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Chapter 1

Introduction
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T.E. Faber: Fluid Dynamics for Physicists, Cambridge Univ. Press, 1995, ca. 55 Eur
M. van Dyke: An Album of Fluid motions, Parabolic Press, 1982

1.1 What is a fluid?

Generally we do not make a distinction between a liquid and a gas. In some sense water behaves very similar to
air, except for the compressibility (even the kinematic viscosity of water is smaller and the one for air, because of
the low density of the latter one; cf. Sect. 1.3).

The physical description of the fluid mechanics is largely based on the conservation of mass and Newton’s law
of motion as well as thermodynamics.

physical properties of fluids:

mass [kg] temperature [K] compressibility
density [kg/m3] pressure [Pa] viscosity (kinematic, ν) [m2/s]
velocity [m/s] heat conductivity (dynamic, µ) [kg/(m s)]

What are these quantities?!
In principle density, velocity and temperature are defined through statistical mechanics. They are properties

of the microscopic distribution function of velocities of a large ensemble of molecules (including atoms). In
equilibrium the velocity distribution (→ Brownian motions) is a Maxwellian. The (number) density is the integral
of the distribution (0th moment), the velocity describes the bulk flow and the temperature the width of the velocity
distribution. The pressure is the given e.g. through the ideal gas equation. Thus these properties are based on
averaging over a large number of molecules. The viscosity is a transport property of the ensemble of molecules,
as is the heat conductivity.

This shows that a description of fluid dynamics is valid only on scales larger than the molecular length scale
Lmolecule. Fluid dynamics is only valid on length scales Lfluid � Lmolecule, and the volume L3

fluid contains a large
number of molecules.

Different parcels of the fluid will interact on through e.g. molecular interactions such as collisions. Thus to
“avoid” complications by such processes, the fluid length scale has to be much larger than the molecular mean
free path λ, i.e. Lfluid � λ.

In a fluid mechanics one assumes that all molecular interactions can be approximated by transport processes
such as viscosity, heat conduction, etc when considering length scales much larger than the molecular length scales
Lmolecule and λ.

Furthermore the time scales in fluid dynamics are much longer that the mean time between two collisions of
the molecules.

5



6 Hardi Peter & Rolf Schlichenmaier: HYDRODYNAMICS

1.2 Ideal Fluid

The main assumption is that an ideal fluid has zero viscosity. This is a fundamental difference to a real fluid
with non-vanishing viscosity. It is not merely that the viscosity goes to zero, but also the differential equations
describing a real and an ideal fluid have different character!

Even though widely used (especially in the past), the description of an ideal fluid often misses the crucial
physics! In the 19th century one almost completely concentrated on ideal fluids, especially because of mathemat-
ical elegance.

One prominent example of a major shortcoming of an ideal fluid is it unability to explain why an airplane can
fly (even though in many introductory physics textbooks one uses simple arguments of ideal fluids). It was not
before Prandtl in the early 20th century that the important role of viscous effects was fully acknowledged. Among
the other major revolutions in physics this one is often forgotten.

1.3 Viscosity, Reynolds number and turbulence

The viscous stress τ in a shear flow is defined to be proportional to the
gradient of the velocity u. Actually, τ can be considered as the force
due to the shear per unit area. This unit area is perpendicular to the
direction of the shear, e.g. if the shear is in z, the stress is a force per
area in the x-y plane (see right).

u

z

x

Formally one can now Taylor expand τ in terms of the velocity. It is clear that the zeroth and first order terms
are vanishing, as a constant flow has no shear. Thus the first non-vanishing term is

viscous stress: τ = µ
∂u

∂z

[
N
m2

=
kg

m s2

]
with dynamic viscosity: µ

[
kg
m s

]
(1.1)

This case with vanishing higher order terms is called a Newtonian fluid. Here the viscous stresses are approximated
to be proportional to the gradients of the velocity. Implicitly this also assumes that the viscosity does not depend
on the velocity, but it might well depend on temperature and/or pressure.

To estimate the viscous force per unit volume one has to compare the viscous stress across a small distance
δz along the direction of the shear, i.e. at z and z + δz. The total viscous force Fµ then is the difference in stress
τz+δz − τz times the area δx δy. For infinitesimally small δz one can write

Fµ = [τz+δz − τz] δx δy =

[
µ

(
∂u

∂z

)

z+δz

− µ

(
∂u

∂z

)

z

]
δx δy =

∂

∂z

(
µ

∂u

∂z

)
δx δy δz . (1.2)

viscous force per volume: fµ = µ
∂2u

∂z2

[
N
m3

]
(1.3)

In addition to the dynamic viscosity one often uses a kinematic viscosity,

kinematic viscosity: ν =
1
ρ

µ

[
m2

s

]
. (1.4)

A lot of problems can be characterized by dimensionless numbers. For example consider a flow of a fluid with
(dynamic) viscosity µ, density ρ and velocity U through an infinitely long pipe with diameter L. These parameters
µ, ρ, U and L basically define the whole problem.

One can now construct a dimensionless quantity from these parameters. At this point this choice seems to be
arbitrary, but it is the simplest combination of these parameters giving a dimensionless number.

Reynolds number: Re =
ρU L

µ
=

U L

ν
. (1.5)

As we will see later this Reynolds number is found by comparing the inertial term in the momentum equation
ρ(u·∇)u with the viscous forces ∼ρ∆u..

The Reynolds number is one of the most important quantities in hydrodynamics, as it characterizes the nature
of a flow. For example for very large Reynolds numbers a flow changes is character from being laminar to
turbulent. And still, turbulence is an active area of research.
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1.4 Mach number

The Mach number compares the actual speed of the flow U to the sound speed c.

Mach number: Ma =
U

c
(1.6)

If the flow has a low Mach number the fluid will behave as being incompressible, i.e. at constant density. One can
show that the fluctuations of the density roughly scale with the Mach number squared, i.e. ∆ρ/ρ∼ (Ma)2. Thus
already at Ma≈0.2 the density fluctuations are down to less than 5%. The high sound speed of a liquid (because of
its high density) results in comparably small Mach numbers in liquid flows. This can be seen as the basic reason
why a liquid is less compressible as a gas.

1.5 Motivation: some applications

Astrophysics: stellar convection; coronal flows; jets; supernovae...

Meteorology: hurricanes; jet steams; large scale convection ...

Geology: continental drift; mantle convection ...

Cars & trains: optimal form of cars
“nice nose” is not most important feature of trains!
roof surface, body sides and underbelly cause almost 50% of drag (trains longer than cars)
trains entering and leaving tunnels

Aeronautics: How to fly; vortex generators at airplanes ...

Medicine: blood flow; transport of trace particles in blood; voice generation; cell diffusion ...

1.5.1 Medicine: keeping erythrocytes in the middle of the venes — Magnus effect

Following Bernoulli’s law,
1
2

ρ u2 + p = constant, the pressure at

the sides of a ball in the wind at A and B is smaller than in the ambient
wind. If the ball is rotating as indicated, then the (relative) speed will
be increased at A and decreased at B, thus again because of Bernoulli’s
law the pressure at A will be lower than at B: the ball will be drifting in
the direction of A!

u

A

B

This is a general property of a sphere or a cylinder, rotating around the axis (of symmetry) perpendicular of
the flow. The sphere or cylinder will then feel a force perpendicular to the flow direction and the rotational axis.
This effect is called the Magnus effect, for spheres sometimes Robins effect.

When particles such as erythrocytes are transported in the blood the velocity profile of the blood flow is
maximum in the middle (see following section). Thus when the particle moves out of the central part of the vein
the velocity gradient causes the particle to spin. The Magnus effect then forces the particle back to the central
region.

1.5.2 Medicine: regulating blood flow — Hagen-Poiseuille flow

An illustrative example is the regulation of the blood flow in veins by slight changes of the diameter. For an
ideal flow, i.e. with no viscosity, the mass flux Φ trough a pipe of radius a would change as Φ ∝ a2, of course.
Considering also the effects of viscosity (cf. Sect. 1.3) one finds a much stronger dependence of Φ ∝ a4!

Discussing the viscous force in cylinder geometry rather than Cartesian geometry, instead of (1.3) one finds
for the viscous force density in a pipe

fµ,pipe = µ
1
r

∂

∂r

(
r

∂u

∂r

)
, (1.7)

where r is the radial distance to the center of the cylinder. Let x be the axis along the cylinder.
The flow in the pipe is driven by a pressure gradient. Its component along the pipe is given in cylinder geometry

by ∇xp = (∂p/∂x).
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Here we now assume that the pressure gradient is constant along the pipe, i.e. if p1 and p2 are the pressures at
the end of the pile of length l, then the pressure gradient ∇xp = G, with G = (p1 − p2)/l.

The pressure gradient is balanced by the viscous forces, fµ,pipe + ∇xp = 0, which can be easily integrated,

µ
d
dr

(
r

du

dr

)
= −Gr ⇒ u = − Gr2

4 µ
+ A lnr + B. (1.8)

The constant A must vanish, A = 0 to keep u finite at r→0, B can be calculated using the boundary condition that
the velocity has to vanish at the (inner) surface of the pipe, i.e. u=0 at r=a, where a is the radius of the pipe. Thus
one has

u = − G

4 µ
(a2 − r2), (1.9)

i.e. the velocity profile is a paraboloid. To obtain the total mass flux trough the pipe (assuming constant density
ρ) one has to integrate the mass flux ρu over the cross section of the pipe,

Φ =
∫ a

0
2πr ρu dr =

π

8
ρ

p1 − p2

l

1
µ

a4, (1.10)

i.e. in a Hagen-Poiseuille flow trough a pipe with radius a, the mass flux pumped trough the pipe Φ varies very
strongly with the radius, Φ ∝ a4.

Therefore when regulating the blood flow the diameter of the veins has to be changed only very little, to get a
large effect!



Chapter 2

Neglecting viscosity and compressibility:
The Euler fluid

An Eulerian fluid is by definition incompressible and has no viscosity. Without viscosity the fluid cannot sustain
any shear stress, and therefore the pressure is isotropic. Incompressibility does not mean uniform density, but
rather that the density of a fluid element does not change when moving along with the fluid.

2.1 Conservation of mass: continuity equation

Considering a Volume V with the surface A the change of the mass M in this volume dM/dt can only be caused
by material flowing through a surface element da (normal to the surface) with density ρ and velocity u, i.e.

d
dt

∫

V

ρ dV = −
∫

A

ρu · da ⇐⇒
∫

V

{
∂ρ

∂t
+ ∇ · (ρu)

}
dV = 0 (2.1)

Here on the left hand side the time derivative was pulled into the integrand and on the right hand side the integral
theorem of Gauß was applied. As the above relation has to hold fo any volume, especially an infinitesimally small
volume around any location in space, one finds the continuity equation

continuity equation:
∂ρ

∂t
+ ∇ · (ρu) = 0 (2.2)

2.2 The derivative in the co-moving frame and incompressibility

When describing a particle as a point mass its acceleration (in 1D) is given through

particle dynamics: u̇ =
du

dt
=

du

dx

dx

dt
=

du

dx
u =

d
dx

(
1
2

u2

)
(2.3)

Here all expressions contain a full differentiation rather than a partial differentiation! This is a feature of particle
dynamics where u describes the velocity of the particle.

In contrast, in fluid dynamics u describes the velocity of the full flow field, i.e. it is a function of space and
time. Thus we have to distinguish between the acceleration defined as the change of velocity at a fixed point in
space, i.e. the partial derivative ∂u/∂t, and the derivative in the co-moving frame.

A scalar quantity φ depending on space x = (x1, x2, x3) and time t is given at x0 = (x0,1, x0,2, x0,3) and t0 in
a frame of reference S(0). After an infinetesimal small time dt, i.e. at t = t0 + dt, at the location x = x0 + dx with
dx = vdt its value φ0 + dφ can be found through a Taylor expansion

dφ =
∂φ

∂t

∣∣∣∣
t0

dt +
∂φ

∂x1

∣∣∣∣
x0,1

v1dt +
∂φ

∂x2

∣∣∣∣
x0,2

v2dt +
∂φ

∂x3

∣∣∣∣
x0,3

v3dt (2.4)

Thus dφ is the change at x in the frame S (0). In another frame S(1) moving with v relative to S(1), x and x0

conincide. Therefore dφ/dt as given through (2.4) is the partial derivative (i.e. at a fixed point) in system S (1).

9
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Therefore, in the case when v = u, i.e. the velocity of the fluid, S (1) becomes the frame moving with the flow.
Therefore one can define the derivative

Dφ

Dt
=

∂φ

∂t
+

∂φ

∂x1
u1 +

∂φ

∂x2
u2 +

∂φ

∂x3
u3 =

∂φ

∂t
+ (u · ∇) φ (2.5)

as being the derivative in the co-moving frame, or the rate of change of φ in time when following the fluid. More
generally one can define the operator

D
Dt

=
∂

∂t
+ (u · ∇) (2.6)

often called the convective derivative. This operator can applied on any vector A, but then one has to careful in
evaluating (u·∇)A (cf. Sect. 2.4).

This discussion allows us to re-write the continuity equation (2.2) in the co-moving frame

continuity equation:
Dρ

Dt
= − ρ ∇ · u ⇐⇒ ∂ρ

∂t
+ (u · ∇) ρ = − ρ ∇ · u (2.7)

So far these considerations (i.e. in this and the preceeding section) where completely general.
If we now assume that a fluid element does not change density when moving along with the fluid, it is imme-

diately clear that for a incompressible fluid we have

incompressibile fluid: ∇ · u = 0. (2.8)

2.3 Conservation of momentum in the Euler fluid

For the Euler fluid we assume the force exerted across a surface element da normal to the surface A to be given
by p da, where p is the isotropic pressure. Now the net force on the volume V is

−
∫

A

p da = −
∫

V

∇p dV. (2.9)

Here we used the Gauss theorem, i.e.
∫
A

x·da =
∫
V
∇·x dV , for a scalar φ, i.e.

∫
A

φ da =
∫
V
∇φ dV .

This force in (2.9) and the gravitational acceleration (integrated over the volume), i.e.,
∫

V

ρ g dV (2.10)

cause the acceleration of the fluid in the co-moving frame of reference, i.e.
∫

V

ρ
Du

Dt
dV (2.11)

As the the forces in (2.9) – (2.11) have to balance for any volume, one finally arrives at the Euler equation:

Euler equation:
Du

Dt
= − 1

ρ
∇p + g. (2.12)

Together with (2.8), ∇·u=0, this completely desribes the evolution of the pressure and the velocity for a given set
of boundary and initial conditions.

2.4 Bernoulli’s theorems

Using the definition of D/Dt in (2.6) and the vector identity ∇(u2) = 2(u·∇)u − 2(∇×u)×u one can re-write
the Euler equation (2.12) in the case of constant density to yield

∂u

∂t
+ (∇× u) × u = −∇

(
p

ρ
+

1
2

u2 + φ

)
, (2.13)

where the gravitational potential φ was indroduced with g= −∇φ.
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For a steady flow (∂/∂t=0) this reduces to

(∇× u) × u = −∇H (2.14)

with the scalar

H =
p

ρ
+

1
2

u2 + φ. (2.15)

Taking the “dot product” of (2.14) the left hand side vanishes, as (∇×u)×u is perpendicular to u, and one finds

(u · ∇)H = 0. (2.16)

This implies that H is constant along a streamline. ¿From this it follows:

BERNOULLI I:
In an ideal fluid flowing steadily,

p

ρ
+

1
2

u2 + φ is constant along a stream line. (2.17)

A flow field is defined irrotational, if

irrotaional flow: ∇× u = 0. (2.18)

In such a case, it follows immediately from (2.14) that ∇H=0, and thus:

BERNOULLI II:
In an ideal fluid with a steady irrotational flow,

p

ρ
+

1
2

u2 + φ is constant troughout the flow field. (2.19)

2.5 What are curl and divergence?

2.5.1 Divergence and Gauss’ theorem

The interpretation of divergence is most easily demonstrated for the vector field of the mass flux.
Let f = ρu be the mass flux with the components f = (fx, fy, fz). In the case of a box with sizes dx, dy and

dz in the respective directions the total mass per time flowing through the sides of the box at x and x + dx are

F (x) = fx(x) dy dz (2.20)

F (x + dx) = fx(x + dx) dy dz (2.21)

Using the definition of the (partial) derivative
∂f

∂x
= lim

dx→0

f (x + dx) − f (x)
dx

one can rewrite (2.21) for small dx

F (x + dx) =

[
fx(x) +

∂fx

∂x
dx

]
dy dz (2.22)

Now the mass loss or gain per time in the x-direction from x to x + dx is given by the difference of (2.22) and

(2.20), i.e.
∂fx

∂x
dx dy dz. Similar arguments hold for the y- and z-direction, leading us to the definition of the

divergence (in Cartesian coordinates) of a vector field f

div f ≡ ∇ · f =
∂fx

∂x
+

∂fy

∂y
+

∂fz

∂z
, (2.23)

and divf dV with dV = dx dy dz describes the mass loss or gain per time of the volume dV .
For a given volume V therefore

∫
V

divf dV describes the mass loss or gain. As this loss or gain can only be
through the surface A of the volume, it has to be equal to the surface integral of the component of the mass flux
normal to the surface, i.e. we have

Gauss’ theorem:
∫

V

divf dV =
∫

A

f · da, (2.24)

where da is the surface element normal to the surface A pointing out of the enclosed volume V .
Shrinking the volume V to zero leads us to a general definition of the divergence,

divf = lim
V→0

1
V

∫

A

f · da. (2.25)

This nicely shows that a divergence free vector field ∇·f = 0 means that the field f has no sources and sinks,
which is well known e.g. for the magnetic field, ∇·B = 0.



12 Hardi Peter & Rolf Schlichenmaier: HYDRODYNAMICS

2.5.2 Curl, Stokes’ theorem and vorticity

Think of a surface A that is enclosed by the curve C. Then for a vector field u the integral over the surface and
the closed line integral around the surface are connected by

Stokes’ theorem:
∫

A

(∇× u) · da =
∫

C

u · dl, (2.26)

where dl is the line element along C. Thus similarly to above one can consider the curl as to be defined as the
integral of the component of u along the curve when “going” around (“rotating” around) the surface A → 0. In
this sense curl means the rotation locally, which must not be mixed up with the global rotation, which will be
illustrated in the following.

In the case of the velocity u, the curl is called

vorticity: Ω = ∇× u. (2.27)

For the interpretation let us assume a 2D flow field in the x-y-plane, i.e.

u = u(x, y, t) ex + v(x, y, t) ey −→ Ω = ω ez ; ω =
∂v

∂x
− ∂u

∂y
(2.28)

Now think of two perpendicular lines: AB in the x- and AC in the y-direction with (infinitesimal) lengths dx

and dy. The change of the y-component of the velocity along the x-direction,
v(x + dx, y) − v(x, y)

dx
≡ ∂v

∂x

corresponds to the angular velocity at B. Likewise −∂u

∂y
corresponds to the angular velocity at C. Thus the vorticity

1
2ω represents the average angular velocity of two short line elements, which happen to be perpendicular (at one
given instant). One has to emphasize that the vorticity is a measure of the local rotation of a fluid element, but it
has nothing to do with the global rotation of the fluid.

For example a shear flow with u = (−α y, 0, 0) has a constant vorticity Ω = (0, 0, α), but is surely not
rotating. One can also construct rotating flows which have zero vorticity, e.g. a cylinder flow in the azimuthal
direction, u = α/r eϕ.

2.6 Transverse pressure gradients — storms in a glass of water

If we stir the coffee in a cup, after removing the spoon we find the surface of the rotating coffee to be non-flat.
What causes this effect and what shape does the surface have?

Let us assume the flow to be steady, i.e. ∂u/∂t = 0 or Du/Dt = (u·∇)u. The
flow is along a curved line in the horizontal plane. Consider the flow at a point P,
where the (local) curvature radius is R and the flow is along the x-direction: at P
we have u = (ux, 0, 0), i.e. uy = uz = 0. Thus the longitudinal component of the
acceleration at P is given by

longitudinal acceleration
Du

Dt

∣∣∣∣
P,x

= (u · ∇)ux = ux
∂ux

∂x

∣∣∣∣
P

=
∂
(

1
2u2
)

∂l
,

where u is the magnitude of the flow (at P) and l the coordinate along a streamline.

ϕ

Q

y

P u

x

R

Even though uy is zero at P, in general the transverse component of the acceleration (i.e. along y) will not vanish,

transverse acceleration
Du

Dt

∣∣∣∣
P,y

= (u · ∇)uy = ux
∂uy

∂x

∣∣∣∣
P

. (2.29)

We can now estimate the transverse acceleration by investigating the velocity at a location Q a bit downstream.
¿From the figure one readily finds

uy

∣∣∣
Q

=
∂uy

∂x

∣∣∣∣
P

R sin ϕ +
∂uy

∂y

∣∣∣∣
P

R(1 − cos ϕ) ≈ ∂uy

∂x

∣∣∣∣
P

r ϕ, (2.30)
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for small angles ϕ, linear in ϕ. On the other hand uy

∣∣
Q

is also simply given by uy

∣∣
Q

= u
∣∣
Q

sin ϕ. Assuming that

the velocity does not change (much) we can replace u
∣∣
Q

= u and for small angles we finally find uy

∣∣
Q

= uϕ.
Equating this with (2.30) we find that

∂uy

∂x

∣∣∣∣
P

=
u

R

∣∣∣
P
.

As at P we have ux = u, we can now write for (2.29)

transverse acceleration
Du

Dt

∣∣∣∣
P,y

=
u2

R

∣∣∣∣
P

. (2.31)

This is corresponding to the centripetal acceleration of a particle moving in two dimensions along a trajectory with
a radius of curvature R.

As the gravity does not play a role for the balance in the horizontal plane, we can write the transverse momen-
tum balance following from the Euler equation (2.12) as

∂p

∂r
=

ρ u2

R
(2.32)

In the case of the coffee in the rotating cup we can now estimate the transverse pressure gradient that is needed
to support the surface to reach to larger heights when moving outwards. One finally finds the surface having the
shape of a paraboloid.

2.7 A danger involved: Cavitation

Bernoulli’s law as derived in Sect. 2.4 implies that when a fluid
is forced through a narrow constriction, the pressure can become
zero or even negative:

pQ = pP − 1
2

ρ
(
u2

Q − u2
p

)
(2.33)

QP R

Because of the conservation of the total mass flux, Aρu, where A is the cross section of the tube, the flow speed
in the constriction is given by uQ = uP /C., with the contraction coefficient C = AQ/AP . Thus the pressure at Q
is given by

pQ = pP − 1
2

ρ u2
P

(
1

C2
− 1

)
⇒ pQ = 0 if: C =

(
1 +

pp

1
2 ρ u2

p

)−2

(2.34)

As an example let us consider a 3/4 inch garden hose (diameter dP = 2cm). Discharging water with a rate of
about 9.4 liters per minute implies a velocity of the water of 0.5 m/s. When squeezing the hose with the fingers,
the contraction coefficient has to be about C = 1 : 28.5 in order to have zero pressure in the constriction. This
corresponds to a velocity uQ = 14 m/s and a diameter of the constriction of about dQ = 4 mm.

As we see typically uQ � uP and therefore we can simplify (2.33) by neglecting u2
P . Then we find

pQ ≈ pP − 1
2

ρ u2
Q (2.35)

Thus for the “external” pressure given by the atmospheric pressure pP = pA = 101 300 Pa, we find that velocities
of about uQ = 10 . . . 15 m/s are sufficient in a flow of water to bring the local pressure pQ down to zero!

For higher velocities, the pressure even becomes negative! What does this mean? A negative pressure would
be absurd for a gas (but the above discussion is valid only for an incompressible fluid, so there is no problem here,
as gases are not incompressible). For solids, however, a negative pressure simply means pulling at opposite ends
of the solid — if the pressure becomes negative enough, the solid starts cracking and the piece is pulled apart.
Sort of the same happens with an incompressible fluid when applying a negative pressure. At some point the fluid
“cracks” and a bubble is formed filled with vapour — the liquid cavitates. These cavitation bubbles can grow
either at the boundary to a solid surface of the flow or somewhere in the liquid. One example, where cavitation
bubbles can occur are ship propellers and turbine blades.
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What happens when the flow slows down again, i.e. after leaving the constriction? Of course the pressure rises
again (and becomes positive) and the cavitation bubbles collapse. This collapse can reach considerable velocities
and the bubbles vanish. This is the reason for a tap hissing when it is not quite closed, or when squeezing a hose.

In engineering cavitation is of quite some importance. When the bubbles collapse, the velocities involved
can reach values well in excess of the flow speed. Thus when the bubble forms at the interface of the liquid to
the solid, the collapse of the bubble can cause a localised impulse on the solid. This may lead to small cracks
in the solids, which then might be sites where corrosion starts off, e.g. at the ship propellers or turbine blades.
Therefore engineers try to avoid flow speeds of the water surrounding the turbine blades etc rising above 10 m/s.
Then according to (2.35) the pressure will stay positive (see above) and no cavitation bubbles will form.

2.8 Shallow water waves
Let us a consider a wave with wavelength λ in water with an
average depth h, where h � λ, i.e. the water is shallow. We do
not consider any effects of boundary layers (i.e. h much larger
than the boundary layer thickness) or surface tension. The latter
assumption is valid if the wavelength is larger than several cm.

h+ h

λ

ξ
x

z

The vertical displacement of the surface of the water due to the wave, ξ, is small in the sense that the amplitude,
i.e. max(|ξ|), is small compared to the water depth h.

The water is assumed to be “still”, so only the waves are moving. We cange into a frame of reference moving
along with the waves, so the waves appear steady, and the water flows as indicated by the flow lines in the figure,
e.g. from left to right, generally along the x-direction.

While the flow is assumed to be constant in y, the wave manifests itself by the variation of the surface along
the z-direction, the local height of the surface being h + ξ. In the frame of reference of the waves, the flow speed
along the x direction will vary, as the cross section changes with the surface height. If u is the average speed and
u1 is the (small) deviation, the flow speed is given by u = u + u1. Mass conservation requires that

u (h + ξ) = (u + u1) (h + ξ) = constant

Assuming that the wave is weak, i.e. ξ � h and u1 � u, we can linearise this equation and find

hu1 + u ξ = 0 (2.36)

Applying Bernoulli’s theorem (2.17) at the surface, where the pressure is the atmospheric pressure everywhere
and the gravitational potential simply φ = g z, we have

1
2

u2 + g (h + ξ) = constant

Again, linearising yields,
uu1 + g ξ = 0 (2.37)

Combining (2.36) and (2.37) gives the average flow speed in the frame of reference of the waves

u =
√

g h. (2.38)

Now assuming a situation at the shore, where the water is more or less at rest, i.e. not drifting, we move from
the frame of reference of the waves to the one of the fluid, and find that the speed of the waves is just given by the
speed found in (2.38), but now in the other direction, of course

speed of gravity shallow water waves c =
√

g h. (2.39)

These waves are called gravity waves, as the gravity is the force counteracting the growth of the waves. In water
about 1 m deep, the wave speed is approximately 10 m/s.

When a wave from the ocean approaches the shore at an arbitrary angle, it becomes refracted, as the part
of the wave front in deeper water is moving faster according to (2.39). Assuming that the depth of the water
monotonically decreases towards the shore this means that the wave is refracted until the wave front is parallel to
the shore. This is the reason why at the beach we see the waves mostly coming in parallel to the coast line.
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Another consequence of (2.39) is that the speed of the gravity wave is independent of its wavelength. This
implies that such waves are non-dispersive. This is true, however, only for very small amplitudes.

And yet another consequence is the braking of the waves. When the amplitude is no linger infinitesimal, the
speed in the “upper” part of the wave is higher than in the “lower’ part. Thus the upper part overtakes the lower
one and the wave brakes.
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Chapter 3

Including viscosity:
The Navier-Stokes equation

In this section we will include the effects of viscosity. This will lead to the Navier-Stokes equation for an incom-
pressible fluid (3.9) as well as for the more general case of a compressible fluid (3.8), which is also valid e.g. for
gases. The Navier-Stokes equation basically describes the momentum balance in a fluid and replaces the Euler
equation (2.12). For the mass balance the investigations from Sect. 2.1 and 2.2 do still apply. It is only when
including the effects of viscosity, a realistic description of a problem is possible.

3.1 Conservation of momentum

As a reminder we write the continuity equation (2.2) in index notation,

∂tρ + ∂k(ρuk) = 0. (3.1)

Here ∂t is short for the derivative with respect to time and ∂k stands for the spatial derivative with respect to the
k-component. In the following it will be more convenient to use this index notation. As usually, when using the
index notation, one has to sum over repeated indices.

In analogy to the continuity equation (2.2), which relates the change of the mass density ρ to the divergence
of the mass flux density ρu, one can write for the momentum ρu

∂(ρu)
∂t

+ ∇ · P = 0 ⇐⇒ ∂(ρui)
∂t

+
∂Πik

∂xk
= 0. (3.2)

Here P is the tensor of the momentum flux or stress tensor with its components Πik. These describe the flux of
the i-momentum in the k-direction.

One can now split the momentum flux tensor Πik into three parts: the advection of i-momentum in the k-
direction through the mass flux, ρui uk; the isotropic contribution called pressure, p δik; the a non-isotropic part
called viscous stresses, σik,

Πik = ρui uk + p δik + σik (3.3)

Substituting this into (3.2) we find

ρ ∂tui + ui ∂tρ + ui ∂k(ρuk) + ρ uk ∂kui + ∂ip − ∂kσik = 0 (3.4)

The sum of the second and third term vanishes because of the continuity equation (3.1) and we get
(

Du

Dt

)

i

≡ ∂tui + uk ∂kui = − 1
ρ

∂ip +
1
ρ

∂kσik, (3.5)

where on the left hand side we have the time derivative in the co-moving frame of the velocity, i.e. the acceleration.
Now the final question concerns the form of the viscous stress tensor σik. Following Newton’s hypothesis,

the viscous stresses are linear in the derivatives of the velocity (“shear”), as was already discussed in Sect. 1.3.

17
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Furthermore one can assume that the action of the viscosity to be symmetric, i.e. σik = σki This leads to the form
of σik = µ S̃ik with

S̃ik = ∂iuk + ∂kui (3.6)

Now the isotropic part of this tensor is the main diagonal, i.e. the average of the sum of the diagonal elements
1
3 Trace

(
S̃
)

= 1
3

∑
i S̃ii. One finds that 1

3 Trace
(
S̃
)

= 2
3∇ · u. However, as we have defined the viscous stresses to

have no isotropic part, as the isotropic part of the stress tensor is the pressure as introduced in (3.3), we have to
correct S̃ik defined in (3.6) with respect to the isotropic part, and subtract 2

3∇·u.
Then the isotropic-free (i.e. traceless) and symmetric viscous stress tensor is given by

σik = µ

(
∂uk

∂xi
+

∂ui

∂xk
− δik

2
3
∇ · u

)
. (3.7)

Please note that in the case on an incompressible medium, i.e. ∇·u = 0, already S̃ik is traceless and the viscous
stress tensor simplifies to σik = µ (∂iuk + ∂kui).

As (∇·u) = ∂l ul, we can write for the divergence of the viscous stress tensor when assuming a constant
viscosity µ

∂kσik = µ
(
∂i ∂k uk + ∂2

k ui − 2
3

∂i ∂l ul

)
= µ

(
∆ui +

1
3

∂i (∇·u)
)
.

Now finally we can write the equation of motion following (3.5) as

Navier-Stokes equation
(compressible)

ρ

(
Du

Dt

)
≡ ρ

∂u

∂t
+ ρ (u·∇) u = −∇p + µ

(
∆u+

1
3
∇ (∇·u)

)
+ f ext, (3.8)

where we now added external forces like gravity, e.g. f ext = ρ g. This equation is the Navier-Stokes equation for
a compressible fluid.

In the case of an incompressible fluid, i.e. ∇·u=0, using the vector identity ∆u = ∇ (∇ · u) −∇× (∇× u)
this equation simplifies to

Navier-Stokes equation
(incompressible)

ρ

(
Du

Dt

)
≡ ρ

∂u

∂t
+ ρ (u · ∇) u = −∇p − µ∇× (∇× u) + f ext, (3.9)

Thus in an incompressible fluid the effects of the viscous stresses are given by the curl of the vorticity Ω = ∇×u

introduced in Sect. 2.5.2. This shows that the concept of vorticity is not only important when describing a non-
viscous flow, but also when investigating the effects of viscosity.

Together with the continuity equation, either in its form of (2.2) or (2.7) the Navier-Stokes equation is describ-
ing the evolution of a fluid when taking viscosity into account. Of course, for the full description of a problem
also a suitable set of initial and boundary conditions is needed.

It is obvious from (3.9) that the viscosity term cancels if the flow is irrotational, i.e., if vorticity of the flow
vanishes: ∇ × u = 0. Then the equation reduces to the Euler equation of motion.

3.2 No-slip boundary condition

The solution of the Navier-Stokes equation depends critically on the boundary condition. From experimental
research one finds that the no-slip boundary conditions have to be applied for viscous fluids:

u|boundary = uboundary . (3.10)

From most applications the problem is most conveniently solved putting the boundaries at rest, uboundary = 0. Then
the flow velocity has to vanish at the boundary.

This boundary conditions has important consequences on the flow. In particular, they imply that any flow has to
decelerate towards the boundaries. The layer of deceleration is known as the boundary layer. In this boundary layer
the viscosity term in the Navier-Stokes-equation ν4u can NOT be neglected even for high Reynolds numbers
(low viscosity) since 4u is very large. In a way, it can be said that the existence of the boundary layer (which
results from the no-slip boundary condition) manifests the essential difference between viscous and non-viscous
fluids. In the limit of ν −→ 0 the Navier-Stokes equation with no-slip boundaries does therefore not lead to the
same result as the Euler equation with slippery boundaries.

In Sect. 4 we will see that the thickness, δ, of the boundary layer is related to the typical length scale, L, and
the Reynolds number by δ2/L2 ∼ Re.
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3.3 Incompressible approximation

The assumption that the fluid is incompressible, i.e. that Dρ/Dt = 0 or equivalently ∇ · u = 0, facilitates the
solution of a problem substantially. The obious question then is, when is this approximation valid? You may think
the approximation to be valid for water, but do you expect it to be valid for air? Under what conditions? This
section aims to give an answer on this1.

Later in the lecture we will derive that the adiabatic speed of sound is given by

cs =
√

γ
p

ρ
. (3.11)

p and ρ denote the (average) gas pressure and density, respectively. γ is the ratio of specific heats, γ = 1.4 for air.
Rewriting the upper equation, we find for the gas pressure, p = ρc2

s /γ ∼ ρc2
s . By inspection of the equation of

motion, however, it is evident (!) (we come back to this) that the pressure fluctuations 4p within the gas associated
with the fluid motion are of order ρU 2, where U is a typical flow velocity. Provided therefore that U 2 � c2

s the
fractional change in pressure,

4p

p
∼ ρU 2

ρc2
s

,

wrought by the fluid motion will be small, and will result in little expansion or compression of fluid elements. The
latter implication from small pressure changes to small density changes can be drawn from assuming that the gas
is isothermal. Then taking the total differential of the equation of state2 p = (R/µ)ρT ,

one obtains:
4ρ

ρ
=
4p

p
∼ U 2

c2
s

= Ma2 ,

i.e. if 4p/p is small then 4ρ/ρ is also small. Hence the answer to our question is: Low Mach number flows can
savely be approximated as being incompressible. The condition for incompressibility is given by Ma2 = U 2/c2

s �
1.

Now we come back to the exclamation mark. We consider a stationary flow: ∂u/∂t = 0. Outside of boundary
layers, the viscosity term can be neglected, and from the advection and pressure gradient term we can estimate:

4p ∼ ρU 2 q.e.d.. (3.12)

For very low Reynolds number, the boundary layer is very thick, i.e. it might be that there is no ’outside of bound-
ary layers’. Then the treatment has to be done differently and one finds that the assumption of incompressibility
is justified as long as3: Ma2 = U 2/c2

s � Re.
The sound velocity in air is cs ∼ 300 m/s ∼ 1000 km/h. Therefore, a very very strong wind at 30 m/s (you

will have problems to stand upright in such a wind) has a Mach number of 0.1 and Ma2 = 10−2 � 1 and the
corresponding air flow can be considered incompressible!

3.3.1 The kinetic energy of low Mach number flows

To gain some insight in low Mach number flow we want to compare its kinetic energy, Ekin to its internal (thermal)
energy Ethermal

4. The trick in the following consists in expressing the internal energy (which is given by 3/2p) in
terms of the sound speed, using (3.11).

Ethermal =
3
2
p =

3
2γ

ρc2
s ∼ ρc2

s � ρU 2 ∼ Ekin (3.13)

Hence, for a low Mach number flow the kinetic energy is small compared with the thermal energy. Even if the
kinetic energy is fully dissipated the thermodynamic state does only change a tiny little bit. For example the water
temperature in a water fall does not change, although kinetic energy is dissipated.

In particular it follows from the above that the flow velocity at low Mach number is small compared with the
typical Brownian velocity of a molecule. In that respect, a low Mach number flow can be considered as a small
fluctuation of the thermodynamic system at rest. Don’t explain the latter remark to somebody who is standing in
a wind of 30 m/s (Ma ≈ 0.1) having a hard time trying not to be blown away!

1The next paragraph is taken from Acheson, Sect. 3.1.
2µ denotes the mean melocular mass per mol. This form converts to pV = NkT using: NAk = R, n = N/V , N = νNA, with ν: number

of mols, ρ = νNAm/V .
3cf. Tritton, 2nd ed., sect. 5.8.
4cf. Tritton: end of Sect. 5.8
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3.4 Transformation to dimensionless variables: Reynolds number

In order to learn about the relative importance of the various terms in the equation of motion, it is of advantage
to estimate a typical velocitiy, U , a typical length scale, L, and intermediate density and pressure values, ρ0 and
p0, of the problem. This implies a typical time scale of t0 = L/U . Then all variables in the equation motion are
expressed in units of these typical values.

u = u0ũ; ρ = ρ0ρ̃; p = p0p̃; x = Lx̃; t = t0t̃; (3.14)

The variables with the tilde ( ˜ ) are dimensionles and should be of order unity. This is assuming that the problem
allows to define one typical scale. Sometimes a typical scale does not exist and then the dimensionless variable is
not of order unity everywhere in the flow.

Plugging the upper transformation into the equation of motion and omitting the tildes again, we obtain:

ρ
∂u

∂t
+ ρ(u · ∇)u = − 1

Ma2 ∇p +
1

Re
4u , with Ma ∼ p0

ρ0U 2
and Re =

UL

ν
. (3.15)

The ratio between the advection and viscosity terms is expressed by the Reynolds number. Whether advection
or viscosity term dominate the pressure gradient term or not, cannot be decided from the equation of motion alone,
since the pressure and the pressure gradient are determined by equation of state and the equation.

3.4.1 High Reynolds number

For a high Reynolds number flow the viscosity term is negligible relative to the advection term and can therefore
be neglected everywhere in the flow but not in the boundary layer. In the boundary layer 4u becomes large
as a consequence of the no-slip boundary condition. The thickness of the boundary layer, δ, is related to the
Reynolds number by δ/L ∼

√
Re (cf. next section). Outside the boundary layer the viscosity term can be

neglected. Complications occur for very high Reynolds numbers when stationary flows become instable and
create turbulence. This will be dealt with in a later chapter.

Just to give some values: ν(air) = 1.5 × 10−5 m2/s, and ν(water) = 1 × 10−6 m2/s. That means that for both
media the Reynolds numbers are very high if the typical length scales exceed some 10 cm, and the typical velocity
exceeds 10 cm/s. Then Re ∼ 104.

3.4.2 Low Reynolds number

Experiment: 2 Cylinders. Very viscous fluid inbetween, with a drop of ink somewhere in the middle. The outer
one at rest, the inner one rotates slowly a few revolutions. The drop of ink is distributed. If the inner cylinder is
rotated backwards the same amount of revolutions, the drop of ink is almost as concentrated as before, and at the
same position. That means the flow is well ordered (no loss of entropy).

⇒ A flow at low Reynolds number is nearly reversible.

The reversibility of the “creeping motion” at low Reynolds number can be proven. The viscous fluid may
extend over some region V , which is bounded by a closed surface S. Let the boundary condition on S be given
by u = uB(x). The slow flow equations are linear:

0 = −∇p + µ4u and ∇ · u = 0 (3.16)

with ρ entering in µ = ν/ρ. It can be shown (cf., excercise) that there is at most one solution for a given boundary
condition.

Assume a solution u(x) with the boundary condition uB = f (x) is given (x on the closed surface S). Suppose
that the boundary conditions are changed to uB = −f (x). It is obvious from inspection of the slow flow equations
that −u(x) constitutes a solution to the reversed problem. As we have mentioned above, this solution is the only
solution, i.e., it is unique. We conclude that solutions to the slow flow equations obey reversibility, if the boundary
conditions are reversed.

Examples: Creeping flow past a sphere; Corner eddies; Swimming at low Reynolds number; Swimming of a
thin flexible sheet; Flow in a thin film; Flow in Hele-Shaw cell; Thin film flow down a slope;

3.4.3 Swimming at low Reynolds number

The trick: Do something that is not time-reversible, like swimming of a thin flexible sheet.
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3.5 Some solutions

¿From the time independent Navier-Stokes equation of motion: ρ(u · ∇)u = −∇p + µ4u , the following
problem solution are addressed. The formulation in cartiesian coordinates is straight forward.

3.5.1 Poiseuille flow

This problem was already dealt with in chapter 1 and the fist excercise sheet. There the governing equation were
derived somewhat loosly. Now with the Navier-Stokes equation at hand, the equation of motions can readily be
written down.

For the case of a flow between two parallel plates (without gravity), the Laplace operator is most conve-
niently formulated in cartesian coordinates. The flow streams in x-direction, and the plates extend indefinitly in
z-direction. The y-axis is perpendicular to the plates. Assume that the flow is stationary ∂u/∂t = 0. The flow is
unidirectional, uy = uz = 0. Since the distance between the plates is constant, ∂ux/∂x = 0.

The Navier Stokes equation in cartesian coordinates reduces to, denoting u = ux:

dp

dx
= µ4u .

Expressing the Laplace operator, one obtains:

µ
d2u

dy2
= G with G =

dp

dx

⇒ u =
G

2µ
(a2 − y2) , φ =

2Ga3

3µ

with φ denoting the mass flow per unit length and time.
For the flow in the tube, cylindrical coordinates are appropriate to express the Laplace operator. Using uφ =

ur = 0, ∂/∂φ . . . = ∂/∂z . . . = 0, and u = uz , the Navier-Stokes equation reduces to its z-component, which itself
simplifies to:

µ
d
dr

(
r

du

dr

)
= −r

dp

dz

Now we define as G = dp/dz.

⇒ u =
G

4µ
(a2 − r2) , Φ =

πρGa4

8µ

Entry length:

When the Reynolds number is less than about 30, the upper results always apply. At higher Reynolds number the
results only apply after some distance down the pipe. This entry length x, is experimentally found to depend on
the distance between the two plates (diameter of the tube), d, and the Reynolds number, Re:

x

d
∼ Re
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3.5.2 Rotating Couette flow or: How can the viscosity be measured?
We consider the rotating Couette flow at low Reynold numbers.
Fluid is contained in the annulus between two long concentric
cylinders of radii a1 and a2 rotating about their common axis
with angular velocities Ω1 and Ω2. For now we assume that
the velocity has only an azimuthal component: ur = uz = 0,
and the azimuthal velocity only depends on the radial distance:
∂/∂z = ∂/∂φ = 0. The latter will change for high Reynolds
numbers when the flow becomes instable and turbulent. In the
case we consider here, the continuity equation reduces to ∂uφ

∂φ =
0, which is already garanteed by the above assumptions. The
azimuthal and radial component of the Navier-Stokes equation
become:

0 = µ

(
d2uφ

dr2
+

1
r

duφ

dr
− uφ

r2

)
and −

ρu2
φ

r
=

dp

dr

a1

a2

r

Ω2
Ω1 φ

5 with the boundary conditions:

uφ = Ω1a1 at r = a1 and uφ = Ω2a2 at r = a2 .

The first equation decouples from the second, i.e., uφ is determined by visocous stresses only. The second
equation determines the pressure distribution given by the balance between the pressure gradient and the centrifu-
gal force ρu2

φ/r exerted by the circular motion.
Solution:

uφ = Ar + B/r with A =
Ω2a

2
1 − Ω1a

2
1

a2
2 − a2

1

and B =
(Ω1 − Ω2)a2

1a
2
2

a2
2 − a2

1

The torque, Σ1, acting on the inner cylinder (per unit length in the z-direction) is given by the viscous stress
multiplied by the circumstance and the radius:

Σ1 =

[
µr

∂(uφ/r)
∂r

]

r=a1

· 2πa1 · a1 = 4πµa2
1a

2
2
Ω2 − Ω1

a2
2 − a2

1

.

For the torque on the outer cylinder one obtains Σ2 = −Σ1!

5Deriving the Navier-Stokes equation in cylindrical coordinates, (r, φ, z), one has to consider that the nabla operators create extra terms as
a consequence of

∂êr

∂φ
= êφ,

∂êφ

∂φ
= −êr ,

∂êz

∂φ
= 0 ,

which lead to the terms: uφ/r2 and u2
φ
/r.



Chapter 4

Boundary layer

Outside the boundary layer: ∇ × u = 0. Vorticity is generated through viscosity in boundary layers! Therefore
one might expect that the thickness, δ, depends on the Reynolds number of the flow. This will be addressed in
Sect. 4.2. First we will derive the simplified equation of motion which governs the boundary layer.

(Wakes and jets as phenomena in a flow: Vortices that form in boundary layers are advected into the bulk of
the flow. We will talk about this later in the lecture.)

4.1 Steady 2-D boundary layer equations

We derive the equations that govern a 2D steady
boundary layer, adjacent to a rigid wall at y = 0.
In boundary layer theory one assumes that ux and
uy change much more rapidly with y than with x,
meaning that

∣∣∣∣
∂ux

∂y

∣∣∣∣�
∣∣∣∣
∂ux

∂x

∣∣∣∣ .

Expressing the latter equation in length and veloc-
ity scales, it is found that U/δ � U/L, and hence:
δ � L. Continuity yields:

∂ux

∂x
+

∂uy

∂y
= 0 (4.1)

L

x

y

δ

u

The scale analysis of the continuity equation yields: V ∼ δU/L, with U being the typical velocity in x-direction,
and V being the typical velocity in y-direction, i.e., V � U . In the equation of motion the scale of the pressure
difference in x-direction is denoted by Π and in y-direction by Λ. The x-component of the equation of motion
reads, with the scale of the terms beneath:

ux
∂ux

∂x
+ uy

∂ux

∂y
= −1

ρ

∂p

∂x
+ ν

∂2ux

∂x2
+ ν

∂2ux

∂y2
(4.2)

∼ U 2

L
∼ U 2

L
∼ Π

ρL
∼ ν

U

L2
∼ ν

U

δ2

The y-component of the equation of motion read:

ux
∂uy

∂x
+ uy

∂uy

∂y
= −1

ρ

∂p

∂y
+ ν

∂2uy

∂x2
+ ν

∂2uy

∂y2
(4.3)

∼ U 2δ

L2
∼ δU 2

L2
∼ Λ

ρL
∼ ν

Uδ

L3
∼ ν

U

Lδ
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Viewing the last two equation as equations for the pressure gradients, it is seen that LΛ ∼ δΠ , i.e., Λ � Π! This
justifies that the y-component of the equation of motion for boundary layers can be neglected and that ∂p/∂x can
be written as dp/dx. Even more dramamtic, (4.2) can be further simplified: Since

∂2ux

∂x2
� ∂2ux

∂y2
,

the last term can be neglected, and the equation of motion for a steady 2-D boundary layer is given by

ux
∂ux

∂x
+ uy

∂ux

∂y
= −1

ρ

dp

dx
+ ν

∂2ux

∂y2
(4.4)

4.2 How thick are boundary layers?

The key idea of boundary layer theory is that the rapid variations of ux with y should be just sufficient to prevent
the viscous term from being negligible, notwithstanding the small coefficient of viscosity, ν. This means that the
advection terms are of the same order as the viscosity term, i.e., U 2/L ∼ νU/δ2. This implies:

δ

L
∼ 1√

Re
(4.5)

An alternative (of course in principle equivalent) way in estimating δ is by stating that outside the boundary,
the viscosity term and uy∂ux/∂y are negligible, i.e.,

ux
∂ux

∂x
∼ −1

ρ

dp

dx

The gas pressure gradient is also present in the boundary layer, and needs to be balanced there also by ux∂ux/∂x.
Hence these two terms neutralize, and the other two terms also need to be of the same order:

uy
∂ux

∂y
∼ ν

∂2ux

∂y2

The latter estimate is equivalent to δ/L ∼ 1/
√

Re. Hence, a-posteriori the initial assumption which has led to
δ � L proves to be valid for sufficiently high Reynolds numbers.

4.3 Flow due to an impulsively moved plane boundary

Suppose 2D flow: 0 < y < ∞, rigid boundary at y = 0. The rigid boundary is initially, t = 0, at rest and suddenly
moved with velocity U in x direction. What velocity profile results? The no-slip boundary condition will effect
the flow. The question you may want to ask is how and what rate does the moving boundary affect the fluid. One
expects that the no-slip boundary will initially drive the fluid close to the boundary, and that the fluid starts moving
further away from the boundary as time proceeds.

Since uy = 0, we denote u = ux, and note ∇p = 0, and ∂u/∂x = 0. The Navier-Stokes equation for u = u(y, t)
becomes:

∂u

∂t
= ν

∂2u

∂y2

The initial condition: u(y, 0) = 0. The boundary conditions: u(0, t) = U and u(∞, t) = 01.
The equation is unchanged under the transformation: y → αy and t → α2t. This suggests that there are

solutions which are functions of y and t simply through the single combination y/
√

νt (ν is added to make it
dimensionless). Thus we try

u = f (η), where η =
y√
νt

.

(
∂u

∂t
=

∂u

∂η

∂η

∂t
= −f ′(η)

y

2ν1/2t3/2
= −1

2
f ′(η)

η

t
,

∂u

∂y
= f ′(η)

η

y
,

∂2u

∂y2
= f ′′(η)

1
νt

)

1The problem is in fact identical with the problem of the spreading of heat through a thermally conducting solid when its boundary
temperature is suddenly raised from zero to some constant.
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For (4.3) we then obtain

f ′′ +
1
2
ηf ′ = 0 ⇒ f ′′(η) = −1

2
ηf ′(η) ⇒ f ′ = B exp(−η2/4)

Integrating once more, one obtains:

f (η) = A + B

∫ η

0
exp(−s2/4) ds

A and B are constants of intergration which are to be determined from the initial and boundary conditions, which
reduce with η = y/

√
νt to:

f (∞) = 0 , f (0) = U .

Then, using that
∫∞

0 exp(x2/a2) dx = a/2
√

π, the solution to the problem (4.3) with η = y/
√

νt is:

u = U

[
1 − 1√

π

∫ η

0
exp(−s2/4) ds

]
.

This solution is self-similar for y and t: At t1, u(η) is a function of y/
√

νt1. At time t2, u(η) is the same (!)
function of y/

√
νt2.

Plotted: y versus u
Paramters: U = 1 m/s, ν = 1 cm2/s
Time steps: t = 1/4 s t = 1 s and t = 4 s.

u = 0.01U for y ∼ 4
√

νt

4.3.1 Vorticity

ω(y, t) = ∇ × u = −∂u

∂y
=

U√
πνt

exp(−y2/4νt)

Non-zero vorticity only in boundary layer. Vorticity
spreads out in time, from the boundary layer into the
fluid.

Plotted to the left: y versus ω.
Parameters: U = 1 m/s, ν = 1 cm2/s
Time steps: t = 1/4 s t = 1 s and t = 4 s.

Some statements:

• Vorticity diffuses a distance of order
√

νt in time t.

• If the typical length scale is given by L, the corresponding time scale is given by the diffusion time scale,
τdiff:

L ∼ √
ντdiff , or τdiff ∼

L2

ν
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4.3.2 Boundary layer and vorticity

Vorticity is generated in the boundary layer through the effects of viscosity! Consider the curl of the Navier-Stokes
equation:

∇ ×
[
∂u

∂t
+ (u · ∇)u = −1

ρ
∇p + ν4u

]
,

with the vector identity:

∇ × (u · ∇)u = u · ∇(∇ × u) − [(∇ × u) · ∇]u + ∇ · u∇ × u = (u · ∇)ω − (ω · ∇)u

with ω = ∇ × u. Since ∇ × ∇p = 0 and ∇ · u = 0, we obtain:

Dω

Dt
= (ω · ∇)u + ν4ω

This equation descrives the vorticity change of a fluid particle. The second term ν4ω means that viscosity
produces vorticity down a vorticity gradient. The first term describes the action of velocity variation on vorticity:
vorticity twisting and stretching in 3D. In 2D the vorticity is perpendicular to the motion, ω = (0, 0, ωz), and
the first term reduces to ωz∂u/∂z. Since u does not change with z, this terms vanishes in 2D. We conclude for
inviscid fluids: In the absence of the viscosity term, the vorticity of a 2D flow is constant, Dω/Dt = 0 .

Stokes theorem: ∮

C

u dx =
∫

S

(∇ × u) · n̂ dS.

[∇ · ∇ × u ≡ 0; ∇ × ∇φ ≡ 0; ]

4.4 Rotating flows controlled by the boundary layers: Ekman layer

Consider a flow between z = 0 and z = L. The lower boundary rotates with Ω and the upper with Ω(1 + ε), ε � 1.
The Reynolds number of a rotating flow is given by

Re =
ΩL2

ν
.

If Re is large we expect a thin viscous layer on both boundaries and an essentially inviscid ‘interior’ flow. How
does the interior flow look like?

Since the fluid is rotating almost at uniform angular velocity Ω, it is approporiate to formulate the Navier-
Stokes equation in a co-rotating frame of reference (with Ω):

∂u

∂t
+ (u · ∇)u + 2Ω × u + Ω × (Ω × x) = −1

ρ
∇p + ν4u , ∇ · u = 0 .

Here, u denotes the velocity relative to the rotating frame and the new terms come are the inertia forces: The
third term is due to the Coriolis force and the fourth term is due to the centrifugal force. The centrifugal term,
Ω × (Ω × x) = −∇[ 1

2 (Ω × x)2] can formally be cleared away to the pressure term:

pR = p − 1
2
ρ(Ω × x)2 .

Now, we are interested in relative flow velocities which are much smaller than the rotation velocity:

U � ΩL ⇒ |(u · ∇)u| ∼ U 2

L
� ΩU ∼ |2Ω × u|

Hence, in this approximation, known as geostrophic approximation, the advection term can be neglected in com-
parison with the Coriolis term. Many applications of this approximation are found in oceanography and meterol-
ogy: The rotation velocity of the surface of the earth at the equator is ΩL = 40 000 km / 24 h∼ 300 m/s. Then a
wind speed of U = 10 m/s is still much smaller than the rotation of system.
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Steady inviscid interior: For the steady inviscid flow, i.e. what we expect for the interior, we use cartesian
coordinates (x, y, z), whith the rotation axis in z-direction: Ω = (0, 0, Ω). Then, with the velocity (u,v,w):

−2Ωv =
1
ρ

∂pR

∂x
, 2Ωu = −1

ρ

∂pR

∂y
, 0 = −1

ρ

∂pR

∂z
,

∂u

∂x
+

∂v

∂y
+

∂w

∂z
= 0

¿From these equations, assuming that ρ is constant, it follows that: (1) pR is independent of z (third eq.). From the
first two then it is obvious that (2) u and v are also independent of z. Moreover, substituting the first two into the
last, ∂w/∂z = 0! It follows that u is independent of z! The latter statement is the far reaching Taylor-Proudman
theorem.

Einschub zum Taylor-Proudman Theorem: ρ sei nicht konstant! Es sei p = f (ρ) (baroklin), Ω = (0, 0, ω) =
constant, und ∇ · u = 0.

∇ × [ 2Ω × u +
1
ρ
∇p = 0 ] ⇒ ∇ × (2Ω × u) +

1
ρ
∇ × ∇p + ∇

(
1
ρ

)
× ∇p = 0

∇ × ∇p ≡ 0 , ∇

(
1
ρ

)
× ∇p = − 1

ρ2
∇ρ × ∇p = − 1

ρ2

df

dρ
∇ρ × ∇ρ = 0 wegen p = f (ρ)

⇒ ∇ × (Ω × u) = (Ω · ∇)u − (u · ∇)Ω − u∇ · Ω︸ ︷︷ ︸
=0, wegen Ω= konstant

+Ω∇ · u = (Ω · ∇)u = ω
∂u

∂z
= 0!

Wesentliche Vorraussetzung, dass Taylor-Proudman Theorem gilt: ∇ρ × ∇p = 0! (Das ist der Fall, wenn p =
f (ρ).)

Ekman boundary layer: We limit the following discussion for the case of the earth and consider the ocean
surface as the boundary layer at z = 0. The rotation axis, ΩE , is no longer parallel to the local vertical, ẑ. x and y
axes lie in the surface. λ denotes the angle between equator plane and ẑ in notherly direction. Assume as normal
for the boundary layer that variations of u with z are much more rapid than those with x or y. Also we consider
the case when the velocity of the interior is zero. The equations reduce to:

ν
∂2u

∂z2
+ (2ΩE sin λ)v = 0 and ν

∂2v

∂z2
− (2ΩE sin λ)u = 0 .

Eliminating v we obtain:

∂4u

∂z4
= −

(
2ΩE sin λ

ν

)2

u .

There are four types of solutions: u ∝ exp(±z/ε), exp(±iz/ε), with ε =
√

ν/ΩE sin |λ|. We are only interested
in solutions that attenuate to zero for z → −∞, and which have the flow velocity U at the surface, which we
choose to be in the x-direction: u(z = 0) = U x̂. Then an approriate solution is:

u = U exp(z/ε) cos(z/ε) , → v =
sin |λ|
sin λ

U exp(z/ε) sin(z/ε)

Hence, u having a magnitude of U and pointing in x-direction at z = 0, attenuates over a depth ε by a factor 1/e,
and as it attenuates it changes its direction. The angle θ of the flow with the x-axis is such that:

tan θ =
u

v
=

sin |λ|
sin λ

tan(z/ε)

Defining the mean velocity as 〈u〉 = 1/ε
∫ 0
−∞

u dz, then, taking advangage of:

∫
exp(αx) sin βx dx =

exp(αx)
α2 + β2

(α sin βx−β cos βx) and
∫

exp(αx) cos βx dx =
exp(αx)
α2 + β2

(α cos βx+β sin βx)
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we obtain:

〈u〉 = − sin |λ|
sin λ

〈v〉 =
1
2
U .

The latter means that the mean boundary flow 〈u〉 makes an angle of ∓π/4 with the x-
axis, which coincides with the angle of the flow at z = 0. For the steady flow solution,
there must be a stress that sustains such a flow. This stress can be supplied by wind.
The stress components have to be:

sxz = ν

(
∂u

∂z

)

z=0

= νεU, and syz = ν

(
∂v

∂z

)

z=0

= νε
sin |λ|
sin λ

U

The wind must exert this stress to the surface in order to garantee a steady solution of
the upper type. Such a wind must make an angle the x-axis of ±π/4.

u

wind
velocity

u(z=0)

x

y

Examples for Ekman layers: Northern wind along Californian coast drive surface towards west. Water at the
coast is replaced by clean and cold water, i.e. nothern wind brings up fresh water at the shore.

4.5 Boundary layer separation

One consequence of the no-slip boundary condition for a flow that passes by a boundary. The flow velocity is
reduced close to the boundary. From Bernoulli’s law we know sum of the kinetic energy and gas pressure is
constant along streamlines. Hence, due to the lower velocity, the kinetic energy is reduced and the gas pressure
at that location close to the boundary needs to be increased. Such location of high gas pressure can drive small
whirls which eventually may lead to boundary layer separation.

The theoretical description of boundary layer separation is complex and needs to be studied numerically. The
description relies on the ’triple deck’ structure.

Increasing the Reynolds number different types solutions are found in experiments:

1. For Reynolds numbers around 40, stationary eddys develop. For a cylinder, two eddies of opposite rotation
form.

2. Increasing the Reynolds number further, the flow may enter a regime of oscillation: The sizes of the two
eddies grow and shrink.

3. For Reynolds numbers around 100, eddies become separated, known as Karman vortex street. The eddies
on the two sides of the cylinder are shed alternately, at a well defined frequency of approximately 0.1U/a,
which a being the radius of the cylinder.

4. For even higher Reynolds number the flow behind the cylinder (in the wake) becomes turbulent.



Chapter 5

Lift: Why can airplanes fly?

In this chapter we address the question of why airplanes fly. We will see that the simple answer is yielded in
applying Bernoulli’s equation, p+ρu2/2 = constant, but deeper insights are necessary to understand what is going
on! To this end we will touch the topics of circulation, and of the Kutta-Joukowski-Hypothesis and the Kutta-
Joukowski-Theorem. We will demonstrate that the Bernoulli equation is not the full truth: Lift is only possible if
the air is deflected by the aerofoil! This is related to the Newton’s third law, actio = reactio, which also must be
satisfied.

5.1 Circulation

The circulation is defined by the integral around a closed curve in the fluid:

Γ =
∮

C

u · dl =
∫

S

(∇ × u) · dS

For the second expression we have applied the Stokes theorem for any area S that is enclosed by the closed curve
C. For an Euler fluid (no viscosity, and constant density) it can be shown that the circulation does not change in
time for a curve that is frozen into the fluid:

DΓ

Dt
=

D
Dt

∮

C

u · dl = 0

Proof: The curve C is parametrized by l = l(s, t) with 0 ≤ s ≤ 1, such that l(0, t) = l(1, t), and dl(s, t) = ∂l/∂s ds.
The derivative is applied to each of the factors and the equation of motion is used to manipulate the first term of
the sum:

D
Dt

∮

C

u · dl =
∮

C

Du

Dt
· dl +

∮

C

u · D
Dt

dl = −1
ρ

∮

C

∇p · dl +
∮ 1

0
u · D

Dt
dl = −1

ρ

∮

C

dp

︸ ︷︷ ︸
=0, since p(0)=p(1)

+
∮ 1

0
u · ∂

∂s

Dl

Dt︸︷︷︸
u

ds =

=
∮ 1

0
u · ∂

∂s
u ds =

1
2

∮ 1

0

∂u2

∂s
ds =

1
2

[u2]1
0 = 0 .

5.2 Kutta-Joukowski-Hypothesis

An irrotational solution of the air flow streaming around the wing has no circulation. For such a solution the rear
stagnation point is upstream of the trailing edge on the upper edge of the wing. A reverse pressure gradient is
present that drives the flow from the trailing edge to the stagnation point. Such a solution has a singularity at the
trailing edge, since the velocity is infinity there (upper sketch in the figure). It can be shown1 that there is only one
value for the circulation for which the flow speed is finite at the trailing edge (bottom sketch in the figure). This

1This is quite complex, c.f. Acheson, Elementary fluid dynamics, chapter 4. The derivation involves the velocity potential, stream function,
complex potential,, Milne-Thomson’s circle theorem and conformal mapping.
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is the solution in which the flow streams smoothly around the wing. The Kutta-Joukowski-Hypothesis states that
the latter solution is the one that is observed.

Top: Irrotational flow with vanishing cir-
culation. Stagnation point upstream of the
trailing edge, such that the velocity at the
trailing edge is infinite.
Bottom: Solution with finite circulation
and finite velocity at the trailing edge.
It is natural to hope (Kutta-Joukowski-
Hypothesis) that this particular flow will
correspond to the steady flow that is actu-
ally observed.

The Kutta-Joukowski Hypothesis implies that the flow around the aerofoil does not exhibit boundary layer sepa-
ration, since the rear stagnation point is at the trailing edge of the aerofoil. Only then the aerofoil can experience
lift. To produce such an airstream the geometric form of the aerofoil is crucial! There is a difference between a
plate and an aerofoil.

α

For a plate at a non-vanishing angle of attack, α, the airstreams stalls just after the leading edge, as depicted in the
figure, and the plate will not experience lift (according to the Kutta-Joukowski hypothesis). The same happens to
an aerofoil if the angle of attack becomes too large. If it exceeds some 8◦, the air flow stalls and the aerofoil can
not fly. This is of course understood in the context of Bernoulli’s equation, if the air flow stalls above the wing, the
velocity above is smaller than beneath the wing, leading to a gas pressure gradient that pulls the wing downward.

5.2.1 Difference between plate and aerofoil

For making a difference between a flat plate and an aerofoil, one has to suppress boundary layer separation of the
flow. We want to mention three techniques.

The first is obvious and is called “stream lining”. It consists
in choosing an appropriate geometrical form, i.e. the lead-
ing edge is roundish and the trailing edge is sharp, and in
between the aerofoil is as smooth as possible. The second
technique aims at suppressing the reversed flow that tends
to form from the trailing edge and is directed upstream, and
may initiate boundary layer separation and thus stalls the air
flow. This reversed flow is counter-acted by injecting fresh
momentum into the boundary layer downstream of the lead-
ing edge (see figure). This technique is actually used in air-
planes. The third technique does not aim at preventing the
reverse flow, but it deviates the reverse flow such that it can
not produce the boundary layer separation. The deviated flow
is fed back into the overall flow where it does not harm, i.e.
does not produce boundary layer separation.
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5.2.2 Eddy (vortex) conservation

As mentioned above the only flow solution that has finite velocity at the trailing edge has a non-vanishing circu-
lation: Γ =

∫
S

∇ × u dS 6= 0. This implies that the wing carries a bounded vortex with it. This eddy (vortex) is
visible for the case of a plate, since the air flow stalls and an eddy forms in the wind shadow of the plate. This can
nicely be experienced if you take a knife and a big pot of water. If you drag the knife with a finite angle of attack
through the water you will see the bounded eddy. In case of an aerofoil (to be subject to the Kutta-Joukowski
Hypothesis) the vortex is not readily seen, but is hidden in the fact that the air flow is deflected. But where is the
counterpart of the vortex, which needs to be present in order to satisfy vortex (eddy) conservation? This counter-
part forms when the movement starts. You will see the eddy at the trailing edge of the knife migrating sideways,
shortly after you abruptly start the movement of the knife.

5.3 Kutta-Joukowski-Theorem

The Kutta-Joukowski-Theorem establishes the relation between lift and circulation. Again, an exact derivation
is somewhat involved (c.f. Acheson, Sect. 4.11). The following derivation is not exact, but illustrative. Assume
you have an aerofoil around which a flow streams. The flow velocity is denoted by U . The pressure on the upper
edge of the aerofoil is denoted by pt and at the bottom edge pb. According to Bernoulli’s equation the pressure
difference is given by

pb − pt =
1
2
ρ(u2

t − u2
b) =

1
2
ρ(ut + ub)(ut − ub) ∼ ρU (ut − ub)

The force acting on the aerofoil, L, called lift if the force acts upwards, is obtained by integrating along the wing,
from the leading edge, x = 0, to the trailing edge, x = c:

L ∼ ρU

∫ c

0
(ut − ub) dx

A close inspection of the integral reveals that it corresponds to the negative circulation aroung the wing. The
circulation is given by:

Γ ∼
∫ c

0
ub dx +

∫ 0

c

ut dx = −
∫ c

0
(ut − ub) dx

Hence, we can establish a relation between the lift and the circulation:

L = − ρU Γ
Kutta-Joukowski theorem;
Lift theorem

This implies that if there is lift, the circulation is non-vanishing and negative, and the flow velocity above the
wing is larger than beneath the wing.

5.4 Lift: the deflection of an air stream

It is important to realize that the conditions for non-vanishing lift can only be realized, if the air flow is deflected
by the wing. Satisfying Newton’s third law, actio = reactio, the lift must have a counter force. This counter force
acts on the air and deflects it. In that respect both, Bernoulli’s equation and the deflection of air (Newton’s third
law) are essential to produce lift!

Of course, Newton’s third law is implicitly contained in the equation of motion2. This is most easily seen
if one uses the Eulerian equation of motion (no viscosity) and integrates over a region, V . The surface of this
Volume is denoted by ∂V : ∫

V

ρ(u · ∇)u dV = −
∫

∇p dV

2Note that the Bernoulli equation is also derived from the equation of motion.
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Using the Einstein sum convention, the fact that ∂ui/∂xi = 0, and Gauß’s divergence theorem the left-hand side
can be manipulated:

∫

V

ρuj
∂ui

∂xj
dV =

∫

V

ρ
∂

∂xj
ujui dV =

∫

∂V

ρujuinj dS =
∫

∂V

ρui u · n dS

Applying Gauß’s divergence theorem also on the right-hand side and putting the minus sign to the left-hand side,
we obtain for the volume integral of the Euler equation:

−
∫

∂V

ρu u · n dS =
∫

∂V

pn dS . (5.1)

ρu is the momentum per volume for a fluid element. u ·n δS is the volume rate at which fluid leaves the volume
V through the surface δS. Hence, the left-hand side gives the flux of momentum that leaves the volume V through
its surface ∂V . The right-hand side is the integral of pressure acting on the surface, ∂V , which corresponds to the
force that acts on the fluid volume, V .

5.4.1 Flow past a stack of aerofoils

In the case of a single aerofoil in an infinite expanse of fluid the deflection of air is somewhat hidden, since the
deflection must tend to zero at infinity.
Therefore it is more illustrative to consider a stack of
aerofoils which are separated by a distance d and are
thought to repeat continuously to infinity in +y and −y
direction. Then the flow that comes in horizontally in +x
direction, with u1 = (U, 0), is deflected by the aerofoils.
Since the flow is incompressible, the volume flux across
AD must be equal to that across BC, meaning that the
x-component of the velocity is constant. It follows that
the flow velocity downstream of the aerofoils is given by
u2 = (U, v), with v denoting the y-component of the ve-
locity downstream of the wings. x

y

D

C

A

B

d

We now apply Eq. 5.1 to the fixed region ABCDA. The right-hand side is the force on the cross section and
corresponds to the lift, L, if there is any. The left-hand side is the flux of momentum. Along the stream lines, i.e.
for AB and DC, u · n vanishes, because n is perpendicular on u. For AD, u is perpendicular to dl, and therefore
flux of momentum through AD is also zero. The flux of momentum through BC is non-zero, because u · n = U ,
and

∫ C

B
u dl = vd, such that the left-hand side yields −ρUvd. Thus, Eq. 5.1 yields

L = − ρ U v d

In this way, we see clearly how the lift is related to the deflection of the airstream: L is positive if v is negative.
Moreover, the relation between deflection and circulation is also apparent: Using the same arguments as above the
circulation, Γ =

∮
u dl can be evaluated to be

Γ = v d .

Hence again, the lift is given by L = − ρ U Γ . This demonstrates that the deflection of air is essential to obtain
lift!



Chapter 6

Sound waves — linear analysis

In this chapter we will concentrate on perturbations in a gas. When a gas is disturbed, e.g. through the movement
of a membrane of a loudspeaker, this perturbation is propagating away from the source. In the case of a gas the
changes in velocity come along with changes in pressure (or density) — it is a compressible wave. As we are able
to hear these waves (in a certain frequency range), we call these sound waves.

The governing equations are the continuity equation (2.2) and the Navier-Stokes equation (3.8) for the general
case, i.e. including compressibility. We will limit our discussion here to the one-dimensional case in a gas with
no bulk velocity, i.e. we consider a pressure perturbation propagating along the, e.g., z-direction, with the velocity
perturbation having a component only in this direction. We include gravity as an external force f ext = ρ g in
the Navier-Stokes equation (3.8) and consider a wave propagating either in the case of absence of gravity (g=0;
Sect. 6.2 & 6.3) or (anti) parallel to the gravitational acceleration (Sect. 6.4).

Instead of the dynamic viscosity µ we will use the kinematic viscosity ν = µ/ρ (1.4), as in a gas the assumption
of ν = const. is not too bad. In the following we will assume ν to be constant and for convenience define

ν̃ =
4
3

ν =
4
3

µ

ρ
= constant

The one-dimensional equations for conservation of mass and momentum then read

ρ̇ + (ρ v)′ = 0 (6.1)

ρ v̇ + ρ v v′ + p′ = ρ ν̃ v′′ − ρ g (6.2)

These two equations have to be accompanied by an equation determining the pressure, normally the energy equa-
tion. Instead we will use an equation of state, here for an adiabatic process. This is a good assumption, as usually
the gas element expanding or contracting when the wave passes by has no time to exchange energy with the sur-
roundings. From thermodynamics one knows that in this case p ρ−γ is a constant for the respective gas parcel (not
necessarily having the same value in the whole volume). Thus the time derivative in the co-moving frame has to
vanish, cf. (2.6) in Sect. 2.2, i.e.

D
Dt

(
p ρ−γ

)
= 0 (6.3)

The adiabatic exponent γ is the ratio of specific heats and is about 1.4 for air at normal temperatures and pressures.

6.1 Small perturbations: linearizing the equations

Just as in perturbation theory we will now assume that an unperturbed state at rest exists, with density ρ0, pressure
p0 and vanishing velocity v0 = 0. The system is slightly perturbed, so that

v = v1, ρ = ρ0 + ρ1, p = p0 + p1 ; ρ1 � ρ0, p1 � p0 (6.4)

with the perturbations denoted by the index 1 being small compared to the unperturbed values. In the case of v1 it
is assumed that v1 is smaller than the sound speed, see Sect. 6.1.3 and (6.13). The idea is then to neglect all terms
quadratic or higher in the perturbations.
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Let us first quickly investigate the non-perturbed state at rest. Then we have v = 0, ρ = ρ0 and p = p0, with
ρ̇0 = ṗ0 = 0. In this case the continuity equation (6.1) is trivially fulfilled and the momentum equation (6.2)
reduces to the

hydrostatic equilibrium p′0 = −ρ0 g (6.5)

Substituting the definitions (6.4), neglecting all terms of quadratic and higher order in v1 and ρ1, and remem-
bering the hydrostatic equilibrium of the rest state (6.5), we are left just with

ρ̇1 + (ρ0 v1)′ = 0 (6.6)

ρ0 v̇1 + p′1 = ρ0 ν̃ v′′
1 − ρ1 g (6.7)

Before applying these linearized equations to a problem, we have to establish a relation for the pressure perturba-
tion p1 based on the adiabatic assumption.

6.1.1 Adiabatic changes on a constant background

Let us first consider the simpler case with a background that is spatially constant, the spatial derivatives of the
quantities at rest vanish, ρ′

0 = p′0 = 0. In the adiabatic case described by (6.3) we know that p/ργ is constant in
each gas parcel. If it was p0/ρ

γ
0 in the unperturbed state it will remain so, i.e.

p

ργ
=

p0 + p1

(ρ0 + ρ1)γ
=

p0

ργ
0

⇔
(

1 +
p1

p0

) (
1 +

ρ1

ρ0

)−γ

= 1 (6.8)

As ρ1 � ρ0 we can Taylor-expand (1 + ρ1/ρ0)−γ = (1 − γ ρ1/ρ0 + . . .), where quadratic and higher orders in
(ρ1/ρ0) denoted by “. . .” are neglected. Substituting this yields

1 +
p1

p0
− γ

ρ1

ρ0
− γ

p1 ρ1

p0 ρ0
+ . . . = 1, (6.9)

We now first define a constant c, and will see later after (6.18) that it is the

adiabatic sound speed c =

(
γ

p0

ρ0

)1/2

. (6.10)

Neglecting all terms quadratic or higher in the perturbed quantities (i.e. also p1ρ1), we can re-write (6.9) to give a
relation between the pressure and density perturbations,

p1 = c2 ρ1. (6.11)

Together with this relation, (6.6) and (6.7) are the linearized form of (6.1) and (6.2) for an adiabatic equation
of state on a uniform background and fully describe the linear evolution of the perturbation, i.e. as long as the
perturbations remain small.

6.1.2 Adiabatic changes in a stratified atmosphere

If we consider a problem where the gravity becomes important, we have to account for the stratification of the
background atmosphere, i.e. for the hydrostatic equilibrium (6.5). Then the simple relation (6.11) no longer holds.
In this case the adiabatic equation of state (6.3) has to be properly linearized. This is a bit tedious, but with some
patience and the hydrostatic equilibrium (6.5) one arrives at

ṗ1 = c2ρ̇1 + v1
(
c2ρ′0 + ρ0 g

)
, (6.12)

and for ρ′0 = g = 0 indeed (6.11) follows from this relation.

6.1.3 What means “small velocity perturbation”?

Above we assumed that v1 should be small. However, as the non-perturbed state is assumed to be at rest, v0 = 0,
what does “v1 is small” means?
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This can be illustrated with the help of the continuity equation (6.6) An order of magnitude estimation gives
ρ1/τ ≈ ρ0 v1/L with the typical length scale L and time scale τ of the wave. Of course this time scales are related
through the sound speed, c ≈ L/τ . Thus we can write for the velocity fluctuations

v1

c
≈ ρ1

ρ0
⇒ v1 � c, (6.13)

i.e. the velocity fluctuation with respect to the sound speed are of the same order than the density fluctuations and
thus v1 � c.

The same works also with the momentum equation (6.7) when comparing the two terms on the right hand side.

6.1.4 What means “small viscosity”?

One note has to be made concerning linearizing of the viscosity term. Of course this linearization does make
sense only if the viscosity is not too large, i.e. if the effects of viscosity, represented by ρ0 ν̃ v′′

1 in (6.7), are smaller
than the force driving the sound wave, i.e. the pressure gradient, represented by (c2 ρ1)

′
in (6.7). For an order of

magnitude estimation we introduce a length scale L = 1/k through the wave number k of the propagating wave.
Furthermore we assume that the perturbations of density and velocity are of the same order, i.e. ρ1/ρ0 ≈ v1/c.
Now when comparing the terms (c2 ρ1)

′
and ρ0 ν̃ v′′

1 in (6.7), small viscosity means

c

ν̃ k
> 1 (6.14)

Identifying k with 1/L, the above right hand side is sort of a Reynolds number, cf. Sect. 1.3 and (1.5), i.e. the
linearization is valid only for large Reynolds numbers.

This becomes important when discussing the sound wave in an viscous medium in Sect. 6.3 following (6.26).

6.2 Pure sound waves

If we now neglect any effects of viscosity (ν̃=0)and gravity (g=0; ρ′
0=0), the linearized continuum and momentum

equations (6.6) and (6.7) together with the adiabatic relation (6.11) simplify to

ρ̇1 + ρ0 v′
1 = 0 ; ρ0 v̇1 + c2 ρ′1 = 0 (6.15)

Taking the spatial derivative of the left hand equation and the time derivative of right equation,

ρ̇′1 + ρ0 v′′
1 = 0 ; ρ0 v̈1 + c2 ρ̇′1 = 0

we can combine these to give a differential equation for the velocity, (well, it is a wave equation)

v̈1 − c2 v′′
1 = 0 (6.16)

Likewise we can get a wave equation for the density perturbation if we take the temporal derivative of the left and
the spatial derivative of the right equation in (6.15).

As (6.16) has constant coefficients, we can make an exponential ansatz in time and space,

v1 = v̂1 exp
(
ikz − iωt

)
⇒ v̈1 = −ω2 v1 v′

1 = i k v1

v′′
1 = −k2 v1 v̇′′

1 = i ω k2 v1
(6.17)

If both ω and k are real, the real part of v1, representing the observable quantity, is a sinusoidal wave. If then k>0
the wave propagates in the the +z-direction, if k<0 in the −z-direction.

Substituting the ansatz (6.17) in the equation governing the velocity perturbation (6.16) we find the dispersion
relation

ω2 = c2 k2 (6.18)

As the group velocity is dω/dk = c, the sound speed is indeed c as mentioned above with equation (6.10). Here
we have the special case that also the phase speed ω/k is given by the sound speed.
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6.3 Sound waves being dissipated by viscosity

We will now include the effects of viscosity (ν̃ 6=0) but still neglect gravity (g=0; ρ′
0=0). The linearized continuum

and momentum equations (6.6) and (6.7) together with (6.11) then read

ρ̇1 + ρ0 v′
1 = 0 ; ρ0 v̇1 + c2 ρ′1 = ρ0 ν̃ v′′

1 (6.19)

Combining them as following (6.15) yields

v̈1 − c2 v′′
1 = ν̃ v̇′′

1 (6.20)

As this differential equation has constants coefficients, too, we can again use the exponential ansatz (6.17). Sub-
stituting this ansatz in (6.20) gives the dispersion relation

ω2 = c2 k2 − i ν̃ ω k2. (6.21)

For ν̃= 0 this is the same as for a pure sound wave (6.18), of course.
Now the frequency ω will be complex in general, even if the (spatial) wavenumber k is real. In order to analyze

this further we write
ω = ωR + iωI (6.22)

where ωR and ωI are the real and complex part. Substituting this in (6.21) yields

ω2
R − ω2

I
︸ ︷︷ ︸

(2)

+ 2iωRωI
︸ ︷︷ ︸

(1)

= c2 k2

︸︷︷︸
(2)

− i ν̃ ωR k2

︸ ︷︷ ︸
(1)

+ ν̃ ωI k
2

︸ ︷︷ ︸
(2)

(6.23)

Here the imaginary parts (1) and the real parts (2) must independently fulfill this relation. Let us first compare the
imaginary parts (1), which gives directly he imaginary part of the frequency,

ωI = −1
2

ν̃ k2 < 0 (6.24)

While k can be positive (propagation in +z) or negative (in −z), k2 is always positive. As the viscosity ν̃ is a
positive quantity, too, the imaginary part of the frequency is always negative.

Thus the solution following the ansatz 6.17 is given through

v1 = v̂1 exp
(
ikz − iωRt

)
exp

(
ωI t
)
. (6.25)

As ωR and ωI are real by definition, and as ωI < 0, this solution is a wave which is exponentially decaying in time
through the exp(ωI t) term.

This is exactly what is to be expected, namely that in the presence of viscosity a sound wave is damped.
Furthermore we find that waves with large wave numbers k, i.e. small wavelengths are dissipated the quickest,
because then ωI is large. This also is sort of “common sense”.

Comparing the real parts (2) of (6.23) leads to the phase speed

v2
phase =

(ωR

k

)2
= c2 −

(
1
2 ν̃ k

)2
(6.26)

This shows that the phase speed is reduced compared to the case without viscosity, where it c. The stronger the
viscosity, viz. damping, the smaller the phase speed. This result is also “common sense”, i.e. a sound wave
damped in a viscous medium is propagating slower than in a non-viscous case.

As this linear analysis is limited to small viscosity, see Sect. 6.1.4 and (6.14), v2
phase will not become negative.

But of course, this clearly shows the limitations of this linear analysis.

6.4 Sound waves in a stratified atmosphere

Turning to a sound wave propagating in an atmosphere subject to gravity we will again neglect viscosity.
As now the density of the non-perturbed state at rest is no longer spatially constant, we have to investigate

the hydrostatic equilibrium (6.5) first. We assume that the gas is an perfect gas, so that the state at rest follows
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p0 = ρ0 kBT0/m, with a constant non-perturbed state temperature T0 and mean molecular weight m. Using this,
the hydrostatic equilibrium (6.5) can be re-written and easily integrated.

ρ′0
ρ0

= − mg

kBT0
= − 1

H
⇒ ρ0 = ρ00 exp

(
− z

H

)
with scale height H =

kBT0

mg
(6.27)

In the case of the earth’s atmosphere H≈8 km. In the Sun’s photosphere this is about 200 km (this is the reason
why the solar limb appears so sharp, even with the best telescopes, which can currently resolve structures on the
Sun of 100 km, at best).

It is important to note here, that the assumption of an isothermal atmosphere greatly simplifies the problem,
especially the sound speed c2 = γ p0/ρ0 = γ H/ g is a constant, as is ρ′

0/ρ0 = −1/H . Nevertheless, the same could
be done without this assumption of constant temperature, leading basically to the same result, but as not much
more is learned from the general case (except some maths) we keep to the simplified version of an barometric
atmosphere.

With gravity and neglecting viscous effects (ν̃=0) the linearized continuum and momentum equations (6.6)
and (6.7) and the linear adiabatic equation of state (6.12) read

ρ̇1 =
ρ0

H
v1 − ρ0 v′

1 , (6.28)

v̇1 = −p′1
ρ0

− ρ1

ρ0
g , (6.29)

ṗ1 = c2 ρ̇1 − v1 c2 ρ0

H
+ v1 ρ0 g . (6.30)

Here we used that the spatial derivative of the density of the rest state following (6.27) is ρ′
0 = −ρ0/H .

These three equations can now be combined to give one single differential equation for, e.g., the velocity
perturbations v1. For this one can take the spatial derivative of (6.30) and substitute ρ̇′

1 using the spatial derivative
of (6.28). The result then can be used to substitute ṗ′

1 in the temporal derivative of (6.29), and using (6.28) as well
as ρ′0 = −ρ0/H from (6.27) one finally arrives at

v̈1 − c2 v′′
1 +

c2

H
v′

1 = 0 . (6.31)

Just as before we use the exponential ansatz (6.17), which gives the dispersion relation

ω2 = c2 k2 + i
c2

H
k (6.32)

As with the case including viscosity, here the frequency ω can be complex and we define ω = ωR + iωI giving

ω2
R − ω2

I

︸ ︷︷ ︸
(2)

+ 2iωRωI

︸ ︷︷ ︸
(1)

= c2 k2

︸︷︷︸
(2)

+ i
c2

H
k

︸ ︷︷ ︸
(1)

(6.33)

In principle the imaginary and the real part can be solved explicitly, but we will consider a somewhat simplified
problem. For the imaginary parts (1) alone we find

ωI =
c2

2 H

k

ωR
(6.34)

We immediately see that the imaginary part of the frequency, ωI is positive for an upward propagating wave
(k>0) and negative for a downward propagating wave (k<0). Considering the solution (6.25) this implies that
an upward propagating wave (propagating in denser material) will steepen, while a wave propagating downwards
will be damped.

One can now assume that the atmosphere is only weakly stratified, i.e. that the phase speed of the wave
propagating in the stratified atmosphere, ωR/k ≈ c is approximately the phase speed for a constant density, i.e.
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the adiabatic sound speed, and thus ωI ≈ c/(2H). Similar to the case with viscosity alone (6.25) we can now write
for the solution of the velocity perturbation

v1 ≈ v̂1 exp
(
ikz − iωRt

)
exp

( c

2H
t
)

= v̂1 exp
(
ikz − iωRt

)
exp

( z

2H

)
, (6.35)

where we used that if the the phase speed is c, we can transform from time to space via z = ct. Comparing this
with the solution of the hydrostatic equilibrium (6.27), we can write

v1 ∝ 1√
ρ0

exp
(
ikz − iωRt

)
, (6.36)

i.e. in a weakly stratified atmosphere the perturbations are proportional to 1/
√

ρ0 (this also holds for the pressure
perturbations).

Using the same approximation as above, i.e. ω2
I ≈ c2/(4H2), we can write for the real part of the dispersion

relation (6.33)

ω2
R ≈ c2 k2 +

c2

4 H2
= c2 k2 + ω2

A. (6.37)

Unlike for the case of a pure sound wave, here a minimum frequency exists for a wave propagating through a
stratified atmosphere, ωA. This frequency is called the cut-off frequency, as only waves with higher frequencies
can propagate, e.g. in the solar atmosphere this frequency corresponds to about 3 minutes in the photosphere.

In a more general treatment, the cut-off frequency is given through the Brunt-Väisälä frequency

cut-off frequency: ωA =
γ

2
√

γ − 1
N with Brunt-Väisälä frequency: N 2 = −g

ρ′0
ρ0

− g2

c2

It is easy to verify, that with our assumptions the cut-off frequency indeed is given by ωA = c/(2H).

To summarize: in a barometrically stratified atmosphere, where the density is decreasing with height, a ver-
tically propagating sound wave will steepen when propagating upwards and will be damped when propagating
downwards. Furthermore only waves with frequencies larger than the cut-off frequency can propagate.

The physical relevance of these results is found e.g. in the solar atmosphere. There the convective overshoot at
the surface of the Sun produces a whole range of sound waves. When propagating these sound waves steepen and
their amplitude grows larger and larger. At some point the linear analysis presented in this chapter brakes down,
of course. The waves steepen into shocks and their energy is dissipated. That this process operates on the Sun and
might heat the solar outer atmosphere was first suggested independently in 1948 by Biermann and Schwarzschild.
Today we know that the sound waves alone are not sufficient to heat the corona of the Sun to 106 K (while the
visible surface is at ∼5800 K), but that magnetic fields play a crucial role. Nevertheless the heating processes due
to sound waves still play an important role in the lower parts of a stellar atmosphere, namely the chromosphere of
the Sun as well as of other stars.

The present discussion is limited to a linear analysis. A non-linear analysis for sound waves in a stratified
atmosphere including viscous effects would lead to the following result. An upward propagating wave is steepen-
ing until it forms a shock and the amplitude of the velocity perturbations is comparable to the sound speed. Then
the viscous dissipation is most efficient and the wave is quickly damped out. Thus the non-linear effects limit the
wave amplitude to the sound speed. A detailed description of these processes is beyond the scope of this lecture.
However, non-linear effects will be discussed in the next chapter.



Chapter 7

Surface waves and solitons

This chapter will deal with surface waves on an incompressible fluid, like waves on an ocean or in a channel. In
the first part (Sect. 7.1) we discuss waves of small amplitude in deep water and find in Sect. 7.1.5 that these waves
are dispersive, i.e. after some time a wave packet on deep water will become so broad with so small amplitude, that
it practically vanishes. In Sect. 7.2 this will be expanded to water of finite depth. In contrast to this linear analysis,
a non-linear treatment of surface waves on shallow water (Sect. 7.3) shows that these waves steepen, i.e. grow in
amplitude. Finally one can find instances, where the dispersive effects exactly balance the non-linear effects of
steepening. Such a perturbation, not changing its shape while propagating, is called soliton and is discussed at the
end of this chapter in Sect. 7.4.

7.1 Surface waves on deep water — gravity waves

For the following we will restrict the discussion to two dimensions, with the wave propagating in the horizontal
x-direction, and gravity pointing in negative z-direction. The free surface of the fluid is found at

free surface: z = η(x, t) . (7.1)

Without the wave the surface would be at z=η=0. The respective velocity components are (u)x = u(x, z, t) and
(u)z = v(x, z, t).

We assume the flow to be irrotational (cf. end of Sect. 3.1), i.e. ∇× u = 0. This inplies that we do not have to
consider viscous effects, as for an incompressible fluid in this case the viscous term drops out of the Navier-Sokes
equation (3.9). Now the velocity vector is given through a (scalar) potential φ,

u = ∇φ → u =
∂φ

∂x
; v =

∂φ

∂z
. (7.2)

For an incompressible fluid we have ∇ · u = 0, thus the potential has to satisfy Laplace’s equation, i.e.

∂2φ

∂x2
+

∂2φ

∂z2
= 0 . (7.3)

7.1.1 The free surface

As effects like convection are not considered, any particle which is located at the surface will remain there.
Defining f = z − η, this implies that Df/Dt = 0 at the surface, as each surface elements remains there, i.e.
∂f/∂t + (u ·∇)f = 0. Using the definition of f and its partial derivatives, ∂f

∂t =−∂η
∂t , u∂f

∂x =−u ∂η
∂x , v ∂f

∂z =v, one can
write

at the surface:
∂η

∂t
+ u

∂η

∂x
− v = 0 . (7.4)

For a horizontal surface (∂η/∂x=0) one finds that v=∂η/∂t, which makes sense. For a stationary surface (∂η/∂t=0)
one has v/u=∂η/∂x, i.e. streamlines are parallel to the surface, also making sense.
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7.1.2 Using the Euler equation

Using the velocity potential (7.2) we can write the Euler equation (2.12) as

∂

∂t
(∇φ) = −∇

(
p

ρ
+

1
2

u2 + g z

)
. (7.5)

One can now integrate this equation in z giving

∂φ

∂t
+

1
2

(
u2 + v2

)
+ g z = − p

ρ
+ ξ(t) . (7.6)

Here ξ(t) can be chosen arbitrarily, without any effect on the flow field, as u is given through partial spatial
derivatives of the potential φ.

Assuming that at the surface z = η the pressure being given by the atmospheric pressure p0 constant in x and
t, we can chose ξ = p0/ρ and find

at the surface:
∂φ

∂t
+

1
2

(
u2 + v2

)
+ g η = 0 . (7.7)

This is often referred to as the pressure condition, as one assumes the pressure at the surface to be given through
the atmosphere.

7.1.3 Wave solution for small amplitudes

The equations (7.4) and (7.7) describe the (non-linear) evolution at the surface.
As in Sect. 6.1 we are splitting the quantities in a time-independent “background value” and a perturbation to

linearize the equations. Here we have the state of rest velocities to be zero and likewise the location of the surface
should be around z = 0, and therefore we simply skip the index 1 for the perturbed quantities and assume that u,
v, η and φ are small, and thus neglect terms quadratic and higher in these quantities.

Using this linearization we rewrite (7.4) using v = ∂φ/∂z, and (7.7) to give

∂φ

∂z
− ∂η

∂t
= 0 , (7.8)

at the surface z = η � 1 :
∂φ

∂t
+ g η = 0 . (7.9)

We will now make an ansatz for the surface displacement to be a sinusoidal wave,

η = η̂ cos(kx − ωt) . (7.10)

This suggests that the solution of the potential has the form

φ = ϕ(z) sin(kx − ωt) . (7.11)

As the potential has to satisfy Laplace’s equation (7.3), the amplitude ϕ(z) must satisfy ∂2ϕ/∂z2 = k2ϕ, i.e.

ϕ = A exp(kz) + B exp(−kz) . (7.12)

Assuming without loss of generality that k>0, we have to set B = 0 to ensure finite amplitudes “deep in the
ocean”, i.e. for z → −∞.

Using this solution and then substituting the ansatz for η and φ in the linearized wave equations (7.8) and (7.9),
we find

Ak − η̂ ω = 0 ; −Aω + g η̂ = 0 . (7.13)

from which the dispersion relation follows,

ω2 = g k . (7.14)
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7.1.4 Going in circles

Before further discussing the dispersion relation, “particle paths” on the surface will be addressed quickly. Using
(7.13) we have A = η̂ ω/k, and thus

φ = η̂
ω

k
exp(kz) sin(kx − ωt) ⇒ u = η̂ω exp(kz) cos(kx − ωt) ; v = η̂ω exp(kz) sin(kx − ωt)

Assuming that the positions of particles in the fluid depart not much from an average position (x, z), we might
integrate the velocities u = dx1/dt and v = dz1/dt to give

x1 = − η̂ exp(kz) sin(kx − ωt) ; z1 = η̂ exp(kz) cos(kx − ωt) .

Thus “test particles” go in circles. At the surface the radius of these circles is just the amplitude of the wave, of
course. It is important to note that even though each surface fluid element goes in circles, it remains on the surface
all the time.

On the wave crests there is a forward motion, in the troughs a rearward motion, as is easily experienced when
swimming in the ocean.

The water also goes in circles within the water, but the amplitude is rapidly decreasing. Thus almost all the
energy of a surface wave is carried in a surface layer, its depth being comparable to the wavelength.

7.1.5 Dispersion of small amplitude surface waves in deep water

The most important result of this section is the dispersion relation (7.14) From this it quickly follows that the
phase speed, i.e. the velocity of the individual crests is given by

cphase =
ω

k
=
√

g/k . (7.15)

The group velocity is only half the phase speed

cgroup =
∂ω

∂k
=

1
2

cphase . (7.16)

Both speeds depend on the wave number, and thus the waves are dispersive. The energy of the wave is transported
with the group velocity.

The most important result here is, that these waves are dispersive, i.e. the phase speed depends on the wave
number, or in other words the phase speed differs from the group velocity. Thus an initially narrow packet of
waves, consisting of a number of different frequencies will become broader in time. In the present case, the
waves with large wavelengths (small k) propagate faster, while those with small wavelengths lag behind. This
will ultimately lead to a broader wave packet with smaller amplitude. Thus, even in the absence of any viscous
effects, the wave packet will finally dissappear, or more exactly: it will become so broad, that its amplitude is
hardly recognizable.

7.2 Surface wave in water with finite depth

When considering small amplitude surface waves in water with finite depth h0 all that changes is the boundary
condition. Instead of the case of infinite depth, we now have account for that the fluid is bounded at z = −h0, i.e.
that its vertical velocity vanishes there, or in terms of the velocity potential

(
∂φ

∂z

)

z=−h0

= 0 .

With this boundary condition the constant B in (7.12) for the amplitude of the potential will no longer be zero. A
more complicated but similar treatment the gives the dispersion relation

ω2 = g k tanh(h0k) ⇒ c2
phase =

g

k
tanh(h0k) . (7.17)

The consideration of finite depth just gives a factor of tanh(k h0) to the solution of infinite depth (7.15). In deep
water, i.e. when h0 � λ = k−1 we have tanh(h0k) ≈ 1, and thus the same dispersion relation as for infinitly deep
water. In shallow water, where h0 � λ = k−1 we have tanh(h0k) ≈ h0k, and thus there the phase speed is

√
g h0 .

This latter result was already found at the beginning in Sect. 2.8 by very basic arguments.
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7.3 Finite amplitude waves in shallow water — nonlinear effects

We will now no longer assume that the perturbations are small. However, we will keep to the shallow water
approximation, namely that the depth of the (undisturbed) water h0 is small compared to any length scale of the
wave L,

h0 � L . (7.18)

As before we consider a wave in the x-z plane. Then the components of the Euler equation (2.12) and the
continuity equation in the case of incompressibility (2.8) read

Du

Dt
=

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂z
= −1

ρ

∂p

∂x
, (7.19)

Dv

Dt
=

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂z
= −1

ρ

∂p

∂z
− g , (7.20)

∂u

∂x
+

∂v

∂z
= 0 . (7.21)

The shallow water approximation (7.18) now justifies to neglect the convective derivative Dv/Dt in the vertical
component of the Euler equation (7.20). This can be shown by a dimensional analysis of the above equations, e.g.
with (7.18) it follows from (7.21) that v/u ≈ h0/L � 1.

Finally in the z-direction we are left with the hydrostatic equilibrium, and (7.20) can be written as

∂p

∂z
= − ρ g ⇒ p = p0 − ρ g

(
z − h

)
, (7.22)

where we have directly integrated the hydrostatic equilibrium, assuming that the pressure at the surface at height
h equals the constant atmospheric pressure p0.

In contrast to the preceeding discussion of deep water waves we now choose z = 0 at the botton of the water
and define the surface through z = h(x, t).

Now the horizontal component of the Euler equation (7.19) simplifies to

Du

Dt
= − g

∂h

∂x
,

i.e. for any given fluid parcel the change of the horizontal velocity u does not depend on z and we can write instead
of (7.19) the reduced form of the above equation

∂u

∂t
+ u

∂u

∂x
= − g

∂h

∂x
. (7.23)

This is the first of the two shallow water equations.
To get the second one, we start with the continuity equation (7.21) and formally integrate with respect to z giving

v = − ∂u

∂x
z + f (x, t) , (7.24)

where we have to add an arbitrary function f (x, t) not depending on z. Using a no-slip boundary condition at the
bottom of our problem, i.e. v=0 at z=0, we find f (x, t)=0.

With the help of the condition of the free surface (7.4), here taking the form

at surface z = h(x, t) :
∂h

∂t
+ u

∂h

∂t
− v = 0 .

we can re-write (7.24) to give the second shallow water equation

∂h

∂t
+ u

∂h

∂x
= − h

∂u

∂x
. (7.25)

The coupled partial differential equations (7.23) and (7.25) fully describe the evolution of the surface and the
horizontal velocities and thus fully describe the shallow water wave problem.

These equations can be written in a more symmetric form by introducing

c(x, t) =
√

g h , (7.26)
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which is similar to the phase speed in the linear analysis done for shallow water waves in Sect. 2.8, cf. equation
(2.39). Substitution in (7.23) and (7.25) yields

∂u

∂t
+ u

∂u

∂x
= − 2c

∂c

∂x
; 2

∂c

∂t
+ 2u

∂c

∂x
= − c

∂u

∂x
.

Adding and subtracting now finally gives the shallow water equations
{

∂

∂t
+
(
u + c

) ∂

∂x

}(
u + 2c

)
= 0 , (7.27)

{
∂

∂t
+
(
u − c

) ∂

∂x

}(
u − 2c

)
= 0 . (7.28)

Here we will not solve these equations, but only sketch one possible method, namely one based on character-
istics. For this one defines a characteristic curve x = x(s), t = t(s) in the x-t plane. Here it is profitable when
choosing dt/ds = 1 and dx/ds = u ± c. One can then substitute this in (7.27) and (7.28), respectively depending
on the sign, and will finally find that

d
ds

(
u ± 2c

)
= 0 .

Thus one arrives at the important statement that u ± 2c is constant along positive / negative characteristics.

7.3.1 A non-linear perturbation or wave

Now assume that a perturbation, e.g. a wave package or a Gaussian-shaped perturbation, is moving in the +x-
direction into water at rest. As then in this problem each (“meaningful”) characteristic of interest is connected to
the water at rest, where the surface is at a constant height h0, i.e. where u = 0, we have

u − 2c = − 2c0 = −
√

g h0 . (7.29)

Then (7.28) is trivially satisfied, while (7.27) yields

∂c

∂t
+
(
3c − 2c0

) ∂c

∂x
= 0 . (7.30)

This describes the non-linear evolution of the wave, here its surface height.

7.3.2 Non-linear evolution

To investigate this evolution, one might introduce a new variable ξ which, when substituted in (7.30), results in

ξ = 3c − 3c0 ⇒ ∂ξ

∂t
+ ξ

∂ξ

∂x
= 0 . (7.31)

A general solution of this simple looking equation is

ξ = F (x − ξt) , (7.32)

as is easily proven. This solution implies that larger values of ξ propagate faster in the +x-direction than smaller
ones. The figure below shows the evolution of ξ = cos(x− ξt), which is one special function solving (7.31). Here
one should recall that c =

√
g h and ξ = 3c − 3c0, i.e. that in the present case ξ basically describes the height of

the surface of the water. Thus the parts of a perturbation of the surface which are at greater height ξ will propagate
faster than those at lower height, so that ultimately the wave is steepening, as is demonstated in the figure below

This, of course, is well known from the breaking of waves on the ocean.
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front.
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7.4 Solitons: the Korteweg-de Vries (KdV) equation

In Sect. 7.1 and especially in Sect. 7.1.5 we have seen, that a surface wave (on deep water) of small amplitude will
vanish after some time because of dispersion (even in the absence of viscosity). However, when accounting for the
non-linear character of the hydrodynamic equations, as done in Sect. 7.3, we see that a wave on shallow water will
rapidly steepen. One can now think of a situation, where the steepening and dispersive effects just balance and a
perturbation will propagate on the surface of the water without changing its shape. Such a phenomenon is called
a solitary wave or soliton and is encountered not only in surface waves, but in many other branches of physics.

The first report of a soliton is from Scott Russel. In 1834 he observed a boat on a canal, which was drawn
by horses, inducing a wave after suddenly being stopped. He followed this perturbation traveling with about
12 km/hour, first on foot then on horseback for more than a mile. The smooth perturbation was about 30 cm in
height and about 9 m long and pretty much kept its shape. Later he studied such solitary waves in the laboratory.

In 1895 Korteweg and de Vries suggested a non-linear differential equation (7.34), which should describe the
propagation of a surface perturbation in a canal. Actually one might use the propagation of an electro-magnetic
wave between two parallel conducting planes as an inspiration. Here we will not discuss how this equation is
derived, but just give the result, and then show that in two limiting cases one just finds the same results as presented
above for the linear analysis with dispersion in Sect. 7.1 and for the non-linear steepening case in Sect. 7.3.

If the water has a depth of h0, the amplitude of the perturbation is of the order of η0, and its length scale is of
order L, then for the case Korteweg and de Vries describe we have to assume

η0

h0
≈ h2

0

L2
≈ “is small” . (7.33)

For the dispersive surface wave we assumed η0 � L � h0, for the non-linear surface wave in shallow water
we used η0 ≈ L � h0, now we assume that amplitude, wavelength and water depth are roughly comparable.
Actually for the case Russel observed in 1834 (see above) we have η0=0.3 m, L=10 m, and we might assume for
the depth of the canal some h0=3 m (which might be a bit too much...). Then both η0/h0 and h2

0/L
2 in (7.33) are

about 0.1.
With the phase speed of a (linear) shallow water wave c0 =

√
gh0, see Sect. 2.8, equation (2.38), the suggestion

for the differential equation describing a soliton in a channel, i.e. the height of the surface perturbation η, is the

Korteweg-de Vries equation:
∂η

∂t
+ c0

∂η

∂x
+

3
2

c0

h0
η

∂η

∂x
+

1
6

c0h
2
0

∂3η

∂x3
= 0 . (7.34)

When either the 3rd term (non-linear) or the fourth term (dispersive) are neglected, this equation is consistent with
the special cases discussed earlier in Sect. 7.1 and 7.3. This will be shown below in Sect. 7.4.3 and 7.4.4. Before
that we will show that there are indeed solutions to the Korteweg-de Vries equation preserving their shape.

7.4.1 A soliton solution for the Korteweg-de Vries equation

As a general analytical solution of the Korteweg-de Vries equation (7.34) is not possible, we shall simply seek if
it indeed has a soliton solution. For this we make an ansatz that

η = f (x − vt) (7.35)

is a special solution, with f being an arbitrary function; f and its derivatives f ′, f ′′ and f ′′′ should vanish for
x − vt → ±∞. Here the constant v describes the propagation speed of the soliton. For any function f the
above ansatz provides a structure that does not change its form while propagating. Substituting this ansatz into the
Korteweg-de Vries equation (7.34) gives

(
c0 − v

)
f ′ +

3
2

c0

h0
ff ′ +

1
6

c0h
2
0 f ′′′ = 0 . (7.36)

Now this can be integrated to give

(
c0 − v

)
f +

3
4

c0

h0
f 2 +

1
6

c0h
2
0 f ′′ = 0 , (7.37)
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where we used the boundary condition that f and its derivatives vanish for x − vt → ±∞. Multiplying by
(2h0/c0)f ′ one can integrate again and together with the boundary condition we find

1
3

h3
0

(
f ′
)2

=
(

η̂ − f
)
f 2 with η̂ = 2 h0

(
v

c0
− 1

)
. (7.38)

Finally we can take the square root, separate the variables and integrate using the substitution f = η̂ sech2φ giving
the solution

η = η̂ sech2
{(

3 η̂

4 h3
0

)1/2 (
x − vt

)
}

with v = c0

(
1 +

η̂

2 h0

)
. (7.39)

This is a special solution of the Korteweg-de Vries equation (7.34), but it should be kept in mind that it is not
necessarily the only one! We only verified that the above ansatz (7.35) indeed is a solution.

The special solution represents a perturbation of the surface, which is
roughly Gaussian like. The figure to the right shows the actual solution
sech2x (solid line) as compared to a Gaussian exp[−x2] (dotted).

The solution (7.39) shows that a soliton is moving just a bit faster
than a surface wave on shallow water with small amplitude. For Rus-
sel’s observations mentioned at the beginning of the chapter we would
find for the speed of the soliton about v ≈ 18 km/hour, which roughly
agrees with his estimation.
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7.4.2 Propagation of the soliton

One of the most intriguing aspects of solitons is that they pass through each other (almost) without interaction.
As a soliton with larger amplitude propagates faster, cf. (7.39), it will eventually overtake another soliton with
smaller amplitude. After the overtaking procedure the two solitons remain unchanged! However there is a sign
that an non-linear interaction took place, namely that the large amplitude soliton will arrive a bit early, the small
amplitude soliton a bit late.

This feature of interaction-free passing through of solitons makes them quite special in physics. Since the
discovery that the Korteweg-de Vries equation has a soliton solution, also other non-linear equations have been
found allowing for solitons.

7.4.3 Neglecting the non-linear term of the KdV equation

The aim of this and the following subsection is to show that for two special cases the KdV equation gives the same
results as found previously for dispersive and non-linear waves.

When we neglect the non-linear term in the KdV equation (7.34) it simplifies to

∂η

∂t
+ c0

∂η

∂x
+

1
6

c0h
2
0

∂3η

∂x3
= 0 .

Substituting a wave ansatz η = η̂ cos
(
kx − ωt

)
this gives the dispersion relation

ω

k
= c0

(
1 +

1
6

h2
0 k2

)
. (7.40)

With the definition of c0 =
√

gh0 we can write the dispersion relation of surface waves on water with finite depth
based on a linear analysis (7.17) as

ω

k
= c0

(
tanh(h0k)

h0k

)1/2

. (7.41)

When expanding this relation up to second order in h0k, one finds just the dispersion relation (7.40) for the KdV
equation without the non-linear term. (The expansion is a bit lengthy, but doable...). In that way the KdV equation
(for shallow water, i.e. h0k�1) is consistent with the linear analysis of Sect. 7.1 and 7.2
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7.4.4 Neglecting the dispersive term of the KdV equation

When neglecting the dispersive term 1
6c0h0 ∂3η/∂x3 in the KdV equation (7.34), only the non-linear term remains,

and we should get a result similar to the discussion of non-linear waves in Sect. 7.3.
Therefore we start with the wave propagating into water at rest. Following (7.30) its evolution is described by

∂c

∂t
+
(
3c − 2c0

) ∂c

∂x
= 0 ,

where through (7.26) the displacement η is hidden in c =
√

g h, with the height of the water h defining the
displacement through h = h0 + η, where h0 is the height at rest. Furthermore we can use c0 =

√
gh0 and might

write

c = c0

(
1 +

η

h0

)1
2

⇒ ∂c

∂t
=

c0

2

(
1 +

η

h0

)− 1
2 ∂η

∂t
;

∂c

∂x
=

c0

2

(
1 +

η

h0

)− 1
2 ∂η

∂x
.

Substituting this in the equation above and multiplying it by (2/c0)
√

1 + η/h0 gives

∂η

∂t
+

{
3 c0

(
1 +

η

h0

)1
2

− 2 c0

}
∂η

∂x
= 0 .

A Taylor expansion
√

1 + η/h0 ≈ 1 + 1
2η/h0 for small amplitudes η � h0 gives

∂η

∂t
+ c0

∂η

∂x
+

3
2

c0

h0
η

∂η

∂x
= 0 .

And this is exactly the KdV equation (7.34) neglecting the dispersive term!
This discussion in the last two subsection shows that the KdV equation is correctly accounting for the disper-

sive and non-linear cases we discussed earlier in Sect. 7.1, 7.2 and 7.3.


