.2

6.2 The velocity in a certain two-dimen-
sional flow field is given by the equation
V = 2xti — 2yf

where the velocity is in ft/s when x, y, and ¢ are
in feet and seconds, respectively. Determine
expressions for the local and convective compo-
nents of acceleration in the x and y directions.
What is the magnitude and direction of the ve-

locity and the acceleration at the point x = y =
2 ft at the time ¢t = 07

From expression  dor vcloc',-l-_.,/ = 2xt and o= -24%.

Since
= ig ol J
“e T oF T - ok *7’;‘{;
%ﬁ\.’ﬁ au
é’x {/05&/): ;‘_Z_ = X
and

Q}c (Cam/) L ‘.5_)‘2‘ +1/-%_‘5‘ = (z,zf)(zﬁ)-f- ﬂ.23i)(0)

Similarly,
o ., oY
ﬁ-_g = J& T " ox
and

Qg (Tocal) = %: — 2y

a, Ceonv) s u 2L + vV o (2xt)(o) + (- 2y2)(-2%)

DX Jy ~
= L/_yi—z'
At x=y=2ft qnad t=o
w= Z0@Neo)=0 1= —2(z)() =0
So  That 7:0
and G,z 2x+ 4xt = z()+ 4)0) = ¥ FLE

— Y f4/s?

1]

Gy = 2y pydte —20) ¥ #E)E)

Thus o .
* e YT -7 gl uih lz!-\/csl)?r(-#"i“’_’cé_/{l |

-/




e.3

6.3

The velocity in a certain flow field is given by the equa-
tion

V=ﬁ+xzﬁ+yzﬁ

Determine the expressions for the three rectangular components
of acceleration.

[From expression for ue/om'g) K=K 2 Kl
Since
. ou Ju Ju Ju
a.x- jt-f“_ﬁ_:( 'I"V';-E-ra}'zg
Then
b- 08 (% M)+ (6300 ) «e)o)
= X
S/m:/ﬂr/g)
- ov Qv QU
a3-2—t+“5§'+1}"3—51—w‘§£~
and 5
d'j 2 o [ % )(2,(2-)-;- % )(0) + (42)(x’)
- 2x%3 + X'yZ
Alse,
- ow ow QW .y QW
> Gt LGt Vg vy
So Thet
’ q,= o+ ( X o)+ (x2)E)+ (2)y)

2
Xzt + Yy &

b-2




6. 4

6.4 The three components of velocity in a
flow field are given by

u=x*+y + z2?
v=2xy+ yz+ 2?
w= —3xz — z3}/2 + 4

(a) Determine the volumetric dilatation rate, and
interpret the results. (b) Determine an expression

for the rotation vector. Is this an irrotational flow
field?

™D

(&) Vo/ume'}n'c J;/d/ar[/én Vaée = %‘:

U

|

W
: /EZ- 6.9 )

L

Thus 4 for velocity omponents  ¢1ven

vVolumetric dilatation rate = 24 + (x+2) + (~3x-2) = O

—_—

This result (ndicates That There is no chame (v The

Volume of a Fluid element a5 1t moves Fvom one
[0Cation to anethep.

€8] B Egs. 6.12,6.13, and 6.1% wiTh The Velocrty eom posents
g1ven :

'-.-L — M__{ — [ J: -5_%:
wg“;t(;z"a)“ﬂ-[z‘z (~32) 2
Thus A
d i A g W Y
w:—%+E)L+TJ ‘f?é
——

Since @ 15 hot 7 fro everywheve the Llow Lield
/s not Irrotations. No.

_—




6.5

6.5 Determine the vorticity field for the following velocity vector:

= (= y)i - 20j
ViV = (3 - 408 (3 (W E

where
2
w=Xy" w=-2xy apd wr =0

| Thus,

VAV = 08+ 0f 4[5 Caxy) -5 6y ] K

= [-2y - (-2 =0k
Hence,
vxV =0




6.6

6.6  Determine an expression for the vdnicity of the flow
field described by

V=~ xyji - y4j
Is the flow irrotational?

(Efg, 6,17)

. ] L
From EXPression for ue/acn‘y ; = — )(j'aJ riE , afz/w—:gJ

arnd wi/7%
= oWy
w, =3 (5 a;) (g, 6.13)
oL ou  Jur
&Jﬂ:a{;;_'-?—x) (Eg. 6.1
. A (e¥_ su ( b,
W, = ;L(a;c 2‘5) £g. b0x)
it follows That
o O
- « 1 To=f3 J:éx
é(.gx.:o) &Jy..o) and Ldg—Z[O(fo? 2_3
/ has, e

T=2(wl+0,]+al)
- A N (__j :.)};J
= 2 () + (6)g + (3xY

3,~<524€

H

—t

Since $ 15 hot 7ero everywhere 1he Flow
/s ho? Irrotationsl, Mo,

——

=5




6.7

6.7 A one-dimensional flow is described by
the velocity field

u = ay + by?

v=w=10

where a and b are constants. Is the flow irrota-
tional? For what combination of constants (if any)

will the rate of angular deformation as given by
Eq. 6.18 be zero?

For tvrotatione! Flowr &5 20, ana for e velouty
cis tvibu tion given .

o=z (5% - 55 ) =0

wj e —';': %3— - ?f) =0

=% (5x-55)= - (£ +sy)

Thu.sj o s not TJero everywhere and  The  Flowr
5 not  irrotational, No.

—

Since (from &E3. 618 )
f_ o Ju
S r A 2y
1T follows tor The veloc/dy  distribation 7//'?/4 Tha ¢

g= a +2by

Thus) There are no values of a awu b /ewopf boTh

Egua/ #o 70}*0) Tt will give =0 for all yalues
of Y. MNene.




6.8

6.8 For a certain incompressible, two-dimensional flow field the
velocity component in the y direction is given by the equation

v = 3xy + x%

Determine the velocity component in the x direction so that the vol-
umetric dilatation rate is zero

For zero volumetric rate in a +wv-—dimens}onaf {fowj

U
5% 75 =0
Since
£ w8 =g
2y
Then From E?.(/)
3—“.' = —-3X + J(} S
X

Egtm.t.‘zba (2) cgn be /;71’1’¢M£P4 with respeczl to X 4o obtarn
fd“‘ = _fﬁxdx +fX"f/x+;F(9)

i e - X3
u="ZX"*+F +fy)

where  Fcy) is an undebermined Ffunetion of Yy .




6.9

6.9 An incompressible viscous fluid is placed
between two large parallel plates as shown in Fig.
P6.9. The bottom plate is fixed and the upper
plate moves with a constant velocity, U. For these
conditions the velocity distribution between the
plates is linear, and can be expressed as

b
u=1U=
b
Determine: (a) the volumetric dilatation rate, (b)
the rotation vector, (c) the vorticity, and (d) the
rate of angular deformation.

FIGURE P69

)

(a) Volumetric dilatation rate = ‘;-; + %"1* g-‘-;:-’ =0

(.é} % r Ve/ochly di.sfr/'éa//bn 7’/1}-3;;’

o= W R
KAk . L L8 du_ _ U
%‘2/7'-5,)- ¢
Thus “
) —~ U
L= *

: d
(el ) 0 = B—E*f‘ f;—':( (E‘g, 6.18)
Thus,
V. U
r= 7

-8




.10

6.10 A viscous fluid is contained in the space between con-
centric cylinders. The inner wall is fixed, and the outer wall ro-
tates with an angular velocity w. (See Fig. P60a and Video
V6.3.) Assume that the velocity distribution in the gap is linear
as illustrated in Fig. P6I0b. For the small rectangular element
shown in Fig. P6.0b, determine the rate of change of the right
angle <y due to the fluid motion. Express your answer in terms
of ry, r;, and w.

(a) ' (b)
B FIGURE P6.10

From EZ- .18

oo av, 2u
y* 3573

oy The linear distvi bution

k.‘:'._ )/D'w ‘(j
h=r
So That
du . _ Hhw
24 B~

GHA  Sinee V=0

A
ye - L

The hejm‘iue. sign  indicates That The 0}’/:7//“)4/
}”/jﬁz" Angle s snereasing .

=49




6.12

6.12 Verify that the stream function in cylindrical coordinates sat-
isfies the continuity equation.

In Cy/mdrlca/ coordinets 7‘/75: caﬂfmw/)z equafmn for s{eady fwo~
dimensional, incompressiple Flow /s
) o(rm.)

1 oV
() T r +F7b£ =0 =0
Consider 1y = 7{"%[ and Wy = - 57 so that from £4.0),
_La(W/JS) L9
trisl __,5{‘{ [ma 3*93?] =

Thus, any fonction ¥ satis/fies the continuity equation.

£-10




b. /3

6.13  For a certain incompressible flow field it
is suggested that the velocity components are given
by the equations

u = 2xy v = —x% w=10
Is this a physically possible flow field? Explain.

Any /911751;:0//57 Pas:/Z/e /;vaom/:ress/Z/a Fhow Freld
must Sdff'.n% consevation OF rmess as expressed by

The Ve/aétéﬂsh:)b
du . Qv Jw

ox T 29 * Jz =0 b
For 7he Ve/oci%y clestribation 7!'u€n 3
32 =2z BV 2z .ol
e o L e A rdhoe i
"2X 7 DY 22 &

Jubstibuton 1ate  Eg (1) shows hat
2y -x* +o # o

Thus, This is net a physically possitle #hw Freld Mo,

6-11




6. /%

6.1% The velocity components of an incompressible, two-
dimensional velocity field are given by the equations

=y* = x(1 + x)
v=y2x+ 1)

Show that the flow is irrotational and satisfies conservation of
mass.

L The Live ~tlivsgniinal b i J‘l’fbfa/‘l‘:m;qai)

- L (o _du)
wi—" 2 (ax 75 o

For the velocity distribution G1ven

4y o ou

-—

ox J >y
Thus,

Wz (Zﬂ"zj) .
ana  The Flow i n;roéa.ivpx;a;__?__.

:Zg

o satisty  conseyvation of mass,

2 u QU —
Jx 3y =°
\S)'n‘c'e)

d . QU= 2x+]
X 2x 5y

+hen
— 1= 2X +2x +1 =o

And

Conservation of mass 15 satisfea

6-12




6. /5

6.15  For each of the following stream functions, with units
of m¥s, determine the magmtude and the angle the velocity
vector makes with the x-axis at x = 1 m, y = 2 m. Locate any
stagnation points in the flow field.

@@ ¢=uxy

®) ¢=-u+y

Frem The detinition of The stream Funchion F

= é_tp - é.i.(' (E 6.77
U= aj v b, 35 )
(a) [;r l/’— XY
-~ 0¥ L Ll
U = -——-5 = X V= 2)—<- 3
A+ a(-‘:f/m/ y = Z/m)lf follows ’/’hm’: U< /'g'” and V':“Z./'%t
[hus,
Since u=0 at x=0 gna v=p ot y= =0, a stagnaton
Pomf: Occurs at X=49 =0,
(6) For W= —2x%+y |
- | S gl
=y =15 vE AT
At x=lm g =zm it hllus Tut u=1% and V=48
Thus, i »
Jvj= Famsoe = VTET0E) = 4 g
Sich
.t L .
o tan &= T ©37L.0°

X

Since U Fo, There are no stagnaton pomts.

6-13




6.16 The stream function for an incompres-
sible, two-dimensional flow field is

p' = ay — by
where a and b are constants. Is this an irrotational
flow? Explain.

For The How to be 1rrotational

. A oY _ du
wg‘.?. X 2y

and Sfor e stream tanction c/;h'/mﬂJ

te = 9_1‘.L = a.= 3.552

oYy
,;_--j_éf =0
Thus,
_i_;f = —bby =0
So 7hut
%:5[0_ eby)] = 3 by

Sinece wz;to low s not /;f'mz‘az‘!m;}:/.

Canless bzo), Mo.

(Eg b 12)

6-14




6 /7

6.17  The stream function for an incompressible, two-
dimensional flow field is

¥ = ay® — bx

where a and b are constants. [s this an irrotational low? Explain.

For The How to be srvotationa) (see gg.é.lz)/

L[ suy
wz".'z' DX atg)o

and Sfor The stream tanctioy C/IL:'C’MJ

oY
e s % = Za
2Y J

~_ ¥ = b
>
Thus)
U LY ol
;; = 24 'g-)-c =0
Jo ﬂfd.f

/ = —
wz::‘z[o—— [24)]‘ &

Since CUZ¢0 Hlow is not irredations

(éfﬂ/ES.s a :-'0) . Mo .

6-15



6./8

6.18  The velocity components for an incom-

pressible, plane flow are
w, = Ar=' 4+ Br~%cos 0

vy, = Br*sin @

where A and B are constants. Determine the cor-
responding stream function.

From 7he 0/87[/}9/'{/&}1 of the Stréam #uncé/éﬂ,

. L d¥ - oY
VT E 5% vp T~ 5 (£g.4¥2)

So That for The Velocity distributicy given,

1 ¢¥ , o p e
T b Ar *+ 85 Cos &

&)

=2 .
é_”‘ = — BF sinb CR)
2r

ffy/fymz‘e Eg.f/) w1y V‘e‘s/aecf to 6 to obtun
ﬁ/% = ﬂA+/BF’c.a.s¢9)d;9 + A )

or
/

Y= A6 + BF sinb + 4+ ‘2)
Jlf:n;'/ar{gl Inbegrate Egl2) wih yespect 4o + Fo obtas,

/c/z/ < -—ﬁi’l—"zsz’n& dr + £ (8)
#

BF sine + to (B) C¢)

or

i

Thus, +o satisty bot £gs. 3) and (4)
Y = Ao+ Brisme +C

Where C s an arbitrary constant.

6-16




G./9

6.19  For a certain two-dimensional flow field
u=170
v=V
(a) What are the corresponding radial and tan-
gential velocity components? (b) Determine the
corresponding stream function expressed in

Cartesian coordinates and in cylindrical polar co-
ordinates.

Y
ca) At an arbitrary pont P
(see Ligure)
% V sin B
7
-
Vo = V tose K
(b) Since
. Jp = - 9p
U = -&—fj- =0 v 3)(_]/
't fellows That Y 15 not a function of y  and
W=-Ve +C

where ¢ 15 an arbitrary tonstant

Also, with  x= Feos &

Y= =V reasod +C

Check 'H'H'.s I’EJ‘UH :
/u‘;.-_--g—rg = ~(Vcos) =V cost
and 2
o -———;:t,—gﬁ = &(Vrsind) =V sin6 , which checks with

paml (a),

6-17




6.2.0

6.20  Make use of the control volume shown
in Fig. P6.29 to derive the continuity equation in
cylindrical coordinates (Eq. 6.33 in text).

Volume element
has thickness dz

X

FIGURE P6.20

a‘i’//" d+ +[47"/3 74 =0 (Eg. 6./9)
v Cs
For The d/f#erential centrol volume shown

2
;—,_zf/oﬁ‘ - s )
cy

ai

and
f/OV-/S dA = net vate of mass outflow 7hrough
Cs SUrtaces of Control veolume

ar 4

( PV + J PY; d—-")(fw%r)dadz
Frem fiqure at right : Y

Net rpate of mass
outflow 1n F-divection =

(14L& )rr & )dour e $)le-% ) doos
/\x
—ﬂ‘”’?"%f—'f'g"jﬁ"‘i‘-"dedz 2

—
—

o
B__Jé_l_- I“G/f"dgC/Z' +/dl/; d}"d’gdf (2)

(cont )

6-/3




&, 20

Cons )

From 7[/9}0-{ at right:

Net rate of muass
OutHow 14 B-directioy —

6‘”/' ,,égﬁa@) drdz

‘7§V Qdﬁ)d az

2 PV

¢ 3)
, . L0P% dz
lc';'d'?m 74?1//6 at k/f/]f - . {/OV:E —Z—?—E-)!‘dﬁ dv
Net rate of mass < o
L
Outfow 171 Z-divectioy = //‘ffi:

| (P + ﬂff? g’_?-) rdedy M
- (/@ 5% idf)kdéa’r / x

2
= Pz
= rdrdedz (%)
Sl odion af Egs. (1) Thru (4) mh £4. 619 yelds
2 2%
7;‘5 pdrdedz + °LX b ardeds + PV drdgds
e a%‘fé drdedz + 3_2/1,; rdrdedz =0
or op 2 Py Ui 0P% | VZ -
AR e i
Since Vi Vi L 2
a_af?k -+ /_‘iF*‘ = 7 -2—- (kfﬁ)

E'g,[;) Can be wr;ten &5

96@*) 2(p4z)
% _}_’{. 2 //—'/dV') +-- .__a_i__’z' =a
3

Which s £%. 6.3
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6.2/

6.21 A two-dimensional, incompressible flow is given by
u = —yand v = x. Show that the streamline passing through
the point x = 10 and y = 0 s a circle centered at the origin.

Fer %Wa-d/n.mrzs:a;m/ £low a:/onj 4 streamline

dy _ v
dx u ‘ |
So That Ffor +ne Ve/acrf-y CDMP&H?&T/‘: Gl1veéen
dy . X
dx =Y
and
‘ -_—fg dj = fx dx
Thus
’ = !72 = _’<..2+C (wherc C s a C&n.S‘}Drl{_)
g 2
and

K*+y*=2¢c =" 4]

Eguation (1) represeats The efuatipn For The
7841?7;'/_9 a;ﬁ Ji‘reqm/h:;e.r, For a 5u}en VaJue,
of C ' The eguazfm'n. cjn‘/e.s a Clvcle centered
at The or‘/.gfn with ' The -Sgbmrc of~ the
Vadius.

For X=10 4qnd 530
)]
/DZ-/-O =L =2 lop

aned “The Cluation oF The streamline )9455/;;_9
Through This point Is

X%+9%= /0, ‘
Which 15 a Civele of~ vaclius 10 C?ﬂJ‘fVPp{ at The ort gin,

6-20
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6.22 Inacertainsteady, two-dimensional flow
field the fluid density varies linearly with respect
to the coordinate x; that is, p = Ax where A is
a constant. If the x component of velocity u is
given by the equation u = y, determine ap
expression for v.

For a variable 0/6’/7.5/'7/7 F/oqf/
d fpw) L dlpr)
oY

2 X (Eg, 6. 29)

Wy n
/ pus Gx)ly) = Axy
'+ follows That

0 (ouw)
xu"’”

Thus,

1)

Lnteqrate  £g.0) wit respect to y fo obtaiy
ﬁ?’(/’V‘) = —f/}j dy + %:[x)

or
P = AL Lo
Wit /ozAx
: L \/AYy*
V== "/Ax)/% ) "'I;}_[::)
or
SlLL
- 3 =7 + Fix)

Where  Fix) is an ﬁré/}‘mfj Funcdion of X,

6-2|




b.23

6.23  Inatwo-dimensional, incompressible flows
field, the x component of velocity is given by the
equation « = 2x. (a) Determine the correspond- 10 ————————
ing equation for the y component of velocity if ]
v = 0 along the x axis. (b) For this flow field

what is the magnitude of the average velocity of
the fluid crossing the surface OA of Fig. P6.237
Assume that the velocities are in ft/s when x and
y are in feet. o’

_-..9 .
%o
1B

¢ Qoe
| Lo = ft

FIGURE P6.23

( Consider «

(a) To satisty The tontinurty ejuaézakf uni't mc}mtss#ft)
du dr
IX T dy T
Smce ou
. ¢ i
't follows That
i__;__-_._ -2 (/)
rn#ef,fg{[p;‘/ gf Eg_(!} LU/.ﬁ’l J"'P.S'Joé(}i {‘0 y g/é/t{r
| = -2y + f(x)
IJ[ =0 449/77 X=-4x15 (yzo) THén #(,{) =0 So That
s -2Y

(&) ’fa 54/,_},47 @nservation of mass

4%/9 N @4/3 - Cpa,g (see A}qnﬂ)
54
5

A’/&nﬁ AB k=al1)= 2 so Thalt
Gap = teAyy= (2 A4 )01 ££)O1 1) = 2 ’—i’f
4/9;47 OB =0 So That Gopp = O
T hus, Q.- @ - 2 .—?-3 3
and B e _@i = E—E- = L4 FE
Av arer V2 #H?

22




6. 2%

6.2%  The radial velocity component in an incompressible,
two-dimensional flow field (v, = 0) is

v, = 2r + 3r*sin 6

Determine the corresponding tangential velocity component,
Uy, required to satisfy conservation of mass.

20 (F

g GV 40 . M5 (tq (.35)
¥ "o T F B T 3z =0 3
Since V3 =0
oUp . _ oruyp)
. 26 o ce)
and with
r,. = 2+* 135, o
17 Sfollows That
207 - Y  + Gris 6
or
7%9{5/ Ez_ff) becomes
%—V‘ﬁ - — (%5 + Wi o) C2)

EZ!{:LE/&M(Z) Can  be /ﬂé&'?m.ﬁ’d with i’é‘.s/becé to @ +to obtuy
fa’?/é z -f(lﬁwn ¥ sin0)do + Ff(r)

s Vp = T Hro - 7 Ficso + L)

Wheve frr) s an uncledermmed Synction oL .
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6.25  The stream function for an incompres-
sible flow field is given by the equation
w = 3xy -y 1.048

where the stream function has the units of m?/s

with x and y in meters. (a) Sketch the stream-

line(s) passing through the origin. (b) Determine

the rate of flow across the straight path A B shown
“in Fig. P6.25. A

1.0 x,m
FIGURE P6.25

LIJ.-.O 3
-0
(&) Llines of constant ¥ are streamlines.
Rr Y= 3;(?—73 The streqm/ine o /3
/;wss‘/hf ﬂm”fé 7716 0//?/;% [/K‘-:/y:o) 3 ‘ , 3
ha_g a Vﬂ/ﬁl( ¢=0_ 7-7’”5) The Y=o W=y

€gua hlion for The steambines Throush
The origin 15

O=3x% -y
oF

y= *|3x
A sketch of These streamlines 1s shown in Tre figure.

(b) @:% _%
At B  X=0, Yz|m so That

l,lé 2 3y - (175 = | w¥s (per unit widt )
At A X=lm, Y=o 5o That

W= 30)%0) -(0)° = o
(s, Q=Y = 1 2fs (per unit widtn)

The‘ nejm‘///e s/én indicates That The Hlow /s Ffrom
/"lj/‘)t to  Jett as we look from A 4 B

b-24




6.26

6.26  The streamlines in a certain incompres- |
sible, two-dimensional flow field are all concentric
circles so that v, = 0. Determine the stream func-
tion for (a) v, = Arand for (b) v, = Ar-!, where
A is a constant.

From The defin,bon of The Stream mesz'rf 2

.k EF -_d¢
GV de I (&5 év2)

So Tt with v, =o i follows  Tha? g-g;a
and Therefre '

YW= Fr)

(a) for v, Ar
.
or = <)

Intesra te Eg.0) wi respect L F 4o oby

fd((/: —ﬂra’}*

"” s [ v fm)
#oa/ew{; since Y is not a tfupction of & , ' # Lo llows  That
y- -4t

Where C 15 an  arbitrary consha?.

() Similarl or Vi Ar!
9) =

i W:—Afnr + C

6-25
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*6.27  The stream function for an incompres-
sible, two-dimensional flow field is

w=3x%y +y
For this flow field plot several streamlines.

The 2puation for a sitrsunline i tound by setting gﬂ:consizyni
/n T'ée efaa.é/éﬁ for The Stream function . Thus, for T7e

gIven Stream function
Y= 34 25 +Y
1L Pollows That  1he equstioy of o shembne is

Y
g:‘

L & By?
Where yarious constant Valyes Can be assig ﬂf"”{ o 45
+o obta/n a Family of streaml/nes. Tabulated resul+s

Foir #=1, 2,3 4 and a plot showing the streaml; jes

are 7;/(,«; below .
v =1 y = y =3 y=4
X y y y y
-5.0 0.0132 0.0263 0.0395 0.0526
4.5 0.0162  0.0324 00486  0.0648
-4.0 0.0204  0.0408 00612 0.0816
-3.5 0.0265 0.0530 0.0795 0.1060
-3.0 0.0857 0.0714  0.1071  0.1429
2.5 0.0506 01013 0.1519  0.2025
2.0 0.0769 0.1538 02308  0.3077
-1.5 0.1200 0.2581 0.3871  0.5161
-1.0 0.2500 0.5000 0.7500  1.0000
0.5 0.5714  1.1429 17143 22857
0.0 1.0000 20000 3.0000 4.0000
0.5 05714  1.1429 1.7143 22857
1.0 02500 0.5000 0.7500  1.0000
1.5 0.1290 0.2581 0.3871  0.5161
2.0 0.0769  0.1538  0.2308  0.3077
25 0.0506 01013 0.1519  0.2025
3.0 0.0357 0.0714 0.1071  0.1429
35 0.0265 0.0530 0.0795 0.1060
4.0 0.0204  0.0408 00612 0.0816
45 0.0162  0.0324 0.0486  0.0648
5.0 0.0132 0.0263 0.0395 0.0526
/
(Coﬂ L)
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6.2.8

6.28 Consider the incompressible, two-dimensional flow of anon-

viscous fluid between the boundaries shown in Fig. P6.28. The vel
locity potential for this flow field is

d=x-y
s ;
B FIGURE P6.28
fa) LL‘--.Q_(P-TB._‘E:
Ay X ok

lo determine /Qyéeymée w7 res)oeaz‘ oy P obters

f45"= .ﬁxfy

9 W= 2xy + £ ) e,
Similar Iy QY 24
P 1= --2_:{ =) 5_5 ::_Zg
So  That
/a’gﬂ = /zgdx
or

Y= Zxy + 75,,_(_‘])
To satisty both Egs. (1) and (2
W=2x4g + C
wWhere C s an arbitrary cbﬁ:zéﬂ”t_ Since §L=0 a/anj Y=o
C =0 and
Y= 2xy

The o/:'scharge/ 2,

(2

£3)

(%)

Passing  Through any  sarface Connecting
The Hwo wa/l_sj such as AB (see #gure) 13

1= %"_%9

From £y 43), 5@=o

and Y= 2x- Y. Tt Loffows
That

?: 2/\5{—- j!.'

628




6.3/

(1

6.31 Given the streamfunction for a flow as ¢y = 4x* — 4y?, show

that the Bernoulli equation can be applied between any two points
in the flow field.

For the Bernoulli equation to be applied between any two pojnts
in the flow field (as oppased 1o only points along 4 streamline), the flow
myst be irrotational. That /s, DXV =0, which for two-dimepsiopal
How can be written as

_du _
ax iy ~0
For the given HOW

";)A,L—S’y and ﬂf”ﬂ

Thus,

J
Ix Ty S8 yey) = -8 48 =0

Hence, Eq.(1) is satistied, #he flow is irrotational and 1he Bernovll;
equation can bé applied between any fwo points.
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6.32 A two-dimensional flow field for a non- y
viscous, incompressible fluid is described by the.
velocity components

v=20
where U, is a constant. If the pressure at the origin
(Fig. P6.32) is p,, determine an expression for the
pressure at (a) point A, and (b) point B. Explain
clearly how you obtained your answer. Assume

the units are consistent and body forces may be FIGURE P6.32
neglected.

Check # see /¥ £low is srrotational. Stnce
-l oV _ Qu =
wz_i [5_2_ 2__9 ) ([Z.é./?_?

. - V-
and tor The g/1v€n 0e/ocz*y c/:sr‘r/éuéioﬂj X "9 and j—;&:;’.,

(f fellows  That Wy # O, Since Flow is not sprotations/

Cannot apply The Bernoull. -ejaa,i/éﬂ be tween any two points

In the FHow F£reld.

(a) Since V=0, The origin and point A arve eon The
Same stveam/ine . Thus,

¢ B(O,1)i

A(1,0)
Po - x

:P_o. e Z‘?_Z - '_’bﬁ - _\‘_/iz (/)
7 24 x 29
At The priqin V=T and a2t A Vy=U, 50 #at
Lrom Eg.(/)

b

Vs

() Foint B 15 pot en same streqgmline as or/:q/h S0 Cannot
apply  Berhoulli €quation between B and 0. To find f

use The Y- Cwm/omem-‘ of  Eulers ejua,fmm.'
_9P - [Q_V' OV DU s
Py ~3¢ LA LAETE VL r w5 (E4.6.50)
SIHEE vV =0 and _ ?{7 ) )

op
Y

-0

So  That




6.33

6,33 In a certain two-dimensional flow field the velocity is

constant with components © = —4 ft/s and v = —2 ft/s.
- Determine the corresponding stream function and velocity po-
. tential for this flow field. Sketch the equipotential line ¢ = 0

which passes through the origin of the coordinate system.

From The detumiton of The stveam Lanction

. 3 - oy (Egs. ¢.37)
l = 5 v T 5
So That fr 1he ve locity empmmb j/f/'é’ﬂ
agp i {1 )
2y 4
29 . ¢z )
X &

Inteqmte E5.0) witn respect fo y o obtui
fdéu l/ dy + + (1)
W=-4y+ 4 (x) (3)
Similarly , i1nbegrate Eg.(2) with respect B X Fo obtarn
fa’gt/:/zdx + 9(;/5)
W= 2x + #204) (%)
Thus, 4o satisty bin E3s.(3) and 4)
W= 2x -4y +C
wheve C is an arbitrary sonstant .
From he detinton of The velocity potentral

or

or

= —é = —a-? (5'55. é./o‘f)
So Tt for 77te velocity aﬂmponenis 9}Uén
>¢ _ _ (5)
o it
2¢ . _
_2__3- == Z (b)
{C'onzf)
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¢.33 ( Con't )

In%efmfe Eg.fS) L1 7 H?.sf??cf-ﬁn X 4 obtuin
f{/d = f—‘z‘a’x + 6/5)

3 ;5=' —hx r —é[j)

.Zq-lefmr[f EZ_ (b) witr respect b Y 4 obhon
fdﬁ z I‘Z dy + 7[,;()()

4= - zy + ,f,;f:()
Thus, o satisty botn £35.(1) apa (3)

$= —4x-24 + C

Where  C 15 an avbitrary eonstanL.

or

Since  The e;m}u‘m}zé/ /m'e/ ¢5=o) passes Pirough The
orig:s (ng =0)) hen C= o0 m £3.(7) So That The
€jaa,¥-/a}4 of The P=0 ejm'/boﬁm‘zé/ line 15

2g=— # X

s Yy ==2X

A sketch of This fine 15 shown i1n The 'thure,

-5~
"
o

(7)

9)
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6. 3%

6.34 The stream function for a given two-dimensional flow
field is

Y = 5x%y — (5/3)y°
Determine the corresponding velocity potential.

H = é—‘ﬁ '—'—%—é = 5K2—5-51
2y 2X

_Z‘/y:ﬂfgraz’-e Aw‘fh l’f_s,oech +o X v aéf‘d/};
fd¢ :f/fxz_s‘yz) dx

g = 35:)(3_ sxg?+ £ (y)
Srmilarly,

- 28 = 26 _ _
Vs 33‘{ 5 © /10xy

and
fd;ﬁ = — floxy a’_z;

or

oFr

I

f;fz ~5‘x52+ £, (%)
/o J&ﬁ/:ﬁ[y bo7 ng‘ (2) 4na (%)

45:&);(3— sxy* + C
Llohere C‘_/I an aréz%mr, Constin?

(1

£2)

(2)

(4 )
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6.35 Determine the stream function corre-
sponding to the velocity potential

¢ = x* = 3xy*

Sketch the streamline y = 0, which passes through
the origin.

W 0¥ _ S _

L ———

2
oy = ox - X -3y
.Zm‘efm;‘e w7 V‘P:/:eaf fo b fo obtn

fdtl- 2 [(3)(‘-—35‘) dy

i = 3(x%y - Ey-:) + 4%

or

Similarly

V—:—B_@ra—é:

, 2X 2y
and  integratiio wity respect T x  yields

fC/G‘ = _/éx_y ax
Y= 3x*y + £09)
7o satisty bolh £95. (1) and (2)
Y= 3x%y-y7yp ¢
Where  C is an arbitrary  Comstont . Sipce

— bxy

or

£/)

&2

The stramline (=0

passes Through 7he or/'f/iy (X20,y=0) /¥ Follays Tt~ C=0 G 1t

= 342y -y?® (3)
The ezuaﬁbn of The streamlipe
passing Through The oriIgIn is  found by f =n 9 b=o
sefting Y=o i £g.(3) +
veld B ) B
4 Y (3x%y*)=0 A
which /s sa.ﬁ.:yﬁec/ for yzo ¢=0 =0
%

and 9: :-FV-?—X
A sketch of The (=0 shemines

qre  Shown 10 The ﬁjur@.
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or

636 A certain flow field is described by the stream func-
tion
y=A60 + Brsiné

where A and B are positive constants. Determine the corre-
sponding velocity potential and locate any stagnation points in
this flow field.

a¢:2¢_._. A L Beos 8 | (1)

fanjm{-e with respect fo F + obtaly

ﬁé‘ =ﬁf+8¢a59)dr

$=Alnr t Breso +46) ()

5/1‘79174}"/9 P

....__a’ia..__’____?:'— y (3
Vo e m8f & 5165 B s B )

it )7 :—fg Fsinb do

or

$= BFresse +4£F )

7o 54,£151Cy botn EjS. (2) Gud(¥)
$=Alnr+ Bresse +C
where C [s an avbitrary censtant

Sfagnd.}lwh points Sccuv  where Vi=o ana V=0 .
om Ef (3) 7};:0 at Oz=0 ana & =T. Frem
EZ_(/)_ with B =0

R R oot AT
so That V=0 fo, K= -% . Howerev, sjnce A anaB
are beth pesitive constants This vesult [ndicates a
ﬁefd.v‘n/e Value sr P Which 1s 1ot de fined
A+ =7

fp;_:-f- + B CosTr =-’§-‘_ -k

S0 That ’V;_::o Jor P:-—’% i Thus/ o

Sﬁtjﬁm’—réw po/nt occurs at

%

O =7 and r=zg
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6.37  Itis known that the velocity distribution
for two-dimensional flow of a viscous fluid be-|
tween wide parallel plates (Fig. P6.37) is para-
bolic; that is

o]

with v = 0. Determine,'if possible, the corre-
sponding stream function and velocity potential.

FIGURE P6.37

lo dedermine e stream fanchon let
u-%: L [/—-(_f-)"]
and integrate with respecd fo y Ao obtas
faf;z = /Uc [f" (f)i/cf;
#ie Y Dc'[j-_g.'?]ff,(x)

B
5/11'(.5 = -f-)—- =8 j 75 135 het a [uncf/aQ ok X S50 That

X
4= Oy [1-302)]+ <
Where C /s g, arbitrary Constant .
o determme 1he veloeity potential et
w3 - [ -]
and integrate witn rvespect to x 4o obtain

ﬁfsﬁ “_/Dc‘[z-—(f-f]a’x

W $ = D‘-[K“'(%)zx]'f‘ £ ¢3)
/-:Lowewl’/ i o _ e =22l N & +5¢Y)
) A T Ty

and This relationship  canno? be satished for all valyes of
X agnrd g. ThL{.S/ There /.S. not a 09/0617‘-7 /Doffﬂf/é/ That-
describes This Flowd (The Fflow 1s not ivrotational ) |
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6.38

6.38 The velocity potential for a certain inviscid flow field
is

¢ = -3 — )
where ¢ has the units of ft?/s when x and y are in feet. Deter-
mine the pressure difference (in psi) between the points (1, 2)

and (4, 4), where the coordinates are in feet, if the fluid is water
and elevation changes are negligible.

Since e Flow Field 15 described by a velocrty Poém/:m/ the Howr
15 1krotational and thne Bernoull: Cfuation can be appliéd between
any Fwo points. Thus,

13:_,_1/,7‘_153- 78

F2s T FT o i
Als
i u"‘a—q—b:—-éx = 24 -3x+3
X J > +3Yy

AL xelfé, yazie
- [,)[2) = _/2_@

J
~3)% 36)%= 9L

I

e,

]

7y
Z 2
o et e ute e o B (TR) o
s
At X=YF | y=t £
Up= ~&6(4)(4) = —F¢ f;
1’3_ o _3('7“31-1- 3(6‘_)220
So  That < _ 2
e (en )
fhuSJ o Ez_u)
e fi[yz— % ]
uﬁ; f)z" Z A d

= e [ﬂ% &) 224?)?

(32,2 ﬁ'

= 37/0 & - g70

£ ) =

Jrk) Il in ES" o
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6.39

6.39 The velocity potential for a flow is given by
¢ = f;-(x2 = 3%

where a is a constant. Determ
function and sketch the flow pat

R:BGV

ine the corresponding stream
tern.

—_— = ?_(é = X
24 X | 28
7o cletermiie ¢ /r)ﬂ"ﬁyra te with respect fo y Fo coTUI

'§
o (= d.xj-t--é’(x) /)
Similarly ]
V:—g—g :d_; -
So That
Say= (ay ax
Y= axy + FLY) cz)
76 Satisty bitn Egs (1) and (1)
W: axy +C .
lheve (¢ is An 4rbiFrary Coastant. let C=0 <o Thet
Y- ()
x - "
For &

Siven a. The streamline patern is ol a1ne
by se#ing ¥ egual +» Various Censkants. By =0
The X ana y axes are Stregmlines )
and for ofher values 6f£

The Stream|ines are

\
Fectangular hyperbolas \
@s showpn in The skekch. | |
LP‘—‘o";"“:":
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6.40  The stream function for a two-dimensional, nonvis-
cous, incompressible flow field is given by the expression

= —2x -y

where the stream function has the units of ft2/s with x and yin |
feet. (a) Is the continuity equation satisfied? (b) Is the flow field
irrotational? If so, determine the corresponding velocity poten-
tial. (¢) Determine the pressure gradient in the horizontal x di-
rection at the point x = 2 ft, y = 2 ft.

(a) To sa ffsfy The C&ﬂ';l}ﬂuly‘_fj egaanf/@'nj
ou v .
ox T dy =9
For The stream fanction given ]
. oY _ £ s w2W_ . &
So That
L IV =0
oX 59
and The Continurty ejaa.f/bxg /5 satished Yes.
(Wote: hen a flow field i detined by a stream Function
7he Continui?y eguation (5 always relentically satisted, )
() Since
I U Ju
a_)&__i (}?-3_5) (E'Zlé,:‘z)
and ou _ ?_U." ~
2y ° Ix =%
it follows That CU?__ =0 and The Flow Freld 15 irraiaéz}:na/._z/_ig,
Thus
/ w= C.")_g = 2 = é_qé = 2
X 2y

and m;‘?ym ton Y elcds
Pk +y)+ C

Where C is an arb;trary constast
tc) Wi7h The x-axis /70}"/‘7021144/} 0‘?&=0' and

“SEep (udE v ) G e
and at y-2.£+ =21 £ £ —
A Sl & ks 40) -
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6.4!  The velocity potential for a certain inviscid, incom-
pressible flow field is given by the equation

¢ = 2% — @

where ¢ has the units of m?/s when x and y are in meters.
Determine the pressure at the point x = 2 m, y = 2 m if the

pressure at x = 1 m, y = 1 m is 200 kPa. Elevation changes
can be neglected and the fluid is water.

Since The £low is /?raéa.ém}m/J

-, \/,2_1/’_3.+\42"

= —_— (I)
¢ Z} & 7—?_
(XJIT/) Vl-: uz'f'VL_ Fér ﬂﬂ l/e/ac;'/r7 Paffg;lj‘-,'/ ?l:/f’}”,
- a(b — = E‘?: TN *
At /Oau-ﬂ‘ !/ led X=2lm ana ﬂz‘/”"' so That
L, = 4 (1)) = 4 ZF Vs 20) - 20)" =0
ancl m*
Vlz‘:.- [4 {.:..1)2 = /é o=
4{‘ POI‘I}t 2 X = 2Zm and jrzmﬂ so That
u, = 4(2)(2) = /é%ﬁ s I ()~ 2 ) =0
aun ol 2 w”
e = (o) = 25t 5
771.«5, ﬁ’om Eg.”)
2
'f%= ’F’, * E)—;S' (ij"'/z)
(9. 80x00° 2,) m* o™
= 2o’ e ! (1% - 504
” 2 (9.8 %)

$8.1 -& Pa;

6-4#0
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6.4#2.A steady, uniform, incompressible, inviscid, two-dimen-
sional flow makes an angle of 30° with the horizontal x axis.
(a) Determine the velocity potential and the stream function for
this flow. (b) Determine an expression for the pressure gradient
in the vertical y direction. What is the physical interpretation of
this result?

(@) Frem Egs. .80 anat .81
¢:D’(Xﬁa5a{ -:—js;hi) [53.5‘30)
Gna Hr o =30°
5,5 =UC (x @550’4.55;};30") = U(ﬂ.é’ééx + 0.5‘@3)
Sfré/'/ar/yl

l]l).—. U(j Coso — X Sinat) i 4 6,81)
and for of = 30°
b= U (g tes36°~ x sin ) = U (0.8664 - 0.500% )

(b) 3 |
lﬂCe'_ U = a¢ Fod = %

—

. S
1E follows Thet
U=o0.9LLU ana V= 0.500 U

From The Euler egua,ﬁo'n m e  verdical j-—drrézﬁa}f

& o U Y Qv
/"?g“% ‘/’('gz* “;rf*rg+wﬁ) (5.0.5%)

ana Wwith V== Constant qud gj-_——g.
O o) |

s

op . _

2y s

or

7This  vesult jndicates Tnat The pressuve distri bubion 13
hg:/mn’:ﬂ},'&  This 15 hot a surprising vesult Since
The Bernoulli 655{47’16” by cates Tt 1+ There 13
No change In Ve_/or_;'-/-g The Chapige 1n Pressyre s
smply due T2 The weight of Theflud, L€, a
hydrestatic vaviatwon.

b—4%1
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6. 43 The streamlines for an incompressible,

inviscid, two-dimensional flow field are all con-
centric circles and the velocity varies directly with
the distance from the common center of the
streamlines; that is ‘

Uy = Kr

where K is a constant. (a) For this rotational flow
determine, if possible, the stream function. (b)
Can the pressure difference between the origin
and any other point be determined from the Ber-
noulli equation? Explain.

(a) ’V’é:-—_a_‘i.p—_-Ky- (/)
As

-thvtfymée E'g.[!) with }’e.slaec-ﬁ te f 4o obtain

aor 3
¢ = = f%.’y + -F’f@}
Since ¢ _

It follows Tt () s net a funchion of 6 and Therebove

o

tWhere C /& an dr‘b!"/'ka.rg Constant.

($) The How s rotational and Therelove Tre Bernowlls
85:44,7':1}:;1 Cannot  be applied between The origii and
any po/ht, sthece These points  ave not on Tre
Same stveamline . Mo .

(Refer 4o discussion @ssocidted wit  devivation
of £, 6.57.)

e-#2
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6.4% The velocity potential : Y
¢ = —k(x* — y)  (k = constant)

may be used to represent the flow against an in-

finite plane boundary as illustrated in Fig. P6.4#.

For flow in the vicinity of a stagnation point it is

frequently assumed that the pressure gradient

along the surface is of the form 1

Q,I_’_Ax ‘ : Y 77 7

£ FIGURE P6.44
where A is a constant. Use the given veloc1ty

potential to show that this is true. |

For The velocty potential 71ven

w = aqs 5 e i o €
IX
545 = -~ 24 £z
¥ 5 ’ ’

and The J%ﬁjnahpg /)em}i occurs at  The 0/‘{}/»&.
for This 57‘?4%3 Fwo- dimpnsiona! Aoy

Ju
/O(“ax’”rb) (£g- osta)
and 4/0;47 'ﬂle Surtace (j:a} S0  So That

2x el =)
[Fom E? ) u == Z'é.)( and  Therefore

and 55.53) becomes

&P /ofzéx)fz/d T

or

é_E:A-X
o X

Where  A=4p*,
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6. ¥5

6.45 Water is flowing between wedge shaped
walls into a small opening as shown in Fig. P6.45.
The velocity potential with units m?/s for this flow

is ¢ = —2 In r with r in meters. Determine the
pressure differential between points A and B. 4
!——10.5 m: ! 1.0 m !
FIGURE P6.45
2 1
Fa .o Mo 2 P2, le (1)

v zg pY 29

Along  The horyontal surface | Ys=0, and

VT = __‘:>¢ = __?-,_
Fooor =
So 774:2.--& 2
V: ’y;::_'_}'::
jh“SJ " 2 " o V-_i:—iﬂ
R T S B* " I T FE

and From Eg_(/)
ﬁ_ﬁfs: %gz' [VBI— Va ]
3 N 2
- G.90xib 3| [k m):_ [ "_*fJ
< ¥
2(7.21 %, ) (‘35) ( 2
= =70 kb

AL
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6.46  Anideal fluid flows between the inclined
walls of a two-dimensional channel into a sink
located at the origin (Fig. P6.46). The velocity
potential for this flow field is

m
d)—é—nlnr

where m is a constant. (a) Determine the cor-
responding stream function. Note that the value
of the stream function along the wall OA is zero.
(b) Determine the equation of the streamline
passing through the point B, located at x = 1, ‘ FIGURE P6.46
y =4

(a) :.._/. é—('-” =a¢: _1)4_ /
Vi ryF o2& oF 27 F i

Lntegrate E g.U) with respect 4o 6 to  obtas,

fc/(/J /-—- 46

or
> m & {/
< S S

Since Y . L2 ., cz)

V; § _2F P
{_,{) 1:5 Aot a -ﬁunc-h;gn oJf f o So Eg,(l) éfftﬂmé’s

= 75 ¢

Wheve C 15 a eonsiant. ,4/.50/ P=0 Lr &=
Jo That e /)’)1

Y= rm (o2 ) s
(5) A+ B tfant= + so et &= ). 33rad. From Eg.(3)
The value of ¢ passing Through Ths point /5
W= m (”’53 ——f ).— O. OH5 0 m
and  Therefore The eguation o# The stresmline passing  Through B
f ooéfsvfm-xm/_.- /)
i Q= [ 33 rad

(/Vo/z:.' It can be seen From £y . (3) That The Stregmlines
are a/l Straight lines passing Through e origri. )

hl]§11

Qn d

C~48
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6.47 It issuggested that the velocity potential
for the flow of an incompressible, nonviscous, Ny

two-dimensional flow along the wall shown in Fig.
P6.47 is

¢ = r*3cos 36
Is this a suitable velocity potential for flow along
the wall? Explain.

I s s a suitable § the corresponding () must have a constant
value along the wall (since The wall must Corvespond v a Sv‘mrm//'zfe).

LY _ o¢_ 4 %

Lnteqrate Eg,/l) Wity respect +o 8 to obtory
7
d = _/Ji‘ F Zos ai"g

or ke
Y = Il"éJ//ﬂ:;{.Q + £ F) (2)
5//)1//4}'/?
) %
rU G LSO RPN 3
F F? 3 3
% .
i [ay =/§ﬁ"s/n§4‘9 dr
er .f
W = /*3.51}931’19 + 4, (B) (3)

To .Sa.'éf's't% bo7n Egs.(2)and (3)
Y= F% 5/ i; 6 +C
Where  C is an arb/trary constant.
Along one section of the wall, =0, and G=C. Along
The ofher section 92%77' and $=C. Thus, b his a

Constan? value 0/0/7? The wall and 7he given velocty
/oo}enﬁé/ Can be used o re/awsemf Fhow a/an? The “”’//'_),/ff-

6~%6



6. 44

6.49 As illustrated in Fig. P6.49 a tornado can be approx- 4
imated by a free vortex of strength I" for r > R,, where R, is P
the radius of the core. Velocity measurements at points A and il Y
B indicate that V, = 125 ft/s and V; = 60 ft/s. Determine the 7 R
distance from point A to the center of the tornado. Why can the / / \ \ T
free vortex model not be used to approximate the tornado [ | Be ) l
throughout the flow field (r = 0)? ]\ \\ 7 /TA B

\ ~+-7 / I

\ /100 ft
N rd
L WO =

m FIGURE P6.49

F:ﬂr a free Voréex'

75 = £ (&2 6.86)
Thus, at K , Vo< /286 LF | s0 Tt K=/54
and ot Mg, Vps 0F o fmt K< b0
Thereére,
/125 1 = 60 K

ana  since

I+ follows That

or

The #ree vorlex cannot be used 4o approximate o tornads

ﬂrauqhouz‘ The fow Feld Simce at rF=o Tre
veloei+y becomes 1nfrh,te .




.50

6.50 If the velocity field is given by V = axi — ay_] and g is a con- (1,2 (2,2
stant, find the circulation around the closed curve shown in Fig. P6.50. <

A

(LD (2 1)

X

BFIGURE P8.50

The circulation is gjven Ay
=4 Veds =@ (axi ~ayj)ds | where ds is an element along the line,

Thys,
[ = {Caxi -ay) Hax ) +_((axa - ay])-ldy?)
Y=

X=!

,f(dxz -ayf) (-dx?) +j(m -ay})(-dy})

(axﬂ/x ; j (-ay)dy ( (~ax)dy + j (ay)dy
-flgm( —{4)/4); +Ifdxa/x -}fdyd/v
=Za,fz)(dx —2alf)2/a§/

- 20(2) ~2a(2) =0
Thus,
=0

—
—

Note: This flow s irrvtational. That is VXVEO. For any
irrotational flow the circulation /s :'deﬂf/ba//)t Zero.
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6. 51

6.51  The streamlines in a particular two-di-
mensional flow field are all concentric circles, as
shown in Fig. P6.5l. The velocity is given by the
equation v, = wr where w is the angular velocity
of the rotating mass of fluid. Determine the cir-

culation around thefpjlgl_ AB (;p

FIGURE P6.5

/1= 55 V. ds

ABCD

27(71550/5’ [ Y dk +/?/;ad'&+ v dr

Al B¢ co DA

Since 7//"_=0 and Vg = cor} Eg,(/) becomes

62 el
[T= [wbide +o +/w a*dé + 0
&, 6,

= &)1}2(92‘91) a2 wa-'z(él—éz..)

[M= @w(8-6)(*a*) = WA (b>a*)

Gl

b=
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6.52 The motion of a liquid in an open tank is that of a combined
vortex consisting of a forced vortex for 0 < r < 2 ft and a free
vortex for r > 2 ft. The velocity profile and the corresponding
shape of the free surface are shown in Fig. P6,52.The free surface
at the center of the tank is a depth 4 below the free surface at
7 = oo. Determine the value of h. Note that h = Ay, .y + Atreos
where hg, . and Ay, are the corresponding depths for the forced
vortex and the free vortex, respectively. (See Section 2.12.2 for
further discussion regarding the forced Vvortex.,)

For forced Vortex

Z: O %, ¢
=%

e = /O_{;_E-: r—.:—;—sl
z2fE
Thus, at r= z+

=Sed =y (32.2%% )

For 1£ree VorzLex /.S'eg_ E.\Cdm/u/e A.L)

PZ
& Srir*g
b}/verc /7:217-}‘”:9_

e 'f’ha}:

Uy, ftis

0=

N —

r, ft

MFIGURE p6.59

(Eg, Z. 3z)

an A w;'f?: Z=o0 at =0 1+ %llows That cC=0,
/J/-'-W, 7/;= oo aund since 7/;,-‘]0 -f'—t'/_; at p= Zocé

wiyi (5 r%d)z(z Fb)z: ).5% £

2 2
(2arvT5) _ 'Sfﬂ“z/‘?ft)z/m'?-) = | 55F¢E

o STt g gvr‘(zﬁt)’(szz-fi)
Thus, 704__
- = [s5ft+].55f =310
Jﬁ' il hﬂorced b ’gﬁreg
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6.53  When water discharges from a tank through an
opening in its bottom, a vortex may form with a curved sur-
face profile as shown in Fig. P6.53 and Video Y6.4. Assume
that the velocity distribution in the vortex is the same as that
for a free vortex. At the same time the water is being dis-
charged from the tank at point A it is desired to discharge a
small quantity of water through the pipe B. As the discharge
through A is increased, the strength of the vortex, as indi-
cated by its circulation, is increased. Determine the maxi-
mum strength that the vortex can have in order that no air
is sucked in at B. Express your answer in terms of the cir-
culation. Assume that the fluid level in the tank at a large
distance from the opening at A remains constant and viscous
effects arc negligible.

|
|
|

B FIGURE P6.53

From Ex.amp/e é-é)

[-, 2
Z = -
St g

Alr will be Sucked ity ZD"/’C When ES:—/#& for F22L4

Thus, )

F% ’?77_2/_:; 2= =87 (2f2) @2_2_5{1;)/-/{%)
or )

M= 101 £
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6.5%

6.54%

Fig. P6.5%. A pump draws off water through a narrow slit at a
volume rate of 0.1 ft*/s per foot length of the slit. Assume that
the fluid is incompressible and inviscid and can be represented

by the

stagnation point on the wall (point A) and determine the equa-
tion for the stagnation streamline, How far above the surface, _54
H, must the fluid be so that it does not get sucked into the slit? \

Water flows over a flat surface at 4 ft/s as shown in

combination of a uniform flow and a sink. Locate the

0.1 fts
* (per foot of length of slit)

B FIGURE P6.54

- _ % - /m
s ¢/.ﬁrmér/rr 7 ws/}:é = Ursines = ‘)
Aow
Thas, y
ol EX o o - m
7?- -y - L cos e - (2)
and P

2 -2 o - ,
7 e U siy B
/4'/%7 The wall Vg =0 , and The stagnation pomi occyrs
where 'V;.=0/ So TMet From Eg . (2)

-~ o) _ Vead
o= U ¢oslo®) rers

and Theredore
ey

==
= Zrn U

- 2
For U= 4?’ and m= 0.2 3’@ (ﬂoz‘e That « source strensu
of 0.2 é__z"' must be used to obtain O.If}L Throush siit
Which s only one half of a fall “.5/;1/<). Thus,
_Ftl
}_, = 0'2 ?

LT (’fﬂ')
3

= 0.00796 L%

and The Jfayfmzf/a'a /Ooz}:z‘. /s on The wall O, OO0T796 £4£
to The rght of st

( cont)
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¢.5% (con'? )

The value of ¥ at The .nfaqﬂafzoa /oomi (= 0.00796 ﬂ o= 0)
/5 7 ere fE—‘g /1) so 7hat The -eﬁuaf/o/f o The d/a7n4éz¢0n
stream/ine  is

O= U tsind—- 2 p
27
oF .
psmp = A g

Zrl

Sm'c.g Y= rsind  The eja‘zéma of  The Jﬁfneé/&»r streqmline
can be wWritten as

Y= 9
Fluid above The 57&7;:4&0'/4 Strveam/ime wil! not be suckedd ints

Sht. The maximum cistance, H, +or The stagnation streamimne
OCCurs as G —2 T So Tt

an T o,z t*
4 = e - '_%{ s 00,0250 F2
2(4£%)

ﬁVofc DAl The Fluid below The stagnabon streamhne must pass
777roa7/1 The s/t . /_'hus) From conseryation oF mass
HT = flow 1nts slit
or Jh = O.IJff.:' = 0, 0250 f£#
¥ £
-~

which checks wity The aqnswer aém/é‘,)
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é' 55 6.5E Two sources, one of strength m and the other with strength
3m, are located on the x axis as shown in Fig. P6.55. Determine
the location of the stagnation point in the flow produced by these

sources,
y
=201 3¢ ]
% . : : ;H "
+m +3m

BFIGURE P6.55

Since 1he Flow From €ach Source s .13-9 the racval
divection, 17 (s only alons The x-axis Fmat +pe +wo

Vadeal Comporenits Can Cancel and create a Stagnztis,

Forn - y
TN ] S—. T 34 1
: r SR
(1) 15— Vighy —=j<— 2 shag
% =1 H l L. *% X
+an 7/;, H_'S'I""-.’!ﬂd‘mn Pmnd‘ ’L’_};?_ +3m
For Source (1) o

F T 2

ana for Source (2)
- Sam

—

rz 2wl
The S’Lﬁgﬂd/w'n Porn F occyvs where 7/)“1::7/}: So Thalt

z
Vg 3m
2 }/;5Jﬁj - 21 }EJ-Jng
dn A
Pz.rhy = 7
FI'S'!Lﬂj
4/_5.9/ e
= 2L +3L = bﬂ
B shag T 1 sty £
96 'j'}?a-/: _5_2
bjhj_f‘j}?.fh{j
}7..1’?Lﬂ._j = _‘f_',@
//7#_5)
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b.56

6.56  The velocity potential for a spiral vortex s
flow is given by ¢ = (['/2%) § — (m/2x) In r, / g

where I"and m are constants. Show that the angle.
a, between the velocity vector and the radial di-
rection is constant throughout the flow field (see
Fig. P6.56).

FIGURE P6.5¢

For 7The ue/oc;'w‘-_tj potential 7u;€n)

Y ) s L 24 [
E et 2rF % Foe T arr
S ’ — -
e V- é = V] cos «
and — 1 “
V= %G * %%
7‘718}4 V.é;_ 7/7_
Cos « < — =
IVI 'U}:l-f-?/;"
I /
- — = = =
| =+ (-U:g.)l /+ /:17:-1-)
7/"’,_ ==
GRS

AT

\/l +(£ -

us, Lbr a given {7 and m the ang/e o is
Constant.

=

!IP
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6.57

6.57 For a free vortex (see Video Y46.4) determine an ex-
pression for the pressure gradient (a) along a streamline, and
(b) normal to a streamline. Assume the streamline is in a hor-
izontal plane, and express your answer in terms of the circu-
lation.

For a +ree vortex

2 e B Ty (Eg. 6.91)
2.
So 'f?!a,i'
9@ i oY _ /7
V,.I= /’ 35 V. = or

S/m:e The Free vorter represm%s an Irrotational {low
—F/c/d The [Bernoull; 'L’jc{bﬁm*’

., V* - e
}.-;- = . Constan t /

/.% Vali o b.:-['weren any ‘llfwa po;htr.

(A) #lons a streamline (I"—“wnsv‘mﬂ) Va 15 Constyant
and V. =0 so That From Fg.(1) witn

Z Coastant 751; Pressyre 13 Cawj?‘mﬁ‘) L€,
B Y el
26

(b) Norma) 4o Trhe stregmlne wit V=0 and 7= Constaut

f H Zb-z'—;-% = Constynt-

o Lot
So That
P T ___Q@z) - P ‘l_.
) 29 2F 2%
= (j)(__a )
2mr gl
/-72
2




6.58

6.58 (See Fluids in the News article titled “Some hurricanes
facts,” Section 6.5.3.) Consider a category five hurricane that has a
maximum wind speed of 160 mph at the eye wall, 10 miles from the
center of the hurricane. If the flow in the hurricane outside of
the hurricane’s eye is approximated as a free vortex, determine the
wind speeds at locations 20 mi, 30 mi, and 40 mi from the center of
the storm.

For frae Vortex

s K (k9. 6.8¢)
Vo= £ 8
T]qu_g) at Ele wall
160 mph = %
/10m.
So 7‘714.6
K = (ermph )10 mm()
andk
1 - (/Lam’ph)(lo )
¢ - g
For, (] :
| lbomph) (10 anc) _
Vg = 20 mc 'Vs-: 25 ril M
Vﬁ: 30 m¢ (% (lbD””P")(m'm‘l): 53.3 mph
30 mc
Vo = %o m¢ Vo= (bomph) (loms) 4.0 amph
Yo me

4=57
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6.60  Potential flow against a flat plate (Fig.
P6.60a) can be described with the stream function

w = Axy
where A is a constant. This type of flow is com-

monly called a “stagnation point” flow since it
can be used to describe the flow in the vicinity of

Y

0
o A ///;

(a)

"FIGURE P6.60

the stagnation point at O. By adding a source of
strength, m, at O, stagnation point flow against
a flat plate with a “bump” is obtained as illus-
trated in Fig. P6.60b. Determine the relationship
between the bump height, 4, the constant, A: and
the source strength, m.

b4

2, N
51)=A'>Uj‘*' %9:_/2,1—5/n29+ b

27

For The bump The stagnation point wil] occur at
X = o, y:—ﬁ_ (o= g) F=4). Rr The given tream 7£HVJC£IO\H)

L2
7/;__,,29— Ar Cos 26 «
and :
7/~;-_é__¢=_,4;—-5/nl¢9
e ar

£

—_—

27 e}

The fﬁom'zﬁ/ 6=Z f'=£) will be a stagnation pornt 1F

Y

or

Bh = e
and  Theve fore

fZ

V)
ST A

»=0 since VR o at s point. Thus, From Eq. (1)
O = Ah CosT +

vt

—_—

21
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G. 6l

6.6/  The combination of a uniform flow and a source
can be used to describe flow around a streamlined body
called a half-body. (See Viden V6.5.) Assume that a certain
body has the shape of a half-body with a thickness of 0.5 m.
If this body is placed in an air stream moving at 15 m/s,
what source strength is required to simulate flow around the

body?
[he w/m of ha/f—ﬁoc/g = ZTTb (56’6 F'Jj_ 6.21'{’)
So That b- (&5__4")
= =
/:ram Egé??
ba O
zZnvr-

where 71 is The source strength, and Thevedore

m = 2ml4b = 2 (15 ';—3’-)/?%’;’-"
JJ‘ ”nz

“—"7.50—5*
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6.62

(2)

6.62 A vehicle windshield is to be shaped as a portion of a half-
body with the dimensions shown in Fig. P6. 62.(a) Make a scale
drawing of the windshield shape. (b) For a free stream velocity
of 55 mph, determine the velocity of the air at points A and B.

Windshield =
U=55mph /
J;F
AT 2.0t

BFIGURE P6.62

From 7ne -[t’j;-fff—

b+ reesg = 2 £¢ (1)
Fsim8 = 1|54t 2
ana br a half-bed,
_ b(mT-8) g 4.100)
JE sin B ( 3

The absve ezfucubo'n_r Can be Pombined - ¢ive

/ / =

L, 3 e S —_— —

-8 +on £ 1.5~
nd a 1tvial and errov solution for £ Glves
E=0.839 vad (4g,)°)

So 7That
- F sind - /-5‘201’: - O[pgl'p{'
- P -0, 639 rad
7'/1%5,
= ObsIfE (Tr-6) o

Sin &

Eguation (3) Gies The profile of The
Windshield anwax With X=rCose and

Y=rs/nb Tne X and Yy eoordinates can be
obdarned. Tabulated data and a plot
o0/ 7The data Lollows.

( @0/1}1)
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_6' 6. 2 | (@gn’t) Theta, rad r, ft x, ft y, ft o

3142 0651  -0.651 0.000
3.042 0652  -0.649 0.065
2942 0655  -0.642 0.130
2842 0661  -0.631 0.195
2742 0669  -0.616 0.260
2642 0679  -0.59 0.326
2.542 0692  -0.571 0.391
2.442 0707  -0.541 0.456
2342 0726  -0.506 0.521
2242 0748  -0.465 0.586
2.142 0.774  -0.418 0.651
2.042 0.804  -0.364 0.716
1942 0838  -0.304 0.781
1.842 0878  -0.235 0.846
1.742 0925  -0.157 0.911
1.642 0979  -0.069 0.977
1.542 1.042  0.030 1.042
1.442 1116 0.144 1.107
1.342 1203 0273 1.172
1.242 1307  0.423 1.237
1.142 1432  0.596 1.302
1.042 1.584  0.800 1.367
0.942 1.771 1.042 1.432
0839 2015 1.346 1.499
600 —_—
. //
t N-200
> / hat =
A
-1.000 -0.500 0.000 0.500 1.000 1.500
3. 9%
) (E
¢ Joi )
(b)) Vi U° (HZ“C”@*%») &

ch»fni A 15 & Sﬁﬁlmhan ,Do:ni- Se That I/;Q;'O

AL e dop of The windshield (Point B) &= 0.839 rad ans
b= 2.0] f 5o Thet 5 Ls) £i
I/z: é-fmm)‘[/ + 2 a'éﬂﬁ)e s (0. 83?;%/) - )

Z 0) £+ 2 DJ‘F#
3= 63’2 fn ph
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6.63

6.63  One end of a pond has a shoreline that resembles a
half-body as shown in Fig. P6.63, A vertical porous pipe is lo-
cated near the end of the pond so that water can be pumped
out. When water is pumped at the rate of 0.08 m*/s through a
3-m-long pipe, what will be the velocity at point A? Hinz: Con-
sider the flow inside a half-body. (See Video V6.5.)

RN |
m FIGURE P6.63

For a half-bedy

. m
b = LF Fsinl + = & ng,é.??}
S0 ﬁmﬁ @
'V;:"‘E—;— = U.Suyé
aned
x & d¢ = i
'y; & & an U tos @ + poreal

777“5/ G.f Pa/;ti' /4 y @:0) F =2 /185 onm anec

v <0
A
2m (1s)

@;: I/A': U'f‘ [/)

[ 3 > ’
oy a Flowrate of 0.06 -’;1 In a Sem /onj Pipe, The
Source strengih 13 206 m* S, .e

2 S
b = ;3%; (Eg ¢.99)
2wl - ’
217 (5m)
Fr Eq
rem Z, J /O_ﬂé ﬂ")
- 8
= . B = *
VA b.37 X 5 2w (15m)
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6.6 4

6..64 Two free vortices of equal strength, but opposite direction
of rotation, are superimposed with a uniform flow as shown in
Fig. P6.64, The stream functions for these two vorticies are

= —[£IA27)] In r. (a) Develop an equation for the x-com-
ponent of velocity, «, at point P(x,y) in terms of Cartesian coor-
dinates x and y. (b) Compute the x-component of velocity at
point A and show that it depends on the ratio I'/H.

)
(@) L, vortex (1), (’Df:?.‘_;r fQﬂY,

and ) I
Vo,= - i 4s shown .
M}-‘-' 7/;, Siné
Where  5in 6 = 'ﬂ“f ’
[(-m%xe]'"
QnAi

h = [(y—u)"+ x"] V-

Mat ) )

w,=
L
For wrex (2), (= -1 4,

Se
e

2T

Y- H
(Y- H) 2+ x>

And [
= —  as shown.
62 2T,
Y+ H

Where  Sin g =

[(‘1 +H) o+ ¥ ‘] s

An A I
_ %™ 2|
};_-f(g-rn) +><]
Se That
bt H

I
Uy = “C_'-?r) (4+H)*+ x?

)

®P(x, y)

s

A

(34

()

]
1
]
[

BFIGURE Pe.gl

¢ Plx,4)
—"—B*Ltl
n RV
)
- ¢
b
e X
Vez I
Y
" P(x,y)
Yz
x
H /é ol
(6002)
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6.6% (Cont)

Thuj') C&mbz;yuﬁj The +twe vortices with the uni form ;Jaw
Gives The x- Component o t/elar.'.-h.,

U=u, +U, +

OF 4-u Y +H
= L LR
21 WY -1)2%4 x> Gj-f-l+)z-r->("" B th

(b) At point A Where x=Y=0, Eg (1) gives

[
M'A_ U_ TH

—=
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6.65 s i

6.65 A Rankine oval is formed by combining
a source-sink pair, each having a strength of 36
ft’/s, and separated by a distance of 12 ft along
the x axis, with a uniform velocity of 10 ft/s (in

the positive x direction). Determine the length
and thickness of the oval.

é:{ﬁi +'] (Fg. 6.107)
£, T ] (ﬂ—p—“ i] Eq 6 169)
_é::—’i (j"_')“[ 'qu (/\M)a_ (%

For m= 36 —S’C’—EL) 4=é-ﬁtl and U = /o_":'-"’}

Y
0

Thus) /£n57?1=2,é and From Eg 6,]lo7

/ %
leng?h= 2 (&#2) [5“.'2'4 + ’]

1l

13, ] f+

Jhe 7"/7,»'@((/7955/ 24‘3_) can be determined Hom Eg b.105 Ly
1Via!l and ervrop, Assume value Loy AJe and Compare

w7 /"1'7}115 hand side of Eg.é./a?. (See table Lc/ow_)

- F[E)1] ton | 2 (s 2 )
&. 250 0. 269
0.25/ 0. 262
0. 252 9, 25¢
O. 253 0. 288 <— use

Thus ‘_EE % 0,253
/7 a

and Thickness = 24 = 2(é/)(e 253) = 3 o4 £

£-£5
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*¥6.66 Make use of Eqgs. 6.107 and 6.109 to
construct a table showing how (/a, h/a, and t/h
for Rankine ovals depend on the parameter n Ua/
m. Plot {/h versus = Ua/m and describe how this
plot could be used to obtain the required values
of m and « for a Rankine oval having a specific
value of f and A when placed in a uniform fluid
stream of velocity, U.

5)’ a Eaﬂk/n'e. OVd./

2 i
m
i + ’] (Eg, 6.107)

£ 4 JR)-1] hon2 22| ey s

where The length of The bedy is 2L and The width 15 2.4 |
for a given Value of rUa/m , £g.6./07 cCan be solved
tor L/ , and  Ey. ©./07 can be solved (using an 1£evatioy

procedure) bov A/ The vatio L4 can Then be determmned
Taba/a -/-ed d&‘/‘a: dre F1VEAN bclaw "

nUa/m tla h/a t/h
10 1.049 0.143 7.342
5 1.095 0.263 4.169
1 1.414 0.860 1.644
0.5 1:732 1.306 1.326
0.1 337 3411 1.066

0.05 4.583 4.435 1.033
0.01 10.050 9.983 1.007

A plt of The data 15 shown on The next page.

(Gom%)
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M_I (ﬁﬂﬂ% )

i | I e £
| | y
| N _
.
. [ [ i %
t/h | dill
%
//
/”/
1 — | ‘ | 1]
0.01 0.1 1 10
rUa/m

for o Runkme oval with L and K spec;-ﬁp}! e following steps
Could be followed #o dettrmine m and a:

(1) For a given L/h determmne The reguired value of T Da/m
From The graph .
(2) Using This value of TV fom ca_/qua:fe j/ﬁ: From £g. b.107.
(3) WiTh The Value of £/a cletermmneds, ana £ specified dettrmme
The v4lue of 4. ¢
(L #) fw‘fh 7TTa/m and a4 Jefrrm;}re;/, The value of D‘A,,
/s *nawn) and for a jlb;f’rl U The value of am 15 fixed.
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6. 67 |

6.67  Anideal fluid flows past an infinitely long
semicircular “hump” located along a plane
boundary as shown in Fig. P6.67 Far from the
hump the velocity field is uniform, and the pres-
sure is p,. (a) Determine expressions for the max-
imum and minimum values of the pressure along
the hump, and indicate where these points are |
located. Express your answer in terms of p, U,
and p,. (b) If the solid surface is the y = 0 stream-
line, determine the equation of the streamline
passing through the point 8 = #/2, r = 2a.

(2) On The suyrfuce of Zhe hump
2 N
'@-_- /03 + Z’-/OD (f-—‘#Sn; 9) (é“gl b./16 )

7716- max,murm pressure occurs wWhere sin Bzp or a? &= 0 77,

and at These Fo/'/v-/:s
A,
’f.‘?('m“) - 7%*2’/"” (2t 620 auT)

/

7776 Minimum Press:.;re oCCcUrs a)/zere S 5:!)0;‘ azf 9-‘-2

and at thi fouit
e 3 2
Blmn) £-37PV (it e-T) |
tb) For uniform Flow m The negative x-civection

p=-Ur (1~ %) e
(veler to discussion asseciated wiFn The devivation of Ey. 6.12). |
At 6= 2;; ) F=2a
-3
: 3
i = -2alr /}— = )Jm-l—-r = -_Ea,U

(24)*
and Thus The eguation of The Streamiine passing Through |
7hi nt s
i 3 ) //—- f-z).ru} 8
—_ Z a U L ~ }..\.-

)

-Z_J_{‘(__a." : =
3 @ / e Sin 6 /
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6. &8

6.68  Water flows around a 6-ft diameter bridge pier with a
velocity of 12 ft/s. Estimate the force (per unit length) that the
water exerts on the pier. Assume that the flow can be approxi-
mated as an ideal fluid flow around the front half of the cylin-
der, but due to flow separation (see Video V6.8), the average
pressure on the rear half is constant and approximately equal
to /5 the pressure at point A (see Fig. P6.68).

== P [—_,'j 6.29 it follows That the drag
on a section (betwee, =0 ana & =)
of & Creulav cylinder 5 gisen by tre ef uatic,

ol
ij: Fe = —f}j C6s@ a dB
o
For The force on Tue Fort half of The Cy/m/fr ( per umrt /Png)‘h)
T

/;,Zl-“ ~Zf L Cosp ade ()
A

ana  dye o Jymmeb/j /:—;—'-'0. From /‘:Zf b.11¢

] z i
7&: gfg/op' ﬂ—- 4 sin%b ) /é—‘}a,é.//é)
and Sihce we  gpe only Intevested 14 The force clue b
ﬂc f/ﬂW/)}j 75/;/,‘4/ be wnll JeT ﬁo:d. 77[5(5/ f'//-‘&m ,é'g_//)

e
/.‘;‘.f"': —-zf -5/-/;1)’2(;——4.5;;119)@549 4 dé (2)
L/
2
S i "
Ince /wgd@ 5 5/”9] = =/
T, 7
A
T a> ¢ —
and /5111?'96053'01‘9: 5/_,;}9 r e
7 7
/C’ooé)
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é.48 ( con?)

It Follows +rom Ej.(i) That
= Uz
/L:c!' /03

YDE.C. Thet- The neyd:ue S14n Indiéates Tt The waler 15 actually

pq//;nj " en 7re Cy//mwr [Front balt) 14 The wpstremm divection .
However , When The e{fect of Twe rear half of The cylinder is Laken |
Ints account (in a real Fuid) There will be a het drag iy fhe divecton of fow.

7he pressure 4t The dop of The cylpder (point A) 15 717 by

3
he B+ 300 (1= 4sin8) Eg. . 19
Qua with © =T/s |
- &
= h "“Z'/"U
dnce p =e .
eI -
Pa=-3p7
fzi‘: That The ﬂeydil/e pressuve will e « /Jo.ffﬁx/'e =
/3 =— TA x projected area == 4 2a)
Se That : 2 a 2 2 .
/.;;1:: %/OU (Za-)[:) = _zf'(')a_
Thus,
Eo= b +h,
= o O PR P 32?77&_
. 3 . Z
= _l:/OD- &

Wil‘h'l ‘ﬁle da:fa'jh'lfn,
=7 (19 S G h) = g9 L
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*6.69

%6.69 Consider the steady potential flow around the cir- 1
cular cylinder shown in Fig. 6.26. Show on a plot the vari-
ation of the magnitude of the dimensionless fluid velocity, v
VIU, along the positive y axis. At what distance, yla (along

the y axis), is the velocity within 1% of the free-stream
velocity?

B FIGURE 6.2

/+/an9 7he j—-amfs 'V;_=0 So That the magm?‘ude-
of The Ve/acj;‘_:,)lf, L5 t’ﬂom/ to [U]. Since

Vg = - U //‘f ;.a":} Siné /Eg,é.ug)
[F Follows Thet alony The positwe y-axis (=% 4 =y)
a'iv
V= ppl= U (1+ 5

- g g 2 /
Voo o+ & - s =
A NG

Tabulated data gnd 2 plot of The data ape Given beloa).
Lt can be seen from These rvesulss Thet  Aor

A
2 — /o

The velocrty V' /s withn 1% of The Free -stream veloc it

" 2.000
yla
1.00 2.000 Ly \
2.00 1.250 1.800 \
3.00 1.111 1.700 \
. 4.00 1.063 fietn
5.00 1.040 S oo \
6.00 1.028 S 15 \
7.00 1.020 1.400 \
8.00 1.016 1.300 \
9.00 1.012 X
10.00  1.010 1408 N
1.100 4— sl .
. ‘I.._~-< i |
/‘ 1.000 - —— 4
Calculated 100 200 3.00 400 500 6.00 7.00 800 9.00 1000
from Eq. (1)

yla
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6.70

6.70 The velocity potential for a cylinder (Fig.
. P6.70) rotating in a uniform stream of fluid is

a’ r
b = Ur(l+;)cos€+ﬂﬂ

where I'is the circulation. For what value of the
circulation will the stagnation point be located at:
(a) point A, (b) point B?

ERERREL

"FIGURE P6.70

(&)

i

O A (EZ_ éize)

At /Do‘mzf /J) %&j-‘—'o and 1t follows That [=0.

(b) 4t fam‘z‘,f’) 93"543: 35_7‘?! and  trom Eq. bl

= 4#mrlUa sin 2 = — 4xla
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6.7/

6.71 Show that for a rotating cylinder in a uniform flow, the fol-
lowing pressure ratio equation is true.

Prp Phono __?_
Pstagnaii

Here U is the velocity of the umform flow and q is the surface speed
of the rotating cylinder.

From Eq.6.123 the pressure on the surface is
2 - 20 . 20sin8 r*
(1) ﬁ? = ﬁo +il"0[7 (/ —4-5in e + TalU 4&77-2.47.02.)

where [ = ? V- je J‘be circvlation prodveed b y the rotating

C)/ linder
Thus, for f};e corve C = cylinder sorface where Veds = ( 2.¢,)(addé,)
we obf%/rn = ag A6
b ['= [a?de = 27ag

From E? (), at the top (9=90°);
P?.

Prop = f +2 U (I "”mv Zﬁ‘ﬁ’)

and at the botiom (6 =270°):

f st a0 ___E_z._,_
Pootiom =5 *5 PU (1% - 7% = i)

so Hhat X

ﬁ fop ’-ﬂoba)“l’am = :7—1_() U"(%%) where %PU . %fdym)[/bﬁ

Note: The sta gnation point has V=0 bvf doss not occvr at Yhe
fr‘om‘ edge Y af 7‘})9 rafm’/ﬂg 6_}’///7/91"

TﬁVSJ ﬁfop ~Pootim  _ 4T
£e tagnation mav

or Using Eg,(2),
fop~flotm _ 4 (740 v

Petagnation 74U

—_—————
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b.72

6.72 (See Fluids in the News article titled “A sailing ship without
sails,” Section 6.6.3.) Determine the magnitude of the total force
developed by the two rotating cylinders on the Flettner “rotor-ship”
due to the Magnus effect. Assume a wind speed relative to the ship
of (a) 10 mph and (b) 30 mph. Each cylinder has a diameter of 9 ft,
a length of 50 ft, and rotates at 750 rev/min. Use Eq. 6.124 and
calculate the circulation by assuming the air sticks to the rotating
cylinders. Noze: This calculated force is at right angles to the direc-
tion of the wind and it is the component of this force in the direction
of motion of the ship that gives the propulsive thrust. Also, due to
viscous effects, the actual propulswe thrust will be smaller than that
calculated from Eq. 6.124 which is based on inviscid flow theory.

F.7 = —p 3 (erce per unik length) (Gg. b, 124 )

[1= . ds (Eg_[,.&’?)
On The Cg})nzfﬂr .rurft«ce
V2 fw 6, and T - rdeé,

So That P
M= [ Crantrde) 6.8 = amr*a

= (277')([/ 5"&) (7"30 ::::/n )( T%)(%}q)
= 9940 _i_f"
and F} (0 00238 (q‘qqo_—)U—- —23,5’1]

@) Ry a cylz'nder with |€nj7'h = goft and
Numbey of Cylinders = 2 and  wind Speest = [0mpH,

IF, | (22.0%2)o2) (7305 ) (332, ) (52 ) (2

= 34900 |b

(b) A‘l’: BO‘fmpH
/F‘al: 3 % (Fg@ 10 mph) = 05, 000 b
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.73

6.73 A fixed circular cylinder of infinite length
is placed in a steady, uniform stream of an in-
compressible, nonviscous fluid. Assume that the
flow is irrotational. Prove that the drag on the
cylinder is zero. Neglect body forces.

277
Drag = 5.-_/13@@;54d9
0

= ﬁ & _é/oD‘(,_ 45/}115)
ThuS) 2T - ST

o 2
3 /
Drag = - aﬁ[cﬁa do + sz[&secé

2T

— ziﬁV7s:h29 coss b
O

Since) aw 2T
Cosedo = Sin 6] =0
(s}

2T 27T
aud sfnaé‘
SIn-6 tesedo = =0

(4]

i ellons Bad

Draj =0

(£g. 6.117)

(£g. ¢ 116)

=75




674

6.74 Repeat Problem 6.73for a rotating cyl-
inder for which the stream function and velocity
potential are given by Egs. 6.119 and 6.120, re-
spectively. Verify that the lift is not zero and can
be expressed by Eq. 6.124.

27
Drag = F = ~[7§ (os6 a d@
o

'fi: 7%-.«- -i-)avz(/— 4 sin* B +

Tael

Thus, s
Q 2
Drag = - dfg[cweds * TPV |
0

1T
2 I’ /@J&s:na 4o -

el J,

+

i

21T
f Cose dB = Sf'nB] =0
[>) 5]
2T

» 3
» 9 =
JSIH-L@ Cosodo = M J d
(o]
o

Zﬂ- Ay ,L-n—
Swse sind dp - 5‘“2 ] =

0

it Jollows et
Dva.ﬁ = O__

Since,

And

©

aud

(Conl‘t)

275106 _
2T ‘a‘-?"T1
[3059 do - -‘-{./SM Beossde

oy
—Qz'?_'z. CD.SBdG
7 U A

(EZ, 6.117)

2

e
y 20

) /Ej' é./zs)

0

T

a

é"7'(o



.74 ( Con? )

b By 7
Lift = Fb = —/;755‘ sinb adb (E?, 6.18)

W;tl] ﬁ Fiven 197 Ez £.123 ot -)Q//ow_s Tha t -
21

2T 27 ]
L,‘fz‘-' — a.ffS;Léa’Q F1 i@.}o'(f {/3:1«9&9 = 4fsm 8de
G o o

2T - 277
+.____ZF .[Jl‘n:QC“;— o ,_j:n'néd‘é
TaU Jy Yra U Jo
wT

anc'.‘@, 21
f she do = —-Cosa] =0
-]

o

qnd 27 21T
j sin’6 do = — C—C%a (sfnzgu =0
0
L

c

P

l-‘ll; 1[0/}19&)5 ’fha%
Lift - pU(‘?F )(TT)

an i

Thus,
Li.ﬂc'lt i /OUF

(Uhlc}q IS Eg_ @_;;47.

L
1

17




6.75 |

6.75 At a certain point at the beach, the coast line makes a
right angle bend as shown in Fig. 6.75a. The flow of salt wa-
ter in this bend can be approximated by the potential flow of
an incompressible fluid in a right angle corner. (a) Show that
the stream function for this flow is ¢ = A r? sin 26, where A is
a positive constant. (b) A fresh water reservoir is located in the
corner. The salt water is to be kept away from the reservoir to
avoid any possible seepage of salt water into the fresh water
(Fig. 6.75b). The fresh water source can be approximated as a
line source having a strength m, where m is the volume rate of
flow (per unit length) emanating from the source. Determine m
if the salt water is not to get closer than a distance L to the cor-
ner. Hint: Find the value of m (in terms of A and L) so that a
stagnation point occurs at y = L. (¢) The streamline passing
through the stagnation point would represent the line dividing
the fresh water from the salt water. Plot this streamline.

Yigh# angle Corner.

(b) Sisnce

~
at 2= -n-/z_

r

=77
W‘zn‘g

. m

and 7/;‘:'){%.—2?1"

Jet Vi = Vr
(L'am)t)

ik x

(a)

j &itwater

11
Tll Dividing
Ll /-#-— streamline

g

Fresh water
source

BFIGURE P86.75

(d) Er 1he 7/!4;6#: sfream ﬁAnc,ﬁa}rJ
QU:-' /Q- rz.f/.n 26

a/0f77 =0 {ZU:'O sl

&=/

ol 2 - 2Arcos lé
vex-h2d s

U = 248 peosm = —2ZAr

For a source located at he origimn

To Create a stagnation peint ot F=| and &=

V=0 .

77’“5/ 7%( rays 9'-‘0 and 9:77'/,_ Can be Vep/aced

With a solrd boundarvy Gleng wWhiih The stream
funof:my /MusF be Constant. This

forms a4 right angle ana Tnerefore 7his stveam
-/t(ﬂc./-m'a Can be Usen T2 r\?pfe_semf- ;&/aw n «

bo undary

\‘Fr'és',h"v«;ater

T

b

X
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&.75 (Con'ld)

Zal Tomy
anA =
m= 4T AL

Fves  a  stagnation perf &t r=l, ="/
() The combined stream Funchoy i

Y= Arismzs + %:' 6
and withn pm= 4TALY
U= Arsim2b +2A41%0
The value of U at e Stagnation pont ()»zl.) B=M) i

%af AL sinT + 245 (1)

= ALy
Thus, The egmfz.%n for e stregmline passing  Thyough
he Stagnatwi pornt 15

41277' = Arismz6 + 2AL%6
er
rL2-21%
lf: Sin2é&

and
i ) | T—26
}»::'-[: = - (1)
s/in 26

For plotting et
X'z rlcose and jj—' Fsine

ana 4 plot of The dividins stregmline From
Eg,(l) Is shown on The ﬂ[/owl}rj Pase.

( Con't)
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.75 CCon'?)

Theta(deg) Theta(rad) r/lL % y'
10 0.175 2.857 2.814 0.496
20 0.349 1.950 1.832 0.667
30 0.524 1.555 1.347 0.778
40 0.698 1.831 1.020 0.856
50 0.873 1.191 0.765 0.912
60 1.047 1.100 0.550 0.952
70 1.222 1.042 0.356 0.979
80 1.396 1.010 0.175 0.995
90 1.571 1.000 0.000 1.000
[Streamiine |
1.20 T
1.00 y | .
0.80 e ——
> 0.60 ——
0.40 .
0.20 | |
0.00 . i
000 050 100 150 200 250 3.00
X
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6. 76

6.76  Typical inviscid flow solutions for flow around
bodies indicate that the fluid flows smoothly around the
body, even for blunt bodies as shown in Video V6.10.How-
ever, experience reveals that due to the presence of viscos-
ity, the main flow may actually separate from the body cre-
ating a wake behind the body. As discussed in a later section
(Section 9.2.6), whether or not separation takes place de-
pends on the pressure gradient along the surface of the body,
as calculated by inviscid flow theory. If the pressure de-
creases in the direction of flow (a favorable pressure gradi-
ent), no separation will occur. However, if the pressure in-
creases in the direction of flow (an adverse pressure
gradient), separation may occur. For the circular cylinder of
Fig. P6.76 placed in a uniform stream with velocity, U, de-
termine an expression for the pressure gradient in the di-
rection flow on the surface of the cylinder. For what range
of values for the angle 6 will an adverse pressure gradient
occur?

From Eg. €. 116

m FIGURE P6.76

B= Bt Lp (1-4 5n6)

Thus,

2. 4/0725/)79 Cos & (1)
06

Since an adverse pressdre  gradient occurs For a
pos, 717€ 2@/@9} (1T Follows vorn é.?,[/) Tt &
Hills 17 The rampe of T D° Sfor am adverse
pressure  gradin? This rapge corvesponds # e
Year hal/f of The cylinder.
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6.78

6.78 For a steady, two-dimensional, incompressible flow, the ve-
locity is given by V = (ax — ¢cy)i + (—ay + cx)j, where a and ¢
are constants. Show that this flow can be considered inviscid.

For a Tlh/o -dfmensiona/ f/ow f/ye\rhear‘f'ﬂ? @7‘/"6‘&5 /3
Ty = T <M (3y ik

With u =ax~-cy and pr=-aytcx we obfain
Ty =p(-c +¢c) =0

Thus, Te, =0 for all X,y and the flow can be considered
inviscid with ne shearing stress.
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6.79

6.79 Determine the shearing stress for an mcompressnb[e Newtonian
fluid with a velocity distribution of V = (3xy* — 413)1
(12 ~ y)i.

The shear'/'ng stress {ar an /bcompfe\r:/}é/e*/l/ewfaﬂ/'an flvid i's
Ty =Tx =M (’dﬁ
Tz = Ty U (%5 Mr)
< Tz =M (M/ s dLL

For the given velocity V@m‘arJ
U = 3xy*-4x*
W =12xy -y3
W =0

Thys,
Ty =p(6xy +24xy) = 304 xy

Tz =u(0+0) =
and

= u(o+to) =0

* Note : For the grven 1/6’/06/71)/

7.V =44 4 4 S5+ 4 =3y~ 12x%) t(12x%3y*) +(0) =0
Hence,
Ve V ‘0 the flow /s /ﬂgam/ﬂ/‘em/b/e
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6.80 The two-dimensional velocity field for
an incompressible, Newtonian fluid is described
by the relationship
V = (12xy? — 6x¥)i + (18x%y — 4y9)j

where the velocity has units of m/s when x and
y are in meters. Determine the stresses a,,, g,,,
and 7,, at the point x = 0.5 m, y = 1.0 m if
pressure at this point is 6 kPa and the fluid is
glycerin at 20 °C. Show these stresses on a sketch.

G = ~Pt z/“géf (Eg. 6.uz5a)
O;y P+ 2 %’ (Ez, 6.125b)
Gy 1 (550 32) LRy eineel)
For 7he given  Velocity di'Sfr;buﬁléH} with X=0,5m and g=lom:
Q4 o 124 =18 x* = 12 (10)™- I8 (5,5)"= 750 <

24xy = 24 (6.5)(lo) = 12.0 %

36Xy~ 3¢ (o.s)f/,o) = /8.0 ;’

I 2T o ¥
I

|

18x%-12¢% = /8 (0.5)'~ 12 (1.0)* = - 7.50 5

Qo
(AN

- 3 N a N5
Thus) Lor -/b- bx /0 ,;_,;1- and /4- [,50 e )

3 ‘ /
== ex 02 v 2 (150 Y2 ) (r50%) = 598 4R
£ R

X X
Tyy = = bx10°2 + 2 (15085 ) (L750F) = =002
/Z;j : (150 %5)(1z.04 +18.05) = 450 R
\L&,DZ'&P@
y _V .
¥5.0 P
598 kR
: 2
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6.8l

6.8  For a two-dimensional incompressible
flow in the x-y plane show that the z component
of the vorticity, (., varies in accordance with the
" equation

D¢,

Dt
What is the physical interpretation of this equa-
tion for a nonviscous fluid? Hint: This vorticity
transport equation can be derived from the Na-
vier-Stokes equations by differentiating and elim-

inating the pressure between Eqs. 6.127a and
6.127b.

Vi,

For two- dimensional Flow  with WrhEe 53. 6.127a  veducts to

2 2 oY -8 il
pUSE s =vig)s-SEertoop(Gieog) o
and Ez, 6.127b  recduces to
z -
QU JU" v—-al}' - 1./9# +/u f J ) (z)
P >Z T “ox * " Jg ) oxX

fo?“.’!fe’nfic.zfe Eg,ll) wi'th Ves/oeci +o Y aud Eg.(2 wiTh
MSfec-é fo X , and subtpact Ef,m From Eg(z) 4o obtain

D [ dv Qv w)_ 2 L Su Ju
3;(%*“@,\'*7’33 5y s

2 2y = )
A[R(50 %08 (58]

/ oxt " g | Tig | o T 4y
Ey cetini bon {See 53.4.17)

£ 2 di- A
2 X 0
[Ce-write Ez,/3) to obtan
o ou D o du) _
‘3_925 X 29) ox 2y N VQ_@ (ax d &
M 2% [ 9w 2% (v é&)
P oax*Vax 2y ) T ooyt (a y (%)
(C’-Oﬂf)




6.8/

/Coﬂ’ﬁ')

Since each term in pqrmﬁ?es/s m Eg. (%) s i
[t Follows That

L L il A(MR LR
3% 7 X Ix=

The left side of Eg,(b‘) Can be €xpkessed as ﬂsee Eg.‘f.s)

D_f% Where The @/oemzfvr DC ) s e matenal
Dt Dt

devivative . The right hand side of Eg (5) can be
Expressesd 4s

2 V%,
where 2 = Ml s That £9.(5) Can be writitn as

Dfz _ 2p
= VA"

Foy a Nenviscous a[/utd,'l/—‘aj and 1n Ths Cgse
D T~
— =5

2é&
T/’Ju.s) for a  two-dimensional Flow of an ineompressible,

lonviscous +lurd, The change /n The vorticity of a

Flucd particle as £ moves Through The +low Feld
s 9ero.
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6.82

6.82  The velocity of a fluid particle moving
along a horizontal streamline that coincides with
the x axis in a plane, two-dimensional incom-
pressible flow field was experimentally found to
be described by the equation u = x*. Along this
streamline determine an expression for: (a) the
rate of change of the v-component of velocity with
respect to y; (b) the acceleration of the particle;
and (c) the pressure gradient in the x direction.
The fluid is Newtonian.

(a) From The Conf:ﬁu::fg eguaém\nj

ou 2V -
< T 34 o

So That wi7h b = ol *
QYU __5__'4_ = =X
29 o X

/4/50) Eg A1) Can be ;ﬂ*eyrmlet«f wirTh Ves/oeci te +s obtaa

fcf‘V‘-’-" f—Zxdg

= —2xy + Fix)

or

Since The X-axis is a Stvaam/[ine
Thevelove +(x)z0 so That

, =0 a/on7 This axis aud

= —=2XYy
te a, = u.g_i‘( U b = (x?*)(2x) + (-2xy) (o) =
0 I = (x3(2g) + (~2xy (Zx) = 24y
Along X-axis y=o and Therefre 4y=0. Thus,
—_ g9
€. = LX i

) From Eg. 6J27¢ (witn ;ax=o),
Qa ;-..-——f'f‘/u(

X
ot

3 P,
and

ax"-

é_.t - 2/4—2/0)63

(r)
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6.8%

¥
A X W W Y]
‘
L h
6.84 Oil (u= 0.4 N-s/m’) flows between two fixed horizontal infinite _* =] - X
parallel plates with a spacing of 5 mm. The flow is laminar and steady }*l .y
with a pressure gradient of -900 (N/m?®) per unit meter. Determine the A
volume flowrate per unit width and the shear stress on the upper plate. /
J U
p p=of

From E?, (6.136)
g = volume flowrate perunit widih ovt of The paper

_ 2.h%a o A
——7-&3% wbemb—f'-—q,ﬁ
For this flow 2h=5mm or h=2.5mm <2.5x/0°m

and Af/l =(+ 900 N/m*) /m = + 900 N/m*

Thy. _
_JJ 2(2.5x107°m)%(900,5) _ syxjo L
T~ 3 (0.4Ns/mF) ' =

db |, W
The shear stress is Tyy = (5y *95)

h

w. eie.—i— gﬁ)( l_hg_) - _ A L—-/’)")
U z,u(dx Y N Z/ﬁ‘(y
Hence,

7)? = —-ﬁ%(zﬂ/{ = —%ﬁy
On the ypper Plate y=h so that

Typper = magnitude of shear sTress on Eper plate
= :‘bﬁh = (900,—’{‘—1)(1,“/0‘%) = 2.257,,41 qa%/ﬂg in the

pos/'j‘fve X-direction( the direction of fow).
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&.85

6.85 Two fixed, horizontal, parallel plates are spaced 0.4 in.
apart. A viscous liquid (u =8 X 107*1b-s/ft?, SG = 0.9)
flows between the plates with a mean velocity of 0.5 ft/s. The
tlow is laminar. Determine the pressure drop per unit length in
the direction of flow. What is the maximum velocity in the
channel?

>

Lf
A

Ap_ 3uV 3(2x/53%::>/0-5‘3&) )
X =15 /0.2/:'1-)1- R

12 L
¢
= 2
uzmax a V (gg .13 g)
= + £
= 2 (0,5?) = 075 %
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.86

Direction of flow

6.86 A viscous, incompressible fluid flows be-|
tween the two infinite, vertical, parallel plates of
Fig. P6.86 Determine, by use of the Navier—
Stokes equations, an expression for the pressure
gradient in the direction of flow. Express your
answer in terms of the mean velocity. Assume
that the flow is laminar, steady, and uniform.

Faobad

FIGURE P6.86

WiTh The esordinate system shown w=o,ur=o0 and Frem The
continuity egom{:m'n oV =5, 7'/1:(51 from The Y-ctomponent
of The Naviey-Stokes -ejaa-/fah.: (£g. 6-/2-76)/ w17 5('5=--0‘iJ
o o= A d2v (1)
0= "%5 TP M dx*

J/ﬂ&e The pressure /S not a Ffuncton of X ;

Eg. (1) can
be writen zs

(where P = 5‘;‘54./03 ) and integrted 4o obtass
d

(2
'—'=—-.X1"C, )

From 57/77/?78%)'3 gi-f:o at X=o 50 That €, =0, Iﬂ%ﬁjmz‘m}f

of Egp (2 elds

Since at xri,{)‘v-za it Follows That C’Z= _:z_fi(‘gz)
and There fore P e 4
= E (X ~% )

The Flowrate per unit width 1 The z-direchon can e expressed as

i % 3

s _P 2 _Zﬁ'ﬁ.

& ”"’"‘/E,z (x*h)dx = -F =2
et =

Thu_s) with V (meqn Ve/ocHy ) ?iuc’n .by The «ezuabo;&
g _ _ 1 LA®
V= 25773 K
i+ follows That

2f . _ MV _
by = = (7
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6. /3]

6.7 A fluid is initially at rest between two
horizontal, infinite, parallel plates. A constant
pressure gradient in a direction parallel to the
plates is suddenly applied and the fluid starts to
move. Determine the appropriate differential
equation(s), initial condition, and boundary con-
ditions that govern this type of flow. You need
not solve the equation(s).

except Tht 2% % o

D/;[f-/e}’f)/é,ra'/ egua_é/a'w; ave The Same as Egs_ é‘/Z‘?} é./j'cj ana
(since The Flow 15 ansteady ).

ﬂras) Eg_ 6.129  must rnclude The Jocal accelevation z.‘frf?;

( wiTh jxf = donsz%m?f)

76)- all 4

-g% ) and The 7a vernin Vi o /ﬁrpnﬁ47 f’;qm.‘za}a are :
- divecho, du - _ 9 Zu
( x- divectron) = 3_;_’ .,./‘_ -
: ] - _dp
/ﬁ—- divection ) O = __'1. — f’oz
/il- d’”’écflén ) O = — é_E
2
Lnital Conditwon : k=0 for *Z=o
Bpuna’ﬂry Conditions : L= 14;;«

y=1t4 fr tZo.
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.88

6.88 (See Fluids in the News article titled “10 tons on 8 psi,” Section
6.9.1.) A massive, precisely machined, 6-ft-diameter granite sphere
rests upon a 4-ft-diameter cylindrical pedestal as shown in Fig.
P6.88. When the pump is turned on and the water pressure within
the pedestal reaches 8 psi, the sphere rises off the pedestal, creating
a 0.005-in. gap through which the water flows. The sphere can then
be rotated about any axis with minimal friction. (a) Estimate the
pump flowrate, y, required to accomplish this. Assume the flow in
the gap between the sphere and the pedestal is essentially viscous
flow between fixed, parallel plates. (b) Describe what would hap-
pen if the pump flowrate were increased to 2Q,.

0.005 in.

B FIGURE P6.

3 o O psc
(@) 34-: 2/{" 4¢ Lu}wre g-:'-mawra#e (E-g.(,.lal,) ?PSr ¢ o ¢ .
'3’/{,{/0. Unit wielty @-;l—ﬁi‘—‘_u_é_’—
3 . -~y 2 y 0.005in
,,&:: @ 3_5'111- = 0.0025in. = 2.08X10 L ﬂ‘»ﬂ' i

¥ N
2= fz)(Z.os’xno“'ﬂ)?é’ %)(““*'"-1) e e

3 (2.34 x107° &;Sj 4?1—) ]‘_“ %49 —-»-’

" > l'!-t'h.[‘:_l= Wl‘d,-r/‘l =TT (41[:{_)
= 8.8L xio %‘f per unit width

) 3 [Yons
Wu;.«_;: (g.8bx1m " p?é)(“‘rr £) = oom 5 (44 %)

(b) Since & psi Suppor-l-s the spheve 1+ is expected Thet This
Pressur& vemains opproximakely The same as e Flowrate

lnereases . T mainta'n This pressure The diskunce
woulad have 4y |ucvease as & (or g) \S \n cVeased .
Thus, from g, 6.13¢0

q;"_‘i“;’. = ('amm):"

—

%01‘1 hald
Mme wd 3
ol d

‘B‘hEm: CZJVB (0.0025‘1}:.>= 0.003\5"1»1.

-TI\HS/ The. gﬂ-E Lu::c\'hl Wou | A l‘mCVE‘.aS-@_ "I't:
approximately ©.00630 in.
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6.89

1%
6.89  Two horizontal, infinite, parallel plates are spaced P e .5 e
a distance b apart. A viscous liquid is contained between the 7r_
plates. The bottom plate is fixed and the upper plate moves
parallel to the bottom plate with a velocity U. Because of b —> U
the no-slip boundary condition (see Video V6.M), the liquid
motion is caused by the liquid being dragged along by the 4
moving boundary. There is no pressure gradient in the di- ‘L

rection of flow. Note that this is a so-called simple Couette

FA e T CT7TTor—X

flow discussed in Section 6.9.2. (a) Start with the Navier- | Fixed plate

Stokes equations and determine the velocity distribution be-
tween the plates. (b) Determine an expression for the
flowrate passing between the plates (for a unit width). Ex-
press your answer in terms of b and U,

(a) For 57£gmfy Flow wiTh Tr=wr=o /t follows That The

Naviey- Jl%kfs -Qﬁaajf‘la'd_s redece o (//7 directoy affc/d-ﬁ)
__ op 5“‘) Ep. 6.129)

24*
ﬂug Hor Jtro Pressype 7}/‘4//5’}12
Jru _

Se 7241‘
U= ¢ 9+ C,

AL Y=o U=0 and 't Sollows Daat 6 =o0. jl'm;'/ay/:j)

U
at 5:.£ w=U and C/:_[;
[heretore, e %'3
)
() ?:fu(f)dj=_g 9dy = 7 7| :
0

L here % (5 The Flowrate per unit widm .

Ub
z

—
—_—
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6.90

6.90 A layer of viscous liquid of constant!
thickness (no velocity perpendicular to plate)
flows steadily down an infinite, inclined plane.
Determine, by means of the Navier-Stokes equa-
tions, the relationship between the thickness of
the layer and the discharge per unit width. The
flow is laminar, and assume air resistance is neg-
ligible so that the shearing stress at the free sur-

free

face is zero.
O’q": g Si'h ol
Willt The coordimede syskem shown 1 The ﬁjure
VEO, w0, and frem The Continuity efuation g%- =0 . Thus,
from The «- Component of The Navier -Stokes pjaa{za}:_s (£g. 6/274)
/7
o s B sind + d?u ¢

/4‘/50} since There s a Free surface, There Cannot be a pressure
jmdfléﬂé lh The X~divecton So T Hot QE:O

aqud £E¢ (/)
Cqh be (r/Hen as ox 5
2 o - PF
a’jz E/I' s/n &
Inlfynt/:p'ﬁ y/e/ds
%:ﬁ@fsmd)j—rc, €2)

Since The Shearing stress
U P
Ty p (557 5% )
egaa/s 7ero at The Free Suviace (j:a{,) it follows ﬁm‘ﬁ

%g—‘zo at y=4
So That 77)e Constant 1n 53.12) /s

C = /_{J_ZSI}:O(
/ . /u.
Ihalffrdréféﬁ of é‘z.[z) y/e/afs 1
. Y .
W= - ﬁ;‘? S/na/)-z- +/§§Smd)j + Cz
Since w=p at y=o, /'t AFollows That C, =0, Gnd Theredore
- -4
U= f/_f s/h &£ (-ﬁ.j—_g:)

%
The %/ﬂwfdfe Per aﬂ:'f UJIdt}i Can ée \‘_’)CP)’ES.SPO( as j_ :-f H.C/ﬁ
So That o

ﬂ./)g e 32)/ 3 ﬂj‘£351ho€
Z:’[ /—u-S//J 3'--;_- cj = 3/‘('

Suvrface
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6.91

Due to the no-slip condition, as a solid is pulled out

of a viscous liquid some of the liquid is also pulled along as
described in Example 6.9 and shown in Video V6.1l. Based on
the results given in Example 6.9, show on a dimensionless plot
the velocity distribution in the fluid film (v/V} vs. x/h) when the

average film velocity, V, is 10% of the belt velocity, V.

From E;(qmp/e & 7} The avemge
- 2

V::

with the velocity distri bution

= ix"_%xﬁ-%

574 v=0.1V,

or

In d:n;enjm.ﬂ/es; form ﬁz_ (2)

77{;_

—

Then From Eg. ()
O.1V,= V, —5h*

SHK

2
Vo_.b'}w

Z.7/,<_

.bc comes

Vo YhrX\r Yh %
Vo = 77—;12, (}1) /W’(h )+l

Frem Eg.(3)
yh
v,
and £9. 4)

x/h
0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

can be writteuw as

= 2,7

7= 35(F)]- 27(5) + 1
A plot of The velocity distvi bution is Shown below.

viVo
1.000
0.744
0.514
0.312
0.136
-0.013
-0.134
-0.229
-0.296
-0.337
-0.350

V‘eloa'-n’y /3 71#&’;«: by The egua%téu

cl)

(z)

(3)

(%)

(5)

w

1.500

1.000
o

0.500
s

0.000

-0.500

[y

0

0.5
xfh

Calculated from
Eq. (5)
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6. 92

.6.92  An incompressible, viscous fluid is
placed between horizontal, infinite, parallel
plates as is shown in Fig. P6.92. The two plates
move in opposite directions with constant veloc-
ities, U, and U,, as shown. The pressure gradient
in the x direction is zero and the only body force
is due to the fluid weight. Use the Navier-Stokes
equations to derive an expression for the velocity
distribution between the plates. Assume laminar

flow.

FIGURE P6.92

or  Tre .s/oec;f}éc/ Ceonc/.-‘héns) S, wrae §£=°/ sl S

)
So  Tmat The X-Component of The Navier -Shkes eguations
(Ei' b./272) reduces +o
d2u .,
dy*
Lnteqratioyn ot Eg (1) yelds

u-CYhr G

Fow Y=o, u :.--Z')J'_ and Therctore from Eg (2

¢, = -1,
F;P' 5.‘_". ép) ﬂ,"—"-DI So 77’)4‘&'
D;: C/A U;..
or U+li
£ =
Thus
’ U, + U
L(.:'( Ib 1) '"Uz.

2

(@b

cz)
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6.93  Twoimmiscible, incompressible, viscous
fluids having the same densities but different vis-
cosities are contained between two infinite, hor-
izontal, parallel plates (Fig. P6.93, The bottom
plate is fixed and the upper plate moves with a
constant velocity U. Determine the velocity at the
interface. Express your answer in terms of U, g,
and y,. The motion of the fluid is caused entirely
by the movement of the upper plate; that is, there -
is no pressure gradient in the x direction. The - FIGURE P6.93
fluid velocity and shearing stress is continuous

across the interface between the two fluids. As-

sume laminar flow.

Fbr 777e s/pec/ﬁéc/ Cam//':‘m'fst V=0, w=0 -a—fzo and 071- =0J S50

J oX ¢

That The x- tompenent  of The Navier- Shokes f’jaa.ﬁéﬁj (eg.6.1274)

for  e/Ther The wpper or fower layer reduces to

d2u -
dy* "

Ih/'eimfiﬂh of Eg. (/) 9/é/(£r
W= /45 + 8

Which gives The veloc/ty distribution 1y either lager.
Ln 7he wpper /ayer at j--z'{", u=U S50 7That
8 =U- A, (2h)
Where The subscrpt | refers 4o The upper layer.
For tThe lower lager at Y=o, wu=o so That

B, =e

<

Where The subseript 2 refers +o e lower ]ayw. Thus,
U = A’ (3-2*&)1--[/—

!
and

U""A-z.fj

&
At y=d | w,=dy  so That
A, (4-24)+ T = Azt
or

f’Con‘i‘ )

(/)

€2 )

f : U
2 / f




6.93 ( Con? )

Since The velocity distribution 15 lisear 1n eack layer
The shearing stvess

o ok L Ju ) - du
@x"/“(’&’*f?)*/‘?ﬁ
15 constant Througheut €ach layer, For The upper layer

Tt
and /OF The /Wd@' /dyi’r

7?2 :/02 Al
At the ntertace ijz:_ So  That
A A= A
o A M
Aoy

Substitutior of Eg .(3) into Eg (2 Wle/Ls
- M= U
KR AR

er U/—&
A, < -
| + z//""1
Thus, velocity ot The interface s
; . (/8
Uz(‘(j:‘)e)—A'z‘f ]-{-/_12:
Veadl
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6.94

6.94 The viscous, incompressible flow between the parallel plates

Fixed
plate

shown in Fig. P6.94 is caused by both the motion of the bottom

important dimensionless parameter for this type of problem is
P =.—(b*2 pU) (3p/ox) where u is the fluid viscosity. Make a plot

plate and a pressure gradient, dp/dx. As noted in Section 6.9.2, an I[
of the dimensionless velocity distribution (similar to that shown in

~
e

Fig. 6.32b) for P = 3. For this case where does the maximum ve- U
locity occur?

EFIGURE P6.94

/ oP 2 4
AT 7:0 (,(‘-:'V So That CL:-TJ- A+t 'j:% =0
/
ann There fore

(2

1

Z—;ﬂ (?—f)&“f ¢ b+U

or

Iy

= 73 U
€ L 55)'}’“5
Thus . y
ke b (k) s v (-4

or  tn  cimension less #Fm

wi_ d%- fop .2(_5._.)._2 | (1)
75—5:"’ ?x)[b) i S B
SH;C() - 2 éf)
b z"_/[[v DX

57.m Can be wr/Hen u4s

i____p(l)(i_)__ﬁ,f, (2)
D— T b é b

/+ P/oi sf This r/c/oc;'ﬁ, clfj‘f‘rl(éufmh for PZE
(s shown on The following page.

(C‘aoi‘:)
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6. g 4 (—Coﬂ’f)

/U ylb
1 0
1.17 0.1 12 [ :
1.28 0.2 |
1.33 0.3 1 ""|=— i
1.22 0.4 0g || — .
1.25 0.5 T —
1.12 06 2 06
0.93 07 L \
0.68 0.8 0.4 1 f |
0.37 0.9 0.2 : |
0 1 | | . //\ _
0
\ 0 0.5 1 15
Calculated
from Eq. (2) WAl
with P =3. 1

7o detcrmine where  the maximum velocity occurs
cl ferentiate £9.(2) and set egual +o 7ero. Thus,

C/[u/t‘}'}:___ .Z_{—qz)~i weal] A4
5 Pl 4] =1
and withn P =3
a(“/e) _ __5[_; (Z—E—:)J--J'-D =0
cly
So ’ﬁjuf

o
3

-
—

¥
b
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6.95

6.95 A viscous fluid (specific weight = 80 Ib/ft*; viscos- U =0.02 ft/s
ity = 0.03 1b - s/ft?) is contained between two infinite, hori- —_———
zontal parallel plates as shown in Fig. P6.95. The fluid moves CL S R
between the plates under the action of a pressure gradient, and
the upper plate moves with a velocity U while the bottom plate
is fixed. A U-tube manometer connected between two points
along the bottom indicates a differential reading of 0.1 in. If the
upper plate moves with a velocity of 0.02 ft/s, at what distance

from the bottom plate does the maximum velocity in the gap
between the two plates occur? Assume laminar flow.

‘) Fixed
plate

y = 100 Ib/ft3

B FIGURE P6.495

g Tr 5 2 2
hs U + g (28 ) g™ 4y) (£4. 6.190)

Mex1mum Velocity )] occur at chishnce . Where ;_/.;‘:

. i ,
-* g
For manometey (see yctgure o nqht)J (”l‘—ﬁ 4’.[2‘)
C
; E7A
LR AN VERFUVEDY i
or - 7
b =¥, , - | Tan
[ AR YR APV LAY
/ 7
= (1o b, ~gp & Y/ ol b\ ezt
(100 L, ;t;) o =010 2, b ezt
=
Al b
o _9P s Ah L O 6T Er 0.3y b
oX B ( G- ' 3
12 . )
t
Thus, from Eq. )
b' /.0 I‘H.
__ fo03'53)(0.02£F) PNy
‘j,m PR » ; s £t
c in: |
Iz In )(L 0. 334 523> o
=

= 00632 £4 (142:'51-) = 4759 in.
o
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©.96

Shaft
6.96 A vertical shaft passes through a bearing and is lubri- e —75 mm
cated with an oil having a viscosity of 0.2 N-s/m? as shown in e _
Fig. P6.96. Assume that the flow characteristics in the gap be- Bearing
tween the shaft and bearing are the same as those for laminar
flow between infinite parallel plates with zero pressure gradient 160 mm
in the direction of flow. Estimate the torque required to over-
come viscous resistance when the shaft is turning at 80 rev/min. =
. — DL 0il — "—0.25 mm
>

m FIGURE P6.96

The {orﬂue due +o force dF actng

on o diffevential avea, dh-= V'L'.chél
s (see -ﬂaéure at vight)

dT = - dF = v*T [ d6
wheve T Is the sheaving stvess. Thus,

e
Ts v, 1d fcfe = amr 14 (H
(>

f~ shaft lengtu

Ty he 9gap,

w= U _‘E. (E%_ b.y2)
Wheve U“Y‘L-Cd and b is e 34F w.\dﬂ“-AISO,\

. dw o wU
Top Gy A

Thus, from Eg.)
i

) b T
0. lbom

3
a1 (0017 m) (02 2 )30 2t Yar v .
Tz S L mink “vev Aeos /| (0.25x |0 )

= O. 355 N-mfl

"
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6.97

: ; , Cl
6.97 A viscous fluid is contained between two long con- U oW
centric cylinders. The geometry of the system is such that the : “" e

laminar flow between two infinite parallel plates. (a) Determine
an expression for the torque required to rotate the outer cylin-
der with an angular velocity w. The inner cylinder is fixed, Ex-
press your answer in terms of the geometry of the system, the
viscosity of the fluid, and the angular velocity. (b) For a small
rectangular element located at the fixed wall determine an ex-
pression for the rate of angular deformation of this element.
(See Video V6.3 and Fig. P6.10.)

flow between the cylinders is approximately the same as the ‘ 4

e cylfhdw ]E’nﬁh

T~ shearmg stress

() The 'éorgae Which musi  be appluéd to outer cqluidfr Fo overcome T
force due + The sheaving stvess 15 ( see -ﬁg'we)
dT= ;dF = Y, (T 2d6) = ;"4 de

So ’l'ha/{: 2 i 2
‘j"-': % ’[‘ﬂ[d@ = aTkh, T4 ()
o

In the Gap y (
we & Eg_é./‘l-l)

Since, U
Ts 4= A
U

aAnd b= YEJ-Y'L' ; "’\Bb) (see 'ptéu\fe)’ i -ﬁo“ows

From Eg. ) at

T avr(AB2 )y - arnped

rs = te




6.97 (Coni' )

(5) From £9. (s

S J AV -an
0= ox 7t 3y

Br  The linear a‘:fﬁf}:uﬁdu

M“ﬁnw Y :—-—g_é
};‘-——V;. b
S0 Trat
ou U
Z/ﬂ b
dna = =0
 E—
0”- i

7he neya.-/-fy'e. :jy.n Indicates Trat The on‘gm‘q/
Vight angle shown 15 Fig PLI0L is Increasing.
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*¢.q98

*6.98  Oil (SAE 30) flows between parallel plates spaced
5 mm apart. The bottom plate is fixed but the upper plate
moves with a velocity of 0.2 m/s in the positive x direction.
The pressure gradient is 60 kPa/m, and is negative. Com-
pute the velocity at various points across the channel and
show the results on a plot. Assume laminar flow.

fd.:.-;)

(0.005m )

50 Tt

ws UL+ 30 (3%)

ond for The owen data,

i[a 3.?/\/5

The veloc/ty distysbuton 15 Given by The ej'aof-é!dlﬂ

(4™ by) (£g. 6.140)

= boxio™ "X 2 (0.005m)Y
L i

Yo uy + 7.37)(/0%/0,9‘955—32) (1)

Glven below.

y, m u, m/s
0 0
0.0005 0.1975
0.0010 0.3556
0.0015 0.4742
0.0020 0.5534
0.0025 0.5931
0.0030 0.5934
0.0035 0.5542
0.0040 0.4756
0.0045 0.3575
0.0050 0.2000

. 4
Calculated
from Eq. (1)

y (m)

wiTh w 1h mnfs when Yy s mom.
Taéu/a'#ea’ a’m‘a

qnd a p/azf of The datao are

0.005
0.004 | T~
0.003 -
0.002 /
0.001 1 //
="
/
/
0 ; : . ‘
0 0.1 0.2 0.3 0.4 0.5 0.6
u (m/s)
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6.99

6.99  Consider a steady, laminar flow through
a straight horizontal tube having the constant el-
liptical cross section given by the equation:
'xz yz -
bz

The streamlines are all straight and parallel. In-
vestigate the possibility of using an equation for
the z component of velocity of the form

x2 yz
WZA(I—E_E)

as an exact solution to this problem. With this
velocity distribution what is the relationship be-

tween the pressure gradient along the tube and
the volume flowrate through the tube?

From e c/escr/piwﬂ of The Prab/em u=o, v=o, fz_. 0} w #F 'J((i)
and The Continuity €guaton mdicates hat aw- =0. W/t These
Conditions The =z ~Component of The A/aumr-j;'zokps -?j[!df/wt_f ( Eg 6.127¢ )

veduces +s
a)"
/‘4 (axz z.) (7)

Dye #to e 00-5/1P boundlary Condn‘mn w =o on The
e////o%/cy/ boundary

x> g%
—&-—z b 2 Z-;" /
Th us, The prepesect veloc'ty distribution sa dishes This

Condi tion Since on The 50((;44/4#9

w‘”“(—; b,) A[ ;—,+-§:)J:,4[/-nj=o

This vesult nmdicates hat The propesed velocity distr1 buton
Can be Used as a -50/!.(15!4'914 Suésgjéuf/()n aj( 77!e 1/9/0(/)*9
diﬁfribmllaﬂ /114D .Eg (/) ?/Vt?_r The Ve/al!/afskay be twee
The pressuve ?,Vt?dﬁfmf/ ‘9&5) and e Veloc)ty Since
Q*w
2x 2
't follows That

/ /
< - 24x (4_; +Z‘) | (2)
(C’on,z_‘)

= — 24 S L2
d?. ay?. él
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6.99 ( Con'? )

The volume -F/awm'[e & Through
the fube 15 given b_u, The Qﬂuaﬁay

@fw—dA

avea.
[ - 8"

Siesy

Thus,
Q= 4A /(/ - £ ) dxdy
Z
='f/°rf["“3f‘=‘f'z"] 1y

% g 3b ATab
= a 9 — a T = la
L J(‘ A 3 T’) 2
and There fore " 5 &
T Trab
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©.100

6.100 A simple flow system to be used for steady flow
tests consists of a constant head tank connected to a length of
4-mm-diameter tubing as shown in Fig. P6,100, The liquid has
a viscosity of 0.015 N - s/m? a density of 1200 kg/m’, and dis-
charges into the atmosphere with a mean velocity of 2 m/s. (a)
Verify that the flow will be laminar. (b) The flow is fully de-
veloped in the last 3 m of the tube. What is the pressure at the
pressure gage? (¢) What is the magnitude of the wall shearing
stress, 7., in the fully developed region?

Pressure

(2)

Diameter = 4 mm

m FIGURE P6.100

(a) Check J?ey;m/ﬁ’s umber to determine [ £ How 15 /mr.-f}mp !
/{Qe = A v (2R) _ (1200 ;,”%?3)(2 22 )(0.00%m)

A 0.015 V-5
”711—

Since The :@7/70/45 number 1s well beloy Riov The Llpo i's }qm:hqr.

= 640

() For lammar Flow,
rR* (EZ_ é./52)

4
]
Since Zl/b= P-4 = F

73_12/4.\/'1 - 3/00/5%.)&?)K3m) :/30.,%/2
d ! (o.ooé‘m)l

Z.

) o [Sec f/j.w"e )

- oY% | dUz
c) ?P‘i‘--/u _é_;-’."if) (EZ 6 126F)
Ror fa//g tffve/&pea’ plpe Flow, Y =0, So Tha t
avz
Dg 2t 58
/4‘/.50 Imy2

and with Y2V wheve V 5 The mean velocity

Tp= 24 (- 4

Thus, ot the wall, r=R, o N.s
( ) # 1 \_)L}V_/f - )__ i (25 )(O-OIE ma’-) = £0.0 ',:%"z.
Tkz)w.n ) R (O_%ai*m)

6-108




6. 101

6.101  (a) Show that for Poiseuille flow in a
tube of radius R the magnitude of the wall shear-
ing stress, 7,,, can be obtained from the relation-
ship

4#Q

{( rz)wa!l!

for a Newtonian fluid of viscosity x. The volume
rate of flow is Q. (b) Determine the magnitude
of the wall shearing stress for a fluid having a
viscosity of 0.004 N-s/m? flowing with an average
velocity of 130 mm/s in a 2-mm-diameter tube.

(a) /&. ( aﬁ (é‘;_ 6.126 )

;‘Br Pa/::e::///: //md H a ‘fuée} ’V}'.:OJ and ﬂenﬂﬁare.

N Uz
Tx»z'/‘j;

Since
) g
2 B [l (R)] (Eg. ¢.i154)
and Y. = QV, wheve V' 15 The mean velocity | i+ Hollows
fhat dVi . _ #V¢r
2F !

Thus) at  The wall (}"=/€))
(Te)uy =~ &7

é.mf/

and wi7h CD: TR:V

i

TR

(b) ( \ i L“:V ) ‘f(ODDLf )(o 130—)
/E"i‘;) wal| - R E 0.002
= 2,08 Fa
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6. 102

6.102  An infinitely long, solid, vertical cylin- Vzo
der of radius R is located in an infinite mass of

an incompressible fluid. Start with the Navier— \ /
Stokes equation in the @ direction and derive an :
expression for the velocity distribution for the
steady flow case in which the cylinder is rotating
about a fixed axis with a constant angular velocity
w. You need not consider body forces. Assume
that the flow is axisymmetric and the fluid is at
rest at infinity.

For This flow #ield, V=0 Va =0, and from The contnurty equation,

/
£ 2rv) U o
F o "F @t (4. ¢35)
1t Aollows That
._i_gé =p ( See A}n{rc Y wzﬁzflén,)

771&15 The MNaviev- Shkes egmaf/au i The ©O- direedeoi (Eg 5/25’!,)
Lor .sz‘fm’y Howw i"w’uce: %o

0—_“59 v . rar('j-u—é) l:?.-/

Due to The Symmetry of 7he How,

o 7S
8é T
L2 %) Y =p
/"2}" ¢ F*
or
Ve 1 % vy _
)2 | - el (1)

Since 29 s G functioy of only b, Eg. () can be
€xpressed as  an ordingry d. /7%/?4764/ equntioy, and
VE-W r: #Ph as

o205

a’f-’- or / ) . 6%
Egquation (2) can be Integrated -As yreld

‘M‘? w 2B = 2y

s -

or

F id_)‘_é ..f.?/; = CJF (3)

(Con? )




6.102 (con? )

Ezmémh (2) ean be expressed as
d (FUp ) _

o
and 4 second infegration yields

c, r

2
/“7/;= Clzf‘ + C

ol L G
Ve - 5 T E
,45 /—--—-—->an 7/@———-‘70} Since Flurd 15 at rect at //‘v//fl'/}b)
So That C=o0. TAhus,
Cl
’Vé = =
and Since at f‘-:/?I Vé-‘ /?&)} i# Follows That (:-?.:Ezw

and

=111




6,103 | ,_

*6.103  As is shown by Eq. 6.150 the pressure gradient Compare the pressure drop over the length £ for this nonuni- |

for laminar flow through a tube of constant radius is given form tube with one having the constant radius R,. Hint: To |

by the expression: solve this problem you will need to numencally integrate
o 810 the equation for the pressure gradient given above.

0z wR*

For a tube whose radius is changing very gradually, such as
the one illustrated in Fig. P6,103it is expected that this equa-
tion can be used to approximate the pressure change along the
tube if the actual radius, R(z), is used at each cross section. The
following measurements were obtained along a particular tube.

B FIGURE P6./03
¢ |0 |01 0.2 |03 |04 |05 ]0.6 [0.7 [08 [0 |10
Rk, 1100l 013106710651 0.671080] 080107110731 0.77] 1.00

Firom The “33‘*"3 tion guven for The pressyre grddmﬂt

/ iy / 7 [Rea))* &

Since P~ 7b Ap (The pmssane a’rap) 1t follows that
4p= ﬂ/ [/e(g)] "tz

or, with Z*= Z/l ana r*= R/R,
A = & @/a-/l * —'raf *
p L_W‘Ea" (R*) dz

For a constant vadius tube ( see £g. 6151 ))

P=R, rE,*

So  That

)
AP (nonuniform fube) fﬁe,ﬁ)""d?*
Ap (uniform tube)

This /5+€7’4/ Can Ye evaluated ruyméricalls
H.S/aﬁ ﬂe -Frﬁ./Jf’jwda/ rule L€,

:"Z @L""gt-ﬂ)(cﬂ f—) U

Y Ce*) S

(con't)
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€105 ] (Con't )

z/t R/Ro  (R/Ro)*-4
0.0 1.00 1.00
0.1 0.73 3.52
0.2 0.67 4.96
0.3 0.65 5.60
0.4 0.67 4.96
0.5 0.80 2.44
0.6 0.80 244
0.7 0.71 3.94
0.8 0.73 3.52
0.8 0.77 2.84
1.0 1.00 1.00

e
5155 The +abulated clata a..éa ye :
Z/;;fa)(/fﬁa:‘& Value of 7he /nv"é’;}'d/ t: T84,

Thuas,
Ap (ronun: form tuabe) . o 52

Ap (Uni Forrn Lube) S —
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6.104%

6.104 A liquid (viscosity = 0.002 N-s/m? density = 1000
kg/m?) is forced through the circular tube shown in Fig. P6. I i ] ! Tm
A differential manometer is connected to the tube as shown to ) 8 (1) q & %) jg

measure the pressure drop along the tube. When the differential
reading, Ak, is 9 mm, what is the mean velocity in the tube? [

+ T
Ah
Density of _L
gage fluid = 2000 kg/m3 3’3;

B FIGURE P6.

Assume lammar Flow so That

- R-Ap
= Tz (Eg. ¢.45 )

For manomeber (see ﬁfwc) :

er
ﬁ_ﬁ:dp-’ d-ﬁ (3‘;’(-3’)"' A#(J)((‘;{‘@)
= (00071 (7.8 2) (200024, - 100042 )
= 483 pt
Thds, ‘ o.o0¢ Y* £
( f An) (jg,a »mr ) = L0 x /0-2 %1'

V::

8 (o0.002 "—’;‘1) (2.m)

Check Reqmolds wumbev 4o confiim Mat flow is lammar:

B - AYCR . (10°22 ) (110 x10"2) (0.004m)
¢ 2

dopz N2
mi..

= 22,0< 200

SIHCC /ee(Z/oo f/ow 1.3 /tnmnqr.
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6.105

6.105 An incompressible Newtonian fluid flows steadily between _
two infinitely long, concentric cylinders as shown in Fig. P6.105. Fixed wall
The outer cylinder is fixed, but the inner cylinder moves with a lon- 0Il////l////,////////li/////1/1/1/Il/////ll///////ln.

gitudinal velocity V| as shown. The pressure gradient in the axial
z = VO ﬂ_

direction is — Ap/¢. For what value of V;, will the drag on the inner
cylinder be zero? Assume that the flow is laminar, axisymmetric,
and fully developed.

"/I/II/I//II//////I/I/I/I/I/I///I/I///I/III//I/I/I/&O

FIGURE P6.105

Egaaéroﬂ b /497, which was Jé’t/e/d/xd for  Flow 1 Circular 7‘::14:95
app/:es n The armu/er regon. TAus,

Vé:?)"( L)r*+ ¢ dar + g ()

[/V.;ﬂ ﬁoum/ﬂr_y Cpn(//ﬁﬂﬂ:j !"=.V‘O) 1J_E,_-‘=o) @nd y-:yz_) 'UE_:\/O
1t follows That :

J

o= g, (35)5+ alap + 4 2
\4:“/""/_“(5—5 ;z.z-f' C’/?nl’;-'f'fz_ (3)
Sub tract Ez,fz) £rom Eg.@) B obtain
l/; = )/}" d + ¢, .0 -}—’-:
So ﬂ')df
V- )(r
c =
/ ,?n Lo
*2
The draj on The Ihner cylinder will be zero IF
(é}‘i-)l- B s =%
\SIﬂCC.) —L - aV}: JU;_ (
T (5 3 1. cue)

it Kollows That

G . )U;:
[Pf /u_ 2F

(con't )

and with V<o
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¢.105 (Cont )

Dz‘Ff{rm’nfzéée Eg (/) wil re.sPeci' to v to obtain

2y | oL (o

2Fr
So 777df M_‘ e

L

- oL (2 )(r- J
2P ) p. + Vo
{?}_2_2‘:}"."/*[:2/;;[&-)& 7f An Lo

L 'T»;

|38

Thus, 15 order for The drag 4o be zero,
/ y 3 §
2z by Vo = (35 )(r,*-1")

=&
a'l v
/“ PL./?"I—E;
or / a X )J
- = [2F Ay e _
%-—%(‘,2_[2)"'/@}5 -5
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6. 106

6.106 A viscous fluid is contained between two
infinitely long vertical concentric cylinders. The
outer cylinder has a radius r, and rotates with an
angular velocity . The inner cylinder is fixed and
has a radius r,. Make use of the Navier-Stokes
equations to obtain an exact solution for the ve-
locity distribution in the gap. Assume that the
flow in the gap is axisymmetric (neither velocity
nor pressure are functions of angular position
within gap) and that there are no velocity com-
ponents other than the tangential component.
The only body force is the weight.

The velocity distribution 1n The annul
Czo

ecéua.tfon
Ve = -

(See solution 4o Problem 6.94%

¢ F
%

_f.

av space is gqiven by The

for derivation. )

With e boundury condibons +=r,; Vp =0, and

F=r , VYpshw (see ﬁjwe for hafa.-émn)) 1t follows
-:Cmm Eg_ () that:
- Gt Cy
O = -—2‘- + _,_':'
hws= &' 4 &
z B
Therefo
ere re ) _—
C —_
/ [ — PZ'Z
G
an d Y‘2
= ¥ @)
C, < ‘
=~ R°
"F-c;:.
So '7‘71a.'£
17 = e - f:'léd
& P &
= & Flr- X )
Kt B
or N
ol _)l
Y (o _’3.'.2) i
¥

&l )




6.107 |

6.107  For flow between concentric cylinders, with the outer
cylinder rotating at an angular velocity w and the inner cylin-
der fixed, it is commonly assumed that the tangential velocity
(vp) distribution in the gap between the cylinders is linear. Based
on the exact solution to this problem (see Problem 6.106 the ve-
locity distribution in the gap is not linear. For an outer cylinder
with radius r, = 2.00 in. and an inner cylinder with radius r=
1.80 in., show, with the aid of a plot, how the dimensionless
velocity distribution, v,/r,w, varies with the dimensionless ra-
dial position, r/r,, for the exact and approximate solutions,

For & Jrnear veloc,ty  distributin (ﬂff)rdafln;4,£€ solution)

Vi CLwlf 2ok
V;"' r}_'

and in nondimensionsl frm
‘Vé V }",_'

s Fo T
fow J - L
%

B The é’xacz" Sa/a.r(:m'n [56’&‘ Praéjem A.lOé)

e o e e [, . ’_’L]
*f- %) 2l

and 1h Nendcimensiona| Loy

r 2 -Z
’V; - i Ve __i:)
- ___......._._l’- _— —Fz k
1, 4 (,__ %‘) ) 0

For V=180 in anad Lo 2.00/'}7-} Some Jnfu/ulpp{ Values aona
a jra,oh are Shown below. Note That theve o [itfle
ditference between The exact and approyimate solutinms for This

Small gep widty . For all practical purpeses both solutions +all
on Me” Single cuvve Shown .

1.000 -
Linear Exact ;
o lleld | Vpllo e RERGL s st s
0.000 0.000 0.900 o
0.125 0.131 0.913 50-950 e R [
0.250 0.260 0.925 = D T
0375 | 0387 | 0038 0.540
0.500 0.512 0.950 0920 et |
0.625 0.637 0.963
0.750 0.759 0.975 0.900
0.875 0.880 0.988 0.000 0.500 1,000
1.000 1.000 1.000 Ve I

()

(2)
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6.108

6.108 A viscous liquid (u = 0.0121b-s/ft}, p = 1.79
slugs/ft’) flows through the annular space between two hori-
zontal, fixed, concentric cylinders. If the radius of the inner
cylinder is 1.5 in. and the radius of the outer cylinder is 2.5 in.,
what is the pressure drop along the axis of the annulus per foot
when the volume flowrate is 0.14 ft*/s?

Check ﬁeym/d’s number to determmme 1f Flow is lamingy

)
Res 0% i
wheve  Dyp= a(p-r) and = oy ey
Thus Blugs .
| = ijoffw') 177/‘/'70 Z‘f’/i./j"qi}'{ /51
—p 02 85 ) (2 ,,/% ,,.)

39.9 < 2150

Since e Reynolds number 15 well below Zioo The fow 1s

laminar aud
= ap Lot 4 (pi-nt)
== B =P [/ i
®= 7 2 [d @ ﬁ (Eg. ¢.156)
so That .
il 0
¢ _ T
j }/&‘f‘ }C"f’_ (’62—‘}2'1)1
L, .E.:
, 3
} 9 (6,02 22 )(0.14 éz)/r
25, \* [l.sm\! [:”_5_'2 * [LSn zr
(12 . ) h (12:)1-)- - M) {Iz'—iFﬂt')
F+ +t Q” 2.‘5"”_
1.5 1.
_ b
= 33.] > Per ft
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6./09

6.109  Show how Eq. 6.155 is obtained.

Frem £g. &./47
of
/az r: ot C//”/‘ s

For fow 4 an 4/14%/1/5) '&2_"20 at F=FK  and

Ui=0 at F+r=7t,, 7%{5 Fom Eg. 6./47

= ( ) C,/n!;‘ + G

e ;ﬂ‘(ﬁ)/@* ¢ Int +6

ana solving Hor ¢  ana (  we /mue

2 = ﬂcaz)/k
I /n(f-f,)
@E(}j—f }5 /H}T:)

In( )
Substitution of £45.0) qng (2) into gg_ 4.147

‘/ 2 2
= gloe )% ;n(’”b

(A—‘g, 6.147)

g/ ves

7% ]

Which s The desired egméla'n (Eg.é./.:?’ﬁ")a

(1)

(2)
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6.0

6.110 A wire of diameter d is stretched along the centerline
of a pipe of diameter D. For a given pressure drop per unit
length of pipe, by how much does the presence of the wire
reduce the flowrate if (a) d/D = 0.1; (b) d/D = 0.01?

The Volume -Ffawfmfc 43 fu/'an 447 Fg.é./fé

i ,7_7_'42[ ¥ _p¥ /"Ez" Vc'l)zj /L: 6,f§é)
@ gk |7 % Tl g

Which Can be writfen 43
2
htapl v (1= (5Y]
Q:H—_{/—f—ﬁ‘) + L) (1)
X/“/Q ’ In _f'_‘)
| Vo
St - T o ; Ef- (1) Can also Je writen as

0= TS~ (2 [,_(g)f]? o

L
| M }h(%)
/Um[e 770114 74!’ —g =0 (ﬁo wfpe)
. THT4P
¢ sul

Which Corre.rp@ma”_s > Possew lles Law (Eg 6./57).

@) By -d-:o.// Eg.2) gues

O ﬂ?.
p= 754 {/ = S - Tl g = O.5T%
X//{f IH(D./)

Thus) for The same AP The Flowrste is reduced by

% Veduckon 17 = (J— 0.5T) k00 = $2.0 %
(.é) \S}I?“h.[ﬂ}’/y/ 76»/ —g = &2 E?_[Z) 7}&{5

@ = 7 "Ap )= (e0))", [_/; _(_am)j ;—- 0.783
sul ln (6.01)

S oL vecluckion 1n § = G-0780%100 = 21.7%

/Voz.Lc ﬁm’- 77re }Vejpnce 07[ Cvhn a :/r;/y Small wire d/Ol«ff
The. “ube Cenfer)ine has & 515”2,454,,z effcct on The Howmbe
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