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1.1 The force, F, of the wind blowing against a building is given by
F = CppV?*A/2, where Vis the wind speed, p the density of the air,
A the cross-sectional area of the building, and Cpis a constant termed
the drag coefficient. Determine the dimensions of the drag coefficient.

F=CpViAs

ar

Cy=2F/0 VA, where F=mMLT™
e=mL
VLT

Thus, A=L*

Co Z(MLT™2) /LML NLT " (L] =ML T°

Hence , C, is dimensionless.

ford
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L2 Verify the dimensions, in both the FLT and MLT systems,
of the following quantities which appear in Table 1.1: (a) vol-
ume, (b) acceleration, (c¢) mass, (d) moment of inertia (area),
and (e) work.

3
(a) Vvolume = L

(6) acceleration = time rade of change oF velocity
i

I
M~
\I
3
I
~
\l

(¢) mass = M

(A) moment oFf 1nertia (area) = second moment oF Arex

= (L)) = LY

(€) work = Loree x distunce
2 EL
or with F=pLT"2
work 2 M L2T ™2
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1.3 Determine the dimensions, in both the
FLT system and_the MLT system, for (a) the
product of force times acceleration, (b) the prod-

uct of force times velocity divided by area, and
(¢) momentum divided by volume.

(a) force x acceleration = (F)LT™2) = FL T2
Since F2MLT™2 |
= -5) . 2_.-¥4
Force x accelemtion = 07['7— 2)[['7- 2): M1ET

[b) Force x Ve/ac,'/-y . (F.)[L:.—-I) - FL—/ o
a reéeaqa L
= (LT W) = pyy3
L= S

(C) Mamt';’nfam — Mass X Ve/acirly
vo/ume Vo lume.

s (YT = g7

& m)(1L T_’) B [~
L3

-3
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14  Verify the dimensions. in both the FLT
system and the MLT system, of the following
quantities which- appear in Table 1.1: (a) fre-

quency, (b) stress, (c) strain, (d) torque, and (e)
work.

[\6) .SfLP‘ES.S = Grea = iz
Since F=ML 7—2')
. omLT 12
\5%’-{55 = LZ. aaul ML 7-
(«c) ‘SIL)"&/J? = Charge i /ﬂ’j 7 = —L- 8 Z.o / a’imensxbn/es_g)
/eng 7% L —

[d) Jol’jlle = 'Forcc x distance = _;é_
= (MLT L) = MLT

(€) work = force x distame = L
= MLTL) = merr™?
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1.5 If u is a velocity, x a length, and ¢ a time,
what are the dimensions (in the MLT system) of
(a) dulat, (b) duldxot, and (c) [ (du/dt) dx?

du - LT . T "2
2t T :
) 2% = LT . 1-2

ox 2t (L)(T) N

= : 2_.-2
«) fat dx = ) L /-

=5
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L6 If p is a pressure, V a velocity, and p a fluid density,
what are the dimensions (in the MLT system) of (a) p/p, (b)
PVp, and (c) P/ PVZ?

y paLE == 2 -2
(a) -1"5' = S [~F = L
-3 ) 4ZL-3 -7
(6) pl/p= @L“’Tf)(LT")(Au )= 4 T
+ . P

¢) 2 M T (dlmenflaﬂ/ﬂss)

VT " (=) (LT)?




1.7 If Vis a velocity, £ a length, and » a fluid property (the kine-
matic viscosity) having dimensions of L*T~!, which of the fol-
lowing combinations are dimensionless: (a) VEv, (b) V€/v, (c) Vv,
(d) V/ér?

(a) VAV = (L Tﬂ)fl)flzf-, = Z“T—Z .//7a7£ af/;nens/'aﬂ/fss)

6) YE = Ae7)L) o oz
v HrTw=l)
(L271)

() vy = (7 /LZT")--'i AT o r//mms/an/ess)

[ dimension less )

A BT /7 BT
AV @eAT)

( rot d;infnybn/ess)




1.8 If Vis a velocity, determine the dimensions of Z, a, and G,
which appear in the dimensionally homogeneous equation

V=Za-1)+G
V = Z (x-1) + &

[t = [2][=-1] + [&]

Since. each term 15 The €guation muyst Hhave
the same dn}vensxén_s, 1t follows that

Z L

ol = F2LoT ( dimensionless smce Cambired
with a4 number)

Il

G = LT~/

=

-8
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1,9 The volume rate of flow, Q, through a pipe containing a
slowly moving liquid is given by the equation

mR'Ap
Q= e
Bul

where R is the pipe radius, Ap the pressure drop along the pipe,
w a fluid property called viscosity (FL™T), and £ the length of
pipe. What are the dimensions of the constant 7/8? Would you
classify this equation as a general homogeneous equation?
Explain.

70 (1

[Lor] =g\ [T

The Constant '17/8 I's dimenslon\ess‘) And

e e%ucul-:bn s o 3eneml homogeneo us

ezud:bu That 5 valid 1a avy Consistent
Un'y sysdem. VYes.

-9
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1,10  According to information found in an old hydraulics
book, the energy loss per unit weight of fluid flowing through
a nozzle connected to a hose can be estimated by the formula

h = (0.04 to 0.09)(D/d)*V?/2g

where  is the energy loss per unit weight, D the hose diameter,
d the nozzle tip diameter, V the fluid velocity in the hose, and
g the acceleration of gravity. Do you think this equation is valid
in any system of units? Explain.

£ = (0.04 4 009)(£)" ¥ Va

[EL]e fousteoo) [ )L E]
[L]= [0.04 bo0.09] [L]

Since each Ferm 1n The ezua.#m'n must have The
Same d/'mens./o}z:s/ The Constant ferm (0.0% 4 0.09) must
be dimensionless. 771.’4.5 The C’gzm.zf/a;y /5 & Geneval

homogeneous e /zm.ém,, That s Valid 1n any system
a,ﬁ units, Yes

£ I
- L11  The pressure difference, Ap, across a cosity (FL~’T), p the blood density (ML), D!
* partial blockage in an artery (called a stenosis) is the artery diameter, A, the area of the unob- .
approximated by the equation - structed artery, and A, the area of the stenosis.
: = g ~ Determine the dimensions of the constants K,
Ap = K, ) + K, (Z . 1) pv? and K,. Would this equation be valid in any sys-

) ) tem of units?
where V is the blood velocity, x4 the blood vis-

sp = k,./f‘—‘/+ k-] p v’ E
LF L_]é[’(v] L3N )J [l(][cm"'] [%](%]
(e = ] pe] - () [Fe]

Since each term must have The same J/}nenszbﬁsJ

K, and K, are dimensionless. Thus, the equation

IS a genem/ /wmfojeﬂfdas t’&gaml‘:m ’f'harL would be
| Va/:c/ /h R L'onsm‘rm‘ sgs%em of units. Yes.

|-10
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[ A Assume that the speed of sound, c, in a fluid depends
on an elastic modulus, E,, with dimensions FL. =2, and the fluid
density, p, in the form ¢ = (E,)%p)”. If this is to be a dimen-
sionally homogeneous equation, what are the values for @ and
b? Is your result consistent with the standard formula for the
speed of sound? (See Eq. 1.19.)

c=(£,)" ()

- g -4
Since = LT E,,z-*F.Lz P =FL e

: % 2b
1 [£][ 28]

For a cjm'qens/bna//g homogen e ous -eZaai-.m'n each +erm
In The eguation must have The same dimensions. Thus,
The right hand side of £3 (1) must have The dimensions
of LT~ Therefore,
A +b=0 (’fo eliminate F)
2b=-1 (%o satsty Concli Fion on 7)

Za+4b = -1 (('fa 5!%/57(5- tondton on L)
I{' A//aws ﬂd.'[’ d_z-lz—_ aond b:—-_l.

2
So  That V‘E—I
C = JEr

This Ffjul ‘JL Is C&nsjs#m'é/ow/.fh 77161 5‘]7/144#&/ 7£qu/¢ 7gr The
SpPeed of sound. Yes.

—

|-
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1.13 A formula to estimate the volume rate
of flow, Q, flowing over a dam of length, B, is
given by the equation

Q = 3.09BH*

where H is the depth of the water above the top

Q=309 BU"

(1377 = [304] [L]™

of the dam (called the head). This formula gives
‘Q in ft*/s when B and H are in feet. Is the con-
stant, 3.09, dimensionless? Would this equation

be valid if units other than feet and seconds were
used?

Z

[>7] = Bol[L][L]”

Since each term in the e’gaa/'ian must have the same
dimensions The constant 3.09 rrrust bave dimensions
V8 s = . N

of L*T and is Thcrefore not dimensionless . No.

Since The copstant fus d/ﬂ_?f’ﬂﬂﬂﬂs i?s value will change
with a change in units. No.




(/5 1.15 Make use of Table 1.3 to express the

following quantities in SI units: (a) 10.2 in./min,
(b) 4.81 slugs, (c) 3.021b, (d) 73.1 ft/s?, (e) 0.0234
Ib-s/ft2.

(@) /v 2 ,I,’,?,,, (/0 L mm)/‘?‘-fwxm ) 6{;”-;,))

= -3 m
= A 32 X /0 = = 4 32 2

(b) 48] S/uysz (5.95’/ 5/:(;5) /A*}‘.f?’x/a ) 702 lg_
(¢) 302 16 = (30208 )( %940 X )= 1344

() 73] % 51- (73/—_’5-’;) (Zoyyx/a"’_isﬂ:): 223 =X

= s
: s «
1b-s /b5 NS
€) o.023% 25 < (b ozzu 22 (#789000 T )
b5 . 5 cse 12) (v %
N ol
- + S
= {7z 28
|-13
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1.16 Make use of Table 1.4 to express the
following quantities in BG units: (a) 14.2 km,
(b) 8.14 N/m?, (c) 1.61 kg/m?, (d) 0.0320 N-m/s,
(e) 5.67 mm/hr.

(a) /42 #m = //542,(/03/»1) (5’,25’/.5’:): %46 x 10" £

) 8w By < (Bn XY (G seaxio® 7 ). g,
N

m 3

4 Z -3 Sluss -
) 14) /)_"ia > (Ma/ ;;13 ) (/.%ox/n 73 )= 372 x)0 " slugs

L3 Ly
/”,,3
Neom : -1 £ p
() eos20 == = (0.0320 Y2 ) (m570x07" 25 )
M
i

= Z3Lxi0" f’L_S'fA

ce) 5 b7 {n‘_;_/*;ﬂz (5:!97)</o %)(EZJ’/ ) ! hr \)

2boo 5

L&
= ST 08 ___

‘.f\

I-1%

O
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1.17 Express the following quantities in SI units: (a) 160 acre,
(b) 15 gallons (U.S.), (¢) 240 miles, (d) 79.1 hp, (e) 60.3 °F.

(@) 1b0 acre -(/60 ﬂfre)(‘/ib‘la xm* ﬂ: )(q 90 x 1B
= (, b7 X/O /‘Yr)

-2 oy

—

(b) 15 Gallons = (b Jallons )C? 785 4 k”)({

aon

): 5& .9 ?(]azpm:?

Qoter

(C) 240 m. = (240 mL)(ﬂso )(nwrgm E"Z‘)- 386 x10° m

$ J
5.9 X(0 T

(A) =19, hp (7‘i}hp)(55'o:_5:)(l asu&‘Tu)

andl%:\\/\/ se Tthat

79.1 hp= 5,90 x10' W
&) To=Z (bogF -32) =

18,7 °C
2l C +273 = 2¥4ie

=15
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1.18  For Table 1.3 verify the conversion re-

lationships for: (a) area, (b) density, (c) velocity,
and (d) specific weight. Use the basic conversion
relationships: 1 ft = 0.3048 m; 11b = 4.4482 N;
and 1 slug = 14.594 kg.

2

(a) [ FE*- (/ £t )[/c? 3049) MmN\ = 009290

=N

Thus, multiply {4* by 9.290 E-1 4o convert

8

o

(4) shg . slug \.( 1y /ézfr | £47
/ -Ffa (/ £%3 ) (/6‘ i Sfuj (0 30%?)3/”4

+*2
=78 IR

Thus, multiply slusy/ #43 by 5154 E+2 4o convert
to ‘éj //m3

|

il 3%‘-: (/ %)(0.305‘2%”):— O 3048 £

Thus, multioly #£/s by 3.0%8 E~| + convert
'Llo W/S

y /V [ £° ]
@) | 7;;3 : (/ ;,fa (4 #dd [(a 3048)%m
= /511 ;3%

ThusJ multiply 1L/ 5_9 [57] Et2 4o ctopvert
L0 Hfn?,

1-16
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Lz -| 1.19  For Table 1.4 verify the conversion re-
lationships for: (a) acceleration, (b) density,
(c) pressure, and (d) volume flowrate. Use the
basic conversion relationships: 1 m = 3.2808 ft;
I N = 0.22481 1b; and 1 kg = 0.068521 slug.
£
‘) // )(3 2808 *f)_ 5280 2%
T/'JMS) f?'?ﬂ]'/‘if/g m [s? éj 3.28] 4o converl
to Ft/s2
| 3
(b) #y [ K9 ) 0.06%52] S149s il ]
/ m3 ( m3 )( %4 ) (3 2508)° $¢°
= -3 slugs
= [. 940 x10 o
Th us, mu '{':P ’%j/m‘ bg [ 940 E-3 £ Convert
{‘a | S/M 95/1&[. 3.
| m
ey (S Nl ) e
> (} ) ( (3 2808)* f£*
C -2 lb
= 2,089 X0 o
T/’lus mulﬁ.rp N/mq 2,089 E-12 {0 convert
Lo IL/FEZ

P\ L 353 £
(d) | 4:3 (/ )[(32808 ] 353 2

Thus) muléiplg m3/s by 353 E+| to convert
to  FHs
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1.26  Water flows from a large drainage pipe at a rate of
1200 gal/mm ‘What is this volume rate of flow in (a) m*/s, (b)

liters/min, and (¢) ft*/s?

(&)‘ e 3
flowrate = (/200 ga/ ) (6 309 x16° 5 )
‘ ga/

min

287 i /o-z m?
S

(&) Since | liter = 1077 pm?>

Flowrate = (75'7 %7067 % —";23)(/____..‘9;/”3’[‘”5) éﬁ)

an}A
_—
-2 t3
(€ Llowrate = (757x15 27 ) (3531 x10 5_ )
m?
£ s
T 2467 5
I-18
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1.2

An important dimensionless parameter

. number defined as V/Vg(, where Vis a velocity,
g the acceleration of gravity, and (a length. De-
termine the value of the Froude number for V =
10 ft/s, g = 32.2 ft/s?, and [ = 2 ft. Recalculate

In Bé zmh‘s/

in certain types of fluid flow problems is the Froude

- the Froude number using SI units for V, g, and
- L. Explain the significance of the results of these
calculations.

S

) ey s w LaE

[#4 |Gz 2 (2 4)
fn JI units :

Vlia i )(a.a'ow%% Zoe

g= 9,381 3

L= (2 ) (03048 %_”t)z O.b10 m
Tk, e

V = 3,05 3 = /25

2

/A dependent of The

[Goar ) (e.610m)

T/ﬂe Va/ofe 07[ G d/}nen_sjan/fss /Damme{‘er /S

unit 57.57L€m.
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1.23 A tank contains 500 k iqui i
: g of a liquid whose specifi ity i
2. Determine the volume of the liquid in the tankp i

m"(’v =SGQ”10V
Thus,

V= m/(56@,,) =50k M2)(994 &

2))

|. 24

T O . 0 T O A O '
" L.24% Clouds can weigh thousands of pounds due to their
L ' ‘ liquid water content. Often this content is measured in grams

1 per cubic meter (g/m*). Assume that a cumulus cloud occupies
| i a volume of one cubic kilometer, and its liquid water content

is 0.2 g/m’. (a) What is the volume of this cloud in cubic — ,
- miles? (b) How much does the water in the cloud weigh in 5 e I 0
pounds? i
BEEESREERSHaEEoua:
Y 1 =t
3 ] i s
(a) Volume = |

et
'S
BRI Au,!‘ifjff@
= Il
Il
ik
3=

Sl x0” |6

1-20
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Determine the mass of the object (in kilograms) and its weight
(in newtons) when located on a planet with an acceleration of
gravity equal to 4.0 ft/s%

weight

78/ 22

for g = %0 FS?
weight = (306 hg ) (402 (0 3045

= 373 N

mass =

/25 1.25 A tank of oil has a mass of zs slugs.
(a) Determine its weight in pounds and in new-
tons at the earth’s surface. (b) What would be its
" .imass (in slugs) and its weight (in pounds) if lo-
- cated on the moon’s surface where the gravita-
tional attraction is approximately one-sixth that
at the earth’s surface?
ca) weight = wmass x f
= (25 slugs ) ( 2.3 ﬁ;): Fos 4
= (25 slugs ) (s 57 [72/ 2 )= 3580
(6) mass = 25 slugs  (rmass does pot depend on
gravitations] attraction )
welight = (2) slugs ) (322 H- o 134 b
fot 8 1.26 A certain object weighs 300 N at the earth’s surface.

%)
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1.27  The density of a certain type of jet fuel
is 775 kg/m®. Determine its specific gravity and
specific weight.

: - &
S6 = L. = _____775 ”_”aj = 0,775
ftre T g, T HE

pg = (775 28) (9.8 )= 760

5

AN

m 3

|- 22
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1.28 A hydrometer is used to measure the specific gravity of lig-
uids. (See Video V2.8.) For a certain liquid a hydrometer read-
ing indicates a specific gravity of 1.15. What is the liquid’s den-
sity and specific weight? Express your answer in SI units.

g g

i N0 S mE |

T X et !1é: | ’_._ﬁ T {

S Rl B

]-23
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129 An open, rigid-walled, cylindrical tank contains 4 ft*

of water at 40 °F. Over a 24-hour period of time the water

temperature varies from 40 °F to 90 °F. Make use of the data

in Appendix B to determine how much the volume of water will

change. For a tank diameter of 2 ft, would the corresponding
- change in water depth be very noticeable? Explain.

mass of water = ~V"‘/o
Wheve V- 15 The volume and P The densby. Jince The
Mass must vemain Constant 45 The ‘ffmﬁ?m%ure e hgnges

‘@Zf/ﬁo, o '%."/; : (1)

From Table B.| /50 . F.— X, i/ﬁ
z g [

- Sluss
(o @ g = 4P 2

ﬂc’mér@ fom Lg. () shogs
e = (482)0 900 )

»° 1.$3] Z%,

77;%5/ The i1ncvease i volume

3
& pigl — % 000 = ©._ 0186 T

Y pi§h £43

The change 15 lwater depth, 44, 4 {’jm/ #o
_ AV _ v oos £ -3 |
Af"‘ & o m =‘.5—,?2)(/D-1ﬁ£=0.07/0m.
L/.

This small change 15 clepth would not be very
Hoticeable. LV_?’

Mote: B shghtly ddterest value for 8L w11 be oblainen
1f specifec weight of water Is used [raTher Than density .
This 13 due to The fact That There is seme ancerfuity

In" The fourth Sigmifitant figure of These Fwo Values, and
74 e 5_0/:44-/&;, s sensitive p Tmis uncevtainty. ,

J-24




/.31

1.31 A mountain climber’s oxygen tank contains 1 b of oxygen
when he begins his trip at sea level where the acceleration of grav-
ity is 32,174 fus®. What is the weight of the oxygen in the tank
when he reaches to top of Mt. Everest where the acceleration of
gravity is 32.082 ft/s>? Assume that no oxygen has been removed
from the tank; it will be used on the descent portion of the climb.

W=mg

Let (') dendte sea level and ( ), denotethe top of M. Frerest

Ths, |

W= 116 =m, 951 and

Woe = Mwve Gnse

However Mg = My, SO that since m = % J
Wsi B Wmé

= =m, =
b gl ME Dy

m
)

| $s1 szaagses = 0A97 b

1-25



132 The information on a can of pop indicates that the can

- contains 355 mL. The mass of a full can of pop is 0.369 kg

while an empty can weighs 0.153 N. Determine the specific
weight, density, and specific gravity of the pop and compare
your results with the corresponding values for water at 20 °C.
Express your results in ST units.

Werght of Llerrel cr)
V2 lume of -;/tu'q/

Sotu! weight = assx g = /ﬂ.%f'ég)/%/gf): 2N
weight of can= O./53N

- " 3 N -£ 3z
Volame of Fluid = (3551071 ) (10 34/_”’- )r— TG KID m”
77;;«_1} From EZ'.'//)
TEEA B
¥ 7770 "A"{.a 52 é‘?
= == = i = 7?[0 ¥ -'-'Cf?é 3
A 7 7.8) om L

iy =
(0 @ 4°C /000 ffa

For water at 20°C (see Table B.Z 1, App{’uaﬁk B)
= 77 —£ : = ‘—éé i s
I Vi o 782 5E  Sb=o.ist
A comparnson of These Values hr waker wiTh Those
for 7he pop  Shows That The specité Weighd,

6/5/15/:7,'7/ Aud O]%O}QC' jl’:?!//}’y o~ 723 /Ja/o are a//
J/ijlf /9 Jowev Than 7he Corresponding Values For water.

1-26
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*1.338 The variation in the density of water, p, with tem-
perature, 7, in the range 20°C < T < 50 °C, is given in the
following table,

Density (kg/m?) | 998.2 | 997.1 | 995.7 | 994.1 | 992.2 | 990.2 | 988.1
| | l | |

Tcmpera[ure(“C)' 20 I 25 l 30 | 35 | 40 | 45 | 50

Use these data to determine an empirical equation of the form
p = ¢, + ¢;T + ¢;T* which can be used to predict the density
over the range indicated. Compare the predicted values with the
data given. What is the density of water at 42.1 °C?

Fi+ The duta -éa a  Secopl Order ,o;/,na,,,,', /
USIne @ stendgrd Corve- £ Hids Progris  sucy
as Aound 10 EXCEL, ThHus,

L= [(06/ — 005327 ~ 0.00% T* (1)

As  Shown 1n 1ne Luble below ;L (predc ted )
from £g.lV Is sa geod dgreement with Yz (gven) .

.G p. kg/m"3  p, Predicted

20 998.2 998.3
25 997.1 997.1
30 995.7 895.7
35 994.1 994.1
40 992.2 9923
45 990.2 990.3
50 988.1 988.1

Ad T= 22.] ¢ ’
/oo) ~ 0.0533 (42./%)- o.00%/ @Z/’cj—‘- T/ 5

\/?z ——

L2

Ya
A
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1.3% If 1 cup of cream having a density of 1005 kg/m is turned
into 3 cups of whipped cream, determine the specific gravity
and specific weight of the whipped cream.

4
Mass of cream, m = (1 095—,,_,,,53)"‘ /-Va-:.p )
wheve ¥ ~ volume.

= " .
Smce MCream Whipped
Cream

M wh /2@.
ﬁhlppul = °‘1§z:§ - (’ 005 Tm—a)%f.mp

créam \,[_.

2 Cups )VLg Cups
Re

o

= ' o (m?3 = 335 :k—&-

- 3
F‘vkliqud J&
_S‘ G‘, > Cream - 335 -mq—%': - O. 335-

. R¢

[, @ 4 000 24,

+
thiﬂud = B“P?ﬂ' X g = (335 A;%)@.S’l?,_)

tream eream
= 32490 XL
m

|-28
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1.36 Determine the mass of air in a 2 m® tank if the air is at room
temperature, 20 °C, and the absolute pressure within the tank is
200 kPa (abs).

m =(->V where V=2m> and

p= f/RT with T=20C =(20+273)K= 293K
and Vs 200kPq = 200)(103%’;

Thus,
Q = (200x 103;,'\4.)/[(2.&69“01%{;%)(7—‘73 K) ]
k
= 2,38 7”13
Hence,

m=p¥ = 2,33;';%(2m3)= 476 k

:

I-24




[.37

1.37 Nitrogen is compressed to a density of
4 kg/m’® under an absolute pressure of 400 kPa.
Determine the temperature in degrees Celsius.

P ow
e Yoo x 100 —

— /mZ

T PR [4"&)@948

oK
%

e = L ~213 = 337K-~a13

337 K

= 64 °C

1.38

1.38 The temperature and pressure at the surface of Mars
during a Martian spring day were determined to be —50 °C and
900 Pa, respectively, (a) Determine the density of the Martian
atmosphere for these conditions if the gas constant for the
Martian atmosphere is assumed to be equivalent to that of
carbon dioxide. (b) Compare the answer from part (2) with the
density of the earth’s atmosphere during a spring day when the
temperature is 18 °C and the pressure 101.6 kPa (abs).

%o——'

fMars RT (183‘] S )[(—50 c+213)ﬁ

e b 0.6 x10°

€arth RT (ZAL,%}%‘:) [( 18*¢ +213) k—_]

Thus)
Mars  _ 0.0214 —

foear'hﬂ l.22 ‘E&‘

/=30
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1.39 A closed tank having a volume of 2 ft® is filled with
0.30 1b of a gas. A pressure gage attached to the tank reads 12
psi when the gas temperature is 80 °F. There is some question

"as to whether the gas in the tank is oxygen or helium. Which
do you think it is? Explain how you arrived at your answer.

weght 2 30 /b
2 x volume (322_-,0_1— )(Z. _&3)
SZ-

-3
.S/m?.f
Hlb x /o S

p(f?fﬁly o% gas I~ £ant /:

S/nce /0: w1 7h P: (Jz-r /';'77)/?5/:}.

RT
( avfma.s/'}mn& pressure  acsumed Fo be T /J.r/&)
and with T = [POF+ #bo) it Allows That

/'2('7 )(‘“* )_ 7.2 slygs

- (1)
,e (5‘5&0%) R

From Table 17 R=[85kxI0° for oxygen
Grned L= /,Z#ZX/DQM For helrum

Slug + °R
£rom Eg. (1) of Tne gas is oxygen
=~ 7./2 J/lf S - 6['5(?/(/0—35/”?:
~ /56%xh3 43 3

and tor  helium
7/2. B 573 ij_y-..f/lo{_f
# ’ 3

et 1. 242 X1

# C&m/oqnfw of These values wih The actual densty
OF  Fhe 945 14 The dtank Indicates That e

7aS  rAust  be ©Oxygen.
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1.40 A compressed air tank contains 5 kg of
air at a temperature of 80 °C. A gage on the tank
reads 300 kPa. Determine the volume of the tank.

Va/umg = __4i5_-
/0
k4 N %
e o G W Fn gyt
AT (289 2L )[(ya‘[+z73)k]
é;-K
5"6} 3
= == .524
volume 27, %2 /.26 an .
m3

e x|
1.H A rigid ténk contains air al a press!ure of 90 psia and
a temperature of 60 °F. By how much will the pressure increase
as the temperature is increased to 110 b ol
i s
__jfof ]/Her N LSRN SN Snans SuLRE ( &y. ! £)
| | | | R
Far 2 myzd C/o.seaf —zém__‘ ‘ﬂe #tr rnass dnd
Vﬂ/wmz_-&;;q . daﬂ; l-qni- Jo /@ = c&nsfanf 771 1.(5
| |
From E;g L8 (i R Wsimr) (e enain
S | EENNE | |
| %f_ EisEd ik
where fa,m L T b0 4440 = szm
[ ]
%ﬂd' ' -‘-“i//0 F-l-i}ép —‘ 57&/? FV&M Ff‘,(/)

5 b‘?a %e
526 "/E’

\I_

)(ﬁﬁ-’“’-) 75 ] pséa

|-32
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1.42 The helium-filled blimp shown in Fig. P1.42 is used at var-
ious athletic events, Determine the number of pounds of helium
within it if its volume is 68,000 ft* and the temperature and pres-
sure are 80 °F and 14.2 psia, respectively.

BFIGURE P1.42

W=8% where YV =68000ft" and J’fP}’(P/RT);‘

T/lu:
[/‘f 2 = z (et 22 e )/((/.16‘2 x/o"‘s’,c,i '.R)(go+%o) 'R)] (2.2 £)

b
=9,82x)0 a'?fj_"L (1b/(slgt/s?) = ¢ 82x10° FP
Hence,

W= g.82x/0 3'{{:; (66’,000:”43) = 648 /b

|-33
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*1.43 Develop a computer program for calculating the density
of an ideal gas when the gas pressure in pascals (abs) the tem-
perature in degrees Celsius, and the gas constant in J/kg - K are
specified. Plot the density of helium as a function of temperature
from 0 °C to 200 °C and pressures of 50, 100, 150, and 200 kPa
(abs).

r 1 e ‘ |
! 1 B e eath I
AR s f%r
50 THa g |
= i
L - ) S | |
T wikere: R The gas s hm f . and T
M WY, Y 3 72: Eempe ra 77— ——_
EWE L ) B e | ‘
0 | — e o7 1993 & 1 JM 5 0 : .
| | el | G ‘- i’-" il _! \ | | |
{ ‘ \ i il T \
e /? JPre_’_t_t_d_dmezl l/ £x CEU / i"4| -oér Cdfeu/mLMj /0 -Foﬂaws
| i SRR NN E NN RN R A |
——+— |This program calculates“the’ density of an ideal gas |
L i' ! when the absolute pressure in Pascals, the‘temperature
I | |in degrees C, and the gas constant in J/kg+K are specified.
T ~ |To use, replace current values with desired values of
- |temperature, pressure, and gas constant.
.
E R A B C -~ D
E] ‘ ' . | Pressure, | Temperature,| Gas constant,| Density,
0 Pa e . JkgK kg/m®
= i\ - | 1.01E+05 15 286.9 1.23 Row 10
R EamE X |
N | Formula:
§ ] =A10/((B10+273.15)*C10) i
[ | | | 5
] i I /L | !
. ! ‘ Lhe ;,., o ‘ .‘..‘ E
i ; l E...P””P/& g Ca;/w—lah | " 3" 4{)*‘ 7) Z@O/Jz Pa. frm]xnl-ure =|
% ¥ o - | T T .
L L e e 2 23’7 J/'i?; |
0 l 0 L | HiE | Nk
LT ‘ AT B S - S -
L] I | Pressure, | Temperature, | Gas constant, | Density, _
N E W Pa °C JkgK kg/m® -
et 2.00E+05 20 287 2.38 Row 10 f
oS e IRanamsaEsreearEiEeaaias SEESeeeiiE EiERt
bt I 8 o . L } |




*/.43

(con't)

The density of helivm js plotted inthe graph below.

0.4
0.35

0.3

kg/m? _
0.2
0.15

0.1

0.05

Density of Helium
: i \\
- i T o— -
0 50 100 150

200

P =20 kPy (abs)
= |50
= [00

= 50

|-35
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1.45 For flowing water, what is the magnitude of the velocity gra-
dient needed to produce a shear stress of 1.0 N/m??

d = .
T —:./ujﬂ;— W/;ere/L{:/./leO 3%‘;{‘ and 7'-':/:9":'7":.

Thus,

d.—u.. = I = I’D;’%- - ?3 _l.
ady A Liaxp3 NS T il
mz

/. 4b

1.46 Make use of the data in Appendix B to determine the
dynamic viscosity of glycerin at 85 °F, Express your answer in
both SI and BG units.

T, = ‘? (7. -32)-= —?5'- (#5°F -32) = 254 ¢

From Fig. B.] in Appendix B:
//f (7/9:5'»}: et FP5F (.2?.#‘6)) a0k s (SI ani'fs)

m=

2 (0.6 L2 ) (2opg x107" &2 “2 fp.s. ,
7 e ) (2009 w10 7’35—);3/.3»:/0 25 (eawit)
m =

1-36
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1.47  One type of capillary-tube viscometer is shown in

Video V1.5and in Fig, P141. For this device the liquid to Glass
be tested is drawn into the tube to a level above the top Stregf‘{t{;‘e"'"g T
etched line. The time is then obtained for the liquid to drain e

to the bottom etched line. The kinematic viscosity, ¥, in m¥s

is then obtained from the equation v = KR*f where K is a

constant, R is the radius of the capillary tube in mm, and ¢

is the drain time in seconds. When glycerin at 20°C is used

as a calibration fluid in a particular viscometer the drain time .

is 1,430 s. When a liquid having a density of 970 kg/m? is Catz'é'a’y
tested in the same viscometer the drain time is 900 s. What =
is the dynamic viscosity of this liquid?

Etched lines

w 7 Kﬁq‘{'

B FIGURE P1.41
For 9lycern @ 20°C 'V://‘?,\/M—J;m%
A/?x/i’jmqi/s = (/cﬁ“)f/,etsa s)
LR 8.32x1077 m2/s>
For unknown /zjw'd with t= F00s
(5. 32107 m*s2) (900 5 )
749 x )7 m*/s
Since y L
- (570 *34,3)(7.4 900" ™/ )
= 0.727 ﬁij = 0,727 M

m- m >

s

|
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| 1.48  The viscosity of a soft drink was determined by using

e O a capillary tube viscometer similar to that shown in Fig. P1.47

: and Video V1.5, For this device the kinematic viscosity, v, is

directly proportional to the time, 1, that it takes for a given :

amount of liquid to flow through a small capillary tube. That | 17
is, v = Kt. The following data were obtained from regular pop ;
and diet pop. The corresponding measured specific gravities i
are also given. Based on these data, by what percent is the

absolute viscosity, u, of regular pop greater than that of diet

pop?
Regular pop Diet pop - | '
- Ks) 377.8 3003 i
' SG 1.044 1.003
w%mmﬂf’M¢
e
[ | | “ ___i}___.,,,_,,, T

/LZT ﬁf/ows "fhaf N SNNEEE
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1.49  Determine the ratio of the dynamic vis-

cosity of water to air at a temperature of 60 °C.
Compare this value with the corresponding ratio

of kinematic viscosities. Assume the air is at stan- B
dard atmospheric pressure.

From Table B.2 in Appendiv B : :
sl . .
(7‘0)' water at éo'C) /l‘ = 4468 210 /’ﬂn—f) /= 47450 .3”.".

2

From lable B.Y in Appendix B:
= -5 2
(Ly ar ad L0'C) = 197000 S s [guxieT 2

mz ) s
Thus, "
Smo | Hees5xi0 - 4.,
Ha AT I0E m——
Vigo - ""7"‘,5"’0-7: 2.55x 072
Ty || bibam? ——

=3¢
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L 1.50  The viscosity of a certain fluid is 5 X ’
5 10~ poise. Determine its viscosity in both SI and |
| BG units.
=  wes
' 1 From AP/pfm//x, E‘a, /0 —ﬂ’;—,_ Fy /,Da/se, Thus,
Euw: - . il 'S -
..... /a: (5)4./0 “}Oa/se).(/o’ —%—,_): 5)4/05_/\/-:;
[T Peolse sl
g
| and From Table L4 |
% e s "7 Jbes
M= (5x/0 ) (2 089x10 " gz ): LN #f0 —==
s 7y £+ :
m =
EEm s man f AN RS EREEmEmmNE |
I 1 5! The kinematic viscosity of oxygen at 20 °C
L ~-and a pressure of 150 kPa (abs) is 0.104 stokes.
- Determine the dynamic viscosity of oxygen at this |
-’ temperature and pressure.
minw //f = "V/d 5 V
E T e Y e 2
AT Ry = = 197 X
|
H ‘ (259, g [@?a C +273)k] 3
bt -
+ om |
ERE -p: 0,/&4‘ 5719265 = 0./06‘ -? . 7|
3. |
s (004 2 Y (107 )(/7’7 .—Z
Fo m 2
= -5 -5 :
] T sl ## = - UE XAt
| s
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Newtonian fluids. Such fluids are commonplace and can exhibit
unusual behavior as shown in Video V1.6, Some experimental

data obtained for a particular non-Newtonian fluid at 80 °F are

shown below.
T(b/) | 0 | 211 | 782 | 185 | 317 |
ye Lol so | 100 | 150 | 200 |

| Plot these data and fit a second-order polynomlal to the data using

a suitable graphing program. What is the apparent vnscosny of
this fluid when the rate of shearing strain is 70 s~'? Is this.

. apparent viscosity larger or smaller than that for water at the

Rate of

shearing stress,
-strain, 1/s Ib/sq ft

0
50
100
150
200

same temperature?

"#1.52  Fluids for which the sheanng stress, 7, is not linearly ———————
related to the rate of shearing strain, vy, are designated as non-

Shearing

¥ 40 =0.0008 ¥* +0.00357
0

. £ 50

2.11 -

7.82 8 20

18.5 [ il

317 L T
5 Q4——r— | |
=
w

Rate of shearing strain, 1/s

0 50 100 150 200

250 !

ﬁam_ﬂe émph '2-

g S )i+ 0

’fl
o e = el L] _i_:

,7@ S‘I’J’_I ENEE.

o

ue /m'”* “‘"L """

ooﬂé’ - oooss br where

SR, 2wt e | shearing s .Sﬂéress I U/ﬁt and 3’ s 771? rate
'a,f;,:;;fhedrmé strain N 5 nauR

i u 1 PN WS Fh BT
- ,Wafpmf;---é%ff s.0008 G2 ) (10 )--"‘ Rt

B, | ;/kﬂzor@S'O-?F B /7‘?/')(1‘0‘ e,
' ,m:u #luid T rvalde 15—
: l‘fﬂkﬂﬂb}h HDH“Nek)té}nqhw
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.53 1.53  Water flows near a flat surface and some measure-

7 mentsof the water velocity, u, parallel to the surface, at different 1 0 ) S5
- heights, y, above the surface are obtained. At the surface y = 0.

a5 _ After an analysis of the data, the lab technician reports that the

| L] velocity distribution in the range 0 < y < 0.11ftis given by
ol | the equation

6 N

u=081 + 9.2y + 4.1 x 10%?

|| withuin fts when y is in ft. (a) Do you think that this equation T L
~ would be valid in any system of units? Explain. (b) Do you 11T [T
— think this equation is correct? Explain. You may want to look —— T T
~ atVideo 1/ to help you arrive at your answer. i I 5 O 0 2

EREy ) iamansman=nEN 0.91+ 9.3

-

I

| E_—!—" ‘ £ S 5 (B O
L]+ % 1xp

~

—
=

Al

[]

1
m i
N |

—ach 1a The eq @1?1&[1’{1{!51 1 )’lé_i’_'('h‘le 341n¢ f]d/ mensions
: i . ) ! i g : | gt i 1 st ‘;h
577 15tant—0:81—must—frave ~dim nswens of kT

i Y o A o AR CED P EAE

92 dipeasions of TI, Gt 51 X157 dimensons oF L°F

N\

. ¢ M”;"Fﬂ -.mr.s Thelr

|~
G~
N

|
e, e R I 1 H
i .:_.—-I—- - Wi f + o h _ _. 3 1 i { i, N ! _
| SEEeEs S SfEaaEsEEmsEERER =t
B o - EEREEINE H !
B REREREEE K Beeraamaaame SEiEaseaaE.
| N FHHHH Neue me T
I a — e Baal
e e e H
i BENEN NS 11 B e | B %,;4, - 1 ‘ -
R
NN P NN 11

-l T | 2 N i 7 T
i { himlee
| m =]
T I =i | i
e - = S
1 T iy )
[ 5 B i T b
T 1T ] LTI O g |
i [ | 1 o= | ) [ ] S B
i i = T T
[ —_— L
———] - S
| g % = T
i [ 1] ] 1 | B 1 A LT
+- e { i =1 i | .
| [ | 2 I R O ) 5
i ot FHH 0
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l 5‘* Calculatc the Reynolds numbers for the flow of water
and for air through a 4-mm-diameter tube, if the mean velocity

_. is 3 m/s and the temperature is 30 °C in both cases (see Example
1.4). Assume the air is at standard atmospheric pressure.

ﬂ:.' ??5‘.7 é‘f.;
/?e-_.._ﬁVD (??5’7

T TOIE T N R I N MR _____u.g
...._w... |_ ——1-{ E (L) | } L -f | i i A Lt | |

A4

/) = Liles ;n_. - /u ;

L2t <1077

me>

oas For water at 30°C (#rom Table B2 14 Appendix B)’-

= 7.975 x10° "
5) (3 %) (0.004 m)

P _ 7. 975 x 107"t NS

an

m =

= /5000

= ﬁ"r- acr at Zp'c ([mm Table B.4 in 4pp€nc/:x8>

N.s

——p

e

i
S | |
b [ L B LB i |
: | i i i
| | | [
______ g AN 1
{ o I
| |
i =
£ 0 1 i
i = bl
" E | ‘V, B . 5 E ___. 4 | !
) | | I 1 S T [ = i |
| | | | I il | 5 O 7;
BRGNS | T
T __ i S o
! 1 |
L } | Ll e 1
o B 0 1 T Lo
| - ‘ wmine
L] i i 8
i | Lt o ‘
' ot = e TSRS HHS o e
| | [ | { I
{ | | I i ‘ -
b | 1
IR
J T ‘ 1 i
] ‘ Fr R

e v usE)(5F) (omim)
2 /.Xé,(/o'bf_'f _

m 2

752
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fL, L}ff

Fon® B 1.55 For air at standard atmospheric pressure

~ the values of the constants that appear in the
Sutherland equation (Eq. 1.10) are C = 1.458 X
10-¢ kg/(m-s:K'?) and S = 110.4 K. Use these:
values to predict the viscosity of air at 10 °C and

' 90 °C and compare with values given in Table B.4
in Appendix B.

3 ' it 3
- A il //,45?;4/&4_‘.&5;_)7‘1
/ﬂ- s mese K%
T s -
T + lios K

Fop ~L-m O C o e ranzir = 28315 K,

(/. 459 x10 L) (283, /5 f<)3/
At : = L7505 N3
R§3,15 K + 110,k m>
From Table 3.4J/¢= s s
/n,,'.'.
) = N S S ) AW L TR o 15K
= /4
_ (lassxio"C) 33 15k)7* -5
/““ = 2,/3x/1p Ms
363 /5K + 1104 i *

5

From Table 8. 4/ /( 2 X0

N:s
m 2

-t

A8,

{




' 1.56*  Use the values of viscosity of air given

in Table B.4 at temperatures of 0, 20, 40, 60, 80,
and 100 °C to determine the constants C and §
which appear in the Sutherland equation (Eq.
1.10). Compare your results with the values given

in Problem 1.55. (Hint: Rewrite the equation in

the form

T (1 S
—=|=T+=
M (C) C

and plot T°?/u versus T. From the slope and in-
tercept of this curve C and S can be obtained.)

3/
T4 yre S

fszm;ﬁ 10 can be wriften 11 The foym

/a. @ (/)
and w,ty The G,A-f& From Table B Y :
3 3%
Tx) T plwser) T [ )]
273.15 L7 x0* 2640008
143.)5 /82 .uo"i_ 2.758x 1t
3/3.15 /87 X /o'_ 2. %Jx/oi
60 333 /5 197 Xp~° ) 3.087x10 ’
8o 35375 .07 X /07> 2. 206x10 g
/00 37315 2074107 3. 322 X 10
A P/"f of 7% Vs. T 15 shown below :
5.53”08 THIH ™ = —
— ]
r—-:?// g -
/ / 200 HRE
j,s‘xmfz;h; ! i“' :L::Z,R‘;’[ SRR EE e 3;{[3 %:;
Lo . o 00
, T(k)
. (con?)




156" (C’on'f)

.Sjr;ce. 771: du.‘a. /3/02{‘ as 4w ap,amx;m'ée S*’f‘ﬂlé}lf /mle/

Ez.[j} Qi h be )“t’ﬁmﬂ}fﬁf $7 qh 83111290;( of The
form
Y= bx +a

3
Where jm T% y X~ T'J b~ I/C) and an~ S/C,

Fi't the dete +v a lihear é‘ga_a)ﬁ'én Using a

Standard ¢urVe-14'/fzé_; Program Such as found
In EXCEL. Thus,

ﬁ= é.%?)(/afx + 1.4y x 157

and
-—c’—-—-A= L.769x 0%
5 Mt C = 43 X0 by S5 k)
aAnd vi
__5: a = [ 44/ X 10
C
and 771m.'/9re

S= /107 K

771f5e Vﬂ/ﬂes ;4;« C and '5 are /n 5aad afreemm’lf
with  Values given in [Problem | 55 .

}~%8
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the viscosity depends not only on the specific fluid but also on
the fluid temperature. Some experiments show that when a
liquid, under the action of a constant driving pressure, is forced
with a low velocnty. V, through a small horizontal tube, the
vcloc:ty is given by the equation V = K/u. In this equation K
is a constant for a given tube and pressure, and H is the dynarmc
viscosity. For a particular liquid of interest, the viscosity is given
by Andrade’s equation (Eq. 1.11) with D = 5 X 1077 Ib - s/ft?

- and B = 4000 °R. By what percentage will the velocity increase

as the liquid temperature is increased from 40 °F to 100 °F?

. Assume all other factors remain constant.

The viscosity of a fluid plays a vcry important role in
. dctermmmg how a fluid flows. (See Video V1.3) The value of

o] ‘ il |
| Hi |
o LV |
BRERE- 1n¢.r§re*.u’3?e in V =
SN O
1 avd __Jémm Fg.
HH ‘7;, mcreasé ln; \ S
T om "A-nd ‘ de.s '
ErT
2 iVl\ ;
b

i
i \;(toof A
Vigge

Pl CHRRN

| #liob“'

i)x-loo

- % |00

¢

(2.0

(3)
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(Hint: Rewrite the equation in the form

Iny = (B)%+lnD

and plot In u versus 1/7T. From the slope and
intercept of this curve B and D can be obtained.
If a nonlinear curve fitting program is available
‘the constants can be obtained directly from Eq.

1.11 without rewriting the equation.)

*.58 Use the value of the viscosity of water
given in Table B.2 at temperatures of 0, 20, 40,
60, 80, and 100 °C to determine the constants D
and B which appear in Andrade’s equation (Eq.
1.11). Calculate the value of the viscosity at 50 °C
and compare with the value given in Table B.2.

Lgaation 1l can be written /n e form
/h/k = /B) TL‘ P /ﬂ_D
and witn The dete Frem Table B.Z -

T (c) T(k) //T(K) N (W-5lm?) In A
o 2735 306/ 10”1 / 78’7x10'33 -4 327
2o 293 5 341 x10™° /002110 —L.90¢
Yo 3135 F193xi070 g 29 xp™F - 7334
66 333/5 3 002 x/o'3 % ééé‘a’/o“‘ - 7. 470
- ~%
g0 353,15 2.83z xl0™2 3 54T X ~ 7. 944
~4
[O0 3735 2490 x0>  2.818x10 ~ 8174
/4' Pjoi' 07( //1/1- VS, //T' /s s)mam 6e/aa) 2
= 7.0 i S

(/)
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Since The deta plot as an approsimate  chrpop
//z'a-ej Eg. (1) Can be used +o represen t- Mese deta.
7o ob'}.‘ﬁl;ﬁ 5 ana D/ fl"}' 'h?( 0’4.,11'& Eo an r
Q)CPOI?(.‘/)/'I'&/ £ a:mLm'n a,f The —Form g:ﬂ.ﬁ
Such 4s :@und 1n BXCEL.
Thus, I

D=a = 1767 x10°° A.5/m>

and

B= 4= LEIXN" K

Jo ﬂlnf /870

sl -
//{—“ L767 XIb £

At 5p°C (323)5k),
/870

- b ~ -
= L x5 T = 576 %0 s

From Table B2, u= & 468516 u. s/

I=5%
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159 For a parallel plate arrangement of the
type shown in Fig. 1.5it is found that when the
distance between plates is 2 mm, a shearing stress
of 150 Pa develops at the upper plate when it is
pulled at a velocity of 1 m/s. Determine the vis-
cosity of the fluid between the plates. Express
your answer in SI units.

-, du
T=p gy
du . U
dy b
_ A /150 L2
3 o )
A (Z) <)

/- 50
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1.60 Two flat plates are oriented parallel above a fixed lower plate
as shown in Fig. P1.60. The top plate, located a distance b above
the fixed plate, is pulled along with speed V. The other thin plate
is located a distance cb, where 0 < ¢ < 1, above the fixed plate
This plate moves with speed V), which is determined by the vis-
cous shear forces imposed on it by the fluids on its top and bot-
tom. The fluid on the top is twice as viscous as that on the bot-
tom. Plot the ratio V,/V as a function of ¢ for 0 < ¢ < 1.

@ FIGURE P1.680

For constant speed, V,, of the middle plafe, the net force

on the plate is 0. Hence, F,, -

F;baHvMJ where F=TH.

Thus, 1he shear stress on the fop and bottom of the plafe

mvst be equal,

[

op ottom

Hence, from Eqn. (),

where ?“=,ﬂg£
For the bottom flvid g,% _ ar

)

while for the fop f/wa/ d” (V_:'g

which can be written as:

s

d

/

(V V:
(/u) h(l-c (/u')ob
2¢V - 2cl, =V,—c% .
or
Vi o _zc Y, 08
— —-Ti.—— __'_ O
V c+l v
Mote: I-choj..glzo 0.6
If c %1-‘?—- 3 oy
Ifc'—'llyv'-:)
0.2
0
0

0.2 0.4 0.6 0.8 1

/-5l
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1.61 There are many fluids that exhibit non-Newtonian behavior
(see, for example, Video V1.6). For a given fluid the distinction
between Newtonian and non-Newtonian behavior is usually based
on measurements of shear stress and rate of shearing strain. As-
sume that the viscosity of blood is to be determined by measure-
ments of shear stress, 7, and rate of shearing strain, du/dy, ob-
tained from a small blood sample tested in a suitable viscometer.
Based on the data given below determine if the blood is a New-
tonian or non-Newtonian fluid. Explain how you arrived at your
answer.

T(N/m®) | 0.04]0.06 | 0.12 [ 0.18]0.30 | 0.52 | 112 | 2.10
dwdy 6™ | 2251450 11125225 45.0 | 90.0 | 225 | 450

For a Newtoman Fluid 7he ntio of 1+ 4 dufdy 15 a
Constant. For The data g/ien !

7>
a’u/:/g
The ratio 15 not a4 Constent but cdecreases as the rate of shearing

Strain increaseS. Thus This Fluid (bleod) 15 @ pon- Newbonan Fluid.
A4 plot of The data 4 Shown below. For a Newibonien Fluid The
Curve would be a straisnt Iline witn 4 slpe of | to /.

(/V'-f/mz) 0.0178 | 0.0133 0. 0107 | 0.0080| 0.0067 | 0.0058 |0.0050 |0:.00¢]

10 I ]
. -
I vq
1 // ,'
T Nim* g a
vl /T
P
/’ /
0.1 = Stape-= Hioldor Mewtonian flyid
(’/
0.01
1 10 100 1000

du

oS

Notet T=u(®2)" | where a=I for a Mewlmian fliid
ote T/“"JY) , where a =l for a Mewtonian flvjd.

=52
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1.62 The sled shown in Fig. P1,62 slides along on a thin
horizontal layer of water between the ice and the runners. The
horizontal force that the water puts on the runners is equal to
1.2 1b when the sled’s speed is 50 ft/s. The total area of both
runners in contact with the water is 0.08 ft?, and the viscosity
of the water is 3.5 X 107 Ib s/ft>. Determine the thickness of
the water layer under the runners, Assume a linear velocity
distribution in the water layer,

BFIGURE P1.62

F C‘;rce) = TA
= d’V‘_ .\_/. twheve o = Thide ss 07L water "".91'1’
T= p Zpl e i

hus,

Fep g

and

nd: /(M/A = (:3.5,(1»'5—’}&'5)[50 ‘%)[0.0819-!:?')
F o2 1b

= ) 7xip L

/-52
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1.63 A 25-mm-diameter shaft is pulled through
a cylindrical bearing as shown in Fig. P1,63 The
lubricant that fills the 0.3-mm gap between the
shaft and bearing is an oil having a kinematic
viscosity of 8.0 x 10~* m?*/s and a specific gravity
of 0.91. Determine the force P required to pull
the shaft at a velocity of 3 m/s. Assume the ve-
locity distribution in the gap is linear.

J— 05m o

FIGURE P1.53

TA

[,r i P
D 3—» i
y

Z F; :.'0 -~ w g =
THhus
Pz TA
where A= mD x /5}’41(1’ /c’ngﬁ: " 5&7?‘/}43) = ?TD,Q
A (velocity of shatt) v
T:/‘ ( Gap widtn) -/ N
So ﬂ'hff

p= (1 £ )fros)
Slm'e_ /“ =V/° = v /56)@0@ yoC )J

P= (8 0210 2% )oas % 10° 22 )/32)7)(0,025m)(0.5)

(0.0003m )

= a8L N

/- 5%
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1.64 A 10-kg block slides down a smooth in-
clined surface as shown in Fig. P1.6¥. Determine
the terminal velocity of the block if the 0.1-mm
gap between the block and the surface contains
SAE 30 oil at 60 °F. Assume the velocity distri-
bution in the gap is linear, and the area of the
block in contact with the oil is 0.1 m’.

0.1 mm gap

FIGURE P1.6%

Y .
Z_F)C = O K \/ﬁ
Thus, LW "
W sin 20° = TA ﬁ :
SIHCQ
’t.: /A % ,where b s -f/'/m ﬂ;ckness)
W sin 20° = u _b\f A

Thus, (with W=mg)
V:

/M-A

—_—
—

bw smnmZ20° _

(0.0001 m)(fo "‘;)/fu?/ %"’1%1; 20°>

(0.38 /—Vﬂ-;'-i )(0.Imrz)

0.0883 Z-

/- 55
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1.65 A layer of water flows down an inclined
fixed surface with the velocity profile shown in
Fig. P1.65.Determine the magnitude and direc-
tion of the shearing stress that the water exerts
on the fixed surface for U = 2 m/s and h =
0.1 m.

T=p 3’,% FIGURE P1.65

du _ 7,2 - 4°
;é‘ 2 U[;‘ o )
777615, at t1he fixed surface (y=o)

fﬁt_) = 2D

So That {2 m)
T /“(%): ﬂlzxio-s%’; )(;) fa./::)

]

4 49 x /0-.? ,,_:;{z acél'n7 /" c/l.t‘fal/oﬂ of Flow

|

|-56
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*1.66  Standard air flows past a flat surface and (a) Assume the velocity distribution is of the form
velocity measurements near the surface indicate = G+ Cyyb
- 1 2

the following distribution: ) _
y (ft) [ 0.005]0.010.02]0.04 | 0.06] 0.08 and use a standard curve-fitting technique to de-
: termine the constants C, and C,. (b) Make use

u (tt/s) | 074 11.5113.03 163711021 114.43 o e sémait o part () b deterine the st
- The cuordinate y is measured normal to the sur- nitude of the shearing stress at the wall (y = 0)
face and u is the velocity parallel to the surface. and at y = 0.05 ft.

(a) Use nenlinear regression progrom
to obtarn Coeffrcienis C, and Cy. The program produces
[east squares estimates of The /oﬂmmeét’m of a nonlinear

model. For The data gjven,

- -2 _
C= 153 57 s G 4350 A S

/

(6) Since,

/"7( Aﬂ//ow\s That
2"-"-/&(. ((I * 3(:_ jz)

Thus, ot The wall (y=o)

T:/(, NEXITYN %ﬁ'—{ )//53?/) . 5771"’/‘9-552

At Y= 0.05 / X
Te(are i ) st v 3 (1350 5, oo se)

-5 /b
= L% X0 g

|-587
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1.67 A new computer drive is proposed to have a disc, as shown
in Fig. P1.67. The disc is to rotate at 10,000 rpm, and the reader
head is to be positioned 0.0005 in. above the surface of the disc.
Estimate the shearing force on the reader head as result of the air

between the disc and the head.

Stationary reader head O.2siv.dla:
~
1

10,000 rpm

' |
-+ } 0.0005 in.
—2in.—/ =

Rotating disc

BFIGURE P1.67

= shear force on head =T A | where, if the velocity profle
in Hie gap between the disc and head is linear and onitorm
across the head, then

"/U‘ZIT;‘,' 5/1"2 where
= rev M)/ 27 rad
V=w R = 19000258 ( 00N 22 ) (7 ) < 175 8

wa.c "

-7 [bsy 175 b
T (3 7¢xi0 s ) ( ooofﬁ) Dk 2
so that

F=7/4= (/57 VL (92H) = 3.43x10" 1

/]-58
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Fixed
outer
cylinder

Liquid
1.68 The space between two 6-in.-long concentric cylinders is i
filled with glycerin (viscosity = 8.5 X 107> 1b - s/ft?). The inner
cylinder has a radius of 3 in. and the gap width between cylinders
is 0.1 in. Determine the torque and the power required to rotate
the inner cylinder at 180 rev/min. The outer cylinder is fixed, As-
sume the velocity distribution in the gap to be linear.

NN RN \\\\\XYh\
~

T SO

el s

Ri—|
Ro—

Tor‘gut’, d ?: due +o shearing stress
on Imrer c_ty/mc/u— /3 f?jm/ Fo
dT= R Toh
Lo here Q’A&'ﬂ{’d d46) 1, Thus,
dT = RA T de
and fprgnc regm'rra’ to rotate

[nner cy/mder Is

TT"

2T
6\7,: /Qt-lﬂ Z"/dg 3 ,?,]Tf\?{_-z,g 7 top view

(4~ cylinder length )
For a linear velocity distribution 1n +he gap

T:'/I" Sl - Je '/7742;

/?o —EL
T . mr/?fﬂ/‘ f
e, - R,
and wimn @ s (180 1 Y(ar %)(é’%}: ¢ Yad
Then 3 -3 [hS vael
o7 ar (S#) (5 #t)(8.5x10 —/;t'—;)/é”' =/

— = 0,944 #£1}
°! ft) e
i2

Since power = wa é Follows That

power = (0994 F-s) (67 22) = 178 L4

/-59
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1.69 A pivot bearing used on the shaft of an electrical instrument :
is shown in Fig. P1.69. An oil with a viscosity of & = 0.010 1b-s/ft? i 0.2 in,
fills the 0.001-in. gap between the rotating shaft and the station- i

ary base. Determine the frictional torque on the shaft when it ro-
tates at 5,000 rpm.

0.001 in” 4 =0.010 Ib- s/t

Lel dT = torgue on area element dA),

where dA =27rdl = 27rdr /sing
Thvs, .
di =rdF=rTdA where ?"/‘T VO
$0 f/)af

dv =r (/,L -—"') (zzrrdr/rm 9)

= % rdr
Hence
fd'f %]’”35/ 7_7;’?,:}9 R ()
Now,
R=0.lin., b=0.001in., s = 0.0/0 %‘f 6 = 30deg and
w = 5000 5% (585 (2 Lok _ 52y 12d

Thus, ffam A (),
. fvé-wm)f-"‘z’* (?;iif{)l;: 9.53x10 5.1
Ooﬂﬂl{_’)s”\go

|-60




/.70
1.70 The viscosity of liquids can be measured through the use of a
rotating cylinder viscometer of the type illustrated in Fig. P1.70. In

Fixed
outer

cylinder

this device the outer cylinder is fixed and the inner cylinder is rotated
with an angular velocity, w. The torque J required to develop o is
measured and the viscosity is calculated from these two measurements.
(a) Develop an equation relating u, @, 7, €, R,, and R, Neglect
end effects and assume the velocity distribution in the gap is lin-
ear. (b) The following torque-angular velocity data were obtained
with a rotating cylinder viscometer of the type discussed in part (a).

Torque (ft-1b) | 13.1 | 26.0 | 39.5 | 527 | 649 | 786

iy 1o | 53 | 0 ) 4o 5
velocity (rad/s) | 1.0 2.0 3.0 4.0 5.0 6.0

For this viscometer R, = 2.50in., R, = 2.451in., and € = 5,00 in.
Make use of these data and a standard curve-fitting program to de-
termine the viscosity of the liquid contained in the viscometer.

(a)TorZu(’, d ?: due +v shearing stress
on saner cylinder 13 egual +>
dT =R~ TJA
where 0’,4—'-6?'_. d6) 4 . Thus,
47=€f!?d9
and ;/vrjm: regm]red to rotate

[nnev crf/m:ler is Rk
2 2
J: /Qt')?z‘/dg: ol]TfeL,g?'
O

For a linear velocity distribution 1n +he gap

2"-'/“ ) - Je

(A~ cylinder /fﬂﬁﬁfl )

T e L3 (1)

{b) Thus, for 4 tixed geometry
and a  qven w‘.sc'o.s;%_r,' Eg.l1) [s of The form
Yy=bx ( 4~T" ana
Wheve b Is a4 constant Lgual o

£ Anted )

(con't)

I=6]
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3 -
y= 2TEAM
7o obtan e
o O !
" ﬂj“’iérfn 7[:.{. The dq.é-a_ 4o a linear £4waktig;
aly Y=bx Wsing 2« Standard c T
grdm Such as Sound 1n EXCEL “V'/”’c"h"’”ﬁ

Th us, from Eg.f 2)

(2]

/A: (é) (ﬁa"'ﬁ_‘)
2T /P‘-‘?/?
and with The data 9/{;(”) b= /308 ‘Ff‘-“,._g)fa That

(17 oo fhdies )[2:50
_ (aos st s (Ao 25 &) |
= A45 IS

3
ar (248 )’ (22 #2) '

/<

J- 62




/.71

1.71 A 12-in-diameter circular plate is placed over a fixed
bottom plate with a 0.1-in. gap between the two plates filled
with glycerin as shown in Fig. PL7), Determine the torque
required to rotate the circular plate slowly at 2 rpm. Assume
that the velocity distribution in the gap is linear and that the
shear stress on the edge of the rotating plate is negligible.

Torgue,dT  due 4o shearng
on plate (s egual o

J?LV‘fSSf.J'

ad% = ¥ LdA
wheve @A = 2mrdr, Thus,

d T = v T 2rrdr
an# &

0
dince  T= M 3’7’;‘ , and For a
l1near Velocity distvr bwtion fye-ﬁjw
Teperw
S
Thus, R

and wiTh The deta ylu‘en
rer

i 2w (0.63/3 %’—i )(Z =

2T K& 3 _ 2T
Gj’:._’f_[ka/r-—f—

)

Rotating plate

0.1 in. gap

dv

Jfrf,;(_g 45111;17 on boﬁam a'fP}n‘}t

Tészm?z—» V= ke
3
L-;@—r:—f—av—rr

3.
s

ve )

du -

— -

e
on|<

Ve IOF:I'l'B distr bution

(£)
(1) )

(o) ££)(%)
06.0772 £/

—
—

1-43
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1.73 Some measurements on a blood sample at 37 °C (98.6 °F)
indicate a shearing stress of 0.52 N/m? for a corresponding rate
of shearing strain of 200 s™'. Determine the apparent viscosity
of the blood and compare it with the viscosity of water at the
same temperature.

N
> l - 0.52 ‘_ﬁ:“ =% N. s
b)noal b’ -_— = 2(3_ O XI0 —
Zoo L_,.- m*

From Table B.2 14 Append’s. B :
*c - -4 N.s
(@ 30 /MH,_a' 7915 X107

(-} -
@ '€ M, 6529 xip " Mo

m"lﬂ s
Thus, w'th linerr mterpo lation 3 /u” (5’7oc) = .96 J(lo-“_,_\,_.‘s
20

and . et
Mitoea . 260518 "L
e = 374
M, o b.9b x107* N-s e
ml-

|- 64
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175 A sound wave is observed to travel through a liquid with a
speed of 1500 m/s. The specific gravity of the liquid is 1.5. De-
termine the bulk modulus for this fluid.

G~ 1/%; , whlere e =56 By and SG =15
Thos,
E,=C’p=c"560,

=(15002) (1.5) (999 24

= 3,37x /0" %_’_”,;,1

£} 9 N
Ep=3.37%10" =3

|-65
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.76  Estimate the increase in pressure (in psi)
required to decrease a unit volume of mercury

by 0.1%.
£,z ~ df
=y f (&5, /e1a)
7/7:45,

dp = - £, 4 _
p L2 = (% 1% x 1p* ,—’,{f;)/— 0, 001)

Adp = 414 x10° psi

v

177 A 1-m’ volume of water is contained in
arigid container. Estimate the change in the vol-
ume of the water when a piston applies a pressure

of 35 MPa.
dp (

et Eq |12

: b1 g./.12)

Thus) Ay o — Y 4P _ _ (| aﬁa)(.fsxm‘;,-fz)
£
v

=~ 0.0/67 m>

2./5 X Ip 9._"51
or £
decrease in volume a0, 0/63 m3

- 64
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).78  Determine the speed of sound at 20 °C
in (a) air, (b) helium, and (c) natural gas. Express
your answer in m/s.

ZRT (£g. 120)
W,tm T = Ho°C +273 = 243k

S

(a) For d/r) V//'fa)(-!?& 1_)643‘,() = Qi3 0

(b) For /:e/mm Czwéé)(daﬂéf")(ﬂ”) = Jolo &

c¢) For natuml qas = - "
%3, C—W.?l)(:/&.?é%()fﬂak) =

| =57
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1.79  Air is enclosed by a rigid cylinder con-

taining a piston. A pressure gage attached to the
cylinder indicates an initial reading of 25 psi. De-
termine the reading on the gage when the piston
has compressed the air to one-third its original
volume. Assume the compression process to be
isothermal and the local atmospheric pressure to
be 14.7 psi.

For isolhermal Corn press/eon, ;—- = Constant S0 That

ﬁ: = 'f;.‘ Where (~ Inihal state and
/% (F F v final state .

b= L2 £
£ 7

Since x 1455 /2 inihal wolime
a velume g £inal MJ/a(me;jp /?6}‘ cossipnt )

Thus,

and Theretore
2= (3)[(25 + 1m7) psits)) = 119 psi casy)

I

or
75 ﬁa.;e (/‘7— 4 7)/9% 10Y Psc (3a9e)

158
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1.80 Repeat Problem 1.7 if the compression
process takes place without friction and without
heat transfer (isentropic process).

Foyp /::en:‘ro,o/'c compression, i = constant so That

/o-k

+ . A .
b /3-{ where ¢~ injtial state and
r + £ Final state.
Thusl y E'l
P = _ﬁ) £,
+ 2 L
Sinee = MASS /% _ bl vel
P, L e s o
¢ mass )

ancl There foye
/.0
? -5 (3) [('t“'* “*'7) P’L'/ﬂés)] = /348 P3E (abs)

P Guge) s Who- 1 = 170 pai (g

|-64
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1.81 Carbon dioxide at 30 °C and 300 kPa absolute pressure
expands isothermally to an absolute pressure of 165 kPa, Deter-
mine the final density of the gas.

For /sothermal expansion /:oé- = constant so That
ﬁ. 2 ibf Where L~ initial state and
e o~ Linal state.

7/’1145‘J

| v
A ]
I
oy, ,
- /o . - Sooxv -,,é’-,’z = 524 44
4 i /eT' oo J ) e/ 3
. ¢ //33,7 aé—g--k )[Z‘S’o [v‘-.‘?’B)KJ
So 77Mf ,&
. M /5‘ 2y ﬁ& = 293 _%
/fC B 2po £ Fa ' m3 am

|-70
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1.82 Natural gas at 70 °F and standard atmospheric pressure
of 14.7 psi (abs) is compressed isentropically to a new absolute
pressure of 70 psi. Determine the final density and temperature
of the gas.
For Jsen z.‘rapzc. Camﬁrt’ss/'aﬂ - f?a = Constant  so That
-+, A s
P—L* = ;:—2— where L~ Inihal state and
L # F Finel state .
Thus
| gt Fra®
# 7 I
/
or / b %
G (2)4
* 7 ¢
,4'/502 A B [/5;7 )//1;44 /n* ) 3
/L. i LT i 3 "/.27-’(10"-_/“4{3
¢ / 3‘.%’4:{/0 15:5 s [/70 e 60 @7 Zi2
se 7hat _
. 131 5
/:2 z 70 psilass) (/,z? X /0“3 5_/"f5) = 425 x)p slugs
/4.7 pst labs) 23 723
and
T = 76_7‘. = /70/»1*)(/44 )
+
7R (425 2108 St -‘)[5 077 Jp” £
s /uj ee
= 765 R
er
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1.83  Compare the isentropic bulk modulus of
air at 101 kPa (abs) with that of water at the same
pressure.

For air /Ez, /)7 ),
.E'y = ‘éfb = //:’7‘0)//0/.%/03@) = L X/ﬁ-""/z%

For water (7.4, 14 )
Ey: G?-/EX/D,'/DQ

77114.5,

Ey (waéer) 2,15 X /0?/% p
= = = S 5L x]O
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*/ 84

*1.84 Develop a computer program for cal-

culating the final gage pressure of gas when the

initial gage pressure, initial and final volumes,

atmospheric pressure, and the type of process -

(isothermal or isentropic) are specified. Use BG

units. Check your program against the results ob-

tained for Problem 1.79. |77 &

for  com pression or expansion,

__f:_é = Constanit

where %=/ for ssolhermal process, and #= specifi het vati
7or senfropic process. Thus,

4. %
/f'*' /f:*

where 'a mnital stite | £ Flng/ .sv‘ﬁéeJ So That

2
Le(£2)"%

(/)
thfe- _ Mass
" Volume
Then Zf Y
i 7

W here l/L'} ch , are The imitial and £rsal Vﬁ/ﬂﬁ?fsj vespectively .
771&!5, Hrom Eg (1)

%
- f Vo
?ég i é.i‘m ) 7{-‘ ) (fjf f;f,m) (2)

theve The Suéscr:/ﬁf . refers teo Jage pressure . Eguafmhfb
Can be wypitten as

A%
Bt () (4, 00) - 42,

A spreadsheet (Excel) program 4or calewlatiig
+he Livnal gage pPressure ﬁo//ou/x.

(Co_nlz)

[-73
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( Cont?

This program calculates the final gage pressure of an ideal gas when the

initial gage pressure in psi, the initial volume, the final volume, the
gage p p

atmospheric pressure in psia, and the type of process (isothermal or

Isentropic) is specified. To use, replace current values and let k = 1 for isothermal
process or k = specific heat for isentropic process.
A B C D = F
Initial gage| Initial Final | Atmospheric Final gage
pressure | volume | volume pressure pressure
Pig(Psi) Vi Vi Patm(Psia) k Pro(PSi)
25 1 0.3333 14.7 1 104.4 Row 10
*
Formula:
=((B10/C10)*E10)*(A10+D10)-D10
I I
Dels 4rom Boblem 1.79 ave included 14 The

above £a!:/¢/ Giving 4 Foore ! Gage pressyre of Jo¥% Y psi .

[-74
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1.85  An important dimensionless parameter concerned
with very high speed flow is the Mach number, defined as Vic,
where V' is the speed of the object such as an airplane or
projectile, and c is the speed of sound in the fluid surrounding
the object. For a projectile traveling at 800 mph through air at
50 °F and standard atmospheric pressure, what is the value of
the Mach number?

V

Mach numbeyr = —+

€
Fy‘pm 7_4.-5}2 53 In A-ppend:x B
£i
= [l =
c;r'r@_‘;o'F -

Thus

I

(300 mph) (5780 55 (5mr

ach numbey
MG f [1ob f_;—"‘

G‘Q

- 9

S ——
—_——

I-7s
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.86 Jet airliners typically fly at altitudes between approx-
imately 0 to 40,000 ft. Make use of the data in Appendix C to
show on a graph how the speed of sound varies over this range.

C= !%RT /EZ_/.Zo]

oy 4 =/%0 aua R=17/6 £ lb

Sug-R
c= $90 TR
From 7able C.| 14 4pp€na’/'x C at an altFitude of O £
T= 5900+ 40 = S5/9°R  so Thet

Cs 490 )579% = /174 _f_“

5/'/?7/'/&? c4 /Cu/a_{/bﬂ; Can ée’ made 44r aﬂf’l’ d/ 7‘/'7150/(.5
ond The resulting graph is shown below.

Altitude, t Temp.°F  Temp.°R ¢, fi/s
0 59 519 1116
5000 4117 501.17 1097
10000 23.36 483.36 1077
15000 8.55 465.55 1057
20000 -12.26 447.74 1037
25000 -30.05 429.95 1016
30000 -47.83 41217 995
35000 -65.61 394.39 973
40000 -69.7 390.3 968

1120

1100 - ‘

~4
o P |
1080 \
e
c 1060
- \
o
1040 - d
N—
o] \
1020
m N
©
£2.1000

|

960

0 5000 10000" 15000 20000 25000 30000 35000 40000
Altitude, ft
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1.87 (See Fluids in the News article titled “This waler jet is a
blast.” Section 1.7.1) By what percent is the volume of water de-
creased if its pressure is increased to an equivalent to 3000 at-

mospheres (44,100 psi)?

Ey® e AV/ys ( 6

A _ _ Ap _ . 4y 100 psia - 14T psea
o Ey 3.12 x10% psca

Thus,

°/b cjecreqse i Velume = H‘.lo/o

.88

1.88 During a mountain climbing trip it is observed that the wa-
ter used to cook a meal boils at 90 °C rather than the standard 100
°C at sea level. At what altitude are the climbers preparing their
meal? (See Tables B.2 and C.2 for data needed to solve this prob-

lem.)

When the water boils,
Pooit = P, Where from Table B.2, at T=90°

£, = 7.01x10* L, (abs)
A/SOJ from Tab/e C-Z—J fop asfanda’.a{ a]lmV\YPth‘é’
P 7”/"/0"‘% (abs) af an altitude of 3000 m

-77
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1.89  When a fluid flows through a sharp bend, low pres-
sures may develop in localized regions of the bend. Estimate
the minimum absolute pressure (in psi) that can develop without
causing cavitation if the fluid is water at 160 °F.

Cavitation may occar when the local pressure egm/s the
vapor pressare. fop waler at 160 °F (fop Table B ,;,,4,,#,,4,1,,3)

B = 474 psi (abs)

v
7./1515/ 7 1nImum pressure = 474 psc(abs)

/90

1,90  Estimate the minimum absolute pressure (in pascals)
that can be developed at the inlet of a pump to avoid cavitation
if the fluid is carbon tetrachloride at 20 °C.

Cavitation may eccur when The suction pressuye
at- 7he pump inlet egzm/.s The Vapor pressure.
For carbon tetmchbnde at 20°C  p = 13 BR (a5:) .

Thas, minimum pressdre = /3 & Fe (abs)
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1.91 When water at 70 °C flows through a converging section of
pipe, the pressure decreases in the direction of flow. Estimate the
minimum absolute pressure that can develop without causing cav-
itation. Express your answer in both BG and ST units.

Cavitaton rmay occar 15 The converging section of Pipe  Lhen
The pressure eguals The vapy pressuve . From Table B2 1, Appendi B
—.r@r water at 7(9."(/ '7?,-7 3.2 AR (4bs5). Thus,

1N imann pressuve = 31.2 2R (abs) ,, SI ynits.

Ln 86 units b Pl
3 ~ I

!ninimum  Pressure = /3’-2“5 ;n/l/z )(/ oXx10 gy )
mlﬂ

= 452 Ppsia

/.92

1.92 At what atmospheric pressure will water
boil at 35 °C? Express your answer in both SI and

BG units.

The vapor pressdre of water af 35°C is

591 AR (abs) (From Table B.2 in Appendix B
USin g linear /'r)-/frfola Lion ). ﬂu_r, i water boils

al This femperatyre The atmospherc pressure must
be é’j’aa/ to 59/ AP (ebs) in 3T aunits. Tn B4 units

fﬁtf/xfa:‘”—’r‘,’-i){/-%‘ﬂxm-*_:éf: ) = O f#2 psi (abs)
Tnx
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1.94 When a 2-mm-diameter tube is inserted into a liquid in an
open tank, the liquid is observed to rise 10 mm above the free sur-
face of the liquid. the contact angle between the liquid and the tube

is zero, and the specific weight of the liquid is 1.2 X 10* N/m’.
Determine the value of the surface tension for this liquid.

_ 20U ¢cosb
h ¥R

YhR 12 x;o‘*;;,né (10%16°m) (2%10° m /2)
2 cos§ 2 cos 0

where 6 =0
Thys,

-

= N
= 0.060
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1.95 Small droplets of carbon tetrachloride at
68 °F are formed with a spray nozzle. If the av-
erage diameter of the droplets is 200 ym what is
the difference in pressure between the inside and
outside of the droplets?

P= ‘%_ (Eg. 121)
Since T = -?-é:?a(lﬂ—z;’-/: at éé”F(:-?a“c))
. o
o 2 (2612107 %) _ -
‘ ———

oo xio ©m

/-8l




/.96

1.96 A 12-mm diameter jet of water discharges vertically
into the atmosphere. Due to surface tension the pressure inside
the jet will be slightly higher than the surrounding atmospheric
pressure. Determine this difference in pressure.

For equilibrium (see fijure ),
f/sz[)z o (2 54)

So Thal
= 2
7 R
~2 N
~ 134X
/leb-jrm 1

/
z N, 7 P 2RE]
12.2 R \% P excess pressure
Surdace Ftusion fovee= T 250

- 82
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1.97 Asshown in Video V1.9, surface tension forces can be strong
enough to allow a double-edge steel razor blade to “float” on wa-
ter, but a single-edge blade will sink. Assume that the surface ten-
sion forces act at an angle 6 relative to the water surface as shown
in Fig. P1.97. (a) The mass of the double-edge blade is
0.64 X 10~ kg, and the total length of its sides is 206 mm. De-
termine the value of @ required to maintain equilibrium between
the blade weight and the resultant surface tension force. (b) The o S
mass of the single-edge blade is 2.61 X 107 kg, and the total B FIGURE P1.97
length of its sides is 154 mm. Explain why this blade sinks. Sup-

port your answer with the necessary calculations. '

(a) = Eer‘l'lCa( o o r\]/ 3
% = Tsinb W

where 9 = X G and T= 0 x length of sides.
asge

Surface tension
force

n (0.b4 xw'%é) (4.91 ™) = (T34 x)o‘z%)(a. zaLm) 5in6
sing = O.HI5
b= 2145°

(b) For single-edge blade
2()=Ml7ladgx }

11

(2.61 x1073 -kg.) (7.] m/b‘)
= 0.025L N

nd
) T sine = [0_;( Jen51h oﬁ[)/ade) sin &

(7.34xf0'2 N/,,,,,)(O.lﬂm) sin b
= 0.0113 sinb
Th ovrder for blade +o "Llpat' 90 < Tsmo.

Dlhce maximum Value Fovr sne s | F+ follows
That 2 >Tsime and single-edge blade will sink.
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1.98 To measure the water depth in a large open tank with
opaque walls, an open vertical glass tube is attached to the side
of the tank. The height of the water column in the tube is then
used as a measure of the depth of water in the tank. (a) For
a true water depth in the tank of 3 ft, make use of Eq. 1.22 (with
8 = 0°) to determine the percent error due to capillarity as the
diameter of the glass tube is changed. Assume a water
temperature of 80 °F. Show your results on a graph of percent
error versus tube diameter, D, intherange 0.1 in. < D < 1.0in.
(b) If you want the error to be less than 1%, what is the smallest
tube diameter allowed?

The excess heisht , h, causea be e syrface tension i
- 20cosé (Eg ).22)

_ YR
For 6= 0° with D=28

h= 29 ¢
ro 4
From Table B.[ in A‘Ppend:,x 8 ﬁr water at S0°F
T= %9/ x16"" Ib/ft and ¥ = 62.2: 1L/
Thus from £g.(1)
( ~3 1 ) -3
héci.) & #1491 %b B _ 39 Xl (z)
= (b2.22 &,) st D(rn)
Since o error = h 6t) o 156 (with tne +rue clepth
s I £t = 34t)
i 'Fo?“ow.s gcrom E‘Z (2) that L
% erroy = 3% X1° g0
3 _Ditin.)
=[O 52k (3)
Dlin.)

Vs p}oﬁ of ’/9 evvor versus tube clameter ;s
Shown on The next page.

(d&nﬁ)
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Diameter
of tube, in.
0.1
0.15
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

(b)

% Error

1.26
0.84
0.63
0.42
0.32
0.25
0.21
0.18
0.16
0.14
0.13

iy

1.50

1.00 \ ‘ | :

0.50
0.00 ‘

% Error

v

L 4

0 0.2 0.4 0.6 0.8

Tube diameter, in.

Values obtained
from Eq. (3)

For 1% evror 47om £g.(3)

F=

D-_—

0. 126
DCin.)

O, 126 1n.

1.2

/-85
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1.49  Under the right conditions, it is possible, due to surface
tension, to have metal objects float on water. (See Video V1.9.)
Consider placmg a short length of a small diameter steel (sp.
wt. = 490 1b/ft’) rod on a surface of water. What is the
maximum diameter that the rod can have before it will sink?
Assume that the surface tension forces act vertically upward.
Note: A standard paper clip has a diameter of 0.036 in. Partially
unfold a paper clip and see if you can get it to float on water.
Do the results of this experiment support your analysis?

L L

Ih srder 4or rod +o f/amf (see figure)
1t follows that

P 2 o e (—6—-:)@2)9 8 beel

o £ = rod lengTh
Thus)fur The Limiting case Sl

R 3 o
s V) T Ssteel
| '
| . ~3 Z
so Tmt | 8 (5 03x1b .E’-'t“ = e
L i E=CE BK b

(L,lqo ;ﬁa) .j

= 0.06IYIn.

Since a  standard steel paper clip has a
diameter of 0.034 in, W Which 1s less Tran

0.041% In., 1E should floak. A simple experimpmt
will vevify This. Yes .

|~ 86
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1.100  An open, clean glass tube, having a diameter of 3 mm,
is inserted vertically into a dish of mercury at 20 °C. How far
will the column of mercury in the tube be depressed?

|
’el.: g—o;—c;—?—g— ' (Eg./.zz)

Aoy 93-/30:
-l
Ja 2 (4ecxi™" L) s 130°

-3
= — 3,00 x| m
3 N g
(133 x10° 2 ) (4. 0015 m)
Th us, olumn will be depressect B 88 | a3 ven
/, 101
1.101 An open, clean glass tube (8 = 0°) is inserted vertically
into a pan of water. What tube diameter is needed if the water
level in the tube is to rise one tube diameter (due to surface
tension)?
b 20" Cos 6 (E—‘g.l.u)
rR
o
Rr 4=2R and 6=0
aR= (ET 1)
ok | b
-3
nd p2: & = 503X .
s 62,4 12,

R= 9.9¢ x 1~ Lk
diameter = 2R = .80 xiw "~ L+

|- 87
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1./02 Determine the height water at 60 °F will
rise due to capillary action in a clean, }-in.-di-
ameter tube. What will be the height if the di-
ameter is reduced to 0.01 in.?

fa 220 (Eg. 1.22)
yR )
Eor water at 60°F (foom Table B./ 1 Appendix B ),
o= 5035007 £ and &= 6237 L, . Thus with €20,
( A)" R=0./25/n. ) B 2 (503 xjp_J _;%_)[l) - .55 x IO-Z'Ff
- =/
(6237 ) (%5 A)
or
- o 2m) - 0,18 in.
«f_(I.SS'JUD #)(WJ 2R
S/'m;'/ak/g
)

( for P =0.005m)

~ ; ©, /25 In. . L
4 = (0./%4 /n.) i P ) = 465 in

/- 8§
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1.103 (See Fluids in the News article titled “Walking on water,”
Section 1.9.) (a) The water strider bug shown in Fig. P1.103 is
supported on the surface of a pond by surface tension acting along
the interface between the water and the bug’s legs. Determine the
minimum length of this interface needed to support the bug. As-
sume the bug weighs 107 N and the surface tension force acts
vertically upwards. (b) Repeat part (a) if surface tension were to
support a person weighing 750 N.

BFIGURE P1.103

AL
Py 'eﬂlﬂll;loﬂblm |
W = o4
- W
(o) W N .
el ety W~ weight
- m 0=~ Surface 'l?ns:bn
= |.3(.xl£; m f ~ length of faterface

-3 3
(.30 x167m ) (10"} = |3k

————

(H)

2 B} TgoN
.34 x1p"* N
iz,

ad

= 1.5 x:o",,@ (L.?Hfmi. I

] -§9
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1.10%  Fluid Characterization by Use of a Stormer Viscometer

Objective: As discussed in Section 1.6, some fluids can be classified as Newtonian flu-
ids; others are non-Newtonian. The purpose of this experiment is to determine the shearing
stress versus rate of strain characteristics of various liquids and, thus, to classify them as
Newtonian or non-Newtonian fluids.

Equipment: Stormer viscometer containing a stationary outer cylinder and a rotating,
concentric inner cylinder (see Fig. P110%; stop watch; drive weights for the viscometer; three
different liquids (silicone oil, Latex paint, and corn syrup).

Experimental Procedure: Fill the gap between the inner and outer cylinders with one of
the three fluids to be tested. Select an appropriate drive weight (of mass m) and attach it to the
end of the cord that wraps around the drum to which the inner cylinder is fastened. Release
the brake mechanism to allow the inner cylinder to start to rotate. (The outer cylinder remains
stationary.) After the cylinder has reached its steady-state angular velocity, measure the amount
of time, ¢, that it takes the inner cylinder to rotate N revolutions. Repeat the measurements us-
ing various drive weights. Repeat the entire procedure for the other fluids to be tested.

Calculations: For each of the three fluids tested, convert the mass, m, of the drive weight
to its weight, W = mg, where g is the acceleration of gravity. Also determine the angular ve-
locity of the inner cylinder, w = N/z.

Graph: For each fluid tested, plot the drive weight, W, as ordinates and angular velocity,
w, as abscissas. Draw a best fit curve through the data.

Results: Note that for the flow geometry of this experiment, the weight, W, is propor-
tional to the shearing stress, 7, on the inner cylinder. This is true because with constant an-
gular velocity, the torque produced by the viscous shear stress on the cylinder is equal to the
torque produced by the weight (weight times the appropriate moment arm). Also, the angu-
lar velocity, w, is proportional to the rate of strain, du/dy. This is true because the velocity
gradient in the fluid is proportional to the inner cylinder surface speed (which is proportional
to its angular velocity) divided by the width of the gap between the cylinders. Based on your
graphs, classify each of the three fluids as to whether they are Newtonian, shear thickening,
or shear thinning (see Fig. 1,7).

Data: To proceed, print this page for reference when you work the problem and click here
to bring up an EXCEL page with the data for this problem.

Rotating Inner cylinder
Outer cylinder

Drive weight
Fluid
@ FIGURE P04

(Con’i)
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/. 104 ( Con)
Problem 1.104 Problem 1.10%
Weight, W, vs Angular Velocity, o Weight, W, vs Angular Velocity,
for for
Silicone Oil Corn Syrup
4.50 4.50
4.00 4.00 . — &
3:50 3.50 - /
3.00 3.00 ’ /
= 2.50 = 250 ¢ / —— ——
2 200 2 2.00 8
/ W=128 m‘
1.50 1.50 ‘
d |
1.00 1.00 i |
|
050 1 i o i | |
0.00 - 0.00 } }
0.00 0.50 1.00 1.50 2.00 0.00 0.10 0.20 0.30 0.40
o, revis o, revis

Problem 1.10%
Weight, W, vs Angular Velocity,
for
Latex Paint
1.20
1.00 o
0.80
- 0.60
3 o
0.40 i
W = 1.466 o°""
0.20 4
0.00
0.00 0.20 0.40 0.60 0.80
o revls

1-9]
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1.105  Capillary Tube Viscometer

Objective: The flowrate of a viscous fluid through a small diameter (capillary) tube is a
function of the viscosity of the fluid. For the flow geometry shown in Fig. P1.10s, the kine-
matic viscosity, v, is inversely proportional to the flowrate, Q. That is, » = K/Q, where K is
the calibration constant for the particular device. The purpose of this experiment is to deter-
mine the value of K and to use it to determine the kinematic viscosity of water as a function
of temperature. '

Equipment: Constant temperature water tank, capillary tube, thermometer, stop watch,
graduated cylinder.

Experimental Procedure: Adjust the water temperature to 15.6°C and determine the
flowrate through the capillary tube by measuring the time, 7, it takes to collect a volume, V,
of water in a small graduated cylinder, Repeat the measurements for various water temper-
atures, 7. Be sure that the water depth, 4, in the tank is the same for each trial. Since the
flowrate is a function of the depth (as well as viscosity), the value of K obtained will be valid
for only that value of A.

Calculations:  For each temperature tested, determine the flowrate, @ = V/t. Use the data
for the 15.6°C water to determine the calibration constant, K, for this device. That is, K = vQ,
where the kinematic viscosity for 15.6°C water is given in Table 1.5 and Q is the measured
flowrate at this temperature. Use this value of K and your other data to determine the vis-
cosity of water as a function of temperature.

Graph: Plot the experimentally determined kinematic viscosity, v, as ordinates and tem-
perature, T, as abscissas.

Results:  On the same graph, plot the standard viscosity-temperature data obtained from
Table B.2.

Data: To proceed, print this page for reference when you work the problem and click here
to bring up an EXCEL page with the data for this problem.

Water

Capillary tube

Graduated cylinder

@ FIGURE P1.105

(C&n:{!‘)

|- 9%




4105

(con't )

Solution for Problem 1,105 Capillary Tube Viscometer

V.m ts T degC Q, ml/s v, m"2/s
9.2 19.8 15.6 0.465 1.12E-06
9.7 15.8 26.3 0614 8.49E-07
92 16.8 21.3 0.548 9.51E-07
9.1 213 12.3 0.427 1.22E-06
9.2 131 34.3 0.702 7.42E-07
9.4 10.1 50.4 0.931 5.60E-07
9.1 8.9 58.1 11022 5.10E-07

v =K/Q K, m*2 ml/s"2 v (at 15.6 deg C), m"2/s
5.21E-07 1.12E-06

K=vQ=1.12E-6 m"2/s * 0.465 ml/s = 5.21E-7 m"2 ml/s"2

From Table B.2

T, deg C

10
20
30
40
50
60

v, m"2/s

1.31E-06
1.00E-06
8.01E-07
6.58E-07
5.63E-07
4.75E-07

Problem 1.105
Viscosity, v, vs Temperature, T

1.5E-06

1.0E-06

v, m*2/s

5.0E-07 \\t

0.0E+00 i

T,degC

80

¢ Experimental
——— From Table B.2

|- 43







