} \times\left[2 \dot{\vec{\psi}} \times \vec{v}_{x y y}+0(3)+\vec{\psi} \times(\vec{w} \times \vec{r})+\dot{\vec{\omega}} \times \vec{r}\right] \rho d \forall \\
& =\frac{\hat{j}}{\frac{0}{t}} \int_{0 v}^{o(4)} \vec{r} \times \vec{V}_{x y z} \rho d \psi+\int_{0} \vec{r}_{\times} \vec{V}_{x y y} \rho \vec{V}_{x y y} \cdot d \vec{A}
\end{aligned}
$$

Assumptions: (1) No surface forces
(4) Steady flow
(2) Body torques cancel
(5) Uniform flow at each section
(3) sprinkler stationary, $\vec{w}=0$
(b) $L \ll R$

Analyze right arm of sprinkler. From geometry $\vec{r}=r \hat{\imath}$ in $c v, \vec{r}=$ Rt at jet.
Then

$$
\begin{aligned}
T \hat{k}-\int_{C V} \vec{r} \times(\dot{\vec{\omega}} \times \vec{r}) \rho d \psi & =R \hat{\imath} \times V \hat{\jmath} \rho \frac{Q}{2}=\rho \frac{Q R V}{2} \hat{k}=\frac{\dot{m R V}}{2} \hat{k} \\
r \hat{\imath} \times(\dot{\omega} \hat{k} \times r \hat{\imath}) & =r \hat{\imath} \times \dot{\omega} r \hat{\jmath}=\dot{\omega} r^{2} \hat{k} ; \int_{C V}=\dot{\omega} \frac{R^{3}}{3} \rho A \hat{k}
\end{aligned}
$$

Dropping \hat{k}, $T-\frac{\dot{L} P A R^{3}}{3}=\frac{\dot{m} R V}{2}$, When arm is stationary, $\dot{\omega}=0$, and

$$
\begin{aligned}
& T=\frac{\dot{m R V}}{2} \quad \dot{m}=P Q=999 \frac{\mathrm{~km}}{\mathrm{~m}^{3}} \times 4.5 \frac{\mathrm{gai}}{\mathrm{~min}^{2}} \times 231 \frac{\dot{\mathrm{n}}^{3}}{\mathrm{gai}} \times(0.0254) \frac{3}{\mathrm{~m}} \mathrm{~m}^{3} \times \frac{\mathrm{min}}{60 \mathrm{~s}}=0.284 \frac{\mathrm{~kg}}{\mathrm{~s}} \\
& V=\frac{Q}{2 A}=\frac{2 Q}{\pi d^{2}}=\frac{2}{\pi} \times 2.84 \times 10^{-4} \frac{\mathrm{~m}^{3}}{\mathrm{~s}} \times \frac{1}{(0.0065)^{2} \mathrm{~m}^{2}}=4.48 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

For two arms, $T_{2}=2 T=2 \times 0.0967 \mathrm{~N} \cdot \mathrm{~m}=0.193 \mathrm{Nim}$
When torque is removed, angular acceleration would be the same for each arm. Thus

$$
\begin{aligned}
& \dot{\omega}=\frac{\dot{m} R V}{2} \times \frac{3}{\rho A R^{3}}=\frac{3 \dot{m} V}{2 \rho A R^{2}} \\
& \dot{\omega}=\frac{3}{2} \times 0.284 \frac{\mathrm{~kg}}{\mathrm{~s}} \times 4.49 \frac{\mathrm{~m}}{\frac{5}{2}} \times \frac{m^{3}}{499 \mathrm{~kg}} \times \frac{4}{\pi(0.00635)^{2} \mathrm{~m}^{2}} \times \frac{1}{(0.182)^{2} \mathrm{~m}^{2}}=2610 \mathrm{rad} / \mathrm{s}^{2}
\end{aligned}
$$

Given: Simplified lawn sprinkler rotating in horizontal plane, $Q=4.5 \mathrm{gal} / \mathrm{min}$.

Water discharges horizontally from jets.
Neglect pivot friction, inertia of sprinkler.
Find: (a) Derive a differential equation for angular speed as a function of time.
(b) Evaluate steady-state angular speed.

Solution: Choose rotating CV. Apply angular momentum principle, Gq. 4.53. Basic equation: $\vec{r} \times \vec{t}_{S}^{* o(1)}+\int_{C V} \vec{r} \times \hat{z}_{f}^{* 0(2)} p d \forall+\vec{r}_{s h a t}^{* o(3)}$

$$
\begin{aligned}
-\int_{C V} & \vec{r}_{\times}\left[z \vec{\omega} \times \vec{v}_{x y y}+\vec{\omega} \times(\vec{\omega} / \vec{r})+\vec{\omega} \times \vec{r}\right] \rho o d r \\
& =\frac{\partial f}{\partial t} \int_{C V}^{=0(s)} \vec{r}_{\times} \vec{v}_{x y g} \rho d v+\int_{C S} \vec{r}_{\times} \vec{v}_{x y y} \rho \vec{v}_{x y z} d \vec{A}
\end{aligned}
$$

Assumptions: (1) $\vec{F}_{3}=0$, (2) Body torques cancel), (3) $\vec{T}_{s h a t t}=0$, (4) No k component of centripetal acceleration, (5) steady flow, $(6) L \ll R$
Analyze right arm of sprinkler. From geometry, $\vec{r}=r \hat{\imath}$ in $C V, \vec{r}=R \hat{\imath}$ at jet.
Then

$$
-\int_{C v} r \hat{\imath} \times[2 \omega \hat{k} \times v \hat{\imath}+\dot{\omega} \hat{k} \times r \hat{\imath}] \rho A d r=R \hat{\imath} \times v \hat{\jmath} \frac{\rho Q}{2}=\frac{\rho Q R v}{2} \hat{k}
$$

Dropping $\hat{k}, \quad r \hat{L} \times[2 \omega V(+\hat{v})+\omega \dot{\omega}(+\hat{r})]=\left(2 \omega r V+\omega^{2} r^{2}\right)(+k) ;-\int_{C V}=-\left(\omega R^{2} v+\omega \frac{R^{3}}{a}\right) \rho A$

$$
-\omega \rho V A R^{2}-\frac{\dot{\omega} P A R^{3}}{3}=\frac{P Q R V}{2} \quad \text { or } \quad \dot{\omega}=\frac{3}{P A R^{3}}\left[-W P V A R^{2}-P Q R V\right]
$$

Thus $\frac{d \omega}{d t}=-a-b \omega$, where $a=\frac{3}{\rho A R^{a}} \rho \frac{Q R V}{2}=\frac{3}{2} \frac{Q V}{A R^{2}}=\frac{3 V^{2}}{R^{2}}, b=\frac{3 P V A R^{2}}{\rho A R^{3}}=\frac{3 V}{R}$
$\frac{d \omega}{d t}=0$ when $-a-b w_{\max }=$, $i \cdot e_{\text {, }}$ when $\omega_{\text {minx }}=-a / b$. t Note $v=\frac{Q}{2 A}$ (are a, m)

$$
\begin{aligned}
& Q=4.5 \frac{. g a 1}{\mathrm{man}^{2}} \times 231 \frac{\mathrm{man}}{901} \times(0.0254)^{3} \frac{\mathrm{~m}^{3}}{1 .^{3}} \times \frac{\mathrm{min}}{60 \mathrm{~s}}=2.84 \times 10^{-4} \mathrm{~m}^{3} / \mathrm{s} \\
& W_{\max }=-\frac{a}{b}=-\frac{3 v^{2}}{R^{2}} \times \frac{R}{3 \mathrm{~V}}=-\frac{\mathrm{V}}{R}=-4.48 \frac{\mathrm{~m}}{\mathrm{~s}} \times \frac{1}{0.152 \mathrm{~m}}=-29.5 \mathrm{mad} / \mathrm{s} \quad(-281 \mathrm{rpm})
\end{aligned}
$$

\{Note it is not necessary to solve the differential equation to find hoax. \} ~

Given: Simplified lawn sprinkler rotating in horizontal plane, $Q=4.5 \mathrm{gal} / \mathrm{min}$. water discharges horizontally from jets. Neglect inertia of sprinkler; $T_{f}=0.045 \mathrm{ft} \cdot 16 f$ Find: (a) Derive a differential equation for angular speed as a function of time.
(b) Evaluate steady -state angular speed.

Solution: Choose rotating $C V$. Apply angular momentum principle, Eq. 4,53. Basic equation: $\vec{r} \times \frac{\hat{p}_{s}^{2}}{=0(1)}+\int_{C v} \vec{r} \times \frac{t^{2}}{=o(z)} \rho d \psi+\vec{T}_{s h a f t}$

$$
\begin{aligned}
-\int_{C v} & \vec{r} \times\left[2 \vec{\omega} \times \vec{v}_{x y z}+\vec{\omega} \times(\vec{\omega} / \times \vec{r})+\dot{\vec{\omega}} \times \vec{r}\right] \rho d v \\
& =\frac{\partial \hat{y}}{\partial r} \int_{C v} \vec{r} \times \vec{v}_{x y z} \rho d v+\int_{C S} \vec{r}_{x} \vec{v}_{x y g} \rho \vec{v}_{x y z} \cdot d \vec{A}
\end{aligned}
$$

Assumptions: (1) $\vec{F}_{S}=O_{2}$ (z) Bods, torques cancel, (3) $\vec{T}_{S h}$ aft $=0.045 \mathrm{ft} \cdot 16 \mathrm{f}_{\text {, }}$ (4) No \hat{R} component of centripetal acceleration, (5) steady flow, $(6) \lll R$.

Analyze right arm of sprinkler. From geometry, $\vec{r}=r \hat{\imath}$ in $\angle V, \vec{r}=R L$ at jet,
Then

$$
\begin{aligned}
& -\int_{C V} r \hat{\imath} \times[z \omega \hat{k} \times V \hat{\imath}+\omega \hat{\jmath} \times r \hat{\imath}] \rho A d r=R \hat{\imath} \times V \hat{\jmath} \rho \frac{Q}{2}=\rho \frac{\rho R V}{2} \hat{k} \\
& \quad r \hat{\imath} \times[z \omega V \hat{\jmath}+\dot{\omega} r \hat{\jmath}]=\left(2 \omega V r+\dot{\omega} r^{2}\right) \hat{k} ;-\int_{C V}=-\left(\omega V R^{2}+\frac{\dot{\jmath} R^{3}}{3}\right) \rho A \hat{k}
\end{aligned}
$$

For both arms, dropping $\hat{k}, \quad\{r=0.045+16 t=0.0610 \mathrm{~N} \cdot \mathrm{~m}\}$

$$
T-2 \omega \rho V A R^{2}-\frac{2 \dot{\omega} \rho A R^{3}}{3}=P Q R V \text { or } \dot{\omega}=\frac{3}{2 P A R^{3}}\left[T-\rho Q R V-2 \omega P A R^{2}\right]
$$

Thus $\frac{d \omega}{d t}=a-b \omega$, where $a=\frac{3}{2 A R^{3}}(T-\rho Q R V), b=\frac{3}{2 \rho A R^{a^{2}}} x^{2 \rho V A R^{2}}=3 \frac{V}{R}$ The steady-state speed occuers when $\frac{d \omega}{d t}=0$, if, when $\omega_{\text {max }}=\frac{a}{b}$

$$
\begin{aligned}
& \text { From the } 0 . D_{1} \in \text {, } \omega_{m a x}=\frac{T-P Q R V}{2 P V A R^{2}} \\
& W_{\max }=\frac{1}{2}\left[0.0610 \mathrm{~N} \cdot \mathrm{~m}_{2} \mathrm{~kg} \cdot \frac{\mathrm{~m}}{\mathrm{~N} . \mathrm{s}^{2}}-999 \frac{\mathrm{~kg}}{\mathrm{~m}^{3}} \times 2.84 \times 10^{-4} \frac{\mathrm{~m}^{3}}{\mathrm{~s}^{2}} \times 0.52 \mathrm{~m}_{\mathrm{n}} 4.48 \frac{\mathrm{~m}}{\mathrm{~s}}\right] \frac{\mathrm{m}^{3}}{999 \mathrm{~g}^{2}} \times 4.48 \mathrm{~m} \\
& \times \frac{1}{3.7 \times 10^{-5} m^{2}} \times \frac{1}{0.152)^{2} m^{2}} \\
& \omega_{\text {max }}=-20.2 \mathrm{rad} / \mathrm{s} \quad(-193 \mathrm{rpm})
\end{aligned}
$$

*4.186 Water flows in a uniform flow out of the 5 mm slots of the rotating spray system as shown. The flow rate is $15 \mathrm{~kg} / \mathrm{s}$. Find the torque required to hold the system stationary, and the steady-state speed of rotation after it is released.

Given:

Data on rotating spray system
Find: Torque required to hold stationary; steady-state speed

Solution:

The given data is

$$
\rho=999 \cdot \frac{\mathrm{~kg}}{\mathrm{~m}^{3}} \quad \mathrm{~m}_{\text {flow }}=15 \cdot \frac{\mathrm{~kg}}{\mathrm{~s}} \quad \mathrm{D}=0.015 \cdot \mathrm{~m} \quad \mathrm{r}_{\mathrm{o}}=0.25 \cdot \mathrm{~m} \quad \mathrm{r}_{\mathrm{i}}=0.05 \cdot \mathrm{~m} \quad \delta=0.005 \cdot \mathrm{~m}
$$

Governing equation: Rotating CV $\quad \vec{r} \times \vec{F}_{s}+\int_{\mathrm{CV}} \vec{r} \times \vec{g} \rho d \not+\vec{T}_{\text {shaft }}$

$$
\begin{align*}
-\int_{\mathrm{CV}} \vec{r} & \times\left[2 \overrightarrow{\boldsymbol{\omega}} \times \vec{V}_{x y z}+\overrightarrow{\boldsymbol{\omega}} \times(\overrightarrow{\boldsymbol{\omega}} \times \vec{r})+\dot{\vec{\omega}} \times \vec{r}\right] \rho d \neq \tag{4.52}\\
& =\frac{\partial}{\partial t} \int_{\mathrm{CV}} \vec{r} \times \vec{V}_{x y z} \rho d \not+\int_{\mathrm{CS}} \vec{r} \times \vec{V}_{x y z} \rho \vec{V}_{x y z} \cdot d \vec{A}
\end{align*}
$$

For no rotation $(\omega=0)$ this equation reduces to a single scalar equation

$$
\mathrm{T}_{\text {shaft }}=\int \overrightarrow{\mathrm{r} \times \mathrm{V}_{\mathrm{xyz}} \cdot \rho \cdot \overrightarrow{\mathrm{~V}_{\mathrm{xyz}}} \mathrm{dA} \quad \text { or } \quad \mathrm{T}_{\text {shaft }}=2 \cdot \delta \cdot \int_{\mathrm{r}_{\mathrm{i}}}^{\mathrm{r}_{\mathrm{o}}} \mathrm{r} \cdot \mathrm{~V} \cdot \rho \cdot \mathrm{~V} d r=2 \cdot \rho \cdot \mathrm{~V}^{2} \cdot \delta \cdot \int_{\mathrm{r}_{\mathrm{i}}}^{\mathrm{r}_{\mathrm{o}}} \mathrm{rdr}=\rho \cdot \mathrm{V}^{2} \cdot \delta \cdot\left(\mathrm{r}_{\mathrm{o}}{ }^{2}-\mathrm{r}_{\mathrm{i}}{ }^{2}\right), ~\left({ }^{2}\right)}
$$

where V is the exit velocity with respect to the CV

$$
\mathrm{V}=\frac{\frac{\mathrm{m}_{\text {flow }}}{\rho}}{2 \cdot \delta \cdot\left(\mathrm{r}_{\mathrm{o}}-\mathrm{r}_{\mathrm{i}}\right)}
$$

$$
\begin{aligned}
& \mathrm{T}_{\text {shaft }}=\rho \cdot\left[\frac{\frac{\mathrm{m}_{\mathrm{flow}}}{\rho}}{2 \cdot \delta \cdot\left(\mathrm{r}_{\mathrm{o}}-\mathrm{r}_{\mathrm{i}}\right)}\right]^{2} \cdot \delta \cdot\left(\mathrm{r}_{\mathrm{o}}{ }^{2}-\mathrm{r}_{\mathrm{i}}^{2}\right) \quad \mathrm{T}_{\text {shaft }}=\frac{\mathrm{m}_{\text {flow }}}{4 \cdot \rho \cdot \delta} \cdot \frac{2}{\left(\mathrm{r}_{\mathrm{o}}+\mathrm{r}_{\mathrm{i}}\right)} \\
& \mathrm{T}_{\text {shaft }}=\frac{1}{4} \times\left(15 \cdot \frac{\mathrm{~kg}}{\mathrm{~s}}\right)^{2} \times \frac{\mathrm{m}^{3}}{999 \cdot \mathrm{~kg}} \times \frac{1}{0.005 \cdot \mathrm{~m}} \times \frac{(0.25+0.05)}{(0.25-0.05)} \quad \mathrm{T}_{\text {shaft }}=16.9 \mathrm{~N} \cdot \mathrm{~m} \\
& \text { peed the equation becomes }
\end{aligned}
$$

For the steady rotation speed the equation becomes

The volume integral term $-\int \vec{r} \times\left(2 \cdot \omega \times \overrightarrow{V_{\mathrm{xyz}}}\right) \cdot \rho \mathrm{dV}$ must be evaluated for the CV. The velocity in the CV varies with r. This variation can be found from mass conservation

For an infinitesmal CV of length $d r$ and cross-section A at radial position r, if the flow in is Q, the flow out is $Q+$ $d Q$, and the loss through the slot is $V \delta d r$. Hence mass conservation leads to

$$
(\mathrm{Q}+\mathrm{dQ})+\mathrm{V} \cdot \delta \cdot \mathrm{~d} \mathrm{dQ}=-\mathrm{V} \cdot \delta \cdot \mathrm{dr} \quad \mathrm{Q}(\mathrm{r})=-\mathrm{V} \cdot \boldsymbol{\delta} \cdot \mathrm{r}+\text { const }
$$

At the inlet $\left(r=r_{i}\right) \quad \mathrm{Q}=\mathrm{Q}_{\mathrm{i}}=\frac{\mathrm{m}_{\mathrm{flow}}}{2 \cdot \rho}$
Hence

$$
\mathrm{Q}=\mathrm{Q}_{\mathrm{i}}+\mathrm{V} \cdot \delta \cdot\left(\mathrm{r}_{\mathrm{i}}-\mathrm{r}\right)=\frac{\mathrm{m}_{\text {flow }}}{2 \cdot \rho}+\frac{\mathrm{m}_{\text {flow }}}{2 \cdot \rho \cdot \delta \cdot\left(\mathrm{r}_{\mathrm{o}}-\mathrm{r}_{\mathrm{i}}\right)} \cdot \delta \cdot\left(\mathrm{r}_{\mathrm{i}}-\mathrm{r}\right) \quad \mathrm{Q}=\frac{\mathrm{m}_{\text {flow }}}{2 \cdot \rho} \cdot\left(1+\frac{\mathrm{r}_{\mathrm{i}}-\mathrm{r}}{\mathrm{r}_{\mathrm{o}}-r_{i}}\right)=\frac{\mathrm{m}_{\text {flow }}}{2 \cdot \rho} \cdot\left(\frac{\mathrm{r}_{\mathrm{o}}-\mathrm{r}}{\mathrm{r}_{\mathrm{o}}-\mathrm{r}_{\mathrm{i}}}\right)
$$

and along each rotor the water speed is $\quad v(r)=\frac{Q}{A}=\frac{m_{\text {flow }}}{2 \cdot \rho \cdot \mathrm{~A}} \cdot\left(\frac{r_{0}-r}{r_{0}-r_{i}}\right)$
Hence the term $-\int \mathrm{r} \times\left(2 \cdot \vec{\omega} \times \overrightarrow{\mathrm{V}_{\mathrm{xyz}}}\right) \cdot \rho \mathrm{dV}$ becomes

$$
\begin{aligned}
& -\int r \times\left(2 \cdot \vec{\omega} \times \overrightarrow{V_{\mathrm{xyz}}}\right) \cdot \rho \mathrm{dV}=4 \cdot \rho \cdot A \cdot \omega \cdot \int_{r_{i}}^{r_{0}} r \cdot v(r) d r=4 \cdot \rho \cdot \omega \cdot \int_{r_{i}}^{r_{0}} r \cdot \frac{m_{f l o w}}{2 \cdot \rho} \cdot\left(\frac{r_{0}-r}{r_{0}-r_{i}}\right) d r \\
& -\int r \times\left(2 \cdot \vec{\omega} \times \overrightarrow{V_{x y z}}\right) \cdot \rho d V=2 \cdot m_{\text {flow }} \cdot \omega \cdot \int_{r_{i}}^{r_{0}} r \cdot\left(\frac{r_{0}-r}{r_{0}-r_{i}}\right) d r=m_{f l o w} \cdot \omega \cdot \frac{r_{0}{ }^{3}+r_{i}^{2} \cdot\left(2 \cdot r_{i}-3 \cdot r_{o}\right)}{3 \cdot\left(r_{o}-r_{i}\right)}
\end{aligned}
$$

Recall that $\quad \int \underset{r \times}{ } \overrightarrow{\mathrm{v}_{\mathrm{xyz}}} \cdot \rho \cdot \overrightarrow{\mathrm{V}_{\mathrm{xyz}}} \overrightarrow{\mathrm{dA}}=\rho \cdot \mathrm{V}^{2} \cdot \delta \cdot\left(\mathrm{r}_{\mathrm{o}}{ }^{2}-\mathrm{r}_{\mathrm{i}}{ }^{2}\right)$

Hence equation

$$
\begin{aligned}
& -\int \dot{r} \times\left(2 \cdot \vec{\omega} \times \overrightarrow{\mathrm{V}_{\mathrm{xyz}}}\right) \cdot \rho \mathrm{dV}=\int \mathrm{r} \times \overrightarrow{\mathrm{V}_{\mathrm{xyz}} \cdot \rho \cdot \overrightarrow{\mathrm{~V}_{\mathrm{xyz}}} \mathrm{~d}} \overline{ } \\
& \mathrm{~m}_{\mathrm{flow}} \cdot \omega \cdot \frac{\mathrm{r}_{\mathrm{o}}^{3}+\mathrm{r}_{\mathrm{i}}^{2} \cdot\left(2 \cdot \mathrm{r}_{\mathrm{i}}-3 \cdot r_{\mathrm{o}}\right)}{3 \cdot\left(\mathrm{r}_{\mathrm{o}}-\mathrm{r}_{\mathrm{i}}\right)}=\rho \cdot \mathrm{v}^{2} \cdot \delta \cdot\left(\mathrm{r}_{\mathrm{o}}^{2}-\mathrm{r}_{\mathrm{i}}^{2}\right)
\end{aligned}
$$

Solving for $\omega \quad \omega=\frac{3 \cdot\left(r_{0}-r_{i}\right) \cdot \rho \cdot v^{2} \cdot \delta \cdot\left(r_{o}{ }^{2}-r_{i}^{2}\right)}{m_{\text {flow }} \cdot\left[r_{o}^{3}+r_{i}{ }^{2} \cdot\left(2 \cdot r_{i}-3 \cdot r_{o}\right)\right]} \quad \omega=461 \mathrm{rpm}$
4.187 If the same flow rate in the rotating spray system of Problem 4.186 is not uniform but instead varies linearly from a maximum at the outer radius to zero at a point 50 mm from the axis, find the torque required to hold it stationary, and the steady-state speed of rotation.

Given:

Data on rotating spray system
Find: Torque required to hold stationary; steady-state speed

Solution:

The given data is $\quad \rho=999 \cdot \frac{\mathrm{~kg}}{\mathrm{~m}^{3}} \quad \mathrm{~m}_{\text {flow }}=15 \cdot \frac{\mathrm{~kg}}{\mathrm{~s}} \quad \mathrm{D}=0.015 \cdot \mathrm{~m} \quad \mathrm{r}_{\mathrm{o}}=0.25 \cdot \mathrm{~m} \quad \mathrm{r}_{\mathrm{i}}=0.05 \cdot \mathrm{~m} \quad \delta=0.005 \cdot \mathrm{~m}$

Governing equation: Rotating CV $\vec{r} \times \vec{F}_{s}+\int_{\mathrm{CV}} \vec{r} \times \vec{g} \rho d \not+\vec{T}_{\text {shaft }}$

$$
\begin{align*}
&-\int_{\mathrm{CV}} \vec{r} \times\left[2 \vec{\omega} \times \vec{V}_{x y z}+\vec{\omega} \times(\vec{\omega} \times \vec{r})+\dot{\vec{\omega}} \times \vec{r}\right] \rho d \neq \tag{4.52}\\
&=\frac{\partial}{\partial t} \int_{\mathrm{CV}} \vec{r} \times \vec{V}_{x y z} \rho d \nvdash+\int_{\mathrm{CS}} \vec{r} \times \vec{V}_{x y z} \rho \vec{V}_{x y z} \cdot d \vec{A}
\end{align*}
$$

For no rotation $(\omega=0)$ this equation reduces to a single scalar equation

$$
\mathrm{T}_{\text {shaft }}=\int \overrightarrow{\mathrm{r} \times \mathrm{V}_{\mathrm{xyz}} \rho \cdot \mathrm{~V}_{\mathrm{xyz}} \mathrm{dA}} \quad \text { or } \quad \mathrm{T}_{\text {shaft }}=2 \cdot \delta \cdot \int_{\mathrm{r}_{\mathrm{i}}}^{\mathrm{r}_{0}} \mathrm{r} \cdot \mathrm{~V} \cdot \rho \cdot \mathrm{~V} d r
$$

where V is the exit velocity with respect to the CV. We need to find $V(r)$. To do this we use mass conservation, and the fact that the distribution is linear
so

$$
\mathrm{V}(\mathrm{r})=\mathrm{V}_{\max } \cdot \frac{\left(\mathrm{r}-\mathrm{r}_{\mathrm{i}}\right)}{\left(\mathrm{r}_{\mathrm{o}}-\mathrm{r}_{\mathrm{i}}\right)} \quad \text { and } \quad 2 \cdot \frac{1}{2} \cdot \mathrm{~V}_{\max } \cdot\left(\mathrm{r}_{\mathrm{o}}-\mathrm{r}_{\mathrm{i}}\right) \cdot \delta=\frac{\mathrm{m}_{\mathrm{flow}}}{\rho}
$$

$$
\mathrm{V}(\mathrm{r})=\frac{\mathrm{m}_{\mathrm{flow}}}{\rho \cdot \delta} \cdot \frac{\left(\mathrm{r}-\mathrm{r}_{\mathrm{i}}\right)}{\left(\mathrm{r}_{\mathrm{o}}-\mathrm{r}_{\mathrm{i}}\right)^{2}}
$$

Hence

$$
\begin{array}{ll}
T_{\text {shaft }}=2 \cdot \rho \cdot \delta \cdot \int_{r_{i}}^{r_{o}} r \cdot V^{2} d r=2 \cdot \frac{m_{\text {flow }}}{\rho \cdot \delta} \cdot \int_{r_{i}}^{r_{o}} r \cdot\left[\frac{\left(r-r_{i}\right)^{2}}{\left(r_{o}-r_{i}\right)^{2}}\right]^{2} d r & T_{\text {shaft }}=\frac{m_{\text {flow }}}{6 \cdot \rho \cdot \delta \cdot} \\
T_{\text {shaft }}=\frac{1}{6} \times\left(15 \cdot \frac{\mathrm{~kg}}{\mathrm{~s}}\right)^{2} \times \frac{\mathrm{m}^{3}}{999 \cdot \mathrm{~kg}} \times \frac{1}{0.005 \cdot \mathrm{~m}} \times \frac{(0.05+3 \cdot 0.25)}{(0.25-0.05)} & T_{\text {shaft }}=30 \cdot \mathrm{~N} \cdot \mathrm{~m}
\end{array}
$$

For the steady rotation speed the equation becomes

$$
-\int \stackrel{\rightharpoonup}{r} \times\left(2 \cdot \vec{\omega} \times \overrightarrow{V_{\mathrm{xyz}}}\right) \cdot \rho \mathrm{dV}=\int \stackrel{\rightharpoonup}{\mathrm{r} \times \mathrm{V}_{\mathrm{xyz}} \cdot \rho \cdot \overrightarrow{\mathrm{~V}_{\mathrm{xyz}}} \mathrm{dA}} \overrightarrow{\mathrm{~A}}
$$

The volume integral term $-\int \overrightarrow{\mathrm{r}} \times(\underset{\mathrm{l}}{\vec{\omega}} \times \overrightarrow{\mathrm{V}} \mathrm{Xyz}) \cdot \rho \mathrm{dV}$ must be evaluated for the CV. The velocity in the CV varies with r. This variation can be found from mass conservation

For an infinitesmal CV of length $d r$ and cross-section A at radial position r, if the flow in is Q, the flow out is $Q+$ $d Q$, and the loss through the slot is $V \delta d r$ Hence mass conservation leads to

$$
(Q+d Q)+V \cdot \delta \cdot d r-Q=0 \quad d Q=-V \cdot \delta \cdot d r \quad Q(r)=Q_{i}-\delta \cdot \int_{r_{i}}^{r} \frac{m_{\text {flow }}}{\rho \cdot \delta} \cdot \frac{\left(r-r_{i}\right)}{\left(r_{o}-r_{i}\right)^{2}} d r=Q_{i}-\int_{r_{i}}^{r} \frac{m_{\text {flow }}}{\rho} \cdot \frac{\left(r-r_{i}\right)}{\left(r_{o}-r_{i}\right)^{2}} d r
$$

At the inlet $\left(r=r_{i}\right) \quad \mathrm{Q}=\mathrm{Q}_{\mathrm{i}}=\frac{\mathrm{m}_{\text {flow }}}{2 \cdot \rho}$

Hence

$$
\mathrm{Q}(\mathrm{r})=\frac{\mathrm{m}_{\mathrm{flow}}}{2 \cdot \rho} \cdot\left[1-\frac{\left(\mathrm{r}-\mathrm{r}_{\mathrm{i}}\right)^{2}}{\left(\mathrm{r}_{\mathrm{o}}-\mathrm{r}_{\mathrm{i}}\right)^{2}}\right]
$$

and along each rotor the water speed is

$$
v(r)=\frac{Q}{A}=\frac{m_{\text {flow }}}{2 \cdot \rho \cdot A} \cdot\left[1-\frac{\left(r-r_{i}\right)^{2}}{\left(r_{o}-r_{i}\right)^{2}}\right]
$$

Hence the term $-\int \vec{r} \times\left(2 \cdot \vec{\omega} \times \overrightarrow{V_{\mathrm{xyz}}}\right) \cdot \rho \mathrm{dV}$ becomes
$4 \cdot \rho \cdot A \cdot \omega \cdot\left(\int_{r_{i}}^{r_{0}} r \cdot v(r) d r\right)=4 \cdot \rho \cdot \omega \cdot \int_{r_{i}}^{r_{o}} \frac{m_{f l o w}}{2 \cdot \rho} \cdot r \cdot\left[1-\frac{\left(r-r_{i}\right)^{2}}{\left(r_{o}-r_{i}\right)^{2}}\right] d r$
or

$$
2 \cdot \mathrm{~m}_{\mathrm{flow}} \cdot \omega \cdot \int_{\mathrm{r}_{\mathrm{i}}}^{\mathrm{r}_{\mathrm{o}}} \mathrm{r} \cdot\left[1 \cdot-\frac{\left(\mathrm{r}_{\mathrm{o}}-\mathrm{r}\right)^{2}}{\left(\mathrm{r}_{\mathrm{o}}-\mathrm{r}_{\mathrm{i}}\right)^{2}}\right] \mathrm{dr}=\mathrm{m}_{\text {flow }} \cdot \omega \cdot\left(\frac{1}{6} \cdot \mathrm{r}_{\mathrm{o}}^{2}+\frac{1}{3} \cdot \mathrm{r}_{\mathrm{i}} \cdot r_{\mathrm{o}}-\frac{1}{2} \cdot \mathrm{r}_{\mathrm{i}}^{2}\right)
$$

Recall that

$$
\int \stackrel{\rightharpoonup}{\mathrm{r} \times \mathrm{V}_{\mathrm{xyz}} \cdot \rho \cdot \overrightarrow{\mathrm{~V}_{\mathrm{xyz}}} \mathrm{dA}=\frac{\mathrm{m}_{\text {flow }}{ }^{2} \cdot\left(\mathrm{r}_{\mathrm{i}}+3 \cdot \mathrm{r}_{\mathrm{o}}\right)}{6 \cdot\left(\mathrm{r}_{\mathrm{o}}-\mathrm{r}_{\mathrm{i}}\right) \cdot \rho \cdot \delta} \text {. }}
$$

Hence equation
becomes

Solving for ω

$$
-\int \vec{r} \times\left(2 \cdot \omega \quad \overrightarrow{V_{x y z}}\right) \cdot \rho d V=\int \overrightarrow{r \times V_{x y z}} \cdot \rho \cdot \overrightarrow{V_{x y z}} \mathrm{dA}
$$

$$
\mathrm{m}_{\text {flow }} \cdot \omega \cdot\left(\frac{1}{6} \cdot \mathrm{r}_{\mathrm{o}}^{2}+\frac{1}{3} \cdot \mathrm{r}_{\mathrm{i}} \cdot \mathrm{r}_{\mathrm{o}}-\frac{1}{2} \cdot \mathrm{r}_{\mathrm{i}}^{2}\right)=\frac{\mathrm{m}_{\text {flow }}{ }^{2} \cdot\left(\mathrm{r}_{\mathrm{i}}+3 \cdot \mathrm{r}_{\mathrm{o}}\right)}{6 \cdot\left(\mathrm{r}_{\mathrm{o}}-\mathrm{r}_{\mathrm{i}}\right) \cdot \rho \cdot \delta}
$$

$$
\omega=\frac{m_{\text {flow }} \cdot\left(r_{i}+3 \cdot r_{o}\right)}{\left(r_{o}^{2}+2 \cdot r_{i} \cdot r_{o}-3 \cdot r_{i}^{2}\right) \cdot\left(r_{o}-r_{i}\right) \cdot \rho \cdot \delta}
$$

$$
\omega=1434 \cdot \mathrm{rpm}
$$

Given: single rotating tube with waver.

$$
Q=13.8 \mathrm{~L} / \mathrm{min}
$$

Find: Torque that must be applied to maintain steady rotation using:
(a) Rotating control is hume.

(b) Fined control voluenc.

Solution: Apply angular momentum principle, $\left\{\omega=33 \frac{1}{2} \frac{\mathrm{ev}}{\mathrm{mm}}=3.49 \mathrm{rad} / \mathrm{s}\right\}$
(a) Rotating cV: use relative velocities, Eq .4.53:

Basic equation: $\quad \vec{r} \times \vec{f}_{s}^{=0(v)}+\int_{L v} \vec{r} \times \frac{f_{j}}{=0(z)} p d v+\vec{T}_{s h a f+}$

$$
\begin{aligned}
& -\int_{a v} \vec{r} \times\left[z \vec{\omega} \times \vec{v} \vec{v}_{x y z}+\vec{\omega} \times(\vec{\omega} \mid k \vec{r})+\vec{\psi} \times \vec{j}\right] \rho \rho d y \\
& \left.=\frac{\partial f^{t}}{t t} \int_{C u} \vec{r} \times \vec{v}_{x y y} p d v+\int_{e s} \vec{r} \times \frac{\vec{p}_{x y y}=0(6)}{}\right\rangle \vec{v}_{x y s} \cdot d \vec{A}
\end{aligned}
$$

Assumptions: (1) $\vec{F}_{s}=0,(z)$ Body torques cancel, (3) No \hat{k} in centripetal accel,

$$
\text { (4) } \vec{\omega}=0,(5) \text { steady flow, (6) } \vec{r} \times \vec{v}=0
$$

Then

$$
\begin{aligned}
& T_{\text {shaft }} \hat{k}=\int_{C V} \vec{r} \times(2 \vec{\omega} \times \vec{V}) \rho d *=\int_{0}^{R} r \hat{i} \times(2 \omega \hat{k} \times V \hat{v})_{\rho} A d r=\omega \rho V A R^{2} \hat{k}=\omega \rho Q 1 \\
& \text { Shaft }=3.49 \frac{\mathrm{nad}}{\mathrm{~s}} \times 999 \frac{\mathrm{~kg}}{\mathrm{~m}^{3}} \times 13.8 \times 10^{-5} \frac{\mathrm{~m}^{3}}{\min ^{3}} \times(0.3)^{2} \mathrm{~m}^{2} \times \frac{\mathrm{min}}{60 \mathrm{~s}} \times \frac{\mathrm{N.}}{\mathrm{~kg} \cdot \mathrm{~m}}=0.0722 \mathrm{~N} \cdot \mathrm{~m}
\end{aligned}
$$

(b) Fixed control volume: use absolute whocities, Eq, 4.47:

Basic equation: $\vec{r} \times \vec{f}_{s}^{* o(1)}+\int_{c v} \vec{r} \times \vec{t}_{p} d t+\vec{T}_{s h a f t}=\frac{\partial}{\partial r} \int_{c v} \vec{r} \times \vec{v}_{\rho d v}+\int_{c s} \vec{r} x \vec{v}_{\rho} \vec{v}_{x y y} d \vec{A}$
Relative to fixed coordinates $x y, \vec{r}=r(\cos \theta \hat{\imath}+\sin \theta \hat{\jmath})$

$$
\left.\vec{r} \times \vec{v}=\left|\begin{array}{llr}
& \vec{V}=V(\cos \theta \hat{\imath}+\sin \theta \hat{\jmath})+r \omega(-\sin \theta \hat{\imath}+\cos \theta \hat{\jmath}) \\
\hat{\imath} & \hat{k} & \hat{k} \\
r \cos \theta & r \sin \theta & 0 \\
v \cos \theta-r \omega \sin \theta & V \sin \theta+r \omega \cos \theta & 0
\end{array}\right|=\begin{array}{r}
k\left(r v \sin \theta \cos \theta+\omega^{2} r^{2} \cos ^{2} \theta\right. \\
\left.-r v \sin \theta-\cos \theta+\omega^{2} r^{2} \sin ^{2} \theta\right)
\end{array}=\omega r^{2} \hat{k} \right\rvert\,
$$

Thus $\partial \partial_{t}=0$ and $f_{s} \vec{r} \times \vec{V} \rho \vec{V}_{x y} \cdot d \vec{A}=\omega R^{2} \hat{k}\{+\rho Q\}=\omega \rho Q R^{2} \hat{k}$ and
That $\hat{k}=w_{\rho} a R^{2} \hat{k}$ (as before); $T=0.0722 \mathrm{~N} \cdot \mathrm{~m}$
$\left\{\begin{array}{l}\text { Note that when applied correctly, either choice of CV procluces the } \\ \text { same result. }\end{array}\right.$

Given: Lawn sprinkler rotating in horizontal plane.
Neglect friction. $Q=68 \mathrm{~L} \mathrm{~min}$
Find: stead, -state angular speed for $\theta=30^{\circ}$.
Plot: steadr-state angular speed for $0 \leq \theta \leq 90^{\circ}$.
Solution: Choose rotating $c v$. Apply angular moment hem principle, Eq, 4.53.

$$
\begin{aligned}
& -\int_{C V} \vec{r} \times\left[2 \vec{\omega} \times \vec{V}_{x y z}+\vec{w} \times(\vec{w} \times \vec{r})+\dot{\vec{\omega}} \times \vec{r}\right] \rho d \psi \\
& \quad=\frac{d}{\phi t} \int_{C V} \vec{r} \times(6) \\
& \times \vec{V}_{x y z} \rho d \theta+\int_{c s} \vec{r} \times \vec{V}_{\times y z} f \vec{V}_{\times y z} \cdot d \vec{A}
\end{aligned}
$$

Assumptions: (1) $\vec{F}_{s}=1$, (2) Body torques cancel, (3) $\vec{T}_{\text {shaft }}=0$, (4) Neglect aerodynamic drag, (S) No \hat{x} component of Centripetal acceleration, (6) Steady, flow, (7) $4 \ll$

Analyze one arm of sprinter. From geometry, $\vec{r}=r \hat{\imath}$ in $C V, \vec{r}=R \hat{\imath}$ at jet.
Then

$$
\begin{aligned}
& -\int_{C v} \vec{r} \times\left[2 \vec{\omega} \times \vec{V}_{x y z}\right] \rho d \psi=R \hat{\imath} \times(-V \sin \theta \hat{j}) \rho \frac{Q}{3}=-\rho \frac{Q R V}{3} \sin \theta \hat{k} \\
& r \hat{\imath} \times(2 \omega \hat{k} \times v \hat{c})=2 \omega v r \hat{k} ;-\int_{C v}=-\omega V R^{2} \rho A \hat{k}
\end{aligned}
$$

Dropping $\hat{k}, \quad-\omega V R^{2} \rho A=-\frac{\rho Q R V}{3} \sin c$, so with $V A=Q / 3$,

$$
\begin{aligned}
& \omega=\frac{V}{R} \sin \theta ; V=\frac{Q}{3 A}=\frac{4 Q}{3 \pi d^{2}}=\frac{4}{3 \pi} \times 68 \times 10^{-3} \frac{m^{3}}{m_{1}} \times \frac{1}{(0.0063)^{2} m^{-2} 60 \mathrm{~s}}=11.9 \mathrm{~m} / \mathrm{s} \\
& \omega=11.9 \frac{\mathrm{~min}}{\mathrm{~s}} \times \frac{1}{0.152 \mathrm{~m}} \times \sin \theta=78.3 \sin \theta \mathrm{rad} / \mathrm{s}
\end{aligned}
$$

plotting:

For $\theta=30^{\circ}$,

$$
w=78.3 \sin 30^{\circ}
$$

$$
\omega=39.1 \mathrm{rad} / \mathrm{s}
$$

$\left(\theta=30^{\circ}\right)$

Given: Small lawn sprinkler as shown.

$$
V_{r e l}=17 \mathrm{~m} / \mathrm{s}
$$

Friction torque at pivot is $T_{+}=0.18 \mathrm{~N} \cdot \mathrm{~m}$.

Flowrate is $Q=4.01 /$ be $/ \mathrm{min}$.
Find: Torque to hold stationary.

Solution: Apply moment of momentum using fixed CV enclosing sprinkler arms.

Basic equation:

$$
\vec{r} \times \overrightarrow{F_{s}}+\int_{C V} \vec{r} f \vec{g} \rho d v+\vec{T}_{\text {shaft }}=0(z)=0(3) \quad \int_{C V} \vec{r} \times \vec{v} \rho d t+\int_{C S} \vec{r} \times \vec{V} \rho \vec{V} \cdot d \vec{A}
$$

Assumptions: (1) Neglect torque due to surface forces
(2) Torques due to body forces cancel by symmetry
(s) steady flow
(4) Uniform flow leaving each jet

Then

$$
\begin{aligned}
-T_{f} \hat{k}= & (\vec{r} \times \vec{v})_{\text {in }}\{-f a\}+2(\vec{r} \times \vec{v})_{j e t}\left\{\frac{1}{2} \rho a\right\} \\
& (\vec{r} \times \vec{v})_{\text {in }} \simeq 0 \quad \begin{aligned}
\vec{r} & =R t_{r} \\
& \vec{v}
\end{aligned}=\left(R \omega-V_{r e 1} \cos \alpha\right) \hat{i}_{\theta}+V_{r e r} \sin \alpha \hat{c}_{z}
\end{aligned}
$$

The absolute velocity of the jet leaving sprinkler is $\vec{V}=V_{\text {reit }}\left[\cos \alpha\left(-\hat{i}_{\theta}\right)+\sin \alpha\left(\hat{i}_{j}\right)\right]$
Then $(\vec{r} \times \vec{V})_{z}=\left\{R \hat{i}_{r} \times V_{r e}\left[\cos \alpha\left(-i_{0}\right)+\sin \alpha\left(i_{3}\right)\right]\right\}_{z}=\left\{R V_{r e l} \cos \alpha\left(-\hat{i}_{z}\right)+R V_{n / \sin }\left(-\hat{v}_{\theta}\right)\right\}_{z}$

$$
(\vec{r} \times \vec{v})_{z}=-R V_{r a l}^{\cos \alpha}
$$

Substituting, $T_{\text {shaft }}=T_{\text {ext }}-T_{f}=2\left(-R V_{\text {rel }} \cos \alpha\right)\left(\frac{1}{2} \rho Q\right)$
Thus $T_{\text {ext }}=T_{f}-\rho Q R V_{\text {rel }} \cos \alpha$

$$
=0.18 \mathrm{~N} \cdot \mathrm{~m}-999 \frac{\mathrm{~kg}}{\mathrm{~m}^{3}} \times \frac{4 \mathrm{~L}}{\mathrm{mmn}} \times 0.2 \mathrm{~m}_{\mathrm{n}} 17 \frac{\mathrm{~m}}{\mathrm{~s}} \times 0.866 \times \frac{\mathrm{m}^{3}}{1000 \mathrm{~L}} \times \frac{\mathrm{min}}{60 \mathrm{~s}} \times \frac{\mathrm{N} \mathrm{~s}^{2}}{\mathrm{~kg} \cdot \mathrm{~m}}
$$

$$
T_{\text {ext }}=-0.0161 \mathrm{~N} \cdot m \text { (to hold sprinkler stationary) }
$$

$\left\{\begin{array}{l}\text { since } T_{\text {ext }}<0 \text {, it must be applied in the minus } y \text { direction to oppose } \\ \text { motion. }\end{array}\right.$
\qquad

Given: Small lawn sprinkler as shown.

$$
V_{r e l}=17 \mathrm{~m} / \mathrm{s}
$$

Friction torque at pivot is zero. $L=0.1 \mathrm{~kg} \mathrm{~m}^{2}$

Flowrate is $Q=4.0 / 1$ ter $/ \mathrm{min}$.
Find: Initial, angular acceleration
 from rest.
Solution: Apply moment of momentum using fixed CV enclosing sprinkler arms.

Basic equation:

$$
\vec{r} \not \hat{\vec{F}} \vec{s}+\int_{C v} \vec{r} \neq \vec{j} \vec{g} \rho d v+\vec{T}_{\text {shaft }}=\frac{a^{*}}{\tilde{U}^{*}} \int_{C V} \vec{r} \times \vec{v} \rho d t+\int_{C s} \vec{r} \times \vec{v} \rho \vec{v} \cdot d \vec{H}
$$

Assumptions: (1) Neglect torque due to surface forces
(2) Torques due to body forces cancel by symmetry
(3) Steady flow
(4) Uniform flow leaving each jet

Then

$$
\begin{aligned}
-T_{+} \hat{k}= & (\vec{r} \times \vec{v})_{i n}\{-f Q\}+2(\vec{r} \times \vec{v})_{j e t}\left\{\frac{1}{2} \rho a\right\} \\
\quad(\vec{r} \times \vec{v})_{\text {in }} \simeq 0 \quad & \vec{r}=R \hat{t}_{r} \\
& \vec{V}=\left(R \omega-V_{r e} \cos \alpha\right) \hat{i}_{\theta}+V_{r e r} \sin \alpha \hat{\imath}_{z}
\end{aligned}
$$

The jet leaves the sprinkler at $\vec{V}($ ass $)=V \operatorname{Ver}\left[\cos \alpha\left(-\hat{c}_{y}\right)+\sin \alpha\left(\hat{r}_{y}\right)\right]$
Then $\vec{r} \times \vec{V}=R \hat{u}_{r} \times V_{r e r}\left[\cos \alpha\left(-\hat{L}_{\theta}\right)+\sin \alpha\left(\hat{\imath}_{z}\right)\right]=R V_{r e r}\left[\cos \alpha\left(-\hat{\imath}_{z}\right)+\sin \alpha\left(-\hat{i}_{\theta}\right)\right]$ Summing moments on the rotor, $\Sigma \vec{M}=I \vec{\omega}$. Thus

$$
\begin{aligned}
\dot{\omega} & =\frac{\Sigma T}{\Sigma}=\frac{p Q R V r e 1 \cos \alpha-T_{f}}{I} \\
& =\left[\frac{999 \mathrm{~kg}}{\mathrm{~m}^{3}} \times \frac{4 \mathrm{~L}}{\mathrm{mmg}^{\prime}} \times 0.2 \mathrm{~m}_{*} 17 \frac{\mathrm{~m}}{\mathrm{~s}} \times 0.866 \times \frac{\mathrm{m}^{3}}{1000 \mathrm{~L}} \times \frac{\mathrm{mm}}{60 \mathrm{~s}}-0.18 \mathrm{~N} \cdot \mathrm{~m}_{*} \mathrm{~kg} \cdot \frac{\mathrm{~m}}{1 \mathrm{~s}^{2}}\right] \frac{1}{0.1 \mathrm{~kg} \cdot \mathrm{~m}^{2}} \\
\dot{\omega} & =0.161 \mathrm{nad} / \mathrm{s}^{2}
\end{aligned}
$$

Given: Small lawn sprinkler as shown.

Friction torque at privet is $\tau_{+}=0.18 \mathrm{~N} \cdot \mathrm{~m}$.

Flownate is $Q=4.0$ liter $/ \mathrm{min}$.
Find: (a) steady speed of rotation.

(b) Area covered by spray.

Solution: Apply moment of momentum using fixed CV enclosing sprinkler arms.

Basic equation:

$$
\vec{r} \times \overrightarrow{F_{s}}+\int_{C v} \vec{r} \times \vec{g} \rho d v+\vec{T}_{s h a f t}=\frac{a^{*}}{\frac{1}{r}} \int_{C v} \vec{r} \times \vec{v} \rho d v+\int_{C s} \vec{r} \times \vec{v} \rho \vec{v} \cdot d \vec{A}
$$

Assumptions: (1) Neglect torque due to surface forces
(2) Torques due to body forces cancel by Symmetry
(3) Steady flow
(+) Uniform flow leaving each jet
Then

$$
\begin{aligned}
&-T_{f} \hat{k}=(\vec{r} \times \vec{v})_{\text {in }}\{-\rho Q\}+2(\vec{r} \times \vec{V})_{\text {jet }}\left\{\frac{1}{2} \rho Q\right\} \\
&(\vec{r} \times \vec{v})_{\text {in }} \approx 0 \quad \begin{aligned}
& =R t_{r} \\
\quad \vec{V} & =\left(R \omega-V_{r e l} \cos \alpha\right) \hat{i}_{s}+V_{r e \prime} \sin \alpha \hat{\imath}_{z}
\end{aligned}
\end{aligned}
$$

or

$$
(\vec{r} \times \vec{v})_{3}=R(R \omega-\text { Vrei } \cos \alpha)
$$

$$
-T_{f}=R\left(R \omega-V_{n} / \cos \alpha\right) \rho Q
$$

Thus

$$
\begin{aligned}
& \omega=\frac{V_{r e l} \cos \alpha}{R}-\frac{T_{f}}{\rho Q R^{2}} \\
& =17 \frac{\mathrm{~m}}{\mathrm{~s}} \times \frac{\cos 30^{\circ}}{0.2 \mathrm{~m}}-0.18 \mathrm{~N} \cdot m^{*} \frac{m^{3}}{999 \mathrm{~kg}} \times \frac{m i n}{4.0 \mathrm{l}} \times \frac{1}{(0.2)^{2} \mathrm{~m}^{2}} \times \frac{60 \mathrm{~s}}{\mathrm{~mm}} \times 10^{3} \frac{\mathrm{l}}{\mathrm{~m}^{3}} \times \frac{\mathrm{kg} \cdot \mathrm{~m}}{\mathrm{~N} \cdot \mathrm{~s}^{2}} \\
& \omega=6.04 \frac{\mathrm{rad}}{\mathrm{~s}} \text { or } 57.7 \mathrm{rpm}
\end{aligned}
$$

Treat the spray outside each nozzle as moving without a ir resistance:

Open-Ended Problem Statement: When a garden hose is used to fill a bucket, water in the bucket may develop a swirling motion. Why does this happen? How could the amount of swirl be calculated approximately?

Discussion: Frequently when filling a bucket the hose is held so that the water stream entering the bucket is not vertical. If, in addition, the water stream is off-center in the bucket, then flow entering the bucket has a tangential component of velocity, a swirl component.
The tangential component of the water velocity entering the bucket has a moment-of-momentum (swirl) with respect to a control volume drawn around the stationary bucket. This entering swirl can only be reduced by a torque acting to oppose it. Viscous forces among fluid layers will tend to transfer swirl to other layers so that eventually all of the water in the bucket has a swirling motion.
Swirl in the bucket may be influenced by viscosity. The swirl may tend to nearly a rigid-body motion to minimize viscous forces between annular layers of water in the bucket. The rigid-body motion assumption may be a reasonable model to calculate the total angular momentum (moment-of-momentum) of the water in the bucket.

Given: Nozzle assembly rotating steadily, as shown in the sketch.

Find: (a) Torque required to drive the nozzle assembly
(b) Reaction torques at the flange.

Solution: Apply the moment of momentum equation to the rotating CV shown.
Basic equation:

$$
\vec{r} \times \vec{F}_{s}+\int_{C v} \vec{r} \not \hat{F}_{\vec{g} p(2)}^{\approx o t r+\vec{r}_{s h a f t}}
$$

Assumptions: (1) Let $\vec{T}_{c v}$ represent all torques acting on the cv
(L) Neglect torque due to body force
(3) Constant angular speed
(4) Neglect mass of arm compared to water ins int
(5) steady flow in CV
(6) Neglect nozzle length compared to L
(7) \vec{r} collinear with \vec{v}, so $\vec{r} \times \vec{v}_{\text {wi }}=0$

Then

$$
\vec{r}_{c v}=\int_{c v} \vec{r} \times\left[2 \vec{\omega} \times \vec{v}_{x y 3}+\vec{w} \times(\vec{w} \times \vec{r})\right] \rho d \psi
$$

Since $\vec{\omega}=\omega \hat{k}$ and $\vec{r}-l(\sin \theta \hat{\imath}+\cos \theta \hat{k})$, then
$\vec{\omega} \times \vec{r}=\omega l \sin \theta \hat{\jmath}$

$$
\vec{\omega} \times(\vec{\omega} \times \vec{r})=\omega \hat{k} \times \omega l \sin \theta \hat{\jmath}=\omega^{2} l \sin \theta(-\hat{\imath})
$$

and $\vec{r} \times[\vec{\omega} \times(\vec{\omega} \times \vec{r})]=\ell(\sin \theta \hat{\imath}+\cos \theta \hat{k}) \times \omega^{2} l \sin \theta(-\hat{\imath})=\omega^{2} \ell^{2} \sin \theta \cos \theta(-\hat{\jmath})$
Since $\vec{V}_{x y z}=V_{c v}(\sin \theta \hat{\imath}+\cos \theta \hat{k})$, then

$$
2 \overrightarrow{0} \times \vec{v}_{x y z}=2 \omega \hat{k} \times V_{c v}\left(\sin \theta \hat{\imath}+\cos \theta \hat{k},=2 \omega V_{c v} \sin \theta \hat{\jmath}\right.
$$

and $\vec{r} \times\left[2 \vec{\omega} \times \vec{V}_{x y z}\right]=\ell(\sin \theta \hat{\imath}+\cos \theta \hat{k}) \times 2 \omega V_{c v} \sin \theta \hat{\jmath}=2 \omega \ell V_{e v} \sin ^{2} \theta \hat{k}$

$$
+2 \omega l V_{c u \sin \theta \cos \theta}(-\hat{\imath})
$$

Substituting and introducing $d t=A d l$,

$$
\begin{aligned}
& \vec{T}_{C V}=\int_{0}^{L}\left(-2 \omega l V_{C V} \sin \theta \cos \theta \hat{\imath}-\omega^{2} l^{2} \sin \theta \cos \theta \hat{\jmath}+2 \omega l V_{C V} \sin ^{2} \theta \hat{k}\right)_{\rho A} d \ell \\
& \vec{T}_{C V}=\left[-\omega L^{2} V_{C v} \sin \theta \cos \theta \hat{\imath}-\frac{\omega^{2} L^{3}}{3} \sin \theta \cos \theta \hat{\jmath}+\omega L^{2} V_{C V} \sin ^{2} \theta \hat{k}\right]_{\rho A}
\end{aligned}
$$

The shaft torque needed to maintain steady rotation of the assembly is

$$
T_{\text {shaft }}=29.4 \mathrm{~N} \cdot \mathrm{~m}
$$

The reaction moments acting on the flange are

$$
\begin{aligned}
M_{x} & =-T_{C v_{x}}=\omega L^{2} V_{c v} \sin \theta \cos \theta \rho A-\rho Q \omega L^{2} \sin \theta \cos \theta \\
& =999 \frac{\mathrm{~kg}}{\mathrm{~m}^{3}} \times 0.15 \frac{\mathrm{~m}^{3}}{\mathrm{~s}} \times 30 \frac{\mathrm{rev}}{\mathrm{~mm}} \times(0.5)^{2} \mathrm{~m}^{2} \times(0.5)(0.566)=\frac{\mathrm{rad}}{\mathrm{Nev}} \times \frac{\mathrm{mm}}{60 \mathrm{~s}} \times \frac{\mathrm{Ns}^{2}}{\mathrm{~kg} \cdot \mathrm{~m}} \\
M_{x} & =51.0 \mathrm{~N} \cdot m \text { (applied to flange by cv) }
\end{aligned}
$$

$$
M_{y}=-T_{c v y}=\frac{1}{3} \rho \omega^{2} L^{3} A \sin \theta \cos \theta
$$

$$
=\frac{1}{3} \times 499 \frac{\mathrm{~kg}}{\mathrm{~m}^{3}}\left[30 \frac{\mathrm{rgy}}{\mathrm{mmn}} * 2 \pi \frac{\mathrm{rad}}{\mathrm{rev}} \times \frac{\mathrm{min}}{60 \mathrm{~s}}\right]^{2}(0.5)^{3} \mathrm{~m}^{3} \times \frac{\pi}{4}(0.1)^{2} m_{*}^{2}(0.5)(0.866) \mathrm{N} \frac{\mathrm{~N} \cdot \mathrm{~s}^{2}}{\mathrm{~kg} \cdot \mathrm{~m}}
$$

$M_{y}=1.40 \mathrm{~N} \cdot \mathrm{~m}$ (applied to flange by CV)
$\left\{\begin{array}{l}\text { Torques due to the masses of water, tube, and nozzle must be } \\ \text { considered in the overall design. }\end{array}\right\}$

$$
\begin{aligned}
& T_{\text {shaft }}=T_{\partial V_{z}}=\omega L^{2} V_{c v} \sin ^{2} \theta \rho A=\omega L^{2} \frac{Q}{A} \sin ^{2} \theta \rho A=\rho Q \omega L^{2} \sin ^{2} \theta \\
& =999 \frac{\mathrm{~kg}}{\mathrm{~m}^{3}} \cdot 0.15 \frac{\mathrm{~m}^{3}}{3} \cdot 30 \mathrm{cev}_{\min }^{*}(0.5)^{2} \mathrm{~m}^{2} \times(0.5)^{2} \times 2 \pi \frac{\mathrm{mad}}{\mathrm{Rev}} \times \frac{\mathrm{min}}{60 \mathrm{~S}} \times \frac{\mathrm{N.5}}{\mathrm{~kg} \cdot \mathrm{~m}}
\end{aligned}
$$

Given: Branched pipe with Symmetrical legs as shown.
Angular momentum zero at inlet, relative to nonrotating frame.
Find: (a) External torque expression
(b) Additional torque to produce angular acceleration of \dot{w}.

Solution: Apply moment of momentum equation using rotating CV.

Basic equation:

$$
\vec{r} \times \frac{p^{=o}}{=o(1)}+\int_{c v} \vec{r} / \vec{g} \rho o d x+\vec{\epsilon}_{s h a f t}^{=o(z)}
$$

Assumptions: (1) No surface forces
(2) Ecoly-furces produce no torque about axis (symmetry)
(3) Flow steady in rotating frame
(4) \vec{r} and $\vec{v}_{x y y}$ are colinear: $\vec{r}_{k} \vec{v}_{x \beta b}=0$

Then

$$
\vec{T}_{\text {shaft }}=\int_{e v} \vec{r} \times\left[2 \vec{w} \times \vec{v}_{x y y}+\vec{\omega} \times(\vec{\omega} \times \vec{r})+\dot{\vec{v}} \times \vec{r}\right]_{\rho d \psi}
$$

Using the coordinates above, $\vec{\omega}=\omega \hat{k}$

$$
\dot{\vec{\omega}}=\dot{\omega} \hat{k}
$$

$$
\begin{aligned}
& \vec{r}=r(\cos \alpha \hat{k}+\sin \alpha \hat{\imath}) \quad(\text { upper tube }) \\
& \vec{V}_{\times y z}=\frac{Q}{2 A}(\cos \alpha \hat{k}+\sin \alpha \hat{\imath}) \quad \text { (upper tube); } A=\frac{\pi D^{2}}{4}
\end{aligned}
$$

and

$$
\begin{aligned}
& \dot{\vec{\omega}} \times \vec{r}=\dot{\omega} r \sin \alpha \hat{\jmath} \\
& \vec{\omega} \times(\vec{\omega} \times \vec{r})=\omega \hat{k} \times \omega r \sin \alpha \hat{\jmath}=-\omega^{2} r \sin \alpha \hat{\imath} \\
& 2 \vec{\omega} \times \vec{v}_{x \in z}=2 \omega \frac{Q}{2 A} \sin \alpha \hat{\jmath}=\frac{\omega Q}{A} \sin \alpha \hat{\jmath}
\end{aligned}
$$

Thus for the upper tube,

$$
\begin{aligned}
& \vec{T}_{\text {shaft }}=\int_{0}^{L}\left\{r(\cos \alpha \hat{k}+\sin \alpha \hat{\imath}) \times\left[\left(\frac{\omega Q}{A}+\dot{\omega} r\right) \sin \alpha \hat{\jmath}-\omega^{2} r \sin \alpha \hat{\imath}\right]\right\} \rho A d r \\
& =\int_{0}^{L}\left[\left(\frac{r \omega Q}{A}+\dot{\omega} r^{2}\right)(\sin \alpha \cos \alpha) \hat{\imath}+\left(\frac{r \omega Q}{A}+\dot{\omega}^{2} r^{2}\right) \sin ^{2} \alpha \hat{K}+\omega^{2} r^{2} \sin \alpha \cos x(-\hat{\jmath})\right] \rho A d r \\
& \left.\vec{T}_{\text {shaft }}(\text { upper })=\left(\frac{L^{2} \omega Q}{2 A}+\frac{\dot{\omega}^{3} L^{3}}{3}\right) \sin \alpha \cos \alpha \hat{L}+\left(\frac{L^{2} \omega Q}{2 A}+\frac{\dot{\omega}^{3} L^{3}}{3}\right) \sin ^{2} \alpha \hat{k}+\frac{\omega^{2} L^{3}}{3} \sin \alpha \cos \alpha(-\hat{\jmath})\right] d A
\end{aligned}
$$

For the lower tube, $\vec{\omega}=\omega \hat{k} \quad \dot{\vec{\omega}}=\dot{\omega} \hat{k}$

$$
\begin{aligned}
& \vec{r}=r(\cos \alpha \hat{k}-\sin \alpha \hat{\imath}) \quad \text { (lower thebe) } \\
& \vec{V}_{x y y}=\frac{Q}{z A}(\cos \alpha \hat{k}-\sin \alpha \hat{\jmath}) \quad \text { (lower tube) }
\end{aligned}
$$

and

$$
\begin{aligned}
& \dot{\omega} \times \vec{r}=-r \dot{\omega} \sin \alpha \hat{\jmath} \\
& \vec{\omega} \times(\vec{\omega} \times \vec{r})=\omega \hat{k} \times(-r \omega \sin \alpha \hat{\jmath})=r \omega^{2} \sin \alpha \hat{\imath} \\
& 2 \vec{\omega} \times \vec{v}_{x y z}=2 \omega \frac{Q}{2 A}(-\sin \alpha)(\hat{\jmath})=-\frac{\omega Q}{A} \sin \alpha \hat{\jmath}
\end{aligned}
$$

Thus for the lower tube,

$$
\begin{aligned}
& \vec{T}_{\text {shaft }}=\int_{0}^{L}\left\{r(\cos \alpha \hat{k}-\sin \alpha \hat{\imath}) \times\left[\left(\frac{\omega Q}{A}+r \dot{\omega}\right) \sin \alpha(-\hat{\jmath})+r \omega^{2} \sin \alpha\right]\right\} \rho A d r \\
&=\int_{0}^{L}\left[\left(\frac{r \omega Q}{A}+r^{2} \dot{\omega}\right) \sin \alpha \cos \alpha(-\hat{l})+\left(\frac{r \omega Q}{A}+r^{2} \dot{\omega}\right) \sin ^{2} \alpha \hat{k}+r^{2} \omega^{2} \sin \alpha \cos \alpha \hat{\jmath}\right] \rho A d r \\
& \vec{T}_{\text {shaft }}(\text { lower })=\left[\left(\frac{L^{2} \omega Q}{2 A}+\frac{L^{3} \dot{\omega}}{3}\right) \sin \alpha \cos \alpha \hat{\imath}+\left(\frac{L^{2} \omega Q}{2 A}+\frac{L^{3} \dot{\psi}}{3}\right) \sin ^{2} \alpha \hat{k}+\frac{L^{3} \omega^{2}}{3} \sin \alpha \cos \alpha \hat{\jmath}\right] \rho A
\end{aligned}
$$

Summing these expressions gives

$$
\vec{T}_{\text {shaft }}(\text { total })=\left(\frac{L^{2} \omega \theta}{A}+\frac{2 L^{3} \text { in }}{3}\right) \sin ^{2} \alpha \rho A \hat{k}
$$

Thus the steady-state portion of the torque is

$$
\vec{r}_{\text {shaft }} \text { (steady state) }=\left(\frac{L^{2} \omega Q}{A}\right) \sin ^{2} \alpha p A \hat{k}=L^{2} \rho \omega Q \sin ^{2} \alpha \hat{k}
$$

The additional torque needed to provide angular acceleration, $\dot{\omega}$, is

$$
\vec{T}_{\text {shaft }}(\text { acceleration })=\frac{2 L^{3} \rho \dot{\omega} A}{3} \sin ^{2} \alpha \hat{k}
$$

$\left\{\begin{array}{l}\text { Torques of individual tubes about the } x \text { and } y \text { axes ane reacted } \\ \text { internally; they must be considered in design of the tube. }\end{array}\right\}$
(b) Using fixed CV:

Basic
equation: $\vec{r} \times \vec{F}_{s}+\int_{C V} \vec{r} / \vec{g} \rho \vec{g} \rho(t)+\vec{F}_{s h a f t}$

$$
=\frac{\partial f}{\partial f} \int_{C v}^{=0(3)} \vec{r} \times \vec{v} \rho d \psi+\int_{C S} \vec{r} \times \vec{v} \rho \vec{v} \cdot d \vec{A}
$$

Assumptions: (1) No surface forces
(2) Body forces symmetric (no moment about X axis)
(3) No change in angular monientum within cV aririto time
(4) Symmetry in two branches
(5) Uniform flow at each cross-section

Then $\vec{r}_{s}=r \hat{I}=\vec{f}_{1} \times \vec{V}_{1}\{-\rho Q\}+\vec{r}_{2} \times \vec{V}_{2}\left\{+\rho \frac{Q}{2}\right\}+\vec{r}_{3} \times \vec{V}_{3}\left\{+\rho \frac{Q}{2}\right\}=2 \vec{r}_{2} \times \vec{V}_{1}\left\{\rho \frac{Q}{2}\right\}$

$$
\vec{r}_{1}=0 \quad \vec{r}_{2}=L \sin \alpha \hat{J} ; \vec{V}_{2}=\omega r_{2} \hat{k}_{3} \vec{r}_{2} \times \vec{V}_{2}=\omega L^{2} \sin ^{2} \alpha \hat{I}
$$

or

$$
T_{s s}=\rho \omega Q L^{2} \sin ^{2} \alpha \text { (steady-state torque) }
$$

The torque required for acceleration is $T_{\text {ace }}=I \dot{\omega}$, where $I=\int r^{2} d m$ For one leg of the branch, $I=\int r^{2} d m=\int_{0}^{1}(3 \sin a)^{2} \rho A d s=\frac{\rho A L^{3}}{3} \sin ^{2} \alpha$
(b) Neglect mass of pipe

For both sides, $I=\frac{2 \rho A L^{3}}{3} \sin ^{2} \alpha$.
Thus

$$
T_{a c k}=\frac{2 p \dot{\omega} A L^{3}}{3} \sin ^{2} \alpha \text { (torque required fir angular acceleration) }
$$

The total torque that must be applied is

$$
T=T_{S S}+T_{a c c}=\rho \omega Q L^{2} \sin ^{2} \alpha+\frac{2 \rho \dot{\omega} A L^{3}}{3} \sin ^{2} \alpha
$$

Given: Thin sheet of liquid, of width, w, and thickness, h, striking inclined flat plate, as shown.

Neglect any viscous effects.
Find: (a) Magnitude and line of action of resultant force as functions of θ.
(b) Equilibrium angle of plate if force is applied at point 0 , where jet centerline intersects surface.

Solution: Apply continuity, linear momentum
 and moment of momentum using Cv and coordinates shown.
Basic equations: $0=\frac{d}{d t} \int_{C V}^{=0(1)} \rho d \psi+\int_{C s} \rho \vec{v} \cdot d \vec{A}$

$$
\begin{aligned}
& F \int_{x}^{=o(4)}+F_{p_{x}^{i}}^{=o(s)}=\frac{\partial \hat{d}}{d t} f_{v}^{-o(1)} u \rho d \psi+\int_{i s} u \rho \vec{v} \cdot d \vec{A} \\
& F_{s y}+F_{y y}^{*}=\frac{\partial}{\partial} \int_{c}^{=0(s)} \int_{c v}^{=0(1)} v \rho d v+\int_{c s} v \rho \vec{v} \cdot d \vec{A}
\end{aligned}
$$

Assumptions: (1) Steady flow
(2) Uniform flow at each section
(3) No net pressure forces; $F_{s x}=R_{x}, F_{s y}=R_{y}$
(*) No viscous effects; $R_{x}=0$ and $v_{1}=v_{2}=v_{3}=V$
(5) Neglect body forces and torques
(b) $\vec{T}_{\text {shaft }}=0$
(7) Incompressible flow, $\rho=$ constant

Then from continuity,

$$
\begin{equation*}
0=\left\{-\left|\rho V \omega h_{1}\right|\right\}+\left\{\left|\rho V \omega h_{2}\right|\right\}+\left\{\left|\rho V h_{3}\right|\right\} \text { or } h_{1}=h_{2}+h_{3}=h \tag{1}
\end{equation*}
$$

From x momentum

$$
\begin{align*}
& 0=u_{1}\left\{-\left|\rho v \omega h_{1}\right|\right\}+u_{2}\left\{\left|\rho V \omega h_{2}\right|\right\}+u_{3}\left\{\left|\rho V \omega+h_{3}\right|\right\} \\
& u_{1}=V \sin \theta \quad u_{2}=-v \quad u_{3}=V \\
& 0=\rho V^{2} \omega\left(-h_{1} \sin \theta-h_{2}+h_{3}\right) \quad \text { or } \quad h_{3}-h_{2}=h_{1} \sin \theta=h \sin \theta \tag{2}
\end{align*}
$$

Combining Eqs. 1 and 2, $\quad h_{2}=h\left(\frac{1-\sin \theta}{2}\right)$

$$
\begin{equation*}
h_{3}=h\left(\frac{1+\sin \theta}{2}\right) \tag{3}
\end{equation*}
$$

From y momentum, $R_{y}=v_{1}\left\{-\left|\rho V \omega h_{1}\right|\right\}+v_{i}\left\{\left|\rho V \omega_{2}\right|\right\}+v_{3}\left\{\left|\rho V w_{3}\right|\right\}$

$$
v_{1}=-V \cos \theta \quad v_{2}=0 \quad v_{s}=0
$$

$$
R_{y}=\rho V^{2} \omega h \cos \theta
$$

From moment of momentum,

$$
\begin{array}{lrl}
\vec{r}^{\prime} \times \vec{F}_{3}=\vec{r}_{1} \times \vec{V}_{1}\left\{-\left|\rho V \omega h_{1}\right|\right\}+\vec{r}_{2} \times \vec{V}_{2}\left\{\left|\rho V \omega h_{2}\right|\right\}+\vec{r}_{3} \times \vec{V}_{3}\left\{\left|\rho V \omega h_{3}\right|\right\} \\
\vec{r}_{\prime}^{\prime}=x^{\prime} \hat{\imath} & \vec{r}_{1} \times \vec{V}_{1}=0 & \vec{r}_{2}=\frac{h_{2}}{2} \hat{l} \\
\vec{F}_{3}=R_{y} \hat{\jmath} & \vec{V}_{2}=-V \hat{\imath} & \vec{r}_{3}=\frac{h_{3}}{2} \hat{\jmath} \\
\vec{r}^{\prime} \times \vec{F}_{3}=x_{3}^{\prime} R_{y} \hat{k} & \vec{r}_{2} \times \vec{V}_{2}=\frac{h_{2} V}{2} \hat{\imath} & \vec{r}_{z} \times \vec{V}_{3}=-\frac{h_{2} V}{2} \hat{k}
\end{array}
$$

Combining and dropping \hat{k},

$$
x^{\prime} R_{y}=\frac{1}{2} \rho V^{2} w h_{2}^{2}-\frac{1}{2} \rho V^{2} w h_{3}^{2}=\frac{1}{2} \rho V^{2} w\left(h_{2}^{2}-h_{3}^{2}\right)
$$

or

$$
x^{\prime}=\frac{\rho V^{2} w\left(h_{2}^{2}-h_{3}^{2}\right)}{2 R_{y}}=\frac{\rho V^{2} w\left(h_{2}+h_{3}\right)\left(h_{2}-h_{3}\right)}{2 R_{y}}
$$

Substituting from Eqs. 3, 4 and 5 ,

$$
x^{\prime}=\frac{\rho V^{2} \omega h^{2}\left(\frac{1-\sin \theta}{2}+\frac{1+\sin \theta}{2}\right)\left(\frac{1-\sin \theta}{2}-\frac{1+\sin \theta}{2}\right)}{2 \rho V^{2} \omega h \cos \theta}=\frac{h(-\sin \theta)}{2 \cos \theta}
$$

or

$$
x^{\prime}=-\frac{h}{2} \tan \theta
$$

Note that $x^{\prime}<0$. This means that R_{y} must be applied below point 0 .
If R_{y} is applied at point 0 , then $x^{\prime}=0$. For equilibrium, from Eq. $6, \theta=0$. Thus it force is applied at point 0 , plate will be in equilibrium when perpendicular to jet.

Given: The rotating lawn sprinkler of Example Problem 4.14.
Find: (a) Jet angle α for maximum speed of rotation.
(b) What jet angle will provide the maximum area of coverage by the spray?
(c) Draw a velocity diagram to show the absolute velocity of the water jet leaving the nozzle.
(d) What governs the steady rotational speed of the sprinkler?
(e) Does the rotational speed of the sprinkler affect the area covered by the spray?
(f) How would you estimate the area of coverage?
(g) For fixed α, what might be done to increase or reduce the area covered by the spray?

Solution: The results of Example Problem 4.14 were computed assuming steady flow of water and constant frictional retarding torque at the sprinkler pivot.

$$
T_{f}=R\left(V_{r e} \cos \alpha-\omega R\right) \rho Q
$$

From these results,

$$
\omega=\frac{V r e / \cos x}{R}-\frac{T f}{\rho Q R^{2}}
$$

Thus rotational speed of the sprinkler increases as $\cos \alpha$ increases, ie., as α decreases. The maximum rotational speed occurs when $\alpha=0$. Then $\cos \alpha=1$ and the rotational speed is

$$
\omega=\frac{V_{r e}}{R}-\frac{T_{f}}{\rho Q R^{2}}
$$

For the conditions of Example Problem 4.14 the maximum rotational speed is

$$
\omega=4.97 \frac{\mathrm{~m}}{5} \times \frac{1}{0.150 \mathrm{~m}}-0.0718 \mathrm{Nm} \times \frac{\mathrm{m}^{3}}{991 \mathrm{~kg}} \times \frac{\mathrm{min}}{7.52} \times \frac{1}{(0.150)^{2} \mathrm{~m}^{2}} \times \frac{10002}{\mathrm{~m}^{3}} \times 60 \mathrm{~s} \mathrm{~min}^{2}=7.58 \mathrm{rad} / \mathrm{s}
$$

The steady rotation speed ω of the sprinkler is governed by torque T_{f} and angle α.
Maximum coverage by the spray occurs when the "carry" of each jet stream is the longest. When aerodynamic drag on the stream is neglected, maximum carry occurs when the absolute velocity of the stream leaves the sprinkler at $\beta=45^{\circ}$, as shown in the velocity diagram below.

$$
\begin{aligned}
& \text { Note } \vec{V}_{\text {abs }}=\vec{V}_{r e i}-w R t_{\theta} \\
& \text { Both the magritucte and direction } \\
& \text { of } \vec{V}_{\text {abs }} \text { vary with w! }
\end{aligned}
$$

For $\omega=0$, the relative velocity angle α and absolute velocity angle β are equal. Therefore maximum carry occurs when $\alpha=45^{\circ}$ (see graph on next page).
Any rotation rate ω reduces the magnitude $V_{\text {abs }}$ and increases the angle β of the absolute velocity leaving the sprinkler jet. When $\omega>0$, then $\beta>\alpha$, so for maximum carry α must be less than 45°. Consequently rotation reduces the carry of the stream and the area of coverage; at specified α the area of coverage decreases with increasing ω.
For the conditions of Example Problem $4.14(\omega=30 \mathrm{rpm})$, optimum carry occurs at $\alpha \approx 42^{\circ}$, and the coverage area is reduced from approximately $20 \mathrm{~m}^{2}$ with a fixed sprinkler to $15 \mathrm{~m}^{2}$ with 30 rpm rotation. If the rotation speed is increased (by decreasing pivot friction or decreasing nozzle angle α), coverage area may be reduced still further, to $9 \mathrm{~m}^{2}$ or less.

$$
A \approx \pi\left(x_{\max }\right)^{2}
$$

Analysis of Ground Area Covered by Rotating Lawn Sprinkler:
Variables: $\quad A=$ ground area covered by spray stream
$x=$ ground distance reached by spray stream
$\alpha=$ angle of jet above ground plane
$\beta=$ angle of absolute velocity above ground plane
$\begin{array}{lllll}\text { Input Data: } & R= & 0.150 & \mathrm{~m} \\ & V_{\text {rel }} & = & 4.97 & \mathrm{~m} / \mathrm{s}\end{array} \quad(Q=7.5 \mathrm{~L} / \mathrm{min})$
Results:

$$
\begin{array}{r}
\omega(\mathrm{rpm})= \tag{0}\\
\omega R(\mathrm{~m} / \mathrm{s})=
\end{array}
$$

30
0.471

$\alpha(\mathrm{deg})$	$X_{\text {max }}(\mathrm{m})$	$A\left(\mathrm{~m}^{2}\right)$	$X_{\max }(\mathrm{m})$	$A\left(\mathrm{~m}^{2}\right)$	$X_{\max }(\mathrm{m})$
0	0.00	0.00	0.00	0.00	0.00
5	0.437	0.601	0.396	0.492	0.333
10	0.861	2.33	0.778	1.90	0.654
15	1.26	4.98	1.14	4.05	0.951
20	1.62	8.23	1.46	6.65	1.21
25	1.93	11.7	1.73	9.37	1.43
30	2.18	14.9	1.94	11.8	1.59
35	2.37	17.6	2.09	13.8	1.68
40	2.48	19.3	2.17	14.8	1.71
45	2.52	19.9	2.18	14.9	1.68
50	2.48	19.3	2.11	14.0	1.57
55	2.37	17.6	1.97	12.3	1.39
60	2.18	14.9	1.77	9.81	1.15
65	1.93	11.7	1.50	7.03	0.850
70	1.62	8.23	1.17	4.30	0.500
75	1.26	4.98	0.798	2.00	0.109
78	1.02	3.30	0.557	0.975	
80	0.861	2.33	0.391	0.480	
85	0.437	0.601	-0.04	0.00	
90	0.00	0.00			

74.8 1.17
$A\left(\mathrm{~m}^{2}\right)$

$$
0.00
$$

$$
0.349
$$

$$
1.35
$$

$$
2.84
$$

$$
4.61
$$

$$
6.39
$$

$$
7.90
$$

$$
8.90
$$

$$
9.23
$$

$$
8.83
$$

$$
7.72
$$

$$
6.08
$$

$$
4.15
$$

$$
2.269
$$

$$
0.785
$$

$$
0.037
$$

Given: Compressor, $\dot{m}=1.0 \mathrm{~kg} / \mathrm{s}$

$$
\begin{aligned}
& P_{1}=101 \mathrm{kPa} \text { (abs) } \\
& T_{1}=288 \mathrm{~K} \\
& V_{1}=75 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

Find: Bower required.
Solution: Apply first law of thermodynamics, using CV shown.
8.E.

$$
\dot{Q}-\dot{\omega}_{s}-\dot{u_{s h e a r}}=\frac{\partial^{1}}{\partial t} \int_{c v}^{o o(v)} e p d \forall+\int_{c s}(e+p v) \rho \vec{v} \cdot d \vec{A}
$$

Assume: (1) $\dot{U}_{\text {shear }}=0$
(2) Steady flow
(3) Uniform flow at each section
(4) Neglect Δz
(5) Ideal gas, $p=\rho R T, \Delta h=C_{p} \Delta T ; C_{p}=1.00 \mathrm{~kJ} / \mathrm{kg} \cdot \mathrm{K}$

Then
(6) From continuity, $\dot{m}_{1}=\dot{m}_{2}=\dot{m}$

Note that $h=u+p v^{r}$, and $\dot{Q}=\dot{m} \frac{d Q}{d m}$, so

$$
\dot{W}_{i n}=-\dot{W}_{s}=\dot{m}\left(\frac{V_{2}^{2}-V_{1}^{2}}{2}+h_{2}-h_{1}-\frac{d Q}{d m}\right)=\dot{m}\left[\frac{V_{2}^{2}-V_{1}^{2}}{2}+C_{p}\left(T_{2}-T_{1}\right)-\frac{d Q}{d m}\right]
$$

or

$$
\begin{aligned}
\dot{W}_{1 n}=1.0 \frac{\mathrm{~kg}}{\mathrm{~s}} & \left\{\frac{1}{2}\left[(125)^{2}-(75)^{2}\right] \frac{\mathrm{m}^{2}}{\mathrm{~J}^{2}} \times \frac{\mathrm{N} \cdot \mathrm{~s}^{2}}{\mathrm{~kg} \cdot \mathrm{~m}} \times \frac{\mathrm{kJ}}{1000 \mathrm{~N} \cdot \mathrm{~m}}\right. \\
& \left.+1.00 \frac{\mathrm{~kJ}}{\mathrm{~kg} \cdot \mathrm{~K}}(345-288) \mathrm{K}-\left(-18 \frac{\mathrm{~kJ}}{\mathrm{~kg}}\right)\right\} \frac{\mathrm{kW} \cdot \mathrm{~s}}{\mathrm{~kJ}}
\end{aligned}
$$

$$
\dot{W}_{i n}=80.0 \mathrm{~kW}
$$

Problem 4.199

4.199 Compressed air is stored in a pressure bottle with a volume of $0.5 \mathrm{~m}^{3}$, at 20 MPa and $60^{\circ} \mathrm{C}$. At a certain instant a valve is opened and mass flows from the bottle at $\dot{m}=0.05 \mathrm{~kg} / \mathrm{s}$. Find the rate of change of temperature in the bottle at this instant.
Given: Compressed air bottle
Find: Rate of temperature change

Solution:

Basic equations: Continuity; First Law of Thermodynamics for a CV
$\frac{\partial}{\partial t} \int_{\mathrm{CV}} \rho d \forall+\int_{\mathrm{CS}} \rho \vec{V} \cdot d \vec{A}=0 \quad \dot{Q}-\dot{W}_{s}-\dot{W}_{\text {shear }}-\dot{W}_{\text {other }}=\frac{\partial}{\partial t} \int_{\mathrm{CV}} e \rho d \forall+\int_{\mathrm{CS}}\left(u+p v+\frac{V^{2}}{2}+g z\right) \rho \vec{V} \cdot d \vec{A}$
Assumptions: 1) Adiabatic 2) No work 3) Neglect KE 4) Uniform properties at exit 5) Ideal gas

From continuity $\quad \frac{\partial}{\partial t} M_{C V}+m_{\text {exit }}=0 \quad$ where $m_{\text {exit }}$ is the mass flow rate at the exit (Note: Software does not allow a dot!)

$$
\frac{\partial}{\partial \mathrm{t}} \mathrm{M}_{\mathrm{CV}}=-\mathrm{m}_{\mathrm{exit}}
$$

From the 1st law $\quad 0=\frac{\partial}{\partial t} \int u d M+\left(u+\frac{p}{\rho}\right) \cdot m_{\text {exit }}=u \cdot\left(\frac{\partial}{\partial t} M\right)+M \cdot\left(\frac{\partial}{\partial t} u\right)+\left(u+\frac{p}{\rho}\right) \cdot m_{\text {exit }}$

Hence

$$
u \cdot\left(-m_{\text {exit }}\right)+M \cdot c_{v} \cdot \frac{d T}{d t}+u \cdot m_{\text {exit }}+\frac{p}{\rho} \cdot m_{\text {exit }}=0 \quad \frac{d T}{d t}=-\frac{m_{\text {exit }} p}{M \cdot c_{v} \cdot \rho}
$$

But

$$
\mathrm{M}=\rho \cdot \mathrm{Vol}
$$

so

$$
\frac{\mathrm{dT}}{\mathrm{dt}}=-\frac{\mathrm{m}_{\mathrm{exit}} \cdot \mathrm{p}}{\mathrm{Vol} \cdot \mathrm{c}_{\mathrm{v}} \cdot \rho^{2}}
$$

For air $\quad \rho=\frac{\mathrm{p}}{\mathrm{R} \cdot \mathrm{T}} \quad \rho=20 \times 10^{6} \cdot \frac{\mathrm{~N}}{\mathrm{~m}^{2}} \times \frac{\mathrm{kg} \cdot \mathrm{K}}{286.9 \cdot \mathrm{~N} \cdot \mathrm{~m}} \times \frac{1}{(60+273) \cdot \mathrm{K}} \quad \rho=209 \frac{\mathrm{~kg}}{\mathrm{~m}^{3}}$

Hence

$$
\frac{\mathrm{dT}}{\mathrm{dt}}=-0.05 \cdot \frac{\mathrm{~kg}}{\mathrm{~s}} \times 20 \times 10^{6} \cdot \frac{\mathrm{~N}}{\mathrm{~m}^{2}} \times \frac{1}{0.5 \cdot \mathrm{~m}^{3}} \times \frac{\mathrm{kg} \cdot \mathrm{~K}}{717.4 \cdot \mathrm{~N} \cdot \mathrm{~m}} \times\left(\frac{\mathrm{m}^{3}}{209 \cdot \mathrm{~kg}}\right)^{2}=-0.064 \cdot \frac{\mathrm{~K}}{\mathrm{~s}}
$$

4.200 A centrifugal water pump with a $0.1-\mathrm{m}$ diameter inlet and a $0.1-\mathrm{m}$ diameter discharge pipe has a flow rate of $0.02 \mathrm{~m}^{3} / \mathrm{s}$. The inlet pressure is 0.2 m Hg vacuum and the exit pressure is 240 kPa . The inlet and outlet sections are located at the same elevation. The measured power input is 6.75 kW . Determine the pump efficiency.

Given: Data on centrifugal water pump
Find: Pump efficiency

Solution:

Basic equations: $\dot{Q}-\dot{W}_{s}-\dot{W}_{\text {shear }}-\dot{W}_{\text {other }}$

$$
\begin{align*}
& =\frac{\partial}{\partial t} \int_{\mathrm{CV}} e \rho d \forall+\int_{\mathrm{CS}}\left(u+p v+\frac{V^{2}}{2}+g z\right) \rho \vec{V} \cdot d \vec{A} \tag{4.56}\\
& \Delta \mathrm{p}=\mathrm{SG}_{\mathrm{Hg}} \cdot \rho \cdot \mathrm{~g} \cdot \Delta \mathrm{~h} \quad \eta=\frac{\mathrm{W}_{\mathrm{s}}}{\mathrm{P}_{\mathrm{in}}}
\end{align*}
$$

Available data:

$$
\begin{array}{llll}
\mathrm{D}_{1}=0.1 \cdot \mathrm{~m} & \mathrm{D}_{2}=0.1 \cdot \mathrm{~m} & \mathrm{Q}=0.02 \cdot \frac{\mathrm{~m}^{3}}{\mathrm{~s}} & \mathrm{P}_{\text {in }}=6.75 \cdot \mathrm{~kW} \\
\rho=1000 \frac{\mathrm{~kg}}{\mathrm{~m}^{3}} & \mathrm{SG}_{\mathrm{Hg}}=13.6 & \mathrm{~h}_{1}=-0.2 \cdot \mathrm{~m} & \mathrm{P}_{2}=240 \cdot \mathrm{kPa}
\end{array}
$$

Assumptions: 1) Adiabatic 2) Only shaft work 3) Steady 4) Neglect Δu 5) $\Delta z=0$ 6) Incompressible 7) Uniform flow

Then

$$
-\mathrm{W}_{\mathrm{s}}=\left(\mathrm{p}_{1} \cdot \mathrm{v}_{1}+\frac{\mathrm{V}_{1}^{2}}{2}\right) \cdot\left(-\mathrm{m}_{\text {rate }}\right)+\left(\mathrm{p}_{2} \cdot \mathrm{v}_{2}+\frac{\mathrm{V}_{2}^{2}}{2}\right) \cdot\left(\mathrm{m}_{\text {rate }}\right)
$$

Since

$$
\begin{array}{lll}
\mathrm{m}_{\text {rate }}=\rho \cdot \mathrm{Q} \quad \text { and } & \mathrm{V}_{1}=\mathrm{V}_{2} & \text { (from continuity) } \\
-\mathrm{W}_{\mathrm{s}}=\rho \cdot \mathrm{Q} \cdot\left(\mathrm{p}_{2} \cdot \mathrm{v}_{2}-\mathrm{p}_{1} \cdot \mathrm{v}_{1}\right)=\mathrm{Q} \cdot\left(\mathrm{p}_{2}-\mathrm{p}_{1}\right) & \\
\mathrm{P}_{1}=\rho_{\mathrm{Hg}} \cdot \mathrm{~g} \cdot \mathrm{~h} \quad \text { or } & \mathrm{P}_{1}=\mathrm{SG}_{\mathrm{Hg}} \cdot \rho \cdot \mathrm{~g} \cdot \mathrm{~h}_{1} & \mathrm{P}_{1}=-26.7 \mathrm{kPa} \\
\mathrm{~W}_{\mathrm{s}}=\mathrm{Q} \cdot\left(\mathrm{p}_{1}-\mathrm{p}_{2}\right) & \mathrm{W}_{\mathrm{S}}=-5.33 \mathrm{~kW} & \text { The negative sign indicates work in } \\
\eta=\frac{\left|\mathrm{W}_{\mathrm{s}}\right|}{\mathrm{P}_{\mathrm{in}}} & \eta=79.0 \% &
\end{array}
$$

Problem 4.201
Given: Turbine operating on water:

Find: Pressure drop across turbine.

Solution: Apply continuity, energy equations, using av shown.
$\begin{aligned} \text { Basic equations: } \\ =0(\psi) \quad 0(s)\end{aligned} \quad=\frac{\partial^{t}}{\partial t} \int_{c v}^{\infty} \rho d t+\int_{c s} \rho \vec{v} \cdot d \vec{A}$

$$
\dot{Q}-\dot{w}_{s}-\dot{\nu}_{\text {shear }}-\dot{w}_{\text {other }}=\frac{\partial(s)}{\partial t} \int_{c v} e p d t+\int_{c s}\left(u+\frac{V^{2}}{2}+g(s+p v) \rho \vec{v} \cdot d \vec{A}\right.
$$

Assumptions: (1) Steady flow
(z) Uniform flow at each section
(s) Incompressible frow
(4) $\dot{Q}=0$
(5) $\dot{W}_{\text {shear }}=0$ by choice of $C V ; \dot{W}_{\text {other }}=0$
(6) Neglect Δu
(7) Neglect Δz

Then

$$
0=\left\{-\left|\rho V_{1} A_{1}\right|\right\}+\left\{\left|\rho V_{2} A_{2}\right|\right\} \text { or } V_{2}=V_{1} \frac{A_{1}}{A_{2}}=V_{1}\left(\frac{D_{1}}{D_{2}}\right)^{2}
$$

and

$$
\begin{aligned}
& -\dot{w}_{s}=\left(\frac{V_{1}^{2}}{2}+p_{1} v\right)\left\{-\left|\rho V_{1} A_{1}\right|\right\}+\left(\frac{V_{2}^{2}}{2}+p_{2} v,\left\{\left|\rho V_{1} A_{2}\right|\right\}\right. \\
& -\dot{w}_{s}=-\left[\frac{V_{2}^{2}-V_{2}^{2}}{2}+\left(p_{1}-p_{2}\right) v\right] \rho Q=-\left\{\frac{V_{1}^{2}}{2}\left[1-\left(\frac{D_{1}}{D_{2}}\right)^{\psi}\right]+\left(p_{1}-p_{2}\right) v\right\} \rho Q
\end{aligned}
$$

or

$$
p_{1}-p_{2}=\frac{1}{v}\left\{\frac{\dot{W}_{s}}{f Q}-\frac{V_{1}^{2}}{2}\left[1-\left(\frac{D_{1}}{D_{2}}\right)^{4}\right]\right\}=\frac{\dot{W}_{s}}{Q}-\frac{p V_{1}^{2}}{2}\left[1-\left(\frac{D_{1}}{D_{2}}\right)^{4}\right]
$$

But $V_{1}=\frac{Q}{A_{1}}=0.6 \frac{m^{3}}{s} \frac{4}{\pi} \frac{1}{(0.3)^{2} m^{2}}=8.49 \mathrm{~m} / \mathrm{s}$, and $\dot{W}_{s}=\dot{W}_{\text {out }}=60 \mathrm{kw}, 50$

$$
\begin{aligned}
& p_{1}-p_{2}=(60 \mathrm{~kW}) 10^{3} \frac{\mathrm{~N} \cdot \mathrm{~m}}{\mathrm{~kW} \cdot \mathrm{~s}} \times \frac{3}{0.6 \mathrm{~m}^{2}}-\frac{1}{2} \times 999 \frac{\mathrm{~kg}}{\mathrm{~m}^{3}} \times(8.49)^{2} \frac{\mathrm{~m}^{2}}{\mathrm{~s}^{2}}\left[1-\left(\frac{0.3}{0.4}\right)^{4}\right] \frac{\mathrm{N} \cdot \mathrm{~s}^{2}}{\mathrm{~kg} \cdot \mathrm{~m}} \\
& p_{1}-p_{2}=75.4 \mathrm{kPa}
\end{aligned}
$$

Given: Compressor operating at conditions shown $\quad p_{2}=70$ psia

Find: Heat transfer, in Btu//bm.

$$
T_{2}=500^{\circ} \mathrm{F}
$$

$$
V_{2}=500 \frac{\mathrm{ft}}{\mathrm{~s}}
$$

$$
\dot{W}_{i n}=3200 h \rho
$$ Fluid is air.

Solution: Apply energy equation to CV shown.
Basic equations: $p=\rho R T, \Delta h=C p \Delta T$

$$
\dot{Q}-\dot{W}_{s}-\dot{W}_{s h r e a r}^{=0(z)}-\dot{W}_{o t h e r}=\frac{\partial}{\partial t} \int_{c v}^{i} e f d v+\int_{c s}\left(u+\psi v r+\frac{V^{2}}{2}+g z\right) p \vec{v} \cdot d \vec{A}
$$

Assumptions: (1) Ideal gas, constant specific heat
(2) $\dot{N}_{\text {shear }}=0$ by choice of CV ; intoner $=0$
(3) Steady flow
(4) Uniform flow at each section
(5) Neglect Δz
(6) $V_{1}=0$

By definition $h \equiv U+p v$, so

$$
\dot{Q}-\dot{W}_{s}=\left(h_{1}+\frac{V_{1}^{2}}{2}\right)\{-1 \dot{m} /\}+\left(h_{2}+\frac{V_{2}^{2}}{2}\right)\left\{\left|\dot{m}^{2}\right|\right\}=\dot{m}\left[\frac{V_{2}^{2}}{2}+c_{p}\left(T_{2}-T_{1}\right)\right]
$$

or

$$
\frac{\delta Q}{\delta m}=\frac{\dot{Q}}{\dot{m}}=\frac{\dot{W}_{s}}{\dot{m}}+\frac{V_{2}^{2}}{2}+C_{p}\left(T_{2}-T_{1}\right)
$$

Noting $\dot{W}_{s}=-3200 \mathrm{hp}, \mathrm{Sa}$

Therefore heat transfer is out of $\mathrm{CV} ;$ since $\delta Q / d m<0$. The rate of heat transfer is

$$
\dot{Q}=-7.32 \frac{\mathrm{Btu}}{16 \mathrm{~m}} \times 20 \frac{\mathrm{bm}}{\mathrm{~s}}--146 \mathrm{Btu} / \mathrm{s}
$$

$$
\begin{aligned}
& \frac{\delta Q}{d m}=-3200 \mathrm{hp} \times \frac{25 \mathrm{ts} \text { the }}{h p \cdot h r} \times \frac{5}{20 \mathrm{hbm}} \times \frac{h \mathrm{~h}}{36005}+0.240 \frac{\mathrm{Bth}}{4 \mathrm{~m}^{\circ} \mathrm{F}} \times(500-80) \%= \\
& +\frac{(500)^{2} \mathrm{fl}^{2}}{2} \frac{16 \mathrm{f} \cdot \mathrm{~s}^{2}}{\mathrm{~s}^{2}} \times \frac{\mathrm{s} 1 \mathrm{ug}}{31 \mathrm{cg} \cdot \mathrm{ft}} \times \frac{8 \mathrm{fu}}{32.216 \mathrm{~m}} \times \frac{178 \mathrm{ft} \cdot \mathrm{Hff}}{7} \\
& \frac{\delta Q}{d m}=-7.32 B+a / 1 \mathrm{~cm}
\end{aligned}
$$

Given: Flow through turbomachine shown. Fluid is air.

$$
\begin{aligned}
& \dot{m}=0.8 \mathrm{~kg} / \mathrm{s} \\
& T_{1}=288 \mathrm{~K} \\
& p_{1}=101 \mathrm{kPa} \text { (abs) }
\end{aligned}
$$

$$
T_{2}=130^{\circ} \mathrm{C}
$$

$$
p_{2}=500 \mathrm{kPa} \text { (gaga) }
$$

$$
V_{z}=100 \mathrm{~m} / \mathrm{s}
$$

$\mathrm{V}, \cong 0$ (from atmosphere) $\underset{Q}{\mathrm{Q}}=0$
Find: Shaft work interaction with surroundings.
Solution: Apply energy equation, using cv shown.
Basic equations: $\not p=\rho R T, \Delta h=C_{p} \Delta T$

Assumptions: (1) Ideal gas, constant specific heat
(2) $\dot{w}_{\text {sear }}=0$ by choice of $c V_{;} W_{\text {other }}=0$
(3) steady flow
(4) Un itorm flow at each section
(5) Neglect Δy
(b) $V_{1} \simeq 0$
(1) $\dot{Q}=0$

By definition, $h \equiv u+p v r$, so

$$
-\dot{W}_{s}=\left(h_{1}+\frac{V_{1}^{2}}{2}\right)\{-|\dot{m}|\}+\left(h_{2}+\frac{V_{2}^{2}}{2}\right)\{|\dot{m}|\}=\dot{m}\left(h_{2}-h_{1}+\frac{V_{2}^{2}}{2}\right)
$$

or

$$
\begin{aligned}
-\dot{W}_{s}= & \dot{m}\left(h_{2}-h_{1}+\frac{V_{2}^{2}}{2}\right)=\dot{m}\left[c_{p}\left(T_{2}-T_{1}\right)+\frac{V_{2}^{2}}{2}\right] \\
= & 0.8 \frac{\mathrm{~kg}}{\mathrm{~s}}\left[1.00 \frac{\mathrm{~kJ}}{\mathrm{~kg} \cdot \mathrm{k}}(403-288) \mathrm{K}\right. \\
& \left.+(100)^{2} \frac{\mathrm{~m}^{2}}{s^{2}} \times \frac{\mathrm{N} \cdot \mathrm{~s}^{2}}{\mathrm{~kg} \cdot \mathrm{~m}} \times \frac{\mathrm{kJ}}{10^{3} \mathrm{~N} \cdot \mathrm{~m}}\right] \frac{\mathrm{kW} \cdot \mathrm{~s}}{\mathrm{~kJ}}
\end{aligned}
$$

$$
-\dot{w}_{s}=96.0 \mathrm{~kW} \text { or } \dot{\text { is }}=-96.0 \mathrm{kw}
$$

$\left\{\right.$ Power is into $C V$ because $\left.\dot{W}_{s}<0.\right\}$
4.204 All major harbors are equipped with fire boats for extinguishing ship fires. A 3-in. diameter hose is attached to the discharge of a $15-\mathrm{hp}$ pump on such a boat. The nozzle attached to the end of the hose has a diameter of 1 in . If the nozzle discharge is held 10 ft above the surface of the water, determine the volume flow rate through the nozzle, the maximum height to which the water will rise, and the force on the boat if the water jet is directed horizontally over the stern.

Given:

Data on fire boat hose system
Find: Volume flow rate of nozzle; Maximum water height; Force on boat

Solution:

Basic equation: First Law of Thermodynamics for a CV

$$
\dot{Q}-\dot{W}_{s}-\dot{W}_{\text {shear }}-\dot{W}_{\text {other }}=\frac{\partial}{\partial t} \int_{\mathrm{CV}} e \rho d \forall+\int_{\mathrm{CS}}\left(u+p v+\frac{V^{2}}{2}+g z\right) \rho \vec{V} \cdot d \vec{A}
$$

Assumptions: 1) Neglect losses 2) No work 3) Neglect KE at 14) Uniform properties at exit 5) Incompressible 6) patm at 1 and 2

Hence for CV (a)

$$
-\mathrm{W}_{\mathrm{s}}=\left(\frac{\mathrm{v}_{2}^{2}}{2}+\mathrm{g} \cdot \mathrm{z}_{2}\right) \cdot \mathrm{m}_{\text {exit }} \quad \quad \mathrm{m}_{\text {exit }}=\rho \cdot \mathrm{V}_{2} \cdot \mathrm{~A}_{2}
$$

where $m_{\text {exit }}$ is mass flow rate (Note: Software cannot render a dot!)

Hence, for V_{2} (to get the flow rate) we need to solve

$$
\left(\frac{1}{2} \cdot \mathrm{~V}_{2}^{2}+\mathrm{g} \cdot \mathrm{z}_{2}\right) \cdot \rho \cdot \mathrm{V}_{2} \cdot \mathrm{~A}_{2}=-\mathrm{W}_{\mathrm{S}} \quad \text { which is a cubic for } \mathrm{V}_{2}!
$$

To solve this we could ignore the gravity term, solve for velocity, and then check that the gravity term is in fact minor. Alternatively we could manually iterate, or use a calculator or Excel, to solve. The answer is
Hence the flow rate is $\quad \mathrm{Q}=\mathrm{V}_{2} \cdot \mathrm{~A}_{2}=\mathrm{V}_{2} \cdot \frac{\pi \cdot \mathrm{D}_{2}{ }^{2}}{4} \quad \mathrm{Q}=114 \cdot \frac{\mathrm{ft}}{\mathrm{s}} \times \frac{\pi}{4} \times\left(\frac{1}{12} \cdot \mathrm{ft}\right)^{2} \quad \mathrm{Q}=0.622 \frac{\mathrm{ft}^{3}}{\mathrm{~s}} \quad \mathrm{Q}=279 \mathrm{gpm}$
To find $\mathrm{z}_{\mathrm{max}}$, use the first law again to (to CV (b)) to get $\quad-\mathrm{W}_{\mathrm{s}}=\mathrm{g} \cdot \mathrm{z}_{\mathrm{max}} \cdot \mathrm{m}_{\mathrm{exit}}$
$\mathrm{z}_{\text {max }}=-\frac{\mathrm{W}_{\mathrm{s}}}{\mathrm{g} \cdot \mathrm{m}_{\mathrm{exit}}}=-\frac{\mathrm{W}_{\mathrm{s}}}{\mathrm{g} \cdot \rho \cdot \mathrm{Q}} \quad \quad \mathrm{z}_{\max }=15 \cdot \mathrm{hp} \times \frac{\frac{550 \cdot \mathrm{ft} \cdot \mathrm{lbf}}{\mathrm{s}}}{1 \cdot \mathrm{hp}} \times \frac{\mathrm{s}^{2}}{32.2 \cdot \mathrm{ft}} \times \frac{\mathrm{ft}^{3}}{1.94 \cdot \mathrm{slug}} \times \frac{\mathrm{s}}{0.622 \cdot \mathrm{ft}}{ }^{3} \times \frac{\text { slug.ft }}{\mathrm{s}^{2} \cdot \mathrm{lbf}} \quad \mathrm{z}_{\text {max }}=212 \mathrm{ft}$
For the force in the x direction when jet is horizontal we need x momentum

$$
F_{x}=F_{S_{x}}+F_{B_{x}}=\frac{\partial}{\partial t} \int_{\mathrm{CV}} u \rho d \forall+\int_{\mathrm{CS}} u \rho \vec{V} \cdot d \vec{A}
$$

Then

$$
\begin{array}{ll}
\mathrm{R}_{\mathrm{X}}=\mathrm{u}_{1} \cdot\left(-\rho \cdot \mathrm{V}_{1} \cdot \mathrm{~A}_{1}\right)+\mathrm{u}_{2} \cdot\left(\rho \cdot \mathrm{~V}_{2} \cdot \mathrm{~A}_{2}\right)=0+\mathrm{V}_{2} \cdot \rho \cdot \mathrm{Q} & \mathrm{R}_{\mathrm{X}}=\rho \cdot \mathrm{Q} \cdot \mathrm{~V}_{2} \\
\mathrm{R}_{\mathrm{X}}=1.94 \cdot \frac{\mathrm{slug}}{\mathrm{ft}^{3}} \times 0.622 \cdot \frac{\mathrm{ft}^{3}}{\mathrm{~s}} \times 114 \cdot \frac{\mathrm{ft}}{\mathrm{~s}} \times \frac{\mathrm{lbf} \cdot \mathrm{~s}^{2}}{\mathrm{slug} \cdot \mathrm{ft}} & \mathrm{R}_{\mathrm{X}}=138 \mathrm{lbf}
\end{array}
$$

Given: Pump system as shown.

$$
\eta_{\text {рим }}=0.75
$$

Find: Power required.

Solution: Apply first low to Cv shown, noting that flow enters with negligible velocity at sect ion (1). Basic equation:

$$
\begin{aligned}
& \text { Basic equation: }=o(1) \quad=0(1) \quad=o(z) \\
& \dot{Q}-\dot{W}_{\text {shaft }}-\dot{W}_{\text {shear }}-\dot{W}_{\text {other }}=\frac{\partial^{x}}{d t} \int_{\mathrm{cv}} e p d \forall+\int_{t s}\left(e+\frac{p}{f}\right) \rho \vec{v} \cdot d \vec{A} \\
& \text { Assumptions: (1) } \dot{W}_{\text {shear }}=\dot{W}_{\text {other }}=0 \quad e=u+\frac{V^{2}}{z}+g z
\end{aligned}
$$

(2) Steady flow
(3) $V_{1} \approx 0$
(4) $z_{3}=0$
(5) $p_{1}=\Delta$ (gage)
(6) Uniform flow at each section
(7) Incompressible flow; $V_{1} A_{1}=V_{2} A_{2}$

Then

$$
\dot{Q}-\dot{W}_{2}=\left(u_{1}+\frac{\hat{f}_{2}^{2}}{\frac{f^{2}}{2}}+g \hat{p}_{1}+\frac{\dot{p}_{1}}{p}\right)\{-\dot{m}\}+\left(u_{2}+\frac{v_{2}^{2}}{2}+g z_{2}+\frac{p_{2}}{\rho}\right)\{\dot{m}\}
$$

or

$$
-\dot{W}_{3}=\dot{m}\left[\frac{p_{1}}{\rho}+\frac{V_{1}^{2}}{z}+g z_{1}+\left(u_{2}-u_{1}-\frac{\delta Q}{d m}\right)\right]
$$

Obtain the ideal or minimum power input by neglecting thermal effects.
Thus

$$
-\dot{w}_{s, \text { ideal }}=\dot{m}\left[\frac{p_{1}}{\rho}+\frac{V_{0}^{2}}{2}+g_{2}\right]
$$

For the syst cm ,

$$
\dot{m}=\rho V_{L} A_{L}=999 \frac{\mathrm{~kg}}{\mathrm{~m}^{2}} \times \frac{3 \mathrm{~m}}{3} \times \frac{\pi}{4}(0.075)^{2} \mathrm{~m}^{2}=13.2 \mathrm{~kg} / \mathrm{s}
$$

and

$$
\begin{aligned}
-\dot{W}_{s, \text { ideal }} & =13.2 \frac{\mathrm{~kg}}{\mathrm{~s}}\left[1.70 \times 10^{5} \frac{\mathrm{~N}}{\mathrm{~m}^{2}} \cdot \frac{\mathrm{~m}^{3}}{999 \mathrm{~kg}}+\frac{1}{2}(3)^{2} \frac{\mathrm{~m}^{2}}{\mathrm{~s}^{2}} \times \frac{\mathrm{N} \cdot \mathrm{~s}^{2}}{\mathrm{~kg} \cdot \mathrm{~m}}+9.8 \frac{\mathrm{~m}}{\mathrm{~s}^{2}} \cdot 2 \mathrm{~m} \times \frac{\mathrm{N} \cdot \mathrm{~s}^{2}}{\mathrm{~kg} \cdot \mathrm{~m}}\right] \\
\dot{W}_{s, \text { ideal }} & =-2560 \frac{\mathrm{~N} \cdot \mathrm{~m}}{\mathrm{~s}} \times \frac{\mathrm{kW} \cdot \mathrm{~s}}{10^{3} \mathrm{~N} \cdot \mathrm{~m}}=-2.56 \mathrm{~kW}
\end{aligned}
$$

Finally

$$
\dot{W}_{s, a c t u a)}=\frac{\dot{W}_{2, \text { ideal }}}{\eta}=\frac{-2,56 \mathrm{~kW}}{0.75}=-3.41 \mathrm{~kW}
$$

Given: Helicopter-type craft hovering

$$
\text { Mass, } M=1500 \mathrm{~kg}
$$

Assume atmospheric pressure at outlet, and treat as steady, uniform, incompressible flow.

Find: (a) Speed of air leaving craft.
(b) Minimum power required.

Solution: Use inertial CV and coordinates shown. Apply continuity and momentum to determine V_{2}, then apply energy to find power.
Basic equations: $p=\rho R T ; \Delta h=C_{\rho} \Delta T ; \frac{p}{\rho}+\frac{V^{2}}{2}+g \gamma=$ constant

$$
\begin{array}{r}
0=\frac{\partial \hat{d} t}{=0(v)} \rho d \psi+\int_{c s} \rho \vec{v} \cdot d \vec{A} \\
F_{s z}+F_{B z}=\frac{\partial \hat{i}}{d t} \int_{c v} w \rho d \psi+\int_{c s} w \rho \vec{v} \cdot d \vec{A}
\end{array}
$$

Assumptions: (1) Air is an ideal gas, $C_{p}=$ constant
(2) Steady flow
(3) Incompressible flow
(4) Uniform flow at each section
(5) Uniform pressure at inlet; $F_{33}=\left(p_{a t m}-p_{1}\right) A_{1}=-p_{1 g} A_{\text {. }}$.

Then

$$
f=\frac{P}{R T}=1.01 \times 10^{5} \frac{\mathrm{~N}}{\mathrm{~m}^{2}} \times \frac{\mathrm{kg} \cdot \mathrm{~K}}{287 \mathrm{~N} \cdot \mathrm{~m}} \times \frac{1}{288 \mathrm{~K}}=1.22 \mathrm{~kg} / \mathrm{m}^{3}
$$

and from continuity

$$
0=\left\{-\left|\rho V_{1} A_{1}\right|\right\}+\left\{\left|\rho V_{2} A_{2}\right|\right\}=\rho\left(V_{2} A_{2}-V_{1} A_{1}\right) \text { or } V_{1}=V_{2}\left(\frac{A_{2}}{A_{1}}\right)
$$

Now $A_{1}=\frac{\pi}{4} D_{0}^{2}=\frac{\pi}{4}(3.3)^{2} \mathrm{~m}^{2}=8.55 \mathrm{~m}^{2}$

$$
A_{2}=\frac{\pi}{4}\left(D_{0}^{2}-D_{1}^{2}\right)=\frac{\pi}{4}\left[(3.3)^{2}-(5.0)^{2}\right] m^{2}=1.48 \mathrm{~m}^{2}
$$

From momentum

$$
\begin{aligned}
&-p_{1 g} A_{1}-M_{g}=w_{1}\left\{-\left|\rho v_{1} A_{1}\right|\right\}+w_{2}\left\{\left|\rho V_{2} A_{2}\right|\right\} \\
& w_{1}=-V_{1} \quad w_{6}=-V_{2} \quad \text { and } \rho V_{1} A_{1}=\rho V_{2} A_{2} \\
&-p_{1 g} A_{1}-M g= V_{1} \rho V_{2} A_{2}-V_{2} f V_{2} A_{2}=-\rho V_{2} A_{2}\left(V_{2}-V_{1}\right)
\end{aligned}
$$

For steady, incompressible flow without friction, along a streamline from atmosphere to (1), Bernoulli gives, neglecting Δz,

$$
t_{a t m}+\frac{1}{2} \rho \hat{\psi}_{0}^{2}+g \hat{\psi}_{0}^{0}=p_{1}+\frac{1}{2} \rho V_{1}^{2}+g \hat{z}_{1} \quad \text { so } \quad p_{1 g}=-\frac{1}{2} \rho V_{1}^{2}
$$

Usirig continuity, $p_{1 g} A_{1}=-\frac{1}{2} \rho V_{1}^{2} A_{1}=-\frac{1}{2} \rho V_{2} A_{2} V_{1}=-\frac{1}{2} \rho V_{2}^{2} A_{2} \frac{A_{2}}{A_{1}}$ substituting into the momentum equation and using continuity,

$$
\frac{1}{2} \rho V_{2}^{2} A_{2} \frac{A_{2}}{A_{1}}-M g=-\rho V_{2}^{2} A_{2}\left(1-\frac{V_{1}}{V_{2}}\right)=-\rho V_{2}^{+} A_{2}\left(1-\frac{A_{2}}{A_{1}}\right) \text { or } M g=\rho V_{2}^{2} A_{2}\left(1-\frac{1}{2} \frac{A_{2}}{A_{1}}\right)
$$

$$
V_{2}=\sqrt{\frac{M g}{\rho A_{L}\left(1-\frac{1}{2} \frac{A_{*}}{A_{2}}\right)}}=\left[1500 \mathrm{~kg}_{\kappa} 9.81 \frac{\mathrm{~m}}{\mathrm{~s}^{2}} \times \frac{\mathrm{m}^{3}}{1.2 z \mathrm{~kg}^{2}} \times \frac{1}{1.48 \mathrm{~m}^{2}} \frac{1}{\left(1-\frac{1}{2} \frac{1.48}{P .55}\right)}\right]^{\frac{1}{2}}=94.5 \mathrm{~m} / \mathrm{s}
$$

Basic equation:

$$
\begin{aligned}
& \text { sic equation: }=0(6) \quad=0(6) \quad=0(2) \quad=0(7) \quad \cong 0(8) \\
& \dot{Q}-\dot{w}_{s}-\dot{\varphi}_{s h e a r}-\dot{\varphi}_{o t h e r}=\frac{\partial f}{\partial t} \int_{c v} e p d t+\int_{c s}\left(u+p v+\frac{V^{2}}{2}+g \ddot{z}\right) p \vec{v} \cdot d \vec{A}
\end{aligned}
$$

Additional assumptions: (6) $\dot{W}_{\text {shear }}=\dot{W}_{\text {other }}=0$
(b) $p v=$ constant
(8) Neglect Δz

Then

$$
\begin{aligned}
& -\dot{w}_{s}=\left(u_{1}+\frac{V_{1}^{2}}{2}\right)\{-|\dot{m}|\}+\left(u_{2}+\frac{V_{1}^{2}}{2}\right)\{|\dot{m}|\}-\dot{Q} \\
-\dot{w}_{s}= & \dot{m}\left(\frac{V_{2}^{2}-V_{1}^{2}}{2}\right)+\dot{m}\left(u_{2}-u_{1}-\frac{d Q}{d m}\right)
\end{aligned}
$$

The term $\left(u_{2}-u_{1}-\frac{d a}{d m}\right)$ represents nonmechanical energy. The minimum possible work would be attained when the nonmechanical energy is zero. Thus

$$
\left.\begin{array}{l}
\left.-\dot{W}_{s}\right)_{\min }=\dot{m}\left(\frac{V_{2}^{2}-V_{1}^{2}}{2}\right)=\dot{m} \frac{V_{2}^{2}}{2}\left[1-\left(\frac{V_{1}}{V_{2}}\right)^{2}\right]=\frac{\rho A_{2} V_{2}^{3}}{2}\left[1-\left(\frac{A_{2}}{A_{1}}\right)^{2}\right] \\
-\dot{W}_{s}=\frac{1}{2} \times 1.22 \frac{\mathrm{~kg}}{m^{3}} \times 1.48 \mathrm{~m}_{1}^{2}(94.5)^{3} \mathrm{~m}^{3} \\
\mathrm{~s}^{3}
\end{array} 1-\left(\frac{1.48}{g .55}\right)^{2}\right] \frac{\mathrm{N} \cdot \mathrm{~s}^{2}}{\mathrm{~kg} \cdot \mathrm{~m}} * \frac{\mathrm{~kW} \cdot \mathrm{~s}}{10^{3} \mathrm{~N} \cdot \mathrm{~m}}, ~\left(\dot{W}_{s}\right)_{\min }=-739 \mathrm{~kW} \text { (input) }
$$

$\left\{\begin{array}{l}\text { The power required for hovering in a real craft would be } \\ \text { greater due to flow losses, sonuniformities, etc. }\end{array}\right\}$

Given: Liquid flow in a wide, horizontal open channel, as shown.

Find: (a) Show that in general, $D_{2}=\frac{D_{1}}{2}\left[\sqrt{1+\frac{8 V_{1}^{2}}{8 D_{1}}}-1\right]$
(b) Change in mechanical energy across hydraulic jump.
(c) Temperature rise if no heat transfer.

Solution: Apply continuity, x component of momentum, andenengy equations using CV shown.
Basic equations: $0=\frac{d^{4}}{\psi^{t}} \int_{N}^{o(1)} \rho d \psi+\int_{C s} \rho \vec{v} \cdot d \vec{A}$

$$
\begin{aligned}
& F_{s x}+F_{\psi_{x}^{(0)}}^{=o(g)}=\frac{\partial f}{s t} \int_{c V}^{o o(1)} V_{x} \rho d t+\int_{c s} V_{x} \rho \vec{V} \cdot d \vec{A}
\end{aligned}
$$

$$
\begin{aligned}
& \text { Assumptions: (1) Steady flow }
\end{aligned}
$$

(2) Incompressible flow
(3) Uniform flow at each section
(4) Hydrostatic pressure distribution at sections (1), (2). so $t=\rho g(D-z)$.
(5) Neglect friction force, $F_{f,}$ On CV
(6) $\dot{Q}=0$
(7) $\dot{w}_{s}=\dot{W}_{s h e a r}=\dot{W}_{\text {other }}=0$
(8) F Bx $=0$, since channel is horizontal

From continuity,

$$
0=\left\{-\left|\rho V_{1} A_{1}\right|\right\}+\left\{\left|\rho V_{2} A_{2}\right|\right\}=-\rho V_{1} \omega D_{1}+\rho V_{2} \omega D_{2} ; V_{1} D_{1}=V_{2} D_{2}
$$

From momentcem,

$$
\begin{aligned}
& F_{S_{x}}=\underbrace{\rho g \frac{D_{1}}{2} \omega D_{1}-\rho g \frac{D_{2}}{2} \omega D_{2}}=V_{x_{1}}\left\{-\left|\rho V, \omega D_{1}\right|\right\}+V_{x_{2}}\left\{\left|\rho V_{2} \omega D_{4}\right|\right\} \\
& \text { hydrostatic forces } \quad V_{x_{1}}=V_{1} \quad V_{x_{2}}=V_{2}
\end{aligned}
$$

or

$$
\frac{g}{2}\left(D_{1}^{2}-D_{2}^{2}\right)=V_{1} D_{1}\left(V_{2}-V_{1}\right)=V_{1}^{2} D_{1}\left(\frac{V_{2}}{V_{1}}-1\right)=V_{1}^{2} D_{1}\left(\frac{D_{1}}{D_{2}}-1\right)
$$

$$
\frac{g}{2}\left(D_{1}+D_{2}\right)\left(D_{1}-D_{1}\right)=V_{1}^{2} \frac{D_{1}}{D_{2}}\left(D_{3}-D_{2}\right)
$$

Thus $\frac{g D_{1}}{2}\left(1+\frac{D_{2}}{D_{1}}\right)=V_{1}^{2} \frac{D_{1}}{D_{2}}$ or $\frac{D_{2}}{D_{1}}\left(1+\frac{D_{2}}{D_{1}}\right)=\frac{2 V_{1}^{2}}{g D_{1}}$ or $\left(\frac{D_{2}}{D_{1}}\right)^{2}+\frac{D_{2}}{D_{1}}-\frac{2 V_{1}^{2}}{g D_{1}}=0$ Using the quadratic equation,

$$
\frac{D_{2}}{D_{1}}=\frac{1}{2}\left[-1 \pm \sqrt{1+\frac{8 V_{1}^{2}}{g D_{1}}}\right] \quad \text { or } \quad D_{2}=\frac{D_{1}}{2}\left[\sqrt{1+\frac{8 V_{1}^{2}}{g D_{1}}}-1\right]
$$

Solving for D_{2}

$$
\begin{aligned}
& D_{2}=\frac{1}{2} \times 0.6 \mathrm{~m}\left[\sqrt{1+8 *(5)^{2} m^{2}} \frac{s^{2}}{s^{2}} \times \frac{x^{2}}{9.81 \mathrm{~m}} \times \frac{1}{0.6 \mathrm{~m}}-1\right]=1.47 \mathrm{~m} \\
& V_{2}=\frac{D_{1}}{D_{2}} V_{1}=\frac{0.6}{1.47} * \frac{5 \mathrm{~m}}{\mathrm{~s}}=2.04 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

From the energy equation, with $\epsilon_{\text {mach }}=\frac{V^{2}}{z}+g z+\frac{p}{p}$, and $d A=w d z$, the mechanical energy fluxes are

$$
\begin{aligned}
& \text { me } f_{1}=\int_{0}^{D_{1}}\left[\frac{V_{1}^{2}}{2}+g z+\frac{1}{\rho} \rho g(D-z)\right] \rho V_{1} \omega d z=\left(\frac{V_{1}^{2}}{2}+g D_{1}\right) \rho V_{1} \omega D_{1} \\
& \text { me }
\end{aligned}=\int_{0}^{D_{2}}\left[\frac{V_{2}^{2}}{2}+g z+\frac{1}{\rho} \rho g(D-z)\right] \rho V_{2} \omega d z=\left(\frac{V_{2}^{2}}{2}+g D_{2}\right) \rho V_{2} \omega D_{2} .
$$

and

$$
\Delta m e f=m e f_{2}-m e f_{1}=\left[\frac{V_{2}^{2}-V_{1}^{2}}{2}+g\left(D_{2}-D_{1}\right)\right] \rho V_{1} \omega D_{1}, \operatorname{since} V_{1} D_{1}=V_{2} D_{2}
$$

Thus $\frac{\Delta \text { mex }}{\dot{m}}=\frac{1}{2}\left[V_{2}^{2}-V_{1}^{2}+2 g\left(D_{2}-D_{1}\right)\right]$

$$
\frac{\Delta m e f}{\dot{m}}=\frac{1}{2}\left[(2.04)^{4} \frac{\mathrm{~m}^{2}}{s^{2}}-(5)^{2} \frac{\mathrm{~m}^{2}}{\mathrm{~s}^{2}}+2 \mathrm{n} \frac{\left.4.81 \frac{\mathrm{~m}}{s^{2}}(1.47-0.6) \mathrm{m}\right] \frac{\mathrm{N} \cdot \mathrm{~s}^{2}}{\mathrm{~kg} \cdot \mathrm{~m}}=-1.88 \mathrm{~N} \cdot \mathrm{~m} / \mathrm{kg} . \mathrm{kg} .}{}\right.
$$

From the energy equation,

$$
\begin{aligned}
0=\left[u_{1}\right. & \left.+\frac{v_{1}^{2}}{2}+g z+\frac{1}{f} p g(D-z)\right]\left\{-\left|\rho v_{1} w D_{1}\right|\right\} \\
& +\left[u_{2}+\frac{V_{1}^{2}}{2}+g z+\frac{1}{p} f g(D-z)\right]\left\{\left|f V_{1} w D_{2}\right|\right\}
\end{aligned}
$$

or

$$
0=\left(u_{2}-u_{1}\right) \dot{m}+\Delta m e f
$$

Thus

$$
\begin{aligned}
& u_{2}-u_{1}=C_{v}\left(T_{2}-T_{1}\right)=-\frac{\Delta m e f}{\dot{m}} \\
& \Delta T=T_{2}-T_{1}=-\frac{\Delta m e f}{\dot{m} C_{v}}=-\left(-1.88 \frac{\mathrm{~N} \cdot \mathrm{~m}}{\mathrm{~kg}}\right) \frac{\mathrm{kg} \cdot \mathrm{~K}}{1 \mathrm{kca}} \times \frac{\mathrm{kcal}}{4187 \mathrm{~J}}=4.49 \times 10^{-4} \mathrm{k}
\end{aligned}
$$

\{This small temperature change would be almost impossible to measure. \}

Problem 5.1
Given: Velocity fields listed below
Find: which are possible two-dimensional, incompressible flow cases?
Solution: Apply the continuity equation in differential form.
Basic equation: $\frac{\partial}{2 h} p u+\frac{\partial}{2 y} p v+\frac{\partial z}{\bar{y}} p \omega+\frac{\partial 0}{\partial t}=0$
Assumptions: (1) Two-dimensional flow, $\vec{V}=\vec{V}(x, y)$, so $\frac{\partial}{a z}=0$
(a) Incompressible flow

$$
p=\text { constant, so } \frac{\partial p}{\partial t}=0, \frac{\partial p}{\partial(d e s t a n c e)}=0
$$

Then,

$$
\frac{\partial u}{2 x}+\frac{2 v}{\partial y}=0 \quad \text { is criterion }
$$

(a) $u=2 x^{2}+y^{2}-x^{2} y$

$$
v=x^{3}+x\left(y^{2}-2 y\right)
$$

$$
\frac{\partial u}{\partial u}+\frac{\partial v}{\partial y}=(4 x-2 x y)+k(2 y-2)
$$

(b)

$$
\begin{aligned}
& u=2 x y-x^{2}+y \\
& v=2 x y-y^{2}+x^{2}
\end{aligned}
$$

(c)

$$
\begin{aligned}
& u=x t+2 y \\
& v=x t^{2}-y t
\end{aligned}
$$

(d) $u=(x+z y) x t$

$$
v=-(2 x+y) y t
$$

$$
\frac{2 u}{2 x}+\frac{\partial v}{\partial y}=(2 y-2 x)+(2 x-2 y)=0
$$

so possible
$\frac{\partial u}{2 t}+\frac{\partial u}{\partial y}=t-t=0$, so possible

$$
\frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}=(2 x t+2 y t)+(-2 x T-2 y t)=0
$$ so possible

Problem 5.2

5.2 Which of the following sets of equations represent possible three-dimensional incompressible flow cases?
a. $u=y^{2}+2 x z ; v=-2 y z+x^{2} y z ; w=\frac{1}{2} x^{2} z^{2}+x^{3} y^{4}$
b. $u=x y z t, v=-x y z t^{2} ; w=\left(z^{2} / 2\right)\left(x t^{2}-y t\right)$
c. $u=x^{2}+y+z^{2} ; v=x-y+z ; w=-2 x z+y^{2}+z$

Given: Velocity fields
Find: Which are 3D incompressible

Solution:

Basic equation:

$$
\frac{\partial}{\partial x} u+\frac{\partial}{\partial y} v+\frac{\partial}{\partial z} w=0
$$

Assumption: Incompressible flow
a) $u(x, y, z, t)=y^{2}+2 \cdot x \cdot z$
$v(x, y, z, t)=-2 \cdot y \cdot z+x^{2} \cdot y \cdot z \quad w(x, y, z, t)=\frac{1}{2} \cdot x^{2} \cdot z^{2}+x^{3} \cdot y^{4}$
$\frac{\partial}{\partial \mathrm{x}} \mathrm{u}(\mathrm{x}, \mathrm{y}, \mathrm{z}, \mathrm{t}) \rightarrow 2 \cdot \mathrm{z}$
$\frac{\partial}{\partial y} \mathrm{v}(\mathrm{x}, \mathrm{y}, \mathrm{z}, \mathrm{t}) \rightarrow \mathrm{x}^{2} \cdot \mathrm{z}-2 \cdot \mathrm{z}$
$\frac{\partial}{\partial z} \mathrm{w}(\mathrm{x}, \mathrm{y}, \mathrm{z}, \mathrm{t}) \rightarrow \mathrm{x}^{2} \cdot \mathrm{z}$

Hence
$\frac{\partial}{\partial x} u+\frac{\partial}{\partial y} v+\frac{\partial}{\partial z} w=0$
INCOMPRESSIBLE
b) $\quad u(x, y, z, t)=x \cdot y \cdot z \cdot t$
$\mathrm{v}(\mathrm{x}, \mathrm{y}, \mathrm{z}, \mathrm{t})=-\mathrm{x} \cdot \mathrm{y} \cdot \mathrm{z} \cdot \mathrm{t}^{2}$
$w(x, y, z, t)=\frac{z^{2}}{2} \cdot\left(x \cdot t^{2}-y \cdot t\right)$
$\frac{\partial}{\partial \mathrm{x}} \mathrm{u}(\mathrm{x}, \mathrm{y}, \mathrm{z}, \mathrm{t}) \rightarrow \mathrm{t} \cdot \mathrm{y} \cdot \mathrm{z}$
$\frac{\partial}{\partial y} \mathrm{v}(\mathrm{x}, \mathrm{y}, \mathrm{z}, \mathrm{t}) \rightarrow-\mathrm{t}^{2} \cdot \mathrm{x} \cdot \mathrm{z}$
$\frac{\partial}{\partial z} w(x, y, z, t) \rightarrow z \cdot\left(t^{2} \cdot x-t \cdot y\right)$

Hence

$$
\frac{\partial}{\partial x} u+\frac{\partial}{\partial y} v+\frac{\partial}{\partial z} w=0
$$

INCOMPRESSIBLE
c) $u(x, y, z, t)=x^{2}+y+z^{2}$
$\mathrm{v}(\mathrm{x}, \mathrm{y}, \mathrm{z}, \mathrm{t})=\mathrm{x}-\mathrm{y}+\mathrm{z}$
$\mathrm{w}(\mathrm{x}, \mathrm{y}, \mathrm{z}, \mathrm{t})=-2 \cdot \mathrm{x} \cdot \mathrm{z}+\mathrm{y}^{2}+\mathrm{z}$
$\frac{\partial}{\partial \mathrm{x}} \mathrm{u}(\mathrm{x}, \mathrm{y}, \mathrm{z}, \mathrm{t}) \rightarrow 2 \cdot \mathrm{x}$
$\frac{\partial}{\partial y} v(x, y, z, t) \rightarrow-1$
$\frac{\partial}{\partial \mathrm{z}} \mathrm{w}(\mathrm{x}, \mathrm{y}, \mathrm{z}, \mathrm{t}) \rightarrow 1-2 \cdot \mathrm{x}$

Hence

$$
\frac{\partial}{\partial x} u+\frac{\partial}{\partial y} v+\frac{\partial}{\partial z} w=0
$$

INCOMPRESSIBLE

Problem 5.3
Given: velocity field $u=A x+B y+C_{z}$

$$
\begin{aligned}
& v=D_{x}+E y+F_{g} \\
& w=G x+1+y+v_{z}
\end{aligned}
$$

Find: The relationship among coefficients A thru I for this to be an incompressible flow field.

Solution: Flow must satisfy differential form of continuity. Basic equation: $\frac{\partial \rho u}{\partial x}+\frac{\partial \rho v}{\partial y}+\frac{\partial \rho w}{\partial z}+\frac{\partial f}{\partial t}=0$
Assumption: Incompressible flow, so $\frac{\partial P}{\partial t}=\frac{\partial P}{\partial c}=0$
Then $\quad \frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}+\frac{\partial w}{\partial z}=0$
For the given flow field, $\frac{\partial u}{\partial x}=A, \frac{\partial v}{\partial y}=E, \frac{\partial v}{\partial z}=J$. Thus

$$
\begin{aligned}
& A+E+J=0 \text {, and } \\
& B, C, D, F, G, H \text { are arbitrary }
\end{aligned}
$$

Problem 5.4

5.4 For a flow in the $x y$ plane, the x component of velocity is given by $u=A x(y-B)$, where $A=1 \mathrm{ft}^{-1} \cdot \mathrm{~s}^{-1}, B=6 \mathrm{ft}$, and x and y are measured in feet. Find a possible y component for steady, incompressible flow. Is it also valid for unsteady, incompressible flow? Why? How many y components are possible?

Given: x component of velocity
Find: y component for incompressible flow; Valid for unsteady?; How many y components?

Solution:

Basic equation: $\quad \frac{\partial}{\partial x}(\rho \cdot \mathrm{u})+\frac{\partial}{\partial \mathrm{y}}(\rho \cdot \mathrm{v})+\frac{\partial}{\partial \mathrm{z}}(\rho \cdot \mathrm{w})+\frac{\partial}{\partial \mathrm{t}} \rho=0$

Assumption: Incompressible flow; flow in x-y plane
Hence

$$
\frac{\partial}{\partial x} u+\frac{\partial}{\partial y} v=0 \quad \text { or } \quad \frac{\partial}{\partial y} v=-\frac{\partial}{\partial x} u=-\frac{\partial}{\partial x}[A \cdot x \cdot(y-B)]=-A \cdot(y-B)
$$

Integrating

$$
v(x, y)=-\int A \cdot(y-B) d y=-A \cdot\left(\frac{y^{2}}{2}-B \cdot y\right)+f(x)
$$

This basic equation is valid for steady and unsteady flow (t is not explicit)
There are an infinite number of solutions, since $f(x)$ can be any function of x. The simplest is $f(x)=0$

$$
v(x, y)=-A \cdot\left(\frac{y^{2}}{2}-B \cdot y\right) \quad v(x, y)=6 \cdot y-\frac{y^{2}}{2}
$$

Problem 5.5

5.5 For a flow in the $x y$ plane, the x component of velocity is given by $u=x^{3}-3 x y^{2}$. Determine a possible y component for steady, incompressible flow. Is it also valid for unsteady, incompressible flow? Why? How many possible y components are there?

Given: x component of velocity
Find: y component for incompressible flow; Valid for unsteady? How many y components?

Solution:

Basic equation: $\quad \frac{\partial}{\partial \mathrm{x}}(\rho \cdot \mathrm{u})+\frac{\partial}{\partial \mathrm{y}}(\rho \cdot \mathrm{v})+\frac{\partial}{\partial \mathrm{z}}(\rho \cdot \mathrm{w})+\frac{\partial}{\partial \mathrm{t}} \rho=0$

Assumption: Incompressible flow; flow in x-y plane
Hence

$$
\frac{\partial}{\partial x} u+\frac{\partial}{\partial y} v=0 \quad \text { or } \quad \frac{\partial}{\partial y} v=-\frac{\partial}{\partial x} u=-\frac{\partial}{\partial x}\left(x^{3}-3 \cdot x \cdot y^{2}\right)=-\left(3 \cdot x^{2}-3 \cdot y^{2}\right)
$$

Integrating $\quad v(x, y)=-\int\left(3 \cdot x^{2}-3 \cdot y^{2}\right) d y=-3 \cdot x^{2} \cdot y+y^{3}+f(x)$
This basic equation is valid for steady and unsteady flow (t is not explicit)
There are an infinite number of solutions, since $f(x)$ can be any function of x. The simplest is $f(x)=0 \quad v(x, y)=y^{3}-3 \cdot x^{2} \cdot y$

Given: Steady, incompressible flow field in the ry plane has an x component of velocity given by $u=\frac{A}{x}$, where $A=2 \mathrm{~m}^{2} l_{s}$ and h is in meters
Find: Re simplest y component of velocity for this flow field.
Solution:
Apply the continuity equation for the conditions given Basic equation: $\nabla \cdot p^{V}+\frac{\partial P}{\partial t}=0$
For steady flow $\frac{p p}{a t}=0$ and for two-dimensional flow in the ty plane, $\frac{\partial}{\partial z}(1)=0$. hus the basic equation reduces to

$$
\frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}=0
$$

Then

$$
\frac{\partial v}{\partial y}=-\frac{\partial u}{\partial x}=-\frac{\partial}{\partial x}\left(\frac{A}{x}\right)=\frac{A}{r^{2}}
$$

and

$$
v=\left(\frac{\partial v}{\partial y} d y+f(x)\right)=\left(\frac{A}{x^{2}} d y+f(x)=\frac{A y}{x^{2}}+f(x)\right.
$$

The simplest y component of velocity is sotannect with $f(x)=0$

$$
\therefore v=\frac{A y}{t^{2}}
$$

Problem 5.7

5.7 The y component of velocity in a steady, incompressible flow field in the $x y$ plane is $v=\operatorname{Axy}\left(y^{2}-x^{2}\right)$, where $A=2$ $\mathrm{m}^{-3} \cdot \mathrm{~s}^{-1}$ and x and y are measured in meters. Find the simplest x component of velocity for this flow field.

Given: y component of velocity
Find: $\quad \mathrm{x}$ component for incompressible flow; Simplest x components?

Solution:

Basic equation: $\quad \frac{\partial}{\partial \mathrm{x}}(\rho \cdot \mathrm{u})+\frac{\partial}{\partial \mathrm{y}}(\rho \cdot \mathrm{v})+\frac{\partial}{\partial \mathrm{z}}(\rho \cdot \mathrm{w})+\frac{\partial}{\partial \mathrm{t}} \rho=0$

Assumption: Incompressible flow; flow in $x-y$ plane
Hence

$$
\frac{\partial}{\partial x} u+\frac{\partial}{\partial y} v=0 \quad \text { or } \quad \frac{\partial}{\partial x} u=-\frac{\partial}{\partial y} v=-\frac{\partial}{\partial y}\left[A \cdot x \cdot y \cdot\left(y^{2}-x^{2}\right)\right]=-\left[A \cdot x \cdot\left(y^{2}-x^{2}\right)+A \cdot x \cdot y \cdot 2 \cdot y\right]
$$

Integrating

$$
u(x, y)=-\int A \cdot\left(3 \cdot x \cdot y^{2}-x^{3}\right) d x=-\frac{3}{2} \cdot A \cdot x^{2} \cdot y^{2}+\frac{1}{4} \cdot A \cdot x^{4}+f(y)
$$

This basic equation is valid for steady and unsteady flow (t is not explicit)
There are an infinite number of solutions, since $f(y)$ can be any function of y. The simplest is $f(y)=0$

$$
u(x, y)=\frac{1}{4} \cdot A \cdot x^{4}-\frac{3}{2} \cdot A \cdot x^{2} \cdot y^{2} \quad u(x, y)=\frac{1}{2} \cdot x^{4}-3 \cdot x^{2} y^{2}
$$

Problem 5.8

5.8 The x component of velocity in a steady incompressible flow field in the $x y$ plane is $u=A e^{x / b} \cos (y / b)$, where $A=10 \mathrm{~m} / \mathrm{s}, b=$ 5 m , and x and y are measured in meters. Find the simplest y component of velocity for this flow field.

Given: x component of velocity
Find: y component for incompressible flow; Valid for unsteady? How many y components?

Solution:

Basic equation: $\quad \frac{\partial}{\partial x}(\rho \cdot u)+\frac{\partial}{\partial y}(\rho \cdot v)+\frac{\partial}{\partial z}(\rho \cdot w)+\frac{\partial}{\partial t} \rho=0$

Assumption: Incompressible flow; flow in x-y plane
Hence

$$
\frac{\partial}{\partial x} u+\frac{\partial}{\partial y} v=0 \quad \text { or } \quad \frac{\partial}{\partial y} v=-\frac{\partial}{\partial x} u=-\frac{\partial}{\partial x}\left(A \cdot e^{\frac{x}{b}} \cdot \cos \left(\frac{y}{b}\right)\right)=-\left(\frac{A}{b} \cdot e^{\frac{x}{b}} \cdot \cos \left(\frac{y}{b}\right)\right)
$$

Integrating $\quad v(x, y)=-\int \frac{A}{b} \cdot e^{\frac{x}{b}} \cdot \cos \left(\frac{y}{b}\right) d y=-A \cdot e^{\frac{x}{b}} \cdot \sin \left(\frac{y}{b}\right)+f(x)$
This basic equation is valid for steady and unsteady flow (t is not explicit)
There are an infinite number of solutions, since $f(x)$ can be any function of x. The simplest is $f(x)=0$

$$
v(x, y)=-A \cdot e^{\frac{\mathrm{x}}{\mathrm{~b}}} \cdot \sin \left(\frac{\mathrm{y}}{\mathrm{~b}}\right) \quad \mathrm{v}(\mathrm{x}, \mathrm{y})=-10 \cdot \mathrm{e}^{\frac{\mathrm{x}}{5}} \cdot \sin \left(\frac{\mathrm{y}}{5}\right)
$$

Problem 5.9

5.9 The y component of velocity in a steady incompressible flow field in the $x y$ plane is

$$
v=\frac{2 x y}{\left(x^{2}+y^{2}\right)^{2}}
$$

Show that the simplest expression for the x component of velocity is

$$
u=\frac{1}{\left(x^{2}+y^{2}\right)}-\frac{2 y^{2}}{\left(x^{2}+y^{2}\right)^{2}}
$$

Given: y component of velocity
Find: x component for incompressible flow; Simplest x component

Solution:

Basic equation: $\quad \frac{\partial}{\partial \mathrm{x}}(\rho \cdot \mathrm{u})+\frac{\partial}{\partial \mathrm{y}}(\rho \cdot \mathrm{v})+\frac{\partial}{\partial \mathrm{z}}(\rho \cdot \mathrm{w})+\frac{\partial}{\partial \mathrm{t}} \rho=0$
Assumption: Incompressible flow; flow in $x-y$ plane
Hence $\quad \frac{\partial}{\partial x} u+\frac{\partial}{\partial y} v=0 \quad$ or $\quad \frac{\partial}{\partial x} u=-\frac{\partial}{\partial y} v=-\frac{\partial}{\partial y}\left[\frac{2 \cdot x \cdot y}{\left(x^{2}+y^{2}\right)^{2}}\right]=-\left[\frac{2 \cdot x \cdot\left(x^{2}-3 \cdot y^{2}\right)}{\left(x^{2}+y^{2}\right)^{3}}\right]$
Integrating $u(x, y)=-\int\left[\frac{2 \cdot x \cdot\left(x^{2}-3 \cdot y^{2}\right)}{\left(x^{2}+y^{2}\right)^{3}}\right] d x=\frac{x^{2}-y^{2}}{\left(x^{2}+y^{2}\right)^{2}}+f(y)=\frac{x^{2}+y^{2}-2 \cdot y^{2}}{\left(x^{2}+y^{2}\right)^{2}}+f(y)$

$$
u(x, y)=\frac{1}{x^{2}+y^{2}}-\frac{2 \cdot y^{2}}{\left(x^{2}+y^{2}\right)^{2}}+f(y)
$$

The simplest form is $u(x, y)=\frac{1}{x^{2}+y^{2}}-\frac{2 \cdot y^{2}}{\left(x^{2}+y^{2}\right)^{2}}$
Note: Instead of this approach we could have verified that u and v satisfy continuity

$$
\frac{\partial}{\partial x}\left[\frac{1}{x^{2}+y^{2}}-\frac{2 \cdot y^{2}}{\left(x^{2}+y^{2}\right)^{2}}\right]+\frac{\partial}{\partial y}\left[\frac{2 \cdot x \cdot y}{\left(x^{2}+y^{2}\right)^{2}}\right] \rightarrow 0
$$

However, this does not verify the solution is the simplest

Given: Approximate profile for laminar boundary layer

$$
u=c U \frac{y}{x^{1 / 2}}
$$

Find: (a) snow simplest v is $v=\frac{v}{4} \frac{y}{x}$
(b) Evaluate maximum value of V / U where $\delta=5 \mathrm{~mm}, x=0.5 \mathrm{~m}$.

Solution: Apply continuity for incompressible flow
Basic equation: $\frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}+\frac{\partial y^{2}}{\partial z}=0$
Thus

$$
\begin{gathered}
\frac{\partial v}{\partial y}=-\frac{\partial u}{\partial x}=-\left(-\frac{1}{2}\right) c v \frac{y}{x^{3 / 2}} \\
v=\int \frac{\partial v}{\partial y} d y+f(x)=\int \frac{1}{2} c v \frac{y}{x^{3 / 2}} d y+f(x)=\frac{1}{4} c v \frac{y^{2}}{x^{3 / 2}}+f(x)
\end{gathered}
$$

or

$$
v=\frac{U}{4} \frac{y}{x} \longleftarrow[f(x)=0 \text { since } v=0 \text { along } y=0]
$$

From

$$
\frac{v}{v}=\frac{1}{4} \frac{y}{x}
$$

maximum value occurs at $y=\delta$. At the location given,

$$
\left.\frac{v}{v}\right)_{\max }=\frac{1}{4} \frac{\delta}{x}=\frac{1}{4} \frac{0.005 \mathrm{~m}}{0.5 \mathrm{~m}}=0.0025
$$

Given: Laminar boundary layer, parabolic approximate profile.

$$
\frac{u}{U}=2\left(\frac{y}{\delta}\right)-\left(\frac{y}{\delta}\right)^{2} \quad \delta=c x^{1 / 2}
$$

Find: Show $\frac{v}{V}=\frac{\delta}{x}\left[\frac{1}{2}\left(\frac{y}{\delta}\right)^{2}-\frac{1}{3}\left(\frac{y}{\delta}\right)^{3}\right]$ for incompressible flow.
Plot: $\frac{v}{U}$ us. $\frac{y}{\delta}$, evaluate max. at $x=0.5 \mathrm{~m}$, if $\delta=5 \mathrm{~mm}$.
Solution: Apply conservation of mass for incompressible flow. Basic equation: $\quad \frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}+\frac{\partial f}{\partial z}=0$
Assumptions: (1) Incompressible flow ($\rho=\operatorname{const}$)
(2) $w=0$

Then

$$
\frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}=0 ; \frac{\partial v}{\partial y}=-\frac{\partial u}{\partial x} ; v=\int_{0}^{y}-\frac{\partial u}{\partial x} d y+f(x)
$$

From the given profile

$$
\frac{\partial u}{\partial x}=2 v y(-1) \frac{1}{\delta^{2}} \frac{d \delta}{d x}-v y^{2}(-2) \frac{1}{\delta^{3}} \frac{d \delta}{d x}=2 v \frac{d \delta}{d x}\left(\frac{y^{2}}{\delta^{3}}-\frac{y}{\delta^{2}}\right)
$$

since $\delta=c x^{1 / 2}, \frac{d \delta}{d x}=\frac{1}{2} c x^{-1 / 2}=\frac{c x^{1 / 2}}{2 x}=\frac{\delta}{2 x}$, so $\frac{\partial u}{\partial x}=\frac{U \delta}{x}\left(\frac{y^{2}}{\delta^{3}}-\frac{y}{\delta^{2}}\right)$
Integrating, $\frac{v}{D}=\frac{\delta}{x} \int_{0}^{y}\left(\frac{y}{\delta^{2}}-\frac{y^{2}}{\delta^{3}}\right) d y=\frac{\delta}{x}\left[\frac{1}{2}\left(\frac{y}{\delta}\right)^{2}-\frac{1}{3}\left(\frac{y}{\delta}\right)^{3}\right]$
Plotting shows:

Maximum occurs

$$
a t\left(\frac{y}{\delta}\right)=1
$$

$$
\left.\left.\frac{v}{U}\right)_{\text {max }}=\frac{V}{U}\right)_{\frac{y}{\delta}=1}=\frac{\delta}{x}\left[\frac{1}{2}(1)^{2}-\frac{1}{3}(1)^{2}\right]=\frac{\delta}{6 x}
$$

Evaluating, $\left.\frac{T}{U}\right)_{\text {max }}=\frac{1}{6} \times 0.005 m_{\times} \frac{1}{0.5 m}=0.00167$ or 0.167 percent
$+\quad \frac{\frac{v}{U} f_{\text {max }}}{}$

Given: Appraximation for x component of ve locity in laminar boundary layer.

$$
u=v \sin \left(\frac{\pi}{2} \frac{y}{\delta}\right) \quad \text { where } \delta=c x^{1 / 2}
$$

Show: $\frac{v}{v}=\frac{\delta}{\pi x}\left[\cos \left(\frac{\pi}{2} \frac{y}{\delta}\right)+\frac{\pi}{2} \frac{y}{\delta} \sin \left(\frac{\pi}{2} \frac{y}{\delta}\right)-1\right]$ for incompressitere flow. Plot: $4 / v / v$ us, y / δ to locate maximuin value of vir; evaluate at location where $x=0.5 \mathrm{~m}$ and $\delta=5 \mathrm{~mm}$.

Solution: Apply differential continceity for incompressible flow.

$$
=0(2-D \text { flow })
$$

Basic equation: $\frac{\partial u}{\partial x}+\frac{\partial w}{\partial y}+\frac{\partial \psi}{\partial z}=0$
Thus $\frac{\partial v^{\prime}}{\partial y}=-\frac{\partial u}{\partial x}=-\frac{\partial u}{\partial \delta} \frac{d \delta}{d x}=-\left(\frac{\pi y}{2}\left(-\frac{1}{\delta^{2}}\right) \cos \left(\frac{\pi y}{2 \delta}\right) \frac{\pi}{2} c x^{-1 / 2}=\frac{U}{2 x}\left(\frac{\pi y}{2 \delta}\right) \cos \left(\frac{\pi y}{2 \delta}\right)\right.$
Integrating.

$$
\begin{aligned}
& \text { Integrating, } v=\int_{0}^{y} \frac{\partial v}{\partial y} d y+f(x)=\int_{0}^{y} \frac{U}{2 x}\left(\frac{\pi}{2} \frac{y}{\delta}\right) \cos \left(\frac{\pi}{2} \frac{y}{\delta}\right) d y+f(x) \\
& v=\frac{2 \delta}{\pi} \frac{v}{2} \int_{0}^{\frac{\pi}{2} \frac{y}{\delta}} r \cos s c h+f(x)=\frac{\delta}{\pi} \frac{v}{x}[\cos \mu+\sin x]_{0}^{\frac{\pi}{2} \frac{y}{\delta}}+f(x)
\end{aligned}
$$

$$
\frac{v}{v}=\frac{1}{\pi} \frac{\delta}{x}\left[\cos \left(\frac{\pi}{2} \frac{y}{\delta}\right)+\left(\frac{\pi}{2} \frac{y}{\delta}\right) \sin \left(\frac{\pi}{2} \frac{y}{\delta}\right)-1\right]
$$

This expression is a maxincem at $\mathscr{y}=\delta$; where

$$
\frac{v}{U}=\frac{1}{\pi} \frac{\delta}{x} \cdot\left[\left(\frac{\pi}{2}\right) \sin \left(\frac{\pi}{2}\right)-1\right]=\frac{\delta}{\pi x}\left(\frac{\pi}{2}-1\right)
$$

and

$$
\left.\frac{v}{V}\right)_{\max }=0.182 \frac{\delta}{x}
$$

At the location given

$$
\left.\frac{v}{U}\right)_{\max }=0.182 \times 0.005 m_{\times} \frac{1}{0.5 m}=0.00182 \text { or } 0.182 \text { percent }
$$

5.13 A useful approximation for the x component of velocity in an incompressible laminar boundary layer is a cubic variation from $u=0$ at the surface $(y=0)$ to the freestream velocity, U, at the edge of the boundary layer $(y=\delta)$. The equation for the profile is $u / U=\frac{3}{2}(y / \delta)-\frac{1}{2}(y / \delta)^{3}$, where $\delta=c x^{1 / 2}$ and c is a constant. Derive the simplest expression for v / U, the y component of velocity ratio. Plot u / U and v / U versus y / δ, and find the location of the maximum value of the ratio v / U. Evaluate the ratio where $\delta=5 \mathrm{~mm}$ and $x=0.5 \mathrm{~m}$.

Given:

 Data on boundary layerFind: $\quad y$ component of velocity ratio; location of maximum value; plot velocity profiles; evaluate at particular point

Solution:

so

$$
\begin{aligned}
& \mathrm{u}(\mathrm{x}, \mathrm{y})=\mathrm{U} \cdot\left[\frac{3}{2} \cdot\left(\frac{\mathrm{y}}{\delta(\mathrm{x})}\right)-\frac{1}{2} \cdot\left(\frac{\mathrm{y}}{\delta(\mathrm{x})}\right)^{3}\right] \quad \text { and } \quad \delta(\mathrm{x})=\mathrm{c} \cdot \sqrt{\mathrm{x}} \\
& \mathrm{u}(\mathrm{x}, \mathrm{y})=\mathrm{U} \cdot\left[\frac{3}{2} \cdot\left(\frac{\mathrm{y}}{\mathrm{c} \cdot \sqrt{\mathrm{x}}}\right)-\frac{1}{2} \cdot\left(\frac{\mathrm{y}}{\mathrm{c} \cdot \sqrt{\mathrm{x}}}\right)^{3}\right]
\end{aligned}
$$

For incompressible flow $\frac{\partial}{\partial \mathrm{x}} \mathrm{u}+\frac{\partial}{\partial \mathrm{y}} \mathrm{v}=0$

Hence
so

$$
v(x, y)=-\int \frac{d}{d x} u(x, y) d y \quad \text { and } \quad \frac{d u}{d x}=\frac{3}{4} \cdot U \cdot\left(\frac{y^{3}}{c^{3} \cdot x^{\frac{5}{2}}}-\frac{y}{\frac{3}{2}}\right)
$$

$$
\left.\begin{array}{l}
v(x, y)=-\int \frac{3}{4} \cdot U \cdot\left(\frac{y^{3}}{c^{3}} \cdot \frac{x^{5}}{2}-\frac{y}{c} \cdot \frac{x^{3}}{2}\right) d y \\
v(x, y)=\frac{3}{8} \cdot U \cdot\left(\frac{y^{2}}{\frac{3}{2}}-\frac{y^{4}}{c \cdot x^{2}} 2 \cdot c^{3} \cdot x^{\frac{5}{2}}\right.
\end{array} \quad v(x, y)=\frac{3}{8} \cdot U \cdot \frac{\delta}{x} \cdot\left(\frac{y}{\delta}\right)^{2}-\frac{1}{2} \cdot\left(\frac{y}{\delta}\right)^{4}\right]
$$

The maximum occurs at $\quad \mathrm{y}=\delta \quad$ as seen in the corresponding Excel workbook

$$
\mathrm{v}_{\max }=\frac{3}{8} \cdot \mathrm{U} \cdot \frac{\delta}{\mathrm{x}} \cdot\left(1-\frac{1}{2} \cdot 1\right)
$$

At $\delta=5 \cdot \mathrm{~mm}$ and $\mathrm{x}=0.5 \cdot \mathrm{~m}$, the maximum vertical velocity is

$$
\frac{\mathrm{v}_{\max }}{\mathrm{U}}=0.00188
$$

5.13 A useful approximation for the x component of velocity in an incompressible laminar boundary layer is a cubic variation from $u=0$ at the surface $(y=0)$ to the freestream velocity, U, at the edge of the boundary layer $(y=\delta)$. The equation for the profile is $u / U=\frac{3}{2}(y / \delta)-\frac{1}{2}(y / \delta)^{3}$, where $\delta=c x^{1 / 2}$ and c is a constant. Derive the simplest expression for v / U, the y component of velocity ratio. Plot u / U and v / U versus y / δ, and find the location of the maximum value of the ratio v / U. Evaluate the ratio where $\delta=5 \mathrm{~mm}$ and $x=0.5 \mathrm{~m}$.

Given: Data on boundary layer

Find: $\quad y$ component of velocity ratio; location of maximum value; plot velocity profiles; evaluate at particular point

Solution:

$$
\mathrm{v}(\mathrm{x}, \mathrm{y})=\frac{3}{8} \cdot \mathrm{U} \cdot \frac{\delta}{\mathrm{x}} \cdot\left[\left(\frac{\mathrm{y}}{\delta}\right)^{2}-\frac{1}{2} \cdot\left(\frac{\mathrm{y}}{\delta}\right)^{4}\right]
$$

To find when v / U is maximum, use Solver

$\boldsymbol{v} / \boldsymbol{U}$	$\boldsymbol{y} / \mathbf{d}$
0.000000	0.0
0.000037	0.1
0.000147	0.2
0.000322	0.3
0.000552	0.4
0.00082	0.5
0.00111	0.6
0.00139	0.7
0.00163	0.8
0.00181	0.9
0.00188	1.0

Problem 5.14
Given: Flow in ty plane, $v=-B x y^{3}$ where $B=0.2 M^{-3} . s^{\prime}$ and coordinates are measured in meters; steady, pec.
Find: (a) Simplest x component of velocity.
(b) Equation of streanimes

Plot: streamlines through points (1,4) and (2,4).
Solution:
Basic equation: $\nabla \cdot \vec{p}+\frac{\partial p}{\partial t}=\frac{\partial}{\partial x} p u+\frac{\partial}{\partial y} p v+\frac{\partial}{7} p^{\omega}+\frac{\partial \hat{p}}{\partial t}$
Assumptions: (i) flow in the ky plane (gwen), $\frac{\partial}{2 z}=0$
(a) $p=$ constant Egwen).

Then, $\frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}=0$ or $\frac{\partial u}{\partial x}=-\frac{\partial v}{\partial y}$.
and

$$
\frac{\partial u}{\partial x}=-\frac{\partial}{\partial y}\left(-3 x y^{3}\right)=33 x y^{2}
$$

Integrating.

$$
u=\int \frac{3 u}{2 x} d x=\int 3 B x y^{2}=\frac{3}{2} B x^{2} y^{2}+f(y) .
$$

The simplest expression is obtained wit $f(y)=0$

$$
\therefore u=\frac{3}{2} B x^{2} y^{2}
$$

The equation of the streamlines is

$$
\frac{d y}{d y}=\frac{v}{u}=\frac{-3 x y^{3}}{\frac{3}{2}-x^{2} y^{2}}=\frac{-2 y}{3 x}
$$

Separating variables integrating

$$
\frac{3}{2} \frac{d y}{y}+\frac{d x}{x}=0
$$

$$
\frac{3}{2} \ln y+\ln x=\ln c
$$

$$
x 0^{3 / 2}=c, \text { Streamline }
$$

$p^{t}(1,4) \quad x y_{3}^{3 / 2}=8$
$p t(2,4) \quad x y^{3 / 2}=16$

Streamline Plot

Given：Flow in ty plane，$u=9 x^{2} y^{2}$ where $A=0.3 \mathrm{~m}^{-3} \cdot \mathrm{~s}^{-1}$ ，and coordinates are Measured in meters

Find：（a）Possible y component for steady，nicompresibly flow （b）If result is valid for unsteady，incompressible foo （c）Number of possible y components．
（d）Equation of streamlines for simplest value of v ．
Pldi．streamlines trough points $(1,4)$ and $(2,4)$
Solution：
Basie equation：$\nabla \cdot p \vec{v}+\frac{\partial p}{\partial t}=0=\frac{\partial}{\partial x} p u+\frac{\partial}{\partial y} p v+\frac{z}{5 g} p u+\frac{\not p}{\partial t}$ Assumptions：（i）flow in wy plane（given），多 $=0$ （2）$p=$ constant（ques
Ron，

$$
\frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}=0 \quad \text { or } \frac{\partial v}{\partial y}=-\frac{\partial u}{\partial x}=-\frac{\partial}{\partial x}\left(A x^{2} y^{2}\right)=-2 A x y^{2}
$$

Integrating

$$
v=\int \frac{\partial v}{\partial y} d y=-\int 2 A x y^{2}=-\frac{2}{3} A+y^{3}+f(x)
$$

The bask equation reduces to the same form for unsteady
flow．Hence the result is also valid for unsteady flow． flow．Hence the result is also valid for unsteady flow． \qquad There are an infinite number of possible y components，since $f(x)$ is arbitrary．Re simplest is obtained with $f(x)=0$ ． \qquad The equation of the streaming is

$$
\left.\frac{d y}{d x}\right|_{S, l}=\frac{v}{u}=-\frac{2}{3} \frac{A+y^{3}}{A x^{2} y^{2}}=-\frac{2 y}{3 x}
$$

Separating var sables e integrating

$$
\begin{gathered}
\frac{3}{2} \frac{d y}{y}+\frac{d x}{d x}=0 \\
\ln y^{3 / 2}+\ln x=\ln c \\
x y^{3 / 2}=c=\text { strearhine } \\
\text { pt }(1,4) \quad x y^{3 / 2}=8 \\
(2,4) \quad e_{3 / 2}=16
\end{gathered}
$$

Streamline Plot

Given: Conservation of mass.
Find: Identical result to Eq. 5.1 a by expanding products of density and velocity in Taylor series.

Solution: Use diagram of Fig. 5.1:
Apply conservation of mass, using a Taylor series expansion of products, Evaluate derivatives at 0 .

For the x direction the mass flux is

$$
\dot{m}_{x}=\rho u d A=\rho u d x d y
$$

At the right face

Fig. 5.1 Differential control volume in rectangular coordinates

$$
\dot{m}_{x+d x / 2}=\rho u d y d z+\frac{\partial}{\partial x} \rho u \frac{d x}{2} d y d z \text { (out of (v) }
$$

At the left face

$$
\dot{m}_{x}-d x_{/ 2}=\rho u d y d z+\frac{\partial}{\partial x} \rho u\left(-\frac{d x}{2}\right) d y d z \text { (into }(v)
$$

The net mass flux is "out" minus "in," So

$$
\dot{m}_{x}(\text { net })=\dot{m}_{x}+d x / 2-\dot{m}_{x}-d x / 2=\frac{\partial}{\partial x} \rho u d x d y d z
$$

Summing terms for x, y, and z, and including $\frac{\partial \rho}{\partial t} d x d y d z$, we get

$$
D=\frac{\partial}{\partial x} \rho u+\frac{\partial}{\partial y} \rho v+\frac{\partial}{\partial z} \rho w+\frac{\partial \rho}{\partial t}
$$

Consider a water stream from a jet of an oscillating lawn sprinkler. Describe the corresponding pathline and streakline.

Open-Ended Problem Statement: Consider a water stream from a jet of an oscillating lawn sprinkler. Describe the corresponding pathline and streakline.

Discussion: Refer back to the discussion of streamlines, pathlines, and streaklines in Section 2-2.

Because the sprinkler jet oscillates, this is an unsteady flow. Therefore pathlines and streaklines need not coincide.

A pathline is a line tracing the path of an individual fluid particle. The path of each particle is determined by the jet angle and the speed at which the particle leaves the jet.

Once a particle leaves the jet it is subject to gravity and drag forces. If aerodynamic drag were negligible, the path of each particle would be parabolic. The horizontal speed of the particle would remain constant throughout its trajectory. The vertical speed would be slowed by gravity until reaching peak height, and then it would become increasingly negative until the particle strikes the ground. The effect of aerodynamic drag is to reduce the particle speed. With drag the particle will not rise as high vertically nor travel as far horizontally. At each instant the particle trajectory will be lower and closer to the jet compared to the no-friction case. The trajectory after the particle reaches its peak height will be steeper than in the no-friction case.

A streamline is a line drawn in the flow that is tangent everywhere to the velocity vectors of the fluid motion. It is difficult to visualize the streamlines for an unsteady flow field because they move laterally. However, the streamline pattern may be drawn at an instant.

A streakline is the locus of the present locations of fluid particles that passed a reference point at previous times. As an example, choose the exit of a jet as the reference point. Imagine marking particles that pass the jet exit at a given instant and at uniform time intervals later. The first particle will travel farthest from the jet exit and on the lowest trajectory; the last particle will be located right at the jet exit. The curve joining the present positions of the particles will resemble a spiral whose radius increases with distance from the jet opening.

Given: Velocity fields listed below.
Find: Which are possible incompressible flow cases?
Solution: Apply the continuity equation in differential form. Basic equation: $\frac{1}{r} \frac{\partial r \rho V_{r}}{\partial r}+\frac{1}{r} \frac{\partial \rho V_{\theta}}{\partial \theta}+\frac{\partial \rho V_{亏}}{\partial z}+\frac{\partial f}{\partial t}=0$

Assumptions: (1) Two-dimensionar flow, so $\frac{\partial}{\partial z}=0$
(2) Incompressible flow

$$
\rho=\text { constant, so } \frac{\partial \rho}{\partial t}=\frac{\partial \rho}{\partial(\text { distance })}=0
$$

Then

$$
\frac{1}{r} \frac{\partial r V_{r}}{\partial r}+\frac{1}{r} \frac{\partial V_{\theta}}{\partial \theta}=0
$$

or

$$
\frac{\partial r V_{r}}{\partial r}+\frac{\partial V_{\theta}}{\partial \theta}=0 \text { is the criterion. }
$$

(c) $v \cos \theta\left[1-\left(\frac{a}{r}\right)^{2}\right]^{*}-U \sin \theta\left[1+\left(\frac{a}{r}\right)^{2}\right] v_{\cos \theta}\left[1+\left(\frac{a}{r}\right)^{2}\right]-v \cos \theta\left[1+\left(\frac{a}{r}\right)^{2}\right] \quad 0$ Yes

* Note if $V_{r}=U \cos \theta\left[1-\left(\frac{a}{r}\right)^{2}\right]$, then $r V_{r}=v \cos e\left[r-\frac{a^{2}}{r}\right]$
and $\frac{\partial r V_{r}}{\partial r}=v \cos \theta\left[1+\frac{a^{2}}{r^{2}}\right]=v \cos \theta\left[1+\left(\frac{a}{r}\right)^{2}\right]$

Problem 5.19

5.19 For an incompressible flow in the $r \theta$ plane, the r component of velocity is given as $V_{r}=-\Lambda \cos \theta / r^{2}$. Determine a possible θ component of velocity. How many possible θ components are there?

Given: r component of velocity
Find: $\quad \theta$ component for incompressible flow; How many θ components

Solution:

Basic equation: $\quad \frac{1}{\mathrm{r}} \cdot \frac{\partial}{\partial \mathrm{r}}\left(\rho \cdot \mathrm{r} \cdot \mathrm{V}_{\mathrm{r}}\right)+\frac{1}{\mathrm{r}} \cdot \frac{\partial}{\partial \theta}\left(\rho \cdot \mathrm{V}_{\theta}\right)+\frac{\partial}{\partial \mathrm{z}}\left(\rho \cdot \mathrm{V}_{\mathrm{Z}}\right)+\frac{\partial}{\partial \mathrm{t}} \rho=0$

Assumption: Incompressible flow; flow in r- θ plane
Hence

$$
\frac{1}{\mathrm{r}} \cdot \frac{\partial}{\partial \mathrm{r}}\left(\mathrm{r} \cdot \mathrm{~V}_{\mathrm{r}}\right)+\frac{1}{\mathrm{r}} \cdot \frac{\partial}{\partial \theta}\left(\mathrm{~V}_{\theta}\right)=0 \quad \text { or } \quad \frac{\partial}{\partial \theta} \mathrm{V}_{\theta}=-\frac{\partial}{\partial \mathrm{r}}\left(\mathrm{r} \cdot \mathrm{~V}_{\mathrm{r}}\right)=-\frac{\partial}{\partial \mathrm{r}}\left(-\frac{\Lambda \cdot \cos (\theta)}{\mathrm{r}}\right)=-\frac{\Lambda \cdot \cos (\theta)}{\mathrm{r}^{2}}
$$

Integrating

$$
\begin{aligned}
& \mathrm{V}_{\theta}(\mathrm{r}, \theta)=-\int \frac{\Lambda \cdot \cos (\theta)}{\mathrm{r}^{2}} \mathrm{~d} \theta=-\frac{\Lambda \cdot \sin (\theta)}{\mathrm{r}^{2}}+\mathrm{f}(\mathrm{r}) \\
& \mathrm{V}_{\theta}(\mathrm{r}, \theta)=-\frac{\Lambda \cdot \sin (\theta)}{\mathrm{r}^{2}}+\mathrm{f}(\mathrm{r})
\end{aligned}
$$

There are an infinite number of solutions as $f(r)$ can be any function of r
The simplest form is $\quad \mathrm{V}_{\theta}(\mathrm{r}, \theta)=-\frac{\Lambda \cdot \sin (\theta)}{\mathrm{r}^{2}}$

Given: Flow between parallel disks as shown.
Velocity is purely tangential.
No-slip condition is satisfied, so velocity varies linearly with z.

Find: Expression for velocity field.
Solution: A general velocity field would be

$$
\vec{V}=V_{r} \hat{e}_{r}+V_{v} \hat{e}_{\theta}+V_{z} \hat{k}
$$

but velocity is purely tangential, so $V_{r}=V_{z}=0$. Then we seek

$$
V_{\theta}=V_{\theta}(r, \theta, z)
$$

By symmetry, $\frac{\partial V_{\theta}}{\partial \theta}=0$, so

$$
V_{\theta}=V_{\theta}(r, z)
$$

Since the variation with z is linear, $V_{\theta}=z f(r)+c$ at most, that is

$$
\frac{\partial V_{\theta}}{\partial z}=f(r)
$$

at most.
Along the surface $z=0, V_{\theta}=0$, so $C=0$.
Along the surface $z=h, V_{G}=\omega r$, so

$$
V_{\theta}(z=n)=\omega r=h f(r)
$$

or

$$
f(r)=\frac{\omega r}{h}
$$

and

$$
V_{\theta}=\omega r \frac{z}{h}
$$

Thus

$$
\vec{V}=\omega r \frac{z}{h} \hat{e}_{\theta}
$$

Given: Definition of ∇ in cylindrical coordinates.
Obtain: $\nabla \cdot \rho \vec{v}$ in cesindrical coordinates (use hist on page 169).
Show result is identical to Eg, 5.2c.
Solution: The definition of ∇ in cylindrical coordinates is

$$
\begin{equation*}
\nabla=\hat{e}_{r} \frac{\partial}{\partial r}+\hat{e}_{\theta} \frac{1}{r} \frac{\partial}{\partial \theta}+\hat{k} \frac{\partial}{\partial z} \tag{3.19}
\end{equation*}
$$

Note $\rho \vec{V}=\rho\left(\hat{e}_{r} v_{r}+\hat{\varepsilon}_{\theta} v_{0}+\hat{k} v_{z}\right)$
Hint: $\frac{\partial \hat{e}_{r}}{\partial \theta}=\hat{e}_{\theta}$, and $\frac{\partial \hat{e}_{\theta}}{\partial \theta}=-\hat{e}_{r}$
Substituting $\nabla \cdot \rho \vec{v}=\left(\hat{e}_{r} \frac{\partial}{\partial r}+\hat{e}_{\theta} \frac{\partial}{\partial \theta}+\hat{k} \frac{\partial}{\partial z}\right) \cdot \rho\left(\hat{e}_{r} v_{r}+\hat{e}_{\theta} v_{\theta}+\hat{k} v_{z}\right)$

$$
\begin{aligned}
& \nabla \cdot \rho \vec{v}=\hat{e}_{r} \cdot \frac{\partial}{\partial r} \rho\left(\hat{e}_{r} v_{r}+\hat{e}_{\theta} v_{\theta}+\hat{k} V_{z}\right) \\
& +\hat{e}_{\theta} \cdot \frac{\partial}{\partial \theta} \rho\left(\hat{e}_{r} V_{r}+\hat{e}_{\theta} V_{\theta}+\hat{k} V_{z}\right) \\
& +\hat{k} \cdot \frac{\partial}{\partial z} \rho\left(\hat{e}_{r} V_{r}+\hat{e}_{B} V_{a}+\hat{k} V_{z}\right) \\
& =\hat{e}_{r} \cdot \hat{e}_{r} \frac{\partial}{\partial r} \rho V_{r}+\hat{e}_{\theta} \cdot \frac{1 \partial \hat{e}_{r}}{\partial \theta} \rho v_{r}+\hat{e}_{\theta} \cdot \hat{e}_{r}^{0} \frac{\partial}{\partial \theta} \rho V_{r} \\
& +\hat{\theta}_{\theta} \cdot \frac{\partial \hat{e}_{\theta}}{\partial \theta} \hat{e}_{r}+\hat{e}_{\theta} \cdot \hat{e}_{\theta} \frac{1}{r \partial \theta} \rho V_{\theta}+\hat{k} \cdot \hat{k} \frac{\partial}{\partial 3} \rho V_{3} \\
& \nabla \cdot \rho \vec{V}=\frac{\partial}{\partial r} \rho v_{r}+\rho \frac{\rho v_{r}}{r}+\frac{1}{r} \frac{\partial}{\partial \theta} \rho v_{a}+\frac{\partial}{\partial z} \rho v_{z}
\end{aligned}
$$

Combining the first two terms, $\frac{\partial}{\partial r} \rho v_{r}+\rho v_{r}=\frac{1}{r} \frac{\partial}{\partial r} r \rho v_{r}$, as may be verified by differentiation. Substituting

$$
\nabla \cdot \rho \vec{v}=\frac{1}{r} \frac{\partial}{\partial r}\left(r \rho v_{r}\right)+\frac{1}{r} \frac{\partial}{\partial v}\left(\rho v_{\theta}\right)+\frac{\partial}{\partial z}\left(\rho v_{z}\right)
$$

This result is identical to the corresponding terms in Eg. 5.2c.
5.22 A velocity field in cylindrical coordinates is given as $\vec{V}=\hat{e}_{r} A / r+\hat{e}_{\theta} B / r$, where A and B are constants with dimensions of $\mathrm{m}^{2} / \mathrm{s}$. Does this represent a possible incompressible flow? Sketch the streamline that passes through the point $r_{0}=1 \mathrm{~m}$, $\theta=90^{\circ}$ if $A=B=1 \mathrm{~m}^{2} / \mathrm{s}$, if $A=1 \mathrm{~m}^{2} / \mathrm{s}$ and $B=0$, and if $B=1 \mathrm{~m}^{2} / \mathrm{s}$ and $A=0$.

Given: The velocity field

Find: Whether or not it is a incompressible flow; sketch various streamlines

Solution:

$\mathrm{V}_{\mathrm{r}}=\frac{\mathrm{A}}{\mathrm{r}}$	$\mathrm{V}_{\theta}=\frac{\mathrm{B}}{\mathrm{r}}$
For incompressible flow	$\frac{1}{\mathrm{r}} \cdot \frac{\mathrm{d}}{\mathrm{dr}}\left(\mathrm{r} \cdot \mathrm{V}_{\mathrm{r}}\right)+\frac{1}{\mathrm{r}} \cdot \frac{\mathrm{d}}{\mathrm{d} \theta} \mathrm{V}_{\theta}=0$

Hence

$$
\frac{1}{\mathrm{r}} \cdot \frac{\mathrm{~d}}{\mathrm{dr}}\left(\mathrm{r} \cdot \mathrm{~V}_{\mathrm{r}}\right)+\frac{1}{\mathrm{r}} \cdot \frac{\mathrm{~d}}{\mathrm{~d} \theta} \mathrm{~V}_{\theta}=0 \quad \text { Flow is incompressible }
$$

For the streamlines

$$
\frac{\mathrm{dr}}{\mathrm{~V}_{\mathrm{r}}}=\frac{\mathrm{r} \cdot \mathrm{~d} \theta}{\mathrm{~V}_{\theta}}
$$

$\frac{r \cdot d r}{A}=\frac{r^{2} \cdot d \theta}{B}$
so

$$
\int \frac{1}{r} d r=\int \frac{A}{B} d \theta \quad \operatorname{Integrating} \quad \ln (r)=\frac{A}{B} \cdot \theta+\text { const }
$$

Equation of streamlines is $r=C \cdot e^{\frac{A}{B} \cdot \theta}$
(a) For $A=B=1 \mathrm{~m}^{2} / \mathrm{s}$, passing through point ($1 \mathrm{~m}, \pi / 2$)

$$
\mathrm{r}=\mathrm{e}^{\theta-\frac{\pi}{2}}
$$

(b) For $A=1 \mathrm{~m}^{2} / \mathrm{s}, B=0 \mathrm{~m}^{2} / \mathrm{s}$, passing through point ($1 \mathrm{~m}, \pi / 2$)

$$
\theta=\frac{\pi}{2}
$$

(c) For $A=0 \mathrm{~m}^{2} / \mathrm{s}, B=1 \mathrm{~m}^{2} / \mathrm{s}$, passing through point $(1 \mathrm{~m}, \pi / 2)$

$$
\mathrm{r}=1 \cdot \mathrm{~m}
$$

(a)
--- (b)

Given: Velocity field for viscometr ic flow of Example Problem 5.7

$$
\vec{v}=v \frac{y}{h} \hat{\imath}
$$

Find: (a) stream function.
(b) Locate streamline that divides flow rate equally.

Solution: Flow is incompressible, so stream function can be derived.

$$
\frac{\partial \psi}{\partial y}=u=U \frac{y}{h} \text {, so } \psi=\int \frac{\partial \psi}{\partial y} d y+f(x)=\int \frac{v_{y}}{h} d y+f(x)=\frac{v_{y}}{2 h}+f(x)
$$

Let $\psi=0$ at $y=0$, so $f(x)=0$

$$
\psi=\frac{U y^{2}}{2 h}
$$

Stream function is maximum at $y=h$.

$$
\begin{aligned}
& \psi_{\text {max }}=\frac{U h^{2}}{2 h}=\frac{U h}{2} ; Q / Q_{5}=\psi_{\max }-\psi_{\min }=\frac{U h}{2}-0=\frac{U h}{2} \\
& \psi_{Q / 2}=\frac{1}{2} \psi_{\max }=\frac{U h}{4}=\frac{U y^{2}}{2 h}
\end{aligned}
$$

Thus

$$
y^{2}=\frac{2 h}{v} \frac{v h}{4}=\frac{h^{2}}{2} \text { so } y=\frac{h}{\sqrt{2}}
$$

Problem *5.24

*5.24 Determine the family of stream functions ψ that will yield the velocity field $\vec{V}=y(2 x+1) \hat{i}+\left[x(x+1)-y^{2}\right] \hat{j}$.

Given: Velocity field

Find: Stream function ψ

Solution:

Basic equation: $\quad \frac{\partial}{\partial x}(\rho \cdot \mathrm{u})+\frac{\partial}{\partial y}(\rho \cdot \mathrm{v})+\frac{\partial}{\partial z}(\rho \cdot \mathrm{w})+\frac{\partial}{\partial t} \rho=0 \quad \mathrm{u}=\frac{\partial}{\partial y} \psi \quad \mathrm{v}=-\frac{\partial}{\partial \mathrm{x}} \psi$

Assumption: Incompressible flow; flow in $x-y$ plane

Hence

$$
\frac{\partial}{\partial x} u+\frac{\partial}{\partial y} v=0
$$

or
$\frac{\partial}{\partial x}[y \cdot(2 x+2)]+\frac{\partial}{\partial y}\left[x \cdot(x+1)-y^{2}\right] \rightarrow 0$
Hence

$$
\mathrm{u}=\mathrm{y} \cdot(2 \cdot \mathrm{x}+1)=\frac{\partial}{\partial \mathrm{y}} \psi
$$

$$
\psi(x, y)=\int y \cdot(2 \cdot x+1) d y=x \cdot y^{2}+\frac{y^{2}}{2}+f(x)
$$

and

$$
\mathrm{v}=\mathrm{x} \cdot(\mathrm{x}+1)-\mathrm{y}^{2}=-\frac{\partial}{\partial \mathrm{x}} \psi
$$

$$
\psi(x, y)=-\int\left[x \cdot(x+1)-y^{2}\right] d x=-\frac{x^{3}}{3}-\frac{x^{2}}{2}+x \cdot y^{2}+g(y)
$$

Comparing these

$$
f(x)=-\frac{x^{3}}{3}-\frac{x^{2}}{2} \quad \text { and }
$$

$$
g(y)=\frac{y^{2}}{2}
$$

The stream function is $\psi(x, y)=\frac{y^{2}}{2}+x \cdot y^{2}-\frac{x^{2}}{2}-\frac{x^{3}}{3}$
Checking

$$
\begin{aligned}
& u(x, y)=\frac{\partial}{\partial y}\left(\frac{y^{2}}{2}+x \cdot y^{2}-\frac{x^{2}}{2}-\frac{x^{3}}{3}\right) \rightarrow u(x, y)=y+2 \cdot x \cdot y \\
& v(x, y)=-\frac{\partial}{\partial x}\left(\frac{y^{2}}{2}+x \cdot y^{2}-\frac{x^{2}}{2}-\frac{x^{3}}{3}\right) \rightarrow v(x, y)=x^{2}+x-y^{2}
\end{aligned}
$$

Problem *5.25
Given: Stream function for an incompressible flow field,

$$
\psi=-U r \sin \theta+\frac{q}{2 \pi} \theta
$$

Find: (a) An expression for the velocity field.
(b) Points where $|\vec{v}|=0$.
(c) Show $\psi=0$ where $|\vec{V}|=0$.

Solution: The velocity components are given by

$$
\begin{aligned}
& V_{r}=\frac{1}{r} \frac{\partial \psi}{\partial \theta}=-v \cos \theta+\frac{q}{2 \pi r} \\
& V_{\theta}=-\frac{\partial \psi}{\partial r}=v \sin \theta
\end{aligned}
$$

so $\vec{v}=V_{r} \hat{\nu}_{r}+V_{\theta} \hat{\imath}_{\theta}=\left(-U \cos \theta+\frac{q}{2 \pi r}\right) \hat{\nu}_{r}+v_{\sin } \theta \hat{r}_{\theta}$
Now $|\vec{v}|=\left(V_{r}^{2}+V_{\theta}^{2}\right)^{1 / 2}=0$ only when both V_{r} and V_{θ} are zero.
From the component equations, $V_{v}=0$ for $\theta=0, \pi$. When $V_{r}=0$,

$$
r=\frac{q}{2 \pi v \cos \theta}
$$

For $r>0$, then $V_{r}=0$ for $\theta=0$, and $r=\frac{q}{2 \pi U}$.
stagnation point $(|\vec{V}|=0)$ occurs at $(r, \theta)=\left(\frac{q}{2 \pi v}, 0\right)$
substituting, $\left.\psi_{\text {stagnation }}=-\sigma r \sin \theta+\frac{q}{2 \pi} \theta\right]_{r=\frac{q}{2 \pi U}}, \theta=0$
or $\psi_{\text {stagnation }}=0$
*5.26 Does the velocity field of Problem 5.22 represent a possible incompressible flow case? If so, evaluate and sketch the stream function for the flow. If not, evaluate the rate of change of density in the flow field.

Given: The velocity field

Find: Whether or not it is a incompressible flow; sketch stream function

Solution:

	$\mathrm{V}_{\mathrm{r}}=\frac{\mathrm{A}}{\mathrm{r}}$	$\mathrm{V}_{\theta}=\frac{\mathrm{B}}{\mathrm{r}}$
For incompressible flow	$\frac{1}{\mathrm{r}} \cdot \frac{\mathrm{d}}{\mathrm{dr}}\left(\mathrm{r} \cdot \mathrm{V}_{\mathrm{r}}\right)+\frac{1}{\mathrm{r}} \cdot \frac{\mathrm{d}}{\mathrm{d} \theta} \mathrm{V}_{\theta}=0$	$\frac{1}{\mathrm{r}} \cdot \frac{\mathrm{d}}{\mathrm{dr}}\left(\mathrm{r} \cdot \mathrm{V}_{\mathrm{r}}\right)=0$
Hence	$\frac{1}{\mathrm{r}} \cdot \frac{\mathrm{d}}{\mathrm{dr}}\left(\mathrm{r} \cdot \mathrm{V}_{\mathrm{r}}\right)+\frac{1}{\mathrm{r}} \cdot \frac{\mathrm{d}}{\mathrm{d} \theta} \mathrm{V}_{\theta}=0$	Flow is incompressible
For the stream function	$\frac{\partial}{\partial \theta} \psi=\frac{1}{\mathrm{~d} \theta} \cdot \mathrm{~V}_{\mathrm{r}}=\mathrm{A}$	
Integrating	$\psi=\mathrm{A} \cdot \theta+\mathrm{f}(\mathrm{r})$	
Comparing, stream function is	$\psi=\mathrm{A} \cdot \theta-\mathrm{B} \cdot \ln (\mathrm{r})$	$\psi=-\mathrm{B} \cdot \ln (\mathrm{r})+\mathrm{g}(\theta)$

*5.27 Consider a flow with velocity components $u=0, v=$
$y\left(y^{2}-3 z^{2}\right)$, and $w=z\left(z^{2}-3 y^{2}\right)$.
a. Is this a one-, two-, or three-dimensional flow?
b. Demonstrate whether this is an incompressible or compressible flow.
c. If possible, derive a stream function for this flow.

Given: Velocity field
Find: Whether it's 1D, 2D or 3D flow; Incompressible or not; Stream function ψ

Solution:

Basic equation:

$$
\frac{\partial}{\partial \mathrm{x}}(\rho \cdot \mathrm{u})+\frac{\partial}{\partial \mathrm{y}}(\rho \cdot \mathrm{v})+\frac{\partial}{\partial \mathrm{z}}(\rho \cdot \mathrm{w})+\frac{\partial}{\partial \mathrm{t}} \rho=0 \quad \mathrm{v}=\frac{\partial}{\partial \mathrm{z}} \psi \quad \mathrm{w}=-\frac{\partial}{\partial \mathrm{y}} \psi
$$

Assumption: Incompressible flow; flow in y-z plane ($u=0$)
Velocity field is a function of y and z only, so is 2 D

Check for incompressible $\frac{\partial}{\partial \mathrm{y}} \mathrm{v}+\frac{\partial}{\partial \mathrm{z}} \mathrm{w}=0$

$$
\frac{\partial}{\partial y}\left[y \cdot\left(y^{2}-3 \cdot z^{2}\right)\right] \rightarrow 3 \cdot y^{2}-3 \cdot z^{2}
$$

$$
\frac{\partial}{\partial z}\left[z \cdot\left(z^{2}-3 \cdot y^{2}\right)\right] \rightarrow 3 \cdot z^{2}-3 \cdot y^{2}
$$

Hence

$$
\frac{\partial}{\partial y} v+\frac{\partial}{\partial z} w=0
$$

Flow is INCOMPRESSIBLE

Hence

$$
\mathrm{v}=\mathrm{y} \cdot\left(\mathrm{y}^{2}-3 \cdot \mathrm{z}^{2}\right)=\frac{\partial}{\partial \mathrm{z}} \psi
$$

$$
\psi(y, z)=\int y \cdot\left(y^{2}-3 \cdot z^{2}\right) d z=y^{3} \cdot z-y \cdot z^{3}+f(y)
$$

and

$$
\mathrm{w}=\mathrm{z} \cdot\left(\mathrm{z}^{2}-3 \cdot \mathrm{y}^{2}\right)=-\frac{\partial}{\partial \mathrm{y}} \psi
$$

$$
\psi(y, z)=-\int\left[z \cdot\left(z^{2}-3 \cdot y^{2}\right)\right] d y=-y \cdot z^{3}+z \cdot y^{3}+g(z)
$$

Comparing these

$$
f(y)=0
$$

and
$g(z)=0$

The stream function is

$$
\psi(\mathrm{y}, \mathrm{z})=\mathrm{z} \cdot \mathrm{y}^{3}-\mathrm{z}^{3} \cdot \mathrm{y}
$$

Checking

$$
\begin{aligned}
& u(y, z)=\frac{\partial}{\partial z}\left(z \cdot y^{3}-z^{3} \cdot y\right) \rightarrow u(y, z)=y^{3}-3 \cdot y \cdot z^{2} \\
& w(y, z)=-\frac{\partial}{\partial y}\left(z \cdot y^{3}-z^{3} \cdot y\right) \rightarrow w(y, z)=z^{3}-3 \cdot y^{2} \cdot z
\end{aligned}
$$

Problem *5.28
Gwen: An incompressible, frictionless flow specified by

$$
\dot{\psi}=-2 R x-5 A y ; x, y \text { in meters, } A=1 \text { mb s }
$$

Find: (a) Sketch streamlines $\psi=0$ and $w=5 \mathrm{~m}^{2} / \mathrm{s}$
(b) Velocity vector at $(0,0)$
(c) Flow rate between streamlines passing trough points $(2,2)$ and $(4,1)$
Solution: Streamlines are lines $\psi=$ constant
For $\mathbb{H}=0, \quad 0=-2 A x-5 A y$ or $y=-\frac{2}{5} x$
For $u=5,5=-24 x-54 y$ or $y=-\frac{2}{5} x-\frac{1}{5} \times \frac{5 y^{2}}{5} \times \frac{5}{m}=-\frac{2}{5} x-14$

$$
\begin{aligned}
& u=\frac{\partial v}{\partial y}=-5 A ; v=-\frac{\partial \psi}{\partial t}=2 A, \quad \text { so } \vec{v}=-5 \hat{\imath}+2 \hat{\jmath} \text { m } l_{s}+\vec{V} \\
& Q=\int_{x=b}^{x=a} v d x=\int_{x=b}^{x=a}-\frac{\partial \psi}{2 t} d x=\int_{\psi_{b}}^{\psi_{a}}-d \psi=\psi_{b}-\psi_{a}=\left|r^{2}\right|_{s}, \text { ie } \hat{}
\end{aligned}
$$

Thus $Q=1 \mathrm{~m}^{3} / \mathrm{s}$ per meter of dept.

Problem *5.29

*5.29 In a parallel one-dimensional flow in the positive x direction, the velocity varies linearly from zero at $y=0$ to $30 \mathrm{~m} / \mathrm{s}$ at $y=1.5 \mathrm{~m}$. Determine an expression for the stream function, ψ. Also determine the y coordinate above which the volume flow rate is half the total between $y=0$ and $y=1.5 \mathrm{~m}$.

Given: Linear velocity profile
Find: \quad Stream function ψ; y coordinate for half of flow

Solution:

Basic equations: $\quad u=\frac{\partial}{\partial y} \psi \quad v=-\frac{\partial}{\partial x} \psi \quad$ and we have $u=U \cdot\left(\frac{y}{h}\right) \quad v=0$

Assumption: Incompressible flow; flow in $\mathrm{x}-\mathrm{y}$ plane
Check for incompressible $\quad \frac{\partial}{\partial \mathrm{x}} \mathrm{u}+\frac{\partial}{\partial \mathrm{y}} \mathrm{v}=0$

$$
\frac{\partial}{\partial \mathrm{x}}\left(\mathrm{U} \cdot \frac{\mathrm{y}}{\mathrm{~h}}\right) \rightarrow 0
$$

$$
\frac{\partial}{\partial y} 0 \rightarrow 0
$$

Hence

$$
\frac{\partial}{\partial \mathrm{x}} \mathrm{u}+\frac{\partial}{\partial \mathrm{y}} \mathrm{v}=0
$$

Flow is INCOMPRESSIBLE

Hence

$$
\mathrm{u}=\mathrm{U} \cdot \frac{\mathrm{y}}{\mathrm{~h}}=\frac{\partial}{\partial \mathrm{y}} \psi
$$

$$
\psi(\mathrm{x}, \mathrm{y})=\int \mathrm{U} \cdot \frac{\mathrm{y}}{\mathrm{~h}} \mathrm{dy}=\frac{\mathrm{U} \cdot \mathrm{y}^{2}}{2 \cdot \mathrm{~h}}+\mathrm{f}(\mathrm{x})
$$

and

$$
\mathrm{v}=0=-\frac{\partial}{\partial \mathrm{x}} \psi
$$

$$
\psi(\mathrm{x}, \mathrm{y})=-\int 0 \mathrm{dx}=\mathrm{g}(\mathrm{y})
$$

Comparing these

$$
f(x)=0
$$

and

$$
\mathrm{g}(\mathrm{y})=\frac{\mathrm{U} \cdot \mathrm{y}^{2}}{2 \cdot \mathrm{~h}}
$$

The stream function is $\quad \psi(x, y)=\frac{\mathrm{U} \cdot \mathrm{y}^{2}}{2 \cdot \mathrm{~h}}$
For the flow $(0<y<h) \quad Q=\int_{0}^{h} u d y=\frac{U}{h} \cdot \int_{0}^{h} y d y=\frac{U \cdot h}{2}$

For half the flow rate

$$
\frac{\mathrm{Q}}{2}=\int_{0}^{\mathrm{h}_{\text {half }}} \mathrm{udy}=\frac{\mathrm{U}}{\mathrm{~h}} \cdot \int_{0}^{\mathrm{h}_{\text {half }}} \mathrm{y} d \mathrm{dy}=\frac{\mathrm{U} \cdot \mathrm{~h}_{\text {half }}^{2}}{2 \cdot \mathrm{~h}}=\frac{1}{2} \cdot\left(\frac{\mathrm{U} \cdot \mathrm{~h}}{2}\right)=\frac{\mathrm{U} \cdot \mathrm{~h}}{4}
$$

Hence

$$
h_{\text {half }}^{2}=\frac{1}{2} \cdot h^{2}
$$

$$
\mathrm{h}_{\text {half }}=\frac{1}{\sqrt{2}} \cdot \mathrm{~h}=\frac{1.5 \cdot \mathrm{~m}}{\sqrt{2} \cdot \mathrm{~s}}=1.06 \cdot \frac{\mathrm{~m}}{\mathrm{~s}}
$$

Given: Linear approximation to boundary layer velocity profile

$$
u=v \frac{y}{\delta}
$$

Find: (a) stream function for the flow field
(b) location of streamlines at one-quarter and one-half the total flow rate in the boundary layer.
Solution: For $2 \rightarrow$ incompressible flow, \& satisfies

$$
u=\frac{\partial u}{\partial y}=u \frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}=0 . \quad \therefore \alpha=\left(\frac{\partial v}{\partial y} d y+f(x)=\left(v \frac{y}{\delta} d y+f(x)\right.\right.
$$

Thus $\psi=\frac{V y^{2}}{2 \delta}+f(x)$
Let $\psi=0$ along $y=0$, so $f(x)=0$ and $\psi=\frac{v}{2 \delta} y^{2}$ The total flow rate with in the boundary layer is

$$
\begin{array}{r}
\stackrel{Q}{N}=\psi(\delta)-\psi(\delta)=\frac{1}{2} U \delta \\
\text { At } \frac{1}{4} \text { of total }, \psi-\psi_{0}=\frac{Y}{2 \delta} y^{2}=\frac{1}{4}\left(\frac{1}{2} U \delta\right) \\
\therefore\left(\frac{y}{\xi}\right)^{2}=\frac{1}{4} \quad \text { and } \frac{y}{\delta}=\frac{1}{2} \tag{1}
\end{array}
$$

At $\frac{1}{2}$ of total, $u-w_{0}=\frac{U}{2 \delta} y^{2}=\frac{1}{2}\left(\frac{1}{2}-\Pi \delta\right)$

$$
\therefore\left(\frac{y}{\delta}\right)^{2}=\frac{1}{2} \quad \text { and } \frac{y}{\delta}=\sqrt{\frac{1}{2}}=0.107<\frac{1}{2} \frac{Q}{W}
$$

Given: Parabolic approximation to boundary layer velocity profile

$$
{ }^{\text {file }}=v\left[2\left(\frac{y}{\delta}\right)-\left(\frac{y}{\delta}\right)^{2}\right]
$$

Find: (a) stream function for the flow field
(b) location of streamlines at one-quarter and one-half the total flow rate in the boundary layer.
Solution: For $2 \rightarrow$ incompressible flow, 4 satisfies

$$
\begin{aligned}
& u=\frac{\partial u}{\partial y}=v\left[2\left(\frac{y}{\delta}\right)-\left(\frac{y}{\delta}\right)^{2}\right] \\
& \therefore \quad \frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}=0 \\
& \therefore=\left[\frac{\partial u}{\partial y} d y+f(x)=v\left(\left[2\left(\frac{y}{\delta}\right)-\left(\frac{y}{\delta}\right)^{2}\right] d y+f(x) .\right.\right. \\
& \psi=v\left[\frac{y^{2}}{\delta}-\frac{y^{3}}{3 \delta^{2}}\right]+f(t)
\end{aligned}
$$

Let $\psi=0$ along $y=0$, so $f(x)=0$ and $\left.\psi=0 \delta\left[\left(\frac{y}{\delta}\right)^{2}-\frac{1}{3}\left(\frac{y}{\delta}\right)^{3}\right]\right]$ The total flow rate within the boundary layer is

$$
\underset{N}{Q}=\psi(\delta)-\psi(0)=U \delta\left[1-\frac{1}{3}\right]=\frac{2}{3} U \delta
$$

At $\frac{1}{4}$ of total, $\dot{\psi}-\omega_{0}=v \delta\left[\left(\frac{y}{1} / \delta\right)^{2}-\frac{1}{3}\left(\frac{y}{\delta}\right)^{3}\right]=\frac{1}{4}\left(\frac{2}{3} v \delta\right)$

$$
\therefore\left(\frac{y}{8}\right)^{2}-\frac{1}{3}\left(\frac{y}{\delta}\right)^{3}=\frac{1}{6}=0.167
$$

Trial and error solution gives $\frac{y}{\delta}=0.442 \ldots \quad \frac{1}{4} \frac{\theta}{\omega}$
At $\frac{1}{2}$ of total, $w-v_{0}=\operatorname{v\delta }\left[(y / \delta)^{2}-\frac{1}{3}(y \mid \delta)^{3}\right]=\frac{1}{2}\left(\frac{2}{3} 0 \delta\right)$

$$
\therefore\left(\frac{y}{\delta}\right)^{2}-\frac{1}{3}\left(\frac{y}{8}\right)^{3}=\frac{1}{3}=0.333
$$

Trial and error solution gives $\frac{y}{\delta}=0.652$ _ $\frac{1}{2} \frac{Q}{w}$

Given: Sinusoidal approximation to boundary layer velocity profile

$$
u=U \sin \left(\frac{\pi}{2} \frac{y}{\delta}\right)
$$

Find: Locate stream lines at quarter and half total flow rate.
Solution: Flow is incompressible so 4 may be derived.

$$
u=\frac{\partial \psi}{\partial y}=v \sin \left(\frac{\pi}{2} \frac{y}{\delta}\right) ; \psi=\int \frac{\partial \psi}{\partial y} d y+f(x)=\int v \sin \left(\frac{\pi}{2} \frac{y}{\delta}\right) d y+f(x)
$$

Thus $\quad \psi=-\frac{2 \delta U}{\pi} \cos \left(\frac{\pi}{2} \frac{y}{\delta}\right)+f(x)$
Let $\psi=0$ along $y=0$, so $f(x)=0$

$$
\psi=-\frac{2 \delta U}{\pi} \cos \left(\frac{\pi}{2} \frac{\psi}{\delta}\right)
$$

The total flow rate is $\frac{Q}{\omega}=\psi(\delta)-\psi(0)=-\frac{2 \delta U}{\pi} \cos \left(\frac{\pi}{2}\right)+\frac{2 \delta \theta}{\pi} \cos (0)=\frac{2 \delta U}{\pi}$
At $1 / 4$ of total, $\psi-\psi_{0}=\frac{2 \delta U}{\pi}\left[1-\cos \left(\frac{\pi}{2} \frac{y}{\delta}\right)\right]=\frac{1}{4} \frac{2 \delta U}{\pi}=\frac{\delta U}{2 \pi}$

$$
1-\cos \left(\frac{\pi}{2} \frac{y}{\delta}\right)=\frac{\pi}{2 \delta U} \frac{\delta V}{2 \pi}=\frac{1}{4} ; \cos \left(\frac{\pi}{2} \frac{y}{\delta}\right)=\frac{3}{4} ; \frac{y}{\delta}=0.460
$$

At $1 / 2$ of total,,$\psi-\psi_{0}=\frac{2 \delta U}{\pi}\left[1-\cos \left(\frac{\pi}{2} \frac{y}{\delta}\right)\right]=\frac{1}{2} \frac{2 \delta U}{\pi}=\frac{\delta U}{\pi}$

$$
1-\cos \left(\frac{\pi}{2} \frac{y}{\delta}\right)=\frac{\pi}{2 \delta V} \frac{\delta ण}{\pi}=\frac{1}{2} ; \quad \cos \left(\frac{\pi}{2} \frac{y}{\delta}\right)=\frac{1}{2} ; \frac{y}{\delta}=0.667
$$

*5.33 A cubic velocity profile was used to model flow in a laminar incompressible boundary layer in Problem 5.13. Derive the stream function for this flow field. Locate streamlines at one-quarter and one-half the total volume flow rate in the boundary layer.

Given: Data on boundary layer

Find: \quad Stream function; locate streamlines at $1 / 4$ and $1 / 2$ of total flow rate

Solution:

$$
\mathrm{u}(\mathrm{x}, \mathrm{y})=\mathrm{U} \cdot\left[\frac{3}{2} \cdot\left(\frac{\mathrm{y}}{\delta}\right)-\frac{1}{2} \cdot\left(\frac{\mathrm{y}}{\delta}\right)^{3}\right] \quad \text { and } \quad \delta(\mathrm{x})=\mathrm{c} \cdot \sqrt{\mathrm{x}}
$$

For the stream function $\mathrm{u}=\frac{\partial}{\partial \mathrm{y}} \psi=\mathrm{U} \cdot\left[\frac{3}{2} \cdot\left(\frac{\mathrm{y}}{\delta}\right)-\frac{1}{2} \cdot\left(\frac{\mathrm{y}}{\delta}\right)^{3}\right]$
Hence $\quad \psi=\int \mathrm{U} \cdot\left[\frac{3}{2} \cdot\left(\frac{\mathrm{y}}{\delta}\right)-\frac{1}{2} \cdot\left(\frac{\mathrm{y}}{\delta}\right)^{3}\right] \mathrm{dy} \quad \psi=\mathrm{U} \cdot\left(\frac{3}{4} \cdot \frac{\mathrm{y}^{2}}{\delta}-\frac{1}{8} \cdot \frac{\mathrm{y}^{4}}{\delta^{3}}\right)+\mathrm{f}(\mathrm{x})$

Let $\psi=0=0$ along $y=0$, so $\mathrm{f}(x)=0$, so

$$
\psi=\mathrm{U} \cdot \delta \cdot\left[\frac{3}{4} \cdot\left(\frac{\mathrm{y}}{\delta}\right)^{2}-\frac{1}{8} \cdot\left(\frac{\mathrm{y}}{\delta}\right)^{4}\right]
$$

The total flow rate in the boundary layer is

$$
\begin{aligned}
& \frac{\mathrm{Q}}{\mathrm{~W}}=\psi(\delta)-\psi(0)=\mathrm{U} \cdot \delta \cdot\left(\frac{3}{4}-\frac{1}{8}\right)=\frac{5}{8} \cdot \mathrm{U} \cdot \delta \\
& \psi-\psi_{0}=\mathrm{U} \cdot \delta \cdot\left[\frac{3}{4} \cdot\left(\frac{\mathrm{y}}{\delta}\right)^{2}-\frac{1}{8} \cdot\left(\frac{\mathrm{y}}{\delta}\right)^{4}\right]=\frac{1}{4} \cdot\left(\frac{5}{8} \cdot \mathrm{U} \cdot \delta\right)
\end{aligned}
$$

At $1 / 4$ of the total

$$
24 \cdot\left(\frac{\mathrm{y}}{\delta}\right)^{2}-4 \cdot\left(\frac{\mathrm{y}}{\delta}\right)^{4}=5 \quad \text { or } \quad 4 \cdot \mathrm{X}^{2}-24 \cdot \mathrm{X}+5=0 \quad \text { where } \quad \mathrm{X}^{2}=\frac{\mathrm{y}}{\delta}
$$

The solution to the quadratic is $X=\frac{24-\sqrt{24^{2}-4 \cdot 4 \cdot 5}}{2 \cdot 4} \quad X=0.216 \quad$ Note that the other root is $\quad \frac{24+\sqrt{24^{2}-4 \cdot 4 \cdot 5}}{2 \cdot 4}=5.784$
Hence

$$
\frac{\mathrm{y}}{\delta}=\sqrt{\mathrm{X}}=0.465
$$

At $1 / 2$ of the total flow $\psi-\psi_{0}=\mathrm{U} \cdot \delta \cdot\left[\frac{3}{4} \cdot\left(\frac{\mathrm{y}}{\delta}\right)^{2}-\frac{1}{8} \cdot\left(\frac{\mathrm{y}}{\delta}\right)^{4}\right]=\frac{1}{2} \cdot\left(\frac{5}{8} \cdot \mathrm{U} \cdot \delta\right)$

$$
12 \cdot\left(\frac{y}{\delta}\right)^{2}-2 \cdot\left(\frac{y}{\delta}\right)^{4}=5 \quad \text { or } \quad 2 \cdot x^{2}-12 \cdot x+5=0 \quad \text { where } \quad x^{2}=\frac{y}{\delta}
$$

The solution to the quadratic is $\quad X=\frac{12-\sqrt{12^{2}-4 \cdot 2 \cdot 5}}{2 \cdot 2} \quad X=0.450 \quad$ Note that the other root is $\quad \frac{12+\sqrt{12^{2}-4 \cdot 2 \cdot 5}}{2 \cdot 2}=5.55$

Hence

$$
\frac{\mathrm{y}}{\delta}=\sqrt{\mathrm{X}}=0.671
$$

Given: Rigid-body motion in Example Problem 5.6

$$
\vec{V}=r \omega \hat{e}_{\theta} \quad \omega=0.5 \mathrm{rad} / \mathrm{s}
$$

Find: (a) obtain the stream function for this flow.
(b) Evaluate the volume flow rate per unit depth between $r=0.10 \mathrm{~m}$ and $r_{c}=0.12 \mathrm{~m}$.
(c) Sketch the velocity profile wong a line of constant θ.
(d) Check the volume flow rate calculated from the stream function by integrating the velocity profile along this lIne.
Solution: From the definition of $\psi, \frac{\partial \psi}{\partial r}=-V_{\theta}=-r \omega$
Thus $\psi=\int \frac{\partial \psi}{\partial r} d r+f(\theta)=\int-r \omega d r+f(\theta)=-\frac{1}{2} r^{2} \omega+f(\theta)$
Bu+ $V_{r}=\frac{1}{r} \frac{\partial \psi}{\partial \theta}=\frac{1}{r} f^{\prime}(\theta)=0 \quad \therefore f(\theta)=C$
and $\psi=-\frac{1}{2} r^{2} \omega+c$
The volume flow rate per unit depth is

$$
\begin{aligned}
& \frac{Q}{b}=\psi\left(r_{2}\right)-\psi\left(r_{1}\right)=-\frac{1}{2} r_{2}^{2} \omega+c-\left[-\frac{1}{2} r_{1}^{2} \omega+c\right]=\frac{\omega}{2}\left(r_{1}^{2}-r_{2}^{2}\right) \\
& \frac{Q}{6}=\frac{1}{2} \times 0.5 \frac{r a d}{s}\left[(0.10 .)^{2}-(0.12)^{2}\right] m^{2}=-0.0011 \quad \mathrm{~m}^{3} / \mathrm{s} / \mathrm{m}
\end{aligned}
$$

Because $Q / 6<0$, flow is in the direction of \hat{e}_{θ}.
Along $\theta=$ constant, Vo varies linearly:
From the linear velocity variation, $V_{\theta}=$ ur
Thus $\left.\frac{Q}{b}=\int_{r_{1}}^{r_{2}} v_{\theta} d r=\int_{r_{1}}^{r_{2}} r \omega d r=\frac{1}{2} r^{2} \omega\right]_{r_{1}}^{r_{2}}=\frac{\omega}{2}\left(r_{2}^{2}-r_{1}^{2}\right)$
From the sketch, this flow is in the direction of \hat{e}_{θ}.
Comparing the expressions for Q / b shows they are the same except for sign.

Problem *5.35
Given: Velocity field for a free vortex from Example Problem 5.6 :

$$
\vec{V}=\frac{c}{r} \hat{e}_{B} \quad c=0.5 \mathrm{~m}^{2} / \mathrm{sec}
$$

Find: (a) Obtain the stream function for this flow.
(b) Evaluate the volume flow rate per unit depth between $r_{1}=0.10 \mathrm{~m}$ and $r_{2}=0.12 \mathrm{~m}$.
(c) Sketch the velocity profile along a line of constant θ.
(d) Check the volume flow rate calculated from the stream function by integrating the velocity profile along this line.

Solution: From the definition of $\psi, \frac{\partial \psi}{\partial r}=-V_{\infty}=-\frac{c}{r}$
Thees $\psi=\int \frac{\partial \psi}{\partial r} d r+f(\theta)=\int-\frac{c}{r} d r+f(\theta)=-c l$ er $+f(\theta)$
But $V_{r}=\frac{1}{r} \frac{\partial \psi}{\partial \theta}=\frac{1}{r} f^{\prime}(\theta)=0$. Therefore $f(\theta)=$ constant $=c_{1}$, and

$$
\psi=-c \ln x+c_{1}
$$

The volume flow rate per unit depth is

$$
\begin{aligned}
& \frac{Q}{b}=\psi\left(r_{2}\right)-\psi\left(r_{1}\right)=-c \ln r_{2}+c_{1}-\left[-c \ln n_{1}+c_{1}\right]=c\left(\ln n_{1}-\ln \Omega_{2}\right) \times c \ln \left(\frac{r_{1}}{r_{2}}\right) \\
& \frac{Q}{b}=0.5 \frac{m^{2}}{5} \times \ln \left(\frac{0.10 \mathrm{~m}}{0.12 \mathrm{~m}}\right)=-0.0912 \mathrm{~m}^{3} / \mathrm{s} / \mathrm{m} \\
& Q / b \\
& \text { Because } Q)_{b}<0 \text {, flow is in the direction of } \hat{e}_{\theta} \text {. } \\
& \text { Along } \theta=\text { constant, Vevaries inversely within: } \\
& \text { From the expression for } \vec{V}, V_{\theta}=\frac{c}{r} \text {, This } \\
& \frac{Q}{b}=\int_{r_{1}}^{r_{2}} V_{02} d r=\int_{r_{1}}^{r_{2}} \frac{c}{r} d r=c \ln \left(\frac{r_{2}}{n_{1}}\right)
\end{aligned}
$$

From the sketch, this flow is in the direction of \hat{e}_{0}.
Comparing shows that the expressions for Q / b are the same except for sign.

Problem 5.36
5.36 Consider the velocity field $\vec{V}=A\left(x^{4}-6 x^{2} y^{2}+y^{4}\right) \hat{i}+$ $A\left(4 x y^{3}-4 x^{3} y\right) \hat{j}$ in the $x y$ plane, where $A=0.25 \mathrm{~m}^{-3} \cdot \mathrm{~s}^{-1}$, and the coordinates are measured in meters. Is this a possible incompressible flow field? Calculate the acceleration of a fluid particle at point $(x, y)=(2,1)$.

Given: Velocity field
Find: \quad Whether flow is incompressible; Acceleration of particle at $(2,1)$

Solution:

Basic equations

$$
\begin{aligned}
& \frac{\partial}{\partial \mathrm{x}} \mathrm{u}+\frac{\partial}{\partial \mathrm{y}} \mathrm{v}=0 \quad \quad \vec{a}_{p}=\underbrace{\frac{D \vec{V}}{D t}}_{\begin{array}{c}
\text { total } \\
\text { acceleration } \\
\text { of a particle }
\end{array}}=\underbrace{u \frac{\partial \vec{V}}{\partial x}+v \frac{\partial \vec{V}}{\partial y}+w \frac{\partial \vec{V}}{\partial z}}_{\begin{array}{c}
\text { convective } \\
\text { acceleration }
\end{array}}+\underbrace{\frac{\partial \vec{V}}{\partial t}}_{\begin{array}{c}
\text { local } \\
\text { acceleration }
\end{array}} \\
& \mathrm{u}(\mathrm{x}, \mathrm{y})=\mathrm{A} \cdot\left(\mathrm{x}^{4}-6 \cdot \mathrm{x}^{2} \cdot \mathrm{y}^{2}+\mathrm{y}^{4}\right) \quad \mathrm{v}(\mathrm{x}, \mathrm{y})=\mathrm{A} \cdot\left(4 \cdot \mathrm{x} \cdot \mathrm{y}^{3}-4 \cdot \mathrm{x}^{3} \cdot \mathrm{y}\right)
\end{aligned}
$$

For incompressible flow $\quad \frac{\partial}{\partial \mathrm{x}} \mathrm{u}+\frac{\partial}{\partial \mathrm{y}} \mathrm{v}=0$
Checking

$$
\frac{\partial}{\partial x}\left[A \cdot\left(x^{4}-6 \cdot x^{2} \cdot y^{2}+y^{4}\right)\right] \rightarrow A \cdot\left(4 \cdot x^{3}-12 \cdot x \cdot y^{2}\right) \quad \frac{\partial}{\partial y}\left[A \cdot\left(4 \cdot x \cdot y^{3}-4 \cdot x^{3} \cdot y\right)\right] \rightarrow-A \cdot\left(4 \cdot x^{3}-12 \cdot x \cdot y^{2}\right)
$$

Hence

$$
\frac{\partial}{\partial x} u+\frac{\partial}{\partial y} v=0
$$

The acceleration is given by

For this flow $\quad a_{x}=u \cdot \frac{\partial}{\partial x} u+v \cdot \frac{\partial}{\partial y} u$

$$
a_{x}=A \cdot\left(x^{4}-6 \cdot x^{2} \cdot y^{2}+y^{4}\right) \cdot \frac{\partial}{\partial x}\left[A \cdot\left(x^{4}-6 \cdot x^{2} \cdot y^{2}+y^{4}\right)\right]+A \cdot\left(4 \cdot x \cdot y^{3}-4 \cdot x^{3} \cdot y\right) \cdot \frac{\partial}{\partial y}\left[A \cdot\left(x^{4}-6 \cdot x^{2} \cdot y^{2}+y^{4}\right)\right]
$$

$$
a_{x}=4 \cdot A^{2} \cdot x \cdot\left(x^{2}+y^{2}\right)^{3}
$$

$$
\mathrm{a}_{\mathrm{y}}=\mathrm{u} \cdot \frac{\partial}{\partial \mathrm{x}} \mathrm{v}+\mathrm{v} \cdot \frac{\partial}{\partial \mathrm{y}} \mathrm{v}
$$

$$
a_{y}=A \cdot\left(x^{4}-6 \cdot x^{2} \cdot y^{2}+y^{4}\right) \cdot \frac{\partial}{\partial x}\left[A \cdot\left(4 \cdot x \cdot y^{3}-4 \cdot x^{3} \cdot y\right)\right]+A \cdot\left(4 \cdot x \cdot y^{3}-4 \cdot x^{3} \cdot y\right) \cdot \frac{\partial}{\partial y}\left[A \cdot\left(4 \cdot x \cdot y^{3}-4 \cdot x^{3} \cdot y\right)\right]
$$

$$
a_{y}=4 \cdot A^{2} \cdot y \cdot\left(x^{2}+y^{2}\right)^{3}
$$

Hence at $(2,1)$

$$
\begin{array}{ll}
\mathrm{a}_{\mathrm{x}}=4 \times\left(\frac{1}{4} \cdot \frac{1}{\mathrm{~m}^{3} \cdot \mathrm{~s}}\right)^{2} \times 2 \cdot \mathrm{~m} \times\left[(2 \cdot \mathrm{~m})^{2}+(1 \cdot \mathrm{~m})^{2}\right]^{3} & a_{x}=62.5 \frac{\mathrm{~m}}{\mathrm{~s}^{2}} \\
\mathrm{a}_{\mathrm{y}}=4 \times\left(\frac{1}{4} \cdot \frac{1}{\mathrm{~m}^{3} \cdot \mathrm{~s}}\right)^{2} \times 1 \cdot \mathrm{~m} \times\left[(2 \cdot \mathrm{~m})^{2}+(1 \cdot \mathrm{~m})^{2}\right]^{3} & a_{y}=31.3 \frac{\mathrm{~m}}{\mathrm{~s}^{2}} \quad a=\sqrt{\mathrm{a}_{\mathrm{x}}{ }^{2}+\mathrm{a}_{\mathrm{y}}{ }^{2}} \quad a=69.9 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}
\end{array}
$$

Problem 5.37
Given: How field $\vec{v}=x y^{2} \hat{\imath}-\frac{1}{3} y^{3} \hat{\jmath}+x y \hat{k}$
Find: (a) Dimensions.
(b) If possible incompressible flow.
(c) Acceleration of particle at point $(x, y, z)=(1, z, 3)$.

Solution: Apply continuity, use substantial derivative.
Basic equations: $\frac{\partial \rho u}{\partial x}+\frac{\partial \rho v}{\partial y}+\frac{\partial p \hat{w}}{\partial z}+\frac{\partial f^{\prime}}{\partial t}=0(z)$

$$
\vec{a}_{p}=\frac{\partial \vec{v}}{D t}=u \frac{\partial \vec{v}}{\partial x}+v \frac{\partial \vec{v}}{\partial y}+w \frac{\partial v}{\partial \dot{\partial}}+\frac{\partial v}{\partial t}
$$

Assumptions: (1) Two-dimensional flow, $\vec{v}=\vec{v}(x, y)$, so $\partial / \partial z=0$
(2) Incompressible flow
(s) steady flow, $\vec{v} \neq \vec{v}(t)$

Then $\frac{\partial u}{\partial x}+\frac{\partial \pi}{\partial y}=y^{2}-y^{2}=0$ Flow is a possible incompressible case.

$$
\begin{aligned}
& \vec{a}_{p}=u \frac{\partial \vec{v}}{\partial x}+v \frac{\partial \vec{v}}{\partial y} ; \quad \frac{\partial \vec{v}}{\partial x}=y^{2} \hat{\imath}+y \hat{k} ; \quad \frac{\partial \vec{v}}{\partial y}=2 x y \hat{\imath}-y^{2} \hat{\jmath}+x \hat{k} \\
&=\left(x y^{2}\right)\left(y^{2} \hat{\imath}+y \hat{k}\right)+\left(-\frac{1}{3} y^{3}\right)\left(2 x y \hat{\imath}-y^{2} \hat{\jmath}+x \hat{k}\right) \\
&=\hat{\imath}\left(x y^{4}-\frac{2}{3} x y^{4}\right)+\hat{\jmath}\left(\frac{1}{3} y^{5}\right)+\hat{k}\left(x y^{3}-\frac{1}{3} x y^{3}\right) \\
& \vec{a}_{p}=\hat{\imath}\left(\frac{1}{3} x y^{4}\right)+\hat{\jmath}\left(\frac{1}{3} y^{5}\right)+\hat{k}\left(\frac{2}{3} x y^{3}\right) \\
& \text { At }(x, y, z)=(1,2,3) \\
& \vec{a}_{p}=\hat{\imath}\left[\frac{1}{3}(1)(16)\right]+\hat{\jmath}\left[\frac{1}{3}(32)\right]+\hat{k}\left[\frac{2}{3}(1)(8)\right]=\frac{16}{3} \hat{\imath}+\frac{32}{3} \hat{\jmath}+\frac{16}{3} \hat{k} \\
&\left(\vec{a}_{p} \text { will be in m/s }\right)
\end{aligned}
$$

Problem 5.38
Given: Flow field $\vec{v}=a x^{2} y \hat{\imath}-b y \hat{\jmath}+c z^{2} \hat{k}$;

$$
\begin{aligned}
& a=1 / \mathrm{m}^{2} \cdot \mathrm{~s} \\
& b=3 / \mathrm{s} \\
& c=2 / \mathrm{m} \cdot \mathrm{~s}
\end{aligned}
$$

Find: (a) Dimensions of flow field.
(b) If possible incompressible flow.
(c) Acceleration of a particle at $(x, y, z)=(3,1, z)$.

Solution: Apply continuity, use substantial derivative. Basic equations: $\frac{\partial \rho u}{\partial x}+\frac{\partial \rho v}{\partial y}+\frac{\partial \rho w}{\partial z}+\frac{\partial \rho \mu}{\partial^{t}}=0$

$$
\begin{aligned}
& \partial x \quad \partial y \\
& \vec{a}_{p}=\frac{\partial \vec{v}}{D t}=u \frac{\partial \vec{v}}{\partial x}+v \frac{\partial \vec{v}}{\partial y}+w \frac{\partial \vec{v}}{\partial z}+\frac{\partial v}{\partial t} \\
& \text { impressible flow, } f=\text { constant }
\end{aligned}
$$

Assumption: Incompressible flow, $f=$ constant
Then $\frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}+\frac{\partial u}{\partial z}=0$ is criterion.
Note $\vec{v}=\vec{v}(x, y, z)$, so flow is three-dimensional, and

$$
\frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}+\frac{\partial w}{\partial z}=2 x y-3+4 z \neq 0
$$

Flow cannot be incompressible.

$$
\begin{aligned}
\vec{a}_{p} & =u \frac{\partial \vec{v}}{\partial x}+v \frac{\partial \vec{v}}{\partial y}+w \frac{\partial \vec{v}}{\partial z} ; \frac{\partial \vec{v}}{\partial x}=2 a x y \hat{\imath}, \frac{\partial \vec{v}}{\partial y}=a x^{2} \hat{\imath}-b \hat{\jmath}, \frac{\partial \vec{v}}{\partial z}=2 c z \hat{k} \\
& =\left(a x^{2} y\right)(2 a x y \hat{\imath})+(-b y)\left(a x^{2} \hat{\imath}-b \hat{\jmath}\right)+\left(c z^{2}\right)(2 c z \hat{k}) \\
\vec{a}_{p} & =\hat{\imath}\left(2 a^{2} x^{3} y^{2}-a b x^{2} y\right)+\hat{\jmath}\left(b^{2} y\right)+\hat{k}\left(2 c^{2} z\right)
\end{aligned}
$$

At $(x, y, z)=(3,1, z)$,

$$
\vec{a}_{p}=\hat{c}\left[2 \times \frac{(1)^{2}}{m^{4} \cdot s^{2}} \times(3)^{3} m_{x}^{3}(1)^{2} m^{2}-\frac{1}{m^{2} \cdot s} \times \frac{3}{5} \times(3)^{2} m_{x}^{2} / m\right]+\hat{\jmath}\left[\frac{(3)^{2}}{s^{2}} \times 1 m\right]+\hat{k}\left[2 \times \frac{2(2)^{2}}{m^{2}, s^{2}} \times(2)^{2} m^{3}\right]
$$

$\vec{a}_{p}=27 \hat{\imath}+9 \hat{\jmath}+64 \hat{k} \frac{m}{s^{2}}$

Given: Velocity field (within a lamias boundary layer) is given by $\vec{v}=A \frac{V y}{N^{12}}\left(i+\frac{y}{4 x} \hat{j}\right)$
where $A=141 \mathrm{~m}^{-112}$

$$
U=0.240 \mathrm{mls}
$$

Find: (a) Show that this velocity field represents a possible nicompressible flaw
(b) Calculate \vec{a} of particle at $(x, y)=(0.5 n, 5 \mathrm{~mm})$
(c) Slope of streamline through pout $(0.5 \mathrm{~m}, 5 \mathrm{~mm})$

Solution:
From given velocity field $\vec{v}=\vec{v}(-, y), w=0$, flow is steady (a) Check conservation of mass for $p=$ constant

$$
\begin{aligned}
& \frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}+\frac{\partial u}{\partial z}=0 \\
& \left.\begin{array}{ll}
u=A \frac{U y}{} \frac{\partial u}{\partial N^{2}}=-\frac{1}{2} A U \frac{y}{y^{2}} & \frac{y}{\partial / 2} \\
v=A U y^{2} x^{3 / 2} & \frac{\partial v}{\partial y}=\frac{1}{2} A U \frac{y}{x^{2} / 2}
\end{array}\right\} \begin{array}{l}
\frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}=0 \\
\therefore \text { compressible }
\end{array}
\end{aligned}
$$

-ane.
(b)

$$
\begin{aligned}
& \vec{a}=\overrightarrow{\partial \vec{v}}=u \frac{\partial \vec{y}}{\partial x}+v \frac{\overrightarrow{\partial y}}{\partial y}+w \frac{\overrightarrow{\partial r}}{\partial z}+\frac{\overrightarrow{\partial z}}{\partial t}{ }^{0} \\
& a_{R_{1}}=u \frac{\partial u}{\partial x}+v \frac{\partial u}{\partial y} ; \quad \frac{\partial u}{\partial y_{2}}=A V \frac{1}{\alpha_{2}}
\end{aligned}
$$

$$
\begin{aligned}
& a_{x_{x}}=-\frac{1}{2} A^{2} v^{2} \frac{y^{2}}{x^{2}}+A^{2} U^{2} \frac{y^{2}}{4 x^{2}}=-\frac{1}{4}(F v y)^{2} \\
& a_{p_{x}}=-\frac{1}{4}\left[\frac{141}{7.12} \times 0.240 \frac{\mathrm{~m}}{5} \times \frac{0.005 \mathrm{~m}}{0.5 \mathrm{~m}}\right]^{2}=-0.02 .8 b^{m} / \mathrm{s}^{2} \\
& a_{p_{y}}=u \frac{\partial v}{\partial x}+v \frac{\partial v}{\partial y} ; \quad \frac{\partial v}{\partial x}=-\frac{3}{8} \frac{A \bar{u} y^{2}}{-v^{2}} \\
& =A O \frac{y}{N^{2} 2}\left(-\frac{3}{8}+\frac{y^{2}}{i^{3 / 2}}\right)+A U \frac{y^{2}}{43^{3 / 2}}\left(\frac{1}{2} A U \frac{y}{x^{1 / 2}}\right) \\
& =-\frac{3}{8} A^{2} v^{2} \frac{y^{3}}{x^{3}}+\frac{1}{8} A^{2} v^{2} \frac{y^{3}}{x^{3}}=-\frac{1}{4} A^{2} v^{2} y^{3} \\
& a_{p_{y}}=-\frac{1}{4}\left(\frac{141}{\pi_{12}} \times 0.240 \frac{m}{\mathrm{~s}}\right)^{2}\left(\frac{0.005 m}{0.5 m}\right)^{3}=-2.86 \times\left. 10^{-4} m\right|_{s^{2}} \\
& \therefore \vec{a}_{p}=-2.86\left(10^{-2} \hat{\imath}+10^{-4} j\right) \mathrm{Ml}^{2}
\end{aligned}
$$

The slope of the streamings is given ty

$$
d y(d x)_{s}=\frac{v}{u}=\frac{y}{4 k}=\frac{5 \times 10^{-3} m}{4 \times 0.5 \mathrm{~m}}=0.0025
$$

5.40 The x component of velocity in a steady, incompressible flow field in the $x y$ plane is $u=A\left(x^{5}-10 x^{3} y^{2}+5 x y^{4}\right)$, where $A=$ $2 \mathrm{~m}^{-4} \cdot \mathrm{~s}^{-1}$ and x is measured in meters. Find the simplest y component of velocity for this flow field. Evaluate the acceleration of a fluid particle at point $(x, y)=(1,3)$.

Given: $\quad \mathrm{x}$ component of velocity field
Find: \quad Simplest y component for incompressible flow; Acceleration of particle at $(1,3)$

Solution:

Basic equations

$$
\mathrm{u}=\frac{\partial}{\partial \mathrm{y}} \psi \quad \mathrm{v}=-\frac{\partial}{\partial \mathrm{x}} \psi \quad \quad \vec{a}_{p}=\underbrace{\frac{D \vec{V}}{D t}}_{\begin{array}{c}
\text { total } \\
\text { acceleration } \\
\text { of a particle }
\end{array}}=\underbrace{u \frac{\partial \vec{V}}{\partial x}+v \frac{\partial \vec{V}}{\partial y}+w \frac{\partial \vec{V}}{\partial z}}_{\begin{array}{c}
\text { convective } \\
\text { acceleration }
\end{array}}+\underbrace{\frac{\partial \vec{V}}{\partial t}}_{\begin{array}{c}
\text { local } \\
\text { acceleration }
\end{array}}
$$

We are given

$$
u(x, y)=A \cdot\left(x^{5}-10 \cdot x^{3} \cdot y^{2}+5 \cdot x \cdot y^{4}\right)
$$

Hence for incompressible flow $\psi(x, y)=\int u d y=\int A \cdot\left(x^{5}-10 \cdot x^{3} \cdot y^{2}+5 \cdot x \cdot y^{4}\right) d y=A \cdot\left(x^{5} \cdot y-\frac{10}{3} \cdot x^{3} \cdot y^{3}+x \cdot y^{5}\right)+f(x)$

$$
v(x, y)=-\frac{\partial}{\partial x} \psi\left(x_{y}\right)=-\frac{\partial}{\partial x}\left[A \cdot\left(x^{5} \cdot y-\frac{10}{3} \cdot x^{3} \cdot y^{3}+x \cdot y^{5}\right)+f(x)\right]=-A \cdot\left(5 \cdot x^{4} \cdot y-10 \cdot x^{2} \cdot y^{3}+y^{5}\right)+F(x)
$$

Hence

$$
v(x, y)=-A \cdot\left(5 \cdot x^{4} \cdot y-10 \cdot x^{2} \cdot y^{3}+y^{5}\right)+F(x) \quad \text { where } F(x) \text { is an arbitrary function of } x
$$

The simplest is $v(x, y)=-A \cdot\left(5 \cdot x^{4} \cdot y-10 \cdot x^{2} \cdot y^{3}+y^{5}\right)$
The acceleration is given by

$$
\vec{a}_{p}=\underbrace{\frac{D \vec{V}}{D t}=\underbrace{u \frac{\partial \vec{V}}{\partial x}+v \frac{\partial \vec{V}}{\partial y}+w \frac{\partial \vec{V}}{\partial z}}_{\begin{array}{c}
\text { convective } \\
\text { acceleration }
\end{array}}+\underbrace{\frac{\partial \vec{V}}{\partial t}}_{\begin{array}{c}
\text { local } \\
\text { acceleration }
\end{array}} \text {. }{ }^{2}}_{\begin{array}{c}
\text { total } \\
\text { acceleration } \\
\text { of a particle }
\end{array}}
$$

For this flow $\quad a_{x}=u \cdot \frac{\partial}{\partial x} u+v \cdot \frac{\partial}{\partial y} u$

$$
\begin{gathered}
a_{x}=A \cdot\left(x^{5}-10 \cdot x^{3} \cdot y^{2}+5 \cdot x \cdot y^{4}\right) \cdot \frac{\partial}{\partial x}\left[A \cdot\left(x^{5}-10 \cdot x^{3} \cdot y^{2}+5 \cdot x \cdot y^{4}\right)\right]-A \cdot\left(5 \cdot x^{4} \cdot y-10 \cdot x^{2} \cdot y^{3}+y^{5}\right) \cdot \frac{\partial}{\partial y}\left[A \cdot\left(x^{5}-10 \cdot x^{3} \cdot y^{2}+5 \cdot x \cdot y^{4}\right)\right] \\
a_{x}=5 \cdot A^{2} \cdot x \cdot\left(x^{2}+y^{2}\right)^{4} \\
a_{y}=u \cdot \frac{\partial}{\partial x} v+v \cdot \frac{\partial}{\partial y} v \\
a_{y}=A \cdot\left(x^{5}-10 \cdot x^{3} \cdot y^{2}+5 \cdot x \cdot y^{4}\right) \cdot \frac{\partial}{\partial x}\left[-A \cdot\left(5 \cdot x^{4} \cdot y-10 \cdot x^{2} \cdot y^{3}+y^{5}\right)\right]-A \cdot\left(5 \cdot x^{4} \cdot y-10 \cdot x^{2} \cdot y^{3}+y^{5}\right) \cdot \frac{\partial}{\partial y}\left[-A \cdot\left(5 \cdot x^{4} \cdot y-10 \cdot x^{2} \cdot y^{3}+y^{5}\right)\right] \\
a_{y}=5 \cdot A^{2} \cdot y \cdot\left(x^{2}+y^{2}\right)^{4}
\end{gathered}
$$

Hence at $(1,3)$

$$
\begin{array}{ll}
a_{x}=5 \times\left(\frac{1}{2} \cdot \frac{1}{m^{4} \cdot s}\right)^{2} \times 1 \cdot m \times\left[(1 \cdot m)^{2}+(3 \cdot m)^{2}\right]^{4} & a_{x}=1.25 \times 10^{4} \frac{m}{s^{2}} \\
a_{y}=5 \times\left(\frac{1}{2} \cdot \frac{1}{m^{4} \cdot s}\right)^{2} \times 3 \cdot m \times\left[(1 \cdot m)^{2}+(3 \cdot m)^{2}\right]^{4} & a_{y}=3.75 \times 10^{4} \frac{\mathrm{~m}}{s^{2}} \quad a=\sqrt{a_{x}{ }^{2}+a_{y}^{2}} \quad a=3.95 \times 10^{4} \frac{\mathrm{~m}}{s^{2}}
\end{array}
$$

5.41 Consider the velocity field $\vec{V}=A x /\left(x^{2}+y^{2}\right) \hat{i}+A y /\left(x^{2}+y^{2}\right) \hat{j}$ in the $x y$ plane, where $A=10 \mathrm{~m}^{2} / \mathrm{s}$, and x and y are measured in meters. Is this an incompressible flow field? Derive an expression for the fluid acceleration. Evaluate the velocity and acceleration along the x axis, the y axis, and along a line defined by $y=x$. What can you conclude about this flow field?

Given: Velocity field

Find: Whether flow is incompressible; expression for acceleration; evaluate acceleration along axes and along $y=x$

Solution:

The given data is

$$
A=10 \cdot \frac{m^{2}}{s} \quad u(x, y)=\frac{A \cdot x}{x^{2}+y^{2}}
$$

$$
\mathrm{v}(\mathrm{x}, \mathrm{y})=\frac{\mathrm{A} \cdot \mathrm{y}}{\mathrm{x}^{2}+\mathrm{y}^{2}}
$$

For incompressible flow $\quad \frac{\partial}{\partial \mathrm{x}} \mathrm{u}+\frac{\partial}{\partial \mathrm{y}} \mathrm{v}=0$
Hence, checking

$$
\frac{\partial}{\partial x} u+\frac{\partial}{\partial y} v=-A \cdot \frac{\left(x^{2}-y^{2}\right)}{\left(x^{2}+y^{2}\right)^{2}}+A \cdot \frac{\left(x^{2}-y^{2}\right)}{\left(x^{2}+y^{2}\right)^{2}}=0
$$

Incompressible flow

The acceleration is given by

$$
\vec{a}_{p}=\underbrace{\frac{D \vec{V}}{D t}}_{\begin{array}{c}
\text { total } \\
\text { acceleration } \\
\text { ofa narticle }
\end{array}}=\underbrace{u \frac{\partial \vec{V}}{\partial x}+v \frac{\partial \vec{V}}{\partial y}+w \frac{\partial \vec{V}}{\partial z}}_{\begin{array}{c}
\text { convective } \\
\text { acceleration }
\end{array}}+\underbrace{\frac{\partial \vec{V}}{\partial t}}_{\begin{array}{c}
\text { local } \\
\text { acceleration }
\end{array}}
$$

$$
\text { For the present steady, 2D flow } a_{x}=u \cdot \frac{d u}{d x}+v \cdot \frac{d u}{d y}=\frac{A \cdot x}{x^{2}+y^{2}} \cdot\left[-\frac{A \cdot\left(x^{2}-y^{2}\right)}{\left(x^{2}+y^{2}\right)^{2}}\right]+\frac{A \cdot y}{x^{2}+y^{2}} \cdot\left[-\frac{2 \cdot A \cdot x \cdot y}{\left(x^{2}+y^{2}\right)^{2}}\right] \quad a_{x}=-\frac{A^{2} \cdot x}{\left(x^{2}+y^{2}\right)^{2}}
$$

Along the x axis

$$
a_{y}=u \cdot \frac{d v}{d x}+v \cdot \frac{d v}{d y}=\frac{A \cdot x}{x^{2}+y^{2}} \cdot\left[-\frac{2 \cdot A \cdot x \cdot y}{\left(x^{2}+y^{2}\right)^{2}}\right]+\frac{A \cdot y}{x^{2}+y^{2}} \cdot\left[\frac{A \cdot\left(x^{2}-y^{2}\right)}{\left(x^{2}+y^{2}\right)^{2}}\right] \quad a_{y}=-\frac{A^{2} \cdot y}{\left(x^{2}+y^{2}\right)^{2}}
$$

$$
a_{x}=-\frac{A^{2}}{x^{3}}=-\frac{100}{x^{3}}
$$

$$
a_{y}=0
$$

Along the y axis

$$
\mathrm{a}_{\mathrm{x}}=0
$$

$$
a_{y}=-\frac{A^{2}}{y^{3}}=-\frac{100}{y^{3}}
$$

Along the line $x=y \quad a_{x}=-\frac{A^{2} \cdot x}{r^{4}}=-\frac{100 \cdot x}{r^{4}}$
where

$$
r=\sqrt{x^{2}+y^{2}}
$$

$$
a_{y}=-\frac{A^{2} \cdot y}{r^{4}}=-\frac{100 \cdot y}{r^{4}}
$$

For this last case the acceleration along the line $x=y$ is

$$
a=\sqrt{a_{x}{ }^{2}+a_{y}^{2}}=-\frac{A^{2}}{r^{4}} \cdot \sqrt{x^{2}+y^{2}}=-\frac{A^{2}}{r^{3}}=-\frac{100}{r^{3}}
$$

$$
a=-\frac{A^{2}}{r^{3}}=-\frac{100}{r^{3}}
$$

In each case the acceleration vector points towards the origin, proportional to $1 /$ distance ${ }^{3}$, so the flow field is a radial decelerating flow

Given: Incompressible, two-dimensional flow field with $w=0$, has a y component of velocity given by

$$
v=-A x y
$$

where units of y are mils; wand y are in meters. and A is a dimensional constant

Find: (a) the dimensions of the constant A
(b) the simplest a component of velocity for his Tow field, (c) the acceleration of a fluid particle at the pant $(x, y)=(1$, a)

Solution:
(a) Since $v=-$ Any, then the dimensions of $A,[A]$, are given by

$$
\begin{equation*}
[A]=\left[\frac{v}{x y}\right]=\frac{1}{t} \cdot \frac{1}{L}=\frac{1}{L t} \tag{B}
\end{equation*}
$$

(1) Apply the continuity equation for the conditions given

Basic equation: $\nabla \cdot \overrightarrow{p v}+\frac{\partial p}{\partial t}=0$
For incompressible flow, $\frac{\partial f}{\partial t}=0$. Thus with $w=0$, the basic equatioireduces to $\frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}=0$
Then, $\frac{\partial u}{\partial x}=-\frac{\partial v}{\partial y}=-\frac{\partial}{\partial y}(-A+y)=A x$
and

$$
u=\int \frac{\partial u}{\partial x} d x+f(y)=\int A x d x+f(y)=\frac{1}{2} A x^{2}+f(y) .
$$

The simplest x component of velocity is obtained with $f(y)=0$

$$
\therefore \quad u=\frac{1}{2} A x^{2}
$$

(c) Te acceleration of a fluid particle is given by

$$
\begin{aligned}
& \vec{a}_{p}=\frac{\vec{\lambda}}{\vec{t}}=u \frac{\partial \vec{y}}{\partial x}+v \frac{\partial J}{\partial y}+w \frac{\partial y}{\partial z}+\frac{\partial y}{\partial t} \\
& \vec{a}_{p}=\frac{1}{2} A x^{2} \frac{\partial}{\partial x}\left[\frac{1}{2} H^{2} i-H x y j\right]-A x y \frac{\partial}{\partial y}\left[\frac{1}{2} A^{2} i i-H x y j\right] \\
& \vec{a}_{p}=\frac{1}{2} A x^{2}[A x i-A y j]-A x y[-A x j]=\frac{1}{2} A^{2} x^{3} i+\frac{1}{2} A^{2}+y y
\end{aligned}
$$

At the pant $(-t, y)=(1,2)$

$$
\vec{a}_{p}=\frac{1}{2} A^{2}(1)^{3} i+\frac{1}{2} A^{2}(i)^{2}(2) j=A^{2}\left[\frac{1}{2} i+j\right]
$$

Problem 5.43
Given: Duct flow with inviscid liquid, $P=$ constant.

$$
u(x)=U(1-x / 2 L)
$$

$$
v=5 \mathrm{~m} / \mathrm{s}
$$

Find: Expression for acceleration along $\&$.
Solution: Computing equation

$$
a_{p_{x}}=u \frac{\partial u}{\partial x}+\psi^{2} \frac{\partial u}{\partial y}+\psi^{2} \frac{\partial u}{\partial z}+\frac{\partial \hat{f}}{\partial t}
$$

Assumptions: (1) Along \& $v=w=0$
(2) Steady flow

Then

$$
a_{P_{x}}=u \frac{\partial u}{\partial x}=U\left(1-\frac{x}{2 L}\right) U\left(-\frac{1}{2 L}\right)=-\frac{U^{2}}{2 L}\left(1-\frac{x}{2 L}\right)
$$

5.44 An incompressible liquid with negligible viscosity flows steadily through a horizontal pipe. The pipe diameter linearly varies from a diameter of 10 cm to a diameter of 2.5 cm over a length of 2 m . Develop an expression for the acceleration of a fluid particle along the pipe centerline. Plot the centerline velocity and acceleration versus position along the pipe, if the inlet centerline velocity is $1 \mathrm{~m} / \mathrm{s}$.

Given: Flow in a pipe with variable diameter
Find: Expression for particle acceleration; Plot of velocity and acceleration along centerline

Solution:

Assumptions: 1) Incompressible flow 2) Flow profile remains unchanged so centerline velocity can represent average velocity

Basic equations	$\mathrm{Q}=\mathrm{V} \cdot \mathrm{A}$		
For the flow rate	$\mathrm{Q}=\mathrm{V} \cdot \mathrm{A}=\mathrm{V} \cdot \frac{\pi \cdot \mathrm{D}^{2}}{4}$	$\vec{a}_{p}=\underbrace{\frac{D \vec{V}}{u t}}_{$	total
:---:			
acceleration			
of a particle	$}=\underbrace{u \frac{\partial \vec{V}}{\partial x}+v \frac{\partial \vec{V}}{\partial y}+w \frac{\partial \vec{V}}{\partial z}}_{$	convective	
:---:			
acceleration	$}+\underbrace{\frac{\partial \vec{V}}{\partial t}}_{$	local	
:---:			
acceleration	$}$		

But

$$
\mathrm{D}=\mathrm{D}_{\mathrm{i}}+\frac{\left(\mathrm{D}_{\mathrm{o}}-\mathrm{D}_{\mathrm{i}}\right)}{\mathrm{L}} \cdot \mathrm{x}
$$

where D_{i} and D_{o} are the inlet and exit diameters, and x is distance along the pipe of length L : $D(0)=D_{i}, D(L)=D_{0}$.

Hence

$$
\mathrm{V}_{\mathrm{i}} \cdot \frac{\pi \cdot \mathrm{D}_{\mathrm{i}}^{2}}{4}=\mathrm{V} \cdot \frac{\pi \cdot\left[\mathrm{D}_{\mathrm{i}}+\frac{\left(\mathrm{D}_{\mathrm{o}}-\mathrm{D}_{\mathrm{i}}\right)}{\mathrm{L}} \cdot \mathrm{x}\right]^{2}}{4}
$$

$$
\mathrm{V}=\mathrm{V}_{\mathrm{i}} \frac{\mathrm{D}_{\mathrm{i}}^{2}}{\left[\mathrm{D}_{\mathrm{i}}+\frac{\left(\mathrm{D}_{\mathrm{o}}-\mathrm{D}_{\mathrm{i}}\right)}{L} \cdot x\right]^{2}}=\frac{\mathrm{V}_{\mathrm{i}}}{\left[1+\frac{\left(\frac{D_{0}}{D_{i}}-1\right)}{L} \cdot x\right]^{2}}
$$

$$
\mathrm{V}(\mathrm{x})=\frac{\mathrm{V}_{\mathrm{i}}}{\left[1+\frac{\left(\frac{\mathrm{D}_{\mathrm{o}}}{\mathrm{D}_{\mathrm{i}}}-1\right)}{\mathrm{L}} \cdot \mathrm{x}\right]^{2}}
$$

Some representative values are $\mathrm{V}(0 \cdot \mathrm{~m})=1 \frac{\mathrm{~m}}{\mathrm{~s}}$

$$
\mathrm{V}\left(\frac{\mathrm{~L}}{2}\right)=2.56 \frac{\mathrm{~m}}{\mathrm{~s}}
$$

$$
\mathrm{V}(\mathrm{~L})=16 \frac{\mathrm{~m}}{\mathrm{~s}}
$$

The acceleration is given by $\quad \vec{a}_{p}=\underbrace{\frac{D \vec{V}}{D t}}_{\begin{array}{c}\text { total } \\ \text { acceleration } \\ \text { of a particle }\end{array}}=\underbrace{u \frac{\partial \vec{V}}{\partial x}+v \frac{\partial \vec{V}}{\partial y}+w \frac{\partial \vec{V}}{\partial z}}_{\begin{array}{c}\text { convective } \\ \text { acceleration }\end{array}}+\underbrace{\frac{\partial \vec{V}}{\partial t}}_{\begin{array}{c}\text { local } \\ \text { acceleration }\end{array}}$

For this flow

$$
\left.\mathrm{a}_{\mathrm{x}}=\mathrm{V} \cdot \frac{\partial}{\partial \mathrm{x}} \mathrm{~V} \quad \mathrm{a}_{\mathrm{x}}=\frac{\mathrm{V}_{\mathrm{i}}}{\left[1+\frac{\left(\frac{\mathrm{D}_{\mathrm{o}}}{\mathrm{D}_{\mathrm{i}}}-1\right)}{\mathrm{L}} \cdot \mathrm{x}\right]}\right]^{2} \cdot \frac{\partial}{\partial \mathrm{x}}\left[\frac{\mathrm{~V}_{\mathrm{i}}}{\left.\left[1+\frac{\left(\frac{\mathrm{D}_{\mathrm{o}}}{\mathrm{D}_{\mathrm{i}}}-1\right)}{\mathrm{L}} \cdot \mathrm{x}\right]^{2}\right]}=-\frac{2 \cdot \mathrm{~V}_{\mathrm{i}}^{2} \cdot\left(\frac{\mathrm{D}_{\mathrm{o}}}{\mathrm{D}_{\mathrm{i}}}-1\right)}{\mathrm{L} \cdot\left[\frac{\mathrm{x} \cdot\left(\frac{\mathrm{D}_{\mathrm{o}}}{\mathrm{D}_{\mathrm{i}}}-1\right)}{\mathrm{L}}+1\right]^{5}}\right.
$$

$$
\mathrm{a}_{\mathrm{x}}(\mathrm{x})=\frac{2 \cdot \mathrm{v}_{\mathrm{i}}^{2} \cdot\left(\frac{\mathrm{D}_{0}}{D_{i}}-1\right)}{\mathrm{L} \cdot\left[\frac{\mathrm{x} \cdot\left(\frac{D_{0}}{D_{i}}-1\right)}{L}+1\right]^{5}}
$$

$$
\text { Some representative values are } \mathrm{a}_{\mathrm{X}}(0 \cdot \mathrm{~m})=-0.75 \frac{\mathrm{~m}}{\mathrm{~s}^{2}} \quad \mathrm{a}_{\mathrm{x}}\left(\frac{\mathrm{~L}}{2}\right)=-7.864 \frac{\mathrm{~m}}{\mathrm{~s}^{2}} \quad \mathrm{a}_{\mathrm{x}}(\mathrm{~L})=-768 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}
$$

The following plots can be done in Excel

Given: Incompressible flow between parallel plates as shown.

Find: (a) show $V_{r}=\frac{Q}{2 \pi r n}$
(b) Acceleration in gap.

Solution: Apply conservation of mass Basic equation: $\frac{1}{r} \frac{\partial}{\partial r}\left(r V_{r}\right)+\frac{1}{r} \frac{\partial}{\partial \theta}\left(\psi_{\theta}\right)+\frac{\partial}{\partial z} \hat{V}_{z}=0(1)$ Asscemptions: (1) $V_{V}=0$
(2) $V_{3}=0$

Then
$\frac{1}{r} \frac{\partial}{\partial r}\left(r V_{r}\right)=0$ or $r V_{r}=C$ or $V_{r}=\frac{C}{r}$ is form of solution.
The volume flow rate is $Q=2 \pi r h V_{r}$, so $V_{r}=\frac{Q}{2 \pi r h}$
Because $V_{\theta}=0, a_{\theta}=0$. The radial acceleration is

$$
a_{r}=V_{r} \frac{\partial V_{r}}{\partial r}=\frac{Q}{2 \pi r h}\left[(-1) \frac{Q}{2 \pi r^{2} h}\right]=-\left(\frac{Q}{2 \pi h}\right)^{2} \frac{1}{r^{3}}
$$

Thus

$$
\vec{a}_{p}=-\left(\frac{Q}{2 \pi h}\right)^{2} \frac{1}{r^{3}} \hat{e}_{r}
$$

The above expressions are valid only for $r>0$.

Given: Incompressible, inviscid flow of a ir between parallel disks.
Find: (a) Simplify continuity.
(b) Show $\vec{v}=v(R / \Omega) \hat{e}_{r}, n_{i}<\Omega<R$
(c) calculate acceleration of a particle at $r=\Omega_{i}, R$.

Solution: Apply continuity equation and substantial derivative
Basic equations: $\frac{1}{n} \frac{\partial}{\partial r}\left(r \rho v_{r}\right)+\frac{1}{n} \frac{\partial}{\partial \theta}\left(\rho \psi_{\theta}\right)+\frac{\partial}{\partial z}\left(\rho v_{z}=0(3)+\frac{\partial \psi}{\partial z}=0(1)\right.$

$$
a_{r}=V_{r} \frac{\partial v_{r}}{\partial r}+\frac{V_{0} \hat{t}}{t} \frac{\partial V_{r}}{\partial \theta}+\frac{\partial \hat{q}_{r}}{\partial z}-\frac{V_{0}}{\psi_{t}}+\frac{\partial(3)}{\partial t}=0(4)
$$

Assumptions: (1) Incompressible flow, $\rho=$ constant
(2) Radial flow, $V_{\theta}=0$
(3) Uniform flow at each radial, location, $d / b_{z}=0$
(4) Steady flow

Then

$$
\frac{1}{\Omega} \frac{\partial}{\partial \Omega}\left(\Omega V_{r}\right)=0 \text { or } \Omega V_{r}=\text { constant }=R V ; V_{r}=V \frac{R}{\Omega}
$$

so that $\vec{v}=V \frac{R}{n} \hat{e}_{r}$
The radial acceleration of a fluid particle is

$$
a_{r}=V_{r} \frac{\partial V_{r}}{\partial n}=V \frac{R}{n}(V R)\left(-\frac{1}{n^{2}}\right)=-\frac{V^{2} R^{2}}{n^{3}}=-\frac{V^{2}}{R}\left(\frac{R}{n}\right)^{3}
$$

At $\Omega=\Omega_{i}=25 \mathrm{~mm}$,

$$
a_{r}=-(15)^{2} \frac{\mathrm{~m}^{2}}{\mathrm{~s}^{2}} \times \frac{1}{0.075 \mathrm{~m}}\left(\frac{75}{25}\right)^{3}=-81.0 \frac{\mathrm{~km}}{\mathrm{~s}^{2}}
$$

At $n=R=75 \mathrm{~mm}$

$$
a_{r}=-(15)^{2} \frac{\mathrm{~m}^{2}}{s^{2}} \times \frac{1}{0.075 \mathrm{~m}}\left(\frac{75}{75}\right)^{3}=-3.00 \frac{\mathrm{~km}}{\mathrm{~s}^{2}}
$$

5.47 As part of a pollution study, a model concentration c as a function of position x has been developed,

$$
c(x)=A\left(e^{-x / a}-e^{-x / 2 a}\right)
$$

where $A=10^{-5} \mathrm{ppm}$ (parts per million) and $a=1 \mathrm{~m}$. Plot this concentration from $x=0$ to $x=10 \mathrm{~m}$. If a vehicle with a pollution sensor travels through this atmosphere at $u=U(U=20 \mathrm{~m} /$ s), develop an expression for the measured concentration rate of change of c with time, and plot using given data. At what location will the sensor indicate the most rapid rate of change, and what is the value of this rate of change?

Given: Data on pollution concentration

Find: Plot of concentration; Plot of concentration over time for moving vehicle; Location and value of maximum rate change

Solution:

Basic equation: Material derivative $\frac{D}{D t}=u \frac{\partial}{\partial x}+v \frac{\partial}{\partial y}+w \frac{\partial}{\partial z}+\frac{\partial}{\partial t}$
For this case we have

$$
\mathrm{u}=\mathrm{U} \quad \mathrm{v}=0
$$

$$
\mathrm{w}=0
$$

$$
c(x)=A \cdot\left(e^{-\frac{x}{a}}-e^{-\frac{x}{2 \cdot a}}\right)
$$

$$
\frac{D c}{D t}=u \cdot \frac{d c}{d x}=U \cdot \frac{d}{d x}\left[A \cdot\left(e^{-\frac{x}{a}}-e^{-\frac{x}{2 \cdot a}}\right)\right]=\frac{U \cdot A}{a} \cdot\left(\frac{1}{2} \cdot e^{-\frac{x}{2 \cdot a}}-e^{-\frac{x}{a}}\right)
$$

We need to convert this to a function of time. For this motion $u=U$ so $x=U \cdot t$

$$
\frac{\mathrm{Dc}}{\mathrm{Dt}}=\frac{\mathrm{U} \cdot \mathrm{~A}}{\mathrm{a}} \cdot\left(\frac{1}{2} \cdot \mathrm{e}^{-\frac{\mathrm{U} \cdot \mathrm{t}}{2 \cdot \mathrm{a}}}-\mathrm{e}^{-\frac{\mathrm{U} \cdot \mathrm{t}}{\mathrm{a}}}\right)
$$

The following plots can be done in Excel

$x(m)$

t (s)
The maximum rate of change is when

$$
\begin{aligned}
& \frac{d}{d x}\left(\frac{D c}{D t}\right)=\frac{d}{d x} \cdot\left[\frac{U \cdot A}{a} \cdot\left(\frac{1}{2} \cdot e^{-\frac{x}{2 \cdot a}}-e^{-\frac{x}{a}}\right)\right]=0 \\
& \frac{U \cdot A}{a^{2}} \cdot\left(e^{-\frac{x}{a}}-\frac{1}{4} \cdot e^{-\frac{x}{2 \cdot a}}\right)=0 \\
& \text { or } \\
& x_{\text {max }}=2 \cdot a \cdot \ln (4)=2 \times 1 \cdot m \times \ln \left(\frac{1}{4}\right) \\
& \mathrm{x}_{\text {max }}=2.77 \cdot \mathrm{~m} \\
& \mathrm{t}_{\text {max }}=\frac{\mathrm{x}_{\text {max }}}{\mathrm{U}}=2.77 \cdot \mathrm{~m} \times \frac{\mathrm{s}}{20 \cdot \mathrm{~m}} \\
& t_{\text {max }}=0.138 \cdot \mathrm{~s} \\
& \frac{D c_{\max }}{D t}=\frac{U \cdot A}{a} \cdot\left(\frac{1}{2} \cdot e^{-\frac{x_{\text {max }}}{2 \cdot a}}-e^{-\frac{x_{\text {max }}}{a}}\right) \\
& \frac{D c_{\text {max }}}{D t}=20 \cdot \frac{\mathrm{~m}}{\mathrm{~s}} \times 10^{-5} \cdot \mathrm{ppm} \times \frac{1}{1 \cdot \mathrm{~m}} \times\left(\frac{1}{2} \times \mathrm{e}^{-\frac{2.77}{2 \cdot 1}}-\mathrm{e}^{-\frac{2.77}{1}}\right) \\
& e^{-\frac{x}{2 \cdot a}}=\frac{1}{4} \\
& \frac{\mathrm{Dc}_{\text {max }}}{\mathrm{Dt}}=1.25 \times 10^{-5} \cdot \frac{\mathrm{ppm}}{\mathrm{~s}}
\end{aligned}
$$

Note that there is another maximum rate, at $\mathrm{t}=0(\mathrm{x}=0)$

$$
\frac{\mathrm{Dc}_{\max }}{\mathrm{Dt}}=20 \cdot \frac{\mathrm{~m}}{\mathrm{~s}} \times 10^{-5} \cdot \mathrm{ppm} \times \frac{1}{1 \cdot \mathrm{~m}} \cdot\left(\frac{1}{2}-1\right)
$$

$$
\frac{\mathrm{Dc}_{\max }}{\mathrm{Dt}}=-1 \times 10^{-4} \cdot \frac{\mathrm{ppm}}{\mathrm{~s}}
$$

Given: Aircraft flying north with velocity component $u=300 \mathrm{mph}$ is climbing at rate, $v=3000 \mathrm{fu} / \mathrm{oin}$ the rate of temperature change with vertical distance y is arlay $=-3$ it lids ft. The variation of temperature witt position t is 2Tlbx $=-1^{\circ} \mathrm{F} /$ mile
Find: the rate of temperature change shown by a recorder on board the aircraft
Solution: Apply the substantial derivative concept Basic equation: $\frac{\partial T}{\partial t}=u \frac{\partial T}{\partial x}+v \frac{\partial \pi}{\partial y}+\frac{\partial T^{\circ}}{\partial \tau}$
Substituting numerical values.

$$
\begin{aligned}
& \frac{\partial T}{\partial t}=300 \frac{\text { mile }}{h r} \times-\frac{i F}{m i l e} \times \frac{h r}{60 \mathrm{~min}}+3000 \frac{\mathrm{ft}}{\mathrm{hin}} \times-\frac{3^{\circ} \mathrm{F}}{1000 \mathrm{ft}} \\
& \frac{\partial T}{\partial t}=(-5-a)^{\circ} \mathrm{F} / \mathrm{mn}=-14^{\circ} \mathrm{F} / \mathrm{min} .
\end{aligned}
$$

Given: Instruments on board an aircraft flying through a cold front give the following information.

- rate or change of temperature is $-0.5 \mathrm{~F} / \mathrm{min}$ - our speed =300 knots
- rate of clint $=3500$ fthmin

Front is stationary and vertically uniform
Find: rate of change of temperature with respect to horizontal distance through the cold front
Solution: Apply the substantial de rivative concept Basic equation: $\frac{\partial T}{\partial t}=u \frac{\partial T}{\partial x}+v \frac{\partial T^{\circ}}{\partial y}+\frac{\partial T}{\partial t} \quad$ (stationary

$$
\frac{\partial T}{\partial t}=-0.5 \mathrm{~F} / \mathrm{min} \text {. Need to find } \frac{\partial T}{\partial x}
$$

Velocity picture.

$$
\begin{aligned}
& v=300 \frac{\mathrm{~nm}}{\mathrm{hr}} \times 6080 \frac{\mathrm{ft}}{\mathrm{~nm}} \times \frac{\mathrm{hr}}{3600 \mathrm{~s}}=507 \frac{\mathrm{ft}}{\mathrm{~s}} \\
& v=3500 \frac{\mathrm{ft}}{\mathrm{~mm}} \times \frac{\mathrm{min}}{60 \mathrm{~s}}=58.3 \mathrm{ft} / \mathrm{s}
\end{aligned}
$$

Then $\alpha=\sin ^{1} \frac{v}{v}=\sin ^{-1} \frac{58.3}{507}=6.60^{\circ}$
and

$$
\begin{align*}
& u=V \cos \alpha=507 \frac{\mathrm{ft}}{\mathrm{Gc}} \cos 6.60^{\circ}=\left.504 \mathrm{ft}\right|_{\mathrm{s}} \\
& \therefore \quad \frac{\partial T}{\partial x}=\frac{1}{u} \frac{\partial T}{D t}=504 \frac{\mathrm{st}}{\mathrm{ft}} \times \frac{0.5 \mathrm{~F}}{\mathrm{~min}} \times \frac{\mathrm{min}}{60 \mathrm{~s}} \times \frac{5280 \frac{\mathrm{ft}}{\mathrm{mi}}}{\frac{\partial T}{\partial x}}=-0.0873^{\circ} \mathrm{F} / \text { mile }
\end{align*}
$$

Given: Sederient concentration rates in a river after a rainfall are:

$$
\frac{\partial c}{\partial t}=100 \frac{\mathrm{ppm}}{\mathrm{hr}}, \frac{\partial c}{\partial x}=50 \frac{\mathrm{ppm}}{\mathrm{mi}} \text { (downstream) }
$$

stream speed is $u_{s}=0.5 \mathrm{mph}$, where a boat is used to survey concentration.
Boat speed is $V_{b}=2.5 \mathrm{mph}$.
Find: (a) calculate rates of change of sediment concentration observed when boat travels upstream, drifts with the current, or travels downstream.
(b) Explain physically why the observed rates differ.

Solution: Apply substantial derivative concept
Basic equation: $\frac{D C}{D t}=u \frac{\partial C}{\partial x}+\frac{\partial c}{\partial t}$
To obtain rate of change seen from boat, set $u=u_{B}$.
(i) For travel upstream, $u_{B}=u_{S}-v_{b}=0.5-2.5=-2.0 \mathrm{mph}$

$$
\frac{D C}{D t}(u p)=-2.0 \frac{\mathrm{mi}}{\mathrm{hr}} \times 50 \frac{\mathrm{ppm}}{\mathrm{mc}}+100 \frac{\mathrm{p} \mathrm{\rho m}}{\mathrm{hr}}=0.00 \mathrm{ppm} / \mathrm{hr}
$$

(ii) For drifting, $u_{B}=u_{S}+0=0.5 \mathrm{mph}$

$$
\frac{D c}{D t}(d r i f f)=0.5 \frac{\mathrm{mi}}{\mathrm{hr}} \times 50 \frac{\mathrm{ppm}}{\mathrm{ml}}+100 \frac{\mathrm{ppm}}{\mathrm{hr}}=125 \mathrm{ppm} / \mathrm{hr}
$$

(iii) For travel downstream, $u_{B}=u_{S}+v_{b}=0.5+2.5=3.0 \mathrm{mph}$

$$
\frac{D C}{D t}(\text { down })=3.0 \frac{\mathrm{mi}}{\mathrm{hr}} \times 50 \frac{\mathrm{ppm}}{\mathrm{~mL}}+100 \frac{\mathrm{ppm}}{\mathrm{hr}}=250 \mathrm{ppm} / \mathrm{hr}
$$

Physically the observed rates of change differ because the observer is convected through the flow. The convective change may add to or subtract from the local rate of change.

Expand $(\overrightarrow{3} \cdot \nabla)$ In in rectangular, coordinates to obtain the convective acceleration of a fluid particle. verify the results given in Epis 5.11
Solution:
In rectangular coordinates $\nabla=\hat{i} \frac{\partial}{2 x}+j \frac{\partial}{2 y}+\hat{l} \frac{\partial}{\partial z}, \vec{\lambda}=u \hat{i}+\mathrm{y}_{\mathrm{j}}+w \hat{k}$

$$
\begin{aligned}
& (\vec{J} \cdot \nabla) \vec{\lambda}=\left[(u i+v j+w \bar{k}) \cdot\left(i \frac{\partial}{\partial x}+j \frac{\partial}{\partial y}+k \frac{z}{\partial z}\right)\right] u i+\hat{y}+w \hat{k} \\
& -\left[u \frac{\partial}{\partial x}+v \frac{\partial}{\partial y}+w \frac{\partial}{\partial z}\right] u i+v j+w \bar{k} \\
& (\bar{\lambda} \cdot \nabla) j=\left\{u \frac{\partial u}{\partial x}+v \frac{\partial u}{\partial y}+w \frac{\partial u}{\partial z}\right\} i+\left\{u \frac{\partial v}{\partial x}+v \frac{\partial v}{\partial y}+w \frac{\partial v}{\partial z}\right\} j \\
& +\left\{u \frac{\partial w}{\partial x}+v \frac{\partial w^{3}}{\partial y}+\omega \frac{\partial w}{\partial z}\right\} \hat{k}
\end{aligned}
$$

Tern (1) is i component of convective acceleration

$$
\text { Eq. ssa } \quad a_{t_{p}}=\left\{u \frac{\partial u}{\partial x}+v \frac{\partial u}{\partial y}+w \frac{\partial u}{\partial z}\right\}+\frac{\partial u}{\partial t} \text {. }
$$

Tern (2) is the y component of convective acceleration

$$
E_{q} s . u b \quad a_{y p}=\left\{u \frac{\partial v}{\partial x}+v \frac{v v}{\partial y}+w \frac{\partial v}{\partial z}\right\}+\frac{\partial v}{\partial t}
$$

Term (3) is the z component of convectwie acceleration

$$
\text { Eq s.1c } \quad a_{z p}=\left\{u \frac{\partial \omega}{\partial x}+v \frac{\partial \omega}{\partial y}+\omega \frac{\partial \omega}{\partial z}\right\}+\frac{\partial \omega}{\partial \tau} \text {. }
$$

Problem 5.52
Given: Velocity field represented by

$$
\vec{v}=(A x-B) \hat{\imath}+C y \hat{\jmath}+D t \hat{k} \quad(x, y \text { in } m)
$$

where $A=2 s^{-1}, B=4 \mathrm{~m} / \mathrm{s}$, and $D=5 \mathrm{~m} / \mathrm{s}^{2}$
Find: (a) Proper value of C for incompressible tow.
(b) Acceleration of particle at $(x, y)=(3,2)$.
(c) Sketch streamlines in wy plane.

Solution: For incompressible flow, $\frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}+\frac{\partial w}{\partial z}=0$. since $w=D t$, $\partial w / \partial_{z}=0$, and

$$
\frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}=0
$$

$$
\frac{\partial v}{\partial y}=C=-\frac{\partial u}{\partial x}=-A=-2 s^{-1}
$$

$$
\vec{a}_{p}=u \frac{\partial \vec{v}}{\partial x}+v \frac{\partial \vec{v}}{\partial y}+w \frac{\partial \vec{v}}{\partial z}+\frac{\partial \vec{v}}{\partial t}
$$

$$
\vec{a}_{\rho}=(A x-B)(A \hat{\imath})+(C y)(C \hat{\jmath})+(D t)(0)+D \hat{k}
$$

$$
\vec{a}_{p}(3, i)=\left(\frac{2}{5} \times 3 m-\frac{4 m}{s}\right)\left(\frac{2}{s}\right) \hat{\imath}+\left(\frac{-2}{5} \times 2 m\right)\left(-\frac{2}{5}\right) \hat{\imath}+\frac{5 m}{\sqrt{2}} \hat{k}
$$

$$
\vec{a}_{p}(3,2)=4 \hat{\imath}+8 \hat{\jmath}+5 \hat{k} \mathrm{~m} / \mathrm{s}^{2}
$$

In the $x y$ plane, streamlines are $\frac{d y}{d x}=\frac{v}{u}=\frac{C y}{A x-B}$. Thus

$$
\frac{d x}{A x-B}=\frac{d y}{d y} \text { or } \frac{d x}{A x-B}=-\frac{d y}{A y} \text { or } \frac{d x}{x-B / A}+\frac{d y}{y}=0
$$

Integrating

$$
\begin{array}{lc}
\text { Integrating } \\
\ln \left(x-\frac{B}{A}\right)+\ln y=\ln u c_{0} & y(m) \\
\hline
\end{array}
$$

Given: Steady, two-dinensional velocity field, " $V=A x i$ - $A y$ j ; $A=त_{s}$, coordinates measured in inters.
Show: hat streamlines are hyperodas, $x y=C$
Find: (a) Expression for acceleration.
(b) particle acceleration at $(2, y)=\left(\psi_{2}, 2\right),(1,1)$ and $\left(2, \prime_{2}\right)$

Phot: streamlines corresponding to $C=O$, ', and $2 m^{2}$; show acceleration vectors of the plot'.
Solution:
Along a streamline, $\frac{d y}{d x}=\frac{v}{u}=\frac{-y}{x}$ or $\frac{d y}{y}+\frac{d y}{x}=0$
Integrating we dotain $\ln y+\ln x=\ln c$ and $y=c$, streantin-
The acceleration of a particle is

$$
\begin{aligned}
& \vec{a}_{p}=\frac{\vec{\Delta}}{\vec{t}}=u \frac{\partial \vec{y}}{\partial x}+v \frac{\partial \vec{u}}{\partial y}+w, \frac{\vec{x}}{\partial z}+\frac{\partial \vec{y}}{\partial v} \quad\{w=0 \text { and steady fou }\} \\
& \vec{a}_{p}=A x(A i)-(A y)(-A \hat{j})=A^{2}\left(x i+y_{j}^{j}\right) \\
& \bar{a}_{p} \\
& \left.\begin{array}{ll}
\left.\vec{a}_{p}\right)_{12,2}=\frac{1}{2} i+2 j M_{s}^{2} & \left.\vec{a}_{p}\right)_{1,1}=\hat{i}+j m\left(l_{s}^{2}\right. \\
\left.\vec{a}_{p}\right)_{2, l_{2}}=2 i+\frac{1}{2} j m l_{s}^{2} & \vec{a}_{p}
\end{array}\right\}-\quad
\end{aligned}
$$

Plot:

Given: Velocity field $\vec{V}=(A x-B) \hat{\imath}-A y \hat{J} ; A=0.23^{-1}, B=0.65^{-1} x$ in m.
Find: (a) General expression for acceleration of a fid particle.
(6) Acceleration at $(x, y)=(0,4 / 3),(1,2)$, and $(2,4)$.
(c) Plot of streamlines.
(d) Acceleration vectors on plot.

Solution: Note $w=0$ and flow is steady, Then

At $(x, y)=(0,4 / 3), \vec{a}_{p}=-0.12 \hat{\imath}+0.0533 \hat{\jmath} \mathrm{~m} / \mathrm{s}^{2}$

$$
\begin{aligned}
& (1,2), \vec{a}_{p}=-0.05 \hat{\imath}+0.0800 \hat{\jmath} \mathrm{~m} / \mathrm{s}^{2} \\
& (2,4), \vec{a}_{p}=-0.04 \hat{\imath}+0.160 \hat{\jmath} \mathrm{~m} / \mathrm{s}^{2} .
\end{aligned}
$$

streamlines are $\frac{d x}{u}=\frac{d y}{y}=\frac{d x}{A x-B}=\frac{d y}{-A y}$. Integrating,

$$
\frac{1}{A} \ln (A x-B)+\frac{1}{A} \ln y=\frac{1}{A} \ln c \text { or }(A x-B) y=C
$$

The plots are:

Given: Air flowing downward toward infinite horizontal flat plate. velocity field is

$$
\vec{v}=(a \times \hat{\imath}-a y \hat{\imath})(2+\cos \omega t) ; a=3 s^{-1}, \omega=\pi s^{-1}
$$

Find: (a) Expression for streamline at $t=1.5 \mathrm{~s}$.
(b) Plot of streamline through $(x, y)=(2,4)$ at this instant.
(c) Velocity vector
(d) Vectors representing local, convective, and total acceleration.

Solution: Streamline is $\frac{d x}{u}=\frac{d y}{v}$, or $\frac{d x}{x}+\frac{d y}{y}=0$ or $x y=c$ At point $(x, y)=(2,4), c=2 m \times 4 m=8 m^{2} ; x y=8 m^{2} \quad$ Streamline The plot is shown below. Note $u=\operatorname{axc}[z+\cos \omega t], v=-\operatorname{ayj}[z+\cos \omega t]$ At $(x, y, t)=(2 m, 4 m, 1.55), \vec{V}=(6 \hat{\imath}-12 \hat{\jmath})(2+0)=12 \hat{\imath}-24 \hat{\jmath}$
The local acceleration components at $(x, y, t)=(2 m, 4 m, 1,53)$ are

$$
a_{x, l o c a i}=\frac{\partial u}{\partial t}=a \times \hat{\imath}(-\omega \sin \omega t)=\frac{3}{5} \times 2 m_{x}\left(-\frac{\pi}{\mathrm{s}}\right) \times \sin \left(\frac{3 \pi}{2}\right)=6 \pi \hat{\imath} \mathrm{~m} / \mathrm{s}^{2}
$$

$$
a_{y, \text { local }}=\frac{\partial v}{\partial t}=-\operatorname{ay} \hat{\jmath}(-\omega \sin \omega t)=\frac{3}{3} \times 4 m \times\left(\frac{-\pi}{s}\right) \times \sin \left(\frac{3 \pi}{2}\right)=-12 \pi \hat{y} \mathrm{~m} / \mathrm{s}^{2}{ }_{L}^{\text {Local }}
$$

The convective acceleration components at $(x, y, t)=(2 m, 4 m, 1,5 s)$ are

$$
\begin{aligned}
& a_{x, \text { con }}=u \frac{\partial u}{\partial x}+v \frac{\partial u}{\partial y}=a \times(a \hat{\imath})\left[2+\cos \frac{3 \pi}{2}\right]^{2}=(3)(2 x 3)[2]^{2} \hat{\imath}=72 \hat{\imath} \\
& a_{y, ~ c o n v}=u \frac{\partial v}{\partial x}+v \frac{\partial v}{\partial y}=(-a y)(-a \hat{\jmath})\left[2+\cos \frac{3 \pi}{2}\right]^{2}=4 a^{2} y \hat{\jmath}=4(3)^{2} 4 \hat{\jmath}=144 \hat{\jmath}
\end{aligned}
$$

The total acceleration is the sum of the convective and local values:

$$
\begin{aligned}
& a_{x, \text { total }}=a_{x, \text { con }}+a_{x, \text { local }}=(72+6 \pi) \hat{\imath}=90.8 \hat{\imath} \mathrm{~m} / \mathrm{s}^{2} \\
& a_{y, \text { total }}=a_{4 y, \text { con }}+a_{y, \text { local }}=(144-12 \mathrm{~m}) \hat{\mathrm{s}}=106 \hat{\mathrm{rm}} / \mathrm{s}^{2}
\end{aligned}
$$

The plot is

Given: Laminar boundary layer, linear approximate profile.

$$
\frac{u}{U}=\frac{y}{\delta} \quad \delta=c x^{1 / 2}
$$

From Problem 5.7, $v=\frac{u y}{4 x}=U \frac{y^{2}}{4 x \delta}$
Find: (a) x and y components of acceleration of a fluid particle.
(b) Locate maximum values.
(c) Ratio, ax max $/ a_{y,}$ max.

$$
a_{p y}=u \frac{\partial v}{\partial x}+v \frac{\partial v}{\partial y}+\hat{w}^{=\Delta v} \frac{\partial v}{\partial \delta}+\frac{\partial f}{\partial t}=\Delta(z)
$$

Assumptions: (1) w and $\partial / b z$ zero, (2) steady flow. $\frac{d \delta}{d x}=\frac{1}{2} c x^{-1 / 2}=\frac{\delta}{2 x}$

$$
\begin{aligned}
& u=v \frac{y}{\delta} ; \frac{\partial u}{\partial x}=v y\left(-\frac{1}{\delta}\right) \frac{d \delta}{d x}=-v y \frac{1}{\delta^{2}} \frac{\delta}{2 x}=-\frac{v_{y}}{2 x \delta} ; \frac{\partial u}{\partial y}=\frac{v}{\delta} \\
& v=v \frac{y^{2}}{4 x \delta} ; \frac{\partial v}{\partial x}=\frac{v_{y}}{4}\left(-\frac{1}{x^{2} \delta}-\frac{1}{x \delta^{2}} \frac{d \delta}{d x}\right)=-\frac{3 v y^{2}}{8 x^{2} \delta} ; \frac{\partial v}{\partial y}=\frac{v_{y}}{2 x \delta}
\end{aligned}
$$

Thus

$$
\begin{aligned}
& a_{p_{x}}=\left(v \frac{y}{\delta}\right)\left(-\frac{\sigma y}{2 x \delta}\right)+\left(v \frac{y^{2}}{4 x \delta}\right)\left(\frac{v}{\delta}\right)=-\frac{v^{2}}{2 x}\left(\frac{y}{\delta}\right)^{2}+\frac{v^{2}}{4 x}\left(\frac{y}{\delta}\right)^{2}=-\frac{v^{2}}{4 x}\left(\frac{y}{\delta}\right)^{2} \quad a_{p_{x}} \\
& a_{p y}=\left(v \frac{y}{\delta}\right)\left(-\frac{3 v y^{2}}{8 x^{2} \delta}\right)+\left(v \frac{y^{2}}{4 x \delta}\right)\left(v \frac{y}{2 x \delta}\right)=-\frac{3 v^{2}}{8 x}\left(\frac{y}{x}\right)\left(\frac{y}{\delta}\right)^{2}+\frac{v^{2}}{8 x}\left(\frac{y}{x}\right)\left(\frac{y}{\delta}\right)^{2} \\
& a_{p y}=-\frac{U^{2}}{4 x}\left(\frac{y}{x}\right)\left(\frac{y}{\delta}\right)^{2} \\
& \text { Maximum values are at } y=\delta \\
& a_{p_{x}, \max }=-\frac{U^{2}}{4 x} \\
& a_{p y, \max }=-\frac{v^{2}}{4 x}\left(\frac{\delta}{x}\right)
\end{aligned}
$$

Thus $\frac{a_{p_{x}, \text { max }}}{a_{p_{y}, \text { max }}}=\frac{x}{\delta}$
At $x=0.5 \mathrm{~m}, \delta=5 \mathrm{~mm}, \frac{a_{p_{x}, \max }}{a_{p y, \max }}=\frac{0.5 \mathrm{~m}}{0.005 \mathrm{~m}}=100$

Problem 5.57

5.57 A parabolic approximate velocity profile was used in Problem 5.11 to model flow in a laminar incompressible boundary layer on a flat plate. For this profile, find the x component of acceleration, a_{x}, of a fluid particle within the boundary layer. Plot a_{x} at location $x=0.8 \mathrm{~m}$, where $\delta=1.2 \mathrm{~mm}$, for a flow with $U=$ $6 \mathrm{~m} / \mathrm{s}$. Find the maximum value of a_{x} at this x location.

Given: Flow in boundary layer
Find: \quad Expression for particle acceleration a_{x}; Plot acceleration and find maximum at $\mathrm{x}=0.8 \mathrm{~m}$

Solution:

Basic equations

$$
\begin{aligned}
& \frac{\mathrm{u}}{\mathrm{U}}=2 \cdot\left(\frac{\mathrm{y}}{\delta}\right)-\left(\frac{\mathrm{y}}{\delta}\right)^{2} \quad \frac{\mathrm{v}}{\mathrm{U}}=\frac{\delta}{\mathrm{x}} \cdot\left[\frac{1}{2} \cdot\left(\frac{\mathrm{y}}{\delta}\right)-\frac{1}{3} \cdot\left(\frac{\mathrm{y}}{\delta}\right)^{3}\right] \quad \delta=\mathrm{c} \cdot \sqrt{\mathrm{x}} \\
& \vec{a}_{p}=\underbrace{\frac{D \vec{V}}{{ }^{2}}}_{\begin{array}{c}
\text { total } \\
\text { acceleration } \\
\text { of a particle }
\end{array}}=\underbrace{u \frac{\partial \vec{V}}{\partial x}+v \frac{\partial \vec{V}}{\partial y}+w \frac{\partial \vec{V}}{\partial z}}_{\begin{array}{c}
\text { convective } \\
\text { acceleration }
\end{array}}+\underbrace{\frac{\partial \vec{V}}{\partial t}}_{\begin{array}{c}
\text { local } \\
\text { acceleration }
\end{array}}
\end{aligned}
$$

We need to evaluate

$$
\mathrm{a}_{\mathrm{x}}=\mathrm{u} \cdot \frac{\partial}{\partial \mathrm{x}} \mathrm{u}+\mathrm{v} \cdot \frac{\partial}{\partial \mathrm{y}} \mathrm{u}
$$

First, substitute

$$
\lambda(\mathrm{x}, \mathrm{y})=\frac{\mathrm{y}}{\delta(\mathrm{x})} \quad \text { so } \quad \frac{\mathrm{u}}{\mathrm{U}}=2 \cdot \lambda-\lambda^{2} \quad \frac{\mathrm{v}}{\mathrm{U}}=\frac{\delta}{\mathrm{x}} \cdot\left(\frac{1}{2} \cdot \lambda-\frac{1}{3} \cdot \lambda^{3}\right)
$$

Then

$$
\frac{\partial}{\partial \mathrm{x}} \mathrm{u}=\frac{\mathrm{du}}{\mathrm{~d} \lambda} \cdot \frac{\mathrm{~d} \lambda}{\mathrm{dx}}=\mathrm{U} \cdot(2-2 \cdot \lambda) \cdot\left(-\frac{\mathrm{y}}{\delta^{2}}\right) \cdot \frac{\mathrm{d} \delta}{\mathrm{dx}} \quad \frac{\mathrm{~d} \delta}{\mathrm{dx}}=\frac{1}{2} \cdot \mathrm{c} \cdot \mathrm{x}^{-\frac{1}{2}}
$$

$$
\frac{\partial}{\partial \mathrm{x}} \mathrm{u}=\mathrm{U} \cdot(2-2 \cdot \lambda) \cdot\left(-\frac{\lambda}{\delta}\right) \cdot \frac{1}{2} \cdot \mathrm{c} \cdot \mathrm{x}^{-\frac{1}{2}}=\mathrm{U} \cdot(2-2 \cdot \lambda) \cdot\left(-\frac{\lambda}{\frac{1}{2}}\right) \cdot \frac{1}{2} \cdot \mathrm{c}^{-\mathrm{x}^{-\frac{1}{2}}}
$$

$$
\frac{\partial}{\partial x} u=-U \cdot(2-2 \cdot \lambda) \cdot \frac{\lambda}{2 \cdot x}=-\frac{U \cdot\left(\lambda-\lambda^{2}\right)}{x}
$$

$$
\frac{\partial}{\partial \mathrm{y}} \mathrm{u}=\mathrm{U} \cdot\left(\frac{2}{\delta}-2 \cdot \frac{\mathrm{y}}{\delta^{2}}\right)=\frac{2 \cdot \mathrm{U}}{\delta} \cdot\left[\frac{\mathrm{y}}{\delta}-\left(\frac{\mathrm{y}}{\delta}\right)^{2}\right]=\frac{2 \cdot \mathrm{U} \cdot\left(\lambda-\lambda^{2}\right)}{\mathrm{y}}
$$

Hence

Collecting terms

$$
\mathrm{a}_{\mathrm{x}}=\mathrm{u} \cdot \frac{\partial}{\partial \mathrm{x}} \mathrm{u}+\mathrm{v} \cdot \frac{\partial}{\partial \mathrm{y}} \mathrm{u}=\mathrm{U} \cdot\left(2 \cdot \lambda-\lambda^{2}\right)\left[\frac{\mathrm{U} \cdot\left(\lambda-\lambda^{2}\right)}{\mathrm{x}}\right]+\mathrm{U} \cdot \frac{\delta}{\mathrm{x}} \cdot\left(\frac{1}{2} \cdot \lambda-\frac{1}{3} \cdot \lambda^{3}\right) \cdot\left[\frac{2 \cdot \mathrm{U} \cdot\left(\lambda-\lambda^{2}\right)}{\mathrm{y}}\right]
$$

To find the maximum

$$
\mathrm{a}_{\mathrm{x}}=\frac{\mathrm{U}^{2}}{\mathrm{x}} \cdot\left(-\lambda^{2}+\frac{4}{3} \cdot \lambda^{3}-\frac{1}{3} \cdot \lambda^{4}\right)=\frac{\mathrm{U}^{2}}{\mathrm{x}} \cdot\left[-\left(\frac{\mathrm{y}}{\delta}\right)^{2}+\frac{4}{3} \cdot\left(\frac{\mathrm{y}}{\delta}\right)^{3}-\frac{1}{3} \cdot\left(\frac{\mathrm{y}}{\delta}\right)^{4}\right]
$$

$$
\frac{\mathrm{da}_{\mathrm{x}}}{\mathrm{~d} \lambda}=0=\frac{\mathrm{U}^{2}}{\mathrm{x}} \cdot\left(-2 \cdot \lambda+4 \cdot \lambda^{2}-\frac{4}{3} \cdot \lambda^{3}\right) \quad \text { or } \quad-1+2 \cdot \lambda-\frac{2}{3} \cdot \lambda^{2}=0
$$

The solution of this quadratic $(\lambda<1)$ is

$$
\lambda=\frac{3-\sqrt{3}}{2}
$$

$$
\lambda=0.634 \quad \frac{\mathrm{y}}{\delta}=0.634
$$

At $\lambda=0.634$

$$
\begin{array}{ll}
a_{X}=\frac{U^{2}}{x} \cdot\left(-0.634^{2}+\frac{4}{3} \cdot 0.634^{3}-\frac{1}{3} \cdot 0.634^{4}\right)=-0.116 \cdot \frac{\mathrm{U}^{2}}{\mathrm{x}} \\
a_{X}=-0.116 \times\left(6 \cdot \frac{\mathrm{~m}}{\mathrm{~s}}\right)^{2} \times \frac{1}{0.8 \cdot m} & a_{\mathrm{X}}=-5.22 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}
\end{array}
$$

The following plot can be done in Excel

Gwen: Laminar boundary layer an a flat plate. (Prdoms.i)

$$
\begin{align*}
& \frac{u}{0}=\sin \frac{\pi y}{\pi \delta} \quad \delta=6 N^{\prime 2} \tag{0}\\
& \frac{v}{v}=\frac{1}{\pi} \frac{\delta}{x}\left[\cos \left(\frac{\pi}{2} \frac{y}{\delta}\right)+\left(\frac{\pi}{2} \frac{y}{\delta}\right) \sin \left(\frac{\pi}{2} \frac{y}{8}\right)-1\right]
\end{align*}
$$

Find: Expression for $a_{n p}$ and $a_{y p}$
Phot: a_{t} and a_{y} as functions of y / δ for $-J=5 \mathrm{mls}, x=1 \mathrm{~m}+\mathrm{s}=1 \mathrm{~mm}$ determine maximum values at locations at whish maund occur.
Solution:
Basic equations:

$$
\begin{aligned}
& a_{p x}=u^{\frac{\partial u}{\partial x}+v} \frac{\partial u}{\partial y}+w \frac{\partial(\lambda)}{\partial z}+\frac{\partial u}{\partial t}+o(1) \\
& a_{e_{y}}=u \frac{\partial v}{\partial x}+v \frac{\partial v}{\partial y}+w \frac{\partial}{\partial z}+\frac{\partial v}{\partial t} \ldots \ldots(1)
\end{aligned}
$$

Assumption', (i) steady frow
(k) w and alg $=0$

$$
\begin{align*}
& \text { Let } \eta=\frac{\pi}{2} \frac{y}{\delta} ; \eta=\eta(x, y) \quad \frac{\partial \eta}{\partial \eta}=\frac{\pi}{2 \delta} ; \delta=c x^{\prime \prime}, \frac{d \delta}{d x}=\frac{1}{2} \frac{c}{-x^{\prime}}=\frac{\delta}{2 x} \\
& \frac{\partial \eta}{\partial x}=\frac{\partial \eta}{\partial \delta} \frac{d \delta}{d x}=\frac{\pi y}{2}\left(-\frac{1}{\delta}\right) \frac{\delta}{2 x}=-\frac{\pi}{4 x}\left(\frac{y}{\delta}\right) \\
& u=U \sin \eta \\
& \frac{\partial u}{\partial x}=\frac{\partial u}{\partial \eta} \frac{\partial \eta}{\partial x}=0 \cos \eta\left(-\frac{\pi}{4 x} \frac{y}{\delta}\right)=-\frac{U}{2 x}\left(\frac{\pi}{2} \frac{y}{\delta}\right) \cos \eta=-\frac{\eta}{2 x} \eta \cos \eta \ldots \\
& \frac{\partial u}{\partial y}=\frac{\partial u}{x \eta} \frac{\partial \eta}{\partial y}=-U \cos \eta \frac{\pi}{2 \delta}=\frac{U \pi}{2 \delta} \cos \eta \tag{4}
\end{align*}
$$

$v=3 \frac{1}{\pi} \frac{\delta}{\pi}(\cos \eta-\eta \sin \eta-1)$. differentiating using produtrule

$$
\frac{\partial v}{2 x}=-\frac{Y}{\pi} \frac{\delta}{2 k^{2}}(\cos \eta+\eta \sin \eta-t)-\frac{Y \delta}{4 k^{2}}\left(\frac{y}{\delta}\right) \eta \cos \eta \ldots \ldots \ldots(5)
$$

$$
\frac{\partial v}{\partial y}=\frac{\partial v}{\partial \eta} \frac{\partial \eta}{2 y}=\frac{0}{\pi} \frac{\delta}{x}(-3 \sin \eta+\eta \cos \eta+\operatorname{sen} x) \frac{\pi}{2 \delta}=\frac{y}{2 x} \eta \cos \eta \ldots \ldots(6)
$$ Substituting into Eq.',

$$
\begin{aligned}
& a_{1}=U \sin \eta\left(-\frac{U}{2 x} \eta \cos \eta\right)+\frac{Y}{x} \frac{8}{x}(\cos \eta-\eta \sin \eta-\eta) \frac{O \pi}{24} \cos \eta \\
& a_{1}=-\frac{U^{2}}{2 x} \eta \sin \eta \cos \eta+\frac{\eta^{2}}{2 x}(\cos \eta-\eta \sin \eta-1) \cos \eta \\
& a_{1}=\frac{U^{2}}{2 x} \cos \eta[\cos \eta-\eta \operatorname{son} \eta-1-\eta \sin \eta]
\end{aligned}
$$

$$
\begin{aligned}
& \frac{\partial v}{\partial x}=\frac{0}{R}\left(\frac{1}{x} \frac{d \delta}{d x}-\frac{\delta}{2}\right)(\cos \eta+\eta \sin \eta-1)+\frac{\partial}{\hat{N}} \frac{\delta}{x}(-\sin \eta+\eta \cos \eta+\sin \eta) \frac{\partial \eta}{\partial x} \\
& =\frac{U}{R}\left(\frac{1}{x} \frac{\delta}{2 x}-\frac{\delta}{q^{2}}\right)(\cos \eta+\eta \sin \eta-1)+\frac{\pi}{x} \frac{\delta}{x} \eta \cos \eta\left(-\frac{x}{4 x}\right) \frac{y}{\delta}
\end{aligned}
$$

$$
a_{+}=\frac{V^{2}}{2 x} \cos \eta(\cos -1-1)=-\frac{U^{2}}{2 x} \cos \eta(1-\cos \eta) \quad a_{x}
$$

Subitutuing ito For:

$$
a_{y}=\frac{J^{2} \delta}{\pi 2 k^{2}}\left\{\left[\begin{array}{c}
-\sin \eta(\cos \eta+\eta \sin \eta-1)-\frac{\pi}{2}\left(\frac{y}{\delta}\right) \eta \cos \eta \sin \eta \\
+\eta \cos \eta(\cos \eta+\eta \sin \eta-1)
\end{array}\right\}\right.
$$

$y / 8$	η	$a_{x}\left(\mathrm{~m} / \mathrm{s}^{2}\right)$
0.00	0.000	0.000
0.05	0.0785	-0.0384
0.10	0.157	-0.152
0.15	0.236	-0.336
0.20	0.314	-0.582
0.25	0.393	-0.879
0.30	0.471	-1.21
0.35	0.550	-1.57
0.40	0.628	-1.93
0.45	0.707	-2.28
0.50	0.785	-2.59
0.55	0.864	-2.85
0.60	0.942	-3.03
0.65	1.02	-3.12
0.70	1.10	-3.10
0.75	1.18	-2.95
0.80	1.26	-2.67
0.85	1.34	-2.24
0.90	1.41	-1.65
0.95	1.49	-0.904
1.09	1.57	0.000

y / δ	月	$a_{x}\left(\mathrm{~m} / \mathrm{s}^{2}\right)$
0.667	1.05	-3.12

(Maximurn absolute value using Solver)
y component

y / δ	η	$a_{y}\left(\times 10^{3} \mathrm{~m} / \mathrm{s}^{2}\right)$
0.00	0.000	0.0000
0.05	0.0785	-0.00192
0.10	0.157	-0.0152
0.15	0.236	0.0506
0.20	0.314	-0.117
0.25	0.393	-0.223
0.30	0.471	-0.372
0.35	0.550	-0.566
0.40	0.628	-0.803
0.45	0.707	-1.08
0.50	0.785	-1.39
0.55	0.864	-1.71
0.60	0.942	-2.04
0.65	1.02	-2.35
0.70	1.10	-2.62
0.75	1.18	-2.84
0.80	1.26	-2.98
0.85	1.34	-3.01
0.90	1.41	-2.91
0.95	1.49	-2.67
1.00	1.57	-2.27

y / δ	η	$a_{y}\left(\times 10^{3} \mathrm{~m} / \mathrm{s}^{2}\right)$
0.839	1,32	-3.01

Note: a_{y} is normalized with n^{2} / δ and a_{n} is normalized with x. Thus

$$
a_{y}=0\left(\frac{\delta}{x} a_{x}\right)=0,001 a_{x}
$$

$$
\begin{aligned}
& +\frac{\int}{x}\left(\cos \eta+\pi \sin q^{-1}\right) \frac{2}{2 x} r \cos \eta
\end{aligned}
$$

Problem 5.59
Given: A ir flow through porous surface into narrow gap.

Find: (a) show $u(x)=v_{0} x / n$
(b) Components
(c) Acceleration of a fluid particle in the gap.

Solution: Apply conservation of mass to CV shown.

$$
=0(1)
$$

Basic equation: $0=\frac{r^{2}}{t} \int_{C_{V}} \rho d t+\int_{C S} \rho \vec{V} \cdot d \vec{A}$
Assumptions: (1) steady flow
(2) Incompressible flow
(3) Uniform how at each section

Then

$$
0=\left\{-x \omega v_{0}\right\}+\{h \omega u(x)\} \quad \text { or } \quad u(x)=v_{0} \frac{x}{h}
$$

Apply differential form to find v :

$$
\begin{aligned}
& \frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}=0 \quad \frac{\partial u}{\partial x}=\frac{v_{0}}{h} \\
& v-v_{0}=\int_{0}^{y} \frac{\partial v}{\partial y} d y+f(x)=\int_{0}^{y}-\frac{v_{0}}{h} d y+f(x)=-\frac{v_{0} y}{h}+f(x)
\end{aligned}
$$

or

Given: Flow between parallel disks through porous surface.
Find: (a) show $V_{r}=v_{0} r / 2 h$
(b) V_{z}, if $v_{0} \ll V_{r}$
(c) Components of acceleration for a fluid particle in the gap.

Solution: Apply CV form of continceity to finite CU shown. Basic equation:

$$
0=\frac{\partial}{\rho t} \int_{C v}^{=o(1)} \rho d t+\int_{C S} \rho \vec{v} \cdot d \vec{A}
$$

Asscemptions: (1) Steady flow
(2) Incompressible flow
(3) Uniform flow at each section

Then

$$
0=\left\{-\left|\rho v_{0} \pi r^{2}\right|\right\}+\left\{+\left|\rho v_{r} 2 \pi r h\right|\right\} \text { or } v_{r}=\frac{v_{0} r}{2 h}
$$

Apply differential form of conservation of mass for incompressible flow. Basic equation: $\frac{1}{r} \frac{\partial}{\partial r}\left(r V_{r}\right)+\frac{1}{r} \frac{\partial}{\partial \theta}\left(F_{r}\right)+\frac{\partial}{\partial z} V_{z}=0$
Assumptions: (4) $V_{\theta}=0$ bo symmetry
(5) $V_{r}=v_{0} r / z h$ from above

Then

$$
\frac{\partial v_{z}}{\partial z}=-\frac{1}{r} \frac{\partial}{\partial r}\left(r v_{r}\right)=-\frac{1}{r} \frac{\partial}{\partial r}\left(\frac{v_{0} r^{2}}{2 h}\right)=-\frac{1}{r}\left(\frac{v_{0} r}{h}\right)=-\frac{v_{0}}{h}
$$

Integrating,

$$
V_{z}=-\frac{v_{0} z}{h}+f(r)
$$

Bocendary conditions are $V_{z}=v_{0}$ at $z=0, V_{z}=0$ at $z=h$
Thus from first $B C, f(r)=v_{0}=$ constant, so

$$
V_{z}=V_{0}\left(1-\frac{z}{h}\right)
$$

The r component of acceleration is

$$
a_{r}=V_{r} \frac{\partial V_{r}}{\partial r}+\frac{V_{0}}{r} \frac{\partial \hat{V_{r}}}{\phi \theta}+V_{z} \frac{\partial \hat{V}_{r}}{\phi z}+\frac{\partial \hat{V}_{r}}{\partial t}=\left(\frac{v_{0} r}{2 n}\right)\left(\frac{v_{0}}{2 h}\right)=\left(\frac{v_{0}}{2 h}\right)^{2} r
$$

The z component is

$$
a_{z}=V_{r} \frac{\partial v_{z}}{\partial r}+\frac{V_{\theta}}{r} \frac{\partial \hat{\sqrt{z}}}{\partial \theta}+V_{z} \frac{\partial V_{z}}{\partial z}+\frac{\partial \sqrt{\sqrt{3}}}{\partial t}=v_{0}\left(1-\frac{z}{h}\right)\left(-\frac{v_{0}}{h}\right)=\frac{v_{0}^{2}}{h}\left(\frac{z}{h}-1\right)
$$

Given: Steady, inviscid flow over a circular cylinder of radius R.

$$
\vec{V}=i \cos \theta\left[1-\left(\frac{R}{r}\right)^{2}\right] e_{r}-O \sin \theta\left[1+\left(\frac{R}{r}\right)^{2}\right] e_{\theta}
$$

Find: (a) Expression for acceleration of particle moving ava $\theta=\mathbb{R}$ bu Expression for acceleration of particle mon ga aby $r=k$ (c) Locations at which accelerations a_{r} and af real maximum and minimum values.
Pot: ar as a function of Rile for $\theta=r$ and as a function of θ for $r=R$; plot as a a function of θ for $r=R$
Solution:
Basic equations:

$$
\begin{aligned}
& a_{r}=\psi_{r} \frac{\partial \nu_{r}}{\partial r}+\frac{\nu_{\theta}}{r} \frac{\partial \nu_{r}}{\partial \theta}-\frac{\nu^{2}}{r}+\frac{\partial y_{r}}{\partial t}=0(1) \\
& a_{\theta}=\psi_{r} \frac{\partial \nu_{\theta}}{\partial r}+\frac{\psi_{\theta}}{r} \frac{\partial \nu_{\theta}}{\partial \theta}+\frac{\psi_{r}}{r}+\frac{\nu_{\theta}}{r}=0(i)
\end{aligned}
$$

Assumptions: (i) steady flow.
Along $\theta=\pi$

$$
\frac{\partial v_{0}}{\partial \theta}+\frac{V_{r} \frac{d_{0}}{\Gamma}+\frac{\partial y_{R}}{\partial t}}{\frac{L_{R}}{r}}
$$

$$
\begin{aligned}
& g \theta=K \\
& \text { Hen } \cdot \cos \theta=-1, \operatorname{sun} \theta=0 \text {, so } t_{\theta}=0 \text { and } t_{5}=-\left[1-\left(\frac{R}{5}\right)^{2}\right] \\
& \text { av r }
\end{aligned}
$$

$$
\begin{aligned}
& \left.\left.a_{r}=v_{r} \frac{\partial v_{r}}{\partial r}=-U\left[1-\left(\frac{R}{r}\right)^{2}\right](-O)(-2)\left(-\frac{R^{2}}{r^{2}}\right)\right]=\frac{2 U^{2}}{R}\left[1-\left(\frac{R}{r}\right)^{2}\right]\left(\frac{R}{r}\right)^{3} a_{r} a_{\theta}\right\}_{\theta}=\pi \\
& a_{\theta}=0
\end{aligned}
$$

To determine location of maximum a_{r}, let $\frac{R}{F}=\eta$ andevabuatic dar

$$
a_{5}=\frac{R U^{2}}{R}\left[1-\eta^{2}\right] \eta^{3}=\frac{2 v^{2}}{R}\left[\eta^{3}-\eta^{5}\right]
$$

$$
\frac{d a r}{d \eta}=\frac{2 v^{2}}{R}\left[3 \eta^{2}-5 \eta^{4}\right] \text {, The } \frac{d a r}{d \eta}=0 \text { at } \eta^{2}=\frac{3}{5} \text { or } \eta=0.75
$$

$$
a_{\text {max }}=\frac{20^{2}}{R}(0 . \pi 5)^{3}[1-6.035]=0.372 \frac{3^{2}}{R} Q r=1.29 R
$$

Since $a_{0}=0, \quad \vec{a}_{\text {max }}=a_{r_{\text {max }}} \hat{e}_{r}=0.372 \frac{V^{2}}{R} \hat{e}_{r}$ e $r=1.2 \Omega R$
Along $r=R$

$$
\left.\begin{array}{ll}
r=R & A_{r}=0 \text { and } V_{\theta}=-20 \sin \theta \\
a_{r}=-\frac{V_{0}^{2}}{r}=-\frac{(-2 \sin \theta)^{2}}{R}=-\frac{4 J^{2}}{R} \sin ^{2} \theta & a_{r} \\
a_{\theta}=\frac{\lambda_{\theta}}{5 \theta}=\left(-2 \frac{\sin \theta}{R}\right)\left(-20 \frac{\cos \theta}{R}\right)=\frac{4 J^{2}}{R^{2}} \sin \theta \cos \theta & a_{\theta}
\end{array}\right\} r=R
$$

ar has mawionur negative value at $\theta= \pm \pi / 2$ has minmur value (of zero at $\theta=0$. a_{θ} has marivitur values at $\theta= \pm \pi l_{4}, 3 \pi l_{4}$ has minimum values at $\theta=0, \pm \pi / 2, \pi$

The acseleration magnitude is

$$
|\vec{a}|=\left[a_{t}^{2}+a_{\theta}^{2}\right]^{1 / 2}=\left[\left(-\frac{4 U^{2}}{R}\right)^{2} \sin ^{4} \theta+\left(\frac{4 U^{2}}{R}\right)^{2} \sin ^{2} \cos ^{2} \theta\right]^{1 / 2}=\frac{4 U^{2}}{R} \sin \theta
$$

$$
\text { - Ris is a maximum at } \theta= \pm \not \mathbb{N}_{2} \text {. }
$$

$$
\text { This } \vec{a}_{\text {rai }}= \pm 4 \frac{\partial^{2}}{R} \text { at } \theta= \pm\left.\pi\right|_{2} \text {. }
$$

Plots:

$$
\text { (R) } r=R \text {. }
$$

$$
\begin{array}{ll}
a_{r}=\frac{2 v^{2}}{R}\left(\frac{R}{r}\right)^{3}\left[1-\left(\frac{R}{r}\right)^{2}\right] ; & \frac{a_{r}}{V^{2} l R}=\left(\frac{R}{r}\right)^{3}\left[1-\left(\frac{R}{r}\right)^{2}\right] \\
a_{r}=-4 \frac{V^{2}}{R} \sin ^{2} \theta ; & \frac{a_{r}}{V^{2} R}=-4 \sin ^{2} \theta \\
a_{\theta}=4 \frac{J^{2}}{R} \operatorname{sun} \theta \cos \theta ; & \frac{a_{\theta}}{\sigma^{2} l e}=4 \sin \theta \cos \theta
\end{array}
$$

5.62 Consider the incompressible flow of a fluid through a nozzle as shown. The area of the nozzle is given by $A=A_{0}(1-b x)$ and the inlet velocity varies according to $U=U_{0}\left(1-e^{-\lambda t}\right)$, where $A_{0}=0.5 \mathrm{~m}^{2}, L=5 \mathrm{~m}, b=0.1 \mathrm{~m}^{-1}, \lambda=0.2 \mathrm{~s}^{-1}$, and $U_{0}=5 \mathrm{~m} / \mathrm{s}$. Find and plot the acceleration on the centerline, with time as a parameter.

Given: Velocity field and nozzle geometry

Find: Acceleration along centerline; plot

Solution: $\quad a_{x}=\frac{U_{0}}{(1-b \cdot x)} \cdot\left[\lambda \cdot e^{-\lambda \cdot t}+\frac{b \cdot U_{0}}{(1-b \cdot x)^{2}} \cdot\left(1-e^{-\lambda \cdot t}\right)^{2}\right]$

A_{0}	$=$	0.5	$\mathrm{~m}^{2}$
L	$=$	5	m
b	$=$	0.1	$\mathrm{~m}^{-1}$
λ	$=$	0.2	$\mathrm{~s}^{-1}$
U_{0}	$=$	5	$\mathrm{~m} / \mathrm{s}$

$\boldsymbol{t}=$	$\mathbf{0}$	$\mathbf{5}$	$\mathbf{1 0}$	$\mathbf{6 0}$
$\boldsymbol{x}(\mathrm{m})$	$\boldsymbol{a}_{\boldsymbol{x}}\left(\mathrm{m} / \mathrm{s}^{2}\right)$	$\boldsymbol{a}_{\boldsymbol{x}}\left(\mathrm{m} / \mathbf{s}^{2}\right)$	$\boldsymbol{a}_{\boldsymbol{x}}\left(\mathrm{m} / \mathbf{s}^{2}\right)$	$\boldsymbol{a}_{\boldsymbol{x}}\left(\mathrm{m} / \mathbf{s}^{2}\right)$
0.0	1.00	1.367	2.004	2.50
0.5	1.05	1.552	2.32	2.92
1.0	1.11	1.78	2.71	3.43
1.5	1.18	2.06	3.20	4.07
2.0	1.25	2.41	3.82	4.88
2.5	1.33	2.86	4.61	5.93
3.0	1.43	3.44	5.64	7.29
3.5	1.54	4.20	7.01	9.10
4.0	1.67	5.24	8.88	11.57
4.5	1.82	6.67	11.48	15.03
5.0	2.00	8.73	15.22	20.00

For large time (> 30 s) the flow is essentially steady-state

Given: One-dimensional, incompressible flow through circular channel.

Find: (a) The acceleration of a particle at the channel exit.
(b) Plot as a function of time for a complete cycle.
(c) On same plot. show acceleration ff chanel is cont ant area; explain

Solution: The acceleration of a particle in one-dimensiona, flow is

$$
a_{x}=u \frac{\partial u}{\partial x}+\frac{\partial u}{\partial t}
$$

From continuity, $u=U \frac{A_{1}}{A}=U \frac{R_{1}^{2}}{n^{2}}$
From geometry, $\Omega=R,-\left(R_{1}-R_{2}\right) \frac{x}{L}=R_{1}-\Delta R \frac{x}{L}$, so

$$
u=U_{\frac{R_{1}^{2}}{\left(R, \Delta R \frac{x}{L}\right)^{2}}}^{\left(R_{1}\right.}=\left[U_{0}+U_{1} \sin (\omega t) \sqrt{\left[1-\frac{\Delta R}{R}\left(\frac{x}{L}\right)\right]^{2}}\right.
$$

Thus

$$
\begin{aligned}
& a_{x}= {\left[U_{0}\right.} \\
&\left.+U_{1} \sin (\omega t)\right] \frac{1}{\left[1-\frac{\Delta R}{R},\left(\frac{x}{L}\right)\right]^{2}}\left[U_{0}+U_{1} \sin (\omega t)\right]\left(-2 x-\frac{\Delta R}{R_{1} L}\right) \frac{1}{\left[1-\frac{\Delta R}{R_{1}}\left(\frac{x}{L}\right)\right]^{3}} \\
&+\frac{\omega U_{1} \cos (\omega t)}{\left[1-\frac{\Delta R}{R_{1}}\left(\frac{x}{L}\right)\right]^{2}} \\
& a_{x}= \frac{2 \Delta R}{R_{1} L} \frac{\left[U_{0}+U_{1} \sin (\omega t)\right]^{2}}{\left[1-\frac{\Delta R}{R_{1}}\left(\frac{x}{L}\right)\right]^{5}}+\frac{\omega U_{1} \cos (\omega t)}{\left[1-\frac{\Delta R}{R_{1}}\left(\frac{x}{L}\right)\right]^{2}}
\end{aligned}
$$

At $x / L=1,\left[1-\frac{\Delta R}{R_{1}}\left(\frac{x}{L}\right)\right]=1-\frac{0.1 m}{0.2 m}=0.5$, so

$$
a_{x}=2 \times 0.1 m \times \frac{1}{0.2 m} \times \frac{1}{1 m}[20+2 \sin (\omega t)]_{\frac{m^{2}}{3}}^{\frac{2}{2}} \times \frac{1}{(0.5)^{5}}+\frac{0.3 \mathrm{ad}}{5} \times \frac{2 m}{5} \times \cos (\omega t) \times \frac{1}{(0.5)}
$$

or

$$
a_{x}\left(m / \sec ^{2}\right)=32[20+2 \sin (\omega t)]^{2}+2.4 \cos (\omega t)(a t x=c)
$$

C lee next page for plots)

The acceleration in the channel and in a constant area are calculated and plotted below

t (s)	$\begin{gathered} \mathbf{a}_{x}\left(\mathrm{~m} / \mathrm{s}^{2}\right) \\ \text { (Convergent) } \end{gathered}$	$\begin{aligned} & \mathbf{a}_{x}\left(\mathrm{~m} / \mathrm{s}^{2}\right) \\ & (A=\text { const. }) \end{aligned}$
0	12802	0.600
1	13570	0.573
2	14288	0.495
3	14885	0.373
4	15298	0.217
5	15481	0.042
6	15414	-0.136
7	15104	-0.303
8	14586	-0.442
9	13915	-0.542
10	13161	-0.594
11	12397	-0.592
12	11690	-0.538
13	11098	-0.436
14	10665	-0.294
15	10419	-0.126
16	10377	0.052
17	10541	0.227
18	10900	0.381
19	11431	0.501
20	12097	0.576
21	12845	0.600
22	13612	0.570
23	14326	0.489
24	14914	0.365
25	15315	0.208

The acceleration in the convergent channel is massively larger than that in the constant area channel because very large convective acceleration is generated by the convergence (the constant area channef only has local acceleration)

Given: Steady, two-dimensional velocity field of Problem 5.53,

$$
\vec{V}=A x \hat{\imath}-A y \hat{\jmath} ; A=1 \mathrm{~s}^{-1}
$$

Find: (a) Expressions for particle coordinates, $x_{p}=f_{1}(t)$ and $y_{p}=f_{2}(t)$.
(b) Time required for particle to travel from $\left(x_{0}, y_{0}\right)=\left(\frac{1}{2}, 2\right)$ $t_{0}(x, y)=(1,1)$ and $(2,1 / 2)$.
(c) Compare acceleration determined from $f_{1}(t)$ and $f_{2}(t)$ with those found in Problem 5.53.

Solution: For the given flow, $u=A x$ and $v=-A y$. Thus

$$
u_{p}=\frac{d f_{1}}{d t}=A x_{p}=A f_{1} \text {, or } \quad \frac{d f_{1}}{f_{1}}=A d t
$$

Integrating from x_{0} to f_{1},

$$
\left.\int_{x_{0}}^{f_{1}} \frac{d f_{1}}{f_{1}}=\ln f_{1}\right]_{x_{0}}^{f_{1}}=\ln \left(\frac{f_{1}}{x_{0}}\right)=A t, \text { or } f_{1}=x_{0} e^{A t}
$$

Likewise $v_{p}=\frac{d f_{2}}{d t}=-A y_{p}=-A f_{2}$, or $\frac{d f_{2}}{f_{2}}=-A d t$
Integrating from y_{0} to f_{2},

$$
\left.\int_{y_{0}}^{f_{2}} \frac{d f_{2}}{f_{2}}=\ln f_{1}\right]_{y_{0}}^{f_{2}}=\ln \left(\frac{f_{2}}{y_{0}}\right)=-A t \quad \text { or } f_{2}=y_{0} e^{-A t}
$$

For a particle initially at $\left(\frac{1}{2}, 2\right), x_{0}=\frac{1}{2}$ and $y_{0}=z$
To reach the point $(x, y)=(1,1), e^{A t}=\frac{x}{x_{0}}=2$, so $t=\frac{\ln 2}{A}=0.693 \mathrm{sec}$

$$
\begin{align*}
& e^{-A t}=\frac{y}{y_{0}}=\frac{1}{2}, \text { so } t=\frac{-\ln \frac{1}{2}}{A}=0.693 \tag{1}\\
& e^{A t}=\frac{x}{x_{0}}=4, \text { so } t=\frac{\ln 4}{A}=1.39 \mathrm{sec} \\
& C^{-A t}=\frac{y}{y_{0}}=\frac{1}{4}, \text { so } t=\frac{-\ln \frac{1}{4}}{A}=1.39 \mathrm{sec}
\end{align*}
$$

The acceleration components are
To reach the point $(x, y)=\left(z, \frac{1}{2}, e^{A t}=\frac{x}{x_{0}}=4\right.$, so $t=\frac{\ln 4}{A}=1.39 \mathrm{sec}$

$$
\begin{aligned}
a_{p x} & =\frac{d^{2} f_{1}}{d t^{2}}=x_{0} A^{2} e^{A t}=x_{0} A^{2} \frac{f_{1}}{x_{0}}=A^{2} f_{1} \\
a_{p y} & =\frac{d^{2} f_{2}}{d t^{2}}=y_{0} A^{2} e^{-A t}=y_{0} A^{2} \frac{f_{2}}{y_{0}}=A^{2} f_{2} \\
A t(x, y) & =(1,1) \\
\vec{a}_{p} & =a_{p x} \hat{\imath}+a_{p y} \hat{\jmath}=\frac{(1)^{2}}{s^{2}} \times 1 m \hat{\imath}+\frac{(1)^{2}}{s^{2}} \times 1 m \hat{\jmath}=(\hat{\imath}+\hat{\jmath}) \frac{m}{s^{2}} \\
\text { At }(x, y) & =\left(2, \frac{1}{2}\right) \\
\vec{a}_{p} & =\frac{(1)^{2}}{s^{2}} \times 2 m \hat{\imath}+\frac{(1)^{2}}{s^{2}} \times \frac{1}{2} m \hat{\jmath}=\left(2 \hat{\imath}+\frac{1}{2} \hat{\jmath}\right) \frac{m}{s^{2}}
\end{aligned}
$$

These are identical to the accelerations found in Problem 5.53

Expand ($\bar{U} \cdot \bar{\nabla} \vec{y}$ in cylvidrical coordinates to obtain the convective oteleleration of a find particle. verify the results given in Eqs.5.12 Recall $2 \hat{e}^{r} b_{2 \theta}=\hat{e}_{0}$ and $\hat{\partial}_{\vec{e}} \|_{\Delta \theta}=-\hat{e}_{r}$
Solution:
In cylindrical coordinates $\nabla=\hat{e}_{r} \frac{\partial}{\partial r}+\hat{e}_{0} \frac{1}{<} \frac{\partial}{2 \theta}+\hat{k} \frac{\partial}{\partial z}$

$$
\begin{aligned}
& \vec{V}=V_{r} \hat{e}_{t}+\hat{b}_{0} \hat{e}_{0}+V_{2} \underline{l}
\end{aligned}
$$

$$
\begin{aligned}
& =\left[\psi_{r} \frac{\partial}{\partial r}+\frac{\nu_{0}}{\Gamma} \frac{\partial}{\partial \theta}+\psi_{z} \frac{\partial}{\partial z}\right]\left(\psi_{r} \hat{e}_{r}+b_{0} \hat{e}_{\theta}+\psi_{i} \hat{e}\right) \\
& =v_{r} \frac{\partial}{\partial r} y_{r} \hat{e}_{r}+\frac{\nu_{0}}{\Gamma} \frac{\partial}{\partial \theta} \psi_{r} \hat{e}_{r}+V_{z} \frac{\partial z}{\partial z}\left(v_{r} \hat{e}_{r}\right) \\
& +V_{r} \frac{\partial}{\partial r} V_{0} \hat{e}_{\theta}+\frac{V_{0}}{\Gamma} \frac{\partial}{\partial \theta} V_{\theta} \hat{e}_{0}+V_{z} \frac{\partial}{\partial z} V_{0} \hat{e}_{\theta} \text {. } \\
& +\psi_{r} \frac{\partial}{\partial r} V_{i} \hat{k}+\frac{V_{0}}{\Gamma} \frac{\partial}{\partial r} J_{z} \hat{k}+V_{z} \frac{\partial}{\partial z} V_{i} \hat{k} \\
& =\hat{e}_{r}\left\{\nu_{r} \frac{\partial \nu_{r}}{\partial r}+\frac{t^{r}}{r} \frac{\partial \nu_{r}}{\partial \theta}+V_{z} \frac{\partial \nu_{r}}{\partial z}\right\}\left(\theta+\frac{t_{r}}{r}\right\}\left(\frac{\partial e_{r} r}{\partial \theta}\right) \Rightarrow \hat{e}_{\theta} \\
& +\hat{e}_{\theta}\left\{v_{r} \frac{\partial N_{0}}{\partial r}+\frac{\nu_{\theta}}{r} \frac{\partial N_{0}}{\partial \theta}+v_{z} \frac{\partial N_{0}}{\partial z}\right\}+\frac{v_{0}}{r}\left(\frac{\partial e_{\theta}}{\partial \theta}\right)=-\hat{e} \\
& +B\left\{v_{t} \frac{\partial \nu_{2}}{\partial r}+\frac{\nu_{0}}{5} \frac{\partial \nu_{2}}{\partial \theta}+\psi_{2} \frac{\partial \nu_{2}}{\partial t}\right. \text { \}(3) } \\
& (\vec{v} \cdot \nabla) \vec{V}=\hat{e}_{r}\left\{v_{r} \frac{\partial v_{r}}{2 r}+\frac{t_{0}}{r} \frac{\partial \nu_{r}}{20}-\frac{v_{e}^{2}}{r}+v_{z} \frac{\partial N_{r}}{2 z}\right\} \\
& +\hat{e}_{e}\left\{\psi_{r} \frac{\partial V_{r}}{\partial r}+\frac{\nu_{\theta}}{r} \frac{\partial v_{\theta}}{\partial \theta}+\frac{\psi_{0}}{r}+v_{z} \frac{\partial V_{\theta}}{\partial z}\right\} \text {. } \\
& +\hat{b}\left\{v_{r} \frac{\partial N_{z}}{\partial r}+\frac{N_{\theta}}{r} \frac{\partial V_{2}}{\partial \theta}+v_{z} \frac{\partial N_{2}}{\partial z}\right\} \text {. }
\end{aligned}
$$

Term(1) is the r component of convective acceleration

$$
\text { Eq. } 5.12 a a_{r p}=\left\{\psi_{r} \frac{\partial \nu_{r}}{\partial r}+\frac{\lambda_{0}}{r} \frac{\partial N_{r}}{\partial \theta}-\frac{\nu^{2}}{r}+\psi_{z} \frac{\partial V_{r}}{\partial z}\right\}+\frac{\partial V_{r}}{\partial \tau}
$$

Term (2) is the θ component of convective acceleration

Terrn(3) is the z component of convective acceleration

$$
\text { Eq S. } 12 \mathrm{c} a_{z_{p}}=\left\{v_{r} \frac{\partial N_{2}}{\partial r}+\frac{\nu_{\theta}}{r} \frac{\partial V_{z}}{\partial \theta}+\psi_{z} \frac{\partial N_{2}}{\partial z}\right\}+\frac{\partial V_{z}}{\partial t}
$$

5.66 Which, if any, of the flow fields of Problem 5.1 are irrotational?

Given: Velocity components

Find: Which flow fields are irrotational

Solution:

a. $u=2 x^{2}+y^{2}-x^{2} y ; v=x^{3}+x\left(y^{2}-2 y\right)$
b. $u=2 x y-x^{2}+y ; v=2 x y-y^{2}+x^{2}$
c. $u=x t+2 y ; v=x t^{2}-y t$
d. $u=(x+2 y) x t ; v=-(2 x+y) y t$

For a 2D field, the irrotionality the test is

$$
\frac{\partial}{\partial x} v-\frac{\partial}{\partial y} u=0
$$

(a)

$$
\frac{\partial}{\partial x} v-\frac{\partial}{\partial y} u=\left[3 \cdot x^{2}+\left(y^{2}-2 \cdot y\right)\right]-\left(2 \cdot y-x^{2}\right)=4 \cdot x^{2}+y^{2}-4 \cdot y \neq 0
$$

(b)

$$
\frac{\partial}{\partial x} v-\frac{\partial}{\partial y} u=(2 \cdot y+2 \cdot x)-(2 \cdot y-2 \cdot x)=4 \cdot x \neq 0
$$

(c)

$$
\frac{\partial}{\partial \mathrm{x}} \mathrm{v}-\frac{\partial}{\partial \mathrm{y}} \mathrm{u}=\left(\mathrm{t}^{2}\right)-(2)=\mathrm{t}^{2}-2 \neq 0
$$

Not irrotional
(d)

$$
\frac{\partial}{\partial x} v-\frac{\partial}{\partial y} u=(-2 \cdot y \cdot t)-(2 \cdot x \cdot t)=-2 \cdot x \cdot t-2 \cdot y \cdot t \neq 0
$$

Problem 5.67

5.67 A flow is represented by the velocity field $\vec{V}=$ $\left(x^{7}-21 x^{5} y^{2}+35 x^{3} y^{4}-7 x y^{6}\right) \hat{i}+\left(7 x^{6} y-35 x^{4} y^{3}+21 x^{2} y^{5}-y^{7}\right) \hat{j}$.
Determine if the field is (a) a possible incompressible flow and (b) irrotational.

Given: Flow field

Find: If the flow is incompressible and irrotational

Solution:

Basic equations: Incompressibility $\quad \frac{\partial}{\partial x} u+\frac{\partial}{\partial y} v=0 \quad$ Irrotationality $\quad \frac{\partial}{\partial x} v-\frac{\partial}{\partial y} u=0$
a)

$$
\begin{array}{ll}
u(x, y)=x^{7}-21 \cdot x^{5} \cdot y^{2}+35 \cdot x^{3} \cdot y^{4}-7 \cdot x \cdot y^{6} & v(x, y)=7 \cdot x^{6} \cdot y-35 \cdot x^{4} \cdot y^{3}+21 \cdot x^{2} \cdot y^{5}-y^{7} \\
\frac{\partial}{\partial x} u(x, y) \rightarrow 7 \cdot x^{6}-105 \cdot x^{4} \cdot y^{2}+105 \cdot x^{2} \cdot y^{4}-7 \cdot y^{6} & \frac{\partial}{\partial y} v(x, y) \rightarrow 7 \cdot x^{6}-105 \cdot x^{4} \cdot y^{2}+105 \cdot x^{2} \cdot y^{4}-7 \cdot y^{6}
\end{array}
$$

Hence $\quad \frac{\partial}{\partial x} u+\frac{\partial}{\partial y} v \neq 0$
COMPRESSIBLE
b) $\quad u(x, y)=x^{7}-21 \cdot x^{5} \cdot y^{2}+35 \cdot x^{3} \cdot y^{4}-7 \cdot x \cdot y^{6}$

$$
v(x, y)=7 \cdot x^{6} \cdot y-35 \cdot x^{4} \cdot y^{3}+21 \cdot x^{2} \cdot y^{5}-y^{7}
$$

$$
\frac{\partial}{\partial x} v(x, y) \rightarrow 42 \cdot x^{5} \cdot y-140 \cdot x^{3} \cdot y^{3}+42 \cdot x \cdot y^{5} \quad-\frac{\partial}{\partial y} u(x, y) \rightarrow 42 \cdot x^{5} \cdot y-140 \cdot x^{3} \cdot y^{3}+42 \cdot x \cdot y^{5}
$$

Hence $\quad \frac{\partial}{\partial x} v-\frac{\partial}{\partial y} u \neq 0$
ROTATIONAL

Note that if we define $\quad v(x, y)=-\left(7 \cdot x^{6} \cdot y-35 \cdot x^{4} \cdot y^{3}+21 \cdot x^{2} \cdot y^{5}-y^{7}\right) \quad$ then the flow is incompressible and irrotational!

Given: Sinusoidal approximation to boundary-kayervelocity profile, $u=U \sin \left(\frac{\pi}{2} \frac{y}{\delta}\right)$ where $\delta=5 \mathrm{~mm}$ at $x=0.5 \mathrm{~m}$ (Problem 5.12)

Neglect vertical component of velocity. $U=0.5 \mathrm{~m} / \mathrm{s}$.
Find: (a) Circulation abocet contour bounded by $x=0.4 \mathrm{~m}, x=0.6 \mathrm{~m}$, $y=0$, and $y=8 \mathrm{~mm}$.
(b) Result if evaluated $\Delta x=0.2 m$ further downstream?

Solution: Evaluate circulation Defining equation:

From the definition

$$
\Gamma=\oint \vec{V} \cdot d \vec{s}
$$

$$
\Gamma=\int_{a b} \vec{\nabla} \cdot d \vec{\Delta}+\int_{b c} \vec{v} / d \vec{\imath}+\int_{c d} \vec{v} \cdot d \vec{\omega}+\int_{d a} \vec{v} \int_{d \vec{u}}^{u \perp d y}=\int_{0}^{\Delta x} v \hat{\imath} \cdot d x(-\hat{\imath})
$$

$$
\Gamma=-U \Delta x=-5 \frac{\mathrm{~m}}{\sec } \times 0.2 \mathrm{~m}=-0.100 \mathrm{~m}^{2} / \mathrm{sec}
$$

At the downstream location, since $\delta=c x^{1 / 2}$

$$
\delta^{\prime}=\delta\left(\frac{x}{x^{\prime}}\right)^{1 / 2}=5 \mathrm{~mm}\left(\frac{0.8}{0.5}\right)^{1 / 2}=6.32 \mathrm{~mm}
$$

Point c^{\prime} is also outside the boundary layer. Consequently the integral along $c^{\prime} c$ will be the same as along $c d$. Thus

$$
\Gamma_{b b^{\prime} c^{\prime} c}=\Gamma_{a b c d}
$$

Given: Velocity field for flow in a rectangular "corner,"

$$
\vec{V}=A x \hat{\imath}-A y \hat{\jmath} \text { with } A=0.35 .
$$

as in Example Problem 5.8.
Find: Circulation about unit square shown.
Solution: Evaluate circulation
Defining equation:

$$
\Gamma=\oint \vec{v} \cdot \vec{d}
$$

The dot product is $\vec{V} \cdot d \vec{\jmath}=(A x \hat{\imath}-A y \hat{\jmath}) \cdot(d x \hat{\imath}+d y \hat{\jmath})=A x d x-A y d y$.
For the contour shown, $d y=0$ big ad and $c b$, and $d x=0$ along ba and de. Thus

$$
\begin{aligned}
\Gamma & =\int_{a}^{d} A x d x+\int_{d}^{c}-A y d y+\int_{c}^{b} A x d x+\int_{b}^{a}-A y d y \\
& \left.\left.\left.\left.=\frac{A x^{2}}{2}\right]_{x_{a}}^{x_{d}}-\frac{A y^{2}}{2}\right]_{y_{d}}^{y_{c}}+\frac{A x^{2}}{2}\right]_{x_{c}}^{x_{b}}-\frac{A y^{2}}{2}\right]_{y_{b}}^{y_{a}} \\
& =\frac{A}{2}\left(x_{d}^{2}-x_{a}^{2}+x_{b}^{2}-x_{c}^{2}\right)-\frac{A}{2}\left(y_{c}^{2}-y_{d}^{2}+y_{a}^{2}-y_{b}^{2}\right)
\end{aligned}
$$

$\Gamma=0$ (since $x_{a}=x_{b}$ and $x_{c}=x_{d}$

$$
y_{a}=y_{d} \text { and } y_{b}=y_{c} \text {) }
$$

$$
\text { ow is irrotational }(\nabla \times \vec{v}=0) \text {. }\}
$$

$\left\{\begin{array}{l}\text { This result is to be expected, since flow is irrotational }(\nabla \times \vec{V}=0) \text {. } \\ \text { From stokes' Theorem (Eg, 5.18), } \\ \Gamma=\int_{A}(\nabla \times \vec{v})_{z} d A=0\end{array}\right\}$

Gwen: Two dimensional Alow field $\vec{V}=p r y i+B y j$, where $A=\operatorname{nin}^{-1} \cdot s^{-1}, B=-\frac{1}{2} M^{-1} \cdot s^{-1}$ and coordinates कहt , where measured in meters
Show: vebocty field represents a possible incompressible flaw
Find: (a) Rotation at pant $(x, y)=$ (1 c)
Solution:
For incompressible flow $\frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}=0$
For given flow field.

For given flow field.

$$
\frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}=\frac{\partial}{\partial x}(A x y)+\frac{\partial}{\partial y}\left(B y^{2}\right)=A y+2 B y=(i) y+2\left(-\frac{1}{2}\right) y=0
$$

The find rotation is defined as $\vec{\omega}=\frac{1}{2} \nabla \overrightarrow{\times N}$

$$
\begin{aligned}
& \vec{\omega}=\frac{1}{2}\left|\begin{array}{ccc}
\hat{L} & \bar{j} & k \\
\frac{2}{2 x} & \frac{\partial}{2 y} & \frac{\partial}{2 z} \\
A+y & b_{y} & 0
\end{array}\right|=-\frac{1}{2} A x \hat{k} \\
& \vec{\omega}_{1,1}=-\frac{1}{2} \times \frac{1}{M . S} \times 1+\hat{k}=-0.5 \hat{k} \mathrm{rad} l_{\mathrm{s}} \quad \vec{\omega}_{1,2}
\end{aligned}
$$

Te arculation is defined as $\Gamma=\oint \vec{v} \cdot \overrightarrow{d s}$
For the contour shown with $\bar{V}=A \cdot y^{i}+B y^{2} j$

$$
\begin{aligned}
& \Gamma=\int_{a}^{b} u d x+\int_{b}^{c} v d y+\int_{c}^{d} u(-d x)+\int_{d}^{a} v(-d y) \\
& r=\int_{0}^{1} B y^{2} d y{ }_{0}^{2}+\int_{c}^{d} A y d x+C_{0}^{0} B y^{2} d y \quad\{y=1 \text { abogcd }\} \\
& \left.\left.\left.\Gamma=\frac{1}{3} B y^{3}\right]_{0}^{1}+\frac{1}{2} A x^{2}\right]_{1}^{0}+\frac{1}{3} B y^{3}\right]_{1}^{0} \\
& \Gamma=\frac{1}{3} B-\frac{1}{2} A-\frac{1}{3} B=-\frac{1}{2} A=-\left.\frac{1}{2} M^{2}\right|_{s}
\end{aligned}
$$

Problem *5.71

*5.71 Consider the flow field represented by the stream function $\psi=x^{6}-15 x^{4} y^{2}+15 x^{2} y^{4}-y^{6}$. Is this a possible two-dimen-
sional, incompressible flow? Is the flow irrotational?

Given: Stream function

Find: If the flow is incompressible and irrotational

Solution:

Basic equations: Incompressibility $\quad \frac{\partial}{\partial x} u+\frac{\partial}{\partial y} v=0 \quad$ Irrotationality $\quad \frac{\partial}{\partial x} v-\frac{\partial}{\partial y} u=0$
Note: The fact that ψ exists means the flow is incompressible, but we check anyway

$$
\psi(x, y)=x^{6}-15 \cdot x^{4} \cdot y^{2}+15 \cdot x^{2} \cdot y^{4}-y^{6}
$$

Hence

$$
u(x, y)=\frac{\partial}{\partial y} \psi(x, y) \rightarrow 60 \cdot x^{2} \cdot y^{3}-30 \cdot x^{4} \cdot y-6 \cdot y^{5}
$$

$$
v(x, y)=-\frac{\partial}{\partial x} \psi(x, y) \rightarrow 60 \cdot x^{3} \cdot y^{2}-6 \cdot x^{5}-30 \cdot x \cdot y^{4}
$$

For incompressibility

$$
\frac{\partial}{\partial x} u(x, y) \rightarrow 120 \cdot x \cdot y^{3}-120 \cdot x^{3} \cdot y
$$

Hence $\quad \frac{\partial}{\partial \mathrm{x}} \mathrm{u}+\frac{\partial}{\partial \mathrm{y}} \mathrm{v}=0$
$\frac{\partial}{\partial y} v(x, y) \rightarrow 120 \cdot x^{3} \cdot y-120 \cdot x \cdot y^{3}$

INCOMPRESSIBLE
For irrotationality

$$
\frac{\partial}{\partial x} v(x, y) \rightarrow 180 \cdot x^{2} \cdot y^{2}-30 \cdot x^{4}-30 \cdot y^{4}
$$

$$
-\frac{\partial}{\partial y} u(x, y) \rightarrow 30 \cdot x^{4}-180 \cdot x^{2} \cdot y^{2}+30 \cdot y^{4}
$$

Hence

$$
\frac{\partial}{\partial x} v-\frac{\partial}{\partial y} u=0
$$

IRROTATIONAL

Problem *5.72

*5.72 Consider a flow field represented by the stream function $\psi=3 x^{5} y-10 x^{3} y^{3}+3 x y^{5}$. Is this a possible two-dimensional incompressible flow? Is the flow irrotational?

Given: Stream function

Find: If the flow is incompressible and irrotational

Solution:

Basic equations: Incompressibility $\quad \frac{\partial}{\partial x} u+\frac{\partial}{\partial y} v=0 \quad$ Irrotationality $\quad \frac{\partial}{\partial x} v-\frac{\partial}{\partial y} u=0$
Note: The fact that ψ exists means the flow is incompressible, but we check anyway

$$
\psi(x, y)=3 \cdot x^{5} \cdot y-10 \cdot x^{3} \cdot y^{3}+3 \cdot x \cdot y^{5}
$$

Hence

$$
u(x, y)=\frac{\partial}{\partial y} \psi(x, y) \rightarrow 3 \cdot x^{5}-30 \cdot x^{3} \cdot y^{2}+15 \cdot x \cdot y^{4}
$$

$v(x, y)=-\frac{\partial}{\partial x} \psi(x, y) \rightarrow 30 \cdot x^{2} \cdot y^{3}-15 \cdot x^{4} \cdot y-3 \cdot y^{5}$
For incompressibility

$$
\frac{\partial}{\partial x} u(x, y) \rightarrow 15 \cdot x^{4}-90 \cdot x^{2} \cdot y^{2}+15 \cdot y^{4}
$$

$\frac{\partial}{\partial y} v(x, y) \rightarrow 90 \cdot x^{2} \cdot y^{2}-15 \cdot x^{4}-15 \cdot y^{4}$
Hence $\quad \frac{\partial}{\partial \mathrm{x}} \mathrm{u}+\frac{\partial}{\partial \mathrm{y}} \mathrm{v}=0$
INCOMPRESSIBLE
For irrotationality

$$
\frac{\partial}{\partial x} v(x, y) \rightarrow 60 \cdot x \cdot y^{3}-60 \cdot x^{3} \cdot y
$$

$$
-\frac{\partial}{\partial y} u(x, y) \rightarrow 60 \cdot x^{3} \cdot y-60 \cdot x \cdot y^{3}
$$

Hence

$$
\frac{\partial}{\partial x} v-\frac{\partial}{\partial y} u=0
$$

*5.73 Consider a flow field represented by the stream function $\psi=-\mathrm{A} / 2\left(x^{2}+y^{2}\right)$, where $A=$ constant. Is this a possible two-dimensional incompressible flow? Is the flow irrotational?

Given: The stream function

Find: Whether or not the flow is incompressible; whether or not the flow is irrotational

Solution:

The stream function is

$$
\psi=-\frac{\mathrm{A}}{2 \cdot \pi\left(\mathrm{x}^{2}+\mathrm{y}^{2}\right)}
$$

The velocity components are

$$
u=\frac{d \psi}{d y}=\frac{A \cdot y}{\pi\left(x^{2}+y^{2}\right)^{2}} \quad v=-\frac{d \psi}{d x}=-\frac{A \cdot x}{\pi\left(x^{2}+y^{2}\right)^{2}}
$$

Because a stream function exists, the flow is:
Incompressible

Alternatively, we can check with

$$
\begin{aligned}
& \frac{\partial}{\partial x} u+\frac{\partial}{\partial y} v=0 \\
& \frac{\partial}{\partial x} u+\frac{\partial}{\partial y} v=-\frac{4 \cdot A \cdot x \cdot y}{\pi\left(x^{2}+y^{2}\right)^{3}}+\frac{4 \cdot A \cdot x \cdot y}{\pi\left(x^{2}+y^{2}\right)^{3}}=0
\end{aligned}
$$

For a 2D field, the irrotionality the test is $\frac{\partial}{\partial x} v-\frac{\partial}{\partial y} u=0$

$$
\frac{\partial}{\partial x} v-\frac{\partial}{\partial y} u=\frac{A \cdot\left(x^{2}-3 \cdot y^{2}\right)}{\pi \cdot\left(x^{2}+y^{2}\right)^{3}}-\frac{A \cdot\left(3 \cdot x^{2}-y^{2}\right)}{\pi \cdot\left(x^{2}+y^{2}\right)^{3}}=-\frac{2 \cdot A}{\pi \cdot\left(x^{2}+y^{2}\right)^{2}} \neq 0 \quad \text { Not irrotational }
$$

Given: velocity field for motion in x direction with constant shear. The shear rate is

$$
\frac{\partial u}{\partial y}=A \quad \text { where } A=0.1 s^{-1}
$$

Find: (a) Expression for \vec{V}
(b) Rate of rotation
(c) stream function.

Solution: The velocity field is

$$
\vec{v}=u \hat{\imath}=\left[\int \frac{\partial u}{\partial y} d y+f(x)\right] \hat{\imath}=[A y+f(x)] \hat{\imath}
$$

Fluid rotation is given by

$$
\vec{\omega}=\frac{1}{2} \nabla \times \vec{v}=\frac{1}{2}\left(\frac{\partial \hat{f}^{0}}{\partial x}-\frac{\partial u}{\partial y}\right) \hat{k}=-\frac{1}{2} \frac{\partial u}{\partial y} \hat{k}=-\frac{A}{2} \hat{k}=-0.05 s^{-1} \hat{k}
$$

From the definition of the streams function,

$$
\begin{aligned}
& u=\frac{\partial \psi}{\partial y} \text { so } \frac{\partial \psi}{\partial y}=A y+f(x) \text { and } \psi=\frac{1}{2} A y^{2}+f(x) y+g(x) \\
& v=-\frac{\partial \psi}{\partial x}=f^{\prime}(x) y+g^{\prime}(x)=0
\end{aligned}
$$

Thus $f^{\prime}(x)=0$ and $g^{\prime}(x)=0$, and

$$
\psi=\frac{1}{2} A y^{2}+C
$$

Given: Flow field represented by $v=x^{2}-y^{2}$
Find: corresponding velocity field
Shaw: hat flasfield is rotational
Plot: several streamlines and illustrate the velocity field
Solution:
Apply definition of $\mathbb{*}$ and irrotationality condition: computing equations:

$$
\begin{aligned}
& u=\frac{\partial u}{\partial y} \quad \vec{v}=-\frac{\partial u}{\partial x} \\
& \vec{w}=\frac{1}{2} \nabla \times \overrightarrow{ }=0
\end{aligned}
$$

From the gwen $\dot{u}=x^{2}-y^{2}$

$$
\left.\begin{array}{l}
u=\frac{\partial u}{\partial y}=\frac{\partial}{\partial y}\left(x^{2}-y^{2}\right)=-2 y \\
v=-\frac{\partial v}{\partial x}=-\frac{\partial}{\partial x}\left(x^{2}-y^{2}\right)=-2 x
\end{array}\right\} \vec{v}=u \hat{i}+\dot{y}=-2 y \hat{i}-2 \hat{y}=\vec{j}
$$

Since $\vec{\omega}=\frac{1}{2} \nabla \overrightarrow{\vec{u}}=0$ Now is iredtional $\vec{\omega}=0$

Gwen: Velocity field $\vec{V}=A+y i+y^{2} j$.
 and coordinates are in meters.
Find: (a) Fluid rotation (b) Circulation abat"curve" shown (c) stream function.

Pot: several streamlues in first quadrant.
Solution:
(a) The fluid rotation is gwen by
b) Te circulation is defined as $5=6 \overrightarrow{3} \cdot d \vec{S}$

For the contr shown with $\vec{V}=A$ uni $+y^{2} y^{n}$

$$
\begin{aligned}
& r=\int_{a}^{b} A y^{y} d x+\int_{b}^{c} B y^{2} d y+\int_{C}^{d} A x^{y} y^{-1} d x+\int_{d}^{a} \frac{B y^{2} d y}{d} \\
& \left.\left.\left.r=\int_{0}^{1} B y^{2} d y+\int_{1}^{0} A+d x+C_{B}^{0} B y^{2} d y=B \frac{y^{3}}{3}\right]_{0}^{1}+A \frac{x^{2}}{2}\right]_{1}^{0}+B \frac{y^{3}}{3}\right]_{1}^{0} \\
& r=\frac{1}{3} B-\frac{1}{2} A-\frac{1}{3} B=-\frac{1}{2} A=-2 M^{2} T_{s}
\end{aligned}
$$

(c) For incompressible flow $u=\frac{\partial v}{\partial y}, v=-\frac{\partial v}{\partial x}$.

$$
\begin{aligned}
& \text { or incompressible thou } u=2 y, v=2 x \\
& \frac{2 u}{2 x}+\frac{2 v}{2 y}=A_{y}+23 y=4 y+2(-2) y=0 \quad \therefore \text { incompressible }
\end{aligned}
$$

Hus $u=A n y=\frac{2 u}{\partial y}$ and.

$$
\begin{aligned}
& \psi=(A+y d y+f(x) \\
& \psi=\frac{1}{2} A x y+f(x)
\end{aligned}
$$

Then,

$$
\begin{aligned}
v & =-\frac{\partial v}{\partial x}=-\frac{1}{2} A y^{2}-\frac{d f}{d x}=y^{2} \\
\therefore \quad & \frac{d f}{d x}=-\frac{1}{2} A y^{2}-3 y^{2}=-2 y^{2}+2 y^{2}=0
\end{aligned}
$$

Hence $f=$ constant.
Taking $f=0$ gives

$$
\psi=\frac{1}{2} A x y^{2}=2 x y^{2}
$$

Given: Flow field represented by $\psi=A x y+A y^{2} ; A=1 s^{-1}$
Find: (a) Show that this represents a possible incompressible flow field.
(b) Evaluate the rotation of the flow:
(c) Plot a few streamlines in the upper half plane.

Solution: For incompressible flow, $\nabla \cdot \vec{\lambda}=0$
The velocity field is determined from the stream function

$$
\left.\begin{array}{l}
u=2 u l \partial y=A x+2 A y \\
v=-2 u l \partial x=-A y
\end{array}\right\} \vec{V}=A\{(x+2 y) \hat{\imath}-y \hat{j}\}
$$

Then

$$
\begin{equation*}
\nabla \cdot \vec{V}=\frac{\partial}{\partial x} A(x+2 y)-\overrightarrow{\partial y}(A y)=A-A=0 \tag{QED}
\end{equation*}
$$

The rotation is given by $\vec{\omega}=\frac{1}{2} \nabla \vec{v}=\frac{1}{2}\left(\frac{\partial v}{\partial x}-\frac{\partial u}{\partial y}\right)^{n} k$

$$
\dot{w}=\frac{1}{2}\left[\frac{\partial}{\partial x}(-A y)-\frac{\partial}{\partial y} \hat{\theta}(x+2 y)\right] \hat{k}=\frac{1}{2}[0-2 A] \hat{t}=-A \hat{k}
$$

$\vec{\omega}=-k$ rads.
To plot a few streamlines, $\omega=A x y+A y^{2}$, note that for a gwen streamline

$$
x=\frac{w}{y}-y
$$

Gwen: Sebcity field $\vec{V}=(A y+B) \hat{i}+A+j$, where $A=65^{-1}, B=3 m, S^{-}$and coordinates are in meters.

Find: (a) An expression for the stream function. (b) Circulation about" curve" shown.

Poi several streamlines (including stagnation streamline) in the first quadrant.
Solution
For incompressible flow $\frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}=0, u=\frac{\partial u}{2 y}, v=-\frac{\partial u}{2 x}$

$$
\therefore \phi=\frac{1}{2} A\left(y^{2}-x^{2}\right)+B y
$$

Several streamlines are plotted below. The stagnation pant (where $J=\delta$) is at $x=0, y=-b h_{R}=-0.5 M$.
Te circulation is defied as $\Gamma=6 \vec{V} \cdot d \vec{S}$

Note: Re flow is irdatuond,

$$
\text { Ie. } \vec{\omega}=\frac{1}{2} \nabla * \vec{v}=0
$$

and hence we would

$$
\operatorname{empect} \Gamma=0
$$

Rt stagnation, $u(x, y)=w(0,-0.5)$

$$
w(x, y)=3\left[(-0.5)^{2}-0\right]+3(-0.5)=-3 / 4
$$

$$
\begin{aligned}
& \begin{array}{l}
r=\int_{a}^{b} u d x+\int_{b}^{c} v d y+C^{d} u d x+\int_{x}^{a} \not \partial d \\
r=C_{0}^{\prime} b d x+\int_{b}^{\prime} F d y+C^{0}(A+B) d x
\end{array} \\
& \left\{\begin{array}{ccc}
x=1 & \text { from } & b \operatorname{to} c \\
y=1 & " & c t o d
\end{array}\right\} \\
& \left.\left.r=B X T_{0}^{\prime}+A\right]_{0}^{\prime}+(A+B)\right]_{1}^{0} \\
& r=B+A-(q+B) \\
& \Gamma=0
\end{aligned}
$$

$$
\begin{aligned}
& \frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}=\frac{\partial}{\partial x}(F y+B)+\frac{\partial}{\partial y}(A h)=0+0=0 \quad \therefore \text { incompressible. } \\
& \text { Rent } \\
& u=f y+s=\frac{2 y}{2 y} \text { and } \psi=\left((A y+B) d y+f(x)=\frac{1}{2} A y^{2}+3 y+f(x)\right. \\
& \text { and } \\
& \text { and } v=-\frac{d x}{2 x}=-\frac{d f}{d x}=A x \text { and } f(x)=-\frac{1}{2} A x^{2}+\cos \operatorname{sect} \text {. }
\end{aligned}
$$

Given: Viscometric flow of Example Problem $5.7, \vec{V}=U(y / h) \hat{i}$, where $U=4 \mathrm{~mm} / \mathrm{s}$ and $h=4 \mathrm{~mm}$.

Find: (a) Average rate of rotation of two line segments at $\pm 45^{\circ}$ (b) Show that this is the same as in the Example.

Solution: Consider lines shown:

$$
\begin{aligned}
& u_{c}=u_{a}+\frac{\partial u}{\partial y}\left(l \sin \theta_{1}\right) \\
& -\omega_{a c}=\frac{\left(u_{c}-u_{a}\right) \sin \theta_{1}}{l}\left\{\begin{array}{l}
\text { comporient } 1 \\
\text { to } l \text { is } u \sin \theta_{1} .
\end{array}\right\} \rightarrow x \\
& -\omega_{a c}=\frac{\frac{\partial u}{\partial y}\left(l \sin \theta_{1}\right) \sin \theta_{1}}{l}=\frac{\partial u}{\partial y} \sin ^{2} \theta_{1}=\frac{U}{h} \sin ^{2} \theta_{1} \\
& u_{b}=u_{d}+\frac{\partial u}{\partial y}\left(l \sin \theta_{z}\right) \\
& -\omega_{b d}=\frac{\left(u_{b}-u_{d}\right) \sin \theta_{2}}{l}\left\{\begin{array}{l}
c_{0} m p o n e n t+ \\
\text { to } l \text { is } u \sin \theta_{2} .
\end{array}\right\} \\
& -\omega_{b d}=\frac{\partial u}{\partial y}\left(l \operatorname{lin} \theta_{2}\right) \sin \theta_{2}\left(\frac{\partial u}{\partial y} \sin ^{2} \theta_{2}=\frac{U}{h} \sin ^{2} \theta_{2}\right. \\
& \omega(+r)=\frac{1}{2}\left(\omega_{a c}+\omega_{b d}\right)=-\frac{1}{2} \frac{\pi}{h}\left(\sin ^{2} \theta_{1}+\sin ^{2} \theta_{2}\right)=-\frac{1}{2} \frac{v}{h}\left(\sin ^{2} 45^{\circ}+\sin ^{2} 135^{\circ}\right) \\
& =-\frac{1}{2} \frac{v}{h}\left[\left(\frac{\sqrt{2}}{2}\right)^{2}+\left(\frac{\sqrt{2}}{2}\right)^{2}\right]=-\frac{1}{2} \frac{v}{h} \\
& \omega=-\frac{1}{2} \times 4 \frac{\mathrm{~mm}}{\mathrm{sec}} \times \frac{1}{4 \mathrm{~mm}}=-0.5 \mathrm{~s}^{-1} \\
& \text { Sketch showing } \theta_{2} \text { : }
\end{aligned}
$$

Problem *5.80
Given: Velocity field $\vec{v}=-\frac{g}{2 \pi r} \hat{e}_{r}+\frac{K}{2 \pi r} \hat{e}_{\theta}$ approximates a Is it irrotational? Obtain the stream function.
Solution: Apply irrotationality condition. Basic equation: $\nabla \times \vec{V}=0$ (if irrotational)

It makes sense to work in cylindrical coordinates, where

$$
\nabla=\hat{e}_{r} \frac{\partial}{\partial r}+\hat{e}_{\theta} \frac{1}{r} \frac{\partial}{\partial \theta}+\hat{k} \frac{\partial}{\partial z}
$$

But flow is in the $r \theta$ plane, so $\frac{\partial}{\partial z}=0$. Then

$$
\begin{aligned}
\nabla \times \vec{V}= & \left(\hat{e}_{r} \frac{\partial}{\partial r}+\hat{e}_{\theta} \frac{1}{r} \frac{\partial}{\partial \theta}\right) \times\left(V_{r} \hat{e}_{r}+V_{\theta} \hat{e}_{\theta}\right) \\
= & \hat{e}_{r} \times\left(\frac{\partial V r}{\partial r} \hat{e}_{r}+\frac{\partial V_{\theta}}{\partial r} \hat{e}_{\theta}\right) \\
& +\hat{e}_{\theta} \frac{1}{r} \times\left(\frac{\partial V r}{\partial \theta} \hat{e}_{r}+V_{r} \frac{\partial \hat{e}_{r}^{r}}{\partial \theta}+\frac{\partial V_{\theta}}{\partial \theta} \hat{e}_{\theta}+V_{\theta} \partial_{\partial \theta}^{\partial e_{\theta}^{e}}\right) \\
\nabla \times \overrightarrow{e_{r}}= & \hat{k}\left(\frac{\partial V_{\theta}}{\partial r}-\frac{1}{r} \frac{\partial V_{r}}{\partial \theta}+\frac{V \theta}{r}\right)=\hat{k} \frac{1}{r}\left(\frac{\partial r V_{\theta}}{\partial r}-\frac{\partial V}{\partial \theta}\right)
\end{aligned}
$$

For the given flow field, $\vec{v}=\vec{V}(r)$, so

$$
\nabla \times \vec{v}=\hat{k} \frac{1}{r} \frac{\partial r \Gamma_{\theta}}{\partial r}=\hat{k} \frac{1}{r} \frac{\partial}{\partial r}\left(\frac{k}{2 \pi}\right) \equiv 0
$$

Flow is irrotational.

$$
\begin{array}{ll}
V_{r}=\frac{1}{r} \frac{\partial \psi}{\partial \theta} ; \frac{1}{r} \frac{\partial \psi}{\partial \theta}=-\frac{q}{2 \pi r} ; \frac{\partial \psi}{\partial \theta}=\frac{-q}{2 \pi} ; \psi=-\frac{q}{2 \pi} \theta+f(r) \\
V_{\theta}=-\frac{\partial \psi}{\partial r} ; \frac{\partial \psi}{\partial r}=-\frac{k}{2 \pi r} ; & \psi=-\frac{k}{2 \pi} \ell w r+g(\theta)
\end{array}
$$

Comparing,

$$
\psi=\frac{-q}{2 \pi} \theta-\frac{k}{2 \pi} \ln r
$$

Problem 5.81
Given: Flow between parallel plates. Veloctly field given by

$$
u=v\left(\frac{y}{b}\right)\left[1-\frac{y}{b}\right]
$$

Find: (a) expression for arculation about a closed contour of height h and length L (b) evalusote for $h=b / 2$ and $h=b$. (c) show that same result is obtained from area integral of Stoles Theorem (Eq.5.5).
Solution:
Basic equations: $r=\oint_{0} \vec{V} \cdot \overrightarrow{d s}=C_{h}(\nabla \times \vec{v})_{z} d A$
Then,

$$
r=\left(\vec{y} \cdot \overrightarrow{d s}^{0}+\left(\vec{y} \cdot{ }^{2} \cdot d s+\left(\vec{v} \cdot \overrightarrow{d s}+\int_{4} \vec{y} \cdot d s\right.\right.\right.
$$

$$
\begin{align*}
& =\int^{0} v \frac{y}{b}\left(1-\frac{y}{b}\right) d x \\
r & =-v \frac{h}{b}\left(1-\frac{h}{b}\right)
\end{align*}
$$

For $h=y=\frac{b}{2}, \quad r=-\frac{V}{4}$

$$
h=y=b \quad, r=0
$$

From Stokes Theorem.

$$
\begin{aligned}
& r=C_{A}(\vec{\nabla} \times \vec{V})_{z} d A=\int_{A}\left(\frac{\partial v}{\partial h}-\frac{2 u}{\partial y}\right) d A-\int_{A}-U\left(\frac{1}{b}-\frac{2 y}{b^{2}}\right) d A \\
& r=-V\left(\left(\frac{1}{b}-\frac{2 y}{b^{2}}\right) L d y=-U L\left[\frac{y}{b}-\frac{y^{2}}{b^{2}}\right]_{0}^{h}\right. \\
& r=-U L\left[\frac{h}{b}-\frac{h^{2}}{b^{2}}\right]=-U L \frac{h}{b}\left(1-\frac{h}{b}\right)
\end{aligned}
$$

Given: Velocity profile for fully developed How in a
arcula? tube is

$$
V_{z}=V_{\max }\left[1-(\Gamma / R)^{2}\right]
$$

Find: (a) rates of linear and angular deformation for
(b) expression for the vorticit vector, \vec{e}

Solution:
Computing equations: B.I and B.L of Appendix B
Volume dilation rate $=\overrightarrow{\nabla \cdot \vec{V}}=\frac{1}{r} \frac{\partial}{\partial r}\left(r v_{r}\right)+\frac{1}{r} \frac{\partial v_{\theta}}{\partial \theta}+\frac{\partial}{\partial z} v_{z}=0$
Rates of linear deformation in each of the three coordinate directions r, θ, z are zero. Linearlef
Angular deformation in the:
$r \theta$ plane is $r \frac{\partial}{\partial r}\left(\frac{v_{\theta}}{r}\right)+\frac{1}{r} \frac{\partial v_{r}}{\partial \theta}=0$
oz plane is $\quad \frac{\partial v_{\theta}}{\partial z}+\frac{1}{r} \frac{\partial v_{3}}{\partial \theta}=0$
$z r$ plane is $\quad \frac{\partial v_{r}}{\partial z}+\frac{\partial v_{3}}{\partial r}=-v_{\text {max }} \frac{h r}{R^{2}}$
Angular yer.
The vorticity vector is given by $\vec{\rho}=\nabla \overrightarrow{\times v}$
In cylvidrical coordinates.

Given: Flow between parallel plates velocity field gwen by

$$
u=U_{\max }\left[1-\left(\frac{y}{b}\right)^{2}\right]
$$

Find: (a) rates of linear and angular deformation b) expression for the vorticity vector, b (c) location of maximum vorlitty

Solution:
The rate of linear deformation is zero since $\frac{\partial u}{\partial x}=\frac{\partial v}{\partial y}=\frac{\partial v}{\partial z}=0$ The rate of angular deformation in the ry plane is

$$
\frac{\partial v}{\partial x}+\frac{\partial u}{\partial y}=-\frac{2 y u_{n a x}}{b^{2}}
$$

The vorticity vector is given by $\vec{b}=\nabla \vec{V}$

$$
\begin{aligned}
& \vec{b}=\hat{i}\left(\frac{\partial w}{\partial y}-\frac{\partial v}{\partial z}\right)+\hat{j}\left(\frac{\partial u}{\partial z}-\frac{\partial v}{\partial x}\right)+\hat{k}\left(\frac{\partial v}{\partial x}-\frac{\partial u}{\partial y}\right) \\
& \vec{b}=-\frac{\partial u}{\partial y} \hat{k}=\frac{2 y u_{\text {max }}}{b^{2}} \hat{k}
\end{aligned}
$$

The vorticity is a maximum at $y= \pm b$

Given: Linear approximate velocity profile in boundary layer.

$$
{ }^{y_{4}}
$$

Find: (a) Express rotation, find maximum.
(b) Express angular deformation, locate maximum.
(c) Express linear deformation, locate maximum.
(d) Express shear force per unit volume, locate maximum.

Solution: work in my plane.
computing equations: $\omega_{z}=\frac{1}{2}\left(\frac{\partial v}{\partial x}-\frac{\partial u}{\partial y}\right) \quad-\frac{d \gamma}{d t}=\left(\frac{\partial v}{\partial x}+\frac{\partial u}{\partial y}\right)$
Linear def: $\frac{\partial u}{\partial x}, \frac{\partial v}{\partial y}$
Evaluating partial derivatives,

$$
\frac{\partial u}{\partial x}=-\frac{1}{2} \frac{v y}{c x^{3 / 2}} \quad \frac{\partial u}{\partial y}=\frac{v}{c x^{1 / 2}} \quad \frac{\partial v}{\partial x}=-\frac{3}{8} \frac{v y^{2}}{c x^{5 / m}} \quad \frac{\partial v}{\partial y}=\frac{1}{2} \frac{U y}{c x^{3 / 2}}
$$

Then

$$
\begin{aligned}
& \text { Then } \omega_{z}=\frac{1}{2}\left[-\frac{3}{8} \frac{v y^{2}}{c x^{5 / 2}}-\frac{U}{c x^{1 / 2}}\right]=-\frac{U}{2 c x^{1 / 2}}\left[1+\frac{3}{8}\left(\frac{y}{x}\right)^{2}\right] \quad(\max a+y=\delta) \\
& -\frac{d y}{d t}=-\frac{3}{8} \frac{v^{2}}{c x^{5 / 2}}+\frac{U}{c x^{1 / 2}}=\frac{U}{c x^{1 / 2}}\left[1-\frac{3}{8}\left(\frac{y}{x}\right)^{2}\right] \quad(\max a+y=0) \\
& \frac{\partial u}{\partial x}=-\frac{1}{2} \frac{U y}{c x^{3 / 2}}=-\frac{U}{2 c x^{1 / 2}}\left(\frac{y}{x}\right) \quad(\max a+y=\delta) \\
& \frac{\partial v}{\partial y}=+\frac{1}{2} \frac{U^{y}}{c x^{3 / 2}}=+\frac{U}{2 c x^{12}}\left(\frac{y}{x}\right) \quad(\max a+y=\delta) \\
& \text { shear stress is } \tau y x=\mu\left(\frac{\partial u}{\partial y}+\frac{\partial v}{\partial x}\right)=\mu\left(\frac{v}{c x^{1 / 2}}-\frac{3}{8} \frac{U y^{2}}{c x^{5 / 2}}\right)=\frac{\mu}{c x^{1 / 2}}\left[1-\frac{3}{8}\left(\frac{y}{x}\right)^{2}\right]
\end{aligned}
$$

Net shear force on a flues element is $d \tau d x d z$

$$
\begin{aligned}
& \left.\frac{1}{d y}=1 \tau+d \tau\right) d x d z \quad d \tau=\frac{\partial \tau}{\partial y} d y=\frac{\mu U}{c x^{1 / 2}}\left(-\frac{3}{8} \frac{2 y}{x^{2}}\right) d y=-\frac{3 \mu v_{y}}{4 c x^{5 / 2}} d y \\
& \tau d x d z
\end{aligned}
$$

Shear stress per volume is $\frac{d F}{d \forall}=-\frac{3 \mu}{4 c x^{3 n}}\left(\frac{y}{x}\right)$ (max at $y=\delta$)

Given: x component of velocity in laminar boundary layer in water

$$
u=U \sin \left(\frac{\pi}{2} \frac{y}{\delta}\right) \quad U=3 \mathrm{~m} / \mathrm{s}, \quad \delta=2 \mathrm{~mm}
$$

y component is much smaller than u.
Find: (a) Express ion for net shear force per un it volume in x direction.
(b) Maximum value for this flow

Solution: Consider a smallelement of fluid
Then

$$
\begin{aligned}
d f_{\text {shear }, x} & =(\tau+d \tau) d x d z-\tau d x d z \\
& =d \tau d x d z=\frac{d \tau}{d y} d x d y d z
\end{aligned}
$$

and

-

$$
\frac{d F_{5, x}}{d \forall}=\frac{d \tau}{d y}=\frac{d}{d y}\left(\mu \frac{d u}{d y}\right)=\mu \frac{d^{2} u}{d y^{2}}
$$

From the given profile,

$$
\frac{d u}{d y}=\frac{\pi U}{2 \delta} \cos \left(\frac{\pi}{2} \frac{y}{\delta}\right)
$$

and

$$
\frac{d^{2} u}{d y^{2}}=v\left(\frac{\pi}{2 \delta}\right)^{2}\left(-\sin \left(\frac{\pi}{2} \frac{y}{\delta}\right)\right)
$$

The maxinium value occurs when $y=\delta$, when

$$
\begin{array}{l|l}
\frac{d F_{s x, \text { max }}}{d \forall} & =-\mu U\left(\frac{\pi}{2 \delta}\right)^{2}
\end{array} \begin{array}{|l}
\frac{d F_{s x}}{d t} \\
\\
=-1 \times 10^{-3} \frac{\mathrm{~N} \cdot \sec }{m^{2}} \times 3 \frac{\mathrm{~m}}{\sec }\left(\frac{\pi}{2} \frac{1}{0.002 \mathrm{~m}}\right)^{2}=-1.85 \times 10^{3} \mathrm{~N} / \mathrm{m}^{3} \\
\frac{d F_{s x_{3} \max }}{d \forall}=-1.85 \mathrm{kN} / \mathrm{ms}^{3}
\end{array} \frac{\frac{d F_{s x}}{d t}}{}
$$

Given: Velocity profile for fully developed laminar flew in a tube

$$
\frac{u}{u_{\text {max }}}=1-\left(\frac{r}{R}\right)^{2}
$$

where $u_{\text {max }}=10 \mathrm{ft} / \mathrm{s}, r=3 \mathrm{in}$., fluid is water.
Find: (a) Expression for shear force per unit volume in z direction.
(b) Maximum value for these conditions.

Solution: Consider a differential element: $\left[r \tau+\frac{d}{d r}(r \tau) d r\right] 2 \pi d z$.
Then

$$
\begin{aligned}
d f_{\text {shear, }} z & =\left[r \tau+\frac{d}{d r}(r \tau) d r\right] 2 \pi d z-r \tau 2 \pi d z \\
& =\frac{d}{d r}(r \tau) 2 \pi d r d z
\end{aligned}
$$

since $d \psi=2 \pi r d r d z$, then

$$
\frac{d F_{s z}}{d \psi}=\frac{1}{2 \pi r d r d z} \frac{d}{d r}(r \tau) 2 \pi d r d z=\frac{1}{r} \frac{d}{d r}(r \tau)
$$

In cylindrical coordinates, $\tau_{r z}=\mu \frac{d u}{d r}$. For the given profile

$$
\tau=\tau_{r z}=\mu \frac{d u}{d r}=-\mu u_{\max } \frac{2 r}{R^{2}}
$$

substituting

$$
\begin{aligned}
& \frac{d F_{s z}}{d t}=\frac{1}{r} \frac{d}{d r}\left[r\left(-\frac{2 \mu u_{\text {max }} r}{R^{2}}\right)\right]=\frac{1}{r} \frac{d}{d r}\left[-\frac{2 \mu_{u_{\max }} r^{2}}{R^{2}}\right]=\frac{1}{r}\left[\frac{-4 \mu u_{\max } r}{R^{2}}\right] \\
& \frac{d F_{s z}}{d t}=-\frac{4 \mu u_{\text {max }}}{R^{2}}=\text { constant }
\end{aligned}
$$

Evaluating,

$$
\begin{aligned}
& \frac{d F_{\text {ss }}}{d t}=-4 \times 10^{-3} \frac{\mathrm{~N} . \mathrm{s}}{\mathrm{~m}^{2}} \times 10 \frac{\mathrm{ft}}{\mathrm{~s}} \times \frac{1}{(0.25)^{2} \mathrm{ft}^{+}} \times(0.3048)^{2} \frac{\mathrm{~m}^{2}}{\mathrm{ft}^{2}} \times \frac{16 \mathrm{f}}{4.448 \mathrm{~N}} \\
& \frac{d F_{\text {sI }}}{d t}=-0.0134 \mathrm{lbf} / \mathrm{ft13}
\end{aligned}
$$

Problem 5.87

5.87 Use Excel to generate the solution of Eq. 5.28 for $m=1$ shown in Fig. 5.16. To do so, you need to learn how to perform linear algebra in Excel. For example, for $N=4$ you will end up with the matrix equation of Eq. 5.34. To solve this equation for the u values, you will have to compute the inverse of the 4×4 matrix, and then multiply this inverse into the 4×1 matrix on the right of the equation. In Excel, to do array operations, you must use the following rules: Pre-select the cells that will contain the result; use the appropriate Excel array function (look at Excel's Help for details); press Ctrl+Shift+Enter, not just Enter. For example, to invert the 4×4 matrix you would: Pre-select a blank 4×4 array that will contain the inverse matrix; type $=$ minverse $($ [array containing matrix to be inverted]); press Ctrl + Shift + Enter. To multiply a 4×4 matrix into a 4×1 matrix you would: Pre-select a blank 4×1 array that will contain the result; type $=\operatorname{mmult}([$ array containing 4×4 matrix], [array containing 4×1 matrix]); press Ctrl + Shift + Enter.

$$
\frac{d u}{d x}+u^{m}=0 ; \quad 0 \leq x \leq 1 ; \quad u(0)=1
$$

$$
\begin{aligned}
N & =4 \\
\Delta x & =0.333
\end{aligned}
$$

Eq. 5.34 (LHS)

1.000	0.000	0.000	0.000
-1.000	1.333	0.000	0.000
0.000	-1.000	1.333	0.000
0.000	0.000	-1.000	1.333

\boldsymbol{x}	Inverse Matrix				Result	Exact	Error
0.000	1.000	0.000	0.000	0.000	1.000	1.000	0.000
0.333	0.750	0.750	0.000	0.000	0.750	0.717	0.000
0.667	0.563	0.563	0.750	0.000	0.563	0.513	0.001
1.000	0.422	0.422	0.563	0.750	0.422	0.368	0.001
							$\mathbf{0 . 0 4 0}$

$$
\begin{aligned}
N & =8 \\
\Delta x & =0.143
\end{aligned}
$$

Eq. 5.34 (LHS)

1.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	1
-1.000	1.143	0.000	0.000	0.000	0.000	0.000	0.000	0
0.000	-1.000	1.143	0.000	0.000	0.000	0.000	0.000	0
0.000	0.000	-1.000	1.143	0.000	0.000	0.000	0.000	0
0.000	0.000	0.000	-1.000	1.143	0.000	0.000	0.000	0
0.000	0.000	0.000	0.000	-1.000	1.143	0.000	0.000	0
0.000	0.000	0.000	0.000	0.000	-1.000	1.143	0.000	0
0.000	0.000	0.000	0.000	0.000	0.000	-1.000	1.143	0

Inverse Matrix

\boldsymbol{x}
0.000
0.143
0.286
0.429
0.571
0.714
0.857
1.000
$\mathbf{1}$
1.000
0.875
0.766
0.670
0.586
0.513
0.449
0.393

$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$
0.000	0.000	0.000	0.000	0.000	0.000	0.000
0.875	0.000	0.000	0.000	0.000	0.000	0.000
0.766	0.875	0.000	0.000	0.000	0.000	0.000
0.670	0.766	0.875	0.000	0.000	0.000	0.000
0.586	0.670	0.766	0.875	0.000	0.000	0.000
0.513	0.586	0.670	0.766	0.875	0.000	0.000
0.449	0.513	0.586	0.670	0.766	0.875	0.000
0.393	0.449	0.513	0.586	0.670	0.766	0.875

Result	Exact	Error
1.000	1.000	0.000
0.875	0.867	0.000
0.766	0.751	0.000
0.670	0.651	0.000
0.586	0.565	0.000
0.513	0.490	0.000
0.449	0.424	0.000
0.393	0.368	0.000
		$\mathbf{0 . 0 1 9}$

$N=16$																			
$\Delta x=0.067$	Eq. 5.34 (LHS)																		
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	(RHS)		
1	1.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	1		
2	-1.000	1.067	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0		
3	0.000	-1.000	1.067	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0		
4	0.000	0.000	-1.000	1.067	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0		
5	0.000	0.000	0.000	-1.000	1.067	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0		
6	0.000	0.000	0.000	0.000	-1.000	1.067	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0		
7	0.000	0.000	0.000	0.000	0.000	-1.000	1.067	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0		
8	0.000	0.000	0.000	0.000	0.000	0.000	-1.000	1.067	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0		
9	0.000	0.000	0.000	0.000	0.000	0.000	0.000	-1.000	1.067	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0		
10	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	-1.000	1.067	0.000	0.000	0.000	0.000	0.000	0.000	0		
11	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	-1.000	1.067	0.000	0.000	0.000	0.000	0.000	0		
12	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	-1.000	1.067	0.000	0.000	0.000	0.000	0		
13	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	-1.000	1.067	0.000	0.000	0.000	0		
14	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	-1.000	1.067	0.000	0.000	0		
15	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	-1.000	1.067	0.000	0		
16	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	-1.000	1.067	0		
x	Inverse Matrix																Result	Exact	Error
0.000	1.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	1.000	1.000	0.000
0.067	0.938	0.938	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.938	0.936	0.000
0.133	0.879	0.879	0.938	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.879	0.875	0.000
0.200	0.824	0.824	0.879	0.938	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.824	0.819	0.000
0.267	0.772	0.772	0.824	0.879	0.938	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.772	0.766	0.000
0.333	0.724	0.724	0.772	0.824	0.879	0.938	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.724	0.717	0.000
0.400	0.679	0.679	0.724	0.772	0.824	0.879	0.938	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.679	0.670	0.000
0.467	0.637	0.637	0.679	0.724	0.772	0.824	0.879	0.938	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.637	0.627	0.000
0.533	0.597	0.597	0.637	0.679	0.724	0.772	0.824	0.879	0.938	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.597	0.587	0.000
0.600	0.559	0.559	0.597	0.637	0.679	0.724	0.772	0.824	0.879	0.938	0.000	0.000	0.000	0.000	0.000	0.000	0.559	0.549	0.000
0.667	0.524	0.524	0.559	0.597	0.637	0.679	0.724	0.772	0.824	0.879	0.938	0.000	0.000	0.000	0.000	0.000	0.524	0.513	0.000
0.733	0.492	0.492	0.524	0.559	0.597	0.637	0.679	0.724	0.772	0.824	0.879	0.938	0.000	0.000	0.000	0.000	0.492	0.480	0.000
0.800	0.461	0.461	0.492	0.524	0.559	0.597	0.637	0.679	0.724	0.772	0.824	0.879	0.938	0.000	0.000	0.000	0.461	0.449	0.000
0.867	0.432	0.432	0.461	0.492	0.524	0.559	0.597	0.637	0.679	0.724	0.772	0.824	0.879	0.938	0.000	0.000	0.432	0.420	0.000
0.933	0.405	0.405	0.432	0.461	0.492	0.524	0.559	0.597	0.637	0.679	0.724	0.772	0.824	0.879	0.938	0.000	0.405	0.393	0.000
1.000	0.380	0.380	0.405	0.432	0.461	0.492	0.524	0.559	0.597	0.637	0.679	0.724	0.772	0.824	0.879	0.938	0.380	0.368	0.000
																			0.009

\boldsymbol{N}	$\boldsymbol{\Delta} \boldsymbol{x}$	Error
4	0.333	0.040
8	0.143	0.019
16	0.067	0.009

Problem 5.88

5.88 Following the steps to convert the differential equation

Eq. 5.28 (for $m=1$) into a difference equation (for example, Eq.
5.34 for $N=4$), solve

$$
\frac{d u}{d x}+u=2 \sin (x) \quad 0 \leq x \leq 1 \quad u(0)=0
$$

for $N=4,8$, and 16 and compare to the exact solution

$$
u_{\text {exact }}=\sin (x)-\cos (x)+e^{-x}
$$

Hints: Follow the rules for Excel array operations as described in Problem 5.87. Only the right side of the difference equations will change, compared to the solution method of Eq. 5.28 (for example, only the right side of Eq. 5.34 needs modifying).

$$
\begin{aligned}
N & =4 \\
\Delta x & =0.333
\end{aligned}
$$

Eq. 5.34 (LHS)

.34 (LHS)			
1.000	0.000	0.000	0.000
-1.000	1.333	0.000	0.000
0.000	-1.000	1.333	0.000
0.000	0.000	-1.000	1.333

Inverse Matrix

\boldsymbol{x}	Inverse Matrix			
0.000	1.000	0.000	0.000	0.000
0.333	0.750	0.750	0.000	0.000
0.667	0.563	0.563	0.750	0.000
1.000	0.422	0.422	0.563	0.750

1.000

$$
\begin{aligned}
N & =8 \\
\Delta x & =0.143
\end{aligned}
$$

Eq. 5.34 (LHS)

1.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0
-1.000	1.143	0.000	0.000	0.000	0.000	0.000	0.000	0.04068
0.000	-1.000	1.143	0.000	0.000	0.000	0.000	0.000	0.08053
0.000	0.000	-1.000	1.143	0.000	0.000	0.000	0.000	0.11873
0.000	0.000	0.000	-1.000	1.143	0.000	0.000	0.000	0.15452
0.000	0.000	0.000	0.000	-1.000	1.143	0.000	0.000	0.18717
0.000	0.000	0.000	0.000	0.000	-1.000	1.143	0.000	0.21599
0.000	0.000	0.000	0.000	0.000	0.000	-1.000	1.143	0.24042

Inverse Matrix

\boldsymbol{x}
0.000
0.143
0.286
0.429
0.571
0.714
0.857
1.000
$\mathbf{1}$
1.000
0.875
0.766
0.670
0.586
0.513
0.449
0.393

$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$
0.000	0.000	0.000	0.000	0.000	0.000	0.000
0.875	0.000	0.000	0.000	0.000	0.000	0.000
0.766	0.875	0.000	0.000	0.000	0.000	0.000
0.670	0.766	0.875	0.000	0.000	0.000	0.000
0.586	0.670	0.766	0.875	0.000	0.000	0.000
0.513	0.586	0.670	0.766	0.875	0.000	0.000
0.449	0.513	0.586	0.670	0.766	0.875	0.000
0.393	0.449	0.513	0.586	0.670	0.766	0.875

Result	Exact	Error
0.000	0.000	0.000
0.036	0.019	0.000
0.102	0.074	0.000
0.193	0.157	0.000
0.304	0.264	0.000
0.430	0.389	0.000
0.565	0.526	0.000
0.705	0.669	0.000
		$\mathbf{0 . 0 3 2}$

$N=16$																			
$\Delta x=0.067$	Eq. 5.34 (LHS)																		
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	(RHS)		
1	1.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0		
2	-1.000	1.067	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.00888		
3	0.000	-1.000	1.067	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.01773		
4	0.000	0.000	-1.000	1.067	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.02649		
5	0.000	0.000	0.000	-1.000	1.067	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.03514		
6	0.000	0.000	0.000	0.000	-1.000	1.067	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.04363		
7	0.000	0.000	0.000	0.000	0.000	-1.000	1.067	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.05192		
8	0.000	0.000	0.000	0.000	0.000	0.000	-1.000	1.067	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.05999		
9	0.000	0.000	0.000	0.000	0.000	0.000	0.000	-1.000	1.067	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.06779		
10	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	-1.000	1.067	0.000	0.000	0.000	0.000	0.000	0.000	0.07529		
11	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	-1.000	1.067	0.000	0.000	0.000	0.000	0.000	0.08245		
12	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	-1.000	1.067	0.000	0.000	0.000	0.000	0.08925		
13	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	-1.000	1.067	0.000	0.000	0.000	0.09565		
14	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	-1.000	1.067	0.000	0.000	0.10162		
15	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	-1.000	1.067	0.000	0.10715		
16	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	-1.000	1.067	0.1122		
\boldsymbol{x}	Inverse Matrix																Result	Exact	Error
0.000	1.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
0.067	0.938	0.938	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.008	0.004	0.000
0.133	0.879	0.879	0.938	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.024	0.017	0.000
0.200	0.824	0.824	0.879	0.938	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.048	0.037	0.000
0.267	0.772	0.772	0.824	0.879	0.938	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.078	0.065	0.000
0.333	0.724	0.724	0.772	0.824	0.879	0.938	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.114	0.099	0.000
0.400	0.679	0.679	0.724	0.772	0.824	0.879	0.938	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.155	0.139	0.000
0.467	0.637	0.637	0.679	0.724	0.772	0.824	0.879	0.938	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.202	0.184	0.000
0.533	0.597	0.597	0.637	0.679	0.724	0.772	0.824	0.879	0.938	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.253	0.234	0.000
0.600	0.559	0.559	0.597	0.637	0.679	0.724	0.772	0.824	0.879	0.938	0.000	0.000	0.000	0.000	0.000	0.000	0.308	0.288	0.000
0.667	0.524	0.524	0.559	0.597	0.637	0.679	0.724	0.772	0.824	0.879	0.938	0.000	0.000	0.000	0.000	0.000	0.366	0.346	0.000
0.733	0.492	0.492	0.524	0.559	0.597	0.637	0.679	0.724	0.772	0.824	0.879	0.938	0.000	0.000	0.000	0.000	0.426	0.407	0.000
0.800	0.461	0.461	0.492	0.524	0.559	0.597	0.637	0.679	0.724	0.772	0.824	0.879	0.938	0.000	0.000	0.000	0.489	0.470	0.000
0.867	0.432	0.432	0.461	0.492	0.524	0.559	0.597	0.637	0.679	0.724	0.772	0.824	0.879	0.938	0.000	0.000	0.554	0.535	0.000
0.933	0.405	0.405	0.432	0.461	0.492	0.524	0.559	0.597	0.637	0.679	0.724	0.772	0.824	0.879	0.938	0.000	0.620	0.602	0.000
1.000	0.380	0.380	0.405	0.432	0.461	0.492	0.524	0.559	0.597	0.637	0.679	0.724	0.772	0.824	0.879	0.938	0.686	0.669	0.000
																			0.016

\boldsymbol{N}	$\boldsymbol{\Delta x}$	Error
4	0.333	0.066
8	0.143	0.032
16	0.067	0.016

Problem 5.89

5.89 Following the steps to convert the differential equation Eq. 5.28 (for $m=1$) into a difference equation (for example, Eq. 5.34 for $N=4$), solve

$$
\frac{d u}{d x}+u=x^{2} \quad 0 \leq x \leq 1 \quad u(0)=2
$$

For $N=4,8$, and 16 and compare to the extract solution

$$
u_{\text {exact }}=x^{2}-2 x+2
$$

Hint: Follow the hints provided in Problem 5.88.
New Eq. 5.34: $\quad-u_{i-1}+(1+\Delta x) u_{i}=\Delta x \cdot x_{i}^{2}$

$$
\begin{aligned}
N & =4 \\
\Delta x & =0.333
\end{aligned}
$$

Eq. $\mathbf{5 . 3 4}$ (LHS)				(RHS)
1.000	0.000	0.000	0.000	2
-1.000	1.333	0.000	0.000	0.03704
0.000	-1.000	1.333	0.000	0.14815
0.000	0.000	-1.000	1.333	0.33333

\boldsymbol{x}	Inverse Matrix				Result	Exact	Error
0.000	1.000	0.000	0.000	0.000	2.000	2.000	0.000
0.333	0.750	0.750	0.000	0.000	1.528	1.444	0.002
0.667	0.563	0.563	0.750	0.000	1.257	1.111	0.005
1.000	0.422	0.422	0.563	0.750	1.193	1.000	0.009
							$\mathbf{0 . 1 2 8}$

$$
\begin{aligned}
N & =8 \\
\Delta x & =0.143
\end{aligned}
$$

Eq. 5.34 (LHS)

1.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
-1.000	1.143	0.000	0.000	0.000	0.000	0.000	0.000
0.000	-1.000	1.143	0.000	0.000	0.000	0.000	0.000
0.000	0.000	-1.000	1.143	0.000	0.000	0.000	0.000
0.000	0.000	0.000	-1.000	1.143	0.000	0.000	0.000
0.000	0.000	0.000	0.000	-1.000	1.143	0.000	0.000
0.000	0.000	0.000	0.000	0.000	-1.000	1.143	0.000
0.000	0.000	0.000	0.000	0.000	0.000	-1.000	1.143

(RHS)
2
0.00292
0.01166
0.02624
0.04665
0.07289
0.10496
0.14286

\boldsymbol{x}	$\mathbf{1}$
0.000	1.000
0.143	0.875
0.286	0.766
0.429	0.670
0.571	0.586
0.714	0.513
0.857	0.449
1.000	0.393

$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$
0.000	0.000	0.000	0.000	0.000	0.000	0.000
0.875	0.000	0.000	0.000	0.000	0.000	0.000
0.766	0.875	0.000	0.000	0.000	0.000	0.000
0.670	0.766	0.875	0.000	0.000	0.000	0.000
0.586	0.670	0.766	0.875	0.000	0.000	0.000
0.513	0.586	0.670	0.766	0.875	0.000	0.000
0.449	0.513	0.586	0.670	0.766	0.875	0.000
0.393	0.449	0.513	0.586	0.670	0.766	0.875

Result	Exact	Error
2.000	2.000	0.000
1.753	1.735	0.000
1.544	1.510	0.000
1.374	1.327	0.000
1.243	1.184	0.000
1.151	1.082	0.001
1.099	1.020	0.001
1.087	1.000	0.001
		$\mathbf{0 . 0 5 7}$

$N=16$																			
$\Delta x=0.067$	Eq. 5.34 (LHS)																		
	,	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	(RHS)		
1	1.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	2		
2	-1.000	1.067	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.0003		
3	0.000	-1.000	1.067	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.00119		
4	0.000	0.000	-1.000	1.067	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.00267		
5	0.000	0.000	0.000	-1.000	1.067	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.00474		
6	0.000	0.000	0.000	0.000	-1.000	1.067	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.00741		
7	0.000	0.000	0.000	0.000	0.000	-1.000	1.067	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.01067		
8	0.000	0.000	0.000	0.000	0.000	0.000	-1.000	1.067	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.01452		
9	0.000	0.000	0.000	0.000	0.000	0.000	0.000	-1.000	1.067	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.01896		
10	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	-1.000	1.067	0.000	0.000	0.000	0.000	0.000	0.000	0.024		
11	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	-1.000	1.067	0.000	0.000	0.000	0.000	0.000	0.02963		
12	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	-1.000	1.067	0.000	0.000	0.000	0.000	0.03585		
13	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	-1.000	1.067	0.000	0.000	0.000	0.04267		
14	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	-1.000	1.067	0.000	0.000	0.05007		
15	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	-1.000	1.067	0.000	0.05807		
16	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	-1.000	1.067	0.06667		
x	Inverse Matrix																Result	Exact	Error
0.000	1.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	2.000	2.000	0.000
0.067	0.938	0.938	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	1.875	1.871	0.000
0.133	0.879	0.879	0.938	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	1.759	1.751	0.000
0.200	0.824	0.824	0.879	0.938	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	1.652	1.640	0.000
0.267	0.772	0.772	0.824	0.879	0.938	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	1.553	1.538	0.000
0.333	0.724	0.724	0.772	0.824	0.879	0.938	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	1.463	1.444	0.000
0.400	0.679	0.679	0.724	0.772	0.824	0.879	0.938	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	1.381	1.360	0.000
0.467	0.637	0.637	0.679	0.724	0.772	0.824	0.879	0.938	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	1.309	1.284	0.000
0.533	0.597	0.597	0.637	0.679	0.724	0.772	0.824	0.879	0.938	0.000	0.000	0.000	0.000	0.000	0.000	0.000	1.245	1.218	0.000
0.600	0.559	0.559	0.597	0.637	0.679	0.724	0.772	0.824	0.879	0.938	0.000	0.000	0.000	0.000	0.000	0.000	1.189	1.160	0.000
0.667	0.524	0.524	0.559	0.597	0.637	0.679	0.724	0.772	0.824	0.879	0.938	0.000	0.000	0.000	0.000	0.000	1.143	1.111	0.000
0.733	0.492	0.492	0.524	0.559	0.597	0.637	0.679	0.724	0.772	0.824	0.879	0.938	0.000	0.000	0.000	0.000	1.105	1.071	0.000
0.800	0.461	0.461	0.492	0.524	0.559	0.597	0.637	0.679	0.724	0.772	0.824	0.879	0.938	0.000	0.000	0.000	1.076	1.040	0.000
0.867	0.432	0.432	0.461	0.492	0.524	0.559	0.597	0.637	0.679	0.724	0.772	0.824	0.879	0.938	0.000	0.000	1.056	1.018	0.000
0.933	0.405	0.405	0.432	0.461	0.492	0.524	0.559	0.597	0.637	0.679	0.724	0.772	0.824	0.879	0.938	0.000	1.044	1.004	0.000
1.000	0.380	0.380	0.405	0.432	0.461	0.492	0.524	0.559	0.597	0.637	0.679	0.724	0.772	0.824	0.879	0.938	1.041	1.000	0.000
																			0.027

\boldsymbol{N}	$\boldsymbol{\Delta x}$	Error
4	0.333	0.128
8	0.143	0.057
16	0.067	0.027

Problem 5.90

5.90 A $10-\mathrm{cm}$ cube of mass $M=5 \mathrm{~kg}$ is sliding across an oiled surface. The oil viscosity is $\mu=0.4 \mathrm{~N} \cdot \mathrm{~s} / \mathrm{m}^{2}$, and the thickness of the oil between the cube and surface is $\delta=0.25 \mathrm{~mm}$. If the initial speed of the block is $u_{0}=1 \mathrm{~m} / \mathrm{s}$, use the numerical method that was applied to the linear form of Eq. 5.28 to predict the cube motion for the first second of motion, Use $N=4,8$, and 16 and compare to the exact solution

$$
u_{\text {exact }}=u_{0} e^{-(A \mu / M \delta) t}
$$

where A is the area of contact. Hint: Follow the hints provided in Problem 5.87.

Equation of motion:

$$
M \frac{d u}{d t}=-\mu \frac{d u}{d y} A=-\mu A \frac{u}{\delta}
$$

$$
\begin{aligned}
& \frac{d u}{d t}+\left(\frac{\mu \mathrm{A}}{M \delta}\right) u=0 \\
& \frac{d u}{d t}+k \cdot u=0
\end{aligned}
$$

New Eq. 5.34: $\quad-u_{i-1}+(1+k \cdot \Delta x) u_{i}=0$

$$
\begin{aligned}
N & =4 \\
\Delta t & =0.333
\end{aligned}
$$

Eq. 5.34 (LHS)

1.000	0.000	0.000	0.000
-1.000	2.067	0.000	0.000
0.000	-1.000	2.067	0.000
0.000	0.000	-1.000	2.067

(RHS)

1
0
0
0

\boldsymbol{t}	Inverse Matrix				Result	Exact	Error
0.000	1.000	0.000	0.000	0.000	1.000	1.000	0.000
0.333	0.484	0.484	0.000	0.000	0.484	0.344	0.005
0.667	0.234	0.234	0.484	0.000	0.234	0.118	0.003
1.000	0.113	0.113	0.234	0.484	0.113	0.041	0.001
							$\mathbf{0 . 0 9 8}$

$N=8$
$\Delta t=0.143$
Eq. 5.34 (LHS)

1.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
-1.000	1.457	0.000	0.000	0.000	0.000	0.000	0.000
0.000	-1.000	1.457	0.000	0.000	0.000	0.000	0.000
0.000	0.000	-1.000	1.457	0.000	0.000	0.000	0.000
0.000	0.000	0.000	-1.000	1.457	0.000	0.000	0.000
0.000	0.000	0.000	0.000	-1.000	1.457	0.000	0.000
0.000	0.000	0.000	0.000	0.000	-1.000	1.457	0.000
0.000	0.000	0.000	0.000	0.000	0.000	-1.000	1.457

Inverse Matrix

\boldsymbol{t}	$\mathbf{1}$
0.000	1.000
0.143	0.686
0.286	0.471
0.429	0.323
0.571	0.222
0.714	0.152
0.857	0.104
1.000	0.072

(RHS)

1
0
0
0
0
0
0
0

$$
\begin{aligned}
A & =0.01 \mathrm{~m}^{2} \\
\delta & =0.25 \mathrm{~mm} \\
\mu & =0.4 \mathrm{~N} . \mathrm{s} / \mathrm{m}^{2} \\
M & =5 \mathrm{~kg} \\
k & =3.2 \mathrm{~s}^{-1}
\end{aligned}
$$

Result	Exact	Error
1.000	1.000	0.000
0.686	0.633	0.000
0.471	0.401	0.001
0.323	0.254	0.001
0.222	0.161	0.000
0.152	0.102	0.000
0.104	0.064	0.000
0.072	0.041	0.000
		$\mathbf{0 . 0 5 2}$

$N=16$																			
$\Delta t=0.067$	Eq. 5.34 (LHS)																		
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	(RHS)		
1	1.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	1		
2	-1.000	1.213	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0		
3	0.000	-1.000	1.213	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0		
4	0.000	0.000	-1.000	1.213	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0		
5	0.000	0.000	0.000	-1.000	1.213	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0		
6	0.000	0.000	0.000	0.000	-1.000	1.213	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0		
7	0.000	0.000	0.000	0.000	0.000	-1.000	1.213	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0		
8	0.000	0.000	0.000	0.000	0.000	0.000	-1.000	1.213	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0		
9	0.000	0.000	0.000	0.000	0.000	0.000	0.000	-1.000	1.213	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0		
10	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	-1.000	1.213	0.000	0.000	0.000	0.000	0.000	0.000	0		
11	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	-1.000	1.213	0.000	0.000	0.000	0.000	0.000	0		
12	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	-1.000	1.213	0.000	0.000	0.000	0.000	0		
13	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	-1.000	1.213	0.000	0.000	0.000	0		
14	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	-1.000	1.213	0.000	0.000	0		
15	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	-1.000	1.213	0.000	0		
16	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	-1.000	1.213	0		
t	Inverse Matrix																Result	Exact	Error
0.000	1.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	1.000	1.000	0.000
0.067	0.824	0.824	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.824	0.808	0.000
0.133	0.679	0.679	0.824	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.679	0.653	0.000
0.200	0.560	0.560	0.679	0.824	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.560	0.527	0.000
0.267	0.461	0.461	0.560	0.679	0.824	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.461	0.426	0.000
0.333	0.380	0.380	0.461	0.560	0.679	0.824	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.380	0.344	0.000
0.400	0.313	0.313	0.380	0.461	0.560	0.679	0.824	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.313	0.278	0.000
0.467	0.258	0.258	0.313	0.380	0.461	0.560	0.679	0.824	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.258	0.225	0.000
0.533	0.213	0.213	0.258	0.313	0.380	0.461	0.560	0.679	0.824	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.213	0.181	0.000
0.600	0.175	0.175	0.213	0.258	0.313	0.380	0.461	0.560	0.679	0.824	0.000	0.000	0.000	0.000	0.000	0.000	0.175	0.147	0.000
0.667	0.145	0.145	0.175	0.213	0.258	0.313	0.380	0.461	0.560	0.679	0.824	0.000	0.000	0.000	0.000	0.000	0.145	0.118	0.000
0.733	0.119	0.119	0.145	0.175	0.213	0.258	0.313	0.380	0.461	0.560	0.679	0.824	0.000	0.000	0.000	0.000	0.119	0.096	0.000
0.800	0.098	0.098	0.119	0.145	0.175	0.213	0.258	0.313	0.380	0.461	0.560	0.679	0.824	0.000	0.000	0.000	0.098	0.077	0.000
0.867	0.081	0.081	0.098	0.119	0.145	0.175	0.213	0.258	0.313	0.380	0.461	0.560	0.679	0.824	0.000	0.000	0.081	0.062	0.000
0.933	0.067	0.067	0.081	0.098	0.119	0.145	0.175	0.213	0.258	0.313	0.380	0.461	0.560	0.679	0.824	0.000	0.067	0.050	0.000
1.000	0.055	0.055	0.067	0.081	0.098	0.119	0.145	0.175	0.213	0.258	0.313	0.380	0.461	0.560	0.679	0.824	0.055	0.041	0.000
																			0.027

\boldsymbol{N}	$\boldsymbol{\Delta} \boldsymbol{t}$	Error
4	0.333	0.098
8	0.143	0.052
16	0.067	0.027

5.91 Use Excel to generate the solutions of Eq. 5.28 for $m=2$
shown in Fig. 5.19.
$\Delta x=0.333$

	\boldsymbol{x}				
Iteration	0.000	0.333	0.667	1.000	
0	1.000	1.000	1.000	1.000	Residuals
1	1.000	0.800	0.800	0.800	0.204
2	1.000	0.791	0.661	0.661	0.127
3	1.000	0.791	0.650	0.560	0.068
4	1.000	0.791	0.650	0.550	0.007
5	1.000	0.791	0.650	0.550	0.000
6	1.000	0.791	0.650	0.550	0.000
Exact	$\mathbf{1 . 0 0 0}$	$\mathbf{0 . 7 5 0}$	$\mathbf{0 . 6 0 0}$	$\mathbf{0 . 5 0 0}$	

5.92 Use Excel to generate the solutions of Eq. 5.28 for $m=2$,
as shown in Fig. 5.19 , except use 16 points and as many iterations
as necessary to obtain reasonable convergence.

$\Delta x=0.0667$

Iteration	0.000	0.067	0.133	0.200	0.267	0.333	0.400	0.467	0.533	0.600	0.667	0.733	0.800	0.867	0.933	1.000
0	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
1	1.000	0.941	0.941	0.941	0.941	0.941	0.941	0.941	0.941	0.941	0.941	0.941	0.941	0.941	0.941	0.941
2	1.000	0.941	0.889	0.889	0.889	0.889	0.889	0.889	0.889	0.889	0.889	0.889	0.889	0.889	0.889	0.889
3	1.000	0.941	0.888	0.842	0.842	0.842	0.842	0.842	0.842	0.842	0.842	0.842	0.842	0.842	0.842	0.842
4	1.000	0.941	0.888	0.841	0.799	0.799	0.799	0.799	0.799	0.799	0.799	0.799	0.799	0.799	0.799	0.799
5	1.000	0.941	0.888	0.841	0.799	0.761	0.761	0.761	0.761	0.761	0.761	0.761	0.761	0.761	0.761	0.761
6	1.000	0.941	0.888	0.841	0.799	0.760	0.726	0.726	0.726	0.726	0.726	0.726	0.726	0.726	0.726	0.726
7	1.000	0.941	0.888	0.841	0.799	0.760	0.725	0.694	0.694	0.694	0.694	0.694	0.694	0.694	0.694	0.694
8	1.000	0.941	0.888	0.841	0.799	0.760	0.725	0.693	0.664	0.664	0.664	0.664	0.664	0.664	0.664	0.664
9	1.000	0.941	0.888	0.841	0.799	0.760	0.725	0.693	0.664	0.637	0.637	0.637	0.637	0.637	0.637	0.637
10	1.000	0.941	0.888	0.841	0.799	0.760	0.725	0.693	0.664	0.637	0.612	0.612	0.612	0.612	0.612	0.612
11	1.000	0.941	0.888	0.841	0.799	0.760	0.725	0.693	0.664	0.637	0.612	0.589	0.589	0.589	0.589	0.589
12	1.000	0.941	0.888	0.841	0.799	0.760	0.725	0.693	0.664	0.637	0.612	0.589	0.568	0.568	0.568	0.568
13	1.000	0.941	0.888	0.841	0.799	0.760	0.725	0.693	0.664	0.637	0.612	0.589	0.567	0.548	0.548	0.548
14	1.000	0.941	0.888	0.841	0.799	0.760	0.725	0.693	0.664	0.637	0.612	0.589	0.567	0.547	0.529	0.529
15	1.000	0.941	0.888	0.841	0.799	0.760	0.725	0.693	0.664	0.637	0.612	0.589	0.567	0.547	0.529	0.512
16	1.000	0.941	0.888	0.841	0.799	0.760	0.725	0.693	0.664	0.637	0.612	0.589	0.567	0.547	0.529	0.511
17	1.000	0.941	0.888	0.841	0.799	0.760	0.725	0.693	0.664	0.637	0.612	0.589	0.567	0.547	0.529	0.511
18	1.000	0.941	0.888	0.841	0.799	0.760	0.725	0.693	0.664	0.637	0.612	0.589	0.567	0.547	0.529	0.511
19	1.000	0.941	0.888	0.841	0.799	0.760	0.725	0.693	0.664	0.637	0.612	0.589	0.567	0.547	0.529	0.511
20	1.000	0.941	0.888	0.841	0.799	0.760	0.725	0.693	0.664	0.637	0.612	0.589	0.567	0.547	0.529	0.511
21	1.000	0.941	0.888	0.841	0.799	0.760	0.725	0.693	0.664	0.637	0.612	0.589	0.567	0.547	0.529	0.511
22	1.000	0.941	0.888	0.841	0.799	0.760	0.725	0.693	0.664	0.637	0.612	0.589	0.567	0.547	0.529	0.511
23	1.000	0.941	0.888	0.841	0.799	0.760	0.725	0.693	0.664	0.637	0.612	0.589	0.567	0.547	0.529	0.511
24	1.000	0.941	0.888	0.841	0.799	0.760	0.725	0.693	0.664	0.637	0.612	0.589	0.567	0.547	0.529	0.511
25	1.000	0.941	0.888	0.841	0.799	0.760	0.725	0.693	0.664	0.637	0.612	0.589	0.567	0.547	0.529	0.511
26	1.000	0.941	0.888	0.841	0.799	0.760	0.725	0.693	0.664	0.637	0.612	0.589	0.567	0.547	0.529	0.511
27	1.000	0.941	0.888	0.841	0.799	0.760	0.725	0.693	0.664	0.637	0.612	0.589	0.567	0.547	0.529	0.511
28	1.000	0.941	0.888	0.841	0.799	0.760	0.725	0.693	0.664	0.637	0.612	0.589	0.567	0.547	0.529	0.511
29	1.000	0.941	0.888	0.841	0.799	0.760	0.725	0.693	0.664	0.637	0.612	0.589	0.567	0.547	0.529	0.511
30	1.000	0.941	0.888	0.841	0.799	0.760	0.725	0.693	0.664	0.637	0.612	0.589	0.567	0.547	0.529	0.511
Exact	1.000	0.938	0.882	0.833	0.789	0.750	0.714	0.682	0.652	0.625	0.600	0.577	0.556	0.536	0.517	0.500

Problem 5.93

Problem 5.94

5.94 You (someone whose mass is $M=70 \mathrm{~kg}$) fall into a fast moving river (the speed of the water is $U=7.5 \mathrm{~m} / \mathrm{s}$). The equation of motion for your speed u is $M \frac{d u}{d t}=k(U-u)^{2}$	where $k=10 \mathrm{~N} \cdot \mathrm{~s}^{2} / \mathrm{m}^{2}$ is a constant indicating the drag of the water. Use Excel to generate and plot your speed versus time (for the first 10 s) using the same approach as the solutions of Eq. 5.28 for $m=2$, as shown in Fig. 5.19, except use 16 points and as many iterations as necessary to obtain reasonable convergence. Compare your results to the exact solution. $u_{\text {exact }}=\frac{k U^{2} t}{M+k U t}$ Hint: Use a substitution for $(U-u)$ so the equation of motion looks similar to Eq. 5.28.	$\begin{aligned} & M \frac{d u}{d t}=k(U-u)^{2} \\ & v=U-u \\ & d v=-d u \\ & -M \frac{d v}{d t}=k v^{2} \\ & \frac{d v}{d t}+\frac{k}{M} v^{2}=0 \end{aligned}$	$\begin{aligned} & v_{i}^{2} \approx 2 v_{g_{i}} v_{i}-v_{g_{i}}^{2} \\ & \frac{v_{i}-v_{i-1}}{\Delta t}+\frac{k}{M}\left(2 v_{g_{i}} v_{i}-v_{g_{i}}^{2}\right)=0 \\ & v_{i}=\frac{v_{g_{i-1}}+\frac{k}{M} \Delta t v_{g_{i}}^{2}}{1+2 \frac{k}{M} \Delta t v_{g_{i}}} \end{aligned}$

[^2]$\begin{array}{rll}k & = & 10 \\ M & \mathrm{~N} . \mathrm{s}^{2} / \mathrm{m}^{2} \\ M & 70 & \mathrm{~kg}\end{array}$

Iteration	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
0	7.500	7.500	7.500	7.500	7.500	7.500	7.500	7.500	7.500	7.500	7.500	7.500	7.500	7.500	7.500	7.500
1	7.500	4.943	4.943	4.943	4.943	4.943	4.943	4.943	4.943	4.943	4.943	4.943	4.943	4.943	4.943	4.943
2	7.500	4.556	3.496	3.496	3.496	3.496	3.496	3.496	3.496	3.496	3.496	3.496	3.496	3.496	3.496	3.496
3	7.500	4.547	3.153	2.623	2.623	2.623	2.623	2.623	2.623	2.623	2.623	2.623	2.623	2.623	2.623	2.623
4	7.500	4.547	3.139	2.364	2.061	2.061	2.061	2.061	2.061	2.061	2.061	2.061	2.061	2.061	2.061	2.061
5	7.500	4.547	3.139	2.350	1.870	1.679	1.679	1.679	1.679	1.679	1.679	1.679	1.679	1.679	1.679	1.679
6	7.500	4.547	3.139	2.350	1.857	1.536	1.407	1.407	1.407	1.407	1.407	1.407	1.407	1.407	1.407	1.407
7	7.500	4.547	3.139	2.350	1.857	1.525	1.297	1.205	1.205	1.205	1.205	1.205	1.205	1.205	1.205	1.205
8	7.500	4.547	3.139	2.350	1.857	1.525	1.288	1.119	1.051	1.051	1.051	1.051	1.051	1.051	1.051	1.051
9	7.500	4.547	3.139	2.350	1.857	1.525	1.288	1.112	0.982	0.930	0.930	0.930	0.930	0.930	0.930	0.930
10	7.500	4.547	3.139	2.350	1.857	1.525	1.288	1.112	0.976	0.874	0.832	0.832	0.832	0.832	0.832	0.832
11	7.500	4.547	3.139	2.350	1.857	1.525	1.288	1.112	0.976	0.868	0.786	0.752	0.752	0.752	0.752	0.752
12	7.500	4.547	3.139	2.350	1.857	1.525	1.288	1.112	0.976	0.868	0.781	0.713	0.686	0.686	0.686	0.686
13	7.500	4.547	3.139	2.350	1.857	1.525	1.288	1.112	0.976	0.868	0.781	0.709	0.653	0.629	0.629	0.629
14	7.500	4.547	3.139	2.350	1.857	1.525	1.288	1.112	0.976	0.868	0.781	0.709	0.649	0.601	0.581	0.581
15	7.500	4.547	3.139	2.350	1.857	1.525	1.288	1.112	0.976	0.868	0.781	0.709	0.649	0.598	0.557	0.540
16	7.500	4.547	3.139	2.350	1.857	1.525	1.288	1.112	0.976	0.868	0.781	0.709	0.649	0.598	0.554	0.519
17	7.500	4.547	3.139	2.350	1.857	1.525	1.288	1.112	0.976	0.868	0.781	0.709	0.649	0.598	0.554	0.516
18	7.500	4.547	3.139	2.350	1.857	1.525	1.288	1.112	0.976	0.868	0.781	0.709	0.649	0.598	0.554	0.516
19	7.500	4.547	3.139	2.350	1.857	1.525	1.288	1.112	0.976	0.868	0.781	0.709	0.649	0.598	0.554	0.516
20	7.500	4.547	3.139	2.350	1.857	1.525	1.288	1.112	0.976	0.868	0.781	0.709	0.649	0.598	0.554	0.516
21	7.500	4.547	3.139	2.350	1.857	1.525	1.288	1.112	0.976	0.868	0.781	0.709	0.649	0.598	0.554	0.516
22	7.500	4.547	3.139	2.350	1.857	1.525	1.288	1.112	0.976	0.868	0.781	0.709	0.649	0.598	0.554	0.516
23	7.500	4.547	3.139	2.350	1.857	1.525	1.288	1.112	0.976	0.868	0.781	0.709	0.649	0.598	0.554	0.516
24	7.500	4.547	3.139	2.350	1.857	1.525	1.288	1.112	0.976	0.868	0.781	0.709	0.649	0.598	0.554	0.516
25	7.500	4.547	3.139	2.350	1.857	1.525	1.288	1.112	0.976	0.868	0.781	0.709	0.649	0.598	0.554	0.516
26	7.500	4.547	3.139	2.350	1.857	1.525	1.288	1.112	0.976	0.868	0.781	0.709	0.649	0.598	0.554	0.516
27	7.500	4.547	3.139	2.350	1.857	1.525	1.288	1.112	0.976	0.868	0.781	0.709	0.649	0.598	0.554	0.516
28	7.500	4.547	3.139	2.350	1.857	1.525	1.288	1.112	0.976	0.868	0.781	0.709	0.649	0.598	0.554	0.516
29	7.500	4.547	3.139	2.350	1.857	1.525	1.288	1.112	0.976	0.868	0.781	0.709	0.649	0.598	0.554	0.516
30	7.500	4.547	3.139	2.350	1.857	1.525	1.288	1.112	0.976	0.868	0.781	0.709	0.649	0.598	0.554	0.516
31	7.500	4.547	3.139	2.350	1.857	1.525	1.288	1.112	0.976	0.868	0.781	0.709	0.649	0.598	0.554	0.516
32	7.500	4.547	3.139	2.350	1.857	1.525	1.288	1.112	0.976	0.868	0.781	0.709	0.649	0.598	0.554	0.516
33	7.500	4.547	3.139	2.350	1.857	1.525	1.288	1.112	0.976	0.868	0.781	0.709	0.649	0.598	0.554	0.516
34	7.500	4.547	3.139	2.350	1.857	1.525	1.288	1.112	0.976	0.868	0.781	0.709	0.649	0.598	0.554	0.516
35	7.500	4.547	3.139	2.350	1.857	1.525	1.288	1.112	0.976	0.868	0.781	0.709	0.649	0.598	0.554	0.516
36	7.500	4.547	3.139	2.350	1.857	1.525	1.288	1.112	0.976	0.868	0.781	0.709	0.649	0.598	0.554	0.516
37	7.500	4.547	3.139	2.350	1.857	1.525	1.288	1.112	0.976	0.868	0.781	0.709	0.649	0.598	0.554	0.516
38	7.500	4.547	3.139	2.350	1.857	1.525	1.288	1.112	0.976	0.868	0.781	0.709	0.649	0.598	0.554	0.516
39	7.500	4.547	3.139	2.350	1.857	1.525	1.288	1.112	0.976	0.868	0.781	0.709	0.649	0.598	0.554	0.516
40	7.500	4.547	3.139	2.350	1.857	1.525	1.288	1.112	0.976	0.868	0.781	0.709	0.649	0.598	0.554	0.516

Above values are for $\mathbf{v !}$ To get u we compute $u=U-v$

6.1 Consider the flow field with velocity given by $\vec{V}=\left[A\left(y^{2}-x^{2}\right)-B x\right] \hat{i}+[2 A x y+B y] \hat{j} ; A=1 \mathrm{ft}^{-1} \cdot \mathrm{~s}^{-1}, B=1$ $\mathrm{ft}^{-1} \cdot \mathrm{~s}^{-1}$; the coordinates are measured in feet. The density is 2 slug/ft ${ }^{3}$, and gravity acts in the negative y direction. Calculate the acceleration of a fluid particle and the pressure gradient at point $(x, y)=(1,1)$.

Given: Velocity field
Find: \quad Acceleration of particle and pressure gradient at $(1,1)$

Solution:

NOTE: Units of B are s^{-1} not $\mathrm{ft}^{-1} \mathrm{~s}^{-1}$
Basic equations $\quad \vec{a}_{p}=\frac{D \vec{V}}{D t}=\underbrace{u \frac{\partial \vec{V}}{\partial x}+v \frac{\partial \vec{V}}{\partial y}+w \frac{\partial \vec{V}}{\partial z}}+\frac{\partial \vec{V}}{\partial t} \quad \rho \frac{D \vec{V}}{D t}=\rho \vec{g}-\nabla p$
total acceleration of a particle
convective acceleration
local acceleration

$$
\begin{aligned}
& u(x, y)=A \cdot\left(y^{2}-x^{2}\right)-B \cdot x \quad v(x, y)=2 \cdot A \cdot x \cdot y+B \cdot y \\
& a_{x}=u \cdot \frac{\partial}{\partial x} u+v \cdot \frac{\partial}{\partial y} u=\left[A \cdot\left(y^{2}-x^{2}\right)-B \cdot x\right] \cdot \frac{\partial}{\partial x}\left[A \cdot\left(y^{2}-x^{2}\right)-B \cdot x\right]+(2 \cdot A \cdot x \cdot y+B \cdot y) \cdot \frac{\partial}{\partial y}\left[A \cdot\left(y^{2}-x^{2}\right)-B \cdot x\right] \\
& a_{x}=(B+2 \cdot A \cdot x) \cdot\left(A \cdot x^{2}+B \cdot x+A \cdot y^{2}\right) \\
& a_{y}=u \cdot \frac{\partial}{\partial x} v+v \cdot \frac{\partial}{\partial y} v=\left[A \cdot\left(y^{2}-x^{2}\right)-B \cdot x\right] \cdot \frac{\partial}{\partial x}(2 \cdot A \cdot x \cdot y+B \cdot y)+(2 \cdot A \cdot x \cdot y+B \cdot y) \cdot \frac{\partial}{\partial y}(2 \cdot A \cdot x \cdot y+B \cdot y) \\
& a_{y}=(B+2 \cdot A \cdot x) \cdot(B \cdot y+2 \cdot A \cdot x \cdot y)-2 \cdot A \cdot y \cdot\left[B \cdot x+A \cdot\left(x^{2}-y^{2}\right)\right]
\end{aligned}
$$

Hence at (1,1)

$$
\begin{array}{ll}
a_{x}=(1+2 \cdot 1 \cdot 1) \cdot \frac{1}{\mathrm{~s}} \times\left(1 \cdot 1^{2}+1 \cdot 1+1 \cdot 1^{2}\right) \cdot \frac{\mathrm{ft}}{\mathrm{~s}} & \mathrm{a}_{\mathrm{x}}=9 \cdot \frac{\mathrm{ft}}{2} \\
\mathrm{a}_{\mathrm{y}}=(1+2 \cdot 1 \cdot 1) \cdot \frac{1}{\mathrm{~s}} \times(1 \cdot 1+2 \cdot 1 \cdot 1 \cdot 1) \cdot \frac{\mathrm{ft}}{\mathrm{~s}}-2 \cdot 1 \cdot 1 \cdot \frac{1}{\mathrm{~s}} \times\left[1 \cdot 1+1 \cdot\left(1^{2}-1^{2}\right)\right] \cdot \frac{\mathrm{ft}}{\mathrm{~s}} & a_{y}=7 \cdot \frac{\mathrm{ft}}{\mathrm{~s}^{2}} \\
\mathrm{a}=\sqrt{\mathrm{a}_{\mathrm{x}}{ }^{2}+\mathrm{a}_{\mathrm{y}}{ }^{2}} \quad \theta=\operatorname{atan}\left(\frac{\mathrm{a}_{\mathrm{y}}}{\mathrm{a}_{\mathrm{x}}}\right) & \mathrm{a}=11.4 \cdot \frac{\mathrm{ft}}{\mathrm{~s}^{2}}
\end{array}
$$

For the pressure gradient

$$
\begin{array}{ll}
\frac{\partial}{\partial \mathrm{x}} \mathrm{p}=\rho \cdot \mathrm{g}_{\mathrm{x}}-\rho \cdot \mathrm{a}_{\mathrm{x}}=-2 \cdot \frac{\mathrm{slug}}{\mathrm{ft}^{3}} \times 9 \cdot \frac{\mathrm{ft}}{\mathrm{~s}^{2}} \times \frac{\mathrm{lbf} \cdot \mathrm{~s}^{2}}{\mathrm{slug} \cdot \mathrm{ft}} & \frac{\partial}{\partial \mathrm{x}} \mathrm{p}=-18 \cdot \frac{\frac{\mathrm{lbf}}{\mathrm{ft}^{2}}}{\mathrm{ft}}=-0.125 \cdot \frac{\mathrm{psi}}{\mathrm{ft}} \\
\frac{\partial}{\partial \mathrm{y}} \mathrm{p}=\rho \cdot \mathrm{g}_{\mathrm{y}}-\rho \cdot \mathrm{a}_{\mathrm{y}}=2 \cdot \frac{\operatorname{slug}}{\mathrm{ft}^{3}} \times(-32.2-7) \cdot \frac{\mathrm{ft}}{\mathrm{~s}^{2}} \times \frac{\mathrm{lbf} \cdot \mathrm{~s}^{2}}{\mathrm{slug} \cdot \mathrm{ft}} & \frac{\partial}{\partial \mathrm{y}} \mathrm{p}=-78.4 \cdot \frac{\frac{\mathrm{lbf}}{\mathrm{ft}^{2}}}{\mathrm{ft}}=-0.544 \cdot \frac{\mathrm{psi}}{\mathrm{ft}}
\end{array}
$$

Problem 6.2

6.2 An incompressible frictionless flow field is given by $\vec{V}=(A x-B y) \hat{i}-A y \hat{j}$, where $A=1 \mathrm{~s}^{-1}, B=3 \mathrm{~s}^{-1}$, and the coordinates are measured in meters. Find the magnitude and direction of the acceleration of a fluid particle at point $(x, y)=(0.7,2)$. Find the pressure gradient at the same point, if $\vec{g}=-g \hat{j}$ and the fluid is water.

Given: Velocity field
Find: \quad Acceleration of particle and pressure gradient at $(0.7,2)$

Solution:

$$
\text { Basic equations } \quad \vec{a}_{p}=\underbrace{\frac{D \vec{V}}{\partial t}}_{\begin{array}{c}
\text { convective } \\
\text { total } \\
\text { acceleration } \\
\text { of a particle }
\end{array}}=\underbrace{u \frac{\partial \vec{V}}{\partial x}+v \frac{\partial \vec{V}}{\partial y}+w \frac{\partial \vec{V}}{\partial z}}_{\begin{array}{c}
\text { acceration }
\end{array}}+\underbrace{\frac{\partial \vec{V}}{\partial t}}_{\text {acceleration }}
$$

For this flow

$$
u(x, y)=A \cdot x-B \cdot y \quad v(x, y)=-A \cdot y
$$

$$
\begin{array}{ll}
a_{x}=u \cdot \frac{\partial}{\partial x} u+v \cdot \frac{\partial}{\partial y} u=(A \cdot x-B \cdot y) \cdot \frac{\partial}{\partial x}(A \cdot x-B \cdot y)+(-A \cdot y) \cdot \frac{\partial}{\partial y}(A \cdot x-B \cdot y) & a_{x}=A^{2} \cdot x \\
a_{y}=u \cdot \frac{\partial}{\partial x} v+v \cdot \frac{\partial}{\partial y} v=(A \cdot x-B \cdot y) \cdot \frac{\partial}{\partial x}(-A \cdot y)+(-A \cdot y) \cdot \frac{\partial}{\partial y}(-A \cdot y) & a_{y}=A^{2} \cdot y
\end{array}
$$

Hence at $(0.7,2) \quad a_{X}=\left(\frac{1}{s}\right)^{2} \times 0.7 \cdot m$ $\mathrm{a}_{\mathrm{x}}=0.7 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}$
$a_{y}=\left(\frac{1}{s}\right)^{2} \times 2 \cdot m$ $a_{y}=2 \frac{m}{s^{2}}$

$$
a=\sqrt{a_{x}^{2}+a_{y}^{2}} \quad \theta=\operatorname{atan}\left(\frac{a_{y}}{a_{x}}\right)
$$

$$
\mathrm{a}=2.12 \frac{\mathrm{~m}}{\mathrm{~s}} \quad \theta=70.7 \cdot \mathrm{deg}
$$

For the pressure gradient

$$
\begin{array}{ll}
\frac{\partial}{\partial x} \mathrm{p}=\rho \cdot \mathrm{g}_{\mathrm{x}}-\rho \cdot \mathrm{a}_{\mathrm{x}}=-1000 \cdot \frac{\mathrm{~kg}}{\mathrm{~m}^{3}} \times 0.7 \cdot \frac{\mathrm{~m}}{\mathrm{~s}^{2}} \times \frac{\mathrm{N} \cdot \mathrm{~s}^{2}}{\mathrm{~kg} \cdot \mathrm{~m}} & \frac{\partial}{\partial \mathrm{x}} \mathrm{p}=-700 \cdot \frac{\mathrm{~Pa}}{\mathrm{~m}}=-0.7 \cdot \frac{\mathrm{kPa}}{\mathrm{~m}} \\
\frac{\partial}{\partial \mathrm{y}} \mathrm{p}=\rho \cdot \mathrm{g}_{\mathrm{y}}-\rho \cdot \mathrm{a}_{\mathrm{y}}=1000 \cdot \frac{\mathrm{~kg}}{\mathrm{~m}^{3}} \times(-9.81-2) \cdot \frac{\mathrm{m}}{\mathrm{~s}^{2}} \times \frac{\mathrm{N} \cdot \mathrm{~s}^{2}}{\mathrm{~kg} \cdot \mathrm{~m}} & \frac{\partial}{\partial \mathrm{y}} \mathrm{p}=-11800 \cdot \frac{\mathrm{~Pa}}{\mathrm{~m}}=-11.8 \cdot \frac{\mathrm{kPa}}{\mathrm{~m}}
\end{array}
$$

Given: Horizontal fla of water described by the veloxty field

$$
\bar{V}=(A x+B t) i+(-F y+B t) j
$$

where: $P=55^{\prime}$, $B=10 f=s^{-2}$, coorkinatesty inf, tins.
Find: (d) Expressions for (i) local (ii) conjecture (i) to lat, acherdur (b) Evaluate at point $(2,2)$ for $t=5 s$
(c) Evaluate $\nabla \cdot p$ at sane post ans Cire

Solution:

Assumptions: ") frictionless flow
(2) $p=$ constant $=1.94$ slug $16 t^{3}$

$$
\begin{aligned}
& \frac{\partial \vec{V}}{\partial t}=\frac{\partial}{2 t}\left[(A+B t) i+(-A y+B t) j=B i+B j=\omega(i+j) f t l^{2}+\vec{a}_{b a d}\right. \\
& \left.\left.u \frac{\partial \vec{y}}{\partial x}+v \frac{\vec{u}}{\partial y}=(A x+B t) \frac{2}{2 x}[(A x+B t) x+(-A y+B t)]+(-A y+B t) \frac{2}{\partial y}\right](A x+B t) x+(-A y+B) \hat{C}\right] \\
& =\left(F_{1}+B t\right)\left[A_{i}^{N}\right]+\left(-R_{y}+B t\right)\left[-R_{j}^{N}\right] \\
& u \frac{\partial \vec{y}}{\partial x}+v \frac{\vec{J}}{\partial y}=A(A x+B t) \hat{\theta}-A(-A y+B t) \vec{\partial} \\
& \left.\theta=\frac{5}{5}\left(\frac{5}{5} \times 2 f t+\frac{10 f t}{s^{2}} \times s\right) i-\frac{5}{5}\left(-\frac{5}{s} x^{2 f t}+\frac{10 f t}{s^{2}} \times 5\right)\right)=300 i-200 \frac{f t}{5} \frac{a}{a} \\
& \vec{a}=\vec{a}_{\text {coal }}+\vec{a}_{\text {con }}=[B+A(A x+B t)]\left[+\left[B-A\left(-A_{y}+B t\right)\right]\right]=310 \hat{i}-1 a \hat{a}^{\frac{c}{2}}+\vec{a}
\end{aligned}
$$

From Euler's equation.

$$
\begin{aligned}
& \nabla p=-60 \hat{i}+36 \hat{y}-62 \hat{b} \frac{b f / f^{2}}{f t}=-4 . x^{2}+2.5 b^{2} j-0.43 \hat{k}+p i / f
\end{aligned}
$$

Note: $\vec{N}=0$ as required for incompressible flow

Problem 6.4
Given: Velocity field, $\vec{V}=(A x-B y) t^{r}-(A y+B x)+\hat{j}$
where $R=1 \mathrm{~s}^{-2}$

$$
B=2 s^{-2}
$$

coordinates x, y are in meters.
Fund density is $p=1500 \mathrm{~kg} / n^{3}$. Body forces are negligible
Find: ∇P at location $(1,2)$ at $t=1 \mathrm{~s}$.
Solution:
Basic equations: $\quad \vec{P} \quad \stackrel{0}{\theta}-\nabla P=P \frac{\vec{V}}{\pi}$

$$
\frac{\vec{N}}{D t}=\frac{\partial \vec{v}}{\partial t}+u \frac{\partial \vec{v}}{\partial x}+v \frac{2 \vec{v}}{\partial y}+w \frac{\partial \vec{v}}{\partial z}
$$

Assumptions: (i) frictionless flow
Substituting for the velocity field in the equation for $\frac{\vec{D}}{\bar{D}}$,

$$
\begin{aligned}
& \frac{\vec{N}}{\pi}=\frac{\partial}{\partial t}\left[(A x-B y) t i-\left(A_{y}+B x\right) t i\right]+(A x-B y) t \frac{2}{2 x}\left[(A x-B y) t i-\left(A_{y}+B x\right) t j\right] \\
& -(A y+B x) t \frac{2}{\partial y}[(A x-B y) t i-(A y+B x) t j] \\
& =[(A x-B y) i-(A y+B x) j]+\left(A_{x}-B y\right) t[A t i-B t j]-(A y-B x) t[-B t i-A t j] \\
& =i\left\{A x-B y+R^{2}+t^{2}-A B C^{2}+A B y t^{2}+B^{2} x t^{2}\right\}+\hat{j}\left\{-A y-B x-A B A^{2}+B^{2} y t^{2}+A^{2} y t^{2}+R B x t^{2}\right\} \\
& \frac{\vec{N}}{\vec{D}}=\hat{i}\left\{A x-B y+x t^{2}\left(A^{2}+B^{2}\right)\right\}+\hat{j}\left\{-A y-B x+y t^{2}\left(A^{2}+B^{2}\right)\right\}
\end{aligned}
$$

Then,

$$
\nabla P=-\rho \frac{\vec{D}}{\pi}=-\rho\left[i\left\{A x-B y+t^{2}\left(A^{2}+B^{2}\right)\right\}+\hat{j}\left\{-A y-B x+y t^{2}\left(R^{2}+R^{2}\right)\right\}\right]
$$

Ft location $(1,2)$ at $t=1$ s

$$
\begin{aligned}
\nabla P=-1500 \lg _{n^{2}}\left[i \left\{\frac{1}{s^{2}} \cdot \ln -\right.\right. & \left.\frac{2}{s^{2}} x^{2}+\ln \times 1 s^{2}\left(\frac{(1)^{2}+(2)^{2}}{s^{4}}\right)\right\} \\
& \left.+j\left\{-\frac{1}{s^{2} x^{2 n}}-\frac{2}{s^{2}} \times \ln +2 n \times 1 s^{2} \times\left(\frac{(1)^{2}+(2)^{2}}{s^{4}}\right\}\right\}\right] \frac{\mathrm{N} \cdot s^{2}}{\mathrm{~kg} \cdot n}
\end{aligned}
$$

$$
\nabla P=-(3.0 \hat{i}+9.0 j) \frac{\mathrm{kN} / \mathrm{n}^{2}}{\mathrm{n}}
$$

Note: $\nabla \cdot \vec{V}=0$ as required for incompressible flow

Problem 6.5

6.5 Consider the flow field with velocity given by $\vec{V}=\left[A\left(x^{2}-y^{2}\right)-3 B x\right] \hat{i}-[2 A x y-3 B y] \hat{j}$, where $A=1 \mathrm{ft}^{-1} \cdot \mathrm{~s}^{-1}$, $B=1 \mathrm{~s}^{-1}$, and the coordinates are measured in feet. The density is 2 slug $/ \mathrm{ft}^{3}$ and gravity acts in the negative y direction. Determine the acceleration of a fluid particle and the pressure gradient at point $(x, y)=(1,1)$.

Given: Velocity field
Find: \quad Acceleration of particle and pressure gradient at $(1,1)$

Solution:

Basic equations $\quad \vec{a}_{p}=\frac{D \vec{V}}{D t}=\underbrace{u \frac{\partial \vec{V}}{\partial x}+v \frac{\partial \vec{V}}{\partial y}+w \frac{\partial \vec{V}}{\partial z}}+\frac{\partial \vec{V}}{\partial t} \quad \rho \frac{D \vec{V}}{D t}=\rho \vec{g}-\nabla p$
total acceleration of a particle
convective acceleration
local acceleration

$$
u(x, y)=A \cdot\left(x^{2}-y^{2}\right)-3 \cdot B \cdot x \quad v(x, y)=-2 \cdot A \cdot x \cdot y+3 \cdot B \cdot y
$$

$$
a_{x}=u \cdot \frac{\partial}{\partial x} u+v \cdot \frac{\partial}{\partial y} u=\left[A \cdot\left(x^{2}-y^{2}\right)-3 \cdot B \cdot x\right] \cdot \frac{\partial}{\partial x}\left[A \cdot\left(x^{2}-y^{2}\right)-3 \cdot B \cdot x\right] \ldots
$$

$$
+(-2 \cdot A \cdot x \cdot y+3 \cdot B \cdot y) \cdot \frac{\partial}{\partial y}\left[A \cdot\left(x^{2}-y^{2}\right)-3 \cdot B \cdot x\right]
$$

$$
a_{x}=(2 \cdot A \cdot x-3 \cdot B) \cdot\left(A \cdot x^{2}-3 \cdot B \cdot x+A \cdot y^{2}\right)
$$

$$
a_{y}=u \cdot \frac{\partial}{\partial x} v+v \cdot \frac{\partial}{\partial y} v=\left[A \cdot\left(x^{2}-y^{2}\right)-3 \cdot B \cdot x\right] \cdot \frac{\partial}{\partial x}(-2 \cdot A \cdot x \cdot y+3 \cdot B \cdot y)+(-2 \cdot A \cdot x \cdot y+3 \cdot B \cdot y) \cdot \frac{\partial}{\partial y}(-2 \cdot A \cdot x \cdot y+3 \cdot B \cdot y)
$$

$$
a_{y}=(3 \cdot B \cdot y-2 \cdot A \cdot x \cdot y) \cdot(3 \cdot B-2 \cdot A \cdot x)-2 \cdot A \cdot y \cdot\left[A \cdot\left(x^{2}-y^{2}\right)-3 \cdot B \cdot x\right]
$$

Hence at $(1,1)$

For the pressure gradient

$$
\begin{array}{ll}
\frac{\partial}{\partial \mathrm{x}} \mathrm{p}=\rho \cdot \mathrm{g}_{\mathrm{x}}-\rho \cdot \mathrm{a}_{\mathrm{x}}=-2 \cdot \frac{\mathrm{slug}}{\mathrm{ft}^{3}} \times 1 \cdot \frac{\mathrm{ft}}{\mathrm{~s}^{2}} \times \frac{\mathrm{lbf} \cdot \mathrm{~s}^{2}}{\mathrm{slug} \cdot \mathrm{ft}} & \frac{\partial}{\partial \mathrm{x}} \mathrm{p}=-2 \cdot \frac{\frac{\mathrm{lbf}}{\mathrm{ft}^{2}}}{\mathrm{ft}}=-0.0139 \cdot \frac{\mathrm{psi}}{\mathrm{ft}} \\
\frac{\partial}{\partial \mathrm{y}} \mathrm{p}=\rho \cdot \mathrm{g}_{\mathrm{y}}-\rho \cdot \mathrm{a}_{\mathrm{y}}=2 \cdot \frac{\mathrm{slug}}{\mathrm{ft}^{3}} \times(-32.2-7) \cdot \frac{\mathrm{ft}}{\mathrm{~s}^{2}} \times \frac{\mathrm{lbf} \cdot \mathrm{~s}^{2}}{\mathrm{slug} \cdot \mathrm{ft}} & \frac{\partial}{\partial \mathrm{y}} \mathrm{p}=-78.4 \cdot \frac{\frac{\mathrm{ft}}{} \mathrm{ft}^{2}}{\mathrm{ft}}=-0.544 \cdot \frac{\mathrm{psi}}{\mathrm{ft}}
\end{array}
$$

$$
\begin{aligned}
& a_{x}=(2 \cdot 1 \cdot 1-3 \cdot 1) \cdot \frac{1}{\mathrm{~s}} \times\left(1 \cdot 1^{2}-3 \cdot 1 \cdot 1+1 \cdot 1^{2}\right) \cdot \frac{\mathrm{ft}}{\mathrm{~s}} \\
& \mathrm{a}_{\mathrm{x}}=1 \cdot \frac{\mathrm{ft}}{\mathrm{~s}^{2}} \\
& \mathrm{a}_{\mathrm{y}}=(3 \cdot 1 \cdot 1-2 \cdot 1 \cdot 1 \cdot 1) \cdot \frac{1}{\mathrm{~s}} \times(3 \cdot 1-2 \cdot 1 \cdot 1) \cdot \frac{\mathrm{ft}}{\mathrm{~s}}-2 \cdot 1 \cdot 1 \cdot \frac{1}{\mathrm{~s}} \times\left[1 \cdot\left(1^{2}-1^{2}\right)-3 \cdot 1 \cdot 1\right] \cdot \frac{\mathrm{ft}}{\mathrm{~s}} \\
& a_{y}=7 \cdot \frac{\mathrm{ft}}{\mathrm{~s}^{2}} \\
& a=\sqrt{a_{x}{ }^{2}+a_{y}{ }^{2}} \\
& \theta=\operatorname{atan}\left(\frac{a_{y}}{a_{x}}\right) \\
& \mathrm{a}=7.1 \cdot \frac{\mathrm{ft}}{\mathrm{~s}^{2}} \quad \theta=81.9 \cdot \mathrm{deg}
\end{aligned}
$$

6.6 Consider the flow field with velocity given by $\vec{V}=$
$A x \sin (2 \pi \omega t) \hat{i}-A y \sin (2 \pi \omega t) \hat{j}$, where $A=2 \mathrm{~s}^{-1}$ and $\omega=1 \mathrm{~s}^{-1}$.
The fluid density is $2 \mathrm{~kg} / \mathrm{m}^{3}$. Find expressions for the local acceleration, the convective acceleration, and the total acceleration. Evaluate these at point $(1,1)$ at $t=0,0.5$ and 1 seconds. Evaluate ∇p at the same point and times.

Given: Velocity field

Find: Expressions for local, convective and total acceleration; evaluate at several points; evaluate pressure gradient

Solution:

The given data is $\quad \mathrm{A}=2 \cdot \frac{1}{\mathrm{~s}} \quad \omega=1 \cdot \frac{1}{\mathrm{~s}} \quad \rho=2 \cdot \frac{\mathrm{~kg}}{\mathrm{~m}^{3}} \quad \mathrm{u}=\mathrm{A} \cdot \mathrm{x} \cdot \sin (2 \cdot \pi \cdot \omega \cdot \mathrm{t}) \quad \mathrm{v}=-\mathrm{A} \cdot \mathrm{y} \cdot \sin (2 \cdot \pi \cdot \omega \cdot \mathrm{t})$
Check for incompressible flow $\quad \frac{\partial}{\partial \mathrm{x}} \mathrm{u}+\frac{\partial}{\partial \mathrm{y}} \mathrm{v}=0$

Hence

$$
\frac{\partial}{\partial \mathrm{x}} \mathrm{u}+\frac{\partial}{\partial \mathrm{y}} \mathrm{v}=\mathrm{A} \cdot \sin (2 \cdot \pi \cdot \omega \cdot \mathrm{t})-\mathrm{A} \cdot \sin (2 \cdot \pi \cdot \omega \cdot \mathrm{t})=0 \quad \text { Incompressible flow }
$$

The governing equation for acceleration is

The local acceleration is then $\quad x$-component $\quad \frac{\partial}{\partial \mathrm{t}} \mathrm{u}=2 \cdot \pi \cdot \mathrm{~A} \cdot \omega \cdot \mathrm{x} \cdot \cos (2 \cdot \pi \cdot \omega \cdot \mathrm{t})$

$$
y \text { - component } \quad \frac{\partial}{\partial \mathrm{t}} \mathrm{v}=-2 \cdot \pi \cdot \mathrm{~A} \cdot \omega \cdot \mathrm{y} \cdot \cos (2 \cdot \pi \cdot \omega \cdot \mathrm{t})
$$

For the present steady, 2D flow, the convective acceleration is
x - component $\quad u \cdot \frac{\partial}{\partial x} u+v \cdot \frac{\partial}{\partial y} u=A \cdot x \cdot \sin (2 \cdot \pi \cdot \omega \cdot t) \cdot(A \cdot \sin (2 \cdot \pi \cdot \omega \cdot t))+(-A \cdot y \cdot \sin (2 \cdot \pi \cdot \omega \cdot t)) \cdot 0=A^{2} \cdot x \cdot \sin (2 \cdot \pi \cdot \omega \cdot t)^{2}$
y - component $\quad \mathrm{u} \cdot \frac{\partial}{\partial \mathrm{x}} \mathrm{v}+\mathrm{v} \cdot \frac{\partial}{\partial \mathrm{y}} \mathrm{v}=\mathrm{A} \cdot \mathrm{x} \cdot \sin (2 \cdot \pi \cdot \omega \cdot \mathrm{t}) \cdot 0+(-\mathrm{A} \cdot \mathrm{y} \cdot \sin (2 \cdot \pi \cdot \omega \cdot \mathrm{t})) \cdot(-\mathrm{A} \cdot \sin (2 \cdot \pi \cdot \omega \cdot \mathrm{t}))=\mathrm{A}^{2} \cdot \mathrm{y} \cdot \sin (2 \cdot \pi \cdot \omega \cdot \mathrm{t})^{2}$

The total acceleration is then x-component

$$
\frac{\partial}{\partial \mathrm{t}} \mathrm{u}+\mathrm{u} \cdot \frac{\partial}{\partial \mathrm{x}} \mathrm{u}+\mathrm{v} \cdot \frac{\partial}{\partial \mathrm{y}} \mathrm{u}=2 \cdot \pi \cdot \mathrm{~A} \cdot \omega \cdot \mathrm{x} \cdot \cos (2 \cdot \pi \cdot \omega \cdot \mathrm{t})+\mathrm{A}^{2} \cdot \mathrm{x} \cdot \sin (2 \cdot \pi \cdot \omega \cdot \mathrm{t})^{2}
$$

y-component

$$
\frac{\partial}{\partial \mathrm{t}} \mathrm{v}+\mathrm{u} \cdot \frac{\partial}{\partial \mathrm{x}} \mathrm{v}+\mathrm{v} \cdot \frac{\partial}{\partial \mathrm{y}} \mathrm{v}=-2 \cdot \pi \cdot \mathrm{~A} \cdot \omega \cdot \mathrm{y} \cdot \cos (2 \cdot \pi \cdot \omega \cdot \mathrm{t})+\mathrm{A}^{2} \cdot \mathrm{y} \cdot \sin (2 \cdot \pi \cdot \omega \cdot \mathrm{t})^{2}
$$

Evaluating at point $(1,1)$ at

$\mathrm{t}=0 \cdot \mathrm{~s}$	Local	$12.6 \cdot \frac{\mathrm{~m}}{\mathrm{~s}^{2}}$	and	$-12.6 \cdot \frac{\mathrm{~m}}{\mathrm{~s}^{2}}$	Convective	$0 \cdot \frac{\mathrm{~m}}{\mathrm{~s}^{2}}$	and	$0 \cdot \frac{\mathrm{~m}}{\mathrm{~s}^{2}}$
	Total	$12.6 \cdot \frac{\mathrm{~m}}{\mathrm{~s}^{2}}$	and	$-12.6 \cdot \frac{\mathrm{~m}}{\mathrm{~s}^{2}}$				
$\mathrm{t}=0.5 \cdot \mathrm{~s}$	Local	$-12.6 \cdot \frac{\mathrm{~m}}{\mathrm{~s}}$	and	$12.6 \cdot \frac{\mathrm{~m}}{\mathrm{~s}^{2}}$	Convective	$0 \cdot \frac{\mathrm{~m}}{\mathrm{~s}^{2}}$	and	$0 \cdot \frac{\mathrm{~m}}{\mathrm{~s}^{2}}$
	Total	$-12.6 \cdot \frac{\mathrm{~m}}{\mathrm{~s}}$	and	$12.6 \cdot \frac{\mathrm{~m}}{\mathrm{~s}^{2}}$				
$\mathrm{t}=1 \cdot \mathrm{~s}$	Local	$12.6 \cdot \frac{\mathrm{~m}}{\mathrm{~s}^{2}}$	and	$-12.6 \cdot \frac{\mathrm{~m}}{\mathrm{~s}^{2}}$	Convective	$0 \cdot \frac{\mathrm{~m}}{\mathrm{~s}^{2}}$	and	$0 \cdot \frac{\mathrm{~m}}{\mathrm{~s}^{2}}$
	Total	$12.6 \cdot \frac{\mathrm{~m}}{\mathrm{~s}^{2}}$	and	$-12.6 \cdot \frac{\mathrm{~m}}{\mathrm{~s}^{2}}$				

The governing equation (assuming inviscid flow) for computing the pressure gradient is $\rho \frac{D \vec{V}}{D t}=\rho \vec{g}-\nabla p$
Hence, the components of pressure gradient (neglecting gravity) are

$$
\begin{array}{ll}
\frac{\partial}{\partial x} \mathrm{p}=-\rho \cdot \frac{\mathrm{Du}}{D t} & \frac{\partial}{\partial \mathrm{x}} \mathrm{p}=-\rho \cdot\left(2 \cdot \pi \cdot \mathrm{~A} \cdot \omega \cdot \mathrm{x} \cdot \cos (2 \cdot \pi \cdot \omega \cdot \mathrm{t})+\mathrm{A}^{2} \cdot \mathrm{x} \cdot \sin (2 \cdot \pi \cdot \omega \cdot t)^{2}\right) \\
\frac{\partial}{\partial y} \mathrm{p}=-\rho \cdot \frac{D v}{D t} & \frac{\partial}{\partial \mathrm{x}} \mathrm{p}=-\rho \cdot\left(-2 \cdot \pi \cdot A \cdot \omega \cdot y \cdot \cos (2 \cdot \pi \cdot \omega \cdot t)+A^{2} \cdot y \cdot \sin (2 \cdot \pi \cdot \omega \cdot t)^{2}\right)
\end{array}
$$

$\begin{array}{llllll}\text { Evaluated at }(1,1) \text { and time } & \mathrm{t}=0 \cdot \mathrm{~s} & x \text { comp. } & -25.1 \cdot \frac{\mathrm{~Pa}}{\mathrm{~m}} & y \text { comp. } & 25.1 \cdot \frac{\mathrm{~Pa}}{\mathrm{~m}} \\ & \mathrm{t}=0.5 \cdot \mathrm{~s} & x \text { comp. } & 25.1 \cdot \frac{\mathrm{~Pa}}{\mathrm{~m}} & y \text { comp. } & -25.1 \cdot \frac{\mathrm{~Pa}}{\mathrm{~m}} \\ & \mathrm{t}=1 \cdot \mathrm{~s} & x \text { comp. } & -25.1 \cdot \frac{\mathrm{~Pa}}{\mathrm{~m}} & y \text { comp. } & 25.1 \cdot \frac{\mathrm{~Pa}}{\mathrm{~m}}\end{array}$

Problem 6.7

6.7 The x component of velocity in an incompressible flow field is given by $u=A x$, where $A=2 \mathrm{~s}^{-1}$ and the coordinates are measured in meters. The pressure at point $(x, y)=(0,0)$ is $p_{0}=$ 190 kPa (gage). The density is $\rho=1.50 \mathrm{~kg} / \mathrm{m}^{3}$ and the z axis is vertical. Evaluate the simplest possible y component of velocity. Calculate the fluid acceleration and determine the pressure gradient at point $(x, y)=(2,1)$. Find the pressure distribution along the positive x axis.

Given: Velocity field

Find: \quad Simplest y component of velocity; Acceleration of particle and pressure gradient at (2,1); pressure on x axis

Solution:

Hence $\quad v(x, y)=-A \cdot y \quad$ is the simplest y component of velocity

For acceleration

$$
\begin{array}{ll}
a_{x}=u \cdot \frac{\partial}{\partial x} u+v \cdot \frac{\partial}{\partial y} u=A \cdot x \cdot \frac{\partial}{\partial x}(A \cdot x)+(-A \cdot y) \cdot \frac{\partial}{\partial y}(A \cdot x)=A^{2} \cdot x & a_{x}=A^{2} \cdot x \\
a_{y}=u \cdot \frac{\partial}{\partial x} v+v \cdot \frac{\partial}{\partial y} v=A \cdot x \cdot \frac{\partial}{\partial x}(-A \cdot y)+(-A \cdot y) \cdot \frac{\partial}{\partial y}(-A \cdot y) & a_{y}=A^{2} \cdot y \\
a_{x}=\left(\frac{2}{s}\right)^{2} \times 2 \cdot m & a_{x}=8 \frac{m}{s^{2}} \\
\left.a=\sqrt{a_{x}{ }^{2}+a_{y}^{2}}\right)^{2} \times 1 \cdot m & a_{y}=4 \frac{m}{s^{2}}
\end{array}
$$

Hence at $(2,1)$

For the pressure gradient

$$
\begin{array}{ll}
\frac{\partial}{\partial x} \mathrm{p}=\rho \cdot \mathrm{g}_{\mathrm{x}}-\rho \cdot \mathrm{a}_{\mathrm{x}}=-1.50 \cdot \frac{\mathrm{~kg}}{\mathrm{~m}^{3}} \times 8 \cdot \frac{\mathrm{~m}}{\mathrm{~s}^{2}} \times \frac{\mathrm{N} \cdot \mathrm{~s}^{2}}{\mathrm{~kg} \cdot \mathrm{~m}} & \frac{\partial}{\partial \mathrm{x}} \mathrm{p}=-12 \cdot \frac{\mathrm{~Pa}}{\mathrm{~m}} \\
\frac{\partial}{\partial y} \mathrm{p}=\rho \cdot \mathrm{g}_{\mathrm{y}}-\rho \cdot \mathrm{a}_{\mathrm{y}}=-1.50 \cdot \frac{\mathrm{~kg}}{\mathrm{~m}^{3}} \times 4 \cdot \frac{\mathrm{~m}}{\mathrm{~s}^{2}} \times \frac{\mathrm{N} \cdot \mathrm{~s}^{2}}{\mathrm{~kg} \cdot \mathrm{~m}} & \frac{\partial}{\partial y} \mathrm{p}=-6 \cdot \frac{\mathrm{~Pa}}{\mathrm{~m}} \\
\frac{\partial}{\partial \mathrm{z}} \mathrm{p}=\rho \cdot \mathrm{g}_{\mathrm{z}}-\rho \cdot \mathrm{a}_{\mathrm{z}}=1.50 \times \frac{\mathrm{kg}}{\mathrm{~m}^{3}} \times(-9.81) \cdot \frac{\mathrm{m}}{\mathrm{~s}^{2}} \times \frac{\mathrm{N} \cdot \mathrm{~s}^{2}}{\mathrm{~kg} \cdot \mathrm{~m}} & \frac{\partial}{\partial y} \mathrm{p}=-14.7 \cdot \frac{\mathrm{~Pa}}{\mathrm{~m}}
\end{array}
$$

For the pressure on the x axis $d p=\frac{\partial}{\partial x} p \quad p-p_{0}=\int_{0}^{x}\left(\rho \cdot g_{x}-\rho \cdot a_{x}\right) d x=\int_{0}^{x}\left(-\rho \cdot A^{2} \cdot x\right) d x=-\frac{1}{2} \cdot \rho \cdot A^{2} \cdot x^{2}$
$\mathrm{p}(\mathrm{x})=\mathrm{p}_{0}-\frac{1}{2} \cdot \rho \cdot \mathrm{~A}^{2} \cdot \mathrm{x}^{2} \quad \mathrm{p}(\mathrm{x})=190 \cdot \mathrm{kPa}-\frac{1}{2} \cdot 1.5 \cdot \frac{\mathrm{~kg}}{\mathrm{~m}^{3}} \times\left(\frac{2}{\mathrm{~s}}\right)^{2} \times \frac{\mathrm{N} \cdot \mathrm{s}^{2}}{\mathrm{~kg} \cdot \mathrm{~m}} \times \mathrm{x}^{2} \quad \mathrm{p}(\mathrm{x})=190-\frac{3}{1000} \cdot \mathrm{x}^{2} \quad \quad(\mathrm{p}$ in kPa, x in m$)$
6.8 The velocity field for a plane source located distance $h=1 \mathrm{~m}$ above an infinite wall aligned along the x axis is given by

$$
\begin{aligned}
\vec{V}= & \frac{q}{2 \pi\left[x^{2}+(y-h)^{2}\right]}[x \hat{i}+(y-h) \hat{j}] \\
& +\frac{q}{2 \pi\left[x^{2}+(y+h)^{2}\right]}[x \hat{i}+(y+h) \hat{j}]
\end{aligned}
$$

where $q=2 \mathrm{~m}^{3} / \mathrm{s} / \mathrm{m}$. The fluid density is $1000 \mathrm{~kg} / \mathrm{m}^{3}$ and body forces are negligible. Derive expressions for the velocity and acceleration of a fluid particle that moves along the wall, and plot from $x=0$ to $x=+10 h$. Verify that the velocity and acceleration normal to the wall are zero. Plot the pressure gradient $\partial p / \partial x$ along the wall. Is the pressure gradient along the wall adverse (does it oppose fluid motion) or not?

Given: Velocity field

Find: Expressions for velocity and acceleration along wall; plot; verify vertical components are zero; plot pressure gradient

Solution:

The given data is

$$
\begin{aligned}
& q=2 \cdot \frac{\frac{m^{3}}{s}}{m} \quad \quad h=1 \cdot m \quad \rho=1000 \cdot \frac{\mathrm{~kg}}{\mathrm{~m}^{3}} \\
& \mathrm{u}=\frac{\mathrm{q} \cdot \mathrm{x}}{2 \cdot \pi\left[\mathrm{x}^{2}+(\mathrm{y}-\mathrm{h})^{2}\right]}+\frac{\mathrm{q} \cdot \mathrm{x}}{2 \cdot \pi\left[\mathrm{x}^{2}+(\mathrm{y}+\mathrm{h})^{2}\right]} \quad \mathrm{v}=\frac{\mathrm{q} \cdot(\mathrm{y}-\mathrm{h})}{2 \cdot \pi\left[\mathrm{x}^{2}+(\mathrm{y}-\mathrm{h})^{2}\right]}+\frac{\mathrm{q} \cdot(\mathrm{y}+\mathrm{h})}{2 \cdot \pi\left[\mathrm{x}^{2}+(\mathrm{y}+\mathrm{h})^{2}\right]}
\end{aligned}
$$

The governing equation for acceleration is

For steady, 2D flow this reduces to (after considerable math!)

$$
\begin{array}{ll}
x \text { - component } \quad a_{x}=u \cdot \frac{\partial}{\partial x} u+v \cdot \frac{\partial}{\partial y} u=-\frac{q^{2} \cdot x \cdot\left[\left(x^{2}+y^{2}\right)^{2}-h^{2} \cdot\left(h^{2}-4 \cdot y^{2}\right)\right]}{\left[x^{2}+(y+h)^{2}\right]^{2} \cdot\left[x^{2}+(y-h)^{2}\right]^{2} \cdot \pi^{2}} \\
y \text {-component } \quad a_{y}=u \cdot \frac{\partial}{\partial x} v+v \cdot \frac{\partial}{\partial y} v=-\frac{q^{2} \cdot y \cdot\left[\left(x^{2}+y^{2}\right)^{2}-h^{2} \cdot\left(h^{2}+4 \cdot x^{2}\right)\right]}{\pi^{2} \cdot\left[x^{2}+(y+h)^{2}\right]^{2} \cdot\left[x^{2}+(y-h)^{2}\right]^{2}}
\end{array}
$$

For motion along the wall

$$
\mathrm{y}=0 \cdot \mathrm{~m}
$$

$$
\mathrm{u}=\frac{\mathrm{q} \cdot \mathrm{x}}{\pi \cdot\left(\mathrm{x}^{2}+\mathrm{h}^{2}\right)} \quad \mathrm{v}=0 \quad \text { (No normal velocity) } \quad \mathrm{a}_{\mathrm{x}}=-\frac{\mathrm{q}^{2} \cdot \mathrm{x} \cdot\left(\mathrm{x}^{2}-\mathrm{h}^{2}\right)}{\pi^{2} \cdot\left(\mathrm{x}^{2}+\mathrm{h}^{2}\right)^{3}} \quad \mathrm{a}_{\mathrm{y}}=0 \quad \text { (No normal acceleration) }
$$

The governing equation (assuming inviscid flow) for computing the pressure gradient is

$$
\begin{equation*}
\rho \frac{D \vec{V}}{D t}=\rho \overrightarrow{\mathrm{g}}-\nabla p \tag{6.1}
\end{equation*}
$$

Hence, the component of pressure gradient (neglecting gravity) along the wall is

$$
\frac{\partial}{\partial x} p=-\rho \cdot \frac{D u}{D t} \quad \frac{\partial}{\partial x} p=\frac{\rho \cdot q^{2} \cdot x \cdot\left(x^{2}-h^{2}\right)}{\pi^{2} \cdot\left(x^{2}+h^{2}\right)^{3}}
$$

The plots of velocity, acceleration, and pressure gradient are shown in the associated Excel workbook. From the plots it is clear that the fluid experiences an adverse pressure gradient from the origin to $x=1 \mathrm{~m}$, then a negative one promoting fluid acceleration. If flow separates, it will likely be in the region $x=0$ to $x=h$.
6.8 The velocity field for a plane source located distance $h=1 \mathrm{~m}$ above an infinite wall aligned along the x axis is given by

$$
\begin{aligned}
\vec{V}= & \frac{q}{2 \pi\left[x^{2}+(y-h)^{2}\right]}[x \hat{i}+(y-h) \hat{j}] \\
& +\frac{q}{2 \pi\left[x^{2}+(y+h)^{2}\right]}[x \hat{i}+(y+h) \hat{j}]
\end{aligned}
$$

where $q=2 \mathrm{~m}^{3} / \mathrm{s} / \mathrm{m}$. The fluid density is $1000 \mathrm{~kg} / \mathrm{m}^{3}$ and body forces are negligible. Derive expressions for the velocity and acceleration of a fluid particle that moves along the wall, and plot from $x=0$ to $x=+10 h$. Verify that the velocity and acceleration normal to the wall are zero. Plot the pressure gradient $\partial p / \partial x$ along the wall. Is the pressure gradient along the wall adverse (does it oppose fluid motion) or not?

Given: Velocity field

Find: Expressions for velocity and acceleration along wall; plot; verify vertical components are zero; plot pressure gradient

Solution:

The velocity, acceleration and pressure gradient are given by $u=\frac{q \cdot x}{\pi \cdot\left(x^{2}+h^{2}\right)}$

$$
\mathrm{a}_{\mathrm{x}}=-\frac{\mathrm{q}^{2} \cdot \mathrm{x} \cdot\left(\mathrm{x}^{2}-\mathrm{h}^{2}\right)}{\pi^{2} \cdot\left(\mathrm{x}^{2}+\mathrm{h}^{2}\right)^{3}}
$$

$q=2 \quad \mathrm{~m}^{3} / \mathrm{s} / \mathrm{m}$
$h=1 \mathrm{~m}$
$\rho=1000 \mathrm{~kg} / \mathrm{m}^{3}$
$\frac{\partial}{\partial x} p=\frac{\rho \cdot q^{2} \cdot x \cdot\left(x^{2}-h^{2}\right)}{\pi^{2} \cdot\left(x^{2}+h^{2}\right)^{3}}$

$\boldsymbol{x}(\mathbf{m})$	$\boldsymbol{u}(\mathrm{m} / \mathbf{s})$	$a\left(\mathbf{m} / \mathbf{s}^{2}\right)$	$\boldsymbol{d p} / \mathbf{d} \boldsymbol{x}(\mathbf{P a} / \mathbf{m})$
0.0	0.00	0.00000	0.00
1.0	0.32	0.00000	0.00
2.0	0.25	0.01945	-19.45
3.0	0.19	0.00973	-9.73
4.0	0.15	0.00495	-4.95
5.0	0.12	0.00277	-2.77
6.0	0.10	0.00168	-1.68
7.0	0.09	0.00109	-1.09
8.0	0.08	0.00074	-0.74
9.0	0.07	0.00053	-0.53
10.0	0.06	0.00039	-0.39

Given: The velocity distribution in a steady, $n_{n} \rightarrow$ flow field in the wy plane is given by $\vec{V}=(A-2 B)-(C-H y) \hat{J}$, where $A=2 s^{-1}, B=5$ n.s,$C=3 n \cdot s^{-1}$ and the body force distribution is $\vec{g}=-g \hat{l}$ '
Find: (a) Does the velocity field represent the flow of an incompressible fluid?
bo Find the stagnation point of the flow field (c) Obtain an expression for the pressure gradient. (d) Evaluate sp between origin and painter $(1,3)$ if $p=1.2 \mathrm{~kg} \mathrm{~m}^{3}$
Solution:
(a) Apply the continuity equation $\frac{\partial p}{\partial t}+\nabla \cdot \vec{p}=0$, for the given conditions. If constant, then

$$
\frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}=0=\frac{\partial}{3 x}(2 x-5)+\frac{\partial}{\partial y}(3-2 y)=2-2=0
$$

\therefore veloaty field represents an incompressible flow
d) At the stagnation port, $\vec{V}=0$. For $\vec{V}=0$, then

$$
u=2 x-5=0 \text { and } v=(3-2 y)=0
$$

Thus stagnation point is at $(x, y)=\left(\frac{5}{2}, \frac{3}{2}\right)$
(c) Euler's equation, $\overrightarrow{P g}-\vec{Q}=p \overrightarrow{N V}$, can be used to obtain an expression for the pressure gradient

$$
\nabla p=p \vec{p}-p \frac{\partial v}{\partial t}=\overrightarrow{p g}-p\left[\frac{\partial A}{\partial t}+u \frac{\overrightarrow{\partial u}}{\partial x}+v \frac{\partial \overrightarrow{\partial y}}{\partial y}+w \vec{\omega} \frac{\vec{z}}{\partial z}\right] \text {. }
$$

$$
\pi P=p\left[\vec{g}-u \frac{\overrightarrow{a x}}{\partial x}-v \frac{\overrightarrow{2 v}}{\partial y}\right]=p[-\vec{g} k-(2 x-5) 2 \hat{i}-(3-2 y)(-2 j)]
$$

$$
\nabla p=-p\left[(4 x-10) i+(4 y-6) j+g^{k}\right] .
$$

(d) Since $p=p(1, y, z)$ we can write

$$
d p=\frac{\partial p}{\partial x} d x+\frac{\partial P}{\partial y} d y+\frac{\partial P}{\partial z} d z=-p(4+-10) d x-p(4 y-6) d y-p g d z
$$

We can integrate to obtain DP between any two points in the field if, and only if, the integral of the right hand side is independent of the pat of inkegation. This is true for the present case.

$$
\begin{aligned}
& \therefore P_{1,3}-P_{0,0}=-p\left\{\int_{0}^{1}(4-10) d x+\int_{0}^{3}(4 y-6) d y\right\}=-p\left\{\left[2 x^{2}-10 x\right]_{0}^{1}+\left[2 y^{2}-6 y\right]_{0}^{3}\right\} \\
&=-p\{-8-0\}=8 p \\
& P_{1.3}-P_{0.0}=8 \frac{m^{2}}{s^{2}} \cdot 1.2 \frac{\mathrm{~kg}}{\mathrm{~m}^{3}} \cdot \frac{N \cdot \mathrm{~s}^{2}}{\mathrm{~kg} \cdot \mathrm{~m}}=9.6 N / m^{2}-\Delta P
\end{aligned}
$$

Problem 6.10
Given: Frictionless, incompressible flow field with

$$
\begin{aligned}
& \vec{v}=A_{x} \hat{\imath}-A_{y} \hat{\jmath} \\
& \vec{g}=-g \hat{k}
\end{aligned}
$$

At $(0,0,0) P=P_{0}$
Find: Expression for the pressure field $p(x, y, z)$
Solution:
Basic equations: $\overrightarrow{P B}-\nabla P=\rho \frac{D \vec{V}}{\pi}$

$$
\frac{\vec{v}}{\lambda t}=\frac{\partial \vec{u}}{\partial t}+u \frac{\partial \vec{v}}{\partial x}+v \frac{\partial \vec{v}}{\partial y}+w \frac{\partial \vec{v}}{\partial z}
$$

$$
\nabla p=p\left(\vec{g}-\frac{\vec{\rightharpoonup}}{\vec{x}}\right)=p\left(-g \vec{b}-u \frac{\vec{\partial}}{\partial x}-v \frac{\partial \vec{u}}{\partial y}\right)
$$

$$
=-p\left[g^{k}+R x(R \hat{i})-R y(-A j)\right]
$$

$$
\nabla p=-p\left[A^{2} x i+A^{2} y j+g \hat{l}\right]
$$

$$
i \frac{\partial p}{\partial x}+j \frac{\partial r}{\partial y}+\hat{b} \frac{\partial p}{\partial z}=-p\left[A^{2} x i+A^{2} y j+g \hat{b}\right]
$$

$$
\frac{\partial p}{\partial x}=-p P^{2} x \quad \frac{\partial P}{\partial y}=-p R^{2} y \quad \frac{\partial P}{\partial z}=-p g
$$

$$
P=P(x, y, z)
$$

$$
d P=\frac{\partial p}{\partial x} d x+\frac{\partial P}{\partial y} d y+\frac{\partial P}{\partial z} d z=-p R^{2} x d x-p R^{2} y d y-p g d z
$$

* $P-P_{0}=\int_{P_{0}}^{P} d P=-\int_{0}^{x} P P^{2} x d x-\int_{0}^{y} P P^{2} y d y-\int_{0}^{3} P g d z$

$$
\begin{aligned}
& P-P_{0}=-p\left[A^{2} \frac{x^{2}}{2}+\frac{R^{2} y^{2}}{2}+g z\right] \\
& P=P_{0}-p\left[\frac{R^{2} x^{2}}{2}+\frac{R^{2} y^{2}}{2}+g z\right]
\end{aligned}
$$

- We can integrate to obtain ΔP between any two points in the flow field if, and only, if, the integral of the right hand side is independent of the path of integration. This is true for fie present canc

Given: Porous pipe with liquid $\left(\mu=0, \rho=900 \mathrm{~kg} / \mathrm{m}^{3}\right)$

$$
\begin{aligned}
& U \rightarrow \sqrt{-u(x)} \rightarrow \\
& U=5 \mathrm{~m} / \mathrm{s} \\
& L=0.3 \mathrm{~m} \\
& p_{\text {in }}=35 \mathrm{kPa} \text { (gage) } \\
& \text { Tout } \\
& u(x)=U(1-x / 2 L)
\end{aligned}
$$

Find: (a) Expression for acceleration along ε.
(b) Expression for pressure gradient along d.
(c) Evaluate pout

Solution: Computing equations (acceleration and Euler in x-directiop)

Assumptions: (1) $v=w=0$ along e
(2) steady flow

$$
\text { (s) } g x=0
$$

Then

$$
a_{P_{x}}=u \frac{\partial u}{\partial x}=v\left(1-\frac{x}{2 L}\right) v\left(-\frac{1}{2 L}\right)=-\frac{v^{2}}{2 L}\left(1-\frac{x}{2 L}\right)
$$

From Euler

$$
\frac{\partial p}{\partial x}=\frac{d p}{d x}=-\rho a_{\rho x}=\rho \frac{U^{2}}{2 L}\left(1-\frac{x}{2 L}\right)
$$

Integrating,

$$
\left.p_{\text {oct }}-p_{\text {in }}=\int_{0}^{L} \frac{d p}{d x} d x=\rho \frac{v^{2}}{2 L} \int_{0}^{L}\left(1-\frac{x}{2 L}\right) d x=\rho \frac{V^{2}}{2 L}\left(x-\frac{x^{2}}{4 L}\right)\right]_{0}^{L}
$$

or

$$
\begin{aligned}
p_{\text {out }} & =p_{\text {in }}+\frac{\rho U^{2}}{2 L}\left(\frac{3}{4} L\right)=p_{i n}+\frac{3}{8} \rho U^{2} \\
& =35 \mathrm{kPa}+\frac{3}{8} \times 900 \frac{\mathrm{~kg}}{\mathrm{~m}^{3}} \times(5)^{2} \frac{\mathrm{~m}^{2}}{\mathrm{~s}^{2}} \times \frac{\mathrm{N} \cdot \mathrm{~s}}{\mathrm{~kg} \cdot \mathrm{~m}}
\end{aligned}
$$

pout $=43,4 \mathrm{kPa}$ (gage)

Given: Liquid, $p=$ constant and negligible viscosity, is pumper at total volume flow rate, Q, Rrough two small holes into the narrow gap between closely space parallel plates. The liquid flowing away from the Roles has only radial motion. Flow may be assured uniform at any section.
(a) Show that $V_{r}=$ alzrerh, where h is the spacing between the plates.
(b) Obtain an expression for a_{0} and $2 P l a r$

Solution:
Apply the conservation of mass to a CV with outer edge at r.

Basic equation: $\quad \Delta=\frac{\partial}{\partial t} \int_{N} p d t+C_{c s} \vec{p} \cdot \overrightarrow{d A}$
Assumptions:
(i) steady flow
(a) incompressible flow
(3) uniform flow ateach section

Ten

$$
\begin{gather*}
0=\int_{\text {es }} \vec{V} \cdot d \vec{A}=-2 \times \frac{Q}{2}+V_{r} 2 \pi r h \\
\text { and } V_{r}=\frac{Q}{2 \pi r h} \tag{r}
\end{gather*}
$$

From Eq. $6.4 a$

$$
g_{r}-\frac{1}{\rho} \frac{\partial p}{\partial r}=a_{r}=\frac{\partial \psi_{r}}{\partial t}+V_{r} \frac{\partial \psi_{r}}{\partial r}+\frac{V_{\theta}}{r} \frac{\partial V_{r}}{\partial \theta}+V_{z} \frac{\partial \psi_{r}}{\partial z}-\frac{V_{\theta}^{2}}{r}
$$

Since $V_{r}=V_{r}(r)$ and $V_{\theta}=0$, then

$$
\begin{align*}
& a_{r}=V_{r} \frac{\partial V_{r}}{\partial r}=\frac{\theta}{2 \pi r h}\left[\frac{Q}{2 \pi h}\left(-\frac{1}{r^{2}}\right)\right]=-\left(\frac{\theta}{2 \pi r h}\right)^{2} \frac{1}{r} \\
& a_{r}=-\frac{V_{r}^{2}}{r} \tag{r}
\end{align*}
$$

Since $g_{r}=0$, Hen

$$
-\frac{1}{\rho} \frac{\partial p}{\partial r}=a_{r}
$$

$$
\frac{\partial p}{\partial r}=-p a_{r}=p \frac{V_{r}^{2}}{r}, \frac{\partial p}{\partial r}
$$

Problem 6.13

6.13 The velocity field for a plane vortex sink is given by $\vec{V}=(-q / 2 \pi r) \hat{e}_{r}+(K / 2 \pi r) \hat{e}_{\theta}$, where $q=2 \mathrm{~m}^{3} / \mathrm{s} / \mathrm{m}$ and $K=1 \mathrm{~m}^{3} /$ s / m. The fluid density is $1000 \mathrm{~kg} / \mathrm{m}^{3}$. Find the acceleration at $(1,0),(1, \pi / 2)$, and $(2,0)$. Evaluate ∇p under the same conditions.

Given: Velocity field
Find: The acceleration at several points; evaluate pressure gradient

Solution:

The given data is

$$
\mathrm{q}=2 \cdot \frac{\frac{\mathrm{~m}^{3}}{\mathrm{~s}}}{\mathrm{~m}} \quad \mathrm{~K}=1 \cdot \frac{\frac{\mathrm{~m}^{3}}{\mathrm{~s}}}{\mathrm{~m}}
$$

$$
\rho=1000 \cdot \frac{\mathrm{~kg}}{\mathrm{~m}^{3}}
$$

$$
\mathrm{V}_{\mathrm{r}}=-\frac{\mathrm{q}}{2 \cdot \pi \cdot \mathrm{r}}
$$

$$
\mathrm{V}_{\theta}=\frac{\mathrm{K}}{2 \cdot \pi \cdot \mathrm{r}}
$$

The governing equations for this 2D flow are

$$
\begin{align*}
& \rho a_{r}=\rho\left(\frac{\partial V_{r}}{\partial t}+V_{r} \frac{\partial V_{r}}{\partial r}+\frac{V_{\theta}}{r} \frac{\partial V_{r}}{\partial \theta}+V_{z} \frac{\partial V_{r}}{\partial z}-\frac{V_{\theta}^{2}}{r}\right)=\rho g_{r}-\frac{\partial p}{\partial r} \tag{6.3a}\\
& \rho a_{\theta}=\rho\left(\frac{\partial V_{\theta}}{\partial t}+V_{r} \frac{\partial V_{\theta}}{\partial r}+\frac{V_{\theta}}{r} \frac{\partial V_{\theta}}{\partial \theta}+V_{z} \frac{\partial V_{\theta}}{\partial z}+\frac{V_{r} V_{\theta}}{r}\right)=\rho g_{\theta}-\frac{1}{r} \frac{\partial p}{\partial \theta} \tag{6.3b}
\end{align*}
$$

The total acceleration for this steady flow is then
r-component

$$
a_{r}=V_{r} \cdot \frac{\partial}{\partial r} V_{r}+\frac{V_{\theta}}{r} \cdot \frac{\partial}{\partial \theta} V_{r} \quad a_{r}=-\frac{q^{2}}{4 \cdot \pi^{2} \cdot r^{3}}
$$

θ - component

Evaluating at point $(1,0)$

$$
\mathrm{a}_{\theta}=\mathrm{V}_{\mathrm{r}} \cdot \frac{\partial}{\partial \mathrm{r}} \mathrm{~V}_{\theta}+\frac{\mathrm{V}_{\theta}}{\mathrm{r}} \cdot \frac{\partial}{\partial \theta} \mathrm{~V}_{\theta} \quad \mathrm{a}_{\theta}=\frac{\mathrm{q} \cdot \mathrm{~K}}{4 \cdot \pi^{2} \cdot \mathrm{r}^{3}}
$$

$$
\mathrm{a}_{\mathrm{r}}=-0.101 \frac{\mathrm{~m}}{\mathrm{~s}^{2}} \quad \mathrm{a}_{\theta}=0.0507 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}
$$

Evaluating at point (1, $\pi / 2$)

$$
\mathrm{a}_{\mathrm{r}}=-0.101 \frac{\mathrm{~m}}{\mathrm{~s}^{2}} \quad \mathrm{a}_{\theta}=0.0507 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}
$$

Evaluating at point $(2,0)$

$$
\mathrm{a}_{\mathrm{r}}=-0.0127 \frac{\mathrm{~m}}{\mathrm{~s}^{2}} \quad \mathrm{a}_{\theta}=0.00633 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}
$$

From Eq. 6.3, pressure gradient is $\frac{\partial}{\partial r} p=-\rho \cdot a_{r} \quad \frac{\partial}{\partial r} p=\frac{\rho \cdot q^{2}}{4 \cdot \pi^{2} \cdot r^{3}}$

$$
\frac{1}{\mathrm{r}} \cdot \frac{\partial}{\partial \theta} \mathrm{p}=-\rho \cdot \mathrm{a}_{\theta} \quad \frac{1}{\mathrm{r}} \cdot \frac{\partial}{\partial \theta} \mathrm{p}=-\frac{\rho \cdot \mathrm{q} \cdot \mathrm{~K}}{4 \cdot \pi^{2} \cdot \mathrm{r}^{3}}
$$

Evaluating at point $(1,0)$

$$
\frac{\partial}{\partial \mathrm{r}} \mathrm{p}=101 \cdot \frac{\mathrm{~Pa}}{\mathrm{~m}} \quad \frac{1}{\mathrm{r}} \cdot \frac{\partial}{\partial \theta} \mathrm{p}=-50.5 \cdot \frac{\mathrm{~Pa}}{\mathrm{~m}}
$$

Evaluating at point $(1, \pi / 2)$

$$
\frac{\partial}{\partial \mathrm{r}} \mathrm{p}=101 \cdot \frac{\mathrm{~Pa}}{\mathrm{~m}}
$$

$$
\frac{1}{\mathrm{r}} \cdot \frac{\partial}{\partial \theta} \mathrm{p}=-50.5 \cdot \frac{\mathrm{~Pa}}{\mathrm{~m}}
$$

Evaluating at point $(2,0)$

$$
\frac{\partial}{\partial \mathrm{r}} \mathrm{p}=12.7 \cdot \frac{\mathrm{~Pa}}{\mathrm{~m}} \quad \frac{1}{\mathrm{r}} \cdot \frac{\partial}{\partial \theta} \mathrm{p}=-6.33 \cdot \frac{\mathrm{~Pa}}{\mathrm{~m}}
$$

Given: Circular tube with porous wall; incompressible flow, uniform in x direction.

Find: (a) Algebraic expression for $a p_{x}$ at x.
(b) Pressure gradient at x.
(c) Integrate to obta in p at $x=0$.

Solution: Apply conservation of mass using the CV shown.
Basic equations: $\quad 0=\frac{\partial f}{\partial t} \int_{C v}^{=0(1)} \rho d \forall+\int_{C S} \rho \vec{v} \cdot d \vec{A}$

$$
a_{\rho_{x}}=u \frac{\partial u}{\partial x}+\dot{\psi} \frac{\partial u}{\partial y}+\dot{\psi} \frac{\partial u}{\partial z}+\frac{\partial u}{\partial t} ;-\frac{\partial p}{\partial x}+\rho g_{x}=\rho a \rho_{x}
$$

Assumptions: (1) steady flow
(4) Horizontal; $g_{x}=0$
(2) Incompressible flow
(5) $v \approx 0$ in channel ($w \approx 0$ too)
(3) Uniform flow at each cross-section (6) Inviscid flow

Then

$$
\int \vec{v} \cdot d \vec{A}=\left\{-\left|v_{0} \pi D x\right|\right\}+\left\{+\left|u \frac{\pi D^{2}}{4}\right|\right\}=0 \quad \text { or } u(x)=4 v_{0} \frac{x}{D}
$$

and

$$
a_{p x}=4 v_{0} \frac{x}{D}\left(4 v_{0} \frac{1}{D}\right)=16 v_{0}^{2} \frac{x}{D^{2}}
$$

From the Euler equation,

$$
-\frac{\partial p}{\partial x}=\rho a_{p x} \text { so } \frac{\partial p}{\partial x}=-\rho a_{p_{x}}=-16 \rho v_{0}^{2} \frac{x}{D^{2}} .
$$

Since $v \approx \omega \approx 0$, then $p(x)$ and $d p=\frac{\partial p}{\partial x} d x$. Integrating

$$
\left.\int_{0}^{L} d p=p_{L}-p(0)=\int_{0}^{L}-16 \rho v_{0}^{2} \frac{x}{D^{2}} d x=-\frac{16 \rho v_{0}^{2}}{D^{2}} \frac{x^{2}}{2}\right]_{0}^{L}=-\frac{8 \rho v_{0}^{2} L^{2}}{D^{2}}
$$

Thus, since $p_{L}=$ patron, , the gage pressure at $x=0$ is

$$
p(0)=8 \rho v_{0}^{2}\left(\frac{L}{D}\right)^{2}
$$

6.15 An incompressible liquid with negligible viscosity and density $\rho=850 \mathrm{~kg} / \mathrm{m}^{3}$ flows steadily through a horizontal pipe. The pipe cross-section area linearly varies from $100 \mathrm{~cm}^{2}$ to $25 \mathrm{~cm}^{2}$ over a length of 2 m . Develop an expression for and plot the pressure gradient and pressure versus position along the pipe, if the inlet centerline velocity is $1 \mathrm{~m} / \mathrm{s}$ and inlet pressure is 250 kPa .

Given: Flow in a pipe with variable area

Find: Expression for pressure gradient and pressure; Plot them

Solution:

Assumptions: 1) Incompressible flow 2) Flow profile remains unchanged so centerline velocity can represent average velocity
Basic equations $\quad \mathrm{Q}=\mathrm{V} \cdot \mathrm{A} \quad \vec{a}_{p}=\frac{D \vec{V}}{D t}=\underbrace{u \frac{\partial \vec{V}}{\partial x}+v \frac{\partial \vec{V}}{\partial y}+w \frac{\partial \vec{V}}{\partial z}}+\frac{\partial \vec{V}}{\partial t} \quad \rho \frac{D \vec{V}}{D t}=\rho \vec{g}-\nabla p$

$$
\overbrace{\text { convective }} \quad \text { local }
$$

$$
\begin{array}{lll}
\begin{array}{l}
\text { acceleration } \\
\text { of a particle }
\end{array} & \text { acceleration } & \text { acceleration }
\end{array}
$$

For this 1D flow

$$
\begin{aligned}
& Q=u_{i} \cdot A_{i}=u \cdot A \quad A=A_{i}-\frac{\left(A_{i}-A_{e}\right)}{L} \cdot x \quad \text { so } \quad u(x)=u_{i} \cdot \frac{A_{i}}{A}=u_{i} \cdot \frac{A_{i}}{A_{i}-\left[\frac{\left(A_{i}-A_{e}\right)}{L} \cdot x\right]} \\
& a_{x}=u \cdot \frac{\partial}{\partial x} u+v \cdot \frac{\partial}{\partial y} u=u_{i} \cdot \frac{A_{i}}{A_{i}-\left[\frac{\left(A_{i}-A_{e}\right)}{L} \cdot x\right]} \cdot \frac{\partial}{\partial x}\left[u_{i} \cdot \frac{A_{i}}{A_{i}-\left[\frac{\left(A_{i}-A_{e}\right)}{L} \cdot x\right]}\right]=\frac{A_{i}^{2} \cdot L^{2} \cdot u_{i}^{2} \cdot\left(A_{e}-A_{i}\right)}{\left(A_{i} \cdot L+A_{e} \cdot x-A_{i} \cdot x\right)^{3}}
\end{aligned}
$$

For this 1D flow $\quad \mathrm{Q}=\mathrm{u}_{\mathrm{i}} \cdot \mathrm{A}_{\mathrm{i}}=\mathrm{u} \cdot \mathrm{A}$

For the pressure

$$
\frac{\partial}{\partial x} p=-\rho \cdot a_{x}-\rho \cdot g_{x}=-\frac{\rho \cdot A_{i}^{2} \cdot L^{2} \cdot u_{i}^{2} \cdot\left(A_{e}-A_{i}\right)}{\left(A_{i} \cdot L+A_{e} \cdot x-A_{i} \cdot x\right)^{3}}
$$

and

$$
\mathrm{dp}=\frac{\partial}{\partial \mathrm{x}} \mathrm{p} \cdot \mathrm{dx} \quad \mathrm{p}-\mathrm{p}_{\mathrm{i}}=\int_{0}^{\mathrm{x}} \frac{\partial}{\partial \mathrm{x}} \mathrm{pdx}=\int_{0}^{\mathrm{x}}-\frac{\rho \cdot \mathrm{A}_{\mathrm{i}}^{2} \cdot \mathrm{~L}^{2} \cdot \mathrm{u}_{\mathrm{i}}^{2} \cdot\left(\mathrm{~A}_{\mathrm{e}}-\mathrm{A}_{\mathrm{i}}\right)}{\left(\mathrm{A}_{\mathrm{i}} \cdot \mathrm{~L}+\mathrm{A}_{\mathrm{e}} \cdot \mathrm{x}-\mathrm{A}_{\mathrm{i}} \cdot \mathrm{x}\right)^{3}} d x
$$

This is a tricky integral, so instead consider the following: $\quad \frac{\partial}{\partial x} p=-\rho \cdot a_{x}=-\rho \cdot u \cdot \frac{\partial}{\partial x} u=-\frac{1}{2} \cdot \rho \cdot \frac{\partial}{\partial x}\left(u^{2}\right)$

Hence

$$
\begin{aligned}
& \mathrm{p}-\mathrm{p}_{\mathrm{i}}=\int_{0}^{\mathrm{x}} \frac{\partial}{\partial \mathrm{x}} \mathrm{pdx}=-\frac{\rho}{2} \cdot \int_{0}^{\mathrm{x}} \frac{\partial}{\partial \mathrm{x}}\left(\mathrm{u}^{2}\right) \mathrm{dx}=\frac{\rho}{2} \cdot\left(\mathrm{u}(\mathrm{x}=0)^{2}-\mathrm{u}(\mathrm{x})^{2}\right) \\
& \mathrm{p}(\mathrm{x})=\mathrm{p}_{\mathrm{i}}+\frac{\rho}{2} \cdot\left(\mathrm{u}_{\mathrm{i}}^{2}-\mathrm{u}(\mathrm{x})^{2}\right) \quad \text { which we recognise as the Bernoulli equation! } \\
& \mathrm{p}(\mathrm{x})=\mathrm{p}_{\mathrm{i}}+\frac{\rho \cdot \mathrm{u}_{\mathrm{i}}^{2}}{2} \cdot\left[1-\left[\frac{\mathrm{A}_{\mathrm{i}}}{\mathrm{~A}_{\mathrm{i}}-\left[\frac{\left(\mathrm{A}_{\mathrm{i}}-\mathrm{A}_{\mathrm{e}}\right)}{L} \cdot \mathrm{x}\right]}\right]^{2}\right]
\end{aligned}
$$

The following plots can be done in Excel

Problem 6.16

6.16 An incompressible liquid with negligible viscosity and density $\rho=750 \mathrm{~kg} / \mathrm{m}^{3}$ flows steadily through a $10-\mathrm{m}$-long convergentdivergent section of pipe for which the area varies as

$$
A(x)=A_{0}\left(1+e^{-x / a}-e^{-x / 2 a}\right)
$$

where $A_{0}=0.1 \mathrm{~m}^{2}$ and $a=1 \mathrm{~m}$. Develop an expression for and plot the pressure gradient and pressure versus position along the pipe, if the inlet centerline velocity is $1 \mathrm{~m} / \mathrm{s}$ and inlet pressure is 200 kPa .

Given: Flow in a pipe with variable area
Find: Expression for pressure gradient and pressure; Plot them

Solution:

Assumptions: 1) Incompressible flow 2) Flow profile remains unchanged so centerline velocity can represent average velocity

For this 1D flow

$$
Q=u_{0} \cdot A_{0}=u \cdot A \quad A(x)=A_{0} \cdot\left(1+e^{-\bar{a}}-e^{-\overline{2 \cdot a}}\right)
$$

so

$$
u(x)=u_{0} \cdot \frac{A_{0}}{A}=\frac{u_{0}}{\left(1+e^{-\frac{x}{a}}-e^{-\frac{x}{2 \cdot a}}\right)}
$$

$$
a_{x}=u \cdot \frac{\partial}{\partial x} u+v \cdot \frac{\partial}{\partial y} u=\frac{u_{0}}{\left(1+e^{-\frac{x}{a}}-e^{-\frac{x}{2 \cdot a}}\right)} \cdot \frac{\partial}{\partial x}\left[\frac{u_{0}}{\left(1+e^{-\frac{x}{a}}-e^{-\frac{x}{2 \cdot a}}\right)}\right]=\frac{u_{0}^{2} \cdot e^{-\frac{x}{2 \cdot a}} \cdot\left(2 \cdot e^{-\frac{x}{2 \cdot a}}-1\right)}{2 \cdot a \cdot\left(e^{-\frac{x}{a}}-e^{-\frac{x}{2 \cdot a}}+1\right)^{3}}
$$

For the pressure

$$
\left.\frac{\partial}{\partial x} p=-\rho \cdot a_{x}-\rho \cdot g_{x}=-\frac{\rho \cdot u_{0}{ }^{2} \cdot e^{-\frac{x}{2 \cdot a}} \cdot\left(2 \cdot e^{-\frac{x}{2 \cdot a}}-1\right)}{2 \cdot a \cdot\left(e^{-\frac{x}{a}}-e^{-\frac{x}{2 \cdot a}}+1\right.}\right)^{3}
$$

and

$$
\left.d p=\frac{\partial}{\partial x} p \cdot d x \quad \int_{0}-p_{i}=\int_{0}^{x} \frac{\partial}{\partial x} p d x=\int_{0}^{x} \frac{\rho \cdot u_{0}^{2} \cdot e^{-\frac{x}{2 \cdot a}} \cdot\left(2 \cdot e^{-\frac{x}{2 \cdot a}}-1\right)}{2 \cdot a \cdot\left(e^{-\frac{x}{a}}-e^{-\frac{x}{2 \cdot a}}+1\right.}\right)^{3} d x
$$

This is a tricky integral, so instead consider the following: $\quad \frac{\partial}{\partial x} p=-\rho \cdot a_{x}=-\rho \cdot u \cdot \frac{\partial}{\partial x} u=-\frac{1}{2} \cdot \rho \cdot \frac{\partial}{\partial x}\left(u^{2}\right)$

Hence

$$
\begin{aligned}
& \mathrm{p}-\mathrm{p}_{\mathrm{i}}=\int_{0}^{\mathrm{x}} \frac{\partial}{\partial \mathrm{x}} \mathrm{pdx}=-\frac{\rho}{2} \cdot \int_{0}^{\mathrm{x}} \frac{\partial}{\partial \mathrm{x}}\left(\mathrm{u}^{2}\right) \mathrm{dx}=\frac{\rho}{2} \cdot\left(\mathrm{u}(\mathrm{x}=0)^{2}-\mathrm{u}(\mathrm{x})^{2}\right) \\
& \mathrm{p}(\mathrm{x})=\mathrm{p}_{0}+\frac{\rho}{2} \cdot\left(\mathrm{u}_{0}^{2}-\mathrm{u}(\mathrm{x})^{2}\right) \quad \text { which we recognise as the Bernoulli equation! } \\
& \mathrm{p}(\mathrm{x})=\mathrm{p}_{0}+\frac{\rho \cdot \mathrm{u}_{0}}{2} \cdot\left[1-\left[\frac{1}{\left(\mathrm{~m}^{-\frac{\mathrm{x}}{\mathrm{a}}}-\mathrm{e}^{-\frac{\mathrm{x}}{2 \cdot a}}\right)}\right]^{2}\right]
\end{aligned}
$$

The following plots can be done in Excel

6.17 A nozzle for an incompressible, inviscid fluid of density $\rho=$ $1000 \mathrm{~kg} / \mathrm{m}^{3}$ consists of a converging section of pipe. At the inlet the diameter is $D_{i}=100 \mathrm{~mm}$, and at the outlet the diameter is $D_{o}=$ 20 mm . The nozzle length is $L=500 \mathrm{~mm}$, and the diameter decreases linearly with distance x along the nozzle. Derive and plot the acceleration of a fluid particle, assuming uniform flow at each section, if the speed at the inlet is $V_{i}=1 \mathrm{~m} / \mathrm{s}$. Plot the pressure gradient through the nozzle, and find its maximum absolute value. If the pressure gradient must be no greater than $5 \mathrm{MPa} / \mathrm{m}$ in absolute value, how long would the nozzle have to be?

Given: Nozzle geometry

Find: Acceleration of fluid particle; Plot; Plot pressure gradient; find L such that pressure gradient $<5 \mathrm{MPa} / \mathrm{m}$ in absolute value

Solution:

The given data is $\quad \mathrm{D}_{\mathrm{i}}=0.1 \cdot \mathrm{~m} \quad \mathrm{D}_{\mathrm{o}}=0.02 \cdot \mathrm{~m} \quad \mathrm{~L}=0.5 \cdot \mathrm{~m} \quad \mathrm{~V}_{\mathrm{i}}=1 \cdot \frac{\mathrm{~m}}{\mathrm{~s}} \quad \rho=1000 \cdot \frac{\mathrm{~kg}}{\mathrm{~m}^{3}}$
For a linear decrease in diameter

$$
\mathrm{D}(\mathrm{x})=\mathrm{D}_{\mathrm{i}}+\frac{\mathrm{D}_{\mathrm{o}}-\mathrm{D}_{\mathrm{i}}}{\mathrm{~L}} \cdot \mathrm{x}
$$

From continuity

$$
\mathrm{Q}=\mathrm{V} \cdot \mathrm{~A}=\mathrm{V} \cdot \frac{\pi}{4} \cdot \mathrm{D}^{2}=\mathrm{V}_{\mathrm{i}} \cdot \frac{\pi}{4} \cdot \mathrm{D}_{\mathrm{i}}^{2} \quad \mathrm{Q}=0.00785 \frac{\mathrm{~m}^{3}}{\mathrm{~s}}
$$

Hence

$$
\mathrm{V}(\mathrm{x}) \cdot \frac{\pi}{4} \cdot \mathrm{D}(\mathrm{x})^{2}=\mathrm{Q}
$$

$$
\mathrm{V}(\mathrm{x})=\frac{4 \cdot \mathrm{Q}}{\pi \cdot\left(\mathrm{D}_{\mathrm{i}}+\frac{\mathrm{D}_{\mathrm{o}}-\mathrm{D}_{\mathrm{i}}}{\mathrm{~L}} \cdot \mathrm{x}\right)^{2}}
$$

or

$$
\mathrm{V}(\mathrm{x})=\frac{\mathrm{V}_{\mathrm{i}}}{\left(1+\frac{\mathrm{D}_{\mathrm{o}}-\mathrm{D}_{\mathrm{i}}}{\mathrm{~L} \cdot \mathrm{D}_{\mathrm{i}}} \cdot \mathrm{x}\right)^{2}}
$$

The governing equation for this flow is

$$
\begin{equation*}
\rho\left(\frac{\partial u}{\partial t}+u \frac{\partial u}{\partial x}+v \frac{\partial u}{\partial y}+w \frac{\partial u}{\partial z}\right)=\rho g_{x}-\frac{\partial p}{\partial x} \tag{6.2a}
\end{equation*}
$$

or, for steady 1D flow, in the notation of the problem

$$
a_{x}=V \cdot \frac{d}{d x} V=\frac{V_{i}}{\left(1+\frac{D_{0}-D_{i}}{L \cdot D_{i}} \cdot x\right)^{2}} \cdot \frac{d}{d x} \frac{V_{i}}{\left(1+\frac{D_{0}-D_{i}}{L \cdot D_{i}} \cdot x\right)^{2}} \quad a_{x}(x)=-\frac{2 \cdot V_{i}^{2} \cdot\left(D_{0}-D_{i}\right)}{D_{i} \cdot L \cdot\left[1+\frac{\left(D_{0}-D_{i}\right)}{D_{i} \cdot L} \cdot x\right]^{5}}
$$

This is plotted in the associated Excel workbook
From Eq. 6.2a, pressure gradient is

$$
\frac{\partial}{\partial \mathrm{x}} \mathrm{p}=-\rho \cdot \mathrm{a}_{\mathrm{x}}
$$

$$
\frac{\partial}{\partial \mathrm{x}} \mathrm{p}=\frac{2 \cdot \rho \cdot \mathrm{~V}_{\mathrm{i}}^{2} \cdot\left(\mathrm{D}_{\mathrm{o}}-\mathrm{D}_{\mathrm{i}}\right)}{\mathrm{D}_{\mathrm{i}} \cdot \mathrm{~L} \cdot\left[1+\frac{\left(\mathrm{D}_{\mathrm{O}}-\mathrm{D}_{\mathrm{i}}\right)}{\mathrm{D}_{\mathrm{i}} \cdot \mathrm{~L}} \cdot \mathrm{x}\right]^{5}}
$$

This is also plotted in the associated Excel workbook. Note that the pressure gradient is always negative: separation is unlikely to occur in the nozzle

At the inlet

$$
\frac{\partial}{\partial \mathrm{x}} \mathrm{p}=-3.2 \cdot \frac{\mathrm{kPa}}{\mathrm{~m}}
$$

At the exit

$$
\frac{\partial}{\partial \mathrm{x}} \mathrm{p}=-10 \cdot \frac{\mathrm{MPa}}{\mathrm{~m}}
$$

To find the length L for which the absolute pressure gradient is no more than $5 \mathrm{MPa} / \mathrm{m}$, we need to solve

$$
\left|\frac{\partial}{\partial x} p\right| \leq 5 \cdot \frac{M P a}{m}=\frac{2 \cdot \rho \cdot V_{i}^{2} \cdot\left(D_{o}-D_{i}\right)}{D_{i} \cdot L \cdot\left[1+\frac{\left(D_{o}-D_{i}\right)}{D_{i} \cdot L} \cdot x\right]^{5}}
$$

with $x=L \mathrm{~m}$ (the largest pressure gradient is at the outlet)

Hence

$$
L \geq \frac{2 \cdot \rho \cdot V_{i}^{2} \cdot\left(D_{o}-D_{i}\right)}{D_{i} \cdot\left(\frac{D_{0}}{D_{i}}\right)^{5} \cdot\left|\frac{\partial}{\partial x} p\right|}
$$

$\mathrm{L} \geq 1 \cdot \mathrm{~m}$

This result is also obtained using Goal Seek in the Excel workbook
6.17 A nozzle for an incompressible, inviscid fluid of density $\rho=$ $1000 \mathrm{~kg} / \mathrm{m}^{3}$ consists of a converging section of pipe. At the inlet the diameter is $D_{i}=100 \mathrm{~mm}$, and at the outlet the diameter is $D_{o}=$ 20 mm . The nozzle length is $L=500 \mathrm{~mm}$, and the diameter decreases linearly with distance x along the nozzle. Derive and plot the acceleration of a fluid particle, assuming uniform flow at each section, if the speed at the inlet is $V_{i}=1 \mathrm{~m} / \mathrm{s}$. Plot the pressure gradient through the nozzle, and find its maximum absolute value. If the pressure gradient must be no greater than $5 \mathrm{MPa} / \mathrm{m}$ in absolute value, how long would the nozzle have to be?

Given: Nozzle geometry

Find: \quad Acceleration of fluid particle; Plot; Plot pressure gradient; find L such that pressure gradient $<5 \mathrm{MPa} / \mathrm{m}$ in Solution:

absolute value

The acceleration and pressure gradient are given $b_{j} a_{x}(x)=-\frac{2 \cdot V_{i}{ }^{2} \cdot\left(D_{o}-D_{i}\right)}{\left[D_{0}-D_{i}\right]^{5}}$

$$
\begin{array}{rll}
D_{i} & =0.1 & \mathrm{~m} \\
D_{o} & =0.02 & \mathrm{~m} \\
L & =0.5 & \mathrm{~m} \\
V_{i} & =1 & \mathrm{~m} / \mathrm{s} \\
\rho & =1000 & \mathrm{~kg} / \mathrm{m}^{3}
\end{array}
$$

For the length L required for the pressure gradient to be less than $5 \mathrm{MPa} / \mathrm{m}$ (abs) use Goal Seek

$$
L=\quad 1.00 \quad \mathrm{~m}
$$

$\boldsymbol{x}(\mathbf{m})$	$\boldsymbol{d p} / \boldsymbol{d} \boldsymbol{x} \mathbf{(k P a} / \mathbf{m})$
1.00	-5000

$\boldsymbol{x}(\mathbf{m})$	$\boldsymbol{a}\left(\mathbf{m} / \mathbf{s}^{\mathbf{2}}\right)$	$\boldsymbol{d p} / \boldsymbol{d} \boldsymbol{x}(\mathbf{k P a} / \mathbf{m})$
0.000	3.20	-3.20
0.050	4.86	-4.86
0.100	7.65	-7.65
0.150	12.6	-12.6
0.200	22.0	-22.0
0.250	41.2	-41.2
0.300	84.2	-84.2
0.350	194	-194
0.400	529	-529
0.420	843	-843
0.440	1408	-1408
0.460	2495	-2495
0.470	3411	-3411
0.480	4761	-4761
0.490	6806	-6806
0.500	10000	-10000

6.18 A diffuser for an incompressible, inviscid fluid of density $\rho=1000 \mathrm{~kg} / \mathrm{m}^{3}$ consists of a diverging section of pipe. At the inlet the diameter is $D_{i}=0.25 \mathrm{~m}$, and at the outlet the diameter is $D_{o}=0.75 \mathrm{~m}$. The diffuser length is $L=1 \mathrm{~m}$, and the diameter increases linearly with distance x along the diffuser. Derive and plot the acceleration of a fluid particle, assuming uniform flow at each section, if the speed at the inlet is $V_{i}=5 \mathrm{~m} / \mathrm{s}$. Plot the pressure gradient through the diffuser, and find its maximum value. If the pressure gradient must be no greater than $25 \mathrm{kPa} / \mathrm{m}$, how long would the diffuser have to be?

Given: Diffuser geometry

Find: Acceleration of a fluid particle; plot it; plot pressure gradient; find L such that pressure gradient is less than $25 \mathrm{kPa} / \mathrm{m}$

Solution:

The given data is $\quad \mathrm{D}_{\mathrm{i}}=0.25 \cdot \mathrm{~m} \quad \mathrm{D}_{\mathrm{o}}=0.75 \cdot \mathrm{~m} \quad \mathrm{~L}=1 \cdot \mathrm{~m} \quad \mathrm{~V}_{\mathrm{i}}=5 \cdot \frac{\mathrm{~m}}{\mathrm{~s}} \quad \rho=1000 \cdot \frac{\mathrm{~kg}}{\mathrm{~m}^{3}}$
For a linear increase in diameter

$$
\mathrm{D}(\mathrm{x})=\mathrm{D}_{\mathrm{i}}+\frac{\mathrm{D}_{\mathrm{o}}-\mathrm{D}_{\mathrm{i}}}{\mathrm{~L}} \cdot \mathrm{x}
$$

From continuity

$$
\mathrm{Q}=\mathrm{V} \cdot \mathrm{~A}=\mathrm{V} \cdot \frac{\pi}{4} \cdot \mathrm{D}^{2}=\mathrm{V}_{\mathrm{i}} \cdot \frac{\pi}{4} \cdot \mathrm{D}_{\mathrm{i}}^{2} \quad \mathrm{Q}=0.245 \frac{\mathrm{~m}^{3}}{\mathrm{~s}}
$$

Hence

$$
\mathrm{V}(\mathrm{x}) \cdot \frac{\pi}{4} \cdot \mathrm{D}(\mathrm{x})^{2}=\mathrm{Q} \quad \mathrm{~V}(\mathrm{x})=\frac{4 \cdot \mathrm{Q}}{\pi \cdot\left(\mathrm{D}_{\mathrm{i}}+\frac{\mathrm{D}_{\mathrm{O}}-\mathrm{D}_{\mathrm{i}}}{\mathrm{~L}} \cdot \mathrm{x}\right)^{2}} \quad \text { or } \quad \mathrm{V}(\mathrm{x})=\frac{\mathrm{V}_{\mathrm{i}}}{\left(1+\frac{\mathrm{D}_{\mathrm{o}}-\mathrm{D}_{\mathrm{i}}}{\mathrm{~L} \cdot \mathrm{D}_{\mathrm{i}}} \cdot \mathrm{x}\right)^{2}}
$$

The governing equation for this flow is

$$
\begin{equation*}
\rho\left(\frac{\partial u}{\partial t}+u \frac{\partial u}{\partial x}+v \frac{\partial u}{\partial y}+w \frac{\partial u}{\partial z}\right)=\rho g_{x}-\frac{\partial p}{\partial x} \tag{6.2a}
\end{equation*}
$$

or, for steady 1D flow, in the notation of the problem $a_{x}=V \cdot \frac{d}{d x} V=\frac{V_{i}}{\left(1+\frac{D_{0}-D_{i}}{L \cdot D_{i}} \cdot x\right)^{2}} \cdot \frac{d}{d x} \frac{V_{i}}{\left(1+\frac{D_{0}-D_{i}}{L \cdot D_{i}} \cdot x\right)^{2}}$

Hence

$$
\mathrm{a}_{\mathrm{X}}(\mathrm{x})=-\frac{2 \cdot \mathrm{~V}_{\mathrm{i}}^{2} \cdot\left(\mathrm{D}_{\mathrm{o}}-\mathrm{D}_{\mathrm{i}}\right)}{\mathrm{D}_{\mathrm{i}} \cdot \mathrm{~L} \cdot\left[1+\frac{\left(\mathrm{D}_{\mathrm{o}}-\mathrm{D}_{\mathrm{i}}\right)}{\mathrm{D}_{\mathrm{i}} \cdot \mathrm{~L}} \cdot \mathrm{x}\right]^{5}}
$$

This is plotted in the associated Excel workbook
From Eq. 6.2a, pressure gradient is

$$
\frac{\partial}{\partial \mathrm{x}} \mathrm{p}=-\rho \cdot \mathrm{a}_{\mathrm{X}} \quad \frac{\partial}{\partial \mathrm{x}} \mathrm{p}=\frac{2 \cdot \rho \cdot \mathrm{~V}_{\mathrm{i}}^{2} \cdot\left(\mathrm{D}_{\mathrm{o}}-\mathrm{D}_{\mathrm{i}}\right)}{\mathrm{D}_{\mathrm{i}} \cdot \mathrm{~L} \cdot\left[1+\frac{\left(\mathrm{D}_{\mathrm{O}}-\mathrm{D}_{\mathrm{i}}\right)}{\mathrm{D}_{\mathrm{i}} \cdot \mathrm{~L}} \cdot \mathrm{x}\right]^{5}}
$$

This is also plotted in the associated Excel workbook. Note that the pressure gradient is adverse: separation is likely to occur in the diffuser, and occur near the entrance

At the inlet

$$
\frac{\partial}{\partial \mathrm{x}} \mathrm{p}=100 \cdot \frac{\mathrm{kPa}}{\mathrm{~m}}
$$

$$
\text { At the exit } \quad \frac{\partial}{\partial \mathrm{x}} \mathrm{p}=412 \cdot \frac{\mathrm{~Pa}}{\mathrm{~m}}
$$

To find the length L for which the pressure gradient is no more than $25 \mathrm{kPa} / \mathrm{m}$, we need to solve

$$
\frac{\partial}{\partial \mathrm{x}} \mathrm{p} \leq 25 \cdot \frac{\mathrm{kPa}}{\mathrm{~m}}=\frac{2 \cdot \rho \cdot \mathrm{~V}_{\mathrm{i}}^{2} \cdot\left(\mathrm{D}_{\mathrm{o}}-\mathrm{D}_{\mathrm{i}}\right)}{\mathrm{D}_{\mathrm{i}} \cdot \mathrm{~L} \cdot\left[1+\frac{\left(\mathrm{D}_{\mathrm{o}}-\mathrm{D}_{\mathrm{i}}\right)}{\mathrm{D}_{\mathrm{i}} \cdot \mathrm{~L}} \cdot \mathrm{x}\right]^{5}}
$$

with $x=0 \mathrm{~m}$ (the largest pressure gradient is at the inlet)
Hence

$$
\mathrm{L} \geq \frac{2 \cdot \rho \cdot \mathrm{~V}_{\mathrm{i}}^{2} \cdot\left(\mathrm{D}_{\mathrm{o}}-\mathrm{D}_{\mathrm{i}}\right)}{\mathrm{D}_{\mathrm{i}} \cdot \frac{\partial}{\partial \mathrm{x}} \mathrm{p}}
$$

$\mathrm{L} \geq 4 \cdot \mathrm{~m}$

This result is also obtained using Goal Seek in the Excel workbook
6.18 A diffuser for an incompressible, inviscid fluid of density $\rho=1000 \mathrm{~kg} / \mathrm{m}^{3}$ consists of a diverging section of pipe. At the inlet the diameter is $D_{i}=0.25 \mathrm{~m}$, and at the outlet the diameter is $D_{o}=0.75 \mathrm{~m}$. The diffuser length is $L=1 \mathrm{~m}$, and the diameter increases linearly with distance x along the diffuser. Derive and plot the acceleration of a fluid particle, assuming uniform flow at each section, if the speed at the inlet is $V_{i}=5 \mathrm{~m} / \mathrm{s}$. Plot the pressure gradient through the diffuser, and find its maximum value. If the pressure gradient must be no greater than $25 \mathrm{kPa} / \mathrm{m}$, how long would the diffuser have to be?

Given: Diffuser geometry

Find: \quad Acceleration of a fluid particle; plot it; plot pressure gradient; find L such that pressure gradient is less than $25 \mathrm{kPa} / \mathrm{m}$

Solution:

The acceleration and pressure gradient are given by

D_{i}	$=0.25$	m
D_{o}	$=0.75$	m
L	$=1$	m
V_{i}	$=5$	$\mathrm{~m} / \mathrm{s}$
ρ	$=1000$	$\mathrm{~kg} / \mathrm{m}^{3}$

$\boldsymbol{x}(\mathbf{m})$	$\boldsymbol{a}\left(\mathbf{m} / \mathbf{s}^{\mathbf{2}}\right)$	$\boldsymbol{d p} / \boldsymbol{d} \boldsymbol{x}(\mathbf{k P a} / \mathbf{m})$
0.00	-100	100
0.05	-62.1	62.1
0.10	-40.2	40.2
0.15	-26.9	26.93
0.20	-18.59	18.59
0.25	-13.17	13.17
0.30	-9.54	9.54
0.40	-5.29	5.29
0.50	-3.125	3.125
0.60	-1.940	1.940
0.70	-1.256	1.256
0.80	-0.842	0.842
0.90	-0.581	0.581
1.00	-0.412	0.412

$$
\begin{aligned}
& \mathrm{a}_{\mathrm{x}}(\mathrm{x})=\frac{2 \cdot \mathrm{~V}_{\mathrm{i}}^{2} \cdot\left(\mathrm{D}_{\mathrm{o}}-\mathrm{D}_{\mathrm{i}}\right)}{\mathrm{D}_{\mathrm{i}} \cdot \mathrm{~L} \cdot\left[1+\frac{\left(\mathrm{D}_{\mathrm{o}}-\mathrm{D}_{\mathrm{i}}\right)}{\mathrm{D}_{\mathrm{i}} \cdot \mathrm{~L}} \cdot \mathrm{x}\right]^{5}} \\
& \frac{\partial}{\partial \mathrm{x}} \mathrm{p}=\frac{2 \cdot \rho \cdot \mathrm{~V}_{\mathrm{i}}^{2} \cdot\left(\mathrm{D}_{\mathrm{o}}-\mathrm{D}_{\mathrm{i}}\right)}{D_{i} \cdot \mathrm{~L} \cdot\left[1+\frac{\left(\mathrm{D}_{\mathrm{o}}-D_{i}\right)}{D_{i} \cdot L} \cdot x\right]^{5}}
\end{aligned}
$$

For the length L required for the pressure gradient to be less than $25 \mathrm{kPa} / \mathrm{m}$ use Goal Seek

$$
L=\quad 4.00 \quad \mathrm{~m}
$$

$\boldsymbol{x}(\mathbf{m})$	$\boldsymbol{d p} / \mathbf{d} \boldsymbol{x}(\mathbf{k P a} / \mathbf{m})$
0.0	25.0

Problem 6.19
Given: Steady, incompressible flow of air between' parallel discs as shown $\vec{V}=V \frac{R}{r} \hat{e}_{r} \quad$ for $r_{i} \leqslant r \leqslant R$ where $\begin{aligned} & V=15 \mathrm{mls} \\ & R=75 \mathrm{~mm}\end{aligned} \quad r_{i}=R l_{2}$
Find: magnitude and direction of the net pressure force that acts on the upper plate between r_{i} and h.

Solution:
Basic equations: $\overrightarrow{p g}-\nabla p=p \frac{\vec{V}}{D \tau} \quad \vec{F}=-\int \varphi \overrightarrow{d A}$
Assumptions: (1) incompressible flow
(2) Steady flow
(3) frictionless flow
(4) wiform flow at each section.

To determine the pressure distribution $p(r)$, apply Eulers equation in the r direction

$$
\begin{aligned}
& -\frac{\partial P}{\partial r}+P \sigma_{r}=p a_{r}=p t_{r} \frac{\partial N_{r}}{\partial r} \\
& \frac{\partial \rho}{\partial r}=-p+\frac{\partial k}{\partial r}=-p \vee \frac{R}{r} \frac{\partial}{\partial r}\left(\frac{R}{r}\right)=p v \frac{R}{r} V \frac{V}{r^{2}} \\
& \frac{d p}{d r}=p d^{2} \frac{R^{2}}{r^{3}} \\
& d p=p v^{2} \frac{R^{2}}{r^{3}} d r
\end{aligned}
$$

Integrating we otstoin

$$
\int_{p-p_{a t n}}^{\text {Legrating we motown }}=\int_{\operatorname{Ran}}^{p} d p=p \lambda^{2} R^{2} \int_{R}^{r} r^{-3} d r=p^{2} R^{2}\left[-\frac{1}{2 r^{2}}\right]_{R}^{r}=\frac{1}{2} \rho^{2} R^{2}\left[\frac{1}{R^{2}}-\frac{1}{r^{2}}\right]
$$

Then

$$
\begin{aligned}
& F_{z}=\left(\left(p-p_{a}\right) d A=\int_{R / 2}^{R} \frac{1}{2} p^{\nu^{2}} R^{2}\left[\frac{1}{R^{2}}-\frac{1}{r^{2}}\right] 2 \pi r d r=p V^{2} R^{2} \pi\left[\frac{r^{2}}{2 R^{2}}-\ln r\right]_{R l_{2}}^{R}\right. \\
& =p N^{2} R^{2} \pi\left[\frac{1}{2 R^{2}}\left(R^{2}-\frac{R^{2}}{n}\right)-\ln \frac{R}{R / 2}\right]=p \lambda^{2} R^{2} \pi[0.375-\ln 2]=-0.318 \pi p 1^{2} R^{2} \\
& =-0.318 \pi \times 1.23 \frac{\mathrm{lg}}{\mathrm{~m}^{2}} \times(15)^{2} \frac{\mathrm{~m}^{2}}{\mathrm{~s}^{2}} \times(0.075)^{2} \mathrm{~m}^{2} \times \frac{\mathrm{N} . \mathrm{s}^{2}}{\mathrm{~kg} \cdot \mathrm{~m}} \\
& F_{z}=-1.56 N \text {, (} F_{z}<0 \text {, so force acts down) }
\end{aligned}
$$

Given: Air flows into the narrow gap between dosely spaced parallel plates trough a porous surface as shown. Re uniform velocity in the x direction is $u=v_{0} \times 1 h_{3}$. Assume the flow if incompressible with $p=1.23 \mathrm{ggln}^{3}$ and Pat friction is negligible.

$$
v_{0}=15 \mathrm{nnls}, L=22 \mathrm{~mm}, h=1.2 \mathrm{~nm}
$$

Find: (a) the pressure gradient at the point (h h)
(b) an equation for the flow streamlines in the cavity

Solution:
Eulers equation, $\overrightarrow{p g}-\nabla p=p \stackrel{\rightharpoonup}{N}$ pressure gradient for incompressible frictionless How.
we meed first to determine the veloaty field. Will $u=v_{0}{ }^{2} / h$, for 2.9, incompressible flow we can use the contrinuty equation to determine v.

Since $\frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}=0$, then $\frac{\partial v}{\partial y}=-\frac{\partial u}{\partial x}=-\frac{\partial}{\partial x}\left(\frac{v_{0} x}{h}\right)=-\frac{v_{0}}{h}$
Then

$$
v=\left(\frac{\partial v}{\partial y} d y+f(x)=-\frac{v_{0}}{\hbar} y+f(x)\right.
$$

But $v=v_{0}$ at $y=0$ and hence $f(x)=v_{0}$ and $v=v_{0}\left(1-\frac{y}{h}\right)$
Then

$$
\begin{aligned}
& \nabla p=p \vec{g}-p \frac{\vec{v}}{\vec{D}}=p\left[\vec{g}-u \frac{\vec{\partial}}{\partial x}-v \frac{\overrightarrow{2} t}{2 y}\right]=p\left[-g j-\frac{v_{0} x}{h}\left(\frac{v_{0}}{h} i\right)-v_{0}\left(1-\frac{y}{h}\right)\left(-\frac{v_{0} r}{h} d\right)\right. \\
& \nabla-p=p\left[-g g^{2}-\frac{v_{0}^{2} x}{h^{2}} i-\frac{v_{0}^{2}}{h}\left(1-\frac{y}{h}\right) \vec{j}\right]
\end{aligned}
$$

At the pout $(z, y)=(1, h)$

$$
\begin{aligned}
\nabla p & =p\left[-\frac{v_{0}^{2} l}{h^{2}} i-g j\right] \\
& =1.23 \frac{\mathrm{~kg}}{\mathrm{~m}^{3}}\left[-(15)^{2} \frac{\pi}{s^{2}} \times 0.022 m \times \frac{1}{(1.2)^{2}=2^{2}} i-9.81 \frac{\mathrm{~m}}{5^{2}} \hat{j}\right] \cdot \frac{\mathrm{N} . \mathrm{s}^{2}}{\mathrm{~g} \cdot \mathrm{~m}}
\end{aligned}
$$

$$
\begin{equation*}
\nabla p]_{L i h}=-4.23 i-12.1 j \tag{slm}
\end{equation*}
$$

(b) The slope of the streamlines is given by $\frac{d y}{d t}=\frac{v}{u}$
$\therefore \frac{d y}{d x}=\frac{v_{0}(1-y / h)}{\frac{v_{0} x}{h}}$ and separating variables, we can write $\frac{d\left(\frac{y}{h}\right)}{(1-y / h)}=\frac{a\left(\frac{h}{h}\right)}{\text { th }}$. Then nitegrating ur dotain

$$
-\ln (1-y / h)=\ln \frac{x}{h}-\ln c
$$

or

$$
\frac{x}{h}\left(1-\frac{y}{h}\right)=\text { constant. }
$$

Given: Upper plane surface, moving dournuard at constant speed V causes incompressible liquid laver to be squeezed between surfaces as shown. lepta w in z direction and $w>\rightarrow$.

Find: (a) Show that $u=V_{x}$ lb within the gap $\left(b=b_{0}-v t\right)$ (b) emersion for a_{n}
(c) $a+l a x$

(d) $p(x)$
(e) net pressure force on upper surface

Solution:
Basic equations: $\quad 0=\frac{\partial}{\partial \tau} \int_{\omega} p d t+C_{c s} \vec{p}^{v} \cdot \overrightarrow{d A}$

$$
-\nabla-p+\overrightarrow{p g}=\rho \frac{\overrightarrow{y y}}{\vec{\pi}} \quad \vec{F}=-\int \rho \overrightarrow{d A}
$$

(a) For the deformable ct shown

$$
0=\frac{\partial}{2 t} \int_{0}^{y} p w x d y+p u w y=p w \cdot x \frac{d y}{d t}+p u w l y
$$

But $d y l_{d t}=-N$ and hence $u=\frac{\sqrt{x}}{y}$
If $y=b_{0}$ at $t=0$, then $y=b=b_{0}-V t$ at anytime t

$$
\begin{aligned}
& \therefore u=\frac{v x}{b} \\
& =u \frac{\partial u}{\partial x}+v \frac{\partial y}{\partial y}+u y^{2} \frac{z u}{\partial z}+\frac{\partial u}{\partial \tau}
\end{aligned}
$$

Assumptions: (i) $u \neq u(y), ~ w=0$

$$
a x=\frac{V x}{b}\left(\frac{V}{b}\right)+\frac{\partial u}{\partial b} \frac{\partial b}{\partial t}=\frac{V^{2} x}{b^{2}}+\left(-\frac{V x}{b^{2}}\right)(-\sqrt{2})=\frac{2 V^{2} x}{b^{2}}+a_{x}
$$

(c) From Euler's equation in the x direction with $g=0$

$$
\frac{\partial \rho}{\partial x}=-p a_{x}=-\frac{p y^{2} x}{b^{2}}
$$

(d) P - $\left.P_{a t_{\text {m }}}=\int^{x} \frac{\partial P}{\partial x} d x=\int_{1}^{-2}-\frac{p \nu^{2}}{b^{2}} x d x=-\frac{p \nu^{2} x^{2}}{b^{2}}\right]_{L}^{x}=\frac{p \nu^{2} L^{2}}{b^{2}}\left[1-\left(\frac{x}{L}\right)^{2}\right]_{\alpha} P(x)$
(e) $F_{y}=\int_{A}\left(f-P_{a t m}\right) d A=2 \int_{0}^{2} \frac{p v^{2} L^{2}}{b^{2}}\left[1-\left(\frac{x}{L}\right)^{2}\right] w d x$
$=2 \int_{0}^{1} \frac{p v^{2} L^{3}}{b^{2}}\left[1-\left(\frac{-D^{2}}{2}\right)^{2} w a\left(\frac{x}{L}\right)=\frac{2 f v^{2} L^{3} w}{b^{2}}\left[\left(\frac{x}{h}\right)-\frac{1}{3}\left(\frac{x}{2}\right)^{3}\right]_{0}^{1}\right.$
$F_{y}=\frac{4 p v^{2} L^{3} N}{3 b^{2}}$, (upward, since $F_{y}>0$)

Given: Rectangular "chip" floats on thin layer of air of thickness, $h=0.5 \mathrm{~nm}$ above a porous surface as shown. Chip width $b=20 \mathrm{~mm} ;$ length 1 (perpendicular to diagram) $\gg b$ in o flow in a direction: Flow in x defection under clip may be assumed uniform; $p=$ constant ; neglect frictional effects
Find: (a) Use a suitably chosen $C V$ to show $U(x)=q x / h$ int (o) Find an expression for $\vec{a} p$ in the gap
(c) Estimate the maximum value of $\vec{a} p$
(d) Obtain an expression for $2 p$ lax
(e) Sketch the pressure distribution under the chip (f) Is the net pressure force on the chip directed up or down?
(g) Estimate the mass per unit length of the chip if $q=0.06 \mathrm{~m}^{3} / \mathrm{sec}_{\mathrm{g}} / \mathrm{m}^{2}$.
Solution:
Assumptions:
(i) steady flow
(2) vicompressible flow
(3) frictionless flow (4) uniform flow at
 porous surface and in the gap at v.
(a) Apply contiriuily equation to $c t, \quad 0=\overrightarrow{z t} \int p d t+\int_{\mathrm{cs}} \vec{p} \cdot \overrightarrow{d A}$
Ten

$$
o=\{-|p q \times 1|\}+\{+\mid p \cup h L\} \quad \text { or } \theta=q \frac{x}{h}
$$

\qquad
(b) Apply the substantial derivative definition
obtain v from differential continuity $\frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}=0$

$$
\begin{aligned}
& \therefore \frac{\partial v}{\partial y}=-\frac{\partial u}{\partial x}=-\frac{q}{h} \text { and } v-v_{0}=\int_{0}^{y}-\frac{q}{h} d y, f(x)=\frac{-q}{h} y+f(x) \\
& \text { or } v=q_{0}\left(1-\frac{y}{h}\right) \quad\left[f(x)=0 \text { since } v=v_{0}=q_{0}=\operatorname{const} \text { along } y=0\right] \\
& a_{p_{4}}=u \frac{\partial u}{\partial x}+v \frac{\partial y}{\partial y}=q \frac{1}{h}\left(\frac{q}{h}\right)=\frac{q^{2} x}{6} h^{2} \\
& a_{p y}=u \frac{\partial y}{\partial \alpha}+v \frac{\partial v}{\partial y}=q^{2}\left(1-\frac{y}{h}\right)\left(-\frac{q}{h}\right)=\frac{q^{2}}{h}\left(\frac{y}{h}-1\right) \\
& \vec{a}_{p}=\frac{q^{2} x}{h^{2}} \approx+\frac{q^{2}}{h}\left(\frac{y}{h}-1\right) j=\frac{q^{2}}{h}\left[\frac{x}{h} i+\left(\frac{y}{h}-1\right)\right] j
\end{aligned}
$$

(c) The magnitude of $\left\langle\vec{a}_{p}\right|=\frac{q^{2}}{h}\left[\left(\frac{x}{h}\right)^{2}+\left(\frac{y}{h}-1\right)^{2}\right]^{1 / 2}$ is a. maximum at $x=\frac{b}{2}, y=0$

$$
\left|\vec{a}_{p}\right|_{\text {max }}=\frac{g^{2}}{h}\left[\left(\left.\frac{b}{2 h}\right|^{2}+1\right]^{1 / 2}=\left.144 \mathrm{~m}\right|_{s} ^{2}\right.
$$

(d) To obtain Splat write the a component of the tuber equation

$$
-\frac{\partial p}{\partial x}+p g_{x}=p a_{p x} \quad \therefore \quad \frac{\partial p}{\partial x}=-p a_{p_{x}}=-\frac{p q^{2} x}{h^{2}}
$$

(e) To dolain an expression for the pressure distribution, - noting we nat to separate varubles and integrate noting Rat $p=p_{\text {atm }}$ at $x=b l_{2}$. Thus.

$$
\begin{aligned}
& -p \text {-path }=\frac{p q^{2}}{2 h^{2}}\left[\left(\frac{b}{2}\right)^{2}-k^{2}\right]=\frac{p g^{2} b^{2}}{8 h^{2}}\left[1-\left(\frac{2-x}{b}\right)^{2}\right] \\
& P=P_{a d n}+\frac{P a^{2} b^{2}}{8 h^{2}}\left[1-\left(\frac{2 x}{b}\right)^{2}\right] \\
& \text { (f) The nit pressure force on } \\
& \text { the chip is up. ole Rat } \\
& \text { the pressure on the chip } \\
& \text { is greater than atm over } \\
& \text { the entire chip surface }
\end{aligned}
$$

(g) To estimate the nos per unit weight of the chip we must determine the net-pressure force on the chip

$$
\begin{aligned}
F_{\text {net }} & =\left(_{n}\left(P-P_{a h}\right) d A=2 \int_{0}^{b / 2} \frac{p q^{2} b^{2}}{8 h^{2}}\left[1-\left(\frac{2 x}{b}\right)^{2}\right] L d x\right. \\
& =\frac{p q^{2} b^{2} L}{4 h^{2}}\left[x-\frac{4}{3} \frac{x^{3}}{b^{2}}\right]_{0}^{b / 2}=\frac{p q^{2} b^{2} L}{5 h^{2}}\left[\frac{b}{2}-\frac{1}{3} \frac{b}{2}\right] \\
F_{\text {net }} & =\frac{f q^{2} b^{3} L}{12 h^{2}}
\end{aligned}
$$

The weight of the chip, $w=M g$, must be balanced by the net pressure force. Hence

$$
\begin{aligned}
& M g=F n d=\frac{f q^{2} b^{3} L}{612 h^{2}} \\
\frac{M}{L} & =\frac{p q^{2} b^{3}}{12 h^{2}} g \\
= & \frac{1}{12} \cdot 1.23 \frac{\mathrm{~kg}}{m^{3}} \times(0.06)^{2} \mathrm{~s}^{2} m^{6} \\
\frac{M}{L} & =1.20 \times 10^{-3} \mathrm{~kg} / \mathrm{m}
\end{aligned}
$$

Problem 6.23
Given: Load pallet supported by air:
Flow is incompressible, uniform, and frictionkss; $h \ll L$.

No flow across plane at $x=0$.
Find: (a) Use a suitable $C v$ to show $u(x)=q x / h$ in the gap.
(b) Cavelate the acceleration of a fkeid particle in the gap.
(c) Evaluate the pressure gradient, $\partial p / \partial x$.
(d) sketch the pressure distribution; indicate pressure at $x=L$.

Solution: choose a cv in the gap, from 0 to x, as shown.
Basic equations: $\quad D=\frac{\partial f}{\frac{\alpha}{\phi t}} \int_{C v}^{o(1)} \rho d t+\int_{C S} \rho \vec{v} \cdot d \vec{A}$

$$
a_{x}=u \frac{\partial u}{\partial x}+v \frac{\partial u_{x}}{\partial y}+w^{2(3)} \frac{\partial \psi}{\phi z}+\frac{\partial u^{(t)}}{\partial t} \quad-\frac{\partial p}{\partial x}+p \hat{\phi}_{x}^{=0(5)}=\rho a_{p_{x}}
$$

Assumptions: (1) Steady flow
(2) Incompressible flow
(3) Uniform flow at each section
(4) No variation with 3
(5) Horizontal, so $g_{x}=0$

From continuity,

$$
0=\{-|p q \omega v x|\}+\{+|q u(x) \omega-h|\} \text { so } u(x)=q \frac{x}{h}
$$

The acceleration is $a_{p_{x}}=\left(g \frac{x}{h}\right)\left(q \frac{1}{h}\right)=q^{2} \frac{x}{h^{2}}$
The pressure gradient is $\frac{\partial p}{\partial x}=-\rho a_{x}=-\frac{\rho q^{2} x}{h^{2}}$
Sketching:

Given: Air at zoo psia, $100^{\circ} \mathrm{F}$ flows around a smooth corner Velocity $=150 \mathrm{ft} / \mathrm{s}$
Radius of curvature of streanluis is 3 in .
Find: (a) magnitude of centripetal acceleration in Cis b) pressure gradient, $\frac{\partial p}{\partial r}$

Solution:
Basic equations: $\quad \vec{\rho}-\nabla P=p \frac{\vec{V}}{\text { vt }} \ldots$ (i)

$$
\begin{equation*}
\overrightarrow{P J}=\vec{a}_{p} \quad \cdots(z) \quad P=p R T \tag{3}
\end{equation*}
$$

Assumptions: (i) $p=$ constant
(2) frictionless flow
(s) $\vec{g}=-g \hat{g}$

Writing the s component of equation (1)

$$
\not A_{5}^{\circ}-\frac{1}{\rho} \frac{\partial r}{\partial r}=a_{r}=\frac{\partial \nu_{0}^{0}}{\partial t}+\psi_{0}^{0} \frac{\partial V_{r}}{\partial r}+\frac{V_{0}}{r} \frac{\partial \psi_{r}^{\circ}}{\partial \theta}+y_{b}^{\circ} \frac{\partial V_{r}}{\partial z}-\frac{V_{0}^{2}}{r}
$$

$$
a_{r}=-\frac{V_{0}^{2}}{r} \quad \frac{a_{r}}{g}=-\frac{V_{e}^{2}}{r g}=-(150)^{2} \frac{4^{2}}{3^{2}} \times \frac{1}{3 i n} \times \frac{12 i n}{f t} \times \frac{s^{2}}{32 \cdot 2 f t}
$$

Also

$$
\frac{a_{r}}{g}=-2800 \text { G's}
$$

$\frac{a_{r}}{g}$

$$
\frac{\partial P}{\partial r}=\frac{P V_{e}^{2}}{r}
$$

where $p=\frac{P}{R T}=20 \frac{10 f}{i^{2}} \times \frac{10 n \cdot R}{53.3 f+16 f} \times \frac{1}{5608} \times \frac{144 \mathrm{n}^{2}}{f^{2}} \times \frac{5 \log }{32.2 \mathrm{bm}}$

$$
\begin{aligned}
& P=0.003 \text { slug } f_{f t^{3}} \\
& \frac{\partial P}{\partial r}=P \frac{V_{0}^{2}}{r}=0.003 \frac{s l_{u g}}{f t^{2}} \times(150)^{2} \frac{f_{t}^{2}}{s^{2}} \times \frac{1}{3 i n} \cdot \frac{12 i n}{f t} \times \frac{\left(1 b f-s^{2}\right.}{f t-5 l \operatorname{lng}} \\
& \frac{\partial P}{\partial r}=270 \frac{b f l f t^{2}}{f t}
\end{aligned}
$$

Problem 6.25

6.25 The velocity field for a plane doublet is given in Table 6.2.

Find an expression for the pressure gradient at any point (r, θ).

Given: Velocity field for doublet

Find: Expression for pressure gradient

Solution:

Basic equations

$$
\begin{aligned}
& \rho a_{r}=\rho\left(\frac{\partial V_{r}}{\partial t}+V_{r} \frac{\partial V_{r}}{\partial r}+\frac{V_{\theta}}{r} \frac{\partial V_{r}}{\partial \theta}+V_{z} \frac{\partial V_{r}}{\partial z}-\frac{V_{\theta}^{2}}{r}\right)=\rho g_{r}-\frac{\partial p}{\partial r} \\
& \rho a_{\theta}=\rho\left(\frac{\partial V_{\theta}}{\partial t}+V_{r} \frac{\partial V_{\theta}}{\partial r}+\frac{V_{\theta}}{r} \frac{\partial V_{\theta}}{\partial \theta}+V_{z} \frac{\partial V_{\theta}}{\partial z}+\frac{V_{r} V_{\theta}}{r}\right)=\rho g_{\theta}-\frac{1}{r} \frac{\partial p}{\partial \theta}
\end{aligned}
$$

For this flow

$$
\mathrm{V}_{\mathrm{r}}(\mathrm{r}, \theta)=-\frac{\Lambda}{\mathrm{r}^{2}} \cdot \cos (\theta) \quad \mathrm{V}_{\theta}(\mathrm{r}, \theta)=-\frac{\Lambda}{\mathrm{r}^{2}} \cdot \sin (\theta) \quad \mathrm{V}_{\mathrm{Z}}=0
$$

Hence for r momentum $\quad \rho \cdot g_{r}-\frac{\partial}{\partial r} p=\rho \cdot\left(V_{r} \cdot \frac{\partial}{\partial r} \mathrm{~V}_{\mathrm{r}}+\frac{\mathrm{V}_{\theta}}{\mathrm{r}} \cdot \frac{\partial}{\partial \theta} \mathrm{V}_{\mathrm{r}}-\frac{\mathrm{V}_{\theta}^{2}}{\mathrm{r}}\right)$

Ignoring gravity

$$
\left.\frac{\partial}{\partial \mathrm{r}} \mathrm{p}=-\rho \cdot\left[\left(-\frac{\Lambda}{\mathrm{r}^{2}} \cdot \cos (\theta)\right) \cdot \frac{\partial}{\partial \mathrm{r}}\left(-\frac{\Lambda}{\mathrm{r}^{2}} \cdot \cos (\theta)\right)+\frac{\left(-\frac{\Lambda}{\mathrm{r}^{2}} \cdot \sin (\theta)\right.}{\mathrm{r}}\right) \cdot \frac{\partial}{\partial \theta}\left(-\frac{\Lambda}{\mathrm{r}^{2}} \cdot \cos (\theta)\right)-\frac{\left(-\frac{\Lambda}{r^{2}} \cdot \sin (\theta)\right)^{2}}{\mathrm{r}}\right] \quad \frac{\partial}{\partial \mathrm{r}} \mathrm{p}=\frac{2 \cdot \Lambda^{2} \cdot \rho}{\mathrm{r}^{5}}
$$

For θ momentum $\quad \rho \cdot g_{\theta}-\frac{1}{\mathrm{r}} \cdot \frac{\partial}{\partial \theta} \mathrm{p}=\rho \cdot\left(\mathrm{V}_{\mathrm{r}} \cdot \frac{\partial}{\partial \mathrm{r}} \mathrm{V}_{\theta}+\frac{\mathrm{V}_{\theta}}{\mathrm{r}} \cdot \frac{\partial}{\partial \theta} \mathrm{V}_{\theta}+\frac{\mathrm{V}_{\mathrm{r}} \cdot \mathrm{V}_{\theta}}{\mathrm{r}}\right)$
Ignoring gravity

$$
\left.\frac{\partial}{\partial \theta} \mathrm{p}=-\mathrm{r} \cdot \rho \cdot\left[\left(-\frac{\Lambda}{\mathrm{r}^{2}} \cdot \cos (\theta)\right) \cdot \frac{\partial}{\partial \mathrm{r}}\left(-\frac{\Lambda}{\mathrm{r}^{2}} \cdot \sin (\theta)\right)+\frac{\left(-\frac{\Lambda}{\mathrm{r}^{2}} \cdot \sin (\theta)\right.}{\mathrm{r}}\right) \cdot \frac{\partial}{\partial \theta}\left(-\frac{\Lambda}{\mathrm{r}^{2}} \cdot \sin (\theta)\right)+\frac{\left(-\frac{\Lambda}{\mathrm{r}^{2}} \cdot \sin (\theta)\right) \cdot\left(-\frac{\Lambda}{\mathrm{r}^{2}} \cdot \cos (\theta)\right)}{\mathrm{r}}\right] \quad \frac{\partial}{\partial \theta} \mathrm{p}=0
$$

The pressure gradient is purely radial

Given: Re velocity field for steady, frictionless, incompressible fou (from richt-cto left) over a stationary circular cylinder of radices, a, is given by

$$
\vec{V}=U\left[\left(\frac{a}{r}\right)^{2}-1\right] \cos \theta^{r}+U\left[\left(\frac{a}{r}\right)^{2}+1\right] \sin \theta e_{\theta}
$$

Consider flow along the streamline forming the cylinder surface, C le $r=a$.
Find: The pressure gradient along cylinder surface Plot $V(r)$ along $\theta=\pi / 2$ for $\rightarrow a$:
Solution: Basic equation: $\overrightarrow{\nabla Q}-\nabla F=e \frac{\vec{V}}{\nabla t}$

Assumptions. in negived body forces
Hong the sustack, $5=0, \quad \vec{V}=2 U \sin \theta i_{E}$.
Computing equations:

$$
\begin{aligned}
& -\frac{1}{e} \frac{\partial e}{\partial r}=\frac{\partial V_{r}^{\circ}}{\partial t}+\psi_{y} \frac{\partial v_{r}{ }^{\circ}}{\partial r}+\frac{V_{0} \partial V_{r}^{2}}{\partial e}+V_{3} \partial \psi_{r}^{\circ}-\frac{V_{0}^{2}}{r}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{\partial p}{\partial r}=\rho \frac{V_{e}^{2}}{r}=\rho \frac{[20 \sin \theta]^{2}}{a}=\frac{45^{2} p \sin ^{2} \theta}{a} \\
& \frac{1}{r} \frac{\partial p}{\partial \theta}=-p^{2} \frac{\partial \nu_{0}}{\partial \theta}=-p\left[\frac{2 U \sin \theta}{a}\right](20 \cos \theta)=-\frac{4 u^{2} p}{a} \sin \theta \cos \theta \\
& \nabla P=i_{r} \frac{\partial R}{\Delta r}+i_{\theta} \frac{1}{r} \frac{\partial R}{\partial \theta}=\frac{4 p U^{2}}{a} \sin \theta\left(i_{r} \sin \theta-i_{0} \cos \theta\right)
\end{aligned}
$$

Along $\theta=\frac{\pi}{2}, \vec{V}=\pi\left[\left(\frac{a}{r}\right)^{2}+1\right] e_{\theta}$

$\frac{r}{a}$	y_{0}
1	20
2	1.250
3	1.110
4	1.2600
5	1.040

Giver: Radius of curvature of streamlines at wind furrel intet is modeled as

$$
h=\frac{-12}{4} R_{0}
$$

Spead alorg each streaminie assuned
 $R=0.6 \mathrm{~m}$
Find: Δp batween $y=0$ and turnel wall $\left(y=l_{2}\right)$
Solution:
Basic equation: $\quad \frac{\partial p}{\partial n}=\frac{V^{2}}{2}$
Asswrptiens : (1) steady flaw (2) frictionless fow
(3) negtect booly forces
(4) conthart speed along eac strearline

Ft Ne intet section, $\rightarrow=-p(y)$

$$
P_{4_{2}}-f_{0}=-30.6 \mathrm{Nm}^{2}
$$

$$
\begin{aligned}
& \therefore \quad \frac{d p}{d n}=-\frac{d \theta}{d y}=p \frac{y^{2}}{R}=p^{y^{2}} \frac{6 y}{2} \\
& \therefore d e=-f^{2} x^{2} y d y \\
& \left.\rho_{H_{2}}-e_{0}=\int_{0}^{d_{2}} d p=-\frac{2 p t^{2}}{R_{0}} \int_{0}^{L_{2}} y d y=-\frac{2 p t^{2}}{R D^{2}} \frac{y^{2}}{z}\right]_{0}^{L_{2}} \\
& -P_{H_{2}}-\theta_{0}=-\frac{\rho V^{2}}{R_{0}} \frac{L^{2}}{4}=-\frac{\rho V \mathrm{~h}}{4 R_{0}}
\end{aligned}
$$

Problem 6.28

6.28 Repeat Example 6.1, but with the somewhat more realistic assumption that the flow is similar to a free vortex (irrotational) profile, $V_{\theta}=c / r$ (where c is a constant), as shown in Fig. P6.28. In doing so, prove that the flow rate is given by $Q=k \sqrt{\Delta p}$, where k is

$$
k=w \ln \left(\frac{r_{2}}{r_{1}}\right) \sqrt{\frac{2 r_{2}^{2} r_{1}^{2}}{\rho\left(r_{2}^{2}-r_{1}^{2}\right)}}
$$

and w is the depth of the bend.
Given: Velocity field for free vortex flow in elbow
Find: \quad Similar solution to Example 6.1; find k (above)

Solution:

Basic equation $\quad \frac{\partial}{\partial r} p=\frac{\rho \cdot V^{2}}{r} \quad$ with $\quad V=V_{\theta}=\frac{c}{r}$
Assumptions: 1) Frictionless 2) Incompressible 3) free vortex
For this flow $\quad p \neq p(\theta) \quad$ so $\quad \frac{\partial}{\partial r} p=\frac{d}{d r} p=\frac{\rho \cdot V^{2}}{r}=\frac{\rho \cdot c^{2}}{r^{3}}$

Hence

$$
\begin{equation*}
\Delta p=p_{2}-p_{1}=\int_{r_{1}}^{r_{2}} \frac{\rho \cdot c^{2}}{r^{3}} d r=\frac{\rho \cdot c^{2}}{2} \cdot\left(\frac{1}{r_{1}^{2}}-\frac{1}{r_{2}^{2}}\right)=\frac{\rho \cdot c^{2} \cdot\left(r_{2}^{2}-r_{1}^{2}\right)}{2 \cdot r_{1}^{2} \cdot r_{2}^{2}} \tag{1}
\end{equation*}
$$

Next we obtain c in terms of Q

$$
\mathrm{Q}=\int \overrightarrow{\mathrm{V} ~ \mathrm{dA}}=\int_{\mathrm{r}_{1}}^{\mathrm{r}_{2}} \mathrm{~V} \cdot \mathrm{wdr}=\int_{\mathrm{r}_{1}}^{\mathrm{r}_{2}} \frac{\mathrm{w} \cdot \mathrm{c}}{\mathrm{r}} \mathrm{dr}=\mathrm{w} \cdot \mathrm{c} \cdot \ln \left(\frac{\mathrm{r}_{2}}{\mathrm{r}_{1}}\right)
$$

Hence

$$
\mathrm{c}=\frac{\mathrm{Q}}{\mathrm{w} \cdot \ln \left(\frac{\mathrm{r}_{2}}{\mathrm{r}_{1}}\right)}
$$

Using this in Eq 1

$$
\Delta \mathrm{p}=\mathrm{p}_{2}-\mathrm{p}_{1}=\frac{\rho \cdot \mathrm{c}^{2} \cdot\left(\mathrm{r}_{2}^{2}-\mathrm{r}_{1}^{2}\right)}{2 \cdot \mathrm{r}_{1}^{2} \cdot \mathrm{r}_{2}^{2}}=\frac{\rho \cdot \mathrm{Q}^{2} \cdot\left(\mathrm{r}_{2}{ }^{2}-\mathrm{r}_{1}^{2}\right)}{2 \cdot \mathrm{w}^{2} \cdot \ln \left(\frac{\mathrm{r}_{2}}{\mathrm{r}_{1}}\right)^{2} \cdot r_{1}^{2} \cdot r_{2}^{2}}
$$

Solving for Q

$$
\mathrm{Q}=\mathrm{w} \cdot \ln \left(\frac{\mathrm{r}_{2}}{\mathrm{r}_{1}}\right) \cdot \sqrt{\frac{2 \cdot \mathrm{r}_{1}^{2} \cdot \mathrm{r}_{2}^{2}}{\rho \cdot\left(\mathrm{r}_{2}^{2}-\mathrm{r}_{1}^{2}\right)}} \cdot \sqrt{\Delta \mathrm{p}}
$$

$$
\mathrm{k}=\mathrm{w} \cdot \ln \left(\frac{\mathrm{r}_{2}}{\mathrm{r}_{1}}\right) \cdot \sqrt{\frac{2 \cdot \mathrm{r}_{1}^{2} \cdot \mathrm{r}_{2}^{2}}{\rho \cdot\left(\mathrm{r}_{2}^{2}-\mathrm{r}_{1}^{2}\right)}}
$$

Problem 6.29

,6.29 Using the analyses of Example 6.1 and Problem 6.28, plot the discrepancy (percent) between the flow rates obtained from assuming uniform flow and the free vortex (irrotational) profile as a function of inner radius r_{1}.

From Example 6.1: $\quad Q_{\text {Uniform }}=V \cdot A=w \cdot\left(r_{2}-r_{1}\right) \cdot \sqrt{\frac{1}{\rho \cdot \ln \left(\frac{r_{2}}{r_{1}}\right)} \sqrt{\Delta p}} \quad$ or $\quad Q_{\text {Uniform }} \sqrt{\rho} w^{w \cdot r_{1} \cdot \sqrt{\Delta p}}=\frac{\left(\frac{r_{2}}{r_{1}}-1\right)}{\sqrt{\ln \left(\frac{r_{2}}{r_{1}}\right)}}$
Eq. 1

From Problem 6.28: $\frac{\mathrm{Q} \cdot \sqrt{\rho}}{\mathrm{w} \cdot \mathrm{r}_{1} \sqrt{\Delta \mathrm{p}}}=\left(\frac{\mathrm{r}_{2}}{\mathrm{r}_{1}}\right) \cdot \ln \left(\frac{\mathrm{r}_{2}}{\mathrm{r}_{1}}\right) \cdot \sqrt{\left[\left(\frac{\mathrm{r}_{2}}{\mathrm{r}_{1}}\right)^{2}-1\right]}$
Instead of plotting as a function of inner radius we plot as a function of r_{2} / r_{1}

$\mathbf{r}_{\mathbf{2}} / \mathbf{r}_{\mathbf{1}}$	Eq. 1	Eq. 2	Error
1.01	0.100	0.100	0.0%
1.05	0.226	0.226	0.0%
1.10	0.324	0.324	0.1%
1.15	0.401	0.400	0.2%
1.20	0.468	0.466	0.4%
1.25	0.529	0.526	0.6%
1.30	0.586	0.581	0.9%
1.35	0.639	0.632	1.1%
1.40	0.690	0.680	1.4%
1.45	0.738	0.726	1.7%
1.50	0.785	0.769	2.1%
1.55	0.831	0.811	2.4%
1.60	0.875	0.851	2.8%
1.65	0.919	0.890	3.2%
1.70	0.961	0.928	3.6%
1.75	1.003	0.964	4.0%
1.80	1.043	1.000	4.4%
1.85	1.084	1.034	4.8%
1.90	1.123	1.068	5.2%
1.95	1.162	1.100	5.7%
2.00	1.201	1.132	6.1%
2.05	1.239	1.163	6.6%
2.10	1.277	1.193	7.0%
2.15	1.314	1.223	7.5%
2.20	1.351	1.252	8.0%
2.25	1.388	1.280	8.4%
2.30	1.424	1.308	8.9%
2.35	1.460	1.335	9.4%
2.40	1.496	1.362	9.9%
2.45	1.532	1.388	10.3%
2.50	1.567	1.414	10.8%

Given: Velocity field $i=(A x+B) i-A y j$ where $A=1 s^{\prime}$, $B=2 m \not{ }^{2}$ and coordinates are measured in meters
Show: that streamlines are given by $(x+3(7) y=$ constant Not: streamlines through parts $(f, y)=(1,1),(0) 2),(2,2)$.
Find: (a) velocity vector a acceleration vector at (1,2), show Hose En streamline eld
(b) component of ap along the streaming at (1,i);
(c) pressure gradient along streanlvie at hin) for air,
(d) relative vane of pressure at pants (1,1) , (2,2)

Solution:
The slope of a streamline is $\left.\frac{d y}{d x}\right)_{s \cdot l}=\frac{v}{u}=\frac{-A y}{A+B}=\frac{-y}{x+3 / t}$ Ron

$$
\frac{d y}{y}+\frac{d x}{x+y \mid A}=0 \text { and } \ln y+\ln (x+3 / A)=\operatorname{lnc} .
$$

and

$$
(x+B(A) y=\text { constant }
$$

\qquad
For (1,1) $\left.\begin{array}{l}(x+2) y=3 \\ (1,2) \\ (x+2) y=6\end{array}\right\} \begin{aligned} & \text { Prese strearinnes are shout in }\end{aligned}$
$\left.\begin{array}{l}(, 2)(x+2) y=6 \\ (2,2) \quad(x+2) y=8\end{array}\right\} \begin{aligned} & \text { the plot att the end of te } \\ & \text { proser solution }\end{aligned}$

Assumptions: (1) steady flay (given
(a) $2 \rightarrow$ given $\rangle \overrightarrow{2} \neq 7(z)$.

$$
\left.\left.\vec{a}_{p}=(A x+B) \frac{2}{\partial x}[(A+B) \hat{c}-A y]\right]-A y \frac{\partial}{2 y}[(A+B) \hat{i}-A y]\right]
$$

$a_{p}=(A x+B) A i-A y(-A j)=A(A x+3) i+A^{2} y j$
Rt pant (1,2).

$$
\begin{align*}
& \bar{a}_{p}=\frac{1}{s}\left(\frac{1}{s} \times 1 m+2 \frac{\mu}{s}\right) i+\frac{1}{s^{2}} \times 2 m j=3 i+\left.2 j m\right|_{s} ^{2} \tag{a}\\
& \vec{V}=\left(\frac{1}{s} \times m+2 \frac{M}{3}\right) i-\frac{1}{s} 2 m j=3 i-2 j m / s
\end{align*}
$$

\vec{V} ard \vec{a} are shown on the streamline plot
(b) The component of \vec{a}_{p} along (tagger tho) the streamline is given by $a_{t}=\vec{a}_{f} \cdot \hat{e}_{t}$ where $\hat{e}_{t}=\overrightarrow{\vec{v}}$ Rus $\hat{e}_{t}=\frac{3 i-2 j}{\left[3^{2}+(-2)^{2}\right]^{1 / 2}}=0.832 i-0.555 j$

For Erictionless flow, Euler's eguation alona a streamine Cregucting granty, ie assumina Fow in horzorital plain is

$$
\frac{\partial p}{\partial s}=-\rho^{\nu} \frac{\partial \partial}{\partial \Delta}=-p a_{t}=-1.23 \frac{\operatorname{la}}{n^{3}}+1.39 \frac{1}{s^{2}} \times \frac{\Delta^{2}}{\rho^{2}}
$$

hodking at the streamline we would expect $p(z, 2)$ to be Cess than $-P(1,1)$ die to streamlne curvature; Euler's equation normal to a streamline says $\Rightarrow \operatorname{Bn}=\frac{P D^{2}}{R}$

$$
\begin{aligned}
& a_{t}=\vec{a}_{p} \cdot e_{t}=\left.(3 i+2 j)^{n}\right|_{s} ^{2} \cdot(0.832 i-0.555 j)=1.39 m / s^{2} \\
& \left.\vec{a}_{t}=1.3 a_{t}^{N}=\omega b_{t}-0.7\right\rangle^{n}{ }^{n} / s^{2}
\end{aligned}
$$

6.31 A velocity field is given by $\vec{V}=\left[A x^{3}+B x y^{2}\right] \hat{i}+$ $\left[A y^{3}+B x^{2} y\right] \hat{j} ; A=0.2 \mathrm{~m}^{-2} \cdot \mathrm{~s}^{-1}, B$ is a constant, and the coordinates are measured in meters. Determine the value and units for B if this velocity field is to represent an incompressible flow. Calculate the acceleration of a fluid particle at point $(x, y)=$ $(2,1)$. Evaluate the component of particle acceleration normal to the velocity vector at this point.

Given: Velocity field

Find: Constant B for incompressible flow; Acceleration of particle at (2,1); acceleration normal to velocity at $(2,1)$

Solution:

Basic equations $\quad \frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}=0$

$$
\vec{a}_{p}=\frac{D \vec{V}}{D t}=\underbrace{u \frac{\partial \vec{V}}{\partial x}+v \frac{\partial \vec{V}}{\partial y}+w \frac{\partial \vec{V}}{\partial z}}+\frac{\partial \vec{V}}{\partial t}
$$

total

acceleration
of a particle
:---:
acceleration

For this flow

$$
\begin{aligned}
& u(x, y)=A \cdot x^{3}+B \cdot x^{2} \cdot y^{2} \quad v(x, y)=A \cdot y^{3}+B \cdot x^{2} \cdot y \\
& \frac{\partial}{\partial x} u(x, y)+\frac{\partial}{\partial y} v(x, y)=\frac{\partial}{\partial x}\left(A \cdot x^{3}+B \cdot x \cdot y^{2}\right)+\frac{\partial}{\partial y}\left(A \cdot y^{3}+B \cdot x^{2} \cdot y\right)=0
\end{aligned}
$$

$$
\frac{\partial}{\partial x} u(x, y)+\frac{\partial}{\partial y} v(x, y)=(3 \cdot A+B) \cdot\left(x^{2}+y^{2}\right)=0 \quad \text { Hence } \quad B=-3 \cdot A \quad B=-0.6 \frac{1}{m^{2} \cdot s}
$$

We can write

$$
u(x, y)=A \cdot x^{3}-3 \cdot A \cdot x \cdot y^{2} \quad v(x, y)=A \cdot y^{3}-3 \cdot A \cdot x^{2} \cdot y
$$

Hence for a_{x}

$$
a_{x}=u \cdot \frac{\partial}{\partial x} u+v \cdot \frac{\partial}{\partial y} u=\left(A \cdot x^{3}-3 \cdot A \cdot x \cdot y^{2}\right) \cdot \frac{\partial}{\partial x}\left(A \cdot x^{3}-3 \cdot A \cdot x \cdot y^{2}\right)+\left(A \cdot y^{3}-3 \cdot A \cdot x^{2} \cdot y\right) \cdot \frac{\partial}{\partial y}\left(A \cdot x^{3}-3 \cdot A \cdot x \cdot y^{2}\right)
$$

$$
a_{x}=3 \cdot A^{2} \cdot x \cdot\left(x^{2}+y^{2}\right)^{2}
$$

For a_{y}

Hence at $(2,1)$

We need to find the component of acceleration normal to the velocity vector

$$
\begin{aligned}
& a_{y}=u \cdot \frac{\partial}{\partial x} \mathrm{v}+\mathrm{v} \cdot \frac{\partial}{\partial \mathrm{y}} \mathrm{v}=\left(\mathrm{A} \cdot \mathrm{x}^{3}-3 \cdot \mathrm{~A} \cdot \mathrm{x} \cdot \mathrm{y}^{2}\right) \cdot \frac{\partial}{\partial \mathrm{x}}\left(\mathrm{~A} \cdot \mathrm{y}^{3}-3 \cdot \mathrm{~A} \cdot \mathrm{x}^{2} \cdot \mathrm{y}\right)+\left(\mathrm{A} \cdot \mathrm{y}^{3}-3 \cdot \mathrm{~A} \cdot \mathrm{x}^{2} \cdot \mathrm{y}\right) \cdot \frac{\partial}{\partial \mathrm{y}}\left(\mathrm{~A} \cdot \mathrm{y}^{3}-3 \cdot \mathrm{~A} \cdot \mathrm{x}^{2} \cdot \mathrm{y}\right) \\
& a_{y}=3 \cdot A^{2} \cdot y \cdot\left(x^{2}+y^{2}\right)^{2} \\
& \mathrm{a}_{\mathrm{x}}=3 \cdot\left(\frac{0.2}{\mathrm{~m}^{2} \cdot \mathrm{~s}}\right)^{2} \times 2 \cdot \mathrm{~m} \times\left[(2 \cdot \mathrm{~m})^{2}+(1 \cdot \mathrm{~m})^{2}\right]^{2} \\
& \mathrm{a}_{\mathrm{X}}=6.00 \cdot \frac{\mathrm{~m}}{\mathrm{~s}^{2}} \\
& a_{y}=3 \cdot\left(\frac{0.2}{m^{2} \cdot s}\right)^{2} \times 1 \cdot m \times\left[(2 \cdot m)^{2}+(1 \cdot m)^{2}\right]^{2} \quad a_{y}=3.00 \cdot \frac{m}{s^{2}} \\
& a=\sqrt{a_{x}{ }^{2}+a_{y}{ }^{2}} \\
& \mathrm{a}=6.71 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}
\end{aligned}
$$

At $(2,1)$ the velocity vector is at angle $\quad \theta_{\text {vel }}=\operatorname{atan}\left(\frac{v}{u}\right)=\operatorname{atan}\left(\frac{A \cdot y^{3}-3 \cdot A \cdot x^{2} \cdot y^{3}}{A \cdot x^{3}-3 \cdot A \cdot x \cdot y^{2}}\right)$

$$
\theta_{\mathrm{vel}}=\operatorname{atan}\left(\frac{1^{3}-3 \cdot 2^{2} \cdot 1}{2^{3}-3 \cdot 2 \cdot 1^{2}}\right) \quad \theta_{\mathrm{vel}}=-79.7 \cdot \mathrm{deg}
$$

At $(1,2)$ the acceleration vector is at angle

$$
\theta_{\text {accel }}=\operatorname{atan}\left(\frac{\mathrm{a}_{\mathrm{y}}}{\mathrm{a}_{\mathrm{x}}}\right)
$$

$$
\theta_{\text {accel }}=\operatorname{atan}\left(\frac{1}{2}\right)
$$

$\theta_{\text {accel }}=26.6 \cdot \mathrm{deg}$

Hence the angle between the acceleration and velocity vectors is

$$
\Delta \theta=\theta_{\text {accel }}-\theta_{\mathrm{vel}}
$$

$$
\Delta \theta=106 \cdot \operatorname{deg}
$$

The component of acceleration normal to the velocity is then

$$
\mathrm{a}_{\mathrm{n}}=\mathrm{a} \cdot \sin (\Delta \theta)=6.71 \cdot \frac{\mathrm{~m}}{\mathrm{~s}^{2}} \cdot \sin (106 \cdot \operatorname{deg}) \quad \mathrm{a}_{\mathrm{n}}=6.45 \cdot \frac{\mathrm{~m}}{\mathrm{~s}^{2}}
$$

Given: The t component of vebocty in a $2-7$, incompressible flow field is
$u=A t^{2}$ where $A=I f A^{\prime} s^{\prime}$ and coordinates are in ft; $w=0$ and $P l_{2}=0$.
Find: (a) acceleration of fluid particle at $(x, y)=(1, z)$ (b) radius of curvature of streamline at (1,2)

Pot: streamline through (1,2); show velocity and acceleration vectors on the plot.
Solution:
For $2 \Rightarrow$ nicompressible flow $\frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}=0$, $s o \frac{\partial v}{\partial y}=-\frac{\partial u}{\partial x}$

$$
v=\left(\frac{\partial v}{2 y} d y+f(x)=\left(-\frac{2 x}{2 x} d y+f(x)=-\int 2 A x d y+f(x)=-2 A x y+f(x)\right)\right.
$$

Choose the seriptest solution, $f(x)=0$, so $v=-2 A t y$. Hence

$$
\left.V=A x^{2} i-2 A x y=A\left[x^{2} i-2 x y^{3}\right]\right]
$$

The acceleration of a fluid particle is

$$
\begin{aligned}
& \vec{a}_{p}=u \frac{\partial J}{\partial x}+v \frac{\partial J}{\partial y}=A A^{2}\left[A\left(2 x i-2 y^{n}\right)\right]-2 A k y\left[-2 A x A^{2}\right] \\
& \vec{a}_{p}=2 A^{2} A^{3} i+2 A^{2} y j=2 A^{2} x^{2}[x i+y j]
\end{aligned}
$$

Fit the paint (1,2)

$$
\begin{aligned}
& \overrightarrow{a_{p}}=2 \times \frac{(1)^{2}}{f^{2} s^{2}} \times(i)^{2} m^{2}[1 m i+2 m j]=2 i+4 j f l_{s}^{2} \quad \vec{a}(1,2) \\
& \vec{v}=\frac{1}{f t s}\left[(1)^{2} m^{2} i-2(1 m)(2 m) j\right]=i-4 j f l_{s}
\end{aligned}
$$

The wit vector tangent to the streamline is

$$
\hat{e}_{t}=\frac{\vec{y}}{\sqrt{v}}=\frac{\hat{i}-4 \hat{j}}{\left[(4)^{2}+(-4)^{2}\right]^{1 / 2}}=0.243 \hat{i}-0.970 \hat{j}
$$

Re unit vector normal to Pe streamline is

$$
\hat{e}_{n}=\hat{e}_{2}+\hat{t}=(0.243 \hat{i}-0.910 \hat{j}) \times \hat{t}=-0.970 i-0.243 \hat{j}
$$

The normal component of acceleration is

$$
\begin{align*}
& a_{n}=-\frac{v^{2}}{8}=\vec{a} \cdot \hat{e}_{n}=(2 i+4 j) \cdot(-0.970 \hat{i}-0.243 \hat{j}) \\
& -\frac{\nu^{2}}{R}=-2.91 A l_{s^{2}}
\end{align*}
$$

The slope of the streantive is gwen by

$$
\left.\frac{d y}{d x}\right)_{\text {see }}=\frac{v}{u}=\frac{-2 n+y}{7 z^{2}}=\frac{-2 y}{x}
$$

Thus

$$
\frac{d y y}{y}=\frac{2 d t}{x}=0, \text { and } \ln y \cdot h x^{2}=h c=o r
$$

Re equation of the straining though $1, i_{2}$ is $x^{2} y=z$.

Given: Incompressible, $2-D$ flow with $u=A x y, \omega=0 ; A=2 \mathrm{At}^{-1} \cdot \mathrm{~s}^{-1}$
Find: (a) Acceleration of particle at $(x, y)=(2,1)$.
(b) Radices of curvature of streamline at that point
(c) Plot streamline, Show velocity vector and acceleration vector.
Solution: For two -d. incompressible flow, $\frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}=0, \leq 0$

$$
\frac{\partial v}{\partial y}=-\frac{\partial u}{\partial x}=-A y ; \text { Integrating, v}=-\frac{1}{2} A y^{2} ; \vec{V}=A x y \hat{\imath}-\frac{1}{2} A y^{2} \hat{u}
$$

The acceleration is

$$
\begin{aligned}
& a_{p_{x}}=u \frac{\partial u}{\partial x}+v \frac{\partial u}{\partial y}=(A x y)(A y)+\left(-\frac{1}{2} A y^{2}\right)(A x)=\frac{1}{2} A^{2} x y^{2} \\
& a_{p y}=u \frac{\partial v}{\partial x}+v \frac{\partial v}{\partial y}=(A x y)(0)+\left(-\frac{1}{2} A y^{2}\right)(-A y)=\frac{1}{2} A^{2} y^{3} \\
& \vec{a}_{p}=\frac{1}{2} A^{2} x y^{2} \hat{\imath}+\frac{1}{2} A_{y}^{2} \hat{\jmath} ; a t(2,1) \vec{a} p=4 \hat{\imath}+2 \hat{\jmath}\left(f+/ s^{2}\right)
\end{aligned}
$$

Note $a_{n}=\frac{V^{2}}{R}$, so $R=\frac{V^{2}}{a_{n}}$, where a_{n} is a ceevercetion normal to \vec{V} $A+(2,1), \vec{V}=4 \hat{\imath}-1 \hat{\jmath}+1 \mathrm{~s}$, so $V^{2}=(4)^{2}+(1)^{2}=17 f^{2} / \mathrm{s}^{2}$

To find a_{n}, dot \vec{a}_{p} with \hat{z}_{n}, the unit normal vector. To find \hat{e}_{n}, set

$$
\begin{gathered}
\hat{e}_{n}=-\frac{v}{v} \hat{\imath}+\frac{u}{v} \hat{\jmath}=\frac{1}{\sqrt{17}} \hat{\imath}+\frac{4}{\sqrt{17}} \hat{\jmath} \\
a_{n}=\hat{e}_{n} \cdot \hat{a}_{p}=\frac{4}{\sqrt{17}}+\frac{8}{\sqrt{17}}=\frac{12}{\sqrt{17}}=2.91 \mathrm{f}+1 \mathrm{~s}^{2}
\end{gathered}
$$

substituting

$$
R=\frac{V^{2}}{a_{n}}=17 \frac{\mathrm{ft}^{2}}{\mathrm{~s}^{2}} \times \frac{5^{2}}{2.91 \mathrm{ft}}=5.84 \mathrm{ft}
$$

The streamline is $\frac{d x}{u}=\frac{d y}{v}=\frac{d x}{A x y}=\frac{d y}{-\frac{1}{2} A y^{2}}$ or $\frac{d x}{x}+2 \frac{d y}{y}=0$ Integrating, $\ln x+2 \ln y=\ln c$ or $x y^{2}=c$
For $(x, y)=(2,1)$, then $C=2 A^{3}$.
The plot and streamlines are on the following page.

Components of Velocity and Acceleration:

Input Parameters:
$A=2 \quad \mathrm{ft}^{-1} \mathrm{~s}^{-1}$

Calculated Values:
$c=2 \quad \mathrm{ft}^{3}$

Coord. x	Coord. y	Velocity, V_{x}	Velocity, V_{y}	Velocity, V	Accel. a_{x}	Accel., a_{y}	Accel., a	Normal Accel., a_{n}
0.08	5.00							
0.2	3.16							
0.4	2.24							
0.5	2.00	2.00	-4.00	4.47	2.00	16.0	16.1	8.94
0.6	1.83							
0.8	1.58							
1.0	1.41	2.83	-2.00	3.46	2.83	5.66	6.32	6.25
1.5	1.15	3.46	-1.33	3.71	3.46	3.08	4.63	4.12
2.0	1.00	4.00	-1.00	4.12	4.00	2.00	4.47	2.91
2.5	0.89	4.47	-0.80	4.54	4.47	1.43	4.70	2.20
3.0	0.82	4.90	-0.67	4.94	4.90	1.09	5.02	1.74
3.5	0.76	5.29	-0.57	5.32	5.29	0.86	5.36	1.43
4.0	0.71	5.66	-0.50	5.68	5.66	0.71	5.70	1.20
4.5	0.67	6.00	-0.44	6.02	6.00	0.59	6.03	1.03
5.0	0.63	6.32	-0.40	6.34	6.32	0.51	6.34	0.90

Acceleration:

2	1
4	2

Velocity:

2	1
4	0.5

6.34 The x component of velocity in a two-dimensional incompressible flow field is given by $u=-\Lambda\left(x^{2}-y^{2}\right) /\left(x^{2}+y^{2}\right)^{2}$, where u is in m / s, the coordinates are measured in meters, and $\Lambda=2$ $\mathrm{m}^{3} \cdot \mathrm{~s}^{-1}$. Show that the simplest form of the y component of velocity is given by $v=-2 \Lambda x y /\left(x^{2}+y^{2}\right)^{2}$. There is no velocity component or variation in the z direction. Calculate the acceleration of fluid particles at points $(x, y)=(0,1),(0,2)$, and $(0,3)$. Estimate the radius of curvature of the streamlines passing through these points. What does the relation among the three points and their radii of curvature suggest to you about the flow field? Verify this by plotting these streamlines. [Hint: You will need to use an integrating factor.]

Given: $\quad x$ component of velocity field
Find: $\quad y$ component of velocity field; acceleration at several points; estimate radius of curvature; plot streamlines

Solution:

The given data is

$$
\Lambda=2 \cdot \frac{\mathrm{~m}^{3}}{\mathrm{~s}}
$$

$$
\mathrm{u}=-\frac{\Lambda \cdot\left(\mathrm{x}^{2}-\mathrm{y}^{2}\right)}{\left(\mathrm{x}^{2}+\mathrm{y}^{2}\right)^{2}}
$$

The governing equation (continuity) is $\frac{\partial}{\partial x} u+\frac{\partial}{\partial y} v=0$

Hence

$$
v=-\int \frac{d u}{d x} d y=-\int \frac{2 \cdot \Lambda \cdot x \cdot\left(x^{2}-3 \cdot y^{2}\right)}{\left(x^{2}+y^{2}\right)^{3}} d y
$$

Integrating (using an integrating factor) $v=-\frac{2 \cdot \Lambda \cdot x \cdot y}{\left(x^{2}+y^{2}\right)^{2}}$

Alternatively, we could check that the given velocities u and v satisfy continuity

$$
\mathrm{u}=-\frac{\Lambda \cdot\left(\mathrm{x}^{2}-\mathrm{y}^{2}\right)}{\left(\mathrm{x}^{2}+\mathrm{y}^{2}\right)^{2}}
$$

$\frac{\partial}{\partial x} u=\frac{2 \cdot \Lambda \cdot x \cdot\left(x^{2}-3 \cdot y^{2}\right)}{\left(x^{2}+y^{2}\right)^{3}}$

$$
v=-\frac{2 \cdot \Lambda \cdot x \cdot y}{\left(x^{2}+y^{2}\right)^{2}}
$$

$$
\frac{\partial}{\partial y} v=-\frac{2 \cdot \Lambda \cdot x \cdot\left(x^{2}-3 \cdot y^{2}\right)}{\left(x^{2}+y^{2}\right)^{3}}
$$

so

$$
\frac{\partial}{\partial x} u+\frac{\partial}{\partial y} v=0
$$

The governing equation for acceleration is $\vec{a}_{p}=\frac{D \vec{V}}{D t}=u \frac{\partial \vec{V}}{\partial x}+v \frac{\partial \vec{V}}{\partial y}+w \frac{\partial \vec{V}}{\partial z}+\frac{\partial \vec{V}}{\partial t}$
total

acceleration
of a particle
:---:
acceleration

For steady, 2D flow this reduces to (after considerable math!)
x-component

$$
\mathrm{a}_{\mathrm{x}}=\mathrm{u} \cdot \frac{\partial}{\partial \mathrm{x}} \mathrm{u}+\mathrm{v} \cdot \frac{\partial}{\partial \mathrm{y}} \mathrm{u}
$$

$$
a_{x}=\left[-\frac{\Lambda \cdot\left(x^{2}-y^{2}\right)}{\left(x^{2}+y^{2}\right)^{2}}\right] \cdot\left[\frac{2 \cdot \Lambda \cdot x \cdot\left(x^{2}-3 \cdot y^{2}\right)}{\left(x^{2}+y^{2}\right)^{3}}\right]+\left[-\frac{2 \cdot \Lambda \cdot x \cdot y}{\left(x^{2}+y^{2}\right)^{2}}\right] \cdot\left[\frac{2 \cdot \Lambda \cdot y \cdot\left(3 \cdot x^{2}-y^{2}\right)}{\left(x^{2}+y^{2}\right)^{3}}\right] \quad a_{x}=-\frac{2 \cdot \Lambda^{2} \cdot x}{\left(x^{2}+y^{2}\right)^{3}}
$$

y-component

$$
\begin{aligned}
& a_{y}=u \cdot \frac{\partial}{\partial x} v+v \cdot \frac{\partial}{\partial y} v \\
& a_{y}=\left[-\frac{\Lambda \cdot\left(x^{2}-y^{2}\right)}{\left(x^{2}+y^{2}\right)^{2}}\right] \cdot\left[\frac{2 \cdot \Lambda \cdot y \cdot\left(3 \cdot x^{2}-y^{2}\right)}{\left(x^{2}+y^{2}\right)^{3}}\right]+\left[-\frac{2 \cdot \Lambda \cdot x \cdot y}{\left(x^{2}+y^{2}\right)^{2}}\right] \cdot\left[\frac{2 \cdot \Lambda \cdot y \cdot\left(3 \cdot y^{2}-x^{2}\right)}{\left(x^{2}+y^{2}\right)^{3}}\right] \quad a_{y}=-\frac{2 \cdot \Lambda^{2} \cdot y}{\left(x^{2}+y^{2}\right)^{3}}
\end{aligned}
$$

Evaluating at point $(0,1)$

$$
\mathrm{u}=2 \cdot \frac{\mathrm{~m}}{\mathrm{~s}} \quad \mathrm{v}=0 \cdot \frac{\mathrm{~m}}{\mathrm{~s}}
$$

$\mathrm{a}_{\mathrm{x}}=0 \cdot \frac{\mathrm{~m}}{\mathrm{~s}^{2}}$
$a_{y}=-8 \cdot \frac{m}{s^{2}}$

Evaluating at point $(0,2)$

$$
\mathrm{u}=0.5 \cdot \frac{\mathrm{~m}}{\mathrm{~s}} \quad \mathrm{v}=0 \cdot \frac{\mathrm{~m}}{\mathrm{~s}}
$$

$$
\mathrm{a}_{\mathrm{x}}=0 \cdot \frac{\mathrm{~m}}{\mathrm{~s}^{2}}
$$

$$
\mathrm{a}_{\mathrm{y}}=-0.25 \cdot \frac{\mathrm{~m}}{\mathrm{~s}^{2}}
$$

Evaluating at point $(0,3)$

$$
\mathrm{u}=0.222 \cdot \frac{\mathrm{~m}}{\mathrm{~s}} \quad \mathrm{v}=0 \cdot \frac{\mathrm{~m}}{\mathrm{~s}}
$$

$$
\mathrm{a}_{\mathrm{x}}=0 \cdot \frac{\mathrm{~m}}{\mathrm{~s}^{2}}
$$

$$
\mathrm{a}_{\mathrm{y}}=-0.0333 \cdot \frac{\mathrm{~m}}{\mathrm{~s}^{2}}
$$

The instantaneous radius of curvature is obtained from $\quad a_{\text {radial }}=-a_{y}=-\frac{u^{2}}{r}$
or $\quad r=-\frac{u^{2}}{a_{y}}$

The radius of curvature in each case is $1 / 2$ of the vertical distance from the origin. The streamlines form circles tangent to the x axis

The streamlines are given by $\frac{d y}{d x}=\frac{v}{u}=\frac{-\frac{2 \cdot \Lambda \cdot x \cdot y}{\left(x^{2}+y^{2}\right)^{2}}}{-\frac{\Lambda \cdot\left(x^{2}-y^{2}\right)}{\left(x^{2}+y^{2}\right)^{2}}}=\frac{2 \cdot x \cdot y}{\left(x^{2}-y^{2}\right)}$
so

$$
-2 \cdot x \cdot y \cdot d x+\left(x^{2}-y^{2}\right) \cdot d y=0
$$

This is an inexact integral, so an integrating factor is needed

First we try
$R=\frac{1}{-2 \cdot x \cdot y} \cdot\left[\frac{d}{d x}\left(x^{2}-y^{2}\right)-\frac{d}{d y}(-2 \cdot x \cdot y)\right]=-\frac{2}{y}$
Then the integrating factor is $\quad F=e^{\int-\frac{2}{y} d y}=\frac{1}{y^{2}}$

The equation becomes an exact integral $-2 \cdot \frac{x}{y} \cdot d x+\frac{\left(x^{2}-y^{2}\right)}{y^{2}} \cdot d y=0$

So

$$
\begin{aligned}
& u=\int-2 \cdot \frac{x}{y} d x=-\frac{x^{2}}{y}+f(y) \quad \text { and } \quad u=\int \frac{\left(x^{2}-y^{2}\right)}{y^{2}} d y=-\frac{x^{2}}{y}-y+g(x) \\
& \psi=\frac{x^{2}}{y}+y \\
& \text { or } \quad x^{2}+y^{2}=\psi \cdot y=\text { const } \cdot y
\end{aligned}
$$

These form circles that are tangential to the x axis, as shown in the associated Excel workbook
6.34 The x component of velocity in a two-dimensional incompressible flow field is given by $u=-\Lambda\left(x^{2}-y^{2}\right) /\left(x^{2}+y^{2}\right)^{2}$, where u is in m / s, the coordinates are measured in meters, and $\Lambda=2$ $\mathrm{m}^{3} \cdot \mathrm{~s}^{-1}$. Show that the simplest form of the y component of velocity is given by $v=-2 \Lambda x y /\left(x^{2}+y^{2}\right)^{2}$. There is no velocity component or variation in the z direction. Calculate the acceleration of fluid particles at points $(x, y)=(0,1),(0,2)$, and $(0,3)$. Estimate the radius of curvature of the streamlines passing through these points. What does the relation among the three points and their radii of curvature suggest to you about the flow field? Verify this by plotting these streamlines. [Hint: You will need to use an integrating factor.]

Given:
x component of velocity field
Find:
y component of velocity field; acceleration at several points; estimate radius of curvature; plot streamlines
Solution:

$$
\psi=\frac{x^{2}}{y}+y
$$

This function is computed and plotted below

Given: The y component of velocity in a $2-7$, incompressible tow field is
$v=-A+y$ where $A=\backslash \bar{M}, \bar{\prime}$ and coordinates are in metes; $\omega=0$ and $a b_{z}=0$.
Find: (a) acceleration of flee particle at $(x, y)=(1,2)$ (b) radius of curvature of Steaming ft $(1,2)$
plot: streamline Rough $(1,2)$; show velocity and acceleration vectors on the plot.
Solution:
For $2-2$ incompressible flow $\frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}=0$, so $\frac{\partial u}{\partial x}=-\frac{\partial v}{\partial y}$.

$$
u=\left(\frac{\partial u}{\partial x} d x+f(y)=\int-\frac{\partial v}{\partial y} d x+f(y)=-\int(-A x) d x+f(y)=\frac{R x^{2}}{2}+f(y)\right.
$$

Goose the simplest solution, $f(y)=0$, so $u=\frac{H L_{2}}{2}$, Hence

$$
\vec{V}=\frac{H^{2}}{2} i-A+y j=A\left(\frac{1}{2} i-4 y\right)
$$

The acceleration of a fluid particle is

$$
\begin{aligned}
& \vec{a}_{p}=u \frac{2 \vec{y}}{\partial x}+v \frac{\partial \vec{y}}{2 y}=\frac{A x^{2}}{2}(A x i-A y j)-A x y(-A x j) . \\
& \vec{a}_{p}=\frac{A^{2} x^{3}}{2} i+\frac{A^{2}+\frac{y}{2} j=\frac{A^{2}}{2}\left(x^{3} i+x^{2} y j\right)}{} .
\end{aligned}
$$

At the point (1,2)

$$
\begin{aligned}
& \vec{a}_{p}=\frac{1}{2} \times(1) \frac{1}{m^{2} s^{2}}\left[()^{3} m^{3} i+()^{2}(2) m^{3} j\right]=0.5 \hat{j}+m_{s}^{2} \text { a } \vec{a}(1,2) \\
& \left.\vec{v}=\frac{1}{2}(1)^{2} m^{2} i-(i)(2) m^{2} j\right]=0.5 \hat{i}-2 \hat{j} l_{s}
\end{aligned}
$$

The uni vector tangent to the streamline is

$$
e_{t}=\frac{\vec{j}}{\vec{J}}=\frac{0.5 i-2 j]}{\left[(0.5)^{2}+(-2)^{2}\right]^{12}}=0.243 i-0.970 j
$$

Tie unit vector normal to the streamtrie is

$$
\vec{e}_{n}=\hat{e}_{t} \times \hat{k}=(0.243 \hat{v}-0.97 \hat{j})+\hat{k}=-0.970 \hat{\imath}-0.243 \hat{j}
$$

Re normal component of acceleration is

$$
\begin{align*}
a_{n}= & -\frac{y^{2}}{R}=\vec{a} \cdot \hat{e}_{n}=(0.5 i, j) \cdot(-0.970 \hat{i}-0.243 j) \\
-\frac{v^{2}}{R} & =-0.728 \mathrm{~m} / s^{2} \\
R= & \frac{v^{2}}{0.728}=\frac{4.25 \mathrm{~m}^{2} l_{s^{2}}}{0.728} \mathrm{~m} / \mathrm{s}^{2} \tag{1,2}
\end{align*}
$$

The slope of the streamlines is gwen by

$$
\left.\frac{d y}{\alpha x}\right)_{s e}=\frac{v}{u}=\frac{-A+y}{A+12}=-\frac{2 y}{x}
$$

Rus

$$
\begin{gathered}
\frac{d y}{y}+2 \frac{d x}{x}=0 \quad \text { and } \quad \text { b } \\
x^{2} y=c
\end{gathered}
$$

The equation of the streamline through (1,2) is $t^{2} y=2$

6.36 Consider the velocity field $\vec{V}=A\left[x^{4}-6 x^{2} y^{2}+y^{4}\right] \hat{i}+$ $B\left[x^{3} y-x y^{3}\right] \hat{j} ; A=2 \mathrm{~m}^{-3} \cdot \mathrm{~s}^{-1}, B$ is a constant, and the coordinates are measured in meters. Find B for this to be an incompressible flow. Obtain the equation of the streamline through point $(x, y)=(1,2)$. Derive an algebraic expression for the acceleration of a fluid particle. Estimate the radius of curvature of the streamline at $(x, y)=(1,2)$.

Given: Velocity field

Find: Constant B for incompressible flow; Equation for streamline through (1,2); Acceleration of particle; streamline curvatur

Solution:

Basic equations $\frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}=0 \quad \vec{a}_{p}=\underbrace{\frac{D \vec{V}}{\text { of }^{\text {convective }}} \begin{array}{c}\text { acceleration }\end{array} \quad \frac{\partial \vec{V}}{\partial x}+v \frac{\partial \vec{V}}{\partial y}+w \frac{\partial \vec{V}}{\partial z}}_{\begin{array}{c}\text { total } \\ \text { acceleration } \\ \text { of particle }\end{array}}+\underbrace{\text { acceleration }}_{\text {local }}$ at
For this flow $\quad u(x, y)=A \cdot\left(x^{4}-6 \cdot x^{2} \cdot y^{2}+y^{4}\right) \quad v(x, y)=B \cdot\left(x^{3} \cdot y-x \cdot y^{3}\right)$
$\frac{\partial}{\partial x} u(x, y)+\frac{\partial}{\partial y} v(x, y)=\frac{\partial}{\partial x}\left[A \cdot\left(x^{4}-6 \cdot x^{2} \cdot y^{2}+y^{4}\right)\right]+\frac{\partial}{\partial y}\left[B \cdot\left(x^{3} \cdot y-x \cdot y^{3}\right)\right]=0$
$\frac{\partial}{\partial x} u(x, y)+\frac{\partial}{\partial y} v(x, y)=B \cdot\left(x^{3}-3 \cdot x \cdot y^{2}\right)+A \cdot\left(4 \cdot x^{3}-12 \cdot x \cdot y^{2}\right)=(4 \cdot A+B) \cdot x \cdot\left(x^{2}-3 \cdot y^{2}\right)=0$
Hence $B=-4 \cdot A$

$$
B=-8 \frac{1}{\mathrm{~m}^{3} \cdot \mathrm{~s}}
$$

Hence for a_{x}

$$
\begin{aligned}
a_{x}=u \cdot \frac{\partial}{\partial x} u+v \cdot \frac{\partial}{\partial y} u & =A \cdot\left(x^{4}-6 \cdot x^{2} \cdot y^{2}+y^{4}\right) \cdot \frac{\partial}{\partial x}\left[A \cdot\left(x^{4}-6 \cdot x^{2} \cdot y^{2}+y^{4}\right)\right]+\left[-4 \cdot A \cdot\left(x^{3} \cdot y-x \cdot y^{3}\right)\right] \cdot \frac{\partial}{\partial y}\left[A \cdot\left(x^{4}-6 \cdot x^{2} \cdot y^{2}+y^{4}\right)\right] \\
a_{x} & =4 \cdot A^{2} \cdot x \cdot\left(x^{2}+y^{2}\right)^{3}
\end{aligned}
$$

For a_{y}

$$
\begin{aligned}
& \qquad \begin{array}{l}
a_{y}=u \cdot \frac{\partial}{\partial x} v+v \cdot \frac{\partial}{\partial y} v \\
=A \cdot\left(x^{4}-6 \cdot x^{2} \cdot y^{2}+y^{4}\right) \cdot \frac{\partial}{\partial x}\left[-4 \cdot A \cdot\left(x^{3} \cdot y-x \cdot y^{3}\right)\right]+\left[-4 \cdot A \cdot\left(x^{3} \cdot y-x \cdot y^{3}\right)\right] \cdot \frac{\partial}{\partial y}\left[-4 \cdot A \cdot\left(x^{3} \cdot y-x \cdot y^{3}\right)\right] \\
\text { For a streamline } \quad \frac{d y}{d x}
\end{array}=\frac{v}{u} \quad \text { so } \quad \frac{d y}{d x}=\frac{-4 \cdot A \cdot\left(x^{3} \cdot y \cdot\left(x^{2}+y^{2}\right)^{3}\right.}{A \cdot\left(x^{4}-6 \cdot x^{2} \cdot y^{2}+y^{3}\right)}=-\frac{4 \cdot\left(x^{3} \cdot y-x \cdot y^{3}\right)}{\left(x^{4}-6 \cdot x^{2} \cdot y^{2}+y^{4}\right)} \\
& \text { Let } \quad u=\frac{y}{x} \quad \frac{d u}{d x}=\frac{d\left(\frac{y}{x}\right)}{d x}=\frac{1}{x} \cdot \frac{d y}{d x}+y \cdot \frac{d\left(\frac{1}{x}\right)}{d x}=\frac{1}{x} \cdot \frac{d y}{d x}-s \theta^{x^{2}} \quad \frac{d y}{d x}=x \cdot \frac{d u}{d x}+u
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \frac{d y}{d x}=x \cdot \frac{d u}{d x}+u=-\frac{4 \cdot\left(x^{3} \cdot y-x \cdot y^{3}\right)}{\left(x^{4}-6 \cdot x^{2} \cdot y^{2}+y^{4}\right)}=-\frac{4 \cdot\left(1-u^{2}\right)}{\left(\frac{1}{u}-6 \cdot u+u^{3}\right)} u+\frac{4 \cdot\left(1-u^{2}\right)}{\left(\frac{1}{u}-6 \cdot u+u^{3}\right)} \\
& x \cdot \frac{d u}{d x}=-\left[u+\frac{4 \cdot\left(1-u^{2}\right)}{\left(\frac{1}{u}-6 \cdot u+u^{3}\right)}\right]=-\frac{u \cdot\left(u^{4}-10 \cdot u^{2}+5\right)}{u^{4}-6 \cdot u^{2}+1}
\end{aligned}
$$

Separating variables

$$
\begin{array}{ll}
\frac{d x}{x}=-\frac{u^{4}-6 \cdot u^{2}+1}{u \cdot\left(u^{4}-10 \cdot u^{2}+5\right)} \cdot d u & \ln (x)=-\frac{1}{5} \cdot \ln \left(u^{5}-10 \cdot u^{3}+5 \cdot u\right)+C \\
\left(u^{5}-10 \cdot u^{3}+5 \cdot u\right) \cdot x^{5}=c & y^{5}-10 \cdot y^{3} \cdot x^{2}+5 \cdot y \cdot x^{4}=\text { const }
\end{array}
$$

For the streamline through $(1,2)$

$$
y^{5}-10 \cdot y^{3} \cdot x^{2}+5 \cdot y \cdot x^{4}=-38
$$

Note that it would be MUCH easier to use the stream function method here!
To find the radius of curvature we use $\quad a_{n}=-\frac{V^{2}}{R} \quad$ or $\quad|R|=\frac{V^{2}}{a_{n}}$
We need to find the component of acceleration normal to the velocity vector
At $(1,2)$ the velocity vector is at angle $\quad \theta_{\text {vel }}=\operatorname{atan}\left(\frac{v}{u}\right)=\operatorname{atan}\left[-\frac{4 \cdot\left(x^{3} \cdot y-x \cdot y^{3}\right)}{\left(x^{4}-6 \cdot x^{2} \cdot y^{2}+y^{4}\right)}\right]$

$$
\theta_{\mathrm{vel}}=\operatorname{atan}\left[-\frac{4 \cdot(2-8)}{1-24+16}\right] \quad \theta_{\mathrm{vel}}=-73.7 \cdot \mathrm{deg}
$$

At $(1,2)$ the acceleration vector is at $\quad \theta_{\text {accel }}=\operatorname{atan}\left(\frac{a y}{a_{x}}\right)=\operatorname{atan}\left[\frac{4 \cdot A^{2} \cdot y \cdot\left(x^{2}+y^{2}\right)^{3}}{4 \cdot A^{2} \cdot x \cdot\left(x^{2}+y^{2}\right)^{3}}\right]=\operatorname{atan}\left(\frac{y}{x}\right)$
angle

$$
\theta_{\text {accel }}=\operatorname{atan}\left(\frac{2}{1}\right) \quad \theta_{\text {accel }}=63.4 \cdot \mathrm{deg}
$$

Hence the angle between the acceleration and velocity vectors is
The component of acceleration normal to the velocity is then

$$
\Delta \theta=\theta_{\mathrm{accel}}-\theta_{\mathrm{vel}}
$$

$\Delta \theta=137 \cdot \mathrm{deg}$

$$
a_{n}=a \cdot \sin (\Delta \theta) \quad \text { where }
$$

$$
a=\sqrt{a_{x}^{2}+a_{y}^{2}}
$$

At (1,2)

Then

$$
\begin{aligned}
& a_{x}=4 \cdot A^{2} \cdot x \cdot\left(x^{2}+y^{2}\right)^{3}=500 \cdot m^{7} \times A^{2}=500 \cdot m^{7} \times\left(\frac{2}{m^{3} \cdot s}\right)^{2}=2000 \cdot \frac{m}{s^{2}} \\
& a_{y}=4 \cdot A^{2} \cdot y \cdot\left(x^{2}+y^{2}\right)^{3}=1000 \cdot m^{7} \times A^{2}=1000 \cdot m^{7} \times\left(\frac{2}{m^{3} \cdot s}\right)^{2}=4000 \cdot \frac{m}{s^{2}} \\
& a=\sqrt{2000^{2}+4000^{2}} \cdot \frac{\mathrm{~m}}{\mathrm{~s}^{2}} \quad a=4472 \frac{\mathrm{~m}}{\mathrm{~s}^{2}} \quad a_{n}=\mathrm{a} \cdot \sin (\Delta \theta) \quad a_{n}=3040 \frac{\mathrm{~m}}{\mathrm{~s}^{2}} \\
& u=A \cdot\left(x^{4}-6 \cdot x^{2} \cdot y^{2}+y^{4}\right)=-14 \cdot \frac{m}{s} \quad v=B \cdot\left(x^{3} \cdot y-x \cdot y^{3}\right)=48 \cdot \frac{m}{s} \quad V=\sqrt{u^{2}+v^{2}}=50 \cdot \frac{m}{s} \\
& |\mathrm{R}|=\frac{\mathrm{V}^{2}}{\mathrm{a}_{\mathrm{n}}} \quad \mathrm{R}=\left(50 \cdot \frac{\mathrm{~m}}{\mathrm{~s}}\right)^{2} \times \frac{1}{3040} \cdot \frac{\mathrm{~s}^{2}}{\mathrm{~m}} \\
& \mathrm{R}=0.822 \mathrm{~m}
\end{aligned}
$$

Problem 6.37

6.37 Water flows at a speed of $10 \mathrm{ft} / \mathrm{s}$. Calculate the dynamic pressure of this flow. Express your answer in in. of mercury.

Given: Water at speed $10 \mathrm{ft} / \mathrm{s}$

Find: Dynamic pressure in in. Hg

Solution:

Basic equation $\quad P_{\text {dynamic }}=\frac{1}{2} \cdot \rho \cdot \mathrm{~V}^{2} \quad \mathrm{p}=\rho_{\mathrm{Hg}} \cdot g \cdot \Delta \mathrm{~h}=\mathrm{SG}_{\mathrm{Hg}} \cdot \rho \cdot \mathrm{g} \cdot \Delta \mathrm{h}$

Hence

$$
\begin{aligned}
& \Delta \mathrm{h}=\frac{\rho \cdot \mathrm{V}^{2}}{2 \cdot \mathrm{SG}_{\mathrm{Hg}} \cdot \rho \cdot \mathrm{~g}}=\frac{\mathrm{V}^{2}}{2 \cdot \mathrm{SG}_{\mathrm{Hg}} \cdot \mathrm{~g}} \\
& \Delta \mathrm{~h}=\frac{1}{2} \times\left(10 \cdot \frac{\mathrm{ft}}{\mathrm{~s}}\right)^{2} \times \frac{1}{13.6} \times \frac{\mathrm{s}^{2}}{32.2 \cdot \mathrm{ft}} \times \frac{12 \cdot \mathrm{in}}{1 \cdot \mathrm{ft}} \quad \Delta \mathrm{~h}=1.37 \cdot \mathrm{in}
\end{aligned}
$$

Given: standard air
Find: Dynamic pressure that corresponds to $V=100 \mathrm{~km} / \mathrm{hr}$
Solution: Dynamic pressure is $p_{d y n}=\frac{1}{2} \rho V^{2}$
For $s t a n d a r d$ air, $\rho=1.23 \mathrm{~kg} / \mathrm{m}^{3}$
Then $P_{d y n}=\frac{1}{2} \times 1.23 \frac{\mathrm{~kg}}{\mathrm{~m}^{3}} \times(100)^{2} \frac{(\mathrm{~km})^{2}}{(\mathrm{hr})^{2}} \times(1000)^{2} \mathrm{~m}^{2} \times \frac{(\mathrm{hr})^{2}}{(\mathrm{~km})^{2}} \times \frac{\mathrm{N} \cdot \mathrm{J}^{2}}{(300)^{2} \mathrm{~s}^{2}}$

$$
p_{d e n}=475 \mathrm{~N} / \mathrm{m}^{2}
$$

pron
This may be expressed conveniently as a water column height.

$$
P_{d y n}=\rho_{\text {water }} g^{h} h_{y n}
$$

$$
\begin{aligned}
& h_{d y n}=\frac{p_{d y n}}{\rho_{w} g}=475 \frac{\mathrm{~N}}{\mathrm{~m}^{2}} \times \frac{\mathrm{m}^{3}}{999 \mathrm{~kg}} \times \frac{\mathrm{s}^{2}}{9.81 \mathrm{~m}} \times \frac{\mathrm{kg} \cdot \mathrm{~m}}{\mathrm{~N} \cdot \mathrm{~s}^{2}} \\
& h_{d_{y n}}=0.0484 \mathrm{~m} \text { or } 48.4 \mathrm{~mm}
\end{aligned}
$$

6.39 You present your open hand out of the window of an automobile perpendicular to the airflow. Assuming for simplicity that the air pressure on the entire front surface is stagnation pressure (with respect to automobile coordinates), with atmospheric pressure on the rear surface, estimate the net force on your hand when driving at (a) 30 mph and (b) 60 mph . Do these results roughly correspond with your experience? Do the simplifications tend to make the calculated force an over- or underestimate?

Given: Velocity of automobile

Find: Estimates of aerodynamic force on hand

Solution:

For air

$$
\rho=0.00238 \cdot \frac{\text { slug }}{\mathrm{ft}^{3}}
$$

We need an estimate of the area of a typical hand. Personal inspection indicates that a good approximation is a square of sides 9 cm and 17 cm

$$
A=9 \cdot \mathrm{~cm} \times 17 \cdot \mathrm{~cm} \quad A=153 \mathrm{~cm}^{2}
$$

The governing equation is the Bernoulli equation (in coordinates attached to the vehicle)

$$
\mathrm{p}_{\mathrm{atm}}+\frac{1}{2} \cdot \rho \cdot \mathrm{v}^{2}=\mathrm{p}_{\mathrm{stag}}
$$

where V is the free stream velocity
Hence, for $p_{\text {stag }}$ on the front side of the hand, and $p_{\text {atm }}$ on the rear, by assumption,

$$
\mathrm{F}=\left(\mathrm{p}_{\mathrm{stag}}-\mathrm{p}_{\mathrm{atm}}\right) \cdot \mathrm{A}=\frac{1}{2} \cdot \rho \cdot \mathrm{~V}^{2} \cdot \mathrm{~A}
$$

(a)

$$
\mathrm{V}=30 \cdot \mathrm{mph}
$$

$$
\mathrm{F}=\frac{1}{2} \cdot \rho \cdot \mathrm{~V}^{2} \cdot \mathrm{~A}=\frac{1}{2} \times 0.00238 \cdot \frac{\mathrm{slug}}{\mathrm{ft}^{3}} \times\left(30 \cdot \mathrm{mph} \cdot \frac{22 \cdot \frac{\mathrm{ft}}{\mathrm{~s}}}{15 \cdot \mathrm{mph}}\right)^{2} \times 153 \cdot \mathrm{~cm}^{2} \times\left(\frac{\frac{1}{12} \cdot \mathrm{ft}}{2.54 \cdot \mathrm{~cm}}\right)^{2} \quad \mathrm{~F}=0.379 \mathrm{lbf}
$$

(b)

$$
\mathrm{V}=60 \cdot \mathrm{mph}
$$

$$
\mathrm{F}=\frac{1}{2} \cdot \rho \cdot \mathrm{~V}^{2} \cdot \mathrm{~A}=\frac{1}{2} \times 0.00238 \cdot \frac{\mathrm{slug}}{\mathrm{ft}^{3}} \times\left(60 \cdot \mathrm{mph} \cdot \frac{22 \cdot \frac{\mathrm{ft}}{\mathrm{~s}}}{15 \cdot \mathrm{mph}}\right)^{2} \times 153 \cdot \mathrm{~cm}^{2} \times\left(\frac{\frac{1}{12} \cdot \mathrm{ft}}{2.54 \cdot \mathrm{~cm}}\right)^{2}
$$

$$
\mathrm{F}=1.52 \mathrm{lbf}
$$

Problem 6.40

6.40 A jet of air from a nozzle is blown at right angles against a wall in which two pressure taps are located. A manometer connected to the tap directly in front of the jet shows a head of 0.15 in . of mercury above atmospheric. Determine the approximate speed of the air leaving the nozzle if it is at $50^{\circ} \mathrm{F}$ and 14.7 psia . At the second tap a manometer indicates a head of 0.10 in . of mercury above atmospheric; what is the approximate speed of the air there?

Given: Air jet hitting wall generating pressures

Find: Speed of air at two locations

Solution:

Basic equation $\quad \frac{\mathrm{p}}{\rho_{\text {air }}}+\frac{\mathrm{V}^{2}}{2}+\mathrm{g} \cdot \mathrm{z}=$ const $\quad \rho_{\text {air }}=\frac{\mathrm{p}}{\mathrm{R}_{\mathrm{air}} \mathrm{T}} \quad \Delta \mathrm{p}=\rho_{\mathrm{Hg}} \cdot \mathrm{g} \cdot \Delta \mathrm{h}=\mathrm{SG}_{\mathrm{Hg}} \cdot \rho \cdot \mathrm{g} \cdot \Delta \mathrm{h}$

Assumptions: 1) Incompressible flow 2) Inviscid 3) Steady 4) Along a streamline
Hence, applying Bernoulli between the jet and where it hits the wall directly
$\frac{\mathrm{p}_{\text {atm }}}{\rho_{\text {air }}}+\frac{\mathrm{V}_{\mathrm{j}}^{2}}{2}=\frac{\mathrm{p}_{\text {wall }}}{\rho_{\text {air }}} \quad \quad \mathrm{p}_{\text {wall }}=\frac{\rho_{\text {air }} \cdot \mathrm{V}_{\mathrm{j}}^{2}}{2} \quad$ (working in gage pressures)
For air

$$
\rho_{\mathrm{air}}=14.7 \cdot \frac{\mathrm{lbf}}{\mathrm{in}^{2}} \times \frac{144 \cdot \mathrm{in}^{2}}{1 \cdot \mathrm{ft}^{2}} \times \frac{\mathrm{lbm} \cdot \mathrm{R}}{53.33 \cdot \mathrm{ft} \cdot \mathrm{lbf}} \times \frac{1 \cdot \mathrm{slug}}{32.2 \cdot \mathrm{lbm}} \times \frac{1}{(50+460) \cdot \mathrm{R}} \quad \rho_{\mathrm{air}}=2.42 \times 10^{-3} \frac{\mathrm{slug}}{\mathrm{ft}^{3}}
$$

Hence

$$
\mathrm{p}_{\mathrm{wall}}=\mathrm{SG}_{\mathrm{Hg}} \cdot \rho \cdot \mathrm{~g} \cdot \Delta \mathrm{~h}=\frac{\rho_{\mathrm{air}} \cdot \mathrm{~V}_{\mathrm{j}}^{2}}{2} \quad \text { so } \quad \mathrm{V}_{\mathrm{j}}=\sqrt{\frac{2 \cdot \mathrm{SG}_{\mathrm{Hg}} \cdot \rho \cdot \mathrm{~g} \cdot \Delta \mathrm{~h}}{\rho_{\mathrm{air}}}}
$$

Hence

$$
\mathrm{V}_{\mathrm{j}}=\sqrt{2 \times 13.6 \times 1.94 \cdot \frac{\text { slug }}{\mathrm{ft}^{3}} \times \frac{1}{2.42 \times 10^{-3}} \cdot \frac{\mathrm{ft}^{3}}{\operatorname{slug}} \times 32.2 \cdot \frac{\mathrm{ft}}{\mathrm{~s}^{2}} \times 0.15 \cdot \mathrm{in} \times \frac{1 \mathrm{ft}}{12 \cdot \mathrm{in}}} \quad \quad \mathrm{~V}_{\mathrm{j}}=93.7 \frac{\mathrm{ft}}{\mathrm{~s}}
$$

Repeating the analysis for the second point

$$
\begin{array}{ll}
\frac{\mathrm{p}_{\mathrm{atm}}}{\rho_{\mathrm{air}}}+\frac{\mathrm{V}_{\mathrm{j}}^{2}}{2}=\frac{\mathrm{p}_{\text {wall }}}{\rho_{\text {air }}}+\frac{\mathrm{V}^{2}}{2} \\
\text { Hence } \quad \mathrm{V}=\sqrt{\mathrm{V}_{\mathrm{j}}^{2}-\frac{2 \cdot \mathrm{p}_{\mathrm{wall}}}{\rho_{\mathrm{air}}}}=\sqrt{\mathrm{V}_{\mathrm{j}}^{2}-\frac{2 \cdot \mathrm{SG} \mathrm{Hg} \cdot \rho \cdot \mathrm{~g} \cdot \Delta \mathrm{~h}}{\rho_{\mathrm{air}}}} \\
\left(93.7 \cdot \frac{\mathrm{ft}}{\mathrm{~s}}\right)^{2}-2 \times 13.6 \times 1.94 \cdot \frac{\mathrm{slug}}{\mathrm{ft}^{3}} \times \frac{1}{2.42 \times 10^{-3}} \cdot \frac{\mathrm{ft}}{\mathrm{slug}} \times 32.2 \cdot \frac{\mathrm{ft}}{\mathrm{~s}^{2}} \times 0.1 \cdot \mathrm{in} \times \frac{1 \mathrm{ft}}{12 \cdot \mathrm{in}} & V=54.1 \frac{\mathrm{ft}}{\mathrm{~s}}
\end{array}
$$

Given: Pitt static probe is used to measure speed in standard air.

$$
V=100 n l_{s}
$$

Find: Manometer deflection in $\mathrm{mm} \mathrm{H}_{2} \mathrm{O}$, corresponding to given conditions.

Solution:
Manometer reads $\mathrm{P}_{0}-P$ in mn of $\mathrm{H}_{2} \mathrm{O}$.
Basic equations: $\quad \frac{P}{p}+\frac{y^{2}}{2}+g j^{2}=$ constant for flow

$$
\frac{d p}{d z}=-p g \quad \text { for manonder }
$$

Assumptions: (1) steady flow
(2) incorfessible flow
(3) flow along a streamline
(4) frictionless deceleration to Po
(5) $p=$ constant for manometer

From the Bernoulli equation

$$
\begin{gathered}
\frac{P_{0}}{P}=\frac{P}{P}+\frac{y^{2}}{2} \\
P_{0}-P=P \frac{y^{2}}{2}
\end{gathered}
$$

For the manometer, $\quad d p=-p g d z$

$$
P_{0}-p=\int_{p}^{p_{0}} d p=-p g\left(z_{2}-z_{1}\right)=p h^{\prime}
$$

Then,

$$
p_{w_{2} 0} g^{h}=p_{a r} \frac{v^{2}}{2}
$$

and

$$
h=\frac{\text { Pair }}{\text { Pure }} \frac{y^{2}}{2 g}=\frac{1.23}{999} \times(100)^{2} \frac{n^{2}}{s^{2}} \times \frac{1}{2} \times \frac{5^{2}}{9.81 m} \times \frac{10^{3} m m}{m}=628 \mathrm{~mm} .
$$

$\rightarrow+h$

Given: Wind tunnel wife inlet and test section as shown.

$$
\begin{aligned}
& U=22.5 \mathrm{nls},-P_{06}=-6.0 \mathrm{mH} t_{20} \mathrm{gg} \\
& P_{a}=99.1 \mathrm{kP} P_{a}(a b), T_{a}=23 \mathrm{c}
\end{aligned}
$$

Find: (a) Pdinanic on tumel certertoine (b) Astatic
(c) compare "static at tunnel wall with that measured at centering

Solution:
ar by definition $P_{\text {dy }}=\frac{1}{2}$ pis
Assure: (1) air thhaves as an ideal gas, and (2) incompressible four

and

$$
p_{\text {ago }}=\frac{1}{2} p 0^{2}=\frac{1}{2} \times 1.17 \frac{\mathrm{ks}}{n^{3}} \times(22.5)^{2} \frac{m^{2}}{s^{2}} \cdot \frac{A \cdot 5^{2}}{\frac{2 g}{n}}=2.96 H_{m^{2}}
$$

b) B_{y} definition $P_{0}=p_{S}+p_{\text {dy }}$

$$
\therefore f_{3}=p_{0}-p_{\text {dy }} \quad \text { where } P_{0}=-6 \text { um thogage }
$$

then

$$
\frac{\mathrm{A}^{2}}{\mathrm{~g}} \mathrm{~g}
$$

$$
\begin{aligned}
\therefore P_{s}= & P_{0}-P_{\text {dag }}=-58.5-2 a b=-355 N_{M^{2}} \text { gage } \\
& \left.\left\{\text { or } P_{3}=-36.2 \mathrm{~mm} H_{2} 0 \text { gage }\right)\right\}
\end{aligned}
$$

(c) Streamlines in the test section should be strong then in the test section the variation of static pressure is given by $\frac{\partial p}{\partial n}=0$ and $P_{\text {wall }}=P_{\text {centhertom }}$
In the contraction section the streamtures are curved The variation of static pressure normal to the streamlines is given by $\frac{\partial p}{\partial n}=p \frac{y^{2}}{R}$
and consequently the static pressure nicreases toward the contertinie, Pe. $P_{\text {wat }}$ \& Panturture

Problem 6.43
Given: Hgh-pressure hydraulic system subject to small leak Mot: jet speed of a leak $u s$ system pressure for system -pressures up to no MeD gage; explain how a hing-speed jet of hydranke fluid can cause jug t
Solution:
Basic equation: $\frac{e}{e}+\frac{y^{2}}{2}+g z=$ constant
Assumptions: (i) steady flow
(2) incompressible flow
(3) frictionless flow
(4) flow along a streamline.
the Bernoulli equation gives

$$
V=\left[\frac{2\left(p_{0}-P_{a t n}\right)}{\rho}\right]^{1 / 2}
$$

From Table A.2 (Appendix A) for lubricating oil $s 6=0.88$

The high stagnation pressure ruptures the skin causing oe jet to penetrate the tissue.

Given: Air flow in open circuit wind turrel as shown.

$$
\begin{aligned}
& P_{\text {am }}-P_{1}=45 \mathrm{~mm} H_{2} \mathrm{O} \\
& T_{0}=25 \mathrm{C} \\
& P_{0}=P_{0.2}
\end{aligned}
$$

Consider air to be neamprasible.
Find: Fir speed in tunnel at section (1)
Solution:
Basic equation: $\quad \frac{p}{p}+\frac{y^{2}}{2}+g z=$ constant
Assumptions: (i) steady flow
(2) incompressible flow
(3) frictionless flow
(4) flow along a streantire
(5) air behaves as an ideal gas
(6) stagnation pressure $=$ Palm

From the Bernoulli equation, $\quad \frac{P_{0}}{\rho}=\frac{P_{1}}{\rho}+\frac{v_{1}^{2}}{2}$

$$
\begin{aligned}
P_{0}-P_{1} & =P_{a \operatorname{lm}_{2}-P_{1}}=\frac{1}{2} P_{1}^{2} \\
V_{1} & =\left[\frac{2\left(P_{\Delta \operatorname{dn}}-P_{1}\right)}{P}\right]^{1 / 2}
\end{aligned}
$$

Pron the manometer reading. $P_{\text {aim }}-P_{1}=$ Prog h Ten

$$
*_{1}=\left[\frac{2 p_{100} g h}{\rho}\right]^{\prime_{2}}
$$

From the ideal gas equation of state

$$
\begin{aligned}
& \rho=\frac{P}{R T}=100 \times 10^{3} \frac{\mathrm{~N}}{\mathrm{~m}^{2}} \times \frac{\mathrm{gq} \cdot \mathrm{~K}}{28 \mathrm{~N} \cdot \mathrm{n}^{2}} \times \frac{1}{298 \mathrm{~K}}=\left.1.17 \mathrm{~kg}\right|_{n^{3}} \\
& v_{1}=\left[\frac{2 p_{m 0}}{\rho} g^{h}\right]^{1 / 2}=\left[2 \times \frac{999}{1.17} \times 3.81 \frac{m}{s^{2}} \times 0.045 m\right]^{1 i_{2}}=27.5 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

Given: Wheeled cart of Problem 4.123:

$$
\begin{aligned}
& V=40 \mathrm{~m} / \mathrm{s} \\
& A=25 \mathrm{~mm}^{2}
\end{aligned}
$$

water, no friction on vane, $\theta=120^{\circ}$
Vane accelerates to the right.

Find: At instant when $U=15 \mathrm{~m} / \mathrm{s}$,
(a) Stagnation pressure leaving nozzle, relative to fixed observer.
(b) Stagnation pressure leaving nozzle, relative to observer on vane.
(c) Absolute velocity of jet leaving vane.
(d) Stagnation pressure of jet leaving vane, relative to fixed observer.
(e) How would viscous forces increase, decrease, or leave unchanged the stagnation pressure in (d). How can you justify this?
Solution: Stagnation pressure is $p_{0}=p+\frac{1}{2} p V^{2}$ or $p_{0}-p=\frac{1}{2} p V^{2}$

$$
\text { At jet, } p_{0 j}=\frac{1}{2} \rho v^{2}=\frac{1}{2} \times 994 \frac{\mathrm{~kg}}{\mathrm{~m}^{3}} \times(40)^{2} \frac{\mathrm{~m}^{2}}{3^{2}} \times \frac{\mathrm{N} \cdot \mathrm{~s}^{2}}{\mathrm{~kg} \cdot \mathrm{~m}}=799 \mathrm{kPa} \text { (gage) }
$$

At cart, pore $=\frac{1}{2} \varphi(V-v)^{2}=\frac{1}{2} \times 999 \frac{\mathrm{~kg}}{\mathrm{~m}^{3}} \times(40-15)^{2} \frac{\mathrm{~m}^{2}}{s^{2}} \times \frac{\mathrm{N} \cdot \mathrm{s}^{2}}{\mathrm{~kg} \cdot \mathrm{~m}}=312 \mathrm{kPa}$ (gage) Leaving vane, $\vec{V}_{\text {abs }}=U \hat{\imath}+(v-U)(\cos \theta \hat{\imath}+\sin \theta \hat{\jmath})$

$$
\begin{aligned}
\vec{V}_{a b s} & =[U+(v-U) \cos \theta] \hat{\imath}+(v-U) \sin \theta \hat{\jmath} \\
& =\left[15 \frac{m}{s}+(40-15) \frac{m}{s} \times\left(-\frac{1}{2}\right)\right] \hat{\imath}+(40-15) \frac{\mathrm{m}}{\mathrm{~s}} \times 0.866 \hat{\jmath} \\
\vec{V}_{a b s} & =2.5 \hat{c}+21.7 \hat{\mathrm{~m}} / \mathrm{s}
\end{aligned}
$$

\qquad
e) $p_{0, r e l}$

The magnitude $\left|\vec{V}_{a b s}\right|=\left[(2.5)^{2}+(21.7)^{2}\right]^{1 / 2} \mathrm{~m} / \mathrm{s}=21.8 \mathrm{~m} / \mathrm{s}$
Leaving vane, $p_{0}=\frac{1}{2} p\left|\vec{V}_{a b s}\right|^{2}$, relative to a fixed observer. Thus

$$
p_{0, \text { fixed }}=\frac{1}{2} \times 999 \frac{\mathrm{~kg}}{m^{3}} \times(21.8)^{2} \frac{m^{2}}{\mathrm{~s}^{2}} \times \frac{\mathrm{N}^{2}}{\mathrm{~kg} \mathrm{~m}}=237 \mathrm{kPa}(\text { gage })
$$

\{The corresponding absolute pressures are 900,413 , and 338 kPa (abs). \}
Discussion: Viscous forces would slow the jet speed relative to the vane. The jet would enter the vane with relative speed ($V-U$); it would leave the vane with speed $\alpha(V-U)$, where $\alpha<1$.
Friction would reduce both components of relative velocity leaving the vane. The absolute velocity of the jet leaving the vane, as seen by a fixed observer, would decrease. Thus the stagnation pressure of the flow leaving the vane, relative to a fixed observer, would decrease.

Problem 6.46
Given: Steady flow of water through elbow and nozive as show r

$$
\begin{array}{ll}
D_{1}=0 . \mathrm{m} & V_{2}=0.05 \mathrm{n} \\
P_{2}=P_{\text {atm }} & y_{2}=20 \mathrm{~m} \mathrm{~s} \\
z_{1}=0 & Z_{2}=4 \mathrm{~m}
\end{array}
$$

Find: Gage pressure, P, P, if device were inverted
Solution: Apply corimuty to cu show r to determine V_{1}; the Bernoulli equation is then applied along a streantine from (1) be to determine P

Bose equations:

$$
\begin{aligned}
& \frac{p_{1}}{p}+\frac{h_{1}^{2}}{2}+g x^{x_{1}}=\frac{p_{2}}{p} \cdot \frac{s_{2}}{2}+g z_{2}
\end{aligned}
$$

Assur phons: is steady flow
(a) incompressible flow
(3) frictionless Row

* flow overs a stemulne

5) $P_{2 \text { gage }}=0$
b) $3=0$

From the contunty equation: $\left.0=-1 p v_{1} A_{1}\right\rangle+\left|p v_{2} A_{2}\right\rangle$
Fen,

$$
V_{1}^{2}=\left(\frac{A_{2}}{F_{1}} V_{2}^{2}=\left(\frac{V_{2}}{V_{1}}\right)^{4} V_{2}^{2}\right.
$$

From the Bernoulli equation

$$
\begin{align*}
& P_{1}=227 \operatorname{kn} \ln ^{2}=22 \text { h Pa (gage) } \tag{1}
\end{align*}
$$

If device is inverted, $z_{2}=-4 m$ with $z_{1}=0$

$$
\begin{aligned}
& P_{1}=p\left[\frac{V_{2}^{2}}{2}\left\{1-\left(\frac{y_{2}}{\nu_{1}}\right)^{4^{\prime}}+g_{z^{2}}\right]\right.
\end{aligned}
$$

$\theta_{1}=148 \ln \ln ^{2}=148$ baggage

Given: Water flow in a circular duct

$$
\begin{array}{ll}
V_{1}=0.3 \mathrm{~m} & \left.P_{1}=260 t P_{a}(g a g)\right) \quad \vec{V}_{1}=-3 k m \\
z_{1}=10 \mathrm{~m} \\
z_{2}=0 & y_{2}=0.15 \mathrm{~m}
\end{array}
$$

Frictional effects ray be neglected.
Find: Pressure, P_{2}

Solution: Apply continuity to u shown to determine V_{2}; the Bernoulli equatif is then applied along a streamline from (1) to (6) to determine p_{2} g (i)
Basic equations: $\quad 0=\frac{2}{2 x} \int_{c u} \rho^{\prime \prime}+\int_{c s} p^{\vec{u}} \cdot d \vec{A}$

$$
\frac{p_{1}}{e}+\frac{y_{2}^{2}}{2}+g z_{1}=\frac{p_{2}}{e}+\frac{y_{2}^{2}}{2}+g z^{2}
$$

Assumptions: (1) steady flow
(2) incorPressible flow
(3) frictionless flow
(4) flow along a streonline
(5) wiform flow it sections (1) and (2)

From the cortirity equation

$$
0=-\left|\rho^{*} R_{1}\right|+\left|\rho^{H_{2} q_{2}}\right\rangle
$$

Then,

$$
\psi_{2}=\frac{A_{1}}{A_{2}} V_{1}=\left(\frac{D_{1}}{D_{2}}\right)^{2} V_{1}=\left(\frac{0.3}{0.15}\right)^{2} \times 3 \frac{n}{5}=12 \mathrm{~m} l_{2}
$$

From the Bernoulli equation,

$$
\begin{aligned}
& P_{2}=P_{1}+\frac{p}{2}\left(v_{1}^{2}-v_{2}^{2}\right)+p g\left(z_{1}-z_{2}\right)
\end{aligned}
$$

$$
\begin{aligned}
& P_{2}=291 \text { ten } 1_{n}^{2}=291\left(P_{0}\right. \text { (gag). }
\end{aligned}
$$

Problem 6.48

6.48 You are on a date. Your date runs out of gas unexpectedly.

You come to your own rescue by siphoning gas from another car.
The height difference for the siphon is about 6 in . The hose diam-
eter is 1 in . What is your gasoline flow rate?
Given: Siphoning of gasoline
Find: Flow rate

Solution:

Basic equation $\quad \frac{\mathrm{p}}{\rho_{\text {gas }}}+\frac{\mathrm{V}^{2}}{2}+\mathrm{g} \cdot \mathrm{z}=$ const
Assumptions: 1) Incompressible flow 2) Inviscid 3) Steady 4) Along a streamline
Hence, applying Bernoulli between the gas tank free surface and the siphon exit

$$
\frac{\mathrm{p}_{\mathrm{atm}}}{\rho_{\mathrm{gas}}}=\frac{\mathrm{p}_{\mathrm{atm}}}{\rho_{\mathrm{gas}}}+\frac{\mathrm{v}^{2}}{2}-\mathrm{g} \cdot \mathrm{~h}
$$

where we assume the tank free surface is slowly changing so $\mathrm{V}_{\text {tank }} \ll$, and h is the difference in levels

Hence

$$
V=\sqrt{2 \cdot g \cdot h}
$$

The flow rate is then

$$
\mathrm{Q}=\mathrm{V} \cdot \mathrm{~A}=\frac{\pi \cdot \mathrm{D}^{2}}{4} \cdot \sqrt{2 \cdot \mathrm{~g} \cdot \mathrm{~h}}
$$

$$
\mathrm{Q}=\frac{\pi}{4} \times(1 \cdot \mathrm{in})^{2} \times \frac{1 \cdot \mathrm{ft}^{2}}{144 \cdot \mathrm{in}^{2}} \times \sqrt{2 \times 32.2 \frac{\mathrm{ft}}{\mathrm{~s}^{2}} \times \frac{1}{2} \cdot \mathrm{ft}} \quad \mathrm{Q}=0.0309 \frac{\mathrm{ft}^{3}}{\mathrm{~s}} \quad \mathrm{Q}=13.9 \frac{\text { gal }}{\mathrm{min}}
$$

6.49 A pipe ruptures and benzene shoots 25 ft into the air. What is the pressure inside the pipe?

Given: Ruptured pipe

Find: Pressure in tank

Solution:

Basic equation $\frac{\mathrm{p}}{\rho_{\text {ben }}}+\frac{\mathrm{V}^{2}}{2}+\mathrm{g} \cdot \mathrm{z}=$ const
Assumptions: 1) Incompressible flow 2) Inviscid 3) Steady 4) Along a streamline
Hence, applying Bernoulli between the pipe and the rise height of the benzene

$$
\frac{\mathrm{p}_{\text {pipe }}}{\rho_{\text {ben }}}=\frac{\mathrm{p}_{\mathrm{atm}}}{\rho_{\mathrm{ben}}}+\mathrm{g} \cdot \mathrm{~h} \quad \text { where we assume } \mathrm{V}_{\text {pipe }} \ll \text {, and } \mathrm{h} \text { is the rise height }
$$

Hence $\quad \mathrm{p}_{\text {pipe }}=\rho_{\mathrm{ben}} \cdot \mathrm{g} \cdot \mathrm{h}=\mathrm{SG}_{\text {ben }} \cdot \rho \cdot \mathrm{g} \cdot \mathrm{h} \quad$ where $\mathrm{p}_{\text {pipe }}$ is now the gage pressure
From Table A. $2 \quad$ SG $_{\text {ben }}=0.879$
Hence

$$
P_{\text {ben }}=0.879 \times 1.94 \cdot \frac{\mathrm{slug}}{\mathrm{ft}^{3}} \times 32.2 \cdot \frac{\mathrm{ft}}{\mathrm{~s}^{2}} \times 25 \cdot \mathrm{ft} \times \frac{\mathrm{lbf} \cdot \mathrm{~s}^{2}}{\mathrm{slugft}} \quad \mathrm{P}_{\mathrm{ben}}=1373 \frac{\mathrm{lbf}}{\mathrm{ft}^{2}} \quad \mathrm{P}_{\mathrm{ben}}=9.53 \mathrm{psi} \quad \text { (gage) }
$$

Problem 6.50

6.50 A can of Coke has a small pinhole leak in it. The Coke is being sprayed vertically in the air to a height of 20 in . What is the pressure inside the can of Coke?

Given: Ruptured Coke can

Find: Pressure in can

Solution:

Basic equation $\quad \frac{\mathrm{p}}{\rho_{\text {Coke }}}+\frac{\mathrm{V}^{2}}{2}+\mathrm{g} \cdot \mathrm{z}=$ const
Assumptions: 1) Incompressible flow 2) Inviscid 3) Steady 4) Along a streamline
Hence, applying Bernoulli between the coke can and the rise height of the coke

$$
\frac{\mathrm{P}_{\text {can }}}{\rho_{\text {Coke }}}=\frac{\mathrm{p}_{\text {atm }}}{\rho_{\text {Coke }}}+\mathrm{g} \cdot \mathrm{~h} \quad \text { where we assume } \mathrm{V}_{\text {Coke }} \ll \text {, and } \mathrm{h} \text { is the rise height }
$$

Hence

$$
\text { PCoke }=\rho_{\text {Coke }} \cdot g \cdot h=\mathrm{SG}_{\text {Coke }} \cdot \rho \cdot \mathrm{g} \cdot \mathrm{~h} \quad \text { where } \mathrm{P}_{\text {pipe }} \text { is now the gage pressure }
$$

From a web search $\quad \mathrm{SG}_{\text {DietCoke }}=1 \quad \mathrm{SG}_{\text {RegularCoke }}=1.11$
Hence $\quad \mathrm{P}_{\text {Diet }}=1 \times 1.94 \cdot \frac{\mathrm{slug}}{\mathrm{ft}^{3}} \times 32.2 \cdot \frac{\mathrm{ft}}{\mathrm{s}^{2}} \times 20 \cdot \mathrm{in} \times \frac{1 \cdot \mathrm{ft}}{12 \cdot \mathrm{in}} \times \frac{\mathrm{lbf} \cdot \mathrm{s}^{2}}{\mathrm{slugft}} \quad \quad \mathrm{p}_{\text {Diet }}=104 \cdot \frac{\mathrm{lbf}}{\mathrm{ft}^{2}} \quad \mathrm{P}_{\text {Diet }}=0.723 \cdot \mathrm{psi} \quad$ (gage)
Hence $\quad P_{\text {Regular }}=1.11 \times 1.94 \cdot \frac{\mathrm{slug}}{\mathrm{ft}^{3}} \times 32.2 \cdot \frac{\mathrm{ft}}{\mathrm{s}^{2}} \times 20 \cdot \mathrm{in} \times \frac{1 \cdot \mathrm{ft}}{12 \cdot \mathrm{in}} \times \frac{\mathrm{lbf} \cdot \mathrm{s}^{2}}{\mathrm{slugft}} \quad \mathrm{P}_{\text {Regular }}=116 \cdot \frac{\mathrm{lbf}}{\mathrm{ft}^{2}} \quad \mathrm{P}_{\text {Regular }}=0.803 \cdot \mathrm{psi}$ (gage)
6.51 The water flow rate through the siphon is $0.7 \mathrm{ft}^{3} / \mathrm{s}$, its temperature is $70^{\circ} \mathrm{F}$, and the pipe diameter is 2 in . Compute the maximum allowable height, h, so that the pressure at point A is above the vapor pressure of the water. (Assume the flow is frictionless.)

Given: Flow rate through siphon
Find: Maximum height h to avoid cavitation

Solution:

Basic equation $\quad \frac{p}{\rho}+\frac{V^{2}}{2}+g \cdot z=$ const $\quad Q=V \cdot A$
Assumptions: 1) Incompressible flow 2) Inviscid 3) Steady 4) Along a streamline
From continuity $\quad V=\frac{Q}{A}=\frac{4 \cdot Q}{\pi \cdot D^{2}} \quad V=\frac{4}{\pi} \times 0.7 \cdot \frac{\mathrm{ft}^{3}}{\mathrm{~s}} \times\left(\frac{1}{2 \cdot \mathrm{in}}\right)^{2} \times\left(\frac{12 \cdot \mathrm{in}}{1 \cdot \mathrm{ft}}\right)^{2} \quad \mathrm{~V}=32.1 \frac{\mathrm{ft}}{\mathrm{s}}$
Hence, applying Bernoulli between the free surface and point A

$$
\frac{\mathrm{p}_{\mathrm{atm}}}{\rho}=\frac{\mathrm{p}_{\mathrm{A}}}{\rho}+\mathrm{g} \cdot \mathrm{~h}+\frac{\mathrm{V}^{2}}{2} \quad \quad \text { where we assume } \mathrm{V}_{\text {Surface }} \ll
$$

Hence

$$
\mathrm{P}_{\mathrm{A}}=\mathrm{p}_{\mathrm{atm}}-\rho \cdot \mathrm{g} \cdot \mathrm{~h}-\rho \cdot \frac{\mathrm{V}^{2}}{2}
$$

From the steam tables, at $70^{\circ} \mathrm{F}$ the vapor pressure is

$$
\mathrm{p}_{\mathrm{v}}=0.363 \cdot \mathrm{psi}
$$

This is the lowest permissible value of p_{A}
Hence

$$
\mathrm{p}_{\mathrm{A}}=\mathrm{p}_{\mathrm{V}}=\mathrm{p}_{\mathrm{atm}}-\rho \cdot \mathrm{g} \cdot \mathrm{~h}-\rho \cdot \frac{\mathrm{V}^{2}}{2} \quad \text { or } \quad \mathrm{h}=\frac{\mathrm{p}_{\mathrm{atm}}-\mathrm{p}_{\mathrm{v}}}{\rho \cdot \mathrm{~g}}-\frac{\mathrm{V}^{2}}{2 \cdot g}
$$

Hence $\quad \mathrm{h}=(14.7-0.363) \cdot \frac{\mathrm{lbf}}{\mathrm{in}^{2}} \times\left(\frac{12 \cdot \mathrm{in}}{1 \cdot \mathrm{ft}}\right)^{2} \times \frac{1}{1.94} \cdot \frac{\mathrm{ft}^{3}}{\mathrm{slug}} \times \frac{\mathrm{s}^{2}}{32.2 \cdot \mathrm{ft}} \times \frac{\mathrm{slug} \cdot \mathrm{ft}}{\mathrm{lbf} \cdot \mathrm{s}^{2}}-\frac{1}{2} \times\left(32.18 \frac{\mathrm{ft}}{\mathrm{s}}\right)^{2} \times \frac{\mathrm{s}^{2}}{32.2 \cdot \mathrm{ft}} \quad \mathrm{h}=17.0 \mathrm{ft}$
6.52 Water flows from a very large tank through a 5 -cm-diameter tube. The dark liquid in the manometer is mercury. Estimate the velocity in the pipe and the rate of discharge from the tank. (Assume the flow is frictionless.)

Given: Flow through tank-pipe system
Find: Velocity in pipe; Rate of discharge

Solution:

Basic equation

$$
\frac{\mathrm{p}}{\rho}+\frac{\mathrm{V}^{2}}{2}+\mathrm{g} \cdot \mathrm{z}=\text { const } \quad \Delta \mathrm{p}=\rho \cdot \mathrm{g} \cdot \Delta \mathrm{~h} \quad \mathrm{Q}=\mathrm{V} \cdot \mathrm{~A}
$$

Assumptions: 1) Incompressible flow 2) Inviscid 3) Steady 4) Along a streamline
Hence, applying Bernoulli between the free surface and the manometer location

$$
\frac{\mathrm{p}_{\text {atm }}}{\rho}=\frac{\mathrm{p}}{\rho}-\mathrm{g} \cdot \mathrm{H}+\frac{\mathrm{V}^{2}}{2} \quad \quad \text { where we assume } \mathrm{V}_{\text {Surface }} \ll \text {, and } \mathrm{H}=4 \mathrm{~m}
$$

Hence

$$
\mathrm{p}=\mathrm{p}_{\mathrm{atm}}+\rho \cdot \mathrm{g} \cdot \mathrm{H}-\rho \cdot \frac{\mathrm{V}^{2}}{2}
$$

For the manometer

$$
\mathrm{p}-\mathrm{p}_{\mathrm{atm}}=\mathrm{SG}_{\mathrm{Hg}} \cdot \rho \cdot \mathrm{~g} \cdot \mathrm{~h}_{2}-\rho \cdot \mathrm{g} \cdot \mathrm{~h}_{1}
$$

Note that we have water on one side and mercury on the other of the manometer

Combining equations

$$
\rho \cdot g \cdot \mathrm{H}-\rho \cdot \frac{\mathrm{V}^{2}}{2}=\mathrm{SG}_{\mathrm{Hg}} \cdot \rho \cdot \mathrm{~g} \cdot \mathrm{~h}_{2}-\rho \cdot \mathrm{g} \cdot \mathrm{~h}_{1} \quad \text { or }
$$

Hence

$$
\mathrm{V}=\sqrt{2 \times 9.81 \cdot \frac{\mathrm{~m}}{\mathrm{~s}^{2}} \times(4-13.6 \times 0.15+0.75) \cdot \mathrm{m}}
$$

$$
\mathrm{V}=\sqrt{2 \cdot \mathrm{~g} \cdot\left(\mathrm{H}-\mathrm{SG}_{\mathrm{Hg}} \cdot \mathrm{~h}_{2}+\mathrm{h}_{2}\right)}
$$

$$
\mathrm{Q}=\mathrm{V} \cdot \frac{\pi \cdot \mathrm{D}^{2}}{4}
$$

$$
\mathrm{Q}=\frac{\pi}{4} \times 7.29 \cdot \frac{\mathrm{~m}}{\mathrm{~s}} \times(0.05 \cdot \mathrm{~m})^{2} \quad \mathrm{Q}=0.0143 \frac{\mathrm{~m}^{3}}{\mathrm{~s}}
$$

Given: Liquid stream leaving a nozzle pointing downward as
Assume uniform flow Neglect friction
Find: Variation in $y^{\text {et }}$ area for $z^{\prime} z$ o

Solution

Baric equations: $\quad \frac{p_{2}}{p}+\frac{N_{2}^{2}}{2}+g_{3}=\frac{p}{p}+\frac{y^{2}}{2}+g z$

$$
0=\frac{\partial}{\partial t} \int_{N} e^{d t}+\int_{c s} p^{\psi} \cdot d \vec{H}
$$

Assumptions: (1) steady flow
(2) incompressible flow
(3) frictionless flow
(4) flow along a streamline
(5) $p=P_{1}=p$ atm
(b) wiform flow al a section

From the bernoulli equation

$$
v^{2}=v_{1}^{2}+2 g(z,-z)
$$

From the continuity equation

$$
\left.o=\int p \vec{v} \cdot d \vec{F}=-\left\{\mid p N_{1} A_{1}\right\}\right\}+\{|p v A|\}
$$

and

$$
V, A_{1}=V A \text { or } V=V \cdot \frac{A_{1}}{A}
$$

Thus

$$
V_{1}^{2}\left(\frac{A_{1}}{A}\right)^{2}=V_{1}^{2}+2 g\left(z_{1}-z\right)
$$

Solving for A,

$$
A=A_{1} \sqrt{\frac{1}{1+\frac{2 g(z,-z)}{V_{1}^{2}}}}
$$

\{Nole: jet area decreases as z decreases, owing to the higher velocity\} , ~

Given: water flow between parallel dicks discharging to atmosphere shown.
Find: (a) theoretical static pressure between the disks at
 $r=50 \mathrm{~mm}$
(b) in actual laboratory situation, would the in actual laboratory situation w puked the
pressure be above or below the tiedical
value?

Solution:
Basic equations:

$$
\begin{aligned}
& o=\frac{\partial}{\partial t} \int_{c u} p d t+C_{C S} \vec{p} \cdot \overrightarrow{d p} \\
& p_{1}+v_{\frac{1}{2}}^{2}+g_{J}=\frac{p_{2}}{p}+\frac{v^{2}}{\frac{2}{2}}+g z^{2}
\end{aligned}
$$

Assumptions: (1) steady flow
(2) incompressible flow
(3) flow along a streamline
(4) neglect fretion
(5) perform flow at each section

$$
\begin{aligned}
& \text { Apply contimity to the ct stowe } \\
& 0=\left\{-i n+\{p t r 2 \pi r h\} \text { so } t=\frac{\text { in }}{2 \pi p r h}\right. \\
& V_{1}=v_{\text {r-50mm }}=\frac{1}{2 \pi} \times 0.305 \frac{\mathrm{~kg}}{5} \times \frac{n^{3}}{999 \mathrm{~kg}} \times \frac{1}{0.050 n} \times \frac{1}{8 \times 0 \mathrm{~m}}=1.21 \mathrm{mb} \\
& \left.V_{2}=V_{r=e}=\frac{1}{2 \pi}+0.305 \frac{\lg _{5}}{5} \times \frac{\mathrm{m}^{3}}{9996} \times \frac{1}{0.015 \mathrm{~m}} \times \frac{1}{8 \times 10^{-4} \mathrm{~m}}=0.810 \mathrm{~m}\right]_{0}
\end{aligned}
$$

From the Bernoulli equation

$$
\begin{aligned}
& p_{1}-p_{2}=p_{r=s \mathrm{som}}-p_{\text {au }}=\frac{1}{2} p^{\nu_{2}^{2}}-\frac{1}{2} p^{v_{1}}=\frac{p_{2}}{2}\left(\nu_{2}^{2}-v_{1}^{2}\right) \\
& P_{r=50 \mathrm{~m}}=\frac{1}{2} \times 999 \frac{\mathrm{gg}}{r^{3}}\left[(0.810)^{2}-(1.21)^{2}\right] \frac{n^{2}}{s^{2}} \times \frac{N . s^{2}}{\frac{8 g}{g} \cdot n} \\
& P_{r=50 \mathrm{~mm}}=-404 \mathrm{~N} \mathrm{~m}^{2}(\text { gage }) \times \quad-P_{r=50 \mathrm{~mm}}
\end{aligned}
$$

Friction would cause a pressure drop in the flow direction. Since the discharge pressure is fined at Path, the measured pressure would be greater than fie theoretical value

Problem 6.55

6.55 Consider steady, frictionless, incompressible flow of air over the wing of an airplane. The air approaching the wing is at 75 kPa (gage), $4^{\circ} \mathrm{C}$, and has a speed of $60 \mathrm{~m} / \mathrm{s}$ relative to the wing. At a certain point in the flow, the pressure is 3 kPa (gage). Calculate the speed of the air relative to the wing at this point.

Given: Air flow over a wing
Find: \quad Air speed relative to wing at a point

Solution:

Basic equation

$$
\frac{\mathrm{p}}{\rho}+\frac{\mathrm{V}^{2}}{2}+\mathrm{g} \cdot \mathrm{z}=\text { const } \quad \mathrm{p}=\rho \cdot \mathrm{R} \cdot \mathrm{~T}
$$

Assumptions: 1) Incompressible flow 2) Inviscid 3) Steady 4) Along a streamline
Hence, applying Bernoulli between the upstream point (1) and the point on the wing (2)

$$
\frac{\mathrm{p}_{1}}{\rho}+\frac{\mathrm{V}_{1}^{2}}{2}=\frac{\mathrm{p}_{2}}{\rho}+\frac{\mathrm{V}_{2}^{2}}{2} \quad \quad \text { where we ignore gravity effects }
$$

Hence

For air

Then

$$
\mathrm{V}_{2}=\sqrt{\mathrm{V}_{1}{ }^{2}+2 \cdot \frac{\left(\mathrm{p}_{1}-\mathrm{p}_{2}\right)}{\rho}}
$$

or

$$
\begin{array}{ll}
\rho=\frac{\mathrm{p}}{\mathrm{R} \cdot \mathrm{~T}} \quad \rho=(75+101) \times 10^{3} \cdot \frac{\mathrm{~N}}{\mathrm{~m}^{2}} \times \frac{\mathrm{kg} \cdot \mathrm{~K}}{286.9 \cdot \mathrm{~N} \cdot \mathrm{~m}} \times \frac{1}{(4+273) \cdot \mathrm{K}} & \rho=2.21 \frac{\mathrm{~kg}}{\mathrm{~m}^{3}} \\
\mathrm{~V}=\sqrt{\left(60 \cdot \frac{\mathrm{~m}}{\mathrm{~s}}\right)^{2}+2 \times \frac{\mathrm{m}^{3}}{2.21 \cdot \mathrm{~kg}} \times(75-3) \times 10^{3} \cdot \frac{\mathrm{~N}}{\mathrm{~m}^{2}} \times \frac{\mathrm{kg} \cdot \mathrm{~m}}{\mathrm{~N} \cdot \mathrm{~s}^{2}}} & \mathrm{~V}=262 \frac{\mathrm{~m}}{\mathrm{~s}}
\end{array}
$$

NOTE: At this speed, significant density changes will occur, so this result is not very realistic

Given: Mercury barometer carried in car on windless day.
outside: $T=20^{\circ} \mathrm{C}, h_{\text {bar }}=761 \mathrm{mmHg}$ (corrected)
Inside: $V=105 \mathrm{~km} / \mathrm{hr}$, window open, $h_{\text {tar }}=756 \mathrm{~mm}$ th
Find: (a) Explain what is happening.
(b) Local speed of air flow past window, relative to car.

Solution: (a) Air speed relative to car is higher than in the freestream, thus towering the pressure at window.
(b) Apply the Bernoulli equation in frame seen by an observer or the car:
Basic equation: $\frac{p_{1}}{\rho}+\frac{v_{1}^{2}}{z}+g z_{1}=\frac{p_{2}}{\rho}+\frac{v_{2}^{2}}{z}+g z_{2}$
Assumptions: (1) Steady flow (seen by observer on car)
(2) Incompressible frow
(3) Neglect friction
(4) Flow along a stream line
(5) Neglect Δz

Then

$$
\begin{equation*}
v_{2}^{2}=\left[v_{1}^{2}+2\left(\frac{p_{1}-p_{2}}{\rho}\right)\right] \text { or } v_{2}=\left[v_{1}^{2}+\frac{2\left(\frac{p_{1}-p_{2}}{\rho}\right)}{\rho}\right]^{\frac{1}{2}} \tag{1}
\end{equation*}
$$

From fluid statics

$$
\begin{aligned}
p_{1}-p_{2} & =\rho g\left(h_{1}-h_{2}\right)=S G\left(H_{20} g \Delta h\right. \\
& =13.6 \times 1000 \frac{\mathrm{~kg}}{\mathrm{~m}^{3}} \times 9.81 \frac{\mathrm{~m}}{\mathrm{~s}^{2}} \times 0.005 m_{\times} \frac{\mathrm{Ns} \mathrm{~s}^{2}}{\mathrm{~kg} \cdot \mathrm{~m}} \\
p_{1}-p_{2} & =667 \mathrm{~N} / \mathrm{m}^{2}
\end{aligned}
$$

and from ileal gas

$$
\begin{aligned}
& \rho=\frac{\rho}{R T}=13.6 \times 1000 \frac{\mathrm{~kg}}{\mathrm{~m}^{3}} \times 9.81 \frac{\mathrm{~m}}{\mathrm{~s}^{2}} \times 0.761 \mathrm{~m} \times \frac{\mathrm{kg} \cdot \mathrm{~K}}{287 \mathrm{~N} \cdot \mathrm{~m}} \times \frac{1}{(723+20) \mathrm{K}} \times \frac{\mathrm{N} \cdot \mathrm{~s}^{2}}{\mathrm{~kg} \cdot \mathrm{~m}} \\
& \rho=1.21 \mathrm{~kg} / \mathrm{m}^{3}
\end{aligned}
$$

Substituting into Eg. 1

$$
V_{I}=\left[\left(105 \frac{\mathrm{~km}}{\mathrm{hr}} \times 1000 \frac{\mathrm{~m}}{\mathrm{~km}} \times \frac{\mathrm{hr}}{3600 \mathrm{~s}}\right)^{2}+2,667 \frac{\mathrm{~N}}{\mathrm{~m}^{2}} \times \frac{\mathrm{m}^{2}}{1,21 \mathrm{~kg}} \times \frac{\mathrm{kg} \cdot \mathrm{~m}}{\mathrm{~N} \cdot \mathrm{~s}^{2}}\right]^{1 / 2}
$$

$V_{2}=44.2 \mathrm{~m} / \mathrm{s}$ ($159 \mathrm{~km} / \mathrm{hr}$) relative to car

Problem 6.57

6.57 A fire nozzle is coupled to the end of a hose with inside diameter $D=3 \mathrm{in}$. The nozzle is contoured smoothly and has outlet diameter $d=1 \mathrm{in}$. The design inlet pressure for the nozzle is $p_{1}=100$ psi (gage). Evaluate the maximum flow rate the nozzle could deliver.

Given: Flow through fire nozzle
Find: Maximum flow rate

Solution:

Basic equation

$$
\frac{\mathrm{p}}{\rho}+\frac{\mathrm{V}^{2}}{2}+\mathrm{g} \cdot \mathrm{z}=\text { const } \quad \mathrm{Q}=\mathrm{V} \cdot \mathrm{~A}
$$

Assumptions: 1) Incompressible flow 2) Inviscid 3) Steady 4) Along a streamline
Hence, applying Bernoulli between the inlet (1) and exit (2)

$$
\frac{\mathrm{p}_{1}}{\rho}+\frac{\mathrm{V}_{1}^{2}}{2}=\frac{\mathrm{p}_{2}}{\rho}+\frac{\mathrm{V}_{2}^{2}}{2} \quad \text { where we ignore gravity effects }
$$

But we have

$$
\mathrm{Q}=\mathrm{V}_{1} \cdot \mathrm{~A}_{1}=\mathrm{V}_{1} \cdot \frac{\pi \cdot \mathrm{D}^{2}}{4}=\mathrm{V}_{2} \cdot \mathrm{~A}_{2}=\frac{\pi \cdot \mathrm{d}^{2}}{4}
$$

$$
\text { so } \quad \mathrm{V}_{1}=\mathrm{V}_{2} \cdot\left(\frac{\mathrm{~d}}{\mathrm{D}}\right)^{2}
$$

$$
\mathrm{V}_{2}^{2}-\mathrm{V}_{2}^{2} \cdot\left(\frac{\mathrm{~d}}{\mathrm{D}}\right)^{4}=\frac{2 \cdot\left(\mathrm{p}_{2}-\mathrm{p}_{1}\right)}{\rho}
$$

Hence

Then

$$
\mathrm{V}_{2}=\sqrt{\frac{2 \cdot\left(\mathrm{p}_{1}-\mathrm{p}_{2}\right)}{\rho \cdot\left[1-\left(\frac{\mathrm{d}}{\mathrm{D}}\right)^{4}\right]}}
$$

$$
\begin{array}{ll}
\mathrm{V}_{2}=\sqrt{2 \times \frac{\mathrm{ft}^{3}}{1.94 \cdot \mathrm{slug}} \times(100-0) \cdot \frac{\mathrm{lff}}{\mathrm{in}^{2}} \times\left(\frac{12 \cdot \mathrm{in}}{1 \cdot \mathrm{ft}}\right)^{2} \times \frac{1}{1-\left(\frac{1}{3}\right)^{3}} \times \frac{\mathrm{slugft}}{\mathrm{lbf} \cdot \mathrm{~s}^{2}}} & \mathrm{~V}_{2}=124 \cdot \frac{\mathrm{ft}}{\mathrm{~s}} \\
\mathrm{Q}=\mathrm{V}_{2} \cdot \frac{\pi \cdot \mathrm{~d}^{2}}{4} \quad \mathrm{Q}=\frac{\pi}{4} \times 124 \cdot \frac{\mathrm{ft}}{\mathrm{~s}} \times\left(\frac{1}{12} \cdot \mathrm{ft}\right)^{2} \quad \mathrm{Q}=0.676 \cdot \frac{\mathrm{ft}^{3}}{\mathrm{~s}} & \mathrm{Q}=304 \cdot \frac{\mathrm{gal}}{\mathrm{~min}}
\end{array}
$$

Problem 6.58
Given: Indianapolis race car, $K_{0}=98.3 \mathrm{~m} / \mathrm{s}$, on a straightaway. Air inks at location where $V=25.5 \mathrm{~m} / \mathrm{s}$ along body surface.

Find: (a) static pressure at int location.
(b) Express pressure rise as a fraction of the dynamic pressure.

Solution: Apply the Bernoulli equation, relative to the ale to.
Basic equation: $\frac{p \infty}{\rho}+\frac{v_{0}^{2}}{2}+g p_{\infty}=\frac{p}{p}+\frac{v^{2}}{2}+g \frac{p}{p}$
Assumptions: (1) steady flow (as seen by observer on auto)
(2) Incompressible flow ($\mathrm{v}_{0}<100 \mathrm{~m}$ iss)
(3) No friction
(4) Flow a long a stream line
(5) Neglect changes in z
(b) Standard a ir: $\rho=1,23 \mathrm{~kg} / \mathrm{m}^{3}$

Then

$$
\begin{aligned}
& p-\rho_{\infty}=\frac{1}{2} \rho V_{\infty}^{2}-\frac{1}{2} \rho V^{2}=\frac{1}{2} \rho V_{0}^{2}\left[1-\left(\frac{V}{V_{0}}\right)^{2}\right]=q\left[1-\left(\frac{V}{V_{0}}\right)^{2}\right] \\
& q=\frac{1}{2} \rho V_{\infty}^{2}=\frac{1}{2} \times 1.23 \frac{\mathrm{~kg}}{m^{3}} \times(98.3)^{2} \frac{m^{2}}{s^{2}} \times \frac{\mathrm{N} \cdot \mathrm{~s}^{2}}{\mathrm{~kg} \cdot m}=5.94 \mathrm{kPa} \\
& \frac{\Delta b}{q}=1-\left(\frac{V}{V_{0}}\right)^{2}=1-\left(\frac{25.5}{98.3}\right)^{2}=0.933
\end{aligned}
$$

and $\Delta P=0.933 q=0.933 \times 5.94 \mathrm{kPa}=5.54 \mathrm{kPa}$

Gwer: Steady, frictuontes, in compressible fow Ser a stationary yfunder of radus, a.

$$
\vec{J}=-v\left[1-\left(\frac{a}{r}\right)^{2}\right] \cos \hat{e}_{r}-v\left[1+\left(\frac{q}{r}\right)^{2}\right] \sin \hat{e} e_{\theta} \xrightarrow[P_{\infty}]{\overrightarrow{P_{0}}}
$$

Find: a) expression for-pressure distrbution along streamline forming cylvider, $r=a$
b) beations on yylinder bhece $p=-p_{\infty}$.

Solution:
Basic equation: $\frac{p}{p}+\frac{y^{2}}{2}+g y^{2}=\operatorname{constant}$
Assurnptions: (1) steady fou (aiven).
(2) incoredessible klow (ginen)
(3) Fritionless flow (aiseh)
(4) flow along a stredonline.

Along the cylvider surface $r=a$ and $\vec{V}=-20 \sin \theta \hat{e}_{\theta}$
Fpplyvg Pe parnoulli equation atorg the streantive $r=a$,

$$
\begin{align*}
& \frac{P}{P}+\frac{1^{2}}{2}=\frac{P}{\rho}+\frac{U^{2}}{2} \\
& P=P_{\infty}+\frac{1}{2 p}\left(v^{2}-x^{2}\right)=P_{\infty}+\frac{1}{2} p\left(v^{2}-4 v^{2} \sin ^{2} \theta\right) \\
& -P=P_{\infty}+\frac{1}{2} p T^{2}\left(1-4 \sin ^{2} \theta\right)
\end{align*}
$$

For $f=\varphi_{\infty}, 1-\lambda \sin ^{2} \theta=0$ and $\sin \theta= \pm 0.5$

$$
\therefore \theta=30^{\circ}, 150^{\circ}, 210^{\circ}, 330^{\circ} .
$$

\qquad
6.60 The velocity field for a plane doublet is given in Table 6.2.

If $\Lambda=3 \mathrm{~m}^{3} \cdot \mathrm{~s}^{-1}$, the fluid density is $\rho=1.5 \mathrm{~kg} / \mathrm{m}^{3}$, and the pressure at infinity is 100 kPa , plot the pressure along the x axis from $x=-2.0 \mathrm{~m}$ to -0.5 m and $x=0.5 \mathrm{~m}$ to 2.0 m .

Given: Velocity field for plane doublet

Find: Pressure distribution along x axis; plot distribution

Solution:

The given data is

$$
\Lambda=3 \cdot \frac{\mathrm{~m}^{3}}{\mathrm{~s}} \quad \rho=1000 \cdot \frac{\mathrm{~kg}}{\mathrm{~m}^{3}} \quad \mathrm{P}_{0}=100 \cdot \mathrm{kPa}
$$

From Table 6.1

$$
\mathrm{V}_{\mathrm{r}}=-\frac{\Lambda}{\mathrm{r}^{2}} \cdot \cos (\theta) \quad \mathrm{V}_{\theta}=-\frac{\Lambda}{\mathrm{r}^{2}} \cdot \sin (\theta)
$$

where V_{r} and V_{θ} are the velocity components in cylindrical coordinates (r, θ). For points along the x axis, $r=x, \theta=0, V_{\mathrm{r}}=u$ and $V_{\theta}=v=0$

$$
\mathrm{u}=-\frac{\Lambda}{\mathrm{x}^{2}} \quad \mathrm{v}=0
$$

The governing equation is the Bernoulli equation

$$
\frac{\mathrm{p}}{\rho}+\frac{1}{2} \cdot \mathrm{~V}^{2}+\mathrm{g} \cdot \mathrm{z}=\text { const } \quad \text { where } \quad \mathrm{V}=\sqrt{\mathrm{u}^{2}+\mathrm{v}^{2}}
$$

so (neglecting gravity)

$$
\frac{\mathrm{p}}{\rho}+\frac{1}{2} \cdot \mathrm{u}^{2}=\text { const }
$$

Apply this to point arbitrary point $(x, 0)$ on the x axis and at infinity

$$
\begin{array}{lll}
\text { At } & |\mathrm{x}| \rightarrow \quad \mathrm{u} \rightarrow 0 & \mathrm{p} \rightarrow \mathrm{p}_{0} \\
\text { At point }(x, 0) & \mathrm{u}=-\frac{\Lambda}{\mathrm{x}^{2}} &
\end{array}
$$

Hence the Bernoulli equation becomes

$$
\frac{\mathrm{p}_{0}}{\rho}=\frac{\mathrm{p}}{\rho}+\frac{\Lambda^{2}}{2 \cdot \mathrm{x}^{4}} \quad \text { or } \quad \mathrm{p}(\mathrm{x})=\mathrm{p}_{0}-\frac{\rho \cdot \Lambda^{2}}{2 \cdot \mathrm{x}^{4}}
$$

The plot of pressure is shown in the associated Excel workbook
6.60 The velocity field for a plane doublet is given in Table 6.2.

If $\Lambda=3 \mathrm{~m}^{3} \cdot \mathrm{~s}^{-1}$, the fluid density is $\rho=1.5 \mathrm{~kg} / \mathrm{m}^{3}$, and the pressure at infinity is 100 kPa , plot the pressure along the x axis from $x=-2.0 \mathrm{~m}$ to -0.5 m and $x=0.5 \mathrm{~m}$ to 2.0 m .

Given: Velocity field for plane doublet

Find: \quad Pressure distribution along x axis; plot distribution
Solution: $\quad p(x)=p_{0}-\frac{\rho \cdot \Lambda^{2}}{2 \cdot x^{4}}$
The given data is

$$
\begin{array}{rcl}
\Lambda= & 3 & \mathrm{~m}^{3} / \mathrm{s} \\
\rho= & 1.5 & \mathrm{~kg} / \mathrm{m}^{3} \\
p_{0}= & 100 & \mathrm{kPa}
\end{array}
$$

$\boldsymbol{X}(\mathbf{m})$	\boldsymbol{p} (Pa)
0.5	99.892
0.6	99.948
0.7	99.972
0.8	99.984
0.9	99.990
1.0	99.993
1.1	99.995
1.2	99.997
1.3	99.998
1.4	99.998
1.5	99.999
1.6	99.999
1.7	99.999
1.8	99.999
1.9	99.999
2.0	100.000

6.61 The velocity field for a plane source at a distance h above an infinite wall aligned along the x axis was given in Problem 6.8. Using the data from that problem, plot the pressure distribution along the wall from $x=-10 h$ to $x=+10 h$ (assume the pressure at infinity is atmospheric). Find the net force on the wall if the pressure on the lower surface is atmospheric. Does the force tend to pull the wall towards the source, or push it away?

Given: Velocity field
Find: Pressure distribution along wall; plot distribution; net force on wall

Solution:

$$
\begin{array}{rlrl}
\text { The given data is } & \mathrm{q}=2 \cdot \frac{\frac{\mathrm{~m}^{3}}{\mathrm{~s}}}{\mathrm{~m}} & \mathrm{~h}=1 \cdot \mathrm{~m} & \rho=1000 \cdot \frac{\mathrm{~kg}}{\mathrm{~m}^{3}} \\
\mathrm{u}=\frac{\mathrm{q} \cdot \mathrm{x}}{2 \cdot \pi\left[\mathrm{x}^{2}+(\mathrm{y}-\mathrm{h})^{2}\right]}+\frac{\mathrm{q} \cdot \mathrm{x}}{2 \cdot \pi\left[\mathrm{x}^{2}+(\mathrm{y}+\mathrm{h})^{2}\right]} & \mathrm{v}=\frac{\mathrm{q} \cdot(\mathrm{y}-\mathrm{h})}{2 \cdot \pi\left[\mathrm{x}^{2}+(\mathrm{y}-\mathrm{h})^{2}\right]}+\frac{\mathrm{q} \cdot(\mathrm{y}+\mathrm{h})}{2 \cdot \pi\left[\mathrm{x}^{2}+(\mathrm{y}+\mathrm{h})^{2}\right]}
\end{array}
$$

The governing equation is the Bernoulli equation

$$
\frac{\mathrm{p}}{\rho}+\frac{1}{2} \cdot \mathrm{~V}^{2}+\mathrm{g} \cdot \mathrm{z}=\text { const } \quad \text { where } \quad \mathrm{V}=\sqrt{\mathrm{u}^{2}+\mathrm{v}^{2}}
$$

Apply this to point arbitrary point $(x, 0)$ on the wall and at infinity (neglecting gravity)
At

$$
|x| \rightarrow 0
$$

$\mathrm{u} \rightarrow 0$
$\mathrm{v} \rightarrow 0 \quad \mathrm{~V} \rightarrow 0$

At point $(x, 0)$
$\mathrm{u}=\frac{\mathrm{q} \cdot \mathrm{x}}{\pi \cdot\left(\mathrm{x}^{2}+\mathrm{h}^{2}\right)} \quad \mathrm{v}=0$

$$
\mathrm{V}=\frac{\mathrm{q} \cdot \mathrm{x}}{\pi \cdot\left(\mathrm{x}^{2}+\mathrm{h}^{2}\right)}
$$

Hence the Bernoulli equation becomes

$$
\frac{\mathrm{p}_{\mathrm{atm}}}{\rho}=\frac{\mathrm{p}}{\rho}+\frac{1}{2} \cdot\left[\frac{\mathrm{q} \cdot \mathrm{x}}{\pi \cdot\left(\mathrm{x}^{2}+\mathrm{h}^{2}\right)}\right]^{2}
$$

or (with pressure expressed as gage pressure)

$$
\mathrm{p}(\mathrm{x})=-\frac{\rho}{2} \cdot\left[\frac{\mathrm{q} \cdot \mathrm{x}}{\pi \cdot\left(\mathrm{x}^{2}+\mathrm{h}^{2}\right)}\right]^{2}
$$

(Alternatively, the pressure distribution could have been obtained from Problem 6.8, where the momentum equation was used to find the pressure gradient $\frac{\partial}{\partial x} p=\frac{\rho \cdot q^{2} \cdot x \cdot\left(x^{2}-h^{2}\right)}{\pi^{2} \cdot\left(x^{2}+h^{2}\right)^{3}}$ along the wall. Integration of this with respect to x
leads to the same result for $p(x)$)
The plot of pressure is shown in the associated Excel workbook. From the plot it is clear that the wall experiences a negative gage pressure on the upper surface (and zero gage pressure on the lower), so the net force on the wall is upwards, towards the source

The force per width on the wall is given by

$$
F=\int_{-10 \cdot h}^{10 \cdot h}\left(\text { pupper }- \text { plower }^{\text {l }}\right) d x \quad F=-\frac{\rho \cdot q^{2}}{2 \cdot \pi^{2}} \cdot \int_{-10 \cdot h}^{10 \cdot h} \frac{x^{2}}{\left(x^{2}+h^{2}\right)^{2}} d x
$$

The integral is $\quad \int \frac{x^{2}}{\left(x^{2}+h^{2}\right)^{2}} d x \rightarrow \frac{\operatorname{atan}\left(\frac{x}{h}\right)}{2 \cdot h}-\frac{x}{2 \cdot h^{2}+2 \cdot x^{2}}$
so

$$
\begin{aligned}
& F=-\frac{\rho \cdot q^{2}}{2 \cdot \pi^{2} \cdot h} \cdot\left(-\frac{10}{101}+\operatorname{atan}(10)\right) \\
& F=-\frac{1}{2 \cdot \pi^{2}} \times 1000 \cdot \frac{\mathrm{~kg}}{\mathrm{~m}^{3}} \times\left(2 \cdot \frac{\mathrm{~m}^{2}}{\mathrm{~s}}\right)^{2} \times \frac{1}{1 \cdot \mathrm{~m}} \times\left(-\frac{10}{101}+\operatorname{atan}(10)\right) \times \frac{\mathrm{N} \cdot \mathrm{~s}^{2}}{\mathrm{~kg} \cdot \mathrm{~m}} \quad \mathrm{~F}=-278 \frac{\mathrm{~N}}{\mathrm{~m}}
\end{aligned}
$$

6.61 The velocity field for a plane source at a distance h above an infinite wall aligned along the x axis was given in Problem 6.8. Using the data from that problem, plot the pressure distribution along the wall from $x=-10 h$ to $x=+10 h$ (assume the pressure at infinity is atmospheric). Find the net force on the wall if the pressure on the lower surface is atmospheric. Does the force tend to pull the wall towards the source, or push it away?

Given: Velocity field
Find: \quad Pressure distribution along wall; plot distribution; net force on wall
Solution:

$$
\mathrm{p}(\mathrm{x})=-\frac{\rho}{2} \cdot\left[\frac{\mathrm{q} \cdot \mathrm{x}}{\pi \cdot\left(\mathrm{x}^{2}+\mathrm{h}^{2}\right)}\right]^{2}
$$

The given data is

$$
\begin{array}{rll}
q & =2 & \mathrm{~m}^{3} / \mathrm{s} / \mathrm{m} \\
h & =1 & \mathrm{~m} \\
\rho & =1000 & \mathrm{~kg} / \mathrm{m}^{3}
\end{array}
$$

$\boldsymbol{X}(\mathbf{m})$	$\boldsymbol{p}(\mathbf{P a})$
0.0	0.00
1.0	-50.66
2.0	-32.42
3.0	-18.24
4.0	-11.22
5.0	-7.49
6.0	-5.33
7.0	-3.97
8.0	-3.07
9.0	-2.44
10.0	-1.99

6.62 A fire nozzle is coupled to the end of a hose with inside diameter $D=75 \mathrm{~mm}$. The nozzle is smoothly contoured and its outlet diameter is $d=25 \mathrm{~mm}$. The nozzle is designed to operate at an inlet water pressure of 700 kPa (gage). Determine the design flow rate of the nozzle. (Express your answer in L/s.) Evaluate the axial force required to hold the nozzle in place. Indicate whether the hose coupling is in tension or compression.

Given: Flow through fire nozzle
Find: Maximum flow rate

Solution:

Basic equation $\quad \frac{\mathrm{p}}{\rho}+\frac{\mathrm{V}^{2}}{2}+\mathrm{g} \cdot \mathrm{z}=\mathrm{const} \quad \mathrm{Q}=\mathrm{A} \quad F_{x}=F_{S_{x}}+F_{B_{x}}=\frac{\partial}{\partial t} \int_{\mathrm{CV}} u \rho d \forall+\int_{\mathrm{CS}} u \rho \vec{V} \cdot d \vec{A}$
Assumptions: 1) Incompressible flow 2) Inviscid 3) Steady 4) Along a streamline
Hence, applying Bernoulli between the inlet (1) and exit (2)

$$
\frac{\mathrm{p}_{1}}{\rho}+\frac{\mathrm{V}_{1}^{2}}{2}=\frac{\mathrm{p}_{2}}{\rho}+\frac{\mathrm{V}_{2}^{2}}{2} \quad \quad \text { where we ignore gravity effects }
$$

But we have

$$
\mathrm{Q}=\mathrm{V}_{1} \cdot \mathrm{~A}_{1}=\mathrm{V}_{1} \cdot \frac{\pi \cdot \mathrm{D}^{2}}{4}=\mathrm{V}_{2} \cdot \frac{\pi \cdot \mathrm{~d}^{2}}{4} \quad \text { so } \quad \mathrm{V}_{1}=\mathrm{V}_{2} \cdot\left(\frac{\mathrm{~d}}{\mathrm{D}}\right)^{2}
$$

$$
\mathrm{v}_{2}^{2}-\mathrm{v}_{2}^{2} \cdot\left(\frac{\mathrm{~d}}{\mathrm{D}}\right)^{4}=\frac{2 \cdot\left(\mathrm{p}_{2}-\mathrm{p}_{1}\right)}{\rho}
$$

Hence

$$
\mathrm{V}_{2}=\sqrt{2 \times \frac{\mathrm{m}^{3}}{1000 \cdot \mathrm{~kg}} \times(700-0) \times 10^{3} \cdot \frac{\mathrm{~N}}{\mathrm{~m}^{2}} \times \frac{1}{1-\left(\frac{25}{75}\right)^{4}} \times \frac{\mathrm{kg} \cdot \mathrm{~m}}{\mathrm{~N} \cdot \mathrm{~s}^{2}}}
$$

$$
\mathrm{V}_{2}=37.6 \frac{\mathrm{~m}}{\mathrm{~s}}
$$

Then $\quad \mathrm{Q}=\mathrm{V}_{2} \cdot \frac{\pi \cdot \mathrm{~d}^{2}}{4} \quad \mathrm{Q}=\frac{\pi}{4} \times 37.6 \cdot \frac{\mathrm{~m}}{\mathrm{~s}} \times(0.025 \cdot \mathrm{~m})^{2} \quad \mathrm{Q}=0.0185 \cdot \frac{\mathrm{~m}^{3}}{\mathrm{~s}} \quad \mathrm{Q}=18.5 \cdot \frac{\mathrm{~L}}{\mathrm{~s}}$

$$
\mathrm{V}_{2}=\sqrt{\frac{2 \cdot\left(\mathrm{p}_{1}-\mathrm{p}_{2}\right)}{\rho \cdot\left[1-\left(\frac{\mathrm{d}}{\mathrm{D}}\right)^{4}\right]}}
$$

From x momentum

$$
R_{X}+p_{1} \cdot A_{1}=u_{1} \cdot\left(-\rho \cdot V_{1} \cdot A_{1}\right)+u_{2} \cdot\left(\rho \cdot V_{2} \cdot A_{2}\right) \quad \text { using gage pressures }
$$

Hence

$$
\begin{gathered}
\mathrm{R}_{\mathrm{X}}=-\mathrm{p}_{1} \cdot \frac{\pi \cdot \mathrm{D}^{2}}{4}+\rho \cdot \mathrm{Q} \cdot\left(\mathrm{~V}_{2}-\mathrm{V}_{1}\right)=-\mathrm{p}_{1} \cdot \frac{\pi \cdot \mathrm{D}^{2}}{4}+\rho \cdot \mathrm{Q} \cdot \mathrm{~V}_{2} \cdot\left[1-\left(\frac{\mathrm{d}}{\mathrm{D}}\right)^{2}\right] \\
\mathrm{R}_{\mathrm{X}}=-700 \times 10^{3} \cdot \frac{\mathrm{~N}}{\mathrm{~m}^{2}} \times \frac{\pi}{4} \cdot(0.075 \cdot \mathrm{~m})^{2}+1000 \cdot \frac{\mathrm{~kg}}{\mathrm{~m}^{3}} \times 0.0185 \cdot \frac{\mathrm{~m}^{3}}{\mathrm{~s}} \times 37.6 \cdot \frac{\mathrm{~m}}{\mathrm{~s}} \times\left[1-\left(\frac{25}{75}\right)^{3}\right] \times \frac{\mathrm{N} \cdot \mathrm{~s}^{2}}{\mathrm{~kg} \cdot \mathrm{~m}} \quad \mathrm{R}_{\mathrm{X}}=-2423 \mathrm{~N}
\end{gathered}
$$

This is the force of the nozzle on the fluid; hence the force of the fluid on the nozzle is 2400 N to the right; the nozzle is in tension

Given: nezzale coupled to straight pipe by flanges, bolts. water flow discharges to atmosphere.

For steady, inviscid flow, $R_{x}=-45.5 \mathrm{~N}$.
Find: Volume flow rate.
Solution: Apply continuity, x momentum, and Bernoulli.

Basic equation:

$$
\begin{aligned}
& 0=\overrightarrow{\partial_{j}^{t}} \int_{C v}^{=d(1)} \rho d t+\int_{c s} \rho \vec{v} \cdot d \overrightarrow{d A} \\
& \begin{array}{l}
p_{1}+\frac{v_{1}^{2}}{2}+g \phi_{1}=\hat{p}_{2}^{-o(7)}+\frac{V_{2}^{2}}{2}+g \hat{\phi_{2}} \\
\hat{p}^{2}=o(b)
\end{array}
\end{aligned}
$$

Assumptions: (1) steady flow
(2) Uniform flow at each section
(5) Notriction
(3) Flow along a streamline
(b) Horizontal, $f_{B x}=0,3_{1}=32$
(4) Incompressible flow
o) Use gage pressures

Then

$$
\begin{aligned}
& \text { hen } 0=\left\{-V_{1} A_{1}\right\}+\left\{+V_{2} A_{2}\right\} ; V_{2}=V_{1} \frac{A_{1}}{A_{2}}=V_{1}\left(\frac{D}{d}\right)^{2} ; Q=V_{1} A_{1}=V_{2} A_{2} \\
& \frac{p_{1}}{\rho}+\frac{V_{1}^{2}}{2}=\frac{V_{2}^{2}}{2} ; p_{1}=\rho\left(\frac{V_{2}^{2}}{2}-\frac{V_{1}^{2}}{2}\right)^{2}=\rho \frac{V_{1}^{2}}{2}\left[\left(\frac{V_{2}}{V_{1}}\right)^{2}-1\right]=\rho V_{1}^{2}\left[\left(\frac{Q}{d}\right)^{4}-1\right] \\
& \left.R_{x}+p_{1} A_{1}-p_{2} A_{2}=u_{1}\left\{-\left|\rho v_{1} A_{1}\right|\right\}+u_{2}\left\{+\mid \rho V_{2} A_{2}\right)\right\}=\rho V_{1} A_{1}\left(V_{2}-V_{1}\right) \\
& u_{1}=V_{1} \quad u_{2}=V_{2} \\
& R_{x}+A_{1} \frac{\rho V_{1}^{2}}{2}\left[\left(\frac{D}{d}\right)^{4}-1\right]=\rho v_{1}^{2} A_{1}\left(\frac{V_{2}}{\left.V_{1}-1\right)=\rho V_{1}^{2} A\left[\left(\frac{D}{d}\right)^{2}-1\right]}\right.
\end{aligned}
$$

Thus

$$
\begin{aligned}
& V_{1}^{2}=\frac{-2 R_{x}}{\rho A_{1}} \frac{1}{\left(\frac{D}{d}\right)^{4}-2\left(\frac{D}{d}\right)^{2}+1} \text { so } V_{1}=\sqrt{\frac{-2 R_{x}}{\rho A_{1}}\left(\frac{D}{d}\right)^{2}-1} \\
& V_{1}=\left[-2 x^{\left.-45.5 N_{\times} \frac{m 3}{999 \mathrm{~kg}} \times \frac{4}{\pi(0.050)^{2} m^{2}} \times \frac{\mathrm{kg} \cdot \mathrm{~m}}{\mathrm{~N} \cdot \mathrm{~s}^{2}}\right]^{\frac{1}{2}} \frac{1}{\left(\frac{50}{20}\right)^{2}-1}=1.30 \mathrm{~m} / \mathrm{m}}\right.
\end{aligned}
$$

Finally,

$$
Q=V_{1} A_{1}=1.30 \frac{\mathrm{~m}}{\mathrm{~s}} \times \frac{\pi}{4}(0.050)^{2} \mathrm{~m}^{2}=2.55 \times 10^{-3} \mathrm{~m}^{3} / \mathrm{s}
$$

$\left\{\begin{array}{c}\text { Note: It is necessary to recognize that } R_{x}<0 \text { for a nozzle, see } \\ \text { Example Problem 4.7. }\end{array}\right.$

Given: Water flows steadily through a pipe with diameter $D=3.25$ in. and diss larges throng a nozzle $(d=1.25 i)$ to atmosphere. The flow rale is $a=24.5$ gallmin.
Find: (a) the minimum static pressure required in the pipe to produce this fowrate
do the horizontal force of tie nozzle assembly on the Pipe flange.
Solution:
Apply the Bernoulli equation along sections (1) and (6)

$$
\frac{P_{1}}{e}+\frac{v^{2}}{2}+g z^{2}=\frac{p_{2}}{e}+\frac{v^{2}}{2}+g y^{2}
$$

Assumptions: (I) steady flow
(a) incompressible flow
(3) fridiontess flow
(4) flow along a streantine.

$$
\text { (5) } \quad y=0
$$

(b) uniform fogs a rack section

Then $p_{1}=-p_{2}+\frac{p}{2}\left(v_{2}^{2}-\nu_{1}^{2}\right)=p_{2}+\frac{p v_{2}^{2}}{2}\left[1-\left(V_{1}\right)_{2}^{2}\right]$
$P_{2}=P_{\text {atm }}$ and from contrinuty, $A_{2} H_{2}=A_{1} H_{1}$.

$$
P_{1} g=\frac{1}{2} \times 1.94 \frac{\operatorname{shg}}{f x^{3}} \times(6.41)^{2} \frac{f^{2}}{5^{2}} \times \frac{4.6^{2}}{f+3.5 l u g}\left[1-\left(\frac{1.25}{3.25}\right)^{4}\right]=39.0 \text { porgage } P_{1}
$$

(b) Apply the x momentum equation to the cl

Force of nozzle on flange $k_{2}=-R_{4}=1$. Fill bf $^{\prime}$

$$
\begin{aligned}
& R_{2}+P_{1} A_{1}=u_{1}\{-m\}+u_{2}\{n\}=-V_{1} m+V_{2} m \\
& R_{x}=-P_{1} g A_{1}+m\left(V_{2}-V_{1}\right)=-p_{1} A_{1}+p Q V_{2}\left(1-\frac{J_{1}}{J_{2}}\right)
\end{aligned}
$$

$$
\begin{aligned}
& R_{R}=-2.25+0.58=-1.67 \text { br }
\end{aligned}
$$

$$
\begin{aligned}
& \therefore P_{1 g}=\frac{f}{2} t_{2}^{2}\left[1-\left(\frac{A_{2}}{A_{1}}\right)\right]=\frac{p_{2}^{2}}{2}\left[1-\left(\frac{V_{2}}{D_{1}}\right)^{4}\right]
\end{aligned}
$$

Problem 6.65

6.65 Water flows steadily through the reducing elbow shown. The elbow is smooth and short, and the flow accelerates, so the effect of friction is small. The volume flow rate is $Q=20 \mathrm{gpm}$. The elbow is in a horizontal plane. Estimate the gage pressure at section (1). Calculate the x component of the force exerted by the reducing elbow on the supply pipe.

Given: Flow through reducing elbow
Find: \quad Mass flow rate in terms of $\Delta \mathrm{p}, \mathrm{T}_{1}$ and D_{1} and D_{2}

Solution:

$$
\text { Basic equations: } \quad \frac{\mathrm{p}}{\rho}+\frac{\mathrm{V}^{2}}{2}+\mathrm{g} \cdot \mathrm{z}=\text { const } \quad F_{x}=F_{S_{x}}+F_{B_{x}}=\frac{\partial}{\partial t} \int_{\mathrm{CV}} u \rho d \forall+\int_{\mathrm{CS}} u \rho \vec{V} \cdot d \vec{A} \quad \mathrm{Q}=\mathrm{V} \cdot \mathrm{~A}
$$

Assumptions: 1) Incompressible flow 2) Inviscid 3) Steady 4) Along a streamline 5) Ignore elevation change 6) $\mathrm{p}_{2}=\mathrm{P}_{\mathrm{tatm}}$
Available data: $\quad \mathrm{Q}=20 \cdot \mathrm{gpm} \quad \mathrm{Q}=0.0446 \frac{\mathrm{ft}^{3}}{\mathrm{~s}} \quad \mathrm{D}=1.5 \cdot \mathrm{in} \quad \mathrm{d}=0.5 \cdot \mathrm{in} \quad \rho=1.94 \cdot \frac{\mathrm{slug}}{\mathrm{ft}^{3}}$

From contnuity

$$
\mathrm{V}_{1}=\frac{\mathrm{Q}}{\left(\frac{\pi \cdot \mathrm{D}^{2}}{4}\right)} \quad \mathrm{V}_{1}=3.63 \frac{\mathrm{ft}}{\mathrm{~s}} \quad \mathrm{~V}_{2}=\frac{\mathrm{Q}}{\left(\frac{\pi \cdot \mathrm{~d}^{2}}{4}\right)} \quad \mathrm{V}_{2}=32.7 \frac{\mathrm{ft}}{\mathrm{~s}}
$$

Hence, applying Bernoulli between the inlet (1) and exit (2)

$$
\frac{p_{1}}{\rho}+\frac{V_{1}^{2}}{2}=\frac{p_{2}}{\rho}+\frac{V_{2}^{2}}{2}
$$

or, in gage pressures $\mathrm{p}_{1 \mathrm{~g}}=\frac{\rho}{2} \cdot\left(\mathrm{~V}_{2}{ }^{2}-\mathrm{V}_{1}{ }^{2}\right) \quad \mathrm{p}_{1 \mathrm{~g}}=7.11 \mathrm{psi}$

From x-momentum

$$
\begin{array}{ll}
\mathrm{R}_{\mathrm{X}}+\mathrm{p}_{1 \mathrm{~g}} \cdot \mathrm{~A}_{1}=\mathrm{u}_{1} \cdot\left(-\mathrm{m}_{\text {rate }}\right)+\mathrm{u}_{2} \cdot\left(\mathrm{~m}_{\text {rate }}\right)=-\mathrm{m}_{\text {rate }} \cdot \mathrm{V}_{1}=-\rho \cdot \mathrm{Q} \cdot \mathrm{~V}_{1} \quad \text { because } \quad \mathrm{u}_{1}=\mathrm{V}_{1} \quad \mathrm{u}_{2}=0 \\
\mathrm{R}_{\mathrm{X}}=-\mathrm{p}_{1 \mathrm{~g}} \cdot \frac{\pi \cdot \mathrm{D}^{2}}{4}-\rho \cdot \mathrm{Q} \cdot \mathrm{~V}_{1} & \mathrm{R}_{\mathrm{X}}=-12.9 l b f
\end{array}
$$

The force on the supply pipe is then
$\mathrm{K}_{\mathrm{X}}=-\mathrm{R}_{\mathrm{X}} \quad \mathrm{K}_{\mathrm{X}}=12.9 \mathrm{lbf} \quad$ on the pipe to the right

Problem 6.66

6.66 A flow nozzle is a device for measuring the flow rate in a pipe. This particular nozzle is to be used to measure low-speed air flow for which compressibility may be neglected. During operation, the pressures p_{1} and p_{2} are recorded, as well as upstream temperature, T_{1}. Find the mass flow rate in terms of $\Delta p=p_{2}-p_{1}$
 and T_{1}, the gas constant for air, and device diameters D_{1} and D_{2}. Assume the flow is frictionless. Will the actual flow be more or less than this predicted flow? Why?

Given:
Flow nozzle
Find: \quad Mass flow rate in terms of $\Delta p, T_{1}$ and D_{1} and D_{2}

Solution:

Basic equation $\quad \frac{\mathrm{p}}{\rho}+\frac{\mathrm{V}^{2}}{2}+\mathrm{g} \cdot \mathrm{z}=$ const $\quad \mathrm{Q}=\mathrm{V} \cdot \mathrm{A}$
Assumptions: 1) Incompressible flow 2) Inviscid 3) Steady 4) Along a streamline
Hence, applying Bernoulli between the inlet (1) and exit (2)

$$
\frac{\mathrm{p}_{1}}{\rho}+\frac{\mathrm{V}_{1}^{2}}{2}=\frac{\mathrm{p}_{2}}{\rho}+\frac{\mathrm{V}_{2}^{2}}{2} \quad \text { where we ignore gravity effects }
$$

But we have

$$
\mathrm{Q}=\mathrm{V}_{1} \cdot \mathrm{~A}_{1}=\mathrm{V}_{1} \cdot \frac{\pi \cdot \mathrm{D}_{1}^{2}}{4}=\mathrm{V}_{2} \cdot \frac{\pi \cdot \mathrm{D}_{2}^{2}}{4}
$$

$$
\text { so } \quad \mathrm{V}_{1}=\mathrm{V}_{2} \cdot\left(\frac{\mathrm{D}_{2}}{\mathrm{D}_{1}}\right)^{2}
$$

Note that we assume the flow at D_{2} is at the same pressure as the entire section 2 ; this will be true if there is turbulent mixing

Hence

$$
\begin{aligned}
& \mathrm{V}_{2}^{2}-\mathrm{V}_{2}^{2} \cdot\left(\frac{\mathrm{D}_{2}}{\mathrm{D}_{1}}\right)^{4}=\frac{2 \cdot\left(\mathrm{p}_{2}-\mathrm{p}_{1}\right)}{\rho} \\
& \mathrm{V}_{2}=\sqrt{\frac{2 \cdot\left(\mathrm{p}_{1}-\mathrm{p}_{2}\right)}{\rho \cdot\left[1-\left(\frac{\mathrm{D}_{2}}{\mathrm{D}_{1}}\right)^{4}\right]}}
\end{aligned}
$$

Then the mass flow rate is $\mathrm{m}_{\text {flow }}=\rho \cdot \mathrm{V}_{2} \cdot \mathrm{~A}_{2}=\rho \cdot \frac{\pi \cdot \mathrm{D}_{2}{ }^{2}}{4} \cdot \sqrt{\frac{2 \cdot\left(\mathrm{p}_{1}-\mathrm{P}_{2}\right)}{\rho \cdot\left[1-\left(\frac{\mathrm{D}_{2}}{\mathrm{D}_{1}}\right)^{4}\right]}}=\frac{\pi \cdot \mathrm{D}_{2}{ }^{2}}{2 \cdot \sqrt{2}} \cdot \sqrt{\frac{\Delta \mathrm{p} \cdot \rho}{\left[1-\left(\frac{\mathrm{D}_{2}}{\mathrm{D}_{1}}\right)^{4}\right]}}$
Using

$$
\mathrm{p}=\rho \cdot \mathrm{R} \cdot \mathrm{~T}
$$

$$
\mathrm{m}_{\text {flow }}=\frac{\pi \cdot \mathrm{D}_{2}^{2}}{2 \cdot \sqrt{2}} \cdot \sqrt{\frac{\Delta \mathrm{p} \cdot \mathrm{p}_{1}}{\mathrm{R} \cdot \mathrm{~T}_{1} \cdot\left[1-\left(\frac{\mathrm{D}_{2}}{\mathrm{D}_{1}}\right)^{4}\right]}}
$$

For a flow nozzle

$$
\mathrm{m}_{\text {flow }}=\mathrm{k} \cdot \sqrt{\Delta \mathrm{p}} \quad \text { where }
$$

$$
\mathrm{k}=\frac{\pi \cdot \mathrm{D}_{2}{ }^{2}}{2 \cdot \sqrt{2}} \cdot \sqrt{\frac{\mathrm{p}_{1}}{\mathrm{R} \cdot \mathrm{~T}_{1} \cdot\left[1-\left(\frac{\mathrm{D}_{2}}{\mathrm{D}_{1}}\right)^{4}\right]}}
$$

We can expect the actual flow will be less because there is actually significant loss in the device. Also the flow will experience a vena co that the minimum diameter is actually smaller than D_{2}. We will discuss this device in Chapter 8 .
6.67 The branching of a blood vessel is shown. Blood at a pressure of 100 mm Hg flows in the main vessel at $4 \mathrm{~L} / \mathrm{min}$. Estimate the blood pressure in each branch, assuming that blood vessels behave as rigid tubes, that we have frictionless flow, and that the vessel lies in the horizontal plane. What is the force generated at the branch by the blood? You may approximate blood to have the same density as water.

Given: Flow through branching blood vessel
Find: Blood pressure in each branch; force at branch

Solution:

Basic equation

$$
\begin{array}{ll}
\frac{\mathrm{p}}{\rho}+\frac{\mathrm{v}^{2}}{2}+\mathrm{g} \cdot \mathrm{z}=\text { const } & \sum_{\mathrm{CV}} \mathrm{Q}=0 \\
F_{x}=F_{S_{x}}+F_{B_{x}}=\frac{\partial}{\partial t} \int_{\mathrm{CV}} u \rho d \nvdash+\int_{\mathrm{CS}} u \rho \vec{V} \cdot d \vec{A} & \mathrm{Q}=\mathrm{V} \cdot \mathrm{~A} \\
F_{y}=F_{S_{y}}+F_{B_{y}}=\frac{\partial}{\partial t} \int_{\mathrm{CV}} v \rho d \not \mathrm{p}=\rho \cdot \mathrm{g} \cdot \Delta \mathrm{~h} \\
\int_{\mathrm{CS}} v \rho \vec{V} \cdot d \vec{A} &
\end{array}
$$

Assumptions: 1) Incompressible flow 2) Inviscid 3) Steady 4) Along a streamline
For Q_{3} we have $\quad \sum_{\mathrm{CV}} \mathrm{Q}=-\mathrm{Q}_{1}+\mathrm{Q}_{2}+\mathrm{Q}_{3}=0 \quad$ so $\quad \mathrm{Q}_{3}=\mathrm{Q}_{1}-\mathrm{Q}_{2} \quad \mathrm{Q}=1.5 \cdot \frac{\mathrm{~L}}{\min }$
We will need each velocity

$$
\begin{array}{lll}
\mathrm{V}_{1}=\frac{\mathrm{Q}_{1}}{\mathrm{~A}_{1}}=\frac{4 \cdot \mathrm{Q}_{1}}{\pi \cdot \mathrm{D}_{1}^{2}} & \mathrm{~V}_{1}=\frac{4}{\pi} \times 4 \cdot \frac{\mathrm{~L}}{\min } \times \frac{0.001 \cdot \mathrm{~m}^{3}}{1 \cdot \mathrm{~L}} \times \frac{1 \cdot \mathrm{~min}}{60 \cdot \mathrm{~s}} \times\left(\frac{1}{0.01 \cdot \mathrm{~m}}\right)^{2} & \mathrm{~V}_{1}=0.849 \frac{\mathrm{~m}}{\mathrm{~s}} \\
\text { Similarly } & \mathrm{V}_{2}=\frac{4 \cdot \mathrm{Q}_{2}}{\pi \cdot \mathrm{D}_{2}^{2}} & \mathrm{~V}_{2}=0.943 \frac{\mathrm{~m}}{\mathrm{~s}}
\end{array}
$$

Hence, applying Bernoulli between the inlet (1) and exit (2)

$$
\begin{array}{ll}
\frac{\mathrm{p}_{1}}{\rho}+\frac{\mathrm{V}_{1}^{2}}{2}=\frac{\mathrm{p}_{2}}{\rho}+\frac{\mathrm{V}_{2}^{2}}{2} & \text { where we ignore gravity effects } \\
\mathrm{p}_{2}=\mathrm{p}_{1}+\frac{\rho}{2} \cdot\left(\mathrm{~V}_{1}^{2}-\mathrm{V}_{2}^{2}\right) & \\
\mathrm{p}_{1}=\mathrm{SG}_{\mathrm{Hg}} \cdot \rho \cdot \mathrm{~g}^{2} \cdot \mathrm{~h}_{1} & \text { where } \mathrm{h}_{1}=100 \mathrm{~mm} \mathrm{Hg} \\
\mathrm{p}_{1}=13.6 \times 1000 \cdot \frac{\mathrm{~kg}}{\mathrm{~m}^{3}} \times 9.81 \cdot \frac{\mathrm{~m}}{\mathrm{~s}^{2}} \times 0.1 \cdot \mathrm{~m} \times \frac{\mathrm{N} \cdot \mathrm{~s}^{2}}{\mathrm{~kg} \cdot \mathrm{~m}} & \mathrm{p}_{1}=13.3 \cdot \mathrm{kPa}
\end{array}
$$

Hence

$$
\begin{array}{lll}
\text { Hence } & \mathrm{p}_{2}=13300 \cdot \frac{\mathrm{~N}}{\mathrm{~m}^{2}}+\frac{1}{2} \cdot 1000 \cdot \frac{\mathrm{~kg}}{\mathrm{~m}^{3}} \times\left(0.849^{2}-0.943^{2}\right) \cdot\left(\frac{\mathrm{m}}{\mathrm{~s}}\right)^{2} \times \frac{\mathrm{N} \cdot \mathrm{~s}^{2}}{\mathrm{~kg} \cdot \mathrm{~m}} & \mathrm{p}_{2}=13.2 \cdot \mathrm{kPa} \\
\text { In mm Hg } & \mathrm{h}_{2}=\frac{\mathrm{p}_{2}}{\mathrm{SG}_{\mathrm{Hg}} \cdot \rho \cdot \mathrm{~g}} & \mathrm{~h}_{2}=\frac{1}{13.6} \times \frac{1}{1000} \cdot \frac{\mathrm{~m}^{3}}{\mathrm{~kg}} \times \frac{\mathrm{s}^{2}}{9.81 \cdot \mathrm{~m}} \times 13200 \cdot \frac{\mathrm{~N}}{\mathrm{~m}^{2}} \times \frac{\mathrm{kg} \cdot \mathrm{~m}}{\mathrm{~s}^{2} \cdot \mathrm{~N}}
\end{array} \quad \mathrm{~h}_{2}=98.9 \cdot \mathrm{~mm}
$$

Similarly for exit (3)

$$
\begin{aligned}
& \mathrm{P}_{3}=\mathrm{p}_{1}+\frac{\rho}{2} \cdot\left(\mathrm{v}_{1}{ }^{2}-\mathrm{V}_{3}{ }^{2}\right) \\
& \mathrm{p}_{3}=13300 \cdot \frac{\mathrm{~N}}{\mathrm{~m}^{2}}+\frac{1}{2} \cdot 1000 \cdot \frac{\mathrm{~kg}}{\mathrm{~m}^{3}} \times\left(0.849^{2}-5.09^{2}\right) \cdot\left(\frac{\mathrm{m}}{\mathrm{~s}}\right)^{2} \times \frac{\mathrm{N} \cdot \mathrm{~s}^{2}}{\mathrm{~kg} \cdot \mathrm{~m}} \quad \mathrm{p}_{3}=706 \cdot \mathrm{~Pa}
\end{aligned}
$$

In mm Hg $\quad h_{3}=\frac{\mathrm{P}_{3}}{\mathrm{SG}_{\mathrm{Hg}} \cdot \rho \cdot \mathrm{g}} \quad \mathrm{h}_{3}=\frac{1}{13.6} \times \frac{1}{1000} \cdot \frac{\mathrm{~m}^{3}}{\mathrm{~kg}} \times \frac{\mathrm{s}^{2}}{9.81 \cdot \mathrm{~m}} \times 706 \cdot \frac{\mathrm{~N}}{\mathrm{~m}^{2}} \times \frac{\mathrm{kg} \cdot \mathrm{m}}{\mathrm{s}^{2} \cdot \mathrm{~N}}$
$\mathrm{h}_{3}=5.29 \cdot \mathrm{~mm}$
Note that all pressures are gage.
For x momentum

$$
\begin{aligned}
& R_{X}+p_{3} \cdot A_{3} \cdot \cos (60 \cdot d e g)-p_{2} \cdot A_{2} \cdot \cos (45 \cdot d e g)=u_{3} \cdot\left(\rho \cdot Q_{3}\right)+u_{2} \cdot\left(\rho \cdot Q_{2}\right) \\
& R_{X}=p_{2} \cdot A_{2} \cdot \cos (45 \cdot d e g)-p_{3} \cdot A_{3} \cdot \cos (60 \cdot d e g)+\rho \cdot\left(Q_{2} \cdot V_{2} \cdot \cos (45 \cdot \operatorname{deg})-Q_{3} \cdot V_{3} \cdot \cos (60 \cdot \operatorname{deg})\right)
\end{aligned}
$$

$$
\mathrm{R}_{\mathrm{X}}=13200 \cdot \frac{\mathrm{~N}}{\mathrm{~m}^{2}} \times \frac{\pi \cdot(0.0075 \cdot \mathrm{~m})^{2}}{4} \times \cos (45 \cdot \mathrm{deg})-706 \cdot \frac{\mathrm{~N}}{\mathrm{~m}^{2}} \times \frac{\pi \cdot(0.0025 \cdot \mathrm{~m})^{2}}{4} \times \cos (60 \cdot \mathrm{deg}) \ldots
$$

$$
+1000 \cdot \frac{\mathrm{~kg}}{\mathrm{~m}^{3}} \cdot\left(2.5 \cdot \frac{\mathrm{~L}}{\mathrm{~min}} \cdot 0.943 \cdot \frac{\mathrm{~m}}{\mathrm{~s}} \cdot \cos (45 \cdot \mathrm{deg})-1.5 \cdot \frac{\mathrm{~L}}{\mathrm{~min}} \cdot 5.09 \cdot \frac{\mathrm{~m}}{\mathrm{~s}} \cdot \cos (60 \cdot \mathrm{deg})\right) \times \frac{10^{-3} \cdot \mathrm{~m}^{3}}{1 \cdot \mathrm{~L}} \times \frac{1 \cdot \mathrm{~min}}{60 \cdot \mathrm{~s}} \times \frac{\mathrm{N} \cdot \mathrm{~s}^{2}}{\mathrm{~kg} \times \mathrm{m}} \quad \mathrm{R}_{\mathrm{X}}=0.375 \mathrm{~N}
$$

For y momentum

$$
\begin{aligned}
& R_{y}-p_{3} \cdot A_{3} \cdot \sin (60 \cdot \operatorname{deg})-p_{2} \cdot A_{2} \cdot \sin (45 \cdot \operatorname{deg})=v_{3} \cdot\left(\rho \cdot Q_{3}\right)+v_{2} \cdot\left(\rho \cdot Q_{2}\right) \\
& R_{y}=p_{2} \cdot A_{2} \cdot \sin (45 \cdot \operatorname{deg})+p_{3} \cdot A_{3} \cdot \sin (60 \cdot d e g)+\rho \cdot\left(Q_{2} \cdot V_{2} \cdot \sin (45 \cdot \operatorname{deg})+Q_{3} \cdot V_{3} \cdot \sin (60 \cdot \operatorname{deg})\right)
\end{aligned}
$$

$$
\mathrm{R}_{\mathrm{y}}=13200 \cdot \frac{\mathrm{~N}}{\mathrm{~m}^{2}} \times \frac{\pi \cdot(0.0075 \cdot \mathrm{~m})^{2}}{4} \times \sin (45 \cdot \mathrm{deg})+706 \cdot \frac{\mathrm{~N}}{\mathrm{~m}^{2}} \times \frac{\pi \cdot(0.0025 \cdot \mathrm{~m})^{2}}{4} \cdot \sin (60 \cdot \mathrm{deg}) \ldots
$$

$$
+1000 \cdot \frac{\mathrm{~kg}}{\mathrm{~m}^{3}} \cdot\left(2.5 \cdot \frac{\mathrm{~L}}{\min } \cdot 0.943 \cdot \frac{\mathrm{~m}}{\mathrm{~s}} \cdot \sin (45 \cdot \mathrm{deg})+1.5 \cdot \frac{\mathrm{~L}}{\min } \cdot 5.09 \cdot \frac{\mathrm{~m}}{\mathrm{~s}} \cdot \sin (60 \cdot \mathrm{deg})\right) \times \frac{10^{-3} \cdot \mathrm{~m}^{3}}{1 \cdot \mathrm{~L}} \times \frac{1 \cdot \mathrm{~min}}{60 \cdot \mathrm{~s}} \times \frac{\mathrm{N} \cdot \mathrm{~s}^{2}}{\mathrm{~kg} \times \mathrm{m}} \quad \mathrm{R}_{\mathrm{y}}=0.553 \mathrm{~N}
$$

Given: A water jet is directed upward from a well-designed nozzle of area $A_{1}=600 \mathrm{~mm}^{2}: V_{1}^{-} 6.3 \mathrm{mls}$ The flow is steady, and liquid stream does not break up. Poriled is $H=1.55 \mathrm{~m}$ above nozzle ext
Find: (a) V_{2} (b) P_{2}
(c) force on flat plate placed normal to the flow at (2)
(d) Sketch pressure distribution on the plate

Solution: Apply Bernoulli and then y_{2}-momentum equation
Basis eq: $f \frac{1}{e}+\frac{L_{1}^{2}}{2}+g 0^{2}=\frac{7 / 2}{6}+\frac{2}{2}+g 3_{2}^{2}$
Assumptions:
(i) steady flow
(2) incompressible flow
(3) frictionless flow
(4) flow along a streamline

$$
\text { (S) } p_{1}=P_{2}=-p_{1}
$$

Then

$$
v_{2}=\left[v_{1}^{2}+\operatorname{zg}\left(z_{1}-z_{2}\right)\right]^{1 / 2}
$$

$$
t_{2}=\left[(6.3)^{2} \frac{\mathrm{~m}^{2}}{s^{2}}+2 \times 9.8 \frac{13}{s^{2}}(-1.557)\right]^{1 / 2}
$$

$$
\begin{equation*}
v_{2}=3.05 \mathrm{mls} \tag{2}
\end{equation*}
$$

By definition, $P_{\mathrm{O}_{2}}=P_{2}+\frac{1}{2} p y^{2}=-p_{\text {atm }}+\frac{1}{2} p \mu_{2}^{2}$. 50

$$
f_{0_{2} g a g e}=\frac{1}{2}+991 \frac{\mathrm{~kg}}{n^{3}} \times(3.05)^{2} \frac{n^{2}}{\delta^{2}} \cdot \frac{N_{5}^{2}}{\frac{g^{2}}{n}}=4.65 \mathrm{kPag}-p_{02}
$$

Apply y-momentum inguation to ct surrounding plate
Basic eq: $F_{3 y}+\vec{F}_{8 y}=\overrightarrow{d b} \int_{c w} v p d+\int_{0} v \vec{p} \cdot \overrightarrow{d A}$
Assumptions: (b) neglect mass in ct
(7) 4_{2} enters at wifornly

Then $=v_{2}\{-p, N, A\}+v_{3}\left\{n_{3}\right\}+y_{4}\left\{n_{4}\right\}=-p, v_{1} v_{2}$ and
(8) $v_{3}=v_{y}=0$

$k_{y}=11.5 N$ (force up)
The pressure distribution on the plate is as shown.

Given: A flat object mouse downward, at speed $U=5$ fiber, into the water jet of the spray system shown. The spray system, of mass $M=0.28$ (Bm and internal vokere $t=12 \mathrm{in}^{3}$, operates under steady conditions
Find: (a) the muniriur) supply pressure required to produce the jet of the spray system.
(b) The Fakimum pressure exited by the pet on the object when he object is at $z=1.5 \mathrm{P}$.
Solution:
(a)

The minimum pressure occurs when friction is neglected, and so we apply the
Bernoulli equation

$$
\frac{p_{1}}{p}+\frac{l_{2}}{2}+g x^{(s)}=\frac{p_{2}}{p}+\frac{v_{2}^{2}}{2}+g x^{(s)}
$$

Assume: in steady flow
(a) incorpressible flow
(3) no friction
(4) Flow along a streamline
(5) neglect $z^{2} Z$,
(6) $p_{2}=P_{\text {Pan }}$
(ה) uniform flow at (1) (2)

$R_{\text {en }}$

$$
P_{1 g}=p_{1}-p_{\text {atm }}=\frac{p}{2}\left(v_{2}^{2}-\psi_{1}^{2}\right)=\frac{p_{2}^{2}}{2}\left[1-\left(\frac{v_{1}}{j_{2}}\right)^{2}\right]
$$

From contrivity, $A_{1} H_{1}=R_{2} H_{2}$, and $\frac{V_{2}}{H_{2}}=\frac{R_{2}}{A_{1}}=\frac{a}{A}$. Then,
(b) The maximum pressure of the get on the object is fie stagnation pressure

$$
P_{0}=p+\frac{1}{2} p V_{r}^{2}
$$

where t is the veloaly of the mpingrig et relaturetothediey
At $z=1.5 \mathrm{f}$, fo jet velocity, t_{4}, n the absence of the defect $\operatorname{con}^{\prime}$ be calculated from $p_{2}+\frac{V_{2}^{2}}{2}+g_{2}^{2}=\frac{P 1}{2}+\frac{V_{4}^{2}}{2}+g_{3}^{\prime \prime}$

$$
\forall_{4}=\left[v_{2}^{2}-2 g\left(z 4-z^{2}\right)\right]^{1 / 2}=\left[(15)^{2} \frac{f^{2}}{5^{2}}-2.32 .2 \frac{f}{\delta^{2}}(1.5)^{f}\right]^{1 / 2}=11.3 f t l_{8}
$$

Men

$$
V_{r 2 l}=V_{4}-(-0)=(11.3+5) \text { flt }=16.3 \text { fils }
$$

and
(c) To deternnie the fore of the water on the object we apply the z component of the momentum equation to
the d shown

$=$

Assumptions: (8) negled $\frac{2}{i t}$ (as
(9) negled body forces
(10) uniform radial flow at (S)
(ii) uniform vertical flow at (1) $w^{6} z_{G}=1.5 \mathrm{ft}$

Them $-F_{i}=-\omega_{n_{\text {anis }}} \backslash p V_{4_{y j}} R_{i} \backslash$
where F, is applied force necessary b maintain motion of plate al constant Speed 3

$$
\begin{aligned}
& \psi_{4+y_{3}}=v_{4}-(-0)=v_{4}+0 \\
& w_{4+y_{3}}=\psi_{4 y_{3}}=V_{4}-0 \\
& F_{1}=f\left(v_{4}+0\right)^{2} A_{4}
\end{aligned}
$$

From continuity $A_{2} S_{2}=A_{4} H_{4}$
Ten

$$
\text { and } A_{x}=\frac{V_{2}}{J_{4}} A_{2}=\frac{15}{11.3} \times 1 \mathrm{n}^{2}=1.33 \mathrm{in}^{2}
$$

$$
F_{1}=p\left(J_{k}-0\right)^{2} A_{4}=1.94 \frac{\operatorname{sing}}{f^{2}}(11.3+5)^{2} \frac{f^{2}}{s^{2}} \cdot 1.333^{2} \cdot \frac{f^{2}}{14 i^{2}} \cdot \frac{16 s^{2}}{f . \operatorname{sing}}
$$

$F_{1}=4,76$ for (in the direction Shown)
Since the plate is moving al constant speed, then

$$
\sum F_{\text {plate }}=M_{a}=0 \quad \text { and }
$$

neglecting the wing or the plate then

$$
\begin{aligned}
& F_{H_{20}}=F_{1}=4.70 B_{0} \\
& \vec{F}_{H_{20}}=4.76 \hat{k} .
\end{aligned}
$$

Problem 6.70

6.70 Water flows out of a kitchen faucet of 1.25 cm diameter at the rate of $0.1 \mathrm{~L} / \mathrm{s}$. The bottom of the sink is 45 cm below the faucet outlet. Will the cross-sectional area of the fluid stream increase, decrease, or remain constant between the faucet outlet and the bottom of the sink? Explain briefly. Obtain an expression for the stream cross section as a function of distance y above the sink bottom. If a plate is held directly under the faucet, how will the force required to hold the plate in a horizontal position vary with height above the sink? Explain briefly.

Given: Flow through kitchen faucet

Find: Area variation with height; force to hold plate as function of height

Solution:

Basic equation $\quad \frac{\mathrm{p}}{\rho}+\frac{\mathrm{V}^{2}}{2}+\mathrm{g} \cdot \mathrm{z}=\mathrm{const} \quad \mathrm{V} \cdot \mathrm{A} \quad F_{y}=F_{S_{y}}+F_{B_{y}}=\frac{\partial}{\partial t} \int_{\mathrm{CV}} v \rho d \forall+\int_{\mathrm{CS}} v \rho \vec{V} \cdot d \vec{A}$
Assumptions: 1) Incompressible flow 2) Inviscid 3) Steady 4) Along a streamline
Hence, applying Bernoulli between the faucet (1) and any height y

$$
\frac{\mathrm{V}_{1}^{2}}{2}+\mathrm{g} \cdot \mathrm{H}=\frac{\mathrm{V}^{2}}{2}+\mathrm{g} \cdot \mathrm{y} \quad \quad \text { where we assume the water is at } \mathrm{p}_{\text {atm }}
$$

Hence

$$
\mathrm{V}(\mathrm{y})=\sqrt{\mathrm{V}_{1}^{2}+2 \cdot \mathrm{~g} \cdot(\mathrm{H}-\mathrm{y})}
$$

The problem doesn't require a plot, but it looks like

$$
\mathrm{V}_{1}=0.815 \frac{\mathrm{~m}}{\mathrm{~s}} \quad \mathrm{~V}(0 \cdot \mathrm{~m})=3.08 \frac{\mathrm{~m}}{\mathrm{~s}}
$$

The speed increases as y decreases because the fluid particles "trade" potential energy for kinetic, just as a falling solid particle does!

But we have

$$
\mathrm{Q}=\mathrm{V}_{1} \cdot \mathrm{~A}_{1}=\mathrm{V}_{1} \cdot \frac{\pi \cdot \mathrm{D}^{2}}{4}=\mathrm{V} \cdot \mathrm{~A}
$$

Hence

$$
\mathrm{A}=\frac{\mathrm{V}_{1} \cdot \mathrm{~A}_{1}}{\mathrm{~V}}
$$

$$
\mathrm{A}(\mathrm{y})=\frac{\pi \cdot \mathrm{D}_{1}^{2} \cdot \mathrm{~V}_{1}}{4 \cdot{\sqrt{\mathrm{~V}_{1}^{2}}{ }^{2}+2 \cdot \mathrm{~g} \cdot(\mathrm{H}-\mathrm{y})}^{\text {(}} \text {. }}
$$

The problem doesn't require a plot, but it looks like

$$
\begin{aligned}
& \mathrm{A}(\mathrm{H})=1.23 \mathrm{~cm}^{2} \\
& \mathrm{~A}(0)=0.325 \mathrm{~cm}^{2}
\end{aligned}
$$

The area decreases as the speed increases. If the stream falls far enough the flow will change to turbulent.
For the CV above

$$
\begin{aligned}
& R_{y}-W=u_{i n} \cdot\left(-\rho \cdot V_{i n} \cdot A_{i n}\right)=-V \cdot(-\rho \cdot Q) \\
& R_{y}=W+\rho \cdot V^{2} \cdot A=W+\rho \cdot Q \cdot \sqrt{V_{1}^{2}+2 \cdot g \cdot(H-y)}
\end{aligned}
$$

Hence R_{y} increases in the same way as V as the height y varies; the maximum force is when $\mathrm{y}=\mathrm{R}_{\mathrm{ymax}}=\mathrm{W}+\rho \cdot \mathrm{Q} \cdot \sqrt{\mathrm{V}_{1}{ }^{2}+2 \cdot \mathrm{~g} \cdot \mathrm{H}}$

An old magic trick uses an empty thread spool and a playing card. The playing card is placed against the bottom of the spool. Contrary to intuition, when one blows downward through the central hole in the spool, the card is not blown away. Instead it is 'sucked'" up against the spool. Explain.

Open-Ended Problem Statement: An old magic trick uses an empty thread spool and a playing card. The playing card is placed against the bottom of the spool. Contrary to intuition, when one blows downward through the central hole in the spool, the card is not blown away. Instead it is 'ssucked’' up against the spool. Explain.

Discussion: The secret to this "parlor trick" lies in the velocity distribution, and hence the pressure distribution, that exists between the spool and the playing cards.

Neglect viscous effects for the purposes of discussion. Consider the space between the end of the spool and the playing card as a pair of parallel disks. Air from the hole in the spool enters the annular space surrounding the hole, and then flows radially outward between the parallel disks. For a given flow rate of air the edge of the hole is the crosssection of minimum flow area and therefore the location of maximum air speed.

After entering the space between the parallel disks, air flows radially outward. The flow area becomes larger as the radius increases. Thus the air slows and its pressure increases. The largest flow area, slowest air speed, and highest pressure between the disks occur at the outer periphery of the spool where the air is discharged from an annular area.

The air leaving the annular space between the disk and card must be at atmospheric pressure. This is the location of the highest pressure in the space between the parallel disks. Therefore pressure at smaller radii between the disks must be lower, and hence the pressure between the disks is sub-atmospheric. Pressure above the card is less than atmospheric pressure; pressure beneath the card is atmospheric. Each portion of the card experiences a pressure difference acting upward. This causes a net pressure force to act upward on the whole card. The upward pressure force acting on the card tends to keep it from blowing off the spool when air is introduced through the central hole in the spool.

Viscous effects are present in the narrow space between the disk and card. However, they only reduce the pressure rise as the air flows outward, they do not dominate the flow behavior.

Given: Tank shown has well-raurded nozzle. at 保e $t=0$, water level is ho

Find: expression for hilt as a function of time.

Moti(a) tithe us for \bar{y} (d $=10$ will.
 ho as a para meter for

$$
0 \cdots \leqslant h M_{0} \leq M
$$

(b) h tho as for $h_{0}=I M$, with Bled as a parameter for $2 \leq D / d \leq 10$.

Solution:
Apply the Bernoulli equation along a streamline between tee surface and the int.
Basie equation:

$$
\frac{e^{5}}{6}+\frac{v^{2}}{2}+g^{2}=\frac{e^{(s)}}{6}+\frac{1}{2}+g 3^{2}
$$

Assumptions: (i) quasi-steady flow, ie neglect acceleration
(a) incompressible flow
(3) neglect frictional effects
(4) flow along a streamline
(5) $\quad P_{t}=-p_{s}=-P_{t}$.

From continuity, $V_{t} A_{t}=V_{i} A_{j}$ or $J_{D}=V_{t} \frac{A_{t}}{F_{j}}=V_{t}\left(\frac{D_{2}}{L_{1}}\right.$
Solving.

$$
\frac{v^{2}}{2}-\frac{v^{2}}{2}=\frac{\psi^{2}}{2}\left[1-\left(\frac{\psi_{1}}{y_{t}}\right)^{2}\right]=g\left(z_{j}-z_{s}\right)=g[H-(H+h)]=-g h
$$

Then

$$
v_{t}=\left[\frac{2 g h}{\left(v_{i} / v_{t}\right)^{2}-1}\right]^{1_{2}}=\left[\frac{2 g h}{\left(A_{t} /_{j}\right)^{2}}-1\right]^{1 / 2}=\left[\frac{2 g h}{(D / d)^{4}-1}\right]^{1 / 2}=-\frac{d h}{d t}
$$

Separating variables,

$$
\frac{d h}{h^{1 / 2}}=-\left[\frac{2 g}{(1 / d)^{4}-1}\right]^{1 / 2} d t
$$

Integrating,

$$
e_{2 h^{\prime}} l^{\text {tegrating }}=-\left[\frac{2 g}{(\sqrt{1 d})^{4}-1}\right]^{1 / 2} t+c
$$

At $t=0, h=h_{0}$, so $c=2 h_{0}^{\prime}$ and

$$
h=\left\{h_{0}^{1 / 2}-\frac{1}{2}\left[\frac{29}{0 / 1^{1}-1}\right]^{1 / 2} t\right\}^{2}
$$

Nonderiensionalye (divide by ho) to obtain

\square

Draining of a cylindrical liquid tank:

Problem 6.73

6.73 A horizontal axisymmetric jet of air with 0.4 in. diameter strikes a stationary vertical disk of 7.5 in . diameter. The jet speed is $225 \mathrm{ft} / \mathrm{s}$ at the nozzle exit. A manometer is connected to the center of the disk. Calculate (a) the deflection, if the manometer liquid has $\mathrm{SG}=1.75$, (b) the force exerted by the jet on the disk, and (c) the force exerted on the disk if it is assumed that the stagnation pressure acts on the entire forward surface of the disk. Sketch the streamline pattern and plot the distribution of pressure on the face of the disk.

Given: Air jet striking disk

Find: Manometer deflection; Force to hold disk; Force assuming p_{0} on entire disk; plot pressure distribution

Solution:

Basic equations: Hydrostatic pressure, Bernoulli, and momentum flux in x direction

$$
\Delta \mathrm{p}=\mathrm{SG} \cdot \rho \cdot \mathrm{~g} \cdot \Delta \mathrm{~h} \quad \frac{\mathrm{p}}{\rho}+\frac{\mathrm{V}^{2}}{2}+\mathrm{g} \cdot \mathrm{z}=\mathrm{constant} \quad F_{x}=F_{S_{x}}+F_{B_{x}}=\frac{\partial}{\partial t} \int_{\mathrm{CV}} u \rho d \forall+\int_{\mathrm{CS}} u \rho \vec{V} \cdot d \vec{A}
$$

Assumptions: 1) Steady flow 2) Incompressible 3) No friction 4) Flow along streamline 5) Uniform flow 6) Horizontal flow ($\mathrm{gx}=0$)
Applying Bernoulli between jet exit and stagnation point

$\frac{\mathrm{p}_{\mathrm{atm}}}{\rho_{\mathrm{air}}}+\frac{\mathrm{V}^{2}}{2}=\frac{\mathrm{p}_{0}}{\rho_{\mathrm{air}}}+0$	$\mathrm{p}_{0}-\mathrm{p}_{\mathrm{atm}}=\frac{1}{2} \cdot \rho_{\mathrm{air}} \cdot \mathrm{V}^{2}$
But from hydrostatics	$\mathrm{p}_{0}-\mathrm{p}_{\mathrm{atm}}=\mathrm{SG} \cdot \rho \cdot \mathrm{g} \cdot \Delta \mathrm{h} \quad$ so $\quad \Delta \mathrm{h}=\frac{\frac{1}{2} \cdot \rho_{\mathrm{air}} \cdot \mathrm{V}^{2}}{\mathrm{SG} \cdot \rho \cdot \mathrm{g}}=\frac{\rho_{\mathrm{air}} \cdot \mathrm{V}^{2}}{2 \cdot \mathrm{SG} \cdot \rho \cdot \mathrm{g}}$
$\Delta \mathrm{h}=0.002377 \cdot \frac{\operatorname{slug}}{\mathrm{ft}^{3}} \times\left(225 \cdot \frac{\mathrm{ft}}{\mathrm{s}}\right)^{2} \times \frac{1}{2 \cdot 1.75} \times \frac{\mathrm{ft}^{3}}{1.94 \cdot \mathrm{slug}} \times \frac{\mathrm{s}^{2}}{32.2 \cdot \mathrm{ft}} \quad \Delta \mathrm{h}=0.55 \cdot \mathrm{ft} \quad \Delta \mathrm{h}=6.60 \cdot \mathrm{in}$	

For x momentum

$$
\begin{aligned}
& \mathrm{R}_{\mathrm{x}}=\mathrm{V} \cdot\left(-\rho_{\mathrm{air}} \cdot \mathrm{~A} \cdot \mathrm{~V}\right)=-\rho_{\mathrm{air}} \cdot \mathrm{~V}^{2} \cdot \frac{\pi \cdot \mathrm{~d}^{2}}{4} \\
& \mathrm{R}_{\mathrm{x}}=-0.002377 \cdot \frac{\mathrm{slug}}{\mathrm{ft}^{3}} \times\left(225 \cdot \frac{\mathrm{ft}}{\mathrm{~s}}\right)^{2} \times \frac{\pi \cdot\left(\frac{0.4}{12} \cdot \mathrm{ft}\right)^{2}}{4} \times \frac{\mathrm{lbf} \cdot \mathrm{~s}^{2}}{\mathrm{slug} \cdot \mathrm{ft}}
\end{aligned}
$$

$$
\mathrm{R}_{\mathrm{X}}=-0.105 \cdot \mathrm{lbf}
$$

The force of the jet on the plate is then $F=-R_{X}$

$$
\mathrm{F}=0.105 \cdot \mathrm{lbf}
$$

The stagnation pressure is

$$
\mathrm{p}_{0}=\mathrm{p}_{\mathrm{atm}}+\frac{1}{2} \cdot \rho_{\mathrm{air}} \cdot \mathrm{~V}^{2}
$$

The force on the plate, assuming stagnation pressure on the front face, is

$$
\mathrm{F}=\left(\mathrm{p}_{0}-\mathrm{p}\right) \cdot \mathrm{A}=\frac{1}{2} \cdot \rho_{\mathrm{air}} \cdot \mathrm{~V}^{2} \cdot \frac{\pi \cdot \mathrm{D}^{2}}{4}
$$

$$
\mathrm{F}=\frac{\pi}{8} \times 0.002377 \cdot \frac{\mathrm{slug}}{\mathrm{ft}^{3}} \times\left(225 \cdot \frac{\mathrm{ft}}{\mathrm{~s}}\right)^{2} \times\left(\frac{7.5}{12} \cdot \mathrm{ft}\right)^{2} \times \frac{\mathrm{lbf} \cdot \mathrm{~s}^{2}}{\mathrm{slug} \cdot \mathrm{ft}} \quad \mathrm{~F}=18.5 \mathrm{lbf}
$$

Obviously this is a huge overestimate!
For the pressure distribution on the disk, we use Bernoulli between the disk outside edge any radius r for radial flow

$$
\frac{\mathrm{p}_{\mathrm{atm}}}{\rho_{\mathrm{air}}}+\frac{1}{2} \cdot \mathrm{v}_{\text {edge }}{ }^{2}=\frac{\mathrm{p}}{\rho_{\mathrm{air}}}+\frac{1}{2} \cdot \mathrm{v}^{2}
$$

We need to obtain the speed v as a function of radius. If we assume the flow remains constant thickness h, then

$$
\mathrm{Q}=\mathrm{v} \cdot 2 \cdot \pi \cdot \mathrm{r} \cdot \mathrm{~h}=\mathrm{V} \cdot \frac{\pi \cdot \mathrm{~d}^{2}}{4} \quad \mathrm{v}(\mathrm{r})=\mathrm{V} \cdot \frac{\mathrm{~d}^{2}}{8 \cdot \mathrm{~h} \cdot \mathrm{r}}
$$

We need an estimate for h . As an approximation, we assume that $\mathrm{h}=\mathrm{d}$ (this assumption will change the scale of $\mathrm{p}(\mathrm{r})$ but not the basic shap
Hence

$$
\mathrm{v}(\mathrm{r})=\mathrm{V} \cdot \frac{\mathrm{~d}}{8 \cdot \mathrm{r}}
$$

Using this in Bernoulli

$$
\mathrm{p}(\mathrm{r})=\mathrm{p}_{\mathrm{atm}}+\frac{1}{2} \cdot \rho_{\mathrm{air}} \cdot\left(\mathrm{v}_{\text {edge }}{ }^{2}-\mathrm{v}(\mathrm{r})^{2}\right)=\mathrm{p}_{\mathrm{atm}}+\frac{\rho_{\mathrm{air}} \cdot \mathrm{~V}^{2} \cdot \mathrm{~d}^{2}}{128} \cdot\left(\frac{4}{\mathrm{D}^{2}}-\frac{1}{\mathrm{r}^{2}}\right)
$$

Expressed as a gage pressure $\quad p(r)=\frac{\rho_{a i r} \cdot V^{2} \cdot d^{2}}{128} \cdot\left(\frac{4}{D^{2}}-\frac{1}{r^{2}}\right)$

r (in)

Given: Water level in tank shown is maintaried at hight t
Find: Elevation h to maximize range, x, of jet.
Hot: Jet speed, V, distance, x as: function of h. for och' ch.
Solution:

Apply Bernoulli equation between tank surface and get^{2}.
Basic equation: $\frac{\rho_{2}}{e}+\frac{V_{2}^{2}}{2}+g y_{0}^{2}=\frac{y}{e}+\frac{V_{1}^{2}}{2}+g y$.
Assumptions: (i) steady flow (a) incompressible flow
(3) Alow dlongstreamline (H) no friction then

$$
\begin{equation*}
g t=\frac{y^{2}}{2}+g h \text { or } \forall=\sqrt{2 g(t-h)} \tag{i}
\end{equation*}
$$

Assume no air resistance in the stream. Ter $u=$ constant, and $x=u t=\sqrt{2 g(t-h)} \cdot t_{-}$
The only force acting on the stream is gravity

$$
\Sigma F_{y}=-m g=m a_{y}=m \frac{d v}{d t} ; h_{u} \int_{d v}^{d t}=-g
$$

Integrating we obtain $v=y_{0}^{\infty}-g$ and.

$$
y=y_{0}+y t^{2}-\frac{1}{2} g t^{2}
$$

Solving for t, $t=\left[\frac{2\left(y_{0}-y\right)}{g}\right]^{1 / 2}$
The time of fight is then $t=\sqrt{\frac{2 y_{0}}{g}}=\sqrt{\frac{2 h}{g}}$
Substituting into Eq. 2

$$
x=\sqrt{2 g(t-h)} \sqrt{\frac{2 h}{g}}=2 \sqrt{h(H-h)}-\cdots-\cdots-(3)
$$

I will be maximized when $h(H-h)$ is maximized, or when

$$
\frac{d}{d h}[h(H-h)]=0=(H-h)+h(-1)=H-2 h \text { or } h=H / 2 \ldots
$$

The corresponding range is

$$
\bar{A}=2 \sqrt{\frac{H}{2} \times \frac{H}{2}}=H
$$

See the next page for plots

Exit velocity and throw distance from orifice in side of tank, versus height h / H

h / H	$V /(2 g H)^{1 / 2}$	X / H
0.00	1.00	0.000
0.01	0.995	0.199
0.02	0.990	0.280
0.03	0.985	0.341
0.04	0.980	0.392
0.05	0.975	0.436
0.10	0.949	0.600
0.15	0.922	0.714
0.20	0.894	0.800
0.25	0.866	0.866
0.30	0.837	0.917
0.35	0.806	0.954
0.40	0.775	0.980
0.45	0.742	0.995
0.50	0.707	1.000
0.55	0.671	0.995
0.60	0.632	0.980
0.65	0.592	0.954
0.70	0.548	0.917
0.75	0.500	0.866
0.80	0.447	0.800
0.85	0.387	0.714
0.90	0.316	0.600
0.95	0.224	0.436
0.96	0.200	0.392
0.97	0.173	0.341
0.98	0.141	0.280
0.99	0.100	0.199
1.00	0.00	0.00

Given: Flow over a Quonset hit may be approwinated by the velocity field
with $0 \leq \theta=2 \pi$
Te hut has a dianeler, $D=6 \mathrm{~m}$, and a length, $L=18 \mathrm{~m}$ During a storm, $U=100$ butte, $P_{\infty}=720 \mathrm{~mm} \mathrm{Hg} . T_{\infty}=5 \mathrm{C}$
Find: The net force tending to lift the hut off its foundation.
Solution:
Basic equation: $\frac{P}{p}+\frac{V^{2}}{2}+g z=$ cont $\quad F=(P d A$
Assumptions: (") steady flow
(2) incomprawible flow
(3) frictionless flow
(4) flow along a streamline

Along the top hat f of he cylinder, $F_{r}=0$ and $\vec{V}=-20 \sin i_{0}, 0 \leq 5=30$ Applying the Bemoutli equation along the streamline ($r=a$)
)

From the ideal gas equation of state

$$
\begin{equation*}
F_{R_{y}}=83.3 \mathrm{kN} \tag{Ry}
\end{equation*}
$$

Comment: The actual pressure distribution over the rear portion of the hut is not modelled well by ideal flow. The force calculated here is laver thar the actual force.

$$
\begin{aligned}
& F_{R_{y}}=\frac{5}{3} p v^{2} a L=\frac{5}{3} \times 1.20 \frac{g g}{n^{3}} \times\left(10^{5}\right)^{2} \frac{n^{2}}{h_{1^{2}}^{2}} \frac{h^{2}}{(3600)^{2} s^{2}} \times 3 m \times 18 m \times \frac{N . s^{2}}{g \cdot n}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{p}{\rho}+\frac{y^{2}}{2}=\frac{P}{e}+\frac{\nu^{2}}{e} \\
& P-P_{\infty}=\frac{P}{2}\left(y_{\infty}^{2}-v^{2}\right)=\frac{P}{2}\left(v^{2}-4 v^{2} \sin ^{2} \theta\right)=P \frac{v^{2}}{2}\left(1-4 \sin ^{2} \theta\right) \\
& F_{e_{y}}=\int_{a}\left(P_{\infty}-P\right) d R \sin \theta=\int_{0}^{\pi}\left(P_{\infty}-P\right) \operatorname{sun} \text { L LadE } \\
& \left.=\int_{0}^{\pi} p \frac{U^{2}}{2}\left(4 \sin ^{2} \theta-1\right) \sin \theta h a d \theta=p \frac{u^{2}}{2} a h\left\{4\left[\frac{\cos ^{3} \theta}{3}-\cot \theta\right]_{0}^{\pi}+\cos \theta\right]_{0}^{\pi}\right\} \\
& =P U^{2} a l\left\{4\left[\left(-\frac{1}{3}+1\right)-\left(\frac{1}{3}-1\right)\right]+(-1-1)\right\} \\
& F_{R_{y}}=p \frac{u^{2}}{2} a l\left(\frac{0}{3}\right)=\frac{5}{3} p v^{2} a L
\end{aligned}
$$

Problem 6.76
Gwen: Inflatable "bubble" structure modelled as circular semicylvider
dearkter $D=30 \mathrm{~m}$ berate $\therefore=70 \mathrm{~m}$

Pressure reside is $\varphi_{1}=P_{\infty}+\Delta p$
where $\Delta f=$ prog g th and $\Delta h=b \mathrm{~mm}$
Pressure distribution over oubersurface isaverby

$$
\frac{-P_{\infty}}{\frac{1}{2} f_{1}{ }^{2}}=1-4 \sin ^{2} \theta
$$

$$
v_{w}=6, \mathrm{gm} / \mathrm{hr}
$$

Find: net vertical force exerted on the structure
Solution:
The force due to pressure is $F=$ (Pdt.
Te vertical component of $d F_{1}$ is $d F_{W}=-P A f \sin \theta=-P R$ desire The vertical component of $d F_{2 \text { is }} d F_{2 y}=p_{i} d A \sin \theta=p_{i} R L d \theta \sin \theta$
Then, reghectirig end effects

$$
\begin{aligned}
& d F_{i} \text { net }=\left(P_{i-P}\right) R \sin \theta d \theta=\left(-P_{\infty}+D P-P\right) R L \sin \theta d \theta \\
& F_{V}=\int d F_{V}=\int_{0}^{\pi}\left[\Delta f-\left(\varphi-\rho_{\infty}\right)\right] R L \sin \theta d \theta \\
& =\int_{0}^{\pi}\left[\Delta \theta-\frac{1}{2} \rho_{\omega}^{2}\left(1-4 \sin ^{2} \theta\right)\right] R L \sin \theta d \theta \\
& =R L\left\{\operatorname{\Delta P}[-\cos \theta]_{0}^{\pi}-\frac{1}{2} p_{\omega^{2}}^{2}\left[-\cos \theta+4\left(\cos \theta-\frac{\cos ^{3} \theta}{3}\right]_{0}^{\pi}\right.\right. \\
& =R L\left\{2 \Delta P-\frac{1}{2} P H_{\omega}^{2}\left[2+4\left(-2+\frac{2}{3}\right)\right]\right. \\
& F_{N}=R L\left\{2 \Delta \theta+\frac{5}{3} p V_{\omega}^{2}\right\}=R L\left\{2 p \mu_{0} g \Delta h+\frac{5}{3} p v_{\omega}^{2}\right\} . \\
& F_{v}=15 m \times 70 \mathrm{~m}\left\{2+999 \frac{\mathrm{~kg}}{\mathrm{H}^{3}} \times 9.8 \frac{\mathrm{~m}}{\mathrm{~s}^{2}} \times 0.01 \mathrm{~m}+\frac{5}{3} \times \frac{1.23 \mathrm{lg}}{\mathrm{~m}^{3}} \times(b 0)^{2} \frac{\mathrm{~km}^{2}}{\mathrm{hr}^{2}}\right. \\
& \left.\times \frac{10^{2} \frac{m}{2}^{2}}{\operatorname{ken}^{2}} \times \frac{h^{2}}{(36005)^{2}}\right\} \times \frac{5^{2}}{\operatorname{lgg}^{\prime} m}
\end{aligned}
$$

$$
F_{v_{n+t}}=804 \mathrm{kN}
$$

Problem 6.77

6.77 Water flows at low speed through a circular tube with inside diameter of 2 in . A smoothly contoured body of 1.5 in . diameter is held in the end of the tube where the water discharges to atmosphere. Neglect frictional effects and assume uniform velocity profiles at each section. Determine the pressure measured by the gage and the force required to hold the body.

Given: Water flow out of tube

Find: Pressure indicated by gage; force to hold body in place

Solution:

Basic equations: Bernoulli, and momentum flux in x direction

$$
\frac{\mathrm{p}}{\rho}+\frac{\mathrm{V}^{2}}{2}+\mathrm{g} \cdot \mathrm{z}=\text { constant } \quad \mathrm{Q}=\mathrm{V} \cdot \mathrm{~A} \quad F_{x}=F_{S_{x}}+F_{B_{x}}=\frac{\partial}{\partial t} \int_{\mathrm{CV}} u \rho d \forall+\int_{\mathrm{CS}} u \rho \vec{V} \cdot d \vec{A}
$$

Assumptions: 1) Steady flow 2) Incompressible 3) No friction 4) Flow along streamline 5) Uniform flow 6) Horizontal flow ($\mathrm{gx}=0$) Applying Bernoulli between jet exit and stagnation point

$$
\begin{aligned}
& \frac{\mathrm{p}_{1}}{\rho}+\frac{\mathrm{V}_{1}^{2}}{2}=\frac{\mathrm{p}_{2}}{\rho}+\frac{\mathrm{V}_{2}^{2}}{2}=\frac{\mathrm{V}_{2}^{2}}{2} \\
& \mathrm{p}_{1}=\frac{\rho}{2} \cdot\left(\mathrm{~V}_{2}^{2}-\mathrm{V}_{1}^{2}\right)
\end{aligned}
$$ where we work in gage pressure

But from continuity

$$
\mathrm{Q}=\mathrm{V}_{1} \cdot \mathrm{~A}_{1}=\mathrm{V}_{2} \cdot \mathrm{~A}_{2}
$$

$$
V_{2}=V_{1} \cdot \frac{A_{1}}{A_{2}}=V_{1} \cdot \frac{D^{2}}{D^{2}-d^{2}}
$$

where $\mathrm{D}=2$ in and $\mathrm{d}=1.5$ in

$$
\mathrm{V}_{2}=20 \cdot \frac{\mathrm{ft}}{\mathrm{~s}} \cdot\left(\frac{2^{2}}{2^{2}-1.5^{2}}\right)
$$

$$
\mathrm{V}_{2}=45.7 \frac{\mathrm{ft}}{\mathrm{~s}}
$$

Hence

$$
\begin{equation*}
\mathrm{p}_{1}=\frac{1}{2} \times 1.94 \cdot \frac{\operatorname{slug}}{\mathrm{ft}^{3}} \times\left(45.7^{2}-20^{2}\right) \cdot\left(\frac{\mathrm{ft}}{\mathrm{~s}}\right)^{2} \times \frac{\mathrm{lbf} \cdot \mathrm{~s}^{2}}{\operatorname{slugft}} \quad \mathrm{p}_{1}=1638 \frac{\mathrm{lbf}}{\mathrm{ft}^{2}} \quad \mathrm{p}_{1}=11.4 \mathrm{psi} \tag{gage}
\end{equation*}
$$

The x mometum is $\quad-F+p_{1} \cdot A_{1}-p_{2} \cdot A_{2}=u_{1} \cdot\left(-\rho \cdot V_{1} \cdot A_{1}\right)+u_{2} \cdot\left(\rho \cdot V_{2} \cdot A_{2}\right)$

$$
\begin{gathered}
\mathrm{F}=\mathrm{p}_{1} \cdot \mathrm{~A}_{1}+\rho \cdot\left(\mathrm{V}_{1}{ }^{2} \cdot \mathrm{~A}_{1}-\mathrm{V}_{2}{ }^{2} \cdot \mathrm{~A}_{2}\right) \quad \text { using gage pressures } \\
\mathrm{F}=11.4 \cdot \frac{\mathrm{lbf}}{\mathrm{in}^{2}} \times \frac{\pi \cdot(2 \cdot \mathrm{in})^{2}}{4}+1.94 \cdot \frac{\mathrm{slug}}{\mathrm{ft}^{3}} \times\left[\left(20 \cdot \frac{\mathrm{ft}}{\mathrm{~s}}\right)^{2} \times \frac{\pi \cdot(2 \cdot \mathrm{in})^{2}}{4}-\left(45.7 \cdot \frac{\mathrm{ft}}{\mathrm{~s}}\right)^{2} \times \frac{\pi \cdot\left[(2 \cdot \mathrm{in})^{2}-(1.5 \cdot \mathrm{in})^{2}\right]}{4}\right] \times\left(\frac{1 \cdot \mathrm{ft}}{12 \cdot \mathrm{in}}\right)^{2} \times \frac{\mathrm{lbf} \cdot \mathrm{~s}^{2}}{\mathrm{slug} \mathrm{ft}}
\end{gathered}
$$

$$
\mathrm{F}=14.1 \mathrm{lbf} \quad \text { in the direction shown }
$$

Given: High-pressure aur forcs 9 strear of water from a tirg, rounded orifice, of area A, in a tarik. The auroxpands slouty so the expansion may be considered isotherfal.

Find: (a) algebrouc expression for in teaving fe tank (b) " " 0 "lat if tank.
(c) enpression for Mw(t)
(d) plot $M_{w}(t)$ for o4t $440 \min$ if $t_{0}=5 m^{3}, t_{t}=10 m^{3}$, $A=25 \mathrm{~mm}^{2}, \therefore f_{0}=1 \mathrm{MFa}$
Solution:
Basuc equations: $\frac{p}{\rho}+\frac{y^{2}}{2}+g z=\operatorname{con} a$

$$
0=\frac{\partial}{\partial t} C_{\infty} p d t+\int_{e s} \vec{p} \cdot \overrightarrow{d t}
$$

Assumptions: (1) quasi strady flos
(2) frictiontess
(3) incompressible
(4) flow atong a streamline

(s) uniform Cflow at outhe .
(b) neglect grauity
(i) ps pate $\therefore p_{a b s}=-p_{\text {gage }}$

Apety Bernoubli equation batwees Inqued surface and orrice

$$
\begin{aligned}
& \psi_{j}=\left[\frac{2\left(f-\rho_{a} t_{n}\right)}{\rho}\right]^{1 / 2}=\sqrt{\frac{2 f}{\rho}} \\
& i=\rho^{A} t_{y}=\rho^{2 f} \sqrt{2 f}=\sqrt{2 \rho p} R
\end{aligned}
$$

Rate of Gange of mass in tarik is $\frac{d M}{d t}=\frac{\partial}{\partial t} \int p d y$

$$
\frac{d M}{d t}=\rho_{w} \frac{d t_{\omega}}{d t}=-p_{\omega} \frac{d t_{a i r}}{d t} \quad\left(t_{2}=t_{a i r}+t_{\omega}\right) \quad \frac{d \mu}{d r}
$$

For isothermal flow, $P_{0}=R T=\operatorname{contanit}=P_{0}$
where f is the air density and $p=$ Mairitar tus

$$
p+\frac{p}{1}+p_{0} \quad \text { or } p=p_{0} \frac{t_{0}}{d}
$$

From continuty

$$
o=\rho_{\omega} d t_{\omega}+i t
$$

and

$$
\begin{aligned}
& 0=-p_{\omega} \frac{d t}{d t}+\sqrt{2 p_{0} p_{\omega}} A \\
& \frac{d t}{d t}=\sqrt{\frac{2 p}{p_{\omega}}}=\sqrt{\frac{2 p_{0} t_{0}}{p_{\omega} t}}
\end{aligned}
$$

Separating variables, $\quad t^{1_{2}} d t=\sqrt{\frac{2 t_{0} t_{0}}{\rho}} A d t$ Integrating

$$
\frac{2}{3}\left(t^{3 / 2}-t_{0}^{3 / 2}\right)=\frac{2 t_{0}^{3 / 2}}{3}\left[\left(\frac{t}{\left.t_{0}\right)^{1 / 2}}-1\right]=\sqrt{2-p_{0} t_{0}}+t\right.
$$

Then

$$
\begin{aligned}
& \left(\frac{t}{f_{0}}\right)^{3 / 2}=\left[1+\frac{3}{2 t_{0}^{3 / 2}} \sqrt{\frac{2 \rho_{0} t_{0}}{\rho_{\omega}} R t}\right] \\
& \frac{t_{0}}{t_{0}}=\left[1+1.5 \sqrt{2-\rho_{0}} \frac{\rho_{\omega}}{\rho_{\omega}}\right]_{0}^{2 / 3}
\end{aligned}
$$

$$
\text { But } n_{\omega}=\rho_{\omega}\left(\theta_{t}-t\right)=\rho^{t} t_{0}\left\{\frac{t_{t}}{t_{0}}-\frac{t}{t_{0}}\right\}
$$

$$
\therefore M_{\omega}=\rho_{\omega} t_{0}\left\{\frac{y_{t}}{t_{0}}-\left[1+1.5 \sqrt{\frac{2-\rho_{0}}{\rho_{\omega}} \frac{A t^{2 / 3}}{t_{0}}}\right]\right\}
$$

$t(\mathrm{~s})$	$M_{w}(\mathrm{~kg})$
0	4995
2	4862
4	4730
6	4600
8	4472
10	4345
12	4220
14	4096
16	3973
18	3851
20	3731
22	3612
24	3494
26	3377
28	3260
30	3145
32	3031
34	2918
36	2806
38	2695
40	2584

Gwen: High-pressure air fores a stream of water frog a tiny rounded orifice, of area A, in a tank. The an expands rapidly so' the expansion may be treated as adiabatic.

Find: (a) algebraic expression for mbeaurig te tank (b) "D" " dmldt in Pe tank (c) expression for $M_{w}(t)$; plot M (t) for o4t40 mm

Solution:
Basic equations:

$$
\frac{e}{e}+\frac{y^{2}}{2}+g_{3}=\text { cons }
$$

$$
0=\frac{2}{2 t} \int_{c u} p d t+\int_{c} p \vec{v} \cdot \overrightarrow{d H}
$$

Assumptions: (i) quasi steady fou
(2) frichontess
(3) incompressible

(4) flow along a streamline

(5) uniform flow at outlet
(6) reqbect gravity
(7) P \rightarrow path \therefore Fob $=p_{\text {gage }}$

Apply Bernoulli equation between liquid surface and orifice

$$
\begin{aligned}
& \psi_{s}=\left[\frac{2\left(e-p_{a t h}\right)}{p} y^{\prime}=\sqrt{\frac{2 p}{p}}\right. \\
& i=p A V_{d}=p A \sqrt{\frac{2 p}{p}}=\sqrt{2 P p} R
\end{aligned}
$$

Rote of Change of Mass in tank is $\frac{d y}{d t}=\frac{2}{2 t} \int p d t$

$$
\frac{d \mu}{d t}=\rho_{\omega} \frac{d t_{w}}{d t}=-\rho_{w} \frac{d t_{\text {air }}}{d t} \quad\left(v_{t}=t_{\text {air }}+t_{\omega}\right) \quad \frac{d \eta}{d t}
$$

For adiabatic expansion of our $p / p^{z}=\operatorname{con} t a n t$
Since mass of air is constant, $p_{0}+t_{0}^{q}=p+t^{l}$
From continuity, $-p_{w} \frac{d t_{\text {air }}}{d t}+\sqrt{2 p} p_{w} A=0$

$$
\begin{aligned}
& t^{k_{2}} d t=A \sqrt{\frac{2 \rho_{0} t_{0}}{\rho_{\omega}}} d t=c d t \quad \text { where } c=A \sqrt{\frac{2 p_{0} t_{0}^{a}}{\rho_{\omega}}}
\end{aligned}
$$

Integrating

$$
\left.\sum_{(k+2)}^{2} v^{\frac{k}{2}+1}\right]_{t_{0}}^{\theta}=c t
$$

Problem 6.79

$$
\begin{aligned}
& +\frac{(t+2)}{2}-t_{0}^{\left(\frac{k+2}{2}\right)}=\frac{t+2}{2} c t \\
& \left(\frac{1}{4}\right)^{(t+2)} \frac{1+\frac{(k+D)}{2} c t-\frac{1}{4} \frac{1+2}{2}}{2} \\
& =1+\frac{\left(k_{2}+2\right)}{2} R\left[2 \frac{e_{0} d_{0}^{+}}{\rho_{w}}\right]^{1_{2}}+\left[\frac{1}{\left.d_{0}^{+2}\right)}\right]^{1_{2}} t \\
& \left(\frac{1}{t_{0}}\right)^{\frac{k+2}{2}}=1+\frac{\left(R_{2}+2\right)}{2} R\left[\frac{2 p_{0}}{p_{\omega}+\frac{1}{0}}\right]^{1 / 2} t=1+\frac{\left(p_{2}+2\right.}{2} \frac{A_{1}}{t_{0}}\left[\frac{2 p_{0}}{p_{\omega}}\right]^{1 / 2} t \\
& \frac{t_{0}}{t_{0}}=\left[1+\frac{R}{t_{0}} \sqrt{\frac{2 \rho_{0}}{\rho_{w}}}\left(\frac{x+2}{2}\right)+\right]^{2(t+2} \\
& M_{w}=p_{\omega}\left(\nabla_{t}-\psi_{0}\right)=p v_{0}\left\{\frac{v_{t}-V_{0}}{\forall_{0}}\right\} . \\
& M_{\omega}=p_{\omega} t_{0}\left\{\frac{t_{0}}{4_{0}}-\left[1+\frac{A}{v_{0}} \sqrt{\frac{2 p_{0}}{p_{\omega}}}\left(\frac{k+2}{2}\right) t\right]^{2 / t+2}\right\} \\
& M_{w}=\rho_{0} t_{0}\left\{\frac{t_{1}}{t_{0}}-\left[1+1.10 \sqrt{\frac{2 p_{0}}{p_{w}} \frac{A t}{t_{0}}}\right]^{0.588}\right\}
\end{aligned}
$$

Describe the pressure distribution on the exterior of a multistory building in a steady wind. Identify the locations of the maximum and minimum pressures on the outside of the building. Discuss the effect of these pressures on infiltration of outside air into the building.

Open-Ended Problem Statement: Describe the pressure distribution on the exterior of a multistory building in a steady wind. Identify the locations of the maximum and minimum pressures on the outside of the building. Discuss the effect of these pressures on infiltration of outside air into the building.

Discussion: A multi-story building acts as a bluff-body obstruction in a thick atmospheric boundary layer. The boundary-layer velocity profile causes the air speed near the top of the building to be highest and that toward the ground to be lower.

Obstruction of air flow by the building causes regions of stagnation pressure on upwind surfaces. The stagnation pressure is highest where the air speed is highest. Therefore the maximum surface pressure occurs near the roof on the upwind side of the building. Minimum pressure on the upwind surface of the building occurs near the ground where the air speed is lowest.

The minimum pressure on the entire building will likely be in the low-speed, lowpressure wake region on the downwind side of the building.

Static pressure inside the building will tend to be an average of all the surface pressures that act on the outside of the building. It is never possible to seal all openings completely. Therefore air will tend to infiltrate into the building in regions where the outside surface pressure is above the interior pressure, and will tend to pass out of the building in regions where the outside surface pressure is below the interior pressure. Thus generally air will tend to move through the building from the upper floors toward the lower floors, and from the upwind side to the downwind side.

Imagine a garden hose with a stream of water flowing out through a nozzle. Explain why the end of the hose may be unstable when held a half meter or so from the nozzle end.

Open-Ended Problem Statement: Imagine a garden hose with a stream of water flowing out through a nozzle. Explain why the end of the hose may be unstable when held a half meter or so from the nozzle end.

Discussion: Water flowing out of the nozzle tends to exert a thrust force on the end of the hose. The thrust force is aligned with the flow from the nozzle and is directed toward the hose.

Any misalignment of the hose will lead to a tendency for the thrust force to bend the hose further. This will quickly become unstable, with the result that the free end of the hose will "flail" about, spraying water from the nozzle in all directions.

This instability phenomenon can be demonstrated easily in the backyard. However, it will tend to do least damage when the person demonstrating it is wearing a bathing suit!

An aspirator provides suction by using a stream of water flowing through a venturi. Analyze the shape and dimensions of such a device. Comment on any limitations on its use.

Open-Ended Problem Statement: An aspirator provides suction by using a stream of water flowing through a venturi. Analyze the shape and dimensions of such a device. Comment on any limitations on its use.

Discussion: The basic shape of the aspirator channel should be a converging nozzle section to reduce pressure followed by a diverging diffuser section to promote pressure recovery. The basic shape is that of a venturi flow meter.

If the diffuser exhausts to atmosphere, the exit pressure will be atmospheric. The pressure rise in the diffuser will cause the pressure at the diffuser inlet (venturi throat) to be below atmospheric.

A small tube can be brought in from the side of the throat to aspirate another liquid or gas into the throat as a result of the reduced pressure there.

The following comments can be made about limitations on the aspirator:

1. It is desirable to minimize the area of the aspirator tube compared to the flow area of the venturi throat. This minimizes the disturbance of the main flow through the venturi and promotes the best possible pressure recovery in the diffuser.
2. It is desirable to avoid cavitation in the throat of the venturi. Cavitation alters the effective shape of the flow channel and destroys the pressure recovery in the diffuser. To avoid cavitation, the reduced pressure must always be above the vapor pressure of the driver liquid.
3. It is desirable to limit the flow rate of gas into the venturi throat. A large amount of gas can alter the flow pattern and adversely affect pressure recovery in the diffuser.

The best combination of specific dimensions could be determined experimentally by a systematic study of aspirator performance. A good starting point probably would be to use dimensions similar to those of a commercially available venturi flow meter.

Given: Reentrant orifice in the side of a large tank. Pressure along the taft walls is essentially hydrostatic.
Find: the contraction coefficient,

$$
c_{c}=A_{1} / A_{0}
$$

Solution:
Apply the t-conponax of the momentum equation to the ct shown

$$
F_{s t}+5 e_{L}=3 \lambda_{c u}^{\alpha} u p d+d+\left(\cos ^{\prime} u \vec{v} \cdot d \vec{n}\right.
$$

Assumptions: (4) steady flow
(2) urifof, flow at jet exit.
(3) hydrostatic pressure varation across es (1). V.wo
(4) Ronertur flu across horizontal portion of

Ten $c s$ is negligible.
(5) $p=\cos s t a n g$ neg

$$
\begin{aligned}
& \int_{a_{0}}^{-p d A_{1}}=m v_{j}=p_{j} H_{j} \nu_{j}=p_{j} \psi_{j}^{2} . \\
& -P_{1} A_{0}=p g^{\prime} A_{0}=p A_{j} \nu_{\frac{1}{2}}^{2} \\
& \therefore \frac{A_{A}}{A_{3}}=\frac{\psi^{2}}{g} .
\end{aligned}
$$

Apply the Bernoulli equation along the central streamline from to pr e jet ext. obs as

$$
p_{1}+\frac{y^{7}}{2}+g z_{1}^{(3)}=\frac{b}{6}+\frac{y^{2}}{2}+g z_{2}^{2}
$$

Assumptions: (b) frictionless flow

$$
\begin{array}{r}
p_{1}=p h=p \frac{v^{2}}{2} \\
\therefore \quad \frac{v^{2}}{2}=g h
\end{array}
$$

and

$$
\begin{aligned}
& A_{0}=\frac{V^{2}}{A^{h}}=2 \\
& \therefore C_{c}=\frac{a_{j}}{A_{0}}=\frac{1}{2}
\end{aligned}
$$

Carefully sketch the energy grade lines (EGL) and hydraulic grade lines (HGL) for the system shown in Fig. 6.6 if the pipe is horizontal (i.e., the outlet is at the base of the reservoir), and a water turbine (extracting energy) is located at (a) point (2), or (b) at point (3). In Chapter 8 we will investigate the effects of friction on internal flows. Can you anticipate and sketch the effect of friction on the EGL and HGL for cases (a) and (b)?
(a) Note that the effect of friction would be that the EGL would tend to drop: suddenly at the contraction, gradually in the large pipe, more steeply in the small pipe. The HGL would then "hang" below the HGL in a manner similar to that shown.

(b) Note that the effect of friction would be that the EGL would tend to drop: suddenly at the contraction, gradually in the large pipe, more steeply in the small pipe. The HGL would then "hang" below the HGL in a manner similar to that shown.

Carefully sketch the energy grade lines (EGL) and hydraulic grade lines (HGL) for the system shown in Fig. 6.6 if a pump (adding energy to the fluid) is located at (a) point (2), or (b) at point (3), such that flow is into the reservoir. In Chapter 8 we will investigate the effects of friction on internal flows. Can you anticipate and sketch the effect of friction on the EGL and HGL for cases (a) and (b)?
(a) Note that the effect of friction would be that the EGL would tend to drop from right to left: steeply in the small pipe, gradually in the large pipe, and suddenly at the expansion. The HGL would then "hang" below the HGL in a manner similar to that shown.

(b) Note that the effect of friction would be that the EGL would tend to drop from right to left: steeply in the small pipe, gradually in the large pipe, and suddenly at the expansion. The HGL would then "hang" below the HGL in a manner similar to that shown.

Problem *6.86

*6.86 Compressed air is used to accelerate water from a tube. Neglect the velocity in the reservoir and assume the flow in the tube is uniform at any section. At a particular instant, it is known that $V=6 \mathrm{ft} / \mathrm{s}$ and $d V / d t=7.5 \mathrm{ft} / \mathrm{s}^{2}$. The cross-sectional area of the tube is $A=32 \mathrm{in} .^{2}$. Determine the pressure in the tank at this in-
 stant.

Given: Unsteady water flow out of tube
Find: Pressure in the tank

Solution:

Basic equation: Unsteady Bernoulli

$$
\frac{p_{1}}{\rho}+\frac{V_{1}^{2}}{2}+g z_{1}=\frac{p_{2}}{\rho}+\frac{V_{2}^{2}}{2}+g z_{2}+\int_{1}^{2} \frac{\partial V}{\partial t} d s
$$

Assumptions: 1) Unsteady flow 2) Incompressible 3) No friction 4) Flow along streamline 5) Uniform flow 6) Horizontal flow ($\mathrm{g}_{\mathrm{x}}=0$)
Applying unsteady Bernoulli between reservoir and tube exit

$$
\frac{\mathrm{p}}{\rho}+\mathrm{g} \cdot \mathrm{~h}=\frac{\mathrm{V}^{2}}{2}+\int_{1}^{2} \frac{\partial}{\partial \mathrm{t}} \mathrm{~V} \mathrm{ds}=\frac{\mathrm{V}^{2}}{2}+\frac{\mathrm{dV}}{\mathrm{dt}} \cdot \int_{1}^{2} 1 \mathrm{ds}
$$

where we work in gage pressure

Hence

$$
\mathrm{p}=\rho \cdot\left(\frac{\mathrm{V}^{2}}{2}-\mathrm{g} \cdot \mathrm{~h}+\frac{\mathrm{dV}}{\mathrm{dt}} \cdot \mathrm{~L}\right)
$$

Hence

$$
\begin{equation*}
\mathrm{p}=1.94 \cdot \frac{\operatorname{slug}}{\mathrm{ft}^{3}} \times\left(\frac{6^{2}}{2}-32.2 \times 4.5+7.5 \times 35\right) \cdot\left(\frac{\mathrm{ft}}{\mathrm{~s}}\right)^{2} \times \frac{\mathrm{lbf} \cdot \mathrm{~s}^{2}}{\operatorname{slugft}} \quad \mathrm{p}=263 \cdot \frac{\mathrm{lbf}}{\mathrm{ft}^{2}} \quad \mathrm{p}=1.83 \cdot \mathrm{psi} \tag{gage}
\end{equation*}
$$

Problem *6.87

*6.87 If the water in the pipe in Problem 6.86 is initially at rest and the air pressure is 3 psig, what will be the initial acceleration of the water in the pipe?

Given: Unsteady water flow out of tube
Find: Initial acceleration

Solution:

Basic equation: Unsteady Bernoulli

$$
\frac{p_{1}}{\rho}+\frac{V_{1}^{2}}{2}+g z_{1}=\frac{p_{2}}{\rho}+\frac{V_{2}^{2}}{2}+g z_{2}+\int_{1}^{2} \frac{\partial V}{\partial t} d s
$$

Assumptions: 1) Unsteady flow 2) Incompressible 3) No friction 4) Flow along streamline 5) Uniform flow 6) Horizontal flow ($\mathrm{g}_{\mathrm{x}}=0$)
Applying unsteady Bernoulli between reservoir and tube exit

$$
\frac{\mathrm{p}}{\rho}+\mathrm{g} \cdot \mathrm{~h}=\int_{1}^{2} \frac{\partial}{\partial \mathrm{t}} \mathrm{~V} \mathrm{ds}=\frac{\mathrm{dV}}{\mathrm{dt}} \cdot \int_{1}^{2} 1 \mathrm{ds}=\mathrm{a}_{\mathrm{x}} \cdot \mathrm{~L} \quad \text { where we work in gage pressure }
$$

Hence $\quad a_{x}=\frac{1}{L} \cdot\left(\frac{p}{\rho}+g \cdot h\right)$
Hence

$$
\mathrm{a}_{\mathrm{x}}=\frac{1}{35 \cdot \mathrm{ft}} \times\left[3 \cdot \frac{\mathrm{lbf}}{\mathrm{in}^{2}} \times\left(\frac{12 \cdot \mathrm{in}}{1 \cdot \mathrm{ft}}\right)^{2} \times \frac{\mathrm{ft}^{3}}{1.94 \cdot \mathrm{slug}} \times \frac{\mathrm{slug} \mathrm{ft}}{\mathrm{~s}^{2} \cdot \mathrm{lbf}}+32.2 \cdot \frac{\mathrm{ft}}{\mathrm{~s}^{2}} \times 4.5 \cdot \mathrm{ft}\right] \quad \mathrm{a}_{\mathrm{x}}=10.5 \cdot \frac{\mathrm{ft}}{\mathrm{~s}^{2}}
$$

Note that we obtain the same result if we treat the water in the pipe as a single body at rest with gage pressure $p+\rho g h$ at the left end!

Given: U-tube manometer of constant area as shown. Manometer fluid is initially deflected and then released
Find: a differential equation for l
 as a function of time

Solution
Babi equation: $\quad \frac{P_{1}}{e}+\frac{V_{1}^{2}}{2}+g g_{0}=\frac{P_{2}}{\rho}+\frac{V_{2}^{2}}{2}+g J_{2}^{2}+\int_{1}^{2} \frac{\partial V_{5}}{\partial t} d s$
Assumptions: in incompressible flow
(2) frictionless flow
(3) flow a log a streamline

Since $P_{1}=P_{2}=P_{\text {atm }}$ and $V_{1}^{2}=V_{2}^{2}$, then

$$
g(z-z)=\int_{1}^{2} \frac{\partial t_{s}}{\partial t} d s
$$

Let $h=$ total longe of column

$$
t=\text { deflection }
$$

Ten $d s=d h$
)

$$
\begin{aligned}
& \partial s=V=\frac{d t}{d t} \\
& \therefore \quad 2 g l=\int_{s}^{2} \frac{\partial y}{\partial t} d L=\frac{\partial y}{\partial t} T_{1}^{2} d L=L \frac{\partial v}{\partial t}
\end{aligned}
$$

Since $V=-\frac{d f}{d t}$

$$
2 g l=h \frac{\partial t}{\partial t}=-h \frac{d^{2} l}{d t^{2}}
$$

Finally $\quad \frac{d^{2} l}{d t^{2}}+\frac{2 g}{L} l=0$

Problem *6.89
Given: Flow between parallel disks shown is started from ret t at to. Re reservoir level is maintained constant; $r_{1}=50 \mathrm{~mm}$.
Find: Rate of Change of volume flow, daldt, at to
Solution:

Apply the unsteady bernoulli equation from the surface to the eft.

$$
\begin{aligned}
\varphi_{2}+\frac{V^{2}}{2}+g z_{s}^{2} & =\frac{p_{2}}{p}+\frac{V_{2}^{2}}{e_{2}}+\frac{X_{e}}{0}+C^{2} \frac{\partial v_{s}}{\partial t} d s \\
g g^{H} & =\frac{V_{2}^{2}}{2}+\int_{1}^{2} \frac{\partial v_{s}}{\partial t} d s .
\end{aligned}
$$

Assumptions: (i) frictionless flow
(2) incompressible flow
(3) flow along a streamline.

For uniform flow at any section between the plates, for r? r, He volume fla rate is gwen by

$$
a=\left(\vec{V} \cdot d \vec{q}=\forall_{r} 2 \pi r h \quad \text { and } \forall_{r}=\frac{Q}{2 \pi s h}\right.
$$

At the cit $v_{e}=l_{\text {ret }}$
Assume that the rote of Range of fluid wedocty in the reservoir (out to $r=r$) is negingible. Ten

$$
\int_{1}^{2} \frac{\partial V_{s}}{\partial t} d s=\frac{\partial}{\partial t} \int_{1}^{2} V_{r} d r=\frac{\partial}{\partial t} \int_{1} \frac{Q_{2}}{2 \pi h} \frac{d r}{r}=\frac{\ln R r_{1}}{2 \pi h} \frac{d \theta}{d t}
$$

Ten substituting into the unsteady Bemoulli equation, we detain

$$
g H=\frac{a^{2}}{8 \pi^{2} R^{2} h^{2}}+\frac{\ln R l_{r}}{2 \pi h} \frac{d s}{d t}
$$

$A^{2} t=0, Q=0$ and

$$
\begin{align*}
\frac{d \theta}{d t} & =\frac{2 \pi h g t}{\ln R_{r}} \\
& =26 \times 0.0015 m \times 9.81 \frac{m}{2} \times \ln \times \frac{1}{\operatorname{tn} \frac{300}{50}} \\
\frac{d s}{d t} & =0.0516 \mathrm{n}^{3} / \mathrm{s} 1 \mathrm{~s} \tag{do}
\end{align*}
$$

Problem *6.90

*6.90 If the water in the pipe of Problem 6.86 is initially at rest, and the air pressure is maintained at 1.5 psig , derive a differential equation for the velocity V in the pipe as a function of time, integrate, and plot V versus t for $t=0$ to 5 s .

Given: Unsteady water flow out of tube
Find: Differential equation for velocity; Integrate; Plot v versus time

Solution:

Basic equation: Unsteady Bernoulli $\frac{p_{1}}{\rho}+\frac{V_{1}^{2}}{2}+g z_{1}=\frac{p_{2}}{\rho}+\frac{V_{2}^{2}}{2}+g z_{2}+\int_{1}^{2} \frac{\partial V}{\partial t} d s$
Assumptions: 1) Unsteady flow 2) Incompressible 3) No friction 4) Flow along streamline 5) Uniform flow 6) Horizontal flow ($\mathrm{g}_{\mathrm{x}}=0$)
Applying unsteady Bernoulli between reservoir and tube exit

$$
\frac{\mathrm{p}}{\rho}+\mathrm{g} \cdot \mathrm{~h}=\frac{\mathrm{V}^{2}}{2}+\int_{1}^{2} \frac{\partial}{\partial \mathrm{t}} \mathrm{~V} \mathrm{ds}=\frac{\mathrm{V}^{2}}{2}+\frac{\mathrm{dV}}{\mathrm{dt}} \cdot \int_{1}^{2} 1 \mathrm{ds}=\frac{\mathrm{V}^{2}}{2}+\frac{\mathrm{dV}}{\mathrm{dt}} \cdot \mathrm{~L} \quad \text { where we work in gage pressure }
$$

Hence

$$
\frac{\mathrm{dV}}{\mathrm{dt}}+\frac{\mathrm{V}^{2}}{2 \cdot \mathrm{~L}}=\frac{1}{\mathrm{~L}} \cdot\left(\frac{\mathrm{p}}{\rho}+\mathrm{g} \cdot \mathrm{~h}\right) \quad \text { is the differential equation for the flow }
$$

Separating variables

$$
\frac{\mathrm{L} \cdot \mathrm{dV}}{\frac{\mathrm{p}}{\rho}+\mathrm{g} \cdot \mathrm{~h}-\frac{\mathrm{V}^{2}}{2}}=\mathrm{dt}
$$

Integrating and using limits $\mathrm{V}(0)=0$ and $\mathrm{V}(\mathrm{t})=\mathrm{V}$

$$
\mathrm{V}(\mathrm{t})=\sqrt{2 \cdot\left(\frac{\mathrm{p}}{\rho}+\mathrm{g} \cdot \mathrm{~h}\right)} \cdot \tanh \left(\sqrt{\frac{\frac{\mathrm{p}}{\rho}+\mathrm{g} \cdot \mathrm{~h}}{2 \cdot \mathrm{~L}^{2}}} \cdot \mathrm{t}\right)
$$

t (s)

This graph is suitable for plotting in Excel

For large times

$$
\mathrm{V}=\sqrt{2 \cdot\left(\frac{\mathrm{p}}{\rho}+\mathrm{g} \cdot \mathrm{~h}\right)} \quad \mathrm{V}=22.6 \frac{\mathrm{ft}}{\mathrm{~s}}
$$

Given: A cylindrical tank of diameter, $D=50 \mathrm{~mm}$, drains through an opening, $d=5 \mathrm{~mm}$, in the body' of the tain. If the flow is assured to be quasi-steady, the speed of pe liquid leaving the tank may be approximated by $y=\sqrt{2 g y}$, where y is Mesteight from tank bolton to the free surface.
Find: Using the bernoulli equation for unsteady flow dong a sleanline, evalonte the minimum dander ratio $\overline{\text { lid }}$, required to justify' the assumption Rat flow from the tank is quasi-steady.
Solution:
For incompressible, frictionless flow along a strearlinie, the unsteady Bernoulli equation is

$$
\begin{aligned}
& \frac{f_{1}}{\rho}+\frac{v^{2}}{2}+g y_{1}=\frac{p_{2}}{\rho}+v_{\frac{2}{2}}^{2}+g y_{2}+\left(_{1}^{2} \frac{\partial \lambda_{3}}{\partial x} d y\right. \\
& f_{1}=f_{2}=e_{\tan }, y_{2}=0
\end{aligned}
$$

From continuity $V_{1} A_{1}=V_{2} A_{E}=V_{j} A_{j}$

$$
\begin{aligned}
& \therefore \quad \frac{1}{2} v_{د}^{2}\left(\frac{R_{j}}{A_{1}}\right)+g y_{1}=\frac{1}{2} y^{2}+\int_{1}^{2} \frac{\partial y_{5}}{2 t} d y \\
& \text { or. } \quad \underline{4}=\frac{1}{2} y_{i}^{2}\left[1-\left(\frac{A_{1}}{\bar{H}_{1}}\right)^{2}\right]+\int_{1}^{2} \frac{\partial \psi_{0}}{\pi} d y
\end{aligned}
$$

If we assume quasi-steady flow, we soy that

How, $\left(\frac{2 t}{\partial t}\right.$ z y dit $=y \frac{d \psi_{1}}{d t}=y \frac{d}{d t}\left(\psi_{i} \frac{R_{j}}{A_{1}}\right)=y \frac{H_{j}}{A_{1}} \frac{d \psi_{j}}{d t}$
Thus for the assumption to be reasonable we -must have

$$
\left|y \frac{A_{1}}{A_{1}} \frac{d y_{1}}{d t}\right| \ll g \quad \text { or }\left|\frac{A_{j}}{A_{1}} \frac{d y_{1}}{d t}\right|<4
$$

lender the assumption of quasi-steady flow

$$
V_{i}=\left[2 g y \frac{1}{\left(1-F R^{2}\right)}\right]^{1 / 2} \quad \text { where } R R=\left.A_{i}\right|_{A_{1}}
$$

Hen.

$$
\frac{d y_{1}}{d t}=\sqrt{\frac{2 g}{\left(1-R R^{2}\right)}} \frac{1}{d \sqrt{y}} \frac{d y}{d t}=\frac{d y}{d t} \sqrt{\frac{g}{2 y\left(1-A R^{2}\right)}}
$$

Since

$$
\begin{aligned}
& \frac{d y}{d t}=-V_{1}=-V_{i} \frac{R_{i}}{A_{1}} \quad \text { Hen } \\
& \frac{d V_{i}}{d t}=-V_{i} \frac{R_{i}}{F_{1}} \sqrt{\frac{g}{\left.2 y^{\left(1-H R^{2}\right.}\right)}}=-\frac{R_{3}}{\bar{R}_{1}} \sqrt{\frac{V_{1}^{2}\left(1-A R^{2}\right)}{2 q y}} \frac{g}{\left(1-R R^{2}\right)}
\end{aligned}
$$

and

$$
\frac{d s_{j}}{d t}=-\frac{A_{i}}{a_{1}} \frac{g}{\left(1-A R^{2}\right)}
$$

Problem *6.91
For $\left|\frac{A_{j}}{A_{1}} \frac{d d_{j}}{d t}\right| \ll g$, then $\left(\frac{A_{j}}{A_{1}}\right)^{2} \frac{1}{\left(1-A e^{2}\right)} \ll 1$
If we take

$$
\left(\frac{A_{1}}{F_{1}}\right)^{2} \frac{1}{\left(1-A R^{2}\right)} \times 0.01
$$

Hen,

$$
\left(\frac{R_{j}}{A_{1}}\right)^{2}=0.01\left(1-R R^{2}\right)=0.01\left[1-\left(\frac{R_{j}}{A_{1}}\right)^{2}\right]
$$

and

$$
\begin{aligned}
1.01\left(\frac{h_{1}}{A_{1}}\right)^{2} & =0.01 \\
\frac{h_{1}}{A_{1}} & =0.0995
\end{aligned}
$$

or

$$
\frac{D_{j}}{D_{1}}=\left(\frac{R_{j}}{A_{1}}\right)^{\prime / 2}=0.32
$$

In problem 4.44, $D_{j} l_{1}=d l_{1}=0.1$ and hence the assumption of guasi-steady flow is valid.

Gwen: Two circular dies of radius, R, are separated by a distance, b.
Upper disc moves toward the lower one at speed, V.
Fluid between discs is incompressible. and is sapeezed out radially
Assume frictionless flow and uniform
 radial flow and any radial section
Pressure surrounding dice is at Paten
Find: gage pressure at $5=0$
Solution:
Basic equation: $\frac{P_{1}}{e}+\frac{V_{1}^{2}}{2}+g d^{\prime}=\frac{P_{2}}{e}+\frac{V_{2}^{2}}{2}+g_{2}+\left(\frac{\partial V_{s}}{\partial t} d s\right.$

$$
o=\frac{\partial}{\partial t} \int_{w} p d t+\int_{s} p \vec{v} \cdot d \vec{q}
$$

Asbumplions: in incompressible flow
(2) frictionless flow
(3) flow along a streamline
(5) unvorm redial flow at any
(5) neglect elevation charges.

$$
\begin{aligned}
& \text { Ref, } \\
& 0=\frac{2}{\partial t} \int_{a v} p d \psi+\int_{d} p \vec{d} d=\frac{\partial}{\partial t}\left(\rho \pi r^{2} b\right)+p V_{r} 2 \pi r b . \\
& =p \pi r^{2} \frac{\partial b}{\partial t}+p V_{r} 2 \pi r b \text {. But } \frac{\partial b}{\partial t}=-V \\
& \therefore o=-p r r^{2} V+p V_{r} 2 \pi r b \quad \text { and } V_{r}=V \frac{5}{a b}
\end{aligned}
$$

Applying the Bernoulli equation between point $Q(r=r)$ and point $(S)(r=R)$

$$
\begin{aligned}
& P_{1}-P_{2}=\frac{f}{2}\left[V_{2}^{2}-V_{1}^{2}\right]+\int_{r}^{R} p \frac{\partial t_{r}}{\partial t} d r \text { Now, } \frac{\partial U_{r}}{\partial t}=\frac{2}{2 t}\left(V \frac{r}{2 b}\right)=\frac{r V}{2}\left(-\frac{1}{b} \frac{d b}{d t}\right)=\frac{V^{2}}{2 b^{2}} \\
& =\frac{P}{2}\left[\left(\frac{V R}{2 b}\right)^{2}-\left(\frac{V r}{2 b}\right)^{2}\right]+\int_{r}^{R} \rho \frac{v^{2} r}{2 b^{2}} d r \\
& \left.=\frac{p y^{2}}{8 b^{2}}\left[R^{2}-r^{2}\right]+\frac{R y^{2}}{4 b^{2}} r^{2}\right]_{r}^{R}=\frac{p y^{2}}{8 b^{2}}\left[R^{2}-r^{2}\right]+\frac{p V^{2}}{4 b^{2}}\left[R^{2}-r^{2}\right] \\
& P_{1}-P_{a t n}=\frac{3}{8} \frac{P V^{2}}{b^{2}}\left[R^{2}-r^{2}\right]=\frac{3}{8} P \frac{V^{2} R^{2}}{b^{2}}\left[1-\left(\frac{R}{R}\right)^{2}\right]
\end{aligned}
$$

Wen $r=0 \quad P_{1}=P_{e}$

$$
\therefore P_{c}-P_{a t n}=\frac{3}{8} \frac{p v^{2} R^{2}}{b^{2}}
$$

Problem *6.93
Gwen: Two vortex flows with velocity fields

$$
\vec{V}_{1}=\omega r \hat{e}_{\theta} \quad \vec{V}_{2}=\frac{k}{2 \pi r} \hat{e}_{\theta}
$$

Determine: if the Bernoulli equation can be applied between different radii for each flow
Solution: Since $t_{r}=0$, the streamlines are concentric circe. In order for it to be possible to apply the Bernoulli equation between different radii, it is necessary that the flow be irrotational.

Basic equation: $\quad \vec{\omega}=\frac{1}{2} \vec{\nabla} \vec{V}$
Flow (1)

$$
\begin{aligned}
& \nabla \times \vec{V}_{1}=\left(\hat{e}_{T} \frac{\partial}{\partial r}+\hat{e}_{\theta} \frac{1}{r} \vec{\partial} \theta+\hat{k} \hat{y}_{z}\right) \times w r \hat{e}_{\theta} \\
& =\hat{e}_{r} \times \hat{e}_{\theta} \hat{\partial}(\omega r)+\hat{e}_{r} \times \omega r \frac{2 \hat{e}_{0}^{0}}{\partial r}+\hat{e}_{\theta} \times e_{\theta} \frac{i}{r} \frac{\partial(\omega r)}{\partial e}+\hat{e}_{\theta} \times \frac{\omega r}{r} \frac{\partial \hat{e}_{\theta}}{\partial \theta} \\
& =\hat{k}_{n} \omega_{n}+\hat{e}_{\theta} \times w\left(-\hat{e}_{r}\right) \\
& \nabla \vec{V}_{1}=2 \omega t
\end{aligned}
$$

)
\therefore Flow (1) is rotational and Bernoulli equation cannot be applied between different radii.

Flow (a)

$$
\begin{aligned}
& \nabla \times \vec{V}_{2}=\left(\hat{e}_{r} \frac{\partial}{2 r}+\hat{e}_{\theta} \frac{1}{r} \frac{\partial}{\partial \theta}+\hat{b} \frac{\partial}{\partial z}\right) \times \frac{k}{2 \pi r} \hat{e}_{\theta}
\end{aligned}
$$

$$
\begin{aligned}
& =-\hat{k} \frac{k}{2 \pi r^{2}}+\hat{e}_{\theta} \frac{k}{2 \pi r^{2}} \times\left(-\hat{e_{r}}\right) \\
& =-\hat{k}, \frac{k}{2 \pi r^{2}}+\hat{k} \frac{k}{2 \pi r^{2}} \\
& \nabla+\vec{v}_{2}=0
\end{aligned}
$$

Since the flow field is irrotational Bernoulli equation can be applied between different radii if the flow is also incompressible and frictionless.

Problem *6.94

*6.94 Consider the flow represented by the stream function $\psi=A x^{2} y$, where A is a dimensional constant equal to 2.5 $\mathrm{m}^{-1} \cdot \mathrm{~s}^{-1}$. The density is $1200 \mathrm{~kg} / \mathrm{m}^{3}$. Is the flow rotational? Can the pressure difference between points $(x, y)=(1,4)$ and $(2,1)$ be evaluated? If so, calculate it, and if not, explain why.

Given: Stream function
Find: If the flow is irrotational; Pressure difference between points $(1,4)$ and $(2,1)$

Solution:

Basic equations: Incompressibility because ψ exists

$$
\mathrm{u}=\frac{\partial}{\partial \mathrm{y}} \psi \quad \mathrm{v}=-\frac{\partial}{\partial \mathrm{x}} \psi \quad \text { Irrotationality } \quad \frac{\partial}{\partial \mathrm{x}} \mathrm{v}-\frac{\partial}{\partial \mathrm{y}} \mathrm{u}=0
$$

$\psi(x, y)=A \cdot x^{2} \cdot y$
$u(x, y)=\frac{\partial}{\partial y} \psi(x, y)=\frac{\partial}{\partial y}\left(A \cdot x^{2} \cdot y\right) \quad u(x, y)=A \cdot x^{2}$
$v(x, y)=-\frac{\partial}{\partial x} \psi(x, y)=-\frac{\partial}{\partial x}\left(A \cdot x^{2} \cdot y\right) \quad v(x, y)=-2 \cdot A \cdot x \cdot y$
Hence $\quad \frac{\partial}{\partial \mathrm{x}} \mathrm{v}(\mathrm{x}, \mathrm{y})-\frac{\partial}{\partial \mathrm{y}} \mathrm{u}(\mathrm{x}, \mathrm{y}) \rightarrow-2 \cdot \mathrm{~A} \cdot \mathrm{y} \quad \frac{\partial}{\partial \mathrm{x}} \mathrm{v}-\frac{\partial}{\partial \mathrm{y}} \mathrm{u} \neq 0 \quad$ so flow is NOT IRROTATIONAL
Since flow is rotational, we must be on same streamline to be able to use Bernoulli
At point $(1,4) \quad \psi(1,4)=4 \mathrm{~A} \quad$ and at point $(2,1) \quad \psi(2,1)=4 \mathrm{~A}$
Hence these points are on same streamline so Bernoulli can be used. The velocity at a point is $V(x, y)=\sqrt{u(x, y)^{2}+v(x, y)^{2}}$

Hence at $(1,4)$

$$
\mathrm{V}_{1}=\sqrt{\left[\frac{2.5}{\mathrm{~m} \cdot \mathrm{~s}} \times(1 \cdot \mathrm{~m})^{2}\right]^{2}+\left(-2 \times \frac{2.5}{\mathrm{~m} \cdot \mathrm{~s}} \times 1 \cdot \mathrm{~m} \times 4 \cdot \mathrm{~m}\right)^{2}}
$$

$$
\mathrm{V}_{1}=20.2 \frac{\mathrm{~m}}{\mathrm{~s}}
$$

Hence at $(2,1) \quad V_{2}=\sqrt{\left[\frac{2.5}{m \cdot s} \times(2 \cdot m)^{2}\right]^{2}+\left(-2 \times \frac{2.5}{m \cdot s} \times 2 \cdot m \times 1 \cdot m\right)^{2}}$
$\mathrm{V}_{2}=14.1 \frac{\mathrm{~m}}{\mathrm{~s}}$
Using Bernoulli $\frac{\mathrm{P}_{1}}{\rho}+\frac{1}{2} \cdot \mathrm{~V}_{1}{ }^{2}=\frac{\mathrm{P}_{2}}{\rho}+\frac{1}{2} \cdot \mathrm{~V}_{2}{ }^{2}$
$\Delta \mathrm{p}=\frac{\rho}{2} \cdot\left(\mathrm{~V}_{2}{ }^{2}-\mathrm{V}_{1}{ }^{2}\right)$
$\Delta \mathrm{p}=\frac{1}{2} \times 1200 \cdot \frac{\mathrm{~kg}}{\mathrm{~m}^{3}} \times\left(14.1^{2}-20.2^{2}\right) \cdot\left(\frac{\mathrm{m}}{\mathrm{s}}\right)^{2} \times \frac{\mathrm{N} \cdot \mathrm{s}^{2}}{\mathrm{~kg} \cdot \mathrm{~m}}$
$\Delta \mathrm{p}=-126 \cdot \mathrm{kPa}$

Gwen: Two-dinensional flow represented by the velocity field $\bar{V}=(A x-B y)+i-(B x+A y)+j$, where $A=15^{-2}, y=25^{-2}$, t is in s, and coordinates are in meters.
Find: (a) Is this a possible incompressible flow?
bo $\frac{r_{s}}{T_{s}}$ the fioustrady or unsteady?
(c) Show that the flop is irrotational
(d) Derive an expression for the velocity potential

Solution: For incompressible flow, $\nabla \cdot \vec{\lambda}=0$
For given flow $\vec{\nabla} \cdot \vec{J}=\frac{\partial}{\partial x}(A x-\overrightarrow{b y}) t-\frac{\partial}{\partial y}(B x+A y)=a t-A t=0$
\therefore velocity field represents a possible incompriside flew
The flow is unsteady since $\vec{V}=\vec{V}(4, y, t)$
The rotation is gwen by $\vec{\omega}=\frac{1}{2} \nabla \vec{N}=\frac{1}{2}\left(\frac{\partial v}{\partial x}-\frac{\partial u}{\partial y}\right) \hat{\vec{p}}$

$$
\vec{\omega}=\frac{1}{2}\left[\frac{\partial}{2 x}-(B x+A y) t-\frac{3}{2 y}(A x-B y) t\right]=-B t+B t=0
$$

$\vec{\omega}=0$, so flow is irrotational
From the definition of the velocity potential, $\bar{v}=-\nabla \phi$

$$
\begin{aligned}
u=-\frac{\partial \phi}{\partial x} \quad \text { and } \phi & =f-u d x+f(y, t)=\int-(A x-B y) t d x+f(y, t) \\
\phi & =\left(-A \frac{x^{2}}{2}+B x y\right) t+f(y, t) \\
v=-\frac{2 \phi}{\partial y} \text { and } \phi & =\left(-v d y+g(x, t)=\int(B x+A y) t d y+g(x, t)\right. \\
\phi & =\left(B+y+A y^{2}\right) t+g(x, t)
\end{aligned}
$$

Comparing the two expressions for $\$$ we conclude

$$
f(y, t)=\frac{A}{2} y^{2} t \quad \text { and } \quad g(t, t)=-\frac{A}{2} x^{2} t
$$

Hence,

$$
\phi=\left\{\frac{A}{2}\left(y^{2}-x^{2}\right)+B x y\right\} t
$$

*6.96 Using Table 6.2, find the stream function and velocity potential for a plane source, of strength q, near a 90° corner. The source is equidistant h from each of the two infinite planes that make up the corner. Find the velocity distribution along one of the planes, assuming $p=p_{0}$ at infinity. By choosing suitable values for q and h, plot the streamlines and lines of constant velocity potential. (Hint: Use the Excel workbook of Example 6.10.)

Given:
Data from Table 6.2
Find: Stream function and velocity potential for a source in a corner; plot; velocity along one plane

Solution:

From Table 6.2, for a source at the origin $\quad \psi(\mathrm{r}, \theta)=\frac{\mathrm{q}}{2 \cdot \pi} \cdot \theta \quad \phi(\mathrm{r}, \theta)=-\frac{\mathrm{q}}{2 \cdot \pi} \cdot \ln (\mathrm{r})$

Expressed in Cartesian coordinates

$$
\psi(\mathrm{x}, \mathrm{y})=\frac{\mathrm{q}}{2 \cdot \pi} \cdot \operatorname{atan}\left(\frac{\mathrm{y}}{\mathrm{x}}\right) \quad \phi(\mathrm{x}, \mathrm{y})=-\frac{\mathrm{q}}{4 \cdot \pi} \cdot \ln \left(\mathrm{x}^{2}+\mathrm{y}^{2}\right)
$$

To build flow in a corner, we need image sources at three locations so that there is symmetry about both axes. We need sources at $(h, h),(h,-h),(-h, h)$, and $(-h,-h)$

Hence the composite stream function and velocity potential are

$$
\begin{aligned}
& \psi(x, y)=\frac{q}{2 \cdot \pi} \cdot\left(\operatorname{atan}\left(\frac{y-h}{x-h}\right)+\operatorname{atan}\left(\frac{y+h}{x-h}\right)+\operatorname{atan}\left(\frac{y+h}{x+h}\right)+\operatorname{atan}\left(\frac{y-h}{x+h}\right)\right) \\
& \phi(x, y)=-\frac{q}{4 \cdot \pi} \cdot \ln \left[\left\lfloor(x-h)^{2}+(y-h)^{2}\right] \cdot\left[(x-h)^{2}+(y+h)^{2}\right]-\frac{q}{4 \cdot \pi} \cdot\left[(x+h)^{2}+(y+h)^{2}\right] \cdot\left[(x+h)^{2}+(y-h)^{2}\right]\right.
\end{aligned}
$$

By a similar reasoning the horizontal velocity is given by

$$
\mathrm{u}=\frac{\mathrm{q} \cdot(\mathrm{x}-\mathrm{h})}{2 \cdot \pi\left[(\mathrm{x}-\mathrm{h})^{2}+(\mathrm{y}-\mathrm{h})^{2}\right]}+\frac{\mathrm{q} \cdot(\mathrm{x}-\mathrm{h})}{2 \cdot \pi\left[(\mathrm{x}-\mathrm{h})^{2}+(\mathrm{y}+\mathrm{h})^{2}\right]}+\frac{\mathrm{q} \cdot(\mathrm{x}+\mathrm{h})}{2 \cdot \pi\left[(\mathrm{x}+\mathrm{h})^{2}+(\mathrm{y}+\mathrm{h})^{2}\right]}+\frac{\mathrm{q} \cdot(\mathrm{x}+\mathrm{h})}{2 \cdot \pi\left[(\mathrm{x}+\mathrm{h})^{2}+(\mathrm{y}+\mathrm{h})^{2}\right]}
$$

Along the horizontal wall $(y=0)$

$$
\mathrm{u}=\frac{\mathrm{q} \cdot(\mathrm{x}-\mathrm{h})}{2 \cdot \pi\left[(\mathrm{x}-\mathrm{h})^{2}+\mathrm{h}^{2}\right]}+\frac{\mathrm{q} \cdot(\mathrm{x}-\mathrm{h})}{2 \cdot \pi\left[(\mathrm{x}-\mathrm{h})^{2}+\mathrm{h}^{2}\right]}+\frac{\mathrm{q} \cdot(\mathrm{x}+\mathrm{h})}{2 \cdot \pi\left[(\mathrm{x}+\mathrm{h})^{2}+\mathrm{h}^{2}\right]}+\frac{\mathrm{q} \cdot(\mathrm{x}+\mathrm{h})}{2 \cdot \pi\left[(\mathrm{x}+\mathrm{h})^{2}+\mathrm{h}^{2}\right]}
$$

or

$$
\mathrm{u}(\mathrm{x})=\frac{\mathrm{q}}{\pi} \cdot\left[\frac{\mathrm{x}-\mathrm{h}}{(\mathrm{x}-\mathrm{h})^{2}+\mathrm{h}^{2}}+\frac{\mathrm{x}+\mathrm{h}}{(\mathrm{x}+\mathrm{h})^{2}+\mathrm{h}^{2}}\right]
$$

*6.96 Using Table 6.2, find the stream function and velocity potential for a plane source, of strength q, near a 90° corner. The source is equidistant h from each of the two infinite planes that make up the corner. Find the velocity distribution along one of the planes, assuming $p=p_{0}$ at infinity. By choosing suitable values for q and h, plot the streamlines and lines of constant velocity potential. (Hint: Use the Excel workbook of Example 6.10.)

Given: Data from Table 6.2

Find: Stream function and velocity potential for a source in a corner; plot; velocity along one plane
Solution:

$$
\begin{aligned}
& \psi(x, y)=\frac{q}{2 \cdot \pi} \cdot\left(\operatorname{atan}\left(\frac{y-h}{x-h}\right)+\operatorname{atan}\left(\frac{y+h}{x-h}\right)+\operatorname{atan}\left(\frac{y+h}{x+h}\right)+\operatorname{atan}\left(\frac{y-h}{x+h}\right)\right) \\
& \phi(x, y)=-\frac{q}{4 \cdot \pi} \cdot \ln \left[\left[(x-h)^{2}+(y-h)^{2}\right] \cdot\left[(x-h)^{2}+(y+h)^{2}\right]\right]-\frac{q}{4 \cdot \pi} \cdot\left[(x+h)^{2}+(y+h)^{2}\right] \cdot\left[(x+h)^{2}+(y-h)^{2}\right] \\
& \\
& \text { \#NAME? } \\
& \text { Stream Function }
\end{aligned}
$$

\#NAME?
Velocity Potential

Note that the plot is
from $x=0$ to 5 and $y=0$ to 5

*6.97 The flow field for a plane source at a distance h above an infinite wall aligned along the x axis is given by

$$
\begin{aligned}
\vec{V}= & \frac{q}{2 \pi\left[x^{2}+(y-h)^{2}\right]}[x \hat{i}+(y-h) \hat{j}] \\
& +\frac{q}{2 \pi\left[x^{2}+(y+h)^{2}\right]}[x \hat{i}+(y+h) \hat{j}]
\end{aligned}
$$

where q is the strength of the source. The flow is irrotational and incompressible. Derive the stream function and velocity potential. By choosing suitable values for q and h, plot the streamlines and lines of constant velocity potential. (Hint: Use the Excel workbook of Example 6.10.)

Given:

Velocity field of irrotational and incompressible flow
Find: Stream function and velocity potential; plot

Solution:

The velocity field is

$$
u=\frac{q \cdot x}{2 \cdot \pi\left[x^{2}+(y-h)^{2}\right]}+\frac{q \cdot x}{2 \cdot \pi\left[x^{2}+(y+h)^{2}\right]} \quad v=\frac{q \cdot(y-h)}{2 \cdot \pi\left[x^{2}+(y-h)^{2}\right]}+\frac{q \cdot(y+h)}{2 \cdot \pi\left[x^{2}+(y+h)^{2}\right]}
$$

The governing equations are

Hence for the stream function

$$
\mathrm{u}=\frac{\partial}{\partial \mathrm{y}} \psi \quad \mathrm{v}=-\frac{\partial}{\partial \mathrm{x}} \psi \quad \mathrm{u}=-\frac{\partial}{\partial \mathrm{x}} \phi \quad \mathrm{v}=-\frac{\partial}{\partial \mathrm{y}} \phi
$$

$$
\psi=\int u(x, y) d y=\frac{q}{2 \cdot \pi} \cdot\left(\operatorname{atan}\left(\frac{y-h}{x}\right)+\operatorname{atan}\left(\frac{y+h}{x}\right)\right)+f(x)
$$

$$
\psi=-\int v(x, y) d x=\frac{q}{2 \cdot \pi} \cdot\left(\operatorname{atan}\left(\frac{y-h}{x}\right)+\operatorname{atan}\left(\frac{y+h}{x}\right)\right)+g(y)
$$

The simplest expression for ψ is $\psi(x, y)=\frac{q}{2 \cdot \pi} \cdot\left(\operatorname{atan}\left(\frac{y-h}{x}\right)+\operatorname{atan}\left(\frac{y+h}{x}\right)\right)$

For the stream function

$$
\begin{aligned}
& \phi=-\int u(x, y) d x=-\frac{q}{4 \cdot \pi} \cdot \ln \left[x^{2}+(y-h)^{2}\right] \cdot\left[x^{2}+(y+h)^{2}\right]+f(y) \\
& \phi=-\int v(x, y) d y=-\frac{q}{4 \cdot \pi} \cdot \ln \left[x^{2}+(y-h)^{2}\right] \cdot\left[x^{2}+(y+h)^{2}\right]+g(x)
\end{aligned}
$$

The simplest expression for φ is $\quad \phi(x, y)=-\frac{q}{4 \cdot \pi} \cdot \ln \left[x^{2}+(y-h)^{2}\right] \cdot\left[x^{2}+(y+h)^{2}\right]$

Problem *6.97
*6.97 The flow field for a plane source at a distance h above an infinite wall aligned along the x axis is given by

$$
\begin{aligned}
\vec{V}= & \frac{q}{2 \pi\left[x^{2}+(y-h)^{2}\right]}[x \hat{i}+(y-h) \hat{j}] \\
& +\frac{q}{2 \pi\left[x^{2}+(y+h)^{2}\right]}[x \hat{i}+(y+h) \hat{j}]
\end{aligned}
$$

where q is the strength of the source. The flow is irrotational and incompressible. Derive the stream function and velocity potential. By choosing suitable values for q and h, plot the streamlines and lines of constant velocity potential. (Hint: Use the Excel workbook of Example 6.10.)

Given:

> Velocity field of irrotational and incompressible flow

Find: Stream function and velocity potential; plot
Solution: $\quad \psi(x, y)=\frac{q}{2 \cdot \pi} \cdot\left(\operatorname{atan}\left(\frac{y-h}{x}\right)+\operatorname{atan}\left(\frac{y+h}{x}\right)\right)$

$$
\phi(x, y)=-\frac{q}{4 \cdot \pi} \cdot \ln \left[\left[x^{2}+(y-h)^{2}\right] \cdot\left[x^{2}+(y+h)^{2}\right]\right]
$$

Stream Function

\#NAME?

Velocity Potential
Note that the plot is
from $x=-2.5$ to 2.5 and $y=0$ to 5
[3]
Stream Function

*6.98 Using Table 6.2, find the stream function and velocity potential for a plane vortex, of strength K, near a 90° corner. The vortex is equidistant h from each of the two infinite planes that make up the corner. Find the velocity distribution along one of the planes, assuming $p=p_{0}$ at infinity. By choosing suitable values for K and h, plot the streamlines and lines of constant velocity potential. (Hint: Use the Excel workbook of Example Problem 6.10.)

Given:

Data from Table 6.2
Find: Stream function and velocity potential for a vortex in a corner; plot; velocity along one plane

Solution:

From Table 6.2, for a vortex at the origin

$$
\begin{array}{ll}
\phi(\mathrm{r}, \theta)=\frac{\mathrm{K}}{2 \cdot \pi} \cdot \theta & \psi(\mathrm{r}, \theta)=-\frac{\mathrm{K}}{2 \cdot \pi} \cdot \ln (\mathrm{r}) \\
\phi(\mathrm{x}, \mathrm{y})=\frac{\mathrm{q}}{2 \cdot \pi} \cdot \operatorname{atan}\left(\frac{\mathrm{y}}{\mathrm{x}}\right) & \psi(\mathrm{x}, \mathrm{y})=-\frac{\mathrm{q}}{4 \cdot \pi} \cdot \ln \left(\mathrm{x}^{2}+\mathrm{y}^{2}\right)
\end{array}
$$

To build flow in a corner, we need image vortices at three locations so that there is symmetry about both axes. We need vortices at $(h, h),(h,-h),(-h, h)$, and $(-h,-h)$. Note that some of them must have strengths of $-K$!

Hence the composite velocity potential and stream function are

$$
\begin{aligned}
& \phi(x, y)=\frac{K}{2 \cdot \pi} \cdot\left(\operatorname{atan}\left(\frac{y-h}{x-h}\right)-\operatorname{atan}\left(\frac{y+h}{x-h}\right)+\operatorname{atan}\left(\frac{y+h}{x+h}\right)-\operatorname{atan}\left(\frac{y-h}{x+h}\right)\right) \\
& \psi(x, y)=-\frac{K}{4 \cdot \pi} \cdot \ln \left[\frac{(x-h)^{2}+(y-h)^{2}}{(x-h)^{2}+(y+h)^{2}} \cdot \frac{(x+h)^{2}+(y+h)^{2}}{(x+h)^{2}+(y-h)^{2}}\right]
\end{aligned}
$$

By a similar reasoning the horizontal velocity is given by

$$
\mathrm{u}=-\frac{\mathrm{K} \cdot(\mathrm{y}-\mathrm{h})}{2 \cdot \pi\left[(\mathrm{x}-\mathrm{h})^{2}+(\mathrm{y}-\mathrm{h})^{2}\right]}+\frac{\mathrm{K} \cdot(\mathrm{y}+\mathrm{h})}{2 \cdot \pi\left[(\mathrm{x}-\mathrm{h})^{2}+(\mathrm{y}+\mathrm{h})^{2}\right]}-\frac{\mathrm{K} \cdot(\mathrm{y}+\mathrm{h})}{2 \cdot \pi\left[(\mathrm{x}+\mathrm{h})^{2}+(\mathrm{y}+\mathrm{h})^{2}\right]}+\frac{\mathrm{K} \cdot(\mathrm{y}-\mathrm{h})}{2 \cdot \pi\left[(\mathrm{x}+\mathrm{h})^{2}+(\mathrm{y}-\mathrm{h})^{2}\right]}
$$

Along the horizontal wall $(y=0)$
or

$$
\mathrm{u}=\frac{\mathrm{K} \cdot \mathrm{~h}}{2 \cdot \pi\left[(\mathrm{x}-\mathrm{h})^{2}+\mathrm{h}^{2}\right]}+\frac{\mathrm{K} \cdot \mathrm{~h}}{2 \cdot \pi\left[(\mathrm{x}-\mathrm{h})^{2}+\mathrm{h}^{2}\right]}-\frac{\mathrm{K} \cdot \mathrm{~h}}{2 \cdot \pi\left[(\mathrm{x}+\mathrm{h})^{2}+\mathrm{h}^{2}\right]}-\frac{\mathrm{K} \cdot \mathrm{~h}}{2 \cdot \pi\left[(\mathrm{x}+\mathrm{h})^{2}+\mathrm{h}^{2}\right]}
$$

$$
u(x)=\frac{K \cdot h}{\pi} \cdot\left[\frac{1}{(x-h)^{2}+h^{2}}-\frac{1}{(x+h)^{2}+h^{2}}\right]
$$

*6.98 Using Table 6.2, find the stream function and velocity potential for a plane vortex, of strength K, near a 90° corner. The vortex is equidistant h from each of the two infinite planes that make up the corner. Find the velocity distribution along one of the planes, assuming $p=p_{0}$ at infinity. By choosing suitable values for K and h, plot the streamlines and lines of constant velocity potential. (Hint: Use the Excel workbook of Example Problem 6.10.)

Given:
 Data from Table 6.2

Find: Stream function and velocity potential for a vortex in a corner; plot; velocity along one plane
Solution:

$$
\begin{aligned}
& \phi(x, y)=\frac{K}{2 \cdot \pi} \cdot\left(\operatorname{atan}\left(\frac{y-h}{x-h}\right)-\operatorname{atan}\left(\frac{y+h}{x-h}\right)+\operatorname{atan}\left(\frac{y+h}{x+h}\right)-\operatorname{atan}\left(\frac{y-h}{x+h}\right)\right) \\
& \psi(x, y)=-\frac{K}{4 \cdot \pi} \cdot \ln \left[\frac{(x-h)^{2}+(y-h)^{2}}{(x-h)^{2}+(y+h)^{2}} \cdot \frac{(x+h)^{2}+(y+h)^{2}}{(x+h)^{2}+(y-h)^{2}}\right]
\end{aligned}
$$

Stream Function

\#NAME?

\#NAME?

Velocity Potential

Note that the plot is
from $x=-5$ to 5 and $y=-5$ to 5

Given: Flow field represented by $山=A x^{2} y-8 y^{3}$, where $A=1 n^{-1} s^{-1}, s=\frac{1}{3} \mathrm{~m}^{-1} \cdot \mathrm{~s}^{-1}$, and coordinates are in meters
Find: an expression for the velocity potential, ϕ
Solution:
The velocity field is determined from the strean function

$$
\left.\begin{array}{l}
u=2 v \mid 2 y=R^{2}-3 B y^{2} \\
v=-2 v \mid \partial x=-2 R x y
\end{array}\right\} \therefore \vec{v}=\left(A^{2}-3 B y\right) i-2 A x y \hat{j}
$$

$v=-a v l a x=-2 R-x y$
The rotation is given by $\omega_{z}=\frac{1}{2}\left(\frac{\partial v}{\partial x}-\frac{\partial u}{\partial y}\right)$

$$
\omega_{z}=\frac{1}{2}(-2 R y+6 B y)=\frac{1}{2}\left(-2 \times 1 y+6+\frac{1}{3} y\right)=0
$$

Surice $\omega_{z}=0$, the flow is irrotational and $\vec{V}=-\nabla \phi$
Then

$$
\begin{aligned}
u=-\frac{\partial \phi}{\partial x} \text { and } \phi & =\left(-u d x+f(y)=\left(\left(-A x^{2}+3 B y^{2}\right) d x+f(y)\right.\right. \\
\phi & =-\frac{A}{3} x^{3}+3 B x y^{2}+f(y) . \\
v=-\frac{\partial \phi}{\partial y} \text { and } \phi & =\int-v d y+g(x)=\int 2 A x y d y+g(x) \\
\phi & =A x y^{2}+g(x)
\end{aligned}
$$

Comparing the two expressions for $\$$ we

- ide that $A x y^{2}=3 B-y^{2} \quad\left(A=1, B=\frac{1}{3}\right)$
- conclude that $g(x)=-\frac{A}{3} x^{3}, f(y)=0$

Hence $\phi=A x y^{2}-\frac{A}{3} x^{3}$ or $\phi=3 B x y^{2}-\frac{A}{3} x^{3}+\phi$

Problem *6.100

*6.100 A flow field is represented by the stream function $\psi=x^{5}-10 x^{3} y^{2}+5 x y^{4}$. Find the corresponding velocity field. Show that this flow field is irrotational and obtain the potential function.

Given: Stream function
Find: Velocity field; Show flow is irrotational; Velocity potential

Solution:

Basic equations: Incompressibility because ψ exists

$$
\mathrm{u}=\frac{\partial}{\partial \mathrm{y}} \psi \quad \mathrm{v}=-\frac{\partial}{\partial \mathrm{x}} \psi \quad \mathrm{u}=-\frac{\partial}{\partial \mathrm{x}} \varphi \quad \mathrm{v}=-\frac{\partial}{\partial \mathrm{y}} \varphi
$$

$$
\begin{array}{ll}
\text { Irrotationality } \frac{\partial}{\partial x} v-\frac{\partial}{\partial y} u=0 & \\
\psi(x, y)=x^{5}-10 \cdot x^{3} \cdot y^{2}+5 \cdot x \cdot y^{4} & \\
u(x, y)=\frac{\partial}{\partial y} \psi(x, y) & u(x, y) \rightarrow 20 \cdot x \cdot y^{3}-20 \cdot x^{3} \cdot y \\
v(x, y)=-\frac{\partial}{\partial x} \psi(x, y) & v(x, y) \rightarrow 30 \cdot x^{2} \cdot y^{2}-5 \cdot x^{4}-5 \cdot y^{4} \\
\frac{\partial}{\partial x} v(x, y)-\frac{\partial}{\partial y} u(x, y) \rightarrow 0 & \text { Hence flow is IRROTATIONAL }
\end{array}
$$

Hence

$$
\begin{array}{ll}
\mathrm{u}=-\frac{\partial}{\partial \mathrm{x}} \varphi & \text { so } \\
\mathrm{v}=-\frac{\partial}{\partial \mathrm{y}} \varphi & \text { so }
\end{array}
$$

Comparing, the simplest velocity potential is then
$\varphi(x, y)=-\int u(x, y) d x+f(y)=5 \cdot x^{4} \cdot y-10 \cdot x^{2} \cdot y^{3}+f(y)$
$\varphi(x, y)=-\int v(x, y) d y+g(x)=5 \cdot x^{4} \cdot y-10 \cdot x^{2} \cdot y^{3}+y^{5}+g(x)$
$\varphi(x, y)=5 \cdot x^{4} \cdot y-10 \cdot x^{2} \cdot y^{3}+y^{5}$

Given: Flow field represented by the potential function,

$$
\phi=A x^{2}+B x y-A y^{2}
$$

Find: anlerify that flow is incompressible
b) Yetermine the corresponding stream function, *

Solution:
The velocity field is given by $\vec{V}=-\nabla \phi$

$$
\vec{v}=-\left(i \frac{\partial}{\partial x}+\hat{y} \frac{\vec{y}}{\partial y}+k \frac{\partial}{\partial z}\right)\left(A x^{2}+3+y-A y^{2}\right)=-i(2 R x+3 y)-i(B x-2 A y)
$$

If the flow is incompressible, then $\frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}=0$

$$
\frac{\partial u}{\partial x}+\frac{\partial y}{\partial y}=\frac{\partial}{\partial x}(-)(2 A x+B y)+\frac{\partial}{\partial y}(-1)(B x-2 A y)=-2 A+2 A=0
$$

\therefore Flow is incompressible
From the definition of $v, \quad u=\frac{\partial \psi}{2 y}$ and $v=-\frac{\partial v}{\partial x}$
Rus.

$$
\begin{aligned}
& u=-2 A x-3 y=\frac{\partial y}{\partial y} \text { and } u=-\int(2 A x+B y) d y+f(x) \\
& \psi=-2 A x y-3 \frac{y^{2}}{2}+f(x)
\end{aligned}
$$

Then,

$$
v=-3 x+2 A y=-\frac{2 v}{\partial x}=2 A y-\frac{d f}{d x}
$$

and $-\frac{\partial f}{\partial x}=-B x$ or $E=\frac{1}{2} B x^{2}+\operatorname{cosstant}$

$$
\therefore \psi=-2 A x y-B \frac{y^{2}}{2}+3 \frac{v^{2}}{2}+\cos \sin t
$$

Setting the constant equal to zero, we ot tain

$$
\psi=\frac{3}{2}\left(x^{2}-y^{2}\right)-2 A x y
$$

*6.102 Consider the flow field presented by the potential function $\phi=x^{6}-15 x^{4} y^{2}+15 x^{2} y^{4}-y^{6}$. Verify that this is an incompressible flow and obtain the corresponding stream function.

Given: Velocity potential

Find: Show flow is incompressible; Stream function

Solution:

Basic equations: Irrotationality because φ exists
$\mathrm{u}=\frac{\partial}{\partial \mathrm{y}} \psi \quad \mathrm{v}=-\frac{\partial}{\partial \mathrm{x}} \psi$
$\mathrm{u}=-\frac{\partial}{\partial \mathrm{x}} \varphi$
$\mathrm{v}=-\frac{\partial}{\partial \mathrm{y}} \varphi$
Incompressibility $\quad \frac{\partial}{\partial \mathrm{x}} \mathrm{u}+\frac{\partial}{\partial \mathrm{y}} \mathrm{v}=0$
$\varphi(x, y)=x^{6}-15 \cdot x^{4} \cdot y^{2}+15 \cdot x^{2} \cdot y^{4}-y^{6}$
$\mathrm{u}(\mathrm{x}, \mathrm{y})=-\frac{\partial}{\partial \mathrm{x}} \varphi(\mathrm{x}, \mathrm{y})$
$u(x, y) \rightarrow 60 \cdot x^{3} \cdot y^{2}-6 \cdot x^{5}-30 \cdot x \cdot y^{4}$
$v(x, y)=-\frac{\partial}{\partial y} \varphi(x, y)$
$v(x, y) \rightarrow 30 \cdot x^{4} \cdot y-60 \cdot x^{2} \cdot y^{3}+6 \cdot y^{5}$

Hence

$$
\frac{\partial}{\partial x} u(x, y)+\frac{\partial}{\partial y} v(x, y) \rightarrow 0
$$

Hence flow is INCOMPRESSIBLE

Hence

$$
\mathrm{u}=\frac{\partial}{\partial \mathrm{y}} \psi
$$

$v=-\frac{\partial}{\partial x} \psi$
so

Comparing, the simplest stream function is then

$$
\begin{aligned}
& \psi(x, y)=\int u(x, y) d y+f(x)=20 \cdot x^{3} \cdot y^{3}-6 \cdot x^{5} \cdot y-6 \cdot x \cdot y^{5}+f(x) \\
& \psi(x, y)=-\int v(x, y) d x+g(y)=20 \cdot x^{3} \cdot y^{3}-6 \cdot x^{5} \cdot y-6 \cdot x \cdot y^{5}+g(y) \\
& \psi(x, y)=20 \cdot x^{3} \cdot y^{3}-6 \cdot x^{5} \cdot y-6 \cdot x \cdot y^{5}
\end{aligned}
$$

*6.103 Show that $f(z)=z^{6}$ (where z is the complex number $z=x+i y)$ leads to a valid velocity potential (the real part of f) and a corresponding stream function (the imaginary part of f) of an irrotational and incompressible flow. Then show that the real and imaginary parts of $d f / d z$ yield u and $-v$, respectively.

Given: Complex function
Find: Show it leads to velocity potential and stream function of irrotational incompressible flow; Show that df/dz leads to u and v

Solution:

Basic equations: Irrotationality because φ exists

$$
\mathrm{u}=\frac{\partial}{\partial \mathrm{y}} \psi \quad \mathrm{v}=-\frac{\partial}{\partial \mathrm{x}} \psi \quad \mathrm{u}=-\frac{\partial}{\partial \mathrm{x}} \varphi \quad \mathrm{v}=-\frac{\partial}{\partial y} \varphi
$$

Incompressibility $\quad \frac{\partial}{\partial x} u+\frac{\partial}{\partial y} v=0 \quad$ Irrotationality $\quad \frac{\partial}{\partial x} v-\frac{\partial}{\partial y} u=0$
$f(z)=z^{6}=(x+i \cdot y)^{6}$
Expanding $\quad f(z)=x^{6}-15 \cdot x^{4} \cdot y^{2}+15 \cdot x^{2} \cdot y^{4}-y^{6}+i \cdot\left(6 \cdot x \cdot y^{5}+6 \cdot x^{5} \cdot y-20 \cdot x^{3} \cdot y^{3}\right)$
We are thus to check the following

$$
\begin{array}{ll}
\varphi(x, y)=x^{6}-15 \cdot x^{4} \cdot y^{2}+15 \cdot x^{2} \cdot y^{4}-y^{6} & \psi(x, y)=6 \cdot x \cdot y^{5}+6 \cdot x^{5} \cdot y-20 \cdot x^{3} \cdot y^{3} \\
u(x, y)=-\frac{\partial}{\partial x} \varphi(x, y) & u(x, y) \rightarrow 60 \cdot x^{3} \cdot y^{2}-6 \cdot x^{5}-30 \cdot x \cdot y^{4} \\
v(x, y)=-\frac{\partial}{\partial y} \varphi(x, y) & v(x, y) \rightarrow 30 \cdot x^{4} \cdot y-60 \cdot x^{2} \cdot y^{3}+6 \cdot y^{5}
\end{array}
$$

An alternative derivation of u and v is

$$
\begin{array}{ll}
u(x, y)=\frac{\partial}{\partial y} \psi(x, y) & u(x, y) \rightarrow 6 \cdot x^{5}-60 \cdot x^{3} \cdot y^{2}+30 \cdot x \cdot y^{4} \\
v(x, y)=-\frac{\partial}{\partial x} \psi(x, y) & v(x, y) \rightarrow 60 \cdot x^{2} \cdot y^{3}-30 \cdot x^{4} \cdot y-6 \cdot y^{5}
\end{array}
$$

Note that the values of u and v are of opposite sign using ψ and φ !different which is the same result using φ ! To resolve this we could either let $\mathrm{f}=-\varphi+\mathrm{i} \psi$; altenatively we could use a different definition of φ that many authors use:

$$
\mathrm{u}=\frac{\partial}{\partial \mathrm{x}} \varphi \quad \mathrm{v}=\frac{\partial}{\partial \mathrm{y}} \varphi
$$

Hence

$$
\frac{\partial}{\partial \mathrm{x}} \mathrm{v}(\mathrm{x}, \mathrm{y})-\frac{\partial}{\partial \mathrm{y}} \mathrm{u}(\mathrm{x}, \mathrm{y}) \rightarrow 0 \quad \text { Hence flow is IRROTATIONAL }
$$

Hence

$$
\frac{\partial}{\partial \mathrm{x}} \mathrm{u}(\mathrm{x}, \mathrm{y})+\frac{\partial}{\partial \mathrm{y}} \mathrm{v}(\mathrm{x}, \mathrm{y}) \rightarrow 0 \quad \text { Hence flow is INCOMPRESSIBLE }
$$

Next we find $\quad \frac{d f}{d z}=\frac{d\left(z^{6}\right)}{d z}=6 \cdot z^{5}=6 \cdot(x+i \cdot y)^{5}=\left(6 \cdot x^{5}-60 \cdot x^{3} \cdot y^{2}+30 \cdot x \cdot y^{4}\right)+i \cdot\left(30 \cdot x^{4} \cdot y+6 \cdot y^{5}-60 \cdot x^{2} \cdot y^{3}\right)$
Hence we see $\quad \frac{\mathrm{df}}{\mathrm{dz}}=\mathrm{u}-\mathrm{i} \cdot \mathrm{v} \quad$ Hence the results are verified; $\quad \mathrm{u}=\operatorname{Re}\left(\frac{\mathrm{df}}{\mathrm{dz}}\right) \quad$ and $\quad \mathrm{v}=-\operatorname{Im}\left(\frac{\mathrm{df}}{\mathrm{dz}}\right)$
These interesting results are explained in Problem 6.104!
*6.104 Show that any differentiable function $f(z)$ of the complex number $z=x+i y$ leads to a valid potential (the real part of f) and a corresponding stream function (the imaginary part of f) of an incompressible, irrotational flow. To do so, prove using the chain rule that $f(z)$ automatically satisfies the Laplace equation. Then show that $d f / d z=u-i v$.

Given:

Complex function

Find: Show it leads to velocity potential and stream function of irrotational incompressible flow; Show that df/dz leads to u and v

Solution:

Basic equations: $\mathrm{u}=\frac{\partial}{\partial \mathrm{y}} \psi \quad \mathrm{v}=-\frac{\partial}{\partial \mathrm{x}} \psi \quad \mathrm{u}=-\frac{\partial}{\partial \mathrm{x}} \varphi \quad \mathrm{v}=-\frac{\partial}{\partial \mathrm{y}} \varphi$
First consider $\quad \frac{\partial}{\partial \mathrm{x}} \mathrm{f}=\frac{\partial}{\partial \mathrm{x}} \mathrm{z} \cdot \frac{\mathrm{d}}{\mathrm{dz}} \mathrm{f}=1 \cdot \frac{\mathrm{~d}}{\mathrm{dz}} \mathrm{f}=\frac{\mathrm{d}}{\mathrm{dz}} \mathrm{f}$
and also $\quad \frac{\partial}{\partial y} \mathrm{f}=\frac{\partial}{\partial \mathrm{y}} \mathrm{z} \cdot \frac{\mathrm{d}}{\mathrm{dz}} \mathrm{f}=\mathrm{i} \cdot \frac{\mathrm{d}}{\mathrm{dz}} \mathrm{f}=\mathrm{i} \cdot \frac{\mathrm{d}}{\mathrm{dz}} \mathrm{f}$

Hence

$$
\frac{\partial^{2}}{\partial x^{2}} \mathrm{f}=\frac{\partial}{\partial \mathrm{x}}\left(\frac{\partial}{\partial \mathrm{x}} \mathrm{f}\right)=\frac{\mathrm{d}}{\mathrm{dz}}\left(\frac{\mathrm{~d}}{\mathrm{dz}} \mathrm{f}\right)=\frac{\mathrm{d}^{2}}{\mathrm{dz}^{2}} \mathrm{f}
$$

and

$$
\frac{\partial^{2}}{\partial y^{2}} \mathrm{f}=\frac{\partial}{\partial y}\left(\frac{\partial}{\partial y} \mathrm{f}\right)=\mathrm{i} \cdot \frac{\mathrm{~d}}{\mathrm{dz}}\left(\mathrm{i} \cdot \frac{\mathrm{~d}}{\mathrm{dz}} \mathrm{f}\right)=-\frac{\mathrm{d}^{2}}{\mathrm{dz}} \mathrm{f}
$$

Combining

$$
\frac{\partial^{2}}{\partial x^{2}} \mathrm{f}+\frac{\partial^{2}}{\partial y^{2}} \mathrm{f}=\frac{\mathrm{d}^{2}}{\mathrm{dz}^{2}} \mathrm{f}-\frac{\mathrm{d}^{2}}{\mathrm{dz}^{2}} \mathrm{f}=0
$$

Any differentiable function $f(z)$ automatically satisfies the Laplace Equation; so do its real and imaginary parts!

We demonstrate derivation of velocities u and v

From Eq 1

$$
\frac{\mathrm{d}}{\mathrm{dz}} \mathrm{f}=\frac{\mathrm{d}}{\mathrm{dz}}(\varphi+\mathrm{i} \cdot \psi)=\frac{\partial}{\partial \mathrm{x}}(\varphi+\mathrm{i} \cdot \psi)=\frac{\partial}{\partial \mathrm{x}} \varphi+\mathrm{i} \cdot \frac{\partial}{\partial \mathrm{x}} \psi=-\mathrm{u}-\mathrm{i} \cdot \mathrm{v}
$$

From Eq 2

$$
\frac{\mathrm{d}}{\mathrm{dz}} \mathrm{f}=\frac{\mathrm{d}}{\mathrm{dz}}(\varphi+\mathrm{i} \cdot \psi)=\frac{1}{\mathrm{i}} \cdot \frac{\partial}{\partial \mathrm{y}}(\varphi+\mathrm{i} \cdot \psi)=-\mathrm{i} \cdot \frac{\partial}{\partial \mathrm{y}} \varphi+\frac{\partial}{\partial \mathrm{y}} \psi=\mathrm{i} \cdot \mathrm{v}+\mathrm{u}
$$

There appears to be an incompatibilty here, but many authors define φ as

$$
\mathrm{u}=\frac{\partial}{\partial \mathrm{x}} \varphi \quad \mathrm{v}=\frac{\partial}{\partial \mathrm{y}} \varphi
$$ or in other words, as the negative of our definition

Alternatively, we can use out φ but set

$$
\mathrm{f}=-\varphi+\mathrm{i} \cdot \psi
$$

Then

From Eq 1

$$
\frac{\mathrm{d}}{\mathrm{dz}} \mathrm{f}=\frac{\mathrm{d}}{\mathrm{dz}}(\varphi+\mathrm{i} \cdot \psi)=\frac{\partial}{\partial \mathrm{x}}(\varphi+\mathrm{i} \cdot \psi)=\frac{\partial}{\partial \mathrm{x}} \varphi+\mathrm{i} \cdot \frac{\partial}{\partial \mathrm{x}} \psi=\mathrm{u}-\mathrm{i} \cdot \mathrm{v}
$$

From Eq 2

$$
\frac{\mathrm{d}}{\mathrm{dz}} \mathrm{f}=\frac{\mathrm{d}}{\mathrm{dz}}(\varphi+\mathrm{i} \cdot \psi)=\frac{1}{\mathrm{i}} \cdot \frac{\partial}{\partial \mathrm{y}}(\varphi+\mathrm{i} \cdot \psi)=-\mathrm{i} \cdot \frac{\partial}{\partial \mathrm{y}} \varphi+\frac{\partial}{\partial \mathrm{y}} \psi=-\mathrm{i} \cdot \mathrm{v}+\mathrm{u}
$$

Hence we have demonstrated that

$$
\frac{\mathrm{df}}{\mathrm{dz}}=\mathrm{u}-\mathrm{i} \cdot \mathrm{v} \quad \text { if we set }
$$

$$
\mathrm{u}=\frac{\partial}{\partial \mathrm{x}} \varphi
$$

$$
\mathrm{v}=\frac{\partial}{\partial \mathrm{y}} \varphi
$$

Given: Flow field represented by the velocity potential $\phi=A t+B h^{2}-B y^{2}$, where $A=1 M . s^{-1}, B=1 s^{-1}$, and coordinates are measured in meters.
Find: (a) expression for the velocity field
(b) stream function
(c) pressure difference between points $(x, y)=(0,0)$ and $\left(x_{2}, y_{2}\right)=(1, z)$
Solution
The velocity field is determined from the velocity potential

$$
\left.\begin{array}{l}
u=-2 \phi l 2 x=-A-2 B x \\
v=-2 d l 2 y=2 B y
\end{array}\right\} \quad \vec{v}=-(A+2 B x) i+2 B y j-\quad \vec{j}
$$

From the definition of the stream function, $u=\frac{\partial y}{\partial y} \cdot v=-\frac{\partial u}{\partial y}$
Then

$$
\begin{gathered}
\psi=\int u d y+f(x)=(-(A+2 B x) d y+f(x) \\
u=-A y-2 B x y+f(x)
\end{gathered}
$$

Also.

$$
\begin{gathered}
\psi=\left(-v d x+g(y)=\int-23 y d x+g(y)\right. \\
\psi=-2 s-g+g(y)
\end{gathered}
$$

Comparing the two expressions for w we conclude

$$
\begin{aligned}
& f(x)=0 \quad, g(y)=-A y \\
& \quad \therefore \quad \Delta=-(A y+2 B x y)
\end{aligned}
$$

Since $\nabla^{2} \phi=2 B-2 B=0$, the flow is irrotational and the Berrioull equation car' be applied between any two points in te flow field.

$$
\begin{aligned}
& \frac{p_{1}}{p}+\frac{1}{2}+g j_{i}^{2}=\frac{p_{2}}{p}+\frac{v_{2}^{2}}{2}+g z_{2} \quad\left\{\begin{array}{ll}
\text { nesurne } & p=\text { constant } \\
& z_{1}=z^{2}
\end{array}\right\} \\
& \vec{V}(0,0)=-A_{i}=-\hat{i} l_{0} \quad V_{0,0}=1 l_{0} \\
& \vec{V}(1,2)=-(A+2 B) \hat{i}+4 j^{j}=-3 i+4 j m_{s} \quad \therefore \psi_{1,2}=5 m l_{s} \\
& \therefore p_{1}-p_{2}=\rho\left(\frac{v_{2}^{2}}{2}-\frac{v_{2}^{2}}{2}\right)=\frac{p}{2}\left(v_{2}^{2}-v_{1}^{2}\right)
\end{aligned}
$$

Assume fluid is water

$$
p_{1}-p_{2}=\frac{1}{2} \times 999 \frac{\sqrt{3}}{r^{3}}(25-1) \frac{r^{2}}{5^{2}} \cdot \frac{\lambda_{1}^{2}}{\frac{3}{3}}=12 \operatorname{fan}_{2} / m^{2}-
$$

Given: Incompressible few fid represented by $\psi=3 A x^{2} y-A y^{3}$ where $A=1 \mathrm{~N}^{-6} \cdot s^{-2}$
Shew: that fie flow fred is virotational
Find: the vecotuy potential $\$$
Fld: streamlines and potential lines, and visually verify that they are orthogonal
Sdution:
For a $2-7$ incompressible, rotational flaw $\nabla^{2} 4=0 \quad(6.30)$ For the flow field.

$$
\nabla^{2} \psi=\frac{\partial^{2}}{\partial k^{2}}\left(3 A x^{2} y-A y^{3}\right)+\frac{\partial^{2}}{2 y^{2}}\left(3+x^{2} y-A y^{3}\right)=6 A y-6 A y=0 \text { urdationad }
$$

The velocker field is aden by $\vec{v}=u$. B

$$
\left.\begin{array}{l}
u=242 y=3 A x^{2}-3 A y^{2}=3 A\left(x^{2}-y^{2}\right) \cdot \\
v=-24\left(\frac{y}{2 x}=-6 A M\right.
\end{array}\right\} \vec{v}=3 A\left(x^{2}-y^{2}\right) i-64 t y \hat{y}
$$

$$
v=-24 / \partial=-6 a y
$$

The velocity potential is defined such that $u=-\frac{x}{\partial x} \cdot v=-\frac{-\partial b}{2 y}$
Ten, $\left.\phi=-\int u d x+f(y)=-\int 3 A\left(x^{2}-y^{2}\right) d x+f(y)=-A x^{3}+3 A x y^{2}+(G)-S y\right)$
Also.

Potential Function and Streamline Plot

$$
\begin{aligned}
& \phi=-\left(v d y+g(t)=\int 6 A+y d y+g(t)=3 A+y^{2}+g(x)\right. \\
& \text { Equating evpresslor for } \phi \text { (Eft: } \text {) and } \lambda \text {) we see that } \\
& g(x)=-A x^{3} \text { and } f(y)=0 \quad \therefore \phi=3 A x y^{2}-H x^{3} \quad \phi
\end{aligned}
$$

Gwen: Flow field represented by the velocity potential $\phi=A y^{3}-8 x^{-2} y$, where $P=\frac{1}{3} m^{-1} \cdot s^{-1}, y^{\prime}=1 m^{-1} \cdot s^{-1}$, and per coordinates are measured in meters'
Find: (a) expression for the magnitude of the velocity vector (b) the stream function.

Plot: streamlines and potential lines, and yismally verify. that they are orthogonal.
Solution:
The velocity field is determined from the velocity potential

$$
\begin{aligned}
& u=-26 / 2 x=28 x y=2 x y . \\
& v=-26 / 2 y=-31+y^{2}+8 x^{2}=x^{2}-y^{2} \\
& v=\left[u^{2}+v^{2}\right]^{2}=\left[4 x^{2} y^{2}+\left(x^{2}-y^{2}\right)^{2}\right]^{1 / 2}=\left[4+y^{2} y^{2}+x^{4}-2 x^{2} y^{2} \cdot y^{4}\right]^{1 / 2} \\
& v=\left[x^{4}+2 x^{2} y^{2}+y^{4}\right]^{1 / 2}=\left[\left(x^{2}+y^{2}\right)^{2}\right]^{1 / 2}=x^{2}+y^{2}-2 y
\end{aligned}
$$

Te stream function is defined such that $u=\frac{2 y}{2 y}$ and $v=-\frac{3 x}{2 x}$
Ron,

$$
\begin{aligned}
& *=\int u d y+f(x)=\left(2 B x y d y+f(x)=B+y^{2}+f(x) \ldots-(1)\right. \\
& k=\int-v d x+g(y)=\left(\left(3 A y^{2}-3 x^{2}\right) d x+g(y)=3 x+y^{2}-\frac{B}{3} x^{3}+g(y) \ldots(x)\right.
\end{aligned}
$$

Comparing he two expressions for ψ we

- note Pat $3 \times y^{2}=3 A x^{2} y,\left(B=1, A=\frac{\pi}{3}\right)$, and
- conclude Pat $f(x)=-\frac{F^{3}}{3} 3^{3}$ and $g(y)=0$

$$
\therefore \&=3 x y^{2}-\frac{B}{3} k^{3} \text { or } \psi=3 A x^{2} y-\frac{B}{3} x^{3}
$$

wi $A=\frac{1}{3}, B=1$

$$
\Delta=x^{2} y-\frac{x^{3}}{3}=x\left(y^{2}-\frac{x^{2}}{3}\right)
$$

For $d=0, x=0$ or $y=0.577 x$
For $k=-4, y^{2}=\frac{x^{2}}{3}-\frac{4}{x}$
For $\psi=4, y^{2}=\frac{x^{2}}{3}+\frac{4}{x}$

See the next page for plots

Using Excel, the stream function and velocity potential can be plotted.
The data below was obtained using the workbook for Example Problem 6.10.
Note the orthogonality of Ψ and ϕ !

Note that the plot is

from $x=-5$ to 5 and $y=-5$ to 5

Gwen: Irrotational flow represented by $\psi=$ Buy, where $B=0.255^{-1}$ and the coordinates are measured in meters.
Find: (a) Pe rate of flow between point $(x, y))=(2,2)$ and

$$
\left(x_{2}, y_{2}\right)=(3,3)
$$

(b) the Seloctly potential for this flow

Plot: streamlines and potential lines, and visually verify Pat they are orthogonal.
Solution:
The volume flow, rate (per wit depth) between points (1) and E is gwen by

$$
\begin{align*}
& \text { Der by } Q_{2}-\psi_{1}=B\left[\psi_{2} y_{2}-h_{1} y_{]}\right]=0.255^{-1}[3 n \times 3 n-2 m \times 2 n] \\
& Q_{12}=1.25 m^{3} / \mathrm{s} / m \quad Q_{12} \tag{Ste}
\end{align*}
$$

The velocity field is determined from te stream function

$$
u=2 v / \partial y=3 x \quad v=-2 k b x=-B y \quad \therefore=3 \hat{i}-B y y
$$

For urotational flaw $\vec{v}=-8 \phi$ and $u=-2 \phi / 2 x, v=-2| |_{2 y}$ and

$$
\begin{aligned}
& \phi=-\int u d x+f(x)=-\left(3 x d x+f(y)=-\frac{E}{2} t^{2}+f(y) \cdots(x)\right. \\
& \phi=-\int v d y+g(x)=\left\langle\operatorname{dy} \text { dy }+g(x)=\frac{2}{2} y^{2}+g(t) \ldots . . .1\right)
\end{aligned}
$$

Equating expressions for (Ers lard h) we conclude thai

$$
f(y)=\frac{3}{2} y^{2}, g(x)=-\frac{3}{2} x^{2} \text { and } \phi=\frac{5}{2}\left(y^{2}-x^{2}\right) \text {. }
$$

Potential Function and Stream Function Plot

Given: Two-duriensional, viviscid flow wit velocity fid $\vec{V}-(A+B) \hat{C}+(C-A y) \vec{r})$, where $A=35^{\circ}, B E M{ }^{\prime}$, $c=4$ mil and the coordinates are measured in meters. Re body force distribution is $\vec{B}=-\hat{f} ; p=825 \mathrm{~kg} \mathrm{~m}^{3}$.
Find: (a) if firs a possible incompressible flow
(b) stagnation points of the flow field
(c) if fou is rotational
(d) the velocity potential (if one exists)
(e) pressure difference between origin and port $(x, y, z)=(2,2,2)$
Plod: a few streamlines in Pe upper half plane
Solution:
For incompressible flow $\nabla \cdot \vec{V}=0$. For this flow

$$
\nabla \cdot \vec{J}=\frac{\partial}{\partial x}(A x+B)+\frac{\partial}{\partial y}(C-A y)=A-A=0
$$

\therefore velouty field represents possible incompressible flow.
At the stagnation pant $u=v=0 .(\vec{V}=0)$

$$
\begin{aligned}
& u=0=(A+B) \quad \therefore \quad k=-B M_{A}=\frac{-6 m s}{3 s^{-}}=-2 m \\
& v=0=(C-A y) \quad \therefore \quad y=C l_{A}=\frac{4 m s}{3 s^{2}}=4 / 3 m
\end{aligned}
$$

Stagnation port is at $(x, y)=\left(-2,4 l_{3}\right) m$.
Re fid rotation (for a $2 \rightarrow y$ flow s gwerby $w_{2}=\frac{1}{2}\left(\frac{\partial v}{\partial x}-\frac{\partial y}{\partial y}\right)$
For Pis flow

$$
w_{z}=\frac{1}{2}\left[\frac{2(C-A y)}{\partial x}-\frac{\partial(R+B)}{2 y}\right]=0
$$

\therefore flow is ireotational
Ten, $\vec{v}=-\nabla \phi$ and $u=-2 \phi / 2 x$ and $v=-2 \phi / 2 y$.
and.$~$

$$
\phi=\int-u d x+f(y)=-\int(A x+B) d x+f(y)=-A x^{2}-B x+f(y)+(i)
$$

Also

$$
\begin{equation*}
\phi=-\int v d y+g(x)=-\left((c-A y) d y+g(x)=R \frac{y^{2}}{2}-c y+g(x)\right. \text {. } \tag{2}
\end{equation*}
$$

Equating the two expressions for ϕ (Eqstand h) we node fat

$$
\begin{gathered}
g(x)=-\left(A \frac{x^{2}}{2}+B x\right) \text { and } f(y)=A \frac{y^{2}}{2}-C y \\
\therefore \quad \phi=\frac{R}{2}\left(y^{2}-x^{2}\right)-B x-C y
\end{gathered}
$$

Since Re flow is ir rotational we can apply Repernouli equation between anu two points in the fib field.

$$
\frac{p_{1}}{p}+\frac{y^{2}}{2}+\frac{g}{g}=\frac{p_{2}}{p}+\frac{V^{2}}{2}+g j^{2}
$$

At pant $(2,2,2) \quad \vec{V}_{2}=\left[35^{\prime} \times 2 m+6 m b\right] i t\left[4 m b-35^{\prime} \times 2 m\right] \hat{j}$

$$
\begin{aligned}
& \left.ה_{2}=12 i-2 j m\right\rangle_{s}, v_{2}^{2}=148 \mathrm{~m}^{2} / s^{2} \\
& p_{1}-f_{2}=f\left(v_{2}^{2}-v^{2}\right)+p g\left(z_{2}-g\right)=e\left[\frac{\left.v_{2}^{2}-\frac{v^{2}}{2}\right)}{2}+g\left(z_{2}-z^{\prime}\right)\right]
\end{aligned}
$$

$$
\begin{aligned}
& p_{1}-p_{2}=55.8 k P_{a}
\end{aligned}
$$

The stream function is defined such pat $u=\frac{\Delta y}{3 y}, v=-\frac{\Delta y}{2 x}$
Fer, $\psi=\int u d y+f(x)=\int(A x+B) d y+f(x)=A+y+8 y+f(x)$
Also.

$$
\psi=-\int v d x+g(y)=((-c+f y) d x+g(y)=-c x+A x+g(y) \ldots(2)
$$

Equating the two expressions for Δ (Eqsiand L) we node Rat $f(x)=-C x, g(y)=B y$ and $\therefore x=$ Pry $+B y-C x, d$
Te stagnation streartine goes Rough the stagnation pant $\left(-2, \frac{4}{3}\right)$ $\psi_{s t a g}=3 s^{-1} \times(-2 m) \times \frac{4}{3} m+6 m .5^{\prime} \times \frac{4}{3} n-4 m .5^{\prime} \times(-2 m)=8 m^{2} T_{5}-4 \operatorname{stag}^{2}$

Given: Flow post a circular cylinder of Example Problem biN.
Find: (a) Show that $t_{r}=0$ along the limes $(r, \theta)=(r, \leq \pi / 2)$ b) Plot y ifs versus r for $r \geq a$ along line ($r, n / 2$) (c) Find distance beyond which the imnsence of the cylinder on the vebcity is less that $l^{\circ} \mathrm{L}$ of \bar{U}.
Solution.
From Example Problem 6.N

$$
\vec{V}=\left(-\frac{\Lambda \cos \theta}{r^{2}} \cdot-J \cos \theta\right) i_{r}+\left(-\frac{n \sin \theta}{r^{2}}-U \sin \theta\right) i_{\theta} \quad \ldots .(i)
$$

Ten $\psi_{T}=\left(-\frac{\lambda}{5}+U\right) \cos \theta$. For $\theta= \pm \frac{\pi}{2}, \operatorname{cose}=0$ and $\psi_{r}=0$ $V_{0}=-\left(\frac{\Lambda}{r^{2}}+0\right) \sin \theta$, but $\frac{\Lambda}{U}=a^{2}$
$\therefore \psi_{\theta}=-\left(\frac{a^{2}}{r^{2}}+1\right)$ oisin θ For $\theta=\pi / 2$.

$$
\frac{V_{\theta}}{V}=-\left(1+\frac{a^{2}}{z^{2}}\right)
$$

$J=U \cos \theta\left(1-\frac{a^{2}}{\sigma^{2}}\right) N-O \sin \theta\left(1+\frac{a^{2}}{\tau^{2}}\right) j$
For $\theta=\pi / 2$
$\frac{y}{B}=1+\frac{a^{2}}{r^{2}} \quad$ If $\frac{y}{U}=1.01$ then $\frac{a^{2}}{r^{2}}=0.01$ or $\frac{a}{r}=0.1$

$$
\therefore \frac{t}{0}<1 \% \text { for } r>10 \alpha
$$

Consider flow around a circular cylinder with freestream velocity from right to left and a counterclockwise free vortex. Show that the lift force on the cylinder can be expressed as $F_{\mathrm{L}}=-\rho U \Gamma$, as illustrated in Example 6.12.

Open-Ended Problem Statement: Consider flow around a circular cylinder with freestream velocity from right to left and a counterclockwise free vortex. Show that the lift force on the cylinder can be expressed as $F_{\mathrm{L}}=-\rho U \Gamma$, as illustrated in Example 6.12.

Discussion: The only change in this flow from the flow of Example 6.12 is that the directions of the freestream velocity and the vortex are changed. This changes the sign of the freestream velocity from U to $-U$ and the sign of the vortex strength from K to $-K$. Consequently the signs of both terms in the equation for lift are changed. Therefore the direction of the lift force remains unchanged.

The analysis of Example 6.12 shows that only the term involving the vortex strength contributes to the lift force. Therefore the expression for lift obtained with the changed freestream velocity and vortex strength is identical to that derived in Example 6.12. Thus the general solution of Example 6.12 holds for any orientation of the freestream and vortex velocities. For the present case, $F_{\mathrm{L}}=-\rho U \Gamma$, as shown for the general case in Example 6.12.

Given: A tornado is modelled by the superposition of a sink
 Ebon $\mathrm{m}_{\text {sec }}$)

Find: a) Expression for ψ and ϕ
(b) Estimate the radius beyond which the flow may be Treated os incompressible.
(c) Find the gage pressure at fat radius.

Solution:

$$
\psi=\left(v_{s}^{2}+v_{0}^{2}\right)^{1 / 2}=\left[\left(-\frac{q}{2 \pi}\right)^{2} \times\left(\frac{k}{2 \pi}\right)^{2}\right]^{1 / 2} \frac{1}{5}
$$

For incompressible flow $M \leqslant 03$. For standard air his corresponds to $\$ 4.102 \mathrm{k}$ besTen, for incompressible flow

$$
\forall=102 n l_{\text {see }}<\left[q^{2}+k^{2}\right]^{1 / 2} \frac{1}{2 \pi}
$$

or

$$
\begin{align*}
& r>\left[q^{2}+x^{2}\right]^{4_{2}} \frac{1}{2 \pi} \times \frac{s}{102 n}=\left[(2480)^{2}+(56 \infty)^{2}\right]^{12} \frac{n^{2}}{5^{2}} \times \frac{1}{2 \pi} \times \frac{s}{102 m} \\
& r>a, n n
\end{align*}
$$

To determine the gage pressure at this radius, apply the Bernoulli equation for irotalcoral fro

$$
\frac{e_{\infty}}{\rho}+\frac{\psi^{2}}{2}+g g^{2}=\frac{e}{e}+\frac{y^{2}}{2}+g \delta
$$

assume $\Delta z=0$
Pen

$$
p_{g a g}=p_{-p_{\infty}}=-\frac{1}{2} p^{2}=-\frac{1}{2} \times 1.225 \frac{k^{3}}{n^{3}} \times(10 x)^{2} \frac{s^{2}}{s^{2}} \cdot \frac{k^{2}}{g^{n}}
$$

$$
-P_{g a g}=-6.37 \text { tBa (for standardair) }
$$

$$
\begin{aligned}
& \Delta=\Delta_{s i}+\Delta_{v_{0}}=-\frac{q}{2 \pi} \theta-\frac{k}{2 \pi} \operatorname{tn} 5 \\
& \phi=\phi_{s i}+\phi_{v_{0}}=\frac{\frac{q}{2 k} \ln r-\frac{k}{2 \pi} \theta}{2} \\
& t_{r_{s i}}=-\frac{q}{2 \pi r}, t_{r_{s}}=0 ; t_{b_{s i}}=0, t_{\theta_{0}}=\frac{k}{2 \pi} \\
& \therefore \vec{V}=-\frac{b}{2 \pi r} i_{r}+\frac{k}{2 \pi r} \hat{i}_{\theta}
\end{aligned}
$$

Given: Flow past a Ranknie body is formed from the superposition of a uniform flow ($U=28 \mathrm{~m} / \mathrm{s}$). in the 'k direction and a office and a sink of equal strengths ($q=3 \mathrm{k} n^{2} b$). located on the t axis at $x=-a$ ant $z=\alpha$, respectively.
Find: (a) expressions for U, b and \vec{V}
(b) the value of $\psi=$ constant on the stagnation streamline.
(c) the stagnation points if $a=0.3 \mathrm{~N}$.

Solution:

$$
\Delta=w_{s_{s}}+d_{s_{i}}+\psi_{w}=\frac{q}{2 \pi} \theta_{1}-\frac{q_{1}}{2 \pi} \theta_{n}+v_{y}
$$

$$
\Delta=\frac{q_{0}}{2 \pi}\left(\theta_{1}-\theta_{e}\right)+\bar{u} r \sin \theta
$$

\qquad

$$
\phi=\phi_{b-}+d_{s i}+\phi_{a}=-\frac{g_{0}}{2 r} \ln r_{1}+\frac{q_{2}}{2 \pi} \ln r_{2}-i J
$$

$$
\phi=\frac{q_{1}}{L_{\pi}} h_{n} \frac{r_{2}}{F_{1}}-U r \cos \theta
$$

$u=u_{s_{0}}+u_{s_{i}}+u_{4}=\frac{q}{2+r_{1}} \cos \theta_{1}-\frac{q}{2 \pi r_{2}} \cos \theta_{2}+0$
$v=v_{s_{0}}+v_{s_{i}} \cdot v_{u r}=\frac{q_{0}}{2 \pi r_{1}} \sin \theta_{1}-\frac{q_{1}}{\theta_{\pi N}} \sin \theta_{2}$

$$
\vec{J}=u i+v j=\left\{\frac{q_{0}}{2 \pi}\left(\frac{\cos \theta_{1}}{r_{1}}-\frac{\cos \theta_{i}}{r_{2}}\right)+v\right\} i+\frac{q}{2 \pi}\left(\frac{\sin \theta_{1}}{r_{1}}-\frac{\sin \theta_{2}}{r_{2}}\right) \hat{j}
$$

Rt stagnation point $\vec{V}=0 \quad y=0 \quad \theta_{1}=\theta_{2}=0$

$$
\begin{gathered}
\therefore u=0=\frac{q}{2 \pi}\left(\frac{1}{r_{s}+a}-\frac{1}{r_{s}-a}\right)+0=\frac{r_{2}}{2 \pi}\left[\frac{\left(r_{s}-a\right)-\left(r_{s}+a\right)}{\left(r_{s}^{2}-a^{2}\right)}\right]+v \\
0=-\frac{q a}{\pi^{n}\left(r_{s}^{2}-a^{2}\right)+\pi \quad \text { or }\left(r_{s}^{2}-a^{2}\right)=\frac{q a}{\pi 0}} \\
r_{s}=\left(a^{2}+\frac{q a}{\pi J}\right)^{1 / 2}=a\left(1+\frac{q}{\pi v a}\right)^{1 / 2}
\end{gathered}
$$

For $a=0.3 \mathrm{~m}$

$$
r=0.3 n\left[1+\frac{3 \pi}{\pi} \frac{n^{2}}{5} \cdot \frac{5}{20 n} \cdot \frac{1}{0.3 n}\right]^{1 / 2}=0.367
$$

Stagnation paints located at $\theta=0, \pi \quad r=0.367 \mathrm{~m}$ Since $w=\frac{q_{1}}{2 \pi}\left(\theta_{1}-\theta_{2}\right)+D_{y}$ and $\theta_{1}=\theta_{2}, y=0$ atstagation

$$
v_{\operatorname{stag}}=0
$$

Given: Flow past a Rankine body is formed from the superposition of a uniform flow ($v=2$ combs) in the $t+$ direction, and a sources and a sink of equal strength $\left(q^{2}=3 r \mathrm{~m}^{2}(\mathrm{~s})\right.$) located on the x axis at $x=-a$ and $x=a$, respedively
Find: (a) the half wide of the body
b) \mathcal{H} and f at the points $(0, h)$

Solution:

$$
\omega=\Delta_{4}+\theta_{s,}-\psi_{x}=\frac{q_{k}}{2 k}\left(\theta_{1}-\theta_{L}\right)-i \bar{u} \sin \theta
$$

At stagnation paint $\theta_{1}=\theta_{2}$ and $\theta=0, \pi$
\therefore Ustag $=0$ and equation of stag. streanive is

$$
\theta=\frac{g_{2}}{2 \pi}\left(\theta_{1}-\theta_{2}\right)+u r \sin \theta
$$

$$
\text { or } r=\frac{q^{2}}{2 \pi} \frac{\left(\theta_{2}-\theta_{1}\right)}{2 \sin \theta}
$$

At half wide, $\theta=\frac{\pi}{2}, \theta_{2}=\pi-\theta_{1}$, and $r=h=\frac{q_{2}}{2 \pi}\left[\frac{\left.\left(\pi-\theta_{1}\right)-\theta\right]}{v}\right.$

$$
\therefore h o=\frac{g}{2}\left[\pi-2 \theta_{1}\right]=\frac{g}{2}-\frac{q \theta_{1}}{\pi} \text { or } \theta_{1}=\frac{\pi}{2}-\frac{T h \pi}{q}
$$

Since $h=a \tan \theta$.

$$
h=\tan \left(\frac{\pi}{2}-\frac{3 h \pi}{q_{0}}\right)=\cot \left(\frac{3 h \pi}{q_{1}}\right)
$$

Substituting values, $\frac{h}{0.3}=\cot \left(\frac{20}{3} h\right)$. Trial and error solution gives

$$
h=0.16 .5 \mathrm{~m} \quad h
$$

The sebaty field is gwen by $\vec{y}=i u+j v$

$$
\vec{V}=\left\{\frac{q}{2 \pi}\left(\frac{\cos \theta_{1}}{r_{1}}-\frac{\cos \theta_{2}}{r_{2}}\right)+i \pi\right\} i+\frac{g}{2 \pi}\left(\frac{\sin \theta_{1}}{r_{1}}-\frac{\sin \theta_{1}}{r_{2}}\right) j
$$

pt $(0, h), r_{1}=r_{2}, \theta_{2}=\pi-\theta_{1}, \therefore \sin \theta_{2}=\sin \theta_{1}, \cos \theta_{2}=-\cos \theta_{1}$ and $\vec{V}=\left(\frac{q \cos \theta_{1}}{r_{1}}+\Delta\right) i$

$$
\begin{align*}
& \theta_{1}=\tan ^{2} \frac{h}{a}=\tan ^{-1} \frac{0.165}{0.3}=28.3^{\circ} \quad r_{1}=\left[a^{2}+h^{2}\right]^{1 / 2}=\left[03^{2}+0.65^{2}\right]^{1 / 2}=0.341 m \\
& \vec{V}=\left(\frac{q \cos \theta_{1}}{r_{1}}+0\right) \hat{L}=\left(3 \pi n^{2} \times \frac{\cos 24.3^{\circ}}{0.341 m}+20 \frac{m}{5}\right) i=44.3 L^{n} \quad V
\end{align*}
$$

To find the gage pressure apply the Bernoulli equation between the point at conditions at ∞

$$
\begin{aligned}
& -\frac{\rho}{\rho}+\frac{e^{2}}{2}=\frac{p}{\rho}+\frac{y^{2}}{2}
\end{aligned}
$$

$$
\begin{aligned}
& P_{g a y}=-95 \operatorname{Nln}^{2}
\end{aligned}
$$

Given: Flow field formed by superposition of a uniform flow in the + t direction $(Q=10 \mathrm{ml}$) and a counterclockwise vortex, with street $k=i_{r}$ mils, bitted at the or ign
Find: (a) \vec{v}, ϕ, and \vec{y} for the flow Field (b) stagnation part (s)

Plot: streamlines and lines of constant potential
Solution:

$$
y+{\underset{\sigma}{\theta}}_{x}
$$

ft stagnation point, $\vec{V}=0$
$v_{r}=0$ at $\theta= \pm \frac{\pi}{2} ; \quad v_{\theta}=0$ on $r=\frac{k}{2 \pi u} \sin \theta$

$$
\therefore \vec{V}=0 \text { at }(r, \theta)=\frac{k}{2 \pi v}, \pi l_{2}
$$

Stagrateor

$$
\begin{aligned}
& \psi=\otimes_{u r i}+\psi_{v}=V y-\frac{k}{2 \pi} \ln r=-U r \sin e-\frac{k}{2 \pi} \ln r \\
& \phi=\phi_{u \cdot} f+\phi_{v}=-0 x-\frac{k}{2 \pi} \theta=-V \cos \theta-\frac{k}{2 \pi} \theta \text {. } \\
& \nu_{r}=-\frac{\partial \phi}{\partial r}=\bar{J} \cos \theta, V_{\theta}=-\frac{1}{r} \frac{\partial b}{\partial \theta}=-\bar{U} \sin \theta+\frac{k}{2 \pi r} \\
& \vec{V}=\tilde{J} \cos \theta \hat{e}_{c}+\left(\frac{v}{2 \pi}-U \sin \theta\right) \hat{e}_{\sigma}
\end{aligned}
$$

Using Excel, the stream function and velocity potential can be plotted.
The data below was obtained using the workbook for Example Problem 6.10
Note the orthogonality of ψ and ϕ !

Note that the plot is
from $x=-5$ to 5 and $y=-5$ to 5

Given: Flow field formed by combining a uniform frow in the th
 at the origin.
Find: He net force per unit dept nested to hod in place (in standard air) the surface shape formed by the stagnation streamline
Solution:

$$
\begin{aligned}
& \psi=\psi_{x}+\psi_{i x}=J_{y}-\frac{q}{2 \pi} \theta=-J r \sin \theta-\frac{g}{2 \pi} \theta \ldots \ldots(i) \\
& u=u_{u r}+u_{s i} ; u_{x}=0, u_{s i}=-v_{r} \cos \theta=-\frac{g}{2 \pi \Gamma} \frac{t}{5} \quad \therefore u=v-\frac{q}{2 \pi} \frac{5}{5} \\
& v_{=}=v_{u f} v_{s i} ; v_{u k}=0, v_{s i}=-v_{r} \sin \theta=-\frac{g}{2 \pi r} \frac{y_{r}}{r_{2}} \quad \therefore v=-\frac{g}{2 \pi} \frac{y_{2}}{r^{2}} \\
& \therefore \vec{y}=u \hat{i} \cdot v=\left(3-\frac{q}{2 \pi} \frac{x}{r^{2}}\right) \hat{j}-\frac{q}{2 \pi} \frac{y}{r^{2}} \hat{j}
\end{aligned}
$$

At the stagnation paint, $\vec{V}=0$
and $\operatorname{lostag}=\frac{q}{2 \pi 5}=9 \frac{n^{2}}{5} \times \frac{1}{2 \pi} \times \frac{5}{50 m}=0.286 \mathrm{n}$
ft stagnation point $y=0$ and $s=0$. From eg (1) Hen $\psi_{s h y}=0$ The equation of Me stagnation streamline is Men,

$$
\forall=0=O r \sin \theta-\frac{2}{2 \pi} \theta \text { or } r_{\operatorname{sing}}=\frac{4 \theta}{2 \pi v \sin \theta}
$$

Sure e $y=r \sin \theta$, Rel a bong festagnation streanivie $y=\frac{q 6}{2 \pi J}$. For upstream, $\theta \rightarrow \pi$ and $y=y_{1} \rightarrow \frac{y_{0}}{20}$.
The surface shape formed by the stagnates streamline is then as follows:
There is no flow across his streamline.

The flow in through the left face must be equal to the few (q) which leaves trough the sink at the origin.
Applying the monenturn equation to the a) skisir. R is force required to hod tape in face

$$
\begin{aligned}
& -R_{x}=\int u \overrightarrow{p^{\prime}} \cdot \overrightarrow{d A}=-U \dot{n}_{1}=-3 p q_{b} \\
& \therefore \frac{R_{x}}{b}=p \dot{b}^{u}
\end{aligned}
$$

Fer standard our $p=1.225 \lg _{\mathrm{g}} \mathrm{m}^{3}$ and

$$
\begin{aligned}
& \vec{R}_{x} H=-551 \mathrm{Emlm}
\end{aligned}
$$

Gwen: Flow field obtained by combining a uniform flow in the $+x$ direction ($v=30 \mathrm{mis}$ ard a source (ofstreng $q=150 \mathrm{~m}^{2} / \mathrm{s}$ located at fe origin.
Pot: Re ratio of the localueloctus to the free stream velocities I as a function of θ along the stagnationstreamlire
Find: (a) points on the stagnation Streamline where te velocity reaches to maxinits value
(b) gage pressure at this lotion $\mathrm{i} p=1.2 \mathrm{~kg} / \mathrm{m}^{3}$

Solution:
Superposition of a uniform flow and source gives flow around a half body.

$$
\begin{align*}
& \psi=\psi_{u s} \psi_{s 0}=T y+\frac{q}{2 \pi} \theta=U r \sin \theta+\frac{g}{2 \pi} \theta \tag{1}\\
& u=u_{u . c}+u_{\infty} ; u_{u .5}=U ; u_{\infty}=v_{-} \cos \theta=\frac{g}{2 \pi r} \pm \\
& v=v_{u f+} v_{s o} ; v_{u f}=0 ; v_{s o}=v_{r} \sin \theta=\frac{q_{0}}{2 s s} \frac{y_{r}^{r}}{r} \\
& \therefore \vec{V}=u \hat{v}+\hat{j}=\left(v+\frac{q}{2 \pi} \frac{x}{r^{2}}\right)^{2}+\frac{q}{2 \pi} \frac{y}{5} j \tag{2}\\
& \text { Ref, } \\
& \therefore u=0+\frac{q}{2 \pi} \frac{1}{r^{2}} \\
& \therefore v=\frac{q}{2 \pi} \frac{y}{5^{2}}
\end{align*}
$$

$$
\begin{aligned}
v^{2}=u^{2}+v^{2} & =\left(u+\frac{q}{2 \pi r} \cos \theta\right)^{2}+\left(\frac{q}{2 \pi r} \sin \theta\right)^{2} \\
& =U^{2}+\left(\frac{q}{2 \pi r}\right)^{2} \cos ^{2} \theta+\frac{V q}{\pi r} \cos \theta+\left(\frac{q}{2 \pi r}\right)^{2} \sin ^{2} \theta \\
V^{2} & =U^{2}+\left(\frac{q}{2 \pi r}\right)^{2}+\frac{\square g}{\pi r} \cos \theta
\end{aligned}
$$

To determine the equation of the stagnation streaminic, we locate he stagnation pain $\left(\vec{J}=0\right.$. From $\mathrm{fq}_{6}^{2} \quad y=0$ and

$$
\begin{aligned}
& h_{s t a g}=-\frac{9}{2 \pi 0}=-\frac{1}{2 \pi} \times 1 \frac{18}{50} \frac{n^{2}}{5} \times \frac{5}{30 m}=-0.7 a b m
\end{aligned}
$$

Ft the stagnation pat $y=0$ and $\theta=\pi$. From $\operatorname{tq}^{\prime} \Delta_{\text {stag }}=\frac{q}{2}$ The equation of the stagnation streaming is then.
$\Delta_{s t a g}=\frac{q}{2}=V r \sin \theta+\frac{q_{0}}{2 \pi} \theta$. Solving for r, we obtain

$$
r=\frac{1}{\operatorname{j} \sin \theta}\left(\frac{q}{2}-\frac{q \theta}{2 \pi}\right)^{2 \pi}=\frac{q(\pi-\theta)}{2 \pi-\sin \theta}
$$

substituting ti s value of r into the expression for $V^{2}\left[E_{8} 3\right]$ we den

$$
\begin{aligned}
& \left.V^{2}=U^{2}+\frac{D^{2}}{2 \pi} \times \frac{2 \pi \sin \theta}{(\pi-\theta)}\right]^{2}+\frac{U \cos \theta}{\pi} \times \frac{2 \pi(J \sin \theta}{6(\pi-\theta)} \\
& V^{2}=U^{2}+\frac{U^{2} \sin ^{2} \theta}{(\pi-\theta)^{2}}+\frac{2 U^{2} \sin \theta \cos \theta}{(\pi-\theta)}=U^{2}\left[1+\frac{\sin ^{2} \theta}{(\pi-\theta)^{2}}+\frac{2 \sin \theta \cos \theta}{(\pi-\theta)}\right]
\end{aligned}
$$

Along te stagnation streamline

$$
\frac{V}{O}=\left[1+\frac{\sin ^{2} \theta}{(\pi-\theta)^{2}}+\frac{2 \sin \theta \cos \theta}{(\pi-\theta)}\right]_{-\ldots-\ldots}^{1 / 2}
$$

V/E is plotted as a function of θ

From the pot we see Rat Vie is a maximum at $\theta=63^{\circ}$ (also at $\theta=297^{\circ}$ from symentry wit respect to the tones At $\theta=63^{\circ}, E_{0} 5$ gives $V t_{\text {max }}=1.26$

Rus $V=V_{\text {max }}$ al $r=1,82 m$ and $\theta=63^{\circ}, 291^{\circ}$
To determine the gage pressure d this pout write the Bernoulli equation between a pain upstream and he pan k of maximum velocity

$$
\begin{aligned}
& p_{\infty}+\frac{\bar{v}^{2}}{2}=\frac{p}{\rho}+\frac{\bar{S}^{2}}{2} \text {. } \\
& \therefore p-p_{\infty}=\frac{p}{2}\left[J^{2}-V^{2} \operatorname{man}\right]=\frac{1}{2} p J^{2}\left[1-\left(\frac{v_{0}}{O}\right)^{2}\right] \\
& =\frac{1}{2} \times \operatorname{lig}_{3} \times(30)^{2} \frac{\mathrm{~N}^{2}}{2^{2}}\left[1-(1,26)^{2}\right]+\frac{N . S^{2}}{\lg . m} . \\
& p_{-\infty} p_{\infty} 3 \backslash \operatorname{lm}^{2} \ldots P_{\text {gag }}
\end{aligned}
$$

Note: From te plot we see Q Qt $V(O=1.0$, and hence $P=P_{\infty}, a t \theta=113^{\infty}$. Pe corresponding r is 1.01 m .

VIU versus Distance, x

Given: Flow field obtained by superposing a uniform flow in the $+x$ direction ($\sigma=25 \mathrm{~m} / \mathrm{s}$) and α source (ofstrengh of at the origin. Stagnation point is at $x=-1.0 \mathrm{~m}$.
Find: (a) expressions for ψ, D, \vec{V}
(b) source strength , p.
plot: streamlines and potential lines.
Solution:

Fit he stagnation point $\vec{v}=0 \quad x=-1.0 \mathrm{~m} \quad y=0(v=0)$.

$$
\text { For } u=0=U+\frac{q}{2} \cos ^{\frac{x}{2}} x^{2} x y \quad \therefore q=-2 \pi v x_{s t a g}^{x}
$$

$$
\begin{equation*}
q=-2 \pi \times 25 \frac{m}{s} \times(-1.0 \mathrm{~N})=50 \times \mathrm{m}^{2} / \mathrm{s} \tag{2}
\end{equation*}
$$

At the stagnation point, $\theta=\pi \quad \therefore \Delta_{s t a g}=\frac{q}{2 \pi} \theta=\frac{g}{2}$
The equation of the stagnation streamlvic is then

$$
\left.q\right|_{2}=u r \sin \theta+\frac{q}{2 \pi} \theta \text { and } r=\frac{q(\pi-\theta)}{5 \pi i J \sin \theta}
$$

At $\theta=\pi / 2, r=\frac{q}{40}=50 \pi \frac{m^{2}}{3} \times \frac{1}{4} \times \frac{5 \pi}{25 m}=\pi / 2$
Far downstream $\theta \rightarrow 0$ and the y coordinate of the bock $y=r \sin \theta=\frac{q(\pi-\theta)}{2 \pi 0}$ approaches $\frac{\square}{20}=\frac{50 \pi}{2 \times 25}= \pm \pi M \quad y_{\theta \rightarrow 0}$

$$
\begin{aligned}
& \Delta=\Delta_{0.5}+\psi_{50}=v_{y}+\frac{q}{2 \pi} \theta=U r \sin \theta+\frac{q}{2 \pi} \theta \\
& \phi=\phi_{0.6}+\phi_{50}=-\dot{u} x-\frac{q}{2 \pi} \ln r=-U r \cos \theta-\frac{q}{2 \pi} \ln r \\
& u=u_{v i s}+u_{20} ; u_{u, 6}=0 ; u_{s 0}=v_{r} \cos \theta=\frac{q}{2 \pi r} \frac{x}{r} \quad \therefore u=0+\frac{q}{2 \pi} \frac{x}{r} 2 \\
& v=v_{w f}+v_{s o} ; v_{w r}-0 ; v_{s 0}=v_{r} \sin \theta=\frac{q}{2 \pi r} \frac{y}{r} \quad \therefore v=\frac{q}{2 \pi} \frac{y}{5^{2}} \\
& \vec{V}=u i+v j=\left\{v+\frac{q}{2 \pi} \frac{x}{\left(x^{2}+y\right)}\right\}+\frac{a}{2 \pi} \frac{y}{\left(x^{2}+y^{2}\right)} \hat{j}
\end{aligned}
$$

Using Excel, the stream function and velocity potential can be plotted.
The data below was obtained using the workbook for Example Problem 6.10.
Note the orthogonality of ψ and ϕ !

Note that the plot is
from $x=-5$ to 5 and $y=-5$ to 5

[^0]: *Net force is the total vertical force minus the weight of the object. A buoyancy correction would be necessary if part of the object were submerged in the test liquid.

[^1]: * Note effect of roundofferror.

[^2]: $\Delta t=1.000$

