4.t

4.4 The x- and y-components of a velocity field are given by
u=—(Vp/¢)xandv = —(V,/€) y, where Vyand € are constants.
Make a sketch of the velocity field in the first quadrant

(x> 0,y > 0) by drawing arrows representing the fluid velocity
at representative locations.

u=-(%/A)x and v ==(W/ly sothat
V=Aumw = (Vo e Cy7) =W, ) Yrrye
Thus with r=Yx*y* = radjal dictance from the 27

V= (Vo /2)r
Hence, V=1V, onr=[ V=2l onr= Zf\/ sV, onr=s ﬂewla
Also, H)e directjon of fbc flid Mm‘/aﬁ f‘B/m(/llﬂ to Yhe X axjs [s

8 = arctan (/1) or /) EV;IM

+ 9 ﬂf' “(Vn /j)z _Z u@

MUTE T Sthex T X =X

Thus, on the X axis (y=0) 1an8=0Q or ©=0°0y180° (180" for x>0)
and on the y axis (x=0), J‘o‘m f=tse or 6 =90°or270° (270" for y>9)
The velooity field /00/(: as sbown below. In the /‘* ddfdﬂd both

x>0qgnd y>0 So ﬂ?dr‘f‘bﬂﬁj
y%o--u.ﬁ U<0 and y<o.

1

Mis

0 Vo /2_ Vo

P\b’

Y-




4.5

4.5 A two-dimensional velocity field is given byu =1+ yand
v = 1. Determine the equation of the streamline that passes
through the origin. On a graph, plot this streamline.

w=1I+y and =1 so the streamlines are given by

dy I
= U “Try
Thos,

f(l+y)dy = (dx or
y+3y* =X tC, where C ic a constant.,

For the streamline that goes throvgh x=y=0, C=0.
Hence,

X =)/+—?’_—>/2"

This streamline s plotfed below, Nofe that since v =1>0, the

direction of flow is as showp.

(4 1]

N

(oo}

N

(48]
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4.6 The velocity field of a flow is given by V=

(52 = 3)i + (x + 4)j + dyk ft/s, where x, y, and z are in feet.
Detemlme the fluid Speed at the origin (x = y = z = 0) and on
the x axis (y = z = 0).

U=S2z-3  =Xx+4 =4y

Thus, at the origin U=-3, /=4, wr=0
so that

Vil i = o iaE = 5 #/s

Similarly, on the X ax/s w= -3 = Xt¥ =0
so that
V= lur o™ = |37 4040 = [XPr8x 125 fls where x~ f1

3
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4,7 A flow can be visualized by plotting the velocity
field as velocity vectors at representative locations in the
flow as shown in Video V4.2 and Fig. E4.,1. Consider the
velocity field given in polar coordinates by v, = —=10/r
and vy = 10/r. This flow approximates a fluid swirling into
a sink as shown in Fig, P4.7 Plot the velocity field at

locations given by r = 1, 2, and 3 with 0 = 0, 30, 60, and
90 deg.

N

With nr =-iofr and 1 =10/ then M FIGURE P45

V=inp>+pg* = JCionm? + (1o = L2
The angle & between the radial direction and
the velocity vector js given by

_ M _ lo/r
fan X = Evy ey /

Thus, X = 45° for any r 6
(.e. the velocity vector is alway oriented #5°relative 1o radial lines)

f/ 6=60
Note: V is
independant

-4

of 6.

V=7.07 atr=2
N k. ® B=0
V=/4.1% atr=| V=47/atr=3

th -4




4.8

4.8 The velocity field of a flow is given by
V = 20v/(x° + )" —20x/(x* + )" ft/s,
where x and y are in feet. Determine the fluid
speed at points along the x axis; along the y axis.

What is the angle between the velocity vector and
the x axis at points (x, y) = (5, 0), (5, 5), and
(0, 5)?

ffie= 20 . RO
(x2+y¥)%2 ! (x* + y2)%2
Tﬁu.s V= 'I/M +y?
4@ +400
V=[ 0();2-.,.},2_)), ] far‘ any )(, y
A/SOJ 20X y Zoﬁ
gu.l o (x%+y2)%. VIS, (5,8)
tan 6 == —zoy (9,9) 20 f
or (x*+y2) % G
- X
tan6=-< -
Thus, for (x,y)=($,0) e
tan6=-c0 or B =-90° 1203’
V '
ot f
tan@ =~ or @=-#5° ©

for (x,y)=(0,5)
tan 6 = 0 or 9-‘-_3_0_

4 -5
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4.9 The components of a velocity field are givenby u = x + y,
v = xy’ + 16, and w = 0. Determine the location of any stag-
nation points (V = 0) in the flow field.

V=it ar* s = () sxyiee =0

.
Z-‘=X+y=0 so that x=-y

and
W= XY H6 =0 so that xy =-/6

Hence, (-y)y’=-16, or y=2
Therefore, V=0 af X==2 y=2
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4.Jo  The x and y components of velocity for
a two-dimensional flow are u = 6y ft/s and v =
3 ft/s, where y is in feet. Determine the equation
for the streamlines and sketch representative
streamlines in the upper half plane.

U=6y , v =3 where streamlines are obtained from
% —'-'ﬂv- = —6-3),— or 2 ydj/ = dx which can be iﬂfeg/‘afed fo give

)/2=X +C | where Cis a constant.

Representative sireamlines corresponding fo different valyes of
C are shown below.

Note that for y>0 , u>o (i.e. the flow is from leff toright)




¥.1

4.1l Show that the streamlines for a flow whose |
velocity components are u = ¢(x? — y?) andv = |
—2cxy, where c is a constant, are given by the |
equation x’y — y*/3 = constant. At which point |
(points) is the flow parallel to the y axis? At which
point (points) is the fluid stationary?

U=C(x*-y*) | v==-2cxy
Streamlines given by y=f(x) are such that Zd% =
A |
Consider the function X%y - % = copst 0,
Mote: I is not easy fo write this e)c/a/ioift'y as y=fk)
However, we can differentiate g 0) o give
2Xydx +x*dy —y’dy =0  or
(x*=y*)dy +2xy dx=0
Thus, the lines in the x-y plane given by Eg.() have a slope
dy _ _-2xy dy _ -2cx
?)Xi L for any constant ¢, %% = ChL(xZ—yl)
3
ve. the function X Y “'%‘“ =copst. represents the streamlines
of the given flow.

=V
= u

The flow is parallel to the x-axis whey gXL:OJ or vV=0.

This oceors when either X=0 or y=0 | le, the x-aus or
1he y-axis
The flow is para//el fo the y-axis when g)y(-=oo , or U=o.

This occors whep X=1% y

The flvid })qs Zero ve/oc/?ﬁf al X=y =0
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4.12A velocity field is given by V = xi + x(x — 1)(y + 1)],
where u and v are in ft/s and x and y are in feet. Plot the stream-
line that passes through x = O and y = 0. Compare this stream-
line with the streakline through the origin,

U=X , v=X(-1D(y+1) where the streamlines are obtained
from

d _ “DAYED _ tvoiNfon
gf=7v'-X(x;(y+)‘(X/)(y!)

H f% =.((X‘-I) dx  which when in tegrated qives

In(y+) =zx*~x +¢ ” where C is a constant (1)

For {he sf/‘eam/iﬂe that passes Hﬂmag/) the am'y/)'i X=y=0 the
valve of Cis found from Eq.() 45

In(l)y=c , or C=0
’ (4 x*-x)
Thus, Inlyt) =%x*-x or y=¢ S

This streamline is plotted below.

2k ' j
A

i
-
ﬂ

——

-
o
=k 2
N
w

Note: The streamline is symmetrical about its low point
of X=/, y=-0.393, Af X=y=0 the velocily is O.

For X<0, u<0 and for x>0, u>0. 7Thus the fliid
flows from the origin (x=y=0),

Since the flow is steady, streaklines are the same as streamlies

-4
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4.13 _ From time 7 = 0to s = 5hr radioactive The following wind conditions are expected:
steam 1s released from a nuclear power plant ac- V = 10i — 5j mph for 0 < ¢t < 3 hr, V =

cident located at ¥ = —1 mile and y = 3 miles. 15i + 8j mph for 3 < ¢ < 10 hr, and V =

5i mph for £ > 10 hr. Draw to scale the expected
streakline of the steam for ¢ = 3, 10, and 15 hr.

For 0<t<3hr | u=10mph and V=~5mph
For 3<t</0hr , w=15mph and v=6 mph
For t>/0hr U=5mph and vV =0

The streakline is the location (af timet ) of steam released
earjier.

@) Af t=3hr steam is sty being released. From t=0 fot<2hn
it has traveled in the direction % =4 === =-05 and the
tirst of the steam is atx ==mi+(10mph)(3hr) = 29m/

d = P+~ = 7 {=3
Sex fyore bolow YT BIACmph)lrl = 2mi ol =3k

b) At t=5hr steam refeqse stops. From £=3hr to =5 hr the
steams fravels aX= w ot <(15mph) (S-3Dhr =30mi “eqst”
and ay = VAf=(8mp/)J(5‘3)br =/8mi ‘porth”
See figure below. For ¢ >54hr the sireakline does not Grow*
(ce., no more steamreleased ), if merely mamtains its shape if
had at t<5hr (-33%‘=3a-)£,‘* =§,¥=5’3¥ =0) and translates. From
E=5hr to £=10hr i} moves ax-< Uat=(15mph) (10-5)hp = 75 m/
farther “east’ and DY = vot =8mph)(10-5)hr = 40 mi farther horth’
See figure below.
c) Forlo<t<iShr the steam moves ox = ( Smph) (15-10)hp = 25 mi ‘e qsi’
and sy =vat=0nmi porih”
The above s shown ip the figure below.

y,m
(104, 59) (12;7’ 59)

~———— streakline 60 .
at time o Wshn
indicated - ’ (159, 4%)

(92,43) (/134,44)
20 + (29, fi))\ N { Sfeam all f=-5 bf‘
(-ll’ 3)..’/ | \\'-](59;“;)

- |

[ T, R Iy
-20 f;-g%za\ 40 60  go _ 100 20 w0 Js0 g M

ok (X, Y)=(29,-12)

5

i -1g
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#4014 Consider a ball thrown with initial speed Vj, at an angle
of 6 as shown in Fig. P4.1%a.As discussed in beginning physics,
if friction is negligible the path that the ball takes is given by

y = (tan 8)x — [g/(2 Vy*cos? 6)]x2

Thatis, y = c;x + ¢,x2, where ¢ and ¢, are constants. The path
is a parabola. The pathline for a stream of water leaving a small
" nozzle is shown in Fig. P4.#band Video Y412 The coordinates

for this water stream are given in the following table. (a) Use
the given data to determine appropriate values for ¢, and c, in
the above equation and, thus, show that these water particles
also follow a parabolic pathline. (b) Use your values of ¢, and
¢, to determine the speed of the water, V,, leaving the nozzle.

y, in.

X, in,

0 0
0.25 0.13
0.50 0.16
0.75 0.13
1.0 0.00
1,25 -0.20
1.50 —0.53
1.75 -0.90

(b)

B FIGURE P44

An EXCEL FProgram was vsed 1o plof the x-y dats and
fo fif & second order curve 1o Yhe data. The results ape shown bebw

0.04

y vs x for Water Stream

0.02

-0.02 +
-0.04
-0.06 -

y, ft

008 | ¥ =-8.4987x" +0.7115x

-0.1 +

“0.12

0 0.05 0.1

This, with y =X +6,x* 1f follows Hhat
C,= 0715 =1an8 or O =3s54°

and

e &
C?.= "8.6‘??7 ZVUZCUSza

or
V 2 | - J2.2
0 2(8.4987) cos*(35.4%)

Thos V= 1.69 &

2
= 2.35%

4 -1
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415  The x and y components of a velocity field are given
by u=x% and v = —xy2. Determine the equation for the
streamlines of this flow and compare with those in Example

4.2. Is the flow in this problem the same as that in Example
4.27 Explain.

Streamlines are given by g)% =Y _Xy* _

- 4
7 2y T T %
or E;;Z = - f_/x_{ which can be infegrated as: 4
-(j‘;}_’ = = .‘3{-} Thus, Iny ==Iny +C , Where € is q constand.
7771/3) Xy=C

Note: These sireonlines are the same shape (same “flow patters)
as in Example %2 — bot the velocity fields are ditferent
However, the ratiss ¥ are the same

2
T=- % "' “}Z tor this problem

d
VO tm (o)
U (Vo) Ex)

-—

- ’RZ for Examp/e 4,2.

4-12
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4.16 A flow in the x-y plane is given by the
following velocity field: u = 3 and v = 6 m/s for
0<t1<20s;u= ~4andv = 0 m/s for 20 <
t < 40s. Dye is released at the origin (x = y =
0) for t = 0. (a) Draw the pathline at r = 30 s
for two particles that were released from the or-
igin—one released at t = 0 and the other released
at ¢t = 20 s. (b) On the same graph draw the
streamlines at times r = 10s and ¢t = 30 s.

(@) For the Par"llic/e released at 1’"0 u=3%2 qﬂ‘d y= 6-——
for O<t<20s , Durmg Hhic Sise ﬁ)e flow is steady and
the pathline has a .S/ape ot - = —— =2 .Aft=0, x=y-0

and at t=20 | x =(32)(20s) = 50/?1 cmdy =(62)(20s) = |2zom

For20<t<30 | y=-4% emd V=0, sothat the flow is steady
and the pathline has a slope of ?Z O. 7The particle moves from
X=60m to x=60+C4Z)(30-20)s =+20m  f,} keeps the

y =120m location during 20<t <305, Ths pa:'/)//be is shown

in the figure below.

For the particle released at the origin at ¢ =20s if follows
that w=-4% and v=0. Thus, the corresponding path/ine
extends from X=0 to x= (-42Z)(30-20)s = ~4om af { < 30s,
This pathline is shown in the figure be/ow

(b) At £= /0s , streamlines are given by 7}! & —‘ = ‘36"=2
or y=2X*%C , where c, = const.
At t=30s, sfr‘eam/mcs are given by gk = -—— =0

or y= c,_ , where ¢, =const. These /mes are shown below.

6y particle at =30s (released at t=0)
4 paynlin

streamlines
at £=/0s

-§0 Tyo O 40 30 X, m
Par‘ﬁcle ai‘ t=30s (re]ca.sgd qf t=20g)

H4-|3
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y
// /{/
4.17  In addition to the customary horizontal : 7/

velocity components of the air in the atmosphere / y
(the “wind”), there often are vertical air currents —_— /
(thermals) caused by buoyant effects due to un- / ‘/
even heating of the air as indicated in Fig. P4.17. / |
Assume that the velocity field in a certain region /
is approximated by u = uy, v = v, (1 — y/h) for
0<y<h,andu = uy, v = 0fory > h. Plot z s
the sh_ape of the streamline that passes through FIGURE P4.17

the origin for values of w,/v, = 0.5, 1, and 2.

U=Uy , V=1, (l—%) for 0<y<h <o that streamlines

for y<h are given by y ) .

d o (1- y _ Y%

Fef el or [T = [

0 0

T/WS; ~h In(] “7),:) =_6% Note: The lower limits of t'nfeyfaﬁ'r)n
(x=0, y=0) insure that this
equation is for the streamline
throvgh the origin.

This streamline

x ==h (_502) In(l- _hZ) is plotted below.

y/h vs x/h
1 ! "+-'-- "'-_:“_:m
0.8 T '.--"r
[ wNO=2 |

= = =uON0=0.5

’ — OO = 1

414
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*4.18

formation except that u = Uylh for0 = y = h
rather than « = wu,. Use values of uslv; =10,0.1,
0.2,04, 0.6, 0.8, and 1.0.

Repeat Problem 4.17 using the same in-

S

U= u;] s V=V, (l—%) for 0< y<h so that streamlines

for y<h are given by
dy ='l%= ‘_:E_Vo(l— ) - Y% (h-y) or with x=0 when y =0

u,,,f U Yy

l(?—l:)—y)— dy jv" dx  This m/Egrmz‘es fo give

S

-~y =h In(h- y)‘hhln(h) ":X orﬁ (%)[/ h;-.y)__}:)y_J!

This streamline js plotted below for 0= jy— I, with

“ff 0,01,02,0.4,0.6,0.8, and 1.0 The Vq/ues were

ca/cu/a;’ed aﬂd p/aﬂed vsing an EXCEL Program.

y/h

y/h vs x/h
Uo _
1 D’/ .0'2‘ IOI 4 0.6 ‘O. 8 ,—T/;:_ﬂl
0.9 L"’ "L ‘ .—-""/—’,____-v-——“'i——:___-—-—""ji_—- ;
. ’_-/ ’___--— —-_____“':;:—’_d______,_f — -
0.8 T 7-—“’,/_"'_ e 74._. ,,
0.7 //_/'/ {:/’"/ Al o L
ool 1) AR
05 14/ 3 - N
0.4 i/ H— | e P
0.3 III (R } (& == __.L_ DU 5. ——
0.2 = : == RS e —
0.1 - | —
0 | ‘ -
0 0.5 1 1.5 2
x/h

#48
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4.19 As shown in Video V4.6 and Fig. P4.19, a flying airplane
produces swirling flow near the end of its wings. In certain cir-
cumstances this flow can be approximated by the velocity field
= —Ky/(x* + y?) and v = Kx/(x? + y2), where K is a con-
stant depending on various parameter associated with the air-
plane (i.e., its weight, speed) and x and y are measured from the
center of the swirl. (a) Show that for this flow the velocity is
inversely proportional to the distance from the origin. That is,
V= K/(x* + y?)"2. (b) Show that the streamlines are circles.

MFIGURE P4.|9

y

_ 1/ 2 7z _ EKy)” ( Kx)? _ _K

(a) V= yu+ wr* = [(xuy’)"‘ ! (x"+y1)’] T xPey2
or

V=E | where r = x5y
Kx

7ok s \BN
(b) Streamlines are given b)z % = ’ZLAI = _Q‘_;L) o
Thu:} (x*+y*)
ydy = -Xdx which when integrated gives

(%

-2‘-}/2 = --;{-XZ-JLC,J where Cis a conctant
or
x*+y*= Constant

4-16
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Particle xatt = 0s (ft) x atf = 0,002 s (ft)
1 —(.500 —0.480
4.20 (See Fluids in the News article titled “Follow those parti- 2 —0.250 —0.232
cles,” Section 4.1.) Two photographs of four particles in a flow past 3 —0.140 —0.128

a sphere are superposed as shown in Fig. P4,20. The time interval 4 -0.120 =0.112
between the photos is At = 0.002 s. The locations of the particles, -

as determined from the photos, are shown in the table. (a) Deter- I

mine the fluid velocity for these particles, (b) Plot a graph to com-

pare the results of part (a) with the theoretical velocity which is .J: 8 002's
given by V = V(1 + a¥/x?), where a is the sphere radius and Vj is : “
the fluid speed far from the sphere. — 0' ’ L -vﬁ_ol_z_m' x, ft

a=0.1ft

MFIGURE P4.2p

The flyid ve/aa;}’)z (which (s assymed 1o be the same ac the particle veloc: {}’)
can be eslimated b,V

V = ax /af |
Thos, for parficle (1 V, = [-0.480 8- (~0.5008) ] /(0.0020) = 19 51,

During fo 0.002< fime interval the average location of the particle was

X = [(-0.400#) +(-0.500#1)] =-0.0490 f}
By similar calcvlations the following experimental resolts wore obtuned:

Particle X, i V HX‘ These ex,ambaenfa/ resylts ﬂﬂﬂ( fhe
| -0.490 /0

2 - 0.24] 9 theoretical resvlis (=, (]+ a-?/xs)J g
3 |-0.134 8 Vo= 104/s and a =0.14) are plotied /n he
A5 ~0. 116 4 f/’g‘(}r‘e -

[ |
-
Q

| e

vV, ft/s - \

— ——theory J e \\
—1 B experiment

couns

L
w b

il

|
D

o
6y
|
o
E-N
1
©
|

1
o
N

1
o
=X
o

=17
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4.21 (See Fluids in the News article titled “Winds on Earth and
Mars,” Section 4.1.4.) A 10-ft-diameter dust devil that rotates one
revolution per second travels across the Martian surface (in the x-
direction) with a speed of 5 ft/s. Plot the pathline etched on the sur-
face by a fluid particle 10 ft from the center of the dust devil for
time 0 = # = 3 s. The particle position is given by the sum of that
for a stationary swirl [x = 10 cos(27¢), y = 10 sin(27r¢)] and that
for a uniform velocity (x = 5¢, y = constant), where x and y are in
feet and ¢ is in seconds.

The pa-//y line [s given by
X =10 cos (274) +5¢

;”: 10 sip (274) , where x~H, y~ff apd t~s
7his pq]% /s p/OH&d for 0<£<3¢ bE/OW.

Particle Path

5 \ |
t=] =25 t=
y, ft { { +<0 \e " fv’t

[

X, ft

H8
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4.22 The x- and y-components of a velocity field are given by
u=(Vy/€)xandv = —(V, /€) y, where V, and € are constants. Plot
the streamlines for this flow and determine the acceleration field.

Since u = (Vo/l)x aﬂo(/f‘-(vo/,é’)y, the streamlines are
given by |

0{ __,_ﬂ__/:_ “(Vo/ﬂ)z_—_
roir Vo)% X o

-0)-{,)'/ = = 4‘& which can be /'m‘equec{ fo give
Si’ll = -S f’_{).:i or Iny =-Inx +constant
4

Hence, the streamlines are xy =constant

Typical streamlines (hyperbolas) "///
are sketohed in the fig{//‘e fothe J

N7

right.
/) JU
ay = ¥ +u sk gy
= 0 +(Ve/)x(Vo/B) +0 = (Vy /L)X
and
, W
qy = %‘A{ +u%¥+ﬂf’i}7
=0 +0 +(-0/l)y)(-Vetf) =(Vo/,2)zy
Thos,

d =ayd +ayf = (Vo /g) [xi 4y} ]

4-19
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4.23 A velocity field is given by u = cx? and
v = cy?, where c is a constant. Determine the x
and y components of the acceleration. At what
point (points) in the flow field is the acceleration

zero?

%3

d U
Qx =;—a gy vy = (cx*)(2eX) = 20248

T

and |
a, = & +M-§¥+V—)7 = (ey*)(zcy) = 2¢c*y*
Thus, a=ad+a,$ =0 at (x,y)=(0,0)

Y424
4,2.%# Determine the acceleration field for a three-dimensional
flow with velocity components u = —x, v = 4x%? and
W=x—y

U=-X, v =4%x** and w =X-y so that

dy ,,J u +/gr%yu‘+ﬂrfg

o + - x)(— 1) +4x*y* (0) +(x -y)(0) =
Qy *3ﬂr+u3"r +/v*j;r +,ar§-—”£
= 0 +4(-X)(8xy?) +(4x*y*)(8x*y) +(x-y)(0)
= —8Xy*+32x%y? = gx*y*(4#x*y-1)
and a
Az = w+u‘i“{+nray +,¢rr

=0 +(-x)(N+(¢x*y*)(-1) +(x-y) (0)

Q@ = axt +ayf + agk
= X1+ 8x*y* (4x?y-1)f -(XH‘Xzyz)k

1-2.0
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4.26 The velocity of air in the diverging pipe shown in Fig, P4.26
is given by V| = 4z ft/s and V, = 2t ft/s, where ¢ is in seconds. (a)
Determine the local acceleration at points (1) and (2). (b) Is the av-
erage convective acceleration between these two points negative, V, = 4t fuis
zero, or positive? Explain, —

WV, = 2t fus
—-

olU QU f1
a) ﬁ'/=‘/% and ;T}--Z:s-i
() (2)

b) conveclive acceleration along the pipe = U 5}%’

where U >0. Af any time ¢ V<] . Thes, between (1) and(2)
Lo YL,

/%’/766‘/ U -3‘—% <0 or e average convective acceleration
js negative.

H-21
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4.27  Water flows in a pipe so that its velocity
triples every 20s. At¢ = 0it has u = 5 ft/s. That
is, V.= u()i = 5 (3] ft/s. Determine the
accleration when ¢ = 0, 10, and 20 s.

U=5 (f/z) v =0 w =0
vV

V = 56 i Sice V-vV =0 becavse Vis not a
a function of x,y,orz2.
Since 3L _5[ In(3) 20] 0.275 (3 f/?-O)——z with £~ s

it fa”ows H')af'

Y

a = 0.27508 1 at £=0
-— "F =
d = 047615 4t #=10s

and *
E = 0-825? g2 af‘ £=20.s

428

4.28  When a valve is opened, the velocity of water in a
certain plpe is givenby u = 10(1 — ¢™"),v = 0,and w = 0,
where u is in ft/s and ¢ is in seconds. Determine the maximum
velocity and maximum acceleration of the water.

V= 1/((2 Fy2iw? = 10(1‘8"!) so that %{2\-/=l06'£>0 for all ¢

Thos, V. = V| =108
f=00 U J
Also, a = a,t where q, = I}‘*“ax with §

= 106" 50 that a, - a| -
max

n

0

~=

Thus, a, =

=00

%-22.
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4,29 The velocity of the water in the pipe
shown in Fig. P4.29is given by V, = 0.50r m/s
and V, = 1.0t m/s, where ¢ is in seconds. De-
termine the local acceleration at points (1) and
(2). Is the average convective acceleration be-
tween these two points negative, zero, or posi-

tive? Explain. FIGURE P4.29
M _ m |
3¢ =9s 5
Ve _ m
e

Since Vo>V, it follows that ‘3%>0. Also, V>0 so that

. ; vV / -
the convective acceleration , V5x | is positive.

H#-2.3
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4.30 A shock wave is a very thin layer (thickness = £) in a high-

speed (supersonic) gas flow across which the flow properties
(velocity, density, pressure, etc.) change from state (1) to state

(2) as shown in Fig. P4.30. If V, = 1800 fps, V, = 700 fps, and

£ = 107" in,, estimate the average deceleration of the gas as it Vi
flows across the shock wave. How many g’s deceleration does

this represent?

FIGURE P4.30
VIV so with V=ul @=aq.0 =y

W
at
Without  knowing the actval velocity distribution y UsU(X), the

acceleration can be approximated as

e (Vith) (Va-W) _ 1800+ 700)fps (700- 1800) fps

= U ~—
qx X 2 f 2 10-4) -H
z
or " {4 a - 165 x10" & ’ -
= . X = . —
Gy =-1.65%10 % This js 3 322 B S5.02x /0
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4.32  Asavalveisopened, water flows through
the diffuser shown in Fig. P4.32 at an increasing
flowrate so that the velocity along the centerline i
is given by V = ui = V(1 — e ) (1 — x/()i, u u =5Vl - e
where u,, ¢, and [ are constants. Determine the >
acceleration as a function of x and . If V, = s Ygll =5
10 ft/s and ( = 5 ft, what value of ¢ (other than
¢ = 0) is needed to make the acceleration zero
for any x at t = 1 s? Explain how the acceleration
can be zero if the flowrate is increasing with time.

FIGURE P4.32

3= VvV Wt weux b , V=0, and w=0

this becomes :
a‘:(g%--f-u,%%)? =gxl4 3 WAE/"e LZ:%(/-‘E_C)(/"‘?&)

Thus,
oy =Y (1-F)c € vy - Mu-$)(-4)
or

X

If @,=0 for any X at t=1s we myst have
[C Brd"jl{g(f—e’ct)zj-'-'o With V,=10 and /=5

= 2
o c_._’s_o_(/-e )Y =0  The solvtion (root) of this equation

For the above conditions the local acceleration ( 9L >0) /s
pf‘eciJe/y balanced b y the convective deceleration (& 3—%<0),

The flowrate jpcreases with time, but The flvid flows to an
area of lower velocity.

Y-25
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4.33 A fluid flows along the x axis with a velocity given by
V = (x/0)i, where x is in feet and 7 in seconds. (a) Plot the
speed for 0 = x = 10 ftand 1 = 3 s. (b) Plot the speed forx =
7ftand 2 =t = 4 5. (¢) Determine the local and convective
acceleration. (d) Show that the acceleration of any fluid particle
in the flow is zero. (e) Explain physically how the velocity of
a particle in this unsteady flow remains constant throughout its,
motion.

(a) U=-§X--£i so at t=3s a=7§—-§-

J

(b) For X=7 1, “:'fl #

(c) ";— == ¥ ﬂﬂd u7=%'(‘g")= iz

(d) For any flvid particle E=-§-} Vv
which with V=0, w=0 becomes

7 =(4 HL%%)Z‘ =(-% +-£X—1)? =0

4r
U-)fp.s ._- f=33
Z.o
)L Fig.l
0 L 1 1 1
’ x, f# 1°
3.—
u’fp.s
2T X=7f-f
- Fia.2
19,
i 1 1 1
OO | 2 3 i
t. s

(e) The particles flow info areas of higher velocily (see fig.1),
but at any given location the velocity /s decreasing in fime
(see Fig-2). For the given velocity field he Jocal gnd

convective accelerations are equal and ogposite, giving

zero acceleration Hrovgh ovt.
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4.34 A hydraulic jump is a rather sudden change in depth of a Hydraulic jump

liquid layer as it flows in an open channel as shown in Fig. P4.34
and Video V10.12. In a relatively short distance (thickness = £)
the liquid depth changes from z, to z,, with a corresponding change
in velocity from V; to V,. If V; = 1.20 ft/s, V, = 0.30 ft/s, and
¢ = 0.02 ft, estimate the average deceleration of the liquid as it
flows across the hydraulic jump. How many g’s deceleration does
this represent?

B FIGURE P4.3%4

-

- = . — " . J“
a=3L VW sowith Veuwl Fegqi-usy?

Without knowing the actval velocity distribotion | u =tcx)
the acceleration can be approximated s

= 20\H
U (v ey (i) - £(r.20 +o50) 8t (030=1.20)F

ay = U 3x * 7 0.02
e
g _ ssedh
Thos, ;x T 32.2 g L]

$-27
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4.35 A fluid particle flowing along a stagnation streamline, as

shown in Video V4.9 and Fig. P4.35, slows down as it approaches Stagnation point, s = 0

the stagnation point. Measurements of the dye flow in the video { Fluid particle
indicate that the location of a particle starting on the stagnation gV J/
streamline a distance s = 0.6 ft upstream of the stagnation point ~ .

at t = 0 is given approximately by s = 0.6¢~%%, where ¢ is in
seconds and s is in feet. (a) Determine the speed of a fluid ® FIGURE P4,35
particle as a function of time, Voarticte(t), as it flows along the

steamline. (b) Determine the speed of the fluid as a function of
position along the streamline, V = W(s). (¢) Determine the fluid
acceleration along the streamline as a function of position,

a, = ays).

@ With s=06¢% it follows that z
gf = 0,6 (-0.5) e"a'” =-0.3 8,0.5 /s

Knrﬁ'de &

(b) From part (a), g :
V= (#0'5)[0"6 8’0'5 ] Where S =0.6 o

Thus,
V= {-O.SJ[S] , or V/=-055 [i/s where s~ ff

dV
(¢) For steady flow, q =V gs
Thus, with V=-055 4nd %‘ -0.5

4. = (-0.5s)(-0.5) = 0.25 s H/s* where s~ 14

NMote: For S >0 4, is par;’f/'ve — fe parffc/e-'r acceleration is fo the /’/'757‘.
Since the particle is moving fo the lefl a pasidive a; for $his case
implies that the parficle is decelerating (as if must be for 4his
Sfayna'fion painf flow).

H-28



4.36

4.36 A nozzle is designed to accelerate the fluid from V, to
V, in a linear fashion. That is, V = ax + b, where @ and b are
constants. If the flow is constant with V, = 10 m/s atx, = 0
and V, = 25m/s atx, = 1 m, determine the local acceleration,
the convective acceleration, and the acceleration of the fluid at

points (1) and (2).
With Uu=ax +b 3 l/=0J and w=0 7%9 acce!emﬂon a b1
can be written as
- A _a_&
a=ayl where a,=U73x.
Since w=V,=10%" af x=0 apd w=Vy=252 4} x=/ we obtain
0= 0 +}
25=a+b so that a=15 and b=10
That is, u=(I5x+10) 2  where x~m | so thal from Eg0)

ay = (15x+19) ¢ (15 F) = (225x+150) I
Note: The local acceleration is zero

convective acceleration is 3% { = (225x+150) 7 n

9

“5 and the

LS
g

A X=0, a=1500 & ; atx=/m , a=375¢8

429
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4.37  Repeat Problem 4.36 with the assumption that the
flow is not steady, but at the time when V=10 m/s and

V,=25m/s, it is known that 9V /ot = 20 m/s* and
aV,/at = 60 m/s>.

With u=u(x,t) , v=0, and w=0 the acceleration Zf?%/ 2 4%

can be Wr:'ffen as
a=ayl where g, = —{- ax , with w=alt)x +b1). (1)
At the given time (t=t) wu=V =102 af x=0 gnd u=V,=252 41x=Im
ThUs) 10 =0 + blt.)

25 =alt,) +bl,) so that alt,)=/5 and bt4,)=10
Also at t=t£, , ‘ju :%L 20 £ af x=0

and % = JV =60 %5 af X=/m  MNote’ These are local

‘ accelerations at time t<t,
The convective acceleration at X=0 (£g.(1) is

3% = (ax+bh)(a) =(/5(0)+10) 215 L)=1502
while at X=1 it f:s
“ax = (15() +Q) (15 &) = 3754

The flvid acceleration at t=to is

(T +i afo =(20+t150){ L& = 1708 %5 at x=0

and
=(60+375)0 & =4951-% at x=im

4-30
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4.38 An incompressible fluid flows past a turbine blade as shown J
in Fig. P4.38a and Video V4.9. Far upstream and downstream of 1.5,
the blade the velocity is V,. Measurements show that the velocity of

the fluid along streamline A—F near the blade is as indicated in

Fig. P4.38b. Sketch the streamwise component of acceleration, a,, Vo ———————————
as a function of distance, s, along the streamline. Discuss the im-
portant characteristics of your result.

==
|

|

|
5 E

|

o
Dk
aF——
ob——————
m
w pb——————

—
o

‘ M FIGURE P4.38
(a)

a, = Vgsz where from the figure of V =Vis) the function

g}K has the fo//owinj .s/Ja,oe‘

GfV'ZE P w D\ £ 7""’__

T/?G Hloid deae/erafes from AteC , acce/gra{es from C to ﬁ} and
the decelerates again from D toF . The net acceleration from
Ato F js zero (z'.e:, 1{4 =V, =V),
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4.39 Air flows steadily through a variable x (in.)

area pipe with a velocity of V = u(x)i ft/s, where
the approximate measured values of u(x) are given
in the table. Plot the acceleration as a function
of x for 0 = x = 12 in. Plot the acceleration if
the flowrate is increased by a factor of N (i.e.,
the values of u are increased by a factor of N),
for N = 2, 4, 10.

simplifies to @ = a,7 where q,=u3%

X, in. u, ft's  du/dx, 1/s u du/dx
0 10 2.4 24
1 10.2 18 184
2 1:3 59.4 772
3 20.1 91.8 1845
4 28.3 49.8 1409
5 28.4 -15 -426
6 25.8 -49.8 -1285
7 20.1 -50.4 -1013
8 17.4 -39.6 -689
9 13.5 -33 -446
10 11.9 -19.2 -228
11 10.3 -11.4 -117
12 10 -1.8 -18
13 10 0 0

The results are plotted on the next page.

(con't)

Since w=ucx) , =2 and w=0 it follows that

u (ft/s) x (in.) u (ft/s)

0 10.0 7 20.1 -

k 10.2 8 17.4

2 13.0 9 13.5

3 20.1 10 11.9

4 28.3 11 10.3

5 284 12 10.0

6 25.8 13 10.0
= VoV

The valves U are given in the table ; The corresponding valves
of %ff can be obtained by an approximate numerical ditferentiation.
The results are shown below for the given date (6. with N =/).

Note that since ay=u$% it follous that and increase iy velocriy
trom & to Nu jnereases the acceleration trom ae 10 N?qy

(1

H=32
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(con't)

30

25

20

u,ft/s 15

10

L 2

100

80
60

40

du/dx, 1/s 20 7/
0

-20

-40
-60

'__A—_-e—

2500 -
2000 -

x, ft

N=]

1500

For N #1 multiply g, |

1000

by V2

/
£

ax 1 stAz 500 —K/
0 4

500 9

&

L 4

-1000

-1500

L-33
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*440  Asis indicated in Fig. P4.40, the speed
of exhaust in a car’s exhaust pipe varies in time @99
and distance because of the periodic nature of the ! \ L

i

5 ft '
1
=

V= Vyll + ae=5% sin(w)]

engine’s operation and the damping effect with |
distance from the engine. Assume that the speed
is given by V = V|[1 + ae™* sin(wt)], where
Vo=28fps.a=0.05b=02ft"and w = 50,
rad/s. Calculate and plot the fluid acceleration at FIGURE P4.40
x=0,1,2 3,4;and51t for 0 =t = n/25s.

X

Since wu=u(x,t) , v=0_and w=0 it follows #hat

S _ W B0

Thusj with u=V,[l +a e’bxs/}; (wt)] Eg, () gives

ay=Vpaw &% oas wt) +V,[1+a e’bxs/}v(wf)] Vyoa (-b) € sin(wt)
=V a e'bx[au cos Wt) =V, b sinwt) (1 +ae " i (wt))]

With l/0=éf?:’§i , a=0.05 b=02 ?’; , and w=50%“—d

this becomes

ay = 0.4 e-o‘zx[_S'o cos(50t) = /.6 sin (50f)(l+0.05 é’o'zxs,',? (505))} fgi’_ @
where t~s and x~ f}
Plot ay from £4.(2) for 0t <& s with x=0,1,23 % ands

P

An Excel Pr‘oyf’am Was vsed fo c:q/ay'/a fe dy from ,E} (2), The resylte
are shown on the next page.

(con't)

=34




AT

0.00

0.02

(con't)
Acceleration at various x locations, ft/s"2
ts x=0ft x=1ft x=2ft x= 3 ft X =4 ft x=5ft
0.000 20.00 16.37 13.41 10.98 8.99 T.ab
0.005 19.22 15.73 12.88 10.55 8.64 7.07
0.010 17.24 14.11 11.56 9.46 .75 6.34
0.015 14.18 11.61 9.51 7.79 6.38 5.22
0.020 10.24 8.39 6.87 5.63 4.61 307
0.025 5.67 4.65 3.81 3.42 2.565 2.09
0.030 0.74 0.61 0.51 0.42 0.34 0.28
0.035 -4.23 -3.46 -2.83 -2.31 -1.89 -1.55
0.040 -8.93 -7.31 -5.98 -4.90 -4.01 -3.28
0.045 -13.08 -10.71 -8.76 -7.17 -5.87 -4.81
0.050 -16.42 -13.44 -11.00 -9.01 -7.37 -6.04
0.055 -18.73 -15.34 -12.56 -10.28 -8.42 -6.89
0.060 -19.89 -16.29 -13.33 -10.92 -8.94 -7.32
0.065 -19.81 -16.22 -13.28 -10.87 -8.90 -7.29
0.070 -18.51 -15.15 -12.41 -10.16 -8.32 -6.81
0.075 -16.06 -13.14 -10.76 -8.81 -7.21 -5.90
0.080 -12.61 -10.32 -8.45 -6.91 -5.66 -4.63
0.085 -8.37 -6.85 -5.61 -4.59 -3.76 -3.07
0.090 -3.62 -2.96 -2.42 -1.98 -1.62 -1.32
0.095 1.36 1.12 0.92 0.75 0.62 0.51
0.100 6.26 513 4.20 3.44 2.82 2.3
0.105 10.77 8.82 7.22 5.92 4.84 3.97
0.110 14.61 11.96 9.80 8.02 6.57 5.38
0.115 17.54 14.36 11.76 9.63 7.88 6.45
0.120 19.38 15.87 12.99 10.64 8.71 7.3
0.125 20.01 16.38 13.41 10.98 8.99 7.36
Acceleration, a,, vs Time, t
X, H
- o] 1
15 = / i Y
i, AT
==~ \~\ "f’/ 5 ”'.'j 3
10 SR /'ﬁ-"s{‘
SR S an -
5 ﬁ\ A . :.7 |
“o
£ 0
mx
-5
-10 -
:} -15 4
-20
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4.4 Water flows over the crest of a dam with speed V as shown
in Fig. P4.4l, Determine the speed if the magnitude of the
normal acceleration at point (1) is to equal the acceleration of

gravity, g.
FIGURE P44|
2 1
an = -%— or WI.TIA an.-:32.2 —Ei;,_ 5 V: Va/; ﬁ :1/(32‘2%){2{”
= g.opt-
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4.42 Assume that the streamlines for the wingtip vortices from
an airplane (see Fig. P4.19 and Video V4.6) can be approximated
by circles of radius r and that the speed is V = K/r, where K is a

constant. Determine the streamline acceleration, a,, and the normal
acceleration, a,, for this flow.

B FIGURE P4.|q R=r

d. = V%) Wher'e} Since V’-*;,{‘ ﬂ-—’ﬁ
Thus

4

4. = 0
/qr/.ro)
2 2
K/ K
a” = -7%— = _(___r_;_). = 3
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4.43
of V, = 40 m/s as shown in Fig. P4.4:3 From a more advanced
theory it is found that the speed of the fluid along the front part
of the sphere is V = 2V, sin 6. Determine the streamwise and
normal components of acceleration at point 4 if the radius of
the sphere is @ = 0.20 m.

A fluid flows past a sphere with an upstream velocity

FIGURE P4.432

V=3V, sind =35 (402) sinb = 60 556 &
V* _ (60 sin40°)*

m,
= = 74402,

n="%r - 0.2m
and

IV 28
4s =V *3-3\4 (605//76’) ds ) where -gy-=,,—-—g
From Eq.(1), 4L = 60 056

9
Also s =a6 —0.2 6 m, where 6~rad , so that 3¢ e

Thus, for 8=40°
= (60 sin#0°2)(60cos40° ) (o.?l.M) = 8860 %

(N
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*4.44  For flow past a sphere as discussed in
Problem 4.43, plot a graph of the streamwise ac-
celeration, a,, the normal acceleration, a,, and
the magnitude of the acceleration as a function
of 0 for 0 = § = 90° with V, = 50 ft/s and a =
0.1, 1.0, and 10 ft. Repeat for V, = 5 ft/s. At
what point is the acceleration a maximum; a min-

imum?
dy = "7%2 G %asm 6): Zz‘:fz sin“® 0,
and a5=v—3l’=v%¥§:?- , Where ag =*‘23'\4cast9 and s=aé
T, oS =T
ds = ( V, sinb (2 aos@) 7] % sinb cos® (2)

Hence the magnitude of the acceleration is

— - R . ‘n * . i 2,
|a| =]/an"+aj = Z—K;’ ]/Slﬂ O +sin’6 cos*6 = 9; Sm01/sm28 +c0s’6
N 9 V6

= =1 3 7 = = a = = =qp°

(2) |a]= Za Sin¢ Thos, }almm =0 qf 6 2, }almax Zq at 6=90

An Excel P/‘ag/‘am was wed 4o calovigfs Qs , 8y, 404 4 Trom
Eqns. (1)2) and (3). The resvlts are shown Je/aw The resitte for

other valves are similar if the facter V,%/a is accomied for.
The followirg data is for V, =St a=1H

0, deg a, ft/s® a,, f/s?® a, ft/s’
0 0.0 0.0 0.0 Acceleration vs Angular position
5 0.4 4.9 4.9 -
10 1.7 96 98 60 Vv =51/s
15 38 141 146 ' a=1#
20 6.6 181  19.2 50
25 10.0 215 238 o
30 14.1 244 281 £ 40 = normal accel, fts42 |
35 185 264 323 €
40 232 20T 36.2 '% 30 - = =streamwise accel,
45 281 281 398 S ftis2
50 330 277 431 @ 20 - = = = accel, fi/s"2
55 377 264 461 § L— )
60 422 244 487 10
65 462 215 510
70 497 181 5209 0
75 525 141 543
a5 fap dia cha 0 10 20 30 40 50 60 70 80 90
85 55.8 49  56.0 0, deg
90 56.3 00 563
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*4.45 The velocity components for steady flow through the nozzle
shown in Fig. P4.45 are u = —Vyx/¢ and v = V, [1 + (y/€)],
where V;, and £ are constants. Determine the ratio of the magnitude
of the acceleration at point (1) to that at point (2).

BFIGURE P4.45

(1) aﬂv@;ﬂ*dyz W/Jcre AR

U =CEa) -2 v L0 < (B)x
cmd
ay =u Y % = R+ V14 F1 (%) = ($FiLey)
Thus, from Eq, (/),

4 =(3) Vi (B

so that,

a, = -1') m %’if
and

Hence )

4 - 4o
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*4.46 A fluid flows past a circular cylinder of radius a with an
upstream speed of Vj as shown in Fig. P4.46. A more advanced the-
ory indicates that if viscous effects are negligible, the velocity of the "
fluid along the surface of the cylinder is given by V = 2V, sin 6. S
Determine the streamline and normal components of acceleration
on the surface of the cylinder as a function of V;, @, and 6 and plot
graphs of a; and a, for 0 =60 = 90° with V, = 10 m/s and
a = 0.01,0.10, 1.0, and 10.0 m,

BFIGURE P4.46

Vz: (2 Yo sin6)" _ 4k sin*6

dn= "% a a

and

as = V%=V%‘%% p where %-12]/,,5039 and s=a6
or -é-e- =L

Thus, 9 " a

_ 4%

d, = (2V, sin6)(2V, 5036)?2!- & $iné cosé

These resvits with V,=102 and a=o. ol , 0.19, 1.0, and 10.0m
are plotted below.

a=001ma=010ma=10m a=10m a=010ma=010ma=10m a=10m

6.deg  a, f's® a, fts® a, ft/s?  a, fils? an, f/s?  a, f's® a, f/s?  a, fUs?
0 0 0 0 0.00 0 0 0 0.00
8 3473 347 a8 3.47 304 30 3 0.30
10 6840 684 68 6.84 1206 121 12 1.21
15 10000 1000 100 10.00 2679 268 27 2.68
20 12856 1286 129 12.86 4879 468 47 4,68
25 15321 1532 153 15,32 7144 714 71 7.14
30 17321 1732 173 17.32 10000 1000 100 10.00
35 18794 1879 188 18.79 13160 1316 132 13.16
40 19696 1970 197 19.70 16527 1653 165 16.53
45 20000 2000 200 ©20.00 20000 2000 200 20.00
50 19696 1970 197 19.70 23473 2347 235 23.47
55 18794 1879 188 18.79 26840 2684 268 26.84
60 17321 1732 173 17.32 30000 3000 300 30.00
65 15321 1532 153 16.32 32856 3286 329 32.86
70 12856 1286 129 12.86 35321 3532 353 35.32
75 10000 1000 100 10.00 37321 3732 373 37.32
80 6840 684 68 6.84 38794 3879 388 38.79
85 3473 347 35 347 39696 3970 397 39.70
90 0 0 0 0.00 40000 4000 400 40.00

(con't)
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(con't)

as, m/s?

100000

10000

1000

100

10

a;vs 6 a,vs 0
100000
T
\ /\/
| 9 Y | Wi A
i i
;/ \\ 10000 - |
/ \ !’l 1‘..__
: 1 —
| [ |
| [\ K
| A l
AL
yi
7 \\ 7
] \ 7
> \ 1000 '
7
f
; “ a=001m Il a=001m
| ' 1 — = —=a=010m -E l 1 T T T LF ———=a=0.1m
------ a=10m z I e g« e =~ g =M
1]
¥y —-—-a=10.m ,' J = ca=ilm
o] 5 ‘
! B
100 CEMRAnn
g 1 + | N -
: ' : 1
_—d { ]
1T T H |
1A
1
| I f(
’ N 1
¢ ‘\ /( |
| \ | ¥ '
li' I \ 10 {
_.T'__._‘r_ B 4 -
L ‘ A4 |
T I|_| A B
HE
K
I | | |
i
. IF
|| L
1 * bt |
0 50 100 0 50 100
0, deg 0, deg
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4.47 Determine the x and y components of
acceleration for the flow given in Problem 4.1}.If
¢ > 0, is the particle at point x = x, > 0 and
y = 0 accelerating or decelerating? Explain.
Repeat if x, < 0.

Since u=c(x*~y?) and v= —2cxy it follows that
a=al taf , where |

ay = %Elé +u,%% + v-g% = c(X*-y*)(2ex) +(-2cxy)(-2cy)
or s
a, = 2¢°X(x"+y?)

and
0y=%t£ +u.;i)¥ +v%§ =c(x*-y*)(-2cy)+(-2cxy)(-2cx)

or
qy :2c’*y(xz+y1)

For X=X, and y=0 we obtain‘
U=ORE | y=0

and
0X= 262)(03 3 ay=0

J

Thus, with ¢>0 and x,>0 it follows that w>0, ¢,>0; i.e, the

flvid s accelerat Ing.
With >0 and X,<0 [t follows +hat y >0, ay<0; ¢.6, the

Flvid is dece!era‘h'nﬁ-

Y43
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"'I 4.48 When flood gates in a channel are opened, water flows

along the channel downstream of the gates with an increasing
speed given by V = 4(1 + 0.17) ft/s, for0 = t < 20 s, where 7
is in seconds. Forr > 20 s the speed is a constant V = 12 ft/s.
Consider a location in the curved channel where the radius of
curvature of the streamlines is 50 ft. For t = 10 determine
(a) the component of acceleration along the streamline, (b) the
component of acceleration normal to the streamline, and (c¢)
the net acceleration (magnitude and direction). Repeat for
t = 30s.

V==4(1+0.1t) H/s for 0<t2205 and V=12 /s for { >204

0 oV _
a, = V;:qz +%¥ where $&=0

Tﬁus’

a, = %\é and a, = %—J where R=50f}
(1) For t =/0s
ft

() a5 = %E =4(01) =045
(b) a, = V*/R=[+1+0.100)] F+*/s* /(50Ht) = 1.2 £}/,
and ¥ ¥ 5 g 12 Ya

(c) a'—‘(ﬂ,ﬁ taq.) ’-5[( o.ﬁ‘%f-,-_) +{/.;_g.l_f;) ] =)

(2) For £ =30s:

(a) Since Vv=/2 1/ =caﬂ¢fam{ *g‘{\{-"o and %—:‘;\'—" =0 <o thet
4= Vet <0

(b) a, = VR = (12 f16)/(508) = 2.88%8,

and % .
fe) o= (anz-ata&’-) =g, =286

QY

-t
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4.49  Water flows steadily through the funnel shown in Fig.
P4.44, Throughout most of the funnel the flow is approximately
radial (along rays from O) with a velocity of V = ¢/r?, where
r is the radial coordinate and c is a constant. If the velocity is
0.4 m/s when r = 0.1 m, determine the acceleration at points
A and B.

FIGURE P4.49

A
Also, a,=VIE=-V 5  where V=-5
Since V=048 when r=0.Im it follows that

BN /\+ A h =
a=ann G_S-S,Wef'e an”

3
c=Vr? ':(O.‘thg’?"—)(O.Im)ﬁ="‘X/0'3—f~<§L , or V=
Thus, )
::_(—C-) L2c ) _ 2¢
LA ¥ rﬁ)" Ps
At point A 3
i Ca(yxi Y 3302
ds — (0l m)® e 0lm
A.
At point B:
=3 m3 2
20”5 )" _ Pl 0/lm
ST (o.147m ——S
0

H4x)0"

=0 since K=o (i.e, the streamlines

are straight)

3

Fz 5, where rom

0.l12m

2 z
'“oaﬂ/("'” +(0.06)

= 0.1167m

H=t5
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4.50  Water flows through the slit at the bottom of a two-
dimensional water trough as shown in Fig. P4.50, Throughout
most of the trough the flow is approximately radial (along rays
from O) with a velocity of V = ¢/r, where r is the radial co-
ordinate and c is a constant. If the velocity is 0.04 m/s when
r = 0.1 m; determine the acceleration at points A and B.

FIGURE P4.50

e v? . . :
a =da, n +4 §‘J where 4n=% =0 since K=0(le, the streamlines

W Y, - are siraight)
Also, as=V3s ==V 3r, where V==

Since V= 0.042 when r=0.Im it follows 1hat
- 3 m2 410
c =Vr =(0.042)(0.Im) = #x16°Z  op V= 2 where r~m

r 3.
T/’)us,
c 3
a,=-(F)r)=5
{ point A
il gy 14 s 0
At point B 1
P (4x10°>5)* 3im

&= " (ozmp = 200X0 -G

H-Hb
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4.51  Air flows from a pipe into the region Disks & |
between two parallel circular disks as shown in

Fig. P4.5L The fluid velocity in the gap between 777777, - < A_» -
the disks is closely approximated by V = V,R/r, / s | /:// - ¢
where R is the radius of the disk, r is the radial ~ G2 ’/E \ %:\ v
coordinate, and V is the fluid velocity at the edge Pipe

of the disk. Determine the acceleration for r =

1,2, or3ftif V, = 5ft/sand R = 3 ft. FIGURE P4.51

2 - -
a = a, n+ as §, where ap -'-“‘%5' =0 since K= (d.e, the ;sff‘eamlmes
oV W VoR are straight )
Also, a,=V 55 =V3F, where V= =

Since V=51t and R=3# , V=22 & here r~tf

T/n/s 5 - fty2 2

e PR _ (5SS (225 u
aiz(%\ﬁ)(-“/_;&&)r-——%':" Srsﬂs o r3 ‘5—21" h
ﬁ{f‘zjﬁj @=—225%

Al r=2f, aq;=-28.4

At r=38, g-= -8-33%
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4,52 Air flows into a pipe from the region between a circular

disk and a cone as shown in Fig. P4.52. The fluid velocity in the

gap between the disk and the cone is closely approximated by Cone
V = V,R*/r?, where R is the radius of the disk, r is the radial

coordinate, and V, is the fluid velocity at the edge of the disk. _
Determine the acceleration for r = 0.5 and 2 ft if V, = 5 ft/s Disk

and R = 2 ft. \ S~/

B FIGURE P4.52
Z

Thos with V= VY,R/r? it follows that
g = = (Vo Rp*) (- 2V, R/) = 2V, *R*/r*

= 2(SHEY (240)°/r® = 800/r® £ yhors r~
Afr= O,SHJ g = 900/(,5)‘% = 25500%

ﬂz’r=2f{ a, = 800/(2,0)5,& -.—25%

‘rl

R |

a=an+a 38 where ay -‘-’% =0 since R=e (e the streamlines
v _ W . are sifajght)
Also, q = V35 = -Vyr since r ands are pointed in opposite directions.

Y-8
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4.53 Air flows steadily through a long pipe with a speed of
u = 50 + 0.5x, where x is the distance along the pipe in feet, and
u is in ft/s. Due to heat transfer into the pipe, the air temperature, T,
within the pipe is 7' = 300 + 10x °F. Determine the rate of change
of the temperature of air particles as they flow past the section at
x = ft.

S 5 u
DT it s & el hore

J

pt ot
u=50+0.5x V=0 w=0, and
T =300+10x

Thos,

=
%:04,“2; 040

oF
= (50+0.5x) (]0) = 500 +5 x S, Where X~
Hence, at X=%f1

DT _ 500 +5(5)= £25_F

DE 5

449
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4.54 A company produces a perishable product in a factory
located at x = 0 and sells the product along the distribution route
x > 0. The selling price of the product, P, is a function of the
lenght of time after it was produced, t, and the location at which it
is sold, x. That is, P = P(x, ). At a given location the price of the
product decreases in time (it is perishable) according to aP/ot = —8
dollars/hr. In addition, because of shipping costs the price increases
with distance from the factory according to 8P/ax = 0.2 dollars/mi.
If the manufacturer wishes to sell the product for the same 100-dollar

price anywhere along the distribution route, determine how fast he
must travel along the rout,

P
%E =—%E tUsx , where

—————

aP == dollars and %? =0.2 dollars

at hr mi P _
But, P =100 dollars anywhere, S that 37 =
Hence,

oP 4P

=50 TWax  or

_ kst (-8 do//ars//?rl_
U==TFmx = ( 0.2 dollars/mi)

mf
= 404,

4-50
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4,55  Assume the temperature of the exhaust
in an exhaust pipe can be approximated by T =
Tl + ae®™)[1 + ¢ cos(wt)], where T, =
100°C,a =3,b =0.03m™", ¢ = 0.05, and w
= 100 rad/s. If the exhaust speed is a constant 3
m/s, determine the time rate of change of temp-
erature of the fluid particles at x = 0 and x =
4 m whent = 0.

Since u=34% , v=0 , and w=0 it follows that
DT _ 3T .o o oT AT )T
5F 33 +V-VT = 3f+uax+|’ay W'ei_é_‘_a?"+“ax

D_f_ (’-}-ae )(—Cw_gf})@f))+u7;((+c COS(luf)J("ab e*bx)
When £=0 :
DT - —gbuT; (1+c) €™

DI

—_—

DI —(3)(0'03_”’—")(3Z'SE')“UO’JC)(HO,OS) e_-a.a_ax

—_— o
=28.4 ¢ %93 SC , where X~m

, or wilh the given dafa,

, BF=284% 4t x=0, t=0

DT ==28.1 S- at X=4%m  t=0

-5




4,56 4.56 A bicyclist leaves from her home at 9 A.M. and rides to a
beach 40 mi away. Because of a breeze off the ocean, the tem-
perature at the beach remains 60 °F throughout the day. At the
cyclist’s home the temperature increases linearly with time, go-
ing from 60 °F at 9 A.M. to 80 °F by 1 P.M. The temperature is
assumed to vary linearly as a function of position between the
cyclist’s home and the beach. Determine the rate of change of
temperature observed by the cyclist for the following condi-
tions: (a) as she pedals 10 mph through a town 10 mi from her
home at 10 A.M.; (b) as she eats lunch at a rest stop 30 mi from
her home at noon; (c) as she arrives enthusiastically at the beach
at 1 pM., pedaling 20 mph.

From the given data the femperatore, T,
varjes as a fnction of location,x, and

time, 4, as shown in the figyre.
47 ;9T 60°
ThUSJ %tz =37 tUay
(a) At X =/0mi and t=10am, ot
Il = (75°-6%°) _ ;s “h ol & /%
ot L hr ¥ ar . 20 {CJ‘; ,
€0 40
”},’%d (60°45°) _ _ Loy . — 7
&l = S =g Ymi
ax om eaoh
Thus, wih w=lomi/hr, 1

X,mi
%'{: ’Iré Vhr 105 (- 4 */mi)
= 2.5 %hr

a7 _ (65°-40") _ &,
(b) At noon with =0 (resting) and § = — 5.~ =% Vhr

T v
5wl < =S =t

. . o7 _ a7 _ (60-80°)
(c) Upon arival al the beach with w=20mph | <1 =0, and 35 = -
=-0.5 %mi

—mj:‘ a—r 4U3-’-(- = “3——' -'—'20%("0-5 t-,/ml.) = #/0%,‘

Y-52
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457  The temperature distribution in a fluid is given by T =
10x + 5y, where x and y are the horizontal and vertical coor-
dinates in meters and T is in degrees centigrade. Determine the
time rate of change of temperature of a fluid particle traveling
(a) horizontally with u = 20 m/s, v = 0 or (b) vertically with
U= 0 v = 20 m/s.

DT IT ;;I g

Dt"at +aax+vdij/)ere 0

'c
Thos, if w=20" and v=0, then BF =U$F L (2022)(1035) =200 -£
i if =0 and v=20% they £ v,,), - (202)(57%)=/00 5

b-53
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4.59 The wind blows through the front door of a house with a speed
of 2 m/s and exits with a speed of 1 m/s through two windows on
the back of the house. Consider the system of interest for this flow
to be the air within the house at time ¢ = 0. Draw a simple sketch
of the house and show an appropriate control volume for this flow.
On the sketch, show the position of the system at time ¢ = 1 .

Since the air enters af 2m/s and leaves at Im/s, the air
at the entrancs and exit has moved 4=V, 8t “2mfe (/s)=2n
and L, =Vi. 4t = [m/s (Is) <Im, res em’/ﬁ/}' The contro/
Volume, which corncides with the ¢)/d€/n att=0, and the

sy dem at £=1s are <hown below.

: ol
:‘ Ay | Cowered Lrw
\ Poareh

5 |
n @ | | HIL
'L__. :—-.—-..- NiETe E "
W %T"/m 1\ j-—\-'glm;ﬁ':::-:-.——-_;:" “_""":"'“
Im fx g o S

N
mem

PRSI caﬂf/‘a/ I/
system af $=0

= -_.._--__,‘gy\gfem af t=dt=/s
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4.60

4.60  Water flows through a duct of square cross section as B B p B F g
shown in Fig. P4.60 with a constant, uniform velocity of V = ;
20 m/s. Consider fluid particles that lie along line A—8 at time )
t = 0. Determine the position of these particles, denoted by line 4 =" 08 m
A'~B', when 1 = 0.20 5. Use the volume of fluid in the region s
between lines A—B and A'—B’ to determine the flowrate in the
duct. Repeat the problem for fluid particles originally along line A A C c’ E F
C-D; along line E~F. Compare your three answers.

FIGURE P4.60

Since V is constant in time and space, all particles on line AB
move a distance V=V ot =(20-2)(0.25) = 4 from =0 fo }=0.2¢
Thus, the volime of ABA'B’ /s Vana = (0.5m)*(%m) =100 m*
sothat

Q = Yasasu’ _ l.oo m’

at 0.2s

Similarly from t=0 tot=02s the fluid along lines CD and EF

move to CD apd E T:respech'ueafy. Also, Yopern' =Verrwr = Yasase
so that we obtain Q"’% u

‘5”% f‘é‘yaf“d/t?-fs w/mh /r'ne we consider.

3
m:
= 5.0

46l

4.61 Repeat Problem 4.60 if the velocity profile is linear from 0 to
20 m/s across the duct as shown in Fig. P4.61.

FIGURE P4.6!

From =0 to t=0.1 s the particle initially at B travels a distance
b= Vot =(202)(0.15)=2m as show, Particle A remain fixed since

Va<0. Since the velocity profile is linear, line AB remains straight, bot
Hits" as imdicated. Thus, the volme of flwd crossing the initral line

AB is -V‘?BB’ =5 LA =4 02m)0.5m)*=0.25n° sy that
Q = ABB _ 0.25m?* iy

3
et m . " .
at ods  ~25% Since J‘épn" EFF’ '%BB’ it

follows that the same valve of Q is obtained regardless which volume
is vsed.

4-55
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4.62  Inthe region just downstream of a sluice gate, the wa-
ter may develop a reverse flow region as is indicated in

t
Fig. P4.62and Video V10,4 The velocity profile is assumed to 1.8 ft
consist of two uniform regions, one with velocity V, = 10 fps ;
and the other with V), = 3 fps. Determine the net flowrate of el et 1.2 ft
water across the portion of the control surface at section (2) if | \ D 77
the channel is 20 ft wide. M (2)
V, = 10 ft/s

FIGURE P4.62

Q= VA, - VA = (108)(1L.28)(2081) —(38)(1.81)(20f)
= /32 T'Fsﬁ

4,63 |[4.63 Attimet = 0 the valve on an initially as p = p.(1 — e~*), where b is a constant, de-

empty (perfect vacuum, p = 0) tank is opened  termine the time rate of change of mass within
and air rushes in. If the tank has a volume of ¥,  the tank.

and the density of air within the tank increases
-bt 2
For t20 , = (90]:/ =g ] so that M =mass of air /n fank

- = JVfJ:'oJV; [ - L
Thus, %n“=po’vf, ebt ¢ 6 Li-e]

H-5¢



465

4.65 Water enters the bend of a river with the uniform veloc- TR g,
ity profile shown in Fig. P4, 65, At the end of the bend there is
a region of separation or reverse flow. The fixed control vol-
ume ABCD coincides with the system at time r = 0. Make a
sketch to indicate (a) the system at time r = 5s and (b) the

fluid that has entered and exited the control volume in that
time period.

=

‘r YY Y

F Y ¥V

=

WMFIGURE P4.65

Since the distance the flvid travels in time dt=5¢ is = Vdt  the flud
at A-B when t=0 has traveled 1=(Im/s)(5s) = 5m when t=di<&s. Ths
is shown in the figure below. Similarly, the fvid acrose C-D at +=0 has
moved as indicated when t=dt =Ss. Thys 1he 5ouna/my of the system
at t=5s are as show in the figure below. The flvid that enfered and
exited the control volsme i hat time period is also shown.

B'_‘ B/

Flvid tha} has

entered

control

valume A =

S,
,//:;:\. c’
— — — control volyme and Floid that has

.sysfem q-} t=0 exiv‘ea( 601)‘//‘0/

"""" 5)"”!6”’ at t=5s enli’ereddca/}??'iu ’
Volyme
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4.66 A layer of oil flows down a vertical plate as shown in
Fig. P4.66 with a velocity of V = (V,/h?) (2hx — x*) j where

Vi and h are constants. (a) Show that the fluid sticks to the plate
and that the shear stress at the edge of the layer (x = h) is zero.
(b) Determine the flowrate across surface AB. Assume the width
of the plate is b. (Note: The velocity profile for laminar flow Plate — "
in a pipe has a similar shape. See Video V6.13)

ey i e

a) /U":’%/%(Z/?X-Xz) }% fg%
Thus, i
/y-/ = —}{%(0—0) =0 and \i ;

X=0 B FIGURE P#.44
Tl =u %/511-{5[2/7 -2x| =0
x=h x=h X=h

Hence, the Flvid sticks to the plate and there is no shear

stress at 1he free surface.
h

x=h
b) @, =fﬂ/‘d4‘—‘fﬂfba/x = -\,f% (2hx -x*) b dx
X=0

o
or

h
Qpa = b [hxt-4x*| = §Y4hb
(/]

—_—
—  ——————

4-58
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&

4.67  Water flows in the branching pipe shown r-o-s "”-‘1
in Fig. P4.67 with uniform velocity at each inlet ~ ===
and outlet. The fixed control volume indicated = (
coincides with the system at time r = 20 s. Make -~ P
asketch to indicate (a) the boundary of the system Wi - 25mis 3 <
attime = 20.1s, (b) the fluid that left the control
volume during that 0.1-s interval, and (c) the fluid 0.6m
that entered the control volume during that time \/
interval.
— —— Control volume Vo = 1 mis

FIGURE P4.67
Since Vis constant , the flvid travels a distance 4= Vat i
time at . Thus, 4=V, at = (2-2)(20.1-20)s = 0.2m
L= Voat = (1 ) (201-20)s = 0.)pm
and b, = Vyat = (2.52)(20.1-20)s = 0.25

The system at 1=20.1s and the fluid that has entered or
exited the control volume are indicated in the figure below.

]
I

(1

flow into control vol.
.,

flow out of contrel vol. prd e )O.Zm

™
& 5.
— — — control volume NN

N Iy (2)
--------- system af £=20.1s N ; D’

flow into control vol,
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4.68  Two plates are pulled in opposite direc-

tions with speeds of 1.0 ft/s as shown in Fig. 0.2 ft—=——0.2 ft

P4.68. The oil between the plates moves with a BI&“ _16 1 fifs
velocity given by V = 10 yi ft/s, where y is in Control N i i

feet. The fixed control volume ABCD coincides Vo1ume\: 0-1 ft uly) = 10y s

with the system at time r = 0. Make a sketch to
indicate (a) the system at time ¢ = 0.2 s and (b)
the fluid that has entered and exited the control
volume in that time period.

FIGURE P4.68

Since V=u(y)i =10y it follows that the flvid flows in +he
X-direction a disfance of ax = U at = s0y (0.2) ff = 2y f{
from £<0 to t=0.25. The lines A-B and C-D (the epds of
the origma/ system location) deform info lines A“8’ and CL0" 4s
shown in the figure below. The portions of fhe system that have
entered and exited the control volume during this time are
indjcated,

g’ ]-— 0.2 f1 --l
aw ino vorirol ol «@‘\ N HI"_‘_': S f/aw out of control v,
Flow out of control vel, \‘ _ _‘l’ ' \' X
ﬁ{éﬁghgf__ug_;yﬁﬂﬁggp flow into control vol.

— — — — control volyme
----------- system at t=0.2s

440
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4.69  Water is squirted from a syringe with a speed of V = rzrsasesesrrrs
5 m/s by pushing in the plunger with a speed of V, =
0.03 m/s as shown in Fig. P4.69. The surface of the deforming -
control volume consists of the sides and end of the cylinder and
the end of the plunger. The system consists of the water in the

P
i eV = 5 mis

syringe at t = 0 when the plunger is at section (1) as shown. BT
Make a sketch to indicate the control surface and the system 0.08 m '
whent = 0.5 s. l-—

FIGURE P4.59

During the t =055 time interval the plimger moves 4=V it =0.05m
and the Wafer/‘m'//a/ﬂ/ at the ex/'f moVes fzsl/df =2.5m. The
corresponding control surfaces and systems at £=0 apd t=0.5s
shown in The figure below.

— — — control volume at t=0.5s

o sySfem af £=0.5s

4-6l
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4.70  Water enters a 5-ft-wide, 1-ft-deep channel as shown
in Fig. P4.70. Across the inlet the water velocity is 6 ft/s in
the center portion of the channel and 1 ft/s in the remainder

of it. Farther downstream the water flows at a uniform 2 ft/s

velocity across the entire channel. The fixed control volume

ABCD coincides with the system at time ¢ = 0. Make a sketch  © ft/s

to indicate (a) the system at time ¢t = 0.5 s and (b) the fluid

that has entered and exited the control volume in that time

period.

- Control surface

B FIGURE P4.70

During the t =0.5s fime interval the flvid that was along
line BC at fime t=0 has moved to the right a djstapce
L=V 1=24(os5) = /# Simitrly, portions of 1he
floid along lins AD have moved L= (0.55) = o.54/
and L= 6L (0.55) = 3{{, Th)s assumes fhe /;?‘ and
6 & flvid streams do not miy or mfermingle during fhe
0.5 time ipferval. See f/yure befow.

L m - e e ST ST T T -
(R A
e = 0
. . &
'

]

-‘I
o
Sim
|

|

flvid thet —17:

enfereclt s 3 -t flid that
ifﬂf;:nf;f; R T exiled condrl
0 .el “-‘fl
e 0.5 1 | P
-: l. I
D _D-_’—-._-:—r_-_—*-z -_—_*.——-..;-:.:"_'—_-_c—"‘”c./

fixed control volume
cecemeeee-. System af £=0.5s
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4.7/ Water flows through the 2-m-wide rectangular channel
shown in Fig. P4,7/ with a uniform velocity of 3 m/s. (a) Di-
rectly integrate Eq. 4.16 with b = | to determine the mass
flowrate (kg/s) across section CD of the control volume.
(b) Repeat part (a) with b = 1/p, where p is the density. Explain
the physical interpretation of the answer to part (b)

wwwww Control surface
BmFIGURE P4.7/

D B ={ obVi#dA /\ ; ()

CSout . y >
With b=/ and VA =V cos® s becomes J n
. c
Bouf =£€V60:t9 dA ﬂ(JVcosQ;EJﬂ
sVcasb A, |, where A, = fs(Zfb) 1=256| <
Cﬂ.s'em)(lm)
=(cas’8 )m?-

T/?US with V-—-?/b/-s‘
Bm‘ = (32) cos6 (L) m*(999 54,) 3000_/22

1]

b) With b=1/p Eq (1) becomes
j VA dh = Vesso dh= Veust 4,

ouf il
—(3’" cos6 (ma = 300—’”3
With b= ’/(O = _n_v_g_.g = ;ﬁ% it follows that “B = volme"

(e, b= H2) so f/}a (V-idh =8 i 1epresents e vofme
flowratle (m%s) from the control volome.
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4,72  The wind blows across a field with an approximate
velocity profile as shown in Fig. P4.72. Use Eq. 4.16 with the
parameter b equal to the velocity to determine the momentum
flowrate across the vertical surface A—B, which is of unit depth
into the paper.

15 ft/s

KO el K RNl AN RN LA K d RN

x ket Vet kvl

m FIGURE P4.72

2044

it
3, = [bV-AdA = (pV VAdA = [v, Lve)- £ (1#)dy
A8 ;
55 AB =
= ef\' Vzc/y
But, V=12y & for 0sy<iofi(ie, V=0aty=0; V=istafy=)0)
and V=/5:£t )cor ykloﬁ
7:&03, 10 20 3 10 10
E’M = P?[_(('fTSY) dy "'f(ls.)la/y]: e?[z.zs—g— +225Y }
o o 0 0

%
=0,00238 % H3 25 750, #* +2250 5 iy

—
—

aslvg ft
= ZMHEE 274t b
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