


Introduction to
Hydrodynamic Stability

Instability of flows and their transition to turbulence are widespread phenom-
ena in engineering and the natural environment, and are important in applied
mathematics, astrophysics, biology, geophysics, meteorology, oceanography
and physics as well as engineering. This is a textbook to introduce these phe-
nomena at a level suitable for a graduate course, by modelling them mathemat-
ically, and describing numerical simulations and laboratory experiments. The
visualization of instabilities is emphasized, with many figures, and in references
to more still and moving pictures. The relation of chaos to transition is discussed
at length. Many worked examples and exercises for students illustrate the ideas
of the text. Readers are assumed to be fluent in linear algebra, advanced calculus,
elementary theory of ordinary differential equations, complex variables and
the elements of fluid mechanics. The book is aimed at graduate students but
will also be very useful for specialists in other fields.

Philip Drazin (1934-2002) was Professor of Applied Mathematics at the
University of Bristol (1981-1999) and Professor of Mathematical Sciences
at the University of Bath (1999-2002). He was the author of many books
including Hydrodynamic Stability which he co-authored with W. H. Reid
(Cambridge University Press, 1981).
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From the Editors

We are deeply saddened to note the death of Philip Drazin during the production
of this, his last textbook for the Cambridge Texts in Applied Mathematics.
Philip was a wonderful teacher, a superb applied mathematician and an inspiring
colleague. During his life he produced seminal work on hydrodynamic stability,
particularly applied to problems in meteorology. He was always concerned to
understand the mathematics behind the physical problem he was studying, but
was always aware of its limitations, and the need to compare mathematical
predictions against physical reality.

This book is a fitting tribute to Philip’s whole approach to his work. It reflects
both his deep understanding of the way mathematics can be applied to natural
phenomena and his unique way of illuminating any topic. All who knew him
will see his spirit and humour shining through these pages and will benefit from
the experience and wisdom he gained by studying many significant practical
and theoretical problems. Philip wrote two earlier textbooks within this series,
each going on to become classics in their fields. We are sure that this will do
the same.
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Preface

This text arose from notes on lectures delivered to M.Sc. students at the
University of Bristol in the 1980s. The notes were revised and printed for a
course of lectures delivered to postgraduates at the University of Tokyo in
1995. The latter course led to collaboration with Professor Tsutomu Kambe
in writing in Japanese the book Ryutai Rikigaku — Anteisei To Ranyu (Fluid
Dynamics — Stability and Turbulence), published by the University of Tokyo
Press in 1998. The present book is an enlargement in English of the first part
of the Japanese book. An advanced draft was prepared for a lecture course
given to undergraduates and postgraduates at the University of Oxford in
2001. I am grateful to the many students, at Bristol, Tokyo and Oxford, for
their stimulating me to clarify both my ideas and their expressjon, and their
encouragement to learn more. I am especially grateful to Professor Kambe for
what I learnt from him and put into the text.

The result is a textbook, not a research monograph. To be sure, many points
of current research have been incorporated in the text, but there has been
no attempt to lead the reader up to the frontier of current research. So the
mathematical theory has been described as simply and briefly as was felt
possible, and plenty of worked examples and accessible exercises for students
have been included. I have cited many publications, perhaps because the habit
of doing so is deeply ingrained, certainly not because I ever imagined that
many students care about references, let alone follow them up. The overt
intention of including the references is to encourage students’ instructors to
follow up various details and, most importantly, use still and moving pictures
to supplement this book in their teaching.

Indeed, wherever practical, pictures of relevant fluid mechanical experi-
ments are used in the text. This is done primarily by inclusion of illustrations in
this book. However, practical limitations of space have led to supplementation
of the illustrations in this book by citing other sources, notably the beautiful
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books An Album of Fluid Motion, edited by Van Dyke (1982), and Visualized
Flow, edited by Nakayama (1988). But hydrodynamic instability is essentially
dynamic, so motion pictures and videos can convey many things which
still pictures cannot. Accordingly, reference is often made to the wonderful
classic series of film loops and motion pictures of the National Education
Center; they are old and no longer for sale, but they have been re-issued as
videos by the Encyclopedia Britannica Corporation. Further, Multi-media
Fluid Mechanics, a compact disk by Homsy et al. (CD2000), has been
published recently. Its section Video Library has many short videos relevant
to this book, and they are cited in the text. I hope that further videos will
be added to the CD in future editions, and am confident that advances in
computer technology will soon lead to more such pictorial aids to this
book. ‘

It is assumed that readers of this book are familiar with the elements of
the theory and practice of fluid mechanics — the material that is included in
typical first courses on the motion of inviscid and viscous fluids. So the theory
of Euler’s equations of motion, irrotational flow, vorticity, the Navier—Stokes
equations, boundary-layer theory, separation, and so forth will be used with
little explanation wherever they are needed in the text. Again, the elementary
theory of linear algebra, complex variables, and ordinary and partial differential
equations will be assumed, and used freely as needed. Sections, paragraphs
and exercises that demand more advanced knowledge or touch deep matters
are preceded by asterisks.

I thank Professor William H. Reid for his generosity in allowing me to
reproduce with little alteration Sections 1, 4 and 5 of our book Hydrodynamic
Stability as respectively Section 1.1, Chapter 3 and Chapter 4 of this book,
as well as several exercises. I also thank him for the enormous amount about
writing books as well as about hydrodynamic stability which I have leamt
from him over many decades.

I thank Professor Herbert E. Huppert, Dr Richard R. Kerswell and Professor
Stephen D. Mobbs for suggesting ideas which have led to exercises in
this book.

I thank Dr Alan McAlpine for material for Figure 8.10.

I thank Dr Alvaro Meseguer and Professor L. Nicholas Trefethen for their
constructive comments on parts of a draft of the book, and for copies of
Figures 8.14 and 8.15.

I thank Professor William Saric for an illuminating discussion of the flow
past a flat plate.

I thank the reproduction-rights holders for their generous permission
to reproduce many of the figures in this book, and to the authors who
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have kindly expressed their approval of the reproduction of their original
figures.

Philip Drazin
University of Bath
July 2001
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General Introduction

Whosoever loveth instruction loveth knowledge. . . .
Prov. xii 1

In this chapter the text begins with an informal introduction to the concept
of stability and the nature of instability of a particular flow as a prototype —
the flow along a pipe. The prototype illustrates the importance of instability
as a prelude to transition to turbulence. Finally, the chief methods of studying
instability of flows are briefly introduced.

1.1 Prelude

Hydrodynamic stability concerns the stability and instability of motions of
fluids.

The concept of stability of a state of a physical or mathematical system was
understood in the eighteenth century, and Clerk Maxwell (see Campbell &
Garnett, 1882, p. 440) expressed the qualitative concept clearly in the
nineteenth:

When . .. an infinitely small variation of the present state will alter only by an infinitely
small quantity the state at some future time, the condition of the system, whether at rest
or in motion, is said to be stable; but when an infinitely small variation in the present
state may bring about a finite difference in the state of the system in a finite time, the
condition of the system is said to be unstable.

So hydrodynamic stability is an important part of fluid mechanics, because
an unstable flow is not observable, an unstable flow being in practice broken
down rapidly by some ‘small variation’ or another. Also unstable flows often
evolve into an important state of motion called turbulence, with a chaotic three-
dimensional vorticity field with a broad spectrum of small temporal and spatial
scales called rurbulence.

The essential problems of hydrodynamic stability were recognized and
formulated in the nineteenth century, notably by Helmholtz, Kelvin, Rayleigh
and Reynolds. It is difficult to introduce these problems more clearly than in
Osborne Reynolds’s (1883) own description of his classic series of experiments
on the instability of flow in a pipe, that is to say, a tube (see Figure 1.1 for
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Figure 1.1 The configuration of Reynolds’s experiment on flow along a pipe. (From
Reynolds, 1883, Fig. 13.)

the general configuration of his apparatus, with an unnamed Victorian man to
scale it).

The . .. experiments were made on three tubes . . .. The diameters of these were nearly
1 inch, % inch and % inch. They were all . . . fitted with trumpet mouthpieces, so that the
water might enter without disturbance. The water was drawn through the tubes out of
a large glass tank, in which the tubes were immersed, arrangements being made so that
a streak or streaks of highly coloured water entered the tubes with the clear water.

The general results were as follows:—

(1) When the velocities were sufficiently low, the streak of colour extended in a
beautiful straight line through the tube, Figure 1.2(a).

(2) If the water in the tank had not quite settled to rest, at sufficiently low velocities,
the streak would shift about the tube, but there was no appearance of sinuosity.

(3) As the velocity was increased by small stages, at some point in the tube, always
at a considerable distance from the trumpet or intake, the colour band would all at once
mix up with the surrounding water, and fill the rest of the tube with a mass of coloured
water, as in Figure 1.2(b).
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Figure 1.2 Sketches of (a) laminar flow ip a pipe, indicated by a dye streak; (b)

transition to turbulent flow in a pipe; and (¢) transition to turbulent flow as seen when
illuminated by a spark. (From Reynolds, 1883, Figs. 3,4 and 5.)

Any increase in the velocity caused the pojnt of break down to approach the trumpet,
but with no velocities that were tried did it regeh this.

On viewing the tube by the light of an electric spark, the mass of colour resolved
itself into a mass of more or less distinct curls, showing eddies, as in Figure 1.2(c).

Reynolds went on to show that the lgminar flow, the smooth flow he des-
cribed in paragraph (1), breaks down when Va/v exceeds a certain critical
value, V being the maximum velocity of the water in the pipe, a the radius of
the pipe, and v the kinematic viscosity of water at the appropriate temperature.
This dimensionless number Va/v, now called the Reynolds number, specifies
any class of dynamically similar flows through a pipe; here we shall denote

the number by R. The series of experiments gave the critical value R. of the
Reynolds number as nearly 13 000. Howeyer,

the critical velocity was very sensitive to dispyrbance in the water before entering the
tubes . ...

This at once suggested the idea that the ¢ondition might be one of instability for
disturbance of a certain magnitude and [stability] for smaller disturbances.

Just above the critical velocity

Another phenomenon ... was the intermitten character of the disturbance. The dis-
turbance would suddenly come on through 3 certain length of the tube and pass away



4 1 General Introduction

—EW—W

Figure 1.3 Crude sketch of turbulent spots in a pipe. (From Reynolds, 1883, Fig. 16.)

and then come on again, giving the appearance of flashes, and these flashes would
often commence successively at one point in the pipe. The appearance when the flashes
succeeded each other rapidly was as shown in Figure 1.3.

Such ‘flashes’ are now called turbulent spots or turbulent bursts. Below the
critical value of the Reynolds number there was laminar Poiseuille pipe flow
with a parabolic velocity profile, the resistance of the pipe (that is, the tube)
to the flow of water being proportional to the mean velocity. As the veloc-
ity increased above its critical value, Reynolds found that the flow became
turbulent, with a chaotic three-dimensional motion that strongly diffused the
dye throughout the water in the pipe. The resistance of the pipe to turbulent
flow grew in proportion to the square of the mean velocity.

Reynolds’s original apparatus survives in Manchester in England, and was
used in the 1970s to repeat his experiment. You can therefore see (Van Dyke,
1982, Fig. 103) photographs of the flow in Reynolds’s apparatus.

Later experimentalists have introduced perturbations, that is to say, distur-
bances, of finite amplitude at the intake or used pipes with roughened walls to
find R; as low as 2000, and have used such regular flows and such smooth-
walled pipes that R, was 10° or even more. Reynolds’s description illustrates
the aims of the study of hydrodynamic stability: to find whether a given laminar
flow is unstable and, if so, to find how it breaks down into turbulence or some
other laminar flow.

Methods of analysing the stability of flows were formulated in Reynolds’s
time. The method of normal modes for studying the oscillations and instability
of a dynamical system of particles and rigid bodies was already highly devel-
oped. A known solution of Newton’s or Lagrange’s equations of motion for the
system was perturbed. The equations were linearized by neglecting products of
the perturbations. It was further assumed that the perturbation of each quantity
could be resolved into independent components or modes varying with time ¢
like €% for some constant s, which is in general complex. The values of s for the
modes were calculated from the linearized equations. If the real part of s was
found to be positive for any mode, the system was deemed unstable because
a general initial small perturbation of the system would grow exponentially
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in time until it was no longer small. Stokes, Kelvin and Rayleigh adapted
this method of normal modes to fluid dynamics. An essential mathematical
difference between fluid and particle dynamics is that the equations of motion
are partial rather than ordinary differential equations. This difference leads to
many technical difficulties in hydrodynamic stability, which, to this day, have
been fully overcome for only a few classes of flows with simple configurations.
Indeed, Reynolds’s experiment itself is still imperfectly understood (Eliahou
et al., 1998). However, we can explain qualitatively the transition from laminar
flow to turbulence with some confidence. Poiseuille pipe flow with a parabolic
profile is stable to infinitesimal perturbations at all Reynolds numbers. At
sufficiently small values of the Reynolds number, for R < Ry, say, all perturba-
tions, large as well as small, of the parabolic flow decay eventually; observation
shows that Ry & 2000. Some way below the observed critical Reynolds number,
a perturbation may grow if it is not too small. Above the critical Reynolds
number quite small perturbations, perhaps introduced at the inlet or by an
irregularity of the wall of the tube, grow rapidly with a sinuous motion. Soon
they grow so much that nonlinearity becomes strong and large eddies (Figure
1.2(c)) or turbulent spots (Figure 1.3) form. (This mechanism, whereby a flow
which is stable to all infinitesimal perturbations is made to change abruptly
to a turbulent or nearly turbulent flow by a finite-amplitude perturbation, is
now often called bypass transition.) As the Reynolds number increases, the
threshold amplitude of perturbations to create instability decreases. At high
Reynolds numbers turbulence ensues at once due to the inevitable presence
of perturbations of small amplitude, and the flow becomes random, strongly
three-dimensional (that is, very non-axisymmetric), and strongly nonlinear
everywhere.t This instability of Poiseuille pipe flow may be contrasted with
that of plane Poiseuille flow, which is unstable to infinitesimal perturbations at
sufficiently large values of the Reynolds number. This explanation is supported
by the treatment of the theory of the linear stability of Poiseuille pipe flow in
§8.10. However, in practice the instability of plane Poiseuille flow resembles
the instability of Poiseuille pipe flow, at least superficially (see Figure 1.4).
The physical mechanisms of Reynolds’s experiments on instability of
Poiseuille flow in a pipe are vividly illustrated by a film loop made by Stewart
(FL1968) for the Education Development Center. This loop consists of edited
excerpts from his longer film on Turbulence (Stewart, F1968). Details of these
and other motion pictures on hydrodynamic stability may be found after the
list of references at the end of the book. Videos of the experiment can be seen

T Many of the features of the transition from laminar to turbulent flow can easily be appreciated
by observing the smoke from a cigarette. Light the cigarette, point the burning tip upwards,
and observe the smoke as it rises from rest. See also Van Dyke (1982, Fig. 107).
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Figure 1.4 A turbulent spot triggered by jets in the wall of plane Poiseuille flow at
R = 1000, where R = Vd/v, V is the maximum velocity of the flow, and the walls are
separated by a distance 24. (From Carlson et al., 1982, Fig. 4.)

by use of the compact disk of Homsy et al. (CD2000); this CD is currently
more readily available than the film loops or their video versions, although
briefer. Under the heading Video Library and subheadings ‘Reynolds Transition
Apparatus’ and ‘The Reynolds Transition Experiment’, some short videos
of recent experiments on Reynolds’s original apparatus are shown; further
experiments can be found under the subheadings ‘Pipe Flow’, “Tube Flow’ and
‘Turbulent Pipe Flow’. Under the heading Boundary Layers and subheadings
‘Instability, Transition and Turbulence’ and ‘Instability and Transition in Pipe
and Duct Flow’ more short videos are available.

1.2 The Methods of Hydrodynamic Stability

It may help at the outset to recognize that hydrodynamic stability has a lot in
common with stability in many other fields, such as magnetohydrodynamics,
plasma physics, elasticity, theology, combustion and general relativity. The
physics may be very different but the mathematics is similar. The mathemat-
ical essence is that the physics is modelled by nonlinear partial differential
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equations and the stability of known steady and unsteady solutions is examined.
Hydrodynamics happens to be a mature subject (the Navier—Stokes equations
having been discovered in the first half of the nineteenth century), and a given
motion of a fluid is often not difficult to produce and to see in a laboratory, so
hydrodynamic stability has much to tell us as a prototype of nonlinear physics
in a wider context.

We learn about instability of flows and transition to turbulence by various
means which belong to five more-or-less distinct classes:

(1) Natural phenomena and laboratory experiments. Hydrodynamic instabil-
ity would need no theory if it were not observable in natural phenom-
ena, man-made processes, and laboratory experiments. So observations of
nature and experiments are the primary means of study. All theoretical
investigations need to be related, directly or indirectly, to understand-
ing these observations. Conversely, theoretical concepts are necessary to
describe and interpret observations.

(2) Numerical experiments. Computational fluid dynamics has become
increasingly important in hydrodynamic stability since 1930, as numerical
analysis has improved and computers have become faster and gained more
memory, so that the Navier—Stokes equations may be integrated accurately
for more and more flows. Indeed, computational fluid dynamics has now
reached a stage where it can rival laboratory investigation of hydrodynamic
stability by simulating controlled experiments.

(3) Linear and weakly nonlinear theory. Linearization for small perturbations
of a given basic flow is the first method to be used in the theory of hydro-
dynamic stability, and it was the method used much more than any other
until the 1960s. It remains the foundation of the theory. However, weakly
nonlinear theory, which builds on the linear theory by treating the leading
nonlinear effects of small perturbations, began in the nineteenth century,
and has been intensively developed since 1960.

(4) Qualitative theory of bifurcation and chaos. The mathematical theory of
differential equations shows what flows may evolve as the dimensionless
parameters, for example the Reynolds number, increase. The succession of
bifurcations from one regime of flow to another as a parameter increases
cannot be predicted quantitatively without detailed numerical calculations,
but the admissible and typical routes to chaos and thence turbulence may
be identified by the qualitative mathematical theory. Thus the qualitative
theory of dynamical systems, as well as weakly nonlinear analysis, pro-
vides a useful conceptual framework to interpret laboratory and numerical
experiments.
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(5) Strongly nonlinear theory. There are various mathematically rigorous
methods, notably Serrin’s theorem and Liapounov’s direct method, which
give detailed results for arbitrarily large perturbations of specific flows.
These results are usually bounds giving sufficient conditions for stability
of a flow or bounds for flow quantities.

The plan of the book is to develop the major concepts and methods of the
theory in detail, and then apply them to the instability of selected flows, relating
the theoretical to the experimental results. This plan is itemized in the list of
contents. First, in this and the next chapter, many concepts and methods will
be described, and illustrated by simple examples. Then, case by case, these
methods and concepts, together with some others, will be used in the later
chapters to understand the stability of several important classes of flows. The
theory of hydrodynamic stability has been applied to so many different classes
of flow that it is neither possible nor desirable to give acomprehensive treatment
of the applications of the theory in a textbook. The choice of applications below
is rather arbitrary, and perhaps unduly determined by tradition. However, the
choice covers many useful and important classes of flow, and illustrates well
the five classes of general method summarized above.

1.3 Further Reading and Looking

It may help to read some of the following books to find fuller accounts of
many points of this text. Many of the books are rather out of date, being
written before the advent of computers had made much impact on the theory of
hydrodynamic stability. (Perhaps computational fluid dynamics has led to the
most important advances in recent years, and perhaps the theory of dynamical
systems or applications of the theory has led to a wider physical range of new
problems.) However, the subject is an old one, with most of the results of
enduring importance, so these books are still valuable.

Betchov & Criminale (1967) is a monograph largely confined to the linear
theory of the stability of parallel flows, covering numerical aspects especially
well. Chandrasekhar (1961) is an authoritative treatise, a treasure house of
research results of both theory and experiment. It emphasizes the linear stability
of flows other than parallel flows, with influence of exterior fields such as
magnetohydrodynamic, buoyancy and Coriolis forces. Its coverage of the lit-
erature is unusual, informative and of great interest. Drazin & Reid (1981) is
a monograph with a broad coverage of the subject. It has several problems
for students, but few of them are easy. Huerre & Rossi (1998) is a set of
‘lecture notes’, though at an appreciably higher level than this book. It is an
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account, mostly of linear stability of mostly parallel flows, with good modern
coverage of numerical and experimental as well as theoretical results. Joseph
(1976) is a monograph which emphasizes nonlinear aspects, especially the
energy method, but has a broad coverage of basic flows. Landau & Lifshitz
(1987) is a great treatise masquerading as a textbook; it summarizes the phys-
ical essentials of hydrodynamic stability with masterly brevity. Lin (1955) is
a classic monograph, largely confined to the linear stability of parallel flows
of a viscous fluid, the complement of Chandrasekhar’s treatise. Schmid &
Henningson (2001) is an up-to-date comprehensive research monograph on
instability and transition of parallel flows.

We have aiready referred to pictures to enrich understanding of Reynolds’s
experiment. Such pictures are, of course, as valuable in the understanding of
many other hydrodynamic instabilities. Van Dyke (1982) is a beautiful collec-
tion of photographs of flows, including hydrodynamic instabilities. Nakayama
(1988) is another fine collection of photographs of flows, including hydrody-
namic instabilities. Look at the photographs relevant to hydrodynamic stability,
think about them, and relate them to the theory of this book. However, hydro-
dynamic instability is a dynamic phenomenon, best seen in motion pictures.
So, many relevant films, film loops and videos, and the compact disk of Homsy
et al. (CD2000), are listed in the Motion Picture Index at the end of the list of
references. It is appropriate to add some words of caution here. The results of
visualization of unsteady flows are liable to be misinterpreted. Be careful. In
particular, make sure that you understand the difference between streamlines,
streaklines and particle paths before you jump to too many conclusions.
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Introduction to the Theory of Steady Flows, Their
Bifurcations and Instability

... whosoever heareth these sayings . .., and doeth them, ... will
liken . . . unto a wise man, which built his house upon a rock: And
the rain descended, and the floods came, and the wind blew, and

beat upon that house; and it fell not: for it was founded on rock.
Mazt. viii 24-25

The essences of the common forms of bifurcation, that is, the common types
of change of regime of flow, are introduced in this chapter by use of simple
illustrative ordinary differential problems. It is shown afterwards that these
bifurcations occur where instability occurs. Finally, stability of a flow is defined
mathematically, and the linearized problem and the method of normal modes
are described.

2.1 Bifurcation

Consider flows of an incompressible viscous fluid in a given domain V. Let
o be the density of the fluid, and v the kinematic viscosity. Let u,, p, be the
velocity and pressure of the fluid at a given point x, at time ¢,. Then flow is
governed by the Navier—Stokes equations,

ou,
dty

1
+u,-Vau, = —;V*P* + vA,u,,

and the equation of continuity,

in V; and certain boundary conditions, say
u, = Up, onpartof dV, u, is periodic on the rest of 3V;

where A, is the Laplacian operator, 3V is the boundary of V and Uy, is a given
velocity of the fluid on the boundary.

Suppose that these equations and boundary conditions have a certain solution,
approximate if not exact, which describes a steady flow whose stability is of



Bifurcation 11

interest. Let this basic flow have velocity field U, and pressure P,. It will often
be convenient to choose dimensionless variables, and define an appropriate
Reynolds number R. Let us choose some characteristic length scale L of the
basic flow, such as the radius of the domain of flow, and some characteristic
velocity scale V, such as the greatest value of |U,| in V. For example, for the
flow of a uniform stream around a sphere, V might be the velocity of the
stream, and L the radius or the diameter of the sphere. Then we may define
dimensionless variablessuchasx =x,/L,t=Vt,/L,u=u,/V, p=pi/p y2
and so forth, and a Reynolds number R = VL/v. Now the velocity field
U(x, R) and pressure field P(x, R), which specify the basic flow in dimen-
sionless variables, satisfy the Navier—Stokes equations,

U-VU=-VP + R'AU, 2.1

v.-U=0 2.2)
in V; and boundary conditions
U ="UUpy onpartof dV; U is periodic on the rest of V. 2.3)

In general U, P depend on R, and there may be more than one steady solution
U, P for the same value of R and the same boundary conditions. We shall see
that bifurcation, that is, change in the number, or in the qualitative character,
of the set of possible steady flows (or unsteady flows in dynamic equilibrium)
as R varies, is often linked with the onset of instability.

The important physical idea of a succession of instabilities and changes of
flow regime, along the ‘route to turbulence’, as the Reynolds number increases
will next be introduced by some very simple model problems of bifurcation.
It may seem at first that these models of algebraic and ordinary-differential
problems are too simple to be relevant to hydrodynamics. Yet we shall eventu-
ally show that not only do they illustrate many important concepts of stability,
but they also represent asymptotically the local properties of many instabil-
ities and bifurcations of solutions of the Navier—Stokes equations governing
the flow of fluids. This is because, although the Navier—Stokes equations are
partial differential equations whose solutions belong to an infinite-dimensional
function space, a solution may be approximated asymptotically by an element
of a low-dimensional space. In practice a solution may be represented by a
spectral expansion, such as a Fourier series over space, and approximated
asymptotically by only a few components of the expansion, whose amplitudes
satisfy an ordinary differential system of low order. This point will be taken up
in later chapters, and iltustrated with examples of several flows.
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Example 2.1: A turning point. Consider, merely as a simple model problem
for illustrative purposes, or ‘toy’ problem, the quadratic equation

a—I(U -Up? =0,

where a =k(R — R.), for some constants k> 0,]/#0,Up and R.. A toy
problem can be useful in learning about a complicated property of fluid motion
if the simple toy problem describes that property, even if it does not describe
most other properties of the motion. Here we may regard U as representing a
given component of the velocity of the fluid at some given point of a steady
flow as a function of the Reynolds number. Then

U = Uy £ [k(R — R/ 112

This gives two solutions when k(R — R;)/[ > 0, one when R = R, and none
when k(R — R.)/1 <O0. It is convenient to plot solutions in a bifurcation
diagram, where some variable describing the state of particular flows is plotted
against some flow parameter specifying the fluid or the configuration of the
flow, and so forth. Here we plot U against R in Figure 2.1 for the case ki > 0.
We say that there is a simple turning point, fold or a saddle-node bifurcation
at R = R, U = Upyp. It is called a bifurcation point because the number (and
character) of the solutions changes there. []

Example 2.2: A transcritical bifurcation. As another very simple model of
bifurcation of steady solutions of the Navier—Stokes equations, consider next
the quadratic equation

alU —1U? =0.
Therefore
U=0 or U=a/l,=k(R—R)/I,

so there are two solutions for all R # R.. The bifurcationat R = R,,U =0
is an example of what is called a transcritical point. See Figure 2.2. [

Example 2.3: Pitchfork bifurcation. Next take the mode] equation
alU —1U3 =0,
which is typical for the first bifurcation of flows with symmetry in U. Then
U=0, or U=x=[k(R—Ry)/I]'? ifk(R—R)/l>0.
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Uo

0 R.

Figure 2.1 The bifurcation diagram for the turning point in the (R, U)-plane for the
casel > 0.

There is said to be a pitchfork bifurcation at R = R¢, U = 0. We see that there
is symmetry breaking at R = R, in the sense that if kI > 0, then there is a
unique symmetric solution for R < R, but there is also a pair of asymmetric
solutions for R > R.. See Figure 2.3. [

Example 2.4: Plane Couette—Poiseuille flow. If we seek a plane parallel flow
of an incompressible viscous fluid, then we assume that the velocity is U =
U (2)i, say, and substitute this velocity into the dimensional vorticity equation
for two-dimensional flow in the (x, z)-plane (which is a convenient form of
the Navier—Stokes equations for the purpose),

an dn an

) hall T —vAp,
8t+u8x+waz van

where n = du/dz — dw/0x. It follows that

d*U
— =0.
dz3
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U

U = (k/l)(R— Rc)

Figure 2.2 The bifurcation diagram for the transcritical point in the (R, U)-plane for
the case [ > 0.

Therefore
U(z) = Az + Bz +C

for some constants A, B, C to be determined by the pressure gradient and
boundary conditions. The pressure gradient along the pipe must be constant for
this to be a solution. Also the no-slip condition at each wall must be satisfied.
In fact A=(2u)"18p/dx, where p is the dynamic viscosity of the fluid. In
particular we find plane Couette flow in a channel with

Ui)=Vz/L for—L<z<L

if dp/9x = 0 and there are rigid plates at z = +L moving with velocities +V
respectively. In this case the Reynolds number is often chosenas R = VL/v.
Also we find plane Poiseuille flow with

U@ =V(1~-2%/L?) for—L<z<L
if there are fixed rigid plates at z = £ L, where V = —(L2/2M)8p/8x. Again

it is common to define R = V L /v for this flow. The configuration of these
flows is shown in Figure 2.4.
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U? = (k/I)(R - Rc)

Figure 2.3 The bifurcation diagram for the pitchfork in the (R, U)-plane for the
casel > 0.

z

YA/ 1/ /1 1111774147111 7 7111111747/ / )

z=-L

Figure 2.4 The configuration of plane Couette—Poiseuille flows.

Note that the basic parallel flow in this example is both unique and indepen-
dent of the value of the Reynolds number. This is a special property of parallel
flows, and is atypical of flows of a viscous fluid. The property is due to the
vanishing of the inertial terms in the Navier-Stokes equation, which in turn
is due to the geometrical character of the flow, so that the Reynolds number
for dynamically similar flows is not the usual characteristic ratio of inertial to
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viscous forces. Usually a steady basic flow changes as R increases, and is not
the unique steady flow in the given circumstances. [

*Example 2.5: Jeffery—Hamel flows. For the next example, we choose some
steady flows which do change as the Reynolds number increases, and flows
which are not unique (see, e.g., Batchelor, 1967, §5.6).

Consider two-dimensional flow of an incompressible viscous fluid between
two rigid planes with equations 8 =+« driven by a steady line source (or
sink) of volume flux Q, per unit distance normal to the plane of flow, at the
intersection ry = 0 of the two planes, where (74, 8) are plane polar coordinates.
The configuration and the coordinates are indicated in Figure 2.5. Therefore
the boundary conditions are that

1
‘/f*=:|:—2-Q, Y /060 =0 até = *a,

where ¥ is the streamfunction, such that the radial velocity component u,, =
01, /400 and the transverse component ug = — 3,/ 0.

Now seek steady flows for which the streamfunction depends only on 6,
that is, for which v, = W,(6). This gives purely radial flow with velocity
Ury = Uy = dW,/r,dB, and vorticity &, = —Au s = —d?W, /r2d62.

f=a

ug

Ur

(T. 3 0)

f=—-a

Figure 2.5 The configuration and notation of Jeffery—Hamel flows.
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Next choose dimensionless variables with ¢ = ../ %Q and so forth, and
define the Reynolds number as R = Q/2v. Then the dimensionless form of
the vorticity equation becomes

8¢ 19G,¥) _

-1
at  r 3@, 9) R AL, @4

which, with ¢ = ¥(@), can be reduced to give the nonlinear ordinary differ-
ential equation

d‘w  d*w dw d>y
— +4— +2R—— =0. 2.5
do4 + dg? + do do? (2:3)
The boundary conditions give
Y =41, d¥/d6 =0 atf = +to. 2.6)

This nonlinear boundary-value problem can be solved in explicit terms of
Jacobian elliptic functions, but it is in most respects more easily solved
numerically. There is a rich variety of solutions, of types I, IL,, III,,, IV, and
V., in the nomenclature of Fraenkel (1962, p. 124); some velocity profiles are
sketched in Figure 2.6. (You need not learn the precise meanings of the types

e

»
PR

e
&
° N"!.
an

Vl
>y

N

Figure 2.6 Sketches of the velocity profiles of the more important Jeffery—Hamel flows.
(After P. Drazin & T. Kambe, Ryutai Rikigaku — Anteisei To Ranyu (Fluid Dynamics —
Stability and Turbulence), University of Tokyo Press, 1989, Fig. 2.4. Reproduced by
permission of the University of Tokyo Press.)
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% 0 3 R 10

Figure 2.7 The regions of occurrence of the most important types of Jeffery—Hamel
flow in the (R, a)-plane. Here R > 0 corresponds to a line source (with diverging net
flow for Q > 0) and R < 0 corresponds to a line sink (with converging flow) at r = Q.
(After Fraenkel, 1962, Fig. 5; reproduced by permission of the Royal Society.)

and subscripts, because they are unimportant for the present purpose of an
illustrative example.)

At the risk of over-simplification, the Jeffery—-Hamel flows may be summa-
rized as follows. For any given pair of values of (R, «) there is an infinity
of possible steady solutions. The most important (including all the stable)
solutions are shown below both in the (R, @)-plane (Figure 2.7) and in the
bifurcation diagram (Figure 2.8) in the (o, ¥’ (0))-plane for a given ‘typical’
value of R. The main thing to bear in mind about these diagrams is not the
quantitative details but the fact that there is a complicated structure with many
turning points and pitchforks. Note also that inflow is more stable than outflow,
other things being equal. The evidence to make plausible the assertions of which
solutions are stable and which unstable is sketched in §10.3.3.

(We could see that B, is indeed a pitchfork bifurcation with II; as the
‘handle’, II; as the middle ‘prong’, and IVi, Vi as the side ‘prongs’, better
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[d¥rde], _,
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S B IV, V, .
~10 -0.5 0 ,"l‘v', 0.5 1.0
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1

Figure 2.8 The bifurcation diagram of Jeffery—Hamel flows in the (o, [d¥/d8]p—0)-
plane for R = 20 (after Sobey & Drazin, 1986, Fig. 3). It may help to regard this
diagram as the projection on to the plane of a curve in a three-dimensional space, each
branch of the curve representing a Jeffery—Hamel solution. Here o > 0 corresponds
to a line source and, by convention, @ < 0 to a sink. Note that two solutions of type
II; may occur between the pitchfork bifurcation B, (visualize it ‘sideways’) and the
turning point Bs. A stable solution is denoted by a continuous curve and an unstable
solution by a broken curve.

in the (a, [dz\ll/dé)z]g:o)-plane, because IV and V1 have the same velocity
u, at the centre line & = 0; however, the symmetric flows I, II,,, III,, all have
d®W/d9? =0at6 =0.) O

2.2 Instability

The complexity of flows of a viscous fluid, and so of the solutions of the
Navier—Stokes equations, leads us to present model problems of simple
ordinary-differential equations in this section in order to explain the
fundamental ideas of stability. We have already introduced some steady
solutions and their bifurcations; next we shall consider the instabilities of
these solutions, and find to what other solutions, steady or unsteady, they
may evolve when subject to small perturbations. By way of introduction,
the previous section describes only a few of the simplest bifurcations. More
general ordinary-differential systems both have bifurcations which resemble
these simple ones locally (as a general smooth curve with a vertical tangent
at a point resembles a parabola with the same tangent and same curvature at
the point), and have more complicated forms of bifurcation. Further, more
general systems often have sequences of bifurcations as a parameter, such
as the Reynolds number, increases; this important evolution of solutions as
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a parameter increases can be seen in Example 2.5 and in Exercise 6.11 and
will be elaborated in Chapter 9.

Real hydrodynamic problems usually need a lot of numerical calculation
and so are less instructive than simple model problems; some hydrodynamic
problems with a strong symmetry (for example, plane parallel flows are sym-
metric with respect to the group of translations in the direction of flow) may be
solved by reducing the stability problem to an ordinary-differential one, and a
few of these stability problems have explicit solutions — of course, these simple
(and atypical) solutions are those which appear most often in textbooks and
lecture courses.

Example 2.6: A turning point again. Take the model equation,

%‘tf =a—I@u—-Upy?, 2.7
again with a = k(R — R;), k > 0. By using the easily obtained explicit ana-
lytic solution of this ordinary differential equation, or by considering quali-
tatively the sign of du/dr (and hence whether u increases or decreases as ¢
increases), it can be shown that any small perturbation of the steady solution
u=Us,=Up+(a/ l)l/ 2, will decay as ¢ — oo and hence that the solution is
stable. Similarly, some small perturbations of u = U_, = Up — (a /l)l/ 2 will
grow so that eventually they are no longer small, and hence that the solution
is said to be unstable. Taking [ > 0, we see that if R > R, then a small initial
perturbation of U_ gives u(t) - U; ast — oooru(t) > —ooast — a
finite limit (in fact) according to the sign of the perturbation, and a small initial
perturbation of U gives u(t) — Uy ast — oo (see Figure 2.9). [

Example 2.7: A transcritical bifurcation again. Next take

— =au —lu?, 2.8
& au —lu (2.8)
where a = k(R — R.), k > 0. Again we may find the explicit analytic solu-
tion or use qualitative methods to show that the solutions are as sketched in
Figure 2.10 in the case when! > 0. [J

Example 2.8: A pitchfork bifurcation again. Next take

du

5 = Iud, (2.9)
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Figure 2.9 The bifurcation diagram in the (R, u)-plane for the example of a turning
point for the case I > 0. The stable steady solution Uy is denoted by a continuous
curve, and the unstable steady solution U_. by the broken curve. The vertical lines with
arrows indicated how a time-dependent solution u varies as ¢ increases for fixed R.

where a = k(R — R.),k > 0. This is a Landau equation, essentially the
one first proposed as a model of hydrodynamic stability by Landau in 1944.
The equation is unchanged in form if we change the sign of u, so it often
appears as the weakly nonlinear equation governing the amplitude of the most
unstable (or least stable) eigenfunction for stability of a flow with such a
symmetry (this might be mirror symmetry of the configuration of flow about
some plane, or the translational symmetry where the amplitude of a wave at
a point is the negative of the amplitude half a wavelength away). It is the
classic prototype of symmetry breaking. We shall treat the equation by the
same methods as before, distinguishing two cases according to the sign of
the Landau constant I.

For the case I >0 we see supercritical stability, that is, the two stable
solutions for R greater than its critical value R. for linear stability in addition
to the unstable solution u = 0. Note that u(¢) — [sgnu(0)][k(R — Rc)/l]l/2
ast — oo if R > R. whereas u(t) — Oast — oo if R < R.; in the former
case the ultimate state depends only on the sign of the initial value u(0) of U,
not its magnitude, and in the latter case the ultimate state is the same for all
initial values. Some typical solutions are sketched in Figure 2.11(a).
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u = (k/l)(R - R)

Figure 2.10  Sketch of the bifurcation diagram in the (R, u)-plane for the example of
a transcritical bifurcation for the case [ > 0.

For the case [ <0, we see two unstable solutions for R < R, in addition
to the stable solution u =0. Note that there is a ‘threshold’ such that if
|u(0)| < [k(R — R.)/11'/2, then u(r) — 0 as r — oo, but if |u(0)| > [k(R —
R.)/111/2, then u(r) increases to infinity monotonically as ¢ increases. You can
show, by solving the differential equation explicitly, that «(t) — [sgnu(0)]oo
ast — afinite number (according to this model, at any rate) which depends on
u(0) as well as k, R, . Some typical solutions are sketched in Figure 2.11(b).

We can confirm some of these results by looking at small perturbations of
the steady solutions. Define the perturbation of U for a given solution u as

Wty =u(t)-U,

where U is one of the steady solutions of aU = [U3. (Perturbations are often
called disturbances.) Then

d/  du 3

E = Et- =au—lu

=aU +u')+1(U +u')}
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Figure 2.11 (a) Supercritical stability for0 < R— R, <« 1 and! > 0: the development
of the solution u of the Landau equation (2.9) as a function of time for a few initial
values ug. (b) Subcritical stability for 0 < R — R; « 1 and [ > 0: the development of
the solution u of the Landau equation (2.9) as a function of time for a few initial values
uo. In each diagram u. = [k(R — Rc)/1]'/2. (After Drazin & Reid, 1981, Figs. 7.1(a),
7.2(a).)

=alU - 1U? +(a— 3lU2)u’+ O(u’z) asu’ = 0
=(a - 310 + 0(u?),

because U is one of the steady solutions. In studying stability, we study the
growth of solutions near the given solution U, so we may plausibly linearize,
and consider

dv’

- _ 2\,./
= (a—310%)u

For the null solution U = 0, this gives
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Therefore
u'(t) = u(0)e”,

where the exponent s = a, = k(R — R.) for k > 0 (in realistic applications).
Then there is linear stability, with exponential decay, if R < R; and linear
instability, with exponential growth, if R > R.. This solution of the linearized
equation which grows exponentially with time is an example of a normal mode.

If U=+[k(R—R;)/11/? for 1>0, R>R., then we similarly find
u'(t) = u(0)e’’, but where now

s=a-3lU%>=—2k(R-—R;) <0

and so gives supercritical stability, as indicated in Figure 2.12(a).
All these results may be confirmed by use of the ‘exact’ explicit solution of
the Landau equation. [

Example 2.9: A Hopf bifurcation. Consider

dx
E=—y+(a—x2—y2)x,

dy _ 2

_ 2
L= x ot (a-xt =y,

wherea = k(R — R;), k > 0. The only steady solution of this system is the null
solution x = y = 0. To find its stability we linearize the system with respect
to small perturbations of the null solution, finding

dr + & +a
— = —y +ax, - =x .
a -’ ar Y

We solve this linearized system by again using the method of normal modes,
that is, by supposing that x, y o e*’, and deducing that

SX =ax —y, sy =x + ay,

and therefore that s is an eigenvalue of the matrix
a -1
I= [1 a ] '

0=det(J—sI) = (@ —s)> + 1.

Therefore

Therefore

s=axti=k(R—R)%i
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u? = (k/I)(R - Re)

\g’ = (k/1)(R - R.)
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_______ - =»R

Figure 2.12 Bifurcation diagrams in the (R, u)-plane for the Landau equation:
(a) supercritical stability, [ > 0; (b) subcritical instability, I < 0.

Therefore

1, . ,
x(t) = E(Ae" + A*e™)e”,

y(t) — _%i(Aeit _ A*e—it)eat

for some complex constant A, which may be determined by use of the ini-
tial conditions, where an asterisk is used as a superscript to denote complex
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conjugation. This gives stability, with exponential decay, if Re(s) < 0 for both
eigenvalues, that is, if R < R, and similarly instability if R > Rc.

In fact it is informative to transform to polar coordinates r, 8, where r > 0,
x =rcosf, y =rsin8, in which the system decouples as

de

E:r(a—rz), E=1,
and thence to find the exact solution. The solution (in Example 2.8) implies
that 7(t) > Oas ¢ — oo forall r(0) if R < R; and r(t) — a'/? = [k(R —
R)1V2 ast — oo forall r(0) if R > R.. Also (t) = 6 + ¢ for all 6(0) =
9. This gives, for all R > R, a nonlinear solution x = rcosf,y = rsinf
of period 27 as t — oo. Such a periodic solution of a differential equation
which is approached by neighbouring solutions as time increases is called a
limit cycle. Two typical orbits in the phase plane of (x, y), as t increases, are
shown in Figure 2.13 for the case R > R; note how the limit cycle attracts
neighbouring orbits.

This example is typical of Hopf bifurcations, in which the real part Re(s) of
a complex conjugate pair of eigenvalues increases through zero as a parameter
increases or decreases through a critical value, here as R increases through
R¢, and an oscillatory solution bifurcates from the steady solution where it
becomes unstable. Of course, it is no accident that a real system often has a
complex conjugate pair of eigenvalues, so we meet Hopf bifurcations for partial

y

-

Figure 2. 13 Two orbits in the (x,y) 2plane for the system dx/d¢t = dx/dt =
~y+(@—x2—y»x,dy/dt = x+(a—x% —y?)y of Example 2.9 when R > R.. (After
P. Drazin & T. Kambe, Ryutai Rikigaku — Anteisei To Ranyu (Fluid Dynamics —
Stability and Turbulence), University of Tokyo Press, 1989, Fig. 2.10. Reproduced by
permission of the University of Tokyo Press.)
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differential systems governing flows as well as for this simple example of an
ordinary differential equation. So it is important to determine from the linear
problem whether the exponent s is zero or purely imaginary at the margin
of stability: in the former case a turning point, a transcritical or pitchfork
bifurcation typically occurs, and in the latter case a Hopf bifurcation. In the
Sfluid dynamical context, it is sometimes said that the principle of exchange of
stabilities is valid when the time exponent of the least stable normal mode is
zero at the margin of stability. [

Before moving on, note that we have used a complex representation of a
real solution of a real problem in Example 2.9. This idea, based on the property
that if a complex function satisfies a real homogeneous equation, then the
real and imaginary parts of the function satisfy the equation separately, will be
exploited often in the pages that follow. We shall write the complex solution of a
real linearized equation or system of equations, meaning implicitly that its real
part represents the appropriate physical quantity such as a perturbation of a
velocity component or the pressure; for example, we may write x (1) = Ae@+),
where A is some complex constant, to mean its real part %(Aei’ +A*e i)t =
|Ale® cos(t + arg A). This is the traditional way to use the method of normal
modes.

These examples have been chosen for their simplicity rather than to illustrate
all aspects of hydrodynamic stability. One common phenomenon they do not
illustrate is the instability of the supercritically stable bifurcated flow itself
as the Reynolds number increases substantially above the critical value for a
pitchfork or Hopf bifurcation. Then we call the first flow the primary flow, its
instability the primary instability, the supercritically stable flow the secondary

Sflow and its instability the secondary instability. These successive instabilities
are discussed further in §9.1.

This section as a whole serves to introduce some important concepts (basic
solution, stability, bifurcation) and methods (linearization, normal modes) of
the theory of hydrodynamic stability by use of simple ordinary differential
equations. Ordinary differential equations will be used later to illustrate other
important concepts (such as quasi-periodic solutions and chaos) and methods
(weakly nonlinear perturbation) of hydrodynamic stability. However, it should
not be forgotten that the motion of a fluid involves space as well as time,
and that it is modelled by partial differential equations. This means that the
use of ordinary differential models is limited, albeit valuable pedagogically.
More realistic models with the partial differential equations of hydrodynamics
are treated in the next section, which covers some fundamental concepts and
methods of the theory of hydrodynamic stability, especially the linear theory.
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2.3 Stability and the Linearized Problem

First select a basic flow of interest, that is, a solution of the governing equations
of motion, whose stability we wish to investigate. This solution may be easy
or hard to find; it may be known explicitly in analytic terms, or known only
numerically. For example, we may specify the basic flow by the velocity field
U(x, t) and pressure field P (x, ¢) of an incompressible viscous fluid in a given
domain V with boundary dV. This flow is governed by the Navier-Stokes
equations. Then, in dimensionless variables,
U

Fn +U-VU=-VP+ RIAU (2.10)

and
V-U=0 2.11)

in V; and U = Uy on one part, and is periodic on the rest, of 3V; where R is a
Reynolds number.

Now, for general initial values u(x, 0) of the velocity and p(x, 0) of the
pressure there is a total flow with velocity u(x, t) and pressure p(x,t) for
t > 0 such that

Ju 1
§+u-Vu=—Vp+R Au, 2.12)
V.-u=0 (2.13)
in V; and
u="Up andsoforth ondV. (2.14)

Itis convenient to define the perturbation quantitiesw’ =u—Uand p’ = p—P,
whether they are small or not. Therefore, subtracting corresponding equations
above, we deduce, without approximation, that

3 7
3—‘;+u/-VU+U-Vu’+u’.Vu’=_vp'+R—‘Au’, (2.15)
vV-u =0 2.16)
in V; and
u' =0 on part, and v’ is periodic on the rest, of V. 2.17)

Example 2.10: Poiseuille pipe flow. An exact solution of the Navier—Stokes
equations above is, in dimensional form,

U, = V(1 -r2/a®), Py = pox — 4pvVx,/a?,
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where the domain of flowis V={x,: 0<r, <a, 0<0 <27, ~00 < x4 < 00}
and cylindrical polar coordinates (x,,r,,8) are used. This is the steady
flow along a pipe of radius a driven by a pressure gradient 4pvV /a2, the
flow studied by Reynolds (1883). We may choose dimensionless variables
r=rifa,x =x,/a,U=U,/V, p= p*/,oV2 to get

U=(1-r%i, P=po—4x/R,
where R = Va/v. For boundary conditions we take
u=0 onr=1, u—>U asx > Foo,

with V = {x: 0 < r < 1} in dimensionless form. Alternatively, we might
model a given flow by taking

u=0 atr =1, uhasperiod L in x,

withYV={x:0<r<1,0<80 <27,0<x < L}anddV ={x:r =1 for
O0<x<Lorx =0,Lfor0 <r < 1}forgiven L > 0. We assume, of course,
that u has period 27 in9. [

We say, in plain words, that a given basic flow is stable if all perturbations
which are small initially remain small for all time, and it is unstable if at least
one perturbation which is small initially grows so much that it ceases to remain
small after some time. To define ‘stability’ mathematically we need to specify
some metric to give meaning to ‘small’. This has been done in many similar
ways. We formalize the definition as follows, in the sense of Liapounov.

A basic flow is stable if, for all € > 0 there exists d (¢) such that if

I’ (x, O)ll, 11p'(x,0)l| <& (2.18)

then
' (x, )|, I p'x, )|l <€ forallt > 0. (2.19)
Here the norm || - - - || might be chosen in different ways (and thereby give

slightly different definitions of stability); for example, we could choose
W' (x, )| = sup,y W' (x, t)] or [, u?dx]"/2 at each instant. Stability with
o'} o< [}, w? dx]/2 is sometimes called stability in the mean.

The flow is said to be asymprotically stable if it is stable and, moreover,

o' &, O, 1p/(x, )l >0 ast — oo. (2.20)
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In the theory of dynamical systems, an asymptotically stable solution, whether
it be steady or unsteady, is called an attractor; so in Example 2.9 the null
solution is the attractor for R < R; and the limit cycle is the attractor for
R > R.. A system may have more than one attractor, as in Example 2.8 for
R > Rcand! > 0.

The definition of stability crucially concerns the evolution of small perturba-
tions with time, so it is plausible that stability may be investigated by neglecting
products of the perturbed quantities in the equations of motion and boundary

conditions. This gives the linearized problem. From the equations above we
find

u,+U. v +v-VU=-Vp + R AW, 221)
V=0 (2.22)

in V; and
u’ =0 oris periodic on 3V. (2.23)

If the basic flow is steady, that is, if U is independent of ¢, then the linearized
problem has coefficients independent of ¢. It follows plausibly that we may
separate the variables, so that the general solution of an initial-value problem
is a linear superposition of normal modes, each of the form

v (x, 1) = e*i(x), p'(x,t) =e p(x), 2.24)

where the eigenvalue s and corresponding eigenfunctions #, p can be found in
principle by solving the resultant equations and boundary conditions, namely,

sd+U-Vii+a-VU=-Vp+ R A, (2.25)
V-i=0 (2.26)

inV, and
i =0 orisperiodic on V. 2.27)

(The separation of the variable ¢ can be motivated, and in many cases justified,
by use of a Laplace transform.) The eigenvalues s of this real problem are
real or occur in complex conjugate pairs. If V is bounded, then there is a
countable infinity of discrete eigenvalues. We deduce that the basic flow is
stable if Re(s) < 0 for all the eigenvalues s and unstable if Re(s) > 0 for at
least one eigenvalue s, because the mode grows in time like

exp[Re(s)r + iIm(s)r] = exp[Re(s)t] x {cos[Im(s)¢] + isin{Im(s)z}}.

(In the case Re(s) = O of neutral stability according to the linear theory,
nonlinear terms may render the flow unstable.) For one normal mode the spatial
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structure of the perturbation does not change as the mode travels, grows or
decays with time; although, of course, the structure of a superposition of more
than one mode does.

It should be noted that for some basic flows the general solution of the
initial-value problem cannot be expressed as a superposition of exponentially
growing or decaying normal modes. Exercise 2.8(i) illustrates this point.

Note also that, if the eigenvalue s is complex, then the form (2.24) of the
solution of a real problem must be interpreted as implicitly meaning its real
part. This is permissible because complex eigenvalues of a real system occur
in complex conjugate pairs, and the real and imaginary parts of the solution of
a real linearized system satisfy the system separately.

We define t.he critical Reynolds number R., say, such that if R < R, then
Re(s) < O for all eigenvalues and that Re(s) > 0 for at least one mode and
for at least one value of R in any neighbourhood of R.. Then we say that
the basic flow is marginally stable when R = R, because the flow is stable
if R < R. and unstable for all small enough positive values of R — R¢; in
practice, flows usually become more unstable as they get faster, so we usually
expect to find instability for all R > R, in this event. Marginal stability implies
neutral stability. Neutral and marginal stability almost always coincide when
the fluid is viscous, but for inviscid fluids they usually do not, and so it is often
useful to distinguish between the two.

*If there is a countable complete set of normal modes with, say, eigenfunc-
tions @y, pn belonging to eigenvalue s, for n = 0, 1,..., then any initial
perturbation can be expressed as a superposition of the modes, say

U0 =Y a0,  px0)=) bupa®), (2.28)
n=1 n=1

for some coefficients ay,, b,. Now the eigenvalue problem is real, so that each
eigenfunction is either real or one of a complex conjugate pair. Therefore each
coefficient, a, or b,, is either real or one of a complex conjugate pair. The
modes may be ordered so that Re(s;) > Re(sz) > - - -. It follows that

oo o
u(x,t) = Z ani, (x) exp(spt), px,1)= Z by, pn(x) exp(snt),
n=1 n=1
(2.29)
Therefore

w'(x, ) ~ ai) (x) exp(sit), p'(x,0) ~ b p1(X) exp(s1?) ast — o0
(2.30)
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if there is a unique fastest growing or slowest decaying mode, that is, 51 >
Re(s2) > Re(s3) > ---; or

¥k

w'(x, 1) ~ a1 (x) exp(sit) + ar*a] (x) exp(s; *t),

P'(x,0) ~ by p1(x) exp(s11) + b1*py(X) exp(s1*t) ast — oo, (231)

if there is a conjugate complex pair of fastest growing or slowest decaying
modes, that is Re(s;) = Re(sp) > Re(s3) > ---. If the eigenfunctions are
complete but not countable, then the superposition may involve an integral, for
example a Fourier integral, rather than a sum and there may be modes growing
only infinitesimally slower than the fastest growing mode.

*The classic method of normal modes which we have just described and
the examples of it that follow in the next chapters may overemphasize the
importance of the fastest growing unstable mode. Exponentially growing
modes are believed to be so ephemeral that they are rarely observed in natural
phenomena or laboratory experiments. One reason for the lack of observations
of exponential growth of perturbations is that an unstable basic flow is not
set up instantaneously in practice, but rather a stable basic flow evolves
slowly until it becomes unstable and then is broken up rapidly by naturally
occurring perturbations. Another reason is that in general a perturbation is not
the fastest growing mode but a superposition of all modes, stable as well as
unstable, each decaying or growing exponentially at a different rate, so that the
perturbation does not grow exponentially with time. Indeed, a superposition
of exponentially decaying modes may grow by several orders of magnitude
for a while. (Exercise 2.8(ii) illustrates this point.) According to the linearized
theory the perturbation grows exponentially (2.30) only after a long time, when
the fastest growing mode dominates the others, but in practice perturbations
are not very small and nonlinearity usually becomes significant before this
stage of exponential growth is reached. Almost all perturbations of an unstable
steady or time-periodic basic flow observed in practice are nonlinear. However,
the criterion for stability of a basic flow given by the linear theory of normal
modes is valid in practice (except when subcritical instability occurs). Also
exponential growth of controlled perturbations can be seen in numerical
simulations of flows.

*We appear to ignore the definition (2.18), (2.19) of stability in practice,
because we ascertain the stability of a basic flow merely by finding the eigen-
values of the linearized problem, and deeming the flow stable if no eigenvalue
has a positive real part. This is justified by resolving two mathematical issues,
which may provoke the thoughts of the more theoretically inclined reader and
may safely be ignored by the more practically inclined reader, who is therefore
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advised to pass on at once to the next paragraph but one. The firstissue is whether
the basic flow is stable if and only if the null solution of the linearized system
is stable, that is, whether the stability of the nonlinear problem is governed
by the stability of the linearized problem. A few simple counter-examples have
been given to indicate that the basic flow may be unstable when the linearized
system is neutrally stable. The second issue is whether the stability of the nuil
solution of the linearized system is governed by the spectrum of the normal
modes. It is far from clear that o, = wpy always, where we define

om = sup{Re(s): s is an eigenvalue}, wy = sup(tl_i}rolo{[log [’ (x, t)ll]/t}),

on taking the latter supremum over the solutions of the linearized problem
for all smooth initial conditions. Much has been written about both these
issues, and many counter-examples found to the simple belief that the eigen-
values determine the stability of both the linearized and original problems for
nonlinear partial differential systems. However, this simple belief seems ade-
quate to solve problems of stability of flows of a Newtonian fluid, it being
accepted that if the null solution of the linearized system is asymptotically
stable, then the basic flow is stable, although the basic flow may be unstable
when the linearized system is neutrally stable, and that the linearized system
is stable if o, < 0. So we shall mostly regard stability of a flow as being
determined by the eigenvalues of the linearized problem.

*These issues are not merely pathological conundrums in the mathematical
theory of instability of an inviscid fluid, because such theories are structurally
unstable — that is, 2 small change in the model equations can make a substan-
tial change in the results. For example, if a basic parallel flow of an inviscid
incompressible fluid in Rossby’s beta-plane has no normal mode growing with
time (and therefore might be at once deemed stable), then a wave perturbation
of small amplitude ¢ may be shown by weakly nonlinear theory to generate a
perturbation of order of magnitude ¢ ~! in a thin critical layer of width € after a
long time of order ¢ ~! (Warn & Warn, 1978; Brown & Stewartson, 1979), and
thereby render the flow unstable (at least according to the definition of stability
for some norms).

For a typical basic flow, the only way to find many of the stability char-
acteristics, that is, the properties of the eigenvalues s and eigenfunctions for
all values of the Reynolds number, is to resort to computation. This makes it
impracticable in a textbook to do more than show some of the numerical results
and relate them to observations. However, for certain specially simple flows,
more of the theory can be developed analytically. If U, P are independent of
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one or more space variables, for example when the basic flow is invariant under
translation or rotation, then we may separate one or more of the space variables.
(The separation of the space variables may be justified by use of Fourier, or
generalized Fourier, transforms.) Thus if U is independent of x and ¢, we may
take normal modes of the form w'(x, 1) = e't**{(y, z), where k is the x-
wavenumber; if U depends only on the cylindrical polar coordinate r, then we
may takew’ = e’ H*+19)§ () where 7 is an (integral) azimuthal wavenumber
and 6 is the azimuthal angle about the x-axis. (It is understood here that each
physical quantity is the real part of its complex representation, this being
permissible because the problem is linear and homogeneous.) This may lead to
an ordinary-differential, rather than a partial-differential, eigenvalue problem,
and thus to a more tractable mathematical problem to solve in order to find
the stability characteristics of the basic flow. It is for this mathematical reason,
rather than any physical reason, that simple symmetric steady flows are treated
s0 often in lecture courses, books and papers on hydrodynamic stability.

Example 2.11: The stability of Poiseuille pipe flow. If U = (1 — r?)i, P =

po — 4x/R and o', p’ o es'tikx+n0) then the linearized stability problem
(2.25)—(2.27) can be shown at length (see Exercise 2.17) to become

. dUu., = a2 1d 2
(s +ikU)iiy + —iy = —ikp+ RV — + == (242 ) |4,
dr r r?

. ~ dA - d2 1 d 1+ 2 R 2. .
Gtk =L gt [ 1 (o LEEN], | g,
dr Rr2

where

and

i, p are nonsingularat r = 0.
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Here U(r) = 1 — r2, i = (diy, #,, i) in cylindrical polar coordinates. This
is a complicated, albeit a linear ordinary-differential, eigenvalue problem to
determine s and the mode structure. Extensive numerical calculations (see
Salwen et al., 1980) indicate that, strangely enough, Re(s) < 0 for all modes,
all R and all wavenumbers k, #. This implies that Poiseuille pipe flow is stable,
in apparent contradiction to the experiments of Reynolds (1883); it is believed
that, although the flow is stable to the infinitesimal perturbations of this theory,
itis in practice unstable to perturbations of quite small finite amplitudes because
of some form of subcritical instability. [

As a postscript to this chapter, recall §1.1 where it was noted that flow
in a pipe appears to be stable to all small enough perturbations at any value
of the Reynolds number R, but stable to all perturbations of all magnitudes
only if R < Rg, say, where R, & 2000. This is represented mathematically by
defining a basic flow to be globally asymptotically stable if any perturbation
vanishes after a long time, that is, relation (2.20) holds whatever the initial
perturbation is; and defining R, as the greatest number such that the flow is
globally asymptotically stable for all R < R;.

Exercises

2.1 Turning point and transcritical bifurcation. (a) Find the explicit general
solution # of equation (2.7) of Example 2.6, and hence verify the sketch
of the bifurcation diagram in Figure 2.9 for/ > 0.
(b) Similarly, find the explicit solution u of equation (2.8) of Example
2.7, and verify the bifurcation diagram of Figure 2.10 for / > 0.
2.2 The Landau equation. Show that if u satisfies the equation

du
= = k(R — Ro)u — lu®

fork, R, R. > 0 and real /, then

k(R — Ro)ud
g+ [K(R = Re) = lug| expl—2k(R = Ror]

Wt (t) =

so long as # remains finite. Deduce that the null solution U () = 0 is
stable if R < R; and unstable if R > R.. Verify the sketch of the bifur-
cation diagram in the (R, u)-plane for the cases ! > 0,1 < 0.
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The invariance of the complex Landau equation. (i) Show that if the
complex amplitude A satisfies the Landau equation,

dA
r =s5A—I|A%A, (E2.1)

for complex constants s, , and if B(T) = A1), T =t + 1o for real
constants 6, fy, then

B
=sB —I|B’B.
dT
Deduce that if A(¢) is a solution of equation (E2.1), then so is el A(t —19).
(ii) Show that if

du 3%u 2,
=475~ E2.2
2 =953 blu|“u (E2.2)

for complex constants a, b, and we define T =t — 75, X = x — xg, then

du 3%u

o1 = “ax2 ~ Pl

s0 the equation is invariant under translations of time and space. Deduce
that if u(x, 1) = A(r)e** is a solution of equation (E2.2) for real £, then
u(x, 1) =A@t — 1p)el®*+9 where 6 = — kxo, is another. Show, in par-
ticular, that if 7o = 0, xo = 7/k, then the sign of A is changed by the
transformation.
Bifurcation from infinity. Given that

du
& = ¥ — Ry —u)
for R > 0, show that U = 0 is a stable steady solution for all R. What
other steady solutions are there? For what values of R are they stable?
Sketch the bifurcation diagram.

If u = A at¢ = 0, for what values of A does u(t) — Qast — o0?
Comment on the significance of your answers when R is large.
Secondary instability. Given that
((ii—l: =—u(l—uw)(l-R +u2),
show that the primary solution U = 0 has a pitchfork bifurcation at
R =1 but the secondary solution U = (R — 1)!/2 has a secondary insta-
bility at a transcritical bifurcation where R = 2, u = 1.
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2.6 Different definitions of stability. Consider the simple dynamical system

2 2 dy o o2
o y(x +y) s dt—x(x +y) .

First show that the general solution is
x = acos(at +c), y = asin(at + ¢),

for arbitrary constants a > 0, ¢. Show further that of these solutions the
only stable one is x = y = 0, on defining the norm || (x, y)|| = (2 +
y2)l /2‘

Next, defining the new coordinates r = (x> + y%)!/? and ¢ such that

x = rcos(rt + ¢), y = rsin(rt 4+ ¢),

show that the above system is equivalent to

i =0, d—¢ =0
dr dr
Show that the general solution of this system is » = a, ¢ = ¢, but that ail
of these solutions are stable, on defining the norm || (7, ) || = (r2+¢>)}/2.
What is the meaning of these facts that the ‘same’ solution is stable in
one set of coordinates but unstable in the other? [Cesari (1959, §1.9).]
27 Mathematical and physical concepts of stability — let mathematics be
Your servant, not your master. Consider the ‘toy’ mathematical system

du du

3 Cox
where u(x, t) — 0 exponentially as x — foo forallt > 0.

Show that u = U is the steady solution of this system, where U (x) = 0
for all x.

Show that if #(x, 0) = ¢(x), where ¢ is non-null, infinitely differen-
tiable, and decays exponentially at infinity, then u(x, r) = ¢ (xe’) for all
t>0.

State the axiomatic properties a norm has to satisfy. Consider the

definition
0 14 1/p
1£ll, = U_ (’% + If|”> dx] ,

for p > 0, and verify that it is a norm over an appropriate linear vector
space. [Hint: use Minkowski’s inequality.]
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Show that, for the solution above,

1-1 * P
||u||p~e(_/")’ [/ l¢’(y)| dy] ast — 0.
-0

Deduce that the solution U is asymptotically stable if p < 1 but expo-
nentially unstable if p > 1.

Does this suggest that a given solution of some hydrodynamic problem
may be both stable and unstabie? Discuss. [ Yudovich (1989, p. 101).]
Incomplete and complete sets of normal modes. (i) Suppose that

dx_
dr

=[a=lo o)

x(t) = [xo + yot, yol".

Ax,  x(0) = [xo, yol",

where

First show that

Is the null solution stable?

Next seek to solve the problem again by the method of normal modes,
taking x(#) oc e*! and finding the eigenvalues s; and associated indepen-
dent eigenvectors u; of A. How many eigenvalues and eigenvectors are
there? Can the method be used to solve the initial-value problem for all
X0, yo?

(ii) Now use the method of normal modes to soive a small perturbation
of the above problem, namely,

dx
— =B 0) = T
” X, x(0) = {x0, yol,

where

B=[_26 1] and 0 <exl.
0 —€

Hence show that

—2¢t €t

x(#) = (xo0 — yo/€)wie” ™" + (yo/€)ure™ ",

where u; = [1,0]T, up = [1, €]T. [Note that the eigenvectors are nearly
parallel.] How many eigenvalues and eigenvectors are there? Can the
method be used to solve the initial-value problem for all xq, yo?
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Deduce that |x(¢)| — 0 ast — oo for all fixed xg, yo and €. Is the nuil
solution stable?

On the other hand, show that max; ¢ [x(¢)| — %l Yol|/€ as € — O for
all fixed xg, yo # 0. Is the null solution stable? [Hint: it may help to
define E () = (1 — exo/yo)e ¢ and find the turning points of |x(¢)|? =
fyo/e(1 — GX()/y())]2E(t)2{[1 — E(1)1? + €?}. For the relevance of this
to hydrodynamic stability see Exercise 8.44, Trefethen ef al. (1993) and
Waleffe (1995).]

*The pressure gradient in Jeffery—Hamel flows. Show that in the Jeffery—
Hamel problem the radial pressure gradient is

p _ pQ? | [dv 2+ 1 v
ar — 4r3 |\ do R d63 |’
where p is the density of the fluid.
Deduce that there is an adverse pressure gradient at a wall if
v /d6? < 0 there. Show further that [dU//df]y—, changes sign from

negative to positive for solutions of types II;, II; as R increases
through R;.

2.10 *The exact general solution of the Jeffery—Hamel problem. Show that an

integral of the Jeffery—-Hamel equation (2.5),
WY + 49" +2RY'Y" =0,
is
W44y 4 RV = A,
where W' = dW/d6 and A is a constant of integration. Deduce that
1 "2 N2 1 "3 l
5(\11 )+ 200 + gR(\Il) = AV’ + B,

and thence indicate that the solutions ¥ of equation (2.5) and its boundary
conditions (2.6),

Y(B) = *1, U'(@)=0 atf=+toa,

can be expressed in terms of Jacobian elliptic functions. {Jeffery (1915),
Hamel (1916), Abramowitz & Stegun (1964, §17.4.61); see Fraenkel
(1962), Batchelor (1967, §5.6).]
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2.11 *Velocity profiles of types I, II, and IIl, for Stokes flow. Show that if
R = 0, then the Jeffery-Hamel problem (2.5), (2.6) above has solution

sin 260 — 26 cos 2«

W) = .
©) sin 20 — 20 cos 20

2.12 *Plane Poiseuille flow. Show that if @ — O for fixed 6/c, then
the Jeffery-Hamel problem (2.5), (2.6) has limiting solution ¥ (6) =
30/20 — 63/2a3, thatis, U(8) ~ 3(1 — 62/a?)/ar.

2.13 *Linearization of the vorticity equation. Using the basic vorticity equa-
tion (2.5), taking small perturbations of the form ¢ = ¥ + ¢/, and
linearizing the vorticity equation (2.4), show that

r 1d¥ gy’ 242w oy’ 1 dBway

— ——— =R7IAL, (E23
at + rdée ar  r4doe? 96 + r3 de3 oar & (B2

where {’ = —Ay’. Now, taking steady normal modes of the form ¢’ =
r*¢(6), deduce the Dean equation, namely, that

= R[(A = D' (¢" +1%¢) — 20"/ —AW"'9],  (E2.4)

where
pO) =¢' ) =0 ath = ta. (E2.5)

This constitutes the Dear problem to determine eigenvalues A and eigen-
functions ¢ given ¥, R and o.
Why cannot both variables ¢, r be separated? [Dean (1934), Banks ez al.
(1988).]
2.14 *The Orr-Sommerfeld problem for steady perturbations of plane

Poiseuille flow. Show that r* ~constant x e** as o — 0 for fixed
k= —ioA,arg, and x = (r — rg)/aro. Deduce that equations (E2.4),
(E2.5) become

¢iv _ 2k2¢” +k4¢ — ikR[U(¢” _ k2¢) _ U//¢],

() =¢'(y) =0 aty==I,

as & — 0 for fixed y = 6/a, where a prime now denotes differentiation
with respect to y, and ¥/() — U(y) = 3(1 — y?).
2.15 *Four exact eigensolutions. Verify the identity

(WY 4+ 40”7 + 2RW'Y"Y = WY 49" + 2RY'W” + 2R(W").

o
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Deduce that eigensolutions of the problem (E2.4), (E2.5) are given by
DA=0,¢=U, G)A=2¢=W,(i)A=—1,¢ = cos6¥, and
(iv) A = —1, ¢ = sin6W’, provided that ¥/ = 0 at § = +ta.

[Dean (1934) gave solutions (i), (ii). In fact the vorticity equation (2.4)
is invariant under the group of rotations » +— r, 0 +— 6-+38, Y — ¢ forall
real 8, and therefore W(0+8) = W(0)+8¥'(6)+0(5%)asé — Oisalsoa
solution of the equation: this gives ' = ¥’ i.e. A = 0,¢ = ¥ . Itisalso
invariant under the translations x + x +38cos 8, y+— y+48sin 8, ¢ —
v, for which W(6 — 8r~! sin(6 — B)) = ¥(6) — 8r~! sin(6 — B)W'(6) +
0(8%) as 8 — 0; therefore A = —1, ¢ = sin(8 — B)¥'(6).]

*The eigensolutions for Stokes flow. Show that if R = 0, then an even
eigenfunction of the problem (E2.4), (E2.5) is

__cosAf  cos(A —2)6
" cosah  cosa(h—2)

¢6)
where A is a zero of V(—1) and V is defined by
V(p) = (p + 1)sin 2 + sin 2a(p + 1).

Deduce that 2 — A is also an eigenvalue.

Find similarly the odd eigenfunctions.

Stability problem of Poiseuille pipe flow. Express the Navier—Stokes
equations in terms of cylindrical polar coordinates (x,r, 8), using
dimensionless variables and a Reynolds number R.

Consider a basic flow of an incompressible viscous fluid with velocity
U=U(r)i and pressure P = P(x), where U(r)=1 — r2 P(x)=Py —
4x/R for 0 < r < 1. Linearize the equations with small perturbations
suchthatu = U+ o', p = P + p'. [See Example 2.11.]

Instability due to linear resonance. Suppose that
dx . dy .
@ = —1lw1Xx + €p1Yy, @ = €prx — 1wy,
where wy = wy -+ be for real wy, €, b. Show then that the normal modes
with x, y e 1! have the dispersion relation

1
w=w + Ebe + e(b2 - 4p1p2)1/2.

Deduce that the null solution x = y = 0 is stable if ¢ = 0, but unstable
for small € when 4p) p; > b>.

[The resonance is called ‘avoided crossing’ by solid-state physicists. It
shows that a weak linear coupling of two neutrally stable waves may
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render their basic state unstable. Drazin (1989) showed that this is a
mechanism whereby buoyancy, usually reckoned as a stabilizing influ-
ence, may destabilize short waves for a stable basic parallel flow (see,
e.g., Drazin & Reid 1981, equation (44.36)).]

2.19 Normal modes which are exact nonlinear solutions. Suppose that

u = U(x, #), p = P(x,t) is a solution of the Navier-Stokes equations,

ﬂl——i—u-Vu:—le—i—vAu, V.ou=0,

at o

governing unbounded flow of a uniform incompressible viscous fluid.
Regarding this as a basic flow, and considering perturbations such that
u=U+u, p= P+ p/, where ' = f(x, t)i(t) for some functions
f, G such that V - v’ = 0, show that

.-V =0

identically.

Deduce that if the linearized problem has a normal mode solution of
the above form such that f(x,t) = g(k - x — wt), and @  €°’ for real
k, w, o, then the perturbation is also an exact nonlinear solution.

Reverting to consideration of the basic flow, show that if U(x,?) =
S(#)x + Up(t), an unsteady linear shear flow for some 3 x 3 matrix
function S, then

ds

2 _ _
@ +S“ =M, trace(S) = 0,

where M(¢) is a symmetric matrix function. [Craik & Criminale (1986).]

2.20 An instability of an elliptical flow. Consider the steady basic flow of a

uniform incompressible viscous fluid with

2@
a4+ b2

_ 24202 pQ2(x% + y?)
(a® + b2)2
for positive constants a, b, p, £2. Show that the vorticity V x U = 2Qk,

a constant. Verify that this flow satisfies the Navier-Stokes equations
exactly, and that U - n = 0 on the ellipsoid with equation

(—azy, bx, 0), P

x2 y2 Z2

Z2tpta=th

where n is a vector normal to the ellipsoid (although the flow does not
satisfy the no-slip condition on the ellipsoid).
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Consider velocity perturbations of the form
v = (aqz/c — ary/b,brx/a — bpz/c, cpy/b — cqx/a)

for some functions p, g, r of ¢ alone. Deduce that the vorticity of the
perturbation is

vV x W = ((b* + c*)p/bc, ( +a?)q/ca, (a® + b*)r/ab),

a constant vector at each instant, and thence, by linearization of the
vorticity equation for an incompressible viscous fluid, that

dp  2Qab(b* - c?)q

2 2
(b )dt - al+b2
»  oandg  2Qab(c? —a?)p
C+a) g =—arm
o
d

Taking normal modes with p, g o e*’, show that
2 _ 4Q2a°b*(c? — b*)(a® - )
(6% + 2)(a? + ) (a2 + b2)*’

and thence that the flow is unstable if a < ¢ < bord < ¢ < a but stable
(to these perturbations) otherwise.

[Lamb (1932, §384). Note that the stability found above for the case

b = a agrees with the stability of the basic flow of a rigid-body rotation
(see Exercise 5.12), although there is instability if 0 <b — a < 1 pro-
vided that a < ¢ < b. Note that the value of the viscosity does not affect
the results because the viscous terms vanish identically for the special
perturbations considered.]
Kelvin’s principle of minimum energy and the stability of potential flows.
Prove that, of all flows of an incompressible inviscid fluid in a simply
connected domain with prescribed normal flux at the surface, the irrota-
tional flow has the least kinetic energy.

Discuss why a basic irrotational flow, although the flow of min-
imum kinetic energy, is not necessarily stable, by considering two-
dimensional perturbations of the uniform basic flow U=Ui in the
square —L <x, y < L. Show that the linearized vorticity-perturbation
equation is satisfied by ¢'(x, y, f) = f(x — Ut, y) for any differentiable
function f, and hence that the problem for the velocity perturbation
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u/(x, y, t) is not well posed if the boundary conditions are merely that
the normal component of u’ vanishes on the sides of the square. If further
¢'(x,y,0) = g(x, y)inthe square, and ¢'(—L, y, t) = h(y, t) fort > 0,
where U > 0and g and A are given functions, find ¢’ inside the square for
t > 0. Deduce that ¢’ need not be small as ¢t — o0, even if g(x,y) =0
forall x, y.

[After Drazin & Reid (1981, Problem 1.1). See Lamb (1932, §45).
Hint: 3¢'/8t + U3t /ax = 0, (x,y,t) = g(x — Ut,y) for0 < ¢t <
(x+L)/U,and ¢’ = h(y,t — xU) for (x + LY/ U < ¢.]

Jeans instability of self-gravitating gas. The dynamics of self-gravitating
intergalactic gas are modelled by Poisson’s equation,

A¢ = 4nGp,
as well as Euler’s equations, the continuity equation,

dp

Ju
p(—-+u-Vu>=—Vp—pV¢, 3

Y + V- (pu) =0,

and an equation of state, p = p(p), for a barotropic inviscid fluid, where
¢ is the gravitational potential and G the gravitational constant.

Considering small perturbations of a basic state of rest with ¢ =
®(x), p = R(X), u = 0 and denoting them by primes such that

p=>+¢, p=R+7, u=u,

and linearizing the equations of motion by neglecting products of the
perturbed quantities, deduce that

AP =4rnGp/,

4 /

Raalt = —c?Vp' — p'V® — RVY/, %’07 + V.- (Ru) =0,
where ¢ = [dp(R)/dR]l/ 2 is the basic velocity of sound.

Assuming that the basic state is uniform with R = constant, & =
constant (although the latter implies the unphysical result that R =0
and we later assume the physical property that R > 0), and taking normal
modes with ', p’, ¢’ o 5! show that

s2 = 47GR — *k2.

Deduce that a uniform gas is gravitationally unstable to long waves.
[Jeans (1902).]
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Kelvin—Helmholtz Instability

They that go down to the sea in ships, that do business in great waters;

These see the works of the Lord, and his wonders in the deep. For

He commandeth and raiseth the stormy wind, which lifteth up the
waves thereof.

Psalm cvii 23-25

To understand better the mechanisms and concepts of the linear theory of sta-
bility described in Chapter 2, it helps to follow some simple worked examples.
You will discern certain features common to the examples: (1) identification
of the physical mechanism of instability of a given flow and modelling of
the instability by choice of an appropriate system of equations and boundary
conditions; (2) choice of a solution satisfying the system to represent the basic
flow; (3) linearization of the system for small perturbations of the chosen basic
flow; (4) use of the method of normal modes; and (5) application of the results
to understand or control the observed instability. First, we shall work through
a classic problem that does not demand a lot of mathematics. It substantiates
the important physical mechanism whereby a basic vorticity gradient tends to
destabilize a flow.

3.1 Basic Flow

Consider the basic flow of two incompressible inviscid fluids in horizontal
parallel infinite streams of different velocities and densities, one stream above
the other. Then the basic flow is given by velocity, density and pressure:

5(z)={;’2 1"(z)={"’°_“>"’2Z forz>0 " 31

(i
v@ = {Uli po—gmz forz <0,

’ ’

respectively, say, where Uy, U, are the velocities of the two streams, p;, o2 are
the densities, pp is a constant pressure, z is the height and g is the acceleration
due to gravity.

3.2 Physical Description of the Instability

Helmholtz (1868) remarked that ‘every perfect geometrically sharp edge by
which a fluid flows must tear it as under and establish a surface of separation,
however slowly the rest of the fluid may move’, thereby implicitly recognizing

AL
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the basic flow above, but the mathematical problem of instability was first posed
and solved by Kelvin (1871); it is now called Kelvin—Helmholtz instability.
Kelvin’s motivation for choosing the basic flow above is not entirely clear, but
he was a friend of Helmholtz and, as we shall see, applied the model to seek to
understand the generation of ocean waves by the wind.

The physical mechanism of Kelvin—Helmholtz instability has been described
by Batchelor (1967, pp. 515-516) in terms of the vorticity dynamics. For
simplicity of description, let us suppose for the moment that U1 = —V,Up =
V >0, and that o, = p1, so that we consider the special case of a vortex sheet
in a homogeneous fluid. Thus buoyancy is ignored here. Next consider an
initial disturbance which slightly displaces the sheet so that its elevation is
sinusoidal. Again for simplicity we suppose that the flow is two-dimensional
in the (x, z)-plane, so that the elevation of the sheet is given by z = ¢(x, ?) at
subsequent times. Batchelor traced the vorticity dynamics as follows, using the
fundamental properties that each vortex line in an inviscid fluid is carried with
the fluid and induces a rotating flow with circulation equal to the strength of
the vortex line. The vorticity du/3dz — dw/9x of the sheet is positive for V > 0.
So positive vorticity is swept away from points like A (in Figure 3.1) where
¢ = 0,98¢/0x > 0 and towards points like C where ¢ = 0,3d¢/dx > 0,
because vorticity in parts of the sheet displaced downwards (or upwards)
induces a velocity with a positive (or negative) x-component at any part of
the sheet where z > 0 (or <0). In particular, the induced velocity at points
like B due to each part of the displaced vortex sheet has positive x-component.
Now the positive velocity accumulating at points like C will induce clockwise

Figure 3.1 Growth of a sinusoidal disturbance of a vortex sheet with positive vorticity
normal to the paper. The local strength of the sheet is represented by the thickness of the
sheet. The arrows indicate the directions of the self-induced movement of the vorticity
in the sheet, and show (a) the accumulation of vorticity at points like A and (b) the
general rotation about points like A, which together lead to exponential growth of the
disturbance. (After Batchelor, 1967, Fig. 7.1.3.)
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velocities around such points and thereby amplify the sinusoidal displacement
of the vortex sheet. These processes of accumulation of vorticity at points like
C and of rotation of neighbouring points of the sheet will continue together,
leading to exponential growth of the disturbance without change of the spatial
form of the disturbance so long as the disturbance is small enough not to
significantly change the basic state. We shall next substantiate this physical
description with some mathematical details.

3.3 Governing Equations for Perturbations

Kelvin assumed that the disturbed flow was irrotational on each side of the
vortex sheet. This follows if the initial disturbance of the flow is irrotational,
because irrotational flow of an inviscid fluid persists. However, initial rotational
disturbances also are possible. To simplify the mathematics we shall adopt
Kelvin’s restrictive assumption, remembering that it allows a proof of instability
but not stability because it gives no information about rotational disturbances.
In fact, as we shall see in Exercise 3.4 and Chapter 8, rotational disturbances
are no more unstable, and so Kelvin did find a necessary as well as a sufficient
condition for instability. Thus we assume the existence of a velocity potential
¢ on each side of the interface between the two streams with u = V¢, where

_J#2 forz>¢

¢= ¢1 forz <y,

(3.2)

the interface having elevation

z=28(x,y,0) (3.3)

when the flow is disturbed. Then the equations of continuity and incompress-
ibility give V - u = 0 and therefore the Laplacians of the potentials vanish, i.e.

Agp =0 forz > ¢, Apr =0 forz <¢. (3.4)

Note that Euler’s equations of motion have been used only implicitly in taking
the irrotational flow as persistent.

The boundary conditions are as follows:

(a) The initial disturbance may be supposed to occur in a finite region so that
for all time

V¢ - U asz— too. 3.5)

(b) The fluid particles at the interface must move with the interface without
the two fluids occupying the same point at the same time and without a cavity
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forming between the fluids. Therefore the vertical velocity at the interface is
given by
d¢p D¢ 9¢ 9 d¢ 4 3¢ 3¢

%9 - 3.6
9: Dr or axax ayay =6 (36)

the material derivative of the surface elevation (see Lamb, 1932, p. 7). This
kinematic condition is the same as that for surface gravity waves, which will
be shown to be a special form of this instability. There is a discontinuity of
tangential velocity at the interface, and it leads to the two equations,

dpr  9¢ O 9 ¢y 8¢

9.~ at  oxox | ayay AeTéfor @

(c) The normal stress of the fluid is continuous at the interface. For an

inviscid fluid, this gives the dynamical condition that the pressure is continuous.
Therefore

o[ = (v)? - a9 /0t - 2
=02[C2— 1(V)? — 0ga/0t — 2] atz=¢, (8

by Bernoulli’s theorem for irrotational flow, which is valid on each side of the
vortex sheet, z = ¢. In order that the basic flow satisfies this condition, the
constants C;, C» must be related so that

o1(C1 - 4U%) = (€2 - $U3). 3.9

Equations (3.2)—(3.9) pose the full nonlinear problem for perturbations of
the basic flow (3.1).

3.4 The Linearized Problem

For linear stability we first express

¢ =Upx +¢, forz>¢, o1=Ux+¢; forz<t¢ (3.10)

and neglect products of the small perturbations ¢, ¢, ¢. This is effectively
a definition of the perturbed quantities. There is no length scale in the basic
velocity, so it is far from clear how small ¢ must be in order that the lin-
earization is valid. However, we can plausibly justify the linearization if the
surface displacement and its slopes are small in dimensionless terms, i.e.
8¢/8x,8¢/3y < 1and gt K U2, U22. If this is granted, and it is recognized
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that the exact position of the interface at z = ¢ may be replaced by the basic
position at z = 0 on using the Taylor series

[¢].— = [i).0 + £ [304/02] g + -+
then linearization of equations (3.4)—(3.8) is straightforward, giving

A¢) = 0forz > 0, A¢; =0 forz<O; 3.11)

V¢, — 0 as z — Foo for k = 1, 2 respectively; (3.12)

g, ¢ ac
% % L 0% atz=0 fork=1,2. 3.13
9 ar kg Ar=Odor ©-13)

p1 (U186 /3x + 3¢ /3t + gt ) = p2 (U209 /0x + 8¢y /3t + g¢) atz=0.

(3.14)

It can be seen that all coefficients of this linear partial differential system

are constants and that the boundaries are horizontal. So we use the method of

normal modes, assuming that an arbitrary disturbance may be resolved into
independent modes of the form

(£, 81, 95) = (C, $1(), do(2)) e E* TN+t (3.15)

This reduces the problem to an ordinary differential system with z as the
dependent variable, for here qAbl, <;32 are functions of z only and ¢ is a constant.
Equations (3.11) now give

$2(2) = Aze ™ + Bpek?, (3.16)

where A, and B, are arbitrary constants and k = (k2 + l2)1/ 2 is the total
wavenumber. The boundary condition (3.12) at plus infinity implies that By = 0
and therefore

Pr(z) = AgeR2. G.17)
Similarly, we find that
$1(z) = Areks. (3.18)

Now equations (3.13), (3.14) give three homogeneous linear algebraic equa-
tions for the three unknown constants E, Ay, Ay. Equations (3.13) give

A2 = —(s + ikUp)Z /k, Ay = (s + kU Jk (3.19)
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and thence give the eigenfunctions (3.15) except for an arbitrary multiplicative
constant. Then equation (3.14) gives the eigenvalue relation,

pi[kg + (s +ikUD*] = po[kg — (s +ikU2)?]. (3.20)

The solution of this quadratic equation gives two modes with

- 172
U U k2 Uy—U)? & —
s = ™ 1+ 0 214:[ p1o2(Uy 2" kgl ,02):| . (321)

p1+ P2 (o1 + p2)? 1+ 2

Both are neutrally stable if

’;8(/’12 - P%) > k2 p102(Ur — Un)?, 3.22)

the equality giving marginal stability. One mode is asymptotically stable but
the other unstable if

kg(of — p3) < K2 p1p2(U1 — Un)*. (3.23)

This is accordingly a necessary and sufficient condition for instability of the
mode with wavenumbers k, [. Thus the flow is always unstable (to modes with
sufficiently large k, that is, to short waves) if Uy # Us.

3.5 Surface Gravity Waves

To interpret this result it is simplest to consider special cases separately. When
2 = 0and Uy = Uy = 0 we have the model of surface gravity waves on deep
water. They are stable with phase velocity

c=is/k = +(g/k)'", (3.24)

as is well known. This illustrates the identity of waves and oscillatory stable
normal modes. It is often helpful to regard waves as a special case of hydrody-
namic stability.

3.6 Internal Gravity Waves
When the basic flow is at rest (U; = U = 0) we find

s = £[kg(o2 — p1)/ (o1 + o]~ (3.25)

There is instability if and only if p; < o, that is, heavy fluid rests above light
fluid. However, if p; > 0, then there is stability, a normal mode being a wave
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with phase velocity

¢ = £[g(o1 — p2)/k(or + )], (3.26)

The eigenfunctions (3.15) for the velocity potential die away exponentially
with distance from the interface, as in all cases of Kelvin—Helmholtz inst-
ability, and thus the motion is confined to the vicinity of the interface between
the two fluids. These waves are a special case of internal gravity waves, which
may propagate in the interior of a stratified fluid far from any boundary. They
can be observed between layers of fresh and salt water that occur in estuaries;
the upper surface of the fresh water may be very smooth while strong internal
gravity waves occur at the interface of the salt water a metre or two below,
because for fresh and salt water (o1 — p2)/(o1 + p2) =~ 1072 « 1, and so
equations (3.19) give relatively small fluid velocities for given amplitude of
interfacial elevation.

3.7 Rayleigh-Taylor Instability

The eigenvalues (3.25) can be interpreted differently if the whole fluid system
has an upward vertical acceleration f. Then, by the principle of equivalence in
dynamics, or by solution of the problem of normal modes,

s = x[kg'(02 — p1)/ (o1 + p2)]' "%, (3.27)

where g’ = f + g is the apparent gravitational, or net vertical, acceleration of
the system. It follows that there is instability if and only if ¢’ < 0, i.e. the
net acceleration is directed from the lighter towards the heavier fluid. This
is called Rayleigh-Taylor instability, after Rayleigh’s (1883) theory of the
stability of a stratified fluid at rest under the influence of gravity and Taylor’s
(1950) recognition of the significance of accelerations other than gravity (see
Exercise 8.20).

Rayleigh-Taylor instability can be simply observed by rapidly accelerating
a glass of water downwards (and standing clear!). Quantitative observations
have been made by Lewis (1950) and others. There are many applications of the
theory. A spectacular one arises in a young supernova, where gas concentrates
in a thin shell behind an interface which decelerates after the initial explosion,
so that dense gas lies inside less dense gas as the expanding sphere sweeps
up interstellar gas (Gull, 1975). The consequent breaking of symmetry and
formation of filaments is observable long afterwards (see Figure 3.2).
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Figure 3.2 The residue of the early Rayleigh-Taylor instability of the Crab Nebula,
visible long afterwards as the gas expands into space. (Reproduced by permission of
the Chandra X-Ray Observatory.)

3.8 Instability Due to Shear

The essential mechanism of shear instability in the absence of buoyancy is
of widespread importance. Lundgren (1982) suggested that this instability is
fundamental to maintaining turbulence at high values of the Reynolds number
by breaking up shear layers.

When there is a vortex sheet in a homogeneous fiuid (o1 = p3, U7 # U»),
equation (3.21) gives

s = —3ik(U1 + U2) £ k(U1 — U3). (3.28)

One of these modes grows exponentially, so the flow is always unstable; the
modes are growing and decaying waves with the phase velocity ¢ = Lk(U; +
U,)/k, the average velocity of the basic flow resolved in the direction (k /k, 1/k)
of propagation. Waves of all lengths are unstable, there being no length scale
of the basic flow. Further, the growth rate is proportional to , so that short
waves grow fastest but there is no fastest growing wave. It in fact follows that
the linearized initial-value problem for this flow is ill-posed, and a singularity
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in the profile of the vortex sheet may develop in a finite time, even if the initial
data are analytic. It can also be seen that the wave of a given length A = 27 /k
which grows most rapidly is the one which propagates in the direction of the
basic flow (that is, k = k). So, after some time, waves in the direction of the
flow will become dominant.

It might have been anticipated that there would be no margin of stability
for a vortex sheet of an inviscid fluid, because there is no dimensionless
combination of the physical quantities Uy — Uy, p; governing the growth
of perturbations in this model. (Only the difference of velocities is relevant
because we may, without loss of generality, assign any value we please to
the mean velocity %(U 1 + U>) by making a Galilean transformation.) Taking
the characteristic length scale L of the wave as the wavelength A and the
characteristic velocity scale as half the basic difference V = %(U 1 — U2), we
find the characteristic time scale L/ V = 47 / k(U — Us), during which time the
wave amplitude grows by a factor exp(kciL/ V) = exp(2rk/ k) =~ exp(2r) =~
536. In practice the instability does not grow as rapidly as that, because of the
idealizations in Kelvin’s model: although equation (3.28) describes well the
very rapid growth of long small-amplitude waves on a shear layer of a slightly
viscous fluid, the model is over-simplified as a description of instability of a
real fluid. However, the amplitude grows rapidly, and nonlinearity soon both
skews the profile of the wave in the direction of the basic flow and rolls up the
interface, as sketched in Figure 3.3.

For a real shear layer of finite thickness, called a free shear layer or a mixing
layer, we shall show (in Chapter 8) that short waves are stable. Neu (1984) has
described more realistically the roll-up of a vortex sheet in a slightly viscous
fluid and the secondary instablities which develop. However, the above result
does demonstrate the instability of a shear layer to waves whose lengths are
much greater than the thickness of the layer. Also Kelvin (1871, see Exercise
3.2) himself incorporated surface tension as well as buoyancy into the model,
and found a margin of stability of the vortex sheet marked by a critical value
of a dimensionless parameter.

The full condition (3.23) of Kelvin—Helmholtz instability represents an
imbalance between the destabilizing effect of inertia and the stabilizing effect
of buoyancy when the heavier fluid is below. Kelvin (1871) used this theory as
a model] of the generation of ocean waves by wind. Helmholtz (1890) applied
the theory to billow clouds, whose appearance in regular lines marks the
instability of winds with strong shear. A striking photograph of billow clouds
is shown in Figure 3.4(a), the photographer having the good fortune to view a
regular line of clouds in a direction perpendicular to that of wave propagation.
The billow clouds, when seen obliquely, are often call a ‘mackerel sky’ after
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-.275 4
t=1

Figure 3.3 Sketch of the roll-up of a vortex sheet due to the strongly nonlinear growth
of a two-dimensional perturbation. The interface has been computed at various time
intervals. (After Krasny, 1986, Fig. 2; reproduced by permission of Academic Press.)

the barred pattern of the skin of the North Atlantic fish. The instability leads to
what is called clear-air turbulence when there is insufficient water vapour to
form clouds and thereby make the instability visible.

Reynolds’s (1883) paper on pipe flow also describes some experiments on
Kelvin-Helmholtz instability, although he did not recognize them as such.
Reynolds filled a pipe with water above carbon disulphide and tilted it. The
ensuing relative motion of the two fluids led to instability at their interface.
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Thorpe (1969) later refined this experiment and clearly identified the Kelvin—
Helmbholtz instability. Some of his results are illustrated in Figure 3.4(b) and (c).

It must be emphasized that this crude model of Kelvin is a valuable first
attempt to understand the instability, but it does not model many important
features of the observed instability, such as the non-zero thickness of the shear
layer, the effects of viscosity and the nonlinearity of the perturbation. Also
Kelvin made no attempt to find the ultimate evolution of the instability. As
you can see from Figure 3.4, in practice the vortex sheet steepens and then
rolls up; Klaasen & Peltier (1985) showed theoretically and Thorpe (1985)
experimentally that a secondary three-dimensional Rayleigh—Taylor instability
in the billow cores develops later and thereafter the shear layer finally breaks
up into turbulenee. However, there is a lot more which might be written about
this complicated phenomenon.

Surface waves are illustrated on film by Bryson (FL1967, containing excerpts
from F1967) and internal gravity waves by Long (F1968, a few sequences
only). Kelvin—-Helmholtz instability modified by viscosity is shown in one

Figure 3.4 Kelvin—Helmholtz instability. (a) Billow clouds near Denver, Colorado,
photographed by Paul E. Branstine. For the meteorological details, see Colson
(1954).
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Figure 3.4 (continued) (b) Development of instability at the interface of two fluids
of equal depth in relative acceleration owing to the tilt of the channel. (From Thorpe,
1968.)

Figure 3.4 (continued) (c) The same run of Thorpe’s experiment about half a second
later.
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short sequence by Mollo-Christensen & Wille (FL1968) and Rayleigh—Taylor
instability modified by surface tension in another.

3.1

3.2

Exercises

Laplace’s law of surface tension. Let S be a bounded simply connected
smooth subsurface of the interface of a liquid and a gas with a smooth
closed perimeter C. Assuming that the surface tension y leads to the force
¥ fon x dx on C and that this force is in equilibrium with the net force
due to the pressure difference Ap across the interface, show that

y/nxdx:[f(Ap)ndS.
C N

Ap=yV-n. (E3.1)

Deduce that

The moderation of Kelvin-Helmholtz instability by surface tension. Show
that if there is surface tension y between the two fluids of §3.3, then
equation (3.21) is replaced by

s = —ik

p1U1 + p2Us + {k2p1p2(U1 — Uy)?

p1+ 02 (o1 + p2)?
B feo-r 1"
- [g P +1€y] . (E32)
o1+ p2 k
Deduce that the flow is stable if and only if
U1 — U2)* < 2(p1 + p2)lgy (o1 — o)1/ p1p2, (E3.3)

the wavelength of the least stable wave on the margin of stability being
A =2n/k =2nly/g(p1 — p2)]'/%.

Using this model of Kelvin, show that the wind generates waves on the
sea if the difference of the basic air and water speeds is such that

Uy —Us| > 6.6ms™ !,

and the least stable wave has length A = 0.017 m and speed 0.008 m s~ .
[After Drazin & Reid (1981, Problem 1.4); Kelvin (1871). Hint: Use
equation (E3.1) of Exercise 3.1 to incorporate the effect of surface tension
on the dynamic condition at the interface. Hint: use p; =1020kgm™3,
p2=125kgm™3, g =9.8ms 2,y =0.074 Nm~!]
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An initial-value problem for the perturbation of a vortex sheet. Suppose
that the basic flow is a vortex sheet in ahomogeneous incompressible invis-
cid fluid, taking equation (3.2) with U=V >0,U;= -V, pp=p1.
Consider an irrotational two-dimensional perturbation for which the
interface is released from rest with

¢(x,0) = H exp(—x?/2L?).
Deduce that
I(x,t) = Hexp[(Vzt2 - x2)/2L2] cos(th/Lz) fort > 0,

finding ¢/, ¢5.
[After Drazin & Reid (1981, Problem 1.5). Hint:

o0
£(x,0) = )" 2HL f exp(——%ksz + ikx) dk.

o0

Therefore

C(x, 1) = (271)"1/2HLfoo

-0

exp(— %ksz + ikx) cosh(kVr)dk,

because s = £kV and 9¢/9r = 0 at t = 0. Therefore
oo
P (x,z,1) = 2(271)_1/2HLV/ exp(— *L? + ikz)
0
X (sinkx coshkVt + cos kx sinh kVr) dk,

with a similar expression for ¢} differing only in some signs. Note that
Ve[, Ve, #0att =0.]
The effect of rotational disturbances on Kelvin—-Helmholtz instability.
Show that, in the problem of §3.3, the linearized Euler equations of motion
give

o’ o’ ~1

o + U23_x =—p;, Vp' forz>¢.
Deduce that Ap” = 0 and that the perturbation of vorticity satisfies

&' (x,1) =& (x — Ust,y,z) forz>Z¢.

Hence argue plausibly that the presence of vorticity in the initial perturba-
tion does not affect the criterion of instability (3.23). [After Drazin & Reid
(1981, Problem 1.6).]
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3.5 Rayleigh-Taylor stability of superposed fluids confined by a vertical cylin-
der. Consider an incompressible inviscid fluid of density p; beneath a
similar fluid of density p;, both fluids being at rest and confined by a long
vertical rigid cylinder of radius » = a, and there being surface tension y
at the horizontal interface z = 0. Here cylindrical polar coordinates 7, 0, z
are used, and Oz is the upward vertical. Then show, much as in Exercise
3.2, that small irrotational perturbations of the state of rest may be found
as a superposition of normal modes of the form

@' o Ju(kr)cosnfe KX+t and ¢ o J,(kr) cos ne’’

forn=0,1,..., where

2 _ 82— Pk - vk
p1+ 02

and ka = j, ,, the mth positive zero of the derivative J,, of Bessel’s
function of nth order form = 1, 2, .. .. Deduce that there is stability if

0 2
a’g(or — p1) < vijii-

[After Drazin & Reid (1981, Problem 1.12). This result shows that
the stabilization of long waves by a boundary and of short waves by
surface tension may stabilize heavy fluid resting above light fluid to all
perturbations. This physical point is made visually by the experiment of
Mollo-Christensen (F1968), for real, and therefore viscous, fluids for which
short waves are further stabilized by viscosity. Maxwell (1876).]

3.6 *Rayleigh-Taylor instability with viscosity and surface tension. Consider
two incompressible fluids at rest, separated by a horizontal boundary, say
z = 0. Let p; be the density of the lower fluid, and p; be the density of the
upper. Suppose that both fluids have the same kinematic viscosity v, and
that there is surface tension y at their interface. Taking small perturbations
and linearizing, show that normal modes proportional to e* Hkx+y) gre
governed by the eigenvalue relation,

(b1 + p)[gk(p1 — p2) + Y] (r — D) +4k%sv(p1 — p2)*(r — 1)
+4s%p1p2 = 4N (01 — p2)*(r — 1%,

where k2 = k2 + 12, r = (1 + s/k*v)!/2 and Re(r) > 0.
[Hints: Linearize the equations of motion, and then set w’ = w;(z)x
eStHKEXHY) where j =1 below the interface and J =2 above it; deduce
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3.7

3.8

3 Kelvin—Helmholtz Instability

that the equations of motion and boundary conditions at infinity are satisfied
by W1(z) = Arek? + B1e!"? ip(z) = Aze™*% + Bye "% Show that
the continuity of the normal and tangential components of the veloc-
ity at the disturbed interface gives continuity of @, Dw respectively at
z = 0. Show that the continuity of the tangential and normal compo-
nents of the stress at the disturbed interface gives pr(D? + k2)i, =
p1 (D> +£2)idi, pal1—vs™ ! (D? —kH) Db — p1[1~vs ™ (D> —k*)IDibz =
—k2s72[g(p2 — p1) — K2y1w — 2k2vs™V(py — p)Dw respectively at
z=0]

{Harrison (1908), Bellman & Pennington (1954), see, e.g., Chandra-

sekhar (1961, §94).]
Rayleigh-Taylor instability and Schwarzschild’s criterion for atmospheric
stabiliry. An incompressible inviscid fluid of density 5(z) at rest can be
shown to be stable if 5'(z) < 0forall z by the following heuristic ‘physical’
argument. ‘Suppose that a fluid particle at level zq is raised (or lowered
if §z <0) a little to height zo + 8z somehow. Then its density remains
p(z0) (because it is incompressible and density is not diffused), but the
ambient fluid in the particle’s new environment has density p(zg + 6z) =
p(z0) + 825/ (z0) + O[(8z)*] as 8z — 0. Therefore if the particle is denser
than the ambient fluid (lighter if §z < 0), then p(z0) > F(z0 + 82),
i.e. p'(z0) < 0, and the particle is pulled back by the buoyancy towards
its original level zg as if by a spring. Conversely, if 5'(z9) <0, then the
patticle continues to rise away from its original level. It follows that the
fluid is stable if 6'(z) < 0 for all z and unstable if 5'(z) > O for some z.’
[Rayleigh (1883) linearized the Euler equations to demonstrate this result
more convincingly. See Exercise 8.19.]

You are given that an atmosphere of a perfect gas at rest is stable to
small adiabatic perturbations if I' < I'; and unstable if I' > Ty, where I’
is the lapse rate of the atmosphere, that is, I' = —d® /dz is the negative of
the vertical temperature gradient, and I, is the adiabatic lapse rate, that
is, I'y is the lapse rate of an atmosphere in adiabatic equilibrium. Invent or
find a ‘physical’ justification of this criterion for stability of an atmosphere
(of a planet or star).

[Hint: P = Rp®, R = ¢ — ¢y, ¥y = ¢cp/cy for aperfect gas, and P /g7
is independent of height for adiabatic equilibrium.]

Kelvin—Helmholtz instability with a three-dimensional basic flow. Given
a basic flow with velocity, density and pressure

Usi + Voj _
{2 2} ;

={pz P={ po—gpz forz >0
Uil + Vij,

o1, po—gopiz forz <0,
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show that normal modes proportional to el**+)+5* have dispersion
relation

_ _k(p1U1 + p2U2) + (11 + mW)]
p1+ 02

P£1P2 2
— kU - U (Vo =V
{(p1+p2)2[ Uy~ Uy) +1(V2 — V)]

(o —pz)g(k2+12)1/2

p1+ P2

Deduce that the flow is stable to the mode if

(1 + P2 (o1 = P28 > P12 AU ( + 1),
where AU = [k(Uz — Uy) +1(V2 — V)1/ (k% + 12)1/? is the basic velocity
difference in the direction of the wavenumber vector. [After S. D. Mobbs
{private communication).]

3.9 Saffman-Taylor instability, or Rayleigh-Taylor instability in a porous
medium. Consider the instability of a basic flow in which two incompress-
ible viscous fluids move with a horizontal interface and uniform vertical
velocity in a uniform porous medium. You are given that the motion of
a fluid in a porous medium is governed by Darcy’s law, namely that
u = V¢, where ¢ = —k(p + gpz)/u, p is the density of the fluid, u
its dynamic viscosity, and k is a constant called the permeability of the
medium to the fluid.

Let the lower fluid have density p; and viscosity 141, and the upper fluid
2 and po; let the medium have permeability k1 to the lower fluid and k3
to the upper; and let the basic velocity of the fluids be Wk. Then show that
the flow is stable if and only if

H1 K2

— =2 \w — > 0.
(kl k2> +g(o1— ) =

[After Drazin & Reid (1981, Problem 1.11); Saffman & Taylor (1958).
Hint: Take the equation of the mean interface to be z = 0 instanteously
and of the disturbed interface to be z = {. Deduce that A¢ = 0 where
z # ¢. Use the continuity of normal velocity and pressure, and linearize
the problem. Taking normal modes with ¢ oc exp(st + iax) and so forth,

show that
s (1 p2 H1 o M2
- —+—=)=- — - ——-—= )W
a(k1+k2> g(p1 — p2) <k1 kz) 1
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Capillary Instability of a Jet

... doctrine shall drop as the rain. ...
Deut. xxxii 2

Another classic problem that does not demand a lot of mathematics is posed and
solved in this chapter. Again, it is an idealized model of an important physical
phenomenon. It is the problem of the break-up of a round jet of a liquid due to
surface tension.

4.1 Rayleigh’s Theory of Capillary Instability of a Liquid Jet

Let us take another classic example, first solved by Rayleigh in 1879, to
illustrate further the ideas and methods of Chapter 2. Look at the picture of
Figure 4.1 to see how a jet of water breaks up into droplets. It looks like an
instability. We shall model a liquid jet in air (for example, the water falling from
a half-open tap) by a cylinder of an incompressible inviscid liquid, moving
with uniform velocity parallel to the axis of the cylinder. Suppose further
that there is surface tension, with an ambient fluid of zero density outside the
cylinder. Now the most difficult part, namely the modelling of a phenomenon
by a tractable mathematical problem, of our task is already done!

It is convenient to use cylindrical polar coordinates (x,r,8). Then the
dimensional equations governing the disturbed jet are as follows. Euler’s
equations of motion of an inviscid fluid are

Ju
p(a +u-Vu) =-—Vp. 4.1)

The equation of continuity for an incompressible fluid, as usual, gives
V.u=0. 4.2)

Laplace’s result (see Exercise 3.1) that the drop in pressure across the surface
of the liquid jet is the product of the surface tension y and the sum of the
principal curvatures gives

P=DPo+¥yV-n atr=2¢, 4.3

A
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Figure 4.1 The break-up of a jet of water, as different wavelengths are excited. (From
Van Dyke, 1982, Fig. 122.)

where r = ¢{(x, 6, t) is the equation of the surface (when disturbed), p is the
ambient pressure, and the unit outward normal vector from the surface is
_(=8¢/0x,1,-8¢/rd6)
T8¢ /8x)2 4+ 1+ (3¢ /rde)2]1/2”

4.4

We also need the exact kinematic condition that each particle on the surface
remains there:

D¢
U, = Dr atr =¢. 4.5

To describe the basic state, first make, without loss of generality, a Galilean
transformation that reduces the basic flows to rest. Then we may take

U=0, P=ps+y/a forO<r<a, 4.6)

where a is the radius of the jet, y is its surface tension and p, is the ambient
pressure, because V - n = 0n,/0x + d(rn,)/ror + ong/ro6,= 1/r when
n=(0,1,0).

To find the stability characteristics, we linearize the problem for small per-
turbations W =w, p’ = p — P, {’ = ¢ — a. Thus we find

ouw’
P =-VP, 4.7
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V-u =0, 4.8)
a;l C/ 824/ 1 824/
r_ ’_. =
ur—gt——, p ——y(zz—i-I-W-i—;z‘a—gz— atr =a, 4.9

because V -n = 1/r — 82¢'/8x% — 8%¢’/r?86? plus quadratic terms in ¢’ and
its derivatives. Note that these equations give

V.
Ap = _p?(a_t“) =0, (4.10)

where the Laplacian operator in cylindrical polar coordinates is
A =02/3x2 +082/3r* +0/ror + 3%/r206°.
Taking normal modes of the form
W, p,¢) = (80, p(r), ) HE+0),
we see at once from equation (4.10) that
fr;+l%ﬁ—(k2+ﬁ)ﬁ=0. @11)

This is the modified Bessel equation of order n for the functions I,(kr),
K, (kr); we may take n > 0 without loss of generality. We deduce that

p(ry = Al (kr) (4.12)

for some constant A, in order that p(r) is bounded as r — 0. Equation (4.7)
now gives

= —A(ps) ™! (kI (kr), kI, (kr), inr ' I, (kr)) . (4.13)
Finally, the linearized boundary conditions give
ALy = —y(1 —e? —n?){/a?,  —A@ps) lal(@) =5, (4.14)
where o = agk. Eliminating A, we deduce the eigenvalue relation,

2 al) (o)

2 _ 2
a3p ) —L-—(1—-a*—n?). (4.15)

The properties of the Bessel functions give oI, (o)/In(a) > O for all @ # 0.
Therefore s < O forall e if n # 0, but s > O for —1 < @ < 1 and s> < 0
fora > 1 ora < —1if n = 0. Therefore the jet is stable Re(s) = O to all non-
axisymmetric modes but unstable to axisymmetric modes whose wavelength
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A = 2w/ kis greater than the circumference 2 a of the jet. If we define kp, as the
value of k at which Re (s) is greatest, then a little calculation gives ky, = 0.7/a.

What is the nonlinear development of this instability? There is no bifurca-
tion (in this model because jets of all radii are unstable: the instability just
grows faster for thinner jets). There being no dimensionless combination of the
physical quantities a, y, p specifying the model, no critical value of a parameter
can mark the margin of stability. We expect a small initial disturbance of the jet
to excite modes of all wavenumbers k and #n. Only those modes with n = 0 and
0 < ak < 1 grow, at exponential rates, so after a little time these modes will
leave behind the others, with the most rapidly growing mode ahead of them
all. The exponential growth given by the linear theory above cannot last long
because, as the disturbance grows, nonlinearity becomes significant. Without
numerical calculation of the strongly nonlinear development of a disturbance,
we can only look at experimental results or venture to predict that the liquid
jet will break up with a wavelength of about 27/ ky, ~ 9a. Go to your kitchen,
turn on the water tap, and check this for yourself! You also might look at the
photographs of a careful laboratory experiment (Figure 4.1). Even better are
the motion pictures of Trefethen (FL1965, edited from F1965), taken by high-
speed photography with carefully controlled lighting. Figure 4.2 gives some
quantitative verification of Rayleigh’s theory.

This problem has been selected here as a simple illustration of the methods
of the linear theory of hydrodynamic stability that can be directly related to

04

0.2 .

@pir)is

Figure 42 Graph of the dimensionless growth rate (a®p/y)1/%s against the dimen-
sionless wavenumber « for axisymmetric capillary modes (n = 0). The curve denotes
Rayleigh’s theoretical results and the points the experimental results measured by
Donnelly & Glaberson (1966).
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4 Capillary Instability of a Jet

physical observation. However, it is fundamental to important problems of
atomization, with drop and spray formation. These wider aspects and more
recent work on the break-up of jets have been reviewed by Lin & Reitz (1998).

4.1

4.2

4.3

Exercises
The capillary instability of a jet of gas. For a gas jet in liquid with the
liquid at rest in the region r > a outside the gas, show that the eigenvalue
relation (4.15) is replaced by

st = ——l;—a——K'/’(a) (1 —a? - n2).
a’p Kn(a)

Hence show that there is instability only for the varicose mode (n = 0) with
—1 < & < 1, and that the dimensionless relative growth rate (a3p/y)/2s
attains its maximum value 0.820 for ¢ = 0.484. [After Drazin & Reid
(1981, Problem 1.8).]

The role of vorticity in capillary instability. Equation (4.7) implies that the
vorticity @’ = V x W’ is independent of time. Deduce that

@ (x,1) = &' (x,0).

Discuss the significance of this in the linearized initial-value problem
of capillary instability, noting that the irrotational and rotational compo-
nents of a perturbation may be superposed. [After Drazin & Reid (1981,
Problem 1.9).}

The capillary stability of a plane jet. An incompresible inviscid liquid
with density p and surface tension y is at rest between the free plane
surfaces z = +a. Show that the stability of the liquid is governed by the
equation

Ap' =0 for—oco<x,y<oo,—a<z<a,

and the boundary conditions
82p/ 82 82 ap/
— =dy|{—+— ] — atz=za.
P a2 y(axZ + 8y2) o7 T
Taking normal modes with p” o exp[st + i(kx + ly)], show that

a’3ps?
Y

= —&tanh@ or — &’ cothé,
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where @ = a(k? + 12)1/2. Deduce that this plane jet is stable, unlike the
round jet, which is unstable to axisymmetric disturbances.

[After Drazin & Reid (1981, Problem 1.10). Hint: pdu’/dt = —Vp/,
V- w=0; and n==£(-98¢'/ox, -8 /oy, D), p’= —yV -n, v =
—3¢’/0t, at 7 = +a. Note that s ~ —y&3/a®p as @ — oo for short
capillary waves at a free surface, in common with the round jet.]
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Development of Instabilities in Time and Space

And wisdom and knowledge shall be the stability of thy times.. ..
Isaiah xxxiii 6

More advanced properties of instabilities will be described in this chapter. The
development of normal modes in space as well as time, the effect of weak
nonlinearity and the energy budget will be explained.

5.1 *The Development of Perturbations in Space and Time

For partial differential systems, such as those describing fluid motions, it is
valuable to analyse the nature of stability in more detail.

First, note that if a flow is bounded (and, of course, in practice all flows are
bounded), then there is in general a countable infinity of normal modes, but
that if the flow is unbounded then there is an uncountable infinity of normal
modes; for the Poiseuille pipe flow of Example 2.11, which is unbounded in
the x-direction, there is a continuum of modes with a continuous wavenumber
k as well as discrete wavenumbers for 8- and r-variations, but for flow in a cube
there would be three discrete wavenumbers to specify each normal mode. So
for an unbounded flow the most unstable mode can be no more than first among
equals, but for a bounded flow the growth rate of the most unstable mode will
in general be substantially greater than that of the second most unstable mode.
For bounded flows of large aspect ratio (or large Reynolds number), the most
unstable modes are usually close together and so approximate a continuum.

It is also helpful to distinguish between what are often called closed and
open flows. No rigorous definitions have been universally accepted, but a flow
in which all the fluid particles passing through each point return there is said
to be closed. A flow in which fluid particles enter or leave the domain of flow
through the boundaries or at infinity is said to be open. For example, the state of
rest of a fluid in animpermeable box and Couette flow between two long rotating
coaxial cylinders are closed flows. Also Poiseuille flow along an infinitely long
circular pipe is an open flow; so are channel flows, Blasius’s boundary layer
on a flat plate, a jet, a wake, a vortex street and a free shear (that is, a mixing)
layer. An open flow often has a natural origin like the leading edge of the plate
to which the boundary layer is attached, the nozzle of the jet, or the trailing

o
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edge of a splitter plate which produces the free shear layer; in this event the
open flow is not Galilean invariant.

An unbounded flow admits physically different types of instability. It is
absolutely unstable if a sufficiently small perturbation grows above a given
threshold at a fixed point of the flow. We may express this more mathematically
by defining the flow to be absolutely unstable if there exists a small initial
perturbation satisfying the linearized problem such that

W(x,t)] > 00 ast — o0

for all fixed x. The flow is convectively unstable if similarly a sufficiently small
perturbation grows above a given threshold at no fixed point of the flow but does
grow at a moving point; in this case the perturbation may grow exponentially
while it propagates downstream (and out of the laboratory waste pipe). This
requires that

W', )| > 0 ast—> o0

for all fixed x but there exists V such that

WX+ Ve, )| > 00 ast — oo.

Note that this distinction is not Galilean invariant. Convective and absolute
instabilities are illustrated in Figure 5.1.

(b) .

Figure 5.1 Symbolic sketch of the development of (a) absolute and (b) convective
instability in the (x, 7)-plane. (After Schmid & Henningson, 2001, Fig. 7.6; reproduced
by permission of Springer-Verlag GmbH & Co. KG.)
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Example 5.1: Dispersion. To introduce dispersion and a little notation, take
the linear equation

ou’ ou 8%

S Wy =5 TR R, 6.1

for constant W, merely as a toy problem. We may envisage it as the linearized
equation for stability of a basic ‘flow’ U . This admits normal modes of the form

u'(x, 1) = Re [Ae'®* D], (5.2)
where the dispersion relation of the frequency to the wavenumber is
Dk, w; R) = 0, (5.3)

and D(k, ; R) = —iw +iWk + k*> — (R — R.) for equation (5.1). It follows
that = f(k), where f(k)=Wk — ik?> + i(R — R.) so that W = f/(0),
R — R.= — if(0). Also equation (5.1) may be symbolically written as
D(—i8/8x,18/0t; Ryu’ = 0.

The ‘flow’ is asymptotically stable if R < R; because all modes decay expo-
nentially. The ‘flow’ is convectively unstable if R > R, and W # 0 because
the modes which grow exponentially also propagate. The ‘flow’ is absolutely
unstable if R> R; and W=0. The group velocity of waves (5.2) is ¢y =
of/ok =W —2ik. [

Another important idea, coming from plasma physics, is useful in consider-
ing the perturbations generated by vibrating ribbons or small loudspeakers,
which are inserted by experimentalists into flows in channel or boundary
layers to create a small source of oscillations at a fixed frequency. If the
flow is absolutely unstable, then insertion of the source will at once generate
perturbations which grow linearly in the locality of the source, where one might
expect nonlinearity and perhaps turbulence to occur soon. If the flow is stable or
convectively unstable, then the perturbation may have the same frequency as the
source in the locality of the source, where they decay or grow in space. These
are called spatial modes. If the source has frequency w, then the perturbation
may grow or decay in space like ek* where k is a root of D(k, ; R) = 0.

It may be anticipated that in general there will be an infinite spectrum of
such complex roots k, and that, of the corresponding normal modes, the fastest
growing will dominate the perturbation soon after the source is turned on, such
that the perturbation lies downstream or upstream of the source according to
the sign of the group velocity of the mode.
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To substantiate these ideas simply, take another toy problem in one dimen-
sion, say a basic ‘flow’ U with perturbation #’(x,?) and some dispersion
function D(k, ®). Then we can reconstruct the linearized equation

D(—i8/0x,1d/3t)d (x,t) = 0. (5.4)

To examine the development of the perturbations due to various sources,
consider the Green’s function G due to an instantaneous localized unit source
att = 0, x = 0. It satisfies the inhomogeneous equation

D(—id/0x,10/0t)G (x,t) = 6(t)8(x) (5.5)

and vanishes for all t < 0 and as x — =+oo0 for fixed ¢ > 0. It is instructive to
note the behaviour of G as t — oo for fixed x/¢, = V, say. If the basic flow is
asymptotically stable, then

G(x,t) >0 ast—> oo VV. (5.6)
If the basic flow is exponentially unstable, then
Gx,t) > 00 ast—> © 5.7

for at least one value of V. If, moreover, the basic flow is convectively unsta-
ble, then

G(x,t)> 0 ast—>ooforV=0; (5.8)

and if the basic flow is absolutely unstable, then
Gx,t)> o0 ast —>ooforV =0. 5.9

Such consideration of a linearized initial-value problem and study of the
solution after a long time was initiated by Landau (1946) and comprehensively
developed by Briggs (1964) for plasma physics. Similar ideas have subse-
quently been applied to linearized problems of hydrodynamic stability, notably
by Huerre & Monkewitz (1990). Of course, in both subjects the behaviour of
perturbations after a long time is physically important. There are many technical
complications according to the nature of the dispersion function D, so only the
fundamentals are summarized here. By use of Laplace and Fourier transforms,
the Green’s function can be expressed as

1 ei(kx—wt)
Gx,t)=—= ——— dwdk, .
w0 = oz o . 5w -1
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where F is an appropriate contour in the complex k-plane to invert the Fourier
transform in k and L one in the w-plane to invert the Laplace transform. The
location and manipulation of the contours F and L is a subtle technical issue,
dependent on the nature and location of the singularities of the integral and so
on the zeros of the dispersion function D. The behaviour of G(x, t) ast — oo
can be found by the method of steepest descent. The saddle points are found to

occur where

x dw

Z = (),

t dk( )

the group velocity, where D(k, w(k)) = O defines a branch of the function

w(k). In many problems of interest the complex root kg of
dw
— (ko) =0
& (ko)

can be defined, so that it can be shown that if Im (w(kg)) > O, then the flow
is absolutely unstable, and if Im (w(kg)) < O, then the flow is convectively
unstable.

Similarly, the linearized perturbation due to a localized unit source at x = 0
which has real frequency w and is turned on at ¢ = 0 can be expressed as an
integral by use of Fourier and Laplace transforms, and the integral evaluated
asymptotically as # — oo for all fixed x. This gives spatial modes of frequency
w downstream or upstream of the source according to the sign of the group
velocity if the flow is not absolutely unstable.

Initial-value linearized problems of hydrodynamic stability in three dimen-
sions have much more structure than these one-dimensional toy problems, but
similar principles apply to both sets of problems. It is often found for flows
of a viscous fluid that all modes are stable for R < R, some are convectively
unstable for R, < R < R,, but some are absolutely unstable only for R > R,,
where R, is some value of R, the Reynolds number or other governing dimen-
sionless parameter.

A very different approach to the development of perturbations in space and
time has been applied to the evolution of wave packets comprised of weakly
unstable modes. The approach can be sketched intuitively as follows, again
with only one space dimension, so that the independent variables are only x, z.
Many of the ideas can be generalized to higher space dimensions with little
trouble. There is a wide variety of problems of hydrodynamic stability which
are both invariant under reflection in the x-axis and homogeneous in space, so
we will assume these properties. Then let the linearized problem admit normal
modes of the form

u'(x, 1) = Re(Ael** 1), (5.11)
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for real wavenumbers k, with dispersion relation s =0 + it = f(k, R), say,
where the problem is governed by some parameter R such as a Reynolds
number. The essential idea is to approximate the dispersion function D(k, s;
R) algebraically for 0 < R — R, <1 to describe the narrow band of weakly
unstable modes, and then reconstruct the approximate partial differential equa-
tion satisfied by u’.

Now, it follows from the invariance under reflection that Ae—**+57 ig also
a solution of the linearized problem and therefore that f(—k, R) = f(k, R).
Let us further assume that there is a most unstable or least stable mode of
wavenumber kc(R) # 0 and that f is an analytic function of k at kc; it follows
that 0 = Re (f) has a simple maximum at k = k.(R). Therefore

o=a-b@2 -k + 0|k -] ask—k,

wherea ~ y(R — R.),0 < b — bc as R — R for k > 0. A marginal curve
o(k, R) = O is sketched in Figure 5.2(a), characteristic of many problems of
hydrodynamic stability. The graph of o as a function of k for fixed R close
to Rc then has the shape sketched in Figure 5.2(b). Note that the width of
the band of unstable waves is of order of magnitude € as € — 0, where € =
(R — Ro)'2.

Also let w = —Im|[f(kc, Rc)]. Then the problem for 0 < R — R; < 1
admits approximate modes of the form

u'(x,1) = Re{A(X, T)explikex — wt)]}, (5.12)

where X, T are some ‘slow’ coordinate and time respectively. It follows
that X = €2x, T = €2t and A satisfies an evolution equation whose terms
correspond to those in equation (5.3). By making a Galilean transformation
whereby the flow is measured in a frame moving with the group velocity
cg = —[07/0k]Rr=p. =k, Of the most unstable mode at marginal stability, the
term in 3 A/93X may be removed. Here we define kg = k. (R;). It thus follows
that modulations of the most unstable mode are governed by the equation

dA 32A

— =y A+ 4kibe—. 5.13
o ~ VAT ek ©-13)
This partial differential equation governs approximately the modulation in
space and time of a growing packet of weakly unstable waves while the packet
propagates at its group velocity, but will of course break down as soon as
nonlinearity becomes significant.
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Unstable

® {1

0(¢)

Figure 5.2 (a) Symbolic sketch of a typical marginal curve ¢ = 0 in the (k, R)-plane.
(b) Sketch of the graph of o (k, R) for fixed R such that0 « €2 =R — R. < 1.

5.2 Weakly Nonlinear Theory

Another important method of the theory of hydrodynamic stability is weakly
nonlinear theory, essentially a method of perturbing the linear stability
characteristics for disturbances of small amplitude. It also gives the local
theory of a bifurcation of flow regime.

We have seen in §1.1 that Reynolds (1883) appreciated the physical impor-
tance of nonlinear disturbances of Poiseuille flow in a pipe. The first steps
of a nonlinear theory were taken by Stokes (1880) for surface gravity waves
in deep water, Bohr (1909) for capillary instability, and Noether (1921) and
Heisenberg (1924) for instability of plane parallel flows of a viscous fluid,
but the earliest enduring results for instability are those of Landau (1944).
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He had a vision of the weakly nonlinear theory which led him to write down
what is now called the Landau equation, but he did not derive it directly for
the instability of any specific flow. The steady form of his equation was first
derived from a problem of fluid mechanics independently by Gor’kov (1957)
and Malkus & Veronis (1958), who solved the weakly nonlinear problem of
Rayleigh-Bénard convection with free—free boundary conditions. Stuart (1960)
and Watson (1960b) first derived asymptotically the full Landau equation, for
weakly unstable wave disturbances of plane parallel flows.

First it can be seen, in a general way, how a small weakly unstable per-
turbation may generate weakly nonlinear interactions and thereby quench its
own instability. In the linear theory of stability of a steady basic flow, with
velocity U say, the perturbed flow, u = U + o’ say, is considered, the equa-
tions of motion linearized for a small perturbation, w’, and the perturbation
expressed as a superposition of normal modes of the form W =e[A(t)a+
A*(1)1*], say, for some small parameter € such that the complex amplitude
A(t) = Age™ is of order one for moderate values of time ¢.

It is usually a valid approximation to consider the evolution of the most
unstable mode and ignore the others when the flow is only just unstable, so that
there is either only one unstable mode or only a single narrow band of unstable
modes in a wave packet. Now the Navier-Stokes equations are quadratically
nonlinear, so that the nonlinear part u’ - Vo’ of their nonlinear term u - Vu
will generate terms proportional to |A 12 and A%, A*2 at order €2. At first these
terms will grow exponentially with A. They soon generate a cascade of further
nonlinear interactions with one another and the normal mode. At some order,
in general quadratic, of € there is a resonant interaction with the normal mode
which will change its rate of growth. Then, the major effect of weak nonlinearity
will be to have altered the slow exponential rate of growth of the unstable linear
mode but not to have changed its spatial character.

It is possible to describe the cascade of nonlinear interactions more
fully when the normal mode is a plane wave with W' = e[A(f)e!**(y, 7) +
A*(1)e ¥ i*(y, 7)), say. Then the quadratic terms generated will be propor-
tional to |A|? and A2e?* | A*2e~2%% We call the wave mode the fundamental,
and the contribution to the flow represented by terms in e*2%* the first har-
monic. Thus the fundamental both generates the first harmonic, which has half
its wavelength and grows at twice its relative rate, and modifies the mean flow
(as represented by the term proportional to | A|? and independent of x). Now the
first harmonic and the modification of the mean flow in their turn generate,
through the quadratic term in the Navier—Stokes equations, terms proportional
both to |A|2Ae®", |A|2A*e™ % and to A3ediax A*3e=3iex 4t order €.
(The implied translational symmetry of the flow is the cause of the nonlinearity
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having its leading effect at cubic rather than quadratic order in €.) The latter
pair of terms represent the generation of the second harmonic, which has a
third of the wavelength of the fundamental. The former pair of terms interact
resonantly with the fundamental and may enhance or moderate its exponential
rate of growth; in particular, this interaction may equilibrate the fundamental
so that it becomes a steady nonlinear wave. It is by this mechanism that a
weakly unstable normal mode of small magnitude may grow exponentially for
a long time and eventually generate weak but important nonlinearity which
quenches the growth of the fundamental.

The technical details of the weakly nonlinear theory for hydrodynamic prob-
lems are severe, and not very suitable for a first course on the subject, so we
shall resort to a simple model problem to illustrate the fundamental ideas of
the theory.

Example 5.2: A model problem of a nonlinear diffusion equation. Consider
the equation

a .

rm —sinu = —— (5.149)
together with the boundary conditions

u=0 atz=0,m, (5.15)

after Matkowsky (1970). You may regard this problem as a model of the flow
of a fluid with velocity u(z, t) along a channel between the parallel walls z = 0
and z = m, where R is a ‘Reynolds’ number.

First take as a basic ‘flow’ the solution u = U, where U is the null solution
such that U(z) = 0 for all z. Next suppose that the basic flow is perturbed
such that u = U + eu’ + o(€),u’ = O(1) as € —> 0, and the constant € may
be regarded as a small amplitude of the perturbation. Now substitute this form
of solution into equation (5.14) and boundary conditions (5.15), and equate
coefficients of ¢, that is, linearize the system, to find

u’ , 1%
Bt " T R
=0 atz=0,m. (5.17)

(5.16)

The solution of this linearized problem may be represented as the Fourier series

W(z,t) =Y An(t)sinnz. (5.18)

n=1
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Now the integral of the product of sin mz and equation (5.16) fromz = O to 7
gives, on integration by parts twice and use of boundary conditions (5.17),
dAm 2

m
—_ - =——An. .19
ar Am R Am (5.19)

This gives the normal mode with
Am(t) = An(O)exp(smt),  sm=1—m?/R.

It follows that the mth mode is stable if R < m? and the basic ‘flow’ is stable
if all modes are stable, and so if
R < Rc=minm2=l.
m>1

The ‘flow’ similarly is unstable to at least one mode if R > 1.

These linear results could have been deduced more simply, albeit more
naively, by (i) directly taking the normal mode u'(z, ) = u(z)e¥, (ii) finding
from equations (5.16), (5.17) that

d%a .
&7+R(l—s)u=0,
u=0 atz=0,m;
and (iii) deducing that
u(z) = sinmz, s=1- mz/R,

as above.

Next consider the weakly nonlinear development of unstable perturbations
when 0 < R — R, « 1, so that the basic ‘flow’ is weakly unstable. You may
look at the problem heuristically as follows. All modes with m > 2 are stron-
gly damped when R is close to R, so all components of an initial small per-
turbation, except the first component A1, will die out rapidly. If A1 (0) is small
enough, A will at first grow exponentially as given by the linear theory, with

approximately. However, after a long time of order 1/s1 = 1/(R — R.), the
amplitude Aj(¢) will no longer be small, and nonlinearity will begin to affect
its evolution. We may anticipate that terms nonlinear in A} would have to be
added to the linear amplitude equation above in order to describe the evolution
of A; for such large times. Note that the original nonlinear problem (5.14),
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(5.15) is invariant under translations of the coordinate z by 7, and that the
translation changes the si gn of sin z, which is equivalent to a change of sign
of A;. So we anticipate that the amplitude equation for Ay is invariant under
change of sign of Ay, and that therefore the nonlinear term of lowest power of
A; will be cubic, not quadhatic, and so that for weakly nonlinear disturbances
the amplitude equation is a Landau equation

d(eAy)
dr

= 51€A] —le3A3,

for some Landau constant /. To describe the evolution of A; over long times,
it is necessary that these terms are of the same order of magnitude when € is
small, that is, the distingt#ished limit is taken as € — 0. Therefore we require
that s; = O(€?), and therefore R — R. = O(e?) ase — 0.

The intuitive approach ©f the last paragraph suggests that we formally define
a slow time as

T = 62t
and expand
u(z, t,€) = U@ +eur(z, T) + € uz(z, T) + - (5.20)

as € — 0 for fixed z, 7> Where we define € = [(R — Rc)/Ry]'/* for Ry
independent of R. We may fix positive € in terms of R by taking R, = =1
according to whether R is greater or less than R.. This expansion is motivated by
the last paragraph, but its justification will come later when its self-consistency
is verified (it is too much to ask for an analytic proof of the convergence of
such an asymptotic solution of a problem as intricate even as this).

So next we will use expansion (5.20) to solve the problem and check that it
is indeed self-consistent. First re-write the problem, without approximation, in
terms of T so that the smaller terms are on the right-hand side of the equation,

9%u du . .
8_12 + Ru= R-é-; + Re(u —sinu) — (R — Rc)sinu,
=€ Rﬁ + Re(u — sinu) — €“ Ry sinu, (5.21)

together with the boundary conditions (5.15). It only remains to equate coef-
ficients of successive powers of €, and solve the resultant succession of linear
problems that arise, finding U, Rc, u1, u2, ... in turn. Putting € = 0, which
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is equivalent to equating coefficients of €°, gives nothing except confirmation
that the null function U is indeed a solution of the problem.
Equating coefficients of €, we find that

32

and u satisfies conditions (5.15). This gives

Re=1, uy(z,T) = A(T)sinz
for the least stable mode, as before in the linear problem. The function A is
arbitrary at this stage, but will be determined later.

uating coefficients of €2, we find that
g

32u2
872

+uy =0,

and u satisfies conditions (5.15). Therefore u3(z) = 0 for all z. (We could
take u; equal to an arbitrary multiple of u;, but we may normalize without
loss of generality so that this multiple is zero. This will not affect the ultimate
solution, but will affect the way we find it.)

Equating coefficients of €3, we find that

9%us + g2 duy N 1R R
— Uz = u u
922 T ey Tt T 2

dA ;
=7 sinz + — (A sinz)” — RyAsinz

d 1
(d? RyA + 8A3) sin z — -—A3 sin 3z,

and u3 satisfies conditions (5.15). By the Fredholm alternative (see Exercise
5.8), this linear inhomogeneous two-point boundary-value problem has either
(i) a unique solution if the associated homogeneous problem has no solution
or (ii) no solution or an infinity of solutions if the homogeneous problem has
a solution. Therefore it cannot have a unique solution, because we have shown
that u; is a solution of the homogeneous problem. So a solvability condition
must be satisfied in order that u3 exists and the expansion in power series may
be valid. The solvability condition is found as follows. The boundary conditions
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(5.15) for us give, whatever the unknown function u3 is,

[, dus dsinz]”
O=|sinz—~ —u3
9z dz 0

T/ 3%us d%sinz
=f0 (smz Py — U3 ) )dz
T 9%u3
—_—fo smz<~az—2 +u3) dz

4 dA 1 . .
=/ sin z <~— sin zZ -+ —6—A3 sin® z — RpA sin z) dz
0

dTr
—171 dA+1A3 RA
—27\dr 78 )
Therefore
dA 1,
— = RhA — -A". 5.22
a7 2 3 (5.22)

This is the Landau equation, in which R, = =1 according to whether the
‘Reynolds number’ R is supercritical or subcritical respectively. You can see
that changing the value of Ry does not change the solution, but merely the
means of its expression, by changing the scale of € or making € complex,
because the Landau equation above is essentially

dA
63-—

= (R — R)eA— 1e3A3
dr ¢ 8 '

It is possible to go on to find an infinity of solutions u3 and render u3 unique
by use of a normalization condition, find a solvability condition for the existence
of u4, then uy itself, and so forth; but, now the leading asymptotic behaviour
of u for small R — R, through the Landau equation has been found, it is time
to stop. You can see the pattern of the iteration for yourself, and recognize the
self-consistency of the procedure.

The leading behaviour of the solution (5.20) as R — R is that the spatial
character of the instability is determined by the eigenfunction (namely sin z)
of the most unstable mode of the linear problem and the temporal character is
determined by the solutions A of the nonlinear amplitude equation (5.22).

As a postscript to this example, reconsider how the solvability condition was
found above. What is the reason for starting with the identity 0 = [sin zdu3/9z
—u3dsin z/dz]§? How could you have thought of this for yourself? If you
do not understand the motivation of the choice of the identity, try solving
Exercise 5.7. [
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Recall that in §5.1 we showed how a weakly unstable wave packet is often
described by the linear amplitude equation (5.13). Making the same assump-
tions about the dispersion relation for a linearized problem of hydrodynamic
stability, consider the weakly nonlinear problem of weakly unstable modes, so
that |A| is small as well as R — R.. Again take

u(x,t) = Re[A(X, T)exp(iacx — iwt)], (5.23)

where X =¢%x, T = €%t. Then A satisfies a nonlinear evolution equation
whose linear terms are the same as in equation (5.13). Now the assumption of
spatial homogeneity implies that the problem is also invariant under translations
x +— x + [ for all /, for which A — A exp(ia.l). Therefore the leading weakly
nonlinear terms in the amplitude evolution equation will be cubic and involve
only {A|?A in order that the equation is invariant under reflection and all
translations in x. Also Example 5.2 shows that A is of order €. It thus follows
that weakly nonlinear modulations of the most unstable mode are governed by
the Ginzburg—Landau equation, namely

dA ) 5, 0%A
— = kA —|A} A+41a0bcé—)-(—2,

- (5.24)

for some complex number /. This equation is applicable to perturbations of
many types of flow (and, indeed, to many nonlinear phenomena which do not
concern fluids), although the calculations to evaluate the constants are often
lengthy and complicated.

Forms of amplitude evolution equation other than the Landau equation
(2.9) may arise in other problems in the weakly nonlinear approximation.

Algebraic terms other than those on the right-hand side of (2.9) may arise, as
we have seen in §2.2; the ordinary differential system governing the evolution
may be of higher order than the first, with more than one amplitude; the system
may be integro-differential.

Further, for disturbances of open flows there is in general weakly nonlinear
modulation of the amplitude in space as well as time, as is shown in §5.1 for
the linearized problem. Craik (1985) treated these issues at length.

However, by looking at the symmetries of a problem of weakly nonlin-
ear hydrodynamic instability, it may be possible to pass over the long and
detailed calculations necessary to find the coefficients of the amplitude equation
numerically, and determine the form of the amplitude equation with relative
ease. Such a form, for example, that of the Landau equation, is called a normal
form. The qualitative properties of weakly nonlinear disturbances can then be
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found from the normal form, just as we found them from the Landau equation
in §2.2.

5.3 The Equation of the Perturbation Energy
The important physical aspects of the energy budget of the disturbance of a
general basic flow are examined in this section. Changing to tensor notation,
write

a(1/2u?)  du

!

at BIFTS
dul aU; du ap' 8%u
= —uUj—L —wju— —uju; — —u;l+R_lu;——2',
3 0x;j 0x; 0x; X

on using the exact dimensionless equation (2.15) of motion for u’, p’. Therefore

a((1/2)u?) a (1 1
T=_3_J;; 2:UJ + Djj(—uju )——— Eu: u
(A) (B) © D)
d(p'u;) |8 [, oul du
—— Y 4R — fui—L ; (5.25
ox T ox; ("'ax,-> (ax,) (>-23)
(E) ®
because V - 0 = 0 and V - U = 0, where the rate-of-strain tensor of the basic
flow is
1 /oU; oU;
Dij=-{—+-—"L}). 5.26
o 2<ax,~+ Bxi) (5-26)

Equation (5.25) gives the rate-of-change of the energy of the perturbation.
Each of the six terms may be interpreted physically as follows: (A) represents
the rate of increase of the kinetic energy density (remember that dimensionless
variables with p = 1 are being used); (B) represents the convection of the
perturbation Kinetic energy by the basic flow; (C) represents the energy trans-
ferred to the perturbation from the basic flow; (D) represents the convection of
perturbation kinetic energy by the perturbation velocity; (E) represents the rate
of working of the perturbation pressure on the perturbation; and (F) represents
the viscous dissipation of energy.
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This can be seen more clearly by integrating the energy equation over the
domain of flow. First define the total kinetic energy of the perturbation as

1
K= fv Eu;? dx. (5.27)

dK u’
Ly
dr y ' 0t

at least if V is fixed for all ¢,

dul\?
= ~/;) [Dijugu;- +R7! (5;t_> ] dx, (5.28)
J

on use of equation (5.25), Gauss’s divergence theorem and the boundary condi-
tions. This is the famous Reynolds—Orr energy equation (Reynolds, 1895; Orr,
1907b, Art. 28). An average of the term — pu:-u’j is often called the Reynolds
stress tensor because the contraction of its product with the rate-of-strain tensor
of the basic flow equals the local rate of transfer of energy from the basic flow
to the perturbation.

Note that —R™! fv(au:. /0x j)2 dx < O for all perturbations because vis-
cosity always dissipates energy. Also the cubic terms have been integrated
out, because the nonlinear terms in the original form of the Navier-Stokes
equations are the ones which give the cubic terms here and they represent only
the convection of energy, not its creation or dissipation; as a result, the energy
equation is the same as it would be if the problem were linearized (because no
energy enters ) through its boundary 8V). It follows that K ~!dK /dt depends
on the spatial structure of the velocity perturbation, but not directly on its
magnitude; however, the spatial structure itself does in general depend on the
magnitude of the perturbation.

The energy method is a means of deducing rigorously conditions for stabil-
ity, conditions often of some generality. Its fundamental idea is to show that if
R is sufficiently small, say R < R, then the viscous dissipation is so large that

surely
au)\?
—| | Dl + RV —) |d&x <o.
L[ ,]u,uj+ (axj):l X <

dK
< <o
ar =

Now

It follows that
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Therefore K (t) < K(0) for all + > O, that is, the basic flow is stable in the
mean. This plausibly implies that u/(x,7) > ®ast — oo forallx € V.
However, it is conceivable that K (1) — 0 as ¢ — oo and yet u’(Xo, t) at one
point Xo € V does not remain small as  — 00, so the flow may be stable or
unstable according to the choice of the norm in the definition of stability.

In this way it may be possible to prove a sufficient condition for stability (in
the mean) to perturbations of all magnitudes, R < ﬁ, by finding R such that

l~ = sup I:——————fv D:]u:u’] ax :I (5.29)
R w | [f,0uj/ax)?dx

for all u’ such that V - w’ = 0 in V and u’ = 0 or is periodic on 3V (see
Exercise 5.13). Note that this argument is essentially that of the direct method
of Liapounov, with K as the Liapounov functional. It follows that the basic
flow is globally asymptotically stable in the mean (with norm jjuj) = (2K)'/?)
if R < ﬁ, and therefore that R, > R.

It is often valuable to know that a basic flow is the unique steady solu-
tion when R < R. For example, if it so happens that R= R., then subcritical
instability cannot occur.

There has been much research on the energy method since the original work
of Reynolds in 1895, with use of variational principles and so forth. Joseph
(1976) applied the energy method to many problems of hydrodynamic stability.
Straughan (1982) gives an integrated account of the method and its application
to continuum mechanics at large as well as hydrodynamic stability. There is
not space to elaborate this here, but note that if R can be found then R <R,
although it is possible that R is so much less than R, as to be of little practical
value in indicating when the basic flow is stable and when unstable. However,
Serrin’s theorem is one such result of great theoretical value: all steady basic
flows U, (x) of an incompressible viscous fluid in a bounded domain V are
stable if R < 5.71, where R = LV /v, L is the maximum diameter of V,
and V = sup, .y [U,(x)]. Serrin (1959) proved this result by ingenious use of
inequalities, establishing that a bounded basic flow is stable if the Reynolds
number is small enough. This augments the well-known result that a steady
Stokes flow, that is, a flow at R = 0, is unique and stable.

The energy method is complementary to the linear theory of stability in the
sense that the linear theory may show that a given flow is unstable to some
perturbations but not that the flow is stable to all, whereas the energy method
may show that a flow is stable to all perturbations but not that the flow is unstable
to some.
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Exercises

Dispersion relations. Show that (i) if the dispersion function D(k, w) =
w? — wp? — v2k? for constants wo, v > 0, then the associated ‘flow’ is
stable; but (i1) if Dk, w) = w? + co()2 — v2k2 then the associated ‘flow’
is absolutely unstable.

Absolute and convective instability. Consider the linear model equation

for —00 < x < 00, where o is real and V > 0. Note that u = U, where
U(x,t) =0forall x, ¢ gives a solution representing a basic state of rest.
Taking normal modes with = Re [e**~¢"], find the dispersion relation
giving the complex velocity ¢ as a function of wavenumber k, and deduce
a criterion for stability of each mode.

Show thatif u(x, 0) = f(x), where f is differentiable everywhere and
f(x)=0if |x] > X for some X > O, then

u(x,t) =€’ f(x - Vt)

for t > 0. Deduce that the null solution U = 0 is stable if & < 0 but
convectively unstable if o > 0.

Show, however, that if f(x) = Upsech?x for —00 < x < oo, then
u(x,t) > 0ast — oo for fixed x only if & < 2V.
Convective and absolute instability. Given the linear model equation

ou Y ou + 0%u
— — =ou+v—s
at ax ax2

for V,v > 0 and real o, show that the dispersion relation D(k, w) = 0
of normal modes with u o e/®*~#" is specified by

Dk, w) = —i(w — kV) — a + vk

Deduce that the null solution is stable if & < 0 and convectively unstable
ifa > 0.
Spatial modes for the Burgers equation. Suppose that

ou +u8u _vazu
ot ax  ax¥’

u@,t) =U+u'(x,1)
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for areal constant U, linearize the equation for small #’, and take a spatial
normal mode

u/(x’ )= ﬁei(ax—wt)

for a given frequency @ > 0. Hence deduce that

1
o = SiU/W[-1% (1 - dive/V?)"]
=w/U +va?/U? + 0(v20?/U®) or
—iU/v — /U + 0(ve?/U3) asvo/U* — 0.
Find the group velocities ¢y =0w/da of these modes for small
v U2,

The interaction of modes due to nonlineariry. Shows that if u = uy +u5,
where

uj(x,t) =Re[u;(t) expla;x)], #; = li;lexp(ip;) forj=1,2,
real constant «; and real ¢;(¢), then
u(x,t) = luilcos(arx + ¢1) + liz] cos(azx + ¢2)

and

ou
“ dax

{ar]ii1|* sin 2(c1x + ¢1) + caliiz|? sin 2(c2x + ¢2)

+ (a1 +ao)d1llit2] sin[(ay + a2)x + (1 + ¢2)]
+ (a1 — o) |d||d2] sin[(e) — @2)x + (1 — $2)1}-

1
2

Evaluate udu/dx similarly when
uj(x,t) = Re[i;(r) exp(ia; - x)], i; = liaj|exp(id;),

anda] = (aj, ﬁj’ yj)7 X=(x,y,2).

So what modes other than the first harmonics of u; and u would you
expect nonlinear interactions to excite in fluid mechanics?
The growth of a wave packet in space and time. A linearized partial
differential equation is given in the operational form

ou

o +if (~i8/dx)u = 0.

Show that complex wave solutions u (x, £) = el**~® have the dispersion
relation w = f (k).
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Consider a wave-packet solution described by u(x, t) = A(x, H)U (x, 1),
where the complex amplitude A is a slowly varying function of space and
time, and the ‘carrier wave’ U (x, t) = el{(K¥=$) pag frequency 2 = f(K)
for a given wavenumber K # 0. Deduce that

32A

a2 =0

.[0A , 0A 1,
— K)y— —f (K
‘[at +£( )ax]+2f (K)
approximately if f” is continuous.
You are given further that the weakly nonlinear approximation for real
waves leads to the equation
oA, 8A7 1,  3%A )
— K)— —f(K)y— +1|AI"A =0,
‘[at + £ )ax]+2f( )53 +1IAl
where [ is some complex Landau constant and now u(x,t)=
Re[A(x, 1)U (x, t)]. Remove the term in dA/dx by a Galilean transfor-

mation (noting that the group velocity c; = f'(K)), and rescale x and ¢
to deduce a nonlinear Schridinger equation of the form

AA  9%A )
18—T+a—ﬁ+l}Al A=0.

[A term I|A|?A arises in general because it is the leading approxima-
tion to the self-interaction of a weakly nonlinear wave in a homogeneous
medium, homogeneity implying that wave propagation is invariant under
translation; see Exercise 2.3.]

Some solvability conditions. (i) Define an inner product such that

(w,v) = / u(z)v(z) dz
0

for all u, v € C?[0, 7], and a linear operator L: c?[o, ] —» C[0, m]
such that
Lv = dv + dv +qv
a2 P
for given continuously differentiable functions p, g.
Then show, by integration by parts, that

dv du i
’ L = LT ’ 4. T VT ’
(u,Lv) = Lu,v) + [udz vdz +puv]0
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where LT, called the adjoint of L, is the linear operator defined by

_ d’u d(pu)

LT -
“ dz2 dz

+ qu

This is sometimes called Lagrange’s identity. Deduce that if moreover
u,v=0atz=0,x, then

(u, Lv) = (LTu, v).
(ii) Consider the problem
Lu, = h,, u,=0 atz=0,m,

for a given continuous function 4,, where it is known that there exists a
non-null function uJ{ such that

LTuJ{=O, uI:O atz =0, 7.

Taking u = uI, v =u,, deduce that a necessary condition for the exis-
tence of u, is

and so, equivalently,

/ uJ{(z)h,, (z)dz =0.
0

The Fredholm alternative. Given areal n x n matrix A and column vector
b € R”, let us seek solutions x € R” of the equation

Ax =b. (E5.1)
Deduce that
x=A"lp, (E5.2)

if A is invertible.

Next consider what may happen if A is not invertible. Show that if
y € R” is an eigenvector of the transpose matrix AT belonging to the
eigenvalue zero, that is,

ATy=0 and y#0,

then
yib=0, (E5.3)
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that is, (E5.3) is a necessary condition for the existence of a solution of
equation (ES.1).

Deduce the Fredholm alternative, namely, that either the solution x
of equation (ES.1) is unique, or there exists a solution z # 0 of Az = 0,
showing that in the former case A is invertible and zero is not an eigenvalue
of AT; and in the latter case A is not invertible, x exists only if b is
orthogonal to all eigenvectors of AT with zero eigenvalue, and if x exists
it is not unique. [In fact x exists if and only if b is orthogonal to all the
eigenvectors with zero eigenvalue.]

Discuss the generalization of the above results for linear operator A:
H — H, where H is some infinite-dimensional real vector space with
inner product (- - -, - - -), replacing the transpose AT of A by the adjoint
operator At of A which is defined by the identity

(v, Au) = (u, Atv)

for all u, v € H. [Of course, we can identify AT = AT for the matrix
operator A if we choose H = R” and define the inner product as (u, v) =
u'v. An operator A which has the Fredholm alternative property is
called a Fredholm operator, but not all linear operators are Fredholm
operators. For a counter-example, note that the creation operator C
defined by Cfxy, x2, ...]T = [0, x1, x2, .. .]" is not a Fredholm operator
because Cx = 0 implies that x = 0, although Cx =[1, 0,0, .. T has no
solution.]

5.9 Adjoint operators and biorthogonality in linear algebra of finite-
dimensional spaces. Define the usuval inner product by

(u, v) = v*Tu

for all n-vectors u, v € C", and deduce that
(u,u) > 0, Aw, v) = (Au, v) = (u, A*v), (v,u) = (u, v)*,

forx € C.
Given a complex n x n matrix A, define the adjoint AT of A such that

{Au, v} = {(u, A*v)

forallu, v € C". Show that AT = A*T,

Show that if Au = Au for some complex eigenvector u # 0 and
eigenvalue A, then there exists an eigenvector v # 0 of the adjoint matrix
such that ATv = A*v.
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Show further that if
Au=xu and Afv=pv
for u, v # 0, then either 4 = A* or
{u,v) =0.

[This property of the eigenvectors of A and its adjoint is called biorthog-
onality, and we often normalize so that {u, v) = 1 if 4 = A*.]

5.10 Nonlinear modes for the Burgers equation. Given v > 0 and a continuous
real function f, suppose that

du u 32u

ar " ax T Va2
u(x,0) = f(x) forO0<x <2m,

um,t) =u0,t), uyCm,t)=uy0,1t) fort > 0.
Let u’ = u — U for some real constant ‘basic velocity’ U, and show that

’ ! ’ 2.7
W gty

=y—. ES5.4
ot dx dx dx? (ES4)

Taking the Fourier expansion

oo

Wix, )= Y un(t)e™,

n=-00
where u_, = u, in order that &’ is real, show that
1 2m .
Um0y = — f(x)e "™ dx
2w 0

form = £1,£2,.... What is uo(0)? By multiplying equation (ES.4) by
e™ " and integrating from x = 0 to 27, show that

1 (o,9)
= —imUu,, — vmzum - Em Z Um—nly.

n=-—00

duyy,
dt

Deduce that uo(t) = uo(0), and that if v is large, then

uy(t) ~ uy(0) expl—i(U + ug)t — vt].
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Stability of a uniform flow. Verify that a uniform basic flow of an incom-
pressible viscous fluid with constant velocity U and pressure P gives an
exact solution of the Navier—Stokes equations of motion and the equation
of continuity. Writing u(x,t) = U + u/(x,¢), and assuming that u’
vanishes on the boundary 3V of the domain V of flow (but not that v’
is small), deduce that

d [1 aul\?
— | —udx = —v/ i dx.
dt Jy 2 v \0x;

Deduce that the flow is stable (in the mean). Discuss the relevance of

this result to Serrin’s theorem on the stability of a basic flow at sufficiently
small values of the Reynolds number. [See, e.g., Drazin & Reid (1981,
§53.1).]
The stability of uniformly rotating fluid. Consider the stability of a uni-
form rotation of an incompressible viscous fluid within a rigid container.
First show that the Navier—-Stokes equations referred to a frame rotating
with constant angular velocity €2 are

du p 1 2
— 4+u-Vu+22xu=—-V |-+ -2 xx)°|+vAu, V-u=0.
at p 2

[Hint: see, e.g., Batchelor (1967, §3.2 and equation (7.6.1)).]

Then show that the basic flow may be taken as having zero relative
velocity U = 0 and pressure P = —% p(S2 x x)? within the domain V,
say, of the relatively stationary container 8). Using Gauss’s divergence
theorem and the boundary condition that u = 0 on 9V, prove that

d [1 N\’
- —u,~2dx=—v/ dui
dr Jy 2 y ax]'

Deduce that the flow is stable. [After Drazin & Reid (1981, Problem 1.2);
Sorokin (1961, p. 372).] N
The Reynolds—Orr energy equation. Define R by

R'=s fD dx /( ) , (E5.5)
o |- i [ (52

where § is the set of continuously differentiable vector fields u} over V
such that

V-w=0 inV and u=0 ondV. (E5.6)
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Show that

dK oul\? au;\’
_— = —/ D,-ju;u;- dx// (i) dx — R_1 / (—i) dX,
dt v Vv 3Xj y \9x;

where K = fv %u? dx, and deduce that

dK ~ au\?
—— S.(R_l _ R—l)/ (__ﬁ) dx’
dt WAN:ET

<0 ifR<R.

Show that the variational principle derived from equation (5.29) gives
Euler-Lagrange equations

/

A
Dijuy = ——+ o~ Auj, (B5.7)

i= ;
where —2, p~! are Lagrange multipliers associated with the respective
constraints that the divergence of the velocity is zero and that the dissipa-
tion integral is normalized. Show that if R is less than the least eigenvalue
p of the linear problem (E5.7), (ES.6), then the basic flow is globally
asymptotically stable, that is, asymptotically stable to all perturbations,
whatever their magnitude.
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Rayleigh—Bénard Convection

When you see a cloud rise out of the west, straightway ye say, There
cometh a shower; and so it is.

Luke xii 54

The treatment of particular problems of instability of flows is resumed in
this chapter. The instability when a fluid is heated from below is manifest
as thermal convection. This is modelled by a classic problem which is solved
mathematically and related to observations. The problem is important as a
prototype of thermal convection and of transition to turbulence.

6.1 Thermal Convection

In 1900 Bénard made some quantitative experiments on thermal convection.
He melted some wax in a metal dish by heating the base, there being a layer
of wax about 1 mm deep. When the base was hot enough to melt all the wax,
there was at first no motion of the liquid wax. But as the base was heated
above some critical temperature, Bénard saw a hexagonal pattern develop on
the surface of the wax, and deduced the presence of convection cells below.
Look at Figure 6.1 to see what he saw.

Rayleigh modelled this problem in 1916, and treated it by use of the theory
of hydrodynamic stability. He assumed that there was an infinite layer of a
fluid bounded by stationary horizontal planes, z« =0 and z, =d, say, which
are maintained at constant uniform temperatures, g, 6, respectively. The con-
figuration and notation are shown in Figure 6.2.

There is a basic state of rest, with temperature governed by conduction
and pressure in hydrostatic balance. This gives basic velocity, temperature and
pressure as

Us=0, O.=0—pz Po=po—gpo(z+iapl), 61

respectively, for 0 < z, < d, where B = (6y — 61)/d is the basic adverse
temperature gradient, pp is the mean density, and « is the coefficient of cubical
expansion of the fluid. We anticipate that if 8 is small enough, then viscosity
and thermal diffusion will stabilize the flow, even when B > O (i.e. hot fluid

[a%]
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Figure 6.1 Plan view of the surface of a layer of spermaceti wax heated from below.
After Bénard (1900).

0

R .

Figure 6.2 The configuration of Rayleigh-Bénard convection.

is below cooler and therefore denser fluid), but that if 8 exceeds some critical
value, then an ‘overturning’ instability will ensue.

Boussinesq (1903, vol. I, p. 172), and, in fact, Oberbeck (1879) before him,
had recognized that when temperature variations are small, the variations of the
thermodynamic properties, such as viscosity, thermal diffusivity, density and
specific heat, of a fluid are small and the fluid is approximately incompressible,
although the buoyancy of the fluid is significant. This is because the acceleration
of the fluid is much less than the acceleration of gravity, yet the product of g
and a small density difference may not be negligible relative to some other
terms in the vertical equation of motion. Also they assumed an equation of
state in which the density is a linear function of temperature and independent
of pressure. In short, Rayleigh chose to model the convection in a thin layer
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by using their equations of motion, energy and state for a Boussinesq fluid,
which are respectively

du,

o e Vel = —Va(pu/po + g2.) +0g (6 — Bk +vAsu,. (62)
*

V* Uy = O, (6-3)
a0,
= + 0y - VB = Kk AyD,, (6.4)
or,
ox = po [l — a6« — )] . (6.5)

We use asterisks as subscripts to denote dimensional forms of the dependent
and independent variables. These are called the Boussinesq equations.

At a stationary rigid surface, say z, = constant, there is no slip and no
penetration of the fluid so that

ll*:().

This models a flat horizontal plate. Rayleigh modelled a free surface as a
stationary horizontal one with zero lateral stress, so that

a a 0 a
_ Ouy w*_w*+ v*_o

Wy = = —_—=
YT 8z« 00Xy Byx | Oz«

at a free surface with equation z, = constant. If the surface is a perfect con-
ductor, then, moreover,

6, = constant.

Other boundary conditions, for example those for perfect insulators when the
basic temperature gradient is due to an internal heat source, also have been
considered.

You can verify that the basic state of rest is a solution of the above equations.

6.2 The Linearized Problem
We write

u, = ll;(X*, ), 6«=0,(z,)+ 9;(7‘*’ te),  Px = Pu(z4) + P;(x*s ty);

linearize the Boussinesq equations (6.2)—(6.5) for small perturbations;
define dimensionless variables x =X, /d, t = kt,/d?,u=du,/k,0 = 6,/Bd,
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p = d?p’/pox?; and deduce that

3
'al?l — —Vp + RProk + PrAu, (6.6)
V-u= 0, (67)
% _ = e, 6.8)
at

where R = aﬂgd4/lcv is called the Rayleigh number, and Pr = v/k is the
Prandtl number. The Rayleigh number is a dimensionless measure of the ratio
of the destabilizing effect of the buoyancy (for 8 > 0) to the stabilizing effect
of molecular diffusion of momentum and buoyancy, and Pr is a property of
the fluid (not the configuration of the layer at all).
The curl of the equation (6.6) gives
0

3‘;’— — RPrvo x k + PrAw, (6.9)

where @ = V x u is the vorticity. The curl of equation (6.9) gives

3(Au)
at

30
= RPr (Aek - Vg—) + PrAZu,
Z

on use of the continuity equation (6.7). The z-component of this equation is

(Aw)

o = RPra6+ PrA%w, (6.10)

where Ay = 82/8x? + 32/8y? is the horizontal Laplacian. Elimination of 6
from (6.8) and (6.10) finally gives

B AV (22 _A)aw=ra (6.11)
a1 Pr ot W= o :

The boundary conditions are already linear. They, and the continuity equation
(6.7), give

d
w= o =0=0
Z
at a rigid plate z = constant, and
3w

at a free surface 7 = constant.
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Rayleigh took normal modes of the form
6 =T flx, e,  w=W(@)f(x, e (6.12)

In order that the variables are separable in this way, equation (6.8) gives
Helmholtz’s equation for f,

ALf +a%f =0, (6.13)

for some constant a® of separation; we identify a as the horizontal wavenumber
of the mode. Then equations (6.8), (6.10) become

(D> —a* —5)T = - W, (6.14)

(D? - a®)(D* — a® —5/Pr)W = a’RT, (6.15)
respectively; equation (6.11) becomes
(D? — a?)(D? —a® — 5)(D* —a® — s/Pr)W = —a’RW; (6.16)
and the boundary conditions at a perfect conductor become

W=DW=T=0 (rigid)

W =D2W = T = 0 (free) } atz=0,1; ©®.17

where D = d/dz and T = (@*R)~}(D? — a?)(D? — a? — s/ Pr)W. Equations
(6.16), (6.17) are the eigenvalue problem to determine the linear stability
characteristics.

6.3 The Stability Characteristics

It can be proved quite generally (see Exercise 6.2) that the principle of the
exchange of stabilities is valid for these problems, that is, if R < 0, then
Re(s) < 0 and so the flow is stable, and if R > 0, then Im (s) = 0. The first
result is physically plausible — if the lower plate is cooled (and so 8y < 6y),
then there is stability. The second result implies that s = O at the margin of
stability (wherever that is).

However, Rayleigh (1916a) was able to solve the problem explicitly in the
special case of two free boundaries at z = 0, 1, as in Example 6.1 below. These
are sometimes called free—free boundaries. He chose both boundaries to be
free for mathematical convenience; although a free boundary at the bottom
may seem artificial, it can be simulated by replacing the bottom plate by a
layer of a much less viscous liquid (Goldstein & Graham, 1969). The explicit
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solution is also useful in explaining the structure of the solutions to the problem
with other boundary conditions.

Example 6.1: The stability characteristics for free—free perfectly conducting
boundaries. Here we need to solve equation (6.16) with free-free boundary
conditions (6.17). It can be seen by inspection that

W=W, s=s, forn=1,2,..., (6.18)

where
W,(z) =sinnnz (6.19)

and
(n*n® +a?)(i*7% +a® + 52) (nPn? + a® + 54/ Pr) =a’R.  (6.20)
Therefore
sn=—1(1 + Pr)(n*n? +a?)
+ [%(Pr — (n’n* + a2)2 +a*RPr/(n*n? + az)]l/z.

We can now verify in this case that R < 0 implies that Re(s,) < Oand R > 0
implies that s, = O at the margin of stability. So let us simply put s, = 0 in the
quadratic for s, and find the value of R for marginal stability of the nth mode
of wavenumber a,

Ru(a) = (n*n2 + a?)’ /a2, (6.21)

The graph of R;(a) is sketched in Figure 6.3. It is called a marginal curve,
giving the boundary between growing and decaying modes in the plane of the
Rayleigh number and the wavenumber, such that the minimum value of the
Rayleigh number on the curve is its critical value.

To find the margin of the stability of the flow, we find the minimum of R,
for all n by putting n =1 (for the least stable vertical mode), and then the
minimum for all real horizontal wavenumbers a. This gives

Re= min Ry(a*)=27n*/4

—00<a <00

= 657.5,

the minimum occurring when a = a. = n/2!/2 = 2.221. It follows that if
R < R there is stability and if R > R, there is instability. If R were slightly
above R, then we would expect wave modes with n = 1 and a = ac, but no
others, to grow exponentially. [
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8000

6000

Figure 6.3 The marginal curve: graph of the critical Rayleigh number R, against
the dimensionless wavenumber a. Note the minimum of R; at a = a.. (Adapted from
Drazin & Reid, 1981, Fig. 2.2(a).)

Table 6.1. The critical values of the Rayleigh number and wavenumber for
Rayleigh—Bénard convection between perfectly conducting horizontal planes,
with various boundary conditions

Free-free Free-rigid Rigid-rigid
R. 657.5 1101 1708
ac 2221 2.682 3.117

This type of instability is sometimes called convective instability, some-
times Rayleigh-Bénard instability, sometimes Rayleigh—Bénard convection.
Computation is needed to find R and a. for convection in the cases of two
rigid plates, sometimes called rigid-rigid, and of a rigid bottom and free top
surface, sometimes called free-rigid (see Table 6.1). The shapes of the curves
R = Ry(a) are similar qualitatively to the shape of the curve R = Rj(a) in
Figure 6.3 in each case.

We have determined the size of the cells via the horizontal wavenumber a.,
but the shape of the cells via the solution f of Helmholtz’s equation (6.13) is
not determinate in this model. Modelling a thin layer of fluid by an unbounded
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layer, we seek solutions of Helmholtz’s equation which tessellate the plane with
periodic cells, for example, triangular, rectangular, parallelogram or hexagonal
cells. For more realism, we need side walls (which render the wavenumber a
discrete) or nonlinearity (which can render some cell shapes unstable) to find
the cell shapes via the function f. Then, for example, if the walls have a circular
section, we may expect annular cells (see Van Dyke, 1982, Fig. 140).

The simplest case is of long rolls. It can be seen by inspection that f (x, y) =
cosax is a solution of equation (6.13), and has period 27 /a in x. Also it can
be shown from equation (6.7) of continuity that in this case

u = —a lsinaxDWe", v=0, w = cosaxWe",

and therefore u = O at x = kn/a for k = 0, 1, £2, . ... It follows that this
solution does indeed represent long roll cells parallel to the y-axis.

In the theory of Rayleigh which we have described, there is an infinite layer
of fluid, so that the wavenumber a is taken as a continuous parameter. Any real
layer of fluid is, however, bounded — there must be side walls to confine the fluid
— and an infinite layer is regarded only as an approximation to a layer of large
horizontal dimensions. So it is better to take side walls (see Exercise 6.7); this
renders the wavenumber an eigenvalue, and hence a discrete variable, for given
Rayleigh number and domain of flow. For a layer whose depth is comparable
to its width, the discreteness of the eigenvalues and their eigenfunctions is
physically important.

It is time to look at convection again. Examine Van Dyke’s (1982, Figs.
139-142) book for a start. Look at Figure 6.4 to see the measured values of
the heat transfer (see Exercise 6.8) as a function of the Rayleigh number for
fluids of various values of the Prandtl number. The Nusselt number, that is,
the ratio of the actual heat transfer to what the heat transfer would be if there
were pure conduction of heat and no convection, is plotted against the Rayleigh
number. Thus the Nusselt number is 1 in the absence of convection. Note how
the value of the Rayleigh number at the onset of instability is found to be
almost independent of the fluid and hence of the Prandtl number. You may with
advantage make your own experiment (see Exercise 6.18).

6.4 Nonlinear Convection
In summary, the linear theory gives the most unstable mode with

0x, 1) =AM f(x,y, )T1(2), (6.22)
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Figure 6.4 Some experimental results on the heat transfer in various fluids in various
containers. The Nusselt number is plotted against the Rayleigh number: O, water (Pr =
7.02); +, heptane (Pr = 7.05); x, ethylene glycol, e, silicone 0il AK 3 (Pr = 4.20);
&, silicone oil AK 350 (Pr = 44.0); A, air (Pr = 0.62); O, mercury (Pr = 0.025).
After Drazin & Reid (1981, Fig. 2.6), Silveston (1958) and Rossby (1969).

where
Af+alf=0,
dA
— =514,
dt
and

s1~k(R—R:) asR — R

for some k > 0. For free—free convection, 71(z) = sin zz. It is plausible that
if R > R; but R — R, is small enough, then there is only one unstable mode
(strictly, we need to model the side walls to render the horizontal wavenumber
a discrete to justify this). Then all other modes will decay exponentially, and so
may be neglected. However, the unstable mode, starting with small amplitude
A(0), grows slowly with a small exponential rate s ~ k(R — R.). Eventually
the nonlinearity will become significant and moderate the exponential growth
(the smaller R — R, is, the longer this will take).

The weakly nonlinear theory shows essentially that, for only one unstable
mode,

dA

— =sA—1L]AIPA - L|AIPA — - -
o = sA-hlAl 2| Al

for a general wave mode of a problem invariant under translation. (This special
form of amplitude equation arises for modes which are independent of the
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phase of the complex amplitude; if a wave with Af = |A|e!"*%) is invariant
under translations in the x-direction, the amplitude evolution equation must be
independent of changes of 5, which correspond to changes of kx.) In Rayleigh—
Bénard convection we have found real s and may deduce that there is no need
for complex numbers, at least for roll cells, so we may take A, f,11,[lp, ... as
real. So

QA A LA —pAS

dr
In general, /; may be positive or negative. But calculations for Rayleigh-Bénard
convection in fact give, by application of perturbation theory as in Example
5.3,1; > 0. This means that there is equilibration, and we may rationally and
consistently neglect [y A>, ... if Ag is small and 0 < R — R < 1. We deduce
the canonical equation for a supercritical pitchfork bifurcation, much as in §5.2,

dA
5= k(R — R)A — L1 A3. (6.23)

The ‘handle’ and the ‘middle prong’ of the pitchfork depict the solution A =
0, which represents the basic state of rest. The other two ‘prongs’ depict
the solutions A = +[k(R — R.)/11]}/?, which represents cellular motions,
+ for flow in one direction and — for flow in the opposite direction. We
can calculate the magnitude of the velocity and temperature fields from this,
whereas the linear theory gives only the spatial structure of the cellular motion
and its (transient) rate of growth. Note that the nonlinear theory gives the
cellular motion irrespective of the initial perturbation, which determines only
the direction of the flow eventually.

The nature of the primary bifurcation, from the state of rest of a thin layer
of fluid heated from below as the Rayleigh number increases, depends little
on the Prandtl number. After the primary bifurcation there are many further
bifurcations as the Rayleigh number increases, according to the value of the
Prandtl number (and other details). The pattern of bifurcations is complicated,
but, at the risk of over-simplification, a useful impression may be gained
from Figure 6.5, which describes compactly the results of many laboratory
experiments. However, there is often hysteresis when the Rayleigh number is
slowly increased and then decreased. At high values of the Rayleigh number a
great variety of cell patterns have been observed (see Figure 6.6).

Most of the early experiments were on shallow layers of fluid in order to
conform to Rayleigh’s model. But Threlfall (1975) initiated experiments with
liquid helium in containers which are not shallow. The liquid helium makes
it less difficult to make accurate measurements. The cell’s not being shallow
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Figure 6.5 The regime diagram of the observed patterns of Rayleigh-Bénard
convection in a thin layer of fluid between rigid horizontal plates for given values
of the Rayleigh and Prandtl numbers. The horizontal line Nu = 1 marks the onset of
the steady primary instability as the Rayleigh number increases. Curve II marks the
secondary instability, such that the steady long rolls (with axes parallel to the shorter
sides of a rectangular container) are usually preferred below the curve and steady three-
dimensional cells above it. Above curve III the flow becomes unsteady. At curve IV
the slope of the Nusselt number versus the Rayleigh number increases (fairly abruptly)
again. In region V above curve IV, the frequencies of the unsteady flows increase as
the flows becomes chaotic. O, steady flows; e, unsteady flows; *, transition points
with observed change in slope; O, Rossby’s (1969) observations of unsteady flow; (3,
Willis & Deardorff’s (1967) observations of turbulent flow; A, Silveston’s (1958) point
of transition for unsteady flow. (After Krishnamurti, 1973, Fig. 4.)

reduces the rate of onset of successive bifurcations, so that they may be studied
more easily, and also changes the nature of the bifurcations. Exploiting this
development, Ahlers and Libchaber and their colleagues made many interesting
experiments in the late 1970s and the 1980s on the transition of convection
to turbulence. Of special importance is the observation of period-doubling
bifurcations and onset of chaos for convection in a deep layer of fluid in a
cell by Libchaber & Maurer (1978) and the theoretical interpretation of their
results by Feigenbaum (1980).

There is a lot more which has been written about cell shapes, side walls,
non-Boussinesq fluids, transition to turbulence as R increases far above R,
and experimental results. Rayleigh-Bénard convection may be generalized to
take into account the Marangoni effect where the surface tension of the free
surface varies with temperature (see Exercise 6.17), flow in a porous medium
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such as sand or rock (see Exercise 6.13), double-diffusive convection when
density differences are due to a solute as well as temperature (see Exercise 6.16),
rotation of the basic frame of reference, radiation of heat, the Soret and Gibbs—
Thomson effects in crystal growth and other applications. In fact, the Marangoni
effect was important in Bénard’s original experiments. Also different geometric
configurations have been studied, for example a layer of fluid on a heated sphere,
rotating and not rotating, with and without self-gravity. Koschmieder’s (1993)
book gives a lot of the details of some of these, and other, points, relating the
linear and nonlinear theories to the laboratory observations. Again, Rayleigh—
Bénard instability is related to many varieties of natural convection, even though
the model may not represent the details of the convection very faithfully; for
example, the granulation of the sun and clouds is shown in Figure 6.7. Further,
much of the theory of Rayleigh-Bénard instability is of interest because of its
wide applications in nonlinear physics; many other problems of evolution in

(@)

Figure 6.6 Photographs of various types of cells, steady and unsteady, which have
been observed for various values of the Rayleigh and Prandtl numbers. (a) A plan view
of roll cells (steady) (after Srulijes, 1979; see Koschmieder, 1993, Fig. 5.3).



Nonlinear Convection 105

Figure 6.6 (continued) (b) A side view of roll cells (steady) in a silicone oil (after
Oertel & Kirchartz, 1979; see Van Dyke, 1982, Fig. 139; reproduced by permission of
Springer-Verlag GmbH & Co. KG).

©

Figure 6.6 (continued) (c) Cross-roll instability (steady, interaction of two rolls with
the same wavelength) for R = 3000, Pr = 100, Dow Corning 200 silicone oil (after
Busse & Whitehead, 1971, Fig. 10).

layers, for example, electrically driven motion in a liquid crystal, have the same
symmetries and so exhibit many of the same types of instabilities and pattern
formation. Perhaps Rayleigh-Bénard convection has been the subject of more
theoretical research than its direct physical importance justifies, but it may be
regarded as a prototype of many sorts of pattern formation and instabilities as
well as convection.
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(d) --.

Figure 6.6 (continued) (d) Zig-zag instability (steady) for R = 3600, Pr = 100 (after
Busse & Whitehead, 1971, Fig. 11).

(e) ---

Figure 6.6 (continued) (€)Pinching instability, R =18 x 103, Pr =100 (after Busse &
Whitehead, 1971, Fig. 15).

Exercises

6.1 A linear ordinary-differential system which crudely models Rayleigh—
Bénard instability. Given, as a toy problem, that

d de
% = —vaw+ogh,  — =—xd 0+ pu,

show that there are normal modes with w, 8 o €%/, where
s=—1+)d? £ H - k)2d™* + 4aBg)V%.

Deduce that the null solution w = 0,8 = 0 is stable if R > 1, where
R =aBgd*/kv.
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()

Figure 6.6 (continued) (f) Bimodal instability (steady, interaction of two rolls with
different wavelengths) for R ~ 20 x 10° — 65 x 10°, Pr = 100 (after Busse &
Whitehead, 1971, Fig. 14).

Show that if there is no dissipation, so that v = « = 0, then

2

Sldt—l; + N?w = 0,
where N2 = —afg defines a ‘buoyancy’ frequency N.

6.2 The principle of the exchange of stabilities for Rayleigh-Bénard con-
vection. Multiplying equation (6.14) by the complex conjugate T* of T,
integrating from z = 0 to 1, and using either of the conditions (6.17)
at z = 0, 1 for perfectly conducting or perfectly insulating stationary
boundaries, show that

1
shy+ 1, =/ WT*dz,
0

where I = [ IT12dz, I = f; (DT + a?|T ?) dz. Multiplying equa-
tion (6.15) by W*, show similarly that

1
Jy+sJi/Pr = a2R/ W*T dz,
0
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®

() 6]

Figure 6.6 (continued) (g) Skewed varicose instability (unsteady) for R &~ 10%, Pr =
3.7, water (after Busse & Clever, 1979, Fig. 7).

where J; = [} (IDW2+a2|W[?) dzand J» = [ (D*W>+24*[DW >+
a*|W|?) dz.
Hence show that if o = Re(s), w = Im(s), then

o(@®RIo~ J/Pr)+a®RI = , =0,  w(a®RIp+ J1/Pr) =0.

Deduce thatif R < 0, then o < 0, so there is stability, and thatif R > 0,
then w = 0, and therefore the principle of the exchange of stabilities is
valid. [Pellew & Southwell (1940).]
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L)

© [

Figure 6.6 (continued) (h) Knot instability (unsteady) for R ~ 5 x 10%, Pr = 7.1,
methyl alcohol (after Busse & Clever, 1979, Fig. 8).

6.3 Rayleigh-Bénard convection in an unusual fluid. (i) The fluid ‘Hupnol’,
which has density pg at a temperature 6y, has the unusual property that
perturbations of its density about pg vary as the cube of perturbations
of its temperature from 6, with smaller density corresponding to larger
temperature, sothat p = po[1—a (8 —6g)3], where v isa positive constant.

In a laboratory experiment some Hupnol is confined between two
horizontal planes, which apply, to a good degree of approximation,
stress-free boundary conditions to the Hupnol. The temperature is held at
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Figure 6.7 (a) Granules on the surface of the sun. The width of a convection cell is
of the order of 100 km. (Reproduced by permission of the National Optical Astronomy
Observatory, T. Rimmele/NOAO/AURA/NSEF.) (b) Satellite photograph showing open
convection cells in a region of downward motion and closed cells in a region of upward
motion. (After Krishnamurti, 1975, Fig. 3(e).)
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o on the lower plane z = 0 and 6; on the upper plane z = d. The distance
d between the planes is much smaller than their horizontal extent.

Neglecting the effects of compressibility, the variation of the density
on the inertia, and assuming that the coefficients of viscosity, thermal
conductivity, etc., are constant, show that the stability of the state of rest
is governed by the linearized problem

5 3 % -61\ >
LANEPYN | = 3ga [ 2L 9’
(E)t K )(E)t vA)AB ga( p )zAl

6 = A6 = A%’ =0 atz=0,d,

where 6’ is the temperature perturbation, A is the horizontal Laplacian
operator, g is the acceleration due to gravity, « is the thermal diffusivity,
and v is the kinematic viscosity of Hupnol.

(ii) Derive an ordinary-differential eigenvalue problem for the normal
modes.

(iii) Prove that the principle of exchange of stabilities is valid for the
present eigenvalue problem. [Hint: Express fol 22|T|? dz as a quadratic
polynomial of s, the coefficients involving positive definite integrals.]

(iv) Devise a method to find an approximate value of the critical
‘Rayleigh’ number A = ga(8y—61)3d> /x /v below which no perturbation
will grow. Thereby approximate the critical value. Describe briefly,
without performing any explicit calculation, how a more accurate
estimate of the critical value could be obtained. Would you expect the
critical value to be greater than, equal to or less than the critical value
of the Rayleigh number if water were to replace the Hupnol in the
experiment? Why? [After H. E. Huppert (private communication).]
Horizontal motion of a normal mode in Rayleigh—Bénard convection. Use
equation (6.9) to deduce the diffusion equation

g

= PrAg, (E6.1)
where { = 9v/dx — du/dy is the vertical component of the vorticity of
the perturbation. Hence show (plausibly, at least) that { — Qast — oo
for fixed x.

Now, assuming that dv/dx = du /3y, and using the equation of conti-
nuity (6.7), show that

8w 2w

ANu=———, AV = ————.
= 550z V=502

(E6.2)
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Deduce that, for a normal mode,

1 1
U= _kg(DW)eS', v= —a—f(DW)e”. (E6.3)
a? ox a? dy

Rectangular cells. Verify that
fx,y)=cosaixcosayy

is a solution of Helmholtz’s equation (6.13) if af + a% = a2. Show that
f has period 27 /a; in x, and period 27 /ay in y. Show that u =0 on
x=0,7/ajandv=00ony =0,n/as.

Deduce that this function f describes motion confined in periodic cells
with vertical boundaries and rectangular cross-section, each rectangle
having sides of lengths 2% /a;, 27 /a;.

Hexagonal cells. Verify that

fx,y)= cos[%a(3l/2x + y)] + cos[%a(31/2x — y)] + cosay

is a solution of Helmholtz’s equation (6.13). Show that f is invariant
under rotation of angle 60° about the z-axis, and that it gives u = 0 on
x=1332L, 1L <y < 1L, where L = 47 /3a.

Deduce that this function f describes motion in regular hexagonal cells,
each side of each hexagon having length L. [Christopherson (1940).]
Roll cells with side walls. Example 6.1 gives that, for marginal stability
of the first mode of free~free convection,

(a2 -+ n2)3 = a2R;

show that this equation has three roots a%(R), a%(R), a§(R), say, where
a12 >a§ >0>a§ifR > Re = 27n%/4.

Hence show that if there is steady two-dimensional linear convection
with perfectly conducting walls at x = L, then some eigenfunctions are
of the form

w(x,z) = (

Arcosaix  Apxcosaxx  Ascoshlasz|x .
sinmz,
cosaiL cosasL cosh |a3|L

where

T T T T T- T
Al/(—j———%)=A2/(—]—-—3—):A3/(—z——l),
lasi a2 ay lasl ax a
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and the discrete values of R for marginal stability satisfy the relation

a1 Ty T3 T a1, T Vi
dr\iml  w) o \a el
i 3 2 a+n? \a1 a3l

T T. T
4 mlTs (_2_~1)=0.

a§ —n2\ay a

Here we have used the definitions
Ty =tana L, T, =tanasL, T3 = tanh|as|L.

[Drazin (1975).]
Heat transfer in weakly nonlinear Rayleigh—Bénard convection. Show
that the Nusselt number

Nu = Hd/k@® - 61),

where H is the actual heat transfer into the fluid per unit area of plate,
k = cpk is the thermal conductivity, and c is the specific heat of the fluid.

Using equation (6.22), show that
H =d %6 — 61)(1 + bA),

when R =~ R, where b is some dimensionless constant that depends on
the cell shape and A satisfies Landau equation (6.23). Evaluate the Nusselt
number as a function of the Rayleigh number. Compare your result with
the experimental measurements of Figure 6.4.

The energy method for Rayleigh-Bénard convection. You are given that
the dimensionless nonlinear equations governing perturbations of the
basic state of rest with heat conduction, namely U = 0 and ® = —z, in
Rayleigh-Bénard convection are

du

m +u-Vua=—-Vp+ RPrfk + PrAau,

V.u=0,

6
g——w+u-V6=A6.
ot
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Supposing that the flow satisfies free-free boundary conditions at
z = 0, 1, and has period 27 /a, in x and period 27 /a, in y, deduce the
‘energy’ equation of the perturbation,

! \2 2
d(H + PrRK) _ 2Pr/ ROw — ~ (81) " (3—9) dx,
dr v 2 axj' 2 ij

(E6.4)
where

1, 1,
K = S uj dx, H= —0“dx,
v2 v2

and the domain of integrationis thecuboidV = {x: 0 < x < 27 /a,,0 <
y <2m/ay,0 <z <1}

Using the constraint that du; /dx; = 0 with the Lagrange multiplier
p, show that the variational principle to minimize the integral on the
right-hand side of the ‘energy’ equation (E6.4) gives the Euler-Lagrange
equations

0=—-Vp+ ROk + Au

and
—w = A8,

that is, the linearized equations (6.6), (6.8) for steady perturbations. Hence
show that all perturbations, whether large or small, decay (that is to say,
that the flow is globally asymptotically stable) if R < R., where R. is the
critical value of the Rayleigh number determined by the linear theory with
free—free boundary conditions at z = 0, 1. [After Drazin & Reid (1981,
Problem 7.13); Joseph (1965).]

6.10 Derivation of the Lorenz system as a model of thermal convection. You
are given that the perturbations u and 6 of the velocity and temperature
fields respectively of a fluid heated from below are governed by the
Boussinesq equations, namely,

ad
a—ltl+u-Vu=—Vp+00k+aAu,
V-u=0,
a6
§+u-V6=Rw+A6,

for —oco <x <00,0<z<m, where 0 = v/« is the Prandtl number of
the fluid, R = agd® AT /kv is the Rayleigh number, and dimensionless
variables are used with units d of length, d?/«x of time and AT/R of
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temperature. Here md is the depth of the layer of fluid, AT the temper-
ature difference imposed across the layer, « the coefficient of thermal
expansion, k¥ the thermal diffusivity and v the kinematic viscosity of the
fluid. There are ‘free’ perfectly conducting boundaries at z = 0, 7, so

ou

0z

You are further given that there are weakly nonlinear roll cells of the
approximate form

=w=0=0 atz=0,m.

u(x, z; 1) = 212k + Dk~ X (1) S C,,
wx, z;1) = =222 + DX (1)C, S,

0(x, z; 1) = —(k* + 1 k22127 (1)C,. S, + Z(1)Sy.],

where S, = sinkx, C, = cos z, Cy = coskx, S; = sinzand Sy, = sin 2z.

(1) Verify that the equation of continuity is satisfied.

(ii) Verify that the boundary conditions are satisfied.

(iii) Show that each nonlinear term in the momentum equation is pro-
portional to sin 2kx or S;;. Hence or otherwise show that the curl of the
curl of the momentum equation gives

ax =0 - X), (E6.5)
dr
if appropriate components may be truncated, where T = (k> + 1)t.
[Hint: Show that du/9z — dw/dx = —212(k? + 1)2k~1X 5, S,.]
(iv) Similarly, show that

dy
—=rX-Y-ZX, (E6.6)
dr
V4
— =—bX + XY, (E6.7)
dr

where r = k?R/(k* + 1), b = 4/(k? + 1). (Hint: Show that u - V8 =

(k% + 1)k 2(XY Sy, + 23/2ZXC,S,C;). Lorenz (1963).]

Solutions of the Lorenz system. Use the Lorenz system (E6.5)—(E6.7)

of the previous question as a model problem of stability, bifurcation,

symmetry breaking, onset of chaos and symmetry mending as follows.
Find when the null solution of the Lorenz system is stable, and explain

the physical significance of your findings in terms of Rayleigh-Bénard
convection.
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Find all the other steady solutions of the Lorenz system. Discuss
the physical significance of your findings in terms of Rayleigh-Bénard
convection.

*Discuss the stability of these other steady solutions and the changes
of the set of attractors as r increases from zero to infinity for fixed o, b.
[Hint: You are likely to need to read a book, for example, Drazin (1992,
§8.1), to do this.)

it has been suggested that the Lorenz system models certain features
of turbulent convection. Discuss its merits and demerits as a model.

The Swift~Hohenberg model of nonlinear thermal convection. You are
given that the perturbations w of some velocity are governed by the

equation
dw 32 2 s
— =({R-R.—{— +1 -
ot [ ¢ (8x2+)i|w v

for —oo <x <00 and ¢ >0, where R is a parameter modelling the
Rayleigh number. Find the linear stability characteristics of the null
solution by the method of normal modes o e%*+5*, Sketch the marginal
curve in the (R, k)-plane. What is the critical value of R?

Find other solutions which are independent of x, ¢ and identify a pitch-
fork bifurcation.

Assuming that w has period 27 in x, and expressing the solution of the
equation as the complex Fourier series

o0

wx, )= Y wa(t)e™,

n=—0oC

show that w_, =w}. Find an infinite system of ordinary differential
equations for {wy }. Verify the stability of the null solution and find when
the other solutions are stable.

Assuming that

w(x, 1) = (R — R)VAWi(t)e™ + W_1(t)e ™)
+O(R—-R.) asR— R+,

deduce plausibly the Landau equation for a supercritical bifurcation,

— = W; — |W{|* Wy,
7 1— IW* W

where T = (R — R.)t. [Swift & Hohenberg (1977).]
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Rayleigh—-Darcy convection in a porous medium. You are given that
two-dimensional convection in an infinite layer of a Boussinesq fluid in
a porous medium is governed by the following dimensionless boundary-
value problem:

a6
Ay = —Ra— (this is the curl of Darcy’s law),
x

a0 oY o8 Oy oo .
wtooao oo =40 (G tion),
ot + 9z 9x  9x 9z (heat equation)

Y =0, 6=-—1 atz=1 (rigid perfectly conducting top),

Y=0, 6=0 atz=_0(rigid perfectly conducting bottom),

where R is a modified Rayleigh number. Show that ¥ =0,0= — z
gives a basic state of rest, representing uniform conduction of heat from
the bottom to the top of the layer.

Taking perturbations ¥ = ¥ + ¢/, 0 = © + ¢’, linearize the system.
Thence show that with normal modes of the form ' =es+*y(z),
6’ = estkx( (7). the eigenvalue relation is

k%R

§ = ———
K2 + n2n2

— (K*+n*x?) forn=1,2,....

Deduce that the flow is unstable if R > R, =472, the most unstable
mode having wavelength 2 in the x-direction. [Horton & Rogers (1945),
Lapwood (1948).]
Weakly nonlinear Rayleigh—-Darcy convection in a porous medium.
(i) Show that the equations of the previous Exercise 6.13 give, without
further approximation,

oy’ ,00" 3y’ 30" 3y’ 86’ a6’ , 06’

I AW R = -2

Al v , ,
ax _C aT ' 9z dx 9x oz o ax

and

¥ =6'=0 atz=0,1,
as the strongly nonlinear equations of the perturbation, where we define
€=(R—R)V?and T = €.

(if) Assuming that 6’, ¥’ have period 2 in x (because, by the linear
theory, the most unstable mode has wavenumber k = ); defining the
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amplitude

1 p2
A(T) = 2¢! / f ¥’ cos mx sin wz dx dz
0 Jo

(to normalize the streamfunction); imposing (without loss of generality,
because it is equivalent merely to a translation of x) the phase condition

1 2
/ / ¥/ sinwx sinwzdx dz = 0;
0o Jo

and assuming that

6’:661—{-6262"'-"', 1/f'=€'/f1+62'/fz+-" ase — 0
show that
a a6
A01——£=0, AW]‘{-RC—l: for0<x <2, 0<z<l1,
ox ox

Y1=6i=0 atz=0,1,

1 p2
A(T)=2/ / Y1 cosx sin wzdx dz,
o Jo

1 p2
/ / Yysinwxsinmwzdxdz = 0.
0 JO

Deduce that
61 = %n‘lA sinTxsinmz, Y1 = Acosmxsinmz,
and R; = 4x2.
(iii) Show that if
d a6
A6, — Vn =F,, AU,+R—=G, forO0<x<2, 0<z<]l,
dx dx
and

Yp=6,=0 atz=0,1,
for some well-behaved functions F,(x, z), G, (x, z), then

3 Yn 3 Fr
=A — R, .
dx2 Gn “ax

A%y + Re
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Integrating by parts repeatedly, deduce that

1 2 oF

f f (AG,,—RC ")¢1dxdz
0 Jo ox
1 p2 92 P
- / f U (A%pl ~ R '”21) dxdz —f [G,, '”1] dx.
o Jo ox 0 9z |,

Hence show that a solvability condition for the existence of 8,,, ¥, is that

L o-r)nsa o]

(iv) Show that

6, = —%E‘IAz sin2n z, Y =0.
(v) Show that
By _ 060 0, 0ya06 01 06 _ Dm0

Afy — — = - L
ox oT 9z 0x 3z ax dx 0z ox 0z
963 861
AYyz3+R—=—— fool0<x <2, 0<z<]1,
0x ox
and

Y3=63=0 atz=0,1;
and deduce the Landau equation,

dA 1A 1n2A3
ar ~ 27 8 '
for a supercritical pitchfork bifurcation. [Palm et al. (1972).]
6.15 A simple linear ordinary-differential system which models an aspect of
double-diffusive convection. Given that
dw

dé
— = —4w — kb — dew, — =20+ kw — €6,
dt dt

show that there are normal modes with w, 8 « e*!, where
s=—1—3ex 1[0 +2)? — 4k2]'2

Deduce that for k2 > 8 the null solution is stable if € = 0 and if € — 00
for fixed k, yet is unstable if 8 < k2 < 9 and (2¢ — 1)% <9 — k2.
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[It can be seen that a state (for 8 < k2 < 9) is stable for ¢ = 0 and
for large ¢, yet is unstable for some positive values of €; thus a so-called
‘stabilizing force’ may destabilize a flow. Hinch (1973).]

Discuss this as a model of double-diffusive convection, the pheno-
menon when two quantities (perhaps heat and one solute, or two solutes)
are diffused at different rates.

6.16 An unbounded steady double-diffusive nonlinear wave. You are given
that the perturbations of a basic state of rest of a Boussinesq fluid with
uniform gradients of temperature and of concentration of a solute are
governed by the equations

3(A ¢)+J(~/f AY) = [a(Rea;Rsc)JrAzw,],
v aw,on+ L = ae,
at
%C—-I-J(II/ c)+aa¢l-—SAc/,

where u'=09vy’/8z, w =—09¢'/dx, the Jacobian J is defined by
J(P, @) =(8v/87)(8¢/0x) — (3y/3x)(3¢ /3z) for all differentiable
functions ¥, ¢, the dimensionless Prandtl number Pr=v/k, Schmidt
number S = k;/«, Rayleigh number R = fgd* /« v, and solute Rayleigh
number Ry =Ig(Ac)d>/kv, and « is the diffusivity of the solute of
concentration c.

Verify that an exact steady nonlinear solution is given by

¥’ = —Wcosx, # =6sinx, ¢ =¢ésinx

for —o00 < x, z < 00, provided that R; = S(R + 1), where the constants
W, 0, ¢ satisfy

W=RI—-R&, 6=-W, é=-W/S.

[Stern (1960).]

6.17 Instability and convection due to variation of surface tension with temper-
ature. Consider the linear stability of a layer of uniform incompressible
heat-conducting viscous fluid with negligible buoyancy confined by a
rigid plate at z, = 0 and a free surface at z, = d.

Suppose that the plate is a perfect conductor of heat, and is maintained
at a constant uniform temperature 6y, and the free surface is a perfect
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insulator with basic temperature 6y, and with surface tension y = yo —
6, for some constant ¢ > 0.
Show that the conditions of tangential stress at the surface give

au:ki — 3)/ = —¢ 064
024 0xy; 0xyi

atz, =dfori =1,2;

but that the equations and other boundary conditions are the same as in
§6.2 for R = 0 and free-rigid boundaries.

Taking normal modes of wavenumber a and assuming the principle of
exchange of stabilities, show that at marginal stability

‘W « sinhaz + (acotha — 1)zsinhaz — azcoshaz
and

M = 8a>(cosha sinha — a) cosh a/(sinh3 a — a3 cosh a),

say, where M is the Marangoni number defined as M = Bcd?/kpu.
Deduce that there is stability if and only if M < min F(a) = 79.607, the
minimum being attained when a = 1.993. [After Drazin & Reid (1981,
Problem 2.13); Pearson (1958).}

6.18 A homely experiment on thermal instability. Pour a light oil (corn oil
serves well) in a clean deep frying pan (i.e. a skillet) so that there is
a layer of oil about 2mm deep. Heat the bottom of the pan gently and
uniformly. To visualize the instability, drop in a little powder gently (cocoa
serves well). Sprinkling powder on the surface reveals the pattern of steady
polygonal cells. The motion of individual particles of the powder may be
seen, with rising near the centre of a cell and falling near the sides. Tilt the
pan a little to reveal the critical depth for the occurrence of convection.
Verify that the size of the cells and the critical Rayleigh number are of
the order of magnitude predicted by Rayleigh’s theory. [After Drazin &
Reid (1981, Problem 2.5).]

6.19 A simple experiment on thermohaline convection. Half fill a beaker with
hot dyed brine (a few grams of salt and a very little ink or methylene
blue in a half a litre of water in a litre beaker would serve well). Insert
cold fresh water into the brine. To restrict the mixing of the water and the
brine while you do this, pour the water slowly through a tube close to the
bottom of the beaker, for example as shown in Figure 6.8. Rest the beaker
on white paper (to see the ensuing convection clearly), keep it steady
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Funnel

Fresh water

Rubber tube

Clip

~«——— Glass tube

RHHRHMHMHHHHM

(

+— Glass beaker

[HHHHHHHA

T
L

— Hot dyed brine

White paper Fresh water
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Table

Figure 6.8 Sketch of the apparatus for a simple experiment on thermohaline
convection. See Exercise 6.19. (After Drazin & Reid, 1981, Fig. 2.7.)

(to avoid setting up the motion of internal gravity waves) and ensure that
there is no swirl (to avoid twisting the convection cells). The density of the
hot brine should be less than that of the cold water, so that the liquids are
in hydrostatically stable equilibrium. However, thermohaline instability
will soon arise owing to the different rates of diffusion of heat and salt, the
diffusion of salt being very slow. Observe the finger-like cells grow at a
rate of order of magnitude 10~! mm s~! with a horizontal scale of about
3 mm. Discuss this as an example of double-diffusive convection, the more
general phenomenon when two quantities (perhaps heat and one solute,
as here, or two solutes) are diffused at different rates. [After Drazin &
Reid (1981, Problem 2.6); Stern (1960), Baines & Gill (1969).]
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Centrifugal Instability

The wind goeth toward the south, and turneth about unto the north;
it whirleth about continually: and the wind returneth according to
his circuits.

Eccl i6

Centrifugal force, an analogue of buoyancy as a force field which may create
or suppress instability of flows, is examined in this chapter just as buoyancy
was in the last chapter. The prototypical problem of instability of Couette flow
between two rotating coaxial cylinders is described, but not in full detail.

7.1 Swirling Flows

Another important type of hydrodynamic instability is that of axisymmetric
swirling flows. They are analogous to thermal convection, the centrifugal force
being the analogue of the buoyancy. By such swirling flows, we mean those
with basic velocity components and pressure of the formu = U(r), p = P(r),
where

U =0,Usg=V(),U, =0 for —o0 <z < o0, 7.1)

in cylindrical polar coordinates (r, 8, z). (See Figure 7.1 for the configuration
and notation.) This gives an exact solution of the Euler equations of motion of
an incompressible inviscid fluid for all functions V. But for the Navier—Stokes
equations of a viscous fluid we require

V(r) = Ar + B/r. (7.2)

For Couette flow, we take rigid cylinders r = R;, Ry with angular velocities
Q1, Q7 respectively, and deduce that

QaR2 — QI R? Q- Qs
R2 - Rl Rl - R2

3

However, let us first consider a physical argument of Rayleigh (1916b) for
an inviscid fluid. The angular momentum per unit mass of a ring element
of fluid r =constant, 7 = constant in the basic swirling flow is H =rV(r),

1An
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Figure 7.1 Sketch of the cross-section of the long coaxial cylinders of Couette
flow, with notation. (After P. Drazin and T. Kambe, Ryutai Rikigaku — Anteisei To
Ranyu (Fluid Dynamics — Stability and Turbulence), University of Tokyo Press, 1989,
Fig. 6.1. Reproduced by permission of the University of Tokyo Press.)

and the circulation of the ring is 2 H. But, by Kelvin’s circulation theorem,
the circulation will be conserved when the ring is perturbed, and so H will be.
The swirl is manifest as a centrifugal force density oV2/r = pH?/r3, which
acts in the radial direction and which is associated with a potential energy
density %pH 2/r? = %sz. With these facts in mind, consider the effects of
an interchange of two elemental rings of equal mass, at r = r1,z = z; and
r = ry,z = 72, say. It follows that their kinetic energy per unit volume is
%p(lefl2 + H22722) before and %p(lerz—2 + H22r1_2) after the interchange.
The increase in kinetic energy, required to effect the interchange, is therefore
proportional to

(HF = HY)(ri2 =),

Take r > r; without loss of generality. Then the interchange can only release
energy, and hence generate instability, if A 12 > HZZ. Thus there may be insta-
bility only if H? > HZ for some ry < r, that is, only if

d(r?v?)

o <0 (7.4)

somewhere in the flow. It is called Rayleigh’s criterion for instability.
Conversely, if

d(r2v?)

5
R 0 (7.5
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everywhere in the flow, then the flow is stable to all axisymmetric perturba-
tions. It can be shown (Synge, 1933) mathematically that this is a necessary
and sufficient condition for stability of swirling flow of an incompressible
inviscid fluid to axisymmetric perturbations. However, the flow may be unsta-
ble to non-axisymmetric perturbations (which are not treated in Rayleigh’s
argument) if d(r2V?)/dr > 0 everywhere — you can see that there would
be Kelvin—Helmholtz instability (as described in §3.8) to short waves if V
were discontinuous, whether Rayleigh’s criterion were satisfied or not, and so
instability may plausibly be inferred to occur if V were to change smoothly but
very rapidly.

7.2 Instability of Couette Flow

Taylor (1923), in a paper outstanding in the history of fluid dynamics, analysed
the linear stability of Couette flow between rotating coaxial cylinders and
verified his theory with experiments. First, just look at the instability shown in
Figure 7.2(a) to see it. Next we shall explain his theory and experiment.

Figure 7.2 (a) A photograph of Taylor vortices, with the outer cylinder at rest and
the inner cylinder rotating. (b) A photograph of wavy Taylor vortices, which occur at
the onset of a secondary instability as the inner cylinder rotates more rapidly. (After
Koschmieder, 1993, Figs. .1, 1.2.)
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It is quite straightforward to

(1) take the basic Couette flow (7.2),

(2) linearize the Navier—Stokes equations and the boundary conditions for
small perturbations of the basic flow,

(3) choose dimensionless variables and parameters,

(4) take normal modes of the form

u/(x’ t) — ﬁ(r)est+i(n0+kz)’ and

(5) thence derive an ordinary-differential eigenvalue problem to find s, @i for
given real wavenumber k and integral wavenumber 7.

The resulting numerical problem was too difficult in Taylor’s time to
solve. So he made some simplifying assumptions based on his experimental
observations:

(1) He assumed that the most unstable perturbations are axisymmetric, and so
putn = 0.

(2) He assumed that the principle of the exchange of stabilities is valid, that
is, Im (s) = O at the onset of instability, and so put s = 0 and sought
dimensionless parameters which give the margin of stability.

(3) He assumed that there is a narrow gap between the cylinders, that is, Ry —
R K Ry.

These three assumptions enabled him to reduce the solution of the governing
eigenvalue problem to explicit terms of Bessel functions, and calculate the
stability characteristics numerically. Later theoreticians have calculated the
stability characteristics of the general problem, finding s for n # 0 as well as
n = 0, for large ranges of Ry, Rz, Q1, Q> and v as well as k.

It is, of course, convenient to use dimensionless variables to present results.
We define

u=/Q and n=Ri/R;. (7.6)

To measure the square of the ratio of the magnitudes of inertia to viscous
forces, we shall use what is now called the Taylor number,

_4ABRE _ 49RRY (1 -2/ Q0(1- B/ RRY)
2 T T2 2 ’ '
v v (1- RY/R3)

you can see that it is essentially the square of a Reynolds number based
on a circumferential velocity. Sometimes Reynolds numbers based on the
circumferential velocities of the two cylinders are used instead. Rayleigh’s
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swirl criterion suggests stability to axisymmetric perturbations in the limit as
v — 0if and only if

_dov)? _d(art+ B)’

dr dr
=4Ar(Ar* + B),

0

that is, if and only if
(%R —1R})V(r) >0 forRy <7 <Ry,

that is, if and only if the outer cylinder has greater circulation than the inner
cylinder and the cylinders rotate in the same direction. So we anticipate insta-
bility for a viscous fluid if the inner cylinder has greater circulation than the
outer, or the cylinders rotate in opposite directions and the viscosity is not too
large, that is, if T is greater than some critical value.

The marginal curve s = 0 in the (a, T)-plane, for fixed values of the
other dimensionless parameters and for axisymmetric perturbations (n = 0),
where the dimensionless wavenumber is a = (R — Ry)k, has a similar
shape to that of the curve of Figure 6.3 for Rayleigh-Bénard convection. But
the other parameters are important here, so we illustrate the details of the
stability characteristics, found by numerical calculations and confirmed by
observations, best by Figures 7.3-7.6 below.

These linear stability characteristics suggest the onset of steady (because
Im(s) = 0 when Re(s) = 0) axisymmetric (because the linear perturbations
are usually most unstable when n = 0) toroidal vortices of axial wavelength
2w (Ry — R1)/ac as T increases through 7. This is what happens! See the
photographs of Figure 7.2(a) and Van Dyke (1982, Figs. 127-128), and the
two superb film loops of Coles (FL1963a,b). Look up the Video Library of
Homsy er al. (CD2000), view the videos under the subheadings ‘Steady Taylor
Cells’ and ‘Taylor Instability’. Taylor’s (1923) calculations and observations
agreed with astonishing closeness of from 1 to 5 per cent, as shown in Figure
7.5. He observed steady toroidal vortices develop at the onset of instability,
as the eigenfunctions showed him theoretically — these are now called Taylor
vortices. (The flow is more complicated if 23 is of different sign to £2;.)

Since 1923 there have been hundreds, perhaps thousands, of theoretical and
experimental papers exploring scores of aspects of transition to turbulence in
Couette flow. In particular, the weakly nonlinear theory (Davey, 1962) gives
a pitchfork with a positive Landau constant to describe the primary instabil-
ity which leads to the onset of supercritical Taylor vortices when the outer
cylinder is at rest. As the Taylor number increases, the vortices themselves
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Figure 7.3 The critical Taylor number as a function of i = 5/ €2 in the narrow-gap
limit as R2/R; — 1. (After Harris & Reid, 1964, Fig. 2, and Drazin & Reid, 1981,
Fig. 3.8)

become unstable, and azimuthal (non-axisymmetric) waves develop on them
as a secondary instability (see a picture of wavy Taylor vortices in Figure
7.2(b)). See also the photographs of Van Dyke (1982, Figs. 127, 128, 130), and
relate them to the results of the theory. Do the same with the measurements of
the torque as a function of the Taylor number shown in Figure 7.7.

As the Taylor number increases further, a succession of bifurcations with
chaos occur in a complicated transition to turbulence (see Fenstermacher er al.,
1979). It is especially interesting that sometimes chaos may ensue, abate and
ensue again in the succession of bifurcations as the Taylor number increases.
The route to turbulence depends on Ro/R). Qy/ Q) and the length of the
cylinders. Some of this can be seen in the various regimes of flow observed for
various values of the Reynolds numbers, Re| = Rle/v and Rey = R%Qg/v
for two longish cylinders, shown in Figure 7.8. To find more of the experimental
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Figure 7.4 The critical dimensionless wavenumber d. = ac/(1 — ) as a function of
u = /8 in the narrow-gap limitas R2/R; — 1. (After Harris & Reid, 1964, Fig. 1,
and Drazin & Reid, 1981, Fig. 3.9.)
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Figure 7.5 Sketch (after Taylor, 1923) of the marginal curve in the (2;/v, Q2/v)-

plane for his pair of cylinders, i.e. for Ry = 3.55 cm and Ry = 4.035 cm. (After Drazin
& Reid, 1981, Fig. 3.13.)
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Figure 7.6 Observations and narrow-gap calculations of Taylor vortices in water for
cylinders with ) = 3.80 cm and Ry = 4.035 cm. Spacing of Taylor vortices at the
onset of instability. (After Drazin & Reid, 1981, Fig. 3.12; experimental data are from
Taylor, 1923, Table 8.)

results and their relationship to the theoretical results of both the linear and
weakly nonlinear theories, read Koschmieder’s (1993) monograph.

The bifurcations for short cylinders, in distinction to the long ones of Taylor’s
idealized model, also have been studied, notably by Benjamin and Mullin
(1982). The critical values of the Taylor number at the bifurcations are more
widely separated than for long cylinders, and some bifurcations are more easy
to observe in experiments. It is especially interesting that Benjamin & Mullin
(1982) observed as many as 20 coexisting different stable steady flows (with
different numbers or senses of rotation of vortices between the two ends of the
pair of cylinders), and inferred the existence of 19 more unstable steady flows.
all for the same steady experimental configuration. Again, Koschmieder (1993)
describes the details.

7.3 Gortler Instability

In addition to Taylor vortices, there is another important type of centrifu-
gal instability, which was discovered by Gortler in 1940. Gortler treated the
instability of a boundary layer on a concave wall, as illustrated in Figure 7.9.
The instability, now called Gortler instability, is manifest as Gortler vortices.
He made three approximations in the modelling. The thickness, say §, of the
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Figure 7.7 Variation of the torque G with the Reynolds number Re = QR;(R; —
Ry)/vfor @ = 0,R; = 1.0cm, Ry = 2.0cm, H = 5.0 cm, v = 0.1226 cm?
s~!, p = 0.8404 gcm . The torque G is measured in dyne cm (=10"7 Nm). (After
Drazin & Reid, 1981, Fig. 3.14, using data of Donnelly & Simon, 1960, Table 2.)

boundary layer is assumed to be much smaller than the radius, say Ry, of
curvature of the wall. Also the basic flow is nearly parallel to the wall, so
that the centrifugal force is neglected in determining the basic flow, although
retained in the linearized equations for the perturbation. Further, the basic flow
is assumed to depend only on the coordinate z transverse to the wall by a
quasi-parallel approximation.

We choose § as the length scale, the velocity Uy of a given uniform outer
stream as the velocity scale, and n = y /8 as the coordinate normal to the wall to
make the problem dimensionless. Then we take a dimensionless basic velocity

U=U(@mi for0 < n,

where U(n) — lasn — oc.
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Figure 7.8 Regimes of flow observed for two long rotatmg coaxial rigid cylinders
with Reynolds numbers Rey = R? 121/v and Rez = R,,Qz/v (After Andereck et al.,
1986, Fig. 1.)

Linearizing the Navier—Stokes equations for the perturbed flow u = U +u/,
p = P + p/, taking a normal mode of the form

W' v, w', pl) = ), v(n), win), pn)es Tk, (7.8)

and substituting into the linearized equations, we find four coupled ordinary
differential equations. On eliminating w, p from these, we derive the system

(D2 — a2) (D2 —a* - o)v = —az,oLUu, (7.9)
(D2 —a’ - o)u =U'v, (7.10)
where

D=d/dn. a=ks, o =s8"/v. u=2Usxd/v)?, U =DU.
(7.11)
The boundary conditions of impermeability and no slip give

u(n) =v(n) =Dv(n) =0 atn=0andasn — co. (7.12)

The dimensionless parameter u is an analogue of the narrow-gap Taylor
number. However, it is customary to express the results instead in terms of the
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Figure 7.9 (a) A sketch of the basic flow and indication of some notation. (b) A sketch
of the secondary flow which arises at the onset of instability in a boundary layer along a
concave wall. (After Gortler, 1940, and Drazin & Reid, 1981, Fig. 3.20). (c) A photograph

of Gortler instability. (After Nakayma, 1988, Fig. 30; reproduced by permission of
Professor Akira Ito.)
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Gortler number,
G = (Ux®/v)(¥/Ro)"/?, (7.13)

where ¢ is the momentum thickness of the boundary layer. It can be seen that
G? = 1631 /(8*Ry).

Itis believed that the principle of exchange of stabilities is valid for this eigen-
value problem, that is, o is real for marginally stable modes. So to determine
marginal stability we put o = 0 and the equations become

(D2 - a2)(D2 - az)v =—a’uUu, (D2 - az)u =U'v. (7.14)

For 40 years after the publication of Gortler’s paper, there was much work
on this eigenvalue problem, with calculations for various velocity profiles U.
However, Hall (1983) showed that the assumption of a locally parallel flow is
invalid unless the fluid is inviscid (G = 0) or the waves are short (@ > 1),
because the full linearized partial differential system has to be retained in all but
the short-wave limit in order to take proper account of the spatial development
of the boundary layer. It follows that a marginal curve or a growth rate at a
given station has no meaning, but a parabolic partial differential system has to
be solved as a marching problem. Saric (1994) has reviewed the experimental
results and their relationship to the theory.

Exercises

7.1 Stability problem for basic swirling flow of an incompressible inviscid fluid.
Supposing thatu =U+w,p = P + p’, where U = (0, V(r),0), P =
P(r), 0’ = (u}, up, u}) in cylindrical polar coordinates (r, 6, z), and lin-
earizing the Euler equations which govern the motion of an incompressible
inviscid fluid, show that

u’ ou’ 13p
u, +Q u, —ZQué:——i,
ar a0 o or
e L (S, V), 112
t a6 dr r pr 06
81/: ou’ _ 1ap
3t 360 p oz
LV T
or r r a0 a9z ’

where the local angular velocity of the basic flow is defined as Q = V/r.
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Show that if the flow is bounded by rigid cylinders at r = Ry, Ry, then
u, =0 atr =Ry, Rz

7.2 Axisymmetric perturbations of a swirling flow. Show thatif 3/06 = 0, then
the linearized equations of Exercise 7.1 give

ks 82u'r+18u _ﬁ+a2’, N 32;=0
ar2 \ ar? r or r2 972 972 '

where the Rayleigh discriminant of the basic flow is defined as & =
r~3d(rV)?/dr. [Thus & is an analogue of N?Z, the square of the buoyancy
frequency defined in Exercise 8.21.]

Taking anormal mode (u}., ujp, u, p') = (u(r), 0, w(r), @ (r)) exp(st+
ikz), show further that

k2
(DD, — k*)u — —du =0,
)

where D =d/dr, D, =d/dr + 1/r.
Show also that

u=0 atr =Ry, Ro.

By use of Sturm—Liouville theory, show that the eigenvalues k?/s* are
all negative if @ > 0 throughout the interval R} < r < Rj and they are all
positive if & < 0 throughout the interval; however, if ® changes sign, then
there are both positive and negative eigenvalues k2 /s® with limit points at
Fo0. [Synge (1933).]

Deduce that if ® < 0 somewhere, then the flow is unstable, in accor-
dance with Rayleigh’s swirl criterion.

7.3 Two-dimensional perturbations of a swirling flow. Again following on from
Exercise 7.1, show that if u;, 3/3z = O, u, = 8y'/rd6, uy = -0y '/dr,
then the linearized equations give

3 3 DZ 3y’
(2 +al)ar B2 s

where the basic vorticity Z = rID(r V) = D,V and the Laplacian is
given by
¥ 1a 18

A= Lo
8r2+r8r +r2 362
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(It is perhaps easier to derive this equation by linearizing the vorticity
equation (2.4) with R = 00.]
Taking normal modes with ¥/ (r, 8, t) = ¢(r) exp(st + in8), show that

(s +in2)(DsD — n?/r*)¢ —inr ' (DZ)p = 0,
¢ =0 atr =Ry, Rs.

Deduce that a necessary condition for instability to two-dimensional per-
turbations is that the basic vorticity gradient DZ changes sign somewhere
in the interval of flow.

[Rayleigh (1880). Hint: Adapt the proof (in §8.2) for the analogous
problem of the instability of parallel flow.]

7.4 The narrow-gap approximation. Consider Couette flow with basic velocity
V(ry=Ar + B/r, in the usual notation, and define the basic angular
velocity = V/r. Deduce that

Q) = @l — (1 — i) asn—1

forfixed ¢ = (r — R1)/(R2 — Ry), where n = R /Ra, n = 2/ Q1.
Deduce that the Rayleigh discriminant

d(r) ~ —29%11—:—;‘[1 — (=il asn— L

7.5 Instability of Couette flow of an inviscid fluid. Show that if Q(r) = Qq[1—
(1 — w)¢] as in Exercise 7.4, then the stability of axisymmetric perturba-
tions (Exercise 7.2) is governed by the eigenvalue problem

(D2 — a2)u =—a’c71— (1 — wilu,

u=0 atz=0,1,

where 0 = s/(—4AQDY? ~ s[2(1 — n)/(A — w1V2/2Q1,a = k(R —
R)).
Deduce that

d%u
a—z—zxu, u=0 atx =xg,x|,

where x = [ao?/(1 — w)?*(1 = [1 — (1 — pw)¢)/o?}, xo = lao?/(1 —
u)]2/3(1 _ 0“2),.751 — [00'2/(1 — M)]2/3(1 — ,[,LO'“Z), and that the
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eigenvalue relation is
Ai(x1)) _ Ailxo)
Bi(x;)  Bi(xo)’
where Ai, Bi are the Airy functions.
{Numerical calculations confirm stability for & > 1 and instability for

w1 < 1,in accordance with Rayleigh’s criterion. Reid (1960); see Drazin &
Reid (1981, §16).]
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Stability of Parallel Flows

For they have sown the wind, and they shall reap the whirlwind. . ..
Hosea viii 7

This chapter is an account of the instability of many important flows: channel
flows such as plane Couette flow and plane Poiseuille flow, Blasius’s boundary
layer on a fiat plate, two-dimensional jets, wakes and free shear layers, and
pipe flows and axisymmetric jets. It begins with the instability of plane parallel
flows of an incompressible inviscid fluid, and goes on to the instability of those
of a viscous fluid. We will see that for some flows the use of an inviscid fluid
gives a good approximation to the stability characteristics of a viscous fluid at
large values of the Reynolds number, but that for other flows it does not. Indeed,
we will see that viscosity, although it dissipates energy, may destabilize a flow
which is stable for an inviscid fluid. Let us begin then with the relatively simple
theory for an incompressible inviscid fluid.

Part 1: Inviscid Fluid

8.1 Stability of Plane Parallel Flows of an Inviscid Fluid

First take scales V of velocity and L of length of the given basic plane parallel
flow. For example, for a channel flow or a jet V might be the value of the
velocity at the centre of the flow, and for a free shear layer or a boundary
layer on a plate V might be the free stream velocity; and L might be the half
width of a channel in which the fluid flows, or the width of a jet, free shear
layer or boundary layer on a plate. Then define the dimensionless variables
X=X,/L,t =V,/L,u=uw,/V, p= p*/sz. Now Euler’s equations of
motion of an inviscid fluid may be written in dimensionless form as

du
E%—u-Vu:—Vp, 8.1)

the equation of continuity for the incompressible fluid as

V.u=0, 8.2)
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and boundary conditions of no velocity of penetration at rigid walls at z =
21,22 a8

w=0 atz = 71, 22. 8.3)
We may take either z; = —o0 or 75 = oc if the flow is semibounded or both if
the flow is unbounded.
Next take
U = U(2)i, P =constant atz; <z < 72, (8.4)

to represent a basic flow along the channel (see Figure 8.1). It can be verified
that this flow satisfies the governing equations and boundary conditions for all
functions U.

To find the linear stability characteristics, linearize the equations and bound-
ary conditions for small perturbations, and use the method of normal modes as
usual. So express

u(x.t) = U(z) +u'(x, 1), px. 1) =P+ p'(x,1), (8.5)

and linearize equations (8.1)—(8.3) by neglecting products of the small per-
turbed quantities (denoted by primes). It follows that

3 9\ , dU , )
—— J——— _ ‘:—V . V :0, 86
<8t+U8x>u+dzu” b " 8.0
w(x,t)=0 atz=z, 2. (8.7)
2

Y/ /4 ///ﬂ A

Figure 8.1 The configuration of the basic flow.
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The divergence of equations (8.6) gives

dU aw’
Ap = -2——. 8.8
P & ox (8.8)
It can thence be shown that the Laplacian of the z-component of equations (8.6)
gives
] 3 d*U duw’
—+U— AW - ——=0. 8.9
(az+ 8x> YT a2 ax (89)

All these equations have coefficients independent of x, vy, ¢, but not of z, so
we may separate the variables by taking independent normal modes of the form

u’(x, t) = ﬁ(z)ei(ax—i—ﬁy—otcr)’ p,(X, 1) = pA(Z)ei(otx-G—ﬁ}%otct)’ (8.]0)

it being understood as usual that each physical quantity is represented by the
real part of its complex expression, so that, say, w’ represents the physical
quantity [Re(w) cos(ax + By —acrt) — Im(w) sin(ax + By —acet)] exp(acit),
where ¢ = Re(c), ¢; = Im(c). This mode is a wave travelling with phase
velocity ac/(a? + B%)1/? in the (a, B, 0)-direction, while it decays or grows
with time like exp(acit). The mode is accordingly said to be linearly stable if
aci < 0 and unstable if a¢; > 0. (We could have written —izc = s so that
u’, p’ oc e, but it is conventional to use the complex velocity ¢ in this class of
problems, for which travelling wave modes usually occur.)
Now equations (8.6) give

. dU ..
(U —c)u + d—w+1ozp=0, 8.11)
b4
ia(U —c)yv+iBp =0, (8.12)
. . dp
(U — c)w + — =0, (8.13)
dz
s . di
iou +ipv+ — =0. (8.14)
dz

Also boundary conditions (8.7) give
wx,1)=0 atz=1zy,2. (8.15)

Equations (8.11)—(8.14) and boundary conditions (8.15) pose an eigenvalue
problem to determine all the eigenfunctions G, p belonging to eigenvalues ¢
for given U, z1, 22, «, B. The flow is linearly stable if ac; < 0 for all real
wavenumbers o, 8. Conversely, the flow is unstable if ac; > O for at least one
pair of real wavenumbers «, 8. The idea here is that any initial perturbation
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may be expressed as a superposition of eigenfunctions for all values of the
wavenumbers, at least if the set of eigenfunctions is complete, and that the flow
is stable if no mode grows without bound.

To solve the eigenvalue problem (8.11)—(8.15), it helps first to define

&= (a?+p)  d=(ai+pd)fa.  p=ap/e.  (8.16)
Equations (8.16) are the inviscid form of the Squire’s transformation, which
Squire (1933) originally used for a viscous fluid. Now take the sum of the
products of ¢ and equation (8.11) and of 8 and (8.12), and divide the sum by

o to get
.~ . du
1a(U—c)u+d—w+1ap=O. 8.17)
V4
This is essentially the component of the linearized Euler equations in the

direction of the wavenumber vector & = oi + Bj, ford = leland &# = & - 0,
where & = a/G. Also equations (8.13), (8.14) can be rewritten as

. dp
&U - ow+ L=, (8.18)
dz
. dd
icu + — =0, (819)
dz

respectively. Now it can be seen that the transformed eigenvalue problem
(8.17)—(8.19), (8.15) has the same form as the original eigenvalue problem
(8.11)—~(8.15) in the special case of two-dimensional wave modes when 8 =
v = 0; it follows that the eigenvalue relation for a given basic flow has the form

Flc,a)=0 (8.20)

for some function F, the eigenvalues ¢ depending on the wavenumbers only
through the sum of their squares. Thus the relative growth rate o¢; is greatest
for given total wavenumber & when 8 = 0, because « < a with equality only
when 8 = 0.

The essential physical result is that a three-dimensional mode is a wave
propagating obliquely to the plane of the basic flow, and that only the com-
ponent of the basic flow in the direction of the wave affects the growth of the
wave, so that the growth rate is proportional to this component. It implies that
to each unstable three-dimensional mode there corresponds a more unstable
two-dimensional one. You can see this more clearly by defining ¢ as the angle
between the wavenumber vector & = (a, B, 0) and the direction of the basic
velocity, namely, the direction of the x-axis. Then 6 = arctan(/a) and the
component of the basic velocity in the direction of the wavenumber vector is
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Figure 8.2 A sketch of the wavenumber vector and the components of the basic velocity
in a plane z = constant. (a) &« = ol + Bj = a(cosfi + sinbj). (b) U = U(cosba +
sinfa x kK)/a.

U cos 8, as shown in Figure 8.2. The equations show that the component of
the basic velocity perpendicular to the wavenumber vector does not affect the
growth of the wave.

Having just seen that the eigenvalue problem for a three-dimensional mode
may be transformed into one for a two-dimensional mode, we need solve only
the eigenvalue problem for two-dimensional modes. Rather thanput 8 = 0 =0
in the eigenvalue problem above and eliminate &, p in favour of w, it is more
convenient to start again, substituting a streamfunction ¥’ of the perturbation
in the linearized equations. So suppose that

Y’ vy’
= , "=, (g 8.21
YT v v o ®.21)
and take normal modes with
V(x, z,1) = ¢(z)e ), (8.22)
Therefore
. do . .
Uu=—, w = —iag, (8.23)
dz
and equation (8.11) gives
. du d
=—¢ - (U—- c)jz. (8.24)
dz dz

On substituting this result for p into equation (8.13) we obtain the Ravieigh
stability equation,

(U —c)(¢" —a’p)—U"¢ =0, (8.25)
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which, together with boundary conditions (8.15) in the form
$(z) =0 atz=z, 72, (8.26)

specifies the eigenvalue problem in its simplest terms, where we now use a
prime to denote differentiation by z (you are unlikely to confuse it with the
prime that denotes a perturbation quantity above). This is sometimes called the
Rayleigh stability problem, being first posed by Rayleigh in 1880.

Note that the eigenvalue problem (8.25), (8.26) involves « only through o?.
Thus if ¢, ¢ are an eigensolution, that is, an eigenfunction and corresponding
eigenvalue, for a given value of «, then they are also an eigensolution for
the negative value —«. This property is associated with the space and time
reversibilities of the problem. On this basis, we shall henceforth take o >
0 without loss of generality. Then a criterion for instability of a mode is
that ¢i > 0 and o > 0. Further, note that the complex conjugate eigensolution
@*, ¢* = ¢ — i¢j is also an eigensolution for the same wavenumber « because
the eigenvalue problem is real. Therefore to each damped stable mode there is
a corresponding amplified unstable mode, and vice versa. This is due to the time
reversibility of the problem, which involves the periodic motions of an inviscid
fluid with steady boundary conditions. The result may seem paradoxical, in
the sense that if there is an exponentially decaying mode then there is also an
exponentially growing mode, and that therefore the flow is unstable. It implies
that the only way a flow may be stable is that all modes are neutrally stable
with real eigenvalues c; but this is not surprising for a non-dissipative system,
it being well known that for a Hamiltonian system of one degree of freedom all
stable equilibria are centres and all unstable equilibria are saddles in the phase
plane.

It can be seen that Rayleigh’s stability equation (8.25) has a singularity at
the point or points z in the domain of flow where U (z¢) = cif Un < ¢ < Um,
where Uy, is the minimum of U (z) over the interval z; < z < z, of the flow,
and Uy is the maximum. A plane where 7 = z is called a critical layer of
the mode. Note that a critical layer may occur only if c is real, that is, only if the
mode is neutrally stable; however, critical layers do occur for marginally stable
modes. It will be shown that critical layers are important in solving initial-value
problems for an inviscid flmd, and in relating Rayleigh’s stability problem to
its generalization to a viscous fluid, namely the Orr—Sommerfeld problem.

In fact the eigensolutions ¢, ¢ for given smooth U, z1, 22, o are of two
kinds (the modes for piecewise-linear profiles U are a little different). There is
a continuous spectrum of eigenvalues ¢ for all ¢ in the interval [Um, Um],
each corresponding eigenfunction having a discontinuous derivative at z.
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Also there may be a discrete spectrum of complex conjugate pairs of eigen-
values; the number of pairs is greater than or equal to zero and less than or
equal to the number of inflection points of the velocity profile U.

8.2 General Properties of Rayleigh’s Stability Problem

The work of the previous section is mostly due to Rayleigh (1880). He also
found some general properties of the solution, and several explicit solutions
of the eigenvalue problems for piecewise-linear basic velocity profiles. This
section is a review of some general results found by him and others. Some
details of specific solutions are given in the next section.

Perhaps Rayleigh’s most famous and useful general result is that the occur-
rence of an inflection point in the basic velocity profile is a necessary condition
for instability. His proof runs as follows. First rewrite Rayleigh’s stability
equation (8.25) as

U//
U-c
and suppose that the flow is unstable to this mode, so that ¢; > 0. Now multiply
equation (8.27) by the complex conjugate ¢* of ¢, integrate from z; to z2,
integrate by parts, and use the boundary conditions (8.26). It follows that

¢" —atep - ¢ =0, (8.27)

22 5 2 U//
f (19> + a*|g|?) dz +f ——|p[%dz = 0. (8.28)
21 q U-—c
The imaginary part of equation (8.28) is
22 14 )
i _— dz =0. 8.29
cf Tl (8.29)

Now ¢; > 0. Therefore /" must change sign at least once in the open interval
(z1, z2). This condition, being only a necessary one, cannot be used to show
that any given flow is unstable, but can be used to show easily that some flows
are stable.

Taylor (1915, pp. 23-26) explained the condition for instability physically
by considering the transfer of x-momentum by the perturbation. He showed
that if a perturbation is unstable and U” > 0 throughout the fluid, then the
x-momentum of every layer of the fluid must increase. But the momentum
flux at the wall is zero because an inviscid fluid slips there, and so there is a
contradiction.

He inferred that if the flow is unstable, then U” is not positive throughout the
fluid and, similarly, U" is not negative throughout the fluid, thereby reaching
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Rayleigh’s result. It is interesting that Taylor added prophetically that the
presence of an infinitesimal amount of viscosity might permit instability when
U” is of one sign throughout the fluid by permitting momentum transfer due
to friction at a wall. Lin (1955, §4.4) has explained the physical mechanism of
instability in terms of vorticity dynamics, identifying the point of inflection as
a plane where the basic vorticity gradient vanishes, and Baines & Mitsudera
(1994) in terms of a linear resonant mechanism. We shall come back soon to
another physical explanation of Rayleigh’s condition in terms of the Reynolds
stress. However, the mechanism is rather complicated, and not readily intelli-
gible in simple physical terms.

A stronger form of Rayleigh’s condition was obtained 70 years later by
Fjgrtoft (1950): a necessary condition for instability is that U”"(U — Us) < 0
somewhere in the field of flow, where z is a point at which U”(z5) =0 and
Us = U(zs). The implications of Rayleigh’s and Fjgrtoft’s conditions are illus-
trated in Figure 8.3.

N
N

WW/W/ = W77

(2) (b)

W7/177747747442. /177114774 1Y,

0/ / v

SIILILI SIS TSI
(©) (d)

Figure 8.3 Some examples of flows governed by the Rayleigh-Fjgrtoft necessary
conditions for instability. (a) Stable because U” < 0 everywhere. (b) Stable because
U” > 0 everywhere. (c) Stable because U” (z5) = 0 but U”(U — Us) > 0. (d) Possibly
unstable because U (z5) = 0 and U (U — Us) < 0.
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In practice, the Rayleigh-Fjgrtoft conditions are often sufficient as well as
necessary for instability. Tollmien (1935) showed plausibly that Rayleigh’s
condition is sufficient as well as necessary for instability of symmetric flows
in a channel. His argument is based upon demonstrating the existence of a
neutrally stable solution of the form

¢ = Us, o =ag >0, ¢ = ¢s, (8.30)

and then perturbing it to show that it is marginally stable, that is, there are both
stable and unstable modes for values of « in each neighbourhood of «s. Further,
Lin (1955, p. 123) showed asymptotically that

c—Us ~—2as{ vu(j)szdz}/
Z1

2 U”¢2 . U/II¢2
{P /1 m dz +imsgn[U’'],—,, l: (s]S/2§ . (8.31)

as o — ag—, where P denotes the Cauchy principal part of the integral. In fact
there are unstable modes of this class for 0 < o < o but none for ¢ > as.

Example 8.1: A counterexample to the sufficiency of the Rayleigh—Fjprtoft
conditions for instability. Tollmien (1935) took the basic velocity profile

U(z) =sinz forz; <z <279.

Therefore U” = —U so that U = 0 if an integral multiple of 7 lies in the
interval [z1, z2] of flow, z is that multiple of 77, and U” (U — Us) = —sin’z <
0. Therefore there is a marginally stable eigensolution with

c=Us=0, a=ay=[l-n’z%/(n- %",

¢ =¢s =sin[na(z — z1)/(z2 — 21)]

for each positive integer n < (za — z1)/7. It can thence be shown that if 7o —
z1 < 7 then the flow is stable, even though it has an inflection point at z = 0
within the domain of flow and Fjgrtoft’s necessary condition for instability is
satisfied.

Howard (1961) showed elegantly that if a mode is unstable, so that ¢; > 0.
then

1 2, , 2

[CT ~ 3 (Un + UM)] T = [j(UM - Um)] , (8.32)
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where Up, is the minimum of U(z) over the interval 71 < z < z of the flow,
and Uy is the maximum, that is, ¢ lies in the semicircle in the upper half
of the complex plane with centre %(Um + Upn) and radius %(UM — Up). This
inequality is called Howard’s semicircle theorem. 1t is useful in giving easily an
estimate of the growth rates and phase velocities of the normal modes, although
it is formally a bound, not an estimate. Also it shows in the limit as ¢; — 0 +
that Uy < ¢ < Uy for a marginally stable mode.

It has been noted that Rayleigh'’s stability equation has a singularity at the
point or points z. in the domain of flow where U (z.) = c, that is, in the critical
layers of the mode. The form of the streamlines near a critical layer was given
by Kelvin (1880). On imposing a velocity equal to ¢ on the whole system, that
is, on making a Galilean transformation, the motion may be reduced to a steady
flow relative to the transformed system. Then the streamlines are the same as
the particle paths. The physical streamfunction for this steady flow is

Y(x,2) = ¥(2) + ARe[¢(2)e**],
where

v () =[[U<y)—c1dy

is the streamfunction of the basic flow in the transformed system and A is a
real constant proportional to the amplitude of the wave mode. Near the critical
layer z = z. the equation of the streamlines is approximately

%U’(zc)(z — 20)2 + Ap(z¢) cosax = constant, (8.33)

where ¢ (z¢) is taken to be real by normalization. The streamlines now can be
seen to have the famous cat’s-eye pattern shown in Figure 8.4.

The Reynolds stress in the Reynolds-Orr energy equation (5.28) is the
x-average

27 Ja

i (—w'u’) dx

T=—
27 0
o 2nja

- Re(WE)Re(iE) dx,
27 Jo

where E = €@~ = Fexp(ac;r) and F = explioe(x — cr7)]. Therefore

o

2nfa
T=—— / Re[(—ia¢)E]Re(¢p'E) dx
0

2

= tia(pp™ — ¢*¢") exp(acit),
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Figure 8.4 Kelvin's ‘cat’s-eye’ pattern of the streamlines near the critical layer as
viewed by an observer moving with the neutraily stable wave mode. (After Drazin &
Reid, 1981, Fig. 4.3.)

because Re(¢'E) = %(:p’E + ¢™*E*) = %((p’F + ¢*F~ 1) exp(ac;t) and so
forth. Now it follows that

dr

dz

o (¢e™ — ¢*¢") expQacit)

LaqU"|U — c|21)* expQacit), (8.34)

on using Rayleigh’s stability equation (8.25). By consideration of a singularity
at a critical layer where U (z) = c, it can be shown (see Exercise 8.4) that the
‘jump’ of the stress there is

At = tna[U"9) /U] (8.35)

Zc
in the limit as ¢; — 0+; this specifies the discontinuity of the Reynolds stress
for a marginally stable mode. Here we denote the jump of the function t at its
discontimuity z. by At = t(z¢ + 0) — t(zc — 0).

These formulae have some important physical consequences. The Reynolds—
Orr energy equation (5.28) shows that a perturbation extracts energy from (or
gives energy to) the basic flow by means of the Reynolds stress, and so that
the wave mode extracts energy where %r U’ is positive. Equation (8.34) shows
that for a neutrally stable mode dt/dz = 0 wherever U(z) # c; therefore the
Reynolds stress is constant between critical layers. Note also that T vanishes
at each wall because of the boundary condition that w vanishes there. This
shows that the sum of the jumps of the Reynolds stress of a neutrally stable
mode is zero. It follows that if there is at most one critical layer, as there must
be if the basic velocity profile is monotonic, then the Reynolds stress must be
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zero throughout the flow. Therefore for a neutrally stable mode not only does
U” = 0 where U = ¢, but also U = ¢ where U” = 0.

8.3 Stability Characteristics of Some Flows of an Inviscid Fluid

For plane Poiseuille flow and many channel flows, U/” does not vanish in
the domain of flow, and so these flows of an inviscid fluid are stable to
two-dimensional infinitesimal perturbations. But some channel flows, and all
unbounded jets and free shear layers, are unstable. To solve the eigenvalue
problem and hence find the stability characteristics for a specific basic flow, it
is in general necessary to use numerical methods. However, a few results are
known analytically, and these are useful pedagogically as examples.

Most of the known analytic results are for piecewise-linear basic velocity
profiles. They are found by use of conditions satisfied by the perturbation at
a discontinuity of U or U’, which Rayleigh (1880) deduced and exploited.
Suppose then that U or U’ is discontinuous at 7 = zg, say. Then it can be
shown from equation (8.24) that continuity of pressure requires that

AU —c)¢ —U'¢l =0 atz =z, (8.36)

where we again use A to denote the jump of a quantity, so condition (8.36)
means that (U — ¢)¢’ — U'¢ is continuous at zg. Also the continuity of the
fluid at a perturbed interface, say z = zg + ¢(x, ), can be shown to give
D¢ /Dt = w at z = zo + ¢ and thence, on linearization,

A[U{C]ZO at 7z = zg. (8.37)

Now, armed with conditions (8.36), (8.37), we are ready to solve any problem
with a piecewise-linear velocity profile U, because in a layer where U” =0,
Rayleigh’s stability equation (8.25) has the general solution

$(z) = Ae** + Be™™ (8.38)
in simple explicit terms, for arbitrary constants A, B.
Example 8.2: Stability of plane Couette flow. See Figure 8.5(a). If
U(zy=z for—1<z<1,
then Rayleigh’s stability equation becomes

(z—c)(¢" — ) =0,
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Figure 8.5 Sketches of some basic velocity profiles. (a) Plane Couette flow: U(z) =
z. (b) Unbounded vortex sheet: U(z)=sgn(z). (¢) An unbounded shear layer.
(d) Triangular jet.

and therefore
d)// _ a2 d) — 0

wherever z # c¢. There is no solution of this equation which satisfies both of
the boundary conditions (8.26), so the discrete spectrum is empty and plane
Couette flow of an inviscid fluid is stable. However, the problem can be satisfied
piecewise by continuous ¢ with a discontinuous derivative at the critical layer
z = c for all ¢ such that —1 < ¢ < 1 and for all «. The eigenfunction can
readily be seen to be an arbitrary multiple of ¢ where

sinha(1 + 2)
sinh (1 + ¢)
sinha (1l — 2)
sinha(l —¢)

for-1<z<c,

o) =

forc <z <1.

This gives the continuous spectrum (after Case, 1960). O
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Example 8.3: Kelvin—Helmholtz instability. Helmholtz (1868) described the
physical nature of the instability of a vortex sheet in a few words, and Kelvin
(1871) analysed its linear instability fully, taking the basic velocity

1 forz > 0,
—1 forz <0,

U(Z)={

as illustrated in Figure 8.5(b) and described in Chapter 3. Kelvin essentially
solved Rayleigh’s stability equation piecewise, using the boundary conditions
at infinity, to deduce that

Ae % forz >0,
Be**  forz <0

() ={

for some constants A, B. (Recall that we agreed to take @ > 0.) Now condi-
tion (8.36) applied at z = 0 gives

B/(~1—¢)=A/(1 —o),
and condition (8.37) gives
—a(—1—c)B = —a(l —c)A.

Eliminating A, B from these two linear homogeneous equations, we deduce
that

in agreement with equation (3.28). Therefore ¢ = =i, and the relative growth
rate oci = o, giving one exponentially damped mode and one amplified
mode for each value of the wavenumber. Therefore the flow is unstable to
waves of all lengths.

Note that the growth rate tends to infinity as the wavelength tends to zero,
so that the fine structure of an initial perturbation grows rapidly. To consider
the effects of this rapid growth of short waves, suppose as an illustrative
example (see Saffman, 1992, Chap. 8) that the initial conditions are such that
the interfacial profile ¢ has period 27/« and only the amplified modes are
excited, so that

(x.1) =Y An(t)sinnax,
n=1

where A, (1) = A,(0)e"*. Suppose further that A, (0) = exp(—n'/? — nary),
say, for some fo > (. It follows that ¢ is smooth for 0 < ¢ < 1y but not for
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t > tg. Thus a singularity of the curvature of the vortex sheet may develop in
a finite time — at least according to this linear theory. [

Example 8.4: An unbounded continuous piecewise-linear shear layer. Take

1 forz > 1,
U(z) =1z for—-1<z<1, (8.39)
-1 forz< -1,

as illustrated in Figure 8.5(c). We solve Rayleigh’s stability equation piecewise,
using the boundary conditions at infinity, to deduce that

Ae~®@—D forz > 1,
#(z) = { Be @D 4 ce®@tD  for 1 <z <1, (8.40)
DexG+D forz < —1,

for some constants A, B, C, D. We both choose the factor ¢* of the terms
somewhat arbitrarily, and take & > O as before, to simplify the algebra a little.
Now the conditions (8.36), (8.37) applied at 7 = +1 give

A=B+Ce™, —(1-0caA=(l-ca(-B+Ce™)~(B+Ce™),

B +C=D. (=1-ca(—Be™ +C)— (Be®™ +C) =a(—1—-c)D,

respectively. It is next a simple matter to eliminate A, B, C, D from these
four linear homogeneous equations, by finding that

1 1 el 0

0o |- (1-0a(=) =1 [(1—c)a— 1]e* 0

- 0 el 1 1
0 —[(-l=-0a+11e* (-l1—-c)a—1 a(-1-20¢)

and thence deducing the eigenvalue relation
= (40?) 7 [(1 - 2)? — e (8.41)

This gives a pair of neutrally stable waves propagating in opposite directions
if ¢ >0 and a pair of stationary modes, one amplified and one damped, if
¢ < 0. Taking o as the (unique) positive zero of 1 — 2a + e 2%, we may
calculate that os &~ 0.64 and deduce that the mode is unstable if and only if
0 < o < ag. It follows that the shear layer is unstable. [




Stability Characteristics of Some Flows of an Inviscid Fluid 153

Example 8.5: A triangular jet. Take the basic velocity profile

0 forz > 1,
U(z)=11—1z] for=1=<z<1, (8.42)
0 forz < —1,

as illustrated in Figure 8.5(d). Again we will solve Rayleigh'’s stability equation
piecewise, using the boundary conditions at infinity. It can be shown that if
U is an even function and the boundary conditions are symmetric in +z,
as in this problem, then each eigenfunction ¢ is either even or odd, so it
is sufficient to consider the cases of even and odd eigenfunctions separately
(see Exercise 8.13). The perturbation with even ¢ is called a sinuous mode or
antisymmetric mode, because the jet oscillates sinusoidally and the streamlines
are antisymmetric about the line z = 0, and that with odd ¢ is called a varicose
mode or symmetric mode, because the jet looks varicose and the streamlines
are symmetric about z = 0 (see Figure 8.6). Then, taking first the case of an
even eigenfunction, suppose that

Ae—e(zl=D for |z] > 1,
= h sinh
¢ (2) ploshaz %1§ alz| for |2] < 1,
cosha sinh o

(b)

z=-1

Figure 8.6 Symbolic sketches of modes of instability of a symmetric jet. They represent
streamlines in a moving frame at a given instant. (Remember that modes travel at
a constant velocity as they grow exponentially, are arbitrarily normalized, and are
superposed on the basic flow.) (a) A sinuous mode. (b) A varicose mode.
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for some constants A, B, D. Now the conditions (8.36), (8.37) applied at ; =
+1 give

A=B+ D, cA = —ca(Btanha + Dcotha) + (B + D),
and applied at z = 0 give
(1 = c)aDcosecha + Bsecha = —(1 — ¢)aDcosecha — Bsecha.

Finally, elimination of A, B, D from these three linear homogeneous equations
gives the eigenvalue relation

202 +a(l =20 —e)c~ [l —a— (1 +a)e ] =0.  (843)

By solving this quadratic for ¢ to test when there is a complex conjugate pair

of roots, it can be shown that oy = 1.833, for which Uy = 0.367. Thus the jet

is unstable to propagating growing sinuous waves which are not short.
Similarly, for the varicose modes it can be shown that

c=(2a) (1 —e ), (8.44)

by assuming that the eigenfunction is odd. It follows that the varicose mode
is stable for all wavenumbers «. Note that the sinuous mode is more unstable
than the varicose mode for this symmetric flow, and in fact this result is true
much more generally. [

8.4 Nonlinear Perturbations of a Parallel Flow of an Inviscid Fluid

The weakly nonlinear theory of instability of a parallel flow of an inviscid fluid
has yet to have a sound foundation built, because a given basic flow is either
stable or unstable, and is not weakly unstable when a parameter, such as the
difference between the value of the Reynolds number and its critical value, is
small. But there is a lot more to be said.

Nonlinear Kelvin—-Helmholtz instability is the problem of the rolling up of
a vortex sheet between half spaces of irrotational flow, a classic problem of
fluid dynamics. The singularity of the curvature of the interface at a finite
time predicted by the linear theory of two-dimensional motion does in fact
occur in the strongly nonlinear theory (see Saffman, 1992, Chap. 8). However,
Beale ef al. (1984) proved that for rwo-dimensional motion of an inviscid
incompressible fluid, if the initial conditions are smooth then the velocity field
is smooth for all time.
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Here note that it is well known that in two-dimensional motion of an incom-
pressible inviscid fluid the vorticity is convected with the fluid particles, so
that the integral over the domain of flow of any given smooth function of the
vorticity is a constant of the motion if no vorticity enters or leaves the domain.
The kinetic energy is also a constant of the motion. It follows that in two-
dimensional flow, instabilities in general develop smaller and smaller scales of
motion.

Now the linear problem has been reduced by use of Squire’s transformation
essentially to one of two-dimensional vorticity dynamics. It is well known
(Herivel, 1955) that such flows may be represented by a Hamiltonian system
of infinite dimension, and that there is no attractor of a Hamiltonian system.
(This system differs from the Hamiltonian system which describes the two-
dimensional motion of a fluid particle along a streamline.) Also, from the
point of view of the theory of dynamical systems, any steady flow may be
regarded as either a generalized centre when stable or a generalized saddle
point when unstable. From this point of view, it is natural that a steady flow
has both growing and decaying perturbations when unstable but only neutrally
stable perturbations when stable. This gives us some qualitative insight into
the strongly nonlinear development of perturbations of a parallel flow of an
inviscid fluid. If there is a unique mode of instability, then a general small
initial perturbation will grow close to the one-dimensional unstable manifold
of the basic flow; for periodic boundary conditions we usually find a unique
unstable mode of an unstable parallel flow, but for an unbounded domain there
is a wave-band of unstable modes.

However, it should be remembered that a model of an inviscid fluid is not
structurally stable, so we expect weak damping with stable foci rather than
centres when the fluid is slightly viscous, or even when there is weak dissipation
due to truncation errors in modelling an inviscid fluid by use of computational
fluid mechanics; then stable flows are attractors. For a real fluid the small scales
of motion would eventually be diffused by viscosity, so that the small scales
are averaged out locally in some way.

There is evidence from laboratory and numerical experiments that two-
dimensional instabilities of some parallel flows grow such that the flow even-
tually becomes another two-dimensional steady flow which is periodic in the
horizontal coordinate x. Also some vortices (see Exercise 8.17) have been found
from a simple exact solution of the two-dimensional vorticity equation which
is a strongly nonlinear generalization of the linear stability of an unbounded
shear layer, but their significance is yet to be well understood.

It seems plausible, on the basis of laboratory and numerical experiments,
that an initial perturbation of a basic parallel flow of a slightly viscous fluid
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For given U, a, R it is usually found that there is no unstable eigenmode,
or just one or two. It is useful to plot the marginal curves of stability of the
unstable modes in the («t, R)-plane, that is, to solve the eigenvalue relation to
find the functions c(«, R) for each of the unstable modes and plot the graphs
of ¢j(@, R) = 0. It follows that the minimum value of R along the curves is the
critical value R of the Reynolds number, such that if R < R then all modes
are stable, but if R > R, then at least one mode is unstable.

Note that the Orr—Sommerfeld equation was derived on the assumption
that the basic flow is both a plane parallel steady flow and an exact solution
of the Navier-Stokes equations, so strictly the Orr—Sommerfeld problem is
only applicable to the instability of plane Couette—Poiseuille flow. However,
Tollmien (1929) simply took the Orr—Sommerfeld problemforz; = 0, z2 = 00
where U is the velocity of Blasius’s boundary layer on a flat plate. This was
ultimately supported by confirmation of his results by the careful laboratory
experiments of Schubauer & Skramstad (1947), but may be made plausible as
follows.

So let us digress for a while, reviewing Blasius’s similarity solution of the
boundary-layer equations to describe the flow of a uniform stream past a flat
semi-infinite plate at zero angle of incidence. As is reported in many textbooks
(e.g. Batchelor, 1967, §5.8), Blasius’s solution is given by the streamfunction,

W, = uVx) 2 (),

where V is the velocity of the ambient uniform free stream parallel to the
flat plate z, = 0, f is the solution of Blasius’s nonlinear ordinary-differential
boundary-value problem, and the similarity variable { = (V/2vx,)!/?z, acts
locally as the distance normal to the plate. Thus the boundary-layer thickness
8 = Quxy/ V)72 increases parabolically with distance x, downstream. This
gives the basic velocity,

U= VF©), Vi=0,  We=V/ 22 @) — FOL

This solution is a valid approximation far from the leading edge x, =0 of
the plate, where the global Reynolds number Vx,/v is large. Far from the
leading edge, the streamlines are nearly parallel, diverging little as x, increases
by a boundary-layer thickness 8. Near the leading edge the effects of viscosity
are important and the streamlines diverge significantly as x, increases by 8.
It is clear then that this flow is nearly parallel far downstream, but not near
the leading edge, and that the thickness of the layer increases without bound
as xx — 00. Where the boundary layer is nearly parallel we can use § as
a transverse length scale, V as a velocity scale, and define a local Reynolds
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number R = V§/v = (2Vx,/v)!/2, although R is proportional to the square
root of the global Reynolds number and of the distance x, downstream.

The traditional method of treatment of the stability of the boundary layer,
due to Tollmien (1929), is to take a given value of x,, find the longitudinal
velocity U, (x4, Z4) at that station, express the velocity as U, (¢) = VU (2),
where z = z,./48, neglect the relatively small transverse velocity W,, because
it is smaller than U, by a factor of R~!/2, and then solve the Orr—Sommerfeld
problem for the velocity profile U. This is a plausible procedure provided that
(i) the resultant solution of the Orr—Sommerfeld problem gives a large critical
value R. of R, to ensure that the basic flow is indeed nearly parallel and
the transverse flow is negligible at the onset of instability, and (ii) the most
unstable waves are not too long, to ensure that the velocity profile does not
develop much along one wavelength of each of those modes. (We shall see
later, from the results of solving the Orr—Sommerfeld problem, that these
provisos are in fact satisfied for Blasius’s boundary layer on a plate.) However,
the procedure was criticized by Taylor in 1938, although observations of exper-
iments on the instability made since the time of Taylor’s criticism have by and
large supported the theoretical results found by Tollmien. Perhaps it should be
stated that Tollmien’s method leads to finding where the instability of the
boundary layer begins, rather than whether it begins, because R = R, gives
the station x, = R2v/2V where instability begins, the boundary layer being
unstable downstream where R > R.. Also the boundary-layer approximation
for large R, for which the pressure is independent of the transverse coordinate
z, is fundamentally different from the linearization which leads to the Orr-
Sommerfeld equation. It might seem that the linearized partial differential
equations are parabolic with coefficients dependent on x,, and so that the
variable x, cannot be separated to admit the use of normal modes of the form
(8.22). This idea has been used in the derivation of the parabolized stability
equations which represent weak nonparallelism and curvature of the basic flow
as well as upstream influence (Bertolotti ez al., 1992); these equations are a
parabolic system which can be easily integrated downstream, although the
Navier—Stokes equations which they approximate are elliptic.

*On the basis of the above ideas, the development in space of a spatial
mode of given dimensional frequency w, may be found by use of a WKBI-
like approximation (Bouthier, 1973; Gaster, 1974). Let A (x,) be the complex
amplitude of the mode, perhaps triggered in the wind tunnel by a vibrating
ribbon or a loudspeaker, with

Vil Yoo 14) = RelAu(x0)@ (s, R(%4), @4) explionts)]
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in dimensional form, and approximate

dA.
dx

= 10t (X4, Ws) Ax,

where a is the dimensional complex wavenumber and ¢ the eigenfunction of
the most unstable (or least stable) mode of the locally parallel flow at station x.,
found by solving the Orr-Sommerfeld problem at that station. Such a mode is
called a local mode because it is determined by an approximation to the nearly
parallel flow locally at a given station.

There is a lot more which has been said and written on the issue of non-
parallelism; however, it is a deep issue, which has not been fully resolved, and
we shall not pursue it further here. We shall simply take the Orr—Sommerfeld
problem for a variety of nearly parallel flows U and solve it, but will bear in
mind the limitations of this approximation.

8.6 Some General Properties of the Orr—Sommerfeld Problem

It is possible now, with modern computers and numerical methods, to calculate
quite easily the eigensolutions for any given value of the wavenumber and
hence to plot the marginal curve for any given basic flow. In the next section,
some numerical results for some typical basic flows are presented. In the
following section, the results of experiments and nonlinear theory are presented.
However, there is more to be written first, about the physical mechanisms of
instability, various useful analytic results, the subtle asymptotic structure of the
solutions at large values of the Reynolds number, and the associated difficulties
in the numerical solution of the problem.

The instability of parallel flows of a viscous fluid is notoriously subtle, but
the physical mechanisms may be crudely described thus. If the basic velocity
profile has a point of inflection and the profile is unstable for an inviscid fluid,
then the action of viscosity is chiefly stabilizing. The shear instability, seen
in Rayleigh’s problem, is damped at small enough values of the Reynolds
number R when viscosity dissipates the energy of the perturbation more rapidly
than the Reynolds stress generates the energy. However, at large values of R,
viscosity may destabilize a small band of waves which are stable when R is
infinite. Indeed, often a basic flow is unstable for large and moderate values
of R, although stable for an inviscid fluid; then each wave of given length is
stable if R is large enough, because only a diminishing band of long waves is
unstable as R increases to infinity (you may see this more clearly if you look
ahead to Figure 8.8(a)). Thus viscosity has a dual role: a stabilizing role due to
its dissipation of energy, and a more subtle destabilizing role. Taylor (1915),
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as narrated in §8.2, suggested that viscosity’s prevention of slip at the walls
might permit generation of x-momentum of a perturbation, and thereby cause
instability. Prandtl (1921, 1935 §28) proposed that viscosity would lead to
the transfer of energy from the basic flow to the perturbation near the critical
layer by means of the Reynolds stress, because it would change the phase of
the velocity components #’, w’ and hence the average of their product over a
wavelength. So viscosity changes the results of §8.2 on the Reynolds stress
of marginally stable, or weakly unstable, modes, smoothing out the jumps of
the Reynolds stress near critical layers, and making the Reynolds stress non-
zero near the critical layer when there is only one critical layer. The sign of
the Reynolds stress that results is usually such that energy is transferred from
the basic flow fo the perturbation, in which case instability often follows, but
sometimes from the perturbation to the basic flow. More recently, Lindzen &
Rambaldi (1986) has explained the mechanism of instability physically in terms
of what is called over-reflection, and Baines et al. (1996) in terms of a linear
resonance (see Exercise 2.18).

We shall examine the energy balance and the structure of the critical layer in
a little more detail next, to illuminate Prandtl’s mechanism and other points.

8.6.1 Energy
To find the energy equation of the perturbation, first multiply the Orr-
Sommerfeld equation (8.49) by the complex conjugate ¢* of ¢, integrate from
Z = 7] to 72, integrate by parts, and use boundary conditions (8.50) to deduce
that

22
—iaRc(If +o?1§) = — (13 + 2017 + «*I3) — iR / [Ulg')?

+ (U +a?) g + U'¢'p*] dz, (8.52)
where

22
2= / 6™ dz forn=0,1,2. (8.53)
21

Taking the real part of equation (8.52), we find

1 2
aRci(I2+0213) = — (I3 +222 1} +o* 1) - SiaR f U'(¢'d* —¢*'¢) dz,
Z
‘ (8.54)
which is essentially the energy equation (5.28) of the perturbation of the basic

parallel flow. The terms on the left-hand side represent the rate of increase of
the kinetic energy of the perturbation, the first group of terms on the right-hand
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side represents the rate of dissipation of the perturbation due to the viscosity,
and the last term represents the energy transfer from the basic flow to the
perturbation by means of the Reynolds stress (see Exercise 8.26).

Next abandon temporarily the Orr—Sommerfeld equation and consider the
set S of smooth functions ¢ which satisfy the boundary conditions (8.50) and
the energy equation (8.54). Thus S includes all the eigenfunctions of the Orr—
Sommerfeld problem among an infinity of others. This permits the proof of
sufficient conditions for stability by showing that ac; < 0 for all functions in
the set S, for small enough values of the Reynolds number R. The physical basis
of this method is that if R is small enough, viscosity dissipates energy more
rapidly than it can be generated by the Reynolds stress for any geometrically
possible flow which conserves mass and satisfies the boundary conditions, and
that therefore then the flow is stable. This is an example of the energy method,
which is essentially an application of Liapounov’s direct method of stability
with a Liapounov functional rather than a function.

So for a proof we require

0> aRci(IF + &213) = —(IF + 221} + o* IF)
1 22
21

for all ¢ € S. Now define ¢ = max |U’| and note that

/ U@t - ¥ d)dz

1

22
=2q / ¢'ll¢]dz
21
<2qlyly, (8.55)
by the Cauchy—Schwarz inequality. Therefore it remains to prove that

1} 42021 4+ o* 1} > aRqlol,

forall ¢ € S.
Synge (1938) derived and used this result to deduce specific sufficient con-
ditions for the stability of bounded flows (with z; = —1, z2 = 1). He showed

that one set of sufficient conditions is that
2
(nzqaR) < 4(2012772 +En—E2+2)(e*n® +& - 1)
for any real pair &,  such that

20202 +En~E2+20 >0, o'+ E~1>0
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(For unbounded flows it is necessary to take £ = 0, and then the conditions are
much weaker.) Taking § = n = 1/a, this yields

(R < 8(1 —a® + o +a*),
and taking £ =0, n = 3/a? yields
(qR)? < 256a*/27.

These conditions for stability are rather weak. Joseph (1968, 1969) sharpened
the inequalities, but even then the conditions are not very useful because the
energy method takes no account of the mechanism of instability due to the
critical layer, ahd so cannot give a sharp bound on the value of R.

8.6.2 Instability in the inviscid limit

Asymptotics have played an important role in the historical development of the
theory of the Orr—Sommerfeld problem; they pose a formidable mathematical
challenge, and they are essential for the proper understanding of various phys-
ical mechanisms in the Orr—Sommerfeld and related problems, even though
the Orr—Sommerfeld problem can be solved numerically today without great
difficulty. However, in this book it is inappropriate to describe the asymptotics
with any detail or rigour, so next we only sketch the asymptotic theory.

In order to relate the Orr—Sommerfeld problem to Rayleigh’s problem, it
is natural to take the limit as R — oo in the Orr—Sommerfeld equation to
find Rayleigh’s equation. We note at once that the Orr—Sommerfeld equation
is of fourth order and is nonsingular for all values of R, whereas Rayleigh’s
equation is of second order and has a singularity wherever U(z) = c in the
complex z-plane. Taking the limit as R — oo, we may find two independent
asymptotic solutions of the Orr—Sommerfeld equation, ¢;, ¢, say, called the
inviscid solutions, which satisfy Rayleigh’s equation (8.25), except possibly at
a critical layer.

Now the Orr—-Sommerfeld equation has not two but four independent solu-
tions, such that the general solution of the Orr—Sommerfeld equation

¢ = A1g1 + Arr + Az + Aags (8.56)

for some constants A, Az, A3, As. Heisenberg worked on this problem before
turning his attention to even more important problems of physics; in a paper of
1924 based on his doctoral thesis, he found the other two solutions asymptoti-
cally. He found, by what was afterwards to be called the WKBJ approximation,
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the viscous solutions such that

$3(2), $4(2) ~ (U (2) — c] " *exp[F@R)?Q()] asaR — oo (8.57)

for fixed z # z, where
. z
Q(z) =™ f U@)~cl'?d7. (8.58)
Zc

The viscous solutions represent the perturbation’s boundary layers of thickness
of order of magnitude R~!/2 at the walls. Heisenberg used these approximate
solutions to deduce heuristically that viscosity may indeed destabilize a given
basic flow at large values of R as well as stablilize it at small values of R by
dissipation of energy; more precisely, he showed thatif the basic flow is bounded
and @ = a5 > 0, then there is an unstable mode with that wavenumber for
sufficiently large values of R. However, at least one of the inviscid solutions
and both the viscous solutions are singular at a critical layer, and so cannot
validly approximate the exact solutions of the nonsingular Orr—Sommerfeld
equation there.

Tollmien (1929) recognized this limitation of the Heisenberg solutions and
examined a different approximation to the solutions of the Orr—Sommerfeld
equation, where both z is close to z¢, and R is large. Note that U(z) — ¢ ~
U'(ze)(z ~ z¢) as 2 — zc. The two terms ¢V, ia R(U ~ ¢)¢” in the Orr-
Sommerfeld equation may dominate the others and balance with one another
near the critical layer as R — oo. This intuitive argument suggests that the
truncated equation

¢ =iaRWU — c)¢”

gives a good approximation to the solution of the Orr—Sommerfeld equation
near the critical layer for large o R. It may be more formally shown at length,
on defining

E=G—-wle, e=[iaRU )] ",
that the Orr—Sommerfeld equation becomes

d4 é _ d2 ¢

d§4 - dsZ
in the limit as @ R — oo for fixed &, by substituting the variable & for z and the
parameter € for o R in the Orr—Sommerfeld equation and thereafter taking the
limit. You may verify that this is indeed so. Therefore d2¢ /d£2 is an Airy func-

tion (see also Exercise 8.36). This gives four independent solutions, which can
be expressed in simple explicit terms of Airy functions and their integrals. The
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solutions oscillate locally like an Airy function. Tollmien used these asymptotic
solutions together with numerical methods in the first successful solution of the
Orr—Sommerfeld problem, although his methods are rather crude by modern
standards. It can be seen at once that the thickness of a critical layer, of the
order of magnitude of €, namely R~!/3, is much greater than the thickness,
of order R~!/2, of a boundary layer at a wall. Tollmien also showed that the
correct branch of a singular inviscid solution in the limit as « R — oo can be
found from an unstable solution of the Rayleigh stability equation in the limit
asc; — 0+.

Thus it emerges from these asymptotic theories that for large values of the
Reynolds number a wave perturbation behaves very differently in four kinds
of region, any of which may be present or absent according to the given basic
flow:

(1) If the basic flow is uniform at infinity, then the perturbation is irrotational
there, such that if U (z) — Uy as z — 00, then

d(z) ~ Ale™* asz — oo.

(2) The perturbation is rotational as if of an inviscid fluid, except at infinity, in
a critical layer, or in the boundary layer near a wall, such that

¢(z) = A11(2) + A2 (2).

(3) In a critical layer of thickness O[(aR)~!/3] near z. where U (z¢) = c, the
perturbation is substantially affected by the viscosity, however large a R is.
(4) Also, in a boundary layer of thickness O[(aR)™Y/?] near z; or z,, the
perturbation is substantially affected by the viscosity, however large R is.

The occurrence of these regions, examples of what are called decks in triple-
deck theory, depends upon the basic flow and the values of the Reynolds number
and the wavenumber. For the example of Blasius’s boundary layer, on the upper
branch of the marginal curve the perturbation has five decks (an irrotational
‘inviscid’ flow at infinity, a critical layer, two regions of rotational ‘inviscid’
flow on each side, and a boundary layer near the wall), but on the lower branch
it has three decks because there c is small enough that the critical layer reaches
to the wall z = 0 and absorbs the thinner boundary-layer region; see Figure
8.7 for a sketch of the decks and Figure 8.8(a) for the branches of the marginal
curve. In the present context, triple-deck theory only provides a different way
of deriving the classic asymptotic results for the Orr—Sommerfeld problem, but
it also provides a way to find the asymptotic properties of a slowly developing
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Figure 8.7 Sketches of the regions for a wave perturbation of the Blasius’s boundary
layer. The layer of irrotational flow at infinity is not depicted. (a) Quintuple deck for the
upper branch of the marginal curve as « R — oo. (b) Triple deck for the lower branch
of the marginal curve. (After Drazin & Reid, 1981, Fig. 4.5.)

basic flow and weakly nonlinear perturbations for large values of R (Smith,
1979a,b).

It follows that the leading effects of viscosity for large values of R are due to
a critical layer, if there is one, rather than a boundary layer at a wall. Within a
critical layer a solution of the Orr—Sommerfeld equation is very different from
any solution of Rayleigh’s equation, and it is near the critical layer that the
phases of ', w’ are modified so that the Reynolds stress may transfer energy
from the basic flow to the perturbation. In some cases the value of ¢ is such that
the critical layer reaches the wall and ‘absorbs’ the thinner boundary layer, and
in other cases the critical layeris in the interior of the flow with an approximately
inviscid region separating it from each of the boundary layers.

There is a lot more than the heuristic ideas of this section to be under-
stood about the subtleties of the asymptotic theory of the solution of the
Orr—Sommerfeld equation and its eigenvalue problem for large values of the
Reynolds number. The above results about the asymptotic solutions of the Orr—
Sommerfeld equation for fixed ¢ become more complicated when the boundary
conditions, which also determine ¢, are treated together with the asymptotic
solutions. For this the reader is recommended to read Chapters 4 and 5 of
Drazin & Reid (1981).
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8.7 Stability Characteristics of Some Flows of a Viscous Fluid

The properties of the eigenvalue problem, which have complications beyond
the scope of this book, may be summarized as follows at the risk of over-
simplification. For a given basic velocity profile, (1) if a mode is unstable
with eigenvalue co, for an inviscid fluid (R = o0), then its eigenvalue ¢
for a viscous fluid tends to coc as R — 00, but (2) if it is stable for an
inviscid fluid, then co, may not be the limit of any eigenvalue for a slightly
viscous fluid. If the given flow is stable for R = oo (that is, stable to all
modes when the fluid is inviscid), then it may be unstable, with at least one
mode such that ¢; = O(R™'/3), as R - oo. Thus viscosity may render
unstable a flow which is stable for an inviscid fluid; also it may make more
unstable a flow which is unstable for an inviscid fluid. However, any given flow,
unless it is an unbounded shear layer, is stable when the Reynolds number is
sufficiently small. Note that, at large values of the Reynolds number, the growth
rate of the Tollmien—Schlichting instability associated with the mechanism of
the critical layer is much smaller than the growth rate of Rayleigh instability
associated with the vorticity dynamics of an inviscid fluid. Some of the details
to substantiate this summary will be explained in this section.

The Orr—Sommerfeld problem is not easy, so few solutions have been found
analytically. It would seem that for a viscous fluid the basic velocity must be
continuous and have continuous stress (so that the basic velocity gradient also
is continuous if the fluid is of uniform viscosity). This is true, but nonetheless
it makes some sense to consider the Orr—Sommerfeld problem when U or U’
is discontinuous, as an approximation to the solution for long waves (small o).
This is taken up in Exercise 8.39; here we shall solve the simplest example
of all.

Example 8.6: Constant basic velocity. Suppose that U is constant in a channel.
Then without loss of generality we may take

U(z) =0 for—1<z<1.
Now the Orr—Sommerfeld equation (8.49) becomes
¢V — 2a2¢" +a*p = —iaRe(¢” — a2¢).
The general solution of this equation can be written as

cosh sinh 08 sin
az oz A Cos pZ +B P

6 (2) = Ay

17 2 2
cosh o sinh o cos p sin p
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for arbitrary constants Ay, By, A2, By, where p = (iaRc — o?)1/2. Again the
simous and varicose modes can be separated. So for the sinuous mode (even
¢) we take

coshaz cos pz
$(2) = A A b

2 B
cosha cos p

Now boundary conditions (8.50) give

cosh o cos p

coshaz cospz
¢(z)=A1( P )

where

atanha + ptan p = 0.

It can be shown (Rayleigh, 1892) that this eigenvalue relation has a countable
infinity of real roots p, so ac = —i(a?+ p2)/ R has negative imaginary part, and
all the sinuous modes are stable. It can be similarly shown (see Exercise 8.31)
that all the varicose modes (with odd eigenfunctions) are stable, so this basic
state of rest is stable. This is scarcely surprising because there is no Reynolds
stress in the Reynolds—Orr equation (8.54) to generate instability. []

In the 1960s, numerical calculations for plane Couette flow strongly sug-
gested that it was stable to waves of all lengths at all values of the Reynolds
number. This was proved by Romanov (1973). The first successful solutions
of the Orr—Sommerfeld problem giving instability were found numerically by
Tollmien (1929) and Schlichting (1933), in fact for the instability of Blasius’s
boundary layer on a flat plate. They used a method combining some asymptotic
and numerical techniques that is now only of historical interest. However,
modes of instability due to the critical-layer mechanism (rather than Rayleigh’s
inviscid mechanism) are still called Tollmien—Schlichting waves in their honour.
The Orr—Sommerfeld equation is very stiff at large values of the Reynolds
number (and these are usually the values of physical interest) and so not easy to
solve numerically, and its difficulties were overcome only by use of electronic
computers. The first solution of the Orr—~Sommerfeld problem by use of an
electronic computer was in 1953, when Thomas, at the suggestion of von
Neumann, solved the problem for plane Poiseuille flow by direct numerical
integration, and found instability at a few pairs of values of «, R. Now it is a
routine matter to solve the Orr—Sommerfeld problem by any one of many good
numerical methods (see Drazin & Reid, 1981, §30), although the stiffness of
the equation still demands some care in the solution.

We shall give few details of results for particular basic flows, merely sum-
marizing the main points of the many numerical solutions known now. The
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marginal curves sketched in Figure 8.8 and the numerical results in Table 8.1
do this very effectively, albeit briefly. First 1ook at Figure 8.8(a). It is a sketch of
a marginal curve typical of that for a basic flow which is stable for an inviscid
fluid, such as plane Poiseuille flow and Blasius’s boundary layer (but not plane
Couette flow, because it happens to be stable for all values of the Reynolds
number R). For these flows there is a unique unstable mode (the sinuous
mode for plane Poiseuille flow). You can see that that there is no instability

¢ (a) ¢ ©

Stable

a .......
< E Unstabie Unstable
' R > R
0 R, 0
« @
Sinuous mode
(2 R T B
Varicose mode
(12 e e ARt bt o)
A
| R H
0 R 0 R,

Figure 8.8 Sketches of some typical marginal curves of instability ¢j(a, R) = 0 in the
(R, a)-plane for various classes of basic flows. (a) Basic flow which is stable when the
fluid is inviscid. (b) Bounded flow which has one point of inflection. (¢) Unbounded
shear layer. (d) Unbounded jet or wake. (One mode is sinuous and the other varicose if
and only if the jet is symmetric.)

Table 8.1. Summary of numerical results for a few important prototypes of
basic parallel flows

Marginal
Type of curve
basic flow Specific profile Stable? R, o of Fig.
Uniform U = constant Yes o) - -
Plane Couette U=z -1=<zx<1 Yes oo - -
Plane Poiseville U=1-27: -1<z<1 No 5772 1.02 8.8(a)
Blasius’s U=f(2):z2=0 No 520 030 8.8(a)
boundary layer
Shear layer U=tanhz: —o0 <z <00 No 0 0 8.8(c)

Jet or wake U =sech?z: ~oo<z<oo No 402 017 8.8
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for any given value of the wavenumber o as R — co. However, there is
instability for at least one value of « for all R greater than R, because viscosity
destabilizes the flow. Nonetheless, when R is small enough the dissipation of
energy by viscosity dominates the destabilizing effect, and the flow is stable to
all infinitesimal perturbations if R < R.. Figure 8.8(b) is for a basic channel
flow which has one marginally stable mode Us, ¢ for an inviscid fluid, and so
has one point of inflection. It can be seen that the results for an inviscid fluid
arise as R — oo, and that sufficiently large viscosity stabilizes the flow.

Figure 8.8(c) is for a unbounded basic shear layer, say U (z) = tanh z, which
has one marginally stable mode Uy, ¢ for an inviscid fluid, and so has one
point of inflection. You may be surprised to see that the critical Reynolds
number is zero, so that there are unstable modes however large the viscosity
is, in apparent contradiction of Serrin’s theorem; nonetheless, this paradoxical
result is not relevant physically because shear layers are far from parallel when
their Reynolds number is small. Figure 8.8(d) is for a unbounded basic jet
or wake, such as the Bickley jet with U(z) = sech?z; such a basic flow
has two points of inflection and so two marginally stable modes Uy, ¢ for
an inviscid fluid. Again, the eigenvalues for small Reynolds number are not
relevant quantitatively because then a jet or wake is not nearly parallel.

The asymptotic theory of the eigenvalue relation as R tends to infinity is
mathematically challenging and beyond the scope of a first course in the
subject, so we will merely quote a few results. For symmetric flows in a
channel such as plane Poiseuille flow, & ~ constant x R=1/7, ¢ ~ constant x
R™%7 as R — oo along the lower branch of the marginal curve, but o ~
constant x R~!/11 ¢ ~ constant x R~%/!! as R — oo along the upper branch
of the marginal curve. However, for semi-bounded flows of boundary-layer
type, @ ~ constant x R714 ¢ ~ constant x R~/ as R — oo along
the lower branch. The scalings for the upper branch depend on the pressure
gradient. In a favourable pressure gradient,  ~ constant X R~V 6, c ~
constant x R~1/6, while for the zero-pressure-gradient Blasius boundary layer,
o ~ constant x R~110 ¢ ~ constant x R~/10as R — 0.

The pattern of all the eigenvalues is indicated in Figure 8.9. It can be seen
how there are wall modes, sometimes called Airy modes or A-modes, for which
cr = 1, ¢; = O[(aR)~Y/3] (with their critical layers near the walls), and centre
modes, sometimes called Pekeris modes or P-modes, for which ¢, — 0, ¢; =
O[(@R)"Y?1asaR — oo. In addition, there are Schensted modes or S-modes,
for which ¢; — % ci~ —ilr(n+ 2)]2a/4R asaR/n — 0; these occur for all
values of the Reynolds number, even large ones, if the number n of the mode
is sufficiently large, because then the mode’s velocity varies so rapidly with z
that the local Reynolds number of the mode is small (see Example 8.6).
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Figure 8.9 The first several eigenvalues ¢ = ¢ + ic; for sinuous modes of plane
Poiseuille flow for @ = 1, R = 10 000 plotted in the (c;, ¢;)-plane. (After Mack, 1976,
Fig. 5.) Note the Airy o, Pekeris v and Schensted O families of modes.

It is also interesting to see the eigenfunction and thence the nature of the
perturbation for various velocity profiles at various pairs of values of the
Reynolds number and wavenumber. The eigenfunction of the marginally stable
mode for the Blasius boundary layer is shown in Figure 8.10. Note the structure
of the mode and where the critical layer is.

8.8 *Numerical Methods of Solving the Orr-Sommerfeld Problem

We have remarked that it is a routine matter to solve the Orr—Sommerfeld
problem by any one of many good numerical methods, although the stiffness
of the equation still demands some care in the solution. The chief aims of the
numerical solutions for a given basic flow are (1) to find the curve of marginal
stability (c; = 0) and curves of constant growth rate (@c; = constant), (2) to
find the eigenvalue spectrum for a given pair of positive values of a and R, and
(3) to calculate the associated eigenfunctions and Reynolds stresses. There are
similar aims for spatial modes of given real frequency w = ac.
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Figure 8.10 Sketches of an eigenfunction ¢ = ¢; + ig; for Blasius’s boundary-layer
profile on the upper branch, R = 1000, « = 0.23,¢; = 0.25,zc = 0.40. (@) ¢:(2)
against z. (b) [¢'(z)| and S(z) = ¢ (2)9](z) — @](Z)$i(z) against z. Note that the
Reynolds stress is proportional to S.

The chief methods of solution belong to two classes: (1) spectral expansion,
i.e. expansion of ¢ as a linear combination of a complete set of orthogonal
functions, such as Chebyshev polynomials, and (2) use of finite differences to
integrate the Orr—Sommerfeld equation as an initial-value problem whereby
integration is from one boundary towards the other. Various finite-difference
schemes have been devised to deal with the stiffness of the equation for large
values of R. Methods of spectral expansion are best suited to finding all
the eigenvalues of the spectrum. Finite-difference methods are best suited
to efficient calculation of the marginal curve (which involves only the most
unstable eigenvalue) with use of a predictor and a corrector.

Drazin & Reid (1981, §20) summarize the technical details of many of
these numerical methods and refer to many of the original papers. Schmid &
Henningson (2001, Appendix) not only give an up-to-date summary but also
list MATLAB programs to compute simply the stability characteristics of
plane Couette and plane Poiseuille flows. These programs provide a useful
platform on which students can base project work.

8.9 Experimental Results and Nonlinear Instability

Before the Second World War, the numerical solutions of the Orr—Sommerfeld
problem for Blasius’s boundary layer by Tollmien (1929, 1935) and
Schlichting (1933) were not believed by all. The basic flow was not
parallel, their asymptotics were heuristic, their calculations were arduous
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and complicated, and their results did not agree with experiments (or even
with one another very precisely). However, during the war, Schubauer and
Skramstad, by designing a wind tunnel with an unprecedentedly low level of
turbulence upstream of the plate, by introducing controlled oscillations with
a vibrating ribbon of desired frequencies and amplitudes, and by developing
sensitive hot-wire anemometers to measure the growth and decay of the forced
oscillations, were able to confirm the theoretical results about the ‘nose’ of the
marginal curve quite convincingly. They published their results after the war
(Schubauer & Skramstad, 1947).

Klebanoff et al. (1962) refined and developed these experiments. They
found that first two-dimensional Tollmien—Schlichting waves grow in
amplitude downstream, but where they reach a certain critical amplitude
they become perturbed three-dimensionally and turbulent spots ensue due to
apparently random bursting. The spatial evolution is illustrated schematically
in Figure 8.11 and by a photograph in Figure 8.12. They also introduced
controlled oscillations that varied spanwise to study the three-dimensionality,
and interpreted the growth of three-dimensionality as a secondary instability
of the primary Tollmien—Schlichting wave. An instantaneous velocity field
exhibits large gradients in the mean velocity profile at spanwise positions

ITransition|
i Region |

3 | F

Figure 8.11 A symbolic sketch indicating roughly the regions of development of
instability in Blasius’s boundary layer on a plate at zero incidence in a low-turbulence
stream: plan view. A, laminar flow; B, Tollmien—Schlichting (two-dimensional small-
amplitude) waves; C, three-dimensional wave amplification; D, nonlinear peak-valley
development with streamwise vortices; E, breakdown with formation and growth of
turbulent spots; F, fully developed turbulence. (After Young, 1989, Fig. 5.13; reproduced
by permission of Blackwell Science Ltd.)
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Figure 8.12 Photographs of the development of instability of the boundary layer on
a plate at zero incidence in a low-turbulence stream: flow from left to right. In the
upper photograph there is laminar flow at a lower value of the Reynolds number, but
Tollmien—Schlichting waves appear in the lower photograph at a five-times larger value
of the Reynolds number. (After Van Dyke, 1982, Fig. 104; reproduced by permission of
ONERA.)

(called peaks) where the secondary flow is directed away from the plate, and
small gradients at intermediate spanwise positions (valleys); this velocity field
corresponds to what are called A-vortices, shown in Figure 8.13.

It should be instructive to look now at all the relevant pictures of Van Dyke
(1982, Figs. 29, 30, 104-106, 109-111) and of Nakayama (1988, Figs. 20,
21, 23, 24, 27). The film loops of Brown (FL1964) and Lippisch (FL1964)
show the Tollmien—Schlichting waves developing in time as well as space.
Also the Video Library of Homsy et al. (CD2000), under the subheadings
‘“Transition of Boundary Layers’ and ‘Visualization of Flow on a Flat Plate’,
and their Boundary Layers, under the subheadings ‘Boundary Layer Flow’,
‘Flow Past a Sphere’ and ‘Instability, Transition, and Turbulence’, have many
short sequences of instabilities and transition to turbulence.

We have used Blasius’s boundary layer on a plate here as a prototype of
instability of parallel flows, but there have been many experiments on the
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Figure 8.13 A photograph of A-vortices in instability of the boundary layer on a plate
at zero incidence in a low-turbulence stream: plan view, with streaming from left to
right. (After Saric; see Herbert, 1988, Fig. 3.)

instability of other parallel flows. Encouraging agreement between the linear
theory and observations of carefully controlled small perturbations in wind
and water tunnels with low levels of upstream turbulence has been found, but
observations of subcritical instabilities and of instabilities triggered by higher
levels of turbulence are less easy to interpret. Again, experimental agreement
with the results of linear and weakly nonlinear theories of instability of plane
Poiseuille flow (Nishioka et al., 1980) leave no doubt about the validity of these
theoretical models for describing careful experiments in low-turbulence wind
tunnels and water channels.
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The transition to turbulence is still imperfectly understood. The two-
dimensional instability of the linear theory with Squire’s transformation
contrasts with the observed three-dimensionality of turbulence and also the
local nature of turbulent spots. There are essentially two classes of theory to
explain transition. For the first class, weakly nonlinear Tollmien—Schlichting
waves develop secondary instabilities which are three-dimensional. There is
a short sequence of bifurcations with successive regimes of flow downstream
which lead rapidly to three-dimensionality, chaos and turbulence. For the
second, there is some ‘bypass’ mechanism, whereby a subcritical perturbation
of finite amplitude triggers turbulence directly.

The weakly nonlinear theories of Tollmien—Schlichting waves may further
be classified in two, as those that treat the development and instability of a single
wave, and those that treat the interaction of two or more waves. Following
the pioneering work of Heisenberg (1924), Landau (1944) and Meksyn &
Stuart (1951), the weakly nonlinear theory was initiated on a quantitative
basis by Stuart (1960) and Watson (1960b), when they showed how to find
the Landau equation governing the evolution of a weakly unstable perturbation
of a parallel flow for small positive values of R — R.. The Landau constant
is in general complex, so that parallel flows are subject to Hopf bifurcations.
Channel flows are in general subject to subcritical instability, and jets and
unbounded shear layers to supercritical instability. However, for many flows
the real part of the Landau constant has been found to change sign on the
marginal curve of the linear theory. These have been confirmed by the careful
experiments of Nishioka et al. (1975) on plane Poiseuille flow. Secondary
instabilities of Tollmien—Schlichting waves lead to three-dimensionality in
various weakly nonlinear theories, often with build-up of points of inflection
in the mean velocity profile at some spanwise points of the flow, such that
the ensuing instability (with negligible influence of viscosity) develops very
rapidly. Orszag & Patera (1983) found numerically that a two-dimensional
Tollmien~Schlichting wave superposed on a Blasius boundary layer on a plate
was itself unstable. This secondary instability is three-dimensional, withregions
of swirling flow shaped like an eccentric ellipse. It is believed (Bayly et al.,
1988) that this elliptical instablility is an important mechanism in the transition
to turbulence of many flows.

Raetz (1959) considered the resonant interaction of three neutrally stable
two-dimensional wave perturbations of a boundary layer. Kelly (1967) treated
the subharmonic parametric instability of a shear layer. Craik (1971) treated
the general case of the weakly nonlinear resonant interaction of three wave
perturbations, two- or three-dimensional, of a paralle] basic flow. He showed
how this may lead to a subharmonic instability of boundary layers. His theory



Experimental Results and Nonlinear Instability 177

did not describe the experimental results of Klebanoff et al. (1962), who excited
strong perturbations of chosen frequency. However, Saric & Thomas (1984)
and Kachanov, Levchenko and co-workers (see Kachanov, 1994) did detect the
predicted subharmonic resonance when they excited very weak perturbations
of a boundary layer.

Since 1980 there has been an increasing number of direct numerical simula-
tions of the nonlinear evolution of instabilities of parallel flows. Some of this
work and its developments are described by Drazin & Reid (1981), much more
by Schmid & Henningson (2001).

The relationship of modern experimental results to the weakly nonlinear
theory is reviewed by Kachanov (1994); it might be said that there is good
agreement with.the theory and carefully controlled experiments with low
levels of turbulence upstream, but the nature of transition in practice is less
clear.

A crucial issue is that in practice transition in parallel and nearly parallel
flows results from substantial perturbations upstream and irregularities on the
surface of a channel and so forth, not from very carefully controlled forced
sinusoidal perturbations of a flow with a very low turbulence level. One imag-
inative attempt to come to terms with this issue is a recent suggestion of a
bypass mechanism by Butler & Farrell (1992) and Reddy & Henningson (1993)
that the non-self-adjointness of the Orr—Sommerfeld problem results in very
strong transient growth (perhaps by a factor of 10° or more when the Reynolds
number is large) of a weakly unstable or even stable perturbation according to
the linear theory. Exercise 8.44 gives an inkling of this mechanism by use of an
analogy, but to understand the mechanism properly it is necessary to follow
up the references. The mechanism intrinsically involves three-dimensional
effects, and may give rise to nonlinearity after a period of strong amplification
according to the linear theory.

Many aerodynamic engineers have set aside these complicated details of
nonlinear instability in favour of the " method, proposed independently by
van Ingen and by Smith & Gamberoni in 1956. This empirical method is
the prediction that the onset of turbulence in a boundary layer occurs where
a perturbation propagating downstream has grown, according to the linear
theory, by a factor e”, where N =9 or thereabouts. It is clear that this method is
conceptually flawed, because the magnitude of a perturbation at a given station
is, at least according to the linear theory, proportional to its initial magnitude,
and so the value of N must depend on the level of turbulence far upstream in
the atmosphere or the wind tunnel. Also no nonlinear interaction or resonance
is represented. However, as a rough-and-ready rule of thumb, the method is
used widely with success.
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This discussion has emphasized the instability and transition of Blasius’s
boundary layer on a flat plate at zero angle of incidence to a uniform stream.
However, the instability and transition of other parallel and nearly parallel flows
without a point of inflection, for example, channel flows and the boundary layer
on a surface inclined to a uniform stream, are qualitatively similar.

Flows, like plane Couette flow, which are stable to all infinitesimal perturba-
tions at all values of the Reynolds number, are fundamentally different. Even
then, transition to turbulence due to small but finite-amplitude perturbations
is somewhat similar to that of Blasius’s boundary layer, at least similar in the
sense of not yet being fully understood.

Flows with a point of inflection, or rather flows which are unstable at all
large values of the Reynolds number, for example, a boundary layer with
reversed flow, jets, wakes and free shear layers, are also fundamentally different.
Their mechanism of instability is not Tollmien-Schlichting but the invisicid
Rayleigh mechanism at large values of the Reynolds number, and sometimes
a viscous mechanism at smallish values marking the onset of instability.

Schmid & Henningson (2001) describe at length many of the subtleties of
transition of paralle] flows, and cite a lot of the modern literature.

8.10 Stability of Axisymmetric Parallel Flows

In this section we shall review briefly the stability of some axisymmetric parallel
flows, notably Poiseuille pipe flow and unbounded jets, of both inviscid and
viscous fluids. The theory and results will be seen to be somewhat similar to
those for plane parallel flows.

*[t is appropriate to note first that the Orr—Sommerfeld problem is very
special because the basic flow is not only steady and invariant under longitu-
dinal translations but also two-dimensional. The invariance of a parallel flow
under a longitudinal translation is associated both with the the separation of
the longitudinal variable x in the stability problem and with the basic flow’s
independence of the Reynolds number. However, the linear stability problem
for a given basic steady flow of a uniform viscous fluid is in general a non-
separable partial differential system, and, if separable into an ordinary differ-
ential system, is typically of sixth order. (In the special case of plane parallel
flow, the sixth-order system is factorizable into two independent systems, the
Orr—Sommerfeld problem of fourth order and the Squire problem of second
order — see Exercise 8.43.) These ideas are illustrated below by the problem
for axisymmetric parallel flow.

Suppose then that there is a steady basic flow of the form

Ux) = Ui, P(X) =po—Gx, forri <r <n, (8.59)
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between rigid cylinders at r = r;, r; in terms of cylindrical polar coordinates
(x,r,0), where G is the imposed axial pressure gradient. The cylinders may
be taken at rest or in uniform axial motion, and r; = O if there is no inner
cylinder and r, = oo for unbounded flows such as jets. It can be verified that
this solution satisfies the Navier-Stokes equations only if

U(r) = A+ Blogr — Gr¥/4pv, (8.60)

for constants A, B, which are specified by the no-slip condition on the two
cylinders. However, we may take other functions U to approximate the stability
characterisics of nearly parallel flows of a viscous fluid, and any function U to
get an exact solution of the Euler equations for an inviscid fluid.

Next formulate the stability problem after Sex1 (1927a,b) and Batchelor &
Gill (1962). First take small perturbations of this basic flow such that

u=U+v, p=P+7p, (8.61)

and linearize the governing Navier—Stokes equations. It is then possible to
separate the variables, taking normal modes of the form

u/(x, )= (ﬁx ), '»Alr ), 129 (r))ei(ax+n0—act) , pl(X, )= ﬁ(r)ei(ax—f-ne—uct) ,
(8.62)
for constant real axial wavenumber « and integral azimuthal wavenumber n.
Note that the stability characteristics are the same if the sign of » is changed,
because of the axisymmetry of the problem, so we will take n > 0 without loss
of generality. It now follows, on taking dimensionless variables in the usual
way, that

S A 2 . . L
al+ ;u; - [':—2 +a? +iaR(U —c)] iy — RU'ti, —iaRp =0, (8.63)

”
+a +1aR(U—c)]u,— lfug—R —0, (8.64)

a1 14n?
u;/+;u; I:_:

2 R
+a +1aR(U—c)]u9+ﬂu,~—m—p 0, (8.65)

1
A[/ A/
u —Uu
ot ~Ys

|:1+n2

IR DO .
i, + i +i (aux + Eue) =0, (8.66)
r
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where R = V L /v is the Reynolds number and a prime denotes differentiation
with respect to r. The boundary conditions of no penetration or slip of the

perturbation on the cylinders give
(N =u,N=ug(rN=0 atr=ri,n
if r; 3 0; but if r; = 0, the condition at r = ry is replaced by
iy (r) =, (r) =itg(r) = pr) =0 atr=0forn # 1,
Ux(ry=p@r)=0, d(r)+idg(ry=0 atr =0forn=1.
On defining the variables
B =a?+n2/r?, ¢=—irl,, S =(arig—niy)/k*r?

and the linear operators

1 d d d/1t d
S= — K33 =) — &2, T=k*—|——) -k
k2r3 dr( d dr) rdr k2r dr ’

we may eliminate i, i,, iy, p and deduce that

SQ + (2an/k4r2)T¢ = iaR[(U -0 — (nU’/ak2r3)¢],

T2¢ — 20nTQ = ia[(U — )T — k*r(U'/k*r) 9],
where
p(N=¢'N=2)=0 atr=ri,n,

or,if ry =0andn # 0,

$(r) =r>"¢'(r) =Qr)=0 atr=0.

(8.67)

(8.68)

(8.69)

(8.70)

(8.71)

(8.72)

(8.73)

(8.74)

(8.75)

It can be seen at once that if n = 0, then the equations (8.72), (8.73) decouple
into a second-order system for Q2 and a fourth-order system for ¢, butifn % 0

they are a coupled sixth-order system.
For an inviscid fluid, we find similarly that

(U - )Ty ~k*r(U'/k*r) ¢ =0,

or, ifn =0,

(U—-oLg—rU'/r)¢ =0,

(8.76)

8.77)
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where L = d?/dr? — r~1d/dr — 2. The boundary conditions in this case
become

$p(r)=0 atr=ry,n. (8.78)

The theory is closely analogous to that of the Rayleigh and Orr—Sommerfeld
problems for plane parallel flows, and, indeed, Rayleigh (1880) initiated the
theories for plane and axisymmetric parallel flows of an inviscid fluid in the
same paper. The chief problems of physical interest are those of Poiseuille pipe
flow and of an unbounded jet.

Numerical calculations (Salwen et al., 1980) suggested strongly that
Poiseuille pipe flow, with U(r)=1 — r? for 0 < r < 1, is stable to all
infinitesimal perturbatons at all values of the Reynolds number. The spectrum
of axisymmetric modes is somewhat similar to the spectrum for plane Poiseuille
flow (see Figure 8.9), although no mode is unstable. The non-axisymmetric
modes differ a little more (see Figures 8.14 and 8.15). In fact, transition to
turbulence is observed experimentally for values of the Reynolds number
down to about 2000 as the amplitude of perturbations in the inlet of the pipe is
diminished (Reynolds, 1883).

The Landau—~Squire exact similarity solution of the Navier-Stokes equa-
tions for a round jet is locally of the form U(r) = 1/(1 + r?)2 for0 < r
(see, e.g., Batchelor, 1967, p. 206). Treating the jet as an unbounded paral-
lel flow, Burridge (1970) found numerically that it is unstable to modes for
n =1 whenever R > R;, where R. ~37.5 and o, =~ 0.43. From this and other

(b)

Figure 8.14 A centre mode (the least stable mode) of Poiseuille flow for R = 3000,
n = 1,k = 1. (a) Constant-z cross-sections of the streamfunction. (b) The vector field
of the velocity perturbation. (After Meseguer & Trefethen, 2000, Fig. 4.)
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Figure 8.15 A wall mode of Poiseuille flow for R = 3000, n = 1, k = 1. (a) Constant-
z cross-sections of the streamfunction. (b) The vector field of the velocity perturbation.
(After Meseguer & Trefethen, 2000, Fig. 8.)

calculations, it seems that modes with n =1 are usually the most unstable
perturbations of axisymmetric parallel flows.

There are many calculations of the stability characteristics of axisymmetric
flows of an inviscid fluid, ranging from Rayleigh (1880) to Batchelor & Gill
(1962) to the present day. In particular, it is easy to use discontinuous velocity
profiles with ‘jump’ conditions at their discontinuities analogous to those for
plane parallel flows.

Exercises
8.1 A derivation of the Rayleigh stability equation. Taking the basic velocity
U(z) = U(2)i of an incompressible inviscid fluid, and using dimension-
less variables, linearize the vorticity equation for two-dimensional flow,
an an an

7 — =0,
at +“ax +w6z

where 7 = du/3z — dw/dx, to show that

where 77/ = Avy’. Now, taking ¥'(x, z,1) = ¢(2)e** ", deduce the
Rayleigh stability equation.
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The elevation of a material surface. Show plausibly that if ¢ is the
elevation of a fluid particle above its basic position, say (xo, yo, Zo), when
the basic flow U(z)i of an inviscid incompressible fluid is perturbed,
thenw =D¢/Dratx =x¢,y =y9,2 =20 +¢.

Deduce from the Rayleigh stability problem that the modes are of the
form ¢(x, z,t) = F(2)el?G~=¢) where F = —¢ /(U — ¢) and

[((U - ¢?F] - U - c)*F =0. (E8.1)

Some properties of the eigensolutions of the Rayleigh stability problem.
Define the inner product

22
{p,v) = f (@Y () dz

over C2[z1, z2] and the linear operator L: C%z1, 22] = Clz1, 22] by
Lo = (U —o)(¢" —a’p) — U"$.

Deduce that equation (E8.1), when divided by U — ¢, is the adjoint
equation of the Rayleigh stability equation in the form (8.25), where F
also satisfies the boundary conditions (8.26).

Multiplying equation (E8.1) by the complex conjugate F* of F, inte-
grating from z; to 2, and using the boundary conditions, show that

22
f U = *(IF'1> +a? F|*)dz =0.
<1

Taking the imaginary part of this equation, deduce that if the flow is
unstable to the mode, then ¢, lies inside the range of U (that is, Uy <
¢ < Um, where Um = maxg, <;<,, U(2) and Uy = ming, <;<z, U(2)).
{Rayleigh (1880).]

The jump of the shear stress at a critical layer of an inviscid fluid. Show
that

aU"lp2  alU"0P]
U—=cl?  UR(@z-z)*+c?

as z — Z¢, ¢; —> 0+ (E8.2)

if U(ze) = ¢, UL # 0, [U"|$)*);=z, # 0. Deduce plausibly that

Zcte CiU//|¢|2 . |:U!/|¢|2]
Z=Zc

lim lim ——dz =
¢i—>0+e—0J, ¢ |U~—C|2 U’

Hence show that equation (8.35) follows from (8.34).
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Orr’s “lift-up’ mechanism. Taking plane Couette flow with basic velocity
U = zi, show that the linearized vorticity equation for two-dimensional
perturbations is

in the usual notation, where n’ = Avy’. Deduce that
AY = F(x —zt,2)

for an arbitrary differentiable function F.

Discuss the relationship of the Rayleigh stability problem for plane
Couette flow to the above approach to the solution of the initial-value
problem.

Discuss the above representation of the convection of vorticity of

the perturbation by the basic flow. It is sometimes called the lift-up
mechanism and sometimes the Vernetian-blind mechanism. [Orr (19074,
Art. 13).]
Stability or instability of plane Couette flow? Reconsider Exercise 8.5 as
an initial-value problem to determine n’ over the strip V = {(x, z): —00 <
x < 0o, —1 <z < 1} in the (x, z)-plane as follows. First assume that '
and 3 F/9dz are bounded and continuous in V.

(1) Defining the norm ||n|| = supycy |n(x, z)|, show that the null solu-
tion n’ = 0 is stable.

(i1) Show, however, that the null solution 5" = 0 is unstable if the norm
is defined as |Inll = sup,e {(@n(x, 2)/32)* + In(x, DIHV2.

[Yudovich (1989, p. 101).]

*An initial-value problem for two-dimensional perturbations of plane
Couette flow of an inviscid fluid. Consider a basic flow of an inviscid
incompressible fluid with velocity U = zi between rigid planes at z =
=41 moving with the flow. Verify that an exact solution of the nonlinear
Euler equations is given by the streamfunction perturbation

acos(ax +yz —atz)

v nn= a4+ (y —at)?

for—oo <x <00,~1<z<1l,andallreal a,a, y.
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Show that the kinetic energy density of the wave perturbation per unit
mass per wavelength,

o 2 ja 1 )
KO=5 [ & [ ar?+u?)
21 Jo —1

_ (1/2)a?
T @24 (y —an)?’

Deduce that if the wave fronts are initially tilted in the same direction
as the basic velocity profile (that is, y has the same sign as «), then K
decreases monotonically to zero as ¢ increases. Deduce that otherwise (y
has the opposite sign) K increases until 1 = y /a and thereafter decays
to zero; show that its maximum is large for a wave with a short length in
the direction of the basic flow.

Show further that if

¥/(x,2,0) = bsin| dnr(z + 1)]e,

where # is a positive integer, then the linearized problem has a solution
of the form

¥ix,z, )= -—%ib(a + inznz)

einz'r(z+l)/2—iottz e—inn(z+1)/2—iatz
X —
a4+ ((1/2)nm — at)2 aZ+ ((1/2)nr + at)2
coshaz sinhaz
+ Az ) osha + B(#)— ]
sinh o

where A, B may be chosen so that ¢ satisfies the boundary and initial
conditions. Show that

W' (x,z,n7[200) = %1(0, + 1n2ﬂ2>bei(ax+m/2)

1 e it coshaz [ 1 1
o2 o24n27? cosha \a? o24n272) |

and thence that
¥ (x,z,n7/20) ~ ——m Jr2be‘(°‘x+"”/2)( - z2) as @ —> 00

for fixed z, n. Deduce further that, irn terms of the linear theory for ar invis-
cid fluid, an initial perturbation may become arbitrarily large after a long
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time although it ultimately decays like + 2 as 1 — oo. Is the flow stable
in the sense of Liapounov? What do you expect would happen in the
presence of nonlinearity? [Kelvin (1887, §§32-34), Orr (1907a), Craik &
Criminale (1986, p. 18).]
An apparent two-dimensional algebraic instability of a plane parallel
Couette flow of an inviscid fluid. Show that two-dimensional perturba-
tions of a basic flow of an incompressible inviscid fluid with velocity
U = U(z)i satisfy the linearized equations,

du’  dU v ouw 9g’

—8;‘+—£w =0, a-i—-é?-—o, — =0,
where W', p’ are assumed to be independent of x and where &’ = dw’/
dy — dv’/dz. Deduce that ¥'(y, z,t) = u'(y, z,0) — tU'(Q)w’(y, z, 0},
V(y, z,8) = vV(y,2,0), w (y,2,t) = w(y,z,0). [Ellingsen & Palm
(1975). See Exercise 8.25.]
Instability of parallel flows of an inviscid fluid. Verify that

ua=Ui+ Wk —-tU(y)k, p = constant,

satisfies Euler’s equations of motion and the equation of continuity of an
incompressible inviscid fluid. Deduce that the vorticity

w=Vxu=—tUGWx-—tU@)i-Wx—tU@)Nj— U k.

Now consider the stability of the basic flow with solution U = U (y)i
for —oo < y < 00 to perturbations with period 27 in x and z. Defining
the norm of a perturbation w’, p’ with period 27 in x and z as

2r o0 2r 2 ’ 1/2
||u'n=U dx[ dy[ &z (of +u')] ,
0 —00 0

show that there exist small initial perturbations of the basic solution such
that [[u’[| ~ constant x t as t — oo provided that U’ is square-integrable
and U not constant, and thence that the basic flow is unstable, whether or
not it has a point of inflection.

What does this tell us about our choice of definition of stability,
what about nonlinear perturbations, and what about the flow? [ Yudovich
(1989, p. 101).]

8.10 Instability of a broken-line plane jet of an inviscid fluid. Consider the

broken-line jet of an incompressible inviscid fluid in an unbounded
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plane parailel flow with the velocity profile,

0 ifz>1
Uz)=4{1 if —-1<z<l1
0 ifz<-—1.

(It is sometimes called a ‘top-hat’ jet, because of the shape of the graph
of U.) Show that the sinuous modes have eigenvalue relation,

(c + 1)*tanh || + ¢? = 0.

Deduce that the jet is unstable to waves of all lengths.

Find the eigenvalue relation of the varicose modes. [Rayleigh (1894,
pp- 380-381).]
Instability of plane Couette flow between two free surfaces. Consider
the basic parallel flow of an incompressible inviscid fluid with velocity
U@) = z for =1 < z < 1, where the surfaces with basic positions
z = %1 are free.

Show that ¢ satisfies the Rayleigh stability equation for —1 < z < 1
and (U —¢)¢' — U’¢p = 0 at 7 = £1. Deduce that

» (atanha — 1)(a — tanha)
- =

E

a?tanha

and thence that the flow is unstable if @ < a, where o ~ 1.2 is defined
as the positive root of ¢ tanh @ = 1.

Instability of a free shear layer. Show that if U(z)=tanhz for
—00 < z < 00, then Us = 0. Verify that the corresponding marginally
stable solution of the Rayleigh stability problem is

c=0, a=1, ¢ = sechz.

s I
do |, @

Infer that the normal mode is unstable for 0 < a < 1.

Symmetry: sinuous and varicose modes. Suppose that S: C*[~L,L] »>
C[—L, L]issuchthatS$ f, is an even function foralleven f, € C*[~L, L],
and S f, an odd function for all odd f, € C2[—L, L]. Deduce that if

Show that

Sfz)=0 Vze[-L,L], and f(*L)=0,
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then

(Sf)x) =0 Vzel-L,L], fo(£L) =0
and

8fo)2)=0 Vzel-L, L], fo(£L) =0,
where

fe@) =3f @+ f(-D), fo@) = 3[f@ ~ f(-DIVze[-L, L]

[Note that f, or f, may be identically zero.]

Show that if the operator T is defined by Tf = d? f/ dz? + A f for all
f € C%[—n, ], then T shares the symmetry properties of S above. Show
further that the problem

d%¢
—a—zj=)~¢’ o(Em) =0,
has eigensolutions A = A,,¢ = ¢, forn = 0,1,..., where &, =

F(n+1)2,
b (z) = cos(m + 3)z,  ¢am+1(2) = sin(m + 1)z.

Instability of the Bickley jet. Show that if U (z) = sech 2z for —oo < 7 < 00,
then Us = % Verify that the corresponding marginally stable solutions of
the Rayleigh stability problem are the sinuous mode

c=%, a=2, ¢=sech22,
and the varicose mode
c=%, a=1, ¢ = sechztanhz.

Infer that the jet is stable to all short waves with ¢ > 2 and unstable to
some long waves with o < 2.

The stabilizing effect of boundaries on a shear layer and on a jet of
an inviscid fluid. Consider the basic parallel flow of an incompressible
inviscid fluid with velocity U(z) between rigid boundaries at z = %L.
You are given that the flow is unstable to some temporally growing
infinitesimal perturbations if L = 0o and is stable in the limit as L — 0.
Show that, to calculate the value of L. such that the flow is unstable if
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L > L. and stable if L < L., it is sufficient to put o = 0 and solve the
boundary-value problem

” . U”

S U-Us

¢S=09

¢S:0 atZ=:1:Lc‘

Verify that ¢ = U — U is one solution of the equation.

(1) First suppose that U (z) = tanh z. To what range of wavenumbers is
the shear layer unstable when L = oo? Why is the flow stable in the limit
as L — 07 [Hints: Exercise 8.12, Exercise 8.37, Example 8.2.]

Next calculate L. [Note: L. is a root of a simple transcendental equa-
tion which need not be solved explicitly; a sketch showing that there exists
a unique positive root and an estimate of L. to one significant figure will
suffice.]

(ii) Calculate the corresponding value of L, when U(z) = sech 27 for

—~L < z < L. Indicate why you may assume in the calculation that ¢ is
an even function. Show that this symmetric jet with symmetric boundary
conditions remains unstable so long as the points of inflection remain
within the domain of flow. [Hint: Exercise 8.14.]
[After H. E. Huppert (private communication); Howard (1964).]
Marginally stable modes of an unbounded jet. Consider the Rayleigh
stability problem numerically for the jet with U(z) =sechz for
—00 < Z < 00.

(i) Show that

¢(2) ~ constant x e**  asz — —oo.

Deduce plausibly that the boundary condition that ¢(z) >0 as

z = —o0 is well approximated by taking ¢’ — a¢p = Oatz = —L

instead, where L is large, the approximation being better the larger L is.
(ii) Show that U” = (1 — 2U)U, Us = 27'/2, and thence that

¢! — [a2 - U(2U +2'%)]¢s =0,

¢s(z) > 0 asz—> too.

Show that ¢{(0)=0 for the sinuous mode and ¢s(0)=0 for the
varicose mode.

(iii) You may now compute the marginally stable sinuous mode by a
‘shooting method’ as follows. Your computing, from start to finish, should
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take less than an hour if you are already familiar with a suitable software
system having a package which integrates ordinary differential equations.

To determine oy for the sinuous mode, guess the value of s, take the
system

¢,=v, U =[al-UQU+2"?)]ps

with initial conditions
os(—L)y=eF,  u(-L)=ags(-L),

and integrate it from z = —L to z = 0 in order to evaluate ¢;(0).
Then, by trial and error or by correction (with, say, linear extrapolation),
repeat the process until the value of o has been found for which ¢(0)
is deemed sufficiently small. Show that this gives as = 1.465 for ‘large’
values of L.

(iv) Similarly, show that for the varicose mode a; = 0.646.
A nonlinear solution for a cat’s-eye pattern. Verity that

¥(x,z) = log[(1 + A2)1/2 coshz + Acosx]|
is an exact solution of Liouville’s equation,
Ay =,

for all A. Infer that this gives the streamfunction for an exact solution of
the vorticity equation of steady two-dimensional flow of an unbounded
incompressible inviscid fluid.

Sketch the streamlines for a ‘typical’ value of A, say A = 1. Deduce
that

¥(x, z) = log(coshz) 4+ Asechz cosx + O(A% asA— 0.

Hence relate the nonlinear solution above to the neutral stability of the
paralie] flow with U(z) = tanh z for —00 < 7 < c0.

Also deduce that, in the limit as A — oo, the solution represents the
flow due to an infinite set of equal line vortices of circulation —4s which
are spaced at a distance 27 apart on the x-axis and are paralle] to the
y-axis. [Schmid-Burgk (1965), Stuart (1967, §6), Lamb (1932, p. 224).]
Nonlinear wave modes for parallel flows of an incompressible inviscid
fluid. You are given that the vorticity equation of two-dimensional flow
of an incompressible inviscid fluid is

9 WD _

ar  Akx,y)
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where v is a streamfunction, the vorticity £ = Ay and the velocity com-
ponents are ¥ = —dy¥ /3y, v = Y /dx.
Show that if a solution has the form

Y(x,y,t)=F(X,y), where X =x-—ct
for some constant c, then f satisfies the nonlinear Poisson equation
AF = Q(F +cy), (E8.3)

for some function Q of integration.
Show that if F = W(y) is one solution of equation (E8.3) and Q is
differenti?ble, then

Q'(F +cy) = —K, (E8.4)

where K is defined by K (y) = —-U"(y)/[U(y) — cl.
Show further that if Q is a single-valued function, then either

(a) U is a constant;
(b) U is strictly monotonic and

c=U(y), (E8.5)

where y; is the unique point such that U” (ys) = 0 within the domain
of flow;

(c) equation (E8.5) is satisfied at all points ys; where U” (ys) = 0 within
the domain of flow; or

(d) c lies outside the range of U within the domain of flow.

Verify that

(a) if U(y) =siny for —%n <y< %n, then ¢ = 0;

b ifuU@y)y=1- y2 for —1 < y < 1, then no wave solution exists;

(c¢) if U(y) = sech?y for —0o < y < 00, then ¢ = %; and

(d) if U(y) =tanh y for —0o < y < 00, then ¢ = 0; unless c lies outside
the range of U.

Find the function Q explicitly in each of the above cases for which a wave
solution with the given value of c exists.

Next consider the wave solutions f, periodic in X, of equation
(E8.3) for the same function Q determined by a given parallel flow U.
[Barcilon & Drazin (2001)].

Cross-flow instability, that is, instability of a spiral flow. Consider the
basic flow of an incompressible inviscid fluid with velocity U(z) =
U (2)i+V (z)jbounded by rigid planes at z = z;, z2, where U, V are given
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functions. Linearizing Euler’s equation of motion, and taking normal
modes proportional to el@*+8Y=2¢) show that the stability of the flow is
governed by the eigenvalue problem,

(U - &)(D* — &) — U"db =0,

w=0 atz=z,22,

where D = d/dz, U = (aU + BV)/&, ¢ = ac/&, for @ =
((12 +ﬂ2)1/2 # 0.

Deduce that the stability of the flow is governed by the infinity
of Rayleigh stability problems for all real values of «, §, so that
some three-dimensional perturbation may be unstable when all two-
dimensional perturbations are stable. [See Gregory et al. (1955}.]

8.20 Rayleigh-Taylor instability of a stratified fluid and internal gravity waves.
You are given that the motion of an incompressible inviscid fluid of
variable density under the influence of gravity is governed by Euler’s
equations, an equation of state, and the equation of continuity, namely,

au
p(a +u~Vu) = —Vp — gpk,
d3p
ar
where g is the acceleration due to gravity, k is the unit vector in the
upward direction, and diffusion of density is neglected.
Show that the basic state of rest with

4+u-Vp=0 and V.-u=0,

p(x, 1) = p(2), p(x,t) = p(z),

gives a solution of the equations of motion if p(z) = po — g f Lh)de
for an arbitrary constant pg and p is continuously differentiable.

Taking u = @', v, w),p = p+ p’,p = p + p’, linearizing the
equations of motion for small perturbations, and taking normal modes
with w’ = W(z)el** =1 and so forth, show that

k2 +1%) dp
s+ dp

D(GDH) — (K2 + 2\ 56
(oDw) (k +l)pu) ) &

=0, (E8.6)
where D = d/dz.

Show further that if the flow is bounded by rigid horizontal plates at
7 =11, 22, then

w(z)=0 atz=z1,2. (E8.7)
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Recognizing that (E8.6), (E8.7) comprise a regular Sturm-Liouville
problem, show that there is instability if and only if dp/dz > 0 some-
where in the domain of flow. [Rayleigh (1883) discovered the results of
this exercise, so his name was attached to Rayleigh—Taylor instability
after Taylor’s (1950) work described in §3.7.]

Deduce that if the density is approximated by a constant except in the
buoyancy term, in accordance with the Boussinesq approximation, then

k2 2 =
LT

2 A ~
Dw — (k2 + 12)w 75 &

=0. (E8.8)

Show that if p = poe‘ﬂz for pg, B > 0, and z; = —o00, 72 = 00, then
the eigensolutions are

o2 = gB(k* + 1)
k2412 4 m? 4 32

W(z) = constant x eP/2+imz,

for all real k, I, m, representing a continuous spectrum of internal gravity
waves. Deduce that in the Boussinesq approximation W = constant x
e, w = £[gBKk? + 12)/(k? + 12 + m?)]'/2. [Rayleigh (1883, p. 174)
observed that ‘Contrary to what is met with in most vibrating systems,
there is (in the case of stability) a limit (in the case of stability) on the
side of rapidity of vibration, but none on the side of slowness.’]

The instability of a paralle! flow of a stratified fluid. Show that the basic
flow

u(x, 1) = U(), px, 1) = p(2), p(x,1) = p(2),

is a solution of the equations of motion of an incompressible inviscid
fluid of variable non-diffusive density under the influence of gravity if

Ui)=U@)i, p@)=po— gf p)de

for arbitrary constant pg and well-behaved functions U, p.
Considering only two-dimensional motion with

ux, ) =U@Ei+u'(x,z,1), u=ui+wk,

p(x,1) = p(2) + p'(x,2,0), p(x, 1) = p@) + p'(x,z,1),

linearizing the equations of motion for small perturbations, and taking
normal modes of the form

w'(x,z,t) = W(z)ek*—n



194 8 Stability of Parallel Flows

show that
(U—c)’[D(pDi)—k? pib)—(U —c)[D(sDU) i+ 5N%ib = 0, (ER.9)

where the buoyancy frequency N (sometimes called the BruntViisdla
frequency) of the basic fluid is defined by N2(z) = —g5’(z)/p(z), and
D= d/ dZ.

Show further that if the flow is bounded by rigid horizontal plates at
z = 71, 22, then

w=0 atz=z 2. (E8.10)

Deduce that if the density is approximated by a constant except in the
buoyancy term, in accordance with the Boussinesq approximation, then

2

U = o) (" —K*D) — U"d + »=0. (E8.11)

-c
This is called the Taylor-Goldstein equation. [In spite of equation
(E8.11)’s name, it is essentially due independently to Haurwitz (1931)
as well as Taylor (1931) and Goldstein (1931).]

8.22 The Miles~Howard sufficient condition for stability. Assuming the
Taylor—Goldstein problem (E8.11), (E8.10), define

H=1%/U —c)'/?

and show that

[zz [(U — o) (DH> + k*|H?)
¥

1
(1/4)U”? — N?

1
__UHHZ
+2 H|* + U—c

|H|2]dz =0.
Taking the imaginary part of this equation, deduce that if ¢; # 0, then

2 1
/ [(N2 - ZU’Z) + kAU - c|2]|H|2/|U —clfdz =0,
Z

1

and thence that the condition
N2(2) > JU(z) forzi<z=<z

is sufficient for stability of the basic flow. [Miles (1961), Howard
(1961), Drazin & Reid (1981, §44.3).]
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The Taylor-Goldstein equation for a three-dimensional basic flow. Show
that if a basic flow of a stratified inviscid incompressible fluid has veloc-
ity U(z) = U(2)i + V(2)j and density 5(z), then normal modes pro-
portional to el®*+y=k<) are, in the Boussinesq approximation, governed
by the equation

kU +1V — ke)[DXd — (k% +1%)d]

(k2 + 12)N2

KU1V —ke

— (U" + 1V +

0, (E8.12)

where D = d/dz and the usual notation is used.
Show that the generalization of the Miles—Howard sufficient condition
for stability is that if

(K + N2 > LkU' +1v')?

for z; < z < 73, then the flow is stable to the given mode.

The instability of swirling and stratified shear flows. Consider the sta-
bility of an axisymmetric swirling jet of an inviscid incompressible fluid
with basic velocity components

U =0, V({r), W)

in cylindrical polar coordinates (r, 8, z), and basic pressure P(r), and
density o(r), such that the flow is bounded by rigid cylinders at r = ry,
r2. Linearize the equations of motion for axisymmetric perturbations, take
a normal mode equal to the product of €%~ and a vector function of
r, and deduce that

D[3(W — ¢)°DsF] — pk*(W — ¢)*F + ®F =0, (E8.13)

where D = d/dr, D, = r~1Dr, ® = r 3D(5r?V?), F = i /ik(W — ¢)
and u, = i(r)e*@ <) is the perturbation of the r-component of the
velocity.

*Comment on the analogy between equation (E8.13) and the Taylor—
Goldstein equation (E8.9). Deduce that the swirling flow is stable if

®/DW)* > }

throughout the domain of flow. [Leibovich (1969, 1979).]
A three-dimensional instability of unbounded plane Couette flow of a
viscous fluid. Suppose that u(x, t) = n(t)z — {()y, v(x, 1) = —3£(1)z,
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w(x,?) = %E(r)y for some functions &, n, ¢. Show that V - u = 0 and the
vorticity @ = (£, 7, ¢). Deduce that this vorticity field is an exact solution
of the vorticity equation for a viscous incompressible fluid provided only
that

d 1 d
%€ _, n a _

Why does the viscosity not affect the dynamics?
Defining the perturbations &’ = &, ' = n—o, ¢’ = ¢ for some constant
basic shear o, and linearizing, show that
€ o, w1,
dr dr a2
Deduce that £'(s) = &'(0), /(1) = n/(0), ¢’ (1) = ¢’ (0) + 30&"(O), s0
that the perturbation grows linearly with ¢, and the basic flow U = ozi
appears to be unstable (although the initial velocity perturbation is not
bounded in space).

Further, show without linearization that £(f) = £&(0), n(?) =
n(0) cos[3£(0)] + ¢(0) sin[3£(0)7], and £(r) = £(0)cos[3&(0)r) —
n(0)sin[ 3£ (0], and that therefore the basic state € = 0,77 = 0,¢ = 0
is indeed unstable, although the perturbation is bounded for all time.
[Waleffe (1995). See Exercise 8.8.]

The energy equation. Show that if U = U(z)i for z; < z < z», then
the Reynolds—Orr equation (5.28) for a two-dimensional perturbation of
period 27 /e in x becomes

dK
— =M-R"N
dr

in dimensionless variables, where

22 27/ 1 ) )
K=f f —(u"* + w'?) dx dz,
z1 Y0 2
2 r2nja dau
= —~f f —u'w' dx dz,
2 0 dz
2 p2nfa g,/ ow' 2
v= [ (i_ "’)dxdz.
2 0 0z 0x

Hence deduce equation (8.54). Interpret the physical meanings of K, M
and N.
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8.27 Stability problem of the asymptotic-suction boundary layer. Verify that
the vorticity equation,

AAY) | AAY YY)
o T awn VAP

for two-dimensional flow of an incompressible viscous fluid is satisfied
by ¥ = W for z > 0, where

W (x, z) = Wox + Uplz + (v/ W) exp(—Woz/v)]

for arbitrary Uy, Wy, v. Deduce that this gives the basic flow U=
(U, V, W), where

U(z) = Up[l — exp(—Wpz/v)], vV =0, W(z) = ~Wp.

Taking ¥ = W + v/, linearizing, and assuming a normal mode of the
form ¥'(x, z, t) = ¢(z) explia(x — ct)], show that

v(¢iv_2a2¢//+a4¢) — ia[(U—c)(¢”—a2¢)—U”qb]—Wo(qb”’—aqu’),
where
() =¢'@)=0 atz=0, $(2),¢'(z) > 0 asz— oo.

[Hughes & Reid (1965). In fact, ¢ = 0.150 for R, = 54370, a. =
0.1555, on taking length scale L = v/ Wy so that the Reynolds number
is defined as R = Up/ Wp (Hocking, 1975).]

8.28 Squire’s transformation. First note that, given an unstable parallel flow,
Squire’s transformation shows that the relative growth rate of a mode
with wavenumbers (o, B) is o(«a, B, R) = aci(@, R/a), where ¢ =
@2 + B2,

Defining 62(R) = maxy>0 0 (@, 0, R), 03(R) = maxqy g>0 0 (@, B, R),
and oM = maxg,g,r>0 0 (2, B, R), and assuming that maxg>p 02(R) =
o (Rym), show that oy = 02(Rpy ), the maximum being attained for some
two-dimensional mode of wavenumber oy, say, at Reynolds number
Rm > R.. Assuming that o2(R) increases monotonically from zero to
om as R increases from R. to Ry, show that if R. < R < Ry, then
02(R) > 03(R), that is, the fastest-growing mode is two-dimensional, but
if R > Ry, then the fastest-growing mode might be three-dimensional.

[Watson (1960a). Of all the calculations made, none suggests that
there is some value of R for which the fastest-growing mode for some
basic flow is three-dimensional. In any event, Ry is usually so large
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that the flow is turbulent, and the theoretical possibility that the fastest-
growing linear mode is three-dimensional has no practical importance. In
fact, for plane Poisenille flow om =~ 0.6 at oy ~ 0.8, Rm =~ 50000.]

8.29 A simple exact solution of the Orr-Sommerfeld equation. Show that

the Navier—Stokes equations are invariant under the continuous group
of translations z +> z + & for all real §. Deduce that a continuously
twice-differentiable basic velocity U(z)i — U(z + 8)i = Ui +
U ()i + 0(8?%) as 8 — 0. Hence or otherwise show that a solution of
the Orr—Sommerfeld equation is givenby e = 8=0,¢ =U for all c, R,
provided that the basic flow is an exact solution of the Navier—Stokes
equations. Does this give an eigensolution?

8.30 Another simple exact solution of the Orr-Sommerfeld equation, for uni-

8.31

form flow. Show that if U = constant, then the general solution of the
Orr-Sommerfeld equation is

P(2) = A1e®* + Ase™ + Aze?? + Age™ V7,

where Aj, Ap, A3z, A4 are arbitrary constants and y? = a?+iaR(U —c).

[In fact the solution ' = e*¥¥271%¢! wheno = 0, ¢ # 0 corresponds
to Stokes waves due to an oscillating plane wall (see, e.g., Batchelor,
1967, §4.3).]
Stability of a uniform flow of an incompressible viscous fluid. Suppose
that an incompressible fluid of kinematic viscosity v has basic velocity
U, = Vi and is bounded by rigid planes (moving with the basic velocity

Vi) at z, = £L. Deduce that two-dimensional normal modes propor-
tional to e**~<) are governed by dimensionless eigenvalue relations

c=1-i(e?+ p2)/aR, 1 —i(e® + q?)/aR,
where R = VL /v and p,(x) are the positive roots of
ptan p = —¢tanha,
forn =0,2,4, ..., and g, () of
gcotg = a cothe,

forn =1, 3,5, .... Deduce that the flow is stable. [Rayleigh (1892).]
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8.32 Schensted modes. Assuming that the eigensolutions of the Orr—
Sommerfeld problem for —1 < z < 1 can be expressed as

(ool o0
¢ =Y (@R ¢P(),  c=GR) ) (aR) D
j=0 j=0

for sufficiently small @ R and fixed ¢/, and that term-by-term differentia-
tion is justified, show that

(D? — o + D) (D? - a?)p® =0
and
$Q@) =DpP(2) =0 atz==1.
Using the result of Example 8.6 for sinuous modes, assume that

coshaz cosppz

(V) " 2 ©) —
¢ =a+ py,, )= ,
Pn ¢ @ cosha  cos p,

forn=0,2,4,..., where p,() is the %(n + 2)th positive root of
atanha + ptanp = 0.

Show that p,(0) = 3 (7 4 2)x and thence find ¢©® and ¢ when o = 0.
Show that

(0 a4 YD =)o = [(U = D)~ o) - 0],

oD @) =DpW () =0 atz=%l.

Without solving this problem for ¢, deduce the solvability condition
1
f dQ@[(U - V) (D* - a?) —U")pP dz =0
-1
to determine ¢(.

Show that if U(z) = 1 — z2 and @ = 0, then

2 5
D= =

3 2p;

forn=0,2,4,....
[Pekeris (1936). Hint: f_ll cos ppzdz = 0, f_l1 cos? p,zdz = 1,
f_ll 72 cos pyzdz = 4 cos py/p2, f_ll 72 cos? pyzdz = % +1/2p2]
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A marginal curve. Suppose that the dispersion relation for a normal
mode proportional to e**+ s of the form F (e, s, R) =0 in some ‘toy’
problem, where R > 0 is a ‘Reynolds number’, and

F(@,s,R)=Rs+ (®R* —’R + 1) +iaR.

Then compute or sketch the marginal curve in the (R, o)-plane, and
show that R, = 48 (3)1/2 ~ 14.1.

Gaster’s transformanon Suppose that the dispersion relation for a nor-
mal mode proportional to e**5* is of the form

Fa,s,R)=0

where R is a Reynolds number, and F a complex dispersion function.
Then show that, for a temporal mode, the neutral curve in the (R, a)-
plane is defined by the roots of the pair of real equations,

Re[F (o, —iw, R)] =0, Im [F(x¢, —iw, R)] =0,

on regarding @ = is as a real parameter of the curve. Show that, for a
spatial mode, the neutral curve in the (R, w)-plane is defined by the same
pair of equations, on regarding « as a real parameter of the curve.
Taking s = o —iw, o = ar + iay, suppose that s is an analytic function
of o, use a Cauchy-Riemann relation, and deduce that for a spatial
mode
do

— = —Cy, E8.14
e Cg ( )

where the group velocity cg = dw/0a,. [This formula is useful, on eval-
uating do/da; where o; = 0, to find the relative growth rate «; of spatial
modes in terms of the temporal relative growth rate o near a marginal
curve, by evaluating the group (not the phase) velocity, and hence to
determine on which side of the curve instability lies.]
Suppose that for a particular model problem
du du BPu 9%

TR § Bl gu _p12H%
8t+ ax "+“ax ax2’

where @ > 0. Deduce that the dispersion function is
F,s,R)=s~1+0a? /R +ialU — iaa®

Then sketch the neutral curves in the (R, @)- and (R, w)-planes, and
verify Gaster’s transformation (E8.14). [Gaster (1962).]
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Decay of spatial modes. Show that the growth or decay in space of steady
perturbations of a basic parallel flow of a viscous incompressible fluid
with velocity U(z)i for —1 < z < 1 is governed by the eigenvalue
problem

¢iv _ 2a2¢// + a4¢ — iaR[U(qb” _a2¢) _ U”¢]v

where ¢ = ¢’ =0at z = £1.
Hence show that if R = 0, then either

cosoz zsingz

¢(z) = - — , sin 20 = —2«,
cos o sina
or
sinoz zcosaz .
$(2) = — - , sin2¢ = 2¢r.
sin ¢ cos
Deduce that ¢ = oy, o) forn =0, 1,2, ..., where

oy ™~ %(Zn +3)r + %ilog[(Zn 4+ 3] asn — oo.

[Wilson (1969). In fact, og & 2.10620 + 1.12536i, o; ~ 3.74884 +
1.38434i, op &~ 5.35627 + 1.55158i.]
*A less simple exact solution of the Orr—Sommerfeld equation, for plane
Couette flow. Show that if U(z) = z, then the general solution of the
Orr—Sommerfeld equation is

$(2) = A + Age™ 4 é f sinh{k(y — 2)12(») dy,

where
Q(y) = AsAi(w) + A4Bi(w),

Ay, As, A3z, A4 are arbitrary constants, Ai, Bi are Airy functions, and
w = e™/SR)/3(y — c —ia/R).

The stabilizing effect of boundaries. Is plane Couette flow of an incom-
pressible viscous fluid stable or unstable? For what values of the Reynolds
number?

Consider a given smooth parallel flow U of a viscous incompressible
fluid confined by rigid planes at z = zj, z2, and the limit as 2o — 73
for fixed U and Reynolds number; then what is the name of the well-
known flow that approximates U asymptotically within the domain of
flow? Deduce heuristically that @l smooth flows are stable in the above
limit. {Cf. Exercise 8.15.]
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8.38 The stability to short waves. Consider this argument. ‘A small localized

perturbation of a basic shear layer composed of short-wave components
is sensitive only to the local properties of the basic flow, because the influ-
ence of the perturbation decays exponentially and rapidly with distance
from the locality of the perturbation. Therefore the perturbation is locally
stable, as the plane Couette flow approximated locally by the basic flow
is.” If you believe this crude argument, substantiate it as well as you can;
if you disbelieve it, refute it.

8.39 *Boundary conditions for the Orr—Sommerfeld problem when the basic

velocity profile is discontinuous. Show that if U or U’ is discontinuous at
Z = 79, then a solution ¢ of the Orr-Sommerfeld equation satisfies the
‘jump’ boundary conditions

Algp] =0, A[D¢] =0, A[D%*¢ +iaR(U — c)¢] =0,

A[D’¢ —iaR{(U — c)D¢ — U'$}] =0

at 7 = z9, where D = d/dz. [Here A denotes the jump of the contents
of the brackets that follow, not the Laplacian operator.]

{Hint: Integrate the Or—Sommerfeld equation across the discontinuity
four times. It can be shown that although a discontinuous velocity profile
is incompatible with the equations of motion of a viscous fluid, the use
of a discontinnous profile in solving the Orr-Sommerfeld equation may
be justified as giving an approximate solution for long-wave modes of a
jet or shear layer. Drazin (1961).]

Hence show that if you take the basic vortex sheet with

1  forz >0,
-1 forz <O,

Uz) = {
then
Alp] =0, A[Dg]=0, A[(D*+8%)¢)=0, A[(D*-B*)D¢]=0
atz =0, where 82 = o + i R(U — ¢). Deduce that
G=0, R(1-3"%) =4(3"2-¢),

and thence that the marginal curve has equation

R =4 x 32y,
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and that
c~ —4ia¢/3R as Rja — 0.

[Tatsumi & Gotoh (1960).]
The adjoint Orr-Sommerfeld problem. Define the linear operator L. by

LL‘¢ = (D2 _ a2)2¢ i laR[(U _ C)(D2 _a2)¢ _ U//¢]

for complex ¢ and for all ¢ € S, for given U, R > 0,21 < z2,¢ > O,
where D = d/dz as usual, and where S is the set of all complex-valued
functions over the interval [z;, z2] with continuous fourth derivatives.
Deduce, by integration by parts, that

[ o az= [Tty [vrer - vt vy
| - Iw*’”cp — 202 (Y% — ¥*'¢)
—iaR{U — )('¥* ~ oy*) - U'py*}]?

for all ¢, ¢ € S, where the adjoint operator Lz is defined by

Liy* = (D? - &®)*y* +iaR[(D? — «?)(U — c*)y* — U"y*).

Suppose next that

Lp=0 and ¢()=D¢(z) =0 atz=12z1,22
determines an eigensolution c, ¢ of the Orr—Sommerfeld problem, and
Liy*=0, and y*@=Dy*@ =0 atz=2u,2

determines an eigensolution d, ¥ of the adjoint Orr—Sommerfeld prob-
lem. Deduce that either d = ¢* or

/-zz ¢(D2 - aZ)w* dz = 0.

1

[Note that
(D? — o?)*y = i R[(D? - &2)(U — D)y — U"Y],
V(@) =Dy(z) =0 atz=1z,2,

and that

22 22
7 007 ~a?)yraz = - f [(D$) DY) + o2py*] dz,
2

21 1
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on integration by parts and use of the boundary conditions. It is found
that in fact the set {d} of eigenvalues of L; above is the complex conju-
gate of the set {c} of eigenvalues of L., although the eigenfunctions are
not simply related. Hint: How is this exercise related to Exercise 5.97]

8.41 A numerical method of solution of the Orr-Sommerfeld problem for

spatial modes. Consider the Orr—~Sommerfeld problem for a spatial mode,
namely,

¢V —20%¢" +a*¢ = iR[(aU ~ w)(¢" — &?¢) —aU"¢],

p)=¢'@) =0 atz=2z,22,

where w = ac is a given real frequency of the mode.
Show that this problem is equivalent to

U u
d | u o?uy +usz
= = ,
dz U3 Ug

us —iaRU"uy +iR(aU — w)uz + o*u3

[Hint: Let u; = ¢, u3 = ¢” — a?¢.]

You are given that, by some spectral expansion of the eigenfunction,
this problem is reduced approximately to the algebraic eigenvalue
problem,

Ax = aBx + o*Cx,

where A, B, C are some n X n matrices (dependent on U, U”, w and
R) and x is an n-column vector (representing the eigenfunction u1).
Defining

y = ax

(3}

show that the algebraic problem implies the block matrix equations
A 0 r—a B C 2
0 I{" " [1 o
A -B - 6 C Z
o 1 |°T%I1 of"

and the 2n-column vector

and
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8.42 The Orr-Sommerfeld problem with a cross flow. Taking a basic velocity
U = U(2)i and normal modes of the form

w/(x’ t) — ﬁ)(z)eiu-x-wt
and so forth, where & = «ai + B8j, show that the Orr—Sommerfeld equa-
tion can be re-written as

(Dz—az) % =iR[(a - U— w)(D* — «?)d — a - (d*°U/dz?)d].

Hence or otherwise show that if the basic velocity is U = U(2)i +
V (2)j, then the linearized equation again has the above form.

8.43 A derivation of the Squire and Orr—Sommerfeld problems. Consider a
basic flow of a viscous incompressible fluid with velocity U = U(z)i
between fixed rigid planes at z = z1, z2. Takingu =U+vw/, p= P+ p/
in the usual way, linearize the Navier—Stokes equations and deduce that

2 2 ,,8w’ —1A2,.7
- — —RTA =0, E8.1
(8t+U8x) U = w =0, (E8.15)
0 ow’
% +U-—§ _rR'ar =02, (E8.16)
ot ay

where U” = d2U /dz? and the z-component of the vorticity of the pertur-
bation is £’ = 9v'/dx — du’/dy.
Show that the solution is a superposition of

(a) modes which are proportional to el®*+#Y—2¢h  for which c=
c(@?, aR) is an eigenvalue of the Orr—Sommerfeld problem

(D? - &)w' —iaR[(U — ¢)(D* —= &%) — U"]w’ =0,

w X, ) =Dw'(x,t) =0 atz=z,2,

where D = d/dz; and for which
[D? - & —iaRWU - o)]¢' =ipU'w/,

Jx, =0 atz=z,2;
and of
(b) modes which are proportional to el@*+By=wd) " for which d =
d(&%, aR) is an eigenvalue of the homogeneous Squire problem
[D? — & —iaR(U - )¢’ =0,

X, t)=0 atz=z,z;
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Show that if ¢’ = £ (z)e!@*+8Y=2d") for 3 Squire mode, then

£2)
/ [ID¢2 + (&2 + aRd:)|E 2] dz = 0.
2
Deduce that all the Squire modes are stable.
Stable equilibrium, yet with large perturbations. Find the general solution
of the system

(:i_? = —cA, (:1—13 =A—dB, A(0)=Ap, B(0)=By#0.

(i) Suppose further that ¢ = 2R~!,d = R™! for R > 0, and thence
show that max;»¢ | B(t)] = (RAg + Bo)?/AR|Aq| ~ ;R|Ag| as R > oo
for fixed Ao, Bo. Sketch the phase portrait.

[This models crudely the linear interaction of an Orr—Sommerfeld mode
of amplitude A and a Squire mode of amplitude B. Note how an initial
perturbation of an asymptotically stabie point of equilibrium may be
amplified very strongly when R is large. See Exercise 2.8 and Trefethen
et al. (1993).]

(ii) Next solve the initial-value problem for the differential system in
the special case when d = ¢. What is max;>¢ |B(#)| when ¢ = R ! and
R is large?

[This models the exceptional case of resonance between stable Squire
and Orr—Sommerfeld modes.]

Mothers and daughters. Consider this simple linear ordinary-differential
system as merely a ‘toy’ model of the evolution of two modes of ampli-
tudes Ay, Ajp:

dA
E=LA,

Al iw—oc+e€ in
A= , L= ) s
[Az:’ [ 0 iw— a]
for given real constants 0 > 0,¢ > 0, w,n. Show that the general
solution of this system can be written in the form

where

AN =0 [(1)] eCorerion 4 g [ 1 ]e(_”+i“’)'

ie/n

for some complex constants «, B.
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-[] ~-[]

and whimsically call them daughter and mother respectively. Then con-
sider the initial-value problems for which A(0) = d and A(0) = m. Show
that the respective solutions of these two problems are

Define the vectors

A(t) = de(—a-}-e—{-iw)t

and
A@t) = ine_ld(e“ _ l)e(—a-Hw)t + me(—a’+iw)t’

— intde"THO 4 (o HO a0 ¢ 5 0 for fixed 7.

On the basis of these results, explain Boberg & Brosa’s (1988) summary:
(1) a motherless daughter fades; (2) a mother must produce a daughter;
(3) a daughter grows as long as her mother lives.

*Apply this analogy to the large transient growth of modes in a stable
flow such as plane Couette flow or Poiseuille pipe flow. [Boberg & Brosa
(1988).]
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Routes to Chaos and Turbulence

Chaos is come again.
Othello 1 3, line 92

In this chapter, we shail draw together some general features of the onset
of chaos and turbulence. The theory of dynamical systems, and in particu-
lar the theories of bifurcation and chaos, provide a mathematical framework
with which we may interpret qualitatively the transition to turbulence without
having to clutter our minds with a lot of detail. This framework can be used
together with physical arguments of the mechanics of transition to understand
the essence of instability of flows which may be so complicated geometrically
as to defy solution except in numerical terms. However, the dynamics of fluids
is very diverse, and the details of transition to turbulence depend on the details
of the flow undergoing transition, and therefore can only be found by careful
experiments and computational fluid dynamics of each case.

9.1 Evolution of Flows as the Reynolds Number Increases

The details of transition to turbulence not only are complicated but also vary
greatly from flow to flow, so there is no possibility of a short summary of all
transition. However, there are some unifying themes in the theory, and a few
routes to turbulence essentially shared by many flows, even though the physical
mechanisms of the same route may differ from one flow to another sharing the
same route.

One major theme is that, as the Reynolds number (or Rayleigh number,
Taylor number or other parameter measuring the speed of a class of dynamically
similar flows with a given steady configuration) increases, the temporal and
spatial complexity of observed flows often increases in a succession of bifur-
cations until the onset of turbulence. Each bifurcation is marked by the onset
of instability of one flow and followed by equilibration to another stable flow,
steady or unsteady. This idea goes back to the theory of Landau (1944) and the
experiments of Malkus (1954), who interpreted in this way his measurements
of nonlinear Rayleigh-Bénard convection as the Rayleigh number increased.
The idea has been developed and refined by many others subsequently.

mn
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Let us then trace the evolution of stable flows in a given steady bounded
configuration as the Reynolds number R increases quasi-statically. When R = 0
there is Stokes flow, which is steady and unique. Serrin’s theorem shows that
when R is sufficiently small there is stable steady flow and it is the unique steady
flow. As R increases, other steady flows may arise. Benjamin (1976) has shown
(by use of Leray—Schauder degree theory) that there is in general (effectively
for all values of R except those where there is a bifurcation) an odd number
of steady flows. Thus turning points, transcritical bifurcations and pitchfork
bifurcations may arise to give multiple steady solutions at some values of R.
Some, all or none of these steady solutions are stable. For example, Benjamin
& Mullin (1982) observed 20 distinct stable steady sets of Taylor vortices in
one fairly short pair of rotating cylinders in different experiments with the same
angular velocities, and inferred the coexistence of 19 unstable steady solutions
—the set of steady stable Taylor vortices observed in a given experiment depends
upon how the experiment is set up, that is, what the initial conditions are and
how the angular velocities of the cylinders are made to reach their prescribed
values.

If, as R increases, a steady solution becomes unstable where Re(s) =0
and Im(s) =0, then we expect a turning point in general. Exceptionally a
transcritical bifurcation or a pitchfork bifurcation may occur; if the flow has
a reflectional symmetry, then a pitchfork bifurcation is to be expected. If,
however, Re(s) = 0 and Im(s) # O where a steady solution loses stability,
then we expect a Hopf bifurcation and the branching of either a supercritical
stable time-periodic solution for R > R, or a subcritical unstable time-periodic
solution for R < R.. An example of a supercritical Hopf bifurcation occurs
when the wake behind a bluff body becomes unstable and a vortex street forms;
another occurs when Taylor vortices become wavy. This shows the practical
importance of the validity or invalidity of the principle of exchange of stabilities,
although that principle may seem unimportant in the context of the linear
theory alone. The vanishing or not of Im(s) at marginal stability determines
whether the bifurcation is to a steady or time-periodic flow; weak nonlinearity
at marginal stability determines further the type of bifurcation, whether it is
supercritical or subcritical, and so forth.

After a supercritical Hopf bifurcation, the stable time-periodic flow evolves
as R increases further, and may itself eventually become unstable. The insta-
bility may be found mathematically by linearization for small perturbations of
the time-periodic flow and use of Floquet theory, which is to the instability
of periodic solutions of differential equations as the method of normal modes
is to the stability of steady solutions. Periodic solutions of differential equa-
tions are subject to parametric instability; as in the method of normal modes,
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parametrically unstable modes may have a new period of any value. But a
common type of parametric instability is due to subharmonic resonance, which
leads to unstable modes of double the period of the time-periodic flow. If this
instability leads to a supercritical bifurcation, then, as R increases further, in
general a stable quasi-periodic flow (that is, one with two or more fundamental
periods) will develop. This occurs, for example, when wavy Taylor vortices
become unstable. (Sometimes, with subharmonic resonance, a stable flow of
double the period of the original periodic flow may develop. This may occur
for Rayleigh-Bénard convection in tall cells.) As R increases further, more
instabilities and bifurcations may occur in which a stable flow with three
fundamental frequencies arises. Alternatively, or as R increases yet further,
chaotic flow may develop; for chaotic flow the Fourier spectrum shows not
sharp peaks at the fundamental frequencies but a broad band of frequencies,
and the correlation between the velocity at a given point at one time and
another diminishes rapidly as the time difference increases. (For the Fourier
spectrum we take the time series of a given flow quantity, for example a velocity
component at a given point, for a long time and take its Fourier transform to
find the strength of the component of each frequency.)

The stable flow following equilibration after the first bifurcation of a basic
flow as the Reynolds number increases is often called the secondary flow
in physical descriptions; and its instability at the second bifurcation as the
Reynolds number increases is often called secondary instability. Then the
basic flow before the first bifurcation would be called the primary flow and
the equilibrated flow after the primary instability the secondary flow. For
example, if the first instability leads to equilibration as a standing or trav-
elling wave, and that wave becomes unstable to side bands or some other
resonant wave interaction, then there is a secondary instability. Often the pri-
mary instability of a two-dimensional flow leads to equilibration as a stable
steady two-dimensional wave (more often quasi-steady in practice), but three-
dimensionality arises at the secondary instability, where the two-dimensional
symmetry is broken. The occurrence of a quasi-periodic flow following the
development of a periodic flow as a secondary flow at a Hopf bifurcation of the
basic flow is another common form of secondary instability, again exemplified
by the occurrence of wavy Taylor vortices.

Successive bifurcations usually follow one another after smaller and smaller
increments in the Reynolds number, so as to become indistinguishable in
practice. Nonlinear self-interactions of unstable modes generate harmonics and
nonlinear mutual interactions of modes generate subharmonics as well. So as
the temporal complexity of the flow increases in this sequence of bifurcations
when R increases, the spatial complexity usually increases as well. Motion
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occurs on smaller length scales and on a broader range of length scales. It
seems plausible that, for any given class of dynamically similar flows charac-
terized by a Reynolds number, when R is sufficiently large there is a unique
statistically stationary turbulent flow independent of the initial conditions; this
would be so if there were a unique attractor for sufficiently large values of R.

If a flow has some symmetries, then usually these are at first broken, one
by one, at bifurcations as R increases, and finally ‘mended’ on the onset of
turbulence such that the mean turbulent flow has all the symmetries (King &
Stewart, 1991); an example of this is the breaking of the symmetries of rotation
and translation of Couette flow between long coaxial cylinders. Indeed, Couette
flow is an excellent prototype of flows with sequences of bifurcations towards
transition as the Reynolds number increases; Coles (1965) and Fenstermacher
et al. (1979) have made classic experimental studies of it.

This description of transition from the point of view of the theory of dyna-
mical systems gives valuable insight, but it is at the risk of over-simplification,
and a complementary description of transition from a physical point of view
is vital. However, the physical mechanisms vary a lot from class to class of
basic flows. Also the mechanisms of transition for some basic flows, notably
parallel and nearly parallel flows, are subtle, and the practical realization of a
flow is often much more complicated than its model idealized by theoreticians.
So transition has to be described physically for each different class of basic
flows, and there is only a little more to be written generally.

Transition, especially for parallel or nearly parallel flows, by means other
than exponential growth of normal modes is called ‘bypass transition’, aconcept
recognized and a phrase coined by Morkovin (1969). Bypass transition may
be due to subcritical instability when there is no stable flow contiguous to the
basic flow in phase space at the prevailing value of the Reynolds number. It may
be due to instability to a finite-amplitude perturbation when the basic flow is
stable to all infinitesimal perturbations; for example, when the strong transient
growth of a small perturbation of a boundary layer leads to a streaky disturbance
elongated downstream which triggers rapid nonlinear amplification.

9.2 Routes to Chaos and Turbulence

We have just related how the transition to turbulence comes first as a sequence
of bifurcations. In the final stages of hydrodynamic instability there is onset
of chaotic flow with low degrees of freedom, for example, thermal convection
in a box heated from below. It is possible to classify roughly various types of
turbulence. ‘Phase turbulence’ with ahigh degree of freedom involves a range of
spatial scales as well as being chaotic in time, for example, thermal convection
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in a thin layer heated strongly from below. Classical ‘shear-flow turbulence’
is chaotic in time and space, involving a broad spectrum of wavenumbers yet
with a coherent spatial structure, for example, turbulence in a channel or a
pipe at fairly large values of the Reynolds number. Finally we meet turbulence
at very high values of the Reynolds number, which is chaotic in time and
space, with a very broad wavenumber spectrum such that on small scales the
flow is isotropic with an inertial range and a viscous cut-off, for example,
turbulence downstream of a grid in a large wind tunnel with fast flow. However,
hydrodynamic instability strictly concerns only the development up to the onset
of phase turbulence, so we will not consider the later states of transition further.

We have just discussed some routes to turbulence as the Reynolds number R
increases. Some order may be detected in the jumble of bifurcations. It seems
that there are only a few main routes to turbulence, or at least to chaotic flow.
So a brief summary with a few more details may help:

(1) Subcritical instability. On this route a stable flow, steady, periodic or quasi-
periodic, becomes unstable as R increases slowly through a critical value,
and the flow then ‘jumps’ rapidly to a turbulent one which is not a continuous
extension of the stable flow for smaller values of R. This occurs, for
example, at a pitchfork bifurcation with a negative Landau constant; then
there is nowhere nearby in phase space for the solution to go to, so it must
change substantially and may develop rapidly into turbulence (or it may
jump to another stable steady or time-periodic flow, with hysteresis if R
increases and then decreases). Such a development of turbulence has been
variously called “abrupt’, ‘fast’ and ‘savage’. We find for Poiseuille flow in
a pipe, plane Poiseuille flow, plane Couette flow and other channel flows
that there is such an abrupt onset of turbulence. For such flows this is often
called bypass transition.

(2) Ruelle—Takens—Newhouse route. This route was first mapped by Ruelle &
Takens (1971) and later revised by Newhouse et al. (1978) by use of the
theory of dynamical systems. Along this route, there is a succession of
bifurcations as R increases in which a steady flow may directly, or via other
steady flows, become time-periodic, then quasi-petiodic with two and then
perhaps three or even four frequencies, until a chaotic flow, which may
be regarded as ordered, if not fully developed turbulence, occurs. It seems
that quasi-periodic solutions with five or more fundamental frequencies are
not stable, and therefore such flows are not observed. As R increases, the
fundamental frequencies, say wy, @;, may vary and so become rationally
related, so that w;/w; is the ratio of two integers; then the frequencies
become ‘locked’, that is, the flow reverts to a periodic one and stays periodic
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as R increases further until it becomes unstable and a new quasi-periodic
flow arises. Thus w, /w1 may increase with R by ‘fits and starts’ until chaos
finally ensues.

This is a very common route for flows with the Landau constant positive,
for exampie, Couette flow between rotating cylinders and Rayleigh-Bénard
convection. It is a ‘slow’ transition by spectral evolution as one bifurca-
tion follows after another until eventually turbulence, or at least chaos,
ensues. Sometimes, as the Taylor number increases, chaos arises and then
is replaced by a quasi-periodic flow before turbulence eventually ensues.
Period doubling. Sometimes turbulence, or chaos rather, ensues after a
sequence of period doubling bifurcations as R increases. Here a sequence
of time-periodic flows occur at bifurcations, the period of one flow being
twice the period of the previous one. This has been observed in Rayleigh~
Bénard convection in a tall box by Libchaber & Maurer (1978), having been
predicted quite generally by Feigenbaum (1980) on theoretical grounds.
Intermittent transition. On this route, first mapped mathematically by
Pomeau & Manneville (1980), a periodic flow becomes unstable as R
increases through a critical value, the stable periodic flow first becoming
unstable to disturbances of smaller and smaller finite amplitude. At the
critical value R of R the stable periodic flow coalesces with an unstable
periodic flow (not observable, of course). For small positive R — R, the
same periodic solution appears to persist most of the time (although it
no longer corresponds to an exact solution of the governing equations),
but is occasionally and rarely interrupted by ‘bursts’ which are not small.
As R — R increases further, the bursts occur more frequently but do not
change much in magnitude. The average time between bursts tends to
infinity like (R — R.)~1/? as R — R, + . This theoretical idea also seems
to represent turbulent spots and relaminarization.

Exercises

What determines the critical value of the dimensionless parameter for onset
of instability 7 Consider the following physical argument that might be used
before calculating stability characteristics. “The dimensionless parameter,
such as a Reynolds or Rayleigh number, specifying a class of dynamically
similar flows usually represents a characteristic ratio of destabilizing and
stabilizing forces. So the critical value of the parameter for the onset of
instability of the basic flow which it specifies might be expected to be of the
order of magnitude of 1.” Of course there is no reason to expect the critical
value be exactly 1, because the definition of a dimensionless parameter
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is usually a little arbitrary. Yet, in the problems discussed in this book,
the critical values vary from zero to infinity, and many are of the order of
magnitude of a thousand. Why do such large critical values occur so often?

[This question is intended to provoke thought rather than evoke the
correct answer. It might be helpful to consider the changes of the critical
values of the Rayleigh number on replacing the horizontal planes z,+ = 0, d
by z« = 0, d in Chapter 6 on Rayleigh—Bénard convection.}
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For I have given you an example, that you should do as I have done
to you.
John xii 15

10.1 Synthesis
10.1.1 Introduction

The plan of this text has to been to describe the important general concepts
and methods of hydrodynamic stability in the opening chapters, and then to
apply them to selected flows in the later chapters. The flows have been selected
partly for their mathematical simplicity, partly for their historical importance
(and these two reasons are connected), and partly for their physical value.
Many of the resultant problems are very idealized; yet all of the problems
are much more widely applicable than their precise form might at first sight
suggest. The theory of Rayleigh—-Bénard convection, for example, may be used
to interpret not just instability of an infinite thin horizontal layer of fluid heated
below, but many convective instabilities of flows which locally resemble a
thin layer of fluid heated from below. The theory of Taylor vortices may be
used to interpret instabilities of flows with curved streamlines such that there
is a local centrifugal force. The theory of Gortler vortices can be applied to
interpret the local instabilities of flows whose streamlines are convex, so that
this mechanism is complementary to the mechanism of Taylor vortices, to be
applied when the streamlines or the wall ‘bend the other way’. The theory
of instability of parallel flows, with Rayleigh’s inflection-point theorem and
the Orr—Sommerfeld problem, may be used to interpret instabilities of flows
that are nearly parallel, at least locally; indeed, it has already been used to
interpret instabilities of boundary layers, jets and free shear layers. The use of
these idealized problems to interpret instabilities of more complicated flows
is valuable, but is not easy until one has a lot of experience of hydrodynamic
instability.

The classic problems of hydrodynamic stability have been posed and
solved partly because of their simplicity and partly because of their physical
importance. Their simplicity is due to their spatial and temporal symmetries,
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which lead to the relative tractability of the linear stability problems, involving
the solution of ordinary-differential rather than partial-differential eigenvalue
problems. Without this reduction to ordinary-differential systems, the problems
of hydrodynamic stability could not have been solved before the advent of
supercomputers around 1980. The simplicity of these linear problems, in turn,
makes tractable weakly nonlinear analyses of instability. However, eventually,
in the route of transition to turbulence as the Reynolds number, Rayleigh
number, or the like, increases from zero, there arise problems that can only
be solved by use of computational fluid dynamics. So the computer has been
the ‘engine’ of many recent advances in the subject. At the same time, an
vnderstanding of many mechanical concepts and simpler problems is valuable
to interpret the laboratory and computational results.

Without the ability to use simple problems of ordinary-differential equa-
tions as models, we have perforce to rely on laboratory and computational
experiments together with the qualitative theory of dynamical systems and
miscellaneous physical arguments. These arguments may use simpler prob-
lems of hydrodynamic stability, for which ordinary-differential models are
available, as local approximations.

Having written these general remarks, we follow with accounts of the insta-
bilities of two important flows for which the problems of linear stability may
easily be posed but may be solved only by the use of computational fluid
dynamics. The accounts will use whatever methods of investigation are avail-
able to further our understanding of the instabilities and transition to turbulence.

10.1.2 Instability of flow past a flat plate at zero incidence

The use of physical arguments and common sense is invaluable, but it may
occasionally lead to confusing conclusions when deep issues are involved. To
illustrate this, let us revisit the instability of Blasius’s boundary layer on a flat
plate, briefly putting the boundary layer in the context of the flow as a whole
(see Figure 10.1). Next look at Van Dyke (1982, Figs. 29-30) and Homsy
et al. (CD2000, Video Library, ‘Flow Past a Flat Plate’).

Consider then the idealized thought-experiment of the instability of the
steady two-dimensional flow of an infinite uniform stream of an incompressible
fluid of kinematic viscosity v with velocity V past a long thin flat plate of
chord length L at zero angle of incidence. By dynamical similarity, such
flows are characterized by a single dimensionless parameter, say the global
Reynolds number Re=VL/v. To be sure, there may be hidden variables
in a real experiment due to imperfections such as the non-zero thickness of
the plate, the shape of its leading and trailing edges, its curvature, the slight
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Figure 10.1 ~ Side view of the flow of a uniform stream past a flat plate at zero angle
of incidence when Re =10000: boundary layer and wake. (After Van Dyke, 1982,
Fig. 29; reproduced by permission of ONERA.)

inclination of the plate to the oncoming stream, the inlet and outlet conditions
of the finite wind tunnel, the compressibility of the air, the turbulence level
in the incident stream, or even the breakdown of the Navier—Stokes equations
at molecular length scales. But it is clear from the discussions in this book
that in the idealized experiment there will be a sequence of bifurcations as Re
increases from zero to infinity, beginning with a symmetric two-dimensional
flow as a globally stable attractor, leading to the primary instability (as in
Chapter 2), and ending with chaotic vorticity and strongly three-dimensional
turbulence. The evidence suggests that the first bifurcation is a supercritical
Hopf bifurcation. Perturbations in the wake and the boundary layer on the plate
are observed to propagate downstream, so it does seem plausible to consider
the wake and boundary-layer instabilities separately in many circumstances, at
least as a good approximation. So contrast the above global point of view with
the development of the theory of instability of parallel and nearly parallel flows
in Chapter 8. There /ocal arguments based on boundary-layer theory (which
is, of course, only valid if the global Reynolds number Re is large) were used
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to justify the application of the Orr—Sommerfeld problem without taking into
account the length of the plate at all.

In §8.8.5 a local Reynolds number R = (2V x,./v)1/2 based on the thickness
8 =2vxy/ V)1/2 of the boundary layer at a chosen station x, was used, and
a critical value of R =520 was found. How does this determine the criti-
cal value of the global Reynolds number Re? It would suggest that insta-
bility begins when the local Reynolds number at the trailing edge x, =L is
approximately 520, and so the critical value of Re is of order of magnitude
5202 /2 ~ 135 000. For a stream of velocity V = 1 m s~ at room temperature
and pressure, this gives marginal stability for a plate of length L ~ 0.14 m
if the fluid is water, or of length L = 2 m if the fluid is air. So much is
described at length in many textbooks on boundary-layer theory (e.g. Batchelor,
1967, §5.8).

Such an argument is admittedly crude, and should only be taken to give order-
of-magnitude estimates and qualitative mechanisms. It takes no account of
either the complicated structure of the boundary layer at the trailing edge of the
plate, or, more importantly, the wake downstream of the plate. The half-width
of the wake may be identified with the thickness of the boundary layer at the
trailing edge, and so is of the order of magnitude of (vL/ 2V)1/2 and the critical
value of the Reynolds number of a wake is about 4, the most unstable modes
being longish sinuous waves (see §8.7). Then the wake becomes unstable to
sinuous perturbations when V(2vL/ V)l/z/v & 4, that is, Re~ 8, a much
lower value than 135 000. This suggests that the instability of the flow around the
plate arises from the local wake instability with critical value Re = 8§, not from
Tollmien—Schlichting waves on the plate, and that the Tollmien—Schlichting
waves arise at much higher values of Re as merely a local instability. Visual
observations of the instability of the flow around the plate (Taneda, 1959) give
sinuous perturbations aft of the plate at a critical value of Re three or four
orders of magnitude less than 135 000, suggesting that the wake instability is
the mechanism of the first Hopf bifurcation of the flow as R increases from
zero. This is in accordance with the intuition from Chapter 8 that the inviscid
mechanism of instability of flows with points of inflection is much stronger than
the viscous mechanism of Tollmien—Schlichting instability of flows without.
However, the idealized experiment is not easy to approximate closely in the
laboratory, and it seems that no definitive critical value of Re has been deter-
mined yet. Also, it is clear from the wind-tunnel experiments of Schubauer
& Skramstad (1947), Klebanoff et al. (1962), Kachanov et al. (1975) and
many others that the local approximation of the Orr—Sommerfeld problem
does represent well the generation of an instability of flow of a low-turbulence
stream past a flat plate. For most of these experiments R >> Re, and we use
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the Orr—Sommerfeld theory not to find whether the flow is unstable so much
as where, why and how it becomes locally unstable. Near the leading edge
the flow is nearly stationary (due to the no-slip condition on the plate), so the
local Reynolds number is small and the flow is locally well approximated by
Stokes flow; it follows that the flow is locally stable (albeit not nearly parallel)
for some distance downstream of the leading edge. But as the boundary layer
thickens downstream, it becomes nearly parallel and at some station the local
Reynolds number reaches its critical value according to the Orr—Sommerfeld
problem, and we anticipate that instability grows downstream of that station or
thereabouts. Some of this is discussed in §8.5, but the details are complicated
and still an active topic of research.

*The apparent.paradox whereby the continuum of local modes of instability,
in the wake or the boundary layer, say, is related to the discrete global modes
of a flow as a whole was explained by Stone (1969) and Drazin (1974) for
some simple problems. They related the local modes of a slowly varying flow
to the global problem by use of the WKBJ approximation. Gent & Leach (1976)
applied this idea successfully to the baroclinic instability of flow in a differ-
entially heated rotating annulus by assuming that the flow was nearly parallel.
Later, Huerre & Monkewitz (1990) developed it and applied it powerfully to
many nearly parallel flows.

10.2 Transition of Flow of a Uniform Stream Past a Bluff Body

The instability of flow of a uniform stream past a bluff body is somewhat similar
qualitatively to that past a slender body, but the separation of the flow over a
bluff body leads to the development of a ‘proper’ wake whose cross-section
is comparable to the cross-section of the body perpendicular to the stream.
In aerodynamics, the boundary layer on a bluff body and its instability are
especially important because the position of a point of separation affects the
size of the wake, and hence the drag on the body. Indeed, instability is often
triggered, say by a trip wire to create perturbations of substantial amplitudes,
in order to make the boundary layer turbulent further upstream and thereby
reduce the adverse pressure gradient in the boundary layer, delay separation,
and thence reduce the drag. Let us look at two examples of flows of a uniform
steady stream of an incompressible viscous fluid past bluff bodies.

10.2.1 Flow past a circular cylinder

First let us study the instability of the flow of a uniform stream of an incom-
pressible viscous fluid about a circular cylinder. You cannot start the study
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Figure 10.2 The flow of a uniform stream past a circular cylinder at R = 140. The flow
is from left to right, and the vortex street in the wake of the cylinder is shown. (After
Van Dyke, 1982, Fig. 94; reproduced by permission of Professor Sadatoshi Taneda.)

better than by looking at a sequence of pictures of the flow as the Reynolds
number increases from zero. You might start by looking again at the pictures
in your favorite textbook on fluid dynamics (e.g. Batchelor, 1967, Figs. 4.12.1,
4.12.6, 5.11.4) and looking at Figure 10.2. See also Van Dyke (1982, pp. 4-5,
Figs. 6, 24, 40-48, 94-98), Nakayama (1988, pp. iii, X in colour, Figs. 1-9) and
Homsy et al. (CD2000, Video Library, ‘Flow Past a Cylinder’).

You may note that for very small values of the Reynolds number the flow
is symmetric fore and aft of the cylinder as well as ‘up and down’ in the
perpendicular direction. It looks not only steady but also very stable. When
the Reynolds number, say R = V D/v, where V is the velocity of the free
stream and D is the diameter of the cylinder, increases to about 1, the fore-
and-aft symmetry of the flow has been visibly broken. When R increases to
about 10, flow has visibly separated to form a pair of recirculating eddies in
the lee of the cylinder. As R increases further, the lines of separation move
upstream and the eddies grow longer as a wake, but the flow remains steady
and retains its up-and-down symmetry. However, as R increases to R., where
R: = 45, the flow becomes unsteady, the eddies beginning to oscillate. For a
stream of velocity V = 1 m s™! at room temperature and pressure, this gives
marginal stability for a cylinder of diameter L ~ 0.045 mm if the fluid is water,
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or of length L ~ 0.7 mm if the fluid is air. The onset of a time-periodic flow
indicates a supercritical Hopf bifurcation. As R increases further, vortices are
shed alternately from the separated streamlines above and below the cylinder,
forming in the wake what von Kdrmdn (1911) called a vortex street. The vortex
street has the symmetry of a travelling sinuous mode. So much is described
at length in many textbooks on boundary-layer theory (e.g. Batchelor, 1967,
§§4.12, 5.11) (see Figure 10.3). When R increases to about 200, a secondary
instability develops, as two-dimensionality is lost and the vortex street begins
to break up. When R becomes about 1000 the flow on, and upstream of, the
front of the cylinder still looks laminar, being smooth and fairly steady with
a recognizable boundary layer on the cylinder, but the flow in the wake is
turbulent, being chaotic, very three-dimensional and strongly diffusive. You can
see that the flow on the large scale still retains the character of a vortex street
without yet becoming completely disorganized, another example of a coherent
structure. As R increases further, the structure of the turbulence becomes finer.

Of course, flow properties of such spatial complexity cannot be easily
described by a few ordinary differential equations, so we have to depend upon
laboratory and numerical experiments to get quantitative results. However, we
can use calculations of the instability of the boundary layer on the cylinder as
well as the framework of the qualitative theory of bifurcations to gain some
insight into the experimental results. It must be recognized that no laboratory
experiment is exactly two-dimensional, and even a numerical experiment
cannot be over an unbounded domain of flow, so results of careful experiments
may depart a little from the ideal and vary a little among one another according
to the aspect ratio of the channel, conditions far from the cylinder, and so forth.
Bearing all this in mind, let us again go over the scenario as the Reynolds
number increases from zero. More detail will be given this time.

At R = 0 there is Stokes flow, which is unique, and therefore has all the
symmetries of the configuration — steadiness, two-dimensionality and up-and-
down symmetry; it is also time-reversible and so has fore-and-aft symmetry
as well. Serrin’s theorem shows that the flow is stable (although the theorem
strictly applies only to bounded flows) for small values of R > 0. For 0 <
R < R there is stable laminar steady two-dimensional flow with up-and-down
symmetry. Fore-and-aft symmetry is broken as R increases from zero and a
wake is formed, and the wake lengthens as R increases further. At R = R, the
primary flow becomes unstable at a Hopf bifurcation, where steadiness is lost.
The up-and-down symmetry at any given instant is broken, but the flow at one
instant is the mirror image in the centre plane of the flow half a period earlier.
Jackson’s (1987) numerical calculations of the linear stability characteristics
gave Rc =~ 46, whereas the laboratory experiments of Provansal ef al. (1987)
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Figure 10.3  Sketches of regimes of flow of a uniform stream past a circular cylinder.
(a) R < 1: unseparated flow, symmetric up and down, and not quite fore and aft.
() 6 < R < R; = 46: separated flow, symmetric up and down. (c) R =~ 50: time-
periodic vortex street. (d) R =~ 100: vortex shedding in two-dimensional unsteady flow.
(€) R > 100: turbulent three-dimensional flow. (After Jackson, 1987, Fig. 1.)

gave a range of values of R from 47 to 123 according to the aspect ratio of
the cylinder; both studies confirmed quantitatively some details of the Hopf
bifurcation in accordance with a complex Landau equation. Jackson’s (1987)
calculations of the streamlines at different times during one period of the flow
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Figure 104 Time-periodic flow past a circular cylinder. Streamlines at intervals of %
of the period when R is a little greater than R.. (After numerical calculations of Jackson,
1987, Fig. 13.)

for small R — R. > 0 are shown in Figure 10.4. For R; < R < R», say, there
is a stable laminar two-dimensional time-periodic flow with vortex shedding,
the trailing vortices forming a vortex street in the wake of the cylinder. The
period of the flow can conveniently be measured by the Strouhal number,
namely, St = fD/V, where f is the frequency of the vortex street. As R
increases, St increases slowly from about 0.13. At R =R, the secondary
flow itself becomes unstable, with the onset of three-dimensionality in
the vortex street. Experiments show that Ry &200. Williamson (1996) has
identified further regimes of flow in higher ranges of Reynolds number.
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At R ~ 260 another three-dimensional mode of instability in the wake arises.
As R increases further, the three-dimensional flow in the wake becomes
increasingly disordered, developing a finer-scale structure. At R ~ 1000 the
detached shear layers in the lee of where the flow separates from the cylinder
develop Kelvin—Helmholtz instability, which is principally two-dimensional.
The wake of the cylinder remains turbulent, but a coherent structure of a
vortex street endures. Williamson also identified the onset of local instability
in the boundary layers on the cylinder when R = 200 000. It can be seen that
even for such a seemingly simple flow there is a very complicated scenario of
instabilities and transition as the Reynolds number increases. The results of
the numerical and laboratory experiments do not fit any theory as closely as
a mathematician might wish, but the route to turbulence does seem to fit the
model of Ruelle-Takens—Newhouse.

Again, perturbations propagate downstream mostly, so that it makes sense to
talk of the instability of the boundary layer on the cylinder separately from the
instability of the wake. Indeed, the whole problem of instabilities of flows about
a bluff body is so intractable by methods other than numerical and laboratory
experiments, that it is very desirable to decouple the instabilities of the wake and
the boundary layers in order to gain some insight into transition. The boundary
layer on a curved body such as a cylinder is more complicated than Blasius’s
boundary layer on a flat plate because the pressure gradient varies downstream,
but it is found both observationally and theoretically that at high values of the
Reynolds number, separation on the cylinder occurs at angles +6 from the
fore stagnation point, where 6 = 80°. Now, by the theory of irrotational flow
about the cylinder, the flow external to the boundary layer on the cylinder is
2V sin 6 atangle § from the fore stagnation point. This gives crudely aboundary
layer of thickness of order of magnitude § = (vD8/ V)!/2. Therefore the local
Reynolds number reaches the critical value 520 at the two points of separation
when R = 135000, again, in rough agreement with observations.

10.2.2 Flow past a sphere

Next let us study the instabilities of the flow of a uniform stream past a sphere.
You might start by looking again at the pictures in your favorite textbook
on fluid dynamics (e.g. Batchelor, 1967, Figs. 4.12.8, 5.11.7). Next look at
the pictures of Van Dyke (1982, Figs. 7, 8, 26-28, 49-58) and Homsy et al.
(CD2000, Video Library, ‘Flow Past a Sphere’ and Boundary Layers, ‘Insta-
bility, Transition, and Turbulence’ with sub-subheadings ‘Flow over spheres:
effect of Re’ and ‘Tripping the boundary layer’). The scenario of the develop-
ment of instabilities as the Reynolds number increases from zero is reminiscent
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of the scenario for flow past a cylinder. But, when interpreting the pictures,
remember that the configuration of the flow past a sphere is axisymmetric, not
two-dimensional. So there is a steady secondary flow and, not a vortex street,
but a periodic shedding of ring vortices as the tertiary flow.

Again, define R = V L /v, where L is here the diameter of the sphere. When
R = 0 there is a unique stable steady Stokes flow, with fore-and-aft symmetry
as well as axisymmetry. For 0 < R « 1 there is again a unique stable steady
axisymmetric flow, but without fore-and-aft symmetry. Nakamura’s (1976)
visual observations suggest that there is separation with reversed flow aft of
the sphere, which begins when R & 7, and supercitical stability at the onset of
the primary instability at Re ~ 190, above which an unsteady secondary flow
forms. Kim & Pearlstein (1990) computed the basic steady flow, linearized the
Navier—Stokes equations, and computed the stability characteristics; they found
aprimary instability, at Re &~ 175, the most unstable mode being oscillatory and
having azimuthal wavenumber » = 1. However, Natarajan & Acrivos (1993)
similarly computed the stability characteristics; they found a primary instability,
governed by the principle of exchange of stabilities, at Re =~ 210, the most
unstable mode being steady, concentrated in the toroidal region of separated
flow immediately behind the sphere, and having azimuthal wavenumber » =
1. The next most unstable mode is oscillatory and becomes unstable when
Re =~ 277, which Natarajan & Acrivos suggested might be related to the onset
of vortex shedding at a secondary instability. Taneda (1978) reported visual
observations of the flow at higher values of the Reynolds number.

10.3 Transition of Flows in a Diverging Channel
10.3.1 Introduction

The flow of an incompressible viscous fluid driven steadily along a channel
poses a classic problem of fiuid mechanics, whose study goes back to the work
of Leonardo da Vinci in the fifteenth century. We will review the problem, or
rather range of problems, and its applications by use of the results of modern
laboratory experiments, numerical simulations and mathematical methods. Itis
valuable to have a general framework to help us understand the instability of all
flows in diverging channels, rather than only detailed laboratory and numerical
results for a few specific flows, which tell us only the properties of those specific
flows. Mathematical and physical ideas provide that framework both to interpret
laboratory and numerical experiments, and to motivate new ones. Sobey (2000,
Chap. 10) has described the basic steady flows in a diverging channel by use
of interactive boundary-layer theory and of numerical simulation, and also
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reviewed their bifurcations; their symmetry breaking is an example of what is
called the Coanda effect.

The theory of dynamical systems suggests that it is valuable to consider the
ensemble of dynamically similar flows as the Reynolds number R increases
from zero to infinity. Serrin’s (1959) theorem shows that there is a unique
steady solution when R is sufficiently small, and that it is a global attractor. As
the Reynolds number increases, a succession of bifurcations ensues, leading
towards chaos. Without identifying chaos with turbulence, we anticipate that a
chaotic attractor will represent turbulence when R is sufficiently large.

If the channel has mirror symmetry (and so is invariant under a Z, group
of transformations) in one or two planes, then first symmetry breaking and
later symmetry mending of the flow will be seen in the bifurcations as R
increases. Serrin’s theorem implies that the flow for a small value of R has
all the symmetries of the channel, and it is plausible that the mean turbulent
flow for any large enough value of R also has all the symmetries.

The power of these methods can be seen by applying them qualitatively to
interpret pictures of laboratory and numerical experiments (see Figures 10.5,
10.6 and 10.7). The occurrence of a supercritical pitchfork bifurcation and
symmetry breaking in these experiments is clear. There is evidence of a further
pitchfork bifurcation, with symmetry breaking in the spanwise direction and
thence the onset of strongly three-dimensional flow, in the laboratory experi-
ments of Sobey & Drazin (1986, Fig. 12).

10.3.2 Asymptotic methods

Asymptotic methods may be used if the channel has either nearly parallel walls
or nearly plane walls (that is, walls of small curvature), although neither case
covers the practically important sudden expansion in a channel with plane
parallel walls. In the former case the flow is locally like plane Poiseuille
flow, and the stability characteristics of small perturbations may be found, to
leading asymptotic order, by use of the Orr—Sommerfeld problem. This is the
classic approximation to the stability of nearly parallel flows such as Blasius’s
boundary layer, as discussed in §8.5. In the latter case the flow is locally like a
Jeffery—Hamel flow (see Example 2.5), and an analogous asymptotic approach
to the flow in a diverging or converging channel (Fraenkel, 1962, 1963) and
its stability (Sobey & Drazin, 1986) may be made. This application of the
assumption that the curvature of the channel walls is small might seem very
restrictive. Yet the gualitative results of the asymptotic theory are applicable
even when the curvature of the walls is not very small, so the theory of Jeffery—
Hame] flows is more important than appears at first sight.
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Figure 10.5 Numerical simulation of three steady two-dimensional flows through a
sudden expansion from left to right at a largish value of the Reynolds number (so large
that one would expect the asymmetric flows as well as the symmetric flow to be unstable).
(a) A symmetric flow (unstable). (b) An asymmetric flow. (c) The other asymmetric flow.
(After Alleborn et al., 1997, Fig. 8.)

(@ (b

Figure 10.6 The flow in a diverging channel. The steady flow of water, from left to
right mostly, is visualized by small particles. (a) A low value of R. (b) A five-times-
higher value of R. (After Nakayama, 1988, Figs. 114, 115; reproduced by permission
of Professor Masanobu Yamamusu.)

Recall from Example 2.5 the classic theory, by Jeffery and Hamel, of the
exact solutions of the Navier-Stokes equations which describe the steady
two-dimensional radial flow of an incompressible viscous fluid between rigid
plane walls. There is an infinity of such flows for each pair of values of the
governing dimensionless parameters, namely, the semi-angle o between the
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Figure 10.7 The flow through a diverging channel with plane walls with semi-angle
a = 10° at R = 300. The steady flow of water, from left to right mostly, is visualized
by a line of hydrogen bubbles produced at eight one-second intervals at each of four
stations. (After Nakayama, 1988, Fig. 105; reproduced by permission of Professor
Yasuki Nakayama.)

two inclined walls and the Reynolds number
R=0/2y,

where Q is the volume flux per unit length of the line source at the intersection
of the walls. The primary Jeffery—Hamel solution, which is symmetric and
becomes plane Poiseuille flow for @« =0, was shown to have a subcritical
pitchfork bifurcation with symmetry breaking as R increases, for fixed o # 0,
through a critical value, called Ry (o).

There are severe technical difficulties in the problem of stability of Jeffery—
Hamel flows, because it is not possible to separate all the spatial variables as
well as time and thereby reduce the linear stability problem to an ordinary-
differential system. Eagles (1966) used the approximation (mentioned at the
beginning of this section) of nearly parallel flow to investigate the stability
of a Jeffery—Hamel flow to temporal normal modes in the limit as & — 0.
Assuming a locally parallel flow at any given station, he found, by solving
the Orr—Sommerfeld problem, that increase of o from zero (when the Jeffery—
Hamel flow is simply plane Poiseuille flow) to a small positive value is strongly
destabilizing. This destabilization is due entirely to the change of the basic
velocity profile, because Eagles neglected the divergence of the streamlines.
However, Banks et al. (1988, §5) have questioned the conceptual basis of using
standard normal modes in a sector without excluding the regions correspond-
ingtor =0, co.
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Dean (1934) found that there is also a separable linear ordinary-differential
eigenvalue problem for steady two-dimensional spatial modes, on taking a
mode with perturbation streamfunction of the form

¥'(r,6) = Re[r*¢(@®)]. (10.1)

Here r, 8 are plane polar coordinates, and A, ¢ are to be found as an eigenso-
lution. It follows that the mode grows or decays in space like exp[Re(A) log r]
while it oscillates sinusoidally like exp[i Im (1) log r]. The eigenvalue problem
may now be shown, by taking ¥ = W+’ and linearizing the vorticity equation
(2.4) for small perturbations ¥, to be

= R[(x —2)W/ (9" + 1%¢) —2W"¢/ — AW"9], (10.2)

6@ =¢'®) =0 atd = +a, (10.3)

where W is the streamfunction of the basic flow and a prime here denotes
differentiation with respect to 6. We call this the Dean problem. There are two
countably infinite families of eigenvalues A with corresponding eigenfunctions
¢. The real part of A gives the algebraic rate of growth or decay of the mode
as a function of r. A condition of spatial stability seems (Banks ef al., 1988)
to be that no disturbance grows down- or upstream, so that Re(d) < 0 for
all modes of one family and Re(A)>2 for all modes of the other family
for given W, R, «. (Although stability has been defined in terms of temporal
growth of small perturbations, a flow is sometimes said to be spatially stable
if all steady small perturbations decay spatially.) This gives a criterion for
instability to steady two-dimensional perturbations, but, of course, tells nothing
about temporally oscillating perturbations, that is, about normal modes not
governed by the principle of exchange of stabilities. It also tells nothing about
three-dimensional perturbations. Banks ef al. (1988) found in this way that
divergence of the fiow is a strongly destabilizing influence but convergence
strongly stabilizing. Compare the two photographs in Figure 10.8.

However, McAlpine & Drazin (1998) satisfied the linearized vorticity equa-
tion for unsteady two-dimensional flow asymptotically for large r by taking
modes of the form

¥'(r,8,1) = Relexp[ik(a™ logr — ct/a*r?)] (1)}, (10.4)

where y=6/a. The motivation for their assumption, that the exponent is
inversely proportional to the square of r as well as proportional to ¢, is the
need to balance the terms 8¢/3¢ and A¢’ in the vorticity perturbation equation
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Figure 10.8 (&) The flow in a sudden contraction. (b) The flow in a sudden expansion.
(After Nakayama, 1988, Figs. 112, 113; reproduced by permission of Professor
Masanobu Yamamusu.)

(where [’ is the perturbation vorticity). Also the scaling of ¢ by the factor o?
is convenient in order to derive later the Orr—Sommerfeld equation smoothly
in the limit as  — 0. This separated solution does not satisfy the linearized
vorticity equation exactly, but satisfies it asymptotically as r — oo for fixed
t, y. It follows that

V= [k + &+ 22 £ + K2k + 2ia)? f
= iR{[(k + 2i)U — kcl(f" — k> f) — kU" f
+2iaU’ f' + 4iake(k + i) f}, (10.5)

where now a prime denoctes differentiation with respect to y and U is defined
by U(y) = ad\¥¥(6)/db. Also the boundary conditions give

fO=r(=0 aty==l. (10.6)

Note that when ¢ = 0 and we identify A = ik/a, equation (10.5) is equivalent
to the Dean equation (10.2), and when « = 0 it reduces to the Orr—Sommerfeld
equation,

=242 f" + K f = ikR[U - o)(f" — K2 f) - U"£]. (10.7)

Further, note that equation (10.4) gives a classic Orr—Sommerfeld mode of the
form

¥'(r, 8, 1) =Re[e* O~ £ (3)]

in the limit as @ — 0 for fixed dimensionless downstream distance x = (r —
ro)/arp and local half-width ary of the channel at station r = ro. Thus this
generalizes the Orr—Sommerfeld and Dean stability problems for channels with
nearly plane walls.
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McAlpine & Drazin (1998) solved the eigenvalue problem (10.5), (10.6)
numerically in a few cases, and confirmed the earlier conclusions of the strong
stabilizing influence of convergence and the strong destabilizing influence of
divergence in a channel. In this problem the Tollmien—Schlichting waves of
the Orr-Sommerfeld problem change continuously into the Dean modes as
the wavenumber of the perturbation decreases, and are thereby linked with the
pitchfork bifurcation of Jeffery—Hamel flows. Also the results elucidate the
great change in the mechanism of instability due to even slight nonparallelism
of the channel walls.

10.3.3 Some paradoxes

By applying the theory of Jeffery—Hamel flows to a channel with nearly plane
walls, Sobey & Drazin (1986) suggested that the first bifurcation with symmetry
breaking occurs when R = R, where

Re ~ Ry(4 maxla() + ().

o, B are here defined as the angles that the tangent planes to the channel walls
at station x make with the (x, z)-plane, the x-axis is directed down the channel,
and the z-axis spanwise. (Recall that R; is the value of R where the symmetric
flow first becomes unstable, at the pitchfork bifurcation of Jeffery—Hamel
flows.) This criterion for stability seems to have some support from numerical
experiments, though no experiment has been designed to test the criterion when
itshould be valid (for channels with walls of very small curvature). The theory of
spatial stability (Banks et al., 1988) suggests that, when R > R, Saint-Venant’s
principle breaks down, whereby small steady perturbations of the flow at either
the inlet or the outlet may have substantial effects on the flow in the whole
channe). This conclusion is supported by the numerical resvlts of Dennis et al.
(1997). It suggests that experimentalists should specify carefully their inlet
and outlet conditions, because these conditions may strongly influence their
observations, and so need to be known to repeat the experiments.

Yet for R > R, there is no symmetric or asymmetric Jeffery—Hamel flow
to represent the observed steady channel flows (see Figure 10.5(b)). Further,
Jeffery—Hamel flows exhibit their first instability and symmetry breaking at
a subcritical pitchfork bifurcation, whereas laboratory and numerical exper-
iments exhibit their first instability and symmetry breaking at a supercritical
pitchfork bifurcation, although these experiments have not been made for small
semi-angles o between the walls of the channel. Hamadiche ez al. (1994) made
a specific numerical investigation of this instability for Jeffery-Hamel flow in
a channel which is a sector bounded by arcs of small and large radii, and found
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instability at a supercritical Hopf bifurcation for a range of values of . These
remarks suggest that Jeffery—Hamel flows are irrelevant to flow in a channel if
R > R..

Again, plane Poiseuille flow is well known, by solving the Orr—~Sommerfeld
problem, to have a subcritical Hopf bifurcation at a Reynolds number R ~
3848. (Note that the Reynolds number defined here is two-thirds of the Reynolds
number defined in §8.7, and % x 5772 = 3848.) However, the corresponding
approximate Jeffery—~Hamel flow has been shown, by solving the Dean problem,
to have a subcritical pitchfork bifurcation when R =3848 if the semi-angle
o is 0.07 degrees. This is a very small angle, not far above the tolerance
to be expected in the manufacture of a channel designed to have parallel
walls. McAlpine & Drazin (1998) have gone some way to synthesize these
two distinct modes of instability associated with the Orr—Sommerfeld and
Dean problems, but do not explain why a supercritical pitchfork bifurcation
occurs in a diverging channel. One might add that it is plausible that if the
walls of a channel are nearly parallel, that is, if max,[o(x) + 8(x)] K 1, then
there is a Hopf rather than a pitchfork bifurcation, but there is no experiment
and no theory at present to describe this qualitative change of behaviour as
max, [ (x) + B(x)] decreases to zero.

10.3.4 Nonlinear waves

Tutty (1996) discovered some remarkable waves in a numerical study of some
steady two-dimensional flows in a channel, composed of a main section with
plane walls (as in a Jeffery—Hamel flow), but with more complicated inlets and
outlets. At a few pairs of values of the semi-angle o between the plane walls
and of the Reynolds number R, he found flows which seem to be approximately
periodic in log r for a long distance r downstream (Tutty, 1996, Figs. 7-10).
Such a steady wave has a streamfunction which depends on r as well as 6,
coexisting with some Jeffery—Hamel flows, whose streamfunctions depend only
on §. It would seem from Tutty’s numerical experiments that these waves are
stable, at least to two-dimensional steady perturbations at the appropriate values
of o, R.

Kerswell et al. (2002) have elucidated these steady strongly nonlinear two-
dimensional wave perturbations of Jeffery—~Hamel flows by numerical cal-
culations. They have unfolded their complicated bifurcation structure by a
path-following method. Note that a short train of similar waves is observed
(see Figure 10.5(b)) to develop, as the Reynolds number increases above its
critical value for the first symmetry-breaking bifurcation, downstream of the
expansion sections of channels in other experiments we have noted. So Tutty
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waves mark an interesting advance from Jeffery—Hamel flows and their instabil-
ities towards chaos and transition to turbulence in flow in a diverging channel.

10.3.5 Conclusions

In summary, it may be said that we have described substantial progress in the
understanding of the early stages of transition of channel flows made during
the last two decades, but that understanding of the later stages is still poor. This
progress makes it practical to interpret qualitatively the chief properties of flow
in a wide variety of channels, provided that the Reynolds number is not large.
The ideas described illustrate more generally the challenge of understanding
the instability of nonparallel flows. Indeed, these problems of bifurcation and
instability of channel flows comprise an instructive case study of hydrodynamic
stability.

Exercises

10.1 The instability of a wake and formation of a vortex street. You are given
that the steady two-dimensional flow of a uniform stream of a viscous
incompressible fluid about a bluff body forms a wake, which becomes
unstable at a Hopf bifurcation as the Reynolds number increases above
a critical value. The bifurcated flow is seen at moderate values of the
Reynolds number as a vortex street shed from the rear of the body as a
pair of staggered rows of vortices (with equal and opposite circulation
when the body is symmetric about a plane parallel to the uniform stream)
which propagates steadily downstream.

Von Karman (1911) modelled a vortex street in the wake of a sym-
metric body as irrotational flow of an inviscid fluid about /ine vortices of
circulation « at points (ma + Vt, 1b) and —« at (n+)a+ Ve, —1b)in
the (x, y)-plane, for m, n = 0, £1, £2, ... for given constant distances
a, b > 0 and some steady velocity V.

Using the theory of plane irrotational flow, show that the velocity of
von Karmdn’s vortex street is given by

V = (7« /a)tanh(wh/a).
Deduce that the unsteady flow has period a2 /7« tanh(b/a) in time

as well as a in the x-direction. Sketch the streamlines at t = 0. [Lamb
(1932, §156).3
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10.2 *Instability of a vortex street. Taking the vortex sheet in Exercise 10.1

above as the basic flow, let the vortices be displaced to (ma + Vit +
Xm» %b+ym), ((n+ %)a +Vi+x,, —%b-i—y,’,). Show (by Floquet theory
of instability of periodic solutions, if you know it) that it is plausible that
each linear perturbation is a superposition of modes of the form

Xm = aeim(b, Ym = ﬁeimgb, x’/’ — a/ein(b, y’; — ﬁ/ein(b,
where 0 < ¢ < 27 without loss of generality, and «, ¢/, 8, B’ are some
functions of ¢. [If ¢ = 0, the mode has the same x-wavelength a as the
basic flow; if ¢ = 7, the mode is a subharmonic, but the phase change ¢
of a mode over the wavelength a may be any angle.]

Assuming two-dimensional irrotational flow about the line vortices,
linearizing the infinite system of ordinary differential equations which
governs the coordinates of each vortex in the two rows of vortices with
respect to small displacements, show that

2 4 24
?——a- =-Aﬁ—‘B(¥/—Cﬁ/$ a__'é:_Aa_Ca/+Bﬂ/s
K dt K dt
2d ! 2d /
“_ﬁzAﬁ/_Ba+cﬁ, fl—i:Aa’+Ca+Bﬂ,
Kk dt k dt
where

A=1o@n — ¢) — 7’sech?(km),
B=i[n¢sinhk(w — ¢)sech (k) 4 % sinh(kp)sech (k)]
C=n? cosh(k¢)sech2(kn) — ¢ coshk(m — ¢)sech (km),

and k = b/a.

Prove that the above mode may be expressed as the sum of two types
of independent modes, a symmetric mode with o’ = a, 8/ = —8 and
antisymmetric mode with o’ = —o/, 8/ = B. Taking «, 8  e*’, show
that

a’s/k = B+ (A% - )2,

for the antisymmetric mode, and that a similar formula (with B
replaced by — B) governs the symmetric mode. Deduce that the vortex
street is exponentially unstable unless b =k.a precisely, where k. =
=1 cosh™1(271/2) = 0.2806. [Lamb (1932, §156).]
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10.3 *Evolution of small perturbations of a Jeffery—Hamel flow in space and
time. The vorticity equation for two-dimensional motion of a viscous
incompressible fluid is

¢ 196, ¥) _
a rae)

where y is the streamfunction, the vorticity ¢ = —A1r and the Laplacian
is A = 9%/9r% + 8/rdr + 82/r296? in terms of plane polar coordinates
(r, 6). Taking small two-dimensional perturbations of a radial flow, put

VAL,

¥ =300+, (E10.1)

where W(6) is a solution of the Jeffery-Hamel problem (see Example
2.5), linearize the vorticity equation and the boundary conditions at fixed
rigid walls & = +q, and show that

a; RdV oy  RAWay' 2Rd*W jy’

AL’ —_—t At =— ———, (E10.2

¢= at + r d@ or +r3 de3 or + r* d0? 96 ( )
1///

Y(r,6,1) = (r, 6,H)=0 at 0= +q, (E10.3)

where the vorticity perturbatlon is ¢’ = — Ay, the Reynolds number is

defined as R = Q/2v and dimensionless variables are used (see Exercise
2.13).
Taking modes of the form

¥'(r, 6, 1) = Relexp[ik(a ™" logr — ct/a®r?)| f(»)},  (E10.4)

where y = 8/a, k is a real wavenumber and ¢ a complex velocity, show
that

IV = [k + (ke +2i)] £ + Kk + 2i)* f
= iR|[(k + 2i)U — ke}(f" — k*f) —kU" f
+2iaU’ f' + diake(k +ia) f) (E10.5)

in the limit as r — oo for fixed ¢, and that

fO)=f(y)=0 aty==+l, (E10.6)

where U(y) =ad¥(0)/d0 and a prime now denotes differentiation
with respect to y. Verify that the Orr—Sommerfeld equation follows
if « =0 and the Dean equation (E2.4) if ¢ =0. [McAlpine & Drazin
(1998).]
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varying with temperature, 121

Swift-Hohenberg model, 116

symmetric mode, 153, 189

symmetry breaking, 13, 21, 51, 210, 211,

221,226,232
system, Lorenz, 114, 115

Taylor number, 126
Taylor vortices, 127

weakly nonlinear theory of, 128
Taylor-Goldstein equation, 194, 195
temporal mode, 200
theorem

semicircle, 147

Serrin’s, 8, 84, 91, 208, 224, 226

Squire’s, 156
theory, Floquet, 209, 234
thermohaline instability, 122
Tollmien’s solutions of Orr—-Sommerfeld

equation, 165

Tollmien—Schlichting wave, 168, 173, 174
top-hat jet, instability of, 187
toy problem, 12
transcritical bifurcation, 12, 20, 35, 209
transfer of energy, 82
transformation

Galilean, 53, 69, 73, 87, 147

Gaster’s, 200

Squire’s, 141, 156, 197
transition

by period doubling, 213

bypass, 5, 176, 177, 211, 212

intermittent, 213

to turbulence, 130, 176, 208, 212
triangular jet, instability of, 153
triple deck, 166
turbulence, 1, 4, 116

clear-air, 54

phase, 212

route to, 11, 212

shear-flow, 212

transition to, 130, 208, 212
turbulent burst, 4
turbulent spot, 4
turning point, 12, 20, 35, 209

unbounded shear layer, marginal curve for,
170

uniform flow, stability of, 91, 198

uniform flow in a channel, stability of, 167

uniform rotation, stability of, 91
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uniformly rotating fluid, stability of, 91
upper branch of marginal curve, 166, 170

valleys, 174
variation of surface tension with
temperature, 121
variational principle, 92, 114
varicose mode, 66, 153, 168, 169,
187-189
velocity
group, 70, 72, 73, 86, 87, 200
phase, 50, 51
Venetian-blind mechanism of
instability, 184
vibrating ribbon, 159, 173
viscous solution of Orr—Sommerfeld
equation, 164
vortex sheet, 202
instability of, 47, 53, 151
vortex street, 221, 224, 233, 234
Kérmén’s, 233

Index

vortices
Gortler, 131
lambda, 174
Taylor, 127

wake
instability of, 169, 219
marginal curve for, 170
wall mode, 170, 182
wave
internal gravity, 50, 192, 193
surface gravity, 50
Tollmien—Schlichting, 168, 173, 174
wave packet, 75, 87
waves
stability to short, 202
wind generation of, 46
weakly nonlinear stability, 74
weakly nonlinear theory of Taylor vortices,
128
WKBJ approximation, 159, 164, 219






