Given：Common substances

Tar
＂Silly Putty＂
Modeling clay
Wax
sand
Jello
Toothpaste
Shaving cream

Some of these substances exhibit characteristic is of solids and fluids under different conditions．

Tar，wax，and Jello behave as Solids at room temperature or below at ordinary pressures．At high pressceres or over long periods， the y exhibit fluid characteristics．At nigher temperatures，all three liquify and become viscous fluids．

Mode ling clay and silly putty show flue id behavior when sheared slowly．However，they fracture under suddenly applied stress， which is a characteristic of solids．

Toothpaste behaves as a solid when at rest in the twee．When the tube is squeezed hard，toothpaste＂flows＂out the spout，showing fluid behavior．Shaving cream behaves similarly．
Sand act solid when in repose（a sand＂pile＂）．However，it＂flows＂ from a spout or down a step incline．

Problem 1.2

Given: Five basic conservation laws stated in Section 1-4. Write: A word statement of each, as they apply to a system.

Solution: Assume that laws are to be written for a system.
(a) Conservation of mass - The mass of a system is constant by definition.
(b) Newton's second law of motion - The net force acting on a system is directly proportional to the product of the system mass times its acceleration.
(c) First law of thermodynamics - The change in stored energy of a system equals the net energy added to the system as heat and work.
(d) second law of thermodynamics - The entropy of any isolated system cannot decrease during any process between equilibrium states.
(e) Principle of angular momentuen - The net torque acting on a system is equal to the rate of change of angular momentum of the system.

Open-Ended Problem Statement: Consider the physics of "skipping" a stone across the water surface of a lake. Compare these mechanisms with a stone as it bounces after being thrown along a roadway.

Discussion: Observation and experience suggest two behaviors when a stone is thrown along a water surface:
(1) If the angle between the path of the stone and the water surface is steep the stone may penetrate the water surface. Some momentum of the stone will be converted to momentum of the water in the resulting splash. After penetrating the water surface, the high drag* of the water will slow the stone quickly. Then, because the stone is heavier than water it will sink.
(2) If the angle between the path of the stone and the water surface is shallow the stone may not penetrate the water surface. The splash will be smaller than if the stone penetrated the water surface. This will transfer less momentum to the water, causing less reduction in speed of the stone. The only drag force on the stone will be from friction on the water surface. The drag will be momentary, causing the stone to lose only a portion of its kinetic energy. Instead of sinking, the stone may skip off the surface and become airborne again.

When the stone is thrown with speed and angle just right, it may skip several times across the water surface. With each skip the stone loses some forward speed. After several skips the stone loses enough forward speed to penetrate the surface and sink into the water.

Observation suggests that the shape of the stone significantly affects skipping. Essentially spherical stones may be made to skip with considerable effort and skill from the thrower. Flatter, more disc-shaped stones are more likely to skip, provided they are thrown with the flat surface(s) essentially parallel to the water surface; spin may be used to stabilize the stone in flight.

By contrast, no stone can ever penetrate the pavement of a roadway. Each collision between stone and roadway will be inelastic; friction between the road surface and stone will affect the motion of the stone only slightly. Regardless of the initial angle between the path of the stone and the surface of the roadway, the stone may bounce several times, then finally it will roll to a stop.

The shape of the stone is unlikely to affect trajectory of bouncing from a roadway significantly.

[^0]Open-Ended Problem Statement: The barrel of a bicycle tire pump becomes quite warm during use. Explain the mechanisms responsible for the temperature increase.
Discussion: Two phenomena are responsible for the temperature increase: (1) friction between the pump piston and barrel and (2) temperature rise of the air as it is compressed in the pump barrel.

Friction between the pump piston and barrel converts mechanical energy (force on the piston moving through a distance) into thermal energy as a result of friction. Lubricating the piston helps to provide a good seal with the pump barrel and reduces friction (and therefore force) between the piston and barrel.

Temperature of the trapped air rises as it is compressed. The compression is not adiabatic because it occurs during a finite time interval. Heat is transferred from the warm compressed air in the pump barrel to the cooler surroundings. This raises the temperature of the barrel, making its outside surface warm (or even hot!) to the touch.

Given: Tank to contain 15 kg of O_{2} at $10 \mathrm{MPa}, 35^{\circ} \mathrm{C}$.
Find: Tank volume and diameter if spherical.
Solution: Assume ideal gas behavior.

Basic equations: $p=\rho R T \quad(p=a b s o l u t e$ pressure $)$

$$
\rho=\frac{m}{\forall}
$$

Substituting, we obtain $p=\frac{m R T}{\forall}$, so

$$
\forall=\frac{m R T}{p}
$$

From Table $A .6, R=259.8 \mathrm{~N} \cdot \mathrm{~m} / \mathrm{kg} \cdot \mathrm{k}$, so

$$
\begin{aligned}
& \forall=15 \mathrm{~kg} \times 259.8 \frac{\mathrm{~N} \cdot \mathrm{~m}}{\mathrm{~kg} \cdot \mathrm{~K}} \times(273+35) \mathrm{K}_{\times} \frac{\mathrm{m}^{2}}{\left(10 \times 10^{6}+101 \times 10^{3}\right) \mathrm{N}} \\
& \forall=0.119 \mathrm{~m}^{3}
\end{aligned}
$$

For a sphere, $\forall=\frac{4}{3} \pi R^{3}=\frac{1}{6} \pi D^{3}$, so

$$
D=\left[\frac{6 \forall}{\pi}\right]^{\frac{1}{3}}=\left[\frac{6}{\pi} \times 0.119 \mathrm{~m}\right]^{\frac{1}{3}}=0.61 \mathrm{~m}
$$

Problem 1.6

Make a guess at the order of magnitude of the mass (e.g., $0.01,0.1,1.0,10,100$, or 1000 lbm or kg) of standard air that is in a room 10 ft by 10 ft by 8 ft , and then compute this mass in lbm and kg to see how close your estimate was.

Solution

Given: Dimensions of a room.

Find: Mass of air in lbm and kg.

The data for standard air are:

$$
\mathrm{R}_{\mathrm{air}}=53.33 \cdot \frac{\mathrm{ft} \cdot \mathrm{lbf}}{\mathrm{lbm} \cdot \mathrm{R}} \quad \mathrm{p}=14.7 \cdot \mathrm{psi} \quad \mathrm{~T}=(59+460) \cdot \mathrm{R}=519 \cdot \mathrm{R}
$$

Then

$$
\begin{aligned}
& \rho=\frac{\mathrm{p}}{\mathrm{R}_{\mathrm{air}} \cdot \mathrm{~T}} \\
& \rho=14.7 \cdot \frac{\mathrm{lbf}}{\mathrm{in}^{2}} \times \frac{1}{53.33} \cdot \frac{\mathrm{lbm} \cdot \mathrm{R}}{\mathrm{ft} \cdot \mathrm{lbf}} \times \frac{1}{519 \cdot \mathrm{R}} \times\left(\frac{12 \cdot \mathrm{in}}{1 \cdot \mathrm{ft}}\right)^{2} \\
& \rho=0.0765 \frac{\mathrm{lbm}}{\mathrm{ft}^{3}} \quad \text { or } \quad \rho=1.23 \frac{\mathrm{~kg}}{\mathrm{~m}^{3}}
\end{aligned}
$$

The volume of the room is

$$
\mathrm{V}=10 \cdot \mathrm{ft} \times 10 \mathrm{ft} \times 8 \mathrm{ft} \quad \mathrm{~V}=800 \mathrm{ft}^{3}
$$

The mass of air is then

$$
\begin{aligned}
\mathrm{m} & =\rho \cdot \mathrm{V} \\
\mathrm{~m} & =0.0765 \cdot \frac{\mathrm{bm}}{\mathrm{ft}^{3}} \times 800 \cdot \mathrm{ft}^{3} \quad \mathrm{~m}=61.2 \mathrm{lbm} \quad \mathrm{~m}=27.8 \mathrm{~kg}
\end{aligned}
$$

Problem 1.7

A tank of compressed nitrogen for industrial process use is a cylinder with 6 in . diameter and 4.25 ft length. The gas pressure is 204 atmospheres (gage). Calculate the mass of nitrogen in the tank.

Given: Data on nitrogen tank

Find: Mass of nitrogen

Solution

The given or available data is:
$\mathrm{D}=6 \cdot \mathrm{in}$
$\mathrm{L}=4.25 \cdot \mathrm{ft}$
$\mathrm{p}=204 \cdot \mathrm{~atm}$
$\mathrm{T}=(59+460) \cdot \mathrm{R}$
$\mathrm{T}=519 \mathrm{R}$
$\mathrm{R}_{\mathrm{N} 2}=55.16 \cdot \frac{\mathrm{ft} \cdot \mathrm{lbf}}{\mathrm{lb} \cdot \mathrm{R}}$ (Table A.6)

The governing equation is the ideal gas equation

$$
\mathrm{p}=\rho \cdot \mathrm{R}_{\mathrm{N} 2} \cdot \mathrm{~T} \quad \text { and } \quad \rho=\frac{\mathrm{M}}{\mathrm{~V}}
$$

where V is the tank volume $\quad \mathrm{V}=\frac{\pi}{4} \cdot \mathrm{D}^{2} \cdot \mathrm{~L}$

$$
\mathrm{V}=\frac{\pi}{4} \times\left(\frac{6}{12} \cdot \mathrm{ft}\right)^{2} \times 4.25 \cdot \mathrm{ft}^{2}=0.834 \mathrm{ft}^{3}
$$

Hence

$$
\mathrm{M}=\mathrm{V} \cdot \rho=\frac{\mathrm{p} \cdot \mathrm{~V}}{\mathrm{R}_{\mathrm{N} 2} \cdot \mathrm{~T}}
$$

$$
\begin{gathered}
\mathrm{M}=204 \times 14.7 \cdot \frac{\mathrm{lbf}}{\mathrm{in}^{2}} \times \frac{144 \cdot \mathrm{in}^{2}}{\mathrm{ft}^{2}} \times 0.834 \cdot \mathrm{ft}^{3} \times \frac{1}{55.16} \cdot \frac{\mathrm{lb} \cdot \mathrm{R}}{\mathrm{ft} \cdot \mathrm{lbf}} \times \frac{1}{519} \cdot \frac{1}{\mathrm{R}} \times 32.2 \cdot \frac{\mathrm{lb} \cdot \mathrm{ft}}{\mathrm{~s}^{2} \cdot \mathrm{lbf}} \\
\mathrm{M}=12.6 \mathrm{lb} \quad \mathrm{M}=0.391 \text { slug }
\end{gathered}
$$

Given: Air at standard conditions $-P=29.9$ in $\mathrm{Hg}, T=59{ }^{\circ} \mathrm{F}$ Uncertainty: in p is ± 0.1 in. Hg , in T is $\pm 0.5^{\circ} F$ Note that 29.9 in Hg corresponds to Mi I psia
Find: a) air density using ideal gas equation of state. (b) estimate of uncefainty in calculated value.

Solution:

$$
P=\frac{-p}{R T}=14.7 \frac{1 b f}{i n^{2}} \times \frac{1 b^{\circ} R}{53.3 f .15 f} \times \frac{1}{519 R} \times \frac{144 i i^{2}}{\mathrm{ft}^{2}}
$$

$$
p=0.0765 \mathrm{ibn} / \mathrm{ft}^{3}
$$

\qquad
The uncertainty in density is given by

$$
\begin{aligned}
& u_{p}=\left[\left(\frac{p}{\rho} \frac{\partial P}{\partial p} u_{p}\right)^{2}+\left(\frac{T}{\rho} \frac{\partial p}{\partial T} u_{T}\right)^{2}\right]^{1 / 2} \\
& \frac{p}{p} \frac{\partial p}{\partial p}=R T \frac{1}{R T}=\frac{R I}{R T}=1 ; u_{p}=\frac{0.1}{29.9}= \pm 0.334^{\circ} b . \\
& \frac{T}{\rho} \frac{\partial p}{\partial T}=\frac{T}{\rho}\left(-\frac{p}{R T}\right)=-\frac{p}{p R T}=-1 ; \quad u_{T}= \pm \frac{0.5}{460+59}= \pm 0.096 .63_{0}
\end{aligned}
$$

Then

$$
\begin{aligned}
& u_{p}=\left[\left(u_{p}\right)^{2}+\left(-u_{t}\right)^{2}\right]^{1 / 2}=\left[(0.334)^{2}+(-0.0963)^{2}\right] \\
& \left.u_{p}= \pm 0.348^{\circ}\right)_{0}\left(\pm 2.66 \times 10^{-4}\left(b_{n} /{f t^{3}}^{3}\right)\right.
\end{aligned}
$$

Given: Air at pressure, $P=759 \pm 1 \mathrm{~mm} \mathrm{Hg}$ and temperature, $T=-20 \pm 0.5^{\circ} \mathrm{C}$
Noble that 759 mm thy corresponds to la tia.
Find: (a) our density using ideal gas equation of state b) estimate for uncertainty in calculated value.

Solution:

$$
p=\frac{-p}{R T}=101 \times 10^{3} \frac{N}{N^{2}} \times \frac{\mathrm{kg} \cdot \mathrm{k}}{281 N . M} \times \frac{1}{253 \mathrm{k}}=1.39 \mathrm{~kg} / \mathrm{m}^{3}
$$

The uncertainty in density is gwen by

$$
\begin{aligned}
& u_{p}=\left[\left(\frac{p}{p} \frac{\partial p}{\partial p} u_{p}\right)^{2}+\left(\frac{T}{p} \frac{\partial p}{\partial T} u_{T}\right)^{2}\right]^{1 / 2} \\
& \frac{p}{\rho} \frac{\partial p}{\partial p}=R T \frac{1}{R T}=1 ; u_{p}=\frac{ \pm 1}{159}= \pm 0.132^{\circ} l_{0} \\
& \frac{T}{P} \frac{\partial p}{\partial T}=\frac{T}{p}\left(-\frac{p}{R T^{2}}\right)=-\frac{p}{\rho R T}=-1 ; u_{T}=\frac{ \pm 0.5}{273-20}= \pm 0.198^{\circ} 6 .
\end{aligned}
$$

Then

$$
\begin{aligned}
& u_{p}=\left[\left(u_{p}\right)^{2}+\left(-u_{t}\right)^{2}\right]^{1 / 2}= \pm\left[(0.132)^{2}+(-0.198)^{2}\right]^{1 / 2} \\
& u_{p}= \pm 0.238^{\circ} b\left(\pm 3.31 \times 10^{-3} \mathrm{~kg}\left(\mathrm{~m}^{3}\right)\right.
\end{aligned}
$$

Problem 1.10
Given: Standard American golf ball: $m=1.62 \pm 0.010 z$ (20 to 11)

$$
D=1.68 \pm 0.01 \mathrm{in} .\left(20 t_{0} 1\right)
$$

Find: (a) Density and specific gravity.
(b) Estimate uncertainties in calculated valuer.

Solution: Density is mass per unit volume, so

$$
\begin{aligned}
& \rho=\frac{m}{\forall}=\frac{m}{\frac{4}{3} \pi R^{3}}=\frac{3}{4 \pi(D / 2)^{3}}=\frac{m}{\pi} \frac{m}{D 3} \\
& \rho=\frac{6}{\pi} \times 1.620 z \times \frac{1}{(1.68)^{3} \mathrm{in}^{3}} \times \frac{0.4536 \mathrm{~kg}}{1603} \times \frac{1 \mathrm{~N}^{3}}{(0.025)^{3} \mathrm{~m}^{3}}=1130 \mathrm{~kg} / \mathrm{m}^{3}
\end{aligned}
$$

and

$$
S_{G}=\frac{p}{p_{H_{2} \mathrm{O}}}=1130 \frac{\mathrm{~kg}}{\mathrm{~m}^{3}} \times \frac{\mathrm{m}^{3}}{1000 \mathrm{~kg}}=1.13
$$

The uncertainty in density is given by

$$
\begin{aligned}
u_{\rho}= & \pm\left[\left(\frac{m}{\rho} \frac{\partial \rho}{\partial m} u_{m}\right)^{2}+\left(\frac{D}{\rho} \frac{\partial \rho}{\partial D} u_{D}\right)^{2}\right]^{1 / 2} \\
= & \frac{m}{\rho} \frac{\partial \rho}{\partial m}=\frac{m}{\rho} \frac{1}{\forall}=\frac{\forall}{\forall}=1 ; u_{m}= \pm \frac{0.01}{1.62}= \pm 0.617 \text { percent } \\
& \frac{D}{\rho} \frac{\partial \rho}{\partial D}=\frac{D}{\rho}\left(-3 \frac{6}{\pi} \frac{m}{D .4}\right)=\frac{\pi D^{4}}{6 m} \cdot\left(-3 \frac{6}{\pi} \frac{m}{D^{4}}\right)=-3 ; u_{D}= \pm 0.595
\end{aligned}
$$

Thus $u_{\rho}= \pm\left[\left(u_{m}\right)^{2}+\left(-3 u_{D}\right)^{2}\right]^{1 / 2}$ percent

$$
\begin{aligned}
& = \pm\left\{(0.617)^{2}+[-3(0.595)]^{2}\right\}^{1 / 2} \\
u_{\rho} & = \pm 1.89 \text { percent }\left(\pm 21.4 \mathrm{~kg} / \mathrm{m}^{3}\right) \\
u_{3 G} & =u_{p}= \pm 1.89 \text { percent }(\pm 0.0214)
\end{aligned}
$$

Finally,

$$
\begin{aligned}
& \rho=1130 \pm 21.4 \mathrm{~kg} / \mathrm{m}^{3}(20 \text { to } 1) . \\
& S G=1.13 \pm 0.0214(20 \text { to } 1)
\end{aligned}
$$

Given: Mass flow rate of water determined by collecting discharge over a timed interval is $0.2 \mathrm{~kg} / \mathrm{s}$.
scales can be read to nearest 0.05 kg .
Stopwatch can be read to nearest 0.2 s .
Find: Estimate precision of flow rate calculation for time intervals of (a) 10 s , and (b) 1 min .

Solution: Apply methodology of uncertainty analysis, Appendix F:
Computing equations: $\dot{m}=\frac{\Delta m}{\Delta t}$

$$
u_{\dot{m}}= \pm\left[\left(\frac{\Delta m}{\dot{m}} \frac{\partial \dot{m}}{\partial \Delta m} u_{\Delta m}\right)^{2}+\left(\frac{\Delta t}{\dot{m}} \frac{\partial \dot{m}}{\partial \Delta t} u_{\Delta t}\right)^{2}\right]^{1 / 2}
$$

Thus

$$
\frac{\Delta m}{\dot{m}} \frac{\partial \dot{m}}{\partial \Delta m}=\Delta t\left(\frac{1}{\Delta t}\right)=1 \quad \text { and } \quad \frac{\Delta t}{\dot{m}} \frac{\partial \dot{m}}{\partial \Delta t}=\frac{\Delta t^{2}}{\Delta m}\left[(-1) \frac{\Delta m}{\Delta t^{2}}\right]=-1
$$

The uncertainties's are expected to be \pm half the least counts of the measuring instruments.

Tabulating results:

A time interval of about 15 seconds should be chosen to reduce the uncertainty in results to ± 1 percent.

Given: Pet food can

$$
\begin{aligned}
& H=102 \pm 1 \mathrm{~mm}(20 \text { to } 1) \\
& D=73 \pm 1 \mathrm{~mm}(20 \text { to } 1) \\
& m=397 \pm 1 \mathrm{~g}(20 \text { to } 1)
\end{aligned}
$$

Find: Magnitude and estimated uncertainty of pet food density.
Solution: Density is $\rho=\frac{m}{\forall}=\frac{m}{\pi R^{2} H}=\frac{4}{\pi} \frac{m}{D^{2} H}$ or $\rho=\rho(m, D, H)$
From uncertainty analysis

$$
u_{\rho}= \pm\left[\left(\frac{m}{\rho} \frac{\partial \rho}{\partial m} u_{m}\right)^{2}+\left(\frac{D}{\rho} \frac{\partial \rho}{\partial D} u_{D}\right)^{2}+\left(\frac{H}{\rho} \frac{\partial \rho}{\partial H} u_{1+}\right)^{2}\right]^{\frac{1}{2}}
$$

Evaluating, $\frac{m}{\rho} \frac{\partial \rho}{\partial m}=\frac{m}{\rho} \frac{4}{\pi} \frac{1}{D^{2} H}=\frac{1}{\rho} \frac{4 m}{\pi D^{2} H}=1 ; u_{m}=\frac{ \pm 1}{397}= \pm 0.252 \%$

$$
\begin{aligned}
& \frac{D}{\rho} \frac{\partial \rho}{\partial D}=\frac{D}{\rho}(-2) \frac{4 m}{\pi D^{3} H}=(-2) \frac{1}{\rho} \frac{4 m}{\pi D^{2} H}=-2 ; u_{D}=\frac{ \pm 1}{73}= \pm 1.37 \% \\
& \frac{H}{\rho} \frac{\partial \rho}{\partial H}=\frac{H}{\rho}(-1) \frac{4 m}{\pi D^{2} H^{2}}=(-1) \frac{1}{\rho} \frac{4 m}{\pi D^{2} H}=-1 ; \quad u_{H}=\frac{ \pm 1}{102}= \pm 0.980 \%
\end{aligned}
$$

substituting

$$
\begin{aligned}
& u_{p}= \pm\left\{[(1)(0.252)]^{2}+[(-2)(1.37)]^{2}+[(-1)(0.980)]^{2}\right\}^{1 / 2} \\
& u_{p}= \pm 2.92 \text { percent } \\
& \forall=\frac{\pi}{4} D^{2} H=\frac{\pi}{4} \times(73)^{2} \mathrm{~mm}_{\times}^{2} 102 \mathrm{~mm}_{\times} \frac{\mathrm{m}^{3}}{10^{9} \mathrm{~mm}^{3}}=4.27 \times 10^{-4} \mathrm{~m}^{3} \\
& \rho=\frac{m}{\forall}=\frac{397 \mathrm{~g}}{4.27 \times 10^{-4} \mathrm{~m}^{3}} \times \frac{\mathrm{kg}}{10009}=930 \mathrm{~kg} / \mathrm{m}^{3}
\end{aligned}
$$

Thus $\rho=930 \pm 27.2 \mathrm{~kg} / \mathrm{m}^{3}$ (20 to 1)

Given: Standard British golf ball :

$$
\begin{aligned}
& M=45.9 \pm 0.39(20 \text { to } 1) \\
& D=41.1 \pm 0.3 \mathrm{~mm}\left(20 t_{0}\right)
\end{aligned}
$$

Find: (a) Density and specific gravity
(b) Estimate of uncertainties in calculated valves.

Solution:
Density is mass per unit volume, so

$$
\begin{aligned}
& \rho=\frac{m}{y}=\frac{m}{\frac{4}{3} \pi R^{3}}=\frac{3}{4 \pi} \frac{m}{(2 / 2)^{3}}=\frac{6}{\pi} \frac{m}{>^{3}} \\
& \rho=\frac{6}{\pi} \times 0.0459 \mathrm{~kg} \times \frac{1}{(0.0411)^{3} m^{3}}=1260 \mathrm{~kg} / m^{3}
\end{aligned}
$$

and

$$
S G=\frac{f}{P_{H_{2}}}=1260 \frac{\mathrm{~kg}}{\mathrm{~m}^{3}} \times \frac{m^{3}}{1000 \mathrm{~kg}}=1.26
$$

The uncertainty in density is given by

$$
\begin{aligned}
& u_{e}= \pm\left[\left(\frac{m}{\rho} \frac{\partial p}{\partial h_{n}} u_{m}\right)^{2}+\left(\frac{\rho}{\rho} \frac{\partial p}{\partial \rho} u_{p}\right)^{2}\right]^{1 / 2} \\
& \frac{m}{\rho} \frac{\partial \rho}{\partial m}=\frac{m}{\rho} \frac{1}{t}=\frac{t}{t}=1 ; u_{n}= \pm \frac{0.3}{45.9}= \pm 0.654 q_{0} \\
& \frac{l}{\rho} \frac{\partial \rho}{\partial \rho}=\frac{\rho}{\rho}\left(-3 \frac{6}{\pi} \frac{m}{\nu^{4}}\right)=-3\left(\frac{6 m}{\pi \nu^{3} \rho}\right)=-3 \\
& u_{7}= \pm \frac{0.3}{41.1}=0.730^{\circ} \mathrm{b}
\end{aligned}
$$

Thus

$$
\begin{aligned}
& u_{p}= \pm\left[\left(u_{m}\right)^{2}+\left(-3 u_{0}\right)^{2}\right]^{1 / 2}= \pm\{(0.654))^{2}+\left[-3(0.130]^{2}\right\}^{1 / 2} \\
& u_{p}= \pm 2.29^{\circ} l_{0}\left(\pm 28.9 \mathrm{~kg} / m^{3}\right) \\
& u_{s c}=u_{p}= \pm 2.29^{\circ} \%_{0}(\pm 0.0289)
\end{aligned}
$$

Summarizing

$$
\begin{aligned}
& \rho=1260 \pm 28.9 \mathrm{~kg} / \mathrm{m}^{3} \quad\left(20 t_{0}\right) \\
& S G=1.26 \pm 0.0289 \quad\left(20 t_{0} 1\right)
\end{aligned}
$$

\qquad

Given: Nominal mass flow rate of water determined by collecting discharge (in a beaker) over a timed interval is in = loogls

- scales have capacity of kg , with least count of gg .
- timer has least cont of Dills.
- beakers with volume of $100,500,1000 \mathrm{ml}$ are available - tare mass of 1000 nh beaker is 500 g .

Find: Estimate (a) tine intervals, and (b) uncertainties, is

Solution: To estiriate tire intervals assure beaker is filled to maxirium volume in case of 100 and 500 mL beakers and to maximum allowable mass of water (500 g) in case of 1000 min beaker.
Then $i=\frac{\Delta n}{\Delta t}$ and $\Delta t=\frac{\Delta n}{i n}=\frac{Q \Delta t}{i}$
Tabulating results $\quad \Delta t=100 \mathrm{ml} \quad 500 \mathrm{mi} \quad 1000 \mathrm{~mL}$

$$
\Delta t=15 \quad 5 s \quad 5 \mathrm{~s}
$$

Apply the methodology of uncertainty analysis, Appendix E Computing equation:

$$
u_{i n}= \pm\left[\left(\frac{\Delta m}{m} \frac{\partial i n}{\partial \Delta m} u_{\Delta m}\right)^{2}+\left(\frac{\Delta t}{m} \frac{\partial i n}{\partial \Delta t} u_{\Delta t}\right)^{2}\right]^{1 / 2}
$$

The uncertainties are expected to be \pm half the least counts of the measuring instruments

$$
\begin{aligned}
\frac{\Delta r}{i n} \frac{\partial i n}{\partial \Delta m}=\Delta t\left(\frac{1}{\Delta t}\right) & =1 \quad \text { and } \quad \frac{\Delta t}{\hbar} \frac{\partial \Delta}{2 \Delta t}=\frac{(\Delta t)^{2}}{\Delta m}\left[\frac{\Delta m}{(\Delta t)^{2}}\right]=-1 \\
\therefore u_{i n} & = \pm\left[\left(u_{m}\right)^{2}+\left(-u_{\Delta t}\right)^{2}\right]^{1 / 2}
\end{aligned}
$$

Tabulating results:

Sic the scales have a capacity of 1 leg and the tare mass
 using the larger beaker. The uncertainty in in could be reduced $t f \pm 0.50$ percent by using be large beaker if a scale with greater capacity surg areas courtevere avaiblle

Given: Soda can will estimated dimensions $D=66.0 \pm 0.5 \mathrm{~mm}$, $H=M 0=0.5 \mathrm{~mm}$. Soda has $S G=1.055$

Find: (a) volume of soda in the can (based on measured mass of full and empty can).
(b) estimate average dept to which the can is Filled and the uncertainty in the estimate.
Solution:
Measurements on a can of coke give

Density is mass per unit volume and $S G=p / \rho H_{2} O$ so

$$
\forall=\frac{h}{p}=\frac{m}{p_{H_{2}} 56}=3699 \times \frac{r^{3}}{1000 \mathrm{~kg}} \times \frac{1}{1.055} \times \frac{\mathrm{kg}}{1000 g}=350 \times \frac{-6}{10} \mathrm{~m}^{3} \quad A
$$

The reference value puzo is assured to be precise. Since SG is specified to three places beyond the decimal paint, assure $u_{s a_{n}}= \pm 0.001$. Then

$$
\begin{aligned}
& u_{s c a}= \pm 0.001 \\
& u_{V}= \pm\left[\left(\frac{m}{V} \frac{\partial v}{2 m} u_{n}\right)^{2}+\left(\frac{m}{s G} \frac{\partial V}{\partial s G}\right)^{2}\right]^{1 / 2}= \pm\left\{\left[(1) u_{n}\right]^{2}+\left[(-1) u_{s G}\right]^{2}\right\}^{1 / 2}
\end{aligned}
$$

$$
u_{v}= \pm\left\{[(1)(0.0019)]^{2}+[(-1)(0.001)]^{2}\right\}^{1 / 2}=0.0021 \text { or } 0.21 \%_{0}
$$

$$
\begin{aligned}
& t=\frac{\pi \nu^{2}}{4} L \quad \text { or } L=\frac{4 t}{\pi \nu^{2}}=\frac{4}{\pi} x \\
& u_{h}= \pm\left[\left(\frac{t}{L} \frac{\partial L}{\partial t} u_{t}\right)^{2}+\left[\left(\frac{2}{L} \frac{\partial L}{\partial \gamma} u_{\nu}\right)^{2}\right]^{1 / 2}\right.
\end{aligned}
$$

$$
\begin{align*}
& \frac{ \pm}{L} \frac{\partial L}{2 t}=\frac{\pi y^{2}}{4} \times \frac{4}{\pi D^{2}}=1 \\
& \frac{2}{L} \frac{\partial L}{\partial y}=\frac{\pi y^{2}}{4 t} \times \frac{4 t}{\pi}\left(-\frac{2}{D^{3}}\right)=-2 \\
& u_{L}= \pm\left\{[(1)(0.0021)]^{2}+[(-2)(0.006)]^{2}\right\}^{1 / 2}=0.0153 \text { or } 1.53^{\circ} \mathrm{b} \mathrm{bmm}
\end{align*}
$$

Note: (1) printing on the can states the content as 355 ml . Wis suggests that the implied accuracy of the SG value mont be over stated.
(2) result's suggest that over seven percent of the can height is gid of soda.

$$
\begin{aligned}
& M_{r}=38.5 \pm 0.50 \mathrm{~g}, M_{e}=17.5 \pm 0.50 \mathrm{~g} \quad \therefore m=m_{f}-m_{e}=369 \pm u_{m} \quad g \\
& u_{m}= \pm\left[\left(\frac{m_{f}}{m} \frac{\partial m}{\partial m_{f}} u_{m_{f}}\right)^{2}+\left(\frac{m_{e}}{m} \frac{\partial m}{\partial m_{e}} u_{m}\right)^{2}\right]^{1_{2}} \\
& u_{n_{6}}= \pm \frac{0.5 \mathrm{~g}}{386.5 \mathrm{~g}}= \pm 0.00129, \quad u_{H_{2}}= \pm \frac{0.50}{17.5}=0.0286 \\
& \therefore u_{n}= \pm\left\{\left[\frac{386.5}{369}(1)(0.00129)\right]^{2}+\left[\frac{7.5}{369}(-1)(0.0286)\right]^{2}\right\}^{1_{2}}=0.0019
\end{aligned}
$$

Problem 1.16

From Appendix A, the viscosity $\mu\left(\mathrm{N} \cdot \mathrm{s} / \mathrm{m}^{2}\right)$ of water at temperature $\mathrm{T}(\mathrm{K})$ can be computed
 Determine the viscosity of water at $20^{\circ} \mathrm{C}$, and estimate its uncertainty if the uncertainty in temperature measurement is $+/-0.25^{\circ} \mathrm{C}$.

Solution

Given: Data on water.

Find: Viscosity and uncertainty in viscosity.

The data provided are:
$\mathrm{A}=2.414 \cdot 10^{-5} \cdot \frac{\mathrm{~N} \cdot \mathrm{~s}}{\mathrm{~m}^{2}}$
$B=247.8 \cdot K$
$\mathrm{C}=140 \cdot \mathrm{~K} \quad \mathrm{~T}=293 \cdot \mathrm{~K}$

The uncertainty in temperature is $\mathrm{u}_{\mathrm{T}}=\frac{0.25 \cdot \mathrm{~K}}{293 \cdot \mathrm{~K}} \quad \mathrm{u}_{\mathrm{T}}=0.085 \%$

The formula for viscosity is
$\mu(T)=A \cdot 10^{\frac{B}{(T-C)}}$

Evaluating μ

$$
\begin{aligned}
& \mu(\mathrm{T})=2.414 \cdot 10^{-5} \cdot \frac{\mathrm{~N} \cdot \mathrm{~s}}{\mathrm{~m}^{2}} \times 10^{\frac{247.8 \cdot \mathrm{~K}}{(293 \cdot \mathrm{~K}-140 \cdot \mathrm{~K})}} \\
& \mu(\mathrm{T})=1.005 \times 10^{-3} \frac{\mathrm{~N} \cdot \mathrm{~s}}{\mathrm{~m}^{2}}
\end{aligned}
$$

For the uncertainty

$$
\frac{\mathrm{d}}{\mathrm{dT}} \mu(\mathrm{~T}) \rightarrow-\mathrm{A} \cdot 10^{\frac{\mathrm{B}}{(\mathrm{~T}-\mathrm{C})}} \cdot \frac{\mathrm{B}}{(\mathrm{~T}-\mathrm{C})^{2}} \cdot \ln (10)
$$

so

$$
\mathrm{u}_{\mu}(\mathrm{T})=\left|\frac{\mathrm{T}}{\mu(\mathrm{~T})} \cdot \frac{\mathrm{d}}{\mathrm{dT}} \mu(\mathrm{~T}) \cdot \mathrm{u}_{\mathrm{T}}\right| \rightarrow \ln (10) \cdot\left|\mathrm{T} \cdot \frac{\mathrm{~B}}{(\mathrm{~T}-\mathrm{C})^{2}} \cdot \mathrm{u}_{\mathrm{T}}\right|
$$

Using the given data

$$
\mathrm{u}_{\mu}(\mathrm{T})=\ln (10) \cdot\left|293 \cdot \mathrm{~K} \cdot \frac{247.8 \cdot \mathrm{~K}}{(293 \cdot \mathrm{~K}-140 \cdot \mathrm{~K})^{2}} \cdot 0.085 \cdot \%\right|
$$

$$
u_{\mu}(T)=0.61 \%
$$

Problem 1.17

Given: Lateral acceleration, $a=0.70 \mathrm{~g}$, measured on 150-ft diameter skid pad.
$\left.\begin{array}{l}\text { Path deviation: } \pm 2 \mathrm{ft} \\ \text { Vehicle speed: } \pm 0.5 \mathrm{mph}\end{array}\right\}$ measurement uncertainty
Find: (a) Estimate uncertainty in lateral acceleration.
(b) How could experimental, procedure be improved?

Solution: Lateral acceleration is given by $a=V^{2} / R$.
From Appendix $F, u_{a}= \pm\left[\left(2 u_{v}\right)^{2}+\left(u_{R}\right)^{2}\right]^{1 / 2}$
From the given data,

$$
V^{2}=a R ; V=\sqrt{a R}=\left[0.70 \times 32.2 \frac{\mathrm{ft}}{\mathrm{~s} 2} \times 75 \mathrm{ft}\right]^{1 / 2}=41.1 \mathrm{ft} / \mathrm{s}
$$

Then

$$
u_{v}= \pm \frac{\delta v}{v}= \pm 0.5 \frac{\mathrm{mi}}{\mathrm{hr}} \times \frac{\mathrm{s}}{41.1 \mathrm{ft}} \times 5280 \frac{\mathrm{ft}}{\mathrm{mi}} \times \frac{\mathrm{hr}}{3600 \mathrm{~s}}= \pm 0.0178
$$

and

$$
u_{R}= \pm \frac{\delta R}{R}= \pm 2 \mathrm{ft} \times \frac{1}{75 \mathrm{ft}}= \pm 0.0267
$$

so

$$
\begin{aligned}
& u_{a}= \pm\left[(2 \times 0.0178)^{2}+(0.0267)^{2}\right]^{1 / 2}= \pm 0.0445 \\
& u_{a}= \pm 4.45 \text { percent }
\end{aligned}
$$

Experimental procedure could be improved by using a larger circle, assurning the absolute errors in measurement are constant.

For $D=400 \mathrm{ft}, R=200 \mathrm{ft}$

$$
\begin{aligned}
& v=\sqrt{a R}=\left[0.70 \times 32.2 \frac{\mathrm{ft}}{\mathrm{~s}^{2}} \times 200 \mathrm{ft}\right]^{1 / 2}=67.1 \mathrm{ft} / \mathrm{s}=45.8 \mathrm{mph} \\
& u_{v}= \pm \frac{0.5 \mathrm{mph}}{45.8 \mathrm{mph}}= \pm 0.0109 ; u_{R}= \pm \frac{2 \mathrm{ft}}{200 \mathrm{ft}}= \pm 0.0100 \\
& u_{a}= \pm\left[(2 \times 0.0109)^{2}+(0.0100)^{2}\right]^{1 / 2}= \pm 0.0240 \text { or } \pm 2.4 \text { percent }
\end{aligned}
$$

Problem 1.18
Given: Dimensions of Soda can:

$$
\begin{aligned}
& D=66 \mathrm{~mm} \\
& H=110 \mathrm{~mm}
\end{aligned}
$$

Find: Measurement. precision needed to allow volume to be estimated with an uncertainty of ± 0.5 percent or $k s s$.

Solution: Use the methods of Appendix F :
Computing equations: $\forall=\frac{\pi D^{2} H}{4}$

$$
u_{\forall}= \pm\left[\left(\frac{H}{\forall} \frac{\partial \forall}{\partial H} u_{H}\right)^{2}+\left(\frac{D}{\forall} \frac{\partial \forall}{\partial D} u_{D}\right)^{2}\right]^{\frac{1}{2}}
$$

since $\forall=\frac{\pi D^{2} H}{4}$, then $\frac{\partial \psi}{\partial H}=\frac{\pi D^{2}}{4}$ and $\frac{\partial \forall}{\partial D}=\frac{\pi D H}{2}$
Let $u_{D}= \pm \frac{\delta x}{D}$ and $u_{H}= \pm \frac{\delta x}{H}$, substituting,

$$
L G= \pm\left[\left(\frac{4 H}{\pi D^{2} H} \frac{\pi D^{2}}{4} \frac{\delta x}{H}\right)^{2}+\left(\frac{4 D}{\pi D^{2} H} \frac{\pi D H}{2} \frac{\delta x}{D}\right)^{2}\right]^{\frac{1}{2}}= \pm\left[\left(\frac{\delta x}{H}\right)^{2}+\left(\frac{2 \delta x}{D}\right)^{2}\right]^{\frac{1}{2}}
$$

Solving,

$$
\begin{aligned}
& \text { ling, } u_{\forall}^{2}=\left(\frac{\delta x}{H}\right)^{2}+\left(\frac{2 \delta x}{D}\right)^{2}=(\delta x)^{2}\left[\left(\frac{1}{H}\right)^{2}+\left(\frac{2}{D}\right)^{2}\right] \\
& \delta x= \pm \frac{u_{*}}{\left[\left(\frac{1}{H}\right)^{2}+\left(\frac{2}{D}\right)^{2}\right]^{1}}= \pm \frac{0.005}{\left[\left(\frac{1}{170 \mathrm{~mm}}\right)^{2}+\left(\frac{2}{66 \mathrm{~mm}}\right)^{2}\right]^{1 / 2}}= \pm 0.158 \mathrm{~mm}
\end{aligned}
$$

Check: $u_{H}= \pm \frac{\delta x}{H}= \pm \frac{0.158 \mathrm{~mm}}{110 \mathrm{~mm}}= \pm 1.44 \times 10^{-3}$

$$
\begin{gathered}
u_{D}= \pm \frac{\delta x}{D}= \pm \frac{0.158 \mathrm{~mm}}{66 \mathrm{~mm}}= \pm 2.39 \times 10^{-3} \\
u_{\forall}= \pm\left[\left(u_{H}\right)^{2}+\left(2 u_{D}\right)^{2}\right]^{\frac{1}{2}}= \pm\left[(0.00144)^{2}+(0.00478)^{2}\right]^{\frac{1}{2}}= \pm 0.00499 \mathrm{vv}
\end{gathered}
$$

If δx represents half the least count, a minimum resolution of about $2 \delta x \cong 0.32 \mathrm{~mm}$ is needed.

Given: American golf ball, $m=1.62 \pm 0.0103, D=1.68 \mathrm{in}$.
Find: Precision to which D must be measured to estimate density within uncertainty of ± 1 percent.
Solution: Apply uncertainty concepts
Definition: Density, $\rho \equiv \frac{m}{\forall} \quad \forall=\frac{4}{3} \pi R^{3}=\frac{\pi D^{3}}{6}$ computing equation: $u_{R}= \pm\left[\left(\frac{x_{1}}{R} \frac{\partial R}{\partial x_{1}} u_{x_{1}}\right)^{2}+\cdots\right]^{1 / 2}$

From the definition, $\rho=\frac{m}{\pi D^{3} / 6}=\frac{6 m}{\pi D^{3}}=\rho(m, D)$
Thus $\frac{m}{\rho} \frac{\partial \rho}{\partial m}=1$ and $\frac{D}{\rho} \frac{\partial \rho}{\partial D}=3,50$

$$
\begin{aligned}
& u_{p}= \pm\left[\left(1 u_{m}\right)^{2}+\left(3 u_{D}\right)^{2}\right]^{1 / 2} \\
& u_{\rho}^{2}=u_{m}^{2}+9 u_{D}^{2}
\end{aligned}
$$

Solving, $u_{D}= \pm \frac{1}{3}\left[u_{\rho}^{2}-u_{m}^{2}\right]^{\frac{1}{2}}$
From the data given, $u_{\rho}= \pm 0.0100$

$$
\begin{gathered}
u_{m}=\frac{ \pm 0.010 z}{1.620 z}= \pm 0.00617 \\
u_{D}= \pm \frac{1}{3}\left[(0.0100)^{2}-(0.00617)^{2}\right]^{\frac{1}{2}}= \pm 0.00262 \text { or } \pm 0.262 \%
\end{gathered}
$$

since $u_{D}= \pm \frac{\delta D}{D}$, then

$$
\delta D= \pm D U_{D}= \pm 1.68 \mathrm{in}_{\times} 0.00262= \pm 0.00441 \mathrm{in}
$$

The ball diameter must be measured to a precision of ± 0.00441 in. $(\pm 0.112 \mathrm{~mm})$ or better to estimate density within ± 1 percent. A micrometer or caliper could be used.

Problem 1.20

The height of a building may be estimated by measuring the horizontal distance to a point on ground and the angle from this point to the top of the building. Assuming these measurements $L=100+/-0.5 \mathrm{ft}$ and $\theta=30+/-0.2$ degrees, estimate the height H of the building and the uncertainty in the estimate. For the same building height and measurement uncertainties, use Excel's Solver to determine the angle (and the corresponding distance from the building) at which measurements should be made to minimize the uncertainty in estimated height. Evalua1 and plot the optimum measurement angle as a function of building height for $50<H<1000 \mathrm{f}$

Solution

Given: Data on length and angle measurements.

Find:

The data provided are:
$\mathrm{L}=100 \cdot \mathrm{ft}$
$\delta \mathrm{L}=0.5 \cdot \mathrm{ft}$
$\theta=30 \cdot \mathrm{deg}$
$\delta \theta=0.2 \cdot \operatorname{deg}$

The uncertainty in L is

$$
\mathrm{u}_{\mathrm{L}}=\frac{\delta \mathrm{L}}{\mathrm{~L}} \quad \mathrm{u}_{\mathrm{L}}=0.5 \%
$$

The uncertainty in θ is

$$
\mathrm{u}_{\theta}=\frac{\delta \theta}{\theta} \quad \mathrm{u}_{\theta}=0.667 \%
$$

The height H is given by

$$
\mathrm{H}=\mathrm{L} \cdot \tan (\theta) \quad \mathrm{H}=57.7 \mathrm{ft}
$$

For the uncertainty

$$
\mathrm{u}_{\mathrm{H}}=\sqrt{\left(\frac{\mathrm{L}}{\mathrm{H}} \cdot \frac{\partial}{\partial \mathrm{~L}} \mathrm{H} \cdot \mathrm{u}_{\mathrm{L}}\right)^{2}+\left(\frac{\theta}{\mathrm{H}} \cdot \frac{\partial}{\partial \theta} \mathrm{H} \cdot \mathrm{u}_{\theta}\right)^{2}}
$$

and

$$
\frac{\partial}{\partial L} H=\tan (\theta) \quad \frac{\partial}{\partial \theta} H=L \cdot\left(1+\tan (\theta)^{2}\right)
$$

so

$$
\mathrm{u}_{\mathrm{H}}=\sqrt{\left(\frac{\mathrm{L}}{\mathrm{H}} \cdot \tan (\theta) \cdot \mathrm{u}_{\mathrm{L}}\right)^{2}+\left[\frac{\mathrm{L} \cdot \theta}{\mathrm{H}} \cdot\left(1+\tan (\theta)^{2}\right) \cdot \mathrm{u}_{\theta}\right]^{2}}
$$

Using the given data

$$
\begin{gathered}
\mathrm{u}_{\mathrm{H}}=\sqrt{\left(\frac{100}{57.5} \cdot \tan \left(\frac{\pi}{6}\right) \cdot \frac{0.5}{100}\right)^{2}+\left[\frac{100 \cdot \frac{\pi}{6}}{57.5} \cdot\left(1+\tan \left(\frac{\pi}{6}\right)^{2}\right) \cdot \frac{0.667}{100}\right]^{2}} \\
\mathrm{u}_{\mathrm{H}}=0.95 \% \quad \delta \mathrm{H}=\mathrm{u}_{\mathrm{H}} \cdot \mathrm{H} \quad \delta \mathrm{H}=0.55 \mathrm{ft} \\
\mathrm{H}=57.5+-0.55 \cdot \mathrm{ft}
\end{gathered}
$$

The angle θ at which the uncertainty in H is minimized is obtained from the corresponding Exce workbook (which also shows the plot of u_{H} vs θ)

$$
\theta_{\text {optimum }}=31.4 \cdot \mathrm{deg}
$$

Problem 1.20 (In Excel)

The height of a building may be estimated by measuring the horizontal distance to a point on the ground and the angle from this point to the top of the building. Assuming these measurements are $L=100+/-0.5 \mathrm{ft}$ and $\theta=30+/-0.2$ degrees, estimate the height H of the building and the uncertainty in the estimate. For the same building height and measurement uncertainties, use Excel's Solver to determine the angle (and the corresponding distance from the building) at which measurements should be made to minimize the uncertainty in estimated height. Evaluate and plot the optimum measurement angle as a function of building height for $50<H<1000 \mathrm{ft}$.

Given: Data on length and angle measurements.

Find: Height of building; uncertainty; angle to minimize uncertainty

Given data:

H	$=$	57.7	ft
δL	$=$	0.5	ft
$\delta \theta$	$=$	0.2	deg

For this building height, we are to vary θ (and therefore L) to minimize the uncertainty u_{H}.

The uncertainty is

$$
\mathrm{u}_{\mathrm{H}}=\sqrt{\left(\frac{\mathrm{L}}{\mathrm{H}} \cdot \tan (\theta) \cdot \mathrm{u}_{\mathrm{L}}\right)^{2}+\left[\frac{\mathrm{L} \cdot \theta}{\mathrm{H}} \cdot\left(1+\tan (\theta)^{2}\right) \cdot \mathrm{u}_{\theta}\right]^{2}}
$$

Expressing $u_{\mathrm{H}}, u_{\mathrm{L}}, u_{\theta}$ and L as functions of θ, (remember that δL and $\delta \theta$ are constant, so as L and θ vary the uncertainties will too!) and simplifying

$$
\mathrm{u}_{\mathrm{H}}(\theta)=\sqrt{\left(\tan (\theta) \cdot \frac{\delta \mathrm{L}}{\mathrm{H}}\right)^{2}+\left[\frac{\left(1+\tan (\theta)^{2}\right)}{\tan (\theta)} \cdot \delta \theta\right]^{2}}
$$

Plotting u_{H} vs θ

$\boldsymbol{\theta}$ (deg)	$\boldsymbol{u}_{\mathbf{H}}$
5	4.02%
10	2.05%
15	1.42%
20	1.13%
25	1.00%
30	0.949%
35	0.959%
40	1.02%
45	1.11%
50	1.25%
55	1.44%
60	1.70%
65	2.07%
70	2.62%
75	3.52%
80	5.32%
85	10.69%

Optimizing using Solver

θ (deg)	$\boldsymbol{u}_{\boldsymbol{H}}$
31.4	0.95%

To find the optimum θ as a function of building height H we need a more complex Solver

$\boldsymbol{H}(\mathrm{ft})$	$\boldsymbol{\theta}(\mathrm{deg})$	$\boldsymbol{u}_{\boldsymbol{H}}$
50	29.9	0.99%
75	34.3	0.88%
100	37.1	0.82%
125	39.0	0.78%
175	41.3	0.75%
200	42.0	0.74%
250	43.0	0.72%
300	43.5	0.72%
400	44.1	0.71%
500	44.4	0.71%
600	44.6	0.70%
700	44.7	0.70%
800	44.8	0.70%
900	44.8	0.70%
1000	44.9	0.70%

Use Solver to vary ALL θ 's to minimize the total u_{H} !
Total u_{H} ' $\mathrm{s}: 11.32 \%$

Given: Piston-cylinder device to have $\forall=1 \mathrm{~mm}^{3}$
Molded plastic parts with dimensional uncertainties, $\delta= \pm 0.002 \mathrm{in}$.

Find: (a) Estimate of uncertainty in dispensed volume that results from the dimensional uncertainties.
(b) Determine the ratio of stroke length to bore diameter that minimizes $u t$; plot of the results.
(c) Is this result influenced by the magnitude of S ?

Solution: Apply uncertainty concepts from Appendix F:
Computing equation: $\forall=\frac{\pi D^{2} L}{4} ; u_{\forall}= \pm\left[\left(\frac{L}{\forall} \frac{\partial \forall}{\partial L} u_{L}\right)^{2}+\left(\frac{D}{\forall} \frac{\partial \forall}{\partial D} u_{D}\right)^{2}\right]^{\frac{1}{2}}$
From $\forall, \frac{L}{\forall} \frac{\partial \forall}{\partial L}=1$, and $\frac{D}{\forall} \frac{\partial \forall}{\partial D}=2$, so $u_{\forall}= \pm\left[u_{L}^{2}+\left(2 u_{D}\right)^{2}\right]^{\frac{1}{2}}$
The dimensional uncertainty is $\delta= \pm 0.002 \mathrm{in} \times 25.4 \frac{\mathrm{~mm}}{\mathrm{n}}= \pm 0.0508 \mathrm{~mm}$ Assume $D=1 \mathrm{~mm}$, Then $L=\frac{4 V^{2}}{\pi D^{2}}=\frac{4}{\pi} \times 1 \mathrm{~mm}^{3} \times \frac{1}{(1)^{2} \mathrm{~mm}^{2}}=1.27 \mathrm{~mm}$

$$
\left.\begin{array}{rl}
u_{D}= \pm \frac{\delta}{D}= \pm \frac{0.0508}{1}= \pm 5.08 \text { percent } \\
u_{L}= \pm \frac{\delta}{L}= \pm \frac{0.0508}{1.27}= \pm 4.00 \text { percent }
\end{array}\right\} \begin{aligned}
& u_{\forall}= \pm\left[(4.00)^{2}+(2(5.08))^{2}\right]^{\frac{1}{2}} \\
& u_{\forall}
\end{aligned}
$$

To minimize u_{*}, substitute in terms of D :

$$
u_{\forall}= \pm\left[\left(u_{L}\right)^{2}+\left(2 u_{D}\right)^{2}\right]= \pm\left[\left(\frac{\delta}{L}\right)^{2}+\left(2 \frac{\delta}{D}\right)^{2}\right]^{\frac{1}{2}}= \pm\left[\left(\frac{\pi D^{2}}{4 \forall} \delta\right)^{2}+\left(2 \frac{\delta}{D}\right)^{2}\right]^{\frac{1}{2}}
$$

This will be minimum when D is such that $\partial[] / \partial D=0$, or

$$
\frac{\partial[]}{\partial D}=\left(\frac{\pi \delta}{4 \forall}\right)^{2} 4 D^{3}+(2 \delta)^{2}\left(-2 \frac{1}{D 3}\right)=0 ; D^{6}=2\left(\frac{4 \forall}{\pi}\right)^{2} ; D=2^{16}\left(\frac{4 \forall}{\pi}\right)^{1 / 3}
$$

Thus

$$
D_{\Delta p t}=2^{1 / 6}\left(\frac{4}{\pi} \times 1 \mathrm{~mm}^{3}\right)^{1 / 3}=1.22 \mathrm{~mm}
$$

The corresponding L is

$$
S_{\rho^{2}}^{2} \frac{4 \forall}{\pi D^{2}}=\frac{4}{\pi} \times 1 \mathrm{~mm}^{3} \times \frac{1}{(1.22)^{2} \mathrm{~mm}^{2}}=0.855 \mathrm{~mm}
$$

The optimum stroke-to-bore ratio is

$$
L D)_{\text {Dpt }}=\frac{0.855 \mathrm{~mm}}{1.22 \mathrm{~mm}}=0.701 \text { (see table and plot on next page) }
$$

Note that δ drops out of the optimization equation. This optimien L / D is independent of the magnituck of δ. However, the magnitude of the optimum u_{\forall} increases as δ increases.

Uncertainty in volume of cylinder:

$\delta=$	0.002	in.	0.0508	mm	
$\forall=$	1	$\mathrm{~mm}^{3}$			
$D(\mathrm{~mm})$	$L(\mathrm{~mm})$	$L D(--)$	$u_{\mathrm{D}}(\%)$	$u_{\mathrm{L}}(\%)$	$u_{\forall}(\%)$
0.5	5.09	10.2	10.2	1.00	20.3
0.6	3.54	5.89	8.47	1.44	17.0
0.7	2.60	3.71	7.26	1.96	14.6
0.8	1.99	2.49	6.35	2.55	13.0
0.9	1.57	1.75	5.64	3.23	11.7
1.0	1.27	1.27	5.08	3.99	10.9
1.1	1.05	0.957	4.62	4.83	10.4
1.2	0.884	0.737	4.23	5.75	10.2
1.22	0.855	0.701	4.16	5.94	10.2
1.3	0.753	0.580	3.91	6.74	10.3
1.4	0.650	0.464	3.63	7.82	10.7
1.5	0.566	0.377	3.39	8.98	11.2
1.6	0.497	0.311	3.18	10.2	12.0
1.7	0.441	0.259	2.99	11.5	13.0
1.8	0.393	0.218	2.82	12.9	14.1
1.9	0.353	0.186	2.67	14.4	15.4
2.0	0.318	0.159	2.54	16.0	16.7
2.1	0.289	0.137	2.42	17.6	18.2
2.2	0.263	0.120	2.31	19.3	19.9
2.3	0.241	0.105	2.21	21.1	21.6
2.4	0.221	0.092	2.12	23.0	23.4
2.5	0.204	0.081	2.03	24.9	25.3

Given: Small particle accelerating from rest in a fluid. Net weight is W, resisting force $F_{D}=k V$, where V is speed.

Find: Tine required to reach 95 percent of terminal speed, V_{t}.
Solution: Consider the particle to be a system. Apply Newton's second law.

Basic equation: $\sum F_{y}=m a_{y}$
Particle
Assumptions: (1) W is net weight
(2) Resisting force acts opposite to V

Then

$$
\Sigma F_{y}=w-k V=m a_{y}=m \frac{d V}{d t}=\frac{W}{g} \frac{d V}{d t}
$$

or

$$
\frac{d V}{d t}=g\left(i-\frac{k}{w} v\right)
$$

separating variables,

$$
\frac{d v}{1-\frac{k}{w} v}=g d t
$$

Integrating, noting that velocity is zero initially,

$$
\left.\int_{0}^{v} \frac{d v}{1-\frac{k}{w} v}=-\frac{w}{k} \ln \left(1-\frac{k}{w} v\right)\right]_{0}^{v}=\int_{0}^{t} g d t=g t
$$

or

$$
1-\frac{k}{w} v=e^{-\frac{k g t}{w}} ; v=\frac{w}{k}\left[1-e^{-\frac{k g t}{w}}\right]
$$

But $v \rightarrow v_{t}$ as $t \rightarrow \infty$, so $V_{t}=\frac{W}{k}$. Therefore

$$
\frac{V}{V_{t}}=1-e^{-\frac{k g t}{w}}
$$

When $\frac{v}{v_{t}}=0.95$, then $e^{-\frac{k g t}{w}}=0.05$ and $\frac{\mathrm{kgt}}{w}=3$. Thus

$$
t=3 w / g k
$$

Given: Small particle accelerating from rest in a fluid. Net weight is w, resisting force is $F_{y}=k V$, where V is speed. δ
Find: Distance required to reach 95 percent of terminal speed, V_{t}.
Solution: Consider the particle to be a system Apply Newton's second law.
Basic equation : $\sum F_{y}=$ may
Assurnptions: (i) w is net weight
(2) Resisting forceacts opposite to V

Then, $\sum F_{y}=w-k y=m a y=m \frac{d y}{d t}=\frac{w}{g} \downarrow \frac{d y}{d y}$
or $\quad 1-\frac{k}{w} V=\frac{V}{g} \frac{d y}{d y}$

At terminal speed, $a_{y}=0$ and $V=V_{t}=\frac{N}{k}$. Then.

$$
1-\frac{\sqrt{2}}{\sqrt{t}}=\frac{1}{g} \sqrt{d y}
$$

Separating variables

$$
\frac{\nu^{d v}}{1-\frac{1}{\lambda_{t}} v}=g d y
$$

Integrating, noting fat velouty is zero initially.

$$
\begin{aligned}
& \left.g y=\int_{0}^{0.5}\right]_{t} \frac{v d V}{1-\frac{1}{V_{t}}}=\left[-v_{t}-v_{t}^{2} \ln \left(1-\frac{v_{t}}{v_{t}}\right)\right]_{0}^{0.25 v_{t}} \\
& g y=-0.95 v_{t}^{2}-v_{t}^{2} \ln (1-0.95)-v_{t}^{2} \ln (1) \\
& g y=-v_{t}^{2}[0.95+\ln 0.05]=2.05 v_{t}^{2} \\
& \therefore y=\frac{2.05}{g} v_{t}^{2}=2.05 \frac{v^{2}}{g p^{2}}
\end{aligned}
$$

Problem 1.24

For a small particle of aluminum (spherical, with diameter $d=0.025 \mathrm{~mm}$) falling in standard air at speed V, the drag is given by $F_{D}=3 \pi \mu V d$, where μ is the air viscosity. Find the maximum speed starting from rest, and the time it takes to reach 95% of this speed. Plot the speed as a function of time.

Solution

Given: Data on sphere and formula for drag.

Find: Maximum speed, time to reach 95% of this speed, and plot speed as a function of time.

The data provided, or available in the Appendices, are:

$$
\rho_{\text {air }}=1.17 \cdot \frac{\mathrm{~kg}}{\mathrm{~m}^{3}} \quad \mu=1.8 \times 10^{-5} \cdot \frac{\mathrm{~N} \cdot \mathrm{~s}}{\mathrm{~m}^{2}} \quad \rho_{\mathrm{W}}=999 \cdot \frac{\mathrm{~kg}}{\mathrm{~m}^{3}} \quad \mathrm{SG}_{\mathrm{Al}}=2.64 \quad \mathrm{~d}=0.025 \cdot \mathrm{~mm}
$$

Then the density of the sphere is $\quad \rho_{\mathrm{Al}}=\mathrm{SG}_{\mathrm{Al}} \rho_{\mathrm{W}} \quad \rho_{\mathrm{Al}}=2637 \frac{\mathrm{~kg}}{\mathrm{~m}^{3}}$

The sphere mass is

$$
\begin{aligned}
& \mathrm{M}=\rho_{\mathrm{Al}} \cdot \frac{\pi \cdot \mathrm{~d}^{3}}{6}=2637 \cdot \frac{\mathrm{~kg}}{\mathrm{~m}^{3}} \times \pi \times \frac{(0.000025 \cdot \mathrm{~m})^{3}}{6} \\
& \mathrm{M}=2.16 \times 10^{-11} \mathrm{~kg}
\end{aligned}
$$

Newton's 2nd law for the steady state motion becomes $\mathrm{M} \cdot \mathrm{g}=3 \cdot \pi \cdot \mathrm{~V} \cdot \mathrm{~d}$
so
$\mathrm{V}_{\text {max }}=\frac{\mathrm{M} \cdot \mathrm{g}}{3 \cdot \pi \cdot \mu \cdot \mathrm{~d}}=\frac{1}{3 \times \pi} \times \frac{2.16 \times 10^{-11} \cdot \mathrm{~kg}}{\mathrm{~s}^{2}} \times 9.81 \cdot \frac{\mathrm{~m}}{\mathrm{~s}^{2}} \times \frac{\mathrm{m}^{2}}{1.8 \times 10^{-5} \cdot \mathrm{~N} \cdot \mathrm{~s}} \times \frac{1}{0.000025 \cdot \mathrm{~m}}$

$$
\mathrm{V}_{\max }=0.0499 \frac{\mathrm{~m}}{\mathrm{~s}}
$$

Newton's 2nd law for the general motion is $M \cdot \frac{d V}{d t}=M \cdot g-3 \cdot \pi \cdot \mu \cdot V \cdot d$
so

$$
\frac{d V}{g-\frac{3 \cdot \pi \cdot \mu \cdot d}{m} \cdot V}=d t
$$

Integrating and using limits

$$
V(t)=\frac{M \cdot g}{3 \cdot \pi \cdot \mu \cdot \mathrm{~d}} \cdot\left(1-\mathrm{e}^{\frac{-3 \cdot \pi \cdot \mu \cdot \mathrm{~d}}{\mathrm{M}} \cdot \mathrm{t}}\right)
$$

Using the given data

The time to reach 95% of maximum speed is obtained from

$$
\frac{\mathrm{M} \cdot \mathrm{~g}}{3 \cdot \pi \cdot \mu \cdot \mathrm{~d}} \cdot\left(1-\mathrm{e}^{\frac{-3 \cdot \pi \cdot \mu \cdot \mathrm{~d}}{\mathrm{M}} \cdot \mathrm{t}}\right)=0.95 \cdot \mathrm{~V}_{\max }
$$

so

$$
\mathrm{t}=-\frac{\mathrm{M}}{3 \cdot \pi \cdot \mu \cdot \mathrm{~d}} \cdot \ln \left(1-\frac{0.95 \cdot \mathrm{~V}_{\max } \cdot 3 \cdot \pi \cdot \mu \cdot \mathrm{~d}}{\mathrm{M} \cdot \mathrm{~g}}\right) \quad \text { Substituting values } \quad \mathrm{t}=0.0152 \mathrm{~s}
$$

Problem 1.24 (In Excel)

For a small particle of aluminum (spherical, with diameter $d=0.025 \mathrm{~mm}$) falling in standard air at speed V, the drag is given by $F_{D}=3 \pi \mu V d$, where μ is the air viscosity.
Find the maximum speed starting from rest, and the time it takes to reach 95% of this speed. Plot the speed as a function of time.

Solution

Given: Data and formula for drag.
Find: Maximum speed, time to reach 95% of final speed, and plot.

The data given or availabke from the Appendices is

μ	$=1.80 \mathrm{E}-05$	$\mathrm{Ns} / \mathrm{m}^{2}$
ρ	$=1.17$	$\mathrm{~kg} / \mathrm{m}^{3}$
$\mathrm{SG}_{\mathrm{Al}}$	$=2.64$	
ρ_{w}	$=999$	$\mathrm{~kg} / \mathrm{m}^{3}$
d	$=0.025$	mm

Data can be computed from the above using the following equations

For the time at which $V(t)=0.95 V_{\max }$, use Goal Seek:

$\mathbf{t} \mathbf{(s)}$	\mathbf{V} (m/s)	$\mathbf{0 . 9 5 V}_{\text {max }}$	Error (\%)
0.0152	0.0474	0.0474	0.04%

Problem 1.25

For small spherical water droplets, diameter d, falling in standard air at speed V, the drag is given by $F_{D}=3 \pi \mu V d$, where μ is the air viscosity. Determine the diameter d of droplets that take 1 second to fall from rest a distance of 1 m . (Use Excel's Goal Seek.)

Solution

Given: Data on sphere and formula for drag.

Find: Diameter of water droplets that take 1 second to fall 1 m .

The data provided, or available in the Appendices, are:

$$
\mu=1.8 \times 10^{-5} \cdot \frac{\mathrm{~N} \cdot \mathrm{~s}}{\mathrm{~m}^{2}} \quad \rho_{\mathrm{W}}=999 \cdot \frac{\mathrm{~kg}}{\mathrm{~m}^{3}}
$$

Newton's 2nd law for the sphere (mass M) is $M \cdot \frac{d V}{d t}=M \cdot g-3 \cdot \pi \cdot \mu \cdot V \cdot d$
so

$$
\frac{\mathrm{dV}}{\mathrm{~g}-\frac{3 \cdot \pi \cdot \mu \cdot \mathrm{~d}}{\mathrm{~m}} \cdot \mathrm{~V}}=\mathrm{dt}
$$

Integrating and using limits $V(t)=\frac{M \cdot g}{3 \cdot \pi \cdot \mu \cdot d} \cdot\left(1-e^{\frac{-3 \cdot \pi \cdot \mu \cdot d}{M} \cdot t}\right)$

Integrating again

$$
x(t)=\frac{M \cdot g}{3 \cdot \pi \cdot \mu \cdot d} \cdot\left[t+\frac{M}{3 \cdot \pi \cdot \mu \cdot d} \cdot\left(e^{\frac{-3 \cdot \pi \cdot \mu \cdot d}{M} \cdot t}-1\right)\right]
$$

Replacing M with an expression involving diameter $d M=\rho_{w} \cdot \frac{\pi \cdot d^{3}}{6}$

$$
x(t)=\frac{\rho_{w} \cdot d^{2} \cdot g}{18 \cdot \mu} \cdot\left[t+\frac{\rho_{W} \cdot d^{2}}{18 \cdot \mu} \cdot\left(e^{\frac{-18 \cdot \mu}{\rho_{w} \cdot d^{2}} \cdot t}-1\right)\right]
$$

This equation must be solved for d so that $\mathrm{x}(1 \cdot \mathrm{~s})=1 \cdot \mathrm{~m}$. The answer can be obtained from manual iteration, or by using Excel's Goal Seek.

$$
\mathrm{d}=0.193 \cdot \mathrm{~mm}
$$

Problem 1.25 (In Excel)

For small spherical water droplets, diameter d, falling in standard air at speed V, the drag
is given by $F_{D}=3 \pi \mu V d$, where μ is the air viscosity. Determine the diameter d of
droplets that take 1 second to fall from rest a distance of 1 m . (Use Excel's Goal Seek .) speed. Plot the speed as a function of time.

Solution

Given: Data and formula for drag.

Find: Diameter of droplets that take 1 s to fall 1 m .

The data given or availabke from the Appendices is

$$
\begin{array}{rcl}
\mu= & 1.80 \mathrm{E}-05 & \mathrm{Ns} / \mathrm{m}^{2} \\
\rho_{\mathrm{w}} & =999 & \mathrm{~kg} / \mathrm{m}^{3}
\end{array}
$$

Make a guess at the correct diameter (and use Goal Seek later):
(The diameter guess leads to a mass.)

$$
\begin{array}{rll}
d & =0.193 & \mathrm{~mm} \\
M & =3.78 \mathrm{E}-09 & \mathrm{~kg}
\end{array}
$$

Data can be computed from the above using the following equations:

$$
\begin{aligned}
& M=\rho_{W} \cdot \frac{\pi \cdot d^{3}}{6} \\
& x(t)=\frac{M \cdot g}{3 \cdot \pi \cdot \mu \cdot d} \cdot\left[t+\frac{M}{3 \cdot \pi \cdot \mu \cdot d} \cdot\left(e^{\frac{-3 \cdot \pi \cdot \mu \cdot d}{M} \cdot t}-1\right)\right]
\end{aligned}
$$

Use Goal Seek to vary d to make $x(1 \mathrm{~s})=1 \mathrm{~m}$:

$\mathbf{t}(\mathbf{s})$	$\mathbf{X}(\mathbf{m})$
1.000	1.000

$\mathbf{t} \mathbf{(s)}$	$\mathbf{x}(\mathbf{m})$
0.000	0.000
0.050	0.011
0.100	0.037
0.150	0.075
0.200	0.119
0.250	0.167
0.300	0.218
0.350	0.272
0.400	0.326
0.450	0.381
0.500	0.437
0.550	0.492
0.600	0.549
0.650	0.605
0.700	0.661
0.750	0.718
0.800	0.774
0.850	0.831
0.900	0.887
0.950	0.943
1.000	1.000

Given: Sky diver with $m=75 \mathrm{~kg}$ and $F_{D}=k v^{2} ; k=0.228 \frac{\mathrm{~N} \cdot \mathrm{~s}^{2}}{\mathrm{~m}^{2}}$
Find: (a) Maximum speed in free fall
(b) Speed reached in fall of 100 m

Plot: (a) Speed $V=V(t)$ and (b) $V=V(y)$
Solution:
Treat the sky diver as a system; apply Newton's znilaw Basic equation: $\sum_{z} F_{y}=m a_{y}$
Assumptions: $F_{D}=k v^{2}$ acts opposite to V

$$
\frac{A_{y}^{F}}{F_{y}} \quad \frac{\text { Initial conditions }}{F_{g}} \quad V=0 \text { at } t=0 \text { and }
$$

At terminal speed, $a_{y}=0$ and $V=V_{t}$,
so $m g-k v_{t}^{2}=0$. Thus

$$
V_{t}=\sqrt{\frac{m g}{k}}=\left[75 \mathrm{~kg} \times 9.81 \frac{\mathrm{~m}}{\mathrm{~s}^{2}} \times \frac{\mathrm{m}^{2}}{0.228 \mathrm{~N} . \mathrm{s}^{2}} \times \frac{\mathrm{N.}}{\mathrm{~kg} \cdot \mathrm{~m}}\right]^{1 / 2}=56.8 \mathrm{~m} / \mathrm{s} V_{t}
$$

(b) To solve for v at $y=100 \mathrm{~m}$, we need an expression for $V(y)$. Note Pal $a_{y}=\frac{d V}{d t}=\frac{d v}{d y} \frac{d y}{d t}=\frac{d V}{d y} v=V \frac{d V}{d y}$
Ten substituting into Eq. ${ }^{\prime}$,

$$
m g-k v^{2}=m \frac{d v}{d y} \text { or } 1-\frac{k v^{2}}{m g}=\frac{1}{g} \frac{d v}{d y}
$$

separating variables and integrating

$$
\begin{aligned}
& \int_{0}^{1} \frac{v d V}{1-k v^{2} \mid m g}=\int_{0}^{x} g d y \\
& \left.-{ }_{2}^{m g} \ln \left(1-\frac{k v^{2}}{m g}\right)\right]_{0}^{v}=g y \quad \text { or } \ln \left(1-\frac{k v^{2}}{M g}\right)=-\frac{2 k}{m} x
\end{aligned}
$$

$$
\begin{equation*}
V=v_{t}\left[1-e^{-2 t x / m}\right]^{1 / 2} \tag{2}
\end{equation*}
$$

\qquad
From Eq. 2 , we camelot $V(x)=V_{t}\left[1-e^{-i t x / m}\right]^{1 / 2}$
or $\quad V L_{t}=\left[1-e^{-2 k \gamma l_{m}}\right]^{\prime l_{2}}$
(Ra)
To obtain an expression for $\forall=V(t)$ we write

$$
\Sigma F_{y}=m g-k x^{2}=m a=m \frac{d t}{d t}
$$

Separating variables and integrating

$$
\begin{aligned}
& t=\frac{1}{2} \sqrt{\frac{m}{k g}} \ln \left|\frac{\sqrt{m g}}{\frac{m}{k}}+v\right|=\frac{1}{2} \sqrt{\frac{m}{k_{g}}-v} \ln \frac{\left|v_{t}+\lambda\right|}{V_{t}-v \mid}
\end{aligned}
$$

Men,

$$
\begin{aligned}
& \frac{V_{t}+V}{V_{t}-V}=e^{2 \sqrt{\frac{t g}{r}} t} \text {, and } \\
& \frac{V}{V_{t}}=\frac{\left(e^{\left.2 \sqrt{\frac{2 g}{n}} t-1\right)}\right.}{\left(e^{\left.2 \sqrt{\frac{2 g}{n}} t+1\right)}\right.}=\tanh \left(V_{t} \frac{k}{m} t\right) \ldots(3)
\end{aligned}
$$

Eqs. $2 a$ and 3 are plotted below

Eq. 2a: Speed Ratio vs. Distance

Eq. 3: Speed Ratio vs. Time

Gwen: Long bow at range, $R=100 \mathrm{~m}$. Maximum height of arrow is $h=10 \mathrm{~m}$. Neglect air resistance.
Find: Estimate of (a) speed, and (b) angle, of arrow leaving the bow.
Plot: (a) release speed, and (b) angle, as a function of h Solution:

$$
\begin{aligned}
& \text { Let } \vec{v}_{0}=u_{0} \hat{\imath}+v_{0} \hat{j}=v_{0}\left(\cos \theta_{0} i+\sin \theta_{0} \hat{j} \quad \vec{v}_{0} h\right. \\
& \sum r_{y}=m \frac{d v}{d t}=-m g \text {, so } \\
& v=v_{0}-g t \text {, and } t_{f}=2 t_{v=0}=2 v_{0} \lg \quad, \quad, \quad, \quad, \quad, \quad, \quad,
\end{aligned}
$$ Also, $m v \frac{d v}{d y}=-m g$, $v d v=-g d y, \quad 0-\frac{v_{0}^{2}}{2}=-g h$

 From (I) $v_{0}^{2}=2 \operatorname{con}^{2}$

$$
\therefore u_{0}^{2}=\frac{g e^{2}}{8 h}
$$

then $v_{0}^{2}=u_{0}^{2}+v_{0}^{2}=\frac{g h^{2}}{8 h}+2 g h \quad$ and $v_{0}=\left[2 g h+\frac{g h^{2}}{8 h}\right]^{1 / 2} \ldots(4)$ $V_{0}=\left[2 \times 9.81 \frac{m}{s^{2}} \times 10 m+\frac{9.81}{8} \frac{m}{s^{2}} \times(100)^{2} \times \frac{1}{10 m}\right]^{1 / 2}=37.7 m 1 s v_{0}$
 $\theta=\sin ^{-1}\left[\left(2+9.81 \frac{m}{s} \times 10 m\right)^{1 / 2} 37.2 m\right]=21.8^{\circ} \theta_{0}$ Plots of $V_{0}=H_{0}(h)\left\{E_{q} 4\right\}$ and $\theta_{0}=\theta_{0}(h)\left\{E q_{0} S\right\}$ are presented below

Eq. 4: Initial Speed vs. Max. Height

Eq. 5: Initial Angle vs. Max. Height

Problem 1.28

Given: Basic dimensions M, L, t and T.
Find: Dimensional representation of quantities below, and typical units in SI and English systems.
Solution:
(a) Power $=\frac{\text { Energy }}{\text { Time }}=\frac{\text { Force } \times \text { Distance }}{\text { Time }}$

From Newton's second law, Force $=$ Mass \times Acceleration

$$
\therefore \text { Power }=\frac{\text { Mass } \times \text { Acc. } \times \text { Dist. }}{\text { Time }}=\left[\frac{M \frac{L}{t^{2}} L}{t}\right]=\left[\frac{\mathrm{ML}^{2}}{t^{3}}\right] ; \frac{\mathrm{kg} \cdot \mathrm{~m}^{2}}{s^{3}} \text { or } \frac{\mathrm{s} / \mathrm{ug} \cdot \mathrm{ft}}{\mathrm{~s}^{3}}
$$

(6) Pressure $=\frac{\text { Force }}{\text { Area }}=\left[\frac{F}{L^{2}}\right]=\left[\frac{M L}{t^{2}} \frac{1}{L^{2}}\right]=\left[\frac{M}{L t^{2}}\right]: \frac{\mathrm{kg}}{\mathrm{m} \cdot \mathrm{s}^{2}}$ or $\frac{\mathrm{skg}}{\mathrm{ft} \mathrm{\cdot s}^{2}}$
(c) Modulus of elasticity $=\frac{\text { Force }}{\text { Arca }}=\left[\frac{M}{L t^{2}}\right] ; \frac{\mathrm{kg}}{\mathrm{m} \cdot \mathrm{s}^{2}}$ or $\frac{\mathrm{s} / \mathrm{ug}}{\mathrm{ft} \cdot \mathrm{s}^{2}}$
(d) Angular velocity $=\frac{\text { Radians }}{\text { Tinic }}=\left[\frac{1}{t}\right] ; \frac{1}{s}$ or $\frac{1}{s}$
(e) Energy $=$ Force \times Distance $=\left[\frac{M L}{t^{2}} L\right]=\left[\frac{M L^{2}}{t^{2}}\right] ; \frac{\mathrm{kg} \mathrm{m}^{2}}{\mathrm{~s}^{2}}$ or $\frac{\mathrm{slug} \cdot \mathrm{ft}^{2}}{\mathrm{~s}^{2}}$
(f) Momentum $=$ Mass \times velocity $=\left[M \frac{L}{t}\right]=\left[\frac{M L}{t}\right] ; \frac{\mathrm{kg} \cdot \mathrm{m}}{\mathrm{s}}$ or $\frac{\text { shg.ft }}{\mathrm{s}}$
(g) Shear stress $=\frac{\text { Force }}{\text { Area }}=\left[\frac{M}{L t^{2}}\right] ; \frac{\mathrm{kg}}{\mathrm{m} \cdot \mathrm{s}^{2}}$ or $\frac{\mathrm{sing}}{\mathrm{ft} \cdot \mathrm{s}^{2}}$
(h) Specific heat $=\frac{\text { Energy }}{M a s s \times \text { Temperature }}=\left[\frac{M^{2}}{t^{2}}\right]=\left[\frac{L^{2}}{t^{2} T}\right] ; \frac{m^{2}}{S^{2} \cdot K}$ or $\frac{f^{2}}{S^{2} \cdot 0 R}$
(i) Thermal expansion coefficient $=\frac{\text { Change in length } / \text { Length }}{\text { Temperature }}=\left[\frac{1}{T}\right]$; $\frac{1}{k}$ or $\frac{1}{o z}$
(j) Arquiar momentum $=$ momenturn \times distance $=$ Mass \times velocity distance

$$
=\left[M \frac{L}{t} L\right]=\left[\frac{M L^{2}}{t^{2}}\right], \frac{\mathrm{kg} \cdot M^{2}}{S} \text { or slug. ft } t_{S}^{2}
$$

Problem 1.29

Given: Basic dimensions F, L, t and T.
Find: Dimensional representation of quantities below, and typical units in SI and English systems.
Solution:
(a) Power $=\frac{\text { Energy }}{\text { Tine }}=\frac{\text { Force } \times \text { Distance }}{\text { Time }}=\left[\frac{F L}{t}\right]: \frac{N \cdot m}{s}$ or $\frac{\mathrm{Bf} \cdot \mathrm{ft}}{\mathrm{s}}$
(b) Presscere $=\frac{\text { Force }}{\text { Area }}=\left[\frac{E}{L^{2}}\right] ; \frac{N}{m^{2}}$ or $\frac{1 b t}{f t^{2}}$
(c) Modulus of elasticity $=\frac{\text { Force }}{\text { Area }}=\left[\frac{E}{L^{2}}\right] ; \frac{N}{m^{2}}$ or $\frac{1 b f}{f t^{2}}$
(d) Angular velocity $=\frac{\text { Radians }}{\text { Time }}=\left[\frac{1}{t}\right] ; \frac{1}{s}$ or $\frac{1}{3}$
(e) Energy $=$ Force $\times D$ stance $=[F L] ; N \cdot m$ or lbf.ft
(f) Moment of a force $=$ Force \times Distance $=[F L] ; \mathrm{N} \cdot \mathrm{m}$ or $\mathrm{lbf} \cdot \mathrm{ft}$
(g) Momentum $=$ Mass \times Velocity $=\left[\frac{M L}{t}\right]$

From Newton's second law, $F=m a$, so $m=\frac{F}{a}$
\therefore Momentum $=\frac{\text { Force } \times \text { velocity }}{\text { Accicration }}=\left[\frac{F \frac{L}{t}}{\frac{L}{t^{2}}}\right]=[F t] ; N \cdot s$ or $16 \mathrm{f} \cdot \mathrm{s}$
(h) Shear stress $=\frac{\text { Force }}{\text { Area }}=\left[\frac{E}{L^{2}}\right] ; \frac{\mathrm{N}}{\mathrm{m}^{2}}$ or $\frac{1 b f}{f^{2}}$
(i) Strain $=\frac{\text { change in length }}{\text { Length }}=\left[\frac{L}{L}\right]=[-] ;(-)$ or $(-)$
(j) Angular momentum $=$ momentum \times distance

$$
\begin{aligned}
& =\text { Mass } \times \text { velocity } \times \text { distance } \\
& =\left[M \frac{F L}{t} L=\left[\frac{F L^{2}}{L} \frac{L^{2}}{t}\right]\right. \\
& =[F L t] ; N \cdot M \cdot s \text { or lbf.ft.s }
\end{aligned}
$$

Problem 1.30

Derive the following conversion factors:
(a) Convert a pressure of 1 psi to kPa .
(b) Convert a volume of 1 liter to gallons.
(c) Convert a viscosity of $1 \mathrm{lbf} . \mathrm{s} / \mathrm{ft}^{2}$ to $\mathrm{N} . \mathrm{s} / \mathrm{m}^{2}$.

Solution

Using data from tables (e.g. Table G.2)
(a) $\quad 1 \cdot \mathrm{psi}=1 \cdot \mathrm{psi} \times \frac{6895 \cdot \mathrm{~Pa}}{1 \cdot \mathrm{psi}} \times \frac{1 \cdot \mathrm{kPa}}{1000 \cdot \mathrm{~Pa}}=6.89 \cdot \mathrm{kPa}$
(b) $\quad 1 \cdot$ liter $=1 \cdot$ liter $\times \frac{1 \cdot \text { quart }}{0.946 \cdot \text { liter }} \times \frac{1 \cdot \text { gal }}{4 \cdot \text { quart }}=0.264 \cdot \mathrm{gal}$
(c) $1 \cdot \frac{\mathrm{lbf} \cdot \mathrm{s}}{\mathrm{ft}^{2}}=1 \cdot \frac{\mathrm{lbf} \cdot \mathrm{s}}{\mathrm{ft}^{2}} \times \frac{4.448 \cdot \mathrm{~N}}{1 \cdot \mathrm{lbf}} \times\left(\frac{\frac{1}{12} \cdot \mathrm{ft}}{0.0254 \cdot \mathrm{~m}}\right)^{2}=47.9 \cdot \frac{\mathrm{~N} \cdot \mathrm{~s}}{\mathrm{~m}^{2}}$

Problem 1.31

Derive the following conversion factors:
(a) Convert a viscosity of $1 \mathrm{~m}^{2} / \mathrm{s}$ to $\mathrm{ft}^{2} / \mathrm{s}$.
(b) Convert a power of 100 W to horsepower.
(c) Convert a specific energy of $1 \mathrm{~kJ} / \mathrm{kg}$ to $\mathrm{Btu} / \mathrm{lbm}$.

Solution

Using data from tables (e.g. Table G.2)
(a) $1 \cdot \frac{\mathrm{~m}^{2}}{\mathrm{~s}}=1 \cdot \frac{\mathrm{~m}^{2}}{\mathrm{~s}} \times\left(\frac{\frac{1}{12} \cdot \mathrm{ft}}{0.0254 \cdot \mathrm{~m}}\right)^{2}=10.76 \cdot \frac{\mathrm{ft}^{2}}{\mathrm{~s}}$
(b) $\quad 100 \cdot \mathrm{~W}=100 \cdot \mathrm{~W} \times \frac{1 \cdot \mathrm{hp}}{746 \cdot \mathrm{~W}}=0.134 \cdot \mathrm{hp}$
(c) $\quad 1 \cdot \frac{\mathrm{~kJ}}{\mathrm{~kg}}=1 \cdot \frac{\mathrm{~kJ}}{\mathrm{~kg}} \times \frac{1000 \cdot \mathrm{~J}}{1 \cdot \mathrm{~kJ}} \times \frac{1 \cdot \mathrm{Btu}}{1055 \cdot \mathrm{~J}} \times \frac{0.454 \cdot \mathrm{~kg}}{1 \cdot \mathrm{lbm}}=0.43 \cdot \frac{\mathrm{Btu}}{\mathrm{lbm}}$

Problem 1.32

Given: Density of mercury is $\rho=26.3 \mathrm{skg} / \mathrm{ft} 3$.
Acceleration of gravity on moon is $g_{m}=5.47 \mathrm{ft} / \mathrm{s}^{2}$.
Find: (a) specific gravity of mercury.
(b) specific volume of mercury, in m^{3} / kg.
(c) Specific weight on Earth.
(d) specific weight on moon.

Solution: Apply definitions: $\gamma \equiv \rho g, v \equiv 1 / \rho, S G \equiv \rho / \rho_{\mathrm{H}_{2} \mathrm{O}}$
Thus $S G=26.3 \frac{\mathrm{slug}}{\mathrm{ft3}} \times \frac{\mathrm{ft} 3}{1.94 \operatorname{sing}}=13.6$

$$
v=\frac{\mathrm{ft3}}{26.3 \mathrm{skg}} \times(0.3048)^{3} \frac{\mathrm{~m}^{3}}{\mathrm{ft}^{3}} \times \frac{5 \mathrm{lng}}{32.2 \mathrm{lbm}} \times \frac{\mathrm{lbm}}{0.4536 \mathrm{~kg}^{2}}=7,37 \times 10^{-5} \mathrm{~m} / \mathrm{kg}
$$

On Earth,

$$
\gamma_{E}=26.3 \frac{\text { skeg }}{f t^{3}} \times 32.2 \frac{\mathrm{ft}}{s^{2}} \times \frac{1 \mathrm{bf} \cdot \mathrm{~s}^{2}}{s / \mathrm{cg} \cdot \mathrm{ft}}=847 \mathrm{lbf} / \mathrm{ft}^{3}
$$

On the moon,

$$
\gamma_{m}=26.3 \frac{\mathrm{slag}}{\mathrm{ft}^{3}} \times 5.47 \frac{\mathrm{ft}}{\mathrm{~s}^{2}} \times \frac{16 \mathrm{f} \cdot \mathrm{~s}^{2}}{\mathrm{skcg} \cdot \mathrm{ft}_{t}}=144 \mathrm{lbf} / \mathrm{ft}^{3}
$$

$\left\{\begin{array}{l}\text { Note that the mass-based quantities (SG and } v \text {) are independent of } \\ \text { gravity. }\end{array}\right.$

Problem 1.33

Derive the following conversion factors:
(a) Convert a volume flow rate in in. $3 / \mathrm{min}^{2}$ to $\mathrm{mm}^{3} / \mathrm{s}$.
(b) Convert a volume flow rate in cubic meters per second to gpm (gallons per minute).
(c) Convert a volume flow rate in liters per minute to gpm (gallons per minute).
(d) Convert a volume flow rate of air in standard cubic feet per minute (SCFM) to cubic meters per hour. A standard cubic foot of gas occupies one cubic foot at standard temperature and pressure $\left(\mathrm{T}=15^{\circ} \mathrm{C}\right.$ and $\mathrm{p}=101.3 \mathrm{kPa}$ absolute $)$.

Solution

Using data from tables (e.g. Table G.2)
(a) $1 \cdot \frac{\mathrm{in}^{3}}{\min }=1 \cdot \frac{\mathrm{in}^{3}}{\min } \times\left(\frac{0.0254 \cdot \mathrm{~m}}{1 \cdot \mathrm{in}} \times \frac{1000 \cdot \mathrm{~mm}}{1 \cdot \mathrm{~m}}\right)^{3} \times \frac{1 \cdot \mathrm{~min}}{60 \cdot \mathrm{~s}}=273 \cdot \frac{\mathrm{~mm}^{3}}{\mathrm{~s}}$
(b) $1 \cdot \frac{\mathrm{~m}^{3}}{\mathrm{~s}}=1 \cdot \frac{\mathrm{~m}^{3}}{\mathrm{~s}} \times \frac{1 \cdot \text { quart }}{0.000946 \cdot \mathrm{~m}^{3}} \times \frac{1 \cdot \mathrm{gal}}{4 \cdot \text { quart }} \times \frac{60 \cdot \mathrm{~s}}{1 \cdot \mathrm{~min}}=15850 \cdot \mathrm{gpm}$
(c) $\quad 1 \cdot \frac{\text { liter }}{\min }=1 \cdot \frac{\text { liter }}{\min } \times \frac{1 \cdot \text { quart }}{0.946 \cdot \mathrm{liter}} \times \frac{1 \cdot \mathrm{gal}}{4 \cdot \text { quart }} \times \frac{60 \cdot \mathrm{~s}}{1 \cdot \mathrm{~min}}=0.264 \cdot \frac{\mathrm{gal}}{\mathrm{min}}$
(d) $\quad 1 \cdot \mathrm{SCFM}=1 \cdot \frac{\mathrm{ft}^{3}}{\min } \times\left(\frac{0.0254 \cdot \mathrm{~m}}{\frac{1}{12} \cdot \mathrm{ft}}\right)^{3} \times \frac{60 \cdot \mathrm{~min}}{\mathrm{hr}}=1.70 \cdot \frac{\mathrm{~m}^{3}}{\mathrm{hr}}$

Given! In European usage, / kgt is the force exerted on 1 kg mass in standard gravity.

Find: Convert 32 psi to units of $\mathrm{kg} / \mathrm{km}$?

Solution: Apply Newton's second law.
Basic equation: $F=$ ma
The force exerted on 1 kg in standard gravity is

$$
F=1 \mathrm{~kg} \times 9.81 \frac{\mathrm{~m}}{\mathrm{~s}^{2}} \times \frac{\mathrm{N} \cdot \mathrm{~s}^{2}}{\mathrm{~kg} \cdot \mathrm{~m}}=9.81 \mathrm{~N}=1 \mathrm{kgf}
$$

setting up a conversion from psi to $\mathrm{kgf} / \mathrm{cm}^{2}$,

$$
1 \frac{\mathrm{lbf}}{\mathrm{ln}^{2}}=1 \frac{\mathrm{lbf}}{\mathrm{~m}^{2}} \times 4.448 \mathrm{~N} . \frac{\mathrm{in}^{2}}{1 \mathrm{bf}} \times \frac{\mathrm{kgf}}{(2.54)^{2} \mathrm{~cm}^{2}} \times \frac{\mathrm{kg}}{9.81 \mathrm{~N}}=0.0703 \frac{\mathrm{kgf}}{\mathrm{~cm}^{2}}
$$

or

$$
1 \equiv \frac{0.0703 \mathrm{kgf} / \mathrm{cm}^{2}}{\mathrm{psi}}
$$

Thus

$$
\begin{aligned}
& 32 \mathrm{psi}=\frac{32 \mathrm{psi} \times \frac{0.0703 \mathrm{kgt} \mathrm{~km}^{2}}{\text { psi}}}{32 \text { psi }}=2.25 \mathrm{kgf} / \mathrm{cm}^{2}
\end{aligned}
$$

Problem 1.35

Sometimes "engineering" equations are used in which units are present in an inconsistent manner. For example, a parameter that is often used in describing pump performance is the specific speed, NScu, given by
$\mathrm{N}_{\mathrm{Scu}}=\frac{\mathrm{N}(\mathrm{rpm}) \cdot \mathrm{Q}(\mathrm{gpm})^{\frac{1}{2}}}{\mathrm{H}(\mathrm{ft})^{\frac{3}{4}}}$
What are the units of specific speed? A particular pump has a specific speed of 2000. What will be the specific speed in SI units (angular velocity in $\mathrm{rad} / \mathrm{s}$)?

Solution

Using data from tables (e.g. Table G.2)

$$
\begin{aligned}
\mathrm{N}_{\mathrm{Scu}}= & 2000 \cdot \frac{\mathrm{rpm} \cdot \mathrm{gpm}^{\frac{1}{2}}}{\frac{3}{4}}=2000 \times \frac{\mathrm{rpm} \cdot \mathrm{gpm}^{\frac{1}{2}}}{\mathrm{ft}^{\frac{3}{4}}} \times \frac{2 \cdot \pi \cdot \mathrm{rad}}{1 \cdot \mathrm{rev}} \times \frac{1 \cdot \mathrm{~min}}{60 \cdot \mathrm{~s}} \times \cdot . \\
& \left(\frac{4 \cdot \text { quart }}{1 \cdot \mathrm{gal}} \cdot \frac{0.000946 \cdot \mathrm{~m}^{3}}{1 \cdot \text { quart }} \cdot \frac{1 \cdot \mathrm{~min}}{60 \cdot \mathrm{~s}}\right)^{\frac{1}{2}} \times\left(\frac{\frac{1}{12} \cdot \mathrm{ft}}{0.0254 \cdot \mathrm{~m}}\right)^{\frac{3}{4}}=4.06 \cdot \frac{\mathrm{~s} \cdot\left(\frac{\mathrm{rad}}{\mathrm{~s}}\right)^{3}}{\frac{3}{4}}
\end{aligned}
$$

Problem 1.36

A particular pump has an "engineering" equation form of the performance characteristic equatio given by $H(\mathrm{ft})=1.5-4.5 \times 10^{-5}[Q(\mathrm{gpm})]^{2}$, relating the head H and flow rate Q. What are the units of the coefficients 1.5 and 4.5×10^{-5} ? Derive an SI version of this equation.

Solution

Dimensions of " 1.5 " are ft.

Dimensions of " $4.5 \times 10^{-5 "}$ are $\mathrm{ft} / \mathrm{gpm}^{2}$.

Using data from tables (e.g. Table G.2), the SI versions of these coefficients can be obtained

$$
1.5 \cdot \mathrm{ft}=1.5 \cdot \mathrm{ft} \times \frac{0.0254 \cdot \mathrm{~m}}{\frac{1}{12} \cdot \mathrm{ft}}=0.457 \cdot \mathrm{~m}
$$

$4.5 \times 10^{-5} \cdot \frac{\mathrm{ft}}{\mathrm{gpm}^{2}}=4.5 \cdot 10^{-5} \cdot \frac{\mathrm{ft}}{\mathrm{gpm}^{2}} \times \frac{0.0254 \cdot \mathrm{~m}}{\frac{1}{12} \cdot \mathrm{ft}} \times\left(\frac{1 \cdot \mathrm{gal}}{4 \cdot \text { quart }} \cdot \frac{1 \text { quart }}{0.000946 \cdot \mathrm{~m}^{3}} \cdot \frac{60 \cdot \mathrm{~s}}{1 \mathrm{~min}}\right)^{2}$
$4.5 \cdot 10^{-5} \cdot \frac{\mathrm{ft}}{\mathrm{gpm}^{2}}=3450 \cdot \frac{\mathrm{~m}}{\left(\frac{\mathrm{~m}^{3}}{\mathrm{~s}}\right)^{2}}$

The equation is

$$
\mathrm{H}(\mathrm{~m})=0.457-3450 \cdot\left(\mathrm{Q}\left(\frac{\mathrm{~m}^{3}}{\mathrm{~s}}\right)\right)^{2}
$$

Problem 1.37
Given: Empty container weighing 3.5 lbs when empty, has a mass of 2.5 slug when filled with water at $90^{\circ} \mathrm{F}$.
Find: (a) Weight of water in the container (b) Container volume in fl^{3}.

Solution:
Basic equation: $F=$ na
Wright is the force of gravity on a body, wing Then

$$
\begin{aligned}
& w_{t}=w_{H_{2} \mathrm{O}}+w_{c} \\
& w_{H_{20}}=w_{t}-w_{c}=m_{g}-w_{c} \\
& w_{H_{2} \mathrm{O}}=2.5 \operatorname{slug} \times 32.2 \frac{\mathrm{ft}}{\mathrm{~s}^{2}} \times \frac{W_{6} \mathrm{~s}^{2}}{s \log \cdot \mathrm{ft}}-3.5 \quad W_{6}=77.0 \mathrm{lbf}
\end{aligned}
$$

The volume is given by

$$
t=\frac{m_{H_{2 O}}}{\rho}=\frac{m_{H_{2 O}} g}{\rho g}=\frac{w_{H_{2 O}}}{\rho g}
$$

From Table A.T, $p=1.93$ slug g $/ f^{3}$ at $T=90^{\circ} \mathrm{F}$

$$
\therefore y=77.0 i b f+1.93 \frac{f t^{3}}{s l u g}+\frac{s^{2}}{32.2 f t} \times \frac{s l u g . f t}{1 b f . s^{2}}=1.24 f^{3}
$$

Problem 2.1

For the velocity fields given below, determine:
(a) whether the flow field is one-, two-, or three-dimensional, and why.
(b) whether the flow is steady or unsteady, and why.
(The quantities a and b are constants.)
(1) $\vec{V}=\left[a x^{2} e^{-b t}\right] \hat{i}$
(2) $\vec{V}=a x \hat{i}-b y \hat{j}$
(3) $\vec{V}=a x^{2} \hat{i}+b x \hat{j}+c \hat{k}$
(4) $\vec{V}=a x^{2} \hat{i}+b x \hat{j}+c z \hat{k}$
(5) $\vec{V}=\left[a e^{-b x}\right] \hat{i}+b x^{2} \hat{j}$
(6) $\vec{V}=a x y \hat{i}-b y z \hat{j}$
(7) $\vec{V}=a\left(x^{2}+y^{2}\right)^{1 / 2}\left(1 / z^{3}\right) \hat{k}$
(8) $\vec{V}=(a x+t) \hat{i}-b y^{2} \hat{j}$

Solution

$$
\begin{equation*}
\overrightarrow{\mathrm{V}}=\stackrel{\overrightarrow{\mathrm{V}}}{(\mathrm{x})} \tag{1}
\end{equation*}
$$

1D

$$
\overrightarrow{\mathrm{V}}=\overrightarrow{\mathrm{V}}(\mathrm{x}, \mathrm{y})
$$

2D

1D

$$
\begin{equation*}
\overrightarrow{\mathrm{V}}=\overrightarrow{\mathrm{V}}(\mathrm{x}) \tag{3}
\end{equation*}
$$

2D

1D

$$
\overrightarrow{\mathrm{V}}=\overrightarrow{\mathrm{V}}(\mathrm{x}, \mathrm{y}, \mathrm{z})
$$

$$
\overrightarrow{\mathrm{V}}=\overrightarrow{\mathrm{V}}(\mathrm{x}, \mathrm{y}, \mathrm{z})
$$

2D

$$
\begin{equation*}
\overrightarrow{\mathrm{V}}=\overrightarrow{\mathrm{V}}(\mathrm{x}) \tag{5}
\end{equation*}
$$

$$
3 \mathrm{D}
$$

$$
\overrightarrow{\mathrm{V}}=\overrightarrow{\mathrm{V}}(\mathrm{x}, \mathrm{y})
$$

$\overrightarrow{\mathrm{V}}=\overrightarrow{\mathrm{V}}(\mathrm{t}$

Steady

$\overrightarrow{\mathrm{V}}=\overrightarrow{\mathrm{V}}(\mathrm{t})$
$\overrightarrow{\mathrm{V}} \neq \overrightarrow{\mathrm{V}}(\mathrm{t})$
$\vec{V}=\vec{V}(t)$
Unsteady

Problem 2.2
Given: viscous liquid sheared between parallel I disks. Upper disk rotates, lower fixed.
velocity field is $\vec{V}=\hat{e}_{y} r \omega z / h$.

Find: (a) Dimensions of velocity tie td.
(b) satisfy physical boundary conditions.

Solution: To find dimensions, compare to $\vec{V}=\vec{V}(x, y, z)$ form.
The given field is $\vec{V}=\vec{V}(r, z)$. Two space coordinates are included, so field is 2-D.

Flow must satisfy the no-slip condition:
(1) At lower disk, $\vec{V}=0$, since stationary.

$$
z=0, \text { so } \quad \vec{V}=\hat{e}_{\theta} r w(0) / n=0 \quad \therefore \text { satisfied }
$$

(2) At upper disk, $\vec{V}=\hat{e}_{0} r w$, since it rotates as a solid body.

$$
z=h \text {, so } \vec{v}=\hat{e}_{\theta} r \omega(h) / h=\hat{e}_{\theta} r \omega \therefore \text { satisfied }
$$

Problem 2.3

Given: Velocity field, $\vec{V}=a x \hat{\imath}-b y \hat{\jmath} \quad\left(a=b=1 \sec ^{-1}\right)$
Find: Equation for the flow streamlines, and
Plot: Representave streamlines for $x \geq 0$ and $y \geq 0$
Solution:
The slope of the streamlines in the wy plane is given by

$$
\frac{d y}{d x}=\frac{v}{u}
$$

For $\vec{v}=a x \hat{\imath}-b y \hat{j}$, then $u=a x, v=-b y$. Hence

$$
\frac{d y}{d x}=\frac{v}{u}=-\frac{b}{a} \frac{y}{x}
$$

To solve the differential equation, separate variables and integrate

$$
\int \frac{d y}{y}=-\int \frac{b}{a} \frac{d x}{x}
$$

$$
\ln y=-\frac{b}{a} \ln x+\text { constant }
$$

$\ln y=\ln x^{-\frac{b}{a}}+\ln c \quad$ where constant $=\ln c$
then $\quad y=c x^{-\frac{b}{a}}$
or alternately $x=\left(\frac{y}{c}\right)^{-\frac{a}{b}}=\left(\frac{c}{y}\right)^{\frac{Q}{b}}$
For a given velocity field, the constants a and b are fixed. Different streamlines are obtained by assigning different values to the constant of integration, C.

Since $a=b=1 \sec ^{-1}$, then alb $=1$, and the streamlines are given by the equation

$$
y=c x^{-1}=\frac{c}{x} \quad \text { or } \quad x=\frac{c}{y}
$$

For $c=0 \quad y=0$ for all x and $x=0$ for all y.

The equation $y=\frac{c}{x}$ is the equation of a hyper sola.
Curves are shown for different values of c

Problem 2.4

A velocity field is given by

$$
\vec{V}=a x \hat{i}-b t y \hat{j}
$$

where $a=1 \mathrm{~s}^{-1}$ and $b=1 \mathrm{~s}^{-2}$. Find the equation of the streamlines at any time t. Plot several streamlines in the first quadrant at $t=0 \mathrm{~s}, t=1 \mathrm{~s}$, and $t=20 \mathrm{~s}$.

Solution

For streamlines

$$
\frac{v}{u}=\frac{d y}{d x}=\frac{-b \cdot t \cdot y}{a \cdot x}
$$

So, separating variables $\quad \frac{d y}{y}=\frac{-b \cdot t}{a} \cdot \frac{d x}{x}$

Integrating

$$
\ln (\mathrm{y})=\frac{-\mathrm{b} \cdot \mathrm{t}}{\mathrm{a}} \cdot \ln (\mathrm{x})
$$

The solution is

$$
y=c \cdot x^{\frac{-b}{a} \cdot t}
$$

For $t=0 \mathrm{~s}$

$$
\mathrm{y}=\mathrm{c}
$$

For $t=1 \mathrm{~s}$

$$
y=\frac{c}{x}
$$

For $t=20 \mathrm{~s}$

$$
y=c \cdot x^{-20}
$$

See the plots in the corresponding Excel workbook

Problem 2.4 (In Excel)

A velocity field is given by

$$
\vec{V}=a x \hat{i}-b t y \hat{j}
$$

where $a=1 \mathrm{~s}^{-1}$ and $b=1 \mathrm{~s}^{-2}$. Find the equation of the streamlines at any time t.
Plot several streamlines in the first quadrant at $t=0 \mathrm{~s}, t=1 \mathrm{~s}$, and $t=20 \mathrm{~s}$.

Solution

The solution is

$$
\mathrm{v}=\mathrm{c} \cdot \mathrm{y}^{\frac{-\mathrm{b}}{\mathrm{a}} \cdot \mathrm{t}}
$$

For $t=0 \mathrm{~s} \quad \mathrm{y}=\mathrm{c}$

For $t=1 \mathrm{~s} \quad \mathrm{y}=\frac{\mathrm{c}}{\mathrm{x}}$

For $t=20 \mathrm{~s} \quad \mathrm{y}=\mathrm{c} \cdot \mathrm{x}^{-20}$
$t=0$
$c=1 \quad c=2 \quad c=3$

\mathbf{x}	\mathbf{y}	\mathbf{y}	\mathbf{y}
0.05	1.00	2.00	3.00
0.10	1.00	2.00	3.00
0.20	1.00	2.00	3.00
0.30	1.00	2.00	3.00
0.40	1.00	2.00	3.00
0.50	1.00	2.00	3.00
0.60	1.00	2.00	3.00
0.70	1.00	2.00	3.00
0.80	1.00	2.00	3.00
0.90	1.00	2.00	3.00
1.00	1.00	2.00	3.00
1.10	1.00	2.00	3.00
1.20	1.00	2.00	3.00
1.30	1.00	2.00	3.00
1.40	1.00	2.00	3.00
1.50	1.00	2.00	3.00
1.60	1.00	2.00	3.00
1.70	1.00	2.00	3.00
1.80	1.00	2.00	3.00
1.90	1.00	2.00	3.00
2.00	1.00	2.00	3.00

$t=1 \mathrm{~s} \quad t=20 \mathrm{~s}$
(\#\#\# means too large to view)
$c=1 \quad c=2 \quad c=3$

\mathbf{x}	\mathbf{y}	\mathbf{y}	\mathbf{y}
0.05	20.00	40.00	60.00
0.10	10.00	20.00	30.00
0.20	5.00	10.00	15.00
0.30	3.33	6.67	10.00
0.40	2.50	5.00	7.50
0.50	2.00	4.00	6.00
0.60	1.67	3.33	5.00
0.70	1.43	2.86	4.29
0.80	1.25	2.50	3.75
0.90	1.11	2.22	3.33
1.00	1.00	2.00	3.00
1.10	0.91	1.82	2.73
1.20	0.83	1.67	2.50
1.30	0.77	1.54	2.31
1.40	0.71	1.43	2.14
1.50	0.67	1.33	2.00
1.60	0.63	1.25	1.88
1.70	0.59	1.18	1.76
1.80	0.56	1.11	1.67
1.90	0.53	1.05	1.58
2.00	0.50	1.00	1.50

	c	$\mathrm{c}=2$	$\mathrm{c}=3$
\mathbf{x}	y	y	y
0.05	\#\#\#\#\#	\#\#\#\#\#	\#\#\#\#\#
0.10	\#\#\#\#\#	\#\#\#\#\#	\#\#
0.20	\#\#\#\#\#	\#\#\#\#\#	\#\#
0.30	\#\#\#\#\#	\#\#\#\#\#	\#\#\#\#\#
0.40	\#\#\#\#\#	\#\#\#\#\#	\#\#
0.50	\#\#\#\#	\#\#\#\#\#	
0.60	\#\#\#\#\#	\#\#\#\#\#	\#\#
0.70	\#\#\#\#\#	\#\#\#\#\#	\#\#\#\#\#
0.80	86.74	\#\#\#\#\#	\#\#\#\#\#
0.90	8.23	16.45	24.68
1.00	1.00	2.00	3.00
1.10	0.15	0.30	0.45
1.20	0.03	0.05	0.08
1.30	0.01	0.01	0.02
1.40	0.00	0.00	0.00
1.50	0.00	0.00	0.00
1.60	0.00	0.00	0.00
1.70	0.00	0.00	0.00
1.80	0.00	0.00	0.00
1.90	0.00	0.00	0.00
2.00	0.00	0.00	0.00

Given: Velocity field, $\vec{V}=A x y i+B y^{2} j$

$$
A=1 n^{-1}, B=-0.5 n^{\prime \prime} s^{\prime \prime} \text {; coordinates in meters }
$$

Find: Equation for flow streamlines plot: several streamlines in upper half plane Solution:
Streamlines are tangent to the veloaty vector, so

$$
\left.\frac{d y}{d x}\right|_{\text {streamline }}=\frac{v}{u}=\frac{B y^{2}}{A x y}=\frac{B y}{A x}=-\frac{0.5}{m \cdot 5} \times \frac{m .5}{10} \frac{y}{x}=-\frac{y}{2 x}
$$

Separating variables,

$$
\frac{d x}{x}=-2 \frac{d y}{y} \quad \text { or } \quad \frac{d x}{x}+2 \frac{d y}{y}=0
$$

Integrating.

$$
\ln x+2 \ln y=c_{1}=\ln c \text { or } \ln x+\ln y^{2}=\ln c
$$

Taking antilogarithms.

$$
x y^{2}=c \text { - (Equation for streamlines) }
$$

Plotting:

Problem 2.6

A velocity field is specified as

$$
\vec{V}=a x^{2} \hat{i}+b x y \hat{j}
$$

where $a=2 \mathrm{~m}^{-1} \mathrm{~s}^{-1}$ and $b=-6 \mathrm{~m}^{-1} \mathrm{~s}^{-1}$, and the coordinates are measured in meters. Is the flow field one-, two-, or three-dimensional? Why? Calculate the velocity components at the point $(2,1 / 2)$. Develop an equation for the streamline passing through this point. Plot several streamlines in the first quadrant including the one that passes through the point (2, 1/2).

Solution

The velocity field is a function of x and y. It is therefore
2D
At point (2,1/2), the velocity components are

$$
\begin{array}{ll}
u=\mathrm{a} \cdot \mathrm{x}^{2}=2 \cdot \frac{1}{\mathrm{~m} \cdot \mathrm{~s}} \times(2 \cdot \mathrm{~m})^{2} & \mathrm{u}=8 \cdot \frac{\mathrm{~m}}{\mathrm{~s}} \\
\mathrm{v}=\mathrm{b} \cdot \mathrm{x} \cdot \mathrm{y}=-6 \cdot \frac{1}{\mathrm{~m} \cdot \mathrm{~s}} \times 2 \cdot \mathrm{~m} \times \frac{1}{2} \cdot \mathrm{~m} & \mathrm{v}=-6 \cdot \frac{\mathrm{~m}}{\mathrm{~s}}
\end{array}
$$

For streamlines

$$
\frac{v}{u}=\frac{d y}{d x}=\frac{b \cdot x \cdot y}{a \cdot x^{2}}=\frac{b \cdot y}{a \cdot x}
$$

So, separating variables $\quad \frac{d y}{y}=\frac{b}{a} \cdot \frac{d x}{x}$

Integrating

$$
\ln (\mathrm{y})=\frac{\mathrm{b}}{\mathrm{a}} \cdot \ln (\mathrm{x}) \quad \mathrm{y}=\mathrm{c} \cdot \mathrm{x}^{\frac{\mathrm{b}}{\mathrm{a}}}=\mathrm{c} \cdot \mathrm{x}^{-3}
$$

$$
\text { The solution is } \quad y=\frac{c}{x^{3}}
$$

See the plot in the corresponding Excel workbook

Problem 2.6 (In Excel)

A velocity field is specified as

$$
\vec{V}=a x^{2} \hat{i}+b x y \hat{j}
$$

where $a=2 \mathrm{~m}^{-1} \mathrm{~s}^{-1}, b=-6 \mathrm{~m}^{-1} \mathrm{~s}^{-1}$, and the coordinates are measured in meters.
Is the flow field one-, two-, or three-dimensional? Why?
Calculate the velocity components at the point ($2,1 / 2$). Develop an equation
for the streamline passing through this point. Plot several streamlines in the first quadrant including the one that passes through the point $(2,1 / 2)$.

Solution

The solution is $\quad y=\frac{c}{x^{3}}$

$\mathbf{c}=$

$\mathbf{1}$				$\mathbf{2}$
\mathbf{x}	\mathbf{y}	$\mathbf{3}$	\mathbf{y}	\mathbf{y}
0.05	8000	16000	24000	32000
0.10	1000	2000	3000	4000
0.20	125	250	375	500
0.30	37.0	74.1	111.1	148.1
0.40	15.6	31.3	46.9	62.5
0.50	8.0	16.0	24.0	32.0
0.60	4.63	9.26	13.89	18.52
0.70	2.92	5.83	8.75	11.66
0.80	1.95	3.91	5.86	7.81
0.90	1.37	2.74	4.12	5.49
1.00	1.00	2.00	3.00	4.00
1.10	0.75	1.50	2.25	3.01
1.20	0.58	1.16	1.74	2.31
1.30	0.46	0.91	1.37	1.82
1.40	0.36	0.73	1.09	1.46
1.50	0.30	0.59	0.89	1.19
1.60	0.24	0.49	0.73	0.98
1.70	0.20	0.41	0.61	0.81
1.80	0.17	0.34	0.51	0.69
1.90	0.15	0.29	0.44	0.58
2.00	0.13	0.25	0.38	0.50

Problem 2.7

A flow is described by the velocity field $\vec{V}=(A x+B) \hat{i}+(-A y) \hat{j}$, where $A=10 \mathrm{ft} / \mathrm{s} / \mathrm{ft}$ and $B=20 \mathrm{ft} / \mathrm{s}$. Plot a few streamlines in the $x y$ plane, including the one that passes through the point $(x, y)=(1,2)$.

Solution

Streamlines are given by $\quad \frac{v}{u}=\frac{d y}{d x}=\frac{-A \cdot y}{A \cdot x+B}$

So, separating variables $\quad \frac{d y}{-A \cdot y}=\frac{d x}{A \cdot x+B}$

Integrating

$$
-\frac{1}{\mathrm{~A}} \ln (\mathrm{y})=\frac{1}{\mathrm{~A}} \cdot \ln \left(\mathrm{x}+\frac{\mathrm{B}}{\mathrm{~A}}\right)
$$

The solution is

$$
y=\frac{C}{x+\frac{B}{A}}
$$

For the streamline that passes through point $(x, y)=(1,2)$

$$
\begin{aligned}
& C=y \cdot\left(x+\frac{B}{A}\right)=2 \cdot\left(1+\frac{20}{10}\right)=6 \\
& y=\frac{6}{x+\frac{20}{10}} \\
& y=\frac{6}{x+2}
\end{aligned}
$$

See the plot in the corresponding Excel workbook

Problem 2.7 (In Excel)

A flow is described by the velocity field $\vec{V}=(A x+B) \hat{i}+(-A y) \hat{j}$, where $A=10 \mathrm{ft} / \mathrm{s} / \mathrm{ft}$ and $B=20 \mathrm{ft} / \mathrm{s}$. Plot a few streamlines in the $x y$ plane, including the one that passes through the point $(x, y)=(1,2)$.

Solution

The solution is $y=\frac{C}{x+\frac{B}{A}} \quad$	$\mathbf{A}=\mathbf{1 0}$
$\mathbf{B}=\mathbf{2 0}$	

$C=$

$\mathbf{1}$				
\mathbf{x}	\mathbf{y}	\mathbf{y}	\mathbf{y}	\mathbf{y}
0.00	0.50	1.00	2.00	3.00
0.10	0.48	0.95	1.90	2.86
0.20	0.45	0.91	1.82	2.73
0.30	0.43	0.87	1.74	2.61
0.40	0.42	0.83	1.67	2.50
0.50	0.40	0.80	1.60	2.40
0.60	0.38	0.77	1.54	2.31
0.70	0.37	0.74	1.48	2.22
0.80	0.36	0.71	1.43	2.14
0.90	0.34	0.69	1.38	2.07
1.00	0.33	0.67	1.33	2.00
1.10	0.32	0.65	1.29	1.94
1.20	0.31	0.63	1.25	1.88
1.30	0.30	0.61	1.21	1.82
1.40	0.29	0.59	1.18	1.76
1.50	0.29	0.57	1.14	1.71
1.60	0.28	0.56	1.11	1.67
1.70	0.27	0.54	1.08	1.62
1.80	0.26	0.53	1.05	1.58
1.90	0.26	0.51	1.03	1.54
2.00	0.25	0.50	1.00	1.50

Problem 2.8

A velocity field is given by $\vec{V}=a x^{3} \hat{i}+b x y^{3} \hat{j}$, where $a=1 \mathrm{~m}^{-2} \mathrm{~s}^{-1}$ and $b=1 \mathrm{~m}^{-3}$ s^{-1}. Find the equation of the streamlines. Plot several streamlines in the first quadrant.

Solution

Streamlines are given by $\frac{v}{u}=\frac{d y}{d x}=\frac{b \cdot x \cdot y^{3}}{a \cdot x^{3}}$

So, separating variables $\frac{d y}{y^{3}}=\frac{b \cdot d x}{a \cdot x^{2}}$

Integrating

$$
-\frac{1}{2 \cdot y^{2}}=\frac{\mathrm{b}}{\mathrm{a}} \cdot\left(-\frac{1}{\mathrm{x}}\right)+\mathrm{C}
$$

The solution is

$$
y=\frac{1}{\sqrt{2 \cdot\left(\frac{b}{a \cdot x}+C\right)}}
$$

Note: For convenience the sign of C is changed.

See the plot in the corresponding Excel workbook

Problem 2.8 (In Excel)

A velocity field is given by $\vec{V}=a x^{3} \hat{i}+b x y^{3} \hat{j}$, where $a=1 \mathrm{~m}^{-2} \mathrm{~s}^{-1}$ and $b=1 \mathrm{~m}^{-3}$ s^{-1}. Find the equation of the streamlines. Plot several streamlines in the first quadrant.

Solution

The solution is

$$
y=\frac{1}{\sqrt{2 \cdot\left(\frac{b}{a \cdot x}+C\right)}} \quad \begin{aligned}
& \quad \begin{array}{l}
\mathbf{a}=1 \\
b=1
\end{array}
\end{aligned}
$$

$C=$

\mathbf{x}	$\mathbf{0}$	$\mathbf{2}$	$\mathbf{4}$	$\mathbf{6}$
0.05	0.16	0.15	0.14	0.14
0.10	0.22	0.20	0.19	0.18
0.20	0.32	0.27	0.24	0.21
0.30	0.39	0.31	0.26	0.23
0.40	0.45	0.33	0.28	0.24
0.50	0.50	0.35	0.29	0.25
0.60	0.55	0.37	0.30	0.26
0.70	0.59	0.38	0.30	0.26
0.80	0.63	0.39	0.31	0.26
0.90	0.67	0.40	0.31	0.27
1.00	0.71	0.41	0.32	0.27
1.10	0.74	0.41	0.32	0.27
1.20	0.77	0.42	0.32	0.27
1.30	0.81	0.42	0.32	0.27
1.40	0.84	0.43	0.33	0.27
1.50	0.87	0.43	0.33	0.27
1.60	0.89	0.44	0.33	0.27
1.70	0.92	0.44	0.33	0.28
1.80	0.95	0.44	0.33	0.28
1.90	0.97	0.44	0.33	0.28
2.00	1.00	0.45	0.33	0.28

Given: steady, incompressible flow in $x y$ plane with

$$
\vec{V}=\frac{A}{x} \hat{\imath}+\frac{A y}{x^{2}} \hat{\jmath} \text { where } A=2 \mathrm{~m}^{2} / \mathrm{s}
$$

and coordinaies ane in meters.
Find: (a) Equation for Streamline through $(x, y)=(1,3)$.
(b) Time required for a fluid particle to move from $x=1 \mathrm{~m}$ to $x=3 \mathrm{~m}$.
Solution: The velocity field is $\vec{v}=u \hat{\imath}+v \hat{\jmath}$, so $u=\frac{A}{x}, v=\frac{A y}{x^{2}}$ Computing equations: $\left.\frac{d y}{d x}\right)_{\text {streamline }}=\frac{v}{u} ; u_{p}=\frac{d x}{d t}$

Substituting, $\frac{d y}{d x}=\frac{A y}{x^{2}} \frac{x}{A}=\frac{y}{x}$ so $\frac{d x}{x}=\frac{d y}{y}$
Integrating, $\ln x=\ln y+c^{*}=\ln y+\ln c$ or $x=c y$
For point $(x, y)=(1,3), \quad c=\frac{x}{y}=\frac{1}{3}$
Thus $x=\frac{y}{3}$ is equation
For a particle, up $=\frac{d x}{d t}=\frac{A}{x}$ or $x d x=A d t$
Integrating, $\int_{x_{0}}^{x} x d x=\frac{x^{2}-x_{0}^{2}}{2}=$ At so $t=\frac{x^{2}-x_{0}^{2}}{2 A}$

$$
t=\frac{1}{2} \times\left[(3)^{2} m^{2}-(1)^{2} m^{2}\right] \times \frac{s}{2 m^{2}}=2 \mathrm{~s}
$$

Given: Velocity field $\vec{V}=a x i-b y j$, where $a=b=1 s^{-1}$. Find: (a) Show that particle motion is described by the parametric equations $x_{p}=c \cdot e^{a t}$ and $y_{p} \equiv c_{2} e^{-s t}$ (b) Obtain equation of pattinine for particle located at (1,2) at $t=0$
(c) Compare pathline with streamline though same paint

Solution
(a) A particle mourning in the velocity field $\vec{b}=a x i-b y j$ will have velocity corpponerts $u=a x, v=-b y$
hus $u_{p}=\frac{d x^{2}}{d t}=a x$ or $\frac{d x}{d x}=a d t$ and $\left(\frac{d x}{x}=\int a d t \ldots(i)\right.$

$$
v_{p}=\frac{d y}{d t}=-b y \text { or } \frac{d y}{y}=-b d t \text { and }\left(\frac{d y}{y}=-(b d t \ldots(2)\right.
$$

Integrating Eqs. (1) and (2) we obtain

$$
\left.\ln x=a t+\ln c_{1} \quad \text { or } \frac{x}{c_{1}}=e^{a t} \quad \text { and } x=c_{1} e^{a t}\right) \text { and }
$$

(b) To obtain the equation of the patiline we eliminate t from the parametric equations.

$$
\begin{array}{lll}
x=c_{1} e^{a t} & \therefore \ln \frac{t}{c_{1}}=a t & \text { or } t=\frac{1}{a} \ln \frac{x}{c_{1}} \\
y=c_{2} e^{-b t} & \therefore \ln \frac{y}{c_{2}}=-b t & \text { or } t=-\frac{1}{b} \ln \frac{y}{c_{2}}
\end{array}
$$

Equating expressions for t, we obtain

$$
\frac{1}{a} \ln \frac{x}{c_{1}}=-\frac{1}{b} \ln \frac{y}{c_{k}} \quad \text { or }-\frac{b}{a} \ln \frac{x}{c_{1}}=\ln \frac{y}{c_{2}}
$$

Thus $\left(\frac{x}{c_{1}}\right)^{-b / a}=\frac{y}{c_{2}}$ or $y\left(\frac{x}{c_{1}}\right)^{b / a}=c_{2}$
At $t=0 \quad x-1=c_{1}, y=2=c_{2}$. Since $a=b$, then the pathline of the particle is $x y=2$. Patine
(c) The streamline in the $x-y$ plane has slope $\frac{d y}{d x}=\frac{v}{u}=-\frac{b}{a} \frac{y}{x}$ The $\frac{d y}{y}+\frac{b}{a} \frac{d x}{x}=0$. Wis can be integrated to obtain

$$
\ln y+\frac{b}{a} \ln x=\text { constant }=\operatorname{lnc}
$$

Simplifying we obtain. $y x^{\text {bala }}=c$. Wit $b=a$, the equation of the strearinie Trough part $(1,2)$ is then $x y=2$ Streamline

Problem 2.11

A velocity field is given by $\vec{V}=a y t \hat{i}-b x \hat{j}$, where $a=1 \mathrm{~s}^{-2}$ and $b=4 \mathrm{~s}^{-1}$. Find the equation of the streamlines at any time t. Plot several streamlines at $t=0 \mathrm{~s}, t=1 \mathrm{~s}$, and $t=20 \mathrm{~s}$.

Solution

Streamlines are given by $\frac{v}{u}=\frac{d y}{d x}=\frac{-b \cdot x}{a \cdot y \cdot t}$

So, separating variables $\quad a \cdot t \cdot y \cdot d y=-b \cdot x \cdot d x$

Integrating

$$
\frac{1}{2} \cdot a \cdot t \cdot y^{2}=-\frac{1}{2} \cdot b \cdot x^{2}+C
$$

The solution is

$$
y=\sqrt{C-\frac{b \cdot x^{2}}{a \cdot t}}
$$

For $t=0 \mathrm{~s}$

$$
\mathrm{x}=\mathrm{c}
$$

For $t=1 \mathrm{~s}$

$$
y=\sqrt{C-4 \cdot x^{2}}
$$

For $t=20 \mathrm{~s} \quad \mathrm{y}=\sqrt{\mathrm{C}-\frac{\mathrm{x}^{2}}{5}}$

See the plots in the corresponding Excel workbook

Problem 2.11 (In Excel)

A velocity field is given by $\vec{V}=a y t \hat{i}-b x \hat{j}$, where $a=1 \mathrm{~s}^{-2}$ and $b=4 \mathrm{~s}^{-1}$. Find the equation of the streamlines at any time t. Plot several streamlines at $t=0 \mathrm{~s}, t=1 \mathrm{~s}$, and $t=20 \mathrm{~s}$.

Solution

The solution is $\quad y=\sqrt{C-\frac{b \cdot x^{2}}{a \cdot t}}$

For $t=0 \mathrm{~s} \quad \mathrm{x}=\mathrm{c}$

For $t=1 \mathrm{~s}$

$$
y=\sqrt{C-4 \cdot x^{2}}
$$

For $t=20 \mathrm{~s} \quad \mathrm{y}=\sqrt{\mathrm{C}-\frac{\mathrm{x}^{2}}{5}}$

$\mathbf{t}=\mathbf{0}$			
	$\mathbf{C}=\mathbf{1}$	$\mathbf{C}=\mathbf{2}$	$\mathbf{C}=\mathbf{3}$
\mathbf{X}	\mathbf{y}	\mathbf{y}	\mathbf{y}
0.00	1.00	2.00	3.00
0.10	1.00	2.00	3.00
0.20	1.00	2.00	3.00
0.30	1.00	2.00	3.00
0.40	1.00	2.00	3.00
0.50	1.00	2.00	3.00
0.60	1.00	2.00	3.00
0.70	1.00	2.00	3.00
0.80	1.00	2.00	3.00
0.90	1.00	2.00	3.00
1.00	1.00	2.00	3.00
1.10	1.00	2.00	3.00
1.20	1.00	2.00	3.00
1.30	1.00	2.00	3.00
1.40	1.00	2.00	3.00
1.50	1.00	2.00	3.00
1.60	1.00	2.00	3.00
1.70	1.00	2.00	3.00
1.80	1.00	2.00	3.00
1.90	1.00	2.00	3.00
2.00	1.00	2.00	3.00

$\mathrm{t}=1 \mathrm{~s}$			
	$C=1$	$C=2$	$C=3$
\mathbf{X}	y	y	y
0.000	1.00	1.41	1.73
0.025	1.00	1.41	1.73
0.050	0.99	1.41	1.73
0.075	0.99	1.41	1.73
0.100	0.98	1.40	1.72
0.125	0.97	1.39	1.71
0.150	0.95	1.38	1.71
0.175	0.94	1.37	1.70
0.200	0.92	1.36	1.69
0.225	0.89	1.34	1.67
0.250	0.87	1.32	1.66
0.275	0.84	1.30	1.64
0.300	0.80	1.28	1.62
0.325	0.76	1.26	1.61
0.350	0.71	1.23	1.58
0.375	0.66	1.20	1.56
0.400	0.60	1.17	1.54
0.425	0.53	1.13	1.51
0.450	0.44	1.09	1.48
0.475	0.31	1.05	1.45
0.500	0.00	1.00	1.41

$t=20 \mathrm{~s}$
$\mathrm{C}=1 \quad \mathrm{C}=2 \quad \mathrm{C}=3$

\mathbf{x}	\mathbf{y}	\mathbf{y}	\mathbf{y}
0.00	1.00	1.41	1.73
0.10	1.00	1.41	1.73
0.20	1.00	1.41	1.73
0.30	0.99	1.41	1.73
0.40	0.98	1.40	1.72
0.50	0.97	1.40	1.72
0.60	0.96	1.39	1.71
0.70	0.95	1.38	1.70
0.80	0.93	1.37	1.69
0.90	0.92	1.36	1.68
1.00	0.89	1.34	1.67
1.10	0.87	1.33	1.66
1.20	0.84	1.31	1.65
1.30	0.81	1.29	1.63
1.40	0.78	1.27	1.61
1.50	0.74	1.24	1.60
1.60	0.70	1.22	1.58
1.70	0.65	1.19	1.56
1.80	0.59	1.16	1.53
1.90	0.53	1.13	1.51
2.00	0.45	1.10	1.48

Problem 2.12
Given: Velocity field $\vec{V}=(a x \hat{\imath}-a y \hat{\jmath})(z+\cos \omega t)$
where $a=3 s^{-1}$ and $\omega=\pi s^{-1} ; x$ and y measured in m
Find: (a) Algebraic equation for streamline at $t=0$
(b) Plot streamline through point $(x, y)=(2,4)$ at $t=0$
(c) will the streamline change with time? Explain
(d) show velocity vector at same point, tire. Tangent? Explain

Solution: For a streamline, $\frac{d y}{v}=\frac{d u}{x}$. From the given fie ct, at $t=0$,

$$
u=2 a x \text { and } v=-2 a y \text {, so } \frac{d y}{v}=-\frac{d y}{2 a y}=\frac{d x}{u}=\frac{d x}{2 a x}
$$

or

$$
\frac{d x}{x}+\frac{d u}{y}=0
$$

Integrating, lnux+lwy $=$ hoc or $x y=c$ Streamline $(t=0)$

For point $(x, y)=(2,4), x y=(2)(4)=c=8$, or $x y=8 \quad$ Thru $(x, y)=(2,4)$

Streamline patter will not change with tirie, since $\frac{d y}{d x} \neq f(t)$.
At point $(2,4)$ at $t=0, u=2 a x=(2)\left(3 s^{-1}\right)(2 \mathrm{~m})=12 \mathrm{~m} / \mathrm{s}$

$$
v=-2 a y=-(2)\left(3 \cdot s^{-1}\right)(4 \mathrm{~m})=-24 \mathrm{~m} / \mathrm{s}
$$

The velocity vector is tangent to the streamline. Tangent

Problem 2.13
Given: Velocity field $\vec{V}=A \hat{i}+B t \hat{j}$, where $A=2 m l s$, $B=0.6 \mathrm{~m} / \mathrm{s}^{2}$, and coordinates are in meters.
Find: (a) position functions for particle located at (x_{0}, y_{0}) $=1,1$ at time $t=0$
(b) algebraic expression for pakline of particle of part (a)
Plot: the patting and compare with streamline through the same point at $t=0,1,25$.
Solution:
For a particle $u=\frac{d t}{d t}$ and $v=\frac{d y}{d t}$
then,

Subsituting values for A, B, M_{0}, and y_{0}, then

$$
x=1+2 t \text { and } y=1+0.30 t^{2}+x, y
$$

(b) To determine the gathline for the particle we eliminate t from the parametric equations of port (a). From $E q . i a, \quad t=\left(x-x_{0}\right) / A$. Substituting into Eq (b), then

$$
\begin{equation*}
y-y_{0}=\frac{B\left(x-x_{0}\right)^{2}}{2 A^{2}} \tag{2}
\end{equation*}
$$

substituting numerical values,
(c) The steamline is found (at given t) from $\left.\left.d y\right|_{d x}\right)_{s}=\frac{v}{u}$

$$
\left.\frac{d y}{d x}\right)_{\text {Streamline }}=\frac{v}{u}=\frac{B t}{H}
$$

$$
\therefore y=\frac{B t}{A} x+C
$$

Through, point $(1,1)$

$$
\begin{aligned}
& c=1-\frac{0.0}{2} t=1-0.3 t \\
& y=1+0.3 t(x-1)
\end{aligned}
$$

STreamline through($1, i$)
Q

$$
\begin{array}{ll}
t=0, & y=1 \\
t=1 s, & y=1+0.3(x-1) \\
t=25, & y=1+0.6(x-1)
\end{array}
$$

$$
\begin{align*}
& u=A=d x l_{d t}, \quad\left(\begin{array}{l}
d_{x} \\
d_{0}= \\
\int_{0}^{t} A d t
\end{array} \quad \text { and } x=x_{0}+A t\right. \tag{la}
\end{align*}
$$

Problem 2.14
Given: Vebcity field $\vec{V}=B \times(1+A t) i+C y j$, with $A=0.5 \bar{S}^{-1}$, $B=C=-1 s^{-1}$; coordinates measured in meters.
Plot: the patine of the particle that passed trough the point $(1,1,0)$ at time $t=0$.
Compare with the streamlines through the same point at the instants $t=0$, 1, and Es
Solution:
For a particle, $u=\frac{d x}{d t}$ and $v=\left.d y\right|_{d t}$

$$
\left.\begin{array}{l}
u=B x(1+A t)=\frac{d x}{d t}, \quad\left(\frac{d x}{x}=\int_{0}^{t} B(1+A t) d t\right. \\
\left.\ln \frac{x}{x_{0}}=B\left[t+\frac{1}{2} A t^{2}\right]_{0}^{t}=B\left[t+\frac{t}{2} A t^{2}\right]^{x} \quad \therefore x=x_{0} e^{B\left(t+\frac{1}{2} A t^{2}\right.}\right) \\
v=c y=d y / d t, \quad \int_{0}^{t} c d t=\left(y \frac{d y}{y} \quad \therefore y=y_{0} e^{c t}\right.
\end{array}\right\}
$$

The patiline may be plotted by varying ta shown below
Te streamline is found (at glen t) from $\frac{d y}{d x}$) steambie $=\frac{v}{u}$ then $\frac{d y}{d x}=\frac{c y}{B x(1+A t)}$ and $(1+A t) \frac{d y}{y}=\frac{c}{B} \frac{d x}{x}$ and

$$
(1+A t) \ln y=\frac{c}{B} \ln x+\ln c_{1}, c, x^{c(B}=y^{(1+A t)}
$$

Streamline trough pant $(1,1,0)$ gives $c_{1}=1$. Then on substituting for A, B, and C we obtain

$$
x=y^{(1+0.5 t)}
$$

at $t=0, x=y, x$

$$
\begin{array}{ll}
t=15, & x=y^{1.5} \\
t=25, & x=y^{2}
\end{array}
$$

Problem 2.15

A velocity field is given by $\vec{V}=a x \hat{i}-b y \hat{j}$, where $a=0.1 \mathrm{~s}^{-2}$ and $b=1 \mathrm{~s}^{-1}$. For the particle that passes through the point $(x, y)=(1,1)$ at instant $t=0 \mathrm{~s}$, plot the pathline during the interval from $t=0$ to $t=3 \mathrm{~s}$. Compare with the streamlines plotted through the same point at the instants $t=0,1$, and 2 s .

Solution

Pathlines are given by

$$
\frac{\mathrm{dx}}{\mathrm{dt}}=\mathrm{u}=\mathrm{a} \cdot \mathrm{x} \cdot \mathrm{t} \quad \frac{\mathrm{dy}}{\mathrm{dt}}=\mathrm{v}=-\mathrm{b} \cdot \mathrm{y}
$$

So, separating variables

$$
\frac{d x}{x}=a \cdot t \cdot d t
$$

$$
\frac{d y}{y}=-b \cdot d t
$$

Integrating

$$
\ln (\mathrm{x})=\frac{1}{2} \cdot \mathrm{a} \cdot \mathrm{t}^{2}+\mathrm{c}_{1} \quad \ln (\mathrm{y})=-\mathrm{b} \cdot \mathrm{t}+\mathrm{c}_{2}
$$

For initial position $\left(\mathrm{x}_{0}, \mathrm{y}_{0}\right)$

$$
x=x_{0} \cdot e^{\frac{a}{2} \cdot t^{2}}
$$

$$
y=y_{0} \cdot e^{-b \cdot t}
$$

Using the given data, and IC $\left(\mathrm{x}_{0}, \mathrm{y}_{0}\right)=(1,1)$ at $\mathrm{t}=0$

$$
x=e^{0.05 \cdot t^{2}} \quad y=e^{-t}
$$

Problem 2.15 (In Excel)

A velocity field is given by $\vec{V}=a x t \hat{i}-b y \hat{j}$, where $a=0.1 \mathrm{~s}^{-2}$ and $b=1 \mathrm{~s}^{-1}$. For the particle that passes through the point $(x, y)=(1,1)$ at instant $t=0 \mathrm{~s}$, plot the pathline during the interval from $t=0$ to $t=3 \mathrm{~s}$. Compare with the streamlines plotted through the same point at the instants $t=0,1$, and 2 s .

Solution

Using the given data, and IC $\left(x_{0}, y_{0}\right)=(1,1)$ at $t=0$, the pathline is $\quad x=e^{0.05 \cdot t^{2}} \quad y=e^{-t}$

The streamline at $(1,1)$ at $t=0 \mathrm{~s}$ is $\quad \mathrm{x}=1$

The streamline at $(1,1)$ at $t=1 \mathrm{~s}$ is $\quad \mathrm{y}=\mathrm{x}^{-10}$

The streamline at $(1,1)$ at $t=2 \mathrm{~s}$ is $\quad \mathrm{y}=\mathrm{x}^{-5}$

Pathline			Streamlines$\mathbf{t}=\mathbf{0}$		$\mathrm{t}=1 \mathrm{~s}$		t=2 s	
t	\mathbf{x}	y	\mathbf{x}	y	\mathbf{x}	y	\mathbf{X}	y
0.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
0.25	1.00	0.78	1.00	0.78	1.00	0.97	1.00	0.98
0.50	1.01	0.61	1.00	0.61	1.01	0.88	1.01	0.94
0.75	1.03	0.47	1.00	0.47	1.03	0.75	1.03	0.87
1.00	1.05	0.37	1.00	0.37	1.05	0.61	1.05	0.78
1.25	1.08	0.29	1.00	0.29	1.08	0.46	1.08	0.68
1.50	1.12	0.22	1.00	0.22	1.12	0.32	1.12	0.57
1.75	1.17	0.17	1.00	0.17	1.17	0.22	1.17	0.47
2.00	1.22	0.14	1.00	0.14	1.22	0.14	1.22	0.37
2.25	1.29	0.11	1.00	0.11	1.29	0.08	1.29	0.28
2.50	1.37	0.08	1.00	0.08	1.37	0.04	1.37	0.21
2.75	1.46	0.06	1.00	0.06	1.46	0.02	1.46	0.15
3.00	1.57	0.05	1.00	0.05	1.57	0.01	1.57	0.11
3.25	1.70	0.04	1.00	0.04	1.70	0.01	1.70	0.07
3.50	1.85	0.03	1.00	0.03	1.85	0.00	1.85	0.05
3.75	2.02	0.02	1.00	0.02	2.02	0.00	2.02	0.03
4.00	2.23	0.02	1.00	0.02	2.23	0.00	2.23	0.02
4.25	2.47	0.01	1.00	0.01	2.47	0.00	2.47	0.01
4.50	2.75	0.01	1.00	0.01	2.75	0.00	2.75	0.01
4.75	3.09	0.01	1.00	0.01	3.09	0.00	3.09	0.00
5.00	3.49	0.01	1.00	0.01	3.49	0.00	3.49	0.00

Problem 2. ib
Gwen: Velocity field $\vec{V}=a x t i+b j$ where $a=0.25^{2}, b=$ 3 mils and coordinates are measured in meters.

Plot: the pathline (durvig the interval $0 \leq t \leq 3 \leq$ of the particle that passed through the point $\left(t_{0}, y_{0}\right)=$ $(3,1)$ at time $t=0$.
Compare with the streamline plotted through the same point at $t=1,2$, and 3 s .
Solution:
For a particle, $u=\left.{ }^{d x}\right|_{d t}+$ and $v=d y \mid d x$
Then,

$$
u=a x t=d x / d t, \int_{t_{0}^{x}}^{x} \frac{d x}{x}=\int_{0}^{t} \frac{1}{2} d t
$$

Also,

The pattline may be plotted by varying as shown below. The streamline is found (at given from $\left.\left.d y\right|_{d x}\right)_{s}=\frac{v}{u}$.
then $\frac{d y}{d t}=\frac{b}{a+t}$ and the streamline through ($x_{0} y_{0}$) $a t$
thrice is $\quad\left(\frac{y}{d y}=\int_{y_{0}}^{\frac{b}{a t}} \frac{d x}{x}\right.$ or $y=y_{0}+\frac{b}{a t} \ln \frac{x}{x_{0}}$
substituting for a_{0}, b, x_{0}, and $y_{0}, y=1+\frac{15}{t} \ln \frac{x}{3}$, streamline

$$
\begin{aligned}
\text { At }=1, & y=1+15 \ln ^{2}-1_{3} \\
t=2, & y=1+2.5 \ln _{3}^{-1} \\
t=3, & y=1+5 \ln h l_{3}
\end{aligned}
$$

Problem 2.17
Gwen: Velocity field $\vec{V}=a x i+b y(1+c t) j$, where $a=b=2 \vec{s}^{\prime}$, $c=0.45^{\prime}$, and coordinates are measured in meters
Plot: the pathline (during the interval $0 \leq t \leq 1.5 s$) of the particle that passed through the point $\left(t_{0}, y_{0}\right)=(1,1)$ at time $t=0$, it the streamline plotted through the same point at $t=0$, , and lis s
Solution:
For a particle, $u=\left.{ }^{d x}\right|_{a t}$ and $v=\left.d y\right|_{a}$
then $u=\left.d x\right|_{d t}=a x, \quad\left(\frac{d x}{x}=\int_{0}^{t} x d t, \ln \frac{x}{x_{0}}=a t, x=v_{0} e^{a t}\right.$
Also $^{\text {Al y }}=\operatorname{dyc}_{d t}=\operatorname{by}^{(1+c)}$

Substituting for a, b, c, h_{0} and y_{0}

$$
x=e^{2 t}, y=e^{\left(2 t+0.4 t^{2}\right)}, \quad(x, y) p \text { statue }
$$

The streamline is found (at given t) from $\left.d y /_{d x}\right)_{s}=v / u$.

$$
\text { At } t=0, y=x
$$

$$
t=15, \quad \theta=x^{1.4}
$$

$$
t=1.5 s, \quad, \quad+\quad, \quad, 6
$$

Problem 2.18
Given: Velocity field $\vec{V}=B+(1+A t) i+C y J$ with $A=0.5 \Xi^{\prime}$, $B=C=\sigma_{s}{ }^{\prime}$; coordinates measured in Meters

Plot: the streakline formed by particles that passed trough point $\left(x_{0}, y_{0}, z_{0}=(1,1,0)\right.$ during interval from $E=0$ to $t=3 s$.
Compare with streamlines through pant at $t=$ 0.1 , and 2 s

Solution
Streakline at $t=3 s$ connects particles that passed through paint ($1,1,0$) at earlier times $t_{0}=0,1$, and is
For a particle, $u=\frac{d t}{d t}$ and $v=\frac{d y}{d}$ at

$$
\begin{align*}
& \text { hen }=B x(1+A t)=\frac{d t}{d t}, \quad \int_{x_{0}}^{x} \frac{d x}{x}=\int_{t_{0}}^{t} B(1+H t) d T \\
& \therefore \ln \frac{x}{x_{0}}=B\left[t+\frac{1}{2} A t^{2}\right]^{t}=B\left[\left(t-t_{0}\right)+\frac{1}{2} A B\left(t^{2}-t_{0}^{2}\right)\right] \\
& x=t_{0} e^{B\left[\left(t-t_{0}\right)+\frac{1}{2} A B\left(t^{2}-t_{0}^{2}\right)\right.}
\end{align*}
$$

Also $v=c_{y}=\left.d y\right|_{d t}, \quad \int_{t_{0}}^{t} c d t=\int_{y_{0}}^{y} \frac{d y}{y}, \therefore y=y_{0} e^{c\left(t t_{0}\right)}$
The velocity vector is tangorit to the streamline $\left.\frac{d y}{d x}\right|_{\text {streanilice }}=\frac{v}{u}=\frac{c y}{B x(1+A t)}$ and $(1+A t) \frac{d y}{y}=\frac{c}{d x}$
Then

$$
(1+A t) \ln y=\frac{c}{s} \ln x+\ln c \text {, and } c, x^{C l s}=y^{(1+t t)}
$$

Streamline through pant $(1,1,0)$ gives $c,=1$. Then on substituting for H is, and C we dothan

$$
x=y^{(1+0.5 t)}
$$

streamline
At $\left.\begin{array}{ll}t=0 & x=y \\ t=1 s & x=y^{\prime \prime} \\ t=2 s & x=t^{2}\end{array}\right\} \begin{aligned} & \text { Tess streamlines through }(1,1,0) \\ & \text { are show on the }\end{aligned}$
$t=2 s \quad x=y^{2} \quad \delta$ are shown on the plot
Points on the strenkivir hawk coordinates guenby Eqs la ib

$$
x=x_{0} e^{B\left[\left(t-t_{0}\right)+\frac{1}{2} 4 B\left(t^{2}-t_{0}^{2}\right)\right.}
$$

$$
y=y_{0} e^{c}
$$

Substituting for for B, and C^{\prime}

The streakilnie though $\left(x_{0}, y_{0}\right)=(1, \lambda)$ at tire $t=3 s$ is.
obtained by substit,king to $=1, y_{0}=1, t=3 s$ and varying to in these equations.

Given: Vebacty field $\vec{V}=a x(1+b t) i+c y j$, where $a=c=1 s^{-1}$, $b=0.2 s^{\prime}$, and coordinates are measured in meters.
Mot: the streaking that passes through the pant $\left(t_{0}, y_{0}\right)=(1,1)$ during the interval $0 \leqslant t \leqslant 3 s$. Compare with the streamlvies plotted through the same point at $t=0$, 1 , and ins
Solution:
Streakline at $t=3$ s connects particles that passed throng port (to, yo at earlier tries $\tau=0,1,2$, and 35 .
For a particle, $u=d x l_{\text {at }}$ and $v=d y l_{d t}$

$$
\begin{aligned}
& \text { Then a partick, } u=a x(1+b t)=\frac{d x}{d t} \text { and } \int_{x_{0}}^{x}=\int_{r}^{t} a(1+b t) d t \\
& \ln \frac{x}{x_{0}}=a\left(t+\frac{b}{2} t^{2}\right]_{r}^{t}=a\left[(t-x)+\frac{b}{2}\left(t^{2}-x^{2}\right)\right] \\
& x=x_{0} e^{a\left[\left(t-x^{2}+\frac{b}{2}\left(t^{2}-t^{2}\right)\right]\right.} \\
& \text { Also } v=\frac{d y}{a t}=c y, \int_{y}^{y} \frac{d y}{y}=\int_{r}^{t} d t \quad \ln \frac{y}{y_{0}}=c(t-1), y=y_{0} e^{c(t-r)}
\end{aligned}
$$

substituting for a, b, c, to and $y 0,1$ goes

$$
x=e^{[t-i)+0.1\left(t^{2}-r^{2}\right)}, y=e^{\left(e^{2}\right)},(x, y) \text { streaking }
$$

The streaMline may be plotted by substituting values for r in the range 0 ?rise as shown below.
The streamline is found (at given) from dy $\left.\left.\right|_{d x}\right)_{s}=\frac{v}{u}$ Thus

$$
\begin{aligned}
& d y /_{d x}=\frac{c y}{a-(1+b t)} \text { and } \int_{y_{0}}^{y} \frac{d y}{y}=\int_{t_{0}}^{x} \frac{c}{a(1+b t)} \frac{d x}{x} \\
& \ln \frac{y}{y_{0}}=\frac{c}{a(1+b t)} \ln x_{0} \text { or } y=y_{0}\left[\frac{x}{x}\right]^{c / a(1+b t)}
\end{aligned}
$$

Substituting values for to, yo, a, b, c, her

$$
y=x^{1 /(1+0.2 t)} \text { or } x=y^{(1+0.2 t)} \text {, streamline }
$$

At $t=0, \quad x=y$

$$
\begin{array}{ll}
t=1 s, & x=y_{1,2} \\
t=2 s, & x=y^{1.4}
\end{array}
$$

Tiny hydrogen bubbles are being used as tracers to visualize a flow. All the bubbles are generated at the origin $(x=0, y=0)$. The velocity field is unsteady and obeys the equations:

$$
\begin{array}{lll}
u=-1 \mathrm{~m} / \mathrm{s} & v=1 \mathrm{~m} / \mathrm{s} & 0 \leq t<2 \mathrm{~s} \\
u=0 & v=2 \mathrm{~m} / \mathrm{s} & 2 \leq t \leq 4 \mathrm{~s}
\end{array}
$$

Plot the pathlines of bubbles that leave the origin at $t=0,1,2,3$, and 4 s . Mark the locations of these five bubbles at $t=4 \mathrm{~s}$. Use a dashed line to indicate the position of a streakline at $t=4 \mathrm{~s}$.

Solution

Pathlines	Starting at $\mathbf{t}=0$		Starting at $\mathbf{t}=1 \mathrm{~s}$		Starting at $\mathbf{t}=2 \mathrm{~s}$		Streakline at $\mathrm{t}=4$	
t	\mathbf{x}	y	x	y	x	y	\mathbf{x}	y
0.00	0.00	0.00					0.00	0.00
0.20	-0.20	0.20					0.00	0.40
0.40	-0.40	0.40					0.00	0.80
0.60	-0.60	0.60					0.00	1.20
0.80	-0.80	0.80					0.00	1.60
1.00	-1.00	1.00	0.00	0.00			0.00	2.00
1.20	-1.20	1.20	-0.20	0.20			0.00	2.40
1.40	-1.40	1.40	-0.40	0.40			0.00	2.80
1.60	-1.60	1.60	-0.60	0.60			0.00	3.20
1.80	-1.80	1.80	-0.80	0.80			0.00	3.60
2.00	-2.00	2.00	-1.00	1.00	0.00	0.00	0.00	4.00
2.20	-2.00	2.40	-1.00	1.40	0.00	0.40	-0.20	4.20
2.40	-2.00	2.80	-1.00	1.80	0.00	0.80	-0.40	4.40
2.60	-2.00	3.20	-1.00	2.20	0.00	1.20	-0.60	4.60
2.80	-2.00	3.60	-1.00	2.60	0.00	1.60	-0.80	4.80
3.00	-2.00	4.00	-1.00	3.00	0.00	2.00	-1.00	5.00
3.20	-2.00	4.40	-1.00	3.40	0.00	2.40	-1.20	5.20
3.40	-2.00	4.80	-1.00	3.80	0.00	2.80	-1.40	5.40
3.60	-2.00	5.20	-1.00	4.20	0.00	3.20	-1.60	5.60
3.80	-2.00	5.60	-1.00	4.60	0.00	3.60	-1.80	5.80
4.00	-2.00	6.00	-1.00	5.00	0.00	4.00	-2.00	6.00

\square

Problem 2.21
Given: Velocity field $\vec{V}=a x t i+b j$, where $a=0.2 s^{-1}$ $b=1 \mathrm{mts}$, and coordinates are in meters.
Pot: the patiline (during the interval $0 \leq t \leq 35$) of the particle that passed though the point $\left(x_{0}, y_{0}\right)=$ $(1,2)$ at time $t=0$
Compare with the streakline through the same point at the instant $t=3 \mathrm{~s}$.
Solution:
The patiline and streakline are based on parametric equations for a particle

For a particle $u=d x / d t$ and $v=d y / d t$
then

$$
\begin{aligned}
& u=\frac{d x}{d t}=a x t,\left(\frac{d x}{x}=\int_{t_{0}}^{t} a t d t, \ln \frac{x^{1}}{x_{0}}=\frac{1}{2} a\left(t^{2}-t_{0}^{2}\right)\right. \\
& x=x_{0} e^{\frac{1}{2} a\left(t^{2}-t_{0}^{2}\right)^{x_{0}}}
\end{aligned}
$$

Also $v=d y l_{d t}=b, \int_{y_{0}}^{y} d y=\left(b_{t_{0}}^{t} d t, y=y_{0}+b\left(t-t_{0}\right)\right.$
In the above equations, tho, yo are coordinates of partide att.
(a) The patitine is obtained by following the particle that passed through, the pant (x $\left._{0}, y_{0}\right)=(1$, a $)$ at time $t_{0}=0$ hus $\begin{aligned} x & =x_{0} e^{\frac{1}{2} a t^{2}}\end{aligned}=e^{0.1 t^{2}}, \quad(x, y)$ patine

$$
\left.y=y_{0}+b t=2+t \quad\right\}
$$

The patiline may be plotted by varying t $(0 \leq t \leq 3 s)$ as shown below
(b) The streakline is dolained by locating (and connecting) at time $t=3 \mathrm{~s}$, all the particles that passed through the part (tho, yo) = (1,2) al some earlier time to
the

$$
\left.\begin{array}{l}
x=t_{0} e^{\frac{1}{2} a\left(a-t_{0}^{2}\right)}=e^{0.1\left(a-t_{0}^{2}\right)} \tag{x,y}\\
y=y_{0}+b\left(t-t_{0}\right)=2+\left(3-t_{0}\right)=5-t_{0}
\end{array}\right\}-
$$

The streakline may be plotted by varying to $\left(0 \leqslant t_{0} \leqslant 35\right)$ as shown below.

Pathline and Streakline Plots

Given: Velocity field in $x y$ plane, $\vec{v}=a \hat{\imath}+b x \hat{\jmath}$, where $a=2 \mathrm{~m} / \mathrm{s}$ and $b=1 \mathrm{~s}^{-1}$

Find: (a) Equation for strearriline through $(x, y)=(2,5)$.
(b) At $t=25$, coordinates of particle $(0,4)$ at $t=0$.
(c) At $t=3 \mathrm{~s}$, coordinates of particle $(1,4,25)$ at $t=1 \mathrm{~s}$.
(d) compare pathline, streamline, streakline.

Solution: For a strearnline $\frac{d x}{u}=\frac{d y}{v}$
For $\vec{v}=a \hat{\imath}+b x \hat{\jmath}, u=a$ and $v=b x$, so $\frac{d x}{a}=\frac{d y}{b x}$ or

$$
x d x=\frac{a}{b} d y
$$

Integrating

$$
\frac{x^{2}}{2}=\frac{a}{b} y+c^{\prime} \text { or } y=\frac{b}{2 a} x^{2}+c
$$

Evaluating c at $(x, y)=(2,5)$,

$$
c=y-\frac{b}{2 a} x^{2}=5 m-\frac{1}{2} \times \frac{1}{s} \times \frac{5}{2 m}(2 m)^{2}=4 m
$$

Stream line through $(x, y)=(2,5)$ is $y=\frac{x^{2}}{4}+4$
To locate particles, derive parametric equations

$$
\begin{aligned}
& u_{p}=\frac{d x}{d t}=a, \quad d x=a d t, \quad \text { and } x-x_{0}=a\left(t-t_{0}\right) \\
& v_{p}=\frac{d y}{d t}=b x, \quad d y=b x d t=b\left(x_{0}+a t-a t_{0}\right) \\
& y-y_{0}=b x_{0}\left(t-t_{0}\right)+\frac{a}{2}\left(t^{2}-t_{0}^{2}\right)-a t_{0}\left(t-t_{0}\right)
\end{aligned}
$$

For the partick at $\left(x_{0}, y_{0}\right)=(0,4)$ at $t=0$,

$$
\begin{array}{ll}
x=0+a t & \text { so at } t=2 s, \quad x=\frac{2 m}{s} \times 2 s=4 m \\
y=4+\frac{a t^{2}}{2} & \text { so at } t=2 s, y=4+\frac{1}{2} \times \frac{2 m}{5} \times(2)^{2} s^{2} \\
y=8 m
\end{array}
$$

For the particle at $(x, y)=(1,4.25)$ at $t=1 s$,

$$
\begin{aligned}
x= & x_{0}+a\left(t-t_{0}\right)=1+a(t-1) \\
& \text { so at } t=33, \quad x=1+2 \frac{m}{s}(3-1) s=5 m \\
y= & y_{0}+b x_{0}\left(t-t_{0}\right)+\frac{a}{2}\left(t^{2}-t_{0}^{2}\right)-a t_{0}\left(t-t_{0}\right) \\
= & 4.25+\frac{1}{s} \times 1 m_{x}(t-1)+\frac{1}{2} \times \frac{2}{s}\left(t^{2}-1\right)-2 \frac{m}{s} \times 15(t-1)
\end{aligned}
$$

so at $t=3 s, y=4.25+2+8-4=10.25 \mathrm{~m}$

All these points lie on the same stream line, as shown below:

For this steady flow, streamlines, pathlines, and streakliois coincide, as expected.

Given: Vebacty field $\vec{V}=a y i+b j$, where $a=15^{\prime}$, and $b=2 m t s$; coordinates $a r e$ measured in meters
Find: (a) Equation of streamline through $(x, y)=(b, b)$ (b) ft $t=1 s$, coordinates of partide hat passed
(c) trough point (w_{0}, y_{0}) = 1,4) at $t=0$
(c) At $t=3 s$, coordinates of particle pat passed through point $\left(t_{0}, y_{0}\right)=(-3,0)$ at $t_{0}=1 \mathrm{~s}$.
Solution
The velocity vector is tangent to the streamlines

$$
\left.\frac{d y}{d x}\right)_{\text {streamline }}=\frac{v}{u}=\frac{b}{a y} \text { or } \int_{-6}^{y} a y d y=\int_{b}^{x} b d x
$$

then

$$
\left.\left.\frac{1}{2} a y^{2}\right]_{b}^{y}=b x\right]_{x}^{6}, \quad 2 b(x-b)=a\left(y^{2}-3 b\right)
$$

and

$$
4(x-6)=y^{2}-36 \text { or } x=\frac{y^{2}}{4}-3
$$

Streanlve
(o) Follow particle that passed through $(1,4) \otimes t=0$

$$
\begin{align*}
& u=\frac{d x}{d t}=a y \quad \therefore \int^{2} d x=\int_{0}^{t} a y d t \quad\{\text { need } y=y(t)\} \\
& v=\frac{d y}{d t}=b \quad \therefore \int_{0}^{y} d y=\left(b d t \quad \text { and } y=y_{0}+b t\right) \tag{1a}\\
& x-t_{0}=\int_{0}^{x} d x=(t) a\left(y_{0}+b t\right) d t=a y_{0} t+\frac{1}{2} b t^{2} \\
& x=t_{0}+y_{0} t+\frac{1}{2} b t^{2} \tag{b}
\end{align*}
$$

Her

Following particle though $(1,4)$ at $t=0$, then at $t=1 \mathrm{~s}$ $x_{p}=1+(1)(4)(1)+\frac{1}{2}(2)(1)^{2}=6$ and $y_{p}=4+2(1)=6$ ($\left.x_{p}, y_{p}\right)$
(c) Streakline. At $t=3 \mathrm{~s}$, locate position of particle that passed through $\left(x_{0}, y_{0}\right)=(-3,0)$ at earlier time $t_{0}=1 s$. For a particle

$$
\begin{array}{lll}
v=\frac{d y}{d t}=b \quad & \therefore \quad \int_{0} d y=\left(t_{0}^{t} b d t\right. \\
u=\frac{d t}{d t}=a y & \therefore \int_{t_{0}}^{+} d x=\int_{t_{0}} a y d t=\int_{0}^{t} a\left[y_{0}+b\left(t-t_{0}\right]\right] d t
\end{array}
$$

and

$$
\begin{equation*}
d^{d}=t_{0}+a y_{0}\left(t-t_{0}\right)+\frac{a b}{2}\left(t^{2}-t_{0}^{2}\right)-a b t_{0}\left(t-t_{0}\right) . \tag{2b}
\end{equation*}
$$

hon from Eqs $2 a \cdot 2 b$ for $t=3 \mathrm{~s}$ and $t_{0}=1 \mathrm{~s}$

$$
\begin{aligned}
& x=-3+0+(1) 2\left[(3)^{2}-(1)^{2}\right]-\operatorname{cin}(2)(1)(3-1)=1 \\
& y=0+2(3-1)=4
\end{aligned}
$$

Since paints $(6,1),(1,4)$, and $(-3,0)$ are all on the sarre streamline $\left(x=y^{y^{\prime} \mid}(x-3)\right.$, patilvies, streaklines streamlines coincide

Problem 2.24
Given: Velocity field $\vec{V}=a^{2} i+b j$, where $a=0.4 \mathrm{~m} / \mathrm{s}^{2}$, $b=2 \mathrm{mls}$, and coordinates are measured in meters

Find: (a) At $t=2 s$, coordinates of particle that passed trough ' $\left(x_{0}, y_{0}\right)=(2,1)$ at $t=0$
b) At $t=3 s$, coordinates of the particle that passed though ' t_{0}, y_{0} at $t=25$
Plot: the patiline and streakline trough paint (2,); compare with the streamlines through he same point at $t=0,1,25$
Solution:
The pathline and streakine are based on parametric equations for a particle.

For a particle $u=d x l_{d t}$ and $v=d y l_{d t}$
Rus

$$
\begin{align*}
& u=\frac{d x}{d t}=a t,\left(\begin{array}{l}
x \\
d x
\end{array}=\left(\begin{array}{c}
t \\
t_{0} \\
t_{0}
\end{array} t, x=t_{0}+\frac{1}{2} a\left(t^{2}-t_{0}^{2}\right)\right.\right. \tag{1a}\\
& v=\frac{d y}{d t}=b, \quad\left(\begin{array}{l}
y \\
d y \\
y_{0}
\end{array}=\left(b_{t_{0}}^{t} d t, y=y_{0}+b\left(t-t_{0}\right)\right.\right. \tag{b}
\end{align*}
$$

In the above equations, to, yo are coordinates of the particle at time to
(a) The patiline is oftanied by following the particle that passed though the part $\left.\&^{2} t_{0}, y_{0}\right)=(2,1)$ at time $t_{0}=0$ This $\left.\begin{array}{rl}x & =x_{0}+\frac{1}{2} a t^{2}=2+0.2 t^{2} \\ y & =y_{0}+b t=1+2 t\end{array}\right\}$, (x, y) patine

$$
y=y_{0}+b t=1+2 t \quad J
$$

ft $t=2 \mathrm{~s}$, particle is at $(2, y)=(2.8,5) \mathrm{m}$
the patiline may be plotted by varying $t(0 \leq t \leq 3 s)$ as shown belay
b) The streakline is obtaried by locating (and connecting) at time $t=3 \mathrm{~s}$, all the particles at passed trough the pain $\left(y_{0}, y_{0}\right)=(2,1)$ al some cartier time to
Thus $\left.\begin{array}{rl}x=t_{0}+\frac{1}{2} a\left(a-t_{0}^{2}\right) & =2+0.2\left(a-t_{0}^{2}\right) \\ y & =y_{0}+b\left(t-t_{0}\right)\end{array}\right\}+1+2\left(3-t_{0}\right) \quad(x, y)$ streathere
At $t=2 s$, particle is at $(x, y)=(3,3)$ \qquad the streaking may be plated by varying to $\left(0 \leq t_{0}=35\right.$) as shown below
The streamline is found (at guvent) from $\left.d y l_{d t}\right)_{s}=\frac{v}{u}$

Problem 2.25

Given: Velocity field $\vec{v}=a y \hat{\imath}+b t \hat{\jmath}$, where $a=1 \mathrm{~s}^{-1}, b=0.5 \mathrm{~m} / \mathrm{s}^{2}, t$ in s .
Find: (a) At $t=2 s$, particle that passed $(1,2)$ at $t=0 \leq$
(6) At $t=33$, partick that passed $(1,2)$ at $t=23$
(C) Plot pathline ard streakline through (1, 2); compare with streamlines at $t=0,1,2 \mathrm{~s}$.

Solution: Pathline and streakline are based on parametric equations for a particle. Thus

$$
v=\frac{d y}{d t}=b t \text {, so } d y=b t d t \text {, and } y-y_{0}=\frac{b}{2}\left(t^{2}-t_{0}^{2}\right)
$$

and $u=\frac{d x}{d t}=a y=a\left[y_{0}+\frac{b}{z}\left(t^{2}-t_{0}^{2}\right)\right]$
so

$$
x]_{x_{0}}^{x}=a\left[y_{0} t+\frac{b}{2}\left(\frac{t^{3}}{3}-t_{0}^{2} t\right)\right]_{t_{0}}^{t} ; x=x_{0}+a y_{0}\left(t-t_{0}\right)+\frac{a b}{2}\left(\frac{t^{3}-t_{0}^{3}}{3}+t_{0}^{2}\left(t_{0}-t\right)\right)
$$

where x_{0}, to are coordinates of particle at to.
For $(a), t_{0}=0$, and $\left(x_{0}, y_{0}\right)=(1,2)$. Thus at $t=2 s, y=y_{b}+\frac{b t^{2}}{2}$

$$
\begin{aligned}
& y=2 m+\frac{1}{2} \times 0.5 \frac{m}{s^{2}} \times(z)^{2} s^{2}=3.00 m \\
& \left.x=1 m+\frac{1}{s} \times 2 m(2-0) s+\frac{1}{2} \times \frac{1}{s} \times 0.5 \frac{m}{s^{2}}\left(\frac{(2)^{3}-0}{3}+0\right) s^{3}=5.67 m \quad \text { t }=0 \quad \text { (a) } \quad \text { (} 5.67,3,00\right) \mathrm{m}
\end{aligned}
$$

For $(b), t_{0}=2 s$, and $\left(x_{0}, y_{0}\right)=(1,2)$. Thus at $t=3 s$, the partick is at

$$
\begin{aligned}
& y(3)=2 m+\frac{1}{2} \times 0.5 \frac{m}{s^{2}}\left[(3)^{2}-(2)^{2}\right] s^{2}=3.25 m \quad \text { At } t=33 \\
& x(3)=1 m+\frac{1}{s} \times 2 m(3-2) s+\frac{1}{2} \times \frac{1}{s} \times 0.5 \frac{m}{s^{2}}\left(\frac{(3)^{3}-(2)^{3}}{3}+(2)^{2}(2-3)\right) s^{3}=3.58 \mathrm{~m}
\end{aligned}
$$

$$
\text { At } t=33, t_{0}=23(6)
$$

$$
(x, y)=
$$

$$
(3,58,3,25)
$$

For (c), the strakkline mae be plotted at any t by varying to, as shown on the next page.
The streamline is found ($a+$ given t) from $\frac{d x}{u}=\frac{d y}{v}$
substituting $u=a y$ and $v=b t, d x=\frac{a y}{b t} d y$ or $y^{2}=\frac{2 b t}{a} x+c$
Thus $c=y_{0}^{2}-\frac{2 b t}{a} x_{0}$
For $t=0, y^{2}=c$; at $\left(x_{0}, y_{0}\right)=(1,2)$, then $c=4$

$$
\begin{align*}
& t=1, y^{2}=\frac{2 b}{a} x+c \text {; at }\left(x_{0}, y_{0}\right)=(1,2) \text {, then } c=3 \tag{c}\\
& t=2, y^{2}=\frac{4 b}{a} x+c ; \text { at }(x, y)=(1,2), c=2 \text {; for } t=3 s, c=1
\end{align*}
$$

Recall $\vec{v}=a y \hat{\imath}+b t \hat{\jmath}$, where $a=1 s^{-1}, b=0.5 \mathrm{~m} / \mathrm{s}^{2},\left(x_{0}, y_{0}\right)=(1,2) \mathrm{m}$.
Part (a): Pathime of particle located at $\left(x_{0}, y_{0}\right)$ at $t_{0}=0 \mathrm{~s}$:

$\mathrm{t}_{0}(\mathrm{~s})$	$\mathrm{t}(\mathrm{s})$	$\mathrm{x}(\mathrm{m})$	$\mathrm{y}(\mathrm{m})$
0	0	1.00	2.00
0	1	3.08	2.25
0	2	5.67	3.00
0	3	9.25	4.25

Part (b): Pathline of particle located at $\left(x_{0}, y_{0}\right)$ at $t_{0}=2 \mathrm{~s}$:

$\mathrm{t}_{0}(\mathrm{~s})$	$\mathrm{t}(\mathrm{s})$	$x(\mathrm{~m})$	$\mathrm{y}(\mathrm{m})$
2	2	1.00	2.00
2	3	3.58	3.25
2	4	7.67	5.00

Part (c): streamlines through point $\left(x_{0}, y_{0}\right)$ at $t=0,1,2$, and 3 :

	$\mathrm{t}(\mathrm{s})$	0	1	2	3
	$\mathrm{c}=$	4.0	3.0	2.0	1.0
$\mathrm{t}_{0}(\mathrm{~s})$	$\mathrm{x}(\mathrm{m})$	$\mathrm{y}(\mathrm{m})$	$\mathrm{y}(\mathrm{m})$	$\mathrm{y}(\mathrm{m})$	$\mathrm{y}(\mathrm{m})$
0	1	2.00	2.00	2.00	2.00
0	2	2.00	2.24	2.45	2.65
0	3	2.00	2.45	2.83	3.16
0	4	2.00	2.65	3.16	3.61
0	5	2.00	2.83	3.46	4.00
0	6	2.00	3.00	3.74	4.36
0	7	2.00	3.16	4.00	4.69
0	8	2.00	3.32	4.24	5.00
0	9	2.00	3.46	4.47	5.29
0	10	2.00	3.61	4.69	5.57

Streakline at $t=33$ of particles that passed thru point (x_{0}, y_{0}):

$\mathrm{t}_{0}(\mathrm{~s})$	$\mathrm{t}(\mathrm{s})$	$\mathrm{x}(\mathrm{m})$	$\mathrm{y}(\mathrm{m})$
0	3	9.25	4.25
1	3	6.67	4.00
2	3	3.58	3.25
3	3	1.00	2.00

Gwen: Variation of air viscosity with temperature (absolute)

$$
\begin{aligned}
& \mu=\frac{b T^{1 / 2}}{1+s / T} \\
& \text { where } b=1.458 \times 10^{-6} \mathrm{~kg} / \mathrm{m} . \mathrm{s} \cdot \mathrm{~K}^{\prime / 2}, s=110.4 \mathrm{~K}
\end{aligned}
$$

Find: Equation for calculating air viscosity in British Gravitational writs as a function of absdute temperature in degrees Rankine. Check result using data from Appendix A
Solution:
Convert constants.

$$
\begin{aligned}
& b=2.27 \times 10^{-8} \mathrm{lb} . \mathrm{s} / \mathrm{ft}^{2} .0 \mathrm{R}^{\prime \mathrm{l}} \\
& s=110.4 k \times \frac{9{ }^{\circ} R}{5 k}=198.7^{\circ} R
\end{aligned}
$$

Then in British Gravitational Units

$$
\mu=\frac{2.27+10^{-8} T^{1 / 2}}{1+198.7 T}
$$

where units of T are ${ }^{\circ} R ; \mu$ is in ibf.s/ft ${ }^{2}$
Evaluate at $T=80^{\circ} \mathrm{F}\left(5397^{\circ} \mathrm{R}\right)$

$$
\mu=\frac{2.27 \times 10^{-8} \times(539.2)^{12}}{1+198.7 / 539.7}=3.855 \times 10^{-1} \text { (ff.s } / \mathrm{ft}^{2}
$$

From Table A.9 (Appendix A) at $T=80^{\circ} \mathrm{F}$

$$
\mu=3.86 \times 10^{-2} \text { Vof.s/fet } \quad \checkmark \text { check. }
$$

Given: Variation of air viscosity with temperature (absolute) is

$$
\mu=\frac{b T^{\prime \prime} 2}{1+S T}
$$

where $b=1.458 \times 10^{-6} \frac{\mathrm{~kg}}{\mathrm{~m} \cdot \mathrm{~s} \cdot \mathrm{~K}^{1 / 2}}$

$$
s=110.4 \mathrm{~K}
$$

Find: Equation for kinematic viscosity of air (in SI units) as a function of temperature at atmospheric pressure. Assure ideal gas behavior. Check result using data from Appendix A.
Solution:
For an ideal gas, $P=p R T$. From Table Abb, $R=28 b .9$ Aim $1 \mathrm{~kg} \cdot \mathrm{~K}$
Te kinematic viscosity, $\forall \equiv \mu / p$

$$
\therefore J=\frac{\mu}{\rho}=\frac{\mu R T}{p}=\frac{R T}{-P} \frac{b T^{\prime 12}}{1+s / T}=\frac{R b}{p} \frac{T^{3 / 2}}{1+s / T}=\frac{b^{\prime} T^{3 / 2}}{1+51 T}
$$

$$
\begin{aligned}
& b^{\prime}=4.129 \times 10^{-9} \mathrm{~m}^{2} / \mathrm{s} \cdot \mathrm{~N}^{3 / 2} \\
\therefore & V=\frac{b^{\prime} T^{3 / 2}}{1+5 / T}
\end{aligned}
$$

where $b^{\prime}=4.129 \times 10^{-9} \mathrm{~m}^{2} / \mathrm{s} \cdot k^{3 / 2}, s^{\prime}=110.4 \mathrm{k}$. units of T are $(k): V$ is in $\mathrm{m}^{2} / \mathrm{s}$
Evaluate at $T=20^{\circ} \mathrm{C}=293.2 \mathrm{~K}$

$$
V=\frac{4.129 \times 10^{-9}(293.2)^{3 / 2}}{1+110.4 / 293.2}=1.506 \times 10^{-5} \mathrm{~m}^{2} l_{\mathrm{s}}
$$

From. Table Avo (Appendix A) at $T=20^{\circ} \mathrm{C}$

$$
J=1.51+\left.10^{-5} \mathrm{n}^{2}\right|_{s} \quad \text { Check. }
$$

Some experimental data for the viscosity of helium at 1 atm are

$T,{ }^{\circ} \mathrm{C}$	0	100	200	300	400
$\mu, \mathrm{~N} \cdot \mathrm{~s} / \mathrm{m}^{2}\left(\times 10^{5}\right)$	1.86	2.31	2.72	3.11	3.46

Using the approach described in Appendix A-3, correlate these data to the empirical Sutherland equation

$$
\mu=\frac{b T^{1 / 2}}{1+S / T}
$$

(where T is in kelvin) and obtain values for constants b and S.

Solution

Pathlines: Data: Using procedure of Appendix A.3:

$\mathbf{T}\left({ }^{\circ} \mathbf{C}\right)$	$\mathbf{T}(\mathbf{K})$	$\boldsymbol{\mu}(\mathbf{x 1 0} \mathbf{5})$
0	273	$1.86 \mathrm{E}-05$
100	373	$2.31 \mathrm{E}-05$
200	473	$2.72 \mathrm{E}-05$
300	573	$3.11 \mathrm{E}-05$
400	673	$3.46 \mathrm{E}-05$

$\mathbf{T}(\mathbf{K})$	$\mathbf{T}^{\mathbf{3 / 2}} / \boldsymbol{\mu}$
273	$2.43 \mathrm{E}+08$
373	$3.12 \mathrm{E}+08$
473	$3.78 \mathrm{E}+08$
573	$4.41 \mathrm{E}+08$
673	$5.05 \mathrm{E}+08$

The equation to solve for coefficients
S and b is

$$
\frac{T^{3 / 2}}{\mu}=\left(\frac{1}{b}\right) T+\frac{S}{b}
$$

From the built-in Excel
Linear Regression functions:

$$
\begin{aligned}
\text { Slope } & =6.534 \mathrm{E}+05 \\
\text { Intercept } & =6.660 \mathrm{E}+07 \\
\mathrm{R}^{2} & =0.9996
\end{aligned}
$$

Problem 2.29

Given: Flow of water e $15^{\circ} \mathrm{C}$ between parallel plates as shown.

$$
\begin{aligned}
& \frac{u}{u_{\max }}=\left[1-\left(\frac{2 y}{h}\right)^{2}\right] \\
& u_{\max }=0.10 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

Find: Shear stress on upper plate (indicate direction); sketch the variation of shear stress across tie Channel
Solution
Basic equation $\quad \int_{y x}=\mu \frac{d u}{d y}$

$$
\begin{aligned}
& \frac{d u}{d y}=\frac{d}{d y}\left\{u_{\max }\left[1-\left(\frac{2 y}{h}\right)^{2}\right]\right\} \\
& \frac{d u}{d y}=u_{\max }\left(-\frac{4}{h^{2}}\right) 2 y=-\frac{8 u_{\max } y}{h^{2}}
\end{aligned}
$$

Al upper plate, $y=+\frac{h}{2}$, so

$$
\left.\Upsilon_{y+}\left(@ y=\frac{h}{2}\right)=\mu \frac{d \mu}{d y}\right)_{y=\frac{h}{2}}=-\frac{8 \mu u_{\max }}{h^{2}}\binom{h}{2}=-\frac{4 \mu u_{\max }}{h}
$$

From Table A.8, for water $15^{\circ} \mathrm{C}, \mu=1.14 \times 10^{-3} \mathrm{~N} . \mathrm{s} / \mathrm{m}^{2}$. Rus

$$
r_{y^{*}}=-\frac{4 \mu u_{\max }}{h}=-4 \times 1.14 \times 10^{-3} \frac{\mathrm{~m} \cdot \mathrm{~s}}{\mathrm{~m}^{2}} \times 0.10 \frac{\mathrm{~m}}{\mathrm{~s}} \times \frac{1}{2.5 \times 10^{-4} \mathrm{~m}}
$$

$$
r_{y x}=-1.83 \mathrm{~N} / \mathrm{m}^{2}
$$

The upper plate is a minus y surface. Since Tyr Lo, the shear stress on the upper plate must act in the plus x direction. The shear stress varies linearly with y

$$
r=\mu \frac{d u}{d u}=-\frac{8 u_{\max }}{h^{2}} y
$$

The shear stress on the surface of the fluid element shown (a posituve y surface) is illustrated in the skite.

Given: Laminar flow between parallel plates.

$$
\frac{u}{u_{\max }}=1-\left(\frac{2 y}{h}\right)^{2}
$$

$$
T=15^{\circ} \mathrm{C}, u_{\max }=0.05 \mathrm{~m} / \mathrm{s}, \quad h=1 \mathrm{~mm}, \text { water }
$$

Find: Force on $A=0.1 m^{2}$ section of lower plate.
Solution: Apply definitions of Newtonian fluid, shear stress.

Basic equations: $\tau=\frac{F}{A}, \quad \tau_{y x}=\mu \frac{d u}{d y}$
Assecmptions: (1) Newtonian fluid
From the given profile, $u=u_{\max }\left[1-\left(\frac{2 y}{h}\right)^{2}\right]$, so $\frac{d u}{d y}=u_{\max }(-2)\left(\frac{2 y}{h}\right)\left(\frac{2}{h}\right)$
At lower surface, $y=-h / 2$

$$
=-\frac{8 u \max y}{h^{2}}
$$

$$
\left.\tau_{y x}(\text { lower })=\mu \frac{d u}{d y}\right)_{y=-h / 2}=\mu\left[-\frac{8 \mu_{\max }(-h / 2)}{h^{2}}\right]=\frac{4 \mu \mu_{\max }}{h}
$$

Ty >0 and surface is positive, so to right.

$$
F=\tau_{y \times A}=\frac{4 \mu u_{\max } A}{n}
$$

From Appendix A, Table A.8, $\mu=1.14 \times 10^{-3} \mathrm{Nis} / \mathrm{m}$ at $15^{\circ} \mathrm{C}$, so

$$
\begin{aligned}
& F=4 \times 1.14 \times 10^{-3} \frac{\mathrm{~N} \cdot \mathrm{~s}}{\mathrm{~m}^{2}} \times 0.05 \frac{\mathrm{~m}}{\mathrm{~s}} \times 0.1 \mathrm{~m}^{2} \times \frac{1}{5 \mathrm{~mm}} \times 10^{3} \frac{\mathrm{~mm}}{\mathrm{~m}} \\
& F=0.228 \mathrm{~N}(\text { to right })
\end{aligned}
$$

Open-Ended Problem Statement: Explain how an ice skate interacts with the ice surface. What mechanism acts to reduce sliding friction between skate and ice?

Discussion: The normal freezing and melting temperature of ice is $0^{\circ} \mathrm{C}\left(32^{\circ} \mathrm{F}\right)$ at atmospheric pressure. The melting temperature of ice decreases as pressure is increased. Therefore ice can be caused to melt at a temperature below the normal melting temperature when the ice is subjected to increased pressure.
A skater is supported by relatively narrow blades with a short contact against the ice. The blade of a typical skate is less than 3 mm wide. The length of blade in contact with the ice may be just ten or so millimeters. With a 3 mm by 10 mm contact patch, a 75 kg skater is supported by a pressure between skate blade and ice on the order of tens of megaPascals (hundreds of atmospheres). Such a pressure is enough to cause ice to melt rapidly.
When pressure is applied to the ice surface by the skater, a thin surface layer of ice melts to become liquid water and the skate glides on this thin liquid film. Viscous friction is quite small, so the effective friction coefficient is much smaller than for sliding friction.
The magnitude of the viscous drag force acting on each skate blade depends on the speed of the skater, the area of contact, and the thickness of the water layer on top of the ice.
The phenomenon of static friction giving way to viscous friction is similar to the hydroplaning of a pneumatic tire caused by a layer of water on the road surface.

Given: Skater, of weight $w=100 \mathrm{lbf}$ glides on one skate at speed' $V=20^{\circ}$ ft ls. skate blade, of length $t=11.5 \mathrm{in}$ and width $w=0.125 \mathrm{in}$. glides or thin film of water of height $h=5.75 \times 10^{-5} \mathrm{in}$.
Find: the deceleration of the skater due to viscous shear.
Solution:
Model flow as one-dimensional shear flow

From Table A.7. Appendix H, at $32^{\circ} \mathrm{F}$

$$
\begin{aligned}
& \mu=3.66 \times 10^{-5} \quad \mathrm{lbf.s} / \mathrm{ft}^{2} \\
& v_{y}=\mu \frac{d \mu}{d y}=\mu \frac{V}{h}=3.66 \times 10^{-5} \frac{(b f .5}{f t^{2}} \times 20 \frac{f t}{s} \times 5.75 \times 10^{-5} \text { in } \times \frac{12 n}{f t} \\
& v_{y_{t}}=153 \mathrm{bf} /_{f^{2}} \\
& \sum F_{x}=m a_{x} \quad \therefore v_{y x} A=-\frac{w}{g} a_{x} \\
& a_{1}=-\frac{T_{1}+A g}{W}=-\frac{T_{y c} h \omega g}{W} \\
& =-153 \frac{\operatorname{lof}}{f_{t}^{2}} \times 11.5 i n+0.12 .5 i n+32.2 \frac{f f}{s^{2}} \times \frac{1}{1001 b f} \times \frac{\frac{\mathrm{ft}^{2}}{1+t^{2}} \mathrm{He}^{2}}{} \\
& a_{n}=-0.491 \mathrm{ft} / \mathrm{s}^{2}
\end{aligned}
$$

Problem 2.33
Given: Thin film of crude oil (s Ge $=0.85, \mu=2.15 \times 10^{-3}$ ibf.s/fit) with thickness $h=0.125 \mathrm{in}$, flows down a 30° incline The vebaty profile is given by

$$
u=\frac{p g}{\mu}\left(h_{y}-\frac{y^{2}}{2}\right) \sin \theta
$$

Find: (a) the magnitude and direction of the shear stress acting on the surface
(b) Plot the velocity profile.

Solution:
To plot the profile, note that $u=U_{\text {max }}$ at $y=h$

$$
u_{\text {max }}=\frac{\rho g}{\mu} \frac{h^{2}}{2} \sin \theta \quad \therefore \frac{u}{u_{\text {max }}}=2\left[\frac{y}{h}-\frac{1}{2}\left(\frac{u}{h}\right)^{2}\right]
$$

The shear 5 tress is given by $v_{y x}=\mu \frac{d \mu}{d y}$

$$
\therefore r_{y}=\mu \frac{d}{d y}\left[\frac{p g}{\mu}\left(h y-\frac{y^{2}}{2}\right) \sin \theta\right]=\mu \frac{\rho g}{\mu} \sin \theta(h-y)
$$

At the inclined surface, $y=0$

$$
\begin{aligned}
\therefore T_{y x} & =p g h \sin \theta=s G p_{12} g h \sin \theta \\
T_{y} & =0.85 \times 1.94 \frac{\operatorname{slng}}{f t^{2}} \times 32.2 \frac{f t}{s^{2}} \times 0.125 i n \times \frac{f t}{12 i n} \times \sin 30 \times \frac{16 f . s^{2}}{s l u g .5 t}
\end{aligned}
$$

$$
v_{y x}=0.277 \text { tor } 1 \mathrm{fz}^{2}
$$

Ty x
The surface is a positive y surface. Since tye>0, the stress must act in the positive x direction as shown on the sketch above.

Problem 2.34

Given: Block of weight o 1 bf, 10 in . on each edge, is pulled up a plane, inclined at 25° to the horizontal, over a film of SAE Now ail at 100%. The speed of the block is constant at 2 ftls and the oil film thickness is 0.001 in.
Velocity profile in film is linear
Find: Force required.
Solution:
Since the block is moving at constant velocity, U, then $\sum \vec{F}_{e i}=0$ Consider the forces along the direction of motion and look at a free body diagrain of the block.

Since $\sum F_{x}=0$, then $F-f-W \sin \theta=0$
Now the friction force, $f=T A$
where $y=\mu \frac{d u}{d y}$
For small gap (linear velocity profile) $\quad y=\mu \frac{U}{a}$
Hence

$$
f=\mu A=\mu \frac{J}{d} A
$$

and

$$
F-\mu \frac{U}{d} A-W \sin \theta=0
$$

Thus

$$
F=\mu \frac{\sqrt{2}}{d} A+w \sin \theta
$$

From Fig. A.2, Appendix A, for SAE IOW oil @ $100^{\circ} F\left(38^{\circ} \mathrm{C}\right), \mu=3.7 \times 10^{-2} \mathrm{~N} \cdot \mathrm{~s} / \mathrm{m}^{2}$

$$
\begin{aligned}
F & =\mu \frac{U}{d} R+W \sin \theta \\
& =3.7 \times 10^{2} \frac{\lambda .5}{M^{2}} \times 2.09 \times 10^{-2} \frac{1 b f .5}{f t^{2}} \cdot \frac{m^{2}}{n .5} \times 2 \frac{4}{s} \times(10)^{2} i^{2} \\
F & =17.1 \mathrm{l} \frac{1}{0.001 i n} \times
\end{aligned}
$$

Given: Tape, of width $w=1.00$ in is to be coated on both sides with lubricant by drowning in through narrow gap of length, L, as shown.

$$
c=0.012 \mathrm{in} . t=0.05 \mathrm{in}, L=0.75 \mathrm{n}
$$

Lubricant: $\mu=0.021$ sluglat.s. completely fills gap, velocity distribution is linear
Maximum allowable force in tape is $F=7.5$ bf.
Find: Maximum allowable tape speed.
Solution:

$$
\Sigma F_{x}=m a_{x}
$$

Since $V_{\text {tape }}=$ constant, then $\Sigma F_{x}=0$ and driving force is balanced by friction fore, F_{f}
$F_{f}=V R$ where $T=\mu \frac{d u}{d y}$
On top surface of tape, $T_{t}=\mu \frac{d \mu}{d y}=\mu \frac{V_{c+\frac{t}{2}}-\left.V_{t}\right|_{2}}{\left(H_{2}+c\right)-\left.t\right|_{2}}=-\mu \frac{V}{c}$ negative T on positive surface means F_{f} acts to left
On bottom surface or tape, $T_{b}=\mu \frac{d u}{d y}=\mu \frac{V_{-\left(c+t_{2}\right)}-V_{-t}}{\left(-U_{2}-c\right)-(-t / 2)}=\mu \frac{V}{c}$ positive T on negative surface means. F_{8} acts to Reft

Hence, $\quad \sum F_{x}=0=F-F_{f_{t}}-F_{f_{b}}$

$$
\begin{aligned}
& F=F_{f_{t}}+F_{f b}=\left|T_{t} A\right|+\left|Y_{b} R\right| \\
& F=\mu \frac{V}{c} A+\mu \frac{V}{c} A=2 \mu \frac{V}{c} A
\end{aligned}
$$

Solving for V,

$$
\begin{aligned}
& V=\frac{F c}{2 \mu A}=7.5 \mathrm{bf} \times 0.012 \mathrm{in} \times \frac{1}{2} \times \frac{\mathrm{ft} \cdot \mathrm{~s}}{0.021 \mathrm{slug}} \times \frac{1}{(1.00 \mathrm{in})(0.75 \mathrm{n})} \times \frac{\mathrm{ft} \cdot \mathrm{slog}}{1 \mathrm{f} \cdot \mathrm{~s}^{2}} \times \frac{12 \mathrm{nn}}{\mathrm{ft}} \\
& V=\left.34.3 \mathrm{ft}\right|_{\mathrm{s}}
\end{aligned}
$$

Given: Block of mass M slides on thin film of all of thickness h. Contact area of block is A. At time $t=0$, mass m is released from rest. $M=5 \mathrm{~kg}, m=1 \mathrm{gg}, A=25 \mathrm{~cm}^{2}, h=0.5 \mathrm{~m}$

Find: (a) Expression for viscous force on block when moving at speed V
(b) Differential equation governing block speed as a function of time
(c) Expression for block speed $V=V(t)$; plot
(d) If $v=1 \mathrm{mls}$ at $t=1 \mathrm{~s}$, find μ

Solution:
Basic equations: $\tau_{y_{x}}=\mu \frac{d u}{d y} \quad \sum \vec{F}=\vec{a}$

Assumptions: (a) Newtonian fluid
(a) Linear velocity profile in oil film.

Then, $F_{v}=-T A=\mu \frac{d u}{d y} A=\mu \frac{\Delta u}{\Delta y} A=\mu \frac{V}{h} A$
For the block, $\Sigma F_{x}=F_{t}-F_{v}=M \frac{d d_{b}}{d t}$
For the falling mass $\Sigma F_{y}=m g-F_{t}=m \frac{d V_{t}}{d t}$, or

$$
\begin{equation*}
F_{t}=m g-m \frac{d t_{m}}{d t} \tag{2}
\end{equation*}
$$

Since $V_{b}=V_{f m}=V$, then substituting from Eq .(2) into (1) gives

$$
m g-m \cdot \frac{d v}{d t}-F_{v}=m \frac{d V}{d t}=m g-m \frac{d t}{d t}-\mu \frac{0}{h} A
$$

Finally,

$$
m g-\mu \frac{v}{n} t=(M+m) \frac{d y}{d t}
$$

To solve we separate variables and integrate

$$
\begin{aligned}
& \left.t=\int_{0}^{t} d t=\int_{0}^{V} \frac{(M+m)}{m g-\mu \frac{V}{h} A}=-(M+m) \frac{h}{\mu A} \ln \left(m g-\frac{\mu A}{h}\right)\right]_{0}^{V} \\
& t=-(M+M) \frac{\mu}{\mu A} \ln \left(1-\mu \frac{\mu A}{m g h}\right) \\
& \text { Taking antilogarilms, } \\
& 1-\frac{\mu v A}{M g h}=e^{-\frac{\mu A t}{(M+M) h}} \\
& \text { Solving for } V,
\end{aligned}
$$

$$
V=\frac{m g h}{\mu A}\left(1-e^{-\mu R t}(m+m h)\right.
$$

The velocity increases exponentially to $V_{\text {max }}=\frac{M_{g h}}{\mu A}$

Given: Block of mass M moves at steady speed Y under influence of constant force F_{1} on a thin film of oil of thickness h and viscosity μ; block is square, a mm on a side.
Find: (a) Magnitude and direction of shear stress acting on bottom of block and supporting plate.
(b) Expression for time required to lose 959 of its initial speed when force is suddenly removed
(c) Expect shape of speed vs time curve?

Solution:
Basic equations: $\widehat{V}_{y_{x}}=\mu \frac{d u}{d y} \quad \Sigma \vec{F}=m \vec{a}$ Assumptions: (i) Newtonian fluid

(a) Linear velocity profile in oil film

$$
\begin{equation*}
v_{y x}=\mu \frac{d u}{d y}=\mu \frac{\Delta u}{\Delta y}=\mu \frac{U}{h} \tag{yx}
\end{equation*}
$$

Bytom of block is $-y$ surface, so Ty acts to left Plate surface is + y surface, so Ty+ acts to right Viscous shias force on block is $F_{V}=r A=Y a^{2}=\frac{\mu V V_{a}^{2}}{n}$ When F, is removed, block slows under action of F_{v}

$$
\sum F_{x}=m \frac{d J}{d t}=-F_{v}=-\mu \frac{v a^{2}}{h}
$$

Separating variables and integrating we have

$$
\int_{-v_{i}}^{T} \frac{d v}{v}=-\int_{0}^{t} \mu a^{2} d t
$$

then

$$
\ln \frac{U_{i}}{\Xi_{i}}=-\frac{\mu a^{2}}{m h} \Sigma \ldots .(n)
$$

and

$$
t=-\frac{m}{\mu a^{2}} \ln \frac{U_{i}}{U_{i}}
$$

For- to ${ }_{i}=0.05$

$$
t=3.0 \frac{\mathrm{mh}}{\mu^{2}}
$$

From Eq.(i) we can wa rite

$$
O=U, e^{-\frac{\mu a^{2} t}{h}}
$$

the speed the decreases exponentially with time.

Problem 2.38

A block 0.2 m square, with 5 kg mass, slides down a smooth incline, 30° below the horizontal, a film of SAE 30 oil at $20^{\circ} \mathrm{C}$ that is 0.20 mm thick. If the block is released from rest at $t=0, \mathrm{wl}$ is its initial acceleration? Derive an expression for the speed of the block as a function of time. the curve for $\mathrm{V}(\mathrm{t})$. Find the speed after 0.1 s . If we want the mass to instead reach a speed of 0 . m / s at this time, find the viscosity μ of the oil we would have to use.

Given: Data on the block and incline

Find: Initial acceleration; formula for speed of block; plot; find speed after 0.1 s . Find oil viscosity if speed is $0.3 \mathrm{~m} / \mathrm{s}$ after 0.1 s

Solution

Given data

$$
\mathrm{M}=5 \cdot \mathrm{~kg}
$$

$$
\mathrm{A}=(0.2 \cdot \mathrm{~m})^{2}
$$

$\mathrm{d}=0.2 \cdot \mathrm{~mm}$
$\theta=30 \cdot \operatorname{deg}$

From Fig. A. 2

$$
\mu=0.4 \cdot \frac{\mathrm{~N} \cdot \mathrm{~s}}{\mathrm{~m}^{2}}
$$

Applying Newton's 2nd law to initial instant (no friction)

$$
\mathrm{M} \cdot \mathrm{a}=\mathrm{M} \cdot \mathrm{~g} \cdot \sin (\theta)-\mathrm{F}_{\mathrm{f}}=\mathrm{M} \cdot \mathrm{~g} \cdot \sin (\theta)
$$

so

$$
\mathrm{a}_{\text {init }}=\mathrm{g} \cdot \sin (\theta)=9.81 \cdot \frac{\mathrm{~m}}{\mathrm{~s}^{2}} \times \sin (30) \quad \mathrm{a}_{\text {init }}=4.9 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}
$$

Applying Newton's 2nd law at any instant

$$
\mathrm{M} \cdot \mathrm{a}=\mathrm{M} \cdot \mathrm{~g} \cdot \sin (\theta)-\mathrm{F}_{\mathrm{f}}
$$

and

$$
\mathrm{F}_{\mathrm{f}}=\tau \cdot \mathrm{A}=\mu \cdot \frac{\mathrm{du}}{\mathrm{dy}} \cdot \mathrm{~A}=\mu \cdot \frac{\mathrm{V}}{\mathrm{~d}} \cdot \mathrm{~A}
$$

so

$$
M \cdot \mathrm{a}=\mathrm{M} \cdot \frac{\mathrm{dV}}{\mathrm{dt}}=\mathrm{M} \cdot \mathrm{~g} \cdot \sin (\theta)-\frac{\mu \cdot \mathrm{A}}{\mathrm{~d}} \cdot \mathrm{~V}
$$

Separating variables

$$
\frac{d V}{g \cdot \sin (\theta)-\frac{\mu \cdot A}{M \cdot d} \cdot V}=d t
$$

Integrating and using limits

$$
-\frac{\mathrm{M} \cdot \mathrm{~d}}{\mu \cdot \mathrm{~A}} \cdot \ln \left(1-\frac{\mu \cdot \mathrm{A}}{\mathrm{M} \cdot \mathrm{~g} \cdot \mathrm{~d} \cdot \sin (\theta)} \cdot \mathrm{V}\right)=\mathrm{t}
$$

or

$$
V(t)=\frac{M \cdot g \cdot d \cdot \sin (\theta)}{\mu \cdot A} \cdot\left(1-e^{\frac{-\mu \cdot A}{M \cdot d} \cdot t}\right)
$$

$$
\text { At } \mathrm{t}=0.1 \mathrm{~s}
$$

$$
\begin{gathered}
\mathrm{V}=5 \cdot \mathrm{~kg} \times 9.81 \cdot \frac{\mathrm{~m}}{\mathrm{~s}^{2}} \times 0.0002 \cdot \mathrm{~m} \cdot \sin (30) \times \frac{\mathrm{m}^{2}}{0.4 \cdot \mathrm{~N} \cdot \mathrm{~s} \cdot(0.2 \cdot \mathrm{~m})^{2}} \times \frac{\mathrm{N} \cdot \mathrm{~s}^{2}}{\mathrm{~kg} \cdot \mathrm{~m}} \times\left[1-\mathrm{e}^{-\left(\frac{0.4 \cdot 0.04}{5 \cdot 0.002} \cdot 0.1\right)}\right] \\
\mathrm{V}=0.245 \frac{\mathrm{~m}}{\mathrm{~s}}
\end{gathered}
$$

To find the viscosity for which $V(0.1 \mathrm{~s})=0.3 \mathrm{~m} / \mathrm{s}$, we must solve

$$
\mathrm{V}(\mathrm{t}=0.1 \cdot \mathrm{~s})=\frac{\mathrm{M} \cdot \mathrm{~g} \cdot \mathrm{~d} \cdot \sin (\theta)}{\mu \cdot \mathrm{A}} \cdot\left[1-\mathrm{e}^{\frac{-\mu \cdot \mathrm{A}}{\mathrm{M} \cdot \mathrm{~d}} \cdot(\mathrm{t}=0.1 \cdot \mathrm{~s})}\right]
$$

The viscosity μ is implicit in this equation, so solution must be found by manual iteration, or by of a number of classic root-finding numerical methods, or by using Excel's Goal Seek

From the Excel workbook for this problem the solution is

$$
\mu=0.27 \frac{\mathrm{~N} \cdot \mathrm{~s}}{\mathrm{~m}^{2}}
$$

Problem 2.38 (In Excel)

A block 0.2 m square, with 5 kg mass, slides down a smooth incline, 30° below the horizontal, on a film of SAE 30 oil at $20^{\circ} \mathrm{C}$ that is 0.20 mm thick. If the block is released from rest at $t=0$, what is its initial acceleration? Derive an expression for the speed of the block as a function of time. Plot the curve for $V(t)$. Find the speed after
0.1 s . If we want the mass to instead reach a speed of $0.3 \mathrm{~m} / \mathrm{s}$ at this time, find the viscosity μ of the oil we would have to use.

Solution

The solution is

$$
V(t)=\frac{M \cdot g \cdot d \cdot \sin (\theta)}{\mu \cdot A} \cdot\left(1-e^{\frac{-\mu \cdot \mathrm{A}}{\mathrm{M} \cdot \mathrm{~d}} \cdot \mathrm{t}}\right)
$$

The data is

$$
\begin{array}{rcl}
\mathrm{M}= & 5.00 & \mathrm{~kg} \\
\theta= & 30 & \mathrm{deg} \\
\mu= & 0.40 & \mathrm{~N} . \mathrm{s} / \mathrm{m}^{2} \\
\mathrm{~A} & = & 0.04 \\
\mathrm{~m}^{2} \\
\mathrm{~d} & = & 0.2
\end{array} \mathrm{~mm}
$$

$\mathbf{t} \mathbf{(s)}$	\mathbf{V} (m/s)
0.00	0.000
0.01	0.045
0.02	0.084
0.03	0.117
0.04	0.145
0.05	0.169
0.06	0.189
0.07	0.207
0.08	0.221
0.09	0.234
0.10	0.245
0.11	0.254
0.12	0.262
0.13	0.268
0.14	0.274
0.15	0.279
0.16	0.283
0.17	0.286
0.18	0.289
0.19	0.292
0.20	0.294
0.21	0.296
0.22	0.297
0.23	0.299
0.24	0.300
0.25	0.301
0.26	0.302
0.27	0.302
0.28	0.303
0.29	0.304
0.30	0.304

To find the viscosity for which the speed is $0.3 \mathrm{~m} / \mathrm{s}$ after 0.1 s use Goal Seek with the velocity targeted to be 0.3 by varying the viscosity in the set of cell below:

$\mathbf{t}(\mathbf{s})$	$\mathbf{V}(\mathbf{m} / \mathbf{s})$
0.10	0.300

Problem 2.39

Given: Wire, of diameter d, is to be coated with varnish by drawing it through a circwlas die of diameter, \%, and length, L
$d=0.9 \mathrm{~mm}, y=1.0 \mathrm{~mm}, \lambda=50 \mathrm{~mm}$

Varnish, $\mu=20$ centipoise fils the space between wire and die wire is 'drown trough at speed, $V=50 \mathrm{mle}$.

Find: Force required to pull the wire
Solution:

$$
\sum F_{\lambda}=m a_{x}
$$

Since $V_{\text {wire }}=$ constant, applied force must be sufficient to babose friction fores, Ff
$F_{f}=Y A$ where $T=\mu \frac{d u}{d r}$ and $R=K d h$
Assuming a linear velocity distribution in varnish
negative stress on positive r surface must act in negative * direction?

$$
\begin{aligned}
& F-F_{f}=0 \\
& F=\gamma A=\mu \frac{2 V}{(1)-d)} \times K d \mathrm{~L} \\
& F=20 \mathrm{cp} \times \frac{g \mathrm{gm}}{100 \mathrm{cmisice}} \times 2 \pi \times \frac{50 \mathrm{~m}}{\mathrm{~s}} \times 0.9 \mathrm{~mm} \times 50 \mathrm{~mm} \times \frac{1}{0.1 \mathrm{~mm}} \times \frac{\mathrm{cm}}{10 \mathrm{~mm}} \times \frac{\mathrm{kg}}{100 \mathrm{ggn}} \times \frac{\mathrm{N.s}}{\mathrm{~g} \cdot \mathrm{~m}}
\end{aligned}
$$

$$
F=2.83 \mathrm{~N}
$$

Problem 2.40

Given: Concentric cylinder viscometer.

$$
R=2.0 \mathrm{in} \quad d=0.001 \mathrm{in} \quad h=8 \mathrm{in} .
$$

Inner cylinder rotates at 400 rpm Gap filled with castor oil at a of.
Determine: Torque required to rotate the inner cylinder

Solution:
The required torque must balance the resisting torque of the shear force The shear force is gower by $F=r A$ where $A=2 k R h$
For a Newtonian fluid $f=\mu \frac{d u}{d y}$
For small gap (linear profile) $\quad v=\mu \frac{V}{d}$
where $V=$ tangential velocity of inner cylinder $=$ Ru
Hence

$$
F=Y A=\mu \frac{R \omega}{d} 2 \pi R h=\frac{2 \pi \mu R^{2} \omega h}{d}
$$

and the torque $T=R F=\frac{2 \pi \mu R^{3} \omega h}{d}$
From Fig A.2, for castor oil at $90^{\circ} \mathrm{F}\left(32^{\circ} \mathrm{C}\right)$, $\mu=3.80 \times 10^{-1} \mathrm{~N} . \mathrm{s} / \mathrm{m}^{2}$
Substituting numerical values.

Given: Concentric cylinder viscometer

$$
R_{i}=37.5 \mathrm{~mm}, d=0.02 \mathrm{~mm}, h=150 \mathrm{~mm}
$$

Inner cylinder rotates at $\omega=100 \mathrm{rpm}$, neper torque, $T=0.021 \mathrm{Nin}$
Find: Viscosity of liquid in clearance gap.

Solution
The imposed torque must balance the resisting torque of the shear force. The shear force is given by $F=Y A \quad$ where $A=2 K R h$
For a Newtonian fluid $r=\mu \frac{d u}{d y}$
Since the vebcity profile is assumed to be linear, $r=\mu \frac{V}{d}$ where Y is the tangential velocity of the omer cylinder, $V=R_{i} w$
Thus,

$$
F=\gamma R=\mu \frac{y}{d} 2 \pi R, h=\frac{2 \pi \mu R^{2} \omega h}{d}
$$

and the torque $T=R F=\frac{2 \pi \mu R^{3}, \omega h}{\alpha}$
Solving for μ,

$$
\begin{aligned}
\mu= & \frac{T d}{2 \pi R_{L}^{3} \omega h}=0.021 N \cdot m \times 0.02 \mathrm{~mm} \times \frac{1}{2 \pi} \times \frac{1}{(37.5)^{3} \mathrm{~mm}^{3}} \times \frac{\min }{100 \mathrm{~m}} \times \frac{1}{150 \mathrm{~mm}} \\
& \quad \times \frac{\mathrm{rev}}{2 \times \mathrm{rad}} \times \frac{60.5}{\mathrm{~min}} \times(1000)^{3} \frac{\mathrm{~m}^{3}}{\mathrm{~m}^{3}} \\
\mu= & 8.07 \times 10^{-4} \quad \text { N.S } 1 \mathrm{~m}^{2}
\end{aligned}
$$

Given: Shaft turning inside stationary journal as shown, $N=20 \mathrm{rps}$.

$$
\text { Torque, } T=0.0036 \mathrm{~N} \cdot \mathrm{~m}
$$

Find: Estimate viscosity of oil.
Solution: Basic equation $\tau_{y x}=\mu \frac{d u}{d y}$ Assumptions: (1) Newtonian fluid

Shear stress is

$$
\tau_{y x} \approx \mu \frac{\Delta u}{\Delta y}=\mu \frac{U}{t}=\frac{\mu \omega D}{2 t}
$$

Neglecting end effects, torque is

$$
T=F R=\tau_{y x A R}=\tau_{y x}(\pi D L) \frac{D}{2}=\frac{\mu \pi \omega D^{3} L}{4 t}
$$

solving for viscosity

$$
\begin{aligned}
\mu & =\frac{4 t T}{\pi \omega D^{3} L} \\
& =\frac{4}{\pi} \times 0.2 \mathrm{~mm} \times 0.0036 \mathrm{~N} \cdot m_{\times} \frac{5}{20 \mathrm{rev}} \times \frac{1}{(18)^{3} \mathrm{~mm}^{3}} \times \frac{1}{60 \mathrm{~mm}} \times \frac{\mathrm{rev}}{2 \pi r a d} \times(1000)^{3} \frac{\mathrm{~mm}^{3}}{\mathrm{~m}^{3}} \\
\mu & =0.0208 \mathrm{~N} \cdot \mathrm{~S} / \mathrm{m}^{2}
\end{aligned}
$$

$\left\{\begin{array}{l}\text { From Fig. A.2, this oil appears some what less viscous than SAE loW, } \\ \text { assuming the oil is at room temperature. }\end{array}\right\}$

Problem 2.43
Given: Concentric-cylinder viscometer, driven by falling mass.

$$
\begin{array}{ll}
M=0.10 \mathrm{~kg} & r=25 \mathrm{~mm} \\
R=50 \mathrm{~mm} & a=0.20 \mathrm{~mm} \\
H=80 \mathrm{~mm} & V_{m}=30 \mathrm{~mm} / \mathrm{s}
\end{array}
$$

After starting transient. $\mathrm{V}_{m}=$ const.
Find: (a) An age brail expression for viscosity of the liquid, in terms of M, g, V_{m}, r, R, a, and H.

(b) Evaluate using the data given.

Solution: Apply Newton's law of viscosity.
Basic equations: $\tau=\mu \frac{d u}{d y} \quad \Sigma M=0 \quad T=\tau A R$
Assumptions: (1) New tonia liquid
(2) Narrow gap, so linear velocity profile
(3) Steady angular speed
summing torques on the rotor

$$
\Sigma M=M g^{r}-\tau A R=I \not \alpha^{=0(3)}=0 ; A=2 \pi R H
$$

Because $a \ll R$, treat the gap as plane. Then

$$
\tau=\mu \frac{d u}{d y}=\mu \frac{\Delta u}{\Delta y}=\mu \frac{v-0}{a-0}=\mu \frac{U}{a}=\frac{\mu v_{m} R}{a r}
$$

Substituting,

$$
M g r-\frac{\mu v_{m} R}{a r} 2 \pi R H R=M g r-\frac{2 \pi \mu v_{m} R^{3} H}{a r}=0
$$

so

$$
\mu=\frac{M g r^{2} a}{2 \pi V_{m} R^{3} H}
$$

Evaluating for the given data

$$
\begin{aligned}
\mu= & \frac{1}{2 \pi} \times 0.10 \mathrm{~kg}_{\times} 9.81 \frac{\mathrm{~m}}{\mathrm{~s}^{2}} \times(0.025)^{2} \mathrm{~m}_{\times}^{2} \times 0.0002 \mathrm{~m} \times \frac{\mathrm{s}}{0.030 \mathrm{~m}} \\
& \times \frac{1}{(0.050)^{3} \mathrm{~m}^{3}} \times \frac{1}{0.080 \mathrm{~m}} \times \frac{\mathrm{Ns}}{\mathrm{~kg} \cdot \mathrm{~m}} \\
\mu= & 0.0651 \mathrm{~N} \cdot \mathrm{~s} / \mathrm{m}^{2}(65.1 \mathrm{mbls})
\end{aligned}
$$

Problem 2.44

The viscometer of Problem 2.43 is being used to verify that the viscosity of a particular fluid is $\mu=$ $0.1 \mathrm{~N} . \mathrm{s} / \mathrm{m}^{2}$. Unfortunately the cord snaps during the experiment. How long will it take the cylinder to lose 99% of its speed? The moment of inertia o the cylinder/pulley system is $0.0273 \mathrm{~kg} . \mathrm{m}^{2}$.

Given: Data on the viscometer

Find: Time for viscometer to lose 99% of speed

Solution

The given data is
$\mathrm{R}=50 \cdot \mathrm{~mm} \quad \mathrm{H}=80 \cdot \mathrm{~mm} \quad \mathrm{a}=0.20 \cdot \mathrm{~mm} \quad \mathrm{I}=0.0273 \cdot \mathrm{~kg} \cdot \mathrm{~m}^{2} \quad \mu=0.1 \cdot \frac{\mathrm{~N} \cdot \mathrm{~s}}{\mathrm{~m}^{2}}$

The equation of motion for the slowing viscometer is

$$
\mathrm{I} \cdot \alpha=\text { Torque }=-\tau \cdot \mathrm{A} \cdot \mathrm{R}
$$

where α is the angular acceleration and τ viscometer

The stress is given by

$$
\tau=\mu \cdot \frac{d u}{d y}=\mu \cdot \frac{V-0}{a}=\frac{\mu \cdot V}{a}=\frac{\mu \cdot \mathrm{R} \cdot \omega}{a}
$$

where V and ω are the instantaneous linear and angular velocities.

Hence

$$
\mathrm{I} \cdot \alpha=\mathrm{I} \cdot \frac{\mathrm{~d} \omega}{\mathrm{dt}}=-\frac{\mu \cdot \mathrm{R} \cdot \omega}{\mathrm{a}} \cdot \mathrm{~A} \cdot \mathrm{R}=\frac{\mu \cdot \mathrm{R}^{2} \cdot \mathrm{~A}}{\mathrm{a}} \cdot \omega
$$

Separating variables

$$
\frac{\mathrm{d} \omega}{\omega}=-\frac{\mu \cdot \mathrm{R}^{2} \cdot \mathrm{~A}}{\mathrm{a} \cdot \mathrm{I}} \cdot \mathrm{dt}
$$

Integrating and using IC $\omega=\omega_{0}$

$$
\omega(\mathrm{t})=\omega_{0} \cdot \mathrm{e}^{-\frac{\mu \cdot \mathrm{R}^{2} \cdot \mathrm{~A}}{\mathrm{a} \cdot \mathrm{I}} \cdot \mathrm{t}}
$$

The time to slow down by 99% is obtained from solving

$$
0.01 \cdot \omega_{0}=\omega_{0} \cdot \mathrm{e}^{-\frac{\mu \cdot \mathrm{R}^{2} \cdot \mathrm{~A}}{\mathrm{a} \cdot \mathrm{I}} \cdot \mathrm{t}}
$$

so

$$
\mathrm{t}=-\frac{\mathrm{a} \cdot \mathrm{I}}{\mu \cdot \mathrm{R}^{2} \cdot \mathrm{~A}} \cdot \ln (0.01)
$$

Note that

$$
\mathrm{A}=2 \cdot \pi \cdot \mathrm{R} \cdot \mathrm{H}
$$

so

$$
\mathrm{t}=-\frac{\mathrm{a} \cdot \mathrm{I}}{2 \cdot \pi \cdot \mu \cdot \mathrm{R}^{3} \cdot \mathrm{H}} \cdot \ln (0.01)
$$

$\mathrm{t}=-\frac{0.0002 \cdot \mathrm{~m} \cdot 0.0273 \cdot \mathrm{~kg} \cdot \mathrm{~m}^{2}}{2 \cdot \pi} \cdot \frac{\mathrm{~m}^{2}}{0.1 \cdot \mathrm{~N} \cdot \mathrm{~s}} \cdot \frac{1}{(0.05 \cdot \mathrm{~m})^{3}} \cdot \frac{1}{0.08 \cdot \mathrm{~m}} \cdot \frac{\mathrm{~N} \cdot \mathrm{~s}^{2}}{\mathrm{~kg} \cdot \mathrm{~m}} \cdot \ln (0.01) \quad \mathrm{t}=4 \mathrm{~s}$

Problem 2.45
Given: Thin outer cylinder (mass, m_{2}, and radius R) of a concentric-Elinder viscometer is driven by the falling mass. M1. Searance between outer cylnincs and stationary inner cylinder ss a. Bearnig friction, ar resistance and has of liquid in the viscometer may be neglected
Find: (a) algebraic expression for the torque due to viscous shear acting on cylinder at angular speed $\omega_{\text {. }}$ (b) differential equals and solution for ω (t) (c) expression for $w_{\text {max }}$

Solution:
Basic equations: $v=\mu \frac{d u}{d y}$

$$
\Sigma F=m a, \quad \Sigma m=I \alpha
$$

Assume: (1) Newtonian fluid (2) linear velocity profile

$$
\begin{array}{rl}
\text { In the gap, } & T=\mu \frac{d u}{d y}=\mu \frac{V}{a}=\frac{\mu R \omega}{a} \\
T & T R R=\frac{\mu R \omega}{a}(2 \pi R h) R \\
T & =\frac{2 \pi R^{3} \mu h}{a} \omega
\end{array}
$$

During acceleration, let the tension in the cord be F_{c}

For the cylinder $\Sigma M=F_{c} R-T=I_{\alpha}=M_{2} R^{2} \frac{d \omega}{d t}$
For the mass $\sum F_{y}=M, g-F_{c}=m a=m, \frac{d t^{2}}{d t}=M R \frac{d \omega}{d t} \cdots(k)$

$$
\therefore \quad F_{c}=m, g-m, R \frac{d \omega}{d t}
$$

substituting into eq. (i)

Let $m_{1} g h=b,-2 \pi R^{3} \mu h l_{a}=c, \quad\left(m_{1}+m_{2}\right) R^{2}=f$
Then, $b+c \omega=f \frac{d w}{d t}$ or $\int_{0}^{t} \frac{1}{f} d t=\int_{0}^{\omega}(b+c \omega)$
Integrating, $\left.\quad \frac{1}{f} t=\frac{1}{c} \ln (b+c \omega)\right]_{0}^{\omega_{0}^{\circ}}=\frac{1}{c} \ln \frac{(b+c w)}{b}=\frac{1}{c} \ln \left(1+\frac{c}{b^{\omega}}\right)$.

$$
\frac{c}{f} t=\ln \left(1+\frac{c}{b} \omega\right)^{f} \Rightarrow e^{\frac{c}{f} t}=\left(1+\frac{c}{b} \omega\right) \Rightarrow \omega=\frac{b}{c}\left(e^{\frac{c}{f} t}-1\right)^{c}
$$

Substituting for b, c, and $\frac{1}{2}$

$$
\begin{aligned}
& \text { ubstituting for } b, c, \text { ard-} \\
& \omega=\frac{m, g R-a}{\left.2 \pi R^{3}\right) \mu h}\left(1-e^{\frac{-2 \pi R^{3} \mu h}{a\left(n, m_{2} R^{2} t\right.}}\right)=\frac{m g a}{2 \pi R^{2} \mu h}\left[1-e^{-\frac{2 \pi R \mu h}{a\left(n, M_{2} t\right.}}\right]
\end{aligned}
$$

w lt
Manimium ω occurs at $t \rightarrow \infty$

$$
\begin{equation*}
w_{m a x}=\frac{m g a}{2 \pi F^{2} \mu h} \tag{rat}
\end{equation*}
$$

Gives: Circular aluminum shaft in journal.
symmetric clearance gap
frilled with SAE low -30 at $30^{\circ} \mathrm{C}$.
Shaft turned by mass and cord.

Find: (a) Develop and solve a differentia r equation for angular speed as a function of time.
(b) Calculate maximum angular speed.
(c) Estimate time seeded to reach 95 percent of maximums speed.

Solution: Apply summation of torques and Newton's second law.
Basic equations: $\quad \Sigma T=I \frac{d \omega}{d t} \quad \Sigma F=m \frac{d V}{d t} \quad V=R \omega$
For the mass:

$$
\begin{equation*}
\Sigma F_{y}=m g-t=m \frac{d v}{d t}=m R \frac{d w}{d t} \tag{1}
\end{equation*}
$$

For the shaft:

$$
\begin{align*}
& \Sigma T=t R-T_{\text {viscous }}=I \frac{d \omega}{d t} \tag{2}\\
& T_{\text {viscoices }}=T R A=\mu \frac{V}{a} R 2 \pi R L=2 \pi \frac{\mu \omega R^{3} L}{a}
\end{align*}
$$

Assume: (1)Newtonian liquid, (2) Small gap, (3) Linear Profile
Then Eg. 2 becomes

$$
\begin{equation*}
t R-\frac{2 \pi \mu R^{3} L}{a} \omega=I \frac{d \omega}{d t} ; \quad I=\frac{1}{2} M R^{2} \tag{3}
\end{equation*}
$$

Multiplying Eq. 1 by R and combining with Eq. 3 gives

$$
\begin{equation*}
m g R-m R^{2} \frac{d \omega}{d t}-\frac{2 \pi \mu R^{3} L}{a} w=I \frac{d w}{d t} \text { or } m g R-\frac{2 \pi \mu R^{3} L}{a} \omega=\left(I+m R^{2}\right) \frac{d \omega}{d t} \tag{4}
\end{equation*}
$$

This may be written $A-B \omega=C \frac{d \omega}{d t}$ where $A=m g R, B=\frac{2 \pi \mu R^{3} L}{a}, c=I+m R^{2}$ separating variables $\frac{d w}{A-B \omega}=\frac{d t}{C}$
Integrating $\left.\int_{0}^{\omega} \frac{d \omega}{A-B \omega}=-\frac{1}{B} \ln (A-B \omega)\right]_{0}^{\omega}=-\frac{1}{B} \ln \left(1-\frac{B \omega}{A}\right)=\int_{0}^{t} \frac{d t}{C}=\frac{t}{C}$
Simplifying $1-\frac{B \omega}{A}=e^{-B t / c}$ or $\omega=\frac{A}{B}\left[1-e^{-B t / c}\right]$
The maximum angular speed $(t \rightarrow i)$ is $\omega=A / B$.

$$
\begin{aligned}
& A=m g R=0.010 \mathrm{~kg}_{\times} 9.81 \frac{\mathrm{~m}}{\mathrm{~s}^{2}} \times 0.025 \mathrm{~m}_{\times} \frac{{\mathrm{N} \cdot \mathrm{~s}^{2}}_{\mathrm{kg} \mathrm{~m}}^{\mathrm{m}}=2.45 \times 10^{-3} \mathrm{~N} \cdot \mathrm{~m}}{B=\frac{2 \pi \mu R^{3} \mathrm{~L}}{a}=2 \pi_{x} 0.095 \frac{\mathrm{~kg}}{\mathrm{~m} \cdot \mathrm{~s}} \times(0.025)^{3} \mathrm{~m}_{\times}^{3} \times 0.050 \mathrm{~m}^{2} \times \frac{1}{0.0005 \mathrm{~m}} \times \frac{\mathrm{N} \cdot \mathrm{~s}^{2}}{\mathrm{~kg} \cdot \mathrm{~m}}=9.33 \times 10^{-4} \mathrm{~N} \cdot \mathrm{~m} \cdot \mathrm{~s}}
\end{aligned}
$$

Evaluating, $\omega_{\text {max }}=\frac{A}{B}=2.45 \times 10^{-3} \mathrm{~N}^{2} m_{x} \frac{1}{9.33 \times 10^{-4} \mathrm{~N} \cdot \mathrm{~m} \cdot \mathrm{sec}}=2.63 \mathrm{rad} / \mathrm{s}$
Thus

$$
\omega_{\text {max }}=2.63 \frac{\mathrm{rad}}{\mathrm{~s}} \times \frac{\mathrm{rev}}{i \pi \mathrm{rad}} \times 60 \frac{\mathrm{~s}}{\mathrm{~min}}=25.1 \mathrm{rpm}
$$

From Eq. $5, \omega=0.95 \omega_{\max }$ when $e^{-B t / C}=0.05$, or $B t k \simeq 3 ; t \simeq \frac{3 C}{B}$

$$
\begin{aligned}
& C=I+m R^{2}=\frac{1}{2} M R^{2}+m R^{2}=\left(\frac{1}{2} M+m\right) R^{2} \\
& M=\pi R^{2}(1.5 L+L) \rho=2.5 \pi R^{2} L S 6 \rho \omega \\
& M=2.5 \pi_{x}(0.025)^{2} m^{2} \times 0.050 m_{x}(2.64) 1000 \frac{\mathrm{~kg}}{m^{3}}=0.648 \mathrm{~kg} \\
& C=\left(\frac{1}{2} \times 0.648 \mathrm{~kg}+0.010 \mathrm{~kg}\right)(0.025)^{2} \mathrm{~m}^{2}=2.09 \times 10^{-4} \mathrm{~kg} \mathrm{~m}^{2}
\end{aligned}
$$

Thus

$$
t_{95}=3 \times 2.09 \times 10^{-4} \mathrm{~kg} 1 \mathrm{~m}^{2} \times \frac{1}{9.33 \times 10^{-4} \mathrm{~N} \cdot \mathrm{~m} \cdot \mathrm{~s}} \times \frac{\mathrm{N}^{2} \mathrm{~s}^{2}}{\mathrm{~kg} \cdot \mathrm{~m}}=0.671 \mathrm{~s}
$$

$\left\{\begin{array}{l}\text { The terminal speed could have been computed from Eq. } 4 \text { by } \\ \text { setting } d w / d t \rightarrow 0 \text {, without solving the differential equation. }\end{array}\right\}$

Given: Coupling, fabricated of concentric cylinders as shown, must transmit power $B=5 \mathrm{w}$. Minium clearance gap, $\delta=0.5 \mathrm{~mm}$ is to be filled with flue of Viscosity u. Other dimensions and properties are as indicated
Find: viscosity of fluid.
Solution:
Basic equations: $Y_{r e}=\mu \frac{d u}{d r}$

- shear fore, $F=Y A$

. torque, $T=F R$
- power, $Q=T \omega$

Assurnptions:
(1) Newtonian fluid
(2) linear velocity profile in the gap.

Model flow in the gap.

$$
\begin{aligned}
& r_{r \theta}=\mu \frac{d u}{d r}=\mu \frac{\Delta V}{\Delta r} \\
&=\mu \frac{\left[\omega_{1} R-\omega_{2}(R+\delta)\right]}{\delta} \\
& \tau_{r e} z \mu \frac{\left(\omega_{1}-\omega_{2}\right) R}{\delta} \quad\{\delta \ll R\}
\end{aligned}
$$

For the output

$$
\begin{aligned}
& B=T \omega_{2}=\omega_{2} F R=\omega_{2}-T A_{2} R=\omega_{2} \frac{\mu\left(\omega_{1}-\omega_{2}\right) R}{\delta} \times 2 \pi R L \times R \\
& B=\frac{2 \pi \mu \omega_{2}\left(\omega_{1}-\omega_{2}\right) R^{3} h}{\delta}
\end{aligned}
$$

Solving for the viscosity,

$$
\mu=0.202 \mathrm{~N} .5 / \mathrm{m}^{2}
$$

$\left\{\right.$ This viscosity corresponds to SAE 30 oil at $30^{\circ} \mathrm{C}$ \}

$$
\begin{aligned}
& \mu=\frac{Q \delta}{2 \pi \omega_{2}\left(\omega_{1}-\omega_{2}\right) R^{3}} \\
& =\frac{505 \times 5 \times 10^{-4} m}{2 k} \times \frac{2000505}{2 \pi} \times 1000 \frac{206}{5 e 5} \times \frac{1}{(0.01)^{3}} n^{3} \times \frac{1}{0.02 m} \\
& \times \frac{N \cdot n}{\sin } \times(2 \pi)^{2} \frac{\operatorname{ses}^{2}}{\operatorname{rad}^{2}} \times \frac{3600 S^{2}}{\operatorname{Hi} \pi^{2}}
\end{aligned}
$$

Problem 2.48
Given: Paralle1-disk apparatus as shown.
Find: (a) Algebraic expression for shear stress at any radial location.
(b) Expression for the
torque needed to turn the upper disk.
Solution: Use riv,z coordinates at right: Basic equations:

$$
\begin{aligned}
& \tau_{z \theta}=\mu \frac{d v_{\theta}}{d z} \\
& d T=r d F=r \tau_{z \theta} d A
\end{aligned}
$$

Assumptions: (1) Newtonian fluid
(2) No-slip condition
(3) Linear velocity profile (is narrow gap)

The velocity at any radial location on the rotating disk is $V_{*}=\omega r$. Since the velocity profile is linear, then

$$
\tau_{z \theta}=\mu \frac{d v_{\theta}}{d z}=\mu \frac{\Delta v}{\Delta z}=\mu \frac{(\omega r-0)}{(h-0)}=\frac{\mu \omega r}{h}
$$

and

$$
d T=r \tau_{z \theta} d A=r \mu \frac{\omega r}{h} 2 \pi r d r=\frac{2 \pi \mu \omega r^{3}}{h} d r
$$

Integrating

$$
\begin{aligned}
& \left.T=\int_{A} d T=\int_{0}^{R} \frac{2 \pi \mu \omega r^{3}}{h} d r=\frac{\pi \mu \omega r^{4}}{2 h}\right]_{0}^{R} \\
& T=\frac{\pi \mu \omega R^{4}}{2 h}
\end{aligned}
$$

The device could not be used to measure the viscosity of a non-Neutonian flied because the applied shear stress is not uniform. It varies from zero at the center of the disks to $\mu \omega R / h$ at the edge

Given: Cone and plate viscometer shown Apex of cone just touches the plate, θ is very small.
Find: (a) Derive an expression for the shear rate in the liquid that fills the gap
(b) Evaluate the torque on the driven
 cone in terms of the shear stress and geometry of the system.
Solution:
Since the angle θ is very small, the average gap width is also very small.

It is reasonable to assume a linear velocity profile across the gap and to neglect end effects.
The shear (deformation) rate is given by

$$
\dot{\gamma}=\frac{d u}{d y}=\frac{\Delta u}{\Delta y}
$$

At any radius, r,
the velocity $U=w r$ and
the gap wide $h=r \tan \theta$

$$
\therefore \dot{\gamma}=\frac{w r}{r \tan \theta}=\frac{w}{\tan \theta}
$$

Since θ is very small, $\tan \theta=\theta$ and

$$
\dot{\gamma}=\frac{\omega}{\theta}
$$

Note: The shear rate is vidependent of r. The entire sample is subjected to the same shear rate.

The torque on the driven cone is gwen by

$$
T=\int r d F \text { where } d F=T_{y r} d F
$$

Since $\dot{\gamma}$ is a constant (for a given w) then $T_{y_{4}}=$ constant and

$$
\begin{gathered}
T=\int r d F=\int_{A} r r_{y x} d t=r_{y x} \int_{0}^{e} r 2 \pi r d r \\
T=\frac{2 \pi}{3} R^{3} T_{y-2}
\end{gathered}
$$

Problem 2.50

The viscometer of Problem 2.49 is used to measure the apparent viscosity of a fluid. The data below are obtained. What kind of non-Newtonian fluid is this? Find the values of k and n used in Eqs. 2.11 and 2.12 in defining the apparent viscosity of a fluid. (Assume θ is 0.5 degrees.) Predict the viscosity at 90 and 100 rpm .

Speed (rpm)	10	20	30	40	50	60	70	80
$\mu\left(\mathrm{~N} \cdot \mathrm{~s} / \mathrm{m}^{2}\right)$	0.121	0.139	0.153	0.159	0.172	0.172	0.183	0.185

Given: Data from viscometer

Find: The values of coefficients k and n; determine the kind of non-Newtonial fluid it is; estimate viscosity at 90 and 100 rpm

Solution

The velocity gradient at any radius r is $\quad \frac{\mathrm{du}}{\mathrm{dy}}=\frac{\mathrm{r} \cdot \omega}{\mathrm{r} \cdot \tan (\theta)}$
where $\omega(\mathrm{rad} / \mathrm{s})$ is the angular velocity $\quad \omega=\frac{2 \cdot \pi \cdot \mathrm{~N}}{60} \quad$ where N is the speed in rpm

For small $\theta, \tan (\theta)$ can be replace with $\theta, \stackrel{\mathrm{du}}{\mathrm{dy}}=\frac{\omega}{\theta}$

From Eq 2.11.

$$
k \cdot\left(\left|\frac{d u}{d y}\right|\right)^{n-1} \frac{d u}{d y}=\eta \cdot \frac{d u}{d y}
$$

where η is the apparent viscosity. Hence $\eta=k \cdot\left(\frac{d u}{d y}\right)^{n-1}=k \cdot\left(\frac{\omega}{\theta}\right)^{n-1}$

The data in the table conform to this equation. The corresponding Excel workbook shows how Excel's Trendline analysis is used to fit the data.

From Excel

$$
\begin{array}{ll}
\mathrm{k}=0.0449 & \mathrm{n}=1.21 \\
\eta(90 \cdot \mathrm{rpm})=0.191 \cdot \frac{\mathrm{~N} \cdot \mathrm{~s}}{\mathrm{~m}^{2}} & \eta(100 \cdot \mathrm{rpm})=0.195 \cdot \frac{\mathrm{~N} \cdot \mathrm{~s}}{\mathrm{~m}^{2}}
\end{array}
$$

For $n>1$ the fluid is dilatant

Problem 2.50 (In Excel)

The viscometer of Problem 2.49 is used to measure the apparent viscosity of a fluid. The data below are obtained. What kind of non-Newtonian fluid is this? Find the values of k and n used in Eqs. 2.11 and 2.12 in defining the apparent viscosity of a fluid. (Assume θ is 0.5 degrees.) Predict the viscosity at 90 and 100 rpm .

Speed (rpm)	10	20	30	40	50	60	70	80
$\mu\left(\mathrm{~N} \cdot \mathrm{~s} / \mathrm{m}^{2}\right)$	0.121	0.139	0.153	0.159	0.172	0.172	0.183	0.185

Solution

The data is

$\mathbf{N}(\mathbf{r p m})$	$\mu\left(\mathbf{N} . \mathbf{s} / \mathbf{m}^{\mathbf{2}}\right)$
10	0.121
20	0.139
30	0.153
40	0.159
50	0.172
60	0.172
70	0.183
80	0.185

The computed data is

$\omega(\mathbf{r a d} / \mathbf{s})$	$\omega / \boldsymbol{\theta}(\mathbf{1} \mathbf{s})$	$\eta\left(\mathbf{N} . \mathbf{s} / \mathbf{m}^{\mathbf{2}} \mathbf{x 1 0} \mathbf{3}\right)$
1.047	120	121
2.094	240	139
3.142	360	153
4.189	480	159
5.236	600	172
6.283	720	172
7.330	840	183
8.378	960	185

From the Trendline analysis

$$
\begin{aligned}
k & =0.0449 \\
n-1 & =0.2068
\end{aligned}
$$

$$
n=1.21 \quad \text { The fluid is dilatant }
$$

The apparent viscosities at 90 and 100 rpm can now be computed

$\mathbf{N}(\mathbf{r p m})$	$\omega(\mathbf{r a d} / \mathbf{s})$	$\omega / \boldsymbol{\theta}(\mathbf{1} / \mathbf{s})$	$\eta\left(\mathbf{N} . \mathbf{s} / \mathbf{m}^{\mathbf{2}} \mathbf{x 1 0} \mathbf{}^{\mathbf{3}}\right)$
90	9.42	1080	191
100	10.47	1200	195

Given: Viscous clutch made from pair of closely spaced disks.
Input speed, ω_{i}
output speed, ω_{0}
Viscous oil in gap, μ

Find algebraic expressions in terms of μ, R, a, ω_{i}, and ω_{0} for:
(a) Torque transmitted, T
(b) Power transmitted
(c) Slip ratio, $s=\Delta \omega / \omega_{i}$, in terms of T
(d) Efficiency, η, in terms of Δ, ω_{i}, and T

Solution: Apply Newton's law of viscosity
Basicequations: $\tau=\mu \frac{d u}{d y} \quad d F=\tau d A \quad d T=r d F$
Assumptions: (1) Newtonian liquid
(2) Narrow gap so velocity profile is linear

Consider a segment of plates:

$$
\begin{aligned}
& \tau=\mu \frac{d u}{d y}=\mu \frac{\Delta u}{\Delta y}=\mu \frac{r\left(\omega_{i}-\omega_{0}\right)}{a} \\
& d A=r d r d \theta
\end{aligned}
$$

End View

Botforn view

$$
d F=\tau d A=\frac{\mu r \Delta \omega}{a} r d r d v=\frac{\mu \Delta \omega}{a} r^{2} d r d \theta ; d T ; r d F=\frac{\mu \Delta \omega}{a} r^{3} d r \alpha \theta
$$

Integrating

$$
\begin{aligned}
& T=\int_{0}^{2 \pi} \int_{0}^{R} d T=\frac{\mu \Delta \omega}{a} \int_{0}^{2 \pi} \int_{0}^{R} r^{3} d r d o=\frac{2 \pi \mu \Delta \omega}{a} \int_{0}^{R} r^{3} d r=\frac{\pi \mu \Delta \omega R^{4}}{2 a} \\
& P_{0}=T \omega_{0}=\frac{\pi \mu \omega_{0} \Delta \omega R^{4}}{2 a} \text { (powertransmitfed) } \\
& A=\frac{\Delta \omega}{\omega_{i}}=\frac{2 a T}{\pi \mu R^{4} \omega_{i}} \\
& \text { Efficiency is } \eta=\frac{\text { Power out }}{P_{0 \omega}}=\frac{T \omega_{0}}{T \omega_{i}}=\frac{\omega_{0}}{\omega_{i}} \cdot \text { But } \omega_{0}=\omega_{i}-\Delta \omega, \text { so } \\
& \eta=\frac{\omega_{i}-\Delta \omega}{\omega_{i}}=1-\frac{\Delta \omega}{\omega_{i}}=1-\infty
\end{aligned}
$$

Given: Concentric-culirider viscometer shown When inner Cylinder rotates at angular speed viscous retarding torque arises around circumference of miner cylinder and or cylinder
bolton.

Find: (a) expression for viscous torque due to gap of width, a
bo expression for viscous torque on bolo due to gap of wide b
(c) For Tbotom $/ T_{\text {annulus }} \leq 0.01$, plot bla us geometric variables.
(d) What are design implications?
(e) What design modifications can you recommend? due
Sdution: Basic equation $\quad-y$ r $=\mu$ dy
Assumptions: i) linear velocity profile (i) Newtonian lipid (a) in annular gap

$$
\frac{1}{a}
$$

$$
\begin{aligned}
& T=\mu \frac{d u}{d r}=\mu \frac{\Delta u}{\Delta r}=\mu \frac{V}{a}=\mu \frac{\omega R}{a} \\
& T_{\text {orque }}=R F_{f}=R T A=R \mu \frac{\omega R}{a}(2 \pi R H)=\frac{2 r \mu \omega R^{3} H}{a}
\end{aligned}
$$

$$
\begin{aligned}
& \text { (b) in cotton gap } \\
& -\longrightarrow G=r \omega \\
& r=\mu \frac{d u}{d z}=\mu \frac{\Delta u}{\Delta z}=\mu \frac{U}{a}=\mu \frac{\omega r}{b} \\
& \text { (varies wit } \lambda \text {) } \\
& T_{\text {torque }}=\left(d T=\int r d F=\int r T d A=\int_{0}^{R} r \mu \frac{\omega r}{b} 2 \pi r d r\right. \\
& \text { Torque }=\frac{2 \pi \mu \omega}{b} \int_{0}^{k} r^{3} d r=2 \pi \frac{\mu \omega}{b}\left[r^{4}\right]_{0}^{k}=\frac{\pi \mu \omega}{2 b} R^{4}
\end{aligned}
$$

(c) For Tbotom $1 T_{\text {annulus }} \leq \frac{1}{100}$, then.

$$
\begin{aligned}
& \frac{T_{b o t}}{T_{a n}}=\frac{\pi \mu \omega}{2 b} R^{4} \times \frac{a}{2 \pi \mu \omega R^{3} H} \leq \frac{1}{100} \text {. }{ }^{2} 0-\frac{1}{\text { operating }} \\
& \frac{a R}{4 b H} \leq \frac{1}{100} \\
& \text { or } \quad \frac{b}{a} \geq 25 \frac{R}{H} \\
& \text { (d) The plot shows the operating range } \\
& \text { specific design would depart on other } \\
& \text { constraints? } \\
& \text { For } a=1 \mathrm{~mm} \text { with } R /_{H}=/ l_{2} \text { gives } b=12.5 \mathrm{~mm}
\end{aligned}
$$

(e) For a gwen value of RIt, the deriension bs could be effectivity increased by "Hollowing out" the inner cylindersas shown by the darted lines in the agram above.

Given: Concentric - cylinder viscometer, liquid similar to water. Goal is to obtain ± 1 percent accuracy in viscosity value.
specify: Configuration and dimensions to achieve $\pm 1 \%$ measurement. Parameter to be measured to compute viscosity.

Solution: Apply definition of Newtonian fluid Computing equation: $\tau=\mu \frac{d u}{d y}$

Assumptions: (1) steady
(2) Newtonian liquid
(3) Narrow gap, so "unroll" it
(4) Linear velocity profile in gap

(5) Neglect end effects

$$
u=v \frac{y}{a}=\omega R \frac{y}{a} ; \frac{d u}{d y}=\frac{\omega R}{a}
$$

Thus $\tau=\mu \frac{d u}{d y}=\mu \frac{\omega R}{Q}$ and torque on rotor is $T=R \tau A$, where $A=2 \pi R H$ Consequently $T=R \mu \frac{\omega R}{a} 2 \pi R H=\frac{2 \pi \mu \omega R^{3} H}{a}$, or

$$
\mu=\frac{T a}{2 \pi \omega R^{3} H}
$$

From this equation the uncertainty in μ is (See Appendix F),

$$
u_{\mu}= \pm\left[u_{T}^{2}+u_{a}^{2}+u_{\omega}^{2}+\left(3 u_{R}\right)^{2}+u_{H}^{2}\right]^{\frac{1}{2}}= \pm\left[13 u^{2}\right]^{\frac{1}{2}}= \pm 3.61 u
$$

if the uncertainty of each parameter equals u. Thus

$$
u= \pm \frac{u_{\mu}}{3.61}= \pm \frac{1 \text { percent }}{3.61}= \pm 0.277 \text { percent }
$$

Typical dimensions for a bench-top unit right be

$$
H=200 \mathrm{~mm}, R=75 \mathrm{~mm}, a=0.02 \mathrm{~mm}, \text { and } \omega=10.5 \mathrm{rad} / \mathrm{s}(100 \mathrm{rpm})
$$

From Appendix A, Table A.8, water has $\mu=1.00 \times 10^{-3} \mathrm{~N} \cdot \mathrm{~s} / \mathrm{m}^{2}$ at $T=20^{\circ} \mathrm{C}$. The corresponding torque would be

$$
T=2 \pi_{\times} 1.00 \times 10^{-3} \frac{\mathrm{~N} \cdot \mathrm{~s}}{\mathrm{~m}^{2}} \times \frac{10.5}{\mathrm{~s}} \times(0.075)^{3} \mathrm{~m}^{3} \times 0.2 \mathrm{~m}_{\times} \frac{1}{0.00002 \mathrm{~m}}=0.278 \mathrm{~N} \cdot \mathrm{~m}
$$

It should be possible to measure this torque quite accurately.
$\left\{\begin{array}{l}\text { Many details would need to be considered le.g. bearings, temperature rise, } \\ \text { etc.) to produce a workable device. }\end{array}\right\}$

Given: Conical pointed shaft turning in conical bearing. Lubricant is heavy oil with viscosity of SAE 30 at $30^{\circ} \mathrm{C}$.

Find: (a) Algebraic expression for shear stress at height, 3 .
(b) Torque that acts on shaft.

Solution: Basic equations:

$$
\begin{aligned}
& \tau=\mu \frac{d u}{d y} \\
& d T=r \tau d A
\end{aligned}
$$

Assumptions: (1) Newtonian fluid
(2) No-slip condition

Along the conical surface, $\tan \theta=\frac{r}{z}$, so $r=z \tan \theta$
Then $\tau=\mu \frac{d u}{d y}=\mu \frac{\Delta u}{\Delta y}=\mu \frac{(\omega r-\Delta)}{(a-\Delta)}=\frac{\mu \omega z \tan v}{a}$
Consider the cross-hatched element of area: $d z=d s \cos \theta$

$$
d A=2 \pi r d \Delta=2 \pi r \frac{d z}{\cos \theta}
$$

The viscous torque on the element of area is:

$$
\begin{aligned}
& d T=r \tau d A=r \frac{\mu \omega z \tan \theta}{a} 2 \pi r \frac{d z}{\cos \theta} ; r=z \tan \theta \\
& d T=\frac{2 \pi \mu \omega z^{3} \tan ^{3} \theta}{a \cos \theta} d z
\end{aligned}
$$

Integrating

$$
\begin{aligned}
T & \left.=\int_{A} d T=\int_{0}^{H} \frac{2 \pi \mu \omega \tan ^{3} \theta}{a \cos \theta} z^{3} d z=\frac{2 \pi \mu \omega \tan ^{3} \theta}{a \cos \theta} \frac{z^{4}}{4}\right]_{0}^{H} \\
T & =\frac{\pi \mu \omega \tan ^{3} \theta H^{4}}{2 a \cos \theta} \quad\left(\mu \approx 0.2 \pi 1 . \mathrm{s} / \mathrm{m}^{2} \text { from Fig. A. } 2\right) \\
& =\frac{\pi}{2} \times 0.2 \frac{\mathrm{~N} \cdot \mathrm{~s}}{\mathrm{~m}^{2}} \times 30 \frac{\mathrm{rev}}{\mathrm{~s}} \times \tan ^{3} 30^{\circ} \times(0.025)^{4} \mathrm{~m}^{4} \times \frac{1}{0.25 \times 10^{-3} m} \times \frac{1}{\cos 30^{0}} \times 2 \pi \frac{\mathrm{rad}}{\mathrm{rev}} \\
T & =0.0206 \mathrm{~N} \cdot \mathrm{~m}
\end{aligned}
$$

Problem 2.55

Given: Spherical thrust bearing shown:

Find: Obtain and plot an algebraic expression for the torque on the spherical member, as a function of α.

Solution: Apply definitions
Computing equations: $\tau=\mu \frac{d u}{d y} \quad T=\int_{A} M \tau d A$
Assumptions: (1) Newtonian fluid, (z) Narrow gap, (3) Laminar flow
From the figure, $r=R \sin \theta \quad u=\omega r=\omega R \sin \theta$

$$
\begin{aligned}
& \tau=\mu \frac{d u}{d y}=\mu\left(\frac{u-\theta}{h}\right)=\mu \frac{u}{h}=\mu \frac{\omega R \sin \theta}{h} \\
& d A=2 \pi r R d \theta=2 \pi R^{2} \sin \theta d \theta
\end{aligned}
$$

Thus

$$
\begin{aligned}
& T=\int_{0}^{\alpha} R \sin \theta\left(\frac{\mu \omega R \sin \theta}{h}\right) 2 \pi R^{2} \sin \theta d \theta=\frac{2 \pi \mu \omega R^{4}}{h} \int_{0}^{\alpha} \sin ^{3} \theta d \theta \\
& T=\frac{2 \pi \mu \omega R^{4}}{h}\left[\frac{\cos ^{3} \theta}{3}-\cos \theta\right]_{0}^{\alpha}=\frac{2 \pi \mu \omega R^{4}}{h}\left[\frac{\cos ^{3} \alpha}{3}-\cos \alpha+\frac{2}{3}\right]
\end{aligned}
$$

To plot, normalize to $\left[T / \frac{2 \pi \mu \omega R^{4}}{h}\right]=\left[\frac{\cos ^{3} \alpha}{3}-\cos \alpha+\frac{2}{3}\right]$

Problem 2.56

Given: Rotating bearing shown:
Narrow gap filled with viscous oil, $\mu=1250 \mathrm{cp}$.

Find: (a) Algebraic expression for shear stress on spherical member.
(b) Find maximum shear stress.
(c) Algebraic expression for viscous
 torque on spherical meriber.
(d) Evaluate torque.

Solution: Apply definitions
Computing equations: $T=\mu \frac{d u}{d y} \quad T=\int_{A} r \tau d A$
Assumptions: (1) Newtonian fluid, (2) Narrow gap, (3) Laminar motion
From the figure, $r=R \sin \theta, u=\omega r=\omega R \sin \theta, \frac{d u}{d y}=\frac{u-\theta}{h}=\frac{u}{h}$

$$
h=a+R(1-\cos \theta) \quad d A=2 \pi r d r=2 \pi R \sin \theta R \cos \theta d \theta
$$

Thus $t=\frac{\mu \omega R \sin \theta}{a+R(1-\cos \theta)}$
From the table below, $\tau_{\max }=67.9 \mathrm{~N} / \mathrm{m}^{2}$ at $\theta=6.5^{\circ}$ (notate R_{0}) Torque is $T=\int_{0}^{\theta} \frac{\mu \omega R^{4} \sin ^{2} \theta \cos \theta}{a+R(1-\cos \theta)} d \theta$
This must be evaluated numerically or graphically. From Appendix G, 1 Poise $=0.1 \mathrm{~kg} / \mathrm{mis}$. Thus $\mu=1.25 \mathrm{~kg} / \mathrm{mis}=1.25 \mathrm{~N} . \mathrm{s} / \mathrm{m}^{2}$

$$
\tau=1.25 \times \frac{1.5}{\mathrm{~m}^{2}} \times 2 \pi \frac{\mathrm{rad}}{5} \times 0.075 \mathrm{~m}_{\times} \sin 6.5 \times \frac{1}{0.0005+0.075(1-\cos 6.50) \mathrm{m}}=67.9 \mathrm{~N} / \mathrm{m}^{2}
$$

Tabulating results of similar calculations give's:

Given: Small gas bubbles form in soda when opened; $D=0.1 \mathrm{~mm}$.
Find: Estimate pressure difference from inside to outside such a bubble.
Solution: consider a free-body diagram of half a bubble: Two forces act:

Pressure: $\quad F_{P}=\Delta p \frac{\pi D^{2}}{4}$
surface tension: $F_{\sigma}=\sigma \pi D$

Summing forces for equilibrium

$$
\Sigma F_{x}=F_{p}-F_{\sigma}=\Delta p \frac{\pi D^{2}}{4}-\sigma \pi D=0
$$

so $\frac{\Delta p D}{4}-\sigma=0$ or $\Delta p=\frac{4 \sigma}{D}$
Assuming soda-gas interface is similar to water-air, then $\sigma=72.8 \mathrm{mN} / \mathrm{m}$, and

$$
\Delta p=4 \times 72.8 \times 10^{-3} \frac{\mathrm{~N}}{\mathrm{~m}} \times \frac{1}{0.1 \times 10^{-3} \mathrm{~m}}=2.91 \times 10^{3} \frac{\mathrm{~N}}{\mathrm{~m}^{2}}=2.91 \mathrm{kPa}
$$

Problem 2.58

You intend to gently place several steel needles on the free surface of the water in a large tank. The needles come in two lengths: Some are 5 cm long, and some are 10 cm long. Needles of each length are available with diameters of $1 \mathrm{~mm}, 2.5 \mathrm{~mm}$, and 5 mm . Make a prediction as to which needles, if any, will float.

Given: Data on size of various needles

Find: Which needles, if any, will float

Solution

For a steel needle of length L, diameter D, density ρ_{s}, to float in water with surface tension σ a contact angle θ, the vertical force due to surface tension must equal or exceed the weight

$$
2 \cdot \mathrm{~L} \cdot \sigma \cdot \cos (\theta) \geq \mathrm{W}=\mathrm{m} \cdot \mathrm{~g}=\frac{\pi \cdot \mathrm{D}^{2}}{4} \cdot \rho_{\mathrm{S}} \cdot \mathrm{~L} \cdot \mathrm{~g}
$$

or

$$
\mathrm{D} \leq \sqrt{\frac{8 \cdot \sigma \cdot \cos (\theta)}{\pi \cdot \rho_{\mathrm{s}} \cdot \mathrm{~g}}}
$$

From Table A. 4

$$
\sigma=72.8 \cdot \frac{\mathrm{mN}}{\mathrm{~m}} \quad \theta=0 \cdot \mathrm{deg} \quad \text { and for water } \quad \rho=999 \cdot \frac{\mathrm{~kg}}{\mathrm{~m}^{3}}
$$

From Table A.1, for steel $\quad \mathrm{SG}=7.83$

Hence

$$
\sqrt{\frac{8 \cdot \sigma \cdot \cos (\theta)}{\pi \cdot \mathrm{SG} \cdot \rho \cdot \mathrm{~g}}}=\sqrt{\frac{8}{\pi \cdot 7.83} \times 72.8 \times 10^{-3} \cdot \frac{\mathrm{~N}}{\mathrm{~m}} \times \frac{\mathrm{m}^{3}}{999 \cdot \mathrm{~kg}} \times \frac{\mathrm{s}^{2}}{9.81 \cdot \mathrm{~m}} \times \frac{\mathrm{kg} \cdot \mathrm{~m}}{\mathrm{~N} \cdot \mathrm{~s}^{2}}}=1.55 \times 10^{-3} \cdot \mathrm{~m}
$$

Hence $D<1.55 \mathrm{~mm}$. Only the 1 mm needles float (needle length is irrelevant)

Open-Ended Problem Statement: Slowly fill a glass with water to the maximum possible level before it overflows. Observe the water level closely. Explain how it can be higher than the rim of the glass.

Discussion: Surface tension can cause the maximum water level in a glass to be higher than the rim of the glass. The same phenomenon causes an isolated drop of water to "bead up" on a smooth surface.
Surface tension between the water/air interface and the glass acts as an invisible membrane that allows trapped water to rise above the level of the rim of the glass. The mechanism can be envisioned as forces that act in the surface of the liquid above the rim of the glass. Thus the water appears to defy gravity by attaining a level higher than the rim of the glass.
To experimentally demonstrate that this phenomenon is the result of surface tension, set the liquid level nearly as far above the glass rim as you can get it, using plain water. Add a drop of liquid detergent (the detergent contains additives that reduce the surface tension of water). Watch as the excess water runs over the side of the glass.

Open-Ended Problem Statement: Plan an experiment to measure the surface tension of a liquid similar to water. If necessary, review the NCFMF video Surface Tension for ideas. Which method would be most suitable for use in an undergraduate laboratory? What experimental precision could be expected?

Discussion: Two basic kinds of experiment are possible for an undergraduate laboratory:
(1) Using a clear small-diameter tube, compare the capillary rise of the unknown liquid with that of a known liquid (compare with water, because it is similar to the unknown liquid).
This method would be simple to set up and should give fairly accurate results. A vertical traversing optical microscope could be used to increase the precision of measuring the liquid height in each tube.
A drawback to this method is that the specific gravity and contact angle of the two liquids must be the same to allow the capillary rises to be compared.
The capillary rise would be largest and therefore easiest to measure accurately in a tube with the smallest practical diameter. Tubes of several diameters could be used if desired.
(2) Dip an object into a pool of test liquid and measure the vertical force required to pull the object from the liquid surface.
The object might be made rectangular (e.g., a sheet of plastic material) or circular (e.g., a metal ring). The net force ${ }^{*}$ needed to pull the same object from each liquid should be proportional to the surface tension of each liquid.
This method would be simple to set up. However, the force magnitudes to be measured would be quite small.
A drawback to this method is that the contact angles of the two liquids must be the same.
The first method is probably best for undergraduate laboratory use. A quantitative estimate of experimental measurement uncertainty is impossible without knowing details of the test setup. It might be reasonable to expect results accurate to within $\pm 10 \%$ of the true surface tension.

- Net force is the total vertical force minus the weight of the object. A buoyancy correction would be necessary if part of the object were submerged in the test liquid.

Given: Water, with bulk modulus assumed constant.
Find: (a) Percent change in density at 100 atm
(b) Plot percent change us, phpatm up to 50,000 psi.
(c) comment on assumption of constant density.

Solution: By definition, $E_{v}=\frac{d p}{d p}$. Assume $E_{v}=$ constant. Then

$$
\frac{d \rho}{\rho}=\frac{d p}{E_{v}}
$$

Integrating, from p_{0} to f gives $\ln \frac{\rho}{\rho_{0}}=\frac{p-p_{0}}{E_{v}}=\frac{\Delta p}{E_{v}}$, so $\frac{\rho}{\rho_{0}}=e^{\Delta p / E_{v}}$
The relative change in density is

$$
\frac{\Delta \rho}{\rho_{0}}=\frac{\rho-\rho_{0}}{\rho_{0}}=\frac{\rho}{\rho_{0}}-1=e^{\Delta p / E_{v}-1}
$$

From Table $A, 2, \epsilon_{2}=2.24 \mathrm{GPa}$ for water at $20^{\circ} \mathrm{C}$.
For $p=100 \mathrm{~atm}(g a g e), \Delta p=100 \mathrm{~atm}$, so

$$
\frac{\Delta \rho}{\rho_{0}}=\exp \left(100 \text { atm } \times \frac{1}{2.24 \times 10^{7} \mathrm{~Pa}} \times 101.325 \times 10^{3} \frac{\rho_{0}}{\operatorname{tr}}\right)-1=0.00453,0 r 0.453 \%
$$

For $\Delta p=50,000$ psi,

$$
\frac{\Delta p}{\rho_{0}}=\exp \left(50,000 p_{s i} \times \frac{1}{2.24 \times 10^{9} \mathrm{~Pa}^{2}} \times \frac{101.325 \times 10^{3} \mathrm{pa}}{14.696 \mathrm{psi}}\right)-1=0.166 \text { or } 16.15 \%
$$

Thus constant density, is not a reasonable assumption for a cutting jet operating at 50,000 psi. Constant density (5% change) would be reasonable up to $\Delta p \approx 16,000$ psi.

Open-Ended Problem Statement: How does an airplane wing develop lift?

It is both a popular expectation and an experimental fact that air flows more rapidly over the curved top surface of the airfoil section than along the relatively flat bottom. In the NCFMF video Flow Visualization, timelines placed in front of the airfoil indicate that fluid flows more rapidly along the top of the section than along the bottom.
In the absence of viscous effects (this is a valid assumption outside the boundary layers on the airfoil) pressure falls when flow speed increases. Thus the pressures on the top surface of the airfoil where flow speed is higher are lower than the pressures on the bottom surface where flow speed does not increase. (Actual pressure profiles measured for a lifting section are shown in the NCFMF video Boundary Layer Control.) The unbalanced pressures on the top and bottom surfaces of the airfoil section create a net force that tends to develop lift on the profile.

Problem 3.1

$$
\mathrm{D}=0.75 \mathrm{~m} . \text { The gas is at an }
$$ absolute pressure of 25 MPa and a temperature of $25^{\circ} \mathrm{C}$. What is the mass in the tank? If the maximum allowable wall stress in the tank is 210 MPa , find the minimum theoretical wall thickness of the tank.

Given: Data on nitrogen tank

Find: Mass of nitrogen; minimum required wall thickness

Solution

Assuming ideal gas behavior: $\quad \mathrm{p} \cdot \mathrm{V}=\mathrm{M} \cdot \mathrm{R} \cdot \mathrm{T}$
where, from Table A.6, for nitrogen $R=297 \cdot \frac{\mathrm{~J}}{\mathrm{~kg} \cdot \mathrm{~K}}$

Then the mass of nitrogen is

$$
\begin{aligned}
& M=\frac{p \cdot V}{R \cdot T}=\frac{p}{R \cdot T} \cdot\left(\frac{\pi \cdot D^{3}}{6}\right) \\
& M=\frac{25 \cdot 10^{6} \cdot \mathrm{~N}}{\mathrm{~m}^{2}} \times \frac{\mathrm{kg} \cdot \mathrm{~K}}{297 \cdot \mathrm{~J}} \times \frac{1}{298 \cdot \mathrm{~K}} \times \frac{\mathrm{J}}{\mathrm{~N} \cdot \mathrm{~m}} \times \frac{\pi \cdot(0.75 \cdot \mathrm{~m})^{3}}{6} \\
& M=62 \mathrm{~kg}
\end{aligned}
$$

To determine wall thickness, consider a free body diagram for one hemisphere:

$$
\Sigma \mathrm{F}=0=\mathrm{p} \cdot \frac{\pi \cdot \mathrm{D}^{2}}{4}-\sigma_{\mathrm{c}} \cdot \pi \cdot \mathrm{D} \cdot \mathrm{t}
$$

where σ_{c} is the circumferential stress in the container

Then

$$
\begin{aligned}
& t=\frac{p \cdot \pi \cdot D^{2}}{4 \cdot \pi \cdot D \cdot \sigma_{c}}=\frac{p \cdot D}{4 \cdot \sigma_{c}} \\
& t=25 \cdot 10^{6} \cdot \frac{\mathrm{~N}}{\mathrm{~m}^{2}} \times \frac{0.75 \cdot \mathrm{~m}}{4} \times \frac{1}{210 \cdot 10^{6}} \cdot \frac{\mathrm{~m}^{2}}{\mathrm{~N}} \\
& \mathrm{t}=0.0223 \mathrm{~m} \quad \mathrm{t}=22.3 \mathrm{~mm}
\end{aligned}
$$

Problem 3.2

Ear "popping" is an unpleasant phenomenon sometimes experienced when a change in pressure occurs, for example in a fast-moving elevator or in an airplane. If you are in a two-seater airplane at 3000 m and a descent of 100 m causes your ears to "pop," what is the pressure change that your ears "pop" at, in millimeters of mercury? If the airplane now rises to 8000 m and again begins descending, how far will the airplane descend before your ears "pop" again? Assume a U.S. Standard Atmosphere.

Given: Data on flight of airplane

Find: Pressure change in mm Hg for ears to "pop"; descent distance from 8000 m to cause ears to "pop."

Solution

Assume the air density is approximately constant constant from 3000 m to 2900 m . From table A. 3

$$
\begin{aligned}
& \rho_{\text {air }}=0.7423 \cdot \rho_{\mathrm{SL}}=0.7423 \times 1.225 \cdot \frac{\mathrm{~kg}}{\mathrm{~m}^{3}} \\
& \rho_{\text {air }}=0.909 \frac{\mathrm{~kg}}{\mathrm{~m}^{3}}
\end{aligned}
$$

We also have from the manometer equation, Eq. 3.7

$$
\Delta \mathrm{p}=-\rho_{\text {air }} \cdot \mathrm{g} \cdot \Delta \mathrm{z} \quad \text { and also } \quad \Delta \mathrm{p}=-\rho_{\mathrm{Hg}} \cdot \mathrm{~g} \cdot \Delta \mathrm{~h}_{\mathrm{Hg}}
$$

Combining

$$
\Delta \mathrm{h}_{\mathrm{Hg}}=\frac{\rho_{\text {air }}}{\rho_{\mathrm{Hg}}} \cdot \Delta \mathrm{z}=\frac{\rho_{\text {air }}}{\mathrm{SG}_{\mathrm{Hg}} \cdot \rho_{\mathrm{H} 2 \mathrm{O}}} \cdot \Delta \mathrm{z} \quad \mathrm{SG}_{\mathrm{Hg}}=13.55 \text { from Table A. } 2
$$

$$
\Delta \mathrm{h}_{\mathrm{Hg}}=\frac{0.909}{13.55 \times 999} \times 100 \cdot \mathrm{~m}
$$

$$
\Delta \mathrm{h}_{\mathrm{Hg}}=6.72 \mathrm{~mm}
$$

For the ear popping descending from 8000 m , again assume the air density is approximately con constant, this time at 8000 m .
From table A. 3

$$
\begin{aligned}
& \rho_{\text {air }}=0.4292 \cdot \rho_{\mathrm{SL}}=0.4292 \times 1.225 \cdot \frac{\mathrm{~kg}}{\mathrm{~m}^{3}} \\
& \rho_{\text {air }}=0.526 \frac{\mathrm{~kg}}{\mathrm{~m}^{3}}
\end{aligned}
$$

We also have from the manometer equation

$$
\rho_{\text {air } 8000} \cdot \mathrm{~g} \cdot \Delta \mathrm{z}_{8000}=\rho_{\text {air3000 }} \cdot \mathrm{g} \cdot \Delta \mathrm{z}_{3000}
$$

where the numerical subscripts refer to conditions at 3000 m and 8000 m . Hence

$$
\begin{aligned}
& \Delta z_{8000}=\frac{\rho_{\text {air } 3000} \cdot g}{\rho_{\text {air } 8000} \cdot g} \cdot \Delta z_{3000}=\frac{\rho_{\text {air } 3000}}{\rho_{\text {air } 8000}} \cdot \Delta z_{3000} \\
& \Delta z_{8000}=\frac{0.909}{0.526} \times 100 \cdot \mathrm{~m} \\
& \Delta z_{8000}=173 \mathrm{~m}
\end{aligned}
$$

Given: Pure water on a standard day
Find: Bailing temperature at (a) 1000 m , and (b) 2000 m . Compare with sea level value

Solution
We can determine the atmospheric pressure at the given altitudes from table R. 3 , Appendix A

Elevation	P	P	$T_{\text {sat }}^{*}$
(m)	P_{0}	$(E P a)$	(C)
0	1.000	101	100
1000	0.887	89.6	96.6
200	0.785	79.3	93.2

* $T_{\text {sat }}$ obtained from plot of $T_{\text {sat us }} P$ given below Data from Steen Tables gives $T_{\text {sat }}$

\{These data show that Teat drops about $3.4^{\circ} \mathrm{C} / 1000 \mathrm{n}$ \}

Given: The tube shown is filled with mercury at $20^{\circ} \mathrm{C}$
Find: the force applied to the piston
Solution:
Basic equations: $\frac{d p}{d y}=-p q$
(i)
(ii)

$$
\vec{F}=-\int-P \overrightarrow{d A}
$$

For $p=$ constant in a static fluid

$$
p=p_{\text {atm }}-p_{0}\left(y-y_{0}\right)
$$

where $p=$ pate at $y=y_{0}$
Ten

$$
P_{1}=p_{a t n}+p g h \quad \text { and } F_{p_{1}}=\text { pght (gage). }
$$

For F bd (i) $\sum F_{y}=0=F_{p_{1}}-W=0$ and $W=F_{p_{1}}=p g h A$
Also $P_{2}=f_{\text {atm }}$ and gt and $F_{2}=p g t t$ (gage).
For fld (ii) $\quad \sum F_{y}=0=F_{P_{2}}-W-F=0$

$$
\begin{aligned}
& \therefore F=F_{P_{2}}-N=p g H A-p g h=p g A(H-h) \\
& F=p_{H 20} s G \frac{\pi)^{2}}{4}(H-h) \text { From Fig.A.I, App.A, } s G=13.54 \\
& F=1000 \frac{\mathrm{gg}}{\mathrm{~m}^{3}} \times 13.54 \times 9.8 \frac{\mathrm{~m}}{\mathrm{~s}^{2}} \times \frac{\pi}{4}(1.6)^{2} \mathrm{in}^{2}(6-1) \mathrm{n} \times(0.0254)^{3} \frac{\mathrm{~m}^{3}}{n^{2}} \times \frac{\mathrm{N.5}}{\mathrm{~kg}} \\
& F=21.9 N
\end{aligned}
$$

Problem 3.4 (In Excel)

When you are on a mountain face and boil water, you notice that the water temperature
is $90^{\circ} \mathrm{C}$. What is your approximate altitude? The next day, you are at a location
where it boils at $85^{\circ} \mathrm{C}$. How high did you climb between the two days? Assume a
U.S. Standard Atmosphere.

Given: Boiling points of water at different elevations
Find: Change in elevation

Solution

From the steam tables, we have the following data for the boiling point (saturation temperature) of water

$\mathrm{T}_{\text {sat }}\left({ }^{\circ} \mathbf{C}\right)$	$\mathbf{p}(\mathbf{k P a})$
90	70.14
85	57.83

The sea level pressure, from Table A.3, is

$$
\mathrm{p}_{\mathrm{SL}}=\quad 101 \quad \mathrm{kPa}
$$

Hence

$\mathbf{T}_{\text {sat }}\left({ }^{\circ} \mathbf{C}\right)$	$\mathbf{p} / \mathbf{p}_{\text {sL }}$
90	0.694
85	0.573

From Table A. 3

$\mathbf{p} / \mathbf{p}_{\text {SL }}$	Altitude (m)
0.7372	2500
0.6920	3000
0.6492	3500
0.6085	4000
0.5700	4500

Then, any one of a number of Excel functions can be used to interpolate (Here we use Excel's Trendline analysis)

$\mathbf{p} / \mathbf{p}_{\mathbf{S L}}$	Altitude (m)
0.694	2985
0.573	4442

Current altitude is approximately 2980 m

The change in altitude is then 1457 m

Alternatively, we can interpolate for each altitude by using a linear regression between adjacant data points

For

$\mathbf{p} / \mathbf{p}_{\text {sL }}$	Altitude (m)
0.7372	2500
0.6920	3000

$\mathbf{p / p}$ sL	Altitude (m)
0.6085	4000
0.5700	4500

Then

0.6940	2978

0.5730	4461

The change in altitude is then 1483 m or approximately 1480 m

Problem 3.5
Given: The tube shown is filled with mercury at $20^{\circ} \mathrm{C}$
Find: the force applied to the piston
Solution:
Basic equations: $\quad \frac{d p}{d y}=-p g$
(i)
(ii)

$$
\vec{F}=-\int P d \vec{A}
$$

For $p=$ constant in a static
fluid

$$
p=p_{\text {atm }}-p_{g}\left(y-y_{0}\right)
$$

where $p=p_{\text {atm }}$ at $y=y_{0}$
Then

$$
P_{1}=f_{\text {atm }}+p g h \quad \text { and } F_{p_{1}}=p g h r \text { (gage). }
$$

For $\operatorname{Fbd}(i) \quad \sum F_{y_{y}}=0=F_{p_{1}}-w=0$ and $w=F_{p_{1}}=p g h A$
Also $P_{2}=P_{\text {atm }}$ and $p H^{\prime}$ and $F_{2}=$ pgtt (gage).
For fld (ii) $\quad \sum F_{y}=0=F_{P_{2}}-W-F=0$

$$
\therefore F=F P_{P_{2}}-W=p g H A-p g h=p g A(H-h)
$$

$$
\begin{aligned}
& F=p_{120} s \epsilon_{i} g \frac{\pi y^{2}}{4}(H-h) \quad \text { From Fig.A.l, App. } A, s G=13.54 \\
& \left.F=1000 \frac{\mathrm{gg}}{\mathrm{~m}^{3}} \times 13.54 \times \frac{9.8 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}}{} \cdot \frac{\pi}{4}(2)^{2} \mathrm{in}^{2}(8-1) \mathrm{in} \times(0.0254)^{3}\right)^{\frac{3}{n^{2}}} \times \frac{\mathrm{N.5}}{} \mathrm{~m}^{2} \\
& F=47.9 \mathrm{~N}
\end{aligned}
$$

Given: Cube of solid oak, If on a side, is submerged by tether as shown.
Find: (a) the force of water on both on surface (b) the tension in the tether.

Solution:
Basic equations: $\quad \frac{d P}{d h}=p g, \vec{F}=-(p \overrightarrow{d H}$

Assumptions (a) static fluid
(b) $S G$ oil $=$ constant,$f_{420}=$ constant

Then $\int_{p_{1}}^{p_{3}} d p=\int_{h_{0}}^{h_{3}} p g d h=\int_{h_{0}}^{h_{1}} s G_{0 i l} p_{H_{2}} g d h+\int_{h_{1}} p_{H_{0}} g d h$

$$
\begin{aligned}
& P_{3}-P_{\text {ain }}=S G_{\text {in }} p_{H_{2} 0} g\left(h_{1}-h_{0}\right)+p_{120} g\left(h_{3}-h_{1}\right) \\
& =0.8 \times 1.94 \frac{\operatorname{lng}}{f t^{3}} \times 32.2 \frac{f t}{s^{2}} \times 5 f t+1.94 \frac{\operatorname{shg}}{f t a_{3}^{3}} \times \frac{32.2 \frac{\mathrm{ft}}{\mathrm{~s}^{2}}}{5} \times 4 \mathrm{ft} \\
& P_{s}-P_{a t h}=500 \frac{\text { shut }}{f E \cdot s^{2}}+\frac{\text { bf. st }}{\text { ft. Slug }}=500 \text { bf } / \mathrm{ft}^{2}
\end{aligned}
$$

Since the pressure over the bottom surface is uniform,
y The force F_{2} on the top of the cube is $F_{2}=P_{2} A$ \uparrow Th Te pressure on the top of the cube is

$$
T^{T} F_{3} \quad p_{2}-P_{a}=S G_{0 i} p_{+20} g\left(h_{1}-h_{0}\right)+p_{H_{2} O} g\left(h_{2}-h_{1}\right)
$$

The weight of the block is $W=p g^{t}=56_{\text {sal }} p_{H_{20}} g^{t}$ where $S G_{\text {coll }}=0.77$ (Table A.I, Appendix H)
Then for the for of the block, $\sum F_{y}=0=F_{3}-F_{2}-W-T$

$$
\begin{align*}
& T=F_{3}-F_{2}-w=\left[p_{\text {dim }}+S G_{0 i l} p_{H_{20}} g\left(h,-h_{0}\right)+p_{H_{2}} g\left(h_{3}-h_{1}\right)\right] A \\
& -\left[P_{\text {btu }}+S G_{0 i l} p_{u_{20}} g\left(h_{1}-h_{0}\right)+p_{u_{20}} g\left(h_{2}-h_{1}\right)\right] H-S G_{\text {can }} p_{x_{2}} g+7 \\
& T=p_{H_{2} \mathrm{O}} g\left(h_{3}-h_{2}\right) A-s G_{\text {cal }} p_{H_{2}} g \sigma \\
& =1.94 \frac{\text { slug }}{f t^{3}} \times 32.2 \frac{f t}{s^{2}} \times 1 f t \times 1 \cdot f^{2}-0.71 \times 1.94 \frac{\operatorname{slng}}{f t^{3}} \times 32.2 \frac{f t}{s^{2}} \times 1 \mathrm{ft}^{3} \\
& T=14.4 \text { slug.ft } \frac{6 f^{2} . s^{2}}{f t . \operatorname{sing}^{2}}=14.4166
\end{align*}
$$

Problem 3.7

A cube with 6 in. sides is suspended in a fluid by a wire. The top of the cube is horizontal and 8 in. below the free surface. If the cube has a mass of 2 slugs and the tension in the wire is $T=50.7 \mathrm{lbf}$, compute the fluid specific gravity, and from this determine the fluid. What are the gage pressures on the upper and lower surfaces?

Given: Properties of a cube suspended by a wire in a fluid

Find: The fluid specific gravity; the gage pressures on the upper and lower surfaces

Solution

Consider a free body diagram of the cube: $\quad \Sigma \mathrm{F}=0=\mathrm{T}+\left(\mathrm{p}_{\mathrm{L}}-\mathrm{p}_{\mathrm{U}}\right) \cdot \mathrm{d}^{2}-\mathrm{M} \cdot \mathrm{g}$
where M and d are the cube mass and size and p_{L} and p_{U} are the pressures on the lower and upps surfaces

For each pressure we can use Eq. $3.7 \quad \mathrm{p}=\mathrm{p}_{0}+\rho \cdot \mathrm{g} \cdot \mathrm{h}$

Hence $\quad p_{L}-p_{U}=\left[p_{0}+\rho \cdot g \cdot(H+d)\right]-\left(p_{0}+\rho \cdot g \cdot H\right)=\rho \cdot g \cdot d=S G \cdot \rho_{H 2 O} \cdot d$
where H is the depth of the upper surface

Hence the force balance gives $S G=\frac{M \cdot g-T}{\rho_{H 2 O} \cdot g \cdot d^{3}}$

$$
\mathrm{SG}=\frac{2 \cdot \operatorname{slug} \times 32.2 \cdot \frac{\mathrm{ft}}{\mathrm{~s}^{2}} \times \frac{\mathrm{lbf} \cdot \mathrm{~s}^{2}}{\mathrm{slug} \cdot \mathrm{ft}}-50.7 \cdot \mathrm{lbf}}{1.94 \cdot \frac{\mathrm{slug}}{\mathrm{ft}^{3}} \times 32.2 \cdot \frac{\mathrm{ft}}{\mathrm{~s}^{2}} \times \frac{\mathrm{lbf} \cdot \mathrm{~s}^{2}}{\mathrm{slug} \cdot \mathrm{ft}} \times(0.5 \cdot \mathrm{ft})^{3}}
$$

$$
\mathrm{SG}=1.75
$$

From Table A.1, the fluid is Meriam blue.

The individual pressures are computed from Eq 3.7

$$
\begin{aligned}
& \mathrm{p}=\mathrm{p}_{0}+\rho \cdot \mathrm{g} \cdot \mathrm{~h} \\
& \text { or } \\
& \mathrm{p}_{\mathrm{g}}=\rho \cdot \mathrm{g} \cdot \mathrm{~h}=\mathrm{SG} \cdot \rho_{\mathrm{H} 2 \mathrm{O}} \cdot \mathrm{~h}
\end{aligned}
$$

For the upper surface $\quad \mathrm{p}_{\mathrm{g}}=1.754 \times 1.94 \cdot \frac{\mathrm{slug}}{\mathrm{ft}^{3}} \times 32.2 \cdot \frac{\mathrm{ft}}{\mathrm{s}^{2}} \times \frac{2}{3} \cdot \mathrm{ft} \times \frac{\mathrm{lbf} \cdot \mathrm{s}^{2}}{\mathrm{slug} \cdot \mathrm{ft}} \times\left(\frac{1 \cdot \mathrm{ft}}{12 \cdot \mathrm{in}}\right)^{2}$

$$
\mathrm{p}_{\mathrm{g}}=0.507 \mathrm{psi}
$$

For the lower surface $\quad \mathrm{p}_{\mathrm{g}}=1.754 \times 1.94 \cdot \frac{\mathrm{slug}}{\mathrm{ft}^{3}} \times 32.2 \cdot \frac{\mathrm{ft}}{\mathrm{s}^{2}} \times\left(\frac{2}{3}+\frac{1}{2}\right) \cdot \mathrm{ft} \times \frac{\mathrm{lbf} \cdot \mathrm{s}^{2}}{\mathrm{slug} \cdot \mathrm{ft}} \times\left(\frac{1 \cdot \mathrm{ft}}{12 \cdot \mathrm{in}}\right)^{2}$

$$
\mathrm{p}_{\mathrm{g}}=0.89 \mathrm{psi}
$$

Note that the SG calculation can also be performed using a buoyancy approach (discussed later in the chapter):

Consider a free body diagram of the cube:

$$
\Sigma \mathrm{F}=0=\mathrm{T}+\mathrm{F}_{\mathrm{B}}-\mathrm{M} \cdot \mathrm{~g}
$$

where M is the cube mass and F_{B} is the buoyancy force $\mathrm{F}_{\mathrm{B}}=\mathrm{SG} \cdot \rho_{\mathrm{H} 2 \mathrm{O}} \cdot \mathrm{L}^{3} \cdot \mathrm{~g}$

Hence

$$
\mathrm{T}+\mathrm{SG} \cdot \rho_{\mathrm{H} 2 \mathrm{O}} \cdot \mathrm{~L}^{3} \cdot \mathrm{~g}-\mathrm{M} \cdot \mathrm{~g}=0
$$

$$
\text { or } \quad \mathrm{SG}=\frac{\mathrm{M} \cdot \mathrm{~g}-\mathrm{T}}{\rho_{\mathrm{H} 2 \mathrm{O}} \cdot \mathrm{~g} \cdot \mathrm{~L}^{3}} \quad \text { as before }
$$

$$
\mathrm{SG}=1.75
$$

Problem 3.8

A hollow metal cube with sides 100 mm floats at the interface between a layer of water and a $1:$ of SAE 10 W oil such that 10% of the cube is exposed to the oil. What is the pressure differenct between the upper and lower horizontal surfaces? What is the average density of the cube?

Given: Properties of a cube floating at an interface

Find: The pressures difference between the upper and lower surfaces; average cube density

Solution

The pressure difference is obtained from two applications of Eq. 3.7

$$
\begin{aligned}
& \mathrm{p}_{\mathrm{U}}=\mathrm{p}_{0}+\rho_{\mathrm{SAE} 10} \cdot \mathrm{~g} \cdot(\mathrm{H}-0.1 \cdot \mathrm{~d}) \\
& \mathrm{p}_{\mathrm{L}}=\mathrm{p}_{0}+\rho_{\mathrm{SAE} 10} \cdot \mathrm{~g} \cdot \mathrm{H}+\rho_{\mathrm{H} 2 \mathrm{O}} \cdot \mathrm{~g} \cdot 0.9 \cdot \mathrm{~d}
\end{aligned}
$$

where p_{U} and p_{L} are the upper and lower pressures, p_{0} is the oil free surface pressure, H is the depth of the interface, and d is the cube size

Hence the pressure difference is

$$
\begin{aligned}
& \Delta p=p_{L}-p_{U}=\rho_{H 2 O} \cdot g \cdot 0.9 \cdot d+\rho_{S A E 10} \cdot g \cdot 0.1 \cdot d \\
& \Delta p=\rho_{H 2 O} \cdot g \cdot d \cdot\left(0.9+\text { SG }_{S A E 10} \cdot 0.1\right)
\end{aligned}
$$

From Table A.2, for SAE 10W oil: $\mathrm{SG}_{\text {SAE10 }}=0.92$

$$
\Delta \mathrm{p}=999 \cdot \frac{\mathrm{~kg}}{\mathrm{~m}^{3}} \times 9.81 \cdot \frac{\mathrm{~m}}{\mathrm{~s}^{2}} \times 0.1 \cdot \mathrm{~m} \times(0.9+0.92 \times 0.1) \times \frac{\mathrm{N} \cdot \mathrm{~s}^{2}}{\mathrm{~kg} \cdot \mathrm{~m}}
$$

$$
\Delta \mathrm{p}=972 \mathrm{~Pa}
$$

For the cube density, set up a free body force balance for the cube

$$
\Sigma \mathrm{F}=0=\Delta \mathrm{p} \cdot \mathrm{~A}-\mathrm{W}
$$

Hence $\quad \mathrm{W}=\Delta \mathrm{p} \cdot \mathrm{A}=\Delta \mathrm{p} \cdot \mathrm{d}^{2}$

$$
\rho_{\text {cube }}=\frac{m}{d^{3}}=\frac{W}{d^{3} \cdot g}=\frac{\Delta p \cdot d^{2}}{d^{3} \cdot g}=\frac{\Delta p}{d \cdot g}
$$

$$
\rho_{\text {cube }}=972 \cdot \frac{\mathrm{~N}}{\mathrm{~m}^{2}} \times \frac{1}{0.1 \cdot \mathrm{~m}} \times \frac{\mathrm{s}^{2}}{9.81 \cdot \mathrm{~m}} \times \frac{\mathrm{kg} \cdot \mathrm{~m}}{\mathrm{~N} \cdot \mathrm{~s}^{2}}
$$

$$
\rho_{\text {cube }}=991 \frac{\mathrm{~kg}}{\mathrm{~m}^{3}}
$$

Problem 3.9

Your pressure gage indicates that the pressure in your cold tires is 0.25 MPa (gage) on a mountain at an elevation of 3500 m . What is the absolute pressure? After you drive down to sea level, your tires have warmed to $25^{\circ} \mathrm{C}$. What pressure does your gage now indicate? Assume a U.S. Standard Atmosphere.

Given: Data on tire at 3500 m and at sea level

Find: Absolute pressure at 3500 m ; pressure at sea level

Solution

At an elevation of 3500 m , from Table A.3:

$$
\begin{aligned}
& \mathrm{p}_{\mathrm{atm}}=0.6492 \cdot \mathrm{p}_{\mathrm{SL}}=0.6492 \times 101 \cdot \mathrm{kPa} \\
& \mathrm{p}_{\mathrm{atm}}=65.6 \mathrm{kPa}
\end{aligned}
$$

Then the absolute pressure is:

$$
\begin{aligned}
& \mathrm{p}_{\mathrm{abs}}=\mathrm{p}_{\mathrm{atm}}+\mathrm{p}_{\text {gage }}=65.6 \cdot \mathrm{kPa}+250 \cdot \mathrm{kPa} \\
& \mathrm{p}_{\mathrm{abs}}=316 \mathrm{kPa}
\end{aligned}
$$

At sea level $\mathrm{p}_{\text {atm }}=101 \cdot \mathrm{kPa}$

Meanwhile, the tire has warmed up, from the ambient temperature at 3500 m , to $25^{\circ} \mathrm{C}$.

At an elevation of 3500 m , from Table A. $3 \quad \mathrm{~T}_{\text {cold }}=265.4 \cdot \mathrm{~K}$

Hence, assuming ideal gas behavior, $p V=m R T$ the absolute pressure of the hot tire is

$$
\begin{aligned}
& \mathrm{p}_{\text {hot }}=\frac{\mathrm{T}_{\text {hot }}}{\mathrm{T}_{\mathrm{cold}}} \cdot \mathrm{p}_{\mathrm{cold}}=\frac{298 \cdot \mathrm{~K}}{265.4 \cdot \mathrm{~K}} \times 316 \cdot \mathrm{kPa} \\
& \mathrm{p}_{\text {hot }}=355 \mathrm{kPa}
\end{aligned}
$$

Then the gage pressure is

$$
\begin{aligned}
& \mathrm{p}_{\text {gage }}=\mathrm{p}_{\text {hot }}-\mathrm{p}_{\text {atm }}=355 \cdot \mathrm{kPa}-101 \cdot \mathrm{kPa} \\
& \mathrm{p}_{\text {gage }}=254 \mathrm{kPa}
\end{aligned}
$$

Given: Air bubble, $D=10 \mathrm{~mm}$, released at depth $h=30 \mathrm{~m}$ below surface of sea'; water 'at $T=30^{\circ} \mathrm{C}$
Find: Estimate of bubble diameter as it reaches the water surface
Solution:
Basie equations: $\quad \frac{d p}{d h}=p g \quad p=p R T \quad \rho=\frac{m}{t}$
Assumptions: (i) $T=$ constant $=30^{\circ} \mathrm{C}$
(2) air behaves as ideal gas
(3) $p_{H_{20}}=$ constant.

$$
h_{1}=30 \mathrm{~m}
$$

$$
h_{2}=0
$$

From ideal gas eq. $P=p R T=\frac{n}{\psi} R T$
Since m_{P} and T are constant, then $p_{1} t_{1}=p_{2} t_{2}$
Also $\int_{e_{1}}^{d_{2}}=\left(p_{h_{1}}^{h_{2}} g d h\right.$

$$
p_{2}-p_{1}=p g\left(h_{2}-h_{1}\right)
$$

$$
p_{1}=p_{2}+\rho g h_{1}=p_{a t m}+p g h_{1}
$$

From Eq.(1) $\nu_{\frac{V_{2}}{}}=-p_{1}=\frac{p_{a_{2}}+p g h_{1}}{p_{\text {atm }}}=1+\frac{\rho g h_{1}}{-p_{\text {atm }}}$
From Table A. 8 (Appendix A) at $T=30^{\circ} \mathrm{C}, p=9.6 \mathrm{~kg} / \mathrm{m}^{3}$ From Table A.2, $S G_{\text {seawater }}=1.025$

$$
\begin{aligned}
& \therefore \frac{y_{2}}{y_{1}}=1+\left(99 b(1.02 .5) \frac{\lg _{3}}{n^{3}} \times 9.81 \frac{n}{5^{2}} \times 30 n \times \frac{N_{1}^{2}}{\operatorname{tg} \cdot n} \times 1.01 \times 10^{\frac{n^{2}}{2}}\right. \\
& \frac{H_{2}}{t_{1}}=3.975
\end{aligned}
$$

Since $t \alpha D^{3},\left(\frac{D_{2}}{D_{1}}\right)^{3}=\frac{t_{2}}{\theta_{1}}$
and $\lambda_{2}=D \cdot\left(\frac{t_{2}}{y_{1}}\right)^{1 / 3}=10 \mathrm{~mm}(3.975)^{1 / 3}=15.8 \mathrm{~mm} \ldots \partial_{2}$

Problem 3.11
Given: Cylindrical cup lowered slowly beneath poolsurface.

Find: Expression for y in terms of h and H. Plot: $y / H \mathrm{vs}$. h / H.
Solution: Apply deal gas and hydrostatic equations.
Basic equations: $p \forall=$ RT $\quad \frac{d p}{d n}=\rho g$
Asscemptions: (1) $T=$ constant
(2) Static liquid
(3) Incompressible liquid

Using (1), $p \forall=p_{a} \frac{\pi D^{2}}{4} H=p \frac{\pi D^{2}}{4}(H-y)$; or $p_{a} H=p(H-y)$
Integrating $\frac{d p}{d h}=f g$ gives $p-p a=\rho g(h-y)$ in container.
Thus

$$
p_{a} H=\left[p_{a}+\rho g(n-y)\right](H-y)=p_{a} H-p_{a} y+\rho g(n-y)(H-y)
$$

Expandirig,

$$
0=\rho g h H-\rho g h y-\rho g y H+\rho g y^{2}-p a y
$$

or

$$
0=h H-\left[(h+H)+\frac{\beta a}{\rho g}\right] y+y^{2}
$$

Using the quadratic equation

$$
y=\frac{h+H+p a / p g-\sqrt{\left[h+H+\frac{p a}{\rho g}\right]^{2}-4 h H}}{2}
$$

(Note $y \leqslant H$, so the marius sign must be used.) In terms of y / H, this becomes

$$
\frac{y}{H}=\frac{\frac{h}{H}+1+\frac{p_{a}}{\rho g} H}{}-\sqrt{\left[\frac{h}{H}+1+\frac{p_{a}}{\rho g}\right]^{2}-4 \frac{h}{H}}
$$

(see plot above.)

Given: Behavior of seawater to be modeled by assuming constant bulk modulus

Find: Te percent deviations in (a) density, and b) pressure, at depth $h=$ lo tm, as compared to values obtained assuming constant density.
Plot: the results over range of $0 \leqslant h \leqslant 10 \mathrm{dm}$
Solution
Basie equation: $\frac{d p}{d h}=p g \quad$ Definition: $E_{v}=\frac{d p}{d p l} p$ ${ }^{\nabla} T_{h}$ Ten, $d \varphi=p g d h=\frac{d \rho}{e} E_{v}$ and $\int_{\rho_{0}}^{p} \frac{d \rho}{\rho^{2}}=\int_{0}^{h} \frac{g d h}{E_{v}}$
We obtain
her

$$
\left.-\frac{1}{p}\right]_{p_{0}}^{p}=-\frac{1}{p}+\frac{1}{p_{0}}=\frac{-p_{0}+p}{p_{0}}=\frac{g h}{E_{v}} \text { or } p-p_{0}=p p_{0} \frac{g h}{E_{0}}
$$

$$
p\left(1-\frac{\rho_{0} g}{E_{v}}\right)=p_{0} \quad \text { and } \quad \frac{f}{\rho_{0}}=\left(\frac{1}{\left(1-\frac{\rho_{0 g h}}{E_{v}}\right)}\right.
$$

Finally, $\frac{\Delta p}{p_{0}}=\frac{f-p_{0}}{p_{0}}=\frac{f_{0}-1}{p_{0}}=\frac{p_{0} g h \mid E_{v}}{\left(1-p_{0} g h E_{v}\right.} \ldots \ldots$ (i)
To determine an expression for the percent deviation in pressure we write $\quad\left(\begin{array}{l}p \\ d p\end{array} E_{v} \int_{0}^{d} \frac{d p}{f}\right.$
Ten $p-p a t n=E_{s h} \ln p^{\prime} p_{0} h$
For $p=$ constant, $\int_{p a t}^{p} d p=p_{0} \int_{0}^{h} d h$ and $p_{p=c} p_{a t m}=p_{p} g h$
Then $\frac{\rho_{-}-p_{p}=c}{f_{p}=c}=\frac{\Delta p_{p}}{p_{p=0}}=\frac{E_{r} \ln p_{p}-p g h}{p_{0} g h}=\frac{E_{v}}{p_{0} g h} \ln f_{0}-1$
From Table Ai for scawater $S G=1.025$, $E_{v}=2.42 G W / M^{2}$. Then

Substituting into eqs (1) and (2)

$$
\begin{aligned}
& \frac{\Delta p}{\rho_{0}}=\frac{4.155 \times 10^{-3} h}{1-4.155 \times 10^{-3} h} \ldots(1 a) \\
& \frac{\Delta p}{-p_{0}}=\frac{240.7}{h} \ln \left[\frac{1}{1-4.155 \times 10^{-3} h}\right]-1 \ldots(2 a) \\
& \text { At } h=10 \mathrm{ln}, \frac{\Delta p}{p_{0}}=0.0434 \text { or } 4.34^{4} 6 \quad \frac{p p}{\rho} h_{h=0 \mathrm{~mm}}
\end{aligned}
$$

Given: Model behavior of seawater by assuming constant bulk
modulus
Find: (a) expression density as a function of depth, h. (b) show that result fray be written as
(c) evaluate the constant b
(d) Use results of (b) to obtain equation for $\rightarrow(h)$
(e) determine percent error in predicted pressure at $h=1000 \mathrm{n}$

Solution: From Table A.2, App. A, SG. $=1.205, E_{0}=2.42$ G.Nhm²
Basic equation: $\frac{d p}{d h}=p q$ Definition: $E_{v}=\frac{d p}{d p} p$

Then, $\quad d p=p g a h=E_{v} \frac{d p}{p}$ and $\frac{d p}{p^{2}}=\frac{g}{E_{v}} a h$
Integrating, $\quad \int_{p_{0}}^{p} \frac{d p_{2}}{p^{2}}=\int_{0}^{h} \frac{g}{E_{v}} d h \quad$ and $\left.-\frac{1}{p}\right]_{p_{0}}^{p}=\frac{g h}{E_{v}}$
hen, $\frac{g h}{E_{v}}=-\frac{1}{p}+\frac{1}{p_{0}}=\frac{-p_{0}+p}{p_{0}}$ or $p-p_{0}=p p_{0} \frac{g h}{E_{v}}$

$$
\begin{align*}
& \therefore p\left(1-\rho_{0} \frac{g h}{E_{v}}\right)=p_{0} \quad \text { and } \frac{f_{0}}{p_{0}}= \tag{h}\\
& F_{0} p_{0}<1, \frac{p_{0}}{\rho_{0}}<1+\frac{p_{0} g}{E_{0}} h
\end{align*}
$$

Thus,

$$
p=p_{0}+\frac{p_{0}^{2} g}{E_{v}} h=p_{0}+b h \quad \text { where } b=\frac{p_{0}^{2} g}{E_{v}}
$$

Since $d^{-p}=p g d h$, then an approhinate expression for $p(h)$ is

$$
\begin{aligned}
& p-p_{a t m}=\int_{p_{a t h}}^{p} d p=\int_{0}^{h}\left(p_{0}+b h\right) g d h=\left(p_{0} h+\frac{b h^{2}}{2}\right) g \\
& -p_{\text {approx }}=P_{a t u}+\left(p_{o h}+\frac{p_{0}^{2} g h^{2}}{E_{v}}\right) g=p_{\text {atm }}+p_{0} h g\left[1+p_{0} g h\right] p_{E_{v}} p_{\text {poor }}
\end{aligned}
$$

The exact solution for $P(h)$ is obtowned by utilizing the exact equation for $p(h)$. Thus.

$$
\begin{aligned}
& -p \text {-path }=\int_{p_{\text {ate }}}^{p} d p=\int_{p_{0}}^{p} E_{v} \frac{d p}{p}=E_{v} \ln \frac{f}{p_{0}} \\
& P=P_{\text {atm }}+E_{r} \ln \left\{1-\frac{P_{0 g h}}{E_{v}}\right\}^{-1} \rightarrow-\cdots \cdots-P_{2}+\cdots \\
& P_{0} \frac{g h}{\sum_{v}}=(1.025) 1000 \frac{\mathrm{~g}_{g}}{n^{3}} \times \frac{9.81 n}{s^{2}} \times 10^{3} n \times 2.42 \times 10^{\frac{n^{2}}{n}} \cdot \frac{A . s^{2}}{\frac{2 g}{g}}=4.16 \times 10^{-3}
\end{aligned}
$$

Substituting numerical values, $p_{\text {approx }}=p_{\text {aim }}+9.851 \mathrm{MPa}$

$$
\text { error }=\frac{P_{\text {avail }}-P_{\text {app }}}{P_{\text {ait }}}=\frac{10.076-9.851}{10.076}=0.0224=2.2 P_{\text {eat }}^{\circ}=P_{\text {aten }}+10.076 \text { Hila } \quad \text { error }
$$

Problem 3.14
Given: Container of mercury with vertical tubes $d_{l}=39.5 \mathrm{~mm}$ and $d_{2}=12.7 \mathrm{~mm}$.

Brass cylinder with $D=37.5 \mathrm{~mm}$ and $H=76.2 \mathrm{~mm}$ is introduced into larger tube, where it floats.

Find: (a) Pressure on bottom of
 cylinder.
(b) New equilibrium level, h, of mercury.

Solution: Analyze free-body diagram of cylinder, apply hydrostatics.
Computing equations: $\sum F_{z}=0 ; \frac{d p}{d z}=-\rho g ; \rho=s G \rho H_{2} O$ Assumptions: (1) static liquid
(2) Incompressible liquid

For the cylinder $\Sigma F_{z}=\beta \frac{\pi D^{2}}{4}-P_{\text {brass }} g \frac{\pi D^{2}}{4} H=0$
Thus $p=\rho_{\text {brass }} g H=5 G_{\text {brass }} \rho_{H 20} g H$

From. Table $A, 1, S G_{\text {brass }}=8.55$ at $20^{\circ} \mathrm{C}$, 30

$$
p=8.55 \times 1000 \frac{\mathrm{~kg}}{\mathrm{~m}^{3}} \times 9.81 \frac{\mathrm{~m}}{\mathrm{~s}^{2}} \times 0.0762 \mathrm{~m} \times \frac{\mathrm{N} \cdot \mathrm{~s}^{2}}{\mathrm{~kg} \cdot \mathrm{~m}}=6.39 \mathrm{kPa} \text { (gage) }
$$

This pressure must be produced by a column of mercury $h+x$ in height. Thus, using Gig from Table A.I,

$$
\begin{equation*}
p=\rho_{H_{g}} g(h+x)=S_{H_{g}} \rho_{H_{2}} g(h+x)=S G_{\text {brass }} \rho_{H_{2 O}} g H \tag{1}
\end{equation*}
$$

Thus $h+x=\frac{S G_{\text {brass }}}{S G H g} H=\frac{8.55}{13.55} \mathrm{H}=0.631 \mathrm{H}$.
But the volume of mercury must remain constant. Therefore

$$
\frac{\pi D^{2}}{4} x=\frac{\pi\left(d_{1}^{2}-D^{2}\right)}{4} h+\frac{\pi d_{2}^{2}}{4} h \quad \text { or } x\left[\left(\frac{d_{1}}{D}\right)^{2}-1+\left(\frac{d_{2}}{D}\right)^{2}\right]=0,224 h
$$

Substituting into Eq.I,

$$
h+x=h+0.224 h=1.224 h=0.631 \mathrm{H} \quad \text { or } \quad h=\frac{0.631}{1.224} \mathrm{H}=0.516 \mathrm{H}
$$

Problem 3.15

A partitioned tank as shown contains water and mercury. What is the gage pressure in the air trapped in the left chamber? What pressure would the air on the left need to be pumped to in order to bring the water and mercury free surfaces level?

Given: Data on partitioned tank

Find: Gage pressure of trapped air; pressure to make water and mercury levels equal

Solution

The pressure difference is obtained from repeated application of Eq. 3.7, or in other words, from 3.8. Starting from the right air chamber

$$
\begin{aligned}
& \mathrm{p}_{\text {gage }}=\mathrm{SG}_{\mathrm{Hg}} \times \rho_{\mathrm{H} 2 \mathrm{O}} \times \mathrm{g} \times(3 \cdot \mathrm{~m}-2.9 \cdot \mathrm{~m})-\rho_{\mathrm{H} 2 \mathrm{O}} \times \mathrm{g} \times 1 \cdot \mathrm{~m} \\
& \mathrm{p}_{\text {gage }}=\rho_{\mathrm{H} 2 \mathrm{O}} \times \mathrm{g} \times\left(\mathrm{SG}_{\mathrm{Hg}} \times 0.1 \cdot \mathrm{~m}-1.0 \cdot \mathrm{~m}\right) \\
& \mathrm{p}_{\text {gage }}=999 \cdot \frac{\mathrm{~kg}}{\mathrm{~m}^{3}} \times 9.81 \cdot \frac{\mathrm{~m}}{\mathrm{~s}^{2}} \times(13.55 \times 0.1 \cdot \mathrm{~m}-1.0 \cdot \mathrm{~m}) \times \frac{\mathrm{N} \cdot \mathrm{~s}^{2}}{\mathrm{~kg} \cdot \mathrm{~m}} \\
& \mathrm{p}_{\text {gage }}=3.48 \mathrm{kPa}
\end{aligned}
$$

If the left air pressure is now increased until the water and mercury levels are now equal, Eq. 3.8 leads to

$$
\begin{aligned}
& \text { page }^{\text {gag }} \mathrm{SG}_{\mathrm{Hg}} \times \rho_{\mathrm{H} 2 \mathrm{O}} \times \mathrm{g} \times 1.0 \cdot \mathrm{~m}-\rho_{\mathrm{H} 2 \mathrm{O}} \times \mathrm{g} \times 1.0 \cdot \mathrm{~m} \\
& \text { pgage }=\rho_{\mathrm{H} 2 \mathrm{O}} \times \mathrm{g} \times\left(\mathrm{SG}_{\mathrm{Hg}} \times 1 \cdot \mathrm{~m}-1.0 \cdot \mathrm{~m}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{p}_{\text {gage }}=999 \cdot \frac{\mathrm{~kg}}{\mathrm{~m}^{3}} \times 9.81 \cdot \frac{\mathrm{~m}}{\mathrm{~s}^{2}} \times(13.55 \times 1 \cdot \mathrm{~m}-1.0 \cdot \mathrm{~m}) \times \frac{\mathrm{N} \cdot \mathrm{~s}^{2}}{\mathrm{~kg} \cdot \mathrm{~m}} \\
& \mathrm{p}_{\text {gage }}=123 \mathrm{kPa}
\end{aligned}
$$

Problem 3.16

In the tank of Problem 3.15, if the opening to atmosphere on the right chamber is first sealed, what pressure would the air on the left now need to be pumped to in order to bring the water and mercury free surfaces level? (Assume the air trapped in the right chamber behaves isothermally.)

Given: Data on partitioned tank

Find: Pressure of trapped air required to bring water and mercury levels equal if right air opening is sealed

Solution

First we need to determine how far each free surface moves.

In the tank of Problem 3.15, the ratio of cross section areas of the partitions is $0.75 / 3.75$ or 1:5. Suppose the water surface (and therefore the mercury on the left) must move down distance x to bring the water and mercury levels equal. Then by mercury volume conservation, the mercury f surface (on the right) moves up $(0.75 / 3.75) x=x / 5$. These two changes in level must cancel the original discrepancy in free surface levels, of $(1 \mathrm{~m}+2.9 \mathrm{~m})-3 \mathrm{~m}=0.9 \mathrm{~m}$. Hence $x+x / 5=0.9 \mathrm{~m}$ or $x=0.75 \mathrm{~m}$. The mercury level thus moves up $x / 5=0.15 \mathrm{~m}$.

Assuming the air (an ideal gas, $p V=R T$
will be

$$
p_{\text {right }}=\frac{\mathrm{V}_{\text {rightold }}}{\text { Vrightnew }} \cdot \mathrm{p}_{\text {atm }}=\frac{\mathrm{A}_{\text {right }} \cdot \mathrm{L}_{\text {rightold }}}{\mathrm{A}_{\text {right }} \cdot \mathrm{L}_{\text {rightnew }}} \cdot \mathrm{p}_{\text {atm }}=\frac{\mathrm{L}_{\text {rightold }}}{\mathrm{L}_{\text {rightnew }}} \cdot \mathrm{p}_{\text {atm }}
$$

where V, A and L
Hence

$$
\mathrm{p}_{\text {right }}=\frac{3}{3-0.15} \times 101 \cdot \mathrm{kPa}
$$

$$
p_{\text {right }}=106 \mathrm{kPa}
$$

When the water and mercury levels are equal application of Eq. 3.8 gives:

$$
\begin{aligned}
& \mathrm{p}_{\text {left }}=\mathrm{p}_{\text {right }}+\mathrm{SG}_{\mathrm{Hg}} \times \rho_{\mathrm{H} 2 \mathrm{O}} \times \mathrm{g} \times 1.0 \cdot \mathrm{~m}-\rho_{\mathrm{H} 2 \mathrm{O}} \times \mathrm{g} \times 1.0 \cdot \mathrm{~m} \\
& \mathrm{p}_{\text {left }}=\mathrm{p}_{\text {right }}+\rho_{\mathrm{H} 2 \mathrm{O}} \times \mathrm{g} \times\left(\mathrm{SG}_{\mathrm{Hg}} \times 1.0 \cdot \mathrm{~m}-1.0 \cdot \mathrm{~m}\right) \\
& \mathrm{p}_{\text {left }}=106 \cdot \mathrm{kPa}+999 \cdot \frac{\mathrm{~kg}}{\mathrm{~m}^{3}} \times 9.81 \cdot \frac{\mathrm{~m}}{\mathrm{~s}^{2}} \times(13.55 \cdot 1.0 \cdot \mathrm{~m}-1.0 \cdot \mathrm{~m}) \times \frac{\mathrm{N} \cdot \mathrm{~s}^{2}}{\mathrm{~kg} \cdot \mathrm{~m}} \\
& \mathrm{p}_{\text {left }}=229 \mathrm{kPa} \\
& \mathrm{p}_{\text {gage }}=\mathrm{p}_{\text {left }}-\mathrm{p}_{\text {atm }} \mathrm{p}_{\text {gage }}=229 \cdot \mathrm{kPa}-101 \cdot \mathrm{kPa} \\
& \mathrm{p}_{\text {gage }}=128 \mathrm{kPa}
\end{aligned}
$$

Given: U-tube manometer, partially filled with water, then $\forall_{\text {oil }}=3.25 \mathrm{~cm}^{3}$ of Meriam red oil is added to the left side.

Find: Equilibrium height, H, when both legs are open to atmosphere.
Solution: Apply basic pressure-height relation.
Basic equation: $\frac{d p}{d h}=+\rho g$
Assumptions: (1) Incompressible liquid
(2) 1 measured down

Integration gives

$$
p_{2}-p_{1}=\rho g\left(h_{2}-h_{1}\right)
$$

Thus

since $p_{A}=p_{C}=p_{\text {atom }}$, then

foil $g L=\rho_{\text {water }}(L-H)$
or

$$
S G_{D i l} L=L-H
$$

Thus

$$
H=L\left(1-S G_{0 i i}\right)
$$

From the volume of oil, $\forall=\frac{\pi D^{2}}{4}<$, so

$$
L=\frac{4 \forall}{\pi D^{2}}=\frac{4}{\pi} \times 3.25 \mathrm{~cm}^{3} \times \frac{1}{(6.35)^{2} \mathrm{~mm}^{2}} \times(10)^{3} \frac{1}{\mathrm{~mm}^{3}}=103 \mathrm{~mm}
$$

Finally, since $S G=0.827$ (Table A. 1 , Appendix A), then

$$
H=103 \mathrm{~mm}(1-0.827)=17.8 \mathrm{~mm}
$$

Gwen: Two -Fluid manometer shown
Find: Pressure difference, $P_{1}-P_{2}$
Solution:
Basic equation: $\frac{d^{\prime} p}{d h}=p g$
Assumptions: (1) static liquid

(2) incompressible
(3) $g=$ constant

Then, $d p=p g d h$ and $\Delta p=p g \Delta h$
Starting at point (1) and progressing to point ($?$ we have

$$
\begin{aligned}
& \quad p_{1}+p_{H_{2 O}} g(d+l)-p_{c} t g l-p_{H_{2 O}} g d=p_{2} \\
& \therefore p_{1}-p_{2}=p_{c t} g l-p_{H_{2 O}} g l=s G_{c t} p_{H_{20}} g l-p_{H_{20}} g l . \\
& -p_{1}-p_{2}=p_{H_{2} O} g l\left(s G_{c t}-1\right)
\end{aligned}
$$

From Table A.2, Appendix A, $S G_{\text {ct }}=1.595$

$$
\begin{aligned}
\therefore P_{1}-p_{2} & =1000 \frac{\mathrm{lg}_{\mathrm{g}} \times 9.81 \frac{1}{\mathrm{~m}^{2}} \times 10.2 \mathrm{~mm} \times \frac{\mathrm{N}}{10^{2} \mathrm{~mm}}(1.595-1) \frac{\mathrm{N.s}^{2}}{\mathrm{~kg} . \mathrm{m}}}{} \\
-p_{1}-p_{2} & =59.5 \mathrm{~N} \mathrm{~lm}^{2}
\end{aligned}
$$

Given: Manometer with two ligu ids as shown. $56_{A}=0.88,5 G_{B}=2.95$.
Find: Deflection, h, when $p_{1}-p_{2}=870 \mathrm{~Pa}$.
Solution: Apply hydrostatics.
Basic equation: $\frac{d p}{d z}=-\rho g \quad S 6=\frac{\rho}{\rho+1+0}(4 C)$
Assumptions: (1) static liquids
(2) Incompressible

Integrating, $p_{A}-p_{B}=-\rho\left(z_{A}-z_{B}\right) g \quad p_{A}$

$$
p_{A}-p_{B}=\rho g\left(z_{B}-z_{A}\right)
$$

or $\Delta p=\rho g \Delta h$
For left leg, $p_{A}=p_{1}+(l+h) \rho_{A} g$
For right leg, $p_{A}=p_{2}+l \rho_{A} g+h \rho_{B} g$
subtracting, $p_{1}-p_{2}+\operatorname{hg}\left(\rho_{A}-\rho_{B}\right)=0$

$$
p_{1}-p_{2}=\operatorname{hg}\left(\rho B-A_{A}\right)
$$

Thees

$$
\begin{aligned}
& \text { Thus } h=\frac{p_{1}-p_{2}}{\left(\rho_{B}-(A) g\right.}=\frac{p_{1}-p_{2}}{\left(S G_{B}-S G_{A}\right) \rho_{1+20} g} \\
& h=870 \frac{\mathrm{~N}}{\mathrm{~m}^{2}} \times \frac{\mathrm{m}^{3}}{(2.95-0.88) 1000 \mathrm{~kg}} \times \frac{s^{2}}{9.81 \mathrm{~m}^{2}} \times \frac{\mathrm{kg} \cdot \mathrm{~m}}{\mathrm{~N} \cdot \mathrm{~s}^{2}}=0.0428 \mathrm{~m} \\
& h=42.8 \mathrm{~mm}
\end{aligned}
$$

Given: Two fluid manometer contains water and Kerosene. With both tubes open to atmosphere, the free surface elevations differ by $H_{0}=20.0 \mathrm{~mm}$
Find: Elevation difference, H, between free-surface of fluids when a gage pressure of $98,0 \mathrm{~Pa}$ is applied to the right tube.
Solution:
Basic equation: $\frac{d p}{d h}=p q ; \Delta p=p g \Delta h$
Assumptions: in static fluid
(2) grainty is the only

When the gage pressure $\Delta p=98$, 0 Pa is applied to the right tube, the water in the right tube is displaced d Sunward a distance, t; the kerosene in the left tube is displaced upward the same distance, l.

Under the applied gage pressure, ΔP, the elevation difference, H, is

$$
t=H_{0}+2 l
$$

Since points $A \cdot D$ are at the same elevation in the same fluid $p_{a}=p_{s}$.

Initially (left deagran), $p_{A}=p_{k} g\left(H_{0}+H_{1}\right), p_{B}=p g H_{1}$ and hence

$$
p+g\left(H_{0}+H_{1}\right)=p g H_{1}
$$

or

$$
\begin{aligned}
H_{1} & =\frac{P_{2} H_{0}}{P-P_{2}}=\frac{S G_{k} H_{0}}{\left(1-S G_{B}\right)} \quad . \quad \text { From table } A .2, S G_{B}=0.82 \\
\therefore H_{1} & =\frac{0.82}{(1-0.82)} 20 \mathrm{~mm}=91.1 \mathrm{~mm} . \ldots-
\end{aligned}
$$

Under the applied pressure Δp (right diagram).

$$
\begin{aligned}
& P_{A}=p g\left(H_{0}+H_{1}\right)+p g l \\
& \therefore \quad s G_{t}\left(H_{0}+H_{l}\right)+l=\frac{\Delta p}{p g}+\left(H_{1}-l\right)
\end{aligned}
$$

Solving for l.

$$
\begin{aligned}
l & =\frac{1}{2}\left[H_{1}+\frac{5 p}{p g}-S G_{k}\left(H_{0}+H_{1}\right)\right] \\
& =\frac{1}{2}[91.1 m m+98 N \\
l & =5 \mathrm{Hm}
\end{aligned}
$$

$$
H=H_{0}+2 l=30 \mathrm{~mm}
$$

Given: Manometer system as shown
SG. Liquid $A=0.75$
$S G$ Liquid $B=1.20$
Find: Gage pressure at point "a"
Solution:
Basic equation: $\frac{d p}{d z}=-\gamma d z$

Assumptions: (1) static fuvid
(2) gravity is only body force
(3) $Z^{4}=$ axis direction vertically
(4) $\partial_{y}=$ constant

$$
d P=-\gamma d z
$$

For $\gamma=$ constant, then $\Delta P=-\gamma \Delta z$, ie $P_{j}-P_{i}=-\gamma\left(z_{j}-z_{i}\right)$

$$
\begin{aligned}
& P_{2}-P_{1}=-\gamma_{3}\left(z_{2}-z_{1}\right) \\
& P_{3}-P_{2}=-\gamma_{3}\left(z_{3}-z_{2}\right) \\
& P_{4}-P_{3}=-\gamma_{A}\left(z_{4}-z_{3}\right) \\
& P_{5}-P_{4}=-\gamma_{H_{20}}\left(z_{5}-z_{4}\right)
\end{aligned}
$$

Summing these equations recognizing that $P_{5}=P_{a}$ and $P_{1}=P_{\text {atm }}$ then

$$
\begin{aligned}
P_{a}-P_{\text {atm }} & =-\gamma_{B}\left(z_{3}-z_{1}\right)-\gamma_{A}\left(z_{4}-z_{3}\right)-\gamma_{H_{20}}\left(z_{5}-z_{4}\right) \\
& =1.20 \times 62.4 \frac{16 f}{f f^{3}} \times 21 i n \times \frac{f t}{12 i n}-0.75,62.4 \frac{16 f}{f t^{3}} \times \frac{10}{12} \mathrm{ft}+62.4 \frac{b f}{f t^{3}} \times \frac{15}{12} \mathrm{ft} \\
P_{\text {agage }} & =170 \frac{16 f}{f t^{2}} \times \frac{\mathrm{ft}^{2}}{144 \mathrm{in}^{2}} \\
P_{\text {gage }} & =1.18 \text { pig }
\end{aligned}
$$

Given: Two-fluid manometer; oil is second fluid.
Find: $5 G$ needed for 10 to 1 amplification.
Solution: Basic equation $\frac{d p}{d z}=-\rho g$
Assumptions: (1) Static liquid
(2) Incompressible

Then $d p=\rho g d h$

$$
p=p_{0}+p g h
$$

For left leg, $p_{a}=p_{a t m}+p_{H_{2}} g h_{A}$

$$
\begin{equation*}
p_{b}=p_{a}-\rho_{H_{2}} g l=p_{a t r o n}+\rho_{H_{2} O} g\left(h_{A}-l\right) \tag{1}
\end{equation*}
$$

For right leg,

$$
\begin{align*}
& p_{a}=p_{a t m}+p_{t_{2} 0} g h_{B} \\
& p_{b}=p_{a}-S_{G_{0 i}} p_{H_{2} O} g l=p_{a t m}+p_{t+2} \circ g\left(h_{B}-S G_{0 i 1} l\right) \tag{2}
\end{align*}
$$

Combining,

$$
p a t m+p_{H 2 O} g\left(n_{A}-l\right)=p_{a} A_{m}+p_{H 2 O} g\left(n_{B}-5 G_{0 i 1} l\right)
$$

or

$$
h_{A}-l=h_{B}-s G_{0 i} i l ; h_{A}-h_{B}=\Delta h=l\left(1-s G_{0 i 1}\right)
$$

Finally

$$
S G_{\text {oil }}=1-\frac{\Delta h}{l}=1-\frac{1}{10}=0.900
$$

Problem 3.23

Consider a tank containing mercury, water, benzene, and air as shown. Find the air pressure (gage). If an opening is made in the top of the tank, find the equilibrium level of the mercury in the manometer.

Given: Data on fluid levels in a tank

Find: Air pressure; new equilibrium level if opening appears

Solution

Using Eq. 3.8, starting from the open side and working in gage pressure

$$
\mathrm{p}_{\mathrm{air}}=\rho_{\mathrm{H} 2 \mathrm{O}} \times \mathrm{g} \times\left[\mathrm{SG}_{\mathrm{Hg}} \times(0.3-0.1) \cdot \mathrm{m}-0.1 \cdot \mathrm{~m}-\mathrm{SG}_{\text {Benzene }} \times 0.1 \cdot \mathrm{~m}\right]
$$

Using data from Table A. 2

$$
\mathrm{p}_{\text {air }}=999 \cdot \frac{\mathrm{~kg}}{\mathrm{~m}^{3}} \times 9.81 \cdot \frac{\mathrm{~m}}{\mathrm{~s}^{2}} \times(13.55 \times 0.2 \cdot \mathrm{~m}-0.1 \cdot \mathrm{~m}-0.879 \times 0.1 \cdot \mathrm{~m}) \times \frac{\mathrm{N} \cdot \mathrm{~s}^{2}}{\mathrm{~kg} \cdot \mathrm{~m}}
$$

$$
\mathrm{p}_{\mathrm{air}}=24.7 \mathrm{kPa}
$$

To compute the new level of mercury in the manometer, assume the change in level from 0.3 n an increase of x. Then, because the volume of mercury is constant, the tank mercury level will fall by distance $(0.025 / 0.25)^{2} x$

$$
\begin{aligned}
\mathrm{SG}_{\mathrm{Hg}} \times \rho_{\mathrm{H} 2 \mathrm{O}} \times \mathrm{g} \times(0.3 \cdot \mathrm{~m}+\mathrm{x})= & \mathrm{SG}_{\mathrm{Hg}} \times \rho_{\mathrm{H} 2 \mathrm{O}} \times \mathrm{g} \times\left[0.1 \cdot \mathrm{~m}-\mathrm{x} \cdot\left(\frac{0.025}{0.25}\right)^{2}\right] \cdot \mathrm{m} \ldots \\
& +\rho_{\mathrm{H} 2 \mathrm{O}} \times \mathrm{g} \times 0.1 \cdot \mathrm{~m}+\mathrm{SG}_{\text {Benzene } \times \rho_{\mathrm{H} 2 \mathrm{O}} \times \mathrm{g} \times 0.1 \cdot \mathrm{~m}}
\end{aligned}
$$

Hence $\quad \mathrm{x}=\frac{[0.1 \cdot \mathrm{~m}+0.879 \times 0.1 \cdot \mathrm{~m}+13.55 \times(0.1-0.3) \cdot \mathrm{m}]}{\left[1+\left(\frac{0.025}{0.25}\right)^{2}\right] \times 13.55}$

$$
x=-0.184 \mathrm{~m} \quad \text { (The negative sign indicates the manometer level actually fell) }
$$

The new manometer height is $\mathrm{h}=0.3 \cdot \mathrm{~m}+\mathrm{x}$

$$
\mathrm{h}=0.116 \mathrm{~m}
$$

Given: Water fou in an inclined pipe as shown. Pressure difference, $P_{A}-P_{B}$ measured with two -f fid manometer $L=5 f, h=6$ in.
Find: Pressure difference, $P_{n}-P_{D}$.
Solution:

Basic equation: $\frac{d p}{d h}=\rho g$. where h is measured posture down Assumptions: (i) static liquid
(a) incompressible
(3) $g=$ constant

Men,

$$
d p=p g \Delta h \text { and } \Delta p=p g \Delta h
$$

Start at p_{A} and progress through manometer to p_{B}

$$
\begin{aligned}
& -P_{A}-p_{g}=p_{t} g h-p_{H_{1}} g h-p_{H_{1}} g h \sin 30^{\circ} \\
& =s C_{c_{2}} p_{x_{2}} g h-p m_{20} g h-p H_{20} g h \sin 30^{\circ} \\
& p_{A}-p_{B}=p_{H_{2} 0} g\left[h\left(s \alpha_{H g}-t\right)-L \sin 30^{\circ}\right]
\end{aligned}
$$

From Table A.2, Sky $=13.55$
Men.

$$
\begin{aligned}
& p_{A}-p_{B}=236 \text { lb } / \mathrm{ft}^{2} \quad(1.64 \text { past) }
\end{aligned}
$$

Given: A U-tube manometer is connected to
the open tank filled with water as shown (manometer fluid is meriamblue)

$$
D_{1}=2.5 \mathrm{~m}, y_{2}=0.7 \mathrm{n}, d=0.2 \mathrm{~m}
$$

Find: The manometer deflection, l.

Solution:
Basic equation $\frac{d p}{d h}=p g$

For $\gamma=$ constant $\Delta P=p g \Delta h$
Then, beginning at the free surface and accounting for the changes in pressure with elevation,

$$
\begin{aligned}
& P_{a t m}+\left(P_{1}-P_{a t m}\right)+\left(P_{2}-P_{i}\right)=P_{2}=P_{a t n} \\
& P_{H_{2}} g\left[\left(V_{1}-\nabla_{2}\right)+d+\frac{l}{2}\right]-P_{n b} g l=0 \\
&\left(D_{1}-\nabla_{2}\right)+d+\frac{l}{2}=\frac{P_{n b}}{\rho_{n+\infty}} l=(S \cdot G)_{n b} l
\end{aligned}
$$

and

$$
\begin{array}{lr}
l=\frac{\left(Q .-P_{2}\right)+d}{\left[(S . G)_{n b}-\frac{1}{2}\right]} \quad(\text { FronTable } 1.1, \text { Appendix A }, \\
l=\frac{(2.5-0.7) m+0.2 \mathrm{~m}}{(1.75-0.5)} & \\
l=1.6 \mathrm{~m}
\end{array}
$$

Given: Reservoir manometer with vertical tubes $D=18 \mathrm{~mm}$ and $d=6 \mathrm{~mm}$ diameter. Gage liquid is Meriam red oil.

Find: (a) Algebraic expression for deflection Lin small thebe when gage pressure Δp is applied to the reservoir.
(b) Evaluate L when Δp is equivalent to $25 \mathrm{~mm} \mathrm{H}_{2} \mathrm{O}$ (gage).

Solution: Use the diagram of Example Problem 3, 2, apply hydrostatics.
Computing equations: $\frac{d p}{d h}=+\rho g ; \Delta p=\rho g \Delta h ; \rho=3 G \rho H_{2} O$
Assumptions: (1) Static liquid
(2) Incompressible liquid

Then $\Delta p=\rho_{\text {oil }} g(x+L)$
From conservation of volume,

$$
\frac{\pi D^{2}}{4} x=\frac{\pi d^{2}}{4} L ; \quad x=\left(\frac{d}{D}\right)^{2} L
$$

so

$$
\Delta p=\rho_{\text {water }} g \Delta h=\rho_{\text {oil }} g\left[\left(\frac{d}{D}\right)^{2} L+L\right]=\rho_{0 i l} g L\left[1+\left(\frac{d}{D}\right)^{2}\right]
$$

solving for L,

$$
L=\frac{\Delta p}{p_{0 i l} g\left[1+(d / D)^{2}\right]}
$$

Substituting $\Delta p=\operatorname{Pwaterg} \Delta h$,

$$
L=\frac{\text { Pwaterg } \Delta h}{\text { sGilPwater } g\left[1+(d / D)^{2}\right]}=\frac{\Delta h}{S G_{0 i I}\left[1+(d / D)^{2}\right]}
$$

Evaluating, with $\leq 6_{0 i 1}=0.827$ (Table A.1),

$$
L=\frac{.25 .0 \mathrm{~mm}}{0.827\left[1+(6 / 18)^{2}\right]}=27.2 \mathrm{~mm}
$$

$\left\{\right.$ Note: $A \equiv \frac{L}{\Delta h_{e}}=\frac{27.2 \mathrm{~mm}}{25.0 \mathrm{~mm}}=1.09$ for this manometer. $\}$

Given: A U-tube manometer is connected to a closed tank filled with water as shown. The manometer fluid is Hg .

$$
D_{1}=2.5 \mathrm{~m}, D_{2}=0.7 \mathrm{~m}, d=0.2 \mathrm{~m}
$$

AL the water surface $P_{0}=0.5$ atm (gage)
Find: The manometer deflection l.

Solution
Basic equation $\quad \frac{d r}{d h}=p g$

$$
\text { For } \gamma=\text { constant } \quad \Delta P=p g \Delta h
$$

Then, beginning at the free surface and accounting
for pressure changes with elevation for pressure changes with elevation,

$$
\begin{aligned}
& P_{0}+\left(P_{1}-P_{0}\right)+\left(P_{2}-P_{1}\right)=P_{2}=P_{\text {atm }} \\
& P_{0}+p_{H_{2}} g\left[\left(D_{1}-P_{2}\right)+d+\frac{l}{2}\right]-p_{H g} g l=P_{d m} \\
& \frac{P_{0}-P_{d n}}{P_{H_{L} O g}}+\left(D_{1}-\nabla_{2}\right)+d+\frac{l}{2}=\frac{\rho_{H_{g} g} l}{P_{H_{2} O g}}=(5, G)_{H_{H}} l
\end{aligned}
$$

and

$$
\begin{aligned}
& l=\frac{\left(P_{0}-P_{d u n}\right) / p_{H_{2}} g g+\left(0 .-D_{2}\right)+d}{(5 . G)_{\text {agr }}-0.5} \\
& =\frac{0.5 a t m \times 1.01 \times 10^{5} \frac{N}{n^{2}} \cdot d n \times 9999^{\frac{m^{3}}{6}} 9 \times \frac{s^{2}}{9.81 m} \times \frac{\lg \cdot m}{N . s^{2}}+(2.5-0.7) m+0.2 m}{13.60-0.5} \\
& l=0.546 \mathrm{~m}
\end{aligned}
$$

Given: Reservoir manometer with dimensions shown Manometer fluid $S G=0.827$

Find: required distance between marks on vertical scale for in of water ΔP

Solution:

Basic equation: $\quad \frac{d P}{d z}=-\gamma$
Assumptions: (i) static fluid
(2) gravity is only body force
(3) Z axis directed vertically

$$
d P=-\gamma d z
$$

For constant $\gamma, \quad D P=P_{1}-P_{2}=-\gamma\left(z_{1}-Z_{2}\right)$
Under applied pressure $\Delta P=\gamma_{0, l}(x+h)$
But conditions of problem require $\Delta P=\gamma_{H_{2} \mathrm{O}} \ell$ where $t=1$ in

$$
\therefore \gamma_{\text {oil }}(x+h)=\gamma_{\mathrm{H}_{2} \mathrm{O}} l
$$

Since the volume of the oil must remain constant

$$
\begin{aligned}
& x A_{\text {res }}=h A_{\text {tube }} \\
& \therefore x=h \frac{A_{\text {tube }}}{A_{\text {res }}}
\end{aligned}
$$

and

$$
\begin{aligned}
& \gamma_{0 i l}\left(h \frac{A_{t}}{A_{r}}+h\right)=\gamma_{H_{20}} l \\
& \therefore \frac{h}{l}=\frac{\gamma_{H_{2 O}}}{\gamma_{011}}\left(\frac{1}{\left.\frac{A_{t}}{A_{r}}+1\right)=\frac{1}{S G_{011}\left[\left(\frac{\nu_{t}}{D_{r}}\right)^{2}+1\right]}} \begin{array}{l}
\frac{h}{l}=\frac{1}{0.827\left[\left(\frac{3}{16} * \frac{8}{5}\right)^{2}+1\right]}=\frac{1}{0.827\left[(0.3)^{2}+1\right]} \\
\frac{h}{l}=1.11
\end{array}, l\right.
\end{aligned}
$$

For $l=1.0$ in as given, then $h=1.11 \mathrm{in}$.

Given: Inclined manometer as shown filled with oil, $S G=0.897$

Find: Angle, θ, such that applied
 pressure of 1 in. $\mathrm{H}_{2} \mathrm{O}$ gage gives $5^{\prime \prime}$ ail deflection Sidon aline. Also determine sensitivity
Solution:
Basic equation: $\frac{d p}{d z}=-\gamma$
Assumptions: (1) static fluid
(3) gravity is only body force
(3) z axis directed vertically
$d P=-\gamma d z$
For constant. $\gamma, \Delta P=P_{1}-P_{2}=-\gamma\left(z_{1}-z_{2}\right)$
Under applied pressure $\Delta P=\gamma_{0 i 1}(L \sin \theta+x)$
where $\Delta P=\operatorname{lin} H_{2} O=\gamma_{H_{2} O} h=62.4 \frac{b_{b} f}{f t^{7}} \times \operatorname{lin} \times \frac{f t}{12 i n}=5.2 \frac{\mathrm{bbf}}{f_{t}^{2}}$.
Since the volume of the oil must remain constant

$$
\begin{aligned}
& x A_{\text {res }}=L A_{\text {tube }} \\
& \therefore x=L \frac{A_{\text {tube }}}{A_{\text {res }}}
\end{aligned}
$$

and.

$$
\Delta P=\gamma_{0 i 1}\left(L \sin \theta+L \frac{A_{t}}{A_{r}}\right)=\gamma_{0 i 1}\left[L \sin \theta+L\left(\frac{d}{D}\right)^{2}\right]
$$

Solving for $\sin \theta$,

$$
\begin{aligned}
\sin \theta & =\frac{\Delta P}{\gamma_{0 i l} L}-\left(\frac{d}{y}\right)^{2} \\
& =5.2 \frac{16 f}{f t^{2}} \times \frac{f t^{3}}{0.897(62.4) / b_{0 f}} \times \frac{1}{5 i n} \times \frac{12 i n}{f t}-\left(\frac{1}{4(3)}\right)^{2} \\
\sin \theta & =0.2161 \\
\theta & =12.5^{\circ}
\end{aligned}
$$

The manometer sensitivity, $s=\frac{L}{\Delta h_{e}}=\frac{5 i n}{\operatorname{lin}}=5$

Given: Inclined manometer as shown

$$
D=a b \mathrm{~mm}, d=8 \mathrm{~mm}
$$

Angle θ is such that liquid defection is five times that of U-tube manometer under sane applied pressure difference

Find: angle, θ and manometer sensitivity
Solution:
Basic equation $\quad \frac{d p}{d g}=-p g$
Then $d p=-p g d z$ and for constant p

$$
\Delta P=P_{1}-P_{2}=-p g\left(z_{1}-z_{2}\right)
$$

For the inclined manometer,

$$
P_{1}-P_{\text {atm }}=p g(L \sin \theta+x)
$$

Since the volume of the oil must remain constant,

$$
\begin{aligned}
& x A_{\text {res }}=L A_{\text {tube }} \\
& x=L \frac{A_{\text {tube }}}{A_{\text {res }}}=L\left(\frac{d}{j}\right)^{2}
\end{aligned}
$$

Run

$$
P_{1}-P_{a t}=p g(L \sin \theta+-h)=p g\left(h \sin \theta+h\left(h\left(\frac{d}{h}\right)^{2}\right)=p g\left(\sin \theta+\left(\frac{d}{9}\right)^{2}\right)\right.
$$

For a IJ-tube manometer

$$
P_{1}-P_{\text {atm }}=-p g\left(z-z_{2}\right)=p g h .
$$

Hence,

$$
\frac{\left(P_{1}-P_{a h}\right)_{\text {ind }}}{\left(P_{1}-P_{a h}\right)_{0}+\text { we }}=\frac{\operatorname{pg}\left[\sin \theta+\left(\frac{d}{g}\right)^{2}\right]}{p g h}
$$

For same applied pressure and $L / h=5$

$$
\begin{aligned}
& 1=5\left[\sin \theta+\left(\frac{d}{\partial}\right)^{2}\right] \\
& \theta=\sin ^{-1}\left[0.2-\left(\frac{d}{7}\right)^{2}\right]=\sin ^{-1}\left[0.2-\left(\frac{8}{96}\right)^{2}\right]=11.1^{\circ}
\end{aligned}
$$

The manometer semitivily

Given: U. tube manometer with tubes of different diameter and two liquids, as shown.
Find: (a) the deflection, for $\Delta P=250 \mathrm{Nlm}^{2}$
b) the sensitivity of the manometer
Plot: the man oncter serisituity as a function of $d_{2} l d$, Solution:

Basic equation: $\frac{d f}{d z}=-p q$
Assumptions: (i) static liquid (ai) incompressible
Integrating the basic equation from reference state at yo to generalostate at a awes

$$
g_{-p} \hat{p}_{0}=-p g(z-z)=p g(z 0-z)
$$

From the left diagram:

$$
\begin{align*}
& f_{A} p_{a t m}=p_{w} g l_{1}=p_{0} g l_{2} \tag{1}\\
& f_{3}-\left(f_{a t}+1 f=f_{w} g l_{3}\right. \\
& f_{E}-p_{a t m}=p_{w} g l_{u}+p_{0} l_{2}
\end{align*}
$$

From the right diagram

Given: Barometer with 6.5 in of water en top of the $T=70^{\circ} \mathrm{F}$ m colum of height 28.35 in .; Temperature
Find: (a) Barometric pressure in psia.
(b) Effect of increase in ambient temperature t to $T_{a}=85^{\circ} \mathrm{F}$ on length of mercury column for same barometric pressure.
Solution:
Basic equation: $\frac{d p}{d h}=p g$
Assumptions: (i) static liquid
(2) incompressible
(3) $y=$ constant

Ton. $d p=p g d h$ and $\Delta p=p g \Delta h$

start at the free surface of the mercury ($p=P_{\text {atm }}$) and progress through the barometer to 5 (vapor pressure of the water!

$$
\begin{aligned}
& -p_{\text {atm }}-\rho_{A g} g h_{1}-p_{H_{20} g h_{2}=-p_{v}} \\
& p_{\text {atom }}=p_{+g g} h_{1}+p_{H_{20}} g h_{2}+p_{v}=p_{A_{20}} s G_{H g} h_{1}+p_{A_{20} g h_{2}+p_{v}} \\
& p_{\text {atom }}=p_{H_{20}} g\left[s G_{\mathrm{Hg}} h_{1}+h_{2}\right]+p_{v}
\end{aligned}
$$

From Table A.2, $S G_{\mathrm{ug}}=13.55$
Evaluating.

$$
\begin{aligned}
P_{\text {atm }}= & 1.23 \frac{\text { slug }}{f t^{3}} \times 32.2 \frac{f t}{s^{2}}\left[13.55 \times 28.35 n+6.5 i n \frac{f t}{12 i n} \times \frac{f^{2}}{14+i n^{2}} \times \frac{16 . s^{2}}{f t i n g}\right. \\
& +0.363 \text { psia } \\
P_{\text {atm }}= & 14.4 \text { psia }
\end{aligned}
$$

At $T=85^{\circ} \mathrm{F}$, the vapor pressure of water is estimated (from Table A.I) to be $\neq 0.60$ psia. For the same barometric pressure the length of the mercury column would be shorter at the nigher ambient temperature.

Given: Sealed tank of croes-section A and height, $L=3.0 \mathrm{~m}$ is filled with water to a depth, $D_{1}=2.5 n$.

Water dravis slowly from the tank until system atcons equilibrium
U-tube manometer is connected to tank as shown.
(manometer fluid is miriam blue, $5.6=1.75$).

$$
D_{1}=2.5 \mathrm{~m}, D_{2}=0.7 \mathrm{~m}, d=0.2 \mathrm{~m}
$$

Find: The manometer deflection, l, under equilibrium conditions
Solution:
Basic equations: $\quad \frac{d P}{d h}=P Q \quad P H=$ MRS
For $\gamma=$ constant $\Delta P=p g \Delta h$
To determine the surface pressure Po under equilibrion conditions treat air above water as an ideal gas

$$
\begin{aligned}
& \frac{P_{0} t_{a}}{P_{0} t_{0}}=\frac{M R T_{a}}{M R T_{0}} \quad \text { Assuming } T_{a}=T_{0} \text {, then } \\
& P_{0}=t_{a} P_{a}=\frac{A\left(L-\lambda_{0}\right)}{A(L-H)} P_{a}=\frac{\left(L-V_{1}\right)}{(L-H)} P_{a}
\end{aligned}
$$

Under equilibrium conditions, $P_{0}+P_{H_{2}} O g H=P_{a}$
Hence, $\frac{\left(L-V_{1}\right)}{(L-H)} P_{a}+P_{H_{2}} g H=P_{a}$ or $\rho_{H_{2}} \circ g H^{2}-H\left(P_{a}+P_{H_{2}} \circ g h\right)+D, P_{a}=10$

$$
\begin{aligned}
& \text { and } \\
& \text { and } \\
& H=\frac{\left(P_{a}+\rho_{H_{2}} g h\right) \pm \sqrt{\left(P_{a}+\rho_{H_{20}} g h\right)^{2}-4 \rho_{H_{2}} g} g_{1} P_{a}}{2 \rho_{H_{\infty}} g}
\end{aligned}
$$

$H=10.9 n$ or 2.36 n . From physical considerations $H=2.36 \mathrm{~m}$

$$
P_{0}=\frac{\left.(1-)_{1}\right)}{(1-H)} P_{a}=\frac{(3.0-2.5)}{(3.0-2.36)} \times 1.01 \times 10^{5} \mathrm{~N} /_{n^{2}}=7.89 \times 10^{4} \mathrm{~N}\left(\mathrm{~m}^{2}\right.
$$

For the manometer, $P_{0}+\left(P_{1}-P_{0}\right)+\left(P_{2}-P_{1}\right)=P_{2}=P_{\text {atm }}$

$$
\begin{aligned}
& P_{0}+P_{N_{20}} g\left(H-P_{2}+d-\frac{l_{2}}{2}\right)+p_{n+} g l=P_{a l n} \\
& \frac{P_{\text {tn }}-P_{0}}{P_{H_{2} O} g}-H+H_{2}-d=(5 . G)_{\text {db }} l-\frac{l}{2}=l\left[(5 . G)_{n b}-0.5\right] \\
& \begin{array}{l}
P H_{2} O g_{\left(P_{d n}-P_{0}\right) / p_{100} g-H+Y_{2}-d}^{(5 . G)_{n b}-0.5}=\frac{(10.1-7.89) \times 15^{4} \frac{N}{n^{2}} \times \frac{n^{3}}{9992 g} \times \frac{5^{2}}{9.81 n} \times \frac{\lg _{n} n}{N .5^{2}}-2.36 n+0.7 n-0.2}{1.75-0.5} \quad l \\
l=0.3 i b n
\end{array}
\end{aligned}
$$

Given: Water column standing at $\Delta h=50 \mathrm{~mm}$ in $D=2.5 \mathrm{~mm}$ glass tube.
Find: (a) column height if surface tension were zero.
(b) Column height in $D=1$ nm tube.

Solution: Assume column height is sum of capillary rise and rise cacesed by, pressure difference,

$$
\Delta h=\Delta h_{c}+\Delta h_{p}
$$

Choose a free-body diagram of Δh_{c} for analysis:

$$
\Sigma F_{z}=\pi D \sigma \cos \theta-\frac{\pi D^{2}}{4} \rho g \Delta h_{c}=0
$$

Assumptions: (1) Neglect volume under meniscus
(2) She remains constant

Then $\Delta h_{c}=\frac{4 \sigma}{\rho g D} \cos \theta$

For water (Table A.4), $\sigma=72.8 \mathrm{mN} / \mathrm{m}$ and $\theta \approx 0,50 \cos \theta=1$, and

$$
\Delta h_{c}=\frac{4 \sigma}{\rho g D}
$$

For the $D=2.5 \mathrm{~mm}$ tube,

$$
\Delta h_{c}=4 \times 72.8 \times 10^{-3} \frac{N}{m} \times \frac{\mathrm{m}^{3}}{999 \mathrm{~kg}} \times \frac{\mathrm{s}^{2}}{9.81 \mathrm{~m}^{2}} \times \frac{1}{0.0025 \mathrm{~m}} \times \frac{\mathrm{kg} \cdot \mathrm{~m}}{1 . \mathrm{s}^{2}}=0.0119 \mathrm{~m} \text { or } 11.9 \mathrm{~mm}
$$

Then

$$
\Delta h_{p}=\Delta h-\Delta h_{c}=(50.0-11, A) \mathrm{mm}=38.1 \mathrm{~mm}(\sigma=0) .
$$

For the $D=1.0 \mathrm{~mm}$ thebe,

$$
\Delta h_{c}=4 \times 72.8 \times 10^{-3} \frac{\mathrm{~N}}{\mathrm{~m}} \times \frac{\mathrm{m}^{3}}{999 \mathrm{~kg}^{2}} \times \frac{\mathrm{s}^{2}}{9.81 \mathrm{~m}^{2}} \times \frac{1}{0.001 \mathrm{~m}^{2}} \times \frac{\mathrm{kg} \cdot \mathrm{~m}}{\mathrm{~N} . \mathrm{s}^{2}}=0.0297 \mathrm{~m} \text { or } 29.7 \mathrm{~mm}
$$

So

$$
\Delta h=\Delta h_{c}+\Delta h_{p}=(29.7+38.1) \mathrm{mm}=67.8 \mathrm{~mm}(D=1.0 \mathrm{~mm}+w b e)
$$

Problem 3.35

Consider a small diameter open-ended tube inserted at the interface between two immiscible fluids of different densities. Derive an expression for the height difference Δh between the interface level inside and outside the tube in terms of tube diameter D, the two fluid densities, 1 and ρ_{2}, and the surface tension σ and angle θ water and mercury, find the tube diameter such that $\Delta h<10 \mathrm{~mm}$.

Given: Two fluids inside and outside a tube

Find: An expression for height Δh; find diameter for $\Delta h<10 \mathrm{~mm}$ for water/mercury

Solution

A free-body vertical force analysis for the section of fluid 1 height
Δh in the tube below the "free surface" of fluid 2 leads to

$$
\sum \mathrm{F}=0=\Delta \mathrm{p} \cdot \frac{\pi \cdot \mathrm{D}^{2}}{4}-\rho_{1} \cdot \mathrm{~g} \cdot \Delta \mathrm{~h} \cdot \frac{\pi \cdot \mathrm{D}^{2}}{4}+\pi \cdot \mathrm{D} \cdot \sigma \cdot \cos (\theta)
$$

where Δp

$$
\Delta h, \Delta \mathrm{p}=\rho_{2} \cdot \mathrm{~g} \cdot \Delta \mathrm{~h}
$$

Assumption: Neglect meniscus curvature for column height and volume calculations

Hence

$$
\Delta \mathrm{p} \cdot \frac{\pi \cdot \mathrm{D}^{2}}{4}-\rho_{1} \cdot \mathrm{~g} \cdot \Delta \mathrm{~h} \cdot \frac{\pi \cdot \mathrm{D}^{2}}{4}=\rho_{2} \cdot \mathrm{~g} \cdot \Delta \mathrm{~h} \cdot \frac{\pi \cdot \mathrm{D}^{2}}{4}-\rho_{1} \cdot \mathrm{~g} \cdot \Delta \mathrm{~h} \cdot \frac{\pi \cdot \mathrm{D}^{2}}{4}=-\pi \cdot \mathrm{D} \cdot \sigma \cdot \cos (\theta)
$$

Solving for Δh

$$
\Delta h=-\frac{4 \cdot \sigma \cdot \cos (\theta)}{g \cdot D \cdot\left(\rho_{2}-\rho_{1}\right)}
$$

For fluids 1 and 2 being water and mercury (for mercury $\sigma=375 \mathrm{mN} / \mathrm{m}$ and $\theta=140^{\circ}$, from Table A.4), solving for D to make $\mathrm{Dh}=10 \mathrm{~mm}$

$$
\begin{aligned}
& D=-\frac{4 \cdot \sigma \cdot \cos (\theta)}{\mathrm{g} \cdot \Delta \mathrm{~h} \cdot\left(\rho_{2}-\rho_{1}\right)}=-\frac{4 \cdot \sigma \cdot \cos (\theta)}{\mathrm{g} \cdot \Delta \mathrm{~h} \cdot \rho_{\mathrm{H} 2 \mathrm{O}} \cdot\left(\mathrm{SG}_{\mathrm{Hg}}-1\right)} \\
& D=\frac{4 \times 0.375 \cdot \frac{\mathrm{~N}}{\mathrm{~m}} \times \cos \left(140^{\circ}\right)}{9.81 \cdot \frac{\mathrm{~m}}{\mathrm{~s}^{2}} \times 0.01 \cdot \mathrm{~m} \times 1000 \cdot \frac{\mathrm{~kg}}{\mathrm{~m}^{3}} \times(13.6-1)} \times \frac{\mathrm{kg} \cdot \mathrm{~m}}{\mathrm{~N} \cdot \mathrm{~s}^{2}} \\
& \begin{array}{l}
D=9.3 \times 10^{-4} \mathrm{~m} \\
\mathrm{D} \geq 9.3 \cdot \mathrm{~mm}
\end{array}
\end{aligned}
$$

Problem 3.36

Compare the height due to capillary action of water exposed to air in a circular tube of diameter $D=0.5 \mathrm{~mm}$, and between two infinite vertical parallel plates of gap $a=0.5 \mathrm{~mm}$.

Given: Water in a tube or between parallel plates

Find: Height Δh; for each system

Solution

a) Tube: A free-body vertical force analysis for the section of water height Δh above the "free surface" in the tube, as shown in the figure, leads to

$$
\sum \mathrm{F}=0=\pi \cdot \mathrm{D} \cdot \sigma \cdot \cos (\theta)-\rho \cdot \mathrm{g} \cdot \Delta \mathrm{~h} \cdot \frac{\pi \cdot \mathrm{D}^{2}}{4}
$$

Assumption: Neglect meniscus curvature for column height and volume calculations

Solving for Δh

$$
\Delta \mathrm{h}=\frac{4 \cdot \sigma \cdot \cos (\theta)}{\rho \cdot \mathrm{g} \cdot \mathrm{D}}
$$

b) Parallel Plates: A free-body vertical force analysis for the section of water height Δh above the "free surface" between plates arbitrary width w (similar to the figure above), leads to

$$
\sum \mathrm{F}=0=2 \cdot \mathrm{w} \cdot \sigma \cdot \cos (\theta)-\rho \cdot \mathrm{g} \cdot \Delta \mathrm{~h} \cdot \mathrm{w} \cdot \mathrm{a}
$$

Solving for $\Delta h \quad \Delta \mathrm{~h}=\frac{2 \cdot \sigma \cdot \cos (\theta)}{\rho \cdot \mathrm{g} \cdot \mathrm{a}}$

For water $\sigma=72.8 \mathrm{mN} / \mathrm{m}$ and $\theta=0^{\circ}$ (Table A.4), so
a) Tube

$$
\Delta \mathrm{h}=\frac{4 \times 0.0728 \cdot \frac{\mathrm{~N}}{\mathrm{~m}}}{999 \cdot \frac{\mathrm{~kg}}{\mathrm{~m}^{3}} \times 9.81 \cdot \frac{\mathrm{~m}}{\mathrm{~s}^{2}} \times 0.005 \cdot \mathrm{~m}} \times \frac{\mathrm{kg} \cdot \mathrm{~m}}{\mathrm{~N} \cdot \mathrm{~s}^{2}}
$$

$$
\Delta \mathrm{h}=5.94 \times 10^{-3} \mathrm{~m} \quad \Delta \mathrm{~h}=5.94 \mathrm{~mm}
$$

b) Parallel Plates

$$
\Delta \mathrm{h}=\frac{2 \times 0.0728 \cdot \frac{\mathrm{~N}}{\mathrm{~m}}}{999 \cdot \frac{\mathrm{~kg}}{\mathrm{~m}^{3}} \times 9.81 \cdot \frac{\mathrm{~m}}{\mathrm{~s}^{2}} \times 0.005 \cdot \mathrm{~m}} \times \frac{\mathrm{kg} \cdot \mathrm{~m}}{\mathrm{~N} \cdot \mathrm{~s}^{2}}
$$

$$
\Delta \mathrm{h}=2.97 \times 10^{-3} \mathrm{~m}
$$

$$
\Delta \mathrm{h}=2.97 \mathrm{~mm}
$$

Open-Ended Problem Statement: A hydropneumatic elevator consists of a piston-cylinder assembly to lift the elevator cab. Hydraulic oil, stored in an accumulator tank pressurized by air, is valved to the piston as needed to lift the elevator. When the elevator descends, oil is returned to the accumulator. Design the least expensive accumulator that can satisfy the system requirements. Assume the lift is 3 floors, the maximum load is 10 passengers, the maximum system pressure is 800 kPa (gage). For column bending strength, the piston diameter must be at least 150 mm . The elevator cab and piston have a combined mass of $3,000 \mathrm{~kg}$, and are to be purchased. Perform the analysis needed to define, as a function of system operating pressure, the piston diameter, the accumulator volume and diameter, and the wall thickness. Discuss safety features that your company should specify for the complete elevator system. Would it be preferable to use a completely pneumatic design or a completely hydraulic design? Why?

Discussion: The design requirements are specified, except that a typical floor height is about 12 ft , making the total required lift about 36 ft.)
A spreadsheet was used to calculate the system properties for various pressures. Results are presented on the next page, followed by a sample calculation.
Total cost dropped quickly as system pressure was increased. A shallow minimum was reached in the $100-110$ psig range.
The lowest-cost solution was obtained at a system pressure of about 100 psig . At this pressure, the reservoir of 140 gal required a 3.30 ft diameter pressure sphere with a 0.250 in . wall thickness. The welding cost was $\$ 311$ and the material cost $\$ 433$, for a total cost of $\$ 744$.
Accumulator wall thickness was constrained at 0.250 in . for pressures below 100 psi ; it increased for higher pressures (this caused the discontinuity in slope of the curve at 100 psig). The mass of steel became constant above 110 psig.
No allowance was made for the extra volume needed to pressurize the accumulator.
Fail-safe design is essential for an elevator to be used by the public. The control circuitry should be redundant. Failures must be easy to spot. For this reason, hydraulic actuation is good: leaks will be readily apparent. The final design must be reviewed, approved, and stamped by a professional engineer since the design involves public safety.
The terminology used in the solution is defined in Table 1.
Table 1. Symbols, definitions, and units

Symbol	Definition	Units
p	system pressure	psig
A_{p}	area of lift piston	$\mathrm{in}^{2}{ }^{2}$
$F_{\text {oil }}$	volume of oil	gal
D_{s}	diameter of (spherical) accumulator	ft
t	wall thickness of spherical accumulator	in.
A_{w}	area of weld	$\mathrm{in.}^{2}$
C_{w}	cost of weld	$\$$
M_{s}	mass of (steel) accumulator	lbm
C_{s}	cost of steel	$\$$
C_{t}	total cost	$\$$

Results of the system simulation and sample calculations are presented on the next page.

Table 2. Results of system simulation

Input Data:
Cab and piston weight:
Passenger weight:
Total weight:

Allowable stress:
Minimum wall thickness:
Welding cost factor:
Steel cost factor:
Results:

Fig. 1 Total cost versus system pressure

Sample Calculation ($p=20$ pig):
$W_{t}=p A_{p} ; A_{p}=\frac{W_{t}}{p}=7500 \mathrm{lbf} \times \frac{\text { in }^{2}}{20 \text { ib f }}=375 \mathrm{in}^{2}$
$\forall_{0 i 1}=A_{p L}=375 \operatorname{in}^{2} \times \frac{1}{36 f^{2}} \times \frac{\mathrm{ft}^{2}}{144 \mathrm{~min}^{2}} \times 7.48 \frac{\mathrm{gal}}{\mathrm{ft}}=701 \mathrm{gal}$
$\forall_{a i l}=\forall_{s}=\frac{4 \pi R^{3}}{3}=\frac{\pi D_{3}^{3}}{6} ; D_{S}=\left(\frac{6 t_{0}}{\pi}\right)^{1 / 3}=\left(\frac{6}{\pi} \times 701901 \times \frac{\mathrm{A}^{3}}{7.489 a 1}\right)^{1 / 3}=5.64 \mathrm{~A}$
From a force balance on the sphere:

Problem 3.37 (In Excel)

Two vertical glass plates $300 \mathrm{~mm} \times 300 \mathrm{~mm}$ are placed in an open tank containing water. At one end the gap between the plates is 0.1 mm , and at the other it is 2 mm .
Plot the curve of water height between the plates from one end of the pair to the other.

Given: Geometry on vertical plates
Find: Curve of water height due to capillary action

Solution

A free-body vertical force analysis (see figure) for the section of water height Δh above the "free surface" between plates arbitrary separated by width a, (per infinitesimal length $d x$ of the plates) leads to

$$
\sum \mathrm{F}=0=2 \cdot \mathrm{dx} \cdot \sigma \cdot \cos (\theta)-\rho \cdot \mathrm{g} \cdot \Delta \mathrm{~h} \cdot \mathrm{dx} \cdot \mathrm{a}
$$

Solving for $\Delta h \quad \Delta \mathrm{~h}=\frac{2 \cdot \sigma \cdot \cos (\theta)}{\rho \cdot \mathrm{g} \cdot \mathrm{a}}$
For water $\sigma=72.8 \mathrm{mN} / \mathrm{m}$ and $\theta=0^{\circ}$ (Table A.4)

$$
\begin{array}{lll}
\sigma= & 72.8 & \mathrm{mN} / \mathrm{m} \\
\rho= & 999 & \mathrm{~kg} / \mathrm{m}^{3}
\end{array}
$$

Using the formula above

$\mathbf{a}(\mathbf{m m})$	$\Delta \boldsymbol{\Delta}$ (mm)
0.1	149
0.2	74.3
0.3	49.5
0.4	37.1
0.5	29.7
0.6	24.8
0.7	21.2
0.8	18.6
0.9	16.5
1.0	14.9
1.1	13.5
1.2	12.4
1.3	11.4
1.4	10.6
1.5	9.90
1.6	9.29
1.7	8.74
1.8	8.25
1.9	7.82
2.0	7.43

Problem 3.38

Given: Door located in plarevertical wall of water tank as shown
$a=1.5 m, b=1 m, c=1 m$.
Atmospheric pressure acts on ate surface of door.

Find: (a) For $\mathrm{P}_{\mathrm{s}}=$ pother, resultant force on
 door and line of action of force (b) Resultant form and line of action if $p_{s}=0.3$ atmlgag)

Plot: $F I F_{0}$ and y'lye over range of palpate. (Fo is react ar) force when $-p_{s}=P_{a t h}$; y_{4} is y coordinate of centroid.
Solution:
Baric equations: $\frac{d p}{d y}=p g ; F_{R}=\left(p d A ; \mathcal{C}_{R} F_{R}=\int_{y} P d A\right.$ Assumptions: (i) static liquid.
(2) incompressible liquid

Note: We will obtain a general expressions for Fond y' (needed for the plot) and then simply for cases (a ls).
Since $d P=p g d y$ then $p=p_{s}+p g y$
Because pate acts on the atiside of the door, then P_{s} is the surface gage pressure.

$$
\begin{align*}
& F_{R}=\left\langle-p d A=\int_{c}^{(c+a)}-p b_{a} d y=\int_{c}^{c+a}\left(p_{s}+p g y\right) b d y=b_{b}\left[p_{s} y+p g g^{2}\right]_{c}^{c+a}\right. \\
& F_{R}=b\left[P_{s} a+p \frac{p}{2}\left\{(c+a)^{2}-c^{2}\right\}\right]=b\left[P_{S} a+\frac{p g}{2}\left(a^{2}+2 a c\right)\right] \tag{1}\\
& y^{\prime} F_{k}=\int y P d A: \text { and } y^{\prime}=\frac{1}{F_{R}} \int_{c}^{c+a}\left(P_{s}+p g y\right) b d y \\
& y^{\prime}=b_{F_{8}}\left[p_{5} \frac{y^{2}}{2}+\lg \frac{y^{3}}{3}\right]_{c}^{c+a} \\
& y^{\prime}=\frac{b}{F_{e}}\left[\frac{p_{s}}{2}\left\{(c+a)^{2}-c^{2}\right\}+\frac{p a}{3}\left\{(c+a)^{3}-c^{3}\right\} \ldots \ldots(2)\right.
\end{align*}
$$

(a) For $p_{s}=0$ (gage) then
from Eq.: $F_{R}=p_{2} \sum_{2}\left(a^{2}+2 a c\right)$.

From Eq. 2

$$
\begin{aligned}
& y^{\prime}=\frac{b}{F_{R_{0}}} \frac{p g}{3}\left[(c+a)^{3}-c^{3}\right]
\end{aligned}
$$

(b) For $P_{s}=0.3$ atm (gage) $R_{a n}$
from Eq. $\quad F_{R}=b\left[e_{s} a+\frac{p}{2}\left(a^{2}+2 a d\right)\right]$

$$
\begin{aligned}
& F_{R}=\operatorname{im}\left[0.3 \operatorname{cotm} \times 1.01 \times 10^{5} N(1.5 m)+\frac{1}{m^{2} . a t m}+\frac{9 a \lg }{n^{2}}+9.8 \frac{1 m}{5^{2}}\left\{(1.5)^{2}+2(1.5)(1)\right)\right\}^{2}+\frac{N .5^{2}}{8 g . m} \\
& F_{R}=71.2 \mathrm{~F}_{1} \\
& y^{\prime}=\frac{b}{F_{R}}\left[\frac{p_{3}}{2}\left\{(c+a)^{2}-c^{2}\right\}+\frac{p}{3}\left\{(c+a)^{3}-c^{3}\right\}\right. \\
& y^{\prime}=\frac{\operatorname{lm}}{71.2 \operatorname{kn}}\left[\frac{1}{2} \times 0.30 \mathrm{~m} \times 1.0 \times \frac{0^{5} N}{m^{2} \cdot d \mathrm{dan}}\left\{(2.5)^{2}-1\right\}+\frac{1}{3} \times 99 \frac{9}{m^{3}} \times 9.81 \frac{n}{5^{2}} \times\left\{(2.5)^{3}-1\right\} M^{3}\right] \\
& \left.\times \frac{N 15^{2}}{\lg M}\right] \frac{\mathrm{ln}}{0^{5} N}
\end{aligned}
$$

$$
y^{\prime}=1.79 m
$$

The value of $F l F_{0}$ is obtained from $E_{q} .1$ and $F_{R_{0}}=25.7 \mathrm{en}$.

$$
\begin{array}{r}
\frac{F}{F_{0}}=\frac{1}{25.3 h_{4}} b\left[P_{s} a+\frac{P g}{2}\left(a^{2}+2 a c\right)\right]= \\
\\
\text { with } P_{s} \text { in aten. }
\end{array}
$$

For the gate $y_{c}=c+\frac{a}{2}=175 \mathrm{~m}$. Theron from Eq. 2

$$
\frac{y^{\prime}}{y_{0}}=\frac{b}{F_{R}(1.7 s)}\left[\frac{p_{s}}{2}\left\{(c+a)^{2}-c^{2}\right\}+\frac{p g}{3}\left\{(c+a)^{3}-c\right\}\right]=\frac{0.571}{F}\left[265 p_{s}+47.8\right]=
$$

with F in ha, P_{s} in atm
The plots are shown below
Note: Te force on the gate increases linearhy wi increase in surface pressure.
The line of action of te resultant force is always belau the centroid of the gate; y'lye approaches unity as the surface pressure is increased?

Force ratio and line of action ratio vs. surface pressure:

Problem 3.38 (In Excel)

Based on the atmospheric temperature data of the U.S. Standard Atmosphere of Fig. 3.3, compute and plot the pressure variation with altitude, and compare with the pressure data of Table A.3.

Given: Atmospheric temperature data
Find: Pressure variation; compare to Table A. 3

Solution

From Section 3-3:

$$
\begin{equation*}
\frac{\mathrm{dp}}{\mathrm{dz}}=-\rho \cdot \mathrm{z} \tag{Eq.3.6}
\end{equation*}
$$

For linear temperature variation ($m=-d T / d z$) this leads to

$$
\begin{equation*}
\mathrm{p}=\mathrm{p}_{0} \cdot\left(\frac{\mathrm{~T}}{\mathrm{~T}_{0}}\right)^{\frac{\mathrm{g}}{\mathrm{~m} \cdot \mathrm{R}}} \tag{Eq.3.9}
\end{equation*}
$$

For isothermal conditions Eq. 3.6 leads to

$$
\mathrm{p}=\mathrm{p}_{0} \cdot \mathrm{e}^{-\frac{\mathrm{g} \cdot\left(\mathrm{z}-\mathrm{z}_{0}\right)}{\mathrm{R} \cdot \mathrm{~T}}} \quad \text { Example Problem } 3.4
$$

In these equations p_{0}, T_{0}, and z_{0} are reference conditions

$$
\begin{array}{rcl}
p_{\mathrm{SL}}= & 101 & \mathrm{kPa} \\
R= & 286.9 & \mathrm{~J} / \mathrm{kg} \cdot \mathrm{~K} \\
\rho= & 999 & \mathrm{~kg} / \mathrm{m}^{3}
\end{array}
$$

The temperature can be computed from the data in the figure
The pressures are then computed from the appropriate equation

z (km)	T (${ }^{\circ} \mathrm{C}$)	T (K)		$p / p_{\text {SL }}$
0.0	15.0	288.0	$\begin{gathered} m= \\ 0.0065 \\ (\mathrm{~K} / \mathrm{m}) \end{gathered}$	1.000
2.0	2.0	275.00		0.784
4.0	-11.0	262.0		0.608
6.0	-24.0	249.0		0.465
8.0	-37.0	236.0		0.351
11.0	-56.5	216.5		0.223
12.0	-56.5	216.5	$T=$ const	0.190
14.0	-56.5	216.5		0.139
16.0	-56.5	216.5		0.101
18.0	-56.5	216.5		0.0738
20.1	-56.5	216.5		0.0530
22.0	-54.6	218.4	$\begin{gathered} m= \\ -0.000991736 \\ (\mathrm{~K} / \mathrm{m}) \end{gathered}$	0.0393
24.0	-52.6	220.4		0.0288
26.0	-50.6	222.4		0.0211
28.0	-48.7	224.3		0.0155
30.0	-46.7	226.3		0.0115
32.2	-44.5	228.5		0.00824
34.0	-39.5	233.5	$\begin{gathered} m= \\ -0.002781457 \\ (\mathrm{~K} / \mathrm{m}) \end{gathered}$	0.00632
36.0	-33.9	239.1		0.00473
38.0	-28.4	244.6		0.00356
40.0	-22.8	250.2		0.00270
42.0	-17.2	255.8		0.00206
44.0	-11.7	261.3		0.00158
46.0	-6.1	266.9		0.00122
47.3	-2.5	270.5		0.00104
50.0	-2.5	270.5	$T=$ const	0.000736
52.4	-2.5	270.5		0.000544
54.0	-5.6	267.4	$\begin{gathered} m= \\ 0.001956522 \\ (\mathrm{~K} / \mathrm{m}) \end{gathered}$	0.000444
56.0	-9.5	263.5		0.000343
58.0	-13.5	259.5		0.000264
60.0	-17.4	255.6		0.000202
61.6	-20.5	252.5		0.000163
64.0	-29.9	243.1	$\begin{gathered} m= \\ 0.003913043 \\ (\mathrm{~K} / \mathrm{m}) \end{gathered}$	0.000117
66.0	-37.7	235.3		0.0000880
68.0	-45.5	227.5		0.0000655
70.0	-53.4	219.6		0.0000482
72.0	-61.2	211.8		0.0000351
74.0	-69.0	204.0		0.0000253
76.0	-76.8	196.2		0.0000180
78.0	-84.7	188.3		0.0000126
80.0	-92.5	180.5	$T=$ const	0.00000861
82.0	-92.5	180.5		0.00000590
84.0	-92.5	180.5		0.00000404
86.0	-92.5	180.5		0.00000276
88.0	-92.5	180.5		0.00000189
90.0	-92.5	180.5		0.00000130

From Table A. 3

$\mathbf{z} \mathbf{(k m})$	$\boldsymbol{p} / \boldsymbol{p}_{\mathbf{s L}}$
0.0	1.000
0.5	0.942
1.0	0.887
1.5	0.835
2.0	0.785
2.5	0.737
3.0	0.692
3.5	0.649
4.0	0.609
4.5	0.570
5.0	0.533
6.0	0.466
7.0	0.406
8.0	0.352
9.0	0.304
10.0	0.262
11.0	0.224
12.0	0.192
13.0	0.164
14.0	0.140
15.0	0.120
16.0	0.102
17.0	0.0873
18.0	0.0747
19.0	0.0638
20.0	0.0546
22.0	0.0400
24.0	0.0293
26.0	0.0216
28.0	0.0160
30.0	0.0118
40.0	0.00283
50.0	0.000787
60.0	0.000222
70.0	0.0000545
80.0	0.0000102
90.0	0.00000162
1	

Agreement between calculated and tabulated data is very good (as it should be, considering the table data is also computed!)

Problem 3.39
Given: Atmosphere in which $T=$ constant $=30^{\circ} \mathrm{C}$ between sea level and 5 km altitude.

Find: (a) Elevation Change, $1 z$, corresponding to a ib reduction in our pressure.
(b) Elevation change, Dz, necessary to effect a $15^{\circ} 6$ reduction in density
Plot: P P le, and pelf, vs z.
Solution:
Basic equations: $\frac{d P}{d z}=-\rho g, ~ P=p R$
Assumptions: (i) static, isothermal fluid
(2) $g=$ constant
(3) Teal gas behavior

Then, $\frac{d p}{d z}=-p g=-\frac{p}{k T}$ and $\frac{d p}{d z}=-\frac{p g}{R T} d z$
Separating variables and integrating,

$$
\begin{array}{r}
\int_{p_{1}}^{d p}=-\frac{g}{\bar{p} T_{0}}\left(z_{2} d z \quad \text { and } \ln \frac{p_{2}}{p_{1}}=-\frac{g}{R T} \Delta z\right. \\
\quad \Delta z=-\frac{R T_{0}}{g} \ln \frac{p_{2}}{p_{1}} \ldots \ldots \ldots
\end{array}
$$

For an ideal gas, $\quad \frac{p_{2}}{p_{1}}=\frac{p_{2} R T_{0}}{\rho_{1} R T_{0}}=\frac{p_{2}}{\rho_{1}}$
This, $\Delta z=-\frac{R T_{0}}{g} \ln \frac{\rho_{2}}{p}$ \qquad
From Table A.b $R_{\text {ar }}=287 \mathrm{Nim} \mathrm{I}_{\mathrm{tg} \cdot \mathrm{K}}$

For a one percent reduction in pressure, $p_{2} \mid p_{1}=0,99$. Fromil)

$$
\begin{equation*}
\Delta z=-886 \mathrm{~m} \ln (0.99)=89.0 \mathrm{~m} . \tag{a}
\end{equation*}
$$

For a $15^{\circ} \%$ reduction in density, $p_{2} / p_{1}=0.85$. From (a)

$$
\Delta z=-88 b 0 m \ln (0.85)=1440 \mathrm{~m}
$$

To plot $p_{2} l e$, and $p_{2} l p$, we rewrite eqs. (i) and (i) as

$$
\frac{-P_{2}}{P_{1}}=\frac{p_{2}}{e_{1}}=e^{-\left.g A_{2}\right|_{R T_{0}}}
$$

the plot is prescrited below

Ale: Since $T=$ constant, beth rathe are the same

Given: Martian atmosphere behaves as an ideal gas, $T=$ constant

$$
M_{m}=32.0, T=200 \mathrm{k}, g=3.92 \mathrm{~m} / \mathrm{s}^{2}, p_{0}=0.015 \mathrm{~kg} / \mathrm{m}^{2}
$$

Find: Density at $z=20 \mathrm{~km}$.
Plot: the ratio plo (ratio of denisty to surface density) us z: compare with earl's atmosphere
Solution:
Basic equations: $\quad \frac{d p}{d z}=-p g ; \quad P=p R T ; \quad R=R_{u} / M_{m}$
Assumptions: (i) static fluid
(a) g constant
(3) Real gas.

Since $T=$ constant, $d P=d(p R T)=R T d p_{z}$

$$
\begin{align*}
& \frac{d p}{d z}=R T \frac{d p}{d z}=-p g \quad \text { and } \quad\left(\frac{d p}{p}=-\int_{0} \frac{d}{g T} d z\right. \\
& \ln \frac{f_{2}}{\rho_{0}}=-g z / R T \quad \text { and } \quad f_{0}=e^{-\frac{g z}{} / R T} \tag{1}
\end{align*}
$$

Evaluating

$$
\begin{aligned}
& R=\frac{R_{\mu}}{M_{m}}=8314.3 \frac{\mathrm{~N} \cdot \mathrm{M}}{\mathrm{kgnde} \cdot \mathrm{~K}^{*}} \frac{\mathrm{Egndx}}{32.0 \mathrm{lg}}=260 \frac{\mathrm{~N} \cdot \mathrm{M}}{\mathrm{~kg} \cdot \mathrm{~K}}
\end{aligned}
$$

$$
\begin{aligned}
& p=0.00332 \mathrm{~kg} \mathrm{~m}^{3}, \quad p_{z=20 \mathrm{~m}}
\end{aligned}
$$

For the Martian atmosphere, Eq'' gives $p_{p} p_{p}=e^{-0.0754} \mathrm{z}(\mathrm{km})$ For the carl's atmosphere. plo is giver in Table A. 3 Both plo variations are plotted below
Note from the plot:

- on Mars $f^{\prime} f_{0}=0.22$ at $z=20 \mathrm{~km}$, whereas
. on Earth, $\rho^{\prime} p_{0}=0.073$ at $z=20 \mathrm{fm}$
The difference is caused by (a) the larger gravity on Fart, and (b) temperature decrease Wish altitude in our atmosphere.

Density vs. elevation in Martian and Earth atmospheres:

Elevation Change $\Delta \boldsymbol{z}$	Density Ratio $($ Earth $)$	Density Ratio $($ Mars $)$
(m)	$\rho / \rho_{\text {SL }}$	$\rho / \rho_{\text {SL }}$ $(---)$
0	1.000	1.00
2000	0.8217	0.860
4000	0.6689	0.740
6000	0.5389	0.636
8000	0.4292	0.547
10000	0.3376	0.470
12000	0.2546	0.405
14000	0.1860	0.348
16000	0.1359	0.299
18000	0.09930	0.257
20000	0.07258	0.221

Given: PtMospherie conditions at ground level $(z=0)$ in Denver, Colorado are $P_{0}=83.2 \mathrm{k} \mathrm{l}_{\mathrm{a}}, T_{0}=25^{\circ} \mathrm{C}$.
Pikes peak is at elevation $z=2690 \mathrm{~m}$
Find: Pressure on Pike's peak assuming (a) an incompressible, and b an adiabatic atmosphere.
Pot: -plop vs z for bole cases.
Solution:
Basic equations: $\left.\quad d p\right|_{d_{z}}=-p q ; p=p e 1$
Assumptions: (i) static fluid, (a) $g=$ constant
(3) ideal gas behavior
(a) For an incompressible atmosphere $\int_{p_{0}}^{p} p=-\int_{0}^{z} g^{z} d z$

$$
\begin{aligned}
& -p-p_{0}=p g z=\rho_{0} g z=\frac{p_{0}}{k T_{0} g z} \text { and } p=p_{0}\left[1-\frac{q^{2}}{k T_{0}}\right] \\
& \text { At } z=2690 \mathrm{~m}
\end{aligned}
$$

b) For an adiabatic atmosphere $p / p_{p}=$ constant, $p=p_{0}\left(p \mid p_{0}\right)^{\prime / a}$

$$
\frac{d p}{d y}=-p g=-g p_{0}\left(\frac{p}{p_{0}}\right)^{l t} d z \quad \text { or } \int_{-p_{0}}^{p} \frac{d p}{p^{p /}}=-\int_{0}^{\gamma} p_{0} p_{0}^{-i k} g d z
$$

Then $\left.\frac{k}{(k-1)} p^{-\frac{1}{k}+1}\right]_{p_{0}}^{p}=-p_{0} p_{0}^{-1 / k} g d z$ or $k_{(k-1)}^{k}\left[p^{(k-1) k}-p_{0}^{(k-1) t}\right]=-p_{0}^{p} g z$
$\begin{aligned} & \text { and } \\ & \left(\frac{k}{k-1}\right)\end{aligned} p_{0}^{(k-1)} k_{k}\left[\left(\frac{p}{p_{0}}\right)^{(k-1)}-1\right]=-p_{0} p_{0}^{-p_{0}} g \gamma$

$$
\begin{equation*}
\left(\frac{p}{-p_{0}}\right)^{(k-1)} k_{k}=1-\frac{(k-1)}{k} p_{0}^{-l_{k}-(k-1)} k_{k} \quad \rho_{0} g=1-\frac{(k-1)}{k}-p_{0}^{-1} p_{0} g z \tag{2}
\end{equation*}
$$

and $\frac{p_{1}}{p_{0}}=\left[1-\frac{(k-1)}{k} \frac{p_{0}}{p_{0}} g_{3}\right]^{k l_{-1}}=\left[1-\frac{(k-1)}{k} \frac{g z}{k T_{0}}\right]_{-}^{k_{k-1}}$
Evaluating at $z=2690 \mathrm{~m}$

$$
p=60.2 \mathrm{kta}
$$

The pressure ratio ply $1 s$ z is plotted for an incompressible atmosphere ($\epsilon_{q} .1$) and an adiabatic atmosphere (Eq. E_{L} below Incompressible case $\left.\quad P\right|_{p_{0}}=[1-0.115 z]_{3.5}$ (zn kn).
Adiabatic case

$$
\begin{array}{ll}
P l_{P_{0}}=[1-0.15 z] & (z i n(k) . \\
\left.P\right|_{p_{0}}=[1-0.0328 z]^{3.5} & (z(n)(m))
\end{array}
$$

Pressure ratio vs. elevation above Denver:

Elevation z	Elevation above Denver	Pressure Ratio ($T=C$)	Pressure Ratio (adiabatic)
(m)	z	p / p_{0}	p / p_{0}
	(m)	(---)	(---)
0	-1610	1.185	1.20
500	-1110	1.127	1.13
1000	-610	1.070	1.07
1500	-110	1.013	1.01
2000	390	0.955	0.956
2500	890	0.898	0.902
3000	1390	0.841	0.849
3500	1890	0.783	0.800
4000	2390	0.726	0.752
4300	2690	0.691	0.724
4500	2890	0.669	0.706
5000	3390	0.611	0.662

Open-Ended Problem Statement: A hydropneumatic elevator consists of a piston-cylinder assembly to lift the elevator cab. Hydraulic oil, stored in an accumulator tank pressurized by air, is valved to the piston as needed to lift the elevator. When the elevator descends, oil is returned to the accumulator. Design the least expensive accumulator that can satisfy the system requirements. Assume the lift is 3 floors, the maximum load is 10 passengers, the maximum system pressure is 800 kPa (gage). For column bending strength, the piston diameter must be at least 150 mm . The elevator cab and piston have a combined mass of $3,000 \mathrm{~kg}$, and are to be purchased. Perform the analysis needed to define, as a function of system operating pressure, the piston diameter, the accumulator volume and diameter, and the wall thickness. Discuss safety features that your company should specify for the complete elevator system. Would it be preferable to use a completely pneumatic design or a completely hydraulic design? Why?

Discussion: The design requirements are specified, except that a typical floor height is about 12 ft , making the total required lift about 36 ft .)

A spreadsheet was used to calculate the system properties for various pressures. Results are presented on the next page, followed by a sample calculation.

Total cost dropped quickly as system pressure was increased. A shallow minimum was reached in the 100-110 psig range.

The lowest-cost solution was obtained at a system pressure of about 100 psig . At this pressure, the reservoir of 140 gal required a 3.30 ft diameter pressure sphere with a 0.250 in . wall thickness. The welding cost was $\$ 311$ and the material cost $\$ 433$, for a total cost of $\$ 744$.

Accumulator wall thickness was constrained at 0.250 in . for pressures below 100 psi ; it increased for higher pressures (this caused the discontinuity in slope of the curve at 100 psig). The mass of steel became constant above 110 psig.

No allowance was made for the extra volume needed to pressurize the accumulator.
Fail-safe design is essential for an elevator to be used by the public. The control circuitry should be redundant. Failures must be easy to spot. For this reason, hydraulic actuation is good: leaks will be readily apparent. The final design must be reviewed, approved, and stamped by a professional engineer since the design involves public safety.
The terminology used in the solution is defined in Table 1.
Table 1. Symbols, definitions, and units

Symbol	Definition	Units
p	system pressure	psig

Results of the system simulation and sample calculations are presented on the next page.

Table 2. Results of system simulation
Input Data:

Results

Fig. 1 Total cost versus system pressure

Sample Calculation ($p=20$ prig):
$W_{t}=p A_{p} ; A_{p}=\frac{w_{t}}{p}=7500 \mathrm{lbf}_{\times} \frac{\mathrm{m}^{2}}{20 \mathrm{lbf}}=375 \mathrm{in}^{2}$
$\forall_{0 i 1}=A_{p L}=375 \mathrm{in}^{2} \times \frac{1}{36 \mathrm{ft}^{2}} \times \frac{\mathrm{ft}^{2}}{144 \mathrm{~m}^{2}} \times 7.48 \frac{\mathrm{gal}}{\mathrm{ft}^{3}}=701 \mathrm{gal}$
$\forall_{0 i 1}=\forall_{s}=\frac{4 \pi R^{3}}{3}=\frac{\pi D_{3}^{3}}{6} ; \quad D_{s}=\left(\frac{6 t_{0}, 1 / 3}{\pi}\right)^{1 / 3}=\left(\frac{6}{\pi} \times 7019 a 1 \times \frac{\mathrm{ft}^{3}}{7.489 a 1}\right)^{1 / 3}=5.64 \mathrm{ft}$
From a force balance on the sphere:

Problem 3.42 (cont'd.)
Thus $p \frac{\pi D_{s}^{2}}{4}=\pi D_{s} t \sigma$, so $\quad t=\frac{p}{\sigma} \frac{D_{s}}{4}=\frac{1}{4} \times 20 \frac{16 f}{1 n_{1}^{2}} \times \frac{\mathrm{in}^{2}}{400016 f^{2}} \times 5.64 \mathrm{ft}_{x} \frac{12 \frac{\mathrm{in}}{f t}}{f_{t}}=0.0846 \mathrm{in}$.
Therefore $t=t_{\text {min }}=0.250 \mathrm{in}$.

$$
\begin{aligned}
& A_{w}=\pi D_{S} t=\pi_{x} 5.64 \mathrm{ft}_{x} 0.25 \mathrm{in} \times 12 \frac{\mathrm{in}_{\mathrm{f}}}{\mathrm{ft}}=106 \mathrm{in}^{2} \\
& c_{w}=\frac{\$ 5.00}{\ln .^{2}} \times 106 \mathrm{in}^{2}=\$ 531
\end{aligned}
$$

$$
\begin{aligned}
& C_{3}=\frac{\$ 1,25}{16 \mathrm{~m}} \times 1012 \mathrm{10m}=\$ 1265
\end{aligned}
$$

and

$$
c_{t}=c_{w}+c_{s}=\$ 531+51265=51,796
$$

Given: Door, of width $b=1 \mathrm{~m}$, located in plane vertical wall of water tank is hinged along upper edge.

$$
D_{1}=1 \mathrm{~m}, \theta_{L}=1.5 \mathrm{~m}
$$

fitnospheric pressure acts on outer surface of door: fore F is applied of at lower applied at lower edge to heep door closed

Find: (a) Force F, if $P_{s}=p_{a}$,
(b) Force F, if $f_{s}=0.5$ atm.

Pot: $F^{\prime} F_{0}$ over sarge of $P_{s} l-f_{\text {atm. }}$. (F_{0} is force required when $p_{s}=p_{\text {atm }}$)
Solution:
Bask equations: $\frac{d p}{d h}=p g ; \quad F_{i}=\int P d A l ; \quad \sum H_{z}=0$
Assumptions: (i) static fluid (${ }^{(2)} p=$ constant
(3) door is in equilibrtion

Since $\sum M_{Z}=0$ for equilibrium, taking moments about the hinge

$$
\sum M_{z}=0=F L-\int y P d A=F M-\int_{0}^{h} y P b d y
$$

and $F=\frac{1}{2} \int_{0}^{L} y+b d y$
Note: We will dotain a general expression for F (needed for the plot) and then simplify for cases (a) and (b)
Since $d p=p g d h$, then $p=-p_{s}+p g h$

$$
h=D+y \text { and hance }-p=-p_{s}+p g(D+y) \text {. }
$$

Because tan acts on the atside of the door, P_{s} is the surface gage pressure.
From Eq (i), $F=\frac{1}{L} \int_{0}^{1} y\left[p_{s}+p g(i+y]\right]$ body

$$
\begin{align*}
& F=\frac{b}{1}\left[-p_{\text {ge }} \frac{y^{2}}{2}+p g\left(\frac{\nu y^{2}}{2}+\frac{y^{3}}{3}\right]_{0}^{2}\right. \\
& F=\frac{b}{L}\left[P_{s g} \frac{L^{2}}{2}+p g\left(\frac{2}{2}+\frac{L^{3}}{3}\right)\right]=b\left[-P_{s g 2}^{2}+p g h\left(\frac{P}{2}+\frac{L}{3}\right)\right] \tag{2}
\end{align*}
$$

(a) For $-p_{s}=p_{a t m}, p_{s g}=0$

$$
\begin{aligned}
& F_{0}=p g b L\left(\frac{2}{2}+\frac{b}{3}\right)
\end{aligned}
$$

Gwen: Door located in plane vertical wall of water tank as shown

$$
a=1.5 m, b=1 m, c=1 m \text {. }
$$

Atmospheric pressure acts on acer surface of door

Find: (a) For $p_{s}=$ path, resultant force on
 door and line of action of force (b) Resultant force and line of action if $p_{s}=0.3$ atm (gag)

Plot: $F I F_{0}$ and y'lyc over range of p_{s} I pate. (F_{0} is resultant force when $-P_{s}=P a t h$: y_{c} is y coordinate of centroid)
Solution:
Basic equations: $\frac{d p}{d y}=p g ; F_{R}=\left(R p d A ; \dot{y} F_{R}=\int_{y} p d F^{\prime}\right.$ Assumptions: (i) static liquid
(2) incompressible liquid

Note: We will obtain a general expressions for Fand y' (needed for the plot) and then simply for cases (al) (tb).
Since $d f=p g d y$ then $p=p$: pg
Because Paten acts on the aside or the door, then P_{2} is the sew face gage pressure

$$
\begin{align*}
& F_{R}=\left\langle-p d A=\int_{c}^{(c+a)}-p b d y=\int_{c}^{c+a}\left(p_{s}+p g y\right) b d y=b\left[p_{s} y+p g^{2}\right]_{c}^{c+a}\right. \\
& F_{R}=b\left[P_{s} a+\frac{P a}{2}\left\{(c+a)^{2}-c^{2}\right\}\right]=b\left[f_{s} a+P \frac{P}{2}\left(a^{2}+2 a c\right)\right] \ldots(1) \tag{i}\\
& y^{\prime} F_{R}=\int y P d A \text { and } y^{\prime}=\frac{1}{F_{k}} \int_{c}^{c+a}\left(y^{\prime}\left(p_{s}+p g y\right) b d y\right. \\
& y^{\prime}=\frac{b}{F_{R}}\left[-p_{s} \frac{y^{2}}{2}+p g^{\frac{y^{3}}{3}}\right]_{c}^{c+a} \\
& y^{\prime}=\frac{b}{F_{R}}\left[\frac{p_{s}}{2}\left\{(c+a)^{2}-c^{2}\right\}+\frac{p g}{3}\left\{(c+a)^{3}-c^{3}\right\}\right.
\end{align*}
$$

(a) For $\varphi_{s}=0$ (gage) then
from E_{q} : $\quad F_{R}=p_{2} g_{2}\left(a^{2}+2 a c\right)$.

$$
F_{R}=\frac{1}{2}+9 \times \frac{k_{g}}{n^{2}}+9.8 \frac{M}{s^{2}}+1 m\left[(1.5 m)^{2}+2(1.5 m)(1 m)\right] \frac{1 . s^{2}}{k_{g} \cdot m}=25.7 \mathrm{~km} F_{R}
$$

From Eq. 2

$$
\begin{aligned}
& y^{\prime}=\frac{b}{F_{R_{0}}} \frac{p g}{3}\left[(c+a)^{3}-c^{3}\right]
\end{aligned}
$$

Problem 3.44 (contd)
(b) For $P_{5}=0.3$ atm (gage) $h_{\text {an }}$
from Eg. $\quad F_{R}=b\left[e_{s} a+\frac{p}{2}\left(a^{2}+2 a c\right)\right]$

$$
\begin{aligned}
& F_{R}=71.2 \mathrm{kN} \\
& y^{\prime}=\frac{b}{F_{R}}\left[\frac{p_{3}}{2}\left\{(c+a)^{2}-c^{2}\right\}+\frac{p a}{3}\left\{(c+a)^{3}-c^{3}\right\}\right. \\
& y^{\prime}=\frac{1 m}{71.2 k+N}\left[\frac{1}{2} \times 0.30 \text { atm } \times 1.0 k \frac{0^{3} N}{m^{2} \cdot a t m}\left\{(2.5)^{2}-1\right\}+\frac{1}{3}+\frac{99 G g}{m^{3}} \times 9.81 \frac{m}{5^{2}} \times\left\{(2.5)^{3}-1\right\} m^{3}\right. \\
& \left.\times \frac{M, s^{2}}{\operatorname{kg} M}\right] \frac{\mathrm{kN}}{10^{3} \mathrm{~N}} \\
& y^{\prime}=1.79 \mathrm{~m}
\end{aligned}
$$

The value of $F \backslash F_{0}$ is obtained from $E_{q} .1$ and $F_{R_{0}}=25.7 \operatorname{len}$.

$$
\begin{array}{r}
\left.\stackrel{F}{F_{0}}=\frac{1}{25.724} b\left[P_{5} a+\frac{p g}{2}\left(a^{2}+2 a c\right)\right]=0.0389\left[151.5 P_{5}+257\right] \ldots F / F_{0}\right] \\
\text { with } \bar{P}_{5} \text { in atm }
\end{array}
$$

For the gate $y_{c}=c+\frac{a}{2}=1.75 \mathrm{~m}$. Then from $z_{0} c^{2}$

$$
\frac{y^{\prime}}{y_{c}}=\frac{b}{F_{R}(1.75)}\left[\frac{p_{s}}{2}\left\{(c+a)^{2}-c^{2}\right\}+\frac{p g}{3}\left\{(4 a)^{3}-c^{3}\right\}\right]=\frac{0.571}{F}\left[265 f_{s}+47.8\right]
$$

with F in kn, P_{s} in atm
The plots are shawn below
Note: Te force on the gate increase linsarhy who increase in surface pressure.
The line of action of te resultant force is always below tire catraid of the gate; oily apprasies unity, as the surface pressure is increased.

Force ratio and line of action ratio vs. surface pressure:

Line of Action Ratio vs. Surface Pressure

Given: Triangular port in the side of a form containing liquid concrete, as show irs
Find: (a) the resultant force that acts on the port
(b) point of application of the resultant force.

Solution:
Basic equations: $\quad F_{R}=\left(p d A \quad \frac{d f}{d y}=\rho g \quad p \equiv s G p_{H 2}\right.$

$$
\Sigma M_{S}=y^{\prime} F_{R}=\int y d F_{R}=\int y^{-P} d A
$$

Assumptions: il static fluid (2) $p=$ constant (3) Path acts at surface on outside of port.
under these assumptions, the pressure at any point in the liquid is given by $-p=p g y$.

Also $d A=w d y$ where $\frac{w}{b}=\frac{y}{a}$ or $w=\frac{b}{a} y$
Then

$$
\begin{aligned}
& F_{R}=\int p d A=\int_{0}^{a} p g y w d y=\int_{0}^{a} p g y a y d y=\int_{0}^{a} p g \frac{b}{a} y^{2} d y \\
& F_{k}=p g a\left[\frac{4^{3}}{3}\right]_{0}^{a}=p g \frac{b a^{2}}{3}=\operatorname{sa} \operatorname{frxog}^{b a^{2}} \\
& F_{R}=\frac{2.4}{3} \times 999 \frac{\mathrm{~kg}}{3} \times 9.81 \frac{\mathrm{~m}}{\mathrm{~s}^{2}} \times 0.3 \mathrm{~m} \times(0.4)^{2} \mathrm{~m}^{2} \times \frac{\mathrm{N} \cdot \mathrm{~s}^{2}}{\operatorname{tg} \cdot \mathrm{M}}=376 \mathrm{~N}, \quad F_{R} \\
& \sum M_{\text {sure }}=y^{\prime} F_{R}=\int y+d A=\int_{0}^{a} y p g y \frac{b}{a} y d y=\int_{0}^{a} p g \frac{b}{a} y^{3} d y \\
& y^{\prime} F_{R}=p g \frac{b}{a}\left[y^{4}\right]_{0}^{a}=\operatorname{pg} \frac{b}{a} \frac{a^{4}}{4}=s G p+0 g \frac{b a^{3}}{4} \\
& y^{\prime}=\frac{M_{\text {ar }}}{F_{R}}=S G p_{4 \times 0} g \frac{b a^{3}}{4} \times \frac{3}{3 G P_{420} g b a^{2}}=\frac{3 a}{4}=\frac{3}{4} \times 0.4 m=0.3 m \quad y^{\prime}
\end{aligned}
$$

Problem 3.46
Given. Semicircular plane gate AB is hinged along Sand held in place by horizontal force F_{A}.
Find: Force F_{A} required to hold gate in place
Solution:

Basic equations: $\frac{d p}{d h}=\rho g ; \quad F_{R}=\left(P d A ; \quad \sum M_{z}=0\right.$
Assumptions: (i) static fud (a) $p=$ constant
(3) door is in equilibrium.

Since $\sum M_{z}=0$ for equilibrium, taking moments about the hinges,

$$
F_{A}=\frac{1}{R} \int y-P d A
$$

Since $d p=p g d h$ and $p=p_{s}+p g h$
Because the free surface is at atmospheric pressure, and atmospheric pressure acts on the outside of the gate, $p=p g h$ and $F_{a}=\frac{1}{R} \int y p g h d t$
For the circular gate, $d A=r d r d \theta, y=r \sin \theta, h=H-y$.
so $F_{A}=\frac{1}{R} \int_{0}^{\pi} \int_{0}^{R} r \sin \theta \rho g(H-r \sin \theta) r d r d \theta$

$$
\begin{aligned}
& F_{A}=\frac{P g}{R} \int_{0}^{\pi} \int_{0}^{R}\left(H r^{2}-r^{3} \sin \theta\right) \sin \theta d r d \theta=P \frac{g}{R} \int_{0}^{\pi}\left[\frac{H r^{3}}{3}-\frac{r^{4}}{4} \sin \theta\right]_{0}^{R} \sin \theta d \theta \\
& F_{A}=P \frac{g}{R} \int_{0}^{\pi}\left[\frac{H R^{3}}{3}-\frac{R^{4}}{4} \sin \theta\right] \sin \theta d \theta=\frac{P g}{R} \int_{0}^{\pi}\left[\frac{H R^{3}}{3} \sin \theta-\frac{R^{4}}{4} \sin ^{2} \theta\right] d \theta \\
& =\frac{P g}{R}\left[\left(-\frac{H R^{3}}{3} \cos \theta\right)_{0}^{\pi}-\frac{R^{4}}{4}\left[\frac{\theta}{2}-\frac{\sin 2 \theta}{4}\right]_{0}^{\pi}=p \frac{g}{R}\left[\frac{2 H R^{3}}{3}-\frac{\pi R^{4}}{8}\right]\right. \\
& F_{A}=\rho g\left[\frac{2+R^{2}}{3}-\frac{\pi R^{3}}{8}\right] \\
& =999 \frac{g^{3}}{m^{3}}+9.81 \frac{\mu}{5^{2}}\left[\frac{2+8 m+9 \mu^{2}}{3}-\frac{\pi}{8} 27 m^{3}\right]+\frac{N s^{2}}{\lg m^{2}}+\frac{81}{10^{3}} N \\
& F_{A}=366 \mathrm{kN}
\end{aligned}
$$

Problem 3.47

Given: Plane gate of uniform thickness and width $\omega=6.75 \mathrm{ft}$ holds back a depth of water as shown.

Find: the minimum weight, w, of the gate needed to insure
 gatecremairs closed.
Solution:
Basic equations: $\begin{array}{ll}F=(-P d f \quad & \begin{array}{l}d p \\ d h\end{array}=p g \\ & \Sigma M=0\end{array} \quad M=(y d F)$

$$
\Sigma M_{0}=0 \quad M=\int \begin{aligned}
& 10 \\
& y d F
\end{aligned}
$$

Assumptions: (i) static fluid
(2) $p=$ constant
(3) Pain ads at surface of water and along top surface of the gate.
Under these assumptions, the -pressure at any point in the liquid is gwen by $\rightarrow=$ 'pg = pgysin θ

$$
\sum M_{0}=0=\left\{y d F-w \frac{L}{2} \cos \theta \quad\left\{\begin{array}{l}
\text { moment about acis } \\
\text { through } 0 \text { is }+c c
\end{array}\right\}\right.
$$

then

$$
\begin{aligned}
& w=\frac{2}{h \cos \theta} \int y d F=\frac{2}{h \cos \theta} \int y P d A=\frac{2}{L \cos \theta} \int_{0}^{2} y p g y \sin \theta w d y \\
& w=\frac{2 \operatorname{pg} \omega \tan \theta}{L} \int_{0}^{2} y^{2} d y=\frac{2 p g \omega \tan \theta}{L}\left[\frac{y^{3}}{3}\right]_{0}^{2} \\
& w=\frac{2}{3} p g w^{2} h^{2} \tan \theta \\
& W=\frac{2}{3} \times 1.94 \frac{\operatorname{slng}}{f^{3}} \times 32.2 \frac{\mathrm{ft}}{\mathrm{~s}^{2}} \times 6.15 f t \times(9.85)^{2} \mathrm{ft}^{2} \tan 30^{\circ} \times \frac{16 f . \mathrm{s}^{2}}{f t . s l u g} \\
& W_{\text {min }}=15,800 b^{6}
\end{aligned}
$$

Problem 3.48

A rectangular gate (width w what depth H will the gate tip?

Given: Gate geometry

Find: Depth H at which gate tips

Solution

This is a problem with atmospheric pressure on both sides of the plate, so we can first determine the location of the center of pressure with respect to the free surface, using Eq.3.11c (assuming depth H)

$$
\mathrm{y}^{\prime}=\mathrm{y}_{\mathrm{c}}+\frac{\mathrm{I}_{\mathrm{xx}}}{\mathrm{~A} \cdot \mathrm{y}_{\mathrm{c}}} \quad \text { and } \quad \mathrm{I}_{\mathrm{xx}}=\frac{\mathrm{w} \cdot \mathrm{~L}^{3}}{12} \quad \text { with } \quad \mathrm{y}_{\mathrm{c}}=\mathrm{H}-\frac{\mathrm{L}}{2}
$$

where $L=1 \mathrm{~m}$ is the plate height and w is the plate width

Hence

$$
y^{\prime}=\left(H-\frac{L}{2}\right)+\frac{w \cdot L^{3}}{12 \cdot w \cdot L \cdot\left(H-\frac{L}{2}\right)}=\left(H-\frac{L}{2}\right)+\frac{L^{2}}{12 \cdot\left(H-\frac{L}{2}\right)}
$$

But for equilibrium, the center of force must always be at or below the level of the hinge so tha stop can hold the gate in place. Hence we must have

$$
y^{\prime}>\mathrm{H}-0.45 \cdot \mathrm{~m}
$$

Combining the two equations

$$
\left(\mathrm{H}-\frac{\mathrm{L}}{2}\right)+\frac{\mathrm{L}^{2}}{12 \cdot\left(\mathrm{H}-\frac{\mathrm{L}}{2}\right)} \geq \mathrm{H}-0.45 \cdot \mathrm{~m}
$$

Solving for H

$$
\begin{aligned}
& H \leq \frac{L}{2}+\frac{L^{2}}{12 \cdot\left(\frac{L}{2}-0.45 \cdot \mathrm{~m}\right)} \\
& H \leq \frac{1 \cdot \mathrm{~m}}{2}+\frac{(1 \cdot \mathrm{~m})^{2}}{12 \times\left(\frac{1 \cdot \mathrm{~m}}{2}-0.45 \cdot \mathrm{~m}\right)}
\end{aligned}
$$

$$
\mathrm{H} \leq 2.167 \cdot \mathrm{~m}
$$

Given: serie-cylindrical trough, partly filled with water to depth d.
Find: (a) General expressions for F_{R} and y^{\prime} on end of trough, if open to atmosphere.
(b) Plots of results vs, d / R for $0 \leq d / \mathbb{c} \leq 1$.

Solution: Apply basic equations for hydrostatics of incompressible liquid.
Computing equations: $p=p g h \quad F_{R}=\int_{A} p d A \quad g^{\prime} F_{R}=\int_{A} y p d A$
Assumptions: (1) Static liquid
(2) $\varphi=$ constant

$$
\begin{aligned}
p=\rho g h & =\rho g[y-(R-d)] \\
& =\rho g R\left[\frac{y}{R}-\left(1-\frac{d}{R}\right)\right]=\rho g R(\cos \theta-\cos \alpha)
\end{aligned}
$$

$$
h=g-(R-d)
$$

$$
d A=\omega d y=2 R \sin \theta d y ; y=R \cos \theta
$$

$$
\cos \alpha=\frac{R-d}{R}=1-\frac{d}{R}
$$

$$
F_{R}=\int_{R-d}^{R} p \omega d y=\int_{R-d}^{R} \rho g R(\cos \theta-\cos \alpha) 2 R \sin \theta(-R \sin \theta) d \theta
$$

$$
w=2 R \sin \theta
$$

The new limits are $y=R \rightarrow \theta=0$ and $y=R-d \rightarrow \theta=\alpha$, so
and

$$
\begin{aligned}
& F_{R}=2 \rho g R^{3} \int_{\alpha}^{0}\left(-\sin ^{2} \theta \cos \theta+\sin ^{2} \theta \cos \alpha\right) d \theta=2 \rho g R^{3} \int_{0}^{\infty}\left(\sin ^{2} \theta \cos \theta-\sin ^{2} \theta \cos \alpha\right) d \theta \\
& =2 \rho g R^{3}\left[\frac{\sin ^{3} \theta}{3}-\cos \alpha\left(\frac{\theta}{2}-\frac{\sin 2 \theta}{4}\right)\right]_{0}^{\alpha}=2 \rho g R^{3}\left[\frac{\sin ^{3} \theta}{3}-\cos \alpha\left(\frac{\theta}{2}-\frac{\sin \theta \cos \theta}{2}\right)\right]_{0}^{\alpha} \\
& F_{R}=2 \rho g R^{3}\left[\frac{\sin ^{3} \alpha}{3}-\cos \alpha\left(\frac{\alpha}{2}-\frac{\sin \alpha \cos \alpha}{2}\right)\right] \\
& y^{\prime} F_{R}=\int_{R-d}^{R} y p u r d y=\int_{R-d}^{R} R \cos \theta \rho g R(\cos \theta-\cos \alpha) 2 R \sin \theta(-R \sin \theta) d \theta \\
& =2 \rho g R^{4} \int_{0}^{\alpha} \sin ^{2} \theta \cos \theta(\cos \theta-\cos \alpha) d \theta=2 \rho g R^{4} \int_{0}^{\alpha}\left(\sin ^{2} \theta \cos ^{2} \theta-\cos \alpha \sin ^{2} \theta \cos \theta\right) d \theta \\
& =2 \rho g R^{4}\left[\frac{1}{8}\left(\theta-\frac{\sin 4 \theta}{4}\right)-\cos \alpha \frac{\sin ^{3} \theta}{3}\right]_{0}^{\alpha} \\
& y^{\prime} F_{R}=2 \rho g R^{4}\left[\frac{1}{8}\left(\alpha-\sin \frac{4 \alpha}{4}\right)-\cos \alpha \frac{\sin ^{3} \alpha}{3}\right] \\
& y^{\prime}=\frac{y^{\prime} F_{R}}{F_{R}} \text { or } y^{\prime} / R=\frac{y^{\prime} F_{R}}{R F_{R}}
\end{aligned}
$$

Resultant force and line of action on end semi-cylindrical water trough:

d / R	$\alpha(\mathrm{rad})$	$\alpha(\mathrm{deg})$	$F_{\mathrm{R}} / \rho g R^{3}$	$y^{\prime} F_{\mathrm{R}} / \rho g R^{4}$	$\boldsymbol{y}{ }^{\prime} / R$
0	0.001	0.08	$7.54 \mathrm{E}-16$	$7.54 \mathrm{E}-16$	1.000
0.05	0.318	18.2	0.000419	0.000410	0.979
0.1	0.451	25.8	0.00236	0.00226	0.957
0.2	0.644	36.9	0.0132	0.0121	0.915
0.3	0.795	45.6	0.0360	0.0314	0.873
0.4	0.927	53.1	0.0730	0.0606	0.831
0.5	1.05	60.0	0.126	0.0994	0.790
0.6	1.16	66.4	0.196	0.147	0.749
0.7	1.27	72.5	0.285	0.202	0.708
0.8	1.37	78.5	0.392	0.262	0.668
0.9	1.47	84.3	0.520	0.326	0.628
1.0	1.57	90.0	0.667	0.393	0.589

Given: Window, in shape of isosceles triangle and hinged at the top is located in the vertical wall of a form that contains concrete.

Find: the minimum force applied at 7 needed to keep the window closed.

Plot: the results over the range of concrete depth $o \leq c \leq a$
Solution:
Basic equations: $\frac{d f}{d h}=p g, F=(p d A, \Sigma M=0$
Assumptions: (1) static fluid a) $p=$ constant
(3) Pain acts at the free surface and on the outside of the window.
then $d p=p g$ th gives $p=p g(h-d)$ for $h>d$ and $f=0$ for $h L d$

$$
\text { where } d=a-c
$$

Summoning moments about the hinge

$$
F_{V}=\frac{1}{a} \int h P d A=\frac{1}{a} \int_{d}^{a} h p g(h-d) \text { wd }
$$

$\begin{array}{ll}\text { From the law of similar triangles } & \frac{w}{b}=\frac{a-h}{a} ; w=\frac{b}{a} h \\ F_{D}=\frac{b}{a^{2}} \operatorname{la}\left(\begin{array}{l}a \\ d\end{array}(h-d)(a-h) d h\right. & \left.\left\{p=s G_{\text {concur }} p H_{2}\right)\right\}\end{array}$
$F_{D}=\frac{b}{a^{2}} p g \int_{d}^{a}\left[-h^{3}+h^{2}(a+d)-a d h\right] d h$
$F_{\nu}=\frac{b}{a^{2}} p g\left[-\frac{h^{4}}{4}+\frac{h^{3}}{3}(a+d)-\frac{1}{2} a d h^{2}\right]_{d}^{a}$
$F_{D}=\frac{b}{a^{2}} \rho g\left[-\frac{1}{4}\left(a^{4}-d^{4}\right)+\frac{1}{3}\left(a^{3}-d^{3}\right)(a+d)-\frac{1}{2} a d\left(a^{2}-d^{2}\right)\right.$

$$
\begin{equation*}
F_{D}=b p g a^{2}\left[-\frac{1}{4}\left(1-\frac{d^{4}}{a^{4}}\right)+\frac{1}{3}\left(1-\frac{d^{3}}{a^{3}}\right)\left(1+\frac{d}{a}\right)-\frac{1}{2} \frac{d}{a}\left(1-\frac{d^{2}}{a^{2}}\right)\right] \tag{i}
\end{equation*}
$$

Evaluating with $\rho=S G_{\text {core }} P_{H_{20}} \quad(S G=2.5$-Table A.I)

$$
b p g a^{2}=0.3 m \times 2.5 \times 10^{3} \frac{\mathrm{~kg}}{\mathrm{H}^{3}} \times 9.81 \frac{\mathrm{M}}{\mathrm{~g}^{2}} \times(0.4)^{2} \mathrm{~m}^{2}+\frac{\mathrm{N}^{2}}{\mathrm{~kg} \cdot \mathrm{M}}=1177 \mathrm{~N}
$$

For $a=0.4 \mathrm{~m}, c=0.25 \mathrm{~m}, \quad d=a-c=0.15 \mathrm{~m}, \frac{d}{a}=0.375$ The term [] in Eq. I has a value of 0.0280

Problem 3.51
Given: Pair of plane gates close a channel of width, $w=110 \mathrm{ft}$; each gate is Ringed at Scrannel wall. Gate edges are forced together at the channel center by wales pressure. Water dept. $y=32 \mathrm{ft}$. Neglect the weight of the gate.
Find: (a) force exerted by water on gate A.
(b) force components exerted by the gate on hinge A

Solution:
Basic equations: $\frac{d p}{d h}=p g ;-P=-p a t+n+p g h$
Assumptions: (i) static liquid
(a) gravity only body force
(3) hestive down from free surface.
(4) Path acts on both
plan view:

$$
F_{R}=1.82 \times 10^{6}
$$

Since the gate width, $b=\frac{W}{2 \cos }$, 5 shaft, is constant the line of action of F_{R} is located at blue from the hinge
To find the reaction forces at the hinge, consider a FBi of the gate.

S Since we have neglect the wight of the gate, the reaction force et the hinge has only components R_{x} and $R_{y} y_{F_{n}}$. between the pair of gates must act perpendicular to the charnel walls (from symmetry condition').

$$
\begin{aligned}
\Sigma M_{0}=0 & =F_{R} \frac{b}{2}-F_{n} b \sin 15^{\circ} \\
\therefore \quad F_{n} & =\frac{F_{R}}{2 \sin 15}=\frac{1.82 \times 10^{6}}{2 \sin 15}=3.52 \times 10^{\circ}
\end{aligned} \$ 6 \sigma^{\circ} .
$$

$$
\begin{array}{cc}
\sum F_{x}=F_{R} \cos 15-R_{x}=0 \quad \therefore R_{2}=F_{R} \cos 15=1.82 \times 10^{6} 16+\cos 15=1.16 \times 11^{6} 10 f \\
\Sigma F_{y}=-R_{y}-F_{R} \sin 15+F_{n}=0 \quad \therefore \quad R_{y}=F_{n}-F_{R} \sin 15=3.52 \times 10^{6}-1.82 \times 10^{6} \sin 5 \\
& R_{y}=3.04 \times 10^{6} \text { ibo. }
\end{array}
$$

The force on the hinge (from fie gate) is $\vec{F}_{R}=(1, i b i+3.04 j)$ io $1 b f \vec{F}_{A}$

$$
\begin{aligned}
& \text { sides of gate } \\
& \begin{array}{l}
\text { Then } \\
F_{R}=\left(p d A=\left\{p g h b d h=\rho g \frac{W}{2 \cos 5} \frac{h^{2}}{2}\right]_{0}^{2}=\frac{\rho g \omega)^{2}}{r \cos 15^{\circ}}\right.
\end{array} \\
& =\frac{1}{4 \operatorname{cossis}} 1.94 \frac{5 \mathrm{~m}}{\mathrm{ft}^{3}} \times 32.2 \frac{\mathrm{ft}}{\mathrm{~s}^{2}} \times 110 \mathrm{ft} \times(32)^{2} \mathrm{ft}^{2} \times \frac{16 \mathrm{f} . \mathrm{s}^{2}}{\mathrm{fting}}
\end{aligned}
$$

Given: Liquid concrete poured between vertical forms as shown
Find: (a) Resultant force on form
(b) Line of application

Solution:
Basic equation: $\frac{d p}{d y}=p g$
Computing equations:

$$
F_{R}=P_{c} A \quad \text { (3.14); } y^{\prime}=y_{c}+\frac{I_{2 x}}{A_{y}}(3.15 a) ; x^{\prime}=x_{c}+\frac{I_{i \hat{x}}}{A y_{c}}
$$

For the rectangular plate : $x_{c}=2.5 \mathrm{~m}, x_{c}=1.5 \mathrm{~m}$.

$$
I_{i x}=\frac{1}{12} w H^{2}, I_{\text {is }}=0
$$

Assumptions: (i) static liquid (2) incompressible liquid (3) Path acts at free surface and on the

Then on integrating $d p=p g d y$, we obtain $p=p g y$

$$
\begin{aligned}
& F_{R}=P_{C} A=p g y_{C} A=p g y_{c} w H=S G_{\text {con }} P_{H_{\infty}} y_{c} w A
\end{aligned}
$$

$$
\begin{aligned}
& F_{R}=552 \mathrm{kN} \text {, } \mathrm{kg} \cdot \mathrm{~m}, \quad \mathrm{Fe}^{2} \\
& y^{\prime}=y_{c}+\frac{F_{i \pi}}{F y_{c}}=y_{c}+\frac{1}{12} \frac{W H^{3}}{w H y_{c}}=y_{c}+\frac{1}{12} \frac{H^{2}}{y_{c}}=1.5 m+\frac{1}{12} \frac{(3 m)^{2}}{\frac{1.5 m}{}}=2.0 m \\
& x^{\prime}=x_{c}=2.5 \mathrm{~m}
\end{aligned}
$$

Line of application is through $\left(x^{\prime}, y^{\prime}\right)=(2.5,2.0) m$ (x,yy)

Given: Door as shown in the figure; x axis is alary the hinge

Find: Force required to heep door shut by considering the distributed force to be the sum of a force F, Caused by wiform gage pressure, and fore F_{2} caused by lie liquid).
Solution:

$F_{1}=P_{0} A=100 \frac{b f}{f 2} \times 3 f+2 f t=600 \mathrm{lb} \quad\left\{\right.$ applied at $\left.\left(x^{\prime}, z\right)=(1,0,1),\right) t$

$$
F_{2}=P_{c} A=p g h_{c} L b=\gamma h_{c} b b=100 \frac{b}{f c^{3}} \times 1.5 f t \times 3 f+2 f t=9001 b f .
$$

For the rectangular door $I_{i n}=\frac{1}{12} b l^{3}$

The free-body diagram of the door is then

$$
\begin{aligned}
\Sigma M_{A_{x}} & =0=L F_{t}-F_{1}\left(L-h_{1}^{\prime}\right)-F_{2}\left(L-h_{2}^{\prime}\right) \\
F_{t} & =F_{1}\left(1-\frac{h_{1}^{\prime}}{L}\right)+F_{2}\left(1-\frac{h_{2}^{\prime}}{L}\right) \\
& =6001 b\left(1-\frac{1.5}{3.0}\right)+9001 b\left(1-\frac{2}{3}\right) \\
F_{t} & =6001 b
\end{aligned}
$$

Given: Croularaccess port, of dearieter $d=0 . b \mathrm{~m}$, in side of water standpipe, of diameter. $D=7 \mathrm{~m}$, is held in place by eight bolts evenly spaced gexound circumference of the port.
Center of the ports boated al distance $L=12 \mathrm{~m}$ blow the free
 surface of the water
Find: (a) Total force on the port
(b) Appropriate bolt diameter

Solution:
Basic equations: $\quad d h=p g, \sigma=\frac{F}{A}$
Computing equation: $\quad F_{\&}=P_{c} A$
Assumptions: il static flue
(2) incompressible
(3) Force distributed uniformity aver tie bolts
(4) appropriate working stress for steel bolts
(5) Pate acts at free surface and on the outside of the port
Ten on integrating $d P=p g d t$ we obtain $p=p g h$

$$
\begin{aligned}
& F_{R}=p_{c} A=\rho g h_{c} \pi R^{2}-\rho g h \pi R^{2} \\
& F_{R}=999 \frac{\mathrm{~kg}}{\mathrm{M}^{3}}+9.81 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}+12 m+\pi+(0.3 \mathrm{H})^{2}+\frac{\mathrm{N} \mathrm{~s}^{2}}{\mathrm{~kg}} \mathrm{~m}=33.3 \mathrm{ln} \\
& \sigma=\frac{F}{A} \text { where } A(\text { total area of bolts })=8 * \frac{\pi d b^{2}}{4} \\
& \text { Ten } \\
& \sigma=\frac{F}{2 \pi d b^{2}} \\
& d b_{0}=\left[\frac{F}{2 \pi \sigma}\right]^{1 / 2}=\left[\frac{33.3+10^{3} r}{2 \pi}+10^{8} \frac{m^{2}}{N} \times 10^{6} \frac{\mathrm{~mm}^{2}}{M^{2}}\right]^{1 / 2}=7.28 \mathrm{~mm} \quad d_{b}
\end{aligned}
$$

Given: Gate $A \propto$, hinged along 0 , has wist' $b=$ Toft; weight' of gate may be neglected. Gate is sealed at C
Find: Force in bars $A B$
Solution:
Basie equations: \quad dh $=p g ; \sum H_{z}=0$
Computurig equations: $F_{e}=e_{c} A ; y^{\prime}=y_{c}+\frac{I_{4}}{y_{c} A} ; I_{i=}=\frac{b b^{3}}{12}$ Assumptions: (i) static liquid (2) $p=$ constant
(3) Pate acts at free surface and on outside of gate.
(4) no resisting moment in hinge along 0
(5) no vertical resisting force atc.

Hen on integrating $d P=p g a h$, we obtain $p=$ pah The free body diagram of the gate is as shown.

F is resultant of distributed force on h. F_{2} " " "uniform force on h_{2}
$F_{\text {he }}$ is fore of bars
$C x$ is force from seal atc c

$$
h_{1}^{\prime}=h_{c}+\frac{b h_{1}^{3}}{12 h h_{b} h}=\frac{h_{1}}{2}+\frac{h^{2}}{12} \times h_{1}=\frac{h}{2}+\frac{h}{6}=\frac{2}{3} h-\frac{2}{3} \times 12 f=8 f
$$

$$
F_{2}=\rho_{c} A_{2}=p g h_{c} b h_{2}=p g h_{1} b h_{2}
$$

$$
F_{2}=1194 \text { slug } \frac{p g}{8^{3}} \times 32.2 \frac{f t}{s^{2}} \times 12 f t+b f t \times b f=27.0 \times 10^{3} \text { bf }
$$

Since the pressure is uniform over surface (A), the force Fr acts at the centroid of the surface, Ne $k_{2}=L_{2} l_{2}=3 f$. Then summing moments about o guvs

Thus bar AB is in compression

$$
\begin{aligned}
& \left.\Sigma r_{0_{3}}=0={ }^{(} h_{1}+h_{3}\right) F_{A B}+\hat{y}_{2} F_{2}-\left(h_{1} h_{1}\right) F_{1} \\
& F_{A B}=\frac{1}{\left(L_{1}+L_{3}\right)}\left[\left(L_{1}-h_{1}^{\prime}\right) F_{1}-K_{2}^{\prime} F_{2}\right]=\frac{1}{15 f t}\left[(12-8) K \times 27,000 l_{d}-3 f^{2} \times 27 . \operatorname{codd} d\right] \\
& F_{A B}=1800 \text { br. }
\end{aligned}
$$

$$
\begin{aligned}
& F_{1}=-P_{c} F_{1}=e g h_{c} b_{1}
\end{aligned}
$$

Given: Water rising on the left side of the gate courses it to per automatically. Neglect wight of gate.
Find: Dept?: P, above tee hinge atwich the gate begin to open.

Solution:
Basic equations: $\quad \frac{d p}{d t}=\rho g ; \sum M_{z}=0$
computing equations: $F_{R}=-P_{c} f ; y_{i}=y_{c}+\frac{T_{i \hat{\alpha}}}{y_{2}} ; I_{i x}=\frac{b y^{3}}{12}$
Assumptions: in static liquid (i) $p=$ constant
(3) Pate acts at free surface and onoutside of gate
(4) no resisting moment in hinge.

Than on integrating $d P=$ g gat, we dotain $-p=p g h$
The free body diagram of the gate is as shown.

F_{1} is resultant or distributed force on verticdsection F_{2} " " "uniform force onhorgontal.

Let wide of gate be b.

$$
\begin{aligned}
& \left.\left.\left.F_{1}=-p_{c} A_{1}=p g h c \quad b\right\rangle={ }_{2} P g \frac{\partial}{2} b\right\rangle=\frac{1}{2} p g b\right\rangle^{2} \\
& {h_{1}}_{1}=h_{c_{1}}+\frac{b y^{3}}{12 h_{c} b D}=\frac{9}{2}+\frac{y^{2}}{12} \frac{y}{2}=\left(\frac{1}{2},+\frac{1}{b}\right) y=\frac{2}{3} y
\end{aligned}
$$

$$
F_{2}=-e_{c} A_{2}=p g h_{c_{2}} b L=p g b_{10}
$$

Since the pressure is uniform over the horizontal surface, the force P_{2} acts at the centroid of the surface, ie. $H_{2}=L_{2}$
Then summing moments about the hinge

$$
\begin{aligned}
& \therefore \quad L^{2}-\frac{D^{2}}{3}=0 \\
& D=\sqrt{3} h=\sqrt{3}+1.5 m=2.60 \mathrm{~m}
\end{aligned}
$$

Given: Gate of width $b=2 m$, hinged at H.
Find: Force Fa required to hold gate closed.
Solution:
Babicequations: $\frac{d p}{d h}=p g$

$$
\sum m_{z}=0
$$

Computing equations: $F_{R}=P_{R} A ; y^{\prime}=y_{0}+\frac{T_{A T}}{y_{0} A} ; T_{i=1}=\frac{b^{3}}{R^{2}}$
Assumptions: (i) static liquid (a) $p=$ constant
(3) Path act that free surface and on top of the gate.
Then on integrating $d f=p g d h$, we obtain $f=p g h$

$$
\begin{aligned}
& \begin{aligned}
F_{R}=-P_{c} A=p g h_{c} A=p g h_{c} h b \quad h_{c}=D+\frac{h}{2} \sin 30^{\circ}=\ln +\frac{2 \pi}{2} \sin 30^{\circ} \\
h_{c}=1.5 m .
\end{aligned} \\
& F_{e}=999 \frac{\mathrm{lg}}{\mathrm{M}^{3}} \times 9.81 \frac{\mu}{5^{2}} \times 1.5 m \times 2 m \times 2 m+\frac{\lambda .5^{2}}{\mathrm{~kg} \cdot \mathrm{~m}} \\
& F_{R}=58.8 \mathrm{kN}
\end{aligned}
$$

When using the computing equation to find y', we must use coordinates, with origin at the location where pegaz=0

$$
\begin{aligned}
& y_{c}=\frac{D}{\sin 30}+\frac{h}{2}=\frac{1 m}{\sin 30^{\circ}}+\frac{2 m}{2}=3.0 \mathrm{~m} \\
& y^{\prime}=y_{c}+\frac{F_{n}}{A y_{c}}=y_{c}+\frac{b h^{3}}{\left(2 y_{c} b l h\right.}=y_{c}+\frac{L^{2}}{12 y_{c}} \\
& y^{\prime}=3.0 m+\frac{(2 m)^{2}}{(12) 3.0 m}=3.111 m
\end{aligned}
$$

The free body diagram of the gate is as shown.

Summing moments about H

$$
\begin{aligned}
& \Sigma r_{H}=0=\eta^{\prime} F_{R}-L F_{H} \\
& \text { where } \eta^{\prime}=y^{\prime}-\frac{D}{\sin 30^{\circ}}=3.11 m-\frac{D}{\sin 30^{\circ}}=1 . N M \\
& F_{A}=\frac{1}{2} \eta^{\prime} F_{R}=\frac{1.1 M}{2.00} \times 58.860=32.66 E_{A}
\end{aligned}
$$

Given: Gate shown has will $b=3 \mathrm{~m}$; mass of gate is negligible.
Gigue is in equilibrium
Find: Water depth, d
Solution:
Basic equation: $\frac{d p}{d h}=p q \quad \sum M_{z}=0$
Computing equations: $F_{R}=P_{R A} ; y^{\prime}=y_{c}^{*} I_{R \pi}^{y_{H}} ; I_{A}=\frac{b h^{3}}{12}$
Assumptions: (1) static liquid (2) $p=$ constant
(3) Path acts at free surface and on underside of gate.
Ten on integrating $d p=p g a h$, we obtain $p=p g h$
where l is tenth of gate in contact wit te wat

The free body diagram of the gate is as shown.
 Summing moments about A..

$$
\begin{aligned}
& \sum M_{z}=0=T L-\left(l-y^{\prime}\right) F_{R} \quad T=M g \\
& M g h=\left(l-y^{\prime}\right) F_{R}=\left(\frac{d}{\sin \theta}-\frac{2 d}{3 \sin \theta}\right) \frac{p g b d^{2}}{2 \sin \theta} \\
& M g h=\frac{1}{3} \frac{d}{\sin \theta} \times \frac{p b d^{2}}{2 \sin \theta}=\frac{p g b d^{3}}{6 \sin ^{2} \theta} \\
& d^{3}=\frac{6 \sin ^{2} \theta M L}{p b} \\
& m^{3}
\end{aligned}
$$

$$
d=\left[6+\sin ^{2} 60^{\circ} \times 2500 \lg _{\times 5 m} \times \frac{\left.\mathrm{a}^{\frac{m^{3}}{\mathrm{~kg}}} \times \frac{1}{3 m}\right]^{1 / 3}=2.66 m}{d}\right.
$$

$$
\begin{aligned}
& F_{R}=-e_{c} A=\rho g h_{c} A \quad h_{c}=\frac{d}{2} \quad, A=b \times \frac{d}{\sin \theta} \\
& F_{R}=\rho g \frac{d}{2} \frac{d b}{\sin \theta}=\frac{\rho g b d^{2}}{2 \sin \theta} \\
& y^{\prime}=y_{c}+\frac{I_{3 A}}{y_{c} A}=y_{c}+\frac{1}{12} \frac{b l^{3}}{y_{c} b} \\
& y^{\prime}=y_{c}+\frac{l^{2}}{12 y_{c}} \quad l=\frac{d}{\sin \theta}, y_{c}=\frac{l}{2}=\frac{d}{2 \sin \theta} \\
& y^{\prime}=\frac{d}{2 \sin \theta}+\frac{1}{12}\left(\frac{d}{\sin \theta}\right)^{2} \frac{2 \sin \theta}{d}=\frac{d}{2 \sin \theta}+\frac{d}{6 \sin \theta}=\frac{2 d}{3 \sin \theta}
\end{aligned}
$$

Given: Long, square wooden block, pivoted on one edge, in equilibrium in water as shown: Friction in pinot is negligible.

Fid: Specific gravity of the

Solution:
Basic equations: $\quad \frac{d p}{d h}=p q, \quad 2+y_{0}=0$
Computing equations: $F_{R}=P_{c} A ; y^{\prime}=y_{c}+I_{k} y_{c} ; I_{i}=\frac{b d^{3}}{12}$ Assumptions: il static liquid
(2) $p=$ constant
(3) Pat acts of free surface and on aside of the block.
(4) no resisting moment in hinge (given)

Ter on integrating $d P=p a d$, we domain $P=p g$ the free bort diagram of te block is as shown.

F. is the resultant of distributed fore vertical face
F_{2} is the resultant of the uniform fore on the bottom face

$$
m=\operatorname{mass}=\operatorname{pig}=5 g^{2}=s p^{2} b
$$

where bis the length of the block

$$
\begin{aligned}
& F_{1}=p_{c} A_{1}=p g h_{c} d b=p g \frac{d}{2} d b=\frac{1}{2} p g b d^{2} \\
& h_{1}^{\prime}=h_{c_{1}}+\frac{b d}{12 h_{c} b d}=\frac{d}{2}+\frac{d^{2}}{12} \frac{d}{2}=d\left(\frac{1}{2}+\frac{1}{b}\right)=\frac{2}{3} d \\
& F_{2}=-p_{c} h_{2}=p g h_{c_{2}} b L_{1}=p g d b h
\end{aligned}
$$

F_{2} due to uniform pressure acts at centroid of surface then summing moments about the hing ques

$$
\begin{aligned}
& m g \frac{-F_{1}, h_{1},-F_{2} \frac{2}{2}=0}{2}=0
\end{aligned}
$$

$$
\begin{align*}
& 5 \in \frac{h^{3}}{2}-\frac{d^{3}}{6}-\frac{d h^{2}}{2}=0 \\
& S G=\frac{1}{3}\left(\frac{d}{2}\right)^{3}+\frac{d}{L}=\frac{1}{3}\left(\frac{0.6}{1.2}\right)^{3}+\frac{0.0}{1.2}=0.542 \tag{56}
\end{align*}
$$

Problem 3.60

A solid concrete dam is to be built to hold back a depth D of water. For ease of construction the walls of the dam must be planar. Your supervisor asks you to consider the following dam cross-sections: a rectangle, a right triangle with the hypotenuse in contact with the water, and a right triangle with the vertical in contact with the water. She wishes you to determine which of these would require the least amount of concrete. What will your report say? You decide to look at one more possibility: a nonright triangle, as shown. Develop and plot an expression for the cross-section area A as a function of α, and find the minimum cross-sectional area.

Given: Various dam cross-sections

Find: Which requires the least concrete; plot cross-section area A as a function of α

Solution

For each case, the dam width b enough moment to balance the moment due to fluid hydrostatic force(s). By doing a moment balance this value of b can be found
a) Rectangular dam

Straightforward application of the computing equations of Section 3-5 yields

$$
\begin{aligned}
& \mathrm{F}_{\mathrm{H}}=\mathrm{p}_{\mathrm{c}} \cdot \mathrm{~A}=\rho \cdot \mathrm{g} \cdot \frac{\mathrm{D}}{2} \cdot \mathrm{w} \cdot \mathrm{D}=\frac{1}{2} \cdot \rho \cdot \mathrm{~g} \cdot \mathrm{D}^{2} \cdot \mathrm{w} \\
& \mathrm{y}^{\prime}=\mathrm{y}_{\mathrm{c}}+\frac{\mathrm{I}_{\mathrm{xx}}}{\mathrm{~A} \cdot \mathrm{y}_{\mathrm{c}}}=\frac{\mathrm{D}}{2}+\frac{\mathrm{w} \cdot \mathrm{D}^{3}}{12 \cdot \mathrm{w} \cdot \mathrm{D} \cdot \frac{\mathrm{D}}{2}}=\frac{2}{3} \cdot \mathrm{D}
\end{aligned}
$$

so

$$
y=D-y^{\prime}=\frac{D}{3}
$$

Also

$$
\mathrm{m}=\rho_{\text {cement }} \cdot \mathrm{g} \cdot \mathrm{~b} \cdot \mathrm{D} \cdot \mathrm{w}=\mathrm{SG} \cdot \rho \cdot \mathrm{~g} \cdot \mathrm{~b} \cdot \mathrm{D} \cdot \mathrm{w}
$$

Taking moments about O

$$
\sum \mathrm{M}_{0 .}=0=-\mathrm{F}_{\mathrm{H}} \cdot \mathrm{y}+\frac{\mathrm{b}}{2} \cdot \mathrm{~m} \cdot \mathrm{~g}
$$

so

$$
\left(\frac{1}{2} \cdot \rho \cdot \mathrm{~g} \cdot \mathrm{D}^{2} \cdot \mathrm{w}\right) \cdot \frac{\mathrm{D}}{3}=\frac{\mathrm{b}}{2} \cdot(\mathrm{SG} \cdot \rho \cdot \mathrm{~g} \cdot \mathrm{~b} \cdot \mathrm{D} \cdot \mathrm{w})
$$

Solving for b

$$
\mathrm{b}=\frac{\mathrm{D}}{\sqrt{3 \cdot \mathrm{SG}}}
$$

The minimum rectangular cross-section area is $\mathrm{A}=\mathrm{b} \cdot \mathrm{D}=\frac{\mathrm{D}^{2}}{\sqrt{3 \cdot \mathrm{SG}}}$

For concrete, from Table A.1, $\mathrm{SG}=2.4$, so $\quad \mathrm{A}=\frac{\mathrm{D}^{2}}{\sqrt{3 \cdot \mathrm{SG}}}=\frac{\mathrm{D}^{2}}{\sqrt{3 \times 2.4}}$

$$
\mathrm{A}=0.373 \cdot \mathrm{D}^{2}
$$

a) Triangular dams
made, at the end of which right triangles are analysed as special cases by setting $\alpha=0$ or 1 .

Straightforward application of the computing equations of Section 3-5 yields

$$
\mathrm{y}^{\prime}=\mathrm{y}_{\mathrm{c}}+\frac{\mathrm{I}_{\mathrm{xx}}}{\mathrm{~A} \cdot \mathrm{y}_{\mathrm{c}}}=\frac{\mathrm{D}}{2}+\frac{\mathrm{w} \cdot \mathrm{D}^{3}}{12 \cdot \mathrm{w} \cdot \mathrm{D} \cdot \frac{\mathrm{D}}{2}}=\frac{2}{3} \cdot \mathrm{D}
$$

so $\quad y=D-y^{\prime}=\frac{D}{3}$

Also $\quad \mathrm{F}_{\mathrm{V}}=\rho \cdot \mathrm{V} \cdot \mathrm{g}=\rho \cdot \mathrm{g} \cdot \frac{\alpha \cdot \mathrm{b} \cdot \mathrm{D}}{2} \cdot \mathrm{w}=\frac{1}{2} \cdot \rho \cdot \mathrm{~g} \cdot \alpha \cdot \mathrm{~b} \cdot \mathrm{D} \cdot \mathrm{w}$

$$
\mathrm{x}=(\mathrm{b}-\alpha \cdot \mathrm{b})+\frac{2}{3} \cdot \alpha \cdot \mathrm{~b}=\mathrm{b} \cdot\left(1-\frac{\alpha}{3}\right)
$$

For the two triangular masses

$$
\begin{array}{ll}
\mathrm{m}_{1}=\frac{1}{2} \cdot \mathrm{SG} \cdot \rho \cdot \mathrm{~g} \cdot \alpha \cdot \mathrm{~b} \cdot \mathrm{D} \cdot \mathrm{w} & \mathrm{x}_{1}=(\mathrm{b}-\alpha \cdot \mathrm{b})+\frac{1}{3} \cdot \alpha \cdot \mathrm{~b}=\mathrm{b} \cdot\left(1-\frac{2 \cdot \alpha}{3}\right) \\
\mathrm{m}_{2}=\frac{1}{2} \cdot \mathrm{SG} \cdot \rho \cdot \mathrm{~g} \cdot(1-\alpha) \cdot \mathrm{b} \cdot \mathrm{D} \cdot \mathrm{w} & \mathrm{x}_{2}=\frac{2}{3} \cdot \mathrm{~b}(1-\alpha)
\end{array}
$$

Taking moments about O

$$
\sum \mathrm{M}_{0 .}=0=-\mathrm{F}_{\mathrm{H}} \cdot \mathrm{y}+\mathrm{F}_{\mathrm{V}} \cdot \mathrm{x}+\mathrm{m}_{1} \cdot \mathrm{~g} \cdot \mathrm{x}_{1}+\mathrm{m}_{2} \cdot \mathrm{~g} \cdot \mathrm{x}_{2}
$$

so $\quad-\left(\frac{1}{2} \cdot \rho \cdot \mathrm{~g} \cdot \mathrm{D}^{2} \cdot \mathrm{w}\right) \cdot \frac{\mathrm{D}}{3}+\left(\frac{1}{2} \cdot \rho \cdot \mathrm{~g} \cdot \alpha \cdot \mathrm{~b} \cdot \mathrm{D} \cdot \mathrm{w}\right) \cdot \mathrm{b} \cdot\left(1-\frac{\alpha}{3}\right) \ldots$
$=0$
$+\left(\frac{1}{2} \cdot \mathrm{SG} \cdot \rho \cdot \mathrm{g} \cdot \alpha \cdot \mathrm{b} \cdot \mathrm{D} \cdot \mathrm{w}\right) \cdot \mathrm{b} \cdot\left(1-\frac{2 \cdot \alpha}{3}\right)+\left[\frac{1}{2} \cdot \mathrm{SG} \cdot \rho \cdot \mathrm{g} \cdot(1-\alpha) \cdot \mathrm{b} \cdot \mathrm{D} \cdot \mathrm{W}\right] \cdot \frac{2}{3} \cdot \mathrm{~b}(1-\alpha)$

Solving for b

$$
\mathrm{b}=\frac{\mathrm{D}}{\sqrt{\left(3 \cdot \alpha-\alpha^{2}\right)+\mathrm{SG} \cdot(2-\alpha)}}
$$

For a

$$
\begin{aligned}
& \mathrm{b}=\frac{\mathrm{D}}{\sqrt{3-1+\mathrm{SG}}}=\frac{\mathrm{D}}{\sqrt{3-1+2.4}} \\
& \mathrm{~b}=0.477 \cdot \mathrm{D}
\end{aligned}
$$

The cross-section area is

$$
\begin{aligned}
& \mathrm{A}=\frac{\mathrm{b} \cdot \mathrm{D}}{2}=0.238 \cdot \mathrm{D}^{2} \\
& \mathrm{~A}=0.238 \cdot \mathrm{D}^{2}
\end{aligned}
$$

For a

$$
\begin{aligned}
& \mathrm{b}=\frac{\mathrm{D}}{\sqrt{2 \cdot \mathrm{SG}}}=\frac{\mathrm{D}}{\sqrt{2 \cdot 2.4}} \\
& \mathrm{~b}=0.456 \cdot \mathrm{D}
\end{aligned}
$$

The cross-section area is

$$
\begin{aligned}
& \mathrm{A}=\frac{\mathrm{b} \cdot \mathrm{D}}{2}=0.228 \cdot \mathrm{D}^{2} \\
& \mathrm{~A}=0.228 \cdot \mathrm{D}^{2}
\end{aligned}
$$

For a general triangle

$$
A=\frac{b \cdot D}{2}=\frac{D^{2}}{2 \cdot \sqrt{\left(3 \cdot \alpha-\alpha^{2}\right)+S G \cdot(2-\alpha)}}
$$

$$
A=\frac{D^{2}}{2 \cdot \sqrt{\left(3 \cdot \alpha-\alpha^{2}\right)+2.4 \cdot(2-\alpha)}}
$$

The final result is

$$
\mathrm{A}=\frac{\mathrm{D}^{2}}{2 \cdot \sqrt{4.8+0.6 \cdot \alpha-\alpha^{2}}}
$$

From the corresponding Excel workbook, the minimum area occurs at $\alpha=0.3$

$$
\mathrm{A}_{\min }=\frac{\mathrm{D}^{2}}{2 \cdot \sqrt{4.8+0.6 \times 0.3-0.3^{2}}}
$$

$$
\mathrm{A}=0.226 \cdot \mathrm{D}^{2}
$$

The final results are that a triangular cross-section with $\alpha=0.3$ uses the least concrete; the next best is a right triangle with the vertical in contact with the water; next is the right triangle with the hypotenuse in contact with the water; and the cross-section requiring the most concrete is the rectangular cross-section.

Problem 3.60 (In Excel)

A solid concrete dam is to be built to hold back a depth D of water. For ease of construction the walls of the dam must be planar. Your supervisor asks you to consider
the following dam cross-sections: a rectangle, a right triangle with the hypotenuse in contact with the water, and a right triangle with the vertical in contact with the water. She wishes you to determine which of these would require the least amount of concrete. What will your report say? You decide to look at one more possibility: a nonright triangle, as shown. Develop and plot an expression for the cross-section area A as a function of α, and find the minimum cross-sectional area.

Given: Various dam cross-sections
Find: Plot cross-section area as a function of α

Solution

The triangular cross-sections are considered in this workbook

The final result is

$$
\mathrm{A}=\frac{\mathrm{D}^{2}}{2 \cdot \sqrt{4.8+0.6 \cdot \alpha-\alpha^{2}}}
$$

The dimensionless area, A / D^{2}, is plotted

$\boldsymbol{\alpha}$	$\boldsymbol{A} / \boldsymbol{D}^{\mathbf{2}}$
0.0	0.2282
0.1	0.2270
0.2	0.2263
0.3	0.2261
0.4	0.2263
0.5	0.2270
0.6	0.2282
0.7	0.2299
0.8	0.2321
0.9	0.2349
1.0	0.2384

Solver can be used to find the minimum area

α	$\boldsymbol{A} / \boldsymbol{D}^{2}$
0.30	0.2261

Problem 3.61
Given: Parabolic gate, hinged at, has width $B=2 \mathrm{~m}$.

$$
c=0.25 \mathrm{~m}^{-1}, D=2 \mathrm{~m}, H=3 \mathrm{~m}
$$

Find: (a) Magnitude and line of action of vertical force on gate due to water
(b) Horizontal force applied at A needed for equilibrium
(c) Vertical force a plied at A needed for equilibrium

Solution:
Basic equations: $\frac{d p}{d h}=p g, \sum M_{z}=0, F_{v}=\int p d F_{y}, i F_{v}=\int x d F_{y}$ computing equations $F_{H}=\mu_{c H}, h^{\prime}=h_{c}+\frac{F_{H}}{h_{c} A}$
Assumptions: (1) static liquid (a) $p=$ constant
(3) Pate acts on the surface of the water. and along the ailside surface of the gate
Then an integrating $d p=p g$ ah, we obtain $-p=p g h$
(a) $F_{y}=\left(\rho d A_{y}=\int_{0}^{\sqrt{D / c}} p g h b d x=\int_{0}^{\sqrt{x}} p g(\lambda-y) b d x=\int_{0}^{\sqrt{\lambda / c}} p g(y)-c x^{2}\right) b d x$

$$
\begin{equation*}
\left.F_{v}=p g b\left[p x-\frac{c x^{3}}{3}\right]_{0}^{\sqrt{k} c}=p g b\left[\frac{\nu^{3 / 2}}{c^{1 / 2}}-\frac{c}{3}\left(\frac{2}{c}\right)^{1 / 2}\right]=\frac{2}{3} \frac{\rho g b}{c / 2}\right\rangle^{3 / 2}- \tag{1}
\end{equation*}
$$

$$
x^{\prime}=\frac{b p g}{F_{y}}\left[D \frac{x^{2}}{2}-c \frac{x^{4}}{4}\right]_{0}^{\sqrt{x}}=\frac{b p g}{F_{y}}\left[\frac{\partial}{2} \times \frac{\partial}{c}-\frac{c}{4} \frac{\nu^{2}}{c^{2}}\right]=\frac{b p g}{F_{y}} \frac{y^{2}}{4 c}
$$

$\pm \xrightarrow{4}$

$$
\left.x^{\prime}=\frac{1}{F_{v}} \int_{0}^{\sqrt{x}} x \rho g(1)-c x^{2}\right) b d x
$$

Substituting for F, from Eg.

$$
x^{\prime}=\frac{6 \operatorname{pg}\rangle^{2}}{4 c} \times \frac{3}{2} \frac{c^{1 / 2}}{\left(g \gamma 6 y^{3 / 2}\right.}=\frac{3}{8}\left(\frac{2}{c}\right)^{1 / 2}=\frac{3}{8}[2 m \times 0.25]^{1 / 2}=1.06 m+x^{\prime}
$$

In order to sum moments about part o to find the required force at A required for equilibrium we need to find tic horizontal force of the water on the gate and its line of action

$$
\begin{aligned}
& \left.F_{H}=p_{c} A=\rho g h_{c} b\right\rangle=\rho g b \frac{\nu^{2}}{2} \quad\left\{h_{c}=\lambda_{2}\right\} \\
& F_{H}=999 \frac{\mathrm{~kg}}{\mathrm{M}^{3}}+9.81 \frac{\mathrm{~m}}{\mathrm{~s}^{2}} \times 2 m \times\left(2 \frac{(\mathrm{~m})^{2}}{2} \times \frac{\mathrm{ND}^{2} \mathrm{~s}^{2}}{\mathrm{~kg}}=39.2 \mathrm{kN}\right. \\
& \left.\left.h^{\prime}=h_{c}+\frac{F_{i i}}{\pi h_{c}}=h_{c}+\frac{\eta^{2}}{12} h_{c} \quad\left\{\sum_{i k}=\frac{b}{12}\right\rangle^{3} \text { and } A=b\right\rangle\right\rangle \text {. } \\
& h^{\prime}=\frac{2}{2}+\frac{R^{2}}{12}+\frac{2}{8} \quad\left\{h_{c}=\frac{2}{2}\right\} \\
& \left.h^{\prime}=\frac{2}{3}\right\rangle=\frac{4}{3} m
\end{aligned}
$$

(b) Horizontal force applied at A for equilibrium

$$
\begin{aligned}
\sum M_{0} & =0=F_{H} H-F_{H} \dot{x}^{\prime}-F_{H}\left(0-h^{\prime}\right) \\
F_{A} & =\frac{1}{H}\left[F_{H} x^{\prime}+F_{H}\left(D-h^{\prime}\right)\right] \\
& =\frac{1}{3 M}\left[73.9 \mathrm{MN} \times 1.06 H+39.2 \mathrm{CH}+\left(2-\frac{4}{3}\right) M\right] \\
F_{A_{H}} & =34.8 \mathrm{kN}
\end{aligned}
$$

(c) Vertical force applied at A for equilibrium

$$
\begin{aligned}
& \sum M_{0}=0=F_{A} h-F_{V} x^{\prime}-F_{H}\left(\nu-h^{\prime}\right) . \\
& F_{A}=\frac{1}{2}\left[F_{N} x^{\prime}+F_{H}\left(D_{D}-h^{\prime}\right)\right] \\
& L=x @ y=H \text {. Since } y=c x^{2} \\
& L=\sqrt{\frac{H}{L}}=\left[3 m \times 0 . \frac{m}{25}\right]^{1 / 2}=3.46 m \\
& F_{a}=\frac{1}{3.46 m}\left[73.960 \times 1.06 m+39 \cdot 2 b m \times\left(2-\frac{4}{3}\right) m\right] \\
& F_{A_{y}}=30.2 \mathrm{tN}
\end{aligned}
$$

Problem 3.62
Given: Gate, hinged at 0 , has width b 1.5 m

$$
\begin{aligned}
& a=10 \mathrm{~m}^{-2}, D=1.20 \mathrm{~m}, \\
& H=1.40 \mathrm{~m}
\end{aligned}
$$

Find: (a) Magnitude and moment about 0 of vertical force on gate due to water
(b) Horizontal force applied at A needed for equilibrium

Solution
Basic equations: $\frac{d p}{d h}=p g, F_{v}=\int P d H_{y}, i F_{v}=\int x d F_{v}$

$$
y^{\prime} F_{A}=\int y d F_{H}, F_{H}=\int-P d A_{L}, \sum M_{O_{y}}=0
$$

Assumptions: (i) static liquid (a) $p=$ constant
(3) Pate acts on the surface of the water and along the top surface of the gate
Then on integrating $d p=p g t h$, we obtain $p=p g h$

$$
\begin{aligned}
& F_{V}=\int P d A_{y}=\int p g h b d x \\
& h=>-y \quad x=a y^{3} \quad d x=3 a y^{2} d y
\end{aligned}
$$

$$
F_{v}=\int_{0}^{7} p g(y-y) b 3 a y^{2} d y
$$

The moment of F_{s} about O is given by
$x^{\prime} F_{y}=3,76$ kN.M. \{couterclockwise \} iF \quad. F_{V}

$$
\begin{aligned}
& x F_{v}=\int x d F_{V}=\int x \cdot \rho d A_{y}=\int x p g h b d x . \\
& =p g b \int_{0}^{p} a y^{3}(D-y) 3 a y^{2} d y=3 p g b a^{2} \int_{0}^{7} y^{5}(\lambda-y) d y \\
& =3 p g b a^{2}\left[D y^{b}-y^{2}\right]_{0}^{p}=\left(g g^{b} \frac{\left.a^{2}\right\rangle^{7}}{14}\right.
\end{aligned}
$$

$$
\begin{aligned}
& F_{y}=3 \rho g b a\left[D \frac{y^{2}}{3}-y^{4}\right]_{0}^{y}=3 \rho g b a \frac{D^{4}}{12}=\rho g b a \frac{D^{4}}{4} \\
& F_{V}=999 \frac{\mathrm{~kg}}{\mathrm{~m}^{3}} \times 9.81 \frac{\mathrm{~m}}{\mathrm{~s}^{2}} \times 1.5 \mathrm{~m} \times \frac{1.0}{\mathrm{~m}^{2}} \times\left(1 . \frac{20 \mathrm{M}}{\mathrm{M}}\right)^{4} \times \frac{\mathrm{S}^{2}}{\mathrm{~kg} \cdot \mathrm{~m}}=7.62 \mathrm{kN}+F_{H}
\end{aligned}
$$

From the free body diagram of the gate

$$
\begin{aligned}
& \sum M_{a z}=x^{\prime} F_{V}+y^{\prime} F_{H}-H F_{R} \\
& y^{\prime} F_{H}=\int y d F_{H}=\int y P d A_{A}=\int y p h b d y=p g b \int_{0}^{D} y(p-y) d y \\
& =p g b\left[\frac{2 y^{2}}{2}-\frac{y^{3}}{3}\right]_{0}^{9}=\operatorname{gab} \frac{y^{3}}{6}
\end{aligned}
$$

Ra

$$
\begin{aligned}
& F_{A}=\frac{1}{H}\left[\hat{i}_{V}+\dot{y} F_{A}\right]=\frac{1}{140 m}[3,7 b+4,23] \mathrm{kAM} \\
& F_{A}=5, \pi 1 \mathrm{kN}
\end{aligned}
$$

Problem 3.63
Given: Liquid concrete is poured into form shown; width $w=4.25 \mathrm{~m}$
Find. Magnitude and line of action of Vertical force on form

Solution:
Basic equations: $\frac{d p}{d h}=p q, \quad F_{v}=\int p d A_{y}, \quad x F_{v}=\left(x d F_{v}\right.$
Assumptions: (i) static liquid (a) $p=$ constant
(3) Path acts on the liquid surface andalong the outside of the form.
then on integrating de=pgdh, we obtain $p=p g h$

$$
\begin{aligned}
& F_{v}=\int_{\pi / 2} p d A_{y}=(p g h d A \sin \theta \\
& d A=\omega R d \theta, h=R-y=R-R \sin \phi \\
& F_{v}=\int_{0}^{\pi / 2} \rho g R(1-\sin \theta) \sin \theta w R d \theta=\rho g^{2} \omega \int_{0}^{R / 2}\left(\sin \theta-\sin ^{2} \theta\right) d \theta \text {. } \\
& F_{U}=\rho g R^{2} \omega\left[-\cos \theta-\frac{\theta}{2}+\frac{\sin 2 \theta}{4}\right]_{0}^{\pi / 2}=\rho g R^{2} \omega\left[-0+1-\frac{\pi}{4}+0+0-0\right] \\
& F_{V}=f g R^{2} \omega\left(1-\frac{\pi}{4}\right) \quad\left\{p=S G p_{1+20} ; S G=2.5\right. \text { (Table AM) } \\
& F_{V}=2.5 \times 1000 \lg _{r^{3}} \times 9.81 \frac{1}{s^{2}} \times(0.313 m)^{2}+4.25 m\left(1-\frac{\pi}{4}\right) \times \frac{\sqrt{2} 5^{2}}{\frac{8 g}{91}} \\
& F_{J}=2.19 \mathrm{kN} \\
& F_{V} \\
& x^{\prime} F_{V}=\rho g e^{2} w \int_{0}^{\pi / 2} x\left(\sin \theta-\sin ^{2} \theta\right) d \theta=\rho g e^{2} \omega \int_{0}^{\pi / 2} R \cos \theta\left(\sin \theta-\sin ^{2} \theta\right) d \theta \\
& =\rho g R^{3} \omega \int_{0}^{\pi_{2}}\left(\sin \theta \cos \theta-\sin ^{2} \theta \cos \theta\right) d \theta=\operatorname{pgR^{3}} \omega\left[\frac{\sin ^{2} \theta}{2}-\frac{\sin ^{3} \theta}{3}\right]_{0}^{\pi / 2} \\
& x^{\prime} F_{v}=\rho g R^{3} \omega\left[\frac{1}{2}-\frac{1}{3}\right]=p g k^{3} \omega \\
& x^{\prime}=\frac{\rho g R^{3} w}{6 F_{0}}=\frac{\rho g R^{3} \omega}{6} \times \frac{1}{p g R^{2} \omega\left(1-\frac{\pi}{4}\right)}=\frac{R}{6\left(1-\frac{\pi}{4}\right)}=\frac{0.313 m}{6\left(1-\pi h_{4}\right)} \\
& x^{\prime}=0.243 \mathrm{~m}
\end{aligned}
$$

Problem 3.64

Given: Gate formed in the shape of a circular are has width of w metes. Liquid is water ; dept $h=k$

Find: (a) magnitude and direction of the net vertical fore component due to rived acting on the gate
(b) line of action of vertical
component of the force.

Solution
Basic equations: $\quad \vec{F}_{R}=-\left(P \overrightarrow{d A} \quad \frac{d \vec{y}}{d y}=p g\right.$
Assumptions: it static fluid

$$
x^{\prime} F_{e_{y}}=(x d F
$$

(2) $p=$ constant
(3) y is measured positwse downward from free surfosa

$$
\vec{F}_{R y}=\vec{F}_{R} \cdot j=\int \vec{j} \cdot j=-\int P d \vec{j} \cdot \tilde{j}=-\int P d A \sin \theta=-\int_{0}^{\pi / 2} \sin \theta \omega d \theta
$$

We can obtain an expression for P as a function of y

$$
\frac{d p}{d y}=p q \quad d p=p g d y \quad \text { and } \quad p-P_{0}=\int_{p_{0}}^{p_{0}} d p=\int_{0}^{y} p g d y=p q y
$$

Since atmospheric pressure acts at the free surface and on tie back surface of the gate then the appropriate expression for P is $P=p q y$ Alone the surface of the gate,
$y=R \sin \theta$ and

$$
\begin{aligned}
& y=R \sin \theta \text { and here } P=p g R \sin \theta \\
& \left.F_{R y}=-\int_{0}^{\pi / 2} p \sin \theta \omega R d \theta=-\left.\rho g \omega R^{2}\right|_{0} ^{\pi / 2} \sin ^{2} \theta d \theta=-\rho g \omega R^{2} \int_{0}-\frac{\sin \theta}{4}\right]_{0}^{\pi / 2} \\
& F_{k y}=-\frac{\rho g \omega e^{2} \pi}{4}-\left\{F_{\text {er acts upward }\}}\right.
\end{aligned}
$$

Rus.

For any element of surface area, $d \vec{f}$, the farce, $d \vec{F}$, acts norma to the surface. Thus each $d \vec{F}$ has a lime of action trough the origin Consequently, the line of action of FR must also be trough the origin.

We can fond the line of action of F_{k} by recognizing that the nomen of Fry about an aus trough the origin Rust be equal to the sum ofothe moments of dFy about the same axis.

$$
\begin{aligned}
& x^{\prime} F_{R_{y}}=\int x d F_{y}=\int x(-P d f \sin \theta)=-\int x p d f \sin \theta \\
& x^{\prime} F_{R y}=-\int_{0}^{\pi / 2} R \cos \theta p R \sin \theta \omega R d \theta \sin \theta=-p g \omega R^{3} \int_{0}^{3 / 2} \sin ^{2} \theta \cos \theta d \theta \\
& x^{\prime}=-\frac{p q u R^{3}}{F_{R y}} \int_{0}^{\pi / 2} \sin ^{2} \theta \cos \theta d \theta=\frac{-p q \omega R^{3}}{-\frac{p g R^{2} r}{4}}\left[\frac{1}{3} \sin ^{3} \theta\right]_{0}^{\pi / 2} \\
& x^{\prime}=\frac{4 R}{3 x}
\end{aligned}
$$

Problem 3.65
Given: Dam with cross-section shown (width b=50M)
Find: (a) Magnitude and line of action of Vertical force on dam due to water
(b) If il is possible for water force to overturn the donn

Solution:

Baric equations: $\frac{d p}{d h}=p g, F_{v}=\int-p d A_{y},{ }^{\prime} F_{y}=\int_{x} d F_{y}, \sum x=0$ Computing equations: $F_{H}=-P_{C} A, h^{\prime}=h_{c}+\frac{T_{i x}}{h_{C}}$
Assumptions: (1) static fluid (a) $p=$ constant
(3) Paten acts on the surface of the water and on the back side of the dan.
Ten an nitegrating $d p=p g a h$ we obtain $p=p g h$

$$
\begin{gathered}
F_{V}=\int-P d A_{y}=\int_{x_{A}}^{x_{B}} \rho g h b d x=\rho g b \int_{t_{H}}^{t_{B}}(H-y) d x \\
y(x-F)=B \text { so } y=(x-A)
\end{gathered}
$$

$$
F_{V}=p g \int_{A_{A}}^{t_{B}}\left(H-\frac{B}{(x-A}\right) d x
$$

$$
=\rho g b^{h}\left[H_{x}-B \ln (x-A)_{h_{a}}^{k_{3}}\right.
$$

$$
F_{V}=p g\left[H\left(x_{B}-x_{A}\right)-B \ln \frac{\left(x_{B}-A\right)}{\left(x_{A}-P\right)}\right.
$$

$$
F_{v}=999 \frac{\lg }{n^{3}}+9.81 \frac{m}{s^{2}}+50 m\left[2.5 m(2.2-0.76) m-0.9 m^{2} \ln \left(\frac{(2.2-0.4)}{(0.6-0.4)}\right] \frac{\mathrm{N.}^{2}}{\lg } \mathrm{~g}\right.
$$

$$
F_{\nu}=1.05 \times 10^{6} \lambda
$$

$$
\dot{x} F_{v}=\int x F_{V}=\int_{x_{n}}^{t_{0}}+\rho g b\left(H-\frac{B}{(x-A)} d x=p g \int_{t_{A}}^{t_{0}}\left[A x-\frac{B x}{(x-A)}\right] d x\right.
$$

$$
x^{\prime} F_{5}=\rho g b\left[H \frac{x^{2}}{2}-B x-B A \ln (x-A)\right]_{x_{G}}^{x_{B}}
$$

 $\left.-0.9 m^{2}+0.4 m \ln \frac{2.2-0.4}{0.76-0.4}\right\} \frac{2.5^{2}}{\operatorname{kg} .9} \times \frac{1}{105} \times 10 \mathrm{~N}$

$$
x^{\prime}=1.61 m
$$

From the free-body diagram of the dan we see that it is the horizontal component of the resultant force of the water that tends to overturn the dam
Thus, neglecting the wight of the dam, the net moment tending to overturn the dar is

$$
\begin{align*}
& \sum H_{0_{z}}=x^{\prime} F_{V}-y^{\prime} F_{H} \\
& F_{H}=-P_{c} A=p g h_{c} b H=\rho g \frac{A}{2} b t=\rho g b \frac{H^{2}}{2}, y^{\prime}=H-h^{\prime} \\
& h^{\prime}=h_{c}+\frac{T i A^{\prime}}{h_{c} A}=\frac{H}{2}+\frac{b H^{3}}{12} \times \frac{+}{2} b H=\frac{H}{2}+\frac{H}{6}=\frac{2}{3} H \\
& \therefore y^{\prime} F_{H}=\left(H-\frac{2}{3} H\right) \rho g b \frac{H^{2}}{2}=p g b \frac{H^{3}}{6} \tag{3}
\end{align*}
$$

The tipping moment is a maximum at $H=3.0 \mathrm{~m}$. At $H=3.0 \mathrm{~m}$,

$$
y^{\prime} F_{H}=p g b \frac{3 m)^{3}}{6}=4.50 p g b
$$

From Fy. (2), at these conditions

$$
\begin{aligned}
& x^{\prime} F_{v}=p g b\left\{\frac{3.0 m}{2}\left[(2.2 m)^{2}-(0.7 m)^{2}\right]-0.9 m^{2}[(2.2-0.1) m]-0.9 m^{2} \times 0.4 m\right. \\
&\left.\quad \ln \frac{2.12-0.4}{0.7-0.4}\right\}
\end{aligned}
$$

Thus at $H=3.0 \mathrm{~m}, \quad \sum M_{0}=4.50 \mathrm{pgb}-4.53 \mathrm{pgb}=-0.03 \mathrm{pgb}$ The weight of the gate would produce a clockwise moment Even neglecting this, the gate would not tip Note: The maximum net tipping moment occurs at a water dept $H=0.5 \mathrm{M}$
At this condition

$$
\begin{aligned}
& y^{\prime} F_{H}=p g \frac{H^{3}}{6}=999 \frac{\mathrm{~kg}}{\mathrm{n}^{3}} \times 9.81 \frac{\mu}{s^{2}} \times 50 \mathrm{~m} \times\left(\frac{0.5 \mathrm{~m}}{\mathrm{~b}} \times \frac{\mathrm{Na}}{\mathrm{~kg}}\right. \\
& y^{\prime} F_{H}=10.2 \text { thin }
\end{aligned}
$$

The moment from the weight. of the gate would be sufficient to prevertipping

Problem 3.ble

Gwen: Open tank as shown width of curved surface $b=10 f$
Find (a) vertical force component. Fry, on curved surface
b) line of action of Fey

Solution:

Basic equation: $\vec{F}_{R}=-\left(P d \vec{A} \quad \frac{d P}{d h}=\gamma \quad \vec{r}^{\prime} \times \vec{F}_{R}=\int \vec{r} \times \vec{d}=-\int \vec{r} \times P \overrightarrow{d P}\right.$ Assumptions: is static fluid
(2) gravity is only body force.
(3) $\quad r=$ constant $=62.4 \mathrm{bt} / \mathrm{ft}^{3}$
(4) h is measured positive downward from free surface

$$
F_{e_{y}}=\vec{F}_{R} \cdot \hat{\jmath}=-\int P \overrightarrow{d A} \cdot \hat{\jmath}=-\int P d A y=-\int P b d x
$$

We can obtain an expression for p as a function of y

$$
\frac{d P}{d h}=\gamma \quad d P=\gamma d h \quad P-P_{0}=P_{P_{0}}^{P} d P=\int_{0}^{h} \gamma d h=\gamma h
$$

Since atmospheric pressure acts at the free surface and on the underside of the curved surface, then the appropriate expression for P is $P=8 h$ Now, $h=L-y \quad \therefore P=\gamma(L-y)$
$F_{R_{y}}=-\int P b d x=-\int x(L-y) b d x$. Flong the surface $y=\left(R^{2}-x^{2}\right)^{1 / 2}$ and so

$$
\begin{aligned}
& F_{R y}=-\gamma b \int_{0}^{2}\left\{L-\left(R^{2}-x^{2}\right)^{1 / 2}\right\} d x=-\gamma b\left[L x-\frac{1}{2}\left(x \sqrt{R^{2}-x^{2}}+R^{2} \arcsin \frac{x}{R}\right]_{0}^{R}\right. \\
& =-8 b\left\{L R-\frac{1}{2}\left(R^{2} \arcsin 1\right)+\frac{1}{2} R^{2} \arcsin 0\right\}=\gamma b R\left\{L-\frac{R}{2} \arcsin 1\right\} \\
& =-\gamma b R\left\{L-R \frac{\pi}{4}\right\} \\
& F_{R_{y}}=-62.4 \frac{b r}{f t^{3}} \times 10 f t+4 f t \times\left\{10 f t-4 f t \times \frac{\pi}{4}\right\}=-17,100\left(b f_{2} \text { (ie ats downward) } \quad F_{R_{y}}\right. \\
& x^{\prime} \hat{\imath} \times F_{R} \hat{\jmath}=\int x \hat{\imath} \times d F_{R_{y}} \hat{\jmath}=\int x i \times\left(-P d F_{y} \hat{\jmath}\right)=-\int x \hat{\imath} \times P \dot{i} \times \hat{\jmath} \\
& x^{\prime} F_{R_{y}} \hat{k}_{2}=-\hat{e} \int x P b d x \\
& x^{\prime}=-\frac{1}{F_{R y}} \int_{0}^{R} x P b d x=-\frac{1}{F_{R y}} \int_{0}^{R} x \gamma(L-y) b d x=-\frac{\gamma b}{F_{R y}} \int_{0}^{R} x\left\{L-\left(R^{2}-x^{2}\right)^{1 / 2}\right\} d x \\
& =-\frac{\gamma_{b}}{F_{R_{y}}}\left[L \frac{x^{2}}{2}+\frac{1}{3} \sqrt{\left(R^{2}-x^{2}\right)^{3}}\right]_{0}^{R}=-\frac{\gamma b}{F_{R_{y}}}\left[L \frac{R^{2}}{2}-\frac{1}{3} R^{3}\right]=-\frac{\gamma b R^{2}}{F_{R_{y}}}\left[\frac{L}{2}-\frac{R}{3}\right] \\
& x^{\prime}=-62.4 \frac{b f}{f t^{3}} \times 10 f \times(4)^{2} f t^{2} \times \frac{1}{(-17,100) 1 b f}\left[\frac{10 f t}{2}-\frac{4 f t}{3}\right] \\
& x^{\prime}=2.14 \mathrm{ft}
\end{aligned}
$$

Problem 3.b7
Given: Concrete gate in the form of a quarter Eylinder, hinged at A, has width $b=2 M$.
Liquid is water. $R=2 m, y=3 m$
Find: Force on the stop at B.
Solution:
Basic equations: $\frac{d P}{d h}=p g, \quad \vec{F}_{R}=-\left(-P \overrightarrow{d H}, \sum M_{R_{z}}=0\right.$
Assumptions' (i) static liquid (z) $p=$ constant

$$
\sum M_{R_{z}}=0=x_{1} F_{1}-W_{g}{ }^{\prime} g+R F_{B}-\int(R-y) d F_{H}-\int x d F_{1}
$$

$$
d F_{1}=d F \sin \theta=P d A \sin \theta ; \quad d F_{A}=d F \cos \theta=P d A \cos \theta
$$

$d f=p g$ ah and $P-P_{0}=p g^{\prime}=p g(\nu-y)$. Also $d A=b R d \theta$
Then $R F_{B}=W_{g} x^{\prime} g-F X_{1}^{\prime}+\int_{0}^{\pi / 2}(R-y)-p b r \cos \theta d e+\int_{0}^{\pi / 2} x b R \sin \theta d \theta$.

$$
\begin{aligned}
& \left.R F_{B}=W_{g}^{\prime} g^{\prime}-F_{1} X_{1}^{\prime}+\int_{0}^{\pi / 2}(R-R \sin \theta)^{0} p g(\nu-y) b R \cos \theta d \theta+\int_{0}^{\pi / 2} R \cos \theta p g(\theta)-y\right) b R \sin \theta d \theta \\
& =w_{g} \prime^{\prime} g-F_{1} i_{1}^{\prime}+p g b R^{2} \int_{0}^{\pi / 2}(1-\sin \theta)(Q-R \sin t) \cos \theta d \theta+p g b l^{2}\left(\int_{0}^{\pi / 2} \sin \theta \cos \theta(\eta-R \sin \theta) d \theta\right. \\
& =W_{g} g^{\prime} g-F_{1}{x_{1}}^{\prime}+\rho g b R^{2} \int_{0}^{\pi / 2}\left[D \cos \theta-(t+R) \sin \theta \cos \theta+R \sin ^{2} \theta \cos \theta\right] d \theta \\
& +p g b R^{2} \int_{0}^{\pi / 2}\left[D \sin \theta \cos \theta-R \sin ^{2} \theta \cos \theta\right] d \theta \\
& =w^{\prime} g^{\prime} g-F, M_{1}^{\prime}+p g b R^{2}\left[D \sin \theta-(\nu+e)^{\frac{1}{2}} \sin ^{2} \theta+R \frac{\sin ^{3} \theta}{3}\right]^{\pi / 2} \\
& +p g b R^{2}\left[D \frac{\sin ^{2} \theta}{2}-e^{\frac{\sin ^{3} \theta}{3}}\right]_{0}^{\pi / 2} \\
& =W_{g} K_{g}^{\prime}-F_{1} x_{1}+\operatorname{pg}^{2} R^{2}\left[D-\frac{1}{2}(D+R)+\frac{1}{2} D\right] \\
& R F_{B}=W_{g} \dot{C}_{g}^{\prime}-F_{1} X_{i}+\operatorname{pg}^{\prime} b R^{2}\left[D-\frac{R}{2}\right] \\
& F_{1}=P_{1} H_{1}=p g^{2} b e \quad \text { also } x_{i}=\frac{R}{2}
\end{aligned}
$$

$$
\begin{align*}
& \text { also } \mathrm{k}_{\mathrm{g}}=\frac{4 k}{3 \pi} \\
& \therefore \quad R F_{B}=S G p g+\frac{R^{2}}{4} b+\frac{M R}{3 \pi}-p g d b R \times \frac{R}{2}+p g b R^{2}\left[D-\frac{R}{2}\right] \\
& F_{B}=S G_{g a_{k}} P g \frac{b R^{2}}{3}+p g b R(\lambda-R)=p g b R\left[\frac{(S G R}{2}+\frac{(\nu-R)}{2}\right] \\
& F_{B}=1000 \frac{\mathrm{lg}}{\mathrm{~m}^{3}} \times \frac{9.8 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}}{} \times 2 m \times 2 m\left[\frac{(2.4)(2)}{3}+\frac{1}{2}\right] m \times \frac{\mathrm{N} . \mathrm{s}^{2}}{\mathrm{~kg}} \\
& F_{B}=82.4 \mathrm{kN} \tag{8}
\end{align*}
$$

Problem 3.b8

Given: Tainter gate as shown
Find: Force of the water acting on the gate.
Solution:

Basic equations: $d f=-P d A ; \quad d p$
Assumptions: (i) static fluid
(2) $p=$ constant
(3) Pate acts at free surface and on surface orate

For $p=$ const, $\quad\left(d p=\int p g d h \quad y \lg / d s p-\lambda_{a t m}^{d(3)}=\rho g h=p g R \sin \theta\right.$ $d F_{\mu}=d F \cos \theta=-P d A \cos \theta=p g R \sin \theta \omega k d \theta \cos \theta \quad\{d A=w h d \theta\}$
$F_{H}=\int d F_{H}=\int_{0}^{\theta_{1}}$ gower $\sin \theta \cos \theta d \theta$ where $\theta_{1}=\sin ^{-1} \frac{10}{20_{2}}=30^{\circ}$
$F_{4}=\rho g w R^{2} \int_{0}^{30^{\circ}} \sin \theta \cos \theta d \theta=\rho g \omega R^{2}\left[\frac{\sin ^{2} \theta}{2}\right]_{0}^{30^{\circ}}=\frac{\rho g w R^{2}}{8}$
$F_{H}=\frac{1}{8} \times 999 \frac{\mathrm{~kg}}{\mathrm{M}^{3}} \times 9.81 \frac{\mathrm{M}}{\mathrm{sec}^{2}} \times 35 \mathrm{~m} \times(20 \mathrm{~m})^{2} \times \frac{\mathrm{N} \cdot \mathrm{sec}^{2}}{\mathrm{~kg} \cdot \mathrm{M}}=1.72 \times 10 \mathrm{~N}$
$d F_{1}=d F \sin \theta=-P d A \sin \theta=P g h \sin \theta$ FR d $\theta \sin \theta$

$$
\begin{aligned}
& F_{y}=\int d F_{4}=\rho g w R^{2} \int_{0}^{30^{\circ}} \operatorname{sen}^{2} \theta d \theta=\rho g w R^{2}\left[\frac{\theta}{2}-\frac{\sin 2 \theta}{4}\right]_{0}^{16} \\
& F_{y}=\rho g \omega R^{2}\left[\frac{\pi}{12}-\frac{0.860}{4}\right]=0.0453 \mathrm{pgwR} \\
& F_{V}=0.0453 \times 999 \frac{\mathrm{~kg}}{\mathrm{~m}^{3}} \times 9.81 \frac{\mathrm{~m}}{\mathrm{~s}^{2}} \times 35 \mathrm{~m} \times(2.0 \mathrm{~m})^{2} \times \frac{1.5^{2}}{\mathrm{~kg}^{2}}=6.22 \times 10^{6} \mathrm{~N} .
\end{aligned}
$$

Since the gate surface in contact with the water is a circular are, all elements, dr, of the force and hence the line of action of the resultant force must pass through the pivot. Thus

$$
\begin{aligned}
& F_{R}=\left[F_{H}^{2}+F_{V}^{2}\right]^{1 / 2} \\
& F_{R} \\
& F_{Q-1} \\
& F_{H}-\perp F_{V}
\end{aligned}
$$

\qquad

$$
\alpha=\tan ^{-1} \frac{F_{1}}{F_{R}}=\tan ^{-1} \frac{e_{122}}{17.2}
$$

$$
\alpha=19.9^{\circ}
$$

\qquad α

Fe passes through pine at angle α to the horizontal

Problem 3.69

Given: Cylindrical weir of radius, $R=1.5 n$ and length, $h=b m$ as shown Liquid is water

$$
D_{1}=3 \mathrm{~m} \quad y_{2}=1.5 \mathrm{~m}
$$

Find: Magnitude and direction of resultant
 fores of water on the weir

Solution:
Basic equation: $\quad \vec{F}_{R}=-\left(\overrightarrow{P d F} \quad \frac{d p}{d h}=p q\right.$
Assumptions: is static fluid
(2) $p=$ constant
(3) h is measured positive down from free surface

$$
\begin{aligned}
& F_{R}=\int d F_{x}=\vec{F}_{R} \cdot i=\int d \vec{F} \cdot \vec{i}=-\left(P d A \cdot i=-\int P d A \cos (90+\theta)=\int P d A \sin \theta\right. \\
& F_{R y}=\int d F_{y}=\vec{F}_{R} \cdot j=\left(d \vec{F} \cdot j=-\left(P d \vec{j} \cdot j=-\int P d A \cos \theta\right.\right.
\end{aligned}
$$

Since de LR do.

$$
F_{R-1}=\int_{0}^{3 \pi / 2} P L R \sin \theta d \theta \text { and } F_{E_{y}}=-\int_{0}^{3 \pi / 2} P L R \cos \theta d t
$$

We can obtain an expression for P as a function of h

$$
\frac{d p}{d h}=p g \quad d p=p g क h \quad \text { and } p-p_{0}=\int_{p_{0}}^{p} d p=\int_{0}^{h} p q d h=p h^{h}
$$

Since atmosphere pressure acts over the fret quadrant of the cylinder and both free surfaces, the appropriate expression for P is $P=p C^{\prime}$.

For

$$
0 \leq \theta \leq \pi, \quad h_{1}=R-R \cos \theta=R(1-\cos \theta) \text { and hence } r_{1}=p g R(1-\cos \theta)
$$

$\pi \leq \theta \leq \frac{3 \pi}{2}, h_{2}=-R \cos \theta$ and hence $P_{2}=-p Q R \cos \theta$

$$
\begin{aligned}
& F_{R}=\int_{0}^{3 \pi / 2} P L R \sin \theta d \theta=\int_{0}^{k} p g(1-\cos \theta) L R \sin \theta d \theta+\int_{\pi}^{3 \pi / 2}(-p g R \cos \theta) L R \sin \theta d \theta \\
& =p g^{R^{2}} L \int_{0}^{\pi}(1-\cos \theta) \sin \theta d \theta-p g^{t^{2} L} \int_{\pi}^{\pi \pi / 2} \cos \theta \sin \theta d e \\
& =p g g^{2} L\left[-\cos \theta-\frac{1}{2} \sin ^{2} \theta\right]_{0}^{\pi}-\operatorname{pg}^{2} L\left[\frac{1}{2} \sin ^{2} \theta\right]_{\pi}^{3 \pi / 2}=\operatorname{pg}^{2} L\left[2-\frac{1}{2}\right]=\frac{3}{2} \operatorname{pg}^{2} L \\
& F_{R_{1}}=\frac{3}{2} \times 999 \frac{\mathrm{~kg}}{\mathrm{n}^{2}} \times 9.8 \frac{\mathrm{n}}{\mathrm{~s}^{2}} \times(1.5)^{2} \mathrm{~m}^{2} \times 6 \mathrm{~m} \times \frac{\mathrm{N} \cdot \mathrm{~s}^{2}}{\mathrm{~kg} \cdot \mathrm{~m}}=198 \mathrm{kN} \\
& F_{R y}=-\int_{0}^{3 \pi / 2} p L R \cos \theta=\cdots \int_{0}^{\pi} p g R(1-\cos \theta) L R \cos \theta d \theta-\int_{\pi}^{3 \pi L_{2}}(-p g R \cos \theta) L R \cos \theta d \theta \\
& =-p g^{2} L \int_{0}^{\pi}(1-\cos \theta) \cos \theta d \theta+p R^{2} L \int_{\pi}^{3 \pi / 2} \cos ^{2} \theta d \theta \\
& =-\operatorname{pg}^{2} t\left[\sin \theta-\frac{\theta}{2}-\frac{\sin 2 \theta}{4}\right]_{0}^{\pi}+\operatorname{pg}^{2} L\left[\frac{\theta}{2}+\frac{\sin 2}{4}\right]_{\pi}^{3 \pi}=\operatorname{pg}^{2} L\left[\frac{\pi}{2}+\frac{3 \pi}{4}-\frac{\pi}{2}\right]=\frac{3 \pi}{4} \operatorname{pq}^{2} 2 \\
& F_{R_{y}}=\frac{3 \pi}{4} \times 999 \frac{\operatorname{la}}{m^{3}} \times 9.8 \frac{n}{s^{2}} \times(1.5)^{2} n^{2} \times 6 n \times \frac{N . s^{2}}{\operatorname{kgn}}=312 \mathrm{RN} \\
& \vec{F}_{R}=i F_{R_{m}}+j F_{R_{4}}=198 i+312 j R_{N} \\
& F_{k}=\sqrt{F_{E_{a}^{2}}^{2}+F_{B}^{2}}=\left[(198)^{2}+(312)^{2}\right]^{1 / 2} k_{N}=370 k_{N}
\end{aligned}
$$

Since all elements of force $\overrightarrow{d F}$ are normal to the surface, the direction α,

$$
{\underset{F}{k x}}_{4 F_{B_{y}}}
$$

$$
\alpha=\tan F_{R y} / F_{R x}=\tan ^{-1} 312 / 188=57.6^{\circ}
$$

Problem 3.70

Consider the cylindrical weir of diameter 3 m and length 6 m . If the fluid on the left has a specific gravity of 1.6 , and on the right has a specific gravity of 0.8 , find the magnitude and direction of the resultant force.

Given: Sphere with different fluids on each side

Find: Resultant force and direction

Solution

The horizontal and vertical forces due to each fluid are treated separately. For each, the horizon force is equivalent to that on a vertical flat plate; the vertical force is equivalent to the weight of "above".

For horizontal forces, the computing equation of Section $3-5$ is $F_{H}=p_{c} \cdot A$ where A is the area of the equivalent vertical plate.

For vertical forces, the computing equation of Section $3-5$ is $F_{V}=\rho \cdot g \cdot V$ where V is the volume of fluid above the curved surface.

The data are

$$
\text { For water } \quad \rho=999 \cdot \frac{\mathrm{~kg}}{\mathrm{~m}^{3}}
$$

For the fluids

$$
\mathrm{SG}_{1}=1.6
$$

$$
\mathrm{SG}_{2}=0.8
$$

For the weir
$\mathrm{D}=3 \cdot \mathrm{~m}$
$\mathrm{L}=6 \cdot \mathrm{~m}$
(a) Horizontal Forces

For fluid 1 (on the left) $\mathrm{F}_{\mathrm{H} 1}=\mathrm{p}_{\mathrm{c}} \cdot \mathrm{A}=\left(\rho_{1} \cdot \mathrm{~g} \cdot \frac{\mathrm{D}}{2}\right) \cdot \mathrm{D} \cdot \mathrm{L}=\frac{1}{2} \cdot \mathrm{SG}_{1} \cdot \rho \cdot \mathrm{~g} \cdot \mathrm{D}^{2} \cdot \mathrm{~L}$

$$
\begin{aligned}
& \mathrm{F}_{\mathrm{H} 1}=\frac{1}{2} \cdot 1 \cdot 6 \cdot 999 \cdot \frac{\mathrm{~kg}}{\mathrm{~m}^{3}} \cdot 9 \cdot 81 \cdot \frac{\mathrm{~m}}{\mathrm{~s}^{2}} \cdot(3 \cdot \mathrm{~m})^{2} \cdot 6 \cdot \mathrm{~m} \cdot \frac{\mathrm{~N} \cdot \mathrm{~s}^{2}}{\mathrm{~kg} \cdot \mathrm{~m}} \\
& \mathrm{~F}_{\mathrm{H} 1}=423 \mathrm{kN}
\end{aligned}
$$

For fluid 2 (on the right) $\mathrm{F}_{\mathrm{H} 2}=\mathrm{p}_{\mathrm{c}} \cdot \mathrm{A}=\left(\rho_{2} \cdot \mathrm{~g} \cdot \frac{\mathrm{D}}{4}\right) \cdot \frac{\mathrm{D}}{2} \cdot \mathrm{~L}=\frac{1}{8} \cdot \mathrm{SG}_{2} \cdot \rho \cdot \mathrm{~g} \cdot \mathrm{D}^{2} \cdot \mathrm{~L}$

$$
\begin{aligned}
& \mathrm{F}_{\mathrm{H} 2}=\frac{1}{8} \cdot 0.8 \cdot 999 \cdot \frac{\mathrm{~kg}}{\mathrm{~m}^{3}} \cdot 9.81 \cdot \frac{\mathrm{~m}}{\mathrm{~s}^{2}} \cdot(3 \cdot \mathrm{~m})^{2} \cdot 6 \cdot \mathrm{~m} \cdot \frac{\mathrm{~N} \cdot \mathrm{~s}^{2}}{\mathrm{~kg} \cdot \mathrm{~m}} \\
& \mathrm{~F}_{\mathrm{H} 2}=53 \mathrm{kN}
\end{aligned}
$$

The resultant horizontal force is

$$
\mathrm{F}_{\mathrm{H}}=\mathrm{F}_{\mathrm{H} 1}-\mathrm{F}_{\mathrm{H} 2} \quad \mathrm{~F}_{\mathrm{H}}=370 \mathrm{kN}
$$

(b) Vertical forces

For the left geometry, a "thought experiment" is needed to obtain surfaces with fluid "abovi

$$
\begin{aligned}
& \mathrm{F}_{\mathrm{V} 1}=1.6 \times 999 \cdot \frac{\mathrm{~kg}}{\mathrm{~m}^{3}} \times 9.81 \cdot \frac{\mathrm{~m}}{\mathrm{~s}^{2}} \times \frac{\pi \cdot(3 \cdot \mathrm{~m})^{2}}{8} \times 6 \cdot \mathrm{~m} \times \frac{\mathrm{N} \cdot \mathrm{~s}^{2}}{\mathrm{~kg} \cdot \mathrm{~m}} \\
& \mathrm{~F}_{\mathrm{V} 1}=332 \mathrm{kN}
\end{aligned}
$$

(Note: Use of buoyancy leads to the same result!)

For the right side, using a similar logic

$$
\begin{aligned}
& \mathrm{F}_{\mathrm{V} 2}=\mathrm{SG}_{2} \cdot \rho \cdot \mathrm{~g} \cdot \frac{\frac{\pi \cdot \mathrm{D}^{2}}{4}}{4} \cdot \mathrm{~L} \\
& \mathrm{~F}_{\mathrm{V} 2}=0.8 \times 999 \cdot \frac{\mathrm{~kg}}{\mathrm{~m}^{3}} \times 9.81 \cdot \frac{\mathrm{~m}}{\mathrm{~s}^{2}} \times \frac{\pi \cdot(3 \cdot \mathrm{~m})^{2}}{16} \times 6 \cdot \mathrm{~m} \times \frac{\mathrm{N} \cdot \mathrm{~s}^{2}}{\mathrm{~kg} \cdot \mathrm{~m}} \\
& \mathrm{~F}_{\mathrm{V} 2}=83 \mathrm{kN}
\end{aligned}
$$

The resultant vertical force is

$$
\mathrm{F}_{\mathrm{V}}=\mathrm{F}_{\mathrm{V} 1}+\mathrm{F}_{\mathrm{V} 2} \quad \mathrm{~F}_{\mathrm{V}}=415 \mathrm{kN}
$$

Finally the resultant force and direction can be computed

$$
\begin{array}{ll}
\mathrm{F}=\sqrt{\mathrm{F}_{\mathrm{H}}{ }^{2}+\mathrm{F}_{\mathrm{V}}^{2}} & \mathrm{~F}=557 \mathrm{kN} \\
\alpha=\operatorname{atan}\left(\frac{\mathrm{F}_{\mathrm{V}}}{\mathrm{~F}_{\mathrm{H}}}\right) & \alpha=48.3 \mathrm{deg}
\end{array}
$$

Problem 3.71
Given: Cylindrical log floating against dam.
Find: (a) Mass per unit length
(b) Contact force per unit length.

Solution: Use hydrostatic equations Basic equations: $\frac{d p}{d h}=\rho g \quad d f=p d A$

Assumptions: (1) Static liquid
(2) Incompressible
(3) Neglect pate (it acts everywhere)

Then
(3)

$$
\begin{gathered}
p-p_{0}=\rho g h=\rho g R(1-\cos \theta) \\
\quad d F=p d A=\rho \omega R d \theta, d F H=d F \sin \theta, d F=d F \cos \theta \\
F_{H}=\int_{0}^{3 \pi / 2} \rho g R(1-\cos \theta) \omega R \sin \theta d \theta=\rho g \omega R^{2}\left[-\cos \theta-\frac{\sin ^{2} \theta}{2}\right]_{0}^{3 \pi / 2}=\rho g \omega R^{2}\left[-\frac{(-1)^{2}}{2}-(-1)\right] \\
F_{H}=\frac{1}{2} \rho g \omega R^{2} \quad \frac{F_{H}}{\omega}=\frac{1}{2} \rho g R^{2} \\
F_{V}=\int_{0}^{3 \pi / 2} \rho g R(1-\cos \theta) \omega R \cos \theta d \theta=\int_{0}^{3 \pi / 2} \rho g \omega R^{2}\left(\cos \theta-\frac{1+\cos 2 \theta}{2}\right) d \theta \\
F_{V}=\rho g \omega R^{2}\left[\sin \theta-\frac{\theta+\frac{1}{2} \sin 2 \theta}{2}\right]_{0}^{3 \pi / 2}=\rho g \omega R^{2}\left[-1-\frac{3 \pi}{4}\right]=-\rho g \omega R^{2}\left[1+\frac{3 \pi}{4}\right]
\end{gathered}
$$

From a free-body diagram of the \log

$$
\begin{aligned}
& \Sigma F_{y}=-m g-F_{V}=0 \quad m=-\frac{F}{g}=\rho w R^{2}\left[1+\frac{3 \pi}{4}\right] \\
& \frac{m}{w}=\rho R^{2}\left[1+\frac{3 \pi}{4}\right]
\end{aligned}
$$

check:

$$
\begin{aligned}
& F_{H}=p_{C} A=\rho g \frac{R}{2} \omega R=\frac{1}{2} \rho g \omega R^{2} v, r=-\rho g\left[R^{2}-\frac{\pi R^{2}}{4}\right] \omega=-\rho g \omega\left[-\pi R^{2}-R^{2}+\frac{\pi R^{2}}{4}\right]=-\rho g \omega R^{2}\left[1+\frac{3 \pi}{4}\right] V
\end{aligned}
$$

Given: Curved surface, in shape of quarter cylinder, with radius $R=0.750 \mathrm{~m}$ and width $W=3.55 \mathrm{~m}$; water stands to depth $H=0.65 \mathrm{~cm}$
Find: Magnitude and line of action of: af vertical force, and (b) horizontal force on the curved surface.

Solution:
Basic equations: $\frac{d f}{d h}=\rho g, \quad F_{V}=\left\langle\rho d H_{y}, \quad \dot{F_{V}}=\delta_{x}^{x} \lambda F_{V}\right.$ Computing equations: $\quad F_{A}=-P_{C} H, h^{\prime}=h_{c}+\frac{I_{A}}{h_{c} A}$ Assumptions: (1) static liquid (2) $p=$ constant
(3) Path acts at free surface of the water then on integrating $d p=$ gath, we obtain $p=p g h$. From the geometry $h=H-R \sin \theta, y=R \sin \theta, x=R \cos \theta$

$$
\theta_{1}=\left.\sin ^{-1} H\right|_{R} \quad d A=w R d \theta
$$

$$
F_{y}=\left(\rho d H_{y}=\left(\rho g h d A \sin \theta=\int_{0}^{\theta} p g(H-R \sin \theta) \sin \theta w R d \theta\right.\right.
$$

$$
F_{V}=p g W R \int_{0}^{\theta}\left(H \sin \theta-R \sin ^{2} \theta\right) d \theta=p g \omega R\left[-H \cos \theta-R\left(\frac{\theta}{2}-\frac{\sin 2 \theta}{4}\right)\right]_{0}^{\theta_{1}}
$$

$$
\begin{equation*}
F_{V}=\operatorname{pg} \omega R\left[H\left(1-\cos \theta_{1}\right)-R\left(\frac{\theta_{1}}{2}-\frac{\sin 2 \theta_{1}}{4}\right)\right] \tag{i}
\end{equation*}
$$

Evaluating for $\theta_{1}=\sin ^{-1} \frac{H}{R}=\sin ^{-1} \frac{0.650}{0.750}=60^{\circ}(\pi / 3)$.

$$
\begin{aligned}
& F_{v}=2.47 \mathrm{kN} \\
& F_{4} \\
& x^{\prime} F_{y}=\rho g \omega R \int_{0}^{\overline{\theta_{1}}} R \cos \theta\left(H \sin \theta-R \sin ^{2} \theta\right) d \theta=\rho g \mu R^{2}\left(\int_{0}^{\theta}\left(H \sin \theta \cos \theta-R \sin ^{2} \theta \cos \theta\right) d \theta\right. \\
& x F_{0}=p g \omega R^{2}\left[H \frac{\sin ^{2} \theta}{2}-R^{\sin ^{3} \theta} \frac{2}{3}\right]_{0}^{\theta} \\
& x^{\prime}=\frac{P g M R^{2}}{F_{V}}\left[\frac{H}{2} \sin ^{2} \theta \cdot-\frac{R}{3} \sin ^{2} \theta_{1}\right]-\quad-\quad-\quad(2)
\end{aligned}
$$

$$
\begin{align*}
& x^{\prime}=0.645 \mathrm{~m} \\
& F_{H}=-p_{c} A=p g h_{c} H W=p g \frac{H}{2} H w=\frac{\rho g H^{2} w}{2} \\
& F_{H}=\frac{1}{2} \times \frac{999 \mathrm{tg}}{\mathrm{M}^{3}} \times \frac{9.81 \frac{M}{s^{2}}}{} \times(0.65 \mathrm{~m})^{2} \times 3.55 \mathrm{~m} \times \frac{1 s^{2}}{\lg M}=7.35 \mathrm{kN} \tag{H}
\end{align*}
$$

Problem 3.73
Given: Curved surface, in shape of quarter cylinder, with radius $R=0.3 \mathrm{~m}$ and width $w=1.25 \mathrm{~m}$ is filled to depth $H=0.24 \mathrm{~m}$ with liquid concrete.

Find: (a) Magnitude, and bl line of acton, or the vertical force on the form from the concrete.
Plot: Fy and x' over the rage of dept $O \leq H \leq R$
Solution:
Basie equations: $\frac{d p}{d h}=p g, F_{V}=\int p d F_{y}, x^{\prime} F_{V}=\int x d F_{V}$
Assumptions: (i) static liquid (a) $p=$ constant
(3) Path acts at surface of concrete

Then on integrating $d P=p g d h$, we obtain $p=p g h$

$$
F_{v}=\int \rho d f_{y}=\int \rho g h d A \sin \theta \quad d A=w f d \theta
$$

From the geometry: $y=R \sin \theta, h=y-d, d=k-k$
$F_{V}=\int_{\theta_{1}}^{\pi / 2} \lg (R \sin \theta-d) \sin \theta w e d \theta \quad$ where $\theta_{1}=\sin ^{-1} \frac{d}{R}$

$$
\begin{align*}
& F_{V}=\rho g R \omega \int_{\theta_{1}}^{\theta_{1}}\left(R \sin ^{2} \theta-d \sin \theta\right) d \theta=p g R \omega\left[R\left(\frac{\theta}{2}-\frac{\sin 2 \theta}{4}\right)+d \cos \theta\right]_{\theta_{1}}^{\pi / 2} \\
& F_{V}=\operatorname{ggRw}\left[R\left(\frac{\pi}{4}-\frac{\theta_{1}}{2}+\frac{\sin 2 \theta_{1}}{4}\right)-d \cos \theta_{1}\right] \tag{i}
\end{align*}
$$

Evaluating, $\theta_{1}=\sin ^{\prime} \frac{d}{R}=\sin ^{\prime} \frac{0.3-0.24}{0.30}=11.5^{\circ}$

$$
P=S G P_{1+2} \theta \quad\{S G=2.50 \text {, Table A.1) }
$$

$F_{V}=1000 \frac{\mathrm{~kg}}{H^{3}} \times 2.5 \times 9.81 \frac{m}{5^{2}} \times 0.3 m \times 1.25 m+\frac{n 5^{2}}{2.4}\left[0.3 m\left(\frac{\pi}{4}-0.0639 \frac{\pi}{2}+\frac{\sin 23}{4}\right)-0 . d_{m} \cos 1.5\right]$
$F_{V}=1.62 \mathrm{kn}$
$F_{v}=1.62 \mathrm{kn}$

$$
\begin{aligned}
x^{\prime} F_{v} & =\rho g R w \int^{\pi / 2} x\left(R \sin ^{2} \theta-d \sin \theta\right) d \theta=\rho g R^{2} v \int_{\theta_{1}}^{d / 2}\left(R \sin ^{2} \theta \cos \theta-d \sin \theta \cos \theta\right) d \theta \\
& =\rho g R^{2} w\left[R \frac{\sin ^{3} \theta}{3}+\frac{d \cos ^{2} \theta}{2}\right]_{\theta_{2}}^{\pi / 2} \\
x^{\prime} F_{v} & =\rho R^{2} w\left[\frac{R}{3}\left(1-\sin ^{3} \theta_{1}\right)-\frac{d}{2} \cos ^{2} \theta_{1}\right]
\end{aligned}
$$

Given: Model cross section of canoe, by $y=a t^{2}$, where $a=3.89 \mathrm{~m}^{-1}$; costdinates are in meters. Assure constant width $W=$ o.bon over entire length

$$
L=5.25 \mathrm{~m}
$$

Find: Expression relating total mass of canoe and contents to distance d; determine maximum allowable total mass without swamping the canoe.
Solution:
At any value of α the wight of the canoe and its contents is balosiced by the net vertical force of the water on the canoe.
Basic equations: $\frac{\partial p}{d h}=p g, F_{y}=\int p d H_{y}$
Assumptions: (1) static liquid (a) $p=$ constant
(3) Paten acts at free surface of the water and on timer surface of canoe.
Then on integrating $d f=$ gath, we obtain $-p=p g h$
$F_{v}=\int p d H_{y}=\int \rho g h L d x$ where $h=\frac{(H-d)-y}{\sqrt{H-d}}$
$y=a x^{2}$, Ht surface $y=H-d \quad \therefore x=\sqrt{\frac{H-d}{a}}$
$F_{V}=2 \int_{0}^{\sqrt{(1-\alpha)}} \operatorname{Pg}\left[(H-d)-a x^{2}\right] h d x=2 \operatorname{pgL}\left[(H-d) x-a \frac{t}{3}_{3}^{3}\right]_{0}^{\sqrt{\frac{\mu-d}{a}}}$
$F_{1}=\operatorname{2eg} h\left[\frac{(A-a)^{3 / 2}}{\sqrt{a}}-\frac{a}{3} \frac{(H-a)^{3 / 2}}{a^{3 / 2}}\right]=\frac{2 \operatorname{pa} L}{\sqrt{a}}(H-a)^{3 / 2}\left[1-\frac{1}{3}\right]$

$$
F_{v}=\frac{H}{3} \frac{p g l}{\sqrt{a}}(H-d)^{3 / 2}=M_{g}
$$

$\therefore M=\frac{4 p L(H-d)^{3 / 2}}{3 \sqrt{a}}$ At $d=0, x=w l_{2}, y=H=0.35 \mathrm{~m}$
For $d=0, M=\frac{4}{3} \times 99 \frac{9}{M^{3}} \times 5.25 \mathrm{~m} \times(0.35 \mathrm{~m})^{3 / 2} \times\left(\frac{m}{3.89}\right)^{1 / 2}=-734 \mathrm{lg}$ his does not provide any cushion from swamping. Set $d=0.050 \mathrm{~m}$

$$
M=\frac{4}{3} \times 999 \frac{\mathrm{gg}}{r^{3}} \times 5.25 \mathrm{~m} \times(0.30 \mathrm{~m})^{3 / 2} \times\left(\frac{M}{3.89}\right)^{1 / 2}=583 \mathrm{~kg}-M
$$

The answer cheerly depends on the allowed risk of swamping.

Given: Cylinder, of mass M, length, and radius R, is hinged along it's length and Emersed in an incompressible liquid to depth H.
Find: a general expression for the yyfuder specific gravity as Q function of $\alpha=$ MIR needed to hold the cylinder in equilibrium for $0 \leqslant x \leqslant 1$.

Solution: Apply fluid statics
Basic eqs. $\quad \frac{d p}{d h}=p q, F=\int P d A, \Sigma M=0$
Assumptions: w) static liquid
(2) $p=$ constant

$$
\therefore P=p g^{h}
$$

For $0 \leq \alpha \leq 1$, FA causes no net moment about 0

$d F_{v}=d F \cos \theta=-p d F \cos \theta=\rho g h \omega R d \theta \cos \theta$

$$
\begin{gathered}
h+R(1-\cos \theta)=H, \therefore h=H-R(1-\cos \theta) . \\
d F_{V}=\rho g[H-R(1-\cos \theta)] \omega R \cos \theta d \theta=\rho g \omega R^{2}\left[\frac{H}{R}-(1-\cos \theta)\right] \cos \theta d \theta \\
d F_{V}=\operatorname{pg\omega } R^{2}\left[(\alpha-1) \cos \theta+\cos ^{2} \theta\right] d \theta=\operatorname{pg\omega } R^{2}\left[(\alpha-1) \cos \theta+\frac{1+\cos \theta}{2}\right]
\end{gathered}
$$

For $\alpha \leq 1, F_{H}=0$, and

$$
\begin{aligned}
F_{y}= & \int_{-\theta_{\text {max }}}^{\theta_{\text {max }}} d F_{y}=2 \int_{0}^{\theta_{\text {max }}} d F_{v} \quad \text { where } \cos \theta_{\text {max }}=\frac{R-H}{R}=1-\alpha \\
F_{U}= & 2 \rho g \omega R^{2} \theta_{0}^{\theta_{\text {max }}}\left[(\alpha-1) \cos \theta+\frac{1}{2}+\frac{1}{2} \cos 2 \theta\right] d \theta \\
F_{U}= & 2 \rho g \omega R^{2}[(1-\alpha) \\
& \sin \theta_{\text {max }}=\sqrt{1-\cos ^{2} \theta_{\text {max }}}=\left[1-(1-\alpha)^{2}\right]^{11_{2}}=[1-1+2 \alpha-\alpha]^{2}=\sqrt{\alpha(2-\alpha)} \\
& \sin 2 \theta_{\text {max }}=2 \sin \theta_{\text {max }} \cos \theta_{\text {max }}=2 \sqrt{\alpha(2-\alpha)}(1-\alpha)
\end{aligned}
$$

Then,

$$
\begin{aligned}
& F_{\nu}=2 p g \omega R^{2}\left[(\alpha-1) \sqrt{\alpha(2-\alpha)}+\frac{1}{2} \cos ^{-1}(1-\alpha)+\frac{1}{2}(1-\alpha) \sqrt{\alpha(2-\alpha)}\right] \\
& F_{V}=2 p g \omega R^{2}\left[\frac{1}{2} \cos ^{-1}(1-\alpha)-\frac{1}{2}(1-\alpha) \sqrt{\alpha(2-\alpha)}\right. \\
& F_{V}=p g \omega R^{2}\left[\cos ^{-1}(1-\alpha)-(1-\alpha) \sqrt{\alpha(2-\alpha)}\right]-\ldots
\end{aligned}
$$

The line of action of the vertical force due to the liquid is through? the centroid of the displaced liquid, ie. through the center of the cylinder

The weight of the cylinder in given by

$$
w=m g=p_{c}+g=s G p \pi R^{2} w^{v} g
$$

where $S G=p_{c}{ }^{l} p$ and the gravity force acts thanh
the center of the cylinder of o ch ere
$\sum M_{0}=W R-F_{4} R=0 \quad \therefore W=F_{H}$ and

$$
\operatorname{sG} p \pi p^{x} \omega^{t} g=p g \omega+R^{2}\left[\cos ^{-1}(1-\alpha)-(1-\alpha) \sqrt{\alpha(2-\alpha)}\right.
$$

$$
S G=\frac{1}{\pi}\left[\cos ^{-1}(1-\alpha)+(\alpha-1) \sqrt{\alpha(2-\alpha)}\right.
$$

Tabulating values.

Problem 3.76
Given: Canoe, modelled as a right circular semi-cylindrical shell, floats in water of depth, d. The shell has outer radius, $R=0.35 \mathrm{~m}$ and length, $L=5.25 \mathrm{~m}$.
Find:(a) a general algebraic expression for the maximum tot mess that can be floated, as a function of depth and
b) evaluate for the quin conditions with $d=0.245 \mathrm{~m}$

Phot: the results over therarge of water depth $0 \leqslant d \leqslant R$.
Solution:
Basic equations: $\frac{d p}{d y}=p g: p=-e_{\text {a }}+p g y ; \quad F_{e}=\int p d A$
End view of cance.

Assumptions: (i) static liquid
(2) Paten acts on bot k inside e outside surfaces.
Geometry $y=y(t)$ for given d

$$
\begin{aligned}
& y=d-(R-R \cos \theta)=d-R+R \cos \theta \\
& \theta_{\text {max }}=\cos ^{-1} \frac{R-d}{R}
\end{aligned}
$$

A fld of the canoe gives $\sum F_{y}=0=M_{g}-F_{y}$
where F_{y} is the vertical force of the water on the canoe

$$
\begin{aligned}
& F_{V}=\int d F_{y}=\int d F \cos \theta=\left(\rho d A \cos \theta=\int_{-\theta_{\text {max }}}^{\theta_{\text {max }}} \rho g L R d \theta \cos \theta\right. \\
& F_{V}=2 \int_{0} \rho g L R\left[(d-R) \cos \theta+R \cos ^{2} \theta\right] d E \\
& F_{U}=2 \rho g h k\left[(d-R) \sin \theta+R\left(\frac{\theta}{2}+\frac{\sin 2 \theta}{4}\right)\right]_{0}^{\theta_{\text {max }}} \\
& F_{U}=2 \rho g h R\left[(d-R) \sin \theta_{\text {max }}+R\left(\frac{\theta_{\text {max }}}{2}+\frac{\sin 2 \theta \max }{4}\right)\right]
\end{aligned}
$$

$$
\text { where } \theta_{\text {max }}=\cos ^{-1}\left(\frac{R^{2}-d}{R}\right)
$$

Since $M=F_{\lambda} / g$

$$
\begin{equation*}
M=2 p h R\left[(d-R) \sin \theta_{\text {max }}+R\left(\frac{\theta_{\text {max }}}{2}+\frac{\sin 2 \theta_{\text {max }}}{4}\right)\right] \tag{d}
\end{equation*}
$$

For $R=0.35 m, L=5.25 \mathrm{~m}$ and $d=0.245 \mathrm{~m}$,

$$
\begin{aligned}
\theta_{\text {max }} & \left.=\cos ^{-1} \frac{(R-d)}{R}=\cos ^{-1} \frac{(0.35-0.245)}{0.35}=\cos ^{-1} 0.30=72.3^{\circ}\right] \\
\theta_{\text {max }} & =0.403 \pi \\
M & =2 \times 991 \frac{\mathrm{~kg}}{m^{3}} \times 5.25 \mathrm{~m} \times 0.35 \mathrm{~m}\left[(0.245-0.35) \sin 12.5+0.35\left(\frac{0.4+3 \pi}{2}+\frac{1}{4} \sin 44\right)\right] M \\
M & =631 \mathrm{~kg}=
\end{aligned}
$$

The computing equations for the plot are
$\theta_{\text {max }}=\cos ^{-1}\left(1-\frac{d}{R}\right)$
$M=2 p h R^{2}\left[\frac{\theta_{\text {max }}}{2}+\frac{\sin 2 \theta_{\text {max }}}{4}-\left(1-\frac{d}{R}\right) \sin \theta_{\text {max }}\right]$
Mass of canoe vs. depth of submersion ratio:

Density:	$\rho=$	999	$\mathrm{~kg} / \mathrm{m}^{3}$
Length:	$L=$	5.25	m
Radius:	$R=$	0.35	m

$d(\mathrm{~m})$	$d / R(--)$	$\theta_{\max }(\mathrm{rad})$	$\theta_{\max }(\mathrm{deg})$	Mass (kg)
0	0	0	0	0
0.035	0.10	0.45	25.8	37.7
0.070	0.20	0.64	36.9	105
0.105	0.30	0.80	45.6	190
0.140	0.40	0.93	53.1	287
0.175	0.50	1.05	60.0	395
0.210	0.60	1.16	66.4	509
0.245	0.70	1.27	72.5	630
0.280	0.80	1.37	78.5	754
0.315	0.90	1.47	84.3	881
0.350	1.00	1.57	90.0	1009

Problem 3.77

A glass observation room is to be installed at the corner of the bottom of an aquarium. The aquarium is filled with seawater to a depth of 10 m . The glass is a segment of a sphere, radius 1.5 m , mounted symmetrically in the corner. Compute the magnitude and direction of the net force on the glass structure.

Given: Geometry of glass observation room

Find: Resultant force and direction

Solution

The x, y and z components of force due to the fluid are treated separately. For the x, y components, the horizontal force is equivalent to that on a vertical flat plate; for the z componen (vertical force) the force is equivalent to the weight of fluid above.

For horizontal forces, the computing equation of Section $3-5$ is $F_{H}=p_{c} \cdot A$ where A is the area of the equivalent vertical plate.

For the vertical force, the computing equation of Section $3-5$ is $\mathrm{F}_{\mathrm{V}}=\rho \cdot \mathrm{g} \cdot \mathrm{V}$ where V is the volume of fluid above the curved surface.

The data are For water $\quad \rho=999 \cdot \frac{\mathrm{~kg}}{\mathrm{~m}^{3}}$

For the fluid (Table A.2) $\quad \mathrm{SG}=1.025$

$$
\text { For the aquarium } \quad \mathrm{R}=1.5 \cdot \mathrm{~m} \quad H=10 \cdot \mathrm{~m}
$$

(a) Horizontal Forces

Consider the x component
The center of pressure of the glass is

$$
y_{c}=H-\frac{4 \cdot \mathrm{R}}{3 \cdot \pi} \quad y_{c}=9.36 m
$$

Hence $\quad \mathrm{F}_{\mathrm{Hx}}=\mathrm{p}_{\mathrm{c}} \cdot \mathrm{A}=\left(\mathrm{SG} \cdot \rho \cdot \mathrm{g} \cdot \mathrm{y}_{\mathrm{c}}\right) \cdot \frac{\pi \cdot \mathrm{R}^{2}}{4}$

$$
\begin{aligned}
& \mathrm{F}_{\mathrm{Hx}}=1.025 \times 999 \cdot \frac{\mathrm{~kg}}{\mathrm{~m}^{3}} \times 9.81 \cdot \frac{\mathrm{~m}}{\mathrm{~s}^{2}} \times 9.36 \cdot \mathrm{~m} \times \frac{\pi \cdot(1.5 \cdot \mathrm{~m})^{2}}{4} \times \frac{\mathrm{N} \cdot \mathrm{~s}^{2}}{\mathrm{~kg} \cdot \mathrm{~m}} \\
& \mathrm{~F}_{\mathrm{Hx}}=166 \mathrm{kN}
\end{aligned}
$$

The y component is of the same magnitude as the x component

$$
\mathrm{F}_{\mathrm{Hy}}=\mathrm{F}_{\mathrm{Hx}} \quad \mathrm{~F}_{\mathrm{Hy}}=166 \mathrm{kN}
$$

The resultant horizontal force (at 45° to the x and y axes) is

$$
\mathrm{F}_{\mathrm{H}}=\sqrt{\mathrm{F}_{\mathrm{Hx}}^{2}+\mathrm{F}_{\mathrm{Hy}}^{2}} \quad \quad \mathrm{~F}_{\mathrm{H}}=235 \mathrm{kN}
$$

(b) Vertical forces

The vertical force is equal to the weight of fluid above (a volume defined by a rectangular column minus a segment of a sphere)

The volume is $\quad \mathrm{V}=\frac{\pi \cdot \mathrm{R}^{2}}{4} \cdot \mathrm{H}-\frac{\frac{4 \cdot \pi \cdot \mathrm{R}^{3}}{3}}{8} \quad \mathrm{~V}=15.9 \mathrm{~m}^{3}$

Then

$$
\begin{aligned}
& \mathrm{F}_{\mathrm{V}}=\mathrm{SG} \cdot \rho \cdot \mathrm{~g} \cdot \mathrm{~V}=1.025 \times 999 \cdot \frac{\mathrm{~kg}}{\mathrm{~m}^{3}} \times 9.81 \cdot \frac{\mathrm{~m}}{\mathrm{~s}^{2}} \times 15.9 \cdot \mathrm{~m}^{3} \times \frac{\mathrm{N} \cdot \mathrm{~s}^{2}}{\mathrm{~kg} \cdot \mathrm{~m}} \\
& \mathrm{~F}_{\mathrm{V}}=160 \mathrm{kN}
\end{aligned}
$$

Finally the resultant force and direction can be computed

$$
\begin{array}{ll}
\mathrm{F}=\sqrt{\mathrm{F}_{\mathrm{H}}^{2}+\mathrm{F}_{\mathrm{V}}^{2}} & \mathrm{~F}=284 \mathrm{kN} \\
\alpha=\operatorname{atan}\left(\frac{\mathrm{F}_{\mathrm{V}}}{\mathrm{~F}_{\mathrm{H}}}\right) & \alpha=34.2 \mathrm{deg}
\end{array}
$$

Note that α

Problem * 3.78

Given: Sphere of $\forall=1 \mathrm{ft}^{3}$ floating as shown.
Find: (a) specific weight of sphere.
(b) New equilibrium position if 20-pound weight is removed.

Solution: Balance forces on sphere,
Basic equation: $\Sigma F_{z}=m a_{3}=0$
Compuetirig equation: Fbuoyancy $=\rho_{\text {Hoo }} g \forall_{\text {displaced }}=\gamma \forall_{\text {dis }}$

Then $\Sigma F_{z}=T+F_{b}-W=0$

$$
\Sigma F_{z}=T+\gamma_{H_{20} 0} \forall_{d 1 s p}-W=T+\gamma_{H_{20} \frac{\forall s}{2}}-\gamma_{s} \forall_{s}=0
$$

Thus $\gamma_{3}=\frac{T+\gamma_{H_{20}} \frac{\gamma_{3}}{2}}{\forall_{3}}=\frac{T}{\forall_{s}}+\frac{\gamma_{H_{10}}}{2}$

$$
\gamma_{s}=201 \mathrm{bf} \times \frac{1}{1 \mathrm{ft}^{3}}+\frac{1}{2} \times 62.4 \frac{\mathrm{lbf}}{\mathrm{ft}^{3}}=51.2 \mathrm{lbf} / \mathrm{ft}^{3}
$$

To find new equilibrium position, evaluate force from water on sphere.
Basic equations: $\frac{d p}{d h}=\gamma_{H_{2} O}$

$$
d F=p d A
$$

Assumptions: (1) Static liquid
(2) Incompressible
(3) Neglect patron, becacese it acts everywhere

Then $d F_{v}=\cos \theta p d A ; p=\gamma h ; d=h+R(1-\cos \theta) ; h=d-R(1-\cos \theta)$

$$
\begin{gathered}
d A=2 \pi R \sin \theta R d \theta=2 \pi R^{2} \sin \theta d \theta \\
d F_{v}=\cos \theta \gamma[d-R(1-\cos \theta)] 2 \pi R^{2} \sin \theta d \theta=2 \pi R^{3} \gamma\left[\frac{d}{R}-(1-\cos \theta)\right] \sin \theta \cos \theta d \theta
\end{gathered}
$$

Now $F_{V}=\int_{A} d F_{V}=\int_{0}^{\theta_{\max }} 2 \pi R^{3} \mu\left[\frac{d}{R}-(1-\cos \theta)\right] \sin \theta \cos \theta d \theta$
At $\theta_{\text {max }}, \cos \theta_{\text {max }}=\frac{R-d}{R}=1-\frac{d}{R}$, so

$$
\begin{aligned}
& F_{V}=2 \pi R^{3} \gamma^{2}\left\{\left(1-\frac{d}{R}\right)\left[\frac{1}{2}\left(1-\frac{d}{R}\right)^{2}-\frac{1}{2}\right]-\frac{1}{3}\left(1-\frac{d}{R}\right)^{3}+\frac{1}{3}\right\} \\
& \dot{F}_{V}=2 \pi R^{3} \gamma^{2}\left[\frac{1}{6}\left(1-\frac{d}{R}\right)^{3}-\frac{1}{2}\left(1-\frac{d}{R}\right)+\frac{1}{3}\right]
\end{aligned}
$$

But $\forall_{s}=\frac{4 \pi R^{3}}{3}$, so

$$
F_{V}=F_{\text {buoyancy }}=\frac{3}{2}\left(\frac{4 \pi R}{3}\right)^{3} \gamma_{H 20} f\left(\frac{d}{R}\right) ; f\left(\frac{d}{R}\right)=\frac{1}{6}\left(1-\frac{d}{R}\right)^{3}-\frac{1}{2}\left(1-\frac{d}{R}\right)+\frac{1}{3}
$$

Because $T=0, F_{B}=W=\gamma_{3} \forall_{s}=\frac{3}{2} \gamma_{H_{w}} \forall_{s} f\left(\frac{d}{R}\right)$
Thus at equilibrium $f\left(\frac{d}{R}\right)=\frac{2}{3} \frac{\gamma_{3}}{\gamma_{H_{w}}}=\frac{2}{3} S G_{3}=\frac{2}{3} \times \frac{51.2}{62.4}=0.547$
By iteration, using a spreadsheet, $f(d / R)=0.547$ when $d / R=1.46$

$$
\text { Fur } \forall=1 \mathrm{ft}^{3}, \forall=\frac{4 \pi R^{3}}{3} \text { and } R=\left(\frac{3 \forall}{4 \pi}\right)^{1 / 3}=0.620 \mathrm{ft}
$$

Thus $d=1.46 \mathrm{R}=1.46 \times 0.62 \mathrm{ft}=0.906 \mathrm{ft}$

The spreadsheet results and plot are shown below.

Given: Hydrometer, as shown, submerged in nitfic acid, sG $=1.5$ When innersed in water, $h=0$ and immersed volume is $15 \mathrm{~cm}^{\text {. }}$.
Stem diameter $d=6 \mathrm{~mm}$.
Find: The distance, h
Solution:
Basic equation: $\vec{V} \vec{F}=\overrightarrow{M a}=0$
Computing equation: $\vec{F}_{\text {buganay }}=\operatorname{pg} t_{d} \hat{k}$
Assumptions: (1) static conditions
(2) $p=$ constant

$$
\Sigma \vec{F}=0=\overrightarrow{M g}+\vec{F}_{\text {buoyancy }}
$$

Using the data given for water, we can calculate M

$$
-M g+F_{b}=0 \quad M=\frac{F_{b}}{g}=p_{N_{2} 0} H_{W_{2} O}
$$

When immerses in nitric acid

$$
M=p_{n, a} \forall_{n, a} \quad \text { where } t_{n \cdot a}=t_{H_{20} 0}-\frac{\pi d^{2} h}{n}
$$

Since the mass is the same in both cons

$$
\begin{aligned}
& M=p_{\mu_{20}} \psi_{\mu_{10}}=p_{n \cdot a}\left(\psi_{\mu_{20}}-\frac{\pi d^{2} h}{4}\right)
\end{aligned}
$$

$$
\begin{aligned}
& h=\frac{4 H_{m \infty}}{\pi d^{2}}\left(1-\frac{1}{s \cdot G_{n, a}}\right) \\
& h=\frac{4}{r^{2}} \times 15 \mathrm{~cm}^{3} \times \frac{1}{b^{2} \mathrm{~mm}^{2}}\left(1-\frac{1}{1.5}\right) \times \frac{1000 \mathrm{~mm}^{3}}{\mathrm{~cm}^{3}}=171 \mathrm{~mm}
\end{aligned}
$$

Given: Experiment performed by Archimedes to identify the material content of King Hero's crown.

Measured weight of crown in air, W_{a}, and in water, Ww.
Find: Expression for specific gravity of crown as function of W_{a} and ww.
Solution: Apply principle of bocesancy to free-body of crown:
Computing equation: $F_{B}=\rho_{H_{2} \mathrm{O}} g^{\forall}$
Assumptions: (1) Static liquid
(z) Incompressible liquid

Free-body diagram of crown in water:

$$
\Sigma F_{z}=W_{w}-M g+F_{B}=m a_{z}=0
$$

or

$$
W_{u r}-M g+\rho_{H_{L}} \forall g=0
$$

For the crown in $\alpha i r, W_{a}$ a Mg
combining, $w_{w}-w_{a}+\varphi_{H_{2} O} g \forall$, so $\forall=\frac{w_{a}-w_{w}}{\rho_{H_{2} O g}}$
The crown's density is $f_{c}=\frac{M}{\forall}=\frac{W_{a}}{g \forall}=\rho_{120} \frac{W_{a}}{W_{a}-W_{w r}}$
The crown's specific gravity is $S G=\frac{\rho_{c}}{\rho_{H_{2} \mathrm{O}}}=\frac{W_{a}}{W_{a}-W_{W}}$
$\left\{\begin{array}{l}\text { Note: by definition, } B G=\rho / \rho_{\text {How }}\left(4^{\circ} \mathrm{C}\right) \text {, so the measured temper ature of } \\ \text { water and data. from Table } A .7 \text { or } A .8 \text { may be used to correct } \\ \text { the density to } 40^{\circ} \mathrm{C} \text {. }\end{array}\right\}$

Given: Specific gravity of a person is to be determined from measurements of weight in air and the ret weight when totally immersed in water.

Find: Expression for the specific gravity of a person from the measurements.

Solution:
4
For equilibrium $\Sigma F_{y}=0$

$$
\begin{aligned}
& F_{\text {nat }}=n g-F_{b} \\
& F_{b}=p_{H_{2}} g+\quad \quad F_{\text {air }}=n g \\
& \therefore F_{\text {net }}=F_{a i r}-p_{H_{2}} g t \quad \text { and } t=\frac{F_{\text {air }}-F_{\text {net }}}{p_{n 20}}
\end{aligned}
$$

$$
F_{\text {air }}=m g=p^{t g}=\frac{\rho}{p_{120}}\left(F_{\text {air }}-F_{\text {net }}\right)
$$

Let $p^{*}=p_{H_{20}}$ at $4 C$. Then

$$
F_{\text {air }}=\frac{p\left(p^{*}\right.}{f_{w_{00}}(p}\left(F_{a i r}-F_{n e t}\right)=\frac{s G_{0}}{S G_{x_{2} 0}}\left(F_{a i r}-F_{\text {nat }}\right) .
$$

Solving for $s G$,

$$
S G=S G_{H_{2}} \frac{F_{\text {air }}}{\left(F_{\text {air }}-F_{\text {net }}\right)}
$$

Given: Iceberg floating in sea water
Find: Quantify the statement "only the tip of an icetarg
shows.
Solution:
A floating body is buoyed up by a fore equal to the weight of the displaced liquid.

$$
\begin{aligned}
& \sum F_{z}=0=F_{b}-m g . \\
& F_{b}=p_{s} t_{\text {sub }} g \quad m=p^{+} \text {total. }
\end{aligned}
$$

$$
\therefore \rho_{3} t_{\sin } g=p^{t} t_{4} g
$$

$$
\therefore t_{\text {sub }}=t_{\text {ta }} \frac{f}{f_{\text {ow }}}=+\frac{p_{0}}{p_{\text {sw }}} l_{p}^{*}
$$

where $\rho^{*}=p_{H_{20}}$ at $4 C$.

$$
\begin{aligned}
& t_{\text {sub }}=t_{\text {tot }} \frac{\text { Spice }}{S G}
\end{aligned}
$$

$$
\begin{aligned}
& \therefore \frac{t_{\text {nat_sut }}}{t_{t d}}=1-\frac{5 G_{16}}{5 G_{5}}=1-\frac{0.917}{1.025} \\
& \frac{\text { tndsubs }}{t_{\text {tot }}}=0.105 \quad\left(0^{0} / \mathrm{s} \text { shows }\right)
\end{aligned}
$$

Problem *3.83

An open tank is filled to the top with water. A steel cylindrical container, wall thickness $\delta=1$ mm , outside diameter $D=100 \mathrm{~mm}$, and height $H=1 \mathrm{~m}$, with an open top, is gently placed in the water. What is the volume of water that overflows from the tank? How many 1 kg weights must be placed in the container to make it sink? Neglect surface tension effects.

Given: Geometry of steel cylinder

Find: Volume of water displaced; number of 1 kg wts to make it sink

Solution

The data are

$$
\text { For water } \quad \rho=999 \cdot \frac{\mathrm{~kg}}{\mathrm{~m}^{3}}
$$

$$
\text { For steel (Table A.1) } \quad \mathrm{SG}=7.83
$$

$$
\text { For the cylinder } \quad \mathrm{D}=100 \cdot \mathrm{~mm} \quad \mathrm{H}=1 \cdot \mathrm{~m} \quad \delta=1 \cdot \mathrm{~mm}
$$

The volume of the cylinder is $\quad \mathrm{V}_{\text {steel }}=\delta \cdot\left(\frac{\pi \cdot \mathrm{D}^{2}}{4}+\pi \cdot \mathrm{D} \cdot \mathrm{H}\right) \quad \mathrm{V}_{\text {steel }}=3.22 \times 10^{-4} \mathrm{~m}^{3}$

The weight of the cylinder is $\quad \mathrm{W}=\mathrm{SG} \cdot \rho \cdot \mathrm{g} \cdot \mathrm{V}_{\text {steel }}$

$$
\mathrm{W}=7.83 \times 999 \cdot \frac{\mathrm{~kg}}{\mathrm{~m}^{3}} \times 9.81 \cdot \frac{\mathrm{~m}}{\mathrm{~s}^{2}} \times 3.22 \times 10^{-4} \cdot \mathrm{~m}^{3} \times \frac{\mathrm{N} \cdot \mathrm{~s}^{2}}{\mathrm{~kg} \cdot \mathrm{~m}}
$$

$$
\mathrm{W}=24.7 \mathrm{~N}
$$

At equilibium, the weight of fluid displaced is equal to the weight of the cylinder

$$
\begin{aligned}
& \mathrm{W}_{\text {displaced }}=\rho \cdot \mathrm{g} \cdot \mathrm{~V}_{\text {displaced }}=\mathrm{W} \\
& \mathrm{~V}_{\text {displaced }}=\frac{\mathrm{W}}{\rho \cdot \mathrm{~g}}=24.7 \cdot \mathrm{~N} \times \frac{\mathrm{m}^{3}}{999 \cdot \mathrm{~kg}} \times \frac{\mathrm{s}^{2}}{9.81 \cdot \mathrm{~m}} \times \frac{\mathrm{kg} \cdot \mathrm{~m}}{\mathrm{~N} \cdot \mathrm{~s}^{2}} \\
& \mathrm{~V}_{\text {displaced }}=2.52 \times 10^{-3} \mathrm{~m}^{3}
\end{aligned}
$$

To determine how many 1 kg wts will make it sink, we first need to find the extra volume that w need to be dsiplaced

Distance cylinder sank $\quad x_{1}=\frac{V_{\text {displaced }}}{\left(\frac{\pi \cdot D^{2}}{4}\right)} \quad x_{1}=0.321 m$

Hence, the cylinder must be made to sink an additional distanc $x_{2}=H-x_{1} \quad x_{2}=0.679 m$

We deed to add n weights so that $\quad 1 \cdot \mathrm{~kg} \cdot \mathrm{n} \cdot \mathrm{g}=\rho \cdot \mathrm{g} \cdot \frac{\pi \cdot \mathrm{D}^{2}}{4} \cdot \mathrm{x}_{2}$

$$
\begin{aligned}
& \mathrm{n}=\frac{\rho \cdot \pi \cdot \mathrm{D}^{2} \cdot \mathrm{x}_{2}}{4 \times 1 \cdot \mathrm{~kg}}=999 \cdot \frac{\mathrm{~kg}}{\mathrm{~m}^{3}} \times \frac{\pi}{4} \times(0.1 \cdot \mathrm{~m})^{2} \times 0.679 \cdot \mathrm{~m} \times \frac{1}{1 \cdot \mathrm{~kg}} \times \frac{\mathrm{N} \cdot \mathrm{~s}^{2}}{\mathrm{~kg} \cdot \mathrm{~m}} \\
& \mathrm{n}=5.328
\end{aligned}
$$

Hence we need $n=6$ weights to sink the cylinder

Given: Hydrogen bubble, with diameter $d=0.025 \mathrm{~mm}$, rise souls when wimersed in water.
The drag force on a bubble is gwen by $F_{\rho}=3 \pi \mu / d$, where $F_{\text {is bubble speed relative l to te water. }}^{\text {te }}$.
Find: (a) the buoyancy force on a hydrogen bubble immersed \& water.
(b) esturiate of terminal speed of bubble rising in
water

Solution:
Basic equations: $\left.\quad F_{B}=p g\right\rangle, \quad \sum \vec{\Sigma}=m \vec{a}$
For a sphere, $t=\frac{\pi d^{3}}{6}$

$$
\begin{aligned}
\therefore F_{8} & =p g=\frac{p g \pi d^{3}}{b^{3}}=\frac{\pi}{6} \times 999 \frac{\lg _{3}^{3}}{n^{3}} \times \frac{9.81 m}{s^{2}} \times\left(0.025 \times 10^{-3}\right)^{3} \mathrm{~m}^{3} \times \frac{\mathrm{Ns}^{2}}{\mathrm{lg}^{2}} \\
F_{8} & =8.02 \times 10 \mathrm{~N}
\end{aligned}
$$

$$
\Sigma F_{y}=F_{B}-m g-F_{y}=m a_{y}
$$

At terminal speed, $a_{y}=0$. Hence

$$
F_{D}=3 \pi \mu V d=F_{B}-m g
$$

and $V=\frac{F_{B}-m g}{3 \pi \mu d}$
At $T=20^{\circ} \mathrm{C}$, from Table $A .8$ (Appendix M) $\mu=1.0^{\prime} * 10^{-3} \mathrm{~A} . \mathrm{Slm}^{2}$
Treat hydrogen as an ideal gas. Assure $T=20 c, P=1.1$ aten $m g=p+g=\frac{p}{k T}+g=\frac{p}{k T} \frac{\pi d^{3}}{6} g \quad\left\{\right.$ Fran Table ABb, $\left.R=4124 \frac{\left.\frac{3}{k g} \cdot k\right\}}{}\right\}$

$$
m g=7.38 \times 10^{-15} \mathrm{~N}
$$

$$
\therefore V=\frac{\left(8.02 \times 10^{-4}-7.38 \times 10^{-15}\right)}{3 \pi} N \times 1 \times 10^{-3} \frac{n^{2}}{\lambda .3} \times 0.025 \times 10^{-3} n
$$

$V=3.40 \times 10^{-4} \mathrm{mls}$ or 0.341 mmls
(As noted by Prof. Kline in the move. "Flow Visualization, bubbles r rise slowly!).

Open-Ended Problem Statement: Gas bubbles are released from the regulator of a submerged Scuba diver. What happens to the bubbles as they rise through the seawater?

Discussion: Air bubbles released by a submerged diver should be close to ambient pressure at the depth where the diver is swimming. The bubbles are small compared to the depth of submersion, so each bubble is exposed to essentially constant pressure. Therefore the released bubbles are nearly spherical in shape.

The air bubbles are buoyant in water, so they begin to rise toward the surface. The bubbles are quite light, so they reach terminal speed quickly. At low speeds the spherical shape should be maintained. At higher speeds the bubble shape may be distorted.

As the bubbles rise through the water toward the surface, the hydrostatic pressure decreases. Therefore the bubbles expand as they rise. As the bubbles grow larger, one would expect the tendency for distorted bubble shape to be exaggerated.

Given: Balloons with hot air, helium, and hydrogen. Claim lift per cubic foot of $0.018,0.066$, and $0.071 \mathrm{lbf} / \mathrm{ft}^{3}$ for respective gases, with air heated to $10^{\circ} \%$ over ambient.
Find: (a) Evaluate claims
(b) Compare air at $20^{\circ} \mathrm{F}$ above ambient.

Solution: Assume ambient conditions are $S T P$, peas $=$ pair, and apply ideal gas equation of state.
(Use data from Table Abb.)
Basic equations: Lift $=$ Paingtt-Pgas $g \forall, p=\rho R T$
Then

$$
\text { Lift } / \forall=g\left(\rho_{a}-\rho_{g}\right)=\rho_{a g}\left(1-\frac{\rho_{g}}{\rho_{a}}\right)=\rho_{a g}\left(1-\frac{R_{a} T_{a}}{R_{g} T_{g}}\right) ; \rho_{a g}=0.07 b 5 \frac{1 b x}{f+7}
$$

For helivem

$$
\begin{aligned}
& \frac{L}{\forall}=0.0765 \frac{16 f}{f^{3}}\left[1-53.33 \frac{f+\cdot 16 f}{16 m \cdot e^{\prime}} \times(460+59) R_{\times} \frac{16 m \cdot R}{386: 1 f+16 f} \times \frac{1}{(460+59 f)}\right] \\
& \frac{L}{\forall}=0.0659 \mathrm{ibf} / \mathrm{ft}^{3} \quad \text { (rounds to } 0.066 \text {) }
\end{aligned}
$$

For hydrogen

$$
\left.\frac{L}{\forall}=0.0765 \frac{\mathrm{lbf}}{\mathrm{ft}^{3}}\left(1-\frac{53.33}{766.5}\right)=0.0712 \mathrm{lbf} / \mathrm{ft}^{3} \text { (rounds to } 0.071\right)
$$

For air at $150^{\circ} \mathrm{F}$ above ambient,

$$
\frac{L}{\forall}=0.0765 \frac{\mathrm{lbf}}{\mathrm{ft}^{3}}\left[1-\frac{53.33(460+59)}{53.33(460+59+150)}\right]=0.0172 \mathrm{lbf} / \mathrm{ft}^{3}
$$

For air at $250^{\circ} \mathrm{F}$ above ambient,

$$
\frac{L}{H}=0.0765 \frac{\mathrm{lbf}}{\mathrm{f}} \mathrm{~s}=\left[1-\frac{53.33(460+59)}{53.33(460+59+250)}\right]=0.0249 \mathrm{bf} / \mathrm{ft}^{3}
$$

Agreement with claims is good.
Ar i at $\Delta T=250^{\circ} \mathrm{F}$ gives 45 percent more 1 it than at $\Delta T=150^{\circ} \mathrm{F}$. \{Hotair balloon needs $40,2 \mathrm{ft}^{3} / 1 \mathrm{bf}$ of 11 ft at $\left.\Delta \sigma=250^{\circ} \mathrm{F}!\right\}$

Given: Spherical balloon of diameter,), and skin thickness, $t=0.013 \mathrm{~mm}$, filled with helium listed a payload of mass $M=230 \mathrm{~kg}$ to an altitude of 49 km . At altitude,

$$
P=0,95 \text { unbar and } T=-2 \circ \mathrm{C}
$$

The heluin temperature is $-10^{\circ} \mathrm{C}$. The specific gravity of the skin material

Find: The diameter and mass of the balloon.
Solution: Basic equation $\Sigma \vec{F}=m \vec{a}=0$
Assumptions. "l static equilibrium at altitude of 49 km (a) air and helium exhibit ideal gas bénavior.

$$
\begin{aligned}
& \Sigma F_{z}=0=F_{\text {ting }}-M_{H_{2} g}-M_{s} g-M_{g}=p_{a r} g t_{b}-p_{t_{0} g} g t_{b}-p_{s} t_{s}-M_{g} \\
& 0=\psi_{b}\left(p_{\text {air }}-p_{4 x}\right)-p_{5} A_{s} t-M=\frac{\mu}{3} \pi R^{3}\left(p_{\text {air }}-p_{H_{k}}\right)-p_{5} 4 \pi R^{2} t-M \\
& \left.0=\frac{\pi \partial^{3}}{b}\left(\rho_{a i r}-p_{m e}\right)-p_{s} \pi\right\rangle^{2} t-M
\end{aligned}
$$

This is a cubic equation. which requires an iterative solution

$$
\begin{aligned}
& \pi D^{2}\left[\frac{D}{6}\left(p_{\text {air }}-p_{m_{c}}\right)-p_{5} t\right]-M=0 \quad \text { Solving for } D, \\
& D=\frac{6}{\left(p_{\text {air }}-p_{w_{k}}\right)}\left[\frac{M}{\pi)^{2}}+\rho_{t} t\right]=6\left[\frac{M}{\pi \theta^{2}\left(p_{a i r}-p_{m 2}\right)}+\frac{p_{5} t}{\left(p_{\text {air }}-p_{\text {me }}\right.}\right]
\end{aligned}
$$

From the ideal gas low,

$$
\begin{aligned}
& p_{\text {air }}=\frac{P}{R T}=0.95 \times 10^{-3} \mathrm{bar} \times \frac{\mathrm{lg} \cdot \mathrm{~K}}{287 \mathrm{~J}} \times \frac{1}{253 \mathrm{~K}} \times \frac{10^{5} \mathrm{~Pa}}{\mathrm{Bar}} \times \frac{\mathrm{N}}{2} \times \frac{\mathrm{J}}{\mathrm{~N} . \mathrm{M}}=1.31 \times 10^{-3} \frac{\mathrm{~kg}}{\mathrm{~m}^{3}}
\end{aligned}
$$

Substituting into the expression for $?$

$$
\begin{aligned}
& \eta=6\left[\frac{1}{\pi)^{2}} \times 230 \mathrm{gg} \times \frac{n^{3}}{4.4 \times 10^{-4} \mathrm{gg}}+(1.28) 999 \lg _{n^{3}} \times 1.3 \times 10^{-5} \mathrm{~m} \times \frac{n^{3}}{11.4 \times 10^{-4} \mathrm{gg}}\right] \\
& \left.D=\left[\frac{38.5 \times 10^{4}}{y^{2}}+87.5\right] \text { where }\right\rangle \text { is in meters }
\end{aligned}
$$

Organizing Calculations: Guess $\begin{aligned} \text { G }(n) & =100120116 \\ \text { RH } & \approx 126 \text { in } 116.1\end{aligned}$

$$
\begin{aligned}
& \therefore y=16 m \\
& M_{b}=p_{s} d_{s}=f_{s} A_{s} t=p_{s} \pi y^{2} t=1.28 \times 999 \frac{1 g}{m} \times\left(11 b^{2}\right)^{2} n^{2} \times 1.3 \times 10^{-5} \mathrm{n} \\
& M_{b}=703 \mathrm{~kg}
\end{aligned}
$$

Given: A pressurized helium balloon is to be designed to lift a payload of mass, M, to an altitude of 40 Em , Stere

$$
P=3.0 \text { mbar and } T=-25^{\circ} \mathrm{C} \text {. }
$$

The balloon skin has a specific gravity, $5.6=1.28$ and thickness, $t=0.015 \mathrm{~mm}$ The gage pressure of the helicon is 0.45 mbar . The allowable tensile stress in the balloon skin is $\sigma=62 \mathrm{MN} / \mathrm{m}^{2}$

Find: (a) Maximum balloon diameter
(b) Poufload, M

Solution:
Basic equation: $\sum \vec{F}=M \vec{a}=0$
Assumptions: (1) static equilibrwm at altitude.

(2) $a i r$ and hellion exhibit ideal
 gas behavior.
The balloon diameter is limited by tensile stress
nita

$$
\begin{aligned}
\Sigma F=0 & =\frac{\pi D^{2}}{4} \Delta P-\pi D t \sigma \\
P_{\text {max }} & =\frac{4 t \sigma}{\Delta P} \\
Q_{\text {max }}= & 4 \times 1.50 \times 10^{-5} \mathrm{n} \times 62 \times 10^{6} \frac{\mathrm{~N}}{\mathrm{~m}^{2}} \times 0.45 \times 10^{-3} b a \sigma^{2} \times \frac{\mathrm{bar} \mathrm{n}^{2}}{10^{5} \mathrm{~N}}
\end{aligned}
$$

$$
\text { Dmaxis } 82.7 \mathrm{~m}
$$

$$
F_{\text {bow }}-M_{H_{e} g}-M_{b g}-M_{g} \quad M_{H_{c}}=f_{H_{e}} t
$$

$$
F_{\text {many }}-\mu_{\mu_{c} g}=\left(p_{\text {air }}-p_{H_{e}}\right) g \psi=\left(p_{\text {air }}-p_{H_{e}}\right) g \frac{\pi y^{3}}{6}
$$

$$
M_{5}=\rho_{5} t_{5}=p_{5} A_{s} t_{s}=\rho_{5} \pi r^{2} t
$$

$$
\begin{aligned}
\therefore M & \left.=\frac{F_{\text {bug }}-M_{b}}{g}=\left(p_{a i r}-p_{r_{c}}\right) \frac{\pi y^{3}}{6}-p_{s} \pi\right)^{2} t \\
M & =\pi)^{2}\left[\left(p_{a i r}-p_{\text {He }}\right) \frac{2}{6}-p_{s} t\right]
\end{aligned}
$$

From ideal gas law

Then,

$$
M=r(62.7)^{2} n^{2}\left[(42.1-6.69) \times 10^{-4} \frac{69}{n^{3}} \times 8 \frac{8.7 n}{6}-1.28 \times 999 \frac{69}{n^{3}} \times 1.5 \times 10^{-5} n\right]
$$

$$
M=637 \mathrm{~kg}
$$

$$
\begin{aligned}
& \text { four }=\frac{P}{R T}=3.0 \times 10^{-3} \mathrm{bar} \times \frac{\mathrm{kg} \cdot \mathrm{~K}}{281 \mathrm{~J}} \times \frac{1}{248 \mathrm{~K}} \times \frac{10^{5} \mathrm{~Pa}}{\operatorname{bas}} \times \frac{\mathrm{N}}{2 n^{2}} \times \frac{\mathrm{J}}{\mathrm{H} \cdot n}=4.21 \times\left. 10^{-3} \mathrm{~kg}\right|_{\mathrm{m}^{2}}
\end{aligned}
$$

Given: Weight as shown in water on
rod.

$$
L=10 f, A=3 i^{2}, w_{r}=3 l b t
$$

$$
a=1 f, \quad w_{b}^{\prime}=671 b f^{\prime}
$$

Find: θ for equilibrium condition
Solution:
Bask equations: $\vec{\Sigma} M=0$ for equilibrium Moment of force $=\vec{r} \times \vec{F}$
Computing equation: $\vec{F}_{3}=-\gamma$ thipplave k
hel (1)r refer to rod (i) refer to block

Summing moments about the hinge

$$
\begin{aligned}
& \left(w_{b}-F_{j_{b}}\right) \hat{\jmath} \times L(i \cos \theta+j \sin \theta)+\left(-F_{B_{r}}\right) \hat{\jmath} \times \frac{(h+c)}{2}(\hat{i} \cos \theta \hat{j} \sin \theta) \\
& +W_{r} \partial \times \frac{L}{2}(i \cos \theta \cdot j \sin \theta) \\
& \left\{-W_{b} h \cos \theta+F_{B_{b}} h \cos \theta+F_{B_{c}}\left(\frac{(L+c)}{2} \cos \theta-W_{c} \frac{h}{2} \cos \theta\right\} \hat{g}_{h}=0\right. \\
& -W_{b} h+F_{B_{6}} h+F_{B_{r}} \frac{(h+c)}{L_{2}}-W_{5} \frac{h}{2}=0 \\
& F_{D_{r}}=\gamma \forall_{d i s}=\gamma A l=\gamma A(L-C) \\
& \therefore-W_{b} L+F_{B_{b} L} L+\gamma R(L-C) \frac{(L+C)}{2}-W_{r} \frac{L}{2}=0 \\
& -2 W_{b} L+2 F_{B_{b} L} L+\gamma A\left(L^{2}-c^{2}\right)-W_{r} L=0 \\
& \therefore 8 A\left(L^{2}-C^{2}\right)=W_{c} L+2 W_{b} h-2 F_{B_{6} h}
\end{aligned}
$$

and

$$
\begin{aligned}
& c=\left[L^{2}-\frac{1}{\gamma A}\left(w_{r} h+2 \omega_{b} L-2 F_{B_{b} h} h\right)\right]^{1 / 2}=\frac{a}{\sin \theta} \\
& c=\left[(10)^{2} f t^{2}-\frac{4 t^{3}}{62.4165} \times \frac{1}{3 i^{2}}\left(31 b f \times 10 f t+2 \times 671 b t \times 10 f t-2 \times 62.4 \frac{b t}{f t} \times 1 t^{3}+10 f t\right) \times 144 . \frac{t}{f t^{2}}\right]^{1 / 2} \\
& c=[6.18]^{-1 / 2}=2.48 \mathrm{f} \\
& \sin \theta=\frac{a}{c}-\frac{1.00 f t}{2.48 f t}=0.403 \quad \therefore \theta=23.8^{\circ}
\end{aligned}
$$

Given: Glass hydrometer used to measure SG of liquids.
Stem has $D=6 \mathrm{~mm}$; distance between marks on stem is $d=3 \mathrm{~mm}$ per 0.1 sG

Hydrometer floats in ethyl alcohol (assume contact angle is \&f). Find: Magnitude of error introduced by surface tension.

Solution: Consider a free-body diagram of the floating hydrometer
surface tension will cause the hydrometer to sink Δ h lower into the liquid. Thus for this change,

$$
\Sigma F_{z}=\Delta F_{B}-F_{\sigma}=m a_{z}=0
$$

computing equation: $\Delta F_{B}=\rho g \Delta \forall$
Assumptions: (1) static liquid
(z) Incompressible liquid

Then $\Delta \forall=\frac{\pi D^{2}}{4} \Delta h$ and $\Delta F_{E 3}=\rho g \frac{\pi D^{2}}{4} \Delta h$

and $F_{\sigma}=\pi D \sigma \cos \theta=\pi D \sigma$
Combining $\rho g \frac{\pi D^{2}}{4} \Delta h=\pi D \sigma$ or $\Delta h=\frac{4 \sigma}{\rho g D}=\frac{4 \sigma}{S G \rho_{H 2 O} g D}$
From Table $A, 2,5 G=0.789$ and from Table $A .4, \sigma=22,3 \mathrm{mN} / \mathrm{m}$ for ethanol, so

$$
\Delta h=\frac{4}{0.789} \times 22.3 \times 10^{-3} \frac{\mathrm{~N}}{\mathrm{~m}} \times \frac{\mathrm{m}^{3}}{1000 \mathrm{~kg}} \times \frac{\mathrm{s}^{2}}{9.81 \mathrm{~m}^{2}} \times \frac{1}{0.006 \mathrm{~m}} \times \frac{\mathrm{kg} \cdot \mathrm{~m}}{\mathrm{~N} \cdot \mathrm{~s}}=1.92 \times 10^{-3} \mathrm{~m}
$$

Thus the change in 56 will be

$$
\Delta S G=1.92 \times 10^{-3} m_{\times} \frac{0.156}{3 \mathrm{~mm}} \times 1000 \frac{\mathrm{~mm}}{\mathrm{~m}}=0.0640
$$

$$
\left\{\begin{array}{l}
\text { From the diagram, surface tension acts to cause the hydrometer to } \\
\text { float bower in the liquid. Therefore surface tension results in an } \\
\text { indicated ss smaller than the actual } 56 .
\end{array}\right.
$$

Problem *3.91

If the weight W in Problem 3.89 is released from the rod, at equilibrium how much of the rod will remain submerged? What will be the minimum required upward force at the tip of the rod to just lift it out of the water?

Given: Data on rod

Find: How much is submerged if weight is removed; force required to lift out of water

Solution

The data are

$$
\text { For water } \quad \gamma=62.4 \cdot \frac{\mathrm{lbf}}{\mathrm{ft}^{3}}
$$

For the cylinder

$$
\mathrm{L}=10 \cdot \mathrm{ft}
$$

$$
\mathrm{A}=3 \cdot \mathrm{in}^{2} \quad \mathrm{~W}=3 \cdot \mathrm{lbf}
$$

The semi-floating rod will have zero net force and zero moment about the hinge
For the moment $\quad \sum \mathrm{M}_{\text {hinge }}=0=\mathrm{W} \cdot \frac{\mathrm{L}}{2} \cdot \cos (\theta)-\mathrm{F}_{\mathrm{B}} \cdot\left[(\mathrm{L}-\mathrm{x})+\frac{\mathrm{x}}{2}\right] \cdot \cos (\theta)$
where $F_{B}=\gamma \cdot A \cdot x$ is the buoyancy force x is the submerged length of rod

Hence $\quad \gamma \cdot \mathrm{A} \cdot \mathrm{x} \cdot\left(\mathrm{L}-\frac{\mathrm{x}}{2}\right)=\frac{\mathrm{W} \cdot \mathrm{L}}{2}$

$$
\begin{aligned}
& \mathrm{x}=\mathrm{L}-\sqrt{\mathrm{L}^{2}-\frac{\mathrm{W} \cdot \mathrm{~L}}{\gamma \cdot \mathrm{~A}}}=10 \cdot \mathrm{ft}-\sqrt{(10 \cdot \mathrm{ft})^{2}-3 \cdot \mathrm{lbf} \times 10 \cdot \mathrm{ft} \times \frac{\mathrm{ft}^{3}}{62.4 \cdot \mathrm{lbf}} \times \frac{1}{3 \cdot \mathrm{in}^{2}} \times \frac{144 \cdot \mathrm{in}^{\prime}}{1 \cdot \mathrm{ft}^{2}}} \\
& \mathrm{x}=1.23 \mathrm{ft}
\end{aligned}
$$

To just lift the rod out of the water requires $\mathrm{F}=1.5 \cdot \mathrm{lbf}$ (half of the rod weight)

Problems 3.92
Given: sphere partially immersed in liquid of specific gravity, SG.
Find: (a) Formula, algebraic expression for buoyancy force, as a function of submersion depth, d, for $0 \leqslant d \leqslant R$.
(b) plot of results over range of liquid depth.

Solution: Apply fluid statics Basic equations: $\frac{d p}{d h}=\rho g$

$$
d F=p d A
$$

Assumptions: (1) Static liquid
(2) Incompressible, so $p=p_{0}+\rho g h$
(3) Negket pate since it acts everywhere

Then $d F_{V}=\cos \theta p d A ; p=\rho g h ; d=h+R(1-\cos \theta) ; h=d-R(1-\cos \theta)$

$$
\begin{gathered}
d A=2 \pi(R \sin \theta) R d \theta=2 \pi R^{2} \sin \theta d \theta \\
d F_{V}=\cos \theta \rho g[d-R(1-\cos \theta)] 2 \pi R^{2} \sin \theta d \theta=2 \pi R^{3}\left[\frac{d}{R}-(1-\cos \theta)\right] \sin \theta \cos \theta d \theta \rho g
\end{gathered}
$$

Now

$$
\begin{aligned}
& F_{V}=\int_{A} d F_{V}=\int_{0}^{\theta_{\max }} 2 \pi R^{3}\left[\frac{d}{R}-(1-\cos \theta)\right] \sin \theta \cos \theta d \theta \rho g \\
& F_{V}=2 \pi R^{3}\left[(1-d / R) \frac{\cos ^{2} \theta}{2}-\frac{\cos ^{2} \theta}{3}\right]_{0}^{\theta_{\max }} \rho g \quad ; \rho=S G \rho \rho_{H 2 O}
\end{aligned}
$$

At $\theta_{\text {max }}, \cos \theta_{\text {max }}=\frac{R-d}{R}=1-d / R$, so

$$
\begin{aligned}
& F_{V}=2 \pi \rho g R^{3}\left\{\left(1-\frac{d}{R}\right)\left[(1-d / R)^{2} / 2-1 / 2\right]-\frac{\left(1-d_{R} R\right)^{3}}{3}+\frac{1}{3}\right\} \\
& F_{V}=2 \pi \rho g R^{3}\left[\frac{1}{6}\left(1-\frac{d}{R}\right)^{3}-\frac{1}{2}\left(1-\frac{d}{R}\right)+\frac{1}{3}\right]
\end{aligned}
$$

Dividing both sides by the vertical force on a fully submerged sphere,

$$
\frac{F_{v}}{\rho g \frac{4 \pi R^{3}}{3}}=\frac{3}{2}\left[\frac{1}{6}()^{3}-\frac{1}{2}()+\frac{1}{3}\right]
$$

where ()$=\left(1-\frac{d}{R}\right)$.

Given: Sphere, of radius R and specific gravity' se, is submerged in a Funk of water. Sphere is -placed over a hole of radius a, in the tank boton.
Find: (a) general expression for the range of sG for which sphere
 will flat to the surface
(b) Minimum sG required for sphere to remowi in

Solution:
Bask equations: $F_{\text {troy }}=p g t \quad \frac{d p}{d h}=p g \quad d f=P_{\text {th }}$
Assumptions: (i) static liquid
(2) incompressible, so $-p=p_{0}+p g h$
(3) $p=$ Pair at free 'surface and al hole
(4) a|r《 4

Draw fld of sphere. $\Sigma F_{y}=0$

$$
\sum F_{y}=0=F_{a}-F_{p}+F_{p}-m g
$$

$F_{a}=$ force of air on area of sphere of radios $a . F_{a}=P_{\text {path }}<a^{2}$
$F_{p}=$ total force on on area of sphere of radius a at depp $h=H-2 R$.

$$
F_{p}=\left[-p_{a t m}+p g(H-2 R)\right] \pi a^{2}
$$

$$
\begin{aligned}
& F_{8}= \text { net buoyant force on sphere } \\
& \text { excluding cylinder of raduis a }
\end{aligned}
$$

For dimensions given $\frac{a}{R}=\frac{2}{20}=0.1, \frac{A}{R}=\frac{800}{20}=40$

$$
\therefore S G=1-\frac{3}{4} \times 40 \times(0.1)^{2}=0.70
$$

For sG $\geq 0 i n 0$ sphere will stay in position shown_ Gain

$$
\begin{aligned}
& \begin{array}{l}
M g=p s G g \frac{4 \pi p^{3}}{3} \\
\text { Substituting. }
\end{array} \\
& \text { substituting. } \\
& F_{8}=p_{\omega} g t_{\text {met }}=p_{\mu} g\left[\frac{4 \pi R^{3}}{3}-\pi_{a}^{2}(2 R)\right]
\end{aligned}
$$

$$
\begin{aligned}
& O=-(H-2 R) a^{2}+\frac{4 R^{3}}{3}-2 a^{2} R-S G \frac{4 R^{3}}{3} \\
& 0=-\left(\frac{H}{R}-2\right)\left(\frac{a}{8}\right)^{2}+\frac{4}{3}-2\left(\frac{a}{R}\right)^{2}-{ }^{3} \frac{4}{3} S G \\
& S G=1-\frac{3}{4} \frac{H}{R}\left(\frac{a}{R}\right)^{2} \quad \text { SG }
\end{aligned}
$$

Given: Cylindrical timber, $y=0.3 \mathrm{~m}$ and $L=4 \mathrm{~m}$ is weighted on lower end so it 'foots vertically with in submerged in sea water.
When displaced vertically from equilibrium position the timber oscillates in a vertical direction upon release
Find: Estunate frequency of oscillation. (Neglect any viscous
effects or waleretion)
Solution:
At equilibrwn

$$
\begin{gathered}
\sum F_{y}=0=F_{b}-M g=p^{A d}-m g \\
\therefore M=\frac{p \frac{R d}{g}}{}
\end{gathered}
$$

For displacement y

$$
\begin{aligned}
& \quad \sum F_{y}=m \frac{d^{2} y}{d^{2}}=m \ddot{y} \\
& F_{b}-m g=m \ddot{y} \text { where } F_{b}=p A(d-y) \\
& \therefore \quad p A(d-y)-m g=m \ddot{y} \\
& \quad p^{\prime}\left(d-p A y-p H a g=m \ddot{g}=\operatorname{man}^{\prime}\right.
\end{aligned}
$$

$$
\begin{aligned}
& M \ddot{y}+p^{A} y=0 \\
& \ddot{y}+\frac{p}{m} y=0=0
\end{aligned}
$$

where $w^{2}=\frac{p^{\prime}}{r_{1}}=\frac{p^{A} g}{p A d}=\frac{g}{d}$

$$
\begin{aligned}
& \omega=\left(\frac{g}{d}\right)^{\prime / 2}=\left[9.81 \frac{n}{s^{2}} \times \frac{1}{3 m}\right]^{1 / 2}=1.81 \mathrm{rad} / \mathrm{s} \\
& f=\frac{w}{2 \pi}=1.81 \frac{\mathrm{rad}}{\mathrm{~s}} \times \frac{\text { cycle }}{2 \pi r a d}=0.288 \mathrm{cycle} / \mathrm{s} \\
& v=\frac{1}{f}=3.47 \mathrm{~s}
\end{aligned}
$$

Open-Ended Problem Statement: A proposed ocean salvage scheme involves pumping air into "bags" placed within and around a wrecked vessel on the sea bottom. Comment on the practicality of this plan, supporting your conclusions with analyses.

Discussion: This plan has several problems that render it impractical. First, pressures at the sea bottom are very high. For example, Titanic was found in about $12,000 \mathrm{ft}$ of seawater. The corresponding pressure is nearly $6,000 \mathrm{psi}$. Compressing air to this pressure is possible, but would require a multi-stage compressor and very high power.

Second, it would be necessary to manage the buoyancy force after the bag and object are broken loose from the sea bed and begin to rise toward the surface. Ambient pressure would decrease as the bag and artifact rise toward the surface. The air would tend to expand as the pressure decreases, thereby tending to increase the volume of the bag. The buoyancy force acting on the bag is directly proportional to the bag volume, so it would increase as the assembly rises. The bag and artifact thus would tend to accelerate as they approach the sea surface. The assembly could broach the water surface with the possibility of damaging the artifact or the assembly.

If the bag were of constant volume, the pressure inside the bag would remain essentially constant at the pressure of the sea floor, e.g., $6,000 \mathrm{psi}$ for Titanic. As the ambient pressure decreases, the pressure differential from inside the bag to the surroundings would increase. Eventually the difference would equal sea floor pressure. This probably would cause the bag to rupture.

If the bag permitted some expansion, a control scheme would be needed to vent air from the bag during the trip to the surface to maintain a constant buoyancy force just slightly larger than the weight of the artifact in water. Then the trip to the surface could be completed at low speed without danger of broaching the surface or damaging the artifact.

Open-Ended Problem Statement: In the "Cartesian diver" child's toy, a miniature "diver" is immersed in a column of liquid. When a diaphragm at the top of the column is pushed down, the diver sinks to the bottom. When the diaphragm is released, the diver again rises. Explain how the toy might work.

Discussion: A possible scenario is for the toy to have a flexible bladder that contains air. Pushing down on the diaphragm at the top of the liquid column would increase the pressure at any point in the liquid. The air in the bladder would be compressed slightly as a result. The volume of the bladder, and therefore its buoyancy, would decrease, causing the diver to sink to the bottom of the liquid column.

Releasing the diaphragm would reduce the pressure in the water column. This would allow the bladder to expand again, increasing its volume and therefore the buoyancy of the diver. The increased buoyancy would permit the diver to rise to the top of the liquid column and float in a stable, partially submerged position, on the surface of the liquid.

Open-Ended Problem Statement: Consider a conical funnel held upside down and submerged slowly in a container of water. Discuss the force needed to submerge the funnel if the spout is open to the atmosphere. Compare with the force needed to submerge the funnel when the spout opening is blocked by a rubber stopper.

Discussion: Let the weight of the funnel in air be W_{a}. Assume the funnel is held with its spout vertical and the conical section down. Then W_{a} will also be vertical.

Two possible cases are with the funnel spout open to atmosphere or with the funnel spout sealed.
With the funnel spout open to atmosphere, the pressures inside and outside the funnel are equal, so no net pressure force acts on the funnel.. The force needed to support the funnel will remain constant until it first contacts the water. Then a buoyancy force will act vertically upward on every element of volume located beneath the water surface.

The first contact of the funnel with the water will be at the widest part of the conical section. The buoyancy force will be caused by the volume formed by the funnel thickness and diameter as it begins to enter the water. The buoyancy force will reduce the force needed to support the funnel. The buoyancy force will increase as the depth of submergence of the funnel increases until the funnel is fully submerged. At that point the buoyancy force will be constant and equal to the weight of water displaced by the volume of the material from which the funnel is made.

If the funnel material is less dense than water, it would tend to float partially submerged in the water: The force needed to support the funnel would decrease to zero and then become negative (i.e., down) to fully submerge the funnel.

If the funnel material were more dense than water it would not tend to float even when fully submerged. The force needed to support the funnel would decrease to a minimum when the funnel became fully submerged, and then would remain constant at deeper submersion depths.

With the funnel spout sealed, air will be trapped inside the funnel. As the funnel is submerged gradually below the water surface, it will displace a volume equal to the volume of the funnel material plus the volume of trapped air. Thus its buoyancy force will be much larger than when the spout is open to atmosphere. Neglecting any change in air volume (pressures caused by submersion should be small compared to atmospheric pressure) the buoyancy force would be from the entire volume encompassed by the outside of the funnel. Finally, when fully submerged, the volume of the rubber stopper (although small) will also contribute to the total buoyancy force acting on the funnel.

Problem *3.98

Given: Cylindrical container rotating as in Example Problem 3.9

$$
\begin{aligned}
& R=0.5 \mathrm{ft} \\
& h_{0}=4 \mathrm{in} .
\end{aligned}
$$

Determine: (a) value or w such that $h_{1}=0$ (b) if solution is dependent on p

Solution:

In order to obtain the solution we need an expression for the shape. of the free surface in lems of ω, r, and h_{0}

The required expression was derived' in Example Problem 3.9. Te equation is

$$
z=h_{0}-\frac{(\omega R)^{2}}{2 q}\left[\frac{1}{2}-\binom{R}{R}^{2}\right]
$$

Since $h_{1}=0$ corresponds to $z=0$ and $r=0$ we must determine ω such Hat

$$
0=h_{0}-\frac{(\omega p)^{2}}{4 g}
$$

Solving for ω,

$$
\begin{aligned}
\omega & =\frac{2}{R} \sqrt{g^{h}} 0 \\
& =\frac{2}{0.5 \mathrm{ft}}\left(32.2 \frac{\mathrm{ft}}{\mathrm{~s}^{2}} \times 4 \mathrm{in} \times \frac{\mathrm{ft}}{12 \mathrm{in}}\right)^{1 / 2} \\
& =4 \times 3.28 \frac{1}{\mathrm{~s}} \\
\omega & =\left.13.1 \mathrm{rad}\right|_{\mathrm{s}}
\end{aligned}
$$

The solution is independent of p since the equation of the free surface is independent of p.

Given: V-tube accekrometer

Find: Acceleration in terms of h, L

Solution: Apply x, y components of hydrostatic equation. Basic equations:

$$
\begin{array}{lll}
-\frac{\partial p}{\partial x}+\rho g_{x}=\rho a_{x} & a_{x}=a & g_{x}=0 \\
-\frac{\partial p}{\partial y}+\rho g_{y}=\rho a_{y} & a_{y}=0 & g_{y}=-g
\end{array}
$$

Assumptions: (1) Neglect sloshing
(2) Ignore corners

Then $\frac{\partial p}{\partial x}=-\rho a, \frac{\partial p}{\partial y}=-\rho g$. Evaluate Δp from left leg to right:

$$
\begin{aligned}
d p & =\frac{\partial p}{\partial x} d x+\frac{\partial p}{\partial y} d y \\
\Delta p & =\frac{\partial p}{\partial x} \Delta x+\frac{\partial p}{\partial y} \Delta y \\
& =(-\rho g)(-b)+(-\rho a)(-L)+(-\rho g)(b+h) \\
\Delta p & =f a L-\rho g h=0
\end{aligned}
$$

Solving,

$$
a=g\left(\frac{h}{L}\right)
$$

Gwen: Rectangular container of water undergoing constant acceleration as show

Determine: The slope of the free surface.
Solution:
Basic equation: $-\nabla p+\overrightarrow{p g}=p \vec{a}$
Writing the component equations

$$
\left.\left.\begin{array}{r}
-\frac{\partial P}{\partial x}+p g_{x}=p a_{x} \\
-\frac{\partial p}{\partial y}+p g_{y}=p a_{y} \\
-\frac{\partial r}{\partial z}+p g_{z}=p a_{z}
\end{array}\right\} \begin{array}{l}
F_{o r} g \text { gen contaminates } \\
a_{y}=a_{z}=0 \\
g_{y}=-g \cos \theta \\
g_{x}=g \sin \theta \\
g_{z}=0
\end{array}\right\} \begin{aligned}
& \frac{\partial p}{\partial x}=p g \sin \theta-p a_{x} \\
& \frac{\partial p}{\partial y}=-p g \cos \theta \\
& \frac{\partial p}{\partial z}=0
\end{aligned}
$$

From the component equations we conclude that $P=P(x, y)$ Hen

$$
d P=\frac{\partial P}{\partial x} d x+\frac{\partial p}{\partial y} d y
$$

Flong the free surface $P=$ constant and $d P=0$. Hence

$$
\begin{aligned}
\left.\frac{d y}{d x}\right)_{\text {surface }} & =-\frac{\partial p l_{\partial x}}{\partial p b_{y}}=\frac{\rho g \sin \theta-p a_{x}}{p g \cos \theta} \\
& =\frac{g \sin \theta-a_{x}}{g \cos \theta} \\
& =\frac{32.2(0.5) f 41 \mathrm{~s}^{2}-10 \mathrm{ft} / \mathrm{s}^{2}}{32.2(0.866) \mathrm{ft} / \mathrm{s}^{2}} \\
\left.\frac{d y}{d x}\right)_{\text {surface }} & =0.22
\end{aligned}
$$

Given: J-twhe, sealed at A and open to the atmosphere at 5, is filled will water at $T=20 \mathrm{C}$ and rotated about vertical axis ABS Dimensions are shown on the diagram
Find: the maximum allowable angular speed, w, for no cavitation

Solution:
Basic equation: $-\nabla p+\overrightarrow{p g}=\overrightarrow{p a}$
Assumptions: (i) vicompressible fined (2) solid body rotation
Component equations

$$
\begin{aligned}
-\frac{\partial p}{\partial r} & =p a_{r}=-p \frac{\nu^{2}}{r}=-p w^{2} r \\
\frac{\partial p}{\partial z} & =-p q
\end{aligned}
$$

Between y and $C, r=$ constant, so $\frac{d p}{d z}=-p q$ and $P_{y} \cdot P_{c}=p g t$
Between B and $A, E=$ constant, so $\frac{d p}{d z}=-p g$ and $P_{A} \cdot P_{B}=-p g+$... (2)
Between B and $C, Z=$ constant, $s_{0} \frac{d p}{d r}=p w^{2} r$. Hence

$$
\begin{aligned}
& \left.\int_{p_{B}}^{p_{c}} d \cdot p=\int_{0}^{L} \rho \omega^{2} r d r=\rho \omega^{2} \frac{r^{2}}{2}\right]_{0}^{2}=\rho \omega^{2} \frac{2^{2}}{2} \\
& \quad p_{C}-p_{B}=\rho \omega^{2} \frac{L^{2}}{2} \cdots(3)
\end{aligned}
$$

Since $P_{P}=P_{\text {atm }}$, Pen from E_{q} (i) $P_{c}=P_{a t m}+p g{ }_{c}$
From Eq(3) $\quad p_{B}=p_{C}-p w^{2} \frac{L^{2}}{2}$ so $p_{B}=f_{a t n}+p g t-p_{0} w_{L_{2}^{2}}^{2}$
From $E_{p}(2) \quad p_{R}=p_{B}-p g t$ so $p_{H}=p_{a t n}-p w^{2} \frac{L^{2}}{2}$
Hus the minimum pressure occurs at point A
Rt $T=20 c$ the vapor pressure of water is $p_{v}=2.34 \times 10^{3} \mathrm{Nt}^{2} \mathrm{~m}^{2}$
Solving for ω with $p_{A}=f_{v}$, we obtain

$$
\begin{aligned}
& \omega=\left[\frac{2\left(P_{a t m}-P_{v}\right)}{P^{2}}\right]^{1 / 2}=\left[2(101.23-2.34) \times 10^{3} \frac{n}{\sqrt{2}} \times \frac{r^{3}}{999 g^{2}} \times(0.07)^{2} m^{2} \times \frac{1}{5 \cdot m^{2}}\right]^{1 / 2} \\
& \omega=188 \mathrm{radls}
\end{aligned}
$$

Problem *3.102

If the U-tube of Problem 3.101 is spun at 200 rpm , what will be the pressure at A ? If a small leak appears at A, how much water will be lost at D ?

Given: Data on U-tube

Find: Pressure at A at 200 rpm ; water loss due to leak

Solution

For water $\quad \rho=999 \cdot \frac{\mathrm{~kg}}{\mathrm{~m}^{3}}$

The speed of rotation is $\omega=200 \cdot \mathrm{rpm}$ $\omega=20.9 \frac{\mathrm{rad}}{\mathrm{s}}$

The pressure at D is

$$
\mathrm{p}_{\mathrm{D}}=0 \cdot \mathrm{kPa}
$$

(gage)

From the analysis of Example Problem 3.10, the pressure p at any point (r, z) in a continuous rotating fluid is given by

$$
p=p_{0}+\frac{\rho \cdot \omega^{2}}{2} \cdot\left(r^{2}-r_{0}^{2}\right)-\rho \cdot g \cdot\left(z-z_{0}\right)
$$

where p_{0} is a reference pressure at point $\left(r_{0}, z_{0}\right)$

In this case

$$
\mathrm{p}=\mathrm{p}_{\mathrm{A}} \quad \quad \mathrm{p}_{0}=\mathrm{p}_{\mathrm{D}}
$$

$$
\mathrm{z}=\mathrm{z}_{\mathrm{A}}=\mathrm{z}_{\mathrm{D}}=\mathrm{z}_{0}=\mathrm{H} \quad \mathrm{r}=0 \quad \mathrm{r}_{0}=\mathrm{r}_{\mathrm{D}}=\mathrm{L}
$$

Hence

$$
p_{A}=\frac{\rho \cdot \omega^{2}}{2} \cdot\left(-L^{2}\right)-\rho \cdot g \cdot(0)=-\frac{\rho \cdot \omega^{2} \cdot L^{2}}{2}
$$

$$
\begin{aligned}
& \mathrm{p}_{\mathrm{A}}=-\frac{1}{2} \times 999 \cdot \frac{\mathrm{~kg}}{\mathrm{~m}^{3}} \times\left(20.9 \cdot \frac{\mathrm{rad}}{\mathrm{~s}}\right)^{2} \times(0.075 \cdot \mathrm{~m})^{2} \times \frac{\mathrm{N} \cdot \mathrm{~s}^{2}}{\mathrm{~kg} \cdot \mathrm{~m}} \\
& \mathrm{p}_{\mathrm{A}}=-1.23 \mathrm{kPa}
\end{aligned}
$$

When the leak appears, the water level at A will fall, forcing water out at point D. Once again, fr the analysis of Example Problem 3.10, the pressure p at any point (r, z) in a continuous rotating f is given by

$$
\mathrm{p}=\mathrm{p}_{0}+\frac{\rho \cdot \omega^{2}}{2} \cdot\left(\mathrm{r}^{2}-\mathrm{r}_{0}^{2}\right)-\rho \cdot \mathrm{g} \cdot\left(\mathrm{z}-\mathrm{z}_{0}\right)
$$

where p_{0} is a reference pressure at point $\left(r_{0}, z_{0}\right)$

In this case

$$
\begin{array}{lll}
\mathrm{p}=\mathrm{p}_{\mathrm{A}}=0 & \mathrm{p}_{0}=\mathrm{p}_{\mathrm{D}}=0 & \\
\mathrm{z}=\mathrm{z}_{\mathrm{A}} & \mathrm{z}_{0}=\mathrm{z}_{\mathrm{D}}=\mathrm{H} & \mathrm{r}=0
\end{array}
$$

Hence $\quad 0=\frac{\rho \cdot \omega^{2}}{2} \cdot\left(-L^{2}\right)-\rho \cdot g \cdot\left(z_{A}-H\right)$

$$
\mathrm{z}_{\mathrm{A}}=\mathrm{H}-\frac{\omega^{2} \cdot \mathrm{~L}^{2}}{2 \cdot \mathrm{~g}}
$$

$$
\mathrm{z}_{\mathrm{A}}=0.3 \cdot \mathrm{~m}-\frac{1}{2} \times\left(20.9 \cdot \frac{\mathrm{rad}}{\mathrm{~s}}\right)^{2} \times(0.075 \cdot \mathrm{~m})^{2} \times \frac{\mathrm{s}^{2}}{9.81 \cdot \mathrm{~m}} \times \frac{\mathrm{N} \cdot \mathrm{~s}^{2}}{\mathrm{~kg} \cdot \mathrm{~m}}
$$

$$
\mathrm{z}_{\mathrm{A}}=0.175 \mathrm{~m}
$$

The amount of water lost is $\quad \Delta \mathrm{h}=\mathrm{H}-\mathrm{z}_{\mathrm{A}}=300 \cdot \mathrm{~mm}-175 \cdot \mathrm{~mm} \quad \Delta \mathrm{~h}=125 \mathrm{~mm}$

Given: Centrifugal micromanometer consists of pour of parallel disks that rotate to develop a radial pressure difference. There is no flow between the disks.

Find: (a) An expression for the pressure difference, $D P$, as a function of ω, R, and p
(b) Find ω if $\Delta P=8$ in $H_{2} O$ and $R=50 \mathrm{~mm}$.

Solution:
Basic equation: $-\nabla p+p \vec{g}=\overrightarrow{p a}$

$$
\left(r \text { component) }-\frac{\partial P}{\partial r}+p g_{r}=p a_{r}\right.
$$

Assumptions: (i) standard air between disks

(a) 5 horizontal so $g_{5}=0$
(3) rigid body motion, $\infty \quad a_{r}=-\frac{\nu^{2}}{r}=-\frac{(r w)^{2}}{r}=-r w^{2}$

Pen (p is a constant)
Separating variables and integrating, we detain

$$
\begin{aligned}
& \int_{p}^{p \pi D} d p=p \omega^{2} \int_{0}^{e} r d r \\
& \Delta P=\frac{p \omega^{2} p^{2}}{2}
\end{aligned}
$$

Then

$$
\omega^{2}=\frac{2 B P}{p P^{2}}
$$

where $\Delta P=P w_{0} g$ oh and $t h=8 \times 10^{-6} \mathrm{~m}$

$$
\begin{align*}
\omega^{2} & =\frac{2 \rho m_{10} g h}{\rho b^{2}} \\
& =2 \times \frac{999 \mathrm{gg} / \mathrm{m}^{3}}{1.225} \mathrm{~g} / \mathrm{n}^{3} \times 9.81 \frac{\mathrm{~s}}{\mathrm{~s}^{2}} \times 8 \times 0^{-6} \mathrm{~m} \times \frac{1}{(0.05)^{2} \mathrm{~m}^{2}} \\
\omega^{2} & =51.2 \mathrm{~s}^{-2} \\
\omega & =7.16 \mathrm{rad} \mathrm{l}
\end{align*}
$$

Giver: Test tube with water
Find: (a) Radial acceleration
(b) Radial pressure gradient, op hr
(c) Maximum pressure on bottom.

Solution: Apply equation for rigid-body motion

Baric equation: $-\nabla p+\rho \vec{g}=f \vec{a}$

$$
(r \text { component })-\frac{\partial p}{\partial r}+\rho g_{r}=p a_{r}
$$

Assumptions: (1) Rigid-bocty motion, so $a_{r}=-\frac{v^{2}}{r}=-\frac{(\omega)^{2}}{r}=-r \omega^{2}$
(z) r horizontal, so gr $=0$

Then $\frac{\partial p}{\partial r}=-\rho a_{r}=-\rho\left(-r \omega^{2}\right)=\rho r w^{2}$
Integrating, $\left.p_{1}-p_{1}=\int_{1}^{2} \frac{\partial p}{\partial r} d r=\int_{r_{1}}^{r_{2}} \rho r \omega^{2}=\rho \frac{r^{2} \omega^{2}}{2}\right]_{r_{1}}^{r_{2}}=\frac{1}{2} \rho \omega^{2}\left(r_{2}^{2}-r_{1}^{2}\right)$

$$
k_{\max }=p_{2}-p_{1}=\frac{1}{2} \times \frac{999 \mathrm{~kg}}{\mathrm{~m}^{3}} \times \frac{(1000)^{2}}{\mathrm{~s}^{2}} \times\left[(0,130)^{2}-(0,050)^{2}\right] \mathrm{m}^{2} \times \frac{\mathrm{N} 1 \mathrm{~s}^{2}}{\mathrm{kgim}}=7.19 \mathrm{MPa}
$$

Gwen: Box, $1 n+1 n+1 n$, half filed with oil $(S G=0.80)$, subjected to a constant horizontal acceleration or 0.2 g .
Determine: (a) slope of free surface
(b) pressure along bottom of box

Solution:

Basic equation: $-\nabla p+e \vec{g}=p \vec{a}$
Writing the component equations

$$
\begin{array}{rll}
-\frac{\partial p}{\partial x}+p g_{x}=p a_{x} & \Rightarrow & \frac{\partial p}{\partial x}=-p a_{x} \\
-\frac{\partial p}{\partial y}+p g_{y}=p a_{y} & \Rightarrow & \frac{\partial p}{\partial y}=p q_{y}=-p g \\
-\frac{\partial p}{\partial z}+p g_{z}=p a_{z} & \Rightarrow & \frac{\partial p}{\partial z}=0
\end{array}
$$

From the componat equations we conclude that $P=P(x, y)$ Then

$$
d P=\frac{\partial P}{\partial x} d x+\frac{\partial P}{\partial y} d y
$$

Along the free surface $p=$ constant and $d p=0$. Hence

$$
\left.\frac{d y}{d x}\right)_{\text {surface }}=-\frac{\partial P 1 \partial x}{\partial p 1 \partial y}=-\frac{a_{x}}{g}=-\frac{0.2 g}{g}=-0.2 \ldots
$$

Srice $P=P(x, y)$

$$
d P=\frac{\partial P}{\partial x} d x+\frac{\partial P}{\partial y} d y
$$

Substituting for the partial derivatives

$$
d p=-p a_{x} d x-p g d y
$$

Integrating for $p=$ constant

$$
S_{p}=p a_{k} x-p g y+c
$$

To evaluate the constant of integration note that

$$
P=\text { Pate at } x=0, y=\frac{\sum}{i}+b
$$

$\begin{aligned} & \text { Hence } \\ & \text { Thus }\end{aligned} P_{a m}=-p g(乞+b)+c$ and $c=P_{d a n}+p g\left(\frac{L}{2}+b\right)$

$$
p=P_{a t m}-p a_{x} x+p g\left(\frac{1}{2}+b-y\right)
$$

where $b=\frac{5}{2} \tan s=\frac{(}{2}\left(\frac{d y}{d x}\right)_{\text {wharf }}=\frac{a_{x}}{9} \quad\left\{\right.$ Note $\theta>0$ for $\left.\frac{d y}{d x}<0\right\}$

$$
\therefore \quad P=P_{a t h}-p a_{x} x+p g\left(\frac{\hbar}{2}+\frac{1}{2} \frac{a_{x}}{g}-y\right) \quad\left\{\begin{array}{l}
\text { Noble } \\
\text { at } x=y=\frac{y i v e s}{2}-P_{a} \text { as it should }
\end{array}\right\}
$$

Along the bottom surface $y=0$ and hence

$$
\begin{aligned}
& P(x, 0)=P_{\text {atm }}-p a_{x x}+P g\left(\frac{h}{2}+\frac{1}{2} \frac{a_{x}}{g}\right)
\end{aligned}
$$

$$
\begin{aligned}
& P(x, 0)=106-1.57 x \text { koa, (} x \text { in meters) }
\end{aligned}
$$

Gwen: Rectangular container of base dimensions $0.4 n \times 6.2 m$ and height $0.4 m$ is filled with under to a depth, $d=0.2 \mathrm{~m}$
Mass or empty container is $M_{c}=10 \mathrm{lg}$
Container slides down an incline, $\theta=30^{\circ}$
 Coefficient of sliding friction is 0.30
Find: The angle of the water surface relative to the horizontal
Solution:
Basie equations: $-\nabla P+\overrightarrow{P g}=M \vec{a} \quad \Sigma \vec{F}=M \vec{a}$
Assumptions: (1) fluid moves as solid body ie no sloshing
writing component equations,

$$
\begin{array}{ll}
-\frac{\partial p}{\partial x}=p a_{x} & \frac{\partial p}{\partial x}=-p a_{x} \\
-\frac{\partial p}{\partial y}-p g=p a_{y} & \frac{\partial p}{\partial y}=-p\left(g+a_{y}\right)
\end{array}
$$

$P=P(x, y) \quad d P=\frac{\partial P}{\partial x} d x+\frac{\partial P}{\partial y}$ dy \quad Along the water surface $d P=0$

$$
\frac{d y}{d x}=-\frac{2 x}{2 x l} 2 y=-\frac{a_{x}}{g+a_{y}}
$$

To determine a_{2} and a_{y} consider the container and contents

$$
\begin{aligned}
& M=M_{C}+M_{H_{2} O}=M_{c}+p^{H}=10 \mathrm{~kg}+999 \frac{\mathrm{~m}^{3}}{M^{3}} \times 0.4 m \times 0.2 \mathrm{in} \times 0 . \mathrm{in} \\
& M=26 \mathrm{~kg}
\end{aligned}
$$

$$
\Sigma F_{y}^{\prime}=0=N-M_{g} \cos \theta
$$

$$
N=M g \cos e=26 \lg \times 9.81 \frac{n}{s^{2}} \times \cos 30^{\circ} \times \frac{N .5^{2}}{\lg \cdot n}=221 N
$$

$$
\Sigma F_{i}=M a_{i}=M g \sin 30^{\circ}-F_{f}=M_{g} \sin 30^{\circ}-\mu N
$$

$$
\begin{aligned}
& a_{i}^{\prime}=g \sin 30^{\circ}-\mu \frac{N}{M}=9.81 \frac{M}{5^{2}} \sin 30^{\circ}-0.3 \times 221 N \times \frac{1}{2664} \times \frac{\lg \cdot n}{N .6^{2}} \\
& a_{i}^{\prime}=2.36 m \mathrm{sec}^{2}
\end{aligned}
$$

Then

$$
\begin{aligned}
& a_{x}=a_{i} \cos \theta=2.36 \frac{n}{\sec ^{2}} \times \cos 30^{\circ}=2.04 n / s^{2} \\
& a_{y}=-a_{x} \sin \theta=-2.36 \frac{n}{6^{2}} \times \sin 30^{\circ}=-1.18 \mathrm{n} / \mathrm{s}^{2}
\end{aligned}
$$

and

$$
\frac{d y}{d x}=\frac{-a x}{g+a y}=-\frac{2.04}{9.81-1.18}=-0.236
$$

$$
\alpha=\tan ^{1} 0.236=13.3^{\circ}
$$

Gwen: Rectangular container of base dimensions $0.4 m \times 0.2 \mathrm{~m}$ and height 0.4 m is filled with water to a depth, $d=0.2 \mathrm{~m}$ Mass of empty container is $M_{c}=10 \mathrm{~kg}$ Container slides down an incline, $\theta=38$ without friction

Find: (a) The angle of the water surface relative to the horizontal. (b) Slope of the free surface for the same acceleration up the plank

Solution:
Basic equations: $-\nabla P+\overrightarrow{p g}=M \vec{a} \quad \sum \vec{F}=M \vec{a}$
Assumptions: (1) fluid moves as solid body, ie no sloshing
Writing component equations,

$$
\begin{array}{ll}
-\frac{\partial p}{\partial x}=p a_{x} & \frac{\partial p}{\partial x}=-p a_{x} \\
-\frac{\partial p}{\partial y}-p g=p a_{y} & \frac{\partial p}{\partial y}=-p\left(g+a_{y}\right)
\end{array}
$$

$P=P(x, y) \quad d P=\frac{\partial P}{\partial x} d x+\frac{\partial P}{\partial y} d y \quad$ Flong the water surface, $d P=0$

$$
\frac{d y}{d x}=\frac{-\partial P b^{2}}{\partial P / \partial y}=-\frac{a_{x}}{\left(g+a_{y}\right)}
$$

For motion without friction

$$
\begin{aligned}
\Sigma F_{1} & =M a_{1}^{\prime}=M g \sin \theta \quad \therefore a_{x}=g \sin \theta \\
a_{x} & =a_{x} \cos \theta=g \sin \theta \cos \theta \\
a_{y} & =-a_{x} \sin \theta=-g \sin ^{2} \theta \\
\frac{d y}{d x} & =-\frac{a_{x}}{\left(g+a_{y}\right)}=-\frac{g \sin \theta \cos \theta}{\left.g-g \sin ^{2} \theta\right)}=-\frac{\sin \theta}{\cos \theta}=-\tan \theta \\
\frac{d y}{d x} & =-\tan 30^{\circ}=-0.577 \\
\alpha & =\tan ^{-1} 0.577=30^{\circ} .
\end{aligned}
$$

For the same acceleration up the incline, $a_{x}=-g \sin \theta \cos \theta a_{y}=g \sin ^{2} \theta$

$$
\begin{aligned}
\frac{d y}{d x}=\frac{-a x}{\left(g+a_{y}\right)} & =\frac{g \sin \theta \cos \theta}{\left(g+g \sin ^{2} \theta\right)}=\frac{\sin \theta \cos \theta}{1+\sin ^{2} \theta}=\frac{\sin 30 \cos 30}{1+\sin ^{2} 30} \\
\frac{d y}{d x} & =0.346
\end{aligned}
$$

Given: Gas centrifuge, with maximum peripheral speed, $V_{\text {mai }}=300$ muse contains uranuin hewafluoride gas ($M=352 \mathrm{fg}(\mathrm{kgnol})$ at 325 C .
Find: (a) yevolop an expression for ratio of maximum pressure to pressure at centrifuge anis
(b) Evaluate for gwen conditions?

Solution:
Basic equation: $-\nabla p+\overrightarrow{p g}=\overrightarrow{p a} \quad p=p R T$ (r component) $-\frac{\partial p}{\partial r}+p g_{r}=p a_{r}$
Assumptions: (1) ideal gas behavior, $\bar{T}=$ constant
(2) r horizontal, so $g_{r}=0$
(3) rigid body motion, so

$$
a_{r}=-\frac{\nu^{2}}{r}=-\frac{(r \omega)^{2}}{r}=-r \omega^{2}
$$

Then $\frac{\partial P}{\partial r}=-p a_{r}=p r \omega^{2}=\frac{R}{R T} r \omega^{2}$
Separating variables and integrating, we dotain

$$
\begin{aligned}
P_{2} \frac{d P}{P} & =\frac{\omega^{2}}{R T} \int_{R_{2}}^{r_{1}} \begin{array}{l}
r d r \\
r_{1}=0
\end{array}=\frac{\omega^{2}}{R T} \frac{r_{2}^{2}}{2} \\
\ln \frac{P_{2}}{P_{1}} & =\frac{V_{\text {max }}^{2 R T}}{2 R T} \\
\frac{P_{2}}{P_{1}} & =e^{\frac{V_{\text {max }}^{2}}{2 R T}}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{V_{\text {Max }}^{2}}{2 R T}=\frac{(300)^{2} M^{2}}{5^{2}} \times \frac{\lg k}{23.62 N H} \times \frac{1}{598 k}+\frac{N .5^{2}}{g g^{-H}}=3.186 \\
& \therefore \quad \frac{P_{2}}{P_{1}}=e^{3.886}=24.2
\end{aligned}
$$

Given: Pail, ifc diameter and If t deep, weighs 3 bt 8 in of water.
Pail is swung in a vertical arcle of 3 triadius and a speed of 15 fouls.
Water moves as solid body
Point of interest is top of Erajectory.
Determine: (a) tension in string
(b) pressure on pail bolton from water

Solution
Assumption center of mass of bucket and of water are located at $r=3 \mathrm{ft}$ where $V=r w=15: \mathrm{ft} / \mathrm{s}$

Summing forces in radial direction

$$
\begin{gathered}
\sum F_{r} e_{r}=m_{b} a_{b r} e_{r}+m_{\omega} a_{\omega_{r}} e_{r} \\
-T-\left(m_{b}+m_{\omega}\right) g=m_{b} a_{b_{r}}+m_{\omega} a_{\omega r} \\
a_{b r}=a_{\omega_{r}}=-\omega^{2} r=-\frac{v^{2}}{r} \\
\therefore T=\left(\frac{\nu^{2}}{r}-g\right)\left(m_{b}+m_{\omega}\right)
\end{gathered}
$$

where
Then

$$
\begin{aligned}
& m_{\omega}=p_{\omega}+\omega=p_{\omega} \frac{\pi d^{2} h}{4}=1.94 \frac{\operatorname{sog}}{40} \times \frac{1 f^{2}}{4} \times 8 \text { in } \times \frac{f t}{12 n}=1.02 \operatorname{sing}
\end{aligned}
$$

$$
\begin{aligned}
& T=47.6 \mathrm{lb} .
\end{aligned}
$$

In the water $-\nabla p+p \vec{p}=\vec{a}$
writing the component in the s direction

$$
\begin{aligned}
& -\frac{\partial p}{\partial r}-p g=p a_{r}=-p \frac{V^{2}}{r}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{\partial p}{\partial r}=83.0{ }^{\mathrm{bff}} \mathrm{ft}^{3}
\end{aligned}
$$

Assuming that $2 P l a r$ is constant throughout the water then

$$
\begin{aligned}
& P_{\text {bolton }} \cong P_{\text {surface }}+\frac{2 P}{2 r} \Delta r \\
& P_{\text {bottom }}=P_{\text {atm }}+83.0 \frac{1 \mathrm{bf}}{f^{3}} \times 8 \mathrm{in} \times \frac{f}{12 m}=P_{\text {atm }}+55.3 \frac{\mathrm{bf}}{\mathrm{ft}^{2}} \\
& P_{\text {bottom }}-P_{\text {atm }}=55.31 \mathrm{Hflft}^{2} \text { (gage) }
\end{aligned}
$$

Given: soft drink can at outer edge of merry-90-round.

Find: (a) Stope of free surface
(b) Spin rate to spill
(c) Likelihood of spilling vs slipping

Solution: Assume rigid-body motion
Basic equation: $-\nabla p+\rho \vec{g}=\rho \vec{a}_{r} \quad a_{r}=-\frac{V^{2}}{r}=-\frac{(r \omega)^{2}}{r}=-r \omega^{2}$

$$
\left.\begin{array}{l}
-\frac{\partial p}{\partial r}+\rho g_{r}=\rho(z) \\
-\frac{\partial p}{\partial z}+\rho a_{z}=\rho q_{z}=0(s)
\end{array}\right\} \quad \begin{aligned}
& \frac{\partial p}{\partial r}=-\rho a_{r}=\rho r \omega^{2} \\
& \frac{\partial p}{\partial z}=+\rho q_{z}=-\rho g
\end{aligned}
$$

Assumptions: (1) Rigid-body motion, (2) gr $=0,(3) a_{z}=0,(4) g_{z}=-g$ Then $p=p(\Omega ; z)$ so $d p=\frac{\partial p}{\partial r} d r+\frac{\partial p}{\partial z} d z$
$d p=0$ along free surface, so $\frac{d z}{d r}=-\frac{\partial p b r}{\partial p b z}=-\frac{\rho r \omega^{2}}{-\rho g}=\frac{r \omega^{2}}{g}$

$$
\begin{aligned}
& \omega=0.3 \frac{\mathrm{rev}}{\mathrm{sec}} \times 2 \pi \frac{\mathrm{rad}}{\mathrm{rev}}=1.88 \mathrm{rad} / \mathrm{s} \\
& \left.\frac{d z}{d r}\right)_{\text {surface }}=1.5 \mathrm{~m}_{\times}(1.88)^{2} \frac{\mathrm{rad}^{2}}{\mathrm{~s}^{2}} \times \frac{\mathrm{s}^{2}}{4.81 \mathrm{~m}}=0.540
\end{aligned}
$$

To spill, slope must be $\left|\prime^{\prime}\right| H \quad H / 0=120 / 65=1.85$
Thus $\omega=\left[\begin{array}{ll}g & \frac{d z}{d r}\end{array}\right]^{1 / 2}=\left[9.81 \frac{\mathrm{~m}}{s^{2}} \times 1.85 \times \frac{1}{15 \mathrm{~m}}\right]^{1 / 2}=3.48 \mathrm{rad} / \mathrm{s}$
This is nearly doveble the speed.
The coefficient of static friction between the can and surface is probably $\mu_{s} \leqslant 0.5$.
Thees the can would likely not spill or tip: it would slide off!

Open-Ended Problem Statement: When a water polo ball is submerged below the surface in a swimming pool and released from rest, it is observed to pop out of the water. How would you expect the height to which it rises above the water to vary with depth of submersion below the surface? Would you expect the same results for a beach ball? For a table-tennis ball?

Discussion: Separate the problem into two parts: (1) motion of the ball in water below the pool surface, and (2) motion of the ball in air above the pool surface.

Below the pool water surface the motion of each ball is controlled by buoyancy force and inertia. For small depths of submersion ball speed upon reaching the pool surface will be small. As depth is increased, ball speed will increase until terminal speed in water is approached. For large depths, the actual depth will be irrelevant because the ball will reach terminal speed before reaching the pool water surface. All three balls are relatively light for their diameters, so terminal speed in water should be reached quickly. The depth of submersion needed to reach terminal speed should be fairly small, perhaps 1 meter or less. ${ }^{1}$

Buoyancy is proportional to volume and inertia is proportional to mass. The ball with the largest volume per unit mass should accelerate most quickly to terminal speed. This probably will be the beach ball, followed by the table-tennis ball and the water polo ball.

The ball with the largest diameter has the smallest frontal area per unit volume; the terminal speed should be highest for this ball. The beach ball should have the highest terminal speed, followed by the water polo ball and the table-tennis ball.

Above the pool water surface the motion of each ball is controlled by aerodynamic drag force, gravity force, and inertia (see equation below). Without aerodynamic drag, the height above the pool water surface reached by each ball would depend only its initial speed. ${ }^{2}$ Aerodynamic drag reduces the height reached by each ball.

Aerodynamic drag force is proportional to frontal area. The heaviest ball per unit frontal area (probably the water polo ball) should reach the maximum height and the lightest ball per unit frontal area (probably the beach ball) should reach the minimum height.

$$
\begin{align*}
\Sigma F_{y}= & -F_{D}-m g=m a_{y}=m \frac{d V}{d t} \\
& -C_{D} A \frac{1}{2} \rho V^{2}-m g=m \frac{d V}{d t}, \text { since } F_{D}=C_{D} A \frac{1}{2} \rho V^{2} \\
& -\frac{C_{D A} \frac{1}{2} \rho V^{2}}{m}-g=\frac{d V}{d t}=V \frac{d V}{d y} \tag{1}
\end{align*}
$$

separating variables $\frac{V d v}{1+\frac{C_{D} A \rho}{m g} \frac{V^{2}}{2}}=-g d y$
Integrating, $\frac{m g}{\rho C_{D} A} \ln \left[1+\frac{\rho C_{D A}}{m g} \frac{V^{2}}{2}\right]_{V_{0}}^{0}=-\frac{m g}{\rho C_{D A}} e_{n}\left[1+\frac{\rho C_{D} A}{m g} \frac{V_{0}^{2}}{2}\right]=-g g_{m a x}$
${ }^{1}$ The initial water depth required to reach terminal speed may be calculated using the methods of Chapter 9.
2 The maximum height reached by a ball in air with aerodynamic drag may be calculated using the methods of Chapter 9.

Thus $y_{m a x}=\frac{m}{\rho C_{D} A} \ln \left[1+\frac{\rho C_{D} A}{m g} \frac{V_{0}^{2}}{2}\right]=\frac{m}{\rho C_{D} A} \ln \left[1+\frac{F_{D_{0}}}{m g}\right]$
With no aerodynamic drag, Eq. 1 reduces to

$$
-m g=m v \frac{d v}{d y} \quad \text { or } \quad v d v=-g d y
$$

Integrating from v_{0} to $\left.0, \quad \frac{V^{2}}{2}\right]_{V_{0}}^{0}=-$ gymax

$$
y_{\text {max }}=\frac{V_{0}^{2}}{2 g}
$$

Check the limiting value predicted by Eq, z as $C_{0} \rightarrow 0$:

$$
\lim _{C_{D} \rightarrow 0} y \text { max }=\lim _{C_{D} \rightarrow 0} \frac{m}{P C_{D A}} \frac{\rho C_{D A}}{m g} \frac{V_{0}^{2}}{2}=\frac{V_{0}^{2}}{2 g} v v
$$

Open-Ended Problem Statement: The analysis of problem 3.98 suggests that it maybe possible to determine the coefficient of sliding friction between two surfaces by measuring the slope of the free surface in a liquid-filled container sliding down an inclined surface. Investigate the feasibility of this idea.

Discussion: A certain minimum angle of inclination would be needed to overcome static friction and start the container into motion down the incline. Once the container is in motion, the retarding force would be provided by sliding (dynamic) friction. The coefficient of dynamic friction usually is smaller than the static friction coefficient. Thus the container would continue to accelerate as it moved down the incline. This acceleration would provide a nonzero slope to the free surface of the liquid in the container.

In principle the slope could be measured and the coefficient of dynamic friction calculated. In practice several problems would arise.

To calculate dynamic friction coefficient one must assume the liquid moves as a solid body (ie., that there is no sloshing). This condition could only be achieved if there were minimum initial disturbance and the sliding distance were long.

It would be difficult to measure the slope of the free surface of liquid in the moving container.
Images made with a video camera or digital still camera might be processed to obtain the required slope information.

$$
\begin{aligned}
& \sum F_{y}=N-m g \cos \theta ; N=m g \cos \theta \\
& \Sigma F_{x}=m g \sin \theta-F_{f}=m a_{x} ; F_{f}=\mu_{k} N=\mu_{k} m g \cos \theta \\
& a_{x}=g \sin \theta-\mu_{k} g \cos \theta=g\left(\sin \theta-\mu_{k} \cos \theta\right)
\end{aligned}
$$

For static liquid $-\nabla_{p}+\rho \vec{g}=\rho \vec{a}$

$$
\begin{array}{ll}
-\frac{\partial p}{\partial x}+\rho g \sin \theta=\rho a_{x}=\rho g\left(\sin \theta-\mu_{k} \cos \theta\right) ; & \frac{\partial p}{\partial x}=\rho g \mu_{k} \cos \theta \\
-\frac{\partial p}{\partial y}-\rho g \cos \theta=\rho \alpha_{y}^{\prime \prime} & ; \frac{\partial p}{\partial y}=-\rho g \cos \theta
\end{array}
$$

For the tree surface, $d p=\frac{\partial p}{\partial x} d x+\frac{\partial p}{\partial y} d y=0$, so $\frac{d y}{d x}=-\frac{\partial p / \partial x}{\partial p / \partial y}$ Thus $\frac{d y}{d x}=-\frac{\rho g \mu_{k} \cos \theta}{-\rho g \cos \theta}=\mu_{k} ; \alpha=\tan ^{-1}\left(\mu_{k}\right)$
Since it was necessary to make the container slip on the surface,

$$
\theta>\tan ^{-1}\left(\mu_{s}\right)>\tan ^{-1}\left(\mu_{x}\right)=\alpha
$$

Thus $\alpha<\theta$, as shown in the sketch above.

Problem *3.113

Given: A steel liner of length $L=2 \mathrm{~m}$, outer radius $r_{0}=0.15 \mathrm{~m}$, and inner radius $r_{i}=8.10 \mathrm{~m}$ is to be formed in a spinning horizontal mold. To insure uniform thickness the minimum radial acceleration should be 10 g . For steel, S.G $=7.8$.
Find: (a) The required angular velocity (b) Re maximum and minimum pressures on the surface of the mold.
Solution:
Basic equation: $\nabla-\vec{\nabla}+\vec{g}=\vec{g}=\vec{a}$

Writing component equations,

$$
\begin{aligned}
& -\frac{\partial p}{\partial r}+p q_{r}=p a_{r} \quad \text { and } \frac{\partial p}{\partial r}=p g r-p a r=p(-g \cos \theta)-p\left(-r \omega^{2}\right)=p r \omega^{2}-p g \cos \theta \\
& -\frac{1}{r} \frac{\partial p}{\partial \theta}+p g_{\theta}=0 \quad \text { and } \frac{\partial p}{\partial \theta}=p g_{\theta} r=p g \sin \theta r
\end{aligned}
$$

Then, $d P=\frac{\partial p}{\partial r} d r+\frac{\partial p}{2 \theta} d \theta=\left(p r \omega^{2}-p g \cos \theta\right) d r+p g r \sin \theta d \theta$

$$
\begin{aligned}
& \left.\frac{\partial p}{\partial r}\right|_{\theta}=\operatorname{con} s t=p r \omega^{2}-p g \cos \theta \quad \text { Since } p=p_{a t h} \text { at } r=r_{i}, \text { then } \\
& p-p_{\text {aim }}=S_{r_{i}}\left(p r \omega^{2}-p g \cos \theta\right) d r+f(\theta) \quad \text { where, } f(\theta) \text { is an arbitrary function } \\
& \therefore-p=-p_{a i m}+p \omega^{2}\left(r^{2}-r_{0}-p a \cos \theta(r-r)+f(\theta) \quad\right. \text { then }
\end{aligned}
$$

$$
\therefore-p=-p_{a} a_{n}+p \omega^{2} \frac{\left(r^{2}-r_{i}\right.}{2}-p g \cos \theta\left(r-r_{i}\right)+f(\theta) \text {. Then, }
$$

$$
\frac{\partial p}{\partial \theta}=p g \sin \theta\left(r-r_{i}\right)+\frac{d f}{d \theta}=p g \sin \theta r
$$

Hence, $\frac{d r}{d \theta}=p g \sin \theta r_{i}$ and $f=-p a r i \cos \theta+c$

$$
\therefore p=-p_{a t m}+p \omega^{2}\left(r^{2} \frac{-r^{2}}{2}\right)-p g \cos \theta\left(r-r_{i}\right)-p g r_{i} \cos \theta+c
$$

At $r=r$: $p=-p_{\text {atm }}$ for any value or θ. Hence, $c=p g r i \cos \theta$ and

$$
p=p_{\text {atm }}+p \omega^{2} \frac{\left(r^{2}-\frac{r_{i}^{2}}{2}-p g \cos \theta\left(r-r_{i}\right), ~\right) ~}{2}-p
$$

Mriminem value of $a_{r}=10 g=r w^{2}$ occurs at r_{i} for given w. Hence,

$$
\omega_{\text {min }}=\left[\frac{10 g}{r_{i}}\right]^{1 / 2}=\left[10 \times 9.81 \frac{\mathrm{~m}}{\mathrm{~s}^{2}} \cdot \frac{1}{0.10 \mathrm{~m}}\right]^{1 / 2}=31.3 \mathrm{rad} l_{\mathrm{s}}
$$

\qquad

- Pax on the surface of the Mold $\left(r=r_{0}\right)$ occurs at $\theta=\pi$

$$
p_{\text {max }}-P_{\text {at a }}=\frac{\rho \omega_{2}^{2}}{2}\left(r_{0}^{2}-r_{i}^{2}\right)-p g \cos \theta\left(r-r_{i}\right)
$$

Pain on the surface of the mold $\left(r=r_{0}\right)$ occurs at $\theta=0$

$$
\begin{aligned}
& p_{\text {in }}-p_{\text {atm }}=p \omega_{2}^{2}\left(r_{0}^{2}-r_{2}^{2}\right)-\rho g \cos \theta\left(r-r_{i}\right) \text {. }
\end{aligned}
$$

Problem 4.1

Given: Six-pack cooled from $25^{\circ} \mathrm{C}$ to $5^{\circ} \mathrm{C}$ in freezer.
Find: Change in specific entropy.
Solution: Apply the Teds equation.
Basic equation: $T d s=d u+p d f^{\simeq 0(1)}$
Assumptions: (1) Neglect volume change
(2) Liquid properties are similar to water

Then

$$
T d s=d u=c_{v} d T
$$

or

$$
d \Delta=c_{v} \frac{d T}{T}
$$

Integrating,

$$
\begin{aligned}
& \Delta_{2}-A_{1}=C_{V} \ln \left(\frac{T_{2}}{T_{1}}\right) \\
&=\frac{1 \mathrm{kca}}{\mathrm{~kg} \cdot \mathrm{~K}} \times \ln \left(\frac{273+5}{273+25}\right) \times 4190 \mathrm{~J} \\
& \mathrm{kcai} \\
& A_{2}-\Delta_{1}=-0.291 \mathrm{~kJ} / \mathrm{kg} \cdot \mathrm{~K}
\end{aligned}
$$

Problem 4.2

A mass of 3 kg falls freely a distance of 5 m before contacting a spring attached to the ground. If the spring stiffness is $400 \mathrm{~N} / \mathrm{m}$, what is the maximum spring compression?

Given: Data on mass and spring

Find: Maximum spring compression

Solution

The given data is $\quad \mathrm{M} \quad 3 \square \mathrm{~kg} \quad \mathrm{~h} \quad 5 \square \mathrm{~m} \quad \mathrm{k} \quad 400 \square_{\mathrm{m}}^{\mathrm{N}}$

Apply the First Law of Thermodynamics: for the system consisting of the mass and the spring (t spring has gravitional potential energy and the spring elastic potential energy)

Total mechanical energy at initial state $\mathrm{E}_{1} \quad$ M

Total mechanical energy at instant of maximum compression $\left.x \mathrm{E}_{2} \quad \mathrm{M} \square \square \square \mathrm{x}\right) \square \frac{1}{2} \square \mathrm{k} \square \mathrm{x}^{2}$

Note: The datum for zero potential is the top of the uncompressed spring

But
$E_{1} \quad E_{2}$
so

$$
\mathrm{M}\left[\mathrm{~s} \square \mathrm{M} \quad \mathrm{M}[\mathrm{~g} \square \square \mathrm{x}) \square \frac{1}{2} \square \mathrm{k} \mathrm{x}^{2}\right.
$$

Solving for $x \quad x^{2} \square \frac{2 \square M \square \Phi}{k} \square \square \frac{2 \square M \mid \Phi \square h}{k} 0$

$$
\begin{aligned}
& x \quad 3 \square \mathrm{~kg} \mathrm{u} 9.81 \underset{\mathrm{~s}^{2}}{\mathrm{~m}} \mathrm{u} \frac{\mathrm{~m}}{400 \llbracket \mathbb{N}} \text { 四 }
\end{aligned}
$$

$$
\begin{aligned}
& \text { x } \quad 0.934 \mathrm{~m}
\end{aligned}
$$

Note that ignoring the loss of potential of the mass due to spring compression x gives

$$
\mathrm{x} \sqrt{\frac{2 \boxed{M \boxed{\Phi}[\mathrm{~h}}}{\mathrm{k}}} \quad \mathrm{x} \quad 0.858 \mathrm{~m}
$$

Note that the deflection if the mass is dropped from immediately above the spring is

$$
\mathrm{x} \frac{2[\mathrm{M}[\mathrm{~g}}{\mathrm{k}} \quad \mathrm{x} \quad 0.147 \mathrm{~m}
$$

Problem 4.3

Given: Jet aircraft with $\omega=715,000 \mathrm{lbf}$.
Takeoff speed is $V_{t}=140 \mathrm{mph}$.
Twin engines dive lop $102,000 \mathrm{lbf}$ thrust each.
Assume thrust is constant. Neglect resistance.
Estimate: (a) Runway length needed.
(b) Time to reach V_{t}.

Solution: Apply Newton's second law of motion.

$$
\Sigma F_{x}=m \frac{d V}{d t}=m v \frac{d v}{d t}=F_{t}=\text { constant; } m=\frac{W}{g}
$$

For distance calculation

$$
m V \frac{d V}{d s}=\frac{W}{g} V \frac{d U}{d \Delta}=F_{t} ; \quad V d U=\frac{g F_{t}}{W} d s
$$

Integrating,

$$
\int v d v=\frac{V^{2}}{z}=\int \frac{g F_{t}}{w} d \alpha=\frac{g F_{t}}{w} \Delta
$$

Thus

$$
\begin{aligned}
A & =\frac{W v^{2}}{2 g F_{t}} \\
& =\frac{1}{2} \times 715,000 \mathrm{lbf}\left[140 \frac{m i}{h r} \times 5280 \frac{f+}{m i} \times \frac{4 r}{3600 \mathrm{~s}}\right]^{2} \frac{\mathrm{~s}^{2}}{32,2 f t} \times \frac{1}{2(102,000) 1 b f} \\
a & =2,290 \mathrm{ft}
\end{aligned}
$$

For time calculation,

$$
m \frac{d v}{d t}=\frac{w}{g} \frac{d v}{d t}=F_{t} ; \quad d v=\frac{g F_{t}}{w} d t
$$

Integrating,

$$
\int d v=v=\int \frac{g F_{t}}{w} d t=\frac{g F_{t}}{w} t
$$

The cs

$$
\begin{aligned}
t & =\frac{W V}{g F_{t}} \\
& =715,00016 f^{2} 140 \mathrm{mi}_{h r}^{3} \times \frac{s^{2}}{32.2 f+} \times \frac{1}{2(102,000) 16 f} \times 5280 \mathrm{ft} \times \frac{\mathrm{ml}}{3600 \mathrm{~s}} \\
t & =22.4 \mathrm{~s}
\end{aligned}
$$

$\left\{\begin{array}{l}\text { Aerodynamic and rolling resistance would cause these vanes to } \\ \text { increase for an actual aircraft. }\end{array}\right.$

Problem 4.4

Given: Alto skies to stop in 50 meters br lever road with ut $=0.6$ i Find: Initial speed.

Solution: Apply Newtons seronct law to a $\leq y s t e m$ (auto.
Basic equations: $\quad \Sigma F_{x}=m a_{x}=\frac{W}{g} \frac{d^{2} x}{d t^{2}}$
Assiemptions:(1) $F_{f}=\mu \mathrm{w}$
(2) Neglect air resistance

Then $\quad \Sigma F_{x}=-F_{f}=-u W=\frac{W}{g} \frac{d^{2} x}{d t^{2}}$
or $\quad \frac{d^{2} x}{d t^{2}}=-\mu g$

$t=0$
$t=t_{f}$
$V=V_{0}$
$V=0$
$\angle=50 \mathrm{~m}$

Integrating,

$$
\begin{equation*}
\frac{d x}{d t}=-\mu g t+c_{1}=-\mu g t+v_{0} \tag{1}
\end{equation*}
$$

since $V=V_{0}$ at $t=0$. Integrating again,

$$
\begin{equation*}
x=-\frac{1}{2} \mu g t^{2}+V_{0} t+c_{2}=-\frac{1}{2} \operatorname{ug} t^{2}+V_{0} t \tag{Z}
\end{equation*}
$$

since $x=0$ at $t=0$.
Now at $x=L, \frac{d x}{d t}=0$, and $i=t_{t}$. From Eng. ,

$$
0=-u g t_{f}+v_{0} \quad \text { or } \quad t_{f}=\frac{v_{0}}{u g}
$$

Substituting into Eq. 2, evaluated at $t=t_{f}$,

$$
\begin{aligned}
& L=-\frac{1}{2} \operatorname{\mu g} t_{+}^{2}+v_{0} t_{f}=-\frac{1}{2} \mu g \frac{v_{0}^{2}}{\left(u_{g}\right)^{2}}+v_{0} \frac{v_{0}}{\operatorname{Lig}} \\
& L=-\frac{1}{2} \frac{v_{0}^{2}}{\mu g}+\frac{v_{0}^{2}}{\lg }=\frac{V_{0}^{2}}{2} \frac{v^{2}}{2}
\end{aligned}
$$

Solving, $V_{0}=\sqrt{2 \mu g h}=\sqrt{2(0.6) 9.81 \mathrm{~m} \times 50 \mathrm{~m}}=24.3 \mathrm{~m} / \mathrm{s}$
or

$$
V_{0}=24.3 n+\frac{k m}{5} \times 3100 \leq \frac{k m}{n}=8 \% 6 \mathrm{kn} / \mathrm{m}
$$

Problem 4.5
Given: Small steel ball of radius, r, atop large sphere of radius, R, begins to roll. Neglect rolling and air resistance.

Find: Location where ball loses contact and becomes a projectile.
Solution: sum forces in
n direction

$$
\Sigma F_{n}=F_{n}-m g \cos \theta=m a_{n}
$$

$$
a_{n}=-\frac{v^{2}}{(R+r)}
$$

Contact is lost when $\mathrm{F}_{n} \rightarrow 0$, or

$$
-m g \cos \theta=-m \frac{V^{2}}{(R+r)}
$$

or

$$
\begin{equation*}
v^{2}=(R+r) g \cos \theta \tag{1}
\end{equation*}
$$

Energy must be conserved if there is no resistance. Thus

$$
E=m g z+m \frac{V^{2}}{z}=m g(R+r) \cos \theta+m \frac{V^{2}}{2}=E_{0}=m g(R+r)
$$

Thus from energy considerations

$$
\begin{equation*}
v^{2}=2 g(R+r)(1-\cos \theta) \tag{z}
\end{equation*}
$$

Combining Eggs I and 2 ,

$$
V^{2}=\operatorname{Zg}(R+r)(1-\cos \theta)=(R+r) g \cos \theta
$$

or $\quad z(1-\cos \theta)=2-z \cos \theta=\cos \theta$
Thus $\cos \theta=\frac{2}{3}$ and $\theta=\cos ^{-1}\left(\frac{2}{3}\right)=48.2$ degrees

Problem 4.6

Given: Air at $20^{\circ} \mathrm{C}$ and / atm compressed adiabatically, without friction, to 3 atm(abs.).

Find: Change in internal energy, in J / kg.
Solution: Apply the first law of thermodynamics. Treat the air as a system.

$$
=0(1)
$$

Basic equation: $\quad \delta A-\delta \omega+d E$
Assumptions: (1) Adiabatic process, $50 \delta Q=0$
(2) Stationary system, $d E=d U$
(3) Frictionless process, $\delta w=p a t=m p d v$
(4) Ideal gas, pv=RT

Then

$$
\Delta U=\int d U=-\int \delta w=-\int m p d v
$$

The problem is to relate p and $t r$ so that the integral may be evaluated. A frictionless adiabatic process is iscitrapic. Recall from thermosdynamics that an ideal gas follows the isentropic processeqeation

$$
p v^{k}=C \text { where } k=C_{p} / C_{v}
$$

Thus $v=C^{1 / k} p^{-1 / k}$ and $d v=C^{1 / k} \frac{1}{k} p^{-1 / k-1} \alpha_{p}$. substituting.

$$
\begin{aligned}
\Delta u & =\frac{\Delta U}{m}=-\int-p \frac{c^{1 / k}}{k} p^{-1 / k-1} d p=-\frac{c^{1 / k}}{k} \int_{p_{1}}^{p_{2}} p^{-1 / k} d / p \\
& =-\frac{c^{1 / k}}{k}\left[-\frac{1}{k+1} p^{-\frac{1}{k}+1}\right]_{p_{1}}^{p_{2}}=-\frac{c^{1 / k}}{k}\left[-\frac{k}{k-1} p^{\left(\frac{k-1}{k}\right)}\right]_{p_{1}}^{p_{2}} \\
\Delta u & =\frac{c^{1 / k}}{k-1} p_{1}\left(\frac{k-1}{k}\right)\left[\left(\frac{p_{2}}{p_{1}}\right)^{\left.\frac{k-1}{k}-1\right]}\right.
\end{aligned}
$$

$B u t C^{1 / k} p^{\left(\frac{k-1}{x}\right)}=C^{1 / k} p^{-1 / k} p=p v=R T$. Thus

$$
\Delta u=\frac{R T_{1}}{k-1}\left[\left(\frac{p_{2}}{p_{1}}\right)^{\frac{k-1}{k}}-1\right]
$$

From Table $9.6, R=2875 /(\mathrm{kg}$. K) and $k=1.40$ tor ain Substituting,

$$
\Delta u=\frac{1}{0.40} \times 287 \frac{J}{\mathrm{~kg} \cdot \mathrm{~K}} \times(273+20) \mathrm{K}\left[\left(\frac{3}{1}\right)^{\left.\left.\frac{1,40-1}{1.40}-1\right]=77.5 \mathrm{~kJ} / \mathrm{kg} .\right]}\right.
$$

Problem 4.7
Given: Auditorium wit volume $\forall z 1.2 \times 10^{2} \mathrm{ft}^{3}$ contains 6000 people. Ventilation sytuer fails. Average heat loss per person is 300 Btulthr.
Find: (a) increase in internal energy of our in 15 min . (b) change in internal energy for system of people and fdr; account for Recease In air temperature (c) estimate' rate of temperature rise.

Solution
Apply the first haw of thermodynamics for a system.
Bask equation: $Q-W=D E$
Assumptions: il no work is done, $20 \quad W=0$
(2) Stationary syetern, so $D E=D U$
(a) Consider the air in the auditorinn to be the system

$$
\Delta U_{\text {air }}=Q=\frac{300 \text { Btu }}{\text { hr.persen }} \times 6000 \text { person } \times \frac{1}{4} h r=4.50 \times \frac{5}{5} \text { sue Liar }
$$

(b) Consider the air and people to be tie sysbern

$$
\begin{equation*}
\Delta V_{\text {ow i }}=Q \text { fran surroundings }=0 \tag{ow}
\end{equation*}
$$

The ricrease in internal energy of tire our is equal and opposite to the Grange ineminal energy of
the people the people
(c) To estiriate the rate of ternperature rise we write the furs haw on a rale basis

$$
\dot{Q}-\dot{W}=\frac{d E}{d t}
$$

Taking the air in the auditorium to be te system, flem

$$
\dot{Q}=\frac{d G}{d t}=M_{\text {as }} \frac{d u}{d t}=M_{\text {our }} C_{v} \frac{d T}{d T}=p_{\text {air }} t C_{T} \frac{d T}{d T}
$$

Assumptions (3) outbotnouts as ar ideal gas

Ten

Problem 4.8

In an experiment with a can of soda, it took 3 hr to cool from an initial temperature of $25^{\circ} \mathrm{C}$ to $10^{\circ} \mathrm{C}$ in a $5^{\circ} \mathrm{C}$ refrigerator. If the can is now taken from the refrigerator and placed in a room at $20^{\circ} \mathrm{C}$, how long will the can take to reach $15^{\circ} \mathrm{C}$? You may assume that for both processes the heat transfer is modeled by $\dot{Q} \approx-k\left(T-T_{\text {amb }}\right)$, where T is the can temperature, $T_{\text {anb }}$ is the ambient temperature, and k is a heat transfer coefficient.

Given: Data on cooling of a can of soda in a refrigerator

Find: How long it takes to warm up in a room

Solution

The First Law of Thermodynamics for the can (either warming or cooling) is

$$
M\left[\left.\& \frac{\mathrm{dT}}{\mathrm{dt}} \quad \square \mathrm{k} \square \right\rvert\, \Gamma \square \mathrm{T}_{\mathrm{amb}} \square \text { or } \left.\frac{\mathrm{dT}}{\mathrm{dt}} \quad \square \mathrm{~A} \square \right\rvert\, \Gamma \square \mathrm{T}_{\mathrm{amb}} \square \text { where } \mathrm{A} \quad \frac{\mathrm{k}}{\mathrm{M}[\square}\right.
$$

where M is the can mass, c
T is the temperature, and $T_{\text {amb }}$ is the ambient temperature

Separating variables $\frac{d T}{T \square T_{a m b}} \quad \square A \square \mathrm{dt}$

Integrating

where $T_{\text {init }}$ is the initial temperature. The available data from the coolling can now be used to ot a value for constant A

Given data for cooling $\quad \mathrm{T}_{\mathrm{init}} \quad(25 \square 273) \square \mathrm{K} \quad \mathrm{T}_{\mathrm{init}} \quad 298 \mathrm{~K}$
$\mathrm{T}_{\mathrm{amb}} \quad(5 \square 273) \boxed{K} \quad \mathrm{~T}_{\mathrm{amb}} \quad 278 \mathrm{~K}$

A $\quad 1.284 u_{10}^{\square 4} \mathrm{~s}^{\square 1}$

Then, for the warming up process

$$
\mathrm{T}_{\text {init }} \quad(10 \square 273) \boxed{\mathrm{K}} \quad \mathrm{~T}_{\text {init }} \quad 283 \mathrm{~K}
$$

$$
\mathrm{T}_{\mathrm{amb}} \quad(20 \square 273) \boxed{\mathrm{K}} \quad \mathrm{~T}_{\mathrm{amb}} \quad 293 \mathrm{~K}
$$

$$
\mathrm{T}_{\mathrm{end}} \quad(15 \square 273) \boxed{\mathrm{K}} \quad \mathrm{~T}_{\mathrm{end}} \quad 288 \mathrm{~K}
$$

with

$$
\mathrm{T}_{\mathrm{end}} \quad \mathrm{~T}_{\mathrm{amb}} \square \sqrt{\mathrm{~T}_{\text {init }} \square \mathrm{T}_{\mathrm{amb}} \sqrt{\square \mathrm{AW}}}
$$

Hence the time τ is

$$
\mathrm{W} \frac{1}{\mathrm{~A}} \square \mathrm{n} \frac{\S \mathrm{~T}_{\mathrm{init}} \square \mathrm{~T}_{\mathrm{amb}}}{\mathrm{C}_{\mathrm{end}} \square \mathrm{~T}_{\mathrm{amb}}{ }^{\mathrm{i}}} \cdot \frac{\mathrm{~s}}{1.284 \square 0^{\square 4}} \square_{\mathrm{n}} \frac{\S 283 \square 293 .}{\bigotimes 88 \square 2931}
$$

$$
\mathrm{W} \quad 5.398 \mathrm{u} 10^{3} \mathrm{~s} \quad \mathrm{~W} \quad 1.5 \mathrm{hr}
$$

Given: Aluminum beverage can, $m_{c}=209, D=65 \mathrm{~mm}, H=120 \mathrm{~mm}$. Maximum contents level is hoax, when $\forall_{b}=354 \mathrm{~mL}$ of beverage. sg of beverage is 1.05 .

Find: (a) center of mass, y_{c}, vs. level, h.
(b) Level for least tendency to tip.
(c) Minimum coefficient of friction, μ_{s}, for fuel can to tip, not slide.
(d) Plot $\left.\mu_{s}\right)_{\text {minimum }}$ for can to tip (not slide) as a function of beverage level in can.

Solution: $M_{b}=36 \varphi \forall_{b}=1.05 \times 1.0 \frac{\mathrm{~g}}{\mathrm{~cm}^{2}} \times 354 \mathrm{~mL} \times \frac{\mathrm{cm}^{3}}{\mathrm{~mL}}=372 \mathrm{~g}(\mathrm{max})$

$$
h_{\text {max }}=\frac{\forall_{b}}{A}=\frac{4 \forall_{b}}{\pi D^{2}}=\frac{4}{\pi} \times 354 \mathrm{~mL}_{\times} \frac{1}{(6.5)^{2} \mathrm{~cm}^{2}} \times \frac{\mathrm{cm}^{3}}{\mathrm{~mL}} \times 10 \frac{\mathrm{~mm}}{\mathrm{~cm}}=107 \mathrm{~mm}
$$

At ans level, $m_{b}=\frac{h}{h h_{\text {ax }}} M_{b} ; m_{b}(g)=\frac{h(m m)}{107 \mathrm{~mm}} \times 372 g=3.47 \mathrm{~h}(\mathrm{~mm})$ From moment considerations,

$$
\begin{aligned}
y_{c} M & =\frac{h}{2} m_{b}+\frac{H}{2} m_{c}=\frac{1}{2}[h(3.47 h)+120(20)]=\frac{1}{2}\left(3.47 h^{2}+2400\right) \\
M & =m_{b}+m_{c}=3.47 h+20
\end{aligned}
$$

$$
y_{c}=\frac{3.47 h^{2}+2400}{6.94 h+40}(h \text { in } \mathrm{mm})
$$

Tendency to tip will be least when ty is a minimum. Thus

$$
\frac{d y c}{d h}=\frac{2(3.47 h)}{6.94 h+40}+(-1)(6.95) \frac{3.47 h^{2}+2400}{(6.94 h+40)^{2}}=\frac{24.1 h^{2}+278 h-16,700}{(6.94 h+40)^{2}}=0
$$

Using the quadratic formula,

$$
h\left(\text { at } y_{c} \min \right)=\frac{-278 \pm \sqrt{(278)^{2}+4(24.1216,700}}{2(24.1)}=21.2 \mathrm{~mm}
$$ Plotting.

Draw a free-body diagram of the can at tipping:

$$
\begin{gathered}
\Sigma F_{x}=F_{f}=m a_{x} \\
\Sigma F_{y}=F_{n}-m g=m a_{y}=0 \\
F_{n}=m g
\end{gathered}
$$

since $F_{f} \leqslant \mu_{s} F_{n}$, then $\mu_{s} F_{n} \geqslant \max$
summing moments about point 0 :

To of rotation
or $\quad y_{c} m a_{x}=\frac{D}{2} F_{n}$
But $\max \leq \mu_{s} F_{n}$, so

$$
y_{c} \mu_{s} F_{n} \geqslant \frac{D}{2} F_{n}
$$

Thus to tip

$$
\mu_{3} \geqslant \frac{D}{2 y_{c}}
$$

plotting,

For the full can with $y_{c}=53.8 \mathrm{~mm}$,

$$
\mu_{s} \geqslant \frac{1}{2} \times 65 \mathrm{~mm} \times \frac{1}{53.8 \mathrm{~mm}}=0.604
$$

This value is much higher than the can could develop. Therefore the can will not tip; it will slide.

The corresponding acceleration is $\dot{a}_{x} \exists \mu_{s} g=0.593 \mathrm{~m} / \mathrm{s}^{2}$

Problem 4.10

The velocity field in the region shown is given by $\vec{V}=a z \hat{j}+b \hat{k}$, where $a=10 \mathrm{~s}^{-1}$ and $b=5 \mathrm{~m} / \mathrm{s}$. For the $1 \mathrm{~m} \times 1 \mathrm{~m}$ triangular control volume (depth $w=1 \mathrm{~m}$ perpendicular to the diagram), an element of area (1) may be represented by $w(-d z \hat{j}+d y \hat{k})$ and an element of area (2) by $w d z \hat{j}$.
(a) Find an expression for $\vec{V} \cdot d \vec{A}_{1}$.
(b) Evaluate $\int_{A_{1}} \vec{V} \cdot d \vec{A}_{1}$.
(c) Find an expression for $\vec{V} \cdot d \vec{A}_{2}$.
(d) Find an expression for $\vec{V}\left(\vec{V} \cdot d \vec{A}_{2}\right)$.
(e) Evaluate $\int_{A} \vec{V}\left(\vec{V} \cdot d \vec{A}_{2}\right)$.

Given: Data on velocity field and control volume geometry

Find: Several surface integrals

Solution

	$\stackrel{\&}{\&} A_{1} \quad \square d z \hat{j} \square d y \hat{k}$
$\begin{array}{cc}\& \\ d A_{2} & w d z \hat{j}\end{array}$	
$\stackrel{\&}{V}\lfloor\nmid z \hat{j} \square b \hat{k}\rceil$	$\stackrel{\&}{V}[10 z \hat{j} \square 5 \hat{k}]$

(a) $\&$
$\left.\stackrel{\&}{V} \llbracket A_{1} \quad \llbracket 0 z \hat{j} \square 5 \hat{k}\lfloor\llbracket] d z \hat{j} \square d y \hat{k}\right] \square 10 z d z \square 5 d y$

(c) $\quad \stackrel{\&}{V}\left[d A_{2} \quad\lceil 10 z \hat{j} \square 5 \hat{k}[\square] d z \bar{j}] \quad 10 z d z\right.$
(d)

$$
\begin{aligned}
& \delta \& 反 \\
& V V\left[d A_{2}\right] \quad 10 z \hat{j} \square 5 \hat{k} \llbracket 10 z d z
\end{aligned}
$$

(e)

Problem 4.11

The shaded area shown is in a flow where the velocity field is given by $\vec{V}=a x \hat{i}-b y \hat{j} ; a=b=1 \mathrm{~s}^{-1}$, and the coordinates are measured in meters. Evaluate the volume flow rate and the momentum flux through the shaded area.

Given: Data on velocity field and control volume geometry
Find: Volume flow rate and momentum flux through shaded area

Solution

$$
d A^{\&} \quad d x d z \hat{j} \square d x d y \hat{k}
$$

$$
\stackrel{V}{V}^{\&} a x \hat{i} \square b y \hat{j} \quad V^{\&} x \hat{i} \square y \hat{j}
$$

(a) Volume flow rate
(b) Momentum flux

$$
\begin{aligned}
& \begin{array}{llll}
31 & 1 & 1 \\
33 \square y d z d x & 3 \square 3 y d z & 3 \square 3 \square \square 2 z \square d z & \left.\square 6 z \square 3 z^{2}\right|_{0} ^{1}
\end{array} \\
& 0000 \\
& Q \quad \square 3 \frac{\mathrm{~m}^{3}}{\mathrm{~s}}
\end{aligned}
$$

Given: Control volume with linear velocity distribution across surface (1) as shown; width =w.
Find: al Volume flow rate, and (b) Momentum flux,

Solution:
Te volume flow rate is $Q=\langle\vec{V} \cdot d \vec{A}$ At surface $0, \vec{V}=\frac{V}{h} y i$ and $d A=\cdots d y i$
thus

$$
\begin{aligned}
& \left.Q=\int_{y=0}^{h} \frac{1}{h} y^{i} \cdot(-w d y i)=-\left.\frac{V_{w}}{h}\right|_{y=0} ^{h} y d y=-\frac{V_{w}}{h} y^{2}\right\rangle_{2}^{h} \\
& \left.Q=-\frac{1}{2}\right\}_{0}^{h}
\end{aligned}
$$

Te momerturn flux is given by $n \cdot f .=\int \vec{V}(p \vec{v} \cdot \vec{d})$ Thus.

$$
\begin{aligned}
& \text { mf }=\int_{0}^{h} \frac{v}{h} y^{i}\left(-p \frac{v w}{h} y d y\right)=-p \frac{v^{2} w}{h^{2}} i \int_{0}^{h} y^{2} d y=-\left.p^{\nu^{2} w} h^{2} i \frac{y^{2}}{3}\right|_{0} ^{h} \\
& \text { m.f }=-\frac{1}{3} p v^{2} w h i
\end{aligned}
$$

Problem 4.13
Given: The shaded area shown, with

$$
\vec{v}=-a x \hat{\imath}+b y \hat{\jmath}+c \hat{k}
$$

where $a=b=1 \sec ^{-1}$ and $c=1 \mathrm{~m} / \mathrm{s}$
Find: $d \vec{A}, \int_{A} \vec{V} \cdot d \vec{A}, \int_{A} \vec{V}(\vec{V} \cdot d \vec{A})$
Solution: From sketen at right,

$$
d \vec{A}=d A_{x} \hat{\imath}+d A_{y}(-\hat{\jmath})
$$

where
$d A_{x}=d y d z$, the projection of $d \vec{A}$ on yz plane
$d A_{y}=d x d z$, the projection of $d \vec{A}$ on $x z$ plane

Thus

$$
d \vec{A}=d y d z \hat{\imath}-d x d z \hat{\jmath}
$$

Along the shaded surface, $\frac{x}{y}=\frac{x_{1}}{y_{1}}=\frac{2 m}{3 m}$, or $y=\frac{3}{2} x$ and $x=\frac{2}{3} y$.

$$
\begin{aligned}
\int_{A} \vec{V} \cdot d \vec{A} & =\int_{A}(-a x \hat{\imath}+b y \hat{\jmath}+c \hat{k}) \cdot(d y d z \hat{\imath}-d x d z \hat{\jmath})=\int_{A}-a x d y d z-b y d x d z \\
& =\int_{A}-\frac{2}{3} a y d y d z+\int_{A}-\frac{3}{2} b x d x d z=-\int_{z=0}^{z_{1}} \int_{y=0}^{y_{1}} \frac{2}{3} a y d y d z-\int_{z=0}^{z_{1}} \int_{x=0}^{x} \frac{3}{2} b x d x d z \\
& =-\int_{z=0}^{z_{1}} \frac{1}{3} a y_{1}^{2} d z-\int_{z=0}^{3} \frac{3}{4} b x_{1}^{2} d z=-\frac{1}{3} a y_{1}^{2} z_{1}-\frac{3}{4} b x_{1}^{2} z, \\
\int_{A} \vec{V} \cdot d \vec{A} & =-\frac{1}{3}\left(\frac{1}{5}\right)(3)^{2} m_{x}^{2} 2 m-\frac{3}{4}\left(\frac{1}{3}\right)(z)^{2} m^{2} x_{x} m=-12.0 m^{3} / s \quad\{a s c a / a r\} \\
\int_{A} \vec{v}(\vec{v} \cdot d \vec{A}) & =\int_{A}(-a x \hat{\imath}+b y \hat{\jmath}+c \hat{k})[(-a x \hat{\imath}+b y \hat{\jmath}+c \hat{k}) \cdot(d y d z \hat{\imath}-d x d z \hat{\jmath}) \\
& =\int_{A}(-a x \hat{\imath}+b y \hat{\imath}+c \hat{k})(-a x d y d z-b y d x d z)
\end{aligned}
$$

Substituting $y=\frac{3}{2} x$ and $d y=\frac{3}{2} d x$, and noting that $a=b$,

$$
\begin{aligned}
& \int_{A} \vec{V}(\vec{V} \cdot d \vec{A})=\int_{4}\left(-a x \hat{\imath}+\frac{3}{2} a x \hat{\jmath}+c \hat{k}\right)(-3 a x d x d z) \\
& =\int_{z=0}^{3_{1}} \int_{x=0}^{x_{1}}\left(3 a^{2} x^{2} \hat{\imath}-\frac{9}{2} a^{2} x^{2} \hat{\jmath}-3 a c x \hat{k}\right) d x d z \\
& =\int_{z=0}^{31}\left(a^{2} x_{1}^{3} \hat{\imath}-\frac{3}{2} a^{2} x_{1}^{3} \hat{\jmath}-\frac{3}{2} a c x_{1}^{2} \hat{k}\right) d z \\
& =a^{2} x_{1}^{2} z_{1} \hat{\imath}-\frac{3}{2} a^{2} x_{1}^{3} z_{1} \hat{\jmath}-\frac{3}{2} a c x_{1}^{2} z_{1} \hat{k} \\
& =\left(\frac{1}{s}\right)^{2}(2)^{3} m_{x}^{3} 2 m \hat{\imath}-\frac{3}{2}\left(\frac{1}{s}\right)^{2}(2)^{4} m_{x}^{2} 2 m \hat{\jmath}-\frac{3}{2}\left(\frac{1}{s} \times\left(\frac{m}{s}\right)^{(2)^{2}} m_{x}^{2} 2 m \hat{k}\right. \\
& \int_{A} \vec{V}(\vec{V} \cdot d \vec{A})=16 \hat{\imath}-24 \hat{\jmath}-12 \hat{k} \mathrm{~m}^{4} / \mathrm{s}^{2}
\end{aligned}
$$

Problem 4.14
Given: Velocity distribution for laminar flow in a long circular
tube tube $\vec{V}=u \hat{L}=u_{\text {max }}\left[1-\left(\frac{r}{R}\right)^{2}\right] \hat{\imath}$
where R is the tube radios:
Evaluate: (a) Te volume flow rate and (b) the momentum flit, trough a section normal to the pe otis.
Solution: The rolurne flow rate is given by

$$
\begin{aligned}
\int_{R_{\text {tux }}} \vec{J} \cdot d \vec{A} & =\int_{0}^{R} u_{\max }\left[1-\left(\frac{r}{R}\right)^{2}\right] \hat{\imath} \cdot 2 \pi r d r \hat{i} \quad\left\{A=\pi r^{2}, d A=2 \pi r d r\right\} \\
& =u_{\text {max }} 2 r \int_{0}^{e}\left[1-\left(\frac{r}{R}\right)^{2}\right] r d r=u_{\max } 2 r \int_{0}^{R}\left[r-\frac{r^{3}}{R^{2}}\right] d r \\
& =u_{\max } 2 \pi\left[\frac{r^{2}}{2}-\frac{r^{4}}{4 R^{2}}\right]_{0}^{R}=u_{\text {max }} 2 \pi\left[\frac{R^{2}}{2}-\frac{R^{2}}{4}\right]
\end{aligned}
$$

$$
\int_{R_{\text {win }}} \vec{V} \cdot \overrightarrow{d H}=\frac{1}{2} u_{\text {mai }} \pi R^{2} .
$$

The momentum flux is gwen by

$$
\begin{aligned}
& \int_{\text {robe }^{2}} \vec{V}(\vec{V} \cdot d \vec{A})=\int_{0}^{2} u_{\text {max }}\left[1-\left(\frac{r}{k}\right)^{2}\right] \hat{i}\left\{u_{\text {max }}\left[1-\left(\frac{r}{k}\right)^{2}\right] \hat{i} \cdot 2 \times r d r \hat{\imath}\right\} \\
& =\int_{0}^{2} u_{\max }\left[1-\left(\frac{r}{k}\right)^{2}\right] \hat{\imath}\left\{u_{\max } 2 \pi\left[r-\frac{r^{3}}{R^{2}}\right] d r\right\} \\
& =U_{\text {max }}^{2} 2 \pi \int_{0}^{R}\left(r-\frac{2 r^{3}}{R^{2}}+\frac{r^{5}}{R^{4}}\right) d r \hat{L} \\
& =u_{\max }^{2} 2 r\left[\frac{r^{2}}{2}-\frac{r^{4}}{2 R^{2}}+\frac{r^{6}}{6 R^{4}}\right]_{0}^{k} \hat{\iota} \\
& =u_{\text {max }}^{2} 2 r R^{2}\left[\frac{1}{2}-\frac{1}{2}+\frac{1}{6}\right] \hat{L} \\
& \int_{A_{2}} \vec{V}(\vec{V} \cdot d \vec{P})=\frac{1}{3} u_{m a x}^{2} \pi R^{2} \hat{L} \quad \text { Momentum- flux }
\end{aligned}
$$

Problems 4.15
Given: Flow and CV of Problem 4.11, as shown

Find: Expression for kinetic energy flux through crosssection (1) of $C V$.
Solution: Kinetic energy flux is defined as kef $=\int_{A} \frac{V^{2}}{2} \rho \vec{V} \cdot d \vec{A}$ Model the velocity profit as $u=v \frac{y}{h}$, Then

$$
\vec{V}=u \hat{\imath}=V \frac{h}{h} \hat{\imath} ; V^{2}=V^{2}\left(\frac{y}{h}\right)^{2}
$$

Since flow is into the cv, $\vec{V} \cdot d \vec{A}=-u d A=-V \frac{y}{h} w d y$
substitzeting,

$$
\begin{aligned}
\text { Let } & =\int_{A} \frac{v^{2}}{2}\left(\frac{y}{h}\right)^{2}\left\{-\rho v \frac{y}{h} w d y\right\}=-\frac{\rho v^{3} w}{2 h^{3}} \int_{0}^{h} y^{3} d y \\
& =-\frac{\rho v^{3} w}{2 h^{3}}\left[\frac{y^{4}}{4}\right]_{0}^{h}
\end{aligned}
$$

$$
\text { kef }=-\rho \frac{v^{3} w h}{8}
$$

check dimensions:

$$
[\text { Kef }]=\frac{M}{L^{3}}\left(\frac{L}{t}\right)^{3} L L=\frac{M L^{2}}{t^{3}} \times \frac{F t^{2}}{M L}=\frac{F L}{t}=\frac{\text { Energy }}{\text { Time }} \mathrm{N}
$$

Problem 4. 16
Given:: Velocity profile in a circular tube,

$$
\vec{v}=u \hat{\imath}=u_{\max }\left[1-\left(\frac{r}{R}\right)^{2}\right] \hat{\imath}
$$

Find: Expression for kinetic energy, flux, $k e f=\int \frac{V^{2}}{2} \rho \vec{v} \cdot d \vec{A}$ Solution: $v^{2}=\vec{V} \cdot \vec{v}=u_{\max }^{2}\left[1-\left(\frac{r}{R}\right)^{2}\right]^{2}=u_{\max }^{2}\left[1-2\left(\frac{r}{R}\right)^{2}+\left(\frac{r}{R}\right)^{4}\right]$

$$
\begin{aligned}
& d \vec{A}=2 \pi r d r \hat{L} \\
& \vec{V} \cdot d \vec{A}=2 \pi r u_{\max }\left[1-\left(\frac{r}{R}\right)^{2}\right]
\end{aligned}
$$

Then

$$
\begin{aligned}
\text { kef } & =\int_{0}^{R} \frac{u_{\max }^{2}}{R}\left[1-2\left(\frac{r}{R}\right)^{2}+\left(\frac{r}{R}\right)^{4}\right] \rho d \pi u_{\max }\left[1-\left(\frac{r}{R}\right)^{2}\right] d r \\
& =\pi \rho u_{\max }^{3} \int_{0}^{R}\left[1-3\left(\frac{r}{R}\right)^{2}+3\left(\frac{r}{R}\right)^{4}-\left(\frac{r}{R}\right)^{6}\right] r d r \\
& =\pi \rho u_{\max }^{3} R^{2} \int_{0}^{1}\left[1-3\left(\frac{r}{R}\right)^{2}+3\left(\frac{r}{R}\right)^{4}-\left(\frac{r}{R}\right)^{6}\right] \frac{C}{R} d\left(\frac{r}{R}\right) \\
& =\pi \rho u_{\max }^{3} R^{2}\left[\frac{1}{2}\left(\frac{r}{R}\right)^{2}-\frac{3}{4}\left(\frac{r}{R}\right)^{4}+\frac{1}{2}\left(\frac{r}{R}\right)^{6}-\frac{1}{8}\left(\frac{r}{R}\right)^{8}\right]_{0}^{1} \\
& =\pi R^{2} \rho u_{\max }^{3}\left[\frac{1}{2}-\frac{3}{4}+\frac{1}{2}-\frac{1}{8}\right] \\
\text { kef } & =\frac{\pi R^{2} \rho u^{3} \max }{8}
\end{aligned}
$$

Problem 4.17

Given: Steady, incompressible flow through device shown.

$$
\begin{aligned}
& A_{1}=1 \mathrm{ft}^{2}, A_{2}=0.5 \mathrm{ft}^{2}, A_{3}=0.2 \mathrm{ft}^{2} \\
& \vec{v}_{1}=10 \hat{\imath} \mathrm{ft} / \mathrm{s}, \quad \vec{v}_{2}=30 \hat{\imath} \mathrm{ft} / \mathrm{s}
\end{aligned}
$$

Find: Volume flow rate through port 3 .
Solution: Apply conservation of mass to CU shown Basic equation: $\quad 0=\frac{\partial}{\rho t} \int_{C V}^{=O(1)} \rho d \psi+\int_{C S} \rho \vec{V} \cdot d \vec{A}$
Assumptions: (1) Steady flow
(2) Uniform flow at each section
(3) Incompressible flow, $\rho=$ constant

Then $0=\vec{V}_{1} \cdot \vec{A}_{1}+\vec{V}_{2} \cdot \vec{A}_{2}+\vec{V}_{s} \cdot \vec{A}_{3}$
or $\quad 0=-\left|V A_{1}\right|+\left|V_{2} A_{2}\right|+\vec{V}_{3} \cdot \vec{i}_{3}$ (flow in at (1), out at (3))
Solving,

$$
\begin{aligned}
& \vec{V}_{3} \cdot \vec{A}_{3}=\left|V_{1} A_{1}\right|-\left|V_{2} A_{2}\right| \\
& \vec{V}_{3} \cdot \vec{A}_{3}=\left|10 \frac{\mathrm{ft}}{\mathrm{~s}} \times 1 \mathrm{ft}^{+} /-/ 30 \frac{\mathrm{ft}}{5} \times 0.5 \mathrm{ft}^{2}\right|=-5.00 \mathrm{ft}^{3}
\end{aligned}
$$

Therefore

$$
Q_{3}=\vec{V}_{3} \cdot \vec{A}_{3}=-5.00 \mathrm{ft}^{2} / \mathrm{s} \text { (minus sign means into }(V)
$$

Problem 4.18

Given: Steady, incompressible flow through the device shown,

$$
\begin{aligned}
& A_{1}=0.05 \mathrm{~m}^{2}, A_{2}=0.01 \mathrm{~m}^{2}, A_{3}=0.06 \mathrm{~m}^{2} \\
& \vec{v}_{1}=4 \hat{\imath} \mathrm{~m} / \mathrm{s}, \quad \vec{V}_{2}=-8 \hat{\jmath} \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

Find: Velocity, \vec{V}_{3}

Solution: Apply conservation of mass, using $C V$ shown.
Basic equation: $0=\frac{d}{d t} \int_{C V}^{=0(1)} \rho d t+\int_{c s} \rho \vec{V} \cdot d \vec{A}$
Assumptions: (1) Steady flow
(2) Incompressible flow, $p=$ constant
(3) Uniform flow at each section

Then

$$
\int_{c s} \vec{V} \cdot d \vec{A}=\overrightarrow{V_{1}} \cdot \vec{A}_{1}+\vec{V}_{2} \cdot \vec{A}_{2}+\vec{V}_{3} \cdot \overrightarrow{A_{3}}=0
$$

or

$$
\begin{aligned}
& \vec{V}_{3} \cdot \vec{A}_{3}=-\vec{V} \cdot \overrightarrow{A_{1}}-\vec{V}_{2} \cdot \vec{A}_{2}=-4 \hat{i} \frac{m}{s} \cdot 0.05(-\hat{i}) \mathrm{m}^{2}-(-8 \hat{j}) \frac{\mathrm{m}}{\mathrm{~s}} \times 0.01 \hat{\jmath} \mathrm{~m}^{2} \\
& \vec{V}_{3} \cdot \vec{A}_{3}=0.28 \mathrm{~m}^{3} / \mathrm{s}
\end{aligned}
$$

Since $\vec{V}_{3} \cdot \vec{A}_{3}>0$, flow at section (3) is oct of CV. Thus $\vec{V}_{3} \cdot \vec{A}_{3}=V_{3} A_{3}$

$$
V_{3}=\frac{1}{A_{3}} \times 0.28 \frac{\mathrm{~m}^{3}}{\mathrm{~s}}=\frac{1}{0.06 \mathrm{~m}^{2}} \times 0.28 \frac{\mathrm{~m}^{3}}{\mathrm{~s}}=4.67 \mathrm{~m} / \mathrm{s}
$$

Finally, from the geometry of the sketch,

$$
\begin{aligned}
& \vec{V}_{3}=V_{3} \sin \theta \hat{\imath}-V_{3} \cos \theta \hat{\jmath}=4.67 \frac{\mathrm{~m}}{3} \times \sin 60^{\circ} \hat{\imath}-4.67 \frac{\mathrm{~m}}{\mathrm{~s}} \times \cos 60^{\circ} \hat{\jmath} \\
& \vec{V}_{3}=4.04 \hat{\imath}-2.34 \hat{\jmath} \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

Problem 4.19

In the incompressible flow through the device shown, velocities may be considered uniform over the inlet and outlet sections. The following conditions are known: $A_{1}=0.1 \mathrm{~m}^{2}, A_{2}=0.2 \mathrm{~m}^{2}, A_{3}=0.15 \mathrm{~m}^{2}, V_{1}=10 e^{-t / 2} \mathrm{~m} / \mathrm{s}$, and $V_{2}=2 \cos (2 \pi t)$ $\mathrm{m} / \mathrm{s}\left(\mathrm{t}\right.$ in seconds). Obtain an expression for the velocity at section (3), and plot V_{3} as a function of time. At what instant does V_{3} first become zero? What is the total mean volumetric flow at section (3)?

Given: Data on flow through device

Find: Velocity V_{3}; plot V_{3} against time; find when V_{3} is zero; total mean flow

Solution

Governing equation: For incompressible flow (Eq. 4.13) and uniform flow

Applying to the device (assuming V_{3} is out)

$$
\square \mathrm{V}_{1}\left[\mathrm { A } _ { 1 } \square \mathrm { V } _ { 2 } \left[\mathrm { A } _ { 2 } \square \mathrm { V } _ { 3 } \left[\mathrm{~A}_{3} \quad 0\right.\right.\right.
$$

The velocity at A_{3} is

The total mean volumetric flow at A_{3} is

$$
\begin{aligned}
& \text { Q } \quad 2\left[\mathrm{~m}^{3}\right.
\end{aligned}
$$

The time at which V_{3} first is zero, and the plot of V_{3} is shown in the corresponding Excel workbr
t 2.39

Problem 4.19 (In Excel)

In the incompressible flow through the device shown, velocities may be considered uniform over the inlet and outlet sections. The following conditions are known: $A_{1}=0.1 \mathrm{~m}^{2}, A_{2}=0.2 \mathrm{~m}^{2}, A_{3}=0.15 \mathrm{~m}^{2}, V_{1}=10 e^{-t / 2} \mathrm{~m} / \mathrm{s}$, and $V_{2}=2 \cos (2 \pi t)$ m / s (t in seconds). Obtain an expression for the velocity at section (3), and plot V_{3} as a function of time. At what instant does V_{3} first become zero? What is the total mean volumetric flow at section (3)?

Given: Data on flow rates and device geometry
Find: When V_{3} is zero; plot V_{3}

Solution

The velocity at A_{3} is

$$
\mathrm{V}_{3} \quad 6.67\left[\square^{\square \frac{\mathrm{t}}{2}} \square 2.67 \llbracket \cos [2[\$ \square]\right.
$$

$\boldsymbol{t} \mathbf{(s)}$	$\left.\boldsymbol{V}_{\mathbf{3}} \mathbf{(m} \mathbf{s}\right)$
0.00	9.33
0.10	8.50
0.20	6.86
0.30	4.91
0.40	3.30
0.50	2.53
0.60	2.78
0.70	3.87
0.80	5.29
0.90	6.41
1.00	6.71
1.10	6.00
1.20	4.48
1.30	2.66
1.40	1.15
1.50	0.48
1.60	0.84
1.70	2.03
1.80	3.53
1.90	4.74
2.00	5.12
2.10	4.49
2.20	3.04
2.30	1.29
2.40	-0.15
2.50	-0.76

The time at which V_{3} first becomes zero can be found using Goal Seek

$t(\mathbf{s})$	$\boldsymbol{V}_{\mathbf{3}}(\mathbf{m} / \mathbf{s})$
2.39	0.00

Given: Dill flow down inclined plane.
$u=\frac{\rho g \sin \theta}{\mu}\left(h y-\frac{y^{2}}{2}\right)$
Find: Mass flow rate per unit width.

Solution: At the dashed cross-section, $\dot{m}=\int \rho u d A$
$d A=$ wary, where $w=$ width

$$
\begin{aligned}
& \dot{m}=\int_{0}^{h} \rho \frac{\rho g \sin \theta}{\mu}\left(h y-\frac{y^{2}}{2}\right) w d y=\frac{\rho g \sin \theta}{\mu} \int_{0}^{h}\left(h y-\frac{y^{2}}{2}\right) w d y \\
& \dot{m}=\frac{\rho^{2} g \sin \theta}{\mu}\left[\frac{h y^{2}}{2}-\frac{y^{3}}{6}\right]_{0}^{h}=\frac{\rho^{2} g \sin \theta \omega}{\mu} \frac{h^{3}}{3}=\frac{\rho^{2} g \sin \theta w h^{3}}{3 \mu} \\
& \text { Thus }
\end{aligned}
$$

Thus

$$
\dot{m} / w=\frac{\rho^{2} g \sin \theta h^{3}}{3 \mu}
$$

Problem 4.21
Given water flow between parallel plates as shown.

Find: Exit centerline velocity, $U_{\max }$.
Solution: Apply continuity using the $c v$ shown.
Basic equation: $\quad 0=\frac{\partial}{\partial t} \int_{C V}^{=\alpha(1)} \rho d \psi+\int_{C S} \rho \vec{V} \cdot d \vec{A}$
Assumptions: (i) Steady flow
(2) Incompressible flow.
(3) Uniform flow at inlet section

Then

$$
\begin{aligned}
& 0=\vec{V}_{1} \cdot \vec{A}_{1}+\int_{(2)} \vec{V}_{2} \cdot d \vec{A}_{2} ; \vec{V}_{2}=u \hat{\imath}, d \vec{A}_{2}=w d y \hat{\imath}(w=w i d+h) \\
& 0=-v(2 n w)+\int_{-h}^{h} u_{\max }\left[1-\left(\frac{y}{h}\right)^{2}\right] w d y
\end{aligned}
$$

or

$$
\begin{aligned}
& U=\frac{1}{2 h} \int_{-h}^{h} u_{\text {max }}\left[1-\left(\frac{y}{h}\right)^{2}\right] d y=\frac{u_{\text {max }}}{2} \int_{-1}^{1}\left[1-\left(\frac{y}{h}\right)^{2}\right] d\left(\frac{y}{h}\right) \\
& U=u_{\text {max }} \int_{0}^{1}\left[1-\left(\frac{y}{h}\right)^{2}\right] d\left(\frac{y}{h}\right)=u_{\text {max }}\left[\left(\frac{y}{h}\right)-\frac{1}{3}\left(\frac{y}{h}\right)^{3}\right]_{0}^{1}=\frac{2}{3} u_{\text {max }}
\end{aligned}
$$

Thus

$$
u_{\max }=\frac{3}{2} v=\frac{3}{2} \times \frac{5 \mathrm{~m}}{\mathrm{~s}}=7.50 \mathrm{~m} / \mathrm{s}
$$

$\left\{\begin{array}{l}\text { The maximum speed at the outlet section is } 3 / 2 \text { that of the } \\ \text { uniform flow speed at the inlet section. }\end{array}\right.$

Problern 4.22
Given: Incompressible flow in a diverging channel, as shown.

$$
\begin{aligned}
& V_{1}=\text { constant } \\
& V_{2}=V_{m} \cos \left(\frac{\pi y}{2 H}\right)
\end{aligned}
$$

Find: Express V_{m} in terms of V_{1}.
Width $=w$
(2)

Solution: Apply conservation of mass using the CV shown.
Basic equation: $0=\frac{d}{\#+0(1)} \int_{C V} \rho d t+\int_{C S} \rho \vec{v} \cdot d \vec{A}$
Assumptions: (1) Steady frow
(2) Uniform flow at section 1
(3) Incompressible flow

Then $D=\left\{-\left|\phi v, A_{1}\right|\right\}+\int_{-H}^{H} p v_{2} w d y$
since $A_{1}=\omega H$, then $V_{1} w H=\int_{-H}^{H} V_{m} \cos \left(\frac{\pi}{2} \frac{y}{H}\right) w d y=2 \int_{0}^{H} V_{m} \cos \left(\frac{\pi}{2} \frac{y}{H}\right) d d y$
so

$$
V_{1} H=2 V_{m}\left(\frac{2 H}{\pi}\right) \int_{0}^{H} \cos \left(\frac{\pi}{2} \frac{y}{H}\right) d\left(\frac{\pi}{2} \frac{y}{H}\right)=\frac{4 V_{m} H}{\pi}\left[\sin \left(\frac{\pi}{2} \frac{y}{H}\right)\right]_{0}^{H}=\frac{4 V_{m} H}{\pi}
$$

Thus $\quad V_{m}=\frac{\pi}{4} V_{1}$

Problem 4.23

Given: water flow in a pipe as shown. $R=3$ in. $u_{m a x}=10 \mathrm{ft} / \mathrm{s}$

Find: Uniform init velocity, U.
Solution: Apply continuity using the CV shown.
Basic equation: $0=\frac{\partial^{\lambda}}{\partial t} \int_{C V}^{=o(1)} \rho d \forall+\int_{c S} \rho \vec{V} \cdot d \vec{A}$
Asscemptions: (1) steady flow.
(2) Incompressible flow
(3) Uniform flow at inlet section

Then

$$
\begin{aligned}
& 0=\vec{V}_{1} \cdot \vec{A}_{1}+\int_{(2)} \vec{V}_{2} \cdot d \vec{A}_{2} ; \vec{V}_{2}=u \hat{\imath}, d \vec{A}_{2}=2 \pi r d r \hat{c} \\
& 0=-U \pi R^{2}+\int_{0}^{R} u_{\max }\left[1-\frac{r^{2}}{R^{2}}\right] 2 \pi r d r
\end{aligned}
$$

or

$$
\begin{aligned}
& U=\frac{1}{\pi R^{2}} \int_{0}^{R} u_{\text {max }}\left[1-\frac{r^{2}}{R^{2}}\right] 2 \pi r d r=2 u_{\max } \int_{0}^{1}\left[1-\left(\frac{r}{R}\right)^{2}\right]\left(\frac{r}{R}\right) d\left(\frac{r}{\hat{R}}\right) \\
& U=20\left[\frac{1}{2}\left(\frac{r}{R}\right)^{2}-\frac{1}{4}\left(\frac{r}{R}\right)^{4}\right]_{0}^{1}=5.00 \mathrm{ft} / \mathrm{s}
\end{aligned}
$$

$\left\{\begin{array}{l}\text { The speed of the uniform inlet flow is half the maximum speed at } \\ \text { the outlet section. }\end{array}\right.$

Problem 4.24

The velocity profile for laminar flow in an annulus is given by

$$
u(r)=-\frac{\Delta p}{4 \mu L}\left[R_{o}^{2}-r^{2}+\frac{R_{o}^{2}-R_{i}^{2}}{\ln \left(R_{i} / R_{o}\right)} \ln \frac{R_{o}}{r}\right]
$$

where $\Delta p / L=-10 \mathrm{kPa} / \mathrm{m}$ is the pressure gradient, μ is the viscosity (SAE 10 oil at $20^{\circ} \mathrm{C}$), and $R_{o}=5 \mathrm{~mm}$ and $R_{i}=1 \mathrm{~mm}$ are the outer and inner radii. Find the volume flow rate, the average velocity, and the maximum velocity. Plot the velocity distribution.

Given: Velocity distribution in annulus

Find: Volume flow rate; average velocity; maximum velocity; plot velocity distribution

Solution

Governing equation

The given data is

R_{o}	$5 \square \mathrm{~mm}$
P	$0.1 \sqrt{\frac{N な}{m^{2}}}$

$\mathrm{R}_{\mathrm{i}} \quad 1 \square \mathrm{~mm}$
$\frac{\mathrm{p}}{\mathrm{L}} \quad \square 10 \frac{\mathrm{kPa}}{\mathrm{m}}$

The flow rate is given by

$$
\text { Q } \quad \begin{aligned}
& \mathrm{R}_{\mathrm{o}} \\
& \boldsymbol{I}_{\mathrm{R}_{\mathrm{i}}} \\
& \mathrm{u}(\mathrm{r}) \operatorname{RCD} \mathrm{T} d r
\end{aligned}
$$

Considerable mathematical manipulation leads to

Substituting values

$$
\begin{aligned}
& \text { Q } \quad 1.045 \mathrm{u}_{10}^{\square 5} \frac{\mathrm{~m}^{3}}{\mathrm{~s}} \\
& \text { Q } \quad 10.45 \frac{\mathrm{~mL}}{\mathrm{~s}}
\end{aligned}
$$

The average velocity is

$$
\begin{aligned}
& V_{a v} \frac{Q}{A} \frac{Q}{S_{\square C C_{o}{ }^{2} \square R_{i}{ }^{2}}}
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{V}_{\mathrm{av}} \quad 0.139 \frac{\mathrm{~m}}{\mathrm{~s}}
\end{aligned}
$$

The maximum velocity occurs when $\quad \frac{\mathrm{du}}{\mathrm{dr}} 0$

$$
\mathrm{r} \sqrt{\frac{\mathrm{R}_{\mathrm{i}}{ }^{2} \square \mathrm{R}_{\mathrm{o}}{ }^{2}}{2 \square \mathrm{n}^{\frac{\delta R_{\mathrm{i}}}{\delta_{\mathrm{o}} i}}}} \quad \text { r } 2.73 \mathrm{~mm}
$$

Substituting in $u(r) \quad u_{\max } \quad u(2.73 \square \mathrm{~mm}) \quad 0.213 \sqrt{\frac{m}{s}}$

The maximum velocity, and the plot, are also shown in the corresponding Excel workbook

Problem 4.24 (In Excel)

The velocity profile for laminar flow in an annulus is given by

$$
u(r)=-\frac{\Delta p}{4 \mu L}\left[R_{o}^{2}-r^{2}+\frac{R_{o}^{2}-R_{i}^{2}}{\ln \left(R_{i} / R_{o}\right)} \ln \frac{R_{o}}{r}\right]
$$

where $\Delta p / L=-10 \mathrm{kPa} / \mathrm{m}$ is the pressure gradient, μ is the viscosity (SAE 10 oil at $20^{\circ} \mathrm{C}$), and $R_{o}=5 \mathrm{~mm}$ and $R_{i}=1 \mathrm{~mm}$ are the outer and inner radii. Find the volume flow rate, the average velocity, and the maximum velocity. Plot the velocity distribution.

Given: Velocity distribution in annulus
Find: Maximum velocity; plot velocity distribution

Solution

R_{o}	$=$	5	mm
R_{i}	$=$	1	mm
$\Delta p / L$	$=$	-10	
$\mathrm{kPa} / \mathrm{m}$			
μ	$=$	0.1	
$\mathrm{~N} . \mathrm{s} / \mathrm{m}^{2}$			

$\boldsymbol{r}(\mathbf{m m})$	$\boldsymbol{u}(\mathbf{m} / \mathbf{s})$
1.00	0.000
1.25	0.069
1.50	0.120
1.75	0.157
2.00	0.183
2.25	0.201
2.50	0.210
2.75	0.213
3.00	0.210
3.25	0.200
3.50	0.186
3.75	0.166
4.00	0.142
4.25	0.113
4.50	0.079
4.75	0.042
5.00	0.000

The maximum velocity can be found using Solver

$r(\mathbf{m m})$	$\boldsymbol{u}(\mathbf{m} / \mathbf{s})$
2.73	0.213

Given: Two-dimensional reducing bend as shown.
Find: Magnitude and direction of uniform velocity at section (3).
Solution: Apply conservation of mass using $C V$ shown.
Basic equation:

$$
0=\frac{1}{=0(1)}
$$

Assumptions: (1) Steady flow
(2) Incompress ible flow
(3) Uniform flow at (2) and (3)

Then

$$
0=\int_{C S} \vec{V} \cdot d \vec{A}=\int_{A_{1}} \vec{V}_{1} \cdot d \vec{A}_{1}+\vec{V}_{2} \cdot \vec{A}_{2}+\vec{V}_{3} \cdot \vec{A}_{3}
$$

or

$$
\begin{aligned}
& \vec{V}_{3} \cdot \vec{A}_{3}=-\int_{A_{1}} \overrightarrow{V_{1}} \cdot d \overrightarrow{A_{1}}-\vec{V}_{2} \cdot \vec{A}_{2}=+\int_{0}^{h_{1}} V_{12 \max } \frac{y}{h_{1}} w d y-V_{2} w h_{2} \\
& \vec{V}_{3} \cdot \overrightarrow{A_{3}}=V_{1} \max w\left[\frac{y^{2}}{z h_{1}}\right]_{0}^{h_{1}}-V_{2} w h_{2}=\frac{V_{11} \max w h_{1}}{2}-V_{2} w h_{2}
\end{aligned}
$$

so

$$
\frac{\vec{V}_{3} \cdot \overrightarrow{A_{3}}}{w}=\frac{1}{2} \times 10 \frac{f t}{\mathrm{~s}} \times 2 \mathrm{ft}-15 \frac{\mathrm{ft}}{\mathrm{~s}} \times 1 \mathrm{ft}=-5 \mathrm{ft} 2 / \mathrm{s}
$$

Since $\vec{V}_{3} \cdot \vec{A}_{3}<0$, flow at (3) is into the $C V$
Thus $\quad \frac{V_{3} \cdot \vec{A}_{3}}{w}=-\frac{V_{3} A_{3}}{w}=-\frac{V_{3} \omega_{5}}{\omega}=-V_{3} h_{3}=-5 \mathrm{ft}^{2} / \mathrm{s}$

$$
V_{3}=\frac{1}{h_{3}} \times \frac{5 \mathrm{ft}^{2}}{\mathrm{~s}}=\frac{1}{1.5 \mathrm{ft}} \times 5 \frac{\mathrm{ft}^{2}}{\mathrm{~s}}=3.33 \mathrm{ft} / \mathrm{s} \quad \text { (into }(\mathrm{cV})
$$

Given: Water flow in the two -dimensional square channel shaun.

$$
v_{\text {max }}=2 v_{\text {min }}, v=7.5 \mathrm{~m} / \mathrm{s}, h=75.5 \mathrm{~mm}
$$

Find: vein
Solution: Apply conservation of mass to the cV shown. Basic equation:

$$
o=\frac{z}{\partial t} \int_{c v}^{o(i)} p d t+\int_{c s} \overrightarrow{p v} \cdot \overrightarrow{d A}
$$

Assumptions: (i) steady flow
(z) incompressible flow

$$
\begin{aligned}
& \text { (2) incompressible tow } \\
& \text { (3) uniform flow al section (1) }
\end{aligned}
$$

hen

$$
\begin{aligned}
& 0=\vec{V}_{1} \cdot \vec{H}_{1}+\left(\vec{V}_{2} \cdot d H_{2}\right. \\
& 0=-J w h+T_{0}^{h} V w d t
\end{aligned}
$$

Te velocity distribution across the exit at (s) is linear

$$
\begin{aligned}
& v_{2}=v_{\text {max }}-\left(v_{\max }-v_{\text {min }}\right) \frac{x}{h}=2 v_{\min }-v_{\min } \frac{x}{h}=v_{\min }\left(2-\frac{x}{h}\right) \\
& \therefore v_{w}=\int_{0}^{h} v_{\min }\left(2-\frac{x}{h}\right) w d x=v_{\min } w\left[2 x-\frac{x^{2}}{2 h}\right]_{0}^{h} \\
& v^{W} h=v_{\min } w\left[2 h-\frac{h}{2}\right]=\frac{3}{2} v_{\min } w K \\
& \therefore v_{\min }=\frac{2}{3} U=\frac{2}{3} \times 7.5 \frac{\pi}{5}=5.0 \mathrm{~m} l_{2}
\end{aligned}
$$

Given: Water flows in a porous round tube of diameter $D=60 \mathrm{~mm}$. At the pipe inlet the flow is uniform with $Y_{1}=7.0$ M/sec. Flow out through the porous wall is radial and axisymmetric with veloctly distribution

Find: the mass flow rate, \dot{n}_{2}, inside the tube at $x=L$
Solution:
Basic equation: $0=\vec{z} \int_{c t}^{p} p d t+\int_{c s} \vec{p} \cdot d \overrightarrow{d A}$
Assumptions: (i) steady flow (2) $p=$ constant

Then

$$
\begin{align*}
& 0=\int_{a_{1}} \cdot \vec{V} \cdot \overrightarrow{d H}+\int_{H_{2}} \vec{P} \cdot \overrightarrow{d H}+\int_{A_{\text {arc }}} p \vec{J} \cdot \overrightarrow{d \vec{H}} \\
& =-\left|p v_{1} A_{1}\right|+i_{2}+\int_{0}^{2} p \nu_{0}\left[1-\left(x^{2}\right)\right] 2 \pi R d x \\
& m_{2}=P H_{1}-2 \pi R P V_{0} \int_{0}^{0}\left[1-\frac{x^{2}}{L_{2}}\right] d x \\
& =p V_{1} \pi \frac{)^{2}}{4}-2 \pi R p V_{0}\left[x-\frac{h^{3}}{3 L^{2}}\right]_{0}^{2} \\
& \left.=\frac{\pi}{4} p V_{1}\right)^{2}-\frac{4}{3} \pi R p V_{0} h \\
& \dot{m}_{2}=\frac{\pi}{4} \times 999 \frac{\mathrm{fg}_{3}}{m_{3}} \times 7.0 \frac{m}{5} \times(0.06)^{2}-\frac{4}{3} \pi \times 0.03 m \times \frac{99 \frac{\mathrm{fg}}{m^{3}}}{} \times 0.03 \mathrm{~m} \frac{m^{3}}{3} \times 0.95 \mathrm{~m} \\
& m_{2}=19.8 \frac{\mathrm{~kg}}{\mathrm{~s}}-3.6 \frac{\mathrm{~kg}}{\mathrm{~s}}=\left.16.2 \mathrm{~kg}\right|_{\mathrm{s}}
\end{align*}
$$

Given: A hydraulic accumulator, designed to reduce pressure pulsations in a hydraulic system, is operating under conditions Shown, at a given instant.
Find: Rate at which accumulator gains or loses hydraulic oil.
Solution:
Use the control volume shown
Basic equation:

$$
0=\frac{\partial}{\partial t} \int_{a}^{0} p d t+\int_{c s} \overrightarrow{p v} \cdot \overrightarrow{d A}
$$

Assumptions: (1) uniform flow at section (2)

$$
\text { (a) } p=\text { constant }
$$

Then,

$$
0=\frac{\partial}{\partial t}\left(M_{c t}\right)+\int_{A_{1}}\left\{-\left|p \|_{1} d A_{1}\right|+\int_{A_{2}}\left\{\mid p V_{2} d A_{2}\right\}\right.
$$

But $S_{A_{1}}, P Y, d A_{1}=P Q, \quad$ where $Q=$ volume flow rate and $p=S G P_{m}$
So $0=\frac{\partial}{a t} M_{a s}-p_{1}+Q_{2} H_{2}$
a

$$
\begin{aligned}
& \frac{\partial M_{t}}{\partial t}=\rho\left(Q_{1}-V_{2} H_{2}\right) \\
& =S G P_{r_{2} O}\left(Q_{1}-V_{2} \pi^{2} \frac{J_{2}}{4}\right) \quad \text { where } S G=0.88 \text { (Table. } 2 \text {) }
\end{aligned}
$$

(mass is decreasing in the (t)
Sine $M_{c a}=p_{\text {ail }} t_{\text {ail }}$

$$
\begin{aligned}
& \frac{\partial M_{c u}}{\partial t}=\frac{\partial}{\partial t}\left(\rho_{\text {al }} H_{\text {ail }}\right)=\rho_{\text {ail }} \frac{\partial H_{0 i l}}{\partial t}=\partial G_{a i l} \rho_{M_{2} O} \frac{\partial t_{\text {ail }}}{\partial \tau}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{\partial t}{\partial t} \text { al }=-2.43 \times 10^{2} \frac{\mathrm{rt}^{3}}{\mathrm{~s}} \text { or } 0.181 \text { gall: }
\end{aligned}
$$

Given:: Tank shown in sketch with air escaping.

$$
\begin{aligned}
& \vec{V}_{1}=-300 \hat{\imath} \mathrm{~m} / \mathrm{s} \\
& \vec{A}_{1}=-130 \hat{\mathrm{i}} \mathrm{~mm}^{2} \\
& T_{1}=-15 \mathrm{c} \\
& p_{1}=350 \mathrm{kP} \text { (abs) }
\end{aligned}
$$

Find: Rate of change of density in tank.
Solution: Apply conservation of mass using CV shown
Basic equation: $0=\frac{\partial}{\partial t} \int_{C V} \rho d t+\int_{C S} \rho \vec{v} \cdot d \vec{A}$
Assume: (1) Density is uniform in tank, so $\frac{\partial}{\partial t} \int_{C V} \rho d \forall=\frac{\partial}{\partial t}\left(P_{t} \forall\right)$
(Z) Exit flow is uniform, so

$$
\int_{c s} \rho \vec{v} \cdot d \vec{A}=f_{1} \vec{v}_{1} \cdot \vec{A}_{1}=\left|\rho_{1} v_{1} A_{1}\right|
$$

(3) Air is an ideal gas, $p_{1}=f_{1} R T$

Then

$$
\begin{aligned}
& \rho_{1}=\frac{\rho_{1}}{R T_{1}}=3.50 \times 10^{5} \frac{\mathrm{~N}}{\mathrm{~m}^{2}} \times \frac{\mathrm{kg} \cdot \mathrm{~K}}{287 \mathrm{~N} \cdot \mathrm{~m}} \times \frac{1}{(273-15) \mathrm{K}}=4.73 \mathrm{~kg} / \mathrm{m}^{3} \\
& \frac{\partial}{\partial t}\left(\rho_{t} \forall\right)=\rho_{t} \frac{\partial \forall^{1}}{\partial t}+\forall \frac{\partial f_{t}}{\partial t}=-1 \rho_{1} V_{1} A_{1} / \\
& \frac{\partial f_{t}}{\partial t}=\frac{-1 f_{1} V_{1} A_{1} 1}{\forall}=-4.73 \frac{\mathrm{~kg}}{\mathrm{~m}^{3}} \times \frac{300 \mathrm{~m}}{\mathrm{~s}} \times 130 \mathrm{~mm}^{2} \times \frac{1}{0.5 \mathrm{~m}^{3}} \times \frac{\mathrm{m}^{2}}{(1000)^{2} \mathrm{~mm}^{2}} \\
& \frac{\partial f_{t}}{\partial t}=-0.369 \mathrm{~kg} / \mathrm{m}^{3} \cdot \mathrm{~s}
\end{aligned}
$$

$\left\{\right.$ Note since $\frac{\partial f t}{\partial t}<0$, mass in tank decreases as expected, \}

Given: Liquid drains from a tank trough a long circular tube. Flow is laminar; velocity profile et tube discharge is given by

$$
u=u_{\max }\left[1-\left(\frac{r}{R}\right)^{2}\right]
$$

Find: (a) Show that $\bar{V}=0.5 u_{\text {max }}$ at any instant
(b) rate of Change of liquid level in tanksuthen $u_{\mathrm{man}}=0.155 \mathrm{~m} / \mathrm{s}$

Solution:
(a) The average velocity \bar{V} is defined as alp.

Srice $Q=\int u d A, d A=2 \pi r d r$ and $A=\pi R^{2}$, then

$$
\begin{aligned}
& \left.\bar{V}=\frac{\theta}{R}=\frac{1}{\pi R^{2}} \int_{0}^{R} u_{\max }\left[1-\left(\frac{r}{R}\right)^{2}\right] 2 \pi r d r=\frac{2 u_{\max }}{R^{2}} \int_{0}^{R}\left[1-\frac{r^{2}}{R}\right)^{\prime}\right] r d r \\
& \bar{V}=\frac{2 u_{\max }}{R^{2}} R^{2} \int_{0}^{1}\left[1-\left(\frac{r}{R}\right)^{2}\right]\left(\frac{r}{R}\right) d\left(\frac{r}{R}\right)=2 u_{\max }\left[\frac{1}{2}\left(\frac{r}{R}\right)^{2}-\frac{1}{4}\left(\frac{r}{R}\right)^{4}\right]_{0}^{1} \\
& \bar{V}=\frac{1}{2} u_{\max }
\end{aligned}
$$

(b) Apply conservation of mass to the cV shown

Basic equation: $\quad o=\frac{\partial}{\partial t} \int_{c v} p d t+\int_{c s} \overrightarrow{p V} \cdot \overrightarrow{d A}$
Assumptions: (i) neglect air entering the cl (2) nicompressible flow.

Ron

$$
\begin{aligned}
& \text { Rent } \\
& 0=\rho_{l} \frac{\partial}{\partial t} \forall_{c u}+\left\{\left\{\rho_{e} \bar{V} A_{e}\right\}=\rho_{l} \frac{\partial}{\partial t}\left[\frac{\pi \rho^{2}}{4} h+L \pi e^{2}\right]+\bar{p} \pi p^{2}\right. \\
& \left.0=\frac{\pi y^{2}}{4} \frac{d h}{d t}+\bar{V} R^{2} \quad \text { (ndxe } \frac{d n}{d t}=0\right) \\
& \therefore \frac{d h}{d t}=-4 \bar{N}\left(\frac{R}{D}\right)^{2} \quad \text { But } \bar{D}=\frac{1}{2} \text { drat and here } \\
& \frac{d h}{d t}=-2 u \max \left(\frac{R}{y}\right)^{2}=-2 \times 0.55 \frac{m}{5} \times\left(\frac{0.05 m}{0.30 m}\right)^{2} \times 1000 \frac{\mathrm{~mm}}{\mathrm{~m}} \\
& \frac{d h}{d t}=-8 . b_{0} \text { mils (level is falling) }
\end{aligned}
$$

Given: Rectangular tank, with dimensions $H=230 \mathrm{~mm}, N=150 \mathrm{~mm}$, $L=236 \mathrm{hm}$, supplies water to an outlet tube of diameter,, $8=6.35 \mathrm{~mm}$. When the tank is half full the flow in the tube is at Reynolds number $R_{e}=2000$. At this nistant there is no water flow into the tank.

Find: the rate of charge of water level? in the tank at this instant.

Solution:

Apply conservation of mass to cV which nicludes tank and tube. Basie equation:

Definition: $R_{e}=P \frac{D}{\mu}=\frac{\partial J}{\partial t} \int_{c a} p d t+\int_{c s} \overrightarrow{P V} \cdot \overrightarrow{d A}$
Assumptions: (1) uniform flow at ext of tube
(2) incompressible flow
(3) neglect air entering the control volume

Then,

$$
\begin{aligned}
& 0=\text { wm } \frac{d h}{d t}+\bar{V}_{0} \pi R_{4}^{2} \quad \text { (note } h_{1}=\text { constant) } \\
& \therefore \quad \frac{d h}{d t}=-J_{0} \frac{\pi^{2}}{4} \frac{D_{1}}{2 l}
\end{aligned}
$$

To find \bar{V} use the definition of R_{e}

$$
V_{0}=\frac{\operatorname{Re} V}{D}
$$

For water at $200 \quad J=1 \times 10^{-6} \mathrm{~m}^{2}(\mathrm{sec}$ (Table A.8)

$$
\begin{aligned}
& \psi_{0}=2000 \times 1 \times 10^{-6} \frac{\mathrm{~m}^{2}}{\sec } \times \frac{1}{6.35} \times 10^{-3}=0.315 \mathrm{M} l_{\mathrm{sec}} \\
& \frac{d h}{d t}=-V_{0} \frac{\pi)^{2}}{4 w h}=-\frac{0.315}{4} \frac{n}{\sec } \times \frac{\pi(6.35)^{2} \times 21^{2}}{150 \mathrm{~mm} \times 230 \mathrm{~m}} \times 10^{3} \frac{\mathrm{~mm}}{4} \\
& \left.\frac{d h}{d t}=-0.289 \mathrm{~mm}\right\rangle_{\mathrm{sec}} \text { (falling) }
\end{aligned}
$$

Given: Air flow through tank with conditions shown at time, t_{0}.

$$
\begin{aligned}
& V_{1}=15 \mathrm{ft} / \mathrm{s} \\
& A_{1}=0.2 \mathrm{ft} \\
& \rho_{1}=0.03 \frac{\mathrm{shg}}{\mathrm{ft}^{3}}
\end{aligned}
$$

Find: $\frac{\partial \rho}{\partial t}$ in tank at time, t_{s}.
Solution: Apply conservation of mass, using CV shown. Basic equation: $\quad 0=\frac{\partial}{\partial t} \int_{C V} \rho d t+\int_{c S} \rho \vec{v} \cdot d \vec{A}$

Assumptions: (1) Density is uniform in tank, so $\frac{\partial}{\partial t} \int_{\mathrm{cv}} \rho d \forall=\frac{\partial}{\partial t}\left(\rho_{0} \forall\right)$
(2) Flow is uniform at inlet and outlet sections.

Then

$$
\begin{aligned}
0=\frac{\partial}{\partial t}\left(\rho_{0} \forall\right)+\rho_{1} \vec{v}_{1} \cdot \vec{A}_{1}+\rho_{0} \vec{v}_{2} \cdot \vec{A}_{2} \\
=0 \\
0=f_{0} \frac{\partial \forall}{\partial t}+\forall \frac{\partial \rho_{0}}{\partial t}-\left|\rho_{1} v_{1} A_{1}\right|+\left|\rho_{0} v_{2} A_{2}\right|
\end{aligned}
$$

or

$$
\frac{\partial f_{0}}{\partial t}=\frac{\left|\rho_{1} V_{1} A_{1}\right|-\rho_{0} V_{2} A_{2} \mid}{\forall}
$$

Substituting magnitudes

$$
\begin{aligned}
& \frac{\partial f_{0}}{\partial t}=\frac{1}{20 f t^{3}}\left[\frac{0.03 \mathrm{sfug}}{f+3} \times \frac{15 f+}{s} \times 0.2 f^{2}-\frac{0.025 \ln 9}{f+3} \times \frac{5 f t}{s} \times 0.4 f+2\right] \\
& \frac{\partial f_{0}}{\partial t}=2.50 \times 10^{-3} s / 4 g\left(f t^{3} \cdot s\right)
\end{aligned}
$$

$\left\{\right.$ Note since $\frac{\partial p_{0}}{\partial t}>0$, mass in tank increases $\}$

Given: Circular tank, with $D=1$ ft draining through a hole in its bottom. Fluid is water

Find: Rate of change of water level at the instant shown.

Solution: Apply conservation of mass to cv shown. Note section (2) cuts below free surface, so \vec{v}_{2} corresponds to free surface
 velocity; volume of $C V$ is Constant.
Basic equation: $\quad 0=\frac{\partial}{\partial t} \int_{C V}^{=o(1)} \rho d \forall+\int_{C S} \rho \vec{v} \cdot d \vec{A}$
Assumptions: (1) Incompressible flow, so unsteady term is zero, since volume of $C V$ is fixed
(2) Uniform flow at each section

Then

$$
0=f \vec{v} \cdot \vec{A}_{1}+\rho \vec{v}_{2} \cdot \vec{A}_{2}=\dot{m}_{1}+\rho \vec{v}_{2} \cdot \vec{A}_{2}
$$

and

$$
\vec{V}_{2} \cdot \vec{A}_{2}=-\frac{\dot{m}_{1}}{\rho}=-4.0 \frac{\mathrm{~kg}}{\mathrm{~s}} \times \frac{\mathrm{m}^{3}}{999 \mathrm{~kg}}=-0.004 \mathrm{~m}^{3} / \mathrm{s}
$$

since $\vec{V}_{2} \cdot \vec{A}_{2}<0$, flow at section (2) is into $C V$. Therefore

$$
V_{2}=\frac{\left|V_{2} A_{2}\right|}{A_{2}}=0.004 \frac{\mathrm{~m}^{3}}{\mathrm{~s}} \times \frac{4}{\pi} \times \frac{1}{(0.3)^{2} \mathrm{~m}^{2}}=0.0566 \mathrm{~m} / \mathrm{s}
$$

The water level is falling at $56.6 \mathrm{~mm} / \mathrm{s}$.

$$
\vec{v}_{s}=-v_{2} \hat{\jmath}=-56.4 \hat{\mathrm{~mm}} / \mathrm{s}
$$

Problem 4.34

A home water filter container as shown is initially completely empty. The upper chamber is no filled to a depth of 80 mm with water. How long will it take the lower chamber water level to j_{l} touch the bottom of the filter? How long will it take for the water level in the lower chamber to reach 50 mm ? Note that both water surfaces are at atmospheric pressure, and the filter material itself can be assumed to take up none of the volume. Plot the lower chamber water level as a

$$
Q=k H \text { where } k=2 \times 10^{-4} \mathrm{~m}^{2} / \mathrm{s} \text { and } H
$$

(m) is the net hydrostatic head across the filter.

Given: Geometry on water filter

Solution

$$
\text { Given data } \quad \mathrm{Q} \quad \mathrm{k}\left[\mathrm{H} \quad \text { where } \mathrm{k} \quad 2 \square 0^{\square 4} \sqrt[\mathrm{~m}^{2}]{\mathrm{s}}\right.
$$

Let the instantaneous depth of water in the upper chamber be h; let the filter height be L; let the gap between the filter and the bottom be d; and let the level in the lower chamber be x.

Then $\quad h(t \quad 0) \quad h_{0} \quad h_{0} \quad 80[m m \quad x(t \quad 0) \quad 0$
L $50 \square \mathrm{~mm}$
d $20 \square \mathrm{~mm}$
D $150 \square \mathrm{~mm}$

Governing equation For the flow rate out of the upper chamber

$$
\mathrm{Q} \quad \square \mathrm{~A}\left[\frac{\mathrm{dh}}{\mathrm{dt}} \quad \mathrm{k}[\mathrm{H}\right.
$$

where A is the cross-section area

$$
\mathrm{A} \quad \frac{\mathrm{~S} \mathrm{D}^{2}}{4}
$$

A $\quad 0.0177 \mathrm{~m}^{2}$

There are two flow regimes: before the lower chamber water level reaches the bottom of the filts and after this point
(a) First Regime: water level in lower chamber not in contact with filter, $x<d$

The head H is given by $\quad \mathrm{H} \quad \mathrm{h} \square \mathrm{L}$

Hence the governing equation becomes

$$
\square \mathrm{A} \stackrel{\mathrm{dh}}{\mathrm{dt}} \quad \mathrm{H} \quad \mathrm{~h} \square \mathrm{~L}
$$

Separating variables $\quad \frac{\mathrm{dh}}{\mathrm{h} \square \mathrm{L}} \quad \square \frac{\mathrm{dt}}{\mathrm{A}}$

Integrating and using the initial condition $h=h_{0}$
h

Note that the initial condition is satisfied, and that as time increases h approaches $-L$, that is, upper chamber AND filter completely drain

We must find the instant that the lower chamber level reaches the bottom of the filter

Note that the increase in lower chamber level is equal to $\quad \mathrm{A} \boxed{\mathrm{x}} \quad \mathrm{A} \llbracket \mathrm{h}_{0} \square \mathrm{~h} \square$ the decrease in upper chamber level
so
x

 L/4
X

$$
\mathrm{h}_{0} \square \mathrm{~L} \underset{\square}{\S} \mathrm{~m} \mathrm{e}^{\square \frac{\mathrm{k}}{\mathrm{~A}} \dot{\mathrm{t}}_{1}}
$$

Hence we need to find when $x=d$, or

Solving for t
t $\quad \square \frac{\mathrm{A}}{\mathrm{k}} \square \mathrm{n}^{\S_{1}} \underset{\mathrm{C}}{ } \frac{\mathrm{d}}{\mathrm{h}_{0} \square \mathrm{~L}_{1}}$.
t $\quad \square 0.0177 \square^{2} \mathrm{u} \frac{\mathrm{s}}{2 \square 0^{\square 4} \mathrm{u} \mathrm{m}^{2}} \mathrm{u} \ln ^{\S} \S_{1} \square \frac{20}{80 \square 50}$.
t $\quad 14.8 \mathrm{~s}$
(a) Second Regime:water level in lower chamber in contact with filter, $x>d$

The head H is now given byH $\quad \mathrm{h} \square \mathrm{L} \square \mathrm{d} \square \mathrm{x}$

Note that the increase in lower chamber level is equal to the decrease in upper chamber level

Hence the governing equation becomes

	$\square A \square \frac{\mathrm{dh}}{\mathrm{dt}} \quad \mathrm{H} \quad \mathrm{h} \square \mathrm{L} \square \mathrm{d} \square \mathrm{x} \quad 2 \square \mathrm{~h} \square \mathrm{~L} \square \mathrm{~d} \square \mathrm{~h}_{0}$
Separating variables	$\frac{\mathrm{dh}}{2 \square \mathrm{~h} \square \mathrm{~L} \square \mathrm{~d} \square \mathrm{~h}_{0}} \quad \square \frac{\mathrm{dt}}{\mathrm{A}}$

Before integrating we need an initial condition for this regime

Let the time at which $x=d$ be $t_{1}=14.8 \mathrm{~s}$

Then the initial condition is $h \quad h_{0} \square \mathrm{x} \quad \mathrm{h}_{0} \square \mathrm{~d}$

Integrating and using this IC yields eventually
h $\frac{1}{2}\left[h_{0}\right.$

x $\frac{1}{2} \llbracket \mathrm{~L} \square \mathrm{~d} \square \mathrm{~h}_{0} \square \square \frac{1}{2} \square \mathrm{~h}_{0} \square \mathrm{~L} \square \mathrm{~d} \square \Phi^{\square \frac{2 \mathrm{k}}{\mathrm{A}} \square \llbracket \square \mathrm{t}_{1} \square}$

Note that the start of Regime $2\left(t=t_{1}\right), x=d$, which is correct.

We must find the instant that the lower chamber level reaches a level of 50 mm

Let this point be $\quad x \quad x_{\text {end }} \quad 50 \llbracket n m$

We must solve

Solving for t

t 49.6 s

The complete solution for the lower chamber water level is

$$
\begin{aligned}
& \text { x } \frac{1}{2} \square \mathbb{L} \square \mathrm{~d} \square \mathrm{~h}_{0} \square \square \frac{1}{2} \square \mathrm{~h}_{0} \square \mathrm{~L} \square \mathrm{~d} \square 母^{\square \frac{2 \square \mathrm{k}}{\mathrm{~A}} \square \square \square \mathrm{t}_{1} \square} \mathrm{x}!\mathrm{d}
\end{aligned}
$$

The solution is plotted in the corresponding Excel workbook; in addition, Goal Seek is used tc find the two times asked for

Problem 4.34 (In Excel)

A home water filter container as shown is initially completely empty. The upper chamber is now filled to a depth of 80 mm with water. How long will it take the lower chamber water level to just touch the bottom of the filter? How long will it take for the water level in the lower chamber to reach 50 mm ? Note that both water surfaces are at atmospheric pressure, and the filter material itself can be assumed to take up none of the volume. Plot the lower chamber water level as a function of time.
For the filter, the flow rate is given by $Q=k H$ where $k=2 \times 10^{-4} \mathrm{~m}^{2} / \mathrm{s}$ and $H(\mathrm{~m})$ is the net hydrostatic head across the filter.

Given: Geometry of water filter
Find: Times to reach various levels; plot lower chamber level

Solution

The complete solution for the lower chamber water level is

$h_{\mathrm{o}}=$	80	mm
d	$=$	20
L	$=$	50
D	$=$	mm
k	$=$	$2.00 \mathrm{E}-04$
$\mathrm{~m}^{2} / \mathrm{s}$		

To find when $x=d$, use Goal Seek

$\boldsymbol{t}(\mathbf{s})$	$\boldsymbol{X} \mathbf{(m m})$
14.8	20.0

To find when $x=50 \mathrm{~mm}$, use Goal Seek
$A=0.0177 \mathrm{~mm}$
$t_{1}=14.8 \mathrm{~s}$

$\boldsymbol{t}(\mathbf{s})$	$\boldsymbol{X}(\mathbf{m m})$
49.6	50

$\boldsymbol{t}(\mathbf{s})$	$\boldsymbol{X} \mathbf{(m m})$
0.0	0.0
2.5	3.6
5.0	7.2
7.5	10.6
10.0	13.9
12.5	17.1
15.0	20.3
17.5	23.3
20.0	26.2
22.5	28.8
25.0	31.4
27.5	33.8
30.0	36.0
32.5	38.2
35.0	40.2
37.5	42.1
40.0	43.9
42.5	45.6
45.0	47.3
47.5	48.8
50.0	50.2
52.5	51.6
55.0	52.9
57.5	54.1
60.0	55.2

Problem 4.35
Given: Lake being drained at 2,000 cubic feet per second (cts). Level falls at 1 ft per 8 hr . Normal flow rate is 290 cfs .
Find: (a) Actual flow rate during draining (galls).
(b) Estimate surface area of lake.

Solution: Convert units

$$
Q=2000 \frac{\mathrm{ft}^{3}}{\mathrm{~s}}=2000 \frac{\mathrm{ft}^{3}}{\mathrm{~s}} \times 7.48 \frac{\mathrm{gal}}{\mathrm{ft} 3}=1.50 \times 10^{4} \mathrm{gal} / \mathrm{s}
$$

Apply conservation of mass using $C V$ shown:

Basic equation: $0=\frac{\partial}{\partial t} \int_{C V} \varphi d t+\int_{C S} \rho \vec{V} \cdot d \vec{A}$
Assumption: (1) $\rho=$ constant
Then

$$
\begin{aligned}
& \frac{d t}{d t}=A \frac{d h}{d t}=-\int_{C S} \vec{v} \cdot d \vec{A}=-Q_{0}+Q_{i} \\
& A=-\frac{Q_{0}-Q_{i}}{d h / d t}=-\frac{\Delta Q}{d h / d t} ; \Delta Q=Q_{0}-Q_{i}
\end{aligned}
$$

But $\Delta Q=1,710 \mathrm{ft}^{3} / \mathrm{s}$ and $d h / d t=-1 \mathrm{ft} / 8$ hr, since decreasing.
Thus

$$
A=-1,710 \frac{\mathrm{ft} 3}{3} \times \frac{8 \mathrm{hr}}{-1 \mathrm{ft}} \times 3600 \frac{\mathrm{~s}}{\mathrm{hr}}=4.92 \times 10^{7 \mathrm{ft}^{2}}
$$

Since lace $=43,600 \mathrm{ft}^{2}$,

$$
A=4.92 \times 10^{7} \mathrm{f}^{2} \times \frac{a c r e}{43,600 \mathrm{ft}^{2}} \approx 1,130 \text { acres }
$$

Sire 1 square mile $=640$ acres, the lake surface area is slightly less then 2 square miles!

Problem 4.36
Gwen: Cylindrical tank, drowning by gravity as shown; initial Aeptry is yo
Find: Water dept at $t=12 \mathrm{~s}$
Plot: (a) ylyous t for $0.1 \leqslant y_{0} \leqslant 1 m$ and $i^{\prime} d=10$
(b) ylyo vs for $2 \leqslant\left. D\right|_{\alpha} \leqslant 10$ and $y_{0}=0.4 m$

Solution:
Apply conservation of Mass using c\ shown Basic equation: $0=\frac{\partial}{\partial t} \int_{c y} p d t+\int_{c s} \overrightarrow{\vec{V}} \cdot \overrightarrow{d A}$
Assumptions: (i) incompressible flow (a) uniform flow at each section
(3) neglect pair compared to $\mathrm{f}_{2} \mathrm{O}$

For the cl, $d t=A_{t} d y$, so
or

$$
0=p A_{t} \frac{d y}{d t}+p A_{2} V_{2}=A_{t} \frac{d y}{d t}+A_{2} \sqrt{2 g y}
$$

Separating variables,

$$
\frac{d y}{y^{1 / 2}}=-\sqrt{2 g} \frac{A_{2}}{A_{t}} d t
$$

Integrating from y_{0} at $t=0$ to y at t

$$
\begin{aligned}
& \int_{y_{0}}^{y} y^{\prime \prime 2} d y=2\left[y^{\prime \prime 2}-y_{0}^{\prime \prime 2}\right]=-\sqrt{2 g} \frac{A_{2}}{A_{t}} t \\
& \begin{array}{l}
\frac{y^{\prime / 2}}{y_{0}^{12}}=1-\sqrt{\frac{g}{2} y_{0} A_{2} t \quad \text { or } \quad y=y_{0}}\left[1-\sqrt{\frac{g}{2 y_{0}}}\left(\frac{d}{\sqrt{1}}\right)^{2} t\right]^{2} \ldots(1) \\
=12 \mathrm{sec} \\
0.4 m\left[1-\left(\frac{9.81}{2} \frac{m}{s^{2}} \times \frac{1}{0.4 m}\right)^{1 / 2}\left(\frac{5 m m}{50 m m}\right)^{2} 12 s\right]^{2}=0.134 m \ldots \quad y_{t=12}
\end{array}
\end{aligned}
$$

For \quad Id $=10, \quad E_{q} \cdot$, gives

$$
\frac{y}{y_{0}}=\left[1-2.215 \times 10^{-2} y_{0}^{-1 / 2} t\right]^{2}
$$

For $y_{0}=0.4 m$, Equl gives

$$
\frac{y}{y_{0}}=\left[1-\frac{3.502}{(y 1 d)^{2}} t\right]^{2}
$$

The variation of ylyo with t is plotted below for:

$$
l_{d}=10 \text { and } 0.1 L_{y} \leqslant 1.0 \mathrm{~m}
$$

$$
y_{0}=0.4 m \text { and } z \leqslant 11 d \leq 10
$$

$y_{0}(\mathrm{~m})=$
0.1
0.3
$1 \mathrm{D} / \mathrm{d}(---)=$
2
5
10
Time, $\left.t(\mathrm{~s}) \quad y / y_{0}(--) \quad y / y_{0}(--) \quad y / y_{0}(--) \quad T i m e, t(s) \quad y / y_{0}(--) \quad y / y_{0}(--)^{\prime} \quad y / y_{0}(--)^{\prime}\right)$

0	1.000	1.000	1.000	0	1.000	1.000	1.000
2	0.739	0.845	0.913	0.5	0.316	0.865	0.965
4	0.518	0.703	0.831	1	0.016	0.739	0.931
6	0.336	0.574	0.752	1.1	0.001	0.716	0.924
8	0.193	0.458	0.677	2		0.518	0.865
10	0.090	0.355	0.606	3		0.336	0.801
12	0.025	0.265	0.539	4		0.193	0.739
14	0.000	0.188	0.476	5		0.090	0.680
16		0.125	0.417	6		0.025	0.624
18		0.074	0.362	7		0.000	0.570
20		0.037	0.310	10		0.422	
22		0.012	0.263	12		0.336	
24		0.001	0.219	14		0.260	
26			0.180	16		0.193	
28			0.144	18		0.137	
30			0.113	20		0.090	
32			0.085	22		0.053	
34		0.061	24			0.008	
36		0.041	26			0.000	
38		0.025	28				

Problem 4.37
Given: Cylindrical tank, draining by grajity as shown; initial pf is yo.
Find: Time to drain tank to depth $y=20 \mathrm{~mm}$
Mot: Time t to drown the tank (to $y=20 \mathrm{~mm}$) as a function of पhyo for $0.1 \leq y_{0} \leq 1 m$ wife doily as a parameter for $0.1 \leqslant d \mid y \leqslant 0.5$

Sdution:
Apply conservation of mass using $C V$ shown.
Basic equation: $\quad 0=\frac{\partial}{\partial t} C_{c u} p d^{t}+S_{c \cdot s} P^{v} \cdot \overrightarrow{d A}$
Assumptions: (i) incompressible flow
(a) uniform flow at each section.
(3) neglect pair compared to pHys

For the cv, $d \theta=A_{t} d y$, so

$$
\begin{aligned}
& \text { or } 0=\frac{\partial}{\partial t} \int_{0}^{y} \rho_{420} A_{t} d y+\rho_{m 00} \$_{2} A_{2}=R_{t} \frac{d y}{d t}+A_{2} \sqrt{2 g y}
\end{aligned}
$$

Separating variables,

$$
\frac{d y}{y^{\prime / 2}}=-\sqrt{2 g} \frac{R_{2}}{H_{t}} d t
$$

Integrating from y_{0} at $t=0$ to y at t

$$
\begin{align*}
& \int_{y_{0}}^{y} \frac{d y}{y^{\prime 2}}=2\left[y^{1 / 2}-y_{0}^{1 / 2}\right]=-\sqrt{2 g} \frac{A_{2}}{A_{1}} t \\
& -\sqrt{2 g} \frac{R_{2}}{R_{t}} t=2 y_{0}^{1 / 2}\left[\left(\frac{y_{y}}{y_{0}}\right)^{1 / 2}-1\right] \text { or } t=\sqrt{\frac{2 y_{0}}{g}}\left(\frac{\lambda}{d}\right)^{2}\left[1-\left(\frac{y}{y_{0}}\right)^{\prime 1_{2}}\right] \text {. } \tag{i}
\end{align*}
$$

Evaluating at $u=20 \mathrm{~mm}$

$$
t=\left[2 \times 0.4 m \times \frac{5^{2}}{a .8 / m}\right]^{4 / 2}\left[\frac{50 \mathrm{~mm}}{5 \mathrm{~mm}}\right]^{2}\left[1-\left(\frac{0.02 m}{0.40 m}\right)^{1 / 2}\right]=22.25 \quad t_{y}=20, \mathrm{~mm}
$$

Time is plotted as a function of y l yo $(y=20 \mathrm{~mm})$. with dy as a parameter.

Given: Water flows into the top of a conical flask at a constant rate of $Q=3.75 \times 10^{-7}{ }^{3} /$ hr Water drains at through the round opening of diameter $d=7.35 \mathrm{~mm}$ at the apex of the cone; the flow speed at the exit is $V=$ (Ray) where y is the water depth above the exit plane. At the instant of interest, the water depth $H=36.8 \mathrm{~mm}$ and the corresponding diameter $D=29.4 \mathrm{~mm}$
Find: Fit the instant of interest:
(a) find the volume flow rate from the bottom of the flack (b) evaluate the direction and rate of Strange of water surface level
Solution: Apply continuity to the CV Shown.
Basic eq.: $0=\frac{\partial}{\partial t} \int_{c u} p d t+\int_{0} \overrightarrow{p N} \cdot \overrightarrow{d H}$
Assumptions: in uniform flow at eadisection (2) neglect mass of air.

Then

$$
\begin{aligned}
& Q_{\text {out }}=V_{0} H_{0}=(2 g h)^{1 / 2} \frac{\pi d^{2}}{4} \\
& Q_{\text {out }}=\left[2 \times 9.81 \frac{n}{5^{2}} \times 0.03180 n\right]^{1 / 2} \frac{\pi}{4} \times(0.00735)^{2} \mathrm{~m}^{2} \\
& Q_{\text {out }}=3.61 \times 10^{-5} \mathrm{~m}^{3} I_{5}\left(0.130 \mathrm{~m}^{3}\left(h_{r}\right)\right.
\end{aligned}
$$

From eq. (i)

$$
\left.\frac{d t}{d t}\right)_{\text {walter }}=Q_{\text {in }}-Q_{\text {out }}
$$

$t=\frac{1}{3}$ area of base x attitude $z \frac{1}{3} \pi R^{2} y$
Since $R=y \tan \theta, \quad t=\frac{1}{3} \pi y^{3} \tan ^{2} \theta$

$$
\begin{aligned}
& \frac{d t}{d t}=\frac{1}{3} x \tan ^{2} \theta \times 3 y^{2} d y=\pi y^{2} \tan ^{2} \theta \frac{d y}{d t}=\pi R^{2} \frac{d y}{d t} \\
& \therefore \quad \frac{d y}{d t}=\frac{Q_{i n}-Q_{0} \pi}{\pi R^{2}}=\frac{4}{\pi)^{2}}(\operatorname{Qin}-\text { ant) } \\
& =\frac{4}{\sigma} \times(0.0294)^{2} m^{2}\left(3.75 \times 10^{-7}-0.130\right) \frac{n^{3}}{h^{-}} \times \frac{h r}{36002} \\
& \frac{d y}{d t}=-0.0532 \text { miss (surface notes downward) dy dy dy }
\end{aligned}
$$

Problem 4.39

Given: Conical funnel draining through small hole. $\quad D=70 \mathrm{~mm}$

$$
V_{e}=\sqrt{2 g y}
$$

Find: Rate of change of surface level when $y=H / z$.

Solution: Apply conservation of mass.
(1) Choose $C V$ with top just below surface level.

Basic equation: $\quad 0=\frac{1}{d} \int_{C V}^{=D(1)} \rho d \forall+\int_{C S} \rho \vec{V} \cdot d \vec{A}$
Assumptions: (1) $p=$ constant, $\forall=$ cons, $\leq 0 \% t=0$
(2) Uniform flow at each section.

For cv(1): $0=\left\{\begin{array}{l}\left.-\left|\dot{p} v_{s} A_{s}\right|\right\}+\left\{\begin{array}{l}\left.+\left|\dot{q} v_{e} A<\right|\right\} \\ i n \\ \text { out }\end{array} \quad \text { or } V_{s}=V_{e} \frac{A_{e}}{A_{s}}\right.\end{array}\right.$
Thus $V_{s}=V_{e}\left(\frac{d}{D / 2}\right)^{2}=\sqrt{2 g \frac{H}{2}} 4\left(\frac{d}{D}\right)^{2}=4 \sqrt{g H}\left(\frac{d}{D}\right)^{2}=-\frac{d y}{d t}$ (since y decreases)
But $\tan \theta=\frac{D / 2}{H}$ so $H=\frac{D}{2 \tan \theta}=\frac{0.070 \mathrm{~m}}{2 \tan 15^{\circ}}=0.131 \mathrm{~m}$
substituting,

$$
\frac{d y}{d t}=-4 \sqrt{9.81 \frac{\mathrm{~m}}{\mathrm{~s}^{2 .}} \times 0.131 \mathrm{~m}}\left(\frac{0.00312 \mathrm{~m}}{0.070 \mathrm{~m}}\right)^{2} 1000 \frac{\mathrm{~mm}}{\mathrm{~m}}=-9.01 \mathrm{~mm} / \mathrm{s}
$$

Alternate solution: choose CV (2) enclosing entire funnel.
Basic equation: $0=\frac{\partial}{\partial t} \int_{C_{V}} \rho d \forall+\int_{C S} \rho \vec{V} \cdot d \vec{A}$
Assumptions: (1) $\rho=$ constant, but \forall changes (Note: $\forall=\frac{\pi}{3} r^{2} h$ tr o a cone.) (i) Neglect a ir
(3) Uniform flow at outlet section

Then

$$
0=\hat{p} \frac{\partial}{\partial x} \forall_{\text {Ho }}+\left\{+\mid \hat{q_{\text {out }}}\left\{v_{c} A<1\right\} \text { or } \frac{d \forall}{d t}=-V_{e} A_{e}\right.
$$

The volume of water is $\forall=\frac{\pi}{3} r^{2} h=\frac{\pi}{3}(y \tan \theta)^{2} y=\frac{\pi y^{3} \tan ^{2} \theta}{3}$ So $\frac{d \forall}{d t}=\pi y^{2} \tan ^{2} \theta \frac{d y}{d t}=\pi\left(\frac{D}{4}\right)^{2} \frac{d y}{d t}$ and $\frac{\pi D^{2}}{16} \frac{d y}{d t}=-V e A e=-\sqrt{2 g y} \frac{\pi d^{2}}{4}$ Finally, since $y=H / 2, \frac{d y}{d t}=-4 \sqrt{2 g H}\left(\frac{d}{D}\right)^{2}$ as before.
$\left\{\begin{array}{c}\text { Note: Flow is not steady in either } C V \text {. The dot term vanishes for CV (1) } \\ \text { because there is no change in mass inside the CV. }\end{array}\right\}$

Given: Steady flow of water past a porous flat plate. Suction is constant. Velocity profile at section co is

$$
\frac{u}{U_{\infty}}=3\left(\frac{y}{\delta}\right)-2\left(\frac{y}{\delta}\right)^{1.5}
$$

Find: Mass flow rate across section bc.
Solution: Apply conservation of mass using the $C V$ shown.
Basic equation:

Then

$$
D=\int_{c s} \rho \vec{V} \cdot d \vec{A}=\int_{a b} \rho \vec{V} \cdot d \vec{A}+\dot{m}_{b c}+\int_{c d_{r}} \rho \vec{V} \cdot d \vec{A}+\int_{d a} \rho \vec{V} \cdot d \vec{A}
$$

or

$$
0=-\rho U_{\infty} u \delta+\dot{m} b c+\int_{0}^{\delta} \rho v_{\infty}\left[3\left(\frac{y}{\delta}\right)-z\left(\frac{y}{\delta}\right)^{1 / 5}\right] \omega d y+\rho v_{0} w L
$$

Thus

$$
\begin{aligned}
\dot{m_{b c}} & \left.=\rho U_{\infty} \omega \delta-\rho U_{\infty} \omega \delta \int_{0}^{1}\left[\frac{3}{\delta}\right)-2\left(\frac{y}{\delta}\right)^{1.5}\right] d\left(\frac{y}{\delta}\right)-\rho v_{0} \omega L \\
& =\rho \omega r\left\{U_{\infty} \delta-U_{\infty} \delta\left[\frac{3}{2}\left(\frac{y}{\delta}\right)^{2}-\frac{2}{2.5}\left(\frac{y}{\delta}\right)^{1.5}\right]_{0}^{1}-v_{0} L\right\} \\
& =\rho \omega\left[U_{\infty} \delta-U_{\infty} \delta\left(\frac{3}{2}-\frac{z}{2.5}\right)-v_{0} L\right]=\rho \omega\left(0.3 U_{\infty} \delta-v_{0} L\right) \\
& =999 \frac{\mathrm{~kg}}{m^{3}} \times 1.5 \mathrm{~m}\left(0.3 \times 3 \frac{m}{5} \times 0.0015 \mathrm{~m}-0.0002 \frac{m}{\mathrm{~s}} \times 2 \mathrm{~m}\right) \\
\dot{m}_{b c} & =1.42 \mathrm{~kg} / \mathrm{s} \quad(\dot{m}>0,30 \text { out of } \mathrm{cV})
\end{aligned}
$$

Problem 4.41
Given: steady incompressible flow of air on porous surface shown in Fig. P4.38. Velocity profile at, downstrearn end is parabolic. Uniform suction is applied along ad.
Find: (a) Volume flow rite across $c d$.
(b) Volume flow rate through porous surface (ad).
(c) volume flow rate across bc.

Solution: Apply conservation of mass to $\langle V$ shown.

Basic equation:

$$
0=\frac{\partial}{\partial x} \int_{C V}^{P 0(1)} \rho d \forall+\int_{C S} \rho \vec{V} \cdot d \vec{A}
$$

Assumptions: (1) Incompressible flow
(2) Parabolic profile at section cd: $\frac{u}{U_{\infty}}=2\left(\frac{y}{\delta}\right)-\left(\frac{y}{\delta}\right)^{2}$

Then $\quad 0=\int_{c S} \vec{V} \cdot d \vec{A}=Q_{a b}+Q_{b c}+Q_{c d}+Q_{d a}$

$$
\begin{align*}
Q_{c d} & =\int_{c d} \vec{V} \cdot d \vec{A}=\int_{0}^{\delta} u w d y=w U_{\infty}^{r} \delta \int_{0}^{1} \frac{u}{U} d\left(\frac{y}{\delta}\right)=w U_{\infty} \delta \int_{0}^{1}\left[2\left(\frac{y}{\delta}\right)-\left(\frac{y}{\delta}\right)^{2}\right] d\left(\frac{y}{\delta}\right) \tag{1}\\
& =w U_{\infty} \delta\left[\left(\frac{y}{\delta}\right)^{2}-\frac{1}{3}\left(\frac{y}{\delta}\right)^{3}\right]_{0}^{1}=\frac{2}{3} w \delta U_{\infty} \\
Q_{c d} & =\frac{2}{3} \times 1.5 m_{\times} 0.0015 m_{\times} \frac{3 m}{s}=4.50 \times 10^{-3} \mathrm{~m}^{2} / \mathrm{s} \text { (out of }(v)
\end{align*}
$$

Flow across ad is uniform, so

$$
\begin{aligned}
& Q_{a d}=\vec{V} \cdot \vec{A}=v \hat{\jmath} \cdot \omega L(-\hat{z})=-V \omega L \\
& Q_{a d}=-0.2 \frac{m m}{s} \times 1.5 m_{x} 2 m_{\times} \frac{m}{1000 \mathrm{~mm}}=6.00 \times 10^{-4} \mathrm{~m} / \mathrm{s} \text { (out of }(v)
\end{aligned}
$$

Filially, from Eq, I,

$$
\begin{equation*}
Q_{b c}=-Q_{a b}-Q_{c d}-Q_{d a} \tag{2}
\end{equation*}
$$

But $Q_{a b}=\vec{U}_{\infty}-\vec{A}_{a b}=V_{\infty} \hat{\imath} \cdot L \delta \delta(-\hat{L})=-\omega \delta U_{\infty}$

$$
Q_{a b}=-1.5 m_{\times} 0.0015 \mathrm{~m}_{\times} 3 \frac{\mathrm{~m}}{\mathrm{~s}}=-6.75 \times 10^{-3} \mathrm{~m}^{3} / \mathrm{s} \quad(\text { into } \mathrm{cv})
$$

substituting into Eq, 2 ,

$$
\begin{aligned}
& Q_{b c}=\left[-\left(-6.75 \times 10^{-3}\right)-4.50 \times 10^{-3}-6.00 \times 10^{-4}\right] \mathrm{m}^{3} / \mathrm{s} \\
& Q_{b c}=1.65 \times 10^{-3} \mathrm{~m}^{3} / \mathrm{s} \text { (out of }(\mathrm{v})
\end{aligned}
$$

Given: Tank containing brine with steady inlet stream of water. Initial density is $\rho_{i}>\rho_{\mathrm{H}_{2} \mathrm{O}}$.

Find: (a) Rate of change of liquid density in tank.
(b) Time required to reach density, f_{f}, where $\rho_{i}>\rho_{f}>\rho_{H_{2} O}$.

Solution: Apply conservation of mass using the CV shown.
Basic equation:

$$
0=\frac{\partial}{\partial t} \int_{c v} \rho d \forall+\int_{c s} \rho \vec{v} \cdot d \vec{A}
$$

Assumptions: (1) $\forall_{\text {tank }}=$ constant

(2) p uniform in tank
(3) Uniform flows at inset and outlet sections
Then $V, A_{1}=V_{2} A_{2}$ since tank volume is constant, and

$$
0=\frac{\partial}{\partial t} \int_{c V} \rho d \forall+\rho V A-\rho_{H_{2} O} V A=\frac{\partial}{\partial t} \rho \forall+\left(\rho-\rho_{H_{2} O}\right) V A=\forall \frac{d \rho}{d t}+\left(\rho-\rho_{H_{2} O}\right) V A
$$

so that

$$
\frac{d p}{d t}=-\frac{\left(p-\rho_{H_{2} 0}\right) V A}{\psi}
$$

Separating variables,

$$
\frac{d \rho}{\rho-\rho_{H_{2} \mathrm{O}}}=-\frac{V A}{\forall} d t
$$

Integrating from p_{i} at $t=0$ to ρ_{f} at t,

$$
\left.\int_{\rho_{i}}^{\rho_{f}} \frac{d \rho}{\rho-\rho_{H_{2} O}}=\ln \left(\rho-\rho_{H_{2} O}\right)\right]_{\rho_{i}}^{\rho_{f}}=\ln \left(\frac{\rho_{f}-\rho_{H_{0}}}{\rho_{i}-\rho_{\mu_{2} O}}\right)=\int_{0}^{t}-\frac{V A}{\forall} d t=-\frac{V A}{\forall} t
$$

Finally,

$$
t=-\frac{\forall}{V A} \ln \left(\frac{\rho_{f}-\rho_{\mu_{2} O}}{\rho_{i}-\rho_{H_{1} O}}\right)
$$

$\left\{\right.$ Note that $\rho_{f} \rightarrow \rho_{\mathrm{H}_{2} \mathrm{O}}$ asymptotically as $\left.t \rightarrow \infty.\right\}$

Gwen: Funnel of liquid draining through a small hole of diameter $d=5 \mathrm{~mm}$ (area, A) as shown; y_{0} is initial depth.
Find: (a) Expression for time to drain (b) Expression for result in terms of

- initial volume t_{0}, and
- initial volume flow rate

$$
Q_{0}=A V_{0}=A \sqrt{2 g_{0}}
$$

Plot: t as a function of $y 0\left(0.1 \leq u_{0} \leq 1 m\right.$) with angle θ
as a parameter for $015^{\circ} \leq \theta \leq 55^{\circ}$.
Solution
Apply conservation of mass using al shown.
Basic equation: $0=\frac{\partial}{\partial t} C_{c u} p d t+C_{C S} p \vec{V} \cdot \overrightarrow{d A}$
Assumptions: (i) Incompressible flow
(2) Uniform flow at each section

Then.
(3) Neglect pair compared to pHo.

$$
0=\frac{2}{2 t} \int_{t \text { cat }} \text { fair } d t+\frac{2}{2 t} \int_{H_{H_{20}}} p_{H_{20}} d t+\left\{-\left|p_{\text {our }} V_{1} A_{1}\right|\right\}+\left\{\left|p_{H_{2} O} V A\right|\right\}
$$

For the ω,
The

$$
d \forall=A_{s} d y=\pi r^{2} d y=\pi(y \tan \theta)^{2} d y ; \forall=\pi \tan ^{2} \theta \frac{y^{3}}{3}
$$

$$
\begin{aligned}
0 & =\rho_{42} \frac{2}{2 t}\left(\pi \tan ^{2} \theta \frac{y^{3}}{3}\right)+p_{220}+\sqrt{2 g y} \\
0 & =\pi \tan ^{2} \theta y^{2} \frac{d y}{d t}+A \sqrt{2 g} y^{1 / 2}
\end{aligned}
$$

Separating variables, $\quad y^{3 / 2} d y=\frac{-\sqrt{2 g} A}{\pi \tan ^{2} \theta} d t$
Integrating from y_{0} at $t=0$ to 0 at t,

$$
\int_{y_{0}}^{\infty} y^{3 / 2} d y=\frac{2}{5}\left(-y_{0}^{3 / 2}\right)=-\frac{\sqrt{2 g} A}{\pi \tan ^{2} \theta} t
$$

or

$$
t=\frac{2}{5} \frac{\pi \tan ^{2} \theta y_{0}^{5 / 2}}{\sqrt{2 g} H}
$$

But $t_{0}=\pi \tan ^{2} \theta \frac{y_{0}}{3}$ and $Q_{0}=A V_{0}=A \sqrt{2 g y_{0}}$, so
 Since $A=\frac{\pi d^{2}}{4}$, we can write

$$
t=\frac{2}{5} \frac{k \tan ^{2} \theta y_{0}^{5 / 2}}{\sqrt{2 a} \frac{d^{2}}{4}}=\frac{8}{5} \frac{\tan ^{2} \theta y_{0} 5 / 2}{d^{2} \sqrt{2 g}}
$$

t is plotted as a function of yo wit θ as a parameter Draining of a conical liquid tank:

Input Data:

$$
\text { Orifice diameter: } \quad d=3 \mathrm{~mm}
$$

Calculated Results:

Given: The instantaneous leakage mass flaw rate in from a bicycle tire is proportional to the air density in the tire and to the gage pressure p_{2} in tie tire
fir in the tire is nearly isothermal (because the leakage rate is slow).

Te initial ar pressure is $p_{0}=0.60$ Mia (gage) and the initial rate of pressure loss is I pseldand
Find: a Pressure in the tire after 30 days
(b) Accuracy of rube of puri whictsans a tire lose pressure at the rate of apoundelpsi a day.
Plot: He pressure as a function of time over te zodass', show rule of thumb results for comparison.
Solution:
Apply conservation of mass to tire as fie $c v / \pm$ Basic equation: $0=\frac{2}{2 t} \int_{\omega} p d t+\int_{c} \vec{v} \cdot \overrightarrow{d t}$
Assumptions: (i) uniform properties in tire.
(a) air inside cu behaves as idealgas
(3) $T=$ constant $t=$ constant
(b) in $=c\left(p-\rho_{\text {atm }}\right) \rho$.

Then we can write

$$
\begin{equation*}
o=+\frac{\partial f}{\partial t}+i n=+\frac{\partial p}{\partial t}+c(p-p \operatorname{tin}) p \tag{1}
\end{equation*}
$$

But $p=-P / R T$ and $\frac{\partial f}{d t}=\frac{1}{K T} \frac{d f}{d t}$, so.

$$
0=\frac{\forall}{R T} \frac{d p}{d t}+\frac{c P}{R T}(p-p a t+)
$$

$A t t=0, P=p_{0}$ and $\left.d P l_{d t}=d P l_{d t}\right)_{0}$. Hus

$$
\left.0=+\frac{d p}{d t}\right)_{0}+c p_{0}\left(p_{0}-p_{a}\right) \text { and } c=-f_{0}\left(P_{x}-P_{a}+\frac{d p}{d t}\right)_{0}
$$

Substituting into Eq.l we obtain

$$
D=\frac{d p}{d t}-\left.\frac{-p\left(f-p_{a} t_{n}\right)}{-p_{0}\left(f_{0}-p_{a} t n\right)} \frac{d p}{d t}\right|_{0}
$$

Separating variable c and ntuegrating

$$
\begin{aligned}
& \int_{p_{0}}^{p\left(p-p_{a} t_{m}\right)} \frac{d p}{p}=\frac{d p / d t)_{0}}{p_{0}\left(p_{c}-p_{a} t_{m}\right)} \int_{0}^{t} d t \\
& \frac{1}{p_{\text {atm }}}\left[\ln \frac{p_{0}\left(p-p_{a t m}\right)}{p_{p}\left(p_{0}-p_{a t m}\right)}\right]=\frac{d p(d t)_{0}}{p_{0}\left(p_{0}-p_{a t h}\right)} t \\
& \ln \left[\frac{1-P_{a t n} \mid p}{1-P_{a t m} \mid P_{0}}\right]=\frac{d \rho \mid d t)_{0}}{P_{0}\left(P_{0} \mid P_{a t m}-1\right)^{t}} t
\end{aligned}
$$

Given: Steady, incompressible flow ($p=1050 \mathrm{~kg} / \mathrm{m}^{3}$) through rectangular box shown.

$$
\begin{aligned}
& A_{1}=0.05 \mathrm{~m}^{2}, A_{2}=0.01 \mathrm{~m}^{2}, A_{2}=0.06 \mathrm{~m}^{2} \\
& \vec{V}_{1}=4 \hat{\imath} \mathrm{~m} / \mathrm{s}, \quad \vec{V}_{2}=-8 \hat{\jmath} \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

and, from Problem 4.19, $\vec{V}_{3}=4.04 \hat{\imath}-2.34 . \hat{\mathrm{s}} \mathrm{m} / \mathrm{s} ; V_{3}=4.67 \mathrm{~m} / \mathrm{s}$
Find: Net rate of efflux of momentum through $C V$.
Solution: The net rate of momentum efflux is given by the term

$$
\int_{C S} \vec{V} f \vec{V} \cdot d \vec{A}
$$

Assumption: (1) Flow is uniform at each section.
Then $\int_{c s} \vec{V} \rho \vec{V} \cdot d \vec{A}=\vec{V}_{1} \rho \overrightarrow{V_{1}} \cdot \vec{A}_{1}+\vec{V}_{2} \rho \vec{V}_{2} \cdot \vec{A}_{2}+\vec{V}_{3} \rho \vec{V}_{3} \cdot \vec{A}_{3}$ or in components, since $\vec{v}=u \hat{\imath}+v \hat{\jmath}$,

$$
\begin{aligned}
& \int_{C S} \vec{V} \rho \vec{V} \cdot d \vec{A}=\left(u_{1} \rho \vec{V}_{1} \cdot \vec{A},+u_{2} \rho \vec{v}_{2} \cdot \vec{A}_{2}+u_{3} \rho \vec{v}_{3} \cdot \vec{A}_{3}\right) \hat{\imath} \\
& +\left(v_{1} \rho \overrightarrow{v_{1}} \cdot \overrightarrow{A_{1}}+v_{2} \rho \vec{v}_{2} \cdot \vec{A}_{2}+v_{3} \rho \vec{v}_{3} \cdot \vec{A}_{3}\right) \hat{\jmath} \\
& \overrightarrow{m f}=\left[u_{1}\left\{-\left|\rho v_{1} A_{1}\right|\right\}+u_{2}\left\{-\left|\rho v_{2} A_{2}\right|\right\}+u_{3}\left\{\left|\rho v_{3} A_{3}\right|\right\}\right] \hat{\imath} \\
& u_{1}=4 \mathrm{~m} / \mathrm{s} \quad u_{2}=0 \quad u_{3}=4.04 \mathrm{~m} / \mathrm{s} \\
& +\left[v_{1}\left\{-\left|f v_{1} A_{1}\right|\right\}+v_{2}\left\{-\left|f v_{2} A_{2}\right|\right\}+v_{3}\left\{\left|\rho v_{3} A_{3}\right|\right\}\right] \hat{\jmath} \\
& v_{1}=0 \quad v_{2}=-8 \mathrm{~m} / \mathrm{s} \quad v_{3}=-2.34 \mathrm{~m} / \mathrm{s} \\
& =1050 \frac{\mathrm{~kg}}{\mathrm{~m}^{3}}\left[4.0 \frac{\mathrm{~m}}{\mathrm{~s}}\left\{-4.0 \mathrm{~m}, 0.05 \mathrm{~m}^{2}\right\}+4.04 \mathrm{~m} \frac{\mathrm{~s}}{\mathrm{~s}}\left\{4.67 \frac{\mathrm{~m}}{\mathrm{~s}} \times 0.06 \mathrm{~m}^{2}\right\}\right] \hat{c} \\
& +1050 \frac{\mathrm{~kg}}{\mathrm{~m}^{3}}\left[-\frac{8.0 \mathrm{~m}}{\mathrm{~s}}\left\{-8.0 \mathrm{~m}, 0.01 \mathrm{~m}^{2}\right\}-2.34 \mathrm{~m}\left\{4.67 \mathrm{~m} \times 0.06 \mathrm{~m}^{2}\right\}\right] \hat{s} \\
& =(349 \hat{\imath}-13,5 \hat{\jmath}) \frac{\mathrm{kg} \cdot \mathrm{~m}}{\mathrm{~s}^{2}} \times \frac{\mathrm{N} \cdot \mathrm{~s}^{2}}{\mathrm{~kg} \cdot \mathrm{~m}} \\
& \overrightarrow{m f}=349 \hat{\imath}-16.5 \hat{\jmath} \mathrm{~N}
\end{aligned}
$$

Given: Water flow between parallel plates, as shown.

From Problem 4.21, $u_{\text {max }}=\frac{3}{2} v$ (from continuity).
Evaluate: Ratio of x direction momentum flux at outlet to that at inlet.

Solution: The x direction momentum flux at a section is given by

$$
m f_{x}=\int_{A} u \rho v d A
$$

Assumptions: (1) Uniform flow at section (1)
(2) Incompressible flow

Then at (1) $\left.m f_{x}\right)_{i}=\int_{A_{1}} U_{\rho} U d A=\rho U^{2}$ 2hw (w$=$ channel depth)
At section (2), the velocity varies and we must integrate.
Using $d A=\omega d y$,

$$
\begin{aligned}
\left.m f_{x}\right)_{2} & =\int_{-h}^{h} u f u w d y=f w u_{\max }^{2} \int_{-h}^{h}\left[1-\left(\frac{y}{h}\right)^{2}\right]^{2} d y \\
& =\rho w h u_{\max }^{2} \int_{-1}^{1}\left[1-\left(\frac{y}{h}\right)^{2}\right]^{2} d\left(\frac{y}{h}\right)=2 \rho w h u_{\max }^{2} \int_{0}^{1}\left[1-\left(\frac{y}{h}\right)^{2}\right]^{2} d\left(\frac{y}{h}\right) \\
& =2 \rho w h u_{\max }^{2} \int_{0}^{1}\left[1-2\left(\frac{y}{h}\right)^{2}+\left(\frac{y}{h}\right)^{4}\right] d\left(\frac{y}{h}\right) \\
& =2 \rho w h u_{\max }^{2}\left[\left(\frac{y}{h}\right)-\frac{2}{3}\left(\frac{y}{h}\right)^{3}+\frac{1}{5}\left(\frac{y}{h}\right)^{5}\right]_{0}^{1} \\
\left.m f_{x}\right)_{2} & =\frac{16}{15} \text { fwhu } u_{\text {max }}^{2}
\end{aligned}
$$

The ratio of x direction momentum fluxes is

$$
\frac{\left.m f_{x}\right)_{2}}{\left.m f_{x}\right)_{1}}=\frac{\frac{16}{15} \rho w h u_{\max }^{2}}{2 \rho w h v^{-2}}=\frac{8}{15}\left(\frac{u_{\max }}{U}\right)^{2}
$$

But from, Problcon 4.21, umax $=\frac{3}{2} v$, so

$$
\frac{\left.m f_{x}\right)_{2}}{\left.m f_{x}\right)_{1}}=\frac{Q}{i}\left(\frac{3}{2}\right)^{2}=\frac{72}{60}=\frac{6}{5}=1.2
$$

Given: Water flow through a circular pipe as shown.

From Problem 4.23, umaxi= $2 U$ (from continuity).
Evaluate: Ratio of x direction momentum flux at outlet to that at inlet.

Solution: The x direction momentum flux at a section is given by

$$
m f_{x}=\int_{A} u \rho v d A
$$

Assumptions: (1) Uniform flow at section (1)
(2) Incompressible flow

Then at (1) $\left.m f_{x}\right)_{1}=\int_{A_{1}} U f U_{d A}=f U^{2} \pi R^{2}$
At section (2) the velocity varies and we must integrate. Using $d A=2 \pi r d r$,

$$
\begin{aligned}
\left.m f_{x}\right)_{2} & =\int_{0}^{R} u \rho u 2 \pi r d r=2 \pi \rho u_{\max }^{2} \int_{0}^{R}\left[1-\left(\frac{r}{R}\right)^{2}\right]^{2} r d r \\
& =f u_{\max }^{2} 2 \pi R^{2} \int_{0}^{1}\left[1-\left(\frac{r}{R}\right)^{2}\right]^{2}\left(\frac{r}{R}\right) d\left(\frac{\pi}{R}\right) \\
& =\rho u_{\max }^{2} 2 \pi R^{2} \int_{0}^{1}\left[\left(\frac{r}{R}\right)-2\left(\frac{r}{R}\right)^{3}+\left(\frac{r}{R}\right)^{5}\right] d\left(\frac{r}{R}\right) \\
& =\rho u_{\max }^{2} 2 \pi R^{2}\left[\frac{1}{2}\left(\frac{r}{R}\right)^{2}-\frac{1}{2}\left(\frac{r}{R}\right)^{4}+\frac{1}{6}\left(\frac{r}{R}\right)^{6}\right]_{0}^{1}
\end{aligned}
$$

or

$$
\left.m f_{x}\right)_{2}=f u_{\max }^{2} \pi R^{2}\left(\frac{1}{3}\right)
$$

The ratio of x direction momentum fluxes is

$$
\frac{\left.m f_{x}\right)_{2}}{\left.m f_{x}\right)_{1}}=\frac{f u_{\max }^{2} \pi R^{2}\left(\frac{1}{E}\right)}{\rho V^{2} \pi R^{2}}=\frac{1}{3}\left(\frac{u_{\max }}{U}\right)^{2}
$$

But from Problem 4.23, $u_{\max }=2 U, 50$

$$
\frac{\left.m f_{x}\right)_{2}}{\left.m f_{x}\right)_{1}}=\frac{1}{3}(2)^{2}=\frac{4}{3}
$$

Given: Two-dimensional reducing bend shown has wide $\omega=3 \mathrm{ft}$.
$V_{3}=3.33 \mathrm{ft} l_{\mathrm{s}}$ ito CN (from Problem 4.24)

Find: Momentum flux through the bend.

Solution:
Te momerturn flux is defined as mi $=(\vec{V}(\rho \vec{V} \cdot d \vec{A})$ The net momerturn fut trough the $c t$ is

$$
m \cdot f=\int_{A_{1}} \vec{J}(p \vec{J} \cdot d \vec{A})+\int_{A_{2}} \vec{V}(p \vec{J} \cdot d \vec{A})+\int_{H_{3}}^{\vec{V}}(\vec{p} \cdot \overrightarrow{d A})
$$

where $\vec{V}_{1}=V_{\max } \frac{y}{n_{1}}, \vec{J}_{2}=-V_{2}{ }^{n}, \vec{v}_{3}=-V_{3}(\cos \theta \hat{i}+\sin \theta j)$

$$
V_{\text {max }}=10 \mathrm{ft} \mathrm{~s}_{5}, V_{2}=15 \mathrm{ftls}, V_{3}=3.33 \mathrm{ft} \mathrm{~s}_{\mathrm{s}}
$$

Assumptions: (i) incompressible flow
(2) fluid is water
(3) uniform flow at (2) and (3) (given)

$$
\begin{align*}
& \int_{A_{1}} \vec{V}(\rho \vec{V} \cdot d \vec{A})=\int_{0}^{h_{1}} V_{\max } \frac{y}{h_{1}} e^{i}\left\{-V_{\max } \frac{y}{h_{1}}\right\} w d y=-i p V^{2} \quad \max ^{h_{1}^{2}} \int_{0}^{h_{1}} y^{2} d y \\
& \left.C_{A}, \vec{V}(p \vec{v} \cdot \overrightarrow{d A})=-i p^{2} \max ^{2} \frac{w^{2}}{h^{2}} \cdot \frac{y^{3}}{3}\right]_{0}^{h_{1}}=-i p^{2} i_{\max } \frac{\text { whit }}{3} \tag{n}\\
& \left.\int_{\vec{H}_{2}} \vec{J}(p \vec{p} \cdot \overrightarrow{d \vec{A}})=\overrightarrow{V_{2}}\left|p v_{2} h_{2} w\right|=-v_{2} j\left|p V_{2} h_{2} w\right|=-j p\right\rangle_{2}^{2} h_{2} \psi \tag{z}\\
& \int_{A_{3}} \vec{V}(p \vec{v} \cdot d \vec{A})=\vec{V}_{3}\left(-\mid \rho_{3} h_{3} w\right)=-v_{3}(\cos \theta \hat{\imath}+\sin \theta \hat{j})\left(-l p V_{3} h_{3} \omega\right) \\
& S_{A_{3}} \vec{V}(\vec{p} \cdot \overrightarrow{d H})=p V_{3}^{2} h_{3} w(\cos \theta i+\sin \theta j) \cdots \cdots \cdot(3) \\
& m, f=i\left[p v_{3}^{2} h_{3} w \cos \theta-p v^{2} \operatorname{man} \frac{h_{1}}{3}\right]+j\left[N_{3}^{2} h_{3} w \sin \theta-p v_{2}^{2} h_{2} w\right] \\
& \left.m . f=\operatorname{pw}\left\{\left[v_{1}^{2} h_{3} \cos \theta-V_{1 \text { max }}^{2} \frac{h_{1}}{3}\right] i+\left[v_{3}^{2} h_{3} \sin \theta-v_{2}^{2} h_{2}\right]_{0}\right\}\right\} \\
& \text { Evaluating }
\end{align*}
$$

Problem 4.49
Given: Water flow in the two-dimensional square channel shown

$$
\begin{aligned}
& v=7.5 \mathrm{mls}, \quad h=w=75.5 \mathrm{~mm} \\
& v_{\text {max }}=2 v_{\text {min }} \\
& v_{\text {min }}=5.0 \text { mils } \\
& (\text { from Problem } 4.25)
\end{aligned}
$$

Find: Momentum flux trough the channel; comment on expected outlet pressure (relative to pressure at the inlet.

Solution:
The momenturn flux is defined as mf $=(\vec{V}(\vec{p} \cdot d \vec{d})$ the net momentum flux through the ct is

$$
m \cdot f=\int_{A_{1}} \vec{V}(\vec{p} \cdot d \vec{A})+\int_{H_{2}} \vec{V}(\vec{p} \cdot \overrightarrow{d A})
$$

where $\vec{V}_{1}=V \tilde{V}, \vec{V}_{2}=\left\{v_{\text {max }}-\left(v_{\text {max }}-v_{\text {min }}\right) \frac{x}{n}\right\} \hat{j}$

$$
J_{2}=\left\{2 v_{\min }-v_{\min } \frac{x}{h}\right\} j=v_{\min }\left(2-\frac{x}{h}\right) \hat{j}
$$

Assumptions
(2) uniform flow at (given).

$$
\begin{aligned}
& S_{R}, \vec{V}(\vec{V} \cdot d \vec{A})=\vec{V},\left\{-\mid p, A_{1}\right)=-p V^{2} h^{2} \hat{\imath} \\
& C_{H_{2}} \bar{J}(p \vec{J} \cdot \vec{A})=\int_{0}^{h} v_{\min }\left(2-\frac{x}{h}\right) j p v_{\min }\left(2-\frac{h}{h}\right) h d x \\
& =j p v_{\min }^{2} h \int_{0}^{h}\left(4-4 \frac{x}{h}+\frac{x^{2}}{h^{2}}\right) d x \\
& =j p v_{\min }^{2} h\left[4 x-2 \frac{x^{2}}{h}+\frac{h^{3}}{3 h^{2}}\right]_{0}^{h}=j p v_{\min }^{2} h\left[4 h-2 h+\frac{h}{3}\right] \\
& ={ }_{j}^{r} \frac{7}{3} p v_{\min }^{2} h^{2} \\
& \therefore m_{1}=-p v^{2} h^{2} i+\frac{7}{3} p v^{2} \sin ^{2} h_{j}^{2}=p h^{2}\left[-v^{2} i+\frac{7}{3} v_{\min }^{2} j\right]
\end{aligned}
$$

Evaluating

$$
\begin{align*}
& m . f=999 \frac{\mathrm{gg}}{\mathrm{~m}^{3}} \times(0.0755)^{2} \mathrm{~m}^{2}\left[-(7.5)^{2} \frac{m^{2}}{s^{2}} i+\frac{\pi}{3}(5)^{2} \frac{m^{2}}{5^{2}} j\right] \times \frac{N s^{2}}{\lg m} \\
& m . f=-320 \hat{i}+332 \mathrm{j} \tag{mf.}
\end{align*}
$$

For viscous (real) flow friction causes a pressure drop in the direction of flow (Stapler 8)
For flow in a bend streamline curvature results in a pressure gradient normal to tr flow (Gapterb)

Problem 4.50

Find the force required to hold the plug in place at the exit of the water pipe. The flow rate is 1 $\mathrm{m} 3 / \mathrm{s}$, and the upstream pressure is 3.5 MPa .

Given: Data on flow and system geometry

Find: Force required to hold plug

Solution

The given data are

Then

$$
\begin{array}{lll}
\mathrm{A}_{1} & \frac{\mathrm{~S} \mathrm{D}_{1}^{2}}{4} & \mathrm{~A}_{1} \\
\mathrm{~A}_{2} & 0.0491 \mathrm{~m}^{2} \\
\frac{\mathrm{~S}}{4} \mathrm{CD}_{1}^{2} \square \mathrm{D}_{2}^{2 i} & \mathrm{~A}_{2} & 0.0177 \mathrm{~m}^{2} \\
\mathrm{~V}_{1} \frac{\mathrm{Q}}{\mathrm{~A}_{1}} & \mathrm{~V}_{1} & 30.6 \frac{\mathrm{~m}}{\mathrm{~s}} \\
\mathrm{~V}_{2} & \frac{\mathrm{Q}}{\mathrm{~A}_{2}} & \mathrm{~V}_{2} \\
& 84.9 \frac{\mathrm{~m}}{\mathrm{~s}}
\end{array}
$$

Governing equation:

Momentum

$$
\begin{equation*}
\vec{F}=\vec{F}_{S}+\vec{F}_{B}=\frac{\partial}{\partial t} \int_{\mathrm{CV}} \vec{V} \rho d \not++\int_{\mathrm{CS}} \vec{V} \rho \vec{V} \cdot d \vec{A} \tag{4.17}
\end{equation*}
$$

Applying this to the current system

$$
\square \mathrm{F} \square \mathrm{p}_{1}\left[\mathrm{~A}_{2} \square \mathrm{p}_{2}\left[\mathrm{~A}_{2} \quad 0 \square \mathrm{v}_{1} \mathbb{Q}\right] \mathrm{N}_{1}\left[\mathrm{~A}_{1}\right] \square \mathrm{v}_{2} \square\right] \mathrm{v}_{2}\left[\mathrm{~A}_{2}\right]
$$

$$
\text { F } \quad 90.4 \mathrm{kN}
$$

Problem 4.51
Given: Water discharges from tank, of height $h=15$ and diameter $D=0 . \mathrm{J}^{2}$, trough a nozzle of diameter $d=10 \mathrm{~mm}$. $V_{\text {set }}=\sqrt{\text { any }}$ where y is height of free surface above the nozzle.

Find: Tension in wire holderig the cart when $y=0.8 \mathrm{~m}$.
Plot: tension in wire as a function of water dept for $0 \leq y \leq 0.8 \mathrm{~m}$.
Solution:
Apply the x component of the momentum equation, using the inertial cl shown. $=0(3)$
$=0(2) \quad \partial 7=0$ (3)
Basic equation: $F_{s x}+F_{B_{x}}=\overrightarrow{S_{t}} \int_{c v} u p d t+\int_{c s} u \vec{p} \vec{A} \cdot \overrightarrow{d A}$
Assumptions: (i) There are no ned pressure forces
(2) $F_{B_{x}}=0$
(3) Steady flow
(4) Uniform flow across the get

Ten,

$$
\begin{align*}
R_{x} & =T=u\left\{\left|p V_{j} H_{j}\right|=\operatorname{N}^{2} ; j=\operatorname{jgg} \lg \pi \frac{d^{2}}{4}\right. \\
T & =\rho g y \pi \frac{d^{2}}{2} \tag{i}
\end{align*}
$$

Evaluating for $y=0.8 \mathrm{~m}$

$$
T=\frac{992 \frac{\mathrm{~kg}}{\mathrm{~m}^{3}} \times 9.8 \frac{\mathrm{~m}}{\mathrm{~s}^{2}} \times 0.8 m \times \frac{\pi}{2} \times(0.010)^{2} \mathrm{~m}^{2}+\frac{1.5^{2}}{\mathrm{~kg} \mathrm{~m}}, ~(0)}{}
$$

$$
T=1.23 \mathrm{~N}
$$

From Eq. ' we see that T varies linearly wit y

$$
T(n)
$$

Problem 4.52

Given: Cart with vane, struck by water jet.

$$
V_{j}=15 m l_{s} \quad R_{j}=0.05 m^{2}
$$

Fun: Mass needed to hold cart stationary for $\theta=50^{\circ}$

Plot: mass needed to hold cart stationary for $0 \leq 6 \leq 180$ degrees.
Solution:
Apply the x component of the momentum equation to the inertial Cl shown.
Basic equation: $F_{S x}+F \sigma_{x}=\frac{\partial(2)}{\partial t} \int_{\omega}^{=0(3)} u p d t+C_{c s} u p \vec{U} \cdot \overrightarrow{d A}$
Assumptions: is atmospheric pressure surrounds $C l$
(a) $F_{B}=0$
(3) steady. flow
(4) jet velocity (and area) remain constant onvare
(5) Uniform snow al each section 6 incompressible flow.
Then

$$
\begin{align*}
-M_{g} & =u \cdot\left\{-\left|p V_{1} A_{1}\right|\right\}+u_{2}\left\{| p V _ { 2 } A _ { 2 } | \left\{\begin{array}{l}
u_{1}=v ; u_{2}=V \cos \theta \\
v_{1}=V_{2}=v ; A_{1}=F_{2}=A
\end{array}\right.\right. \\
-M_{g} & =v(-p v A)+v \cos \theta(p v A)=p v^{2} A(\cos \theta-1) \\
M & =\frac{p V^{2} A}{g}(1-\cos \theta) \tag{i}
\end{align*}
$$

Evaluating for $\theta=50^{\circ}$

$$
\text { for } \theta=\frac{999}{\mathrm{~kg}^{3}} \times(15)^{2} \frac{\mathrm{~m}^{2}}{5^{2}} \times\left(0.05 n^{2}\right) \times \frac{5^{2}}{}\left(1-\cos 55^{5}\right)=409 \mathrm{~kg}=M
$$

M is plotted as a function of θ

Problem 4.53

Given: Pate with orifice struck concentric ally by water jet as shown.

Find: (a) Expression for force needed to hold the plate.
(b) Value of force for $V=$ =mils, $D=100 \mathrm{~mm}$, and $d=25 \mathrm{~mm}$

Pot: required force as a function or
 diameter ratio alp

Solution:
Apply the x component of the momentum equation to the inertial en shown.

Basic equation: $F_{s+}+Z_{B-t}=2 \int_{e r}^{=0} u p d t+C_{e s} u p \vec{v} \cdot \overrightarrow{d A}$
Assumptions: (i) atmospheric pressure surrounds ©
(a) $F_{B}=0$
(3) steady flaw
(4) uniform flow ot each section
(5) incompressible flow

Then,

$$
\begin{aligned}
&\left.R_{*}=u_{1}\left\{-\mid p v_{1} A_{1}\right\}\right\}+u_{2}\left\{\left|p v_{2} F_{2}\right\rangle\right\}+u_{3}\left\{\left|p v_{3} A_{3}\right|\right\} \\
& u_{1}=v, A_{1}=\frac{\pi\rangle^{2}}{\pi} \quad u_{2}=v, A_{2}=\frac{\pi d^{2}}{4} \quad u_{3}=0
\end{aligned}
$$

and.

$$
\begin{align*}
& R_{x}=-p v^{2} A_{1}+p v^{2} A_{2}=p v^{2}\left(A_{2}-A_{1}\right)=p v^{2} \frac{\pi}{4}\left(d^{2}-D^{2}\right) \\
& R_{2}=-P v^{2} \frac{\pi}{4} D^{2}\left[1-\left(\frac{d}{D}\right)^{2}\right] \tag{x}
\end{align*}
$$

Evaluating for $d=25 \mathrm{~m}$

Since $R_{x}<0$, it must be applied to the left. R_{t} is plated as a function of dis.

Problem 4.54

Given: Circular cylinder deflecting flat jet of water as shown.

Find: Horizontal component of force on cylinder due to flowing water.

Solution: Apply x component of momentum equation to inertial CV shown.

$$
=O(z)=o(3)
$$

Basic equation: $F_{s x}+\vec{F}_{x}^{A}=\frac{\partial /}{\partial t} \int_{c v} u \rho d \forall+\int_{c s} u \rho \vec{v} \cdot d \vec{A}$

Assumptions: (1) No pressure forces on jet
(2) $F_{B x}=0$
(3) Steady flow
(4) Incompressible flow
(5) Uniform flow at each section
(6) Jet speed and circa remain Constant

Then

$$
\begin{aligned}
R_{x}= & u_{1}\left\{-/ \rho v_{1} A_{1} /\right\}+u_{z}\left\{\mid \rho v_{2} A_{2} /\right\} \\
& u_{1}=0 \quad u_{2}=-v \sin \theta, v_{2}=v, A_{2}=a b \\
R_{x}= & -\rho v^{2} a b \sin \theta \\
= & -1.94 \frac{5 / u g}{f t^{3}} \times(10)^{2} \frac{f t a_{2}^{f^{2}}}{f^{2}} \times 0 . \sin \times 0.1 \mathrm{in} \times \frac{f^{2}}{144 i^{2}} \times \sin 20^{\circ} \times \frac{16 f \cdot 5^{2}}{\operatorname{sing} \cdot f t} \\
R_{x}= & -0.0230 \mathrm{lbf}
\end{aligned}
$$

But R_{x} is force of c_{y} finder on $C v$. Force of $C V$ on $C y_{y l i n d e r ~ i s ~}^{\text {in }}$

$$
K_{x}=-R_{x}=0.0230 \mathrm{Bf} \text { (to the right) }
$$

Problem 4.55

Given: Farmer purchases 675 kg of bulk grain. The grain is loaded into a pickup truck from a hopper as shown. Grain flow is terminated when the scale reading reaches the desired gross value.

Find: The true payload.

$$
\begin{aligned}
& D=0.3 \mathrm{~m} \\
& \rho=600 \mathrm{~kg} / \mathrm{m}^{3} \text { (i) } \downarrow \dot{m}=40 \mathrm{~kg} / \mathrm{s}
\end{aligned}
$$

Solution: Apply the y component of momentum equation using $C V$ shown.

Basic equation:

Assumptions: (1) No net pressure force; $F_{s y}=R_{y}$
(2) Neglect v inside $C V$

Then
(3) Uniform flow of grain at init section (1)

$$
\begin{aligned}
R_{y}-\left(M_{t}+M_{e}\right) g=v_{1} & \{-|\dot{m}|\} \\
v_{1} & =-v_{1}=-\frac{\dot{m}}{\rho A}
\end{aligned}
$$

or

$$
R_{y}=\left(M_{t}+M_{c}\right) g+\frac{\dot{m}^{2}}{\rho A} \text { (indicated during grain flow) }
$$

Loading is terminated when

$$
\frac{R_{y}}{g}-M_{t}=M_{2}+\frac{\dot{m}^{2}}{\rho g A}=675 \mathrm{~kg}
$$

Thus

$$
\begin{aligned}
M_{l} & =675 \mathrm{~kg}-\frac{\dot{m}^{2}}{f g A} \\
& =675 \mathrm{~kg}-(40)^{2} \frac{\mathrm{~kg}^{2}}{\mathrm{~s}^{2}} \times \frac{\mathrm{m}^{3}}{600 \mathrm{~kg}^{2}} \times \frac{\mathrm{s}^{2}}{9.81 \mathrm{~m}} \times \frac{4}{\pi} \frac{1}{(0.3)^{2} \mathrm{~m}^{2}} \\
M_{l} & =671 \mathrm{~kg}
\end{aligned}
$$

Given: Water flow through a fine hose and nozzle.

Find: (a) Coupling force, R_{x}
(b) Indicate if in tension or compression.

Solution: Apply continuity and x component of momentum equation to inertial cv shown; use gage pressures to cance/patm.

$$
\text { Basic equations: } \begin{aligned}
\Delta & =\frac{\partial \partial}{\partial t} \int_{c v} f d t+\int_{c s} f \vec{v} \cdot d \vec{A} \\
=o(4) & =0(1) \\
& F_{s_{x}}+F_{B_{x}}^{(4}=\frac{\partial}{\partial t} \int_{c v} u_{p} / \Delta+\int_{c s} u \rho \vec{v} \cdot d \vec{A}
\end{aligned}
$$

Assumptions: (I) Steady flow
(2) Uniform flow at each section
(3) Incompressible flow
(4) $F_{E_{x}}=0$

Then

$$
\begin{aligned}
& 0=\left\{-/ \rho V_{1} A_{1} /\right\}+\left\{/ \rho V_{2} A_{2} /\right\}=-\rho V_{1} A_{1}+\rho V_{2} A_{1} \\
& V_{1}=V_{2} \frac{A_{2}}{A_{1}}=V_{2}\left(\frac{D_{2}}{D_{1}}\right)^{2}=32 \frac{\mathrm{~m}}{3} \times\left(\frac{25 \mathrm{~mm}}{75 \mathrm{~mm}}\right)^{2}=3.56 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

and

$$
\begin{aligned}
& R_{x}+p_{i g} A_{1}=u_{1}\left\{-\left|f v_{1} A_{1}\right|\right\}+u_{2}\left\{\left|\rho v_{2} A_{2}\right|\right\} \\
& u_{1}=v_{1} \quad u_{2}=v_{2} \\
& R_{x}=-p_{1 g} A_{1}-V_{1} f V_{1} A_{1}+V_{2} f V_{2} A_{2}=-\psi_{1 g} A_{1}+f V_{2} A_{2}\left(V_{2}-V_{1}\right) \\
& =-510 \times 10^{3} \frac{\mathrm{~N}}{\mathrm{~m}^{2}} \times \frac{\pi}{4}(0.075)^{2} \mathrm{~m}^{2}+999 \frac{\mathrm{~kg}}{\mathrm{~m}^{3}} \times \frac{32 \mathrm{~m}}{\mathrm{~s}} \times \frac{\pi}{4}(0.025)^{2} \mathrm{~m}^{2}(32.0-3.56) \frac{\mathrm{m}}{\mathrm{~J}} \times \frac{\mathrm{N} \cdot \mathrm{~s}^{2}}{\mathrm{~kg} \cdot \mathrm{~m}} \\
& R_{x}=-1.81 \mathrm{kN} \text { (Lie. force on } C V \text { is to the left) }
\end{aligned}
$$

Thus the coupling must be in tenuis?.

Given: Granular dish with central orifice struck concentrically by water get as shown
Find: (a) Expression for force needed to hold tee dish in place.
(b) Value of force for $V=5 \mathrm{~m} / \mathrm{s}$, $D=100 \mathrm{~mm}$, and $d=20 \mathrm{~mm}$

Plot: required force as a function of θ $\left(0 \leq \theta \leq 90^{\circ}\right.$) with dip as a parameter.
Solution:
Apply the x component of the momentum equation to the inertial
cu fernown.
$=0(2) \quad=0(3)$
Basic equation: $F_{S_{x}}+P_{B_{x}}^{=0}=\frac{z}{3 t} \int_{0}^{=0} u p d y+\int_{C S} u(\vec{p} \cdot d \vec{F})$
Assumptions: (i) atmospheric pressure acts on all cu s surfaces
(2) $F_{B_{x}}=0$
(3) steady flow
(4) uniform flow ahead section
(s) nicgmpressible flow

Then.
(b) no Change in jet speed on dish: $V_{1}=V_{2}=V_{3}=V$

$$
\begin{align*}
\text { Nor. } \left.R_{x}=u_{1}\left\{-\mid p v, A_{1}\right\}\right\}+u_{2}\left\{\left\{p v_{2} A_{2}\right\}+u_{3}\left\{\backslash \quad p v_{3} H_{3}\right\}\right. \\
u_{1}=v \quad A_{1}=\frac{\pi y^{2}}{4} \quad u_{2}=v \quad A_{2}=\frac{\pi d^{2}}{4} \quad u_{3}=-\lambda \sin \theta \quad A_{3}=A_{1}-A_{2} \\
R_{x}=-p v^{2} \frac{\pi y^{2}}{4}+p v^{2} \pi \frac{d^{2}}{4}-p v^{2} \sin \theta \frac{\pi}{4}\left(\nu^{2}-d^{2}\right)=p v^{2} \frac{\pi}{4}(1+\sin \theta)\left(d^{2}-s^{2}\right) \\
R_{x}=-p v^{2} \frac{\pi r^{2}}{4}(1+\sin \theta)\left[1-\left(\frac{d^{2}}{\Delta}\right)\right] \tag{x}
\end{align*}
$$

Evaluating for $d=25 \mathrm{mn}$
$\left.R_{x}=-\frac{\pi}{4} \times \frac{92 a g}{m 3} \times(5)^{\frac{m^{2}}{5}} \times(0.10)^{2} m^{2}\left(1+\sin 45^{\circ}\right)\left[1-\left(\frac{255^{2}}{100}\right)\right] \frac{\sqrt{s^{2}}}{\mathrm{~kg}^{2}}=-314 n\right] R_{x}$
Since $R_{x} L_{0}$, it must be applied to the left. f_{x} is plated as a function of θ for different values of dip

Given: Elbow assembly shown, water flow.

$$
\begin{aligned}
& p_{1}=96 \mathrm{kPa}(\text { gage }), V_{1}=3.05 \mathrm{~m} / \mathrm{s} \\
& A_{1}=2600 \mathrm{~mm}^{2}, A_{2}=650 \mathrm{~mm}^{2}
\end{aligned}
$$

Find: Horizontal force required to hold in place.
Solution: Use CV shown, apply x component of momentern eq.

$$
=0(1)=0(2)
$$

Basic equation: $F_{s_{x}}+F_{B_{x}}^{A}=\frac{\partial}{\partial t} \int_{c v} u f d \theta+\int_{\Delta s} u f \vec{V} \cdot d \vec{A}$
Assumptions: (1) $F_{B x}=0$
(2) Steady flow.
(3) Incompressible flow
(4) Uniform flow at each section

Then

$$
\begin{aligned}
& R_{x}+p_{1} g A_{1}= u_{1}\left\{-\left|\rho v_{1} A_{1}\right|\right\}+ \\
& u_{1}=u_{2}\left\{\left|\rho v_{1} A_{2}\right|\right\} \\
& u_{2}=-v_{2}
\end{aligned}
$$

$$
R_{x}=-\rho_{1 g} A_{1}+\dot{m}\left(-v_{1}-v_{2}\right)
$$

From continuity, $\dot{m}=f V_{1} A,=f V_{2} A_{2} ; V_{2}=V_{1} \frac{A_{2}}{A_{1}}=3.05 \frac{m}{5} \times \frac{2600}{450}=12.2 \mathrm{pr} / \mathrm{s}$

$$
\dot{m}=494 \frac{\mathrm{~kg}}{\mathrm{~m}^{3}} \times 3.05 \frac{\mathrm{~m}}{s} \times 2600 \mathrm{~mm}_{\times}^{2} \frac{\mathrm{~m}^{2}}{10^{6} \mathrm{~mm}^{2}}=7.92 \mathrm{~kg} / \mathrm{s}
$$

Thus

$$
\begin{aligned}
& R_{x}=-96 \times 10^{3} \frac{\mathrm{~N}}{\mathrm{~m}^{2}} \times 2600 \mathrm{~mm}^{2} \frac{\mathrm{~m}^{2}}{10^{6} \mathrm{~m}^{2}}+7.92 \mathrm{~kg}(-3.05-12.2) \mathrm{m} \\
& \frac{\mathrm{~m}}{\mathrm{k}} \times \frac{\mathrm{N} \cdot \mathrm{~s}^{2}}{\mathrm{~kg} \cdot \mathrm{~m}} \\
& R_{x}=-370 \mathrm{~N} \quad\left(t_{0} t h e l e f t\right)
\end{aligned}
$$

Problem 4.59

A 180° elbow takes in water at an average velocity of $1 \mathrm{~m} / \mathrm{s}$ and a pressure of 400 kPa (gage) at the inlet, where the diameter is 0.25 m . The exit pressure is 50 kPa , and the diameter is 0.05 m . What is the force required to hold the elbow in place?

Given: Data on flow and system geometry

Find: Force required to hold elbow in place

Solution

The given data are

U $999 \frac{\mathrm{~kg}}{\mathrm{~m}^{3}}$
$\mathrm{D}_{1} \quad 0.25 \square \mathrm{~m}$
D_{2} 0.05■
$\mathrm{p}_{1} \quad 400 \square_{\mathrm{KPa}}$
$\mathrm{p}_{2} \quad 50 \llbracket \mathrm{kPa}$
$\mathrm{V}_{1} 1 \sqrt{\mathrm{~m}}$

Then

$$
\mathrm{A}_{1} \frac{\mathrm{~S} \mathrm{D}_{1}^{2}}{4} \quad \mathrm{~A}_{1} \quad 0.0491 \mathrm{~m}^{2}
$$

$$
\mathrm{A}_{2} \quad \frac{\mathrm{~S}}{4} \mathrm{D}_{2}^{2}
$$

$\mathrm{A}_{2} \quad 0.00196 \mathrm{~m}^{2}$

Q $\quad \mathrm{V}_{1}\left[\mathrm{~A}_{1}\right.$
Q $\quad 0.0491 \frac{\mathrm{~m}^{3}}{\mathrm{~s}}$
$V_{2} \frac{\mathrm{Q}}{\mathrm{A}_{2}}$
$\mathrm{V}_{2} \quad 25 \frac{\mathrm{~m}}{\mathrm{~s}}$

Governing equation:

Momentum

$$
\begin{equation*}
\vec{F}=\vec{F}_{S}+\vec{F}_{B}=\frac{\partial}{\partial t} \int_{\mathrm{CV}} \vec{V} \rho d \nleftarrow+\int_{\mathrm{CS}} \vec{V} \rho \vec{V} \cdot d \vec{A} \tag{4.17}
\end{equation*}
$$

Applying this to the current system

$$
\square \mathrm{F} \square \mathrm{p}_{1}\left[\mathrm { A } _ { 2 } \square \mathrm { p } _ { 2 } [\mathrm { A } _ { 2 } \quad 0 \square \mathrm { v } _ { 1 } \mathbb { \square }] \mathrm { UN } _ { 1 } \left[\mathrm{~A}_{1} \| \square \mathrm{v}_{2} \square \mathrm{~N}_{2}\left[\mathrm{~A}_{2}\right]\right.\right.
$$

Hence

$$
\text { F } \quad \mathrm{p}_{1}\left[\mathrm { A } _ { 1 } \square \mathrm { p } _ { 2 } \left[\mathrm { A } _ { 2 } \square U \mathrm { U } _ { \mathrm { C } } ^ { \mathrm { C } } \mathrm { y } _ { 1 } ^ { 2 } \left[\mathrm { A } _ { 1 } \square \mathrm { v } _ { 2 } ^ { 2 } \left[\mathrm{~A}_{2} \mathrm{i}\right.\right.\right.\right.
$$

F $\quad 21 \mathrm{kN}$

Given: Water flow through nozzle shown, discharging to pate.
Find: (a) Horizontal force component is the joint.
(b) Indicate whether $V_{1}=4.25 \mathrm{f} / \mathrm{s}$. joint is in tension or compression.

Solution: Apply continuity \&े x momentum using cV G' C's shown Basic equation:

$$
\begin{gathered}
=O(1)=O(z) \\
F_{S x}+F_{d x}=\frac{\partial}{\partial t} \int_{C v} u \rho d \forall+\int_{C S} u \rho \vec{v} \cdot d \vec{A}
\end{gathered}
$$

Assumptions: (1) $F_{B X}=0$
(4) Uniform flow at each section
(2) Steady flow
(5) Use gage pressures
(3) Incompressible

Then

$$
\begin{aligned}
& \rho \operatorname{p} A_{1}+R_{x}=u_{1}\left\{-\left|\rho v_{1} A_{1}\right|\right\}+u_{2}\{ \left\{\left|\rho v_{2} A_{2}\right|\right\} \\
& u_{1}=v_{1} \quad u_{2}=v_{2} \cos \theta
\end{aligned}
$$

so $\quad R_{x}=V_{1}\left(-\rho V_{1} A_{1}\right)+V_{2} \cos \theta\left(+\rho V_{2} A_{2}\right)-\rho 1 g A_{1}$
From continceity, $\rho V_{1} A_{1}=\rho V_{2} A_{2}$ and $V_{2}=V_{1} A_{1} / A_{2}=V_{1}\left(\frac{D_{1}}{D_{2}}\right)^{2}$

$$
\begin{aligned}
V_{2} & =4.25 \frac{f+}{5}\left(\frac{12.5 \mathrm{in}}{6.25 \mathrm{in}}\right)^{2}=17.0 \mathrm{ft} 1 \mathrm{~s} \\
R_{x} & =\rho V_{1} A_{1}\left(V_{2} \cos \theta-V_{1}\right)-p, g A, \\
& =1.94 \frac{\operatorname{sing}}{\mathrm{ft3}} \times 4.25 \frac{\mathrm{ft}}{5} \times \frac{\pi}{4}\left(\frac{12.5}{12}\right)^{2} \mathrm{ft}{ }^{2}\left[17.0 \frac{\mathrm{ft}}{\mathrm{~s}} \times \cos 30^{\circ}-4.25 \frac{\mathrm{ft}}{5}\right] \frac{\mathrm{bf} . \mathrm{s}^{2}}{\operatorname{sing} \cdot \mathrm{ft}} \\
& -2.28 \frac{\mathrm{lbf}}{\mathrm{ln} .^{2}} \times \frac{\pi}{4}(12.5)^{2} \mathrm{in.}^{2}
\end{aligned}
$$

$$
R_{x}=-20616 f(\text { on } \mathrm{CV} \text {; to left, since }<0 \text {) }
$$

Thus $K_{x}=-R_{x}=+206$ bf (from CV on joint)
\therefore joint is in tension

Given: Two-deriensisnal square bend shown is a sequent of a larger hannels, lies in horizontal plane.

$$
\begin{aligned}
& U=7.5 \mathrm{mls}, h=w=7.5 .5 \mathrm{~mm} \\
& P_{1}=170 \mathrm{kPa}(a b s), P_{2}=130 \mathrm{kPa}\left(\mathrm{Cabs}_{6}\right) \\
& v_{\text {max }}=2 v_{\text {min }} ; v_{\text {min }}=5.0 \text { ml (from Problem } 4.25 \text {) } R_{y}
\end{aligned}
$$

Find: Force required to hold the band in place.
Solution:
Basic equation: $\vec{F}_{s}+\vec{F}_{B}=\frac{2}{\partial x} l_{c u} p d t+\sum_{i} \vec{V}(p \vec{V}, \overrightarrow{d A})$.
Assumptions: (i) steady flow
(2) $F_{B_{x}}=F_{B_{y}}=0$
(3) incompressible flow
(4) atmosphacic pressure acts on atiside surfaces.

The x-momentun equation becomes

$$
\begin{aligned}
& \left.R_{x}+P, A_{1}+F_{8 n}^{\infty}=\int_{C s} u\left(P^{\prime} \cdot d \vec{A}\right)=U\left\{-\mid P \cup A_{1}\right)\right\} \\
& R_{x}=-P_{1} A_{1}-P V^{2} A_{1}=-h^{2}\left(P_{1}+P J^{2}\right) \\
& R_{k}=-(0.0755)^{2} m^{2}\left[(170-101) \frac{30}{\mu^{2}}+999 \frac{g g}{m^{2}} \times(7.5)^{2} \frac{\mu^{2}}{5^{2}}+\frac{\lambda .5}{\mathrm{~kg}^{2}}\right]=-714 \lambda_{2}
\end{aligned}
$$

The y-momentum equation becomes

$$
\begin{aligned}
& R_{y}-P_{2} A_{z}+F R_{y}=0(2)=C_{c s} v(p \vec{V} \cdot \overrightarrow{d A}) \\
& v_{2}=v_{2}=v_{\max }-\left(v_{\max }-v_{\min }\right)^{\frac{t}{h}}=2 v_{\min }-v_{\min } \frac{x}{h}=v_{\min }\left(2-\frac{x}{h}\right) \\
& R_{y}-P_{2} A_{2}=\int_{0}^{h} v_{\min }\left(2-\frac{t}{h}\right) p v_{\min }\left(2-\frac{x}{h}\right) h d x \\
& R_{y}=P_{2} A_{2}+p v^{2} h \int_{0}^{h}\left(4-4 \frac{t}{h}+\frac{k^{2}}{h^{2}}\right) d x \\
& =P_{2} A_{2}+P v_{\min }^{2} h\left[4 x-2 \frac{x^{2}}{h}+\frac{x^{3}}{3 h^{2}}\right]_{0}^{h} \\
& R_{y}=P_{2} A_{2}+p v^{2} h\left[4 h-2 h+\frac{h}{3}\right]=-P_{2} A_{2}+\frac{7}{3} p v_{\min }^{2} h^{2} \\
& R_{y}=h^{2}\left(-p_{z}+\frac{7}{3} p v_{\min }^{2}\right) \\
& =(0.0755)^{2} m^{2}\left[(130-10) 1^{3} \frac{d}{\mu^{2}}+\frac{7}{3} \times \operatorname{argeg} \frac{M^{3}}{M^{2}}(5.0)^{2} \frac{n^{2}}{5^{2}}+\frac{N .5^{2}}{\operatorname{kg}}\right] \\
& R_{y}=498 N \\
& \therefore \vec{R}=-714 i+498 j N+\vec{R}
\end{aligned}
$$

Given: Flat plate orifice at end of pipe, as shown.
 the momentum equation.
The $C V$ and CS are shown.
Basic equation:

$$
F_{s x}+F_{\phi x}^{=o(1)}=\frac{\partial 才}{q t} \int_{c v} u(z)
$$

Assumptions: (1) $F B_{x}=0$
(2) Steady flow
(3) Uniform flow at each section
(4) Use gage pressures to cancel/ path
(5) Incompressible flow

Then

From momentum,

$$
\begin{aligned}
& Q=V_{1} A_{1}=V_{2} A_{2} ; V_{1}=\frac{Q}{A_{1}}=\frac{4 Q}{\pi D_{1}^{2}}=\frac{4}{\pi} \times 0.05 \mathrm{~m}^{3} \times \frac{1}{(0.1)^{2} m^{2}}=6.37 \mathrm{~m} / \mathrm{s} \\
& V_{2}=V_{1}\left(\frac{Q_{1}}{D_{2}}\right)^{2}=6.37 \frac{\mathrm{~m}}{\mathrm{~s}}\left(\frac{100}{35}\right)^{2}=52.0 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

$$
\begin{gathered}
R_{x}+p_{\lg } A_{1}=u_{1}\{-\rho Q\}+u_{2}\{+\rho Q\}=\left(V_{2}-V_{1}\right) \rho Q \\
u_{1}=V_{1} \quad u_{2}=V_{2} \\
R_{x}=-p_{1 g} A_{1}+\left(V_{2}-V_{1}\right) \rho Q \\
=-1.35 \times 10^{6} \frac{\mathrm{~N}}{\mathrm{~m}^{2}} \times \frac{\pi}{4}(0.1)^{2} m^{2}+(52.0-6.37) \frac{m^{3}}{\mathrm{~s}} \times 999 \frac{\mathrm{~kg}}{\mathrm{~m}^{3}} \times 0.05 \frac{\mathrm{~m}^{3}}{\mathrm{~s}} \times \frac{\mathrm{N} \mathrm{~s}^{2}}{\mathrm{~kg} \cdot \mathrm{~m}} \\
R_{x}=-8.32 \mathrm{kN}(\text { to left })
\end{gathered}
$$

Given: Spray system, of mass $M=0.200 \mathrm{lbn}$ and internal volume $t=$ pe in? operates under steady state conditions shown.

Find: the vertical force exerted on the supply pipe by the spray system
Solution:
Apply the y component of the momentum equation to the fixed
 control volume shown.
Basic Equation:

$$
F_{y y}+F_{B y}=\frac{\partial}{d t} \int_{c s}^{o p p d t}+\int_{c s} v \vec{p} \cdot \overrightarrow{d \vec{A}} .
$$

Assumptions: (1) steady flow
(2) incorpessible flow
(3) uniform flow at each section
(H) calculation of surface forces is simplified through use of gage pressures

$$
o=-\left|p S_{1} A_{1}\right|+\left|p V_{2} A_{2}\right| \text { and } V_{1}=V_{2} \frac{R_{2}}{A_{1}}=V \frac{a}{A}
$$

The momentum flux is
her from eq (i) we can write

$$
R_{y}=-1.70 \text { bf }
$$

The force of the spray system on the supply pipe is

$$
K_{y}=-R_{y}=1.70 \text { Vol }
$$

$$
\begin{aligned}
& R_{y}+R_{i g} A-p^{+} g-M g=p^{2} a\left(1-\frac{a}{A}\right) \text {. Solving for } R_{y} \text {, } \\
& R_{y}=-p_{1} h+p g+p^{\prime} g+p p^{2} a\left(1-\frac{\alpha}{h}\right)
\end{aligned}
$$

$$
\begin{aligned}
& C_{c s} v \vec{p} \cdot d \overrightarrow{d H}=v_{1}\{-\mid p V, H, 1\}+v_{2}\left\{\mid p V_{2} H_{2}\right\}=V_{1}\left(-p V_{1}, A_{1}\right)+V(p V a) \\
& =V \frac{a}{A}(-p \vee a)+V(p \nu a)=p V^{2} a\left(1-\frac{a}{A}\right)
\end{aligned}
$$

Given: Flow through semi-circular nozzle, as shown.
Find: (a) volume flow rate
(b) y-component of force required to hold in place

Solution: Choose $C V$ and coordinates shown. Apply continuity and momentum equation in y-direction.

Basic equations: $\quad Q=\int_{A} \vec{V} \cdot d \vec{A}$

$$
\begin{gathered}
=0(2)=0(3) \\
F s y+F B_{y}^{\prime}=\frac{\partial}{\partial t} \int_{c v} v \rho d t+\int_{c s} v \rho \vec{v} \cdot d \vec{A}
\end{gathered}
$$

Assumptions: (1) Flow uniform across exit section
(2) $F_{B y}=0$
(3) Steady flow

At section (2), $\vec{V} \cdot d \vec{A}=V R t d \theta$, since flow out of CV . Then

$$
\begin{aligned}
& Q=\int_{-\pi / 2}^{\pi / 2} v R t d \theta=V R t[\theta]_{-\pi / 2}^{\pi / 2}=V R t \pi \\
& Q=15 \frac{\mathrm{~m}}{\mathrm{~s}} \times 0.3 \mathrm{~m}_{\times} 0.03 \mathrm{~m}_{x} \pi=0.424 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

From momentum

$$
\xrightarrow[V_{2} v_{2}\left\{+\left|\rho v_{2} d A_{2}\right|\right\}]{ }
$$

with

$$
v_{1}=0
$$

$$
v_{2}=V \cos \theta
$$

$$
\begin{aligned}
& R_{y}=\int_{-\pi / 2}^{\pi / 2} V \cos \theta \rho V R t d \theta=\rho v^{2} R t[\sin \theta]_{-\pi / 2}^{\pi / 2}=2 \rho v^{2} R t \\
& R_{y}=2 \times 999 \frac{\mathrm{~kg}}{\mathrm{~m}^{3}} \times(15)^{2} \frac{\mathrm{~m}^{2}}{\mathrm{~s}^{2}} \times 0.3 \mathrm{~m}_{\times} \times 0.03 \mathrm{~m} \times \frac{\mathrm{N} \cdot \mathrm{~s}^{2}}{\mathrm{~kg} \cdot \mathrm{~m}}=4.05 \mathrm{kN}
\end{aligned}
$$

Given: Jet engine on test stand. Fuel enters vertically at rate

$$
i_{\text {fuel }}=0.02 \mathrm{Mair}
$$

Find: (a) Airflow rate (b) Estimate of engine

Solution:
Apply x-component of the momentum equation to ct sown Basic equations: $F_{5 x}+y_{0 x}=\frac{\partial}{y 2} \int_{0}^{=d 2} u p d t+\int_{c s} u p \vec{u} \cdot \overrightarrow{d F}$

$$
m_{\text {air }}=P, H_{1}, \quad p=p l e l
$$

Assurnptions: (i) $F_{0-2}=0$
(2) steady flow
(3) unifoft flow at inlet and aetiet sections.
(4) air behaves as ideal gas; $T=10^{\circ} \mathrm{F}$
(S) fuel esters vertically (given).

$$
\begin{aligned}
& i_{\text {air }}=p_{1} V_{1} A_{1}=0.0644 \frac{\mathrm{Bn}_{4}}{\mathrm{ft}^{3}} \times 500 \frac{\mathrm{ft}}{\mathrm{~s}} \times 64 \mathrm{ft}^{2}=2060 \mathrm{lbm}_{\mathrm{m}} / \mathrm{m}
\end{aligned}
$$

From the x-momentum equation

$$
\begin{aligned}
& R_{1}+p_{1} H_{1}+f_{f} g_{2}^{=0}=u_{1}\left\{-m_{1}\right\}+u_{2}\left\{\dot{m}_{2}\right\}+u_{f}\left\{-m_{f}\right\} \\
& u_{1}=-V_{1}, u_{2}=-u_{2},{\dot{m_{2}}}_{2}=\dot{N}_{1}+i_{f}
\end{aligned}
$$

Also thrust $T=k_{x}$ (force of engine on surroundings) $=-f_{x}$
so

$$
\begin{aligned}
& -T-p_{1} A_{1}=m_{1} V_{1}-\dot{n}_{2} \nu_{2}=\dot{m}_{1} v_{1}-\left(1.02 m_{1}\right) v_{2} \\
& T=i_{1}\left(1.02 V_{2}-V_{1}\right)-p_{g} A_{1}
\end{aligned}
$$

$$
\begin{aligned}
& T=65,4 \infty 06
\end{aligned}
$$

Problem 4.66
Given: Liquid-fueled rocket motor consumes, 180 limps of nitric acid as oxidizer and $70 \mathrm{bm} / \mathrm{s}$ of analine as fuel. Flow leaves atrailly at $V=6000 \mathrm{ft} / \mathrm{s}$ relative to nozzle and $f=16.5$ psia torah ext diameter, $\rangle=2 f 4$. Motor run on test stand at standard sea-level.
Find: Thrust produced by the motor on test stand.
Solution: Apply x-component of momentum equation to ct shown.
Bask eq:

Assumptions: (1) $F_{B x}=0$ plat of x momerturn inside $C L$. (3) uniform flow at nozzle exit.

Then

$$
\begin{aligned}
R_{h}-p_{e g} A_{e} & =u_{e} i^{n} \\
\text { where } i n & =i_{n \cdot a}+i_{a}=(180+n 0) h_{m}=250 \text { tombs }
\end{aligned}
$$

R_{M} is force from test stand on $C V$

$$
\begin{aligned}
& \therefore R_{r}=P_{e g} H_{e}+V_{e} m=P_{e g} \frac{\pi P_{e}^{2}}{M}+V_{e} m
\end{aligned}
$$

$$
\begin{aligned}
& R_{4}=8141 b r+46,6001 b r=47,400 \mathrm{lbf}
\end{aligned}
$$

The thrust of the motor, $T=-R_{\text {, }}$

$$
\vec{T}=-47,400 i \text { ito (to the right) }
$$

\qquad

Given: Incompressible, frictionless flow through a sudden expansion as shown.
Show: Pressure rise, $\Delta P=-P_{2}-f_{1}$, is given by

$$
\frac{\Delta \rho^{2}}{\frac{1}{2} \bar{v}^{2}}=2\left(\frac{d}{D}\right)^{2}\left[1-\left(\frac{d}{D}\right)^{2}\right]
$$

Plot: the nondernensional pressure rise vs ely to determine the opturnum ils and corresponding nondinensionaly pressure rise
Solution:
Apply x component of momertumequation, using fixed cistown Basic equation: $F_{s_{x}}+Z_{B_{x}}=\overrightarrow{A C}\left(c y\right.$ updty $+\int_{c s} u(p \vec{d} \cdot \overrightarrow{d A})$.
Assumptions: (1) no friction, so surface force ductopressurk only
(2) $F_{B_{x}}=0$
(3) steady flow (4) incompressible flow (given).
(5) unifofn flow at sections (1) and (2)
(6) uniform pressure p, on vertical surface of expansion.
Then,

$$
p_{1} F_{2}-\rho_{2} A_{2}=u_{1}\left\{-\mid p \overline{v_{1} H_{1}}\right\}+u_{2}\left\{\mid p \bar{v}_{2} A_{2}\right\} \quad u_{1}=\overline{v_{1}}, u_{2}=\bar{V}_{2}
$$

From contriuity for uniform flow, $M=P A_{1} \bar{V}_{1}=p A_{2} \bar{D}_{2} ; \bar{V}_{2}=\overline{V_{1}} A_{1} \bar{A}_{2}$
Rus, $\quad p_{2}-p_{1}=p^{\bar{V}}, \frac{A_{1}}{F_{2}} v_{1}-p^{\bar{N}}, \frac{A_{1}}{\vec{H}_{2}} A_{2}=\bar{p}^{\bar{V}} \cdot \frac{A_{1}}{A_{2}}\left(\bar{V}_{1}, \bar{V}_{2}\right)$

$$
p_{2}-p_{1}=p \bar{v}_{1}^{2} \frac{H_{1}}{F_{2}}\left(1-\bar{J}_{2}\right)=p \bar{V}_{1}^{2} \vec{F}_{1}\left(1-\frac{A_{2}}{A_{2}}(1)\right. \text {. }
$$

and

$$
\frac{p_{2}-p_{1}}{\frac{1}{2} P_{1}^{2}}=\frac{A_{1}}{A_{2}}\left(1-\frac{A_{1}}{A_{2}}\right)=2\left(\frac{d}{D}\right)^{2}\left[1-\left(\frac{d}{D}\right)^{2}\right]
$$

From the plot below we see that $\frac{\Delta t}{\frac{1}{2} \mathrm{PI}^{2}}$. has an optionum value of 20.5 at $\alpha 1 y=0.70$
Note: As expected

- for $d=y, \Delta P=0$ for straight pipe - for $\frac{d}{D} \rightarrow 0, D P=0$ for free get Also note that the location of section (2) would have to be chosen with care to make assumption (S) reasonable

Problem 4.68

2 is deflected by a hinged plate of
length 2 m supported by a spring with spring constant $k=1 \mathrm{~N} / \mathrm{m}$ and uncompressed length $x_{0}=$ 1 m . Find and plot the deflection angle θ as a function of jet speed V. What jet speed has a deflection of 10° ?

Given: Data on flow and system geometry

Find: Deflection angle as a function of speed; jet spee for 10° deflection

Solution

The given data are
U $999 \frac{\mathrm{~kg}}{\frac{\mathrm{~m}}{3}} \quad$ A $0.005\left[\mathrm{~m}^{2} \quad\right.$ L $\quad 2 \square \mathrm{~m} \quad \mathrm{k} \quad 1 \underset{\mathrm{~m}}{\mathrm{~N}} \quad \mathrm{x}_{0} \quad 1[\mathrm{~m}$

Governing equation:

Momentum

$$
\begin{equation*}
\vec{F}=\vec{F}_{S}+\vec{F}_{B}=\frac{\partial}{\partial t} \int_{\mathrm{CV}} \vec{V} \rho d++\int_{\mathrm{CS}} \vec{V} \rho \vec{V} \cdot d \vec{A} \tag{4.17}
\end{equation*}
$$

But

$$
\mathrm{F}_{\text {spring }} \mathrm{k} \mathrm{k} \quad \mathrm{k} \| \mathrm{x}_{0} \square \mathrm{~L} \$ \mathrm{in} \Pi \mathrm{~T}[\square
$$

Hence

$$
\text { Solving for } \theta \quad \mathrm{T} \quad \underset{\operatorname{asin} . .}{\S<\square \square \cup\left[A \mathbb{N}^{2} 1\right.},
$$

For the speed at which $\theta=10^{\circ}$, solve

$$
\mathrm{V} \quad 0.867 \frac{\mathrm{~m}}{\mathrm{~s}}
$$

The deflection is plotted in the corresponding Excel workbook, where the above velocity is obtained using Goal Seek

Problem 4.68 (In Excel)

A free jet of water with constant cross-section area $0.005 \mathrm{~m}^{2}$ is deflected by a hinged plate of length 2 m supported by a spring with spring constant $k=1 \mathrm{~N} / \mathrm{m}$ and uncompressed length $x_{0}=1 \mathrm{~m}$. Find and plot the deflection angle θ as a function of jet speed V. What jet speed has a deflection of 10° ?

Given: Geometry of system
Find: Speed for angle to be 10°; plot angle versus speed

Solution

$\rho=$	999	$\mathrm{kg} / \mathrm{m}^{3}$	To find when $\theta=10^{\circ}$, use Goal	
$x_{0}=$	1	m		
$L=$	2	m		
$k=$	1	N / m	$V(\mathrm{~m} / \mathbf{s})$	$\theta\left({ }^{\circ}\right)$
$A=$	0.005	m^{2}	0.867	10

$\boldsymbol{V}(\mathbf{m} / \mathbf{s})$	$\theta\left(^{\mathbf{}}\right)$
0.0	30.0
0.1	29.2
0.2	27.0
0.3	24.1
0.4	20.9
0.5	17.9
0.6	15.3
0.7	13.0
0.8	11.1
0.9	9.52
1.0	8.22
1.1	7.14
1.2	6.25
1.3	5.50
1.4	4.87
1.5	4.33

Given: Conical spray head discharging water, as shown.
Find: (a) Thickness of spray sheet at $R=400 \mathrm{~mm}$ radices.
(b) Axial force exerted on supply pipe.

Solution: Apply continuity and the x component of the momentum equation, using the $C V, C S$ shown.

$V=10 \mathrm{~m} / \mathrm{s}$
Basic equation:

$$
F_{3 x}+F \dot{\phi x}=0(1)=o(2)
$$

Assumptions: (1) $F_{B x}=0$
(2) Steady flow,
(3) Incompressible flow
(4) Uniform flow at each section
(5) Use gage pressure to cancel patm

From continuity,

$$
V_{1}=\frac{Q}{A_{1}}=\frac{4 Q}{\pi D_{i}^{2}}=\frac{4}{\pi} \times 0.03 \frac{\mathrm{~m}^{3}}{\sec } \times \frac{1}{(0.3)^{2} \mathrm{~m}^{2}}=0.424 \mathrm{~m} / \mathrm{s}
$$

Assume velocity in jet sheet is constant at $V=10 \mathrm{~m} / \mathrm{s}$. Then

$$
Q=2 \pi R t V ; \quad t=\frac{Q}{2 \pi R V}=\frac{1}{2 \pi} \times \frac{0.03}{\mathrm{~m}^{3}} \times \frac{1}{\mathrm{~s}} \times \frac{5}{10.4 \mathrm{~m}} \times 1000 \frac{\mathrm{~mm}}{\mathrm{~m}}=1.19 \mathrm{~mm}
$$

From momentum,

$$
\begin{aligned}
R_{x}+p_{1 g} A_{1}= & u_{1}\{-\rho Q\}+u_{2}\{+\rho Q\} \\
& u_{1}=v_{1} \quad u_{2}=-v \sin \theta \\
R_{x}+p_{1}, A_{1}= & -\left(v_{1}+v \sin \theta\right) \rho Q
\end{aligned}
$$

or

$$
\begin{aligned}
R_{x} & =-p, g A_{1}-\left(V_{1}+v_{s} \operatorname{inQ}\right) \rho Q \\
& =-(150-101) 10^{3} \frac{\mathrm{~N}}{\mathrm{~m}^{2}} \times \frac{\pi}{4}(0.3)^{2} \mathrm{~m}^{2}-\left(0.424+1051130^{\circ}\right) \frac{\mathrm{m}}{\mathrm{~s}} \times 994 \frac{\mathrm{~kg}}{\mathrm{~m}^{3}} \times 0.03 \frac{\mathrm{~m}}{\mathrm{~s}} \times \frac{\mathrm{N} \cdot \mathrm{~s}^{2}}{\mathrm{~kg} \cdot \mathrm{~m}} \\
R_{x} & =-3.63 \mathrm{kN}
\end{aligned}
$$

But R_{x} is force on $C V$ f force on supply pipe is K_{x},

$$
K_{x}=-R_{x}=3.63 \mathrm{kN} \text { (to the right) }
$$

Given：curved nozzk assembly，as shown．

$$
W=10 \mathrm{lbt} \quad \forall=150 \mathrm{in}^{3}
$$

Fluid is water．
Find：Force of nozzle assembly on int pipe．

Solution：Apply the x and y components of the momentum equation，using the $C v$ and coordinates shown．Use gage pressures to cance／parm．

Basic equations：

$$
\begin{aligned}
&=0(1)=0(2)=0(3) \\
& F_{P x}+F_{d x}= \frac{\partial f}{d t} \int_{C v} u \rho d t+\int_{c s} u \rho \vec{v} \cdot d \vec{A} \\
& \cdot=0(3) \\
& F_{s y}+F_{B y}= \frac{\partial f}{d t} \int_{c v} v \rho d t+\int_{C s} v \rho \vec{v} \cdot d \vec{A}
\end{aligned}
$$

Assumptions：（1）$F_{3_{x}}=0$
（z）$F_{B X}=0$
（3）Steady flow
（4）Uniform flow at each section
（5）Incompressible flow
From continuity，

$$
V_{1} A_{1}=V_{2} A_{2} ; V_{2}=V_{1} \frac{A_{1}}{A_{2}}=V_{1}\left(\frac{D_{1}}{D_{2}}\right)^{2}=6 \frac{\mathrm{ft}}{\mathrm{~s}}\left(\frac{3 i n}{1 \text { in }}\right)^{2}=54 \mathrm{ft} / \mathrm{s}
$$

From x component of momentum，

$$
\begin{aligned}
& R_{x}=\hat{q}_{1}\left\{-\left|\rho v_{1} A_{1}\right|\right\}+u_{2}\left\{+\left|\rho v_{2} A_{2}\right|\right\}=\rho v_{2}^{2} A_{2} \cos \theta \\
& R_{x}=1.94 \frac{\operatorname{siug} \times}{f^{3}}(54)^{2} \frac{f_{t^{2}}^{2}}{s^{2}} \frac{\pi}{4}(1)^{2} \operatorname{in}_{x}^{2} \cos 30^{\circ} \frac{f t^{2}}{144 \ln ^{2}} \times \frac{1 \mathrm{bf} \cdot 5^{2}}{\operatorname{lug} \cdot f_{4}}=26.7 \mathrm{lbf} \\
& K_{x}=-R_{x}=-26.7 \mathrm{lbf} \text { (to left on pipe) }
\end{aligned}
$$

From y component of momentum，

$$
\begin{aligned}
& R_{Y}-p i g A_{1}-W-\rho g \forall=v_{i}\left\{-1 \rho V_{1} A_{1} \mid\right\}+v_{2}\left\{+\rho V_{2} A_{2} \mid\right\}=\left(V_{1}-V_{2} \sin \theta\right) \rho V_{1} A_{1} \\
& v_{1}=-V_{1} \quad v_{2}=-V_{2} \sin \theta \\
& R_{y}=p_{1} g A_{1}+W+\rho g \forall+\left(V_{1}-V_{z} \sin \theta\right) \rho V_{1} A_{1}
\end{aligned}
$$

$$
\begin{aligned}
& R_{y}=139 \mathrm{lbf} ; K_{y}=-R_{x}=-139 \mathrm{lbf} \text { (down on pipe) }
\end{aligned}
$$

Given: Flow through reducer in gasoline piping system, as shown.

$$
M=25 \mathrm{~kg} \quad \forall=0.2 \mathrm{~m}^{3}
$$

Find: Force needed to hold reducer in place.

Solution: Apply the x and y
components of the more item equation, using the CV and coordinates shown. Use gage pressures to cancel patron.

Basic equations:

$$
\begin{gathered}
=o(1)=o(z) \\
F_{s x}+F_{q x}=\frac{\partial v}{\partial t} \int_{c v} u \rho d \forall+\int_{c s} u \rho \vec{v} \cdot d \vec{A} \\
F_{s y}+F_{B y}=\frac{\partial}{p t} \int_{c v} v \rho d t+\int_{c s} v \rho \rho \vec{v} \cdot d \vec{A}
\end{gathered}
$$

Assumptions: (1) $F_{B x}=0$
(2) Steady flow
(3) Uniform flow at each section
(4) Incompressible flow, $S 6=0.72$ \{Table A.2, Appendix A\}
from the x component of momentum,

$$
\begin{gathered}
R_{x}+p_{1 g} A_{1}-p_{2 g} A_{2}=u_{1}\left\{-\left|\rho v_{1} A_{1}\right|\right\}+u_{2}\left\{+\left|\rho v_{2} A_{2}\right|\right\}=\left(v_{2}-v_{1}\right) \rho v_{1} A_{1} \\
u_{1}=v_{1} \quad u_{2}=v_{2}
\end{gathered}
$$

$$
\begin{aligned}
R_{x}= & p_{2 g} A_{2}-p_{1} g A_{1}+\left(\bar{V}_{2}-\bar{V}_{1}\right) \rho \vec{V}_{1} A_{1} \quad \quad \text { Note } \rho=S 6 \rho \mathrm{H}_{2} \mathrm{O} \\
= & (109-101) 10^{3} \frac{\mathrm{~N}}{\mathrm{~m}^{2}} \times \frac{\pi}{4}(0.2)^{2} \mathrm{~m}^{2}-58.7 \times 10^{3} \frac{\mathrm{~N}}{\mathrm{~m}^{2}} \times \frac{\pi}{4}(0.4)^{2} \mathrm{~m}^{2} \\
& +(12-3) \frac{m}{\mathrm{~S}} \times(0,72) 1000 \frac{\mathrm{~kg}}{\mathrm{~m}^{3}} \times 3 \frac{\mathrm{~m}}{\mathrm{~s}} \times \frac{\pi}{4}(0.4)^{2} \mathrm{~m}_{\times}^{2} \times \frac{\mathrm{N} \cdot \mathrm{~s}^{2}}{\mathrm{~kg} \cdot \mathrm{~m}}
\end{aligned}
$$

$R_{x}=-4.68 \mathrm{kN}$ (force must be applied to left)
From the y component of momentiem,

$$
\begin{aligned}
& R_{y}-M g-\rho g \forall=\hat{1}_{1}\left\{-\left|\rho V_{1} A_{1}\right|\right\}+\psi_{2}\left\{+\left|\rho V_{2} A_{2}\right|\right\} \\
& R_{y}=M g+\rho g \forall \\
&=25 \mathrm{~kg} \times 9.81 \frac{\mathrm{~m}}{\mathrm{~s} \cdot} \times \frac{\mathrm{N} \cdot \mathrm{~J}^{2}}{\mathrm{~kg} \cdot \mathrm{~m}}+(0.72) 1000 \mathrm{~kg} \\
& \mathrm{~N}^{3}
\end{aligned} 9.81 \frac{\mathrm{~m}}{\mathrm{~s}^{2}} \times 0.2 \mathrm{~m}^{3} \times \frac{\mathrm{N} \cdot \mathrm{~s}^{2}}{\mathrm{~kg} \cdot \mathrm{~m}}
$$

Given: Water jet pump as shown in the sketch.

$$
A_{2}=0.075 \mathrm{~m}^{2}
$$

The two streams are thoroughly mixed at section (2), and the inlet pressures are the same.

Find: (a) The velocity at the pump exit
(b) The pressure rise, $p_{L}-p_{1}$

Solution: Apply continuity and the x component of momentum to the inertial $C V$ shown.

Basic equations:

$$
\begin{aligned}
& 0=\frac{\partial^{4}}{\partial t} \int_{c V} \rho d \psi+\int_{C S} f \vec{v} \cdot d \vec{A} \\
& F_{s x}+F_{Q x}^{A}=\frac{\partial}{\partial t} \int_{C V} u_{f} d \forall+\int_{C S} u \rho \vec{v} \cdot d \vec{A}
\end{aligned}
$$

Assumptions: (1) Steady flow
(2) Incompressible flow
(3) Uniform flow at each section
(4) No viscoces forces act on CV
(5) $F_{B X}=0$

Then from continuity

$$
\begin{aligned}
& \left.0=\left\{-\mid \rho V_{S} A_{S} /\right\}+\left\{-/ \rho V_{J} A_{j}\right]\right\}+\left\{\mid \rho V_{2} A_{2} /\right\}=-\rho V_{S} A_{S}-\rho V_{j} A_{j}+\rho V_{2} A_{2} \\
& V_{2}=\frac{1}{A_{2}}\left(V_{s} A_{S}+V_{j} A_{j}\right) ; A_{S}=A_{2}-A_{j}=(0.075-0.01) \mathrm{m}^{2}=0.065 \mathrm{~m}^{2} \\
& V_{2}=\frac{1}{0.075 \mathrm{~m}^{2}}\left(\frac{3 \mathrm{~m}}{5} \times 0.065 \mathrm{~m}^{2}+30 \mathrm{~m} \times 0.01 \mathrm{~m}^{2}\right)=6.60 \mathrm{~m}
\end{aligned}
$$

and

$$
\begin{aligned}
& \left.p_{1} A_{2}-p_{2} A_{2}=u_{S} \dot{\{ }-/ \rho V_{\Delta} A_{s} \mid\right\}+u_{j}\left\{-/ f v_{j} A_{j} / f+u_{2}\left\{/ f V_{2} A_{2} \mid\right\}\right. \\
& u_{s}=v_{s} \quad u_{j}=u_{j} \quad u_{2}=v_{2} \\
& \Delta p=-p_{2}-p_{1}=\frac{i}{A_{2}}\left(+p^{V_{s}^{2} A_{s}+f V_{j}^{2} A_{j}-\left(V_{2}^{2} A_{2}\right)=f_{1}\left(+V_{s}^{2} A_{3}+V_{j}^{2} A_{j}-V_{2}^{2} A_{2}\right), ~\left(A_{1}\right)}\right. \\
& =999 \frac{\mathrm{~kg}}{\mathrm{~m}^{3}} \times \frac{1}{0.075 \mathrm{~m}^{2}}\left[(3.0)^{2}(0.065)+(30)^{2}(0.01)-(6.6)^{2}(0.075)\right] \frac{\mathrm{m}^{2}}{\mathrm{~s}^{2}} \times \mathrm{m}^{2} \times \mathrm{N} \cdot \mathrm{~s}^{2} \\
& p_{2}-p_{1}=84.2 \mathrm{kPa}
\end{aligned}
$$

Given: Reducing elbow shown.
Fluid is water.

R_{y}

Solution: Apply the x and y components of the momentiem equation using the $C s$ and $C V$ shown.

$$
\begin{aligned}
& F_{S x}+F_{B x}^{=0(4)}=\frac{\partial f}{\partial t} \int_{c v}^{=0(1)} u \rho d t+\int_{c s} u \rho \vec{v} \cdot d \vec{A} \\
& F_{S_{y}}+F_{B y}=\frac{d t}{\partial t} \int_{c v} v \rho d \forall+\int_{c_{s}} v \rho \vec{V} \cdot d \vec{A}
\end{aligned}
$$

Assumptions: (1) Steady flow
(3) Use gage press cures
(2) Uniform flow at each section
(4) x horizontal
x comp: $\quad R_{x}+p_{1 g} A_{1}-p_{2 g} A_{2} \cos \theta=u_{1}\{-|\rho Q|\}+u_{2}\{+|\rho \theta|\}$

$$
u_{1}=v_{1} \quad u_{2}=v_{2} \cos \theta
$$

$$
\begin{array}{rlrl}
R_{x}= & \left(-V_{1}+V_{2} \cos \theta\right) \rho Q-p_{1 g} A_{1}+p_{2 g} A_{2} \cos \theta & V_{1}=\frac{Q}{A_{1}}=0.11 \frac{\mathrm{~m}^{3}}{\mathrm{~s}} \times \frac{1}{0.0181 \mathrm{~m}^{2}}=6.04 \frac{\mathrm{~m}}{\mathrm{~s}} \\
= & \left(-6.04 \frac{\mathrm{~m}}{5}+13.6 \frac{\mathrm{~m}}{\mathrm{~s}} \times \cos 30^{\circ}\right) 999 \frac{\mathrm{~kg}}{\mathrm{~m}^{3}} & V_{2}=\frac{Q}{A_{2}}=0.11 \frac{\mathrm{~m}^{3}}{\mathrm{~s}} \times \frac{1}{0.0081 \mathrm{~m}^{2}}=13.6 \frac{\mathrm{~m}}{\mathrm{~s}} \\
& \times 0.11 \frac{\mathrm{~m}^{3}}{\mathrm{~s}} \times \frac{\mathrm{N} \cdot \mathrm{~s}^{2}}{\mathrm{~kg} \cdot \mathrm{~m}}-(200-101) 10 \frac{\mathrm{~N}_{2}}{\mathrm{~m}^{2}} \times 0.0182 \mathrm{~m}^{2}+(120-101) 10^{3} \frac{\mathrm{~N}}{\mathrm{~m}^{2}} \times 0.0081 \mathrm{~m}_{\times}^{2} \cos 30^{\circ}
\end{array}
$$

$$
R_{x}=+631-1800+133 \mathrm{~N}=-1040 \mathrm{~N}
$$

$y \operatorname{comp}: \quad R_{y}+p_{2} g A_{2} \sin \theta-M g-\rho \forall g=v_{1}\{-|\rho Q|\}+v_{L}\{+|\rho Q|\}$

$$
v_{1}=0 \quad v_{2}=-v_{2} \sin \theta
$$

$$
\begin{aligned}
R_{y}= & -V_{2} \sin \theta \rho Q+M g+\rho \forall g-p_{2 g} A_{2} \sin \theta \\
= & -13.6 \frac{\mathrm{~m}}{\mathrm{~s}} \times \sin 30^{\circ} \times 999 \frac{\mathrm{~kg}}{\mathrm{~m}^{3}} \times 0.11 \frac{\mathrm{~m}^{3}}{\mathrm{~s}} \times \frac{\mathrm{N} \mathrm{~s}^{2}}{\mathrm{~kg} \cdot \mathrm{~m}}+10 \frac{\mathrm{~kg}_{x}}{} 9.81 \frac{\mathrm{~m}}{\mathrm{~s}^{2}} \times \frac{\mathrm{N} \cdot \mathrm{~s}^{2}}{\mathrm{~kg} \cdot \mathrm{~m}} \\
& +999 \frac{\mathrm{~kg}}{\mathrm{~m}^{3}} \times 0.006 \mathrm{~m}^{3} \times 9.81 \frac{\mathrm{~m}}{\mathrm{~s}^{2}} \times \frac{\mathrm{N} \cdot \mathrm{~s}^{2}}{\mathrm{~kg} \cdot \mathrm{~m}}-(120-101) 10^{3} \frac{\mathrm{~N}}{\mathrm{~m}^{2}} \times 0.0081 \mathrm{~m}^{2} \times \sin 30^{\circ} \\
R_{y}= & -747+98.1+58.8-77=-667 \mathrm{~N}
\end{aligned}
$$

$\left\{\begin{array}{l}R_{x} \text { and } R_{y} \text { are the horizontal and vertical components of force that } \\ \text { must be supplied buy the adjacent pipes to keep the elbow (the control } \\ \text { volume) from moving. }\end{array}\right\}$

Problem 4.74
Given: Monotube boiler, as shown.

$$
\dot{m}=0.3 \mathrm{lbm} / \mathrm{s} . \quad p_{1}=500 \text { psia }
$$

$$
p_{2}=400 \mathrm{psig}, \rho_{2}=0.024 \mathrm{~s} / \mathrm{mg} / f^{3}
$$

Find: Magnitude and direction of force exerted by fluid on tube.
Solution: Apply the x component of the momentum equation, using the $C V$ and coordinates shown.

Basic equation:

$$
\begin{gathered}
=o(1)=o(2) \\
F_{s_{x}}+F \hat{\beta}_{x}=\frac{d^{t}}{\partial_{t}} \int_{c v} u p d \forall+\int_{c s} u \rho \vec{v} \cdot d A
\end{gathered}
$$

Assumptions: (1) $F_{B x}=0$
(2) Steady flow
(3) Uniform flow at each section
(4) Use gage pressures to cancel/ pats

From continuity,

$$
\dot{m}=\rho_{1} v_{1} A_{1}=\rho_{2} v_{2} A_{2} ; A=\text { constant, so } \rho_{1} v_{1}=\rho_{2} v_{2} \text {. Thus }
$$

and

$$
\begin{aligned}
& V_{1}=\frac{\dot{m}}{\rho_{1} A}=0.3 \frac{\mathrm{lbm}}{s} \times \frac{\mathrm{f}^{3}}{1.94 . \operatorname{sicg}} \times \frac{4}{\pi} \frac{1}{(0.375)^{2} 1 n^{2}} \times \frac{\mathrm{slug}}{52.2 \mathrm{lkm}} \times \frac{144 \frac{n^{2}}{f^{2}}=6.26 \mathrm{ft} / \mathrm{s},}{} \\
& V_{2}=V_{1} \frac{\rho_{1}}{\rho_{2}}=6.26 \frac{f t}{s} \times 1.94 \frac{\mathrm{sing}}{\mathrm{f}^{3}} \times \frac{\mathrm{ft}}{}=3.024 \mathrm{skg}=506 \mathrm{ft} / \mathrm{s}
\end{aligned}
$$

From momentum,

$$
\begin{aligned}
& R_{x}+p_{1 g} A_{1}-p_{2} A_{2}=u_{1}\{-\dot{m}\}+u_{2}\{+\dot{m}\}=\left(v_{2}-v_{1}\right) \dot{m} \\
& \quad u_{1}=v_{1} \quad u_{2}=v_{2} \\
& R_{x}= \\
& =\left(p_{2} g-p 1 g\right) A+\left(v_{2}-v_{1}\right) \dot{m} \\
& = \\
& \\
& \quad \times \frac{16 f \cdot 5^{2}}{314 g \cdot f t} \\
& R_{x}=
\end{aligned}
$$

But R_{x} is force on $C v$; force on pipe is K_{x},

$$
K_{x}=-R_{x}=4.77 \mathrm{lbf} \text { (to right) }
$$

Given: Gas flow they a porous pipe ot constant area.
$p_{1}=340 \mathrm{k} P_{2}(\mathrm{abs})$
$\rho_{1}=5.1 \mathrm{~kg} / \mathrm{m}^{3}$
$v_{1}=152 \mathrm{~m} / \mathrm{s}$
$\begin{aligned} & p_{2}=280 \mathrm{k} p_{a}(a b s) \\ & \rho_{2}=2.6 \mathrm{~kg} / \mathrm{m}^{3} \\ & A_{1}=A_{2}=0.2 \mathrm{~m}^{2}\end{aligned}$
$\dot{m}_{g}=29.2 \mathrm{~kg} / \mathrm{s}$
v_{3} is uniform over surface (3) and normal to pipe wall.
Find: Axial force of fluid on pipe.
Solution: Apply continuity and x component of momentum equation using inertial cv shown.

$$
=0(1)
$$

Basic equations: $0=\frac{\partial^{A}}{t \in} \int_{c v} \rho d t+\int_{c S} \rho \vec{v} \cdot d \vec{A}$

$$
F_{s x}+F_{B_{x}}^{m o(3)}=\frac{\partial f}{\partial t} \int_{c v}^{m} u \rho d t+\int_{c s} u p \vec{v} \cdot d \vec{A}
$$

Assumptions: (1) steady flow
(2) Flow uniform at each section
(3) $F_{B_{x}}=0$
(4) Flow at section (S) normal to wall; $u_{3}=0$

Then

$$
\begin{aligned}
& 0=\left\{-\left|\rho_{1} V_{1} A\right|\right\}+\left\{\left|\rho_{2} V_{2} A\right|\right\}+\dot{m}_{3}=-\rho_{1} V_{1} A+\rho_{2} V_{2} A+\dot{m}_{3} \\
& V_{2}=\frac{1}{\rho_{2} A}\left[\rho_{1} V_{1} A-\dot{m}_{3}\right]=V_{1} \frac{\rho_{1}}{\rho_{2}}-\frac{\dot{m}_{3}}{\rho_{2} A} \\
& V_{2}=152 \frac{m}{s} \times \frac{5.1 \mathrm{~kg}}{m^{3}} \times \frac{m^{3}}{2.6 \mathrm{~kg}}-24.2 \frac{\mathrm{~kg}}{\mathrm{~s}} \times \frac{\mathrm{m}^{3}}{2.6 \mathrm{~kg}} \times \frac{1}{0.2 \mathrm{~m}^{2}}=242 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

and

$$
\begin{aligned}
& R_{x}+p_{1} A-p_{2} A=u_{1}\left\{-\left|\rho_{1} v_{1} A\right|\right\}+u_{2}\left\{\left|\rho_{2} v_{2} A\right|\right\}+\mu_{3}\left\{\left|\dot{m}_{3}\right|\right\} \\
& u_{1}=v_{1} \quad u_{2}=v_{2} \\
& R_{x}=\left(p_{2}-p_{1}+p_{2} V_{2}^{2}-\rho_{1} V_{1}^{2}\right) A \\
& =\left[(280-340) 10^{3} \frac{\mathrm{~N}}{\mathrm{~m}^{2}}+\left(2.6 \frac{\mathrm{~kg}}{\mathrm{~m}^{3}} \times(242)^{2} \frac{\mathrm{~m}^{2}}{\mathrm{~s}^{2}},-5.1 \frac{\mathrm{~kg}}{\mathrm{~m}^{3}} \times(152)^{2} \frac{\mathrm{~m}^{2}}{\mathrm{~s}^{2}}\right) \frac{\mathrm{N} \cdot \mathrm{~s}^{2}}{\mathrm{~kg} \cdot \mathrm{~m}^{2}}\right] 0.2 \mathrm{~m}^{2}
\end{aligned}
$$

$R_{x}=-5.11 \mathrm{kN}$ (this is force of the duct wall on the gas)
The force of the gas on the duct wall is $K_{x}=-R_{x}=5.11 \mathrm{kN}$ (acting to the right)

Problem 4.76

Given: Air flow in a long straight pipe.

$$
A_{1}=A_{2}=0.5 f t^{2}
$$

$$
v_{1}=500+\frac{t}{5}
$$

$$
p_{1}=30 \text { psia }
$$

$$
T=140^{\circ} \mathrm{F}
$$

Find: Axial force of the air on the pipe.
Solution: Apply the x component of the momentum equation to the inertial cv shown. Also use continuity and ideal gas.
Basic equations: $\quad F_{s_{x}}+F_{\beta_{x}}^{=\alpha(1)}=\frac{\partial}{\vec{z}} \int_{c v}^{1(z)} u p d v+\int_{c S_{w o}} u p \vec{v} \cdot d \vec{A}$

$$
-p=p R T
$$

Asscemptions: (1) $F_{B_{x}}=0$

$$
0=\frac{\partial \vec{d}}{\phi t} \int_{c V} \rho d \psi+\int_{C S} \rho \vec{V} \cdot d \vec{A}
$$

(2) Steady flow
(3) Uniform flow at each section
(4) Air behaves as an ideal gas

Then

$$
R_{x}+p_{1} A_{1}-p_{2} A_{2}=u,\left\{-\left|\rho_{1} v_{1} A_{1}\right|\right\}+u_{2}\left\{\left|\rho_{2} v_{2} A_{2}\right|\right\}
$$

But from continuity $0=\left\{-\left|\rho_{1} v_{1} A_{1}\right|\right\}+\left\{\left|\rho_{2} v_{2} A_{2}\right|\right\}$, so

$$
\begin{gathered}
R_{x}=p_{2} A_{2}-p_{1} A_{1}+u_{1}\left\{-\left|\rho_{1} v_{1} A_{1}\right|\right\}+u_{2}\left\{\left|\rho, v_{1} A,\right|\right\} ; A_{1}=A_{2}=A \\
u_{1}=v_{1} \\
u_{2}=v_{2} \\
R_{x}=\left(p_{2}-p_{1}\right) A+\left(v_{2}-v_{1}\right) \rho_{1}, v_{1} A
\end{gathered}
$$

From the ideal gas equation of state.

$$
f_{1}=\frac{p_{1}}{R T_{1}}=50 \frac{\mathrm{lbf}}{\mathrm{in.}^{2}} \times \frac{144 \operatorname{in}^{2}}{\mathrm{ft}^{2}} \times \frac{16 \mathrm{~m} \cdot \mathrm{R}}{53.3 \mathrm{ft} \cdot 1 \mathrm{bf}} \times \frac{\mathrm{slug}}{32.276 \mathrm{~m}} \times \frac{1}{600^{0} \mathrm{R}}=0.00420 \frac{\mathrm{skgg}}{\mathrm{ft} 3}
$$

and

$$
\begin{aligned}
R_{x}= & (11.3-30) \frac{16 f}{\mathrm{~m}^{2}} \times 0.5 \mathrm{ft}_{x}^{2} 144 \frac{\mathrm{in}^{2}}{\mathrm{ft}^{2}} \\
& +(985-500) \frac{\mathrm{ft}_{\mathrm{t}}}{\mathrm{~s}} \times 0.0042 \frac{\mathrm{sing}}{\mathrm{fta}} \times \frac{500 \mathrm{ft}}{\mathrm{~s}} \times 0.5 \mathrm{ft}^{2} \times \frac{\mathrm{ibf} \cdot \mathrm{~s}^{2}}{\mathrm{slug} \cdot \mathrm{ft}}
\end{aligned}
$$

$R_{x}=-837 \mathrm{lbf}$ (this is force of the pipe wall on the CV)
The force of the gas on the pipe is then

$$
K_{x}=-R_{x}=837 \mathrm{lbf} \text { (to the right) }
$$

Given: Water flow discharging nonkitformly from slot, as shown.

$$
p_{i g}=30 \mathrm{kPa}
$$

Find: (a) Volume flow rate.
(b) Forces to hold pipe.

Solution: Apply x, y components

Thickness, $t=15 \mathrm{~mm}$ of momentum, using the $C V$, es shown.

Basic equations:

Assumptions: (1) $F_{B x}=F_{B y}=0$
(2) Steady flow
(3) Uniform flow at inlet section
(4) Use gage pressures to cancel/ pate

From continceity.

$$
\begin{aligned}
Q=V_{A} & =\frac{1}{2}\left(V_{1}+V_{2}\right) L t=\frac{1}{2}(7.5+11.3) \frac{m}{5} \times 1 m \times 0.015 \mathrm{~m}=0.141 \mathrm{~m} / \mathrm{s} \\
V_{3} & =\frac{Q}{A_{3}}=0.141 \frac{\mathrm{~m}^{3}}{5} \times \frac{4}{\pi} \frac{1}{(0.15)^{2} \mathrm{~m}^{2}}=7.98 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

From x momentum, since flow leaves slot vertically $(u=0)$,

$$
\begin{aligned}
& R_{x}+p_{3 g} A_{3}=u_{3}\{-\rho Q\}=-V_{3} \rho Q ; R_{x}=-p_{3 g} A_{3}-V_{3} \rho Q \\
& R_{x}=-30 \times 10^{3} \frac{\mathrm{~N}}{m^{2}} \times \frac{\pi}{4}(0.15)^{2} \mathrm{~m}^{2}-7.98 \frac{\mathrm{~m}}{\mathrm{~s}} \times 999 \frac{\mathrm{~kg}}{\mathrm{~m}^{3}} \times 0.141 \frac{\mathrm{~m}^{3}}{\mathrm{~s}} \times \frac{\mathrm{N} \cdot \mathrm{~s}^{2}}{\mathrm{~kg} \cdot \mathrm{~m}} \\
& R_{x}=-1.65 \mathrm{kN}(\text { to } 1 \mathrm{ctt})
\end{aligned}
$$

From y momentum, since $v_{3}=0$,

$$
\begin{aligned}
R_{y} & =\hat{F}_{3}^{=0}\{-\rho Q\}+\int_{0}^{L} v \rho V t d x=-\rho t \int_{0}^{L}\left(V_{1}+\frac{V_{2}-V_{1}}{L} x\right)^{2} d x \\
& =-\rho t\left[V_{1}^{2} x+2 V_{1}\left(\frac{V_{2}-V_{1}}{L}\right) \frac{x^{2}}{2}+\left(\frac{V_{2}-V_{1}}{L}\right)^{2} \frac{x^{3}}{3}\right]_{0}^{L} \\
& =-949 \frac{\mathrm{~kg}}{m^{3}} \times 0.015 m\left[(7.5)^{2} \frac{m^{2}}{5^{2}}+\frac{7.5 \frac{m}{\mathrm{~s}}}{} \times(11.3-7.5) \frac{m}{5} \times \frac{1}{\mathrm{~m}} \times()^{2} m^{2}\right. \\
& \left.\quad+(11.3-7.5)^{2} \frac{m^{2}}{5^{2}} \times \frac{1}{(1)^{2} m^{2}} \times \frac{\left.(1)^{3} m^{3}\right]}{3}\right]
\end{aligned}
$$

$$
R_{y}=-1.34 k N(\text { down })
$$

\{A moment also would be required at the coupling. \} ~

Given: Steady flow of water through squarechannel shown $v_{\text {max }}=2 v_{\text {min }}, V=7.5 m l_{s}, P_{1}=185$ klalgage, $P_{2}=P_{\text {air }}$

$$
M_{c}=2.05 \mathrm{~kg}, t_{c}=0.00355 \mathrm{~m}^{3}, h=75.5 \mathrm{~mm}=w
$$

Find: Force exerted by channel assembly on the supply duct.
Solution: Apply conservation of mass a momentum equations to the Cl y shown.
Basic equations: ©

Assumptions:
(i) steady flow (2) incompressible flow
(3) unifof flow at inlet?
(4) use gage pressures.

From continuity, $\quad 0=\vec{V}_{1} \cdot \vec{H}_{1}+\vec{V}_{2} \cdot d \vec{H}_{2}=-V w h+S_{0}^{h} v w d x$

$$
\therefore v h=\int_{0}^{h} v d x=\int_{0}^{h} v_{\min }\left(2-\frac{h}{h}\right) d x=v_{\min }\left[2 x-\frac{h^{2}}{2 h}\right]_{0}^{h}=\frac{3}{2} v_{\sin } h
$$

and

$$
v_{\text {min }}=\frac{2}{3} v=\frac{2}{3} \times 7.5 \frac{m}{3}=5.0 \mathrm{mls}
$$

From Eq. 2 ,

$$
K_{x}=-R_{1}=799 N \text { (on supply duct to fie right) }
$$

$$
\begin{aligned}
& \text { From Eq.3, } \\
& R_{y}-M_{c} g-p+g=2 R_{1}\left\{-p A_{1}\right\}+\int_{0}^{v_{1}=0} v_{2}\left\{p v_{2} w d x\right\} \\
& R_{y}-M_{c} g-p+g=C_{0}^{h} v_{\min }\left(2-\frac{x}{h}\right) p^{0} v_{\min }\left(2-\frac{x}{h}\right) w d x \\
& =p v_{\min }^{2} w\left(\int_{0}^{h}\left(4-4 \frac{x}{h}+\frac{h^{2}}{h^{2}}\right) d x\right. \\
& =p v_{\min w}^{2}\left[4 x-2 \frac{x^{2}}{h}+\frac{x^{3}}{3 h^{2}}\right]_{0}^{h}=p v_{\text {min }}^{2} h \frac{7}{3}
\end{aligned}
$$

$$
\begin{aligned}
& R_{y}=(20.1+34.8+332)^{N}=387 \mathrm{~N}\left(\begin{array}{c}
\text { s. } \\
S^{2} \\
(V)
\end{array}\right)^{3} \\
& R_{y}=-R_{y}=-387 \mathrm{~N} \text { (on supply duct, down) }
\end{aligned}
$$

$$
\begin{aligned}
& R_{h}+P_{V g} A_{1}=u_{1}\{-p V A,\}+\int_{0}^{h} y_{2} p^{0} v_{\min }\left(2-\frac{x}{h}\right) w d x=-p^{-} V^{2} A_{1}
\end{aligned}
$$

$$
\begin{aligned}
& R_{x}=-479 N-320 \frac{\mathrm{~kg} \cdot N}{\xi^{2}} \cdot \frac{A_{1}^{2}}{\mathrm{Eg}^{2}}=-479 N-320 N=-799 N
\end{aligned}
$$

$$
\begin{align*}
& 0=\frac{2}{j x} C_{\text {on }}^{\sim}{ }^{\circ} d t+(\overrightarrow{p N} \cdot \overrightarrow{d A} \tag{i}\\
& F_{s}+F_{x}=\overrightarrow{2 t} \int_{-4} u p d t+C_{c o s} u p \vec{p} \cdot d \vec{A} \tag{2}
\end{align*}
$$

Given: Nozzle discharging flat, radial sheet of water, as shown.
Find: Axial force of nozzle on coupling.

$$
D_{1}=35 \mathrm{~mm}
$$

Solution: Apply the x component of momentum, using $C V$ and coordinates shown.

Assumptions: (1) $F_{B x}=0$
(2) Steady flow
(3) Uniform flow at each section
(4) Use gage pressure to cancel pate

From continuity

$$
\begin{aligned}
& Q=V_{1} A_{1}=V_{2} A_{2}=V_{2} \pi R t=\pi_{x} 1 D \frac{\mathrm{~m}}{\mathrm{sec}} \times 0.05 m_{n} 0.0015 \mathrm{~m}=0.00236 \mathrm{~m}^{3} / \mathrm{s} \\
& V_{1}=\frac{Q}{A_{1}}=\frac{4 Q}{\pi D_{1}^{2}}=\frac{4}{\pi} \times 0.00236 \frac{\mathrm{~m}^{3}}{\mathrm{sec}} \times \frac{1}{(0.035)^{2} \mathrm{~m}^{2}}=2.45 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

From momentcem

$$
\left\{\text { Note } A_{1}=\frac{\pi D^{2}}{4}=0,000962 \mathrm{~m}^{2}\right\}
$$

$$
\begin{aligned}
& R_{x}+p_{1} g A_{1}=u_{1}\{-\rho Q\}+\int_{A_{2}} u_{2} \rho v_{2} d A_{2} \\
& u_{1}=v_{1} \quad u_{2}-v_{2} \cos \theta ; d A_{2}=R t d \theta \\
& \int_{A_{2}}=\int_{-\pi / 2}^{\pi / 2} v_{2} \cos \theta \rho v_{2} R t d \theta=2 \rho v_{2}^{2} R t \int_{0}^{\pi / 2} \cos \theta d \theta=2 \rho v_{2}^{2} R t
\end{aligned}
$$

Thus

$$
\begin{aligned}
R_{x}= & -p i g A,-V_{1} \rho Q+2 \rho V_{2}^{2} R t \\
= & -(150-101) 10^{3} \frac{\mathrm{~N}}{\mathrm{~m}^{2}} \times 0.000962 \mathrm{~m}^{2}-2.45 \frac{\mathrm{~m}}{\mathrm{sec}^{2}} \times 999 \frac{\mathrm{~kg}}{\mathrm{~m}^{3}} \times 0.00236 \frac{\mathrm{~m}^{3}}{\mathrm{sec}^{3}} \times \frac{\mathrm{N}^{\mathrm{sec}}}{} \mathrm{~kg} \cdot \mathrm{~m} \\
& +2 \times 999 \frac{\mathrm{~kg}}{\mathrm{~m}^{3}} \times(10)^{2} \frac{\mathrm{~m}^{2}}{\mathrm{sec}^{2}} \times 0.05 \mathrm{~m}_{\times} \times 0.0015 \mathrm{~m} \times \frac{\mathrm{N} \cdot \mathrm{sec}^{2}}{\mathrm{~kg} \cdot \mathrm{~m}} \\
R_{\mathrm{x}}= & -37.9 \mathrm{~N}
\end{aligned}
$$

But R_{x} is force on $C V$; force on coupling is K_{x},

$$
K_{x}=-R_{x}=37.9 \mathrm{~N}(\text { to right })
$$

Given: Small round object tested in wind tunnel. Neglect friction.
Find: (a) Mass flow rate
(b) V_{2}, max
(c) Drag of object

Solution:
Basic equations:

$$
\begin{aligned}
& \Delta=\frac{\partial \hat{\partial}}{\partial t} \int_{c v} \rho(1) \\
&=0(4) \\
& F_{s x}+\int_{c s} \rho \vec{v} \cdot d \vec{A} \\
& F_{\Delta x}=0(1)
\end{aligned}
$$

Assumptions: (1) steady flow

$$
\begin{aligned}
& \left.p_{1}=20 \mathrm{~mm} H_{20} \quad p_{2}=10 \operatorname{mim}_{(g a g<)} H_{2} \mathrm{~g}\right) \\
& V_{1}=10 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

(2) Density uniform at each section

$$
\begin{aligned}
& p_{1}=\rho g h_{1}=999 \frac{\mathrm{~kg}}{\mathrm{~m}^{3}} \times \frac{9.81 \mathrm{~m}}{\frac{\mathrm{sec}^{2}}{}} 0.02 \mathrm{~m}=196 \mathrm{~Pa}(g a g e) \\
& \text { at each section } \quad p_{2}=48.0 \mathrm{~Pa}(\text { gage })
\end{aligned}
$$

(3) Uniform flow at Section (1), so m $=\rho V, A$
(4) Itarizontal flow; $F_{B_{x}}=0$

Then

$$
\dot{m}=\rho, V, A=1.23 \frac{\mathrm{~kg}}{\mathrm{~m}^{3}} \times 10 \frac{\mathrm{~m}}{\mathrm{~s}} \times \frac{\pi}{4}(1)^{2} m^{2}=9.67 \mathrm{~kg} / \mathrm{s}
$$

from continuity,

$$
\begin{aligned}
& \dot{m}=\int_{A_{2}} \rho_{2} u_{2} d A_{2}=\rho_{2} \int_{0}^{R} V_{2, \max } \frac{r}{R} 2 \pi r d r=2 \pi \rho_{2} V_{2, \max } R^{2} \int_{0}^{1}\left(\frac{r}{R}\right)^{2} d\left(\frac{r}{R}\right)=\frac{2 \pi}{3} \rho_{2} V_{2, \max } R^{2} \\
& V_{2, \max }=\frac{3 m}{2 \pi \rho_{2} R^{2}}=\frac{3}{2 \pi} \times 4.67 \frac{\mathrm{~kg}}{\mathrm{~s}} \times \frac{\mathrm{m}^{3}}{1.23 \mathrm{~kg}} \times \frac{1}{(0.5)^{2} \mathrm{~m}^{2}}=15.0 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

From the momentum equation,

$$
\begin{aligned}
& R_{x}+p, A-p_{2} A=u,\{-\dot{m}\}+\int_{A_{2}} u \rho_{2} V_{2} d A_{4}=-V_{1} \dot{m}+2 \pi \rho_{2} V_{2, \max }^{2} R^{2} \int_{0}^{1}\left(\frac{r}{R}\right)^{3} d\left(\frac{r}{R}\right) \\
& u_{1}=V_{1} \quad u_{2}=V_{2, \max } \frac{r}{R} \\
& R_{x}=\left(p_{2}-p_{1}\right) A-V_{1} \dot{m}+2 \pi f_{2} V_{2, m a x}^{2} R^{2}\left(\frac{1}{4}\right)
\end{aligned}
$$

$$
\begin{aligned}
& R_{x}=-65.0 \mathrm{~N} \\
& R_{x} \text { is force to hold } C V \text { in place. } C V \text { cuts strut, so } R_{x} \text { is force needed to } \\
& \text { void object. Drag of object and street is } \\
& F_{O}=\left|R_{X}\right|=65.0 \mathrm{~N}
\end{aligned}
$$

Problem 4.81

The horizontal velocity in the wake behind an object in an air stream of velocity U is given by

$$
|\mathrm{r}| \mathrm{d} 1
$$

$$
\mathrm{u}(\mathrm{r}) \quad \mathrm{U}
$$

$$
|\mathrm{r}|!1
$$

where r is the non-dimensional radial coordinate, measured perpendicular to the flow. Find an expression for the drag on the object.

Given: Data on wake behind object

Find: An expression for the drag

Solution

Governing equation:

Momentum

$$
\begin{equation*}
\vec{F}=\vec{F}_{S}+\vec{F}_{B}=\frac{\partial}{\partial t} \int_{\mathrm{CV}} \vec{V} \rho d \not+\int_{\mathrm{CS}} \vec{V} \rho \vec{V} \cdot d \vec{A} \tag{4.17}
\end{equation*}
$$

Applying this to the horizontal motion

Integrating and using the limits

Given：Incompressible flow in entrance region of two－dimensional channel．

$$
u_{2}=u_{\max }\left[1-\left(\frac{y}{h}\right)^{2}\right]
$$

Find：（a）Maximicem Velocity at section（2）．
（b）Pressure drop if viscous friction could be neglected．
Solution：Apply continuity and the x momentum equations．
Use the $C V$ and is shown．
㸚崖 Basic equations：

$$
\begin{aligned}
& \text { ic equations: } \quad 0=\frac{\partial d}{\partial t} \int_{c v} \rho d \forall+\int_{c s} \rho \vec{v} \cdot d \vec{A} \\
& =o(4)=o(1) \\
& F_{s_{x}}+F_{\phi x}=\frac{\partial}{\rho t} \int_{C v} u \rho d \forall+\int_{c s} u \rho \vec{v} \cdot d \vec{A}
\end{aligned}
$$

Assumptions：（1）Steady flow

（1）

$$
\begin{aligned}
v_{1} & =20 \mathrm{tt} / \mathrm{s} \\
\rho & =0.00238 \text { slug } / \mathrm{ft}^{3}
\end{aligned}
$$

（2）Uniform flow at section（1）
（3）$F_{B x}=0$
（4）Neglect friction at duct wall
Then

$$
0=\{-\mid \rho U, \text { 2hwo } \mid\}+\int_{-h}^{h} \rho u_{\max }\left[1-\left(\frac{y}{h}\right)^{2}\right] w d y
$$

or $\quad 2 U_{1} h w^{2}=2 u_{\text {max }} w h \int_{0}^{1}\left[1-\left(\frac{y}{h}\right)^{2}\right] d\left(\frac{y}{h}\right)=2 u_{\text {max }} w h\left[\frac{y}{h}-\frac{1}{3}\left(\frac{y}{h}\right)^{3}\right]_{0}^{1}$
Thus $u_{\text {max }}=\frac{3}{2} U_{1}=\frac{3}{2} \times 20 \frac{\mathrm{ft}}{\mathrm{s}}=30 \mathrm{ft} / \mathrm{s}$
From the momentum equation，

$$
p_{1} 2 h \omega r-p_{2} 2 h \omega=u_{1}\left\{-\rho U_{1} z h \omega\right\}+\int_{-h}^{h} u_{2} \rho u_{2} d A_{2} \longrightarrow 2 \int_{0}^{h} \rho u_{\max }^{2}\left[1-\left(\frac{y}{h}\right)^{2}\right]^{2} w d y
$$

$$
u_{1}=U_{1} \quad u_{2}=u_{\text {max }}\left[1-\left(\frac{y}{h}\right)^{2}\right]
$$

or

$$
p_{1}-p_{2}=-\rho U_{1}^{2}+\rho u_{\max }^{2} \int_{0}^{1}\left(1-\eta^{2}\right)^{2} d \eta ; \eta=\frac{y}{h}
$$

But

$$
\left.\int_{0}^{1}\left(1-\eta^{2}\right)^{2} d \eta=\int_{0}^{1}\left(1-2 \eta^{2}+\eta^{4}\right) d \eta=\eta-\frac{2}{3} \eta^{3}+\frac{1}{5} \eta^{5}\right]_{0}^{1}=\frac{15-10+3}{15}=\frac{8}{15}
$$

and unix $=\left(\frac{3}{2} U_{1}\right)^{2}=\frac{9}{4} U_{i}^{2}$ ，so

$$
\begin{aligned}
p_{1}-p_{2} & =-\rho U_{1}^{2}+\frac{9}{4} \rho U_{1}^{2}\left(\frac{8}{15}\right)=\rho U_{1}^{2}\left(\frac{6}{5}-1\right)=\frac{1}{5} \rho U_{1}^{2} \\
& =\frac{1}{5^{2}} \times 0.00238 \frac{\operatorname{sing}}{f^{2}}(20)^{2} \frac{f y^{2}}{s^{2}} \times \frac{16+s^{2}}{5 l u g \cdot t} \\
p_{1}-p_{2} & =0.19016 t / f t^{2}
\end{aligned}
$$

Given: Incompressible flow in entrance region of circular tube of radius, R.

Find: (a) Maximum velocity at Section (2).
(b) Pressure drop if viscous friction could be neglected.

Solution: Apply continuity and the x direction momeritum equations. Use the $C V$ and $C S$ shown.
Basic equations:

$$
0=\frac{A N}{=0} \int_{c V}^{=0(1)} \rho d t+\int_{C S} \rho \vec{V} \cdot d \vec{A}
$$

$$
F s_{x}+F f_{x}^{=o(3)}=\frac{d}{\phi t} \int_{c v} u p d t v+\int_{c s} u \varphi \vec{v} \cdot \overrightarrow{d A}
$$

Assumptions: (1) Steady flow
(5) Incompressible flow
(2) Uniform flow at section (1)
(3) $F_{B x}=0$
(4) Neglect friction at duet wall

Then

$$
0=\left\{-\left|\rho U, \pi R^{2}\right|\right\}+\int_{0}^{R} \rho u_{\max }\left[1-\left(\frac{r}{R}\right)^{2}\right] 2 \pi r d r
$$

or $\quad \pi \rho U_{1} R^{2}=2 \pi \rho u_{\max } R^{2} \int_{0}^{1}\left[1-\left(\frac{r}{R}\right)^{2}\right]\left(\frac{r}{R}\right) d\left(\frac{r}{R}\right)=2 \pi \rho u_{\max } R^{2}\left[\frac{1}{2}\left(\frac{r}{R}\right)^{2}-\frac{1}{4}\left(\frac{r}{R}\right)^{4}\right]_{0}^{1}$
Thus $u_{\text {max }}=2 V_{1}=2 \times 30 \frac{f t}{5}=60 \mathrm{ft} / \mathrm{s}$
From the momentum equation,

or

$$
p_{1}-p_{2}=-\rho U_{1}^{2}+2 \rho u_{\max }^{2} \int_{0}^{1}\left(1-\eta^{2}\right)^{2} \eta d \eta ; \eta=\frac{r}{R}
$$

But $\left.\int_{0}^{1}\left(1-\eta^{2}\right) \eta d \eta=\int_{0}^{1}\left(1-2 \eta^{2}+\eta^{4}\right) \eta d \eta=\frac{1}{2} \eta^{2}-\frac{1}{2} \eta^{4}+\frac{1}{6} \eta^{6}\right]_{0}^{1}=\frac{1}{6}$
and $u_{\max }^{2}=\left(2 U_{1}\right)^{2}=4 U_{1}^{2}$, so

$$
\begin{aligned}
p_{1}-p_{2} & =-\rho U_{1}^{2}+\frac{8}{6} \rho \sigma_{1}^{2}=\rho U_{1}^{2}\left(\frac{4}{3}-1\right)=\frac{1}{3} \rho \sigma_{1}^{2} \\
& =\frac{1}{3} \times 0.075 \frac{16 m}{f^{3}} \times(30)^{2} \frac{f^{2}}{5} \times \frac{51 \mathrm{~g}}{32.2} \times \frac{16 f \cdot s^{2}}{314 \mathrm{~g} \cdot \mathrm{ft}} \\
p_{1}-p_{2} & =0.699 \mathrm{lbf} / \mathrm{ft}^{2}
\end{aligned}
$$

Given: Uniform flow into, fully developed flow from duct shown.

Air

$$
\begin{aligned}
& \frac{U(r)}{U_{C}}=1-\left(\frac{r}{R}\right)^{2} a t(2) \\
& p_{1}-p_{2}=1.92 \mathrm{~N} / \mathrm{m}^{2}
\end{aligned}
$$

Find: Total force exerted by tube on the flowing air.
Solution: Apply continuity and momentum to $C V, C S$ shown.
Basic equations:

$$
\begin{aligned}
& \quad 0=\frac{\partial v}{\phi t} \int_{C v}^{o(1)} \rho d \forall+\int_{C S} \rho \vec{v} \cdot d \vec{A} \\
& F_{S x}+F / \beta_{x}=\frac{\partial(4)}{\partial t} \int_{C V} u \rho d \forall+\int_{C S} u \vec{\rho} \cdot d \vec{A}
\end{aligned}
$$

Assumptions: (1) Steady flow
(3) Uniform flow at inlet
(2) Incompressible flow
(4) $F_{B_{x}}=0$

Then

$$
\begin{aligned}
& 0=\left\{-\left|\rho U_{1} A_{1}\right|\right\}+\int_{(2)} \rho u d A=-\rho U_{1} \pi R^{2}+\int_{0}^{R} \rho U_{C}\left[1-\left(\frac{r}{R}\right)^{2}\right] z \pi r d r \\
& 0=-\rho U_{1} \pi R^{2}+2 \rho \pi R^{2} \cdot \sigma_{C} \int_{0}^{1}\left(1-\lambda^{2}\right) \lambda d \lambda \text { or } 0=-U_{1}+2 U_{C}\left[\frac{\lambda^{2}}{2}-\frac{\lambda^{4}}{4}\right]_{0}^{1}
\end{aligned}
$$

Thus $0=-U_{1}+\frac{1}{2} U_{C}$ or $U_{C}=2 U_{1} \quad(\lambda=r / R)$
From momentum $R_{x}+p_{1} A_{1}-p_{2} A_{2}=u_{1}\left\{-\left|\rho U_{1} A_{1}\right|\right\}+\int_{(2)} u_{2}\left\{+\rho u_{2} d A_{2}\right\}$

$$
u_{1}=U_{1} \quad u_{2}=U_{c}\left[1-\left(\frac{r}{R}\right)^{2}\right]
$$

50

$$
\begin{aligned}
\int_{2} & =\int_{0}^{R} U_{c}\left[1-\left(\hat{R}^{\prime}\right]\right. \\
& =2 \pi \rho U_{c}^{2} R^{2} \int_{0}^{1}\left(1-2 \lambda^{2}+\lambda^{4}\right) \lambda d \lambda=2 \pi \rho V_{c}^{2} R^{2}\left[\frac{\lambda^{2}}{2}-\frac{\lambda^{4}}{2}+\frac{\lambda^{2}}{6}\right]_{0}^{1}=\frac{1}{3} \pi \rho U_{c}^{2} R^{2}
\end{aligned}
$$

Substituting,

$$
\begin{aligned}
R_{x} & +\left(p_{1}-p_{2}\right) \pi R^{2}=-\pi \rho U_{1}^{2} R^{2}+\frac{1}{3} \pi \rho U_{c}^{2} R^{2}=-\pi \rho U_{1}^{2} R^{2}+\frac{1}{3} \pi \rho\left(2 U_{1}\right)^{2} R^{2} \\
R_{x} & =-\left(p_{1}-p_{2}\right) \frac{\pi D^{2}}{4}+\frac{1}{3} \rho U_{1}^{2} \frac{\pi D^{2}}{4} \\
& =-1.92 \frac{\mathrm{~N}}{\mathrm{~m}^{2}} \times \frac{\pi}{4}(0.025)^{2} m^{2}+\frac{1}{3} \times 1.23 \frac{\mathrm{~kg}}{\mathrm{~m}^{3}} \times(0.870)^{2} \frac{m^{2}}{\mathrm{~s}^{2}} \times \frac{\pi}{4}(0.025)^{2} \mathrm{~m}_{\times}^{2} \frac{\mathrm{~N} \cdot \mathrm{~s}^{2}}{\mathrm{~kg} \cdot \mathrm{~m}} \\
R_{x} & =-7.90 \times 10^{-4} \mathrm{~N}(\text { to left on } \mathrm{Cv}, \text { since }<0)
\end{aligned}
$$

Given: Incompressible flow in boundary layer, as shown.

$$
\begin{aligned}
& \text { In BL: } \frac{u}{\tilde{U}_{0}}=\frac{3}{2}\left(\frac{y}{\delta}\right)-\frac{1}{2}\left(\frac{y}{\delta}\right)^{3} \\
& \text { Standard air } \\
& \text { unit width to hold plate. }
\end{aligned}
$$

Find: Horizontal force per

Solution: Apply continuity and x component momentum. Use $C V$, G shown.
Basic equations: $0=\frac{\partial}{\forall 1} \int_{c v}^{o(i)} \rho d t+\int_{c S} \rho \vec{V} d \vec{A}$

$$
\begin{gathered}
=o(3)=o(1) \\
F_{5_{x}}+F \beta_{x}=\frac{\partial t^{t}}{\partial t} \int_{c v} u \rho d t+\int_{c s} u \rho \vec{v} \cdot d \vec{A}
\end{gathered}
$$

Assumptions: (1) Steady flow
(2) No net pressure force; $F_{s_{x}}=-F_{f}$
(3) $F_{B x}=0$
(4) Uniform flow at section ab
(5) Incompressible flow

Then from continuity,

$$
0=\left\{-\left|\rho U_{0} \omega \delta\right|\right\}+\dot{m}_{b c}+\left\{\int_{0}^{\delta} \rho u \omega d y\right\} ; \delta=\int_{0}^{\delta} d y ; \dot{m}_{b c}=\int_{0}^{\delta} \rho\left(\nu_{0}-u\right) \omega d y
$$

From momentum equation,

$$
\begin{aligned}
& -F_{f}=v_{0}\left\{-\left|\rho v_{0} w \delta\right|\right\}+v_{0} \dot{m}_{b c}+\left\{\int_{0}^{\delta} u \rho u w d y\right\}=\int_{0}^{\delta}\left[-v_{0}^{2}+u^{2}+U_{0}\left(v_{0}-u\right)\right] w d y \\
& \text { Drag force }=F_{f}=\int_{0}^{\delta} \rho u\left(v_{0}-u\right) w d y=\int_{0}^{\delta} \rho v_{0}^{2} \frac{u}{v_{0}}\left(1-\frac{u}{v_{0}}\right) w d y
\end{aligned}
$$

At section cd, $\frac{u}{v_{0}}=\frac{3}{2} \eta-\frac{1}{2} \eta^{3} ; d y=S d \eta$

$$
\begin{aligned}
\frac{F_{f}}{w} & =\int_{0}^{\eta=1} \rho U_{0}^{2} \delta \frac{u}{U J_{0}}\left(1-\frac{u}{\sigma_{0}}\right) d \eta=\rho U_{0}^{2} \delta \int_{0}^{1}\left(\frac{3}{2} \eta-\frac{1}{2} \eta^{3}\right)\left(1-\frac{3}{2} \eta+\frac{1}{2} \eta^{3}\right) d \eta \\
& =\rho U_{0}^{2} \delta \int_{0}^{1}\left(\frac{3}{2} \eta-\frac{9}{4} \eta^{2}-\frac{1}{2} \eta^{3}+\frac{3}{2} \eta^{4}-\frac{1}{4} \eta^{6}\right) d \eta \\
& =\rho U_{0}^{2} \delta\left[\frac{3}{4} \eta^{2}-\frac{3}{4} \eta^{3}-\frac{1}{8} \eta \eta^{4}+\frac{3}{10} \eta^{5}-\frac{1}{2 \delta} \eta^{2}\right]_{0}^{1}=\rho U_{0}^{2} \delta(0.139) \\
& =0.139 n 1.23 \frac{\mathrm{~kg}}{\mathrm{~m}^{3}} \times(10)^{2} \frac{\mathrm{~m}^{2}}{\mathrm{~s}^{2}} \times 0.0023 \mathrm{~m} \times \frac{\mathrm{N} \mathrm{~s}^{2}}{\mathrm{~kg} \cdot \mathrm{~m}} \\
\frac{F_{f}}{w} & =0.0393 \mathrm{~N} / \mathrm{m}(\text { to right })
\end{aligned}
$$

Given: Incompressible flow in boundary layer.

$$
\begin{aligned}
W & =0.6 \mathrm{~m} \\
U & =30 \mathrm{~m} / \mathrm{s} \\
\rho & =1.24 \mathrm{~kg} / \mathrm{m}^{3}
\end{aligned}
$$

Find: (a) Show that drag, $D=\int_{0}^{\delta} u(v-u) w d y$
(b) Evaluate for conditions shown.

Solution: Apply continuity and x component of momentum using CV shown.
Basic equations: $\quad 0=\frac{\partial d}{d t} \int_{c v}^{=0(1)} p d \forall+\int_{C S} \rho \vec{v} \cdot d \vec{A}$

$$
F_{S x}+F F_{f_{x}}^{=0(3)}=\frac{\partial^{=o(1)}}{d t} \int_{C v} u p d \forall+\int_{C S} u \rho \vec{v} \cdot d \vec{A}
$$

Assumptions: (1) Steady flow
(2) No net pressured force; $F_{S_{x}}=-F_{f}$
(3) $F_{B_{x}}=0$
(4) Uniform flow at section (4)
(5) Incompressible flow

Then from continuity

$$
0=\{-|\rho u \omega \delta|\}+\left\{\left|\int_{0}^{\delta} \rho u \omega d y\right|\right\}+\dot{m}_{B C} ; \delta=\int_{0}^{\delta} d y ; \dot{m}_{B C}=\rho \int_{0}^{\delta}(U-u) u d d y
$$

From momentum

$$
\begin{aligned}
& -F_{f}=U\{-|f v w \delta|\}+\left\{\int_{0}^{\delta} f u^{2} w d y \mid\right\}+U \dot{m}_{B c}=\rho \int_{0}^{\delta}\left[-v^{2}+u^{2}+U(\sigma-u)\right] w d y \\
& \text { Drag }=F_{f}=\int_{0}^{\delta} f u(v-u) u d y
\end{aligned}
$$

At CD, $\frac{u}{v}=2\left(\frac{y}{\delta}\right)-\left(\frac{y}{\delta}\right)^{2}=2 \eta-\eta^{2} ; d y=\delta d\left(\frac{y}{\delta}\right)=\delta d \eta$

$$
\begin{aligned}
\text { Drag } & =\int_{0}^{\delta} \rho U\left[2\left(\frac{y}{\delta}\right)-\left(\frac{y}{\delta}\right)^{2}\right]\left(U-U\left[2\left(\frac{y}{\delta}\right)-\left(\frac{y}{\delta}\right)^{2}\right]\right) w d y=\rho v^{2} w \delta \int_{0}^{1}\left(2 \eta-\eta^{2}\right)\left(1-2 \eta+\eta^{2}\right) d \eta \\
& =\rho U^{2} \omega \delta \int_{0}^{1}\left(2 \eta-5 \eta^{2}+4 \eta^{3}-\eta^{4}\right) d \eta=\rho U^{2} w \delta\left[\eta^{2}-\frac{5}{3} \eta^{3}+\eta^{4}-\frac{1}{5} \eta \eta^{5}\right]_{0}^{1} \\
& =\frac{2}{15} \rho U^{2} \omega \delta
\end{aligned}
$$

$$
\text { Drag }=\frac{2}{15} \times 1.24 \frac{\mathrm{~kg}}{\mathrm{~m}^{3}} \times(30)^{2} \frac{\mathrm{~m}^{2}}{\mathrm{~s}^{2}} \times 0.6 \mathrm{~m}_{\times} 0.005 \mathrm{~m} \times \frac{\mathrm{N} \cdot \mathrm{~s}^{2}}{\mathrm{~kg} \cdot \mathrm{~m}}=0.446 \mathrm{~N}
$$

Given: Incompressible flow in boundary layer, as shown.
In BL: $\frac{u}{\bar{D}_{0}}=\frac{y}{\delta}$
standard air
Find: Horizontal force per unit width to hold plate.

Solution: Apply continuity and x component momentum. Use CV, CS shown.
Basic equations: $\quad 0=\frac{\partial \partial^{T} o(1)}{\partial t} \int_{c v} p d \psi+\int_{c s} p \vec{v} \cdot d \vec{A}$

Assumptions: (1) Steady flow
(2) No net pressure force; $F_{S_{x}}=-F_{f}$
(3) $F_{B x}=0$
(4) Uniform flow at section ab
(5) Incompressible flow

Then from cont inuits,

$$
0=\left\{-\left|\rho U_{0} w \delta\right|\right\}+\dot{m}_{b c}+\left\{\int_{0}^{\delta} \rho u w d y \mid\right\} ; \delta=\int_{0}^{\delta} d y ; \dot{m} b c=\int_{0}^{\delta} \rho\left(v_{0}-u\right) w d y
$$

From momentum equation,

$$
-F_{f}=U_{0}\left\{-\left|\rho v_{0} \omega \delta\right|\right\}+U_{0} \dot{m}_{b c}+\left\{\int_{0}^{\delta} u p u \omega d y\right\}=\int_{0}^{\delta} \rho\left[-v_{0}^{2}+u^{2}+v_{0}\left(v_{0}-u\right)\right] \omega d y
$$

Drag force $=F_{f}=\int_{0}^{\delta} p u\left(U_{0}-u\right) \omega d y$
At $c d, \frac{u}{v_{0}}=\frac{y}{\delta}=\eta ; d y=\delta d\left(\frac{y}{\delta}\right)-\delta d \eta$

$$
\begin{aligned}
\frac{F_{f}}{w} & =\int_{0}^{y / s} \rho v_{0} \frac{y}{\delta}\left(v_{0}-v_{0} \frac{y}{\delta}\right) \delta d\left(\frac{y}{\delta}\right)=\rho v_{0}^{2} \delta \int_{0}^{1} \eta(1-\eta) d \eta=\rho v_{0}^{2} \delta\left[\frac{\eta^{2}}{2}-\frac{\eta}{3}\right]_{0}^{1} \\
& =\frac{\rho U^{2} \delta}{6}=\frac{1}{6} \times 1.23 \frac{\mathrm{~kg}}{\mathrm{~m}^{3}} \times(30)^{2} \frac{\mathrm{~m}^{2}}{\mathrm{~s}^{2}} \times 0.0015 \mathrm{~m} \times \frac{\mathrm{N} \cdot \mathrm{~s}^{2}}{\mathrm{~kg} \cdot \mathrm{~m}} \\
\frac{F_{f}}{w} & =0.277 \mathrm{~N} / \mathrm{m}(\text { to } \mathrm{left})
\end{aligned}
$$

Problem 4.88.
Gwen: Flow offlat jet over sharp-edged splitter plate, as shown. Neglect friction force between water and plate; $0 \leqslant \alpha \leqslant 0.5$.
Find: (a) Expression for angle θ as a function of α
(b) Expression for Force R_{x} needed to hold splitter plate in place.
Plot: both θ and R_{x} as functions of θ.
Solution
Apply the x and y components of the momentum equation to fe cl shown.
Basic equations:

$$
\begin{aligned}
& F F_{y}=0(\bar{z})=d\left(\sqrt{s} y_{y}=\frac{\partial}{\partial y} C_{\omega v} v p d t+\int_{v} v(p \vec{v} \cdot d \vec{A})\right.
\end{aligned}
$$

Assumptions: (i) no net pressure forces on cl.
(2) no friction in y direction, so $F_{s y}=0$
(3) neakect body forces
(4) steady flag
(5) no garage in jet speed: $V_{1}=V_{2}=V_{3}=V$
(b) uniform tow at each section

Then from the y equation

$$
\begin{aligned}
& 0=v_{1}\left\{-\left\{p v_{1} A_{1} \mid\right\}+v_{2}\left\{\left|p V_{2} A_{2}\right|\right\}+v_{3}\left\{\mid p V_{3} A_{3}\right\}\right. \\
& v_{1}=0 \quad v_{2}=V_{1} \sin \theta \\
& A_{1}=w h \quad v_{3}=-v \\
& A_{2}=w(1-\alpha) h \quad A_{3}=w \alpha h
\end{aligned}
$$

$\{w$ is depth\}
This

$$
0=0+p v^{2} \sin \theta w(1-\alpha) h-p v^{2} w \alpha h
$$

$$
\sin \theta=\frac{p v^{2} w \alpha h}{p v^{2} w(1-\alpha) h}=\frac{\alpha}{(1-\alpha)} ; \theta=\sin ^{-1}\left(\frac{\alpha}{1-\alpha}\right)
$$

From the x equation

$$
\begin{aligned}
& R_{x}=u_{1}\left\{-\left|p_{1} v V_{1} A_{1}\right\rangle+u_{2}\left\{\left|p_{2} v_{2} A_{2}\right\rangle\right\}+u_{3}\left\{\left|p_{3}\right\rangle_{3} A_{3}\right\rangle\right\} \\
& u_{1}=v \quad u_{2}=v \cos \theta \quad u_{3}=0 \\
& R_{1}=-p v^{2} w h+p v^{2} \cos \theta w(1-\alpha) h=p v^{2} w h[\cos \theta(1-\alpha)-1] \\
& \text { But } \cos \theta=\left(1-\sin ^{2} \theta\right)^{1 / 2}=\left(1-\frac{\alpha^{2}}{(1-\alpha)^{2}}\right)^{1 / 2}=\frac{(1-2 \alpha)^{1 / 2}}{(1-\alpha)} \\
& \therefore R_{x}=-p \nu^{2} w h\left[1-(1-2 \alpha)^{1 / 2}\right] \quad\left(R_{x}<0 \text {; so tolert }\right) R_{x}
\end{aligned}
$$

plots of: $\theta=\sin ^{-1}\left(\frac{\alpha}{1-\alpha}\right)$ and

$$
\frac{R_{*}}{R_{\alpha \alpha=0.5}}=1-\sqrt{1-2 \alpha}
$$

are presented below

Flow deflection by sharp-edged splitter:

$$
\alpha=\quad \text { fraction of jet intercepted by splitter }
$$

Calculated Results: Deflection angle

Calculated Results: Force over maximum force

Problem 4.89

Given: Plane jet striking inclined plate, as shown. No frictional force along plate surface.

Find: (a) Expression for h_{2} / h as a function of θ.
(b) Plot of resets.
(c) comment on limiting cases, $\theta=0$ and $\theta=90^{\circ}$.

Solution: Apply the x component of the momentum equation using the $C V$ and coordinates shown.

Basic equation:

$$
\begin{aligned}
& =0(1)=\alpha(2)=0(3) \\
& F F_{x}+F \hat{p}_{x}=\frac{\partial f}{d t} \int_{c v} u p d \forall+\int_{c S} u p \vec{v} \cdot d \vec{A}
\end{aligned}
$$

Assumptions: (1) No surface force on CV
(2) Neglect body fores

(3) Steady flow
(4) No change in jet speed: $V_{1}=V_{2}=V_{3}=V$
(5) Uniform flow at each section

From continuity for uniform incompressible flow $0=-\rho v w h+\rho v \omega h_{z}+p v h_{3}$ or

$$
h=h_{2}+h_{3}=h_{1} \text { or } h_{3}=h_{1}-h_{2}
$$

From momentum

$$
\begin{aligned}
0= & u_{1}\left\{-\left|\rho v w h_{1}\right|\right\}+u_{2}\left\{+\left|\rho v w h_{2}\right|\right\}+u_{3}\left\{+\left|\rho v w h_{3}\right|\right\} \\
& u_{1}=v \sin \theta \quad u_{2}=v \quad u_{3}=-v \\
0= & -\rho v^{2} \sin \theta w h_{1}+\rho v^{2} w_{1} h_{2}-\rho v^{2} \omega h_{3}
\end{aligned}
$$

substituting from continuity and simplifying

$$
0=-\sin \theta h_{1}+h_{2}-\left(h_{1}-h_{2}\right) \text { so } \frac{h_{2}}{h}=\frac{h_{2}}{h_{1}}=\frac{1+\sin \theta}{2}
$$

Plot:

At $\theta=0, \frac{h_{2}}{h}=0.5$; flow is equally split when plate is 1 to $e t$.
At $\theta=90^{\circ}, \frac{h_{2}}{h}=1.0$; plate has no effect on flow.

Problem 4.90°
Given: Model gas flow in a propulsion nozzle as a spherical source; $V_{e}=\cos s t a r t$

Find: (a) Expression for axial thrust, T_{a}, and compare to the $1-8$ approximation. $T=$ ' il le
b) Percent error for $\alpha=15^{\circ}$.

Pot: the percent error us α for $0 \leqslant \alpha \leqslant 22.5^{\circ}$.
Solution:
Apply definitions $\dot{r}=\int_{p} p v d t, T_{a}=\int_{R} u p v d f$. Unespherically symmetric flow.

The mass flow rate is [assuming $\left.\rho_{e} \neq p_{e}(\theta)\right]$

$$
\left.\dot{m}=\int_{A} p \cup d A=\int_{0}^{\alpha} f_{e} \nu_{e}(2 \pi R \sin \theta) R d \theta=2 \pi p_{e} v_{e} e^{2}[-\cos E]_{0}^{\alpha}=2 \pi p_{e}\right)^{2} p^{2}(1-\cos A)
$$

The one-dumensioral approximation for thrust is then

$$
\begin{equation*}
T=\dot{M} \psi_{e}=2 \pi \rho_{e} \psi_{e}^{2} R^{2}(1-\cos \alpha) \tag{1-x}
\end{equation*}
$$

The axial trust is givernby

$$
\begin{aligned}
& T_{a}=\int u p d d A=\left(\int_{0}^{\alpha} \nu_{e} \cos \theta p_{e} ل_{e}(2 \pi R \sin \theta) R d \theta=2 \pi \rho_{e}\right)_{e}^{2} R^{2} \int_{0}^{\alpha} \sin \theta \cos \theta d t \\
& T_{a}=2 \pi p_{e} \nu_{e}^{2} R^{2}\left[\frac{\sin ^{2} \theta}{2}\right]_{0}^{\alpha}=\pi p_{e} V_{e}^{2} R^{2} \sin ^{2} \alpha
\end{aligned}
$$

The error in the one-dumensional approximation is

$$
e=\frac{T_{1-\phi}-T_{a}}{T_{a}}=\frac{T_{1-x}}{T_{a}}=\frac{2 \pi p_{e} V_{e}^{2} F^{2}(1-\cos \alpha)}{\pi p_{e} V_{e}^{2} p^{2} \sin ^{2} \alpha}-1=\frac{2(1-\cos \alpha)}{\sin ^{2} \alpha}-1 \ldots(1)
$$

The percent error is plotted as a function of α

$$
\begin{aligned}
& \text { For } \alpha=\left(5^{\circ}\right. \\
& e_{15}=\frac{2(1-\cos 15)}{\sin ^{2} 15}-1 \\
& e_{15}=0.0173 \text { or } 173^{\circ} e^{5}
\end{aligned}
$$

Given: Tanks and flat plate shown.
Find: Minimum height n needed to keep plate in place.

Solution: Apply Bernoulli and momentum equations, use CV enclosing. plate, as shown.

Basic equations: $\frac{P}{\rho}+\frac{V^{2}}{2}+g z=$ constant

$$
F_{s x}+F_{\dot{\beta} x}^{=o(5)}=\frac{d}{\partial t} \int_{c u}^{=o(1)} u f d t+\int_{c s} u f \vec{v} \cdot d \overrightarrow{d A}
$$

Assumptions: (1) Steady flow
(2) Incompressible flow
(3) Flow a long a streamline
(4) No friction
(5) $F_{B x}=0$

Apply Bernoulli from water surface to jet

$$
\frac{\not p}{p}+\frac{v^{2}}{p}+g h=\frac{p}{p}+\frac{v^{2}}{2}+g(0) \text { so that } v^{2}=2 g h \text { or } v=\sqrt{2 g h}
$$

From flue ir statics, $p_{3 g}=\rho g H$
From momentum

$$
\begin{gathered}
-\rho_{3 g} A=-\rho g H A=u_{1}\{-\rho v A\}+u_{2}\{+\rho v A\}=-\rho v^{2} A \\
u_{1}=v \quad u_{2}=0
\end{gathered}
$$

Thus, using Bernoulli,

$$
\rho g H A=\rho V^{2} A=\rho(2 g h) A=2 \rho g h A
$$

and

$$
h=\frac{H}{z}
$$

Given: A ir jet striking disk of diameter, $D=200 \mathrm{~mm}$, as shocun. Find: (a) Manometer deflection.
(b) Force to hold disk.

Solution: Apply Bernoulli and momentum equations. Use CV shown.
Basic equation: $p \mathrm{~V}^{2} \mathrm{~L}^{(5)}$
Basic equations: $\frac{p}{p}+\frac{v^{2}}{2}+g_{p}=$ constant

$$
=0(5)=0(1)
$$

$F_{s x}+F_{d x}=\frac{\partial \hat{d}}{\partial t} \int_{c v} u \rho d t+\int_{c s} u \rho \vec{v} \cdot d \vec{A}$
Assumptions: (1) Steady flow.

(2) Incompressible flow
(3) Flow a long a streamline
(4) No friction
(5) $F_{B_{x}}=0$; horizontal flow
(6) Uniform flow in jet

Apply Bernoulli between jet exit and stagnation point

$$
\frac{p}{\rho}+\frac{v^{2}}{2}=\frac{p_{0}}{\rho}+0 ; p_{0}-p=\frac{1}{2} \rho v^{2}
$$

From hydrostatics, $p_{0}-p=36 p_{H_{2}} g \Delta h$
Thus $\Delta h=\frac{\frac{1}{2} \rho V^{2}}{S G \rho+2 \mathrm{O} g}=\frac{\rho V^{2}}{2 S G \rho \mathrm{C}_{20} g}$

$$
\Delta h=1.23 \frac{\mathrm{~kg}}{\mathrm{~m}^{3}} \times(75)^{2} \mathrm{~m}^{2} \times \frac{1}{2(1.75)} \times \frac{\mathrm{m}^{3}}{999 \mathrm{~kg}^{2}} \times \frac{\mathrm{s}^{2}}{9.81 \mathrm{~m}}=0.202 \mathrm{~m} \text { or } 202
$$

From momentum,

$$
\begin{gathered}
R_{x}=u_{1}\{-\rho V A\}+u_{2}\{\rho V A\}=-\rho V^{2} A \\
u_{1}=V \quad u_{2}=0
\end{gathered}
$$

$$
R_{x}=-1.23 \frac{\mathrm{~kg}}{\mathrm{~m}^{3}} \times(75)^{2} \frac{\mathrm{~m}^{2}}{\mathrm{~s}^{2}} \times \frac{\pi}{4}(0.01)^{2} \mathrm{~m}^{2} \times \frac{\mathrm{N} \cdot \mathrm{~s}^{2}}{\mathrm{~kg} \cdot \mathrm{~m}}=-0.543 \mathrm{~N}(\text { to left })
$$

This is the force needed to hold the plate.
The "force" of the jet on the plate is

$$
k_{x}=-R_{x}=0.543 \mathrm{~N}\left(t_{0} \text { right }\right)
$$

Problem．${ }^{*} 4.93$ ．

Given：Jet flowing downward，striking
horizontal disk，as shown．
Find：（a）Velocity in jet at h ．
（b）Expression for force to hold disk．
（c）Evaluate for $h=3.0 \mathrm{~m}$ ．
Solution：Apply Bernoulli and momentum equations．Use CV shown．

Assumptions：（1）Steady flow
（2）Incompressible flow
（3）Flow a long a streamline
（4）Frictionless flow
（5）Atmospheric pressure along jet
（6）Neglect water on plate；$F_{B_{z}}=0$
（7）Uniform flow at each section
The Bernoulli equation becomes

$$
\frac{v_{0}^{2}}{2}+g h=\frac{v^{2}}{2}+g(0) \quad \text { or } \quad v^{2}=v_{0}^{2}+2 g h ; \quad v=\sqrt{V_{0}^{2}+2 g h}
$$

From the momentrem equation

$$
\begin{gathered}
R_{z}=w_{1}\{-\rho \vee A\}+w_{2}\left\{+\rho V_{0} A_{0}\right\}=+\rho V^{2} A \\
w_{1}=-V \quad w_{2}=0
\end{gathered}
$$

But from continuity，$\dot{m}=\rho V_{0} A_{0}=\rho V A$ ．Thus $V A=V_{0} A_{0}$ ，and

$$
R_{z}=\rho V_{0} A_{0} V=\rho V_{0} A_{0} \sqrt{V_{0}^{2}+2 g h}
$$

At $h=3.0 \mathrm{~m}$ ，

$$
\begin{aligned}
& R_{z}=999 \frac{\mathrm{~kg}}{\mathrm{~m}^{3}} \times \frac{2.5 \mathrm{~m}}{\mathrm{~s}} \times \frac{\pi}{4}(0.015)^{2} \mathrm{~m}^{2}\left[(2.5)^{2} \frac{\mathrm{~m}^{2}}{5^{2}}+2 \times 9.81 \mathrm{~m} \times 3.0 \mathrm{~m}\right]^{1 / 2} \frac{\mathrm{~N}^{2}}{\mathrm{~kg} \cdot \mathrm{~m}} \\
& R_{z}=3.56 \mathrm{~N} \text { (upward force) }
\end{aligned}
$$

Given: Horizontal disk above jet, as shown.
No external force applied to disk.
Find: (a) Expression for jet speed, $V(h)$.
(b) Equilibrium height for disk.

Solution: Apply Bernoulli and momentum equations. Use $C S, C V$ shown.

Basic equations: $\frac{f^{(5)}}{p}+\frac{v^{2}}{2}+g z=$ constant

$$
F_{\phi 3}^{\hat{1}}+F_{B_{3}}=\frac{\partial^{2}}{d t} \int_{c v}^{=b(1)} w p d t+\int_{c s} \cos \rho \vec{v} \cdot d \vec{A}
$$

Assumptions: (1) Steady flow
(z) Incompressible flow
(3) Flow along a streamline
(4) Frictionless, flow
(s) Atmospheric pressure along jet
(6) Neglect mass of water in CV
(7) Uniform flow at each section

The Bernoulli equation becomes

$$
\frac{V_{0}^{2}}{2}+g(0)=\frac{V^{2}}{2}+g h \text { or } V^{2}=V_{0}^{2}-2 g h ; V=\sqrt{V_{0}^{2}-2 g h}
$$

From the momentum equation.

$$
\begin{gathered}
-M g=w_{1}\{-\rho \vee A\}+w_{2}\{+\rho \vee A\}=-\rho V^{2} A \\
w_{1}=V \quad w_{2}=0
\end{gathered}
$$

But from continuity, $\dot{m}=\rho V_{0} A_{0}=\rho V A$. Thus $V A=V_{0} A_{0}$, and

$$
M g=\rho V_{0} A_{0} V=\rho V_{0} A_{0} \sqrt{V_{0}^{2}-2 g h}
$$

Solving for h,

$$
\begin{aligned}
h & =\frac{1}{2 g}\left[V_{0}^{2}-\left(\frac{M g}{\rho V_{0} A_{0}}\right)^{2}\right] \\
& =\frac{1}{2} \times \frac{s^{2}}{32.2 f t}\left[(35)^{2} \frac{f^{2}}{s^{2}}-\left(516 m_{\times} 32.2 \frac{f+}{52} \times \frac{f+3}{62.415 m} \times \frac{5}{25 f+} \times \frac{4}{\pi} \frac{1}{(1)^{2} n_{1}} \times \frac{144 n^{2}}{f^{2}}\right)^{2}\right] \\
h & =16.2 \mathrm{ft}
\end{aligned}
$$

Given: Stream of air at standard conditions strikes a curved vane. stagnation tube with water-tilled manometer in exit plane.
Find: (a) speed of air leaving nozzle.
(b) Horizontal component of force exerted an vase by jet.
(c) comment on each assumption used to solve this problem.

Solution: Apply the definition of stagnation pressure and the x component of the momentum equation.
By definition $p_{0}=p+\frac{1}{2} \rho_{\text {air }} V^{2}$
Fromfliud statics, $p_{0}-p=$ Pwaterg Δh
Combining, Pwater $g \Delta h=\frac{1}{2} \rho_{\text {air }} v^{2}$ or $V=\sqrt{\frac{2 \rho_{\text {water }} g \Delta h}{\rho_{\text {air }}}}$

$$
V=\left[2 \times 1.44 \frac{\operatorname{sing}}{f+3} \times 32.2 \frac{\mathrm{ft}}{\mathrm{~s}^{2}} \times 7 \mathrm{in} \times \frac{\mathrm{ft}}{} \times \frac{3}{0.00238 \operatorname{sing}} \times \frac{\mathrm{ft}}{12 \mathrm{in}}\right]^{\frac{1}{2}}=175 \mathrm{ft} / \mathrm{s}
$$

The momentum equation is

$$
F_{s x}+F_{P_{x}}^{=f_{x}^{(z)}}=\frac{d^{t}}{\partial t} \int_{C v}^{m(s)} u \rho d \forall+\int_{C s} u \rho \vec{v} \cdot d \vec{A}
$$

Assumptions: (1) No net pressure force
(2) $F_{B_{X}}=0$
(3) Steady flow
(4) Uniform flow

(5) Constant speed on vane

Then

$$
\begin{gathered}
R_{x}=u_{1}\{-\rho \vee A\}+u_{2}\{\rho V A\}=-\rho V^{2} A(1+\cos \theta) \\
u_{1}=v \quad u_{2}=-v \cos \theta \\
R_{x}=-0.00238 \frac{\operatorname{sing}}{f^{3}} \times(175)^{2} \frac{f f^{2}}{5^{2}} \times \frac{\pi}{4}\left(\frac{z}{12}\right)^{2} f++\left(1+\cos 30^{\circ}\right)=-2.97 \mathrm{lbf}
\end{gathered}
$$

Force of air on ware is $k_{x}=-R_{x}=+2.97 \mathrm{lbf}$ (to right)

Comments on each assumption used to solve this problem:

- Frictionless flow in the nozzle is a good assumption.
- Incompressible flow is a good assumption for this low-speed flow.
- No horizontal component of body force is exact.
- No net pressure force on the control volume is exact.
- Frictionless flow along the vane is not realistic; air flow along the vane would be slowed by friction, reducing the momentum flux at the exit.

Given: water jet supporting conical object, as shown.
Find: (a) Combined mass of cone and water, M, supported.
(b) Estimate mass of wafer in CV.

Solution: Apply continuity, Bernoulli, and momentum equations using cV shown.
Basic equations: $0=\frac{d}{d t} \int_{C V}^{=O(1)} \rho d \forall+\int_{C S} \rho \vec{V} \cdot d \vec{A}$

$$
\begin{aligned}
& \phi_{1}^{(b)}+\frac{V_{1}^{2}}{2}+g z_{1}=\frac{p_{2}^{(}}{p}+\frac{V_{c}^{2}}{2}+g z_{2} \\
& F_{S}^{A}=D(6) \\
& F_{S z}+F_{B z}=\frac{b^{4}}{d t} \int_{C V} \omega \rho(1)
\end{aligned}
$$

Assumptions: (1) steady flow

$\left.\begin{array}{l}\text { (2) No friction } \\ \text { (3) Flow a long a streamline } \\ \text { (4) Incompressible flow }\end{array}\right\}$ required for Bernoulli
(5) Uniform flow at each crosi-section
(6) $F_{s z}=0$ since pate acts everywhere

Then

$$
\Delta=\left\{-\left|\rho V_{1} A_{1}\right|\right\}+\left\{+\left|\rho V_{2} A_{2}\right|\right\} \text { so } V_{1} A_{1}=V_{2} A_{2}
$$

From Bernoulli

$$
\frac{V_{1}^{2}}{2}+g z_{1}=\frac{V_{2}^{2}}{2}+g z_{2}=\frac{V_{0}^{2}}{2}=\frac{V_{2}^{2}}{2}+g H ; V_{2}^{2}=V_{0}^{2}-2 g H
$$

from momentern

$$
\begin{aligned}
F_{B_{z}}=\int_{L S} w \rho \vec{V} \cdot d \vec{A}=-M g= & w_{1}\left\{-\left|\rho V_{1} A_{1}\right|\right\}+\omega_{2}\left\{+\left|\rho V_{2} A_{2}\right|\right\} \\
& w_{1}=V_{0} \quad w_{2}=V_{2} \cos \theta
\end{aligned}
$$

or

$$
-M g=-V_{0} \rho V_{1} A_{1}+V_{2} \cos \theta \rho V_{2} A_{2}=\rho V_{0} A_{1}\left(V_{2} \cos \theta-V_{0}\right)
$$

so

$$
M=\frac{\left(V_{0}-V_{2} \cos \theta\right) \rho V_{0} A_{1}}{g}
$$

From Bernoulli

$$
V_{2}=\left(V_{0}^{2}-2 g H\right)^{1 / 2}=\left[(10)^{2} \frac{\mathrm{~m}^{2}}{\mathrm{~s}^{2}}-2 \times 9.81 \frac{\mathrm{~m}}{\mathrm{~s}^{2}} \times 1 \mathrm{~m}\right]^{1 / 2}=8.97 \mathrm{~m} / \mathrm{s}
$$

Substitheting

$$
\begin{aligned}
& M=\left(10.0 \frac{\mathrm{~m}}{\mathrm{~s}}-8.97 \frac{\mathrm{~m}}{\leq} \times \cos 30^{\circ}\right)^{499 \frac{\mathrm{~kg}}{m^{3}} \times 10 \frac{\mathrm{~m}}{\mathrm{~s}} \times \frac{\pi}{4}(0.050)^{2} \mathrm{~m}^{2} \times \frac{\mathrm{s}^{2}}{9.81 \mathrm{~m}}} \\
& M=4.46 \mathrm{~kg} \text { (total mass in } \mathrm{CV}: \text { water + object) }
\end{aligned}
$$

To find mass of water in cV, we have 3 options:
(1) assume area of jet is constant

$$
M=\rho \forall \simeq \rho A, H=999 \frac{\mathrm{~kg}}{\mathrm{~m}^{3}} \times \frac{\pi}{4}(0.05)^{2} m_{x}^{2} 1 \mathrm{~m}=1.96 \mathrm{~kg}
$$

(2) use a cV that encloses the free jet only

Continuity $\quad V, A_{1}=V_{2} A_{2}$
Bernoulli $\quad V_{2}=\left(V_{1}^{2}-2 g H\right)^{1 / 2}$
Momentum $-M_{\omega g}=\omega_{1}\left\{-\left|\rho v_{1} A_{1}\right|\right\}+\omega_{2}\left\{+\mid \rho V_{2} \overline{A_{L} \mid \prime}\right\}$

$$
W_{1}=V_{1}=V_{0} \quad W_{2}=V_{2}
$$

substituting in momentum

$$
\begin{aligned}
-M_{\omega} g & =V_{0}\left(-\rho V_{0} A_{1}\right)+V_{2}\left(+\rho V_{0} A_{1}\right)=\rho V_{0} A_{1}\left(V_{2}-V_{0}\right) \\
M_{\omega} & =\frac{\rho V_{0} A_{1}\left(V_{0}-V_{e}\right)}{g} \\
& =999 \frac{\mathrm{~kg}}{\mathrm{~m}^{3}} \times 10 \frac{\mathrm{~m}}{\mathrm{~s}} \times \frac{\pi}{4}(0.05)^{2} \mathrm{~m}^{2}\left(10-8.47 \frac{\mathrm{~m}}{\mathrm{~s}} \times \frac{\mathrm{s}^{2}}{9.81 \mathrm{~m}}\right. \\
M_{\omega} & =2.06 \mathrm{~kg}
\end{aligned}
$$

(3) Evaluate the area at each cross-section using Bernoulli and continuity, then integrate to find \forall.

$$
\begin{aligned}
& V A=V_{0} A_{1}=\left(V_{0}^{2}-2 g z\right)^{1 / 2} A=V_{0} A_{1} \text { so } A=\frac{V_{0} A_{1}}{\left(V_{0}^{2}-2 g z\right)^{1 / 2}} \\
& \forall=\int_{0}^{H} A d z=\int_{0}^{H} \frac{V_{0} A_{1}}{\left(V_{0}^{2}-2 g z\right)^{1 / 2}} d z=A_{1} \int_{0}^{H} \frac{V_{0}^{2}}{2 g} \frac{1}{\left(1-\frac{2 g z}{V_{0}^{2}}\right)^{1 / 2}} d\left(\frac{2 g z}{V_{0}^{2}}\right)
\end{aligned}
$$

This can be integrated. Let $r=1-2 g z / v_{0}^{2}$, so $\int=\int \frac{-d r}{N^{1 / 2}}$
Then $\forall=A, \frac{V_{0}^{2}}{2 g}\left[-2\left(1-\frac{2 g z}{V_{0}}\right)^{1 / 2}\right]_{z=0}^{3-h}=\frac{A_{1}}{g}\left[V_{0}^{2}-V_{0}\left(V_{0}^{2}-2 g h\right)^{1 / 2}\right]$
and

$$
M_{w}=\rho \psi=\frac{\rho A_{1} Y_{0}\left(V_{0}-V_{2}\right)}{g}=2.06 \mathrm{~kg} \text { (same as (2) above) }
$$

Thus the mass of the cone is $M_{c}=M-M_{w}=2.40 \mathrm{~kg}$.
(Note: If V_{0} were smaller or H langer, V_{c} would differ more from V_{0} and the jet area would increase significantly. option (2) would still give the correct result with little effort. $\}$

Problem *4.97

A venturi meter installed along a water pipe consists of a convergent section, a constant-area throat, and a divergent section. The pipe diameter is $D=100 \mathrm{~mm}$ and the throat diameter is d $=40 \mathrm{~mm}$. Find the net fluid force acting on the convergent section if the water pressure in the pipe is 600 kPa (gage) and the average velocity is $5 \mathrm{~m} / \mathrm{s}$. For this analysis neglect viscous effects.

Given: Data on flow and venturi geometry

Find: Force on convergent section

Solution

The given data are

D 0.1 m
d $\quad 0.04 \square \mathrm{~m}$
$p_{1} \quad 600[\mathrm{kPa}$
$\mathrm{V}_{1} \quad 5\left[\frac{\mathrm{~m}}{\mathrm{~s}}\right.$

Then

$$
\begin{array}{lll}
\mathrm{A}_{1} & \frac{\mathrm{~S} \mathrm{D}^{2}}{4} & \mathrm{~A}_{1} \quad 0.00785 \mathrm{~m}^{2} \\
\mathrm{~A}_{2} & \frac{\mathrm{~S}}{4} \mathrm{a}^{2} & \mathrm{~A}_{2} \\
\mathrm{Q} & 0.00126 \mathrm{~m}^{2} \\
\mathrm{~V}_{1}\left[\mathrm{~A}_{1}\right. & \mathrm{Q} & 0.0393 \frac{\mathrm{~m}^{3}}{\mathrm{~s}} \\
\mathrm{~V}_{2} & \frac{\mathrm{Q}}{\mathrm{~A}_{2}} & \mathrm{~V}_{2}
\end{array}
$$

Governing equations:

Bernoulli equation $\frac{p}{U} \square \frac{V^{2}}{2} \square g \boxtimes \quad$ const

Momentum

$$
\begin{equation*}
\vec{F}=\vec{F}_{S}+\vec{F}_{B}=\frac{\partial}{\partial t} \int_{\mathrm{CV}} \vec{V} \rho d \nleftarrow+\int_{\mathrm{CS}} \vec{V} \rho \vec{V} \cdot d \vec{A} \tag{4.17}
\end{equation*}
$$

Applying Bernoulli between inlet and throat

$$
\frac{\mathrm{p}_{1}}{\mathrm{U}} \square \frac{\mathrm{~V}_{1}^{2}}{2} \quad \frac{\mathrm{p}_{2}}{\mathrm{U}} \square \frac{\mathrm{~V}_{2}^{2}}{2}
$$

Solving for p_{2}
$\mathrm{p}_{2} \quad \mathrm{p}_{1} \square \frac{\mathrm{U}}{2}\left[\mathrm{C} \mathrm{C}_{1}^{2} \square \mathrm{~V}_{2}^{2}{ }^{2}\right.$

$\mathrm{p}_{2} \quad 125 \mathrm{kPa}$

Applying the horizontal component of momentum

Hence

$$
\text { F } \quad p_{1} \square A_{1} \square p_{2} \square A_{2} \square \cup\left[V_{C}{ }_{1}^{2} \square A_{1} \square \mathrm{~V}_{2}^{2} \square A_{2} \dot{i}\right.
$$

F $600 \frac{\mathrm{kN}}{\mathrm{m}^{2}}$ u $0.00785\left[\mathrm{~m}^{2} \square 125 \frac{\mathrm{kN}}{\mathrm{m}^{2}}\right.$ u $0.00126\left[\mathrm{~m}^{2}\right.$ 皿

F $\quad 3.52 \mathrm{kN}$

Given: Plane nozzle discharging water steadily, striking an inclined plate.
Neglect friction in no zz/e and along plate surface.
Find: (a) Minimum gage pressure at nozzle inlet.
(b) Magnitude and direction of force exerted by water stream an plate.
(c) sketch pressure distribution on plate. Explain why the pressure distribution
 is shaped as sou show it.
Solution: Apply continuity, Bernoulli, and momentum equations using the $C V$ and coordinates shown.

Basic equations: $V_{1} A_{1}=V_{c} A_{2} \quad \frac{p_{1}}{\rho}+\frac{V_{1}^{2}}{2}+g g_{1}=\frac{p_{2}}{\rho}+\frac{V_{2}^{2}}{2}+g g_{2}$

$$
R_{y}+\hat{F}_{\beta y}^{=o(6)}=\frac{d}{\psi} \int_{C v}^{=0(3)} v \rho d \forall+\int_{C S} v \rho \vec{v} \cdot d \vec{A}
$$

Assumptions: (1) Frictionless flow
(2) Incompressible flow
(3) Steady flew
(4) Flow along a streamline
(s) Uniform flow at each section

Then from continuity $V_{1}=\frac{A_{2}}{A_{1}} V_{2}=\frac{W T}{W} V_{2}=\frac{12.7 \mathrm{~mm}}{51.8 \mathrm{~mm}} \times 12.2 \frac{\mathrm{~m}}{\mathrm{~s}}=2.99 \mathrm{~m} / \mathrm{s}$
From Bernoulli $p_{1 g}=\frac{p}{2}\left(v_{2}^{2}-v_{1}^{2}\right)-\rho g\left(z_{1}-z_{2}\right)+p_{1 g}=0 ; z_{1}-z_{2}=h$

$$
p_{1 g}=\left[\frac{1}{2} \times 999 \frac{\mathrm{~kg}}{\mathrm{~m}^{2}} \times\left[(1 z .2)^{2}-(2.99)^{2}\right] \frac{\mathrm{m}^{2}}{\mathrm{~s}^{2}}-999 \frac{\mathrm{~kg}}{\mathrm{~m}^{3}} \times 9.81 \frac{\mathrm{~m}}{\mathrm{~s}} \times 0.15 \mathrm{~m}\right] \frac{\mathrm{N} \cdot \mathrm{~s}}{\mathrm{~kg} \cdot \mathrm{~m}}=68.4 \mathrm{kk}(\mathrm{gage}) \mathrm{p}_{\mathrm{k}}
$$

Calculate V_{3} in the absence of the plate using Bernoulli ($p_{2}=p_{0}$)

$$
V_{3}=\sqrt{V_{2}^{2}+2 g H}=\left[(12.2)^{2} \frac{\mathrm{~m}^{2}}{\mathrm{~s}^{2}}+2 \times 9.81 \frac{\mathrm{~m}}{\mathrm{~s}^{2}} \times 4.85 \mathrm{~m}\right]^{\frac{1}{2}}=15.6 \mathrm{~m} / \mathrm{s}
$$

From move notum: $R_{x}=0$ since there is no friction on the plate surface.
Assumptions: (6) Neglect mass of plate and of water on plate.
(7) Atmospheric pressure acts on entire $C v_{j} F_{s y}=R_{y}$

Then $R_{y}=v_{3}\left\{-\dot{m}_{3}\right\}+\hat{y}_{4}^{0}\left\{+\dot{m}_{4}\right\}+\hat{\psi}_{5}^{0}\left\{+\dot{m}_{5}\right\}=V_{3} \cos \theta \rho Q, \sin$ ce $v_{3},-V_{3} \cos \theta$

$$
R_{y}=15.6 \frac{\mathrm{~m}}{\mathrm{~s}} \times \cos 30^{\circ} \times 999 \frac{\mathrm{~kg}}{\mathrm{~m}^{3}} \times 0.0155 \frac{\mathrm{~m}^{3}}{\mathrm{~s}} \times \frac{\mathrm{N} \cdot \mathrm{~s}^{2}}{\mathrm{~kg} \cdot \mathrm{~m}}=204 \mathrm{~N} ; K_{y}=-R_{y}=-209 \mathrm{~N} \quad K_{y}
$$

Pressure is maximum at stagnation, minimum (pate) at (4) and (5).
Pressure at (a) is higherthan at (b) because of streamline curvature.

Given: Egyptian water clock. surface level drops at rate, $A=$ constant.

Find: (a) Expression for $n(h)$.
(b) Volume needed for n hours' operation.

Solution: Apply conservation of mass and the Bernoulli equation.

Basic equations: $0=\frac{\partial}{\partial t} \int_{C V} \rho d t+\int_{C S} \rho \vec{V} \cdot d \vec{A}$

$$
\frac{p}{\rho}+\frac{v^{2}}{z}+g z=\text { const ant }
$$

Assumptions : (1) Quasi-steady flow; $\frac{\partial}{\partial t}$ S mall
(2) Incompressible flow
(3) Uniform flow at each cross section
(4) Flow along a streamline
(5) No friction
(b) Pair << P No

Writing Bernoulli from the liquid surface to the jet exit,

$$
p \frac{\text { atm }}{p}+\frac{v^{2}}{2}+g n=\frac{p a t m}{p}+\frac{v^{2}}{2}+g(0) ;
$$

For $a \ll v$, then $v=\sqrt{2 g h}$.
For the CV,
or

$$
0=\rho \frac{d \psi}{d t}+\rho V A=\rho \pi \Lambda^{2} \frac{d h}{d t}+\rho \sqrt{2 g h} A=0
$$

But h decreases, so $\frac{d h}{d t}=-2$. Thus

$$
\pi n^{2} A=\sqrt{2 g h} A \text { or } n=\sqrt[4]{2 g} \sqrt{\frac{A}{\pi A}} h^{1 / 4}
$$

For n hours' operation, $H=n s$, and

$$
\forall=\int_{0}^{H} \pi \Lambda^{2} d h=\int_{0}^{n a} \sqrt{2 g h} \frac{A}{A} d h=\frac{2 A}{3 A} \sqrt{2 g}(n A)^{a / 2}
$$

or

$$
\forall=\frac{2 A \sqrt{2 g} n^{3 / 2} a^{1 / 2}}{3}
$$

\qquad
Check dimensions:

$$
[\forall]=L^{3}=\left[A \sqrt{9} n^{2 / 2} L^{1 / 4}\right]=L^{2} L^{1 / 2} t^{2 / 2} L^{1 / 2}=L^{3}
$$

Given: Low-speed jet of incompressible liquid moving downward from nozzle.

Find: Expressions for $V(z), A(z)$.
Location where $A=A_{0} / 2$.
Solution: Apply continuity and momentum equations using CV shown.

Basic equations:

$$
\begin{aligned}
& 0=\frac{\overrightarrow{\theta^{A}}}{\partial t} \int_{C V} \rho d \theta+\int_{C S} \rho \vec{V} \cdot d \vec{A} \\
& \begin{array}{l}
=o(4, s)=o(1) \\
F=\int_{3}^{A}+F_{B z}=\frac{\partial}{d t} \int_{c v} \omega_{p} d \forall+\int_{c s} \omega_{p} \vec{v} \cdot d \vec{A}
\end{array}
\end{aligned}
$$

Assumptions: (1) Steady flow.
(2) Incompressible flow
(3) Uniform flow at each section
(4) Patm acts everywhere $\} F_{y_{3}}=0$
(5) No friction

Then

$$
O=\int_{C S} \vec{V} \cdot d \vec{A}=\{-V A\}+\{+(V+d V)(A+d A)\} ; V A=V_{0} A_{0}=\text { constant }
$$

from momentum,

$$
\rho g\left(A+\frac{d A}{2}\right) d z=V\{-\rho V A\}+(V+d V)\{-\rho(V+d V)(A+d A)\}=\rho V A d V
$$

since $d V d A \ll d A$. Also, since $d A d z \ll d z$, the left side is egAd.
Thus

$$
\rho g A d z=\rho V A d V \quad \text { or } \quad V d V=q d z
$$

Integrating from V_{0} at $z_{0}=0$ to V at 3 ,

$$
\left.\int_{V_{0}}^{V} V d V=\frac{V^{2}}{2}\right]_{V_{0}}^{V}=\frac{V^{2}}{2}-\frac{V_{0}^{2}}{2}=\int_{z_{0}}^{z} g d z=g\left(z-z_{0}\right)=g z
$$

Thus

$$
V^{2}=V_{0}^{2}+2 g z \text { or } V(z)=\sqrt{V_{0}^{2}+2 g z}
$$

since $V A=V_{0} A_{0}, A=A_{0} \frac{V_{0}}{V}$

$$
A(z)=A_{0} \frac{V_{0}}{\sqrt{V_{0}^{2}+2 g z}}=\frac{A_{0}}{\sqrt{1+2 g z / V_{0}^{2}}}
$$

Solving for z,

$$
z=\frac{V_{0}^{2}}{2 g}\left[\left(\frac{A_{0}}{A}\right)^{2}-1\right] ; \text { for } \frac{A}{A_{0}}=\frac{1}{2}, \frac{A_{0}}{A}=2 \text {, and } z_{1 / 2}=\frac{3 V_{0}^{2}}{2 g}
$$

Given: Low-speed jet of incompressible liquid moving upward from nozzle.

Find: Expressions for $V(z), A(z)$.
Location where $V=0$.
Solution: APPly continuity and momentum equation using $C V$ shown.

Basic equations:

$$
\begin{aligned}
& 0=\frac{d^{t}}{q=o(1)} \int_{C V} \rho d t+\int_{C S} \rho \vec{V} \cdot d \vec{A} \\
& \begin{array}{l}
=O(4,5) \\
F_{p_{3}}^{A}+F_{b 3}=\overrightarrow{Z t} \int_{c v}^{A} w \rho d t+\int_{c s} w \rho \vec{v} \cdot d \overrightarrow{d A}
\end{array}
\end{aligned}
$$

Assumptions: (1) Steady frow
(z) Incompressible flow
(s) Uniform flow at each section
(4) palm acts everywhere $\} F_{3_{3}}=0$
(5) No friction

Then

$$
0=\int_{c s} \vec{V} \cdot d \vec{A}=\{-V A\}+\{+(V+d V)(A+d A)\} ; V_{A}=V_{0} A_{0}=\text { constant }
$$

From momentum,

$$
-\rho g\left(A+\frac{d A}{z}\right) d z=V\{-\rho V A\}+(V+d V)\{+\rho(V+d V)(A+d A)\}=\rho V A d V
$$

since $d V d A \ll d A$. Also, since $d A d z \ll d z$, the left side is $-\rho g A d z$.
Thus

$$
-\rho g A d z=\rho V A d V \text { or } V d V=-g d z
$$

Integrating from V_{0} at $z_{0}=0$ to V at z,

$$
\left.\int_{V_{0}}^{v} v d V=\frac{v^{2}}{2}\right]_{V_{0}}^{v}=\frac{v^{2}}{z}-\frac{V_{0}^{2}}{2}=\int_{z_{0}}^{z}-g d z=-g\left(z-z_{0}\right)=-g z
$$

Thus $V^{2}=V_{0}^{2}-2 g z$ or $V(z)=\sqrt{V_{0}^{2}-z g z}$
since $V A=V_{0} A_{0}$, then $A=A_{0} \frac{V_{0}}{V}$

$$
A(z)=A_{0} \frac{V_{0}}{\sqrt{V_{0}^{2}-2 g z}}=\frac{A_{0}}{\sqrt{1-2 g z / V_{0}^{2}}}
$$

Solving for z at $v=0$,

$$
z=\frac{V_{0}^{2}}{\partial g}
$$

Given: Uniform flow in narrow gap between parallel plates, as shown.

Fluid in gap has only horizontal motion.

Find: Expression for $N(x)$.

Assumptions: (1) Steady flow
(2) Incompressible flow
(3) Uniform flow at each section
(4) Neglect friction
(5) $F_{B_{x}}=0$

Then

$$
\begin{aligned}
& O=\int_{C S} \vec{V} \cdot \alpha \vec{A}=\{-V \omega h\}+\left\{-\frac{Q}{w L} w d x\right\}+\{(v+d v) \omega h\} ; w h d v=\frac{Q}{L} d x \\
& V=\frac{Q}{w h} \frac{x}{L}+C ; C=0 \text { since } V(0)=0 ; V(x)=\frac{Q}{w h} \frac{x}{L}
\end{aligned}
$$

From momenterm,

$$
\begin{aligned}
& p w h-(p+d p) w h=u_{x}\{-\rho v \omega h\}+u_{d x}\left\{-\rho \frac{Q}{w h} \omega d x\right\}+u_{x+d x}\{+\rho(v+d v) f \sigma h\} \\
& u_{x}=v \quad u_{d x}=0 \quad u_{x}+d x=v+d v
\end{aligned}
$$

From continuity, $(v+d v)$ ah $=V w h+Q \frac{d x}{L}$, so

$$
\begin{aligned}
-d p w h & =-\rho V^{2} w h+0+(V+d v)\left(V \omega h+Q \frac{d x}{L}\right)_{f} \\
& =-\rho V^{2} \omega h+\rho V^{2} / w h+\rho V w h d V+V \rho Q \frac{d x}{L}+\rho Q d V \frac{d x}{L}
\end{aligned}
$$

Neglecting products of differentials ($d v d x \ll d x$), and with $d V=\frac{Q}{w h} \frac{d x}{L}$

$$
\begin{aligned}
& -d p=\rho V d V+\frac{V \rho Q}{W h} \frac{d x}{L}=\rho V \frac{Q}{\text { wh }} \frac{d x}{L}+\frac{V \rho Q}{\text { Nh }} \frac{d x}{L}=2 \rho \frac{Q}{\text { who }} \frac{x}{L} \frac{Q}{\text { Nh }} \frac{d x}{L} \\
& -d p=2 \rho\left(\frac{Q}{\text { whL }}\right)^{2} x d x \quad p(x)=-\rho\left(\frac{Q}{\text { whL }}\right)^{2} x^{2}+C
\end{aligned}
$$

If $p(0)=p_{0}$, then $p(x)=p_{0}-f\left(\frac{0}{102}\right)^{2}\left(\frac{2}{2}\right)^{2}$

Given: Uniform flow in narrow gap between paralle/disks, as shown.
Liquid in gap ha's only radial motion.

Find: Expression for $p(r)$; plot
Solution: Apply continuity and
momentum equations to the differential CV shown.

Basic equations:

$$
\begin{aligned}
& \text { Sic equations: }=0(1) \\
& 0=\frac{\partial}{\partial t} \int_{C V} p d \forall+\int_{C S} p \vec{V} \cdot d \vec{A} \\
& =D(s) \\
& F_{s r}+F_{\beta_{r}}=\frac{\partial}{\partial t} \int_{C U} V_{r} p(1)
\end{aligned}
$$

Assumptions: (1) steady flow
(2) Incompressible flow
(3) Uniform flow at cachsection
(4) Neglect friction
(s) $F_{B_{r}}=0$
(7) $\sin \frac{d x}{2}=\frac{d \theta}{2}$

Then

$$
O=\int_{c s} \vec{V} \cdot d \vec{A}=\{-\rho V h r d s\}+\{\rho(V+d V) h(r+d r) d o\} ; V_{r}=\text { constant }
$$ For $r=R, Q=V_{R} 2 \pi r h$, so $V_{R}=Q / 2 \pi R h$

From momentum,

$$
\begin{aligned}
& \text { phrdv+z(p+, dp} 2) h d r \sin \frac{d \theta}{2}-(p+d p) h(r+d r) d \theta \\
& =V\{-\rho V h r d s\}+(V+d V)\{\rho(V+d V) h(r+d r) d \theta\} \\
& p h r d \theta+p h / \sigma r d \theta+\frac{1}{2} d p h d r d \theta-(\nu r+p d r+r d p+d r d p) h d \theta \\
& =d V(\rho V h r d o) \quad\{\text { Noteterms in braces are equal. }\}
\end{aligned}
$$

Assuming, products of differentials are much smaller than single differentials,

$$
-r d p h d \theta=d V(p \vee h r d \theta) \text { or } d p=-p V d V
$$

Integrating, $p(r)-p(R)=-\rho \frac{V^{2}}{2}+\frac{\rho V_{R}^{2}}{2}$ or $p(r)-p a t m=\rho \frac{V_{2}}{2}\left(V_{R}^{2}-V^{2}\right)$
since $V_{R}=\frac{Q}{2 \pi R h}$, and $V r=\operatorname{constant}, \frac{V}{V_{R}}=\frac{R}{r}$, so $\quad=\frac{P V_{R}^{2}}{2}\left[1-\left(\frac{V}{V_{R}}\right)^{2}\right]$

$$
p(r)-p a t r n=\frac{p}{2}\left(\frac{Q}{2 \pi R h}\right)^{2}\left[1-\left(\frac{R}{r}\right)^{2}\right]
$$

Note sirice $r<R$, that $p(r)<$ palm between the disks.

The pressure distribution is computed and plotted in Exce/:

r / R	\boldsymbol{P}
0.15	-43.4
0.20	-24.0
0.25	-15.0
0.30	-10.1
0.35	-7.16
0.40	-5.25
0.45	-3.94
0.50	-3.00
0.55	-2.31
0.60	-1.78
0.65	-1.37
0.70	-1.04
0.75	-0.78
0.80	-0.563
0.85	-0.384
0.90	-0.235
0.95	-0.108
1.00	0.000

Given: Liquid falling vertically into short, horizontal, rectangular open channel. Neglect viscous effects.

Find: (a) Expression for h_{1} in terms of h_{z}, Q, and b.
(b) sketch surface profile, $h(x)$.

Solution: Apply continuity and momentum equations to (i) finite $C V$, and (ii)differential $C V$, as shown.

Basic equations:

$$
0=\frac{d}{b t} \int_{C v}^{=\alpha(1)} \rho d t+\int_{c s} \rho \vec{v} \cdot d \vec{A}
$$

$$
F F_{x x}+F \tilde{p}_{x}^{=o(b)}=\frac{\partial}{\nmid} \int_{c v}^{=o(1)} u \rho d t+\int_{\omega} u \rho \vec{v} \cdot d \vec{A}
$$

Assumpt ions: (1) Steady flow
(2) Incompressible frow

Finite CV
(a) Uniform flow at each section
(4) Hydrostatic pressure distribution; $F_{p}(h)=\rho g 6 \frac{h^{2}}{2}$
(5) No friction on bed
(6) Horizontal bed; $F_{B_{x}}=0$

Then for finite $C V$ shown,

$$
0=\int_{c s} \vec{V} \cdot d \vec{A}=-Q+V_{2} b h_{2} ; V_{2}=\frac{Q}{b h_{2}}
$$

From momentum

$$
\begin{array}{r}
\rho g b \frac{h_{1}^{2}}{2}-\rho g b \frac{h_{2}^{2}}{2}=u_{1}\{0\}+u_{2}\{+\rho Q\}+u_{3}\{-\rho Q\} \\
u_{2}=V_{2} \quad u_{3}=0 \\
\frac{\rho g b}{2}\left(h_{1}^{2}-h_{2}^{2}\right)=V_{2} \rho Q=\frac{Q}{b h_{2}} \rho Q=\frac{\rho Q^{2}}{b h_{2}} ; \quad h_{1}=\sqrt{h_{2}^{2}+\frac{2 Q^{2}}{g b^{2} h_{2}}}
\end{array}
$$

Fordifferential CV shown,

$$
\begin{aligned}
& D=\int_{C S} \vec{V} \cdot d \vec{A}=\{-V b h\}+\left\{-\frac{Q}{b L} b d x\right\}+\{+(V+d V) b(h+d h)\} \\
& 0=-\frac{Q}{L} d x+b(h d V+V d h)=-\frac{Q}{L} d x+b d(h V) ; \frac{d(h V)}{d x}=\frac{Q}{L}
\end{aligned}
$$

From momentum,

$$
\rho g b \frac{h^{2}}{2}-\rho g b \frac{(h+d h)^{2}}{2}=v\{-\rho v b h\}+o\left\{-\rho Q \frac{Q}{L} d x\right\}+(v+d v)\{+\rho(v+d v) b(h+d h)\}
$$

Using continuity,

$$
\rho \frac{g}{2} b(-2 h d h+d h d h)=-\rho v^{2} b h+(v+d v)\left\{\rho v b h+\rho \frac{Q}{L} d x\right\}
$$

Given: Narrow gap between parallel/ disks filled with liquid.
At $t=0^{+}$, upper disk begins to move downward at V_{0}.
Neglect viscous effects; flow uniform in horizontal direction.
Find: Expression for velocity field, $V(r)$. Note flow is not steady.
Solution: Apply continuity, using the deformable CV shown.
Basic equation:

$$
0=\frac{\partial}{\partial t} \int_{c v} \rho d \forall+\int_{c s} \rho \vec{v} \cdot d \vec{A}
$$

Assumptions: (1) Incompressible flow

(2) Uniform flow at each cross section

Then

$$
0=\frac{\partial}{\partial t} \int_{c v} d \forall+\int_{C S} \vec{V} \cdot d \vec{A}=\frac{\partial}{\partial t} \int_{c v} d t t+V 2 \pi r h
$$

But

$$
\int_{C V} d \forall=\pi r^{2} h \text {, so } \frac{\partial}{\partial t} \int_{c v} d v=\frac{\partial}{\partial t}\left(\pi r^{2} h\right)=\pi r^{2} \frac{d h}{d t}
$$

Thus

$$
0=\pi r^{2} \frac{d h}{d t}+V z \pi r h=\pi r^{2}\left(-V_{0}\right)+V z \pi r h
$$

so

$$
V(r)=V_{0} \frac{r}{2 h}
$$

If V_{0} is constant, so $h=h_{0}-V_{0} t$, and

$$
V(r, t)=\frac{V_{0} r}{2\left(h_{0}-V_{0} t\right)} \quad \text { for } t<\frac{h_{0}}{V_{0}}
$$

or $\quad 0=\rho \frac{d \forall}{d t}+\rho \vee A=\rho \pi r^{2} \frac{d h}{d t}+\rho \sqrt{2 g h} A$

But h decreases, so $\frac{d h}{d t}=-\infty$. Thus

$$
\pi \Lambda^{2} A=\sqrt{2 g h} A \quad \text { or } \quad \Omega=\sqrt[4]{2 g} \sqrt{\frac{A}{\pi s}} h^{1 / 4}
$$

For n hours operation, $H=n s$, and

$$
\forall=\int_{0}^{H} \pi n^{2} d h=\int_{0}^{n A} \sqrt{2 g h} \frac{A}{A} d h=\frac{2 A}{3 A} \sqrt{2 g}(n \Delta)^{3 / 2}
$$

or

$$
\forall=\frac{2 A \sqrt{2 g} n^{3 / 2}}{3} A^{1 / 2}
$$

Evaluating and plotting:

Input Parameters:
Maximum water height:
Number of hours' duration:

$$
\begin{array}{lll}
H= & 0.5 & \mathrm{~m} \\
n= & 24 & \mathrm{hr}
\end{array}
$$

Given: Water flow from jet striking moving vane as shown.

Find: Force needed to hold the vane speed at $U=5 \mathrm{~m} / \mathrm{s}$.
Solution: Apply momentum equation to moving CV shown.

$$
\begin{aligned}
& \text { ByE.: } \\
& F_{s x}+F_{B x}^{=0(z)}=\frac{\partial^{\prime}}{p t} \int_{c v}^{o(s)} u_{x y z} \rho d v+\int_{c s} u_{x y z} \rho \vec{v}_{x y z} \cdot d \vec{A} \\
& F_{x y}+F_{B y}^{\#}=\frac{\partial(z)}{\beta x} \int_{c v}^{o(s)} v_{x y y}^{c v} \rho d v+\int_{C S} v_{x y z} \rho \vec{v}_{x y z} \cdot d \vec{A}
\end{aligned}
$$

Assume: (1) No pressure forces or frietion,so $F_{s_{x}}=R_{x}, F_{s y}=R_{y}$
(2) $F_{B_{x}}=0$, neglect Fay, since not given
(3) Steady flow
(4) Uniform flow at each section
(5) Relative velocity Constant for jet stream cross ing vane

Then

$$
\begin{aligned}
& R_{\mathrm{x}}=u_{1}\{-|\rho(v-v) A|\}+u_{2}\left\{\left.\right|_{\rho}(v-v) A \mid\right\} ; A=\frac{\pi}{4}(0.05)^{2} \mathrm{~m}^{2}=1.96 \times 10^{-3} \mathrm{~m}^{2} \\
& u_{1}=v-v \quad u_{2}=(v-v) \cos \theta \\
& R_{x}=\rho(v-v)^{2} A(\cos \theta-1) \\
& R_{x}=999 \frac{\mathrm{~kg}}{\mathrm{~m}^{3}}(20-5)^{2} \frac{\mathrm{~m}^{2}}{\mathrm{~s}^{2}} \times 1.96 \times 10^{-3} \mathrm{~m}^{2}\left(\cos 150^{\circ}-1\right) \frac{\mathrm{N} \cdot \mathrm{~s}^{2}}{\mathrm{~kg} \cdot \mathrm{~m}}=-822 \mathrm{~N} \\
& R_{y}=v_{1}\left\{-\left|\rho(V-U) A^{\prime}\right|\right\}+v_{2}\{|P(V-U) A|\} \\
& v_{1}=0 \\
& v_{2}=(v-v) \sin \theta \\
& R_{y}=\mu(V-U)^{2} A \sin \theta=999 \frac{\mathrm{~kg}}{\mathrm{~ms}^{\mathrm{s}}}(20-5) \frac{\mathrm{m}^{2}}{\mathrm{~s}^{2}} x^{2} \cdot 96 \times 10^{-3} \mathrm{~m}_{\star}^{2} \sin 150: \frac{\mathrm{N} \cdot \mathrm{~s}^{2}}{\mathrm{~kg} \cdot \mathrm{~m}}=220 \mathrm{~N} \\
& \left\{\begin{array}{l}
\text { Thus a force of } 822 \mathrm{~N} \text { to the left and } 220 \mathrm{~N} \text { upward must be } \\
\text { applied to the vane to maintain its motion at } U=5 \mathrm{~m} / \mathrm{s} \text {. }
\end{array}\right.
\end{aligned}
$$

Given: Jet of water striking a moving vane as shown.

Find: Force needed to hold vane speed constant. R_{y}
Solution: Apply momentum equation using moving cv shown.

$$
\begin{aligned}
& =o(z) \\
& F_{s_{x}}+F_{\beta_{x}}^{-o(s)}=\frac{\partial}{\partial x} \int_{c v}^{o(z)} u_{x y z} \rho d t+\int_{c s} u_{x y z} \rho \vec{v}_{x y z} \cdot d \overrightarrow{d A} \\
& F_{s y}+F_{B_{y}}=\frac{\partial}{\partial x} \int_{c v}^{o(a)} v_{x y z} \rho d \forall+\int_{c s} v_{x y z} \rho \vec{v}_{x y z} \cdot d \vec{A}
\end{aligned}
$$

Basic equations:

Assumptions: (1) No pressure forces on $c v_{;} F_{s k}=R_{x}, F_{3 y}=R_{y}$
(2) $F_{B_{x}}=0$; neglect $F_{B_{y}}$
(3) Steady flow relative to ware
(4) Flow uniform at each section
(5) Jet area and speed relative to vane are constant

The subscript $x y z$ is a reminder that all velocities must be evaluated relative to the CV . Then

$$
\begin{array}{r}
R_{x}=u_{1}\{-|\rho(V-v) A|\}+u_{2}\{|\rho(V-v) A|\} \\
u_{1}=V-v \quad u_{2}=(V-v) \cos \theta
\end{array}
$$

and

$$
\begin{aligned}
R_{x} & =f(V-U)^{2} A(\cos \theta-1) \\
& =1.94 \frac{\mathrm{slug}}{\mathrm{fta}^{2}} \times(100-30)^{2} \frac{\mathrm{ft}^{2}}{\mathrm{~s}^{2}} \times 0.04 \mathrm{ft}^{2} \times\left(\cos 120^{\circ}-1\right) \times \frac{16 f \cdot \mathrm{~s}^{2}}{\mathrm{slug} \cdot \mathrm{ft}^{2}} \\
R_{x} & =-570 \mathrm{ltof} \text { (the left) }
\end{aligned}
$$

Also

$$
\begin{aligned}
R_{y}= & v_{1}\{-|\rho(V-v) A|\}+v_{2}\{|\rho(v-v) A|\} \\
& v_{1}=0 \quad v_{z}=(V-v) \sin \theta \\
R_{y}= & \rho(V-v)^{2} A \sin \theta \\
= & 1.94 \frac{\mathrm{slu} g^{3}}{\mathrm{ft}^{3}}(100-30)^{2} \frac{f t^{2}}{s^{2}} \times 0.04 f t^{2} \times \sin 120^{\circ} \times \frac{16 \mathrm{ff} \cdot \mathrm{~s}^{2}}{\operatorname{sing} \cdot f t} \\
R_{y}= & 329 \mathrm{lbf} \text { (force is up) }
\end{aligned}
$$

Problem 4.109

A jet boat takes in water at a constant volumetric rate Q through side vents and ejects it at a high jet speed V_{j} at the rear. A variable-area exit orifice controls the jet speed. The drag on the boat is given by $F_{\text {drag }}=k V^{2}$, where V speed V. If a jet speed $V_{\mathrm{j}}=25 \mathrm{~m} / \mathrm{s}$ produces a boat speed of $10 \mathrm{~m} / \mathrm{s}$, what jet speed will be required to double the boat speed?

Given: Data on jet boat

Find: Formula for boat speed; jet speed to double boat speed

Solution

CV in boat coordinates

Governing equation:

Momentum

$$
\begin{equation*}
\vec{F}=\vec{F}_{s}+\vec{F}_{B}=\frac{\partial}{\partial t} \int_{\mathrm{CV}} \vec{V}_{x y z} \rho d \Psi+\int_{\mathrm{CS}} \vec{V}_{x y z} \rho \vec{V}_{x y z} \cdot d \vec{A} \tag{4.26}
\end{equation*}
$$

Applying the horizontal component of momentum

$$
\mathrm{F}_{\mathrm{drag}} \quad \mathrm{v}
$$

Hence

$$
\mathrm{k}^{\mathrm{N}} \quad \mathrm{U} \mathrm{QD}_{\mathrm{j}} \square \mathrm{U} \mathbb{Q} \mathrm{~N}
$$

$$
\mathrm{kD}^{2} \square \cup \mathbb{Q} \mathbb{N} \square \mathrm{UQDN}_{\mathrm{j}} \quad 0
$$

Solving for V

Let $\quad D \frac{U \square}{2 \square k}$

$$
\mathrm{V} \quad \mathrm{DD} \cdot \sqrt{\mathrm{D}^{2} \square 2 \mathrm{DDV}_{\mathrm{j}}}
$$

We can use given data at $V=10 \mathrm{~m} / \mathrm{s}$ to find $\alpha \quad \mathrm{V} \quad 10 \square \frac{\mathrm{~m}}{\mathrm{~s}} \quad \mathrm{~V}_{\mathrm{j}} \quad 25 \square_{\mathrm{s}}^{\frac{\mathrm{m}}{2}}$

$$
\begin{aligned}
& 10 \square \frac{m}{s} \quad \square D \square \sqrt{D^{2} \square 2 \square 25 \square \frac{m}{s} D} \\
& D^{2} \square 50 \square D \quad \square 10 \square D \square^{2} \quad 100 \square 20 \square D \square D^{2} \\
& \text { D } \frac{10}{3} \square \frac{m}{s}
\end{aligned}
$$

Hence

$$
\text { V } \square \frac{10}{3} \square \sqrt{\frac{100}{9} \square \frac{20}{3} \square \mathrm{~N}_{\mathrm{j}}}
$$

For $V=20 \mathrm{~m} / \mathrm{s}$

$$
20 \quad \square \frac{10}{3} \square \sqrt{\frac{100}{9} \square \frac{20}{3} \square N_{j}}
$$

$$
\frac{100}{9} \square \frac{20}{3} \square \mathrm{~N}_{\mathrm{j}} \quad \frac{70}{3}
$$

$$
\mathrm{V}_{\mathrm{j}} \quad 80\left[\frac{\mathrm{~m}}{\mathrm{~s}}\right.
$$

Given: Jet of oil ($56=0.8$) striking moving vane.

Find: Force needed to maintain vane speed constant.
Solution: Apply x component of momentum equation to moving cV shown.
Basic equation: $F_{s_{x}}+F_{\beta_{x}}^{=(z)}=\frac{\partial}{\partial t} \int_{c v}^{-o(z)} u_{x y z} p d r+\int_{e_{s}} u_{x y z} \rho \vec{v}_{x y z} \cdot d \vec{A}$
Assumptions: (1) No net pressure force on $C V$; $F_{5 x}=R_{x}$
(2) $F_{B x}=0$
(3) Steady flow
(4) Flow uniform at each section
(5) Jet area and speed relative to vane are constant

The subscript xyz is a reminder that all velocities must be evaluated relative to the cv. Then

$$
\begin{gathered}
R_{x}=u_{1}\{-|\rho(v+v) A|\}+u_{2}\{|\rho(v+v) A|\} \\
u_{1}=v+v \quad u_{2}=-(v+v)
\end{gathered}
$$

and $R_{x}=-\rho(V+U)^{2} A-\rho(V+U)^{2} A=-2 \rho(V+U)^{2} A=-256 f_{\text {who }}(V+V)^{2} A$

$$
R_{x}=-2(0.8) 999 \frac{\mathrm{~kg}}{\mathrm{~m}^{2}}(20+10)^{2} \frac{\mathrm{~m}^{2}}{\mathrm{~s}^{2}} \times 1200 \mathrm{~mm} \frac{2}{x} \frac{\mathrm{~m}^{2}}{10^{6} \mathrm{~mm}^{2}} \times \frac{\mathrm{N} \cdot \mathrm{~s}^{2}}{\mathrm{~kg} \cdot \mathrm{~m}}=-1.73 \mathrm{kN}
$$

This force must be applied to the left on the vane.
$\left\{\right.$ Note $R_{y}=m$, since there are no vertical components of velocity. \}

Problem 4. III

Given: Circular dish and jet moving as shown.

Find: Force required to maintain dish motion.

Solution: Apply continuity and x

momentcem equation to CV
moving with dish as shown.
Basic equations:

$$
\begin{aligned}
& 0=\frac{\partial A}{\partial t} \int_{c v} \rho d t+\int_{c s} \rho \vec{V} \overrightarrow{V y y}_{x} \cdot \overrightarrow{V A} \\
&=0(3)=0(1) \\
& F_{s x}+F_{Q x}=\frac{d}{q t} \int_{c v} u_{x y z} \rho d t+\int_{c s} u_{x y z} \rho \vec{V} \cdot d \vec{A}
\end{aligned}
$$

Assumptions: (1) steady flow w.r.t. CV
(2) No pressure forces on $C V$
(3) Horizontal; $F_{B x}=0$
(4) Uniform flow at each section
(5) No change in speed of jet relative to vane
(6) Incompressible flow

Then

$$
\begin{aligned}
& D=\int_{C S} \vec{V}_{x y z} \cdot d \vec{A}=(V-U)\left(-\frac{\pi D^{2}}{4}+\frac{\pi d^{2}}{4}+A_{3,4}\right) \\
& A_{3,4}=\frac{\pi}{4}\left(D^{2}-d^{2}\right)=\frac{\pi}{4}\left[(0.020)^{2}-(0.010)^{2}\right] \mathrm{m}^{2}=2.36 \times 10^{-4} \mathrm{~m}^{2}
\end{aligned}
$$

From the momentum equation

$$
\begin{gathered}
R_{x}=u_{1}\left\{-p(V-V) \frac{\pi D^{2}}{4}\right\}+u_{2}\left\{+\rho(V-U) \frac{\pi d^{2}}{4}\right\}+u_{3}\left\{+\rho(V-V) A_{3,4}\right\} \\
u_{1}=V-U \quad u_{2}=V-U \quad u_{3}=-(V-V) \cos 40^{\circ} \\
R_{x}=-\rho(V-U)^{2} \frac{\pi D^{2}}{4}+\rho(V-V)^{2} \frac{\pi d^{2}}{4}-\rho(V-V)^{2} \frac{\pi}{4}\left(D^{2}-d^{2}\right) \cos 40^{\circ} \\
=-\rho(V-U)^{2} \frac{\pi}{4}\left(D^{2}-d^{2}\right)\left(1+\cos 40^{\circ}\right) \\
=
\end{gathered}
$$

$n_{x}=-167 \mathrm{~N}$ (force must be applied to right)
$\left\{\begin{aligned} \text { Note: } & R_{y}=M g, \text { since there is no net momentum flux in the } \\ & y \text {-direction. }\end{aligned}\right.$

Problem 4.112
Given: Aircraft scooping water from lake:

$$
1620 \mathrm{gal} \text { in } 12 \mathrm{sec}
$$

Find: Added thrust needed to maintain steady aircraft speed during scooping.

Solution: Use CV moving with aireratt, as shown. Apply momentum.

Assumptions: (1) Horizontal motion, so $F_{B X}=0$
(2) Neglect $u_{x y /}$ within the CV
(3) Uniform flow at inlet cross-section
(4) Neglect hydrostatic pressure

Then

$$
\begin{gathered}
R_{x}=u_{1}\left\{-\left|\rho Q_{1}\right|\right\}=-U(-\rho Q)=+U \rho Q \\
u_{1}=-U
\end{gathered}
$$

From data giver

$$
Q=\frac{\Delta t}{\Delta t}=\frac{1620 \mathrm{gal}}{12 \mathrm{sec}} \times \frac{\mathrm{ft3}}{7.48 \mathrm{gai}}=18.0 \mathrm{ft} 3 / \mathrm{s}
$$

For an aircraft speed of $U=75 \mathrm{mph}(110 \mathrm{ft} / \mathrm{s})$

$$
R_{x}=110 \frac{\mathrm{ft}}{\mathrm{~s}} \times 1.94 \frac{\mathrm{~s} / \mathrm{ug}^{3}}{\mathrm{f3}} \times 18.0 \frac{\mathrm{ft3}}{\mathrm{~s}} \times \frac{16 \mathrm{f} \cdot \mathrm{~s}^{2}}{\mathrm{~s} / \mathrm{cg} \cdot \mathrm{ft}}=3,840 \mathrm{lbf}
$$

For a range of aircraft speeds :

$\left\{\begin{array}{l}\text { Thus at } 60 \text { mph the added thrust is } 3,070 \mathrm{lbf} \text {, while at } 125 \mathrm{mph} \\ \text { the added thrust is } 6,400 \mathrm{lbf} \text {. }\end{array}\right.$

Problem 4.113

Given: Turning vane moving at constant speed.

Find: (a) Force exerted by vane.
(b) Power produced by vane.
(c) Show power maximized when $V=V / 3$.

Solution: Apply x component of momentum equation to moving CV.

$$
=O(2)=O(3)
$$

Basic equation: $F_{s x}+F_{\rho_{x}}=\frac{d^{4}}{q t} \int_{C v} u_{x y y} \rho d \psi+\int_{C s} u_{x y z} \rho \vec{V}_{x y y} \cdot d \vec{A}$
Assumptions: (1) No net pressure force; $F_{s_{x}}=R_{x}$
(2) $F_{B_{x}}=0$
(3) Steady flow with respect to observer on CV
(4) Uniform flow at each section
(5) No change in jet speed (relative to vane) on vane
(6) Incompressible flow, so $A=$ constant

Then

$$
\begin{aligned}
& R_{x}=u_{x y z,}\left\{-/ \rho v_{x y y}, A, 1\right\}+u_{x y z z}\left\{\left|\rho v_{x y z z} A_{i}\right|\right\} \\
& u_{x y z}=V-V \\
& u_{x y z_{2}}=(V-U) \cos \theta \\
& V_{x y 3}=V-U^{r} \\
& V_{x y b=}=V-U
\end{aligned}
$$

so

$$
R_{\mathrm{x}}=(v-v)[-\rho(v-U) A]+(V-U) \cos \theta[\rho(v-U) A]=\rho(V-U)^{2} A(\cos \theta-1)
$$

This is force exerted on vane. The force exerted by vane is

$$
K_{\mathrm{x}}=-R_{\mathrm{x}}=\rho(V-t)^{2} A(1-\cos \theta)
$$

The power produced by the vane is

$$
\dot{W}_{\text {out }}=K_{\mathrm{x}} U=\rho(V-U)^{2} U_{A}(1-\cos 6)
$$

To max imize, set $d \dot{w}_{\text {mut }} / d t=0$

$$
\frac{d \dot{w}}{d U}=f(V-U)^{2} A(1-\cos \theta)+(2)(-1) f(V-U) V A(1-\cos \theta)=0
$$

or

$$
V-U-2 U=\mathrm{V}-3 U=0
$$

so

$$
U=\frac{V}{3} \text { (vane speed for maximum power ovetput) }
$$

$\left\{\begin{array}{c}\text { Note: } K_{y}=-R_{y}=-M g-\rho(v-U)^{2} A \sin e, \text { but this force does nat } \\ \text { produce power. }\end{array}\right.$

Given: Circular dish with $D=0.15 \mathrm{~m}$ and jet as shown.
Find: (a) Thickness of jet sheet at $R=75 \mathrm{~mm}$.
(b) Horizontal force required to maintain dish motion.
Solution: Apply the momentum equation to a cV moving
 with the dish, as shown.
Basic equation:

$$
F_{s x}+F_{d x}^{=o(z)}=\frac{d \hat{y}}{\psi^{*}} \int_{c v}^{=0(3)} u_{x y z \rho} d \forall+\int_{c s} u_{x y y} \rho \vec{v}_{x y y} \cdot d \vec{A}
$$

Assumptions: (1) No pressure forces
(2) Horizontal; $F_{B_{x}}=0$
(3) Steady flow wince. CV
(4) Uniform flow at each section
(5) Use relative velocities
(b) No change in relative velocity on the dish

Then

$$
\begin{aligned}
R_{x}=u_{1} & \{-\rho(v-v) A\}+u_{2}\{+\rho(v \cdot v) A\} \\
u_{1}=v-v \quad u_{2} & =-(v \cdot v) \cos \theta
\end{aligned}
$$

$$
R_{x}=-\rho(V-U)^{2} A-\rho(V-v)^{2} A \cos \theta=-\rho(V-U)^{2} A(1+\cos \theta)
$$

$$
=-999 \frac{\mathrm{~kg}}{\mathrm{~m}^{3}}=(45-10)^{2} \frac{\mathrm{~m}^{2}}{\mathrm{~s}^{2}} \times \frac{\pi}{4}(0.050)^{2} \mathrm{~m}^{2}\left(1+\cos 40^{\circ}\right) \frac{\mathrm{N} \cdot \mathrm{~s}^{2}}{\mathrm{~kg} \cdot \mathrm{~m}}
$$

$$
R_{x}=-4.24 \mathrm{kN} \text { (force must act to right) }
$$

Apply conservation of mass to determine the jet sheet thickness:
Basic equation: $0=\frac{\partial}{\partial t} \int_{C v} \rho d t+\int_{C s} \rho \vec{V} \cdot d \vec{A}$
Using the above assumptions, then

$$
\begin{aligned}
& 0=-\rho V_{1} A_{1}+\rho V_{2} A_{2} \\
& \qquad V_{1}=V-U ; V_{2}=V-U ; A_{1}=\frac{\pi d^{2}}{4} ; A_{2}=2 \pi R_{t}
\end{aligned}
$$

Therefore $A_{1}=A_{2}=\frac{\pi d^{2}}{4}=2 \pi R t$, and $t=\frac{d^{2}}{\delta R}$

$$
t=\frac{1}{8} \times(0.050)^{2} m^{2} \times \frac{1}{0.075 \mathrm{~m}}=4.17 \times 10^{-3} \mathrm{~m} \text { or } 4.17 \mathrm{~mm}
$$

Given: water jet deflected by cone as shown. $V_{i}=30 \mathrm{~m} / \mathrm{sec}, V_{c}=15 \mathrm{~m} / \mathrm{sec}$
Find: (a) Thickness of jet sheet at

$$
R=200 \mathrm{~mm}
$$

(6) Force needed to move cone.

Solution: Apply continuity and x component of momentum.

Use moving coordinate system

$$
D_{j}=100 \mathrm{~mm}
$$ and control volume shown.

Basic equations: $\quad 0=\frac{\partial^{*}}{\beta t} \int_{C v}^{=O(1)} \rho d t+\int_{c s} \rho \vec{v}_{x y y} \cdot d \vec{A}$

$$
F_{s_{x}}+F F_{s_{x}}^{=0(\psi)}=\frac{\partial}{\partial x} \int_{o v}^{=0(u)} u_{x y y} \rho d t+\int_{c s} u_{x y z} \rho \vec{v}_{x y z} \cdot d \vec{A}
$$

Assumptions: (1) Steady flow (in moving reference frame)
(2) Uniform flow at each section
(3) $V_{2}=V_{1}$ (no change in relative velocity)
(4) $F_{B_{x}}=0$; Neglect $F_{B y}$
(G) No pressure forces

Then

$$
0=\int_{A_{1}}\left\{-\rho V_{1} d A_{1}\right\}+\int_{A_{4}}\left\{+\rho V_{1} d A_{4}\right\}=-\rho\left(V_{j}+V_{c}\right) \frac{\pi D_{j}^{4}}{4}+\rho\left(V_{j}+V_{c}\right) z \pi R t
$$

and

$$
t=\frac{D_{j}^{2}}{g R}=\frac{1}{P} \times(0.1)^{2} m^{2} \times \frac{1}{0.2 m} \times 1000 \frac{\mathrm{~mm}}{m}=6.25 \mathrm{~mm}
$$

Using relative velocities, momentum becomes

$$
\begin{gathered}
R_{x}=\int_{A_{1}} u_{1}\left\{-\rho v_{1} d A_{1}\right\}+\int_{A_{2}} u_{2}\left\{+\rho v_{2} d A_{2}\right\} \\
u_{1}=v_{j}+v_{c} \quad u_{2}=\left(v_{j}+v_{c}\right) \cos \theta \\
v_{1}=v_{j}+v_{c} \quad v_{2}=v_{j}+v_{c} \\
R_{x}=-\rho\left(v_{j}+v_{c}\right)^{2} A_{j}+\rho\left(v_{j}+v_{c}\right)^{2} A_{j} \cos \theta=(\cos \theta-1) \rho\left(v_{j}+v_{c}\right)^{2} A \\
=\left(\cos 60^{\circ}-1\right) 999 \frac{\mathrm{~kg}}{m^{3}} \times(30+15)^{2} \frac{m^{2}}{s^{2}} \times \frac{\pi}{4}(0.1)^{2} m^{2} \times \frac{N \cdot s^{2}}{k \operatorname{kg} \cdot m}
\end{gathered}
$$

$R_{x}=-7.94 \mathrm{kN}$ (force must be applied to left)
\{Note: $R_{y}=M g$ since there is no net momentum flux in the y-direction.\}

Given: Series of vanes struck by continuous jet, as shown.

Find: (a) Nozz le angle, α.
(b) Force to hold vane speed constant.

Solution: Apply momentum
equation using CV
moving with vanes as shown.

Basic equation:

$$
=O(z)=O(3)
$$

$$
F_{s x}+F \rho_{b_{x}}^{1}=\frac{\partial \hat{d}}{\partial t} \int_{c v} u_{x y z} \rho d t+\int_{c s} u_{x y y} \rho \vec{v}_{x y z} \cdot d \vec{A}
$$

Assumptions: (1) No pressure forces
(2) Horizontal; $F_{B_{x}}=0$
(3) Steady flow w.r.t. CV
(4) Uniform flow at each section
(5) No change in relative velocity on vane
(6) Flow enters and leaves tangent to vanes

The nozzle angle may, be obtained from trigonometry. The init velocity relationship is shown in the sketch:

From the law of sines,

$$
\begin{aligned}
& \frac{\sin \alpha}{V_{r b}}=\frac{\sin \left(90+\theta_{1}\right)}{V}=\frac{\sin \beta}{V} \\
& \beta=\sin ^{-1}\left[\frac{V}{V} \sin \left(90+\theta_{1}\right)\right]=\sin ^{-1}\left[\frac{50}{86.6} \sin \left(120^{\circ}\right)\right]=30^{\circ}
\end{aligned}
$$

From the sketch, $90^{\circ}=\alpha+\beta+0_{1}$, so $\alpha=90^{\circ}-\beta-\theta_{1}=90^{\circ}-30^{\circ}-30^{\circ}=30^{\circ}$

$$
0^{\circ}
$$

From momentum equation (note all of \dot{m} flows across vanes)

$$
\begin{gathered}
R_{x}=u_{1}\{-\dot{m}\}+u_{2}\{\dot{m}\}=V_{r b} \sin \theta(-\dot{m})-V_{r b} \sin \theta_{2}(\dot{m})=V_{r b} \dot{m}\left(-\sin \theta_{1}-\sin \theta_{2}\right) \\
u_{1}=V_{r b} \sin \theta_{1} \quad u_{2}=-V_{r b} \sin \theta_{2} ; \quad R_{y}=\dot{m} V_{r b}\left(-\cos \theta_{1}+\cos \theta_{2}\right)
\end{gathered}
$$

Thus, since $\dot{m}=\rho Q$,

$$
\begin{aligned}
R_{x} & =V_{r b \rho Q}\left(-\sin \theta_{1}-\sin \theta_{2}\right) \\
& =50 \frac{\mathrm{~m}}{\mathrm{~s}} \times 499 \frac{\mathrm{~kg}}{\mathrm{~m}^{3}} \times 0.170 \frac{\mathrm{~m}^{3}}{\mathrm{~s}}\left(-\sin 30^{\circ}-\sin 45^{\circ}\right) \times \frac{\mathrm{N} \cdot \mathrm{~s}^{2}}{\mathrm{~kg} \cdot \mathrm{~m}} \\
R_{x} & =-10.3 \mathrm{kN}(\text { to left })
\end{aligned}
$$

$\left\{\right.$ Note: The net force on the $C V$ in the y-direction is $R_{y}=-1.35 \mathrm{kN}$. \}

Given: Series of vanes struck by continuous jet, as shown.

Find: For $\alpha \approx 0\left(\theta, \approx 90^{\circ}\right)$, vane speed, U, to maximize power produced by vane.

Solution: Apply momentum equation using CV moving with vanes, as shown.

Basic equation:

$$
F_{s x}+F_{q_{x}}^{=o(z)}=\frac{\partial v}{\phi t} \int_{c v}^{-o(s)} u_{x y z} \rho d \forall+\int_{c s} u_{x y 3} \rho \vec{v}_{x y y} \cdot d \vec{A}
$$

Assumptions: (1) N_{0} pressure forces
(2) Horizontal; $F_{B_{x}}=0$
(3) steady flow w.r.t. CV
(4) Uniform flow ateachsection
(5) No change in relative velocity on vane
(6) Flow enters and leaves tangent to vanes

For $\propto \approx 0, V_{r b} \approx V-U_{\text {; }}$ the momentum equation becomes

$$
\begin{gathered}
R_{x}=u_{1}\{-\dot{m}\}+u_{2}\{+\dot{m}\}=-\dot{m}(V-U)-\dot{m}(V-V) \sin \theta_{2}=-\dot{m}(V-\sigma)\left(1+\sin \theta_{2}\right) \\
u_{1} \approx V_{r b} \approx V-U ; u_{2} \approx-V_{r b} \sin \theta_{2} \approx-(V-V) \sin \theta_{2}
\end{gathered}
$$

The vars system produces force, $k_{x}=-R_{x}$, and power $\theta=k_{x} U$. Thus

$$
\begin{equation*}
P=K_{x} U=-R_{x} U=\dot{m}(V-U) U\left(1+\sin \theta_{2}\right) \tag{1}
\end{equation*}
$$

To find maximum paver, set $\frac{d P}{d V}=0$

$$
\frac{d V}{d v}=\dot{m}(-1) U\left(1+\sin \theta_{2}\right)+\dot{m}(V-V)(1)\left(1+\sin \theta_{2}\right)=\dot{m}(V-2 U)\left(1+\sin \theta_{2}\right)
$$

Thus power is maximized when $V-Z V=0$, or $V=\frac{V}{2}$ (for $P_{\max }$)
\{Note from Eq. 1 that $\mathrm{O}_{2} \rightarrow 90^{\circ}$ increases power also.\}

$$
\left\{\begin{array}{l}
\text { Note also that } K_{y}=-R_{y}=-\dot{m} V_{r b} \cos Q_{2} \text { but this force does not } \\
\text { produce power. }
\end{array}\right.
$$

Given: cart propelled by steady water jet, as shown.
Total resistance to motion is

$$
F_{D}=k U^{2}
$$

where $k=0.92 \frac{\mathrm{~N} \cdot \mathrm{~s}^{2}}{\mathrm{~m}^{2}}$
Find: Acceleration of cart at instant when $U=10 \mathrm{~m} / \mathrm{s}$.

(1)

Solution: Apply the momentum equation using cv and es shown.

Assumptions: (1) $\Delta_{n} l y$ resistance is $F_{D} ; F_{s x}=-F_{D}=-k U^{2}$
(2) Horizontal; $F_{B x}=0$
(3) Neglect dulat of mass of water in CV
(4) No Change in speed wii. to vane
(5) Uniform flow at each cross-section

Then

$$
-k v^{2}-a_{r f_{x}} M_{c v}=u,\left\{-\rho(v-u)_{A}\right\}+u_{i}\left\{+\rho(v-v)_{A}\right\}
$$

Measure u wintocv: $\quad u_{1}=v-v \quad u_{2}=-(v-v) \sin \theta$

$$
-k V^{2}-a_{r f} M_{c v}=-\rho(v-V)^{2} A-\rho(v-v)^{2} A \sin \theta=-\rho(v-U)^{2} A(1+\sin \theta)
$$

so

$$
\begin{aligned}
& a r f_{x}=\frac{1}{M}\left[\rho(v-\nu)^{2} A(1+\sin \theta)-k v^{2}\right] \\
& =\frac{1}{15 \mathrm{~kg}}\left[999 \frac{\mathrm{~kg}}{\mathrm{~m}^{3}}(30-10)^{2} \frac{\mathrm{~m}^{2}}{\mathrm{~s}^{2}} \frac{\pi}{4}(0.025)^{2} \mathrm{~m}^{2}\left(1+\sin 309-0.92 \frac{\mathrm{~N} \cdot \mathrm{~s}^{2}}{\mathrm{~m}^{2}} \times(100) \frac{3 \mathrm{~m}^{2}}{\mathrm{sec}^{2}} \times \frac{\mathrm{kg}-\mathrm{m}}{\mathrm{~N} \cdot \mathrm{~s}^{2}}\right]\right. \\
& a r f_{x}=13.5 \mathrm{~m} / \mathrm{s}^{2} \text { (to right) }
\end{aligned}
$$

Given: Splitter dividing flow into two flat streams, as shown.
Find: (a) Mass flow rate ratio, $\dot{m}_{2} / \dot{m}_{3}$, so net vertical force is zero.
(b) Horizontal force need to maintain constant speed.

Solution: Apply x and y components of momentum to cv drawn with boundaries 1 to flows, as shown.

Basic equations:

Assumptions: (1) No pressure forces
(2) Neglect mass of water on vane
(3) Steady flow w.r to vane
(4) Uniform flow at each section
(5) No change in speed w.r. to vane

Then

$$
0=\int_{c s} v \rho \vec{v} \cdot d \vec{A}=v_{1}\left\{-\dot{m}_{1}\right\}+v_{2}\left\{+\dot{m}_{2}\right\}+v_{3}\left\{+\dot{m}_{3}\right\}
$$

Measure W.r.tocv:

$$
v_{1}=0
$$

$$
v_{2}=V-U
$$

$$
v_{3}=-(v-v) \sin \theta
$$

So $\quad 0=(V-V) \dot{m}_{2}-(V-V) \sin \theta \dot{m}_{3} ; \frac{\dot{m}_{2}}{\dot{m}_{3}}=\sin \theta=\frac{1}{2}$

$$
\frac{\frac{1}{2}}{\left.\dot{m}_{2}\right\}+u_{3}\left\{+\dot{m}_{3}\right\}}
$$

and

$$
F_{s x}=\int_{c s} u \rho \vec{v} \cdot d \vec{A}=R_{x}=u_{1}\left\{-\dot{m}_{1}\right\}+u_{2}\left\{+\dot{m}_{2}\right\}+u_{3}\left\{+\dot{m}_{3}\right\}
$$

Measure w.r. to cv:

$$
u_{1}=v-v \quad u_{2}=0
$$

$$
u_{3}=(V \cdot U) \cos \theta
$$

$$
R_{x}=(V-v)\left(-\dot{m}_{1}\right)+(v-v) \cos \theta\left(\dot{m}_{3}\right)=(V-v)\left(\dot{m}_{3} \cos \theta-\dot{m}_{1}\right)
$$

From continuity $0=-\dot{m}_{1}+\dot{m}_{2}+\dot{m}_{3}=-\dot{m}_{1}+\frac{\dot{m}_{3}}{2}+\dot{m}_{3} ; \dot{m}_{3}=\frac{2}{3} \dot{m_{1}}$,

$$
\begin{aligned}
& R_{x}=(V-v)\left(\frac{2}{3} \dot{m}_{1} \cos \theta-\dot{m}_{1}\right)=(V-V) \dot{m}_{1}\left(\frac{2 \cos \theta}{3}-1\right) \\
& R_{x}=(25-10) \frac{\mathrm{m}}{\mathrm{~s}} \times 999 \frac{\mathrm{~kg}}{\mathrm{~m}^{3}} \times(25-10) \frac{m}{\mathrm{~s}} \times 7.85 \times 10^{-5} \mathrm{~m}^{2}\left(\frac{2}{3} \cos 30^{\circ}-1\right) \frac{\mathrm{N} \cdot \mathrm{~s}^{2}}{\mathrm{~kg} \cdot \mathrm{~m}} \\
& R_{x}=-7.46 \mathrm{~N} \text { (to left) }
\end{aligned}
$$

$\left\{\begin{array}{l}\text { Force must be applied to left to maintain vane speed constant; } \\ \text { if } R_{x} \text { were zero, vane would accelerate. }\end{array}\right.$

Given: Hydraulic catapult of Problem 4,118 , rolling on level track with negligible resistance, speed U.

Find: Time required to accelerate from rest to $U=V / Z$.

Solution: Apply x component of mone stem equation to accelerating $C V$.
Basic

$$
F_{f_{x}}^{=0(1)}+F_{Q_{x}}^{=}-\int_{C v}^{=o(z)} a_{r f_{x} \rho} d v=\frac{\partial \hat{\not \partial}}{\neq 0(3)} \int_{C v} u_{x y z} \rho d v+\int_{c s} u_{x y z} \rho \vec{v}_{x y z} \cdot d \vec{A}
$$

Assumptions: (1) $F_{S_{x}}=0$, since no pressure forces, no resistance
(2) $F B_{x}=0$, since horizontal
(3) Neglect mass of water on vane
(4) Uniform flow in jet
(5) No change in relative velocity on vane

Then

$$
\begin{gathered}
-a_{n x_{x}} M_{c v}=u_{1}\{-\rho(v-v) A\}+u_{2}\{+\rho(v-v) A\}=-(1+\sin v) \rho(v-v)^{2} A \\
u_{1}=v-v \quad u_{2}=-(v-v) \sin \theta
\end{gathered}
$$

so $\quad \frac{d U}{d t}=\frac{p A(1+\sin \theta)}{M}(v-U)^{2}$
To integrate, note since $V=$ constant, $d(V-U)=-d U$, so

$$
-\int_{0}^{v / 2} \frac{d(v-u)}{(v-u)^{2}}=\int_{0}^{t} \frac{\rho A(1+\sin \theta)}{M} d t
$$

or $\left.\quad \frac{1}{V-U}\right]_{U=0}^{U=V / 2}=\frac{2}{V}-\frac{1}{V}=\frac{1}{V}=\frac{\rho A(1+\sin v)}{M} t$
Thus

$$
\begin{aligned}
t & =\frac{M}{\rho v A(1+\operatorname{sinv})} \\
& =15.0 \mathrm{~kg} \times \frac{\mathrm{m}^{3}}{499 \mathrm{~kg}^{2}} \times \frac{\mathrm{s}}{30.0 \mathrm{~m}} \times \frac{4}{\pi(0.025)^{2} \mathrm{~m}} \times \frac{1}{\left(1+\sin 30^{\circ}\right)} \\
t & =0.680 \mathrm{~s}
\end{aligned}
$$

Problem 4.121

Given: Vane/slider assembly moving under influence of jet.

Find: Terminal speed.
Solution: Apply x momentum equation to linearly accelerating $C V$.

Basic equation:

$$
\begin{gathered}
=o(1) \\
F_{s x}+F_{\neq \beta_{x}}-\int_{c v} a_{r f_{x}} \rho d \forall=\frac{\partial(z)}{\partial f t} \int_{c v} u_{x y z} \rho d \forall+\int_{C S} u_{x y z} \rho \vec{v}_{x y z} d \vec{A}
\end{gathered}
$$

Assumptions: (1) Horizontal motion, so $F_{B_{x}}=0$
(2) Neglect mass of liquid on vane, $u \approx 0$ on vane
(3) Uniform flow at each section
(4) Measure velocities relative to CV

Then

$$
\begin{gathered}
-M g \mu_{k}-a_{r f x} M=u_{1}\{-|\rho(V-U) A|\}+u_{2}\left\{+\dot{m}_{2}\right\}+u_{3}\left\{+\dot{m}_{3}\right\} \\
u_{1}=V-V \quad u_{2}=0 \quad u_{3}=0 \\
-M g \mu_{k}-M \frac{d U}{d t}=-\rho(V-U)^{2} A
\end{gathered}
$$

or

$$
\frac{d U}{d t}=\frac{\rho(V-U)^{2} A}{M}-g \mu_{k}
$$

At terminal speed, $d U / d t=0$ and $U=U_{t}$, so

$$
0=\frac{\rho\left(V-U_{t}\right)^{2} A}{M}-g \mu_{k} \quad \text { or } \quad V-U_{t}=\sqrt{\frac{M g \mu_{k}}{\rho A}}
$$

and

$$
\begin{aligned}
U_{t} & =V-\sqrt{\frac{M g \mu_{k}}{\rho A}} \\
& =20 \frac{\mathrm{~m}}{\mathrm{~s}}-\left[30 \mathrm{~kg} \times 9.81 \frac{\mathrm{~m}}{\mathrm{~s}^{2}} \times 0.3 \times \frac{\mathrm{m}^{3}}{999 \mathrm{~kg}} \times \frac{1}{0.005 \mathrm{~m}^{2}}\right]^{1 / 2} \\
U_{t} & =15.8 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

Problem 4.122

For the vane/slider problem of Problem 4.121, find and plot expressions for the acceleration, speed, and position of the slider as a function of time.

Given: Data on vane/slider

Find: Formula for acceleration, speed, and position; plot

Solution

The given data is

$$
\text { U } 999 \frac{\mathrm{~kg}}{\mathrm{~m}^{3}} \quad \mathrm{M} \quad 30 \llbracket \mathrm{~kg} \quad \mathrm{~A} \quad 0.005 \square \mathrm{~m}^{2} \quad \mathrm{~V} \quad 20 \square \frac{\mathrm{~m}}{\mathrm{~s}} \quad \mathrm{P}_{\mathrm{k}} \quad 0.3
$$

The equation of motion, from Problem 4.121, is

$$
\frac{\mathrm{dU}}{\mathrm{dt}} \quad \frac{\mathrm{U} \square \mathrm{~V} \square \mathrm{U})^{2}[\mathrm{~A}}{\mathrm{M}} \square \mathrm{~g} \mathbb{P}_{\mathrm{k}}
$$

(The acceleration is)

$$
\mathrm{a} \quad \frac{\mathrm{U} \mathrm{VV} \overline{\mathrm{U}})^{2}[\mathrm{~A}}{\mathrm{M}} \square \mathrm{~g} \mathrm{P}_{\mathrm{k}}
$$

Separating variables

$$
\frac{\mathrm{dU}}{\frac{\mathrm{U} \square \mathrm{~V} \square \mathrm{U})^{2} \square \mathrm{~A}}{\mathrm{M}} \square \mathrm{~g} \mathbb{P}_{\mathrm{k}}}{ }^{\mathrm{dt}}
$$

Substitute u V \quad U dU $\square \mathrm{du}$

$$
\frac{\mathrm{du}}{\frac{\mathrm{U} \square \mathrm{~A} \square^{2}}{\mathrm{M}} \square \mathrm{~g} \mathbb{P}_{\mathrm{k}}} \quad \square \mathrm{dt}
$$

and $\mathrm{u}=\mathrm{V}-\mathrm{U}$ so

Using initial conditions

which is complex and difficult to handle in Excel, so we use the identity

$$
\operatorname{atanh}(\mathrm{x}) \quad \operatorname{atanh} \S_{Q^{1}} \cdot \square \frac{\mathrm{~S}}{2} \quad \text { for } \mathrm{x}>1
$$

so
and finally the identity

$$
\tanh { }_{\mathbb{X}}^{\S} \square \frac{S}{2}\left[\dot{\mathrm{j}}_{1} \frac{1}{\tanh (\mathrm{x})}\right.
$$

to obtain

$$
\begin{aligned}
& \text { U }
\end{aligned}
$$

For the position x

This can be solved analytically, but is quite messy. Instead, in the corresponding Excel workbor it is solved numerically using a simple Euler method. The complete set of equations is

a $\frac{\mathrm{U} \square \mathrm{V} \square \mathrm{U})^{2}[\mathrm{~A}}{\mathrm{M}} \square \mathrm{g} \mathrm{P}_{\mathrm{k}}$

The plots are presented in the Excel workbook

Problem 4.122 (In Excel)

For the vane/slider problem of Problem 4.121, find and plot expressions for the acceleration, speed, and position of the slider as a function of time.

Given: Data on vane/slider
Find: Plot acceleration, speed and position

Solution

The solutions are

a $\frac{\mathrm{U} \square V \square U)^{2}[\mathbb{A}}{\mathrm{M}} \square \mathrm{g} \mathbb{P}_{\mathrm{k}}$

ρ	$=999$
μ_{k}	$=0.3$
A	$=0.005 \mathrm{~m}^{3}$
V	$=20$
$\mathrm{~m} / \mathrm{s}$	
M	$=30$
kg	
Δt	$=0.1 \mathrm{~s}$

$\boldsymbol{t}(\mathbf{s})$	$\boldsymbol{x}(\mathbf{m})$	$\boldsymbol{U}(\mathbf{m} / \mathbf{s})$	$\boldsymbol{a}\left(\mathbf{m} / \mathbf{s}^{\mathbf{2}}\right)$
0.0	0.0	0.0	63.7
0.1	0.0	4.8	35.7
0.2	0.5	7.6	22.6
0.3	1.2	9.5	15.5
0.4	2.2	10.8	11.2
0.5	3.3	11.8	8.4
0.6	4.4	12.5	6.4
0.7	5.7	13.1	5.1
0.8	7.0	13.5	4.0
0.9	8.4	13.9	3.3
1.0	9.7	14.2	2.7
1.1	11.2	14.4	2.2
1.2	12.6	14.6	1.9
1.3	14.1	14.8	1.6
1.4	15.5	14.9	1.3
1.5	17.0	15.1	1.1
1.6	18.5	15.2	0.9
1.7	20.1	15.3	0.8
1.8	21.6	15.3	0.7
1.9	23.1	15.4	0.6
2.0	24.7	15.4	0.5
2.1	26.2	15.5	0.4
2.2	27.8	15.5	0.4
2.3	29.3	15.6	0.3
2.4	30.9	15.6	0.3
2.5	32.4	15.6	0.2
2.6	34.0	15.6	0.2
2.7	35.6	15.7	0.2
2.8	37.1	15.7	0.2
2.9	38.7	15.7	0.1
3.0	40.3	15.7	0.1

Given: Cart propelled by a horizontal liquid jet of constant speed. Neglect resistance along horizontal track.

Initial mass is M_{0}.

Find! (a) A general expression for speed, U, as cart accelerates from rest.
(b) V for $U=1.5 \mathrm{mls}$ \& $t=30 \mathrm{~s}$

Solution:
a.) Apply x component of momentum equation using linearly accelerating CV shown.

Assumptions: (1) No resistance
(2) $F_{B_{x}}=0$ since track is horizontal
(3) Neglect unity with in CV
(4) Uniform flow at jet exit

Then

$$
\begin{aligned}
-\operatorname{arf}_{x} M= & u\{\rho \rho V A \mid\}=-\rho V^{2} A \\
& u=-V
\end{aligned}
$$

From continuity, $M=M_{0}-\dot{m} t=M_{0}-\rho V A t \cdot U \operatorname{sing} a_{r f x}=\frac{d V}{d t}$,

$$
\frac{d V}{d t}=\frac{\rho V^{2} A}{M_{0}-\rho V A t}
$$

Separating variables and integrating,

$$
\int_{0}^{U} d V=V=\int_{0}^{t} \frac{\rho V^{2} A d t}{M_{0}-\rho V A t}=-\left.V \ln \left(M_{0}-\rho V A t\right)\right|_{0} ^{t}=V \ln \left(\frac{M_{0}}{M_{0}-\rho V A t}\right)
$$

or

$$
\frac{U}{V}=\ln \left(\frac{M_{0}}{M_{0}-\rho V A t}\right)
$$

Check dimensions: $[\rho V A t]=\frac{M}{L^{3}} \frac{L}{t} L^{2} t=M$ V
b) Using the given data in Excel (with Solver) the jet speed for $S=1.5 \mathrm{Ml}$ @ $t=30 \mathrm{~s}$ is $V=0.61 \mathrm{~m}$

Given: Hydraulic catapult of Problem 4.118, rolling an level track with resistance, $F_{D}=k U^{2}$ speed $U_{\text {, }}$ starting from rest at $t=0$.

Find: (a) when acceleration is maximum
(b) sketch of acceleration vs. time
(c) Value of θ to maximize acceleration, why?
(d) If U will ever reach V_{j} explanation

Solution: Apply x component of momentum equation to accelerating ok:

Assumptions: (1) $F_{S_{x}}=-F_{D}=-k U^{2}$, where $k=0.92 \mathrm{~N} \cdot \mathrm{~s}^{2} / \mathrm{m}^{2}$
(2) $F_{B x}=0$, since horizontal
(3) Neglect mass of water on vane
(4) Uniform flow in jet
(5) No change in relative velocity on vane

Then

$$
\begin{aligned}
&-k U^{2}-a_{r t} M_{c v}= u_{1}\{-\rho(v-u) A\}+ \\
& u_{1}=v-u \quad\{+\rho(v-v) A\}=-(1+\sin v) \rho(v-u)^{2} A \\
& u_{2}=-(v-u) \sin v
\end{aligned}
$$

so

$$
\begin{equation*}
\frac{d U}{d t}=\frac{\rho A(1+\sin \theta)}{M}(v-v)^{2}-k U^{2} / M \tag{1}
\end{equation*}
$$

(a) Acceleration is maximum at $t=0$, when $U=0$
(b) Acceleration us. tine will be

(c) From Eq. $1, d u / d t$ is maximum when $\theta=\pi / 2$ and $\sin \theta=1$
(d) From Ea.1, $\frac{d U}{d t}$ will go to zero when $U<V$; this will be the terminal speed for the cart, U_{t}. From Eq. $1, \frac{d U}{d t}=0$ when

$$
P A(1+\sin \theta)(v-u)^{2}=k v^{2}
$$

or

$$
U=\frac{\left[\frac{f A(1+\sin \theta)}{k}\right]^{1 / 2}}{1+\left[\frac{f(A(1+\sin \theta)}{k}\right]^{1 / 2}} \mathrm{~V}=0.472 \mathrm{~V}
$$

U will be asymptotic to V.

Given: Vaneleart assembly driven by liquid jet. Motion to be controlled so that $a_{r f x}=1.5 \mathrm{~m} / \mathrm{s}^{2}$ by variving turning angle, θ. Neglect resistance.

Find: θ at $t=5 \mathrm{~s} . \quad$ Plot: $\theta(t)$ over a suitable range.
Solution: Apply x component of momentum equation, using linearly accelerating CV shown above.

$$
\approx 0(3)
$$

Assumptwins: (1) $F_{S_{x}}=0$
(2) $F e_{x}=0$
(3) Neglect u and rate of change of u within CV
(4) Uniform flow at each section
(5) Jet area and speed relative to vance are constant

Then

$$
\begin{aligned}
&-m a_{r f} f_{k}= u_{1}\{-|\rho(V-V) A|\}+u_{2}\{|\rho(V-V) A|\} \\
& u_{1}=V-U \quad u_{2}=(V-V) \cos \theta \\
&-m a_{r f}=-\rho(V-U)^{2} A+f(V-U)^{2} A \cos C=f(V-U)^{2} A(\cos \theta-1)
\end{aligned}
$$

or-

$$
\cos \theta=1-\frac{M a r f x}{\rho(v-v)^{2} \theta}
$$

Since $a_{r f x}=$ constant, $v=a_{r f x} t$

$$
\begin{equation*}
\cos \theta=1-\frac{M a_{r f x}}{\rho\left(V-a r f_{x} t\right)^{2} A} \tag{1}
\end{equation*}
$$

and

$$
\left.\begin{array}{rl}
\theta & =\cos ^{-1}\left[1-\frac{M a r f x}{f(V-a r f x}\right)^{2} A
\end{array}\right]=\cos ^{-1}\left\{1-55 \mathrm{~kg}_{\times} 1 . \frac{5 m}{3} \times \frac{m^{3}}{599 \mathrm{~kg}}\left[\frac{1}{15 \frac{m}{3}-1.5 \frac{m}{3} \times 5 \mathrm{~s}}\right]^{2} \frac{1}{0.025 m^{2}}\right\}
$$

Equation 1 is only valid for $\theta \leqslant 180^{\circ}$. This occurs at $t \approx 9.145$.
The pot is on the next page.

Problem 4.126

Given: Waned cart rolling with negligible resistance.

$$
a_{r f} f_{x}=2 \mathrm{~m} / \mathrm{s}^{2}-\text { constant }
$$

Jet area is $A(t)$, programmed.

Find: (a) Expression for $A(t)$ at cart.
(b) Sketch for $t \leqslant 4 \mathrm{~s}$.
(c) Evaluate at $t=2 s$.

Solution: Apply x momentum to CV with linear acceleration.
Basic equation:

Assumptions: (1) No resistance to motion
(2) Horizontal motion, so $F_{B_{x}}=0$
(3) Neglect mass of liquid in CV
(4) Uniform flow at each section
(5) All velocities's measured relative to CV
(6) No change in stream area or speed on vane

Then (with af $=a$)

$$
\begin{array}{r}
-a M=u_{1}\{-|\rho(v-v) A|\}+u_{2}\{+|\rho(v-v) A|\}=-\frac{3}{2} \rho(v-v)^{2} A \\
u_{1}=v-v \quad u_{2}=(v-v) \cos 120^{\circ}=-\frac{1}{2}(v-v)
\end{array}
$$

Since $a=$ constant, $U=a t$, and

$$
A=A(t)=\frac{2 a M}{3 \rho(V-a t)^{2}}
$$

At $t=0, A(0)=A_{0}=\frac{2 a M}{3 \rho V^{2}}$. Thus $\frac{A}{A_{0}}=\frac{1}{(1-a t / V)^{2}}$.
Sketch:

At $t=2 \mathrm{sec}$,

$$
A=\frac{2}{3} \times 2 \frac{\mathrm{~m}}{\mathrm{~s}^{2}} \times 3 \mathrm{~kg} \times \frac{\mathrm{m}^{3}}{999 \mathrm{~kg}} \frac{1}{\left[10 \frac{\mathrm{~m}}{\mathrm{~s}}-2 \frac{\mathrm{~m}}{\mathrm{~s}^{2}} \times 25\right]^{2}} \times 10^{6} \frac{\mathrm{~mm}^{2}}{\mathrm{~m}^{2}}=111 \mathrm{~mm}
$$

Problem 4.127

Given: Rocket sled with "water scop brake. $\mathrm{w}=10,000 \mathrm{lbf}$

scoop immersed in trough is $w=6 \mathrm{in}$. wide, $h=3 \mathrm{in}$. deep.
Find: Time needed to decelerate to 20 mph . Plot: speedusitime.
Solution: Apply x component of momentum equation to linearly accelerating CV. Basic equation is

$$
F_{S_{x}}^{A}+F_{B_{x}}^{A}-\int_{c v} a_{r f x} \rho d t=\frac{\partial}{\partial t} \int_{c v} u_{x y z} \rho d \forall+\int_{c s} u_{x y z} \rho \vec{v}_{x y z} \cdot d \vec{a}
$$

Assumptions: (1) $F_{S x}=0$
(2) $F e_{x}=0$
(3) Neglect $u_{x y z}$ and its rate of change in CV
(4) Uniform flow at each section
(5) Speed of water relative to sled is constant

Then

$$
\begin{aligned}
& -a_{r f_{x}} M=u_{1}\{-|\rho ण w h|\}+u_{2}\{|\rho U w h|\} ; u_{1}=v, u_{2}=-v \cos \theta \\
& -a_{r f x} \frac{w}{g}=-\rho U^{2} w h(1+\cos \theta), \text { or } a_{r f x}=\frac{\rho g U^{2} w h(1+\cos \theta)}{w}
\end{aligned}
$$

Now $a_{r f x}=-\frac{d U}{d t}$, because of Coordinate choice. Thus

$$
\frac{d U}{U^{2}}=-\frac{\gamma w h}{w}(1+\cos \theta) d t
$$

and

$$
\begin{equation*}
\int_{U_{i}}^{U} \frac{d U}{U^{2}}=-\frac{1}{U}+\frac{1}{U_{i}}=-\frac{\gamma w h}{w}(1+\cos \theta) t \tag{1}
\end{equation*}
$$

Solving for t,

$$
\begin{aligned}
t & =\left[\frac{1}{V}-\frac{1}{v_{i}}\right] \frac{\omega}{\delta w h(1+\cos (\theta)} \\
& =\left[\frac{1}{20}-\frac{1}{600}\right] \frac{\mathrm{hr}}{m i} \times \frac{m i}{5280 t^{2}} \times 3600 \frac{\mathrm{~s}}{h r} \times \frac{f^{2}}{62.416 f^{2}} \times \frac{1}{6 i n} \times \frac{1}{3 i n} \times \frac{144 \mathrm{in}^{2}}{\mathrm{ft}^{2}} \times \frac{10,000 \mathrm{hb}}{1+\cos 30^{\circ}} \\
t & =22.6 \mathrm{~s}
\end{aligned}
$$

The plot is presented on the next page.

Problem 4.128

Given: Rocket sled slowed by scoop in water trough.
Aerodynamic drag proportional to U^{2} At $U_{0}=300 \mathrm{~m} / \mathrm{s}, F_{0}=90 \mathrm{kN}$. Scoop width, $w=0.3 \mathrm{~m}$

Find: Depth of scoop immersion to slow to $100 \mathrm{~m} / \mathrm{s}$ in trough length, L.
Solution: Apply x component of momentum equation using linearly accelerating $C V$ shown.
Basic equation: $F_{S x}+F_{\phi x}^{=0(1)}-\int_{C V} a_{r f x} \rho d \forall=\frac{\rho^{\hat{A}}}{\approx t} \int_{C V}^{0(2)} u_{x y z} \rho d \forall+\int_{C S} u_{x y 3} \rho \vec{v}_{x y z} \cdot d \vec{A}$ Assumptions: (1) $F_{B_{x}}=0$
(2) Neglect rate of change of u in $C v$
(3) uniform flow at each section
(4) No Change in relative speed of liquid crossing scoop

Then

$$
\begin{gathered}
-F_{D}-\text { Marfx }=u_{1}\{-|\rho U w h|\}+u_{2}\{|\rho U w h|\} ; h=s c o o p \text { immersion } \\
u_{1}=-U \quad u_{2}=U \cos \theta
\end{gathered}
$$

But $F_{D}=k U^{2} ; k=\frac{F D_{0}}{U_{0}^{2}}=90 \mathrm{kN} \times \frac{\mathrm{s}^{2}}{(300)^{2} \mathrm{~m}^{2}} \times \frac{10^{3} \mathrm{~N}}{\mathrm{kN}} \times \frac{\mathrm{kg} \cdot \mathrm{m}}{\mathrm{N} \cdot \mathrm{s}^{2}}=1.00 \mathrm{~kg} / \mathrm{m}$

$$
-k U^{2}-M \frac{d U}{d t}=\rho U^{2} w h(1+\cos \theta), \text { since } a_{r f}=d U / d t
$$

Thus $-M \frac{d U}{d t}=[k+\rho \omega h(1+\cos \theta)] U^{2}=-M U \frac{d U}{d x}$ or $\frac{d U}{U}=-c d X$, where $c=\frac{k+\rho \omega h(1+\cos \theta)}{M}$
Integrating, $\ln \frac{U}{U_{0}}=-C X$, so $C=-\frac{1}{X} \ln \frac{U}{U_{0}}$

$$
C=-\frac{1}{800 \mathrm{~m}} \ln \left(\frac{100}{300}\right)=1.37 \times 10^{-3} \mathrm{~m}^{-1}
$$

solving for $h, h=\frac{M c-k}{\rho \omega(1+\cos \theta)}$

$$
\begin{gathered}
h=\left[8000 \mathrm{~kg}_{\times} \frac{1.37 \times 10^{-3}}{\mathrm{~m}}-1.00 \frac{\mathrm{~kg}}{\mathrm{~m}}\right] \frac{\mathrm{m}^{3}}{999 \mathrm{~kg}} \times \frac{1}{0.3 \mathrm{~m}} \times \frac{1}{\left(1+\cos 30^{\circ}\right)}=0.0179 \mathrm{~m} \\
h=17.9 \mathrm{~mm}
\end{gathered}
$$

Problem 4.129

Given: Venick accelerated from rest by a hydraulic catapult. Neglect resistarice.

Find: Veniele speed at $t=5 \mathrm{sec}$

Solution: Apply component of momentum equation using the linearly accelerating $C V$ shown above.
Basic equation: $F_{x}^{=0(1)}+F_{q x}^{=0(2)}-\int_{c v} a_{r+x} p d z=\frac{q}{q} \int_{C V}^{0(3)} u_{x y z} p d t+\int_{c 5} u_{x y z} p \vec{v}_{x_{y z}} \cdot d \cdot t$
Assumptions: (1) $F_{S_{x}}=0$
(2) $F_{B_{X}}=0$
(3) Neglect mass of liquid and rate of change of u in CV
(4) Uniform flow at each section
(5) Jet area and speed with respect to weniele are consistent

Then

$$
\begin{array}{r}
-M a_{i f}=-M \frac{d U}{d t}=u_{1}\{-|\rho(V-U) A|\}+u_{2}\{|f(V-v) A|\} \\
u_{1}=V-U \quad u_{2}=-(v-v)
\end{array}
$$

or

$$
\frac{d U}{d t}=\frac{2 \rho(V-U)^{2} A}{M}
$$

Note that $d V=-d(V-U)$, and separate variables to obtain

$$
-\frac{d(V-V)}{(V-V)^{2}}=\frac{2 f A}{M} d t
$$

Integrate from $U=0$ at $t=0$ to U at t,

$$
\left.\int_{V-V-V}^{V-U}-\frac{d(V-V)}{(V-U)^{2}}=\frac{1}{V-U}\right]_{V}^{V-U}=\frac{1}{V-U}-\frac{1}{V}=\frac{V-(V-v)}{V(V-U)}=\frac{U}{V(V-U)}=\frac{2(d}{M} t
$$

solving,

$$
\begin{equation*}
U=(V-V) \frac{2 \rho V A}{M} t \quad \text { ir } \quad U=V\left[\frac{2 \rho V A}{M} t\right] \tag{1}
\end{equation*}
$$

For the given conditions ate $t=s s$,

$$
\left.\begin{array}{l}
\frac{2 \epsilon^{V A}}{M} t=2 \times 999 \frac{\mathrm{~kg}}{\mathrm{~m}^{3}} \times \frac{30 \mathrm{~m}}{\mathrm{~s}} \times 0.001 \mathrm{~m} \times 5 \mathrm{~s} \times \frac{1}{100 \mathrm{~kg}}=3.00 \\
U=30 \mathrm{~m} \\
U
\end{array} \frac{3.00}{1+3.00}\right]=22.5 \mathrm{~m} / \mathrm{s}
$$

The plat is on the next page.
The speed vs.time plotis Problem 4.129(cont'd)

Problem 4.130
Given: Cart accelerated from rest by hydraulic catapult.

$$
F_{0}=k U^{2} ; k=2.0 \mathrm{~N} \cdot \mathrm{~s}^{2} / \mathrm{m}^{2}=
$$

Find: (a) Expression for acceleration in terms of speed, U.
(b) Evaluate at $U=10 \mathrm{~m} / \mathrm{s}$.

$$
\begin{aligned}
& P=999 \mathrm{~kg} / \mathrm{m}^{3} \\
& V=30 \mathrm{~m} / \mathrm{s} \\
& A=0.001 \mathrm{~m}^{2}
\end{aligned}
$$

(c) Fraction of v_{t}.

Solution: Apply x momentum for $d V$ with linear acceleration.
Basic equation:

$$
F_{s_{x}}+F_{B_{x}}-\int_{C V} a r_{x \rho} \rho d \forall=\frac{\partial}{\partial t} \int_{C V} u_{x y 3} \rho d v+\int_{C s} u_{x y 3} \rho \vec{v}_{x y z} \cdot d \vec{A}
$$

Assumptions: (1) Horizontal, $F_{B_{x}}=0$
(2) Neglect mass of liquid in CV (components of u cancel)
(3) Uniform flow at each section
(4) Measure all velocities relative to the CV
(5) No change in stream area or speed on vane

Then

$$
-k U^{2}-a_{f_{x}} M=u_{1}\{-|\rho(v-U) A|\}+u_{2}\{+|\rho(v-v) A|\}=-z \rho(v-v)^{2} A
$$

$$
u_{1}=v-v \quad u_{2}=-(v-v)
$$

or

$$
a f_{x}=\frac{d U}{d t}=\frac{2 \rho(V-U)^{2} A-k U^{2}}{M}
$$

At $U=10 \mathrm{~m} / \mathrm{sec}$

Problem 4.131

Given: Small waned cart rolling on level track. struck by a watervet, as shown. At $t=0, U_{0}=12.5 \mathrm{~m} / \mathrm{sec}$. Neglect air resistance and rolling resistance.

Find: (a) Time and (b) distance needed to bring cart to rest, ane (c) plot of $U(t), x(t)$.

Solution: Apply x component of momentumueing CS and CV shown.

Basic equation: $F_{\$ x}^{=0(1)}+F_{q x}-\int_{C v} \operatorname{arfx}_{x} \rho d \forall=\frac{\partial}{\partial t} \int_{C V}^{\approx o(3)} u_{x y z} \rho d t+\int_{C s} u_{x y z} \rho \vec{v} \cdot d \vec{A}$
Assumptions: (I) No resistance; $F_{S_{x}}=0$
(2) Horizontal; $F_{B_{x}}=0$
(3) Neglect mass of water on vane: $\partial+2 t \approx 0$
(4) No change in speed wire. to vane
(5) Uniform flow at each crosi-section

Then

$$
\begin{align*}
& -a_{r f} M_{C V}=u_{1}\{-|\rho(v+U) A|\}+u_{2}\{+|\rho(v+U) A|\} \\
& a_{r f x}=\frac{d U}{d t} \quad u_{1}=-(v+u) \quad u_{2}=-(v+U) \cos \theta \quad(\omega, r \div)(v) \tag{1}
\end{align*}
$$

So $\quad-\frac{d U}{d t} M=\rho(V+U)^{2} A-\rho(V+U)^{2} A \cos \theta=\rho(V+U)^{2} A(1-\cos \theta)$
Note $V=$ constant, so $d U=a(v+U)$. Substituting

$$
\begin{equation*}
-\frac{d(V+U)}{(v+U)^{2}}=\frac{e A(1-\cos \theta) d t}{M} \tag{2}
\end{equation*}
$$

Integrate from J_{0} at $t=0$ to stop, when $U=0$

$$
\left.\frac{1}{V+V}\right]_{U=U_{3}}^{U=0}=\frac{1}{V}-\frac{1}{V+U_{2}}=\frac{V+U_{0}-V}{V\left(V+U_{0}\right)}=\frac{U_{0}}{V\left(V+U_{0}\right)}=\frac{\rho A(1-\cos 2) t}{A}
$$

Thus $t=\frac{U_{0} M}{\rho\left(V+U_{0}\right) V A(1-\cos Q)}$

$$
\begin{aligned}
& =12.5 \frac{m}{\sec } \times 10.5 \mathrm{~kg} \frac{\mathrm{~m}^{3}}{999 \mathrm{~kg}^{2}} \times \frac{\mathrm{sec}}{(12.5+8.25) \mathrm{m}} \times \frac{\sec }{8.25 m^{2}} \times \frac{1}{900 \times 10^{-6} \mathrm{~m}^{2}} \times \frac{1}{\left(1-\cos 30^{\circ}\right)} \\
t & =1.71 \sec (t o \text { stop) }
\end{aligned}
$$

To find dutance note $\frac{d U}{d t}=\frac{d U}{d \Delta} \frac{d 0}{d t}=\frac{d U}{d u} U=U \frac{d U}{d D}: 50$ the Eq. 1

$$
\begin{equation*}
-U \frac{d U}{d \Delta} M=\rho(V+U)^{2} A(1-\cos \theta) \tag{3}
\end{equation*}
$$

Separating variables $\quad \frac{U d U}{(V+U)^{2}}=\frac{-(A(1-\cos \theta)}{M} d s$

Equation 3 may be integrated. Using tables, and integrating from to at $t=0$ to $\operatorname{stop}(w h e n U=0)$,

$$
\int_{U_{0}}^{0} \frac{U d U}{(V+U)^{2}}=\left[\ln (V+U)+\frac{V}{V+U}\right]_{\overline{0}}^{0}=\ln \left(\frac{V}{V+U_{0}}\right)+\frac{V}{V}-\frac{V}{V+U_{0}}=-\frac{\rho A(1-\cos \theta)}{M}
$$

Simplityrig and solving fore,

$$
\begin{aligned}
A & \left.=-\frac{M}{\rho A(1-\cos 9)} \ln \left(\frac{V}{V+U_{0}}\right)+1-\frac{V}{V+V_{3}}\right) \\
& =-10.5 \mathrm{~kg} \times \frac{\mathrm{m}^{3}}{999 \mathrm{k9}} \times \frac{1}{900 \times 10^{-6} \mathrm{~m}^{2}} \times\left(\frac{1}{\left(1-\cos 60^{0}\right)}\left[\ln (8.25+12.5)+1-\frac{8.25}{8.25+12.5}\right]\right. \\
A & =7.47 \mathrm{~m}(\text { to stop) }
\end{aligned}
$$

From Eq. 2 the general solution is

$$
\left.\int_{v_{0}}^{v}-\frac{d(v+u)}{(v+u)^{2}}=\frac{1}{v+u}\right]_{U_{0}}^{v}=\frac{1}{v+u}-\frac{1}{v+c_{0}}=\frac{\left(v+U_{0}\right)-(v+u)}{(v+u)(v+(b)}=\frac{\rho A(1-\cos \theta) t}{M}=a t
$$

Thus $u_{0}-v=a(v+u)\left(v+u_{0}\right) t=a v\left(v+u_{0}\right) t+a v\left(v+u_{0}\right) t \quad\left\{\right.$ Let $\left.b=v+v_{0}\right\}$
Simplifgriig, $U=\frac{V_{0}-a v b t}{1+a b t}$
Acceleration is found from Eq. 1

$$
a_{x}=\frac{d u}{d r}=\frac{\rho A(1-\cos a)(v+v)^{2}}{M}=a(v+u)^{2}
$$

Integrate Eq. 4 to get $X(t)$:

$$
\begin{aligned}
& U=\frac{d X}{d t}=\frac{U_{0}-a b v t}{1+a b t} \\
& d \bar{X}=\frac{U_{0}}{1+a b t} d t-\frac{a b v t}{1+a b t} d t
\end{aligned}
$$

Integrating

$$
\begin{aligned}
& \left.X=\frac{V b}{a b} \ln (1+a b t)\right]_{0}^{t}-\frac{v}{a b} \int_{0}^{t} \frac{x}{1+x} d x=\left[\frac{V_{0}}{a b} \ln (1+a b t)-\frac{V}{a b}(1+a b t-\ln (1+a t t)]_{0}^{t}\right. \\
& X=\frac{V_{0}}{a b} \ln (1+a b t)-\frac{V}{a b}[a b t-\ln (1+a b t)]
\end{aligned}
$$

Numerical values and plots are on the next page.

Given: Vane/slider assembly moving under influence of jet.

$$
F_{R}=k U_{;} k=7.5 \mathrm{~N} \cdot \mathrm{~s} / \mathrm{m}
$$

Find: (a) Acceleration at instant when $U=10 \mathrm{~m} / \mathrm{s}$.

(b) Terminal speed of slider.

Solution: Apply x momentum equation to linearly accelerating $C V$.
Basic equation:

$$
F_{s_{x}}+F \rho_{x}^{* o(1)}-\int_{v v} a_{r_{x}} \rho d t=\frac{\partial}{p^{*}} \int_{\mathrm{cv}}^{\approx o(z)} u_{x y 3} \rho d r+\int_{c s} u_{x y 3} \rho \vec{v}_{x y s} \cdot d \vec{A}
$$

Assumptions: (1) Horizontal so $F_{B_{x}}=0$
(2) Neglect mass of liquid on vane, uso on vane
(3) Uniform flow at each section
(4) Measure velocities relative to CV

Then

$$
\begin{gathered}
-k U-a_{r f} M=u_{1}\{-|\rho(v-U) A|\}+u_{2}\left\{+\dot{m}_{2}\right\}+u_{3}\left\{+\dot{m}_{3}\right\} \\
u_{1}=V-U \quad u_{2}=0 \quad u_{3}=0 \\
-k U-M \frac{d V}{d t}=-\rho(V-U)^{2} A
\end{gathered}
$$

or

$$
\begin{aligned}
\frac{d U}{d t} & =\frac{\rho(V-U)^{2} A}{M}-\frac{k U}{M} \\
& =994 \frac{\mathrm{~kg}}{m^{3}}(20-10)^{2} \frac{m^{2}}{s^{2}} \times 0.005 m^{2} \times \frac{1}{30 \mathrm{~kg}}-7.5 \frac{\mathrm{~N} \cdot \mathrm{~s}}{m}+10 \frac{m}{3} \times \frac{1}{30 \mathrm{~kg}} \times \frac{\mathrm{kg} \cdot \mathrm{~m}}{\mathrm{~N} \cdot \mathrm{~s}^{2}}
\end{aligned}
$$

$$
\frac{d U}{d t}=14.2 \mathrm{~m} / \mathrm{s}^{2}
$$

$(a t U=10 \mathrm{~m} / \mathrm{s})$
At terminal speed, $U=V_{t}$ and $d U / d t=0$, so

$$
\begin{aligned}
0 & =\frac{\rho(V-U)^{2} A}{M}-\frac{k U}{M} \text { or } V^{2}-2 U V+U^{2}-\frac{k}{\rho A} U=0 \\
U^{2} & -\left(2 V+\frac{k}{\rho A}\right) U+V^{2}=0 \\
U & =\frac{2 V+k / \rho A \pm \sqrt{(2 V+k / \rho A)^{2}-4 V^{2}}}{2}=V\left\{\left(1+\frac{k}{2 \rho V A}\right) \pm \sqrt{\left(1+\frac{k}{2 \rho V A}\right)^{2}-1}\right\} \\
1+\frac{k}{2 \rho V A} & =1+\frac{1}{2} \times 7.5 \frac{\mathrm{~N} \cdot \mathrm{~s}}{m} \times \frac{m^{3}}{999 \mathrm{~kg}} \times \frac{5}{20 m} \times \frac{1}{0.005 \mathrm{~m}^{2}} \times \frac{\mathrm{kg} \cdot \mathrm{~m}}{\mathrm{~N}^{2}}=1.0325
\end{aligned}
$$

$$
U=V\left\{1.0375 \pm \sqrt{(1.0375)^{2}-1}\right\}=0.761 \mathrm{~V}=0.761 \times 20 \frac{\mathrm{~m}}{\mathrm{~s}}=15.2 \mathrm{~m} / \mathrm{s}
$$

\{The negative root was chosen so $U_{t}<V$, as required. \}

Problem 4.133

For the vane/slider problem of Problem 4.132, find and plot expressions for the acceleration, speed, and position of the slider as functions of time. (Consider numerical integration.)

Given: Data on vane/slider

Find: Formula for acceleration, speed, and position; plot

Solution

The given data is

$$
\text { U } 999 \frac{\mathrm{~kg}}{\mathrm{~m}^{3}} \quad \mathrm{M} \quad 30 \llbracket \mathrm{~kg} \quad \text { A } 0.005 \square \mathrm{~m}^{2} \quad \mathrm{~V} \quad 20 \underset{\mathrm{~s}}{\mathrm{~m}} \quad \mathrm{k} \quad 7.5 \frac{\mathrm{~N} \$}{\mathrm{~m}}
$$

The equation of motion, from Problem 4.132, is

$$
\frac{\mathrm{dU}}{\mathrm{dt}} \quad \frac{\mathrm{U} \square \mathrm{~V} \square \mathrm{U})^{2}[\mathrm{~A}}{\mathrm{M}} \square \frac{\mathrm{kDU}}{\mathrm{M}}
$$

(The acceleration is)
a $\frac{\mathrm{U} \square \mathrm{V} \square \mathrm{U})^{2}[\mathrm{~A}}{\mathrm{M}} \square \frac{\mathrm{k} \square \mathrm{U}}{\mathrm{M}}$

The differential equation for U can be solved analytically, but is quite messy. Instead we use a simple numerical method - Euler's method
where Δt is the time step

Finally, for the position $x \frac{d x}{d t} \quad U$
so

$$
x(n \square 1) \quad x(n) \square U \square t
$$

The final set of equations is

$$
\begin{aligned}
& \text { a } \frac{\mathrm{U} \square \mathrm{~V} \square \mathrm{U})^{2}[\mathrm{~A}}{\mathrm{M}} \square \frac{\mathrm{k} \square \mathrm{U}}{\mathrm{M}} \\
& x(n \square 1) \quad x(n) \square U \square t
\end{aligned}
$$

The results are plotted in the corresponding Excel workbook

Problem 4.133 (In Excel)

For the vane/slider problem of Problem 4.132, find and plot expressions for the acceleration, speed, and position of the slider as functions of time. (Consider numerical integration.)

Given: Data on vane/slider
Find: Plot acceleration, speed and position

Solution

The solutions are
$\mathrm{U}(\mathrm{n} \square 1)$

$x(n \square 1) \quad x(n) \square U \square t$

Given: Block and jet as shown.
Jet strikes block at $t>0$.
Find: (a) Expression for acceleration.
(b) Time at which $U=0$.

Solution: Apply x momentum equation to linearly accelerating $C V$.

Basic equation:

Assumptions: (1) No pressure or friction forces, so $F_{3 x}=0$
(z) Horizontal, so $\mathrm{F}_{\mathrm{B}_{x}}=0$
(3) Neglect mass of liquid in $c v, u \approx 0$ in $C v$
(4) Uniform flow at each section
(5) Measure velocitris relative to CV

Then

$$
\begin{array}{r}
-M a f_{x}=-M \frac{d V}{d t}=u_{1}\{-|\rho(V+\sigma) A|\}+u_{2}\left\{+\dot{m}_{2}\right\}+u_{3}\left\{+\dot{m}_{3}\right\} \\
u_{1}=-(V+V) \quad u_{2}=0 \quad u_{3}=0
\end{array}
$$

or

$$
\frac{d U}{d t}=-\frac{\rho(V+U)^{2} A}{M}
$$

But, since $V=$ constant, $d U=d(V+U)$, so

$$
\frac{d(V+U)}{(V+U)^{2}}=-\frac{P A}{M} d t
$$

Integrating from U_{6} at $t=0$ to $U=0$ at t

$$
\left.\int_{V+U_{0}}^{V} \frac{d(V+(V)}{(V+V)^{2}}=-\frac{1}{(V+V)}\right]_{V+U_{0}}^{V}=-\frac{1}{V}+\frac{1}{V+U_{0}}=\frac{-U_{0}}{V\left(V+U_{0}\right)}=-\frac{P A t}{M}
$$

Solving, $t=\frac{M U_{0}}{\rho V A\left(V+U_{0}\right)}=\frac{M}{\rho V A\left(1+V / U_{0}\right)}$

Problem 4.135

If $M=100 \mathrm{~kg}, \rho=999 \mathrm{~kg} / \mathrm{m}^{3}$, and $A=0.01 \mathrm{~m}^{2}$, find the jet speed V required for the cart to be brought to rest after one second if the initial speed of the cart is $U_{0}=5 \mathrm{~m} / \mathrm{s}$. For this condition, plot the speed U and position x of the cart as functions of time. What is the maximum value of x, and how long does the cart take to return to its initial position?

Given: Data on system

Find: Jet speed to stop cart after 1 s ; plot speed \& position; maximum x ; time to return to origin

Solution

The given data is $\quad U \quad 999 \sqrt[\frac{\mathrm{~kg}}{\mathrm{~m}^{3}}]{ } \quad \mathrm{M} \quad 100 \square \mathrm{~kg} \quad$ A $0.01\left[\mathrm{~m}^{2} \quad \mathrm{U}_{0} \quad 5 \sqrt[5]{\mathrm{m}}\right.$

The equation of motion, from Problem 4.134, is

which leads to

Integrating and using the IC $U=U_{0}$ at $t=0$

To find the jet speed V and $t=1 \mathrm{~s}$. (The equation becomes a quadratic in V). Instead we use Excel's Goal Seek in the associated workbook

From Excel V $5 \square \frac{\mathrm{~m}}{\mathrm{~s}}$

For the position x we need to integrate

The result is

This equation (or the one for U with U
$x \mathrm{~b}$ differentiating, as well as the time for x to be zero again. Instead we use Excel's Goal Seek and Solver in the associated workbook

From Excel

$$
\mathrm{x}_{\max } 1.93 \square \mathrm{n} \quad \mathrm{t}(\mathrm{x} \quad 0) \quad 2.51 \square
$$

The complete set of equations is

The plots are presented in the Excel workbook

Problem 4.135 (In Excel)

If $M=100 \mathrm{~kg}, \rho=999 \mathrm{~kg} / \mathrm{m}^{3}$, and $A=0.01 \mathrm{~m}^{2}$, find the jet speed V required for the cart to be brought to rest after one second if the initial speed of the cart is $U_{0}=5 \mathrm{~m} / \mathrm{s}$. For this condition, plot the speed U and position x of the cart as functions of time. What is the maximum value of x, and how long does the cart take to return to its initial position?

Given: Data on system
Find: Jet speed to stop cart after 1 s ; plot speed \& position; maximum x; time to return to origin

Solution

$\boldsymbol{t}(\mathbf{s})$	$\boldsymbol{x}(\mathbf{m})$	$\boldsymbol{U}(\mathbf{m} / \mathbf{s})$
0.0	0.00	5.00
0.2	0.82	3.33
0.4	1.36	2.14
0.6	1.70	1.25
0.8	1.88	0.56
1.0	1.93	0.00
1.2	1.88	-0.45
1.4	1.75	-0.83
1.6	1.56	-1.15
1.8	1.30	-1.43
2.0	0.99	-1.67
2.2	0.63	-1.88
2.4	0.24	-2.06
2.6	-0.19	-2.22
2.8	-0.65	-2.37
3.0	-1.14	-2.50

To find V for $U=0$ in 1 s , use Goal Seek

$\boldsymbol{t}(\mathbf{s})$	$\boldsymbol{U}(\mathbf{m} / \mathbf{s})$	$\boldsymbol{V}(\mathbf{m} / \mathbf{s})$
1.0	0.00	5.00

To find the maximum x, use Solver

$\boldsymbol{t}(\mathbf{s})$	$\boldsymbol{x}(\mathbf{m})$
1.0	1.93

To find the time at which $x=0$ use Goal Seek

$\boldsymbol{t}(\mathbf{s})$	$\boldsymbol{x}(\mathbf{m})$
2.51	0.00

Given: Block rolling between opposing jets, as shown.
speed is 4 at $t=0$.
There is no resistance for $t>0$.

Find: (a) Expression for acceleration, $a(t)$.
(b) Expression for speed, U(t).

Solution: Apply x momentum to linearly accelerating $C V$.
Basic equation:

Assumptions: (1) No pressure or friction farces, so $F_{5 x}=0$
(2) Horizontal, so $F_{B x}=0$
(3) Neglect mass of liquid in Cv ; $u \approx 0$ in Cv
(4) Uniform flow at each section
(5) Measure velocities relative to CV

Then

$$
\begin{array}{r}
-a r f_{x} M=-M \frac{d V}{d t}=u_{1}\{-|\rho(v-v) A|\}+u_{2}\{-|\rho(v+v) A|\}+u_{3}\left\{\dot{m}_{3}\right\}+u_{4}\left\{\dot{m}_{+}\right\} \\
u_{1}=V-v \quad u_{2}=-(v+v) \quad u_{3}=0 \quad u_{4}=0
\end{array}
$$

or

$$
-M \frac{d U}{d t}=\rho A\left[-(V-U)^{2}+(V+U)^{2}\right]=\rho A[4 U V]=4 \rho V A V
$$

Thus $\quad \frac{d U}{U}=-\frac{4 \rho V A}{M} d t$
Integrating $\left.\int_{U_{0}}^{U} \frac{d V}{U}=\ln U\right]_{U_{0}}^{U}=\ln \frac{U}{U_{0}}=-\frac{4 e V A}{M} t$
or

$$
U(t)=U_{0} e^{-\frac{4 \rho V A}{M} t}
$$

Also

$$
a(t)=\frac{d U}{d t}=-\frac{4 \rho V A}{M} U_{0} e^{-\frac{4 \rho V A}{M} t}
$$

Given: Block rolling between opposing jets, as shown.

Find: (a) Time to reduce speed to $v=0.5 \mathrm{~m} / \mathrm{s}$.
(b) Position at that instant.

Solution: Apply x momentum equation to linearly accelerating CV.
Basic equation:

Assumptions : (1) No pressure or friction forces, so $E_{x}=0$
(z) Horizontal, so $F_{B x}=0$
(s) Neglect mass of liquid in CV; $u \approx 0$ in CV
(4) Uniform flow at each section
(5) Measure velocities relative to CV

Then

$$
\begin{array}{r}
-a_{n x_{2}} M=-M \frac{d V}{d t}=u_{1}\left\{-\left|\rho(V-V)_{A}\right|\right\}+u_{2}\{-|\rho(V+V) A|\}+u_{3}\left\{\dot{m}_{3}\right\}+u_{4}\left\{\dot{n}_{4}\right\} \\
u_{1}=V-V \quad u_{2}=-(V+V) \quad u_{3}=0 \quad u_{4}=0
\end{array}
$$

or

$$
-M \frac{d U}{d t}=\rho A\left[-(v-V)^{2}+(V+U)^{2}\right]=\rho A[4 v V]=4 \rho V A U
$$

Thus

$$
\begin{equation*}
\frac{d U}{U}=-\frac{4 \rho V A}{M} d t \tag{1}
\end{equation*}
$$

Integrating, $\left.\int_{U_{0}}^{U} \frac{d V}{U}=\ln U\right]_{V_{0}}^{U}=\ln \frac{V}{U_{0}}=-\frac{4 \rho V A}{M} t$
Thus $t=-\frac{M}{4 \rho V A} \ln \frac{V}{V_{0}}=-\frac{1}{4} \times \frac{M}{\rho V A} \ln \frac{0.5}{10}=0.750 \frac{\mathrm{M}}{\rho V A}$
From Eq.1, $U(t)=\frac{d X}{d t}=U_{0} e^{-\frac{4 \rho V A}{M} t}$
Integrating, $\left.X=\int_{0}^{X} d X=\int_{0}^{t} U_{0} e^{-\frac{4 \rho V A}{M} t} d t=-\frac{M V_{0}}{4 \rho V A} e^{-\frac{4 \rho V A}{M} t}\right]_{0}^{t}$

$$
X=\frac{M U_{0}}{4 \rho V A}\left[1-e^{-\frac{4 \rho V_{A}}{M} t}\right]=\frac{0.95}{4} \frac{M U_{0}}{\rho V A}=0.238 \frac{M U_{0}}{\rho V A}
$$

Given: Vertical jet impinging on disk.
Find: Vertical! acceleration of disk at the instant shown.

Solution: Apply Bernoulli equation to vet, then y momentum equation to a CV with linear acceleration.

Bras ic equations:

$$
\begin{aligned}
& \frac{p_{b}^{p}}{p_{=0(6)}}+\frac{v_{0}^{2}}{2}+g z_{0}=\frac{\hat{p}_{1}}{f_{1}}+\frac{v_{1}^{2}}{2}+g z_{1}
\end{aligned}
$$

Assumptions: (I) Steady flow
$\left.\begin{array}{l}\text { (1) Steady flow } \\ \text { (z) Incompressible flow } \\ \text { (3) No friction } \\ \text { (4) Flow along stream line } \\ \text { (5) } p_{0}=p_{1}=p_{0, t m}\end{array}\right\}$ in jet
From Bernowli,

$$
v_{1}=\sqrt{v_{0}^{2}+2 g\left(3_{0}-3_{1}\right)}=\left[40^{2} \frac{\mathrm{ft}^{2}}{\mathrm{~s}^{2}}+232 . \frac{2 \mathrm{ft}}{\mathrm{~s}^{2}}(0-10) \mathrm{ft}\right]^{1 / 2}=30.9 \mathrm{ft} / \mathrm{s}
$$

(6) No pressure force on $C V, F_{S y}=0$
(7) Neglect mass of liquid in Cv ; $v \approx 0$ in CV
(8) Uniform flow at each section
(9) Measure velocities relative to CV

Then

$$
\begin{gathered}
-w-m a_{n x_{y}}=v_{1}\left\{-l_{\rho}\left(V_{1}-U\right) A_{1} /\right\}+v_{2}\left\{\dot{m}_{2}\right\}=-\rho\left(V_{1}-U\right)^{2} A_{1} \\
v_{1}=V_{1}-U \quad v_{2}=0
\end{gathered}
$$

or

$$
a_{r f y}=\frac{\rho\left(v_{1}-U\right)^{2} A_{1}-w}{M}
$$

But from continuity, $V_{0} A_{0}=V_{1} A_{1} ; A_{1}=A_{0} \frac{V_{0}}{V_{1}}$. Thus, since $M=W / g$,

$$
\begin{aligned}
& a_{r+y}=\frac{\rho\left(V_{1}-U\right)^{2} \frac{V_{0}}{V_{1}} A_{0}-W}{W / g}=\left[\frac{\rho\left(V_{1}-V\right)^{2} V_{0} A_{0}}{W V_{1}}-1\right] g \\
& =\left[1.94 \frac{\mathrm{slug}}{\mathrm{ft}^{3}}(30.9-15)^{2} \frac{\mathrm{ft}^{2}}{5^{2}} \times 40 \frac{\mathrm{ft}}{5} \times 0.05+7: \frac{1}{6516 f} \times \frac{2}{30.9 f+} \times \frac{1 \mathrm{bt} \cdot \mathrm{~s}^{2}}{5 / \mathrm{kg} \cdot 7 t}-1\right] 32.2 \frac{\mathrm{ft}}{\mathrm{~s}^{2}} \\
& a_{r f y}=-16.5 \mathrm{ft} / \mathrm{s}^{2} \text { (down) }
\end{aligned}
$$

Problem* 4,139

Given: Flow system of Problem 4.138. with dimensions shown at right.

Find: Plot disk mass vs, flow rate to determine the flow rate required to make h $=3.5 \mathrm{~m}$.

Solution: Apply continuity, monentum,
 and Bernoulli equations using CV shown
Basic equations: $0=\frac{e^{2}}{=0} \int_{V}^{(1)} \varphi d t+\int_{C S} \rho \vec{V} \cdot d \vec{A}$

$$
\begin{aligned}
& F_{\dot{p} y}+F_{B y}=\frac{d}{d t} \int_{C V}^{=0(1)} v \rho d \forall+\int_{C S} v \rho \vec{V} \cdot d \vec{A} \\
& \frac{\hat{\beta}_{0}}{p}+\frac{V_{0}^{2}}{2}+g \psi_{0}=0=\frac{\phi_{1}}{p}+\frac{V_{1}^{2}}{2}+g y,
\end{aligned}
$$

Assumptions: (1) Steady flow
$\left.\begin{array}{l}\text { (2) Incompressible flow } \\ \text { (3) No friction }\end{array}\right\}$ in jet
(4) Flow along a streamline)
(5) $p_{0}=p_{1}=p a t m$
(6) No pressure force on $C V$, so $F_{S y} \approx 0$
(7) Uniform flow at each cross-section

From momentum

$$
\begin{aligned}
-M g= & \int_{C S} v_{\rho} \vec{V} \cdot d \vec{A}= \\
& v_{1}\left\{-\rho V_{1} A_{1}\right\}+v_{2}\left\{+\rho V_{2} A_{2}\right\}=-V_{1} \rho V_{1} A_{1} \\
& v_{1}=V_{1} \quad v_{2}=0
\end{aligned}
$$

From continciixy $V_{1} A_{1}=V_{0} A_{0}$
From Bernoulli $V_{1}=\left[V_{0}^{2}-2 g h\right]^{\frac{1}{2}}$
substituting

$$
M=\frac{\rho}{g}\left[V_{0}^{2}-2 g h\right]^{\frac{1}{2}} V_{0} \frac{\pi D_{0}^{2}}{4}
$$

This equation cannot be solved for k directly, but it can be plotted for various values of V_{0}. Alternatively, using Excel's solver we obtain $Q=0.0469 \mathrm{~m}^{3} / \mathrm{s}$ for $h=3 \mathrm{~m}$.

Given: Space capsule in level fight above atmosphere.

$$
\begin{aligned}
& U_{0}=8.0 \cdot \mathrm{~km} / \mathrm{s} \\
& M_{0}=1600 \mathrm{~kg} \\
& \dot{m}=8 \mathrm{~kg} / \mathrm{s} \\
& V_{e}=3000 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

Find: Tine to reduce speed to $U=5.00 \mathrm{~km} / \mathrm{s}$.
Solution: Apply x component of momentum to CV with linear acceleration.
Basic equation:

$$
\begin{aligned}
& =\alpha(1)=o(z) \\
& F_{j x}+F_{\phi x}-\int_{c v} a_{r f x} \rho d \forall=\frac{\partial}{\partial t} \int_{c v} \hat{\tilde{x}}_{x y z \rho}^{o(4)} \\
& \mu_{x,} d v+\int_{c s} u_{x y z} \rho \vec{v}_{x y z} \cdot d \vec{A}
\end{aligned}
$$

Assumptions: (1) No resistance; $F_{3 x}=0$
(2) Horizontal; $F B x=0$
(3) Use velocities meascered relative to CV
(4) Neglect velocity within CV
(5) Uniform flow at exit plane with negligible pe (given)

From continuity,

$$
\frac{d M}{d t}=\frac{\partial}{\partial t} \int_{C V} \rho d \forall=-\int_{C S} \rho \vec{V}_{x y z} \cdot \overrightarrow{d A}=-\dot{m} ; \quad M(t)=M_{0}-\dot{m} t
$$

From momentum,

$$
-a_{r f} M=-\frac{d V}{d t}\left(M_{0}-\dot{m} t\right)=u_{e}\{+\dot{m}\}=V_{e} \dot{m}
$$

Thus

$$
\frac{d U}{d t}=-\frac{V_{e} \dot{m}}{M_{0}-\dot{m} t}
$$

$$
u_{e}=v_{e}
$$

Integrating, $\left.U-U_{0}=V_{e} \int_{0}^{t} \frac{-\dot{m} d t}{M_{0}-\dot{n} t}=V_{e} \ln \left(M_{0}-\dot{m} t\right)\right]_{0}^{t}=V_{e} \ln \left(\frac{M_{0}-\dot{m} t}{M_{0}}\right)$ Solving for t,

$$
\begin{aligned}
& \text { ing for t, } \quad \frac{M_{0}-\dot{m} t}{M_{0}}=e^{\frac{U-V_{0}}{V_{e}}} ; M_{0}-\dot{m} t=M_{0} e^{V-V_{0} / V_{e}} \\
& =\frac{M_{0}}{\dot{m}}\left(1-e^{\left.U-V_{0} / V_{e}\right)}\right. \\
& =1600 \mathrm{~kg} \times \frac{\mathrm{s}}{8 \mathrm{~kg}}\left\{1-e^{\left.\left[(5.00-8.0 \cdot) \frac{\mathrm{km}}{\mathrm{~s}} \times \frac{\mathrm{s}}{3000 \mathrm{~m}} \times 1000 \frac{\mathrm{~m}}{\mathrm{~km}}\right]\right\}}\right.
\end{aligned}
$$

$$
t=\frac{M_{0}}{\dot{m}}\left(1-e^{U-v_{0} / V_{e}}\right)
$$

$$
t=126 \mathrm{~s}
$$

Problem 4.141

Given: Racket sled on horizontal track, slowed by retro- rocket.
Initial mass Mo $=1500 \mathrm{~kg}$ Initial speed $U_{0}=500 \mathrm{~m} / \mathrm{s}$
Mass flow rate
$\dot{m}=7.75 \mathrm{~kg} / \mathrm{s}$
Exhaust speed
$V_{e}=2500 \mathrm{~m} / \mathrm{s}$
Firing time $\quad t_{b o}=20.0 \mathrm{~s}$
Neglect aerodynamic drag and rolling resistance.
Find: (a) Algebraic expression for sled speed U as a function of t.
(b) Speed at end of retro-rocket firing.

Solution: Apply x-component of momentum equation to the /linearly accelerating $C V$ shown.
From continuity,

$$
M_{C V}=M_{0}-\dot{r} t, t<t_{b 0} .
$$

Assumptions: (1) No pressure, drag, or rolling resistance so $\mathrm{F}_{s_{x}}=0$
(2) Horizontal motion, so $F_{B_{x}}=0$
(3) Neglect unsteady effects within CV
(4) Uniform flow at nozzle exit plane
(5) $p_{e}=p_{\text {atm }}$

Then $-a_{r f x} M_{c V}=u_{e}\{+\dot{m}\}=+V_{e \dot{m}} \quad$ or $\frac{d U}{d t}=-\frac{V_{e \dot{m}}}{M_{1 C V}}=-\frac{V_{e} \dot{m}}{M_{0}-\dot{m} t}$

$$
u_{e}=v_{e}
$$

Thus $d U=V_{e}\left(\frac{-\dot{m} d t}{M_{0}-\dot{m} t}\right)$ and $U-V_{b}=V_{e} \ln \left(M_{10}-\dot{m} t\right)_{0}^{t}=V_{e} \ln \left(1-\frac{\dot{m} t}{M_{0}}\right)$

$$
U(t)=U_{0}+V_{e} \ln \left(1-\frac{\dot{m} t}{M_{0}}\right) ; t<t_{b_{0}}
$$

At $t_{b 0}, U\left(t_{b_{0}}\right)=500 \frac{\mathrm{~m}}{\mathrm{~s}}+2500 \frac{\mathrm{~m}}{\mathrm{~s}} \times \ln \left(1-7.75 \frac{\mathrm{~kg}}{\mathrm{~s}} \times 20.0 \mathrm{~s} \times \frac{1}{1500 \mathrm{~kg}}\right)$

$$
U\left(t_{\infty}\right)=227 \mathrm{~m} / \mathrm{s}
$$

Given: Rocket sled accelerates from rest on a level track. Initial mass $M_{0}=600 \mathrm{~kg}$, includes fuel- $M_{f}=150 \mathrm{~kg}$. The rocket motor burns fuel at rate $\mathrm{Mf}^{\prime}=15 \mathrm{~kg}$ F. Exhant gases leave nozzle uniformity and axially at etmpspherip pRessure wist he $=29.00 \mathrm{mfs}$ relative to tee nozzle. Neglect our and rolling resistance.
Find: (a) Maximum speed reached by the sled.
(b) Maximum acceleration of shed during he run.

Pot: Te sled speed and acceleration as functions of time
Solution:
Apply the momentum equation to linearly accelerating ch shown

Assumptions: (i) no net -pressure forces ($P_{2}=P_{\text {atm }}$ given)
(z) horizontal motion, $F_{B_{x}}=0$
(3) neglect $2 / a t$ in CV
(4) uniform axial jet

From continuity, $M=M_{0}$ - Let, hen

$$
-a_{+} r_{+} M=-\frac{d J}{d t}\left(\left.m\right|_{0}-n t\right)=u_{e}\{\dot{m}\}=-v_{e} m
$$

Separating variables,

$$
d v=V_{e} \frac{M d t}{M_{0}-M t}
$$

Integrating from $U=0$ at $t=0$ to U att gives

$$
\begin{equation*}
\left.V=-V_{e} \ln \left(M_{0}-i t\right)\right]_{0}^{t}=-V_{e} \ln \frac{\left(M_{0}-i n t\right)}{M_{0}}=V_{e} \ln \frac{M_{0}}{\left(M_{0}-n t\right)} \tag{a}
\end{equation*}
$$

The speed is a maximum at burnout. At burnat $M_{f}=0$ and $M=M_{0}-M t=450 \mathrm{eg}$

At burnout, $t=\frac{M_{f} \operatorname{lintual}}{\text { inful }}=150 \mathrm{gg}+\frac{5}{15 \mathrm{gg}}=10 \mathrm{~s}$
Then from Eq. 2

$$
U_{\max }=2900 \frac{\mathrm{~m}}{\mathrm{~s}} \ln \frac{600 \mathrm{~kg}}{450 \mathrm{gg}}=834 \mathrm{~m} \mathrm{~S}_{\mathrm{s}}
$$

From $E_{q .1}$ the acceleration is $\frac{d J}{d t}=\frac{M_{e}}{M_{0}-i n t}$ the maximum acceleration occurs at the instant prior to burn out

$$
\left.\left.\frac{d y}{d t}\right\rangle_{\text {Max }}=15 \frac{\lg }{5} \times 2900 \frac{1}{s} \times \frac{1}{450 \operatorname{tg}}=96.7+l_{s}^{2} \quad \frac{d y}{d t}\right\rangle_{\text {mar }}
$$

The sled speed as a function of time is

$$
U=\text { constant }=834 \mathrm{mls} \text { for trio. (neglectrig resistance) }
$$

the sled acceleration is given by

$$
\begin{aligned}
& \frac{d t}{d t}=\frac{i \lambda_{e}}{\left(M_{0}-i n t\right)} \text { for } 0 t t i o s \\
& \frac{d u}{d t}=0 \text { for } t z i o s .
\end{aligned}
$$

Acceleration and Velocity vs. Time for Rocket Sled:
Input Data:

$$
\begin{array}{rcll}
M_{0} & = & 600 & \mathrm{~kg} \\
m(\text { dot }) & = & 15 & \mathrm{~kg} / \mathrm{s} \\
V_{\mathrm{e}} & = & 2900 & \mathrm{~m} / \mathrm{s}
\end{array}
$$

Calculated Results:
Time, t Acceleration, Velocity, U
(s)
$d U / d t\left(\mathrm{~m} / \mathrm{s}^{2}\right)$ (mss)
0 72.5
74.4
76.3
78.4
80.6
82.9
85.3
87.9
90.6
93.5
96.7

Given: Rocket sled moving on level track with no resistance.

$$
\begin{aligned}
& M_{0}=2000 \mathrm{lbm} \\
& \dot{m}=30 \mathrm{lbm} / \mathrm{s} \\
& V_{e}=9000 \mathrm{ft} / \mathrm{s} ; \mathrm{pe}=\mathrm{patm}
\end{aligned}
$$

Find: Minimum mass of fuel needed to accelerate sled to $U=600 \mathrm{mph}$.
Solution: Apply x component of momentum to cv accelerating linearly.
Basic equation: $=O(1,2)=0(3)$

$$
\begin{aligned}
& =o(1,2)=0(3) \\
& F_{\rho_{x}}+F_{\rho_{x}}-\int_{c v} a_{r x_{x}} \rho d t=\frac{\partial}{\partial t} \int_{c v} \hat{4}_{x x y 3} \rho d v+\int_{c s} u_{x y 3} \rho \vec{v}_{x y g} \cdot d \overrightarrow{d A}
\end{aligned}
$$

Assumptions: (1) No resistance (2) $^{(2)} F_{5 x}=0$
(2) $p_{e}=$ patm (given)
(3) Horizontal track; $F_{B x}=0$
(4) Use relative velocities
(s) Neglect u and $\partial / \partial t$ within CV
(6) Uniform flow in exit plane

From continuity,

$$
\frac{d M}{d t}=\frac{\partial}{\partial t} \int_{c V} \rho d \forall=-\int_{c s} \rho \vec{V}_{x y g} \cdot d \vec{A}=-\dot{m} ; M=M_{0}-\dot{m} t
$$

From momentum.

$$
\begin{gathered}
-\operatorname{arf}_{x} M=-\frac{d U}{d t}\left(M_{0}-\dot{m} t\right)=u_{c}\{+\dot{m}\}=-V_{c} \dot{m} \\
\quad u_{c}=-V_{e}
\end{gathered}
$$

Separating variables

$$
d v=\frac{V_{e} \dot{m} d t}{M_{0}-\dot{m} t}
$$

Integrating, $U=-\left.V_{e} \ln \left(M_{0}-\dot{m} t\right)\right|_{0} ^{t}=V_{e} \ln \left(\frac{M_{0}}{M_{0}-\dot{m} t}\right)=-V_{e} \ln \left(1-\frac{\dot{m} t}{M_{0}}\right)$
The mass of fuel consumed is $m_{f}=\dot{m} t$. From the above

$$
\begin{aligned}
m_{f}=\dot{m} t & =M_{0}\left(1-e^{-V / V e}\right) \\
& =2000 \mathrm{~km}\left[1-e^{\left.\left(-600 \frac{m i}{h r} \times \frac{s}{9000 \mathrm{ft}} \cdot 5280 \frac{\mathrm{ft}}{\mathrm{~mL}} \times \frac{\mathrm{hr}}{3600 \mathrm{~s}}\right)\right]}\right. \\
m_{f} & =186 \mathrm{lbm}
\end{aligned}
$$

Given: Rocket sled with initial mass of 4 metre tons, including Aton of fuel. Motion resistance is given by keto where $b=75 \mathrm{~N} / \mathrm{m} / \mathrm{s}$.

Find: Sled speed los after starting from rest, a Tran
Hot: sled speed and acceleration as functions of time.
Solution:
Apply the x component of the momentum equation to linearly accelerating $C V$ shown

Assumptions: (1) $P_{e}=P_{\text {atm }}$ (given) so $F_{S_{x}}=-F_{R}$
(2) $F_{B_{x}}=0$
(3) neglect unsteady effects within Cl
(4) uniform flow at exit plane

Ter.

$$
\left\{F_{R}=k_{0}, u_{2}=-v_{c}\right\}
$$

From continuity, $M=M_{0}$-int. Substituting wit $a_{r}=\frac{d v}{d t}$

$$
\begin{aligned}
& -k U-\left(M_{0}-i t\right) \frac{d u}{d t}=-v_{2} M \\
& \frac{d u}{d t}=\frac{h_{1} m-k J}{M_{0}-m t} \text { or } \frac{d U}{V_{1} m-k U}=\frac{d t}{M_{0}-i t}
\end{aligned}
$$

Integrating, $\left.\left.\frac{1}{k} \ln \left(V_{k} i-k v\right)\right]_{0}^{u}=\frac{1}{m} \ln \left(M_{0}-m t\right)\right]_{0}^{t}$ and $\ln \frac{\left(V_{e} m-k J\right)}{V_{e} M}=\ln \left(1-\frac{k J}{V_{e} i n}\right)=\ln \ln \frac{\left(M_{0}-i t\right)}{M_{0}}=\frac{\ln }{M} \ln \left(1-\frac{m t}{M_{0}}\right)$
Then $1-\frac{k U}{J_{e m}}=\left(1-\frac{n t}{M_{0}}\right) k / i m$ and

$$
\begin{equation*}
J=\frac{V_{e} M}{k}\left[1-\left.\left(1-\frac{M i}{M_{0}}\right) k\right|_{i m}\right] \tag{i}
\end{equation*}
$$

fit $t=10 \mathrm{~s}$

$$
\begin{aligned}
& U=281 \mathrm{mls} .
\end{aligned}
$$

proven $4 . . n y$ (calla)
Note that all fuel would be expended at $t_{b_{0}}=\frac{M_{f}}{m}=1000 y_{x} \frac{s}{i s b} g$ 1.e. at $t=13.3 \mathrm{~s}$.

The sled speed as a function of tine is then

$$
V=\frac{t_{k}+i}{k}\left[1-\left(1-\frac{M t_{0}}{m_{0}}\right)^{k} / i\right] \text { for } 0 \leqslant t \leqslant 133 \mathrm{~s}
$$

The speed reaches a maximum at $t=13.35$ and decays with time due to the motion resistance. $U_{m a n}=375 \mathrm{~m}_{1} l^{3}$
the sled acceleration is giver by

$$
\frac{d U}{d t}=\frac{V_{e} M-k U}{M_{0}-M t} \quad \text { for } 0 \leqslant t \leqslant l i s
$$

At $t \geq 13.35 V_{e}=0$ and

$$
\frac{d v}{d t}=\frac{-Q_{0}}{M_{0}-M_{\text {sue l }}}
$$

Note that for $t>H_{\infty_{0}}=13.35, \quad \frac{d v}{d t}=-\frac{V_{0}}{M_{b 0}}$ and

$$
\frac{d v}{v}=-\frac{k}{M_{b_{0}}} d t \quad, \ln \frac{U}{U_{b_{0}}}=-\frac{t\left(t-t_{b_{0}}\right)}{M b_{0}}
$$

and $U=U_{b_{0}} e^{-k\left(t=t_{b}\right)} / M_{b_{0}}$

$t(\mathbf{s})$	$U(\mathrm{~m} / \mathbf{s})$	$d U / d t\left(\mathrm{~m} / \mathbf{s}^{2}\right)$
0.0	0.0	28.1
1.0	28.1	28.1
2.0	56.3	28.1
3.0	84.4	28.1
4.0	113	28.1
5.0	141	28.1
6.0	169	28.1
7.0	197	28.1
8.0	225	28.1
9.0	253	28.1
10.0	281	28.1
11.0	309	28.1
12.0	338	28.1
13.2	371	28.1
13.3	375	28.1
14.0	369	-9.22
15.0	360	-8.99
16.0	351	-8.77
17.0	342	-8.55
18.0	334	-8.34
19.0	325	-8.14
20.0	317	-7.94

Velocity \& Acceleration of a Rocket Sled

Given: Rocket launched from aircraft flying horizontally at $v_{0}=300 \mathrm{~m} / \mathrm{s}$. Rocket accelerates to $U_{f}=1.8 \mathrm{~km} / \mathrm{s}$. Exhaust stream leaves nozzle at $V_{e}=3000 \mathrm{~m} / \mathrm{sec}$ (relative to rocket) at atmospheric pressure. Neglect air resistance.
Find: (a) Algebraic expression for speed reached in horizontal fight.
(b) Minimum mass fraction needed to reach $U_{f}=1.8 \mathrm{~km} / \mathrm{s}$.

Solution: Apply x component of momentum using CV \& CS shown.
Basic equation: $F_{S_{x}}+F_{B_{x}}-\int_{C V} a_{n t_{x}} \rho d t=\frac{\partial}{\partial t} \int_{C V} u_{x y g} \rho d \forall+\int_{C s} u_{x y g} \rho \vec{V} \cdot d \vec{A}$
Assumptions: (1) No drag; $p_{e}=p_{a t r y}$ so $F_{s_{x}}=0$
(2) Horiz; Fa sk $=0$
(3) Neg lect ${ }^{2} 6 t$ in $\mathrm{Cv} \rightarrow X$
(4) Constant mass flow rate; $\dot{m}=$ const; $M(t)=M-m t$
(5) Uniform, axial flow at nozzle exit

Then

$$
f a r f_{\times} \rho d \forall=-\frac{d U}{d t} M(t)=u_{e}\{+\dot{m}\}=-v_{e} \dot{m}
$$

so

$$
u_{e}=-V_{e}
$$

$$
\frac{d U}{d t}=\frac{V_{e} \dot{m}}{M(t)} ; d U=\frac{V_{e} \dot{m}}{M_{0}-\dot{n} t} d t=-V_{e} \frac{-\dot{m} d t}{M_{b}-\dot{m} t}=-V_{e} \frac{d\left(M_{b}-\dot{m} t\right)}{M_{b}-\dot{m} t}
$$

Integrating from v_{0} at $t=0$ to v at t,

$$
\left.U-V_{0}=-V_{e} \ln \left(M_{0}-\dot{n} t\right)\right]_{0}^{t}=-V_{e}\left[\ln \left(M_{b}-\dot{n} t\right)-\ln \left(M_{0}\right)\right]=-V_{e} \ln \left(\frac{M_{b}-\dot{n} t}{M_{0}}\right)
$$

or

$$
U=U_{0}+V_{e} \ln \left(\frac{M_{0}}{M_{0}-m t}\right)
$$

solving,

$$
\frac{M_{0}-\dot{m} t}{M_{0}}=e^{-\frac{V-U_{0}}{V_{e}}}=1-\frac{\dot{m} t}{M_{0}} ; \frac{\dot{m} t}{M_{0}}=1-e^{-\frac{V-V_{0}}{V_{e}}}=\begin{aligned}
& \text { mass fraction } \\
& \text { consumed }
\end{aligned}
$$

substituting,

$$
\frac{\dot{m} t}{M_{0}}=1-e^{-(1800-300) \frac{m}{\mathrm{~s}} \times \frac{\mathrm{s}}{3000 m}}=1-e^{-0.5}=0.393
$$

$\left\{\begin{array}{l}\text { The mass fraction calculated here is a minimum because neither) } \\ \text { air resistance nordrag due to lift were included. }\end{array}\right.$

Given: Rocket sled moving on level track without resistance Irital mass, $M_{0}=300 \mathrm{~kg}$ (vichudes $M_{\text {fuel }}=1000 \mathrm{~g}$)

$$
V_{e}=2500 \mathrm{~m} / \mathrm{s} ; P_{e}=P_{2}
$$

Fuel consumption, in $=75$ kgls
Find: Acceleration and speed of sled at (1)
Plot: sled speed and acceleration as functions of time.
Solution:
Apply x component of momentum to linearly accelerating CV; Ouse continuity to find MAt)

Assumptions: (i) $F_{s x}=0$, no resistance (given
(a) $F_{B_{2}}=0$, horizontal
(3) neglect $2 / 2 t$ inside $C V$
(4) uniform flow at nozzle ext
(5) $-P_{e}=P_{\text {atm }}$ (given)

From continiuty, $0=\frac{\partial M}{\partial t}+\{+|m|\}=\frac{d M}{d t}+\dot{M}$ or $d M=-$ mat
Integrating, $S_{M_{0}}^{M} d M=M-M_{0}=\int_{0}^{t} m d t=-i n$ or $M=M_{0}$-int
From the momentum equation
thus

$$
-a_{r} x_{x} M=-a_{r} r_{x}\left(H_{0}-i n t\right)=u_{1}\left\{+H_{m}\right\}=-V_{e} \text { ir } \quad\left\{u_{1}=-1\right\}
$$

$$
\left.a_{r x}=\frac{d J}{d t}=\frac{t_{e}}{M_{0}-i n t}\right)
$$

At $t=10 \mathrm{~s}$

$$
\frac{d u}{d t}=2500 \frac{\mathrm{~m}}{\mathrm{~s}} \times 75 \frac{\mathrm{~kg}}{\mathrm{~s}} \times \frac{1}{3000 \mathrm{~kg}-75 \mathrm{tg} \times 10 \mathrm{~s}}=\left.83.3 \mathrm{~m}\right|_{\mathrm{s}} ^{2} a_{r f}
$$

From Eq.,$\quad d u=V_{e} \frac{\dot{r} d t}{M_{0}-i n t}$
Integrating from $U=0$ at $t=0$ to U at toques

$$
\begin{aligned}
& \left.J=-V_{e} \ln \left(m_{0}-i n t\right)\right]_{0}^{t}=-V_{e} \ln \frac{\left(M_{0}-M t\right)}{M_{0}} \\
& J=V_{e} \ln \frac{M_{0}}{\left(M_{0}-i t\right)}-\ldots
\end{aligned}
$$

\qquad
Note that all fuel would be expended at $t_{b 0}=\frac{M_{r}}{i n}=1000 y^{3}$. $\frac{5}{15 y}$

$$
\text { ie at to .0 }=13.3 \mathrm{~s}
$$

The sled speed as a function of time is then

$$
\begin{aligned}
& J=J_{0} \ln \frac{t_{0}}{\left.H_{0}-i t\right)} \text { for } t \leq 13.3 s \\
& J=J_{\text {max }}=1010 \text { mss for } t \geq 13.35
\end{aligned}
$$

Te sled accelerations gwen by

$$
\begin{aligned}
& \frac{d y}{d t}=\frac{M t_{e}}{(M-i n t)} \quad \text { for } 0 \leq t \leq 13.35 \\
& \frac{d J}{d t}=0 \quad \text { for ty } 13.35
\end{aligned}
$$

Acceleration and Speed vs. Time for Rocket Sled:
Input Data:

$$
\begin{array}{rccl}
M_{0}= & 3000 & \mathrm{~kg} \\
m(\text { dot }) & = & 75 & \mathrm{~kg} / \mathrm{s} \\
V_{\mathrm{e}} & = & 2500 & \mathrm{~m} / \mathrm{s}
\end{array}
$$

Calculated Results:

Given: Rocket-propelled motorcycle, to jump, standing start, level.
Speed needed $U_{j}=875 \mathrm{~km} / \mathrm{hr}$. Rocket exhaust speed $V_{e}=2510 \mathrm{~m} / \mathrm{s}$
Total mass $M_{B}=375 \mathrm{~kg}$ (without fuel)
Find: Minimum fuel mass needed to reach V_{j}.
Solution: Apply x-component of momentum equation to linearly accelerating iv shown.
From continuity,

$$
M_{c v}=M_{0}-\dot{n} t
$$

Basic
equation:

Assumptions: (1) Neglect air and rolling resistance
(2) Level/ track, so $F_{B_{x}}=0$
(3) Neglect wisteady effects with in cv
(4) Uniform flow at nozzle exit plane
(5) pe -pate

Then

$$
\begin{aligned}
-a_{r f x} M_{c v}= & u_{e}\{t \dot{m}\}=-V_{e} \dot{m} \quad \text { or } \quad \frac{d U}{d t}=\frac{V_{e} \dot{m}}{M_{c v}}=\frac{V_{e} \dot{m}}{M_{0}-\dot{m} t} \\
& u_{e}=-V_{e}
\end{aligned}
$$

separating variables and integrating,

$$
d U=-V_{e}\left(\frac{-\dot{m} d t}{M_{0}-\dot{n} t}\right) \quad \text { or } \quad U_{j}=-V_{e} \ln \left(M_{0}-\dot{m} t\right)_{0}^{t}=V_{e} \ln \left(\frac{M_{0}}{M_{0}-\dot{m} t}\right)
$$

But $M_{0}=M_{B}+M_{F}$ and $M_{F}=\dot{m} t$, so

$$
\frac{U_{j}}{V_{e}}=\ln \left(\frac{M_{B}+M_{F}}{M_{B}}\right)=\ln \left(1+\frac{M_{F}}{M_{B}}\right) ; 1+\frac{M_{F}}{M_{B}}=e^{U_{B} / V_{e}} ; \frac{M_{P}}{M_{B}}=e^{U / V_{e}-1}
$$

Finally, $M_{p}=M_{B}\left(e^{\text {The }}-1\right)$

$$
\begin{aligned}
& M_{F}=375 \mathrm{~kg} \times \exp \left[875 \frac{\mathrm{~km}}{\mathrm{hr}} \times \frac{\mathrm{s}}{2510 \mathrm{~m}} \times 1000 \frac{\mathrm{~m}}{\mathrm{~km}} \times \frac{\mathrm{hr}}{3600 \mathrm{~s}}-1\right] \\
& M_{F}=38.1 \mathrm{~kg}
\end{aligned}
$$

The fuel mass required is about to percent of the mass of the motorcycle and rider.

Given: Liquid-fueled rocket launchad fron-pad at sealevel

$$
\begin{array}{ll}
M_{0}=30,000 \mathrm{~kg} & \text { in }=2450 \mathrm{~kg} / \mathrm{s} \\
V_{e}=2270 \mathrm{hl} & -P_{e}=106 P_{a}(\text { ahbs }) \\
\text { Elit plane deaneter, Pe }=2.6 \mathrm{on}
\end{array}
$$

Find: acceleration at lift-off.

$$
\text { expression for rockel speed, } V(t)
$$

Solution: Apply y conponent of momentuen equation to CP Wit lnear acceleration

Assumptiois: (1) Fsy due to pressure, fatn assured constant, riglect oir resistarce
(2) neghect rate of slange of monertuon riside d (3) Whforn flow at exit

Ren, $\left(p_{e}-p_{a t h}\right) A_{e}-M_{g}-a_{r} f_{y} n=v_{e}\{+i n\}=-i k_{e}$
Soluing for ary,

$$
a_{a r y}=\frac{d U}{d t}=\frac{1}{x}\left[\operatorname{in} V_{e}+\left(P_{e}-P_{d i n}\right) A_{e}\right]-g \ldots \sin
$$

$n=m(t)$. Fron conservation of mass $\frac{\partial}{\partial t} \int_{0 v} p d t+\int p \vec{v} \cdot d \vec{i}=0$ then $\partial_{2} \int_{c u} p d s=\frac{d n}{d t}=-\int_{c s} p \vec{v} \cdot \overrightarrow{d A}=-n_{c}$ (constant) Hence $M(t)=m_{0}-i n t$, and.
\qquad
At lift-off, $,=0, M=M_{0}$.

$$
a_{+} f_{y}=169 \mathrm{n}^{3 * 02}
$$

$$
\begin{aligned}
& a_{r} r_{y}=\frac{1}{M}\left[\dot{M} \psi_{e}+\left(p_{2}-p_{a} t_{n}\right) A_{e}\right]-g \\
& \left.=\frac{1}{3 \times 2} 2^{4} g^{2450 \frac{b}{3}} \times 226 \frac{4}{5}+(66-101)^{3} \frac{\mathrm{~N}}{n^{2}} \times \frac{\pi}{4}(2.6)^{2}+\frac{9.4}{2.5}\right]-9.81 \frac{4}{3^{2}}
\end{aligned}
$$

$$
\begin{aligned}
& a_{r} f_{y}=\frac{d U}{d t}=\frac{i \psi_{2}}{M_{0}-i n t}+\frac{\left(P_{2}-P_{2} a_{h}\right) R_{e}}{M_{0}-i n t}-g \\
& v=\int_{0}^{0} d v=\int_{0}^{t} \frac{i n t e}{H_{0}-i n t} d t+\int_{0}^{0} \frac{\left(P_{2}-P_{0}\right)-n A_{2}}{M_{0}-i n t} d t-\int_{0}^{t} g d t \\
& V=-V_{e} \ln \left[\frac{\mu_{0}-i n t}{M_{0}}\right]-\frac{\left(P_{0}-p_{d n}\right) H_{c}}{i n} \ln \left[\frac{N_{0}-i n t}{M_{0}}\right]-g t \\
& U=-\left[H_{2}+\frac{\left(P_{2}-P_{2} L_{m}\right) A_{2}}{i n}\right] \ln \left[\frac{M_{0}-n_{t} T}{M_{0}}\right]-g L
\end{aligned}
$$

Problem 4.149

Given: Home made rocket lacenched vertically from rest.
$M_{0}=20 \mathrm{lbm}$, of which 15 lbm is fuel

$$
\dot{m}=0.516 \mathrm{~m} / \mathrm{s}
$$

$V_{e}=6500 \mathrm{ft} / \mathrm{s}$ (relative to rocket)
$p_{e}=p_{a t m}$
Neglect aerodynamic drag.
Find: (a) speed at $t=20$ s. Plot: speed and
(b) Height at $t=20 \mathrm{~s}$.
height as
function of time.
Solution: Apply.y-component of momentum equation to accelerating CV using CS shown.

Basic equation:

$$
F_{s y}+F_{B_{y y}}-\int_{c v} a_{r f_{y \rho} \rho} d \forall=\frac{\partial}{\rho_{t}} \int_{c v} v_{x y 3} \rho d \forall+\int_{c s} v_{x y y} \rho \vec{V}_{x y g} \cdot d A
$$

Assumptions: (1) Neglect air resistance; pe $=$ patm (given)
(2) Neglect $v_{x i g g}$ and $\partial / \partial t$ within $C V$
(3) Uniform flow at nozzle exit section

Then

$$
F_{B y}-a_{r f y} M=-M g-M a r f_{y}=v_{e}\{+\dot{m}\}=-V_{e} \dot{r}
$$

and

$$
v_{e}=-V_{e}
$$

$$
a_{\dot{r f y}}=\frac{d V}{d t}=\frac{V e \dot{m}}{M}-g
$$

Introducing $M=M_{0}-m t$ and separating variables,

$$
d V=\left(\frac{V_{e} \dot{m}}{M_{0}-\dot{m} t}-g\right) d t
$$

Integrating from rest at $t=0$

$$
\left.V=\int_{0}^{t}\left(\frac{V e \dot{m}}{M_{0}-\dot{n} t}-g\right) d t=-V_{e} \ln \left(M_{0}-\dot{n} t\right)\right]_{0}^{t}-g t
$$

or

$$
\begin{equation*}
V=V_{e} \ln \left(\frac{M_{0}}{M_{0}-m_{t}}\right)-g t \tag{1}
\end{equation*}
$$

At $t=20 \mathrm{sec}$,

$$
\begin{aligned}
& V=6500 \frac{f t}{s} \ln \left(\frac{2016 m}{201 \mathrm{~km}-0.5 \frac{\mathrm{~km}}{s} \times 20 \mathrm{~s}}\right)-\frac{32.2 \mathrm{ft}}{s^{2}} \times 20 \mathrm{~s} \\
& V(20 \mathrm{~s})=3,860 \mathrm{ft} / \mathrm{s}
\end{aligned}
$$

To find height, note $V=\frac{d Y}{d t}$. Substitute into Eq. I to obtain

Problem 4.150

Given: Rocket fired vertically from rest, no resistance.

$$
\begin{aligned}
& M_{0}=200 \mathrm{~kg}, \dot{m}=10 \mathrm{~kg} / \mathrm{sec} \\
& V_{e}=2900 \mathrm{~m} / \mathrm{s}, p_{e}=-1 \mathrm{~atm}
\end{aligned}
$$

Find: speed at $t=10 \mathrm{~s}$.
Plot: Rocket speed as a function of time.
Solution: Apply y component momentum equation to accelerating CV.

Basic equation:

Assumptions: (1) Neglect air resistance
(2) Exit presscere is atmospheric (given)
(3) Neglect rate of change of $v_{x y z}$ within $C V$
(4) Flow is uniform at exit section
(5) All velocities are relative to CV
(b) $M_{1}=M_{0}-\dot{n} t$

Then

$$
\begin{equation*}
F_{B_{y}}-a_{r f y} M=-M g-a_{r f y} M=v_{e}\{|\dot{m}|\}=-V_{e} \dot{m} \text {, since } v_{e}=-V_{e} \text {. } \tag{1}
\end{equation*}
$$

-or $\quad a_{r f y}=\frac{d V}{d t}=\frac{V_{e m}}{M}-g$
Introducing $M=M_{0}-\dot{m} t$ and separating variables

$$
d V=\left(\frac{V_{e} \dot{m}}{M_{0}-\dot{m} t}-g\right) d t
$$

Integrating,

$$
\left.\int_{0}^{V} d V=V=\int_{0}^{t}\left(\frac{V_{e} \dot{m}}{M_{0}-\dot{m} t}-g\right) d t=-V_{e} \ln \left(M_{0}-\dot{m} t\right)\right]_{0}^{t}-g t
$$

or

$$
\begin{equation*}
V=V_{e} \ln \left(\frac{M_{0}}{M_{0}-\dot{m} t}\right)-g t \tag{2}
\end{equation*}
$$

Substituting at $t=10 \mathrm{~s}$,

$$
\begin{aligned}
& V=2900 \frac{\mathrm{~m}}{\mathrm{~s}} \times \ln \left(\frac{200 \mathrm{~kg}}{200 \mathrm{~kg}-10 \frac{\mathrm{~kg}}{\mathrm{~s}} \times 10 \mathrm{~s}}\right)-9.81 \frac{\mathrm{~m}}{\mathrm{~s}^{2}} \cdot 10 \mathrm{~s} \\
& V=1910 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

Speed as a function of time is given by Eq. 2; acceleration is given by Eq.1. The results are tabulate of and plotted on the next page.

Acceleration and Speed as Functions of Time for Vertical Rocket:
Input Data:

$m($ dot $)$	$=$	10	$\mathrm{~kg} / \mathrm{s}$
$M_{0}=$	200	kg	Mass flow rate
$V_{0}=$	2900	$\mathrm{~m} / \mathrm{s}$	Initial mass
Exhaust gas speed			

Calculated Results:

Time, t (s)	Mass, M (kg)	Mass Ratio, $M / M_{0}(-)$	Acceleration, $a_{\text {try }}\left(\mathrm{m} / \mathrm{s}^{2}\right)$	Acceleration, $a_{\mathrm{rty}}(\mathrm{gs})$	$\begin{array}{r} \text { Speed, U } \\ (\mathrm{m} / \mathrm{s}) \end{array}$
0	200	1	145	14.8	0.0
1	190	0.950	153	15.6	139
2	180	0.900	161	16.4	286
3	170	0.850	171	17.4	442
4	160	0.800	- 181	18.5	608
5	150	0.750	193	19.7	785
6	140	0.700	207	21.1	975
7	130	0.650	223	22.7	1181
8	120	0.600	242	24.6	1403
9	110	0.550	264	26.9	1645
10	100	0.500	290	29.6	1912
11	90	0.450	322	32.8	2208
12	80	0.400	363	37.0	2540
13	70	0.350	414	42.2	2917
14	60	0.300	483	49.3	3354
15	50	0.250	580	59.1	3873
16	40	0.200	725	73.9	4510
17	30	0.150	967	98.5	5335
18	20	0.100	1450	148	6501

Problem 4.151

Open-Ended Problem Statement: Inflate a toy balloon with air and release it. Watch as the balloon darts about the room. Explain what causes the phenomena you see.

Discussion: Air blown into a balloon to inflate it must be compressed to overcome the skin's resistance to stretching. (Remember how hard it is to create enough pressure to "start" the inflation process!) After decreasing briefly, the required pressure seems to increase as inflation of the balloon continues.

As the balloon is inflated, the skin stretches and stores energy. When the inflated balloon is released, the stored energy in the skin forces the compressed air out the open mouth of the balloon. The expansion of the compressed air to the lower surrounding atmospheric pressure creates a highspeed jet of air, which propels the relatively light balloon initially at a high speed.

The moving balloon is unstable because it has a poor aerodynamic shape. Therefore it darts about in a random pattern. The balloon keeps moving as long as it contains pressurized air to act as a propulsion jet. However, it is not long before the energy stored in the skin is exhausted and the air in the balloon is reduced to atmospheric pressure.

When the balloon reaches atmospheric pressure it is slowed by aerodynamic drag. Finally the empty, wrinkled balloon simply falls to the floor.

Some toys that use a balloon for propulsion are available. Most have stabilizing surfaces. It is instructive to study these toys carefully to understand how each works, and why each toy is shaped the way it is.

Given: Vanelcart assembly moving with friction under the influence of a jet, as shown.

(b) Angle at which motion begins it $\mu s=0.15$.

Solution: From dynamics, $F_{f} \leqslant \mu R_{y}$, so apply two components of momentum equation. Use the linearly accekrating CV should.
Basic equations: $F_{s x}+F_{P_{x}}^{=0(3)}-\int_{C v} a_{r f_{x} \rho} \rho d t=\frac{\partial^{4}}{\partial t} \int_{C V}^{\sim o(z)} u_{x y z} \rho d \psi+\int_{c s} u_{x y z} \rho \vec{v}_{x y z} \cdot d \vec{A}$

Assumptions: (1) No net pressure forces on assembly; $F_{s x}=-F_{f}, F_{y}=R_{4}$
(2) Neglect mass of liquid on vane
(3) arfy $=0 ; F_{B_{x}}=0$
(4) Uniform flow at each section
(5) No chang in jet area or speed relative to vane
(6) Incompressible flow

The subscript $x y$ reminds us to use relative velocities. Then

$$
\begin{gather*}
-F_{f}-m a_{r f x}=u_{1}\{-|f(V-V) A|\}+u_{2}\{|p(V-V) A|\} \\
u_{1}=V-v \quad u_{2}=(V-V) \cos \theta \\
a_{r f_{x}}=\frac{p(V-v)^{2} A(1-\cos \theta)-F_{f}}{M}
\end{gather*}
$$

and

$$
\begin{gather*}
R_{y}-M g=v_{1}\{-|\rho(v-v) A|\}+v_{2}\{|\rho(v-v) A|\} \\
v_{1}=0 \\
R_{y}=M g+\rho(v-v)^{2} A \sin \theta \tag{2}
\end{gather*}
$$

At terminal speed, $a_{r f}=0$ and $F_{f}=\mu_{h} R_{y}$, substituting into Eq. 1,

$$
0=\frac{\rho\left(V-\tau_{t}\right)^{2} A(1-\cos \theta)-\mu_{k}\left[M q+\rho\left(V-v_{t}\right)^{2} A \sin \theta\right]}{M}=\frac{\rho\left(v-v_{2}\right)^{2} A\left(1-\cos \theta-\mu_{k} \sin \theta\right)}{M}-\mu_{k} g
$$

or

$$
V-U_{t}=\left[\frac{\mu_{k} M g}{\rho A\left(1-\cos \theta-\mu_{k} \sin \theta\right)}\right]^{\frac{1}{2}}
$$

Problem 4.152(cont'd.)
or $U_{t}=V-\left[\frac{\mu_{k} M g}{\rho A(1-\cos \theta-\mu \sin \theta)}\right]^{2} ; \frac{U_{t}}{V}=1-\left[\frac{\mu_{k} M g}{\rho V^{2} A(1-\cos \theta-\mu \sin \theta)}\right]^{\frac{1}{2}}$ Substituting values,

$$
U_{t}\left\{1-\left[(0.10) 30 \mathrm{~kg}_{k} 9.8 \frac{\mathrm{~m}}{\mathrm{~s}^{2}} \times \frac{\mathrm{m}^{3}}{999 \mathrm{~kg}} \times \frac{\mathrm{s}^{2}}{(20)^{2} \mathrm{~m}^{2}} \times \frac{1}{0.02 \mathrm{~m}^{2}} \frac{1}{(1-\cos \theta-0.1 \sin \theta)}\right]^{\frac{1}{2}}\right\} 20 \frac{\mathrm{~m}}{\mathrm{~s}}
$$

$$
U_{t}=20-1.21\left[\frac{1}{1-\cos \theta-0.1 \sin \theta}\right]^{\frac{1}{2}} \frac{m}{3}
$$

Plot:

For the static case, $F_{f} \leqslant \mu_{s} R_{y}$. Substitutirig into Eq. 1 , with $U=0$

$$
a_{1 f_{x}} \geqslant \frac{\rho V^{2} A(1-\cos \theta)-\mu_{s}\left[\rho V^{2} A \sin \theta+M g\right]}{M}=\frac{\rho V^{2} A(1-\cos \theta-\mu \sin \theta)}{M}-g
$$

When the assembly is about to move, $F_{f}=\mu_{s} R_{y}$ and af $=0$. Thus

$$
a_{r f}=0=\frac{f V^{2} A\left(1-\cos \theta-\mu_{5} \sin \theta\right)}{M}-\mu_{s} g
$$

or

$$
\cos \theta+\mu_{s} \sin \theta=1-\frac{\mu M g}{\rho v^{2}+} ; \cos \theta[1+\mu \operatorname{con} \tan \theta]=1-\frac{\mu_{s} M g}{\rho V^{2} A}
$$

But $\frac{\mu_{s} M g}{\rho V^{2} A}=(0.15) 30 \lg _{x} 9.81 \frac{m}{5^{2}} \times \frac{m^{3}}{999 \mathrm{~kg}^{2}} \times \frac{s^{2}}{(20)^{2} \mathrm{~m}^{2}} \times \frac{1}{0.02 \mathrm{~m}^{2}}=0.00552$
Thus

$$
\cos \theta[1+\mu \operatorname{stan} \theta]=1-0.00552
$$

Solving by iteration, $\theta=18.9^{\circ}$ (to start motion)

Problem 4.153

Given: Vehicle accelerated from rest by a hydraulic catapult.
Neglect res is stance.

Find: (a) Expression for accekration at any time, t.
(b) Time required to reach $U=V / 2$.

Solution: Apply x component of momentum equation using linearly accelerating CV shown above.

Assumptions: (1) $F_{s x}=0$
(2) $F B_{x}=0$
(3) Neglect mass of liquid and rate of change of u in CV
(4) Uniform flow at each section
(5) Jet area and speed with respect to vehicle are co instant

Then

$$
\begin{array}{r}
-M a_{n f_{x}}=-M \frac{d U}{\sigma t}=u_{1}\{-|\rho(v-U) A|\}+u_{2}\{|\rho(v-v) A|\} \\
u_{1}=v-v \quad u_{2}=-(v-v)
\end{array}
$$

or

$$
a r r_{x}=\frac{d U}{d t}=\frac{2 \rho(V-U)^{2} A}{M} \quad ; \quad \frac{d U}{(V-U)^{2}}=2 \frac{\rho A}{M} d t \quad ;-\frac{d(V-U)}{(V-U)^{2}}=\frac{2 \rho A}{M} d t
$$

To obtain $a_{r f_{x}}(t)$, we must first find $v(t)$. Integrating from $v=0$ at $t=0$ to U at t,

$$
\left.\int_{V-V=V}^{V-V}-\frac{d(V-U)}{(V-v)^{2}}=\frac{1}{V-v}\right]_{V}^{V-U}=\frac{1}{V-V}-\frac{1}{V}=\frac{V-(V-U)}{V(V-U)}=\frac{2 \rho A}{M} t ; \frac{U}{V-U}=\frac{2 \rho V A}{M} t
$$

solving,

$$
U=(v-v) \frac{2 \rho V A}{M} t, \quad U=V \frac{\frac{2 \rho V A}{M} t}{1+\frac{2 \rho V A}{M} t} \text { and } V-U=V\left[1-\frac{\frac{2 \rho V A}{M} t}{1+\frac{2 \rho V A}{M} t}\right]
$$

Substituting,

$$
a_{r f_{x}}=\frac{2 \rho v^{2} A}{M}\left[1-\frac{\frac{2 \rho V A}{M} t}{1+\frac{2 f V A}{M} t}\right]^{2}=\frac{2 \rho V^{2} A}{M}\left[\frac{1}{1+\frac{2 f V A}{M} t}\right]^{2}
$$

The tine to reach $U=V / 2$ is

$$
\frac{U}{V}=\frac{1}{2}=\frac{2 \frac{P V A}{M} t}{1+\frac{2 \rho V A A}{M} t} \text { or } t=\frac{M}{2 \rho V A}
$$

Check: $\left[\frac{M}{\rho V A}\right]=M \frac{L^{3}}{M} \frac{t}{L} \frac{1}{L^{2}}=t v ;\left[\frac{\rho V^{2} A}{M}\right]=\frac{M}{L^{3}} \frac{L^{2}}{t^{*}} L^{2} \frac{1}{M}=\frac{L}{t^{2}} v$

Problem 4.154

Given: Moving tank slowed by lowering scoop into water trough. Initial mass and speed are M_{0} and U_{0}, respectively. Neglect external forces due to pressure or friction. Track is horizontal.

Find: (a) Apply continuity and momentum to show $U=U_{0} M_{0} / M$.
(b) Obtain a general expression for $v(t)$.

Solution: Apply continuity and momentum equations to linearly accelerating CV shown.
Basic equations: $0=\frac{\partial}{\partial t} \int_{C V} \rho d t+\int_{C S} \rho \vec{V}_{x y z} \cdot d \vec{A}$

$$
F f_{x}^{=o(1)}+F_{d_{x}}^{=0(2)}-\int_{e v} a f_{x} \rho d t=\frac{\partial}{\partial t} \int_{c v} \psi_{x y z}^{\approx o(z)} \rho d \psi+\int_{z s} u_{x y y} \rho \vec{V}_{x y z} \cdot d \vec{A}
$$

Asscemptions: (1) $F_{s x}=0$
(2) $F_{B_{x}}=0$
(s) Neglect u within $c v$
(4) Uniform flow across inlet section

From continuity

$$
0=\frac{\partial}{\partial t} M_{c u}+\{-|\rho U A|\} \text { or } \frac{d M}{d t}=\rho U A
$$

From momentum

$$
-a_{r f} M=-\frac{d U}{d t} M=u\{-|\rho U A|\}=U \rho U A, \text { since } u=-U
$$

But from continuity, PUA $=\frac{d M}{d t}$, so

$$
M \frac{d V}{d t}+V \frac{d M}{d t}=0 \quad \text { or } \quad U M=\operatorname{constan} t=U_{0} M_{0} ; \quad U=V_{0} M_{0} / M
$$

substituting $M=M_{0} V_{0} / V$ into momentum, $-\frac{d U}{d t} \frac{M_{0} U_{0}}{V}=P U^{-} A$, or

$$
\frac{d V}{V^{-3}}=-\frac{P A}{U_{0} M_{0}} d t
$$

Integrating, $\left.\int_{V_{0}}^{V^{\sigma}} \frac{d V}{V^{3}}=-\frac{1}{2} \frac{1}{V^{2}}\right]_{U_{0}}^{V^{V}}=-\frac{1}{2}\left(\frac{1}{V^{2}}-\frac{1}{V_{0}^{2}}\right)=-\int_{0}^{t} \frac{\rho A}{V_{0} M_{0}} d t=-\frac{\rho A}{V_{0} M_{0}} t$ Solving for U,

$$
V=\frac{U_{0}}{\left[1+\frac{2 \rho U_{0} A}{M_{0}} t\right]^{\frac{1}{2}}}
$$

Problem 4.155

Given: Tank driven by jet along horizontal track. Neglect resistance. Acceleration is from rest. Initial mass is Mo. Track horizontal.

Find: (a) Apply continuity and momentum to show $M=M_{0} V /(V-v)$
(b) General expression tor U / V as a function of time.

Solution: Apply continuity and x component of momentum equation to linearly accelerating cu shown.
Basic equations: $\quad 0=\frac{\partial}{\partial t} \int_{c v} \rho d t+\int_{C S} \rho \vec{v}_{\text {xys }} \cdot d \vec{A}$

Assumptions: (1) $F_{s_{x}}=0$
(2) $F_{e_{x}}=0$
(3) Neglect u within Cv
(4) Uniform flow in jet

From continuity

$$
0=\frac{\partial}{\partial t} M_{c v}+\{-|\rho(V-v) A|\} \quad \text { or } \frac{d M}{d t}=\rho(v-v) A
$$

From momentum

$$
-a_{r f_{x}} M=-\frac{d U}{d t} M=u\left\{-\left|\rho(V-V)_{A}\right|\right\}=(V-U)[-\rho(v-U) A] ; u=v-V
$$

But from continuity, $\rho(V-V) A=\frac{d M}{d t}$, and $d V^{\circ}=-d(V-V)$, s_{0}

$$
-\frac{d V}{d t} M=\frac{d(V-U)}{d t} M=-(V-V) \frac{d M}{d t} \text { or } M(V-V)=\text { constant }=M_{0} V
$$

Thus $M=M_{0} V /(v-v)$
Substituting into momentum, $-\frac{d V}{d t} M=\frac{d(V-U)}{d t} \frac{M_{0} V}{(V-U)}=-\rho(V-V)^{2} A$, or

$$
\frac{d(V-v)}{(V-v)^{3}}=-\frac{\rho A}{V M_{0}} d t
$$

Integrating, $\int_{V}^{v-v} \frac{d\left(v-v^{2}\right)}{(V-v)^{3}}=-\frac{1}{2}\left[\frac{1}{(v-v)^{2}}-\frac{1}{V^{2}}\right]=-\int_{0}^{t} \frac{\rho A}{V M_{0}} d t=-\frac{f A}{V M_{0}} t$
Solving,

$$
\frac{V}{V}=\left\{1-\frac{1}{\left[1+\frac{2 \rho V / A}{M_{0}} t\right]^{1 / 2}}\right\}
$$

Given: Small rocket "jet pack" used to lift astronaut above Earth. Exhaust jet speed is constant but mass flow rate varies.
Find: (a) Algebraic expression for mass flow rate needed to hover. (b) Maximum hover time.

Solution: APply continuity and momentum using $C V$ \& Cs shown.
Basic equation: $F_{p_{y}}^{=\alpha(1)}+F_{B y}-\int_{C y} f_{1}^{=0(z)}$

$$
=\frac{D^{1}}{D_{t}} \int_{c v}^{D(3)} v_{x y z} \rho d \forall+\int_{c s} v_{x y /} p \vec{V} \cdot d \vec{A}
$$

Assumptions: (1) Hover; $F_{\text {ty }}=0$
(2) arty $=0$
(3) Neg lect $\% \mathrm{t}$ in CV
(4) Uniform flow exhowt

Then

$$
\begin{aligned}
V_{e} & =2940 \mathrm{~m} / \mathrm{s} \\
M_{0} & =130 \mathrm{~kg} \\
M_{f} & =40 \mathrm{~kg}
\end{aligned}
$$

so

$$
\dot{m}=\frac{M g}{V_{e}}
$$

From conservation of mass, $O=\frac{\partial}{\partial t} \int_{C V} \rho d \psi+\int_{c s} \rho \vec{V} \cdot d \vec{A}=\frac{d M}{d t}+\dot{m}$ so $\quad \frac{d M}{d t}=-\dot{m}=-\frac{M g}{V_{e}} \quad$ or $\quad \frac{d M}{M}=-\frac{g}{V_{e}} d t$
Integrating from M_{0} at $t=0$ to $M_{0}-M_{f}$ at t,

$$
\left.\int_{M_{0}}^{M_{0}-M_{f}} \frac{d M}{M}=\ln M\right]_{M_{0}}^{M_{0}-M_{f}}=\ln \left(\frac{M_{0}-M_{f}}{M_{0}}\right)=\ln \left(1-\frac{M_{f}}{M_{0}}\right)=-\frac{g_{t}}{V_{e}}
$$

Solving fort,

$$
\begin{aligned}
& t=-\frac{V_{e}}{g} \ln \left(1-\frac{M_{f}}{M_{0}}\right)=-2940 \frac{\mathrm{~m}}{\mathrm{~s}} \times \frac{\mathrm{s}^{2}}{9.81 \mathrm{~m}} \ln \left(1-\frac{40 \mathrm{~kg}}{130 \mathrm{~kg}}\right) \\
& t=110 \mathrm{~s} \quad \text { (hover time) }
\end{aligned}
$$

Given: Model solid propellant rocket: $M_{0}=69 . \log , M_{f}=12.5 g$ Trust, $F_{t}=1.31 i_{0}$; burntime, $t_{b}=1.7_{s}$

Find: Maximum speed and henge (neglecting drag)
Plot: speed and distance traveled as functions of tire

Solution

Apply the y momentum equation to analyze motion

Assumptions: (i) neglect -pressure forces and aerodynamic drag (2) neglect rate of Charge of momentum insidece (3) wheorm flow fromev

Trust is produced by momerturn flux from aN

$$
\begin{aligned}
& R_{y}=-F_{t}=v_{e} \text { in. Since } v_{e}=-V_{e} \text {, then }-F_{t}=-V_{e} \\
& V_{e}=\frac{F_{t}}{j}=1.364 \times \frac{17 \mathrm{~s}}{12.5 \mathrm{~g}} \times \frac{4.448 N}{56 t} \times \frac{\mathrm{kg} \cdot \mathrm{~m}}{\mathrm{~F}^{2} \mathrm{~s}^{2}} \times \frac{10^{3} \mathrm{~g}}{\mathrm{~kg}}=786 \mathrm{~m} \mathrm{l}_{\mathrm{s}}
\end{aligned}
$$

From conservation of mass, $M=M_{0}-i n t$. Fen from momentum

$$
\begin{gathered}
-M_{g}-M_{a r y}=-V_{e} M \quad \text { or } a_{r} f_{y}=\frac{d j}{d t}=\frac{V_{i} M}{M}-g \\
\frac{d J}{d t}=\frac{V_{e} \dot{M}}{M_{0}-M t}-g \quad \text { or } d V=\left(\frac{H_{e} i}{M_{0}-i t}-g\right)
\end{gathered}
$$

At $t=t_{b} . \dot{m}=0$. Max velocity curs at $t=t_{b}=1 i_{s}$
Integrating between $V=0$ at $t=0$ and V at $t \leq t_{0}$

$$
\begin{equation*}
V=V_{e} \ln \left[M_{0} /\left(n_{0}-i n t\right)\right]-g t \quad \text { for } 0 \leq t \leq t_{0} \tag{1}
\end{equation*}
$$

Evaluating at $t=t_{0}=1.7$ s with $n=m_{f} t_{t}=7.35 \times 10^{-3} \mathrm{~kg} \mathrm{l}_{\mathrm{s}}$

$$
\begin{equation*}
V_{\text {Mar }}=7.8 \frac{\mathrm{r}}{5} \ln \left[\frac{69.6 g}{(69.6-12.5) g}\right]-9.81 \frac{\mathrm{~m}}{5} \times 17 \mathrm{~s}=139 \mathrm{~m} / \mathrm{s} \tag{nat}
\end{equation*}
$$

To obtain $\gamma=f(t)$, set $V=\frac{d y}{d t}$ in E_{q}. ', 'separate variables and integrate from $x=0$ at $t=0$ to γ at $t \leq t_{b}$.

$$
\left.Y=\frac{\hat{L}_{0}}{m}\left\{\left(1-\frac{i t}{m_{0}}\right)\left[\ln \left(1-\frac{n t_{1}}{r_{0}}\right)-1\right]+1\right\}-\frac{1}{2} g^{2} \quad \text { for } 0 \leq t \leq t_{0} \ldots . .2\right)
$$

Evaluating at $t=t_{b}=17 s$

$$
\begin{aligned}
& Y=786 \frac{n}{5} \times 69.6 g \times \frac{2}{7.35} g\left\{\left(1-\frac{12.5}{69.6}\right)\left[\ln \left(1-\frac{12.5}{6 a .6}\right)-1\right]+1\right\}-\frac{1}{2}+9.81-\frac{9}{5^{2}} \times(1.1)^{2} s^{2} \\
& Y_{t=t_{b}}=114 m
\end{aligned}
$$

Open-Ended Problem Statement: Several toy manufacturers sell water "rockets" that consist of plastic tanks to be partially filled with water and then pressurized with air. Upon release, the compressed air forces water out the nozzle rapidly, propelling the rocket. You are asked to help specify optimum conditions for this water-jet propulsion system. To simplify the analysis, consider horizontal motion only. Perform the analysis and design needed to define the acceleration performance of the compressed air/water-propelled rocket. Identify the fraction of tank volume that initially should be filled with compressed air to achieve optimum performance (i.e., maximum speed from the water charge). Describe the effect of varying the initial air pressure in the tank.

Discussion: The process may be modeled as a polytropic expansion of the trapped air which forces water out the jet nozzle, causing the "rocket" to accelerate. The polytropic exponent may be varied to model anything from an isothermal expansion process $(n=1)$ to an adiabatic expansion process ($n=k$), which is more likely to be an accurate model for the sudden expansion of the air.

Speed of the water jet leaving the "rocket" is proportional to the square root of the pressure difference between the tank and atmosphere.
Qualitatively it is apparent that the smaller the initial volume fraction of trapped air, the larger will be the expansion ratio of the air, and the more rapid will be the pressure reduction as the air expands. This will cause the water jet speed to drop rapidly. The combination of low water jet speed and relatively large mass of water will produce sluggish acceleration.
Increasing the initial volume fraction of air will reduce the expansion ratio, so higher pressure will be maintained longer in the tank and the water jet will maintain higher speed longer. This combined with the relatively small mass of water in the tank will produce rapid acceleration.

If the initial volume fraction of air is too large, all water will be expended before the air pressure is reduced significantly. In this situation, some of the stored energy of the air will be dissipated in a relatively ineffective air jet. Consequently, for any initial pressure in the tank, there is an optimum initial air fraction.

This problem cannot be solved in closed form because of the varying air pressure, mass flow rate, and mass of water in the tank;. it can only be solved numerically. One possible integration scheme is to increment time and solve for all properties of the system at each instant. The drawback to this scheme is that the water is unlikely to be exhausted at an even increment of time. A second scheme is to increment the volume of water remaining and solve for properties using the average flow rate during the interval. This scheme is outlined below.

Model the airlwater jet-propelled "rocket" using the CV and coordinates shown. First choose dimensions and mass of "rocket" to be sinuelated:

Input Data:

Jet diameter:	$D_{\mathrm{i}}=$	0.003	m
Tank diameter:	$D_{\mathrm{t}}=$	0.035	m
Tank length:	$L=$	0.1	m
Tank mass:	$M_{\mathrm{t}}=$	0.01	kg
Polytropic exponent:	$n=$	1.4	.-

Next choose initial conditions for the simutation (see sample calculations belau):

Initial Conditions:

Air fraction in tank:	$\alpha=$	0.5	.-
Tank pressure:	$p_{0}=$	200	kPa (gage)
Volume increment:	$\Delta \alpha=$	0.02	--

Compute reference purcumeters:

Calculated Parameters:

Jet area:	$A_{1}=7.07 \mathrm{E}-06 \mathrm{~m}^{2}$
Tank volume:	$\forall_{\mathrm{t}}=9.62 \mathrm{E}-05 \mathrm{~m}^{3}$
Initial air volume:	$\forall_{0}=4.81 \mathrm{E}-05 \mathrm{~m}^{3}$
Initial water mass:	$M_{0}=0.0481 \mathrm{~kg}$

(These are used in the spreads heed below.)
Then decrease the water fraction in the tank bey sa:
Calculated Results:

The computation is made as follows:
(1) Decrease α by $\Delta \alpha$
(2) Complete p from $p=p_{0}\left(\frac{t_{0}}{\forall}\right)^{n}$

$$
p=(200+101.325) \mathrm{kPa}\left(\frac{0.50}{0.52}\right)^{1.4}-101.325=183.9 \mathrm{KPa}(g a 40)
$$

(3) Use Bernoulli to calculate jet speed

$$
V_{j}=\sqrt{\frac{2 \Delta p}{\rho}}=\left[2 \times 183.9 \times 10^{3} \frac{\mu}{m^{2}} \times \frac{\mathrm{m}^{3}}{999 \mathrm{~kg}^{2}} \times \frac{\mathrm{kg} \mathrm{~m}}{\mathrm{~N} \cdot \mathrm{~s}^{2}}\right]^{\frac{1}{2}}=19.10 \mathrm{~m} / \mathrm{s}^{*}
$$

(4) Calculate water mass using α.
(5) Use conservation of mass to compete mass flow rate

$$
\dot{m}=\rho V_{j} A_{j}=999 \frac{\mathrm{~kg}}{\mathrm{~m}^{3}} \times 19.10 \frac{\mathrm{~m}}{\mathrm{~s}} \times 7.07 \times 10^{-6} \mathrm{~m}^{2}=0.1349 \mathrm{~kg} \mathrm{k}
$$

(6) Use the average mass flow rate during the interval to approximate Δt :

$$
\Delta t=\frac{\Delta m}{d m / d t}=\frac{\Delta m}{\sqrt[m]{m}}=(0.0481-0.0461) \lg \times \frac{\mathrm{s}}{0.138 \mathrm{~kg}}=0.01449 \mathrm{~s}^{*}
$$

(7) Use momentwem to compete acceleration (note M $=M_{m}+M_{t}$):

$$
\Delta r f_{x}=\frac{\dot{m} v_{j}}{M}=0.135 \frac{\mathrm{~kg}}{\mathrm{~s}} \times 19.2 \frac{\mathrm{~m}}{\mathrm{~s}} \times \frac{1}{0.0461+0.0100 \mathrm{~kg}}=46.2 \mathrm{~m} / \mathrm{s}^{2^{*}}
$$

(8) Finally: use average acceleration to get speed

$$
U=V_{0}+\vec{a} \Delta t=0+48.1 \frac{\mathrm{~m}}{\mathrm{~s}^{2}} \times 0.0139 \mathrm{~s}=0.669 \mathrm{~m} / \mathrm{s} *
$$

[^1]Repeat these calculate
zero, as shown below

In this simulation, the water is depleted when $t \approx 0.65 \mathrm{~s} ; V_{\max }=18.1 \mathrm{~m} / \mathrm{s}$.
Varying the initial air fraction produces the following:

For this combination of parameters, a peak speed of about $20.8 \mathrm{~m} / \mathrm{s}$ is attained with an initial air fraction of about 0.66 .

Problem 4.159

Given: Vertical jet impinging an disk.
Disk is unconstrained vertically.
Find: (a) Differential equation for $h(t)$, if disk released from $H>h_{0}$, where h_{0} is equilibrium height.
(b) Sketch $h(t)$ and explain.

Solution: Apply Bernoulli equation to jet, then y momentum equation to $c v$ with linear acceleration.
Basic equations:

$$
\begin{aligned}
& \begin{array}{c}
\frac{p p_{1}^{1}}{p}+\frac{v_{0}^{2}}{2}+g \dot{\beta}_{0}^{=0}=\frac{\hat{p}}{p}+\frac{v_{1}^{2}}{2}+g z_{1} \\
=\alpha(6)
\end{array}
\end{aligned}
$$

Assumptions: (1) Steady flow.
(2) Incompress isle flow
(3) No friction
(4) Flow along a stream line
(5) $p_{1}=A_{0}=p a t m$
(6) No presscere force on $C V, s_{0} F_{s y}=0$
(7) Neglect mass of liquid in CV and $v \approx 0$ in CV
(8) Uniform flow at each section
(9) Measure velocitne's relative to CV

From momentum

$$
\begin{array}{r}
-\left(11+\eta_{\omega}\right) g-a_{r r_{y}}\left(m+\eta_{\omega}\right)=v_{1}\left\{-1 \rho\left(V_{1}-U\right) A_{1} \mid\right\}+v_{2}^{\hat{1}\left\{\dot{m}_{2}\right\}} \\
v_{1}=V_{1}-U \quad v_{2} \approx 0
\end{array}
$$

With $a_{x x y}=\frac{d^{2} h}{d t^{2}}, v=\frac{d h}{d t}$, then

$$
-M g-M \frac{d^{2} h}{d t^{2}}=-\rho\left(V_{1}-\frac{d h}{d t}\right)^{2} A_{1}
$$

But from Bernoulli, $\frac{V_{1}^{2}}{2}=\frac{V_{0}^{2}}{2}-g z$, so $V_{1}=\sqrt{V_{0}^{2}-2 g h}$, sind $z_{1}=h(t)$
Also from continuity, $V_{1} A_{1}=V_{0} A_{0}$, so $A_{1}=A_{0} V_{6} / V_{1}$. Substituting

$$
\frac{d^{2} h}{d t^{2}}=\rho\left(\sqrt{V_{0}^{2}-2 g h}-\frac{d h}{d t}\right)^{2} \frac{A_{0} V_{0}}{M \sqrt{V_{0}^{2}-2 g h}}-g
$$

At equilibrium height, $h=h_{0}$, $\frac{d h}{d t}=0$, and $\frac{d^{2} h}{d t^{2}}=0$. Then

$$
\rho \sqrt{V_{0}^{2}-2 g h_{0}} A_{0} V_{0}-M g=0
$$

Thus $V_{0}^{2}-2 g h_{0}=\left(\frac{M g}{\rho V_{0}^{2} A_{0}}\right)^{2}$

This may be solved to obtain

$$
h_{0}=\frac{V_{0}^{2}}{2 g}\left[1-\left(\frac{M g}{\partial V_{0}^{2} A_{0}}\right)^{2}\right]=\frac{V_{0}^{2}}{2 g}\left[1-\left(\frac{M g}{m V_{0}}\right)^{2}\right]
$$

When released, $H>h_{0}$, and $d h / d t=0$. Because the equation ford $d^{2} h / c t^{2}$ is nonlinear, axillations will occur. The expected behavior is sketened below:

Notes: (1) Expect oscillations
(2) $\Delta h_{3}<\Delta h_{2}<\Delta h_{1}$, due to nonlinear equation

Given: Configuration of vertical jet striking horizontal disc shown in $P * 4.13$.

Assume disk released from rest at $h=10 \mathrm{ft}$ above no 33 le exit plane.

Firid: (a) solve for subseque rot motion of dice. (b) steady-state hight.

Solution: As in Problem 4.159, apply Bernoulic to jet, then y-momen them to CV with linear acceleration.
Basic equation: $\quad \frac{\phi_{0}}{p}+\frac{v_{0}^{2}}{2}+g \hat{p}_{0}^{=0}=\frac{\phi_{1}}{p}+\frac{v_{1}^{2}}{2}+g z$,

$$
F_{f_{y}}^{=0(6)}+F_{B y}-\int_{C V} a_{r x_{y} \rho} \rho d t=\frac{\partial}{d t} \int_{C V}^{*} v_{x y z} \rho d t+\int_{C S} v_{x y z} \rho \vec{V}_{x i / z} \cdot d \vec{A}
$$

Assumptions: (1) Steady
$\left.\begin{array}{l}\text { (1) Steady } \\ \text { (2) Incompressible flow } \\ \text { (3) No friction } \\ \text { (4) Flow a long a streamline }\end{array}\right\}$ in jet
(5) $p_{1}=p_{2}=$ patron
(6) 1/0 presser force on CV , so $\mathrm{Fy}=0$
(7) Neglect mass of water and $v=0$ in CV
(8) Uniform flow at each cross-section
(a) Measure velocities relative to CV

From momentum,

With $a_{r f y}=\frac{d^{2} h}{d t^{2}}$ and $U=\frac{d h}{d t}$, then

$$
v_{1}=v_{1}-v \quad v_{2}=0
$$

$$
-M g-M \frac{d^{2} h}{d t^{2}}=-p\left(V_{1}-\frac{d h}{d t}\right)^{2} A_{1}
$$

But from Bernoulli, $\frac{V_{1}^{2}}{2}=\frac{V_{0}^{2}}{2}-g z$, so $V_{1}=\sqrt{V_{0}^{2}-2 g h}$, since $z_{1}=h(t)$
Also from continuity $V, A_{1}=V_{0} A_{0}$ so $A_{1}=A_{0} \frac{V_{0}}{V_{1}}$, substitroting

$$
\begin{equation*}
\frac{d^{2} h}{d t^{2}}=\rho\left(\sqrt{V_{0}^{2}-2 g h}-\frac{d h}{d t}\right)^{2} \frac{A_{0} V_{0}}{M \sqrt{V_{0}^{2}-2 g h}}-g \tag{1}
\end{equation*}
$$

This may be solved numencally (next page).
At equilibrium height, $h=h_{0}(s)$, $h(t)=0$, and $\ddot{h}(t)=0$. Then

$$
\rho \sqrt{V_{0}^{2}-2 g h_{0}} A_{0} V_{0}-M g=0 \quad \text { or } \quad V_{0}^{2}-2 g h_{0}=\left(\frac{M g}{\rho V_{0} A_{0}}\right)^{2}
$$

so $h_{0}=\frac{V_{0}^{2}}{2 g}\left[1-\left(\frac{M g}{p V_{0} A_{0}}\right)^{2}\right]$

Analysis of disc motion (using 4th-order Runge-Kutta numerical integration):

Input Data:

A_{0}	$=0.050$	ft^{2}	Nozzle area
$g=$	32.2	$\mathrm{ft} / \mathrm{s}^{2}$	Acceleration of gravity
$V_{0}=$	40.0	ft / s	Jet speed at nozzle
$W=$	65.0	lbf	Weight of disc
$\Delta t=$	0.10	s	Time step size
$\rho=$	1.94	slug /f	

Initial Conditions:

H_{0}	$=10.0$	ft		Initial height of disc
U	$=0.0$	ft / s		Initial speed of disc
Calculated Values:				
$H_{0(\text { ss })}$	$=20.49$	ft		Steady-state height
V_{1}	$=30.9$	ft / s		Initial speed of jet reaching disc
$V_{1(\text { ss })}$	$=16.75$	ft / s		Steady-state jet speed
$z_{1 \text { (max) }}$	$=24.8$	ft		Maximum height reached by jet

Treat combustion products as ideal gas with molecular mas, $M_{m}=25.8$.

Find: (a) Evaluate nate of change of mass and of linear momentum with en racket motor.
(b) Express rate of Change of momentum as a percentage of thrust.

Solution: Apply continuity and x component of momentum equations using fixed CV shown.

Basic equations:

$$
\begin{aligned}
& 0=\frac{\partial}{\partial t} \int_{C v} \rho d \psi+\int_{C S} \rho \vec{v} \cdot d \vec{A} \\
& F_{s x}+F_{C_{x}}^{1}=o(z)=\frac{\partial}{\partial t} \int_{C V} u \rho d \psi+\int_{C S} u \rho \vec{V} \cdot d \vec{A}
\end{aligned}
$$

Assumptions: (1) No net pressure force; $F_{s_{x}}=R_{x}$
(2) $F_{B_{x}}=0$
(3) All properties constant at each point, except at surface where combustion takes place
(4) Uniform flowat exit section

The continuity equation becomes

$$
\begin{aligned}
& 0=\frac{\partial f}{\partial t} \int_{I}^{=o(z)} \rho d t+\frac{\partial}{\partial t} \int_{a}^{l} \rho_{g} A d x+\frac{\partial}{\partial t} \int_{l}^{b} \rho_{f} A d x+\left\{\left|f_{c} V_{c} A_{c}\right|\right\} \\
& 0=\frac{\partial}{\partial t}\left[\rho_{g} A(l-a)\right]+\frac{\partial}{\partial t}\left[f_{f} A(b-c)\right]+\dot{m}_{c}=\left(\rho_{g}-f_{f}\right) A \frac{d l}{d t}+\dot{m}_{c}
\end{aligned}
$$

or

$$
\dot{m}_{e}=\left(p_{f}-f_{g}\right) A \frac{d c}{d t}=\left(p_{f}-f_{g}\right) A \cdot
$$

For an ideal gas,

$$
\rho_{g}=\frac{P_{g}}{R T_{g}}=\frac{P_{g} M m}{R_{u} T_{g}}=7.0 \times 10^{6} \frac{\mathrm{~N}}{m^{2}} \times \frac{25.8 \mathrm{~kg}}{m 01} \times \frac{m 01 \cdot \mathrm{~K}}{83.4 \mathrm{~N} \cdot \mathrm{~m}^{3}} \times \frac{1}{30 \mathrm{~K}}=6.02 \mathrm{~kg} / \mathrm{m}^{3}
$$

so

$$
\dot{m}_{c}=(1660-6) \frac{\mathrm{kg}}{m^{3}} \times \frac{\pi}{4}(0.1)^{2} m^{2} \times 0.0127 \frac{m}{5}=0.165 \mathrm{~kg} / \mathrm{s}
$$

Mass flow is out, so $\frac{\partial M c y}{\partial t}=-0.165 \mathrm{~kg} / \mathrm{s}$
From the momentum equation.

Open-Ended Problem Statement: A classroom demonstration of linear momentum is planned, using a water-jet propulsion system for a cart traveling on a horizontal linear air track. The track is 5 m long, and the cart mass is 155 g . The objective of the design is to obtain the best performance for the cart, using 1 L of water contained in an open cylindrical tank made from plastic sheet with density of $0.0819 \mathrm{~g} / \mathrm{cm}^{2}$. For stability, the maximum height of the water tank cannot exceed 0.5 m . The diameter of the smoothly rounded water jet may not exceed 10 percent of the tank diameter. Determine the best dimensions for the tank and the water jet by modeling the system performance. Plot acceleration, velocity, and distance as functions of time. Find the optimum dimensions of the water tank and jet opening from the tank. Discuss the limitations on your analysis. Discuss how the assumptions affect the predicted performance of the cart. Would the actual performance of the cart be better or worse than predicted? Why? What factors account for the difference(s)?

Discussion: This solution is an extension of Problem *4.162. The analyses for tank level, acceleration, and velocity are identical; please refer to the solution for Problem *4.162 for equations describing each of these variables as functions of time.
One new feature of this problem is computation of distance traveled. Equation 7 of Problem *4.162 could be integrated in closed form to provide an equation for distance traveled as a function of time. However, the integral would be messy, and it would provide little insight into the dependence on key parameters. Consequently, a numerical analysis has been chosen in this problem. The results are presented in the plots and spreadsheet on the next page.
We have chosen to define velocity as the output to be maximized.
A second new feature of this problem is the geometric constraints: the maximum track length is 5 m . Intuitively jet diameter should be chosen as the largest possible fraction of tank diameter for optimum performance. Using the spreadsheet to vary $\beta=d / D$ verifies that this is the case. Therefore we have used the maximum allowable ratio, $\beta=0.1$, for all computations.
Tank height should be a factor in performance. Intuition suggests that increasing tank height should improve performance. Using the spreadsheet shows a very weak dependence on tank height. Performance is best at smaller tank heights, corresponding to the minimum tank mass.
As tank height is decreased, diameter increases because tank volume is held constant. Since diameter ratio is constant, then jet diameter increases with decreasing tank height. This effect almost overshadows the effect of tank height.
The principal limitations on the analysis are the assumptions of negligible motion resistance and no slope to the free surface of water in the tank. Actual performance of the cart would likely be less than predicted because of motion resistance.

Distance is modered as

$$
x_{i+1}=x_{i}+v_{i} \Delta t+\frac{1}{2} a_{x, i} \Delta t^{2}
$$

The accuracy of this model for position is consistent with the accuracy of modeling the water-jet propulsion system.

Analysis of Cart Propelled by Gravity-Driven Water Jet:

Input Data:

$g=$	9.81	$\mathrm{~m} / \mathrm{s}^{2}$	
H	Acceleration of gravity		
H	500	mm	Height of tank
$M_{c}=$	0.155	kg	
$\forall=$	1.00	L	Mass of cart
$\beta=$	0.100	Tank volume	
$\rho=$	999	$\mathrm{~kg} / \mathrm{m}^{3}$	
Ratio of jet diameter to tank diameter			
$\rho^{\prime \prime}=$	0.819	$\mathrm{~kg} / \mathrm{m}^{2}$	Density of water
(Area) density of tank material			

Calculated Parameters:

Open-Ended Problem Statement: The capability of the Aircraft Landing Loads and Traction Facility at NASA's Langley Research Center is to be upgraded. The facility consists of a railmounted carriage propelled by a water jet issuing from a pressurized tank. (The setup is identical in concept to the hydraulic catapult of Problem 4.118.) The $49,000 \mathrm{~kg}$ carriage must accelerate to 220 knots in 122 m . (The vane turning angle is 170°.) Identify a range of water jet sizes and speeds needed to accomplish this performance. Specify the recommended operating pressure for the water jet system and determine the shape and estimated size of tankage to contain the pressurized water.
Discussion: The analysis of Example Problem 4.11 forms the basis for the solution outlined below. Use a control volume attached to and moving with the carriage to analyze the motion. Neglect aerodynamic and rolling resistance to obtain a best-case solution. Solve the resulting differential equation of motion for carriage speed and position as functions of time, and for speed as a function of position along the rails.
Computing equations are summarized and results tabulated below. As shown in Example Problem 4.11, analysis of the carriage motion results in the differential equation

$$
\begin{equation*}
\frac{d U}{d t}=\frac{e\left(V_{j}-U\right)^{2}(1-\cos \theta)}{M 1} \tag{1}
\end{equation*}
$$

Integrating with respect to time gives carriage speed versus time

$$
\begin{equation*}
U=V_{j} \frac{b t}{1+b t} \tag{2}
\end{equation*}
$$

where parameter b is

$$
\begin{equation*}
b=\frac{e V_{j} A_{j}(1-\cos \theta)}{M} \tag{3}
\end{equation*}
$$

Equation 2 is integrated to obtain carriage position versus time

$$
\begin{equation*}
x=V_{j}\left[t-\frac{\ln (1+b t)}{b}\right] \tag{4}
\end{equation*}
$$

Substitute $d U / d t=U d U / d x$ and integrate Eq. 1 for distance traveled versus carriage speed

$$
\begin{equation*}
x=\frac{V_{i}}{b}\left[\ln \left(1-U / V_{j}\right)+\frac{1}{1-U / V_{j}}-1\right] \tag{5}
\end{equation*}
$$

Relate jet speed to water tank pressure using the Bernoulli equation

$$
\begin{equation*}
\nabla_{j}=\sqrt{2 \Delta p / p} \tag{6}
\end{equation*}
$$

The required volume of water is computed as follows:

1. Assume a range of tank pressures.
2. Compute the jet speed corresponding to each tank pressure from Eq. 6.
3. Solve for parameter b from Eq. 5 using the known maximum speed and specified distance.
4. Obtain jet area from Eq. 3.
5. Compute the time required to accelerate the carriage from Eq. 2 .
6. Calculate jet diameter from jet area.
7. Compute the required volume of water from the product of mass flow rate and acceleration time.

The optimum operating pressure requires the least costly tankage. (Assume the most efficient spherical shape for pressurized tankage and constant tank pressure during acceleration.) Tankage calculations are organized as follows:

1. Obtain tank diameter from tank volume.
2. Calculate wall thickness from a force balance on the thin wall of the tank.
3. Calculate steel volume from tank surface area and wall thickness.
4. Assume steel cost is proportional to steel volume.

Sample calculation: assume $p=6000$ ping

$$
\begin{aligned}
& V_{j}=\left[2 \times 6000 \frac{\mathrm{lbf}}{1 \mathrm{~m}^{2}} \times \frac{\mathrm{ft3}}{1.94 \operatorname{sing}} \times \frac{144 \mathrm{in}^{2}}{\mathrm{ft}^{2}} \times \frac{3 / \mathrm{ug} \cdot \mathrm{ft}}{16 \mathrm{f} \cdot \mathrm{~s}^{2}}\right]^{\frac{1}{2}}=944 \mathrm{ft} / \mathrm{s} ; \frac{U}{V_{j}}=\frac{371}{944}=0.393 \\
& b=94+\frac{f t}{\mathrm{~s}} \times \frac{1}{400 \mathrm{ft}}\left[\ln (1-0.393)+\frac{1}{1-0.393}-1\right]=0.350 \mathrm{~s}^{-1} \\
& A_{j}=\frac{b M}{\rho V_{j}(1-\cos \theta)}=0.350 \\
& \mathrm{~s}
\end{aligned} 3350 \mathrm{~s} 149 \times \frac{\mathrm{ft3}}{1.94 \mathrm{skg}} \times \frac{\mathrm{s}}{944 \mathrm{ft}^{2}} \times \frac{1}{\left.1-\cos 170^{\circ}\right)}=0.323 \mathrm{ft}^{2} .
$$

$$
t=\frac{1}{b}\left(\frac{U /_{j}}{1-U /_{j}}\right)=\frac{\mathrm{s}}{0.35 \mathrm{~s}} \times \frac{0.393}{1-0.393}=1.85 \mathrm{~s}
$$

$$
Q=V_{j} A=944 \frac{\mathrm{ft}}{\mathrm{~s}} \times 0.343 \mathrm{ft} \times 2.48 \frac{\mathrm{gal}}{\mathrm{ft3}}=2280 \mathrm{gal} / \mathrm{s}
$$

$$
\forall=Q t=2280 \frac{9 a^{\prime}}{\mathrm{s}} \times 1.85 \mathrm{~s}=4220 \mathrm{ga}
$$

$$
D=(6 t / \pi)^{1 / 3}=\left(\frac{6}{\pi} \times 4220 \mathrm{ga} \mathrm{I}_{\times} \frac{\mathrm{ft}^{3}}{7.48 \mathrm{gal}}\right)^{1 / 3}=10.3 \mathrm{ft}
$$

$$
\Delta p \frac{\pi D^{2}}{4}=\pi D t ; t=\frac{p D}{4 \sigma}=\frac{1}{4} \times 6000 \frac{\mathrm{lbt}}{\mathrm{mi}^{2}} \times 10.3 \mathrm{ft} \times \frac{\mathrm{in}^{2}}{40,000 \mathrm{lbf}} \times \frac{12 \mathrm{in}}{\mathrm{ft}}=4.64 \mathrm{in}
$$

$$
\forall_{S t a 1}=\pi D^{2} t=\pi_{x}(10.3)^{2} \mathrm{fi}^{2} \times 4.64 \mathrm{in} \times \frac{f t}{12 \mathrm{in} .}=129 \mathrm{ft}^{3}
$$

Discussion: The results show the stee/volume plumorets as tank pressure is raised, with a broad minimum between 3,000 and 4,000 pig.

Problem *4.163 (cont'd.)

Input Data:	$M=$	49000	kg	3355	slug
U	$=$	220	kt	371.3	ft / s
	$X=$	122	m	400.3	ft
	$\theta=$	170	degrees		

Calculated Results:

Jet Pressure (psig)	Jet Speed (fts)	Parameter b (s^{-1})	Jet Area ($\mathrm{ft}^{\mathbf{2}}$)	Jet Diameter (in.)	Flow Rate (gal/s)	Flow Time (s)	Water Volume (gal)
6000	944	0.351	0.324	7.70	2285	1.85	4227
5500	904	0.380	0.367	8.20	2477	1.84	4546
5000	862	0.417	0.421	8.79	2715	1.82	4936
4500	817	0.463	0.494	9.51	3019	1.80	5426
4000	771	0.525	0.593	10.4	3419	1.77	6061
3500	721	0.610	0.737	11.6	3973	1.74	6924
3000	667	0.736	0.961	13.3	4797	1.70	8174
2500	609	0.944	1.35	15.7	6155	1.65	10172
2000	545	1.35	2.17	19.9	8830	1.58	13942
1500	472	2.53	4.67	29.3	16490	1.46	24061
1000	385	22.4	50.6	96.3	145835	1.19	173113
Jet Pressure (psig)	Water Volume (gal)	Tank Diameter (ft)	Wall Thickness (in.)	Steel Volume (ft^{3})	Steel Mass (ton)		
6000	4227	10.3	4.6	127.2	30.9		
5500	4546	10.5	4.3	125.4	30.5		
5000	4936	10.8	4.1	123.7	30.1		
4500	5426	11.1	3.8	122.4	29.8		
4000	6061	11.6	3.5	121.5	29.6		
3500	6924	12.1	3.2	121.5	29.6		
3000	8174	12.8	2.9	122.9	29.9		
2500	10172	13.7	2.6	127.5	31.0		
2000	13942	15.3	2.3	139.8	34.0		
1500	24061	18.3	2.1	180.9	44.0		
1000	173113	35.4	2.7	867.9	211.2		

Open-Ended Problem Statement: Analyze the design and optimize the performance of a cart propelled along a horizontal track by a water jet that issues under gravity from an open cylindrical tank carried on board the cart. (A water-jet-propelled cart is shown in the diagram for Problem 4.121.) Neglect any change in slope of the liquid free surface in the tank during acceleration. Analyze the motion of the cart along a horizontal track, assuming it starts from rest and begins to accelerate when water starts to flow from the jet. Derive algebraic equations or solve numerically for the acceleration and speed of the cart as functions of time. Present results as plots of acceleration and speed versus time, neglecting the mass of the tank. Determine the dimensions of a tank of minimum mass required to accelerate the cart from rest along a horizontal track to a specified speed in a specified time interval.

Discussion: This problem solution consists of two parts. The first is to analyze the acceleration and velocity of a cart propelled by a gravity-driven water jet. The second is to optimize the dimensions of the cart and jet to accelerate to a specified speed in a specified time interval.
To analyze the problem, apply conservation of mass and the Bernoulli equation to the draining of the tank, then apply the x component of the momentum equation for a control volume to analyze the resulting linear acceleration. A representative plot of the results is presented below.

To optimize the performance of the water-jet-propelled cart, manipulate the solution dimensions until the best performance is attained.

Input Data:

d	$=$	10	mm
	Diameter of water jet		
D	100	mm	Diameter of tank
$g=$	9.81	$\mathrm{f} / \mathrm{s}^{2}$	
$H=$	Acceleration of gravity		
H	150	mm	Height of tank
$M_{\mathrm{t}}=$	0.001	kg	Mass of tank
$\rho=$	999	$\mathrm{~kg} / \mathrm{m}^{3}$	
Density of water			

Calculated Parameters:

$a=$	0.029	$(--)$
b	$=0.0572$	$\mathrm{~s}^{-1}$
$M_{0}=$	1.18	kg
$\beta=$	0.1	$(--)$

($a^{2}=$) Ratio of mass of tank to initial mass of water Geometric parameter of solution Initial mass of water in tank
Ratio of jet diameter to tank diameter
Calculated Results:

Time,	Level Ratio,	Accel.,	Velocity,
\boldsymbol{t}	y / H	a	U
$(\mathrm{~s})$	$(--)$	$\left(\mathrm{m} / \mathrm{s}^{2}\right)$	$(\mathrm{m} / \mathrm{s})$
0	1	0.196	0
1	0.810	0.196	0.196
2	0.640	0.196	0.392
3	0.490	0.196	0.588
4	0.360	0.196	0.784
5	0.250	0.196	0.980
6	0.160	0.196	1.176
7	0.0900	0.196	1.37
8	0.0400	0.196	1.57
9	0.0100	0.196	1.76
10	0	0.195	1.96

Given: Cart, propelled by water jet, accelerates a long horizontal track.
Find: (a) Analyze motion, derive algebraic equations for acceleration and speed of cart as functions of time (b) Plot acceleration and speed us. time.

Solution: Apply conservation of mass, Bernoulli, and momentum equations.

Basic equations:

$$
\begin{aligned}
& 0=\frac{\partial}{\partial t} \int_{C V} \rho d \forall+\int_{C S} \rho \vec{V} \cdot d \vec{A} \\
& \begin{array}{l}
p j j+\frac{V_{j}^{2}}{2}+g y_{j}^{=0(8)}=\frac{\phi}{p}+\frac{V^{2}}{2}+g y \\
=0(a)=0(0)
\end{array} \\
& F_{f_{x}}^{=0(9)}+F_{\beta_{x}}^{=0(10)}-\int_{C v} a_{r f} \rho d \forall=\frac{\partial f}{\partial t} \int_{C u}^{o(11)} u \rho d \forall+\int_{C S} u \rho \vec{v} \cdot d \vec{A} \\
& M_{t}=\text { mass of tank, cart } \\
& \beta=\frac{d}{D}
\end{aligned}
$$

Assumptions: (1) Uniform flow from exit jet
(2) Neglect air in CV

$$
\begin{equation*}
0=\frac{\partial}{\partial t}\left(\rho A_{t} y\right)+\left\{+\left|\rho V_{j} A_{j}\right|\right\}=\rho A_{t} \frac{d y}{d t}+\rho V_{j} A_{j}=-\rho A_{t} V+\rho V_{j} A_{j} \tag{1}
\end{equation*}
$$

Thus $V=V_{j} \frac{A_{j}}{A_{t}}=V_{j}\left(\frac{d}{D}\right)^{2}=\beta^{2} V_{j}$
(3) No slops to free surface (given)
(4) Quasi-steadey flow
(5) Frictionless flow
(6) Incompress ible flow
(7) Flow along a streamline
(8) $p=p_{j}=p_{a t m}$
(9) $y_{j}=0$

From Bernoulli, $\frac{V_{j}^{2}}{2}=\frac{V^{2}}{2}+g y$ or $V_{j}^{2}-V^{2}=2 g y$
substituting from (2), $v_{j}^{2}-\beta^{4} v_{j}^{2}=v_{j}^{2}\left(1-\beta^{4}\right)=\lg y ; v_{j}^{2}=\frac{2 g y}{\left(1-\beta^{4}\right)}$
Substituting into (1), $\frac{d y}{d t}=-\beta^{2} v_{j}=-\beta^{2} \frac{\sqrt{2 g y}}{\left(1-\beta^{4}\right)}$ or $\frac{d y}{y^{1 / 2}}=-\frac{\dot{p}^{2} \sqrt{2 g}}{1-\beta^{4}} d t$ Integrating, $\left.2 y^{1 / 2}\right]_{y_{0}}^{y}=-\frac{\beta^{2} \sqrt{2 g}}{\left(1-\beta^{4}\right)} t \quad$ or $\quad y^{1 / 2}-y_{0}^{1 / 2}=-\frac{\beta^{2} \sqrt{2 g}}{2\left(1-\beta^{4}\right)} t$
Thus $\left(\frac{y}{y_{0}}\right)^{1 / 2}=1-\left[\frac{g \beta^{4}}{2 y_{0}\left(1-\beta^{4}\right)}\right]^{1 / 2} t=1-b t ; b=\left[\frac{g \beta^{4}}{2 y_{0}\left(1-\beta^{4}\right)}\right]^{1 / 2}$.

$$
\text { Problem }{ }^{*} 4.164 \text { (cont'd.) }
$$

(10) $F_{S_{x}}=0$: no resistance
(II) $F_{B_{X}}=0$; horizontal motion
(12) $u \approx 0$ in $C v$, so $\partial b t \approx 0$

Then

$$
\begin{align*}
& -\operatorname{arffx}_{x} M(t)=u_{j}\left\{+\left|\rho v_{j} A_{j}\right|\right\}=-\rho v_{j}^{2} A_{j} \tag{5}\\
& \operatorname{arf_{x}}=\frac{d U}{d t} \quad u_{j}=-v_{j}
\end{align*}
$$

But from (4), $M(t)=M_{t}+\rho A_{t} y=M_{t}+\rho A_{t} y_{0}(1-b t)^{2}$
From (3), $V_{j}^{2}=\frac{2 g \varphi}{1-\beta^{4}}=\frac{2 g}{1-\beta^{4}} y_{0}(1-b t)^{2}$
Substituting into (5)

$$
\frac{d U}{d t}\left[M_{t}+\rho A_{t} y_{0}(1-b t)^{2}\right]=\rho A_{j} \frac{2 g}{1-\beta^{4}} y_{0}(1-b t)^{2}=\rho A_{t} y_{0} \frac{2 g \beta^{2}}{1-\beta^{4}}(1-b t)^{2}
$$

Define $M_{0}=$ initial mass of water $=\rho A_{t} y_{0}$. Then

$$
\frac{d U}{d t}\left[M_{t}+M_{0}(1-b t)^{2}\right]=M_{0} \frac{2 g \beta^{2}}{1-\beta^{4}}(1-b t)^{2}
$$

or

$$
\begin{equation*}
\frac{d \sigma}{d t}=\frac{2 g \beta^{2}}{1-\beta^{4}} \frac{M_{0}(1-b t)^{2}}{M_{t}+M_{0}(1-b t)^{2}} \tag{6}
\end{equation*}
$$

To integrate, let $r=1-b t$, $d r=-b d t$, and $a^{2}=M t / M_{0}$. Then

$$
\begin{aligned}
U & =\int_{0}^{U} d U=\frac{2 g \beta^{2}}{1-\beta^{4}}\left(-\frac{1}{b}\right) \int_{0}^{t} \frac{r^{2}}{a^{2}+r^{2}} d r=-\frac{2 g \beta^{2}}{1-\beta^{4}} \frac{1}{b}\left[r-a \tan ^{-1}\left(\frac{r}{a}\right)\right]_{0}^{t} \\
& =-\frac{2 g \beta^{2}}{1-\beta^{4}} \frac{1}{b}\left[(1-b t)-a \tan ^{-1}\left(\frac{1-b t}{a}\right)\right]_{0}^{t} \\
U & =-\frac{2 g \beta^{2}}{1-\beta^{4}} \frac{1}{b}\left[(1-b t)-a \tan ^{-1}\left(\frac{1-b t}{a}\right)-1+a \tan ^{-1}\left(\frac{1}{a}\right)\right]
\end{aligned}
$$

simplifying, then

$$
\begin{gather*}
U=\frac{2 g \beta^{2}}{1-\beta^{4}}\left\{t+\frac{a}{b}\left[\tan ^{-1}\left(\frac{1-b t}{a}\right)-\tan ^{-1}\left(\frac{1}{a}\right)\right]\right\} \tag{7}\\
a^{2}=\frac{M_{t}}{M_{0}} ; b=\left[\frac{g \beta^{4}}{2 y_{0}\left(1-\beta^{4}\right)}\right]^{1 / 2}
\end{gather*}
$$

Prob. 4. 164 (cont'd) : optimization
Given: cart, propelled by water jet, accelerating on horizontal track.

$$
\begin{align*}
& \frac{d U}{d t}=\frac{2 g \beta^{2}}{1-\beta^{4}} \frac{(1-b t)^{2}}{a^{2}+(1-b t)^{2}} \tag{1}\\
& U(t)=\frac{2 g \beta^{2}}{1-\beta^{4}}\left\{t+\frac{a}{b}\left[\tan ^{-1}\left(\frac{1-b t}{a}\right)-\tan ^{-1}\left(\frac{1}{a}\right)\right]\right\} \tag{2}\\
& \beta=\frac{d}{D}, a^{2}=\frac{M_{t}}{M_{0}}, b=\left[\frac{g \beta^{4}}{2 y_{0}\left(1-\beta^{4}\right)}\right]^{1 / 2}
\end{align*}
$$

Find: (a) Shape for tank of nimimum mass for given volume.
(b) Minimum water volume to reach $U=2.5 \mathrm{~m} / \mathrm{sec}$ in $t=25 \mathrm{sec}$.

Solution: mass of tank is $M=\rho_{t} A_{s} t$, where $t=$ thickness of wall

$$
A_{S}=A_{\text {bottom }}+\text { Acylinder }=\pi \frac{D^{2}}{4}+\pi D H
$$

since volume is $\forall=\frac{\pi D^{2}}{4} H$, then $H=\frac{4 \forall}{\pi D^{2}}$, and

$$
A_{s}=\frac{\pi D^{2}}{4}+\pi D\left(\frac{4 \forall}{\pi D^{2}}\right)=\frac{\pi D^{2}}{4}+\frac{4 \forall}{D}
$$

To minimize, set $d A_{s} / d D=0$

$$
\frac{d A_{s}}{d D}=\frac{\pi D}{2}+(-1) \frac{4 \forall}{D^{2}}=0 \text { so } D^{3}=\frac{8 \psi}{\pi} \text { or } D=\left(\frac{8 \psi}{\pi}\right)^{1 / 3}
$$

Then $\forall=\frac{\pi D^{2} H}{4}=\frac{\pi D^{3}}{8}$ so $\frac{H}{D}=\frac{1}{2}$
The tank mass per volume for optincem H / D is

$$
m=\frac{M}{V}=\frac{\rho_{t}\left(\frac{\pi D^{2}}{4}+\pi D H\right) t}{\frac{\pi D^{2}}{4} H}=\rho_{t}\left(\frac{t}{H}+\frac{4 t}{D}\right)=\rho_{t} \frac{t}{H}\left(1+4 \frac{H}{D}\right)=3 \rho_{t} \frac{t}{H}
$$

Therefore mass depends on $\rho_{t} t$ for a given volume. The minimeen mass is achieved for the smallest combination of p_{t} and t.

$$
\begin{equation*}
a^{2}=\frac{M_{t}}{M_{0}}=\frac{M_{t}}{\rho \forall}=\frac{3 \rho_{t}}{\rho} \frac{t}{1 t}=3 S G\left(\frac{t}{H t}\right) \tag{s}
\end{equation*}
$$

which still depends on volume, since it contains H.
The best solution strategy seems to be: pick \forall, calculate H, D, β, a, and b, then plot $U(t)$.

Given: The 90° reducing elbow of Example Problem 4.7 discharges to atmosphere. section (2) is located 0.3 m to the right of section 10 .
Find: Estimate the moment exerted by the flange on the elbow.
Solution: Apply moment of momentum, using the CV and CS shown.

From Example Problem $4.7, \vec{V}_{2}=-16 \mathrm{j} \mathrm{m} / \mathrm{s}, A_{1}=0.01 \mathrm{~m}^{2}$
Steady flow, $A_{2}=0.0025 \mathrm{~m}^{2}$
Basic equation (fixed CV):

Assumptions: (1) Neglect body forces
(5) Incompressible flow
(2) No shafts, so That r $=0$
(3) Steady flow (gives)
(4) Uniform flow at each cross section

Then

$$
\begin{align*}
& \left.\vec{M}_{\text {flange }}=\vec{r} \times \vec{F}_{3}\right\}_{\text {flange }}=\vec{r}_{1} \times \vec{V}_{1}\left\{-\rho V_{1} A_{1}\right\}+\vec{r}_{2} \times \vec{V}_{2}\left\{+\rho V_{2} A_{2}\right\} \tag{1}\\
& \left.\vec{r}_{1}=0 \quad \begin{array}{l}
\vec{r}_{2}=a \hat{\imath}-b \hat{\jmath} \\
\vec{v}_{2}=-V_{2} \hat{\jmath}
\end{array}\right\} \vec{r}_{2} \times \vec{V}_{2}=-a V_{2} \hat{k}+0
\end{align*}
$$

Substituting into Eq.I,

$$
\begin{aligned}
\vec{M}_{\text {flange }} & =-a v_{2} \hat{k}\left\{+\rho v_{2} A_{2}\right\}=-a \rho v_{2}^{2} A_{2} \hat{k} \\
& =0.3 m_{n} 999 \frac{\mathrm{~kg}}{\mathrm{~m}^{3}} \times(16)^{2} \frac{\mathrm{~m}^{2}}{\mathrm{~s}^{2}} \times 0.0025 \mathrm{~m}^{2} \times \frac{\mathrm{N} \cdot \mathrm{~s}^{2}}{\mathrm{~kg} \cdot \mathrm{~m}}(-\hat{k})
\end{aligned}
$$

$$
\vec{M}_{\text {flange }}=-192 \hat{k} \mathrm{~N} \cdot \mathrm{~m}
$$

This is the torque that must be exerted on the CV by the flange. \{since $\vec{M}_{\text {flange }}$ is in the $-\hat{k}$ direction, it must act cw in the xy-plane. $\}$

Given: Irrigation sprinkler mounted on cart

$$
\begin{array}{ll}
V=40 \mathrm{mls} & \theta=30^{\circ} \\
\nu=50 \mathrm{~m} & \text { Alow is water } \\
h=3 \mathrm{~m} & M=350 \mathrm{~kg}
\end{array}
$$

Find: (a) Magnitude of moment which tends to overturn the cart
(b) Value of V to cause impending motion; nature of 1 impending motion.
(c) Effect on jet indination on results

Plot: Jet velocity as a function of θ for the case of impending ration.
Solution:

Apply moment of momentuen equation, using fixed CV shown at left Origin of coordinates is on ground at left Wheel of cart. Wite His coordinate system counterclockwise. moments are positive (about the z axis).
Basic equation:

Assumptions: (1) $\vec{T}_{s}=0$
(2) steady flow
(3) unifoff flow at nozzle outlet
(4) neglect $\vec{i} \vec{y}$ of inlet flow.
(5) center of mass located at $x=$ wile
(b) nozzle loge is short; coordinates of nozzle exit ot $\left.\left(x_{2}, y_{2}\right)=(w)_{2}, h\right)$

$$
r_{2}=\frac{w}{2} i+h \hat{j} \quad v_{2}=v(\cos \theta i-\sin \theta j)
$$

and

$$
\begin{align*}
& w_{4} k \cdot \frac{w}{2} M_{g} \hat{g}=\frac{w}{2} \nu \sin \theta i_{2} \hat{l}-h \nu \cos \theta \dot{\hat{l}} \\
& w_{H}-\frac{w}{2} M_{g}=i_{2}\left[\frac{w}{2} \sin \theta-h \cos \theta\right] \tag{i}
\end{align*}
$$

Rewriturg $E q$.' in the form $\Sigma M_{3}=0$ for staticequibruou\}

$$
\begin{equation*}
W N_{4}-\frac{w}{2} M_{g}+M_{2} V\left[h \cos \theta-\frac{w}{2} \sin \theta\right]=0 \tag{2}
\end{equation*}
$$

The last term in Eg_{2} is the moment (due to the jet) which tends to overturn the cart.

$$
\mid \text { Problem * 4.ilde (contd)| }
$$

Evaluating, $\dot{m}_{2}=\rho A_{2} V_{2}=p \frac{\pi)^{2}}{4} V_{2}$

$$
i_{2}=999 \frac{\mathrm{~kg}}{M_{3}^{3}} \times \frac{\pi}{4}(0.05)^{2} m^{2} \times 40 \frac{\mathrm{~m}}{5}=78.5 \mathrm{~kg} \mathrm{c}_{\mathrm{s}}
$$

Ten wit $\rangle_{2}=40 \mathrm{Mls}$

$$
\begin{aligned}
\text { Moment from jet } & =78.5 \frac{\mathrm{lg}}{5} \times \frac{40 \mu}{5} \times \frac{N .5^{2}}{\mathrm{~kg} \cdot m}\left[3 m \cos 30^{\circ}-1 \frac{5 m}{2} \sin 30^{\circ}\right] \\
\text { Moment jet } & =6.98^{\mathrm{fan}} \cdot \mathrm{M} \text { Mont }
\end{aligned}
$$

For the case of impending tipping (about pout 3)
$N_{4} \rightarrow 0$ and from Eq.E

$$
-\frac{w}{2} r g g+i i_{2} v\left[h \cos \theta-\frac{w}{2} \sin \theta\right]=0
$$

To solve for V_{2}, write $M=P A_{2} N_{2}$

$$
\begin{aligned}
& v_{2}^{2}=\frac{W M g}{2 p^{A_{2}}\left[h \cos \theta-\frac{N}{2} \sin \theta\right]}
\end{aligned}
$$

$$
\begin{align*}
& V_{2}^{2}=592 \mu^{2} s^{2} \\
& \therefore V_{2}=24.3 \mathrm{mls} \tag{2}
\end{align*}
$$

Thus, the ratimur speed allowable without tipping is less than the value suggested..
the impending motion will be tipping since $f_{3}<\mu N_{3}$
From the x momentum equation

$$
f_{3}=m \nu_{2} \cos \theta
$$

From the y momentum equation

$$
N_{3}=M g+i V_{2} \sin \theta
$$

For Ripping $\mu>0.377$
From Eq. 2 we see that as θ increases the tendency to tip decreases
For impending motion from Eq.3.

$$
V=\left\{\frac{w M_{g}}{\left.2 \rho A_{2}\left[h \cos \theta-\frac{w}{2} \sin \theta\right]\right\}^{1 / 2}}\right.
$$

Problem 4.167

Given: (rude oil ($56=0.95$) flow through a pipe assembly in the horizontal configuration shown.

$$
Q=0.58 \mathrm{~m}^{3} / \mathrm{s}
$$

Find: Force and torque exerted by assembly on its supports.

Solution: No momentum components exist in the y direction. Apply x component of linear momentum and the moment of momentum equations using the CV shown. Location of coordinates is arbitrary; for simplicity, choose

(2)

$$
p_{2}=332 \mathrm{kPa}(g a g c)
$$ as shown.

Basic equations: $F_{S_{x}}+F_{P_{x}}^{=0(1)}=\frac{\partial \hat{\partial}}{\partial t} \int_{C V} u \rho(2)$

$$
\vec{r} \times \overrightarrow{F_{s}}+\int_{C V} \vec{r} \times \vec{g} \rho d \forall+\overrightarrow{T_{s}} \hat{=} \hat{a f t}=\frac{d(4)}{d t} \int_{C V}^{=0(z)} \vec{r} \times \vec{v} p d \psi+\int_{C S} \vec{r} \times \vec{v} \rho \vec{v} \cdot d \vec{A}
$$

Assumptions: (1) $F E_{x}=0 ; \vec{g}$ acts in z direction
(2) Steady flow
(3) Uniform flow at each section
(4) No z component of $\vec{r} \times \vec{g}$
(5) $\vec{T}_{\text {shaft }}=0$

From momentum equation.

$$
A=\frac{\pi D^{2}}{4}=\frac{\pi}{4}(0.25)^{2} m^{2}=0.049 \mathrm{~m}^{2}
$$

$$
R_{x_{1}}+R_{x_{2}}+p_{1} A-p_{2} A=u_{1}\{-\dot{m}\}+u_{2}\{\dot{m}\}=0 ; R_{x_{1}}+R_{x_{2}}=\left(p_{2}-p_{1}\right) A
$$

From moment of momentum,

$$
\begin{aligned}
& \vec{r}_{1} \times\left(R_{x_{1}}+p_{1} A\right) \hat{\imath}+\vec{\eta}_{2} \times\left(R_{x_{L}}-p_{L} A\right) \hat{\imath}=\vec{r}_{1} \times V, \hat{\imath}\{-\dot{m}\}+\vec{r}_{\vec{p}} \times V_{2} \hat{\imath}\{\dot{m}\} ; \vec{r}_{1}=L \hat{\jmath}, \vec{r}_{1} \times \hat{\imath}=-L \hat{k} \\
& -L\left(R_{x},+\rho, A\right) \hat{k}=-L V_{1}(-\dot{m}) \hat{k}=L V, \dot{m} \hat{k}=L \frac{Q}{A}(\rho Q) \hat{k}=L \frac{\rho Q^{2}}{A} \hat{k}
\end{aligned}
$$

$$
\begin{aligned}
& R_{x_{2}}=\left(p_{2}-p_{1}\right) A-R_{x_{1}}=p_{2} A-p_{1} A+\frac{\rho Q^{2}}{A}+p_{1, A}=p_{2} A+\frac{\rho Q^{2}}{A} \\
& =3.32 \times 10^{5} \frac{\mathrm{~N}}{\mathrm{~m}^{2}} \times 0.049 \mathrm{~m}^{2}+1.95 \times 999 \frac{\mathrm{~kg}}{\mathrm{~m}^{3}} \times(0.58)^{2} \frac{\mathrm{~m}^{6}}{\mathrm{~s}^{2}} \times \frac{1}{0.049 \mathrm{~m}^{2}} \times \frac{\mathrm{N} \cdot \mathrm{~s}^{2}}{\mathrm{~kg} \mathrm{~m}}=22.8 \mathrm{kN} \\
& \vec{r} \times \vec{F}_{s}=\vec{r}_{1} \times R_{x}, \hat{\imath}=L \hat{\jmath} \times \hat{R}_{x} \hat{\imath}=-L R_{x}, \hat{k}=-20 m_{x}(-46.0) \mathrm{kN} \hat{k}=468 \hat{k} \mathrm{kN} \cdot \mathrm{~m}
\end{aligned}
$$

These are forces and torque on $C V$. The corresponding reactions ave:

$$
\begin{array}{l|l|l}
K_{x_{1}}=-R_{x_{1}}=23.4 \mathrm{kN}, K_{x_{2}}=-R_{x_{2}}=-22.8 \mathrm{kN} & \text { Force } \\
\vec{M}=-\vec{r} \times \overrightarrow{F_{3}}=-468 \hat{k} \mathrm{kN} \cdot \mathrm{~m} \leftarrow(\text { (ie. clockwise }) & \text { Torque } & 2
\end{array}
$$

Given: simplified lawn sprinkler rotating in horizontal plane, $Q=4.5 \mathrm{gal} / \mathrm{min}$.
water discharges horizontally from jets.
Neglect pint friction, inertia of sprinkler.
Find: (a) Torque needed to hold at $\omega=0$.
(b) Angular acceleration when torque is removed.

Solution: Choose rotating CV. Apply angular momentum principle, Eq, 4.53. Basic equation: $\vec{r} \times \vec{F}_{s}^{*(o()}+\int_{\alpha} \vec{f}^{* o(z)} \times \vec{g} \rho d t+\vec{T}_{s h a f+}$

$$
\begin{aligned}
& -\int_{v} \vec{r} \times\left[2 \hat{\psi} \times \vec{v}_{x y z}+\vec{v}_{x)}+\hat{\psi} \times(\vec{\omega} \times \vec{r})+\dot{\vec{\omega}} \times \vec{r}\right] \rho d \psi
\end{aligned}
$$

Assumptions: (1) No surface forces
(4) Steady flow
(2) Body torques cancel
(5) Uniform flow at each section
(3) sprinkler stationary, $\vec{w}=0$
(b) $L \ll R$

Analyze right arm of sprinkler. From geometry $\vec{r}=r \hat{\imath}$ in $c v, \vec{r}=R t$ at jet.
Then

$$
\begin{aligned}
& T \hat{k}-\int_{C V} \vec{r} \times(\overrightarrow{\vec{N}} \times \vec{r}) \rho \partial d \forall=R \hat{L} \times V \hat{\jmath} \rho \frac{Q}{2}=\frac{\rho Q V \hat{k}}{2}=\frac{\dot{m} R V}{2} \hat{k} \\
& r \hat{\imath} \times(\dot{\omega} \hat{k} \times r \hat{\imath})=r \hat{\imath} \times \dot{\omega} r \hat{\jmath}=\dot{\omega} r^{2} \hat{k} ; \int_{C V}=\dot{\omega} \frac{R^{3}}{3} \rho A \hat{k}
\end{aligned}
$$

Dropping $\hat{k}, \quad T-\frac{\dot{L} P A R^{3}}{3}=\frac{\dot{m} R V}{2}$, When arm is stationary, $\dot{W}=0$, and

$$
\begin{aligned}
& T=\frac{\dot{m} R V}{2} \quad \dot{m}=P Q=999 \frac{\mathrm{~km}}{\mathrm{~m}^{3}} \times 4.5 \frac{\mathrm{gal}}{\mathrm{~min}^{\prime}} \times 231 \frac{\dot{\mathrm{n}}^{3}}{\mathrm{gai}} \times(0.0254)^{3} \frac{\mathrm{~m}^{3}}{\mathrm{~m} . \mathrm{s}} \times \frac{\mathrm{min}}{60 \mathrm{~s}}=0.284 \frac{\mathrm{~kg}}{\mathrm{~s}} \\
& V=\frac{Q}{2 A}=\frac{2 Q}{\pi d^{2}}=\frac{2}{\pi} \times 2.84 \times 10^{-4} \frac{m^{3}}{\mathrm{~s}} \times \frac{1}{(0.0065)^{2} \mathrm{~m}^{2}}=4.48 \mathrm{~m} / \mathrm{s} \\
& T=\frac{1}{2} \times 0.284 \frac{\mathrm{~kg}}{\mathrm{sec}} \times 8.152 \mathrm{~m}_{\times} 4.48 \frac{\mathrm{~m}}{\mathrm{sec}}=0.0967 \mathrm{Nim} \text { (per wm) }
\end{aligned}
$$

For two arms, $T_{2}=2 T=z_{2} 0.0967 \mathrm{~N} \cdot \mathrm{~m}=0.193 \mathrm{~N} \cdot \mathrm{~m}$
When to nacre is removed, angular acceleration would be the same for each arm. Thus

$$
\begin{aligned}
& \dot{\omega}=\frac{\dot{m} R V}{2} \times \frac{3}{\rho A R^{3}}=\frac{3 \dot{m} V}{2 \rho A R^{2}} \\
& \dot{\omega}=\frac{3}{2} \times 0.284 \frac{\mathrm{~kg}}{\mathrm{~s}} \times 4.49 \frac{\mathrm{~m}}{\mathrm{~s}} \times \frac{\mathrm{m}^{3}}{949 \mathrm{~kg}} \times \frac{4}{\pi(0.00635)^{2} \mathrm{~m}^{2}} \times \frac{1}{(0.152)^{2} \mathrm{~m}^{2}}=2610 \mathrm{rad} / \mathrm{s}^{2}
\end{aligned}
$$

Given: Simplified lawn sprinkler rotating in horizontal plane, $Q=4.5 \mathrm{gal} / \mathrm{min}$.

Water discharges horizontally from jets.
Neglect pivot friction, inertia of sprinkler.
Find: (a) Derive a differential equation for angular speed as a function of time.
(b) Evaluate steady-state angular speed.

Solution: Choose rotating CV. Apply angular momentum principle, Eq, 4.53.

$$
\begin{aligned}
& -\int_{e v} \vec{r} \times\left[2 \vec{\omega} \times \vec{V}_{\times y 3}+\vec{\omega} \times(\vec{\omega} / \vec{r})+\vec{\omega} \times \vec{r}\right] \rho \mathrm{c}+ \\
& =\frac{\partial}{\frac{4}{2 t}} \int_{C v}^{=0(5)} \vec{r}_{x} \vec{V}_{x y g} \rho d y+\int_{C s} \vec{r}_{x} \vec{V}_{x y z}\left(\vec{V}_{x y z} d \vec{A}\right.
\end{aligned}
$$

Assumptions: (1) $\vec{F}_{S}=0$, (z) Body torques cancel), (3) $\vec{T}_{s h a f t}=0$, (4) No k component of centripetal acceleration, (5) Heady flow, (6) $L \ll R$
Analyze right arm of sprinkler. From geometry, $\vec{r}=r \hat{i}$ in $C V, \vec{r}=R \hat{i}$ at jet.
Then

$$
-\int_{C v} r \hat{\imath} \times[2 \omega \hat{k} \times v \hat{\imath}+\dot{\omega} \hat{k} \times r \hat{\imath}] \rho A d r=R \hat{\imath} \times v \hat{\jmath} \frac{\rho Q}{2}=\rho \frac{Q R v}{2} \hat{k}
$$

Dropping $\hat{k}^{r \hat{l} \times[2 \omega V(+\hat{\jmath})+\omega \dot{\omega}(-\hat{\jmath})]=\left(2 \omega r v+\dot{\omega}^{2}\right)(+k) j-\int_{c v}=-\left(\omega R^{2} v+\dot{\omega} \frac{R^{3}}{a}\right) \rho A}$

$$
-\omega P V A R^{2}-\frac{\dot{W} P A R^{3}}{3}=\frac{P Q R V}{2} \quad \text { or } \quad \dot{\omega}=\frac{3}{P A R^{3}}\left[-\omega P V A R^{2}-\frac{P Q R V}{2}\right]
$$

Thus $\frac{d w}{d t}=-a-b w$, where $a=\frac{3}{\rho A R^{3}} \frac{\rho Q R V}{2}=\frac{3}{2} \frac{Q V}{A R^{2}}=\frac{3 v^{2}}{R^{2}}, b=\frac{3 P V A R^{2}}{\rho A R^{3}}=\frac{3 V}{R}$ $\frac{d \omega}{d t}=0$ when $-a-b \omega_{\max }=0$, ie., when $\omega_{\operatorname{mix}}=-a / b$. Note $v=\frac{Q}{2 A}$ (ane $\left.a \cdot m\right)$

$$
\begin{aligned}
& Q=4.5 \frac{.9 a 1}{m i n} \times 231 \frac{n^{3}}{g a_{1}} \times(0.0254)^{3} \frac{m^{3}}{1 n^{3}} \times \frac{m i n}{605}=2.84 \times 10^{-4} \mathrm{~m}^{3} / \mathrm{s} \\
& W_{\text {max }}=-\frac{a}{b}=-\frac{3 v^{2}}{R^{2}} \times \frac{R}{3 v}=-\frac{V}{R}=-4.48 \frac{\mathrm{~m}}{\mathrm{~s}} \times \frac{1}{0.152 \mathrm{~m}}=-29.5 \mathrm{mad} / \mathrm{s} \quad(-281 \mathrm{rpm})
\end{aligned}
$$

\{Note it is not necessary to solve the differential equation to find hex. $\}$

Given: Simplified lawn sprinkler rotating in horizontal plane, $Q=4.5 \mathrm{gal} / \mathrm{min}$. water discharges horizontally from jets.

Neglect inertia of sprinkler; $T_{f}=0.045 f+16 f$
Find: (a) Derive a differential equation for angular speed as a function of time.
(b) Evaluate steady -state angular speed.

Solution: Choose rotating CV. Apply angular momentum principle, 69, 4,53.
Basic equation: $\vec{r} \times \hat{p}_{s}^{-0(1)}+\int_{c v} \vec{r} \times t_{p}^{=0(z)} \rho d t+\vec{T}_{s h a f t}$

$$
\begin{aligned}
-\int_{C v} & \vec{r} \times\left[2 \vec{w} \times \vec{v}_{\times y y}+\vec{w} \times(\vec{w} / \times \vec{r})+\dot{\vec{w}} \times \vec{r}\right] \rho d v \\
& =\frac{\partial}{\partial v} \int_{C u}^{=o(s)} \vec{r} \times \vec{v}_{\times y z} \rho d v+\int_{C s} \vec{r} \times \vec{v}_{x y g} \rho \vec{v}_{x y z} \cdot d \vec{A}
\end{aligned}
$$

Assumptions: (1) $\vec{F}_{S}=0,(2)$ Body, torques cancel, (3) $\vec{r}_{S h a f t}=0.045 \mathrm{ft} \cdot \mathrm{lbf}$, (4) No \hat{R} component of centripetal acceleration, (5) steady flow, (6) $L \ll R$.

Analyze right arm of sprinkler. From geometry, $\vec{r}=r \hat{\imath}$ in $\angle V, \vec{r}=R L$ at jet,
Then

$$
\begin{aligned}
&-\int_{C V} r \hat{\imath} \times[2 \omega \hat{k} \times V \hat{\imath}+\dot{\omega} \hat{k} \times r \hat{\imath}] \rho A d r=R \hat{\imath} \times V \hat{\jmath} P \frac{Q}{2}=\rho \frac{Q R V}{2} \hat{k} \\
& r \hat{\imath} \times[2 \omega V \hat{\jmath}+\dot{\omega} r \hat{\jmath}]=\left(2 \omega V r+\dot{\omega} r^{\imath}\right) \hat{k} ;-\int_{C V}=-\left(\omega V R^{z}+\frac{\omega R^{2}}{3}\right) \rho A \hat{k}
\end{aligned}
$$

For both arms, dropping $\hat{k}, \quad\{r=0.045+\cdot 16 f=0.0010 \mathrm{~N} \cdot \mathrm{~m}\}$

$$
T-2 \omega \rho V A R^{2}-\frac{2 \dot{\omega} \rho A R^{3}}{3}=P Q R V \text { or } \dot{\omega}=\frac{3}{2 P A R} 3\left[T-\rho Q R V-2 \omega P A R^{2}\right]
$$

Thus $\frac{d w}{d t}=a-b w$, where $a=\frac{3}{2 ल A R^{3}}(T-\rho Q R V), b=\frac{3}{2 \rho A R^{3}} x^{2 \rho V A R^{2}}=3 \frac{V}{R}$ The steady-state speed occuers when $\frac{d w}{d t}=0$, ie. when $W_{\text {max }}=\frac{a}{b}$

$$
\begin{aligned}
& Q=4.5 \frac{\mathrm{gal}^{2}}{\mathrm{~min}^{2}} \times 231 \frac{\mathrm{in}^{3}}{\mathrm{gai}^{2}} \times(0.0 .54)^{3} \frac{\mathrm{~m}^{3}}{1 \mathrm{~m}^{3}} \times \frac{\mathrm{min}}{605}=2.84 \times 10^{-4} \mathrm{~m}^{3} / \mathrm{s} ; A=\frac{r d^{2}}{4}=3.17 \times 10^{-5} \mathrm{~m}^{4} \\
& \text { From the } 0 . D, \in \text {, } \omega_{\max }=\frac{T-\rho Q R U}{2 P V A R^{2}} \\
& W_{\text {max }}=\frac{1}{2}\left[0.0610 \mathrm{~N} \cdot \mathrm{~m}_{2} \frac{\mathrm{~kg} \cdot \mathrm{~m}}{\mathrm{~N} . \mathrm{s}^{2}}-999 \frac{\mathrm{~kg}}{\mathrm{~m}^{3}} \times 2.84 \times 10^{-7} \frac{\mathrm{~m}^{3}}{\mathrm{~s}^{2}} \times 0.54 \mathrm{~m}_{\pi}^{4.48} \frac{\mathrm{~m}}{\mathrm{~s}}\right] \frac{\mathrm{m}^{3}}{999 \mathrm{~kg}} \times \frac{\mathrm{s}}{4.48 \mathrm{~m}} \\
& \times \frac{1}{3.77 \times 10^{-5} m^{2}} \times \frac{1}{(0.152)^{2} m^{2}} \\
& \omega_{\text {max }}=-20.2 \mathrm{rad} / \mathrm{s}(-193 \mathrm{rpm})
\end{aligned}
$$

Problem *4.171

Water flows in a uniform flow out of the 5 mm slots of the rotating spray system as shown. The flow rate is $15 \mathrm{~kg} / \mathrm{s}$. Find the torque required to hold the system stationary, and the steady-state speed of rotation after it is released.

Given: Data on rotating spray system

Solution

The given data is

$$
\begin{aligned}
& \text { D } \quad 0.015 \llbracket \mathrm{~m} \quad \mathrm{r}_{\mathrm{o}} \quad 0.25 \llbracket \mathrm{~m} \quad \mathrm{r}_{\mathrm{i}} \quad 0.05 \llbracket \mathrm{~m} \quad \mathrm{G} \quad 0.005 \square \mathrm{~m}
\end{aligned}
$$

Governing equation: Rotating CV

$$
\begin{align*}
& \vec{r} \times \vec{F}_{s}+\int_{\mathrm{CV}} \vec{r} \times \vec{g} \rho d \neq+\vec{T}_{\text {shaft }} \\
&-\int_{\mathrm{CV}} \vec{r} \times\left[2 \overrightarrow{\boldsymbol{\omega}} \times \vec{V}_{x y z}+\overrightarrow{\boldsymbol{\omega}} \times(\overrightarrow{\boldsymbol{\omega}} \times \vec{r})+\dot{\vec{\omega}} \times \vec{r}\right] \rho d \neq \tag{4.52}\\
&=\frac{\partial}{\partial t} \int_{\mathrm{CV}} \vec{r} \times \vec{V}_{x y z} \rho d \not+\int_{\mathrm{CS}} \vec{r} \times \vec{V}_{x y z} \rho \vec{V}_{x y z} \cdot d \vec{A}
\end{align*}
$$

For no rotation $(\omega=0)$ this equation reduces to a single scalar equation

where V is the exit velocity with respect to the CV

$$
\begin{aligned}
& V \frac{\frac{m_{\text {flow }}}{U}}{2 \square G\left[\mathrm{f}_{\mathrm{o}} \square \mathrm{r}_{\mathrm{i}}\right]}
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{T}_{\text {shaft }} \frac{\mathrm{m}_{\text {flow }}{ }^{2}}{4 \llbracket 【 \mathbb{G}} \frac{\left.\square \mathrm{~F}_{\mathrm{o}} \square \mathrm{r}_{\mathrm{i}}\right\rceil}{\frac{\left.\mathrm{F}_{\mathrm{o}} \square \mathrm{r}_{\mathrm{i}}\right\rceil}{}} \\
& \mathrm{T}_{\text {shaft }} \quad \frac{1}{4} u^{\S} \S_{15} \frac{\mathrm{~kg}}{\frac{\mathrm{C}}{\mathrm{~s}} 1} \cdot{ }^{2} \mathrm{u} \frac{\mathrm{~m}^{3}}{999 \llbracket \mathrm{~kg}} \mathrm{u} \frac{1}{0.005 \square \mathrm{~m}} \mathrm{u} \frac{(0.25 \square 0.05)}{(0.25 \square 0.05)} \\
& \mathrm{T}_{\text {shaft }} \quad 16.9 \mathrm{~N}[\mathrm{~m}
\end{aligned}
$$

For the steady rotation speed the equation becomes

The velocity in the CV varies with r. This variation can be found from mass conservation

For an infinitesmal CV of length $d r$ and cross-section A at radial position r, if the flow in is Q, the flow out is $Q+d Q$, and the loss through the slot is $V \delta d r$. Hence mass conservation leads to

$$
\begin{aligned}
& \text { dQ } \quad \text { VVGdr } \\
& \text { Q(r) TVGGT const }
\end{aligned}
$$

At the inlet $\left(r=r_{i}\right) \quad \mathrm{Q} \quad \mathrm{Q}_{\mathrm{i}} \quad \frac{\mathrm{m}_{\text {flow }}}{2 \boxed{\mathrm{~J}}}$

Hence
and along each rotor the water speed is $v(r) \quad \frac{Q}{A} \quad \frac{m_{\text {flow }}}{2 \square \square A} \frac{r_{0} \square r}{C o \square r_{i} i}$.

or

Problem *4.172

If the same flow rate in the rotating spray system of Problem 4.171 is not uniform but instead varies linearly from a maximum at the outer radius to zero at a point 50 mm from the axis, find the torque required to hold it stationary, and the steady-state speed of rotation.

Given: Data on rotating spray system

Solution

The given data is

$$
\begin{aligned}
& \text { U } 999 \frac{\sqrt{\mathrm{~kg}}}{\mathrm{~m}^{3}} \quad \mathrm{~m}_{\text {flow }} \quad 15 \sqrt[{\left[\frac{\mathrm{~kg}}{\mathrm{~s}}\right.}]{ } \\
& \text { D } \quad 0.015 \llbracket \mathrm{~m} \quad \mathrm{r}_{\mathrm{o}} \quad 0.25 \llbracket \mathrm{~m} \quad \mathrm{r}_{\mathrm{i}} \quad 0.05 \square \mathrm{~m} \quad \mathrm{G} \quad 0.005 \llbracket \mathrm{~m}
\end{aligned}
$$

Governing equation: Rotating CV

$$
\begin{align*}
& \vec{r} \times \vec{F}_{s}+\int_{\mathrm{CV}} \vec{r} \times \vec{g} \rho d \neq+\vec{T}_{\text {shaft }} \\
&-\int_{\mathrm{CV}} \vec{r} \times\left[2 \overrightarrow{\boldsymbol{\omega}} \times \vec{V}_{x y z}+\overrightarrow{\boldsymbol{\omega}} \times(\overrightarrow{\boldsymbol{\omega}} \times \vec{r})+\dot{\vec{\omega}} \times \vec{r}\right] \rho d \neq \tag{4.52}\\
&=\frac{\partial}{\partial t} \int_{\mathrm{CV}} \vec{r} \times \vec{V}_{x y z} \rho d \not+\int_{\mathrm{CS}} \vec{r} \times \vec{V}_{x y z} \rho \vec{V}_{x y z} \cdot d \vec{A}
\end{align*}
$$

For no rotation $(\omega=0)$ this equation reduces to a single scalar equation
or

$$
\mathrm{T}_{\text {shaft }} \quad 2 \boxed{G \Pi_{\mathrm{I}_{\mathrm{i}}}} \mathrm{r}^{2}[\mathrm{~V} \square \square \mathrm{~V} \text { dr }
$$

where V is the exit velocity with respect to the CV. We need to find $V(r)$. To do this we use ma conservation, and the fact that the distribution is linear
V (r) $\quad V_{\max } \frac{\left.\square \square r_{i}\right\rceil}{\square \mathrm{F}_{\mathrm{o}} \square \mathrm{r}_{\mathrm{i}}\lceil }$
and
$2 \stackrel{1}{4} \square V_{\max } \square \mathrm{F}_{\mathrm{o}} \square \mathrm{r}_{\mathrm{i}} \sqrt{G} \frac{\mathrm{~m}_{\text {flow }}}{\mathrm{U}}$
so
V (r) $\frac{\mathrm{m}_{\text {flow }}}{\sqrt{G}} \frac{\left[\because \mathrm{r}_{\mathrm{i}}\right]}{\left[\mathrm{F}_{\mathrm{o}} \square \mathrm{r}_{\mathrm{i}}\right]^{2}}$

$\mathrm{T}_{\text {shaft }} \frac{\mathrm{m}_{\text {flow }}{ }^{2} \square \square_{\mathrm{i}} \square 3 \square_{\mathrm{o}} \square}{6 \square \square \square \square \mathrm{~F}_{\mathrm{o}} \square \mathrm{r}_{\mathrm{i}} \square}$

$\mathrm{T}_{\text {shaft }} \quad 30 \mathrm{~N}[\mathrm{~m}$

For the steady rotation speed the equation becomes

The velocity in the CV varies with r. This variation can be found from mass conservation

For an infinitesmal CV of length $d r$ and cross-section A at radial position r, if the flow in is Q, the flow out is $Q+d Q$, and the loss through the slot is $V \delta d r$. Hence mass conservation leads to

dQ $\quad \mathrm{V}$ [Gdr

At the inlet $\left(r=r_{i}\right) \quad \mathrm{Q} \quad \mathrm{Q}_{\mathrm{i}} \quad \frac{\mathrm{m}_{\text {flow }}}{2 \boxed{\mathrm{~J}}}$

Hence

or

Recall that

Z $\quad 1434 \mathrm{rpm}$

Problem $* 4.173$

Given: Lawn sprinkler rotating in horizontal plane.
Neglect friction. $Q=68 \mathrm{~L} / \mathrm{min}$
Find: steady-state angular speed for $\theta=30^{\circ}$.
Plot: steadr-state angular speed for $0 \leq \theta \leq 90^{\circ}$.
Solution: Choose rotating CV. Apply angular moment hem principle, Eq. 4.53.

Basic equation: $\vec{r} \times \vec{p}_{s}^{=0(1)}+\int_{c v} \vec{r} \times \vec{g} \rho d t+\hat{\vec{H}}_{=0(2)}^{=0(3)}$

Assumptions: (1) $\vec{F}_{s}=1$, (2) Body torques cancel, (3) $\vec{T}_{\text {shaft }}=0$, (4) Neglect aerodynamic drag, (S) No \hat{k} component of Centripetal acceleration, (6) Steady flow, (7) L《R

Analyze one arm of sprinkler. From gesmetry, $\vec{r}=r \hat{\imath}$ in $C V, \vec{r}=R \hat{\imath}$ at jet .
Then

$$
\begin{aligned}
& -\int_{C V} \vec{r} \times\left[2 \vec{\omega} \times \vec{V}_{x y z}\right] \rho d \forall=R \hat{\imath} \times(-V \sin \theta \hat{\jmath}) \rho \frac{Q}{3}=-\rho \frac{Q R V}{3} \sin \theta \hat{k} \\
& r \hat{\imath} \times(2 \omega \hat{k} \times V \hat{\imath})=2 \omega v r \hat{k} ;-\int_{C V}=-\omega V R^{2} \rho A \hat{k}
\end{aligned}
$$

Dropping $\hat{k}, \quad-\omega V R^{2} \rho A=-\frac{\rho Q R V}{3} \sin c$, so with $V A=Q / 3$,

$$
\begin{aligned}
& \omega=\frac{V}{R} \sin \theta ; \quad V=\frac{Q}{3 A}=\frac{4 Q}{3 \pi d^{2}}=\frac{4}{3 \pi} \times 68 \times 10^{-3} \frac{m^{3}}{m+n} \times \frac{1}{(0.0063)^{2} m^{2}} \times \frac{\mathrm{min}}{60 \mathrm{~s}}=11.9 \mathrm{~m} / \mathrm{s} \\
& \omega=11.9 \frac{\mathrm{~m}}{\mathrm{~s}} \times \frac{1}{0.152 \mathrm{~m}} \times \sin \theta=78.3 \sin \theta \mathrm{rad} / \mathrm{s}
\end{aligned}
$$

Plotting:

$$
\text { For } \theta=30^{\circ} \text {, }
$$

$$
w=78.3 \sin 30^{\circ}
$$

$$
\omega=39.1 \mathrm{rad} / \mathrm{s}
$$

$\left(\theta=30^{\circ}\right)$
Plot

$$
\begin{aligned}
& -\int_{C v} \vec{r} \times\left[2 \vec{\omega} \times \vec{v}_{\times y z}+\vec{w} \times(\vec{\omega} \times \vec{r})+\vec{\omega} \times \overrightarrow{\vec{r}}\right] \rho d \forall \\
& =\frac{\partial}{\partial t} \int_{c v}^{z(6)} \vec{r} \times \vec{V}_{x y z} \rho d \forall+\int_{c s} \vec{r} \times \vec{V}_{x y z} \varphi \vec{V}_{x y z} \cdot d \vec{A}
\end{aligned}
$$

Problem $* 4.174$

Given: single rotating tube with waver.

$$
Q=13.8 \mathrm{~L} / \mathrm{min}
$$

Find: Torque that must be applied to maintain steady rotation using:
(a) Rotating control volume.

(b) Fined control volume.

Solution: Apply angular momentum principle, $\left\{\omega=\frac{33 \frac{1}{2}}{\left.\frac{\mathrm{rev}}{\mathrm{min}}=3.49 \mathrm{rad} / \mathrm{s}\right\}}\right.$
(a) Rotating cv: use relative velocities's, Eq . 4.53:

$$
\begin{aligned}
& \left.-\int_{\infty} \vec{r} \times\left[2 \vec{w} \times \vec{v}_{x y z}+\vec{\omega} \times(\vec{\omega} / \bar{r})+\dot{\vec{\psi}} \times \vec{r}\right] \rho \mathrm{r}\right)
\end{aligned}
$$

Assumptions: (1) $\vec{F}_{s}=0,(z)$ Body torques cancel,(3) No \hat{k} in centripetal accel, (4) $\overrightarrow{\vec{\omega}}=0,(5)$ steady flow, (6) $\vec{r} \times \vec{v}=0$

Then

$$
\begin{aligned}
& T_{\text {shaft }} \hat{k}=\int_{C v} \vec{r} \times(2 \vec{\omega} \times \vec{V}) \rho d^{\prime}=\int_{0}^{R} r \hat{\imath} \times\left(2 \omega \hat{k} \times V_{\hat{i}}\right)_{\rho} A d r=\omega \rho V A R^{2} \hat{k}=\omega \rho Q R^{2} \hat{k} \\
& T_{\text {shaft }}=3.49 \frac{\mathrm{rad}}{\mathrm{~s}} \times 499 \frac{\mathrm{~kg}}{\mathrm{~m}^{3}} \times 13.8 \times 10^{-5} \frac{\mathrm{~m}^{3}}{\mathrm{~min}^{3}} \times(0.3)^{2} m^{2} \times \frac{\mathrm{min}}{60 \mathrm{~s}} \times \frac{\mathrm{N} \cdot \mathrm{~s}^{2}}{\mathrm{~kg} \cdot \mathrm{~m}}=0.0722 \mathrm{~N} \cdot \mathrm{~m}
\end{aligned}
$$

(b) Fixed control volume: use absolute Whocities, Eq, 4.47:

Basic equation: $\vec{r} \times \vec{f}_{s}^{* o(1)}+\int_{c v} \vec{r} \times \vec{t}_{p} d t+\vec{T}_{s h a f r}=\frac{\partial}{\partial r} \int_{c v} \vec{r} \times \vec{v}_{e d v}+\int_{c s} \vec{r} \times \vec{v} \rho \vec{v}_{x y y} d \vec{A}$ Relative to fixed coordinates $x y, \vec{r}=r(\cos \theta \hat{\imath}+\sin \theta \hat{j})$

$$
\vec{r} \times \vec{v}=\left|\begin{array}{ccc}
\hat{v} & \vec{V}=v(\cos \theta \hat{\imath}+\sin \theta \hat{\jmath})+r \omega(-\sin \theta \hat{\imath}+\cos \theta \hat{\jmath}) \\
\hat{\imath} & \hat{k} & \hat{k} \\
v \cos \theta & r \sin \theta & 0 \\
v \cos \theta-r \sin \theta & v \sin \theta+r \omega \cos \theta & 0
\end{array}\right|=\begin{array}{r}
\hat{k}\left(r v \sin \theta \cos \theta+\omega^{2} r^{2} \cos ^{2} \theta\right. \\
\left.-r v \sin \theta \cos \theta+\omega^{2} r^{2} \sin ^{2} \theta\right)
\end{array}=\omega r^{2} \hat{k}| |
$$

Thus $\partial / \partial t=0$ and $f_{s} \vec{r} \times \vec{v} \rho \vec{V}_{x y g} \cdot d \vec{A}=\omega R^{2} \hat{k}\{+\rho Q\}=\omega \rho Q R^{2} \hat{k}$ and
That $\hat{k}=w_{\rho} a R^{2} \hat{k}$ (as before); $T=0.072 z \mathrm{~N} \cdot \mathrm{~m}$
$\left\{\begin{array}{l}\text { Note that when applied correctly, either choice of CV produces the } \\ \text { same result. }\end{array}\right.$

Given: Small lawn sprinkler as shown.

$$
V_{r e l}=17 \mathrm{~m} / \mathrm{s}
$$

Friction torque at pivot is $T_{+}=0.18 \mathrm{~N} \cdot \mathrm{~m}$.

Flowrate is $Q=4.0 \mathrm{l}$ ter $/ \mathrm{min}$.
Find: Torque to hold stationary.

Solution: Apply moment of momentum using fixed CV enclosing sprinkler arms.

Basic equation:

$$
\vec{r} \neq \overrightarrow{r_{s}}+\int_{C v} \vec{r} \neq \vec{g} \rho d v+\vec{T}_{\text {shaft }}=0\left(\frac{d}{t} \int_{C v}^{=0(3)} \vec{r} \times \vec{v} \rho d v+\int_{C S} \vec{r} \times \vec{v} \rho \vec{v} \cdot d \vec{A}\right.
$$

Assumptions: (1) Neglect torque due to surface forces
(2) Torqued due to body forces cancel by symmetry
(s) Steady flow
(4) Uniform flow leaving each jet

Then

$$
\begin{aligned}
-T_{f} \hat{k}= & (\vec{r} \times \vec{v})_{\text {in }}\{-f a\}+2(\vec{r} \times \vec{v})_{\text {jet }}\left\{\frac{1}{2} \rho a\right\} \\
(\vec{r} \times \vec{v})_{\text {in }} \approx 0 \quad \vec{r} & =R \hat{t}_{r} \\
\vec{v} & =\left(R \omega-V_{r e 1} \cos \alpha\right) \hat{\imath}_{\theta}+V_{r e r} \sin \alpha \hat{\iota}_{z}
\end{aligned}
$$

The absolute velocity of the jet leaving sprinkler is $\vec{v}=V_{\text {rel }}\left[\cos \alpha\left(-\hat{i}_{\theta}\right)+\sin \alpha\left(\hat{i}_{\theta}\right)\right]$
Then $(\vec{r} \times \vec{V})_{z}=\left\{R \hat{i}_{r} \times V_{r e 1}\left[\cos \alpha\left(-i_{0}\right)+\sin \alpha\left(i_{3}\right)\right]\right\}_{z}=\left\{R V_{r e l} \cos \alpha\left(-\hat{i}_{z}\right)+R V_{r e l} \sin \alpha\left(-\hat{\imath}_{0}\right)\right\}_{z}$

$$
(\vec{r} \times \vec{v})_{z}=-R V_{r a i} \cos \alpha
$$

Substituting, $T_{\text {shaft }}=T_{\text {ext }}-T_{f}=2\left(-R V_{\text {rel }} \cos \alpha\right)\left(\frac{1}{2} \rho Q\right)$
Thus $T_{\text {ext }}=T_{f}-\rho Q R V_{\text {rel }} \cos \alpha$

$$
=0.18 \mathrm{~N} \cdot \mathrm{~m}_{-} 999 \frac{\mathrm{~kg}}{\mathrm{~m}^{\mathrm{s}}} \times 4 \frac{\mathrm{~L}}{\mathrm{mmn}} \times 0.2 \mathrm{~m}_{\mathrm{n}} 17 \frac{\mathrm{~m}}{\mathrm{~s}} \times 0.866 \times \frac{\mathrm{m}^{3}}{1000 \mathrm{~L}} \times \frac{\mathrm{min}}{60 \mathrm{~s}} \times \frac{\mathrm{N} \mathrm{~N}^{2}}{\mathrm{~kg} \cdot \mathrm{~m}}
$$

$$
T_{\text {ext }}=-0.0161 \mathrm{~N} \cdot \mathrm{~m} \text { (to hold sprinkler stationary) }
$$

$\left\{\begin{array}{l}\text { Since } T_{\text {ext }}<0 \text {, it must be applied in the minus } z \text { direction to oppose } \\ \text { motion }\end{array}\right.$

Given: Small lawn sprinkler as shown.

$$
V_{\text {rel }}=17 \mathrm{~m} / \mathrm{s}
$$

Friction torque at pivot is zero. $I=0.1 \mathrm{~kg} \mathrm{~mm}^{2}$

Flowrate is $Q=4.0$ /fiber $/ \mathrm{min}$.
Find: Initial angular acceleration
 from rest.
Solution: Apply moment of momentum using fixed CV enclosing sprinkler arms.

Basic equation:

$$
\vec{r} \neq \overrightarrow{F_{s}}+\int_{C v} \vec{r} \neq 0(2) \quad \vec{g} \rho d t+\vec{T}_{s h a f t}=\frac{\partial^{+}}{\# \#} \int_{C V} \vec{r} \times \vec{v} \rho d t+\int_{C s} \vec{r} \times \vec{v} \rho \vec{v} \cdot d \vec{n}
$$

Assumptions: (1) Neglect torque due to surface forces
(2) Torques due to body forces cancel by symmetry
(s) Steady flow
(4) Uniform flow leaving each jet

Then

$$
\begin{aligned}
-T_{+} \hat{k}= & (\vec{r} \times \vec{v})_{\text {in }}\{-\rho Q\}+2(\vec{r} \times \vec{v})_{j e t}\left\{\frac{1}{2} \rho a\right\} \\
(\vec{r} \times \vec{v})_{\text {in }} \simeq 0 \quad \vec{r} & =R t_{r} \\
\vec{v} & =\left(R \omega-V_{r e t} \cos \alpha\right) \hat{i}_{\theta}+V_{r e r} \sin \alpha \hat{i}_{s}
\end{aligned}
$$

The jet leaves the sprinkler at $\vec{V}($ abs $)=V_{\text {rein }}\left[\cos \alpha\left(-\hat{c}_{0}\right)+\sin \alpha\left(\hat{c}_{3}\right)\right]$
Then $\vec{r} \times \vec{V}=R \hat{L}_{r} \times V_{r e l}\left[\cos \alpha\left(-\hat{L}_{\theta}\right)+\sin \alpha\left(\hat{v}_{z}\right)\right]=R V_{r e 1}\left[\cos \alpha\left(-\hat{\imath}_{z}\right)+\sin \alpha\left(-\hat{L}_{\theta}\right)\right]$
summing moments on the rotor, $\Sigma \vec{M}=\Sigma \vec{\omega}$. Thus

$$
\begin{aligned}
& \dot{\omega}=\frac{\Sigma T}{\Sigma}=\frac{p Q R V r / \cos \alpha-T_{f}}{I}
\end{aligned}
$$

$$
\begin{aligned}
& \dot{\omega}=0.161 \mathrm{rad} / \mathrm{s}^{2} \\
& \left\{\begin{array}{l}
\text { It is not necessary t use a notating } c v \text {, because at the instant } \\
\text { considered, } \vec{w}=0 \text { and } I \text { is known. }
\end{array}\right.
\end{aligned}
$$

Problem ${ }^{*} 4.177$
Given: Small lawn sprinkler as show in.
Friction torque at
Prot is $T_{4}=0.18 \mathrm{~N} \cdot \mathrm{~m}$.
Flownate is $Q=4.0$ literlmin.
Find: (a) steady speed of rotation.
(b) Area covered bu space.
(b) Area covered by spray.

Solution: Apply moment of momentum using fixed cV enclosing sprinkler arms.

Basic equation:

$$
\vec{r} \times \vec{F}_{s}+\int_{C V} \vec{r} \times \vec{g} \rho d y+\vec{T}_{\text {shaft }}=\frac{d^{*}}{d t} \int_{C V} \vec{r} \times \vec{v} \rho d \psi+\int_{C s} \vec{r} \times \vec{V} \rho \vec{V} \cdot d \vec{A}
$$

Assumptions: (1) Neglect torque due to surface forces
(2) Torques due to body forces cancel by Symmetry
(5) Steady flow
(4) Uniform flow leaving each jet

Then

$$
\begin{aligned}
&-T_{f} \hat{k}=(\vec{r} \times \vec{V})_{\text {in }}\{-\rho Q\}+ \\
& \begin{aligned}
(\vec{r} \times \vec{v})_{\text {in }} \approx 0 & (\vec{r} \times \vec{v})_{\text {jet }}\left\{\frac{1}{2} p a\right\} \\
& \vec{r}=R t_{r} \\
\vec{V} & =\left(R \omega-V_{r e i} \cos \alpha\right) \hat{i}_{\theta}+V_{r e i} \sin \alpha \hat{i}_{z}
\end{aligned}
\end{aligned}
$$

or

$$
(\vec{r} \times \vec{v})_{3}=R(R \omega-V r e, \cos \alpha)
$$

$$
-T_{f}=R\left(R \omega-V_{r e \prime} \cos \alpha\right) \rho Q
$$

Thees

$$
\begin{aligned}
& \omega=\frac{V_{n / L} \cos \alpha}{R}-\frac{T_{f}}{\rho Q R^{2}} \\
& =17 \frac{m}{s} \times \frac{\cos 30^{\circ}}{0.2 m}-0.18 \mathrm{~N} \cdot m^{2} \times \frac{m^{3}}{999 \mathrm{~kg}} \times \frac{\mathrm{min}}{4.0 \mathrm{l}} \times \frac{1}{(0.2)^{2} m^{2}} \times \frac{60 \mathrm{~s}}{m \mathrm{~m}} \times 10^{3 \mathrm{l}} \frac{m^{3}}{\mathrm{~m}^{3}} \times \frac{\mathrm{kg} \cdot \mathrm{~m}}{\mathrm{~N} \cdot \mathrm{~s}^{2}} \\
& \omega=6.04 \frac{\mathrm{rad}}{\mathrm{~s}} \text { or } 57.7 \mathrm{rpm}
\end{aligned}
$$

Treat the spray outside each nozzle as moving without a ir resistance:

Problem *4.178

Open-Ended Problem Statement: When a garden hose is used to fill a bucket, water in the bucket may develop a swirling motion. Why does this happen? How could the amount of swirl be calculated approximately?

Discussion: Frequently when filling a bucket the hose is held so that the water stream entering the bucket is not vertical. If, in addition, the water stream is off-center in the bucket, then flow entering the bucket has a tangential component of velocity, a swirl component.
The tangential component of the water velocity entering the bucket has a moment-of-momentum (swirl) with respect to a control volume drawn around the stationary bucket. This entering swirl can only be reduced by a torque acting to oppose it. Viscous forces among fluid layers will tend to transfer swirl to other layers so that eventually all of the water in the bucket has a swirling motion.
Swirl in the bucket may be influenced by viscosity. The swirl may tend to nearly a rigid-body motion to minimize viscous forces between annular layers of water in the bucket. The rigid-body motion assumption may be a reasonable model to calculate the total angular momentum (moment-of-momentum) of the water in the bucket.

Given: Nozzle assembly rotating steading, as shown in the sketch.

Find: (a) Torque required to drive the nozzle assembly (b) Reaction torques at the flange.

Solution: Apply the moment of momentum equation to the rotating CV shown.
Basic equation:

$$
\vec{r} \times \vec{F}_{s}+\int_{C V} \vec{r} / \underset{=\|}{\approx} \vec{g} \rho d t+\vec{r}_{s h a f t}
$$

Assumptions: (1) Let $\vec{T}_{c v}$ represent all torques acting on the $c v$
(L) Neglect torque due to body force
(3) Constant angular speed
(4) Neglect mass of arm compared to water ins ide
(5) Steady flow in cV
(6) Neglect nozzle length compared to L
(7) \vec{r} collinear with \vec{v}, so $\vec{r} \times \vec{v}_{\text {sh }}=0$

Then

$$
\vec{r}_{c v}=\int_{c v} \vec{r} \times\left[2 \vec{w} \times \vec{v}_{x y \partial}+\vec{w} \times(\vec{w} \times \vec{r})\right] \rho d \psi
$$

Since $\vec{\omega}=\omega \hat{k}$ and $\vec{r}=\ell(\sin \theta \hat{i}+\cos \theta \hat{k})$, then
$\vec{\omega} \times \vec{r}=\omega l \sin \theta \hat{\jmath}$

$$
\vec{\omega} \times(\vec{\omega} \times \vec{r})=\omega \hat{k} \times \omega l \sin \theta \hat{\jmath}=\omega^{2} l \sin \theta(-\hat{\imath})
$$

and $\vec{r} \times[\vec{\omega} \times(\vec{\omega} \times \vec{r})]=\ell(\sin \theta \hat{\imath}+\cos \theta \hat{k}) \times \omega^{2} \ell \sin \theta(-\hat{\imath})=\omega^{2} \ell^{2} \sin \theta \cos \theta(-\hat{\jmath})$
Since $\vec{V}_{x y z}=V_{c v}(\sin \theta \hat{\imath}+\cos \theta \hat{k})$, then

$$
2 \vec{\omega} \times \vec{V}_{x y z}=2 \omega \hat{k} \times V_{c v}\left(\sin \theta \hat{\imath}+\cos \theta \hat{k},=2 \omega V_{c v} \sin \theta \hat{\jmath}\right.
$$

and $\vec{r} \times\left[2 \vec{\omega} \times \vec{V}_{x y y}\right]=l(\sin \theta \hat{\imath}+\cos \theta \hat{k}) \times 2 \omega V_{c v} \sin \theta \hat{\jmath}=2 \omega l V_{c v} \sin ^{2} \theta \hat{k}$

$$
+2 \omega l V_{c u \sin \theta \cos \theta}(-\hat{\imath})
$$

$$
\begin{aligned}
& \text { Problem *4.179 cont'd } \\
& \text { Substituting and introducing } d t=A d l, \\
& \vec{T}_{c v}=\int_{0}^{L}\left(-2 \omega l V_{C v} \sin \theta \cos \theta \hat{\imath}-\omega^{2} l^{2} \sin \theta \cos \theta \hat{\jmath}+2 \omega l V_{c v} \sin ^{2} \theta \hat{k}\right) \rho A d l \\
& \vec{T}_{C V}=\left[-\omega L^{2} V_{c u} \sin \theta \cos \theta \hat{\imath}-\frac{\omega^{2} L^{3}}{3} \sin \theta \cos \theta \hat{\jmath}+\omega L^{2} V_{c v} \sin ^{2} \theta \hat{k}\right] \rho A
\end{aligned}
$$

The shaft torque needed to maintain steady rotation of the assembly is

$$
\begin{aligned}
T_{\text {shaft }} & =T_{\Delta V_{z}}=\omega L^{2} V_{c v} \sin ^{2} \theta \rho A=\omega L^{2} \frac{Q}{A} \sin ^{2} \theta \rho A=\rho Q \omega L^{2} \sin ^{2} \theta \\
& =999 \frac{\mathrm{~kg}}{m^{3}} \cdot 0.15 \frac{\mathrm{~m}^{3}}{3} \cdot 30 \frac{\operatorname{cev}}{\operatorname{man}} *(0.5)^{2} m^{2} \times(0.5)^{2} \times 2 \pi \frac{\mathrm{mad}}{\mathrm{REV}} \times \frac{\mathrm{min}}{\mathrm{EOS}} \times \frac{\mathrm{N} \cdot \mathrm{~s}^{2}}{\mathrm{~kg} \cdot \mathrm{~m}}
\end{aligned}
$$

$$
T_{\text {shaft }}=29.4 \mathrm{~N} \cdot \mathrm{~m}
$$

The reaction moments acting on the flange are

$$
\begin{aligned}
& M_{x}=-T_{C V_{x}}=\omega L^{2} V_{C v} \sin \theta \cos \theta \rho A-\rho Q \omega L^{2} \sin \theta \cos \theta \\
& =999 \frac{\mathrm{~kg}}{\mathrm{~m}^{3}} \times 0.15 \frac{\mathrm{~m}^{3}}{\mathrm{~s}} \times \frac{30 \mathrm{rev}}{\mathrm{man}} \times(0.5)^{2} \mathrm{~m}^{2} \times(0.5)(0.866) \mathrm{z} \mathrm{\pi} \frac{\mathrm{rad}}{\mathrm{Nev}} \times \frac{\mathrm{mmin}}{60 \mathrm{~s}} \times \frac{\mathrm{N} \mathrm{~s}^{2}}{\mathrm{~kg} \cdot \mathrm{~m}} \\
& \begin{array}{l}
M_{x}=51.0 \mathrm{~N} \cdot \mathrm{~m}(\text { applied to flange } \\
M_{y}=-T_{\operatorname{cv} y}=\frac{1}{3} \rho \omega^{2} L^{3} A \sin \theta \cos \theta
\end{array} \\
& =\frac{1}{3} \times 499 \frac{\mathrm{~kg}}{\mathrm{~m}^{3}}\left[30 \frac{\mathrm{rsy}}{\min ^{*}} 2 \pi \frac{\mathrm{rad}}{\mathrm{rcv}} \times \frac{\min }{605}\right]^{2}(0.5)^{3} m^{3} \times \frac{\pi}{4}(0.1)^{2} \mathrm{~m}_{*}^{2}(0.5)(0.866) \frac{\mathrm{N} \cdot \mathrm{~s}^{2}}{\mathrm{~kg} \cdot \mathrm{~m}}
\end{aligned}
$$

$M_{y}=1.40 \mathrm{~N} \cdot \mathrm{~m}$ (applied to flange by (V)
$\left\{\begin{array}{l}\text { Torques due to the masses of water, tube, and nozzle must be } \\ \text { considered in the overall design. }\end{array}\right.$

Given: Branched pipe with symmetrical legs as shown.
Angular momentum zero at inlet, relative to nonrotating frame.

Find: (a) External torque expression
(b) Additional torque to produce angular acceleration of $\dot{\omega}$.

Solcetion: Apply moment of momentern equation using rotating CV.

Basic equation:

$$
\vec{r} \times \overrightarrow{F_{s}}+\int_{c v} \vec{r} / \hat{c}_{\vec{g} \rho d r}^{=o(z)}+\vec{f}_{s \text { waft }}
$$

$$
-\int_{C V} \vec{r} \times\left[2 \vec{\omega} \times \vec{V}_{x y z}+\vec{\omega} \times(\vec{\omega} \times \vec{r})+\dot{\vec{\omega}} \times \vec{r}\right] \rho d \psi=\frac{\vec{y}}{\phi t} \int_{C_{V}} \vec{r}^{=0(3)} \vec{V}_{x y z} d d \psi+\int_{c s} \vec{r} / \vec{V}_{x y z}\left(\vec{V}_{x y \beta} \cdot d \vec{A}\right.
$$

Assumptions: (1) No surface forces
(2) Body-forces produce no torque about axis (symmetry)
(3) Flow steady in rotating frame
(4) \vec{r} and $\vec{v}_{x y y}$ are collinear: $\vec{r} \times \vec{v}_{x y z}=0$

Then

$$
\vec{T}_{\text {shaft }}=\int_{\text {cv }} \vec{r} \times\left[2 \vec{w} \times \vec{V}_{x y z}+\vec{w} \times(\vec{w} \times \vec{r})+\dot{\vec{v}} \times \vec{r}\right] \rho d \psi
$$

Using the coordinates above, $\vec{\omega}=\omega \hat{k}$

$$
\begin{aligned}
& \vec{r}=r(\cos \alpha \hat{k}+\sin \alpha \hat{\imath}) \quad \text { (upper tube) } \\
& \vec{V}_{\times y z}=\frac{Q}{2 A}(\cos \alpha \hat{k}+\sin \alpha \hat{\imath}) \quad \text { (upper tube); } A=\frac{\pi D^{2}}{4}
\end{aligned}
$$

and

$$
\begin{aligned}
& \dot{\vec{\omega}} \times \vec{r}=\dot{\omega} r \sin \alpha \hat{\jmath} \\
& \vec{\omega} \times(\vec{\omega} \times \vec{r})=\omega \hat{k} \times \omega r \sin \alpha \hat{\jmath}=-\omega^{2} r \sin \alpha \hat{L} \\
& 2 \vec{\omega} \times \vec{v}_{k+z}=2 \omega \frac{Q}{2 A} \sin \alpha \hat{\jmath}=\frac{\omega Q}{A} \sin \alpha \hat{\jmath}
\end{aligned}
$$

Thus for the upper tube,

$$
\begin{aligned}
\vec{F}_{\text {shaft }} & =\int_{0}^{L}\left\{r(\cos \alpha \hat{k}+\sin \alpha \hat{\imath}) \times\left[\left(\frac{\omega Q}{A}+\dot{\omega} r\right) \sin \alpha \hat{\jmath}-\omega^{2} r \sin \alpha \hat{\imath}\right]\right\} \rho A d r \\
& =\int_{0}^{L}\left[\left(\frac{r \omega Q}{A}+\dot{\omega} r^{2}\right)(\sin \alpha \cos \alpha) \hat{\imath}+\left(\frac{r \omega Q}{A}+\dot{\omega}^{2}\right) \sin ^{2} \alpha \hat{k}+\omega^{2} r^{2} \sin \alpha \cos \alpha(-\hat{\jmath})\right] \rho A d r \\
\vec{T}_{\text {shaft }}\left(u_{p \rho \alpha}\right) & \left.=\left(\frac{L^{2} \omega Q}{2 A}+\frac{\dot{\omega}^{2} L^{3}}{3}\right) \sin \alpha \cos \alpha \hat{L}+\left(\frac{L^{2} \omega Q}{2 A}+\frac{\dot{\omega}^{2} L^{3}}{3}\right) \sin \alpha \alpha \hat{k}+\frac{\omega^{2} L^{3}}{3} \sin \alpha \cos \alpha(-\hat{\jmath})\right] \epsilon^{2} A
\end{aligned}
$$

For the laver tube, $\vec{\omega}=\omega \hat{k}$ $\dot{\vec{\omega}}=\omega \dot{\omega} \hat{k}$

$$
\begin{aligned}
& \vec{r}=r(\cos \alpha \hat{k}-\sin \alpha \hat{\imath}) \quad \text { (lower thebe) } \\
& \vec{V}_{x y y}=\frac{Q}{z A}(\cos \alpha \hat{k}-\sin \alpha \hat{\jmath}) \quad \text { (lower tube) }
\end{aligned}
$$

and

$$
\begin{aligned}
& \dot{\omega} \times \vec{r}=-r \dot{\omega} \sin \alpha \hat{\jmath} \\
& \vec{\omega} \times(\vec{\omega} \times \vec{r})=\omega \hat{k} \times(-r \omega \sin \alpha \hat{\jmath})=r \omega^{2} \sin \alpha \hat{\imath} \\
& 2 \vec{\omega} \times \vec{v}_{x y z}=2 \omega \frac{Q}{2 A}(-\sin \alpha)(\hat{\jmath})=-\frac{\omega Q}{A} \sin \alpha \hat{\jmath}
\end{aligned}
$$

Thus for the lower tube,

$$
\begin{aligned}
& \vec{T}_{\text {shaft }}=\int_{0}^{L}\left\{r(\cos \alpha \hat{k}-\sin \alpha \hat{\imath}) \times\left[\left(\frac{\omega Q}{A}+r \dot{\omega}\right) \sin \alpha(-\hat{\jmath})+r \omega^{2} \sin \alpha\right]\right\} \rho A d r \\
&=\int_{0}^{L}\left[\left(\frac{r \omega Q}{A}+r^{2} \dot{\omega}\right) \sin \alpha \cos \alpha(-\hat{l})+\left(\frac{r \omega Q}{A}+r^{2} \dot{\omega}\right) \sin ^{2} \alpha \hat{k}+r^{2} \omega^{2} \sin \alpha \cos \alpha \hat{\jmath}\right] \rho A d r \\
& \vec{T}_{\text {shaft }}(l \text { l we })=\left[\left(\frac{L^{2} \omega Q}{2 A}+\frac{L^{3} \dot{j}}{3}\right) \sin \alpha \cos \alpha \hat{\imath}+\left(\frac{L^{2} \omega Q}{2 A}+\frac{L^{3} \dot{\omega}}{3}\right) \sin ^{2} \alpha \hat{k}+\frac{L^{3} \omega^{2}}{3} \sin \alpha \cos \alpha \hat{\jmath}\right] \rho A
\end{aligned}
$$

Summing these expressions gives

$$
\vec{T}_{\text {shaft }}(\text { total })=\left(\frac{L^{2} \omega \theta}{A}+\frac{z L^{3} \text { in }}{3}\right) \sin ^{2} \alpha \rho A \hat{k}
$$

Thus the steady-state portion of the torque is

$$
\vec{T}_{\text {shaft }} \text { (steady state) }=\left(\frac{L^{2} \omega Q}{A}\right) \sin ^{2} \alpha \rho A \hat{k}=L^{2} \rho \omega Q \sin ^{2} \alpha \hat{k}
$$

The additional torque needed to provide angular acceleration, $\dot{\omega}$; is

$$
\vec{T}_{\text {shat }}(\text { acceleration })=\frac{2 L^{3} p \dot{\omega} A}{3} \sin ^{2} \alpha \hat{k}
$$

$$
\left\{\begin{array}{l}
\text { Torques of individual tubes about the } x \text { and } y \text { axes are reacted } \\
\text { internally; they must be considered in design of the tube. }
\end{array}\right.
$$

(b) Using fixed cV:

$$
\begin{aligned}
& \begin{array}{l}
\text { Basic } \\
\text { equation: } \\
\vec{r}
\end{array} \overrightarrow{\vec{F}}_{s}+\int_{C V} \vec{r} / \vec{g} \rho d t+\overrightarrow{T_{s h}}(t) \\
& =\frac{\partial f}{\partial f} \int_{C v}^{=0(3)} \vec{r} \times \vec{v} \rho d \forall+\int_{C S} \vec{r} \times \vec{v} \rho \vec{v} \cdot d \vec{A}
\end{aligned}
$$

Assumptions: (1) No surface forces
(v) Body forces symmetric (no moment about X axis)
(3) No change in angular momentum within cV aririto time
(4) Symmetry in two branches
(5) Uniform flow at each cross-section

Then $\vec{r}_{s}=T \hat{I}=\vec{F}_{1} \times \vec{V}_{1}\{-\rho Q\}+\vec{r}_{2} \times \vec{V}_{2}\left\{+\rho \frac{Q}{2}\right\}+\vec{r}_{3} \times \vec{V}_{3}\left\{+\rho \frac{Q}{2}\right\}=2 \vec{r}_{2} \times \vec{V}_{1}\left\{\rho \frac{Q}{2}\right\}$

$$
\vec{r}_{1}=0 \quad \vec{r}_{2}=L \sin \alpha \hat{J} ; \vec{V}_{2}=\omega r_{2} \hat{k}_{j} \vec{r}_{2} \times \vec{V}_{2}=\omega L^{2} \sin ^{2} \alpha \hat{I}
$$

or

$$
T_{s s}=\rho \omega Q L^{2} \sin ^{2} \alpha \text { (steady-state torque) }
$$

The torque required for acceleration is $T_{\text {acc }}=I \dot{\omega}$, where $I=\int r^{2} d m$
For one leg of the branch, $I=\int r^{2} d m=\int_{0}^{1}(s \sin \alpha)^{2} \rho A d s=P \frac{P L^{3}}{3} \sin ^{2} \alpha$
(6) Neglect mass of pipe

For both sides, $I=\frac{2 \rho A L^{3}}{3} \sin ^{2} \alpha$.
Thus

$$
T_{a c c}=\frac{2 p \dot{\omega} A L^{3}}{3} \sin ^{2} \alpha \text { (torque required fir angular acceleration) }
$$

The total torque that must be applied is

$$
T=T_{S S}+T_{a c c}=\rho \omega Q L^{2} \sin ^{2} \alpha+\frac{2 \rho \dot{\omega} A L^{3}}{3} \sin ^{2} \alpha
$$

Given: Thin sheet of liquid, of width, w, and thickness, h_{2} striking inclined flat plate, as shown.

Neglect any viscous effects.
Find: (a) Magnitude and line of action of resultant force as functions of θ.
(b) Equilibrium angle of plate if force is applied at point 0 , where jet centerline intersects surface.

Solution: Apply continuity, linear momentum
 and moment of momentum using Cv and coordinates shown.
Basic equations: $0=\frac{d}{d t} \int_{C v}^{=0(1)} \rho d v+\int_{c s} \rho \vec{V} \cdot d \vec{A}$

$$
\begin{aligned}
& F_{s y}+F_{i y}^{n}=\frac{\partial}{\partial} \int_{C v}^{=o(s)} v \rho d v+\int_{C s} v \rho \vec{v} \cdot d \vec{A} \\
& \vec{r} \times \vec{F}_{s}+\int_{c} \vec{r} / \stackrel{\lambda_{g}}{=0(s)} \rho d \psi+\vec{T}_{s y p f t}^{=o(6)}=\frac{\partial f^{=0(1)}}{\partial t} \int_{c v} \vec{r} \times \vec{v} \rho d \psi+\int_{c s} \vec{r} \times \vec{v} \rho \vec{v} \cdot d \vec{A}
\end{aligned}
$$

Assumptions: (1) Steady flow
(2) Uniform flow at each section
(3) No net pressure forces; $F_{s x}=R_{x}, F_{s y}=R_{y}$
(4) No viscous effects; $R_{x}=0$ and $v_{1}=v_{2}=v_{3}=V$
(5) Neglect body forces and torques
(b) $\vec{T}_{\text {shaft }}=0$
(7) Incompressible flow, $\rho=$ constant

Then from continuity,

$$
\begin{equation*}
0=\left\{-\left|\rho V w h_{1}\right|\right\}+\left\{\left|\rho V w h_{2}\right|\right\}+\left\{\left|\rho V h_{3}\right|\right\} \text { or } h_{1}=h_{2}+h_{3}=h \tag{1}
\end{equation*}
$$

From x momentum

$$
\begin{align*}
& 0=u_{1}\left\{-\left|\rho V \omega h_{1}\right|\right\}+u_{2}\left\{\left|\rho V \omega h_{2}\right|\right\}+u_{3}\left\{\left|\rho V \omega_{3}\right|\right\} \\
& u_{1}=V \sin \theta \quad u_{2}=-v \quad u_{3}=V \\
& 0=\rho V^{2} \omega\left(-h_{1} \sin \theta-h_{2}+h_{3}\right) \quad \text { or } \quad h_{3}-h_{2}=h_{1} \sin \theta=h \sin \theta \tag{2}
\end{align*}
$$

Combining Eggs. 1 and $2, \quad h_{2}=h\left(\frac{1-\sin \theta}{2}\right)$

$$
\begin{equation*}
h_{3}=h\left(\frac{1+\sin \theta}{2}\right) \tag{3}
\end{equation*}
$$

From momentum, $R_{y}=v_{1}\left\{-\left|\rho V \omega h_{1}\right|\right\}+v_{i}\left\{\left|\rho v \omega h_{2}\right|\right\}+v_{3}\left\{\left|\rho v \omega_{h}\right|\right\}$

$$
v_{1}=-V \cos \theta \quad v_{2}=0 \quad v_{3}=0
$$

$$
R_{y}=\rho V^{2} \omega h \cos \theta
$$

From moment of momentum,

$$
\begin{array}{lll}
\vec{r}^{\prime} \times \vec{F}_{3}=\vec{r}_{1} \times \vec{V}_{1}\left\{-\left|\rho V \omega h_{1}\right|\right\} & +\vec{r}_{2} \times \vec{V}_{2}\left\{\left|\rho V \omega h_{2}\right|\right\}+\vec{r}_{3} \times \vec{V}_{3}\left\{\left|\rho V \omega h_{3}\right|\right\} \\
\vec{r}_{\prime}^{\prime}=x^{\prime} \hat{\imath} & \vec{r}_{1} \times \vec{V}_{i}=0 & \vec{r}_{2}=\frac{h_{2}}{2} \hat{r_{3}}=\vec{r}_{3}=\frac{h_{3}}{2} \hat{\jmath} \\
\vec{F}_{3}=R_{y} \hat{\jmath} & \vec{V}_{2}=-V \hat{\imath} \\
\vec{r}_{3}=\vec{F}_{3}=\times V^{\prime} R_{y} \hat{k} & \vec{r}_{2} \times \vec{V}_{2}=\frac{h_{2} V}{2} \hat{k} \quad \vec{r}_{3} \times \vec{V}_{3}=-\frac{h_{3} V}{2} \hat{k}
\end{array}
$$

Combining and dropping \hat{k},

$$
x^{\prime} R_{y}=\frac{1}{2} \rho V^{2} w h_{2}^{2}-\frac{1}{2} \rho V^{2} w h_{3}^{2}=\frac{1}{2} \rho V^{2} w\left(h_{2}^{2}-h_{3}^{2}\right)
$$

or

$$
x^{\prime}=\frac{\rho V^{2} \omega\left(h_{2}^{2}-h_{3}^{2}\right)}{2 R_{y}}=\frac{\rho V^{2} \omega\left(h_{2}+h_{3}\right)\left(h_{2}-h_{3}\right)}{2 R_{y}}
$$

Substituting from Eggs. 3, 4 and 5,

$$
x^{\prime}=\frac{\rho V^{2} \omega h^{2}\left(\frac{1-\sin \theta}{2}+\frac{1+\sin \theta}{2}\right)\left(\frac{1-\sin \theta}{2}-\frac{1+\sin \theta}{2}\right)}{2 \rho V^{2} \omega h \cos \theta}=\frac{h(-\sin \theta)}{2 \cos \theta}
$$

or

$$
x^{\prime}=-\frac{h}{2} \tan \theta
$$

Note that $x^{\prime}<0$. This means that R_{y} must be applied below point 0.
If R_{y} is applied at point 0 , then $x^{\prime}=0$. For equilibrium, from Eq. $6,0=0$. Thus it force is applied at point 0 , plate will be in equilibrium when perpendicular to jet.

Given: The rotating lawn sprinkler of Example Problem 4.14.
Find: (a) Jet angle α for maximum speed of rotation.
(b) What jet angle will provide the maximum area of coverage by the spray?
(c) Draw a velocity diagram to show the absolute velocity of the water jet leaving the nozzle.
(d) What governs the steady rotational speed of the sprinkler?
(e) Does the rotational speed of the sprinkler affect the area covered by the spray?
(f) How would you estimate the area of coverage?
(g) For fixed α, what might be done to increase or reduce the area covered by the spray?

Solution: The results of Example Problem 4.14 were computed assuming steady flow of water and constant frictional retarding torque at the sprinkler pivot.

$$
T_{f}=R\left(V_{r e} \cos \alpha-\omega R\right) \rho Q
$$

From these results,

$$
\omega=\frac{V r e l \cos \alpha}{R}-\frac{T_{f}}{\rho Q R^{2}}
$$

Thus rotational speed of the sprinkler increases as $\cos \alpha$ increases, ie., as α decreases. The maximum rotational speed occurs when $\alpha=0$. Then $\cos \alpha=1$ and the rotational speed is

$$
\omega=\frac{V(e)}{R}-\frac{T_{f}}{\rho Q R^{2}}
$$

For the conditions of Example Problem 4.14 the maximum rotational speed is

$$
\omega=4.97 \frac{\mathrm{~m}}{5} \times \frac{1}{0.150 \mathrm{~m}}-0.0718 \mathrm{M} \cdot m^{2} \times \frac{\mathrm{m}^{3}}{999 \mathrm{~kg}^{2}} \times \frac{\mathrm{min}}{7.52} \times \frac{1}{(0.150)^{2} \mathrm{~m}^{2}} \times \frac{10022}{m^{3}} \times 600 \mathrm{~s} \mathrm{~min}^{2}=7.58 \mathrm{rad} / \mathrm{s}
$$

The steady rotation speed ω of the sprinkler is governed by torque T_{f} and angle α.
Maximum coverage by the spray occurs when the "carry" of each jet stream is the longest. When aerodynamic drag on the stream is neglected, maximum carry occurs when the absolute velocity of the stream leaves the sprinkler at $\beta=45^{\circ}$, as shown in the velocity diagram below.

$$
\begin{aligned}
& \text { Note } \vec{V}_{a b s}=\vec{V}_{r e l}-w R \hat{\tau}_{\theta} \\
& \text { Both the magnitude and direction } \\
& \text { of } \vec{V}_{\text {abs }} \text { vary with } \omega \text { ! }
\end{aligned}
$$

For $\omega=0$, the relative velocity angle α and absolute velocity angle β are equal. Therefore maximum carry occurs when $\alpha=45^{\circ}$ (see graph on next page).
Any rotation rate ω reduces the magnitude $V_{\text {abs }}$ and increases the angle β of the absolute velocity leaving the sprinkler jet. When $\omega>0$, then $\beta>\alpha$, so for maximum carry α must be less than 45°. Consequently rotation reduces the carry of the stream and the area of coverage; at specified α the area of coverage decreases with increasing ω.
For the conditions of Example Problem $4.14(\omega=30 \mathrm{rpm})$, optimum carry occurs at $\alpha \approx 42^{\circ}$, and the coverage area is reduced from approximately $20 \mathrm{~m}^{2}$ with a fixed sprinkler to $15 \mathrm{~m}^{2}$ with 30 rpm rotation. If the rotation speed is increased (by decreasing pivot friction or decreasing nozzle angle α), coverage area may be reduced still further, to $9 \mathrm{~m}^{2}$ or less.

$$
A \approx \pi\left(x_{\max }\right)^{2}
$$

Analysis of Ground Area Covered by Rotating Lawn Sprinkler:
Varlables: $\quad A=$ ground area covered by spray stream
$x=$ ground distance reached by spray stream
$\alpha=$ angle of jet above ground plane
$\beta=$ angle of absolute velocity above ground plane

Input Data:	$R=$	0.150	m
$V_{\text {ret }}$	$=$	4.97	$\mathrm{~m} / \mathrm{s}$

Results:

$$
\begin{array}{r}
\omega(\mathrm{rpm})= \\
\omega R(\mathrm{~m} / \mathrm{s})=
\end{array}
$$

$x_{\text {max }}$

$$
\alpha(\mathrm{d} \epsilon
$$

deg $)$	$x_{\max }(\mathrm{m})$
0	0.00
5	0.437
10	0.861
15	1.26
20	1.62
25	1.93
30	2.18
35	2.37
40	2.48
45	2.52
50	2.48
55	2.37
60	2.18
65	1.93
70	1.62
75	1.26
78	1.02
80	0.861
85	0.437
90	0.00

$A\left(\mathrm{~m}^{2}\right)$	$x_{\max }(\mathrm{m})$	$A\left(\mathrm{~m}^{2}\right)$
0.00	0.00	0.00
0.601	0.396	0.49
2.33	0.778	1.90
4.98	1.14	4.05
8.23	1.46	6.65
11.7	1.73	9.3
14.9	1.94	11.8
17.6	2.09	13.
19.3	2.17	14.
19.9	2.18	14.
19.3	2.11	14.0
17.6	1.97	12.3
14.9	1.77	9.8
11.7	1.50	7.03
8.23	1.17	4.30
4.98	0.798	2.00
3.30	0.557	0.975
2.33	0.391	0.480
0.601	-0.04	0.00
0.00		

$$
\begin{aligned}
& 74.8 \\
& 1.17
\end{aligned}
$$

$A\left(\mathrm{~m}^{2}\right)$ 0.00
0.349 1.35
2.84
4.61
6.39
7.90
8.90
9.23
8.83
7.72
6.08
4.15
2.269
0.785
0.037

Given: Compressor, $\dot{m}=1.0 \mathrm{~kg} / \mathrm{s}$

$$
\begin{aligned}
& P_{1}=101 \mathrm{kPa} \text { (abs) } \\
& T_{1}=288 \mathrm{k} \\
& V_{1}=75 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

$$
T_{2}=345 \mathrm{~K}
$$

$$
V_{2}=125 \mathrm{~m} / \mathrm{s}
$$

$$
\frac{d a}{d m}=-18 \mathrm{~kJ} / \mathrm{kg}
$$

Find: Bower required.
Solution: Apply first law of thermodynamics, using CV shown.
BE.

$$
\dot{Q}-\dot{\omega}_{s}-\dot{\dot{H}_{s h e a r}}=\frac{\partial^{1}}{\partial t} \int_{c V}^{o c} e \rho d \forall+\int_{c s}(e+p v) \rho \vec{V} \cdot d \vec{A}
$$

Assume: (1) $\dot{U}_{\text {shear }}=0$
(2) Steady flow
(3) Uniform flow at each section
(4). Neglect Δz
(5) Ideal gas, $p=\rho R T, \Delta h=C_{p} \Delta T ; C_{p}=1.00 \mathrm{~kJ} / \mathrm{kg} \cdot \mathrm{K}$

Then
(6) From continuity, $\dot{m}_{1}=\dot{m}_{2}=\dot{m}$

Then

$$
\dot{Q}-\dot{w}_{s}=\left(u_{2}+\frac{V_{2}^{2}}{2}+g_{z} \tilde{i}_{2}^{o}+p_{2} v_{2}\right)\{|\dot{m}|\}+\left(u_{1}+\frac{v_{1}^{2}}{2}+g_{z} \hat{z}_{1}+p_{1} v_{1}\right)\{-1 / \dot{m} \mid\}
$$

Note that $h=u+p v_{\text {, }}$ and $\dot{Q}=\dot{m} \frac{d Q}{d m}$, so

$$
\dot{W}_{i n}=-\dot{W}_{3}=\dot{m}\left(\frac{V_{2}^{2}-V_{1}^{2}}{2}+h_{2}-h_{1}-\frac{d Q}{d m}\right)=\dot{m}\left[\frac{V_{2}^{2}-V_{1}^{2}}{2}+C_{p}\left(T_{2}-T_{1}\right)-\frac{d Q}{d m}\right]
$$

or

$$
\begin{aligned}
\dot{W}_{i n}=1.0 \frac{\mathrm{~kg}}{\mathrm{~s}} & \left\{\frac{1}{2}\left[(125)^{2}-(75)^{2}\right] \frac{\mathrm{m}^{2}}{\mathrm{~J}^{2}} \times \frac{\mathrm{N} \cdot \mathrm{~s}^{2}}{\mathrm{~kg} \cdot \mathrm{~m}} \times \frac{\mathrm{kJ}}{1000 \mathrm{~N} \cdot \mathrm{~m}}\right. \\
& \left.+1.00 \frac{\mathrm{~kJ}}{\mathrm{~kg} \cdot \mathrm{~K}}(345-288) \mathrm{K}-\left(-18 \frac{\mathrm{~kJ}}{\mathrm{~kg}}\right)\right\} \frac{\mathrm{kW} \cdot \mathrm{~s}}{\mathrm{~kJ}}
\end{aligned}
$$

$$
\dot{W}_{i n}=80.0 \mathrm{~kW}
$$

Problem 4.184
Given: Pressure bottle, $t=10 \mathrm{ft}^{3}$ contains compressed air al $-P=3000$ psia , $T=140^{\circ} F$ Rt $t=0$, in $=0.105 \ln l_{\mathrm{s}}$
Find: $2 T / a t$ at $t=0$

Solution: Use et shown
Basic equations:

Assumptions: 0 Q $=0$ (insulated)

$$
e=u+\frac{y^{2}}{2}+\frac{2 z}{6}
$$

(2) $i_{s}=0$
(3) wheat $=$ in $_{2}$ \& $=0$
(4) neglect v^{2}
(6) nafiect ?
(6) purfect gas $u=C_{\text {VT }}$
(7) propertisluniform in bottle and at exit

From continiuty.

$$
\begin{aligned}
0 & =\frac{\partial m_{c u}}{\partial t}+i n \quad \therefore \frac{\partial H_{c}}{\partial t}=-i n \\
0 & =\frac{\partial}{\partial t}\left(u p d t+\left(u+\frac{p}{\rho}\right) i n\right. \\
& =u \frac{\partial u}{\partial t}+m \frac{\partial u}{\partial t}+\left(u+\frac{p}{p}\right) n \\
0 & =u(-i)+M c_{v} \frac{\partial T}{\partial t}+\left(u+\frac{p}{p}\right) \dot{n}
\end{aligned}
$$

From the first low,

Thus,
where $p=\frac{p}{k T}=3000 \frac{\frac{1 r}{v^{2}}}{v^{2}} \frac{144 i^{2}}{f \tau^{2}} \times \frac{4.9}{53.36 .6 f} \times \frac{1}{600 k}=13.5 \frac{\mathrm{ln}}{f \mathrm{ft}^{3}}$

$$
\begin{align*}
& \frac{\partial T}{\partial t}=-0.778^{\circ} \mathrm{RI} \tag{2t}
\end{align*}
$$

Problem 4.185
Given: Centrifugal water pure operation under conditions as follows:

$$
\begin{aligned}
& D_{1}=h_{2}=4 \mathrm{in} \quad Q=300 \mathrm{gpp} \quad 1 \\
& P_{1}=8 \text { initg(vacman), } P_{2}=35 \text { ping } \quad z_{1}=z_{2} \\
& P_{\text {mput }}=9.1 \mathrm{hp}
\end{aligned}
$$

Find: purr efficiency.
Solution: Apply the energy equation to the ct shown. reglet all losses to find the energy added to the fluid
Basic equations: $\eta=\frac{\dot{\omega}_{s}}{Q_{i n}}$ where $i t_{s}$-power into fluid

Assumptions: (i) $\dot{Q}=0$
(2) whereas $=0$ (by chare of (4) ; ; whether $=0$
(3) steady flow
(4) neglects Δu
(5) $\Delta Z=0$
(b) in oumpressible flow
(7) uniform flow at inlet and outlet

Then

$$
-w_{s}=\left(P_{1} v_{1}+\frac{v_{1}^{2}}{2}\right)\left\{-i^{n}\right\}+\left(e_{2} v_{2}+\frac{v_{2}}{2}\right)\{\dot{n}\}
$$

Since $i n=P Q$ and $V_{1}=V_{2}$ (from continuity)

$$
\begin{aligned}
& -w_{3}=p Q\left(p_{2} v_{2}-p_{1} v_{1}\right)=Q\left(p_{2}-p_{1}\right) \\
& p_{1}=p g h=s G p_{\text {moth }}
\end{aligned}
$$

Then
$i_{s}=-6.81$ hp (negative sags indicates energy added)

$$
\eta=\frac{\dot{H}_{3}}{Q_{i n}}=\frac{6.81}{9.1}=0.748 \text { or } 74.8 \text { parent }
$$

Given: Compressor operating at conditions shown $\quad p_{2}=70$ psia

$$
V_{2}=500 \frac{\mathrm{ft}}{\mathrm{~s}}
$$

Find: Heat transfer, in Btu/ $/ \mathrm{bm}$.

$$
T_{z}=500^{\circ} \mathrm{F}
$$

$$
\dot{w}_{i n}=3200 h \rho
$$

Fluid is air.

Solution: Apply energy equation to cv shown.
Basic equations: $p=p R T, \Delta h=C p \Delta T$

$$
\dot{Q}-\dot{W}_{s}-\dot{W}_{\text {shear }}^{=0(z)}-\dot{W}_{\text {other }}^{=o(z)}=\frac{\partial}{\partial t} \int_{c v}^{=o(z)} e f d v+\int_{c s}\left(u+\psi v+\frac{v^{2}}{2}+g z\right) \quad=o(s)
$$

Assumptions: (1) Ideal gas, constant specific heat
(2) $\dot{W}_{\text {shear }}=0$ by choice of $C V$; $\dot{W}_{\text {other }}=0$
(3) Steady flow
(4) Uniform flow at each section
(5) Neglect Δz
(6) $V_{1}=0$

By definition $h \equiv u+p v$, so

$$
\dot{Q}-\dot{W}_{s}=\left(h_{1}+\frac{V_{2}^{2}}{2}\right)\{-|\dot{m}|\}+\left(h_{2}+\frac{V_{2}^{2}}{2}\right)\{|\dot{m}|\}=\dot{m}\left[\frac{V_{2}^{3}}{2}+c_{p}\left(T_{2}-T_{1}\right)\right]
$$

or

$$
\frac{\delta Q}{d m}=\frac{\dot{Q}}{\dot{m}}=\frac{\dot{W}_{s}}{\dot{m}}+\frac{V_{2}^{1}}{2}+c_{p}\left(T_{z}-T_{1}\right)
$$

Noting $\dot{W}_{s}=-3200 \mathrm{hp}, \mathrm{so}$

Therefore heat transfer is out of cv ; since $\delta Q / \mathrm{dm}<0$. The rate of heat transfer is

$$
\dot{Q}=-7.32 \frac{\mathrm{Btu}}{16 \mathrm{~m}} \times 20 \frac{\mathrm{pm}}{\mathrm{~s}}--146 \mathrm{Btu} / \mathrm{s}
$$

$$
\begin{aligned}
& \frac{\delta Q}{d m}=-3200 h \rho_{\times} \times \frac{25+5 \text { Btu }}{h \rho \cdot h r} \times \frac{s}{20 \mathrm{lbm}} \times \frac{h \mathrm{~h}}{3600 \mathrm{~S}}+0.240 \frac{\mathrm{Bta}}{46 \mathrm{~m}^{\circ} \mathrm{F}} \times(500-80) \%= \\
& +\frac{(500)^{2}}{2} \frac{\mathrm{ft}^{2}}{\mathrm{~s}^{2}} \times \frac{16 \mathrm{f} \cdot \mathrm{~s}^{2}}{51 \mathrm{cg} \cdot \mathrm{ft}} \times \frac{51 u g}{32.216 \mathrm{~m}} \times \frac{B+u}{778 \mathrm{ft} \cdot \mathrm{Hff}} \\
& \frac{\delta Q}{d m}=-7.32 \mathrm{Bta} / 1 \mathrm{bm}
\end{aligned}
$$

Given: Turbine operating on water:

Solution: Apply continuity, energy equations, using av shown.

$$
\dot{Q}-\dot{w}_{s}-\dot{L}_{\text {shear }}-\dot{w}_{o t h e r}=\frac{\partial}{\partial t} \int_{c v} e p d t+\int_{c s}\left(u+\frac{v^{2}}{2}+g(t) c v+p v\right) p \vec{v} \cdot d \vec{A}
$$

Assumptions: (1) Steady flow
(z) Uniform flow at each section
(5) Incompressible frow
(4) $\dot{Q}=0$
(5) $\dot{W}_{\text {shear }}=0$ by choice of $C V ; \dot{W}_{\text {other }}=0$
(6) Neglect Δu
(7) Neglect Δz

Then

$$
0=\left\{-\left|\rho V_{1} A_{1}\right|\right\}+\left\{\left|\rho V_{2} A_{2}\right|\right\} \text { or } V_{2}=V_{1} \frac{A_{1}}{A_{2}}=V_{1}\left(\frac{D_{1}}{D_{2}}\right)^{2}
$$

and

$$
\begin{aligned}
& -\dot{w}_{s}=\left(\frac{V_{1}^{2}}{2}+p_{1} v\right)\left\{-\mid \rho V_{1} A_{1} /\right\}+\left(\frac{V_{2}^{2}}{2}+p_{2} v,\left\{\left|\rho V_{1} A_{2}\right|\right\}\right. \\
& -\dot{w}_{s}=-\left[\frac{V_{1}^{2}-V_{2}^{2}}{2}+\left(p_{1}-p_{2}\right) v\right] \rho Q=-\left\{\frac{V_{1}^{2}}{2}\left[1-\left(\frac{D_{1}}{D_{2}}\right)^{*}\right]+\left(p_{1}-p_{2}\right) v\right\} \rho Q
\end{aligned}
$$

or

$$
p_{1}-p_{2}=\frac{1}{v}\left\{\frac{\dot{W}_{s}}{f Q}-\frac{V_{1}^{2}}{2}\left[1-\left(\frac{D_{1}}{D_{2}}\right)^{4}\right]\right\}=\frac{\dot{W}_{s}}{Q}-\frac{p V_{1}^{2}}{2}\left[1-\left(\frac{D_{1}}{D_{2}}\right)^{4}\right]
$$

But $V_{1}=\frac{Q}{A_{1}}=0.6 \frac{m^{3}}{s} \frac{4}{\pi} \frac{1}{(0.3)^{4} m^{2}}=8.49 \mathrm{~m} / \mathrm{s}$, and $\dot{W}_{s}=\dot{W}_{\text {out }}=60 \mathrm{kw}, 50$

$$
\begin{aligned}
& p_{1}-p_{2}=(60 \mathrm{~kW}) 10^{3} \frac{\mathrm{~N} \cdot \mathrm{~m}}{\mathrm{~kW} \cdot \mathrm{~s}} \times \frac{\mathrm{s}}{0.6 \mathrm{~m}^{2}}-\frac{1}{2} \times 999 \frac{\mathrm{~kg}}{\mathrm{~m}^{3}} \times(8.49)^{2} \frac{\mathrm{~m}^{2}}{\mathrm{~s}^{2}}\left[1-\left(\frac{0.3}{0.4}\right)^{4}\right] \frac{\mathrm{N} \cdot \mathrm{~s}^{2}}{\mathrm{~kg} \cdot \mathrm{~m}} \\
& p_{1}-p_{2}=75.4 \mathrm{kPa}
\end{aligned}
$$

Given: Flow through turbomachine shown. Fluid is air.

$$
\begin{aligned}
& \dot{m}=0.8 \mathrm{~kg} / \mathrm{s} \\
& T_{1}=288 \mathrm{k} \\
& p_{1}=101 \mathrm{kPa} \text { (abs) }
\end{aligned}
$$

$$
T_{2}=130^{\circ} \mathrm{C}
$$

$$
p_{2}=500 \mathrm{kPa}(\text { gaga })
$$

$$
V_{z}=100 \mathrm{~m} / \mathrm{s}
$$

$V_{1} \simeq 0$ (from atmosphere) $\quad \underset{Q}{Q}=0$
Find: Shaft work interaction with surroundings.
Solution: Apply energy equation, using cv shown.
Basic equations: $\quad \neq \rho R T, \Delta h=C_{p} \Delta T$

$$
\frac{1}{Q}-\dot{w}_{s}-\dot{w}_{s h e a r}^{1}-\dot{w_{0}}=o(z)=0(z)=\frac{d}{\partial t} \int_{c v} e p d v+\int_{c s}\left(u+p v+\frac{v^{2}}{2}+g z\right) p \vec{v} \cdot d \vec{A}
$$

Assumptions: (1) Ideal gas, constant specific heat
(2) $\dot{W}_{\text {shear }}=0$ by choice of $C V_{j} \dot{W}_{\text {other }}=0$
(3) Steady flow
(4) Uniform flow at each section
(5) Neglect Δy
(b) $V_{1} \cong 0$
(7) $\dot{Q}=0$

By definition, $h \equiv u+p r$, so

$$
-\dot{W}_{s}=\left(h_{1}+\frac{V_{1}^{2}}{2}\right)\left\{-/ \dot{m}_{1} \mid\right\}+\left(h_{2}+\frac{V_{2}^{2}}{2}\right)\{\mid \dot{m} /\}=\dot{m}\left(h_{2}-h_{1}+\frac{V_{2}^{2}}{2}\right)
$$

or

$$
\begin{aligned}
-\dot{w}_{s}= & \dot{m}\left(h_{2}-h_{1}+\frac{V_{2}^{2}}{2}\right)=\dot{m}\left[C_{p}\left(T_{2}-T_{1}\right)+\frac{V_{2}^{2}}{2}\right] \\
= & 0.8 \frac{\mathrm{~kg}}{\mathrm{~s}}\left[1.00 \frac{\mathrm{~kJ}}{\mathrm{~kg} \cdot \mathrm{~K}}(408-288) \mathrm{K}\right. \\
& \left.+(100)^{2} \frac{\mathrm{~m}^{2}}{\mathrm{~s}^{2}} \times \frac{\mathrm{N} \cdot \mathrm{~s}^{2}}{\mathrm{~kg} \cdot \mathrm{~m}} \times \frac{\mathrm{kJ}}{10^{3} \mathrm{~N} \cdot \mathrm{~m}}\right] \frac{\mathrm{kW} \cdot \mathrm{~s}}{\mathrm{~kJ}}
\end{aligned}
$$

$$
-\dot{w}_{s}=96.0 \mathrm{~kW} \quad \text { or } \dot{\dot{w}_{s}}=-96.0 \mathrm{kw}
$$

$\left\{\right.$ Power is into $C V$ because $\left.\dot{W}_{s}<0.\right\}$

Given: Pump system as shown.

$$
\eta_{\text {pump }}=0.75
$$

Solution: Apply first law to <v shown, noting that flow enters with negligible velocity at sect ion (1). Basic equation:

$$
\begin{aligned}
& \text { Basic equation: }=o(1)=o(1) \quad=o(z) \\
& \dot{Q}-W_{\text {shaft }}-\dot{W}_{\text {shear }}-\dot{W}_{\text {other }}=\frac{e^{+}}{\partial t} \int_{\mathrm{CV}} e p d \forall+\int_{t S}\left(e+\frac{p}{\rho}\right) \rho \vec{v} \cdot d \vec{A} \\
& \text { Assumptions: (1) } \dot{W}_{\text {shear }}=\dot{W}_{\text {other }}=0 \quad e=u+\frac{V^{2}}{z}+g z
\end{aligned}
$$

(2) Steady flow
(3) $V_{1} \cong 0$
(4) $3_{1}=0$
(5) $p_{1}=0$ (gage)
(6) Uniform flow at each section
(7) Incompressible flow; $V_{1} A_{1}=V_{2} A_{2}$

Then

$$
\dot{Q}-\dot{w}_{g}=\left(u_{1}+\frac{\hat{p}_{2}^{2}}{\frac{\hat{w}^{2}}{2}}+g \hat{p}_{1}+\frac{\hat{p}_{1}}{p}\right)\{-\dot{m}\}+\left(u_{2}+\frac{v_{2}^{2}}{2}+g z_{2}+\frac{p_{2}}{\rho}\right)\{\dot{m}\}
$$

or

$$
-\dot{W}_{s}=\dot{m}\left[\frac{p_{2}}{\rho}+\frac{V_{1}^{2}}{2}+g_{3}+\left(u_{2}-u_{1}-\frac{\delta Q}{d m}\right)\right]
$$

Obtain the ideal or minimum power input by neglecting thermal effects.
Thus

$$
-\dot{W}_{1, \text { ideal }}=\dot{m}\left[\frac{p_{1}}{\rho}+\frac{V_{1}^{2}}{2}+g z_{2}\right]
$$

For the syst cm,

$$
\dot{m}=\rho V_{L} A_{L}=999 \frac{\mathrm{~kg}}{\mathrm{~m}^{2}}, \frac{3 \mathrm{~m}}{\mathrm{~s}} \times \frac{\pi}{4}(0.075)^{2} \mathrm{~m}^{2}=13.2 \mathrm{~kg} / \mathrm{s}
$$

and

$$
\begin{aligned}
-\dot{W}_{s, \text { ideal }} & =13.2 \frac{\mathrm{~kg}}{\mathrm{~s}}\left[1.70 \times 10^{5} \frac{\mathrm{~N}}{\mathrm{~m}^{2}} \cdot \frac{\mathrm{~m}^{3}}{999 \mathrm{~kg}}+\frac{1}{2}(3)^{2} \frac{\mathrm{~m}^{2}}{\mathrm{~s}^{2}} \times \frac{\mathrm{N} \cdot \mathrm{~s}^{2}}{\mathrm{~kg} \cdot \mathrm{~m}}+\frac{\left.9.81 \frac{\mathrm{~m}}{\mathrm{~s}^{2}} \cdot 2 \mathrm{~m} \times \frac{\mathrm{N} \cdot \mathrm{~s}^{2}}{\mathrm{~kg} \cdot \mathrm{~m}}\right]}{} \quad \dot{W}_{s, \text { ideal }}\right.
\end{aligned}=-2560 \frac{\mathrm{~N} \cdot \mathrm{~m}}{\mathrm{~s}} \times \frac{\mathrm{kW} \cdot \mathrm{~s}}{10^{3} \mathrm{~N} \cdot \mathrm{~m}}=-2.56 \mathrm{~kW},
$$

Finally

$$
\dot{W}_{s, a c t u a l}=\frac{\dot{W}_{b, \text { ideal }}}{\eta}=\frac{-2,56 \mathrm{~kW}}{0.75}=-3.41 \mathrm{~kW}
$$

Given: Fire boat

Find: (a) Q_{2}
(b) z max
(c) Force if horizontal

$$
\begin{aligned}
& D_{2}=25 \mathrm{~mm} \\
& \dot{W}_{S}=10 \mathrm{~kW}
\end{aligned}
$$

Wa. r surface.

Solution: Apply first law to CV "a" Shown above

Assume: (1) Neglect loses, wee. $u_{2}-u_{1}-\frac{d Q}{d m} \approx 0$
(2) $\dot{w}_{\text {shear }}=\dot{W}_{\text {sher }}=0$
(3) Steady flow
(4) uniform flow at each section
(5) Neglect V.
(6) $g_{1}=0$
(7) Incompressible flow, $v_{2}=v_{1}=v_{1}, \dot{m}_{1}=\dot{n}_{2}=\dot{n}_{3}$
(8) $\mu_{2}=p_{1}=p_{\text {atm }}=\Delta$ gage

Then

$$
\begin{aligned}
\dot{Q}-\dot{w}_{s}=\left(\hat{u}_{1}+\frac{V_{1}^{2}}{2}+g z_{1}\right. & =0\left(\overline{p_{1}} v_{1}\right)(-\dot{m})+\left(\dot{u}_{2}+\frac{V_{2}^{2}}{2}+g z_{2}+\hat{p}_{2} v_{2}\right)(\dot{m}) \\
& =0(q)
\end{aligned}
$$

or

$$
-\dot{\omega}_{s}=\left(\frac{V_{2}^{2}}{2}+g z_{2}\right) \dot{m} ; \dot{m}=\rho V_{L} A_{2}
$$

Note that this equation contains V_{2} to the third power, so that it cannot be solved directly. As a first approximation, neglect z_{2} :

$$
\begin{aligned}
-\dot{W}_{i n} \simeq\left(\frac{V_{2}^{2}}{2}\right) \rho V_{2} A_{2}=\frac{1}{2} \rho V_{2}^{3} A_{2} ; \quad A_{2}=\frac{\pi}{4} D_{2}^{2}=\frac{\pi}{4}(0.025)^{2} m^{2}=4.9 / \times 10^{-V} \mathrm{~m}^{2} \\
V_{2} \simeq\left[\frac{-2 \dot{W}_{3}}{\rho A_{2}}\right]^{\frac{1}{3}}=\left[2 \times 10 \mathrm{~kW} \times \frac{\mathrm{m}^{3}}{999 \mathrm{~kg}} \times \frac{1}{4.91 \times 10^{-4} \cdot \mathrm{~m}^{2}} \times 10^{2} \frac{\mathrm{~N} \cdot \mathrm{~m}}{\mathrm{~kW} \cdot \mathrm{~s}} \times \frac{\mathrm{kg} \cdot \mathrm{~m}}{\mathrm{~N} \cdot \mathrm{~s}^{2}}\right]^{\frac{1}{3}}=34.4 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

Comparing terms,

$$
\frac{V_{2}^{2}}{2} \times \frac{(34.4)^{2}}{2}=592 \mathrm{~m}^{2} / \mathrm{s}^{2} ; \quad g_{3}=9.81 \frac{\mathrm{~m}}{5^{2}}, 3 \mathrm{~m}=29.4 \mathrm{~m}^{2} / \mathrm{s}^{2} \text {, about } 5 \text { percent }
$$

Therefore this value of V_{2} is about $\frac{5}{3}$ percent too large. Assume

$$
V_{2}=33.8 \mathrm{~m} / \mathrm{sec} \text {, and } Q=V_{L} A_{1}=33.8 \frac{\mathrm{~m}}{3}, 4.91 \times 10^{-4} \mathrm{~m}^{2}=0.0166 \mathrm{~m}^{3} / \mathrm{s}
$$

To compute max, apply first low to cv "b" using above assumptons, plus
(a) $V / 3=0$

Then $-\dot{W}_{s}=\left(\frac{\underline{V}_{1}^{1}}{2}+g 3_{\text {max }}\right) \dot{m} ; \dot{m}=\rho Q=999 \frac{\mathrm{~kg}}{\mathrm{~m}^{3}} \times 0.0166 \frac{\mathrm{~m}^{3}}{\mathrm{~s}}=16.6 \mathrm{~kg} / \mathrm{s}$
or

To find horizontal force, apply x component of momentum equation using cv " a ", with flow at (2) leaving horizontally.
Basic equation:

$$
F_{s_{x}}+F F_{p_{x}}^{=o(11)}=\frac{d d^{x}}{d t} \int_{c v}^{=o(3)} u \rho d v+\int_{c s} u \rho \vec{v} \cdot d \vec{A}
$$

Assumptions: (10) No net pressure force on CV ; $F_{5 x}=R_{x}$
(ii) $F_{B_{x}}=0$

Then

$$
R_{x}=u_{1}\left\{-\dot{m}_{1}\right\}+u_{2}\{\dot{m}\}=\dot{m} V_{2} \text {, since } u_{1}=0
$$

or

$$
k_{x}=-\dot{m} V_{2}=-16.6 \frac{\mathrm{~kg}}{\mathrm{~s}} \times 33.8 \frac{\mathrm{~m}}{\mathrm{~s}} \times \frac{\mathrm{N} \cdot \mathrm{~s}^{2}}{\mathrm{~kg} \cdot \mathrm{~m}}=-561 \mathrm{~N}
$$

$\left\{\begin{array}{l}\text { Minus sign indicates reaction on boat is opposite from stream } \\ \text { direction. }\end{array}\right.$

Given: Helicopter-type craft hovering
Mass, $M=1500 \mathrm{~kg}$
Assume atmospheric pressure at outlet, and treat as steady, uniform, incompressible flow.

Assume air is at standard conditions.

Find: (a) speed of air leaving craft.

(b) Minimum power required.

Solution: Use inertial CV and coordinates shown. Apply continuity and momentum to determine V_{2}, then apply energy to find power.
Basic equations: $p=\rho R T ; \Delta h=C \rho \Delta T ; \frac{p}{f}+\frac{v^{2}}{2}+g z=$ constant

$$
\begin{array}{r}
0=\frac{d}{d t} \int_{C V}^{=0(z)} \rho d \psi+\int_{C S} \rho \vec{v} \cdot d \vec{A} \\
F_{s z}+F_{B z}=\frac{\partial^{\hat{1}}}{d t} \int_{C v} w \rho d \psi+\int_{C S} w \rho \vec{v} \cdot d \vec{A}
\end{array}
$$

Assumptions: (1) Air is an ideal gas, $C_{p}=$ constant
(2) Steady flow
(3) Incompressible flow
(4) Uniform flow at each section
(5) Uniform pressure at inlet; $F_{33}=\left(p_{a t m}-p_{1}\right) A_{1}=-p_{1,} A_{\text {, }}$,

Then

$$
f=\frac{p}{R T}=1.01 \times 10^{5} \frac{\mathrm{~N}}{\mathrm{~m}^{2}} \times \frac{\mathrm{kg} \cdot \mathrm{~K}}{287 \mathrm{~N} \cdot \mathrm{~m}} \times \frac{1}{288 \mathrm{~K}}=1.22 \mathrm{~kg} / \mathrm{m}^{3}
$$

and from continuity

$$
0=\left\{-\left|\rho V_{1} A_{1}\right|\right\}+\left\{\left|\rho V_{2} A_{2}\right|\right\}=\rho\left(V_{2} A_{2}-V_{1} A_{1}\right) \text { or } V_{1}=V_{2}\left(\frac{A_{2}}{A_{1}}\right)
$$

Now $A_{1}=\frac{\pi}{4} D_{0}^{2}=\frac{\pi}{4}(3.3)^{2} m^{2}=8.55 \mathrm{~m}^{2}$

$$
A_{2}=\frac{\pi}{4}\left(D_{0}^{2}-D_{6}^{2}\right)=\frac{\pi}{4}\left[(3.3)^{2}-(3.0)^{2}\right] m^{2}=1.48 \mathrm{~m}^{2}
$$

From momentum

$$
\begin{aligned}
-p_{1 g} A_{1}-M g= & w_{1}\left\{-\left|\rho V_{1} A_{1}\right|\right\}+w_{2}\left\{\left|\rho V_{2} A_{2}\right|\right\} \\
w_{1}=-V_{1} \quad w_{2} & =-V_{2} \quad \text { and } \rho V_{1} A_{1}=\rho V_{2} A_{2} \\
-\operatorname{pig}_{2} A_{1}-M g= & V_{1} \rho V_{2} A_{2}-V_{2} \rho V_{2} A_{2}=-\rho V_{2} A_{2}\left(V_{2}-V_{1}\right)
\end{aligned}
$$

Problem *4.191 contd
For steady, incompressible flow without friction, along a streamline from atmosphere to (1), Bernoulli gives, neglecting Δz,

$$
t_{a t m}+\frac{1}{2} \rho \hat{\psi}_{0}^{2}+g \hat{\psi}_{0}=p_{1}+\frac{1}{2} \rho V_{1}^{2}+g \hat{\phi}_{1} \quad \text { so } p_{1 g}=-\frac{1}{2} \rho V_{1}^{2}
$$

Using continuity, $p_{1 g} A_{1}=-\frac{1}{2} \rho V_{1}^{2} A_{1}=-\frac{1}{2} \rho V_{2} A_{2} V_{1}=-\frac{1}{2} \rho V_{2}^{2} A_{2} \frac{A_{2}}{A_{1}}$ substituting into the momentum equation and using continuity,

$$
\frac{1}{2} \rho V_{2}^{2} A_{2} \frac{A_{2}}{A_{1}}-M g=-\rho V_{2}^{2} A_{2}\left(1-\frac{V_{1}}{V_{2}}\right)=-\rho V_{2}^{*} A_{2}\left(1-\frac{A_{2}}{A_{1}}\right) \text { or } M g=\rho V_{2}^{2} A_{2}\left(1-\frac{1}{2} \frac{A_{2}}{A_{1}}\right)
$$

$$
V_{2}=\sqrt{\frac{M g}{\rho A_{L}\left(1-\frac{1}{2} \frac{A_{2}}{A_{1}}\right)}}=\left[1500 \mathrm{~kg}_{\kappa} 9.81 \frac{\mathrm{~m}}{\mathrm{~s}^{2}} \times \frac{m^{3}}{1.2 z \mathrm{~kg}} \times \frac{1}{1.48 \mathrm{~m}^{2}} \frac{1}{\left(1-\frac{1}{2} \frac{1.48}{p .55}\right)}\right]^{\frac{1}{2}}=94.5 \mathrm{~m} / \mathrm{s}
$$

Basic equation:

Additional assumptions: (6) $\dot{w}_{\text {shear }}=\dot{W}_{\text {other }}=0$
(7) $p v=$ constant
(8) Neglect Δz

Then

$$
\begin{aligned}
& \left.-\dot{w}_{s}=\left(u_{1}+\frac{V_{1}^{2}}{2}\right)_{\{ }-|\dot{m}|\right\}+\left(u_{2}+\frac{V_{2}^{2}}{2}\right)\{|\dot{m}|\}-\dot{Q} \\
-\dot{w}_{s}= & \dot{m}\left(\frac{V_{2}^{2}-V_{1}^{2}}{2}\right)+\dot{m}\left(u_{2}-u_{1}-\frac{d Q}{d m}\right)
\end{aligned}
$$

The term $\left(u_{2}-u_{1}-\frac{d a}{d m}\right)$ represents nonmechanicar energy. The minimum possible work would be attained when the nonmechanical energy is zero. Thus

$$
\begin{aligned}
& \left.-\dot{W}_{s}\right)_{\min }=\dot{m}\left(\frac{V_{2}^{2}-V_{1}^{2}}{2}\right)=\dot{m} \frac{V_{2}^{2}}{2}\left[1-\left(\frac{V_{1}}{V_{2}}\right)^{2}\right]=\frac{\rho A_{2} V_{2}^{3}}{2}\left[1-\left(\frac{A_{2}}{A_{1}}\right)^{2}\right] \\
& -\dot{w}_{s}=\frac{1}{2} \times 1.22 \frac{\mathrm{~kg}}{m^{3}} \times 1.48 m_{4}^{2}(94.5)^{3} \frac{\mathrm{~m}^{3}}{\mathrm{~s}^{3}}\left[1-\left(\frac{1.48}{g .55}\right)^{2}\right] \frac{\mathrm{N} \cdot \mathrm{~s}^{2}}{\mathrm{~kg} \cdot \mathrm{~m}} \times \frac{\mathrm{kW} \cdot \mathrm{~s}}{10^{5} \mathrm{~N} \cdot \mathrm{~m}} \\
& \left.\dot{W}_{s}\right)_{\min }=-739 \mathrm{~kW} \text { (input) }
\end{aligned}
$$

$\left\{\begin{array}{l}\text { The power required for hovering in a real craft would be } \\ \text { greater due to flow losses, sonunifurmities, etc. }\end{array}\right\}$

Given: Liquid flow in a wide, horizontal open channel, as shown.

Find: (a) Show that in general, $D_{2}=\frac{D_{1}}{2}\left[\sqrt{1+\frac{8 V_{1}^{2}}{g D_{1}}}-1\right]$
(b) Change in mechanical energy across hydraulic jump.
(c) Temperature rise if no heat transfer.

Solution: Apply continuity, x component of momentum, and energy equations using CV shown.
Basic equations: $0=\frac{\partial^{t}}{\psi^{t}} \int_{N}^{=0(1)} \rho d v+\int_{C s} \rho \vec{v} \cdot d \vec{A}$
(3) Uniform flow at each section
(4) Hydrostatic pressure distribution at sections (1), (2),

$$
\text { so } p=\rho g(D-z) \text {. }
$$

(5) Neglect friction force, F_{f}, on CV
(6) $\dot{Q}=0$
(7) $\dot{w}_{s}=\dot{w}_{s h e a r}=\dot{w}_{\text {other }}=0$
(8) $F_{B x}=0$, since channel is horizontal

From continuity,

$$
0=\left\{-\left|\rho V_{1} A_{1}\right|\right\}+\left\{\left|\rho V_{2} A_{2}\right|\right\}=-\rho V_{1} \omega D_{1}+\rho V_{2} \omega D_{2} ; V_{1} D_{1}=V_{2} D_{2}
$$

From momentum,

$$
F_{s_{x}}=\rho g \frac{D_{1}}{2} \omega D_{1}-\rho g \frac{D_{2}}{2} w D_{2}=V_{x_{1}}\left\{-\left|\rho V_{1} w D_{1}\right|\right\}+V_{x_{2}}\left\{\left|\rho V_{2} w D_{4}\right|\right\}
$$

hydrostatic forces

$$
V_{x_{1}}=V_{1}
$$

$$
V_{x_{2}}=V_{2}
$$

or
or

$$
\frac{g}{2}\left(D_{1}^{2}-D_{2}^{2}\right)=V_{1} D_{1}\left(V_{2}-V_{1}\right)=V_{1}^{2} D_{1}\left(\frac{V_{2}}{V_{1}}-1\right)=V_{1}^{2} D_{1}\left(\frac{D_{1}}{D_{2}}-1\right)
$$

$$
\frac{g}{2}\left(D_{1}+D_{2}\right)\left(D_{-}-D_{1}\right)=V_{1}^{2} \frac{D_{1}}{D_{2}}\left(D_{2}-D_{2}\right)
$$

$$
\begin{aligned}
& F_{s x}+F_{\dot{q} x}^{=0(g)}=\frac{\partial f}{\partial t} \int_{c v}^{-o(1)} V_{x} \rho d v+\int_{C S} V_{x} \rho \vec{V} \cdot d \vec{A}
\end{aligned}
$$

$$
\begin{aligned}
& \text { Assumptions: (1) Steady flow } \\
& \text { (2) Incompressible flow } \\
& e=u+\frac{V^{2}}{2}+g z
\end{aligned}
$$

Thus $g \frac{g D_{1}}{2}\left(1+\frac{D_{2}}{D_{1}}\right)=V_{1}^{2} \frac{D_{1}}{D_{2}}$ or $\frac{D_{2}}{D_{1}}\left(1+\frac{D_{2}}{D_{1}}\right)=\frac{2 V_{1}^{2}}{g D_{1}}$ or $\left(\frac{D_{2}}{D_{1}}\right)^{2}+\frac{D_{2}}{D_{1}}-\frac{2 V_{1}^{2}}{g D_{1}}=0$ Using the quadratic equation,

$$
\frac{D_{2}}{D_{1}}=\frac{1}{2}\left[-1 \pm \sqrt{1+\frac{8 V_{1}^{2}}{g D_{1}}}\right] \quad \text { or } \quad D_{2}=\frac{D_{1}}{2}\left[\sqrt{1+\frac{8 V_{1}^{2}}{g D_{1}}}-1\right]
$$

Solving for D_{2}

$$
\begin{aligned}
& D_{2}=\frac{1}{2} \times 0.6 m\left[\sqrt{1+8{ }_{n}(5)^{2} \frac{m^{2}}{s^{2}} \times \frac{x^{2}}{9.81 m} * \frac{1}{0.6 m}}-1\right]=1.47 \mathrm{~m} \\
& V_{2}=\frac{D_{1}}{D_{2}} V_{1}=\frac{0.6}{1.47} \times 5 \frac{\mathrm{~m}}{s}=2.04 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

From the energy equation, with $\epsilon_{\text {mach }}=\frac{V^{2}}{z}+g z+\frac{p}{p}$, and $d A=w$ w $d z$,
the mechanical energy fluxes are the mechanical energy fluxes are

$$
\begin{aligned}
& m C f_{1}=\int_{0}^{D_{1}}\left[\frac{V_{1}^{2}}{2}+g z+\frac{1}{\rho} \rho g(D-z)\right] \rho V_{1} \omega r d z=\left(\frac{V_{1}^{2}}{2}+g D_{1}\right) \rho V_{1} \omega D_{1} \\
& m C f_{2}=\int_{0}^{D_{1}}\left[\frac{V_{2}^{2}}{2}+g z+\frac{1}{\rho} \rho g(D-z)\right] \rho V_{2} \omega d z=\left(\frac{V_{2}^{2}}{2}+g D_{2}\right) \rho V_{2} \omega D_{2}
\end{aligned}
$$

and

$$
\Delta m e f=m C f_{2}-m C f_{1}=\left[\frac{V_{2}^{2}-V_{1}^{2}}{2}+g\left(D_{2}-D_{1}\right)\right] \rho V_{1} \omega_{1} D_{1}, \operatorname{since} V_{1} D_{1}=V_{2} D_{2}
$$

Thus $\frac{\Delta m c f}{\dot{m}}=\frac{1}{2}\left[V_{2}^{2}-V_{1}^{2}+2 g\left(D_{2}-D_{1}\right)\right]$

From the energy equation,

$$
\begin{aligned}
0=\left[u_{1}\right. & \left.+\frac{V_{1}^{2}}{2}+g z+\frac{1}{p} p g(D-z)\right]\left\{-\left|\rho V_{1} w D_{1}\right|\right\} \\
& +\left[u_{2}+\frac{V_{2}^{2}}{2}+g z+\frac{1}{p} \rho g(D-z)\right]\left\{\left|f V_{1} w D_{2}\right|\right\}
\end{aligned}
$$

or

$$
0=\left(u_{2}-u_{1}\right) \dot{m}+\Delta m e f
$$

Thus

$$
\begin{aligned}
& u_{2}-u_{1}=C_{v}\left(T_{2}-T_{1}\right)=-\frac{\Delta m e f}{\dot{m}} \\
& \Delta T=T_{2}-T_{1}=-\frac{\Delta m e f}{\dot{m} C_{v_{2}}}=-\left(-1.88 \frac{\mathrm{~N} \cdot \mathrm{~m}}{\mathrm{~kg}}\right) \frac{\mathrm{kg} \cdot \mathrm{~K}}{1 \mathrm{kcal}} \times \frac{\mathrm{kcal}}{4187 \mathrm{~J}}=4.49 \times 10^{-4} / \mathrm{k}
\end{aligned}
$$

\{This small temperature change would be almost impassible to measure, $\}$

Problem 5.1
Gwen: Velocity fields listed below
Find: which are possible two-dimensional, incompressible flow cases?
Solution: Apply the continuity equation in differential form.
Basic equation: $\quad \frac{\partial}{2 n} p u+\frac{\partial}{2 y} p v+\frac{\partial z}{\partial z} p \omega+\frac{\partial p}{\partial t}=0$
Assumptions: (i) Two-dimensional flow, $\vec{V}=\vec{V}(x, y)$, so $\frac{\partial}{\partial z}=0$
(a) Incompressible flow

$$
p=\text { constant, so } \frac{\partial p}{\partial t}=0, \frac{\partial p}{\partial\left(d u_{t a n c e}\right)}=0
$$

Then,

$$
\frac{\partial u}{2 x}+\frac{\partial v}{\partial y}=0 \quad \text { is criterion. }
$$

(a) $u=2 x^{2}+y^{2}-x^{2} y$

$$
\frac{\partial u}{2 x}+\frac{\partial v}{2 y}=(4 x-2 x y)+x(2 y-2)
$$

$$
v=x^{3}+x\left(y^{2}-2 y\right)
$$

(b) $u=2 x y-x^{2}+y$

$$
v=2 x y-y^{2}+x^{2}
$$

$$
\frac{2 u}{2 x}+\frac{\partial v}{\partial y}=(2 y-2 x)+(2 x-2 y)=0
$$

(c)

$$
\begin{aligned}
& u=x t+2 y \\
& v=x t^{2}-y t
\end{aligned}
$$

(d)

$$
\begin{aligned}
& u=(x+2 y) x t \\
& v=-(2 x+y) y t
\end{aligned}
$$

so possible
$\frac{\partial u}{\partial t}+\frac{\partial v}{\partial y}=t-t=0$, so possible

$$
\frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}=(2 x t+2 y t)+(-2 x t-2 y t)=0
$$ so possible

Problem 5.2
Given: Velocity fields listed below
Find: Which are, possible two-dimensional, incompressible flow cases?
Solution: Apply the continuity equation in differential form Basic equation: $\frac{2}{2} p u+\frac{2}{2}+\frac{2}{2} /=0(1) 20,=0(2)$
Basic equation: $\frac{\partial}{\partial x} \rho u+\frac{\partial}{\partial y} v v+\frac{\partial}{\partial g} \rho w+\frac{\partial \rho}{\partial v}=0$
Assumptions: (i) Two-dirensional flow, $\vec{V}=\vec{V}(4, y)$, so $\frac{2}{2 z}=0$
(2) Incompressible flow

$$
p=\text { constant, so } \frac{\partial p}{\partial t}=0, \frac{\partial p}{\partial(d a s t a n c e)}=0
$$

Then

$$
\frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}=0 \text { is the criterion }
$$

(a) $\begin{aligned} & u=-x+y \\ & v=x-y^{2}\end{aligned} \quad \frac{\partial u}{2 x}+\frac{\partial v}{\partial y}=-1-2 y \neq 0$, so $p \neq \operatorname{constan} t$
(b) $\begin{aligned} u & =x+2 y \\ v & =x^{2}-y\end{aligned} \quad \frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}=1-1=0$, so possible
(c) $\begin{aligned} u & =4 x^{2}-y \\ v & =x-y\end{aligned} \quad \frac{\partial u}{2 x}+\frac{\partial y}{\partial y}=8 x-2 y \neq 0$, so $p \neq$ contain
(d) $u=x t+2 y$

$$
v=x^{2}-y t^{0}
$$

$\frac{\partial u}{\partial k}+\frac{\partial v}{\partial y}=t-t=0$, so possible
(e)

$$
\begin{aligned}
& u=t^{2} \\
& v=x y t+y^{2}
\end{aligned}
$$

$$
\frac{2 u}{2 x}+\frac{2 v}{2 y}=t^{2}+x t+2 y \neq 0 \text {, so } f \neq \text { constant }
$$

Problem 5.3

Given: Velocity field $u=A x+B y+C_{z}$

$$
\begin{aligned}
& v=D_{x}+E y+F_{g} \\
& w=G x+1+y+V_{z}
\end{aligned}
$$

Find: The relationship among coefficients A-thru J for this to be an incompressible flow field.
Solution: Flow must satisfy differential form of continuity. Basic equation: $\frac{\partial \rho u}{\partial x}+\frac{\partial \rho v}{\partial y}+\frac{\partial \rho w}{\partial z}+\frac{\partial f}{\partial t}=0$
Assumption: Incompressible flow, so $\frac{\partial P}{\partial t}=\frac{\partial P}{\partial C}=0$
Then $\quad \frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}+\frac{\partial u}{\partial z}=0$
For the given flow field, $\frac{\partial u}{\partial x}=A, \frac{\partial v}{\partial y}=E, \frac{\partial w}{\partial z}=J$. Thus

$$
\begin{aligned}
& A+E+J=0 \text {, and } \\
& B, C, D, F, G, H \text { are arbitrary }
\end{aligned}
$$

Given: Velocity profiles listed below.
Find: Which are possible three-dimensional, incompressible cases?
Solution: Apply the continuity equation in differential form. Basic equation: $\frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}+\frac{\partial w}{\partial z}=0$
Assumption: Incompressible flow

Field
(a)

$$
\begin{aligned}
& u=x+y+z^{2} \\
& v=x-y+z \\
& w=2 x y+y^{2}+4
\end{aligned}
$$

(b)

$$
\begin{aligned}
& u=x y z t \\
& v=-x y z t^{2} \\
& w=\frac{z^{2}}{2}\left(x t^{2}-y t\right)
\end{aligned}
$$

(c)

$$
\begin{array}{ll}
u=y^{2}+2 x z & \frac{\partial u}{\partial x}=2 z \\
v=-2 y z+x^{2} y z & \frac{\partial v}{\partial y}=-2 z+x^{2} z \neq 0 \\
w=\frac{x^{2} z^{2}}{2}+x^{3} y^{4} & \frac{\partial w}{\partial z}=x^{2} z
\end{array}
$$

Terms
$\frac{\partial u}{\partial x}=1$

$$
\begin{aligned}
& \frac{\partial v}{\partial y}=-1 \\
& \frac{\partial w}{\partial z}=0
\end{aligned}
$$

$$
\begin{aligned}
& \frac{\partial u}{\partial x}=y z t \\
& \frac{\partial v}{\partial y}=-x z t^{2} \\
& \frac{\partial w}{\partial z}=x z t^{2}-y z t
\end{aligned}
$$

Possible

Yes

Yes

No

Given: Flow in ty plane, $u=A x(y-\infty)$, where $A=3 n^{\prime} \cdot s^{\prime \prime}$ $B=2 \mathrm{~m}$, and coordinates are measured on meters
Find: (a) Possible y component for steady, incompressible taw. (b) If result els valid for ursteadufinicomprescible foo. (c) Number of possible y components

Solution:
Basic equation: $\left.\nabla \cdot \vec{p}+\frac{\partial p}{\partial t}=0=\frac{\partial}{\partial x} p u+\frac{\partial}{\partial y} \rho\right)^{v v}+\frac{z}{5 g}\left(\bar{y}+\frac{\partial z}{\partial t}\right.$.
Assumptions: (1) flow in ry plane (giver), $\frac{\partial z}{2 z}=0$
(2) $p=$ constant (gives

Then $\frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}=0$ or $\frac{\partial v}{\partial y}=-\frac{\partial u}{\partial x}$.
and

$$
\frac{\partial v}{\partial y}=-\frac{\partial}{\partial x} A x(y-B)=-A(y-B) .
$$

Integrating

$$
v=\left(\frac{\partial v}{\partial y} d y=-A\left((y-B) d y=-A\left(\frac{y^{2}}{2}-B y\right)+F(x) .\right.\right.
$$

The basic equation reduces to the same form for unsteady You (as will steady flow). Hence the result is also valid for unsteady flow.
There are an infinite number. of possible y components, since $f(x)$ is arbitrary. The simplest is obtained with $f(x)=0$.

Ten.

$$
v=-3\left(\frac{y^{2}}{2}-2 y\right)
$$

Problem 5.6

Given: Flow in $x y$ plane, $v=y^{2}-2 x+2 y$, steady.
Find: (a) Possible x component for $\varphi=$ constant.
(b) Is it also valid for unsteady flow with $\rho=c$?
(c) Number of possible x components.

Solution:
Basic equation: $\nabla \cdot \rho \vec{v}+\frac{\partial \rho}{\partial t}=\frac{\partial}{\partial x} \rho u+\frac{\partial}{\partial y} \rho v+\frac{\partial}{\partial z} \rho u+\frac{\partial \hat{\rho}}{\partial t}=0$
Assume: (1) Flow in ky plane, $\frac{\partial}{\partial z}=0$
(2) $\rho=$ const ant

Then

$$
\frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}=0 \text { or } \frac{\partial u}{\partial x}=-\frac{\partial v}{\partial y}
$$

$$
-\frac{\partial v}{\partial y}=-\frac{\partial}{\partial y}\left(y^{2}-2 x+2 y\right)=-(2 y+2)=-2 y-2
$$

Integrating,

$$
u=\int \frac{\partial u}{\partial x} d x=\int-\frac{\partial v}{\partial y} d x=\int(-2 y-2) d x=-2 y x-2 x+f(y)
$$

The basic equation reduces to the same form for unsteady flow with $\rho=$ constant. Therefore it is also valid for unsteady flow.

There are an infinite number of possible x components, since $f(y)$ is arbitrary. The simplest would be to choose $f(y)=0$.

Given: Steady, incompressible flow field in the ry plane has an a component of velocity given by $u=\frac{A}{x}$, where $A=2 \mathrm{~m}^{2} / \mathrm{s}$ and A is in meters.
Find: The simplest y component of velocity for this flow field.
Solution:
Apply the continuity equation for the conditions given Basic equation: $\quad \nabla \cdot p^{V}+\frac{\partial p}{\partial t}=0$
For steady fou $\frac{\partial p}{\partial t}=0$ and for two-dimensional flow in the ty plane, $\frac{\partial}{\partial z}(1)=0$. Rus the basic equation reduces to

$$
\frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}=0
$$

Then

$$
\frac{\partial v}{\partial y}=-\frac{\partial u}{\partial x}=-\frac{\partial}{\partial x}\left(\frac{A}{x}\right)=\frac{A}{r^{2}}
$$

and

$$
v=\left(\frac{\partial v}{\partial y} d y+f(x)\right)=\left(\frac{A}{x^{2}} d y+f(x)=\frac{A y}{x^{2}}+f(x)\right.
$$

The simplest y component of velocity is dotannied with $f(x)=0$

$$
\therefore v=\frac{A y}{t^{2}}
$$

Problem 5.8
Given: The y component of velocity for a steady, incompressible flow in the ky plane is

$$
v=A y^{2} x^{2} \text {, where } A=\text { ails, way in } n
$$

Find: simplest x component.
Solution: Apply differential form of conservation of mass For two-dimensional, incompressible flow,

$$
\frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}=0 . \quad \text { Thus } \frac{\partial u}{\partial x}=-\frac{\partial v}{\partial y}=-A \frac{y^{2}}{x^{2}}
$$

Integrating,
$u=\frac{2 A y}{x}+f(y)$. The simplest form is for $f(y)=0$
Rus.

$$
u=2 \frac{A y}{x}=4 \frac{y}{x}
$$

and $\vec{V}=2 R \frac{y}{x} \hat{\imath}+R \frac{y^{2}}{x^{2}} \hat{j}=4 \frac{y}{x} \hat{\imath}+2 \frac{y^{2}}{x^{2}} \hat{j}$

Problem 5.9

The x component of velocity in a steady incompressible flow field in the $x y$ plane is $u=A x /\left(x^{2}+y^{2}\right)$, where $A=10 \mathrm{~m}^{2} / \mathrm{s}$, and x and y are measured in meters. Find the simplest y component of velocity for this flow field.

Given: x component of velocity of incompressible flow

Find: y component of velocity

Solution

$$
u(x, y)=\frac{A \cdot x}{x^{2}+y^{2}}
$$

For incompressible flow $\frac{d u}{d x}+\frac{d v}{d y}=0$

Hence

$$
\mathrm{v}(\mathrm{x}, \mathrm{y})=-\int \frac{\mathrm{d}}{\mathrm{dx}} \mathrm{u}(\mathrm{x}, \mathrm{y}) \mathrm{dy}
$$

$$
\frac{d u}{d x}=\frac{A \cdot\left(y^{2}-x^{2}\right)}{\left(x^{2}+y^{2}\right)^{2}}
$$

$$
v(x, y)=\int \frac{A \cdot\left(x^{2}-y^{2}\right)}{\left(x^{2}+y^{2}\right)^{2}} d y \quad v(x, y)=\frac{A \cdot y}{x^{2}+y^{2}}
$$

Problem 5.10
Given: Approximate profile for laminar boundary layer

$$
u=c U \frac{y}{x^{1 / 2}}
$$

Find: (a) snow simplest v is $v=\frac{U}{4} \frac{y}{x}$
(b) Evalceate maximum value of V / U where $\delta=5 \mathrm{~mm}, x=0.5 \mathrm{~m}$.

Solution: Apply continuity for incompressible flow
Basic equation: $\frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}+\frac{\partial y^{2}}{\partial z}=0$
Thus

$$
\begin{gathered}
\frac{\partial v}{\partial y}=-\frac{\partial u}{\partial x}=-\left(-\frac{1}{2}\right) c v \frac{y}{x^{3 / 2}} \\
v=\int \frac{\partial v}{\partial y} d y+f(x)=\int \frac{1}{2} c v \frac{y}{x^{3 / 2}} d y+f(x)=\frac{1}{4} c v \frac{y^{2}}{x^{3 / 2}}+f(x)
\end{gathered}
$$

or

$$
v=\frac{U}{4} \frac{y}{x} \underset{\leftarrow}{ }[f(x)=0 \text { since } v=0 \text { along } y=0]
$$

From

$$
\frac{v}{\sigma^{0}}=\frac{1}{4} \frac{y}{x}
$$

maximum value occurs at $y=\delta$. At the location given,

$$
\left.\frac{v}{v}\right)_{\max }=\frac{1}{4} \frac{\delta}{x}=\frac{1}{4} \frac{0.005 \mathrm{~m}}{0.5 \mathrm{~m}}=0.0025
$$

Problem 5.11

Given: Approximation for x component of vel locity in laminar boundary layer

$$
u=v \sin \left(\frac{\pi}{2} \frac{y}{\delta}\right) \quad \text { where } \delta=c x^{1 / 2}
$$

Show: $\frac{v}{v}=\frac{\delta}{\pi x}\left[\cos \left(\frac{\pi}{2} \frac{y}{\delta}\right)+\frac{\pi}{2} \frac{y}{\delta} \sin \left(\frac{\pi}{2} \frac{y}{\delta}\right)-1\right]$ for incompressible flow.
Plot: $u / v v / v$ us, y / δ to locate maximum value of $w v_{j}$
evaluate at location where $x=0.5 \mathrm{~m}$ and $\delta=5 \mathrm{~mm}$.
Solution: Apply differential continuity for incompressible flow.
Basic equation: $\frac{\partial u}{\partial x}+\frac{\partial w}{\partial y}+\frac{\partial \hat{y}}{\partial z}=0$
Thus $\frac{\partial v^{\prime}}{\partial y}=-\frac{\partial u}{\partial x}=-\frac{\partial u}{\partial \delta} \frac{d \delta}{d x}=-\left(\frac{\pi y}{2}\right)\left(-\frac{1}{\delta^{2}}\right) \cos \left(\frac{\pi y}{2 \delta}\right) \frac{U}{2} c x^{-1 / 2}=\frac{U}{2 x}\left(\frac{\pi y}{2 \delta}\right) \cos \left(\frac{\pi y}{2 \delta}\right)$
Integrating,

$$
v=\int_{0}^{y} \frac{\partial v}{\partial y} d y+f(x)=\int_{0}^{y} \frac{U}{2 x}\left(\frac{\pi}{2} \frac{y}{\delta}\right) \cos \left(\frac{\pi}{2} \frac{y}{\delta}\right) d y+f(x)
$$

$$
v=\frac{2 \delta}{\pi} \frac{v}{2 x} \int_{0}^{\frac{\pi}{2} \frac{y}{\delta}} r \cos \mu d h+f(x)=\frac{\delta}{\pi} \frac{v}{x}[\cos \mu+\sin \alpha]_{0}^{\frac{\pi}{2} \frac{y}{\delta}}+f(x)
$$

$$
\frac{v}{v}=\frac{1}{\pi} \frac{\delta}{x}\left[\cos \left(\frac{\pi}{2} \frac{y}{\delta}\right)+\left(\frac{\pi}{2} \frac{y}{\delta}\right) \sin \left(\frac{\pi}{2} \frac{y}{\delta}\right)-1\right]
$$

This expression is a maxincem at $\mathscr{I}=\delta$; where

$$
\frac{v}{U}=\frac{1}{\pi} \frac{\delta}{x} \cdot\left[\left(\frac{\pi}{2}\right) \sin \left(\frac{\pi}{2}\right)-1\right]=\frac{\delta}{\pi x}\left(\frac{\pi}{2}-1\right)
$$

and

$$
\left.\frac{v}{V}\right)_{\max }=0.182 \frac{\delta}{x}
$$

At the location given

$$
\left.\frac{v}{v}\right)_{\max }=0.182 \times 0.005 m_{\times} \frac{1}{0.5 m}=0.00182 \text { or } 0.182 \text { percent }
$$

Problem 5.12
Given: Laminar boundary layer, parabolic approximate profile.

$$
\frac{u}{U}=2\left(\frac{y}{\delta}\right)-\left(\frac{y}{\delta}\right)^{2} \quad \delta=c x^{1 / 2}
$$

Find: \quad show $\frac{v}{V}=\frac{\delta}{x}\left[\frac{1}{2}\left(\frac{y}{\delta}\right)^{2}-\frac{1}{3}\left(\frac{y}{\delta}\right)^{3}\right]$ for incompressible flow.
Plot: $\frac{v}{U}$ vs. $\frac{y}{\delta}$, evaluate max. at $x=0.5 \mathrm{~m}$, if $\delta=5 \mathrm{~mm}$.
Solution: Apply conservation of mass for incompressible flow. Basic equation: $\quad \frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}+\frac{\partial y}{d z}=0$
Assumptions: (1) Incompressible flow ($\rho=$ const)
(2) $w=0$

Then

$$
\frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}=0 ; \quad \frac{\partial v}{\partial y}=-\frac{\partial u}{\partial x} ; v=\int_{0}^{y}-\frac{\partial u}{\partial x} d y+f(x)
$$

From the given profile

$$
\frac{\partial u}{\partial x}=2 v y(-1) \frac{1}{\delta^{2}} \frac{d \delta}{d x}-v y^{2}(-2) \frac{1}{\delta^{3}} \frac{d \delta}{d x}=2 v \frac{d \delta}{d x}\left(\frac{y^{2}}{\delta^{3}}-\frac{y}{\delta^{2}}\right)
$$

since $\delta=c x^{1 / 2}, \frac{d \delta}{d x}=\frac{1}{2} c x^{-1 / 2}=\frac{c x^{1 / 2}}{2 x}=\frac{\delta}{2 x}$, so $\frac{\partial u}{\partial x}=\frac{U \delta}{x}\left(\frac{y^{2}}{\delta^{3}}-\frac{y}{\delta^{2}}\right)$
Integrating, $\frac{v}{D}=\frac{\delta}{x} \int_{0}^{y}\left(\frac{y}{\delta^{2}}-\frac{y^{2}}{\delta^{3}}\right) d y=\frac{\delta}{x}\left[\frac{1}{2}\left(\frac{y}{\delta}\right)^{2}-\frac{1}{3}\left(\frac{y}{\delta}\right)^{3}\right]$
plotting shows:

Maximum occurs

$$
\operatorname{at}\left(\frac{y}{\delta}\right)=1
$$

$$
\left.\left.\frac{v}{U}\right)_{\max }=\frac{v}{U}\right)_{\frac{y}{\delta}=1}=\frac{\delta}{x}\left[\frac{1}{2}(1)^{2}-\frac{1}{3}(1)^{2}\right]=\frac{\delta}{6 x}
$$

Evaluating, $\left.\frac{w}{U}\right)_{\text {max }}=\frac{1}{6} \times 0.005 m_{\times} \frac{1}{0.5 m}=0.00167$ or 0.167 percent

Problem 5.13

A useful approximation for the x
layer is a cubic variation from $u=0$ at the surface ($y=0$) to the freestream velocity, U, at the edge of the boundary layer $(y=\delta)$. The equation for the profile is $u / U=3 / 2(y / \delta)-1 / 2(y / \delta)^{3}$, where $\delta=c x^{1 / 2}$ and c is a constant. Derive the simplest expression for v / U, the y component of velocity ratio. Plot u / U and v / U versus y / δ, and find the location of the maximum value of the ratio v / U. Evaluate the ratio where $\delta=5 \mathrm{~mm}$ and $x=0.5 \mathrm{~m}$.

Given: Data on boundary layer

Find: y component of velocity ratio; location of maximum value; plot velocity profiles; evaluate at particular point

Solution

$$
\mathrm{u}(\mathrm{x}, \mathrm{y})=\mathrm{U} \cdot\left[\frac{3}{2} \cdot\left(\frac{\mathrm{y}}{\delta(\mathrm{x})}\right)-\frac{1}{2} \cdot\left(\frac{\mathrm{y}}{\delta(\mathrm{x})}\right)^{3}\right]
$$

and

$$
\delta(x)=c \cdot \sqrt{x}
$$

so

$$
\mathrm{u}(\mathrm{x}, \mathrm{y})=\mathrm{U} \cdot\left[\frac{3}{2} \cdot\left(\frac{\mathrm{y}}{\mathrm{c} \cdot \sqrt{\mathrm{x}}}\right)-\frac{1}{2} \cdot\left(\frac{\mathrm{y}}{\mathrm{c} \cdot \sqrt{\mathrm{x}}}\right)^{3}\right]
$$

For incompressible flow $\frac{d u}{d x}+\frac{d v}{d y}=0$

Hence

$$
\mathrm{v}(\mathrm{x}, \mathrm{y})=-\int \frac{\mathrm{d}}{\mathrm{dx}} \mathrm{u}(\mathrm{x}, \mathrm{y}) \mathrm{dy}
$$

$$
\frac{\mathrm{du}}{\mathrm{dx}}=\frac{3}{4} \cdot \mathrm{U} \cdot\left(\frac{\mathrm{y}^{3}}{\mathrm{c}^{3} \cdot \mathrm{x}^{\frac{5}{2}}}-\frac{\mathrm{y}}{\mathrm{c} \cdot \mathrm{x}^{\frac{3}{2}}}\right)
$$

So

$$
\mathrm{v}(\mathrm{x}, \mathrm{y})=-\int \frac{3}{4} \cdot \mathrm{U} \cdot\left(\frac{\mathrm{y}^{3}}{\mathrm{c}^{3}} \cdot \frac{\mathrm{x}^{5}}{2}-\frac{\mathrm{y}}{\mathrm{c}} \cdot \frac{\mathrm{x}^{3}}{2}\right) \mathrm{dy}
$$

$$
\mathrm{v}(\mathrm{x}, \mathrm{y})=\frac{3}{8} \cdot \mathrm{U} \cdot\left(\frac{\mathrm{y}^{2}}{\frac{3}{\mathrm{~h}}}-\frac{\mathrm{y}^{4}}{2 \cdot \mathrm{x}^{3} \cdot \mathrm{c}^{\frac{5}{2}}}\right)
$$

$$
\mathrm{v}(\mathrm{x}, \mathrm{y})=\frac{3}{8} \cdot \mathrm{U} \cdot \frac{\delta}{\mathrm{x}} \cdot\left[\left(\frac{\mathrm{y}}{\delta}\right)^{2}-\frac{1}{2} \cdot\left(\frac{\mathrm{y}}{\delta}\right)^{4}\right]
$$

The maximum occurs at $\quad y=\delta \quad$ as seen in the corresponding Excel workbook

$$
\mathrm{v}_{\max }=\frac{3}{8} \cdot \mathrm{U} \cdot \frac{\delta}{\mathrm{x}} \cdot\left(1-\frac{1}{2} \cdot 1\right)
$$

At $\delta=5 \cdot \mathrm{mmand} \mathrm{x}=0.5 \cdot \mathrm{~m}$, the maximum vertical velocity is

$$
\frac{\mathrm{v}_{\max }}{\mathrm{U}}=0.00188
$$

Problem 5.13 (In Excel)

A useful approximation for the x component of velocity in an incompressible laminar boundary layer is a cubic variation from $u=0$ at the surface $(y=0)$ to the freestream velocity, U, at the edge of the boundary layer $(y=d)$. The equation for the profile is $u / U=3 / 2(y / d)-1 / 2(y / d)^{3}$, where $d=c x^{1 / 2}$ and c is a constant. Derive the simplest expression for v / U, the y component of velocity ratio. Plot u / U and v / U versus y / d, and find the location of the maximum value of the ratio v / U. Evaluate the ratio where $d=5 \mathrm{~mm}$ and $x=0.5 \mathrm{~m}$.

Given: Data on boundary layer

Find: y component of velocity ratio; location of maximum value; plot velocity profiles; evaluate at particular point

Solution

The solution is $\quad \frac{\mathrm{v}}{\mathrm{U}}=\frac{3}{8} \cdot \frac{\delta}{\mathrm{x}} \cdot\left[\left(\frac{\mathrm{y}}{\delta}\right)^{2}-\frac{1}{2} \cdot\left(\frac{\mathrm{y}}{\delta}\right)^{4}\right]$
To find when v / U is maximum, use Solver

$\boldsymbol{v} / \boldsymbol{U}$	$\boldsymbol{y} / \boldsymbol{\delta}$
0.00188	1.0
$\boldsymbol{v} / \boldsymbol{U}$	$\boldsymbol{y} / \boldsymbol{\delta}$
0.000000	0.0
0.000037	0.1
0.000147	0.2
0.000322	0.3
0.000552	0.4
0.00082	0.5
0.00111	0.6
0.00139	0.7
0.00163	0.8
0.00181	0.9
0.00188	1.0

Given: Flow in wy plane, $v=-B x y^{3}$ where $B=0.2 m^{-3} . s^{\prime}$ and coordinates are measured in meters; steady, $p=c$.
Find: (a) Simplest x component of velocity.
(b) Equation of streamlines.

Plot: streamlines through points (1,4) and (2,4) .
Solution:
Basic equation: $\nabla \cdot \vec{p} v+\frac{\partial p}{\partial t}=\frac{\partial}{\partial x} p u+\frac{\partial}{\partial y} p v+\frac{\partial}{\partial z} \rho^{w}+\frac{\partial \lambda}{\partial t}=0(\hat{z}$
Assumptions: (1) flow in the ry plane (gwen), $\frac{\partial}{2 z}=0$
(a) $p=$ constant E given).
then, $\quad \frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}=0 \quad$ or $\frac{\partial u}{\partial x}=-\frac{\partial v}{\partial y}$.
and $\frac{\partial u}{\partial x}=-\frac{2}{\partial y}\left(-3 x y^{3}\right)=33 x y^{2}$
Integrating.

$$
u=\int \frac{3 u}{2 x} d x=\int 3 B x y^{2}=\frac{3}{2} B x^{2} y^{2}+f(y)
$$

the simplest expression is obtained with $f(y)=0$

$$
\therefore u=\frac{3}{2} B x^{2} y^{2}
$$

The equation of the streamlines is

$$
\frac{d y}{d+y}=\frac{v}{u l}=\frac{-3 x y^{3}}{\frac{3}{2} b x^{2} y^{2}}=\frac{-2 y}{3 x}
$$

Separating variables integrating

$$
\begin{aligned}
& \frac{3}{2} \frac{d y}{y}+\frac{d x}{x}=0 \\
& \frac{3}{2} \ln y+\ln x=\ln c
\end{aligned}
$$

$$
x y_{3 / 2}^{\delta_{3}}=c \text { streamline }
$$

$p^{t}(1,4) \quad x y^{3 / 2}=8$
$p t(2,4) \quad x y^{3 / 2}=16$

Problem 5.15
Given: Flow in ty plane, $u=A x^{2} y^{2}$ where $A=0.3 \mathrm{~m}^{-3} \cdot \mathrm{~s}^{-1}$, and coordinates are measured in meters
Find: (a) Possible if component for steady, incompressible flow. (b) If result is valid. for unsteady, incompressible flaw
(c) Number of possible y components.
(d) Equation of streamlines for simplest value of v.

Ploti streamlines through points $(1,4)$ and $(2,4)$
Solution:
Basie equation: $\nabla \cdot p \vec{v}+\frac{\partial p}{\partial t}=0=\frac{\partial}{\partial x} p u+\frac{\partial}{\partial y} p v+\frac{z}{z g} p w+\frac{p p}{\partial t}$ Assumptions: i) flow in ty plane giver, $\frac{2}{3 z}=0$
(a) $p=$ constant (quiver

Then, $\frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}=0$ or $\frac{\partial v}{\partial y}=-\frac{\partial u}{\partial x}=-\frac{\partial}{\partial x}\left(A x^{2} y^{2}\right)=-2 A x y^{2}$
Integrating

$$
v=\int \frac{\partial v}{\partial y} d y=-\int 2 R x y^{2}=-\frac{2}{3} A x y^{3}+f(x)
$$

The basic equation reduces to the same form for unsteady
flow. Hence the result is also valid for unsteady flow. There are an nifinite number of possible y components, sine $f(x)$ is arbitrary. The simplest is obtained with $f(x)=0$.
The equation of the streanime is

$$
\left.\frac{d y}{d x}\right|_{5 Q} ^{u}=\frac{v}{u}=-\frac{2}{3} \frac{A+y^{3}}{A x^{2} y^{2}}=-\frac{2 y}{3 x}
$$

Separating variates ntequatigg
3 at

$$
\frac{3}{2} \frac{4 y}{4}+\frac{a x}{d x}=0
$$

Given: Conservation of mass.
Find: Identical result to Eq, 5.1a by expanding products of density and velocity in Taylor serves.

Solution: Use diagram of Fig. 5.1:
Apply conservation of mass, using a
Taylor series expansion of products. Evaluate derivatives at 0 .

For the x direction the mass flux is

$$
\dot{m}_{x}=\rho u d A=\rho u d x d y
$$

At the right face

Fig. 5.1 Differential control volume in rectangular coordinates

$$
\dot{m}_{x+d x / 2}=\rho u d y d z+\frac{\partial}{\partial x} \rho u \frac{d x}{2} d y d z \text { (out of }(v)
$$

At the left face

$$
\dot{m}_{x}-d x_{/ 2}=\rho u d y d z+\frac{\partial}{\partial x} \rho u\left(-\frac{d x}{2}\right) d y d z \text { (into }(v)
$$

The net mass flux is "out" minus "in," so

$$
\dot{m}_{x}(\text { net })=\dot{m}_{x}+d x / 2-\dot{m}_{x}-d x / 2=\frac{\partial}{\partial x} \rho u d x d y d z
$$

Summing terms for x, y, and z, and including $\frac{\partial \rho}{\partial t} d x d y d z$, we get

$$
0=\frac{\partial}{\partial x} \rho u+\frac{\partial}{\partial y} \rho v+\frac{\partial}{\partial z} \rho w+\frac{\partial \rho}{\partial t}
$$

Open-Ended Problem Statement: Consider a water stream from a jet of an oscillating lawn sprinkler. Describe the corresponding pathline and streakline.

Discussion: Because the sprinkler jets oscillate, this is an unsteady flow. Therefore pathlines and streaklines need not coincide.

A pathline is a line tracing the path of an individual fluid particle. The path of each fluid particle is determined by the jet angle and the speed at which the particle leaves the jet.
Once a particle leaves the jet it is subject to gravity and drag forces. If aerodynamic drag were negligible, the path of each water particle would be parabolic. The horizontal speed of the particle would remain constant throughout its trajectory. The vertical speed would be slowed by gravity until reaching peak height, then it would become increasingly negative until the particle strikes the ground. The effect of aerodynamic drag is to reduce the particle speed. With drag the particle will not rise as far vertically nor travel as far horizontally. At each instant the particle trajectory will be lower and closer to the jet compared to the no-friction case. The trajectory after the particle reaches its peak height will be steeper than in the no-friction case.

A streamline is a line drawn in the flow that is tangent everywhere to the velocity vectors of the fluid motion. It is difficult to visualize the streamlines for an unsteady flow field because they may move laterally. However, the streamline pattern may be drawn at any instant.
A streakline is the locus of the present locations of fluid particles that passed a reference point at previous times. As an example, choose the exit of a jet as the reference point. Imagine marking particles that pass the jet exit at a given instant and at uniform time intervals later. The first particle will travel farthest from the jet exit and on the lowest trajectory; the last particle will be located right at the jet exit. The curve joining the present positions of the particles will resemble a spiral whose radius increases with distance from the jet opening.

Open-Ended Problem Statement: Consider a water stream from a nozzle attached to a rotating lawn sprinkler. Describe the corresponding pathline, streamline, and streakline.

Discussion: The rotating motion of the sprinkler jets makes this an unsteady flow. Therefore pathlines, streamlines, and streaklines need not coincide.
A pathline is a line tracing the path of an individual fluid particle. The trajectory of each particle depends on the absolute velocity with which it leaves the jet. Thus the path of each fluid particle is determined by the jet angle, the speed at which the particle leaves the jet, and the speed with which the sprinkler is rotating.

Once a particle leaves the jet it is subject to gravity and drag forces. The path of each water particle would be parabolic if aerodynamic drag were negligible. The absolute horizontal speed of the particle would remain constant throughout its trajectory. The particle would be slowed by gravity until reaching peak height, then its vertical speed would become increasingly negative until the particle strikes the ground. Aerodynamic drag reduces the particle speed. With drag the particle will not rise as far vertically nor travel as far horizontally. At each instant the particle trajectory will be lower and closer to the jet and the trajectory after the particle reaches its peak height will be steeper compared to the no-friction case.

A streamline is a line drawn in the flow that is tangent everywhere to the velocity vectors of the fluid motion. When unsteady effects are negligible, the streamline on which a given fluid particle lies is coincident with the pathline for the same particle. Flow unsteadiness creates different pathlines for particles that leave the sprinkler nozzle at different instants. It is difficult to visualize streamlines for an unsteady flow field because they may move laterally. The term "streamline" has little meaning for a rotating sprinkler with discrete jets.
A streakline is the locus of the present positions of fluid particles that passed a reference point at previous times. As an example, choose the exit of a jet as the reference point. Imagine marking particles that pass the jet exit at a given instant and at uniform time intervals later. The first particle will travel farthest from the jet exit where it was emitted; the last particle will be located right at the exit. In plan view the curve joining the positions of several particles will resemble a spiral with tighter radius close to the present position of the jet.

Given: Velocity fields listed below.
Find: Which are possible incompressible flow cases?
Solution: Apply the continuity equation in differential form. Basic equation: $\frac{1}{r} \frac{\partial r V_{r}}{\partial r}+\frac{1}{r} \frac{\partial \rho V_{0}}{\partial \theta}+\frac{\partial \rho V_{\hat{\beta}}}{\partial z}+\frac{\partial f(1)=0(z)}{\partial t}=0$

Assumptions: (1) Two-dimensional flow, so $\frac{\partial}{\partial z}=0$
(2) Incompressible flow

$$
\rho=\text { constant, so } \frac{\partial \rho}{\partial t}=\frac{\partial \rho}{\partial(\text { distance })}=0
$$

Then

$$
\frac{1}{r} \frac{\partial r V_{r}}{\partial r}+\frac{1}{r} \frac{\partial V_{\theta}}{\partial \theta}=0
$$

or

$$
\frac{\partial r V_{r}}{\partial r}+\frac{\partial V_{\theta}}{\partial \theta}=0 \text { is the criterion. }
$$

(c) $U \cos \theta\left[1-\left(\frac{a}{r}\right)^{2}\right]^{*}-U \sin \theta\left[1+\left(\frac{a}{r}\right)^{2}\right] U \cos \theta\left[1+\left(\frac{a}{r}\right)^{2}\right]-V \cos \theta\left[1+\left(\frac{a}{r}\right)^{2}\right] \quad 0$ Yes

* Note if $V_{r}=U \cos \theta\left[1-\left(\frac{a}{r}\right)^{2}\right]$, then $r V_{r}=U \cos \theta\left[r-\frac{a^{2}}{r}\right]$
and $\frac{\partial r V r}{\partial r}=U \cos \theta\left[1+\frac{a^{2}}{r^{2}}\right]=v \cos \theta\left[1+\left(\frac{a}{r}\right)^{2}\right]$

Gwen: Incompressible flow in re plane with $V_{\theta}=-\frac{\wedge \sin \theta}{\Gamma^{2}}$
Find: (a) A possible component, V_{c}
(b) How many possible r components are there?

Solution: Velocity field must. satisfy the differential continitity equation $\left.=0(1) \quad=d_{2}\right)$
Basic equation: $\frac{1}{5} \frac{\partial r p \psi_{r}}{\partial r}+\frac{1}{r} \frac{\partial p \psi_{e}}{\partial s}+\frac{\partial p x_{3}}{\partial z}+\frac{\partial \psi}{\partial t}=0$
Assumptions: (1) Flow in re plane, so $\alpha / 2 z=0$
(2) Incompressible flow

$$
p=\operatorname{con} t a n t, \text { so } \frac{\partial p}{\partial t}=\frac{\partial p}{\partial d i t a r c e}=0
$$

Then

$$
\frac{1}{r} \frac{\partial r t_{r}}{\partial r}+\frac{1}{r} \frac{\partial V_{\theta}}{\partial \theta}=0 \quad \sigma \quad \frac{\partial V_{\theta}}{\partial \theta}=-\frac{\partial r V_{r}}{\partial r}
$$

Solving for V_{r},

$$
V_{r}=-\frac{1}{r} \int \frac{\partial V_{\theta}}{\partial \theta} d r+f(\theta)
$$

Since $V_{\theta}=-\frac{\Lambda \sin \theta}{\Gamma^{2}}, \frac{\partial V_{\theta}}{2 \theta}=-\frac{\Lambda \cos \theta}{r^{2}}$
Thus

$$
\begin{align*}
& V_{r}=-\frac{1}{r} \int-\frac{\Lambda \cos \theta}{r^{2}} d r+f(\theta)=-\frac{1}{r} \frac{\Lambda \cos \theta}{r}+f(\theta) \\
& V_{r}=-\frac{\Lambda \cos \theta}{r^{2}}+f(\theta) \tag{r}
\end{align*}
$$

There are an infinite number of solutions for ∇_{r}, one for each choice of $f(\theta)$

Given: Flow between parallel disks as shown.
Velocity is purely tangential.
No-slip condition is satisfied, so
velocity varies linearly with z.

Find: Expression for velocity field.
Solution: A general velocity field would be

$$
\vec{V}=V_{r} \hat{e}_{r}+V_{\theta} \hat{e}_{\theta}+V_{z} \hat{k}
$$

but velocity is purely tangential, so $V_{r}=V_{z}=0$. Then we seek

$$
V_{\theta}=V_{\theta}(r, \theta, z)
$$

By symmetry, $\frac{\partial V_{\theta}}{\partial \theta}=0$, so

$$
V_{\theta}=V_{\theta}(r, z)
$$

Since the variation with z is linear, $V_{v}=z f(r)+c$ at most, that is

$$
\frac{\partial V_{\theta}}{\partial z}=f(r)
$$

at most.
Along the surface $z=0, V_{\theta}=0$, so $c=0$.
Along the surface $z=h, V_{\theta}=\omega r$, so

$$
V_{\theta}(z=h)=\omega r=h f(r)
$$

or

$$
f(r)=\frac{\omega r}{h}
$$

and

$$
V_{\theta}=\omega r \frac{z}{h}
$$

Thus

$$
\vec{v}=\omega r \frac{z}{h} \hat{e}_{\theta}
$$

Problem 5.22

A velocity field in cylindrical coordinates is given as $\vec{V}=\hat{e}_{r} A / r+\hat{e}_{\theta} B / r$, where A and B are constants with dimensions of $\mathrm{m}^{2} / \mathrm{s}$. Does this represent a possible incompressible flow? Sketch the streamline that passes through the point $r_{0}=1 \mathrm{~m}, \theta=90^{\circ}$ if $A=B=1 \mathrm{~m}^{2} / \mathrm{s}$, if $A=1 \mathrm{~m}^{2} / \mathrm{s}$ and $B=0$, and if $B=1 \mathrm{~m}^{2} / \mathrm{s}$ and $A=0$.

Given: The velocity field

Find: Whether or not it is a incompressible flow; sketch various streamlines

Solution

$$
\mathrm{V}_{\mathrm{r}}=\frac{\mathrm{A}}{\mathrm{r}} \quad \mathrm{~V}_{\theta}=\frac{\mathrm{B}}{\mathrm{r}}
$$

For incompressible flow

$$
\frac{1}{\mathrm{r}} \cdot \frac{\mathrm{~d}}{\mathrm{dr}}\left(\mathrm{r} \cdot \mathrm{~V}_{\mathrm{r}}\right)+\frac{1}{\mathrm{r}} \cdot \frac{\mathrm{~d}}{\mathrm{~d} \theta} \mathrm{~V}_{\theta}=0
$$

$$
\frac{1}{\mathrm{r}} \cdot \frac{\mathrm{~d}}{\mathrm{dr}}\left(\mathrm{r} \cdot \mathrm{~V}_{\mathrm{r}}\right)=0
$$

$$
\frac{1}{\mathrm{r}} \cdot \frac{\mathrm{~d}}{\mathrm{~d} \theta} \mathrm{~V}_{\theta}=0
$$

Hence

$$
\frac{1}{\mathrm{r}} \cdot \frac{\mathrm{~d}}{\mathrm{dr}}\left(\mathrm{r} \cdot \mathrm{~V}_{\mathrm{r}}\right)+\frac{1}{\mathrm{r}} \cdot \frac{\mathrm{~d}}{\mathrm{~d} \theta} \mathrm{~V}_{\theta}=0 \quad \text { Flow is incompressible }
$$

For the streamlines

$$
\frac{\mathrm{dr}}{\mathrm{~V}_{\mathrm{r}}}=\frac{\mathrm{r} \cdot \mathrm{~d} \theta}{\mathrm{~V}_{\theta}} \quad \frac{\mathrm{r} \cdot \mathrm{dr}}{\mathrm{~A}}=\frac{\mathrm{r}^{2} \cdot \mathrm{~d} \theta}{\mathrm{~B}}
$$

$$
\int \frac{1}{\mathrm{r}} \mathrm{dr}=\int \frac{\mathrm{A}}{\mathrm{~B}} \mathrm{~d} \theta
$$

Integrating

$$
\ln (\mathrm{r})=\frac{\mathrm{A}}{\mathrm{~B}} \cdot \theta+\mathrm{const}
$$

Equation of streamlines is $\quad r=C \cdot e^{\frac{A}{B} \cdot \theta}$
(a) For $A=B=1 \mathrm{~m}^{2} / \mathrm{s}$, passing through point ($1 \mathrm{~m}, \pi / 2$)

$$
\mathrm{r}=\mathrm{e}^{\theta-\frac{\pi}{2}}
$$

(b) For $A=1 \mathrm{~m}^{2} / \mathrm{s}, B=0 \mathrm{~m}^{2} / \mathrm{s}$, passing through point ($1 \mathrm{~m}, \pi / 2$)
$\theta=\frac{\pi}{2}$
(c) For $A=0 \mathrm{~m}^{2} / \mathrm{s}, B=1 \mathrm{~m}^{2} / \mathrm{s}$, passing through point $(1 \mathrm{~m}, \pi / 2) \quad \mathrm{r}=1 \cdot \mathrm{~m}$

(a)
(b)
---- (c)

Given: Definition of ∇ in cylindrical coordinates.
Obtain: $\nabla \cdot \rho \vec{v}$ in asindrical coordinates (use hint on page zoz).
Show result is identical to Eg, 5,2.
Solution: The definition of ∇ in cylindrical coordinates is

$$
\begin{equation*}
\nabla=\hat{e}_{r} \frac{\partial}{\partial r}+\hat{e}_{\theta} \frac{1}{r} \frac{\partial}{\partial \theta}+\hat{k} \frac{\partial}{\partial z} \tag{3,21}
\end{equation*}
$$

Note $\rho \vec{V}=\rho\left(\hat{e}_{r} v_{r}+\hat{e}_{\theta} v_{0}+\hat{k} v_{z}\right)$
Hint: $\frac{\partial \hat{e}_{r}}{\partial \theta}=\hat{e}_{\theta}$, and $\frac{\partial \hat{e}_{\theta}}{\partial \theta}=-\hat{e}_{r}$
Substituting $\nabla \cdot \rho \vec{v}=\left(\hat{e}_{r} \frac{\partial}{\partial r}+\hat{e}_{\theta} \frac{\partial}{\partial \theta}+\hat{k} \frac{\partial}{\partial 3}\right) \cdot \rho\left(\hat{e}_{r} v_{r}+\hat{e}_{\theta} V_{\theta}+\hat{k} v_{z}\right)$

$$
\begin{aligned}
& \nabla \cdot \rho \vec{v}= \hat{e}_{r} \cdot \frac{\partial}{\partial r} \rho\left(\hat{e}_{r} v_{r}+\hat{e}_{\theta} v_{\theta}+\hat{k} v_{z}\right) \\
&+\hat{e}_{\theta} \cdot \frac{\partial}{\partial \theta} \rho\left(\hat{e}_{r} v_{r}+\hat{e}_{\theta} v_{\theta}+\hat{k} v_{z}\right) \\
&+\hat{k} \cdot \frac{\partial}{\partial z} \rho\left(\hat{e}_{r} v_{r}+\hat{e}_{\theta} v_{\theta}+\hat{k} v_{z}\right) \\
&= \hat{e}_{r} \cdot \hat{e}_{r} \frac{\partial}{\partial r} \rho v_{r}+\hat{e}_{\theta} \cdot \frac{\partial}{r} \frac{\partial}{\partial \theta} r_{\theta} \rho v_{r}+\hat{e}_{\theta} \cdot \hat{e}_{r} \frac{\partial}{\partial \theta} \rho v_{r} \\
&+\hat{e}_{\theta} \cdot \frac{\partial \hat{e}_{\theta}}{\partial \theta} \hat{e}_{r} \\
& \nu v_{\theta}+\hat{e}_{\theta} \cdot \hat{e}_{\theta} \frac{\partial}{r} \frac{\partial}{\partial \theta} \rho v_{\theta}+\hat{k} \cdot \hat{k} \frac{\partial}{\partial z} \rho v_{z} \\
& \nabla \cdot \rho \vec{v}= \frac{\partial}{\partial r} \rho v_{r}+\frac{\rho v_{r}}{r}+\frac{1}{r} \frac{\partial}{\partial \theta} \rho v_{\theta}+\frac{\partial}{\partial z} \rho v_{z}
\end{aligned}
$$

Combining the first two terms, $\frac{\partial}{\partial r} \rho v_{r}+\rho v_{r}=\frac{1}{r} \frac{\partial}{\partial r} r \rho v_{r}$, as may be verified by differentiation. Substituting

$$
\nabla \cdot \rho \vec{v}=\frac{1}{r} \frac{\partial}{\partial r}\left(r \rho v_{r}\right)+\frac{1}{r} \frac{\partial}{\partial v}\left(\rho v_{\theta}\right)+\frac{\partial}{\partial z}\left(\rho v_{z}\right)
$$

This result is identical to the correspondirigterms in Eg.5.2.

Given: Velocity field for viscometr ic flow of Example Problem 5.7

$$
\vec{v}=v \frac{y}{h} \hat{\imath}
$$

Find: (a) stream function.
(b) Locate streamline that divides flow rate equally.

Solution: Flow is incompressible, so stream function can be derived.

$$
\frac{\partial \psi}{\partial y}=u=v_{y} h \text {, so } \psi=\int \frac{\partial \psi}{\partial y} d y+f(x)=\int \frac{v_{y}}{h} d y+f(x)=\frac{v_{y}}{2 h}+f(x)
$$

Let $\psi=0$ at $y=0$, so $f(x)=0$

$$
\psi=\frac{U y^{2}}{2 h}
$$

Stream function is maxisium at $y=h$.

$$
\begin{aligned}
& \psi_{\text {max }}=\frac{U h^{2}}{2 h}=\frac{U h}{2} ; Q / /=\psi_{\max }-\psi_{\min }=\frac{U h}{2}-0=\frac{U h}{2} \\
& \psi_{Q / 2}=\frac{1}{2} \psi_{\text {max }}=\frac{U h}{4}=\frac{U y^{2}}{2 h}
\end{aligned}
$$

Thus

$$
y^{2}=\frac{2 h}{v} \frac{v h}{4}=\frac{h^{2}}{2} \text { so } y=\frac{h}{\sqrt{2}}
$$

Given: Vebcity field $\vec{V}=(x+2 y) \hat{\imath}+\left(x^{2}-y\right) \hat{\jmath}$
Find: Corresponding family of stream functions
Solution: 4 may be defined only if flow is incompressible
Basic equations: $\quad \frac{\partial p u}{\partial x}+\frac{\partial p v}{\partial y}+\frac{\partial p v^{\prime}}{\partial z}+\frac{\partial y}{\partial t}=0$

$$
u=\frac{\partial v}{\partial y}, v=-\frac{\partial v}{\partial x}
$$

Assumptions: (i) $\vec{V}=\vec{V}(x, y)$, so $a / z z=0$
(2) $p=\operatorname{con} s t a n t$, so $\frac{\partial p}{\partial t}=\frac{\partial p}{\partial d s t a r k e}=0$

Then, $\frac{\partial u}{\partial t}+\frac{\partial v}{\partial y}=1-1=0$, so flow is incompressible
Thus

$$
\begin{array}{ll}
u=x+2 y=\frac{2 v}{2 y} ; & \psi=\left(u d y+f(x)=x y+y^{2}+f(x)\right. \\
v=x^{2}-y=-\frac{\partial v}{2 x} ; & \psi=\left(-v d x+g(y)=-\frac{x^{3}}{3}+x y+g(y)\right.
\end{array}
$$

Comparing these two expressions for \mathcal{W}, we see that $f(x)=-\frac{x^{3}}{3}$ and $g(y)=y^{2}$
so

$$
\psi=-\frac{x^{3}}{3}+x y+y^{2}
$$

Problem *5.26

Does the velocity field of Problem 5.22 represent a possible incompressible flow case? If so, evaluate and sketch the stream function for the flow. If not, evaluate the rate of change of density in the flow field.

Given: The velocity field

Find: Whether or not it is a incompressible flow; sketch stream function

Solution

$$
\mathrm{V}_{\mathrm{r}}=\frac{\mathrm{A}}{\mathrm{r}} \quad \mathrm{~V}_{\theta}=\frac{\mathrm{B}}{\mathrm{r}}
$$

For incompressible flow $\quad \frac{1}{\mathrm{r}} \cdot \frac{\mathrm{d}}{\mathrm{dr}}\left(\mathrm{r} \cdot \mathrm{V}_{\mathrm{r}}\right)+\frac{1}{\mathrm{r}} \cdot \frac{\mathrm{d}}{\mathrm{d} \theta} \mathrm{V}_{\theta}=0$

$$
\frac{1}{\mathrm{r}} \cdot \frac{\mathrm{~d}}{\mathrm{dr}}\left(\mathrm{r} \cdot \mathrm{~V}_{\mathrm{r}}\right)=0 \quad \frac{1}{\mathrm{r}} \cdot \frac{\mathrm{~d}}{\mathrm{~d} \theta} \mathrm{~V}_{\theta}=0
$$

Hence

$$
\frac{1}{\mathrm{r}} \cdot \frac{\mathrm{~d}}{\mathrm{dr}}\left(\mathrm{r} \cdot \mathrm{~V}_{\mathrm{r}}\right)+\frac{1}{\mathrm{r}} \cdot \frac{\mathrm{~d}}{\mathrm{~d} \theta} \mathrm{~V}_{\theta}=0 \quad \text { Flow is incompressible }
$$

For the stream function

$$
\frac{\partial}{\partial \theta} \psi=\mathrm{r} \cdot \mathrm{~V}_{\mathrm{r}}=\mathrm{A}
$$

$$
\psi=\mathrm{A} \cdot \theta+\mathrm{f}(\mathrm{r})
$$

Integrating

$$
\frac{\partial}{\partial \mathrm{r}} \psi=-\mathrm{V}_{\theta}=-\frac{\mathrm{B}}{\mathrm{r}}
$$

$$
\psi=-\mathrm{B} \cdot \ln (\mathrm{r})+\mathrm{g}(\theta)
$$

Comparing, stream function is $\psi=\mathrm{A} \cdot \theta-\mathrm{B} \cdot \ln (\mathrm{r})$

Problem *5.27

Given: Stream function for an incompressible flow field,

$$
\psi=-U r \sin \theta+\frac{q}{2 \pi} \theta
$$

Find: (a) An expression for the velocity field.
(b) Points where $|\vec{v}|=0$.
(c) Show $\psi=0$ where $|\vec{v}|=0$.

Solution: The velocity components are given by

$$
\begin{aligned}
& V_{r}=\frac{1}{r} \frac{\partial \psi}{\partial \theta}=-v \cos \theta+\frac{q}{2 \pi r} \\
& V_{\theta}=-\frac{\partial \psi}{\partial r}=v \sin \theta
\end{aligned}
$$

so $\vec{V}=V_{r} \hat{\imath}_{r}+V_{\theta} \hat{\imath}_{\theta}=\left(-U \cos \theta+\frac{q}{2 \pi r}\right) \hat{\imath}_{r}+U \sin \theta \hat{\imath}_{\theta}$ \qquad
Now $|\vec{V}|=\left(V_{r}^{2}+V_{\theta}^{2}\right)^{1 / 2}=0$ only when both V_{r} and V_{θ} are zero.
From the component equations, $V_{\theta}=0$ for $\theta=0, \pi$. When $V_{r}=0$,

$$
r=\frac{q}{2 \pi v \cos \theta}
$$

For $r>0$, then $V_{r}=0$ for $\theta=0$, and $r=\frac{q}{2 \pi U}$.
Stagnation point $(|\vec{V}|=0)$ occurs at $(r, \theta)=\left(\frac{q}{2 \pi v}, 0\right)$
substituting, $\left.\psi_{\text {stagnation }}=-u r \sin \theta+\frac{q}{2 \pi} \theta\right]_{r=\frac{q}{2 \pi U}}, \theta=0$
or $\quad \psi_{\text {stagnation }}=0$

Problem *5.28

Given: Flow with velocity components

$$
u=0, v=-y^{3}-4 z, w=3 y^{2} z
$$

Find: (a) Is this one-, two-or three-dimensional?
(b) Incompressible?
(c) stream function, if possible

Solution: $\vec{v}=u \hat{\imath}+v \hat{\jmath}+w \hat{k}=\vec{v}(y, z)$
velocity field is a function of two space coordinates. Therefore flow is two-dimensional.

If incompressible, it must satisfy differential continuity equation.

$$
\text { Basic equation: } \frac{\partial p_{u}^{\hat{u}}}{\partial x}+\frac{\partial p v}{\partial y}+\frac{\partial p w}{\partial z}+\frac{\partial f^{p}}{\partial t}=0(2)
$$

Assumptions: (1) Two-dimensional flow, so $\frac{\partial}{\partial x}=0$
(2) Incompressible flow

$$
\rho=\text { constant, so } \frac{\partial \rho}{\partial t}=\frac{\partial \rho}{\partial l}=0
$$

Then

$$
\frac{\partial v}{\partial y}+\frac{\partial w}{\partial z}=-3 y^{2}+3 y^{2}=0 \quad \therefore \text { Frow is incompressible } \quad \rho=c
$$

For incompressible flow in $y z$ plane, $\frac{\partial v}{\partial y}+\frac{\partial w}{\partial z}=0$ will be sat isfied identically if

$$
v=\frac{\partial \psi}{\partial z} \text { and } w=-\frac{\partial \psi}{\partial y}
$$

(Then continuity becomes $\frac{\partial^{2} \psi}{\partial z \partial y}-\frac{\partial^{2} \psi}{\partial y^{2} z}=0$.)
Thus $\psi=\int v d z+f(y)=-y^{3} z-2 z^{2}+f(y)$
and $\psi=\int-w d y+g(z)=-y^{3} z+g(z)$
comparing these two expressions, we sec $f(y)=0$ and $g(z)=-2 z^{2}$.

$$
\psi=-y^{3} z-2 z^{2}
$$

Problem * 5.29
Gwen: An incompressible, frictionless flow specified by $\psi=-2 A x-5 A y ; x, y$ in meters, $A=1$ ils

Find: (a) Sketch streamlines $\psi=0$ and $\psi=5 \mathrm{~m}^{2}$ ls
(b) Velocity vector at $(0,0)$
(c) Flow rate between streamlines passing through points $(2,2)$ and $(4,1)$
Solution: Streamlines are lines $\psi=$ constant

$$
\text { For } \psi=0, \quad 0=-2 A x-5 A y \text { or } y=-\frac{2}{5} x
$$

For $u=5, \quad 5=-2 A x-5 A y$ or $y=-\frac{2}{5} x-\frac{1}{5} \times \frac{5 m^{2}}{5} \times \frac{5}{1 m}=-\frac{2}{5} x-1 n$

$$
\begin{aligned}
& u=\frac{\partial v}{\partial y}=-5 A ; v=-\frac{\partial \psi}{\partial x}=2 A \text {, so } \vec{v}=-5 \hat{\imath}+2 \hat{\jmath} m l_{s}+\vec{v} \\
& Q=\int_{x=b}^{x=a} v d x=\int_{x=b}^{x=a}-\frac{2 \psi}{\partial x} d x=\int_{\psi_{b}}^{\psi_{a}}-d \psi=\psi_{b}-\psi_{a}=\left|M^{2}\right|_{s} \text {, ide } T \\
& Q=\int_{y=c}^{y=d} u d y=\int_{y=c}^{y=d} \frac{\partial u}{\partial y} d y=\int_{\psi_{c}}^{\psi_{d}} d \psi=\psi_{d}-\psi_{c}=-\left.\backslash m^{2}\right|_{L_{1}}, i \cdot e
\end{aligned}
$$

Thus $Q=1 \mathrm{~m}^{3} / \mathrm{s}$ per meter of depp.

Given: Parallel one-dimensional flow in x direction with linear variation in velocity.

Find: (a) An expression for ψ.
(b) y coordinate below which half of frow passes.

Solution: Represent the velocity profile by $u=v\left(\frac{y}{h}\right)$, where $U=100 \frac{\mathrm{ft}}{\mathrm{s}}, h=5 \mathrm{ft}$.
Note that $u=\frac{\partial \psi}{\partial y}$, so

$$
\psi=\int u d y+f(x)=\frac{v y^{2}}{2 h}+f(x)
$$

Also $v=-\frac{\partial \psi}{\partial x}$, beet $v=0$, so

$$
\psi=\int-v d x+g(y)=g(y)
$$

Comparing these expressions, we find $f(x)=0$ and $g(y)=\frac{U_{y}}{2 h}$, so

$$
\psi=\frac{v y^{2}}{2 h}
$$

For the whole profile, $0<y<h$, the flow rate is

$$
Q=\int_{0}^{h} u d y=h \int_{0}^{1} u d\left(\frac{y}{h}\right)=h U \int_{0}^{1}\left(\frac{y}{h}\right) d\left(\frac{y}{h}\right)=\frac{h U}{2}
$$

For half the flow rate, up to y^{*}

$$
\frac{Q}{2}=\int_{0}^{y^{*}} u d y=\frac{U}{h} \int_{0}^{y^{*}} y d y=\frac{V_{y} *^{2}}{2 h}=\frac{h U}{4} \text { or } y^{*^{2}}=\frac{h^{2}}{2}
$$

50

$$
y^{*}=\frac{h}{\sqrt{2}}=3.54 \mathrm{ft}
$$

Given: Linear approximation to boundary layer velocity profile

$$
u=v \frac{y}{\delta}
$$

Find: (a) stream function for the flow field
(b) location of streamlines at one-quarter and one-half the total flow rate in the boundary layer.
Solution: For $z \rightarrow$ incompressible flow, \& satisfies

$$
u=\frac{\partial u}{\partial y}=v \frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}=0 . \quad \therefore \psi=\left(\frac{\partial \psi}{\partial y} d y+f(x)=\left(v \frac{y}{\delta} d y+f(x)\right.\right.
$$

Thus $u=\frac{v y^{2}}{2 \delta}+f(x)$
Let $\psi=0$ along $y=0$, so $f(x)=0$ and $\psi=\frac{U}{2 \delta} y^{2}$ The total flow rate with in the boundary layer is

$$
\underset{\sim}{Q}=\psi(\delta)-\psi(\delta)=\frac{1}{2} v \delta
$$

At $\frac{1}{4}$ of total, $w-\psi_{0}=\frac{V}{2 \delta} y^{2}=\frac{1}{4}\left(\frac{1}{2} U \delta\right)$

$$
\begin{equation*}
\therefore\left(\frac{y}{\xi}\right)^{2}=\frac{1}{4} \quad \text { and } \quad \frac{y}{\delta}=\frac{1}{2} \tag{1}
\end{equation*}
$$

At $\frac{1}{2}$ of total, $u-w_{0}=\frac{U}{2 \delta} y^{2}=\frac{1}{2}\left(\frac{1}{2} U \delta\right)$

$$
\therefore\left(\frac{y}{\delta}\right)^{2}=\frac{1}{2} \quad \text { and } \frac{y}{\delta}=\sqrt{\frac{1}{2}}=0.107 \text { 六 } \frac{Q}{w}
$$

Given: Sinusoidal approximation to boundary layer velocity protile

$$
u=U \sin \left(\frac{\pi}{2} \frac{y}{\delta}\right)
$$

Find: Locate stream lines at quarter and half total flow rate.
Solution: Flow is incompressible so 4 may be derived.

$$
u=\frac{\partial \psi}{\partial y}=U \sin \left(\frac{\pi}{2} \frac{y}{\delta}\right) ; \psi=\int \frac{\partial \psi}{\partial y} d y+f(x)=\int U \sin \left(\frac{\pi}{2} \frac{y}{\delta}\right) d y+f(x)
$$

Thus $\quad \psi=-\frac{2 \delta U}{\pi} \cos \left(\frac{\pi}{2} \frac{y}{\delta}\right)+f(x)$
Let $\psi=0$ along $y=0$, so $f(x)=0 \quad \psi=-\frac{2 \delta U}{\pi} \cos \left(\frac{\pi}{2} \frac{y}{\delta}\right)$
The total flow rate is $\frac{Q}{\omega}=\psi(\delta)-\psi(0)=-\frac{2 \delta U}{\pi} \cos \left(\frac{\pi}{2}\right)+\frac{2 \delta \theta}{\pi} \cos (0)=\frac{2 \delta U}{\pi}$
At $1 / 4$ of total, $\psi-\psi_{0}=\frac{2 \delta U}{\pi}\left[1-\cos \left(\frac{\pi}{2} \frac{y}{\delta}\right)\right]=\frac{1}{4} \frac{2 \delta U}{\pi}=\frac{\delta U}{2 \pi}$

$$
1-\cos \left(\frac{\pi}{2} \frac{y}{\delta}\right)=\frac{\pi}{2 \delta U} \frac{\delta U}{2 \pi}=\frac{1}{4} ; \cos \left(\frac{\pi}{2} \frac{y}{\delta}\right)=\frac{3}{4} ; \frac{y}{\delta}=0.460
$$

At $1 / 2$ of total, $\psi-\psi_{0}=\frac{2 \delta U}{\pi}\left[1-\cos \left(\frac{\pi}{2} \frac{y}{\delta}\right)\right]=\frac{1}{2} \frac{2 \delta U}{\pi}=\frac{\delta U}{\pi}$

$$
1-\cos \left(\frac{\pi}{2} \frac{y}{\delta}\right)=\frac{\pi}{2 \delta V} \frac{\delta 0}{\pi}=\frac{1}{2} ; \quad \cos \left(\frac{\pi}{2} \frac{y}{\delta}\right)=\frac{1}{2} ; \quad \frac{y}{\delta}=0.667
$$

Problem *5.33
Given: Parabolic approximation to boundary layer velocity profile

$$
u=v\left[2\left(\frac{y}{\delta}\right)-\left(\frac{y}{\delta}\right)^{2}\right]
$$

Find: (a) stream function for the flow field
(b) location of streamlines at one-quarter and one-half the total flow rate in the boundary layer.
Sdution: For $2 \rightarrow$ incompressible flow, 4 satisfies

$$
\begin{aligned}
& u=\frac{\partial u}{\partial y}=v\left[2\left(\frac{y}{\delta}\right)-\left(\frac{y}{\delta}\right)^{2}\right] \\
& \therefore \quad \frac{\partial v}{\partial x}=0 \\
& \therefore=\left[\frac{\partial v}{\partial y} d y+f(x)=v\left(\left[z\left(\frac{y}{\delta}\right)-\left(\frac{y}{\delta}\right)^{2}\right] d y+f(x) .\right.\right. \\
& \psi=v\left[\frac{y^{2}}{\delta}-\frac{y^{3}}{3 \delta^{2}}\right]+f(x)
\end{aligned}
$$

Let $\psi=0$ along $y=0$, so $f(x)=0$ and. $\left.\psi=0 \delta\left[\left(\frac{y}{\delta}\right)^{2}-\frac{1}{3}\left(\frac{y}{\delta}\right)^{3}\right]\right]$
The total flow rate within the boundary layer is

$$
\stackrel{Q}{N}=\psi(\delta)-\psi(\partial)=O \delta\left[1-\frac{1}{3}\right]=\frac{2}{3} U \delta
$$

At $\frac{1}{4}$ of total, $\psi-\psi_{0}=V \delta\left[\left(\frac{y}{2} \delta\right)^{2}-\frac{1}{3}\left(\frac{y}{\gamma}\right)^{3}\right]=\frac{1}{4}\left(\frac{2}{3} U \delta\right)$

$$
\therefore\left(\frac{y}{8}\right)^{2}-\frac{1}{3}\left(\frac{y}{\delta}\right)^{3}=\frac{1}{6}=0.467
$$

Trial and error solution gives $\frac{y}{\delta}=0.442$ _ $\frac{1}{4} \frac{\theta}{6}$
At $\frac{1}{2}$ of total, $\psi-\psi_{0}=\operatorname{U\delta }\left[(y / \delta)^{2}-\frac{1}{3}(y \mid \delta)^{3}\right]=\frac{1}{2}\left(\frac{2}{3} 0 \delta\right)$

$$
\therefore\left(\frac{4}{8}\right)^{2}-\frac{1}{3}\left(\frac{4}{8}\right)^{3}=\frac{1}{3}=0.333
$$

Trial and error solution gives $\frac{y}{\delta}=0.652$, $\frac{1}{2} \frac{\theta}{2}$

Problem *5.34

A cubic velocity profile was used to model flow in a laminar incompressible boundary layer in Problem 5.13. Derive the stream function for this flow field. Locate streamlines at one-quarter

Given: Data on boundary layer

Find: Stream function; locate streamlines at $1 / 4$ and $1 / 2$ of total flow rate

Solution

$$
\mathrm{u}(\mathrm{x}, \mathrm{y})=\mathrm{U} \cdot\left[\frac{3}{2} \cdot\left(\frac{\mathrm{y}}{\delta}\right)-\frac{1}{2} \cdot\left(\frac{\mathrm{y}}{\delta}\right)^{3}\right]
$$

and

$$
\delta(x)=c \cdot \sqrt{x}
$$

For the stream function $\quad u=\frac{\partial}{\partial y} \psi=U \cdot\left[\frac{3}{2} \cdot\left(\frac{\mathrm{y}}{\delta}\right)-\frac{1}{2} \cdot\left(\frac{\mathrm{y}}{\delta}\right)^{3}\right]$

Hence

$$
\psi=\int \mathrm{U} \cdot\left[\frac{3}{2} \cdot\left(\frac{\mathrm{y}}{\delta}\right)-\frac{1}{2} \cdot\left(\frac{\mathrm{y}}{\delta}\right)^{3}\right] \mathrm{dy}
$$

$$
\psi=\mathrm{U} \cdot\left(\frac{3}{4} \cdot \frac{\mathrm{y}^{2}}{\delta}-\frac{1}{8} \cdot \frac{\mathrm{y}^{4}}{\delta^{3}}\right)+\mathrm{f}(\mathrm{x})
$$

Let $\psi=0$ along $y=0$, so $f(x)=0$
so

$$
\psi=\mathrm{U} \cdot \delta \cdot\left[\frac{3}{4} \cdot\left(\frac{\mathrm{y}}{\delta}\right)^{2}-\frac{1}{8} \cdot\left(\frac{\mathrm{y}}{\delta}\right)^{4}\right]
$$

The total flow rate in the boundary layer is

$$
\frac{\mathrm{Q}}{\mathrm{~W}}=\psi(\delta)-\psi(0)=\mathrm{U} \cdot \delta \cdot\left(\frac{3}{4}-\frac{1}{8}\right)=\frac{5}{8} \cdot \mathrm{U} \cdot \delta
$$

At $1 / 4$ of the total

$$
\psi-\psi_{0}=\mathrm{U} \cdot \delta \cdot\left[\frac{3}{4} \cdot\left(\frac{\mathrm{y}}{\delta}\right)^{2}-\frac{1}{8} \cdot\left(\frac{\mathrm{y}}{\delta}\right)^{4}\right]=\frac{1}{4} \cdot\left(\frac{5}{8} \cdot \mathrm{U} \cdot \delta\right)
$$

$$
24 \cdot\left(\frac{\mathrm{y}}{\delta}\right)^{2}-4 \cdot\left(\frac{\mathrm{y}}{\delta}\right)^{4}=5
$$

Trial and error (or use of Excel's Goal Seek) leads to $\quad \frac{\mathrm{y}}{\delta}=0.465$

At $1 / 2$ of the total flow $\quad \psi-\psi_{0}=U \cdot \delta \cdot\left[\frac{3}{4} \cdot\left(\frac{\mathrm{y}}{\delta}\right)^{2}-\frac{1}{8} \cdot\left(\frac{\mathrm{y}}{\delta}\right)^{4}\right]=\frac{1}{2} \cdot\left(\frac{5}{8} \cdot \mathrm{U} \cdot \delta\right)$

$$
12 \cdot\left(\frac{\mathrm{y}}{\delta}\right)^{2}-2 \cdot\left(\frac{\mathrm{y}}{\delta}\right)^{4}=5
$$

Trial and error (or use of Excel's Goal Seek) leads to $\quad \frac{y}{\delta}=0.671$

Given: Velocity field for a free vortex from Example Problem 5.6:

$$
\vec{V}=\frac{c}{r} \hat{e}_{\theta} \quad c=0.5 \mathrm{~m}^{2} / \mathrm{sec}
$$

Find: (a) Obtain the stream function for this flow.
(b) Evaluate the volume flow rate per unit depth between $r_{1}=0.10 \mathrm{~m}$ and $r_{2}=0.12 \mathrm{~m}$.
(c) Sketch the velocity profile along a line of constant θ.
(d) Check the volume flow rate calculated from the stream function by integrating the velocity profile along this line.

Solution: From the definition of $\psi, \frac{\partial \psi}{\partial r}=-V_{\theta}=-\frac{c}{r}$
Thus $\psi=\int \frac{\partial \psi}{\partial r} d r+f(\theta)=\int-\frac{c}{r} d r+f(\theta)=-c$ lur $+f(\theta)$
But $V_{r}=\frac{1}{r} \frac{\partial \psi}{\partial \theta}=\frac{1}{r} f^{\prime}(\theta)=0$. Therefore $f(\theta)=$ constant $=c_{1}$, and

$$
\psi=-c \ln s+c_{1}
$$

The volume flow rate per unit depth is

$$
\begin{aligned}
& \frac{Q}{b}=\psi\left(r_{2}\right)-\psi\left(r_{1}\right)=-c \ln r_{2}+c_{1}-\left[-\ln r_{1}+c_{1}\right]=c\left(\ln r_{1}-\ln r_{2}\right)=\ln \left(\frac{r_{1}}{r_{2}}\right) \\
& \frac{Q}{b}=0.5 \frac{m^{2}}{s} \times \ln \left(\frac{0.10 \mathrm{~m}}{0.12 \mathrm{~m}}\right)=-0.0912 \mathrm{~m}^{3} / \mathrm{s} / \mathrm{m}
\end{aligned}
$$

Because $Q / b<0$, flow is in the direction of \hat{e}_{σ}.
Along $\theta=$ constant, V varies inversely with:

From the expression for $\vec{v}, V_{\theta}=\frac{c}{r}$. Thus

$$
\frac{Q}{b}=\int_{r_{1}}^{r_{2}} V_{0} d r=\int_{r_{1}}^{r_{2}} \frac{c}{r} d r=c \ln \left(\frac{n_{2}}{n_{1}}\right)
$$

From the sketch, this flow is in the direction of \hat{e}_{∞}.
Comparing shows that the expressions for Q / b are the same except for sign.

Problem ${ }^{*} 5.36$

Given: Rigid-body motion in Example Problem 5.6

$$
\vec{V}=r \omega \hat{e}_{\theta} \quad \omega=0.5 \mathrm{rad} / \mathrm{s}
$$

Find: (a) Obtain the streamfunction for this flow.
(b) Evaluate the volume flow rate per unit depth between $r_{1}=0.10 \mathrm{~m}$ and $r_{\varepsilon}=0.12 \mathrm{~m}$.
(c) Sketch the velocity profile wong a line of constant θ.
(d) Check the volume flow rate calculated from the stream function by integrating the velocity profile along this line.
Solution: From the definition of $\psi, \frac{\partial \psi}{\partial r}=-V_{\theta}=-r \omega$
Thus $\psi=\int \frac{\partial \psi}{\partial r} d r+f(\theta)=\int-r w d r+f(\theta)=-\frac{1}{2} r^{2} \omega+f(\theta)$
But $V_{r}=\frac{1}{r} \frac{\partial \psi}{\partial \theta}=\frac{1}{r} f^{\prime}(\theta)=0 \quad \therefore f(\theta)=c$
and $\psi=-\frac{1}{2} r^{2} \omega+c$
The volume flow rate per unit depth is

$$
\begin{aligned}
& \frac{Q}{b}=\psi\left(r_{2}\right)-\psi\left(r_{1}\right)=-\frac{1}{2} r_{2}^{2} \omega+c-\left[-\frac{1}{2} r_{1}^{2} \omega+c\right]=\frac{\omega}{2}\left(r_{1}^{2}-r_{2}^{2}\right) \\
& \frac{Q}{b}=\frac{1}{2} \times 0.5 \frac{r a d}{s}\left[(0.10 .)^{2}-(0.12)^{2}\right] m^{2}=-0.0011 \mathrm{~m} / \mathrm{s} 1 \mathrm{~m}
\end{aligned}
$$

Because $Q / b<0$, flow is in the direction of \hat{e}_{θ}.
Along $\theta=$ constant, Va varies linearly:
From the linear velocity variation, $V_{\theta}=$ wo
Thus $\left.\frac{Q}{b}=\int_{r_{1}}^{r_{2}} V_{\theta} d r=\int_{r_{1}}^{r_{2}} r \omega d r=\frac{1}{2} r^{2} \omega\right]_{r_{1}}^{r_{2}}=\frac{\omega}{2}\left(r_{2}^{2}-r_{1}^{2}\right)$
\longleftarrow

From the sketch, this flow is in the direction of \hat{e}_{θ}.
Comparing the expressions for Q / b shows they are the same except for sign.

Problem 5.37

Consider the velocity field $\vec{V}=A\left(x^{2}+2 x y\right) \hat{i}-A\left(2 x y+y^{2}\right) \hat{j}$ in the $x y$ plane, where $A=0.25 \mathrm{~m}^{-1} \cdot \mathrm{~s}^{-1}$, and the coordinates are measured in meters. Is this a possible incompressible flow field? Calculate the acceleration of a fluid particle at point $(x, y)=(2,1)$.

Given: Velocity field

Solution

The given data is

$$
\begin{aligned}
& A=0.25 \cdot \mathrm{~m}^{-1} \cdot \mathrm{~s}^{-1} \quad \mathrm{x}=2 \cdot \mathrm{~m} \quad \mathrm{y}=1 \cdot \mathrm{~m} \\
& \mathrm{u}(\mathrm{x}, \mathrm{y})=\mathrm{A} \cdot\left(\mathrm{x}^{2}+2 \cdot \mathrm{x} \cdot \mathrm{y}\right) \\
& \mathrm{v}(\mathrm{x}, \mathrm{y})=-\mathrm{A} \cdot\left(2 \cdot \mathrm{x} \cdot \mathrm{y}+\mathrm{y}^{2}\right)
\end{aligned}
$$

For incompressible flow $\frac{d u}{d x}+\frac{d v}{d y}=0$

Hence

$$
\frac{d u}{d x}+\frac{d v}{d y}=2 \cdot A \cdot(x+y)-2 \cdot A \cdot(x+y)=0
$$

Incompressible flow

The acceleration is given by

$$
\vec{a}_{p}=\underbrace{D t \vec{V}}_{\begin{array}{c}
\text { total } \\
\text { acceleration } \\
\text { of a particle }
\end{array}}=\underbrace{u \frac{\partial \vec{V}}{\partial x}+v \frac{\partial \vec{V}}{\partial y}+w \frac{\partial \vec{V}}{\partial z}}_{\begin{array}{c}
\text { convective } \\
\text { acceleration }
\end{array}}+\underbrace{\frac{\partial \vec{V}}{\partial t}}_{\begin{array}{c}
\text { local } \\
\text { acceleration }
\end{array}}
$$

For the present steady, 2D flow

$$
\begin{aligned}
& a_{x}=u \cdot \frac{d u}{d x}+v \cdot \frac{d u}{d y}=A \cdot\left(x^{2}+2 \cdot x \cdot y\right) \cdot 2 \cdot A \cdot(x+y)-A \cdot\left(2 \cdot x \cdot y+y^{2}\right) 2 \cdot A \cdot x \\
& a_{x}=2 \cdot A^{2} \cdot x \cdot\left(x^{2}+x \cdot y+y^{2}\right) \\
& a_{y}=u \cdot \frac{d v}{d x}+v \cdot \frac{d v}{d y}=A \cdot\left(x^{2}+2 \cdot x \cdot y\right) \cdot(-2 \cdot A \cdot y)-A \cdot\left(2 \cdot x \cdot y+y^{2}\right)[-2 \cdot A \cdot(x+y)] \\
& a_{y}=2 \cdot A^{2} \cdot y \cdot\left(x^{2}+x \cdot y+y^{2}\right)
\end{aligned}
$$

At point $(2,1)$ the acceleration is

$$
\begin{array}{ll}
a_{x}=2 \cdot A^{2} \cdot x \cdot\left(x^{2}+x \cdot y+y^{2}\right) & a_{x}=1.75 \frac{m}{s^{2}} \\
a_{y}=2 \cdot A^{2} \cdot y \cdot\left(x^{2}+x \cdot y+y^{2}\right) & a_{y}=0.875 \frac{m}{s^{2}}
\end{array}
$$

Given: How field $\vec{V}=x y^{2} \hat{\imath}-\frac{1}{3} y^{3} \hat{\jmath}+x y \hat{k}$
Find: (a) Dimensions.
(b) If possible incompressible flow.
(c) Acceleration of particle at point $(x, y, z)=(1, z, 3)$.

Solution: Apply continuity, use substantial derivative.
Basic equations: $\frac{\partial \rho u}{\partial x}+\frac{\partial \rho v}{\partial y}+\frac{\partial \rho \bar{\lambda} v}{\partial z}+\frac{\partial p^{\prime}}{\partial t}=0$

$$
\vec{a}_{p}=\frac{D \vec{v}}{D t}=u \frac{\partial \vec{v}}{\partial x}+v \frac{\partial \vec{v}}{\partial y}+w \frac{\partial \vec{v}}{\partial z}+\frac{\partial \vec{y}}{\partial t}=0(1)
$$

Assumptions: (1) Two-dimensional flow, $\vec{v}=\vec{v}(x, y)$, so $\partial / \partial z=0$
(2) Incompressible flow
(3) Steady flow, $\vec{v} \nRightarrow \vec{V}(t)$

Then $\frac{\partial u}{\partial x}+\frac{\partial \sigma}{\partial y}=y^{2}-y^{2}=0$ Flowis a possible incompressible case. $\rho=$

$$
\begin{aligned}
\vec{a}_{p} & =u \frac{\partial \vec{v}}{\partial x}+v \frac{\partial \vec{v}}{\partial y} ; \frac{\partial \vec{v}}{\partial x}=y^{2} \hat{\imath}+y \hat{k} ; \frac{\partial \vec{v}}{\partial y}=2 x y \hat{\imath}-y^{2} \hat{\jmath}+x \hat{k} \\
& =\left(x y^{2}\right)\left(y^{2} \hat{\imath}+y \hat{k}\right)+\left(-\frac{1}{3} y^{3}\right)\left(2 x y^{\hat{\imath}}-y^{2} \hat{\jmath}+x \hat{k}\right) \\
& =\hat{\imath}\left(x y^{4}-\frac{2}{3} x y^{4}\right)+\hat{\jmath}\left(\frac{1}{3} y^{5}\right)+\hat{k}\left(x y^{3}-\frac{1}{3} x y^{3}\right) \\
\vec{a}_{p} & =\hat{\imath}\left(\frac{1}{3} x y^{4}\right)+\hat{\jmath}\left(\frac{1}{3} y^{5}\right)+\hat{k}\left(\frac{2}{3} x y^{3}\right)
\end{aligned}
$$

$A C(x, y, z)=(1, z, 3)$

$$
\vec{a}_{p}=\hat{\imath}\left[\frac{1}{3}(1)(16)\right]+\hat{\jmath}\left[\frac{1}{3}(32)\right]+\hat{k}\left[\frac{2}{3}(1)(8)\right]=\frac{16}{3} \hat{\imath}+\frac{32}{3} \hat{\jmath}+\frac{16}{3} \hat{k}
$$

(\vec{a}_{p} will be in $\mathrm{m} / \mathrm{s}^{2}$)

Given: Flow field $\vec{v}=a x^{2} y \hat{\imath}-b y \hat{\jmath}+c z^{2} \hat{k}$;

$$
\begin{aligned}
& a=1 / \mathrm{m}^{2} \cdot \mathrm{~s} \\
& b=3 / \mathrm{s} \\
& c=2 / \mathrm{m} \cdot \mathrm{~s}
\end{aligned}
$$

Find: (a) Dimensions of flow field.
(b) If possible incompressible flow.
(c) Acceleration of a particle at $(x, y, z)=(3,1, z)$.

Solution: Apply continuity, use substantial derivative.

$$
=0
$$

Basic equations: $\quad \frac{\partial \rho u}{\partial x}+\frac{\partial \rho v}{\partial y}+\frac{\partial \rho w}{\partial z}+\frac{\partial \rho{ }^{\prime}}{\partial t}=0$

$$
\vec{a}_{p}=\frac{D \vec{v}}{D t}=u \frac{\partial \vec{v}}{\partial x}+v \frac{\partial \vec{v}}{\partial y}+w \frac{\partial \vec{v}}{\partial z}+\frac{\partial v}{\partial t}=0
$$

Assumption: Incompressible flow, $\rho=$ constant
Then $\frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}+\frac{\partial w}{\partial z}=0$ is criterion.
Note $\vec{V}=\vec{V}(x, y, z)$, so flow is three-dimensional, and

$$
\frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}+\frac{\partial w}{\partial z}=2 x y-3+4 z \neq 0
$$

Flow cannot be incompressible. \qquad

$$
\begin{aligned}
& \vec{a}_{p}=u \frac{\partial \vec{v}}{\partial x}+v \frac{\partial \vec{v}}{\partial y}+w \frac{\partial \vec{v}}{\partial z} ; \frac{\partial \vec{v}}{\partial x}=2 a x y \hat{\imath}, \frac{\partial \vec{v}}{\partial y}=a x^{2} \hat{\imath}-b \hat{\jmath}, \frac{\partial \vec{v}}{\partial z}=2 c z \hat{k} \\
&=\left(a x^{2} y\right)(2 a x y \hat{\imath})+(-b y)\left(a x^{2} \hat{\imath}-b \hat{\jmath}\right)+\left(c z^{2}\right)(2 c z \hat{k}) \\
& \vec{a}_{p}=\hat{\imath}\left(2 a^{2} x^{3} y^{2}-a b x^{2} y\right)+\hat{\jmath}\left(b^{2} y\right)+\hat{k}\left(2 c^{2} z^{3}\right) \\
& A_{t}(x, y, z)=(3,1,2), \\
& \vec{a}_{p}=\hat{\imath}\left[2 \times \frac{(1)^{2}}{m^{4} \cdot s^{2}} \times(3)^{3} m_{x}^{3}(1)^{2} m^{2}-\frac{1}{m^{2} \cdot s} \times \frac{3}{s} \times(3)^{2} m_{x}^{2} / m\right]+\hat{\jmath}\left[\frac{(3)^{2}}{s^{2}} \times 1 m\right]+\hat{k}\left[2 \frac{(2)^{2}}{m^{2} \cdot s^{2}} \times(2) m^{3}\right] \\
& \vec{a}_{p}=27 \hat{\imath}+9 \hat{\jmath}+64 \hat{k} \frac{m}{s^{2}}
\end{aligned}
$$

Given: Velocity field (within a lamniar boundary layer) is given by $\vec{V}=A \frac{V y}{x^{12}}\left(i+\frac{y}{4 x} \hat{j}\right)$ where $A=141 \mathrm{~m}^{-1 / 2}$

$$
U=0.240 \mathrm{mls}
$$

Find: (a) Show that this velocity field represents a possible nicompressible flaw
(b) Calculate \vec{a} of particle at $(x, y)=(0.5 \mathrm{~m}, 5 \mathrm{~mm})$
(c) Slope of streamline trough point $(0.5 \mathrm{~m}$. 5 mm)

Solution:
From given velocity field $\vec{v}=\vec{v}(x, y), w=0$, flow is steady (a) Check conservation of mass for $p=$ constant

$$
\begin{aligned}
& \frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}+\frac{\partial u}{\partial z}=0 \\
& \left.\begin{array}{ll}
u=A \frac{U y}{N N^{2}} & \frac{\partial u}{\partial x}=-\frac{1}{2} A U U \\
v=A U y^{2} & \frac{y}{x^{3} / 2} \\
y^{3 / 2} & \frac{\partial v}{\partial y}=\frac{1}{2} A U \frac{y}{t^{2} / 2}
\end{array}\right\} \begin{array}{l}
\frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}=0 \\
\therefore \text { incompressil }
\end{array}
\end{aligned}
$$

(b)

$$
\begin{aligned}
& \vec{a}=\overrightarrow{\partial \vec{v}}=u \frac{\partial \vec{y}}{\partial x}+v \frac{\overrightarrow{\partial y}}{\partial y}+\omega \frac{\overrightarrow{\partial y}}{\partial z}+\frac{\partial \vec{y}}{\partial t} 0 \\
& a_{e_{1}}=u \frac{\partial u}{\partial x}+v \frac{\partial u}{\partial y} ; \quad \frac{\partial u}{\partial y}=A U \frac{1}{i_{2}}
\end{aligned}
$$

$$
\begin{aligned}
& a_{x_{x}}=-\frac{1}{2} A^{2} v^{2} \frac{y^{2}}{x^{2}}+A^{2} U^{2} \frac{y^{2}}{4 x^{2}}=-\frac{1}{4}(F v y)^{2} \\
& a_{p_{x}}=-\frac{1}{4}\left[\frac{141}{M_{12}} \times 0.240 \frac{M}{s} \times \frac{0.005 m}{0.5 m}\right]^{2}=-0.02 .8 b^{m} /\left.\right|_{s} ^{2} \\
& a_{p_{y}}=u \frac{\partial v}{\partial x}+v \frac{\partial v}{\partial y} ; \quad \frac{\partial v}{\partial x}=-\frac{3}{8} \frac{R \bar{v} y^{2}}{-v^{2}} \\
& =A O \frac{y}{x^{-2}}\left(-\frac{3}{8} \text { aU } \frac{y^{2}}{t^{3 / 2}}\right)+\text { RU } \frac{y^{2}}{43^{3 / 2}}\left(\frac{1}{2} A U \frac{y}{x^{1 / 2}}\right) \\
& =-\frac{3}{8} A^{2} v^{2} \frac{y^{3}}{x^{3}}+\frac{1}{8} A^{2} v^{2} \frac{y^{3}}{x^{3}}=-\frac{1}{4} A^{2} v^{2} y^{3} x^{3} \\
& a_{p y}=-\frac{1}{4}\left(\frac{141}{m 1 / 2} \times 0.240 \frac{m}{\mathrm{~s}}\right)^{2}\left(\frac{0.005 m}{0.5 m}\right)^{3}=-2.86 \times 10^{-4} /_{s^{2}} \\
& \therefore \vec{a}_{p}=-2.86\left(10^{-2} \hat{\imath}+10^{-4} \mathrm{j}\right) \mathrm{m} \mathrm{~s}^{2}
\end{aligned}
$$

The slope of the streamings is given ty

$$
d y(d x)_{s}=\frac{v}{u}=\frac{y}{4 x}=\frac{5 \times 10^{-3} m}{4 \times 0.5 m}=0.0025
$$

Problem 5.41

The x component of velocity in a steady, incompressible flow field in the $x y$ plane is $u=A / x^{2}$, where $A=2 \mathrm{~m}^{3} / \mathrm{s}$ and x is measured in meters. Find the simplest y component of velocity for this flow field. Evaluate the acceleration of a fluid particle at point $(x, y)=(1,3)$.

Given: x component of incompressible flow field

Find: y component of velocity; find acceleration at a point

Solution

The given data is

$$
\mathrm{A}=2 \cdot \frac{\mathrm{~m}^{3}}{\mathrm{~s}} \quad \mathrm{x}=1 \cdot \mathrm{~m} \quad \mathrm{y}=3 \cdot \mathrm{~m}
$$

$$
\mathrm{u}(\mathrm{x}, \mathrm{y})=\frac{\mathrm{A}}{\mathrm{x}^{2}}
$$

For incompressible flow $\frac{d u}{d x}+\frac{d v}{d y}=0$

Hence

$$
\begin{aligned}
& v=-\int \frac{d u}{d x} d y=\int \frac{2 \cdot A}{x^{3}} d y \\
& v=\frac{2 \cdot A \cdot y}{x^{3}}
\end{aligned}
$$

The acceleration is given by

$$
\vec{a}_{p}=\underbrace{}_{\begin{array}{c}
\text { total } \\
\begin{array}{c}
\text { acceleration } \\
\text { of a particle }
\end{array}
\end{array} \frac{D \vec{V}}{D t}=\underbrace{u \frac{\partial \vec{V}}{\partial x}+v \frac{\partial \vec{V}}{\partial y}+w \frac{\partial \vec{V}}{\partial z}}_{\begin{array}{c}
\text { convective } \\
\text { acceleration }
\end{array}}+\underbrace{\frac{\partial \vec{V}}{\partial t}}_{\begin{array}{c}
\text { local } \\
\text { acceleration }
\end{array}} \text {. }{ }^{\text {acer }}}
$$

For the present steady, 2D flow

$$
\begin{array}{ll}
a_{x}=u \cdot \frac{d u}{d x}+v \cdot \frac{d u}{d y}=\frac{A}{x^{2}} \cdot\left(-\frac{2 \cdot A}{x^{3}}\right)+\frac{A \cdot y}{x^{2}} \cdot 0 & a_{x}=-\frac{2 \cdot A^{2}}{x^{5}} \\
a_{y}=u \cdot \frac{d v}{d x}+v \cdot \frac{d v}{d y}=\frac{A}{x^{2}} \cdot\left(-\frac{6 \cdot A \cdot y}{x^{4}}\right)+\frac{2 \cdot A \cdot y}{x^{3}} \cdot\left(\frac{2 \cdot A}{x^{3}}\right) & a_{y}=-\frac{2 \cdot A^{2} \cdot y}{x^{6}}
\end{array}
$$

At point $(1,3)$ the acceleration is

$$
\begin{array}{ll}
a_{x}=-\frac{2 \cdot A^{2}}{x^{5}} & a_{x}=-8 \frac{m}{s^{2}} \\
a_{y}=-\frac{2 \cdot A^{2} \cdot y}{x^{6}} & a_{y}=-24 \frac{m}{s^{2}}
\end{array}
$$

Given: Incompressible, two-demensional flow field with $w=0$, has a y component of velocity given by

$$
v=-A+y
$$

where units of v are mils; wand y are in meters. and A is a dimensional constant

Find: (a) the deriensions of the constant A
(b) He simplest A component of velocity for k is flow field (c) the acceleration of a fluid partict at the pant $(x, y)=(1,2)$

Solution:
(a) Since $v=-A x y$, then the dimensions of $A,[A]$, are gwen by

$$
\begin{equation*}
[A]=\left[\frac{v}{x y}\right]=\frac{1}{t} \cdot \frac{1}{L} \cdot \frac{1}{L}=\frac{1}{L} \tag{A}
\end{equation*}
$$

db Apply the continuity equation for the conditions given
Basic equation: $\nabla \cdot \overrightarrow{p v}+\frac{\partial p}{\partial t}=0$
For incompressible flow, $\frac{\partial f}{\partial t}=0$. Thus with $w=0$, the basic equation reduces to $\quad \frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}=0$
Then, $\frac{\partial u}{\partial x}=-\frac{\partial v}{\partial y}=-\frac{\partial}{\partial y}(-A+y)=A x$
and

$$
u=\int \frac{\partial u}{\partial x} d x+f(y)=\int A x d x+f(y)=\frac{1}{2} A x^{2}+f(y) .
$$

The simplest x component of vebcity is obtained with $f(y)=0$

$$
\therefore \quad u=\frac{1}{2} A x^{2}
$$

(c) The acceleration of a fluid particle is gwen by

$$
\begin{aligned}
& \vec{a}_{p}=\frac{\vec{v}}{\partial t}=u \frac{\partial \vec{j}}{\partial x}+v \frac{\partial v}{\partial y}+w \frac{\partial y}{\partial z}+\frac{\partial y}{\partial t} \\
& \vec{a}_{p}=\frac{1}{2} A x^{2} \frac{\partial}{\partial x}\left[\frac{1}{2} A^{2} i-A x y \hat{j}\right]-A x y \frac{\partial}{\partial y}\left[\frac{1}{2} A_{-}^{2} i-A x y \delta\right] \\
& \vec{a}_{p}=\frac{1}{2} A x^{2}[A x i-A y j]-A x y[-A x j]=\frac{1}{2} A^{2} x^{3} i+\frac{1}{2} A^{2} x^{2} y \delta
\end{aligned}
$$

At the pant $(x, y)=(1,2)$

$$
\vec{a}_{p}=\frac{1}{2} A^{2}(1)^{3} i+\frac{1}{2} A^{2}(i)^{2}(2) j=A^{2}\left[\frac{1}{2} i+n\right]
$$

$\leftrightarrows \quad \vec{a}_{p}$

Problem 5.43

Consider the velocity field $\vec{V}=A x /\left(x^{2}+y^{2}\right) \hat{i}+A y /\left(x^{2}+y^{2}\right) \hat{j}$ in the $x y$ plane, where $A=10 \mathrm{~m}^{2} / \mathrm{s}$, and x and y are measured in meters. Is this an incompressible flow field? Derive an expression for the fluid acceleration. Evaluate the velocity and acceleration along the x axis, the y axis, and along a line defined by $y=x$. What can you conclude about this flow field?

Given: Velocity field

Find: Whether flow is incompressible; expression for acceleration; evaluate acceleration along axes and along $y=x$

Solution

The given data is

$$
\begin{aligned}
& \mathrm{A}=10 \cdot \frac{\mathrm{~m}^{2}}{\mathrm{~s}} \\
& \mathrm{u}(\mathrm{x}, \mathrm{y})=\frac{\mathrm{A} \cdot \mathrm{x}}{\mathrm{x}^{2}+\mathrm{y}^{2}} \\
& \mathrm{v}(\mathrm{x}, \mathrm{y})=\frac{\mathrm{A} \cdot \mathrm{y}}{\mathrm{x}^{2}+\mathrm{y}^{2}}
\end{aligned}
$$

For incompressible flow $\frac{d u}{d x}+\frac{d v}{d y}=0$

Hence

$$
\frac{d u}{d x}+\frac{d v}{d y}=-A \cdot \frac{\left(x^{2}-y^{2}\right)}{\left(x^{2}+y^{2}\right)^{2}}+A \cdot \frac{\left(x^{2}-y^{2}\right)}{\left(x^{2}+y^{2}\right)^{2}}=0
$$

Incompressible flow

The acceleration is given by

For the present steady, 2D flow

$$
\begin{gathered}
a_{x}=u \cdot \frac{d u}{d x}+v \cdot \frac{d u}{d y}=\frac{A \cdot x}{x^{2}+y^{2}} \cdot\left[-\frac{A \cdot\left(x^{2}-y^{2}\right)}{\left(x^{2}+y^{2}\right)^{2}}\right]+\frac{A \cdot y}{x^{2}+y^{2}} \cdot\left[-\frac{2 \cdot A \cdot x \cdot y}{\left(x^{2}+y^{2}\right)^{2}}\right] \\
a_{x}=-\frac{A^{2} \cdot x}{\left(x^{2}+y^{2}\right)^{2}} \\
a_{y}=u \cdot \frac{d v}{d x}+v \cdot \frac{d v}{d y}=\frac{A \cdot x}{x^{2}+y^{2}} \cdot\left[-\frac{2 \cdot A \cdot x \cdot y}{\left(x^{2}+y^{2}\right)^{2}}\right]+\frac{A \cdot y}{x^{2}+y^{2}} \cdot\left[\frac{A \cdot\left(x^{2}-y^{2}\right)}{\left(x^{2}+y^{2}\right)^{2}}\right] \\
a_{y}=-\frac{A^{2} \cdot y}{\left(x^{2}+y^{2}\right)^{2}}
\end{gathered}
$$

Along the x axis

$$
a_{x}=-\frac{A^{2}}{x^{3}}=-\frac{100}{x^{3}} \quad a_{y}=0
$$

Along the y axis

$$
\mathrm{a}_{\mathrm{x}}=0
$$

$$
a_{y}=-\frac{A^{2}}{y^{3}}=-\frac{100}{y^{3}}
$$

$$
\begin{aligned}
& \vec{a}_{p}=\frac{D \vec{V}}{D t}=u \frac{\partial \vec{V}}{\partial x}+v \frac{\partial \vec{V}}{\partial y}+w \frac{\partial \vec{V}}{\partial z}+\frac{\partial \vec{V}}{\partial t} \\
& \text { total } \\
& \text { acceleration } \\
& \text { of a particle } \\
& \text { convective local } \\
& \text { acceleration } \\
& \text { acceleration }
\end{aligned}
$$

Along the line $x=y$

$$
a_{x}=-\frac{A^{2} \cdot x}{r^{4}}=-\frac{100 \cdot x}{r^{4}} \quad a_{y}=-\frac{A^{2} \cdot y}{r^{4}}=-\frac{100 \cdot y}{r^{4}}
$$

where

$$
r=\sqrt{x^{2}+y^{2}}
$$

For this last case the acceleration along the line $x=y$ is

$$
\begin{aligned}
& a=\sqrt{a_{x}^{2}+a_{y}^{2}}=-\frac{A^{2}}{r^{4}} \cdot \sqrt{x^{2}+y^{2}}=-\frac{A^{2}}{r^{3}}=-\frac{100}{r^{3}} \\
& a=-\frac{A^{2}}{r^{3}}=-\frac{100}{r^{3}}
\end{aligned}
$$

In each case the acceleration vector points towards the origin, so the flow field is a radial decelerating flow

Problem 5.44
Given: Duct flow with inviscid liquid, $P=$ constant,

$$
u(x)=U(1-x / 2<) \quad v=5 \mathrm{~m} / \mathrm{s}
$$

Find: Expression for acceleration along $\&$.
Solution: Computing equation

$$
a_{p_{x}}=u \frac{\partial u}{\partial x}+\psi \frac{\partial u}{\partial y}+\psi \hat{j} \frac{\partial u}{\partial z}+\frac{\partial \hat{\psi}}{\partial t}=0(2)
$$

Assumptions: (1) Along \& $v=w=0$
(2) Steady flow

Then

$$
a_{P_{x}}=u \frac{\partial u}{\partial x}=U\left(1-\frac{x}{2 L}\right) U\left(-\frac{1}{2 L}\right)=-\frac{U^{2}}{2 L}\left(1-\frac{x}{2 L}\right)
$$

Given: Incompressible flow between parallel plates as shown.
Find: (a) show $V_{r}=\frac{Q}{2 \pi r n}$
(b) Acceleration in gap.

Solution: Apply conservation of mass
Basic equation: $\frac{1}{r} \frac{\partial}{\partial r}\left(r V_{r}\right)+\frac{1}{r} \frac{\partial}{\partial \theta}\left(\hat{q}_{\theta}\right)+\frac{\partial}{\partial z} V_{z}=0$
Asscemptions: (1) $V_{6}=0$
(2) $V_{3}=0$

Then

$$
\frac{1}{r} \frac{\partial}{\partial r}\left(r v_{r}\right)=0 \text { or } r V_{r}=c \text { or } V_{r}=\frac{c}{r} \text { is form of solution. }
$$

The volume flow rate is $Q=2 \pi r h V_{r}$, so $V_{r}=\frac{Q}{2 \pi r h}$
Because $V_{\theta}=0, a_{\theta}=0$. The radial acceleration is

$$
a_{r}=V_{r} \frac{\partial V_{r}}{\partial r}=\frac{Q}{2 \pi r n}\left[(-1) \frac{Q}{2 \pi r^{2} n}\right]=-\left(\frac{Q}{2 \pi n}\right)^{2} \frac{1}{r^{3}}
$$

Thus

$$
\vec{a}_{p}=-\left(\frac{Q}{2 \pi h}\right)^{2} \frac{1}{r^{3}} \hat{e}_{r}
$$

The above expressions are valid only for $r>0$.

Given: Incompressible, inviscid flow of air between parallel disks.
Find: (a) simplify continuity.
(b) Show $\vec{v}=V(R / \Omega) \hat{e}_{r}, n_{i}<r<R$
(c) calculate acceleration of a particle at $r=\Omega_{i}, R$.

Solution: Apply continuity equation and substantial derivative
Basic equations: $\frac{1}{n} \frac{\partial}{\partial r}\left(r \rho v_{r}\right)+\frac{1}{n} \frac{\partial}{\partial \theta}\left(\rho \psi_{0}\right)+\frac{\partial}{\partial b}\left(\rho v_{z}\right)+\frac{\partial \psi_{i z}}{\partial z}=0$

Assumptions: (1) Incompressible flow, $\rho=$ constant
(2) Radial flow, $V_{0}=0$
(3) Uniform flow at each radial location, $\partial / \partial_{z}=0$
(4) Steady flow

Then

$$
\frac{1}{\Omega} \frac{\partial}{\partial \Omega}\left(\Omega V_{r}\right)=0 \text { or } \Omega V_{r}=\text { constant }=R V ; V_{r}=V \frac{R}{\Omega}
$$

so that $\quad \vec{v}=V \frac{R}{n} \hat{e}_{r}$
The radial acceleration of a fluid particle is

$$
a_{r}=V_{r} \frac{\partial V_{r}}{\partial n}=V \frac{R}{n}(V R)\left(-\frac{1}{n^{2}}\right)=-\frac{V^{2} R^{2}}{n^{3}}=-\frac{V^{2}}{R}\left(\frac{R}{n}\right)^{3}
$$

At $n=n_{i}=25 \mathrm{~mm}$,

$$
a_{r}=-(15)^{2} \frac{m^{2}}{s^{2}} \times \frac{1}{0.075 m}\left(\frac{75}{25}\right)^{3}=-81.0 \frac{\mathrm{~km}}{\mathrm{~s}^{2}}
$$

At $r=R=75 \mathrm{~mm}$

$$
a_{r}=-(15)^{2} \frac{\mathrm{~m}^{2}}{s^{2}} \times \frac{1}{0.075 \mathrm{~m}}\left(\frac{75}{75}\right)^{3}=-3.00 \frac{\mathrm{~km}}{\mathrm{~s}^{2}}
$$

Problem 5.47
Given: Temperature variation, $T=T_{0}-\alpha e^{-x / L} \sin \left(\frac{2 \pi t}{\tau}\right)$
particle moves at speed $U=$ constant
Find: Rate of change of T experienced by particle.
Solution: $\quad T=T(x, t)$

$$
\begin{aligned}
& d T=\frac{\partial T}{\partial x} d x+\frac{\partial T}{\partial t} d t \\
& \left.\frac{d T}{d t}\right)_{\text {particle }}=\left.\frac{\partial T}{\partial x} \frac{d x}{d t}\right|_{\text {particle }}+\frac{\partial T}{\partial t}
\end{aligned}
$$

or

$$
\left.\frac{\partial T}{D t}=\frac{d T}{d t}\right)_{\text {particle }}=u \frac{\partial T}{\partial x}+\frac{\partial T}{\partial t}
$$

For the given data, $u=U=$ constant

$$
\begin{aligned}
& \frac{\partial T}{\partial x}=\frac{\partial}{\partial x}\left[T_{0}-\alpha e^{-x / L} \sin \left(\frac{2 \pi t}{\tau}\right)\right]=\frac{\alpha}{L} e^{-x / L} \sin \left(\frac{2 \pi t}{\tau}\right) \\
& \frac{\partial T}{\partial t}=\frac{\partial}{\partial t}\left[T_{0}-\alpha e^{-x / L} \sin \left(\frac{2 \pi t}{\tau}\right)\right]=-\frac{2 \pi}{\tau} \alpha e^{-x / L} \cos \left(\frac{2 \pi t}{\tau}\right)
\end{aligned}
$$

substituting,

$$
\frac{D T}{D t}=\left[\frac{U}{L} \sin \left(\frac{2 \pi t}{\tau}\right)-\frac{2 \pi}{\tau} \cos \left(\frac{2 \pi t}{\tau}\right)\right] \alpha e^{-x / L} \mathrm{deg} / \mathrm{s}
$$

Given: Instruments on board an aircraft flying through a cold front give the following information.

- rate of change of temperature is $-0.5 \mathrm{~F} / \mathrm{min}$
- our speed =380 knots
- rate of clint $=3500$ thin

Front is stationary and vertically uniform
Find: rate of change of temperature with respect to horizontal stance through the cold front
Solution: Apply the substantial derivative concept.
Basic equation: $\frac{\partial T}{\partial T}=u \frac{\partial T}{\partial x}+v \frac{\partial T}{\partial y}+\frac{\partial T}{\partial T} \quad$ (stationary frat).

$$
\frac{D T}{D t}=-0.5 F / \min \text {. Need to find } \frac{\partial \pi}{\partial x}
$$

Velocity picture.

u

$$
\begin{aligned}
& V=300 \frac{\mathrm{~nm}}{\mathrm{hr}} \times 6080 \frac{\mathrm{ft}}{\mathrm{~nm}} \times \frac{\mathrm{hr}}{3600 \mathrm{~s}}=507 \frac{\mathrm{ft}}{\mathrm{~s}} \\
& v=3500 \frac{\mathrm{ft}}{\mathrm{~mm}} \times \frac{\mathrm{min}}{60 \mathrm{~s}}=58.3 \mathrm{ftl}
\end{aligned}
$$

Then $\alpha=\sin ^{-1} \frac{v}{v}=\sin ^{-1} \frac{58.3}{507}=6.60^{\circ}$ and $u=V \cos \alpha=507 \frac{\mathrm{fg}}{\sec } \cos 6 \cdot 60^{\circ}=504 \mathrm{fts}$

$$
\begin{aligned}
\therefore \frac{\partial T}{\partial t} & =\frac{1}{u} \frac{\lambda T}{D t}=504 f t \\
\frac{\partial T}{\partial t} & =-0.0873^{\circ} \mathrm{F} / \text { mile }
\end{aligned}
$$

Given: Aircraft flying north with velocity component $u=300 \mathrm{mph}$ is climbing at rate,$v=3000 \mathrm{fl} / \mathrm{min}$ the rate of temperature change with vertical distance y is $\partial T l a y=-3^{\circ} / l i g s f$. The variation of temperature witt position t is ar lox = - $1^{\circ} \mathrm{F}$ /mile
Find: the rate of temperature change shown by a
recorder on board the aircraft
Solution: Apply the substantial derivative concept Basic equation: $\frac{\partial T}{\partial t}=u \frac{\partial T}{\partial t}+v \frac{\partial T}{\partial y}+\frac{\partial T}{\partial T}$
Substituting numerical values.

$$
\begin{aligned}
& \frac{\partial T}{\partial t}=300 \frac{\text { mile }}{h r} \times-\frac{i F}{\text { hike }} \times \frac{h r}{60 \mathrm{~min}}+3000 \frac{\mathrm{ft}}{\mathrm{~min}} \times-\frac{3^{\circ} \mathrm{F}}{1000 f t} \\
& \frac{\partial T}{\partial t}=(-5-9)^{\circ} \mathrm{F} / \mathrm{min}=-14^{\circ} \mathrm{F} / \mathrm{min}
\end{aligned}
$$

Given: Sediment concentration rates in a river after a rainfall are:

$$
\frac{\partial c}{\partial t}=100 \frac{\mathrm{ppm}}{\mathrm{hr}}, \frac{\partial c}{\partial x}=50 \frac{\mathrm{ppm}}{\mathrm{mi}} \text { (downstream) }
$$

Streams speed is $u_{s}=0.5 \mathrm{mph}$, where a boat is used to survey concentration.

Boat speed is $V_{b}=2.5 \mathrm{mph}$.
Find: (a) Calculate rates of change of sediment concentration observed when boat travels upstream, drifts with the current, or travels downstream.
(b) Explain physically why the observed rates differ.

Solution: Apply substantial derivative concept
Basic equation: $\frac{D C}{D t}=u \frac{\partial c}{\partial x}+\frac{\partial C}{\partial t}$
To obtain rate of change seen from boat, set $u=u_{B}$.
(i) For travel upstream, $u_{B}=u_{S}-v_{b}=0.5-2.5=-2.0 \mathrm{mph}$

$$
\frac{D C}{D t}(u p)=-2.0 \frac{m i}{\mathrm{hr}} \times 50 \frac{\mathrm{ppm}}{\mathrm{ml}}+100 \frac{\mathrm{ppm}}{\mathrm{hr}}=0.00 \mathrm{ppm} / \mathrm{hr}
$$

(ii) For drifting, $u_{B}=u_{s}+0=0.5 \mathrm{mph}$

$$
\frac{D_{c}}{D t}(d r i f f)=0.5 \frac{\mathrm{mi}}{\mathrm{hr}} \times 50 \frac{\mathrm{ppm}}{\mathrm{~mL}}+100 \frac{\mathrm{ppm}}{\mathrm{hr}}=125 \mathrm{ppm} / \mathrm{hr}
$$

(iii) For travel downstream, $u_{B}=u_{S}+v_{b}=0.5+2.5=3.0 \mathrm{mph}$

$$
\frac{D C}{D t}(d o w n)=3.0 \frac{\mathrm{mc}}{\mathrm{hr}} \times 50 \frac{\mathrm{ppm}}{\mathrm{~mL}}+100 \frac{\mathrm{ppr}}{\mathrm{hr}}=250 \mathrm{ppm} / \mathrm{hr}
$$

Physically the observed rakes of change differ because the observer is convected through the flow. The convective change may add to or subtract from the local rate of change.

Expand $(\overrightarrow{3} \cdot \nabla)$ I in rectangular, coordinates to obtain the connective acceleration of a fluid particle. verify the results given in Epis 5.11
Solution:
In rectangular coordinates $\nabla=\hat{i} \frac{\partial}{2 x}+j \frac{\partial}{2 y}+\hat{k} \frac{\partial}{\partial z}, \vec{i}=u \hat{i}+\hat{j}+w \hat{k}$
$(\vec{\lambda} \cdot \nabla) \vec{U}=\left[(u i+v j+w \hat{k}) \cdot\left(i \frac{\partial}{2 x}+\hat{j} \frac{\partial}{2 y}+\hat{k} \frac{z}{\partial z}\right)\right] u \hat{i}+\hat{v}+w \hat{k}$

$$
=\left[u \frac{\partial}{\partial x}+v \frac{\partial}{\partial y}+w \frac{\partial}{\partial z}\right] u i+v j+w \bar{i}
$$

$$
\begin{aligned}
&(\overline{i n} \nabla) \vec{j}=\left\{u \frac{\partial u}{\partial x}+v \frac{\partial u}{\partial y}+w \frac{\partial u}{\partial z}\right\} i+\left\{u \frac{\partial v}{\partial x}+v \frac{\partial v}{\partial y}+w \frac{\partial v}{\partial z}\right\} j \\
&+\left\{u \frac{\partial w}{\partial x}+v \frac{\partial w}{\partial y}+w \frac{\partial w}{\partial z}\right\}
\end{aligned}
$$

Term (1) is x component of convective acceleration

$$
\text { Eq. s. Na } \quad a_{t_{p}}=\left\{u \frac{\partial u}{\partial x}+v \frac{\partial u}{\partial y}+w \frac{\partial u}{\partial z}\right\}+\frac{\partial u}{\partial t} \text {. }
$$

Tern (2) is the y component of convective acceleration

$$
E_{q} s . u b \quad a_{y p}=\left\{u \frac{\partial v}{\partial x}+v \frac{v v}{\partial y}+w \frac{\partial v}{\partial z}\right\}+\frac{\partial v}{\partial t}
$$

Term (3) is the a component of convectwie acceleration

$$
\text { Eq. S.1c } \quad a_{z p}=\left\{u \frac{\partial w}{\partial x}+v \frac{\partial w}{\partial y}+w \frac{\partial w}{\partial z}\right\}+\frac{\partial w}{\partial t} \text {. }
$$

Given: Steady, two-dinensional velocity field, $\vec{V}=A+i$ - Fl j ; $A=$ Is $^{\prime \prime}$, coordinates measured in meters.
Show: that streamlines are hyperbolas, $x y=c$
Find: (a) Expression for acceleration.
(b) Particle acceleration at $(1, y)=\left(v_{2}, 2\right),(1,1)$ and $\left(2, l_{2}\right)$.
plot: streamlines corresponding to $C=0,1$, and $2 m^{2}$; show acceleration vectors of the plot.
Solution:
Along a streamline, $\frac{d y}{d x}=\frac{v}{u}=\frac{-y}{x}$ or $\frac{d y}{y}+\frac{d y}{x}=0$ Integrating we dotain $\ln y+\ln x=\ln c$ and $y=c$ streamline The acceleration of a particle is

$$
\begin{aligned}
& \vec{a}_{p}=\frac{\vec{D}}{\partial t}=u \frac{\partial \vec{y}}{\partial x}+v \frac{\partial \vec{u}}{\partial y}+w, \frac{\vec{y}}{\partial z}+\frac{\partial \vec{y}}{\partial v} \quad\{w=0 \text { and steady flow }\} \\
& \vec{a}_{p}=A x(A i)-(A y)(-A j)=A^{2}(x i+y j) \\
& \bar{a}_{p} \\
& \left.\begin{array}{ll}
\left.\vec{a}_{p}\right)_{n_{2,2}}=\frac{1}{2} i+\left.2 j\right|_{s} ^{2} \\
\left.\vec{a}_{p}\right)_{2, l_{2}}=2 i+\frac{1}{2} j m l_{s}^{2} & \left.\vec{a}_{p}\right)_{M_{1}}=\hat{i}+j m l_{s}^{2}
\end{array}\right\}+\quad \vec{a}_{p}
\end{aligned}
$$

Plot:
Streamlines and Accelerations

Given: Velocity field represented by

$$
\vec{v}=(A x-B) \hat{\imath}+C y \hat{\jmath}+D t \hat{k} \quad(x, y \text { in } m)
$$

where $A=2 \mathrm{~s}^{-1}, B=4 \mathrm{~m} / \mathrm{s}$, and $D=5 \mathrm{~m} / \mathrm{s}^{2}$
Find: (a) Proper value of C for incompressible flow.
(b) Acceleration of particle at $(x, y)=(3,2)$.
(c) Sketch streamlines in wy plane.

Solution: For incompressible flow, $\frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}+\frac{\partial w}{\partial z}=0$. since $w=D t$, $\partial u l_{z}=0$, and

$$
\begin{aligned}
& \frac{\partial v}{\partial y}=C=-\frac{\partial u}{\partial x}=-A=-2 s^{-1} \\
& \vec{a}_{p}=u \frac{\partial \vec{v}}{\partial x}+v \frac{\partial \vec{v}}{\partial y}+w \frac{\partial \vec{v}}{\partial z}+\frac{\partial \vec{v}}{\partial t} \\
& \vec{a}_{\rho}=(A x-B)(A \hat{\imath})+(C y)(C \hat{\jmath})+(D t)(0)+D \hat{k} \\
& \vec{a}_{p}(3,2)=\left(\frac{2}{s} \times 3 m-\frac{4 m}{s}\right)\left(\frac{2}{5}\right) \hat{\imath}+\left(\frac{-2}{s} \times 2 m\right)\left(-\frac{2}{s}\right) \hat{\jmath}+5 \frac{m}{s^{2}} \hat{k} \\
& \vec{a}_{p}(3,2)=4 \hat{\imath}+8 \hat{\jmath}+5 \hat{k} \mathrm{~m} / \mathrm{s}^{2}
\end{aligned}
$$

$$
\frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}=0
$$

In the $x y$ plane, streamlines are $\frac{d y}{d x}=\frac{v}{u}=\frac{C y}{A x-B}$. Thus

$$
\frac{d x}{A x-B}=\frac{d y}{d y} \text { or } \frac{d x}{A x-B}=-\frac{d y}{A y} \text { or } \frac{d x}{x-B / A}+\frac{d y}{y}=0
$$

Integrating

$$
\begin{aligned}
& \ln (x-B / A)+\ln y=\ln C_{0} \\
& \left(x-\frac{B}{A}\right) y=\text { cost }
\end{aligned}
$$

Given: Velocity field $\vec{V}=(A x-B) \hat{\imath}-A y \hat{\jmath} ; A=0.23^{-1}, B=0.63^{-1} x \mathrm{inm}$.
Find: (a) General expression for acceleration of a fluid partick.
(b) Acceleration at $(x, y)=(0,4 / 3),(1,2)$, and $(2,4)$.
(c) Plot of streamlines.
(d) Acceleration vectors on plot.

Solution: Note $w=0$ and flow is steady, Then

$$
\vec{a}_{p}=u \frac{\partial \vec{v}}{\partial x}+v \frac{\partial \vec{v}}{\partial y}=(A x-B) A \hat{\imath}+(-A y)(-A) \hat{\jmath}=\left(A^{2} x-A B\right) \hat{\imath}+A^{2} y \hat{\jmath}
$$

At $(x, y)=\left(0,4 / 31, \vec{a}_{p}=-0.12 \hat{\imath}+0.0533 \hat{\jmath} \mathrm{~m} / \mathrm{s}^{2}\right.$

$$
\begin{aligned}
& (1,2), \vec{a}_{p}=-0.09 \hat{\imath}+0.0800 \hat{\jmath} \mathrm{~m} / \mathrm{s}^{2} \\
& (2,4), \vec{a}_{p}=-0.04 \hat{\imath}+0.160 \hat{\jmath} \mathrm{~m} / \mathrm{s}^{2}
\end{aligned}
$$

streamlines are $\frac{d x}{u}=\frac{d y}{y}=\frac{d x}{A x-B}=\frac{d y}{-A y}$. Integrating,

$$
\frac{1}{A} \ln (A x-B)+\frac{1}{A} \operatorname{lng} y=\frac{1}{A} \ln C \text { or }(A x-B) y=C
$$

The plots are:

Given: Air flowing downward toward infinite horizontal flat plate. velocity field is

$$
\vec{v}=(a \times \hat{\imath}-a y \hat{\jmath})(2+\cos \omega t) ; a=3 s^{-1}, \omega=\pi s^{-1}
$$

Find: (a) Expression for streamline at $t=1.5 \mathrm{~s}$.
(b) Plot of streamline through $(x, y)=(2,4)$ at this instant.
(c) velocity vector
(d) Vectors representing local, convective, and total acceleration.

Solution: streamline is $\frac{d x}{u}=\frac{d y}{v}$, or $\frac{d x}{x}+\frac{d y}{y}=0$ or $x_{y}=c$ At point $(x, y)=(2,4), c=2 m \times 4 m=8 m^{2} ; x y=8 m^{2} \quad$ Str
The plot is shown below. Note $u=\operatorname{axt}[z+\cos \omega t], v=-\operatorname{ays} \hat{y}[z+\cos \omega t]$ At $(x, y, t)=(2 m, 4 m, 1.55), \vec{V}=(6 \hat{\imath}-12 \hat{\jmath})(2+0)=12 \hat{\imath}-24 \hat{\jmath}$
$1.53)$ are
$=6 \pi \hat{\imath} \mathrm{~m} / \mathrm{s}^{2}$

$$
a_{y,} \text { local }=\frac{\partial v}{\partial t}=-a y \hat{\jmath}(-\omega \sin \omega t)=\frac{3}{5} \times 4 m \times\left(\frac{-\pi}{s}\right) \times \sin \left(\frac{3 \pi}{2}\right)=-12 \pi \hat{y} \mathrm{~m} / \mathrm{s}^{2}
$$

The convective acceleration components at $(x, y, t)=(2 m, 4 m, 1,5 s)$ are

$$
\begin{aligned}
& a_{x, \text { con }}=u \frac{\partial u}{\partial x}+v \frac{\partial u}{\partial y}=a x(a \hat{\imath})\left[2+\cos \frac{3 \pi}{2}\right]^{2}=(3)(2 \times 3)[2]^{2} \hat{\imath}=72 \hat{\imath} \\
& a_{y, \text { con }}=u \frac{\partial v}{\partial x}+v \frac{\partial v}{\partial y}=(-a y)(-a \hat{\jmath})\left[2+\cos \frac{3 \pi}{2}\right]^{2}=4 a^{2} y \hat{\jmath}=4(3)^{2} 4 \hat{\jmath}=144 \hat{\jmath}
\end{aligned}
$$

The total acceleration is the sum of the convective and local values:

$$
\begin{aligned}
& a_{x, \text { total }}=a_{x, \text { con }}+a_{x, \text { local }}=(72+6 \pi) \hat{\imath}=90.8 \hat{\imath} \mathrm{~m} / \mathrm{s}^{2} \\
& a_{y, \text { total }}=a_{y y, \text { con }}+a_{y, \text { local }}=(144-12 \pi) \hat{\jmath}=106 \mathrm{\jmath} \mathrm{~m} / \mathrm{s}^{2}
\end{aligned}
$$

Given: Laminar boundary layer, linear approximate profile.

$$
\frac{u}{U}=\frac{y}{\delta} \quad \delta=c x^{1 / 2}
$$

From Problem 5.7, $v=\frac{u y}{4 x}=U \frac{y^{2}}{4 x \delta}$
Find: (a) x and y components of acceleration of a fined particle.
(b) Locate maximum values.
(c) Ratio, a_{x} max $/ a_{y}$, max.

Solution: Basic equations: $a_{p_{x}}=u \frac{\partial u}{\partial x}+v \frac{\partial u}{\partial y}+\hat{y}^{=0(1)} \frac{\partial u}{\partial z}+\frac{\partial \hat{u}}{\phi t}$

$$
a_{p y}=u \frac{\partial v}{\partial x}+v \frac{\partial v}{\partial y}+\hat{p}^{\hat{v}} \frac{\partial v}{\partial \delta}+\frac{\partial(1)}{\partial t}=0(2)
$$

Assumptions: (1) w and $\partial / b z$ zero, (2) steady flow. $\frac{d \delta}{d x}=\frac{1}{2} C x^{-1 / 2}=\frac{\delta}{2 x}$

$$
\begin{aligned}
& u=v \frac{y}{\delta} ; \frac{\partial u}{\partial x}=v y\left(-\frac{1}{\delta^{2}}\right) \frac{d \delta}{d x}=-v y \frac{1}{\delta^{2}} \frac{\delta}{2 x}=-\frac{v y}{2 x \delta} ; \frac{\partial u}{\partial y}=\frac{v}{\delta} \\
& v=v \frac{y^{2}}{4 x \delta} ; \frac{\partial v}{\partial x}=\frac{v_{y}}{4}\left(-\frac{1}{x^{2} \delta}-\frac{1}{x \delta^{2}} \frac{d \delta}{d x}\right)=-\frac{3 v y^{2}}{8 x^{2} \delta} ; \frac{\partial v}{\partial y}=\frac{v_{y}}{2 x \delta}
\end{aligned}
$$

Thus

$$
\begin{aligned}
& a_{p x}=\left(v^{\frac{y}{\delta}}\right)\left(-\frac{U^{2} y}{2 x \delta}\right)+\left(v \frac{y^{2}}{4 x \delta}\right)\left(\frac{U}{\delta}\right)=-\frac{U^{2}}{2 x}\left(\frac{y}{\delta}\right)^{2}+\frac{U^{2}}{4 x}\left(\frac{y}{\delta}\right)^{2}=-\frac{v^{2}}{4 x}\left(\frac{y}{\delta}\right)^{2} \\
& a_{p y}=\left(v \frac{y}{\delta}\right)\left(-\frac{3 U y^{2}}{8 x^{2} \delta}\right)+\left(v \frac{y^{2}}{4 x \delta}\right)\left(v \frac{y}{2 x \delta}\right)=-\frac{3 U^{2}}{8 x}\left(\frac{y}{x}\right)\left(\frac{y}{\delta}\right)^{2}+\frac{v^{2}}{8 x}\left(\frac{y}{x}\right)\left(\frac{y}{\delta}\right)^{2} \\
& a_{p y}=-\frac{U^{2}}{4 x}\left(\frac{y}{x}\right)\left(\frac{y}{\delta}\right)^{2}
\end{aligned} a_{p x}
$$

Maximum values are at $y=\delta$

$$
\begin{aligned}
& a_{p x, \max }=-\frac{v^{2}}{4 x} \\
& a_{p y, \max }=-\frac{v^{2}}{4 x}\left(\frac{\delta}{x}\right)
\end{aligned}
$$

Thus $\frac{a_{p_{x}, \max }}{a_{p_{y}, \max }}=\frac{x}{\delta}$
At $x=0.5 \mathrm{~m}, \delta=5 \mathrm{~mm}, \frac{a_{p x}, \max }{a_{p y}, \max }=\frac{0.5 \mathrm{~m}}{0.005 \mathrm{~m}}=100$

Given: Laminar boundary layer an a flat plate. (Problems.il)

$$
\begin{aligned}
& \frac{u}{v}=\sin \frac{\pi y}{2 \delta}, \quad \delta=c A^{\prime}{ }^{\prime} \\
& \frac{v}{v}=\frac{1}{\pi} \frac{\delta}{x}\left[\cos \left(\frac{\pi}{2} \frac{y}{\delta}\right)+\left(\frac{\pi}{2} \frac{y}{\delta}\right) \sin \left(\frac{\pi}{2} \frac{y}{\delta}\right)-1\right]
\end{aligned}
$$

Find: Expression for $a_{x p}$ and $a_{y p}$
Phot: a_{x} and a_{y} as functions of y / δ for $-\quad=5 \mathrm{mls}, x=1 \mathrm{~m} \cdot \delta=1 \mathrm{~mm}$ determine maximum values at locations at which maund occur.
Solution:
Basic equations:

$$
\begin{aligned}
& a_{p x}=u^{\frac{\partial u}{\partial x}}+v \frac{\partial u}{\partial y}+u \frac{\partial(t)}{\frac{\partial}{\partial z}}+\frac{\partial u}{\partial t} y d(1) \\
& a_{p y}=u \frac{\partial v}{\partial x}+v \frac{\partial v}{\partial y}+w \frac{\partial v}{\partial z}+\frac{\partial y}{\partial v} \ldots . .(1) \\
& a
\end{aligned}
$$

Assumptions: (i) steady flow
(a) w an $\&$ ala $=0$

$$
\begin{align*}
& \text { Let } \eta=\frac{\pi}{2} \frac{y}{\delta} ; \eta=\eta(x, y) \quad \frac{\partial \eta}{\partial y}=\frac{\pi}{2 \delta}: \delta=c x^{\prime \prime}, \frac{d \delta}{d x}=\frac{1}{2} c x^{-1}=\frac{\delta}{2 x} \\
& \frac{\partial \eta}{\partial x}=\frac{\partial \eta}{\partial \delta} \frac{d \delta}{d x}=\frac{\pi y}{2}\left(-\frac{1}{\delta^{2}}\right) \frac{\delta}{2 x}=-\frac{\pi}{4 x}\left(\frac{y}{\delta}\right) \\
& u=U \sin \eta \\
& \frac{\partial u}{\partial x}=\frac{\partial u}{\partial \eta} \frac{\partial x}{\partial x}=U \cos \eta\left(-\frac{\pi}{4 x} \frac{y}{\delta}\right)=-\frac{J}{2 x}\left(\frac{\pi}{2} \frac{y}{\delta}\right) \cos \eta=-\frac{\eta}{2 x} \eta \cos \eta \ldots(3) \\
& \frac{\partial u}{\partial y}=\frac{\partial u}{\partial \eta} \frac{\partial \eta}{\partial y}=-U \cos \eta \frac{\pi}{2 \delta}=\frac{O \pi}{2 \delta} \cos \eta \tag{4}
\end{align*}
$$

$v=3 \frac{1}{\pi} \frac{\kappa}{\eta}(\cos \eta+\eta \sin \eta-1)$. differentiating using prodututule

$$
\begin{aligned}
& \frac{\partial v}{\partial x}=\frac{U}{2}\left(\frac{1}{x} \frac{d \delta}{d x}-\frac{\delta}{\chi^{2}}\right)(\cos \eta+\eta \sin \eta-1)+\frac{\tilde{N}}{} \frac{\delta}{x}(-\sin \eta+\eta \cos \eta+\sin \eta) \frac{\partial \eta}{\partial x} \\
& =\frac{V}{R}\left(\frac{1}{x} \frac{\delta}{2 x}-\frac{\delta}{\eta^{2}}\right)(\cos \eta+\eta \sin \eta-1)+\frac{\pi}{x} \frac{\delta}{x} \eta \cos \eta\left(-\frac{\pi}{-x}\right) \frac{y}{\delta} \\
& \frac{\partial v}{\partial x}=-\frac{Y}{\pi} \frac{\delta}{2 x^{2}}(\cos \eta+\eta \sin \eta-1)-\frac{U \delta}{4 x^{2}}\left(\frac{y}{\delta}\right) \eta \cos \eta \ldots \ldots(\ldots) \\
& \frac{\partial v}{\partial y}=\frac{\partial v}{2 \eta} \frac{\partial \eta}{2 y}=\frac{\tilde{\pi}}{\pi} \frac{\delta}{x}(-\sin \eta+\eta \cos \eta+\sin \pi) \frac{\pi}{2 \delta}=\frac{\eta}{2 x} \eta \cos \eta \ldots \ldots(6)
\end{aligned}
$$

Substituting into Eq.,

$$
\begin{aligned}
& a_{1}=U \sin \eta\left(-\frac{U}{2 x} \eta \cos \eta\right)+\frac{Y}{x} \frac{8}{x}(\cos \eta-\eta \sin \eta-1) \frac{U \pi}{2 x} \cos \eta \\
& a_{1}=-\frac{U^{2}}{2 x} \eta \sin \eta \cos \eta+\frac{\eta^{2}}{2 x}(\cos \eta-\eta \sin \eta-1) \cos \eta \\
& a_{1}=\frac{U^{2}}{2 x} \cos \eta[\cos \eta-\eta \operatorname{sos} \eta-1-\eta \sin \eta]
\end{aligned}
$$

Given: Laminar boundary layer on a flat plate. (Problens.12)

Find: (a) Expression for a_{α}
(b) Plot a_{x} versus y / δ at location $x=1 \mathrm{~m}$, where $\delta=1 \mathrm{~mm}$, for a flow with $U=5 \mathrm{~m} / \mathrm{s}$.
(c) Maximum value of an at this location

Solution:

$$
\begin{aligned}
& a_{n}=u^{\frac{\partial u}{\partial x}}+v \frac{\partial u}{\partial y} \quad u=v\left[2\left(\frac{y}{\delta}\right)-\left(\frac{y}{z}\right)^{2}\right]=v\left[2 \pi-n^{2}\right] \text { where } n={ }^{y} / \delta \\
& \frac{\partial u}{\partial x}=\frac{d u}{d \pi} \frac{d \pi}{d x}=U[2-2 \pi]\left(-\frac{y}{\delta^{2}}\right) \frac{d \delta}{d x} \quad \frac{d \delta}{d x}=\frac{1}{2} c x^{-12} \\
& \frac{\partial u}{\partial x}=v[2-2 \pi]\left(-\frac{\pi}{\delta}\right) \frac{1}{2}+x^{-1 / 2}=v\left[2 \pi-\pi^{2}\right]\left(-\frac{\pi}{4-N^{12}}\right)^{\frac{1}{2}} \cot ^{-1 / 2} \\
& \frac{\partial u}{2 x}=-v[2-2 n] \frac{\pi}{2 x}=\frac{-v\left(n-n^{2}\right)}{x} \\
& \frac{\partial u}{\partial y}=U\left[\frac{2}{\delta}-\frac{2 y}{\delta^{2}}\right]=\frac{2 v}{y}\left[\frac{y}{\delta}-\left(\frac{y}{\delta}\right)^{2}\right]=\frac{2 v}{y}\left(\pi-\lambda^{2}\right)
\end{aligned}
$$

Substituting ito the expression for $a_{x}=u \frac{\partial u}{\partial x}+v \frac{\partial u}{2 y}$

$$
\begin{align*}
& a_{1}=U\left[2 \pi-x^{2}\right] v\left(\frac{x^{2}-x}{x}+\frac{U \delta}{x}\left[\frac{1}{2} x^{2}-\frac{1}{3} x^{3}\right] \frac{2 \tilde{u}}{y}\left(n-x^{2}\right)\right. \text {. } \\
& =\frac{v^{2}}{x}\left(-2 x^{2}+3 x^{3}-x^{4}\right)+\frac{x^{2} \delta}{x y}\left(x^{3}-\frac{5}{3} x^{4}-\frac{2}{3} x^{5}\right) \\
& =\frac{U^{2}}{E^{2}}\left(-2 x^{2}+3 x^{3}-x^{4}\right)+\frac{Y^{2}}{x}\left(x^{2}-\frac{5}{3} x^{3}+\frac{2}{3} x^{4}\right) \\
& a_{n}=\frac{v^{2}}{x}\left(-x^{2}+\frac{4}{3} x^{3}-\frac{1}{3} x^{4}\right)=-\frac{v^{2}}{x}\left[\left(\frac{y}{\delta}\right)^{2}-\frac{4}{3}\left(\frac{y}{\delta}\right)^{3}+\frac{1}{3}\left(\frac{y}{8}\right)^{4}\right] \tag{x}
\end{align*}
$$

To find value of $n(=y / \delta)$ for which a_{x} is a maximum, set

$$
\begin{aligned}
& \frac{d a n}{d \pi}=0=\frac{v^{2}}{x}\left(-2 \pi+4 n^{2}-\frac{4}{3} n^{3}\right)=\frac{v^{2}}{\pi} n\left(-2+4 n-\frac{4}{3} n^{2}\right) \\
& \text { At } n=0 \text { y/ } y=0 \text { and } a_{n}=0 \\
& \text { For }\left(-2+4 \pi-\frac{4}{3} \pi^{2}\right)=0 \text { or } n^{2}-3 n+\frac{3}{2}=0 \\
& n= \pm 3+\frac{\sqrt{\left.(3)^{2}-4(i)\right)^{3}}}{2}=\frac{3 \pm \sqrt{3}}{2}
\end{aligned}
$$

Choose $0<n<1$ (within $0 \leqslant y \leqslant \delta$) $\therefore \quad n=0.634, \quad y / \delta$ Ht $n=0.634$

$$
a_{1}=(5.0)^{2} \frac{\mathrm{~m}^{2}}{s^{2}} \times \frac{1}{1 m}\left[-(0.634)^{2}+\frac{4}{3}(0.634)^{3}-\frac{1}{3}(6.634)^{4}\right]=-\left.2.90 \mathrm{~m}^{2}\right|_{s^{2}}-a_{x}
$$

Problem 5.58 (contd.)

$$
\begin{aligned}
& a_{n}=-\frac{V^{2}}{x}\left[\left(\frac{y}{8}\right)^{2}-\frac{4}{3}\left(\frac{y}{8}\right)^{3}+\frac{1}{3}\left(\frac{y}{8}\right)^{4}\right] \\
& a_{n}=-25\left[\lambda^{2}-\frac{4}{3} x^{3}+\frac{1}{3} x^{4}\right] \mathrm{m} / \mathrm{s}^{2} \quad \text { where } \lambda=y / \delta
\end{aligned}
$$

x component $\boldsymbol{a}_{\boldsymbol{x}}$

y / δ	$a_{x}\left(\mathrm{~m} / \mathbf{s}^{2}\right)$
0.00	0.000
0.05	-0.058
0.10	-0.218
0.15	-0.454
0.20	-0.747
0.25	-1.074
0.30	-1.418
0.35	-1.758
0.40	-2.080
0.45	-2.367
0.50	-2.604
0.55	-2.779
0.60	-2.880
0.65	-2.896
0.70	-2.818
0.75	-2.637
0.80	-2.347
0.85	-1.942
0.90	-1.418
0.95	-0.771
1.00	0.000

x-component of Acceleration in Boundary Layer

y / δ	$a_{x}\left(\mathrm{~m} / \mathrm{s}^{2}\right)$
0.634	-2.90

Given: A ir flow through porous surface into narrow gap.

Find: (a) show $u(x)=v_{0} x / n$
(b) Components
(c) Acceleration of a fluid particle in the gap.

Solution: Apply conservation of mass to CV shown.

$$
=0(1)
$$

Basic equation: $0=\frac{\partial}{\partial t} \int_{C_{V}} \rho d t+\int_{C S} \rho \vec{v} \cdot d \vec{A}$
Assumptions: (1) steady flow
(2) Incompressible flow
(3) Uniform flow at each in section

Then

$$
o=\left\{-x \omega v_{0}\right\}+\{h w u(x)\} \quad \text { or } \quad u(x)=v_{0} \frac{x}{h}
$$

Apply differential form to find v :

$$
\begin{aligned}
& \frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}=0 \quad \frac{\partial u}{\partial x}=\frac{v_{0}}{h} \\
& v-v_{0}=\int_{0}^{y} \frac{\partial v}{\partial y} d y+f(x)=\int_{0}^{y}-\frac{v_{0}}{h} d y+f(x)=-\frac{v_{0} y}{h}+f(x)
\end{aligned}
$$

or

Given: Flow between parallel/ disks through porous surface.
Find: (a) show $V_{r}=v_{0} r / 2 h$
(b) V_{z}, if $v_{0} \ll V_{r}$
(c) Components of acceleration for a fluid particle in the gap.

Solution: Apply CV form of continuity to finite CU shown.
Basic equation:

$$
0=\frac{\partial^{1}}{\phi t} \int_{c v} \rho d t+\int_{c s} \rho \vec{v} \cdot d \vec{A}
$$

Assumptions: (1) Steady flow
(2) Incompressible flow
(3) Uniform flow at each section

Then

$$
0=\left\{-\left|\rho v_{0} \pi r^{2}\right|\right\}+\left\{+\left|\rho v_{r} 2 \pi r h\right|\right\} \text { or } v_{r}=\frac{v_{0} r}{2 h}
$$

Apply differential form of conservation of mass for incompressible flow.
Basic equation: $\frac{1}{r} \frac{\partial}{\partial r}\left(r V_{r}\right)+\frac{1}{r} \frac{\partial}{\partial \theta}\left(F_{\theta}\right)+\frac{\partial}{\partial z} V_{z}=0$
Asscomptions: (4) $V_{\theta}=0$ by symmetry
(5) $V_{r}=v_{0} r / Z h$ from above

Then

$$
\frac{\partial v_{z}}{\partial z}=-\frac{1}{r} \frac{\partial}{\partial r}\left(r V_{r}\right)=-\frac{1}{r} \frac{\partial}{\partial r}\left(\frac{v_{0} r^{2}}{2 h}\right)=-\frac{1}{r}\left(\frac{v_{0} r}{h}\right)=-\frac{v_{0}}{h}
$$

Integrating,

$$
V_{z}=-\frac{v_{0} z}{h}+f(r)
$$

Bocendary conditions are $V_{z}=v_{0}$ at $z=0, v_{z}=0$ at $z=h$
Thus from first $B C, f(r)=v_{0}=$ constant, so

$$
V_{z}=V_{0}\left(1-\frac{z}{h}\right)
$$

The component of acceleration is

$$
a_{r}=V_{r} \frac{\partial V_{r}}{\partial r}+\frac{V_{Q}}{r} \frac{\partial \hat{v_{r}}}{\partial \theta}+v_{z} \frac{\partial \hat{V}_{r}}{\partial z}+\frac{\partial \hat{V}_{r}}{\partial t}=\left(\frac{v_{0} r}{2 n}\right)\left(\frac{v_{0}}{2 h}\right)=\left(\frac{v_{0}}{2 h}\right)^{2} r
$$

The z component is

$$
a_{z}=V_{r} \frac{\partial V_{z}}{f r}+\frac{V_{\theta}}{r} \frac{\partial \sqrt{v_{z}}}{\partial \theta}+V_{z} \frac{\partial V_{z}}{\partial z}+\frac{\partial \frac{v_{3}}{\partial t}}{\partial t}=v_{0}\left(1-\frac{z}{h}\right)\left(-\frac{v_{0}}{h}\right)=\frac{v_{0}^{2}}{h}\left(\frac{z}{h}-1\right)
$$

Given: Steady, inviscid flow over a circular cylinder of radius R.

$$
\vec{V}=i \bar{u} \cos \theta\left[1-\left(\frac{R}{r}\right)^{2}\right] \hat{e}_{r}-\nabla \sin \theta\left[1+\left(\frac{R}{r}\right)^{2}\right] \hat{e}_{\theta}
$$

Find: (a) Expression for acceleration of panicle moving along $\theta=\pi$ (b) Expression for acceleration of particle movigatora $r=R$
(c) Locations at which accelerations a_{r} and a_{t} reach maximum and minimum values.
Plot: a_{r} as a function of $R l_{r}$ for $\theta=r$ and as a function of θ for $r=R$; plot a_{θ} as a function of θ for $r=e$
Solution:
Basic equations:

$$
\begin{aligned}
& a_{r}=V_{r} \frac{\partial V_{r}}{\partial r}+\frac{\nu_{\theta}}{\tau} \frac{\partial V_{r}}{\partial \theta}-\frac{\nu^{2}}{r}+\frac{\partial X_{r}}{\partial t}=0(1) \\
& a_{\theta}=V_{r} \frac{\partial V_{\theta}}{\partial r}+\frac{\nu_{\theta}}{r} \frac{\partial V_{\theta}}{\partial \theta}+\frac{V_{0}}{r}+\frac{V_{\theta}}{r}+\frac{\partial y_{\theta}}{\partial t}
\end{aligned}
$$

Assumptions: (i) steady flow.
Along $\theta=k$
$g \theta=r$
then $\cos \theta=-1, \sin \theta=0$, so $V_{b}=0$ and $V_{r}=-\left[\left(1-\left(\frac{R}{r}\right)^{2}\right]\right.$

$$
\begin{aligned}
& \left.\left.a_{r}=v_{r} \frac{\partial v_{r}}{\partial r}=-U\left[1-\left(\frac{R}{r}\right)^{2}\right](-U)(-2)\left(-\frac{R^{2}}{r^{2}}\right)\right]=\frac{2 V^{2}}{R}\left[1-\left(\frac{R}{r}\right)^{2}\right]\left(\frac{R}{r}\right)^{3} a_{a} a_{\theta}\right]_{\theta} \\
& a_{\theta}=0
\end{aligned}
$$

To determine location of maximuen a_{r}, let $\frac{R}{5}=\eta$ andevaluate dar

$$
a_{r}=\frac{R U^{2}}{R}\left[1-\eta^{2}\right] \eta^{3}=\frac{2 v^{2}}{R}\left[\eta^{3}-\eta^{3}\right]
$$

$$
\frac{d a r}{d \eta}=\frac{2 v^{2}}{R}\left[3 \eta^{2}-5 \eta^{4}\right] \text {. The } \frac{d a r}{d \eta}=0 \text { at } \eta^{2}=\frac{3}{5} \text { or } \eta=0.715
$$

Rus, $a_{r m a n}$ occurs at $r=8 / 0.775=1.29 R \quad r_{\text {anal }}$

$$
\begin{aligned}
& a_{r_{\text {max }}}=\frac{2 U^{2}}{R}(0 . \pi 5)^{3}\left[1-(0.275)^{2}\right]=0.372 \frac{V^{2}}{R} @ r=1.29 R . \\
& \text { Since } a_{0}=0, \quad \vec{a}_{\text {max }}=a_{r_{\text {max }}} \hat{e}_{r}=0.372 \frac{V^{2}}{R} e_{r} @ r=1.29 R
\end{aligned}
$$

Along $r=R$
ar has maximum negative value at $\theta= \pm \pi / 2$ has minimum value (of zero at $\theta=0, \pi$
a_{θ} has maximin values at $\theta= \pm \pi / 4,3 \pi / 4$ has minimuanvalues at $\theta=0, \pm \pi / 2, \pi$

	The acceleration magritude is $\|\vec{a}\|=\left[a_{r}^{2}+a_{\theta}^{2}\right]^{1 / 2}=\left[\left(-\frac{4 U^{2}}{R}\right)^{2} \sin ^{4} \theta+\left(\frac{4 U^{2}}{R}\right)^{2} \sin ^{2} \cos ^{2} \theta\right]^{1 / 2}=\frac{4 U^{2}}{R} \sin \theta$ - Rhis is a raximum at $\theta= \pm * 2$. Thes $\vec{a}_{\text {ras }}= \pm 4 \frac{U^{2}}{R} \text { at } \theta= \pm \pi l_{2} \text {. }$ Plots: (1) $\quad \theta=\pi$ $a_{r}=\frac{2 r^{2}}{R}\left(\frac{R}{r}\right)^{3}\left[1-\left(\frac{R R^{2}}{r}\right] ; \quad \frac{a_{r}}{v^{2}(R}=\left(\frac{R}{r}\right)^{3}\left[1-\left(\frac{R}{r}\right)^{2}\right]\right.$ (2) $r=R$. $\begin{array}{lll} a_{R}=-4 \frac{V^{2}}{R} \sin ^{2} \theta ; & \frac{a_{r}}{U^{2} R}=-4 \sin ^{2} \theta \\ a_{\theta}=4 \frac{3^{2}}{R} \sin \theta \cos \theta ; & \frac{a_{\theta}}{\sigma^{2} R}=4 \sin \theta \cos \theta \end{array}$	

Problem 5.62

Consider the incompressible flow of a fluid through a nozzle as shown. The area of the nozzle is given by $A=A_{0}(1-b x)$ and the inlet velocity varies according to $U=$ $U_{0}\left(1-e^{-\lambda t}\right)$, where $A_{0}=0.5 \mathrm{~m}^{2}, L=5 \mathrm{~m}, b=0.1 \mathrm{~m}^{-1}, \lambda=0.2 \mathrm{~s}^{-1}$, and $U_{0}=$ $5 \mathrm{~m} / \mathrm{s}$. Find and plot the acceleration on the centerline, with time as a parameter.

Given: Velocity field and nozzle geometry

Find: Acceleration along centerline; plot

Solution

The given data is $\mathrm{A}_{0}=0.5 \cdot \mathrm{~m}^{2} \quad \mathrm{~L}=5 \cdot \mathrm{~m} \quad \mathrm{~b}=0.1 \cdot \mathrm{~m}^{-1} \lambda=0.2 \cdot \mathrm{~s}^{-1} \quad \mathrm{U}_{0}=5 \cdot \frac{\mathrm{~m}}{\mathrm{~s}}$

$$
A(x)=A_{0} \cdot(1-b \cdot x)
$$

The velocity on the centerline is obtained from continuity

$$
\mathrm{u}(\mathrm{x}) \cdot \mathrm{A}(\mathrm{x})=\mathrm{U}_{0} \cdot \mathrm{~A}_{\mathrm{o}}
$$

so

$$
u(x, t)=\frac{A_{0}}{A(x)} \cdot U_{0} \cdot\left(1-e^{-\lambda \cdot t}\right)=\frac{U_{0}}{(1-b \cdot x)} \cdot\left(1-e^{-\lambda \cdot t}\right)
$$

The acceleration is given by

$$
\begin{aligned}
& \vec{a}_{p}=\frac{D \vec{V}}{D t}=\underbrace{u \frac{\partial \vec{V}}{\partial x}+v \frac{\partial \vec{V}}{\partial y}+w \frac{\partial \vec{V}}{\partial z}}+\frac{\partial \vec{V}}{\partial t} \\
& \text { total } \\
& \text { acceleration } \\
& \text { of a particle } \\
& \text { convective } \\
& \text { acceleration } \\
& \text { local } \\
& \text { acceleration }
\end{aligned}
$$

For the present 1D flow

$$
\begin{aligned}
& a_{x}=\frac{\partial}{\partial t} u+u \cdot \frac{\partial}{\partial x} u=\frac{\lambda \cdot U_{0}}{(1-b \cdot x)} \cdot e^{-\lambda \cdot t}+\frac{U_{0}}{(1-b \cdot x)} \cdot\left(1 \cdot-e^{-\lambda \cdot t}\right) \cdot\left[\frac{b \cdot U_{0}}{(1-b \cdot x)^{2}} \cdot\left(1 \cdot-e^{-\lambda \cdot t}\right)\right] \\
& a_{x}=\frac{U_{0}}{(1-b \cdot x)} \cdot\left[\lambda \cdot e^{-\lambda \cdot t}+\frac{b \cdot U_{0}}{(1-b \cdot x)^{2}} \cdot\left(1-e^{-\lambda \cdot t}\right)^{2}\right]
\end{aligned}
$$

The plot is shown in the corresponding Excel workbook

Problem 5.62 (In Excel)

Consider the incompressible flow of a fluid through a nozzle as shown. The area of the nozzle is given by $A=A_{0}(1-b x)$ and the inlet velocity varies according to $U=$ $U_{0}\left(1-e^{-\lambda t}\right)$, where $A_{0}=0.5 \mathrm{~m}^{2}, L=5 \mathrm{~m}, b=0.1 \mathrm{~m}^{-1}, \lambda=0.2 \mathrm{~s}^{-1}$, and $U_{0}=$ $5 \mathrm{~m} / \mathrm{s}$. Find and plot the acceleration on the centerline, with time as a parameter.

Given: Velocity field and nozzle geometry

Find: Acceleration along centerline; plot

Given data:

A_{0}	$=$	0.5	
L	$=$	m^{2}	
b	$=$		0.1
		$\mathrm{~m}^{-1}$	
λ	$=$	0.2	
$\mathrm{~s}^{-1}$			
U_{0}	$=$	5	
$\mathrm{~m} / \mathrm{s}$			

The acceleration is

$a_{x}=\frac{U_{0}}{(1-b \cdot x)} \cdot\left[\lambda \cdot e^{-\lambda \cdot t}+\frac{b \cdot U_{0}}{(1-b \cdot x)^{2}} \cdot\left(1-e^{-\lambda \cdot t}\right)^{2}\right]$

$\boldsymbol{t}=$	$\mathbf{0}$	$\mathbf{5}$	$\mathbf{1 0}$	$\mathbf{6 0}$
$\boldsymbol{x}(\mathbf{m})$	$\boldsymbol{a}_{\boldsymbol{x}}\left(\mathbf{m} / \mathbf{s}^{\mathbf{2}}\right)$	$\boldsymbol{a}_{\boldsymbol{x}}\left(\mathbf{m} / \mathbf{s}^{\mathbf{2}}\right)$	$\mathbf{a}_{\boldsymbol{x}}\left(\mathbf{m} / \mathbf{s}^{\mathbf{2}}\right)$	$\boldsymbol{a}_{\boldsymbol{x}}\left(\mathbf{m} / \mathbf{s}^{\mathbf{2}}\right)$
0.0	1.00	1.367	2.004	2.50
0.5	1.05	1.552	2.32	2.92
1.0	1.11	1.78	2.71	3.43
1.5	1.18	2.06	3.20	4.07
2.0	1.25	2.41	3.82	4.88
2.5	1.33	2.86	4.61	5.93
3.0	1.43	3.44	5.64	7.29
3.5	1.54	4.20	7.01	9.10
4.0	1.67	5.24	8.88	11.57
4.5	1.82	6.67	11.48	15.03
5.0	2.00	8.73	15.22	20.00

For large time ($>30 \mathrm{~s}$) the flow is essentially steady-state

Problem 5.63

Given: One-dimensionar, incompressible flow through circular channel.

Find: (a) The acceleration of a particle at the channel exit.
(b) Plot as a function of time for a complete cycle.
(c) On same plot. show acceleration if channel is cont ant area; explain

Solution: The acceleration of a particle in one-dimensionalflow is

$$
a_{x}=u \frac{\partial u}{\partial x}+\frac{\partial u}{\partial t}
$$

From continceity, $u=U \frac{A_{1}}{A}=U \frac{R_{1}^{2}}{R^{2}}$
From geometry, $\Omega=R_{1}-\left(R_{1}-R_{2}\right) \frac{x}{L}=R_{1}-\Delta R \frac{x}{L}$, so

$$
u=U_{\frac{R_{1}^{2}}{\left(R, \Delta R \frac{x}{L}\right)^{2}}}=\left[U_{0}+U_{1} \sin (\omega t)\right] \sqrt{\left[1-\frac{\Delta R}{R}\left(\frac{x}{L}\right)\right]^{2}}
$$

Thus

$$
\begin{aligned}
& a_{x}= {\left[U_{0}\right.} \\
&\left.+U_{1} \sin (\omega t)\right] \frac{1}{\left[1-\frac{\Delta R}{R},\left(\frac{x}{L}\right)\right]^{2}}\left[U_{0}+U_{1} \sin (\omega t)\right]\left(-2 x-\frac{\Delta R}{R_{1} L}\right) \frac{1}{\left[1-\frac{\Delta R}{R_{1}}\left(\frac{x}{L}\right)\right]^{3}} \\
&+ \frac{\omega U_{1} \cos (\omega t)}{\left[1-\frac{\Delta R}{R_{1}}\left(\frac{x}{L}\right)\right]^{2}} \\
& a_{x}= \frac{2 \Delta R}{R, L} \frac{\left[U_{0}+U_{1} \sin (\omega t)\right]^{2}}{\left[1-\frac{\Delta R}{R_{1}}\left(\frac{x}{L}\right)\right]^{5}}+\frac{\omega U_{1} \cos (\omega t)}{\left[1-\frac{\Delta R}{\left.R_{1}\left(\frac{x}{L}\right)\right]^{2}}\right.}
\end{aligned}
$$

At $x / L=1,\left[1-\frac{\Delta R}{R_{1}}\left(\frac{x}{L}\right)\right]=1-\frac{0.1 m}{0.2 m}=0.5$, so

$$
a_{x}=2 \times 0.1 m \times \frac{1}{0.2 m} \times \frac{1}{1 m}[20+2 \sin (\omega t)]_{\frac{m^{2}}{s^{2}}}^{2} \times \frac{1}{(0.5)^{5}}+0.3 \frac{3 \pi d}{5} \times \frac{2 m}{s} \times \cos (\omega t) \times \frac{1}{(0.5)^{2}}
$$

or

$$
a_{x}\left(m / \sec ^{2}\right)=32[20+2 \sin (\omega t)]^{2}+2.4 \cos (\omega t) \quad(a t x=L)
$$

The acceleration in the channel and in a constant area are calculated and plotted below

$\boldsymbol{t}(\mathbf{s})$	$\mathbf{a}_{\boldsymbol{x}}\left(\mathbf{m} / \mathbf{s}^{2}\right)$ $($ Convergent $)$	$\mathbf{a}_{\boldsymbol{x}}\left(\mathbf{m} / \mathbf{s}^{2}\right)$ $(\mathbf{A}=$ const.)
0	12802	0.600
1	13570	0.573
2	14288	0.495
3	14885	0.373
4	15298	0.217
5	15481	0.042
6	15414	-0.136
7	15104	-0.303
8	14586	-0.442
9	13915	-0.542
10	13161	-0.594
11	12397	-0.592
12	11690	-0.538
13	11098	-0.436
14	10665	-0.294
15	10419	-0.126
16	10377	0.052
17	10541	0.227
18	10900	0.381
19	11431	0.501
20	12097	0.576
21	12845	0.600
22	13612	0.570
23	14326	0.489
24	14914	0.365
25	15315	0.208

The acceleration in the convergent channel is massively larger than that in the constant area channel because very large convective acceleration is generated by the convergence (the constant area channel only has local acceleration)

Given: Steady, two-dimensional velocity field of Problem 5.47,

$$
\vec{V}=A_{x} \hat{\imath}-A_{y} \hat{\jmath} ; A=1 \mathrm{~s}^{-1}
$$

Find: (a) Expressions for particle coordinates, $x_{p}=f_{1}(t)$ and $y_{p}=f_{2}(t)$.
(b) Time required for particle to travel from $\left(x_{0}, y_{0}\right)=\left(\frac{1}{2}, 2\right)$ to $(x, y)=(1,1)$ and $(2,1 / 2)$.
(c) Compare acceleration determined from $f_{1}(t)$ and $f_{2}(t)$ with those found in Problem 5.49.

Solution: For the given flow, $u=A x$ and $v=-A y$, Thus

$$
u_{p}=\frac{d f_{1}}{d t}=A x_{p}=A f_{1} \text {, or } \frac{d f_{1}}{f_{1}}=A d t
$$

Integrating from x_{0} to f_{1},

$$
\left.\int_{x_{0}}^{f_{1}} \frac{d f_{1}}{f_{1}}=\ln f_{1}\right]_{x_{0}}^{f_{1}}=\ln \left(\frac{f_{1}}{x_{0}}\right)=A t, \text { or } f_{1}=x_{0} e^{A t}
$$

Likewise $v_{p}=\frac{d f_{2}}{d t}=-A y_{p}=-A \cdot f_{2}$, or $\frac{d f_{2}}{f_{2}}=-A d t$
Integrating from y_{0} to f_{2},

$$
\left.\int_{y_{0}}^{f_{2}} \frac{d f_{2}}{f_{2}}=\ln f_{1}\right]_{y_{0}}^{f_{2}}=\ln \left(\frac{f_{2}}{y_{0}}\right)=-A t \quad \text { or } f_{2}=y_{0} e^{-A t}
$$

For a particle initially at $\left(\frac{1}{2}, 2\right), x_{0}=\frac{1}{2}$ and $y_{0}=2$
To reach the point $(x, y)=(1,1), e^{A t}=\frac{x}{x_{0}}=2$, so $t=\frac{\ln 2}{A}=0.693 \mathrm{sec}$

$$
e^{-A t}=\frac{y}{y_{0}}=\frac{1}{2} \text {, so } t=\frac{-\ln \frac{1}{2}}{A}=0.693 \mathrm{sec}
$$

To reach the point $(x, y)=\left(z, \frac{1}{2}, \ell^{A t}=\frac{x}{x_{0}}=4\right.$, so $t=\frac{\ln 4}{A}=1.39 \mathrm{sec}$

$$
e^{-A t}=\frac{y}{y_{0}}=\frac{1}{4} \text {, so } t=\frac{-\ln \frac{1}{4}}{A}=1.39 \mathrm{sec}
$$

The acceleration components are

$$
\begin{aligned}
a_{p x} & =\frac{d^{2} f_{1}}{d t^{2}}=x_{0} A^{2} e^{A t}=x_{0} A^{2} \frac{f_{1}}{x_{0}}=A^{2} f_{1} \\
a_{p y} & =\frac{d^{2} f_{2}}{d t^{2}}=y_{0} A^{2} e^{-A t}=y_{0} A^{2} \frac{f_{2}}{y_{0}}=A^{2} f_{2} \\
\text { At }(x, y) & =(1,1) \\
\vec{a}_{p} & =a_{p x} \hat{\imath}+a_{p y} \hat{\jmath}=\frac{(1)^{2}}{s^{2}} \times 1 m \hat{\imath}+\frac{(1)^{2}}{s^{2}} \times 1 m \hat{\jmath}=(\hat{\imath}+\hat{\jmath}) \frac{m}{s^{2}} \\
\text { At }(x, y) & =\left(2, \frac{1}{2}\right) \\
\vec{a}_{p} & =\frac{(1)^{2}}{s^{2}} \times 2 m \hat{\imath}+\frac{(1)^{2}}{s^{2}} \times \frac{1}{2} m \hat{\jmath}=\left(2 \hat{\imath}+\frac{1}{2} \hat{\jmath}\right) \frac{m}{s^{2}}
\end{aligned}
$$

These are identical to the accelerations found in Problem 5.49.

Expand $(\vec{J} \cdot \nabla) \bar{y}$ in cylindrical coordinates to obtain the convective acceleration of a fluid particle. verify the results given in Eqs.5.12

Recall $2 \hat{e}^{2} L_{2 \theta}=\hat{e}_{0}$ and $\partial_{\hat{e}} l_{\Delta \theta}=-\hat{e}_{r}$
Solution:
In cylindrical coordinates $\nabla=\hat{e_{r}} \frac{\partial}{2 r}+\hat{e}_{0} \frac{1}{r} \frac{\partial}{\partial \theta}+\hat{k} \frac{\partial}{2 z}$

$$
\begin{aligned}
& \vec{V}=V_{r} \hat{e}_{r}+\hat{b}_{0}+V_{2} \hat{Q} \\
& (\vec{U} \cdot \nabla) \bar{\lambda}=\left[V_{r} \hat{e}_{r}+b_{0} \hat{e}_{\theta}+\psi_{2} \hat{k}\right] \cdot\left[\hat{e}_{+} \frac{\partial}{\partial r}+\hat{e}_{\theta} \frac{1}{\Gamma} \frac{\partial}{\partial \theta}+k \frac{\partial}{\partial z}\right]\left(\psi_{+}+\hat{b}_{0} \hat{e}_{\theta}+N_{2} \hat{l}\right) \\
& =\left[\nu_{r} \frac{\partial}{\partial r}+\frac{V_{\theta}}{\Gamma} \frac{\partial}{\partial \theta}+V_{z} \frac{\partial}{\partial z}\right]\left(\psi_{r} \hat{e}_{r}+b_{e_{\theta}}+\psi_{i} \hat{e}\right) \\
& =V_{r} \frac{\partial}{\partial r} V_{r} \hat{e}_{r}+\frac{\nu_{0}}{\Gamma} \frac{\partial}{\partial \theta} V_{r} \hat{e}_{r}+V_{z} \frac{\partial}{\partial z}\left(V_{r} \hat{e}_{r}\right) \\
& +V_{r} \frac{\partial}{\partial r} V_{0} \hat{e}_{\theta}+\frac{V_{\theta}}{\Gamma} \frac{\partial}{\partial \theta} V_{\theta} \hat{e}_{\theta}+V_{z} \frac{\partial}{\partial z} V_{0} \hat{e}_{\theta} . \\
& +V_{r} \frac{\partial}{\partial r} V_{i} \hat{k}+\frac{V_{0}}{\Gamma} \frac{\partial}{\partial t} V_{z} \hat{k}+V_{z} \frac{\partial}{\partial z} V_{z} \hat{k}
\end{aligned}
$$

$$
\begin{aligned}
& +\hat{e}_{e}\left\{v_{r} \frac{\partial N_{0}}{\partial r}+\frac{\nu_{e}}{\tau} \frac{\partial N_{0}}{\partial \theta}+\nu_{z} \frac{\partial N_{0}}{\partial z}\right\}+\frac{V_{0}^{2}}{\tau}\left(\frac{\partial \hat{e}_{\theta}}{\partial \theta}\right)=-\hat{e} r \\
& +k\left\{v_{r} \frac{\partial v_{t}}{\partial r}+\frac{\nu_{0}}{\Gamma} \frac{\partial v_{2}}{\partial \theta}+\frac{\partial v_{2}}{\partial z} \text { \} } 3\right. \\
& \vec{v} \cdot \nabla \vec{V}=\hat{e}_{r}\left\{v_{r} \frac{\partial v_{r}}{\partial r}+\frac{v_{\theta}}{r} \frac{\partial v_{r}}{\partial \sigma}-\frac{\nu_{\theta}^{2}}{r}+v_{z} \frac{\partial \nu_{r}}{\partial z}\right\} \\
& +\hat{e}_{\theta}\left\{\psi_{r} \frac{\partial V_{r}}{\partial r}+\frac{\nu_{0}}{\tau} \frac{\partial V_{\theta}}{\partial \theta}+\frac{\psi_{r}}{r}+v_{z} \frac{\partial V_{\theta}}{\partial z}\right\} \text {. } \\
& +\hat{B}\left\{v_{r} \frac{\partial N_{z}}{\partial r}+\frac{V_{\theta}}{r} \frac{\partial v_{2}}{\partial \theta}+v_{z} \frac{\partial N_{2}}{\partial z}\right\}
\end{aligned}
$$

Term() is the r component of convective acceleration

$$
E_{q} 5.12 a a_{r p}=\left\{v_{r} \frac{\partial \nu_{r}}{\partial r}+\frac{V_{0}}{r} \frac{\partial N_{r}}{\partial \theta}-\frac{V^{2}}{r}+V_{z} \frac{\partial V_{r}}{\partial z}\right\}+\frac{\partial V_{r}}{\partial \tau}
$$

Term(2) is the θ component of convective acceleration

$$
\text { Eq. 5.12b } a_{\theta p}=\left\{V_{r} \frac{\partial N_{0}}{2 r}+\frac{V_{\theta}}{\tau} \frac{\partial t}{2 \theta}+\frac{V_{r}}{r} \frac{\psi_{0}}{r}+\psi_{2} \frac{\partial N_{0}}{\partial z}\right\}+\frac{\partial N_{0}}{\partial t}
$$

Term (3) is the z component of convective acceleration

$$
\text { Eq .S.12c } a_{z_{p}}=\left\{V_{r} \frac{\partial N_{2}}{\partial r}+\frac{\nu_{\theta}}{r} \frac{\partial V_{z}}{\partial \theta}+\psi_{z} \frac{\partial N_{2}}{\partial z}\right\}+\frac{\partial V_{z}}{\partial t}
$$

Given: Velocity field $\vec{V}=10 x \hat{\imath}-10 y \hat{\jmath}+30 \hat{k}$
Determine if the field is: (a) Incompressible.
(b) Irrotational.

Solution: Apply continuity and irrotationality condition.

$$
=0(1) \quad=0(2)
$$

Basic equations: $\frac{\partial p u}{\partial x}+\frac{\partial p v}{\partial y}+\frac{\partial \rho \hat{w}}{p z}+\frac{\partial \hat{p}}{\rho t}=0$

$$
\nabla \times \vec{v}=0 \text { (if irrotational) }
$$

Assumptions: (1) $\vec{V}=\vec{V}(x, y)$, so $\frac{\partial}{\partial z}=0$
(2) Incompressible flow, so $\rho=$ constant

Then
Flow is a possible incompressible flow.

$$
\begin{aligned}
& \nabla \times \vec{v}=\left|\begin{array}{ccc}
\hat{\imath} & \hat{\jmath} & \hat{k} \\
\partial / \partial x & \partial / \partial y & \partial / \partial z \\
u & v & w
\end{array}\right|=\hat{\imath}\left(\frac{\partial w}{\partial y}-\frac{\partial v}{\partial z}\right)+\hat{\jmath}\left(\frac{\partial u}{\partial z}-\frac{\partial w}{\partial x}\right)+\hat{k}\left(\frac{\partial v}{\partial x}-\frac{\partial u}{\partial y}\right) \\
& \nabla \times \vec{v}=\hat{\imath}(0-0)+\hat{\jmath}(0-0)+\hat{k}(0-0)=0
\end{aligned}
$$

Flow is irrotational.

Problem 5.67

Which, if any, of the flow fields of Problem 5.2 are irrotational?

Given: Velocity components
(a) $u=-x+y ; v=x-y^{2}$
(b) $u=x+2 y ; v=x^{2}-y$
(c) $u=4 x^{2}-y ; v=x-y^{2}$
(d) $u=x t+2 y ; v=x^{2}-y t$
(e) $u=x t^{2} ; v=x y t+y^{2}$

Find: Which flow fields are irrotational

Solution

For a 2D field, the irrotionality the test is $\frac{d v}{d x}-\frac{d u}{d y}=0$
(a) $\frac{d v}{d x}-\frac{d u}{d y}=(1)-(1)=0$

Irrotional
(b) $\frac{d v}{d x}-\frac{d u}{d y}=(2 \cdot x)-(2)=2 \cdot x-2 \neq 0 \quad$ Not irrotional
(c) $\frac{\mathrm{dv}}{\mathrm{dx}}-\frac{\mathrm{du}}{\mathrm{dy}}=(1)-(-1)=2 \neq 0 \quad$ Not irrotional
(d) $\frac{d v}{d x}-\frac{d u}{d y}=(2 \cdot x)-(2)=2 \cdot x-2 \neq 0 \quad$ Not irrotional
(e) $\frac{d v}{d x}-\frac{d u}{d y}=(y \cdot t)-(0)=y \cdot t \neq 0 \quad$ Not irrotional

Given：Sinusoidal approximation to boundary－layervelocity profile， $u=U \sin \left(\frac{\pi}{2} \frac{y}{\delta}\right)$ where $\delta=5 \mathrm{~mm}$ at $x=0.5 \mathrm{~m}$（Problems．11）

Neglect vertical component of velocity．$U=0.5 \mathrm{~m} / \mathrm{s}$ ．
Find：（a）Circulation about contour bounded by $x=0.4 \mathrm{~m}, x=0.6 \mathrm{~m}$ ，
（b）$y=0$ ，and $y=8 \mathrm{~mm}$ ．
（b）Result if evaluated $\Delta x=0.2 m$ further downstream？

$$
\Gamma=\oint \vec{V} \cdot d \vec{s}
$$

From the definition

$$
\begin{aligned}
& \Gamma=\int_{a b} \vec{\psi} \cdot d \vec{\Delta}+\int_{b c} \vec{V} \nmid d \vec{\Delta}+\int_{c d} \vec{v} \cdot d \vec{\Delta}+\int_{d a} \vec{v} \not \mu^{u L \vec{\Delta}}=\int_{0}^{\Delta x} V \hat{\imath} \cdot d x(-\hat{\iota}) \\
& \Gamma=-U \Delta x=-5 \frac{m}{\sec } \times 0.2 m=-0.100 \mathrm{~m}^{2} / \mathrm{sec}
\end{aligned}
$$

At the downstream location，since $\delta=c x^{1 / 2}$

$$
\delta^{\prime}=\delta\left(\frac{x}{x^{\prime}}\right)^{1 / 2}=5 \mathrm{~mm}\left(\frac{0.8}{0.5}\right)^{1 / 2}=6.32 \mathrm{~mm}
$$

Point c^{\prime} is also outside the boundary layer．Consequently the integral along $c^{\prime} c$ will be the same as along co．Thus

$$
\Gamma_{b b^{\prime} c^{\prime} c}=\Gamma_{a b c d}
$$

Given: Velocity field for flow in a rectangular "corner,"

$$
\vec{V}=A x \hat{\imath}-A y \hat{\jmath} \text { with } A=0.35^{-1}
$$

as in Example Problem 5.8.
Find: Circulation about unit square shown.
Solution: Evaluate circulation
Defining equation:

$$
\Gamma=\emptyset \vec{v} \cdot d \vec{s}
$$

The dot product is $\vec{V} \cdot d \vec{\iota}=(A x \hat{\imath}-A y \hat{\jmath}) \cdot(d x \hat{\imath}+d y \hat{\jmath})=A x d x-A y d y$.
For the contour shown, $d y=0$ abng ad and $c b$, and $d x=0$ along ba and dc. Thus

$$
\begin{aligned}
\Gamma & =\int_{a}^{d} A x d x+\int_{d}^{c}-A y d y+\int_{c}^{b} A x d x+\int_{b}^{a}-A y d y \\
& \left.\left.\left.\left.=\frac{A x^{2}}{2}\right]_{x_{a}}^{x_{d}}-\frac{A y^{2}}{2}\right]_{y_{d}}^{y_{c}}+\frac{A x^{2}}{2}\right]_{x_{c}}^{x_{b}}-\frac{A y^{2}}{2}\right]_{y_{b}}^{y_{a}} \\
& =\frac{A}{2}\left(x_{d}^{2}-x_{a}^{2}+x_{b}^{2}-x_{c}^{2}\right)-\frac{A}{2}\left(y_{c}^{2}-y_{d}^{2}+y_{a}^{2}-y_{b}^{2}\right)
\end{aligned}
$$

$\Gamma=0$ (since $x_{a}=x_{b}$ and $x_{c}=x_{d}$

$$
y_{a}=y_{d} \text { and } y_{b}=y_{c} \text {) }
$$

$\left\{\begin{array}{l}\text { This result is to be expected, since flow is irrotational }(\nabla \times \vec{V}=0) \text {. } \\ \text { From stokes' Theorem }(\text { Eq, 5.18), } \\ \Gamma=\int_{A}(\nabla \times \vec{V})_{z} d A=0\end{array}\right\}$

Given: Two dimensional \mathbb{A} ow field $\vec{V}=A+y i+B y \hat{y}$, where $A=1 n^{-1} \cdot s^{-1} B=-\frac{1}{2} M^{-1} \cdot s^{-1}$ and coordinates are Measured in meters
Show: veboity field represents a possible incompressible flaw

Solution:
For incompressible flow $\frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}=0$

For gwen flow field.

$$
\frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}=\frac{\partial}{\partial x}(A x y)+\frac{\partial}{\partial y}\left(B y^{2}\right)=A y+2 B y=(i) y+2\left(-\frac{1}{2}\right) y=0
$$

The fluid rotation is defined as $\vec{\omega}=\frac{1}{2} \nabla \vec{N}$

$$
\vec{\omega}=\frac{1}{2}\left|\begin{array}{ccc}
\hat{L} & \bar{j} & k \\
\frac{2}{2 x} & \frac{\partial}{2 y} & \frac{\partial}{2 z} \\
A+y & \frac{b y}{y} & 0
\end{array}\right|=-\frac{1}{2} A x \hat{k}
$$

$$
\vec{\omega}_{1,1}=-\frac{1}{2} \times \frac{1}{M, S} \times 1+\hat{k}=-\left.0.5 \hat{k} \mathrm{rad}\right|_{\mathrm{s}} \quad \vec{\omega}_{1,2}
$$

The circulation is defined as $\Gamma=\oint \vec{V} \cdot \overrightarrow{d s}$
For the contour shown with $\bar{V}=A x y i+B y^{2} j$

$$
\Gamma=\int_{a}^{b} y^{d} x+\int_{b}^{c} v d y+\int_{c}^{d} u(-d x)+\int_{d}^{a} v(-d y)
$$

$u=0$ along $a b$.

$$
\begin{aligned}
& \Gamma=\int_{0}^{1} B y^{2} d y+\int_{C}^{0} A y d x+C_{0}^{0} B y^{2} d y \quad\{y=1 \operatorname{abog} c d\} . \\
& \left.\left.\left.r=\frac{1}{3} B y^{3}\right]_{0}^{1}+\frac{1}{2} A x^{2}\right]_{1}^{0}+\frac{1}{3} B y^{3}\right]_{1}^{0} \\
& \Gamma=\frac{1}{3} B-\frac{1}{2} A-\frac{1}{3} B=-\frac{1}{2} A=-\left.\frac{1}{2} M^{2}\right|_{s}
\end{aligned}
$$

Problem *5.71

Consider the flow field represented by the stream function $\psi=(q / 2 \pi) \tan ^{-1}(y / x)$, where $q=$ constant. Is this a possible two-dimensional, incompressible flow? Is the flow irrotational?

Given: The stream function

Find: Whether or not the flow is incompressible; whether or not the flow is irrotational

Solution

The stream function is

$$
\psi=\frac{\mathrm{q}}{2 \cdot \pi} \cdot \operatorname{atan}\left(\frac{\mathrm{y}}{\mathrm{x}}\right)
$$

The velocity components are

$$
\begin{aligned}
& u=\frac{d \psi}{d y}=\frac{q \cdot x}{2 \cdot \pi \cdot\left(x^{2}+y^{2}\right)} \\
& v=-\frac{d \psi}{d x}=\frac{q \cdot y}{2 \cdot \pi \cdot\left(x^{2}+y^{2}\right)}
\end{aligned}
$$

Because a stream function exists, the flow iiscompressible

Alternatively, we can check with $\quad \frac{d u}{d x}+\frac{d v}{d y}=0$

$$
\frac{d u}{d x}+\frac{d v}{d y}=-\frac{q \cdot\left(x^{2}-y^{2}\right)}{2 \cdot \pi \cdot\left(x^{2}+y^{2}\right)^{2}}+\frac{q \cdot\left(x^{2}-y^{2}\right)}{2 \cdot \pi \cdot\left(x^{2}+y^{2}\right)^{2}}=0 \quad \text { Incompressible }
$$

For a 2D field, the irrotionality the test is $\frac{d v}{d x}-\frac{d u}{d y}=0$

$$
\frac{d v}{d x}-\frac{d u}{d y}=-\frac{q \cdot x \cdot y}{\pi \cdot\left(x^{2}+y^{2}\right)^{2}}-\left[-\frac{q \cdot x \cdot y}{\pi \cdot\left(x^{2}+y^{2}\right)^{2}}\right]=0 \quad \text { Irrotational }
$$

Problem *5.72

Consider the flow field represented by the stream function $\psi=-A / 2 \pi\left(x^{2}+y^{2}\right)$, where $A=$ constant. Is this a possible two-dimensional, incompressible flow? Is the flow irrotational?

Given: The stream function

Find: Whether or not the flow is incompressible; whether or not the flow is irrotational

Solution

The stream function is

$$
\psi=-\frac{\mathrm{A}}{2 \cdot \pi\left(\mathrm{x}^{2}+\mathrm{y}^{2}\right)}
$$

The velocity components are

$$
\begin{aligned}
& u=\frac{d \psi}{d y}=\frac{A \cdot y}{\pi\left(x^{2}+y^{2}\right)^{2}} \\
& v=-\frac{d \psi}{d x}=-\frac{A \cdot x}{\pi\left(x^{2}+y^{2}\right)^{2}}
\end{aligned}
$$

Because a stream function exists, the flow iiscompressible

Alternatively, we can check with $\quad \frac{d u}{d x}+\frac{d v}{d y}=0$

$$
\frac{\mathrm{du}}{\mathrm{dx}}+\frac{\mathrm{dv}}{\mathrm{dy}}=-\frac{4 \cdot \mathrm{~A} \cdot \mathrm{x} \cdot \mathrm{y}}{\pi\left(\mathrm{x}^{2}+\mathrm{y}^{2}\right)^{3}}+\frac{4 \cdot \mathrm{~A} \cdot \mathrm{x} \cdot \mathrm{y}}{\pi\left(\mathrm{x}^{2}+\mathrm{y}^{2}\right)^{3}}=0
$$

For a 2D field, the irrotionality the test is $\frac{d v}{d x}-\frac{d u}{d y}=0$

$$
\frac{d v}{d x}-\frac{d u}{d y}=\frac{A \cdot\left(x^{2}-3 \cdot y^{2}\right)}{\pi \cdot\left(x^{2}+y^{2}\right)^{3}}-\frac{A \cdot\left(3 \cdot x^{2}-y^{2}\right)}{\pi \cdot\left(x^{2}+y^{2}\right)^{3}}=-\frac{2 \cdot A}{\pi \cdot\left(x^{2}+y^{2}\right)^{2}} \neq 0
$$

Given: Velocity field for motion in x direction with constant shear. The shear rate is

$$
\frac{\partial u}{\partial y}=A \quad \text { where } A=0.1 \mathrm{~s}^{-1}
$$

Find: (a) Expression for \vec{V}
(b) Rate of rotation
(c) Stream function.

Solution: The velocity field is

$$
\left.\vec{v}=u \hat{\imath}=\iint \frac{\partial u}{\partial y} d y+f(x)\right] \hat{\imath}=[A y+f(x)] \hat{\imath}
$$

Fluid rotation is given by

$$
\vec{\omega}=\frac{1}{2} \nabla \times \vec{v}=\frac{1}{2}\left(\frac{\partial \hat{y}^{0}}{\partial x}-\frac{\partial u}{\partial y}\right) \hat{k}=-\frac{1}{2} \frac{\partial u}{\partial y} \hat{k}=-\frac{A}{2} \hat{k}=-0.05 \mathrm{~s}^{-1}
$$

From the definition of the streams function,

$$
\begin{aligned}
& u=\frac{\partial \psi}{\partial y} \text { so } \frac{\partial \psi}{\partial y}=A y+f(x) \text { and } \psi=\frac{1}{2} A y^{2}+f(x) y+g(x) \\
& v=-\frac{\partial \psi}{\partial x}=f^{\prime}(x) y+g^{\prime}(x)=0
\end{aligned}
$$

Thus $f^{\prime}(x)=0$ and $g^{\prime}(x)=0$, and

$$
\psi=\frac{1}{2} A y^{2}+C
$$

Gwen: Velocity field $\vec{J}=A+y i+B y^{2} j$. where $A=4 M^{-1} s^{\prime \prime}, B=-2$ N. $^{-3}$. and coordinates 'are in meters.
Find: (a) Fluid rotation
bi Circulation about"curve" shown (c) Stream function.

Pot: several strearlues in first quadrant.
Solution:
(a) The fluid rotation is gwen by

$$
\left.\vec{\omega}=\frac{1}{2} \nabla+\lambda=\frac{1}{2}\left|\begin{array}{ccc}
\hat{2} & \bar{j} & k \\
\frac{2}{2 x} & \frac{z}{2 y} & \frac{2}{2 z} \\
A x y & b y & 0
\end{array}\right|=\hat{k} \frac{1}{2}(-A x)=-\frac{1}{2} \times \frac{4}{M, 3} \hat{k}=-2 x(M) \hat{k} \frac{\mathrm{rad}}{5} \right\rvert\,
$$

b) The circulation is defied as $r=6 \vec{V} \cdot d \vec{s}$ For the contour shaun with $\bar{V}=A$ wy $+y^{2} y \dot{j}$

$$
\begin{aligned}
& r=\int_{a}^{b} A C y d x+\int_{b}^{y} B y^{2} d y+\int_{c}^{d} A x^{y} y^{-1} d x+\int_{d}^{a} B y^{2} d y \\
& \left.\left.\left.r=\int_{0}^{1} B y^{2} d y+C_{1}^{0} A+d x+C_{0}^{0} B y^{2} d y=B \frac{y^{3}}{3}\right]_{0}^{1}+A \frac{x^{2}}{2}\right]_{1}^{0}+B y_{3}^{3}\right]_{1}^{0} \\
& r=\frac{1}{3} B-\frac{1}{2} A-\frac{1}{3} B=-\frac{1}{2} A=-2 M^{2} l_{s}
\end{aligned}
$$

(c) For incompressible flow $u=\frac{\partial v}{\partial y}, v=-\frac{\partial u}{\partial x}$.

$$
\frac{2 u}{2 x}+\frac{2 v}{2 y}=A y+2 B y=4 y+2(-2) y=0 \quad \therefore \text { incompressible }
$$

The $u=$ Any $=\frac{\partial u}{\partial y}$ and.

$$
\begin{aligned}
& \psi=(A-y d y+f(x)\rangle \\
& \psi=\frac{1}{2} A-y^{2} \\
& \psi+f(x) \\
& v=-\frac{\partial u}{2 x}=-\frac{1}{2} A y^{2}-\frac{d f}{d x}=3 y^{2} \\
& v \\
& \therefore \quad \frac{d f}{d x}=-\frac{1}{2} A y^{2}-B y^{2}=-2 y^{2}+2 y^{2}=0
\end{aligned}
$$

Hence $f=$ constant.
Taking $f=0$ gives

$$
\psi=\frac{1}{2} A x y^{2}=2 x y^{2}
$$

Given: Flow field represented by $\mathbb{v}=x^{2}-y^{2}$
Find: corresponding velocity field
Show: hat flousfield is rotational
Plot: several streamlines and illustrate the velocity field
Solution:
Apply definition of \mathcal{W} and irrotationality condition:
computing equations:

$$
\begin{aligned}
& u=\frac{\partial u}{\partial y} \quad v=-\frac{\partial u}{\partial x} \\
& \vec{w}=\frac{\partial}{2} \nabla \times \vec{V}=0
\end{aligned}
$$

From the gwen $\psi=x^{2}-y^{2}$

$$
\left.\begin{array}{l}
u=\frac{\partial u}{\partial y}=\frac{\partial}{\partial y}\left(x^{2}-y^{2}\right)=-2 y \\
v=-\frac{\partial v}{\partial x}=-\frac{\partial}{\partial x}\left(x^{2}-y^{2}\right)=-2 x
\end{array}\right\} \vec{v}=u \hat{i}+\dot{j}=-2 y^{\hat{i}}-2 x \hat{y}=\vec{i}
$$

Since $\vec{\omega}=\frac{1}{2} \nabla \vec{v}=0$ Sow is ir rotational $\vec{\omega}=0$

Problem *5.76.
Gwen: Velocity field, $\vec{V}=(A y+B) \hat{i}+A+\hat{y}$, where $A=65^{-1}, B=3 \mathrm{~m}$ is and coordinates are in meters.
Find: (a) An expression for the stream function. (b) Circulation about "curve" shown.

Fit. several streamlines (including stagnation streamline) in the first quadrat.
Solution
For incompressible flow $\frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}=0, u=\frac{\partial u}{\partial y}, v=-\frac{\partial u}{\partial x}$

$$
\begin{aligned}
& \quad \frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}=\frac{\partial}{\partial x}(A y+B)+\frac{\partial}{\partial y}(A t)=0+0=0 \quad \text { incompressible. } \\
& h_{\text {en }} u=A y+B=\frac{\partial y}{\partial y} \text { and } \psi=\left((A y+B) d y+f(t)=\frac{1}{2} A^{2} y^{2}+3 y+f(x)\right. \\
& \text { and }
\end{aligned}
$$

$$
\begin{aligned}
& \text { and } \\
& \qquad \begin{aligned}
v=-\frac{\partial x}{\partial x} & =-\frac{d f}{d x}=A x \text { and } f(x)=-\frac{1}{2} A x^{2}+\cos t+a t t \\
\therefore \psi & =\frac{1}{2} A\left(y^{2}-x^{2}\right)+B y
\end{aligned}
\end{aligned}
$$

Several streamlines are plated below. The stagnation -part (where $\bar{y}=0$) is at $x=0 . y=-2 h_{A}=-0.5 m$.
Te urulation is defined as $r=\oint \vec{v} \cdot d \vec{s}$
For he contour shown wit $\vec{V}=(A y+B) i+A x j$

$$
\begin{aligned}
& \begin{array}{l}
r=\int^{b} u d x+\int_{b}^{c} v d y+\int_{c}^{d} u d x+\int^{a} b d y \\
r=C_{0}^{i} B d x+C_{0}^{1} F d y+C^{0}(A+B) d x
\end{array} \\
& \left\{\begin{array}{ccc}
x=1 & \text { from } & b \text { to } c \\
y=1 & c t o d
\end{array}\right\} \\
& \left.\left.r=B x I_{0}^{\prime}+A y\right]_{0}^{1}+(A+B)\right]_{1}^{0} \\
& r=B+A-(A+B) \\
& \Gamma=0
\end{aligned}
$$

At stagnation, $w(x, y)=w(0,-0.5)$

$$
w(x, y)=3\left[(-0.5)^{2}-0\right]+3(-0.5)=-3 / 4
$$

Given: Flow field represented by $\psi=A x y+A y^{2} ; A=1 s^{-1}$
Find: (a) Show that this represents a possible incompressible flow field.
(b) Evaluate the rotation of the flow.
(c) Plot a few streamlines in the upper half plane.

Solution: For incompressible flow, $\nabla \vec{V}=0$
The velocity field is determined from the stream function

$$
\left.\begin{array}{l}
u=2 u\left(\frac{\partial}{2 y}=A x+2 A y\right. \\
v=-2 w(\partial x=-A y
\end{array}\right\} \quad \vec{V}=A\{(x+2 y) \hat{\imath}-y \hat{y}\}
$$

Then

$$
\begin{equation*}
\nabla \cdot \vec{V}=\frac{\partial}{\partial x} A(x+2 y)-\frac{\partial}{\partial y}(A y)=A-A=0 \tag{QED}
\end{equation*}
$$

The rotation is given by $\vec{\omega}=\frac{1}{2} \nabla \vec{V}=\frac{1}{2}\left(\frac{\partial v}{\partial x}-\frac{\partial u}{\partial y}\right) \hat{k}$

$$
\dot{\omega}=\frac{1}{2}\left[\frac{\partial}{\partial x}(-A y)-\frac{\partial}{\partial y} \hat{A}(x+2 y)\right] \hat{k}=\frac{1}{2}[0-2 A] \hat{k}=-A \hat{k}
$$

$\vec{\omega}=-\bar{k}$ rad ls.
To plot a few streamlines, $\psi=A x y+A y^{2}$, note that for a gen streamline

$$
x=\frac{w}{y}-y
$$

Given: Viscometric flow of Example Problem 5.7, $\vec{V}=U(y / h) \hat{\imath}$, where $U=4 \mathrm{~mm} / \mathrm{s}$ and $h=4 \mathrm{~mm}$.

Find: (a) Average rate of rotation of two line segments at $\pm 45^{\circ}$ (b) Show that this is the same as in the Example.

Solution: Consider lines shown:

$$
\xrightarrow[\sim]{\text { m } \rightarrow u_{a}^{c}}
$$

$$
\begin{aligned}
& u_{c}=u_{a}+\frac{\partial u}{\partial y}\left(l \sin \theta_{1}\right) \\
& -\omega_{a c}=\frac{\left(u_{c}-u_{a}\right) \sin \theta_{1}}{l}\left\{\begin{array}{l}
\text { component } 1 \\
\text { to } l \text { is } u \sin \theta_{1} .
\end{array}\right\} \rightarrow x \\
& -w_{a, c}=\frac{\frac{\partial u}{\partial y}\left(l \sin \theta_{1}\right) \sin \theta_{1}}{l}=\frac{\partial u}{\partial y} \sin ^{2} \theta_{1}=\frac{U}{h} \sin ^{2} \theta_{1} \\
& u_{b}=u_{d}+\frac{\partial u}{\partial y}\left(l \sin \theta_{2}\right) \\
& -\omega_{b d}=\frac{\left(u_{b}-u_{d}\right) \sin \theta_{2}}{l}\left\{\begin{array}{l}
\text { component } 1 \\
\text { to } l \text { is } u \sin \theta_{z},
\end{array}\right\} \\
& \text { Sketch showing } \theta_{2} \text { : } \\
& \underset{d}{\sim} \\
& -\omega_{b d}=\frac{\partial u}{\partial y}\left(\operatorname{los} \theta_{2}\right) \sin \theta_{1}=\frac{\partial u}{\partial y} \sin ^{2} \theta_{2}=\frac{U}{h} \sin ^{2} \theta_{2} \\
& \omega(+r)=\frac{1}{2}\left(\omega_{a c}+\omega_{b d}\right)=-\frac{1}{2} \frac{\pi}{h}\left(\sin ^{2} \theta_{1}+\sin ^{2} \theta_{2}\right)=-\frac{1}{2} \frac{v}{h}\left(\sin ^{2} 45^{\circ}+\sin ^{2} 135^{\circ}\right) \\
& =-\frac{1}{2} \frac{v}{h}\left[\left(\frac{\sqrt{2}}{2}\right)^{2}+\left(\frac{\sqrt{2}}{2}\right)^{2}\right]=-\frac{1}{2} \frac{v}{h} \\
& \omega=-\frac{1}{2} \times 4 \frac{\mathrm{~mm}}{\mathrm{sec}} \times \frac{1}{4 \mathrm{~mm}}=-0.5 \mathrm{~s}^{-1}
\end{aligned}
$$

Given: Velocity field $\vec{v}=-\frac{q}{2 \pi r} \hat{e}_{r}+\frac{K}{2 \pi r} \hat{e}_{\theta}$ approximates a
Is it irrotational? Obtain the stream function.
Solution: Apply irrotationality condition. Basic equation: $\nabla \times \vec{V}=0$ (if irrotational)

It makes sense to work in cylindrical coordinates, where

$$
\nabla=\hat{e}_{r} \frac{\partial}{\partial r}+\hat{e}_{\theta} \frac{1}{r} \frac{\partial}{\partial \theta}+\hat{k} \frac{\partial}{\partial z}
$$

But flow is in the roy plane, so $\frac{\partial}{\partial z}=0$. Then

$$
\begin{aligned}
\nabla \times \vec{V}= & \left(\hat{e}_{r} \frac{\partial}{\partial r}+\hat{e}_{\theta} \frac{1}{r} \frac{\partial}{\partial \theta}\right) \times\left(V_{r} \hat{e}_{r}+V_{\theta} \hat{e}_{\theta}\right) \\
= & \hat{e}_{r} \times\left(\frac{\partial V r}{\partial r} \hat{e}_{r}+\frac{\partial V_{\theta}}{\partial r} \hat{e}_{\theta}\right) \\
& +\hat{e}_{\theta} \frac{1}{r} \times\left(\frac{\partial V_{r}}{\partial \theta} \hat{e}_{r}+V_{r} \frac{\partial \hat{e}_{r}}{\partial \theta}+\frac{\partial V_{\theta}}{\partial \theta} \hat{e}_{\theta}+V_{\theta} \partial_{\hat{e}}^{\partial \theta}\right) \\
\nabla \times \vec{V}= & \hat{k}\left(\frac{\partial V_{\theta}}{\partial r}-\frac{1}{r} \frac{\partial V_{r}}{\partial \theta}+\frac{V_{\theta}}{r}\right)=\hat{k} \frac{1}{r}\left(\frac{\partial r V_{\theta}}{\partial r}-\frac{\partial V r}{\partial \theta}\right)
\end{aligned}
$$

For the given flow field, $\vec{v}=\vec{V}(r)$, so

$$
\nabla \times \vec{v}=\hat{k} \frac{1}{r} \frac{\partial r v_{\theta}}{\partial r}=\hat{k} \frac{1}{r} \frac{\partial}{\partial r}\left(\frac{k}{2 \pi}\right) \equiv 0
$$

Flow is irrotational.

$$
\begin{array}{ll}
V_{r}=\frac{1}{r} \frac{\partial \psi}{\partial \theta} ; \frac{1}{r} \frac{\partial \psi}{\partial \theta}=-\frac{q}{2 \pi r} ; \frac{\partial \psi}{\partial \theta}=\frac{-q}{2 \pi} ; \psi & =\frac{-q}{2 \pi} \theta+f(r) \\
V_{\theta}=-\frac{\partial \psi}{\partial r} ; \frac{\partial \psi}{\partial r}=-\frac{k}{2 \pi r} ; & \psi=-\frac{k}{2 \pi} e w r+g(\theta)
\end{array}
$$

Comparing,

$$
\psi=\frac{-q}{2 \pi} \theta-\frac{k}{2 \pi} \ln r
$$

Given: Flow between parallel plates. Velocity field given by

$$
u=v\left(\frac{y}{b}\right)\left[1-\frac{y}{b}\right]
$$

Find: (a) expression for arculation about a closed contour of height h and length L. (b) evaluate for $h=b / 2$ and $h=b$.
(c) show that same result is obtained from area integral of Stoles Theorem (Eq.5.18).
Solution:
Basic equations: $\quad r=\oint_{\geq 0} \vec{V} \cdot \overrightarrow{d s}=C_{R}(\nabla \times \vec{V})_{z} d A$
Then, $r=\left\{\vec{y} \cdot \overrightarrow{d s}+\int_{2} \vec{y} \cdot d s+\int_{3} \vec{v} \cdot \overrightarrow{d s}+\int_{4} \vec{y} \cdot d s\right.$

$$
\begin{aligned}
& =\int^{0} v \frac{y}{b}\left(1-\frac{y}{b}\right) d x \\
r & =-v \frac{h}{b}\left(1-\frac{h}{b}\right)
\end{aligned}
$$

For $h=y=\frac{b}{2}, \quad r=-\frac{V}{4}$

$$
h=y=b, \quad r=0
$$

From Stokes Theorem.

$$
\begin{aligned}
& r=C_{A}(\vec{\nabla} \times \vec{V}\rangle_{z} d A=\int_{A}\left(\frac{\partial v}{\partial h}-\frac{2 u}{\partial y}\right) d A=\left(-U\left(\frac{1}{b}-\frac{2 y}{b^{2}}\right) d A\right. \\
& r=-V\left(\left(\frac{1}{b}-\frac{2 y}{b^{2}}\right) L d y=-J L\left[\frac{y}{b}-\frac{y^{2}}{b^{2}}\right]_{0}^{h}\right. \\
& r=-U L\left[\frac{h}{b}-\frac{h^{2}}{b^{2}}\right]=-U L \frac{h}{b}\left(1-\frac{h}{b}\right)
\end{aligned}
$$

Given: Velocity profile for fully developed Flow in a arcula? tube is

$$
V_{z}=V_{\max }\left[1-(\Gamma / R)^{2}\right]
$$

Find: (a) rates of linear and angular deformation for
(b) expression for the vorticit vector, \vec{e}

Solution:
Computing equations: B.l and B.2 of Appendix B
Volume dilation rate $=\nabla \cdot \vec{V}=\frac{1}{r} \frac{\partial}{\partial r}\left(r v_{r}\right)+\frac{1}{r} \frac{\partial v_{\theta}}{\partial \theta}+\frac{\partial}{\partial z} v_{z}=0$
Rates of linear deformation in each of the three coordinate directions r, θ, z are zero. hineardef
Angular deformation in the:
$r \theta$ plane is $r \frac{\partial}{\partial r}\left(\frac{v_{\theta}}{r}\right)+\frac{1}{r} \frac{\partial v_{r}}{\partial \theta}=0$
oz plane is $\frac{\partial v_{\theta}}{\partial z}+\frac{1}{r} \frac{\partial v_{3}}{\partial \theta}=0$
zr plane is $\frac{\partial v_{r}}{\partial z}+\frac{\partial v_{3}}{\partial r}=-V_{\max } \frac{2 r}{R^{2}}$
Angular \%e. .
The vorticity vector is given by $\vec{s}=\nabla \vec{v}$
In cylvidrical coordinates.

$$
\begin{aligned}
\nabla \times \vec{U} & =\hat{e}_{r}\left(\frac{1}{r} \frac{\partial \nu}{\partial \theta}-\frac{\partial \nu}{\partial z}\right)+\hat{e}_{\theta}\left(\frac{\partial v}{\partial z}-\frac{\partial V_{2}}{\partial r}\right)+\hat{k}\left(\frac{1}{r} \frac{\partial r \psi_{0}}{\partial r}-\frac{1}{r} \frac{\partial r}{\partial \theta}\right)\left(5 \cdot \omega_{0}\right) \\
\vec{e} & =\nabla \times \vec{V}=\hat{e}_{\theta} V_{\max } \frac{2 r}{R^{2}}
\end{aligned}
$$

Gwen: Flow between parallel plates. Velocity field gwen by

$$
u=u_{\text {max }}\left[1-\left(\frac{y}{b}\right)^{2}\right]
$$

Find: (a) rates of linear and angular deformation b) expression for the vorticity vector, (c) (c) location of maximum vorticity.

Solution:
The rate of linear deformation is zero since $\frac{\partial u}{\partial x}=\frac{\partial v}{\partial y}=\frac{\partial u}{\partial z}=0$ The rate of angular deformation in the ry plane is

$$
\frac{\partial u}{\partial x}+\frac{\partial u}{\partial y}=-\frac{2 y u_{\max }}{b^{2}}
$$

The vorticity vector is given by $\vec{\varphi}=\nabla \times \vec{v}$

$$
\begin{align*}
& \vec{\jmath}=i\left(\frac{\partial w}{\partial y}-\frac{\partial y}{\partial y}\right)+\hat{j}\left(\frac{\partial u}{\partial z}-\frac{\partial v}{\partial x}\right)+\hat{k}\left(\frac{\partial v}{\partial x}-\frac{\partial u}{\partial y}\right) \\
& \vec{\xi}=-\frac{\partial u}{\partial y} \hat{k}=\frac{2 y u_{\text {max }}}{b^{2}} \hat{k} \tag{s}
\end{align*}
$$

The vorticity is a maximum at $y= \pm b$

Given: Linear approximate velocity profile in boundary layer.

Find: (a) Express rotation, find maximum.
(b) Express angular deformation, locate maximum.
(c) Express linear deformation, locate maximum.
(d) Express shear force per un it volume, locate maximum.

Solution: work in my plane.
computing equations: $\omega_{z}=\frac{1}{2}\left(\frac{\partial v}{\partial x}-\frac{\partial u}{\partial y}\right)-\frac{d r}{d t}=\left(\frac{\partial v}{\partial x}+\frac{\partial u}{\partial y}\right)$
Linear def: $\frac{\partial u}{\partial x}, \frac{\partial v}{\partial y}$
Evaluating partial derivatives,

$$
\frac{\partial u}{\partial x}=-\frac{1}{2} \frac{U y}{c x^{3 / 2}} \quad \frac{\partial u}{\partial y}=\frac{U}{c x^{1 / 2}} \quad \frac{\partial v}{\partial x}=-\frac{3}{8} \frac{U y^{2}}{c x^{5 / 2}} \quad \frac{\partial v}{\partial y}=\frac{1}{2} \frac{U y}{c x^{3 / 2}}
$$

Then

$$
\begin{array}{ll}
\omega_{z}=\frac{1}{2}\left[-\frac{3}{8} \frac{v y^{2}}{c x^{5 / 2}}-\frac{U}{c x^{1 / 2}}\right]=-\frac{U}{2 c x^{1 / 2}}\left[1+\frac{3}{8}\left(\frac{y}{x}\right)^{2}\right] \quad(\max a+y=\delta) & \omega_{z} \\
-\frac{d y}{d t}=-\frac{3}{8} \frac{U y^{2}}{c x^{5 / 2}}+\frac{U}{c x^{1 / 2}}=\frac{U}{c x^{1 / 2}}\left[1-\frac{3}{8}\left(\frac{y}{x}\right)^{2}\right] \quad(\max a+y=0) & -\frac{d \gamma}{d t} \\
\frac{\partial u}{\partial x}=-\frac{1}{2} \frac{U y}{c x^{3 / 2}}=-\frac{U}{2 c x^{1 / 2}}\left(\frac{y}{x}\right) \quad(\max a+y=\delta) \quad \text { sum }=0 & \text { Lin } \\
\left.\frac{\partial v}{\partial y}=+\frac{1}{2} \frac{U y}{c x^{3 / 2}}=+\frac{U}{2 c x^{1 / 2}\left(\frac{y}{x}\right) \quad(\max a+y=\delta)}\right\} & \text { Def }
\end{array}
$$

shear stress is $\tau_{y x}=\mu\left(\frac{\partial u}{\partial y}+\frac{\partial v}{\partial x}\right)=\mu\left(\frac{U}{c x^{1 / 2}}-\frac{3}{8} \frac{U y^{2}}{c x^{5 h}}\right)=\mu \frac{v}{c x^{1 / 2}}\left[1-\frac{3}{8}\left(\frac{y}{x}\right)^{2}\right]$
Net shear force on a fluid element is $d \tau d x d z$

$$
\left.\left.\frac{+}{d y}\right|_{1}=1 \tau+d \tau\right) d x d z \quad d \tau=\frac{\partial \tau}{\partial y} d y=\frac{\mu U}{c x^{1 / 2}}\left(-\frac{3}{8} \frac{2 y}{x^{2}}\right) d y=-\frac{3 \mu v y}{4 c x^{5 / 2}} d y
$$

Shear stress per volume is $\frac{d F}{d t}=-\frac{3 \mu}{4 c x^{3} h}\left(\frac{y}{x}\right)$ (max at $\left.y=\delta\right) \quad \frac{d F}{d t}$

Given: x component of velocity in laminar boundarykyer in water

$$
u=U \sin \left(\frac{\pi}{2} \frac{y}{\delta}\right) \quad U=3 \mathrm{~m} / \mathrm{s}, \quad \delta=2 \mathrm{~mm}
$$

y component is much smaller than u.
Find: (a) Express ion for net shear force per un it volume in x direction.
(b) Maximum value for this flow

Solution: Consider a smallelement of fluid
Then

$$
\begin{aligned}
d F_{\text {shear, } x} & =(\tau+d \tau) d x d z-\tau d x d z \\
& =d \tau d x d z=\frac{d \tau}{d y} d x d y d z
\end{aligned}
$$

and

and

$$
\frac{d F_{s, x}}{d \forall}=\frac{d \tau}{d y}=\frac{d}{d y}\left(\mu \frac{d u}{d y}\right)=\mu \frac{d^{2} u}{d y^{2}}
$$

From the given profile,

$$
\frac{d u}{d y}=\frac{\pi U}{2 \delta} \cos \left(\frac{\pi}{2} \frac{y}{\delta}\right)
$$

and

$$
\frac{d^{2} u}{d y^{2}}=U\left(\frac{\pi}{2 \delta}\right)^{2}\left(-\sin \left(\frac{\pi}{2} \frac{y}{\delta}\right)\right)
$$

The maxiriuen value occurs when $y=\delta$, when

$$
\begin{array}{ll|}
\begin{array}{ll}
\frac{d F_{s x, \text { max }}}{d \forall} & =-\mu U\left(\frac{\pi}{2 \delta}\right)^{2}
\end{array} & \frac{d / F_{s x}}{d t} \\
& =-1 \times 10^{-3} \frac{\mathrm{~N} \cdot \mathrm{sec}}{m^{2}} \times 3 \frac{\mathrm{~m}}{\sec }\left(\frac{\pi}{2} \frac{1}{0.002 \mathrm{~m}}\right)^{2}=-1.85 \times 10^{3} \mathrm{~N} / \mathrm{m}^{3} \\
\frac{d F_{s x_{3}, \max }}{d \forall} & =-1.85 \mathrm{kN} / \mathrm{m}^{3}
\end{array}
$$

Problem 5.85

Given: Velocity profile for fully developed laminar flew in a tube

$$
\frac{u}{u_{\max }}=1-\left(\frac{r}{R}\right)^{2}
$$

Where umax $=10 \mathrm{ft} / \mathrm{s}, \mathrm{R}=3 \mathrm{in}$, fluid is water.
Find: (a) Expression for shear force per unit volume in z direction.
(b) Maximum value for these conditions.

Solution: Consider a differential element: $\left[r \tau+\frac{d}{d r}(r \tau) d r\right] 2 \pi d z$
Then

$$
\begin{aligned}
d F_{\text {shear, }} & =\left[r \tau+\frac{d}{d r}(r \tau) d r\right] 2 \pi d z-r \tau 2 \pi d z \\
& =\frac{d}{d r}(r \tau) 2 \pi d r d z
\end{aligned}
$$

Since $d \psi=2 \pi r d r d z$, then

$$
\frac{d F_{s z}}{d \forall}=\frac{1}{2 \pi r d r d z} \frac{d}{d r}(r \tau) 2 \pi d r d z=\frac{1}{r} \frac{d}{d r}(r \tau)
$$

In cylindrical coordinates, $\tau_{r z}=\mu \frac{d u}{d r}$. For the given profile

$$
\tau=\tau_{r z}=\mu \frac{d u}{d r}=-\mu u_{\max } \frac{2 r}{R^{2}}
$$

substituting

$$
\begin{aligned}
& \frac{d F_{s z}}{d \forall}=\frac{1}{r} \frac{d}{d r}\left[r\left(-\frac{2 \mu u_{\max } r}{R^{2}}\right)\right]=\frac{1}{r} \frac{d}{d r}\left[-\frac{2 \mu u_{\max } r^{2}}{R^{2}}\right]=\frac{1}{r}\left[\frac{-4 \mu u_{\max } r}{R^{2}}\right] \\
& \frac{d F_{s z}}{d \forall}=-\frac{4 \mu u_{\max }}{R^{2}}=\text { constant }
\end{aligned}
$$

Evaluating,

$$
\begin{aligned}
& \frac{d F_{s z}}{d t}=-4 \times 10^{-3} \frac{\mathrm{~N} . \mathrm{s}}{\mathrm{~m}^{2}} \times 10 \frac{\mathrm{ft}}{\mathrm{~s}} \times \frac{1}{(0.25)^{2} \mathrm{ft}^{2}} \times(0.3048)^{2} \frac{\mathrm{~m}^{2}}{\mathrm{ft}^{2}} \times \frac{16 \mathrm{f}}{4.448 \mathrm{~N}} \\
& \frac{d F_{s z}}{d t}=-0.0134 \mathrm{lbf} / \mathrm{ft}^{3}
\end{aligned}
$$

Problem 6.1
Given: Flow field, $\vec{V}=A+y^{2}-B y^{2} \hat{y}$, where $A=10 f^{\prime} \cdot s^{-1}$ $B=1 \mathrm{Al}^{\prime} s^{\prime}$ and coordinate' are measured in ' A ; $p=$ is lug , gravity acts in negative y direction
Find: (a) Acceleration of fluid particle at $(, y)=\cdots$.
b) Pressure gradient at (1,1)

Solution.
Basie equations:

$$
\vec{a}_{p}=u \frac{\vec{a}}{\partial x}+v \frac{\overrightarrow{\partial y}}{\overrightarrow{\partial y}}+w^{\frac{\partial u}{\partial z}}+\frac{\vec{z}}{\partial t}
$$

$$
\overrightarrow{p g}-\vec{v}=e \frac{\overrightarrow{\nu V}}{\overrightarrow{\nu t}}
$$

Assumptions: (1) frictionless flow.

$$
\begin{aligned}
& \vec{a}_{p}=\frac{\vec{v}}{\vec{\lambda}}=u \frac{\partial \vec{v}}{\partial x}+v \frac{\partial \vec{u}}{\partial y}=A-y \frac{\partial}{\partial x}\left(A+y i-B y^{2} j\right)-B y^{2} \frac{\partial}{\partial y}\left(A x y i-B y^{2} j \dot{y}\right) \\
& \vec{a}_{p}=A+y\left(A y^{i}\right)-B y^{2}(A x i-2 B y) \\
& \vec{a}_{p}=i\left(A^{2}+y^{2}-A B+y^{2}\right)+j 23^{2} y^{3}=A+y^{2}(A-B) i+2 B^{2} y^{3} \hat{j}
\end{aligned}
$$

At location (1,)

$$
\begin{aligned}
& \nabla p=p \vec{g}-\rho \vec{a}_{p}=-p \vec{j}-\vec{a}_{p}=-p\left(g \hat{j}+\vec{a}_{p}\right) . \\
& =-2 \frac{514 g}{f t^{3}}(32.2 j+90 i+2 j) \frac{f}{52^{2}} \times \frac{b f}{f \tau} \\
& \nabla P=-180 i-68 . i j \text { jot }\left|f t^{2}\right|_{f t}
\end{aligned}
$$

Problem 6.2
Given: Incompressible flow field, $\vec{V}=(A x-B y) i-A y j$
where: $A=2 s^{-1}$

$$
B=15^{-1}
$$

coordinates x, y, are in meters
Find: (a) Magnitude of \vec{a}_{p} at location (, i)
(b) Direction of a_{p} at location (1,1)
(c) Pressure gradient at $(1,2)$ if $\vec{g}=-9 \hat{j}$

Solution:
Basic equation: $\quad \frac{\vec{U}}{\partial t}=\vec{a}_{p}=\frac{\partial \vec{u}}{\partial t}+u \frac{\partial \vec{u}}{\partial x}+v \frac{\partial \vec{u}}{\partial y}+w \frac{\partial \vec{u}}{\partial z}$
Substituting the gwen velocity field into the equation for ap

$$
\begin{aligned}
\vec{a}_{p} & =u \frac{\partial \vec{y}}{\partial x}+v \frac{\partial \vec{u}}{\partial y}=(A x-B y) \frac{\partial}{\partial x}[(A x-B y) i-A y j]-A y \frac{\partial}{2 y}[(A x-B y) i-A y j] \\
& =(A x-B y) A \hat{i}-A y[-B i-A j] \\
\vec{a}_{p} & =A^{2} x i+A^{2} y j=A^{2}[x i+y j]
\end{aligned}
$$

At location (1,)

$$
\begin{aligned}
& \vec{a}_{p}=\frac{(v)^{2}}{s^{2}}+[i+j] n=4 i+4 j m / s^{2} \\
& \left|\vec{a}_{p}\right|=\sqrt{a_{i}^{2}+a_{y}^{2}}=\sqrt{(H)^{2}+(H)^{2}} m l_{s^{2}}=5.66 \mathrm{~m} / \mathrm{s}^{2} \\
& \begin{array}{l}
\vec{a} a_{y} \quad \theta=\tan ^{-1} \frac{a_{y}}{a_{x}}=\tan ^{-1} 1=45^{\circ} \\
\frac{a_{t}}{a_{t}} \text { Assume frictionless flow }
\end{array} \\
& \nabla p=-p q \hat{\jmath}-p \vec{a}_{p}=-p\left(\underline{\jmath}+\vec{a}_{p}\right) \\
& =-999 \frac{\mathrm{~kg}}{\mathrm{n}^{3}} \times(9.81 j+4 i+4 j) \frac{n}{s^{2}}+\frac{N . \delta^{2}}{\lg \cdot N}
\end{aligned}
$$

Note: $\nabla \cdot \vec{V}=0$ as required for incompressible flow

Problem 6.3
Given: Horizontal flow of water described by the velocity field

$$
\bar{y}=(A x+B t) \hat{i}+(-A y+B t) \hat{y}
$$

where: $A=55^{\prime}$, $B=10 f \cdot s^{-2}$, coordinates $x . y$ in ft, tins.
Find: (a) Expressions for (i) local (ii) convective, (wittol, accelerdion
(b) Evaluate at point (2,2) for $t=5 \mathrm{~s}$
(c) Evaluate $\nabla \cdot P$ at sane point and time

Solution:
Basic equations:

Assumptions: (1) frictionless flow
(2) $p=$ constant $=1.24$ slug g $1 f t^{3}$.

$$
\begin{aligned}
& \frac{\vec{V}}{\partial t}=\frac{\partial}{\partial t}\left[(A+B t) i+(-A y+B t) j=B i+B j=10(i+j) f+l^{2} \text {, } \vec{a}\right. \text { baa } \\
& u \frac{\partial \vec{y}}{\partial x}+v \frac{\partial \vec{y}}{\partial y}=(A x+B t) \frac{\partial}{\partial x}[(A x+B t) \hat{i}+(-A y+B t) \vec{j}]+(-A y+B t) \frac{2}{\partial y}\left[\left(A x+B t \hat{i}+(-A y+)^{n}\right]\right. \\
& \left.=\left(A_{x}+B t\right)\left[A_{i}\right]+\left(-A_{y}+B t\right)\left[-A_{j}\right]\right] \\
& u \frac{\partial \vec{y}}{\partial x}+v \frac{\partial \vec{y}}{\partial y}=A(A x+B t) \hat{i}-A(-A y+B t) \bar{y} \\
& \left.=\frac{5}{5}\left(\frac{5}{5} \times 2 \mathrm{ft}+\frac{10 f t}{5^{2}} 5 s\right) i-\frac{5}{5}\left(-\frac{5}{5} \times 2 f+10 \frac{f t}{s^{2}} \times 5 s\right)\right)=300 \mathrm{i}-200 \mathrm{~g} \frac{\mathrm{ft}}{5^{2}} \vec{a}_{\text {aton }} \\
& \vec{a}=\vec{a}_{\text {cal }}+\vec{a}_{\text {con }}=[B+A(A x+B t)] \hat{c}+[B-A(-A y+B t)] \hat{]}=310 \hat{\imath}-\operatorname{ag} \hat{g} \bar{s}^{2}-\vec{a}
\end{aligned}
$$

From Euler's equation.

$$
\begin{aligned}
& \nabla p=-60 \hat{i}+367 \hat{j}-62 \hat{k} \frac{16 f / f^{2}}{f t}=-4.17 i+2.56 j-0.43 \hat{l}+p s i / f t
\end{aligned}
$$

Note: $\nabla \vec{N}=0$ as required for incompressible flow

Given: Velocity field, $\vec{V}=\left(A x y-B x^{2}\right) \hat{i}+\left(A x y-B y^{2}\right) \hat{j}$
where:

$$
\begin{aligned}
& R=2 \mathrm{ft}^{-1} \cdot \mathrm{~s}^{-1} \\
& D=1 \mathrm{ft}^{-1} \cdot \mathrm{~s}^{-1}
\end{aligned}
$$

coordinates x, y are in $f t$
Fluid density, $\rho=2$ slug lifer Body force $\vec{g}=-g \hat{j}$
Find: (a) Acceleration of fluid particle at $(1,1)$
(b) Pressure gradient al $(1,1)$

Solution:
Basic equations: $\overrightarrow{\rho g}-\nabla P=\rho \frac{D \vec{V}}{D t}$

$$
\frac{\partial \vec{J}}{\partial t}=\vec{a}_{p}=\frac{\partial \vec{v}}{\partial t}+u \frac{\partial \vec{v}}{\partial x}+v \frac{\partial \vec{v}}{\partial y}+w \frac{\partial \vec{v}}{\partial z}
$$

Assumptions: (1) frictionless flow

$$
\begin{aligned}
\vec{a}_{p} & =u \frac{\partial \vec{y}}{\partial x}+v \frac{\partial \vec{y}}{\partial y}=\left(A_{x}-B x^{2}\right) \frac{\partial}{\partial x}\left[\left(A x y-B x^{2}\right) i+\left(A x y-B y^{2}\right) \hat{j}\right]+\left(A_{x y}-B y^{2}\right) \frac{2}{\partial y}[\\
& =\left(A_{x y}-B x^{2}\right)\left[\left(A_{y}-2 B x\right)^{2}+A_{y} j\right]+\left(A_{x y}-B y^{2}\right)\left[A_{x} i+\left(A_{x}-2 B y\right) \hat{j}\right] \\
\vec{a}_{p} & =i\left[\left(A_{x y}-B x^{2}\right)\left(A_{y}-2 B x\right)+A_{x}\left(A_{x y}-B y^{2}\right)\right]+\hat{j}\left[\left(A_{x y}-B x^{2}\right) A_{y}+\left(A_{x y}-B y^{2}\right)(A x-2 B y)\right]
\end{aligned}
$$

PH location $(1,1)$

$$
\begin{aligned}
& \vec{a}_{p}=\hat{i}\left[(2-1) \frac{f t}{s} \times(2-2) \frac{1}{5}+\frac{2}{s}(2-1) \frac{\frac{f t}{s}}{s}\right]+\hat{j}\left[(2-1) \frac{4 t}{s} \times \frac{2}{5}+(2-1) \frac{4}{s}(2-2) \frac{1}{s}\right] \\
& \vec{a}_{p}=2 \hat{\imath}+2 \hat{\jmath} \mathrm{ft} / \mathrm{s}^{2} \\
& \overrightarrow{p B}-\nabla P=p \stackrel{\overrightarrow{D N}}{\tilde{V}}=p \vec{a}_{p} \\
& \nabla p=p \vec{B}-\vec{a}_{p}=p\left(\vec{B}-\vec{a}_{p}\right)=p\left(-g j-\vec{a}_{p}\right)=-p\left(g j+\vec{a}_{p}\right)
\end{aligned}
$$

At location (1,1)

$$
\left.\nabla P=-2 \operatorname{slog}_{f t^{3}}[32 \cdot 2 \hat{j}+2 \hat{\imath}+2 \hat{j}] \frac{f t}{s^{2}} \times \frac{1 b f \cdot s^{2}}{f t \cdot s \operatorname{lng}}\right]=-[4 i+68 \cdot 4 j] \frac{1 b f / f^{2}}{f t} .
$$

Note: For incompressible flow, $\nabla \cdot \vec{V}=0$

$$
\begin{aligned}
& \nabla \cdot \vec{v}=\frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}+\frac{\partial w}{\partial z}=A y-2 B x+A x-2 B y \\
& \nabla \cdot \vec{v}=(A-2 B)(x+y)=0
\end{aligned}
$$

Hence given velocity Field represents a possible Rcompressible flaw

Given: Velocity field, $\vec{V}=\left(A_{x}-B_{y}\right) t_{i}-\left(A_{y}+B x\right) t \hat{j}$ where

$$
\begin{aligned}
& A=1 s^{-2} \\
& D=2 s^{-2}
\end{aligned}
$$

coordinates x, y are in meters.
Fund density is $p=1500 \mathrm{~kg} / \mathrm{m}^{3}$. Body forces are negligible
Find: ∇P at location $(1,2)$ at $t=1 \mathrm{~s}$.
Solution:
Basic equations: $\quad \overrightarrow{P a}-\nabla P=\rho \frac{\vec{V}}{\pi}$

$$
\frac{\vec{D}}{D t}=\frac{\partial \vec{V}}{\partial t}+u \frac{\partial \vec{v}}{\partial x}+v \frac{\partial \vec{U}}{\partial y}+w \frac{\partial \vec{v}}{\partial z}
$$

Assumptions: (1) frictionless flow
Substituting for the velocity field in the equation for $\vec{D} \vec{D}$,

$$
\begin{aligned}
\frac{\vec{N}}{\pi}= & \frac{2}{\partial t}[(A x-B y) t i-(A y+B x) t i]+(A x-B y) t \frac{2}{\partial x}[(A x-B y) t i-(A y+B x) t j] \\
& -(A y+B x) t \frac{2}{\partial y}[(A x-B y) t i-(A y+B x) t i] \\
= & {[(A x-B y) i-(A y+B x) j]+(A x-B y) t[A t i-B t j]-(A y+B x) t[-B t i-A t i] } \\
= & i\left\{A x-B y+A^{2} x t^{2}-A B t^{2}+A B y t^{2}+B^{2} x t^{2}\right\}+\hat{j}\left\{-A y-B x-B B t^{2}+B^{2} y t^{2}+A^{2} y t^{2}+B B x t^{2}\right\} \\
\vec{N}= & i\left\{A x-B y+x t^{2}\left(A^{2}+B^{2}\right)\right\}+\hat{j}\left\{-A y-B x+y t^{2}\left(A^{2}+B^{2}\right)\right\}
\end{aligned}
$$

Then,

$$
\nabla P=-\rho \frac{\vec{D}}{\vec{\pi}}=-\rho\left[i\left\{A x-B y+r t^{2}\left(A^{2}+B^{2}\right)\right\}+\hat{j}\left\{-A y-B x+y t^{2}\left(R^{2}+R^{2}\right)\right\}\right]
$$

Ft location $(1,2)$ at $t=1$ s

$$
\begin{aligned}
& \nabla P=-1500 \frac{\mathrm{~kg}}{n^{2}}\left[i\left\{\frac{1}{s^{2}} \times \ln -\frac{2}{s^{2}} x^{2}+\ln \times 1 s^{2}\left(\frac{(1)^{2}+(2)^{2}}{s^{4}}\right)\right\}\right. \\
&\left.+\hat{j}\left\{-\frac{1}{s^{2} x^{2 n}}-\frac{2}{s^{2}} \times \ln +2 n \times 1 s^{2} \times\left(\frac{(1)^{2}+(2)^{2}}{s^{4}}\right)\right\}\right] \frac{\mathrm{N} \cdot \mathrm{~s}^{2}}{\mathrm{~kg} \cdot n} \mathrm{~g}
\end{aligned}
$$

$$
\nabla P=-(3.0 \hat{i}+9.0 j) \frac{\mathrm{kN} / \mathrm{n}^{2}}{n}
$$

Note: $\nabla \cdot \vec{V}=0$ as required for incompressible flow

Problem 6.6

Consider the flow field with velocity given by $\vec{V}=A x \sin (2 \pi \omega t) \hat{i}-A y \sin (2 \pi \omega t) \hat{j}$, where $A=2 \mathrm{~s}^{-1}$ and $\omega=1 \mathrm{~s}^{-1}$. The fluid density is $2 \mathrm{~kg} / \mathrm{m}^{3}$. Find expressions for the local acceleration, the convective acceleration, and the total acceleration. Evaluate these at point $(1,1)$ at $t=0,0.5$ and 1 seconds. Evaluate ∇p at the same point and times.

Given: Velocity field

Find: Expressions for local, convective and total acceleration; evaluate at several points; evaluat pressure gradient

Solution

The given data is

$$
\begin{array}{ll}
\mathrm{A}=2 \cdot \frac{1}{\mathrm{~s}} & \omega=1 \cdot \frac{1}{\mathrm{~s}} \quad \rho=2 \cdot \frac{\mathrm{~kg}}{\mathrm{~m}^{3}} \\
\mathrm{u}=\mathrm{A} \cdot \mathrm{x} \cdot \sin (2 \cdot \pi \cdot \omega \cdot \mathrm{t}) & \mathrm{v}=-\mathrm{A} \cdot \mathrm{y} \cdot \sin (2 \cdot \pi \cdot \omega \cdot \mathrm{t})
\end{array}
$$

Check for incompressible flow $\frac{d u}{d x}+\frac{d v}{d y}=0$

Hence

$$
\frac{d u}{d x}+\frac{d v}{d y}=A \cdot \sin (2 \cdot \pi \cdot \omega \cdot t)-A \cdot \sin (2 \cdot \pi \cdot \omega \cdot t)=0
$$

Incompressible flow

The governing equation for acceleration is

$$
\begin{aligned}
& \vec{a}_{p}=\frac{D \vec{V}}{D t}=u \frac{\partial \vec{V}}{\partial x}+v \frac{\partial \vec{V}}{\partial y}+w \frac{\partial \vec{V}}{\partial z}+\frac{\partial \vec{V}}{\partial t} \\
& \text { total } \\
& \text { acceleration } \\
& \text { of a particle } \\
& \text { convective } \\
& \text { acceleration } \\
& \text { local } \\
& \text { acceleration }
\end{aligned}
$$

The local acceleration is then

$$
x \text { - component }
$$

$$
y \text {-component }
$$

$$
\begin{aligned}
& \frac{\partial}{\partial t} u=2 \cdot \pi \cdot A \cdot \omega \cdot x \cdot \cos (2 \cdot \pi \cdot \omega \cdot t) \\
& \frac{\partial}{\partial t} v=-2 \cdot \pi \cdot A \cdot \omega \cdot y \cdot \cos (2 \cdot \pi \cdot \omega \cdot t)
\end{aligned}
$$

For the present steady, 2D flow, the convective acceleration is

$$
\begin{aligned}
& x \text {-component } \\
& \begin{aligned}
& u \cdot \frac{d u}{d x}+v \cdot \frac{d u}{d y}= A \cdot x \cdot \sin (2 \cdot \pi \cdot \omega \cdot t) \cdot(A \cdot \sin (2 \cdot \pi \cdot \omega \cdot t)) \ldots \\
&+(-A \cdot y \cdot \sin (2 \cdot \pi \cdot \omega \cdot t)) \cdot 0
\end{aligned} \\
& \\
& \quad u \cdot \frac{d u}{d x}+v \cdot \frac{d u}{d y}=A^{2} \cdot x \cdot \sin (2 \cdot \pi \cdot \omega \cdot t)^{2} \\
& \begin{array}{l}
y-\operatorname{component}
\end{array} \\
& \begin{array}{l}
u \cdot \frac{d v}{d x}+v \cdot \frac{d v}{d y}=A \cdot x \cdot \sin (2 \cdot \pi \cdot \omega \cdot t) \cdot 0+(-A \cdot y \cdot \sin (2 \cdot \pi \cdot \omega \cdot t)) \cdot(-A \cdot \sin (2 \cdot \pi \cdot \omega \cdot \\
u \cdot \frac{d v}{d x}+v \cdot \frac{d v}{d y}=A^{2} \cdot y \cdot \sin (2 \cdot \pi \cdot \omega \cdot t)^{2}
\end{array}
\end{aligned}
$$

The total acceleration is then

$$
\begin{aligned}
& x \text {-component } \\
& \frac{\partial}{\partial t} u+u \cdot \frac{d u}{d x}+v \cdot \frac{d u}{d y}=2 \cdot \pi \cdot A \cdot \omega \cdot x \cdot \cos (2 \cdot \pi \cdot \omega \cdot t)+A^{2} \cdot x \cdot \sin (2 \cdot \pi \cdot \omega \cdot t)^{2} \\
& y \text {-component } \\
& \frac{\partial}{\partial t} v+u \cdot \frac{d v}{d x}+v \cdot \frac{d v}{d y}=-2 \cdot \pi \cdot A \cdot \omega \cdot y \cdot \cos (2 \cdot \pi \cdot \omega \cdot t)+A^{2} \cdot y \cdot \sin (2 \cdot \pi \cdot \omega \cdot t)^{2}
\end{aligned}
$$

Evaluating at point $(1,1)$ at

$$
\mathrm{t}=0 \cdot \mathrm{~s} \quad \text { Local } \quad 12.6 \cdot \frac{\mathrm{~m}}{\mathrm{~s}^{2}} \quad \text { and } \quad-12.6 \cdot \frac{\mathrm{~m}}{\mathrm{~s}^{2}}
$$

Convective $\quad 0 \cdot \frac{\mathrm{~m}}{\mathrm{~s}^{2}} \quad$ and $\quad 0 \cdot \frac{\mathrm{~m}}{\mathrm{~s}^{2}}$

Total
$12.6 \cdot \frac{\mathrm{~m}}{\mathrm{~s}^{2}}$
$-12.6 \cdot \frac{\mathrm{~m}}{\mathrm{~s}^{2}}$

$$
\mathrm{t}=0.5 \cdot \mathrm{~s} \quad \text { Local } \quad-12.6 \cdot \frac{\mathrm{~m}}{\mathrm{~s}^{2}} \quad \text { and } \quad 12.6 \cdot \frac{\mathrm{~m}}{\mathrm{~s}^{2}}
$$

$$
\begin{array}{lll}
\text { Convective } & 0 \cdot \frac{\mathrm{~m}}{\mathrm{~s}^{2}} & \text { and } \\
\text { Total } & -12.6 \cdot \frac{\mathrm{~m}}{\mathrm{~s}^{2}} \\
\mathrm{t}=1 \cdot \mathrm{~s} & 12.6 \cdot \frac{\mathrm{~m}}{\mathrm{~s}^{2}} \\
\text { Local } & 12.6 \cdot \frac{\mathrm{~m}}{\mathrm{~s}^{2}} & \text { and } \\
\text { Convective } & 0 \cdot \frac{\mathrm{~m}}{\mathrm{~s}^{2}} & -12.6 \cdot \frac{\mathrm{~m}}{\mathrm{~s}^{2}} \\
\text { and } & 0 \cdot \frac{\mathrm{~m}}{\mathrm{~s}^{2}} \\
\text { Total } & 12.6 \cdot \frac{\mathrm{~m}}{\mathrm{~s}^{2}} &
\end{array}
$$

The governing equation (assuming inviscid flow) for computing the pressure gradient is

$$
\begin{equation*}
\rho \frac{D \vec{V}}{D t}=\rho \vec{g}-\nabla p \tag{6.1}
\end{equation*}
$$

Hence, the components of pressure gradient (neglecting gravity) are

$$
\frac{\partial}{\partial x} p=-\rho \cdot \frac{D u}{d t} \quad \frac{\partial}{\partial x} p=-\rho \cdot\left(2 \cdot \pi \cdot A \cdot \omega \cdot x \cdot \cos (2 \cdot \pi \cdot \omega \cdot t)+A^{2} \cdot x \cdot \sin (2 \cdot \pi \cdot \omega \cdot t)^{2}\right)
$$

$$
\frac{\partial}{\partial y} p=-\rho \cdot \frac{D v}{d t} \quad \frac{\partial}{\partial x} p=-\rho \cdot\left(-2 \cdot \pi \cdot A \cdot \omega \cdot y \cdot \cos (2 \cdot \pi \cdot \omega \cdot t)+A^{2} \cdot y \cdot \sin (2 \cdot \pi \cdot \omega \cdot t)^{2}\right)
$$

Evaluated at $(1,1)$ and time $t=0 \cdot s$

$$
x \text { comp. } \quad-25.1 \cdot \frac{\mathrm{~Pa}}{\mathrm{~m}} \quad y \text { comp. } \quad 25.1 \cdot \frac{\mathrm{~Pa}}{\mathrm{~m}}
$$

$\mathrm{t}=0.5 \cdot \mathrm{~s}$
x comp. $\quad 25.1 \cdot \frac{\mathrm{~Pa}}{\mathrm{~m}} \quad y \mathrm{comp} . \quad-25.1 \cdot \frac{\mathrm{~Pa}}{\mathrm{~m}}$
$\mathrm{t}=1 \cdot \mathrm{~s}$

$$
x \text { comp. } \quad-25.1 \cdot \frac{\mathrm{~Pa}}{\mathrm{~m}} \quad y \text { comp. } \quad 25.1 \cdot \frac{\mathrm{~Pa}}{\mathrm{~m}}
$$

Problem 6.7

The velocity field for a plane source located distance $h=1 \mathrm{~m}$ above an infinite wall aligned along the x axis is given by

$$
\vec{V}=\frac{q}{2 \pi\left[x^{2}+(y-h)^{2}\right]}[x \hat{i}+(y-h) \hat{j}]+\frac{q}{2 \pi\left[x^{2}+(y+h)^{2}\right]}[x \hat{i}+(y+h) \hat{j}]
$$

where $q=2 \mathrm{~m}^{3} / \mathrm{s} / \mathrm{m}$. The fluid density is $1000 \mathrm{~kg} / \mathrm{m}^{3}$ and body forces are negligible. Derive expressions for the velocity and acceleration of a fluid particle that moves along the wall, and plot from $x=0$ to $x=+10 h$. Verify that the velocity and acceleration normal to the wall are zero. Plot the pressure gradient $\partial p / \partial x$ along the wall. Is the pressure gradient along the wall adverse (does it oppose fluid motion) or not?

Given: Velocity field

Find: Expressions for velocity and acceleration along wall; plot; verify vertical components are zero; plot pressure gradient

Solution

The given data is $\quad q=2 \cdot \frac{\frac{\mathrm{~m}^{3}}{\mathrm{~s}}}{\mathrm{~m}}$
$h=1 \cdot m$
$\rho=1000 \cdot \frac{\mathrm{~kg}}{\mathrm{~m}^{3}}$

$$
u=\frac{q \cdot x}{2 \cdot \pi\left[x^{2}+(y-h)^{2}\right]}+\frac{q \cdot x}{2 \cdot \pi\left[x^{2}+(y+h)^{2}\right]}
$$

$$
v=\frac{q \cdot(y-h)}{2 \cdot \pi\left[x^{2}+(y-h)^{2}\right]}+\frac{q \cdot(y+h)}{2 \cdot \pi\left[x^{2}+(y+h)^{2}\right]}
$$

The governing equation for acceleration is

$$
\begin{aligned}
& \vec{a}_{p}=\frac{D \vec{V}}{D t}=u \frac{\partial \vec{V}}{\partial x}+v \frac{\partial \vec{V}}{\partial y}+w \frac{\partial \vec{V}}{\partial z}+\frac{\partial \vec{V}}{\partial t} \\
& \text { total } \underbrace{}_{\text {convective local }} \\
& \text { acceleration } \\
& \text { of a particle } \\
& \text { acceleration } \\
& \text { acceleration }
\end{aligned}
$$

x - component

$$
\begin{aligned}
& u \cdot \frac{d u}{d x}+v \cdot \frac{d u}{d y}=-\frac{q^{2} \cdot x \cdot\left[\left(x^{2}+y^{2}\right)^{2}-h^{2} \cdot\left(h^{2}-4 \cdot y^{2}\right)\right]}{\left[x^{2}+(y+h)^{2}\right]^{2} \cdot\left[x^{2}+(y-h)^{2}\right]^{2} \cdot \pi^{2}} \\
& a_{x}=-\frac{q^{2} \cdot x \cdot\left[\left(x^{2}+y^{2}\right)^{2}-h^{2} \cdot\left(h^{2}-4 \cdot y^{2}\right)\right]}{\pi^{2} \cdot\left[x^{2}+(y+h)^{2}\right]^{2} \cdot\left[x^{2}+(y-h)^{2}\right]^{2}}
\end{aligned}
$$

y-component

$$
\begin{aligned}
& u \cdot \frac{d v}{d x}+v \cdot \frac{d v}{d y}=-\frac{q^{2} \cdot y \cdot\left[\left(x^{2}+y^{2}\right)^{2}-h^{2} \cdot\left(h^{2}+4 \cdot x^{2}\right)\right]}{\pi^{2} \cdot\left[x^{2}+(y+h)^{2}\right]^{2} \cdot\left[x^{2}+(y-h)^{2}\right]^{2}} \\
& a_{y}=-\frac{q^{2} \cdot y \cdot\left[\left(x^{2}+y^{2}\right)^{2}-h^{2} \cdot\left(h^{2}+4 \cdot x^{2}\right)\right]}{\pi^{2} \cdot\left[x^{2}+(y+h)^{2}\right]^{2} \cdot\left[x^{2}+(y-h)^{2}\right]^{2}}
\end{aligned}
$$

For motion along the wall $y=0 \cdot \mathrm{~m}$

$$
\begin{array}{lll}
u=\frac{q \cdot x}{\pi \cdot\left(x^{2}+h^{2}\right)} & \mathrm{v}=0 & \text { (No normal velocity) } \\
a_{x}=-\frac{q^{2} \cdot x \cdot\left(x^{2}-h^{2}\right)}{\pi^{2} \cdot\left(x^{2}+h^{2}\right)^{3}} & a_{y}=0 & \text { (No normal acceleration) }
\end{array}
$$

The governing equation (assuming inviscid flow) for computing the pressure gradient is

$$
\begin{equation*}
\rho \frac{D \vec{V}}{D t}=\rho \overrightarrow{\mathrm{g}}-\nabla p \tag{6.1}
\end{equation*}
$$

Hence, the component of pressure gradient (neglecting gravity) along the wall is

$$
\frac{\partial}{\partial x} p=-\rho \cdot \frac{D u}{d t} \quad \frac{\partial}{\partial x} p=\frac{\rho \cdot q^{2} \cdot x \cdot\left(x^{2}-h^{2}\right)}{\pi^{2} \cdot\left(x^{2}+h^{2}\right)^{3}}
$$

The plots of velocity, acceleration, and pressure gradient are shown in the associated Excel workbook. From the plots it is clear that the fluid experiences an adverse pressure gradient fror the origin to $x=1 \mathrm{~m}$, then a negative one promoting fluid acceleration. If flow separates, it will likely be in the region $x=0$ to $x=h$.

Problem 6.7 (In Excel)

The velocity field for a plane source located distance $h=1 \mathrm{~m}$ above an infinite wall aligned along the x axis is given by

$$
\vec{V}=\frac{q}{2 \pi\left[x^{2}+(y-h)^{2}\right]}[x \hat{i}+(y-h) \hat{j}]+\frac{q}{2 \pi\left[x^{2}+(y+h)^{2}\right]}[x \hat{i}+(y+h) \hat{j}]
$$

where $q=2 \mathrm{~m}^{3} / \mathrm{s} / \mathrm{m}$. The fluid density is $1000 \mathrm{~kg} / \mathrm{m}^{3}$ and body forces are negligible. Derive expressions for the velocity and acceleration of a fluid particle that moves along the wall, and plot from $x=0$ to $x=+10 h$. Verify that the velocity and acceleration normal to the wall are zero. Plot the pressure gradient $\partial p / \partial x$ along the wall. Is the pressure gradient along the wall adverse (does it oppose fluid motion) or not?

Given: Velocity field

Find: Plots of velocity, acceleration and pressure gradient along wall

Solution

The velocity, acceleration and pressure gradient are given by

$$
\begin{array}{lll}
\begin{array}{ll}
q= & \mathrm{m}^{3} / \mathrm{s} / \mathrm{m} \\
h= & \mathrm{m}
\end{array} & \mathrm{u}=\frac{\mathrm{q} \cdot \mathrm{x}}{\pi \cdot\left(\mathrm{x}^{2}+\mathrm{h}^{2}\right)} \\
\rho=1000 \mathrm{~kg} / \mathrm{m}^{3}
\end{array} \quad \mathrm{a}_{\mathrm{x}}=-\frac{\mathrm{q}^{2} \cdot \mathrm{x} \cdot\left(\mathrm{x}^{2}-\mathrm{h}^{2}\right)}{\pi^{2} \cdot\left(\mathrm{x}^{2}+\mathrm{h}^{2}\right)^{3}},
$$

$\boldsymbol{x}(\mathbf{m})$	$\boldsymbol{u}(\mathbf{m} / \mathbf{s})$	$\boldsymbol{a}\left(\mathbf{m} / \mathbf{s}^{\mathbf{2}}\right)$	$\boldsymbol{d p} / \boldsymbol{d x}(\mathbf{P a} / \mathbf{m})$
0.0	0.00	0.00000	0.00
1.0	0.32	0.00000	0.00
2.0	0.25	0.01945	-19.45
3.0	0.19	0.00973	-9.73
4.0	0.15	0.00495	-4.95
5.0	0.12	0.00277	-2.77
6.0	0.10	0.00168	-1.68
7.0	0.09	0.00109	-1.09
8.0	0.08	0.00074	-0.74
9.0	0.07	0.00053	-0.53
10.0	0.06	0.00039	-0.39

Problem 6.8

Given: y component of velocity for incompressible flow in the wy plane is

$$
v=A y \text { where } A=2 s^{-1} \text { and } x \text { in } m
$$

Pressure is $p_{0}=190 \mathrm{kPa}(g a g e)$ at $(x, y)=(0,0)$.
Density is $\rho=1.50 \mathrm{~kg} / \mathrm{m}^{3}$; z is vertical; neglect viscosity.
Find: (a) Simplest x component of velocity.
(b) Acceleration at point $(x, y)=(2,1)$.
(c) Pressure gradient at same point.
(d) Pressure distribution along x axis.

Solution: For $2-D$ incompressible flow, $\frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}=0$, so $\frac{\partial v}{\partial y}=-\frac{\partial u}{\partial x}$

$$
u=-\int \frac{\partial V}{\partial y} d x+f(y)=\int-A d x+f(y)=-A y+f(y)
$$

For simplest case, $f(y)=0$, and $u=-A x$
Acceleration is $\vec{a}_{p}=u \frac{\partial \vec{v}}{\partial x}+v \frac{\partial \vec{v}}{\partial y} ; \vec{v}=A x \hat{\imath}-A y \hat{\jmath}$

$$
\begin{align*}
& \vec{a}_{p}=(-A x)(-A) \hat{\imath}+A y(A) \hat{\jmath}=A^{2} \times \hat{\imath}+A^{2} y \hat{\jmath} \\
& A+(1,2), \overrightarrow{a_{p}}(1,2)=\frac{2^{2}}{s^{2}} \times 2 m \hat{\imath}+\frac{2^{2}}{s^{2}} \times 1 m \hat{\jmath}=8 \hat{\imath}+4 \hat{\jmath} \mathrm{~m} / \mathrm{s}^{2} \tag{a}
\end{align*}
$$

To find pressure gradient, apply Euler's equation $(\mu=0)$:
BE

$$
\begin{aligned}
& \quad-\nabla p+\overrightarrow{\rho g}=\rho \overrightarrow{a_{p}} \\
& \nabla p=\rho \vec{g}-\rho \vec{a}_{p}=\rho(-g \hat{k})-\rho(8 \hat{\imath}+4 \hat{\jmath})=-\rho(8 \hat{\imath}+4 \hat{\jmath}+g \hat{k}) \\
& \nabla p=-1.50 \frac{\mathrm{~kg}}{m^{3}}(8 \hat{\imath}+4 \hat{\jmath}+9.81 \hat{k}) \frac{m}{s^{2}} \times \frac{N \cdot s^{2}}{\mathrm{~kg} \cdot m} \\
& \nabla p=-12 \hat{\imath}-6 \hat{\jmath}-14.7 \hat{k} \mathrm{~N} / \mathrm{m}^{3}
\end{aligned}
$$

Along the x axis, $y=0$, and $\vec{a}_{p}=A^{2} x \hat{c}$. Thus

$$
\nabla p=\rho \vec{g}-\rho \vec{a} p=\rho(-g \hat{k})-\rho A^{2} x \hat{\imath} \text { so } \frac{\partial \rho}{\partial x}=-\rho A^{2} x
$$

Thus along the x axis $d p=\frac{\partial p}{\partial x} d x$. Integrating,

$$
\left.p(x)-p_{0}=\int_{0}^{x} d p=\int_{0}^{x}-\rho A^{2} x d x=-\rho A^{2} \frac{x^{2}}{2}\right]_{0}^{x}=-\frac{\rho A^{2} x^{2}}{2}
$$

Finally

$$
\begin{aligned}
& p(x)=p_{0}-\frac{p A^{2} x^{2}}{2}=190 \frac{\mathrm{~N}}{\mathrm{~m}^{2}}-\frac{1}{2} \times 1.50 \frac{\mathrm{~kg}}{\mathrm{~m}^{3}} \times \frac{(2)^{2}}{\mathrm{~s}^{2}} \times(x)^{2} \mathrm{~m}^{2} \times \frac{\mathrm{N} \cdot \mathrm{~s}^{2}}{\mathrm{~kg} \cdot \mathrm{~m}} \\
& p(x)=190-3 x^{2} \mathrm{pa}(\text { gage }) \quad(x \ln \mathrm{~m})
\end{aligned}
$$

Given: The velocity distribution in a steady $n \Rightarrow$ flow field in the my pase is given by $\vec{V}=(A-B) \hat{c}+(c-R y) \hat{j}$, where $A=25^{-1}, B=5$ m. $s^{-1}, C=3 n \cdot s^{-1}$ and the body force distribution is $\vec{g}=-g \hat{k}^{\prime}$
Find: (a) Does the velocity field represent the How of an incompressible fluid?
(b) Find the stagnation point of the flow field:
(c) Obtain an expression for the pressure gradient.
(d) Evaluate Δp between origin and pant $(1,3)$ if $p=1.2 \mathrm{~kg} \mathrm{~m}^{3}$
Sdution:
(a) Apply the continuity equation, $\frac{\partial p}{\partial t}+\nabla \cdot \vec{N}=0$, for the given conditions. If ps constant, then

$$
\frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}=0=\frac{\partial}{\partial x}(2 x-5)+\frac{\partial}{\partial y}(3-2 y)=2-2=0
$$

\therefore velocity field represents an incompressible flow
d) At the stagnation point, $\vec{V}=0$. For $\vec{V}=0$, then

$$
u=2 x-5=0 \text { and } v=(3-2 y)=0
$$

Thus stagnation point is at $(x, y)=\left(\frac{5}{2}, \frac{3}{2}\right)$
(c) Enters equation, $\overrightarrow{P g}-\nabla P=p \overrightarrow{D V}$, can be used to obtain an expression for the pressure gradient

$$
\begin{aligned}
& \nabla p=p \vec{p}-p \frac{D}{\partial t}=\overrightarrow{p g}-p\left[\frac{\vec{\partial}}{\partial t}+u \frac{\overrightarrow{\partial v}}{\partial x}+v \frac{\partial \overrightarrow{\partial y}}{\partial z}+w \frac{\overrightarrow{\partial z}}{\partial z}\right] . \\
& \nabla p=p\left[\vec{g}-u \frac{\partial N}{\partial x}-v \frac{\overrightarrow{\partial v}}{\partial y}\right]=p[=\hat{g} k-(2 x-5) 2 \hat{i}-(3-2 y)(-2 n j)] \\
& \nabla p=-p\left[(4 x-10) i+(4 y-6) j+g^{k}\right]
\end{aligned}
$$

(d) Since $p=-p(x, y, j)$ we can write

$$
d p=\frac{\partial p}{\partial x} d x+\frac{\partial p}{\partial y} d y+\frac{\partial p}{\partial z} d z=-p(4-1-10) d x-p(4 y-b) d y-p g d z
$$

We can integrate to obtain DP between any two points in the field if, and only if, the integral of the right hand side is independent of the path of integration. This is true for the present case.

$$
\begin{aligned}
\therefore P_{1,3}-P_{0,0} & =-p\left\{\int_{0}^{1}(4 x-10) d x+\int_{0}^{3}(4 y-b) d y\right\}=-p\left\{\left[2 x^{2}-10 x\right]_{0}^{1}+\left[2 y^{2}-6 y\right]_{0}^{3}\right\}_{0} \\
& =-p\{-8-0\}=8 p \\
P_{1,3}-P_{0,0} & =8 \frac{m^{2}}{\mathrm{~s}^{2}} \cdot 1.2 \frac{\mathrm{~kg}}{\mathrm{~m}^{3}} \cdot \frac{\mathrm{~N} \cdot \mathrm{~s}^{2}}{\mathrm{~kg} \cdot \mathrm{~m}}=\left.9.6 N\right|_{m^{2}} \quad \Delta p
\end{aligned}
$$

Given: Frictionless, incompressible flow field with

$$
\begin{aligned}
& \vec{V}=A_{x} \hat{i}-A_{y} \hat{j} \\
& \vec{g}=-g \hat{g}
\end{aligned}
$$

At $(0,0,0) P=P_{0}$
Find: Expression for the pressure field $p(x, y, z)$
Solution:
Basic equations: $\quad \overrightarrow{P B}-\nabla P=\rho \frac{\vec{N}}{\nabla \pi}$

$$
\begin{aligned}
& \frac{\vec{V}}{D t}=\frac{\partial \vec{V}}{\partial t}+u \frac{\partial \vec{U}}{\partial x}+v \frac{\partial \vec{V}}{\partial y}+w \frac{\partial \vec{V}}{\partial z} \\
& \nabla p=\rho\left(\vec{g}-\frac{\vec{D}}{\vec{D}}\right)=\rho\left(-\vec{g}-u \frac{\vec{\lambda}}{\partial x}-v \frac{\vec{\lambda}}{\partial y}\right) \\
& =-p\left[\hat{g}+A_{x}\left(A_{i}\right)-R_{y}(-A j)\right] \\
& \nabla p=-p\left[R^{2} \imath \hat{\imath}+R^{2} y j+g \hat{l}\right] \\
& \hat{i} \frac{\partial p}{\partial x}+j \frac{\partial p}{\partial y}+\hat{k} \frac{\partial p}{\partial z}=-p\left[A^{2} x \hat{\imath}+A^{2} y \hat{j}+\hat{g}\right] \\
& \frac{\partial p}{\partial x}=-p P^{2} x \quad \frac{\partial p}{\partial y}=-p A^{2} y \quad \frac{\partial p}{\partial z}=-p g \\
& P=P(x, y, z) \\
& d P=\frac{\partial P}{\partial x} d x+\frac{\partial P}{\partial y} d y+\frac{\partial P}{\partial z} d z=-p R^{2} x d x-p R^{2} y d y-p g d z \\
& \text { * } P-P_{0}=\int_{P_{0}}^{P} d P=-\int_{0}^{x} p A^{2} x d x-\int_{0}^{y} p A^{2} y d y-\int_{0}^{3} p g d z \\
& P-P_{0}=-\rho\left[\frac{A^{2} x^{2}}{2}+\frac{A^{2} y^{2}}{2}+g z\right] \\
& p=P_{0}-p\left[\frac{A^{2} x^{2}}{2}+\frac{A^{2} y^{2}}{2}+g Z\right]
\end{aligned}
$$

* We can integrate to obtain ΔP between any two points in the flow field if, and only if, the integral of the right hand side is indepefrelent of the patin of integration. This is true for the present canc.

Given: Porous pipe with $11 q u i d$ ($\left.\mu=0, \rho=900 \mathrm{~kg} / \mathrm{m}^{3}\right)$

Find: (a) Expression for acceleration along ε.
(b) Expression for pressure gradient along d.
(c) Evaluate pout

Soketion: Computing equations (acceleration and Euler in x-directiop)

$$
a_{p x}=u \frac{\partial u}{\partial x}+\psi \frac{\partial u}{\partial y}+\psi^{=0} \frac{\partial u}{\partial z}+\frac{\partial \psi^{z o}}{\partial \tau} ; p_{y} x-\frac{\partial p}{\partial x}=\rho a_{p_{x}}
$$

Assumptions: (1)v =w $=0$ along \in
(2) steady flow

$$
\text { (3) } g x=0
$$

Then

$$
a_{\rho_{x}}=u \frac{\partial u}{\partial x}=U\left(1-\frac{x}{2 L}\right) v\left(-\frac{1}{2 L}\right)=-\frac{v^{2}}{2 L}\left(1-\frac{x}{2 L}\right)
$$

From Euler

$$
\frac{\partial p}{\partial x}=\frac{d p}{d x}=-\rho a_{\rho x}=\rho \frac{U^{2}}{2 L}\left(1-\frac{x}{2 L}\right)
$$

Integrating,

$$
\left.p_{\text {out }}-p_{\text {in }}=\int_{0}^{L} \frac{d p}{d x} d x=\varphi \frac{U^{2}}{2 L} \int_{0}^{L}\left(1-\frac{x}{2 L}\right) d x=\rho \frac{U^{2}}{2 L}\left(x-\frac{x^{2}}{4 L}\right)\right]_{0}^{L}
$$

or

$$
\begin{aligned}
p_{\text {oct }} & =p_{\text {in }}+\frac{\rho U^{2}}{2 L}\left(\frac{3}{4} L\right)=p_{i n}+\frac{3}{8} \rho U^{2} \\
& =35 \mathrm{kPa}+\frac{3}{8} \times 900 \frac{\mathrm{~kg}}{\mathrm{~m}_{3}} \times(5)^{2} \frac{\mathrm{~m}^{2}}{\mathrm{~s}^{2}} \times \frac{\mathrm{N} \cdot \mathrm{~s}^{2}}{\mathrm{~kg} \cdot \mathrm{~m}}
\end{aligned}
$$

pout $=43.4 \mathrm{kPa}$ (gage)

Given: Liquid, $p=$ constant and negligible viscosity, is pumped at total volume flow rate, Q, Mrough two small holes into the narrow gap between closely space parallel plates. The liquid flowing away from the Roles has only radial motion. Flow may be assured uniform at any section.
(a) Show that $V_{r}=$ alzarh, where h is the spacing between the plates.
(b) Obtain an expression for $a r$ and $2 P l a r$

Solution:
Apply the conservation of mass to a CV will outer edge at r.

Basic equation: $\quad \Delta=\frac{\partial}{\partial t} \int_{n} p d t+C_{c s} \overrightarrow{P V} \cdot \overrightarrow{d A}$
Assumptions: (i) steady flow
(a) incompressible flow
(3) uniform flow at each section

Ten

$$
\begin{gather*}
0=\int_{\text {es }} \vec{V} \cdot d \vec{A}=-2 \times \frac{Q}{2}+V_{r} 2 \pi r h \\
\text { and } V_{r}=\frac{Q}{2 \pi r h} \tag{r}
\end{gather*}
$$

From Eq. $6.4 a$

$$
g_{r}-\frac{1}{\rho} \frac{\partial p}{\partial r}=a_{r}=\frac{\partial V_{r}}{\partial t}+V_{r} \frac{\partial V_{r}}{\partial r}+\frac{V_{\theta}}{r} \frac{\partial V_{r}}{\partial \theta}+V_{z} \frac{\partial V_{r}}{\partial z}-\frac{V_{\theta}^{2}}{r}
$$

Since $V_{r}=V_{r}(r)$ and $V_{\theta}=0$, then

$$
\begin{aligned}
& a_{r}=V_{r} \frac{\partial V_{r}}{\partial r}=\frac{\theta}{2 \pi r h}\left[\frac{Q}{2 \pi h}\left(-\frac{1}{r^{2}}\right)\right]=-\left(\frac{\theta}{2 \pi r h}\right)^{2} \frac{1}{r} \\
& a_{r}=-\frac{V_{r}^{2}}{r}
\end{aligned}
$$

Since $g_{r}=0$, hen

$$
-\frac{1}{\rho} \frac{\partial p}{\partial r}=a_{r}
$$

$$
\frac{\partial p}{\partial r}=-p a_{r}=p \frac{V_{r}^{2}}{r} \quad \frac{\partial p}{\partial r}
$$

Problem 6.13

The velocity field for a plane vortex sink is given by $\vec{V}=-\frac{q}{2 \pi r} \hat{e}_{r}+\frac{K}{2 \pi r} \hat{r}_{\theta}$, where $q=2 \mathrm{~m}^{3} / \mathrm{s} / \mathrm{m}$ and $K=1 \mathrm{~m}^{3} / \mathrm{s} / \mathrm{m}$. The fluid density is $1000 \mathrm{~kg} / \mathrm{m}^{3}$. Find the acceleration at $(1,0),(1, \pi / 2)$ and $(2,0)$. Evaluate ∇p under the same conditions.

Given: Velocity field

Find: The acceleration at several points; evaluate pressure gradient

$$
\begin{aligned}
& \text { Solution } \\
& \text { The given data is } \quad \mathrm{q}=2 \cdot \frac{\frac{\mathrm{~m}^{3}}{\mathrm{~s}}}{\mathrm{~m}} \quad \mathrm{~K}=1 \cdot \frac{\frac{\mathrm{~m}^{3}}{\mathrm{~s}}}{\mathrm{~m}} \quad \rho=1000 \cdot \frac{\mathrm{~kg}}{\mathrm{~m}^{3}} \\
& \mathrm{~V}_{\mathrm{r}}=-\frac{\mathrm{q}}{2 \cdot \pi \cdot \mathrm{r}} \quad
\end{aligned} \begin{aligned}
& \mathrm{V}_{\theta}=\frac{\mathrm{K}}{2 \cdot \pi \cdot \mathrm{r}}
\end{aligned}
$$

The governing equations for this 2 D flow are

$$
\begin{align*}
& \rho a_{r}=\rho\left(\frac{\partial V_{r}}{\partial t}+V_{r} \frac{\partial V_{r}}{\partial r}+\frac{V_{\theta}}{r} \frac{\partial V_{r}}{\partial \theta}+V_{z} \frac{\partial V_{r}}{\partial z}-\frac{V_{\theta}^{2}}{r}\right)=\rho g_{r}-\frac{\partial p}{\partial r} \tag{6.3a}\\
& \rho a_{\theta}=\rho\left(\frac{\partial V_{\theta}}{\partial t}+V_{r} \frac{\partial V_{\theta}}{\partial r}+\frac{V_{\theta}}{r} \frac{\partial V_{\theta}}{\partial \theta}+V_{z} \frac{\partial V_{\theta}}{\partial z}+\frac{V_{r} V_{\theta}}{r}\right)=\rho g_{\theta}-\frac{1}{r} \frac{\partial p}{\partial \theta} \tag{6.3b}
\end{align*}
$$

The total acceleration for this steady flow is then

$$
r \text {-component }
$$

$$
a_{r}=V_{r} \cdot \frac{\partial}{\partial r} V_{r}+\frac{V_{\theta}}{r} \cdot \frac{\partial}{\partial \theta} V_{r} \quad a_{r}=-\frac{q^{2}}{4 \cdot \pi^{2} \cdot r^{3}}
$$

θ - component

$$
\mathrm{a}_{\theta}=\mathrm{V}_{\mathrm{r}} \cdot \frac{\partial}{\partial \mathrm{r}} \mathrm{~V}_{\theta}+\frac{\mathrm{V}_{\theta}}{\mathrm{r}} \cdot \frac{\partial}{\partial \theta} \mathrm{~V}_{\theta} \quad \mathrm{a}_{\theta}=\frac{\mathrm{q} \cdot \mathrm{~K}}{4 \cdot \pi^{2} \cdot \mathrm{r}^{3}}
$$

Evaluating at point $(1,0) \quad a_{r}=-0.101 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}$

$$
\mathrm{a}_{\theta}=0.051 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}
$$

Evaluating at point $(1, \pi / 2) \quad a_{r}=-0.101 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}$

$$
\mathrm{a}_{\theta}=0.051 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}
$$

Evaluating at point $(2,0) \quad a_{r}=-0.0127 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}$

$$
\mathrm{a}_{\theta}=0.00633 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}
$$

From Eq. 6.3, pressure gradient is

$$
\begin{array}{ll}
\frac{\partial}{\partial \mathrm{r}} \mathrm{p}=-\rho \cdot \mathrm{a}_{\mathrm{r}} & \frac{\partial}{\partial \mathrm{r}} \mathrm{p}=\frac{\rho \cdot \mathrm{q}^{2}}{4 \cdot \pi^{2} \cdot \mathrm{r}^{3}} \\
\frac{1}{\mathrm{r}} \cdot \frac{\partial}{\partial \theta} \mathrm{p}=-\rho \cdot \mathrm{a}_{\theta} & \frac{1}{\mathrm{r}} \cdot \frac{\partial}{\partial \theta} \mathrm{p}=-\frac{\rho \cdot \mathrm{q} \cdot \mathrm{~K}}{4 \cdot \pi^{2} \cdot r^{3}}
\end{array}
$$

Evaluating at point $(1,0) \quad \frac{\partial}{\partial \mathrm{r}} \mathrm{p}=101 \cdot \frac{\mathrm{~Pa}}{\mathrm{~m}}$
$\frac{1}{\mathrm{r}} \cdot \frac{\partial}{\partial \theta} \mathrm{p}=-50.5 \cdot \frac{\mathrm{~Pa}}{\mathrm{~m}}$

Evaluating at point $(1, \pi / 2) \frac{\partial}{\partial \mathrm{r}} \mathrm{p}=101 \cdot \frac{\mathrm{~Pa}}{\mathrm{~m}}$
$\frac{1}{\mathrm{r}} \cdot \frac{\partial}{\partial \theta} \mathrm{p}=-50.5 \cdot \frac{\mathrm{~Pa}}{\mathrm{~m}}$

Evaluating at point $(2,0) \quad \frac{\partial}{\partial \mathrm{r}} \mathrm{p}=12.7 \cdot \frac{\mathrm{~Pa}}{\mathrm{~m}}$

$$
\frac{1}{\mathrm{r}} \cdot \frac{\partial}{\partial \theta} \mathrm{p}=-6.33 \cdot \frac{\mathrm{~Pa}}{\mathrm{~m}}
$$

Given: Circular tube with porous wall; incompressible flow, uniform in x direction.

Find: (a) Algebraic expression for $a_{p_{x}}$ at x.
(b) Pressure gradient at x.
(c) Integrate to obta in p at $x=0$.

Solution: Apply conservation of mass using the CV shown.
Basic equations: $0=\frac{\partial f}{\phi t} \int_{C v}^{=0(1)} \rho d t+\int_{C S} \rho \vec{v} \cdot d \vec{A}$

$$
a_{p_{x}}=u \frac{\partial u}{\partial x}+\hat{\psi}^{\approx 0} \frac{\partial u}{\partial y}+\dot{\psi} \frac{\partial u}{\partial z}+\frac{\partial u}{\partial t} ;-\frac{\partial p}{\partial x}+\rho g_{x}=\rho a p_{x}
$$

Assumptions: (1) steady flow
(4) Horizontal; $g_{x}=0$
(2) Incompressible flow
(5) $v \approx 0$ in channel ($w \approx 0$ too)
(3) Uniform flow at each cross-section (b) Inviscid flow

Then

$$
\int \vec{v} \cdot d \vec{A}=\left\{-\left|v_{0} \pi D x\right|\right\}+\left\{+\left|u \frac{\pi D^{2}}{4}\right|\right\}=0 \quad \text { or } u(x)=4 v_{0} \frac{x}{D}
$$

and

$$
a_{p x}=4 v_{0} \frac{x}{D}\left(4 v_{0} \frac{1}{D}\right)=16 v_{0}^{2} \frac{x}{D^{2}}
$$

From the Euler equation,

$$
-\frac{\partial p}{\partial x}=\rho a_{p x} \text { so } \frac{\partial p}{\partial x}=-\rho a_{p_{x}}=-16 \rho v_{0}^{2} \frac{x}{D^{2}}
$$

Since $v \approx \omega \approx 0$, then $p(x)$ and $d p=\frac{\partial p}{\partial x} d x$. Integrating

$$
\left.\int_{0}^{L} d p=p_{L}-p(0)=\int_{0}^{L}-16 \rho v_{0}^{2} \frac{x}{D^{2}} d x=-\frac{16 \rho v_{0}^{2}}{D^{2}} \frac{x^{2}}{2}\right]_{0}^{L}=-\frac{8 \rho v_{0}^{2} L^{2}}{D^{2}}
$$

Thus, since $p_{L}=$ paton, the gage pressure at $x=0$ is

$$
p(0)=8 \rho v_{0}^{2}\left(\frac{L}{D}\right)^{2}
$$

Problem 6.15

$$
\rho=1000 \mathrm{~kg} / \mathrm{m}^{3} \text { consists of } \mathrm{a}
$$

diverging section of pipe. At the inlet the diameter is $D_{i}=0.25 \mathrm{~m}$, and at the outlet the diameter is $D_{o}=0.75 \mathrm{~m}$. The diffuser length is $L=1 \mathrm{~m}$, and the diameter increases linearly with distance x along the diffuser. Derive and plot the acceleration of a fluid particle, assuming uniform flow at each section, if the speed at the inlet is $V_{i}=5 \mathrm{~m} / \mathrm{s}$. Plot the pressure gradient through the diffuser, and find its maximum value. If the pressure gradient must be no greater than $25 \mathrm{kPa} / \mathrm{m}$, how long would the diffuser have to be?

Given: Diffuser geometry

Find: Acceleration of a fluid particle; plot it; plot pressure gradient; find L such that pressure gradient is less than $25 \mathrm{kPa} / \mathrm{m}$

Solution

The given data is

$$
\begin{array}{ll}
\mathrm{D}_{\mathrm{i}}=0.25 \cdot \mathrm{~m} & \mathrm{D}_{\mathrm{o}}=0.75 \cdot \mathrm{~m} \\
\mathrm{~V}_{\mathrm{i}}=5 \cdot \frac{\mathrm{~m}}{\mathrm{~s}} & \rho=1000 \cdot \frac{\mathrm{~kg}}{\mathrm{~m}^{3}}
\end{array}
$$

$$
\mathrm{L}=1 \cdot \mathrm{~m}
$$

For a linear increase in diameter

$$
\mathrm{D}(\mathrm{x})=\mathrm{D}_{\mathrm{i}}+\frac{\mathrm{D}_{\mathrm{o}}-\mathrm{D}_{\mathrm{i}}}{\mathrm{~L}} \cdot \mathrm{x}
$$

From continuity

$$
\mathrm{Q}=\mathrm{V} \cdot \mathrm{~A}=\mathrm{V} \cdot \frac{\pi}{4} \cdot \mathrm{D}^{2}=\mathrm{V}_{\mathrm{i}} \cdot \frac{\pi}{4} \cdot \mathrm{D}_{\mathrm{i}}^{2} \quad \mathrm{Q}=0.245 \frac{\mathrm{~m}^{3}}{\mathrm{~s}}
$$

Hence

$$
\mathrm{V}(\mathrm{x}) \cdot \frac{\pi}{4} \cdot \mathrm{D}(\mathrm{x})^{2}=\mathrm{Q}
$$

$$
\mathrm{V}(\mathrm{x})=\frac{4 \cdot \mathrm{Q}}{\pi \cdot\left(\mathrm{D}_{\mathrm{i}}+\frac{\mathrm{D}_{\mathrm{o}}-\mathrm{D}_{\mathrm{i}}}{\mathrm{~L}} \cdot \mathrm{x}\right)^{2}}
$$

or

$$
\mathrm{V}(\mathrm{x})=\frac{\mathrm{V}_{\mathrm{i}}}{\left(1+\frac{\mathrm{D}_{\mathrm{o}}-\mathrm{D}_{\mathrm{i}}}{\mathrm{~L} \cdot \mathrm{D}_{\mathrm{i}}} \cdot \mathrm{x}\right)^{2}}
$$

The governing equation for this flow is

$$
\begin{equation*}
\rho\left(\frac{\partial u}{\partial t}+u \frac{\partial u}{\partial x}+v \frac{\partial u}{\partial y}+w \frac{\partial u}{\partial z}\right)=\rho g_{x}-\frac{\partial p}{\partial x} \tag{6.2a}
\end{equation*}
$$

or, for steady 1D flow, in the notation of the problem

$$
\begin{aligned}
& a_{x}=V \cdot \frac{d}{d x} V=\frac{V_{i}}{\left(1+\frac{D_{o}-D_{i}}{L \cdot D_{i}} \cdot x\right)^{2}} \frac{d}{d x} \frac{V_{i}}{\left(1+\frac{D_{o}-D_{i}}{L \cdot D_{i}} \cdot x\right)^{2}} \\
& a_{x}(x)=-\frac{2 \cdot V_{i}^{2} \cdot\left(D_{o}-D_{i}\right)}{D_{i} \cdot L \cdot\left[1+\frac{\left(D_{0}-D_{i}\right)}{D_{i} \cdot L} \cdot x\right]^{5}}
\end{aligned}
$$

This is plotted in the associated Excel workbook

From Eq. 6.2a, pressure gradient is

$$
\frac{\partial}{\partial x} p=-\rho \cdot a_{x} \quad \frac{\partial}{\partial x} p=\frac{2 \cdot \rho \cdot V_{i}^{2} \cdot\left(D_{o}-D_{i}\right)}{D_{i} \cdot L \cdot\left[1+\frac{\left(D_{o}-D_{i}\right)}{D_{i} \cdot L} \cdot x\right]^{5}}
$$

This is also plotted in the associated Excel workbook. Note that the pressure gradient is adverse: separation is likely to occur in the diffuser, and occur near the entrance

At the inlet

$$
\frac{\partial}{\partial \mathrm{x}} \mathrm{p}=100 \cdot \frac{\mathrm{kPa}}{\mathrm{~m}} \quad \text { At the exit } \quad \frac{\partial}{\partial \mathrm{x}} \mathrm{p}=412 \cdot \frac{\mathrm{~Pa}}{\mathrm{~m}}
$$

To find the length L for which the pressure gradient is no more than $25 \mathrm{kPa} / \mathrm{m}$, we need to solve

$$
\frac{\partial}{\partial \mathrm{x}} \mathrm{p} \leq 25 \cdot \frac{\mathrm{kPa}}{\mathrm{~m}}=\frac{2 \cdot \rho \cdot \mathrm{~V}_{\mathrm{i}}^{2} \cdot\left(\mathrm{D}_{\mathrm{o}}-\mathrm{D}_{\mathrm{i}}\right)}{\mathrm{D}_{\mathrm{i}} \cdot \mathrm{~L} \cdot\left[1+\frac{\left(\mathrm{D}_{\mathrm{o}}-\mathrm{D}_{\mathrm{i}}\right)}{\mathrm{D}_{\mathrm{i}} \mathrm{~L}} \cdot \mathrm{x}\right]^{5}}
$$

with $x=0 \mathrm{~m}$ (the largest pressure gradient is at the inlet)

Hence

$$
\mathrm{L} \geq \frac{2 \cdot \rho \cdot \mathrm{~V}_{\mathrm{i}}^{2} \cdot\left(\mathrm{D}_{\mathrm{o}}-\mathrm{D}_{\mathrm{i}}\right)}{\mathrm{D}_{\mathrm{i}} \cdot \frac{\partial}{\partial \mathrm{x}} \mathrm{p}} \quad \mathrm{~L} \geq 4 \cdot \mathrm{~m}
$$

This result is also obtained using Goal Seek in the Excel workbook

Problem 6.15 (In Excel)

A diffuser for an incompressible, inviscid fluid of density $\rho=1000 \mathrm{~kg} / \mathrm{m}^{3}$ consists of a diverging section of pipe. At the inlet the diameter is $D_{i}=0.25 \mathrm{~m}$, and at the outlet the diameter is $D_{o}=0.75 \mathrm{~m}$. The diffuser length is $L=1 \mathrm{~m}$, and the diameter increases linearly with distance x along the diffuser. Derive and plot the acceleration of a fluid particle, assuming uniform flow at each section, if the speed at the inlet is $V_{i}=5 \mathrm{~m} / \mathrm{s}$. Plot the pressure gradient through the diffuser, and find its maximum value. If the pressure gradient must be no greater than $25 \mathrm{kPa} / \mathrm{m}$, how long would the diffuser have to be?

Given: Diffuser geometry
Find: Acceleration of a fluid particle; plot it; plot pressure gradient; find L such that pressure gradient is less than $25 \mathrm{kPa} / \mathrm{m}$

Solution

The acceleration and pressure gradient are given by

$D_{i}=$	0.25	m
$D_{o}=$	0.75	m
$L=$	1	m
$V_{i}=$	5	m / s
$\rho=$	1000	$\mathrm{kg} / \mathrm{m}^{3}$
\boldsymbol{x} (m)	$a\left(\mathrm{~m} / \mathrm{s}^{2}\right)$	$d p / d x(\mathrm{kPa} / \mathrm{m})$
0.0	-100	100
0.1	-40.2	40.2
0.2	-18.6	18.6
0.3	-9.5	9.54
0.4	-5.29	5.29
0.5	-3.13	3.13
0.6	-1.94	1.94
0.7	-1.26	1.26
0.8	-0.842	0.842
0.9	-0.581	0.581
1.0	-0.412	0.412

$$
\begin{aligned}
& \mathrm{a}_{\mathrm{x}}(\mathrm{x})=-\frac{2 \cdot \mathrm{~V}_{\mathrm{i}}^{2} \cdot\left(\mathrm{D}_{\mathrm{o}}-\mathrm{D}_{\mathrm{i}}\right)}{\mathrm{D}_{\mathrm{i}} \cdot \mathrm{~L} \cdot\left[1+\frac{\left(\mathrm{D}_{\mathrm{o}}-\mathrm{D}_{\mathrm{i}}\right)}{\mathrm{D}_{\mathrm{i}} \mathrm{~L}} \cdot \mathrm{x}\right]^{5}} \\
& \frac{\partial}{\partial \mathrm{x}} \mathrm{p}=\frac{2 \cdot \rho \cdot \mathrm{~V}_{\mathrm{i}}^{2} \cdot\left(\mathrm{D}_{\mathrm{o}}-\mathrm{D}_{\mathrm{i}}\right)}{\mathrm{D}_{\mathrm{i}} \cdot \mathrm{~L} \cdot\left[1+\frac{\left(\mathrm{D}_{\mathrm{o}}-\mathrm{D}_{\mathrm{i}}\right)}{\mathrm{D}_{\mathrm{i}} \cdot \mathrm{~L}} \cdot \mathrm{x}\right]^{5}}
\end{aligned}
$$

For the length L required for the pressure gradient to be less than $25 \mathrm{kPa} / \mathrm{m}$ use Goal Seek

$$
L=\quad 4.00 \quad \mathrm{~m}
$$

$\boldsymbol{x}(\mathbf{m})$	$\boldsymbol{d} \boldsymbol{p} / \boldsymbol{d} \boldsymbol{x}(\mathbf{k P a} / \mathbf{m})$
0.0	25.0

Problem 6.16

A nozzle for an incompressible, inviscid fluid of density $\rho=1000 \mathrm{~kg} / \mathrm{m}^{3}$ consists of a converging section of pipe. At the inlet the diameter is $D_{i}=100 \mathrm{~mm}$, and at the outlet the diameter is $D_{o}=20 \mathrm{~mm}$. The nozzle length is $L=500 \mathrm{~mm}$, and the diameter decreases linearly with distance x along the nozzle. Derive and plot the acceleration of a fluid particle, assuming uniform flow at each section, if the speed at the inlet is $V_{i}=1 \mathrm{~m} / \mathrm{s}$. Plot the pressure gradient through the nozzle, and find its maximum absolute value. If the pressure gradient mus be no greater than $5 \mathrm{MPa} / \mathrm{m}$ in absolute value, how long would the nozzle have to be?

Given: Nozzle geometry

Find: Acceleration of a fluid particle; plot it; plot pressure gradient; find L such that pressure gradient is less than $5 \mathrm{MPa} / \mathrm{m}$ in absolute value

Solution

The given data is

$$
\begin{array}{ll}
\mathrm{D}_{\mathrm{i}}=0.1 \cdot \mathrm{~m} & \mathrm{D}_{\mathrm{o}}=0.02 \cdot \mathrm{~m} \\
\mathrm{~V}_{\mathrm{i}}=1 \cdot \frac{\mathrm{~m}}{\mathrm{~s}} & \rho=1000 \cdot \frac{\mathrm{~kg}}{\mathrm{~m}^{3}}
\end{array}
$$

$$
\mathrm{D}_{\mathrm{o}}=0.02 \cdot \mathrm{~m} \quad \mathrm{~L}=0.5 \cdot \mathrm{~m}
$$

For a linear decrease in diameter

$$
\mathrm{D}(\mathrm{x})=\mathrm{D}_{\mathrm{i}}+\frac{\mathrm{D}_{\mathrm{o}}-\mathrm{D}_{\mathrm{i}}}{\mathrm{~L}} \cdot \mathrm{x}
$$

From continuity

$$
\mathrm{Q}=\mathrm{V} \cdot \mathrm{~A}=\mathrm{V} \cdot \frac{\pi}{4} \cdot \mathrm{D}^{2}=\mathrm{V}_{\mathrm{i}} \cdot \frac{\pi}{4} \cdot \mathrm{D}_{\mathrm{i}}^{2} \quad \mathrm{Q}=0.00785 \frac{\mathrm{~m}^{3}}{\mathrm{~s}}
$$

Hence

$$
\mathrm{V}(\mathrm{x}) \cdot \frac{\pi}{4} \cdot \mathrm{D}(\mathrm{x})^{2}=\mathrm{Q}
$$

$$
\mathrm{V}(\mathrm{x})=\frac{4 \cdot \mathrm{Q}}{\pi \cdot\left(\mathrm{D}_{\mathrm{i}}+\frac{\mathrm{D}_{\mathrm{o}}-\mathrm{D}_{\mathrm{i}}}{\mathrm{~L}} \cdot \mathrm{x}\right)^{2}}
$$

or

$$
\mathrm{V}(\mathrm{x})=\frac{\mathrm{V}_{\mathrm{i}}}{\left(1+\frac{\mathrm{D}_{\mathrm{o}}-\mathrm{D}_{\mathrm{i}}}{\mathrm{~L} \cdot \mathrm{D}_{\mathrm{i}}} \cdot \mathrm{x}\right)^{2}}
$$

The governing equation for this flow is

$$
\begin{equation*}
\rho\left(\frac{\partial u}{\partial t}+u \frac{\partial u}{\partial x}+v \frac{\partial u}{\partial y}+w \frac{\partial u}{\partial z}\right)=\rho g_{x}-\frac{\partial p}{\partial x} \tag{6.2a}
\end{equation*}
$$

or, for steady 1D flow, in the notation of the problem

$$
\begin{aligned}
& a_{x}=V \cdot \frac{d}{d x} V=\frac{V_{i}}{\left(1+\frac{D_{o}-D_{i}}{L \cdot D_{i}} \cdot x\right)^{2}} \frac{d}{d x} \frac{V_{i}}{\left(1+\frac{D_{o}-D_{i}}{L \cdot D_{i}} \cdot x\right)^{2}} \\
& a_{x}(x)=-\frac{2 \cdot V_{i}^{2} \cdot\left(D_{o}-D_{i}\right)}{D_{i} \cdot L \cdot\left[1+\frac{\left(D_{0}-D_{i}\right)}{D_{i} \cdot L} \cdot x\right]^{5}}
\end{aligned}
$$

This is plotted in the associated Excel workbook

From Eq. 6.2a, pressure gradient is

$$
\frac{\partial}{\partial x} p=-\rho \cdot a_{x} \quad \frac{\partial}{\partial x} p=\frac{2 \cdot \rho \cdot V_{i}^{2} \cdot\left(D_{o}-D_{i}\right)}{D_{i} \cdot L \cdot\left[1+\frac{\left(D_{o}-D_{i}\right)}{D_{i} \cdot L} \cdot x\right]^{5}}
$$

This is also plotted in the associated Excel workbook. Note that the pressure gradient is

At the inlet

$$
\frac{\partial}{\partial \mathrm{x}} \mathrm{p}=-3.2 \cdot \frac{\mathrm{kPa}}{\mathrm{~m}} \quad \text { At the exit } \quad \frac{\partial}{\partial \mathrm{x}} \mathrm{p}=-10 \cdot \frac{\mathrm{MPa}}{\mathrm{~m}}
$$

To find the length L for which the absolute pressure gradient is no more than $5 \mathrm{MPa} / \mathrm{m}$, we need solve

$$
\left|\frac{\partial}{\partial \mathrm{x}} \mathrm{p}\right| \leq 5 \cdot \frac{\mathrm{MPa}}{\mathrm{~m}}=\frac{2 \cdot \rho \cdot \mathrm{~V}_{\mathrm{i}}^{2} \cdot\left(\mathrm{D}_{\mathrm{o}}-\mathrm{D}_{\mathrm{i}}\right)}{\mathrm{D}_{\mathrm{i}} \cdot \mathrm{~L} \cdot\left[1+\frac{\left(\mathrm{D}_{\mathrm{o}}-\mathrm{D}_{\mathrm{i}}\right)}{\mathrm{D}_{\mathrm{i}} \cdot \mathrm{~L}} \cdot \mathrm{x}\right]^{5}}
$$

with $x=L \mathrm{~m}$ (the largest pressure gradient is at the outlet)

Hence

$$
\mathrm{L} \geq \frac{2 \cdot \rho \cdot \mathrm{~V}_{\mathrm{i}}^{2} \cdot\left(\mathrm{D}_{\mathrm{o}}-\mathrm{D}_{\mathrm{i}}\right)}{\mathrm{D}_{\mathrm{i}} \cdot\left(\frac{\mathrm{D}_{\mathrm{o}}}{\mathrm{D}_{\mathrm{i}}}\right)^{5} \cdot\left|\frac{\partial}{\partial \mathrm{x}} \mathrm{p}\right|} \quad \mathrm{L} \geq 1 \cdot \mathrm{~m}
$$

This result is also obtained using Goal Seek in the Excel workbook

Problem 6.16 (In Excel)

A nozzle for an incompressible, inviscid fluid of density $\rho=1000 \mathrm{~kg} / \mathrm{m}^{3}$ consists of a converging section of pipe. At the inlet the diameter is $D_{i}=100 \mathrm{~mm}$, and at the outlet the diameter is $D_{o}=20 \mathrm{~mm}$. The nozzle length is $L=500 \mathrm{~mm}$, and the diameter decreases linearly with distance x along the nozzle. Derive and plot the acceleration of a fluid particle, assuming uniform flow at each section, if the speed at the inlet is $V_{i}=5 \mathrm{~m} / \mathrm{s}$. Plot the pressure gradient through the nozzle, and find its maximum absolute value. If the pressure gradient must be no greater than $5 \mathrm{MPa} / \mathrm{m}$ in absolute value, how long would the nozzle have to be?

Given: Nozzle geometry

Find: Acceleration of a fluid particle; plot it; plot pressure gradient; find L such that the absolute pressure gradient is less than $5 \mathrm{MPa} / \mathrm{m}$

Solution

The acceleration and pressure gradient are given by

$$
\begin{array}{rlrl}
D_{i} & =0.1 & \mathrm{~m} \\
D_{o} & =0.02 & \mathrm{~m} \\
L & =0.5 & \mathrm{~m} \\
V_{i} & =1 & \mathrm{~m} / \mathrm{s} \\
\rho & =1000 & \mathrm{~kg} / \mathrm{m}^{3}
\end{array}
$$

$\boldsymbol{x}(\mathbf{m})$	$\boldsymbol{a}\left(\mathbf{m} / \mathbf{s}^{\mathbf{2}}\right)$	$\boldsymbol{d p} / \boldsymbol{d} \boldsymbol{x}(\mathbf{k P a} / \mathbf{m})$
0.00	3.20	-3.20
0.05	4.86	-4.86
0.10	7.65	-7.65
0.15	12.6	-12.6
0.20	22.0	-22.0
0.25	41.2	-41.2
0.30	84.2	-84.2
0.35	194	-194
0.40	529	-529
0.45	1859	-1859
0.50	10000	-10000

$$
\mathrm{a}_{\mathrm{x}}(\mathrm{x})=-\frac{2 \cdot \mathrm{~V}_{\mathrm{i}}^{2} \cdot\left(\mathrm{D}_{\mathrm{o}}-\mathrm{D}_{\mathrm{i}}\right)}{\mathrm{D}_{\mathrm{i}} \cdot \mathrm{~L} \cdot\left[1+\frac{\left(\mathrm{D}_{\mathrm{o}}-\mathrm{D}_{\mathrm{i}}\right)}{\mathrm{D}_{\mathrm{i}} \cdot \mathrm{~L}} \cdot \mathrm{x}\right]^{5}}
$$

$$
\frac{\partial}{\partial x} \mathrm{p}=\frac{2 \cdot \rho \cdot \mathrm{~V}_{\mathrm{i}}^{2} \cdot\left(\mathrm{D}_{\mathrm{o}}-\mathrm{D}_{\mathrm{i}}\right)}{\mathrm{D}_{\mathrm{i}} \cdot \mathrm{~L} \cdot\left[1+\frac{\left(\mathrm{D}_{\mathrm{o}}-\mathrm{D}_{\mathrm{i}}\right)}{\mathrm{D}_{\mathrm{i}} \cdot \mathrm{~L}} \cdot \mathrm{x}\right]^{5}}
$$

For the length L required for the pressure gradient to be less than $5 \mathrm{MPa} / \mathrm{m}$ (abs) use Goal Seek

$$
L=\quad 1.00 \quad \mathrm{~m}
$$

$\boldsymbol{x}(\mathbf{m})$	$\boldsymbol{d} \boldsymbol{p} / \boldsymbol{d} \boldsymbol{x}(\mathbf{k P a} / \mathbf{m})$
1.00	-5000

Given: Steady, incompressible flow of air between' parallel discs as shown $\vec{V}=V \frac{R}{r} \hat{e}$, for $r_{i} \leqslant r \leqslant R$
where $\begin{aligned} & V=15 \mathrm{mls} \\ & R=75 \mathrm{~mm}\end{aligned} \quad r_{i}=R l_{2}$

$$
R=75 \mathrm{~mm}
$$

Find: magnitude and direction of the net pressure force that acts on the upper plate between r_{i} and h.

Solution:
Basic equations: $\quad \overrightarrow{p g}-\nabla p=p \frac{\vec{N}}{\bar{T}} \quad \vec{F}=-\int \rho \overrightarrow{d A}$
Assumptions: (1) incompressible flow
(2) steady flow
(3) frictionless flow
(4) uniform flow at each section.

To determine the pressure distribution $p(r)$, apply Enters equation in the r direction

$$
\begin{aligned}
& -\frac{\partial p}{\partial r}+\operatorname{RO}=p a r=p t_{r} \frac{\partial \lambda_{r}}{\partial r} \\
& \frac{\partial \rho}{\partial r}=-\rho \psi \frac{\partial L}{\partial r}=-p \vee \frac{R}{r} \frac{\partial}{\partial r}\left(V \frac{R}{r}\right)=p V \frac{R}{r} v \frac{R}{r^{2}} \\
& \frac{d p}{d r}=p d^{2} \frac{R^{2}}{r^{3}} \\
& d P=\rho^{2} \frac{r^{2}}{r^{3}} d r
\end{aligned}
$$

Integrating we obtain

$$
\int_{P-p_{a t n}}=\int_{\rho_{\text {and }}}^{p} d p=p v^{2} R^{2} \int_{R}^{r} r^{-3} d r=p v^{2} R^{2}\left[-\frac{1}{2 r^{2}}\right]_{R}^{r}=\frac{1}{2} p^{2} R^{2}\left[\frac{1}{R^{2}}-\frac{1}{r^{2}}\right]
$$

Ten

$$
\begin{align*}
& F_{z}=\left(\left(p-p_{a t m}\right) d A=\int_{R l_{2}}^{R} \frac{1}{2} p^{P^{2}} R^{2}\left[\frac{1}{R^{2}}-\frac{1}{r^{2}}\right] 2 \pi r d r=p^{2} R^{2} \pi\left[\frac{r^{2}}{2 R^{2}}-\ln r\right]_{R l_{2}}^{P}\right. \\
& =p 1^{2} R^{2} \pi\left[\frac{1}{2 R^{2}}\left(R^{2}-\frac{R^{2}}{n}\right)-\ln \frac{R}{R / 2}\right]=p \lambda^{2} R^{2} \pi[0.375-\ln 2]=-0.318 \pi \rho \nu^{2} R^{2} \\
& =-0.318 \pi \times 1.23 \frac{\mathrm{lg}}{\mathrm{~m}^{2}} \times(15)^{2} \frac{\mathrm{~m}^{2}}{\mathrm{~s}^{2}} \times(0.075)^{2} \mathrm{~m}^{2} \times \frac{\mathrm{N} . \mathrm{s}^{2}}{\mathrm{~kg} \cdot \mathrm{~m}} \\
& F_{z}=-1.56 N \text {, (} F_{z}<0 \text {, so force acts down) } \tag{3}
\end{align*}
$$

Given: Air flows into the narrow gap between dosaly spaced parallel plates trough a porous surface as shown. Re uniform velocity in the x direction is $u=v_{0} \times 1 h_{3}$. Assume the flow for incompressible with $p=1.23 \mathrm{~kg} \mathrm{ln}^{3}$ and lat friction is negligible.

$$
v_{0}=15 \mathrm{nnls}, L=22 \mathrm{~mm}, h=1.2 \mathrm{~mm}
$$

Find: (a) the pressure gradient at the point (4 h)
(b) an equation for the flow Streamlines in the cavity

Solution:
Eulers equation, $\overrightarrow{p g}-\nabla p=p P \stackrel{\rightharpoonup}{N}$, can be used to determine the pressure gradient for incompressible frictionless How.
we reed first to determine the veloaty field. Will $u=v_{0}{ }^{2} / h$, for 2-9, incompressible flow we can use the continuity equation to determine v.

Since $\frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}=0$, then $\frac{\partial v}{\partial y}=-\frac{\partial u}{\partial x}=-\frac{\partial}{\partial x}\left(\frac{v_{0} x}{h}\right)=-\frac{v_{0}}{h}$
Then

$$
v=\left(\frac{\partial v}{\partial y} d y+f(x)=-\frac{v_{0}}{h} y+f(x)\right.
$$

But $v=v_{0}$ at $y=0$ and hence $f(x)=v_{0}$ and $v=v_{0}\left(1-\frac{y}{h}\right)$
Ten

$$
\begin{aligned}
& \nabla p=p g-p \frac{\vec{v}}{\partial t}=p\left[\vec{g}-u \frac{\overrightarrow{\partial y}}{\partial x}-v \frac{\overrightarrow{2 v}}{2 y}\right]=p\left[-g j-\frac{v_{0} x}{h}\left(\frac{v_{0}}{h} i\right)-v_{0}\left(1-\frac{y}{h}\right)\left(-\frac{v_{0} r}{h d}\right)\right. \\
& \nabla-p=p\left[-g g^{r}-\frac{v_{0}^{2} x}{h^{2}} r-\frac{v_{0}^{2}}{h}\left(1-\frac{y}{h}\right) \vec{j}\right]
\end{aligned}
$$

At the pout $(2, y)=(1, h)$

$$
\begin{aligned}
\nabla p & =p\left[-\frac{v_{0}^{2}}{h^{2}} i-g j\right] \\
& =1.23 \frac{\mathrm{~kg}}{\mathrm{~m}^{3}}\left[-(15)^{2} \frac{\pi \mathrm{~m}}{\mathrm{~s}^{2}} \times 0.022 m \times \frac{1}{(1.2)^{2} \times 2^{2}} i-9.81 \frac{\mathrm{~m}}{5^{2}} \hat{j}\right] \cdot \frac{N . \mathrm{s}^{2}}{\mathrm{~g}^{m}}
\end{aligned}
$$

$$
\nabla p]_{L . h}=-4.23 i-12.1 j
$$

(b) The slope of the streaminnes is given by $\frac{d y}{d t}=\frac{v}{u}$
$\therefore \frac{d y}{d x}=\frac{v_{0}(1-y / h)}{\frac{v_{0} x}{h}}$ and separating variables, we can write $\frac{d\left(\frac{y}{h}\right)}{(1-y / h)}=\frac{a\left(\frac{h}{h}\right)}{t h}$ Then integrating ur obtain

$$
-\ln (1-y / h)=\ln \frac{x}{h}-\ln c
$$

or

$$
\frac{x}{h}\left(1-\frac{y}{h}\right)=\text { constant. }
$$

Given: Rectangular "chip" flats on thin layer of air of thickness, $h=0.5 \mathrm{~mm}$ above a porous surface as shown. Chip width $b=20 \mathrm{~mm}$; length 4 (perpendicular to diagram) $\gg b$ in o flow in a direction: Flow in x defection under clip may be assumed uniform; $p=$ constant ; neglect frictional effects
Find: (a) Use a suitably chosen $C V$ to show $U(x)=q x / h$ in the gap (b) Find an expression for $\overrightarrow{a p}_{p}$ in the gap
(c) Estimate the maximum value of $\vec{a} p$
(d) Obtain an expression for $2+$ lax
(e) Sketch the pressure distribution under the chip
(f) Is the net pressure force on the chip directed up or down?
(g) Estimate the mass per wit length of the chip if $q=0.06 \mathrm{~m}^{3} / \mathrm{sec} / \mathrm{m}^{2}$.
Solution:
Assumptions:
(i) steady flow
(2) incompressible flow
(3) frictionless flow
(4) uniform flaw at

porous surface and in the gap at 1 .
(a) Apply continiuly equation to $C l$, $0=\overrightarrow{p t} \int \rho d t+\int_{c s} \vec{p} \cdot \overrightarrow{d A}$

$$
o=\{-|p q \times L|\}+\{+\mid p \cup h L\} \quad \text { or } v=q \frac{x}{h}
$$

\qquad
(b) Apply the substantial derivative definition

$$
\vec{a}_{p}=u \frac{\partial \vec{V}}{\partial x}+v \frac{\partial \vec{I}}{2 y}+\text { gin }^{2 J} \frac{\vec{y}}{2 z}+\frac{2 y}{\partial t} \text { ali) }
$$

obtain v from differential continuity $\frac{\partial u}{\partial x}+\frac{\partial v}{2 y}=0$

$$
\begin{aligned}
& \therefore \frac{\partial v}{\partial y}=-\frac{\partial u}{\partial x}=-\frac{q}{h} \text { and } v-v_{0}=\left(e_{0}^{y}-\frac{q_{0}}{h} d y+f(x)=-\frac{q}{h} y+f(x)\right] \\
& \text { or } v=q_{0}\left(1-\frac{y}{h}\right) \quad\left[f(x)=0 \text { since } v=v_{0}=q=\operatorname{const} \text { abongy=0}\right] \\
& a_{p}=u \frac{\partial u}{\partial x}+v \frac{\partial y}{\partial y}=q \frac{q^{2}}{h}\left(\frac{q}{h}\right)=\frac{q^{2} x}{h^{2}} \\
& a_{p y}=u \frac{\partial y}{\partial x}+v \frac{\partial v}{\partial y}=q^{2}=q^{2}\left(1-\frac{y}{h}\right)\left(-\frac{q}{h}\right)=\frac{q^{2}}{h}\left(\frac{y}{h}-1\right) \\
& \vec{a}_{p}=\frac{q^{2}}{h} h^{2}
\end{aligned}
$$

(c) The magnitude of $\left|\vec{a}_{p}\right|=\frac{q^{2}}{h}\left[\left(\frac{x}{h}\right)^{2}+\left(\frac{y}{h}-1\right)^{2}\right]^{1 / 2}$ is a. maximum at $x=\frac{b}{2}, y=0$

$$
\left|\vec{a}_{p}\right|_{\text {max }}=\frac{q^{2}}{h}\left[\left(\frac{b}{2 h}\right)^{2}+1\right]^{1 / 2}=\left.144 \mathrm{~m}\right|_{2} ^{2}
$$

$-\left.\quad \vec{a}_{p}\right|_{m .}$
(d) To obtain $\partial P l a t$ write the \& component of the Euler equation

$$
-\frac{\partial p}{\partial x}+p g x=p a_{p x} \quad \therefore \quad \frac{\partial p}{\partial x}=-p a_{p}=-\frac{p q^{2} x}{h^{2}}
$$

(e) To dotown an expression for the pressure distribution, $-p(x)$ we need to separate var ales and integrate
noting hat $p=p_{a t m}$ at $L=b l a$. Thus. noting hat $p=p_{a}$ at at $x=b l_{2}$. Thus.

$$
\begin{aligned}
& \left.-p_{-p_{a t x}}=\int_{b / 2}^{x} \frac{\partial p}{\partial x} d x=-\int_{b l_{2}}^{x} \frac{p q_{0}^{2}}{h^{2}} x=-\frac{p q^{2} x^{2}}{2 h^{2}}\right]_{b l_{2}}^{x} \\
& \text { P-Patn }=\frac{p q^{2}}{2 h^{2}}\left[\left(\frac{b}{2}\right)^{2}-x^{2}\right]=\frac{8 q^{2} b^{2}}{8 h^{2}}\left[1-\left(\frac{2-x}{b}\right)^{2}\right] \\
& p=p_{a t n}+\frac{p q^{2} b^{2}}{8 h^{2}}\left[1-\left(\frac{2 x}{b}\right)^{2}\right] \\
& \text { (f) The net pressure force on } \\
& \text { the chip is up. Note Rat } \\
& \text { the pressure on the chip } \\
& \text { is greater than palm over } \\
& \text { the entire Gut surface }
\end{aligned}
$$

(g) To estimate the mass per unit weight of the chip we must determine the net pressure force on the Give.

$$
\begin{aligned}
F_{\text {net }} & =\left(_{A}(p-p a h) d A=2 \int_{0}^{b / 2} \frac{p q^{2} b^{2}}{8 h^{2}}\left[1-\left(\frac{2 x}{b}\right)^{2}\right] L d x\right. \\
& =\frac{p q^{2} b^{2}}{4 h^{2}} L\left[x-\frac{4}{3} \frac{x^{3}}{b^{2}}\right]_{0}^{b / 2}=\frac{p q^{2} b^{2} L}{2 h^{2}}\left[\frac{b}{2}-\frac{1}{3} \frac{b}{2}\right] \\
F_{\text {net }} & =\frac{p q^{2} b^{3} L}{12 h^{2}}
\end{aligned}
$$

The weight of the chip, $W=M g$, must be balanced by the net pressure force. Hence

$$
\begin{aligned}
& M g=F n d=\frac{p q^{2} b^{3} L}{012 h^{2}} \\
\underline{M}= & \frac{p q^{2} b^{3}}{12 h^{2} g} \\
= & \frac{1}{12} \times 1.23 \frac{\mathrm{~kg}}{m^{3}} \times(0.0 b)^{2} \frac{m^{6}}{s^{2} \cdot m^{4}} \times(0.02)^{3} \mathrm{~m}^{3} \times \frac{1}{(0.0005)^{2} m^{2}: \frac{\mathrm{s}^{2}}{9.81 \mathrm{~m}}} \\
\frac{M}{L}= & 1.20 \times 10^{-3} \mathrm{~kg} / \mathrm{m}
\end{aligned}
$$

Given: Upper plane surface moving downward at constant speed I causes incompressible liquid layer to be squeezed between surfaces as shown. Repel a in z direction and $w \gg L$.

Find: (a) Show that $u=V_{x} l b$ within the gap $\left(b=b_{0}-v t\right)$ (b) expression for a_{n}
(c) $a+l a x$

(d) $p(x)$
(e) net pressure force on upper surface

Solution:
Basic equations: $\quad 0=\frac{\partial}{\partial \tau} \int_{\omega} p^{d t}+C_{c s} \vec{p}^{\prime} \cdot \overrightarrow{d A}$

$$
-\nabla \rho+\overrightarrow{\rho g}=\rho \frac{\overrightarrow{g N}}{\vec{\pi}} \quad \vec{F}=-\int \rho \overrightarrow{d A}
$$

(a) For the deformable cl shown

$$
o=\frac{\partial}{2 t} \int_{0}^{y} p w x d y+p u w y=p w \cdot x \frac{d y}{d x}+p u w y
$$

But dyldt $=-v$ and hence $u=\frac{\sqrt{x}}{y}$
If $y=b_{0}$ at $t=0$, then $y=b=b_{0}-V t$ at anytime t

$$
\therefore u=\frac{\sqrt{x}}{b}
$$

Assumptions: (1) $u \neq u(y), ~ w=0$

$$
a x=\frac{V x}{b}\left(\frac{V}{b}\right)+\frac{\partial u}{\partial b} \frac{\partial b}{\partial t}=\frac{V^{2} x}{b^{2}}+\left(-\frac{V x}{b^{2}}\right)(-\sqrt{2})=\frac{2 v^{2} x}{b^{2}} a_{x}
$$

(c) From Enter's equation in the x direction with $g=0$

$$
\frac{\partial p}{\partial x}=-p a_{x}=-\frac{2 p y^{2} x}{b^{2}}
$$

(d) p-pate $\left.=\int^{x} \frac{\partial p}{\partial x} d x=\int_{-}^{x}-\frac{2 p v^{2}}{b^{2}} x d x=-p \frac{p x^{2} b^{2}}{b^{2}}\right]_{L}^{x}=\frac{p \nu^{2} L^{2}}{b^{2}}\left[1-\left(\frac{x}{L}\right)^{2}\right]_{\alpha} p(x)$
(e) $F_{y}=\int_{A}\left(f-P_{a t m}\right) d A=2 \int_{0}^{2} \frac{p v^{2}}{b^{2}}\left[1-\left(\frac{t}{L}\right)^{2}\right] w d x$

$$
\begin{aligned}
& =2 \int_{0}^{1} \frac{\rho v^{2} L^{3}}{b^{2}}\left[1-\left(\frac{d}{L}\right)^{2}\right] w d\left(\frac{k}{L}\right)=\frac{2 f \nu^{2} L^{3} w}{b^{2}}\left[\left(\frac{x}{L}\right)-\frac{1}{3}\left(\frac{x}{2}\right)^{3}\right]_{0}^{1} \\
F_{y} & =\frac{4 p v^{2} L^{3} w}{3 b^{2}}-\left(\text { upward, since } F_{y}>0\right)
\end{aligned}
$$

Given: Load pallet supported by air:
Flow is incompressible, uniform, and frictionkss; $h \ll L$.

No flow across plane at $x=0$.

Find: (a) Use a Suitable cV to show $u(x)=q x / n$ in the gap.
(b) Calculate the acceleration of a fkeid particle in the gap.
(c) Evaluate the pressure gradient, $\partial p / \partial x$.
(d) Sketch the pressure distribution; indicate pressure at $x=L$.

Solution: choose a $C V$ in the gap, from 0 to x, as shown.
Basic equations: $0=\frac{d^{2}}{\frac{d}{t}} \int_{C v}^{(1)} \rho d t+\int_{C s} \rho \vec{v} \cdot d \vec{A}$

Assumptions: (1) Steady flow
(2) Incompressible flow
(3) Uniform flow at each section
(4) No variation with 3
(5) Horizontal, so $g_{x}=0$

From continuity,

$$
0=\{-|p q w x|\}+\{+|q u(x) w-h|\} \text { so } u(x)=q \frac{x}{h}
$$

The acceleration is $a_{p_{x}}=\left(g \frac{x}{h}\right)\left(q \frac{1}{h}\right)=q^{2} \frac{x}{h^{2}}$
The pressure gradient is $\frac{\partial p}{\partial x}=-\rho a p_{x}=-\frac{\rho q^{2} x}{h^{2}}$
sketching:

Given: Air at 20 psia, $100^{\circ} \mathrm{F}$ flows around a smooth corner Velocity $=150 \mathrm{ft} / \mathrm{s}$
Radius of curvature of streanlvie is 3 in .
Find: (a) magnitude of centripetal acceleration in G's (b) pressure gradient, $\frac{\partial P}{\partial r}$

Solution:
Basic equations: $\quad \overrightarrow{99}-\nabla p=p \frac{\vec{V}}{\overrightarrow{v t}} \ldots .$. (I)

$$
\begin{equation*}
\frac{\overrightarrow{D V}}{\vec{D}}=\vec{a}_{p} \quad \cdots(2) \quad P=p R T \tag{3}
\end{equation*}
$$

$$
0-2-1+3
$$

Basic equations: $\begin{array}{ll}\overrightarrow{\rho g}-8 p \\ & \overrightarrow{D N}=\overrightarrow{a_{p}}\end{array}$
Assumptions: (1) $p=$ constant
(2) frictionless flow
(s) $\vec{g}=-g^{s}$

Writing the r component of equation (u)

$$
\begin{aligned}
& a_{r}=-\frac{V_{e}^{2}}{r} \quad \frac{a_{r}}{g}=-\frac{V_{e}^{2}}{r g}=-(150)^{2} \frac{f^{2}}{s^{2}} \times \frac{1}{3 i n} \times \frac{12 i n}{f t} \times \frac{3^{2}}{32.2 f \tau} \\
& \frac{a_{r}}{g}=-2800 \mathrm{G}
\end{aligned}
$$

Also

Problem 6.23

Given: The velocity field for steady, frictionless, incompressible flow (from right to left) over ar stationary circular cylinder of radios, a, is given by

$$
\vec{V}=U\left[\left(\frac{a}{r}\right)^{2}-1\right]^{c} \cos \theta \hat{e}_{r}+U\left[\left(\frac{a}{r}\right)^{2}+1\right] \sin \theta e_{\theta}
$$

Consider flow along the streamline forming the cylinder surface, o lie $r=a$
Find: Te pressure gradient along cylinder surface Plot $V(r)$ along $\theta=\pi / 2$ for $\Rightarrow a$:
Solution:
Basic equation: $\quad \overrightarrow{\rho \theta}-\nabla P=p \frac{\vec{V}}{\overrightarrow{D t}}$
Assumptions. il neglect body forces
Along the surface, $r=a, \quad \vec{V}=2 U \sin \theta i_{0}$.
Computing equations:

$$
\begin{aligned}
& -\frac{1}{e} \frac{\partial z}{\partial r}=\frac{\partial V_{r} r^{\circ}}{\partial t}+y_{y} \frac{\partial v_{r}^{20}}{\partial r}+\frac{V_{0}}{\partial} \frac{\partial v_{r}^{x^{\circ}}}{\partial e}+V_{z} \frac{\partial v_{r}^{\circ}}{\partial z}-\frac{V_{0}^{2}}{r}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{\partial P}{\partial r}=\rho \frac{V_{0}^{2}}{r}=\rho \frac{[20 \sin \theta]^{2}}{a}=\frac{4 j^{2} \rho}{a} \rho \sin ^{2} \theta
\end{aligned}
$$

$$
\begin{aligned}
& \nabla P=i_{r} \frac{\partial P}{\partial K}+i_{\theta} \frac{1}{r} \frac{\partial P}{\partial \theta}=\frac{4 p U^{2}}{a} \sin \theta\left(i_{r} \sin \theta-i_{\theta} \cos \theta\right)
\end{aligned}
$$

Along $\theta=\frac{\pi}{2}, \vec{V}=\bar{U}\left[\left(\frac{a}{r}\right)^{2}+1\right] \hat{e}_{\theta}$

$\frac{r}{a}$	y_{0}
	20
2	1.250
3	1.110
4	1.0630
5	1.040

Giver: Radius of curvature of streamlines at wind turnel inlet is modeled as

$$
R=\frac{m i 2}{y} R_{0}
$$

Speed along each streamline assumed constant \mathbb{R} 位 $V=20 \mathrm{mls} ; ~ L=0.15 \mathrm{~m}$,

Find: $\Delta-p$ batween $y=0$ and tumel wall $\left(y=h_{2}\right)^{y=}$
Solution:
Basic equation: $\quad \frac{\partial p}{2 n}=\rho \frac{V^{2}}{2}$.
Assumptions: (1) steady flow (2) frictionless flow
(3) neglect body forms
(4) constant speed along each streamline

Ft the inlet section, $\rightarrow=-p(y)$

$$
\begin{aligned}
& \therefore \quad \frac{d p}{d n}=-\frac{d p}{d y} \quad p \frac{y^{2}}{R}=p v^{2} \frac{c y}{R_{0} L} \\
& \therefore d p=-f^{v^{2}} 2 y d y \\
& \left.p_{H_{2}}-e_{0}=\int_{0}^{H_{2}} d e=-\frac{2 p y^{2}}{R_{0}} \int_{0}^{L_{2}} y d y=-\frac{2 p v^{2}}{R_{0} h} \frac{y^{2}}{2}\right]_{0}^{L_{2}} \\
& -P_{M_{2}}-P_{0}=-\frac{\rho V^{2}}{R_{0}} \frac{L^{2}}{4}=-\frac{\rho V h}{4 R_{0}} \\
& -P_{4}-P_{0}=-1.225 \frac{\mathrm{~kg}}{n^{3}} \times\left(20 \frac{n}{5}\right)^{2} \times 0.15 n+\frac{1}{4} \times \frac{1}{0.60} \times \frac{\frac{N . s^{2}}{\mathrm{~kg} \cdot n}}{\mathrm{n}^{2}} \\
& P_{4}-P_{0}=-30.6 \mathrm{~N} / \mathrm{m}^{2}
\end{aligned}
$$

Given: Velocity variation at midsection of 180° bend is gwen by $r V_{E}=$ constant Cross section of the basie is square.
Find: Verve an equation for the pressure difference, P2-f, (Express he answer in terms of in p, R_{1}, R_{2}, and the depth of the band, h '

Solution:
Assumptions: (1) frictionless flow (Euler's equations apply)
(2) $p=$ constant
(3) $y_{0}=V_{e}(r)$ only
(H) streamlines are circular in the band.

Apply Eulers "n" equation, $\quad \frac{1}{p} \frac{\partial p}{2 n}=\frac{V^{2}}{h}$
*en we can write

$$
\frac{d f}{d r}=e \frac{V^{2}}{R}=p \frac{V_{e}^{2}}{r} \quad \text { where } V_{6}=\frac{c}{r}
$$

Separating variables, $\quad d p=\rho^{\frac{V_{0}^{2}}{r}} d r=\rho \frac{c^{2}}{r^{3}} d r$

$$
\begin{aligned}
& P_{2}-p_{1}=\int_{P_{1}}^{P_{2}} d \rho=\rho c^{2} \int_{R_{1}}^{R_{2}} \frac{d r}{r} s=\rho c^{2}\left(-\frac{1}{2}\right)\left[r^{-2}\right]_{R_{1}}^{R_{2}} \\
& P_{2}-\rho_{1}=-\frac{1}{2} \rho c^{2}\left[\frac{1}{R_{2}^{2}}-\frac{1}{R_{1}^{2}}\right]=-\frac{1}{2} \rho c^{2}\left[\frac{R_{1}^{2}-R_{2}^{2}}{R_{1}^{2} R_{2}^{2}}\right] \\
& P_{2}-P_{1}=\frac{1}{2} \rho c^{2} \frac{\left(R_{2}^{2}-R_{1}^{2}\right)}{R_{1}^{2} R_{2}^{2}}
\end{aligned}
$$

Te constant, can be written interns of He mass flow rate, in.

$$
\dot{m}=\int p^{V} \cdot d \vec{A}=\int p^{\psi} h d r=p h\left(\int_{R_{1}}^{R_{2}} \frac{c}{r} d r=p h c[\ln r]_{R_{1}}^{R_{2}}=p h c \ln \frac{R_{2}}{R_{1}}\right.
$$

Solving for $c, \quad c=\frac{\dot{m}}{p h} \ln \frac{R_{2}}{R_{1}}$
Substituting into the expression for $p_{2}-f_{1}$,

$$
\begin{aligned}
& p_{2}-P_{1}=\frac{1}{2} p \frac{\dot{m}^{2}}{p^{2} h^{2}\left(\frac{1}{\ln } \frac{R_{2}}{R_{1}}\right)^{2}} \frac{\left[R_{2}^{2}-R_{1}^{2}\right]}{R_{1}^{2} R_{2}^{2}} \\
& p_{2}-P_{1}=\frac{\dot{m}^{2}}{2 \rho h^{2}}\left(\frac{1}{\left(\ln \frac{R_{2}}{R_{1}}\right)^{2}} \frac{\left[R_{2}^{2}-R_{1}^{2}\right]}{R_{1}^{2} R_{2}^{2}}\right.
\end{aligned}
$$

Problem 6.26
Given: Vebaity field $\vec{V}=(A x+B) i-A y j$ where $A=1 s^{\prime}$, $B=2 m 4$ and coordinates are measured in meters
Show: that streamlines are given by $(x+3 / A) y=$ constant Pot: streamlines through posts $(f, y)=(1,1),(0,2),(2,2)$
Find: (a) velocity vector : acceleration vector at (1,2); show tHese En stream line ply
(b) component of ap along the streamline at($1, i)$;
(c) pressure gradient along streamline at (1,2) for air
(d) relative value of pressure at -parts $(1,1) .(2,2)$

Solution:
The slope of a streamline is $\left.\frac{d y}{d x}\right)_{s \cdot e}=\frac{v}{u}=\frac{-A y}{A-+B}=\frac{-y}{x+B / H}$ then

$$
\frac{d y}{y}+\frac{d x}{x+\left.B\right|_{A}}=0 \quad \text { and } \ln y+\ln (x+B / A)=\ln c .
$$

and

$$
(x+B / A) y=\text { constant }
$$

Streamlines
For (, , $\left.) \quad \begin{array}{l}(x+2) y=3 \\ (1,2) \\ (x+2) y=6 \\ (2)\end{array}\right\} \begin{aligned} & \text { These streamlines are slow in }\end{aligned}$
$\left.\begin{array}{l}(2,2)(x+2) y=6 \\ (2,2) \quad(x+2) y=8\end{array}\right\} \begin{aligned} & \text { the plot at the end of the } \\ & \text { problem solution }\end{aligned}$ (2,2) $(x+2) y=8 \mathrm{p}$ problem solution

Assumptions: (1) steady flow (given
(a) $2 \rightarrow$ guin $\bar{v} \neq \vec{J}(z)$.

$$
\begin{aligned}
& \left.\left.\vec{a}_{p}=(A x+B) \frac{\partial}{\partial x}\left[(A+B) \hat{i}-A y^{n}\right]\right]-A y \frac{\partial}{2 y}[(A+B) \hat{\imath}-A y]\right] \\
& \left.\bar{a}_{p}=(A x+B) A i-A y(-A i)=A(A x+B) \hat{i}+A^{2} y j\right]
\end{aligned}
$$

At part $(1,2)$.

$$
\begin{align*}
& \vec{a}_{p}=\frac{1}{s}\left(\frac{1}{s} \times 1+2 \frac{m}{s}\right) i+\frac{1}{s} \times 2 m j=3 i+\left.2 j m\right|_{s} ^{2} \\
& \vec{v}=\left(\frac{1}{s} \times m+2 \frac{1}{s}\right) i-\frac{\vec{a}_{(1,2)}}{s} 2 m j=3 i-\left.2 j m\right|_{s}=\overrightarrow{v_{(1,2)}} \tag{v}
\end{align*}
$$

\vec{V} and \vec{a} are shown on the streamline plot
(b) The component of \vec{a}_{p} along (tangenttol the streamline is given by $a_{t}=\vec{a}_{p} \cdot \hat{e}_{t}$ where $\hat{e}_{t}=\vec{J}$

$$
\text { Rus } \hat{e}_{t}=\frac{3 i-2 j}{\left[3^{2}+(-2)^{2}\right]^{1 / 2}}=0.832 i-0.555 j
$$

and

For frictionless flow, Euler's eguationalong a streamline (neglecting gravity, ie assuming How in horgorital plain is

$$
\frac{\partial p}{\partial s}=-p v^{\frac{\partial y}{\partial s}}=-p a_{t}=-1.23 \frac{\mathrm{~kg}}{\mathrm{~m}^{3}}+1.39 \frac{\mathrm{~m}}{\mathrm{~s}^{2}} \times \frac{\mathrm{As}^{2}}{\mathrm{zg}}
$$

$$
\frac{x_{\partial 0}^{0}}{0}=-i n \sin ^{2} \backslash m \text { I }
$$

hooking at the streamline we would expect p (2, in) to be Tess han $p(1,1)$ die to streamline curvature, Euler's equation normal to a streamline says $\partial p b_{n n}=\frac{P L^{2}}{R}$

$$
\begin{aligned}
& a_{t}=\vec{a}_{p} \cdot \hat{e}_{t}=\left.(3 \hat{i}+2 \hat{j}){ }^{n}\right|_{s} \cdot(0.832 \hat{i}-0.555 \hat{j})=1.39 \mathrm{~m} \mathbf{s}^{2} \\
& \vec{a}_{t}=1.3 a^{n} \hat{e}_{t}=\omega \hat{b}-0.77 \hat{j}^{n} / s^{2} \rightarrow \quad \vec{a}_{t(1,2)}
\end{aligned}
$$

Given: Velocity field $\vec{V}=A x y \hat{\imath}+B y^{2} \hat{\jmath} ; A=0.2 \mathrm{~m}^{-1} \cdot s^{-1}$

$$
B=\text { constant }
$$

Find: (a) value and units for B for incompressible flow.
(b) Acceleration of a fluid particle at point $(x, y)=(z, 1)$.
(c) Component of particle acceleration normal to velocity vector at this point.
Solution: Apply conservation of mass. For $\rho=\operatorname{constant}, \frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}+\frac{\partial u}{\partial z}=0$
But $w=0$, so $\frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}=0$. For this field, $\frac{\partial u}{\partial x}=A y$ and $\frac{\partial v}{\partial y}=2 B y$
Thus $A y+2 B y=0$, or $B=-\frac{A}{2}=-0.1 \mathrm{~m}^{-1} \cdot \mathrm{~s}^{-1}$
Acceleration of a particle is given by (since $\vec{V}=\vec{V}(x, y)$ only),

$$
\begin{aligned}
& \vec{a}_{p}=u \frac{\partial \vec{v}}{\partial x}+v \frac{\partial \vec{v}}{\partial y}=(A x y) A y \hat{\imath}+\left(B y^{2}\right)(A x \hat{\imath}+2 B y \hat{\jmath}) \\
& \vec{a}_{p}=A^{2} x y^{2} \hat{\imath}-\frac{A^{2}}{2} x y^{2} \hat{\imath}+\frac{A^{2}}{2} y^{3} \hat{\imath}=\frac{A^{2}}{2}\left(x y^{2} \hat{\imath}+y^{3} \hat{\jmath}\right)
\end{aligned}
$$

At point $(x, y)=(2,1)$ the acceleration is

$$
\vec{a}_{p}=\frac{1}{2} \times(0.2)^{2} \frac{1}{m^{2} \cdot s^{2}}\left[2 m_{x}(1)^{2} m^{2} \hat{\imath}+(1)^{3} m^{3} \hat{\jmath}\right]=0.04 \hat{\imath}+0.02 \hat{\jmath} \mathrm{~m} / \mathrm{s}^{2}
$$

The velocity at point $(x, y)=(2,1)$ is

$$
\vec{V}=\frac{0.2}{m \cdot s} \times 2 m_{x} 1 m_{\hat{\imath}}-\frac{0.1}{m \cdot s} \times(1)^{2} m^{2} \hat{\jmath}=0.40 \hat{\imath}-0.10 \hat{\jmath} \mathrm{~m} / \mathrm{s}
$$

The unit vectors tangent and normal to the velocity vector are

$$
\hat{e}_{t}=\frac{\vec{v}}{|\vec{v}|}=\frac{0.40 \hat{\imath}-0.10 \hat{\jmath}}{\left[(0.40)^{2}+(0.10)^{2}\right]^{12}}=\frac{0.40 \hat{\imath}-0.10 \hat{\jmath}}{0.412}=0.971 \hat{\imath}-0.243 \hat{\jmath}
$$

and

$$
\hat{e}_{n}=0.243 \hat{\imath}+0.471 \hat{\jmath}
$$

Thus $a_{n}=\vec{a} \cdot \vec{e}_{n}=(0.04 \hat{\imath}+0.02 \hat{\jmath}) \frac{\mathrm{m}}{\mathrm{s}^{2}} \cdot(0.243 \hat{\imath}+0.971 \hat{\jmath})$

$$
a_{n}=[0.04(0.243)+0.02(0.971)] \frac{\mathrm{m}}{\mathrm{~s}^{2}}=0.0291 \mathrm{~m} / \mathrm{s}^{2}
$$

$$
\leftarrow
$$

$$
\alpha
$$

Plotting: $y(m)$

Given: The a component of vebouty in a $2-2$, (incompressible flow field is
$u=A t^{2}$ where $A=f f_{i}^{\prime}, s^{\prime}$ and coordinates are in f; $w=0$ and $P_{2 z}=0$.
Find: (a) acceleration or flue particle at $(1, y)=(1,2)$
(b) radius of curvature of streamline at (1,2)

Pot: streamline trough (1,2); show velocity and acceleration vectors on the plo.
Solution:
For $2 \Rightarrow$ incompressible flow $\frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}=0$, $10 \frac{\partial v}{\partial y}=-\frac{\partial u}{\partial x}$

$$
v=\left(\frac{\partial v}{\partial y} d y+f(x)=\left(-\frac{\partial y}{\partial x} d y+f(x)=-\int 2 A x d y+f(x)=-2 A x y+f(x)\right)\right.
$$

Choose the simplest solution, $f(x)=0$, so $v=-2 A k y$. Hence

$$
\vec{V}=A x^{2} i-2 A \cdot y j=A\left[x^{2} i-2 x y^{2} j\right]
$$

The acceleration, of a fluid particle is

$$
\begin{aligned}
& \vec{a}_{p}=u \frac{\partial J}{\partial x}+v \frac{\partial J}{\partial y}=A x^{2}[A(2 x i-2 y j)]-2 A x y[-2 A x y] \\
& \vec{a}_{p}=2 A^{2} x^{3} i+2 A^{2} x^{2} y J=2 A^{2} x^{2}[x i+y j]
\end{aligned}
$$

fit the paint (1,2)

$$
\begin{aligned}
& \vec{a}_{p}=2 \times \frac{(1)^{2}}{\hat{f}^{2} s^{2}} \times(1)^{2} m^{2}[1 m i+2 m j]=2 i+\left.4 j f\right|_{s} ^{2} \quad \vec{a}(1,2) \\
& \vec{v}=\frac{1}{f, s}\left[(1)^{2} m^{2} i-2(1 m)(2 m) j\right]=i-4 j \text { fess }
\end{aligned}
$$

The wit vector tangent to the streamline is

$$
\hat{e}_{t}=\frac{\vec{J}}{\vec{v}}=\frac{\hat{j}-4 j}{\left[(0)^{2}+(-4)^{2}\right]^{1 / 2}}=0.243 \hat{i}-0.970 j
$$

The unit vector normal to the streamline is

$$
\hat{e}_{n}=\hat{e}_{e}+\hat{k}=(0.243 i-0.970 \hat{j}) \times \hat{k}=-0.970 i-0.243 \hat{j}
$$

The normal component of acceleration is

$$
\begin{align*}
a_{n}= & -\frac{\nu^{2}}{R}=\vec{a} \cdot \hat{e}_{n}=(2 i+4 j) \cdot(-0.970 \hat{j}-0.243 i) \\
& -\frac{\nu^{2}}{R}=-2 \cdot 91 f / /_{2}^{2} \\
R & =\frac{\nu^{2}}{2 \cdot 191}=\frac{17 f^{2} / s_{s}^{2}}{2.91 \cdot f / s^{2}}=5.84 f
\end{align*}
$$

the slope of the streamline is gwen by

$$
\left.\frac{d y}{d x}\right)_{s \cdot l}=\frac{v}{u}=\frac{-2 x+y}{F+z^{2}}=\frac{-2 y}{x}
$$

Thus $\frac{d y}{y}+\frac{2 d x}{x}=0$ and $\ln y+\ln x^{2}=\ln c$ or $x^{2} y=c$
the equation of the streamline through $(1,2)$ is $x^{2} y=2$.

Problem 6.29
Given: Incompressible, 2-D flow with $u=A x y, w=0 ; A=2 \mathrm{ft}^{-1} \cdot \mathrm{~s}$
Find: (a) Acceleration of particle at $(x, y)=(z, 1)$.
(b) Radices of curvature of streamline at that point.
(c) Plot streamline, show velocity vector and acceleration vector.
Solution: For two-d. incompressible flow, $\frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}=0$, so

$$
\frac{\partial v}{\partial y}=-\frac{\partial u}{\partial x}=-A y ; \text { Integrating, } v=-\frac{1}{2} A y^{2} ; \quad \vec{v}=A x y \hat{\imath}-\frac{1}{2} A y^{2} \hat{\jmath}
$$

The acceleration is

$$
\begin{aligned}
& a_{p x}=u \frac{\partial u}{\partial x}+v \frac{\partial u}{\partial y}=(A x y)(A y)+\left(-\frac{1}{2} A y^{2}\right)(A x)=\frac{1}{2} A^{2} x y^{2} \\
& a_{p y}=u \frac{\partial v}{\partial x}+v \frac{v v}{\partial y}=(A x y)(0)+\left(-\frac{1}{2} A y^{2}\right)(-A y)=\frac{1}{2} A^{2} y^{3} \\
& \vec{a}_{p}=\frac{1}{2} A^{2} x y^{2} \hat{\imath}+\frac{1}{2} A_{y}^{2} 3 \hat{\jmath} ; a t(2,1) \vec{a}=4 \hat{\imath}+2 \hat{\jmath}\left(f+1 s^{2}\right)
\end{aligned}
$$

Note $\dot{a}_{n}=\frac{V^{2}}{R}$, so $R=\frac{V^{2}}{a_{n}}$, where a_{n} is acceleration normal to \vec{V} $A+(2,1), \vec{V}=4 \hat{\imath}-1 \hat{\jmath}+1 \mathrm{~s}$, so $v^{2}=(4)^{2}+(1)^{2}=17 \mathrm{ft}^{2} / \mathrm{s}^{2}$

To find a_{n}, dot \vec{a}_{p} with \hat{e}_{n}, the unit normal vector. To find \hat{e}_{n}, set

$$
\begin{gathered}
\hat{e}_{n}=-\frac{v}{v} \hat{\imath}+\frac{u}{v} \hat{\jmath}=\frac{1}{\sqrt{17}} \hat{\imath}+\frac{4}{\sqrt{17}} \hat{\jmath} \\
a_{n}=\hat{e}_{n} \cdot \hat{a}_{p}=\frac{4}{\sqrt{17}}+\frac{8}{\sqrt{17}}=\frac{12}{\sqrt{17}}=2.91 \mathrm{ft} 1 \mathrm{~s}^{2}
\end{gathered}
$$

substituting

$$
R=\frac{V^{2}}{a_{n}}=17 \frac{\mathrm{ft}^{2}}{\mathrm{~s}^{2}} \times \frac{\mathrm{s}^{2}}{2.91 \mathrm{ft}}=5.84 \mathrm{ft}
$$

The streamline is $\frac{d x}{u}=\frac{d y}{v}=\frac{d x}{A x y}=\frac{d y}{-\frac{1}{2} A y^{2}}$ or $\frac{d x}{x}+2 \frac{d y}{y}=0$ Integrating, $\ln x+2 \ln y=\ln c$ or $x y^{2}=c$
For $(x, y)=(2,1)$, then $C=2 A^{3}$.
The plot and streamlines are on the following page.

Components of Velocity and Acceleration:

Input Parameters:

$$
A=2 \quad \mathrm{ft}^{-1} \mathrm{~s}^{-1}
$$

Calculated Values:

$$
C=2 \quad \mathrm{ft}^{3}
$$

Acceleration:

2	1
4	2

Velocity:

2	1
4	0.5

Given: The y component of velocity in a $2-1$, incompressible How field is
$v=-A+y$ where $A=\backslash M^{-\prime}, \bar{S}^{\prime}$ and coordinates are in metes; $w=0$ and $a l_{z}=0$.
Find: (a) acceleration of fled particle at $(1, y)=(1,2)$ (b) radius of curvature of Streamione at (1,2).
plot: streamline Rough $(1,2)$; show velocity and acceleration vectors on he plot.
Solution:
For $2-\theta$ incompressible flow $\frac{\partial u}{\partial x}+\frac{\partial v}{2 y}=0$, so $\frac{\partial u}{\partial x}=-\frac{\partial v}{\partial y}$.

$$
u=\int \frac{\partial u}{\partial x} d x+f(y)=\int-\frac{\partial v}{\partial y} d x+f(y)=-\int(-A x) d x+f(y)=\frac{A x^{2}}{2}+f(y)
$$

Choose the simplest solution, $f(y)=0$, so $u=\frac{h L_{2}^{2}}{2}$. Hence

$$
\vec{V}=A-\frac{x^{2}}{2} i-A+y j=A\left(\frac{3}{2} i-t y j\right)
$$

The acceleration of a fluid particle is

$$
\begin{aligned}
& \vec{a}_{p}=u \frac{2 \vec{y}}{2 x}+v \frac{2 \vec{y}}{2 y}=\frac{A x^{2}}{2}(A x i-A y \hat{j})-A x y(-A x j) . \\
& \vec{a}_{p}=\frac{A^{2} x^{3}}{2} i+\frac{A^{2} x^{2} y}{2} j=\frac{H^{2}}{2}\left(x^{3} i+x^{2} y j\right)
\end{aligned}
$$

At the part (1,2)

$$
\begin{aligned}
& \vec{a}_{p}=\frac{1}{2} \times(1) \frac{1}{m^{2} s^{2}}\left[(1)^{3} m^{3} i+(i)^{2}(2) m^{3} j\right]=0.5 \hat{i}+m_{s}^{2} \stackrel{\rightharpoonup}{a}(i, 2) \\
& \vec{v}=\frac{1}{m \cdot s}\left[\frac{1}{2}(i)^{2} m^{2} i-(i)(2) m^{2} j\right]=0.5 \hat{i}-2 \hat{j} l_{s}
\end{aligned}
$$

The unit vector tangent to the streamline is

$$
\hat{e}_{t}=\frac{\vec{J}}{\vec{J} 1}=\frac{0.5 i-2 j}{\left[(0.5)^{2}+(-2)^{2}\right]^{1 / 2}}=0.243 i-0.970 j
$$

The unit vector normal to the streamline is

$$
\vec{e}_{n}=\hat{e}_{t} \times \hat{b}=(0.243 \hat{v}-0.970 \hat{j})+\hat{b}=-0.970 \hat{\imath}-0.243 \hat{\jmath}
$$

The normal component of acceleration is

$$
\begin{aligned}
& a_{n}=-\frac{v^{2}}{R}=\vec{a} \cdot \hat{e}_{n}=(0.5 i+j) \cdot(-0.970 \hat{i}-0.243 j) \\
& -\frac{V^{2}}{R}=-0.728 m l^{2} \\
& R=\frac{v^{2}}{0.728}=\frac{4.25}{0.728} \mathrm{~m}^{2} / \mathrm{s}^{2} \mathrm{~s}^{2}=5.84 \mathrm{~m} \ldots \quad R(1,2)
\end{aligned}
$$

The slope of the streamlvies is gwen by
$\left.\qquad \frac{d y}{d x}\right)_{\text {see }}=\frac{v}{u}=\frac{-A+y}{A x^{2} 12}=-\frac{2 y}{x}$

Problem 6.31

The x component of velocity in a two-dimensional incompressible flow field is given by $u=-\frac{\Lambda\left(x^{2}-y^{2}\right)}{\left(x^{2}+y^{2}\right)^{2}}$, where u is in m / s, the coordinates are measured in meters, and $\Lambda=2 \mathrm{~m}^{3} \cdot \mathrm{~s}^{-1}$. Show that the simplest form of the y component of velocity is given by $v=-\frac{2 \Lambda x y}{\left(x^{2}+y^{2}\right)^{2}}$. There is no velocity component or variation in the $z \mathrm{di}-$ rection. Calculate the acceleration of fluid particles at points $(x, y)=(0,1),(0,2)$ and $(0,3)$. Estimate the radius of curvature of the streamlines passing through these points. What does the relation among the three points and their radii of curvature suggest to you about the flow field? Verify this by plotting these streamlines. [Hint: You will need to use an integrating factor.]

Given: x component of velocity field

Find: y component of velocity field; acceleration at several points; estimate radius of curvature; plot streamlines

Solution

The given data is

$$
\Lambda=2 \cdot \frac{\mathrm{~m}^{3}}{\mathrm{~s}} \quad \mathrm{u}=-\frac{\Lambda \cdot\left(\mathrm{x}^{2}-\mathrm{y}^{2}\right)}{\left(\mathrm{x}^{2}+\mathrm{y}^{2}\right)^{2}}
$$

The governing equation (continuity) is $\frac{d u}{d x}+\frac{d v}{d y}=0$

Hence

$$
v=-\int \frac{d u}{d x} d y=-\int \frac{2 \cdot \Lambda \cdot x \cdot\left(x^{2}-3 \cdot y^{2}\right)}{\left(x^{2}+y^{2}\right)^{3}} d y
$$

Integrating (using an integrating factor)

$$
v=-\frac{2 \cdot \Lambda \cdot x \cdot y}{\left(x^{2}+y^{2}\right)^{2}}
$$

Alternatively, we could check that the given velocities u and v satisfy continuity

$$
\begin{array}{ll}
u=-\frac{\Lambda \cdot\left(x^{2}-y^{2}\right)}{\left(x^{2}+y^{2}\right)^{2}} & \frac{d u}{d x}=\frac{2 \cdot \Lambda \cdot x \cdot\left(x^{2}-3 \cdot y^{2}\right)}{\left(x^{2}+y^{2}\right)^{3}} \\
v=-\frac{2 \cdot \Lambda \cdot x \cdot y}{\left(x^{2}+y^{2}\right)^{2}} & \frac{d v}{d y}=-\frac{2 \cdot \Lambda \cdot x \cdot\left(x^{2}-3 \cdot y^{2}\right)}{\left(x^{2}+y^{2}\right)^{3}}
\end{array}
$$

so $\quad \frac{d u}{d x}+\frac{d v}{d y}=0$

The governing equation for acceleration is

$$
\begin{aligned}
& \vec{a}_{p}=\frac{D \vec{V}}{D t}=u \frac{\partial \vec{V}}{\partial x}+v \frac{\partial \vec{V}}{\partial y}+w \frac{\partial \vec{V}}{\partial z}+\frac{\partial \vec{V}}{\partial t} \\
& \text { total convective local } \\
& \text { acceleration acceleration acceleration } \\
& \text { of a particle }
\end{aligned}
$$

x - component $\quad a_{x}=u \cdot \frac{d u}{d x}+v \cdot \frac{d u}{d y}$

$$
a_{x}=\left[-\frac{\Lambda \cdot\left(x^{2}-y^{2}\right)}{\left(x^{2}+y^{2}\right)^{2}}\right] \cdot\left[\frac{2 \cdot \Lambda \cdot x \cdot\left(x^{2}-3 \cdot y^{2}\right)}{\left(x^{2}+y^{2}\right)^{3}}\right]+\left[-\frac{2 \cdot \Lambda \cdot x \cdot y}{\left(x^{2}+y^{2}\right)^{2}}\right] \cdot\left[\frac{2 \cdot \Lambda \cdot y \cdot\left(3 \cdot x^{2}-y^{2}\right)}{\left(x^{2}+y^{2}\right)^{3}}\right]
$$

$$
a_{x}=-\frac{2 \cdot \Lambda^{2} \cdot x}{\left(x^{2}+y^{2}\right)^{3}}
$$

y - component $\quad a_{y}=u \cdot \frac{d v}{d x}+v \cdot \frac{d v}{d y}$

$$
\begin{gathered}
a_{y}=\left[-\frac{\Lambda \cdot\left(x^{2}-y^{2}\right)}{\left(x^{2}+y^{2}\right)^{2}}\right] \cdot\left[\frac{2 \cdot \Lambda \cdot y \cdot\left(3 \cdot x^{2}-y^{2}\right)}{\left(x^{2}+y^{2}\right)^{3}}\right]+\left[-\frac{2 \cdot \Lambda \cdot x \cdot y}{\left(x^{2}+y^{2}\right)^{2}}\right] \cdot\left[\frac{2 \cdot \Lambda \cdot y \cdot\left(3 \cdot y^{2}-x^{2}\right)}{\left(x^{2}+y^{2}\right)^{3}}\right] \\
a_{y}=-\frac{2 \cdot \Lambda^{2} \cdot y}{\left(x^{2}+y^{2}\right)^{3}}
\end{gathered}
$$

Evaluating at point $(0,1) \quad u=2 \cdot \frac{m}{s} \quad v=0 \cdot \frac{m}{s} \quad a_{x}=0 \cdot \frac{m}{s^{2}} \quad a_{y}=-8 \cdot \frac{m}{s^{2}}$

Evaluating at point $(0,2) \quad u=0.5 \cdot \frac{m}{s} \quad v=0 \cdot \frac{m}{s} \quad a_{x}=0 \cdot \frac{m}{s^{2}} \quad a_{y}=-0.25 \cdot \frac{m}{s^{2}}$

Evaluating at point $(0,3) \quad u=0.222 \cdot \frac{m}{s} \quad v=0 \cdot \frac{m}{s} \quad a_{x}=0 \cdot \frac{m}{s^{2}} \quad a_{y}=-0.0333 \cdot \frac{m}{s^{2}}$

The instantaneous radius of curvature is obtained from $a_{\text {radial }}=-a_{y}=-\frac{u^{2}}{r} \quad$ or $\quad r=-\frac{u^{2}}{a_{y}}$

For the three points $\quad y=1 \mathrm{~m} \quad r=\frac{\left(2 \cdot \frac{m}{\mathrm{~s}}\right)^{2}}{8 \cdot \frac{\mathrm{~m}}{\mathrm{~s}^{2}}} \quad r=0.5 \mathrm{~m}$

$$
\mathrm{y}=2 \mathrm{~m} \quad \mathrm{r}=\frac{\left(0.5 \cdot \frac{\mathrm{~m}}{\mathrm{~s}}\right)^{2}}{0.25 \cdot \frac{\mathrm{~m}}{\mathrm{~s}^{2}}} \quad \mathrm{r}=1 \mathrm{~m}
$$

$$
\mathrm{y}=3 \mathrm{~m} \quad \mathrm{r}=\frac{\left(0.2222 \cdot \frac{\mathrm{~m}}{\mathrm{~s}}\right)^{2}}{0.03333 \cdot \frac{\mathrm{~m}}{\mathrm{~s}^{2}}} \quad \mathrm{r}=1.5 \cdot \mathrm{~m}
$$

The radius of curvature in each case is $1 / 2$ of the vertical distance from the origin. The streamlin form circles tangent to the x axis
so

$$
\begin{aligned}
& \frac{d y}{d x}=\frac{v}{u}=\frac{-\frac{2 \cdot \Lambda \cdot x \cdot y}{\left(x^{2}+y^{2}\right)^{2}}}{-\frac{\Lambda \cdot\left(x^{2}-y^{2}\right)}{\left(x^{2}+y^{2}\right)^{2}}}=\frac{2 \cdot x \cdot y}{\left(x^{2}-y^{2}\right)} \\
& -2 \cdot x \cdot y \cdot d x+\left(x^{2}-y^{2}\right) \cdot d y=0
\end{aligned}
$$

This is an inexact integral, so an integrating factor is needed

First we try $\quad R=\frac{1}{-2 \cdot x \cdot y} \cdot\left[\frac{d}{d x}\left(x^{2}-y^{2}\right)-\frac{d}{d y}(-2 \cdot x \cdot y)\right]=-\frac{2}{y}$

Then the integrating factor is

$$
\mathrm{F}=\mathrm{e}^{\int-\frac{2}{\mathrm{y}} \mathrm{dy}}=\frac{1}{\mathrm{y}^{2}}
$$

The equation becomes an exact integral $\quad-2 \cdot \frac{x}{y} \cdot d x+\frac{\left(x^{2}-y^{2}\right)}{y^{2}} \cdot d y=0$

So $\quad u=\int-2 \cdot \frac{x}{y} d x=-\frac{x^{2}}{y}+f(y) \quad$ and $\quad u=\int \frac{\left(x^{2}-y^{2}\right)}{y^{2}} d y=-\frac{x^{2}}{y}-y+g(x)$

Comparing solutions $\quad \psi=\frac{x^{2}}{y}+y \quad$ or $\quad x^{2}+y^{2}=\psi \cdot y=$ const $\cdot y$

These form circles that are tangential to the x axis, as shown in the associated Excel workbook
Problem 6.31 (In Excel)

The x component of velocity in a two-dimensional incompressible flow field is given
by $u=-\frac{\Lambda\left(x^{2}-y^{2}\right)}{\left(x^{2}+y^{2}\right)^{2}}$, where u is in m / s, the coordinates are measured in meters, and $\Lambda=2 \mathrm{~m}^{3} \cdot s^{-1}$. Show that the simplest form of the y component of velocity is given by $v=-\frac{2 \Lambda x y}{\left(x^{2}+y^{2}\right)^{2}}$. There is no velocity component or variation in the $z \mathrm{di}-$ rection. Calculate the acceleration of fluid particles at points $(x, y)=(0,1),(0,2)$ and $(0,3)$. Estimate the radius of curvature of the streamlines passing through these points. What does the relation among the three points and their radii of curvature suggest to you about the flow field? Verify this by plotting these streamlines. [Hint:
You will need to use an integrating factor.]

Given: x component of velocity
The stream function is $\psi=\frac{x^{2}}{y}+y$
Find: Streamlines
Solution
This function is computed and plotted below
y values
$\begin{array}{lllllllllllllll}0.10 & 0.25 & 0.50 & 0.75 & 1.00 & 1.25 & 1.50 & 1.75 & 2.00 & 2.25 & 2.50 & 2.75 & 3.00 & 3.25 & 3\end{array}$ $2.50 \begin{array}{llllllllllllllll}62.6 & 25.3 & 13.0 & 9.08 & 7.25 & 6.25 & 5.67 & 5.32 & 5.13 & 5.03 & 5.00 & 5.02 & 5.08 & 5.17 & 5\end{array}$

Given：Velocity file $\vec{V}=A 2^{2} i-B y j$ ，where $A=2 n i \cdot s^{\prime}$
）

Show：that this is a possible incompressible flow
Find：（a）equation of streartine trough paint $(x, y)=(1,2)$ （b）expression for the acceleration of a flung partide． （c）radius of curvature of streamline at $(1,2)$
Solution：
For $2 \Rightarrow$ incompressible flow $\frac{\partial u}{\partial x}+\frac{2 v}{\lambda y}=0$
For his flow $\frac{2 u}{2 x}+\frac{2 v}{2 y}=2 A x-B-=2(2) x-4 x=0 \quad \therefore p=$ ort．
The slope of thestreontine is given by

$$
\left.\frac{d y}{d x}\right)_{s \cdot e}=\frac{v}{u}=-\frac{B-y}{A x^{2}}=\frac{-B y}{A x}=-\frac{4 y}{2 x}=-\frac{2 y}{x}
$$

hus $\frac{d y}{y}+2 \frac{d x}{x}=0$ and $\ln y+\ln x^{2}=\ln c$ or $x^{2} y=c$
The streartine through point $(1,2)$ is $x^{2} y=2$ streamline
The acceleration of a fluid particle is

$$
\begin{aligned}
& \left.\vec{a}_{p}=u \frac{2 J}{\partial x}+v=2 \overrightarrow{2 y}=A R^{2}[2 A+i-B y j]-B x y[-B \dot{j}]\right] \\
& \left.\vec{a}_{p}=2 R^{2} x^{3} i+B^{2} x^{2} y-A B x^{2} y\right] j=2 R^{2} \lambda^{3} 亡+B K^{2} y(B-R) \hat{j}-\vec{a}_{0}
\end{aligned}
$$

At the point（1，2）

$$
\begin{aligned}
& \vec{a}_{p}=2 \times \frac{(2)^{2}}{M^{2} \cdot s^{2}} \times(1)^{3} n^{3} i+\frac{4}{H . s^{2}} \times()^{2} n^{2}+2 m[4-2] \frac{1}{n . s} j=8 \hat{i}+\left.i b j m\right|_{s}{ }^{2} \\
& \vec{J}=\frac{2}{M . S} \times(1) n^{2} こ-\frac{4}{M .5} \times(4) \times(2 \mu) j=2 i-8 j-l_{s}
\end{aligned}
$$

Re unit vector tangent to the streamline is

$$
\hat{e}_{t}=\frac{\vec{u}}{\vec{ज}}=\frac{2 i-8 \hat{j}}{\left[(2)^{2}+(\vec{y})^{2}\right]^{12}}=0.243 i-0.970 j
$$

the uni vector normal to the streamline is

$$
\hat{e}_{n}=\hat{e}_{t}+\hat{k}=(0.243 \hat{\imath}-0.97 \hat{\jmath}) \times \hat{k}=-0.910 \hat{\imath}-0.243 \hat{\jmath}
$$

Te normal component of acceleration is

$$
\begin{aligned}
& a_{n}=\vec{a} \cdot \hat{e}_{n}=(8 i+i b j) \cdot(-0,920 i-0.243 j)=-11.6 n l_{s^{2}} \\
& a_{n}=-\frac{V^{2}}{2}=-1.6 \quad \therefore \cdot R=\frac{v^{2}}{11.6}=\frac{\left|6 s m^{2}\right|^{2}}{11.6 m b^{2}}
\end{aligned}
$$

）

$$
R=5.8 \mathrm{bm}
$$

$R(1,2)$

Given: Flow of water with speed $V=3 \mathrm{mls}$
Find: Byronic pressure, expressed in mm of mercury.
Solution:
Dynamic pressure is $\rho_{2}=\frac{1}{2} p v^{2}$
From hydrostatics, $e_{2}=p i g g \Delta h$

$$
\begin{aligned}
\therefore \Delta h=\frac{p \nu^{2}}{2 \rho \times g g} & =\frac{v^{2}}{25 G+g g} \\
& =\frac{1}{2} \times(3)^{2} \frac{n^{2}}{s^{2}} \times \frac{1}{13.6} \times 9.81 \mathrm{~s} \times 100 \frac{s^{2} n}{n} \quad \Delta h \\
\Delta h & =33.7 \mathrm{~mm} \mathrm{Hg}_{g}
\end{aligned}
$$

Given: standord air
Find: Dynamic pressure that corresponds to $V=100 \mathrm{~km} / \mathrm{hr}$
Solution: Dynamic pressure is $p_{d y_{n}}=\frac{1}{2} \rho V^{2}$
For standard air, $\rho=1.23 \mathrm{~kg} / \mathrm{m}^{3}$
Then

$$
\begin{aligned}
& p_{d y n}=\frac{1}{2} \times 1.23 \frac{\mathrm{~kg}}{\mathrm{~m}^{3}} \times(100)^{2} \frac{(\mathrm{~km})^{2}}{(\mathrm{hr})^{2}} \times(1000)^{2} \frac{\mathrm{~m}^{2}}{(\mathrm{~km})^{2}} \times \frac{(\mathrm{hr})^{2}}{(3 \log)^{2} s^{2}} \times \frac{\mathrm{N} \cdot \mathrm{~J}^{2}}{\mathrm{~kg} \cdot \mathrm{~m}} \\
& p_{d y n}=475 \mathrm{~N} / \mathrm{m}^{2}
\end{aligned}
$$

This may be expressed conveniently as a water column height.

$$
P_{d y n}=P \text { water ghdyn }
$$

$$
\begin{aligned}
& h_{d y n}=\frac{p_{d y n}}{\rho_{w g}}=475 \frac{\mathrm{~N}}{\mathrm{~m}^{2}} \times \frac{m^{3}}{999 \mathrm{~kg}} \times \frac{\mathrm{s}^{2}}{9.81 \mathrm{~m}} \times \frac{\mathrm{kg} \cdot \mathrm{~m}}{\mathrm{~N} \cdot \mathrm{~s}^{2}} \\
& h_{d y n}=0.0484 \mathrm{~m} \text { or } 48.4 \mathrm{~mm}
\end{aligned}
$$

Problem 6.35

You present your open hand out of the window of an automobile perpendicular to the airflow. Assuming for simplicity that the air pressure on the entire front surface is stagnation pressure (with respect to automobile coordinates), with atmospheric pressure on the rear surface, estimate the net force on your hand when driving at (a) 30 mph and (b) 60 mph . Do these results roughly correspond with your experience? Do the simplifications tend to make the calculated force an over- or underestimate?

Given: Velocity of automobile

Find: Estimates of aerodynamic force on hand

Solution

For air

$$
\rho=0.00238 \cdot \frac{\text { slug }}{\mathrm{ft}^{3}}
$$

We need an estimate of the area of a typical hand. Personal inspection indicates that a good approximation is a square of sides 9 cm and 17 cm

$$
\mathrm{A}=9 \cdot \mathrm{~cm} \times 17 \cdot \mathrm{~cm} \quad \mathrm{~A}=153 \mathrm{~cm}^{2}
$$

The governing equation is the Bernoulli equation (in coordinates attached to the vehicle)

$$
\mathrm{p}_{\mathrm{atm}}+\frac{1}{2} \cdot \rho \cdot \mathrm{~V}^{2}=\mathrm{p}_{\mathrm{stag}}
$$

where V is the free stream velocity

Hence, for $p_{\text {stag }}$ on the front side of the hand, and $p_{\text {atm }}$ on the rear, by assumption,

$$
\mathrm{F}=\left(\mathrm{p}_{\mathrm{stag}}-\mathrm{p}_{\mathrm{atm}}\right) \cdot \mathrm{A}=\frac{1}{2} \cdot \rho \cdot \mathrm{~V}^{2} \cdot \mathrm{~A}
$$

(a) $\mathrm{V}=30 \cdot \mathrm{mph}$

$$
\begin{aligned}
& \mathrm{F}=\frac{1}{2} \cdot \rho \cdot \mathrm{~V}^{2} \cdot \mathrm{~A}=\frac{1}{2} \times 0.00238 \cdot \frac{\mathrm{slug}}{\mathrm{ft}^{3}} \times\left(30 \cdot \mathrm{mph} \cdot \frac{22 \cdot \frac{\mathrm{ft}}{\mathrm{~s}}}{15 \cdot \mathrm{mph}}\right)^{2} \times 153 \cdot \mathrm{~cm}^{2} \times\left(\frac{\frac{1}{12} \cdot \mathrm{ft}}{2.54 \cdot \mathrm{~cm}}\right)^{2} \\
& \mathrm{~F}=0.379 \mathrm{lbf}
\end{aligned}
$$

(a) $\mathrm{V}=60 \cdot \mathrm{mph}$

$$
\begin{aligned}
& \mathrm{F}=\frac{1}{2} \cdot \rho \cdot \mathrm{~V}^{2} \cdot \mathrm{~A}=\frac{1}{2} \times 0.00238 \cdot \frac{\mathrm{slug}}{\mathrm{ft}^{3}} \times\left(60 \cdot \mathrm{mph} \cdot \frac{22 \cdot \frac{\mathrm{ft}}{\mathrm{~s}}}{15 \cdot \mathrm{mph}}\right)^{2} \times 153 \cdot \mathrm{~cm}^{2} \times\left(\frac{\frac{1}{12} \cdot \mathrm{ft}}{2.54 \cdot \mathrm{~cm}}\right)^{2} \\
& \mathrm{~F}=1.52 \mathrm{lbf}
\end{aligned}
$$

Given: Air discharging from a nozzle impinges on wall as shown

$$
\begin{aligned}
& P_{1}=14.7 \text { psia } T_{1}=40^{\circ} \mathrm{F} \\
& P_{0}=0.14 \text { in } \mathrm{H}_{\mathrm{g} \text { gage }}
\end{aligned}
$$

$$
\underset{m v_{1}}{\frac{k}{k} P_{0}}
$$

Find: the speed, V,
Solution:
Basic equations: $\frac{p}{p}+\frac{y^{2}}{2}+9 z=$ constant for flow

$$
\frac{d P}{d h}=\gamma
$$

for manometer reading P_{0}
Assumptions: (4) steady flow
(2) incompressible flow
(3) frictionless flow
(4) flow along a streamline
(5) $\gamma=$ constant for manometer
(b) air be -aves as an ideal gas

From the Bernoulli equation

$$
\begin{aligned}
& \frac{P_{0}}{\rho}=\frac{P_{1}}{\rho}+\frac{v_{1}}{2} \\
& P_{0}-P_{1}=\frac{1}{2} P_{1}^{2}
\end{aligned}
$$

For the manometer $\quad d P=\gamma d h$
Trice $P_{1}=P_{\text {atm }}$

$$
\therefore P_{0}-P_{\text {dir }}=\gamma \Delta h \quad \text { where } \Delta h=0.14 \text { in } \mathrm{Hg}
$$

$$
P_{0}-P_{1}=\gamma \Delta X .
$$

$$
\therefore \gamma \Delta h=\frac{1}{2} p v_{1}^{2} \text { and } V_{1}=\sqrt{\frac{2 \gamma \phi}{p}}
$$

where

$$
\begin{aligned}
& p=\frac{P}{R T}=14.7 \frac{b r}{n^{2}}+\frac{144 n^{2}}{f r^{2}} \times \frac{b m-Q}{53.3 A}+\frac{1}{500} \times \frac{3 \log }{32.2 b m}=0.00247 \frac{\text { sig }}{f r^{3}} \\
& V_{1}=\sqrt{\frac{2 \gamma \Delta h}{\rho}} \\
& =\left[2 \times 13.6 \times 62.4 \frac{16 f}{f 2^{3}} \times 0.14 \mathrm{n} \times \frac{f t}{12 m} \times \frac{f t^{3}}{0.00247510 g} \times \frac{s \log -f t}{1 f f-s^{2}}\right]^{1 / 2} \\
& V_{1}=\left.89.5 \mathrm{ft}\right|_{\mathrm{t}}
\end{aligned}
$$

Given: Pitt static probe is used to measure speed in standard air.

$$
V=100 n l_{s}
$$

Find: Manometer deflection in mm $\mathrm{H}_{2} \mathrm{O}$, corresponding to given
conditions.
Solution:
Manometer reads $P_{0}-P$ in mm of $\mathrm{H}_{2} \mathrm{O}$.
Basic equations: $\quad \frac{P}{p}+\frac{y^{2}}{2}+g j=$ constant for flow $\frac{d p}{d z}=-p g \quad$ for manometer
Assumptions: "1) steady flow
(2) incompressible flow
(3) flow along a streamline
(4) frictionless deceleration to P_{0}
(5) $p=$ constant for manometer

From the Bernoulli equation

$$
\begin{aligned}
& \frac{P_{0}}{P}=\frac{P}{P}+\frac{y^{2}}{2} \\
& P_{0}-P=\rho \frac{\nu^{2}}{2}
\end{aligned}
$$

For the manoneter, $\quad d p=-p g d z$

$$
p_{0}-p=\int_{p}^{p_{0}} d p=-p g\left(z_{2}-z_{1}\right)=p g h
$$

Hen,

$$
p_{w, 0} g^{\prime}=p_{a i r} \frac{v^{2}}{2}
$$

and.

$$
h=\frac{\text { Pour }}{\text { puns }} \frac{y^{2}}{2 g}=\frac{1.23}{999} \times(100)^{2} \frac{n^{2}}{s^{2}} \times \frac{1}{2} \times \frac{5^{2}}{9.81 m} \times \frac{10^{3} m m}{m}=62.8 \mathrm{~mm} .
$$

\qquad

Given: High-pressure hydraulic system subject to small leak
Mot: jet speed of a leak νs system -pressure for system pressures up to 40 Mph gage; explain how a hign-speed jet of yydranie fluid can cause right
Solution:
Basic equation: $\quad \frac{p}{e}+\frac{v^{2}}{2}+\frac{g z}{}=$ constant
Assumptions: (I) steady flow
(2) incompressible flow
(3) frictionless flow
(4) flow along a streamline.

The Bernoulli equation gives

$$
V=\left[\frac{2\left(\rho_{0}-\rho_{a} t_{n}\right)}{\rho}\right]^{1 / 2}
$$

From Table A. 2 (Appendix A) for lubricating oil $S G=0.88$

The high stagnation pressure ruptures the skin causing he jet to penetrate the tissue.

Given: Wind tunnel with inlet and test section as shown.

$$
\begin{aligned}
& U=22.5 \mathrm{nls}, P_{0 b}=-6.0 \mathrm{mH}_{2} 0 \mathrm{gag} \\
& \vec{P}_{a}=99.1 \mathrm{k} P_{a}(a 6), T_{a}=25 \mathrm{c}
\end{aligned}
$$

Find: (a) Pagnanic on timed certertive (b) Pstatic
(c) compare "static at tunnel wall with that measured at certertine

Solution:
a By defrition $P_{d y y}=\frac{1}{2} \operatorname{sis}^{2}$
Assure: (1) our behaves as an ideal gas, and (2) incompressible flow
Then
and

$$
p_{d y g}=\frac{1}{2} p v^{2}=\frac{1}{2} \times 1.17 \frac{\mathrm{~kg}}{n^{3}} \times(22.5)^{2} \frac{n^{2}}{s^{2}} \cdot \frac{\lambda^{2}}{g^{2}}=2.96 N t_{m^{2}}
$$

(b) B_{y} definition $\quad p_{0}=p_{S}+P_{\text {dy }}$

$$
\therefore P_{3}=P_{0}-P_{\text {dy }} \quad \text { where } P_{0}=-6 \mathrm{~mm} H_{2} \text { gage }
$$

ten

$$
\frac{\mathrm{Nis}^{2}}{\mathrm{~g} \cdot \mathrm{~m}}
$$

$$
\begin{aligned}
\therefore P_{S}=P_{0}-P_{\text {dy }}= & -58.8-29 b=-355 \mathrm{NH}^{2} \text { gage } \\
& \left\{\text { or } P_{5}=-36.2 \mathrm{~mm} H_{2}\right. \text { o(gage) }
\end{aligned}
$$

(c) Streamlines in the Lest section should be strange then in the test section the variation of static pressure is given by $\frac{\partial p}{\partial n}=0$ and $p_{\text {mall }}=p_{\text {centerturn }}$

In the contraction section the streamlures are curved. The variation of static pressure normal to fle streamlines is given by $\frac{\partial p}{\partial n}=P \frac{V^{2}}{R}$
and consequently the static pressure nicreases toward He certertinie, Pe. $P_{\text {wall }}$ \& $P_{\text {contrive }}$

Given: Air flow in open circuit. wind thermel as shown.

$$
\begin{aligned}
& P_{\text {dim }}-P_{1}=45 \mathrm{~mm} H_{2} O \\
& T_{0}=25 \mathrm{c} \\
& P_{0}=P_{0 . \mathrm{m}}
\end{aligned}
$$

Consider air to be neompressible.
Find: Fir speed in tunnel at section (1)
Solution:
Basic equation: $\quad \frac{p}{p}+\frac{v^{2}}{2}+g z=$ constant
Assumptions: (1) steady flow
(2) incompressible flow
(3) frictionless flow
(4) flow along a streamline
(5) air behaves as an ideal gas
(b) stagnation pressure $=$ Paton

From the Bernoulli equation, $\quad \frac{P_{0}}{\rho}=\frac{P_{1}}{p}+\frac{V_{1}^{2}}{2}$.

$$
\begin{aligned}
P_{0}-P_{1} & =P_{0 i_{m}}-P_{1}=\frac{1}{2} P U_{1}^{2} \\
V_{1} & =\left[\frac{2\left(P_{0 \ln }-P_{1}\right)}{P}\right]^{1 / 2}
\end{aligned}
$$

From the manometer reading $P_{\text {aim }}-P_{1}=p_{\text {ins sg }} h$ Kun

$$
v_{1}=\left[\frac{2 p_{u_{10}} g h}{\rho}\right]^{1_{2}}
$$

From the ideal gas equation of state

$$
\begin{aligned}
& p=\frac{P}{R T}=100 \times 10^{3} \frac{N}{m^{2}} \times \frac{2 g \cdot K}{28 \cdot N \cdot m} \times \frac{1}{298 \mathrm{~K}}=1.17 \mathrm{gg} \|_{n^{3}} \\
& V_{1}=\left[\frac{2 p_{\mu_{1}}}{\rho} g^{h}\right]^{1 / 2}=\left[2 \times \frac{999}{1.17} \times 3.81 \frac{n}{s^{2}} \times 0.045 \mathrm{~m}\right]^{11_{2}}=27.5 \mathrm{~m} l_{\mathrm{s}}
\end{aligned}
$$

Given: Wheeled cart of Problem 4.106:

$$
\begin{aligned}
& V=40 \mathrm{~m} / \mathrm{s} \\
& A=25 \mathrm{~mm}^{2}
\end{aligned}
$$

$$
\text { water, no friction on vase, } \theta=120^{\circ}
$$

Vane accelerates to the right.

Find: At instant when $U=15 \mathrm{~m} / \mathrm{s}$,
(a) stagnation pressure leaving nozzle, relative to fixed observer.
(b) Stagnation pressure leaving nozzle, relative to observer on vane.
(c) Absolute velocity of jet leaving vane.
(d) Stagnation pressure of jet leaving vane, relative to fixed observer.
(e) How would viscous forces increase, decrease, or leave unchanged the stagnation pressure in (d). How can you justify this?
Solution: Stagnation pressure is $p_{0}=p+\frac{1}{2} \rho V^{2}$ or $p_{0}-p=\frac{1}{2} \rho V^{2}$

$$
\text { At jet, } p_{0 j}=\frac{1}{2} \rho v^{2}=\frac{1}{2} \times 999 \frac{\mathrm{~kg}}{\mathrm{~m}^{3}} \times(40)^{2} \frac{\mathrm{~m}^{2}}{\mathrm{~s}^{2}} \times \frac{\mathrm{N} \cdot \mathrm{~s}^{2}}{\mathrm{~kg} \cdot \mathrm{~m}}=799 \mathrm{kPa} \text { (gage) }
$$

At cart, pore $=\frac{1}{2} \varphi(v-v)^{2}=\frac{1}{2} \times 999 \frac{\mathrm{~kg}}{\mathrm{~m}^{3}} \times(40-15)^{2} \frac{\mathrm{~m}^{2}}{\mathrm{~s}^{2}} \times \frac{11 . \mathrm{s}^{2}}{\mathrm{~kg} \cdot \mathrm{~m}}=312 \mathrm{kPa}$ (gage) Leaving vane, $\vec{V}_{\text {abs }}=U \hat{\imath}+(v-U)(\cos \theta \hat{\imath}+\sin \theta \hat{\jmath})$

$$
\begin{aligned}
\vec{V}_{a b s} & =[U+(v-U) \cos \theta] \hat{\imath}+(v-U) \sin v \hat{\jmath} \\
& =\left[15 \frac{m}{s}+(40-15) \frac{m}{s} \times\left(-\frac{1}{2}\right)\right] \hat{\imath}+(40-15) \frac{m}{s} \times 0.866 \hat{\jmath} \\
\vec{V}_{a b s} & =2.5 \hat{\imath}+21.7 \hat{\jmath} / \mathrm{s}
\end{aligned}
$$

L

The magnitude $\left|\vec{V}_{\text {abs }}\right|=\left[(2.5)^{2}+(21.7)^{2}\right]^{1 / 2} \mathrm{~m} / \mathrm{s}=21.8 \mathrm{~m} / \mathrm{s}$
Leaving vane, $p_{0}=\frac{1}{2} \rho\left|\vec{v}_{a b s}\right|^{2}$, relative to a fixed observer. Thus

$$
p_{0, f i x e d}=\frac{1}{2} \times 999 \frac{\mathrm{~kg}}{\mathrm{~m}^{3}} \times(21.8)^{2} \frac{\mathrm{~m}^{2}}{\mathrm{~s}^{2}} \times \frac{\mathrm{N} 1 \mathrm{~s}^{2}}{\mathrm{~kg}^{\mathrm{m}}}=237 \mathrm{kpa} \text { (gage) }
$$

\{The corresponding absolute pressures are 900,413 , and 338 kPa (abs).\}
Discussion: Viscous forces would slow the jet speed relative to the vane. The jet would enter the vane with relative speed ($V-U$); it would leave the vane with speed $\alpha(V-U)$, where $\alpha<1$.
Friction would reduce both components of relative velocity leaving the vane. The absolute velocity of the jet leaving the vane, as seen by a fixed observer, would decrease. Thus the stagnation pressure of the flow leaving the vane, relative to a fixed observer, would decrease.

Problem 6.42

Given: Steady flow of water through elbow and nozzle as shown

$$
\begin{array}{ll}
D_{1}=0.1 \mathrm{~m} & y_{2}=0.05 \mathrm{n} \\
P_{2}=p_{a i m} & y_{2}=20 \mathrm{ml} \\
z_{1}=0 & z_{2}=4 \mathrm{~m}
\end{array}
$$

Find: Gage pressure, P_{1}; P_{1} if device were inverted
Solution: Apply conimity to cv. shown to determine V_{1}; the Bernoulli equation is then applied along a streaming from (1) to (2) to determine P_{1}

Basic equations:

Assumptions: (1) steady flow
(a) incompressible flow
(3) frictionless flow
(flow alone a streamline.
b) $P_{2 \text { gage }}=0$
b) $3=0$

From the continuity equation: $\quad 0=-\left|p y_{1} p_{1}\right|+\left|p_{1} A_{2}\right|$
hen,

$$
V_{1}^{2}=\left(\frac{A_{2}}{A_{1}} v_{2}^{2}=\left(\frac{V_{2}}{V_{1}}\right)^{4} v_{2}^{2}\right.
$$

From the Bernoulli equation

If device is inverted, $z_{2}=-4 m$ with $z_{1}=0$

$$
\begin{aligned}
P_{1} & =p\left[\frac{v_{2}^{2}}{2}\left\{1-\left(\frac{y_{2}}{y_{1}}\right)^{4}+g z^{2}\right]\right. \\
& \left.=999 \frac{k_{g}}{r^{3}}\left[\frac{1}{2}+(20)^{2} \frac{m^{2}}{s^{2}}\left\{1-\left(\frac{1}{2}\right)^{4}\right)\right]+9.81 \frac{r}{s^{2}}+(-4+1)\right] \frac{\mathrm{H}^{2}}{\mathrm{~kg}^{m}}
\end{aligned}
$$

$$
\left.P_{1}=148 \mathrm{k} \mathrm{~km}^{2}=148 \mathrm{k} \mathrm{fa}^{(g g a}\right)
$$

$$
\begin{align*}
& P_{1}=999 \frac{\mathrm{gg}}{m^{2}}\left[\frac{1}{n} \times(20)^{2} \frac{n^{2}}{s^{2}} \times\left(1-\left(n^{4}\right)\right)+9.81 \frac{n}{s^{2}} \times 4 n\right] \cdot \frac{N s^{2}}{\frac{g}{g} m} \\
& P_{1}=227 \mathrm{kr} / \mathrm{m}^{2}=227 \mathrm{kPa} \text { (gage) } \tag{1}
\end{align*}
$$

$$
\begin{aligned}
& \frac{p_{1}}{p}+\frac{v_{1}^{2}}{2}+g z^{2}=\frac{p_{2}}{p}+\frac{p_{2}}{2}+g z_{2}
\end{aligned}
$$

Given: Water flow in a circular duct

$$
\begin{array}{ll}
V_{1}=0.3 \mathrm{~m} & P_{1}=2 b 0 t P_{a}(g a g) \quad \\
z_{1}=10 \mathrm{~m} \\
z_{1}=-3 \hat{k} m \\
z_{2}=0 & y_{2}=0.15 \mathrm{~m} .
\end{array}
$$

Frictional effects may be neglected.
Find: Pressure, P_{2}

Solution: Apply continuity to cu shown to determine V_{2}; the Bernoulli equating is then applied along a streamline from (1) to (2) to determine P_{2} d (1)
Basic equations: $\quad 0=\frac{2}{3 t} \int_{c u} p d t+\int_{0} p^{v} \cdot d \vec{H}$

$$
\frac{p_{1}}{e}+\frac{v_{1}^{2}}{2}+g z_{1}=\frac{p_{2}}{e}+\frac{v_{2}^{2}}{2}+g z^{2}
$$

Assumptions: (1) steady flow
(2) incompressible flow
(3) frictionless flow
(4) flow along a streamline
(5) uniform flow at sections (1) and (2)

From the continuity equation

$$
0=-\left|\rho^{*} R_{1}\right|+\left|\rho^{v_{2}} R_{2}\right|
$$

Then,

$$
V_{2}=\frac{A_{1}}{H_{2}} V_{1}=\left(\frac{V_{1}}{D_{2}}\right)^{2} V_{1}=\left(\frac{0.3}{0.15}\right)^{2} \times 3 \frac{n}{3}=12 \mathrm{~m} l_{\mathrm{s}}
$$

From the Bernoulli equation,

$$
\begin{aligned}
& P_{2}=P_{1}+\frac{f}{2}\left(V_{1}^{2}-V_{2}^{2}\right)+p g\left(z_{1}-z_{2}\right)
\end{aligned}
$$

$$
\begin{aligned}
& P_{2}=\left.291 \mathrm{kn}\right|_{n} ^{2}=291\left(P_{0}(\operatorname{gag})\right. \text {). }
\end{aligned}
$$

Problem 6.44

Given: Water flow through siphon as known

$$
Q=\left.0.02 \mathrm{n}^{3}\right|_{\text {sec }}, T=20^{\circ} \mathrm{C}, D=50 \mathrm{~mm}
$$

Find: Maximum allowable height, h, such fat P_{2} is above ty vapor pressure of the water

Solution: Apply the Bernoulli equation along the streamline between locations (1) and (3) to determine h after employing the definition of volume flow sate to determine sections speed in the tribe

Basic equations: $Q=(\bar{V} \cdot d \vec{H}$ (Q is volume fou rate)

$$
\frac{P_{1}}{e}+\frac{v^{2}}{2}+g_{1}^{(}(s)=\frac{P_{2}}{p}+\frac{p_{2}^{2}}{2}+g^{2 e}
$$

Assumptions is steady flow
(i) incompressible flow
(3) frictionless flow
(4) flow along a streamline
(5) $z_{1}=0$
b) $V, 20$

1) uniform flow in the two

From the definition of Q and assumploch T, $Q=V_{2} A_{2}$, and

$$
V_{2}=\frac{\theta}{A_{2}}=\frac{4 Q}{\pi V_{2}}=\frac{4}{\pi} \times 0.02 \frac{\mathrm{~m}^{3}}{s} \times\left(50 \times 10^{-3}\right)^{2} \mathrm{~m}^{2}=10.2 \mathrm{n} \mathrm{l}_{\mathrm{s}}
$$

From the Earrioul equation,

$$
i_{1}=j_{2}=\frac{1}{g}\left[\frac{P_{1}-P_{2}}{e}-\frac{v_{2}^{2}}{2}\right]
$$

$h=4.28 \mathrm{~m}$

Given: Water flow from a large tank as shown.

$$
\begin{aligned}
& L=12 f t \quad D=2 f t \quad d=\operatorname{in} \\
& h=b^{\prime \prime}
\end{aligned}
$$

Find: (a) Velocity in discharge pipe (b) Rate of discharge?

Solution:
Babi equations: $\frac{P_{1}}{p^{2}}+\frac{V^{n}}{2}+g z_{1}=\frac{P_{2}}{\rho}+\frac{V_{2}^{2}}{2}+g_{2}(1)$

$$
Q=\int u d A
$$

Assumptions: (1) steady flow
(2) incompressible flow
(3) no friction
(4) flow along a streamline
(5) $V_{1}{ }^{2} 0$, E large tank
(b) $P_{1}=P_{\text {atm }}$
(t) uniform flow at section (1)
(8) $z_{2}=0$

From the conditions of the manometer,

$$
\left.\left.P_{a k_{n}}+\gamma_{y} h-\gamma_{m_{1}}\right\rangle=P_{2} \text { and } P_{a i m}-P_{2}=\gamma_{m_{2}}=\right\rangle-\gamma_{H_{2} h}
$$

Substituting into the expression for V_{2},

$$
\begin{aligned}
& V_{2}=\left[2 \times 32.2 \frac{f t}{5^{2}} \times\left(2 f-13.6 \times \frac{1}{2} A+12 f t\right)\right]^{1 / 2}=\left.21.56 t\right|_{0} \\
& Q=\left\{u d A=V_{2} A_{2} \quad\right. \text { (for uniform flow at (C) } \\
& \left.Q=V_{2} \frac{\pi d^{2}}{4}=21.5 \frac{f t}{3} \times \frac{\pi}{4} \times \frac{2}{12}\right)^{2} f^{2}=0.469 \mathrm{ft}^{3}
\end{aligned}
$$

Given: Liquid stream leaving a nozzle pointing downward as
Assume uniform flow Neglect friction
Find: Variation in $y^{\text {et }}$ area for $z^{\prime} z^{\circ}$

Solution

Basic equations: $\quad \frac{p}{p}+\frac{V^{2}}{2}+g J_{1}=\frac{p}{p}+\frac{v^{2}}{2}+g z$

$$
0=\frac{\partial}{\partial t} \int_{\omega} p d t+\int_{c s} \overrightarrow{p V} \cdot d \vec{A}
$$

Assumptions: (i) steady flow
(2) incompressible flow
(3) frictionless flow
(4) flow along a streamline
(5) $P=P_{1}=P_{\text {atm }}$
(b) uniform flow al a section

From the bernoulli equation

$$
v^{2}=v^{2}+2 g(z-z)
$$

From the continuity equation

$$
o=\int p \vec{V} \cdot d \vec{A}=-\{|\rho, A,|\}+\{|\rho V A|\}
$$

and

$$
V_{1} A_{1}=V A \text { or } V=V_{1} \frac{A_{1}}{A}
$$

Hus

$$
V_{1}^{2}\left(\frac{A_{1}}{A}\right)^{2}=V_{1}^{2}+2 g(z-z)
$$

Solving for A,

$$
A=A, \sqrt{\frac{1}{1+\frac{2 g(z-z)}{V_{1}{ }^{2}}}}
$$

\{Note: jet area decrease as z decreases, owing to the higher velaity \}

Given: Waler flow between parallel disks discharging to atmosphere od shown.
Find: (a) theoretical static pressure between the disks at
 $r=50 \mathrm{~mm}$
(b) in actual laboratory situation, would the pressure be above or below the theoretical value?

Solution:
Basic equations: $\quad o=\frac{\partial}{\partial t} \int_{c u} \rho^{d t}+\int_{c s} \overrightarrow{\rho^{J}} \cdot \overrightarrow{d A}$

$$
\frac{p_{1}}{p}+\frac{v_{2}^{2}}{2}+g z_{1}=\frac{p_{2}}{p}+\frac{v_{2}^{2}}{2}+g z^{2}
$$

Assumptions: (1) steady flow
(2) incompressible flow
(3) flow along a streamline
(4) neglect friction
(5) uniform flow at each section

Apply continuity to the at shown

$$
\begin{aligned}
& 0=\{-i n\}+\{p t r 2 \pi r h\} \text { so } y=\frac{i n}{2 \pi p r h} \\
& V_{1}=v_{r-50 \mathrm{~m}}=\frac{1}{2 \pi} \times 0.305 \frac{\mathrm{~kg}}{5} \times \frac{n^{3}}{999 \mathrm{~kg}} \times \frac{1}{0.050 \mathrm{~m}} \times \frac{1}{8 \times-\mathrm{m}}=1.21 \mathrm{mb} \\
& \left.V_{2}=V_{r=e}=\frac{1}{20}+0.305 \frac{\lg _{5}}{5} \times \frac{\mathrm{m}^{3}}{9996 \mathrm{gg}} \times \frac{1}{0.015 \mathrm{~m}} \times \frac{1}{8 \times 10^{-4} \mathrm{~m}}=0.810 \mathrm{~m}\right]_{\mathrm{o}}
\end{aligned}
$$

From the Bernoulli equation

$$
\begin{align*}
& p_{1}-p_{2}=p_{r=s \operatorname{son}}-p_{\text {btu }}=\frac{1}{2} p^{v_{2}^{2}}-\frac{1}{2} p^{2} v_{1}=\frac{p_{2}}{2}\left(v_{2}^{2}-v_{1}^{2}\right) \\
& P_{r=50 \mathrm{~m}}=\frac{1}{2} \times 99 \frac{\mathrm{gg}}{r^{3}}\left[(0.810)^{2}-(1.21)^{2}\right] \frac{\eta^{2}}{s^{2}} \times \frac{N . s^{2}}{8 g . n} \\
& P_{r=50 \mathrm{~m}}=-404 \mathrm{Nlm}^{2} \text { (gage) }{ }_{-} \tag{r}
\end{align*}
$$

Friction would cause a pressure drop in the flow direction. Since the discharge pressure is fined at Patna, the measured pressure would be greater than fie theoretical value

Given: Steady, frictionless, incompressible air flow over a wing as shown

$$
\begin{aligned}
& P_{1}=10 p \text { sian } \\
& T_{1}=40 \% \\
& V_{1}=200 \mathrm{fts} \\
& P_{2}=-0.40 p s i g
\end{aligned}
$$

Find: V_{2}
Solution: Apply the Bernoulli equation along the streantine from the upstream conditions through points
Basie equations $\quad \frac{p_{1}}{p}+\frac{V_{2}^{2}}{2}+g g^{\prime}=\frac{p_{2}}{p}+\frac{V_{2}^{2}}{2}+g z^{2}$

$$
P=p R T
$$

Assumptions: (u) steady flow
(2) incompressible flow
(3) frictionless flow
(4) flow along a streamline
(5) ideal gas
(b) neglect ${ }^{\text {b }}$

Then from the Bernoulli equation.

$$
V_{2}^{2}=V_{1}^{2}+\frac{2}{P}\left(P_{1}-P_{2}\right)
$$

where $p=\frac{P}{R T}=\frac{1016 f}{i^{2}} \times \frac{0 R}{53.3 f t-1 b f} \times \frac{1}{508 R} \times \frac{10 g}{33.26 \mathrm{bm}} \times \frac{144 i^{2}}{\mathrm{ft}^{2}}=1.68 \times 0^{-3} \frac{\mathrm{slvg}}{\mathrm{ft3}}$

$$
V_{2}^{2}=(200)^{2} \frac{f^{2}}{s^{2}}+2 \times \frac{f t^{2}}{1.68 \times 10^{-3} \operatorname{slug}} \times 0.40 \frac{\operatorname{lif}}{i n^{2}} \times \frac{144 i^{2}}{f t^{2}} \cdot \frac{6 \operatorname{lug}-f t}{b f-s^{2}}
$$

$$
\begin{aligned}
& V_{2}^{2}=109,\left.000 \mathrm{fr}^{2}\right|_{2} ^{2} \\
& V_{2}=330 \mathrm{ft}
\end{aligned}
$$

Note: this is about the upper limit on velocity for the assumption
of incompressible fla to be valid

Given: Fire hose nozzle shown.

Find: Maximum flow rate that could be delivered.
Solution: Apply Bernoulli equation. Assumptions needed are:
(I) Steady
(2) Incompressible
(3) Frictionless
(4) Flow along streamline
(5) Neglect Δz
(6) Uniform at (1) and (2)

Than $\frac{p_{1}}{\rho}+\frac{v_{1}^{2}}{2}+g z_{1}^{\prime}=\frac{p_{2}}{\rho}+\frac{v_{2}^{2}}{2}+g z_{2}$
But $V_{1} A_{1}=V_{2} A_{2}$, so $V_{1}=V_{2} \frac{A_{2}}{A_{1}}=V_{2}\left(\frac{d}{D}\right)^{2} ; V_{1}^{2}=V_{2}^{2}\left(\frac{d}{D}\right)^{4}$

$$
\begin{aligned}
V_{2} & =\left[\frac{2\left(p_{1}-p_{2}\right)}{\rho\left[1-(d / D)^{4}\right]}\right]^{1 / 2} \\
& =\left[2_{x} 689 \times 10^{\mathrm{s}} \frac{\mathrm{~N}}{\mathrm{~m}^{2}} \times \frac{\mathrm{m}^{3}}{999 \mathrm{~kg}} \times \frac{1}{1-(1 / 3)^{4}} \times \frac{\mathrm{kg} \cdot \mathrm{~m}}{\mathrm{~N}^{2} \cdot \mathrm{~s}^{2}}\right]^{\frac{1}{2}} \\
V_{2} & =37.4 \mathrm{~m} / \mathrm{s} \\
Q & =V_{2} A_{2}=\frac{37.4 \mathrm{~m}}{\mathrm{~s}} \times \frac{\pi}{4}(0.025)^{2} \mathrm{~m}_{\times}^{2} \times \frac{3600 \mathrm{~s}^{2}}{\mathrm{hr}}=66.1 \mathrm{~m}^{2} / \mathrm{hr}
\end{aligned}
$$

Given: Mercury barometer carried in car on windless day.
outside: $T=20^{\circ} \mathrm{C}, h_{\text {bar }}=761 \mathrm{~mm} \mathrm{Hg}$ (corrected)
[inside: $V=105 \mathrm{~km} / \mathrm{hr}$, window open, $h_{\text {bar }}=756 \mathrm{~mm} \mathrm{Hg}$
Find: (a) Explain what is happening.
(b) Local speed of air flow past window, relative to car.

Solution: (a) Air speed relative to car is higher than in the freestream, the towering the pressure at window.
(6) Apply the Bernowili equation in frame seen by an observer on the car:
Basic equation: $\frac{p_{1}}{\rho}+\frac{v_{1}^{2}}{z}+g z=\frac{p_{2}}{\rho}+\frac{v_{2}^{2}}{z}+g z=$
Assumptions: (1) Steady flow (seen by observer on car)
(2) Incompressible flow
(3) Neglect friction
(4) Flow along a stream line
(5) Neglect Δz

Then

$$
\begin{equation*}
V_{2}^{2}=\left[V_{1}^{2}+2\left(\frac{p_{1}-p_{2}}{\rho}\right)\right] \text { or } V_{2}=\left[v_{1}^{2}+\frac{2\left(p_{1}-p_{2}\right)}{\rho}\right]^{\frac{1}{2}} \tag{1}
\end{equation*}
$$

From fluid statics

$$
\begin{aligned}
p_{1}-p_{2} & =\rho g\left(h_{1}-h_{2}\right)=S G(H 20 g \Delta h \\
& =13.6 \times 1000 \frac{\mathrm{~kg}}{\mathrm{~m}^{3}} \times 9.81 \frac{\mathrm{~m}}{\mathrm{~s}^{2}} \times 0.005 \mathrm{~m}^{2} \times \frac{\mathrm{Ns}}{\mathrm{~kg} \cdot \mathrm{~m}} \\
p_{1}-p_{2} & =667 \mathrm{~N} / \mathrm{m}^{2}
\end{aligned}
$$

and from kleal gas

$$
\rho=\frac{\rho}{R T}=13.6 \times 1000 \frac{\mathrm{~kg}}{\mathrm{~m}^{3}} \times 9.81 \frac{\mathrm{~m}}{\mathrm{~s}^{2}} \times 0.761 \mathrm{~m} \times \frac{\mathrm{kg} \cdot \mathrm{~K}}{287 \mathrm{~N} \cdot \mathrm{~m}} \times \frac{1}{(273+20) \mathrm{K}} \times \frac{\mathrm{N} \cdot \mathrm{~s}^{2}}{\mathrm{~kg} \cdot \mathrm{~m}}
$$

Substituting into Eg. 1

$$
v_{2}=\left[\left(105 \frac{\mathrm{~km}}{\mathrm{hr}} \times 1000 \frac{\mathrm{~m}}{\mathrm{~km}} \times \frac{\mathrm{hr}}{3600 \mathrm{~s}}\right)^{2}+2 \times 667 \frac{\mathrm{~N}}{\mathrm{~m}^{2}} \times \frac{\mathrm{m}^{2}}{1,21 \mathrm{~kg}} \times \frac{\mathrm{kg} \cdot \mathrm{~m}}{\mathrm{~N} \cdot \mathrm{~s}^{2}}\right]^{1 / 2}
$$

$V_{2}=44.2 \mathrm{~m} / \mathrm{s}(159 \mathrm{~km} / \mathrm{hr})$ relative to car

Given: India sapolis race car, $b_{0}=98.3 \mathrm{~m} / \mathrm{s}$, on a straightaway. Air inks at location where $V=25.5 \mathrm{~m} / \mathrm{s}$ along body surface.

Find: (a) static pressure at inlet location.
(b) Express pressure rise as a fraction of the dynamic pressure.

Solution: Apply the Bernoulli equation, relative to the aneto.
Basic equation: $\frac{p \infty}{\rho}+\frac{v_{0}^{2}}{2}+g p_{\infty}=\frac{p}{p}+\frac{v^{2}}{2}+g \frac{q}{p}$
Assumptions: (1) steady flow (as seen by observer on auto)
(2) Incompressible flew ($v_{0}<100 \mathrm{~m}$ uses)
(3) No friction
(4) Flow a long a stream line
(5) Neglect changes in z
(b) standard a ir: $\rho=1.23 \mathrm{~kg} / \mathrm{m}^{3}$

Then

$$
\begin{aligned}
& p-p_{\infty}=\frac{1}{2} \rho V_{\infty}^{2}-\frac{1}{2} \rho v^{2}=\frac{1}{2} \rho V_{\infty}^{2}\left[1-\left(\frac{V}{V_{0}}\right)^{2}\right]=q\left[1-\left(\frac{V}{V_{0}}\right)^{2}\right] \\
& q=\frac{1}{2} \rho V_{\infty}^{2}=\frac{1}{2} \times 1.23 \frac{\mathrm{~kg}}{m^{3}} \times(98.3)^{2} \frac{m^{2}}{\mathrm{~s}^{2}} \times \frac{\mathrm{N} \cdot \mathrm{~s}^{2}}{\mathrm{~kg} \cdot \mathrm{~m}}=5.94 \mathrm{kPa} \\
& \frac{\Delta p}{g}=1-\left(\frac{V}{V_{00}}\right)^{2}=1-\left(\frac{25.5}{98.3}\right)^{2}=0.933
\end{aligned}
$$

and $\Delta p=0.933 q=0.933 \times 5.94 \mathrm{kPa}=5.54 \mathrm{kPa}$

Gwen: Steady, Frictionless, incompressible flow Pier a stationary cylvider or radius, a.

$$
\begin{aligned}
& c y \text { under or radius, a. } \\
& \vec{I}=-v\left[1-\left(\frac{a}{r}\right)^{2}\right] \cos e_{r}-v\left[1+\left(\frac{a}{r}\right)^{2}\right] \sin e_{e} \quad \vec{U} \quad \overrightarrow{P_{\infty}}
\end{aligned}
$$

Find: as expression for pressure distribution along streamline forming ufuder, $r=a$
b) locations on cylinder shred $p=-p_{\infty}$.

Solution:
Basic equation: $\frac{p}{p}+\frac{y^{2}}{2}+g z=$ constant
Assumption: (1) steady flow (given).
(a) incorpressibleflow (given)
(3) frictionless flow (given)
(H) flow along a stredentine.

Along the cylinder surface $r=a$ and $\vec{v}=-20 \sin \theta \hat{E}_{\theta}$
Applying pe Bernoulli equation along the streantive $r=a$,

$$
\begin{align*}
& \frac{p}{p}+\frac{y^{2}}{2}=\frac{P_{\infty}}{2}+\frac{u^{2}}{2} \\
& P=P_{\infty}+\frac{1}{2}\left(v^{2}-v^{2}\right)=P_{\infty}+\frac{1}{2} p\left(v^{2}-4 v^{2} \sin ^{2} \theta\right) \\
& -P=P_{\infty}+\frac{1}{2} p v^{2}\left(1-4 \sin ^{2} \theta\right)
\end{align*}
$$

For $P=\varphi_{\infty}, 1-\lambda \sin ^{2} \theta=0$ and $\sin \theta= \pm 0.5$

$$
\therefore \theta=30^{\circ}, 150^{\circ}, 210^{\circ}, 330^{\circ} .
$$

\qquad

Problem 6.53

The velocity field for a plane source at a distance h above an infinite wall aligned along the x axis was given in Problem 6.7. Using the data from that problem, plot the pressure distribution along the wall from $x=-10 h$ to $x=+10 h$ (assume the pressure at infinity is atmospheric). Find the net force on the wall if the pressure on the lower surface is atmospheric. Does the force tend to pull the wall towards the source, or push it away?

Given: Velocity field

Find: Pressure distribution along wall; plot distribution; net forc on wall

Solution

The given data is $\quad \mathrm{q}=2 \cdot \frac{\frac{\mathrm{~m}^{3}}{\mathrm{~s}}}{\mathrm{~m}} \quad \mathrm{~h}=1 \cdot \mathrm{~m} \quad \rho=1000 \cdot \frac{\mathrm{~kg}}{\mathrm{~m}^{3}}$

$$
u=\frac{q \cdot x}{2 \cdot \pi\left[x^{2}+(y-h)^{2}\right]}+\frac{q \cdot x}{2 \cdot \pi\left[x^{2}+(y+h)^{2}\right]}
$$

$$
v=\frac{q \cdot(y-h)}{2 \cdot \pi\left[x^{2}+(y-h)^{2}\right]}+\frac{q \cdot(y+h)}{2 \cdot \pi\left[x^{2}+(y+h)^{2}\right]}
$$

The governing equation is the Bernoulli equation

$$
\frac{\mathrm{p}}{\rho}+\frac{1}{2} \cdot \mathrm{~V}^{2}+\mathrm{g} \cdot \mathrm{z}=\mathrm{const} \quad \text { where } \quad \mathrm{V}=\sqrt{\mathrm{u}^{2}+\mathrm{v}^{2}}
$$

Apply this to point arbitrary point $(x, 0)$ on the wall and at infinity (neglecting gravity)

$$
\text { At } \quad|\mathrm{x}| \rightarrow 0 \quad \mathrm{u} \rightarrow 0 \quad \mathrm{v} \rightarrow 0 \quad \mathrm{~V} \rightarrow 0
$$

$$
\text { At point }(x, 0) \quad u=\frac{\mathrm{q} \cdot \mathrm{x}}{\pi \cdot\left(\mathrm{x}^{2}+\mathrm{h}^{2}\right)} \quad \mathrm{v}=0 \quad \mathrm{~V}=\frac{\mathrm{q} \cdot \mathrm{x}}{\pi \cdot\left(\mathrm{x}^{2}+\mathrm{h}^{2}\right)}
$$

Hence the Bernoulli equation becomes

$$
\frac{\mathrm{p}_{\mathrm{atm}}}{\rho}=\frac{\mathrm{p}}{\rho}+\frac{1}{2} \cdot\left[\frac{\mathrm{q} \cdot \mathrm{x}}{\pi \cdot\left(\mathrm{x}^{2}+\mathrm{h}^{2}\right)}\right]^{2}
$$

or (with pressure expressed as gage pressure)

$$
\mathrm{p}(\mathrm{x})=-\frac{\rho}{2} \cdot\left[\frac{\mathrm{q} \cdot \mathrm{x}}{\pi \cdot\left(\mathrm{x}^{2}+\mathrm{h}^{2}\right)}\right]^{2}
$$

(Alternatively, the pressure distribution could have been obtained from Problem 6.7, where

$$
\frac{\partial}{\partial x} p=\frac{\rho \cdot q^{2} \cdot x \cdot\left(x^{2}-h^{2}\right)}{\pi^{2} \cdot\left(x^{2}+h^{2}\right)^{3}}
$$

along the wall. Integration of this with respect to x leads to the same result for $p(x)$)

The plot of pressure is shown in the associated Excel workbook. From the plot it is clear that thi wall experiences a negative gage pressure on the upper surface (and zero gage pressure on the lower), so the net force on the wall is upwards, towards the source

The force per width on the wall is given b: $F=\int_{-10 \cdot h}^{10 \cdot h}\left(p_{\text {upper }}-p_{\text {lower }}\right) d x$

$$
F=-\frac{\rho \cdot q^{2}}{2 \cdot \pi^{2}} \cdot \int_{-10 \cdot h}^{10 \cdot h} \frac{x^{2}}{\left(x^{2}+h^{2}\right)^{2}} d x
$$

The integral is $\int \frac{x^{2}}{\left(x^{2}+h^{2}\right)^{2}} d x \rightarrow \frac{-1}{2} \cdot \frac{x}{\left(x^{2}+h^{2}\right)}+\frac{1}{2 \cdot h} \cdot \operatorname{atan}\left(\frac{x}{h}\right)$
so $\quad \mathrm{F}=-\frac{\rho \cdot \mathrm{q}^{2}}{2 \cdot \pi^{2} \cdot \mathrm{~h}} \cdot\left(-\frac{10}{101}+\operatorname{atan}(10)\right)$

$$
\begin{aligned}
& F=-\frac{1}{2 \cdot \pi^{2}} \times 1000 \cdot \frac{\mathrm{~kg}}{\mathrm{~m}^{3}} \times\left(2 \cdot \frac{\mathrm{~m}^{2}}{\mathrm{~s}}\right)^{2} \times \frac{1}{1 \cdot \mathrm{~m}} \times\left(-\frac{10}{101}+\operatorname{atan}(10)\right) \times \frac{\mathrm{N} \cdot \mathrm{~s}^{2}}{\mathrm{~kg} \cdot \mathrm{~m}} \\
& \mathrm{~F}=-278 \frac{\mathrm{~N}}{\mathrm{~m}}
\end{aligned}
$$

Problem 6.53 (In Excel)

The velocity field for a plane source at a distance h above an infinite wall aligned along the x axis was given in Problem 6.7. Using the data from that problem, plot the pressure distribution along the wall from $x=-10 h$ to $x=+10 h$ (assume the pressure at infinity is atmospheric). Find the net force on the wall if the pressure on the lower surface is atmospheric. Does the force tend to pull the wall towards the source, or push it away?

Given: Velocity field

Find: Pressure distribution along wall

Solution

The given data is

$$
\begin{array}{rll}
q & = & 2 \\
h & =1 & \mathrm{~m}^{3} / \mathrm{s} / \mathrm{m} \\
\rho & =1000 & \mathrm{mg} \\
\mathrm{~kg} / \mathrm{m}^{3}
\end{array}
$$

The pressure distribution is

$$
\mathrm{p}(\mathrm{x})=-\frac{\rho}{2} \cdot\left[\frac{\mathrm{q} \cdot \mathrm{x}}{\pi \cdot\left(\mathrm{x}^{2}+\mathrm{h}^{2}\right)}\right]^{2}
$$

Problem 6.54

The velocity field for a plane doublet is given in Table 6.1 (page S-27 on the CD). If $\Lambda=3$ $\mathrm{m}^{3} . \mathrm{s}^{-1}$, the fluid density is $\rho=1.5 \mathrm{~kg} / \mathrm{m}^{3}$, and the pressure at infinity is 100 kPa , plot the pressure along the x axis from $x=-2.0 \mathrm{~m}$ to -0.5 m and $x=0.5 \mathrm{~m}$ to 2.0 m .

Given: Velocity field for plane doublet

Find: Pressure distribution along x axis; plot distribution

Solution

The given data is

$$
\Lambda=3 \cdot \frac{\mathrm{~m}^{3}}{\mathrm{~s}} \quad \rho=1000 \cdot \frac{\mathrm{~kg}}{\mathrm{~m}^{3}} \quad \mathrm{p}_{0}=100 \cdot \mathrm{kPa}
$$

From Table 6.1

$$
\mathrm{V}_{\mathrm{r}}=-\frac{\Lambda}{\mathrm{r}^{2}} \cdot \cos (\theta) \quad \mathrm{V}_{\theta}=-\frac{\Lambda}{\mathrm{r}^{2}} \cdot \sin (\theta)
$$

where V_{r} and V_{θ} are the velocity components in cylindrical coordinates (r, θ). For points along t x axis, $r=x, \theta=0, V_{r}=u$ and $V_{\theta}=v=0$

$$
\mathrm{u}=-\frac{\Lambda}{\mathrm{x}^{2}} \quad \mathrm{v}=0
$$

The governing equation is the Bernoulli equation

$$
\frac{\mathrm{p}}{\rho}+\frac{1}{2} \cdot \mathrm{~V}^{2}+\mathrm{g} \cdot \mathrm{z}=\mathrm{const} \quad \text { where } \quad \mathrm{V}=\sqrt{\mathrm{u}^{2}+\mathrm{v}^{2}}
$$

so (neglecting gravity) $\frac{p}{\rho}+\frac{1}{2} \cdot u^{2}=$ const

Apply this to point arbitrary point $(x, 0)$ on the x axis and at infinity

$$
\text { At } \quad|\mathrm{x}| \rightarrow 0 \quad \mathrm{u} \rightarrow 0 \quad \mathrm{p} \rightarrow \mathrm{p}_{0}
$$

$$
\text { At point }(x, 0) \quad \mathrm{u}=-\frac{\Lambda}{\mathrm{x}^{2}}
$$

Hence the Bernoulli equation becomes

$$
\frac{\mathrm{p}_{0}}{\rho}=\frac{\mathrm{p}}{\rho}+\frac{\Lambda^{2}}{2 \cdot x^{4}}
$$

or $\quad p(x)=p_{0}-\frac{\rho \cdot \Lambda^{2}}{2 \cdot x^{4}}$

The plot of pressure is shown in the associated Excel workbook

Problem 6.54 (In Excel)

The velocity field for a plane doublet is given in Table 6.1 (page $\mathrm{S}-27$ on the CD). If $\Lambda=3$ $\mathrm{m}^{3} . \mathrm{s}^{-1}$, the fluid density is $\rho=1.5 \mathrm{~kg} / \mathrm{m}^{3}$, and the pressure at infinity is 100 kPa , plot the pressure along the x axis from $x=-2.0 \mathrm{~m}$ to -0.5 m and $x=0.5 \mathrm{~m}$ to 2.0 m .

Given: Velocity field

Find: Pressure distribution along x axis

Solution

The given data is

$$
\begin{array}{rrl}
\Lambda & =3 & \mathrm{~m}^{3} / \mathrm{s} \\
\rho & =1.5 & \mathrm{~kg} / \mathrm{m}^{3} \\
p_{0} & =100 & \mathrm{kPa}
\end{array} \quad \text { The pressure distribution is } \quad \mathrm{p}(\mathrm{x})=\mathrm{p}_{0}-\frac{\rho \cdot \Lambda^{2}}{2 \cdot \mathrm{x}^{4}}
$$

$\boldsymbol{x}(\mathbf{m})$	$\boldsymbol{p}(\mathbf{P a})$
0.5	99.89
0.6	99.95
0.7	99.97
0.8	99.98
0.9	99.99
1.0	99.99
1.1	100.00
1.2	100.00
1.3	100.00
1.4	100.00
1.5	100.00
1.6	100.00
1.7	100.00
1.8	100.00
1.9	100.00
2.0	100.00

Given: A fire nozzle is attached to a hose of inside diameter, $y=3 \mathrm{in}$. Res smoothly contoured nozzle is designed to' operate at an rillet waler pressure of $p=100$ ping. Te outlet demeter is $d=1 \mathrm{in}$.
Find: (a) The design flow rote of the nozzle in gem (b) The forkerequered to hold the nozzle in place.

Solution:
(a) To doternise the design flow rate. we apply the cortivily equation and fie Bernoulli equation.
Assure: (i) steady flow
(2) vicompressiole flow
(3) frictionless flow
(4) frow along a streamline

(5) neglect By
(b) uniform frow at each section

From the continuity equation $A_{1} J_{1}=A_{2} H_{2} \therefore V_{2}=V_{2} \frac{R_{2}}{A_{1}}=J_{2}\left(\frac{d}{D}\right)^{2}$ Bernoulli equation $\frac{e_{1}}{p}+\frac{l_{1}^{2}}{2}+g y_{1}^{\prime}=\frac{e e^{2}}{p}+\frac{V_{2}^{2}}{2}+g g_{2}$
Then substituting for λ_{1} witt $P_{2}=P_{\text {atm }}=0$ gage.

$$
\frac{P_{1 g}}{p}+\frac{v_{2}^{2}}{2}\left(\frac{\alpha}{7}\right)^{4}=\frac{v_{2}^{2}}{2} \quad \text { and } \quad v_{2}=\left\{\frac{2 \rho_{1}}{\left.p[1-(d))^{4}\right]}\right\}^{\prime}
$$

Substituting numerical values
and

$$
Q=A_{2} H_{2}=\frac{\pi d^{2}}{4} V_{2}=\frac{\pi}{4}\left(\frac{1}{12}\right)^{2} f^{2} \cdot \frac{123 \frac{f}{s}}{2} \times 7.18 \frac{\mathrm{gal}}{\frac{1}{2}} \times \frac{\mathrm{hcs}}{\min }=301 \mathrm{gph}
$$

(b) Apply the a component of fie momentum equation to the ct shown

$$
\begin{aligned}
& F_{S_{A}}+F_{B_{x}}=\frac{2}{2} \int_{0 N} u p d t+(u p \vec{v} \cdot d \vec{p} \\
& R_{2}+p_{1} A_{1}-\operatorname{peg}_{g} A_{2}^{\circ}=u_{1}\left\{-\left|p_{1}, A_{1}\right|\right\}+u_{2}\left\{+\left|p V_{2} A_{2}\right|\right\} \\
& u_{1}=V_{1} \quad u_{2}=V_{2} \\
& R_{1}=-P_{1} A_{1}+P_{2} A_{2} V_{2}-P_{1} A_{1} H_{1}=-P_{1} g A_{1}+p Q_{1}\left(\lambda_{2}-V_{1}\right) \\
& R_{x}=-P_{1 g} A_{1}+p Q V_{2}\left(1-\frac{V_{1}}{V_{2}}\right)=-P_{1 g} A_{1}+P i V_{2}\left[1-\left(\frac{d}{y}\right)^{2}\right]
\end{aligned}
$$

$$
\begin{align*}
& R_{2}=-707 \text { tor }+142 \Delta r=-505 \text { br } \tag{x}
\end{align*}
$$

The coupling is in tension

Given: Nozzle coupled to straight pipe by flanges, bolts. water flow discharges to atmosphere.

For steady, inviscid flow, $R_{x}=-45.5 \mathrm{~N}$.
Find: Volume flow rate.
Solution: Apply continceity, x momentum, and Bernoulli.
 Basic equation: $\quad 0=\frac{D^{*}}{=0} \int_{C v} \rho d t+\int_{c s} \rho \vec{V} \cdot \overrightarrow{d A}$

$$
\begin{aligned}
& \frac{p_{1}}{\bar{\rho}^{\prime}}+\frac{v_{1}^{2}}{2}+g \phi_{1}=\frac{\hat{p}_{2}}{=o(7)}+\frac{V_{2}^{2}}{2}+g \hat{\phi}^{2}
\end{aligned}
$$

Assumptions: (1) steady flow
(5) Notriction
(2) Uniform flow at eachsection
(b) Horizontal, $f_{B x}=0,3_{1}=32$
(3) Flow along a streamline
(o) Use gage pressures
(4) Incompressible flow

Then

$$
\begin{array}{r}
0=\left\{-V_{1} A_{1}\right\}+\left\{+V_{2} A_{2}\right\} ; V_{2}=V_{1} \frac{A_{1}}{A_{2}}=V_{1}\left(\frac{D}{d}\right)^{2} ; Q=V_{1} A_{1}=V_{2} A_{2} \\
\frac{p_{1}}{\rho}+\frac{V_{1}^{2}}{2}=\frac{V_{2}^{2}}{2} ; p_{1}=\rho\left(\frac{V_{2}^{2}}{2}-\frac{V_{1}^{2}}{2}\right)=\rho \frac{V_{1}^{2}}{2}\left[\left(\frac{V_{2}}{V_{1}}\right)^{2}-1\right]=\rho V_{1}^{2}\left[\left(\frac{D}{d}\right)^{4}-1\right] \\
R_{x}+p, A_{1}-A_{2} A_{2}=u_{1}\left\{-\left|\rho V_{1} A_{1}\right|\right\}+u_{2}\left\{+\left|\rho V_{2} A_{2}\right|\right\}=\rho V_{1} A_{1}\left(V_{2}-V_{1}\right) \\
u_{1}=V_{1} \quad u_{2}=V_{2} \\
R_{x}+A_{1}\left(\frac{V_{1}^{2}}{2}\left[\left(\frac{D}{d}\right)^{4}-1\right]=\rho V_{1}^{2} A_{1}\left(\frac{V_{2}}{\left.V_{1}-1\right)}=\rho V_{1}^{2} A\left[\left(\frac{D}{d}\right)^{2}-1\right]\right.\right.
\end{array}
$$

Thus

$$
\begin{gathered}
V_{1}^{2}=\frac{-2 R_{x}}{\rho A_{1}} \frac{1}{\left(\frac{D}{d}\right)^{4}-2\left(\frac{D}{d}\right)^{2}+1} \text { so } V_{1}=\sqrt{\frac{-2 R_{x}}{\rho A_{1}}} \frac{1}{\left(\frac{D}{d}\right)^{2}-1} \\
V_{1}=\left[-2 x_{x}-45.5 N_{\times} \frac{m 3}{999 \mathrm{~kg}} \times \frac{4}{\pi(0.050)^{2} m^{2}} \times \frac{\mathrm{kg} \cdot \mathrm{~m}}{N \cdot \mathrm{~s}^{2}}\right]^{\frac{1}{2}} \frac{1}{\left(\frac{50}{20}\right)^{2}-1}=1.30 \mathrm{~m} / \mathrm{s}
\end{gathered}
$$

Finalise,

$$
Q=V_{1} A_{1}=1.30 \frac{\mathrm{~m}}{\mathrm{~s}} \times \frac{\pi}{4}(0.050)^{2} \mathrm{~m}^{2}=2.55 \times 10^{-3} \mathrm{~m}^{3} / \mathrm{s}
$$

$\left\{\begin{array}{l}\text { Note: It is necessary to recognize that } R_{x}<0 \text { for a nozzle, see } \\ \text { Example problem 4.7. }\end{array}\right.$

Given: Water flows steadily through a pipe with diameter $D=3.25$ in and disstarges through a nozzle $(d=1,25 i n)$ to atmosphere. The flow rate is $\theta=24.5$ gallmin.
Find: (a) the minimum static pressure required in the pipe to produce this flowrate
do) the horizontal force of tie nozzle assembly
on the pies flange. on the pipe flange.
Solution:
Apply the Bernoulli equation along the Antral strearlive between sections (1) and (*)

$$
\frac{p_{1}}{e}+\frac{v^{2}}{2}+g \neq \frac{p_{2}}{e}+\frac{v_{2}^{2}}{2}+g y^{2}
$$

Assumptions: (I) steady flow
(3) friction tess flow

$$
\text { (5) } \quad 4 z=0
$$

(2) incompressible flow
(4) Now along a streamline.
(6) uniform flag at each section

Then $\left.p_{1}=-p_{2}+\frac{p}{2}\left(V_{2}^{2}-V_{1}^{2}\right)=p_{2}+p \frac{V_{2}^{2}}{2}\left[1-V_{J_{2}}^{2}\right)^{2}\right]$
$P_{2}=-P_{\text {atm }}$ and from contrinuty, $A_{2} H_{2}=A, H$.

$$
P_{1 g}=\frac{1}{2} \times 1.94 \frac{\operatorname{slug}}{f t^{3}} \times(6.41)^{2} \frac{f^{2}}{5^{2}} \times \frac{A r . .^{2}}{f . . s l u g}\left[1-\left(\frac{1.25}{3.25}\right)^{4}\right]=39.0 \text { porgage } P_{1}
$$

(b) Apply the x momentum equation to the cl

Force of nozzle on flange $k_{1}=-R_{t}=1 . b_{i}$ be

$$
\begin{aligned}
& F_{s x}+F_{8 x}=\frac{p}{\partial t} \int_{c y} \lambda_{0}^{0} p d t+\int_{i s} u p \vec{v} \cdot \overrightarrow{d A} \\
& R_{2}+p_{1} A_{1}=u_{1}\{-\dot{m}\}+u_{2}\{m\}=-v_{1} m+v_{2} m \\
& R_{x}=-p_{1} g A_{1}+\dot{m}\left(V_{2}-V_{1}\right)=-p_{1 g} A_{1}+p Q V_{2}\left(1-V_{1}\right)
\end{aligned}
$$

$$
\begin{aligned}
& R_{K}=-2.25+0.58=-1.6 \lambda \text { br }
\end{aligned}
$$

$$
\begin{aligned}
& \therefore P_{1 g}=\frac{p}{2} t_{2}^{2}\left[1-\left(\frac{R_{2}}{A_{1}}\right)^{2}\right]=\frac{V_{2}^{2}}{2}\left[1-\left(\frac{D_{2}}{D_{1}}\right)^{4}\right]
\end{aligned}
$$

$$
\begin{aligned}
& t_{2}=6.41 \mathrm{fi} l_{s} \text { and }
\end{aligned}
$$

Given: Steady flow of water through elbow in horizontal pare.
Find: (a) Gage pressure at (1).
(b) x component of forces exerted by elbows on supply pipe.

Solution: Apply Bernoulli and momenthem equations using streaming and $C V$ shown.
$\begin{aligned} \text { Basic equation: } \frac{p_{1}}{\rho}+\frac{v_{1}^{2}}{2}+g \phi_{1} & =\frac{p_{2}^{2}}{p_{2}}+\frac{v_{2}^{2}}{2}+g \phi_{2} \\ =0(6) & =0(1)\end{aligned}$

$$
F_{3 x}+F_{\beta_{x}}^{=0(6)}=\frac{\partial^{x}}{\partial t} \int_{v v} u\left(d \forall+\int_{G S} u p \vec{v} d \vec{A}\right.
$$

Assumptions: (1) Steady flow
(2) Incompressible flow
(3) Neglect friction
(4) Flow along a streamline
(5) Neglect elevation Change
(6) Horizontal flew
(7) $p_{2}=$ Patron

Then

$$
\begin{aligned}
& V_{1}=\frac{Q}{A_{1}}=\frac{4 Q}{\pi D_{1}^{2}} \\
& V_{1}=\frac{4}{\pi} \times 1.27 \frac{\mathrm{~L}}{\mathrm{~s}} \times \frac{1}{(0.0 .381)^{2} m^{2}} \times \frac{\mathrm{m}^{3}}{1000 \mathrm{~L}}=1.11 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

and $V_{1} A_{1}=V_{2} A_{2}$

$$
V_{2}=V_{1} \frac{A_{1}}{A_{2}}=V_{1}\left(\frac{D_{1}}{D_{2}}\right)^{2}=1.11 \frac{\mathrm{~m}}{\mathrm{~s}}\left(\frac{38.1}{12.7}\right)^{2}=9.99 \mathrm{~m} / \mathrm{s}
$$

Thus

$$
p_{19}=\frac{1}{2} \times 999 \frac{\mathrm{~kg}}{\mathrm{~m}^{3}}\left[(9.99)^{2}-(1.11)^{2}\right] \frac{\mathrm{m}^{2}}{\mathrm{~s}^{2}} \times \frac{\mathrm{N} \cdot \mathrm{~s}^{2}}{\mathrm{~kg} \cdot \mathrm{~m}}=49.2 \mathrm{kpa}(\text { gage })
$$

From momentum

$$
\begin{aligned}
& R_{x}+p_{1} g A_{1}=u_{1}\{-\dot{m}\}+u_{2}\{+\dot{m}\}=-\dot{m} V_{1}=-\rho Q V_{1} \\
& u_{1}=V_{1} \quad u_{2}=0 \\
& R_{x}=-\mu, g A_{1}-\dot{m} V_{1}=-49.2 \times 10^{3} \frac{\mathrm{~N}}{\mathrm{~m}^{2}} \times \frac{\pi}{4}(0.0381)^{2} \mathrm{~m}^{2}-999 \frac{\mathrm{~kg}}{\mathrm{~m}^{3}} \times 0.00127 \frac{\mathrm{~m}_{3}^{3}}{\mathrm{~s}} 1.11 \mathrm{~m} \times \frac{\mathrm{N} \cdot \mathrm{~J}^{2}}{\mathrm{~kg}} \times \mathrm{Nm} \\
& R_{x}=-57.5 \mathrm{~N} \text { (force on }(V)
\end{aligned}
$$

The force on the supply pipe it

$$
K_{x}=-R_{x}=57.5 \mathrm{~N} \text { (on pipe to right) }
$$

Given: A water jet is directed upward from a well-designed nozzle of area $A_{1}=600 \mathrm{~mm}^{2} ; V_{1}-6.3 \mathrm{mls}$ The flow is steady and liquid 'stream does not break up. Ported is $H=1.55 \mathrm{~m}$ above nozzle exit
Find: (a) V_{2} (b) PO_{2}
(c) force on fat plate placed normal to the flow at (2)
(d) Sketch pressure distribution on the plate

Solution: Apply Bernoulli and then y_{2} - $o m e n t u m$ equation
Basis eq: $\frac{9 /}{\rho}+\frac{\rho_{2}}{2}+g_{0}=\frac{+/ 4}{\rho}+\frac{y_{2}^{2}}{2}+g_{0}^{2}$
Assumptions: (i) steady flow
(2) incorkeresible flow
(3) frictionless flow
(4) flow along a streamline
(5) $\rho_{1}=f_{2}=-P_{3}$

Then

$$
V_{2}=\left[1_{1}^{2}+\lg \left(z_{1}-z_{2}\right)\right]^{1 / 2}
$$

$$
v_{2}=\left[(6.3)^{2} \frac{\mathrm{~m}^{2}}{s^{2}}+2 \times 9.81 \frac{\mathrm{~m}}{s^{2}}(-1.55 .7)\right]^{1 / 2}
$$

$$
\begin{equation*}
V_{2}=3.05 \mathrm{mls} \tag{2}
\end{equation*}
$$

By definition, $P_{O_{2}}=P_{2}+\frac{1}{2} p \psi_{2}^{2}=-P_{\text {atm }}+\frac{1}{2} p N_{2}^{2}$. 50

$$
P_{0_{2} \text { gage }}=\frac{1}{2} \times \frac{9 a n}{n^{3}} \times(3.05)^{2} \frac{n^{2}}{\delta^{2}}+\frac{N .5^{2}}{g n^{n}}=4.65 \mathrm{kPa}(g)-P_{0_{2}}
$$

Apply y-momentur equation to et surrounding plate.
Basic eq: $F_{s y}+F_{8 y}=\overrightarrow{A l} C_{c v} v p d t+\int_{0} v \overrightarrow{p l} \cdot \overrightarrow{d H}$
Assumptions: (o) neglect mass in ct
(7) ψ_{2} enters ct wiformly

Fen
(8) $v_{3}=v_{4}=0$

Given: A flat object moves downward, at speed $U=5$ ftbec, into the water jet of the spray system shown. The spray system, of mass $M=0.28 \mathrm{Cm}$ and internal volife $t=12 \mathrm{in}^{3}$, operates under steady conditions
Find: (a) the minimum supply pressure required to produce the jet of the sprag system.
(b) the Rahimum pressure exerted by the pet on the object when the object is at $z=1.5$ fP.
Solution:
(a)

The minimum pressure occurs when friction is neglected, and so we apply the
Bernoulli equation

$$
\frac{p_{1}}{p}+\frac{l_{2}}{2}+g x^{(s)}=\frac{p_{2}}{p}+\frac{v_{2}^{2}}{2}+g x_{2}^{(s)}
$$

Assume: (i) steady flow
(2) incompressible flow
(3) no friction
(4) flow along a streamline
(s) neglect $z^{2} z$,
(b) $p_{2}=$ Path
(i) uniform flow at (1) (2)

1^{+5} - observer for Part (6)

Ken

$$
\left.P_{1 g}=p_{1}-P_{\text {atm }}=\frac{p}{2}\left(v_{2}^{2}-v_{1}^{2}\right)=\frac{v_{2}^{2}}{2}\left[1-\left(v_{1}\right)_{2}^{2}\right)^{2}\right]
$$

From contrivity, $A_{1} H_{1}=A_{2} H_{2}$, and ${V_{1}}_{2}=\frac{A_{2}}{A_{1}}=\frac{a}{A}$. Then,

Frictional effects would course this value to Pe higher
b) The maximum pressure of the get on the object is the stagnation pressure

$$
P_{0}=p+\frac{1}{2} p V_{r}^{2}
$$

where \forall is the velocity of the impinging jet relative to the deed At $z=1.5 \mathrm{ft}$, Pe jet velocity, t_{4}, n the absence of the dent $\operatorname{con}^{\circ}$ be calculated from $p_{2} \frac{p_{2}}{p}+\frac{v_{2}^{2}}{2}+g_{2}=\frac{90_{1}}{p}+\frac{V_{4}^{2}}{2}+g z_{0}$

$$
\forall_{4}=\left[v_{2}^{2}-2 g\left(34-z^{2}\right)\right]^{1 / 2}=\left[(15)^{2} \frac{f^{2}}{z^{2}}-2.32 .2 \frac{f t}{\delta^{2}}(1.5)^{p}\right]^{1 / 2}=11.3 \mathrm{ft} l_{0}
$$

hen

$$
V_{r 2 l}=V_{4}-(-0)=(11.3+5) \text { cts }=16.3 \text { fils }
$$

and
（c）To determine the force of the water of the object we apply the z component of the momentum equation to the do shown．

$=$

Assumptions：（8）negled 言 C_{a}
（1）neglect body forces
（10）uniform racial flow at（5）
（ii）uniform vertical flow at（4） wit $z_{4}=1.5 \mathrm{ft}$

Then $-F_{1}=-w_{n_{m y}} \backslash p V_{4_{4} y_{3}} R_{1} \backslash$
where F ，is applied force necessary to raistain motion
of plate al constant speed U．

$$
\begin{aligned}
& V_{4+y z}=V_{4}-(-v): V_{4}-v \\
& W_{4+4 y}=V_{4+y_{y}}=V_{4}+v \\
& F_{1}=p\left(V_{4}+v\right)^{2} A_{4}
\end{aligned}
$$

From continuity $\mathrm{H}_{2} \mathrm{~S}_{2}=A_{4} H_{4}$

$$
\text { and } A_{4}=\frac{V_{2}}{J_{4}} A_{2}=\frac{15}{11.3} \times 1 \mathrm{n}^{2}=1.33 \mathrm{in}^{2}
$$

Then

$$
F_{1}=p\left(v_{k}-0\right)^{2} A_{1}=1.94 \frac{5 \operatorname{lng}}{f^{2}}(11.3+5)^{2} \frac{f^{2}}{s^{2}} \cdot 1.333^{2} \cdot \frac{t^{2}}{144 i^{2}} \cdot \frac{1 b s^{2}}{f+3 n g}
$$

$F_{1}=4,76$ tor（in the direction shown）
Since the plate is moving al constant speed，then

$$
\sum \vec{F}_{\text {pate }}=M_{a}=0 \text { and }
$$

negleding the wuggit or the plate then

$$
\begin{aligned}
& F_{x_{20}}=F_{1}=4.76 \mathrm{br} \\
& \vec{F}_{x_{20}}=4.76 \mathrm{k} \mathrm{lbr} .
\end{aligned}
$$

Given: water flow from a kitchen faucet of 0.5 in . diameter at 2 gpm . Bottom of sink is 18 in. below faucet outlet.

Find: (a) If area of stream increases, decreases, or remains constant, and why.
(b) Expression for cross-section vs. y, measured above bottom.
(c) Force on plate held horizontal; variation with height, and why?

Solution: The water stream is accelerated by gravity. The area of the stream will decrease toward the sink bottom, because less area is needed to carry the same flow rate.

Apply Bernoulli to steady, incompressible, frictionless flow a bong a streamline:
Basic equation: $\frac{p}{p}+\frac{v_{1}^{2}}{2}+g z=\frac{p}{p}+\frac{v^{2}}{2}+g z$
But $p_{1}=p=p_{\text {atm }}$ so

$$
\frac{V_{1}^{2}}{2}+g H=\frac{V^{2}}{2}+g y: V=\left[V_{1}^{2}+\lg (H-y)\right]^{1 / 2}
$$

For uniform flow, continuity reduces to $V_{1} A_{1}=V A$

$$
A=A_{1} \frac{V_{1}}{V}=A_{1} \frac{V_{1}}{\left[V_{1}^{2}+2 g(H-y)\right]^{1 / 2}}=\frac{A_{1}}{\left[1+\frac{2 g}{V_{1}^{2}}(H-y)\right]^{\frac{1}{2}}}
$$

Predict force on plate from 4 component of momentum:
Basic equation: $F_{S y}+F_{B_{y}}=\frac{\partial}{\partial t} \int_{C V}^{0} v \rho d t+\int_{C s} v \rho \vec{v} \cdot d \vec{A}$
Since uniform,

$$
\begin{aligned}
R_{y}-w= & v\left\{-\rho v, A_{1}\right\}=-v\{-\rho Q\}=+v \rho Q \\
& v=-v
\end{aligned}
$$

Thus $R_{y}=w+V \rho Q$

Since V increases as y decreases, $R y$ varies in the same manner.

Open-Ended Problem Statement: An old "parlor trick" uses an empty thread spool and a playing card. The playing card is placed against the bottom of the spool. Contrary to intuition, when one blows downward, through the central hole in the spool, the card is not blown away. Instead it is "sucked" up against the spool. Explain.

Discussion: The secret to this "parlor trick" lies in the velocity distribution, and hence the pressure distribution, that exists between the spool and the playing card.
Neglect viscous effects for the purpose of initial discussion. Consider the space between the end of the spool and the playing card as a pair of parallel disks. Air from the hole in the spool enters the annular space surrounding the hole, then flows radially outward between the parallel disks. For a given flow rate of air the edge of the hole is the cross-section of minimum flow area and therefore the location of maximum air speed.
After entering the space between the parallel disks, air flows radially outward. The flow area becomes larger as the radius increases. Thus the air slows and its pressure increases. The largest flow area, slowest air speed, and highest pressure between the disks occur at the outer periphery of the spool where the air is discharged from an annular area.
The air leaving the annular space between the disk and card must be at atmospheric pressure. This is the location of the highest pressure in the space between the parallel disks. Therefore pressure at smaller radii between the disks must be lower, and hence the pressure between the disks is subatmospheric. Pressure above the card is less than atmospheric pressure; pressure beneath the card is atmospheric. Each portion of the card experiences a pressure difference acting upward. This causes a net pressure force to act upward on the whole card. The upward pressure force acting on the card tends to keep it from blowing off the spool when air is introduced through the central hole in the spool.
Viscous effects are present in the narrow space between the disk and card. However, they only reduce the pressure rise as the air flows outward, they do not dominate the flow behavior.

Given: Tank shown has well-raunded nozzle.

$$
\text { at heme } t=0 \text {, water level is ho. }
$$

Find: expression for $h i h_{0}$ as a function of time.
Pot: (a) h tho aust for $V l_{d}=10$, with. ho as a para meter for

$$
0_{1} \leq h M 0 \leq 1 m .
$$

(b) Litho 3 t for $h_{0}=1 \mathrm{M}$, with Did as a parameter for $2 \leqslant D / d \leqslant 10$.

Solution:
Apply the Bernoulli equation along a streamline between the surface and the int.
Basic equation:

$$
\frac{e^{s}}{\rho}+\frac{v^{2}}{2}+g z_{s}=7 \frac{y^{(s)}}{p}+\frac{b^{2}}{2}+g z_{j}
$$

Assumptions: (1) quasi-steady flow, ie neglect acceleration
(a) incompressible flow
(3) neglect frictional effects
(4) flow along a streamline
(5) $\quad P_{t}=-p_{7}=-p_{a t m}$.

From continuity, $\forall_{t} A_{t}=V_{j} A_{j}$ or $J_{J}=V_{t} \frac{A_{t}}{A_{j}}=V_{t}\left(\frac{\eta}{d}\right)^{2}$
Solving.

$$
\frac{v_{t}^{2}}{2}-\frac{v^{2}}{2}=\frac{v_{t}^{2}}{2}\left[1-\left(\frac{v_{j}}{v_{t}}\right)^{2}\right]=g\left(z_{j}-z_{s}\right)=g[H-(H+h)]=-g h
$$

Then $v_{t}=\left[\frac{2 g h}{\left(v_{i} / v_{t}\right)^{2}-1}\right]^{1_{2}}=\left[\frac{2 g h}{\left(A_{t} / h_{j}\right)^{2}}-1\right]^{1 / 2}=\left[\frac{2 g h}{(D / d)^{h}-1}\right]^{1 / 2}=-\frac{d h}{d t}$
Separating variables,

$$
\frac{d h}{h^{1 / 2}}=-\left[\frac{2 g}{(1 / d)^{4}-1}\right]^{1 / 2} d t
$$

Integrating,

$$
\begin{aligned}
& \text { Eegrating } \\
& 2 h^{\prime} / 2=-\left[\frac{2 g}{(g / d)^{4}-1}\right]^{1 / 2} t+c
\end{aligned}
$$

At $t=0, h=h_{0}$, so $c=2 h_{0}^{\prime l_{2}}$ and

$$
h=\left\{h_{0}^{1 / 2}-\frac{1}{2}\left[\frac{29}{(1 d)^{4}-1}\right]^{1 / 2} t\right\}^{2}
$$

Nondemensionalye (divide by hos to obtain

$$
\frac{h_{0}}{h_{0}}=\left\{1-\sqrt{\frac{g}{2 h_{0}\left\{(\phi \mid d)^{4}\right\}}} t\right\}^{2}
$$

\square

Draining of a cylindrical liquid tank:

Plot of h / h_{0} vs. t for $0.1<h_{0}<1 \mathrm{~m}$

Input Data: \quad| D | $=50$ | mm |
| ---: | :--- | ---: |
| d | $=5 \mathrm{~mm}$ | |

$\begin{array}{cccc}h_{0}(\mathrm{~m})= & 0.1 & 0.3 & 1\end{array}$
Time, $t(s) \quad h / h_{0}(--) \quad h / h_{0}(--) \quad h / h_{0}(--)$

0	1.00	1.00	1.00
2	0.739	0.845	0.913
4	0.518	0.703	0.831
6	0.336	0.574	0.752
8	0.193	0.458	0.677
10	0.090	0.355	0.606
12	0.025	0.265	0.539
14	0.000	0.188	0.476
16		0.125	0.417
18		0.074	0.362
20		0.037	0.310
22		0.012	0.263
24		0.001	0.219
26			0.180
28			0.144
30			0.113
32			0.085
34			0.061
36			0.041
38			0.025
40			0.013
45			0.000

Plot of h / h_{0} vs. t for $10<D / d<2$
$h_{0}=1 \mathrm{~m}$
$D / d(--)=250$
Time, $t(\mathrm{~s}) \quad h / h_{0}(--) \quad h / h_{0}(--) \quad h / h_{0}(-\cdots)$

0	1.00	1.00	1.00
0.5	0.523	0.913	0.978
1	0.199	0.831	0.956
1.5	0.029	0.752	0.935
1.6	0.013	0.737	0.930
3		0.539	0.872
4		0.417	0.831
5		0.310	0.791
6		0.219	0.752
7		0.144	0.714
8		0.085	0.677
9		0.041	0.641
10		0.013	0.606
12			0.539
14			0.476
16			0.417
18			0.362
20			0.310

Problem 6.64

Hot: Jet speed, V, distance, x as: function of h. for och'st.
Solution:
Apply Bernowli equation between tank surface and get.
Basic equation: $\rho_{\rho}+\frac{\nu_{2}^{2}}{2}+g y_{0}^{2}=\frac{y}{e}+\frac{V_{1}^{2}}{2}+g y$.
Assumptions: (I) steady flow
(a) incompressible flow
(3) Alow slongstreamline (4) no friction
then

$$
\begin{equation*}
g H=\frac{\nu^{2}}{2}+g h \text { or } \forall=\sqrt{2 g(t-h)} \tag{i}
\end{equation*}
$$

Assume no air resistance in the stream. Then $u=$ constant, and $I=u t=\sqrt{2 g(H-h)} \cdot t$
The only force acting on the stream is gravity

$$
\sum F_{y}=-m g=m a_{y}=m \frac{d v}{d t} ; \text { the } \frac{d v}{d t}=-g
$$

Integrating we obtain
$v=\psi_{0}^{\infty}-g$ and

$$
y=y_{0}+y x^{0}-\frac{1}{2} g t^{2}
$$

Solving for $t, \quad t=\left[\frac{2\left(y_{0}-y\right)}{g}\right]^{1 / 2}$
The time of fight is then $t=\sqrt{\frac{2 y_{0}}{g}}=\sqrt{\frac{2 h}{g}}$
Substituting into Eq. 2

$$
x=\sqrt{2 g(t h)} \sqrt{\frac{2 h}{g}}=2 \sqrt{h(H-h)}
$$

I will be maximized when $h(H-h)$ is maxiringed, or when

$$
\frac{d}{d h}[h(H-h)]=0=(H-h)+h(-1)=H-2 h \text { or } h=H / 2, h
$$

The corresponding range is

$$
-\bar{A}=2 \sqrt{\frac{H}{2} \times \frac{H}{2}}=H
$$

See the next page for plots

From Eq. $: \frac{V}{\sqrt{2 g H}}=\sqrt{1-\frac{h}{H}}$

Exit velocity and throw distance from orifice in side of tank, versus height h / H

h / H	$V /(2 g H)^{1 / 2}$	X / H
0.00	1.00	0.000
0.01	0.995	0.199
0.02	0.990	0.280
0.03	0.985	0.341
0.04	0.980	0.392
0.05	0.975	0.436
0.10	0.949	0.600
0.15	0.922	0.714
0.20	0.894	0.800
0.25	0.866	0.866
0.30	0.837	0.917
0.35	0.806	0.954
0.40	0.775	0.980
0.45	0.742	0.995
0.50	0.707	1.000
0.55	0.671	0.995
0.60	0.632	0.980
0.65	0.592	0.954
0.70	0.548	0.917
0.75	0.500	0.866
0.80	0.447	0.800
0.85	0.387	0.714
0.90	0.316	0.600
0.95	0.224	0.436
0.96	0.200	0.392
0.97	0.173	0.341
0.98	0.141	0.280
0.99	0.100	0.199
1.00	0.00	0.00

Throw Distance of Jet Exiting Side of Tank

Problem 6.65
Given: Air jet, disk of diameter $D=200 \mathrm{~mm}$, and manometer, Find: (a) Δh
(b) Force on disk
(d) sketch pressure distribution.
(c) Force on disk assuming $P_{\text {dish }}=P_{0}$

Solution: Apply Bernoulli, hydrostatic, and x component of momentum. $V=75 \mathrm{~m} / \mathrm{s}$ Basic equations: $\quad \frac{p_{0}}{\rho}=\frac{p}{\rho}+\frac{v^{2}}{z} \quad \Delta p=S G_{H_{2} O} g \Delta h$

$$
F_{S_{x}}+F_{B_{x}}^{A}=\frac{\partial}{\beta t} \int_{c v} u \rho d t+\int_{C S} u \rho \vec{v} \cdot d \vec{A}
$$

Assumptions: (1) Steady flow
(2) Incompressible flow
(3) Flow a long a streamline
(4) No friction
(5) Static liquid in manometer
(6) $F_{B_{x}}=0$
(7) Uniform flow at each section

Then

$$
\begin{aligned}
& \Delta p=p_{0}-p=\frac{1}{2} \rho v^{2}=S G \rho_{1+10} g \Delta h \\
& =\frac{\rho v^{2}}{2 S G \rho H_{2} O g}=\frac{1}{2} \times 1.23 \frac{\mathrm{~kg}}{m^{3}} \times(.75)^{2} \frac{\mathrm{~m}^{2}}{s^{2}} \times \frac{\mathrm{m}^{3}}{(1,75) 996} \\
& R_{x}=u_{1}\{-\rho v A\}+u_{2}\{\rho \vee A\}=-\rho v^{2} A \\
& u_{1}=v \quad u_{2}=0
\end{aligned}
$$

$$
\Delta h=\frac{\rho v^{2}}{256 \rho+H_{1} g}=\frac{1}{2} \times 1.23 \mathrm{~kg} \frac{(.75)^{2} m^{2}}{m^{2}} \times \frac{m^{3}}{(1.75) 999 \mathrm{~kg}^{2}} \times \frac{s^{2}}{9.81 \mathrm{~m}}=0.202 \mathrm{~m}(202 \mathrm{~mm}) \Delta h
$$

and
or

$$
K_{x}=-R_{x}=\rho v^{2} A=1.23 \frac{\mathrm{~kg}}{\mathrm{~m}^{3}} \times(75)^{2} \frac{\mathrm{~m}^{2}}{\mathrm{~s}^{2}} \cdot \frac{\pi}{4}(0.010)^{2} m^{2} \times \frac{\mathrm{N} \cdot \mathrm{~s}^{2}}{\mathrm{~kg} \cdot \mathrm{~m}}=0.543
$$

The pressure distribution is caused by streamline curvature:
Pressure is $p_{o}($ gage) at center.
Pressure is zero(gage) at edges.
Assuming p_{0} acts on entire forward surface, then

$$
\begin{aligned}
& k_{k}=\left(p_{0}-p_{\text {atm }}\right) A_{\text {disk }}=\frac{1}{2} p^{4^{2}} \frac{\pi)^{2}}{4} d s_{s k} \\
& k_{4}=\frac{1}{2} \times 1.23 \frac{f_{0}}{m^{3}} \times(-5)^{2} \frac{n^{2}}{s^{2}}+\frac{\pi}{4}(0.20)^{2} n^{2} \times \frac{N_{1} s^{2}}{b_{1} M^{2}}
\end{aligned}
$$

$V_{1}=217$ (a huge overestimate)

Given: Flow over a Quonset hut may be approwinated by the velocity field

$$
\begin{aligned}
& \text { approwinated by the velocity field } \\
& \vec{V}=v\left[1-\left(\frac{d}{r}\right)^{2}\right] \cos \theta \hat{e}_{r}-v\left[1+\left(\frac{\alpha}{r}\right)^{2}\right] \sin \theta \hat{e}_{\theta} \xrightarrow{?} \text { wit } 0 \leqslant \theta=2 \pi
\end{aligned}
$$

Te hut has a diantler, $D=6 \mathrm{~m}$, and a length, $L=18 \mathrm{~m}$
During a storm, $U=100 \mathrm{~km}$ the, $P_{\infty}=720 \mathrm{~mm} \mathrm{Hg}, T_{\infty}=5 \mathrm{C}$
Find: The net force tending to lift the hut off th s foundation.
Solution:
Basic equations: $\frac{P}{P}+\frac{V^{2}}{2}+g z=$ cons $\quad F=$ (PA
Assumptions: (1) steady flow
(2) incompressible flow
(3) frictionless flow
(4) flow along a streamline

Along the top half of he cylinder, $\bar{r}=0$ and $\vec{v}=-2 i v \sin i_{0}, 0 \leq s=2 \pi$ Applying the Bernoulli equation along the streamline ($r=0$)

From the ideal gas equation of state

$$
F_{R_{y}}=83.3 \mathrm{kN}
$$

Comment: The actual pressure distribution per the rear portion of the hut is not modelled well by ideal flow. The force calculated here is lower thar the actual force.

$$
\begin{aligned}
& F_{R_{y}}=\frac{5}{3} p v^{2} a L=\frac{5}{3} \times 1.20 \frac{g g}{n^{3}} \times\left(10^{5}\right)^{2} \frac{n^{2}}{h_{r^{2}}} \times \frac{\left(6 r^{2}\right.}{(300)^{2} s^{2}} \times 3 m \times 18 m \times \frac{\mathrm{N.5}}{\mathrm{~g} \cdot \mathrm{n}}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{p}{p}+\frac{y^{2}}{2}=\frac{p^{\infty}}{p}+\frac{p^{2}}{2} \\
& P-P_{\infty}=\frac{f}{2}\left(v_{\infty}^{2}-v^{2}\right)=\frac{p}{2}\left(v^{2}-4 v^{2} \sin ^{2} \theta\right)=\frac{P v^{2}}{2}\left(1-4 \sin ^{2} \theta\right) \\
& F_{R_{y}}=\int_{A}\left(P_{\infty}-P\right) d A \sin \theta=\int_{0}^{\pi}\left(P_{\infty}-P\right) \sin \theta \text { Lad } \\
& \left.=\int_{0}^{\pi} \frac{p u^{2}}{2}\left(4 \sin ^{2} \theta-1\right) \sin \theta h a d \theta=\frac{e^{2}}{2} a h\left\{4\left[\frac{\cos ^{3} \theta}{3}-\cot \theta\right]_{0}^{\pi}+\cos \theta\right]_{0}^{-x}\right\} \\
& =P \frac{u^{2}}{2} a \operatorname{an}\left\{4\left[\left(-\frac{1}{3}+1\right)-\left(\frac{1}{3}-1\right)\right]+(-1-1)\right\} \\
& F_{R_{y}}=p i^{2} a n\left(\frac{10}{3}\right)=\frac{5}{3} p U^{2} a L
\end{aligned}
$$

Problem 6.by
Gwen: Inflatable "bubble" structure modelled as circular semi- V_{u} cylinder:
dearnter. $D=30 \mathrm{~m}$
henge $i=70 \mathrm{~m}$
Pressure inside is $\varphi_{1}=\varphi_{\infty}+\Delta p$
where $\Delta f=p$ peg Δh and $\Delta h=b \mathrm{Mm}$
Pressure distribution over outer surface is averby

$$
\frac{P-P_{\infty}}{\frac{1}{2} p_{\infty}{ }^{2}}=1-4 \sin ^{2} \theta \quad \forall_{w}=6.0 \mathrm{fm} \text { K hr }
$$

Find: net vertical force exerted on the structure.
Solution:
The force due to pressure is $F=$ (Pdt).
Te vertical component of $d F_{1}$ is $d F_{I_{V}}=-P A F_{1} \sin \theta=-P R L d \theta \sin \theta$ The vertical component of $d F_{2}$ is $d F_{2 y}=P_{i} d A_{\sin }=P_{i} R L d \theta \sin \theta$
Then, reghecturig end effects

$$
\begin{aligned}
& d F_{i} V_{\text {net }}=\left(P_{i-P}\right) R L \sin \theta d \theta=\left(P_{\infty}+\Delta p-p\right) R L \sin \theta d \theta \\
& F_{U}=\int d F_{V}=\int_{0}^{\pi}\left[\Delta P-\left(P-P_{\infty}\right)\right] R L \sin \theta d \theta \\
& =\int_{0}^{\pi}\left[\Delta P-\frac{1}{2} p V_{\omega}^{2}\left(1-4 \sin ^{2} \theta\right)\right] R \sin \theta d \theta \\
& =R L\left\{\Delta P[-\cos \theta]_{0}^{\pi}-\frac{1}{2} p_{\omega}^{2}\left[-\cos \theta+4\left(\cos \theta-\frac{\cos ^{3} \theta}{3}\right)\right]_{0}^{\pi}\right. \\
& =R L\left\{2 \Delta P-\frac{1}{2} P V_{\omega}{ }^{2}\left[2+4\left(-2+\frac{2}{3}\right)\right]\right. \\
& F_{v}=R L\left\{2 \Delta p+\frac{5}{3} p V_{\omega}^{2}\right\}=R L\left\{2 p+\mu_{0} g \Delta h+\frac{5}{3} p V_{w}^{2}\right\} . \\
& F_{v}=15 m \times 70 \mathrm{~m}\left\{2 \times 99 \mathrm{~kg} \frac{\mathrm{H}^{3}}{} \times 9.81 \frac{\mathrm{~s}}{\mathrm{~s}^{2}} \times 0.01 \mathrm{~m}+\frac{5}{3} \times 1.23 \mathrm{gg} \frac{\mathrm{~m}^{3}}{} \times(60)^{2} \frac{\mathrm{~km}^{2}}{\mathrm{hr}^{2}}\right. \\
& \left.\times \frac{10 \mathrm{~m}^{2}}{\mathrm{~km}^{2}} \times \frac{\mathrm{hr}^{2}}{(36005)^{2}}\right\} \times \frac{\mathrm{Ni}^{2}}{\mathrm{~kg} \mathrm{~m}}
\end{aligned}
$$

$$
F_{v_{\text {net }}}=804 \mathrm{kN}
$$

Gwen: Low speed water flow through a circular tube of diameter, $D=50 \mathrm{~mm}$. Smoothly contoured plug of diameter, d $=40 \mathrm{~mm}$, is held in the end of the two where the water discharges to the atmosphere.
Frictional effects are to be neglected Velocity profiles may be assumed uniform al each section.
Find: (a) pressure measured by the
b) gage shown.
b) force required to hold plug

Solution:
Basic equation: $\quad \frac{e_{1}}{p}+\frac{1^{2}}{2}+g x_{0}=-9 \frac{1}{p}+\frac{1_{2}^{2}}{2}+g z_{2}$.

${ }^{4} x$

Assumptions: (i) steady flow
(4) flow along a streamline
(C) incompressible flow (5) $\mathrm{D}_{z}=0$
(3) no friction

From the Bernoulli equation $\quad p_{1}=\frac{1}{2} \rho\left(\nu_{2}^{2}-v_{3}^{2}\right)$
From continiwity for uniform flow, $V_{1} A_{1}=V_{2} A_{2}$.

$$
\therefore \psi_{2}=\psi_{1} \cdot \frac{A_{1}}{H_{2}}=V_{1} \frac{\nu^{2}}{\gamma^{2}-d^{2}}=V_{1} \frac{1}{1-\left(d y_{y}\right)^{2}}=7 \frac{M}{5}+\frac{1}{1-(0.8)^{2}}=\left.19.4 \mathrm{M}\right|_{\mathrm{s}}
$$

and

$$
p_{1}=\frac{1}{2} p\left(V_{2}^{2}-V^{2}\right)=\frac{1}{2} \times 999 \frac{\mathrm{~kg}}{m^{3}}\left[(19.4)^{2}-(\lambda)^{2}\right] \frac{m^{2}}{s^{2}} \times \frac{N_{1}^{2}}{\mathrm{~kg} \cdot n}=164 \mathrm{kpa} p^{m} \text { (gage) } p
$$

To determine the force required to hold the plug, apply the x-component of the momentum equation to the cl shown.

$$
\begin{aligned}
& F_{S_{4}}+y_{s y}^{\prime}=\overrightarrow{a t} \int_{c u}^{-\infty} u p d t+\int_{\text {es }}^{u} u \overrightarrow{p v} \cdot d \overrightarrow{d A} \\
& p_{1} g A_{1}-F=u_{1}\{-\dot{m}\}+u_{e}\{\dot{n}\}=\dot{m}\left(u_{2}-u_{1}\right)=p_{1} A_{1}\left(V_{2}-V_{1}\right) \\
& F=\log _{1} A_{1}-\rho V_{1} A_{1}\left(V_{2}-V_{1}\right) \\
& =164 \times 10^{3} \frac{N}{M^{2}} \times \frac{\pi}{4}(0.05) M^{2}-999 \frac{\lg }{m^{3}} \times \frac{7 m}{5} \times \frac{\pi}{4}(0.05)^{2} M^{2}(19.4-7) \frac{m}{5} \times \frac{N .5^{2}}{\frac{k g}{g}} \\
& F=322 N-170 N=152 N \text { (in directionshow) }
\end{aligned}
$$

Given: High-pressure air. forces a stream of water from a ting, rounded orifice, of area A, in a tank. The our expands slaty so the expansion may be considered isothermal.
Find: (a) algebraic expression for in leaving the tank (b) "" amlat if tank.
(c) expression for $M_{w}(t)$
(d) plot $M_{w}(t)$ for ot 440 min if $t_{0}=5 \mathrm{~m}^{3}, t_{t}=10 \mathrm{~m}^{3}$, $A=25 \mathrm{~mm}^{2}, 0 f_{0}=1 \mathrm{MPa}$
Solution:
Basic equations: $\frac{p}{p}+\frac{y^{2}}{2}+g z=\operatorname{con} t$

$$
0=\frac{\partial}{\partial t} C_{a v} p d t+\int_{c s} \vec{p} \cdot \overrightarrow{d H}
$$

Assumptions: (1) quasi steady flaw
(2) frictionless
(3) incompressible
(4) flow along a streamline

(s) uniform CRow at outlet.
(6) neglect gravity
(1) pe pate $\therefore p_{a b s}=p_{\text {gage }}$

Apply Bernoulli equation between liquid surface and orifice

$$
\begin{align*}
& V_{j}=\left[\frac{2\left(\rho-\rho_{a} t_{n}\right)}{\rho}\right]^{1_{2}}=\sqrt{\frac{2 \rho}{\rho}} \\
& i=\rho A \psi_{y}=\rho A \sqrt{\frac{2 \rho}{\rho}}=\sqrt{2 f \rho} R . \tag{in}
\end{align*}
$$

Rate of change of mass in tank is $\frac{d M}{d t}=\frac{\partial}{\partial t}$ (pdt

$$
\frac{d M}{d t}=p_{w} \frac{d t_{w}}{d t}=-p_{w} \frac{d t_{a i r}}{d t} \quad\left(t_{t}=t_{a i r}+t_{w}\right) \quad \frac{d M}{d T}
$$

For isothermal flow, $\frac{P}{P}=R T=\operatorname{con} t a n t=\frac{P_{0}}{\rho_{0}}$
where f is the air density and $p=M_{\text {air }} i t_{\text {ar }}$

$$
p . z=p_{0} t_{0} \quad \text { or } p=p_{0} \frac{t_{0}}{J^{\prime}}
$$

From continuity

$$
o=p_{w} \frac{d t_{w}}{d t}+\dot{m}
$$

and

$$
\begin{aligned}
& 0=-\rho_{\omega} \frac{d t_{a i}}{d t}+\sqrt{2 \rho^{2} \rho_{\omega}}
\end{aligned} \theta
$$

Separating variables, $\quad t^{1 / 2} d t=\sqrt{\frac{2 \rho_{0} t_{0}}{\rho}} A d I$
Integrating $\left.\frac{2}{3}+^{3 / 2}\right]_{t_{0}}^{+}=\sqrt{\frac{2 p_{0} t_{0}}{\rho_{\omega}}} \mathrm{AT}$

$$
\frac{2}{3}\left(t^{3 / 2}-t_{0}^{3 / 2}\right)=\frac{2 t_{0}^{3 / 2}}{3}\left[\left(\frac{t}{t_{0}}\right)^{3 / 2}-1\right]=\sqrt{\frac{2-p_{0} t_{0}}{p_{\omega}} A t}
$$

Then

$$
\begin{aligned}
\left(\frac{t}{t_{0}}\right)^{3 / 2} & =\left[1+\frac{3}{2 t_{0}^{3 / 2} \sqrt{\frac{2 \rho_{0} t_{0}}{\rho_{\omega}}} A t}\right] \\
\frac{t_{0}}{t_{0}} & =\left[1+1.5 \sqrt{2-\rho_{0}} \frac{A t}{\rho_{\omega}} \frac{t_{0}}{f_{0}}\right.
\end{aligned}
$$

But $M_{\omega}=p_{\omega}\left(t_{t}-t\right)=p t_{0}\left\{\frac{v_{t}}{t_{0}}-\frac{t_{0}}{t_{0}}\right\}$
$\therefore \mu_{\omega}=p_{\omega}^{+} \circ\left\{\frac{\nu_{t}}{t_{0}}-\left[1+1.5 \sqrt{\frac{2-p_{0}}{p_{\omega}} \frac{A t^{2 / 3}}{t_{0}}}\right]\right\}$

$\boldsymbol{t}(\mathrm{s})$	$M_{w}(\mathrm{~kg})$
0	4995
2	4862
4	4730
6	4600
8	4472
10	4345
12	4220
14	4096
16	3973
18	3851
20	3731
22	3612
24	3494
26	3377
28	3260
30	3145
32	3031
34	2918
36	2806
38	2695
40	2584

Given: High-pressure air forces a stream of water frog a tiny rounded orifice, of area A, in a tank. The air expands rapidly so the expansion may be. treated as aduabatte.

Find: (a) algebraic expression for in leaunig te tank.
(b) " " "M " hark (c) expression for $M_{w}(t)$; plot Malt) for $0<t h 30 \mathrm{~m}$

Solution:

$$
f t_{0}=5 m^{3}, t_{t}=10 \mathrm{~m}^{3}, A=25 \mathrm{~mm}^{2}, \varphi_{0}=1 \mathrm{MPa}
$$

Basic equations: $\frac{e}{e}+\frac{v^{2}}{2}+g_{d}=$ cont.

$$
0=\frac{2}{2 t} \int_{c u l} p d t+\int_{c s} \vec{p} \cdot d \overrightarrow{d H}
$$

Assumptions: (1) quasi steady flow
$V_{s} \ll /$
(2) frictionless
(3) incompressible

(4) flow along a streamline
(5) uniform Alow at outlet
(6) neglect gravity
(7) PS Path $\therefore F_{\text {abs }}=p_{\text {gage }}$

Apply Bernoulli equation between liquid surface and orifice

$$
\begin{aligned}
& \nu_{j}=\left[\frac{2\left(p-\rho_{a t r}\right)}{\rho}\right]^{\prime / 2}=\sqrt{\frac{2 v p}{p}} \\
& i=p A V_{j}=p A \sqrt{\frac{2 p}{p}}=\sqrt{2 P \rho} A
\end{aligned}
$$

Rate of change of mass in tank is $\frac{d r l}{d t}=\frac{2}{2 t} \int p d t$

$$
\frac{d M}{d t}=\rho_{w} \frac{d t_{w}}{d t}=-\rho_{w} \frac{d \forall_{\text {air }}}{d t} \quad\left(v_{t}=t_{a i r}+t_{\omega}\right) \quad \frac{d n}{d t}
$$

For adiabatic expansion of air $p / p^{2}=$ constant
Since mass of air is constant, $P_{0}+t_{0}^{\ell}=p t$
From continuity, $\quad-p_{\omega} \frac{d t_{\text {air }}}{d t}+\sqrt{2 p^{p}} \rho_{\omega} A=0$

$$
\begin{aligned}
& \frac{d \psi_{\text {ave }}}{d t}=\frac{A \sqrt{2}}{\sqrt{\rho_{\omega}}} p^{1_{2}}=A \sqrt{\frac{2}{\rho_{0}}}\left[\frac{\rho_{0}+t_{0}^{t}}{\theta^{t}}\right]^{1_{2}}=A \sqrt{\frac{2 p_{0} j_{0}^{t}}{\rho_{\omega}}} v^{-t / 2} \\
& t^{d / 2} d t=A \sqrt{\frac{2-\rho_{0} t_{0}}{\rho_{\omega}}} d t=c d t \quad \text { where } c=A \sqrt{\frac{2 p_{0} t_{0}^{\prime}}{\rho_{\omega}}}
\end{aligned}
$$

Integrating

$$
\left.\frac{2}{(k+2)} V^{\frac{k}{2}+1}\right]_{t_{0}}^{t}=c t
$$

Open-Ended Problem Statement: Describe the pressure distribution on the exterior of a multistory building in a steady wind. Identify the locations of the maximum and minimum pressures on the outside of the building. Discuss the effect of these pressures on infiltration of outside air into the building.

Discussion: A multi-story building acts as a bluff-body obstruction in a thick atmospheric boundary layer. The boundary-layer velocity profile causes the air speed near the top of the building to be highest and that toward the ground to be lower.
Obstruction of air flow by the building causes regions of stagnation pressure on upwind surfaces. The stagnation pressure is highest where the air speed is highest. Therefore the maximum surface pressure occurs near the roof on the upwind side of the building. Minimum pressure on the upwind surface of the building occurs near the ground where the air speed is lowest.
The minimum pressure on the entire building will likely be in the low-speed, low-pressure wake region on the downwind side of the building.
Static pressure inside the building will tend to be an average of all the surface pressures that act on the outside of the building. It is never possible to seal all openings completely. Therefore air will tend to infiltrate into the building in regions where the outside surface pressure is above the interior pressure, and will tend to pass out of the building in regions where the outside surface pressure is below the interior pressure. Thus generally air will tend to move through the building from the upper floors toward the lower floors, and from the upwind side to the downwind side.

Open-Ended Problem Statement: Imagine a garden hose with a stream of water flowing out through a nozzle. Explain why the end of the hose may be unstable when held a half meter or so from the nozzle end.

Discussion: Water flowing out of the nozzle tends to exert a thrust force on the end of the hose.
The thrust force is aligned with the flow from the nozzle and is directed toward the hose.
Any misalignment of the hose will lead to a tendency for the thrust force to bend the hose further. This will quickly become unstable, with the result that the free end of the hose will "flail" about, spraying water from the nozzle in all directions.
This instability phenomenon can be demonstrated easily in the backyard. However, it will tend to do least damage when the person demonstrating it is wearing a bathing suit!

Open-Ended Problem Statement: An aspirator provides suction by using a stream of water flowing through a venturi. Analyze the shape and dimensions of such a device. Comment on any limitations on its use.

Discussion: The basic shape of the aspirator channel should be a converging nozzle section to reduce pressure followed by a diverging diffuser section to promote pressure recovery. The basic shape is that of a venturi flow meter.
If the diffuser exhausts to atmosphere, the exit pressure will be atmospheric. The pressure rise in the diffuser will cause the pressure at the diffuser inlet (venturi throat) to be below atmospheric.
A small tube can be brought in from the side of the throat to aspirate another liquid or gas into the throat as a result of the reduced pressure there.
The following comments can be made about limitations on the aspirator:

1. It is desirable to minimize the area of the aspirator tube compared to the flow area of the venturi throat. This minimizes the disturbance of the main flow through the venturi and promotes the best possible pressure recovery in the diffuser.
2. It is desirable to avoid cavitation in the throat of the venturi. Cavitation alters the effective shape of the flow channel and destroys the pressure recovery in the diffuser. To avoid cavitation, the reduced pressure must always be above the vapor pressure of the driver liquid.
3. It is desirable to limit the flow rate of gas into the venturi throat. A large amount of gas can alter the flow pattern and adversely affect pressure recovery in the diffuser.
The best combination of specific dimensions could be determined experimentally by a systematic study of aspirator performance. A good starting point probably would be to use dimensions similar to those of a commercially available venturi flow meter.

Given: Reentrant orifice in the side of a large tank. Pressure along the tare walls is essentially hydrostatic.
Find: the contraction coefficient,

$$
c_{c}=A_{s} \mid A_{0}
$$

Solution:
Apply the t-conponext of the momentum equation to the ckstown

$$
F_{s_{-}}+5 e_{-}=\frac{2}{3 t} \int_{c_{1}}^{\alpha 1} u p d+d_{d}+C_{c s} u p \vec{v} \cdot d \vec{R}
$$

Assumptions: (4) steady flow
(2) uniform flow al jet exit.
(3) hydrostatic pressure varation across cs (1). V, wo
(4) nonerturn fut across horizontal portion of (5) $p=$ constañgligible.

Ten
(5) $p=$ constant g

$$
\begin{aligned}
& \int_{R_{0}}^{-p} d A_{1}=\dot{m} V_{j}=p_{j} A_{j} V_{j}=p R_{j} V_{j}^{2} . \\
& -\bar{P}_{1} A_{0}=p g^{\prime} A_{0}=p A_{j} \nu_{\frac{1}{2}}^{2} \\
& \therefore \frac{A_{0}}{A_{3}}=\frac{V^{2}}{g h_{1}} .
\end{aligned}
$$

Apply the Bernoulli equation along the eanturl streaming from (I) to Re jet ext. olga:

Assumptions: (b) frictionless flow

$$
\begin{array}{r}
p_{1}=\rho h=p \frac{v^{2}}{2} \\
\therefore \quad \frac{v^{2}}{2}=g h
\end{array}
$$

and

$$
\begin{align*}
& A_{0}=\frac{V_{j}^{2}}{A^{h}}=2 \\
& \therefore C_{c}=\frac{A_{j}}{A_{0}}=\frac{1}{2} \tag{c}
\end{align*}
$$

Problem 6.75

Carefully sketch the energy grade lines (EGL) and hydraulic grade lines (HGL) for the system shown in Fig. 6.6 if the pipe is horizontal (i.e., the outlet is at the base of the reservoir), and a water turbine (extracting energy) is located at (a) point (2), or (b) at point (3). In Chapter 8 we will investigate the effects of friction on internal flows. Can you anticipate and sketch the effect of friction on the EGL and HGL for cases (a) and (b)?
(a) Note that the effect of friction would be that the EGL would tend to drop: suddenly at the contraction, gradually in the large pipe, more steeply in the small pipe. The HGL would then "hang" below the HGL in a manner similar to that shown.

(b) Note that the effect of friction would be that the EGL would tend to drop: suddenly at the contraction, gradually in the large pipe, more steeply in the small pipe. The HGL would then "hang" below the HGL in a manner similar to that shown.

Problem 6.76

Carefully sketch the energy grade lines (EGL) and hydraulic grade lines (HGL) for the system shown in Fig. 6.6 if a pump (adding energy to the fluid) is located at (a) point (2), or (b) at point (3), such that flow is into the reservoir. In Chapter 8 we will investigate the effects of friction on internal flows. Can you anticipate and sketch the effect of friction on the EGL and HGL for cases (a) and (b)?
(a) Note that the effect of friction would be that the EGL would tend to drop from right to left: steeply in the small pipe, gradually in the large pipe, and suddenly at the expansion. The HGL would then "hang" below the HGL in a manner similar to that shown.

(b) Note that the effect of friction would be that the EGL would tend to drop from right to left: steeply in the small pipe, gradually in the large pipe, and suddenly at the expansion. The HGL would then "hang" below the HGL in a manner similar to that shown.

Given: Compressed air is used to accelerate water in tube. Velocity in tube is uniform at any section.

$$
y=251 \frac{s e c h}{s} \text { div } l_{\text {at }}=2.5 \mathrm{~m} \mathrm{~s}^{2}
$$

Find: Pressure in tank for given conditions
Solution:
Basic equation: $\quad \frac{e_{1}}{\rho}+\frac{v_{1}^{2}}{2}+g z_{1}=\frac{e_{2}}{\rho}+\frac{v_{2}^{2}}{2}+g z_{2}+\int_{1}^{2} \frac{\partial v_{s}}{\partial t} d s$
Assumptions: (1) frictionless flow (2) incompressible flow
(3) flow along a streamline.
(4) $p_{2}=P_{a t m}$.

$$
-p_{1 g}=p_{1}-p_{a t n}=p\left[\frac{y_{2}}{2}-g\left(z_{1}-z_{2}\right)\right]+p \int_{1}^{2} \frac{\partial v_{3}}{\partial t} d s
$$

From continuity, for incompressible flow in a constant area tube , $y_{2} S_{3}=4$.

$$
\begin{aligned}
& \therefore f_{1} g=p\left[\frac{v_{2}^{2}}{2}-g\left(z_{1}-z_{2}\right)+\left(\frac{d y}{d t}\right) \int_{0}^{2} d s\right] \\
&=p\left[\frac{v_{2}}{2}-g\left(z_{1}-z_{2}\right)+\left(\frac{d N}{d t}\right)\right] \\
&=999 \frac{k^{2}}{m^{3}}\left[\frac{1}{2}+\left(\frac{2 n}{s}\right)^{2}-9.81 \frac{n}{s^{2}} \times 1.5 n+2.5 \frac{m}{s^{2}} \times 10 n\right] \times \frac{N . s^{2}}{g^{\prime} . m} \\
& P_{1}=12.3 \operatorname{con}\left(m^{2}\right.
\end{aligned}
$$

Problem *6.78

If the water in the pipe in Problem 6.77 is initially at rest and the air pressure is 20 kPa (gage), what will be the initial acceleration of the water in the pipe?

Given: Data on water pipe system

Find: Initial water acceleration

Solution

The given data is $\quad \mathrm{h}=1.5 \cdot \mathrm{~m} \quad \mathrm{~L}=10 \cdot \mathrm{~m} \quad \mathrm{p}_{\text {air }}=20 \cdot \mathrm{kPa} \quad \rho=999 \cdot \frac{\mathrm{~kg}}{\mathrm{~m}^{3}}$
The simplest approach is to apply Newton's 2 nd law to the water in the pipe. The net horizontal force on the water in the pipe at the initial instant is $\left(p_{\mathrm{L}}-p_{\mathrm{L}}\right) A$ where p_{L} and p_{R} are the pressures at the left and right ends and A is the pipe cross section area (the water is initially at rest so there are no friction forces)

$$
\mathrm{m} \cdot \mathrm{a}_{\mathrm{x}}=\Sigma \mathrm{F}_{\mathrm{x}} \quad \text { or } \quad \rho \cdot \mathrm{A} \cdot \mathrm{~L} \cdot \mathrm{a}_{\mathrm{x}}=\left(\mathrm{p}_{\mathrm{L}}-\mathrm{p}_{\mathrm{R}}\right) \cdot \mathrm{A}
$$

Also, for no initial motion $p_{\mathrm{L}}=\mathrm{p}_{\mathrm{air}}+\rho \cdot \mathrm{g} \cdot \mathrm{h} \quad \mathrm{p}_{\mathrm{R}}=0 \quad$ (gage pressures)

Hence

$$
\begin{gathered}
\mathrm{a}_{\mathrm{x}}=\frac{\mathrm{p}_{\mathrm{air}}+\rho \cdot \mathrm{g} \cdot \mathrm{~h}}{\rho \cdot \mathrm{~L}}=\frac{\mathrm{p}_{\mathrm{air}}}{\rho \cdot \mathrm{~L}}+\mathrm{g} \cdot \frac{\mathrm{~h}}{\mathrm{~L}}=20 \cdot 10^{3} \cdot \frac{\mathrm{~N}}{\mathrm{~m}^{2}} \times \frac{\mathrm{m}^{3}}{999 \cdot \mathrm{~kg}} \times \frac{1}{10 \cdot \mathrm{~m}} \times \frac{\mathrm{kg} \cdot \mathrm{~m}}{\mathrm{~N} \cdot \mathrm{~s}^{2}}+9.81 \cdot \frac{\mathrm{~m}}{\mathrm{~s}^{2}} \times \frac{1.5}{10} \\
\mathrm{a}_{\mathrm{x}}=3.47 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}
\end{gathered}
$$

Given: Flow between parallel disks shown is started from rest at $t=0$. Te reservoir level is maintained constant; $r_{1}=50 \mathrm{~mm}$.
Find: Rate of change of volume flow, dalai, at two
Solution:
Apply the unsteady Bernoulli equation from the surface to he et.

$$
\begin{aligned}
\frac{p_{2}}{\rho}+\frac{V^{2}}{2}+g z_{s} & =\frac{p_{2}}{p}+\frac{V_{2}^{2}}{2}+\frac{V_{0}}{0}+C^{2}, \frac{\partial \nu_{s}}{\partial t} d s \\
g H & =\frac{V_{2}^{2}}{2}+\int_{1}^{2} \frac{\partial V_{s}}{\partial t} d s .
\end{aligned}
$$

Assumptions: (i) frictionless flow
(a) incompressible flow
(3) flow along a streamline.

For uniform flaw at any section between the plates, for $r \geq r$, the volume flow rate is gwen by

$$
Q=\int \vec{V} \cdot d \vec{a}=V_{r} 2 \pi r h \quad \text { and } V_{r}=\frac{Q}{2 \pi h}
$$

At the cit $v_{e}=Q l_{2 \pi r i h}$
Assume that the rate of charge of fluid velocity in the reservoir (out to $r=r$) is negligible. Ten

$$
\int_{1}^{2} \frac{\partial V_{s}}{\partial t} d s=\frac{\partial}{\partial t} \int_{1}^{2} V_{r} d r=\frac{\partial}{\partial t} \int_{1}^{2} \frac{Q}{2 \pi h} \frac{d r}{r}=\frac{\left.\ln R\right|_{r_{1}}}{2 \pi h} \frac{d \theta}{d t}
$$

Ten substituting into the unsteady Bemoulli equation, we detain

$$
g H=\frac{Q^{2}}{8 \pi^{2} R^{2} h^{2}}+\frac{\ln R l_{r_{1}}}{2 \pi h} d Q
$$

At $t=0, Q=0$ and

$$
\begin{align*}
\frac{d \theta}{d t} & =\frac{2 \pi h g H}{\ln R R_{1}} \\
& =2 \pi \times 0.0015 m \times 9.81 \frac{m}{s^{2}} \times \ln \times \frac{1}{\operatorname{tn} \frac{300}{50}} \\
\frac{d \theta}{d t} & =0.0516 \mathrm{~m}^{3} / \mathrm{s} / \mathrm{s} \tag{do}
\end{align*}
$$

Given: U-tube manometer of constant area as shown.
Manometer fluid is initially deflected and then released

Find: a differential equation for l
 as a function of time

Solution
Basic equation: $\quad \frac{P_{1}}{e}+\frac{V_{1}^{2}}{2}+g z_{0}=\frac{P_{2}}{\rho}+\frac{V_{2}^{2}}{2}+g j^{2}+\int_{1}^{2} \frac{\partial V_{s}}{\partial t} d s$
Asounplions: (1) incompressible flow
(2) frictionless flow
(3) flow along a streamline

Since $P_{1}=P_{2}=P_{a i n}$ and $V_{1}^{2}=V_{2}^{2}$, then

$$
g\left(z_{1}-z_{2}\right)=\int_{1}^{2} \frac{\partial v_{s}}{\partial t} d s
$$

Let $h=$ total lough of column

$$
t=\text { deflection }
$$

Then $d_{s}=d h$

$$
\begin{aligned}
& d s=V=\frac{d l}{d t} \\
& \therefore \quad z g l=C_{b}^{2} \frac{\partial V}{\partial t} d L=\frac{\partial V}{\partial t} \int_{1}^{2} d h=L^{2} \frac{\partial V}{\partial t} .
\end{aligned}
$$

Since $V=-\frac{d t}{d t}$

$$
\operatorname{agl}=h \frac{\partial V}{\partial t}=-h \frac{d^{2} l}{d t^{2}}
$$

Finally $\quad \frac{d^{2} l}{d t^{2}}+\frac{2 g l}{L}=0$

Problem *6.81

If the water in the pipe of Problem 6.77 is initially at rest, and the air pressure is maintained at 10 kPa (gage), derive a differential equation for the velocity V in the pipe as a function of time, integrate, and plot V versus t for $t=0$ to 5 s .

Given: Data on water pipe system

Find: Velocity in pipe; plot

Solution

The given data is $\quad \mathrm{h}=1.5 \cdot \mathrm{~m} \quad \mathrm{~L}=10 \cdot \mathrm{~m} \quad \mathrm{p}_{\text {air }}=10 \cdot \mathrm{kPa} \quad \rho=999 \cdot \frac{\mathrm{~kg}}{\mathrm{~m}^{3}}$

The governing equation for this flow is the unsteady Bernoulli equation

$$
\begin{equation*}
\frac{p_{1}}{\rho}+\frac{V_{1}^{2}}{2}+g z_{1}=\frac{p_{2}}{\rho}+\frac{V_{2}^{2}}{2}+g z_{2}+\int_{1}^{2} \frac{\partial V}{\partial t} d s \tag{6.21}
\end{equation*}
$$

State 1 is the free surface; state 2 is the pipe exit. For state $1, V_{1}=0, p_{1}=p_{\text {air }}$ (gage), z_{1} $=h$. For state $2, V_{2}=V, p_{2}=0$ (gage), $z_{2}=0$. For the integral, we assume V is negligible in the reservoir

Hence $\quad \frac{\mathrm{p}_{\text {air }}}{\rho}+\mathrm{g} \cdot \mathrm{h}=\frac{\mathrm{V}^{2}}{2}+\int_{0}^{\mathrm{L}} \frac{\partial}{\partial \mathrm{t}} \mathrm{V} d \mathrm{dx}$

At each instant V has the same value everywhere in the pipe, i.e., $V=V(t)$ only

Hence $\quad \frac{\mathrm{p}_{\text {air }}}{\rho}+\mathrm{g} \cdot \mathrm{h}=\frac{\mathrm{V}^{2}}{2}+\mathrm{L} \cdot \frac{\mathrm{dV}}{\mathrm{dt}}$

The differential equation for V is then

$$
\frac{\mathrm{dV}}{\mathrm{dt}}+\frac{1}{2 \cdot \mathrm{~L}} \cdot \mathrm{~V}^{2}-\frac{\left(\frac{\mathrm{p}_{\text {air }}}{\rho}+\mathrm{g} \cdot \mathrm{~h}\right)}{\mathrm{L}}=0
$$

Separating variables

$$
\frac{\mathrm{L} \cdot \mathrm{dV}}{\left(\frac{\mathrm{p}_{\mathrm{air}}}{\rho}+\mathrm{g} \cdot \mathrm{~h}\right)-\frac{\mathrm{V}^{2}}{2}}=\mathrm{dt}
$$

Integrating and applying the IC that $\mathrm{V}(0)=0$ yields, after some simplification

$$
\mathrm{V}(\mathrm{t})=\sqrt{2 \cdot\left(\frac{\mathrm{p}_{\text {air }}}{\rho}+\mathrm{g} \cdot \mathrm{~h}\right)} \cdot \tanh \left[\sqrt{\frac{\left(\frac{\mathrm{p}_{\mathrm{air}}}{\rho}+\mathrm{g} \cdot \mathrm{~h}\right)}{2 \cdot \mathrm{~L}^{2}}} \cdot \mathrm{t}\right]
$$

This function is plotted in the associated Excel workbook. Note that as time increases V approa

$$
\mathrm{V}(\mathrm{t})=7.03 \frac{\mathrm{~m}}{\mathrm{~s}}
$$

The flow approaches 95% of its steady state rate after about 5 s

Problem *6.81 (In Excel)

If the water in the pipe of Problem 6.77 is initially at rest, and the air pressure is maintained at 10 kPa (gage), derive a differential equation for the velocity V in the pipe as a function of time, integrate, and plot V versus t for $t=0$ to 5 s .

Given: Data on water pipe system

Find: Plot velocity in pipe

Solution

The given data is

h	$=$	1.5	m
L	$=$	10	m
ρ	$=999$	$\mathrm{~kg} / \mathrm{m}^{3}$	
$p_{\text {air }}$	$=$	10	kPa

$$
\mathrm{V}(\mathrm{t})=\sqrt{2 \cdot\left(\frac{\mathrm{p}_{\mathrm{air}}}{\rho}+\mathrm{g} \cdot \mathrm{~h}\right)} \cdot \tanh \left[\sqrt{\frac{\left(\frac{\mathrm{p}_{\mathrm{air}}}{\rho}+\mathrm{g} \cdot \mathrm{~h}\right)}{2 \cdot \mathrm{~L}^{2}} \cdot \mathrm{t}}\right]
$$

$\boldsymbol{t} \mathbf{(s)}$	$\boldsymbol{V} \mathbf{(m / s)}$
0.00	0.00
0.25	0.62
0.50	1.22
0.75	1.81
1.00	2.38
1.25	2.91
1.50	3.40
1.75	3.85
2.00	4.26
2.25	4.63
2.50	4.96
2.75	5.26
3.00	5.51
3.25	5.73
3.50	5.93
3.75	6.09
4.00	6.24
4.25	6.36
4.50	6.46
4.75	6.55
5.00	6.63

The flow approaches 95% of its steady state rate after about 5 s

Gwen: Two circular diss of radius, R, are separated by a distance, b.
Upper disc moves toward the lower one at speed V.
Fluid between discs is incompressible. and is sapeezed out radially
Assume frictionless flow and uniform
 radial flow and any radial section
Pressure surrounding disc is al Pate
Find: gage pressure at $5=0$
Solution:
Basic equation:

$$
\begin{aligned}
& \frac{p_{1}}{\rho}+\frac{v_{1}^{2}}{2}+g g_{1}=\frac{p_{2}}{\rho}+\frac{v_{2}^{2}}{2}+g z_{2}+T_{1}^{2} \frac{\partial v_{s}}{\partial t} d s \\
& o=\frac{\partial}{\partial t} \int_{w} p d t+\int_{s} p \vec{v} \cdot d \vec{A}
\end{aligned}
$$

Assumptions: in incompressible flow
(2) frictionless flow
(3) Flow along a streamline
(5) uniform redial flow at any
(5) neglect elevation charges.

$$
\begin{aligned}
& =\rho \pi r^{2} \frac{\partial b}{\partial t}+p V_{r} 2 \pi r b \text {. But } \frac{\partial b}{\partial t}=-V \\
& \therefore 0=-p r r^{2} V+p t_{r} 2 \pi r b \quad \text { and } V_{r}=V \frac{r}{a b}
\end{aligned}
$$

Applying the Bernoulli equation between point $(1)(r=r)$ and point (s) $(r=R)$

$$
\begin{aligned}
P_{1}-P_{2} & =\frac{f}{2}\left[V_{2}^{2}-V_{1}^{2}\right]+\left(\int_{r}^{R} p \frac{\partial V_{r}}{\partial t} d r \quad N o w, \frac{\partial V_{r}}{\partial t}=\frac{2}{\partial t}\left(V \frac{r}{2 b}\right)=\frac{r v}{2}\left(-\frac{1}{b^{2}} \frac{d b}{d t}\right)=\frac{V^{2}}{2 b^{2}}\right. \\
& =\frac{p}{2}\left[\left(\frac{V R}{2 b}\right)^{2}-\left(\frac{V r}{2 b}\right)^{2}\right]+\int_{r}^{R} P \frac{V^{2} r}{2 b^{2}} d r \\
& \left.=\frac{p V^{2}}{8 b^{2}}\left[R^{2}-r^{2}\right]+\frac{P V^{2}}{4 b^{2} r^{2}}\right]_{r}^{R}=\frac{p V^{2}}{8 b^{2}}\left[R^{2}-r^{2}\right]+\frac{p V^{2}}{4 b^{2}}\left[R^{2}-r^{2}\right] \\
P_{1}-P_{a t n} & =\frac{3}{8} \frac{p V^{2}}{b^{2}}\left[R^{2}-r^{2}\right]=\frac{3}{8} p \frac{p V^{2} R^{2}}{b^{2}}\left[1-\left(\frac{r}{R}\right)^{2}\right]
\end{aligned}
$$

When $r=0 \quad P_{1}=P_{e}$

$$
\therefore P_{c}-P_{a t m}=\frac{3}{8} \frac{p v^{2} R^{2}}{b^{2}}
$$

Given: A cylindrical tank of diameter, $D=50 \mathrm{~mm}$, drains through an opening, $d=5 \mathrm{~mm}$, in the body of the tain. If the flow is assured to be quasi-sleady, the spend of the liquid leaving the tank may be approximated by $y=\sqrt{2 a y}$, where y is the height from tank both on to the free surface.
Find: Using the bernoulli equation for unsteady flow along a streamline, evabate the minimum diameter ratio, $\overline{\text { ld }}$, required to justify' the assumption Rat flow from the tank is quasi-steady.
Solution:
For incompressible, frictionless flow along a streamline, the unsteady Bernoulli equation is

$$
\begin{aligned}
& \frac{p_{1}}{\rho}+\frac{\nu_{1}^{2}}{2}+g y_{1}=\frac{p_{2}}{\rho}+\frac{v_{2}^{2}}{2}+g y_{2}+\left(_{1}^{2} \frac{2 v_{3}}{\partial t} d y\right. \\
& p_{1}=p_{2}=p_{\text {an }} \quad, y_{2}=0
\end{aligned}
$$

From continuity $V_{1} A_{1}=V_{2} A_{2}=V_{i} A_{j}$

$$
\begin{aligned}
& \therefore \quad \frac{1}{2} V_{3}^{2}\left(\frac{R_{j}}{A_{1}}\right)+g y_{1}=\frac{1}{2} V_{J}^{2}+\int_{1}^{2} \frac{2 V_{3}}{2 t} d y \\
& \text { or, } \quad \underline{y}=\frac{1}{2} \psi_{i}^{2}\left[1-\left(\frac{A_{j}}{H_{1}}\right)^{2}\right]+\left(\int_{1}^{2} \frac{\partial \psi_{s}}{\lambda t} d y\right.
\end{aligned}
$$

If we assume quasi-steady flow, we soy that
(, $\frac{2 V_{5}}{2 t} d y$ is negligible and hence $\frac{\overline{2 g y}}{y_{-}^{2}\left[1-A R^{2}\right]}=1 \quad$ where $A P=\frac{R_{j}}{F_{1}}$
Now, $\left(\int_{1}^{2} \frac{\partial t}{\partial t} z y \frac{d t}{d t}=y \frac{d t_{1}}{d t}=y \frac{d}{d t}\left(\psi_{i} \frac{R_{j}}{A_{1}}\right)=y \frac{A_{j}}{A_{1}} \frac{d t_{j}}{d t}\right.$
Thus for the assumption to be reasonable we must have

$$
\left|y \frac{A_{j}}{A_{1}} \frac{d \psi_{j}}{d t}\right| \ll g y \quad \text { or } \quad\left|\frac{A_{j}}{A_{1}} \frac{d \psi_{j}}{d t}\right| \ll g
$$

Under the assumption of quasi-steady flow

$$
V_{j}=\left[2 g y \frac{1}{\left(1-R R^{2}\right)}\right]^{1 / 2} \text { where } A R=\left.A_{i}\right|_{A_{1}}
$$

then,

$$
\frac{d v_{i}}{d t}=\sqrt{\frac{2 g}{\left(1-A R^{2}\right)}} \frac{1}{2 \sqrt{y}} \frac{d y}{d t}=\frac{d y}{d t} \sqrt{\frac{9}{2 y\left(1-A l^{2}\right)}}
$$

Since

$$
\begin{aligned}
& \frac{d y}{d t}=-V_{1}=-V_{j} \frac{R_{i}}{A_{1}} \text {, Hen } \\
& \frac{d d_{i}}{d t}=-H_{i} \frac{A_{i}}{R_{1}} \sqrt{\frac{g}{2 y\left(1-A R^{2}\right)}}=-\frac{A_{j}}{A_{1}} \sqrt{\frac{V^{2}\left(1-A R^{2}\right)}{2 q y}} \frac{g}{\left(1-A e^{2}\right)}
\end{aligned}
$$

and

$$
\frac{d N_{1}}{d t}=-\frac{A_{i}}{A_{1}} \frac{9}{\left(1-A R^{2}\right)}
$$

Problem *6.83 cont'd
For $\left|\frac{A_{j}}{A_{1}} \frac{d y_{j}}{d t}\right| \ll g$, then $\left(\frac{A_{i}}{A_{1}}\right)^{2}\left(\frac{1}{1}-A e^{2}\right) \ll 1$
If we take

$$
\left(\frac{R_{1}}{F_{1}}\right)^{2} \frac{1}{\left(1-R^{2}\right)} \approx 0.01
$$

then,
and

$$
\begin{aligned}
1.01\left(\frac{R_{1}}{A_{1}}\right)^{2} & =0.01 \\
\frac{R_{i}}{F_{1}} & =0.0995
\end{aligned}
$$

or

$$
\frac{D_{j}}{D_{1}}=\left(\frac{D_{i}}{A_{1}}\right)^{1 / 2}=0.32
$$

In problem $\left.4.34, D_{j} D_{1}=d /\right\rangle=0.1$ and hence the assumption of quasi-steady flow is valid.

Given: Two vortex flows with velocity fields

$$
\vec{V}_{1}=\omega r \hat{e}_{\theta}
$$

$$
\vec{V}_{2}=\frac{k}{2 \pi} \hat{e}_{\theta}
$$

$\begin{aligned} & \text { Determine: } \text { if the Bernoulli equation can be applied between } \\ & \text { different radii for each flow }\end{aligned}$
Solution: Since $t_{r}=0$, the streamlines are concatric circles
In order for it to be possible to apply the Bernoulli equation between different radii, it is necessary that the flow be irrotational.

Basic equation: $\vec{\omega}=\frac{1}{2} \nabla \vec{V}$
Flow (i)

$$
\begin{aligned}
& \nabla \vec{N}=\left(\hat{e}_{T} \overrightarrow{\partial r}+\hat{e}_{\theta} \frac{1}{r} \vec{\partial} \theta+\hat{k}_{\hat{j}}^{j_{z}}\right) \times w r \hat{e}_{\theta} \\
& =\hat{e}_{r} \times \hat{e}_{\theta} \frac{\partial}{\partial r}(\omega r)+\hat{e}_{r} \times \omega r \frac{2 \hat{e}_{0}^{0}}{\partial r}+\hat{e}_{\theta} \hat{e}_{0} \frac{1}{i} \frac{\partial(\omega r)}{\partial \theta}+\hat{e}_{\theta} \times \frac{w r}{\Gamma} \frac{\partial \hat{e}_{\theta}}{\partial \theta} \\
& =\hat{k}_{j} \omega_{r}+\hat{e}_{\theta} \times \omega\left(-\hat{e}_{r}\right) \\
& \vec{\nabla} \vec{N}=2 \omega \vec{k}
\end{aligned}
$$

\therefore Flow (1) is rotational and Bernoulli equation cannot be applied between different radii.

Flow (2)

$$
\begin{aligned}
& \nabla \times \vec{V}_{2}=\left(\hat{e}_{r} \frac{\partial}{\partial r}+\hat{e}_{\theta} \frac{1}{r} \frac{\partial}{\partial \theta}+\hat{e^{2}} \frac{\partial}{\partial z}\right) \times \frac{k}{2 \pi c} \hat{e}_{\theta} \\
& =\hat{e}_{r} \times \hat{e}_{0} \frac{\partial}{\partial r}\left(\frac{k}{2 \pi r}\right)+\hat{e}_{r} \times\left(\frac{k}{2 \pi r}\right) \frac{\partial \hat{e}}{2 r}+\hat{e}_{\theta}+\hat{e}_{0}^{2} \frac{0}{r} \frac{\partial}{\partial \theta}\left(\frac{k}{2 \pi r}\right)+\hat{e}_{\theta} \times \frac{v}{r}\left(\frac{k}{2 \pi r}\right) \frac{\hat{e}_{0}}{\partial \theta} \\
& =-\hat{k} \frac{k}{2 \pi r^{2}}+\hat{e}_{0} \frac{k}{2 \pi r^{2}} \times\left(-\hat{e}_{r}\right) \\
& =-\hat{k} \frac{k}{2 \pi r^{2}}+\hat{k} \frac{k}{2 \pi r^{2}} \\
& \nabla+\vec{H}_{2}=0
\end{aligned}
$$

Since the flow field is irrotational, Bernoulli equation can be applied between different radii if the flow is also incompressible and frictionless.

Given: Flow field represented by $\mathcal{U}=A x^{2} y$; $A=2.5 f^{-1} \cdot 5^{\prime}$, $p=2.45$ slug g $/ \mathrm{ft}^{3}$.
Find: (a) Is the flow irrotational?
(b) If possible, determine p_{1}, p_{2} if $(x, y)=(1,4)$ and $\left(x_{2}, y_{2}\right)=(2,1)$
Solution:
The velocity field is determined from the stream function

$$
\left.\begin{array}{l}
u=\frac{\partial N}{\partial y}=A x^{2} \\
v=-\frac{S}{\partial x}=-2 A-y y
\end{array}\right\} \quad \therefore \vec{v}=A x^{2} i-2 R x y \hat{y}
$$

Since $w=0$ and $\frac{\partial}{\partial z}=0$, then

$$
\nabla \times \vec{v}=k\left(\frac{\partial v}{\partial x}-\frac{\partial u}{\partial y}\right)={ }^{h}(-2 A y) \neq 0
$$

\therefore flow is not irrational
Note'. For irrolational flow, $\frac{\partial^{2} \psi}{\partial x^{2}} \cdot \frac{\partial^{2} \psi}{\partial y^{2}}=0$
For $\psi=A t^{2} y, \nabla^{2} \psi=2 A_{y} \neq 0 \quad \therefore$ flow is rational
Since the flow is rotational, points (1) and (2) must be on the same streamline to apply the Bernoulli equation between the two points.

$$
u_{x_{1}, y_{1}}=A(1)^{2}(4)=4 A \quad, \psi_{x_{2} y_{2}}=A(2)^{2}(1)=4 A
$$

Hence.

$$
\frac{p_{1}}{p_{1}}+\frac{v_{1}^{2}}{2}+g_{3}=\frac{p_{2}}{p}+\frac{v_{2}^{2}}{2}+q_{2}
$$

Assume flow in horizontal plane, ie $z_{1}=z_{2}$

$$
\begin{aligned}
& \vec{V}_{1}=A x^{2} i-2 A V_{1} y_{j}^{n} J=2.5 \frac{1}{M .5}\left[1^{2} m^{2 n} L-2.1 m \times 4 n j\right]=2.5 i-20^{n} j^{n}
\end{aligned}
$$

Thus $v^{2}=406 \mathrm{~m}^{2}{l_{2}^{2}}_{v^{2}}^{2}=200 \mathrm{~m}^{2}{V_{2}}^{2}$
and

$$
\begin{aligned}
p_{1}-p_{2} & =p\left[\frac{v_{2}^{2}}{2}-\frac{v^{2}}{2}\right]=\frac{f}{2}\left(V_{2}^{2}-V^{2}\right) \\
& =\frac{1}{2} \times 2.45 \frac{s h u g}{f t^{3}}(200-4 d) \frac{f^{2}}{s^{2}} \times \frac{\text { br. } 2^{2}}{f . s t u g} \\
p_{1}-p_{2} & =-252 \text { lbf/ft }
\end{aligned}
$$

Given: Two-dimensional flow represented by the velocity field $\bar{V}=(A x-B y) t i-(B x+A y) t j$, where $A=1 s^{-2}, B=2 s^{-2}$, this in s, and coordinates are in meters.
Find: (a) Is this a possible incompressible flow?
bo $\frac{T}{s}$ the fou steady or unsteady?
(c) Show that the floc is rrettational
(d) Verve an expression for the velocity potential

Solution: For incompressible flow, $\nabla \cdot \vec{V}=0$
For given flow $\vec{\nabla} \cdot \vec{J}=\frac{\partial}{\partial x}(A x-B y) t-\frac{\partial}{\partial y}(B x+R y t=$ At $-A t=0$
\therefore velocity field represents a possible incorpresidule flaw
The flow is unsteady since $\vec{V}=\vec{V}(t, y, t)$
The rolation is gwen by $\vec{\omega}=\frac{1}{2} \nabla \vec{N}=\frac{1}{2}\left(\frac{\partial v}{\partial x}-\frac{\partial u}{\partial y}\right) \hat{k}$

$$
\vec{\omega}=\frac{1}{2}\left[\frac{\partial}{2 x}-(B x+A y) t-\frac{3}{2 y}(A x-B y) t\right]=-B t+B t=0
$$

$\vec{\omega}=0$, so flow is irrolational
From the definition of the velocity potential, $\vec{v}=-\nabla \phi$ $u=-\frac{\partial \phi}{2 x}$ and $\phi=f-u d x+f(y \cdot t)=\{-(A x-B y) t d x+f(y t)$

$$
v=-\frac{2 \phi}{\partial y} \text { and } \begin{aligned}
& \phi=\left(-R \frac{x^{2}}{2}+B r y\right) t+f(y, t) \\
& \phi=\left(B d y+g(x, t)=\int(B x+A y) t d y+g(x, t)\right. \\
&\left.\phi+H+R \frac{y^{2}}{2}\right) t+g(x, t)
\end{aligned}
$$

Comparing the two expressions for $\$$ we conclude

$$
f(y, t)=\frac{A}{2} y^{2} t \quad \text { and } \quad g(\gamma, t)=-\frac{A}{2} x^{2} t
$$

Hence,

$$
\phi=\left\{\frac{A}{2}\left(y^{2}-x^{2}\right)+B x y\right\} t
$$

Problem *6.87

The flow field for a plane source at a distance h above an infinite wall aligned along the x axis is given by

$$
\vec{V}=\frac{q}{2 \pi\left[x^{2}+(y-h)^{2}\right]}[x \hat{i}+(y-h) \hat{j}]+\frac{q}{2 \pi\left[x^{2}+(y+h)^{2}\right]}[x \hat{i}+(y+h) \hat{j}]
$$

where q is the strength of the source. The flow is irrotational and incompressible. Derive the stream function and velocity potential. By choosing suitable values for q and h, plot the streamlines and lines of constant velocity potential. (Hint: Use the $E x$ cel workbook of Example Problem 6.10.)

Find: Stream function and velocity potential; plot

Solution

The velocity field is $u=\frac{q \cdot x}{2 \cdot \pi\left[\mathrm{x}^{2}+(\mathrm{y}-\mathrm{h})^{2}\right]}+\frac{\mathrm{q} \cdot \mathrm{x}}{2 \cdot \pi\left[\mathrm{x}^{2}+(\mathrm{y}+\mathrm{h})^{2}\right]}$

$$
v=\frac{q \cdot(y-h)}{2 \cdot \pi\left[x^{2}+(y-h)^{2}\right]}+\frac{q \cdot(y+h)}{2 \cdot \pi\left[x^{2}+(y+h)^{2}\right]}
$$

The governing equations are

$$
\begin{array}{ll}
\mathrm{u}=\frac{\partial}{\partial \mathrm{y}} \psi & \mathrm{v}=-\frac{\partial}{\partial \mathrm{x}} \psi \\
\mathrm{u}=-\frac{\partial}{\partial \mathrm{x}} \phi & \mathrm{v}=-\frac{\partial}{\partial \mathrm{y}} \phi
\end{array}
$$

Hence for the stream function

$$
\begin{aligned}
& \psi=\int u(x, y) d y=\frac{q}{2 \cdot \pi} \cdot\left(\operatorname{atan}\left(\frac{y-h}{x}\right)+\operatorname{atan}\left(\frac{y+h}{x}\right)\right)+f(x) \\
& \psi=-\int v(x, y) d x=\frac{q}{2 \cdot \pi} \cdot\left(\operatorname{atan}\left(\frac{y-h}{x}\right)+\operatorname{atan}\left(\frac{y+h}{x}\right)\right)+g(y)
\end{aligned}
$$

The simplest expression for ψ is then

$$
\psi(\mathrm{x}, \mathrm{y})=\frac{\mathrm{q}}{2 \cdot \pi} \cdot\left(\operatorname{atan}\left(\frac{\mathrm{y}-\mathrm{h}}{\mathrm{x}}\right)+\operatorname{atan}\left(\frac{\mathrm{y}+\mathrm{h}}{\mathrm{x}}\right)\right)
$$

For the stream function

$$
\begin{aligned}
& \phi=-\int u(x, y) d x=-\frac{q}{4 \cdot \pi} \cdot \ln \left[\left[x^{2}+(y-h)^{2}\right] \cdot\left[x^{2}+(y+h)^{2}\right]\right]+f(y) \\
& \phi=-\int v(x, y) d y=-\frac{q}{4 \cdot \pi} \cdot \ln \left[\left[x^{2}+(y-h)^{2}\right] \cdot\left[x^{2}+(y+h)^{2}\right]\right]+g(x)
\end{aligned}
$$

The simplest expression for ϕ is then

$$
\phi(x, y)=-\frac{\mathrm{q}}{4 \cdot \pi} \cdot \ln \left[\left[\mathrm{x}^{2}+(\mathrm{y}-\mathrm{h})^{2}\right] \cdot\left[\mathrm{x}^{2}+(\mathrm{y}+\mathrm{h})^{2}\right]\right]
$$

Problem *6.87 (In Excel)

where q is the strength of the source. The flow is irrotational and incompressible. Derive the stream function and velocity potential. By choosing suitable values for q and h, plot the streamlines and lines of constant velocity potential. (Hint: Use the Excel workbook of Example Problem 6.10.)

$$
\psi(\mathrm{x}, \mathrm{y})=\frac{\mathrm{q}}{2 \cdot \pi} \cdot\left(\operatorname{atan}\left(\frac{\mathrm{y}-\mathrm{h}}{\mathrm{x}}\right)+\operatorname{atan}\left(\frac{\mathrm{y}+\mathrm{h}}{\mathrm{x}}\right)\right)
$$

$$
\phi(x, y)=-\frac{\mathrm{q}}{4 \cdot \pi} \cdot \ln \left[\left[\mathrm{x}^{2}+(\mathrm{y}-\mathrm{h})^{2}\right] \cdot\left[\mathrm{x}^{2}+(\mathrm{y}+\mathrm{h})^{2}\right]\right]
$$

Velocity Potential

\#NAME?
Note that the plot is
from $x=-5$ to 5 and $y=-5$ to 5

Problem *6.88

Using Table 6.1, find the stream function and velocity potential for a plane source, of strength q, near a 90° corner. The source is equidistant h from each of the two infinite planes that make up the corner. Find the velocity distribution along one of the planes, assuming $p=p_{0}$ at infinity. By choosing suitable values for q and h, plot the streamlines and lines of constant velocity potential. (Hint: Use the Excel workbook of Example Problem 6.10.)

Given: Data from Table 6.1

Find: Stream function and velocity potential for a source in a corner; plot; velocity along one ple

Solution

From Table 6.1, for a source at the origin

$$
\psi(\mathrm{r}, \theta)=\frac{\mathrm{q}}{2 \cdot \pi} \cdot \theta \quad \phi(\mathrm{r}, \theta)=-\frac{\mathrm{q}}{2 \cdot \pi} \cdot \ln (\mathrm{r})
$$

Expressed in Cartesian coordinates

$$
\psi(\mathrm{x}, \mathrm{y})=\frac{\mathrm{q}}{2 \cdot \pi} \cdot \operatorname{atan}\left(\frac{\mathrm{y}}{\mathrm{x}}\right) \quad \phi(\mathrm{x}, \mathrm{y})=-\frac{\mathrm{q}}{4 \cdot \pi} \cdot \ln \left(\mathrm{x}^{2}+\mathrm{y}^{2}\right)
$$

To build flow in a corner, we need image sources at three locations so that there is symmetry abi both axes. We need sources at $(h, h),(h,-h),(-h, h)$, and $(-h,-h)$

$$
\psi(x, y)=\frac{q}{2 \cdot \pi} \cdot\left(\operatorname{atan}\left(\frac{y-h}{x-h}\right)+\operatorname{atan}\left(\frac{y+h}{x-h}\right)+\operatorname{atan}\left(\frac{y+h}{x+h}\right)+\operatorname{atan}\left(\frac{y-h}{x+h}\right)\right)
$$

$$
\begin{array}{rll}
\phi(x, y)= & -\frac{\mathrm{q}}{4 \cdot \pi} \cdot \ln \left[\left[(\mathrm{x}-\mathrm{h})^{2}+(\mathrm{y}-\mathrm{h})^{2}\right] \cdot\left[(\mathrm{x}-\mathrm{h})^{2}+(\mathrm{y}+\mathrm{h})^{2}\right]\right] & \cdots(\text { Too lc } \\
& +-\frac{\mathrm{q}}{4 \cdot \pi} \cdot\left[(\mathrm{x}+\mathrm{h})^{2}+(\mathrm{y}+\mathrm{h})^{2}\right] \cdot\left[(\mathrm{x}+\mathrm{h})^{2}+(\mathrm{y}-\mathrm{h})^{2}\right] \quad \begin{array}{l}
\text { fit on } 0 \\
\text { line! })
\end{array}
\end{array}
$$

By a similar reasoning the horizontal velocity is given by

$$
\begin{aligned}
u= & \frac{q \cdot(x-h)}{2 \cdot \pi\left[(x-h)^{2}+(y-h)^{2}\right]}+\frac{q \cdot(x-h)}{2 \cdot \pi\left[(x-h)^{2}+(y+h)^{2}\right]} \cdots \\
& +\frac{q \cdot(x+h)}{2 \cdot \pi\left[(x+h)^{2}+(y+h)^{2}\right]}+\frac{q \cdot(x+h)}{2 \cdot \pi\left[(x+h)^{2}+(y+h)^{2}\right]}
\end{aligned}
$$

Along the horizontal wall $(y=0)$

$$
\begin{aligned}
\mathrm{u}= & \frac{\mathrm{q} \cdot(\mathrm{x}-\mathrm{h})}{2 \cdot \pi\left[(\mathrm{x}-\mathrm{h})^{2}+\mathrm{h}^{2}\right]}+\frac{\mathrm{q} \cdot(\mathrm{x}-\mathrm{h})}{2 \cdot \pi\left[(\mathrm{x}-\mathrm{h})^{2}+\mathrm{h}^{2}\right]} \ldots \\
& +\frac{\mathrm{q} \cdot(\mathrm{x}+\mathrm{h})}{2 \cdot \pi\left[(\mathrm{x}+\mathrm{h})^{2}+\mathrm{h}^{2}\right]}+\frac{\mathrm{q} \cdot(\mathrm{x}+\mathrm{h})}{2 \cdot \pi\left[(\mathrm{x}+\mathrm{h})^{2}+\mathrm{h}^{2}\right]}
\end{aligned}
$$

or

$$
\mathrm{u}(\mathrm{x})=\frac{\mathrm{q}}{\pi} \cdot\left[\frac{\mathrm{x}-\mathrm{h}}{(\mathrm{x}-\mathrm{h})^{2}+\mathrm{h}^{2}}+\frac{\mathrm{x}+\mathrm{h}}{(\mathrm{x}+\mathrm{h})^{2}+\mathrm{h}^{2}}\right]
$$

Problem *6.88 (In Excel)

Using Table 6.1, find the stream function and velocity potential for a plane source, of strength q, near a 90° corner. The source is equidistant h from each of the two infinite planes that make up the comer. Find the velocity distribution along one of the planes, assuming $p=p_{0}$ at infinity. By choosing suitable values for q and h, plot the streamlines and lines of constant velocity potential. (Hint: Use the Excel workbook of Example Problem 6.10.)
$\begin{aligned} \psi(x, y)= & \frac{q}{2 \cdot \pi} \cdot\left(\operatorname{atan}\left(\frac{y-h}{x-h}\right)+\operatorname{atan}\left(\frac{y+h}{x-h}\right)+\operatorname{atan}\left(\frac{y+h}{x+h}\right)+\operatorname{atan}\left(\frac{y-h}{x+h}\right)\right) \\ \phi(x, y)= & -\frac{\mathrm{q}}{4 \cdot \pi} \cdot \ln \left\lfloor\left\lfloor(\mathrm{x}-\mathrm{h})^{2}+(\mathrm{y}-\mathrm{h})^{2}\right\rfloor \cdot\left\lfloor(\mathrm{x}-\mathrm{h})^{2}+(\mathrm{y}+\mathrm{h})^{2}\right\rfloor\right\rfloor \ldots \\ & +-\frac{\mathrm{q}}{4 \cdot \pi} \cdot\left\lfloor(\mathrm{x}+\mathrm{h})^{2}+(\mathrm{y}+\mathrm{h})^{2}\right\rfloor \cdot\left\lfloor(\mathrm{x}+\mathrm{h})^{2}+(\mathrm{y}-\mathrm{h})^{2}\right\rfloor \\ \text { \#NAME? } & \text { Stream Function }\end{aligned}$

\#NAME?
\#NAME?

Velocity Potential

Note that the plot is
from $x=-5$ to 5 and $y=-5$ to 5

Problem *6.89

Using Table 6.1, find the stream function and velocity potential for a plane vortex, of strength K, near a 90° corner. The vortex is equidistant h from each of the two infinite planes that make up the corner. Find the velocity distribution along one of the planes, assuming $p=p_{0}$ at infinity. By choosing suitable values for K and h, plot the streamlines and lines of constant velocity potential. (Hint: Use the Excel workbook of Example Problem 6.10.)

Given: Data from Table 6.1

Find: Stream function and velocity potential for a vortex in a corner; plot; velocity along one ple

Solution

From Table 6.1, for a vortex at the origin

$$
\phi(\mathrm{r}, \theta)=\frac{\mathrm{K}}{2 \cdot \pi} \cdot \theta \quad \psi(\mathrm{r}, \theta)=-\frac{\mathrm{K}}{2 \cdot \pi} \cdot \ln (\mathrm{r})
$$

Expressed in Cartesian coordinates

$$
\phi(\mathrm{x}, \mathrm{y})=\frac{\mathrm{q}}{2 \cdot \pi} \cdot \operatorname{atan}\left(\frac{\mathrm{y}}{\mathrm{x}}\right) \quad \psi(\mathrm{x}, \mathrm{y})=-\frac{\mathrm{q}}{4 \cdot \pi} \cdot \ln \left(\mathrm{x}^{2}+\mathrm{y}^{2}\right)
$$

To build flow in a corner, we need image vortices at three locations so that there is symmetry ab both axes. We need vortices at $(h, h),(h,-h),(-h, h)$, and $(-h,-h)$. Note that some of them must have strengths of - K !

$$
\begin{aligned}
& \phi(x, y)=\frac{K}{2 \cdot \pi} \cdot\left(\operatorname{atan}\left(\frac{y-h}{x-h}\right)-\operatorname{atan}\left(\frac{y+h}{x-h}\right)+\operatorname{atan}\left(\frac{y+h}{x+h}\right)-\operatorname{atan}\left(\frac{y-h}{x+h}\right)\right) \\
& \psi(x, y)=-\frac{K}{4 \cdot \pi} \cdot \ln \left[\frac{(x-h)^{2}+(y-h)^{2}}{(x-h)^{2}+(y+h)^{2}} \cdot \frac{(x+h)^{2}+(y+h)^{2}}{(x+h)^{2}+(y-h)^{2}}\right]
\end{aligned}
$$

By a similar reasoning the horizontal velocity is given by

$$
\begin{aligned}
u= & -\frac{\mathrm{K} \cdot(\mathrm{y}-\mathrm{h})}{2 \cdot \pi\left[(\mathrm{x}-\mathrm{h})^{2}+(\mathrm{y}-\mathrm{h})^{2}\right]}+\frac{\mathrm{K} \cdot(\mathrm{y}+\mathrm{h})}{2 \cdot \pi\left[(\mathrm{x}-\mathrm{h})^{2}+(\mathrm{y}+\mathrm{h})^{2}\right]} \\
& +-\frac{\mathrm{K} \cdot(\mathrm{y}+\mathrm{h})}{2 \cdot \pi\left[(\mathrm{x}+\mathrm{h})^{2}+(\mathrm{y}+\mathrm{h})^{2}\right]}+\frac{\mathrm{K} \cdot(\mathrm{y}-\mathrm{h})}{2 \cdot \pi\left[(\mathrm{x}+\mathrm{h})^{2}+(\mathrm{y}-\mathrm{h})^{2}\right]}
\end{aligned}
$$

Along the horizontal wall $(y=0)$

$$
\begin{aligned}
\mathrm{u}= & \frac{\mathrm{K} \cdot \mathrm{~h}}{2 \cdot \pi\left[(\mathrm{x}-\mathrm{h})^{2}+\mathrm{h}^{2}\right]}+\frac{\mathrm{K} \cdot \mathrm{~h}}{2 \cdot \pi\left[(\mathrm{x}-\mathrm{h})^{2}+\mathrm{h}^{2}\right]} \cdots \\
& +-\frac{\mathrm{K} \cdot \mathrm{~h}}{2 \cdot \pi\left[(\mathrm{x}+\mathrm{h})^{2}+\mathrm{h}^{2}\right]}-\frac{\mathrm{K} \cdot \mathrm{~h}}{2 \cdot \pi\left[(\mathrm{x}+\mathrm{h})^{2}+\mathrm{h}^{2}\right]}
\end{aligned}
$$

or $\quad u(x)=\frac{K \cdot h}{\pi} \cdot\left[\frac{1}{(x-h)^{2}+h^{2}}-\frac{1}{(x+h)^{2}+h^{2}}\right]$
Problem *6.89 (In Excel)

Using Table 6.1, find the stream function and velocity potential for a plane vortex, of strength K, near a 90° corner. The vortex is equidistant h from each of the two infinite planes that make up the corner. Find the velocity distribution along one of the planes, assuming $p=p_{0}$ at infinity. By choosing suitable values for K and h, plot the streamlines and lines of constant velocity potential. (Hint: Use the Excel workbook of Example Problem 6.10.)

$$
\begin{aligned}
& \psi(x, y)=-\frac{K}{4 \cdot \pi} \cdot \ln \left[\frac{(x-h)^{2}+(y-h)^{2}}{(x-h)^{2}+(y+h)^{2}} \cdot \frac{(x+h)^{2}+(y+h)^{2}}{(x+h)^{2}+(y-h)^{2}}\right] \\
& \phi(x, y)=\frac{K}{2 \cdot \pi} \cdot\left(\operatorname{atan}\left(\frac{y-h}{x-h}\right)-\operatorname{atan}\left(\frac{y+h}{x-h}\right)+\operatorname{atan}\left(\frac{y+h}{x+h}\right)-a\right.
\end{aligned}
$$

Stream Function
\#NAME?
Velocity Potential

\#NAME?
\boldsymbol{Q}
\#NAME?

\#NAME?
Note that the plot is
from $x=-5$ to 5 and $y=-5$ to 5

Given: Flow field represented by $\psi=A x^{2} y-B y^{3}$, where $A=1 n^{\prime \prime} \cdot s^{-1}, s=\frac{1}{3} \mathrm{~m}^{-1} \cdot \mathrm{~s}^{-1}$, and coordinates are in meters.
Find: an expression for the velocity potential, ϕ
Solution:
The velocity field is determined from the strean function

$$
\left.\begin{array}{l}
u=2 v\left(2 y=A^{2}-3 B y^{2}\right. \\
v=-2 v / \partial x=-2 A x y
\end{array}\right\} \therefore \vec{v}=\left(A^{2} x^{2}-3 B y^{2}\right) i-2 A x y \hat{j}
$$

$v=-2 u l a x=-2 A x y$ be $w_{y}=\frac{1}{2}\left(\frac{\partial v}{\partial x}-\frac{\partial u}{\partial y}\right)$

$$
\omega_{z}=\frac{1}{2}(-27 y+6 B y)=\frac{1}{2}\left(-2 x y+6+\frac{1}{3} y\right)=0
$$

since $\omega_{z}=0$, the flow is irrotational and $\vec{V}=-\nabla \phi$
Then

$$
\begin{aligned}
u=-\frac{\partial \phi}{\partial x} \text { and } \phi & =\int-u d x+f(y)=\int\left(-A x^{2}+3 B y^{2}\right) d x+f(y) \\
\phi & =-\frac{A}{3} x^{3}+3 B x y^{2}+f(y) \\
v=-\frac{\partial \phi}{\partial y} \text { and } \phi & =\int-v d y+g(x)=\int 2 A x y d y+g(x) \\
\phi & =A x y^{2}+g(x)
\end{aligned}
$$

Comparing the two expressions for d we

- node that $A x y^{2}=3 B-y^{2} \quad\left(A=1, B=\frac{1}{3}\right)$
- conclude that $g(x)=-\frac{A}{3} x^{3}, f(y)=0$

Hence $\phi=A x y^{2}-\frac{A}{3} x^{3}$ or $\phi=3 B x y^{2}-\frac{A}{3} x^{3}+\phi$

Gwen: Flow field represented by $u=x^{2}-y^{2}$
Find: (a) the velocity field
b) show that he flow field is imotational
(c) the poteritial function, ϕ

Solution:
The velocity field is determined from the stream function.

$$
\left.\begin{array}{l}
u=\frac{\partial u}{2 y}=-2 y \tag{J}\\
v=-\frac{\partial y}{\partial x}=-2 x
\end{array}\right\} \therefore \vec{v}=-2 y \hat{\imath}-2 x \hat{\jmath}
$$

If the flow is irrotational, then $\nabla \times \vec{V}=0$
Since $w=0$ and $\frac{\partial}{\partial z}=0$,

$$
\nabla \times \vec{V}=\hat{l}\left(\frac{\partial v}{\partial x}-\frac{\partial u}{\partial y}\right)=\vec{k}[-2-(-2)]=0 \quad \text { Flow is irrational }
$$

From $\vec{V}=-\nabla \phi$

$$
\begin{aligned}
& u=-\frac{\partial \phi}{\partial x} \text { and } \phi=(-u d x+f(y)=2 x y+f(y) \\
& v=-\frac{\partial \phi}{\partial y} \text { and } \phi=(-v d y+g(x)=2 x y+g(x)
\end{aligned}
$$

Comparing these expressions, we see that neither contains a function $\vec{f} x$ only or a function of y only.

Thus $f(y)=g(x)=0$ and

$$
\phi=2 x y .
$$

Given: Flow field represented by the potential function, $\phi=x^{2}-y^{2}$
Find: (a) Verify that this is an incompressible flow. (b) Corresponding stream function

Solution:
The velocity field is given by $\vec{V}=-\nabla \phi$

$$
\vec{v}=-\left(c \frac{2}{2 x}+\hat{J} \frac{2}{2 y}+\frac{\hat{2}}{2}\right)\left(x^{2}-y^{2}\right)=-2 x \hat{\imath}+2 y \hat{\jmath}
$$

If the flow is incompressible, then $\frac{\partial u}{\partial h}+\frac{\partial v}{\partial y}=0$.

$$
\frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}=\frac{\partial}{\partial x}(-2 x)+\frac{\partial}{\partial y}(2 y)=-2+2=0
$$

\therefore Flow is incompressible
From the definition of $\uplus, u=\frac{\partial \psi}{\partial y}$ and $v=-\frac{\partial \psi}{\partial x}$
Thus,

$$
u=\frac{\partial u}{\partial y}=-2 x \quad \psi=\int-2 x d y+f(x)=-2 x y+f(x)
$$

Men

$$
v=2 y=-\frac{2 \psi}{d x}=2 y+\frac{d f}{d x}
$$

and $\frac{d f}{d x}=0 \quad o f=$ constant

$$
\therefore \quad \psi=-2 x y+c
$$

Taking $c=0$, 承 $\psi=-2 x y$

Problem *6.93
Given: Flow field represented by the potential function, $\phi=A x^{2}+B x y-A y^{2}$
Find: al Verify that the flow is incompressible
(b) determine the corresponding stream function, *

Solution:
The velocity field is given by $\vec{V}=-\nabla \phi$

$$
\vec{v}=-\left(i \frac{\partial}{\partial x}+\hat{\jmath} \frac{\vec{\partial}}{\partial y}+k \frac{\partial}{\partial z}\right)\left(A x^{2}+B x y-H y^{2}\right)=-i(2 A x+3 y)-\hat{i}(B x-2 A y)
$$

If the flow is incompressible, then $\frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}=0$

$$
\frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}=\frac{\partial}{\partial x}(-)(2 A x+B y)+\frac{\partial}{\partial y}(-1)(B x-2 A y)=-2 A+2 A=0
$$

\therefore Flow is incompressible
From the definition of $U, \quad u=\frac{2 v}{2 y}$ and $v=-\frac{2 v}{2 x}$
Rus.

$$
\begin{aligned}
& u=-2 A x-3 y=\frac{2 y}{\partial y} \text { and } \psi=-\int(2 A x+B y) d y+f(x) \\
& \psi=-2 A x y-B \frac{y^{2}}{2}+f(x)
\end{aligned}
$$

Then,

$$
v=-3 x+2 A y=-\frac{2 U}{\partial x}=2 A y-\frac{d f}{d x}
$$

and $-\frac{d f}{d x}=-B x$ or $F=\frac{1}{2} B x^{2}+$ constant

$$
\therefore \psi=-2 A x y-B \frac{y^{2}}{2}+3 \frac{x^{2}}{2}+\text { constant }
$$

Setting the constant equal to zero, we ot tain

$$
\psi=\frac{B}{2}\left(x^{2}-y^{2}\right)-2 A x y
$$

Given: Flow field represented by the velocity potentinl $\phi=A t+B t^{2}-B y^{2}$, where $A=1 \mathrm{~m} \cdot \mathrm{~s}^{-1}, A_{B}=1 \mathrm{~s}^{-1}$, and coordinates are measured in meters.
Find: (a) expression for the velocity field
(b) stream function
(c) pressure difference between points $\left(x_{1}, y_{1}\right)=(0,0)$ and $\left(x_{2}, y_{2}\right)=(1,2)$
Solution
The veloaty field is determined from the velocity potential

$$
\left.\begin{array}{l}
u=-2 \phi \mid 2 x=-A-2 B x \\
v=-2 \phi \mid 2 y=2 B y
\end{array}\right\} \quad \vec{V}=-(A+2 B x) i+2 B y \hat{j}-\quad \rightarrow \quad
$$

From the definition of the stream function, $u=\frac{\partial u}{\partial y} \cdot v=-\frac{\partial U}{\partial y}$
Then

$$
\begin{gathered}
\psi=\int u d y+f(x)=\int-(A+2 B x) d y+f(x) \\
u=-A y-2 B x y+f(x)
\end{gathered}
$$

Also.

$$
\begin{gathered}
\psi=\left(-v d x+g(y)=\int-23 y d x+g(y)\right. \\
\psi=-2 B x y+g(y) .
\end{gathered}
$$

Comparing the two expressions for 4 we conclude

$$
\begin{aligned}
f(x) & =0 \quad, g(y)=-A y \\
& \therefore \Delta=-(A y+2 B-x y)
\end{aligned}
$$

Since $\nabla^{2} \phi=2 B-2 B=0$, the flow is rotational and the Bernoulli equation car' be applied between any two points in the flow field.

$$
\begin{aligned}
& \frac{p_{1}}{p}+\frac{1}{2}+g j_{i}^{2}=\frac{p_{2}}{p}+\frac{V_{2}^{2}}{2}+g 3_{2} \quad\left\{\begin{array}{c}
\text { Assure } \\
p=\text { constant } \\
j_{1}=z^{2}
\end{array}\right\} \\
& \vec{V}(0,0)=-A i=-\hat{n} b_{0} \quad V_{0,0}=1 \text { min } \\
& \vec{V}(1,2)=-(A+2 B) i+48 j=-3 i+4 j m l_{s} \quad \therefore 4,2=5 m l_{s} \\
& \therefore p_{1}-p_{2}=p\left(\frac{v_{2}^{2}}{2}-\frac{V_{1}^{2}}{2}\right)=\frac{p}{2}\left(v_{2}^{2}-V^{2}\right)
\end{aligned}
$$

Assume fluid is water

$$
P_{1}-P_{2}=\frac{1}{2} \times 999 \lg _{n^{3}}(25-1) \frac{r^{2}}{b^{2}} \times \frac{N_{3}^{2}}{\operatorname{lig}^{2}}=12 \tan ^{2} / n^{2}
$$

Gwen: Flow field represented by the velocity potential $\phi=A y^{3}-B x^{2} y$, where $P=\frac{1}{3} M^{-1} \cdot 5^{-1}, B^{2}=1 m^{-1} \cdot 5^{-1}$, and coordinates are measured in meters'.
Find: (a) expression for the magnitude of the velocity vector (b) the stream function?

Plot: strearilines and potential lines, and usually verify. that they are orthogonal.
Solution:
The velocity field is determined from the velocity pdertial

$$
\begin{aligned}
& u=-26 / 2 x=2 B+y=2 x y . \\
& v=-\left.26\right|_{2 y}=-3 A y^{2}+B x^{2}=x^{2}-y^{2} \\
& \left.v=\left[u^{2}+v^{2}\right]\right]^{4}=\left[4 x^{2} y^{2}+\left(x^{2}-y^{2}\right)^{2}\right]^{1 / 2}=\left[4 x^{2} y^{2}+x^{4}-2 x^{2} y^{2} \cdot y^{4}\right]^{1 / 2} \\
& v=\left[x^{4}+2 x^{2} y^{2}+y^{4}\right]^{1 / 2}=\left[\left(x^{2}+y^{2}\right)^{2}\right]^{1 / 2}=x^{2}+y^{2}-2 v
\end{aligned}
$$

Thestrear function is defined such pat $u=\frac{2 v}{2 y}$ and $v=-\frac{2 x}{2 x}$
Then, $\quad \alpha=\int u d y+f(x)=\int 2 B x y d y+f(x)=B x y^{2}+f(x)$ \qquad
Also,

$$
y=\int-v d x+g(y)=\left(\left(3 A y^{2}-3 x^{2}\right) d x+g(y)=3 A+y^{2}-\frac{B}{3} x^{3}+g(y) \ldots(x)\right.
$$

Comparing the two expressions for ψ we

- note Pat $3 \times y^{2}=3 A x^{2} y,\left(B=1, r=\frac{i}{3}\right)$, and
- conclude hal $f(x)=-\frac{P^{3}}{3} 3^{3}$ and $g(y)=0$

$$
\therefore \quad \psi=B x y^{2}-\frac{B}{3} x^{3} \text { or } \&=3 x^{2} y-\frac{B}{3} x^{3}
$$

With $A=\frac{1}{3}, B=1$

$$
u=x^{2} y-\frac{x^{3}}{3}=x\left(y^{2}-\frac{x^{2}}{3}\right)
$$

For $\psi=0, x=0$ or $y=0.577 x$
For $\psi=-4, y^{2}=\frac{x^{2}}{3}-\frac{4}{x}$
For $\psi=4, y^{2}=\frac{x^{2}}{3}+\frac{4}{x}$

See the next page for plots

Using Excel, the stream function and velocity potential can be plotted.
The data below was obtained using the workbook for Example Problem 6.10.
Note the orthogonality of ψ and ϕ !

Note that the plot is
from $x=-5$ to 5 and $y=-5$ to 5

Problem*6.ab

Given: Incompressible flow field represented by $\psi=3 A x^{2} y-A y^{3}$ Show: that this flow field is irrotational
Find: the velocity potential $\$$
Plo: streamlines and potential lines, and visually verify that they are orthogonal
Sdution:
For a $2-7$ incompressible, rotational flaw $\nabla^{2} \psi=0$ (6.30) For the flow field.

$$
\nabla^{2} k=\frac{\partial^{2}}{\partial x^{2}}\left(3 A x^{2} y-A y^{3}\right)+\frac{\partial^{2}}{\partial y^{2}}\left(3 A x^{2} y-A y^{3}\right)=6 A y-6 A y=0 \text { urdational }
$$

The velocity filed is aden by $y=u$ iv g

$$
\left.\begin{array}{l}
u=241_{2 y}=3 A x^{2}-3 H y^{2}=3 A\left(x^{2}-y^{2}\right) \\
v=-24 / 2 x=-6 A \cdot y
\end{array}\right\} \vec{v}=3 A\left(x^{2}-y^{2}\right) i-6 A t y \hat{y}
$$

The velocity potential is defined such that $u=-\frac{\partial b}{\partial x}$ a $v=\frac{-\partial b}{\partial y}$ Then, $\left.\phi=-\int u d x+f(y)=-\int 3 A\left(x^{2}-y^{2}\right) d x+f(y)=-A x^{3}+3 A x y^{2}+f(y)-s i\right)$
Also.

Potential Function and Streamline Plot

$$
\begin{aligned}
& \text { Equating expression for } \phi(E q \leq 1 \text { and } \lambda \text { we wee that }
\end{aligned}
$$

Given: Two-diriensional, inviscid flow with velocity field $\vec{v}-(A+B) i+(C-A y) j$, where $A=35^{\circ}, B=C m l$, $c=4$ mils and the coordinates are measured in meters. The body force distribution is $\vec{B}=-g \mathrm{~g} ; p=825 \mathrm{~kg} \mathrm{~m}^{3}$.
Find: (a) if kRis is a possible incompressible flow
(b) stagnation points of the fou field
(c) if fou is rotational
(d) the veloctyppoterial (if one exists)
(e) pressure difference between origin and pant $p(-1, y, z)=(2,2,2)$
Plot: a few streamlines in the upper half plane
Solution:
For incompressible flow $\nabla \cdot \vec{V}=0$. For this flow

$$
\nabla \cdot \vec{y}=\frac{\partial}{\partial x}(A+B)+\frac{\partial}{\partial y}(C-A y)=A-A=0
$$

\therefore velocity field represents possible incompressible flow
At the stagnation part $u=v=0$. ($\vec{v}=\delta)$

$$
\begin{aligned}
& u=0=(A+B) \quad \therefore x=-\left.B\right|_{A}=-6 \frac{m, s}{3 s^{-1}}=-2 m \\
& v=0=(C-A y) \quad \therefore y=c l_{A}=\frac{4 m \cdot s}{3 s^{\prime}}=4 l_{3 M}
\end{aligned}
$$

Stagnation port is at $\left.(x, y)=(-2,4)_{3}\right) m$.
The fluid rotation (for a $z-7$ fou is giver by $\omega_{z}=\frac{1}{2}\left(\frac{2 v}{2 x}-\frac{x u}{\partial y}\right)$
For his flow $\omega_{z}=\frac{1}{2}\left[\frac{\partial(C-A y)}{\partial x}-\frac{\partial(A+B) \cdot}{\partial y}\right]=0$
\therefore flow is irrotational
Then, $\vec{v}=-\nabla \phi$ and $u=-2 \phi / 2 x$ and $v=-2 \phi / 2 y$. and
flo

$$
\begin{equation*}
\phi=\int-u d x+f(y)=-\int(A x+B) d x+f(y)=-R \frac{R x^{2}}{2}-B x+f(y) \tag{i}
\end{equation*}
$$

$$
\begin{equation*}
\phi=-\int v d y+g(t)=-((c-A)) d y+g(t)=A \frac{y^{2}}{2}-c y+g(\lambda) \text {. } \tag{2}
\end{equation*}
$$

Equating the two expressions for ϕ (Eqsiand 2) we noe that

$$
g(x)=-\left(A \frac{x^{2}}{2}+B x\right) \text { and } f(y)=A \frac{y^{2}}{2}-C y \text {. }
$$

$$
\therefore \phi=\frac{A}{2}\left(y^{2}-x^{2}\right)-3 x-C y
$$

Since he flow is irotational we can apply the bernalli equation between any two points in the fob) field.

$$
\frac{p_{1}}{p}+\frac{v_{1}^{2}}{2}+g g_{1}=\frac{p_{2}}{p}+\frac{v_{2}^{2}}{2}+g z^{2}
$$

At -part, $(0,0,0), \vec{V}=B i+c j=6 i+4 j$ mb s $V^{2}=52 m^{2} / s^{2}$

$$
\text { Problem } 6,98
$$

Given: Irrotational flow represented by $\psi=$ Buy, where $B=0.25 \mathrm{~s}^{-1}$ and the coordinates are measured in meters
Find: (a) the rate of flow between point $=(x, y)=(2, k)$ and

$$
\left(x_{2}, y_{2}\right)=(3,3)
$$

(b) the velocity potential for this flow

Plot: streamlines and potential lines, and Visually verify that they are orthogonal.
Solution:
The volume Now rate (per unit dept) between paints (O) and (B) is guerby

$$
\begin{align*}
& S_{2}=V_{2}-W_{1}=B\left[4_{2} y_{2}-4^{4}\right]=0.255[3 m x 3 m-2 m \times 2 m] \\
& Q_{12}=1.25 \mathrm{~m}^{3} / s_{\mathrm{L}} \mathrm{~m} \tag{Sic}
\end{align*}
$$

The veloicty field is determined from the stream function

$$
u=2 v\left|\frac{\partial y}{}=B x \quad v=-24\right| 2 x=-B y \quad \therefore v=B x-B y j
$$

For rotational flow $\vec{v}=-8 \phi$ and $u=-\left.2 \phi\right|_{2 x}, v=-\left.2 t\right|_{2 y}$ and

$$
\begin{aligned}
& \phi=-\int u d x+f(y)=-\left\langle B x d x+f(y)=-\frac{B}{2} x^{2}+f(y) \ldots . .(x)\right. \\
& \phi=-\int v d y+g(x)=\left\langle y d y+g(x)=\frac{1}{2} y^{2}+g(x) \ldots \ldots . . .\right.
\end{aligned}
$$

Equating expressions for ϕ (Eq land 2) we carlude pal

$$
f(y)=\frac{3}{2} y^{2}, g(x)=-\frac{3}{2} x^{2} \text { and } \phi=\frac{3}{2}\left(y^{2}-x^{2}\right) \text {. }
$$

Potential Function and Stream Function Plot

Given: Flow past a circular cylinder of Example Problem 6.11.
Find: (a) Show that $t_{5}=0$ along the lines $(r, \theta)=\left(r,=\pi l_{2}\right)$ (b) Plot y ivs versus r for $r \geq a$ along line ($r, \pi / 2$)
(c) Find distance beyond which the imncerce of the cylinder on the verity is less that io of J .
Solution.
From Example Problem 6.N

Ten $V_{r}=\left(-\frac{1}{2}+U\right) \cos \theta$. For $\theta= \pm \frac{\pi}{2}, \operatorname{cose}=0$ and $V_{T}=0$ $V_{0}=-\left(\frac{\Lambda}{r^{2}}+0\right) \sin \theta$, but $\frac{\Lambda}{U}=a^{2}$
$\therefore V_{\theta}=-\left(\frac{a^{2}}{r^{2}}+1\right)$ Oisin $\theta \quad$ For $\theta=\pi / 2$.
$\frac{V_{\theta}}{U}=-\left(1+\frac{a^{2}}{2}\right)$

$\vec{v}=u \cos \theta\left(1-\frac{a^{2}}{r^{2}}\right) \hat{j}-0 \sin \theta\left(1+\frac{a^{2}}{r^{2}}\right) j$
For $\theta=r_{12}$
$\frac{4}{5}=1+\frac{a^{2}}{5^{2}}$
If $\frac{y}{4}=1.01$ then
$\frac{a^{2}}{r^{2}}=0.01$ or $\frac{a}{r}=0.1$
$\therefore \frac{1}{3}<1 \%$ for $r>10 a$

Given: Consider flow around a circular cylinder with freestream velocity from right to left and a counterclockwise free vortex.

Find: Show that the lift force on the cylinder (per unit width) can be expressed as $F_{\mathrm{L}}=-\rho U \Gamma$, as illustrated in Example Problem 6.12.

Discussion: The only change in this flow from the flow of Example Problem 6.12 is that the directions of the freestream velocity and the vortex are changed. This changes the sign of the freestream velocity from U to $-U$ and the sign of the vortex strength from K to $-K$.
Consequently the signs of both terms in the equation for lift are changed. Therefore the direction of the lift force remains unchanged.
The analysis of Example Problem 6.12 (see page 282) shows that only the term involving the vortex strength contributes to the lift force. Therefore the expression for lift obtained with the changed freestream velocity and vortex strength is identical to that derived in Example Problem 6.12. Thus the general solution of Example Problem 6.12 holds for any orientation of the freestream and vortex velocities. For the present case, $F_{\mathrm{L}}=-\rho U \Gamma$, as shown for the general case in Example Problem 6.12.

Gwen: A tornade is modelled by the superposition of a sink (strength, $g^{2}=\operatorname{ses} \mathrm{m}^{2}(\mathrm{sec})$ and a free vortex (strength, $k=$ $\left.5600 \sim 1 \sec ^{\prime}\right)$

Find: (a) Expressions for ψ and ϕ
(b) Estimate the radius beyond which the flow may be Treated as incomprebsib?.
(c) Find the gage pressure al Rect radius.

Solution:

$$
\begin{aligned}
& \Delta=\psi_{s i}+\psi_{v_{0}}=-\frac{q}{2 \pi} \theta-\frac{k}{2 \pi} \operatorname{tn} r \\
& \phi=\phi_{s i}+\phi_{v_{0}}=\frac{a}{2 \pi} \ln r-\frac{k}{2 \pi} \theta \\
& \vec{V}=\psi_{r} i_{r}+\psi_{0} i_{0} \quad \psi_{r s i}=-\frac{q}{2 \pi r}, \psi_{r_{s}}=0 ; \psi_{B_{s i}}=0, \psi_{\theta_{0}}=\frac{k}{2 \pi r} \\
& \therefore \vec{V}=-\frac{8}{2 \pi r} i_{r}+\frac{k}{2 \pi r} i_{\theta}
\end{aligned}
$$

Ten

$$
y=\left(y_{e}^{2}+y_{0}^{2}\right)^{1 / 2}=\left[\left(-\frac{g}{2 \pi}\right)^{2}+\left(\frac{k}{2 \pi}\right)^{2}\right]^{1 / 2} \frac{1}{5}
$$

For incompressible flow $M \leq 0,3$. For standard air Wis corresponds to $\$ 102 m$ sec Ten, for incompressible Flow

$$
V=102 n l_{\operatorname{scc}}<\left[\eta^{2}+k^{2}\right]^{1 / 2} \frac{1}{2 \pi r}
$$

σ

$$
\begin{align*}
& r>\left[q^{2}+x^{2}\right]^{4 / 2} \frac{1}{2 k} \times \frac{s}{10^{2} n}=\left[(2400)^{2}+(56 \infty 0)^{2}\right]^{12} \frac{n^{2}}{s^{2}} \times \frac{1}{2 \pi} \times \frac{s}{102 m} \\
& r>9,77 n
\end{align*}
$$

To determine the gage pressure at this radius, apply the Bernoulli
equation for trotaltonal flow equation for irotaltoral fou

$$
\frac{p_{\infty}}{\rho}+\frac{y^{2}}{2}+g \theta^{2}=\frac{p}{p}+\frac{y^{2}}{2}+g y
$$

assume $\Delta z=0$
R en

$$
p_{g a g E}=p-f_{\infty}=-\frac{1}{2} p v^{2}=-\frac{1}{2} \times 1.225 \frac{\lg }{n^{3}} \times(10 x)^{2} \frac{n^{2}}{s^{2}} \times \frac{N s^{2}}{h^{n}}
$$

$-P_{\text {gage }}=-6.37 \mathrm{Pta}$ (for standardair).

Given: Flow past a Rankine body is formed from the super position of a uniform flow ($v=28 \mathrm{~m} / \mathrm{s}$). in the 1 k direction and a -source and a sink of equal strergits ($q=3 \mathrm{k} \mathrm{n}^{2} \mathrm{~s}_{3}$). located on the x axis at $x=-a$ ant $x=\infty$, respectively.
Find: (a) expressions for U, d, and \vec{V}
(b) the value of $\psi=$ constant 2 on the stagnation streamline.
(c) the stagnation points if $a=0.3 \mathrm{~N}$.

Solution:

$$
\Delta=\psi_{s_{0}}+v_{s i}+\psi_{u r}=\frac{q}{4 \pi} \theta_{1}-\frac{q}{2 \pi} \theta_{4}+v_{y} .
$$

$$
\Delta=\frac{q_{0}}{2 \pi}\left(\theta_{1}-\theta_{e}\right)+\bar{u} r \sin \theta
$$

\qquad

$$
\phi=\phi_{n 0}+d_{s i}+b_{n k}=-\frac{g_{1}}{2 \pi} \ln r_{1}+\frac{g_{2}}{2 \pi} \ln r_{2}-j x
$$

$$
\phi=\frac{q_{1}}{2 \pi} \ln ^{\frac{r_{2}}{r_{1}}-U r \cos \theta}
$$

$$
\begin{align*}
& u=u_{s_{0}}+u_{s_{i}}+u_{u r}=\frac{q_{0}}{2 \pi r} \cos \theta_{1}-\frac{q_{2}}{2 \pi r_{2}} \cos \theta_{2}+0 \\
& v=v_{s_{0}}+v_{s_{i}} \cdot v_{u r}=\frac{b_{0}}{2 \pi r} \sin \theta_{1}-\frac{q^{2}}{k \pi r_{2}} \sin \theta_{2} \\
& \vec{v}=u i+v j=\left\{\frac{q_{0}}{2 \pi}\left(\frac{\cos \theta_{1}}{r_{1}}-\frac{\cos \theta_{2}}{r_{2}}\right)+v\right\} \hat{i}+\frac{q}{2 \pi}\left(\frac{\sin \theta_{1}}{r_{1}}-\frac{\sin \theta_{2}}{r_{2}}\right) \hat{j} . \tag{J}
\end{align*}
$$

At stagnation point $\vec{V}=0$

$$
\begin{aligned}
& y=0 \quad \theta_{1}=\theta_{2}=0 \\
& r_{2}=r_{3}-a, r_{1}=r_{0}+a
\end{aligned}
$$

$$
\therefore u=0=\frac{q}{2 \pi}\left(\frac{1}{r_{s}+a}-\frac{1}{r_{s}-a}\right)+v=\frac{q_{2}}{2 \pi}\left[\frac{\left(r_{s}-a\right)-\left(r_{s}+a\right)}{\left(r_{s}^{2}-a^{2}\right)}\right]+v
$$

$$
0=-\frac{9 a}{\pi^{2}\left(r_{s}^{2}-a^{2}\right)+i} \text { or }\left(r_{s}^{2}-a^{2}\right)=\frac{q a}{\pi J}
$$

$$
r_{s}=\left(a^{2}+\frac{q a}{\pi U}\right)^{1 / 2}=a\left(1+\frac{q_{0}}{\pi \sqrt{u} a}\right)^{1 / 2}
$$

For $a=0.3 \mathrm{~m}$

$$
r=0.3 n\left[1+\frac{3 \pi}{\pi} \frac{n^{2}}{5} \cdot 2 \frac{5}{0 n} \cdot \frac{1}{0.3 m}\right]^{1 / 2}=0.367 m
$$

Stagnation paints located at $\theta=0, \pi \quad r=0.361 \mathrm{~m}$
Since $u=\frac{q_{0}}{2 \pi}\left(\theta_{1}-\theta_{2}\right)+T_{y}$ and $\theta_{1}=\theta_{2}, y=0$ at stagnation

$$
v_{s t a g}=0
$$

Given: Flow past a Rankine body is formed from the superposition of a uniform flow ($v=2$ combs:) in the +2 direction, and a source and a sink of equal strengths $\left(q_{i}=3 r \mathrm{~m}^{2}(\mathrm{~s})\right.$) located on the x axis at $x=-a$ and $x=a$, respectively.
Find: (a) the half width of the body
(b) \mathcal{I} and p at the points $(0, \pm h)$

Solution:

$$
\psi=\Delta_{s}+\psi_{s_{1}}+\psi_{*}=\frac{q_{k}}{2}\left(\theta_{1}-\theta_{h}\right)+i \bar{u} \sin \theta
$$

At stagnation paint $\theta_{1}=\theta_{2}$ and $\theta=0, \pi$.
$\therefore b_{\text {stag }}=0$ and equation of stag streanture is

$$
\theta=\frac{g}{2 \pi}\left(\theta_{1}-\theta_{2}\right)+u r \sin \theta
$$

$$
\text { or } r=\frac{q^{2}}{2 \pi} \frac{\left(\theta_{2}-\theta_{1}\right)}{\theta \sin \theta}
$$

At half width, $\theta=\frac{\pi}{2}, \theta_{2}=\pi-\theta_{1}, \quad$ and $r=h=\frac{q_{0}}{2 \pi} \frac{\left[\left(\pi-\theta_{1}\right)-\theta_{1}\right]}{v}$

$$
\therefore k v=\frac{q_{0}}{2 \pi}\left[\pi-2 \theta_{1}\right]=\frac{g_{2}}{2}-\frac{q \theta_{1}}{\pi} \quad \text { or } \quad \theta_{1}=\frac{\pi}{2}-\frac{i h \pi}{q}
$$

Since $h=a \tan \theta$.

$$
\frac{h}{a}=\tan \left(\frac{\pi}{2}-\frac{\Delta h \pi}{q}\right)=\cot \left(\frac{-h \pi}{q}\right)
$$

Substituting values, $\frac{h}{0.3}=\cot \left(\frac{20}{3} h\right)$. Trial and error solution gives

$$
h=0.165 \mathrm{~m}
$$

The velocity field is given by $\vec{V}=i u+j v$

$$
\left.\vec{V}=\left\{\frac{q}{2 \pi}\left(\frac{\cos \theta_{1}}{r_{1}}-\frac{\cos \theta_{2}}{r_{2}}\right)+\pi\right\} i\right)+\frac{g}{2 \pi}\left(\frac{\sin \theta_{1}}{r_{1}}-\frac{\sin \theta_{2}}{r_{2}}\right) j
$$

AT (ch), $r_{1}=r_{2}, \theta_{2}=\pi-\theta_{1}, \therefore \sin \theta_{2}=\sin \theta_{1}, \cos \theta_{2}=-\cos \theta_{1}$ and $\vec{V}=\left(\frac{q \cos \theta_{1}}{r_{1}}+0\right) i$

$$
\begin{align*}
& \theta_{1}=\tan ^{2} \frac{h}{a}=\tan ^{-1} \frac{0.1615}{0.3}=28.3^{\circ} \quad r_{1}=\left[a^{2}+h^{2}\right]^{1 / 2}=\left[03^{2}+0.65^{2}\right]^{1 / 2}=0.341 m \\
& \vec{V}=\left(\frac{q \cos \theta_{1}}{r_{1}}+v\right) i=\left(3 \pi \frac{n}{}_{2}^{3} \times \frac{\cos 28.3^{\circ}}{0.341 m}+20 \frac{m}{5}\right) i=44.3 L^{M} l_{5} \quad V
\end{align*}
$$

To find the gage pressure apply the Bernoulli equation between the point at conditions at ∞

$$
\begin{aligned}
p_{\infty}+\frac{v^{2}}{2}= & \frac{p}{p}+\frac{v^{2}}{2} \\
p_{g a g e}=p-p_{0}= & \frac{1}{2} p\left(v^{2}-v^{2}\right)=\frac{1}{2} \times 1.225 \frac{g}{M^{2}}\left[(20)^{2}-(44.3)^{2}\right] \frac{m^{2}}{s^{2}} \times \frac{N^{2}}{g^{2}} \\
P_{g a g}= & -957 \mathrm{~N} / m^{2} .
\end{aligned}
$$

Given: Flow field i formed by superposition of a uniform flow in the $+x$ direction $(U=19 m l s)$ and a counterclockwise vortex, wit strong $k=16 \mathrm{k} \mathrm{m}^{2} \mathrm{l}$, bated at " he origin
Find: (a) ψ, ϕ, and \vec{y} for the flow Field (b) stagnation paint (b)

Plot: Streamlines and lines of constant potential

Solution:

$$
\begin{aligned}
& \psi=v_{u r^{\prime}}+\mathbb{w}_{v}=V y-\frac{k}{2 \pi} \ln r=\text { Ursine- } \frac{k}{2 \pi} \ln r \\
& \phi=\phi_{u} f+\phi_{\nu}=-V x-\frac{k}{2 \pi} \theta=-J \cos \theta-\frac{k}{2 \pi} \theta \text {. } \\
& \nu_{r}=-\frac{\partial \phi}{\partial r}=-J \cos \theta, V_{\theta}=-\frac{1}{r} \frac{\partial b}{\partial \theta}=-\bar{U} \sin \theta+\frac{k}{2 \pi r} \\
& \vec{V}=\bar{J} \cos \theta \hat{e}_{c}+\left(\frac{k}{2 \pi}-j \sin \theta\right) \hat{e}_{\sigma}
\end{aligned}
$$

At stagnation point, $V=0$
$v_{r}=0$ at $\theta= \pm \frac{\pi}{2} ; v_{\theta}=0$ on $r=\frac{k}{2 \pi u \sin \theta}$

$$
\therefore \vec{V}=0 \text { at }(r, \theta)=\frac{k}{2 \pi v}, \pi l_{2}
$$

Stagnation

Using Excel, the stream function and velocity potential can be plotted.
The data below was obtained using the workbook for Example Problem 6.10.
Note the orthogonality of ψ and ϕ !

Note that the plot is
from $x=-5$ to 5 and $y=-5$ to 5

Given: Flow field obtained by superposing a uniform flow in the $+x$ direction ($U=25 m / s$) and α source (ofstrengh q) at the origin. Stagnation point is at $x=-1.0 \mathrm{~m}$.

Find: (a) expressions for ψ, d, \vec{v}
(b) source strength, is.

Plot: streamlines and potential lines.
Solution:

$$
\left.y\right|_{<\theta}
$$

$$
\xrightarrow{89} x
$$

$$
u=u_{0 .}+u_{\infty} ; u_{u \cdot}=0 ; u_{50}=v_{r} \cos \theta=\frac{q_{0}}{2 \pi r} \frac{x}{r} \quad \therefore u=0+\frac{q}{2 \pi} \frac{x}{r^{2}}
$$

At he stagnation point $\vec{v}=0 \quad x=-1.0 \mathrm{~m} \quad y=0 \quad(v=0)$.

$$
\begin{align*}
& \text { For } \left.u=0=U+\frac{b}{2 \pi} \frac{1}{\left(x^{2}\right.}+\frac{y}{2}\right) \therefore q=-2 \pi U x_{\operatorname{stag}} \\
& q=-2 \pi \times 25 \mu+(-1.0-1)=50 \pi n^{2} / \mathrm{q}
\end{align*}
$$

At the stagnation point, $\theta=k \quad \therefore \Delta_{s t a g}=\frac{\sigma}{2 \pi} \theta=\frac{q}{2}$
Te equation of the stagnation streamline is then

$$
q /_{2}=U r \sin \theta+\frac{q}{2 \pi} \theta \text { and } r=\frac{q(\pi-\theta)}{2 \pi U \sin \theta}
$$

At $\theta=\pi l_{2}, \quad r=\frac{2}{4 U}=50 \pi \frac{m^{2}}{3} \times \frac{1}{4} \times \frac{5 \pi}{25 m}=\left.\pi\right|_{2}$
Far downstream $\theta \rightarrow 0$ and the y coordinate of the body $y=r \sin \theta=\frac{q(\pi-\theta)}{2 \pi v}$ approaches $\frac{\theta}{20}=\frac{50 \pi}{2 \times 25}= \pm \pi m \ldots \sum_{\theta \rightarrow 0}$

$$
\begin{align*}
& \psi=\psi_{0 . \varepsilon}+\psi_{s 0}=V_{y}+\frac{q}{2 \pi} \theta=U r \sin \theta+\frac{q}{2 \pi} \theta \\
& \phi=\phi_{0.6}+\phi_{2}=-5 x-\frac{9}{2 \pi} \ln =-T r \cos \theta-\frac{g_{0}}{2 \pi} \ln r \\
& v=v_{k r}+v_{50} ; v_{u r}=0 ; v_{50}=v_{r} \sin \theta=\frac{q}{2 \pi r} \frac{y}{r}: v=\frac{q}{2 \pi} \frac{y}{r^{2}} \\
& v=u \hat{v}=\left\{\underset{\rightarrow}{n}=\left\{\frac{9}{2 \pi} \frac{x}{\left(x^{2}+y^{4}\right)}\right\} \hat{i}+\frac{q_{0}}{2 \pi} \frac{y}{\left(x^{2}+y^{2}\right)} \hat{j}\right.
\end{align*}
$$

Using Excel, the stream function and velocity potential can be plotted.
The data below was obtained using the workbook for Example Problem 6.10.
Note the orthogonality of ψ and ϕ !

Note that the plot is
from $x=-5$ to 5 and $y=-5$ to 5

Gwen: Flow field obtained by combining a uniform flow in the $+x$ direction ($v=30 \mathrm{Mi}$) ard a source (ofstrenty $\left.q=150 \mathrm{~m}^{2} / \mathrm{s}\right)$ located at the origin.
plot: the ratio of the local velocity it to the free stream velocity, is as a function of θ along the stagnationstreamlire
Find: (a) points on the stagnation streamline where te velocity reaches its maximum value
(b) gage pressure at this location if $p=1,2 \mathrm{~kg} / \mathrm{m}^{3}$

Solution:
Superposition of a uniform flow and source gives flow around a half body.

$$
\therefore u=v+\frac{q_{1}}{2 \pi} r^{2}
$$

$$
\therefore v=\frac{q y^{2 \pi}}{2 \pi r^{2}}
$$

To determine the equation of the stagnation streamline, we locate he stagnation paint $(\vec{v}=0)$. From Eq. 2 y $y=0$ and

At the stagnation part $y=0$ and $\theta=\pi$. From fo. *stag $=\frac{q}{2}$ The equation of the stagnation streamline is then.
$* \operatorname{stag}=\frac{q}{2}=V r \sin \theta+\frac{q_{0}}{2 \pi} \theta$. Solving for r, we obtain

$$
r=\frac{1}{\operatorname{jin} \theta}\left(\frac{q}{2}-\frac{q}{2 \pi}\right)^{2 \pi}=\frac{q(\pi-\theta)}{2 \pi \theta \sin \theta}
$$

Substituting his value of s into the expression for $V^{2}[E q .3]$ we detent

Along the stagnation streamline

$$
\frac{V}{U}=\left[1+\frac{\sin ^{2} \theta}{(\pi-\theta)^{2}}+\frac{2 \sin \theta \cos \theta}{(\pi-\theta)}\right]_{\ldots}^{1 / 2} \ldots \ldots(5)
$$

VIU is plotted as a function of θ

$$
\begin{aligned}
& V^{2}=U^{2}+\frac{U^{2} \sin ^{2} \theta}{(\pi-\theta)^{2}}+\frac{2 U^{2} \sin \theta \cos \theta}{(\pi-\theta)}=U^{2}\left[1+\frac{\sin ^{2} \theta}{(\pi-\theta)^{2}}+\frac{2 \sin \theta \cos \theta}{(\pi-\theta)}\right]
\end{aligned}
$$

$$
\begin{aligned}
& \phi_{s t a g}=-\frac{q}{2 \pi 0}=-\frac{1}{2 \pi} \times \frac{15}{50} \frac{y^{2}}{5} \times 30 \mathrm{~m}=-0.7 a b m
\end{aligned}
$$

$$
\begin{align*}
& \psi=\psi_{u . s}+\psi_{s o}=V y+\frac{q}{2 \pi} \theta=U r \sin \theta+\frac{q}{2 \pi} \theta \\
& u=u_{u .5}+v_{s_{0}} ; u_{u .5}=U ; u_{s_{0}}=v_{t} \cos \theta=\frac{\frac{q}{2 \pi}}{2 \pi} \frac{\hbar}{5} \\
& v=v_{u f t} v_{s o} ; v_{u f}=0 ; v_{s o}=v_{r} \sin \theta=\frac{\frac{0}{2}}{2 \pi r} \frac{y}{r} \\
& \therefore \vec{v}=u \hat{i}+\hat{j}=\left(v+\frac{q}{2 \pi} \frac{x}{r^{2}}\right) \hat{i}+\frac{q}{2 \pi} \frac{y}{r^{2}} \hat{j} \tag{2}\\
& \text { Then, } \\
& \text { Tan, } v^{2}=u^{2}+v^{2}=\left(u+\frac{q}{2 \pi} \cos \theta\right)^{2}+\left(\frac{q}{2 \pi} \sin \theta\right)^{2} \\
& =v^{2}+\left(\frac{q}{2 \pi r}\right)^{2} \cos ^{2} \theta+\frac{2 q}{\pi r} \cos \theta+\left(\frac{q}{2 \pi r}\right)^{2} \sin ^{2} \theta \\
& V^{2}=U^{2}+\left(\frac{q}{2 \pi r}\right)^{2}+\frac{V q_{0}}{\pi r} \cos \theta \tag{3}
\end{align*}
$$

From the plot we see Pat VIes is a maximum at $\theta=63^{\circ}$ (also at $\theta=297^{\circ}$ from symmetry wit respect to the taxis. At $\theta=63^{\circ}, E_{q} s$ gives $V E_{\text {max }}=1.26$

$$
\text { , Eq. } 4 \text { gives } r=\frac{\left(50 m^{2}\right.}{5} \times \frac{(\pi-0.35 \pi)}{2 \pi \sin 65} \times 30 m=1.82 m
$$

$R_{\text {us }} V=V_{\text {max }}$ at $r=1.82 \mathrm{~m}$ and $\theta=63^{\circ}, 297^{\circ}$ (r. θ ham $_{\text {max }}$
To determine the gage pressure at this pant write the Bernoulli equation between a paint upstream and the pant of maximum velocity

$$
\begin{aligned}
& p_{\infty}+\frac{U^{2}}{2}=\frac{p}{p}+\frac{\sqrt{5}}{2} \text {. } \\
& \therefore p_{-\infty}=\frac{p}{2}\left[U^{2}-V_{\text {max }}^{2}\right]=\frac{1}{2} p V^{2}\left[1-\left(\frac{v_{\text {man }}}{v}\right)^{2}\right] \\
& =\frac{1}{2} \times \operatorname{lig}_{3} \times(30)^{2} \frac{\mathrm{~m}^{2}}{5^{2}}\left[1-(1,26)^{2}\right]+\frac{\mathrm{N.}^{2}}{\mathrm{kg.m}} . \\
& p_{-} p_{\infty}=3 \backslash N \mathrm{Nm}^{2} \rightarrow \infty-P_{\text {gage }}
\end{aligned}
$$

Note: From the plot we see Rat $V l v=1.0$, and hence $P=P_{\infty}, a t \theta=113^{\circ}$. The corresponding r is 1.01 m .

Gwen: Flow field formed by combing a uniform flow in the th direction ($3=50 \mathrm{nls})^{\prime}$ and a Sink (of strength, $q=9 \mathrm{cn}^{2} L^{\prime}$) at the origin.
Find: the net force per unit dept needed to hod in place (n standard air) the surface shape formed by the stagnation streamline
Solution:

$$
\begin{aligned}
& \psi=\psi_{a r}+\psi_{i 2}=-J y-\frac{q}{2 \pi} \theta=-J r \sin \theta-\frac{q}{2 \pi} \theta \\
& u=u_{0 r}+u_{s i} ; u_{x}=v, u_{s i}=-v_{r} \cos \theta=-\frac{g}{2 \pi r} \frac{\theta}{r} \quad \therefore u=v-\frac{q}{2 \pi} \frac{k}{r^{2}} \\
& v_{=}=v_{u r} \cdot v_{s i} ; v_{u r}=0, v_{s i}=-v_{r} \sin \theta=-\frac{q}{2 \pi r} \frac{y}{r^{2}} \quad \therefore v=-\frac{q}{2 \pi} \frac{y}{r^{2}} \\
& \therefore \vec{Y}=u \hat{i} \cdot v \hat{j}=\left(v-\frac{q}{2 \pi} \frac{x}{r^{2}}\right) \hat{v}-\frac{q}{2 \pi} \frac{y}{r^{2}} \hat{j}
\end{aligned}
$$

At the stagnation paint, $\vec{V}=0$
and $\quad t_{s t a g}=\frac{9}{2 \sigma^{3} J}=90 \frac{n^{2}}{5} \times \frac{1}{2 \pi} \times \frac{5}{50 n}=0.286 \mathrm{n}$
Pt stagnation point $y=0$ and $s=0$. From eg (1) Men $\psi_{s h a g}=0$ The equation of fie stagnation streamline is Men,

$$
V=0=O r \sin -\frac{g}{2 \pi} \theta \text { or } r_{\operatorname{sing}}=\frac{9 \theta}{2 \pi U \sin \theta}
$$

Source $y=r \sin \theta$, Res along fie stagnation streanivie $y=\frac{q \theta}{2 \pi T}$. For upstream, $\theta \rightarrow i+$ and $y=y_{1} \rightarrow \frac{y_{0}}{20}$.
The surface shape formed by the stagnation streaming is then as folouc;:
There is no flow across his streamline.
The flow in through the left face must
be equal to the few (q) which leaves through the sink at the origin.
Applying the x monartuen equation to fe cu sion. R is force required to hod shape in place

$$
\begin{aligned}
& -R_{x}=\int u \vec{V} \cdot \overrightarrow{d A}=-J \dot{n}_{1}=-J p q_{0} b \\
& \therefore \frac{R_{x}}{b}=p q^{U}
\end{aligned}
$$

For standard our $f=1.225 \mathrm{Eg} / \mathrm{m}^{3}$ and

$$
\begin{align*}
& \vec{R}_{x} \text { B }=-5.51 \mathrm{i} \mathrm{fm} / \mathrm{m} \tag{}
\end{align*}
$$

Problem 7.1:
Given: The propagation speed of small amplitude waves in a region of Uniform depth is gwen by

$$
c^{2}=\left(\frac{\sigma}{9} \frac{2 \pi}{\pi}+\frac{g \pi}{2 \pi}\right) \tanh \frac{2 \pi h}{\pi}
$$

where h is the depth of the undisturbed liquid t is the wavelength.
Find: Obtain the dinensiontess groups that characterize the equation. (Uss. Lis a Characteristic leng(x) and V_{0} as a characteristic velocity
Solution:

$$
c^{2}=\left(\frac{5}{e} \frac{2 \pi}{\lambda}+\frac{g \pi}{2 \pi}\right) \tanh \frac{2 \pi h}{\lambda}
$$

To nondinensionalize the equation, all lengths are divided by
and all velocities are divided and all velocities are divided by V_{0}.

Yenoting nondirensional quantities by an asterisk, then

$$
\lambda^{*}=\frac{n}{2} \quad h^{*}=\frac{h}{2} \quad c=\frac{V^{2}}{v_{0}}
$$

Hen

$$
\begin{aligned}
c^{2} \psi_{0}^{2} & =\left(\frac{\sigma}{\rho} \frac{2 \pi}{4 n^{*}}+\frac{g n^{*} L}{2 \pi}\right) \tanh \frac{2 \pi h^{*} L}{n^{*} L} \\
c^{* 2} & =\left(\frac{\sigma}{\rho \psi_{0}^{2}} \frac{2 \pi}{n^{*}}+\frac{g h h^{*}}{v_{0}^{2}}\right) \tan \frac{2 \pi h^{*}}{n^{*}}
\end{aligned}
$$

\therefore Minensioless groups are $\frac{\sigma}{p^{4}}{ }^{2}$, $\frac{g^{2}}{V^{2}}$

Problem 7.2
Given: The slope of the free surface of a steady wave in one-dimensional flow in a shallow liquid layer is described by the equation.

$$
\frac{\partial \partial h}{\partial x}=-\frac{u}{9} \frac{\partial u}{\partial x}
$$

Find: Norduriensicralize fie equation (using leggy scale, L, and velocity scale, N_{0}) obtoun the dimensionless groups that characterize this
flow.
Solution:
To nondiviensionalize the equation, all lengths are divided by the reference length? L, and all vecolities are divided by the reference velocity. V_{0}.

Denoting the nonderiensional quartics by an asterisk,

$$
h^{*}=\frac{h}{L}, \quad x^{*}=\frac{x}{L} \quad, \quad u=\frac{u}{v_{0}}
$$

Substituting ito the governing equation

$$
\begin{aligned}
& \frac{\partial(h L)}{\partial\left(h^{*} L\right)}=-\frac{v_{0} u^{*}}{g} \frac{\overrightarrow{2}\left(v_{0} u^{*}\right)}{2\left(L x^{*}\right)} \\
& \frac{\partial h^{*}}{\partial x^{*}}=-\frac{v_{0}^{2}}{g^{2}} \frac{\partial u^{*}}{\partial x^{*}}
\end{aligned}
$$

The duriensionless group is $\frac{V^{2}}{g^{2}}$. This is the square of the Froude number.

Problem 7.3
Gwen: One-dimensional, unsteady flow in a thin liquid layer is described by the equation

$$
\frac{\partial u}{\partial t}+u \frac{\partial u}{\partial h}=-g \frac{\partial h}{\partial h}
$$

Find: Nondurensionalize the equation (using length scale, 't and velocity scale, V_{0})
obtain the Cumiensionles groups Hat characterize this flow.
Solution:
To nonduriensionalize the equation, all lenities are divided by the reference lengt, in, velocity is divided by the reference velocity. No, and time is divided by the ratio, 4 vo.

Pending the nondimensional quantities by an asterisk,

$$
x^{*}=\frac{L}{L}, \quad \vec{N}=\frac{h}{2}, \quad u=\frac{u}{v_{0}}, \quad t=\frac{t}{W_{0}}
$$

Substituting into the governing equation

$$
\begin{aligned}
& \frac{\partial\left(V_{0} u^{*}\right)}{\partial\left(L t^{T} / v_{0}\right)}+u^{*} v_{0} \frac{\partial\left(V_{0} u^{*}\right)}{2\left(x^{*} L\right)}=-g \frac{\partial\left(h^{*} L\right)}{\partial\left(x^{*} L\right)} \\
& \frac{V_{0}^{2}}{L} \frac{\partial u^{*}}{\partial t^{*}}+\frac{V_{0}^{2}}{L} u^{*} \frac{\partial u^{*}}{\partial x^{*}}=-g \frac{\partial h^{*}}{\partial x^{*}}
\end{aligned}
$$

Multiplying trough by $4 w_{0}^{2}$.

$$
\frac{\partial u^{*}}{\partial t^{2}}+u^{*} \frac{\partial u^{*}}{\partial t^{2}}=-\frac{q h}{v_{0}^{2}} \frac{\partial h^{*}}{\partial t^{*}}
$$

The duriensioiless group is $\frac{\mathrm{gh}}{\mathrm{x}_{2}^{2}}$. This is one over the square of the froude number.

Problem 7.4

Given: For steady, micompressible, two-denenswial fou, the Prandt osundary layer equations are

Solution:
Denotrig nonderiensional quantities by an asterisk.

$$
x^{*}=\frac{1}{2}, \quad y^{*}=\frac{y}{2} \quad u^{*}=\frac{e_{1}}{v_{0}} \quad v=\frac{v}{v_{0}}
$$

Substitutrig into Eq.', we obtain

$$
\begin{aligned}
& \frac{\partial\left(u^{*} V_{0}\right)}{\partial\left(x^{*} L\right)}+\frac{\partial\left(v^{*} V_{0}\right)}{\partial\left(y^{2} L\right)}=0=\frac{V_{0}}{L} \frac{\partial u^{*}}{\partial x^{2}}+\frac{V_{0}}{L} \frac{\partial v^{*}}{\partial y^{*}} \\
& \quad \frac{\partial u^{2}}{\partial x^{2}}+\frac{\partial v^{2}}{\partial y^{2}}=0
\end{aligned}
$$

Consider each term in Eq. 2 .

$$
\begin{aligned}
& u \frac{\partial u}{\partial x}=u^{*} \Delta_{0} \frac{\partial\left(u^{*} v_{0}\right)}{\partial\left(x^{*} L\right)}=v_{0}^{n} u^{*} \frac{\partial u^{2}}{\partial x^{*}} \\
& v \frac{\partial u}{\partial y}=v_{0}^{*} \frac{\partial\left(u^{*} U_{0}\right)}{\partial\left(y^{2} L\right)}=V_{0}^{2} v^{*} \frac{\partial u^{*}}{\partial x^{*}}
\end{aligned}
$$

Leave 3^{b} term as is for the moment

$$
\nabla \frac{\partial^{2} u}{\partial y^{2}}=J \frac{\partial}{\partial y}\left(\frac{\partial u}{\partial y}\right)=\nabla \frac{\partial}{\partial y}\left(\frac{\partial u^{*} i_{0}}{\partial y^{2} L}\right)=\nabla \frac{V_{0}}{L} \frac{\partial}{\partial y^{\prime}}\left(\frac{\partial u^{\prime}}{\partial y^{\prime}}\right)=\nabla \frac{V_{0}}{L} \frac{\partial}{\partial\left(y^{\prime}\right)} \frac{\partial u^{*}}{\partial y^{*}}=v \frac{V_{0}}{L^{2}} \frac{\partial^{2} u^{*}}{\partial y^{*}}
$$

Substituting into Eq.2.

$$
\frac{v_{0}^{2}}{L} u^{2} \frac{\partial u^{2}}{\partial x^{2}}+\frac{b_{0}^{2}}{L} v^{*} \frac{\partial u^{*}}{\partial y^{*}}=-\frac{1}{p} \frac{\partial p}{\partial x}+\frac{b_{0}}{L^{2}} \frac{\partial^{2} u^{2}}{\partial y^{2}}
$$

Multiplying Rough Q by to $_{2}^{2}$.

Define Renon-diriensional.presure $p^{*}=\frac{p}{p t^{2}}$, then

$$
u^{*} \frac{\partial u^{2}}{\partial x^{2}}+v^{*} \frac{\partial u^{*}}{\partial y}=-\frac{\partial e^{*}}{\partial x^{*}}+\frac{\nabla}{V_{0}} \frac{\partial^{2} u^{*}}{\partial y^{42}}
$$

Re similarity parameter is $\vec{V}_{0}=\frac{1}{R_{e}}$

Problem 7.5

The equation describing motion of fluid in a pipe due to an applied pressure gradient, when the flow starts from rest, is

$$
\frac{\partial u}{\partial t}=-\frac{1}{\rho} \frac{\partial p}{\partial x}+\nu\left(\frac{\partial^{2} u}{\partial r^{2}}+\frac{1}{r} \frac{\partial u}{\partial r}\right)
$$

Use the average velocity \bar{V}, pressure drop Δp, pipe length L, and diameter D to nondimensionalize this equation. Obtain the dimensionless groups that characterize this flow.

Nondimensionalizing the velocity, pressure, spatial measures, and time:

$$
u^{*}=\frac{u}{\bar{V}} \quad p^{*}=\frac{p}{\Delta p} \quad x^{*}=\frac{x}{L} \quad r^{*}=\frac{r}{L} \quad t^{*}=t \frac{\bar{V}}{L}
$$

Hence

$$
u=\bar{V} u^{*} \quad p=\Delta p p^{*} \quad x=L x^{*} \quad r=D r^{*} \quad t=\frac{L}{\bar{V}} t^{*}
$$

Substituting into the governing equation

$$
\frac{\partial u}{\partial t}=\bar{V} \frac{\bar{V}}{L} \frac{\partial u^{*}}{\partial t^{*}}=-\frac{1}{\rho} \Delta p \frac{1}{L} \frac{\partial p^{*}}{\partial x^{*}}+v \bar{V} \frac{1}{D^{2}}\left(\frac{\partial^{2} u^{*}}{\partial r^{*}}+\frac{1}{r^{*}} \frac{\partial u^{*}}{\partial r^{*}}\right)
$$

The final dimensionless equation is

$$
\frac{\partial u^{*}}{\partial t^{*}}=-\frac{\Delta p}{\rho \bar{V}^{2}} \frac{\partial p^{*}}{\partial x^{*}}+\left(\frac{v}{D \bar{V}}\right)\left(\frac{L}{D}\right)\left(\frac{\partial^{2} u^{*}}{\partial r^{2}}+\frac{1}{r^{*}} \frac{\partial u^{*}}{\partial r^{*}}\right)
$$

The dimensionless groups are

$$
\frac{\Delta p}{\rho \bar{V}^{2}} \quad \frac{v}{D \bar{V}} \quad \frac{L}{D}
$$

Problem 7.6

In atmospheric studies the motion of the earth's atmosphere can sometimes be modeled with the equation

$$
\frac{D \vec{V}}{D t}+2 \vec{\Omega} \times \vec{V}=-\frac{1}{\rho} \nabla p
$$

where \vec{V} is the large-scale velocity of the atmosphere across the earth's surface, ∇p is the climatic pressure gradient, and $\vec{\Omega}$ is the earth's angular velocity. What is the meaning of the term $\vec{\Omega} \times \vec{V}$? Use the pressure difference, Δp, and typical length scale, L (which could, for example, be the magnitude of, and distance between, an atmospheric high and low, respectively), to nondimensionalize this equation. Obtain the dimensionless groups that characterize this flow.

Recall that the total acceleration is

$$
\frac{D \vec{V}}{D t}=\frac{\partial \vec{V}}{\partial t}+\vec{V} \cdot \nabla \vec{V}
$$

Nondimensionalizing the velocity vector, pressure, angular velocity, spatial measure, and time, (using a typical velocity magnitude V and angular velocity magnitude Ω):

$$
\vec{V}^{*}=\frac{\vec{V}}{V} \quad p^{*}=\frac{p}{\Delta p} \quad \vec{\Omega}^{*}=\frac{\vec{\Omega}}{\Omega} \quad x^{*}=\frac{x}{L} \quad t^{*}=t \frac{V}{L}
$$

Hence

$$
\vec{V}=V \vec{V}^{*} \quad p=\Delta p p^{*} \quad \vec{\Omega}=\Omega \vec{\Omega} * \quad x=L x^{*} \quad t=\frac{L}{V} t^{*}
$$

Substituting into the governing equation

$$
V \frac{V}{L} \frac{\partial \vec{V}^{*}}{\partial t^{*}}+V \frac{V}{L} \vec{V}^{*} \cdot \nabla * \vec{V}^{*}+2 \Omega V \vec{\Omega} * \times \vec{V}^{*}=-\frac{1}{\rho} \frac{\Delta p}{L} \nabla p^{*}
$$

The final dimensionless equation is

$$
\frac{\partial \vec{V}^{*}}{\partial t^{*}}+\vec{V}^{*} \cdot \nabla^{*} \vec{V}^{*}+2\left(\frac{\Omega L}{V}\right) \vec{\Omega} * \times \vec{V}=-\frac{\Delta p}{\rho V^{2}} \nabla p^{*}
$$

The dimensionless groups are

$$
\frac{\Delta p}{\rho \bar{V}^{2}} \quad \frac{\Omega L}{V}
$$

The second term on the left of the governing equation is the Coriolis force due to a rotating coordinate system. This is a very significant term in atmospheric studies, leading to such phenomena as geostrophic flow.

Problem 7.7
Given: At low speeds, drag is independent of fluid density.

$$
F=F(\mu, v, D)
$$

Find: Appropriate dimensionless parameters.
Solution: Apply Buckingham II procedure.
(1) $F \mu \quad D$ $n=4$ parameters
(2) select primary dimensions M, L, t.
(3) $F \mu v \quad D$
$\frac{M L}{t^{2}} \quad \frac{M}{L t} \quad \frac{L}{t} \quad L$ $r=3$ primary dimensions
(4) $\mu, V, D \quad m=r=3$ repeating parameters
(5) Then $n-m=1$ dimension cess grow will result. Setting up a dimensional equation,

$$
\begin{aligned}
\Pi_{1} & =\mu^{a} V^{b} D^{c} F \\
& =\left(\frac{M}{L t}\right)^{a}\left(\frac{L}{t}\right)^{b}(L)^{c} \frac{M L}{t^{2}}=M^{0} L^{0} t^{0}
\end{aligned}
$$

Summing exponents,

$$
\left.\begin{array}{l|l}
M: \quad a+1=0 \\
L:-a+b+c+1=0 & a=-1 \\
t:-a-b-2=0
\end{array} \right\rvert\, \begin{aligned}
& a=-1 \\
& b=-1
\end{aligned} \quad \therefore \Pi_{1}=\frac{F}{\mu V D} .
$$

(6) Check, using F, L, t primary dimensions.

$$
\Pi_{1}=F \frac{L^{2}}{F t} \frac{t}{L} \frac{1}{L}=[1] \vee
$$

$\left\{\begin{array}{l}\text { Since the procedure produces only one dimensionless group, }\end{array}\right\}$ $\left\{\begin{array}{r}\text { it must be a constant. Thus } \\ \Pi_{1}=\frac{F}{\mu V D} \text { or } F \propto \mu v D\end{array}\right.$

Problem 7.8

At relatively high speeds the drag on an object is independent of fluid viscosity. Thus the aerodynamic drag force, F, on an automobile, is a function only of speed, V, air density ρ, and vehicle size, characterized by its frontal area A. Use dimensional analysis to determine how the drag force F depends on the speed V.

Given: That drag depends on speed, air density and frontal area
Find: How drag force depend on speed

Apply the Buckingham Π procedure
(1) $F \quad \begin{array}{llll} & V & \rho & A\end{array}$
$n=4$ parameters
(2) Select primary dimensions M, L, t
(3) $\quad F \quad V \quad \rho \quad A$

$$
\frac{M L}{t^{2}} \quad \frac{L}{t} \quad \frac{M}{L^{3}} \quad L^{2}
$$

(4) $V \quad \rho \quad A$ $r=3$ primary dimensions
(5) Then $n-m=1$ dimensionless groups will result. Setting up a dimensional equation,

$$
\begin{aligned}
\Pi_{1} & =V^{a} \rho^{b} A^{c} F \\
& =\left(\frac{L}{t}\right)^{a}\left(\frac{M}{L^{3}}\right)^{b}\left(L^{2}\right)^{c} \frac{M L}{t^{2}}=M^{0} L^{0} t^{0}
\end{aligned}
$$

Summing exponents,

$$
\begin{array}{cc|c}
M: & b+1=0 & b=-1 \\
L: & a-3 b+2 c+1=0 & c=-1 \\
t: & -a-2=0 & a=-2
\end{array}
$$

Hence

$$
\Pi_{1}=\frac{F}{\rho V^{2} A}
$$

(6) Check using F, L, t as primary dimensions

$$
\Pi_{1}=\frac{F}{\frac{F t^{2}}{L^{4}} \frac{L^{2}}{t^{2}} L^{2}}=[1]
$$

The relation between drag force F and speed V must then be

$$
F \propto \rho V^{2} A \propto V^{2}
$$

The drag is proportional to the square of the speed.

Problem 7.9

Given: Flow through an orifice plate

$$
\Delta p=p_{1}-p_{2}=f\left(\rho_{2}, \mu, v, D_{1} d\right)
$$

Find: Dimensionless parameters.

Solution: Choose ρ, V, and D as repeating variables.
(1) $\Delta p \quad \rho \quad \downarrow \quad n=6$ parameters
(2) select primary dimensions M, L, t
$\begin{array}{lllllll}\Delta p & \rho & \mu & V & D & d \\ & \frac{M}{L t^{2}} & \frac{M}{L^{3}} & \frac{M}{L t} & \frac{L}{t} & L & L\end{array}$

$$
r=3 \text { primary dimensions }
$$

(4) $\quad \rho, V, D \quad m=r=3$ repeating parameters
(5) Then $n-m=3$ dimensionless groups will result. Setting up dimensional equations,

$$
\begin{aligned}
T_{1} & =\rho^{a} V^{b} D^{c} \Delta p \\
& =\left(\frac{M}{L^{3}}\right)^{a}\left(\frac{L}{t}\right)^{b} L^{c}\left(\frac{M}{C t^{2}}\right)=M^{a} L^{0} t^{a}
\end{aligned}
$$

summing exponents,

$$
\begin{aligned}
& T_{2}=\rho^{a} V^{b} D^{c} \mu \\
& =\left(\frac{M}{L^{3}}\right)^{a}\left(\frac{L}{t}\right)^{b} L^{c}\left(\frac{M}{L t}\right. \\
& \text { summing exponents, } \\
& M: a+1=0 \\
& C:-3 a+b+c-1=0 \\
& t:-b-1=0
\end{aligned}
$$

Thus $\pi_{1}=f\left(\pi_{2}, \pi_{3}\right)$ or $\frac{\Delta p}{\rho V^{2}}=f\left(\frac{\mu}{\rho V D}, \frac{d}{D}\right)$
)
(6) Check, using $F, L, t \quad T_{1}=\frac{F}{L^{2}} \frac{L^{4}}{F t^{2}} \frac{t^{2}}{L^{2}}=[1] v, \pi_{2}=R C=[1] v, \pi_{3}=\frac{L}{L}=[1]$

$$
\begin{aligned}
& \text { M: } a+1=0 \quad a=-1 \\
& L:-3 a+b+c-1=0 \\
& t:-6-2=0 \quad b=-2 \\
& c=1-b+3 a=0 \\
& \therefore \pi_{1}=\frac{\Delta p}{\rho V^{2}} \\
& T_{3}=\rho^{a} V^{b} D^{c} d=\left(\frac{M}{L^{3}}\right)^{a}\left(\frac{L}{t}\right)^{b} L^{c} L=M^{0} L^{0} t^{0} \\
& \left.\begin{array}{ll}
\text { M: } a+0=0 & a=0 \\
L:-3 a+b+c+1=0 & b=0
\end{array}\right\} c=-1 ; \pi_{3}=\frac{d}{D} \\
& a=-1 \\
& t:-6-1=0 \quad b=-1 \\
& t:-6-1=0 \quad b=-1 \\
& c=1-b+3 a=-1 \\
& \therefore T_{2}=\frac{\mu}{\rho V D} \\
& \text { a }
\end{aligned}
$$

Given: The boundary layer thickness, δ, on a smooth flat plate in incompressible flow without pressure gradient is a function of v (free stream velocity), p, μ, and $\times($ distance $)$
Find: suitable dimensionless parameters
Solution: Apply Bucking ham π-theorem
(1) $\delta \quad U \quad \mu \quad n=5$ parameters
(3) Select M, L, t as primary dimensions
(3) $\quad \begin{array}{lllll}L & U & P & \mu & x \\ L & \frac{M}{L} & \frac{M}{L} & L\end{array}$ $r=3$ primary dimensions
(4) $P, U, x \quad m=5=3$ repeating paranters
(5) Then $n-m=2$ dimensionless groups will result.
setting up dimensional equations.

$$
\begin{aligned}
\pi_{1} & =e^{a} v^{b} x^{c} \delta \\
m^{0} L^{o} t^{c} & =\binom{n}{2}(t)^{b}
\end{aligned}
$$

$$
\begin{aligned}
& \pi_{2}=p^{a} v^{b} x^{c} \\
& M^{\mu} L^{\mu}=\left(\frac{M}{b^{3}}\right)^{a}\left(\frac{b}{t}\right)^{b}{ }^{c} \frac{M}{L t}
\end{aligned}
$$

Equating exponents,

$$
\begin{aligned}
M: & 0=a \quad \therefore \quad a=0 \\
\therefore & 0=-3 a+b+c+1 \quad c=-1 \\
t: & 0=-b \quad \therefore b=0 \\
\therefore \quad \pi_{1}=\frac{\delta}{x} & \\
& \text { and } \quad \frac{\delta}{x}=f\left(\frac{-U x}{\mu}\right)
\end{aligned}
$$

Equating exponents,

$$
\begin{array}{rlrl}
\text { M. } & 0 & =a+1 & \therefore a \\
\text { に } & 0 & =-3 a+b+c-1 \\
\text { t: } & 0 & =-b-1 \\
\pi_{2} & =\frac{\mu}{p u x} & \therefore b=-1
\end{array}
$$

(6) Check using F.Lit dimensions

$$
\pi_{1}=L^{\infty}=[1]^{2}
$$

$$
\pi_{2}=\frac{F t}{L^{2}} \cdot \frac{L}{F t^{2}} t \frac{1}{L}=[1]^{v}
$$

Given: Wall shear stress, twi, in a boundary layer, depends on ρ, μ, L, and U.
Find: (a) Dimensionless groups.
(b) Express the functional relationship.
U

Solution: step (1) $\tau_{w} \rho \quad \omega \quad U \quad N=5$ Step (2) Choose $M, L, t . \tau_{\omega}=\frac{F}{L^{2}} \times \frac{M}{F t^{2}}=\frac{M}{L t^{2}}$
Step (3)

$$
\frac{M}{L t^{2}} \quad \frac{M}{L^{3}} \quad \frac{M}{L t} \quad L
$$

$$
\frac{L}{t}
$$

$r=3$
Step (4) select P, L, U
Step (5)

$$
\left.\begin{array}{l}
\Pi_{1}=\tau \omega \rho^{a} L^{b} U^{c}=\frac{M}{L t^{2}}\left(\frac{M}{L^{3}}\right)^{a}(L)^{b}\left(\frac{L}{t}\right)^{c}=M^{0} L^{0} t^{0} \\
M: 0=1+a \quad a=-1 \quad b=3 a-c+1=0 \\
L: 0=-1-3 a+b+c \quad c=-2 \\
t: 0=-2-c \quad \pi_{1}=\frac{\tau \omega}{\rho V} \\
\pi_{2}=\mu \rho^{a} L^{b} U^{c}=\frac{M}{L t}\left(\frac{M}{L}\right)^{a}(L)^{b}\left(\frac{L}{t}\right)^{c}=M_{0}^{0} L^{0} \\
M: 0=1+a \quad a=-1 \\
L: 0=-1-3 a+b+c \quad c=-1 \\
t: 0=-1-c \quad c=3 a-c+1=-1
\end{array}\right\} \pi_{2}=\frac{\mu}{\rho U L}
$$

step (6): Check using $F, L, t: \rho=\frac{M}{L^{3}} \times \frac{F L^{2}}{M L}=\frac{F t^{2}}{L^{4}}$

$$
\begin{aligned}
& \pi_{1}=\frac{\tau \omega}{\rho U^{2}}=\frac{F}{L^{2}} \frac{L^{4}}{F t^{2}} \frac{t^{2}}{L^{2}}=\frac{F L^{4} t^{2}}{F L^{4} t^{2}}=1 v v \\
& \pi_{2}=\frac{\mu}{\rho \sigma L}=\frac{F t}{L^{2}} \frac{L^{4}}{F t^{2} L} \frac{t}{L}=\frac{F L^{4} t^{2}}{F L^{4} t^{2}}=1
\end{aligned}
$$

The functional relationship is

$$
\pi_{1}=f\left(\pi_{2}\right)
$$

Given: The mean velocity, \bar{u}, for turbulent pipe or boundary bayer flow, may be correlated in terns of the wall shear stress, r_{w}, distance from the wall, y, and fluid properties, ρ and μ.
Find: (a) duriensionlews parameter containing \bar{u} and one containing y that are suitable for orcpanizng experimental data (b) show hat he result may be write as

$$
\bar{u}_{A}=f\left(\frac{y u}{\nabla}\right)^{w} \text { where } u_{A}=\left(r_{\omega} \mid \rho\right)^{1 / 2}
$$

Solution: Apply the Buckingham TT. Theorem
(1) $\bar{u} \imath_{\omega} \quad y \quad \mu \quad n=5$ parameters
(2) Select M,L,t as primary dimensions
(3) $\frac{L}{t} \frac{M}{L^{2}} \quad \frac{M}{L^{3}} \quad \frac{M}{L t}$
(4) $T_{\omega}, y, p \quad n=r=3$ repeating parameters
(5) Then $n-m=2$ dimensionless groups will result setting up dimensional equations

$$
\begin{gathered}
\pi_{1}=-_{w}^{a} y^{b} p^{c} \bar{u} \\
M^{\circ} L^{a}=\left(\frac{M}{a^{2}}\right)^{a} b^{b}\left(\frac{n}{\omega^{3}}\right)^{c} \frac{L}{t}
\end{gathered}
$$

Summing exponents
M: $\quad a+c=0 \quad \therefore a=-c$
L: $\quad-a+b-3 c+1=0$
t: $\quad-2 a-1=0 \quad \therefore a=-\rangle_{z}$.

$$
a=-1_{2}, c=1 l_{2}, b=0
$$

$$
\pi_{1}=\bar{z} \frac{\rho_{1}^{\prime \prime}}{T_{w}^{\prime}}=\frac{\bar{u}}{\sqrt{r_{w l}}}
$$

$$
\begin{aligned}
& k_{2}=r_{\omega}^{a} y^{b} \rho^{c} \mu \\
& M_{0}^{c} i^{0}=\left(\frac{M}{L^{2}}\right)^{a} L^{b}\left(\frac{N}{0}\right)^{c} \frac{\mu}{2 t}
\end{aligned}
$$

Summing exponents
M: $\quad a+c+1=0 \quad \therefore c=-a-1$
B. $\quad-a+b-3 c-1=0$
t: $\quad-2 a-1=0 \quad \therefore a=-12$
$a=-\lambda_{2}, c=-\lambda_{2}, b=-1$
$\pi_{2}=\frac{\mu}{r_{w} \rho^{1 / 2} y}=\frac{\mu}{\rho y \sqrt{\frac{T_{m}}{\rho}}}$

$$
\pi_{1}=f\left(\pi_{2}\right) \text { or } \frac{\bar{u}}{\sqrt{T_{w} / p}}=f\left(\frac{\mu}{p y \sqrt{T_{w}} / p}\right)
$$

Since $\sqrt{r_{w} t p}=u_{*}$, Hen

$$
\frac{\bar{u}}{u}=f\left(\frac{\mu}{p y u_{+}}\right)=f\left(\frac{p}{y u_{*}}\right)=g\left(\frac{y u_{*}}{v}\right)
$$

Gwen: Velocity, 1 , of a free surface gravity wave in deep water is a function of λ (wavelength) D, p, and g Find: Dependence of V on other variables.

Solution: Apply Bucking tan THeorem
(1) $\quad \pi>\rho g$
$n=5$ parameters
(2) Select M,L,t as primary dimensions

(5) Then $n-m=2$ dimensionless groups will result

Setting up dimensional equations

$$
)
$$

$$
\begin{aligned}
& \pi_{1}=e^{a} \nu^{b} g^{c} v \\
& M^{0} L^{0}=\left(\frac{M}{L}\right)^{a} L^{b}\left(\frac{L}{L^{2}}\right)^{c} \frac{L}{t} \\
& \text { Summing exponerits, } \\
& \text { M: } \quad a=0 \\
& \text { L: }-3 a+b+c+1=0 \\
& \text { t: } \quad-2 c-1=0
\end{aligned}
$$

le $a=0$

$$
\begin{gathered}
c=-\frac{1}{2} \\
b=3 a-c-1=-\frac{1}{2} \\
\therefore \Pi_{1}=\frac{V}{\sqrt{g}}
\end{gathered}
$$

$$
\begin{aligned}
& \pi_{2}=p^{a} y^{b} g^{c} n \\
& M^{0} D^{0}=\left(\frac{M}{L^{3}}\right)^{b}\left(\frac{L}{2}\right)^{c} L
\end{aligned}
$$

Summing exponents,

$$
\begin{array}{ll}
M: \quad a=0 \\
h: & -3 a+b+c+1=0 \\
t & -2 c=0
\end{array}
$$

$$
\text { lie } a=0
$$

$$
c=0
$$

$$
b=3 a-c-1=-1
$$

$$
\therefore \pi_{2}=\frac{\pi}{7}
$$

Thus $\frac{v}{\sqrt{g}}=f\left(\frac{\pi}{9}\right)$ or $v=\sqrt{g} f\left(\frac{\pi}{y}\right)$
(b) Check using Fins
)

$$
\pi_{1}=\frac{k}{t}\left(\frac{L}{t^{2}}\right)^{\prime 2}=[1]^{2}
$$

Given: Volume flow rate, A, over a weir is a function of: upstream height it, gravity.g, and channel width b.
Find: Expression for Q (using dimensional analysis)
Solution: Apply Buckingham π-theorem
(1) List Q h $9 \quad n=4$ parameters
(2) Choose F.h.t as primary dimensions
(3) Dimension $\frac{b^{3}}{t} L \stackrel{L}{t}$
(4) Repeating variables $g . h \quad m=r=2$
(5) Then $n-n=2$ dimensionless groups will result setting up dimensional equations

$$
\begin{aligned}
& \pi_{1}=g^{a} h^{b} Q \\
& L^{0}=\left(\frac{c}{t^{2}}\right)^{a} b^{b}\left(\frac{h^{3}}{t}\right)
\end{aligned}
$$

Equating exponents

$$
\begin{aligned}
\therefore \quad 0 & =a+b+3 \\
t \quad 0 & =-2 a-1 \\
\therefore a & =-\frac{1}{2} \\
b & =-2 \frac{1}{2} \\
\therefore \quad \pi_{1} & =\frac{Q}{g^{1 / 2}} h^{2 \cdot 5} \\
\pi_{1} & =\frac{Q}{h^{2} \sqrt{g h}}
\end{aligned}
$$

$$
\begin{gathered}
\pi_{2}=g^{a} h^{c^{2}} b \\
0 t^{0}=\left(t_{t^{2}}\right)^{a} c h
\end{gathered}
$$

Equating exponents

$$
\begin{gathered}
\therefore \quad 0=a+c+1 \\
t: 0=-2 a \\
\therefore a=0 \\
c=-1 \\
\pi_{2}=\frac{b}{h}
\end{gathered}
$$

(this is obvious by inspection)

Men

$$
\begin{aligned}
& \frac{Q}{h^{2}} \sqrt{g h}=f\left(\frac{b}{h}\right) \\
& Q=h^{2} \sqrt{g h} f\left(\frac{b}{h}\right)
\end{aligned}
$$

Gwen: hoad-carrying capacity, w, (of a journal bearing) depends on: deaneter \rangle; lenget, \hat{l}; clearance, c; angutar speed, w; fubricant Sscosity, μ
Find: Dumensionless parmelers that characterize the problen.
Sdution: Apply Buckingham K - theorem

(2) Choose Fil.t as prinary dimersions
(3) Dimensions $\sim h \frac{1}{t} \frac{F t}{2}$
(4) Repeating Jariables $\rangle, w, \mu \quad n=r=3$
(5) Ren $n-m=3$ derensiontess groups will result

By ins-pection, $\pi_{1}=\frac{l}{D} \quad \pi_{2}=\frac{C}{5}$
Set up dimensional equation to determine π_{3}

$$
\begin{aligned}
& \pi_{3}=\nu^{a} \omega^{b} \mu^{e} w \\
& F^{0} D^{e}=L^{a}\left(\frac{1}{t}\right)^{b}\left(\frac{F}{L^{2}}\right)^{e} F
\end{aligned}
$$

Equating exponerts: $F \quad 0=e+1 \quad \therefore e=-1$

$$
\begin{aligned}
& \text { - } \quad 0=a-2 e \quad \therefore a=-2 \\
& t \quad 0=-b+e \quad \therefore b=-1
\end{aligned}
$$

and

$$
\pi_{3}=v^{\frac{w}{2} \omega} \mu
$$

(6) Cleck using M, t. dirnensons

$$
\begin{aligned}
\pi_{3} & =\frac{M L}{t^{2}} \times \frac{1}{L^{2}}+t \times \frac{L}{M}=[1] \\
& \therefore \frac{W}{D^{2} \omega \mu}=f\left(\frac{l}{8}, \frac{c}{y}\right)
\end{aligned}
$$

Given: Capillary waves form on a liquid free surface. The speed of the clave is a function of σ (surfac etension), λ (the wave length) and p
Find: The wave speed as a function of the variables
Solution: Apply Buckingtan π-tHeorem
(1) $V \quad n \quad \rho=4$ parameters
(2) Select M, h, t as primary dimensions
(3) $\begin{array}{lllll}V & \sigma & n & p & L\end{array} \quad \begin{aligned} & \frac{M}{2}\end{aligned} \quad r=3$ primary dimensions
(4) $\sigma, n, p \quad n=r=3$ repeating parameters
(5) Ten $n-m=1$ dimensionless group will result

Setting up dimensional equation

$$
\begin{aligned}
\pi & =\sigma^{a} n^{b} p^{c} v \\
\operatorname{miL}^{c} t^{c} & =\left(\frac{m}{t^{2}}\right)^{b} b^{b}\left(\frac{n}{b^{b}}\right)^{c} b
\end{aligned}
$$

Summing exponents

$$
\begin{array}{ll}
\text { M: } \quad a+c=0 \quad & c=-a=\frac{1}{2} \\
\text { L: } \quad b-3 c+1=0 \\
t: & -2 a-1=0 \quad
\end{array} \quad b=3 c-1=\frac{1}{2}
$$

$$
\therefore \pi_{1}=\left(\frac{\rho \pi}{\sigma}\right)^{\frac{1}{2}} V=\text { constant } \quad \therefore V \propto \sqrt{\frac{\sigma}{\rho \pi}}
$$

(6) Check using Fit

$$
\pi_{1}=\left(\frac{F t^{2}}{L^{3}} \cdot \frac{h}{F}\right)^{1 / 2} \frac{L}{t}=[1]^{\prime}
$$

The time, t, for oil to drain out of a viscosity calibration container depends on the fluid viscosity, μ, and density, ρ, the orifice diameter, d, and gravity, g. Use dimensional analysis to find the functional dependence of t on the other variables. Express t in the simplest possible form.

Given: That drain time depends on fluid viscosity and density, orifice diameter, and gravity
Find: Functional dependence of t on other variables

Solution

We will use the workbook of Example Problem 7.1, modified for the current problem
The number of parameters is:

$$
\begin{aligned}
n & =5 \\
r & =3 \\
m=r & =3 \\
n-m & =2
\end{aligned}
$$

Enter the dimensions ($\mathbf{M}, \mathbf{L}, \mathbf{t}$) of
the repeating parameters, and of up to
four other parameters (for up to four Π groups).
The spreadsheet will compute the exponents a, b, and c for each.

REPEATING PARAMETERS: Choose $\rho, \boldsymbol{g}, \boldsymbol{d}$

П GROUPS:

	M	L	t		M	L
t	0	0	1	μ	1	-1
$\Pi_{1}:$	a	0		Π_{2} :	$a=$	-1
	$b=$	0.5			$b=$	-0.5
	$c=$	-0.5			$c=$	-1.5

The following Π groups from Example Problem 7.1 are not used:

	M	L	t		M	L	t
	0	0	0		0	0	0
$\Pi_{3}:$	$a=$ $b=$ $c=$	0 0 0		$\Pi_{4}:$	$a=$ $b=$ c	0 0 0	

Hence $\quad \Pi_{1}=t \sqrt{\frac{g}{d}} \quad$ and $\quad \Pi_{2}=\frac{\mu}{\rho g^{\frac{1}{2}} d^{\frac{3}{2}}} \rightarrow \frac{\mu^{2}}{\rho^{2} g d^{3}} \quad$ with $\Pi_{1}=f\left(\Pi_{2}\right)$

The final result is $t=\sqrt{\frac{d}{g}} f\left(\frac{\mu^{2}}{\rho^{2} g d^{3}}\right)$

Given: Power per unit cross-sectional area, E, transmitted by a sound wave, depends on wave speed, v, amplitude, r, frequency, n, and medium density, ρ.
Find: General form of dependence of E on the other variables.
Solution: Step (1) $E \quad V \quad r \quad n \quad l=5$
$\operatorname{step}(2)$ Choose $M, L, t, E=\frac{P}{L^{2}}=\frac{F_{L}}{t} \times \frac{L}{L^{2}}=\frac{F}{L t} \times \frac{M L}{F L^{2}}=\frac{M}{t^{3}}$
$\operatorname{step}(3) \quad \frac{M}{t^{3}} \quad \frac{L}{t} L \quad \frac{1}{t} \quad \frac{M}{L 3} \quad r=3$
step (4) Choose ρ, v, r
Step (5) $T_{1}=p^{a} v^{b} r^{c} E=\left(\frac{M}{L^{3}}\right)^{a}\left(\frac{L}{t}\right)^{b}(L)^{c} \frac{M}{t^{3}}=M^{0} L^{0} t^{a}$

$$
\begin{aligned}
& \left.\begin{array}{ll}
M: a+1=0 \quad a=-1 \\
L:-3 a+b+c=0 \quad c=3 a-b=3(-1)-(-3)=0 \\
t:-b-3=0 \quad b=-3
\end{array}\right\} \pi_{1}=\frac{E}{\rho V^{3}} \\
& \Pi_{2}= \\
& \rho^{a} V^{b} r^{c} n=\left(\frac{M}{L^{3}}\right)^{a}\left(\frac{L}{t}\right)^{b}(L)^{c} \frac{1}{t}=M 0 L^{0} t^{0} \\
& \\
& M: a+0=0 \quad a=0 \quad c=3 a-b=3(0)-(-1)-1\} \pi_{2}=\frac{n r}{V} \\
& \\
& \\
& t:-3 a+b+c=0 \quad b=-1
\end{aligned}
$$

Step (6) Check using $F L t: \rho=\frac{M}{L}{ }^{3} \times \frac{F t^{2}}{M L}=\frac{F t^{2}}{L^{4}}$

$$
\begin{aligned}
& \Pi_{1}=\frac{E}{\rho V^{3}}=\frac{F L}{t L^{2}} \frac{L^{4}}{F t^{2}} \frac{t^{3}}{L^{3}}=\frac{F L^{5} t^{3}}{F L^{5} t^{3}}=1 \\
& \Pi_{2}=\frac{n r}{V}=\frac{1}{t} L_{x} \frac{t}{L}=\frac{L t}{L t}=1
\end{aligned}
$$

Given: Power, θ, required to drive a fan depends on ρ, Q, D and ω.

Find: Dependence of \boldsymbol{P} on other parameters.
Solution: Apply Buckingham IT procedure.
(I) $\quad \boldsymbol{P} \quad \rho \quad Q \quad D \quad \omega$ $n=5$ parameters
(2) Choose primary dimensions M, L, t
(3) $Q P P Q$

$$
\frac{M L^{2}}{t^{3}} \quad \frac{M}{L^{3}} \quad \frac{L^{3}}{t} \quad L \quad \frac{1}{t}
$$

$r=3$ primary dimensions
(4) $p, D, w \quad m=r=3$ repeating parameters
(5) Then $n-m=2$ dimensionless groups will result. Setting up dimensional equations,

$$
\begin{aligned}
\pi_{1} & =\rho^{a} D^{b} w^{c} \theta \\
& =\left(\frac{M}{L^{3}}\right)^{a}(L)^{b}\left(\frac{1}{t}\right)^{c}\left(\frac{M C^{2}}{t^{3}}\right)=M^{0} L^{0} t^{0}
\end{aligned}
$$

$$
\pi_{2}=\rho^{d} D^{e} \omega^{f} Q
$$

$$
=\left(\frac{M}{L^{3}}\right)^{0}(L)^{e}\left(\frac{1}{t}\right)^{f}\left(\frac{L^{3}}{t}\right)=M^{0} L^{0} t^{0}
$$

summing exponents,

$$
\begin{array}{ll|ll}
M: a+1=0 & a=-1 & M: d+0=0 & d=0 \\
L:-3 a+b+2=0 & b=-5 & L:-3 d+e+3=0 & e=-3 \\
t:-c-3=0 & c=-3 & t:-f-1=0 & f=-1 \\
\therefore \Pi_{1}=\frac{\theta}{\rho D^{5} \omega^{3}} & & \therefore \Pi_{z}=\frac{Q}{D^{3} \omega} &
\end{array}
$$

summing exponents,
(6) Check using primary dimensions F, L, t

$$
\pi_{1}=\frac{F L}{t} \frac{L^{4}}{F t^{2}} \frac{1}{L^{5}} t^{3}=[1] \checkmark \quad \pi_{2}=\frac{L^{3}}{t} \frac{1}{L^{3}} t=[1] v
$$

Thus $\pi_{1}=f\left(\pi_{2}\right)$, or $\frac{\theta}{\rho D^{5} \omega^{3}}=f\left(\frac{Q}{D^{3} \omega}\right)$

Given: Draining of a tank from initial level, no.
Time, τ, depends on tank diameter i D, orifice diameter, d, acceleration of gravity, g, density, l, and viscosity, μ.
Find: (a) Number of dimensionless parameters
(b) Number of repeating variables.
(c) T-parameter containing viscosity.

Solution: $\operatorname{step}(1) \tau \quad h_{0} \quad D \quad d$
Step (2) Choose MiLt system
step (3)
$t \quad L$
L

$$
L
$$

L
$L \quad \frac{L}{t^{2}} \quad \frac{M}{L 3} \quad \frac{M}{L t}$

Then $n-r=7-3=4$ parameters will result.
Step (4) $r=3$, so choose 3 variables: ρ, d, g
$\operatorname{step}(5) \Pi_{1}=\rho^{a} d^{b} g^{c} \mu=\left(\frac{M}{L^{3}}\right)^{a} L^{b}\left(\frac{L}{t^{2}}\right)^{c} \frac{M}{L I}=M O L^{0} t^{0}$

$$
\begin{array}{lll}
M: a+1=0 & a=-1 & b=3 a-c+1=3(-1)-\left(-\frac{1}{2}\right)+1 \\
L:-3 a+b+c-1=0 & c=-\frac{1}{2} & b=-\frac{3}{2} \\
t:-2 c-1=0 & & \\
\Pi_{1}= & \frac{\mu}{\rho d^{3 / 2} g^{1 / 2}}
\end{array}
$$

Step (6) Check, using FLt system.

$$
\begin{aligned}
& \mu=\frac{F t}{L^{2}} ; \rho=\frac{M}{L^{3}} \times \frac{F t^{2}}{M L}=\frac{F t^{2}}{L t} \\
& \Pi_{1}=\frac{F t}{L^{2}} \frac{L^{4}}{F t^{2}} \frac{1}{L^{3} / 2} \frac{t}{L^{1 / L}}=\frac{F L^{4} t^{2}}{F L^{4} t^{2}}=1
\end{aligned}
$$

Given: Water is drowned from a tank of darner, Prong Q a smoothly rounded drousi hole of dearneter, d.' The initial mass flow rate, in, from the tank is written in functional form as

$$
m=i\left(h_{0}, \eta, d, g, f, \mu\right)
$$

where to is te initial water dept in the tank g is the acceleration of gravity
fond μ are fluid properties.
Find: (a) fe number of dimensionless groups required to correlate the data
(b) Pe number of repeating warbles that must be selected
to determine the dimensionless parameters.
(c) the π parameter that contains the flue viscosity, μ.

Solution:- Apply the Buckrigham π. theorem
(1) hist in ho \quad i $\quad \rho \quad \rho \mu$
$n=7$ paranturs
(b) Select M, L, t as primary dirnensions
(3) Driensions $\frac{M}{E} L \operatorname{L} \frac{L}{E^{2}} \frac{M}{L^{3}}$
\therefore expect $n-n=7-3=4$ duriensionless parameters
(5)

$$
\begin{aligned}
& \pi=p^{a} d^{b} a^{c} \mu \\
& M O E^{c}=\left(\frac{M}{L^{3}}\right)^{b}\left(\frac{5}{t^{2}}\right)^{c} \frac{M}{L t} \\
& t: \quad 0=-2 c-1 \quad \therefore c=-\frac{1}{2} \\
& M \quad 0=a+1 \quad \therefore a=-1 \\
& L \quad 0=-3 a+b+c-1 \quad \therefore \quad b=3 a-c+1=-\frac{3}{2}
\end{aligned}
$$

$$
\pi_{1}=\frac{\mu}{p d^{3 / 2} g^{\prime 2}}
$$

(b) Check $\pi_{1}=\frac{F t}{L^{2}} \times \frac{L}{F t^{2}} \times \frac{1}{L^{3 / 2}} \times \frac{t}{L^{1 / 2}}=[1] v$

Given: Continuous belt moving vertically through a viscous liquid The volunie rate of liquid loss, Q, is a function of $\mu, p, 9, h$ (thickness of liquid layer), and V
Find: form or dependence of Q on of er variables.

Solution: Apply Buchingtan r-theorem.
(1) $Q \mu p \quad \eta \quad n=6$ paranters
(2) Select M,L,t as primary dimensions

(5) Then $n \rightarrow m=3$ dimensionless groups will result.

Setting up dimensional equations.

$$
\begin{array}{l|l}
\pi_{1}=\rho^{a} v^{b} h^{c} Q & \pi_{2}=\rho^{a} v^{b} h^{c} \mu^{2} \\
M^{0} L^{\circ}=\left(\frac{m a}{3}\right)^{b}\left(L^{b} L^{c} \frac{3}{t}\right. & m^{0} L^{2}=\left(\frac{n}{2}\right)^{a}\left(b^{b} L^{c} \frac{n}{t}\right.
\end{array}
$$

$$
\begin{aligned}
& \pi_{3}=p^{a} v^{b} h^{c} a \\
& M^{0} L^{\circ} t^{c}=\binom{M^{a}}{i^{a}}^{c}=c^{c}
\end{aligned}
$$

Equating exponents,

$$
\begin{array}{ll}
\text { M: } & 0=a \\
\text { L: } & 0=-3 a+b+c+3
\end{array}
$$

Equating exporerits, Equating exponents, M. $\quad 0=a+1$

$$
\text { L. } \quad 0=-3 a+b+c-1
$$

$$
t: \quad 0=-b-1
$$

$$
t: \quad 0=-b-1
$$

$$
\text { ie. } a=0
$$

$$
\text { le } a=-1
$$

$$
b=-1
$$

$$
c=-2
$$

$$
\begin{array}{rl}
M: \quad 0 & =a \\
\therefore \quad 0 & =-3 a+b+c+1 \\
t: 0 & =-b-2 \\
1 . e & a=0 \\
b & =-2 \\
c & =1
\end{array}
$$

$$
\therefore \pi_{1}=\sqrt{\frac{Q}{h^{2}}}
$$

$$
\therefore \pi_{2}=\frac{\mu}{p v h}
$$

$$
\therefore \pi_{3}=\frac{g h}{y^{2}}
$$

Then

$$
\frac{a}{v h^{2}}=f\left(\frac{p h h}{\mu}, \frac{y^{2}}{g h}\right)
$$

(6) Check using F,L,L dimensions

$$
\begin{aligned}
& \text { (6) Check using Fit dinensions } \\
& \pi_{1}=\frac{L^{3}}{t} \cdot \frac{t}{L}=\frac{1}{L^{2}}=[]^{2} \quad \pi_{2}=\frac{F T}{2} \cdot \frac{4}{L^{2}} \frac{t}{L}=[1]^{\prime} \quad \pi_{3}=\frac{L}{L^{2}} \cdot \frac{t^{2}}{L^{2}}=[1]^{2}
\end{aligned}
$$

Giver: Parameter, d, of liquid droplets formed in fuel injection process is a function of ρ, μ, σ (surfac etension), ψ,$\rangle .$
Find: (a) number of dinensionless ratios required to characterize the process (b) the dinersionless ratios.

Solution: Apply Buckingham π. theorem
(1) d $\quad \mu \quad \sigma \quad$ \quad 百 $\quad n=6$ parameters
(2) Select M, L, t as primary dimensions
(3) d $\rho \mu \quad \sigma \quad \nu$

$$
L \quad \frac{m}{L^{3}} \quad \frac{M}{L t} \frac{M}{L^{2}} \quad 幺 \quad L \quad r=3 \text { primary dimensions }
$$

(4) $\rho, D, v \quad m=r=3$ repeating parameters
(5) Then $n-m=3$ dimensionless groups will result. Selling up dimensional equations

$$
\begin{aligned}
& \pi_{1}=\rho^{a} \nu^{b} v^{c} d \quad \quad \pi_{2}=p^{a} b^{b} v^{c} \mu \quad \quad \pi_{3}=e^{a} p^{b} v^{c} \sigma \\
& M^{0} L^{\circ}=\left(\frac{m}{L^{3}}\right)^{b}\left(\frac{L}{t}\right)^{c} L \quad M^{\circ} L^{\circ}=\left(\frac{m}{L^{3}}\right)^{a} b\left(\frac{L}{t}\right)^{c} \frac{M}{L} \\
& M^{\circ} L^{\circ}=\left(L^{3}\right)^{2} b^{b}(t) \frac{M}{2}
\end{aligned}
$$

Summing exponents,
M: $\quad a=0$
L․ $-3 a+b+c+1=0$
t: $\quad-c=0$
ie. $a=0$ $c=0$

$$
b=-1
$$

$$
\therefore \pi_{1}=\frac{d}{D}
$$

Sunning exponents

$$
\begin{aligned}
& \text { M: } \quad a+1=0 \\
& L:-3 a+b+c-1=0 \\
& t: \quad-c-1=0
\end{aligned}
$$

ie. $a=-1$

$$
c=-1
$$

$$
b=3 a-c+1=-1
$$

$$
\therefore \pi_{2}=\frac{\mu}{\rho V D}
$$

(b) Check using F,W, dimensions

$$
\pi_{1}=\frac{L}{L}=[i]^{v} \quad \pi_{2}=\frac{F t}{L^{2}} \cdot \frac{L^{4}}{F t^{2}} \cdot \frac{t}{L} \cdot \frac{1}{L}=[i]^{\prime}
$$

Summing exponents

$$
\begin{aligned}
& M: \quad a+1=0 \\
& \therefore \quad-3 a+b+c=0 \\
& t: \quad-c-2=0
\end{aligned}
$$

$$
\begin{gathered}
\text { ie. } a=-1 \\
c=-2 \\
b=3 a-c=-1 \\
\therefore \pi_{3}=\frac{\sigma}{\rho v^{2}}
\end{gathered}
$$

The diameter, d, of the dots made by an ink jet printer depends on the ink viscosity μ, density ρ, and surface tension, σ, the nozzle diameter, D, the distance, L, of the nozzle from the paper surface, and the ink jet velocity V. Use dimensional analysis to find the Π parameters that characterize the ink jet's behavior.

Given: That dot size depends on ink viscosity, density, and surface tension, and geometry
Find: Π groups

Solution

We will use the workbook of Example Problem 7.1, modified for the current problem

The number of parameters is:

$$
\begin{aligned}
n & =7 \\
r & =3 \\
m=r & =3 \\
n-m & =4
\end{aligned}
$$

Enter the dimensions (M, L, \mathbf{t}) of
the repeating parameters, and of up to
four other parameters (for up to four Π groups).
The spreadsheet will compute the exponents a, b, and c for each.

REPEATING PARAMETERS: Choose ρ, V, D

П GROUPS:

	M	L	t		M	L
d	0	1	0	μ	1	-1
$\Pi_{1}:$	$a=$	0		Π_{2} :	$a=$	-1
	$b=$	0			$b=$	-1
	$c=$	-1			$c=$	-1

$\left.\begin{array}{rcccccc} & \begin{array}{c}\mathbf{M} \\ \sigma\end{array} & \mathbf{L} & \mathbf{t} \\ 0 & -2\end{array}\right)$

$$
\text { Hence } \quad \Pi_{1}=\frac{d}{D} \quad \Pi_{2}=\frac{\mu}{\rho V D} \rightarrow \frac{\rho V D}{\mu} \quad \Pi_{3}=\frac{\sigma}{\rho V^{2} D} \quad \Pi_{4}=\frac{L}{D}
$$

Note that groups Π_{1} and Π_{4} can be obtained by inspection

Given: Ball in jet

$$
h=h(d, D, \rho, v, \mu, w)
$$

Find: p_{i} parameters
Solution: Apply Buckingham procedure
(1) $h \quad d \quad D \rho \quad \vee \quad \omega \quad n=7$
(2) M, L, t
(3) $L L L \frac{M}{L^{3}} \leq \frac{M}{L t} \frac{M L}{L^{2}} \quad m=3 \quad n=m=7-3=4$ parameters
(4) Choose,V, of as repeating parameters.
(5) $P^{a} V^{b} d^{c} W=\left(\frac{M}{L^{3}}\right)^{a}\left(\frac{L}{t}\right)^{b}(L)^{c} \frac{M L}{t^{2}}=M^{0} L^{0} t^{0}$

$$
\begin{array}{lll}
M: a+1=0 \\
L:-3 a+b+c+1=0 & a=-1 & C=-2
\end{array} \quad \Pi_{1}=\frac{W}{\rho V^{2} d^{2}}
$$

$$
t:-b-2=0 \quad b=-2
$$

$$
\begin{aligned}
& \text { (6) check: } F_{\times} \frac{L^{4}}{F t^{2}} \frac{t^{2}}{L^{2}} \times \frac{1}{L^{2}}= \\
& \pi_{2}=\rho^{a} V^{b} d^{0} \mu=\frac{\mu}{\rho V d} \\
& \pi_{3}=\rho^{a} V^{b} d^{c} h=\frac{h}{d} \\
& \pi_{4}=\rho^{a} V^{b} d^{c} D=\frac{D}{d}
\end{aligned}
$$

The diameter, d, of bubbles produced by a bubble-making toy depends on the soapy water viscosity μ, density ρ, and surface tension, σ, the ring diameter, D, and the pressure differential, Δp, generating the bubbles. Use dimensional analysis to find the II parameters that characterize this phenomenon.

Given: Bubble size depends on viscosity, density, surface tension, geometry and pressure
Find: Π groups

Solution

We will use the workbook of Example Problem 7.1, modified for the current problem

The number of parameters is:

$$
\begin{aligned}
n & =6 \\
r & =3 \\
m=r & =3 \\
n-m & =3
\end{aligned}
$$

Enter the dimensions (M, L, t) of
the repeating parameters, and of up to
four other parameters (for up to four Π groups).
The spreadsheet will compute the exponents a, b, and c for each.

REPEATING PARAMETERS: Choose $\rho, \Delta p, D$

П GROUPS:

	M	L	t		M	L
d	0	1	0	μ	1	-1
$\Pi_{1}:$	a	0		Π_{2} :	$a=$	-0.5
	$b=$	0			$b=$	-0.5
	$c=$	-1			$c=$	-1

	M	L	t
σ	1	0	-2
$\Pi_{3}:$	=	0	
	$b=$	-1	
	$c=$	-1	

$$
\begin{array}{rl}
& \begin{array}{c}
\mathbf{M} \\
0
\end{array} \\
\Pi_{4}: & \mathbf{L} \\
0 & \mathbf{t} \\
0
\end{array} \quad \begin{aligned}
& a= \\
& b \\
& b \\
& c
\end{aligned}=\begin{aligned}
& \mathbf{0} \\
& \mathbf{0} \\
& \mathbf{0} \\
& \hline
\end{aligned}
$$

Hence $\quad \Pi_{1}=\frac{d}{D} \quad \Pi_{2}=\frac{\mu}{\rho^{\frac{1}{2}} \Delta p^{\frac{1}{2}} D} \rightarrow \frac{\mu^{2}}{\rho \Delta p D^{2}} \quad \Pi_{3}=\frac{\sigma}{D \Delta p}$

Note that the Π_{1} group can be obtained by inspection

The terminal speed V of shipping boxes sliding down an incline on a layer of air (injected through numerous pinholes in the incline surface) depends on the box mass, m, and base area, A, gravity, g, the incline angle, θ, the air viscosity, μ, and the air layer thickness, δ. Use dimensional analysis to find the Π parameters that characterize this phenomenon.

Given: Speed depends on mass, area, gravity, slope, and air viscosity and thickness

Find: Π groups

Solution

We will use the workbook of Example Problem 7.1, modified for the current problem

The number of parameters is:
$n=7$
The number of primary dimensions is: $\quad \boldsymbol{r}=\mathbf{3}$
The number of repeat parameters is:
$m=r=3$
The number of Π groups is:
$\boldsymbol{n}-\boldsymbol{m}=4$

Enter the dimensions ($\mathbf{M}, \mathbf{L}, \mathbf{t}$) of
the repeating parameters, and of up to
four other parameters (for up to four Π groups).
The spreadsheet will compute the exponents a, b, and c for each.

REPEATING PARAMETERS: Choose $\boldsymbol{g}, \boldsymbol{\delta}, \boldsymbol{m}$

П GROUPS:

$$
\begin{aligned}
& \begin{array}{cccccccc}
& \mathbf{M} & \mathbf{L} & \mathbf{t} & & \mathbf{M} & \mathbf{L} & \mathbf{t} \\
\theta & 0 & 0 & 0 & A & 0 & 2 & 0
\end{array} \\
& \Pi_{3}: \quad \begin{array}{l}
\left.a=\begin{array}{l}
\mathbf{0} \\
b \\
b \\
c
\end{array}=\begin{array}{|c}
\mathbf{0} \\
\mathbf{0}
\end{array}\right]
\end{array} \\
& \Pi_{4}: \quad \begin{aligned}
a & =\begin{array}{c}
0 \\
b
\end{array} \\
& =\begin{array}{c}
-2 \\
c
\end{array} \\
&
\end{aligned} \\
& \text { Hence } \quad \Pi_{1}=\frac{V}{g^{\frac{1}{2}} \delta^{\frac{1}{2}}} \rightarrow \frac{V^{2}}{g \delta} \quad \Pi_{2}=\frac{\mu \delta^{\frac{3}{2}}}{g^{\frac{1}{2}} m} \rightarrow \frac{\mu^{2} \delta^{3}}{m^{2} g} \quad \Pi_{3}=\theta \quad \Pi_{4}=\frac{A}{\delta^{2}}
\end{aligned}
$$

Note that the Π_{1}, Π_{3} and Π_{4} groups can be obtained by inspection

The time, t, for a flywheel, with moment of inertia l, to reach angular velocity ω, from rest, depends on the applied torque, T, and the following flywheel bearing properties: the oil viscosity μ, gap δ, diameter D, and length L. Use dimensional analysis to find the Π parameters that characterize this phenomenon.

Given: Time to speed up depends on inertia, speed, torque, oil viscosity and geometry
Find: Π groups

Solution

We will use the workbook of Example Problem 7.1, modified for the current problem
The number of parameters is:

$$
\begin{aligned}
& n=8 \\
& r=3 \\
& m=r=3 \\
& n-m=5
\end{aligned}
$$

The number of repeat parameters is:

Enter the dimensions (M, L, \mathbf{t}) of
the repeating parameters, and of up to
four other parameters (for up to four Π groups).
The spreadsheet will compute the exponents a, b, and c for each.

REPEATING PARAMETERS: Choose $\omega, \boldsymbol{D}, \boldsymbol{T}$

Π GROUPS:
Two Π groups can be obtained by inspection: $\boldsymbol{\delta} / \boldsymbol{D}$ and $\boldsymbol{L} / \boldsymbol{D}$. The others are obtained below
$\left.\begin{array}{rllllll} & \begin{array}{c}\mathbf{M} \\ t\end{array} & \mathbf{L} & \mathbf{t} \\ 1\end{array}\right)$

	\mathbf{M} 0
$\Pi_{4}: \quad$$\mathbf{L}$ 0	
	a b b $c$$=$$\mathbf{0}$ $\mathbf{0}$ $\mathbf{0}$

Hence the Π groups are

$$
t \omega \quad \frac{\delta}{D} \quad \frac{L}{D} \quad \frac{\mu \omega D^{3}}{T} \quad \frac{I \omega^{2}}{T}
$$

Note that the Π_{1} group can also be easily obtained by inspection

Given: Pressurized tank drained through smooth nozzle, area A.

$$
\dot{m}=\dot{m}(\Delta p, h, \rho, A, g)
$$

Find: (a) Number of independent dimensionless parameters.
(b) Obtain the parameters.
(c) State the functional relationship for \dot{m}.

Solution: Apply the Buckingham I-theorem.
(1) $\dot{m} \quad 4 \quad \rho \quad A \quad g \quad n=6$ parameters
(2) select M, L, t as primary dimensions
(3) $\frac{M}{t} \quad \frac{M}{L t^{2}} L \quad \frac{M}{L^{3}} \quad L^{2} \quad \frac{L}{t^{2}} \quad r=3$ primary
(4) Choose p, A, g as repeating parameters.
(5) Then $n-m=6-3=3$ dimensionless parameters result.
\longleftrightarrow
$g^{a}\left(L^{2}\right)^{b}\left(\frac{L}{t^{2}}\right)^{c} L$

$$
M L^{0} t^{0}=\left(\frac{M}{L^{3}}\right)^{a}\left(L^{2}\right)^{b}\left(\frac{L}{t^{2}}\right)^{c} \frac{M}{t}\left|M^{0} L^{0} t^{0}=\left(\frac{M}{L^{3}}\right)^{a}\left(L^{2}\right)^{b}\left(\frac{L}{t^{2}}\right)^{c} \frac{M}{L^{2}}\right| M^{0} L^{0} t^{0}=\left(\frac{M}{L^{3}}\right)^{a}\left(L^{2}\right)^{b}\left(\frac{L}{t^{2}}\right)^{c} L
$$

Equating exponents: Equating exponents: Equating exponents:

$$
\pi_{3}=\rho^{a} A^{b} g^{c} h
$$

$$
\begin{array}{l|l|}
\Pi_{1}=\rho^{a} A^{b} g^{c} \dot{m} & \Pi_{2}=\rho^{a} A^{b} g^{c} \Delta p \\
M^{0} L^{0} t^{0}=\left(\frac{M}{3}\right)^{a}\left(L^{2}\right)^{b}\left(\frac{L}{t^{2}}\right)^{c} \frac{M}{t} & M^{0} L^{0} t^{0}=\left(\frac{M}{L 3}\right)^{a}\left(L^{2}\right)^{b}\left(\frac{L}{t^{2}}\right)^{c} \frac{M}{L^{2}} \\
\text { Equating exponents: } & \text { Equating exponents: } \\
M: a+1=0 & a=-1 \\
L:-3 a+2 b+c=0 & M: a+1=0 \\
t:-2 c-1=0 & c=-\frac{1}{2} \\
\therefore:-3 a+2 b+c-1-0 & t:-2 c-2=0 \quad c=-1 \\
\therefore b=\frac{1}{2}(3 a-c)=-\frac{5}{4} & \therefore b=\frac{1}{2}(1+3 a-c)=-\frac{1}{2} \\
T_{1}=\frac{\dot{m}}{\rho A^{5 / 4} g^{1 / 2}} & \Pi_{2}=\frac{\Delta p}{\rho A^{1 / 2} g}
\end{array}
$$

set up dimensional equations:
equating exponents

$$
m=r=3
$$

$$
M: a=0 \quad a=0
$$

$$
\begin{aligned}
& \therefore:-3 a+2 b+c+1=0 \\
& t ;-2 c+0=0 \quad c=0
\end{aligned}
$$

$$
\therefore b=\frac{1}{2}(-1+3 a-c)=-\frac{1}{2}
$$

(6) Check using $F L t$ dimensions: $\dot{m}=\frac{M}{t} \frac{F t^{2}}{M L}=\frac{F t}{L} ; \rho=\frac{M}{L^{3}} \frac{F t^{2}}{M L}=\frac{F t^{2}}{L^{4}}$

$$
\pi_{t}=\frac{F t}{L} \frac{L^{4}}{F t^{2}} \frac{1}{L^{5 / 2}} \frac{t}{L^{1 / 2}}=[1] v v \quad\left|\pi_{2}=\frac{F}{L^{2}} \frac{L^{4}}{F t^{4}} \frac{1}{L} \frac{t^{2}}{L}=[1] \sim v \quad\right| \pi_{3}=\frac{L}{L}=[1] \vee v
$$

Thus

$$
T_{1}=f\left(\pi_{2}, \pi_{3}\right) \quad \frac{m}{\rho A^{5 / 4 g^{1 / 2}}}=f\left(\frac{\Delta p}{\rho A^{1 / 2} g}, \frac{h}{A^{1 / 2}}\right)
$$

or

$$
\dot{m}=\rho A^{5 / 4} g^{1 / 2} f\left(\frac{\Delta p}{\rho A^{1 / 2} g}, \frac{h}{A^{1 / 2}}\right)
$$

Given: Aerodynamic torque on spinning ball,

$$
T=f(v, \rho, \mu, D, \omega, d)
$$

Find: Dimensionless parameters
Solution: Apply Buckingham procedure.

(2) Choose M, L, t
(3) $\frac{M L^{2}}{t^{2}} \frac{L}{t} \frac{M}{L^{3}} \quad \frac{M}{L t} L \quad \frac{1}{t} L \quad m=3$
(4) Choose P, V, D

$$
n-m=4 \text { parameters }
$$

(5)

$$
\begin{aligned}
& \pi_{1}=\rho^{a} V^{b} D^{c} T=\left(\frac{M}{L^{3}}\right)^{a}\left(\frac{L}{t}\right)^{b}(L)^{c} \frac{M L^{3}}{t^{2}}=M L^{0} t^{0} \\
& M: a+1=0 \quad a=-1 \\
& L:-3 a+b+c+z=0 \quad C=-3 \quad \Pi_{1}=\frac{T}{\rho V^{2} D^{3}} \\
& t:-b-2=0 \quad b=-2
\end{aligned}
$$

(b) Check: $\Pi_{1}=F L_{*} \frac{L^{4}}{F t^{2}} * \frac{t^{2}}{L^{2}} \times \frac{1}{L^{3}}=1 \sim$

$$
\begin{aligned}
& \pi_{2}=\frac{\mu}{\rho V D} \\
& \pi_{3}=\frac{\omega D}{v} \\
& \pi_{4}=\frac{d}{D}
\end{aligned}
$$

$$
\begin{aligned}
& \pi_{1}=f\left(\pi_{2}, \pi_{3}, \pi_{4}\right) \\
& \frac{T}{\rho V^{2} D^{3}}=f\left(\frac{\mu}{\rho V D}, \frac{\omega D}{V}, \frac{d}{D}\right)
\end{aligned}
$$

 angular speed, w; viscosity, μ; Mean pressure, P.
Find: (e) Vmensiontess parameters that characterize the problem (b) Functional form of dependence of P on parameters.

Solution: Apply Buckingham $*-$ - Meorem
(1) $P>\omega \quad \rho \quad \rho \quad n=7$-paranclers
(C) Select F, , t as primary dimensions
(3) $\begin{array}{llllll}B & l & C & \omega & \mu & p \\ \frac{F L}{t} & L & L & L & \frac{F t}{L^{2}} & \frac{F}{h^{2}}\end{array}$
(4) $D, w,-p \quad m=r=3$ repeating parameters
(5) Then $n-n=4$ dirensiontess groups will result.

Setting up dimensional equations

Equating exponents, / Equaling exponents! Equating exponents! Equating exponents,

$$
\text { Then, } \quad \frac{Q}{p \omega\rangle^{3}}=f\left(\frac{\mu \omega}{-p}, \frac{c}{D}, \frac{k}{D}\right)
$$

(6) Guck using M, , t dimensions

$$
\begin{aligned}
& \pi_{1}=\frac{m^{2}}{t^{3}} \times \frac{L^{2}}{r^{2}}+t \times \frac{1}{h^{3}}=[1]^{2} \\
& \pi_{2}=[i] \quad \pi_{3}=\frac{L}{L}=[i]^{2} \\
& \pi_{4}=\frac{M}{L} \times \frac{1}{t} \times \frac{t^{2}}{M}=[]^{2}
\end{aligned}
$$

$$
\begin{aligned}
& F: \quad 0=e+1 \\
& \text { L: } 0=a-2 e+1 \\
& \text { |F: } 0=e \\
& \text { ㄴ. } 0=a-2 e+1 \\
& t: 0=-b-1 \\
& \text { It } 0=-b \\
& \begin{aligned}
& F: 0=e \\
& \text { h: } \quad 0=a-2 e+1
\end{aligned} \\
& { }^{F} F: \quad 0=e+1 \\
& \therefore e=-1 \\
& \therefore e=0 \\
& a=-3 \\
& a=-1 \\
& \therefore e=0 \\
& \therefore \quad e=-1 \\
& b=-1 \\
& \pi=\frac{Q}{-p \omega y^{3}} \\
& b=0 \\
& a=-1 \\
& a=0 \\
& b=1 \\
& b=0 \\
& 1 \\
& 1 \pi_{4}=\frac{\mu \omega}{-p}
\end{aligned}
$$

$$
\begin{aligned}
& \left.\pi_{1}=\right\rangle^{a} \omega^{b} p^{e} p \quad\left|\pi_{2}=\right\rangle^{a} \omega^{b} p^{e} \ell \quad\left|\pi_{3}=\right\rangle^{a} \omega^{b} p^{e} c \quad \mid \pi_{n}=y^{a} \omega^{b} p^{e} \mu
\end{aligned}
$$

Guien: Thrush, F_{t}, of a marine propeller is hougit to depend on: ρ (woter density), (dianeter), (speed of advarce) 9 (aceeleration of gravity), w (anguar spead of propelles), -p (pressure in He Piqueet, and $\mu(l i q u i d v i s c o s i t y)$
Find: Dinensionless paramelers that characterize propeller performance.
Solution: Apply Buckinghan π-theorem
(1) hist: $F_{t} p, y$ p \quad, \quad p $\mu(n=8)$
(2) Cosese M,L,t as prinary dumestions
(3) Yimersions: $\frac{M}{t^{2}} \frac{M}{L^{3}} L \frac{L}{t} \frac{1}{t^{2}} \frac{M}{L^{2}} \frac{M}{L t}$
(4) Repeating variables $p V, y \quad m=r=3$
(3) Ren $n-m=5$ dumensionless groups will resuit Selting up duriensional equations

$$
\begin{aligned}
& \pi_{1}=p^{a} y^{b} y^{c} F_{t} \\
& M L^{\circ}=\left(\frac{M}{3^{3}}\right)\left(\frac{L}{t}\right)^{b} L^{c} \frac{M L}{t^{2}} \quad\left\{\begin{array}{l}
M: 0=a+1 \\
t: 0=-b-2 \\
1: 0=-3 a+b+c+1
\end{array}\right\} \begin{array}{l}
a=-1 \\
b=-2 \\
c=-2
\end{array} \quad \therefore \pi_{1}=\frac{F_{t}}{\rho^{\left.v^{2}\right\rangle^{2}}} \\
& \pi_{2}=e^{a} v^{b} p^{c} \\
& M_{2}=R^{0}-\left(\frac{A}{3}\right)^{a}\left(\frac{L}{t}\right)^{c} L^{c}\left(\frac{c}{t^{2}}\right) \quad\left\{\begin{array}{l}
m: 0=a \\
t: 0=-b-2 \\
1 \\
0=-3 a+b+c+1
\end{array}\right\} \begin{array}{l}
a=0 \\
b=-2 \\
c=1
\end{array} \quad \therefore \pi_{2}=\frac{g}{v^{2}} \\
& \begin{array}{l}
\pi_{3}=p^{a} j^{b} 0^{c} \omega \\
M 00^{0}=\left(\frac{M}{b}\right)^{a}\left(\frac{b}{t}\right)^{b} L^{c}\left(\frac{1}{t}\right)
\end{array}\left\{\begin{array}{l}
M: 0=a \\
t: 0=-b-1 \\
\vdots \\
\vdots=-3 a+b+c
\end{array}\right\} \begin{array}{l}
a=0 \\
b=-1 \\
c=1
\end{array} \quad \therefore \pi_{3}=\frac{w y}{V} \\
& \left.\left.\begin{array}{l}
\left.\pi_{4}=p^{a} V^{b}\right)^{c}-p \\
M_{0} t^{0}=\left(\frac{-1}{L^{3}}\right)^{b}\left(\frac{b}{t}\right)^{c} L^{M} \frac{M}{L} t^{2}
\end{array}\right\} \begin{array}{l}
M: 0=a+1 \\
t: 0=-b-2 \\
t \quad 0=-3 a+b+c-1
\end{array}\right\} \begin{array}{l}
a=-1 \\
b=-2 \\
c=0
\end{array} \quad \therefore \pi_{4}=\frac{p}{p V^{2}} \\
& \begin{array}{l}
\pi_{5}=p^{a} \nu^{b} \nu^{c} \mu \\
M L^{0} L^{0}-\left(\frac{1}{3}\right)^{a}\left(\frac{b}{t}\right)^{0} \leq \frac{M}{A t}
\end{array}\left\{\begin{array}{l}
M: 0=a+1 \\
t: 0=-b-1 \\
i: 0=-3 a+b+c-1
\end{array}\right\} \quad \begin{array}{l}
a=-1 \\
b=-1 \\
c=-1
\end{array} \quad \therefore \pi_{5}=\frac{\mu}{p^{41}}
\end{aligned}
$$

\bar{y} inensiohless parameters are $\frac{F_{t}}{p^{v^{2}} y^{2}}, \frac{g y}{y^{2}}, \frac{\omega y}{y}, \frac{p}{p^{3}}, \frac{\mu}{p^{4} y}$
(e) Gieck using F.W.t

$$
\begin{aligned}
& \pi_{1}=F+\frac{L^{2}}{F_{t^{2}}} \times \frac{L^{2}}{L^{2}} \times \frac{1}{L^{2}}=[]^{2} \quad \pi_{2}=\frac{L}{L^{2}} \times L^{2}+\frac{t^{2}}{L^{2}}=[1] v \\
& \pi_{3}=\frac{\lambda}{t} \times L \times \frac{t}{L}=[0], \pi_{4}=\frac{F}{L^{2}}+\frac{L^{*}}{F L^{2}} \times \frac{t^{2}}{L^{2}}=[J] \\
& \pi_{5}=\frac{1}{R_{e}}=\left[V^{v}\right.
\end{aligned}
$$

Given: Power, P, required to drive a propeller is a function of V, D, ω (angular velocity), μ, P, and C (speed of sound)
Find: (a) number of dimensionless groups required To characterize situation (b) the dimensionless groups

Solution: Apply Bucking tam π-theorem
(1) $P \quad \vee>\omega \quad \mu \quad$ p
(2) Select Mint as primary dimensions
(3) $\dot{P} \quad V>\omega \rho \rho \rho c$

$$
\frac{M^{2}}{t^{3}} \quad \frac{L}{t} \quad \frac{1}{t} \quad \frac{m}{L} \quad \frac{M}{L^{3}} \quad=
$$

$x=3$ primary dimensions
(4) $\quad V, D, p \quad m=r=3$ repeating parameters
(5) Then $n-n=4$ dimensionless groups will result:

Setting up dimensional equations:
)

Summing exponents,
M. $c+1=0: c=-1$

ㄴ. $\quad a+b-3 c-1=0$
$t \quad-a-1=0 \therefore a=-1$
$b=3 c+1-a=-1$

$$
\therefore \pi_{3}=\frac{\mu}{\rho^{p} v}
$$

$$
\begin{aligned}
& \pi_{1}=V^{a} D^{b} \rho^{c} e^{d} \\
& \text { MOLt }=\left(\frac{L}{t}\right)^{a} b^{b}\left(\frac{n}{L^{3}}\right)^{c} \frac{M^{2}}{t^{3}} \\
& \text { Summing exponents, } \\
& \text { M: } \quad c+1=0 \quad \therefore c=-1 \\
& \text { L. } a+b-3 c+2=0 \\
& \text { t: } \quad-a-3=0 \quad \therefore a=-3 \\
& b=3 c-2-a=-2 \\
& \therefore \pi_{1}=\frac{\theta}{\rho)^{2} y^{3}} \\
& \left.\pi_{3}=v^{a}\right\rangle^{b} p^{c} \mu \\
& M_{0} L^{0}=\left(\frac{L}{E}\right)^{a} L^{b}\left(\frac{M}{L^{2}}\right)^{c} \frac{M}{L t}
\end{aligned}
$$

$$
\begin{aligned}
& \pi_{2}=V^{a} y^{b} p^{c} \omega \\
& M^{0} L^{c} t^{0}=\left(\frac{1}{t}\right)^{a} L^{b}\left(\frac{M}{L^{a}}\right)^{c} \frac{1}{t}
\end{aligned}
$$

Summing exponents,

$$
\begin{aligned}
& \text { M: } \quad c=0 \\
& \text { n: } \quad a+b-3 c=0
\end{aligned}
$$

$$
\text { t: } \quad-a-1=0 \quad \therefore a=-1
$$

$$
b=3 c-a=1
$$

$$
\therefore \pi_{2}=\frac{\omega}{V}
$$

$$
\begin{aligned}
& \pi_{4}=v^{a} b^{b} p^{c} c \\
& M^{\circ} L L^{c}=\left(\frac{L}{t}\right)^{a} D^{b}\left(\frac{n}{L^{3}}\right)^{c} \frac{t}{t}
\end{aligned}
$$

Summing exponents,
M: $\quad c=0$
w. $\quad a+b-3 c+1=0$

$$
t: \quad-a-1=0 \quad \therefore a=-1
$$

$$
b=3 c-a-1=0
$$

$$
\therefore \pi_{n}=\frac{c}{V}
$$

Dimensionless groups are: $\frac{P}{\rho j^{2} V^{3}}, \frac{\omega l}{V}, \frac{\mu}{\rho i}, \frac{c}{V}$
(6) Check using F,L,t

$$
\begin{array}{ll}
\pi_{1}=\frac{F L}{t} \cdot \frac{L^{2}}{F t^{2}} \frac{1}{L^{2}} \frac{L^{3}}{L^{3}}=[1]^{2} & \pi_{2}=\frac{1}{t} L T=[]^{2} \\
\pi_{3}=\frac{1}{R_{2}}=[i]^{2} & \pi_{4}=\frac{L}{t} \frac{t}{L}=[I]^{2}
\end{array}
$$

Given: Fan-assisted convection oven; \dot{Q} = heat trans fer rate (energy/time).

$$
\dot{Q}=f\left(c_{p}, \theta, L, \rho, \mu, v\right)
$$

Find: (a) Number of basic dimensions included in these variable.
(b) Number of π-parameters.
(c) Obtain the parameters.

Solution: Apply the Buckingham π-theorem.
(1) \dot{Q}
$\dot{Q} \quad C_{\rho}$
$p \quad \mu$
$\checkmark n=7$ parameters
(2) select F, L, t, T (temperature) as primary dimensions.
(3) $\frac{F L}{t} \frac{L^{2}}{t^{2} T} T V \frac{F t^{2}}{L^{4}} \frac{F t}{L^{2}} \frac{L}{t}$
(4) Choose ρ, V, L, Θ as repeating parameters.
(5) Then $n-m=7-4=3$ dimensionless parameters result.

$$
\begin{aligned}
& 4 \text { primary } \\
& \text { dimensions }
\end{aligned}
$$

Set up dimensional equations:

Equating exponents:
Equating exponents:
Equating exponents:

$F: a+1=0$	$a=-1$	F: $a=0$	$a=0$
$L:-4 a+b+c+1=0$: $-4 a+b+c+2=0$	
$t: 2 a-b-1=0$	$b=-3$	$t: 2 a-b-2=0$	$b=-2$

$$
a=-1
$$

$$
F ; a=0
$$

$d=1$

$$
\begin{cases}F: a+1=0 & a=-1 \\ L:-4 a+b+c-2=0 & \\ t: 2 a-b+1=0 & b=-1 \\ T: d=0 & d=0 \\ \therefore c=2+4 a-b=-1 & \end{cases}
$$

$$
m=r=4
$$

4

$$
\begin{aligned}
& F: a+1=0 \\
& L:-4 a+b+c+1=0 \\
& t: 2 a-b-1=0 \\
& T: d=0 \\
& \therefore c=-1+4 a-b=-2 \\
& T_{1}=\frac{\dot{Q}}{\rho V^{3} L^{2}}
\end{aligned}
$$

$$
C:-4 a+b+c+2=0
$$

$$
T: d-1=0
$$

$$
\therefore C=-2+4 a-b=0
$$

$$
\pi_{2}=\frac{\zeta_{\rho} \theta}{V^{2}}
$$

$$
T_{3}=\frac{\mu}{\rho V L}
$$

(b) Check, using MLt T dimensions: $\dot{Q}=M L^{2} / t^{3} ; \mu=M / L t$

$$
\mathbb{T}_{1}=\frac{M L^{2} L^{3}}{t^{3}} \frac{t^{3}}{M} \frac{1}{L^{3}} \frac{L^{2}}{L^{2}}=[1] \vee v \quad\left|\prod_{2}=\frac{L^{2}}{t^{2} T} T \frac{t^{2}}{L^{2}}=[1] \vee v \quad\right| \pi_{3}=\frac{M}{L t} \frac{L^{3} \frac{t}{M} \frac{1}{L} \frac{1}{L}=[1] \mathrm{vv}}{}
$$

Thus

$$
\pi_{1}=f\left(\pi_{2}, \pi_{3}\right) \quad \frac{\dot{Q}}{\rho V^{3} L^{2}}=f\left(\frac{C_{\rho} \theta}{V^{2}}, \frac{\mu}{\rho L}\right)
$$

or

$$
\dot{Q}=\rho V^{3} L^{2} f\left(\frac{C_{\rho} \Theta}{V^{2}}, \frac{\mu}{\rho V L}\right)
$$

$$
\begin{aligned}
& \pi_{1}=\rho^{a} V^{b} L^{c} \theta^{d} \dot{Q} \\
& \begin{array}{l|l}
\pi_{2}=\rho^{a} V^{b} L^{c} \theta^{d} c_{\rho} & \pi_{3}=\rho^{a} V^{L} L^{c} \theta^{d} \mu
\end{array} \\
& \left.F^{0} L^{0} t^{0} T^{0}=\left(\frac{F_{t}^{2}}{L^{2}}\right)^{a}\left(\frac{L}{t}\right)^{2} L\right)^{c}(T)^{d} \frac{F L}{t} \left\lvert\, \quad F^{0} L^{0} t^{a} T^{0}=\left(\frac { F _ { t ^ { 2 } } L ^ { a } } { } { } ^ { a } (\frac { L } { t }) ^ { b } \left(\omega^{c}(T)^{d} \frac{L^{2}}{\tau^{2} T}\right.\right.\right. \\
& F^{0} L^{0} t^{0} T^{0}=\left(\frac{F t^{2}}{L^{4}}\right)^{a}\left(\frac{L}{t}\right)^{b}\left(L^{c}(T)^{d} \frac{F t}{L^{2}}\right.
\end{aligned}
$$

Problem 7.35

The rate $d T / d t$ at which the temperature T at the center of a rice kernel falls during a food technology process is critical - too high a value leads to cracking of the kernel, and too low a value makes the process slow and costly. The rate depends on the rice specific heat, c, thermal conductivity, k, and size, L, as well as the cooling air specific heat, c_{p}, density, ρ, viscosity, μ, and speed, V. How many basic dimensions are included in these variables? Determine the Π parameters for this problem.

Given: That the cooling rate depends on rice properties and air properties

Find: The Π groups

Apply the Buckingham Π procedure

(2) Select primary dimensions M, L, t and T (temperature)
(3)

$$
\frac{T}{t} \quad \frac{L^{2}}{t^{2} T} \quad \frac{M L}{t^{2} T} \quad L \quad \frac{L^{2}}{t^{2} T} \quad \frac{M}{L^{3}} \quad \frac{M}{L t} \quad \frac{L}{t}
$$

(4) $V \quad L \quad c_{p} \quad m=r=4$ repeat parameters
(5) Then $n-m=4$ dimensionless groups will result.

By inspection, one Π group is c / c_{p}

Setting up a dimensional equation,

$$
\begin{aligned}
\Pi_{1} & =V^{a} \rho^{b} L^{c} c_{p}^{d} \frac{d T}{d t} \\
& =\left(\frac{L}{t}\right)^{a}\left(\frac{M}{L^{3}}\right)^{b}(L)^{c}\left(\frac{L^{2}}{t^{2} T}\right)^{d} \frac{T}{t}=T^{0} M^{0} L^{0} t^{0}
\end{aligned}
$$

Summing exponents,

$$
\begin{array}{cc|c}
T: & -d+1=0 & d=1 \\
M: & b=0 & b=0 \\
L: & a-3 b+c+2 d=0 & a+c=-2 \rightarrow c=1 \\
t: & -a-2 d-1=0 & a=-3
\end{array}
$$

Hence

$$
\Pi_{1}=\frac{d T}{d t} \frac{L c_{p}}{V^{3}}
$$

By a similar process, find

$$
\Pi_{2}=\frac{k}{\rho L^{2} c_{p}}
$$

and

$$
\Pi_{3}=\frac{\mu}{\rho L V}
$$

Hence

$$
\frac{d T}{d t} \frac{L c_{p}}{V^{3}}=f\left(\frac{c}{c_{p}}, \frac{k}{\rho L^{2} c_{p}}, \frac{\mu}{\rho L V}\right)
$$

Given: Water hammer caused by sudden closure of value in pipeline.

$$
p_{\max }=f\left(p, U_{0}, E_{v}\right)
$$

Find: (a) How many dimenseontess groups needed to characterize?
(b) Functional relationship in terms of Π groups.

Solution: Step (1): List $p_{\text {max }} \quad \rho \quad U_{0} \quad E_{v}$
Step (2): Choose M,L,t
$\operatorname{step}(3:$

$$
\frac{M}{L t^{2}} \quad \frac{M}{L^{3}} \quad \frac{L}{t} \quad \frac{M}{C t^{2}}
$$

For this matrix, $r=2$
Step (4): Choose ℓ, V_{0}
Ste $\rho(5): \pi_{i}=\rho^{a} V_{0}^{b} \rho_{\text {max }}=\left(\frac{M}{L^{3}}\right)^{a}\left(\frac{L}{Z}\right)^{b} \frac{M}{L t^{2}}=M_{0}^{0} L^{0}$

$$
\left.\begin{array}{ll}
M: a+1=0 & a=-1 \\
L:-3 a+b-1 & =0 \\
t:-b-2=0 & b=-2
\end{array}\right\} r \quad \pi_{1}=\frac{p_{\max }}{\rho V_{0}^{2}} .
$$

By inspection

$$
\pi_{2}=\frac{E_{v}}{\rho v_{0}^{2}}
$$

Step (6): Check using $F L_{t}: \rho=\frac{M}{L^{3}} \times \frac{F t^{2}}{M L}-\frac{F t^{2}}{L^{4}}$

$$
\pi,=\frac{F}{L^{2}} \frac{L^{4}}{F t^{2}} \frac{t^{2}}{L^{2}}=\frac{F L^{4} t^{2}}{F L^{4} t^{2}}=1
$$

The functional relationship is $T_{1}=f\left(\pi_{2}\right)$. Thus

$$
\frac{\rho_{\max }}{\rho V_{0}^{2}}=f\left(\frac{E_{V}}{\rho V_{0}^{2}}\right)
$$

Given: Vessel/ to be powered by rotating cay hinder. Mode / to be tested to estimate power neededed to rotate cylinder.

Find: (a) Parameters that should be included.
(b) Important dime usiontess groups

Solution: $P=f(\rho, \omega, D, \mu, H, V)$

(2) Choose M, L, t as primary dimensions

(3) $\frac{M}{L^{3}} \frac{1}{t} L \frac{M}{L t} L \frac{L}{t} \frac{M^{2}}{t^{3}} \quad r=3$ primary dimensions
(4) $\rho, \omega, 0 \quad m=3$ $m=r=3$ repeating parameters
(5) Then expect $n-m=4$ dimensionless groups

$$
\begin{array}{cc}
\Pi_{1}=\rho^{a} \omega^{b} D^{c} \rho=\left(\frac{M A}{L^{3}}\right)^{a}\left(\frac{1}{t}\right)^{b}(c)^{c} \frac{M L^{2}}{t^{3}} \\
M: a+1=0 & a=-1 \\
L:-3 a+c+2=0 & c=-5 \\
t:-b-3=0 & b=-3 \\
\Pi_{1}=\frac{\theta}{\rho \omega^{3} D^{5}} &
\end{array}
$$

$$
\pi_{2}=\rho^{a} \omega^{b} D^{c} V=\left(\frac{M}{L^{3}}\right)^{a}\left(\frac{1}{t}\right)^{b}(L)^{c} \frac{L}{t}
$$

$$
M: a+0=0
$$

$$
a=0
$$

$$
m_{3}=\rho^{a} w^{b} 0^{c} H
$$

$$
1
$$

$$
\pi_{4}=\rho^{a} \omega^{b} D^{c} \mu=\left(\frac{M}{L^{3}}\right)^{a}\left(\frac{1}{t}\right)^{b}(C)^{c} \frac{M}{L t}
$$

By inspection $\pi_{3}=\frac{H}{D} \quad \pi_{3}$
M: $a+1=0$
$a=-1$
L: $-3 a+c-1=0$
$c=-2$
$t:-b-1=0$
$b=-1$

$$
\Pi_{4}=\frac{\mu}{\rho \omega D^{2}}
$$

Thus $\pi_{1}=f\left(\pi_{2}, \pi_{3}, \pi_{4}\right)$ or $\frac{\rho}{\rho \omega^{3} D^{5}}=f\left(\frac{V}{\omega D}, \frac{H}{D}, \frac{\mu}{\rho \omega D^{2}}\right)$
(6) Check, using F, L

$$
\begin{array}{ll}
\Pi_{1}=\frac{F_{L}}{t} \frac{L^{4}}{F_{t^{2}}} \frac{t^{3}}{1} \frac{L^{5}}{1}=[1] \vee & \Pi_{2}=\frac{L}{t} \frac{t}{1} \frac{1}{L}=[1] \vee \\
\Pi_{3}=\frac{L}{L}=[1] v & \Pi_{4}=\frac{F_{t}}{L^{2}} \frac{L^{4}}{F_{t}} \frac{t}{1} \frac{1}{b^{2}}=[1]
\end{array}
$$

Given: Airship to operate at 20 umber in standard air Model built to 1120 scale tested at sane air temperature. Model is tested at 75 mise

Find: (a) Criterion for dynamic similarity.
b) Wind tweet pressure.
(c) Prototype drag if drag force on model is 250 N .

Solution.
Dimensional analysis predicts $\quad \frac{F}{P V^{2} L^{2}}=f\left(P \frac{V L}{\mu}\right)$
Consequently for similarity, $\quad\left(\frac{V L}{\mu}\right)_{n}=\left(\frac{N L}{\mu}\right)_{p}$
Since h is fined, and $\mu_{p}=\mu_{m}$ (because T is the sane)

$$
p_{n}=p_{p} \quad \frac{V_{p}}{V_{n}} L_{p} \frac{\mu_{n}}{\mu_{p}}=p_{p} \frac{20}{75}(20)(1)=3.33 p_{p}
$$

From ideal gas law, $P=p R T$

$$
\therefore P_{n}=\frac{p_{n}}{p_{p}}=5.33 \text { and } P_{n}=5.33 P_{p}=5.33 \times 101 P_{P_{a}}=5.39 \times 10^{5} P_{a} \quad P_{n}
$$

From the force ratios,

$$
F_{7}=F_{m} \frac{\rho_{p}}{f_{n}} \frac{\psi_{p}^{2}}{\psi_{m}^{2}} \frac{L_{p}^{2}}{L_{m}^{2}}=F_{n} \frac{1}{5.33}\left(\frac{20}{75}\right)^{2}(20)^{2}=5.34 F_{n}
$$

thus

$$
F_{p}=5.34 F_{m}=5.34 \times 2.50 \mathrm{~N}=1.34 \mathrm{kN}
$$

Given: Desire to matin Reynolds number in two flows: one of air. and one of water, using the same size model.
Find: Which flow must have the higher speed, and by how much.
Solution: set $R_{e_{w}}=\frac{\rho w V_{w} L_{w}}{\mu_{w}}=R_{a}=\frac{\rho a V_{a} L_{a}}{\mu_{a}}$
Since $L_{w}=L_{a}$, then $\frac{V_{a}}{V_{w}}=\frac{\rho_{w}}{\rho_{a}} \frac{\mu_{a}}{\mu_{w}}=\frac{V_{a}}{V_{w}}$
From Tables $A .8$ and $A \cdot 10$, at $20^{\circ} \mathrm{C}, \nu_{\omega}=1.00 \times 10^{-6} \mathrm{~m}^{2} / \mathrm{s}$ and $\nu_{a}=1.51 \times 10^{-5} \mathrm{~m}^{2} / \mathrm{s}$.
Thus $\quad \frac{V_{a}}{V_{w}}=1.51 \times 10^{-5} \frac{\mathrm{~m}^{2}}{5} \times \frac{\mathrm{s}}{1.00 \times 10^{-6} \mathrm{~m}^{2}}=15.1$
Therefore V_{a} must be larger than V_{w}. In fact, to match Re,

$$
V_{a}=15.1 V_{w}
$$

Problem 7.40

The designers of a large tethered pollution-sampling balloon wish to know what the drag will be on the balloon for the maximum anticipated wind speed of $5 \mathrm{~m} / \mathrm{s}$ (the air is assumed to be at $20^{\circ} \mathrm{C}$). A $\frac{1}{20}$-scale model is built for testing in water at $20^{\circ} \mathrm{C}$. What water speed is required to model the prototype? At this speed the model drag is measured to be 2 kN . What will be the corresponding drag on the prototype?

Given: Model scale for on balloon

Find: Required water model water speed; drag on protype based on model drag

Solution

From Appendix A (inc. Fig. A.2) $\quad \rho_{\text {air }}=1.24 \cdot \frac{\mathrm{~kg}}{\mathrm{~m}^{3}} \quad \mu_{\text {air }}=1.8 \times 10^{-5} \cdot \frac{\mathrm{~N} \cdot \mathrm{~s}}{\mathrm{~m}^{2}}$

$$
\rho_{\mathrm{W}}=999 \cdot \frac{\mathrm{~kg}}{\mathrm{~m}^{3}} \quad \mu_{\mathrm{w}}=10^{-3} \cdot \frac{\mathrm{~N} \cdot \mathrm{~s}}{\mathrm{~m}^{2}}
$$

The given data is

$$
\mathrm{V}_{\text {air }}=5 \cdot \frac{\mathrm{~m}}{\mathrm{~s}} \quad \mathrm{~L}_{\text {ratio }}=20 \quad \mathrm{~F}_{\mathrm{w}}=2 \cdot \mathrm{kN}
$$

For dynamic similarity we assume $\frac{\rho_{\mathrm{w}} \cdot \mathrm{V}_{\mathrm{w}} \cdot \mathrm{L}_{\mathrm{w}}}{\mu_{\mathrm{w}}}=\frac{\rho_{\text {air }} \cdot \mathrm{V}_{\text {air }} \cdot \mathrm{L}_{\text {air }}}{\mu_{\text {air }}}$

Then

$$
\begin{gathered}
\mathrm{V}_{\mathrm{w}}=\mathrm{V}_{\mathrm{air}} \cdot \frac{\mu_{\mathrm{w}}}{\mu_{\mathrm{air}}} \cdot \frac{\rho_{\mathrm{air}}}{\rho_{\mathrm{W}}} \cdot \frac{\mathrm{~L}_{\mathrm{air}}}{\mathrm{~L}_{\mathrm{W}}}=\mathrm{V}_{\mathrm{air}} \cdot \frac{\mu_{\mathrm{w}}}{\mu_{\mathrm{air}}} \cdot \frac{\rho_{\mathrm{air}}}{\rho_{\mathrm{W}}} \cdot \mathrm{~L}_{\text {ratio }}=5 \cdot \frac{\mathrm{~m}}{\mathrm{~s}} \times\left(\frac{10^{-3}}{1.8 \times 10^{-5}}\right) \times\left(\frac{1.24}{999}\right) \times 20 \\
\mathrm{~V}_{\mathrm{W}}=6.9 \frac{\mathrm{~m}}{\mathrm{~s}}
\end{gathered}
$$

For the same Reynolds numbers, the drag coefficients will be the same so

$$
\frac{\mathrm{F}_{\text {air }}}{\frac{1}{2} \cdot \rho_{\mathrm{air}} \cdot \mathrm{~A}_{\mathrm{air}} \cdot \mathrm{~V}_{\mathrm{air}}^{2}}=\frac{\mathrm{F}_{\mathrm{w}}}{\frac{1}{2} \cdot \rho_{\mathrm{w}} \cdot \mathrm{~A}_{\mathrm{w}} \cdot \mathrm{~V}_{\mathrm{w}}^{2}}
$$

where

$$
\frac{\mathrm{A}_{\mathrm{air}}}{\mathrm{~A}_{\mathrm{w}}}=\left(\frac{\mathrm{L}_{\mathrm{air}}}{\mathrm{~L}_{\mathrm{w}}}\right)^{2}=\mathrm{L}_{\text {ratio }}^{2}
$$

Hence the prototype drag is

$$
\mathrm{F}_{\mathrm{air}}=\mathrm{F}_{\mathrm{w}} \cdot \frac{\rho_{\mathrm{air}}}{\rho_{\mathrm{w}}} \cdot \mathrm{~L}_{\text {ratio }}^{2} \cdot\left(\frac{\mathrm{~V}_{\mathrm{air}}}{\mathrm{~V}_{\mathrm{w}}}\right)^{2}=2000 \cdot \mathrm{~N} \times\left(\frac{1.24}{999}\right) \times 20^{2} \times\left(\frac{5}{6.9}\right)^{2}
$$

$$
\mathrm{F}_{\mathrm{air}}=522 \mathrm{~N}
$$

Given: Measurements of drag force are made on a model car in a towing tank filled with freshwater; in h $=$ ins. The diriensioniless force ratio becomes constant at model test speeds above $\forall_{n}=4 \mathrm{mls}$. At this speed the drag force on the model is $F_{y_{n}}=182 \mathrm{~N}$
Find: (a) State conditions required to assure dynamic similarity between model and protolygpe
(b) Determine required speed ratio $Y_{m} l V_{p}$ to assure dynamically similar conditions
(c) Calculate expected prototype drag when operating in our at speed. $y_{p}=a h^{\prime}$ uther
Solution:
(a) The Rows must be geometrically and kinematically similar, and have equal Reynolds numbers to be dynamically similar.

- geometric similarity requires true model in all respects
- Eiriematic similarity requires same flow pallern, ie no free-surface effects or cavitation.
- The problem nay be stated as $F_{y}=f(p, V, L, \mu)$. Priensional anafy sis guvs

$$
\frac{F^{v^{2}} L^{2}}{=} f\left(\frac{g}{p^{\prime}}\right)=g\left(R_{e}\right) \text {. }
$$

b) Matching Reynolds numbers between model. prototype flows

$$
\begin{align*}
& \text { gives } \frac{V_{m} h_{m}}{V_{m}}=\frac{V_{p} L_{p}}{V_{p}} \quad \text { Assure } T=200 \\
& V_{m}=\frac{J_{m}}{J_{p}} \times \frac{L_{p}}{V_{m}}=1 \times 10^{\frac{m^{2}}{s}} \times 1.51 \times 10^{-5} \frac{5}{m^{2}} \times 5=0.331 \tag{m}
\end{align*}
$$

(c) For dynamically similar conditions, $\left.\frac{F_{0}}{p^{2}}\right\rangle_{m}=\left.\frac{F_{0}}{p^{2}}\right|_{e}$

$$
\begin{aligned}
\therefore F_{p} & =F_{n} \frac{p_{p}}{\rho_{m}} \times\left(\frac{V_{m}}{V_{m}}\right)^{\left(\frac{1}{2}\right)^{2}} \\
& =182 N \times \frac{1.20}{999} \times\left(\frac{90 k m}{h r} \times \frac{1000 n}{k m} \times \frac{h r}{3600} \times \frac{s}{4 m}\right)^{2}(5)^{2}
\end{aligned}
$$

$$
F_{p}=214 A
$$

Given: Prototype torpedo, $D=533 \mathrm{~mm}, l=6.7 \mathrm{~m}$ operates in water at a spend of $28 \mathrm{~m} / \mathrm{s}$. Nod ("s sable) is to be tested vi a wind tunnel. Maximum wind turret speed is 110 Miser; $T=2 \circ \circ$; pressure is variable.
At dynamically swillar test conditions, Fmedel $=618 \mathrm{~N}$
Find: (a) required wind tunnel pressure for dynamically similar test (b) expected drag force on prototype

Solution:
Assume $F_{7}=F(N, i, P, \mu)$. Front the Budingham π-theorem, for $n=5$, wi $m=r=3$, we would expect two dimensionless groups.

$$
\frac{F}{\left.p^{u^{2}}\right\rangle^{2}}=f\left(p \frac{\nu v}{\mu}\right)
$$

To stain dynamically simitar model test. $\left.\quad\left(\frac{v y}{\mu}\right)_{m}=p \frac{p y}{\mu}\right)_{e}$

$$
\begin{aligned}
& \therefore \quad p_{n}=p_{s} \frac{V_{p}}{V_{m}} \sum_{p} \frac{\mu_{n}}{\rho_{p}} \\
& \text { For air at } 20^{\circ} \mathrm{C} \quad \mu_{M}=1.81 \times 0^{-5} \mathrm{~A} . \mathrm{S}_{\mathrm{M}} / \mathrm{Im}^{2} \\
& \text { water at } 20^{\circ} \mathrm{C} \quad \mu_{p}=1 \times 10^{-3} \text { NoS } \mathrm{hn}^{2} \\
& p_{n}=998 \frac{\mathrm{~kg}}{\mathrm{n}^{3}} \times \frac{28}{160} \times 5 \times \frac{1.81 \mathrm{vi} 0^{-5}}{1 \times 10^{-3}}=23.0 \mathrm{~kg}_{\mathrm{n}}{ }^{3} .
\end{aligned}
$$

From the ideal gas equation of state,

$$
p=p_{n} R T_{n}=2300 \frac{\mathrm{lg}}{n^{3}} \times 287 \frac{N . M}{2 g \mathrm{~K}} \times 293 \mathrm{~K}=1.93 \mathrm{MPa}(\mathrm{abs})
$$

For dynamically similar flows,

$$
\begin{aligned}
& \left.\left.\frac{F_{\eta}}{\left(v^{2} \nu^{2}\right.}\right)_{m}=\frac{F_{0}}{\left(v^{2} \nu^{2}\right.}\right\rangle_{p} \\
& \therefore F_{e}=F_{i_{n}} \frac{\rho_{p}}{\rho_{n}}\left(\frac{V_{p}}{V_{n}}\right)^{2}\left(\frac{y_{2}}{D_{n}}\right)^{2} \\
& =618 N \times \frac{998}{23-0}\left(\frac{28}{110}\right)^{2}(5)^{2} \\
& F_{D p}=43.4 \mathrm{kN}
\end{aligned}
$$

Given: Drag force, F, of an airfoil at zero angle of attach is a function of P, μ, V, and L.
Model lest conditions:
$L_{n}=\frac{1}{10} \quad R_{e}=5.5 \times 10^{6}$ based on chord lught
$T=15^{\circ} \mathrm{C}, ~ P=10$ atmospheres
Prototype data. Gard lengik, $L=2 m$ $T=15^{\circ} \mathrm{C} \quad P=101 \mathrm{BPa}$
Find: (a) velocity, V_{m}, of model test
(b) corresponding prototype velocity.

$\left.R_{e_{n}}=P \frac{V L}{\mu}\right)_{m}$ and hence $V_{n}=\frac{R_{e_{n}} \mu_{n}}{P_{n} L_{n}}$
To determine ρ_{n} assume air behaves as an ideal gas.

$$
P_{n}=\frac{P_{n}}{R T_{m}}=10 \times 101 \times 10^{3} \frac{n}{n^{2}} \times \frac{\operatorname{kg} k}{287 n \cdot n} \times \frac{1}{288 \%}=12.2 \mathrm{kq}_{\mathrm{q}} \ln ^{3}
$$

From Table A.o, Appendix $A, \mu_{m}=1.79 \cdot 0^{-5} \mathrm{~N} . \mathrm{sin}^{2}$

$$
V_{n}=\frac{R_{e m} \mu_{m}}{P_{n} L_{m}}=5.5 \times 10^{6} \times 1.79 \times 10^{-5} \frac{N_{.64}}{m^{2}} \times \frac{\mathrm{m}^{3}}{12.2 \mathrm{~kg}} \times \frac{1}{0.2 m} \times \frac{\mathrm{bg.m}}{N . \mathrm{Sech}^{2}}
$$

$V_{n}=40.3 \mathrm{mls}$
For dynamic similarity $\left.\left.\quad \frac{p l l}{\mu}\right)_{m}=\frac{p u l}{\mu}\right)_{0}$

$$
\begin{aligned}
V_{p}=\nu_{m} \frac{\mu_{p}}{\mu_{n}} \frac{p_{n}}{p_{p}} \frac{h_{n}}{h_{p}} & =\psi_{n} \frac{u_{p}}{\mu_{n}} \frac{p_{n}}{\nu_{p}} \frac{T_{p}}{T_{n}} \frac{h_{m}}{h_{p}} \\
V_{p} & =40.3 \frac{n}{s} \times(1) \times(10) \times(1) \times\left(\frac{1}{n 0}\right)=40.3 \mathrm{n} / \mathrm{l}
\end{aligned}
$$

Given: Model test of weather balloon. Full-seale:

$$
F_{D}=f(P, V, D, \mu, C)
$$

$$
V=1.5 \mathrm{~m} / \mathrm{s}
$$

Find: (a) Model test speed.
(b) Drag force on full-scale balloon.

Mode 1 Water

$$
\begin{aligned}
& V=? \\
& \longrightarrow D=50 \mathrm{mmp} \\
& F_{D}=3.78 \mathrm{~N}
\end{aligned}
$$

Solution: Apply Buckingham procedure to obtain

$$
\frac{F_{D}}{\rho V^{2} D^{2}}=f\left(\frac{\mu}{\rho V D}, \frac{V}{c}\right)=f\left(R_{e}, M\right)
$$

For similarity $R_{p}=R_{m}$ and $M_{p}=M_{m}$. (Mach number criterion satisfied automatically because $M \approx 0$.) Assume $T=20^{\circ} \mathrm{C}$.

$$
\begin{aligned}
& R_{\rho}=\frac{V_{p} D_{p}}{\nu_{p}}=R_{1}=\frac{V_{m} D_{m}}{\nu_{m}} \quad\left\{\begin{array}{l}
\text { Water (Table A. }) \\
\text { Air (Table A.10) }
\end{array}\right. \\
& V_{m}=V_{p} \frac{\nu_{m}}{\nu_{p}} \frac{D_{p}}{D_{m}}=1.5 \frac{\mathrm{~m}}{5} \times 1 \times 10^{-6} \frac{\mathrm{~m}^{2}}{5} \times \frac{\mathrm{s}}{1.51 \times 10^{-5} m^{2}} \times \frac{3 \mathrm{~m}}{0.05 \mathrm{~m}}
\end{aligned}
$$

Then $\left(\frac{F_{D}}{\rho V^{2} D^{2}}\right)_{m}=\left(\frac{F_{D}}{\rho V^{2} D^{2}}\right)_{P}$

$$
\begin{aligned}
F_{D_{p}} & =F_{D_{m}} \frac{\rho_{\rho}}{\rho_{m}} \frac{V^{2} \rho}{V^{2} m} \frac{D^{2} \rho}{D_{m}^{2}} \\
& =3.78 \mathrm{~N}, 1.23 \frac{\mathrm{~kg}}{m^{3}} \times \frac{\mathrm{m}^{3}}{999 \mathrm{~kg}} \times\left(\frac{1.5 \mathrm{~m} / \mathrm{s}}{5.96 \mathrm{~m} / \mathrm{s}}\right)^{2} \times\left(\frac{3.0 \mathrm{~m}}{0.05 \mathrm{~m}}\right)^{2} \\
F_{D_{\rho}} & =1.06 \mathrm{~N}
\end{aligned}
$$

Given: Airplane wing with chord legit $l=5 f t$ and span, $s=30$ ff, is designed to move Round standard air at speed, $y=230$ - $\}$ A mode (lis scale) is to be tested in a water tumel.
Find: (a) speed necessary in water tunnel to achieve dynamic similarity.
(b) rats of forces measured in Pe nobel flow to those on the prototype airfoil.
Solution:
For an airfoil at a given angle of attack, we would expect the forces (e.g. drag) to be depended on l, s, ψ, p, and μ $F=F(l, s, v, p, \mu) \quad$ From the Buckingham κ Reorem, with $n=b$, and $n=r=3$, we would expect three dinensioltess parameters.

$$
E^{\rho^{v l s}}=f\left(\frac{p l}{\mu}, \frac{l}{s}\right)
$$

Thus for dynamically similar flaws over geonstricaly simitar airfoils (at the same angle Sf attach). Hen

$$
\begin{aligned}
& \left.\left.\frac{p+1}{\mu}\right)_{m}=\frac{p v e}{\mu}\right)_{+} \quad \text { (Assume } T=50^{\circ} F \text {). } \\
& V_{n}=V_{p} \rho_{\rho_{f}}^{f_{n}} \mu_{n} \frac{\mu_{m}}{\mu_{p}}=230 \frac{\mathrm{f}}{\sec } \times \frac{0.00238}{1.94} \times 10 \times \frac{2.31 \mathrm{k} 10^{-5}}{3.74-10^{-7}} \\
& V_{n}=179 \text { Ass }
\end{aligned}
$$

For dynamically similar flows,

$$
\begin{aligned}
& \left.\frac{F}{\left(p^{2 d} t s\right.}\right)_{m}=\frac{F}{\left(v^{2} d_{s}\right)_{e}} \\
& \therefore \frac{F_{n}}{F_{p}}=\frac{P_{m}}{p_{p}}\left(\frac{\nu_{n}}{V_{f}}\right)^{2} \frac{l_{n} s_{m}}{l_{p} S_{p}}=\frac{1.94}{0.00238} \times\left(\frac{n 99}{230}\right)^{2} \frac{1}{10} \times \frac{1}{10}=4.94
\end{aligned}
$$

This speed is high. The tumel would have to ba pressurized to minimize Re glances of cavitation

Given: Find dynanic charaderstics of a golf ball are to be tested using a modal in a wind tunnel:

Reperdent variables: F_{Y}, F_{2}
independent variables stiould include w od (dimple depth) Gif pro can hit prototype ($p=1.6 s$ in) at $y=240$ ft ls and $w=9000 \mathrm{fgn}$. Prototype is to be modeled in wind tunnel with $V=80$ fouls.

Find: (a) suitable dimensionless parameters
(b) required diameter of model.
(c) required rotational speed of model

Solution: Assure the functional dependence to be given by.

$$
F_{D}=F_{D}(D, \psi, w, d, p, \mu) \quad \text { and } F_{L}=F_{L}(D, v, w, d, p, \mu)
$$

From the Buckingham k-theorem, for $n=7$ and $m=r=3$, we would expect four dinensionters groups

$$
\frac{F_{y}}{\left(v^{2}\right\rangle^{2}}=f\left(p \frac{v)}{\mu}, \frac{\omega y}{V}, \frac{d}{\nu}\right) \text { and } F_{V} p^{\left(y^{2}\right.}=9\left(p \frac{p y}{\mu}, \frac{\omega y}{v}, \frac{d}{S}\right)
$$

To determine the required diameter of the model.

$$
\begin{aligned}
& D_{m}=3 \%=3 \times 1.68 \mathrm{in}=5.04 \mathrm{in} \text {. }
\end{aligned}
$$

\qquad
To determine the required rotational sped of the model,

$$
\begin{align*}
\left.\left.\frac{\omega_{p}}{y}\right\rangle_{M}=\frac{\omega_{p}}{y}\right\rangle_{p} \quad \therefore \omega_{n} & =\omega_{p} \frac{y_{p}}{y_{n}} \frac{V_{m}}{\psi_{p}}=\omega_{p} \frac{1}{3} \times \frac{80}{2 m_{0}}=\frac{1}{9} \omega_{p} \\
\omega_{n} & =\frac{1}{9} w_{p}=\frac{1}{9} \times 9000 \mathrm{rpn}=1000 \mathrm{rpm} . \tag{n}
\end{align*}
$$

Given: Fight characteristics of a Frisbee are to be determined via a modded test:
dependent parameters: F,F
independent parameters. should indue wat (roughness hight).
Test is to be performed (using air) on a modal ('/4 scale) which is to be geontrically, Rnematically, and dynamically similar to the prototype. For protolyge, $\psi_{p}=28$ fils, $\omega_{p}=100 \mathrm{rpm}$

Find: (a) suitable dimensionless parameters.
(b) values of ψ_{n} and ω_{n}.

Solution: Assure the functional dependence is gwen by

$$
F_{0}=F_{1}(D, 1, w, h, p, \mu) \text { and } F_{2}=F_{1}(D, v, w, h, p, \mu)
$$

From the Buckingham r-theorem, for $n=7$ and $m=r=3$, we would expect four dimensionless groups

$$
\frac{F_{y}}{p \nu^{2} y^{2}}=f\left(\frac{p y}{\mu}, \frac{w p}{v}, \frac{h}{y}\right) \text { and } \frac{F_{2}}{\left.p^{2}\right\rangle^{2}}=g\left(\frac{p \psi y}{\mu}, \frac{w y}{y}, \frac{h}{y}\right)
$$

To determine the required air speed, t_{n},

$$
\begin{aligned}
\left(\frac{V D}{\mu}\right)_{n}=\left(\frac{V D}{\mu}\right)_{p} \quad \therefore V_{n} & =V_{p} \frac{P_{p}}{P_{n}} \frac{D_{p}}{Q_{n}} \frac{\mu_{m}}{\mu_{p}}=V_{p}(1) \times 4 \times 1=4 \psi_{p} \\
V_{n} & =4 \times 20 \frac{f(}{3}=80 \text { fouls }
\end{aligned}
$$

To determine he required rotational speed, win,

$$
\begin{aligned}
& \left.\frac{\omega y}{V}\right)_{n}=\frac{\omega y}{J} \psi_{p} \\
& \therefore \omega_{n}=\omega_{p} \frac{\partial_{p}}{\partial_{n}} \frac{V_{n}}{J_{p}}=\omega_{p} \times 4 \times 4=i_{0} \omega_{p} \\
& \omega_{n}=16 \times 100 \mathrm{rpm}=1600 \mathrm{rpm}
\end{aligned}
$$

Given: Modal of hydrofoil boat (1.20 scale) is to be bested in water at $130^{\circ} \mathrm{F}$. Prototype operates at speed of 60 knots in water \&E 450 .

To model cavitation correctly, cavitation number rust be duplicated.
Find: ambient pressure at which model test must be run".
Solution:
To duplicate the Froude number between model and prototype requires

$$
\begin{aligned}
& \frac{V_{m}}{\sqrt{g h}}=\frac{\psi_{p}}{\sqrt{g h_{p}}} \text { or } \forall_{n}=\left(\frac{h_{n}}{V_{p}}\right)^{\lambda_{2}}=\frac{1}{\sqrt{20}} \\
& \text { and } \psi_{n}=\frac{1}{\sqrt{20}} t_{p}=\frac{1}{\sqrt{20}} 60 \text { end }=13.4 \text { end }
\end{aligned}
$$

For $C_{a n}=C_{a}$, then

$$
\left.\frac{p-p_{v}}{\frac{1}{2} p p^{2}}\right|_{m}=\left.\frac{p-p_{v}}{\frac{1}{2} p v^{2}}\right|_{p}
$$

or

$$
\left.p_{n}=p_{v_{n}}+\left(p_{-} p_{v}\right)_{p} \frac{v_{n}^{2}}{v_{p}^{2}} \quad \text { (assuming } p_{n} x p_{p}\right)
$$

and

$$
P_{n}=P_{V_{m}}+\left(P-P_{V}\right)_{+} \cdot \frac{1}{20}
$$

From the Table A.V, at $T=130^{\circ} \mathrm{F} \quad P_{\sigma_{n}}=2.23$ psia

$$
\begin{aligned}
& T=45 F \quad P_{V p}=0.15 \text { psia } \\
& \therefore P_{n}=2.23 \text { psia }+(14.7-0.15) \text { psia }+\frac{1}{20} \\
& P_{n}=2.96 \text { psia }
\end{aligned}
$$

Given: SAE 104 ail at sop flows in a horizontal pipe of draneter, $D=1$ in. it an average spend $V=3$ fiber. The pressure drop, DP, is lS .s prig over a length of 500 ft .
Water at $60^{\circ} \mathrm{F}$ flows through the same pipe under dynamically similar conditions.
Find: (a) the average speed of the water.
(b) the corresponding pressure drop.

Solution:
From Evanple Problem 7.2, we learn that pressure drop data for flow in a pipe are correlated by the functional relationship

$$
\frac{\Delta p}{p y^{2}}=f\left(\frac{\mu}{p,}, \frac{l}{y}, \frac{e}{y}\right)
$$

For water flow and ail flow in the same pipe to be dy namically similar requires that

$$
\begin{align*}
& \text { or } \bar{V}_{120}=\left(\frac{\mu}{\rho}\right)_{100}\left(\frac{f}{\mu}\right)_{\infty 0} \bar{V}_{a i l}-V_{V_{20}}^{V_{011}} \times \bar{V}_{01} \\
& \text { From FicA } 3 \quad J_{\text {oil }} \text { at } 80 \mathrm{~F}\left(260^{\circ} \mathrm{C}\right)=7 \times 10^{-5} \mathrm{n}^{2} \mathrm{l}_{\mathrm{s}}=7.53 \times 10^{-4} \mathrm{a}^{2} \mathrm{I}_{\mathrm{s}} \\
& \text { FronTable nit } J_{\text {too }} \text { at } 60^{\circ} \mathrm{F}=1.21 \times 10^{-3} \& \mathrm{t}^{2} l_{s} \\
& \therefore \bar{v}_{H_{0}}=1.21 \times 10^{-5} \mathrm{ft}^{2} / \mathrm{s} \times \frac{1}{7.53 \times\left. 10^{-4} \mathrm{ce}\right|_{5} \frac{3 \mathrm{ft}}{\mathrm{sec}}=\left.0.0482 \mathrm{ft}\right|_{\mathrm{sec}}, ~} \tag{V}
\end{align*}
$$

Ten

$$
\begin{aligned}
& \left.\frac{\Delta P}{P^{2}}\right)_{a e}=\left(\frac{\Delta P}{P V^{2}}\right)_{A_{20}} \\
& \Delta P_{2_{20}}=\frac{p_{20}}{p_{20}} \times \frac{\bar{V}_{420}^{2}}{N_{a l}} \times \Delta P_{a l}
\end{aligned}
$$

From Table A.2 Appendix A, s. Glubricating oil $=0.88$

$$
\therefore \Delta P_{H_{2 O}}=\frac{1}{0.88} \times \frac{(0.0482)^{2}}{3^{2}} \times 65.3 \text { pug }=0.019 \mathrm{psig} \ldots \Delta P_{H_{20}}
$$

Given: $\frac{1}{8}$-scale model of tractor-trailer rig tested in pressurized wind tenet.

$$
\begin{array}{ll}
W=0.305 \mathrm{~m} & V=75.0 \mathrm{~m} / \mathrm{s} \\
H=0.476 \mathrm{~m} & F_{0}=128 \mathrm{~N} \\
L=2.48 \mathrm{~m} & \rho=3.23 \mathrm{~kg} / \mathrm{m}^{3}
\end{array}
$$

Find: (a) Aerodynamic drag coefficient of model.
(6) Compare Reynolds number for model with prototype at $V=55 \mathrm{mph}$.
(c) Aerodynamic drag on prototype at $V=55 \mathrm{mph}$, with headwind, $V_{w}=10 \mathrm{mph}$.
Solution: Defining equations: $F_{D}=C_{D} A \frac{1}{2} \rho V^{2} ; R C=\frac{\rho V L}{\mu}$
Then $C_{D m}=\frac{F_{0 m}}{\frac{1}{2}\left(m V_{m}^{2} A_{m}\right.}$
Assume $A_{m}=W_{m} H m=0.305 m \times 0.476 m=0.145 \mathrm{~m}^{2}$

$$
\begin{aligned}
& C_{\Delta_{m}}=2^{2} 128 N_{\times} \frac{m^{3}}{3.23 \mathrm{~kg}} \times \frac{s^{2}}{(2)^{2} m^{2}} \times \frac{1}{0.145 m^{2}} \times \frac{\mathrm{kg} \cdot \mathrm{~m}}{\mu \cdot s^{2}}=0.0972 \\
& \frac{R_{e n}}{R_{p}}=\frac{\rho_{m} V_{m} L_{m}}{\mu_{m}} \times \frac{\mu_{p}}{\rho_{p} V_{p} L_{p}}=\frac{\rho_{m}}{\rho_{p}} \frac{V_{m}}{V_{p}} \frac{L_{m}}{L_{p}} \quad \text { (assume air: } \mu_{m}=\mu_{p} \text {) }
\end{aligned}
$$

For the prototype, $V_{p}=55 \frac{\mathrm{mi}}{h r} \times 5280 \frac{\mathrm{ft}}{\mathrm{mi}} \times \frac{h r}{3600 s} \times 0.305 \mathrm{~m} \frac{\mathrm{~m}}{\frac{\mathrm{~m}}{2}}=24.6 \mathrm{~m} / \mathrm{s}$

$$
\left.\frac{\operatorname{Rem}}{\operatorname{Rep}}=\left(\frac{3.23}{1.23}\right) \times \frac{25.0}{24.6}\right)\left(\frac{1}{8}\right)=1.00 \quad \therefore \operatorname{Rem}=\operatorname{Rep}_{0}
$$

since $R e_{m}=R e p$, then $C_{D P}=C_{D m}$, assuming geometric and kinematic similarity, so

$$
F_{D_{\rho}}=C_{\Delta \rho} A_{\rho} \frac{1}{2} \rho_{\rho}\left(v_{\rho}+v_{\omega}\right)^{2}
$$

With $V_{w}=10 \mathrm{mph}, V_{p}+V_{w}=\frac{65}{55} \times 24.6 \mathrm{~m} / \mathrm{s}=29.1 \mathrm{~m} / \mathrm{s}$
Thus

$$
\begin{aligned}
& F_{D P}=0.0972 \times(8)^{2} 0.145 \mathrm{~m}_{\times}^{2} \frac{1}{2} \times 1.23 \frac{\mathrm{~kg}}{\mathrm{~m}^{3}}(29.1)^{2} \frac{\mathrm{~m}^{2}}{\mathrm{~s}^{2}} \times \frac{\mathrm{N} . \mathrm{s}^{2}}{\mathrm{~kg} \cdot \mathrm{~m}} \\
& F_{0 p}=470 \mathrm{~N}
\end{aligned}
$$

Gwen：The frequency：f ，of vortex shedding from the rear of a bluff cylindartis a function of p, \vec{p}, d, μ
Two cylinders is standard our，$\frac{d_{1}}{d_{2}}=2$
Find：（a）Functional relationship for f ，using dimensional analysis
（b）V_{1} / V_{2} for dynamic similarity
（c） $\mathrm{f}_{1} \backslash f_{2}$
Solution：Apply Bucking tam π theorem．
（1）$f p \quad \downarrow \mu \quad n=5$ parameters
（2）Select M，h，t as primary dimensions
（3）

$$
\begin{array}{llllll}
f & p & v & d & \mu & \\
\frac{1}{t} & \frac{M}{6} & \frac{L}{t} & L & E & r=3 \text { primary dimensions }
\end{array}
$$

（4）$p, \forall, d \quad m=r=3$ repeating parameters
（5）Then $n-n=2$ dimensionless groups will result Setting up dimensional equations
）
M゚セセ゚ $=\left(\frac{m}{L}\right)^{a}\left(\frac{L}{t}\right)^{b} c \frac{1}{t}$
Equating exponents，
M． $0=a$
L． $0=-3 a+b+c \quad c=1$
$t \quad 0=-b-1 \quad \therefore b=-1$

$$
\therefore \pi_{1}=\frac{f d}{V}
$$

Equating exponents，
M．$\quad 0=a+1 \quad \therefore a=-1$
L．$\quad 0=-3 a+b+c-1 \quad c=-1$
t：$\quad 0=-b-1 \quad \therefore b=-1$

$$
\therefore \pi_{2}=\frac{\mu}{\rho v d}
$$

（6）Check using Fit diversions

$$
\begin{aligned}
& \pi_{1}=\frac{1}{t} \cdot \frac{t}{L}=[J]^{\nu} \\
& \therefore \quad \frac{f d}{V}=g\left(p \frac{v d}{\mu}\right)
\end{aligned}
$$

To achieve dynamic similarity between geometrically sinitar flows，we mush duplicate all but one of Fe dimensionless groups

$$
\left.\left.p \frac{p d}{\mu}\right)_{1}=p \frac{v d}{\mu}\right)_{2} \Rightarrow \frac{v_{1}}{v_{2}}=\frac{p_{2}}{p_{1}} \mu_{1} \frac{d_{2}}{\mu_{2}}=1 * 1 \times \frac{1}{2}=\frac{1}{2} \ldots v_{1} v_{2}
$$

If $\left.\frac{\rho v d}{\mu}\right)_{1}=\left(\frac{p d}{\mu}\right)_{2}$, then $\left.\left.\frac{(d}{\nu}\right)_{1}=\frac{(d}{\psi}\right)_{2}$
and $\frac{f_{1}}{f_{2}}=\frac{V_{1}}{V_{2}} \frac{d_{2}}{d_{1}}=\frac{1}{2} \times \frac{1}{2}=\frac{1}{4} \quad f_{1} f_{f_{2}}$

Problem 7.52

The aerodynamic behavior of a flying insect is to be investigated in a wind tunnel using a ten-times scale model. If the insect flaps its wings 50 times a second when flying at $1.25 \mathrm{~m} / \mathrm{s}$, determine the wind tunnel air speed and wing oscillation frequency required for dynamic similarity. Do you expect that this would be a successful or practical model for generating an easily measurable wing lift? If not, can you suggest a different fluid (e.g., water, or air at a different pressure and/or temperature) that would produce a better modeling?

Given: 10-times scale model of flying insect

Find: Required model speed and oscillation frequency

Solution

From Appendix A (inc. Fig. A.3) $p_{\text {air }}=1.24 \cdot \frac{\mathrm{~kg}}{\mathrm{~m}^{3}} \quad v_{\text {air }}=1.5 \times 10^{-5} \cdot \frac{\mathrm{~m}^{2}}{\mathrm{~s}}$

The given data is $\quad \omega_{\text {insect }}=50 \mathrm{~Hz} \quad \mathrm{~V}_{\text {insect }}=1.25 \cdot \frac{\mathrm{~m}}{\mathrm{~s}} \quad \mathrm{~L}_{\text {ratio }}=\frac{1}{10}$

For dynamic similarity the following dimensionless groups must be the same in the insect and m

$$
\frac{v_{\text {insect }} \cdot L_{\text {insect }}}{v_{\text {air }}}=\frac{v_{\mathrm{m}} \cdot L_{\mathrm{m}}}{v_{\text {air }}} \quad \frac{\omega_{\text {insect }} \cdot L_{\text {insect }}}{V_{\text {insect }}}=\frac{\omega_{\mathrm{m}} \cdot L_{\mathrm{m}}}{V_{\mathrm{m}}}
$$

Hence

$$
\mathrm{V}_{\mathrm{m}}=\mathrm{V}_{\text {insect }} \cdot \frac{\mathrm{L}_{\text {insect }}}{\mathrm{L}_{\mathrm{m}}}=\mathrm{V}_{\text {insect }} \cdot \mathrm{L}_{\text {ratio }}=1.25 \cdot \frac{\mathrm{~m}}{\mathrm{~s}} \times \frac{1}{10} \quad \mathrm{~V}_{\mathrm{m}}=0.125 \frac{\mathrm{~m}}{\mathrm{~s}}
$$

Also $\quad \omega_{\mathrm{m}}=\omega_{\text {insect }} \cdot \frac{\mathrm{V}_{\mathrm{m}}}{\mathrm{V}_{\text {insect }}} \cdot \frac{\mathrm{L}_{\text {insect }}}{\mathrm{L}_{\mathrm{m}}}=\omega_{\text {insect }} \cdot \frac{\mathrm{V}_{\mathrm{m}}}{\mathrm{V}_{\text {insect }}} \cdot \mathrm{L}_{\text {ratio }}=50 \cdot \mathrm{~Hz} \times \frac{0.125}{1.25} \times \frac{1}{10}$

$$
\omega_{\mathrm{m}}=0.5 \cdot \mathrm{~Hz}
$$

It is unlikely measurable wing lift can be measured at such a low wing frequency (unless the measured lift was averaged, using an integrator circuit). Maybe try hot air for the model

For hot air try $\quad v_{\text {hot }}=2 \times 10^{-5} \cdot \frac{\mathrm{~m}^{2}}{\mathrm{~s}} \quad$ instead of $\quad v_{\text {air }}=1.5 \times 10^{-5} \cdot \frac{\mathrm{~m}^{2}}{\mathrm{~s}}$

Hence $\quad \frac{\mathrm{V}_{\text {insect }} \cdot \mathrm{L}_{\text {insect }}}{v_{\text {air }}}=\frac{\mathrm{V}_{\mathrm{m}} \cdot \mathrm{L}_{\mathrm{m}}}{v_{\text {hot }}}$

$$
\mathrm{V}_{\mathrm{m}}=\mathrm{V}_{\text {insect }} \cdot \frac{\mathrm{L}_{\text {insect }}}{\mathrm{L}_{\mathrm{m}}} \cdot \frac{v_{\text {hot }}}{v_{\text {air }}}=1.25 \cdot \frac{\mathrm{~m}}{\mathrm{~s}} \times \frac{1}{10} \times \frac{2}{1.5} \quad \mathrm{~V}_{\mathrm{m}}=0.167 \frac{\mathrm{~m}}{\mathrm{~s}}
$$

Also $\quad \omega_{\mathrm{m}}=\omega_{\text {insect }} \cdot \frac{\mathrm{V}_{\mathrm{m}}}{\mathrm{V}_{\text {insect }}} \cdot \frac{\mathrm{L}_{\text {insect }}}{\mathrm{L}_{\mathrm{m}}}=\omega_{\text {insect }} \cdot \frac{\mathrm{V}_{\mathrm{m}}}{\mathrm{V}_{\text {insect }}} \cdot \mathrm{L}_{\text {ratio }}=50 \cdot \mathrm{~Hz} \times \frac{0.167}{1.25} \times \frac{1}{10}$

$$
\omega_{\mathrm{m}}=0.67 \cdot \mathrm{~Hz}
$$

Hot air does not improve things much

Finally, try modeling in water

$$
v_{\mathrm{w}}=9 \times 10^{-7} \cdot \frac{\mathrm{~m}^{2}}{\mathrm{~s}}
$$

Hence $\quad \frac{V_{\text {insect }} \cdot L_{\text {insect }}}{v_{\text {air }}}=\frac{V_{\mathrm{m}} \cdot \mathrm{L}_{\mathrm{m}}}{v_{\mathrm{w}}}$

$$
\mathrm{V}_{\mathrm{m}}=\mathrm{V}_{\text {insect }} \cdot \frac{\mathrm{L}_{\text {insect }}}{\mathrm{L}_{\mathrm{m}}} \cdot \frac{v_{\mathrm{w}}}{v_{\text {air }}}=1.25 \cdot \frac{\mathrm{~m}}{\mathrm{~s}} \times \frac{1}{10} \times \frac{9 \times 10^{-7}}{1.5 \times 10^{-5}} \quad \mathrm{~V}_{\mathrm{m}}=0.0075 \frac{\mathrm{~m}}{\mathrm{~s}}
$$

Also $\quad \omega_{\mathrm{m}}=\omega_{\text {insect }} \frac{\mathrm{V}_{\mathrm{m}}}{\mathrm{V}_{\text {insect }}} \cdot \frac{\mathrm{L}_{\text {insect }}}{\mathrm{L}_{\mathrm{m}}}=\omega_{\text {insect }} \frac{\mathrm{V}_{\mathrm{m}}}{\mathrm{V}_{\text {insect }}} \cdot \mathrm{L}_{\text {ratio }}=50 \cdot \mathrm{~Hz} \times \frac{0.0075}{1.25} \times \frac{1}{10}$

$$
\omega_{\mathrm{m}}=0.03 \cdot \mathrm{~Hz}
$$

This is even worse! It seems the best bet is hot (very hot) air for the wind tunnel.

Given: Model test of tractor-trailer rig in standard a ir.

$$
\begin{aligned}
& F_{D}=f(A, V, 1, \mu) \text {; scale is } 1: 4 ; A_{m}=0.625 \mathrm{~m}^{2} \\
& A+V_{m}=89.6 \mathrm{~m} / \mathrm{s}, F_{D}=2.46 \mathrm{kN}
\end{aligned}
$$

Find: (a) Dimensionless parameters.
(b) Conditions for dynamic similarity.
(c) Drag force on prototype at $V_{p}=22.4 \mathrm{~m} / \mathrm{s}$ (no wind).
(d) Power to overcome aero drag.

Solution: (1) $F_{D} \quad A \quad V \quad \rho \quad \mu$ I (3) ML
(3) $\frac{M L}{t^{2}} L^{2} \quad \frac{L}{t} \quad \frac{M}{L^{3}} \quad \frac{M}{L t}$ (4) $\rho V A$
(5)

$$
\begin{aligned}
& \pi_{1}=\rho^{a} V^{b} A^{c} F_{D}=M_{0}^{0} L^{0} t^{0} \\
& M: a+1=0 \quad \mid a=-1 \\
& L:-3 a+b+2 c+1=0 \mid C=-1 \\
& t:-b-2=0 \quad \mid b=-2 \\
& \pi_{1}=\frac{F_{0}}{\rho V^{2} A}
\end{aligned}
$$

$$
M: a+1=0 \quad \mid a=-1
$$

$$
t:-b-1=0 \quad \mid b=-1
$$

(6) $\pi_{1}=F_{\times} \frac{L^{4}}{F_{t^{2}}} \times \frac{t^{2}}{L^{2}} \times \frac{1}{L^{2}}=1 \mathrm{~N}$

$$
\pi_{2}=\rho^{a} v^{b} A^{c} \mu
$$

$$
L:-3 a+b+2 c-1=0 \mid c=-1 / 2
$$

$$
\pi_{2}=\frac{\mu}{\rho v A^{1 / 2}}
$$

$$
\pi_{2}=\frac{F_{t}}{L^{2}} \times \frac{L^{4}}{F_{t}^{*}} \times \frac{t}{L} \times \frac{1}{L}=1 w
$$

For dynamic similarity, must have geometric and kinematic similarity and $R_{m}=R e_{p}$. Then $\left.\frac{F_{D}}{\left.\rho v^{2} A\right)_{m}}=\frac{F_{D}}{\rho v^{2} A}\right)_{P}$
For the prototype,

$$
F_{O p}=F_{O n} \frac{P_{P}}{\rho_{m}}\left(\frac{N_{P}}{V_{m}}\right)^{2} \frac{A_{p}}{A_{m}}=F_{D m}\left(\frac{1.23}{1.23}\right)\left(\frac{22.4}{89.6}\right)^{2}(4)^{2}-F_{D m}=2.46 \mathrm{kN}
$$

The power requirement is

$$
P=F_{D \rho} V_{p}=2.46 \mathrm{kN} \times 22.4 \frac{\mathrm{~m}}{\mathrm{~s}} \times \frac{\mathrm{W} . \mathrm{S}}{\mathrm{~N} . \mathrm{m}}=55.1 \mathrm{~kW}(73.9 \mathrm{hp})
$$

Given: Model glacier using glycerine. Assume ice is Newtonian and $10^{6} \times$ as viscous.

$$
\left.\begin{array}{rl}
D & =15 \mathrm{~m} \\
H & =1.5 \mathrm{~m} \\
L & =1850 \mathrm{~m}
\end{array}\right\} \text { mock } 1
$$

In lab test, model instructor reappears in $\tau=9.6 \mathrm{hr}$.
Find: (a) Develop suitable dimensionless parameters.
(b) Estimate time when instreector will reappear.

Solution: (1)	\bar{V}	ρ	g	μ	D	H	L	$n=7$
(2) MAt	$\frac{L}{t}$	$\frac{M}{L^{3}}$	$\frac{L}{t^{2}}$	$\frac{M}{L t}$	L	L	L	$m=r=3$

(4) Choose ρ, g, D as repeating variables: $n-m=7-3=4$ parameters
(5)

$$
\begin{array}{l|l|l|}
\pi_{1}=\rho^{a} g^{b} D^{c} \bar{V}=M^{0} L^{0} t^{0} & \Pi_{2}=\rho^{a} g^{b} D^{c} \mu=M^{0} L^{0} t^{0} \\
M: a+0=0 & a=0 & M: a+1=0 \quad a^{=-1} \\
L:-3 a+b+c+1=0 & c=-b-1=-\frac{1}{2} & L:-3 a+b+c-1=0 \quad c=3 a-b+1=-\frac{3}{2} \\
t:-2 b-1=0 & b=-\frac{1}{2} & t:-26-1=0 \quad b=-\frac{1}{2} \\
\Pi_{1}=\frac{\bar{V}}{\sqrt{g D}} \text { (Froude no.) } & \Pi_{2}=\frac{\mu}{\rho g^{1 / 2} D^{s h}} \sim \frac{\mu}{\rho \sqrt{g D D}} \text { (Regnous po) } \\
\Pi_{3}=\frac{H}{D}, \pi_{4}=\frac{L}{D} \text { (b yinspection) }
\end{array}
$$

(6) Check: obvious from forms above. $\pi_{1}=f\left(\pi_{2}, \pi_{3}, \pi_{4}\right)$

For dynamic similarity, $\pi_{2 m}=\pi_{z_{p}}=\frac{\mu_{m}}{\rho_{m} g_{m}^{1_{2}} D_{m}^{3 h}}=\frac{\mu_{p}}{\rho_{\rho} g_{p}^{1 / D_{p}}{ }_{2}}$, ,

So $\frac{L \mathrm{Lm}}{L_{0}}=8.11 \times 10^{-5} ; \mathrm{Lm}_{\mathrm{m}}=8.11 \times 10^{-5} L \rho=8.11 \times 10^{-5} \times 1850 \mathrm{~m}=0.150 \mathrm{~m}$ $5 E_{\text {gineain }}=1.26(\mathrm{~A} \cdot 2)$

From $\pi_{1}, \frac{\bar{V}_{m}}{\bar{V}_{p}}=\sqrt{\frac{D_{m}}{D_{p}}}=9.00 \times 10^{-3}$
The time to reappear is $\tau=L / \bar{V}$, so $\quad \tau_{p}=L_{P} /_{V_{p}}, \tau_{m}=L_{m} \hat{V}_{m}$

$$
\frac{\tau_{p}}{\tau_{m}}=\frac{L_{p}}{L_{m}} \frac{\bar{v}_{m}}{\bar{V}_{p}}=\frac{D_{p}}{D_{m}} \sqrt{\frac{D_{m}}{D_{p}}}=\sqrt{\frac{D_{p}}{D_{m}}}=\frac{1}{9.00 \times 10^{-3}}=111
$$

Thus $\tau_{p}=111 \tau_{m}=111 \times 9.6 \mathrm{hr}=1070 \mathrm{hr}$ (~ 45 days)
$\{$ The instructor will reappear before the semester ends!\} ~

Given: Submarine mode 1 (1:30 scale) to be tested in fresh water under two conditions:
(1) on the surface at 20 kt (prototype)
(2) far be low the surface at 0.5 kt (provo type)

Find: (a) speed for model test on surface
(b) Speed for model test submerged
(C) Ratio of full-scale to model drag force.

Solution: On the surface, match the Frovede number, Fr $=\frac{V}{\sqrt{g L}}$
Thus $F r m=\frac{V_{m}}{\sqrt{g L_{m}}}=F_{r_{p}}=\frac{V_{p}}{\sqrt{g L_{p}}}$ or $V_{m}=V_{p} \sqrt{\frac{L_{m}}{L_{p}}}$
For 1:30 scale,

$$
\begin{aligned}
& V_{m}=20 k t \sqrt{\frac{1}{30}}=3.65 \mathrm{kt} \\
& V_{m}=3.65 \frac{\mathrm{~nm}}{\mathrm{hr}^{\prime}} \times 1852 \frac{\mathrm{~m}}{\mathrm{hm}} \times \frac{\mathrm{hr}}{3600 \mathrm{~s}}=1.88 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

Submerged, match the Reynolds number, $R e=\frac{\rho V L}{\mu}=\frac{V L}{2}$
Thus $\operatorname{Re}_{m}=\frac{V_{m} L_{m}}{V_{m}}=R_{e}=\frac{V_{p} L_{p}}{\nu_{p}}$ or $V_{m}=V_{p} \frac{L_{p}}{L_{m}} \frac{V_{m}}{\nu_{p}}$
From Table A.2, for seawater, $S G=1.025$ and $\mu=1.08 \times 10^{-3} \mathrm{~N} . \mathrm{s} / \mathrm{m}^{2}$ $a+20^{\circ} \mathrm{C}$, Thus

$$
v_{p}=\frac{\mu_{p}}{\rho_{p}}=\frac{\mu_{p}}{s 6 \rho_{H L O}}=1.08 \times 10^{-3} \frac{\mathrm{~N} \cdot \mathrm{~s}}{\mathrm{~m}^{2}} \times \frac{\mathrm{m}^{3}}{(1.025) 1000 \mathrm{~kg}} \times \frac{\mathrm{kg} \cdot \mathrm{~m}}{\mathrm{~N} \cdot \mathrm{~s}^{2}}=1.05 \times 10^{-6} \frac{\mathrm{~m}^{2}}{\mathrm{~s}}
$$

From Table A.8, fresh water at $20^{\circ} \mathrm{C}$ has $v=1.00 \times 10^{-6} \mathrm{~m}^{2} / \mathrm{s}$.
For $1: 30$ scale

$$
\begin{aligned}
& V_{m}=0.5 \mathrm{kt} \times \frac{30}{1} \times 1.00 \times 10^{-6} \frac{\mathrm{~m}^{2}}{\mathrm{~s}} \times \frac{\mathrm{s}}{1.05 \times 10^{-6} \mathrm{~m}^{2}}=14.3 \mathrm{kt} \\
& V_{\mathrm{m}}=14.3 \frac{\mathrm{~nm}}{\mathrm{hr}} \times 1852 \frac{\mathrm{~m}}{\mathrm{~nm}} \times \frac{\mathrm{hr}}{3600 \mathrm{~s}}=7.36 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

Under dynamically similar conditions the drag coefficients, $C_{D}=\frac{F_{D}}{\rho^{2} A}$. will be identical. Thus

$$
\begin{aligned}
& \frac{F_{p}}{\rho_{\rho} V_{p}^{2} L_{p}^{2}}=\frac{F_{m}}{f_{m} V_{m}^{2} L_{m}^{2}} \text { or } F_{p}=F_{m} \frac{\rho_{P}}{\rho_{m}} \frac{V_{p}^{2}}{V_{m}^{2}} \frac{L_{p}^{2}}{L_{m}^{2}} \\
& F_{p}=F_{m} \frac{1.025}{0.999} \times\left(\frac{0.5}{14.3}\right)^{2}\left(\frac{30}{1}\right)^{2}=1.13 \text { (submerged), } 2.77 \times 10^{4} \text { (surface) } F_{P} / F_{m}
\end{aligned}
$$

Given: Automobile (prototugee to travel at loo kn the Rrough standard air. Godel, $\operatorname{li} k h=3$, to be tested intwater. The lowest pressure coefficient' is $C_{p}=-1.4$ at the location of minimum static pressure on the surface. onset of cavitation occurs at $\mathrm{Ca}=0.5$

Find: (a) factors necessary to ensure kinematic similarity in tests. (b) water speed bd be used.
(c) correspondurig ratio of drag forces
(d) minium turret pressure tsavaid cavitation.

Solution:
To assure kinematic similarity:
(1) model and protype must ge genetrically suillar.
(a) model must be submerged inflow to solid surface effects.
(3) cavitation effects must be absent in model test.

To determine model est speed, node Rat flows will be dynamically similar if

$$
\text { if } R_{e_{m}}=R_{e p} \text {, ie }\left.\frac{P D V}{\mu}\right|_{n}=\left(\frac{\partial V}{\mu}\right)_{p} \text { or }\left.\frac{\nabla V}{V}\right|_{n}=\frac{V}{V} l_{p}
$$

Hence, $V_{n}=V_{p} \nabla_{n} \nabla_{p} \frac{V_{n}}{V_{n}}$. For Standard air, $\nabla_{p}=1.46 \times 10^{-5} M_{i}^{2}$

$$
V_{n}=100 \frac{l_{n}}{h r} \times \frac{h r}{36005} \times \frac{1.0 \times 10}{1.46 \times 10^{-5}} \times 5 \times 10^{3} \frac{0}{\mathrm{~m}}=9.51 \times 1 \mathrm{l}
$$

$$
\frac{F_{9 p}}{F_{n n}}=\frac{1.23}{999} \times\left(\frac{27.8}{9.51}\right)^{2} \times\left(\frac{5}{1}\right)^{2}=0.262 \ldots \quad F_{9 p} T_{F_{\text {on }}}
$$

For $C a=0.5$, then $\frac{p-p_{r}}{\frac{1}{2} p^{2}}=0.5$ and $V_{0}=$ al pressure $p=p_{v}+\frac{1}{4} p^{2}$ For water at $20^{\circ} \mathrm{C}, ~ P_{v}=2.34 \mathrm{kPa}$ and

For $C_{\text {Pain }}=-1.4=\frac{P_{-i} P_{\infty}}{\frac{1}{2} P^{2}}$, then

$$
\begin{aligned}
& p_{\infty}=-p_{\min }+0.1 p^{2} \\
& P_{\infty}=24.96 P_{a}+0.7 \times 999 \frac{\mathrm{~kg}_{2}}{\mathrm{~m}^{3}} \times(9.51)^{2} \frac{\mathrm{~m}^{2}}{s^{2}}=88.1 \mathrm{k} P_{a} p_{\infty}
\end{aligned}
$$

Given: Tee drag fore e on a arailas cylinder immersed in a water How cal be expressed as

The static pressure distribution on a circular cylinder can be expressed in terms of the dimensionless pressure coefficient

$$
c_{p}=\frac{-1-f_{\infty}}{\frac{1}{2} y^{2}}
$$

Pt the location of minimum static pressure on the cylinder surface, $C_{p}=-2.4$. The onset of causation occurs at $C_{a}=0.5$

Find: (a) expression for dimensionless drag force
(b) an estimate of maximum specie at which cylinder could bo towed in water (at Pats) wiflail causing cavitation
Solution:
$F_{\rangle}=f(D, l, Y, p, \mu)$: From the Buckingram k - hearer for $n=6$, with $M=5=3$, Wee would expect tree diriensiontess groups.

$$
\begin{aligned}
& \frac{F}{\left(v^{2} y^{2}\right.}=f\left(\frac{l}{y}, \frac{p \frac{\nu y}{\mu}}{\mu}\right) \\
& C_{p}=\frac{p-p_{\infty}}{\frac{1}{2} p^{2}} \quad C_{0}=\frac{e^{2}-p_{v}}{\frac{1}{2} p^{v^{2}}}
\end{aligned}
$$

$$
\begin{aligned}
& \text { For } C a=\frac{1}{2}, p_{\min }-p_{s}=\frac{1}{2} p^{V_{\text {max }}^{2}} c a \quad \therefore p_{\min }=p_{v}+\frac{1}{2} p_{\text {rad }}^{2} C a
\end{aligned}
$$

Equation expressions for pain,

$$
\begin{aligned}
& -p_{\infty}+\frac{1}{2} p \psi_{\text {max }}^{2} C_{p_{\text {min }}}=p_{5}+\frac{1}{2} p p_{\text {max }}^{2} C_{a} \\
& \frac{1}{2} p^{y_{\text {mar }}}\left[C_{a}-C_{p m i n}\right]=p_{\infty}-P_{v}
\end{aligned}
$$

$$
\begin{aligned}
& V_{\text {max }}=27.1 \text { fits }\left(8.26 \mathrm{mls}_{\mathrm{s}}\right)
\end{aligned}
$$

Given: A nodal ($\frac{1}{10}$ scale) of a tractor-trailer rig is tested in a wind tunnel; $A_{n}=1.08 \mathrm{ft}^{2}$. For $\forall_{n}=250$ ftc, $F_{7_{n}}=7.3 .3 \mathrm{ff}$
Find: (a) drag coefficient for the model.
(b) $F \theta_{p}$ at $V_{p}=55$ mither if $C_{p e}=C_{p n}$
(c) Y_{n}^{+}if $V_{e}=55$ mither.
(d) Is answer to part (c) reasonable.

Solution:
$C_{1}=\frac{F_{y}}{\frac{1}{2} P V^{2}} \quad$ For the nodal assuming air at STP,

$$
\begin{aligned}
& G_{\text {in }}=0.951 \\
& F_{p p}=\frac{1}{2} p^{2} A_{p} C_{p p} \quad C_{D_{p}}=C_{D_{A}}=0.951 \quad A_{p}=\left(C_{p} C_{n}^{2} A_{n}=100 A_{n}\right.
\end{aligned}
$$

$$
\begin{aligned}
& F_{7 p}=79410 f
\end{aligned}
$$

For dynamic similarity between model and prototype

$$
\begin{aligned}
& \left.\left.\frac{p / L}{\mu}\right\rangle_{n}=p \frac{V L}{\mu}\right\rangle_{p} \text { or } \nu_{n}=V_{p} \frac{f_{f}}{\rho_{n}} \operatorname{L}_{n} \frac{\mu_{n}}{\mu_{p}}=V_{p} \times 1 \times 0 \times 1 \\
& V_{n}=10 V_{p}=550 \mathrm{mi} \mathrm{~h}_{\mathrm{r}} \\
& V_{n}=550 \frac{\mathrm{mi}_{\mathrm{m}}}{\mathrm{hr}}+5280 \frac{\mathrm{ft}}{\mathrm{hi}} \times \frac{\mathrm{hr}}{3600 \mathrm{~s}}=807 \mathrm{ft} \mathrm{l}_{\mathrm{s}}
\end{aligned}
$$

For our at standard conditions, the speed of sound, $c=\sqrt{k E T}$

$$
\begin{aligned}
& M=\frac{V}{c}=\frac{807}{117}=0.72
\end{aligned}
$$

$A+$ this value of M, compressibility would be important in the model test. Thus, the speed is not practical.

Given: Recommended procedures for wind tunnel tests of truss abuses suggest:

Anodal / A mast section $L 0.05$
h nodes / h teracection $~ 0.0 .30 \quad(h=h e g h t)$

$Y_{\text {mas }}+300$ at ${ }^{5}$
Wind tend fest sector is $h=1.5 f, w=2 f$.
Protalyp has: $h=13.54, w=8 f$, herght $=65 \mathrm{ft}$.
Find: (a) scale ratio of largest model that meets fie recommended criterie.
(b) Un- results of Ex. Prob- 7.5 to abscess whether an adequate value of Re can be achieved in the test facility.
Solution:
Let s = scale ratio. Then $h_{n}=s h_{p}, w_{n}=s w_{p}, l_{n}=s l_{f}$
(i) height criteria.

$$
\begin{aligned}
& h_{n}=0.30 h_{\text {teat section }}=0.3(1.5 f)=0.45 f \\
& \quad s=\frac{1.45 f t}{13.5 f}=0.0333 \quad\left\{\frac{1}{5}=30\right\}
\end{aligned}
$$

(a) frontal area criteria

$$
\begin{array}{r}
A_{\text {node }}=0.05 A_{\text {teslact }}=0.05 \times 1.5 f \times 2 f=0.15{f f^{2}}^{2} \\
A_{\text {nosh }}=s^{2} A_{p}=s^{2}[13.5 f \times 8 f]=s^{2}(108) f^{2}=0.15 \\
\therefore s=\left(\frac{0.15)^{42}}{108}\right)^{2}=0.0373 \quad\left\{\frac{1}{5}=26.8\right\}
\end{array}
$$

(3) wide criteria

$$
\begin{aligned}
w_{n_{200}} & =l_{n} \sin 20^{\circ}+w_{n} \cos 20^{\circ} \\
& =s\left(l_{p} \sin 20^{\circ}+w_{p} \cos 20^{\circ}\right) \\
w_{m_{200}} & =s\left[65 \sin 20^{\circ}+8 \cos 20^{\circ}\right] s t=29.7 \text { s } f t
\end{aligned}
$$

From contract, $W_{H_{20}}=0.30 W_{\text {tacet }}=0.30(2 \mathrm{ft})=0.60 . \mathrm{T}$

$$
\therefore 0.6 f=29.7 \mathrm{ft} \text { and } s=0.0202 \quad\left\{\frac{1}{s}=49.5\right\}
$$

The wide criteria is the most stringent $\therefore s=\frac{1}{50}$

$$
\text { Mode }=\frac{1}{50} \text { Prototype. }
$$

From Ex. Prob i.s, $C_{7}=$ cont for $\mathrm{Re}>4 \times 10^{5}$

For current note test, $\quad R_{e}=300 \frac{\pi t}{54} \times\left(\frac{1}{50}+8 \frac{1}{t}\right) \times \frac{5}{\left(.5740^{-4} f^{2}\right.}=3.06 \times 10^{5}$
)
\therefore Hodequate le carnot be aclicued

Given: Circular container partially filled witt water is rotated about is axis at constant angular velocity, w.

Te velocity t_{0} is a function of: location, r, time from start, ${ }^{7}$, angular velocity, ω, density, p and viscosity. μ. Water is Replaced wist home and cider is rotated at the same value of ω.
Find: (a) dimensionless parameters that characterize the problem.
(b) Determine whether honey will attain steady state moluo as
(c) Explant why fe.
(c) Etplari why Fe would not be an vootant parameter in scaling fie steady state motion of the liquid.
Solution:

$$
V_{\theta}=V_{\theta}(\omega, r, r, f, \mu)
$$

From the Buckniglam r-theorem, for $n=6$ and $n=r=3$, we would expect three dimensionless groups.

$$
\frac{V_{\theta}}{\omega r}=f\left(\frac{\mu}{\beta \omega r^{2}}, \omega r\right)
$$

From the above results $\pi_{2}=\mu_{\mu}{ }^{2}$ contain the fluid properties $p_{1}: \mu$.

$$
k_{3}=\text { wt contours } R_{e} \text { time } t
$$

$$
\pi_{2} \pi_{3}=\sum_{p w r^{2}}^{\mu r}=\frac{\mu r}{p r^{2}}=\frac{\nabla r}{r^{2}} \quad \text { where } J=\frac{\mu}{\rho}
$$

For steady flow at the same radius

$$
\begin{aligned}
& \left.\left.\frac{V T}{r^{2}}\right\rangle_{\text {Honey }}=\frac{\nabla i}{r^{2}}\right\rangle_{\text {whet }} \\
& \therefore r_{H}=\frac{\nabla_{\text {water }}}{\nabla_{\text {tray }}} r_{\text {waler }}
\end{aligned}
$$

Sine $J_{\text {tang }}>\nabla_{\text {water }}\left(\mu_{\text {tracy }}>\mu_{\text {water }}\right.$ and $\left.p_{*} \times p_{w}\right)$

$$
T_{H}<\tau_{\text {udder }}
$$

At steady state conditions, we have solid body rotation there are no Griseous forces. Hence be is not important.

Problem 7.61

Given: Power, P, to drive a fan depends on ρ, Q, D, and w.

$$
\begin{array}{cccc}
\text { Condition } & \frac{D(\mathrm{~mm})}{200} & \frac{Q\left(\mathrm{~m}^{3} / \mathrm{s}\right)}{0.4} & \frac{\omega(\text { rpm })}{2400} \\
2 & 400 & ? & 1850
\end{array}
$$

Find: Volume flow rate at condition 2, for dy namic similarity.
Solution: step (1) $P \quad \rho \quad Q \quad D \quad \omega$
step (2) $M L t$ (3): $\frac{M L^{2}}{t^{3}} \frac{M}{L^{3}} \quad \frac{L^{3}}{t} L \quad \frac{1}{t}$ (4) l, ω, D
(5)

$$
\begin{array}{l|l|l}
\Pi_{1}=\rho^{a} \omega^{b} D^{c} P=M^{0} C^{0} t^{0} & \Pi_{2}=\rho^{a} \omega^{b} D^{c} Q=M^{0} L^{0} t^{0} \\
M: a+1=0 & \mid a=-1 & M: a+0=0 \\
L:-3 a+c+2=0 \mid c=3 a-2=-5 & L:-3 a+c+3=0 \mid c=-3 \\
t:-b-3=0 & \mid b=-3 & t:-b-1=0 \\
\Pi_{1}=\frac{\rho}{\rho \omega^{3} D^{5}} & & \mid b=-1 \\
& \Pi_{2}=\frac{Q}{\omega D^{3}} &
\end{array}
$$

(6) $\pi_{1}=\frac{F L}{t} \times \frac{L^{4}}{F t^{2}} \times t^{3} \times \frac{1}{L^{5}}=\frac{F L^{5} t^{3}}{F L^{5} t^{3}}=1 \quad v \quad \pi_{2}=\frac{L^{3}}{t} \times t^{3} \times \frac{1}{L^{3}}=\frac{L^{3} t}{L^{3} t}=1 \cdots$

Thus $\pi_{1}=f\left(\pi_{2}\right)$ or $\frac{P}{\rho w^{3} D^{s}}=f\left(\frac{Q}{w D^{3}}\right)$
For dynamic similarity, need geometric and kinematic similarity and

$$
\frac{Q_{1}}{\omega_{1} D_{1}^{3}}=\frac{Q_{2}}{\omega_{2} D_{2}^{3}}
$$

Thus

$$
Q_{2}=Q_{1} \frac{\omega_{2}}{\omega_{1}}\left(\frac{D_{2}}{D_{1}}\right)^{3}=0.4 \mathrm{~m}^{3} / \mathrm{s} \frac{1850 \mathrm{rpm}}{2400 \mathrm{rpm}}\left(\frac{200 \mathrm{~mm}}{400 \mathrm{~mm}}\right)^{3}=2.47 \mathrm{~m}^{3} / \mathrm{s}
$$

Problem 7.62

Over a certain range of air speeds, V, the lift, F_{L}, produced by a model of a complete aircraft in a wind tunnel depends on the air speed, air density, ρ, and a characteristic length (the wing base chord length, $c=150 \mathrm{~mm}$). The following experimental data is obtained for air at standard atmospheric conditions:

$V(\mathrm{~m} / \mathrm{s})$	10	15	20	25	30	35	40	45	50
$F_{L}(\mathrm{~N})$	2.2	4.8	8.7	13.3	19.6	26.5	34.5	43.8	54

Plot the lift versus speed curve. By using Excel to perform a trendline analysis on this curve, generate and plot data for the lift produced by the prototype, which has a wing base chord length of 5 m , over a speed range of $75 \mathrm{~m} / \mathrm{s}$ to $250 \mathrm{~m} / \mathrm{s}$.

Given: Data on model of aircraft

Find: Plot of lift vs speed of model; also of prototype

Solution

For high Reynolds number, the drag coefficient of model and prototype agree

$$
\mathrm{C}_{\mathrm{D}}=\frac{\mathrm{F}_{\mathrm{p}}}{\frac{1}{2} \cdot \rho \cdot \mathrm{~A}_{\mathrm{p}} \cdot \mathrm{~V}_{\mathrm{p}}^{2}}=\frac{\mathrm{F}_{\mathrm{m}}}{\frac{1}{2} \cdot \rho \cdot \mathrm{~A}_{\mathrm{m}} \cdot \mathrm{~V}_{\mathrm{m}}^{2}}
$$

The problem we have is that we do not know the area that can be used for the entire model or prototype (we only know their chords).

We have

$$
\mathrm{F}_{\mathrm{p}}=\frac{1}{2} \cdot \rho \cdot \mathrm{~A}_{\mathrm{p}} \cdot \mathrm{C}_{\mathrm{D}} \cdot \mathrm{~V}_{\mathrm{p}}^{2} \quad \text { and } \quad \mathrm{F}_{\mathrm{m}}=\frac{1}{2} \cdot \rho \cdot \mathrm{~A}_{\mathrm{m}} \cdot \mathrm{C}_{\mathrm{D}} \cdot \mathrm{~V}_{\mathrm{m}}^{2}
$$

or

$$
\mathrm{F}_{\mathrm{p}}=\mathrm{k}_{\mathrm{p}} \cdot \mathrm{~V}_{\mathrm{p}}^{2} \quad \text { and } \quad \mathrm{F}_{\mathrm{m}}=\mathrm{k}_{\mathrm{m}} \cdot \mathrm{~V}_{\mathrm{m}}^{2}
$$

where

$$
\mathrm{k}_{\mathrm{p}}=\frac{1}{2} \cdot \rho \cdot \mathrm{~A}_{\mathrm{p}} \cdot \mathrm{C}_{\mathrm{D}} \quad \text { and } \quad \mathrm{k}_{\mathrm{m}}=\frac{1}{2} \cdot \rho \cdot \mathrm{~A}_{\mathrm{m}} \cdot \mathrm{C}_{\mathrm{D}}
$$

Note that the area ratio $A_{\mathrm{p}} / A_{\mathrm{m}}$ is given by $\left(L_{\mathrm{p}} / L_{\mathrm{m}}\right)^{2}$ where L_{p} and L_{m} are length scales, e.g., chord lengths. Hence

$$
\mathrm{k}_{\mathrm{p}}=\frac{\mathrm{A}_{\mathrm{p}}}{\mathrm{~A}_{\mathrm{m}}} \cdot \mathrm{k}_{\mathrm{m}}=\left(\frac{\mathrm{L}_{\mathrm{p}}}{\mathrm{~L}_{\mathrm{m}}}\right)^{2} \cdot \mathrm{k}_{\mathrm{m}}=\left(\frac{5}{0.15}\right)^{2} \cdot \mathrm{k}_{\mathrm{m}}=1110 \cdot \mathrm{k}_{\mathrm{m}}
$$

We can use Excel's Trendline analysis to fit the data of the model to find k_{m}, and then find k_{p} from the above equation to use in plotting the prototype lift vs velocity curve. This is done in the corresponding Excel workbook

An alternative and equivalent approach would be to find the area-drag coefficient $A_{\mathrm{m}} C_{\mathrm{D}}$ for the model and use this to find the area-drag coefficient $A_{\mathrm{p}} C_{\mathrm{D}}$ for the prototype.

Problem 7.62 (In Excel)

Over a certain range of air speeds, V, the lift, F_{L}, produced by a model of a complete aircraft in a wind tunnel depends on the air speed, air density, ρ, and a characteristic length (the wing base chord length, $c=150 \mathrm{~mm}$). The following experimental data is obtained for air at standard atmospheric conditions:

$V(\mathrm{~m} / \mathrm{s})$	10	15	20	25	30	35	40	45	50
$F_{L}(\mathrm{~N})$	2.2	4.8	8.7	13.3	19.6	26.5	34.5	43.8	54

Plot the lift versus speed curve. By using Excel to perform a trendline analysis on this curve, generate and plot data for the lift produced by the prototype, which has a wing base chord length of 5 m , over a speed range of $75 \mathrm{~m} / \mathrm{s}$ to $250 \mathrm{~m} / \mathrm{s}$.

Given: Data on model of aircraft

Find: Plot of lift vs speed of model; also of prototype

Solution

$\boldsymbol{V}_{\mathbf{m}}(\mathbf{m} / \mathbf{s})$	10	15	20	25	30	35	40	45	50
$\boldsymbol{F}_{\mathbf{m}}(\mathbf{N})$	2.2	4.8	8.7	13.3	19.6	26.5	34.5	43.8	54.0

This data can be fit to
$\mathrm{F}_{\mathrm{m}}=\frac{1}{2} \cdot \rho \cdot \mathrm{~A}_{\mathrm{m}} \cdot \mathrm{C}_{\mathrm{D}} \cdot \mathrm{V}_{\mathrm{m}}{ }^{2} \quad$ or $\quad \mathrm{F}_{\mathrm{m}}=\mathrm{k}_{\mathrm{m}} \cdot \mathrm{V}_{\mathrm{m}}{ }^{2}$

From the trendline, we see that

$$
k_{\mathrm{m}}=0.0219 \quad \mathrm{~N} /(\mathrm{m} / \mathrm{s})^{2}
$$

(And note that the power is 1.9954 or 2.00 to three signifcant figures, confirming the relation is quadratic)

Also, $k_{\mathrm{p}}=1110 k_{\mathrm{m}}$

Hence,

$$
k_{\mathrm{p}}=24.3 \mathrm{~N} /(\mathrm{m} / \mathrm{s})^{2} \quad F_{\mathrm{p}}=k_{\mathrm{p}} V_{\mathrm{m}}^{2}
$$

$\boldsymbol{V}_{\mathbf{p}}(\mathbf{m} / \mathbf{s})$	75	100	125	150	175	200	225	250
$\boldsymbol{F}_{\mathbf{p}}(\mathbf{k N})$ (Trendline)	137	243	380	547	744	972	1231	1519

Given: Information relating to geometrically simitar model test of centrifuga, pump:

Find: Missing values for dynamically similar conditions.
Solution: Apply Buckingham π-theorem. Assume $\Delta p=f(Q, \rho, \omega, D)$
(1) Δp
$n=5$ parameters
(2) Choose $M_{1} L, t$ as fundamental dimensions.
(3) $\frac{M}{L^{2}} \quad \frac{L^{3}}{t} \quad \frac{M}{L^{3}} \quad \frac{L}{t} \quad L \quad r=3$ primary dimensions
(4) Let ρ, ω, and D be repeating variables. $m=r=3$
(5) Then $n-m=5-3=2$ dimensionless parameters result. (6) check:

$$
\begin{aligned}
& m_{1}=\rho^{a} \omega^{b} D^{c} \Delta p=\left(\frac{M}{L 3}\right)^{a}\left(\frac{1}{t}\right)^{b}(L)^{c} \frac{M}{L t^{2}}=M^{0} L^{0} t^{0} \\
& \left.\begin{array}{ll}
M: a+1=0 & a=-1 \\
L:-3 a+c-1=0 & c=-2 \\
t:-b-2=0 & b=-2
\end{array}\right\} \Pi_{1}=\frac{\Delta p}{\rho \omega^{2} D^{2}} \\
& \pi_{i}=\frac{E}{L^{2} F t^{2}} \frac{L^{2}}{l} \frac{1}{L^{2}}-[1] \| \\
& T_{2}=\rho^{a} \omega^{b} D^{c} Q=\left(\frac{M}{L^{3}}\right)^{a}\left(\frac{1}{t}\right)^{t}(L)^{c} \frac{L^{3}}{t}=M^{0} L^{0} t^{0} \\
& \left.\begin{array}{ll}
\text { M: } a=0 \\
L:-3 a+c+3=0 & a=0 \\
t:-b-1=0 & b=-1
\end{array}\right\} T_{2}=\frac{Q}{\omega D^{3}} \\
& \pi_{2}=\frac{L^{3}}{t} \frac{t}{1} \frac{1}{L^{3}}=[1] v \psi
\end{aligned}
$$

Thus $\pi_{1}=f\left(\pi_{2}\right)$ for this situation. Flows are geometrically similar. Assume kinematic similarity. Then for dynamic similarity, if $\pi_{2 m}=\pi_{e p}$ then $\pi_{m}=\Pi_{p} \rho$.

$$
\begin{aligned}
& T_{r m}=\frac{Q_{m}}{\omega_{m} D_{m}^{3}}=\pi_{2 p}=\frac{Q_{p}}{\omega_{\rho} D_{p}} ; Q_{m}=Q_{p}\left(\frac{\omega_{m}}{\omega_{p}}\right)\left(\frac{D_{m}}{D_{p}}\right)^{3}=Q_{p}\left(\frac{367}{183}\right)\left(\frac{50}{150}\right)^{3}=0.0743 Q_{p} \\
& Q_{m}=0.0743 \times 1.25 \frac{m^{3}}{m_{1 m}}=0.0928 \mathrm{~m}^{3} / \mathrm{min} \\
& \Pi_{m}=\frac{\Delta p_{m}}{\rho_{m} \omega_{m}^{2} D_{m}^{2}}=T_{1 p}=\frac{\Delta p_{p}}{\rho_{\rho} L_{p}^{2} D_{p}^{2}} ; \Delta p_{p}=\Delta p_{m} \frac{f_{p}}{f_{m}}\left(\frac{\omega_{p}}{\omega_{m}}\right)^{2}\left(\frac{D_{p}}{D_{m}}\right)^{2} \\
& \Delta p_{p}=\Delta p_{m}\left(\frac{800}{499}\right)\left(\frac{183}{367}\right)^{2}\left(\frac{150}{50}\right)^{2}=1.79 \times 29.3 \mathrm{kPa}=52.5 \mathrm{kPa}
\end{aligned}
$$

$\{$ This result neglects any effect of viscosity. $\}$

A centrifugal water pump running at speed $\omega=750 \mathrm{rpm}$ has the following data for flow rate Q and pressure head Δp :								
$Q\left(\mathrm{~m}^{3} / \mathrm{hr}\right)$	0	100	150	200	250	300	325	350
$\Delta p(\mathrm{kPa})$	361	349	328	293	230	145	114	59

The pressure head Δp is a function of flow rate, Q, and speed, ω, and also impeller diameter, D, and water density, ρ. Plot the pressure head versus flow rate curve. Find the two Π parameters for this problem, and from the above data plot one against the other. By using Excel to perform a trendline analysis on this latter curve, generate and plot data for pressure head versus flow rate for impeller speeds of 500 rpm and 1000 rpm .

Given: Data on centrifugal water pump

Find: Π groups; plot pressure head vs flow rate for range of speeds

Solution

We will use the workbook of Example Problem 7.1, modified for the current problem

The number of parameters is:

$$
\begin{aligned}
n & =5 \\
r & =3 \\
m=r & =3
\end{aligned}
$$

The number of repeat parameters is:
The number of Π groups is:

Enter the dimensions ($\mathbf{M}, \mathbf{L}, \mathbf{t}$) of
the repeating parameters, and of up to
four other parameters (for up to four Π groups).
The spreadsheet will compute the exponents a, b, and c for each.
REPEATING PARAMETERS: Choose $\rho, \boldsymbol{g}, \boldsymbol{d}$

Π GROUPS:

The following Π groups from Example Problem 7.1 are not used:

	M	L
	0	0
$\Pi_{3}:$	a	0
	$b=$	0
	$c=$	0

$\begin{array}{ccc}\mathbf{M} & \mathbf{L} & \mathbf{t} \\ 0 & 0 & 0\end{array}$
$\Pi_{4}: \quad \begin{aligned} a & \left.=\begin{array}{l}\mathbf{0} \\ b \\ b \\ c\end{array}\right] \\ & =0\end{aligned}$

Hence $\quad \Pi_{1}=\frac{\Delta p}{\rho \omega^{2} D^{2}}$ and $\quad \Pi_{2}=\frac{Q}{\omega D^{3}} \quad$ with $\Pi_{1}=f\left(\Pi_{2}\right)$.

Based on the plotted data, it looks like the relation between Π_{1} and Π_{2} may be parabolic

Hence

$$
\frac{\Delta p}{\rho \omega^{2} D^{2}}=a+b\left(\frac{Q}{\omega D^{3}}\right)+c\left(\frac{Q}{\omega D^{3}}\right)^{2}
$$

The data is

$\boldsymbol{Q}\left(\mathbf{m}^{\mathbf{3}} / \mathbf{h r}\right)$	0	100	150	200	250	300	325	350
$\Delta \boldsymbol{p}(\mathbf{k P a})$	361	349	328	293	230	145	114	59

$\begin{array}{rll}\rho & = & 999 \\ & \mathrm{~kg} / \mathrm{m}^{3} \\ \omega & =750 & \mathrm{rpm} \\ D & = & 1\end{array} \mathrm{~m} \quad$ (D is not given; use $D=1 \mathrm{~m}$ as a scale $)$

$\boldsymbol{Q} /\left(\omega \boldsymbol{D}^{\mathbf{3}}\right)$	0.00000	0.000354	0.000531	0.000707	0.000884	0.00106	0.00115	0.00124
$\Delta \boldsymbol{p} /\left(\boldsymbol{\rho} \omega^{\mathbf{2}} \boldsymbol{D}^{\mathbf{2}}\right)$	0.0586	0.0566	0.0532	0.0475	0.0373	0.0235	0.0185	0.00957

From the Trendline analysis

$$
\begin{aligned}
a & =0.0582 \\
b & =13.4 \\
c & =-42371
\end{aligned}
$$

$$
\text { and } \quad \Delta p=\rho \omega^{2} D^{2}\left[a+b\left(\frac{Q}{\omega D^{3}}\right)+c\left(\frac{Q}{\omega D^{3}}\right)^{2}\right]
$$

Finally, data at 500 and 1000 rpm can be calculated and plotted

$$
\omega=500 \quad \mathrm{rpm}
$$

$\boldsymbol{Q}\left(\mathbf{m}^{\mathbf{3}} / \mathbf{h r}\right)$	0	25	50	75	100	150	200	250
$\Delta \boldsymbol{p}(\mathbf{k P a})$	159	162	161	156	146	115	68	4

$$
\omega=1000 \quad \mathrm{rpm}
$$

$\boldsymbol{Q}\left(\mathbf{m}^{\mathbf{3}} / \mathbf{h r}\right)$	0	25	50	100	175	250	300	350
$\Delta \boldsymbol{p}(\mathbf{k P a})$	638	645	649	644	606	531	460	374

Given: Axiahrlow pung:

$$
\begin{array}{ll}
Q=25 \mathrm{fi}_{5} \text { (water) } h=150 \text { A.ibrislug } \\
h=1 \mathrm{ft} & \omega=500 \mathrm{rpm}
\end{array}
$$

Model:

$$
Q=3 h p, \omega=1000 \mathrm{rpn} .
$$

Find: For similar performance between prototype and model, calculate the head, volume flow rote, and the diameter of the model

Solution:

$$
\frac{h}{\left.\omega^{2}\right\rangle^{2}}=f,\left(\frac{\theta}{\omega\rangle}, \frac{p \omega\rangle^{2}}{\mu}\right) \quad \text { and } \frac{Q}{\left\langle\omega^{3}\right\rangle^{5}}=f_{2}\left(\frac{Q}{\omega\rangle}, \frac{p \omega\rangle^{2}}{\mu}\right)
$$

Neglecting viscous effects,
if $\left(\frac{Q}{\omega \nu^{3}}\right)_{m}=\binom{Q}{\omega D^{3}}_{p}$ then $\left(\begin{array}{c}\left.\frac{h}{\omega^{2}}\right\rangle^{2}\end{array}\right)_{m}=\left(\frac{h}{\left.\omega^{2}\right\rangle^{2}}\right)_{p}$
a

$$
\text { and } \left.\left.\left(\frac{Q^{3}}{\omega^{3}}\right)^{s}\right)_{m}=\left(\frac{Q}{\left(w^{3}\right.}\right)^{s}\right)_{p}
$$

if $\frac{Q_{n}}{Q_{p}}=\frac{\omega_{n}}{\omega_{p}} \frac{V_{n}^{3}}{\theta_{p}^{3}}=\frac{1000}{500}\left(\frac{Q_{m}}{D_{p}}\right)^{3}=2\left(\frac{\theta_{n}}{\theta_{p}}\right)^{3} \ldots .$. (1)
then $\frac{h_{m}}{h_{p}}=\frac{\omega_{n}^{2}}{\omega_{p}^{2}} \frac{\nu_{n}^{2}}{D_{p}^{2}}=\frac{(1000)^{2}}{(500)^{2}}\left(\frac{\nu_{n}}{D_{p}}\right)^{2}-4\left(\frac{D_{n}}{D_{p}}\right)^{2}$
and $\quad \frac{Q_{m}}{B_{p}}=\frac{P_{p}}{\omega_{p}} \frac{\omega_{n}^{3}}{\omega_{p}^{3}} \frac{\eta_{n}^{5}}{\nu_{p}^{5}}=\left(\frac{1000}{500}\right)^{3}\left(\frac{\nu_{p}}{\nu_{p}}\right)^{5}=8\left(\frac{\nu_{\mu}}{\gamma_{p}}\right)^{5}$
We can determine Bp from the energy equation applied to the prototype. From footnde, page $3 i^{\circ}$

$$
\begin{aligned}
& Q_{p}=13.2 \mathrm{hp} .
\end{aligned}
$$

From Eq. 3

$$
\begin{array}{r}
\frac{Q_{m}}{Q_{p}}=8\left(\frac{Q_{n}}{D_{p}}\right)^{5} \quad \therefore \frac{\partial_{n}}{D_{p}}=\left[\frac{1}{8} \frac{B_{m}}{Q_{p}}\right]^{1 / 5}=\left[\frac{1}{8}+\frac{3}{13.2}\right]^{1 / 5}=0.491 \\
\therefore D_{m}=0.491 \varphi_{p}=0.491 f t \tag{n}
\end{array}
$$

Fromitg.1

$$
\begin{equation*}
\theta_{n}=2\left(\frac{D_{n}}{D_{p}}\right)^{2} \theta_{p}=2(0.491)^{3}+25 \frac{f t^{3}}{5}=5.92 \mathrm{ft}^{3} l_{5} \tag{m}
\end{equation*}
$$

FronEq. 2.

$$
h_{n}=4\left(\frac{\eta_{n}}{\eta_{p}}\right)^{2} h_{p}=4(0.471)^{2} \times 150 \frac{f \cdot \Delta f}{\text { Sig }}=145 \frac{f \cdot \frac{b_{f}}{s l u g} \ldots \ldots h_{n}}{}
$$

Given: For a morine propeller (from prod 7.22) the hruct fore, F F_{t}, is $F_{t}=F_{t}(p, D, v, g, \omega, p, \mu)$
Neglecting jiscous effeds, 'and pressure, hen
Assume that Torque, $F_{t}=F_{t}$, , and $\left.{ }^{2}, w\right)$ ower, 8 , deperd on sare parancters

$$
\begin{aligned}
& T=T(p, D, V, g, \omega) \\
& P=8(p, D, V, g, \omega)
\end{aligned}
$$

Find: Perwe scaling"laws" for propelters that relate F_{Y}, T, and B to ofter vafthlies.

Solution: Apply Buckinguan π-heorem
(1) $p \quad\rangle \quad \downarrow \quad g \quad \omega \quad F_{t} \quad T \quad P$
(B) Cloose Fint as primaring duriensions
(3) $\frac{F t^{2}}{i} L \frac{L}{t} \frac{h}{t^{2}} O_{i} \quad F L \quad F L$
(4) Repeating variables p,w, 7
(5) Ren $n_{n}=5$ dimensionless groups (2 indeperdent, 3 dependent) Setting up dinersional equations
)
$\pi_{1}=p^{a} \omega^{3} \nu^{c} v$
$F_{0}^{0}=\left(\frac{F_{2}^{2}}{4}\right)^{a}\left(\frac{1}{t}\right)^{s} E t$$\quad\left\{\begin{array}{ll}F: & 0=a \\ t: & 0=2 a-b-1 \\ L: & 0=-4 a+c+1\end{array}\right\}$

$$
\begin{aligned}
& a=0 \\
& b=-1 \\
& c=-1
\end{aligned} \quad \therefore \pi_{1}=\frac{V}{w\rangle}
$$

$$
\left.\begin{array}{l}
a=0 \\
b=-2 \\
c=-1
\end{array} \quad \therefore \pi_{2}=\frac{g}{\omega^{2}}\right\rangle
$$

$$
\begin{aligned}
& a=-1 \\
& b=-2 \\
& c=-4
\end{aligned}
$$

$$
\therefore \pi_{2}=\frac{F_{t}}{\left(w^{2}\right\rangle^{4}}
$$

$\pi_{4}=\rho^{a} \omega^{b} y^{c} T$$\quad\left\{\begin{array}{ll}F: & 0=a+1 \\ t: & 0=2 a-b \\ 6: & 0=-4 a+c+1\end{array}\right\}$
$a=-1$
$\therefore \pi_{4}=\frac{T}{\left.p \omega^{2}\right\rangle^{5}}$

$$
\begin{aligned}
& \frac{F_{t}}{p \omega^{2} y^{4}}=f_{1}\left(\frac{v}{\omega^{\eta}}, \frac{g}{\omega^{\eta}}\right) \\
& \frac{T}{\left.p \omega^{2}\right\rangle^{s}}=f_{2}\left(\frac{1}{\omega^{y}}, \frac{9}{\left.\omega^{2}\right\rangle}\right) \\
& \frac{Q}{\left.p \omega^{3}\right\rangle^{s}}=f_{3}\left(\frac{1}{\omega_{y}}, \frac{g}{\left.\omega^{2}\right\rangle}\right)
\end{aligned}
$$

Given: Thrust and torque of propeller depend on $0, \omega, V, \mu, \rho$
Mock l:

$$
\begin{aligned}
& D=600 \mathrm{~mm} \\
& \omega=2000 \mathrm{rpm} \\
& V=45 \mathrm{~m} / \mathrm{s} \\
& F_{t}=10 \mathrm{~N} \text { (thrust) } \\
& \frac{T}{}=10 \mathrm{~N} \cdot \mathrm{~m}
\end{aligned}
$$

Prototype:

$$
\begin{aligned}
D & =6 \mathrm{~m} \\
\omega & =? \\
V & =120 \mathrm{~m} / \mathrm{s} \\
F_{t} & =? \\
T & =?
\end{aligned}
$$

Find: (a) w, (b) F_{t} and (c) T for prototype, neglecting effects of viscosity, under dynamically similar conditions.

Solution: There are two problems here: (1) Determine $\vec{t}_{t}=f_{1}(D, \omega, v, \mu, \rho)$ and $(z) T=f_{2}(D, \omega, V, \mu, p)$. Since μ is to be ignored, flo not select it as a repeating parameter. Instead, select D, ω, ρ as repeating variables.
(1) $F_{t}=f_{1}(D, \omega, v, \mu)$
(1) F $D \quad \omega \quad v \quad \rho \quad n=6$ parameters
(2) $\operatorname{select} F, L, t$ as primary dimensions.
$\begin{array}{llllll}F_{t} & D & \omega & V & \mu & P \\ F & L & \frac{1}{t} & \frac{L}{t} & \frac{F t}{L^{2}} & \frac{F t^{2}}{L^{4}}\end{array} r=3$ primary dimensions
(4) Choose $D, \omega, v \quad m=r=3$ repeating parameters
(5) Then $n-m=3$ dimensionless groups will result. Setting up dimensional equations,

$$
\begin{aligned}
& \pi_{1}=D^{a} \omega^{b} \rho^{c} F_{t} \\
& T_{2}=D^{a} \omega^{b} \rho^{c} V \\
& =(L)^{a}\left(\frac{1}{t}\right)^{b}\left(\frac{F^{2}}{L^{4}}\right)^{c} F=F^{0} L^{0} t^{0} \\
& =(L)^{a}\left(\frac{1}{t}\right)^{b}\left(\frac{F t}{L}\right)^{c} \frac{L}{t}=F^{0} L^{0} t^{0} \\
& \text { Ff } c+1=0 \quad c=-1 \\
& F: C=0 \\
& c=0 \\
& \text { L: } a-4 c=0 \quad a=-4 \\
& \text { L: } a-4 c+1=0 \\
& a=-1 \\
& t!-b+2 c=0 \quad b=-2 \\
& t:-b+c-1=0 \\
& b=-1 \\
& T_{1}=\frac{F_{t}}{\rho \omega^{2} D^{4}} \\
& \pi_{2}=\frac{V}{\omega D} \\
& \pi_{3}=D^{a} \omega^{b} \rho^{c} \mu=(L)^{a}\left(\frac{1}{t}\right)^{b}\left(\frac{F L^{2}}{L^{4}}\right)^{c} \frac{F t}{L^{2}}=F^{0} L^{0} t^{0} \\
& \left.\begin{array}{ll}
\text { F: } c+1=0 & c=-1 \\
L: a-4 c-2=0 & \begin{array}{l}
a=4 c+2=-2 \\
t:-b+2 c+1=0
\end{array} \\
b=2 c+1=-1
\end{array}\right\} \Pi_{3}=\frac{\mu}{\rho \omega D^{2}}
\end{aligned}
$$

Then $\pi_{1}=f_{1}\left(\pi_{2}, \pi_{3}\right)$ or $\frac{F_{t}}{\rho \omega^{2} D^{4}}=f_{1}\left(\frac{V}{\omega D}, \frac{\mu}{\rho \omega D^{2}}\right)$

Problem 7.67 (contd.)
If viscous effects are neglected, then $T_{1}=g_{1}\left(T_{2}\right)$ or $\frac{F_{t}}{\rho \omega^{2} D^{4}}=g_{1}\left(\frac{V}{\omega D}\right)$ For dynamic similarity, $\left.\left.\pi_{2}\right)_{\text {model }}=\pi_{2}\right)_{\text {prototype, }}$ or

$$
\frac{V_{m}}{\omega_{m} D_{m}}=\frac{V_{p}}{\omega_{p} D_{p}}
$$

Thus $\omega_{p}=\omega_{m} \frac{V_{p}}{V_{m}} \frac{D_{m}}{D_{p}}=(2000 \mathrm{rpm})\left(\frac{120}{14}\right)\left(\frac{1}{10}\right)=533 \mathrm{rpm}$ When $\left.\left.\pi_{2}\right)_{\text {model }}=\pi_{2}\right)_{\text {prototype, }}$ then neglecting $\left.\left.\mu, T_{1}\right)_{\text {model }}=T_{1}\right)_{\text {prototype }}$, or

$$
\frac{F_{t m}}{\rho_{m} \omega_{m}^{2} D_{m}^{4}}=\frac{F_{t p}}{\rho_{p} \omega_{p}^{2} D_{p}^{4}} ; \text { assume } \rho_{m}=\rho_{p}
$$

Then $F_{t p}=F_{t m}\left(\frac{\omega_{p}}{\omega_{m}}\right)^{2}\left(\frac{D_{p}}{D_{m}}\right)^{4}=110 \mathrm{~N}:\left(\frac{533}{2000}\right)^{2}(10)^{4}=78.1 \mathrm{kN}$
(2) The analysis of π_{2} and T_{3} for the second problem is identical to that for problem (1). Combining T with D, w and ρ gives

$$
\left.\begin{array}{ll}
\pi_{4}=D^{a} \omega^{b} \rho^{c} T=(L)^{a}\left(\frac{1}{t}\right)^{b}\left(\frac{F^{4}}{L^{4}}\right)^{c}(F L)=M L^{0} t^{0} \\
F: c+1=0 & c=-1 \\
L: a-4 c+1=0 & a=4 c-1=-5 \\
t:-b+2 c=0 & b=2 c=-2
\end{array}\right\} \pi_{\psi}=\frac{T}{\rho \omega^{2} D^{5}}
$$

Thus $\pi_{4}=f_{2}\left(\pi_{2}, \pi_{3}\right)$ or neglecting $u, \pi_{4}=g_{2}\left(\pi_{2}\right)$. For dynamic similarity, π_{4} model $=\pi_{4}$ prototype , or

$$
\frac{T_{m}}{\rho_{m} \omega_{m}^{2} D_{m}^{s}}=\frac{T_{p}}{\rho_{\rho} \omega_{\rho}^{2} D_{\rho}^{s}} \text {; assceme } \rho_{m}=\rho_{p}
$$

Then $T_{p}=T_{m}\left(\frac{\omega_{p}}{\omega_{m}}\right)^{2}\left(\frac{D_{\rho}}{D_{m}}\right)^{5}=10 \mathrm{~N} \cdot \mathrm{~m} \cdot\left(\frac{533}{2000}\right)^{2}(10)^{5}=71 \mathrm{kN} \cdot \mathrm{m}$
(6) Check, using M, L, t :

$$
\begin{aligned}
& \pi_{1}=\frac{M L}{t^{2}} \frac{L^{3}}{M} \frac{t^{2}}{1} \frac{1}{L^{4}}=[1] \\
& \pi_{2}=\frac{L}{t} \frac{t}{1} \frac{1}{L}=[1] \\
& \pi_{3}=\frac{M}{L t} \frac{L^{3}}{M} \frac{t}{1} \frac{1}{L^{2}}=[1] \\
& \pi_{4}=\frac{M L^{2}}{t^{2}} \frac{L^{3}}{M} \frac{t^{3}}{1} \frac{1}{L^{5}}=[1]
\end{aligned}
$$

Given: The kinetic energy ratio is a figure of merit defined as the ratio of kinetic energy flux in a wind tunnel test section to the drive power.
Find: an estimate of the kinetic energy ratio for $\$ 4.40 \times 80$ wind tunnel at NASA-Ames.

Solution:
From text $(p, 3 i q)$. For NASA-Ames tunnel:

$$
\begin{aligned}
& A=40 f+80 f t=3200 t^{2} \quad, B=125.000 h_{p} \\
& V_{\text {nam }}=300 \frac{k m i}{h r} \times 6010 \frac{f t}{\mathrm{ki}} * \frac{\mathrm{hr}}{3600 s}=507 \text {. At } l_{s} \\
& \text { K.E ratio }=\frac{K E \text { flux }}{\text { Fowerin }}=\frac{\operatorname{in} \frac{y^{2}}{8}}{8}=\frac{P V A y^{2}}{2.8}=\frac{P V^{3} A}{2 Q}
\end{aligned}
$$

Assuming standard air,

$$
\begin{aligned}
& \text { K.E. ratio }=\frac{1}{2} \times 0.00238 \frac{\text { sig }}{\pi^{3}} \times(507)^{3} \frac{f^{3}}{s^{3}} \times 3200 t^{2} \times \frac{1}{125,000 h p} \times \frac{h p}{550 f+16 f} \times \frac{16 f \cdot s^{2}}{\text { lug. } t} \\
& k . E \text { ratio }=7.22
\end{aligned}
$$

Given: Wind tunnel test of 1:16 model bus in standard air.

W	$=152 \mathrm{~mm}$	$V=26.5 \mathrm{~m} / \mathrm{s}$	Pressure gradient:
H	$=200 \mathrm{~mm}$	$F_{D}=6.09 \mathrm{~N}$	$\frac{d p}{d x}=-11.8 \mathrm{~N} / \mathrm{m}^{2} / \mathrm{m}$
L	$=762 \mathrm{~mm}$	(measured)	

Find: (a) Estimate the horizontal buoyancy correction.
(b) Calculate the corrected model drag coefficient.
(c) Evaluate the drag force on the prototype at $100 \mathrm{~km} / \mathrm{hr}$ on a calm day.
Solution: Apply definitions
Computing equations: $C_{D}=\frac{F D}{\frac{1}{2} V^{2} A} \quad$ Assume $A=W H$
The buoyancy force will be

$$
F_{B}=-p_{1} A-p_{2} A=\left(p_{1}-p_{2}\right) A
$$

But $p_{2}=p_{1}+\frac{\partial p}{\partial x} \Delta x+\cdots \approx p_{1}+\frac{\partial p}{\partial x} L$
Therefore $p_{1}-p_{2}=-\frac{\partial p}{\partial x} L$, and $F_{B} \approx-\frac{\partial p}{\partial x} L A=-\frac{\partial p}{\partial x} L W H$

$$
F_{B} \approx-(-11.8) \frac{\mathrm{N}}{\mathrm{~m}^{3}} \times 0.762 m_{\times} 0.152 m_{\times} 0.200 \mathrm{~m}=0.273 \mathrm{~N}\left(t_{0} \text { right }\right)
$$

The corrected diag force is

$$
F_{D_{C}}=F_{D M}-F_{B}=(6.09-0.273) \mathrm{N}=5.82 \mathrm{~N}
$$

The corrected model drag coefficient is

$$
C_{D_{m}}=\frac{F_{D_{C}}}{\frac{1}{2} P V^{2} A}=2 \times 5.82 \mathrm{~N}_{\times} \frac{m^{3}}{1.23 \mathrm{~kg}} \times \frac{\mathrm{s}^{2}}{(26,5)^{2} \mathrm{~m}^{2}} \times \frac{1}{(0.200)(0.152) \mathrm{m}^{2}} \times \frac{\mathrm{kg} \cdot \mathrm{~m}}{\mathrm{~N} \cdot \mathrm{~s}^{2}}=0.443
$$

Assume the test was conducted at high enough Reynolds number so $C_{D p}=C_{D m}$. Then

$$
\begin{aligned}
F_{D_{\rho}} & =C_{D_{\rho}} A \rho \frac{1}{2} f V_{\rho}^{2} \\
& =\frac{1}{2} \times 0.443 \times 0.200(16) m_{x} 0.152(16) \mathrm{m}_{\times} 1.23 \frac{\mathrm{~kg}}{\mathrm{~m}^{3}} \times\left[100 \frac{\mathrm{~km}}{\mathrm{hr}} \times 1000 \frac{\mathrm{~m}}{\mathrm{~km}} \times \frac{\mathrm{hr}}{3600 \mathrm{~s}}\right]^{2} \frac{\mathrm{~N} \cdot \mathrm{~s}^{2}}{\mathrm{kgin}} \\
F_{D_{\rho}} & =1.64 \mathrm{kN} \text { (prototype at } 100 \mathrm{~km} / \mathrm{hr} \text {) }
\end{aligned}
$$

Given: A ibo scale riodel of a 20 long truck is tested in a wind tunnel at speed $U_{n}=80 \mathrm{mls}$. The atrial pressure gradient at this speed is dhldx= $-1.2 \mathrm{~mm} \mathrm{H}_{2} \mathrm{O}_{2} \mathrm{~lm}$. The frontal area of the prototype is $A_{p}=10 \mathrm{~m}^{2} . C_{7}=0.85$
Find: (a) Estimate the horizontal buoyancy correction (b) Express the correction as a fraction of the measured $C_{>}$.
Solution:
The horizontal buoyancy force. Fr, is the difference in the -pressure force between the front and back of the model due to the pressure gradient in the tunnel

$$
F_{B}=-0.574 \mathrm{~N}
$$

The horizontal buoyancy correction should be added to the Measured tag force on the model.
The measured drag force on the model is gwen by

$$
F_{D_{n}}=\frac{1}{2} p v^{2} A_{n} c_{\theta}=\frac{1}{2} p v^{2} A_{p}\left(V_{0}\right)^{2} c_{l}
$$

Assure air at standard conditions, $p=1.23 \mathrm{~kg} / \mathrm{m}^{3}$

$$
\begin{aligned}
F_{m}= & \frac{1}{2} \times 1.23 \frac{g_{g}}{m^{3}} \times(82)^{2} \frac{m^{2}}{s^{2}} \times \frac{10 m^{2}}{(6)^{2}} \times 0.85 \times \frac{\mathrm{N.s}}{}{ }^{2} \\
F_{m}= & 131 N \\
& F_{B m}=\frac{-0.574}{131}=-4.38 \times 10^{-3}=-0.444 .
\end{aligned}
$$

$$
\begin{aligned}
& F_{B}=\left(p_{5}-f_{b}\right) A=f_{w} g \frac{d h}{d x} \ln _{n} A_{m} \quad\left(\Delta p_{1} \rho_{w} g \Delta h\right) \\
& L_{n}=\begin{array}{l}
L_{p} \\
\frac{16}{} \\
L_{n}
\end{array} \quad A_{n}=\frac{A_{p}}{(16)^{2}} \\
& \therefore F_{3}=999 \frac{\mathrm{~kg}}{\mathrm{~m}^{3}} \times 9.81 \frac{\mathrm{~m}}{\mathrm{~s}^{2}} \times(-1.2) \times \frac{10}{3} \frac{\mathrm{~m}}{\mathrm{~m}} \times \frac{20 \mathrm{~m}}{40} \times \frac{10 \mathrm{~m}^{2}}{(16)^{2}} \times \frac{\mathrm{N.s}^{2}}{\frac{\mathrm{~kg}}{\mathrm{~g}}}
\end{aligned}
$$

Open-Ended Problem Statement: During a recent stay at a motel, a hanging lamp was observed to oscillate in the air stream from the air conditioning unit. Explain why this might occur.
Discussion: Minor fluctuations occur in the speed and direction of the air blowing from the air conditioning unit. These tend to move the hanging lamp from the vertical, steady-state position.

If the fluctuations in air flow speed and direction are large enough, they can cause significant random motions of the hanging lamp.

If the fluctuations in air flow speed and direction contain a periodic frequency content that is close to the natural frequency of the lamp's motion, they can excite the resonant frequency, leading to quite large oscillations in the lamp motion. These periodic motions may occur in combination with the smaller, random motions.

Open-Ended Problem Statement: Frequently one observes a flag on a pole "flapping" in the wind. Explain why this occurs. What dimensionless parameters might characterize the phenomenon? Why?

Discussion: The natural wind contains significant fluctuations in air speed and direction. These fluctuations tend to disturb the flag from an initially plane position.

When the flag is bent or curved from the plane position, the flow nearby must follow its contour. Flow over a convex curved surface tends to be faster, and have lower pressure, than flow over a concave curved surface. The resulting pressure forces tend to exaggerate the curvature of the flag. The result is a seemingly random, "flapping" motion of the flag.

The rope or chain used to raise the flag may also flap in the wind. It is much more likely to exhibit a periodic motion than the flag itself. The rope is quite close to the flag pole, where it is influenced by any vortices shed from the pole. If the Reynolds number is such that periodic vortices are shed from the pole, they will tend to make the rope move with the same frequency. This accounts for the periodic thump of a rope or clank of a chain against the pole.

The vortex shedding phenomenon is characterized by the Strouhal number, $S t=f D / V_{\infty}$, where f is the vortex shedding frequency, D the pole diameter, and V_{∞} the wind speed. The Strouhal number is constant at approximately 0.2 over a broad range of Reynolds number.

Open-Ended Problem Statement: Explore the variation in wave propagation speed given by the equation of Problem 7.61 for a free-surface flow of water. Find the operating depth to minimize the speed of capillary waves (waves with small wavelength, also called ripples). First assume wavelength is much smaller than water depth. Then explore the effect of depth. What depth do you recommend for a water table used to visualize compressible-flow wave phenomena? What is the effect of reducing surface tension by adding a surfactant?

Discussion: The equation given in Problem 7.61 contains three terms. The first term contains surface tension and gives a speed inversely proportional to wavelength. This term will be important when small wavelengths are considered.

The second term contains gravity and gives a speed proportional to wavelength. This term will be important when long wavelengths are considered.

The argument of the hyperbolic tangent is proportional to water depth and inversely proportional to wavelength. For small wavelengths, this term should approach unity since the hyperbolic tangent of a large number approaches one.

See the spreadsheet for numerical values and a plot.

Input Parameters:

$g=$	9.81	$\mathrm{~m} / \mathrm{s}^{2}$	Acceleration of gravity
$h=$	0.01	m	Liquid depth (for hyperbolic tangent calculation)
$\rho=$	999	$\mathrm{~kg} / \mathrm{m}^{3}$	Liquid density
$\sigma=$	0.0728	$\mathrm{~N} / \mathrm{m}$	Surface tension

Calculated Values:

$h(\mathrm{~m})=$
Wavelength, $\tanh (-\cdots)$

$\lambda(\mathrm{m})$	$(\mathrm{h}=10 \mathrm{~mm})$	Wave Speed, $c(\mathrm{~m} / \mathrm{s})$					
0.00185	1.00	0.500	0.500	0.500	0.500	0.500	0.500
0.003	1.00	0.396	0.397	0.397	0.397	0.397	0.397
0.005	1.00	0.313	0.315	0.315	0.315	0.315	0.315
0.0075	1.00	0.263	0.270	0.270	0.270	0.270	0.270
0.01	1.00	0.233	0.248	0.248	0.248	0.248	0.248
0.025	0.987	0.167	0.227	0.238	0.239	0.239	0.239
0.05	0.850	0.138	0.229	0.275	0.295	0.295	0.295
0.075	0.685	0.126	0.229	0.294	0.351	0.351	0.351
0.1	0.557	0.120	0.228	0.303	0.400	0.401	0.401
0.2	0.304	0.110	0.226	0.312	0.537	0.560	0.561
0.5	0.125	0.104	0.223	0.314	0.660	0.815	0.884
0.75	0.0836	0.102	0.223	0.314	0.681	0.896	1.08
1	0.0627	0.101	0.222	0.314	0.690	0.933	1.25
2	0.0314	0.100	0.222	0.314	0.698	0.975	1.69
5	0.0126	0.100	0.222	0.313	0.700	0.988	2.09
7.5	0.00838	0.0994	0.222	0.313	0.700	0.989	2.15
10	0.00628	0.0993	0.222	0.313	0.700	0.990	2.18
Froude Speed, $(g h)^{1 / 2}$	0.0990	0.221	0.313	0.700	0.990	2.21	

Given: Incompressible flow in a circular channel. Re $=1800$ in a section where the hansel diameter

$$
\text { is }\rangle=10 \mathrm{~mm}
$$

Find: is general expression for he in terns of O ai volume flow rate, Q, and channel diameter, (o) mass flow rate, in, and channel diameter.
(ii) Re for same flour rate and $y=6 \mathrm{~mm}$.

Solution:
Assure steady, incompressible flow
Definitions: $\quad R_{e}=P \frac{\bar{V}}{\mu}, Q=A \bar{V}, i=P \bar{M}$ and $A=\frac{\bar{T}^{2}}{4}$
Then,

$$
R_{e}=\frac{\rho \bar{\nu}}{\mu}=\frac{\rho \eta}{\mu} \frac{Q}{\pi}=\frac{\rho P}{\mu} \frac{Q^{4}}{\pi \rho^{2}}=\frac{4 Q}{\pi \rho} \frac{\rho}{\mu}=\frac{4 Q}{\pi \eta}
$$

Also

$$
R_{e}=\frac{\rho \bar{V}}{\mu}=\frac{\partial}{\mu} \frac{P \bar{V} A}{A}=\frac{D}{\mu} \frac{\dot{M u}}{\pi \eta^{2}}=\frac{4 \dot{m}}{\pi \eta \mu}
$$

From Eq (i) a

$$
Q=\frac{\pi V R_{e}}{4}
$$

Then for same flow rate in sections with different Channel diameter.

$$
\begin{gather*}
\text { De }_{1}=D_{2} R_{e_{2}} \\
R_{e_{2}}=\frac{D_{1}}{D_{2}} R_{e_{1}}=\frac{10 \mathrm{~mm}}{6 \mathrm{~mm}} \times 1800=3000 . \tag{2}
\end{gather*}
$$

Problem 8.2

Standard air enters a 0.25 m diameter duct. Find the volume flow rate at which the flow becomes turbulent. At this flow rate, estimate the entrance length required to establish fully developed flow.

Given: Data on air flow in duct

Find: Volume flow rate for turbulence; entrance length

Solution

The given data is $\quad \mathrm{D}=0.25 \cdot \mathrm{~m}$

From Fig. A. $3 \quad v=1.46 \cdot 10^{-5} \cdot \frac{\mathrm{~m}^{2}}{\mathrm{~s}}$

The governing equations are

$$
\operatorname{Re}=\frac{\mathrm{V} \cdot \mathrm{D}}{v} \quad \operatorname{Re}_{\mathrm{crit}}=2300 \quad \mathrm{Q}=\frac{\pi}{4} \cdot \mathrm{D}^{2} \cdot \mathrm{~V}
$$

$\mathrm{L}_{\text {laminar }}=0.06 \cdot \operatorname{Re}_{\text {crit }^{\prime}} \mathrm{D}$
or, for turbulent,
$\mathrm{L}_{\text {turb }}=25 \cdot \mathrm{D}-40 \cdot \mathrm{D}$

Hence $\quad \operatorname{Re}_{\text {crit }}=\frac{\frac{\mathrm{Q}}{\frac{\pi}{4} \cdot \mathrm{D}^{2}} \cdot \mathrm{D}}{v} \quad$ or $\quad Q=\frac{\operatorname{Re}_{\text {crit }} \pi \cdot v \cdot \mathrm{D}}{4} \quad \mathrm{Q}=0.396 \frac{\mathrm{~m}^{3}}{\mathrm{~min}}$
$\mathrm{L}_{\text {laminar }}=0.06 \cdot \operatorname{Re}_{\text {crit }^{-}} \mathrm{D}$
$\mathrm{L}_{\text {laminar }}=34.5 \mathrm{~m}$
or, for turbulent,

$$
\begin{array}{ll}
\mathrm{L}_{\min }=25 \cdot \mathrm{D} & \mathrm{~L}_{\min }=6.25 \mathrm{~m} \\
\mathrm{~L}_{\max }=40 \cdot \mathrm{D} & \mathrm{~L}_{\max }=10 \mathrm{~m}
\end{array}
$$

Problem 8.3

For flow in circular tubes, transition to turbulence usually occurs around $R e \approx 2300$. Investigate the circumstances under which the flows of (a) standard air and (b) water at $15^{\circ} \mathrm{C}$ become turbulent. On log-log graphs, plot: the average velocity, the volume flow rate, and the mass flow rate, at which turbulence first occurs, as functions of tube diameter.

Given: That transition to turbulence occurs at about $R e=2300$

Find: Plots of average velocity and volume and mass flow rates for turbulence for air and water

Solution

From Tables A. 8 and A. 10

$$
\begin{array}{ll}
\rho_{\text {air }}=1.23 \cdot \frac{\mathrm{~kg}}{\mathrm{~m}^{3}} & v_{\text {air }}=1.45 \times 10^{-5} \cdot \frac{\mathrm{~m}^{2}}{\mathrm{~s}} \\
\rho_{\mathrm{w}}=999 \cdot \frac{\mathrm{~kg}}{\mathrm{~m}^{3}} & v_{\mathrm{w}}=1.14 \times 10^{-6} \cdot \frac{\mathrm{~m}^{2}}{\mathrm{~s}}
\end{array}
$$

The governing equations are

$$
\mathrm{Re}=\frac{\mathrm{V} \cdot \mathrm{D}}{v}
$$

$$
\operatorname{Re}_{\text {crit }}=2300
$$

For the average velocity

$$
V=\frac{\operatorname{Re}_{\text {crit }^{-v}}}{D}
$$

Hence for air

$$
\mathrm{V}_{\mathrm{air}}=\frac{2300 \times 1.45 \times 10^{-5} \cdot \frac{\mathrm{~m}^{2}}{\mathrm{~s}}}{\mathrm{D}}
$$

$$
\mathrm{V}_{\mathrm{air}}=\frac{0.0334 \cdot \frac{\mathrm{~m}^{2}}{\mathrm{~s}}}{\mathrm{D}}
$$

For water

$$
\mathrm{V}_{\mathrm{W}}=\frac{2300 \times 1.14 \times 10^{-6} \cdot \frac{\mathrm{~m}^{2}}{\mathrm{~s}}}{\mathrm{D}}
$$

$$
\mathrm{V}_{\mathrm{w}}=\frac{0.00262 \cdot \frac{\mathrm{~m}^{2}}{\mathrm{~s}}}{\mathrm{D}}
$$

For the volume flow rates

$$
\mathrm{Q}=\mathrm{A} \cdot \mathrm{~V}=\frac{\pi}{4} \cdot \mathrm{D}^{2} \cdot \mathrm{~V}=\frac{\pi}{4} \cdot \mathrm{D}^{2} \cdot \frac{\operatorname{Re}_{\mathrm{crit}^{-\nu}}}{\mathrm{D}}=\frac{\pi \cdot \operatorname{Re}_{\mathrm{crit}^{\prime}} \cdot \nu}{4} \cdot \mathrm{D}
$$

Hence for air

$$
\mathrm{Q}_{\mathrm{air}}=\frac{\pi}{4} \times 2300 \times 1.45 \cdot 10^{-5} \cdot \frac{\mathrm{~m}^{2}}{\mathrm{~s}} \cdot \mathrm{D}
$$

$$
\mathrm{Q}_{\mathrm{air}}=0.0262 \cdot \frac{\mathrm{~m}^{2}}{\mathrm{~s}} \times \mathrm{D}
$$

For water

$$
\mathrm{Q}_{\mathrm{W}}=\frac{\pi}{4} \times 2300 \times 1.14 \cdot 10^{-6} \cdot \frac{\mathrm{~m}^{2}}{\mathrm{~s}} \cdot \mathrm{D}
$$

$$
\mathrm{Q}_{\mathrm{W}}=0.00206 \cdot \frac{\mathrm{~m}^{2}}{\mathrm{~s}} \times \mathrm{D}
$$

Finally, the mass flow rates are obtained from volume flow rates

$$
\begin{array}{ll}
\mathrm{m}_{\mathrm{air}}=\rho_{\mathrm{air}} \cdot \mathrm{Q}_{\mathrm{air}} & \mathrm{~m}_{\mathrm{air}}=0.0322 \cdot \frac{\mathrm{~kg}}{\mathrm{~m} \cdot \mathrm{~s}} \times \mathrm{D} \\
\mathrm{~m}_{\mathrm{W}}=\rho_{\mathrm{W}} \cdot \mathrm{Q}_{\mathrm{W}} & \mathrm{~m}_{\mathrm{W}}=2.06 \cdot \frac{\mathrm{~kg}}{\mathrm{~m} \cdot \mathrm{~s}} \times \mathrm{D}
\end{array}
$$

These results are plotted in the associated Excel workbook

Problem 8.3 (In Excel)

For flow in circular tubes, transition to turbulence usually occurs around $R e \approx 2300$. Investigate the circumstances under which the flows of (a) standard air and (b) water at $15^{\circ} \mathrm{C}$ become turbulent. On log-log graphs, plot: the average velocity, the volume flow rate, and the mass flow rate, at which turbulence first occurs, as functions of tube diameter.

Given: That transition to turbulence occurs at about $R e=2300$

Find: Plots of average velocity and volume and mass flow rates for turbulence for air and water

Solution

The relations needed are

$$
\operatorname{Re}_{\text {crit }}=2300 \quad \mathrm{~V}=\frac{\operatorname{Re}_{\mathrm{crit}^{\prime}} \cdot v}{\mathrm{D}} \quad \mathrm{Q}=\frac{\pi \cdot \operatorname{Re}_{\mathrm{crit}^{\prime}} \cdot v}{4} \cdot \mathrm{D} \quad \mathrm{~m}_{\text {rate }}=\rho \cdot \mathrm{Q}
$$

From Tables A. 8 and A. 10 the data required is

$$
\begin{array}{rll}
\rho_{\mathrm{air}} & =1.23 & \mathrm{~kg} / \mathrm{m}^{3} \\
\rho_{\mathrm{w}} & =999 & \mathrm{~kg} / \mathrm{m}^{3}
\end{array} \begin{aligned}
& v_{\mathrm{air}}=1.45 \mathrm{E}-05 \mathrm{~m}^{2} / \mathrm{s} \\
& v_{\mathrm{w}}=1.14 \mathrm{E}-06 \mathrm{~m}^{2} / \mathrm{s}
\end{aligned}
$$

$\boldsymbol{D}(\mathbf{m})$	0.0001	0.001	0.01	0.05	1.0	2.5	5.0	7.5	10.0
$\boldsymbol{V}_{\text {air }}(\mathbf{m} / \mathbf{s})$	333.500	33.350	3.335	0.667	$3.34 \mathrm{E}-02$	$1.33 \mathrm{E}-02$	$6.67 \mathrm{E}-03$	$4.45 \mathrm{E}-03$	$3.34 \mathrm{E}-03$
$\boldsymbol{V}_{\mathbf{w}}(\mathbf{m} / \mathbf{s})$	26.2	2.62	0.262	$5.24 \mathrm{E}-02$	$2.62 \mathrm{E}-03$	$1.05 \mathrm{E}-03$	$5.24 \mathrm{E}-04$	$3.50 \mathrm{E}-04$	$2.62 \mathrm{E}-04$
$\boldsymbol{Q}_{\text {air }}\left(\mathrm{m}^{\mathbf{3}} / \mathbf{s}\right)$	$2.62 \mathrm{E}-06$	$2.62 \mathrm{E}-05$	$2.62 \mathrm{E}-04$	$1.31 \mathrm{E}-03$	$2.62 \mathrm{E}-02$	$6.55 \mathrm{E}-02$	$1.31 \mathrm{E}-01$	$1.96 \mathrm{E}-01$	$2.62 \mathrm{E}-01$
$\boldsymbol{Q}_{\mathrm{w}}\left(\mathrm{m}^{3} / \mathbf{s}\right)$	$2.06 \mathrm{E}-07$	$2.06 \mathrm{E}-06$	$2.06 \mathrm{E}-05$	$1.03 \mathrm{E}-04$	$2.06 \mathrm{E}-03$	$5.15 \mathrm{E}-03$	$1.03 \mathrm{E}-02$	$1.54 \mathrm{E}-02$	$2.06 \mathrm{E}-02$
$\boldsymbol{m}_{\text {air }}(\mathbf{k g} / \mathbf{s})$	$3.22 \mathrm{E}-06$	$3.22 \mathrm{E}-05$	$3.22 \mathrm{E}-04$	$1.61 \mathrm{E}-03$	$3.22 \mathrm{E}-02$	$8.05 \mathrm{E}-02$	$1.61 \mathrm{E}-01$	$2.42 \mathrm{E}-01$	$3.22 \mathrm{E}-01$
$\boldsymbol{m}_{\mathbf{w}}(\mathbf{k g} / \mathbf{s})$	$2.06 \mathrm{E}-04$	$2.06 \mathrm{E}-03$	$2.06 \mathrm{E}-02$	$1.03 \mathrm{E}-01$	$2.06 \mathrm{E}+00$	$5.14 \mathrm{E}+00$	$1.03 \mathrm{E}+01$	$1.54 \mathrm{E}+01$	$2.06 \mathrm{E}+01$

Flow Rate for Turbulence in a Pipe

Problem 8.4

Standard air flows in a pipe system in which the area is decreased in two stages from 50 mm , to 25 mm , to 10 mm . Each section is 1 m long. As the flow rate is increased, which section will become turbulent first? Determine the flow rates at which one, two, then all three sections first become turbulent. At each of these flow rates, determine which sections, if any, attain fully developed flow.

Given: Pipe geometry

Find: Flow rates for turbuence to start; which sections have fully developed flow

Solution

From Table A. $10 \quad v=1.45 \times 10^{-5} \cdot \frac{\mathrm{~m}^{2}}{\mathrm{~s}}$

The given data is $\quad \mathrm{L}=1 \cdot \mathrm{~m}$
$\mathrm{D}_{1}=50 \cdot \mathrm{~mm}$
$\mathrm{D}_{2}=25 \cdot \mathrm{~mm}$
$\mathrm{D}_{3}=10 \cdot \mathrm{~mm}$

The critical Reynolds number is $\quad \operatorname{Re}_{\text {crit }}=2300$

Writing the Reynolds number as a function of flow rate

$$
\operatorname{Re}=\frac{\mathrm{V} \cdot \mathrm{D}}{v}=\frac{\mathrm{Q}}{\frac{\pi}{4} \cdot \pi \cdot \mathrm{D}^{2}} \cdot \frac{\mathrm{D}}{v} \quad \text { or } \quad \mathrm{Q}=\frac{\operatorname{Re} \cdot \pi \cdot v \cdot \mathrm{D}}{4}
$$

Then the flow rates for turbulence to begin in each section of pipe are

$$
\mathrm{Q}_{1}=\frac{\operatorname{Re}_{\mathrm{crit}} \cdot \pi \cdot v \cdot \mathrm{D}_{1}}{4}
$$

$$
\mathrm{Q}_{1}=0.0786 \frac{\mathrm{~m}^{3}}{\mathrm{~min}}
$$

$$
\begin{array}{ll}
\mathrm{Q}_{2}=\frac{\mathrm{Re}_{\text {crit }} \cdot \pi \cdot v \cdot \mathrm{D}_{2}}{4} & \mathrm{Q}_{2}=0.0393 \frac{\mathrm{~m}^{3}}{\mathrm{~min}} \\
\mathrm{Q}_{3}=\frac{\mathrm{Re}_{\text {crit }} \cdot \pi \cdot v \cdot \mathrm{D}_{3}}{4} & \mathrm{Q}_{3}=0.0157 \frac{\mathrm{~m}^{3}}{\mathrm{~min}}
\end{array}
$$

Hence, smallest pipe becomes turbulent first, then second, then the largest.

For the smallest pipe transitioning to turbulence (Q_{3})

For pipe $3 \quad \mathrm{Re}_{3}=\frac{4 \cdot \mathrm{Q}_{3}}{\pi \cdot v \cdot \mathrm{D}_{3}} \quad \quad \mathrm{Re}_{3}=2300$

$$
\mathrm{L}_{\text {laminar }}=0.06 \cdot \mathrm{Re}_{3} \cdot \mathrm{D}_{3} \quad \mathrm{~L}_{\text {laminar }}=1.38 \mathrm{~m}
$$

or, for turbulent,

$$
\begin{array}{ll}
\mathrm{L}_{\text {min }}=25 \cdot \mathrm{D}_{3} & \mathrm{~L}_{\text {min }}=0.25 \mathrm{~m} \\
\mathrm{~L}_{\text {max }}=40 \cdot \mathrm{D}_{3} & \mathrm{~L}_{\text {max }}=0.4 \mathrm{~m}
\end{array}
$$

Fully developed flow
For pipes 1 and $2 \quad \mathrm{~L}_{\text {laminar }}=0.06 \cdot\left(\frac{4 \cdot \mathrm{Q}_{3}}{\pi \cdot v \cdot \mathrm{D}_{1}}\right) \cdot \mathrm{D}_{1} \quad \mathrm{~L}_{\text {laminar }}=1.38 \mathrm{~m}$

$$
\mathrm{L}_{\text {laminar }}=0.06 \cdot\left(\frac{4 \cdot \mathrm{Q}_{3}}{\pi \cdot v \cdot \mathrm{D}_{2}}\right) \cdot \mathrm{D}_{2} \quad \mathrm{~L}_{\text {laminar }}=1.38 \mathrm{~m}
$$

Pipes 1 and 2 are laminar, not fully developed.

For the middle pipe transitioning to turbulence (Q_{2})

For pipe 2

$$
\begin{array}{ll}
\mathrm{Re}_{2}=\frac{4 \cdot \mathrm{Q}_{2}}{\pi \cdot v \cdot \mathrm{D}_{2}} & \mathrm{Re}_{2}=2300 \\
\mathrm{~L}_{\text {laminar }}=0.06 \cdot \mathrm{Re}_{2} \cdot \mathrm{D}_{2} & \mathrm{~L}_{\text {laminar }}=3.45 \mathrm{~m}
\end{array}
$$

If the flow is still laminar
or, for turbulent,

$$
\begin{aligned}
& \mathrm{L}_{\min }=25 \cdot \mathrm{D}_{2} \\
& \mathrm{~L}_{\max }=40 \cdot \mathrm{D}_{2}
\end{aligned}
$$

$$
\mathrm{L}_{\max }=1 \mathrm{~m}
$$

Fully developed flow
$\begin{array}{cll}\text { For pipes } 1 \text { and } 3 & \mathrm{~L}_{1}=0.06 \cdot\left(\frac{4 \cdot \mathrm{Q}_{2}}{\pi \cdot v \cdot \mathrm{D}_{1}}\right) \cdot \mathrm{D}_{1} & \mathrm{~L}_{1}=3.45 \mathrm{~m} \\ & \mathrm{~L}_{3 \min }=25 \cdot \mathrm{D}_{3} & \mathrm{~L}_{3 \min }=0.25 \mathrm{~m} \\ & \mathrm{~L}_{3 \max }=40 \cdot \mathrm{D}_{3} & \mathrm{~L}_{3 \max }=0.4 \mathrm{~m}\end{array}$

Pipe 1 (Laminar) is not fully developed; pipe 3 (turbulent) is fully developed

For the large pipe transitioning to turbulence $\left(Q_{1}\right)$

For pipe 1

$$
\begin{array}{ll}
\mathrm{Re}_{1}=\frac{4 \cdot \mathrm{Q}_{1}}{\pi \cdot v \cdot \mathrm{D}_{1}} & \operatorname{Re}_{1}=2300 \\
\mathrm{~L}_{\text {laminar }}=0.06 \cdot \mathrm{Re}_{1} \cdot \mathrm{D}_{1} & \mathrm{~L}_{\text {laminar }}=6.9 \mathrm{~m}
\end{array}
$$

If the flow is still laminar
or, for turbulent,

$$
\begin{aligned}
& \mathrm{L}_{\min }=25 \cdot \mathrm{D}_{1} \\
& \mathrm{~L}_{\max }=40 \cdot \mathrm{D}_{1}
\end{aligned}
$$

$$
\mathrm{L}_{\max }=2 \mathrm{~m}
$$

Not fully developed flow

For pipes 2 and 3

$$
\begin{array}{ll}
\mathrm{L}_{2 \min }=25 \cdot \mathrm{D}_{2} & \mathrm{~L}_{2 \min }=0.625 \mathrm{n} \\
\mathrm{~L}_{2 \max }=40 \cdot \mathrm{D}_{2} & \mathrm{~L}_{2 \max }=1 \mathrm{~m} \\
\mathrm{~L}_{3 \min }=25 \cdot \mathrm{D}_{3} & \mathrm{~L}_{3 \min }=0.25 \mathrm{~m} \\
& \mathrm{~L}_{3 \max }=0.4 \mathrm{~m}
\end{array}
$$

Pipes 2 and 3 (turbulent) are fully developed

Given: Laminar flow in the entrance section of a pipe shown schematically in Fig. 8.1.
Find: \quad Sketch centerline velocity, static pressure, and wall shear stress as functions of distance along the pipe. Explain significant features of the plots, comparing them with fully developed flow. Can the Bernoulli equation be applied anywhere in the flow field? If so, where? Explain briefly.

Discussion: The centerline velocity, static pressure, and wall shear stress variations are sketched on the next page. Each variation sketch is aligned vertically with the corresponding sections of the developing pipe flow in Fig. 8.1.

Boundary layers grow on the tube wall, reducing the velocity near the wall. The velocity reduction becomes more pronounced farther downstream. Consequently the centerline velocity must increase in the streamwise direction to carry the same mass flow rate across each section of the tube. (When laminar flow becomes fully developed, the centerline velocity becomes twice the average velocity at any cross-section.)

Frictional effects are concentrated within the boundary layers. The boundary layers do not join at the tube centerline for some distance along the tube. Therefore in the center region outside the boundary layers flow may still be considered to behave as though it were inviscid.

Flow outside the boundary layers is steady, frictionless, incompressible, and along a streamline. These are the restrictions required to apply the Bernoulli equation. Therefore the Bernoulli equation may be applied as a reasonable model for the actual flow outside the boundary layers. The Bernoulli equation predicts that pressure decreases as flow speed increases.

After the boundary layers merge at the centerline of the channel the entire flow is affected by friction. Therefore it is no longer possible to apply the Bernoulli equation.

When flow becomes fully developed the rate of change of pressure with distance becomes constant. In the entrance region the pressure falls more rapidly; the increased pressure gradient is caused by increased shear stress at the wall (larger than for fully developed flow) and by the developing velocity profile, which causes momentum flux to increase.

In fully developed flow the pressure curve becomes linear; the pressure drops the same amount for each length along the tube. The pressure distribution curve at the end of the entrance length becomes asymptotic to the linear variation for fully developed flow.

The wall shear stress initially is large, because the boundary layers are thin. The shear stress decreases as the boundary layers become thicker. At the end of the entrance length the shear stress asymptotically approaches the constant value for fully developed flow.

Fig. 8.1 Flow in the entrance region of a pipe.

p

$$
\tau_{w}
$$

Given: Velocity profile for flow between stationary parallel plates.

$$
u=a\left(h^{2} / 4-y^{2}\right)
$$

where $a=$ constant

Find: Ratio $\bar{V} / u_{\text {max }}$
Solution: First find $u_{\text {max }}$, by setting $\frac{d u}{d y}=0$

$$
\begin{aligned}
& \frac{d u}{d y}=-2 a y ; \frac{d u}{d y}=0 \text { at } y=0 \\
& u_{\text {max }}=u(0)=a \frac{h^{2}}{4}
\end{aligned}
$$

From the definition of \bar{v},

$$
\begin{aligned}
\bar{V} & =\frac{Q}{A}=\frac{1}{A}\left(u d A=\frac{1}{h} \int_{-h l_{2}}^{h l_{2}} u d y\right. \\
& =\frac{1}{h}\left(h_{2} h_{2} a\left(\frac{h^{2}}{4}-y^{2}\right)=\frac{a}{h}\left[\frac{h^{2} y}{4}-\frac{y^{3}}{3}\right]_{-h l_{2}}^{h l_{2}}\right. \\
\bar{V} & =\frac{a}{h}\left[\left(\frac{h^{3}}{8}-\frac{h^{3}}{24}\right)-\left(-\frac{h^{3}}{8}+\frac{h^{3}}{2 H}\right)\right]=\frac{a}{h}\left[\frac{h^{3}}{4}-\frac{h^{3}}{12}\right] \\
\bar{V} & =\frac{1}{b} a h^{2}
\end{aligned}
$$

and

$$
\frac{\bar{U}}{u_{\text {max }}}=\frac{a h^{2}}{6} \frac{4}{a h^{2}}=\frac{2}{3}
$$

Problem 8.7
Gwen: Incompressible flow between parallel plates with

$$
u=u_{\max }\left(A y^{2}+B y+C\right)
$$

Find: (a) constants A, B, C using appropriate boundary

(b) Q per unit depth b.
(c) V/u max

Solution:
(a) Available boundary conditions:

$$
\text { (i) } y=0, u=0
$$

$$
\text { (a) } y=h, u=0
$$

$$
\begin{aligned}
& \text { (2) } y=n, u=0 \\
& \text { (3) } y=h i_{2}, u=u_{\max }
\end{aligned}
$$

From B.C (i) $u(0)=0=u_{\text {max }} C \quad \therefore \quad C=0$
From B.C (2) $u(h)=0=u_{\max }\left(A h^{2}+B h\right) \ldots(i)$
From B.C(3) $u(h / 2)=u_{\text {max }}=u_{\max }\left(A \frac{h^{2}}{7}+B \frac{h}{2}\right) \cdots(i)$
From $E_{q}(i), B=-A h$. Substituting into $E q(i)$ guvs

$$
\begin{equation*}
U_{\text {max }}=X_{\max }\left(R \frac{h^{2}}{4}-h^{h^{2}} \frac{D^{2}}{2}\right) \quad \therefore \quad A=-\frac{4}{h^{2}} \tag{A}
\end{equation*}
$$

$$
\text { and } B=-7 h=\frac{4}{h}
$$

Then

$$
u=u_{\max }\left(A^{2}+B y+c\right)=u_{\max }\left(-4 \frac{y^{2}}{n^{2}}+4 \frac{y}{n}\right)=4 u_{\max }\left[\frac{y}{h}-\left(\frac{y}{n}\right)^{2}\right]
$$

(b) $Q=\int_{0}^{h} u b d y=\int_{0}^{h} 4 u_{\max }\left[\frac{y}{h}-\frac{y^{2}}{h^{2}}\right] b d y=4 u_{\operatorname{mar}} b\left[\frac{y^{2}}{2 h}-\frac{y^{3}}{3 h^{2}}\right]_{0}^{h}$

$$
Q=4 b u_{\max }\left[\frac{h}{2}-\frac{h}{3}\right]=\frac{2}{3} u_{\text {max }} b h
$$

$\theta / b=\frac{2}{3} u_{\max } h$ $a 1 b$
(c) Since $Q=\bar{V} A=\bar{V} b h$

$$
\frac{Q}{b}=\bar{V} h=\frac{2}{3} u_{\max } h
$$

and

$$
\frac{\bar{v}}{u_{\text {max }}}=\frac{2}{3}
$$

Problem 8.8

Given: Laminar, fully developed flow between parallel plates

$$
\mu=0.5 \frac{\mathrm{~N} \cdot \mathrm{~s}}{\mathrm{~m}^{2}} ; \frac{\partial p}{\partial x}=-10.00 \frac{\mathrm{~N}}{\mathrm{~m}^{3}}
$$

Find: (a) shear stress on upper plate.
(b) Volume flow rate per unit width.
width $=6$
Solution: From Eq. 8.7 with $a=h$,

$$
u=-\frac{h^{2}}{8 \mu} \frac{\partial p}{\partial x}\left[1-\left(\frac{2 y}{h}\right)^{2}\right]
$$

Then

$$
\tau_{y x}=\mu \frac{d u}{d y}=-\frac{h^{2}}{8} \frac{\partial p}{\partial x}\left(-\frac{8 y}{h^{2}}\right)=y \frac{\partial p}{\partial x}
$$

At upper surface, $y=h / z$, and

$$
\tau_{y x}=\frac{0.005 m}{2} \times-1000 \frac{\mathrm{~N}}{m^{3}}=-2.5 \mathrm{~N} / \mathrm{m}^{2}
$$

The upper plate is a negative y surface. Thus since Ty $_{y}<0$, stress acts to rights in $t x$ direction.

The volume flow rate is

$$
Q=\int_{A} u d A=\int_{-h / 2}^{h / 2} u b d y=2 \int_{0}^{h / 2} u b d y=2\left(\frac{h}{2}\right) b \int_{0}^{1} u d\left(\frac{2 y}{h}\right)
$$

or

$$
\frac{Q}{b}=h \int_{0}^{1} u d \eta \text { where } \eta=\frac{2 y}{h} \text { and } u=-\frac{h^{2}}{8 \mu} \frac{\partial p}{\partial x}\left(1-\eta^{2}\right)
$$

Thees $\frac{Q}{6}=h \int_{0}^{1}-\frac{h^{2}}{\delta \mu} \frac{\partial p}{\partial x}\left(1-\eta^{2}\right) d \eta=-\left.\frac{h^{3}}{\delta \mu} \frac{\partial p}{\partial x}\left(\eta-\frac{1}{3} \eta^{3}\right)\right|_{0} ^{1}=-\frac{h^{3}}{1 z \mu \varphi} \frac{\partial p}{\partial x}$

$$
\frac{Q}{6}=-\frac{1}{12} \times(0.00 .5)^{3} \mathrm{~m}^{3} \times \frac{\mathrm{m}^{2}}{0.5 \mathrm{~N} \cdot \mathrm{~s}^{2}} \times-1000 \frac{\mathrm{~N}}{\mathrm{~m}^{3}}=20.8 \times 10^{-6} \mathrm{~m}^{2} / \mathrm{s}
$$

Note $u>0$, so flow is from left to right.

Given: Fully developed laminar flow between parallel plates.

$$
\mu=0.01 \frac{\mathrm{lbf} \cdot \mathrm{~s}}{f+2} ; \frac{\partial p}{\partial x}=-8 \frac{\mathrm{lbf}}{f+3}
$$

Find: (a) Shear stress on upper plate.
(b) Volurne flow rate per unit width.

Solution: From Eq, 8,7 with $a=2 h, u=-\frac{h^{2}}{3 \mu} \frac{\partial p}{\partial x}\left[1-\left(\frac{y}{h}\right)^{2}\right]$
Then

$$
\tau_{y x}=\mu \frac{d u}{d y}=-\frac{h^{2}}{2} \frac{\partial p}{\partial x}\left(-\frac{2 y}{h^{2}}\right)=y \frac{\partial p}{\partial x}
$$

At upper surface, $y=h$, and

$$
\tau_{y x}=0.06 i \mathrm{in}_{\times}-8 \frac{\mathrm{lbf}}{\mathrm{ft}^{3}} \times \frac{\mathrm{ft}}{\mathrm{l2in}}=-0.0400 \mathrm{lbf} / \mathrm{ft}^{2}
$$

The upper plate is a negative y surface. Thus since $\tau_{y x}<0$, stress acts to right, in $+x$ direction.
The volume flow rate is

$$
Q=\int_{A} u d A=\int_{-h}^{h} u b d y=2 \int_{0}^{h} u b d y=2 h b \int_{0}^{1} u d(y / h)
$$

or

$$
\frac{Q}{6}=2 h \int_{0}^{1} u d \eta \text { where } \eta=4 / h \text { and } u=-\frac{h^{2}}{3 \mu} \frac{\partial p}{\partial x}\left(1-\eta^{2}\right)
$$

Thus

$$
\begin{aligned}
& \frac{Q}{b}=2 h \int_{0}^{1}-\frac{h^{2}}{2 \mu} \frac{\partial p}{\partial x}\left(1-\eta^{2}\right) d \eta=-\left.\frac{h^{3}}{\mu} \frac{\partial p}{\partial x}\left(\eta-\frac{1}{3} \eta 3\right)\right|_{0} ^{1}=-\frac{2 h^{3}}{3 \mu^{\mu}} \frac{\partial p}{\partial x} \\
& \frac{Q}{6}=-\frac{2}{3} \times\left(\frac{0.06}{12}\right)^{3} f^{3} \times \frac{f^{2}}{\partial .011 b f^{\prime}} x^{-8} \frac{16 f}{f t^{3}}=6.67 \times 10^{-5} f^{2} / \mathrm{s}
\end{aligned}
$$

Nate $u>0$, so flow is from left to right.

Given: Fully developed laminar flow between parallel plates.

$$
\mu=2.40 \times 10^{-5} \frac{\mathrm{bf} \cdot \mathrm{~s}}{\mathrm{f}^{2}} ; \frac{\partial p}{\partial x}=-4 \frac{\mathrm{lbf}}{\mathrm{ft}}
$$

Find: (a) Derive and plot equation for shear stress versus y.
(b) Maximum shear stress.

Solution: From Eq. 8.7, with $a=h, u=-\frac{h^{2}}{8 \mu} \frac{\partial p}{\partial x}\left[1-\left(\frac{2 y}{h}\right)^{2}\right]$.
By symmetry, the origin for y must be located at the channel centerline. Apply Newton's law of viscosity.

$$
\tau_{y x}=\mu \frac{d u}{d y}
$$

Assumption: Newtonian fluid
Then

$$
\tau_{y x}=u \frac{d}{d y}\left\{-\frac{h^{2}}{8 u} \frac{\partial p}{\partial x}\left[1-\left(\frac{2 y}{h}\right)^{2}\right]\right\}=y \frac{\partial p}{\partial x}
$$

For $u>0, \partial p / \partial x<0$. Thus $\tau_{y x}<0$ for $y>0$ and $\tau_{y x}>0$ for $y<0$.
On the upper plate (a minus y surface), $\tau_{y x}<0$, so shear stress acts to the right.
on the lower plate (a plus y scerface), $\tau_{y x}>0$, so shear stress acts to the right.

The maximum stress occurs when $y= \pm h / 2$. Thus

$$
\tau_{\text {max }}=\tau_{s x}\left(\frac{h}{2}\right)=\frac{h}{2} \frac{\partial p}{\partial x}=\frac{1}{2} \times 0.05 \mathrm{in} \times \frac{f_{t}}{i 2 \mathrm{in}} \times\left(-4.0 \frac{\mathrm{ktf}}{f^{2}}\right)=-0.00835 \frac{\mathrm{lof}}{\mathrm{ft}^{2}}
$$

or $\tau_{\max }=\tau_{y x}\left(-\frac{h}{2}\right)=0.00835 \frac{16 f}{{f t^{2}}^{2}}$
Plot:

Problem 8.11
Given: Ali is confined in a cylinder of diameter $Y=100 \mathrm{~mm}$, by a piston with radiealctearance $a=0.025 \mathrm{~mm}$, and length $L=50 \mathrm{~mm}$. A steady force, $F=20 \mathrm{kn}$, is applied. to the piston. The oil has properties of SHE 30 ON at $50^{\circ} \mathrm{C}$.

Find: Leakage rate of oil past the piston
Solution:

$$
\frac{Q}{l}=\frac{a^{3} \Delta p}{12 \mu L}
$$

$$
\begin{align*}
& \text { From Fig. R. } 2 \text { at } T=50^{\circ} \mathrm{C}, \mu=5.9 \times 10^{-2} \mathrm{NB} / \mathrm{m}^{2} \\
& \Delta P=-P_{1}-P_{\text {atm }} \text { and } \Delta P=\frac{F}{A}=\frac{4 F}{\pi y^{2}}=\frac{4}{\pi} \times 20 \mathrm{kN} \times \frac{1}{(0.1)^{2} m^{2}}=2.55 \mathrm{MPa} \\
& \text { Thur } \\
& Q=\frac{\pi \eta a^{3} \Delta p}{12 \mu \mathrm{~L}}=\frac{\pi}{12} \times 0.1 \mathrm{~m} \times\left(2.5 \times 10^{-5} \mathrm{~m}\right)^{3} \times 2.55 \times 10^{6} \frac{\mathrm{~N}}{\mathrm{~m}^{2}} \times 5.9 \times 10^{-2} \frac{\mathrm{~m}^{2}}{\mathrm{~N} .5} \times \frac{1}{0.05 \mathrm{~m}} \\
& Q=3.54 \times 10^{-7} \mathrm{~m}^{3} /_{s}=3.54 \times 10^{-4} \mathrm{~W} / \mathrm{s} \\
& \Delta P=-P_{1}-P_{\text {dit }} \text { and } \Delta P=\frac{F}{A}=\frac{4 F}{\pi y^{2}}=\frac{4}{\pi} \times 20 \mathrm{kN} \times \frac{1}{(0.1)^{2} m^{2}}=2.55 \mathrm{MPa}
\end{align*}
$$

Mode the flow as steady, fully developed laminar flow between stationary parallel plates, ire., neglect motion of the piston.
Then the leakage flow rate can be evaluated from Eq. 8.6 c (of the text)
where $l=\pi\rangle$

Check $R_{e}=\frac{p a \bar{v}}{\mu}=\frac{\overline{\bar{u}}}{\nu} \quad J=6 \times 10^{-5} \mathrm{~m}^{2} / \mathrm{s} \quad\left(F_{\text {g. . A.B }}\right.$)

$$
\begin{aligned}
& \bar{V}=\frac{Q}{A}=\frac{Q}{a l}=\frac{Q}{a \pi y}=\frac{1}{\pi} \times 3.54 \times 10^{-7} \frac{\mathrm{~m}^{3}}{\mathrm{~s}} \times \frac{1}{2.5} \times 10^{-5} \mathrm{~m} \times \frac{1}{0.1 \mathrm{~m}}=0.045 \mathrm{~m} 1 \mathrm{l} \\
& \mathrm{he}_{\mathrm{e}}=\frac{a \bar{V}}{\nabla}=2.5 \times 10^{-5} \mathrm{~m} \times 0.045 \mathrm{~m}
\end{aligned}
$$

and flow is definitely laminar
Piston moving down at speed v displaces liquid at rate Q, where

$$
Q=\frac{\pi^{2}}{4} v
$$

Ten

$$
v=\frac{4 Q}{\pi y^{2}}=\frac{4}{\pi} \times 3.54 \times 10^{-7} \frac{\mathrm{~m}^{3}}{5} \times \frac{1}{(0.1 \mathrm{~m})^{2}}=4.51 \times 10^{-5} \mathrm{~m} \mathrm{ls}_{\mathrm{s}}
$$

Since $\frac{v}{V}=\frac{4.51 \times 10^{-5} \mathrm{mls}}{0.045 \mathrm{~m} / \mathrm{s}}=10^{-3}$, motion of piston can be neglected.

Problem 8,12
Given: Hydraulic jack supports supports a load of 9000 kg piston diameter, $D=100 \mathrm{~mm}$
radial cliarase $a=0.05 \mathrm{~mm}$
piston longer $L=120 \mathrm{~mm}$
Fid has viscosity of SPE 30 oil at $30^{\circ} \mathrm{C}$
Find: Leakage rate of fluid past the piston
Solution:
$L 1=D=$ a Model the flow as steady, fully developed laminar flow between stationary parallel plates, inc. neglect motion of the piston.
Then, the leakage flow rate can be evaluated from Eq. 8.6 c (in the text)
Q $2 \quad \frac{Q}{l}=\frac{a^{3} \Delta P}{12 \mu} \quad$ where $\left.l=\pi\right\rangle$
From Fig. A. 2 at $T=30^{\circ} \mathrm{C}, \mu=3.0 \times 10^{-1} \mathrm{N.S} / \mathrm{m}^{2}$

$$
\begin{align*}
& \Delta p=p_{1}-p_{\text {atm }} \text { and } p_{1}=\frac{W}{A}=\frac{m g}{H}=\frac{4 m g}{\delta^{2}} \\
& P_{1}=\frac{4}{\pi} \times 9000 \mathrm{~kg} \times 9.81 \frac{\mathrm{~m}}{5^{2}} \times \frac{1}{(0.1+1)^{2}} \times \frac{\sqrt{2} . \mathrm{s}^{2}}{\mathrm{~kg} \cdot \mathrm{~m}}=11.2 \mathrm{MPa} \\
& Q=\frac{\pi D a^{3} \Delta P}{12 \mu L}=\frac{\pi}{12} \times(0.1 m) \times\left(5 \times 10^{-5} m\right)^{3} \times 11.2 \times 10^{6} \frac{N}{M^{2}} \times 0.3 \frac{m^{2}}{\lambda . s}+\frac{1}{0.2 m} \\
& Q=1.01 \times 10^{-6} \mathrm{~m}^{3} \mathrm{l}_{\mathrm{s}}=1.0 \times 10^{-3} \mathrm{~L} \mathrm{l}
\end{align*}
$$

Check $R_{e}=\frac{a \bar{\eta}}{\mu}=\frac{a \bar{y}}{\bar{v}}$ where $J=2.8 \times 10^{-4} \mathrm{~m}^{2} / \mathrm{s}$ (Fig.A.B)

$$
\begin{aligned}
& \bar{Y}=\frac{Q}{A}=\frac{Q}{Q}=\frac{Q}{a \pi y}=\frac{1}{\pi} \times 1.9 \times 10^{-6} \frac{\mathrm{~m}^{3}}{\mathrm{~s}} \times \frac{1}{5 \times 10^{-5} m^{2}} \times \frac{1}{0.1 m}=0.0643 \mathrm{mls} \\
& R_{e}=\frac{Q Y}{V}=5 \times 10^{-5} m \times 0.0 .43 \frac{\mathrm{~m}}{\mathrm{~S}} \times \frac{1}{2.8 \times 10^{-4} \frac{5}{m^{2}}=0.011}
\end{aligned}
$$

\therefore flow is definitely laminar
Piston moving down at speed v displaces $l i q u i d$ at rate Q where $Q=\frac{\pi^{2}}{4} v$
then

$$
v=\frac{4 Q}{\pi y^{2}}=\frac{4}{\pi} \times 1.0 \times 10^{-6} \frac{\mathrm{~m}^{3}}{\mathrm{~s}} \times \frac{1}{(0.1 m)^{2}}=1.29 \times 10^{-4} \mathrm{~m}
$$

Since $\frac{v}{j}=\frac{1.29 \times 10^{-4} \mathrm{~ms}_{s}}{0.0643 \mathrm{mls}}=2,0 \times 10^{-3}$, Motion of piston can be rieglected.

Problem 8,13
Given: Piston-cylinder device wit SAE low oil at 35°

Find: Leakage flow rate.
Solution: Computing equation: $\frac{Q}{l}=\frac{a^{3} \Delta p}{12 \mu}$
Assumptions: (1) Laminar flow
(2) Fully developed flaw (h>>d)

For SAE low oil at $35^{\circ} \mathrm{C}, \mu=3.8 \times 10^{-2} \mathrm{~N} . \mathrm{s} / \mathrm{m}^{2}$ (Fig.f.2)
For this configuration, $l=\pi\rangle$, Since ac). Then

$$
\begin{align*}
& Q=\frac{a^{3} \Delta p Q}{12 \mu \mathrm{~L}}=\frac{\left.\pi a^{3} \Delta p\right\rangle}{12 \mu \mathrm{~h}} \\
& Q=\frac{\pi}{12} \times\left(2 \times 10^{-6} \mathrm{~m}\right)^{3} \times 6 \times 10^{8} \frac{\mathrm{~N}}{\mathrm{M}^{2}} \times 0.006 \mathrm{~m} \times 3.8 \times 10^{-2} \frac{\mathrm{~m}^{2}}{\mathrm{~N} .5} \times \frac{1}{0.05 \mathrm{~m}} \\
& Q=3.97 \times\left. 10^{-9} \mathrm{~m}^{3}\right|_{\mathrm{s}}=3.97 \times 10^{-6} \mathrm{~L} / \mathrm{s}+
\end{align*}
$$

Check Re to assure laminar flow

$$
\begin{aligned}
& \bar{V}=\frac{Q}{R}=\frac{Q}{\pi, 9 a}=\frac{1}{\pi} \times 3.97 \times \frac{0^{-9}}{\frac{n^{3}}{s}} \times \frac{1}{0.0 d 0 m} \times \frac{1}{2 \times 10^{-6} m}=0.105 \mathrm{~m} / \mathrm{s} \\
& S G=0.88 \text { (Table } F .2 \text {) ; } \rho=S G \rho_{120} \\
& R_{e}=\frac{\rho \bar{V} a}{\mu}=S G \frac{\rho_{H_{20}}}{\mu} \overline{V_{a}} \\
& =0.88 \times 9.99 \frac{\mathrm{~kg}}{\mathrm{H}^{3}} \times 0.105 \frac{\mathrm{~m}}{5} \times 2 \times 10^{-6} \mathrm{~m} \times 3.8 \times 10^{-2} \frac{\mathrm{~N}^{2}}{\mathrm{~N} .5}
\end{aligned}
$$

$R_{e}=0.005<42300$ so flow is definttry laminar

Given: Hydrostatic bearing is to support, a Toad of $c=3600$ bf per ft. of length perpendicular to the darin. Bearing is supplied, with SHE SOIl at 100° and 100 psia.
Find: (a) Required width of the bearing pad
(b) Resulting pressure gradient
(c) Gaphuigh, h, for $\frac{Q}{\mathrm{Z}}=6.0 \times 10^{-4} \mathrm{ft}^{3} \ln$ in $/ \mathrm{f}$

Solution:
Assume steady, fully developed, laminar flow between infinite, parallel plates.

Then the pressure over the bearing is linear, varying from p_{i} at $x=0$ to gage at $x=\frac{N}{2}$
Let $b=$ length perpendicular to diagram.
From the freebody diagram of the pad, $\sum F y=0$

$$
\begin{align*}
& \therefore c b=2 \int P_{g} d A=2 \int_{0}^{w / 2} P_{g} b d x=2 \int_{0}^{w / 2} P_{i}\left(1-\frac{x}{\omega / 2}\right) b d x \\
& c=2 \int_{0}^{d / 2}+i\left(1-\frac{2 x}{w}\right) d x=2\left[P_{i}\left(x-\frac{x^{2}}{w}\right)\right]_{0}^{0}=2 P_{i}\left(\frac{w}{2}-\frac{w}{4}\right)=P_{i} \frac{w}{2} \\
& \therefore \quad W=\frac{2 c}{p_{i}}=2 \cdot \frac{36001 b}{f t} \times \frac{i^{2}}{1006} \times \frac{\mathrm{ft}^{2}}{144 i^{2}}=0.50 \mathrm{ft}
\end{align*}
$$

The correspondvig pressure gradient, $\frac{d p}{d x}$, is given by

$$
\frac{d p}{d x}=-\frac{A P}{D R}=-\frac{2}{W}=-2 p\left(100 \frac{b}{w^{2}}\right) \times \frac{1}{0.50 \mathrm{~K}}=-400 \text { psilfI }
$$

The flow rate is given by $\operatorname{tg} 8.6 b \quad \frac{Q}{L}=-\frac{1}{12} \mu\left(\frac{\partial P}{\partial x}\right) h^{3}$
Then $h=\left[-\frac{12 \mu(Q l e)}{\partial+l_{\partial x}}\right]^{1 / 3} \quad$ From Fig.R.2, $\mu=2.30 \times 0^{3} \frac{1-5}{f t^{2}}$

Clack R_{e}

$$
\begin{aligned}
& R_{e}=\frac{\rho Q U}{\mu}=\frac{2}{V} \frac{Q}{\pi}=\frac{h}{\bar{\gamma}} \frac{Q}{B}=\frac{1}{\nabla}\left(\frac{Q}{l}\right) \\
& \text { From mg. A. } 3 \quad \nabla=1.29 \times\left. 10^{-3} \mathrm{ft}^{2}\right|_{\mathrm{s}}
\end{aligned}
$$

\therefore Flow is definitely laminar.

Given: Pistom-aylinder device, as shown.
$D=6 \mathrm{~mm} \quad L=25 \mathrm{~mm}$
Liquid is $S A E-30$ oil at $20^{\circ} \mathrm{C}$.
Find: (a) M to develop $p=1.5 \mathrm{MPa}$ (gage)
(b) Leakage flow rate in terms of a
(c) Maxinuen a to provide $<1 \mathrm{~mm} / \mathrm{min}$ movement.

Solution: The mass may be found from a force balance on the piston.

$$
\begin{aligned}
& \sum F_{y}=\frac{\pi D^{2}}{4}\left(p-p_{a+m}\right)-M g=0 \text { so } M=\frac{\pi D^{2}}{4 g} \text { page } \\
& M=\frac{\pi}{4} \times(0.006)^{2} m_{x}^{2} 1.5 \times 10^{6} \frac{\mathrm{~N}}{\mathrm{~m}^{2}} \times \frac{\mathrm{s}^{2}}{9.81 \mathrm{~m}} \times \frac{\mathrm{kg} \cdot \mathrm{~m}}{N \cdot s^{2}}=4.32 \mathrm{~kg}
\end{aligned}
$$

The leakage flow rate may be evaluated for flow between flat plater. From Eg. 8.6c, neglecting motion of the piston,

$$
\frac{Q}{l}=\frac{a^{3} \Delta p}{12 \mu L} \quad \text { or, since } l=\pi D, \quad Q=\frac{\pi}{12} \frac{a^{3} \Delta p D}{\mu L} \sim a^{3}
$$

The piston, moving downward at speed, v; displaces liquid at rate

$$
Q=\frac{\pi D^{2}}{4} v=\frac{\pi}{4}(0.006)^{2} m^{2} \times 0.001 \frac{m}{m n} \times \frac{\min }{60 \mathrm{~s}}=4.71 \times 10^{-10} \mathrm{~m}^{3} / \mathrm{s}
$$

Then, with $\mu=0.42 \mathrm{~N} \cdot \mathrm{sec} / \mathrm{m}+\left(\mathrm{at} 20^{\circ} \mathrm{C}\right.$, Fig. A.2),

$$
\begin{aligned}
& a=\left[\frac{12 \mu Q L}{m D \Delta p}\right]^{1 / 3}=\left[\frac{12}{\pi} \times 0.42 \frac{\mathrm{~N} \cdot \mathrm{~s}}{\mathrm{~m}^{2}} \times 4.71 \times 10^{-10} \frac{\mathrm{~m}^{3}}{5} \times 0.025 \mathrm{~m} \times \frac{1}{0.006 \mathrm{~m}} \times \frac{\mathrm{m}^{2}}{1.5 \times 10^{6} \mathrm{~N}}\right]^{1 / 3} \\
& a=1.28 \times 10^{-5} \mathrm{~m}(12.8 \mu \mathrm{~m})
\end{aligned}
$$

Check assumptions: $\bar{V}=\frac{Q}{A}=\frac{Q}{\pi D a}=\frac{1}{\pi} \times 4.71 \times 10^{-10} \frac{\mathrm{~m}^{3}}{s^{3}} \times \frac{1}{0.006 \mathrm{~m}} \times \frac{1}{1.28 \times 10^{-5} \mathrm{~m}}=1.95 \frac{\mathrm{~mm}}{\mathrm{~s}}$
Thus $\quad \frac{v}{v}=1 \frac{\mathrm{~mm}}{\min } \times \frac{\mathrm{sec}}{1.95 \mathrm{~mm}} \times \frac{\mathrm{min}^{60 \mathrm{~s}}}{6}=0.00855<0.01$
Therefore piston motion is negligible.
Also: $R_{C}=\frac{\bar{V} a}{\nu} ; \nu=\frac{\mu}{\rho}=\frac{\mu}{S G \rho_{1+20}}$. From Table A.2 (Appendix A), $S B=0.92$

$$
\begin{aligned}
& \nu=0.42 \frac{\mathrm{~N} \cdot \mathrm{~s}}{\mathrm{~m}^{2}} \times \frac{\mathrm{m}^{3}}{(0.92) 1000 \mathrm{~kg}} \times \frac{\mathrm{kg} \cdot \mathrm{~m}}{\mathrm{~N} \cdot \mathrm{~s}^{2}}=4.57 \times 10^{-4} \mathrm{~m}^{2} / \mathrm{s} \\
& R_{e}=1.95 \times 10^{-3} \frac{\mathrm{~m}}{\mathrm{~s}} \times 1.28 \times 10^{-5} \mathrm{~m} \times \frac{\mathrm{s}}{4.57 \times 10^{-4} \mathrm{~m}^{2}}=5.46 \times 10^{-5} \ll 1
\end{aligned}
$$

Therefore flow is surely laminar!

Given: Viscous flow in narrow gap between parallel disks, as shown.
Flow rate is Q, accelerations are small. Velocity profile same as fully developed.

Find: (a) Expression for $\tilde{V}(r),(b) d p / d r$ in gap
(c) Expression for per).
(d) Show net force to hold upper pate is

$$
F=\frac{3 \mu Q R^{2}}{h^{3}}\left[1-\left(\frac{R_{0}}{R}\right)^{2}\right]
$$

Solution: From the definition of mean velocity, $Q=\bar{V} 2 \pi r h$ so $\bar{V}=\frac{Q}{2 \pi r h}$
The pressure change with radices can be evaluated by analogy to Eg. 8.66

$$
\frac{Q}{l}=-\frac{1}{12 \mu}\left(\frac{\partial p}{\partial x}\right) h^{3} \text { with } l=2 \pi r \text { so } \frac{Q}{2 \pi r}=-\frac{1}{12 \mu}\left(\frac{\partial p}{\partial r}\right) h^{3}
$$

Thus

$$
\frac{d p}{d r}=-\frac{6 \mu Q}{\pi h^{3} r}
$$

Integrating to ting $p(r)$,

$$
\left.\int_{p}^{P_{a t m}} d p=p_{a t m}-p=\int_{r}^{R}-\frac{6 \mu Q}{\pi h^{3} r} d r=-\frac{6 \mu Q}{\pi h^{3}} \ln r\right]_{r}^{R}=\frac{6 \mu Q}{\pi h^{3}} \ln (r / R)
$$

Thus $p(r)=p a t m-\frac{6 \mu Q}{\pi h^{3}} \ln (r / R) \quad\left(R_{0}<r<R\right) ; p=p_{0}$
The force on the upper plate is $d F_{g}=(p(r)$-pate $) ~ Z \pi r d r$ Integrating and using gage pressures (note $p_{0 g}=-\frac{6 \mu Q}{\pi h^{3}} h\left(\frac{R_{0}}{R}\right)$

$$
\begin{aligned}
\Gamma_{z}^{=} & =p_{0} \pi R_{0}^{2}+\int_{R_{0}}^{R} p(r) 2 \pi r d r=p_{0} \pi R_{0}^{2}+2 \pi R^{2} \int_{R_{0} / R}^{1} p(r)\left(\frac{r}{R}\right) d\left(\frac{r}{R}\right) \\
& =R_{0} \pi R_{0}^{2}+2 \pi R^{2} \int_{R_{0} / R}^{1}-\frac{6 \mu Q}{\pi h^{3}} \ln \left(\frac{r}{R}\right)\left(\frac{r}{R}\right) d\left(\frac{r}{R}\right)=R_{0} \pi R_{0}^{2}-\left.\frac{12 \mu Q R^{2}}{h^{3}}\left(\frac{r}{R}\right)^{2}\left[\frac{1}{2} \ln \left(\frac{r}{R}\right)-\frac{1}{4}\right]\right|_{0 / R} ^{\prime} \\
& =p_{0} \pi R_{0}^{2}-\frac{12 \mu Q R^{2}}{h^{3}}\left\{(1)\left[\frac{1}{2}(0)-\frac{1}{4}\right]-\left(\frac{R_{0}}{R}\right)^{2}\left(\frac{1}{2} \ln \left(\frac{\left(\frac{R}{R}\right.}{R}\right)-\frac{1}{4}\right]\right\} \\
& =-\frac{6 \mu Q R^{2}}{h^{3}}\left(\frac{R_{0}}{R}\right)^{2} \ln \mu\left(\frac{R_{0}}{R}\right)-\frac{6 \mu Q R^{2}}{h^{3}}\left[-\frac{1}{2}-\left(\frac{R_{0}}{R}\right)^{2} \ln \left(\frac{R_{0}}{R}\right)+\frac{1}{2}\left(\frac{R_{0}}{R}\right)^{2}\right] \\
F_{z} & =\frac{3 \mu Q R^{2}}{h^{3}}\left[1-\left(\frac{R_{0}}{R}\right)^{2}\right]
\end{aligned}
$$

Given: Power-law model for non-Newtonian liquid, $\tau_{y x}=k\left(\frac{d u}{d y}\right)^{n}$ Find: Show $u=\left(\frac{h}{k} \frac{\Delta p}{L}\right)^{1 / n} \frac{n h}{n+1}\left[1-\left(\frac{y}{h}\right)^{\frac{n+1}{n}}\right]$

for fully developed laminar flow between plates.
Plot: Profiles u / v vs. y/h for $n=0.7,1.0, a n d 1.3\left(v=u_{\text {max }}\right) . \quad\left(\tau+\frac{\partial \tau}{\partial y} d y\right) w d x$ Solution: Apply momentum equation to differential CV

Basic equation:

$$
F_{s_{x}}+F_{Q_{x}}^{=0(1)}=\frac{\partial}{\partial t} \int_{C v} u \rho d t+\int_{c s} u p v \cdot d \vec{d}
$$

poly

Assumptions: (1) Horizontal flow
(z) Steady flow
(3) Fully developed flow

Then

$$
p \omega d y+\left(\tau+\frac{\partial \tau}{\partial y} d y\right) \omega d x-\left(p+\frac{\partial p}{\partial x} d x\right) \omega d y-\tau \omega d x=0 \quad \text { or } \quad \frac{\partial \tau}{\partial y}=\frac{\partial p}{\partial x}
$$

since $\tau=\tau(y)$ and $p=p(x)$, then $\frac{d \tau}{d y}=\frac{\partial p}{\partial x}=$ constant and $\tau=y \frac{\partial p}{\partial x}$ or

$$
\tau_{y x}=k\left(\frac{d u}{d y}\right)^{n}=y \frac{\partial p}{\partial x}=-y \frac{\Delta p}{L}
$$

Thus $\quad \frac{d u}{d y}=-\left(\frac{1}{k} \frac{\Delta p}{L}\right)^{1 / n} y^{1 / n}$
Integrating

$$
u=-\left(\frac{1}{k} \frac{\Delta p}{L}\right)^{1 / n} \frac{1}{1 / n+1} y^{1 / n+1}+c=-\left(\frac{1}{k} \frac{\Delta p}{L}\right)^{\frac{1}{n}} \frac{n}{n+1} s^{\frac{n+1}{n}}+c
$$

But $u=0$ at $y=h$, so

$$
c=\left(\frac{1}{k} \frac{\Delta p}{L}\right)^{\frac{1}{n}} \frac{n}{n+1} h^{\frac{n+1}{n}}
$$

and

$$
u=\left(\frac{1}{k} \frac{\Delta p}{L}\right)^{\frac{1}{n}} \frac{n}{n+1} h^{\frac{n+1}{n}}\left[1-\left(\frac{y}{h}\right)^{\frac{n+1}{n}}\right]
$$

or

$$
u=\left(\frac{h}{k} \frac{\Delta p}{L}\right)^{\frac{1}{n}} \frac{n h}{n+1}\left[1-\left(\frac{y}{h}\right)^{\frac{n+1}{n}}\right]
$$

$$
n=0.7 \quad n=1.0 \quad n=1.3
$$

y / h	u / U	u / U	u / U
0	1	1	1
0.03	1.000	0.999	0.998
0.06	0.999	0.996	0.993
0.1	0.996	0.990	0.983
0.2	0.980	0.960	0.942
0.3	0.946	0.910	0.881
0.4	0.892	0.840	0.802
0.5	0.814	0.750	0.707
0.6	0.711	0.640	0.595
0.7	0.580	0.510	0.468
0.8	0.418	0.360	0.326
0.9	0.226	0.190	0.170
1	0	0	0

Problem 8.18

Using the profile of Problem 8.17 , show that the flow rate for fully developed laminar flow of a power-law fluid between stationary parallel plates may be written as

$$
Q=\left(\frac{h}{k} \frac{\Delta p}{L}\right)^{\frac{1}{n}} \frac{2 n w h^{2}}{2 n+1}
$$

Here w is the plate width. In such an experimental setup the following data on applied pressure difference Δp and flow rate Q were obtained:

$\Delta p(\mathrm{kPa})$	10	20	30	40	50	60	70	80	90	100
$Q(\mathrm{~L} / \mathrm{min})$	0.451	0.759	1.01	1.15	1.41	1.57	1.66	1.85	2.05	2.25

Determine if the fluid is pseudoplastic or dilatant, and obtain an experimental value for n.

Given: Laminar velocity profile of power-law fluid flow between parallel plates

Find: Expression for flow rate; from data determine the type of fluid

Solution

The velocity profile is $\quad u=\left(\frac{\mathrm{h}}{\mathrm{k}} \cdot \frac{\Delta \mathrm{p}}{\mathrm{L}}\right)^{\frac{1}{\mathrm{n}}} \cdot \frac{\mathrm{n} \cdot \mathrm{h}}{\mathrm{n}+1} \cdot\left[1-\left(\frac{\mathrm{y}}{\mathrm{h}}\right)^{\frac{\mathrm{n}+1}{\mathrm{n}}}\right]$

The flow rate is then $\quad \mathrm{Q}=\mathrm{w} \cdot \int_{-\mathrm{h}}^{\mathrm{h}} \mathrm{udy} \quad$ or, because the flow is symmetric

$$
\mathrm{Q}=2 \cdot \mathrm{w} \cdot \int_{0}^{\mathrm{h}} \mathrm{udy}
$$

The integral is computed as

$$
\int 1-\left(\frac{y}{h}\right)^{\frac{n+1}{n}} d y=y \cdot\left[1-\frac{n}{2 \cdot n+1} \cdot\left(\frac{y}{h}\right)^{\frac{2 \cdot n+1}{n}}\right]
$$

Using this with the limits

$$
\begin{aligned}
& \mathrm{Q}=2 \cdot \mathrm{w} \cdot\left(\frac{\mathrm{~h}}{\mathrm{k}} \cdot \frac{\Delta \mathrm{p}}{\mathrm{~L}}\right)^{\frac{1}{\mathrm{n}}} \cdot \frac{\mathrm{n} \cdot \mathrm{~h}}{\mathrm{n}+1} \cdot \mathrm{~h} \cdot\left[1-\frac{\mathrm{n}}{2 \cdot \mathrm{n}+1} \cdot(1)^{\frac{2 \cdot \mathrm{n}+1}{\mathrm{n}}}\right] \\
& \mathrm{Q}=\left(\frac{\mathrm{h}}{\mathrm{k}} \cdot \frac{\Delta \mathrm{p}}{\mathrm{~L}}\right)^{\frac{1}{\mathrm{n}}} \cdot \frac{2 \cdot \mathrm{n} \cdot \mathrm{w} \cdot \mathrm{~h}^{2}}{2 \cdot \mathrm{n}+1}
\end{aligned}
$$

Problem 8.18 (In Excel)

Using the profile of Problem 8.17, show that the flow rate for fully developed laminar flow of a power-law fluid between stationary parallel plates may be written as

$$
Q=\left(\frac{h}{k} \frac{\Delta p}{L}\right)^{\frac{1}{n}} \frac{2 n w h^{2}}{2 n+1}
$$

Here w is the plate width. In such an experimental setup the following data on applied pressure difference Δp and flow rate Q were obtained:

$\Delta p(\mathrm{kPa})$	10	20	30	40	50	60	70	80	90	100
$Q(\mathrm{~L} / \mathrm{min})$	0.451	0.759	1.01	1.15	1.41	1.57	1.66	1.85	2.05	2.25

Determine if the fluid is pseudoplastic or dilatant, and obtain an experimental value for n.

Given: Laminar velocity profile of power-law fluid flow between parallel plates
Find: Expression for flow rate; from data determine the type of fluid

Solution

The data is

$\boldsymbol{\Delta p}(\mathbf{k P a})$	10	20	30	40	50	60	70	80	90	100
\boldsymbol{Q} (L/min)	0.451	0.759	1.01	1.15	1.41	1.57	1.66	1.85	2.05	2.25

This must be fitted to

$$
\mathrm{Q}=\left(\frac{\mathrm{h}}{\mathrm{k}} \cdot \frac{\Delta \mathrm{p}}{\mathrm{~L}}\right)^{\frac{1}{\mathrm{n}}} \cdot \frac{2 \cdot \mathrm{n} \cdot \mathrm{w} \cdot \mathrm{~h}^{2}}{2 \cdot \mathrm{n}+1} \quad \text { or } \quad \mathrm{Q}=\mathrm{k} \cdot \Delta \mathrm{p}^{\frac{1}{\mathrm{n}}}
$$

We can fit a power curve to the data

Hence $\quad 1 / n=0.677 \quad n=1.48$

Problem 8.19
Given: sealed journal bearing rotating as shown.

$$
r_{0}=26 \mathrm{~mm}, r_{i}=25 \mathrm{~mm}
$$

$\omega=2800 \mathrm{rom}$ and Torque, $T=0.2 \mathrm{~N} \cdot \mathrm{~m}$
Find: (a) Viscosity of oil
(b) will torque increase or decrease with time? Why?

Solution: "unfold" bearing since gap is small, and consider as flow'between parallel plates. Apply Newton's law of viscosity.

Basic equation: $\tau_{y x}=\mu \frac{d u}{d y}$
Assumption: Linear velocity profile

Then $\tau_{y x}=\mu \frac{U}{\Delta r}=\frac{\mu \omega r_{L}}{\Delta r}$
and

$$
T=r_{L}\left(2 \pi r_{L} L \tau_{y x}\right)=2 \pi r_{L}^{2} L \tau_{y x}=\frac{2 \pi \mu \omega r_{L}^{3} L}{\Delta r}
$$

Solving, $\mu=\frac{\Delta r T}{2 \pi \omega r_{i}^{3} L}$

$$
\begin{aligned}
& \mu=\frac{1}{2 \pi} \times 0.001 m_{\times} 0.2 \mathrm{~N} \cdot m_{\times} \frac{\min }{2800 r e v} \times \frac{1}{(0.025)^{13} m^{3}} \times \frac{1}{0.1 \mathrm{~m}^{2}} \times \frac{r \mathrm{v}}{2 \pi r a d^{\prime}} \times 60 \frac{\mathrm{~s}}{m \mathrm{~m}} \\
& \mu=0.0695 \mathrm{~N} \cdot \mathrm{~s} / \mathrm{m}^{2}
\end{aligned}
$$

Bearing is sealed, so oil temperature will increase as energy is dissipated by friction. For liquids, un decreases as 7 iriereases. Thus torque will decrease, since it is proportional to μ.

Given: Fully developed laminar flow between parallel plates with no pressure gradient.

Find: (a) Expression for velocity profile in gap.
(b) Volume flow rate per unit depth passing cross-section.

Solution: Use analysis of section 2-2.2:
Sum forces in x direction:

$$
\left[\tau+\frac{d \tau}{d y} \frac{d y}{2}-\left(\tau-\frac{d \tau}{d y} \frac{d y}{2}\right)\right] b d x+\left[p-\frac{\partial p}{\partial x} \frac{d x}{2}-\left(p+\frac{\partial p}{\partial x} \frac{d x}{2}\right)\right] b d y=0
$$

Simplifying $\frac{d \tau}{d y}=\frac{d p}{d x}=0$ so $\mu \frac{d^{2} L_{1}}{d y^{2}}=0$
Integrating twice $\quad u=0, y+c_{z}$
Boundary conditions: $y=0, u=-U_{1} ; c_{2}=-0$.

$$
y=d, u=v_{2} ; v_{2}=c_{1} d-U_{1}, \text { so } c_{1}=\frac{v_{1}+v_{2}}{d}
$$

Thus $u=\left(U_{1}+v_{2}\right) \frac{y}{d}-v_{1}$

$$
u(m / \sec)=3 \frac{y}{d}-1
$$

The volume flow rate is

$$
\begin{aligned}
& Q=\int_{A} u d A=\int_{0}^{d} u b d y=\int_{0}^{d}\left[\left(U_{1}+U_{2}\right) \frac{y}{d}-U_{1}\right] b d y=b\left[\left(U_{1}+U_{2}\right) \frac{y^{2}}{2 d}-U_{1} y\right]_{0}^{d} \\
& Q=b\left[\left(U_{1}+U_{2}\right) \frac{d}{2}-U_{1} d\right]=b\left(U_{2}-U_{1}\right) \frac{d}{2}=b d\left(\frac{U_{2}-U_{1}}{2}\right)
\end{aligned}
$$

so

$$
\frac{Q}{b}=\frac{1}{2} \times 0.35 \operatorname{in}_{x}(2-1) \frac{f t}{s_{x}} \times \frac{f t}{12 i n}=0.0146 \mathrm{ft}^{3} / \mathrm{sx} / \mathrm{ft}
$$

Problem 8.21

Two immiscible fluids are contained between infinite parallel plates. The plates are separated by distance $2 h$, and the two fluid layers are of equal thickness h; the dynamic viscosity of the upper fluid is three times that of the lower fluid. If the lower plate is stationary and the upper plate moves at constant speed $U=5 \mathrm{~m} / \mathrm{s}$, what is the velocity at the interface? Assume laminar flows, and that the pressure gradient in the direction of flow is zero.

Given: Properties of two fluids flowing between parallel plates; upper plate has velocity of $5 \mathrm{~m} /$:

Find: Velocity at the interface

Solution

Given data $\quad U=5 \cdot \frac{\mathrm{~m}}{\mathrm{~s}} \quad \mu_{2}=3 \cdot \mu_{1} \quad$ (Lower fluid is fluid 1; upper is fluid 2)

Following the analysis of Section 8-2, analyse the forces on a differential CV of either fluid

The net force is zero for steady flow, so

$$
\left[\tau+\frac{d \tau}{d y} \cdot \frac{d y}{2}-\left(\tau-\frac{d \tau}{d y} \cdot \frac{d y}{2}\right)\right] \cdot d x \cdot d z+\left[p-\frac{d p}{d x} \cdot \frac{d x}{2}-\left(p+\frac{d p}{d x} \cdot \frac{d x}{2}\right)\right] \cdot d y \cdot d z=0
$$

Simplifying

$$
\frac{d \tau}{d y}=\frac{d p}{d x}=0 \quad \text { so for each fluid } \quad \mu \cdot \frac{d^{2}}{d y^{2}} u=0
$$

Applying this to fluid 1 (lower fluid) and fluid 2 (upper fluid), integrating twice yields

$$
u_{1}=c_{1} \cdot y+c_{2} \quad u_{2}=c_{3} \cdot y+c_{4}
$$

We need four BCs. Three are obvious $\mathrm{y}=0$

$$
\begin{equation*}
u_{1}=0 \tag{1}
\end{equation*}
$$

$$
\begin{array}{ll}
\mathrm{y}=\mathrm{h} & \mathrm{u}_{1}=\mathrm{u}_{2} \\
\mathrm{y}=2 \cdot \mathrm{~h} & \mathrm{u}_{2}=\mathrm{U}
\end{array}
$$

The fourth BC comes from the fact that the stress at the interface generated by each fluid is the s

$$
\begin{equation*}
\mathrm{y}=\mathrm{h} \quad \mu_{1} \cdot \frac{\mathrm{du}_{1}}{\mathrm{dy}}=\mu_{2} \cdot \frac{\mathrm{du}_{2}}{\mathrm{dy}} \tag{4}
\end{equation*}
$$

Using these four BCs

$$
\begin{aligned}
& 0=c_{2} \\
& c_{1} \cdot h+c_{2}=c_{3} \cdot h+c_{4} \\
& U=c_{3} \cdot 2 \cdot h+c_{4} \\
& \mu_{1} \cdot c_{1}=\mu_{2} \cdot c_{3}
\end{aligned}
$$

Hence

$$
c_{2}=0
$$

Eliminating c_{4} from the second and third equations

$$
c_{1} \cdot h-U=-c_{3} \cdot h
$$

and

$$
\mu_{1} \cdot c_{1}=\mu_{2} \cdot c_{3}
$$

Hence

$$
\mathrm{c}_{1} \cdot \mathrm{~h}-\mathrm{U}=-\mathrm{c}_{3} \cdot \mathrm{~h}=-\frac{\mu_{1}}{\mu_{2}} \cdot \mathrm{~h} \cdot \mathrm{c}_{1}
$$

$$
\mathrm{c}_{1}=\frac{\mathrm{U}}{\mathrm{~h} \cdot\left(1+\frac{\mu_{1}}{\mu_{2}}\right)}
$$

Hence for fluid 1 (we do not need to complete the analysis for fluid 2)

$$
u_{1}=\frac{U}{h \cdot\left(1+\frac{\mu_{1}}{\mu_{2}}\right)} \cdot y
$$

Evaluating this at $y=h$, where $u_{1}=u_{\text {interface }}$

$$
\mathrm{u}_{\text {interface }}=\frac{5 \cdot \frac{\mathrm{~m}}{\mathrm{~s}}}{\left(1+\frac{1}{3}\right)}
$$

$$
u_{\text {interface }}=3.75 \frac{\mathrm{~m}}{\mathrm{~s}}
$$

Given: Water at $60^{\circ} \mathrm{C}$ flows between large flat plates.

$$
\begin{aligned}
& U=0.3 \mathrm{~m} / \mathrm{s} \\
& b=3 \mathrm{~mm}
\end{aligned}
$$

Find: Pressure gradient required for zero net flow at a section.
Solution: Apply momentum equation using cv and coordinates shown. Basic equations:

$$
F_{v_{x}}+F_{\beta_{x}}^{=o(1)}=\frac{\partial f}{\partial t} \int_{c v}^{=o(2)} u p d t+\int_{c s}^{=o(3)} u p \vec{v} \cdot d \vec{A}, \tau=\tau_{y x}=\mu \frac{d u}{d y}
$$

Asscemptions : (1) $F_{B_{X}}=0$
(2) Steady flow
(3) Fully-developed flow
(4) Newtonian fluid

Then $F_{x}=0$. Substituting the force terms (see page 315 for details) gives

$$
\frac{\partial p}{\partial x}=\frac{d \tau_{y x}}{d y}=\frac{d}{d y}\left(\mu \frac{d u}{d y}\right)=\mu \frac{d^{2} u}{d y^{2}} \quad \text { or } \quad \frac{d^{2} u}{d y^{2}}=\frac{1}{\mu} \frac{\partial p}{\partial x}
$$

Integrating twice,

$$
u=\frac{1}{2 \mu} \frac{\partial p}{\partial x} y^{2}+c_{1} y+c_{2}
$$

To evaluate the constants c_{1}, and c_{2}, we must use the boundary conditions. At $y=0, u=-U$, so $c_{2}=-v$. At $y=6$, $u=0$, so

$$
0=\frac{1}{2 \mu} \frac{\partial p}{\partial x} b^{2}+c_{1} b-U \quad \text { or } c_{1}=\frac{U}{b}-\frac{1}{2 \mu} \frac{\partial p}{\partial x} b
$$

Thus

$$
u=\frac{1}{2 \mu} \frac{\partial p}{\partial x}\left(y^{2}-b y\right)+U\left(\frac{y}{b}-1\right)
$$

To find the flow rate, we integrate

$$
\frac{Q}{\omega}=\int_{0}^{b} u d y=\int_{0}^{b}\left[\frac{1}{2 \mu} \frac{\partial p}{\partial x}\left(y^{2}-b y\right)+v\left(\frac{y}{b}-1\right)\right] d y=-\frac{1}{12 \mu} \frac{\partial p}{\partial x} b^{3}-\frac{v_{b}}{2}
$$

For $Q=0$, with $\mu=4.63 \times 10^{-4} \frac{\mathrm{~N} \cdot \mathrm{~S}}{\mathrm{~m}^{2}}$ from Tabs A.I,

$$
\frac{\partial p}{\partial x}=-\frac{6 U \mu}{b^{2}}=-6 \times 0.3 \mathrm{~m}, 4.63 \times 10^{-4} \frac{\mathrm{~N} .5}{\mathrm{~m}^{2}} \times \frac{1}{(0.003)^{2} \mathrm{~m}^{2}}=-92.6 \mathrm{~N} / \mathrm{m}^{2} \mathrm{~m}
$$

Thus pressure must decrease in x direction for zero net flowrate.

Problem 8.23

Two immiscible fluids are contained between infinite parallel plates. The plates are separated by distance $2 h$, and the two fluid layers are of equal thickness $h=2.5 \mathrm{~mm}$. The dynamic viscosity of the upper fluid is twice that of the lower fluid, which is $\mu_{\text {lower }}=0.5 \mathrm{~N} \cdot \mathrm{~s} / \mathrm{m}^{2}$. If the plates are stationary and the applied pressure gradient is $-1000 \mathrm{~N} / \mathrm{m}^{2} / \mathrm{m}$, find the velocity at the interface. What is the maximum velocity of the flow? Plot the velocity distribution.

Given: Properties of two fluids flowing between parallel plates; applied pressure gradient

Find: Velocity at the interface; maximum velocity; plot velocity distribution

Solution

Given data $\quad \mathrm{k}=\frac{\mathrm{dp}}{\mathrm{dx}}=-1000 \cdot \frac{\mathrm{~Pa}}{\mathrm{~m}} \quad \mathrm{~h}=2.5 \cdot \mathrm{~mm}$

$$
\mu_{1}=0.5 \cdot \frac{\mathrm{~N} \cdot \mathrm{~s}}{\mathrm{~m}^{2}} \quad \mu_{2}=2 \cdot \mu_{1} \quad \mu_{2}=1 \frac{\mathrm{~N} \cdot \mathrm{~s}}{\mathrm{~m}^{2}}
$$

(Lower fluid is fluid 1 ; upper is fluid 2)

Following the analysis of Section 8-2, analyse the forces on a differential CV of either fluid

The net force is zero for steady flow, so

$$
\left[\tau+\frac{d \tau}{d y} \cdot \frac{d y}{2}-\left(\tau-\frac{d \tau}{d y} \cdot \frac{d y}{2}\right)\right] \cdot d x \cdot d z+\left[p-\frac{d p}{d x} \cdot \frac{d x}{2}-\left(p+\frac{d p}{d x} \cdot \frac{d x}{2}\right)\right] \cdot d y \cdot d z=0
$$

Simplifying

$$
\frac{\mathrm{d} \tau}{\mathrm{dy}}=\frac{\mathrm{dp}}{\mathrm{dx}}=\mathrm{k} \quad \text { so for each fluid } \quad \mu \cdot \frac{\mathrm{d}^{2}}{\mathrm{dy}^{2}} \mathrm{u}=\mathrm{k}
$$

Applying this to fluid 1 (lower fluid) and fluid 2 (upper fluid), integrating twice yields

$$
\mathrm{u}_{1}=\frac{\mathrm{k}}{2 \cdot \mu_{1}} \cdot \mathrm{y}^{2}+\mathrm{c}_{1} \cdot \mathrm{y}+\mathrm{c}_{2} \quad \mathrm{u}_{2}=\frac{\mathrm{k}}{2 \cdot \mu_{2}} \cdot \mathrm{y}^{2}+\mathrm{c}_{3} \cdot \mathrm{y}+\mathrm{c}_{4}
$$

For convenience the origin of coordinates is placed at the centerline

We need four BCs. Three are obvious $\mathrm{y}=-\mathrm{h}$

$$
\begin{equation*}
u_{1}=0 \tag{1}
\end{equation*}
$$

$$
\begin{array}{ll}
\mathrm{y}=0 & \mathrm{u}_{1}=\mathrm{u}_{2} \\
\mathrm{y}=\mathrm{h} & \mathrm{u}_{2}=0
\end{array}
$$

The fourth BC comes from the fact that the stress at the interface generated by each fluid is the s

$$
\begin{equation*}
\mathrm{y}=0 \quad \mu_{1} \cdot \frac{\mathrm{du}_{1}}{\mathrm{dy}}=\mu_{2} \cdot \frac{\mathrm{du}_{2}}{\mathrm{dy}} \tag{4}
\end{equation*}
$$

Using these four BCs

$$
\begin{aligned}
& 0=\frac{\mathrm{k}}{2 \cdot \mu_{1}} \cdot \mathrm{~h}^{2}-\mathrm{c}_{1} \cdot \mathrm{~h}+\mathrm{c}_{2} \\
& \mathrm{c}_{2}=\mathrm{c}_{4}
\end{aligned}
$$

$$
\begin{aligned}
& 0=\frac{\mathrm{k}}{2 \cdot \mu_{2}} \cdot \mathrm{~h}^{2}+\mathrm{c}_{3} \cdot \mathrm{~h}+\mathrm{c}_{4} \\
& \mu_{1} \cdot \mathrm{c}_{1}=\mu_{2} \cdot \mathrm{c}_{3}
\end{aligned}
$$

Hence, after some algebra

$$
\mathrm{c}_{1}=\frac{\mathrm{k} \cdot \mathrm{~h}}{2 \cdot \mu_{1}} \cdot \frac{\left(\mu_{2}-\mu_{1}\right)}{\left(\mu_{2}+\mu_{1}\right)} \quad \mathrm{c}_{2}=\mathrm{c}_{4}=-\frac{\mathrm{k} \cdot \mathrm{~h}^{2}}{\mu_{2}+\mu_{1}} \quad \mathrm{c}_{3}=\frac{\mathrm{k} \cdot \mathrm{~h}}{2 \cdot \mu_{2}} \cdot \frac{\left(\mu_{2}-\mu_{1}\right)}{\left(\mu_{2}+\mu_{1}\right)}
$$

The velocity distributions are then

$$
\begin{aligned}
& u_{1}=\frac{k}{2 \cdot \mu_{1}} \cdot\left[y^{2}+y \cdot h \cdot \frac{\left(\mu_{2}-\mu_{1}\right)}{\left(\mu_{2}+\mu_{1}\right)}\right]-\frac{k \cdot h^{2}}{\mu_{2}+\mu_{1}} \\
& u_{2}=\frac{k}{2 \cdot \mu_{2}} \cdot\left[y^{2}+y \cdot h \cdot \frac{\left(\mu_{2}-\mu_{1}\right)}{\left(\mu_{2}+\mu_{1}\right)}\right]-\frac{k \cdot h^{2}}{\mu_{2}+\mu_{1}}
\end{aligned}
$$

Evaluating either velocity at $y=0$, gives the velocity at the interface

$$
u_{\text {interface }}=-\frac{\mathrm{k} \cdot \mathrm{~h}^{2}}{\mu_{2}+\mu_{1}} \quad u_{\text {interface }}=4.17 \times 10^{-3} \frac{\mathrm{~m}}{\mathrm{~s}}
$$

The plots of these velocity distributions are shown in the associated Excel workbook, as is the determination of the maximum velocity.

$$
\text { From Excel } \quad \mathrm{u}_{\max }=4.34 \times 10^{-3} \cdot \frac{\mathrm{~m}}{\mathrm{~s}}
$$

Problem 8.23 (In Excel)

Two immiscible fluids are contained between infinite parallel plates. The plates are separated by distance $2 h$, and the two fluid layers are of equal thickness $h=2.5 \mathrm{~mm}$. The dynamic viscosity of the upper fluid is twice that of the lower fluid, which is $\mu_{\text {lower }}=0.5 \mathrm{~N} \cdot \mathrm{~s} / \mathrm{m}^{2}$. If the plates are stationary and the applied pressure gradient is $-1000 \mathrm{~N} / \mathrm{m}^{2} / \mathrm{m}$, find the velocity at the interface. What is the maximum velocity of the flow? Plot the velocity distribution.

Given: Properties of two fluids flowing between parallel plates; applied pressure gradient

Find: Velocity at the interface; maximum velocity; plot velocity distribution

Solution

The data is

$k=$	-1000	$\mathrm{~Pa} / \mathrm{m}$	
h	$=$	2.5	mm
$\mu_{1}=$	0.5		$\mathrm{~N} . \mathrm{s} / \mathrm{m}^{2}$
μ_{2}	$=$	1.0	
	N. $\mathrm{s} / \mathrm{m}^{2}$		

The velocity distribution is

$$
\begin{aligned}
& u_{1}=\frac{k}{2 \cdot \mu_{1}} \cdot\left[y^{2}+y \cdot h \cdot \frac{\left(\mu_{2}-\mu_{1}\right)}{\left(\mu_{2}+\mu_{1}\right)}\right]-\frac{k \cdot h^{2}}{\mu_{2}+\mu_{1}} \\
& u_{2}=\frac{k}{2 \cdot \mu_{2}} \cdot\left[y^{2}+y \cdot h \cdot \frac{\left(\mu_{2}-\mu_{1}\right)}{\left(\mu_{2}+\mu_{1}\right)}\right]-\frac{k \cdot h^{2}}{\mu_{2}+\mu_{1}}
\end{aligned}
$$

$y(\mathrm{~mm})$	$u_{1} \times 10^{3}(\mathrm{~m} / \mathrm{s})$	$u_{2} \times 10^{3}(\mathrm{~m} / \mathrm{s})$
-2.50	0.000	NA
-2.25	0.979	NA
-2.00	1.83	NA
-1.75	2.56	NA
-1.50	3.17	NA
-1.25	3.65	NA
-1.00	4.00	NA
-0.75	4.23	NA
-0.50	4.33	NA
-0.25	4.31	NA
0.00	4.17	4.17
0.25	NA	4.03
0.50	NA	3.83
0.75	NA	3.57
1.00	NA	3.25
1.25	NA	2.86
1.50	NA	2.42
1.75	NA	1.91
2.00	NA	1.33
2.25	NA	0.698
2.50	NA	0.000

The lower fluid has the highest velocity We can use Solver to find the maximum (Or we could differentiate to find the maximum)

$y(\mathrm{~mm})$	$u_{\max } \times 10^{3}(\mathrm{~m} / \mathrm{s})$
-0.417	4.34

Problem 8.24

The dimensionless velocity profile for fully developed laminar flow between infinite parallel plates with the upper plate moving at constant speed U is shown in Fig. 8.5. Find the pressure gradient $\partial \rho / \partial x$ at which (a) the upper plate and (b) the lower plate experience zero shear stress, in terms of U, a, and μ. Plot the dimensionless velocity profiles for these cases.

Fig. 8.5 Dimensionless velocity profile for fully developed laminar flow between infinite parallel plates: upper plate moving with constant speed, U.

Given: Velocity profile between parallel plates

Find: Pressure gradients for zero stress at upper/lower plates; plot

Solution

From Eq. 8.8, the velocity distribution $i \mathrm{u}=\frac{\mathrm{U} \cdot \mathrm{y}}{\mathrm{a}}+\frac{\mathrm{a}^{2}}{2 \cdot \mu} \cdot\left(\frac{\partial}{\partial \mathrm{x}} \mathrm{p}\right) \cdot\left[\left(\frac{\mathrm{y}}{\mathrm{a}}\right)^{2}-\frac{\mathrm{y}}{\mathrm{a}}\right]$

The shear stress is

$$
\tau_{y x}=\mu \cdot \frac{d u}{d y}=\mu \cdot \frac{U}{a}+\frac{a^{2}}{2} \cdot\left(\frac{\partial}{\partial x} p\right) \cdot\left(2 \cdot \frac{y}{a^{2}}-\frac{1}{a}\right)
$$

(a) For $\tau_{\mathrm{yx}}=0$ at $y=a$

$$
0=\mu \cdot \frac{\mathrm{U}}{\mathrm{a}}+\frac{\mathrm{a}}{2} \cdot \frac{\partial}{\partial \mathrm{x}} \mathrm{p}
$$

$$
\frac{\partial}{\partial \mathrm{x}} \mathrm{p}=-\frac{2 \cdot \mathrm{U} \cdot \mu}{\mathrm{a}^{2}}
$$

The velocity distribution is then $\quad u=\frac{U \cdot y}{a}-\frac{a^{2}}{2 \cdot \mu} \cdot \frac{2 \cdot U \cdot \mu}{a^{2}} \cdot\left[\left(\frac{y}{a}\right)^{2}-\frac{y}{a}\right]$

$$
\frac{\mathrm{u}}{\mathrm{U}}=2 \cdot \frac{\mathrm{y}}{\mathrm{a}}-\left(\frac{\mathrm{y}}{\mathrm{a}}\right)^{2}
$$

(b) For $\tau_{y x}=0$ at $y=0$

$$
0=\mu \cdot \frac{\mathrm{U}}{\mathrm{a}}-\frac{\mathrm{a}}{2} \cdot \frac{\partial}{\partial \mathrm{x}} \mathrm{p} \quad \frac{\partial}{\partial \mathrm{x}} \mathrm{p}=\frac{2 \cdot \mathrm{U} \cdot \mu}{\mathrm{a}^{2}}
$$

The velocity distribution is then $u=\frac{U \cdot y}{a}+\frac{a^{2}}{2 \cdot \mu} \cdot \frac{2 \cdot U \cdot \mu}{a^{2}} \cdot\left[\left(\frac{y}{a}\right)^{2}-\frac{y}{a}\right]$

$$
\frac{u}{U}=\left(\frac{y}{a}\right)^{2}
$$

The velocity distributions are plotted in the associated Excel workbook

Problem 8.24 (In Excel)

The dimensionless velocity profile for fully developed laminar flow between infinite parallel plates with the upper plate moving at constant speed U is shown in Fig. 8.5. Find the pressure gradient $\partial p / \partial x$ at which (a) the upper plate and (b) the lower plate experience zero shear stress, in terms of U, a, and μ. Plot the dimensionless velocity profiles for these cases.

Fig. 8.5 Dimensionless velocity profile for fully developed laminar flow between infinite parallel plates: upper plate moving with constant speed, U.

Given: Velocity profile between parallel plates

Find: Pressure gradients for zero stress at upper/lower plates; plot

Solution

(a) For zero shear stress at upper plate $\frac{u}{U}=2 \cdot \frac{y}{a}-\left(\frac{y}{a}\right)^{2}$
(b) For zero shear stress at lower plate $\frac{u}{U}=\left(\frac{y}{a}\right)^{2}$

y / a	(a) u / U	(b) u / U
0.0	0.000	0.000
0.1	0.190	0.010
0.2	0.360	0.040
0.3	0.510	0.090
0.4	0.640	0.160
0.5	0.750	0.250
0.6	0.840	0.360
0.7	0.910	0.490
0.8	0.960	0.640
0.9	0.990	0.810
1.0	1.00	1.000

Given: Record-write head for computer disk-storage system.

Find: (a) Reynolds number in gap
(b) Viscous shear stress
(c) Power to overcome viscous shear.

Solution: $V=\mathrm{Rcw}=0.15 m_{x} 3000 \frac{\mathrm{rvv}}{\mathrm{min}^{2}} \times \frac{2 \pi \mathrm{rad}}{\mathrm{rav}} \times \frac{\mathrm{min}}{60 \sec }=56.5 \mathrm{~m} / \mathrm{s}$

$$
R e=\frac{\rho V a}{\mu}=\frac{V a}{\nu}=56.5 \frac{\mathrm{~m}}{3} \times 0.5 \times 10^{-6} m_{*} \frac{s}{1.46 \times 10^{-5 m^{2}}}=1.94
$$

$$
\text { (Table A. } 10 \text { at } T=15^{\circ} \mathrm{C} \text {) }
$$

$\tau=\mu \frac{d u}{d y}=\mu \frac{v}{a}$ for small gap
Assuming standard conditions, $\mu=1.79 \times 10^{-5} \mathrm{~kg} / \mathrm{m} \cdot \mathrm{s}$

$$
c=1.79 \times 10^{-5} \frac{\mathrm{~kg}}{\mathrm{~m} \cdot \mathrm{~s}} \times 56.5 \mathrm{~m} \frac{1}{5 \mathrm{~s}} \times \frac{1}{0.5 \times 10^{-6} \mathrm{~m}}=2.02 \mathrm{kN} / \mathrm{m}^{2}
$$

The force is $F=T A=T W l$, and the torque is $T=F R=T u v R$.
The power dusisation nate is

$$
\begin{aligned}
P & =\tau \omega=\tau \ell \omega R \omega \\
& =2.02 \times 10 \frac{\mathrm{~N}}{\mathrm{~m}^{2}} \times 0.01 \mathrm{~m}_{\mu} 0.01 \mathrm{~m}_{x} 0.150 \mathrm{~m}_{*}=600 \frac{\mathrm{rvv}}{\mathrm{~mm}^{2}} \times 2 \pi \frac{\mathrm{xa}}{\mathrm{Rv}} \times \frac{\mathrm{min}}{60 . \mathrm{s}} \times \frac{\mathrm{W} \cdot \mathrm{~s}}{\mathrm{~N} . \mathrm{m}} \\
P & =11.4 \mathrm{~W}
\end{aligned}
$$

Given: Fully developed, laminar flow of an neongressible ligusd down an inclined surface. The Rickness, h, of the liquid layer is constant.
Find: scathe velocity profile by use of a suitably chosen different at control volume. (b) volume flow rate, a/w
Solution: Flow is fully developed, so $u=u(y)$ and $y=r(y)$.

Expand 4 in a Taylor series about the center of the differential ct

$$
\begin{aligned}
& r_{t}=r+\frac{d r}{d y} \frac{d y}{2} \\
& r_{b}=r+\frac{d r}{d y}\left(-\frac{d y}{2}\right)
\end{aligned}
$$

Te boundary condition on the velocity proffer are:
@ $y=0, u=0$ (noslip).
e $y=h, \frac{d u}{d y}=0$ (no shearstres)
Apply the a component of the momentum equation to the
differential CD shown
Assumptions:

$$
\begin{aligned}
& \text { (i) steady flow }
\end{aligned}
$$

(2) fully \& vetoed flow, so u and t arefunchions of yorly
then

$$
\begin{aligned}
& F_{3 x}+F_{z x}=0=\left(r+\frac{d r}{d y} \frac{d y}{z}\right) d+d z-\left(r-\frac{d r}{d y} \frac{d y}{z}\right) d x d z+p g \sin \theta d+d y d z \\
& \frac{d r}{d y}=-\rho g \sin \theta
\end{aligned}
$$

Integrating,
$r=-p g \sin \theta y+c$,
But $r_{r=0} \otimes y_{\text {du }}, \quad \therefore c_{1}=p g \sin \theta h$, and

$$
\frac{d \mu}{d y}=\frac{p g \sin \theta}{\mu}(h \cdot y)
$$

Integrating again,

$$
u=\frac{f g \sin \theta}{\mu}\left(h_{y}-y^{2}\right)+c_{2}
$$

At $y=0, u=0$, so $c_{2}=0$ and hence

$$
\begin{align*}
& u=f g \sin \theta \\
& Q \\
& \left.Q / h_{y}-\frac{y^{2}}{2}\right) \tag{w}\\
& Q \int_{w}^{h} u d y=p g \sin \theta \\
& \mu
\end{align*} \int_{0}^{h}\left(h y-\frac{y}{2}\right) d y=\frac{p g \sin \theta}{\mu}\left[\frac{h^{2}}{2}-\frac{y^{3}}{6}\right]_{0}^{h} u
$$

Given: Steady, incompressible, full developed laminar flow down an incline (of ante θ).
vebcity profile (Example Problem Sig) is

$$
u=\frac{f g \sin \theta}{\mu}\left(h_{y}-y^{2} l_{2}\right)
$$

Find: Unematic viscosity 7 of liquid for $h=0.8 \mathrm{~mm}$,
$\theta=30^{\circ}$ and unary 515.7 mmls
Plot: the velocity profile
Solution:
$u=u$ un an at $y=h$

$$
\therefore \ln _{\text {at }}=\frac{\sin \theta}{\square}\left(h^{2}-h^{2}\left(\frac{\sin }{2}+2\right.\right.
$$

and.

$$
\begin{aligned}
& \nabla=\frac{9 \sin \theta^{2}}{2 \operatorname{sum}^{2}}=\frac{\sin 30}{2} \times 9.8 \frac{1}{s^{2}} \times\left(0.8 \times 0^{-3}\right)^{2} \times \frac{5}{151910^{-3} m} \\
& D=1.00 \times 10^{-4} \mathrm{~m}^{2} \mathrm{l}_{5}
\end{aligned}
$$

Gwen: Vebity distribution for flow of a thin viscous film down a plane surface, inclined at angle θ is given (from Example 5.9) as

$$
u=\frac{p \sin \theta}{\mu}\left(h_{y}-y^{2} / 2\right)
$$

$h=5.63 \mathrm{~mm}, s 6$ liquid $=1.26, \mu=1.40 \mathrm{~N} \cdot \mathrm{~s}_{\mathrm{m}} \mathrm{m}^{2}$
Find: (a) expression for shear stress distribution in film b) maximum shear stress is film; indicate direction (c) volume flow rate ($\mathrm{mm}^{3} / \mathrm{s}$) perm of wide.
(d) film Re based

Solution:

$$
\text { (a) } \tau_{y}=\mu \frac{d u}{d y}=\rho g \sin \theta(h-y)
$$

(b) $Y_{y x}$ is a maximum at $y=0$

$$
\begin{aligned}
& r_{y_{i}}=p g \sin \theta h=s G \cos _{2} g g^{\sin \theta} \mathrm{h}
\end{aligned}
$$

- stress on wall (ty surface) is in + x direction
- " "fin Pry surface in in x d erection.
(c)

$$
\begin{aligned}
& Q=\int \vec{u} \cdot d \vec{A}=\int_{0}^{h} \frac{\rho g \sin \theta}{\mu}\left(h y-\left.y^{2}\right|_{2}\right) w d y \\
& =P g \sin \theta \omega\left[\frac{h^{2}}{2} y^{2}-\frac{y^{3}}{6}\right]_{0}^{h}=p g \sin \mu^{h} h^{3}
\end{aligned}
$$

$$
\begin{aligned}
& Q_{N}=263 \mathrm{~mm}^{3} / \mathrm{s} / \mathrm{mm} \\
& \text { lw }
\end{aligned}
$$

(d)

$$
\begin{aligned}
& \bar{V}=\frac{\theta}{H}=\frac{\theta}{W h}=263 \frac{\mathrm{~mm}^{2}}{s} \times \frac{1}{5.63+\mathrm{mm}}=46.7 \mathrm{~mm} l_{S}
\end{aligned}
$$

$$
\begin{aligned}
& R_{e}=0.236
\end{aligned}
$$

Problem 8.29

Two immiscible fluids of equal density are flowing down a surface inclined at a 30° angle. The two fluid layers are of equal thickness $h=2.5 \mathrm{~mm}$; the kinematic viscosity of the upper fluid is twice that of the lower fluid, which is $\eta_{\text {guar }}=2 \times 10^{-4} \mathrm{~m}^{2} / \mathrm{s}$. Find the velocity at the interface and the velocity at the free surface. Plot the velocity distribution.

Given: Data on flow of liquids down an incline

Find: Velocity at interface; velocity at free surface; plot

Solution

$$
\text { Given data } \quad \mathrm{h}=2.5 \cdot \mathrm{~mm} \quad \theta=30 \cdot \mathrm{deg} \quad v_{1}=2 \times 10^{-4} \cdot \frac{\mathrm{~m}^{2}}{\mathrm{~s}} \quad v_{2}=2 \cdot v_{1}
$$

(The lower fluid is designated fluid 1 , the upper fluid 2)

From Example Problem 5.9 (or Exanple Problem 8.3 with g replaced with $g \sin \theta$), a free body analysis leads to (for either fluid)

$$
\frac{d^{2}}{d y^{2}} u=-\frac{\rho \cdot g \cdot \sin (\theta)}{\mu}
$$

Applying this to fluid 1 (lower fluid) and fluid 2 (upper fluid), integrating twice yields

$$
u_{1}=-\frac{\rho \cdot g \cdot \sin (\theta)}{2 \cdot \mu_{1}} \cdot y^{2}+c_{1} \cdot y+c_{2} \quad u_{2}=-\frac{\rho \cdot g \cdot \sin (\theta)}{2 \cdot \mu_{2}} \cdot y^{2}+c_{3} \cdot y+c_{4}
$$

We need four BCs. Two are obvious

$$
\begin{equation*}
y=0 \tag{1}
\end{equation*}
$$

$$
\mathrm{u}_{1}=0
$$

$$
\begin{equation*}
\mathrm{y}=\mathrm{h} \quad \mathrm{u}_{1}=\mathrm{u}_{2} \tag{2}
\end{equation*}
$$

The third BC comes from the fact that there is no shear stress at the free surface

$$
\begin{equation*}
\mathrm{y}=2 \cdot \mathrm{~h} \quad \mu_{2} \cdot \frac{\mathrm{du}_{2}}{\mathrm{dy}}=0 \tag{3}
\end{equation*}
$$

The fourth BC comes from the fact that the stress at the interface generated by each fluid is the s

$$
\begin{equation*}
\mathrm{y}=\mathrm{h} \quad \mu_{1} \cdot \frac{\mathrm{du}_{1}}{\mathrm{dy}}=\mu_{2} \cdot \frac{\mathrm{du}_{2}}{\mathrm{dy}} \tag{4}
\end{equation*}
$$

Using these four BCs

$$
\begin{aligned}
& c_{2}=0 \\
& -\frac{\rho \cdot g \cdot \sin (\theta)}{2 \cdot \mu_{1}} \cdot h^{2}+c_{1} \cdot h+c_{2}=-\frac{\rho \cdot g \cdot \sin (\theta)}{2 \cdot \mu_{2}} \cdot h^{2}+c_{3} \cdot h+c_{4} \\
& -\rho \cdot g \cdot \sin (\theta) \cdot 2 \cdot h+\mu_{2} \cdot c_{3}=0 \\
& -\rho \cdot g \cdot \sin (\theta) \cdot h+\mu_{1} \cdot c_{1}=-\rho \cdot g \cdot \sin (\theta) \cdot h+\mu_{2} \cdot c_{3}
\end{aligned}
$$

Hence, after some algebra

$$
\begin{array}{ll}
\mathrm{c}_{1}=\frac{2 \cdot \rho \cdot \mathrm{~g} \cdot \sin (\theta) \cdot \mathrm{h}}{\mu_{1}} & \mathrm{c}_{2}=0 \\
\mathrm{c}_{3}=\frac{2 \cdot \rho \cdot \mathrm{~g} \cdot \sin (\theta) \cdot \mathrm{h}}{\mu_{2}} & \mathrm{c}_{4}=3 \cdot \rho \cdot \mathrm{~g} \cdot \sin (\theta) \cdot \mathrm{h}^{2} \cdot \frac{\left(\mu_{2}-\mu_{1}\right)}{2 \cdot \mu_{1} \cdot \mu_{2}}
\end{array}
$$

The velocity distributions are then

$$
\begin{aligned}
& u_{1}=\frac{\rho \cdot g \cdot \sin (\theta)}{2 \cdot \mu_{1}} \cdot\left(4 \cdot y \cdot h-y^{2}\right) \\
& u_{2}=\frac{\rho \cdot g \cdot \sin (\theta)}{2 \cdot \mu_{2}} \cdot\left[3 \cdot h^{2} \cdot \frac{\left(\mu_{2}-\mu_{1}\right)}{\mu_{1}}+4 \cdot y \cdot h-y^{2}\right]
\end{aligned}
$$

Rewriting in terms of v_{1} and v_{2} (ρ is constant and equal for both fluids)

$$
\begin{aligned}
& u_{1}=\frac{g \cdot \sin (\theta)}{2 \cdot v_{1}} \cdot\left(4 \cdot y \cdot h-y^{2}\right) \\
& u_{2}=\frac{g \cdot \sin (\theta)}{2 \cdot v_{2}} \cdot\left[3 \cdot h^{2} \cdot \frac{\left(v_{2}-v_{1}\right)}{v_{1}}+4 \cdot y \cdot h-y^{2}\right]
\end{aligned}
$$

(Note that these result in the same expression if $v_{1}=v_{2}$, i.e., if we have one fluid)

Evaluating either velocity at $y=h$, gives the velocity at the interface

$$
u_{\text {interface }}=\frac{3 \cdot \mathrm{~g} \cdot \mathrm{~h}^{2} \cdot \sin (\theta)}{2 \cdot v_{1}} \quad u_{\text {interface }}=0.23 \frac{\mathrm{~m}}{\mathrm{~s}}
$$

Evaluating u_{2} at $y=2 h$ gives the velocity at the free surface

$$
u_{\text {freesurface }}=\mathrm{g} \cdot \mathrm{~h}^{2} \cdot \sin (\theta) \cdot \frac{\left(3 \cdot v_{2}+v_{1}\right)}{2 \cdot v_{1} \cdot v_{2}} \quad u_{\text {freesurface }}=0.268 \frac{\mathrm{~m}}{\mathrm{~s}}
$$

The velocity distributions are plotted in the associated Excel workbook

Problem 8.29 (In Excel)

Two immiscible fluids of equal density are flowing down a surface inclined at a 30° angle. The two fluid layers are of equal thickness $h=2.5 \mathrm{~mm}$; the kinematic viscosity of the upper fluid is twice that of the lower fluid, which is $\nu_{\text {bax }}=2 \times 10^{-4} \mathrm{~m}^{2} / \mathrm{s}$. Find the velocity at the interface and the velocity at the free surface. Plot the velocity distribution.

Given: Data on flow of liquids down an incline

Find: Velocity at interface; velocity at free surface; plot

Solution

$$
\begin{array}{rll}
h & =2.5 & \mathrm{~mm} \\
\theta & =30 & \mathrm{deg} \\
v_{1} & =2.00 \mathrm{E}-04 & \mathrm{~m}^{2} / \mathrm{s} \\
v_{2} & =4.00 \mathrm{E}-04 \mathrm{~m}^{2} / \mathrm{s}
\end{array}
$$

$$
\begin{aligned}
& u_{1}=\frac{g \cdot \sin (\theta)}{2 \cdot v_{1}} \cdot\left(4 \cdot y \cdot h-y^{2}\right) \\
& u_{2}=\frac{g \cdot \sin (\theta)}{2 \cdot v_{2}} \cdot\left[3 \cdot h^{2} \cdot \frac{\left(v_{2}-v_{1}\right)}{v_{1}}+4 \cdot y \cdot h-y^{2}\right]
\end{aligned}
$$

$y(\mathrm{~mm})$	$u_{1}(\mathrm{~m} / \mathrm{s})$	$u_{2}(\mathrm{~m} / \mathrm{s})$
0.000	0.000	
0.250	0.0299	
0.500	0.0582	
0.750	0.0851	
1.000	0.110	
1.250	0.134	
1.500	0.156	
1.750	0.177	
2.000	0.196	
2.250	0.214	
2.500	0.230	0.230
2.750		0.237
3.000		0.244
3.250		0.249
3.500		0.254
3.750		0.259
4.000		0.262
4.250		0.265
4.500		0.267
4.750		0.268
5.000		0.268

Problem 8.30

Given: Fully developed flow be tweenparallel plates with the upper plate moving (Fig. 8.5). $U=2 \mathrm{~m} / \mathrm{s} ; a=2.5 \mathrm{~mm}$.

Find: (a) Q/e for $a b b x=0$
(b) $\tau_{y x}$ at $y=0$ for $a p l o x=0$
(c) Pot $\tau y \times v s . y$ for $\partial p / \partial x=0$
(d) Will Q increase or decrease if $a p / a x>0$?
(e) $\partial P / \partial x$ for $\tau_{t x}=0$ at $y=0.25 a$, if fluid is a ir
(f) Plot Lyx vs. y for this case.

Solution: The velocity profile is gives by Eq. 8.8: $u=\frac{v_{y}}{a}+\frac{a^{2}}{2 \mu}\left(\frac{\partial p}{\partial x}\right)\left[\left(\frac{y}{a}\right)^{2}-\left(\frac{y}{a}\right)\right]$
(a) For $\left.\frac{\partial p}{\partial x}=0, u=\frac{v y}{a} ; \frac{Q}{l}=\int_{0}^{a} u d y=\int_{0}^{a} \frac{v y}{a} d y=\frac{v}{a} \frac{y^{2}}{2}\right]_{0}^{a}=\frac{v a}{2}$

$$
\frac{Q}{l}=\frac{1}{2} \times 2 \frac{m}{3} \times 0.0025 \mathrm{~m}=0.00250 \mathrm{~m}^{3} / \mathrm{s} / \mathrm{m}
$$

(b) $\tau_{y x}=\mu \frac{d u}{d y} ;$ for $\frac{\partial p}{\partial x}=0, \tau=\frac{\mu U}{a}$. For air at $S T P, \mu=1.79 \times 10^{-5} \mathrm{~N} \cdot \mathrm{~s} / \mathrm{m}^{2}$.

$$
\tau_{y x}=1.79 \times 10^{-5} \frac{\mathrm{~N}^{3} \mathrm{~s}}{\mathrm{~m}^{2}} \times 2 \frac{\mathrm{~m}}{\mathrm{~s}} \times \frac{1}{0.0025 \mathrm{~m}}=0.0143 \mathrm{~N} / \mathrm{m}^{2}
$$

(c) Shear stress is constant for $\frac{\partial p}{\partial x}=0$; see plot below.
(d) Q will decrease if $\frac{\partial p}{\partial x}>0 ; Q$ will increase if $\frac{\partial p}{\partial x}<0$.

The shear stress is given by Eq. 8.9a: $\tau_{y x}=\frac{\mu u}{a}+a\left(\frac{\partial p}{\partial x}\right)\left[\frac{y}{a}-\frac{1}{2}\right]$
(e) For $\tau=0$ at $y=0.25 a, 0=\mu \frac{U}{a}+a\left(\frac{\partial p}{\partial x}\right)\left[\frac{1}{4}-\frac{1}{2}\right]$ or $\frac{\partial p}{\partial x}=\frac{4 \mu U}{a^{2}}$

$$
\frac{\partial p}{\partial x}=4 \times 1.79 \times 10^{-5} \frac{\mathrm{~N} \cdot \mathrm{~s}}{\mathrm{~m}^{2}} \times 2 \frac{\mathrm{~m}}{\mathrm{~s}} \times \frac{1}{(0.0025)^{2} \mathrm{~m}^{2}}=22.9 \mathrm{~N} / \mathrm{m}^{2} / \mathrm{m}
$$

(f) To plot, calculate $\tau_{y x}$ at $y=a$:

$$
\tau_{s x}=\frac{\mu U}{a}+a\left(\frac{\partial p}{\partial x}\right)\left[1-\frac{1}{2}\right]=\frac{\mu U}{a}+\frac{a}{2}\left(\frac{\partial p}{\partial x}\right)=0.0143 \frac{\mathrm{~N}}{\mathrm{~m}^{2}}+\frac{1}{2} \times 0.0025 m_{x} 22.9 \frac{\mathrm{~N}}{\mathrm{~m}^{3}}=0.0429 \frac{\mathrm{~N}}{\mathrm{~m}^{2}}
$$

Plotting:

$$
\tau_{y \times}\left(N / m^{2} / m\right) \times 100
$$

Problem 8.31
Given: Water at $60^{\circ} \mathrm{F}$ flows between parallel plates as shown.

$$
\begin{aligned}
& U=1 f t / s \quad b=0.01 f \\
& \left.2 P\right|_{2 \phi}=-1.20 \quad b l f^{2} / 氏
\end{aligned}
$$

Find: (a) location of point of maximum
 velocity
(b) value off max
(c) volume of flow passing a section in los.

Pol: Pe vebaty and shear stress distributions.
Solution:
Computing equation: $u=\frac{0 y}{6}+\frac{b^{2}}{2 \mu}\left(\frac{\partial p}{2 x}\right)\left[\left(\frac{y}{b}\right)^{2}-\frac{y}{b}\right]$
To locate unax, set dully $=0$

$$
\begin{aligned}
& \frac{d u}{d y}=0=\frac{U}{b}+\frac{b^{2}}{2 \mu}\left(\frac{2 p}{2 x}\right)\left[\frac{2 y}{b^{2}}-\frac{1}{b}\right]=\frac{U}{b}+\frac{1}{2 \mu} \frac{2 p}{2 x}(2 y-b) \\
& \text { when } \left.y=\frac{b}{2}-\frac{\mu v}{b(29(6 x)} \quad \text { FrantabbeA. } \mu=2.34 \times 10^{-5} b \cdot s / f^{2}\right]^{-} \\
& y=\frac{0.01 f t}{2}-2.34 \times 10^{-5} \frac{b f \cdot s}{f f^{2}} \times \frac{1 f}{5} \times \frac{1}{0.01 f t^{3}} \times \frac{1}{(-1.20)(b f}= \\
& u=u_{\text {max }} \text { at } y=0.00695 \mathrm{ft}
\end{aligned}
$$

so

$$
\begin{align*}
& u_{\text {max }}=\frac{U y}{b}+\frac{b^{2}}{2 \mu}\left(\frac{2 p}{2 x}\right)\left[\left(\frac{y}{b}\right)^{2}-\frac{y}{b}\right] \text { where } y=0.695 \times 10^{-2} \mathrm{ft} \\
&=\frac{1 \mathrm{ft}}{5} \times \frac{0.695}{1.0}+\frac{(0.01 \mathrm{ft})^{2}}{2} \times 2.34 \times 10^{-5} \frac{\frac{f t^{2}}{(6 f .5} \times\left(-1.20 \frac{b 6}{\mathrm{ft}^{3}}\right)\left[(0.695)^{2}-(0.695)\right]}{u_{\text {max }}} \\
&=1.24 \mathrm{ft} l_{s} \tag{max}
\end{align*}
$$

To find the volume of flow, evaluate $t=a \Delta t$

$$
\begin{aligned}
& Q=\int_{A} u d A=\int_{0}^{b} u w d y=w \int_{0}^{b}\left[\frac{\bar{y}}{b}+\frac{b^{2}}{2} \mu\left(\frac{\partial P}{2 x}\right)\left\{\left(\frac{y}{b}\right)^{2}-\frac{y}{b}\right\} d y\right. \\
& \stackrel{p}{w}=\left[0 \frac{y^{2}}{2 b}+\frac{b^{2}}{2 \mu}\left(\frac{2 p}{2 x}\right)\left\{\frac{y^{3}}{3 b^{2}}-\frac{y^{2}}{2 b}\right\}\right]_{0}^{b}=\frac{0 b}{2}+\frac{b^{2}}{2 \mu}\left(\frac{2 p}{2 x}\right)\left\{\frac{b}{3}-\frac{b}{2}\right\} \\
& \frac{D}{w}=\frac{\mathrm{Ub}}{2}-\frac{b^{3}}{12 \mu}\left(\frac{2 p}{21}\right)=\frac{1}{2} \times \frac{14}{5} \times 0.01 \mathrm{ft}-(0.01 \mathrm{ft})^{3} \times \frac{5 t^{2}}{2.34 \times 10^{-5}} \frac{\frac{5 t^{2}}{(f f .5}\left(-1.20 \frac{b 0 c}{6 t^{3}}\right)}{a} \\
& Q \|_{w}=a .27 \times 10^{-3} \mathrm{ft}^{2} / \mathrm{s} \\
& * /_{\omega}=\frac{t}{\omega} \Delta t=9.27 \times 10^{-3} \frac{\Delta t^{2}}{s} \times 10 s=0.0922 \mathrm{ft}^{3} / \mathrm{f}
\end{aligned}
$$

Given: Belt moving steadily through bath as shown.

Assume zero shear at film/air surface, and no pressure forces.

Find: (a) Boundary conditions for velocity at $y=0, y=h$.
(b) Velocity profile.

Solution: Choose CV dxdydz as shown.

Bath: f, μ

Apply x component of momentum equation.
Basic equations:

$$
F_{s_{x}}+F_{B_{x}}=\frac{\partial}{\partial{ }_{\partial}^{4}} \int_{c v}^{=o(2)} u p d \psi+\int_{-s}^{m o(3)} u p \vec{v} \cdot d \vec{A} ; \quad c_{v x}=u \frac{d u}{d y}=\tau
$$

Assumptions: (1) Fo due to shear forces only
(z) Steady frow
(3) Fully-developed flow

Then

$$
F_{s x}+F_{B_{x}}=F_{0}-F_{(z)}+F_{B_{x}}=\left(\tau+\frac{d \tau}{d y} \frac{d y}{2}\right) d x d z-\left(\tau-\frac{d \tau}{d y} \frac{d y}{z}\right) d x d z-\rho g d x d y d z=0
$$

or
$\frac{d I}{d y}=\rho q$. Integrating

$$
\begin{aligned}
& \tau=\rho g y+c_{1}=\mu \frac{d u}{d y} \quad \text { or } \frac{d u}{d y}=\frac{\rho g y}{u}+\frac{c_{1}}{u} \text {. Integrating again, } \\
& u=\frac{\rho g y^{2}}{2 u}+\frac{c_{1}}{\frac{u}{u}} y+c_{2}
\end{aligned}
$$

To evaluate the constants c_{1}, and c_{2}, apply the boundary conditions:
At $y=0, u=U_{0}$, so $c_{2}=U_{0}$
At $y=h, \tau=0$, so $\frac{d u}{d y}=0$, and $c_{1}=-f g h$
substituting,

$$
u=\frac{f g y^{2}}{2 \mu}-\frac{f g h y}{\mu}+U_{0}=\frac{f g}{\mu}\left(\frac{y^{2}}{2}-h y\right)+v_{0}
$$

(Note that at $y=h$,

$$
u=\frac{\rho g}{\mu}\left(-\frac{h^{2}}{2}\right)+v_{0} \neq 0
$$

(Thus the solution is determined only when U_{0} and er h are known.)

Problem 8,33
Gwen: Vebcity profile for fully developed laminar flow of arbetucen parallel pates

$$
\begin{aligned}
& u=\frac{U y}{a}+\frac{a^{2}}{2 \mu}\left(\frac{\partial p}{\partial x}\right)\left[\left(\frac{y}{a}\right)^{2}-\left(\frac{y}{a}\right)\right] \\
& U=2 m / s \quad a=2.5 \mathrm{~mm}
\end{aligned}
$$

Find: (a) pressure gradient for which net flow is zero; phi expected u(y) and Tyr (y).
(b) expected $u(y)$ and ${ }^{-} y+(y)$ for case where $u=2 v$ at $y^{l} a=0.5$
Solution:
Computing equations: $\quad a / l=\frac{5 a}{2}-\frac{a^{3}}{12 \mu}\left(\frac{\partial p}{2 n}\right)$
(8.ab)

$$
\begin{equation*}
\tau_{y x}=\mu \frac{U}{a}+a\left(\frac{\partial P}{\partial x}\right)\left[\frac{y}{a}-\frac{1}{2}\right] \tag{8,9a}
\end{equation*}
$$

For $Q=0$, from Eq. $8, a b$, assuming $T=15^{\circ} \mathrm{C}$)
(b) For $u=2$ iv at ila $=0.5$

$$
\begin{aligned}
& 20=0.5 J+\frac{a^{2}}{2 \mu}\left(\frac{2 p}{2 t}\right)\left[\frac{1}{4}-\frac{1}{2}\right] \text { and } \frac{3}{2} v=-\frac{a^{2}}{8 \mu}\left(\frac{2 p}{2 x}\right) \\
& \frac{\partial P}{\partial \alpha}=-\frac{12 U \mu}{a^{2}}=-12 \times \frac{2 \mathrm{~m}}{5} \times 179 \times 10^{-5} \frac{A \cdot 5}{\mathrm{~m}^{2}} \times\left(2.5 \times 10^{-3} \mathrm{~m}\right)^{2}=-\left.68.7 N\right|_{m} ^{2} / \mathrm{m} \\
& r=\mu \frac{\Psi}{a}+a\left(\frac{\partial P}{2 x}\right)\left[\frac{y}{a}-\frac{1}{2}\right] \quad \text { \{shear stress is linear\} } \\
& y=0 \quad r=\mu \frac{\bar{u}}{a}-\frac{a}{2}\left(\frac{2 p}{2 n}\right)=1.79 \times 10^{-5} \frac{1.5}{n^{2}} \times \frac{2 m}{s} \times \frac{1}{2.5 \times 10^{-3} m}-\frac{2.5 \times 10^{-3}}{2}\left(-6.8 .7 \frac{N}{n^{3}}\right)=0.10^{n}=n^{2} \\
& y=a \quad r=\mu \frac{U}{a}+\frac{a}{2}\left(\frac{2 P}{2 n}\right)=-0.07 i b \mathrm{~N} l_{n^{2}}
\end{aligned}
$$

Note that the port of zero shear stress is not at $y l_{a}=0.5$ and hence y la $=0.5$ is not the location of Maximum velocity. Maximum velocity occurs at yla>0.5.

To find the location of zero shear set $T_{y_{y}}=0$. Then

$$
\begin{aligned}
& 0=\frac{\mu \pi}{a}+a\left(\frac{2 P}{2 x}\right)\left(\frac{y}{a}-\frac{5}{2}\right) \quad \text { and } \frac{y}{a}=\frac{1}{2}-\frac{\mu U}{a^{2}\left(\frac{2 p}{3 x}\right)} \\
& \frac{y}{a}=0.5-i .7 a \times 10^{-5}+\frac{1.5}{n^{2}} \times \frac{2.4}{5} \times\left(2.5 \times 10^{-3} n\right)^{2} \times \frac{1}{(-687)} \frac{n^{3}}{1}=0.583
\end{aligned}
$$

For this case ($u=2 \pi$ at yla $=0.5$) the veloaty and shear stress distributions would be as fallout

The shear stress is positive (duldy no) below y $l_{a}=0.583$; positive stress acts in positue x direction on a positive y surface.
The shear stress is negative (duldy 10) above. Ya= 0.583 ; negative stress acts in the negative x direction on a positive y surface.
From Excel, the plots are
Velocity Distribution * No Flow

Problem 8.34
Gwen: Vebity profile for fully developed laminar How of water between parallel plates

$$
\begin{aligned}
& u=\frac{\overline{U y}}{a}+\frac{a^{2}}{2 \mu}\left(\frac{\partial p}{\partial x}\right)\left[\left(\frac{y}{a}\right)^{2}-\frac{y}{a}\right]^{2} \\
& u=2 m l_{s} \quad a=2.5 \mathrm{~mm}
\end{aligned}
$$

Find: (a) Volume flow rate for zero pressure gradient.
(b) shear stress on lower plate; sketch thy).
(c) effect of mild adverse pressure gradient on Q
(d) pressure gradient for zero shear at $y^{\prime} l_{a}=0.25$; sketch rigs.
Solution:
Computing equations: $T_{y x}=\mu \frac{U}{a}+a\left(\frac{\partial y}{\partial x}\right)\left[\frac{y}{a}-\frac{1}{2}\right]$

$$
\begin{equation*}
Q l_{l}=\frac{U_{a}}{2}-\frac{1}{12 \mu}\left(\frac{\partial p}{2 x}\right) a^{3} \tag{8,9a}
\end{equation*}
$$

For $\operatorname{Difl}_{2 x}=0, \quad Q_{l}=\frac{-0}{2}=\frac{1}{2} x^{2} \frac{m}{s} \times 2.5 \times 10^{-3} \mathrm{~m}=2.50 \times 10^{-3} \mathrm{~m}^{3} / \mathrm{slm}$, Q
The shear stress is $v_{y}=\mu \frac{\mathrm{J}}{a} \quad\left\{\right.$ At $\left.15^{\circ} \mathrm{C}, ~ \mu=1.14 \times 10^{-3} \mathrm{~N} \cdot \mathrm{~S}_{\mathrm{m}} \mathrm{m}^{2}\right\}$

$$
\begin{equation*}
Y_{y=1}=1.14 \times 10^{-3} \times \frac{1.5}{m^{2}} \times 2 \frac{m}{5} \times \frac{1}{2.5 \times 10^{-3} m}=0.912 N /_{m^{2}} \tag{yx}
\end{equation*}
$$

The shear stress is constant across the Channel (curve I below)
For ${ }^{20} \mathrm{O}_{\mathrm{n}}>0$, Eq. $8 . a b$ indicates hat Q will decrease
For $t=0$ at $y l a=0.25$

$$
\begin{aligned}
& v_{y x}=0=\mu \frac{\Psi}{a}+a\left(\frac{\partial P}{\partial x}\right)\left[\frac{1}{4}-\frac{1}{2}\right]=\mu \frac{\Psi}{a}-\frac{a}{4}\left(\frac{\partial p}{\partial x}\right) \\
& \frac{\partial p}{\partial x}=\frac{4 \mu U}{a^{2}}=4 \times 1.14 \times 10^{-3} \frac{n .5}{n^{2}} \times \frac{2 \mu}{s} \times\left(\frac{1}{\left(2.5 \times 10^{-3} m\right)^{2}}=\left.\left.1.46 \tan \right|_{m} ^{2}\right|_{y} \frac{2 p}{\partial x}\right.
\end{aligned}
$$

For this pressure gradient

$$
\begin{aligned}
& v_{y}=1.14 \times 10^{-3} \frac{N .5}{m^{2}} \times \frac{2 m}{5} \times \frac{1}{2.5} \times 10^{-3} m+2.5 \times 10^{-3} m \times 1.46 \times \frac{10^{3} n}{m^{3}}\left[\frac{y}{a}-0.5\right] \\
& v_{y}=0.912 d T_{m^{2}}+3.65 \frac{N}{n^{2}}\left(\frac{y}{a}-0.5\right) \\
& \left.\begin{array}{l}
\left.r_{y+}\right\rangle_{y=0}=-\left.0.913 \mathrm{~N}\right|_{m^{2}} \\
\left.\psi_{y=}\right\rangle_{y=0}=\left.2.74 \mathrm{~N}\right|_{\mathrm{m}^{2}}
\end{array}\right\} \text { curves }
\end{aligned}
$$

Given: Microchip supported on air film, on a horizontal surface. chips are $L=11.7 \mathrm{~mm}$ long, $w=9.35 \mathrm{~mm}$ wide, and have mass $m=0.325 \mathrm{~g}$, The air film is $h=0.125 \mathrm{~mm}$ thick. The initial speed of the chips is $V_{0}=1.75 \mathrm{~mm} / \mathrm{s}$; they $s l o w$ from viscous shear.

Find: (a) Differential equation for chip motion during deceleration.
(b) Time required for chip to lose 5 percent of V_{0}.
(a) Plot of chis speed vs. time, with labels and comments.

Solution: Apply Necuton's law of viscosity
Basic equations: $\tau_{y x}=\mu \frac{d u}{d y}$

$$
F_{V}=\tau A \quad \Sigma F=m a_{x}
$$

Assume: (1) Newtonian fluid
(3) Air at STP
(2) Linear velocity protile in narrow gap

Then

$$
\tau_{L x}=\mu \frac{d u}{d y}=\mu \frac{V}{h} ; F_{V}=\tau_{A}=\mu \frac{V}{h} \omega L=\mu \frac{\mu v i L}{h}
$$

The free-body diagram for the chip is

$$
\sum F_{x}=-F_{V}=-\frac{\mu V \omega L}{h}=m \frac{d V}{d t} ; \quad \frac{d V}{V}=-\frac{\mu \omega L}{m h} d t
$$

Integrating, $\int_{V_{0}}^{V} \frac{d V}{V}=\ln \frac{V}{V_{0}}=-\frac{\mu \omega L}{m h} t$
Thus

$$
\begin{aligned}
& t=-\frac{m h}{\mu \omega L} \ln \frac{V}{V_{0}} \\
& t=-0.325 g \times 0.125 \mathrm{~mm} \times \frac{\mathrm{m} \cdot \mathrm{~s}}{1.79 \times 10^{-5} \mathrm{~kg}} \times \frac{1}{9.35 \mathrm{~mm}} \times \frac{1}{11.7 \mathrm{~mm}} \times \ln 0.95 \times \frac{\mathrm{kg}}{1000 \mathrm{~g}} \times 1000 \frac{\mathrm{~mm}}{\mathrm{~m}} \\
& t=1.06 \mathrm{~s}
\end{aligned}
$$

From Excel, the plot of speed vs. time is:

Given: Free-surface waves begin to form on a laminar liquid film flowing down an inclined surface whenever the Reynolds number, based on mass flow per unit width of film, is larger than about 33 .

Find: Estimate of the maximum thickness of a laminar film of water that remains free from waves while flowing down a vertical surface.

Solution: The mass flow rate is $\dot{\sin }=\rho \vec{V} A=\rho \bar{v} \omega \delta, s 0 \dot{m} / \omega=\rho \bar{v} \delta$.
Thus

$$
R_{e}=\frac{\rho \vec{V} \delta}{\mu}=\frac{\bar{V} \delta}{\nu}=33 \text { (maximin) }
$$

From Example Problem 8,3 (pp. 343-345);

$$
\bar{V}=\frac{\rho g \delta^{2}}{3 \mu}
$$

Thus

$$
\frac{\rho \bar{v} \delta}{\mu}=\frac{\rho^{2} g \delta^{3}}{3 \mu^{2}}=33
$$

Solving for δ,

$$
\delta=\left[\frac{99 \mu^{2}}{\rho^{2} g}\right]^{1 / 3}
$$

At $T=20^{\circ} \mathrm{C}, \mu=1.00 \times 10^{-3} \mathrm{~kg} / \mathrm{m} \cdot \mathrm{s}$ and $\rho=948 \mathrm{~kg} / \mathrm{m}^{3}$ (Table A.8). Substituting,

$$
\delta=\left[99 \times\left(1.00 \times 10^{-3}\right)^{2} \frac{\mathrm{~kg}^{2}}{\mathrm{~m}^{2} \cdot \mathrm{~s}^{+}} \times \frac{\mathrm{m}^{6}}{(998)^{2} \mathrm{~kg}^{2}} \times \frac{\mathrm{s}^{2}}{9.81 \mathrm{~m}}\right]^{1 / 3}
$$

$$
\delta=2.16 \times 10^{-4} \mathrm{~m} \text { or } 0.216 \mathrm{~mm}
$$

Open-Ended Problem Statement: Hold a flat sheet of paper 50 to 75 mm above a smooth desktop. Propel the sheet smoothly parallel to the desk surface as you release it. Comment on the motion you observe. Explain the fluid dynamic phenomena involved in the motion.
Discussion: After some practice, one can release the sheet so that it continues to move parallel to the desktop for a considerable distance before finally slowing and stopping. The slowing of the paper sheet is so gradual that the motion appears to be almost frictionless.
The thin layer of air trapped under the paper sheet acts to "lubricate" the motion as the sheet moves parallel to the tabletop. Kinetic sliding friction between the sheet and the desktop is prevented by the fluid layer. Instead the motion is resisted by the much smaller viscous shear stress caused by the motion of the sheet (see Section 8-2.2). Thus the sheet appears to move across the desktop almost without friction.

The same phenomena are involved in hydrodynamic lubrication. Detailed analysis of lubrication is beyond the scope of this text, but contact between two solid surfaces can be prevented, even with large normal loads, by properly shaping the clearance space between the two surfaces. To analyze the phenomenon, the Navier-Stokes equations for incompressible flow (Equations 5.27) are simplified further to a "thin layer" form. These equations are used to predict the load carrying capacity of a lubricated bearing.

The NCFMF video Low-Reynolds-Number Flows shows further examples of flows in which viscous effects are dominant.

Given: viscous-shear pump, as shown.

$$
b=\text { width normal to diagram; } a \ll R
$$

Find: Performance characteristics
(a) Pressure differential
(b) Input power
(c) Efficiency
as functions of volume flow rate.
Solution: since $a \ll R$, unwrap to form flow between para lie/ plates. Apply EqS, 8.9 to felly developed flow:
Volume flow rate is $\frac{Q}{b}=\frac{V_{a}}{2}-\frac{1}{12 \mu}\left(\frac{\partial p}{\partial x}\right) a^{3}$
Substituting $U=$ Ru and $\frac{\partial p}{\partial x}=\frac{\Delta p}{2}$, then

$$
\Delta p=\frac{12 \mu L}{a^{3}}\left(\frac{\omega R a}{2}-\frac{Q}{b}\right)=\frac{6 \mu L \pi \omega}{a^{2}}\left(1-\frac{2 Q}{a b R \omega}\right)
$$

Torque is $T=\tau R(b L)=R L b t$. Power is $P=T \omega$. From Eq.8.9a, at $y=a$,

$$
\begin{aligned}
& P=R L b \omega\left[\frac{\mu R \omega}{a}+\frac{\Delta p}{L} \frac{a}{z}\right]=R L b \omega\left[\frac{\mu R_{\omega}}{a}+\frac{6 \mu L R \omega}{a^{2}}\left(1-\frac{2 Q}{a b R \omega}\right) \frac{a}{z L}\right] \\
& P=R L b \omega\left[\frac{\mu R \omega}{a}\left(4-\frac{6 Q}{a b R \omega}\right)\right]=\frac{\mu L b(R \omega)^{2}}{a}\left(4-\frac{6 Q}{a b R \omega}\right)
\end{aligned}
$$

output power is $Q \Delta p$, so efficiency is

$$
\begin{aligned}
& \eta=\frac{Q \Delta p}{p}=\frac{6 \mu Q L R \omega}{a^{2}}\left(1-\frac{2 Q}{a b R \omega}\right) \frac{a}{\mu L 6(R \omega)^{2}} \frac{1}{\left(4-\frac{6 Q}{a b R \omega}\right)} \\
& \eta=\frac{6 Q}{a b R \omega} \frac{\left(1-\frac{2 Q}{a b R \omega}\right)}{\left(4-\frac{G Q}{a b R \omega}\right)}
\end{aligned}
$$

Problem 8.39 (In Excel)

The efficiency of the viscous-shear pump of Fig. P8.39 is given by

$$
\eta=6 q \frac{(1-2 q)}{(4-6 q)}
$$

where $q=Q / a b R \omega$ is a dimensionless flow rate (Q is the flow rate at pressure differential Δp, and b is the depth normal to the diagram). Plot the efficiency versus dimensionless flow rate, and find the flow rate for maximum efficiency. Explain why the efficiency peaks, and why it is zero at certain values of q.

Given: Expression for efficiency

Find: Plot; find flow rate for maximum efficiency; explain curve

Solution

P8.38, P8. 39

q	η
0.00	0.0%
0.05	7.30%
0.10	14.1%
0.15	20.3%
0.20	25.7%
0.25	30.0%
0.30	32.7%
0.35	33.2%
0.40	30.0%
0.45	20.8%
0.50	0.0%

For the maximum efficiency point we can use Solver (or alternatively differentiate)

q	η
0.333	33.3%

The efficiency is zero at zero flow rate because there is no output at all The efficiency is zero at maximum flow rate $\Delta p=0$ so there is no output The efficiency must therefore peak somewhere between these extremes

Given: Annular gap seal as shown.
Power required to pump oil, P_{p}.
Power to overcome viscous dissipation, P.
Find: (a) Expressions for P_{p}, P_{v}
(b) Show total power minimized when a is chosen so that $P_{v}=3 P_{p}$.

Solution: Apply EqS. 8.6 and 8.9 for flow between parallel plates.
Assumptions: (1) $a \ll 0$, so unford to flat plates
(2) No pressure gradient circumfenentially

$\rightarrow V=\omega R=\frac{\omega D}{2}$
The viscoves power is the product of visoces torque times w:

$$
P_{V}=T \omega=\tau(2 \pi R L) R \omega=\mu \frac{V}{a}\left(2 \pi \frac{D}{2} L\right) \frac{D}{2} \omega=\mu \frac{\omega D}{2 a} \pi D L \frac{D}{2} \omega=\frac{\pi \mu \omega^{2} D^{3} L}{4 a}
$$

The pump power is the product of flow rate times pressure drop.

$$
P_{P}=Q . \Delta \phi
$$

From Eq. $8.6 c, Q=\frac{l a^{3} \Delta p}{13 \mu L}=\frac{\pi D a^{3} \Delta p}{12 \mu L}$, so $P \cdot \frac{\pi D a^{3} \Delta p^{2}}{12 \mu L}$
The total power require or is $P_{T}=P_{V}+P_{p}=\frac{\pi \mu \omega^{2} D^{3} L}{4 a}+\frac{\pi D a^{3} \Delta p^{3}}{12 \mu L}$
It may be minimized by setting $\frac{d P_{r}}{d a}=0$. Thus

$$
\begin{equation*}
\frac{d P_{T}}{d a}=-\frac{\pi \mu \omega^{2} D^{3} L}{4 a^{2}}+\frac{\pi D a^{2} \Delta b^{2}}{4 \mu L}=0 \tag{1}
\end{equation*}
$$

This can be written

$$
\frac{d P_{T}}{d a}=-\frac{1}{a} P_{V}+\frac{3}{a} P_{P}=0
$$

which is satisfied when $3 P_{P}-P_{V}=0$ or $P_{V}=3 P_{P}$
Equation 1 also can be solved for a at optimum conditions:

$$
a^{4}=\frac{\mu^{2} \omega^{2} D^{2} c^{2}}{\Delta p^{2}} \text { or } a^{2}=\frac{\mu \omega D L}{\Delta p} \text { or } \frac{a}{D}=\sqrt{\frac{\mu \omega L}{D \Delta p}} \text { (optimum) }
$$

Problem 8.41

A joumal bearing consists of a shaft of diameter $D=50 \mathrm{~mm}$ and length $L=1 \mathrm{~m}$ (moment of inertia $I=0.055 \mathrm{~kg} \cdot \mathrm{~m}^{2}$) installed symmetrically in a stationary housing such that the annular gap is $\delta=1 \mathrm{~mm}$. The fluid in the gap has viscosity $\mu=$ $0.1 \mathrm{~N} \cdot \mathrm{~s} / \mathrm{m}^{2}$. If the shaft is given an initial angular velocity of $\omega=60 \mathrm{rpm}$, determine the time for the shaft to slow to 10 rpm .

Given: Data on a journal bearing

Find: Time for the bearing to slow to 10 rpm

Solution

The given data is

$$
\begin{array}{lll}
\mathrm{D}=50 \cdot \mathrm{~mm} & \mathrm{~L}=1 \cdot \mathrm{~m} & \mathrm{I}=0.055 \cdot \mathrm{~kg} \cdot \mathrm{r} \\
\mu=0.1 \cdot \frac{\mathrm{~N} \cdot \mathrm{~s}}{\mathrm{~m}^{2}} & \omega_{\mathrm{i}}=60 \cdot \mathrm{rpm} & \omega_{\mathrm{f}}=10 \cdot \mathrm{rpm}
\end{array}
$$

$$
\mathrm{I}=0.055 \cdot \mathrm{~kg} \cdot \mathrm{~m}^{2} \quad \delta=1 \cdot \mathrm{~mm}
$$

The equation of motion for the slowing bearing is

$$
\mathrm{I} \cdot \alpha=\text { Torque }=-\tau \cdot \mathrm{A} \cdot \frac{\mathrm{D}}{2}
$$

where α is the angular acceleration and τ is the viscous stress, and $A=\pi \cdot D \cdot L$ is the surface area of the bearing

As in Example Problem 8.2 the stress is given by $\tau=\mu \cdot \frac{U}{\delta}=\frac{\mu \cdot D \cdot \omega}{2 \cdot \delta}$
where U and ω are the instantaneous linear and angular velocities.

Hence

$$
I \cdot \alpha=I \cdot \frac{d \omega}{d t}=-\frac{\mu \cdot D \cdot \omega}{2 \cdot \delta} \cdot \pi \cdot D \cdot L \cdot \frac{D}{2}=-\frac{\mu \cdot \pi \cdot D^{3} \cdot L}{4 \cdot \delta} \cdot \omega
$$

Separating variables

$$
\frac{\mathrm{d} \omega}{\omega}=-\frac{\mu \cdot \pi \cdot \mathrm{D}^{3} \cdot \mathrm{~L}}{4 \cdot \delta \cdot \mathrm{I}} \cdot \mathrm{dt}
$$

Integrating and using IC $\omega=\omega_{0}$

$$
\omega(t)=\omega_{i} \cdot e^{-\frac{\mu \cdot \pi \cdot D^{3} \cdot L}{4 \cdot \delta \cdot I} \cdot t}
$$

The time to slow down to $\omega_{\mathrm{f}}=10 \mathrm{rpm}$ is obtained from solving

$$
\omega_{\mathrm{f}}=\omega_{\mathrm{i}} \cdot \mathrm{e}^{-\frac{\mu \cdot \pi \cdot \mathrm{D}^{3} \cdot \mathrm{~L}}{4 \cdot \delta \cdot \mathrm{I}} \cdot \mathrm{t}}
$$

so

$$
t=-\frac{4 \cdot \delta \cdot I}{\mu \cdot \pi \cdot D^{3} \cdot L} \cdot \ln \left(\frac{\omega_{\mathrm{f}}}{\omega_{\mathrm{i}}}\right) \quad \mathrm{t}=10 \mathrm{~s}
$$

Given: "Viscous timer." consisting of a cylindrical mass inside a circular tube filled with viscous liquid, creating a narrow annular gap.

Find: (a) The flow field created when the mass falls under gravity.
(b) Whether this would make a satisfactory timer, and it so, for what range of time intervals.
(c) Effect of temperature change on measured time interval.

Solution: Apply conservation of mass to a CV enclosing the cylinder and the moving mass:

Then: $\quad Q=\dot{U} \frac{\pi D^{2}}{4}=\bar{V} \pi D a=\bar{V} l a$
(1)

Assume: (1) Gap is narrow, $a \ll D$
(2) Unroll gap so flat, $l=\pi D$
(3) Steady flow
(4) Fully developed laminar flow

Under these assumptions, the flow field in the gap is that for flow between parallel plates with one plate moving.

Place coordinates on the moving mass:
Then the volume flow rate (Eq. 8.9b) is

$$
\frac{Q}{l}=\frac{Q}{\pi D}=\frac{U a}{2}-\frac{1}{12 \mu}\left(\frac{\partial P}{\partial x}\right) a^{3}
$$

But $\frac{\partial p}{\partial x}=-\frac{\Delta p v}{L}$, where Δp is the pressure drop driving viscous flow, so

$$
\begin{equation*}
\frac{Q}{l}=\frac{v_{a}}{2}-\frac{1}{12 \mu}\left(-\frac{\Delta p_{v}}{L}\right) a^{3}=\frac{v a}{2}+\frac{\Delta \mu a^{3}}{12 \mu L} \tag{2}
\end{equation*}
$$

The pressure change across the moving mass is

$$
\begin{equation*}
\Delta p=\rho_{l} g L+\Delta p_{v} \tag{3}
\end{equation*}
$$

summing forces on the moving mass gives

$$
\Sigma F_{x}=\Delta p \frac{\pi D^{2}}{4}-m g+F_{v}=m \frac{d d^{\prime 0}}{A t(3)}
$$

But $m g=\rho_{m} \frac{\pi D^{2} L}{4} L$ and $F_{v}=\tau_{3} \pi D L$
From Eq. $8.9 a, \tau_{s}=\mu \frac{U}{a}-\frac{a}{2}\left(\frac{\partial p}{\partial x}\right)=\mu \frac{U}{a}+\frac{a}{2} \frac{\Delta p_{v}}{L}$
Substituting, $\Delta p \frac{\pi D^{2}}{4}-\rho_{m} \frac{\pi D^{2}}{4} L g+\left[\mu \frac{U}{a}+\frac{a}{2} \frac{\Delta p_{v}}{2}\right] \pi D L=0$
or $\quad \Delta p=\rho m g L-\left[\mu \frac{U}{a}+\frac{a}{2} \frac{\Delta p_{v}}{L}\right] \frac{4 L}{D}$

Combining Eqs. I and 2 gives $\frac{U D}{4}=\frac{U_{0}}{2}+\frac{\Delta p_{v} a^{3}}{12 \mu l}$
Thus

$$
\begin{equation*}
\Delta p_{V}=\frac{12 \mu L}{a^{3}}\left[\frac{U D}{4}-\frac{U_{p}}{k}\right]^{\ll D}=\frac{3 \mu U L D}{a^{3}} \tag{5}
\end{equation*}
$$

Combinirig Eggs. 3 and 4 gives $\Delta p=p e g L+\Delta R=\rho m g L-\left[u \frac{U}{a}+\frac{a}{2} \frac{\Delta p}{L}\right] \frac{4 L}{D}$ Using Eq. 5,

$$
\rho_{l} g L+\frac{3 \mu U L D}{a^{3}}=\rho_{m} g L-\mu \frac{v}{a} \frac{4 L}{D}-\frac{a}{2} \frac{3 \mu U L D}{L a^{3}} \frac{4 L}{D}
$$

simplifying and rearranging,

$$
\left(\rho_{m}-\rho_{l}\right) g L=\frac{3 \mu U L D}{a^{3}}+\frac{4 \mu U L}{a D}+\frac{6 \mu U L}{a^{2}} \approx \frac{3 \mu U L D}{a^{3}}
$$

Finally, using $\rho=S 6 \rho_{\mathrm{H}_{20}}$

$$
U=\frac{\left(5 G_{m}-3 G_{l}\right) \rho_{H 2 O} g a^{3}}{3 \mu D}
$$

The time interval for the mass to move distance H is

$$
\begin{equation*}
\Delta t=\frac{H}{\tilde{U}}=\frac{3 \mu 0}{\left(S G_{m}-5 G_{e}\right) P+20 g a^{3}} \tag{6}
\end{equation*}
$$

Equation 6 shows that the time interval for the mass to fall any distance H is proportional to liquid viscosity μ and inversely proportional to gap width a cubed. A temperature change would affect the diameter of the measuring tube and the diameter of the falling mass. A temperature change also would affect the viscosity of the liquid in the tube.
Speed of the falling mass is proportional to the cube of gap width. If the coefficient of thermal expansion of the falling mass were greater than that of the glass measuring tube (which seems likely), then the width of the annular gap would decrease with increasing temperature. This would tend to slow the falling mass. The total amount of thermal expansion would depend on the diameter of the mass and tube. The effect on gap width would be greater, the larger the tube diameter compared to the initial gap width.
It might be possible to "tailor" the thermal expansion coefficient of the cylinder, by using a suitable material, to closely match that of the falling mass. Then there would be no differential thermal expansion between the mass and tube, and changes in temperature would not affect the gap width.
Speed of the falling mass is inversely proportional to liquid viscosity. Liquid viscosity decreases sharply as temperature increases (the viscosity of SAE 30 oil drops more than 10 percent as its temperature increases from $20^{\circ} \mathrm{C}$ to $25^{\circ} \mathrm{C}$, see Fig. A.2). This would tend to increase the speed of the falling mass.

The entire device could be maintained at constant temperature.

Open-Ended Design Problem: Automotive design is tending toward all-wheel drive to improve vehicle performance and safety when traction is poor. An all-wheel drive vehicle must have an interaxle differential to allow operation on dry roads. Numerous vehicles are being built using multiplate viscous drives for interaxle differentials. Perform the analysis and design needed to define the torque transmitted by the differential for a given speed difference, in terms of the design parameters. Identify suitable dimensions for a viscous differential to transmit a torque of $150 \mathrm{~N} \cdot \mathrm{~m}$ at a speed loss of 125 rpm , using lubricant with the properties of SAE 30 oil. Discuss how to find the minimum material cost for the differential, if the plate cost per square meter is constant.
Solution: From Problem 2.45, $d T=r d F=r T d A$
But $\tau=\mu \frac{d \mu}{d y}=\mu \frac{\mu}{h}=\mu \frac{r \Delta \omega}{h} ; d A=2 \pi r d r$
Thus $d T=r \mu \frac{r \Delta \omega}{h} 2 \pi r d r=\frac{2 \pi \mu \Delta \omega}{h} r^{3} d r ; r=\frac{\pi \mu \Delta \omega}{2 h}\left[R_{0}^{4}-R_{i}^{4}\right]$
or $T=\frac{\pi \mu \Delta \omega}{2 h} R^{4}\left(1-\alpha^{4}\right)$ where $\alpha=R_{i} / R$
This value is per gap. Each rotor has 2 gaps to a housing. For n gaps

$$
\begin{equation*}
T_{n}=\frac{n \pi \mu \Delta \omega}{2 h} R^{4}\left(1-\alpha^{4}\right) \tag{1}
\end{equation*}
$$

From Eq. 1, assuming $\mu=0.18 \mathrm{~kg} \mathrm{lm.s}$ (Fig, A.2) and $\alpha=\frac{1}{2}$, so $1-\alpha^{4}=1-\frac{1}{16} \approx 1$, then

$$
\frac{n R^{4}}{n}=\frac{2 \pi_{n}}{\pi \mu \Delta \omega}=\frac{2}{\pi} \times 150 \mathrm{Nm} \times \frac{\mathrm{m}^{2}}{0.18 \mathrm{~N} \cdot \mathrm{~s}} \times \frac{\mathrm{min}}{125 \mathrm{rev}} \times \frac{\mathrm{Rv}}{2 \pi \mathrm{rad}} \times \frac{60 \mathrm{~s}}{\mathrm{~min}}=40.5 \mathrm{~m}^{3}=c
$$

or

$$
R^{4}=c \frac{h}{n}
$$

For $n=100$ and $h=0.2 \mathrm{~mm}_{2} R^{4}=40.5 \mathrm{~m}^{3} 0.0002 \mathrm{~m}_{\times} \frac{1}{100}=8.11 \times 10^{-5} \mathrm{~m}^{4}$

$$
\left.R=\left[8.11 \times 10^{-5}\right]^{4 / 4} \mathrm{~m}=0.0949 \mathrm{~m} \text { (or } D=190 \mathrm{~mm}\right)
$$

The stack length might be

Given: Fully developed laminar flow in a pipe, with

$$
u=-\frac{R^{2}}{4 u} \frac{\partial p}{\partial x}\left[1-\left\langle\frac{r}{R} j^{2}\right]\right.
$$

Find: Radices from pipe axis at which u equals the average velocity, \bar{v}.

Solution: First determine \bar{V}.

$$
\begin{aligned}
\bar{V} & =\frac{Q}{A}=\frac{1}{\pi R^{2}} \int_{A} u d A=\frac{1}{\pi R^{2}} \int_{0}^{R}\left\{-\frac{R^{2}}{4 \mu} \frac{\partial p}{\partial x}\left[1-\left(\frac{r}{R}\right)^{2}\right]\right\} 2 \pi r d r \\
& =-\frac{R^{2}}{2 \mu} \frac{\partial p}{\partial x} \int_{0}^{1}\left[1-\left(\frac{C}{R}\right)^{2}\right]\left(\frac{r}{R}\right) d\left(\frac{r}{R}\right)=-\frac{R^{2}}{2 \mu} \frac{\partial p}{\partial x}\left[\frac{1}{2}\left(\frac{r}{R}\right)^{2}-\frac{1}{4}\left(\frac{R}{R}\right)^{4}\right]_{0}^{1} \\
\bar{V} & =-\frac{R^{2}}{\delta \mu} \frac{\partial p}{\partial x}
\end{aligned}
$$

Then $u=\bar{v}$ when

$$
u=-\frac{R^{2}}{4 \mu} \frac{\partial p}{\partial x}\left[1-\left(\frac{r}{R}\right)^{2}\right]=\bar{v}=-\frac{R^{2}}{8 \mu} \frac{\partial p}{\partial x}
$$

or

$$
1-\left(\frac{r}{R}\right)^{2}=\frac{1}{2}
$$

or

$$
\begin{aligned}
& \left(\frac{r}{R}\right)^{2}=\frac{1}{2} \\
& r=\frac{R}{\sqrt{2}}=0.707 R
\end{aligned}
$$

Given: Water and SAE 10 W oil flowing at $40^{\circ} \mathrm{C}$ through a 6 mm tube. Find, for each fluid:
(a) The maximum flow rate for laminar flow.
(b) The corresponding pressure gradient.

Solution: Laminar frow is expected for Re $\leqslant 2300$. Expressing this in terms of flownate,

$$
R e=\frac{\rho \bar{V} D}{\mu}=\frac{\bar{V} D}{\nu}=\frac{Q D}{A \nu}=\frac{4}{\pi D^{2}} \frac{Q D}{\nu}=\frac{4 Q}{\pi \nu D} \text { or } Q=\frac{\pi \nu D R e}{4}
$$

Thus

$$
Q_{\max }=\frac{\pi \nu D \operatorname{Remax}_{\max }}{4}=\frac{\pi}{4} \times 2300 \times 0.006 m_{x} \nu \frac{m^{2}}{3}=10.8 \nu\left(\frac{m^{3}}{3}\right)
$$

Also, $Q=-\frac{\pi R^{4}}{8 / 2} \frac{\partial p}{\partial x}$ for laminar flow, according to Eq.8.136. Then

$$
\frac{\partial p}{\partial x}=-\frac{8 \mu Q}{\pi R^{4}}=-\frac{128 \mu Q}{\pi \Delta^{4}}
$$

So

$$
\frac{\partial p}{\partial x}=-\frac{128}{\pi} \times \mu \frac{N \cdot 5}{m^{2}} \times \frac{Q m^{3}}{3 r} \times \frac{1}{(0.006)^{4} m^{4}}=-3.14 \times 10^{10} \mu Q\left(\frac{N}{m^{2}}\right)
$$

Using data from Appendix A, at $40^{\circ} \mathrm{C}$,

$$
\begin{aligned}
& \text { Fluid } \frac{\nu\left(\frac{m^{2}}{5}\right)}{6.57 \times 10^{-7}} \frac{Q\left(\frac{m^{3}}{5}\right)}{7.10 \times 10^{-6}} \frac{\mu\left(\frac{N \cdot x}{m^{2}}\right)}{6.51 \times 10^{-4}} \frac{\mu Q(N \cdot m)}{4.62 \times 10^{-9}-145} \frac{\frac{\partial p}{\partial x}\left(\frac{N}{m}\right)}{-10 \mathrm{~W}} 3.8 \times 10^{-5} 4.10 \times 10^{-4} 3.4 \times 10^{-2} 1.39 \times 10^{-5}-4.36 \times 10^{5}
\end{aligned}
$$ oil

$\left\{\right.$ Note $Q \sim \nu=\frac{\mu}{\rho}$ and $\left.\underset{\sim x}{2 p} \sim \mu Q \sim \frac{\mu^{2}}{\rho} \cdot\right\}$

Given: Hypodermic needle of dearneter, $d=0.100 \mathrm{~mm}$ and lengl $1-25.0 \mathrm{~mm}$ is attached to a syringe of duarreter, $\bar{y}=10.0 \mathrm{~mm}$. Re syringe is filled wi saline solution or viscosity $\mu=5 \mu_{4=0}$. Are maximum force on the plungers is $F=45.0 \mathrm{~N}$.
Find: the maximum flow rate at which saline can be delivered.
Solution:

Model the flow as steady, fully developed laminar flow in a Circular tube.

Assize: (1) discharge is to Pate. (2) fluid es at $T=20 \mathrm{C}$.

Then, the volume flow rale Q can be evaluated from Eq. 8.13 c $Q=\frac{\pi \Delta P D^{4}}{128}$
where $\Delta P=P_{1}-P_{\text {don }}$ and $\Delta P=\frac{F}{R}=\frac{4 F}{\pi y^{2}}=\frac{4}{\pi} \times 45 A \times \frac{1}{(0.01 n)^{2}}=513 \mathrm{bPa}$

$$
\mu=5 \mu_{H_{2} \mathrm{O}} \quad \text { and from Table A. } 8, \mu_{\mathrm{H}_{\mathrm{o}}}=1 \times 10^{-3} \mathrm{~kg} l_{\text {ni. }}
$$

Then

$$
\begin{aligned}
& Q=\frac{\pi \Delta P\rangle^{4}}{128 \mu}=\frac{\pi}{128^{2}} \times 573 \times \frac{3}{1^{2}} \times\left(10^{-4} n\right)^{4} \times \frac{1}{5 \times 10^{-}} \frac{\mathrm{mg}}{\mathrm{~kg}} \times \frac{1}{0.025 \mathrm{~m}} \times \frac{\mathrm{kg}}{\mathrm{~N}^{2} . \mathrm{s}^{2}} \\
& Q=11.3 \mathrm{mn}^{3} / \mathrm{l}
\end{aligned}
$$

Check Re

$$
R_{e}=\frac{P D \bar{J}}{\mu}=\frac{P P}{\mu} \frac{Q}{H}=\frac{P Q}{\mu} \frac{4 \theta}{\pi \theta^{2}}=\frac{4 p \theta}{\pi \mu y}
$$

Hssurve psalure $=p H_{20}$, ten

$$
R_{e}=\frac{4}{\pi} \frac{p a}{\mu g}=\frac{4}{4} \times 99 \frac{9}{m^{3}} \times 9.27+10^{-9} \frac{m^{3}}{5} \times \frac{1}{5 \times 10^{-3}} \frac{m g}{\frac{m}{3}} \times \frac{1}{5} m
$$

$R_{e}=28.8$ (flow is definitely laminar)

Given: Viscosity of water is to be determined by measuring pressure drop and flow rate through tygon tubing of length, $h=50 \mathrm{ft}$ and diameter, $)=0.725 \pm 0.010 \mathrm{in}$
Find: (a) Maximum volume flow rate at which flow would be laninat
(b) Pressure drop corresponding to his. Q.."
(c) Estimate of experimental uncertainty in "measured" viscosity indic set up might be improved.
Solution:
Assure: steady, fully developed laminar flow in the tube Flow is expected to remour laminar up to $R_{e}=2300$.

$$
R_{e}=\frac{P D V}{\mu}=\frac{D}{\nabla} \frac{Q}{\pi}=\frac{D}{V} \frac{Q U}{\pi D^{2}}=\frac{4 Q}{\pi D}
$$

To determine Q we need to know, Assume $T=70^{\circ} \mathrm{F}$. Hen

The corresponding pressure drop, $\Delta f=p_{1}, p_{2}$, can be determined

$$
\begin{aligned}
& \text { from Eq. } 8.13 \mathrm{C} \quad Q=\frac{\pi}{128} \frac{\Delta p)^{4}}{\mu h} \quad \ldots .-(8.13 C)
\end{aligned}
$$

$$
\begin{aligned}
& \Delta P=7 i b / W / f_{t^{2}}=4 . a n / b f / i^{2}
\end{aligned}
$$ Δp

Equation 8.13 c can be used to determine μ from measurements of ΔP and Q. Thus

$$
\mu=\frac{\pi}{128} \frac{\Delta P P^{4}}{L Q} \quad \text { or } \mu=\mu(\Delta P, B, h, Q)
$$

From uncertainty analysis

$$
u_{\mu}= \pm\left[\left(\frac{\partial p}{\mu} \frac{\partial \mu}{\partial \Delta p} u_{\Delta p}\right)^{2}+\left(\frac{\partial}{\mu} \frac{\partial \mu}{\partial s} u_{D}\right)^{2}+\left(\frac{L}{\mu} \frac{\partial \mu}{\partial \mu} u_{1}\right)^{2}+\left(\frac{Q}{\mu} \frac{\partial \mu}{\partial \alpha} u_{0}\right)^{2}\right]^{1 / 2}
$$

Evaluating, $\left.\frac{\Delta p}{\mu} \frac{\partial \mu}{\partial \Delta t}=\frac{\Delta p}{\mu} \frac{\pi}{128} \frac{y^{4}}{42}=1, \frac{\partial}{\mu} \frac{\partial \mu}{\partial 5}=\frac{\partial}{\mu} 4\right)^{3} \frac{\pi}{128} \frac{\Delta p}{20}=4$

$$
\frac{1}{\mu} \frac{\partial \mu}{5 L}=\frac{L}{\mu}(-1)^{\frac{\pi}{12}} \frac{\Delta P)^{4}}{Q L^{2}}=-1, \frac{Q}{\mu} \frac{\partial \mu}{\partial Q}=\frac{Q}{\mu}(-1) \frac{\pi}{128} \frac{\Delta P y^{4}}{L Q^{2}}=-1
$$

Rus $u_{\mu}=\left[\left(u_{0}\right)^{2}+\left(4 u_{7}\right)^{2}+\left(-u_{h}\right)^{2}+\left(-u_{Q}\right)^{2}\right]^{1 / 2}$
Since $u_{>}=\frac{87}{8}= \pm \frac{0.01}{0.25}= \pm 8 \%_{0} . \quad y_{\mu} z 4 u_{8}=32 \%$ \qquad
The set up could be wiproved by reducing U_{9}, Use somewhat larger diameter tube andlor more beniform cliameler tube.

Given: Commercial/ viscometer, $D=0.31 \mathrm{~mm}$ and $L=73 \mathrm{~mm}$. size chosen so $\Delta t \simeq 200 \mathrm{~s}$, and $u_{\Delta t}$ is negligible.
Firid: Estimate the maximum uncertainty in D to allow measurement of $\mu \omega$ within \pm I percent.

Solution: Computing equation: $Q=\frac{\pi \Delta p \Delta^{4}}{128 \mu}$
Assumptions: (1) Laminar flow
(2) Fully developed flow
solving for viscosity, $\mu=\frac{\pi \triangle P D^{4}}{128 Q L}$
But $\Delta p \sim \rho g L$ and $Q \sim \Delta \forall / \Delta t$. Thus

$$
\mu \sim P g L \frac{\Delta t}{\Delta t} \frac{D^{4}}{L}=\frac{\rho g \Delta t D^{4}}{\Delta \forall}
$$

From Appendix E,

$$
u_{\mu}= \pm\left[\left(u_{\Delta t}\right)^{2}+\left(4 u_{0}\right)^{2}+\left(u_{\Delta \psi}\right)^{2}\right]^{1 / 2}
$$

Neglecting $u_{\Delta t}$ and $u_{\Delta \forall}$ compared to u_{D},

$$
u_{\mu} \simeq \pm\left[\left(4 u_{D}\right)^{2}\right]^{1 / 2}= \pm 4 u_{D}= \pm 4 \frac{\delta D}{D}
$$

Thus

$$
\begin{aligned}
& \delta D= \pm \frac{\mu \mu}{4} D= \pm \frac{0.01}{4} \times 0.31 \mathrm{~mm} \times \frac{\mathrm{m}}{1000 \mathrm{~mm}} \\
& \delta D= \pm 0.775 \mu \mathrm{~m}
\end{aligned}
$$

$\left\{\begin{array}{l}\text { Such a small tolerance would be impossible to hold in any } \\ \text { manufacturing operation. Therefore capillary viscometers }\end{array}\right\}$ $\left\{\begin{array}{l}\text { manufacturing operation. Therefore capillary viscometers } \\ \text { are calibrated using a liquid of known viscosity in the range }\end{array}\right\}$ of interest.

Problem 8.49

In engineering science there are often analogies to be made between disparate phenomena. For example, the applied pressure difference Δp and corresponding volume flow rate Q in a tube can be compared to the applied DC voltage V across and current I through an electrical resistor, respectively. By analogy, find a formula for the "resistance" of laminar flow of fluid of viscosity μ in a tube length of L and diameter D, corresponding to electrical resistance R. For a tube 100 mm long with inside diameter 0.3 mm , find the maximum flow rate and pressure difference for which this analogy will hold for (a) kerosine and (b) castor oil (both at $40^{\circ} \mathrm{C}$). When the flow exceeds this maximum, why does the analogy fail?

Given: Data on a tube

Find: "Resistance" of tube; maximum flow rate and pressure difference for which electrical anal holds for (a) kerosine and (b) castor oil

Solution

The given data is
$\mathrm{L}=100 \cdot \mathrm{~mm}$
$\mathrm{D}=0.3 \cdot \mathrm{~mm}$

From Fig. A. 2 and Table A. 2

$$
\begin{array}{lll}
\text { Kerosene: } & \mu=1.1 \times 10^{-3} \cdot \frac{\mathrm{~N} \cdot \mathrm{~s}}{\mathrm{~m}^{2}} & \rho=0.82 \times 990 \cdot \frac{\mathrm{~kg}}{\mathrm{~m}^{3}}=812 \cdot \frac{\mathrm{~kg}}{\mathrm{~m}^{3}} \\
\text { Castor oil: } & \mu=0.25 \cdot \frac{\mathrm{~N} \cdot \mathrm{~s}}{\mathrm{~m}^{2}} & \rho=2.11 \times 990 \cdot \frac{\mathrm{~kg}}{\mathrm{~m}^{3}}=2090 \cdot \frac{\mathrm{~kg}}{\mathrm{~m}^{3}}
\end{array}
$$

$$
\begin{equation*}
\mathrm{V}=\mathrm{R} \cdot \mathrm{I} \tag{1}
\end{equation*}
$$

The governing equation for the flow rate for laminar flow in a tube is Eq. 8.13c

$$
\mathrm{Q}=\frac{\pi \cdot \Delta \mathrm{p} \cdot \mathrm{D}^{4}}{128 \cdot \mu \cdot \mathrm{~L}}
$$

or

$$
\begin{equation*}
\Delta \mathrm{p}=\frac{128 \cdot \mu \cdot \mathrm{~L}}{\pi \cdot \mathrm{D}^{4}} \cdot \mathrm{Q} \tag{2}
\end{equation*}
$$

By analogy, current I is represented by flow rate Q, and voltage V by pressure drop Δp.
Comparing Eqs. (1) and (2), the "resistance" of the tube is

$$
\mathrm{R}=\frac{128 \cdot \mu \cdot \mathrm{~L}}{\pi \cdot \mathrm{D}^{4}}
$$

The "resistance" of a tube is directly proportional to fluid viscosity and pipe length, and strongly dependent on the inverse of diameter

The analogy is only valid for $\operatorname{Re}<2300 \quad$ or $\quad \frac{\rho \cdot \mathrm{V} \cdot \mathrm{D}}{\mu}<2300$

Writing this constraint in terms of flow rate

$$
\frac{\rho \cdot \frac{\mathrm{Q}}{\frac{\pi}{4} \cdot \mathrm{D}^{2}} \cdot \mathrm{D}}{\mu}<2300 \quad \text { or } \quad \mathrm{Q}_{\max }=\frac{2300 \cdot \mu \cdot \pi \cdot \mathrm{D}}{4 \cdot \rho}
$$

The corresponding maximum pressure gradient is then obtained from Eq. (2)

$$
\Delta \mathrm{p}_{\max }=\frac{128 \cdot \mu \cdot \mathrm{~L}}{\pi \cdot \mathrm{D}^{4}} \cdot \mathrm{Q}_{\max }=\frac{32 \cdot 2300 \cdot \mu^{2} \cdot \mathrm{~L}}{\rho \cdot \mathrm{D}^{3}}
$$

(a) For kerosine

$$
\mathrm{Q}_{\max }=7.34 \times 10^{-7} \frac{\mathrm{~m}^{3}}{\mathrm{~s}} \quad \Delta \mathrm{p}_{\max }=406 \mathrm{kPa}
$$

(b) For castor oil

$$
\mathrm{Q}_{\max }=6.49 \times 10^{-5} \frac{\mathrm{~m}^{3}}{\mathrm{~s}} \quad \Delta \mathrm{p}_{\max }=8156 \mathrm{MPa}
$$

The analogy fails when $\mathrm{Re}>2300$ because the flow becomes turbulent, and "resistance" to flow then no longer linear with flow rate

Given: Capillary viscometer of Example Problem $8.4 . Q=880 \mathrm{~mm}^{3} / \mathrm{s}$.
Least counts are: $\pm 0.01 \mathrm{MPa}$
\quad for $\triangle p, \pm 0.01 \mathrm{~mm}$ for $D, \pm 5 \mathrm{~mm}^{3} / \mathrm{s}$
for Q, and $\pm 1.00 \mathrm{~mm}$ for $L . S G$ of test liquid is 0.82 .
$\Delta p=p_{1}-p_{2}=1.0 \mathrm{MPa}$

Find: (a) Effect of tube diameter on experimental uncertainty.
(b) If proper choice of diameter can minimize uncertainty.

Solution: viscosity is given by $\mu=\frac{\pi \triangle p D^{4}}{128 L Q}$, so the uncertainty, is

$$
\begin{align*}
u_{u} & = \pm\left[u_{\Delta p}^{2}+\left(4 u_{D}\right)^{2}+u_{L}^{2}+u_{Q}^{2}\right]^{\frac{1}{2}} \tag{/}\\
& = \pm\left[\left(\pm \frac{0.01}{1.00}\right)^{2}+\left(\pm 4 \frac{0.01}{0.50}\right)^{2}+\left(\pm \frac{0.001}{1.00}\right)^{2}+\left(\pm \frac{5}{880}\right)^{2}\right]^{\frac{1}{2}} \\
& = \pm\left[(\pm 0.01)^{2}+(\pm 0.08)^{2}+(\pm 0.001)^{2}+(\pm 0.00568)^{2}\right]^{\frac{1}{2}}
\end{align*}
$$

$\uparrow 4 u_{D}$ is the largest influence on upu

$$
u_{\mu}= \pm[0.00653]^{\frac{1}{2}}= \pm 0.0808 \text { or } \pm 8.08 \text { percent }
$$

To reduce U_{D}, increase diameter. Then reduce Q to maintain Re constant

$$
\operatorname{Re}=\frac{P \bar{V} D}{\mu} \text {, so } \bar{V} D=\text { constant. } B u t \bar{V}=\frac{Q}{A}=\frac{4 Q}{\pi D^{2}} \text {; so } \bar{V} \sim \frac{Q}{D}=\text { constant }
$$ But Δp will be affected. $\Delta p=\frac{128 \mu L Q}{\pi D^{4}}$, so $\Delta p \sim \frac{Q}{D^{4}} \sim \frac{1}{D^{3}}$ (since $\frac{Q}{D}=$ cont.) Representative values may be computed as follows:

D	Q	Qp	$u_{\Delta p}$	$4 u_{D}$	u_{L}	u_{Q}	u_{μ}
(mm)	$\left(\mathrm{mm}^{3} / \mathrm{s}\right)$	(MPa)	$(--)$	$(--)$	$(--)$	$(--)$	$(-\cdots)$
0.50	880	1.00	0.0100	0.0800	0.001	0.00568	0.0808
0.55	968	0.751	0.0133	0.0727	0.001	0.00517	0.0741
0.60	1056	0.579	0.0173	0.0667	0.001	0.00473	0.0690
0.65	1144	0.455	0.0220	0.0615	0.001	0.00437	0.0655
0.70	1232	0.364	0.0274	0.0571	0.001	0.00406	0.0635
0.75	1320	0.296	0.0338	0.0533	0.001	0.00379	0.0632
0.80	1408	0.244	0.0410	0.0500	0.001	0.00355	0.0647
0.85	1496	0.204	0.0491	0.0471	0.001	0.00334	0.0681
0.90	1584	0.171	0.0583	0.0444	0.001	0.00316	0.0734
0.95	1672	0.146	0.0686	0.0421	0.001	0.00299	0.0805
1.00	1760	0.125	0.0800	0.0400	0.001	0.00284	0.0895

$$
\underset{\left(u_{\mu}\right.}{(\text { min. })}
$$

The uncertainty in D drops quickly as D increases. Although usp increases, there is a diameter that minimizes un.

The optimum diameter is $D \approx 0.75 \mathrm{~mm}$.
(Note that the entrance length would increase, since $L_{e / 0}=0.06$ Re.)

Given: Felly-daveloped laminar flow in a circular pipe, with cylindrical control volume as shown.

Find: (a) Forces acting on CV .
(b) Expression for velocity distribution.

Solution: The forces on a CV of radius - are shown above.
Apply the x component of momenterm to cv shown.
Basic equations:

$$
F_{x}+F_{B_{x}}^{-\alpha(1)}=\frac{\partial}{\Delta t} \int_{c v}^{=o(2)} u p d v+\int_{c s}^{m} u p \vec{v} \cdot d \vec{A}, \tau_{r x}=\mu \frac{d u}{d r}
$$

Asscemptions: (1) $F_{B_{x}}=0$
(2) Steady frow
(3) Fully-developed flow

Then

$$
F_{s_{x}}=\left(p-\frac{\partial p}{\partial x} \frac{d x}{2}\right) \pi r^{2}+\tau_{r x} 2 \pi r d x-\left(p+\frac{\partial p}{\partial x} \frac{d x}{2}\right) \pi r^{2}=0
$$

cancelling and combining terms,

$$
-r \frac{\partial p}{\partial x}+z \tau_{r x}=0 \quad \text { or } \quad \tau_{r x}=\mu \frac{d u}{d r}=\frac{r}{2} \frac{\partial p}{\partial x}
$$

Thus $\frac{d u}{d r}=\frac{r}{2 \mu} \frac{\partial p}{\partial x}$
and

$$
u=\frac{r^{2}}{4 \mu} \frac{\partial p}{\partial x}+c
$$

To evaluate c_{1}, apply the boundary condition $u=0$ at $r=1$. This

$$
c_{1}=-\frac{R^{2}}{4 \mu} \frac{\partial p}{\partial x}
$$

and

$$
u=\frac{1}{4 u} \frac{\partial p}{\partial x}\left(r^{2}-R^{2}\right)=-\frac{R^{2}}{4 u} \frac{\partial p}{\partial x}\left[1-\left(\frac{R}{R}\right)^{2}\right]
$$

which is identical to E9.8.12.

Given: Fully-developed laminar flow in an annulus as shown. The inner section is stationary; the outer moves at V_{0}.
Assume $\frac{\partial p}{\partial x}=0$.

Find: (a) $\tau(r)$ in terms of c_{1}.
(b) $V(r)$ in terms of c_{1}, c_{2}.
(c) Evaluate c_{1}, c_{2}.

Solution: Apply x component of momentum equation, using annular CV Shown.
Basic Equations: $F_{s_{x}}+F_{B_{x}}^{\prime}=\frac{\partial}{\partial t} \int_{c v} u p d \forall+\int_{c s}^{=0(z)} u p \vec{v} \cdot d \vec{A} ; \quad t_{x}=\mu \frac{d u}{d r}=\tau$
Assumptions: (1) $F_{B x}=0$
(2) steady flow
(s) Fully developed flow

Then

$$
F_{s_{x}}=F_{0}-\left(\frac{s}{2}=\left(t+\frac{d r}{d r}\right) 2 \pi\left(r+\frac{d r}{2}\right) d x-\left(\tau-\frac{d r}{d r} \frac{d r}{2} 2 \pi\left(r-\frac{d r}{2}\right) d x=0\right.\right.
$$

Negrecting products of differentials, this reduces to

$$
\tau+r \frac{d \tau}{d r}=0 \quad \text { or } \quad d \quad(r \tau)=0
$$

Thus $r=c_{1} \quad$ or $\quad \tau=\frac{c_{1}}{r}$
But $\tau=\mu \frac{d u}{d r}$, so $\quad \frac{d u}{d r}=\frac{c_{1}}{\mu r}$ and $\quad \mu=\frac{c_{1}}{\mu} \ln r+c_{2}$
To evaluate constants c_{1} and c_{2}, use boundary conditions.
At $r c_{1}, u=v_{b}$ so $\quad V_{0}=\frac{c_{1}}{a_{1}} \ln r_{c}+c_{2}$
At $r=r_{0}, \mu=0, \quad 0 \quad \frac{c_{1}}{\mu} \ln r_{0}+c_{2} \quad$ and $c_{2}=-\frac{c_{1}}{\mu} \ln r_{0}$
Thus, subtracting, $v_{0}=\frac{c_{1}}{\mu} \ln \left(\frac{r_{1}}{r_{0}}\right)$ or $c_{1}=\frac{\mu v_{0}}{\ln \left(r_{2} / r_{0}\right)} \leq 0 \quad c_{2}=\frac{-V_{0} \ln r_{0}}{\ln \left(r_{0}\right)}$
Finally

$$
u=\frac{V_{0}}{\ln \left(r_{i} / r_{0}\right)}\left(\ln r-\ln r_{i}\right)=V_{0} \frac{\ln \left(r / r_{0}\right)}{\ln \left(r_{i} / r_{0}\right)}
$$

Given: Fully developed laminar flows with pressure gradient, $2-P l a x$, in tit annulus shown

(a) Show Wat the velocity profile is givenby $\quad u=-\frac{R^{2}}{4 \mu}\left(\frac{\partial p}{\partial \nu}\right)\left[1-\left(\frac{\Gamma}{R}\right)^{2}+\frac{\left(1-l^{2}\right)}{\ln (1 / R)} \ln \frac{\Gamma}{R}\right]$
(b) Obtain an expression for the location $(\alpha=r l e)$ of matiriur u as a function of k.
(c) Tot α us k.
(d) Compare limiting casa, $k \rightarrow 0$, with flow in circular pipe.

Solution: We may use the results of the differential control $\sqrt{0}$ lure analysis of Section $8-3$ to write

$$
\begin{equation*}
u=\frac{r^{2}}{4 \mu} \frac{\partial P}{\partial x}+\frac{c_{1}}{\mu} \ln r+c_{2} \tag{1}
\end{equation*}
$$

The boundary conditions are $u=0$ at $r=R$
$u=0$ at $r=k R$.
Substituting the boundary conditions

$$
\begin{align*}
& 0=\frac{k^{2}}{4 \mu} \frac{2 p}{2 x}+\frac{c_{1}}{\mu} \ln R+c_{2} \\
& 0=\frac{k^{2} R^{2}}{4 \mu} \frac{\partial p}{2 x}+\frac{c_{1}}{\mu} \ln k R+c_{2} \tag{3}
\end{align*}
$$

Subtractrig, $0=\frac{R^{2}}{4} \frac{\partial p}{\partial x}\left(1-k^{2}\right)+\frac{c_{1}}{\mu^{2}}(\ln R-\ln k k)$

$$
\therefore \quad c_{1}=-\frac{R^{2}}{4} \frac{\partial P}{\partial x} \frac{\left(1-b^{2}\right)}{\ln (1 \mid t)}
$$

From Eq.: 2

$$
c_{2}=-\frac{R^{2}}{4 \mu} \frac{\partial p}{2 n}+\frac{R^{2}}{4 \mu} \frac{\partial p}{\partial k} \frac{\left(1-t^{2}\right)}{\ln (1) t} \ln k
$$

Substituturig for c_{1} and c_{2} into Eq. goes

$$
\begin{aligned}
& u=\frac{r^{2}}{4 \mu} \frac{\partial p}{\partial x}-\frac{R^{2}}{4 \mu} \frac{\partial p}{\partial R} \frac{\left(1-k^{2}\right)}{\ln (16)} \ln r-\frac{R^{2}}{4 \mu} \frac{\partial p}{\partial r}+\frac{k^{2}}{4 \mu} \frac{\partial p}{\partial k} \frac{\left(1-b^{2}\right)}{\ln (1) l t} \ln R \\
& u=\frac{1}{4 \mu} \frac{\partial p}{\partial x}\left[r^{2}-R^{2}-\frac{R^{2}\left(1-b^{2}\right)}{\ln (16)}(\ln r-\ln R)\right] \\
& u=-\frac{R^{2}}{4 \mu} \frac{\partial p}{\partial x}\left[1-\left(\frac{r}{R}\right)^{2}+\frac{\left(1-R^{2}\right)}{\ln (1 \mid t)} \ln \frac{r}{R}\right]
\end{aligned}
$$

To locate max u, set $r_{r-}=\mu \frac{d u}{d r}=0$

$$
r_{r x}=\mu \frac{d u}{d r}=-\frac{R^{2}}{4} \frac{2 f}{2 r}\left[-\frac{2 r}{R^{2}}+\frac{\left(1-t^{2}\right)}{\ln (1) t)} \frac{1}{r}\right]
$$

Given: Fully developed laminar Alas in the annulus shown, will pressure gradient $2 \cdot 15 x$.
tine velocity profile
is gwen bf

$$
u=-\frac{R^{2}}{4 \mu} \cdot \frac{\partial \varphi}{\partial x}\left[1-\left(\frac{F}{R}\right)^{2}+\frac{\left(1-R^{2}\right)}{\ln (1) R)} \ln \frac{\Gamma}{R}\right]
$$

(a) Show that the volume flow rate is gen by

$$
Q=-\frac{\pi R^{4}}{8 \mu} \frac{\partial P}{\partial x}\left[\left(1-k^{4}\right)-\frac{\left(1-l^{2}\right)^{2}}{G(18)}\right]
$$

(b) Obtain an expression for the average velocity (c) Compare linting case, $k \rightarrow 0$, with flow in a circular pipe.
Solution: The volume flow rate is gwen by

$$
\begin{align*}
& Q=\int u d A=\int_{k Q}^{k} u 2 \pi r d r=2 \pi \int_{t z}^{R} u r d r \\
& =2 \pi\left(-\frac{R^{2}}{4 \mu} \frac{2 P}{2 n}\right) \int_{k}^{R}\left[r-\frac{r^{3}}{R^{2}}+\frac{\left(1-R^{2}\right)}{\ln (1 / R)} r \ln \frac{r}{R}\right] d r \\
& =-\left.\frac{\pi}{2 \mu} R^{4} \frac{\partial P}{\partial x}\right|_{k} ^{1}\left[\frac{r}{R}-\left(\frac{r}{R}\right)^{3}+\frac{\left(l-R^{2}\right)}{\ln (i l t)} \frac{r}{R} \ln \frac{r}{R}\right] d\left(\frac{r}{R}\right) \\
& =-\frac{\pi R^{4}}{2 \mu} \frac{\partial P}{\partial x}\left[\frac{1}{2}\left(\frac{r}{R}\right)^{2}-\frac{1}{4}\left(\frac{r}{R}\right)^{4}+\frac{\left(1-t^{2}\right)}{\ln (\sqrt{R})}\left\{\left(\frac{r}{R}\right)^{2}\left[\frac{1}{2} \ln \left(\frac{r}{R}\right)-\frac{r}{4}\right)\right]\right]_{k}^{1} \\
& =-\frac{\pi p^{2}}{2 \mu} \frac{\partial p}{\partial \mu}\left[\frac{1}{2}-\frac{k^{2}}{2}-\frac{1}{4}+\frac{k^{4}}{4}+\frac{\left(1-k^{2}\right)}{\ln (12)}\left\{-\frac{1}{4}-k^{2}\left[\frac{1}{2} \ln k-\frac{1}{4}\right]\right\}\right. \\
& =-\frac{\pi l^{4}}{2 \mu} \frac{\partial p}{\partial \alpha}\left[\frac{1}{4}-\frac{t^{2}}{2}+\frac{b^{4}}{4}+\frac{\left(1-t^{2}\right)}{\ln (1 / k)}\left\{-\frac{1}{4}+\frac{b^{2}}{4}-b^{2} \frac{1}{2} \ln k\right\}\right. \\
& =-\frac{\pi k^{4}}{2 \mu} \frac{\partial p}{\partial k}\left[\frac{1-2 k^{2}+k^{4}}{4}+\frac{\left(1-k^{2}\right)}{\ln (1 k)} \frac{\left(k^{2}-1\right)}{4}-\frac{\left(1-f^{2}\right)}{\ln (1) k} k^{2} \frac{1}{2} \ln k\right] \\
& =-\frac{\pi p^{4}}{2 \mu} \frac{\partial P}{\partial x}\left[\frac{1-2 t^{2}+b^{4}}{4}-\frac{\left(1-t^{2}\right)^{2}}{4 \ln (1 t)}+\frac{t^{4}-b^{4}}{2}\right] \\
& =-\frac{\pi p^{4}}{2 \mu} \cdot \frac{\partial p}{2 k}\left[\frac{1-2 k^{2}+b^{4}+2 k^{2}-2 t^{4}}{4}-\frac{\left(1-b^{2}\right)^{2}}{4(1) t)}\right] \\
& Q=-\frac{\pi e^{4}}{8 \mu} \frac{\partial p}{\partial x}\left[\left(1-k^{4}\right)-\frac{\left(1-b^{2}\right)^{2}}{\ln (1 \mid k)}\right]
\end{align*}
$$

The average velocity, $\bar{Y}=\frac{0}{\bar{A}}$

The area is given by

$$
\begin{aligned}
& A=\left(d R=\left(2 \pi r d r=2 \pi R^{2} C_{k}^{1} \frac{r}{R} d\left(\frac{r}{k}\right)\right.\right. \\
& A=2 \pi R^{2}\left[\frac{1}{2}\left(\frac{r}{R}\right)^{2}\right]_{R}^{1}=2 \pi R^{2}+\frac{1}{2}\left(1-R^{2}\right)=\pi R^{2}\left(1-b^{2}\right)
\end{aligned}
$$

Thus

$$
\begin{aligned}
& \bar{V}=\frac{Q}{A}=-\frac{\pi R^{4}}{8 \mu} \frac{\partial p}{\partial \alpha} \times \frac{1}{\pi R^{2}}\left[\frac{\left(1-b^{4}\right)}{\left(1-b^{2}\right)}\right. \\
& \bar{V}=-\frac{R^{2}}{8 \mu} \frac{\partial p}{\partial \alpha}\left[\frac{\left(1-b^{4}\right)}{\left(1-b^{2}\right)}-\frac{\left(1-b^{2}\right)}{\ln (1)}\right]
\end{aligned}
$$

For $k \rightarrow 0$

$$
Q=-\frac{\pi R^{4}}{8 \mu} \frac{\partial P}{\partial x} \text { and } \bar{V}=-\frac{R^{2}}{8 \mu} \frac{\partial P}{\partial x}
$$

These agree with the results for flow in a circular pipe.

Problem 8.55

In a food industry plant two immiscible fluids are pumped through a tube such that fluid $1\left(\mu_{1}=1 \mathrm{~N} \cdot \mathrm{~s} / \mathrm{m}^{2}\right)$ forms an inner core and fluid $2\left(\mu_{2}=1.5 \mathrm{~N} \cdot \mathrm{~s} / \mathrm{m}^{2}\right)$ forms an outer annulus. The tube has $D=5 \mathrm{~mm}$ diameter and length $L=10 \mathrm{~m}$. Derive and plot the velocity distribution if the applied pressure difference, Δp, is 10 kPa .

Given: Data on tube, applied pressure, and on two fluids in annular flow

Find: Velocity distribution; plot

Solution

Given data

$$
\begin{array}{ll}
\mathrm{D}=5 \cdot \mathrm{~mm} & \mathrm{~L}=10 \cdot \mathrm{~m} \\
\mu_{1}=1 \cdot \frac{\mathrm{~N} \cdot \mathrm{~s}}{\mathrm{~m}^{2}} & \mu_{2}=1.5 \cdot \frac{\mathrm{~N} \cdot \mathrm{~s}}{\mathrm{~m}^{2}}
\end{array}
$$

$$
\Delta \mathrm{p}=-10 \cdot \mathrm{kPa}
$$

From Section 8-3 for flow in a pipe, Eq. 8.11 can be applied to either fluid

$$
\mathrm{u}=\frac{\mathrm{r}^{2}}{4 \cdot \mu} \cdot\left(\frac{\partial}{\partial \mathrm{x}} \mathrm{p}\right)+\frac{\mathrm{c}_{1}}{\mu} \cdot \ln (\mathrm{r})+\mathrm{c}_{2}
$$

Applying this to fluid 1 (inner fluid) and fluid 2 (outer fluid)

$$
\mathrm{u}_{1}=\frac{\mathrm{r}^{2}}{4 \cdot \mu_{1}} \cdot \frac{\Delta \mathrm{p}}{\mathrm{~L}}+\frac{\mathrm{c}_{1}}{\mu_{1}} \cdot \ln (\mathrm{r})+\mathrm{c}_{2} \quad \mathrm{u}_{2}=\frac{\mathrm{r}^{2}}{4 \cdot \mu_{2}} \cdot \frac{\Delta \mathrm{p}}{\mathrm{~L}}+\frac{\mathrm{c}_{3}}{\mu_{2}} \cdot \ln (\mathrm{r})+\mathrm{c}_{4}
$$

We need four BCs. Two are obvious $r=\frac{D}{2} \quad u_{2}=0$

$$
\begin{equation*}
\mathrm{r}=\frac{\mathrm{D}}{4} \quad \mathrm{u}_{1}=\mathrm{u}_{2} \tag{2}
\end{equation*}
$$

The third BC comes from the fact that the axis is a line of symmetry

$$
\begin{equation*}
\mathrm{r}=0 \quad \frac{\mathrm{du}_{1}}{\mathrm{dr}}=0 \tag{3}
\end{equation*}
$$

The fourth BC comes from the fact that the stress at the interface generated by each fluid is the s

$$
\begin{equation*}
\mathrm{r}=\frac{\mathrm{D}}{4} \quad \mu_{1} \cdot \frac{\mathrm{du}_{1}}{\mathrm{dr}}=\mu_{2} \cdot \frac{\mathrm{du}_{2}}{\mathrm{dr}} \tag{4}
\end{equation*}
$$

Using these four BCs $\frac{\left(\frac{D}{2}\right)^{2}}{4 \cdot \mu_{2}} \cdot \frac{\Delta \mathrm{p}}{L}+\frac{\mathrm{c}_{3}}{\mu_{2}} \cdot \ln \left(\frac{\mathrm{D}}{2}\right)+\mathrm{c}_{4}=0$

$$
\frac{\left(\frac{\mathrm{D}}{4}\right)^{2}}{4 \cdot \mu_{1}} \cdot \frac{\Delta \mathrm{p}}{\mathrm{~L}}+\frac{\mathrm{c}_{1}}{\mu_{1}} \cdot \ln \left(\frac{\mathrm{D}}{4}\right)+\mathrm{c}_{2}=\frac{\left(\frac{\mathrm{D}}{4}\right)^{2}}{4 \cdot \mu_{2}} \cdot \frac{\Delta \mathrm{p}}{\mathrm{~L}}+\frac{\mathrm{c}_{3}}{\mu_{2}} \cdot \ln \left(\frac{\mathrm{D}}{4}\right)+\mathrm{c}_{4}
$$

$$
\lim _{r \rightarrow 0} \frac{c_{1}}{\mu_{1} \cdot r}=0
$$

$$
\frac{\mathrm{D}}{8} \cdot \frac{\Delta \mathrm{p}}{\mathrm{~L}}+\frac{4 \cdot \mathrm{c}_{1}}{\mathrm{D}}=\frac{\mathrm{D}}{8} \cdot \frac{\Delta \mathrm{p}}{\mathrm{~L}}+\frac{4 \cdot \mathrm{c}_{3}}{\mathrm{D}}
$$

Hence, after some algebra

$$
c_{1}=0 \quad\left(\text { To avoid singularity } \quad c_{2}=-\frac{D^{2} \cdot \Delta p}{64 \cdot L} \frac{\left(\mu_{2}+3 \cdot \mu_{1}\right)}{\mu_{1} \cdot \mu_{2}}\right.
$$

$$
c_{3}=0
$$

$$
c_{4}=-\frac{D^{2} \cdot \Delta p}{16 \cdot L \cdot \mu_{2}}
$$

The velocity distributions are then

$$
\begin{aligned}
& u_{1}=\frac{\Delta p}{4 \cdot \mu_{1} \cdot L} \cdot\left[r^{2}-\left(\frac{D}{2}\right)^{2} \cdot \frac{\left(\mu_{2}+3 \cdot \mu_{1}\right)}{4 \cdot \mu_{2}}\right] \\
& u_{2}=\frac{\Delta p}{4 \cdot \mu_{2} \cdot L} \cdot\left[r^{2}-\left(\frac{D}{2}\right)^{2}\right]
\end{aligned}
$$

(Note that these result in the same expression if $\mu_{1}=\mu_{2}$, i.e., if we have one fluid)

Evaluating either velocity at $r=D / 4$ gives the velocity at the interface

$$
u_{\text {interface }}=-\frac{3 \cdot \mathrm{D}^{2} \cdot \Delta \mathrm{p}}{64 \cdot \mu_{2} \cdot \mathrm{~L}} \quad \mathrm{u}_{\text {interface }}=7.81 \times 10^{-4} \frac{\mathrm{~m}}{\mathrm{~s}}
$$

Evaluating u_{1} at $r=0$ gives the maximum velocity

$$
u_{\max }=-\frac{D^{2} \cdot \Delta p \cdot\left(\mu_{2}+3 \cdot \mu_{1}\right)}{64 \cdot \mu_{1} \cdot \mu_{2} \cdot L}
$$

$$
\mathrm{u}_{\max }=1.17 \times 10^{-3} \frac{\mathrm{~m}}{\mathrm{~s}}
$$

The velocity distributions are plotted in the associated Excel workbook

Problem 8.55 (In Excel)

In a food industry plant two immiscible fluids are pumped through a tube such that fluid $1\left(\mu_{1}=1 \mathrm{~N} \cdot \mathrm{~s} / \mathrm{m}^{2}\right)$ forms an inner core and fluid $2\left(\mu_{2}=1.5 \mathrm{~N} \cdot \mathrm{~s} / \mathrm{m}^{2}\right)$ forms an outer annulus. The tube has $D=5 \mathrm{~mm}$ diameter and length $L=10 \mathrm{~m}$. Derive and plot the velocity distribution if the applied pressure difference, Δp, is 10 kPa .

Given: Data on tube, applied pressure, and on two fluids in annular flow

Find: Velocity distribution; plot

Solution

| L | $=$ | 10 | m | $\mathrm{u}_{1}=\frac{\Delta \mathrm{p}}{4 \cdot \mu_{1} \cdot \mathrm{~L}} \cdot\left[\mathrm{r}^{2}-\left(\frac{\mathrm{D}}{2}\right)^{2} \cdot \frac{\left(\mu_{2}+3 \cdot \mu_{1}\right)}{4 \cdot \mu_{2}}\right]$ |
| ---: | :--- | ---: | :--- | ---: | :--- |
| D | $=$ | 5 | mm | $\mathrm{u}_{2}=\frac{\Delta \mathrm{p}}{4 \cdot \mu_{2} \cdot \mathrm{~L}} \cdot\left[\mathrm{r}^{2}-\left(\frac{\mathrm{D}}{2}\right)^{2}\right]$ |

$r(\mathrm{~mm})$	$u_{1}(\mathrm{~m} / \mathrm{s})$	$u_{2}(\mathrm{~m} / \mathrm{s})$
0.00	1.172	
0.13	1.168	
0.25	1.156	
0.38	1.137	
0.50	1.109	
0.63	1.074	
0.75	1.031	
0.88	0.980	
1.00	0.922	
1.13	0.855	
1.25	0.781	0.781
1.38		0.727
1.50		0.667
1.63		0.602
1.75		0.531
1.88		0.456
2.00		0.375
2.13		0.289
2.25		0.198
2.38		0.102
2.50		0.000

Problem 8.56

Given: Fully developed lamias flow in a circular pipe is converted to flow in an annulus by insertion of a thin wire along the centertine

(a) Use results of Problem 8.51 to obtain an expression for the percent change in pressure drop as a function of radius ratio k.
(b) Plot percent change in DP us k for $0.001 \leq k \leq 0.10$

Solution: The results of problem 8.48 give
Thus

$$
Q=-\frac{\pi R^{H}}{8 \mu} \frac{2 p}{2 x}\left[\left(1-k^{4}\right)-\frac{\left(1-k^{2}\right)^{2}}{\ln (1 / k)}\right.
$$

$$
\frac{\Delta p}{L}=-\frac{\partial p}{\partial R}=\frac{8 \mu Q}{\pi R^{4}} \times \frac{1}{\left[\left(1-R^{4}\right)-\frac{\left(1-R^{2}\right)^{2}}{\ln (1) R}\right]}
$$

For $k=0, \quad \frac{\Delta P}{L}=\frac{3 \mu Q}{\pi R^{u}}$

$$
\text { Percent change }=\frac{\Delta P / L-\Delta P / L)_{k}=0}{\Delta P(L) l_{k=0}}=\frac{1}{\left[\left(1-f^{4}\right)-\frac{(1-k)^{2}}{\left.\ln (1 /)^{2}\right]}\right.}-1
$$

$$
q_{0} \text { change }=\frac{1-\left[\left(1-k^{4}\right)-\frac{\left(1-b^{2}\right)}{\ln (16)}\right]}{\left[\left(1-b^{4}\right)-\left(\frac{1-b^{2}}{} \ln ^{1}\left(\frac{k}{2}\right)\right]\right.}
$$

For small k,

$$
\text { Om all } k_{1} \text { Charge }=\frac{1-\left[1-\frac{1}{\ln (1) k)]}\right.}{[1-\ln (k)]}=\frac{1-\left[1+\frac{1}{\ln k}\right]}{\left[1+\frac{1}{\ln k}\right]}=\frac{-\frac{1}{\ln k}}{\left[1+\frac{1}{\ln k}\right]}
$$

$$
\text { bocrange }=-\frac{1}{\ln k(1+\sin)} \times 100
$$

The plot shows that even the smallest of wires causes a significant increase in pressure drop for a given Row rate.

Given: Horizontal pipe with fully developed turbulent flow.

$$
\Delta p=p_{1}-p_{2}=5 p s i
$$

Find: wall shear stress, Iv.
Solution: Apply momentum equation to cylindrical CV:
Basic equation:

$$
\therefore F_{s x}+F_{\beta_{x}}^{=0(1)}=\frac{d}{\neq t} \int_{c v} u \rho d t+\int_{c s} u \rho \vec{v} \cdot d \vec{A}=0(3) r_{r} \rightarrow x
$$

Assumptions: (1) Horizontal pipe
(z) Steady flow
(3) Fully developed flow

Then

$$
F_{s_{x}}=p_{1} \frac{\pi D^{2}}{4}+\tau_{w} \pi D L-p_{2} \frac{\pi D^{2}}{4}=0 \quad \text { or } \quad \tau_{w}=\frac{p_{2}-p_{1}}{4} \frac{D}{L}=-\frac{\Delta p D}{4 L}
$$

or

$$
\tau_{\omega}=-\frac{1}{4} \times 5 \frac{16 f}{\mathrm{ln}^{2^{2}}} \times \operatorname{in} \times \frac{1}{30 \mathrm{ft}} \times 12 \frac{\mathrm{in}}{\mathrm{ft}}=-3.0 \mathrm{lbf} / \mathrm{ft}^{2} .
$$

since $\tau_{w}<0$, it acts to left on fluid, to right on pipe wall.

Given: Horizontal rectangular channel with fully developed flow of water

$$
\Delta p=p_{1}-p_{2}=3.0 \mathrm{kPa}
$$

Find: Average wall shear stress, $\bar{\tau}_{w}$.
Solution: Apply momentum equation to $C V$ inside duct surface
 Basic equation:

$$
F_{s x}+F_{Q_{x}}^{=0(1)=\Delta(2)}=\frac{s}{p t} \int_{c v} u p d t+\int_{c s} u p \vec{v} \cdot d \vec{A}
$$

Assumptions: (1) Horizontal chanel

(2) Steady flow
(3) Fully developed flow

Then

$$
F_{S x}=p, w H+\bar{\tau}_{w} z(w+H) L-p_{2} w_{H}=0 \quad \text { or } \quad \bar{\tau}_{w}=\left(p_{2}-p_{1}\right) \frac{w H}{z(w+H) L}=-\Delta p_{2} \frac{H}{2\left(1+\frac{H}{w}\right) L}
$$

or

$$
\bar{\tau}_{w}=-\frac{3.0 \mathrm{kPa}}{2} \times 0.03 \mathrm{~m} \times \frac{1}{(1+30 / 240)} \times \frac{1}{5 \mathrm{~m}}=-8.0 \mathrm{~Pa}\left(-8.0 \mathrm{~N} / \mathrm{m}^{2}\right)
$$

since $\tau_{w<0}$, it acts to left on fluid, to right on channel wall.

Problem 8.59

Kerosine is pumped through a smooth tube with inside diameter $D=30 \mathrm{~mm}$ at close to the critical Reynolds number. The flow is unstable and fluctuates between laminar and turbulent states, causing the pressure gradient to intermittently change from approximately $-4.5 \mathrm{kPa} / \mathrm{m}$ to $-11 \mathrm{kPa} / \mathrm{m}$. Which pressure gradient corresponds to laminar, and which to turbulent, flow? For each flow, compute the shear stress at the tube wall, and sketch the shear stress distributions.

Given: Data on pressure drops in flow in a tube

Find: Which pressure drop is laminar flow, which turbulent

Solution

Given data

$$
\frac{\partial}{\partial \mathrm{x}} \mathrm{p}_{1}=-4.5 \cdot \frac{\mathrm{kPa}}{\mathrm{~m}} \quad \frac{\partial}{\partial \mathrm{x}} \mathrm{p}_{2}=-11 \cdot \frac{\mathrm{kPa}}{\mathrm{~m}} \quad \mathrm{D}=30 \cdot \mathrm{~mm}
$$

From Section 8-4, a force balance on a section of fluid leads to

$$
\tau_{\mathrm{w}}=-\frac{\mathrm{R}}{2} \cdot \frac{\partial}{\partial \mathrm{x}} \mathrm{p}=-\frac{\mathrm{D}}{4} \cdot \frac{\partial}{\partial \mathrm{x}} \mathrm{p}
$$

Hence for the two cases

$$
\begin{array}{ll}
\tau_{\mathrm{w} 1}=-\frac{\mathrm{D}}{4} \cdot \frac{\partial}{\partial \mathrm{x}} \mathrm{p}_{1} & \tau_{\mathrm{w} 1}=33.8 \mathrm{~Pa} \\
\tau_{\mathrm{w} 2}=-\frac{\mathrm{D}}{4} \cdot \frac{\partial}{\partial \mathrm{x}} \mathrm{p}_{2} & \tau_{\mathrm{w} 2}=82.5 \mathrm{~Pa}
\end{array}
$$

Because both flows are at the same nominal flow rate, the higher pressure drop must correspond to the turbulent flow, because, as indicated in Section 8-4, turbulent flows experience additional stresses. Also indicated in Section 8-4 is that for both flows the shear stress varies from zero at the centerline to the maximums computed above at the walls.

Given: Liquid win viscosity and density of water in laminar flow in a smooth capillary thebe. $D=0.25 \mathrm{~mm}, L=50 \mathrm{~mm}$.

Find: (a) Maximcen volume flow rate.
(b) Pressure drop to produce this flow rate.
(c) Corresponding wall shear stress.

Solution: Flow will be laminar for $R_{e}<2300$.

$$
R_{e}=\frac{\rho \bar{V} O}{\mu}=\frac{\bar{V} D}{\nu}=\frac{Q}{A} \frac{D}{\nu}=\frac{4 Q}{\pi D^{2}} \frac{D}{\nu}=\frac{4 Q}{\bar{\pi} \nu}<2300
$$

Thus ($a t T=20^{\circ} \mathrm{C}$)

$$
Q<\frac{2300 \pi 2 D}{4}=\frac{2300 \pi}{4} \times 1.0 \times 10^{-6} \frac{\mathrm{~m}^{2}}{\mathrm{~s}} \times 0.00025 \mathrm{~m}=4.52 \times 10^{-7} \mathrm{~m}^{3} / \mathrm{s}
$$

(This flow rate corresponds to $77.1 \mathrm{~mL} /$ min.)
A force balance on a flueio element shows:

$$
\Sigma F_{x}=\Delta p \frac{\pi D^{2}}{4}-\tau_{w} \pi D L=0
$$

or

$$
\Delta p=T_{w} \frac{4 L}{D}
$$

For laminar pipe flow, $u=u_{\text {max }}\left[1-\left(\frac{r}{e}\right)^{2}\right]$, from Eq. 8.14. Thus

$$
\left.\left.\tau_{w}=\mu \frac{\partial u}{\partial y}\right)_{y=0}=-\mu \frac{\partial u}{\partial r}\right)_{r=R}=-\mu \mu_{\max }\left(-\frac{2 r}{R^{2}}\right)_{r-R}=\frac{2 \mu \mu_{m a x}}{R}
$$

But $u_{m a_{x}}=2 \bar{v}$, so $\tau_{w}=\frac{2 \mu 2 \bar{v}}{D / 2}=\frac{8 \mu \bar{v}}{D}=8 \rho \frac{\nu \bar{v}}{D}$
Also

$$
\bar{V}=\frac{Q}{A}=\frac{4 Q}{\pi D^{2}}=\frac{4}{\pi} \times 4.52 \times 10^{-7} \frac{\mathrm{~m}^{3}}{3^{3}} \times \frac{1}{(0.00025)^{2} \mathrm{~m}^{2}}=9.21 \mathrm{~m} / \mathrm{s}
$$

Thus

$$
\tau_{w}=8 \times 999 \frac{\mathrm{~kg}}{\mathrm{~m}^{2}} \times 1.0 \times 10^{-6} \frac{\mathrm{~m}^{2}}{\mathrm{~s}^{2}} \times 9.21 \frac{\mathrm{~m}}{\mathrm{~s}} \times \frac{1}{0.00025 \mathrm{~m}} \times \frac{\mathrm{N} \cdot \mathrm{~s}^{2}}{\mathrm{~kg} \cdot \mathrm{~m}}=294 \mathrm{~N} / \mathrm{m}^{2}(294 \mathrm{~Pa}) \tau_{w}
$$

and

$$
\Delta p=4 \times 0.05 m_{\times 0.00025 m} \times 294 \frac{\mathrm{~N}}{\mathrm{~m}^{2}}=235 \mathrm{kPa}
$$

Problem 8.61 (In Excel)

Laufer [5] measured the following data for mean velocity in fully developed turbulent pipe flow at $R e_{U}=50,000$:

\bar{u} / U	0.996	0.981	0.963	0.937	0.907	0.866	0.831
y / r	0.898	0.794	0.691	0.588	0.486	0.383	0.280
a / U	0.792	0.742	0.700	0.650	0.619	0.551	
y / R	0.216	0.154	0.093	0.062	0.041	0.024	

In addition, Laufer measured the following data for mean velocity in fully developed turbulent pipe flow at $R e_{U}=500,000$:

\bar{u} / U	0.997	0.988	0.975	0.959	0.934	0.908
y / R	0.898	0.794	0.691	0.588	0.486	0.383
a / U	0.874	0.847	0.818	0.771	0.736	0.690
y / R	0.280	0.216	0.154	0.093	0.062	0.037

Using Excel's trendline analysis, fit each set of data to the "power-law" profile for turbulent flow, Eq. 8.22, and obtain a value of n for each set. Do the data tend to confirm the validity of Eq. 8.22? Plot the data and their corresponding trendlines on the same graph.

Given: Data on mean velocity in fully developed turbulent flow

Find: Trendlines for each set; values of n for each set; plot

Solution

y / R	u / U
0.898	0.996
0.794	0.981
0.691	0.963
0.588	0.937
0.486	0.907
0.383	0.866
0.280	0.831
0.216	0.792
0.154	0.742
0.093	0.700
0.062	0.650
0.041	0.619
0.024	0.551

y / R	u / U
0.898	0.997
0.794	0.998
0.691	0.975
0.588	0.959
0.486	0.934
0.383	0.908
0.280	0.874
0.216	0.847
0.154	0.818
0.093	0.771
0.062	0.736
0.037	0.690

Equation 8.22 is

$$
\frac{\bar{u}}{U}=\left(\frac{y}{R}\right)^{1 / n}=\left(1-\frac{r}{R}\right)^{1 / n}
$$

Applying the Trendline analysis to each set of data:

At $R e=50,000$
At $R e=500,000$
$u / U=1.017(y / R)^{0.161}$
$u / U=1.017(y / R)^{0.117}$
with $R^{2}=0.998$ (high confidence)
with $R^{2}=0.999$ (high confidence)

Hence $\quad \begin{aligned} 1 / n & =0.161 \\ n & =6.21\end{aligned}$
Hence

$$
\begin{aligned}
1 / n & =0.117 \\
n & =8.55
\end{aligned}
$$

Both sets of data tend to confirm the validity of Eq. 8.22

Given: Velocity profiles for pipe flow

$$
\frac{u}{u}=\left(1-\frac{r}{R}\right)^{\frac{1}{n}} \text { (turbulent); } \frac{u}{3}=1-\left(\frac{r}{R}\right)^{2} \text { (laminar) }
$$

Find: (a) value of $\bar{l} l$ at which $u=\bar{v}$ for each profile.
Mot: le us n for $6 \leqslant n \leqslant 10$
Solution:
Definition: $\quad \bar{y}=\frac{\theta}{A}=\frac{1}{A} \int_{R}^{u} d A$
For laminar flow, $\bar{V}=\frac{1}{\pi R^{2}} \int_{0}^{R} O\left[1-\left(\frac{r}{R}\right)^{2}\right] 2 \pi r d r=20\left[\left[1-\left(\frac{\pi}{R}\right)^{2}\right] \frac{r}{R} d\left(\frac{T}{R}\right)\right.$

$$
V=20\left[\frac{1}{2}\left(\frac{r}{R}\right)^{2}-\frac{1}{4}\left(\frac{r}{R}\right)^{4}\right]_{0}^{1}=\frac{V}{2}
$$

The $u=\bar{V}$ when $1-\left(\frac{\Gamma}{R}\right)^{2}=\frac{V}{J}=\frac{1}{2}$ or $\frac{\Gamma}{R}=0,707$ laminar
For turbulent flow, $\bar{J}=\frac{1}{\pi R^{2}} \int_{0}^{R} U\left(1-\frac{R}{R}\right)^{\frac{1}{\pi}} 2 \pi r d r$

$$
\bar{V}=2 \pi \int_{0}^{1}\left(1-\frac{r}{R}\right)^{\frac{1}{n}} \frac{r}{R} a\left(\frac{r}{R}\right)^{0}
$$

To integrate let $m=1-\frac{r}{R}$. Then $\frac{r}{R}=1-m, d\left(\frac{r}{R}\right)=-d m$ and

$$
\begin{aligned}
\bar{\nu} & =20 \int_{1}^{0} m^{\frac{1}{n}}(1-m)(-d m)=20 \int_{0}^{1}\left(m^{\frac{1}{n}}-m^{1+\frac{1}{n}}\right) d m \\
& =20\left[\frac{n}{n+1} m^{\frac{1}{n}+1}-\frac{n}{2 n+1} m^{2+\frac{1}{n}}\right]_{0}^{1}=2 \pi\left[\frac{n}{n+1}-\frac{n}{2 n+1}\right]
\end{aligned}
$$

$$
\begin{aligned}
& \bar{V}=20\left[\frac{n(2 n+1)-n(n+1) \cdot}{(n+1)(2 n+1)}\right]=-\frac{2 n^{2}}{(n+1)(2 n} \\
& n=7, \bar{V}=U \frac{2(-1)^{2}}{8 \times 15}=0.8172
\end{aligned}
$$

The $u=\bar{V}$ when $\left(1-\frac{r}{R}\right)^{\prime}=0.817$ or $\frac{\Gamma}{R}=1-(0.817)^{7}=0.758+$ truth
From Eq $8.24, u=\bar{V}$ when.

$$
\left(1-\frac{r}{R}\right)^{\frac{1}{n}}=\frac{2 n^{2}}{(n+1)(2 n+1)}
$$

or

$$
\frac{\Gamma}{R}=1-\left[\frac{2 n^{2}}{(n+1)(2 n+1)}\right]^{n}
$$

The is plotted us n.

Problem 8.64
Gwen: Velocity profiles for pipe flow:
$\frac{u}{y}=1-\left(\frac{r}{R}\right)^{2}$ (laminar); $\frac{u}{5}=\left(1-\frac{r}{R}\right)^{\frac{1}{n}}$ (turbulent)
Momentum coefficient, β, where $\beta \bar{M} \bar{V}=\int_{R} u$ pud
Find: (a) β for laminar profile.
(b) β for turbulent profile in $n=7$

Hot: β us n for turbulant profile over range $6 \leq n \leqslant 10$, and compare with laminar profile
Solution:

$$
\beta=\frac{1}{m} \int_{A} u \rho u d A=\frac{1}{\rho^{\prime} \pi R^{2}} \int_{0}^{R} u p u \hbar \pi r d r
$$

Noting lat $\frac{u}{y}=f\left(\left.T\right|_{R}\right)$

$$
\beta=\frac{1}{p \pi R^{2}}\left[\frac{U}{V}\right]^{2} \int_{0}^{R}\left(\frac{u}{U}\right)^{2} 2 p \pi r d r=2\left[\frac{U}{V}\right]^{2} \int_{0}^{1}\left(\frac{U}{U}\right)^{2}\left(\frac{r}{R}\right)^{2} d\left(\frac{r}{R}\right)_{m}-\beta
$$

For laminar flow, $\frac{u}{v}=1-\left(\frac{r}{R}\right)^{2}$, so $\left(\frac{u}{U}\right)^{2}=1-2\left(\frac{r}{R}\right)^{2}+\left(\frac{r}{R}\right)^{4}$, and

$$
\beta=2\left[\frac{V}{V}\right]^{2} \int_{0}^{1}\left[\left(\frac{R}{R}\right)-2\left(\frac{r}{R}\right)^{3}+\left(\frac{r}{R}\right)^{5}\right] d\left(\frac{R}{R}\right)=2\left[\frac{V}{V}\right]^{2}\left[\frac{1}{2}-\frac{1}{2}+\frac{1}{6}\right]
$$

$\beta=\frac{1}{3}\left[\frac{U}{J}\right]^{2}$. For his case $U=2 \bar{J}$ so

$$
\beta=\frac{1}{3}[2]^{2}=\frac{4}{3}
$$

Blaming
For turbulent flow, $\frac{u}{v}=\left(1-\frac{r}{R}\right)^{\frac{1}{n}}$, so $\left(\frac{u}{V}\right)^{2}=\left(1-\frac{R}{R}\right)^{\frac{2}{n}}$, and

$$
\beta=2\left[\frac{U}{\bar{j}}\right]^{2} \int_{0}^{1}\left(1-\frac{F}{R}\right)^{\frac{2}{n}}\left(\frac{\pi}{R}\right) d\left(\frac{\sigma}{R}\right)
$$

To integrate, let $m=1-\frac{r}{R}$. Then $\frac{r}{R}=1-m, d\left(\frac{r}{R}\right)=-d m$, so

$$
\begin{aligned}
& \beta=2\left[\frac{5}{5}\right]^{2} 0^{0}, m^{\frac{2}{n}}(1-m)(-d m)=2\left[\frac{0 J}{\bar{j}}\right]^{2} \int_{0}^{1}\left(m^{\frac{2}{n}}-m^{1+\frac{2}{n}}\right) d m \\
& \beta=2\left[\frac{5}{5}\right]^{2}\left[\frac{n}{(n+2)} m^{\frac{2}{n}+1}-\frac{n}{(2 n+2)^{m}}\right]_{0}^{2+\frac{2}{n}}=2\left[\frac{0}{5}\right]^{2}\left[\frac{n}{(n+2)}-\frac{n}{(2 n+2)}\right] \\
& \beta=2\left[\frac{5}{7}\right]^{2}\left[\frac{(2 n+2) n-(n+2) n}{(n+2)(2 n+2)}=2\left[\frac{0}{5}\right]^{2}\left[\frac{n^{2}}{(n+2)(2 n+2)}\right]_{-}(1)\right.
\end{aligned}
$$

From Eq. 8.24, $\quad \frac{\bar{V}}{0}=\frac{2 n^{2}}{(n+1)(2 n+1)}$
For $n=7, \frac{\bar{y}}{0}=0.817$, so

$$
\beta=\left[\frac{1}{0.877}\right]^{2} \frac{2(7)^{2}}{(9)(16)}=1.02
$$

Bant

Problem 8.65

Given: Fully developed, laminar flow of water between paralle/plates:

Find: Kines ic energy coefficient, α
Solution: Apply definition of kinetic energy coefficient,

$$
\begin{equation*}
\alpha=\frac{\int_{A} \rho V^{3} d A}{\dot{m} \nabla^{2}} \quad \dot{m}=\rho \bar{\nabla} A \tag{8,26b}
\end{equation*}
$$

From the analysis of Section 8-2, for flow between parallel plates,

$$
\begin{equation*}
u=u_{\max }\left[1-\left(\frac{y}{a / 2}\right)^{2}\right]=\frac{3}{2} \bar{v}\left[1-\left(\frac{y}{a / 2}\right)^{2}\right] \text { since } u_{\max }=\frac{3}{2} \bar{v} \tag{8,62}
\end{equation*}
$$

substituting into Eq. 8.20b,

$$
\alpha=\frac{\int_{A} \rho V^{3} d A}{\dot{m} \bar{V}^{2}}=\frac{\int_{A} \rho u^{3} d A}{\rho \bar{V} A V^{2}}=\frac{1}{A} \int_{A}\left(\frac{u}{\bar{V}}\right)^{3} d A=\frac{1}{w a} \int_{-a / 2}^{a / 2}\left(\frac{u}{V}\right)^{3} w d y=\frac{2}{a} \int_{0}^{a / 2}\left(\frac{u}{\bar{V}}\right)^{3} d \psi
$$

Then

$$
\alpha=\frac{2}{a} \frac{a}{2} \int_{0}^{1}\left(\frac{u}{u_{\max }}\right)^{3}\left(\frac{u_{\max }}{\nabla}\right)^{3} d\left(\frac{y}{a / 2}\right)=\left(\frac{3}{2}\right)^{3} \int_{0}^{1}\left(1-\eta^{2}\right)^{3} d \eta \text { where } \eta=\frac{y}{a / 2} \text {. }
$$

Evaluating,

$$
\left(1-n^{2}\right)^{3}=1-3 n^{2}+3 n^{4}-n^{6}
$$

The integral is

$$
\int_{0}^{1}\left(1-\eta^{2}\right)^{3} d \eta=\left[\eta-\frac{3}{3} \eta^{3}+\frac{3}{5} \eta^{5}-\frac{1}{7} \eta^{7}\right]_{0}^{1}=\frac{3}{5}-\frac{1}{7}=\frac{21-5}{35}=\frac{16}{35}
$$

substituting,

$$
\left.\alpha=\left(\frac{3}{2}\right)^{3} \int_{0}^{1}\left(1-\eta^{2}\right)^{3} d r\right)=\frac{77}{8} \frac{16}{35}=\frac{54}{35}=1.54
$$

Given: Fully developed laminar flow in a circular tube.

Find: Kine ic energy coefficient, α
Solution: Apply definition of Kinetic energy coefficient,

$$
\begin{equation*}
\alpha=\frac{\int_{A} \rho V^{3} d A}{\dot{m} \bar{V}^{2}}, \dot{m}=\rho \bar{V} A \tag{8.266}
\end{equation*}
$$

From the analysis of section 8-3, for flow in a circular tube,

$$
u=u_{\max }\left[1-\left(\frac{r}{R}\right)^{2}\right]=2 \bar{v}\left[1-\left(\frac{r}{R}\right)^{2}\right] \text { since } u_{\max }=2 \bar{v}
$$

Substituting into Eq. 8.256 ,

$$
\alpha=\frac{\int_{A} \rho V^{3} d A}{\dot{m} \bar{V}^{2}}=\frac{\int_{A} \rho u^{3} d A}{\rho \bar{V} A \bar{V}^{2}}=\frac{1}{A} \int_{A}\left(\frac{\mu}{V}\right)^{3} d A=\frac{1}{\pi R^{2}} \int_{0}^{R}\left(\frac{\mu}{\bar{V}}\right)^{3} 2 \pi r d r=2 \int_{0}^{1}\left(\frac{\mu}{\bar{V}}\right)^{3}\left(\frac{\tilde{R}}{}\right) d\left(\frac{r}{R}\right)
$$

Then

$$
\alpha=2 \int_{0}^{1}\left(\frac{u}{u_{\max }}\right)^{3}\left(\frac{u_{\max }}{\bar{v}}\right)^{3}\left(\frac{r}{R}\right) d\left(\frac{r}{R}\right)=2(2)^{3} \int_{0}^{1}\left(1-\eta^{2}\right)^{3} \eta d \eta \text { where } \eta=\frac{r}{R}
$$

Evaluating,

$$
\left(1-\eta^{2}\right)^{3} \eta=\eta-3 \eta^{3}+3 \eta^{5}-\eta^{7}
$$

The integral is

$$
\int_{0}^{1}\left(1-\eta^{2}\right)^{3} \eta d \eta=\left[\frac{\eta^{2}}{2}-\frac{3}{4} \eta^{4}+\frac{3}{6} \eta^{6}-\frac{1}{8} \eta^{8}\right]_{0}^{1}=\frac{1}{2}-\frac{3}{4}+\frac{1}{2}-\frac{1}{8}=\frac{1}{8}
$$

substituting,

$$
\alpha=16 \int_{0}^{1}\left(1-\eta^{2}\right)^{3} \eta d \eta=16 x \frac{1}{8}=2
$$

Problem 8.67

Show that the kinetic energy coefficient, α, for the "power law" turbulent velocity profile of Eq. 8.22 is given by Eq. 8.27. Plot α as a function of $R e_{V}$, for $R e_{\tilde{V}}=1 \times 10^{4}$ to 1×10^{7}. When analyzing pipe flow problems it is common practice to assume $\alpha \approx 1$. Plot the error associated with this assumption as a function of $R e_{\tilde{V}}$, for $R e_{\tilde{V}}=1 \times 10^{4}$ to 1×10^{7}.

Given: Definition of kinetic energy correction coefficient α

Find: α for the power-law velocity profile; plot

Solution

Equation 8.26b is

$$
\alpha=\frac{\int \rho \cdot \mathrm{V}^{3} \mathrm{dA}}{\mathrm{~m}_{\mathrm{rate}} \cdot \mathrm{~V}_{\mathrm{av}}^{2}}
$$

where V is the velocity, $m_{\text {rate }}$ is the mass flow rate and $V_{\text {av }}$ is the average velocity

For the power-law profile (Eq. 8.22)

$$
V=U \cdot\left(1-\frac{\mathrm{r}}{\mathrm{R}}\right)^{\frac{1}{\mathrm{n}}}
$$

For the mass flow rate

$$
\mathrm{m}_{\text {rate }}=\rho \cdot \pi \cdot \mathrm{R}^{2} \cdot \mathrm{~V}_{\mathrm{av}}
$$

Hence the denominator of Eq. 8.26b is

$$
\mathrm{m}_{\mathrm{rate}} \cdot \mathrm{~V}_{\mathrm{av}}^{2}=\rho \cdot \pi \cdot \mathrm{R}^{2} \cdot \mathrm{~V}_{\mathrm{av}}{ }^{3}
$$

We next must evaluate the numerator of Eq. 8.26 b

$$
\begin{aligned}
& \int \rho \cdot \mathrm{V}^{3} \mathrm{dA}=\int \rho \cdot 2 \cdot \pi \cdot \mathrm{r} \cdot \mathrm{U}^{3} \cdot\left(1-\frac{\mathrm{r}}{\mathrm{R}}\right)^{\frac{3}{\mathrm{n}}} \mathrm{dr} \\
& \int_{0}^{\mathrm{R}} \quad \rho \cdot 2 \cdot \pi \cdot \mathrm{r} \cdot \mathrm{U}^{3} \cdot\left(1-\frac{\mathrm{r}}{\mathrm{R}}\right)^{\frac{3}{\mathrm{n}}} \mathrm{dr}=\frac{2 \cdot \pi \cdot \rho \cdot \mathrm{R}^{2} \cdot \mathrm{n}^{2} \cdot \mathrm{U}^{3}}{(3+\mathrm{n}) \cdot(3+2 \cdot \mathrm{n})}
\end{aligned}
$$

To integrate substitute

$$
\mathrm{m}=1-\frac{\mathrm{r}}{\mathrm{R}} \quad \mathrm{dm}=-\frac{\mathrm{dr}}{\mathrm{R}}
$$

Then

$$
\mathrm{r}=\mathrm{R} \cdot(1-\mathrm{m}) \quad \mathrm{dr}=-\mathrm{R} \cdot \mathrm{dm}
$$

$$
\int_{0}^{\mathrm{R}} \rho \cdot 2 \cdot \pi \cdot r \cdot U^{3} \cdot\left(1-\frac{\mathrm{r}}{\mathrm{R}}\right)^{\frac{3}{\mathrm{n}}} \mathrm{dr}=-\int_{1}^{0} \rho \cdot 2 \cdot \pi \cdot \mathrm{R} \cdot(1-\mathrm{m}) \cdot \mathrm{m}^{\frac{3}{\mathrm{n}}} \cdot \mathrm{Rdm}
$$

Hence

$$
\begin{aligned}
& \int \rho \cdot \mathrm{V}^{3} \mathrm{dA}=\int_{0}^{1} \rho \cdot 2 \cdot \pi \cdot \mathrm{R} \cdot\left(\mathrm{~m}^{\frac{3}{\mathrm{n}}}-\mathrm{m}^{\frac{3}{\mathrm{n}}+1}\right) \cdot \mathrm{Rdm} \\
& \int \rho \cdot \mathrm{~V}^{3} \mathrm{dA}=\frac{2 \cdot \mathrm{R}^{2} \cdot \mathrm{n}^{2} \cdot \rho \cdot \pi \cdot \mathrm{U}^{3}}{(3+\mathrm{n}) \cdot(3+2 \cdot \mathrm{n})}
\end{aligned}
$$

Putting all these results togethe $\alpha=\frac{\int \rho \cdot \mathrm{V}^{3} \mathrm{dA}}{\mathrm{m}_{\text {rate }} \cdot \mathrm{V}_{\mathrm{av}}{ }^{2}}=\frac{\frac{2 \cdot \mathrm{R}^{2} \cdot \mathrm{n}^{2} \cdot \rho \cdot \pi \cdot \mathrm{U}^{3}}{(3+\mathrm{n}) \cdot(3+2 \cdot \mathrm{n})}}{\rho \cdot \pi \cdot \mathrm{R}^{2} \cdot \mathrm{~V}_{\mathrm{av}}{ }^{3}}$

$$
\alpha=\left(\frac{\mathrm{U}}{\mathrm{~V}_{\mathrm{av}}}\right)^{3} \cdot \frac{2 \cdot \mathrm{n}^{2}}{(3+\mathrm{n}) \cdot(3+2 \cdot \mathrm{n})}
$$

To plot α versus $R e_{\text {Vav }}$ we use the following parametric relations

$$
\begin{align*}
& \mathrm{n}=-1.7+1.8 \cdot \log \left(\mathrm{Re}_{\mathrm{u}}\right) \tag{Eq.8.23}\\
& \frac{\mathrm{V}_{\mathrm{av}}}{\mathrm{U}}=\frac{2 \cdot \mathrm{n}^{2}}{(\mathrm{n}+1) \cdot(2 \cdot \mathrm{n}+1)} \tag{Eq.8.24}
\end{align*}
$$

$$
\operatorname{Re}_{\mathrm{Vav}}=\frac{\mathrm{V}_{\mathrm{av}}}{\mathrm{U}} \cdot \operatorname{Re}_{\mathrm{U}}
$$

$$
\begin{equation*}
\alpha=\left(\frac{\mathrm{U}}{\mathrm{~V}_{\mathrm{av}}}\right)^{3} \cdot \frac{2 \cdot \mathrm{n}^{2}}{(3+\mathrm{n}) \cdot(3+2 \cdot \mathrm{n})} \tag{Eq.8.27}
\end{equation*}
$$

A value of $R e_{\mathrm{U}}$ leads to a value for n; this leads to a value for V_{av} / U; these lead to a value for $R e_{\text {Vav }}$ and α

The plots of α, and the error in assuming $\alpha=1$, versus $R e_{\text {Vav }}$ are shown in the associated Excel workbook

Problem 8.67 (In Excel)

Show that the kinetic energy coefficient, α, for the "power law" turbulent velocity profile of Eq. 8.22 is given by Eq. 8.27. Plot α as a function of $R e_{V}$, for $R e_{\bar{V}}=1 \times 10^{4}$ to 1×10^{7}. When analyzing pipe flow problems it is common practice to assume $\alpha \approx 1$. Plot the error associated with this assumption as a function of $R e_{\mathrm{V},}$ for $R e_{V}=1 \times 10^{4}$ to 1×10^{7}.

Given: Definition of kinetic energy correction coefficient α

Find: α for the power-law velocity profile; plot

Solution

$$
\begin{align*}
& \mathrm{n}=-1.7+1.8 \cdot \log \left(\mathrm{Re}_{\mathrm{u}}\right) \tag{Eq.8.23}\\
& \frac{\mathrm{V}_{\mathrm{av}}}{\mathrm{U}}=\frac{2 \cdot \mathrm{n}^{2}}{(\mathrm{n}+1) \cdot(2 \cdot \mathrm{n}+1)} \tag{Eq.8.24}\\
& \operatorname{Re}_{\mathrm{Vav}}=\frac{\mathrm{V}_{\mathrm{av}}}{\mathrm{U}} \cdot \mathrm{Re}_{\mathrm{U}} \\
& \alpha=\left(\frac{\mathrm{U}}{\mathrm{~V}_{\mathrm{av}}}\right)^{3} \cdot \frac{2 \cdot \mathrm{n}^{2}}{(3+\mathrm{n}) \cdot(3+2 \cdot \mathrm{n})} \tag{Eq.8.27}
\end{align*}
$$

A value of $R e_{\mathrm{U}}$ leads to a value for n; this leads to a value for V_{av} / U;
these lead to a value for $R e_{\mathrm{Vav}}$ and α

$R e_{\mathrm{U}}$	n	V_{av} / U	$R e_{\text {Vav }}$	α	α Error
$1.00 \mathrm{E}+04$	5.50	0.776	$7.76 \mathrm{E}+03$	1.09	8.2%
$2.50 \mathrm{E}+04$	6.22	0.797	$1.99 \mathrm{E}+04$	1.07	6.7%
$5.00 \mathrm{E}+04$	6.76	0.811	$4.06 \mathrm{E}+04$	1.06	5.9%
$7.50 \mathrm{E}+04$	7.08	0.818	$6.14 \mathrm{E}+04$	1.06	5.4%
$1.00 \mathrm{E}+05$	7.30	0.823	$8.23 \mathrm{E}+04$	1.05	5.1%
$2.50 \mathrm{E}+05$	8.02	0.837	$2.09 \mathrm{E}+05$	1.05	4.4%
$5.00 \mathrm{E}+05$	8.56	0.846	$4.23 \mathrm{E}+05$	1.04	3.9%
$7.50 \mathrm{E}+05$	8.88	0.851	$6.38 \mathrm{E}+05$	1.04	3.7%
$1.00 \mathrm{E}+06$	9.10	0.854	$8.54 \mathrm{E}+05$	1.04	3.5%
$2.50 \mathrm{E}+06$	9.82	0.864	$2.16 \mathrm{E}+06$	1.03	3.1%
$5.00 \mathrm{E}+06$	10.4	0.870	$4.35 \mathrm{E}+06$	1.03	2.8%
$7.50 \mathrm{E}+06$	10.7	0.873	$6.55 \mathrm{E}+06$	1.03	2.6%
$1.00 \mathrm{E}+07$	10.9	0.876	$8.76 \mathrm{E}+06$	1.03	2.5%

Problem 8.68

Water flows in a horizontal constant-area pipe; the pipe diameter is 50 mm and the average flow speed is $1.5 \mathrm{~m} / \mathrm{s}$. At the pipe inlet the gage pressure is 588 kPa , and the outlet is at atmospheric pressure. Determine the head loss in the pipe. If the pipe is now aligned so that the outlet is 25 m above the inlet, what will the inlet pressure need to be to maintain the same flow rate? If the pipe is now aligned so that the outlet is 25 m below the inlet, what will the inlet pressure need to be to maintain the same flow rate? Finally, how much lower than the inlet must the outlet be so that the same flow rate is maintained if both ends of the pipe are at atmospheric pressure (i.e., gravity feed)?

Given: Data on flow in a pipe

Find: Head loss for horizontal pipe; inlet pressure for different alignments; slope for gravity feed

Solution

Given or available data
$\mathrm{D}=50 \cdot \mathrm{~mm}$

$$
\rho=999 \cdot \frac{\mathrm{~kg}}{\mathrm{~m}^{3}}
$$

The governing equation between inlet (1) and exit (2) is

$$
\begin{equation*}
\left(\frac{\mathrm{p}_{1}}{\rho}+\alpha_{1} \cdot \frac{\mathrm{~V}_{1}^{2}}{2}+\mathrm{g} \cdot \mathrm{z}_{1}\right)-\left(\frac{\mathrm{p}_{2}}{\rho}+\alpha_{2} \cdot \frac{\mathrm{~V}_{2}^{2}}{2}+\mathrm{g} \cdot \mathrm{z}_{2}\right)=\mathrm{h}_{\mathrm{lT}} \tag{8.29}
\end{equation*}
$$

Horizontal pipe data

$$
\begin{array}{ll}
\mathrm{p}_{1}=588 \cdot \mathrm{kPa} & \mathrm{p}_{2}=0 \cdot \mathrm{kPa} \\
\mathrm{z}_{1}=\mathrm{z}_{2} & \mathrm{~V}_{1}=\mathrm{V}_{2}
\end{array}
$$

Equation 8.29 becomes $\quad \mathrm{h}_{\mathrm{lT}}=\frac{\mathrm{p}_{1}-\mathrm{p}_{2}}{\rho} \quad \mathrm{~h}_{\mathrm{lT}}=589 \frac{\mathrm{~J}}{\mathrm{~kg}}$

For an inclined pipe with the same flow rate, the head loss will be the same as above; in additior we have the following new data

$$
\mathrm{z}_{1}=0 \cdot \mathrm{~m} \quad \mathrm{z}_{2}=25 \cdot \mathrm{~m}
$$

Equation 8.29 becomes

$$
\mathrm{p}_{1}=\mathrm{p}_{2}+\rho \cdot \mathrm{g} \cdot\left(\mathrm{z}_{2}-\mathrm{z}_{1}\right)+\rho \cdot \mathrm{h}_{1 \mathrm{~T}} \quad \mathrm{p}_{1}=833 \mathrm{kPa}
$$

For an declined pipe with the same flow rate, the head loss will be the same as above; in addition we have the following new data

$$
\mathrm{z}_{1}=0 \cdot \mathrm{~m} \quad \mathrm{z}_{2}=-25 \cdot \mathrm{~m}
$$

Equation 8.29 becomes

$$
\mathrm{p}_{1}=\mathrm{p}_{2}+\rho \cdot \mathrm{g} \cdot\left(\mathrm{z}_{2}-\mathrm{z}_{1}\right)+\rho \cdot \mathrm{h}_{1 \mathrm{~T}}
$$

$$
\mathrm{p}_{1}=343 \mathrm{kPa}
$$

For a gravity feed with the same flow rate, the head loss will be the same as above; in addition we have the following new data

$$
\mathrm{p}_{1}=0 \cdot \mathrm{kPa} \quad(\text { Gage })
$$

Equation 8.29 becomes $\quad z_{2}=z_{1}-\frac{h_{l T}}{g}$

$$
z_{2}=-60 m
$$

Given: Flow in configuration shows:

$$
\begin{array}{cccc}
\text { section } & p & \bar{v} & z \\
& & \frac{(p s i q)}{10.2} & \frac{(\mathrm{ft/s})}{5.5}
\end{array} \frac{(\mathrm{ft})}{7.5}
$$

Find: (a) Head loss (in $f+$)
(b) Head loss in energy per unit mass.

Solution: Apply the energy equation for pipe flow, Eq. 8.30:
Computing Equation: $\left(\frac{p_{1}}{\rho g}+\alpha_{1} \frac{\bar{v}_{1}^{2}}{2 g}+z_{1}\right)-\left(\frac{p_{1}}{\rho g}+\alpha_{2} \frac{\bar{V}_{2}^{2}}{2 g}+z_{2}\right)=\frac{h e r}{g}=H_{l T}$
Assumptions: (1) Steady flow
(2) Incompressible flow (water)
(3) α_{1} and α_{2} approx innately 1

Then

$$
\begin{aligned}
& H_{l r}=\frac{p_{1}-p_{2}}{\rho g}+\frac{\bar{V}_{1}^{2}-\bar{V}_{2}^{2}}{2 g}+z_{1}-z_{2} \\
& =(10.2-6.5) \frac{\mathrm{lbf}}{\mathrm{ln.2}} \times \frac{\mathrm{ft}^{3}}{1.94 \cdot \operatorname{sing}} \times \frac{\mathrm{s}^{2}}{32.2 f t} \times \frac{144+\mathrm{in}^{2}}{\mathrm{ft}^{2}} \times \frac{\operatorname{slug} \cdot \mathrm{ft}}{16 f \cdot \mathrm{~s}^{2}} \\
& +\frac{(5.5)^{2}-(11.2)^{2}}{2} \frac{\mathrm{ft}^{2}}{5^{2}} \times \frac{\mathrm{s}^{2}}{32.2 \mathrm{f}+}+(7.5-10.5) \mathrm{ft}
\end{aligned}
$$

$$
H_{l T}=4.05 \mathrm{ft}
$$

and

$$
h_{l T}=g H_{l T}=32.2 \frac{\mathrm{ft}}{\mathrm{~s}^{2}} \times 4.05 \mathrm{ft}=130 \mathrm{ft} / \mathrm{s}^{2}
$$

or

$$
h_{l T}=130 \frac{\mathrm{ft}^{2}}{\mathrm{~s}^{2}} \times \frac{1 \mathrm{bf} \cdot \mathrm{~s}^{2}}{\text { slugift }}=130 \frac{\mathrm{lef} \cdot \mathrm{ft}}{\mathrm{slug}}
$$

Given: Fibow through ai reduang elbow.

$$
\begin{aligned}
& H_{e_{T}}=1.7 氏,-P_{1}-P_{2}=3.7 \mathrm{pi} \\
& X_{2}=1.75 V_{1}, z_{2}-Z_{1}=5.5 \mathrm{ft}
\end{aligned}
$$

Find: inlet vebocteg, \bar{V},
Solution:
Computing equation: $\left(\frac{p_{1}}{\mathrm{~kg}}+\alpha_{1} \frac{J_{1}^{2}}{2 g}+z_{1}\right)-\left(\frac{p_{2}}{\mathrm{pg}}+\alpha_{2} \frac{J_{2}^{2}}{2 g}+z_{2}\right)=$ He $_{T} \quad(8 \cdot 30)$ Assumption: (1) $\alpha_{1}=\alpha_{2}=10$, (2) fluid is water, $p=1$ an stuglat 3^{3}

$$
\begin{aligned}
& J_{2}^{2}-J_{1}^{2}=2 \frac{\left(p_{1}-P_{2}\right)}{P}+2 g\left(z_{1}-z_{2}\right)-g t_{T}
\end{aligned}
$$

$$
\begin{aligned}
& -32.2 \frac{f}{3^{2}} \times 175 . \\
& 2.063^{-2} \mathrm{~s}^{2}=140 \mathrm{ft}^{2} \mathrm{I}_{s}^{2} \\
& \bar{J}_{1}=8.25 \mathrm{ft} / \mathrm{s}
\end{aligned}
$$

Given: Water flow from a reservoir. through system sown

$$
\text { when } Q=0.0067 \mathrm{~m}^{3} l_{\mathrm{s}}, H_{R_{T}}=2.85 \mathrm{~m}
$$

Find: reservoir dept, d, to maintain Riv flow rate.

Solution:
Computing equation: $\left(\frac{p g}{\lg }+\alpha_{1} / \frac{z^{2}}{2 g}+z_{1}\right)-\left(\frac{d / 2}{2 g}+\alpha_{2}-z_{2}^{2}+z_{2}\right)=H_{2}$
Assumptions: (1) steady, in compressible flow

$$
\text { (a) } \bar{V}_{1}=0, \alpha_{2} \neq 1.0
$$

(3) $p_{1}=-p_{2}=p_{\text {atm }}$

Men,

$$
\begin{align*}
& \text { Ken, } z_{1}-z_{2}=d=H_{0}+\frac{J_{2}^{2}}{2 g} \\
& \bar{V}_{2}=\frac{Q}{A_{2}}=\frac{40}{\pi \nabla^{2}}=\frac{4}{\pi^{2}} \times 0.0067 \frac{n^{3}}{5} \times \frac{1}{(0.075 n)^{2}=1.52 m l_{s}} \\
& d=2.85 m+\frac{(1.52)^{2}}{2} \cdot \frac{n^{2}}{s^{2}} \times 2.81 \frac{s^{2}}{d}=2.97 m \ldots
\end{align*}
$$

and

Gwen: Water flow from a reservor troarg system shown.
when $d=3.60 \mathrm{~m}, H_{e p}=1.15 \mathrm{~m}$
Find: Volume flow rate, Q

Solution:
Computing equation: $\left(\frac{p y}{x g}+\alpha y \frac{y^{2}}{2 g}+z_{1}\right)-\left(\frac{p}{p g}+\alpha_{2} \frac{z^{2}}{2 g}+z_{2}\right)=4 \quad$ ($8,3 p$)
Assumptions: (i) steady, incompressible flow (a) $\bar{V}_{1}=8, \alpha_{2}=10$

$$
\text { (3) } p_{1}=p_{2}=p_{\text {atm }}
$$

Ron,

$$
\begin{aligned}
& \bar{v}_{2}^{2}=2 g\left[\left(z_{1}-z_{2}\right)-t_{4}\right] \\
& -v_{2}=2 \times 9.81 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}[3.60-1.75] \mathrm{m} \\
& \bar{j}_{2}=6.03 \mathrm{mls}
\end{aligned}
$$

$$
Q=A_{2} \bar{J}_{2}=\frac{n)^{2}}{4} \bar{J}=\frac{\pi}{4} \times(0.075 M)^{2} \times 6.03 \frac{M}{5}=2.66 \times\left. 10^{2} \mathrm{~m}^{3}\right|_{S} .
$$

Given: section of Alaskan pipeline with conditions shown.
Find: Head loss.
Solution:

Computing

equation:

$$
\begin{aligned}
& p_{1}=1200 \mathrm{psig} \\
& z_{1}=150 \mathrm{ft}
\end{aligned}
$$

$$
h_{e T}=\left(\frac{p_{1}}{p}+\alpha_{1} \frac{\bar{p}_{2}^{2}}{\frac{1}{2}}+g_{z_{1}}^{(1)}\right)-\left(\frac{p_{2}}{p_{2}}+\alpha_{2} \frac{\bar{p}_{2}^{(1)}}{p_{2}}+g z_{2}\right)
$$

Assumptions: (1) Incompressible flow, so $\bar{V}_{1}=\bar{V}_{2}$ (2) Fully developed

$$
\text { (3) } S G=0.9 \text { (Table A.2) }
$$

$$
\text { So } \alpha_{1}=\alpha_{2}
$$

Then $h_{e_{T}}=\frac{p_{1}-p_{2}}{S G \rho_{1+20}}+g\left(z_{1}-z_{2}\right)$

$$
\begin{aligned}
h_{l T}= & (1200-50) \frac{\mathrm{lbf}}{1 \mathrm{~m}^{2}} \times 144 \frac{\mathrm{ja}^{2}}{\mathrm{ft}} \times \frac{\mathrm{ft3}}{(0.9) 1.945 \mathrm{lug}} \times \frac{5 \mathrm{lug} \cdot \mathrm{ft}}{\mathrm{lbf} \cdot \mathrm{~s}^{2}} \\
& +32.2 \frac{\mathrm{ft}}{\mathrm{~s}^{2}}(150-375) \mathrm{ft} \\
h_{l T}= & 8.76 \times 10^{4} \mathrm{fi}^{2} / \mathrm{s}^{2}
\end{aligned}
$$

Also

$$
H_{\ell T}=\frac{h_{e T}}{g}=8.76 \times 10^{4} \frac{\mathrm{ft}^{2}}{\mathrm{~s}^{2}} \times \frac{\mathrm{s}^{2}}{32.2 \mathrm{ft}}=2,720 \mathrm{ft}
$$

Problem 8.74
Gwen: Section of Alaskan pipeline with conditions Stow

$$
h_{e_{1 \rightarrow 2}}=6.9 \mathrm{~kJ} \mathrm{~kg}
$$

Find: outlet -pressure, P_{2}

$$
\begin{aligned}
& f_{1}=8.5 \mathrm{mPa} \\
& z_{1}=45 \mathrm{~m}
\end{aligned}
$$

Solution:
Computing equation: $\left(\frac{\rho_{1}}{p}+\alpha_{1} \frac{v^{2}}{2}+g g_{1}\right)\left(\frac{p_{2}}{p^{2}}+\alpha_{2} \frac{\bar{j}_{2}^{2}}{2}+g z^{2}\right)=h_{e_{T}} \quad$ (8.29)
Assumptions: (1) incompressible flow, so $\bar{W}_{1}=\bar{J}_{2}$
(a) fully developed so $\alpha_{1}=\alpha_{2}$
(3) $5 G$ crude $\therefore \lambda=0.90$ (Table A. 2)

Then

$$
\begin{aligned}
p_{2}= & -p_{1}+p g\left(z_{1}-z_{2}\right)-p h_{e t} \\
= & 8.5 \times 10^{6} n l_{m_{2}}+0.9 \times 99 g^{\frac{\mathrm{kg}}{n^{3}} \times 9.8 \frac{\mathrm{~m}}{5^{2}} \times(-70 \mathrm{~m}) \times \frac{8.5^{2}}{\mathrm{~kg} . n}} \\
& -0.9 \times 99 a \frac{\mathrm{lg}}{m^{3}} \times 6.9 \times 10^{3} \frac{4 . m}{\mathrm{lg}}
\end{aligned}
$$

$$
P_{2}=1.68 \mathrm{MPa}
$$

Problem 8.75
Given: Water flows from a horizontal tube into a very large tank as shown.

$$
d=2.5 \mathrm{~m}, h_{e}=2.5 / \mathrm{kg}
$$

Find. Average flow speed in tube.

Solution:
Apply definition of head loss, $\mathrm{Eq}_{2} 8.29$,

$$
\left(\frac{p_{1}}{p}+\alpha_{1} \frac{\bar{v}_{1}^{2}}{2}+g_{3}\right)-\left(\frac{p_{2}}{p}+\alpha_{2} \frac{p_{2}}{2}+g_{2}^{2}\right)=h_{1 T}
$$

fie free surface, $V_{2}=0, P_{2}=P_{\text {atm }}$
ft tube discharge $P_{1}=$ gd,,$z_{1}=0$. Assume α_{1}, z_{1}
Ten
$g_{d}+\frac{\bar{W}_{2}^{2}}{2}-g_{d}=h_{e T}$

$$
\begin{align*}
& \bar{V}_{1}^{2}=2 h_{\mathrm{e}}=2 \times 2 \frac{\mathrm{~N} \cdot \mathrm{~m}}{\mathrm{~kg}} \times \frac{\mathrm{kg} \mu^{\mu}}{A \cdot s^{2}}=\left.4 \mathrm{M}^{2}\right|_{s} ^{2} \\
& \bar{V}_{1}=2 \mathrm{mls} \tag{V}
\end{align*}
$$

Given: Water flow at $Q=39 p m$ through a horizontal $5 / 8 \mathrm{in}$. diameter garden hose. Pressure drop in $L=50 \mathrm{ft}$ is 12,3 psi.
Find: Head loss
Solution: Computing equation is

$$
h_{l T}=\left(\frac{p_{1}}{\rho}+\alpha_{1}{\frac{q_{1}^{2}}{2}}_{k^{(1)}}^{k_{p}}\right)^{(3)}-\left(\frac{p_{2}}{\rho}+\alpha_{2} \frac{\bar{p}_{2}^{(1)}}{p_{2}}+g_{p_{2}}^{p_{2}^{(3)}}\right)
$$

Assumptions: (1) Incompressible flow, so $\vec{V}_{1}=\vec{V}_{2}-$
(2) Fully dive to ped so $\alpha_{1}=\alpha_{2}$
(3) Horizontal, 50 3, 32

Then $h_{l T}=\frac{p_{1}-p_{2}}{p}=12.3 \frac{16 f}{101^{2}} \times \frac{f t^{3}}{1.945109} \times 144 \frac{\mathrm{~m}^{2}}{f^{2}} \times \frac{5 \mathrm{keg} \cdot \mathrm{ft}^{2}}{16 f \cdot \mathrm{~s}^{2}}$

$$
h_{l T}=913 \mathrm{ft}^{2} / \mathrm{s}
$$

A/50

$$
H_{l T}=\frac{h_{e T}}{g}=913 \frac{\mathrm{ft}^{2}}{s^{2}} \times \frac{s^{2}}{32.2 \mathrm{ft}}=28.4 \mathrm{ft}
$$

Given: Water pumped through flow system shown.

$$
Q=2 \mathrm{fr}^{3} / \mathrm{s}
$$

Find: (a) Head supplied by pump.
(b) Head loss be tween pump outkt and free discharge.

Solution: Apply energy equation to CV around pump for steady flow:
Computing equation:

$$
\dot{w}_{i n}=\dot{m}\left[\left(\frac{p_{3}}{\rho}+\alpha_{3} \frac{\hat{w}_{3}^{2}}{\frac{1}{2}}+g \phi_{3}\right)-\left(\frac{p_{2}}{\rho}+\alpha_{2} \frac{\hat{y}_{2}^{2}}{\frac{1}{2}}+g \phi_{2}\right)\right]
$$

Assumptions: (1) Incompressible flow
(2) $\alpha_{2} \vec{V}_{2}^{2}=\alpha_{3} \bar{V}_{3}^{2}=\alpha_{4} \bar{V}_{4}^{2}$
(3) $z_{2}=z_{3}$

Head is energy per unit mass (or per unit weight). On a unit mass basis,

Apply energy equation for steady, incompressible pipe flow between (3),(4): Computing equation:

$$
\begin{equation*}
\left(\frac{p_{3}}{\rho}+\alpha_{3} \frac{\hat{f}_{3}}{\frac{\psi_{3}}{2}}+g g_{\phi_{3}}\right)-\left(\hat{f}_{4}+\alpha_{4} \frac{f_{4}^{2}}{\frac{f_{2}}{2}}+g z_{4}\right)=h_{e T} \tag{8,29}
\end{equation*}
$$

Assumptions: (4) $p_{4}=$ paton
(5) $\alpha_{3} \vec{V}_{3}^{2}=\alpha_{4} \vec{V}_{4}^{2}$

Then

$$
\begin{aligned}
& h_{L T}=813 \mathrm{f}+1 \mathrm{bf} / \mathrm{s} / \mathrm{lug}
\end{aligned}
$$

On a per unit weight basis,

$$
\Delta H=\frac{\dot{w}_{i n}}{\dot{m} g}=\frac{p_{3}-p_{2}}{\rho g}=(50-5) \frac{1 b f}{i_{2}^{2}} \times \frac{f^{3}}{62.4}{ }^{3} \times f^{144} \frac{\dot{n}^{2}}{f^{2}}=104 \mathrm{ft}
$$

$$
H_{L T}=\frac{h_{l T}}{g}=813 \frac{\mathrm{ft} \cdot 1 \mathrm{lff}}{\operatorname{slcg}} \times \frac{\mathrm{s}^{2}}{32.2 \mathrm{ft}} \times \frac{\operatorname{slug} \cdot \mathrm{ft}}{16 f . \mathrm{s}^{2}}=25.2 \mathrm{f}
$$

Given: Data measured in fully developed turbulent pipe flow at $R e_{\sigma}=50,000$ in air:

$$
\begin{array}{llllllllll}
\frac{\ddot{u}}{U} & 0.343 & 0.318 & 0.300 & 0.264 & 0.228 & 0.221 & 0.179 & 0.152 & 0.140 \\
\frac{y}{R} & 0.0082 & 0.0075 & 0.0071 & 0.0061 & 0.0055 & 0.0051 & 0.0041 & 0.0034 & 0.0030 \\
U=9.8 \mathrm{ft} / \mathrm{s} & \text { and } R=4.86 \mathrm{in} .
\end{array}
$$

Find: (a) Evaluate best-fit value of duldy from plot.
(b) $\tau_{w}=\mu \mathrm{da} / d_{y}$
(c) In calculated from friction factor.

Solution: "Best-fit" slope is $\{$ from analysis $\}$, 0.4 $\frac{d(\bar{u} / v)}{d(\varphi / R)} \approx \frac{\Delta(\bar{u} / \omega)}{\Delta(\bar{v} / R)}=39.8$
$\frac{d \vec{u}}{d u}=\frac{U d\left(\vec{u} / \int\right)}{R d(U / R)}=39.8 \times 9.8 \frac{\mathrm{ft}}{\mathrm{s}} \times \frac{1}{4.86 \mathrm{in} .} \times 12 \frac{\mathrm{~m}}{\mathrm{ft}}=9635^{.0 .20-}$
For standard air, $\mu=3,72 \times 10^{-7} \mathrm{lbf} \cdot 5 / f t^{2}$, so
$\tau_{w}=\mu \frac{d \bar{u}}{d \bar{y}}=3.72 \times 10^{-7} \frac{\mathrm{bff}}{\mathrm{ft}^{+}} \times \frac{963}{\mathrm{~s}}=3.58 \times 10^{-4} \mathrm{lbf} / \mathrm{ft}^{2}$
Friction factor is $f=f(R e, e / D)$. For $R e_{U}=50,000$,
 $n=6.8$ from Eq. 8.23. Then from Eq. 8.24,

$$
\frac{\bar{V}}{V}=\frac{2 n^{2}}{(n+1)(2 n+1)}=0.812 \text { and } R_{e_{\bar{V}}}=0.812 R_{e_{U}}=0.812 \times 5 n, 000=40,600
$$

Assuming smooth pipe, $f=0.0219$ from Eq. 8.37
Balancing forces on a flue id element: $(p+\Delta p) \frac{\pi D^{2}}{4}$
Then $(p+\Delta p) \pi D^{2}-\tau_{w} \pi D L-p \pi D^{2}=0$
Then $(p+\Delta p) \frac{\pi D^{2}}{4}-\tau_{w} \pi D L-p \frac{\pi D^{2}}{4}=0$

$$
\tau_{w}=\frac{R}{2} \frac{\Delta D}{L}=\frac{D}{4 L}+\frac{L}{D} \rho \frac{V^{2}}{2}=\frac{f}{8} \rho \nabla^{2} ; V=0.812 v=0.812 \times \frac{9.8 \mathrm{ft}}{\mathrm{sec}}=7.96 \mathrm{ft} \mathrm{sec}
$$

Substituting,

$$
\tau_{w}=\frac{0.0219}{8} \times 0.00238 \frac{\operatorname{sing}}{f^{3}} \times(7.96)^{2} \frac{f t}{}_{2}^{5^{2}} \times \frac{16 f \cdot s^{2}}{5 \operatorname{seg} \cdot f t}=4.13 \times 10^{-4} 16 \mathrm{f} / \mathrm{ft}^{2}
$$

The result calculated from the friction factor is 15% nigher than that evaluated graphically!

Problem 8.78 (In Excel)

Laufer [5] measured the following data for mean velocity near the wall in fully developed turbulent pipe flow at $R e_{U}=50,000(U=9.8 \mathrm{ft} / \mathrm{s}$ and $R=4.86 \mathrm{in}$.) in air:

$\frac{u}{U}$	0.343	0.318	0.300	0.264	0.228	0.221	0.179	0.152	0.140
$\frac{y}{R}$	0.0082	0.0075	0.0071	0.0061	0.0055	0.0051	0.0041	0.0034	0.0030

Plot the data and obtain the best-fit slope, $d \bar{u} / d y$. Use this to estimate the wall shear stress from $\tau_{w}=\mu d a / d y$. Compare this value to that obtained using the friction factor f computed using (a) the Colebrook formula (Eq. 8.37), and (b) the Blasius correlation (Eq. 8.38).

Given: Data on mean velocity in fully developed turbulent flow

Find: Best fit value of $d u / d y$ from plot

Solution

y / R	u / U
0.0082	0.343
0.0075	0.318
0.0071	0.300
0.0061	0.264
0.0055	0.228
0.0051	0.221
0.0041	0.179
0.0034	0.152
0.0030	0.140

Using Excel's built-in Slope function:

$$
d(u / U) / d(y / R)=39.8
$$

Given: Smal-diameter ($i n=0.5 \mathrm{~mm}$) capillary tube made from drawn aluminum is used in place of an expansion value in a home refrigerator
Find: corresponding relative roughness, wit regard" to fluid flow, can tube beconsubered "shook"?
Solution:
For drawn tubing, from Table 8.1, $e=0.0015 \mathrm{~mm}$ Then with $>=0.5 \mathrm{~mm}, \frac{e}{\Sigma}=\frac{0.0015}{0.5}=0.003$
hooking at the Moody diagram (Fig. 8.13), it is clear Mat this tube cane be considered smooth for turbulent flow Rough the tube.
For laminar flow (Re< 2300) the relative roughness has no effect on the flow.

Problem 8.80

Abstract

A smooth, 75 mm diameter pipe carries water $\left(65^{\circ} \mathrm{C}\right)$ horizontally. When the mass flow rate is $0.075 \mathrm{~kg} / \mathrm{s}$, the pressure drop is measured to be 7.5 Pa per 100 m of pipe. Based on these measurements, what is the friction factor? What is the Reynolds number? Does this Reynolds number generally indicate laminar or turbulent flow? Is the flow actually laminar or turbulent?

Given: Data on flow in a pipe

Find: Friction factor; Reynolds number; if flow is laminar or turbulent

Solution

Given data

$$
\mathrm{D}=75 \cdot \mathrm{~mm}
$$

$$
\frac{\Delta \mathrm{p}}{\mathrm{~L}}=0.075 \cdot \frac{\mathrm{~Pa}}{\mathrm{~m}} \quad \mathrm{~m}_{\text {rate }}=0.075 \cdot \frac{\mathrm{~kg}}{\mathrm{~s}}
$$

From Appendix A

$$
\rho=999 \cdot \frac{\mathrm{~kg}}{\mathrm{~m}^{3}} \quad \mu=4 \cdot 10^{-4} \cdot \frac{\mathrm{~N} \cdot \mathrm{~s}}{\mathrm{~m}^{2}}
$$

The governing equations between inlet (1) and exit (2) are

$$
\begin{align*}
& \left(\frac{p_{1}}{\rho}+\alpha_{1} \cdot \frac{\mathrm{~V}_{1}^{2}}{2}+\mathrm{g} \cdot \mathrm{z}_{1}\right)-\left(\frac{\mathrm{p}_{2}}{\rho}+\alpha_{2} \cdot \frac{\mathrm{~V}_{2}^{2}}{2}+\mathrm{g} \cdot \mathrm{z}_{2}\right)=\mathrm{h}_{1} \tag{8.29}\\
& \mathrm{~h}_{1}=\mathrm{f} \cdot \frac{\mathrm{~L}}{\mathrm{D}} \cdot \frac{\mathrm{~V}^{2}}{2} \tag{8.34}
\end{align*}
$$

For a constant area pipe $\quad \mathrm{V}_{1}=\mathrm{V}_{2}=\mathrm{V}$

$$
\mathrm{f}=\frac{2 \cdot \mathrm{D}}{\mathrm{~L} \cdot \mathrm{~V}^{2}} \cdot \frac{\left(\mathrm{p}_{1}-\mathrm{p}_{2}\right)}{\rho}=\frac{2 \cdot \mathrm{D}}{\rho \cdot \mathrm{~V}^{2}} \cdot \frac{\Delta \mathrm{p}}{\mathrm{~L}}
$$

For the velocity $\quad \mathrm{V}=\frac{\mathrm{m}_{\text {rate }}}{\rho \cdot \frac{\pi}{4} \cdot \mathrm{D}^{2}} \quad \mathrm{~V}=0.017 \frac{\mathrm{~m}}{\mathrm{~s}}$

Hence

$$
\mathrm{f}=\frac{2 \cdot \mathrm{D}}{\rho \cdot \mathrm{~V}^{2}} \cdot \frac{\Delta \mathrm{p}}{\mathrm{~L}} \quad \mathrm{f}=0.039
$$

The Reynolds number is $\operatorname{Re}=\frac{\rho \cdot \mathrm{V} \cdot \mathrm{D}}{\mu}$

$$
\operatorname{Re}=3183
$$

This Reynolds number indicates the flow is
Turbulent
(From Eq. 8.37, at this Reynolds number the friction factor for a smooth pipe is $f=0.043$; the friction factor computed above thus indicates that, within experimental error, the flow correspon to trubulent flow in a smooth pipe)

Problem 8.81 (In Excel)

Using Eqs. 8.36 and 8.37, generate the Moody chart of Fig. 8.12.

Solution

Using the add-in function Friction factor from the CD

$e / D=$	0	0.0001	0.0002	0.0005	0.001	0.002	0.005	0.01	0.02	0.04

Re	f									
500	0.1280	0.1280	0.1280	0.1280	0.1280	0.1280	0.1280	0.1280	0.1280	0.1280
$1.00 \mathrm{E}+03$	0.0640	0.0640	0.0640	0.0640	0.0640	0.0640	0.0640	0.0640	0.0640	0.0640
$1.50 \mathrm{E}+03$	0.0427	0.0427	0.0427	0.0427	0.0427	0.0427	0.0427	0.0427	0.0427	0.0427
$2.30 \mathrm{E}+03$	0.0473	0.0474	0.0474	0.0477	0.0481	0.0489	0.0512	0.0549	0.0619	0.0747
$1.00 \mathrm{E}+04$	0.0309	0.0310	0.0312	0.0316	0.0324	0.0338	0.0376	0.0431	0.0523	0.0672
$1.50 \mathrm{E}+04$	0.0278	0.0280	0.0282	0.0287	0.0296	0.0313	0.0356	0.0415	0.0511	0.0664
$1.00 \mathrm{E}+05$	0.0180	0.0185	0.0190	0.0203	0.0222	0.0251	0.0313	0.0385	0.0490	0.0649
$1.50 \mathrm{E}+05$	0.0166	0.0172	0.0178	0.0194	0.0214	0.0246	0.0310	0.0383	0.0489	0.0648
$1.00 \mathrm{E}+06$	0.0116	0.0134	0.0147	0.0172	0.0199	0.0236	0.0305	0.0380	0.0487	0.0647
$1.50 \mathrm{E}+06$	0.0109	0.0130	0.0144	0.0170	0.0198	0.0235	0.0304	0.0379	0.0487	0.0647
$1.00 \mathrm{E}+07$	0.0081	0.0122	0.0138	0.0168	0.0197	0.0234	0.0304	0.0379	0.0486	0.0647
$1.50 \mathrm{E}+07$	0.0076	0.0121	0.0138	0.0167	0.0197	0.0234	0.0304	0.0379	0.0486	0.0647
$1.00 \mathrm{E}+08$	0.0059	0.0120	0.0137	0.0167	0.0196	0.0234	0.0304	0.0379	0.0486	0.0647

Friction Factor vs Reynolds Number

Problem 8.82 (In Excel)

The turbulent region of the Moody chart of Fig, 8.12 is generated from the empirical correlation given by Eq. 8.37. As noted in Section 8-7, an initial guess for f_{0}, given by

$$
f_{0}=0.25\left[\log \left(\frac{e l D}{3.7}+\frac{5.74}{R e^{0.9}}\right)\right]^{-2}
$$

produces results accurate to 1 percent with a single iteration [10]. Investigate the validity of this claim by plotting the error of this approach as a function of $R e$, with e/D as a parameter. Plot curves over a range of $\operatorname{Re}=10^{4}$ to 10^{8}, for $e / D=0,0.0001$, $0.001,0.01$, and 0.05 .

Solution

Using the above formula for f_{0}, and Eq. 8.37 for f_{1}

$e / D=$	0	0.0001	0.0002	0.0005	0.001	0.002	0.005	0.01	0.02	0.05
Re	f_{1}									
$1.00 \mathrm{E}+04$	0.0309	0.0310	0.0312	0.0316	0.0323	0.0337	0.0376	0.0431	0.0522	0.0738
$2.50 \mathrm{E}+04$	0.0245	0.0248	0.0250	0.0257	0.0268	0.0288	0.0337	0.0402	0.0501	0.0725
$5.00 \mathrm{E}+04$	0.0209	0.0213	0.0216	0.0226	0.0240	0.0265	0.0322	0.0391	0.0494	0.0720
$7.50 \mathrm{E}+04$	0.0191	0.0196	0.0200	0.0212	0.0228	0.0256	0.0316	0.0387	0.0492	0.0719
$1.00 \mathrm{E}+05$	0.0180	0.0185	0.0190	0.0203	0.0222	0.0251	0.0313	0.0385	0.0490	0.0718
$2.50 \mathrm{E}+05$	0.0150	0.0159	0.0166	0.0185	0.0208	0.0241	0.0308	0.0381	0.0488	0.0716
$5.00 \mathrm{E}+05$	0.0132	0.0144	0.0154	0.0177	0.0202	0.0238	0.0306	0.0380	0.0487	0.0716
$7.50 \mathrm{E}+05$	0.0122	0.0138	0.0149	0.0174	0.0200	0.0237	0.0305	0.0380	0.0487	0.0716
$1.00 \mathrm{E}+06$	0.0116	0.0134	0.0147	0.0172	0.0199	0.0236	0.0305	0.0380	0.0487	0.0716
$5.00 \mathrm{E}+06$	0.0090	0.0123	0.0139	0.0168	0.0197	0.0235	0.0304	0.0379	0.0486	0.0716
$1.00 \mathrm{E}+07$	0.0081	0.0122	0.0138	0.0168	0.0197	0.0234	0.0304	0.0379	0.0486	0.0716
$5.00 \mathrm{E}+07$	0.0065	0.0120	0.0138	0.0167	0.0196	0.0234	0.0304	0.0379	0.0486	0.0716
$1.00 \mathrm{E}+08$	0.0059	0.0120	0.0137	0.0167	0.0196	0.0234	0.0304	0.0379	0.0486	0.0716

Using the add-in function Friction factor from the CD

$e / D=$	0	0.0001	0.0002	0.0005	0.001	0.002	0.005	0.01	0.02	0.05
Re	f									
$1.00 \mathrm{E}+04$	0.0309	0.0310	0.0312	0.0316	0.0324	0.0338	0.0376	0.0431	0.0523	0.0738
$2.50 \mathrm{E}+04$	0.0245	0.0248	0.0250	0.0257	0.0268	0.0288	0.0337	0.0402	0.0502	0.0725
$5.00 \mathrm{E}+04$	0.0209	0.0212	0.0216	0.0226	0.0240	0.0265	0.0322	0.0391	0.0494	0.0720
$7.50 \mathrm{E}+04$	0.0191	0.0196	0.0200	0.0212	0.0228	0.0256	0.0316	0.0387	0.0492	0.0719
$1.00 \mathrm{E}+05$	0.0180	0.0185	0.0190	0.0203	0.0222	0.0251	0.0313	0.0385	0.0490	0.0718
$2.50 \mathrm{E}+05$	0.0150	0.0158	0.0166	0.0185	0.0208	0.0241	0.0308	0.0381	0.0488	0.0716
$5.00 \mathrm{E}+05$	0.0132	0.0144	0.0154	0.0177	0.0202	0.0238	0.0306	0.0380	0.0487	0.0716
$7.50 \mathrm{E}+05$	0.0122	0.0138	0.0150	0.0174	0.0200	0.0237	0.0305	0.0380	0.0487	0.0716
$1.00 \mathrm{E}+06$	0.0116	0.0134	0.0147	0.0172	0.0199	0.0236	0.0305	0.0380	0.0487	0.0716
$5.00 \mathrm{E}+06$	0.0090	0.0123	0.0139	0.0168	0.0197	0.0235	0.0304	0.0379	0.0486	0.0716
$1.00 \mathrm{E}+07$	0.0081	0.0122	0.0138	0.0168	0.0197	0.0234	0.0304	0.0379	0.0486	0.0716
$5.00 \mathrm{E}+07$	0.0065	0.0120	0.0138	0.0167	0.0196	0.0234	0.0304	0.0379	0.0486	0.0716
$1.00 \mathrm{E}+08$	0.0059	0.0120	0.0137	0.0167	0.0196	0.0234	0.0304	0.0379	0.0486	0.0716

The error can now be computed

$e / D=$	0	0.0001	0.0002	0.0005	0.001	0.002	0.005	0.01	0.02	0.05
Re	Error (\%)									
$1.00 \mathrm{E}+04$	0.0434\%	0.0533\%	0.0624\%	0.0858\%	0.1138\%	0.1443\%	0.1513\%	0.1164\%	0.0689\%	0.0251\%
$2.50 \mathrm{E}+04$	0.0531\%	0.0322\%	0.0144\%	0.0252\%	0.0596\%	0.0793\%	0.0646\%	0.0382\%	0.0179\%	0.0054\%
$5.00 \mathrm{E}+04$	0.0791\%	0.0449\%	0.0202\%	0.0235\%	0.0482\%	0.0510\%	0.0296\%	0.0143\%	0.0059\%	0.0016\%
$7.50 \mathrm{E}+04$	0.0833\%	0.0407\%	0.0129\%	0.0278\%	0.0426\%	0.0367\%	0.0175\%	0.0077\%	0.0030\%	0.0008\%
$1.00 \mathrm{E}+05$	0.0818\%	0.0339\%	0.0050\%	0.0298\%	0.0374\%	0.0281\%	0.0118\%	0.0049\%	0.0019\%	0.0005\%
$2.50 \mathrm{E}+05$	0.0685\%	0.0029\%	0.0183\%	0.0264\%	0.0186\%	0.0095\%	0.0029\%	0.0011\%	0.0004\%	0.0001\%
$5.00 \mathrm{E}+05$	0.0511\%	0.0160\%	0.0232\%	0.0163\%	0.0084\%	0.0036\%	0.0010\%	0.0003\%	0.0001\%	0.0000\%
$7.50 \mathrm{E}+05$	0.0394\%	0.0213\%	0.0209\%	0.0107\%	0.0049\%	0.0019\%	0.0005\%	0.0002\%	0.0001\%	0.0000\%
$1.00 \mathrm{E}+06$	0.0308\%	0.0220\%	0.0175\%	0.0077\%	0.0032\%	0.0012\%	0.0003\%	0.0001\%	0.0000\%	0.0000\%
$5.00 \mathrm{E}+06$	0.0183\%	0.0071\%	0.0029\%	0.0008\%	0.0003\%	0.0001\%	0.0000\%	0.0000\%	0.0000\%	0.0000\%
$1.00 \mathrm{E}+07$	0.0383\%	0.0029\%	0.0010\%	0.0002\%	0.0001\%	0.0000\%	0.0000\%	0.0000\%	0.0000\%	0.0000\%
$5.00 \mathrm{E}+07$	0.0799\%	0.0002\%	0.0001\%	0.0000\%	0.0000\%	0.0000\%	0.0000\%	0.0000\%	0.0000\%	0.0000\%
$1.00 \mathrm{E}+08$	0.0956\%	0.0001\%	0.0000\%	0.0000\%	0.0000\%	0.0000\%	0.0000\%	0.0000\%	0.0000\%	0.0000\%

Given: Moody diagram gives Darky friction factor, t.
Fanning friction factor is $f_{F} \equiv \frac{\tau_{w}}{\frac{1}{2} \rho \vec{v}^{2}}$
Find: Relate Darky and Fanning friction factors for fully developed pipe flow. Show $f=4 f_{f}$.

Solution: Consider cylindrical UV containing fluid in pipe; apply force balance, definition of f.

Basic equations: $\Sigma_{x}=0$

From the force balance,

$$
(p+\Delta p) \frac{\pi D^{2}}{4}-\tau_{\omega} \pi D L-p \frac{\pi D^{2}}{4}=0 \quad \text { or } \quad \tau_{\omega}=\frac{D}{4} \frac{\Delta p}{L}
$$

Substituting,

$$
\tau_{\omega}=\frac{D}{4 L}+\frac{L}{D} \frac{\rho \bar{V}^{2}}{2}=f \frac{\rho \bar{V}^{2}}{8}
$$

But

$$
f_{F} \equiv \frac{\tau_{\omega}}{\frac{1}{2} \rho \bar{v}^{2}}=\frac{f \rho \bar{v}^{2}}{8} \frac{2}{\rho \bar{v}^{2}}=\frac{f}{4}
$$

Given: Water flow through. Sudden enlargement from 25 mm to 50 mm diameter. $Q=1,25$ liters per minute.

Find: Pressure rise across enlargement. Comparison with value for friction less flow.
Solution: Apply energy equation for pipe flow.

Computing equation: $\frac{p_{1}}{\rho}+\alpha_{1} \frac{\bar{V}_{2}^{2}}{2}+g \eta_{1}=\frac{p_{2}}{\rho}+\alpha_{2} \frac{\bar{v}_{2}^{2}}{2}+g \bar{p}_{2}+h_{e_{T}}$
Assumptions: (1) Steady flow
(2) Incompressible flow

$$
h_{C T}=k \frac{\bar{v}_{1}^{2}}{2}
$$

(3) Uniform flow at each section: $\alpha_{1}=\alpha_{2}=1$
(4) Horizontal section

Then

$$
p_{2}-p_{1}=\frac{\rho}{2}\left(\bar{V}_{1}^{2}-\bar{V}_{2}^{2}\right)-\rho h_{C_{12}}
$$

From continuity, $\bar{V}_{1} A_{1}=\bar{V}_{2} A_{2}$, so $\vec{V}_{2}=\bar{V}_{1} \frac{A_{1}}{A_{2}}=\bar{V}_{(}\left(D_{1}\right)^{2} ; \bar{V}_{2}^{2}=\bar{V}_{1}^{2}\left(\frac{D_{1}}{D_{2}}\right)^{4}$
From $F i g .8 .14$, at $A R=\left(\frac{D_{1}}{D_{2}}\right)^{2}=\frac{1}{4}, K=0.56$.

$$
\bar{V}_{1}=\frac{Q}{A_{1}}=\frac{4 Q}{\pi D_{1}^{2}}=\frac{4}{\pi} \times 1.25 \frac{1}{\mathrm{~s}} \times 10^{-3} \frac{\mathrm{~m}^{3}}{\mathrm{~L}} \times \frac{1}{\left(25 \times 10^{-3}\right)^{2} \mathrm{~m}^{2}}=2.55 \mathrm{~m} / \mathrm{s}
$$

Substituting,

$$
\begin{aligned}
p_{2}-p_{1} & =\frac{\rho \bar{V}_{1}^{2}}{2}\left[1-\left(\frac{D_{1}}{D_{2}}\right)^{4}\right]-\frac{k \rho \bar{V}_{1}^{2}}{2}=\frac{1}{2} \rho \bar{V}_{1}^{2}\left[1-\left(\frac{D_{1}}{D_{2}}\right)^{4}-k\right] \\
& =\frac{1}{2} \times 999 \frac{k_{0}}{r_{1}^{3}} \times(2.55)^{2} \frac{\mathrm{~m}^{2}}{\mathrm{~s}^{2}}\left[1-\left(\frac{1}{2}\right)^{4}-0.56\right] \frac{\mathrm{N} .5^{2}}{\mathrm{~kg} \cdot \mathrm{~m}} \\
p_{2}-p_{1} & =1.22 k p_{a}
\end{aligned}
$$

For frictionless flow, $k=0$, and

$$
p_{2}-p_{1}=\frac{1}{2} p \bar{V}_{1}^{2}\left[1-\left(\frac{D_{1}}{D_{2}}\right)^{4}\right]=3.04 k p_{a}
$$

Thus $\frac{\Delta p_{\text {actual }}}{\Delta \text { parictincess }}=\frac{1.22}{3.04}=0.403$ or 40.3%

Given: Air flow at standard conditions through a sudden expansion in a circular duct, as shown.

Find: (a) Average velocity of air at inlet (b) Volume flow rate.

Solution: Apply the energy and continuity equations for steady, incompressible flow that is uniform at each section.

Basic equations: $\frac{p_{1}}{\rho}+\frac{\bar{v}_{1}^{2}}{2}+g p_{1}^{(1)}=\frac{p_{2}}{p}+\frac{\bar{v}_{2}^{2}}{2}+g \bar{z}_{2}+h_{1}$

$$
h_{C T}=h_{C}^{=\hat{1}(z)}+K \frac{\bar{v}_{1}^{2}}{2} \quad ; \quad \bar{V}_{1} A_{1}=\bar{V}_{2} A_{2}
$$

Asscemptions: (1) $3_{1}=z_{2}$
(2) $h_{R}=0$ between sections (1) and (2).

Then

$$
\frac{p_{1}}{\rho}+\frac{\bar{v}_{1}^{2}}{2}=\frac{p_{2}}{\bar{p}^{\prime}}+\frac{\bar{v}_{2}^{2}}{2}+k \frac{\bar{v}_{1}^{2}}{2}
$$

From continuity, $\bar{V}_{2}=\bar{V}_{1} \frac{A_{1}}{A_{2}}=\bar{V}_{1} A R$, so

$$
\frac{p_{1}}{\rho}+\frac{\nabla_{1}^{2}}{2}=\frac{p_{2}}{\rho_{1}}+\frac{\bar{v}_{1}^{2}}{2} A R^{2}+K \frac{\bar{v}_{1}^{2}}{2}
$$

or $\quad \frac{\nabla_{1}^{2}}{2}\left(1-A R^{2}-K\right)=\frac{p_{2}-p_{1}}{\rho} \quad$ so that $\quad \bar{V}_{1}=\sqrt{\frac{2\left(p_{2}-p\right)}{\rho\left(1-A R^{2}-K\right)}}$
Now $A R=\left(\frac{D_{1}}{D_{2}}\right)^{2}=0.11$, so from Fig. $8.15, K \simeq 0.80, A 1 s 0$

$$
p_{2}-p_{1}=\gamma_{H 0} \Delta h=62,4 \frac{10 f}{f+3} \times 0.25 \operatorname{in} \times \frac{f f}{2 n}=1,3 \frac{16 f}{t^{2}}
$$

Thus

$$
\nabla_{1}=\left[2 \times 13 \frac{\mathrm{lbf}}{\mathrm{ft}^{2}} \times \frac{\mathrm{ft}}{0.00238 \operatorname{sicg}} \times \frac{1}{\left(1-(0.11)^{2}-0.8\right)} \times \frac{\operatorname{slng} \cdot \mathrm{ft}}{16 \mathrm{f} \cdot \mathrm{~s}^{2}}\right]^{\frac{1}{2}}=76.2 \mathrm{ft} / \mathrm{s}
$$

and

$$
Q=V_{1} A_{1}=76.2 \frac{f t}{s^{\prime}} \times \frac{\pi}{4}(0.25)^{2} \frac{f_{4}^{2}}{s^{2}} \times 60 \frac{\mathrm{~s}}{\mathrm{~min}}=224 \mathrm{ft}^{8} / \mathrm{min}
$$

Given: Water flow through a circular tube, as shown.

Find: Flow rate, Q.
Solution: Apply the energy and continuity equations for steady, incompressible flow that is uniform at each section.

Basic equations: $\begin{array}{r}\frac{p_{1}}{\bar{p}_{1}}+\frac{\bar{v}_{1}^{2}}{2}+g z_{1}^{\prime \prime}=\frac{p_{1}}{\rho}+\frac{\bar{v}_{2}^{2}}{2}+g \bar{p}_{2}^{\prime}+h e T \\ =0(z)\end{array}$

$$
h_{C T}=h_{2}+K \frac{V_{2}^{2}}{2} ; \quad \bar{V}_{1} A,=\bar{V}_{2} A_{2}
$$

Assumptions: (1) $z_{1}=z_{2}$
(2) $h_{c}=0$ between sections (1) and (2)

From Fig: 8.17, at $A R=\frac{A_{2}}{A_{1}}=\left(\frac{D_{2}}{D_{1}}\right)^{2}=\frac{1}{4}, K_{6}=0.4$. Then

$$
\frac{p_{1}}{\rho}+\frac{\bar{V}_{1}^{2}}{2}=\frac{p_{2}}{\rho}+\frac{\bar{V}_{2}^{2}}{2}+k_{c} \frac{\bar{V}_{2}^{2}}{2} \quad \text { and } \quad \frac{\bar{V}_{1}^{2}}{2}=\left(\frac{A_{2}}{A_{1}}\right)^{2} \frac{\bar{V}_{2}^{2}}{2}=\frac{1}{A R^{2}} \frac{\bar{V}_{2}^{2}}{2}
$$

and

$$
\frac{p_{1}}{\rho}+\frac{1}{A R^{2}} \frac{\bar{V}_{2}^{2}}{2}=\frac{p_{2}}{\rho}+\frac{\bar{V}_{2}^{2}}{2}+K_{c} \frac{\bar{V}_{2}^{2}}{2}
$$

or

$$
\frac{p_{1}-p_{2}}{\rho}=\frac{\bar{V}_{2}^{2}}{2}\left[1+k_{c}-\frac{1}{A R^{2}}\right]=\frac{\bar{V}_{2}^{2}}{2}[1+0.4-0.06]=\frac{1.34 \bar{V}_{2}^{2}}{2}
$$

solving,

$$
\begin{aligned}
& \bar{V}_{2}=\sqrt{\frac{2\left(p_{1}-p_{2}\right)}{1.34 \rho}}=\left[\frac{2}{1.34} \times 3.4 \times 10^{3} \frac{\mathrm{~N}}{\mathrm{~m}^{2}} \times \frac{\mathrm{m}^{3}}{999 \mathrm{~kg}} \times \frac{\mathrm{kg} \cdot \mathrm{~m}}{N \cdot 5}\right]^{\frac{1}{2}} \\
& \bar{V}_{2}=2.25 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

Then

$$
Q=\bar{V}_{2} A_{2}=\frac{\pi \bar{V}_{2} D_{2}^{2}}{4}=\frac{\pi}{4} \times 2.25 \frac{m}{5} \times(0.025)^{2} m^{2}=1.10 \times 10^{-3} \mathrm{~m}^{3 / \mathrm{s}}
$$

Problem 8.87

In an undergraduate laboratory you have been assigned the task of developing a crude flow meter for measuring the flow in a 400 mm diameter water pipe system. You are to install a 200 mm diameter section of pipe, and a water manometer to measure the pressure drop at the sudden contraction. Derive an expression for the theoretical calibration constant k in $Q=k \sqrt{\Delta h}$, where Q is the volume flow rate in $\mathrm{L} / \mathrm{min}$, and Δh is the manometer deflection in mm . Plot the theoretical calibration curve for a flow rate range of 0 to $200 \mathrm{~L} / \mathrm{min}$. Would you expect this to be a practical device for measuring flow rate?

Given: Data on a pipe sudden contraction

Find: Theoretical calibration constant; plot

Solution

Given data

$$
\mathrm{D}_{1}=400 \cdot \mathrm{~mm} \quad \mathrm{D}_{2}=200 \cdot \mathrm{~mm}
$$

The governing equations between inlet (1) and exit (2) are

$$
\begin{equation*}
\left(\frac{p_{1}}{\rho}+\alpha_{1} \cdot \frac{\mathrm{~V}_{1}^{2}}{2}+\mathrm{g} \cdot \mathrm{z}_{1}\right)-\left(\frac{\mathrm{p}_{2}}{\rho}+\alpha_{2} \cdot \frac{\mathrm{~V}_{2}^{2}}{2}+\mathrm{g} \cdot \mathrm{z}_{2}\right)=\mathrm{h}_{1} \tag{8.29}
\end{equation*}
$$

where

$$
\begin{equation*}
\mathrm{h}_{1}=\mathrm{K} \cdot \frac{\mathrm{~V}_{2}^{2}}{2} \tag{8.40a}
\end{equation*}
$$

Hence the pressure drop is (assuming $\alpha=1$)

$$
\Delta \mathrm{p}=\mathrm{p}_{1}-\mathrm{p}_{2}=\rho \cdot\left(\frac{\mathrm{V}_{2}^{2}}{2}-\frac{\mathrm{V}_{1}^{2}}{2}+\mathrm{K} \cdot \frac{\mathrm{~V}_{2}^{2}}{2}\right)
$$

For the sudden contraction

$$
\mathrm{V}_{1} \cdot \frac{\pi}{4} \cdot \mathrm{D}_{1}^{2}=\mathrm{V}_{2} \cdot \frac{\pi}{4} \cdot \mathrm{D}_{2}^{2}=\mathrm{Q}
$$

or

$$
\mathrm{V}_{2}=\mathrm{V}_{1} \cdot\left(\frac{\mathrm{D}_{1}}{\mathrm{D}_{2}}\right)^{2}
$$

so

$$
\Delta \mathrm{p}=\frac{\rho \cdot \mathrm{V}_{1}^{2}}{2} \cdot\left[\left(\frac{\mathrm{D}_{1}}{\mathrm{D}_{2}}\right)^{4}(1+\mathrm{K})-1\right]
$$

For the pressure drop we can use the manometer equation

$$
\Delta \mathrm{p}=\rho \cdot \mathrm{g} \cdot \Delta \mathrm{~h}
$$

Hence

$$
\rho \cdot \mathrm{g} \cdot \Delta \mathrm{~h}=\frac{\rho \cdot \mathrm{V}_{1}^{2}}{2} \cdot\left[\left(\frac{\mathrm{D}_{1}}{\mathrm{D}_{2}}\right)^{4}(1+\mathrm{K})-1\right]
$$

In terms of flow rate Q

$$
\rho \cdot \mathrm{g} \cdot \Delta \mathrm{~h}=\frac{\rho}{2} \cdot \frac{\mathrm{Q}^{2}}{\left(\frac{\pi}{4} \cdot \mathrm{D}_{1}^{2}\right)^{2}} \cdot\left[\left(\frac{\mathrm{D}_{1}}{\mathrm{D}_{2}}\right)^{4}(1+\mathrm{K})-1\right]
$$

or

$$
\mathrm{g} \cdot \Delta \mathrm{~h}=\frac{8 \cdot \mathrm{Q}^{2}}{\pi^{2} \cdot \mathrm{D}_{1}^{4}} \cdot\left[\left(\frac{\mathrm{D}_{1}}{\mathrm{D}_{2}}\right)^{4}(1+\mathrm{K})-1\right]
$$

Hence for flow rate Q we find $\mathrm{Q}=\mathrm{k} \cdot \sqrt{\Delta \mathrm{h}}$
where

$$
\mathrm{k}=\sqrt{\frac{\mathrm{g} \cdot \pi^{2} \cdot \mathrm{D}_{1}^{4}}{8 \cdot\left[\left(\frac{\mathrm{D}_{1}}{\mathrm{D}_{2}}\right)^{4}(1+\mathrm{K})-1\right]}}
$$

For K, we need the aspect ratio $A R$

$$
\mathrm{AR}=\left(\frac{\mathrm{D}_{2}}{\mathrm{D}_{1}}\right)^{2} \quad \mathrm{AR}=0.25
$$

From Fig. 8.14

$$
K=0.4
$$

Using this in the expression for k, with the other given values

$$
\mathrm{k}=\sqrt{\frac{\mathrm{g} \cdot \pi^{2} \cdot \mathrm{D}_{1}^{4}}{8 \cdot\left[\left(\frac{\mathrm{D}_{1}}{\mathrm{D}_{2}}\right)^{4}(1+\mathrm{K})-1\right]}}=0.12 \cdot \frac{\mathrm{~m}^{\frac{5}{2}}}{\mathrm{~s}}
$$

For Δh in mm and Q in $\mathrm{L} / \mathrm{min} \mathrm{k}=228 \frac{\frac{\mathrm{~L}}{\min }}{\mathrm{~mm}^{\frac{1}{2}}}$

The plot of theoretical Q versus flow rate Δh is shown in the associated Excel workbook

Problem 8.87 (In Excel)

In an undergraduate laboratory you have been assigned the task of developing a crude flow meter for measuring the flow in a 400 mm diameter water pipe system. You are to install a 200 mm diameter section of pipe, and a water manometer to measure the pressure drop at the sudden contraction. Derive an expression for the theoretical calibration constant k in $Q=k \sqrt{\Delta h}$, where Q is the volume flow rate in $\mathrm{L} / \mathrm{min}$, and Δh is the manometer deflection in mm . Plot the theoretical calibration curve for a flow rate range of 0 to $200 \mathrm{~L} / \mathrm{min}$. Would you expect this to be a practical device for measuring flow rate?

Given: Data on a pipe sudden contraction

Find: Theoretical calibration constant; plot

Solution

D_{1}	$=$	400	mm
D_{1}	$=$	$\mathrm{Q}=\mathrm{k} \cdot \sqrt{\Delta \mathrm{h}}$	
K	$=$	mm	0.4
		$\mathrm{k}=\sqrt{8 \cdot\left[\left(\frac{\mathrm{D}}{1} \mathrm{D}_{2}\right)^{4}(1+\mathrm{K})-1\right]}$	

The values for Δh are quite low; this would not be a good meter it is not sensitive enough. In addition, it is non-linear.

$\Delta h(\mathrm{~mm})$	$Q(\mathrm{~L} / \mathrm{min})$
0.010	23
0.020	32
0.030	40
0.040	46
0.050	51
0.075	63
0.100	72
0.150	88
0.200	102
0.250	114
0.300	125
0.400	144
0.500	161
0.600	177
0.700	191
0.767	200

Problem 8.88

Flow through a sudden contraction is shown. The minimum flow area at the vena contracta is given in terms of the area ratio by the contraction coefficient [30],

$$
C_{c}=\frac{A_{c}}{A_{2}}=0.62+0.38\left(\frac{A_{2}}{A_{1}}\right)^{3}
$$

The loss in a sudden contraction is mostly a result of the vena contracta: The fluid accelerates into the contraction, there is flow separation (as shown by the dashed lines), and the vena contracta acts as a miniature sudden expansion with significant secondary flow losses. Use these assumptions to obtain and plot estimates of the minor loss coefficient for a sudden contraction, and compare with the data presented in Fig. 8.14.

Given: Contraction coefficient for sudden contraction

Find: Expression for minor head loss; compare with Fig. 8.14; plot

Solution

We analyse the loss at the "sudden expansion" at the vena contracta

The governing CV equations (mass, momentum, and energy) are

$$
\begin{gather*}
\frac{\partial}{\partial t} \int_{\mathrm{CV}} \rho d \not+\int_{\mathrm{CS}} \rho \vec{V} \cdot d \vec{A}=0 \tag{4.12}\\
F_{x}=F_{S_{x}}+F_{B_{x}}=\frac{\partial}{\partial t} \int_{\mathrm{CV}} u \rho d \nvdash+\int_{\mathrm{CS}} u \rho \vec{V} \cdot d \vec{A} \tag{4.18a}\\
\dot{Q}-\dot{W}_{s}-\dot{W}_{\text {shear }}-\dot{W}_{\text {other }}=\frac{\partial}{\partial t} \int_{\mathrm{CV}} e \rho d \nvdash+\int_{\mathrm{CS}}\left(u+p v+\frac{V^{2}}{2}+g z\right) \rho \vec{V} \cdot d \vec{A} \tag{4.56}
\end{gather*}
$$

Assume

1. Steady flow
2. Incompressible flow
3. Uniform flow at each section
4. Horizontal: no body force
5. No shaft work
6. Neglect viscous friction
7. Neglect gravity

The mass equation becomes

$$
\begin{equation*}
\mathrm{V}_{\mathrm{c}} \cdot \mathrm{~A}_{\mathrm{c}}=\mathrm{V}_{2} \cdot \mathrm{~A}_{2} \tag{1}
\end{equation*}
$$

The momentum equation becomes

$$
\mathrm{p}_{\mathrm{c}} \cdot \mathrm{~A}_{2}-\mathrm{p}_{2} \cdot \mathrm{~A}_{2}=\mathrm{V}_{\mathrm{c}} \cdot\left(-\rho \cdot \mathrm{V}_{\mathrm{c}} \cdot \mathrm{~A}_{\mathrm{c}}\right)+\mathrm{V}_{2} \cdot\left(\rho \cdot \mathrm{~V}_{2} \cdot \mathrm{~A}_{2}\right)
$$

or (using Eq. 1)

$$
\begin{equation*}
\mathrm{p}_{\mathrm{c}}-\mathrm{p}_{2}=\rho \cdot \mathrm{V}_{\mathrm{c}} \cdot \frac{\mathrm{~A}_{\mathrm{c}}}{\mathrm{~A}_{2}} \cdot\left(\mathrm{~V}_{2}-\mathrm{V}_{\mathrm{c}}\right) \tag{2}
\end{equation*}
$$

The energy equation becomes
or (using Eq. 1)

$$
\begin{aligned}
\mathrm{Q}_{\text {rate }}= & \left(\mathrm{u}_{\mathrm{c}}+\frac{\mathrm{p}_{\mathrm{c}}}{\rho}+\mathrm{V}_{\mathrm{c}}^{2}\right) \cdot\left(-\rho \cdot \mathrm{V}_{\mathrm{c}} \cdot \mathrm{~A}_{\mathrm{c}}\right) \ldots \\
& +\left(\mathrm{u}_{2}+\frac{\mathrm{p}_{2}}{\rho}+\mathrm{V}_{2}^{2}\right) \cdot\left(\rho \cdot \mathrm{V}_{2} \cdot \mathrm{~A}_{2}\right)
\end{aligned}
$$

$$
\begin{align*}
\mathrm{h}_{\mathrm{lm}}=\mathrm{u}_{2}-\mathrm{u}_{\mathrm{c}}-\frac{\mathrm{Q}_{\text {rate }}}{\mathrm{m}_{\text {rate }}}= & \frac{\mathrm{V}_{\mathrm{c}}^{2}-\mathrm{V}_{2}^{2}}{2} \ldots \tag{3}\\
& +\frac{\mathrm{p}_{\mathrm{c}}-\mathrm{p}_{2}}{\rho}
\end{align*}
$$

Combining Eqs. 2 and 3

$$
\begin{aligned}
& \mathrm{h}_{\mathrm{lm}}=\frac{\mathrm{V}_{\mathrm{c}}^{2}-\mathrm{V}_{2}^{2}}{2}+\mathrm{V}_{\mathrm{c}} \cdot \frac{\mathrm{~A}_{\mathrm{c}}}{\mathrm{~A}_{2}} \cdot\left(\mathrm{~V}_{2}-\mathrm{V}_{\mathrm{c}}\right) \\
& \mathrm{h}_{\mathrm{lm}}=\frac{\mathrm{V}_{\mathrm{c}}^{2}}{2} \cdot\left[1-\left(\frac{\mathrm{V}_{2}}{\mathrm{~V}_{\mathrm{c}}}\right)^{2}\right]+\mathrm{V}_{\mathrm{c}}^{2} \cdot \frac{\mathrm{~A}_{\mathrm{c}}}{\mathrm{~A}_{2}} \cdot\left[\left(\frac{\mathrm{~V}_{2}}{\mathrm{~V}_{\mathrm{c}}}\right)-1\right]
\end{aligned}
$$

From Eq. 1

$$
\mathrm{C}_{\mathrm{c}}=\frac{\mathrm{A}_{\mathrm{c}}}{\mathrm{~A}_{2}}=\frac{\mathrm{V}_{2}}{\mathrm{~V}_{\mathrm{c}}}
$$

Hence

$$
\mathrm{h}_{\mathrm{lm}}=\frac{\mathrm{V}_{\mathrm{c}}^{2}}{2} \cdot\left(1-\mathrm{C}_{\mathrm{c}}^{2}\right)+\mathrm{V}_{\mathrm{c}}^{2} \cdot \mathrm{C}_{\mathrm{c}} \cdot\left(\mathrm{C}_{\mathrm{c}}-1\right)
$$

$$
\mathrm{h}_{\mathrm{lm}}=\frac{\mathrm{V}_{\mathrm{c}}^{2}}{2} \cdot\left(1-\mathrm{C}_{\mathrm{c}}^{2}+2 \cdot \mathrm{C}_{\mathrm{c}}^{2}-2 \cdot \mathrm{C}_{\mathrm{c}}\right)
$$

$$
\begin{equation*}
\mathrm{h}_{\mathrm{lm}}=\frac{\mathrm{V}_{\mathrm{c}}^{2}}{2} \cdot\left(1-\mathrm{C}_{\mathrm{c}}\right)^{2} \tag{4}
\end{equation*}
$$

But we have

$$
\begin{equation*}
\mathrm{h}_{\mathrm{lm}}=\mathrm{K} \cdot \frac{\mathrm{~V}_{2}^{2}}{2}=\mathrm{K} \cdot \frac{\mathrm{~V}_{\mathrm{c}}^{2}}{2} \cdot\left(\frac{\mathrm{~V}_{2}}{\mathrm{~V}_{\mathrm{c}}}\right)^{2}=\mathrm{K} \cdot \frac{\mathrm{~V}_{\mathrm{c}}^{2}}{2} \cdot \mathrm{C}_{\mathrm{c}}{ }^{2} \tag{5}
\end{equation*}
$$

Hence, comparing Eqs. 4 and 5

$$
\mathrm{K}=\frac{\left(1-\mathrm{C}_{\mathrm{c}}\right)^{2}}{\mathrm{C}_{\mathrm{c}}^{2}}
$$

So, finally

$$
\mathrm{K}=\left(\frac{1}{\mathrm{C}_{\mathrm{c}}}-1\right)^{2}
$$

where

$$
\mathrm{C}_{\mathrm{c}}=0.62+0.38 \cdot\left(\frac{\mathrm{~A}_{2}}{\mathrm{~A}_{1}}\right)^{3}
$$

This result, and the curve of Fig. 8.14, are shown in the associated Excel workbook. The agreement is reasonable

Problem 8.88 (In Excel)

Flow through a sudden contraction is shown. The minimum flow area at the vena contracta is given in terms of the area ratio by the contraction coefficient [30],

$$
C_{c}=\frac{A_{c}}{A_{2}}=0.62+0.38\left(\frac{A_{2}}{A_{1}}\right)^{3}
$$

The loss in a sudden contraction is mostly a result of the vena contracta: The fluid accelerates into the contraction, there is flow separation (as shown by the dashed lines), and the vena contracta acts as a miniature sudden expansion with significant secondary flow losses. Use these assumptions to obtain and plot estimates of the minor loss coefficient for a sudden contraction, and compare with the data presented in Fig. 8.14.

Given: Sudden contraction

Find: Expression for minor head loss; compare with Fig. 8.14; plot

Solution

The CV analysis leads to

$$
\begin{aligned}
& \mathrm{K}=\left(\frac{1}{\mathrm{C}_{\mathrm{c}}}-1\right)^{2} \\
& \mathrm{C}_{\mathrm{c}}=0.62+0.38 \cdot\left(\frac{\mathrm{~A}_{2}}{\mathrm{~A}_{1}}\right)^{3}
\end{aligned}
$$

A_{2} / A_{1}	K_{CV}	$K_{\text {Fig. 8.14 }}$
0.0	0.376	0.50
0.1	0.374	
0.2	0.366	0.40
0.3	0.344	
0.4	0.305	0.30
0.5	0.248	0.20
0.6	0.180	
0.7	0.111	0.10
0.8	0.052	
0.9	0.013	0.01
1.0	0.000	0.00

(Data from Fig. 8.14 is "eyeballed") Agreement is reasonable

Given：Quasi－steady flow of water from tank shown．

$$
A_{0}=0.5 \text { in. }^{2}=A_{2}
$$

Find：（a）Flow rate at instant shown．
（b）How could system be improved？

Solution：Apply the energy equation for steady，incompressible pipe flow．

Assumptions：（1）$p_{1}=p_{2}=$ pate
（2）Neglect friction in short tube；L No
（3）Reentrant entrance，$K=0.78$（Table 8．2）
（4）Uniform flow at each section， $50 \alpha=1$
Then

$$
\frac{\bar{V}_{1}^{2}}{2}+g z_{1}=\frac{\bar{V}_{2}^{2}}{2}+k \frac{\bar{V}_{2}^{2}}{2}=(1+k) \frac{\bar{V}_{2}^{2}}{z}
$$

But from continceity， $\bar{V}_{1} A_{1}=\bar{V}_{2} A_{2}$ ，so $\bar{V}_{1}^{2}=\bar{V}_{2}^{2}\left(\frac{A_{2}}{A_{1}}\right)^{2}$ and

$$
\frac{\bar{V}_{2}^{2}}{2}\left[1+k-\left(\frac{A_{2}}{A_{1}}\right)^{2}\right]=g z_{1} \quad \text { or } \quad \bar{V}_{2}=\sqrt{\frac{2 g z_{1}}{1+K-\left(A_{2} / A_{1}\right)^{2}}}
$$

Thus

$$
V_{2}=\left[z_{\times} 32.2 \frac{\mathrm{ft}}{3^{2}} \times 3 \mathrm{ft} \times \frac{1}{1+0.78-(0.1)^{2}}\right]^{1 / 2}=10.4 \mathrm{ft} / \mathrm{s}
$$

and

$$
Q=\bar{V}_{2} A_{2}=10.4 \frac{f^{2}}{s} \times 0 . \sin ^{2} \times \frac{f^{2}}{144^{2} \mathrm{in}^{2}}=0.0361 \mathrm{f13/s} \mathrm{\quad(16.2gpm)}
$$

The flow system could be improved by（1）rounding the entrance and（i） adding a ditfieser．

Problem 8.90

Given: Air flow from a clean nom through a duct of 150 mmdrameter .
original:
(1)

Modified:
(1)

$$
h_{1}-h_{2}=2.5 \mathrm{~mm} / t_{2} 0
$$

Friction losses negligible, compared to int and exit lasses.
Find: Increase in volume flow rate for modified duct.
Solution: Apply the energy equation for steady, incompressible pipe flow.
Computing equations:

$$
\begin{aligned}
& \frac{p_{1}}{\rho}+\alpha_{1} \hat{t}_{1}^{2}+g(1) p_{1}=\frac{p_{2}}{\rho}+\alpha_{2} \frac{\vec{V}_{2}^{2}}{2}+g \hat{p}_{2}+h_{C T} \\
& h_{e T}=\hat{h_{l}} \underset{l}{\approx o(4)}+h_{e, m} ; h_{e_{m}}=K_{e n t} \frac{\vec{V}_{2}^{2}}{2} ; \Delta p=\rho h_{2} g \Delta h
\end{aligned}
$$

Assumptions: (1) $\overline{V_{1}} \approx 0$
(3) Uniform flow at exit
(2) Neglect elevation changes
(4) Neglect frictional losses

Then

$$
\frac{\Delta p}{\rho}=\frac{p_{1}-p_{2}}{\rho}=\frac{\bar{V}_{2}^{2}}{2}+K_{\text {nt }} \frac{\bar{V}_{2}^{2}}{2}=\frac{\bar{V}_{2}^{2}}{2}\left(1+K_{\text {nt }}\right)=\frac{\rho_{H 00} g A h}{\rho}
$$

or

$$
\bar{V}_{2}=\sqrt{\frac{2\left(p_{1}-p_{2}\right)}{\rho\left(1+k_{\text {en }}\right)}}=\sqrt{\frac{2 \rho\left(r_{0} g \Delta h\right.}{\rho\left(1+k_{\text {en }}\right)}}
$$

From Table 8.2, Kent $=0.5$ for square-edged, Kent $=0.04$ for rounded entrance.

$$
\begin{aligned}
& \bar{V}_{2}=\sqrt{\frac{2}{1.50} \times \frac{999 \mathrm{~kg}}{m^{3}} \times 9.81 \frac{\mathrm{~m}}{\mathrm{s.2}} \times 0.0025 \mathrm{~m}_{\times} \frac{\mathrm{m}^{3}}{1.23 \mathrm{~kg}}}=5.15 \mathrm{~m} / \mathrm{s} \\
& \bar{V}_{2}(\text { modified })=\sqrt{\frac{2}{1.04} \times 999 \frac{\mathrm{~kg}}{\mathrm{~m}^{3}} \times 9.81 \frac{\mathrm{~m}}{\mathrm{~m}^{2}} \times 0.0025 \mathrm{~m}_{\times} \frac{\mathrm{m}^{2}}{1.23 \mathrm{~kg}}}=6.19 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

since $Q=\bar{V} A$, then

$$
\Delta Q=\left(\overline{V_{2}, n}-\overline{V_{2}}\right) A=(6.19-5.15) \frac{m}{5} \times \frac{\pi}{4}(0.15)^{2} \mathrm{~m}^{2}=0.0184 \mathrm{~m}^{3} / \mathrm{s}
$$

$\left\{\begin{array}{l}\text { The percentage improvement is } \\ \%=\frac{\Delta Q}{Q} \times 100=\frac{\bar{V}_{2 m}-\bar{V}_{2}}{\bar{V}_{2}} \times 100=\frac{6.19-5.15}{S_{i 15}} \times 100=20.2 \text { percent }\end{array}\right\}$

Problem 8.91
Given: Consider again flow through the elbow analyzed in Example Problem 4.6

$$
\begin{aligned}
& P_{1}=221 \mathrm{kPa} \quad A_{1}=0.0 \mathrm{~m}^{2} \\
& V_{2}=\text { ibmls } \quad A_{2}=0.0025 \mathrm{~m}^{2} \\
& P_{2}=P_{\text {atm }}
\end{aligned}
$$

Find: Minor head loss coefficient for the elbow
Solution: Apply the energy equation for steady, incompressible pipe flow.
 Assumptions: (i) $\alpha_{1}=\alpha_{2}=1$
(2) neglect Dz
(3) uniform, ancon presible flow so $\overline{V_{1}} A_{1}=\bar{V}_{2} H_{2}$
(4) use gage pressures

From continuity $\bar{J}_{1}=\bar{J}_{2} \frac{A_{2}}{A_{1}}=16 \frac{H_{s}}{s} \cdot \frac{0.0025 m^{2}}{0.0 m^{2}}=4 M_{s}$
Then

$$
\begin{array}{r}
h_{l_{m}=}=\frac{P_{1 g}}{e}+\frac{\bar{V}_{1}^{2}}{2}-\frac{\bar{V}^{2}}{2}=(22 i-10) \cdot \frac{0^{3}}{\frac{N}{r^{2}}} \times \frac{m^{3}}{999}+\frac{\lg \cdot m}{\sqrt{j} \cdot s^{2}} \\
+\frac{1}{2}\left[(4)^{2}-(16)^{2}\right] \frac{m^{2}}{s^{2}}
\end{array}
$$

$$
h_{l_{m}}=0.120 \mathrm{~m}^{2} / \mathrm{s}^{2}
$$

But $h_{e_{m}}=k \frac{\bar{V}_{2}^{2}}{2} ; k=\frac{2 h_{e_{\mu}}}{V_{2}^{2}}=2 \times 0.120 \frac{n^{2}}{s^{2}} \times(16)^{\frac{s}{m}^{2}}=9.38 \times 10^{-4} \quad k$

Problem 8.92

> A conical diffuser is used to expand a pipe flow from a diameter of 100 mm to a diameter of 150 mm . Find the minimum length of the diffuser if we want a loss coefficient (a) $K_{\text {diffuser }} \leq 0.2$, (b) $K_{\text {diffuser }} \leq 0.35$.

Given: Data on inlet and exit diameters of diffuser

Find: Minimum lengths to satisfy requirements

Solution

Given data

$$
\mathrm{D}_{1}=100 \cdot \mathrm{~mm}
$$

$\mathrm{D}_{2}=150 \cdot \mathrm{~mm}$

The governing equations for the diffuser are

$$
\mathrm{h}_{\mathrm{lm}}=\mathrm{K} \cdot \frac{\mathrm{~V}_{1}^{2}}{2}=\left(\mathrm{C}_{\mathrm{pi}}-\mathrm{C}_{\mathrm{p}}\right) \cdot \frac{\mathrm{V}_{1}^{2}}{2}(8.44)
$$

and

$$
\begin{equation*}
\mathrm{C}_{\mathrm{pi}}=1-\frac{1}{\mathrm{AR}^{2}} \tag{8.42}
\end{equation*}
$$

Combining these we obtain an expression for the loss coefficient K

$$
\begin{equation*}
K=1-\frac{1}{A R^{2}}-C_{p} \tag{1}
\end{equation*}
$$

The area ratio $A R$ is $\quad \mathrm{AR}=\left(\frac{\mathrm{D}_{2}}{\mathrm{D}_{1}}\right)^{2} \quad \mathrm{AR}=2.25$

The pressure recovery coefficient C_{p} is obtained from Eq. 1 above once we select K; then, with C_{p} and $A R$ specified, the minimum value of N / R_{1} (where N is the length and R_{1} is the inlet radius) can be read from Fig. 8.15
(a) $\mathrm{K}=0.2$

$$
\mathrm{C}_{\mathrm{p}}=1-\frac{1}{\mathrm{AR}^{2}}-\mathrm{K}
$$

$$
C_{p}=0.602
$$

From Fig. 8.15 $\quad \frac{\mathrm{N}}{\mathrm{R}_{1}}=5.5 \quad \mathrm{R}_{1}=\frac{\mathrm{D}_{1}}{2} \quad \mathrm{R}_{1}=50 \mathrm{~mm}$

$$
\mathrm{N}=5.5 \cdot \mathrm{R}_{1}
$$

$$
\mathrm{N}=275 \mathrm{~mm}
$$

(b) $\mathrm{K}=0.35$

$$
\mathrm{C}_{\mathrm{p}}=1-\frac{1}{\mathrm{AR}^{2}}-\mathrm{K}
$$

$$
\mathrm{C}_{\mathrm{p}}=0.452
$$

From Fig. 8.15

$$
\frac{\mathrm{N}}{\mathrm{R}_{1}}=3
$$

$$
\mathrm{N}=3 \cdot \mathrm{R}_{1}
$$

$$
\mathrm{N}=150 \mathrm{~mm}
$$

Problem 8.93

A conical diffuser of length 150 mm is used to expand a pipe flow from a diameter of 75 mm to a diameter of 100 mm . For a water flow rate of $0.1 \mathrm{~m}^{3} / \mathrm{s}$, estimate the static pressure rise. What is the approximate value of the loss coefficient?

Given: Data on geometry of conical diffuser; flow rate

Find: Static pressure rise; loss coefficient

Solution

Given data

$$
\begin{array}{ll}
\mathrm{D}_{1}=75 \cdot \mathrm{~mm} & \mathrm{D}_{2}=100 \cdot \mathrm{~mm} \\
\rho=999 \cdot \frac{\mathrm{~kg}}{\mathrm{~m}^{3}} & \mathrm{Q}=0.1 \cdot \frac{\mathrm{~m}^{3}}{\mathrm{~s}}
\end{array}
$$

$$
\mathrm{N}=150 \cdot \mathrm{~mm} \quad(N=\text { length })
$$

The governing equations for the diffuser are

$$
\begin{align*}
& \mathrm{C}_{\mathrm{p}}=\frac{\mathrm{p}_{2}-\mathrm{p}_{1}}{\frac{1}{2} \cdot \rho \cdot \mathrm{~V}_{1}^{2}} \tag{8.41}\\
& \mathrm{~h}_{\mathrm{lm}}=\mathrm{K} \cdot \frac{\mathrm{~V}_{1}^{2}}{2}=\left(\mathrm{C}_{\mathrm{pi}}-\mathrm{C}_{\mathrm{p}}\right) \cdot \frac{\mathrm{V}_{1}^{2}}{2} \tag{8.44}
\end{align*}
$$

and

$$
\begin{equation*}
\mathrm{C}_{\mathrm{pi}}=1-\frac{1}{\mathrm{AR}^{2}} \tag{8.42}
\end{equation*}
$$

From Eq. 8.41

$$
\begin{equation*}
\Delta \mathrm{p}=\mathrm{p}_{2}-\mathrm{p}_{1}=\frac{1}{2} \cdot \rho \cdot \mathrm{~V}_{1}^{2} \cdot \mathrm{C}_{\mathrm{p}} \tag{1}
\end{equation*}
$$

Combining Eqs. 8.44 and 8.42 we obtain an expression for the loss coefficient K

$$
\begin{equation*}
\mathrm{K}=1-\frac{1}{\mathrm{AR}^{2}}-\mathrm{C}_{\mathrm{p}} \tag{2}
\end{equation*}
$$

The pressure recovery coefficient C_{p} for use in Eqs. 1 and 2 above is obtained from Fig. 8.15 once compute $A R$ and the dimensionless length N / R_{1} (where R_{1} is the inlet radius)

The aspect ratio $A R$ is $\quad \mathrm{AR}=\left(\frac{\mathrm{D}_{2}}{\mathrm{D}_{1}}\right)^{2} \quad \mathrm{AR}=1.78$

$$
\mathrm{R}_{1}=\frac{\mathrm{D}_{1}}{2} \quad \mathrm{R}_{1}=37.5 \mathrm{~mm}
$$

Hence

$$
\frac{\mathrm{N}}{\mathrm{R}_{1}}=4
$$

From Fig. 8.15, with $A R=1.78$ and the dimensionless length $N / R_{1}=4$, we find

$$
\mathrm{C}_{\mathrm{p}}=0.5
$$

To complete the calculations we need V_{1}

$$
\mathrm{V}_{1}=\frac{\mathrm{Q}}{\frac{\pi}{4} \cdot \mathrm{D}_{1}^{2}}
$$

$$
\mathrm{V}_{1}=22.6 \frac{\mathrm{~m}}{\mathrm{~s}}
$$

We can now compute the pressure rise and loss coefficient from Eqs. 1 and 2

$$
\begin{array}{ll}
\Delta \mathrm{p}=\frac{1}{2} \cdot \rho \cdot \mathrm{~V}_{1}^{2} \cdot \mathrm{C}_{\mathrm{p}} & \Delta \mathrm{p}=128 \mathrm{kPa} \\
\mathrm{~K}=1-\frac{1}{\mathrm{AR}^{2}}-\mathrm{C}_{\mathrm{p}} & \mathrm{~K}=0.184
\end{array}
$$

Given: Air flow from a clean room through a duct of 150 mm diameter.

Original:
(1)

$h_{1}-h_{2}=2.5 \mathrm{~mm} \mathrm{H} H_{2}$

Modified:
(1)

Well rounded

$$
h_{1}-h_{3}=2.5 \mathrm{~mm} \mathrm{H}_{2} \mathrm{O}
$$

Neglect friction loses compared to "minor "losses.
Find: (a) Area ratio and angle for optimum conical diffuser.
(b) Flow rate for modified system.

Solution: Apply the energy equation for steady, incompressible pipe flow.
Computing equations:

$$
\begin{aligned}
& \frac{p_{1}}{\rho}+\alpha_{1} \frac{\dot{\psi}_{1}^{2}}{2}+g z_{1}=\frac{p_{2}}{\rho}+\alpha_{2} \frac{\vec{v}_{2}^{2}}{2}+g q_{2}+\text { her (or to section 3) }
\end{aligned}
$$

$$
\begin{aligned}
& \text { From Eq. 8.42, hediffuser }=\frac{\bar{V}_{2}^{2}}{2}\left[1-\frac{1}{A R^{2}}-\varphi\right]
\end{aligned}
$$

Assumptions: (1) $\bar{V}_{1} \approx 0$
(3) Uniform flow $a+$ each section
(2) Neglect Δz
(4) Neglect frictional lasses

For the original system, $\frac{p_{1}-p_{2}}{\rho}=\frac{\bar{v}_{2}^{2}}{2}+k_{\text {en }} \frac{\bar{v}_{2}^{2}}{2}=1.5 \frac{\bar{V}_{2}^{2}}{2}=\frac{\rho_{\text {tog }}}{\rho} \quad$ (Kent $=0.5$)
Thus

$$
\bar{V}_{2}=\sqrt{\frac{2}{1.5} \frac{\rho_{H_{2} \mathrm{~g}} g \Delta h}{\rho}}=\sqrt{\frac{2}{1,5} \times 999 \frac{\mathrm{~kg}}{\mathrm{~m}^{3}} \times 9.81 \frac{\mathrm{~m}}{s^{2}} \times 0.0025 \mathrm{~m}_{4}, \frac{\mathrm{~m}^{3}}{25 \mathrm{kj}}}=5.15 \mathrm{~m} / \mathrm{s}
$$

For the modificidsystem, $\frac{p_{1}-p_{3}}{\rho}=\frac{\bar{V}_{3}^{2}}{2}+K_{\text {cent }} \frac{\bar{V}_{2}^{2}}{2}+\frac{\bar{V}_{2}^{2}}{2}\left[1-\frac{1}{A R^{2}}-c_{p}\right]=\frac{\bar{V}_{2}}{2}\left[1+K_{\text {int }}-c_{p}\right]$ since $\bar{V}_{3}^{2}=\bar{V}_{2}^{2} \frac{1}{A R^{2}}$. Thus the but diffuser has the highest c_{p}.
From Fig. $8.16, C_{p}=f\left(N / R_{1}, A R\right) . N / R_{1}=2 N / D_{1}=\frac{2 N}{0.45 m} \frac{0.15 \mathrm{~m}}{6}$. From the figure, the best diffecerer is

$$
c_{P} \approx 0.62 \text { at } A R \approx 2.7 \text { and } 2 \phi \approx 12 \mathrm{deg}
$$

For the modified system,

$$
\bar{V}_{2}=\sqrt{\frac{2}{1+K_{e n t}-40} \frac{\rho_{m 0 g} g h}{\rho}}=\sqrt{\frac{2}{1+0.04-0.62} \times 999 \frac{\mathrm{~kg}}{m_{3}} \times 9.81 \frac{\mathrm{~m}}{\mathrm{~s}^{2}} \times 0.0025 \mathrm{~m} \frac{\mathrm{~m}}{1.23 \mathrm{~kg}}}=9.74 \mathrm{~m} / \mathrm{s}
$$

and

$$
Q=\bar{V}_{2} A_{2}=9.74 \frac{m^{3}}{3} \times \frac{\pi}{4}(0.15)^{2} m^{2}=0.172 \mathrm{~m}^{3} / \mathrm{s}
$$

\{The improvement is $\frac{Q_{m}-Q}{Q} \times 100=\frac{\bar{V}_{m}-V_{V}}{\bar{V}} \times 100=\frac{9.74-5.15}{5.15} \times 100=89.1$ percent more $\}$

Problem 8.95

By applying the basic equations to a control volume starting at the expansion and ending downstream, analyze flow through a sudden expansion (assume the inlet pressure p_{1} acts on the area A_{2} at the expansion). Develop an expression for and plot the minor head loss across the expansion as a function of area ratio, and compare with the data of Fig. 8.14.

Given: Sudden expansion

Find: Expression for minor head loss; compare with Fig. 8.14; plot

Solution

The governing CV equations (mass, momentum, and energy) are

$$
\begin{gather*}
\frac{\partial}{\partial t} \int_{\mathrm{CV}} \rho d \not+\int_{\mathrm{CS}} \rho \vec{V} \cdot d \vec{A}=0 \tag{4.12}\\
F_{x}=F_{S_{x}}+F_{B_{x}}=\frac{\partial}{\partial t} \int_{\mathrm{CV}} u \rho d \not++\int_{\mathrm{CS}} u \rho \vec{V} \cdot d \vec{A} \tag{4.18a}\\
\dot{Q}-\dot{W}_{s}-\dot{W}_{\text {shear }}-\dot{W}_{\text {other }}=\frac{\partial}{\partial t} \int_{\mathrm{CV}} e \rho d \nvdash+\int_{\mathrm{CS}}\left(u+p v+\frac{V^{2}}{2}+g z\right) \rho \vec{V} \cdot d \vec{A} \tag{4.56}
\end{gather*}
$$

Assume 1. Steady flow
2. Incompressible flow
3. Uniform flow at each section
4. Horizontal: no body force
5. No shaft work
6. Neglect viscous friction
7. Neglect gravity

The mass equation becomes

$$
\begin{equation*}
\mathrm{V}_{1} \cdot \mathrm{~A}_{1}=\mathrm{V}_{2} \cdot \mathrm{~A}_{2} \tag{1}
\end{equation*}
$$

The momentum equation becomes

$$
p_{1} \cdot A_{2}-p_{2} \cdot A_{2}=V_{1} \cdot\left(-\rho \cdot V_{1} \cdot A_{1}\right)+V_{2} \cdot\left(\rho \cdot V_{2} \cdot A_{2}\right)
$$

or (using Eq. 1)

$$
\begin{equation*}
\mathrm{p}_{1}-\mathrm{p}_{2}=\rho \cdot \mathrm{V}_{1} \cdot \frac{\mathrm{~A}_{1}}{\mathrm{~A}_{2}} \cdot\left(\mathrm{~V}_{2}-\mathrm{V}_{1}\right) \tag{2}
\end{equation*}
$$

The energy equation becomes
or (using Eq. 1)

$$
\begin{aligned}
\mathrm{Q}_{\text {rate }}= & \left(\mathrm{u}_{1}+\frac{\mathrm{p}_{1}}{\rho}+\mathrm{V}_{1}^{2}\right) \cdot\left(-\rho \cdot \mathrm{V}_{1} \cdot \mathrm{~A}_{1}\right) \ldots \\
& +\left(\mathrm{u}_{2}+\frac{\mathrm{p}_{2}}{\rho}+\mathrm{V}_{2}^{2}\right) \cdot\left(\rho \cdot \mathrm{V}_{2} \cdot \mathrm{~A}_{2}\right)
\end{aligned}
$$

$$
\begin{equation*}
\mathrm{h}_{\mathrm{lm}}=\mathrm{u}_{2}-\mathrm{u}_{1}-\frac{\mathrm{Q}_{\text {rate }}}{\mathrm{m}_{\text {rate }}}=\frac{\mathrm{V}_{1}^{2}-\mathrm{V}_{2}^{2}}{2} \ldots \tag{3}
\end{equation*}
$$

Combining Eqs. 2 and 3

From Eq. 1

$$
\begin{aligned}
& \mathrm{h}_{\mathrm{lm}}=\frac{\mathrm{V}_{1}^{2}-V_{2}^{2}}{2}+\mathrm{V}_{1} \cdot \frac{\mathrm{~A}_{1}}{A_{2}} \cdot\left(\mathrm{~V}_{2}-\mathrm{V}_{1}\right) \\
& \mathrm{h}_{\operatorname{lm}}=\frac{\mathrm{V}_{1}^{2}}{2} \cdot\left[1-\left(\frac{V_{2}}{\mathrm{~V}_{1}}\right)^{2}\right]+\mathrm{V}_{1}{ }^{2} \cdot \frac{\mathrm{~A}_{1}}{\mathrm{~A}_{2}} \cdot\left[\left(\frac{\mathrm{~V}_{2}}{\mathrm{~V}_{1}}\right)-1\right]
\end{aligned}
$$

$\mathrm{AR}=\frac{\mathrm{A}_{1}}{\mathrm{~A}_{2}}=\frac{\mathrm{V}_{2}}{\mathrm{~V}_{1}}$

Hence

$$
\mathrm{h}_{\mathrm{lm}}=\frac{\mathrm{V}_{1}^{2}}{2} \cdot\left(1-\mathrm{AR}^{2}\right)+\mathrm{V}_{1}^{2} \cdot \mathrm{AR} \cdot(\mathrm{AR}-1)
$$

$$
\begin{aligned}
& \mathrm{h}_{\mathrm{lm}}=\frac{\mathrm{V}_{1}^{2}}{2} \cdot\left(1-\mathrm{AR}^{2}+2 \cdot \mathrm{AR}^{2}-2 \cdot \mathrm{AR}\right) \\
& \mathrm{h}_{\mathrm{lm}}=\mathrm{K} \cdot \frac{\mathrm{~V}_{1}^{2}}{2}=(1-\mathrm{AR})^{2} \cdot \frac{\mathrm{~V}_{1}^{2}}{2} \\
& \mathrm{~K}=(1-\mathrm{AR})^{2}
\end{aligned}
$$

Finally

This result, and the curve of Fig. 8.14, are shown in the associated Excel workbook. The agreement is excellent

Problem 8.95 (In Excel)

By applying the basic equations to a control volume starting at the expansion and ending downstream, analyze flow through a sudden expansion (assume the inlet pressure p_{1} acts on the area A_{2} at the expansion). Develop an expression for and plot the minor head loss across the expansion as a function of area ratio, and compare with the data of Fig. 8.14.

Given: Sudden expansion

Find: Expression for minor head loss; compare with Fig. 8.14; plot

Solution

From the CV analysis
$K=(1-A R)^{2}$

$A R$	K_{CV}	$K_{\text {Fig. 8.14 }}$
0.0	1.00	1.00
0.1	0.81	
0.2	0.64	0.60
0.3	0.49	
0.4	0.36	0.38
0.5	0.25	0.25
0.6	0.16	
0.7	0.09	0.10
0.8	0.04	
0.9	0.01	0.01
1.0	0.00	0.00

(Data from Fig. 8.14 is "eyeballed") Agreement is excellent

Problem 8.96

Analyze flow through a sudden expansion to obtain an expression for the upstream average velocity \bar{V}_{1} in terms of the pressure change $\Delta p=p_{2}-p_{1}$, area ratio $A R$, fluid density ρ, and loss coefficient K. If the flow were frictionless, would the flow rate indicated by a measured pressure change be higher or lower than a real flow, and why? Conversely, if the flow were frictionless, would a given flow generate a larger or smaller pressure change, and why?

Given: Sudden expansion

Find: Expression for upstream average velocity

Solution

The governing equation is

$$
\begin{align*}
& \left(\frac{p_{1}}{\rho}+\alpha_{1} \cdot \frac{V_{1}^{2}}{2}+g \cdot z_{1}\right)-\left(\frac{p_{2}}{\rho}+\alpha_{2} \cdot \frac{V_{2}^{2}}{2}+g \cdot z_{2}\right)=h_{1 T} \tag{8.29}\\
& \mathrm{~h}_{1 \mathrm{~T}}=\mathrm{h}_{1}+\mathrm{K} \cdot \frac{\mathrm{~V}^{2}}{2}
\end{align*}
$$

Assume 1. Steady flow
2. Incompressible flow
3. $\mathrm{h}_{1}=0$
4. $\alpha_{2}=\alpha_{2}=1$
5. Neglect gravity

The mass equation is

$$
\mathrm{V}_{1} \cdot \mathrm{~A}_{1}=\mathrm{V}_{2} \cdot \mathrm{~A}_{2}
$$

so

$$
\mathrm{V}_{2}=\mathrm{V}_{1} \cdot \frac{\mathrm{~A}_{1}}{\mathrm{~A}_{2}}
$$

$$
\begin{equation*}
\mathrm{V}_{2}=\mathrm{AR} \cdot \mathrm{~V}_{1} \tag{1}
\end{equation*}
$$

Equation 8.29 becomes

$$
\frac{\mathrm{p}_{1}}{\rho}+\frac{\mathrm{V}_{1}^{2}}{2}=\frac{\mathrm{p}_{1}}{\rho}+\frac{\mathrm{V}_{1}^{2}}{2}+\mathrm{K} \cdot \frac{\mathrm{~V}_{1}^{2}}{2}
$$

or (using Eq. 1)

$$
\frac{\Delta \mathrm{p}}{\rho}=\frac{\mathrm{p}_{2}-\mathrm{p}_{1}}{\rho}=\frac{\mathrm{V}_{1}^{2}}{2} \cdot\left(1-\mathrm{AR}^{2}-\mathrm{K}\right)
$$

Solving for V_{1}

$$
V_{1}=\sqrt{\frac{2 \cdot \Delta p}{\rho \cdot\left(1-\mathrm{AR}^{2}-K\right)}}
$$

If the flow were frictionless, $K=0$, so $\quad \mathrm{V}_{\text {inviscid }}=\sqrt{\frac{2 \cdot \Delta \mathrm{p}}{\rho \cdot\left(1-\mathrm{AR}^{2}\right)}}<\mathrm{V}_{1}$

Hence. the flow rate indicated by a given Δp would be lower

If the flow were frictionless, $K=0$, so

$$
\Delta \mathrm{p}_{\text {invscid }}=\frac{\mathrm{V}_{1}^{2}}{2} \cdot\left(1-\mathrm{AR}^{2}\right)
$$

compared to

$$
\Delta \mathrm{p}=\frac{\mathrm{V}_{1}^{2}}{2} \cdot\left(1-\mathrm{AR}^{2}-\mathrm{K}\right)
$$

Hence. a given flow rate would generate a larger Δp for inviscid flow

Given: Water at $45^{\circ} \mathrm{C}$ enters a shower head through a circular tube with 15.8 mm inside diameter. The water leaves in 24 streams, each of 1.05 mm diameter. The volume flow rate is $5.67 \mathrm{~L} / \mathrm{min}$.
Find: (a) Estimate of the minimum water pressure needed at the inlet to the shower head.
(b) Force needed to hold the shower head onto the end of the circular tube, indicating clearly whether this is a compression or a tension force.
Solution: Apply the energy equation for steady, incompressible pipe flow, and the x component of momentum, using the $L V$ shown.

Assume: (1) Steady flow
(2) Incompressible flow
(3) Neglect changes in 3
(4) Uniform flow: $\alpha_{1}=\alpha_{2} \approx 1$
(5) Use gage pressures 24 streams

Then

$$
\begin{aligned}
& \frac{p_{1}}{\rho}+\alpha_{1} \frac{\bar{v}_{1}^{2}}{2}+g_{p_{1}}-\left(\hat{p}_{2}^{\left.20(g a g)_{2}\right)}+\alpha_{2} \frac{\bar{V}_{2}^{2}}{2}+g_{i}\right) \\
& =h_{\text {eT }}=h_{t}=h_{\text {em }} \\
& A_{2}=24 \frac{\pi D_{2}^{2}}{4}=2.08 \times 10^{-5} \mathrm{~m}^{2} \\
& \bar{V}_{i}=\frac{Q}{A_{1}}=5.67 \frac{\mathrm{~L}}{\mathrm{~min}^{2}} \times \frac{1}{1.96 \times 10^{-4} \mathrm{~m}^{2}} \times \frac{\mathrm{m}^{3}}{1000 \mathrm{~L}} \times \frac{\mathrm{min}}{403}=0.487 \mathrm{~m} / \mathrm{s} \\
& \bar{V}_{2}=\bar{V}_{1} \frac{A_{1}}{A_{2}}=0.487 \frac{\mathrm{~m}}{\mathrm{~s}} \times \frac{1.96 \times 10^{-4} \mathrm{~m}^{2}}{2.08 \times 10^{-5} \mathrm{~m}^{2}}=4.59 \mathrm{~m} / \mathrm{s} \\
& \text { Use } K=0.5 \text {, for a square-edged orifice } \rho=96 \mathrm{~kg}^{\prime} / \mathrm{m}^{3} \text { (Table A.8). Then } \\
& p_{1}=\frac{\rho}{2}\left(\bar{V}_{2}^{2}+k \bar{V}_{2}^{2}-\bar{V}_{1}^{2}\right)=\frac{\rho}{2}\left[(1+k) \bar{v}_{2}^{*} \div \bar{v}_{1}^{2}\right] \\
& p_{1}=\frac{1}{2} \times 990 \frac{\mathrm{~kg}}{\mathrm{~m}^{3}}\left[(1+0.5)(4.59)^{2}-(0.487)^{2}\right] \frac{\mathrm{m}^{2}}{\mathrm{~S}^{2}} \times \frac{\mathrm{N} \cdot \mathrm{j}}{\mathrm{~kg} \cdot \mathrm{~m}}=15.5 \mathrm{kPa} \text { (agc) }
\end{aligned}
$$

Use momentum to find force:
Basic equation: $F_{3 x}+F \int_{p_{x}}^{20(6)}=\frac{z^{2}}{q^{2}} \int_{C v}^{(1)} u \rho d t+\int_{C s} u \rho \vec{v} \cdot d \vec{A}$
Assume: (6) $F_{B_{X}}=0$
Then $R_{x}-p_{1} g A_{1}=u_{1}\{-\rho Q\}+u_{2}\{+\rho Q\}=-v_{1}\{-\rho Q\}+\left(-v_{2}\right)\{+\rho Q\}=\rho Q\left(v_{1}-v_{2}\right)$
Step (2): $u_{1}=-v_{1} \quad u_{2}=-v_{2}$

$$
\begin{gathered}
R_{x}=p_{1 g} A_{1}+P Q\left(v_{1}-v_{2}\right)=15.5 \times 10^{3} \frac{\mathrm{~N}}{\mathrm{~m}^{2}} \times 1.96 \times 10^{-4} \mathrm{~m}^{2}+990 \frac{\mathrm{~kg}}{\mathrm{~m}^{3}} \times 5.67 \frac{\mathrm{~L}}{\mathrm{~min}^{3}} \times(0.487-4.59) \frac{\mathrm{m}}{\mathrm{~s}} \\
\times \frac{\mathrm{m}^{3}}{100 \mathrm{~L}^{2}} \times \frac{\mathrm{min}}{605}
\end{gathered}
$$

$$
R_{x}=2.65 \mathrm{~N} \text { (in direction shown, ie., tension) }
$$

Gwen: Water diserarges to atmospherefrom a large weser For Rough a moderately round horizontal nozzle
as show r. A shortsection of 50 mm pipe is attacked to the nozzle to form a sudan expansion
Find: (a) the change in flow rate when the short section is added. (b) magnitude of the minimum pressure

Question: (a) If the flow were frictionless (wit the sudden expansion in place l would the minimum pressure be higher \aver, or the sarre as in (b) above?

Solution:
(b) Would the flow rate the higher, lower, or the same?

Basic equations: $\left(\frac{p_{1}}{p}+\alpha_{1} \frac{j^{2}}{2}+g \partial_{1}\right)-\left(\frac{p_{2}}{\rho_{2}}+\alpha_{2} \frac{j_{2}^{2}}{2}-g g_{2}\right)=h_{1+}$

$$
\begin{equation*}
h_{A T}^{2}=h_{2}^{d}+k \frac{j^{2}}{2} \tag{y,2a}
\end{equation*}
$$

Assum-ptuois: il) steady, incompressible flow.
(2) $h_{t}=8 \quad$ kinase $=0.28$ (Table si)

$$
\begin{aligned}
& (3) J_{1}=0 \quad \alpha_{2}=1.0 \\
& (4) p_{1}=p_{2}=p_{a t m}
\end{aligned}
$$

Applying Eq. 8.29 between on and © gives

$$
\begin{aligned}
& g\left(z-z_{2}\right)=k_{\text {nog }}{ }^{-} \frac{V_{2}^{2}}{2}+\frac{J_{2}^{2}}{2}=\bar{J}_{\frac{2}{2}}^{2}\left(k_{\text {oegaze }}+1\right) \text {, and. } \\
& \bar{j}_{2}=\left[\frac{2 g\left(j_{j}-y_{2}\right)}{k_{n g g}+1}\right]^{1 / 2}=\left[\frac{2}{(0.28+1)^{9.81}} \frac{\mathrm{~m}}{5} \times 1.5 \mathrm{~m}\right]^{1 / 2}=4.8 \mathrm{~m} / \mathrm{s} .
\end{aligned}
$$

Add the short section of pipe as shown.

$$
A_{3} a_{a_{2}}=\left(P_{3} h_{D_{2}}\right)^{2}=(2)^{2}=4
$$

From F gig. 8.15 with $A_{2} / A_{3}=0.25, k_{2}=0.6$
Applying Eq, 8 :29 between 0 and (3) win

$$
g\left(z_{1}-z_{3}\right)=k_{0_{0} z_{3} t} \frac{j_{2}^{2}}{2}+k_{2} \frac{v_{2}}{2}+\frac{j_{3}}{2}
$$

Fromcontinuty $A_{2} \bar{O}_{2}=A_{3} \bar{J}_{3}$
and

$$
g\left(J^{\prime}-Z_{3}\right)=\frac{J_{2}^{2}}{2}\left[K_{n g y} K_{2}+A R_{1}^{2}\right] \text { where } A R=0.25
$$

Her $\bar{V}_{2}=\left[\frac{2 g\left(z_{1}-z^{2}\right)}{\left(K_{0} g+K_{2}+R_{R}^{2}\right)}\right]^{1 / 2}-\ldots \ldots$ (i)

Given: steady flow of water from a large tank through a length of smooth plastic tubing, with $D=3.18 \mathrm{~mm}$ and $L=15.3 \mathrm{~m}$.

Find: (a) Maximum volume flow rate for laminar flow.
(b) Estimate maximum water level in tank for laminar flow $(\alpha=2$ and kent $=1.4)$

Solution: Assume water at $20^{\circ} \mathrm{C}$. From Table $A .8, \rho=998 \mathrm{~kg} / \mathrm{m}^{3}, v=1.00 \times 10^{-6} \mathrm{~m}^{2} / \mathrm{s}$.

$$
\begin{align*}
& R e=\frac{\rho \bar{V} D}{\mu}=\frac{V D}{v} \leqslant 2300 ; \bar{V}_{m a x}=\frac{2300 v}{D}=23000_{x} 1.00 \times 10^{-6} \frac{\mathrm{~m}^{2}}{\mathrm{~s}} \times \frac{1}{0.00318 \mathrm{~m}}=0.723 \mathrm{~m} / \mathrm{s} \\
& Q=\overline{V A} ; A=\frac{\pi D^{2}}{4}=\frac{\pi}{4}(0.00318)^{2} \mathrm{~m}^{2}=7.94 \times 10^{-6} \mathrm{~m}^{2} \\
& Q=0.723 \frac{\mathrm{~m}}{\mathrm{~s}} \times 7.94 \times 10^{-6} \mathrm{~m}^{2}=5.74 \times 10^{-6} \frac{\mathrm{~m}^{3}}{\mathrm{~s}} \times 10^{3} \frac{\mathrm{~L}}{\mathrm{~m}^{3}} \times 60 \frac{\mathrm{~s}}{\mathrm{~mm}}=0.345 \mathrm{~L} / \mathrm{min} \tag{1}
\end{align*}
$$

$$
h_{l T}-h_{l m}+h_{l}
$$

Assumptions: (1) $p_{1}=p_{2}=$ pate
(2) $\nabla_{1} \approx 0$

(3) Kent $=1.4$ (given)

Then $g d=\alpha_{2} \frac{\bar{V}_{2}^{2}}{2}+\operatorname{ken}^{2}+\frac{\bar{V}_{2}^{2}}{2}+f \frac{L}{D} \frac{\bar{V}_{2}^{2}}{2} \quad$ or $d=\frac{\bar{V}_{2}^{2}}{2 g}\left(\alpha_{2}+k_{\text {en }}+f \frac{L}{D}\right)$
For laminar flow, $f=\frac{64}{R e}=\frac{64}{2300}=0.0278$. Substituting

$$
\begin{aligned}
& d=\frac{1}{2} \times(0.723)^{2} \frac{\mathrm{~m}^{2}}{\mathrm{~s}^{2}} \times \frac{\mathrm{s}^{2}}{9.81 \mathrm{~m}}\left(2.0+1.4+0.0278 \frac{15.3 \mathrm{~m}}{0.00318 \mathrm{~m}}\right) \\
& d=3.65 \mathrm{~m}
\end{aligned}
$$

Open-Ended Problem Statement: You are asked to compare the behavior of fully developed laminar flow and fully developed turbulent flow in a horizontal pipe under different conditions. For the same flow rate, which will have the larger centerline velocity? Why? If the pipe discharges to atmosphere what would you expect the trajectory of the discharge stream to look like (for the same flow rate)? Sketch your expectations for each case. For the same flow rate, which flow would give the larger wall shear stress? Why? Sketch the shear stress distribution τ / τ_{w} as a function of radius for each flow. For the same Reynolds number, which flow would have the larger pressure drop per unit length? Why? For a given imposed pressure differential, which flow would have the larger flow rate? Why?
Discussion: In the following fully developed laminar flow and fully developed turbulent flow in a pipe are compared:
(a) For the same flow rate, laminar flow has the higher maximum velocity, because the turbulent velocity profile is more blunt.
(b) The trajectory of the discharge stream spreads out for laminar flow because of the large variation in velocity across the pipe exit. For turbulent flow the exit profile is more nearly uniform (except for the region adjacent to the wall) and hence the trajectory is more uniform. Since centerline velocity is larger for laminar flow, liquid travels the greatest horizontal distance. Trajectories for the two flow cases are shown below:

(i) Laminar flow

(ii) Turbulent flow
(c) For the same flow rate (same mean velocity), turbulent flow has larger wall shear stress because of the larger velocity gradient at the pipe wall. For fully developed flow the pressure force driving the flow is balanced by the shear force at the wall.
(d) Shear stress varies linearly with radius for both flow cases, from its maximum value at the wall to zero at the pipe centerline.
(e) For the same Reynolds number, turbulent flow has a larger pressure drop per unit length because the friction factor is larger.
(f) For a given pressure drop (per unit length), laminar flow has the larger flow rate (larger mean velocity), because it has the smaller friction factor.
The two flow cases are compared in the NCFMF video Turbulence, in which R. W. Stewart uses a clever experimental setup to contrast the two flow regimes at constant volume flow rate by varying the liquid viscosity. The trajectories of the liquid streams leaving the end of the pipe are particularly well shown.

Problem 8.101 (In Excel)

Estimate the minimum level in the water tank of Problem 8.99 such that the flow will be turbulent.

Given: Data on water flow from a tank/tubing system

Find: Minimum tank level for turbulent flow

Solution

Governing equations:

$$
\begin{align*}
& \operatorname{Re}=\frac{\rho \cdot \mathrm{V} \cdot \mathrm{D}}{\mu} \\
& \left(\frac{p_{1}}{\rho}+\alpha_{1} \cdot \frac{\mathrm{~V}_{1}^{2}}{2}+\mathrm{g} \cdot \mathrm{z}_{1}\right)-\left(\frac{p_{2}}{\rho}+\alpha_{2} \cdot \frac{\mathrm{~V}_{2}^{2}}{2}+\mathrm{g} \cdot \mathrm{z}_{2}\right)=\mathrm{h}_{\mathrm{lT}}=\sum_{\text {major }} \mathrm{h}_{\mathrm{l}}+\sum_{\text {minor }} \mathrm{h}_{\mathrm{lm}} \\
& \mathrm{~h}_{\mathrm{l}}=\mathrm{f} \cdot \frac{\mathrm{~L}}{\mathrm{D}} \cdot \frac{\mathrm{~V}^{2}}{2} \tag{8.34}\\
& \mathrm{~h}_{\mathrm{lm}}=\mathrm{K} \cdot \frac{\mathrm{~V}^{2}}{2} \tag{8.40a}\\
& \mathrm{~h}_{\operatorname{lm}}=\mathrm{f} \cdot \frac{\mathrm{~L}}{\mathrm{D}} \cdot \frac{\mathrm{~V}^{2}}{2} \tag{8.40b}\\
& \mathrm{f}=\frac{64}{\operatorname{Re}} \tag{8.36}\\
& \frac{1}{\mathrm{f}^{0.5}}=-2.0 \cdot \log \left(\frac{\text { (8.34) }}{3.7}+\frac{\text { (8.40b) }}{\operatorname{Re} \cdot \mathrm{f}^{0.5}}\right) \tag{8.37}
\end{align*}
$$

The energy equation (Eq. 8.29) becomes
$\mathrm{g} \cdot \mathrm{d}-\alpha \cdot \frac{\mathrm{V}^{2}}{2}=\mathrm{f} \cdot \frac{\mathrm{L}}{\mathrm{D}} \cdot \frac{\mathrm{V}^{2}}{2}+\mathrm{K} \cdot \frac{\mathrm{V}^{2}}{2}$
This can be solved expicitly for height d, or solved using Solver

Given data:

$$
\begin{array}{rlll}
L= & 15.3 & \mathrm{~m} \\
D= & 3.18 & \mathrm{~mm} \\
K_{\text {ent }} & = & 1.4 & \\
\alpha= & 2 &
\end{array}
$$

Tabulated or graphical data:

Computed results:

$$
\begin{array}{rcl}
R e & = & 2300 \\
V= & 0.723 & \text { (Transition } \operatorname{Re} \text {) } \\
\alpha= & 1 & \text { (Turbulent) } \\
f= & 0.0473 & \text { (Turbulent) }
\end{array}
$$

$$
d=\quad 6.13 \mathrm{~m} \quad(\text { Vary } d \text { to minimize error in energy equation) }
$$

Energy equation: (Using Solver $)$	Left ($\left.\mathbf{m}^{2} / \mathbf{s}\right)$	Right $\left(\mathbf{m}^{2} / \mathbf{s}\right)$	Error
	59.9	59.9	0.00%

Note that we used $\alpha=1$ (turbulent); using $\alpha=2$ (laminar) gives $d=6.16 \mathrm{~m}$

Give: System for measuring pressure drop for water flow in smolt tube as shown

Find: (a) volume flow rate needed for turbulent flow in pipe (b) reservar treigt differential needed for turbulent pip flow
Solution:
Flow will be turbulent for Re, >2300

$$
R_{e}=\frac{\overline{P V}}{\mu}=\frac{\bar{V}}{V}=\frac{Q \eta}{A V}=\frac{Q y}{V} \frac{4}{\pi \nabla^{2}}=\frac{4 Q}{\pi \nabla\rangle} \text { so } Q=\frac{\pi \nabla P R}{4}
$$

Assure $T=20^{\circ} \mathrm{C}, \quad V=1.00 \times 10^{-6} \mathrm{M}^{2} \mathrm{I}_{\mathrm{s}}$ (Table $A . B^{\prime}$)
For $R_{e}=2300$,

$$
Q=\frac{\pi}{4} \times 1.0 \times 10^{-6} \frac{2}{5} \times 15.2 \times 10^{-3} m+2300=2.87 \times 10^{-5} \mathrm{~m}^{3} \mathrm{~s}_{\mathrm{s}} \quad Q
$$

Basic equations: $\left.\left(\frac{-9}{/}+\alpha_{1} \frac{-2}{2}+g_{3}\right)-\left(\frac{p /}{e}+\alpha_{2} / \frac{y}{2}+g_{2}\right)^{2}\right)=h_{1} \quad(8,2 a)$.

$$
h_{e T}=h_{e}+h_{e_{m}} \quad h_{e}=f \frac{-V^{2}}{8} \quad, h_{e_{n}}=k \frac{\bar{j}^{2}}{2}
$$

Assumptions: (1) $P_{1}=P_{2}=P_{\text {atm }}(2) \bar{J}_{1}=\bar{J}_{2}=0$

$$
\text { (3) Kat }=0.5(\text { Table } 8.2), K_{\text {ait }}=1.0
$$

Then,

$$
\left.z_{1}-z_{2}=\frac{-2}{2 g}\left[f \frac{1}{8}+k_{\text {ert }}+k_{\operatorname{ein}}\right]_{-5}\right]^{k}
$$

$\bar{Y}=\frac{\theta}{\pi}=\frac{4 \theta}{\pi V^{2}}=\frac{4}{\pi} \times 2.81 \times 10^{-5} \frac{\pi}{5} \times\left(15 \cdot \frac{1}{2} \times 10^{-3} \mathrm{~m}\right)^{2}=0.145 \mathrm{mls}$
For turbulent flow in a smooth pipe at $R e=2300$,

$$
f=0.05\left(F_{i g} 8.13\right)
$$

From Eq. 1

$$
d=3 . z_{2}=\frac{(0.145)^{2} n^{2}}{2} \frac{5^{2}}{s^{2}}+\frac{s^{2}}{9.81 m}\left[0.05 \times \frac{3.56 \times 0^{3}}{15.9}+0.5+1.0\right]
$$

$d=0.0136 \mathrm{~m}$ or 13.6 mm

Problem 8.103 (In Excel)

Plot the required reservoir depth of water to create flow in a smooth tube of diameter
10 mm and length 100 m , for a flow rate range of $1 \mathrm{~L} / \mathrm{s}$ through $10 \mathrm{~L} / \mathrm{s}$.

Given: Data on tube geometry

Find: Plot of reservoir depth as a function of flow rate

Solution

Governing equations:
$\operatorname{Re}=\frac{\rho \cdot V \cdot D}{\mu}$
$\left(\frac{p_{1}}{\rho}+\alpha_{1} \cdot \frac{\mathrm{~V}_{1}{ }^{2}}{2}+\mathrm{g} \cdot \mathrm{z}_{1}\right)-\left(\frac{\mathrm{p}_{2}}{\rho}+\alpha_{2} \cdot \frac{\mathrm{~V}_{2}^{2}}{2}+\mathrm{g} \cdot \mathrm{z}_{2}\right)=\mathrm{h}_{\mathrm{lT}}=\sum_{\text {major }} \mathrm{h}_{\mathrm{l}}+\sum_{\text {minor }} \mathrm{h}_{\mathrm{lm}}$
$h_{1}=f \cdot \frac{L}{D} \cdot \frac{V^{2}}{2}$
$h_{l m}=K \cdot \frac{\mathrm{~V}^{2}}{2}$
$f=\frac{64}{\operatorname{Re}}$
(8.36) (Laminar)
$\frac{1}{\mathrm{f}^{0.5}}=-2.0 \cdot \log \left(\frac{\frac{\mathrm{e}}{\mathrm{D}}}{3.7}+\frac{2.51}{\operatorname{Re} \cdot \mathrm{f}^{0.5}}\right)$
(8.37) (Turbulent)

The energy equation (Eq. 8.29) becomes
$g \cdot d-\alpha \cdot \frac{V^{2}}{2}=f \cdot \frac{L}{D} \cdot \frac{V^{2}}{2}+K \cdot \frac{V^{2}}{2}$
This can be solved explicitly for reservoir height d, or solved using (Solver)
$d=\frac{V^{2}}{2 \cdot g} \cdot\left(\alpha+f \cdot \frac{L}{D}+K\right)$

Given data:
Tabulated or graphical data:

L	$=$	100	m
D	$=$	10	mm
α	$=$	1	
(All flows turbulent)			

$K_{\text {ent }}=0.5 \quad$ (Square-edged)
(Table 8.2)

Computed results:

\boldsymbol{Q} (L/min)	$\boldsymbol{V}(\mathbf{m} / \mathbf{s})$	$\boldsymbol{R e}$	\boldsymbol{f}	$\boldsymbol{d} \mathbf{(m)}$
1	0.2	$2.1 \mathrm{E}+03$	0.0305	0.704
2	0.4	$4.2 \mathrm{E}+03$	0.0394	3.63
3	0.6	$6.3 \mathrm{E}+03$	0.0350	7.27
4	0.8	$8.4 \mathrm{E}+03$	0.0324	11.9
5	1.1	$1.0 \mathrm{E}+04$	0.0305	17.6
6	1.3	$1.3 \mathrm{E}+04$	0.0291	24.2
7	1.5	$1.5 \mathrm{E}+04$	0.0280	31.6
8	1.7	$1.7 \mathrm{E}+04$	0.0270	39.9
9	1.9	$1.9 \mathrm{E}+04$	0.0263	49.1
10	2.1	$2.1 \mathrm{E}+04$	0.0256	59.1

The flow rates given (L / s) are unrealistic!
More likely is $\mathrm{L} / \mathrm{min}$. Results would otherwise be multiplied by 3600 !

Problem 8.104

As discussed in Problem 8.49, the applied pressure difference, Δp, and corresponding volume flow rate, Q, for laminar flow in a tube can be compared to the applied DC voltage V across, and current $/$ through, an electrical resistor, respectively. Investigate whether or not this analogy is valid for turbulent flow by plotting the "resistance" $\Delta p / Q$ as a function of Q for turbulent flow of kerosine (at $40^{\circ} \mathrm{C}$) in a tube 100 mm long with inside diameter 0.3 mm .

Given: Data on a tube

Find: "Resistance" of tube for flow of kerosine; plot

Solution

The given data is

$$
\mathrm{L}=100 \cdot \mathrm{~mm}
$$

$\mathrm{D}=0.3 \cdot \mathrm{~mm}$

From Fig. A. 2 and Table A. 2

$$
\text { Kerosene: } \quad \mu=1.1 \times 10^{-3} \cdot \frac{\mathrm{~N} \cdot \mathrm{~s}}{\mathrm{~m}^{2}} \quad \rho=0.82 \times 990 \cdot \frac{\mathrm{~kg}}{\mathrm{~m}^{3}}=812 \cdot \frac{\mathrm{~kg}}{\mathrm{~m}^{3}}
$$

For an electrical resistor $\quad \mathrm{V}=\mathrm{R} \cdot \mathrm{I}$

The governing equations for turbulent flow are

$$
\begin{align*}
& \left(\frac{p_{1}}{\rho}+\alpha_{1} \cdot \frac{\mathrm{~V}_{1}^{2}}{2}+\mathrm{g} \cdot \mathrm{z}_{1}\right)-\left(\frac{\mathrm{p}_{2}}{\rho}+\alpha_{2} \cdot \frac{\mathrm{~V}_{2}^{2}}{2}+\mathrm{g} \cdot \mathrm{z}_{2}\right)=\mathrm{h}_{1} \tag{8.29}\\
& \mathrm{~h}_{1}=\mathrm{f} \cdot \frac{\mathrm{~L}}{\mathrm{D}} \cdot \frac{\mathrm{~V}^{2}}{2} \tag{8.34}
\end{align*}
$$

$$
\begin{equation*}
\frac{1}{\mathrm{f}^{0.5}}=-2.0 \cdot \log \left(\frac{\frac{\mathrm{e}}{\mathrm{D}}}{3.7}+\frac{2.51}{\mathrm{Re} \cdot \mathrm{f}^{0.5}}\right) \tag{8.37}
\end{equation*}
$$

Simplifying Eqs. 8.29 and 8.34 for a horizontal, constant-area pipe

$$
\begin{align*}
& \frac{p_{1}-p_{2}}{\rho}=\mathrm{f} \cdot \frac{\mathrm{~L}}{\mathrm{D}} \cdot \frac{\mathrm{~V}^{2}}{2}=\mathrm{f} \cdot \frac{\mathrm{~L}}{\mathrm{D}} \cdot \frac{\left(\frac{\mathrm{Q}}{\frac{\pi}{4} \cdot \mathrm{D}^{2}}\right)^{2}}{2} \\
& \Delta \mathrm{p}=\frac{8 \cdot \rho \cdot \mathrm{f} \cdot \mathrm{~L}}{\pi^{2} \cdot \mathrm{D}^{5}} \cdot \mathrm{Q}^{2} \tag{2}
\end{align*}
$$

By analogy, current I is represented by flow rate Q, and voltage V by pressure drop Δp.
Comparing Eqs. (1) and (2), the "resistance" of the tube is

$$
\mathrm{R}=\frac{\Delta \mathrm{p}}{\mathrm{Q}}=\frac{8 \cdot \rho \cdot \mathrm{f} \cdot \mathrm{~L} \cdot \mathrm{Q}}{\pi^{2} \cdot \mathrm{D}^{5}}
$$

The "resistance" of a tube is not constant, but is proportional to the "current" Q ! Actually, the dependence is not quite linear, because f decreases slightly (and nonlinearly) with Q. The analo: fails!

The analogy is hence invalid for $\mathrm{Re}>2300 \quad$ or $\quad \frac{\rho \cdot \mathrm{V} \cdot \mathrm{D}}{\mu}>2300$

Writing this constraint in terms of flow rate

$$
\frac{\rho \cdot \frac{\mathrm{Q}}{\frac{\pi}{4} \cdot \mathrm{D}^{2}} \cdot \mathrm{D}}{\mu}
$$

$$
\mathrm{Q}>\frac{2300 \cdot \mu \cdot \pi \cdot \mathrm{D}}{4 \cdot \rho}
$$

Flow rate above which analogy fails

$$
\mathrm{Q}=7.34 \times 10^{-7} \frac{\mathrm{~m}^{3}}{\mathrm{~s}}
$$

The plot of "resistance" versus flow rate is shown in the associated Excel workbook

Problem 8.104 (In Excel)

As discussed in Problem 8.49, the applied pressure difference, Δp, and corresponding volume flow rate, Q, for laminar flow in a tube can be compared to the applied DC voltage V across, and current I through, an electrical resistor, respectively. Investigate whether or not this analogy is valid for turbulent flow by plotting the "resistance" $\Delta p / Q$ as a function of Q for turbulent flow of kerosine (at $40^{\circ} \mathrm{C}$) in a tube 100 mm long with inside diameter 0.3 mm .

Given: Data on a tube

Find: "Resistance" of tube for flow of kerosine; plot

Solution

By analogy, current I is represented by flow rate Q, and voltage V by pressure drop Δp.
The "resistance" of the tube is

$$
\mathrm{R}=\frac{\Delta \mathrm{p}}{\mathrm{Q}}=\frac{8 \cdot \rho \cdot \mathrm{f} \cdot \mathrm{~L} \cdot \mathrm{Q}}{\pi^{2} \cdot \mathrm{D}^{5}}
$$

The "resistance" of a tube is not constant, but is proportional to the "current" Q ! Actually, the dependence is not quite linear, because f decreases slightly (and nonlinearly) with Q. The analogy fails!

Given data:
Tabulated or graphical data:

$$
\begin{array}{rlrl}
L & = & 100 & \\
D & = & & 0.3 \\
& & \mathrm{~mm}
\end{array}
$$

$$
\begin{array}{rll}
\mu= & 1.01 \mathrm{E}-03 & \mathrm{~N} . \mathrm{s} / \mathrm{m}^{2} \\
S G_{\mathrm{ker}}= & 0.82 \\
\rho_{\mathrm{w}}= & 990 & \mathrm{~kg} / \mathrm{m}^{3} \\
\rho= & 812 & \mathrm{~kg} / \mathrm{m}^{3} \\
& (\text { Appendix A) }
\end{array}
$$

Computed results:

$\boldsymbol{Q}\left(\mathbf{m}^{\mathbf{3}} / \mathbf{s}\right)$	$\boldsymbol{V}(\mathbf{m} / \mathbf{s})$	$\boldsymbol{R e}$	\boldsymbol{f}	${ }^{\prime \prime} \boldsymbol{R}^{\prime \prime}\left(\mathbf{1 0}^{\mathbf{9}} \mathbf{~ P a} / \mathbf{m}^{\mathbf{3}} / \mathbf{s}\right)$
$1.0 \mathrm{E}-06$	14.1	$3.4 \mathrm{E}+03$	0.0419	1133
$2.0 \mathrm{E}-06$	28.3	$6.8 \mathrm{E}+03$	0.0343	1855
$4.0 \mathrm{E}-06$	56.6	$1.4 \mathrm{E}+04$	0.0285	3085
$6.0 \mathrm{E}-06$	84.9	$2.0 \mathrm{E}+04$	0.0257	4182
$8.0 \mathrm{E}-06$	113.2	$2.7 \mathrm{E}+04$	0.0240	5202
$1.0 \mathrm{E}-05$	141.5	$3.4 \mathrm{E}+04$	0.0228	6171
$2.0 \mathrm{E}-05$	282.9	$6.8 \mathrm{E}+04$	0.0195	10568
$4.0 \mathrm{E}-05$	565.9	$1.4 \mathrm{E}+05$	0.0169	18279
$6.0 \mathrm{E}-05$	848.8	$2.0 \mathrm{E}+05$	0.0156	25292
$8.0 \mathrm{E}-05$	1131.8	$2.7 \mathrm{E}+05$	0.0147	31900

The "resistance" is not constant; the analogy is invalid for turbulent flow

Given: System for measuring pressure drop for water Fou in smash pipe supplies water from an overtiead constant head tank. System includes:

- squariedged entrance
- two 45 standard bout
- two 90° standard elbows.
- fully ops gate value

- pipeleng $\{=9.8 \mathrm{~m}$, diameter $D=15.9 \mathrm{~mm}$

Find: elevation of water sur face in supply tank above pipe discharge needed to achieve $\mathrm{Re}_{3}=10^{\circ}$.
Solution:

$$
R_{e}=\frac{P D \bar{V}}{\mu}=\frac{D \bar{V}}{V} \quad \text { Assure } T=20^{\circ} \mathrm{C}, V=1.00 \times 10^{-6} \mathrm{n}^{2} l_{\mathrm{s}} \text { (Table ABs). }
$$

For $R_{e}=10^{5}, ~ \bar{V}=\frac{R_{e} \nabla}{D}=10^{5} \times 1.0 \times 10^{-6} \frac{n^{2}}{5} \times \frac{1}{5.9 \times 10^{-3} \mathrm{~m}=6.29 \mathrm{~m} l_{s}, ~}$
Basic equations: $\left(\frac{P_{1}}{\rho}+\alpha \frac{\bar{V}_{1}^{2}}{2}+g \jmath^{2}\right)-\left(\frac{P_{2}}{\rho}+\alpha_{2} \bar{V}_{2}^{2}+g z^{2}\right)=h_{-2}$

$$
h_{e}=h_{e}+h_{m}, h_{e}=f \frac{1}{8} \frac{y^{2}}{2}, h_{m}=f \frac{j^{2}}{2} \Sigma \frac{L}{8}+k_{\text {en }} \frac{i^{2}}{2}
$$

Assumptions: in $P_{1}=P_{2}=P_{\text {am }}$
(a) $\bar{V}=0$
(3) $\alpha_{2}=1.0$
then.

From Table $8.2 K_{\text {art }}=0.5$

For $R_{e}=10^{5}$ in smooth -pipe, $f=0.018$ (Fig. 8.13)
Th es

$$
\begin{align*}
& d=\frac{1}{2} \times(6.29)^{2} \frac{n^{2}}{5^{2}} \times 9.81 m\left[1+0.018 \times \frac{5^{2}}{15.8 \times 10^{3}}+2(0.08) 16+2(0.018) 30+0.08(8)+0.0\right] \\
& d=29.0 \mathrm{~m}
\end{align*}
$$

This value of d indicates hat it will not be possible to detain a value of $R_{e}=10^{5}$ in the flaw system. The matirium value of he will be considerably hess han 10^{5}.

Problem 8 ide
Given: Water flow from a pump to an off reservar through commercial steel pipe as shown.

Find: the pressure at the pump disfarae
Solution:
Apply the energy equation for steady. incompressible fou that is uniform at each section
Back equations: $\left(\frac{e_{1}}{p}+\alpha_{1} \frac{i_{1}^{2}}{2}+g j_{j}\right)-\left(\frac{p_{2}}{p}+\alpha_{2} \frac{J_{2}^{2}}{2}+g j_{2}\right)=h_{e_{T}} \quad(8.2 a)$

$$
h_{e}=h_{e}+h_{e m}, h_{e}=f \frac{\frac{2}{y}}{\frac{2}{2}}, h_{e m}=k_{\text {exit }} \frac{\bar{y}^{2}}{2}
$$

Assumptions: (1) $Z_{0}=0 \quad$ (2) $p_{2}=p_{\text {atm }}=0$ gage.

$$
\begin{aligned}
& \text { (3) } J_{2}=0, \alpha_{1}=1.0 \\
& \text { (4) } T=20^{\circ} \mathrm{C}, V=1.00 \times 10^{-6} \mathrm{~m}^{2} \mathrm{l} \text { (Table A.8) } \\
& R_{e}=\frac{P \bar{V}}{\mu}=\frac{\bar{\nu}}{\bar{v}}=0.25 \mathrm{M} \times 2.5 \frac{m}{5} \times 1.00 \times 10^{-6} \frac{5}{\mathrm{~m}^{2}}=6.25 \times 10^{5}
\end{aligned}
$$

For commercial stael pipe, $e=0.04 b \mathrm{~mm}$

$$
\therefore e_{y}=\frac{0.046}{250}=0.000184
$$

From $E_{q . ~}^{8.37}, f=0.015 . \quad$ Also $K_{\text {ext }}=10$
hen

$$
\begin{align*}
& -P_{1}=p\left[g_{2}-\frac{V_{1}^{2}}{2}+f \frac{L}{2} \frac{\bar{v}^{2}}{2}+k_{\text {ext }} \frac{\bar{J}^{2}}{2}\right] \\
& p_{1}=p\left[g_{2}^{2}+f \frac{\bar{J}_{2}^{2}}{\nu}\right] \\
& p_{1}=998 \frac{\mathrm{~kg}}{\mathrm{~m}^{3}}\left[9.81 \frac{\mu}{s^{2}} \times 10 \mu+0.015 \times \frac{6 \times 10^{3}}{0.25} \times \frac{1}{2} \times(2.5)^{2} \frac{\mu^{2}}{\mathrm{~s}^{2}}\right] \times \frac{\mathrm{N}^{2}}{\mathrm{~kg}^{2}} \\
& P_{1}=1,22 M p_{a} \text { (gage) } \tag{1}
\end{align*}
$$

Problem 8.67
Gwen: Water flow by gravity between tho reser vols Hroug strait gatuanned iron pipe. Required Now rate $\because \underset{\alpha}{ }$

Plot: required elevation difference $\Delta z u s Q$ for $0 \leqslant Q \leqslant 0.01+{ }^{*} k^{\circ}$ Estimate: fraction of Δz due to minor losses
Flat: (a) Az and bs minorlessitodet loss versus Q
Solution:
Apply tie energy equation for steady incompresibive Row betimes sedide os as D.
Basie equations:

Assumptions: (1) $-_{1}-P_{2}=-P_{\text {atm }}$ (given)

$$
\text { (2) } \bar{U}_{1}=\bar{v}_{2}=0
$$

(3) square edged entrance

For square edged entrance (Table riv Vent =0.5; also Kent iv o For water at $20^{\circ} \mathrm{C}, ~ V=1.00 \times 10^{-6} \mathrm{~m}^{2} \mathrm{I}$ s (Table A. 8)

To plot g us Q

$$
\begin{aligned}
& \bar{J}=\frac{4 Q}{\pi \nu^{2}}=50 Q Q\left(r^{3} / s\right) \\
& \Delta_{z}=\frac{V^{2}}{2 g}\left[k_{\text {eat }}+k_{\text {exit }}+f\right\rangle=\frac{\bar{N}^{2}}{2 g}[1.5+5000 f]
\end{aligned}
$$

$$
\text { where } f=f(\text { Re, ely }=0.003)
$$

$$
\frac{h_{\text {em }}}{h_{c t}}=\frac{k_{\text {ant }}+k_{\text {e ct }}}{k_{\text {ert }}+k_{\text {e it }}+f_{5}^{2}}=\frac{1.5}{1.5+5000 f}
$$

Te ratio hem thee increases with increasing Re_{e} because f decreases with mara casing fo.

Problem 8.107 (In Excel)

Water is to flow by gravity from one reservoir to a lower one through a straight, inclined galvanized iron pipe. The pipe diameter is 50 mm , and the total length is 250 m . Each reservoir is open to the atmosphere. Plot the required elevation difference Δz as a function of flow rate Q, for Q ranging from 0 to $0.01 \mathrm{~m}^{3} / \mathrm{s}$. Estimate the fraction of Δz due to minor losses.

Given: Data on reservoir/pipe system
Find: Plot elevation as a function of flow rate; fraction due to minor losses

Problem 8.108

Given: Air at a flowrate of $35 \mathrm{~m}^{3} / \mathrm{min}$ at standard conolitons in a smooth duct 0.5 m square.

Find: Pressure drop in $\mathrm{mm}_{2} \mathrm{O}$ per 30 m of horizontal duct.
Solution: Apply the energy equation for steady, incompressible flow that is uniform at each section. Use hydraulic diameter.
Basic equation: $\frac{p_{1}}{f_{1}}+\frac{\bar{V}^{(1)}}{R}+g f_{1}^{(2)}=\frac{p_{2}}{f}+\bar{W}^{2}+g q^{(1)}+f \frac{L}{D_{h}} \bar{V}^{2}+h f_{m} ; D_{h}=\frac{4 A}{P_{w}}$
Asscemptions: (1$) \nabla_{1}=V_{2}$
(2) Horizontal
$\cos h_{\text {em }}=0$
Then

$$
\Delta p=p_{1}-p_{2}=f \frac{L}{D_{h}} P \frac{\nabla^{2}}{2}
$$

From continuity, $V=\frac{Q}{A}=35 \mathrm{~m}^{3} \times \frac{1}{\mathrm{~min}^{2}} \times \frac{\mathrm{min}}{(0.3)^{2} \mathrm{~m}^{2}}=60 \sec =68 \mathrm{~m} / \mathrm{s}$

$$
\begin{aligned}
& D_{h}=\frac{4 A}{P_{w}}=4 \times(0.3)^{2} \mathrm{~m}^{2} \times \frac{1}{4(0.3) \mathrm{m}}=0.3 \mathrm{~m} ; \nu=1.45 \times 10^{-5} \mathrm{~m}^{2} / \mathrm{s}(\text { Table .A. } 10) \\
& \operatorname{Re}=\frac{V_{h}}{\nu}=6.48 \frac{\mathrm{~m}}{\mathrm{~J}} \times 0.3 \mathrm{~m} \times \frac{5}{1.46 \times 10^{-5 \mathrm{~m}^{2}}=1.33 \times 10^{5}} \\
& f=0.017(\text { Fig.8.13) }
\end{aligned}
$$

Then $\Delta p=\frac{0.017}{2} \times \frac{30 \mathrm{~m}}{0.3 \mathrm{~m}} \times 1.23 \mathrm{~kg} \mathrm{~m}^{3} \times(6.48)^{2} \mathrm{~m}^{2} \times \frac{\mathrm{N} \cdot \mathrm{S}}{\mathrm{s}^{2}}=43.9 \mathrm{~N} / \mathrm{m}^{2}$
For a manometer, $\Delta p=\rho_{h_{2} 0} g \Delta h$

$$
\Delta h=\frac{\Delta p}{\rho_{\mu N} g}=43.9 \frac{\mathrm{~N}}{\mathrm{~m}^{2}} \times \frac{\mathrm{m}^{3}}{999 \mathrm{~kg}} \times \frac{\mathrm{g}^{2}}{9.81 \mathrm{~m}} \times \frac{\mathrm{kg} \cdot \mathrm{~m}}{\mathrm{~N} \cdot \mathrm{~s}^{2}}=0.00448 \mathrm{~m}
$$

Thus
$\Delta h=4,48 \mathrm{~mm} \mathrm{H} \mathrm{O}$ (per 30 m of $d u^{\prime} t$)
(This is Δp expressed in mm of water.)

Given: Pipe friction experiment, using water, to reach $R e=100,000$.

Find: (a) Required average speed in lin pipe.
(b) Feasibility of using a constant-head tank.
(c) Pressure difference between taps 2 and 3.

Solution: Assume water at 68F. From Table A.7, $\rho=1.94 \mathrm{~s} / \mathrm{ug} / \mathrm{ft}{ }^{3}, v=1.08 \times 10^{-5} \mathrm{ft} 4^{2} / \mathrm{s}$.

$$
R e=\frac{\nabla D}{\nu}=100,000 ; \bar{V} \times \frac{1000000 \nu}{D_{B}}=10^{5} \times 1.08 \times 10^{-5} \frac{f t^{2}}{s} \times \frac{1}{1 \mathrm{in} .} \times \frac{12 \mathrm{ini}}{\mathrm{ft}}=13.0 \mathrm{ft} / \mathrm{s}
$$

Apply energy equation for steady, incompressible pipe flow:

Assumptions: (i) $p_{1}=p_{4}=$ pate
(5) Smooth pipes
(2) $\bar{V}_{1} \approx 0$
(3) $\alpha_{4} \approx 1$
(4) Neglect minor losses

$$
\bar{V}_{A}=\bar{V}_{B}\left(\frac{D_{B}}{\bar{D}_{A}}\right)^{2}=\frac{\vec{V}_{B}}{4}=3.25 \mathrm{f}+/ \mathrm{s}
$$

$$
g H-\alpha_{4} \frac{\bar{V}_{4}^{2}}{2}=f_{A} \frac{L_{A}}{D_{A}} \frac{\bar{V}_{A}^{2}}{2}+f_{B} \frac{L_{B}}{\bar{D}_{B}} \frac{\bar{V}_{B}^{2}}{2}
$$

$$
R C_{A}=\frac{\bar{V}_{A} D_{A}}{\nu}=50,000 ; f_{A}=0.021 ; f_{B}=0.018
$$

$\{$ From Moody chart (Fig. 8. 13) \}
or, since $L_{A}=H-A$,
\qquad

Problem 8.110 (In Excel)

A system for testing variable-output pumps consists of the pump, four standard elbows, and an open gate valve forming a closed circuit as shown. The circuit is to absorb the energy added by the pump. The tubing is 75 mm diameter cast iron, and the total length of the circuit is 20 m . Plot the pressure difference required from the pump for water flow rates Q ranging from $0.01 \mathrm{~m}^{3} / \mathrm{s}$ to $0.06 \mathrm{~m}^{3} / \mathrm{s}$.

Given: Data on circuit

Find: Plot pressure difference for a range of flow rates

Solution

Governing equations:

$$
\begin{align*}
& \operatorname{Re}=\frac{\rho \cdot \mathrm{V} \cdot \mathrm{D}}{\mu} \\
& \left(\frac{\mathrm{p}_{1}}{\rho}+\alpha_{1} \cdot \frac{\mathrm{~V}_{1}^{2}}{2}+\mathrm{g} \cdot \mathrm{z}_{1}\right)-\left(\frac{\mathrm{p}_{2}}{\rho}+\alpha_{2} \cdot \frac{\mathrm{~V}_{2}^{2}}{2}+\mathrm{g} \cdot \mathrm{z}_{2}\right)=\mathrm{h}_{\mathrm{T}}=\sum_{\text {major }} \mathrm{h}_{\mathrm{l}}+\sum_{\text {minor }} \mathrm{h}_{\mathrm{lm}} \tag{8.29}\\
& \mathrm{~h}_{\mathrm{l}}=\mathrm{f} \cdot \frac{\mathrm{~L}}{\mathrm{D}} \cdot \frac{\mathrm{~V}^{2}}{2} \tag{8.34}\\
& \mathrm{~h}_{\mathrm{lm}}=\mathrm{f} \cdot \frac{\mathrm{~L}_{\mathrm{e}}}{\mathrm{D}} \cdot \frac{\mathrm{~V}^{2}}{2} \tag{8.40b}\\
& \mathrm{f}=\frac{64}{\mathrm{Re}} \tag{8.36}
\end{align*}
$$

$$
\begin{equation*}
\frac{1}{\mathrm{f}^{0.5}}=-2.0 \cdot \log \left(\frac{\frac{\mathrm{e}}{\mathrm{D}}}{3.7}+\frac{2.51}{\operatorname{Re} \cdot \mathrm{f}^{0.5}}\right) \tag{8.37}
\end{equation*}
$$

The energy equation (Eq. 8.29) becomes for the circuit ($1=$ pump outlet, $2=$ pump inlet)

$$
\frac{p_{1}-p_{2}}{\rho}=f \cdot \frac{L}{D} \cdot \frac{V^{2}}{2}+4 \cdot f \cdot L_{\text {elbow }} \cdot \frac{V^{2}}{2}+f \cdot L_{\text {valve }} \cdot \frac{V^{2}}{2}
$$

or
$\Delta \mathrm{p}=\rho \cdot \mathrm{f} \cdot \frac{\mathrm{V}^{2}}{2} \cdot\left(\frac{\mathrm{~L}}{\mathrm{D}}+4 \cdot \frac{\mathrm{~L}_{\text {elbow }}}{\mathrm{D}}+\frac{\mathrm{L}_{\text {valve }}}{\mathrm{D}}\right)$

Given data:
Tabulated or graphical data:
$e=0.26 \mathrm{~mm}$
(Table 8.1)

$$
\mu=1.00 \mathrm{E}-03 \mathrm{~N} . \mathrm{s} / \mathrm{m}^{2}
$$

$$
\rho=999 \quad \mathrm{~kg} / \mathrm{m}^{3}
$$ (Appendix A)

Gate valve $L_{\mathrm{e}} / D=8$
Elbow $L \mathrm{e} / D=30$
(Table 8.4)
Computed results:

$\boldsymbol{Q} \mathbf{(m}^{\mathbf{3}} / \mathbf{s} \mathbf{)}$	$\boldsymbol{V}(\mathbf{m} / \mathbf{s})$	$\boldsymbol{R e}$	\boldsymbol{f}	$\Delta \boldsymbol{p} \mathbf{(k P a})$
0.010	2.26	$1.70 \mathrm{E}+05$	0.0280	28.3
0.015	3.40	$2.54 \mathrm{E}+05$	0.0277	63.1
0.020	4.53	$3.39 \mathrm{E}+05$	0.0276	112
0.025	5.66	$4.24 \mathrm{E}+05$	0.0276	174
0.030	6.79	$5.09 \mathrm{E}+05$	0.0275	250
0.035	7.92	$5.94 \mathrm{E}+05$	0.0275	340
0.040	9.05	$6.78 \mathrm{E}+05$	0.0274	444
0.045	10.2	$7.63 \mathrm{E}+05$	0.0274	561
0.050	11.3	$8.48 \mathrm{E}+05$	0.0274	692
0.055	12.4	$9.33 \mathrm{E}+05$	0.0274	837
0.060	13.6	$1.02 \mathrm{E}+06$	0.0274	996

Given: Flow of standard air at $35 \mathrm{~m}^{3} / \mathrm{min}^{\prime}$ in smooth duets of area, $A=0.1 \mathrm{~m}^{2}$.

Find: Compare pressure drop per unit length of a round duct with that for rectangcelar ducts of aspect ratio 1,2 and 3 .

Solution: Apply the energy equation for steady, incompressible flow that is uniform at each section. Use hydraulic diameter.
Basic equation: $\frac{b_{1}}{P}+\frac{V_{n}}{2}+g z^{(1)}=\frac{p_{2}}{\rho}+\bar{V}_{2}^{(2)}+g g^{(2)}+f \frac{L}{D_{n}} \frac{V^{2}}{2}+h_{m} f_{m}^{=0(s)} ; D_{n}=\frac{4, A}{\rho_{w}}$
Assumptions:
(1) $\nabla_{1}=\bar{V}_{2}$
(こ) $z_{1}=z_{2}$
(3) $h_{\text {em }}=0$

Then

$$
\Delta p=p_{1}-p_{n}=f \frac{L}{D_{n}} \rho \bar{v}^{2} \quad \text { or } \quad \frac{\Delta p}{L}=\frac{f}{D_{n}} \rho \frac{\bar{V}^{2}}{2}
$$

But $\vec{V}=\frac{Q}{A}=\frac{35 \mathrm{~m}^{3}}{\min ^{2}} \times \frac{1}{0.1 \mathrm{~m}^{2}} \times \frac{\sin }{60 \sec }=5.83 \mathrm{~m} / \mathrm{s} ; \nu=1.46 \times 10^{-5} \mathrm{~m}^{2} / \mathrm{s}$ (Table A 10)

$$
R_{e}=\frac{\nabla D_{n}}{\nu}=5.83 \mathrm{~m} \times D_{n}(m)_{k} \frac{5}{1,4 E \times 10^{-5} m^{2}}=3.99 \times 10^{5} D_{n}(m) ; \frac{P V^{2}}{2}=20.9 \mathrm{~N} / \mathrm{m}^{2}
$$

For a round duct, $D_{h}=D=\left(\frac{4 A}{\pi}\right)^{\frac{1}{2}}=\left[\frac{4}{\pi^{*}} 0.1 \mathrm{~m}^{2}\right]^{\frac{1}{2}}=0.357 \mathrm{~m}$
For a rectangular duct, $D_{n}=\frac{4 A}{P_{w}}=\frac{4 b h}{2(b+h)}=\frac{2 h a r}{1+a r}$
where ar $=b$

But $h=\frac{b}{a r}$, so $h^{2}=\frac{b h}{a r}=\frac{A}{a r}$, or $h=\sqrt{\frac{A}{a r}}$ and $D_{h}=\frac{2 a r^{1 / 2}}{1+a r} A^{1 / 2}$
For smooth ducts, use Fig. 8.13 (or Blaseus correlation, $f=\frac{0 \cdot 316}{\mathcal{R}^{1 / 4}}$) to find f.
Tabulate results:

Note that f varies only about 7 percent. The large change in $\Delta p / L$
is due primarily to the factor f. is due primarily to the factor $\frac{f}{D_{h}}$.

Given: Reservoirs connected by three clean, cast iron pipes in series. The flow is water at $0.11 \mathrm{~m}^{3} / \mathrm{s}$ and $15^{\circ} \mathrm{C}$.

Find: Elevation difference, $z_{5}-g_{s}$
Solution: Apply the energy equation for steady, incompressible flow that is uniform at each section.

$$
h_{C_{T}}=\Sigma f_{D} \frac{\bar{V}^{2}}{2}+h_{\text {em }} ; h_{\text {em }}=K_{\text {nt }} \frac{\nabla_{2}^{2}}{2}+\sum h_{\text {exp }}+K_{\text {exit }} \frac{\nabla_{4}^{2}}{2}
$$

Assumptions: (i) $D_{1}=p_{5}=p a t m$
(2) $\bar{V}_{1}=\bar{v}_{s} \approx 0$
(3) Neglect heexp at pipe joints (note allminor losses are probably mail due to long lengths of straight pipe sections, but we will checks.

For non-smoth pipe, $f=f(R e, \%), \mu=1.1 \times 10^{3} N .=/ m^{2}$ from Tab A. 8 . section (2) : $e / D_{2}-0.26 \mathrm{~mm} / 300 \mathrm{mmi}=0.00087$ (for castinon, $e=0.24 \mathrm{~mm}$ Table 8.1)

$$
\begin{aligned}
& \nabla_{2}=\frac{Q}{A_{2}}=0.11 \mathrm{~m}^{3} \times \frac{4}{\pi} \frac{1}{(0.3)^{2} \mathrm{~m}^{2}}=1.56 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

From Fig $8,13, f_{2}=0.020$
Section (3): $E_{D_{3}}=0.00065$

$$
\begin{aligned}
& \nabla_{3}=\frac{Q}{A_{3}}=0.11 m^{3}, \frac{4}{\pi}(0.4)^{2} m^{2}=0875 \mathrm{~m} / \mathrm{s} \\
& R_{3}=\frac{\rho \bar{V}_{3} D_{3}}{\mu^{2}}=\frac{999 \mathrm{~kg}^{2}}{\mathrm{~m}^{3}} \times 0.875 \mathrm{~m} \times 0.4 m_{\times} \frac{m^{2}}{1 / 40^{-3} \mathrm{~N} \cdot \mathrm{~s}} \times \frac{\mathrm{N}^{2}}{\mathrm{~kg} \cdot \mathrm{~m}} \times 3.07 \times 10^{5}
\end{aligned}
$$

From Fig. 8. $13, f_{3}=0.019$
section (4): $e / D_{4}=0.00058$

$$
\bar{V}_{4}=\frac{Q}{A_{4}}=0.11 \frac{\mathrm{~m}^{3}}{5} \times \frac{4}{\pi} \frac{1}{(0.45)^{2} \mathrm{~m}^{2}}=0.692 \mathrm{~m} / \mathrm{s}
$$

$$
R e_{4}=\frac{\rho \bar{V}_{4} D_{4}}{\mu}=999 \frac{\mathrm{~kg}}{\mathrm{~m}^{3}} \times 0.692 \mathrm{~m} \frac{\mathrm{~s}}{\mathrm{~s}} \times 0.45 \mathrm{~m}_{\times} \frac{\mathrm{m}^{2}}{14 \times 10^{-3 \mathrm{~N} \cdot \mathrm{~s}}} \times \frac{\mathrm{N} \cdot \mathrm{~s}^{2}}{\mathrm{~kg} \cdot \mathrm{~m}}=2.73 \times 10^{5}
$$

From Fig. 8.13, $f_{4}=0.0185$
Then $\Sigma+\frac{L}{D} \frac{\bar{V}^{2}}{2}=0.020 \times \frac{600 m}{0.3 m} \times \frac{1}{2}(1.56)^{2} m^{2} s^{2}+0.019 \times \frac{900 m}{0.4 m} \times \frac{1}{2}(0.875)^{2} \frac{m^{2}}{s^{2}}$

$$
+0.0185 \times \frac{1500 \mathrm{~m}}{0.45 \mathrm{~m}^{2}} \times \frac{1}{2} \frac{0.692)^{2} \mathrm{~m}^{2}}{3^{2}}=79.8 \mathrm{~m}^{2} / \mathrm{s}^{2}
$$

The minor loss coefficients are Kent $=0.5$ (Table 8,2) and Kexit $=1.0$.
Thus,

$$
\begin{aligned}
& h_{e m}=K_{\text {en }} \frac{\bar{V}_{2}}{2}+K_{e x}+\frac{V_{4}^{2}}{2} \\
& h_{\text {em }}=0.5 \times \frac{1}{2} \times(1.56)^{2} \frac{\mathrm{~m}^{2}}{3^{2}}+10 \times \frac{1}{2} \times(0.692)^{2} \frac{m^{2}}{3^{2}}=0.848 \mathrm{~m}^{2} / \mathrm{s}^{2}
\end{aligned}
$$

Therefore minor losses are roughly / percent of the frictional/ losses, so they may be neglected. Thus from the energy equation

$$
3-35=\Sigma f \frac{L}{\bar{D}} \frac{\bar{v}^{2}}{2 g}=79.8 \frac{\mathrm{~m}^{2}}{5^{2}} \times \frac{\mathrm{s}^{2}}{9.81 \mathrm{~m}}=8.13 \mathrm{~m}
$$

Problem 8.113
Given: water at $Q=20 \mathrm{~L} / \mathrm{s}$ in hose and nozzle assembly.

Find: supply pressure required.
Solution: Apply the energy equation for steady, incompressible pipe flow. computing equation: $\frac{p_{1}}{\rho}+\alpha_{1} \frac{t_{1}^{2}}{2}+g(1) \hat{p}_{1}^{(z)}=\frac{p_{2}^{2}}{\rho}+\alpha_{2} \frac{V_{2}^{2}}{2}+g \phi_{2}^{2}+h_{R T}$
Assumptions: (1) $\bar{v}_{1} \approx 0,(z) \Delta z=0$, (3) $\alpha_{2} \simeq 1.0$, (4) $p_{2}=p_{\text {atm }}$, so p_{2} gage $=0$

$$
\text { (5) } h_{l T}=h_{l}+h_{l m}=f \frac{L}{D} \frac{V^{2}}{2}+\left(K_{e}+4 K_{c}\right) \frac{V^{2}}{2}+k_{n} \frac{V_{n}^{2}}{2}
$$

From continuity, $\bar{v}_{n}=\left(\frac{D}{d}\right)^{2} \bar{v}_{\text {, }}$, so $\bar{v}_{n}^{2}=\left(\frac{D}{d}\right)^{4} \bar{v}^{2}$. Thus

$$
p_{1}=\frac{e \bar{v}^{2}}{2}\left[f \frac{L}{D}+4 K_{c}+K_{c}+\left(\frac{D}{d}\right)^{4}\left(1+K_{n}\right)\right]
$$

To find f, we need $R e$. From continuity

$$
\bar{V}=\frac{Q}{A}=\frac{4 Q}{\pi D^{2}}=\frac{4}{\pi} \times 20 \frac{\mathrm{~L}}{5} \times \frac{1}{(0.075 \mathrm{~m})^{2}} \times \frac{10^{-3 / 3} \mathrm{~m}^{3}}{\mathrm{~L}}=4.53 \mathrm{~m} / \mathrm{s}
$$

Assuming $T=1 S^{\circ} \mathrm{C}, \nu=1.0 \times 10^{-6} \mathrm{~m} / \mathrm{s}$ (Table A.8), So

$$
R e=\frac{\overline{V D}}{\nu}=4.53 \frac{\mathrm{~m}}{\mathrm{~s}} \times 0.075 \% \times \frac{\mathrm{s}}{1.0 \times 10^{-6} \mathrm{~m}^{2}}-3.39 \times 10^{5}
$$

From Equation 8.37 , with $C / 0=0.004, f=0.0287$. Substituting,

$$
\begin{aligned}
& p_{1}=\frac{1}{2} \times .999 \frac{\mathrm{~kg}}{\mathrm{n}^{3}} \times(4.53)^{2} \frac{\mathrm{~m}^{2}}{\mathrm{~s}^{2}}\left[0.0287 \times \frac{80 \mathrm{~m}}{0.075 \mathrm{~m}}+4(0.5)+0.5+\left(\frac{3}{1}\right) 4(1.02)\right] \cdot \frac{\mathrm{N}-\mathrm{s}^{2}}{\mathrm{~kg} \cdot \mathrm{~m}} \\
& p_{1}=593 \mathrm{kPa}
\end{aligned}
$$

Given: Water flow, $Q=0.11 f^{3} l_{s}$, firoug a corroded section of gal vanized Poi id pipe with pressure readings as shown

Find: (a) estimate of relative roughness in the pipe section (b) percent savings in purping power if ely value were hal for dear pipe.
Solution: Apply the energy equation for steady, nicorpressible pipe flow Computing equation:

Assumptions: in $\bar{J}_{1}=\bar{Y}_{2}$ from continuity
(a) $\alpha_{1}=\alpha_{2}$
(3) $z_{1}-z_{2}=20 f t$
(4) no minor losses.

Since $\left.f=f\left({ }^{(}\right), R_{e}\right)$, solve for f from eqs(i)d(2), catalabe be, and hen deternute ely from ${ }^{\circ}$ Fig. 8.13
From eqंs (i) a lc

$$
\frac{p_{1}-p_{2}}{p}+g\left(z_{1}-z^{2}\right)=f \frac{-V^{2}}{2} \quad \therefore f=\frac{p_{2}}{p^{2}}\left[\frac{p_{1} \cdot p_{2}}{p}+g\left(z_{1}-z^{2}\right)\right]
$$

$$
\bar{V}=\frac{Q}{H}=\frac{Q 4}{\pi)^{2}}=\frac{4}{4} \times 0.11 \frac{\mathrm{fI}^{3}}{5} \times\left(\frac{12}{1} \mathrm{ft}^{2}=20.2 \mathrm{fl}_{\mathrm{s}} .\right. \text { Then, }
$$

Assume $T=70^{\circ} \mathrm{F}$, then $J=1.05 \times 10^{-5} \mathrm{CC}^{2} \mathrm{l}_{5}$ (Table A...).

$$
R_{e}=\frac{2, \bar{J}}{\mu}=\frac{\bar{N}}{V}=\frac{1}{12} \frac{C}{2} \times 20.2 \frac{\mathrm{fy}}{3} \times 1.05 \times 10^{-5} \frac{\mathrm{~s}}{\mathrm{fa}^{2}}=1.60 \times 10^{5}
$$

For $f=0.050$ and $R_{e}=1.60 \times 10^{5}$, from Fig. $8.13, \frac{e}{7}=0.021$
For a loin. drariter dean galvanized van pipe, $\frac{0}{8}=0.006$ (Tables.N) then, from $\mathrm{Fg}_{2} 8.13 f=0.0325$ and for Q_{2} dean pipe

$$
\begin{aligned}
& \Delta P_{\text {clean }}=12.7 \mathrm{hor}_{\mathrm{n}} \mathrm{Z}^{2} \\
& q_{0 \text { Saving in pump power }}=\frac{\Delta P_{\text {out }}-\Delta P_{\text {dean }}}{\Delta P_{\text {dirty }}}=\frac{24.5-12.7}{24.5}=48.2^{\circ} \% \text { Pair Sown }
\end{aligned}
$$

$$
\begin{align*}
& \left(\frac{p_{1}}{p}+\alpha y \frac{j^{2}}{2}+g j_{0}\right)-\left(\frac{p_{2}}{p}+\alpha \frac{\nu_{2}^{2}}{2}+g z^{2}\right)=h_{t+} \tag{1}\\
& h_{e_{T}}=h_{e} \cdot h_{C_{m}}=f \frac{-\frac{3}{2}}{2}+y \frac{-2 y}{2} o(t) \tag{2}
\end{align*}
$$

Problem 8.115

Given: Small swimming pool is drairied using a garden hose.
Hose : $\rangle=20 \mathrm{~mm}, ~ h=30 \mathrm{~m}$

$$
\begin{aligned}
& e=0.2 \mathrm{~mm} \\
& V_{2}=1.2 \mathrm{~m} l_{\mathrm{s}}
\end{aligned}
$$

If the flow were inviscid (at his dept) what would bo the velocity
Solution:
Apply te energy equation for steady incompressible flow between section so and (2)

$$
h_{e t}^{\prime}=h_{e}, h_{e m} ; h_{l}=f^{2} \frac{\bar{v}^{2}}{2} ; \quad h_{e m}=k_{\text {ert }} \frac{\bar{y}^{2}}{2}
$$

Assum-phons: in $\underline{p}_{1}=p_{2}=p_{\text {atm }}$.

$$
\text { (a) } \bar{J}_{1}=0, \alpha_{2}=110
$$

(3) square edged entrance,

Then

$$
\begin{align*}
& \left.\therefore d=\frac{j^{2}}{2 g}\left[f \frac{2}{y}+h_{0 n t} d\right]-3 m\right] \tag{1}
\end{align*}
$$

For square edged entrance (Table si) Kert=0.5

$$
\begin{aligned}
& R_{e}=\frac{V \bar{V}}{=}=0.020 n \times 1.2 \frac{M}{5} \times 1.00 \times 10^{-6} \frac{5}{n^{2}}=2.4 \times 10^{4} \quad\left\{\frac{\text { assume } T=200}{\text { Table } A .8}\right\} \\
& e_{y}=0.2 / 20=0.01 \text {. From Fig. } 8.13, f=0.04
\end{aligned}
$$

Then from Eq.'

$$
d=\frac{(12)^{2}}{2} \frac{m^{2}}{5} \times 9.8 \frac{s^{2}}{2}\left[0.04 \times \frac{30}{0.02}+0.5+1\right]-3 m=1.51 m+d
$$

For frictionless flow, $h_{e r}=f \frac{-2}{5} \frac{V^{2}}{2}+k_{\text {ert }} \frac{V^{2}}{2}=0$ and Eq. ques $d=\frac{\bar{J}^{2}}{2 g}-3 n$
and $\bar{\nu}=[2 g(d+3 m)]^{1 / 2}=\left[2 \times 9.81 \frac{m}{s^{2}}(1.51+3) m\right]^{1 / 2}$

$$
\bar{V}=9.41 \mathrm{mls}
$$

Problem 8.116 (In Excel)

Flow in a tube may alternate between laminar and turbulent states for Reynolds numbers in the transition zone. Design a bench-top experiment consisting of a constant-head cylindrical transparent plastic tank with depth graduations, and a length of plastic tubing (assumed smooth) attached at the base of the tank through which the water flows to a measuring container. Select tank and tubing dimensions so that the system is compact, but will operate in the transition zone range. Design the experiment so that you can easily increase the tank head from a low range (laminar flow) through transition to turbulent flow, and vice versa. (Write instructions for students on recognizing when the flow is laminar or turbulent.) Generate plots (on the same graph) of tank depth against Reynolds number, assuming laminar or turbulent flow.

Solution

Governing equations:
$\operatorname{Re}=\frac{\rho \cdot V \cdot \mathrm{D}}{\mu}$
$\left(\frac{p_{1}}{\rho}+\alpha_{1} \cdot \frac{\mathrm{~V}_{1}^{2}}{2}+\mathrm{g} \cdot \mathrm{z}_{1}\right)-\left(\frac{\mathrm{p}_{2}}{\rho}+\alpha_{2} \cdot \frac{\mathrm{~V}_{2}^{2}}{2}+\mathrm{g} \cdot \mathrm{z}_{2}\right)=\mathrm{h}_{\mathrm{IT}}=\sum_{\text {major }} \mathrm{h}_{1}+\sum_{\text {minor }} \mathrm{h}_{\mathrm{lm}}$
$h_{l}=f \cdot \frac{L}{D} \cdot \frac{V^{2}}{2}$
$h_{l m}=K \cdot \frac{\mathrm{~V}^{2}}{2}$
$\mathrm{f}=\frac{64}{\operatorname{Re}}$
(8.36) (Laminar)
$\frac{1}{f^{0.5}}=-2.0 \cdot \log \left(\frac{\frac{\mathrm{e}}{\mathrm{D}}}{3.7}+\frac{2.51}{\operatorname{Re} \cdot \mathrm{f}^{0.5}}\right)$
The energy equation (Eq. 8.29) becomes
$\mathrm{g} \cdot \mathrm{H}-\alpha \cdot \frac{\mathrm{V}^{2}}{2}=\mathrm{f} \cdot \frac{\mathrm{L}}{\mathrm{D}} \cdot \frac{\mathrm{V}^{2}}{2}+\mathrm{K} \cdot \frac{\mathrm{V}^{2}}{2}$
This can be solved explicity for reservoir height H
$H=\frac{V^{2}}{2 \cdot g} \cdot\left(\alpha+f \cdot \frac{L}{D}+K\right)$

Choose data:

$$
\begin{array}{rlrl}
L & = & 1.0 & \mathrm{~m} \\
D & = & 3.0 & \mathrm{~mm} \\
e & = & 0.0 & \mathrm{~mm} \\
\alpha & = & 2 & \\
& = & & \text { (Laminar) } \\
& 1 & & \text { (Turbulent) }
\end{array}
$$

Tabulated or graphical data:

$$
\begin{aligned}
\mu= & 1.00 \mathrm{E}-03 \mathrm{~N} . \mathrm{s} / \mathrm{m}^{2} \\
\rho= & 999 \quad \mathrm{~kg} / \mathrm{m}^{3} \\
& (\text { Appendix A) } \\
K_{\text {ent }}= & 0.5 \quad \text { (Square-edged) }
\end{aligned}
$$

(Table 8.2)

Computed results:

$\boldsymbol{Q}(\mathbf{L} / \mathbf{m i n})$	$\boldsymbol{V}(\mathbf{m} / \mathbf{s})$	$\boldsymbol{R e}$	Regime	\boldsymbol{f}	$\boldsymbol{H}(\mathbf{m})$
0.200	0.472	1413	Laminar	0.0453	0.199
0.225	0.531	1590	Laminar	0.0403	0.228
0.250	0.589	1767	Laminar	0.0362	0.258
0.275	0.648	1943	Laminar	0.0329	0.289
0.300	0.707	2120	Laminar	0.0302	0.320
0.325	0.766	2297	Laminar	0.0279	0.353
0.350	0.825	2473	Turbulent	0.0462	0.587
0.375	0.884	2650	Turbulent	0.0452	0.660
0.400	0.943	2827	Turbulent	0.0443	0.738
0.425	1.002	3003	Turbulent	0.0435	0.819
0.450	1.061	3180	Turbulent	0.0428	0.904

The flow rates are realistic, and could easily be measured using a tank/timer system The head required is also realistic for a small-scale laboratory experiment Around $R e=2300$ the flow may oscillate between laminar and turbulent:
Once turbulence is triggered (when $H>0.353 \mathrm{~m}$), the resistance to flow increases requiring $H>0.587 \mathrm{~m}$ to maintain; hence the flow reverts to laminar, only to trip over again to turbulent! This behavior will be visible: the exit flow will switch back and forth between smooth (laminar) and chaotic (turbulent)

Given: Fir flow through a line, of length and diameter

$$
\begin{aligned}
& D=40 \mathrm{~mm}, \\
& P_{1}=670 \mathrm{ffa}(\mathrm{~g}) P_{2}=650 \mathrm{kPa}(\mathrm{~g}) \\
& T_{1}=40^{\circ} \mathrm{C} \quad \mathrm{~m}=0.25 \mathrm{gg} / \mathrm{s} \\
& p^{2}=\text { constant }
\end{aligned}
$$

Find: Allowable length of hose
Solution:
Computing equation: $\left(\frac{p_{1}}{p}+\alpha_{1}^{-\frac{1}{2}}+g_{-2}^{2}\right)-\left(\frac{p_{2}}{p}+\alpha_{2} \frac{\overline{2}_{2}^{2}}{2}+\frac{g_{2}^{2}}{2}\right)=h_{e_{4}}=h_{1}+h_{e_{m}}$ where $h_{2}=f \frac{-j}{j} \frac{y^{2}}{2} \quad h_{2}=k \frac{j^{2}}{2}$
For $p=c$, hen $\bar{V}_{1}=\bar{J}_{2}$, since $A_{1}=H_{2}$. Since p_{1} and p_{2} are given, neglect, Minor losses. Assume $\alpha_{1}=\alpha_{2}$ and neglect elevation changes. Then Eq. 8.29 can be written as

$$
\frac{P_{1}-P_{2}}{P}=f^{\frac{L}{D}} \frac{V^{2}}{2} \quad \text { or } L=\frac{\left(P_{1}-P_{2}\right)}{P} \frac{2 D}{f y^{2}}
$$

The density is

$$
\rho=\rho_{1}=\frac{p_{1}}{R_{1}}=7.91 \times 10^{5} \frac{\lambda_{1}}{\eta^{2}} \times \frac{\operatorname{kg} \cdot k}{285 \cdot n} \times \frac{1}{313 x}=8.81 \lg ^{3} / n^{3}
$$

From continuity

$$
\bar{y}=\frac{i n g}{p^{A}}=\frac{4 i n}{\pi p^{y^{2}}}=\frac{4}{\pi} \times 0.25 \frac{\mathrm{lg}}{\sec } \times \frac{\mathrm{m}^{3}}{8.81 \mathrm{~kg}} \times \frac{1}{(0.04)^{2} \mathrm{~m}^{2}}=22.6 \mathrm{~m} / \mathrm{sec}
$$

For air at $40^{\circ} \mathrm{C}, \mu=1.91 \times 10^{-5} \mathrm{~kg}$) $\mathrm{m} \cdot \mathrm{s}$ (Table $A \cdot 6$), so

Assume smooth pipe; then from Fig. $8.13, f=0.0134$ Substituting gives

$$
\begin{aligned}
L & =\frac{\left(p_{1}-P_{2}\right) \frac{2 D}{f \lambda^{2}}}{\rho} \\
& =20 \times 10^{3} \frac{\mathrm{~N}}{\mathrm{~N}^{2}} \times 2 \times 0.04 \mathrm{~m} \times \frac{\mathrm{m}^{3}}{8.8 \mathrm{gg}} \times \frac{1}{0.0134} \times \frac{\sec ^{2}}{(22 . b)^{2} \mathrm{n}^{2}} \times \frac{\mathrm{gg} \cdot \mathrm{~N}}{\mathrm{~N} \cdot \sec ^{2}} \\
L & =26.5 \mathrm{~m}
\end{aligned}
$$

Problem 8.118

Given: Gasoline flow in a horizontal pipeline at $15^{\circ} \mathrm{C}$. The distance and pressure drop between pulping stations are 13 km and $1.4 \mathrm{MPa}, r e s p e c t i v e l y$. The pipe is 0.6 m in diameter. Its roughness corresponds to galvanized iron.

Find: Volume flow rate.
Solution: Apply the energy equation for steady, incompressible flow that is uniform at each section.

Assumptions: (1) Constant area pipe, so $\bar{V}_{1}=\bar{V}_{2}, h \mathrm{~cm}=0$
(2) Level, so $z_{1}=z_{2}$

Thus

$$
\frac{p_{1}-p_{2}}{\rho}=f \frac{L}{O} \frac{\nabla^{2}}{2} \quad \text { or } \quad \bar{V}=\left[\frac{2 D\left(p_{1}-p_{2}\right)}{\rho f L}\right]^{\frac{1}{2}}
$$

But $f=f($ Re, $\epsilon / D)$, and the Reynolds number is not known. Therefore iteration is required. Choose f in the fully -rough zone. From Table 8.t, $e=0.15 \mathrm{~mm}$; $e / p=0,00025$, Then from Fig. 8.13, f $=0.014,\left\{{ }^{\circ}\right.$ From Eq. 8.37 , using Excel's solver, $f=0.0 \mathrm{~m}\}$, Then,

$$
\begin{aligned}
& \bar{V}=\left[2 \times 0.6 \mathrm{~m} \times 1.4 \times 10^{6} \frac{\mathrm{~N}}{\mathrm{~m}^{2}} \times \frac{\mathrm{m}}{(0.72) 1000 \mathrm{~kg}} \times \frac{1}{0.014} \times \frac{1}{13 \times 10^{3} \mathrm{~m}} \times \frac{\mathrm{kg} \cdot \mathrm{~m}}{\mathrm{~N} \cdot \mathrm{~s}^{2}}\right]^{\frac{1}{2}} \\
& \qquad \bar{V}=3.58 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

Now compute Re and check on guess for f. Choose $\mu \simeq 5 \times 10^{-4} \mathrm{~N} \cdot \mathrm{~s} / \mathrm{m} \mathrm{m}^{2}$ (Fig. A. 2). .

$$
\operatorname{Re}=\frac{\rho \bar{V} D}{\mu}=(0.72) 1000 \frac{\mathrm{~kg}}{\mathrm{~m}^{3}} \times \frac{3.58 \mathrm{~m}}{\mathrm{~s}} \times 0.6 \mathrm{~m} \times \frac{\mathrm{m}^{2}}{5 \times 10^{-4} \mathrm{~N} \cdot \mathrm{~s}} \times \frac{\mathrm{N} \cdot \mathrm{~s}^{2}}{\mathrm{~kg} \cdot \mathrm{~m}}=3.09 \times 10^{6}
$$

Checking on Fig. 8.13, flow is essentially in the fully-rowgh zone, and initial guess for f was okay. Thus

$$
Q=\bar{V} A=3.58 \frac{\mathrm{~m}}{\mathrm{~s}} \times \frac{\pi}{4}(0.6)^{2} \mathrm{~m}^{2}=1.01 \mathrm{~m} / \mathrm{m}
$$

* Note gasoline is betwer heptane and octane.

Given: Steady flow of water in 5 in , diameter, horizontal, cast-iron pipe.

Find: Volume flow rate.
Solution: Apply the energy equation for steady, incompressible pipe flow.
Computing equation:

$$
\begin{aligned}
& \left(\frac{p_{1}}{\rho}+\alpha_{1}{\hat{x_{1}^{2}}}_{2}^{2}+g_{b_{1}}\right)-\left(\frac{p_{2}}{\rho}+\alpha_{2} \frac{\hat{v}_{2}^{2}}{F}+g_{\bar{p}_{2}}\right)+h_{l T} \\
& h_{l T}=h_{l}+h_{l m}=f \frac{L}{2} \frac{\vec{k}^{2}}{2}+k \frac{\nabla^{2}}{2}
\end{aligned}
$$

Assumptions: (1) Fully developed flow: $\alpha_{1} \bar{v}_{1}^{2}=\alpha_{2} \vec{v}_{2}^{2}$
(2) Horizontal: $z_{1}=z_{2}$
(3) constantarea, so $k=0$

Then

$$
\frac{\Delta p}{\rho}=h_{l T}=f \frac{L}{D} \frac{\bar{v}^{2}}{2} \text { so } \bar{V}=\sqrt{\frac{2 \Delta \not D D}{\rho+L}}
$$

Since flow rate (hence Re and f) are unknown, must iterate. Guess a trial value of f in the fully rough zone. From Table $8,1, e=0.2 b \mathrm{~mm}$
Then $e_{10} \frac{0.26}{125}=0.0021$. Then from Eq. $8.31^{*} f=0.0237$ for $R e \geqslant 6 \times 10$ 5

$$
\bar{V}=\left[z_{\times} \cdot 150 \times 10^{3} \frac{\mathrm{~N}}{\mathrm{~m}^{2}} \times 0.125 \mathrm{~m} \times 009 \frac{\mathrm{~m}^{3}}{6 \mathrm{~g}} \times \frac{1}{0.0237} \times \frac{1}{150 \mathrm{~m}} \times \frac{\mathrm{kq} \cdot \mathrm{~m}}{\mathrm{r}^{2} \mathrm{~s}^{2}}\right]^{1 / 2}=3.25 \mathrm{~m} / \mathrm{s}
$$

and, checking Re, with $\nu=1.14 \times 10^{-6} \mathrm{~m}^{2} / \mathrm{s}$ at $T=15^{\circ} \mathrm{C}$ (Table A.8),

$$
R e=\frac{\vec{V} D}{\nu}=3.25 \frac{\mathrm{~m}}{\mathrm{~s}} \times 0.125 \mathrm{~m} \frac{\mathrm{~s}}{1.14 \times 10^{-6} \mathrm{~m}^{2}}=3.56 \times 10^{5}
$$

The friction factor at this Re is still $f=0.0242$ (2% error), so convergence is or:

$$
\dot{Q}=\bar{V} A=3.25 \frac{\mathrm{~m}}{\mathrm{~s}} \times \frac{\pi}{4} \times(0.125 \mathrm{~m})^{2}=0.0399 \mathrm{~m}^{3} / \mathrm{s}
$$

$U_{\text {sing }} f=0242, \bar{V}=3.22 \mathrm{~m} / \mathrm{s}$ and $Q=0.0395 \mathrm{~m}^{3} / \mathrm{s}$

* Value of $f=0.237$ obtained using Excel's Solver (or Goal Seek)

Problem 8.120
Given: Steady flow of water through a cast ron pipe of diameter $?=125 \mathrm{~mm}$. The pressure drop over a length of p pe, $L_{1}=150 \mathrm{~m}$ is $p_{1}-p_{2}=150 \mathrm{ppa}$. Section 2 is located 15 M above section 1 .

Find: the volume flow rate, Q.
Solution: Apply the energy equation for steady, incompressible pipe thus
Computing equation:

$$
\begin{align*}
& \left(\frac{p_{1}}{p}+\alpha \bar{y}^{2} \frac{1}{2}+g z^{\prime}\right)-\left(\frac{p_{2}}{p}+\alpha / \frac{\bar{x}_{2}^{2}}{2}+g j_{2}\right)=h_{e_{T}} \tag{1}\\
& h_{e_{T}}=h_{e}+h_{e_{n}}=f \frac{\bar{j}^{2}}{2}+\psi / \frac{j^{2}}{2} o(4) \tag{2}
\end{align*}
$$

Assumptions: (i) $\bar{w}_{1}=\bar{J}_{2}$ from cortuniuity
(2) $\alpha_{1}=\alpha_{2}$
(3) $z_{2}-z_{1}=15 m$
(in) neglect minor losses
For cast ron pipe with $\eta=125 \mathrm{~mm} \frac{\varepsilon}{y}=0.0021 \quad(\varepsilon=0.2 b \mathrm{~mm}$, Table 8.1) Since $f=f(R e)$ and \bar{V} is unknown, iteration will be required From Eqs(i) and (h)
then

$$
\left(\frac{p_{1}}{p}+g g^{\prime}\right)-\left(\frac{p_{2}}{p}+g g^{2}\right)=f \frac{1}{i} \frac{p^{2}}{2}
$$

$$
\begin{aligned}
& f j^{2}=\frac{2 y}{L}\left[\frac{\left(p_{1}-e_{2}\right)}{\rho}+g\left(z_{1}-z_{2}\right)\right] \\
& f^{2}=2 \times \frac{0.125 m}{150 m}\left[150+10^{3} \frac{n}{n} 2^{2} \times 99 \frac{m^{3}}{8 g} \times \frac{\mathrm{kg} \cdot \mathrm{M}}{\lambda . s^{2}}\right]+2.81 \frac{\mu}{5^{2}} \times(-15 m) \\
& f N^{2}=0.005 \mathrm{~m}^{2} / \mathrm{s}^{2}
\end{aligned}
$$

Assume flow in fully rough region, $f=0.0237$, then $\bar{V}=0.4 b m b$ check he. Assume $\frac{C}{1}=15^{\circ} \mathrm{C}$, $\nabla=1.14 \times 10^{-6} \mathrm{~m}^{2} \mathrm{c}_{\mathrm{s}}$ (Table A. 8)

$$
\text { Then } R_{e}=\frac{\bar{\nu}}{\nabla}=0.125 m \times 0.46 \frac{H}{s} \times 1.14 \times 10^{-6} \frac{5}{m^{2}}=50,400
$$

From, Eq. 8.37 with $\mathrm{Re}=50,400$, $e^{l} \mid y=0.0021$, then using
Excel's solver (or Goal Seek) Excel's Solver (or Goal Seek)

$$
f=0.0267 \text { and } \bar{v}=0.433 \mathrm{mbs}
$$

With this value of \bar{V}, $R_{e}=47.500, f=0.0268,{ }^{\circ} \bar{X}=0.432 \mathrm{~m} / \mathrm{s}$ Then

$$
Q=R \bar{V}=\frac{\pi)^{2}}{4} \bar{V}=\frac{\pi}{4}(0.125 \mathrm{~m})^{2}+0.432 \frac{m}{5}=0.0053 \mathrm{~m}^{3} / \mathrm{s} .
$$

Problem 8.121

Given: Two open standpipes shown. water flows by gravity.

Find: Estimate of rate of change of water level in left standpipe.

Solution: Apply the energy equation for quasi-steady, incoompressible pipe flow.

Computing equation:

From continuity, $A, V=A_{1} \bar{V}$
Assumptions: (1) Neglect unsteady effects
(2) Incompressible flow
(3) $p_{1}=p_{2}=p a t m$
(4) $\bar{V}_{1}=\bar{V}_{2}$ since diameters are equal

Then $g \Delta h=h_{l T}=\left[f \frac{(L-D)}{d}+k_{n}+k_{l x i}+\right] \frac{V^{2}}{2}$
Flow rate (hence speed) is unknown, so assume flow is in fully rough zone.

$$
\frac{e}{D}=\frac{0.3}{75}=0.004 \text {, so } f \approx 0.0285 \text { from Eq. } 8.37 \text { (using Excel's Solver or Goal Seek) }
$$

From Table $8,2, k_{\text {cent }}=0.5$; from Fig. $815, K_{\text {exit }}=1$. Then

$$
\bar{V}=\left[\frac{2 g \Delta h}{f\left(\frac{L-D)}{d}+k_{e n t}+k_{e \times i t}\right.}\right]^{\frac{1}{2}}=\left[\frac{2 \times 9.81 \frac{\mathrm{~m}}{s^{2}} \times 2.5 \mathrm{~m}}{0.028\left(\frac{4-0.75}{0.075}\right)+0.5+1.0}\right]^{\frac{1}{2}}=4.23 \mathrm{~m} / \mathrm{s}
$$

Check Re and f. For water at $20^{\circ} \mathrm{C}, \nu=1.00 \times 10^{-6} \mathrm{~m}^{2} / \mathrm{s}$ (Table A. I)

$$
R e=\frac{V d}{v}=4.23 \frac{\mathrm{~m}}{\mathrm{~s}} \times 0.075 \mathrm{~m}_{\times} \frac{\mathrm{s}}{1.00 \times 10^{-6} \mathrm{~m}^{2}}=3.18 \times 10^{5}
$$

From Equation $8.37, \quad f \approx 0.0288$, so this is satisfactory agreement. $(2,0)$

$$
V_{1}=\frac{A_{p}}{A_{1}} V_{p}=\left(\frac{d}{D}\right)^{2} V_{p}=\left(\frac{0.075}{0.75}\right)^{2} \times 4.23 \frac{\mathrm{~m}}{\mathrm{~s}}=0.0423 \mathrm{~m} / \mathrm{s} \text { (down) }
$$

The water level in the left tank falls at about $42.3 \mathrm{~mm} / \mathrm{s}$

Given: Two gatvanjed rom pipes connected to large water reservoir as shawn.

Determine: (a) which pipe will pass the larger flu rate (without calculations);
b) testify larger flow rate if $H=6 \mathrm{~m}$,

$$
D=50 \mathrm{~mm}, L=50 \mathrm{~m}
$$

Solution:
Flow trough each pipe is governed by the energy equation
or steady incompressible fou. for steady compressible flows
Basie equations: $\left(\frac{p_{1}}{p}+\alpha_{1} \frac{j_{1}^{2}}{2}+g_{3}\right)-\left(\frac{p_{2}}{p}+\alpha_{2} \frac{\bar{v}_{2}^{2}}{2}+g_{2}^{2}\right)=h_{e}$

$$
h_{e_{5}}=h_{e}+h_{e_{m}}=f \frac{5}{8} \frac{\bar{v}^{2}}{2}+k_{\text {ait }} \frac{-1^{2}}{2}
$$

Assumptions: (i) $p_{1}=-P_{2}=-P_{3}=-P_{\text {atm }}$
then

$$
\text { (2) } \bar{J}_{1}=0, \quad \alpha_{2}=\alpha_{3}=110
$$

$$
\begin{aligned}
& g\left(z-z_{2}\right)=h_{2 t}+\frac{j_{2}^{2}}{2}=\frac{-\frac{V_{2}^{2}}{2}\left[f \frac{2}{8}+k_{\text {ert }}^{2}+1\right]}{2} \\
& \text { (pere } A \text {) } \\
& g\left(z-z_{3}\right)=h_{t}+\frac{\bar{J}_{2}^{2}}{2}=\frac{J^{2}}{2}\left[+\frac{2 L}{5}+K_{\text {mental }}^{2}\right] \text { (pipes). }
\end{aligned}
$$

Since $z_{1-z_{2}}=z_{1}-z_{3}$, then $\bar{X}_{2} \bar{N}_{3}$ and $Q_{A}>Q_{B}$
Trough pipe $A \quad g A=\frac{J_{2}^{2}}{2}\left[f \xi+K_{\text {ert }}^{2}\right]$
From Table si $e=0.15 \mathrm{~m} \quad \therefore$ ely $=0.15 / 50=0.003$ Assume water at $20^{\circ} \mathrm{C}, ~ \nu=100 \times 10^{-6} \mathrm{~m}^{2} / \mathrm{s}$ (Table A.B) Choose friction factor $F=0.0263^{*}$ (in fully rough region)
Then $\bar{V}_{2}=\left\{\frac{2 g H}{\left[E \frac{Y}{\nabla}+\operatorname{ket} t+1\right]}\right\}^{\prime \prime 2}=\left\{2+9.81 \frac{1}{5^{2}} \times 10 m+\frac{1}{\left[0.0263 \times \frac{50}{0.05}+0.5+1.0\right]}\right\}$

$$
\bar{V}_{2}=\left.2.66 \mathrm{~m}\right|_{\mathrm{s}}
$$

Check $R_{e}=\frac{\bar{J}}{\nu}=0.05 m \times 2.6 b \frac{\mu}{5} \times 1100 \times 10^{-b} \frac{5}{m^{2}}=1.33 \times 10^{5}$
At his he, $f=0.0272^{*}$ and $\bar{V}_{2}=2.62 \mathrm{Mls}$

$$
Q=A \bar{y}=\frac{\pi)^{2}}{4} \bar{y}=\frac{\pi}{4} \times(0.05 m)^{2} \times 2.62 \frac{\mu}{s}=5.14 \times 10^{-3} \mathrm{~m}^{3} / \mathrm{s}<Q_{A}
$$

* Vale obtained from Eq. 8.37 , using Excel Solver (or Goal Seel)

Problem 8.123

Given: Site for hydraulic mining, $H=300 \mathrm{~m}, L=900 \mathrm{~m}$.
Hose witt $D=75 \mathrm{~mm}, \mathrm{e} / \mathrm{D}=0.01$. Couplings, $\frac{L E}{D}=20$, every 10 m along hose Nozzle diameter, $d=25 \mathrm{~mm} ; K=0.02$, based on \bar{V}_{0}
Find: (a) Estimate maximum outlet velocity, V_{0}.
(b) Determine maximum force of Jet on rock face.

Solution: Apply the energy equation for steady, incompressible pipe flow. Computing equation: $\left(\frac{\hat{p}_{1}=0(1)}{\rho}+\alpha_{1} \hat{v}_{1}^{2}+g(z) \quad\left(\frac{\hat{p}_{2}}{\hat{p}_{1}}+\alpha_{2} \frac{\bar{V}_{2}^{2}}{2}+g_{\sigma_{2}}\right)=h_{l T}\right.$
Assume: (1) $p_{1}=0 ;(2) \bar{V}_{1}=0 ;(3) p_{2}=0 ;(4) \alpha_{2}=1 ;(5) z_{2}=0 ;(6)$ Fully -rough zone
Then $g H=h_{L T}+\frac{\bar{V}_{2}^{2}}{2}=+\frac{L}{D} \frac{\bar{V}_{p}^{2}}{2}+f_{x} 90 \frac{L_{e}}{D} \frac{\bar{V}_{p}^{2}}{2}+K \frac{\bar{V}_{0}^{2}}{2}+\frac{\bar{V}_{0}^{2}}{2}$
From continuity $\bar{V}_{p} A_{p}=\bar{V}_{0} A_{0} ; \bar{V}_{2}=\bar{V}_{0} \frac{A_{0}}{A_{i 2}} ; \bar{V}_{2}^{2}=\bar{V}_{0}^{2}\left(\frac{A_{0}}{A_{2}}\right)^{2}=V_{0}^{2}\left(\frac{d}{D}\right)^{4}$
Substituting, $g H=\left[f\left(\frac{L}{D}+90 \frac{L}{D}\right)\left(\frac{d}{D}\right)^{4}+1+k\right] \frac{V_{0}^{2}}{2}$

$$
\begin{aligned}
& \bar{V}_{0}=\left[\frac{2 g H}{f\left(\frac{L}{D}+90 \frac{L}{D}\right)\left(\frac{d}{D}\right)^{4}+1+k}\right]^{1 / 2} ; \text { in fully-rough zone }\left(\frac{c}{D}=0.01\right), f=0.038^{*}(\mathrm{Eq} .8 .37) \\
& V_{0}=\left[2 \times 9.81 \frac{\mathrm{~m}}{\mathrm{~s}^{2}} \times 300 \mathrm{~m} \times \frac{1}{0.038\left(\frac{900 \mathrm{~m}}{0.025 \mathrm{~m}}+90(20)\right)\left(\frac{0.025}{0.075}\right)^{4}+1+0.02}\right]^{1 / 2}=28.0 \mathrm{~m} / \mathrm{s}(\mathrm{est} .)
\end{aligned}
$$

Check for fully -rough flow zone:

$$
\begin{aligned}
& R e=\frac{\bar{V}_{P} D}{v} ; \bar{V}_{P}=\bar{V}_{0}\left(\frac{d}{D}\right)^{4}=28.0 \frac{\mathrm{~m}}{\mathrm{~s}}\left(\frac{1}{3}\right)^{4}=0.346 \mathrm{~m} / \mathrm{s} \quad\left\{\text { Assume } T=20^{\circ} \mathrm{C}\right\} \\
& R e=0.346 \frac{\mathrm{~m}}{\sec } \times 0.075 \mathrm{~m}_{\times} \times \frac{1}{1 \times 10^{-6} \mathrm{~m}^{2}}=2.60 \times 10^{4} ; \text { at } \frac{e}{D}=0.01, f=0.040(\text { Eq. } 8.37)
\end{aligned}
$$

The new estimate is

$$
\bar{V}_{0}=\sqrt{\frac{0.038}{0.040}} \bar{V}_{0}(e s t)=\sqrt{\frac{0.038}{0.040}} 28.0 \frac{\mathrm{~m}}{\mathrm{~s}}=27.3 \mathrm{~m} / \mathrm{s}
$$

Apply momentum to find force: CV is shown.

$$
F_{S_{x}}+F_{B_{x}}=\frac{\partial}{\partial t} \int_{C v} u \rho d t+\int_{C S} u \rho \vec{v} \cdot d \vec{A}
$$

Assumptions: (i) No pressure forces
(2) $F B_{X}=0$
(3) Steady flow

Problem 8.123 (con tic.)
(4) Uniform flow at each cross-section

Then

$$
\begin{gathered}
R_{x}=u_{2}\left\{-\rho \bar{v}_{0} A_{0}\right\}+u_{3}\left\{+\rho \vec{V}_{0} A_{0}\right\} \\
u_{2}=\vec{V}_{0} \quad u_{3}=0 \\
R_{x}=-\rho \bar{V}_{0}^{2} A_{0}
\end{gathered}
$$

The force on the rock face is

$$
\begin{aligned}
K_{x} & =-R_{x}=\rho \bar{v}_{0}^{2} A_{0} \\
& =999 \frac{\mathrm{~kg}}{\mathrm{~m}^{3}} \times(27.3)^{2} \frac{\mathrm{~m}^{2}}{\mathrm{~s}^{2}} \times \frac{\pi}{4}(0.025)^{2} \mathrm{~m}^{2} \times \frac{\mathrm{N} \cdot \mathrm{~s}^{2}}{\mathrm{~kg} \cdot \mathrm{~m}} \\
K_{x} & =365 \mathrm{~N} \text { (to right) }
\end{aligned}
$$

* Values of f obtained from Eq. 8.37 using Excel's Solver (or GoalSeek)

Problem 8.124 (In Excel)

Investigate the effect of tube length on flow rate by computing the flow generated by a pressure difference $\Delta p=100 \mathrm{kPa}$ applied to a length L of smooth tubing, of diameter $D=25 \mathrm{~mm}$. Plot the flow rate against tube length for flow ranging from low speed laminar to fully turbulent.

Solution

Governing equations:
$\operatorname{Re}=\frac{\rho \cdot \mathrm{V} \cdot \mathrm{D}}{\mu}$
$\left(\frac{p_{1}}{\rho}+\alpha_{1} \cdot \frac{\mathrm{~V}_{1}{ }^{2}}{2}+\mathrm{g} \cdot \mathrm{z}_{1}\right)-\left(\frac{\mathrm{p}_{2}}{\rho}+\alpha_{2} \cdot \frac{\mathrm{~V}_{2}{ }^{2}}{2}+\mathrm{g} \cdot \mathrm{z}_{2}\right)=\mathrm{h}_{1}$
$h_{1}=\mathrm{f} \cdot \frac{\mathrm{L}}{\mathrm{D}} \cdot \frac{\mathrm{V}^{2}}{2}$
$f=\frac{64}{R e}$
(8.36) (Laminar)
$\frac{1}{f^{0.5}}=-2.0 \cdot \log \left(\frac{\frac{\mathrm{e}}{\mathrm{D}}}{3.7}+\frac{2.51}{\operatorname{Re} \cdot \mathrm{f}^{0.5}}\right) \quad$ (8.37) \quad (Turbulent)

The energy equation (Eq. 8.29) becomes for flow in a tube
$\mathrm{p}_{1}-\mathrm{p}_{2}=\Delta \mathrm{p}=\rho \cdot \mathrm{f} \cdot \frac{\mathrm{L}}{\mathrm{D}} \cdot \frac{\mathrm{V}^{2}}{2}$

This cannot be solved explicitly for velocity V, (and hence flow rate Q) because f depends on V; solution for a given L requires iteration (or use of Solver)

Fluid is not specified: use water

Given data:

$$
\begin{array}{rlll}
\Delta p & = & 100 & \mathrm{~m} \\
D & = & 25 & \mathrm{~mm}
\end{array}
$$

Tabulated or graphical data:

$$
\begin{aligned}
\mu= & 1.00 \mathrm{E}-03 \mathrm{~N} . \mathrm{s} / \mathrm{m}^{2} \\
\rho= & 999 \quad \mathrm{~kg} / \mathrm{m}^{3} \\
& (\text { Water }- \text { Appendix A) }
\end{aligned}
$$

Computed results:

$\boldsymbol{L} \mathbf{(k m)}$	$\boldsymbol{V}(\mathbf{m} / \mathbf{s})$	$\boldsymbol{Q}\left(\mathbf{m}^{\mathbf{3}} / \mathbf{s}\right) \times \mathbf{1 0}^{4}$	$\boldsymbol{R e}$	Regime	\boldsymbol{f}	$\Delta \boldsymbol{p} \mathbf{(k P a)}$	Error
1.0	0.40	1.98	10063	Turbulent	0.0308	100	0.0%
1.5	0.319	1.56	7962	Turbulent	0.0328	100	0.0%
2.0	0.270	1.32	6739	Turbulent	0.0344	100	0.0%
2.5	0.237	1.16	5919	Turbulent	0.0356	100	0.0%
5.0	0.158	0.776	3948	Turbulent	0.0401	100	0.0%
10	0.105	0.516	2623	Turbulent	0.0454	100	0.0%
15	0.092	0.452	2300	Turbulent	0.0473	120	20.2%
19	0.092	0.452	2300	Laminar	0.0278	90	10.4%
21	0.092	0.452	2300	Laminar	0.0278	99	1.0%
25	0.078	0.383	1951	Laminar	0.0328	100	0.0%
30	0.065	0.320	1626	Laminar	0.0394	100	0.0%

The "critical" length of tube is between 15 and 20 km .
For this range, the fluid is making a transition between laminar and turbulent flow, and is quite unstable. In this range the flow oscillates between laminar and turbulent; no consistent solution is found (i.e., an $R e$ corresponding to turbulent flow needs an f assuming laminar to produce the Δp required, and vice versa!)
More realistic numbers (e.g., tube length) are obtained for a fluid such as SAE 10W oil (The graph will remain the same except for scale)

Problem 8.125 (In Excel)

Investigate the effect of tube roughness on flow rate by computing the flow generated by a pressure difference $\Delta p=100 \mathrm{kPa}$ applied to a length $L=100 \mathrm{~m}$ of tubing, with diameter $D=25 \mathrm{~mm}$. Plot the flow rate against tube relative roughness e / D for e / D ranging from 0 to 0.05 (this could be replicated experimentally by progressively roughening the tube surface). Is it possible that this tubing could be roughened so much that the flow could be slowed to a laminar flow rate?

Solution

Governing equations:

$$
\operatorname{Re}=\frac{\rho \cdot \mathrm{V} \cdot \mathrm{D}}{\mu}
$$

$\left(\frac{p_{1}}{\rho}+\alpha_{1} \cdot \frac{\mathrm{~V}_{1}{ }^{2}}{2}+\mathrm{g} \cdot \mathrm{z}_{1}\right)-\left(\frac{\mathrm{p}_{2}}{\rho}+\alpha_{2} \cdot \frac{\mathrm{~V}_{2}{ }^{2}}{2}+\mathrm{g} \cdot \mathrm{z}_{2}\right)=\mathrm{h}_{1}$
$h_{l}=\mathrm{f} \cdot \frac{\mathrm{L}}{\mathrm{D}} \cdot \frac{\mathrm{V}^{2}}{2}$
$f=\frac{64}{\operatorname{Re}}$
(Laminar)
$\frac{1}{f^{0.5}}=-2.0 \cdot \log \left(\frac{\frac{\mathrm{e}}{\mathrm{D}}}{3.7}+\frac{2.51}{\operatorname{Re} \cdot \mathrm{f}^{0.5}}\right) \quad$ (8.37) \quad (Turbulent)

The energy equation (Eq. 8.29) becomes for flow in a tube
$p_{1}-p_{2}=\Delta p=\rho \cdot f \cdot \frac{L}{D} \cdot \frac{V^{2}}{2}$

This cannot be solved explicitly for velocity V, (and hence flow rate Q) because f depends on V; solution for a given relative roughness e / D requires iteration (or use of Solver)

Fluid is not specified: use water

Given data:

$$
\begin{array}{rlrl}
\Delta p & = & 100 & \mathrm{kPa} \\
D & = & 25 & \mathrm{~mm} \\
L & = & 100 & \\
\mathrm{~m}
\end{array}
$$

Tabulated or graphical data:

$$
\begin{aligned}
\mu= & 1.00 \mathrm{E}-03 \mathrm{~N} . \mathrm{s} / \mathrm{m}^{2} \\
\rho= & 999 \quad \mathrm{~kg} / \mathrm{m}^{3} \\
& (\text { Water }- \text { Appendix A) }
\end{aligned}
$$

Computed results:

$\boldsymbol{e} / \boldsymbol{D}$	$\boldsymbol{V}(\mathbf{m} / \mathbf{s})$	$\boldsymbol{Q}\left(\mathbf{m}^{\mathbf{3}} / \mathbf{s}\right) \times \mathbf{1 0}^{4}$	$\boldsymbol{R e}$	Regime	\boldsymbol{f}	$\Delta \boldsymbol{p}(\mathbf{k P a})$	Error
0.000	1.50	7.35	37408	Turbulent	0.0223	100	0.0%
0.005	1.23	6.03	30670	Turbulent	0.0332	100	0.0%
0.010	1.12	5.49	27953	Turbulent	0.0400	100	0.0%
0.015	1.05	5.15	26221	Turbulent	0.0454	100	0.0%
0.020	0.999	4.90	24947	Turbulent	0.0502	100	0.0%
0.025	0.959	4.71	23939	Turbulent	0.0545	100	0.0%
0.030	0.925	4.54	23105	Turbulent	0.0585	100	0.0%
0.035	0.897	4.40	22396	Turbulent	0.0623	100	0.0%
0.040	0.872	4.28	21774	Turbulent	0.0659	100	0.0%
0.045	0.850	4.17	21224	Turbulent	0.0693	100	0.0%
0.050	0.830	4.07	20730	Turbulent	0.0727	100	0.0%

It is not possible to roughen the tube sufficiently to slow the flow down to a laminar flow for this Δp. Even a relative roughness of 0.5 (a physical impossibility!) would not work.

Problem 8.126

Given: Flow configuration of Example Problem 8.5, but with a well rounded inlet, $d=10 \mathrm{~m}$, and $D=26.6 \mathrm{~mm}$.

Find: (a) Volume flow rate if $L=170 \mathrm{~m}$.
(b) Length for laminar flow.
(c) What happens to flow rate when flow changes from laminar to turbulent.

(d) Length to reduce flow rate to Igal/hr.

Solution: Apply the energy equation for steady, incompressible pipe flow.
Computing equation:

$$
\left(\frac{\phi_{1}}{p}+\alpha_{1} \hat{\psi}_{2}^{2}+q z_{1}\right)-\left(\frac{\psi_{2}}{p}+\alpha_{2} \frac{\nabla_{2}^{2}}{2}+g_{B_{2}}^{2}\right)^{2}=h_{C T}=\left(f \frac{c}{D}+k_{\text {en }}\right) \frac{\nabla^{2}}{2}
$$

Assumptions: (1) $p_{1}=p_{2}=p_{\text {atm }}$

$$
\text { Kent } \approx 0.04 \text { (Table 8.2) }
$$

(2) Reservoir large, so $\bar{V}_{1} \approx 0$

$$
\text { (3) } \alpha_{2} \approx 1
$$

Then

$$
g d=\left(f \frac{L}{D}+k_{e n t}+1\right) \frac{\bar{V}^{2}}{2} \text { or } \bar{V}=\left[\frac{2 g d}{f \frac{L}{D}+k_{e n t}+1}\right]^{\frac{1}{2}}
$$

For smooth pipe, $f=f(R e)$, but \bar{V} is not known. Guess Re $=10^{5}$, so $f=0.018^{*}\left(E_{q} 8.37\right)$,

$$
V \approx\left[\frac{2 \times 9.81 \frac{\mathrm{~m}}{\mathrm{~s}^{2}} \times 10 \mathrm{~m}}{0.018 \frac{170}{0.0266}+0.04+1}\right]^{\frac{1}{2}}=1.30 \mathrm{~m} / \mathrm{s} ; R_{l}=1.30 \frac{\mathrm{~m}}{\mathrm{~s}} \times 0.0266 \mathrm{~m} \times \frac{\mathrm{s}}{1 \times 10^{-6} \mathrm{~m}^{2}}=3.46 \times 10^{4}
$$

Try again with $f=0.0227^{*}$

$$
\bar{V} \approx\left[\frac{196 \mathrm{~m} / \mathrm{s}^{2}}{0.0227 \frac{170}{0.0266}+1.04}\right]^{\frac{1}{2}}=1.16 \mathrm{~m} / \mathrm{s} ; \operatorname{Re}=3.08 \times 10^{4} ; f=0.0233 \mathrm{~V} / \text { (okay) (} 3 \text { error) }
$$

Thus $Q=\nabla A=1.16 \frac{\mathrm{~m}}{\mathrm{~s}} \times \frac{\pi}{4}(0.0266)^{2} \mathrm{~m}^{2} \times 1000 \frac{\mathrm{~L}}{\mathrm{~m}^{3}} \times 60 \frac{\mathrm{~s}}{\mathrm{~min}}=38.6 \mathrm{~L} / \mathrm{min}(\mathrm{L}=170 \mathrm{~m})$
For laminar flow, $f=64 / R e=64 / 2300=0.0278 ; \operatorname{Re}=\frac{V D}{\nu} ; \nabla=\frac{V R e}{D}=\frac{\left(1 \times 10^{-6}\right)(2300)}{0.0266}=0.0865 \mathrm{~m} / \mathrm{s}$.
From above, $f \frac{L}{D}=\frac{2 g d}{V^{2}}-k_{\text {nt }}-1=196 \frac{m^{2}}{s^{2} \times} \frac{s^{2}}{(0.0865)^{2} m^{2}}-1.04=2.62 \times 10^{4}$

$$
L=2.62 \times 10^{4} \frac{D}{f}=2.62 \times 10^{4} \times 0.0266 m_{\times} \frac{1}{0.0278}=2.51 \times 10^{4} \mathrm{~m}=25.1 \mathrm{~km}
$$

Flow rate would decrease at transition because friction factor increases.

$$
R_{1}=\frac{\overline{V D}}{2}=\frac{\left(1.89 \times 10^{-3}\right)(0.0266)}{1 \times 10^{-6}}=50.3 ; f=\frac{64}{R_{R}}=\frac{64}{50.3}=1.27
$$

$$
f \frac{L}{D}=\frac{2 g d}{\bar{v}^{2}}-\text { kent }-1=196 \mathrm{~m}^{2} \times \frac{s^{2}}{s^{2}} \times\left(1.89 \times 10^{-3}\right)^{2} m^{2}-1.04=5.49 \times 10^{7}
$$

$L=5.49 \times 10^{7} \frac{D}{f}=5.49 \times 10^{7} \times 0.0266 \mathrm{~m}_{\times} \frac{1}{1.27}=1.15 \times 10^{6} \mathrm{~m}$ or 1.150 km

* Values of f obtained from Eq. 8.37 using Excel's Solver (or Goal Seek)

Problem 8.127 (In Excel)

Water for a fire protection system is supplied from a water tower through a 150 mm cast-iron pipe. A pressure gage at a fire hydrant indicates 600 kPa when no water is flowing. The total pipe length between the elevated tank and the hydrant is 200 m . Determine the height of the water tower above the hydrant. Calculate the maximum volume flow rate that can be achieved when the system is flushed by opening the hydrant wide (assume minor losses are 10 percent of major losses at this condition). When a fire hose is attached to the hydrant, the volume flow rate is $0.75 \mathrm{~m}^{3} / \mathrm{min}$. Determine the reading of the pressure gage at this flow condition.

Given: Some data on water tower system

Find: Water tower height; maximum flow rate; hydrant pressure at $0.75 \mathrm{~m}^{3} / \mathrm{min}$

Solution

Governing equations:
$\operatorname{Re}=\frac{\rho \cdot \mathrm{V} \cdot \mathrm{D}}{\mu}$
$\left(\frac{p_{1}}{\rho}+\alpha_{1} \cdot \frac{V_{1}^{2}}{2}+g \cdot z_{1}\right)-\left(\frac{p_{2}}{\rho}+\alpha_{2} \cdot \frac{V_{2}^{2}}{2}+g \cdot z_{2}\right)=h_{T T}$
$h_{1}=\mathrm{f} \cdot \frac{\mathrm{L}}{\mathrm{D}} \cdot \frac{\mathrm{V}^{2}}{2}$
$h_{l m}=0.1 \times h_{1}$
$f=\frac{64}{\operatorname{Re}}$
(8.36) (Laminar)
$\frac{1}{\mathrm{f}^{0.5}}=-2.0 \cdot \log \left(\frac{\frac{\mathrm{e}}{\mathrm{D}}}{3.7}+\frac{2.51}{\operatorname{Re} \cdot \mathrm{f}^{0.5}}\right) \quad$ (8.37) (Turbulent)

For no flow the energy equation (Eq. 8.29) applied between the water tower free surface (state 1 ; height H) and the pressure gage is
$g \cdot H=\frac{p_{2}}{\rho} \quad$ or $\quad H=\frac{p_{2}}{\rho \cdot g}$
The energy equation (Eq. 8.29) becomes, for maximum flow (and $\alpha=1$)
$\mathrm{g} \cdot \mathrm{H}-\frac{\mathrm{V}^{2}}{2}=\mathrm{h}_{\mathrm{lT}}=(1+0.1) \cdot \mathrm{h}_{\mathrm{l}}$
$\mathrm{g} \cdot \mathrm{H}=\frac{\mathrm{V}^{2}}{2} \cdot\left(1+1.1 \cdot \mathrm{f} \cdot \frac{\mathrm{L}}{\mathrm{D}}\right)$

The energy equation (Eq. 8.29) becomes, for maximum flow (and $\alpha=1$)

$$
\begin{align*}
& \mathrm{g} \cdot \mathrm{H}-\frac{\mathrm{V}^{2}}{2}=\mathrm{h}_{\mathrm{IT}}=(1+0.1) \cdot \mathrm{h}_{1} \\
& \mathrm{~g} \cdot \mathrm{H}=\frac{\mathrm{V}^{2}}{2} \cdot\left(1+1.1 \cdot \mathrm{f} \cdot \frac{\mathrm{~L}}{\mathrm{D}}\right) \tag{2}
\end{align*}
$$

This can be solved for V (and hence Q) by iterating, or by using Solver
The energy equation (Eq. 8.29) becomes, for restricted flow

$$
\begin{align*}
& \mathrm{g} \cdot \mathrm{H}-\frac{\mathrm{p}_{2}}{\rho}+\frac{\mathrm{V}^{2}}{2}=\mathrm{h}_{\mathrm{T}}=(1+0.1) \cdot \mathrm{h}_{1} \\
& \mathrm{p}_{2}=\rho \cdot \mathrm{g} \cdot \mathrm{H}-\rho \cdot \frac{\mathrm{V}^{2}}{2} \cdot\left(1+1.1 \cdot \rho \cdot \mathrm{f} \cdot \frac{\mathrm{~L}}{\mathrm{D}}\right) \tag{3}
\end{align*}
$$

Given data:

$p_{2}=$| 600 | kPa |
| :---: | :--- |
| | |
| $D=$ | (Closed) |
| $L=$ | |
| 150 | mm |
| 200 | m |
| Q | $=$0.75 |
| | $\mathrm{~m}^{3} / \mathrm{min}$ |
| (Open) | |

Tabulated or graphical data:

$$
e=0.26 \quad \mathrm{~mm}
$$

(Table 8.1)
$\mu=1.00 \mathrm{E}-03 \mathrm{~N} . \mathrm{s} / \mathrm{m}^{2}$
$\rho=999 \mathrm{~kg} / \mathrm{m}^{3}$
(Water - Appendix A)

Computed results:

Closed:

Fully open:

$$
\begin{aligned}
V & = & 5.91 \mathrm{~m} / \mathrm{s} \\
R e & = & 8.85 \mathrm{E}+05 \\
f & = & 0.0228
\end{aligned}
$$

Eq. 2, solved by varying V using Solver :

Left (m$\left.{ }^{\mathbf{2}} / \mathbf{s}\right)$	Right $\left(\mathbf{m}^{2} / \mathbf{s}\right)$	Error
601	601	0%

$$
Q=0.104 \quad \mathrm{~m}^{3} / \mathrm{s}
$$

Partially open:

$$
\begin{array}{rll}
Q & =0.75 & \mathrm{~m}^{3} / \mathrm{min} \\
V & =0.71 \mathrm{~m} / \mathrm{s} \\
R e & =1.06 \mathrm{E}+05 \\
f & =0.0243 \\
p_{2} & =591 \mathrm{kPa}
\end{array}
$$

(Eq. 3)

Given: Siphon shown is fabricated from Lis id drawn alum inure. The liquid is water at $6 \circ \mathrm{~F}$.
Find: Compute the volume flow rate. Estimate Prim inside the tube
 (2) $1 z$

Solution: Apply the energy equation for steady, incompressible flow that is uniform at each section
Basic equations:

$$
\left.h_{e_{T}}=f \frac{\frac{-}{y}}{\frac{y^{2}}{2}}+h_{e_{n}} ; \quad h_{e_{n}}=k_{\text {eat }} \frac{\bar{y}^{2}}{2}+f\left(\frac{L_{e}}{y}\right)\right)_{\text {bend }} \frac{\bar{v}^{2}}{2}
$$

Assumptions : (i) $-P_{1}=-P_{2}=-P_{\text {aten }}$
(2) $V_{1} \neq 0$
(3) uniform flow at (2) $\alpha_{2}=1.0$
(4) reentrant entrace

Then $g z_{1}=\frac{\bar{j}_{2}^{2}}{2}+f \frac{-}{\frac{}{2}} \frac{y^{2}}{2}+k_{\text {ant }} \frac{-y^{2}}{2}+f\left(\frac{C}{y}\right)_{\text {bend }} \frac{\bar{y}^{2}}{2}$

$$
2 g_{g^{\prime}}=V_{2}^{2}\left[1+k_{\text {vt }}+f\left\{\left(\frac{h e r}{\rangle}\right)_{\text {hera }}+\frac{\hbar}{\lambda}\right\}\right]
$$

An iterative solution for $\overline{7}$ is required
From Table 8.2 for reentrant entrace kent $=0.78$
\therefore For bend $R 1 d=1.5 \mathrm{ft} 10 . \mathrm{Mb} / \mathrm{f}=9$

- from Fig. 8,16 , he $1 y=25$ for 90° bend
- as fist approximation assume he hi $=56$ for 180° bend

For strangest pipe $h=10 \mathrm{ft}, h\rangle=60$
Then

$$
2 \times 32.2 \frac{f t}{s^{2}} \times 8 f=V_{2}^{2}[1+0.78+f\{56+60\}]=\bar{V}_{2}^{2}[1.78+\cdots 6 f]
$$

For $z^{\prime \prime}$ drawn alum inum tubing, $e=5 \times 10$ ft (Table 8.1), $e / s=0.00003$ Assume $R_{e}=5 \times 10^{5}$, then $f=0.0138^{*}$, and $\bar{V}_{2}=12.33^{f+} l_{5}$

$$
\text { Then } R_{e}=\frac{D J}{J}=\frac{4}{6} \times 12.3 \frac{\mathrm{ft}}{\mathrm{~s}} \times 1.2 \times 10^{-5} \frac{5}{\mathrm{ft}^{2}}=1.11 \times 10^{5}
$$

with $R 2=1.71 \times 0^{5}$, then $f=0.016^{*}$, and $\left.\bar{V}_{2}=11.9^{5+4}\right\rangle_{2}$

The minium pressure occurs, at paint (3) n in pipe; $V_{3}=V_{2}$

* Values of f obtained from Eq. 8.32 Using Excel's Sober (or Goal Seal)

$$
\begin{aligned}
& p_{3}=p\left[g\left(z^{\prime}-z_{3}\right)-\frac{j^{2}}{2}\left(1+\operatorname{kent}^{2}+f\left\{\left(\frac{\operatorname{Le}}{5}\right)_{\operatorname{sen}}+\left(\frac{L_{e}}{3}\right)_{p i p c}\right\}\right)\right] \\
& =1.945 \frac{\operatorname{lng}}{f t^{3}}\left[32.2 \frac{f t}{s^{2}} \times(-1.5 f t)-\left(11 . \frac{12}{2}\right)^{2} \frac{f t^{2}}{s^{2}}(1+0.78+0.060\{28+12\}]\right. \\
& -p_{3}=-2.96 \text { plug }
\end{aligned}
$$

$$
\begin{align*}
& \text { Then } e_{e}=D \frac{\lambda}{J}=\frac{f t}{6} \times 1.9 \frac{f}{3} \times \frac{s}{1.2 \times 10}=f t=1.65 \times 10^{5} \Rightarrow f=0.016^{*} \mathrm{~V} \\
& \therefore Q=A \bar{V}=\frac{\pi V^{2}}{4} \bar{y}=\frac{\pi}{4}\left(\frac{1}{6}\right)^{2} \mathrm{ft}^{2} \times 11.9 \frac{\frac{f}{5}}{5}=0.260 \mathrm{ft}^{3} \mathrm{l}_{\mathrm{s}}
\end{align*}
$$

Given: Roman water supply system from Example Problem 8. 10, but with 50 foot length of straight pipe with $D=25 \mathrm{~mm}$, elD $=0.01$.

Find: (a) Flow rate delivered.
(b) Effect of adding a diffuser.

Solution: Apply the energy equation
 for steady, incompressible pipe flow.

Computing equation:

$$
\frac{\hat{p}_{0}}{\rho}+\frac{\alpha_{0} \hat{v}_{0}^{2}}{2}+g z_{0}=\frac{\hat{p}_{1}}{p}+\alpha_{1} \frac{\bar{v}_{1}^{2}}{2}+g \hat{b}_{1}+h_{C T} ; h_{C T}=\left(f \frac{L}{D}+k_{L n}+\frac{\vec{v}_{1}^{2}}{2}\right.
$$

Assumptions: (1) $p_{0}=p_{1}=p_{\text {atm }}$
(3) $\alpha_{1} \approx 1$
(2) $\bar{V}_{1} \approx 0$
(4) $K_{\text {cent }}=0.04$

Then

$$
g z_{0}=\frac{\bar{V}_{1}^{2}}{2}+\left(f \frac{L}{D}+k_{\operatorname{cn}+}\right) \frac{\bar{V}_{1}^{2}}{2} \quad \text { or } \quad \bar{V}_{1}=\sqrt{\frac{2 g z_{0}}{1+f L}+k}
$$

For elD $=0.01, f=0.038$ from $E q .8 .37^{*}$, so

$$
\bar{V}_{1}=\left[z_{\times} 9.8 \frac{\mathrm{~m}}{\mathrm{~s}^{2}} \times 1.5 \mathrm{~m}_{\times} \frac{1}{1+0.038 \times 50 \mathrm{ft} \times \frac{1}{25 \mathrm{~mm}} \times 304.8 \frac{\mathrm{~mm}}{\mathrm{ft}}+0.04}\right]^{1 / 2}=1.10 \mathrm{~m} / \mathrm{s}
$$

Checking, assuirring $T=20^{\circ} \mathrm{C}$,

$$
\begin{aligned}
& R_{e}=\frac{\bar{D}}{\nu}=1.10 \frac{\mathrm{~m}}{\mathrm{sec}} \times 0.025 m_{\times} \frac{\mathrm{sec}}{1.0 \times 10^{-6} \mathrm{~m}^{2}}=2.75 \times 10^{4} ; \text { from } E q .8 .37, f \approx 0.040, \mathrm{so} \\
& \bar{V}_{1}=\left[2 \times 9.81 \frac{\mathrm{~m}}{\mathrm{~s}^{2}} \times 1.5 \mathrm{~m} \times \frac{1}{1+0.040 \times 50 \mathrm{ft} \times \frac{1}{25 \mathrm{~mm}^{*}} \times \frac{304.8 \mathrm{~mm}}{\mathrm{ft}}+0.04}\right]^{1 / 2}=1.08 \mathrm{~m} / \mathrm{s} \\
& Q=\bar{V}_{1} A=1.08 \frac{\mathrm{~m}}{\mathrm{~s}} \times \frac{\pi}{4}(0.025)^{2} \mathrm{~m}^{2}=5.30 \times 10^{-4} \mathrm{~m}^{2} / \mathrm{s} \text { (nodiffuser) }
\end{aligned}
$$

The diffuser would increase head toss by Kdiffuer $=0.3$ (see Example 8.10), but would reduce \bar{V}_{2} to $\frac{1}{2} \bar{V}_{1}$. The energy equation would be

$$
g z_{0}=\frac{\bar{V}_{2}^{2}}{2}+\left(f \frac{L}{D}+k_{n} t+K_{\text {diff }}\right) \frac{\bar{V}_{1}^{2}}{2}=\left(\frac{1}{4}+f \frac{L}{D}+k_{n} t+k_{d}\right) \frac{\bar{V}_{1}}{2} \quad \begin{aligned}
& \frac{N}{R_{1}}=3.0 \\
& A R=2.0
\end{aligned}
$$

Thees

$$
\left.\begin{array}{l}
\bar{V}_{1}=\sqrt{\frac{2 g z_{0}}{0.25+f \frac{L}{D}+k_{e n t}+K_{\text {diff }}}} \\
\bar{V}_{1}=\left[2 \times 9.81 \frac{\mathrm{~m}}{\mathrm{~s}^{2}} \times 1.5 \mathrm{~m} \times \frac{1}{0.25+0.040 \times 50 \mathrm{ft}_{\times} \frac{1}{25 \mathrm{~mm}} \times 304.8 \mathrm{~mm}}+0.04+0.3\right.
\end{array}\right]^{1 / 2}=1.04 \mathrm{~m} / \mathrm{s}
$$

and

$$
Q=\bar{V}_{1} A=1.09 \frac{\mathrm{~m}}{\mathrm{~s}} \times \frac{\pi}{4}(0.025)^{2} \mathrm{~m}^{2}=5.35 \times 10^{-4} \mathrm{~m}^{3} / \mathrm{s} \quad \text { (with diffuser) }
$$

$\{$ The diffuser increases flow rate only slightly ($w 1$ percent), because loss is $\}$ dominated by $F L / D$.

* Values of f obtained using Excel's Solver (or Goal Seek)

Given: Pipe of length I inserted between the nozzle attached to the water moi) and diffuser of Example Problem 8.10.

Diffuser: $N l_{R_{2}}=3.0, A R=20$

$$
k_{\text {diff }}=0.3
$$

Fou with nozzle aloe:

How wifi nozag and diffuser $(L=0) \quad Q_{d}=3.47 \times 10^{-3} \mathrm{~m}^{3} / \mathrm{s}$
Find: hearth (L) of pepe with ely $=0.01$ required to give. Alow rate Q_{i} witt diffuser in place; compare with commissioner's requirement of $h=$ soft (15.2 m)
plot: alai us hip
Solution:
Apply the energy equation for steady, incompressible flow between the water surface and the diffuser discharge.
Basic equations: $\left(f_{p}^{\prime}+\alpha_{p} \frac{\bar{j}_{2}^{2}}{2}+\frac{g z_{0}}{2}\right)-\left(\frac{q_{2}^{\prime}}{p}+\alpha_{3} \frac{\bar{v}_{3}^{2}}{2}+g z^{3}\right)=h_{e_{T}}$

Assumptions: (1) $P_{0}=P_{3}=p_{\text {atm }}$

$$
\text { (2) } \bar{J}_{0}=0, \alpha_{3}=1.0
$$

Ron,
(3) water © $20^{03} \mathrm{c}, \quad v=1.00 \mathrm{~V}^{-6} \mathrm{~m}^{2} \mathrm{~m}_{\mathrm{s}}$

$$
g\left(z_{0}-z_{3}\right)=g d=f \frac{5}{>} \frac{y^{2}}{2}+\left(k_{\text {ant }}+k_{\text {diff }}\right) \frac{\bar{V}_{2}^{2}}{2}+\frac{\bar{V}_{\frac{3}{2}}^{2}}{2}
$$

From continuity $-A_{2}^{A_{2}} \bar{V}_{2}=A_{3} \bar{\nu}_{3} \quad \therefore \nu_{5}=\overline{V_{2}}$
and

$$
L=\frac{T}{f}\left[\frac{2 g d}{\hat{J}_{2}^{2}}-0.590\right]
$$

 with ely $=0.01, f=0.038\left(F_{1 g}, 8.13\right)$ and

$$
\begin{gathered}
h=\frac{0.025 m}{0.038}\left[2 \times 9.81 \frac{m}{s^{2}} \times 1.5 m \times(5.32)^{2} m^{2}-0.590\right]=0.296 m \\
\therefore 10
\end{gathered}
$$

This is segnificartly less than the so required by the water cormissiafer. He was extremely conservatwie.

Note hat $Q_{Q_{i}}=\overline{\operatorname{V}} \bar{N}_{0}$ where $V_{i}=5.32$ Ms
Increasing L reduces \bar{V}

Given: Water flow from spigot (at $60^{\circ} \mathrm{F}$) rough an dd hose with $D=0.75 \mathrm{~m}$ and $e=0.022 \mathrm{in}$. Pressure at Man remains constant at so psigi, pressure at spigot varies with Flow rate. one 50 fl . length of hose delivers is gm
Find: (a) pressure at spigot (psia) for this case.
(b) delivery with two 50 -if length of hose connected.

Solution:

Apply the energy equation for steady :incompressible flow between the spigot (3) and the hose discinrge (3)
Basic equations: $\left(\frac{P_{2}}{\rho}+\alpha_{2} j_{2}^{2}+g z_{2}^{2}\right)-\left(\frac{P_{3}}{\rho}+\alpha_{3} j_{\frac{3}{2}}^{2}-g z_{3}^{2}\right)=h_{c} \quad$ (8, ar)

$$
h_{e_{T}}=h_{e}+h_{e n}, \quad h_{e}=f \frac{-}{D} \frac{V^{2}}{2}
$$

Assumptions: (1) $P_{3}=P_{\text {atm }}$
(a) $\bar{V}_{2}=\bar{V}_{3}, \alpha_{2}=\alpha_{3}=10$
(4) Turbulent flow so
(3) $z_{2}=z_{3}$

Then

$P_{2}=35.9$ psignge
The pressure drop from the main (1) to the spigot et is proportional to the square of the flow rate. obtain the hos coefficient using the energy equation between (D) and (B).

$$
\left(\frac{p_{1}}{p}+\alpha_{1} \frac{j_{1}^{2}}{2}+g g_{1}\right)-\left(\frac{p_{2}}{f}+\alpha_{2} \frac{2}{2}+g z_{2}\right)=k \frac{p^{2}}{2} .
$$

Assumptions: (4) $\bar{V}_{1}=q \quad(5) z_{1}=z_{2}=2$

$$
\begin{aligned}
& -p_{1}-p_{2}=p\left[k \frac{\bar{j}_{2}^{2}}{2}+j^{2} \frac{2}{2}\right]=p \frac{v^{2}}{2}[k+]
\end{aligned}
$$

$k=16.6$

* Value of f obtained using Ethel's Solver (or Goal Seek).

Problem 8.131 contd.
To find the delivery with two hoses again apply the energy equation from the main (1) to the and agon of plepcond

$$
-P_{1} \rho_{\text {atm }}=\frac{p_{1} g}{\rho}=\frac{J_{-1}^{2}}{2}\left(f^{L-24}+k+1\right) \quad \text { and } \text {. }
$$

$$
J_{4}=\left[\rho^{\left.\frac{2-P_{1 g}}{\left(2+\frac{5}{5}+k+1\right)}\right]^{1 / 2}}\right.
$$

but f col not change mug. Assume $f=0,05$ ord che 2

Caching:

$$
k_{e}=\frac{2 \pi}{5}=\frac{0,754}{12} \times \frac{8.32 \frac{4}{5}}{12} 1.21 \times 10^{-5} \frac{5}{\mathrm{ft}^{2}}=4.30 \times 10^{-4} \text {, so } \approx 0.56
$$

Tues wite two hoses,

$$
Q=\bar{V} A=8.32 \frac{G}{6} \times \frac{\pi}{4} \times\left(\frac{0.35}{12}\right)^{2} \mathrm{ft}^{2} \times 7.48 \frac{\mathrm{gal}}{\mathrm{ft}^{3}} \times \frac{60 \mathrm{~s}}{\mathrm{NW}}=11.5 \mathrm{gpm} \quad Q
$$

$\left\{\begin{array}{l}\text { Simitar calculations could be performed using any } \\ \text { desired number of hose lengths. }\end{array}\right.$

$$
\begin{aligned}
& \bar{V}_{A}=8.32 \mathrm{ft} \mathrm{f}_{\mathrm{s}} .
\end{aligned}
$$

$$
\begin{aligned}
& P_{4}=P_{a t r}, z_{1}=z_{4}, \bar{V}_{1}=0, \alpha_{4}=1 \text {. }
\end{aligned}
$$

Given: Hydraulic press powered by remote high-pressure pump.

Find: Minimum diane ter drawn steel tubing for $S A E 10 \mathrm{~W}$ oil at $40^{\circ} \mathrm{C}$.
Solution: Apply the energy equation for steady, incompressible pipe flow.

Assumptions: (1) Fully developed flow, $\alpha_{1} \bar{v}_{1}^{2}=\alpha_{2} \bar{v}_{2}^{2},(2) z_{1}=z_{2},(3)$ No minor losses.
Then $\Delta p=f \frac{L}{D} \frac{\rho \bar{V}^{2}}{2}$
D is not known, so we cannot compute ∇ and Re to find f. Q is small, so try laminar flow. For fully ckeloped laminar flow, from Eq.8.13c,

$$
\Delta p=\frac{128 \mu Q L}{\pi D^{4}} \text { so } D=\left[\frac{128 \mu Q L}{\pi \Delta p}\right]^{\frac{1}{4}}
$$

For SAE low oil at $40^{\circ} \mathrm{C}, \mu=3.3 \times 10^{-2} \mathrm{~N} \cdot \mathrm{sec} / \mathrm{m}^{2}(F i g$. A. 2)

$$
D=\left[128 \times 3.3 \times 10^{-2} \frac{\mathrm{~N} \cdot \mathrm{~s}}{\mathrm{~m}^{2}} \times 0.032 \frac{\mathrm{~m}^{3}}{\min } \times 50 \mathrm{~m}_{\times} \frac{\mathrm{m}^{2}}{\pi\left(1 \times 10^{6}\right) \mathrm{N}} \times \frac{\mathrm{min}}{60 \mathrm{~s}}\right]^{\frac{1}{4}}=0.0138 \mathrm{~m}
$$

Check Re tonsure flow is laminar:

$$
\begin{aligned}
& \bar{V}=\frac{Q}{A}=\frac{4 Q}{\pi D^{2}}=\frac{4}{\pi} \times 0.032 \frac{\mathrm{~m}^{3}}{\mathrm{~min}} \times \frac{1}{(0.0138)^{2} \mathrm{~m}^{2}} \times \frac{m i n}{60 \mathrm{~s}}=3.57 \mathrm{~m} / \mathrm{s} \\
& \operatorname{Re}=\frac{V D}{\nu}=\frac{P \bar{V} D}{\mu}
\end{aligned}
$$

For SAE 10 W oil, $S G=0.92$ (Table $A, 2$), so

$$
R e=(0.92) 1000 \frac{\mathrm{~kg}}{\mathrm{~m}^{3}} \times 3.57 \frac{\mathrm{~m}}{\mathrm{~s}} \times 0.0138 m \frac{\mathrm{~m}^{2}}{3.3 \times 10^{2} \mathrm{~N} \cdot \mathrm{~s}} \times \frac{\mathrm{N} \cdot \mathrm{~s}^{2}}{\mathrm{~kg} \cdot \mathrm{~m}}=1370
$$

Therefore flow is laminar since $R_{e}<2300$.
The minimum allowable thebing diameter is $D=13.8 \mathrm{~mm}$.
The next largest standard size should be chosen.

Given: Pump drawing water from reservoir as shown. For satisfactory operation, the suction head (p_{2} / p_{r}) must not be less than -20 feet of water.

Section (1) is at reservoir surface.

Section (2) is at pump inlet.

Find: smallest standard commercial steed pipe that will give the required performance.

Solution: Apply the energy equation for steady, incompressible flow that is uniform at each section.

$$
p_{1}^{p o(1)} i^{x o(2)}=0(3)_{b}
$$

Basic equation: $\ddot{p}_{1}^{\prime}+\frac{\bar{V}_{2}^{2}}{2}+g g_{1}=\frac{p_{2}}{p}+\frac{\bar{V}_{2}^{2}}{2}+g y_{1}+f \frac{L}{D} \frac{V^{2}}{2}+$ hem
Assumptions:
(1) $p_{1}=0$ psis
(2) $\bar{v} \simeq 0$
(3) $z_{1}=0$
(4) hem $=\left(\right.$ Kent $+2 f \frac{\text { Lelbow }}{D} \frac{\bar{V}^{2}}{2}$, Kent $=0.78$ for reentrant

Then configuration (Table 8.2), Lebow/D $\simeq 12$ (Fig. 8,17)

$$
h_{2}=\frac{p_{2}}{\delta}=-z_{2}-\left(1+f \frac{L}{D}+k_{\text {ant }}+2 f \frac{L_{c}}{\bar{D}}\right) \frac{\bar{V}_{2}^{2}}{2 g}=-z_{2}-\left[108+f\left(\frac{L_{D}}{\partial}+24\right)\right] \frac{V_{2}}{2 g}
$$

Since D is unknown, iteration is required. Set up calculating equations:

$$
\begin{aligned}
& \bar{V}=\frac{Q}{A}=\frac{4 Q}{\pi D^{2}}=\frac{4}{\pi} \times \frac{1}{D^{2} \text { in }^{2}} \times \frac{14+\operatorname{in}^{2}}{f^{2}} \times 100 \frac{\mathrm{gal}}{\mathrm{~min}} \times \frac{43}{1.48 \mathrm{gai}} \times \frac{\min }{60 \mathrm{~s}}=\frac{40.9}{2 z} \mathrm{ft} / \mathrm{s}
\end{aligned}
$$

Recognizing that pipe friction calculations are only good tot to percent, recommend

$$
D=2 \frac{1}{2} \text { in. nominal) pipe }
$$

Problem 8. 134

Given: Flow of standard air at $80 \mathrm{~m}^{3} / \mathrm{min}$ through a smooth duct of aspect ratio 2 .

Find: Minimum size duct for a head loss of 30 mm of water per 30 m of length.

Solution: Apply the energy equation for steady, incompressible flow that is uniform at each section. Use hydraulic diameter.

Assumptions: (1) $\bar{V}_{1}=\bar{V}_{2}$
(a) $3_{1}=3_{2}$
(3) hem $=0$

Then

$$
\Delta p=p_{1}-p_{2}=f \frac{L}{D_{h}} \rho \frac{\bar{V}^{2}}{2}=\frac{f}{2} \frac{L P}{D_{h}}\left(\frac{Q}{A}\right)^{2}=\frac{f L Q^{2} \rho}{2 D_{h} A^{2}}
$$

For a rectangular duct, $A=b h=h^{2}\left(\frac{b}{m}\right)=h^{2} a r$, and

$$
D_{h}=\frac{4 b h}{2(b+h)}=\frac{2 h^{2} a r}{h(1+a r)}=\frac{2 h a r}{1+a r}
$$

Suebstitecting,

0

$$
\begin{aligned}
& h=\left[\frac{f f L Q}{2}\right. \\
& s \Delta \Delta\left.\frac{1+a r}{a r^{3}}\right]^{\frac{1}{5}} ; \Delta p=f_{H_{1} O} g \Delta h
\end{aligned}=\frac{999 \frac{\mathrm{~kg}}{\mathrm{~m}^{3}} \times \frac{9.81 \mathrm{~m}}{\mathrm{~s}^{2}} \cdot 0.03 \mathrm{~m} \times \frac{\mathrm{N} \cdot \mathrm{~s}^{2}}{\mathrm{~kg} \cdot \mathrm{~m}}}{\Delta p}=294 \mathrm{~N} / \mathrm{m}^{2} \quad \text {. }
$$

Thus

$$
\begin{aligned}
& h=(f)^{1 / 5}\left[\frac{1}{4} \times 1.23 \frac{\mathrm{~kg}}{m^{3}} \times 30 m_{4}(80)^{2} \frac{m^{6}}{m m^{2}} \times \frac{m^{2}}{294 \mathrm{~N}} \times \frac{1+2}{(2)^{3}} \times \frac{m+n^{2}}{3600 s^{2}} \times \frac{\mathrm{N} \cdot \mathrm{~s}^{2}}{\mathrm{~kg} \cdot m}\right]^{1 / 5} \\
& h=(f)^{1 / 5} 0.461 \mathrm{~m}
\end{aligned}
$$

Guess $f=0.01$, then $h=0.184 \mathrm{~m} \cdot \bar{V}=\frac{Q}{A}=\frac{Q}{h^{2} a r}=19.7 \mathrm{~m} / \mathrm{s}$, and $D_{n}=\frac{2 h a r}{1+a_{i}}=\frac{4}{3} h=0.245 \mathrm{~m}$ and $R_{c}=3.33 \times 10^{2}$. For a 5 mouth duct at this Reynolds number, $f=0.013$ (Eq. 8.37 using Excel's Solver \{or Goal Saki\}) ~ With $f=0.013$, then $h=0.93 \mathrm{~m} \cdot \bar{V}=\frac{Q}{h 20}=17.9 \mathrm{~m} / \mathrm{s}, \quad a 10 D_{h}=\frac{4}{3} h=0.257 \mathrm{~m}$ and Re $=3.17 \times 10^{\circ \circ}$. This value of Regive $f=0.0133$.

With $f=0.0133$, then $h=0.194 \mathrm{~m}$, and $b=a r h=(2) 0.194 \mathrm{~m}=0.388 \mathrm{~m}$
Check: $\quad \bar{V}=\frac{Q}{h^{2} a r}=17.7 \mathrm{~m} / \mathrm{s}$

$$
\Delta h=\frac{\Delta p}{f_{H_{2} O g}}=+\frac{L}{D_{n}} \frac{f_{2}}{f_{10} O} \frac{\nabla^{2}}{z q}=0.0303 \mathrm{~m} \text { or } 30.3 \mathrm{~mm} \mathrm{r}
$$

Problem 8.135

Given: New industrial plant requires water supply of $5.7 \mathrm{~m}^{3} / \mathrm{min}$.
The gage pressure at the main, 50 m from the plant, is 800 kPa . The supply line will have 4 elbows in a total length of 65 m . Pressure in the plant must be at last 500 kpa (gage).

Find: Minmbem line size of galvanized iron to install.
Solution: Apply the energy equation for steady, incompressible flow that is uniform at each section ($\alpha=1$).
Basic equation: $\frac{p_{1}}{f}+\frac{\bar{p}_{1}^{(2)}}{p_{2}}+g q_{1}^{(3)}=\frac{p_{2}}{f}+\frac{\bar{v}_{2}^{(2)}}{f}+g p_{2}^{(3)}+f \frac{L}{D} \frac{\bar{v}^{2}}{2}+h_{m_{m}}$
Assumptions: (1) $p_{1}-p_{2} \leq 300 \mathrm{k} p_{a}=\Delta p$
(2) Fully developed flow in constant-arca pipe, $\bar{V}_{1}=\bar{V}_{2}=\bar{V}$
(3) $z_{1}=z_{2}$
(4) $h_{C_{m}}=4\left(\frac{L e}{D}\right)_{\text {elbows }} \frac{\bar{V}^{2}}{2}=120 \frac{\bar{V}^{2}}{2}\left(\frac{L e}{V}=30\right.$, from TOb le 8.5)

Then

$$
\frac{\Delta p}{f}=f\left(\frac{L}{D}+120\right) \frac{\bar{V}^{2}}{2} \text { or } \Delta p=f f\left(\frac{L}{0}+120\right) \frac{V^{2}}{2}
$$

since D is unknown, iteration is required. The calculating equations are:

$$
\begin{aligned}
& \bar{V}=\frac{Q}{A}=\frac{4 Q}{\pi D^{2}}=\frac{4}{\pi} \times 5.7{m^{3}}_{m m}^{m} \times \frac{1}{D^{2} m^{2}} \times \frac{m \sin }{60 \mathrm{~S}}=\frac{0.121}{D^{2}}(\mathrm{~m} / \mathrm{s}) \\
& R C=\frac{\overline{V D}}{2}=\frac{4 Q}{\pi \nu D}=\frac{4}{\pi} \times 5.7 \mathrm{~m}^{3} \times \frac{5}{\min } \times 1.14 \times 10^{-6 m^{2}} \times \frac{1}{D m} \times \frac{m \mathrm{~m}}{60 \mathrm{~s}}=\frac{1.06 \times 10^{5}}{D}\left(T-15^{\circ} \mathrm{C}\right)
\end{aligned}
$$

$e=0.15 \mathrm{~mm}($ Table 8.1$)$, from $E q \cdot 8.37^{*}, L=65 \mathrm{~m}$. D from TaGic 8.5 .

Pipe friction calculations are accurate only within about ± 10 percent. Line resistance (and consequsurly Δp) will increase with age.

Recommend installation of 6 in . (nominal) line.

* Values of f obtained using Excel's Solver (or Goal Such)

Problem 8.136 (In Excel)

Investigate the effect of tube diameter on flow rate by computing the flow generated by a pressure difference, $\Delta p=100 \mathrm{kPa}$, applied to a length $L=100 \mathrm{~m}$ of smooth tubing. Plot the flow rate against tube diameter for a range that includes laminar and turbulent flow.

Given: Pressure drop per unit length

Find: Plot flow rate versus diameter

Solution

Governing equations:
$\operatorname{Re}=\frac{\rho \cdot \mathrm{V} \cdot \mathrm{D}}{\mu}$
$\left(\frac{p_{1}}{\rho}+\alpha_{1} \cdot \frac{V_{1}^{2}}{2}+g \cdot z_{1}\right)-\left(\frac{p_{2}}{\rho}+\alpha_{2} \cdot \frac{V_{2}^{2}}{2}+g \cdot z_{2}\right)=h_{1}$
$h_{l}=f \cdot \frac{L}{D} \cdot \frac{V^{2}}{2}$
$f=\frac{64}{R e}$
$\frac{1}{\mathrm{f}^{0.5}}=-2.0 \cdot \log \left(\frac{\frac{\mathrm{e}}{\mathrm{D}}}{3.7}+\frac{2.51}{\operatorname{Re} \cdot \mathrm{f}^{0.5}}\right)$
(8.36) (Laminar)
(8.37) (Turbulent)

The energy equation (Eq. 8.29) becomes for flow in a tube
$\mathrm{p}_{1}-\mathrm{p}_{2}=\Delta \mathrm{p}=\rho \cdot \mathrm{f} \cdot \frac{\mathrm{L}}{\mathrm{D}} \cdot \frac{\mathrm{V}^{2}}{2}$

This cannot be solved explicitly for velocity V (and hence flow rate Q), because f depends on V; solution for a given diameter D requires iteration (or use of Solver)

Fluid is not specified: use water (basic trends in plot apply to any fluid)

Given data:

$$
\begin{array}{rlll}
\Delta p= & & 100 & \mathrm{kPa} \\
L & = & 100 & \mathrm{~m}
\end{array}
$$

Tabulated or graphical data:

$$
\begin{array}{ll}
\mu=1.00 \mathrm{E}-03 & \mathrm{~N} . \mathrm{s} / \mathrm{m}^{2} \\
\rho= & 999 \\
\mathrm{~kg} / \mathrm{m}^{3}
\end{array}
$$

(Water - Appendix A)

Computed results:

$\boldsymbol{D}(\mathbf{m m})$	$\boldsymbol{V}(\mathbf{m} / \mathbf{s})$	$\boldsymbol{Q}\left(\mathbf{m}^{\mathbf{3}} / \mathbf{s}\right) \times \mathbf{1 0}^{4}$	$\boldsymbol{R e}$	Regime	\boldsymbol{f}	$\Delta \boldsymbol{p}(\mathbf{k P a})$	Error
0.5	0.00781	0.0000153	4	Laminar	16.4	100	0.0%
1.0	0.0312	0.000245	31	Laminar	2.05	100	0.0%
2.0	0.125	0.00393	250	Laminar	0.256	100	0.0%
3.0	0.281	0.0199	843	Laminar	0.0759	100	0.0%
4.0	0.500	0.0628	1998	Laminar	0.0320	100	0.0%
5.0	0.460	0.0904	2300	Turbulent	0.0473	100	0.2%
6.0	0.530	0.150	3177	Turbulent	0.0428	100	0.0%
7.0	0.596	0.229	4169	Turbulent	0.0394	100	0.0%
8.0	0.659	0.331	5270	Turbulent	0.0368	100	0.0%
9.0	0.720	0.458	6474	Turbulent	0.0348	100	0.0%
10.0	0.778	0.611	7776	Turbulent	0.0330	100	0.0%

Given: Portion of water supply system designed to provide $Q=1310 \mathrm{~h} / \mathrm{s}$ at $T=20^{\circ} \mathrm{C}$

System $B \rightarrow C$

- Square edged trance
- 3 gate Salves
. 4 4 ${ }^{2}$ e rebus
- 290° elbows
- 760 M fife
- $P_{c}=197$ EPa gage

System $F \rightarrow G$:

- 7bompepe
- au gate valves
- 490 elbows.

Find: (a) average vebcity in pipeline
(b) gage pressure -ip
(c) Shear stress on pipe centertvie at C
(d) power input to pump if efficiency $\eta=80^{\circ} \mathrm{b}$.
(e) wall sher stress at G.

Solution:

To determine the pressure at paint F, apply the energyequation for steady. 'incompressible flow between F R $A G$.

$$
h_{e}=h_{e}+h_{e n}, h_{e}=f \frac{-1}{y} \frac{-y^{2}}{2}, h_{e_{m}}=\frac{y^{2}}{2} \sum f \frac{h_{e}}{y}+\frac{-2}{2} k_{\text {ail }}
$$

Assumei. (1) $\bar{V}_{11}=0$ (large storage tank) (2) $p_{A}=-P_{\text {atm }}$

$$
\text { (3) } \alpha_{F}=1.0 \text {. }
$$

Then $\frac{P_{F}}{P}=h_{e_{T}}+g\left(z_{H}-z_{F}\right)-\frac{j_{F}^{2}}{2}$

From Table 8.4 (heb) ga $=8,\left(4 h_{\text {Paid }}=30\right.$; also $k_{\text {ext }}=1$

$$
R_{e}=\frac{\bar{\nu}}{\nabla}=0.508 \mathrm{~m} \times 6.46 \frac{4}{5} \times \frac{s}{1.00 \times 10^{-6} \mathrm{~m}^{2}}=3.28 \times 10^{6} \quad(\nabla \text { from Table } A .8)
$$

From Table 8.1, $e=0.26 \mathrm{~mm} \therefore{ }^{e} / y=0.00051$
From Eq. 8.37, $f=0.017$ (usn gExcels Solver[or Goal Seek]) From Eg (i)

$$
\frac{P_{F}}{e}=f \frac{V^{2}}{2}\left[\frac{\frac{L}{y}}{\nu}+2\left(\frac{L_{0}}{V}\right)_{g N}+4\left(\frac{b}{\nu}\right)_{\infty}^{\infty} d\right]+g\left(z_{H}-z_{F}\right)
$$

Problem $8.137\left(\right.$ cortld $\left.^{1}\right)$

$$
\begin{equation*}
p_{F}=705 k p_{a} \text { (gage). } \tag{F}
\end{equation*}
$$

For fulhe developed flow in a pepe
Ft Re pupe certerture,$~ \quad=0$
To determine he power ipput to the fuid apely the energy equation across the purnp. Assaming 100 है fficency

The actual pump input, ${ }^{2}$, pumplact = inpumplidcalln

$$
W_{\text {purpp }} \text { lactual }=8.32 \times\left. 10^{5} \mathrm{Nim}\right|_{s}=832 \mathrm{~kW}
$$

\qquad
${ }^{\prime}$ From Eq. $8.5 \quad T_{w}=\frac{R}{2} \frac{\partial p}{2 k}$
Along the pupe from F to $G \quad \frac{\Delta P}{e}=f \frac{\sum^{2}}{\sum} \frac{\bar{D}^{2}}{2}$

$$
\begin{aligned}
& \left.\therefore \frac{\partial p}{\partial x}=\frac{\Delta p}{L}=\frac{f}{5} \frac{j^{2}}{2}=999 \frac{\lg }{n^{3}} \times \frac{0.07}{0.508 m}+\frac{1}{2} \times(6.4)^{2}\right)^{2} \frac{m^{2}}{s^{2}}+\frac{S^{2}}{g . m} \\
& \frac{\partial \theta}{\partial h}=698 N /\left.m^{2}\right|_{m} \\
& \therefore r_{\omega}=\frac{R}{2} \frac{\partial P}{\partial x}=\frac{0.254 M}{2} \times 698 \frac{N}{m^{3}}=88.6 \mathrm{~N} T_{M^{2}} \quad r_{\omega}
\end{aligned}
$$

$$
\begin{align*}
& i_{\text {fourp }}=\left(\frac{P_{F}}{\rho}-\frac{p_{c}}{\rho}\right) p A D=\left(P_{F}-p_{c}\right) Q \tag{8,47}\\
& i_{\text {ipurp }}=(705-197) \times 10^{3} \frac{\mathrm{~N}}{\mathrm{~m}^{2}} \times 1310 \frac{\mathrm{~L}}{\mathrm{~S}} \times 10^{-3} \mathrm{n}^{3}=6.65 \times 10^{5} \frac{\mathrm{~N} . \mathrm{M}}{\mathrm{~s}}
\end{align*}
$$

$$
\begin{aligned}
& \frac{f_{F}}{P}=f \frac{\bar{p}^{2}}{2}\left[\frac{60}{0.508}+2(8)+4(30)\right]+g\left(z+-z_{F}\right)=f \frac{\bar{V}^{2}}{2}(1630)+g(z+z F) \\
& p_{F}=e\left[1630 f \frac{\bar{v}^{2}}{2}+g\left(z_{H}-z_{F}\right)\right] \\
& =999 \frac{\lg ^{3}}{m^{3}}\left[\frac{1630}{2} \times 0.017 \times(6.46)^{2} \frac{m^{2}}{s^{2}}+9.81 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}(104-91) n\right] \times \frac{\mathrm{N}^{2}}{\mathrm{~g} \cdot \mathrm{~m}}
\end{aligned}
$$

Given: An air-pipe friction experiment utilyés smote brass tube, $D=63.5 \mathrm{~mm}, L=1.52 \mathrm{~m}$.
At one flow condition $\Delta p=1213 \mathrm{~mm}$ merriam red oil, $U_{d}=23.1 \mathrm{mls}$

Find: (a) Rev
b) friction factor f; compare with value for Fy. 8.13

Solution:
Apply the energy equation for steady, incompressible flow along he pipe
Basic equation: $\left(\frac{e_{1}}{e}+\alpha_{1} \frac{\bar{V}_{1}^{2}}{2}+g_{\lambda_{1}}\right)-\left(\frac{\varphi_{2}}{p}+\alpha_{2} \frac{\bar{J}_{2}^{2}}{2}+g \partial_{2}\right)=h_{t_{T}}$

$$
\begin{equation*}
h_{e}=f \frac{\bar{v}^{2}}{2} \tag{8,纹}
\end{equation*}
$$

Computing equation: $\quad \frac{J}{U}=\frac{2 n^{2}}{(n+1)(2 n+1)}$
Assumptions: "il power low profile, $n=1$

$$
\text { (a) } \alpha_{1}=\alpha_{2}, z_{1}=z_{2}
$$

From $E_{q} .8$, zn with $n=7$

$$
\begin{align*}
& \frac{\bar{U}}{U}=\frac{2(-7)^{2}}{(8)(15)}=0.817 \\
& R_{e j}=\frac{2 \overline{5}}{\nabla}=0.0635 \mathrm{~m} \times 0.817 \times 23.1 \frac{\mathrm{~m}}{\frac{5}{5}} \times 1.45 \times 10^{-5} \frac{5}{m^{2}}=8.26 \times 10^{4} \tag{Ret}\\
& \text { From } E_{q .} 8.29 \quad \Delta p / p=f \frac{\frac{-}{y}}{\frac{\bar{v}^{2}}{2}}
\end{align*}
$$

ard

$$
\begin{align*}
& f=2 \times \frac{10^{3}}{1.23} \times 0.827 \times 9.81 \frac{m}{s^{2}} \times 0.0123 n \times \frac{0.0635 n}{1.52 m} \times(0.877 \times 231)^{2^{2} m^{2}} \\
& f=0.0190
\end{align*}
$$

From Eq. 8.37 at $R_{x}=8.26 \times 10^{t}$ for smack R b ex, $f=0.0187$ The value of f is obtained using Encl's Sower (or Goal Seek

Given: Oil flowing from a large tank on a hill to a tanker at the wharf. In stopping the flow, value on wharf at such a rate That $p_{2}=1 M P a$ is maintained in the line immediately upstream of the valve. Assume:

Length of line from tank to value	300 mm
Inside diameter of line	
Elevation of oil surface in tank	60 m
Elevation of valve on wharf	
Instantaneous flow rate	
Head loss in line (exclusive of valve	
being closed) at this rate of flow	23 mofol
Specific gravity of oil	0.88

Find: the initial instantaneous rate of change of volume flow rate.

Solution: For unsteady, Flow with friction, we modify the unsteady Bernoulli equation (Eq. 6.21) to include a head loss term.

Computing equation:

$$
\left.\frac{p_{1}}{p}+\frac{v_{1}^{2}}{2}+g_{2}=\frac{p_{2}}{p}+\frac{v^{2}}{2}+g^{2}\right)^{2}+\left(\frac{2 v}{2 t} d s+h\right)
$$

Assure: (i) $V_{1}=0$
(3) $p=$ costar.

Ten

$$
\int_{1}^{2} \frac{\partial V_{s}}{d t} d s=\frac{-p_{1}-p_{2}}{\rho}+g\left(z_{1}-z_{2}\right)-h_{1}-\frac{V_{2}^{2}}{2}
$$

If we neglect velocity in fie task except for small region near the niter to tie pipe, then
$\int_{1}^{2} \frac{\partial V_{s}}{\partial t} d s=\int_{0}^{2} \frac{\partial V_{s}}{\partial t} d s$. Since $V_{s}=V_{2}$ everywhere, then $\int_{0}^{L} \frac{\partial V_{s}}{\partial t} d s=L \frac{d V_{2}}{d t}$ and

$$
\frac{d V_{2}}{d t}=\frac{1}{L}\left[\frac{P_{1} P_{2}}{\rho}+g\left(z_{1}-z_{2}\right)-h_{e}-\frac{V_{2}^{2}}{2}\right] \quad, V_{2}=\frac{Q}{A}=\frac{4 Q^{2}}{\pi \gamma^{2}}
$$

Note $h_{e}=h_{e}(y)$ and hence his result can only be used to obtain the initial instantaneous rate of Sarge of fou velocity.

$$
\begin{aligned}
& \left.\therefore \frac{d V_{2}}{d t}\right)_{\text {ritual }}=\frac{1}{3 \times 10^{3} m}\left[10^{6} \frac{\mathrm{~N}}{\mathrm{~m}^{2}} \times 99 \mathrm{~m}^{3} \frac{\mathrm{l}}{\mathrm{~kg}} \frac{\mathrm{~kg}}{0.88} \frac{\mathrm{k}}{\mathrm{~N} . \mathrm{s}^{2}}+9.8 \frac{\mathrm{~N}}{\mathrm{~s}^{2}}+54 \mathrm{~m}\right. \\
& -23 m \times 9.81 \frac{m}{s^{2}}-\frac{1}{2}\left\{\frac{H}{k} \times 2 . \frac{m^{3}}{m . m^{*}}\left(\frac{1}{(0.2 m)^{2}} \times \frac{1 \mathrm{~min}}{\cos }\right\}\right\} \\
& \left.\frac{d V_{2}}{d t}\right)_{\text {initial }}=-0.278 \text { mls/s }
\end{aligned}
$$

The instantaneous rate of change of volume flow rate is

$$
\begin{aligned}
& \left.d G\right|_{d t}=\frac{d}{d t}(n t)=A \frac{d v}{d t}=\frac{\pi y^{2}}{4} \frac{d v}{d t} \\
& \left.d Q\right|_{a t}=\frac{\pi}{4}(0.2 m)^{2} \times\left(-0.278 \frac{2 / s}{s} \times \frac{60}{m}=-0.524 \mathrm{~m}^{3} / \mathrm{s} / \mathrm{min} \sim d d\right.
\end{aligned}
$$

Given: Problem 8.139 describes a situation in which flow in a long pipeline from a hilltop tank is slowed gradually to avoid a large pressure rise.

Find: Expansion of this analysis to predict and plot the closing schedule (valve loss coefficient versus time) needed to maintain the maximum pressure at the valve at or below a given value throughout the process of stopping the flow from the tank.

Solution: Apply the unsteady Bernoulli equation with a head boss term added. Computing equation:

$$
\frac{A_{1}}{p}+\frac{\hat{v}_{2}^{2}}{2}+g z_{1}=\frac{p_{2}}{p}+\frac{v_{2}^{2}}{2}+g z_{2}+\int_{1}^{2} \frac{\partial v}{\partial t} d s+h_{e T}
$$

Assume: (1) $V_{1} \approx 0$
(3) $p=$ constant

(2) $p_{1}=$ fate

Line loss $=75 \mathrm{ft}$ of 0 il
At the initial condition, $V=\frac{Q}{A}=\frac{4 Q}{\pi D^{2}}=\frac{4}{\pi} \times\left(\frac{12}{8}\right)^{2} \frac{1}{f^{2}} \times 1.5 \frac{f+3}{s}=4.30 \mathrm{ft} / \mathrm{s}$

$$
H_{l T}=75 f+=\frac{h_{e r}}{g}=f \frac{L}{D} \frac{v^{2}}{2 g} ; f \frac{L}{D}=H_{l T} \frac{2 g}{v^{2}}=2 \times 75 f+32 \cdot \frac{2 f f}{s^{2}} \times \frac{s^{2}}{(4.30)^{2} f+}=261
$$

Neglecting velocity intank, $\int_{1}^{2} \frac{\partial V}{\partial t} d s \approx \int_{0}^{L} \frac{\partial V}{\partial t} d s=\frac{d V}{d t} L$
Thus $\frac{d v}{d t}=\frac{1}{L}\left[-\frac{t_{2}}{p}+g(z,-z i)-f \frac{L}{D} \frac{v^{2}}{2}-\frac{v^{2}}{2}\right]$
substituting values,

$$
\begin{aligned}
& \frac{d v}{d t}=-0.686 \frac{f t}{s^{2}}-0.0131 v^{2}=-\left(a^{2}+b^{2} v^{2}\right) ; \quad a=\sqrt{0.686}=0.828 ; \text { in ftps }
\end{aligned}
$$

separating variables and integrating

$$
\left.\int_{V_{0}}^{V} \frac{d V}{a^{2}+b^{2} t}=\frac{1}{a b} \tan ^{-1} \frac{b v}{a}\right]_{V_{0}}^{V}=\frac{1}{a b}\left[\tan ^{-1} \frac{b v}{a}-\tan ^{-1} \frac{b V_{0}}{a}\right]=-\int_{0}^{t} d t=-t
$$

Thus

$$
\tan ^{-1} \frac{b V}{a}=-a b t+\tan ^{-1} \frac{b v_{0}}{a} \text { or } V=\frac{a}{b} \tan ^{2}\left[\tan ^{-1} \frac{b v_{0}}{a}-a b t\right]
$$

Calculations and plots are shown on the spreadsheet, next page.

Problem *8.140 (cont'd.)
2

Given: Re pressure rise, Δp, across a water pump is a.5psi when the volume. How rate is $Q=300 \mathrm{gph}$. The pump effacing is $\eta=0.80$
Find: the power siput to the pure.
Solution:
Apply the frost law of thermodynamics across she pump.
 where thump is energy added to Arid by the puns
Assurance: (i) $p=$ constant (a) $z=z_{2}$
(3) uniform properties of rillet, ache
hen.

$$
\text { (H) } \quad A_{1}=A_{2}, \therefore J_{2}=V_{1}
$$

inpour $=$ in $\frac{A P}{\rho}=\operatorname{LAN} \frac{A P}{P}=Q \Delta P$

$$
\text { inpump }=\text { liblo he }
$$

The pump efficiency, η is defined as

$$
\eta=\frac{w_{p m p}}{w_{i n}} \quad \therefore w_{n}=\frac{w_{p u m p}}{\eta}=2.08 \mathrm{hp} \quad \text { inineis }
$$

Given: Pump moves in = 10 bels trough a piping system $P_{\text {discharge }}=300 \mathrm{kta}$. $P_{\text {suction }}=-20 \mathrm{kPa}$
$V_{\text {suction }}=75 \mathrm{~mm}$, $D_{\text {discharge }}=50 \mathrm{~mm}$ pump $=0.10$
Find: -Power required to drive the pune.
Solution:
Apply the first law of thermodynamics across the pump.
Basic equation:

$$
\begin{align*}
& \frac{w_{\text {pump }}}{m}=\left(\frac{p}{p}+\frac{i^{2}}{2}+g_{3}\right) \text { dust } \tag{8,45}\\
& N_{2} \\
& \eta_{\text {pump }}=\frac{w_{\text {pump }}}{w_{n}}
\end{align*}
$$

ii) $p=$ constant (2) $z=z_{2}$
(3) uniform -properties at nite at let.

$$
\begin{aligned}
& \bar{y}=\frac{i n}{\rho^{A}}=\frac{4 i}{\rho \pi p^{2}} \\
& J_{1}=\frac{4}{\pi} \times \frac{10 \mathrm{~kg}}{5} \times 999 \frac{\mathrm{n}^{3}}{\mathrm{~kg}} \times(0.075 \mathrm{~m})^{2}=2.27 \mathrm{~m} / \mathrm{s} \\
& \bar{V}_{2}=\frac{A_{\bar{N}}}{\bar{F}_{2}}=\left(\frac{D_{1}}{V_{2}}\right)^{2} \bar{X}_{1}=\left(\frac{3}{2}\right)^{2}+2.22 \mathrm{~m} l_{\mathrm{s}}=5.10 \mathrm{~m} \mathrm{ss}^{2}
\end{aligned}
$$

From Eq. 8.45

$$
\begin{aligned}
& i_{\text {purple }}=\text { ir }\left[\frac{e_{2}-p_{1}}{p}+\frac{\bar{v}_{2}^{2}-\overline{-}_{1}^{2}}{2}\right]
\end{aligned}
$$

$$
\begin{aligned}
& \text { wimp }=3,310 \mathrm{~N} .\left.\mathrm{M}\right|_{s}=3,31 \mathrm{kw} \\
& i_{\text {in }}=\frac{i_{\eta}}{\eta}=\frac{3.31 \mathrm{kw}}{0.7} \quad 4.72 \mathrm{kw}
\end{aligned}
$$

Given: Pump in piping system shown moves $Q=0.439 \mathrm{ft}^{2} / \mathrm{s}$ Sf Water vicludes:

Find: pressure rise, -pulp p_{3}, across pump.
Solution:

$$
h_{e}=h_{e} \text { them, } h_{e}=f \frac{L_{V}^{2}}{s} \frac{x^{2}}{2}, h_{e m}=\frac{j^{2}}{2}\{\Sigma(\bar{y})+\Sigma K\}
$$

Assumptions: (i) $\bar{V}_{1}=0$
(a) $P_{2}=P_{\text {dam }}$
(3) $\alpha_{2}=1.0$
(4) $T=60^{\circ} F$

Then.

$$
\Delta h_{\text {pump }}=h_{e_{T}}+g\left(z_{2}-z_{1}\right)+\frac{j_{2}^{2}}{2}-\frac{p_{1}}{p}
$$

From Table 8.2 $K_{e}=0.5$. From Table 8.5 $D=2.47 \mathrm{n}$
From Table 8.1 $e=0.0005$ ft, $\quad e^{\prime}, y=0.0005 \times \frac{12}{2.10}=0.0024$

$$
\bar{J}=\frac{\theta}{A}=\frac{40}{\pi y^{2}}=\frac{4}{\pi} \times 0.439 \frac{\mathrm{G}^{3}}{5} \times\left(\frac{2}{2.41 / 4}\right)^{2}=13.2 \mathrm{~A} \mathrm{l}_{\mathrm{s}}
$$

From Fig. 8.13, fro 0.025 .
From Eq .2.
$\left.h_{L_{T}}=\frac{1}{2}(13.2)^{2} \frac{6^{2}}{5^{2}}\left[0.025 \times \frac{290 \times 12}{2.77}+2(0.05)(8)+(0.025)(150)+7(0.025)(30)+0.5\right]\right]$
$h_{T}=3930$ 解 ${ }^{2}$. Then from $E_{2}{ }_{2}$
 $h_{\text {pung }}=3950 \mathrm{fe}^{2} \mathrm{I}^{2}$
Apply the energy equation across the puns

$$
\begin{aligned}
& \left.\Delta h_{p \text { mem }}=\left(\frac{p+}{p}+\frac{j^{2}}{2}+g 2\right)_{\text {ducharge }}-\left(\frac{p}{p}+\frac{\nu^{2}}{2}+g\right)^{2}\right) \text { suction }
\end{aligned}
$$

Gwen: Water supply system requeres Q=100gpm purnped to reservoif at clevation of 340 M . Water pressuse at purnp inlet (struet level is 400 \&fa gage. Piping st to be comerial steal; Vmax $=15$ mis
Find: (a) Minimum pipe dearneter
(b) pressure rise across the purnp.
(c) Miniriur power reeded to druse the purp.

Solution:

$$
\begin{aligned}
& D=0.048 \mathrm{~m}=48 \mathrm{~mm} .
\end{aligned}
$$

$$
h_{e}=h_{2}+h_{e m}, h_{e}=\epsilon \frac{5}{2} \text {. }
$$

Assume: (i) $\alpha_{1}=\alpha_{2}$ (a) $p_{2}=-p_{\text {an }}$
(3) minor losses are neglighly.
hen

$$
\begin{equation*}
\Delta h_{\text {pump }}=h_{e}-\frac{p_{1}}{e}+g\left(z_{2}-z_{1}\right)=f \frac{\frac{1}{>}}{\frac{j^{2}}{2}}-\frac{e_{1}}{p}+g d \tag{1}
\end{equation*}
$$

From Table 8.1, $e=0.04 b \mathrm{~mm} \therefore e l y=0.046 / 48=0.00096$

$$
R_{e}=\frac{J}{J}=0.048 \mathrm{~m} \times 3.5 \frac{\mathrm{~m}}{\mathrm{~s}} \times 1 \times 10^{-6} \frac{5}{n^{2}}=1.68 \times 10^{5}
$$

From Fig. $813, f=0.021$: Then from Eq. 1
$\Delta h_{\text {pume }}=3,850 \mathrm{~m}^{2} \mathrm{~s}^{2}$ (This is head addad to funid).

$$
\begin{equation*}
\Delta_{\text {pamp }}=\frac{\dot{w}_{\text {purp }}}{m}=\left(\frac{p}{p}+\frac{\bar{v}^{2}}{2}+g z\right)_{\text {dicharge }}-\left(\frac{p}{p}+\frac{\bar{x}^{2}}{2}+g \frac{g}{)}\right)_{\text {sition }} \tag{8,47}
\end{equation*}
$$

Assure : (B) $\bar{J}_{\text {dud }}=\bar{J}_{\text {sut }} ;$ Idublatge Z Zunctani.

$$
\Delta P=P \Delta h=998 \mathrm{lg}+3850 \frac{\mathrm{~m}^{2}}{\mathrm{~s}^{2}} \times \frac{\mathrm{Ns}^{2}}{\mathrm{gg}^{2}}=3840 \mathrm{lfa} \quad \Delta P
$$

Also from Eq. 8.47

$$
\begin{aligned}
& i_{\text {puanp }}=\text { in } \Delta h_{\text {purepe }}=p a \Delta h_{\text {puene }}
\end{aligned}
$$

$$
\begin{aligned}
& i_{\text {purep }}=24.3 \text { kw (32.6hp) }
\end{aligned}
$$

Gwen: Cooling water supplysyiten

$$
Q=600 \mathrm{gpn}
$$

$$
\eta_{\text {pump }}=0.70
$$

Find: (a) minimum pressure needed at purp outlet (b) power requirement

Solution:

$$
h_{e}=h_{e}+h_{e n}, h_{e}=f \frac{y^{2}}{8}, h_{e_{n}}=\frac{2^{2}}{2}\left(2 k+\Sigma c\left(\frac{k}{8}\right)\right.
$$

Fssumptions: (i) $\bar{V}_{1}=0$
(a) $\alpha_{2}=\alpha_{3}=1$
(3) $P_{1}=P_{2}=P_{a t m}$

Tabbe 8i, $e=5 \times 10^{-6}$ fe (drawn tubuing) $\therefore d y=1.5 \times 10^{-5}$
From Fig. $8.13, f=0.0135$
Fron Tasbe 8.1, Kat $=0.78$

Then from $E_{q,}$.

$$
\begin{aligned}
\Delta h_{\text {pump }}=32.2 \frac{8}{5^{2}}+4004+\frac{1}{2}(120)^{2} \frac{a^{2}}{5^{2}} & +0.0135 \times \frac{700}{0.333} \frac{1}{2} \times(15.3)^{2} \frac{9 t^{2}}{2^{2}} \\
& +\frac{1}{2}(15.3)^{2} \frac{t^{2}}{5^{2}}[0.78+0.0135(30)+2 \times 0.035(00)+15(1)]
\end{aligned}
$$

$$
\Delta h_{\text {puene }}=2.53 \times 10^{4} a^{2} 1_{3}^{2}
$$

From the defrituon of efficenang, $\eta=$ wipar linat then

Te disqarge pressene from the pump is obtained by applying Eq 8.48 between sectiors O and (3) nefuecting howes in \&ezict section, recination lange, and budic energg at (3)

$$
\begin{aligned}
& \omega_{\text {at }}=\frac{\text { in } \Delta h_{\text {pimp }}}{2}=\frac{P Q \Delta h_{p o u p}^{2}}{2}
\end{aligned}
$$

$$
\begin{aligned}
& \text { Ren }
\end{aligned}
$$

Problem 8.146
Given: Chiled-water pipe system for carpus our conditioning makes a lop of length $h=3$ miles.

$$
D=2 f t
$$

(steel)

$$
\begin{aligned}
& \eta_{\text {pump }}=0.80, \eta_{\text {motor }}=0.90 \\
& c=0.12 /(\text { kwi.hr })
\end{aligned}
$$

Find: (a) the pressure drop, $p_{2}-t$,
(b) rate of energy addition to the water (c) doily cost electrical energy for pumping

Sdution:
Apply energy equation for steady, in compressible pipe flow from energy discharge around fop to pump inlet

$$
h_{e_{T}}=h_{e}-h_{m} h_{e}=f^{-} \frac{-5}{2}
$$

Assumptions: (1) $\alpha_{1}=\alpha_{2}$, (2) $z_{1}=z_{2}$ (3) neglect minor losses Ron

Assure $T=50^{\circ} \mathrm{F}$, so $\nabla=1.40 \times\left. 10^{-5} \mathrm{At}^{2}\right|_{\mathrm{s}}$

$$
R_{e}=\frac{D \bar{v}}{\nabla}=2 \mathrm{ft} \times 7.94 \frac{\mathrm{ft}}{\mathrm{~s}} \times 1.40 \times 10^{-5} \frac{\mathrm{~s}}{\mathrm{ft}}=1.13 \times 10^{6}
$$

From Table 8.1, $e=0.00015 \mathrm{ft} ; \therefore$ ely $=0.000075$. Ten, from Fig. $8.13, f=0.013$, and

To determine the energy per unit mass applied by the pump.

The actual energy required to run the purse is

$$
B=\frac{\text { inpurp }}{\eta \text { pure } \eta_{\text {moa }}}=286 h_{p} \times \frac{1}{0.80} \times \frac{1}{0.900}=397 \mathrm{~h} .
$$

the daily cost is

$$
\begin{align*}
& \frac{\dot{W}_{\text {pump }}}{h}=\left(\frac{p}{p}+\frac{-j}{2}+\frac{g}{2}\right)_{\text {discharge }}-\left(\frac{p}{\varphi}+\frac{x^{2}}{2}+g\right)_{\text {sutton }} \tag{8.45}\\
& i_{\text {pump }}=\text { in } \frac{\Delta P}{\rho}=Q \Delta P
\end{align*}
$$

$$
\begin{aligned}
& \Delta P=43.7 \text { psi. }
\end{aligned}
$$

Problem 8.147

Given: Heavy crude oil ($S 6=0.925$) pumped through a level pipeline at a rate of 400,000 barrels per day ($1 \mathrm{bb} 1=42 \mathrm{gal}$). Pipe is 600 mm in diameter with 12 mm wall thickness. Maximum allowable stress in pipe wall is 275 MBa. Minimum presscerein oil is $\left.500 k \mathrm{~Pa}_{\mathrm{a}}(\nu)=1.0 \times 10^{-4} \mathrm{~m}^{2} / \mathrm{s}\right)$ Pipeline is steel.

Find: (a) Maximum allowable spacing between pumping stations. (b) Power added to oil at each pumping station.

Solution: First find the maximum pressure allowable in pipe. consider a tree body diagram of a segment of length, L :

Basic equation: $\sum F_{x}=0$
Assumption: Neglect hydrostatic pressure variation, and atmospheric presscene
Then

$$
\begin{aligned}
\Sigma F_{x} & =p_{\max } D L-2 \sigma_{\max } t L=0 \\
p_{\max } & =2 \sigma_{\max } \frac{t}{D}=2 \times 2.75 \mathrm{MPa} \times \frac{12 \mathrm{~mm}}{600 \mathrm{~m}}=11 \mathrm{MPa}(\mathrm{gage})
\end{aligned}
$$

Thus the pumping problem is as shewn below:

(1) $p_{1}=11 \mathrm{MPa}$ (gage)

$\sigma_{\text {max }} t L$
this the pumping problem is as shewn be lou:

To find L, apply the energy equation for steady, incompressible flow that is uniform at each section.
Basic equation: $\frac{p_{1}}{p}+\frac{\bar{v}_{1}^{2}}{p^{(1)}}+g_{1}^{(2)}=\frac{p_{2}}{p}+{\overline{V_{2}^{2}}}_{z^{(1)}}^{(z)}+g_{2}^{(z)}+h_{C T} ; h_{C T}=f \frac{L}{D} \bar{V}^{2}+h_{C m}$
Assumptions: (1) $\bar{V}_{1}=\bar{V}_{2}$
(2) $z_{1}=z_{2}$ (level)
(3) $h_{\text {cm }}=0$, since straight, constant area pipe

Then

$$
\begin{aligned}
& f \frac{L}{D} \frac{\bar{v}^{2}}{2}=\frac{p_{1}-p_{2}}{f} \text { or } L=\frac{D}{f}\left(\frac{p_{1}-p_{2}}{f}\right) \frac{2}{V^{2}} \\
& \bar{V}=\frac{Q}{A}=4 \times 10^{5} \frac{b b l}{d a y} \times \frac{d a y}{24 h r} \times \frac{h r}{36005} \times \frac{429 a l}{6 b 1} \times \frac{4 g \tau}{g a i} \times \frac{9.46 \times 0^{-4} m^{3}}{q^{t}} \times \frac{4}{\pi} \frac{1}{(0.6 m)^{2}}=2.60 \mathrm{~m} / \mathrm{s} \\
& f=f(R e, C / D) \text {. From Tabs 8.1, } e=0.04 b \mathrm{~mm} \text {, so } \mathrm{e} / 0^{-}=7.7 \times 10^{-5} \text { Reagnokls number is } \\
& R e=\frac{P \bar{V} D}{\mu}=\frac{\bar{V} D}{\nu}=2.6 \frac{\mathrm{~m}}{\mathrm{~s}} \times 0.6 \mathrm{~m} \times \frac{S}{1.0 \times 10^{-4} \mathrm{~m}^{2}}=1.56 \times 10^{4}
\end{aligned}
$$

From Eq. $8.37 . f=0.0277$ (Using Eincal's Solver or Goal Soak)

Probicm 8.147 (cont'd.)
Thus, substituting into Eq.

$$
\begin{aligned}
& L=\frac{0.6 \mathrm{~m}}{0.0277}\left[11 \times 10^{6} \frac{\mathrm{~N}}{\mathrm{~m}^{2}}-(500-101) \times 10^{3} \frac{\mathrm{~N}}{\mathrm{~m}^{2}}\right] \times(0.925) \frac{\mathrm{m}^{3}}{99 \mathrm{~kg}^{2}} \times 2 \times \frac{5^{2}}{(2.6)^{2} \mathrm{~m}^{2}} \times \frac{\mathrm{kg} \cdot \mathrm{M}}{\mathrm{~N}_{1}^{2}} \\
& L=72.8 \mathrm{~km} .
\end{aligned}
$$

To find pump power delivered to the oil, apply the energy equation to the CV shown, between sections (2) and (3)

$$
\left(\frac{p}{\rho}+\alpha \frac{\vec{v}}{\psi}+g \phi\right)_{\text {discharge }}-\left(\frac{p}{\rho}+\alpha \frac{\phi^{2}}{\xi}+g \phi\right)_{\text {suction }}=\frac{\dot{W} p u m p}{\dot{n}}=\text { hpump } \quad \text { (8.45) }
$$

Since $\bar{V}=$ constant and elevation change is small, this reduces to

$$
\begin{aligned}
\Delta h_{\text {pump }} & =\frac{p_{3}-p_{2}}{\rho} \\
& =\left[11 \times 10^{6}-(500-100) \times 10^{3} \frac{\mathrm{~N}}{\mathrm{~m}^{2}} \times(0.925) 999 \frac{\mathrm{~m}^{3}}{\mathrm{k}} \times \frac{\mathrm{kg} \cdot \mathrm{M}}{\mathrm{Nis}}\right. \\
\Delta h_{\text {pump }} & =1.15 \times 10^{4} \mathrm{~m}^{2} / \mathrm{s}^{2}
\end{aligned}
$$

The mass flow rate is

$$
\begin{aligned}
& \dot{m}=680 \mathrm{~kg} / \mathrm{s}
\end{aligned}
$$

The power added to the oil is

$$
\begin{aligned}
\dot{w}_{\text {pump }} & =\dot{m} \Delta \text { pump } \\
& =680 \frac{\mathrm{~kg}}{\mathrm{~s}} \times 1.15 \times 10^{4} \frac{\mathrm{~m}^{2}}{\mathrm{~s}^{2}} \times \frac{\mathrm{N} \cdot \mathrm{~s}^{2}}{\mathrm{~kg} \cdot \mathrm{~m}} \\
\dot{w}_{\text {pump }} & =7.730 \mathrm{kw}
\end{aligned}
$$

Note pumpefficienuy does not affect the power that must be added to the oil

Problem 8.148

Given: Fire nozzle supplied by booster pump at design conditions as shown.

Find: (a) Design flow rate.
(b) Exit velocity, assuming no losses in nozzle.
(c) Power to pump if $\eta=0.70$.

Solution: Apply the energy equation to fully developed flow in the hose, the Bernoulli equation through the nozzle and the control volume form to the pump.
Basic equations: $\quad \frac{p_{2}}{f}+\alpha_{2} \frac{\bar{p}_{2}^{2}}{\beta^{2}}+g_{\psi_{2}}^{(6)}=\frac{p_{3}}{f}+\alpha_{3} \frac{\bar{v}_{3}^{2}}{f}+q^{(3)} \hat{p}_{3}^{(6)}+h_{p_{23}}$

$$
\frac{p_{3}}{f}+\frac{v_{3}^{2}}{2}+g_{3}^{(6)}=\frac{p_{4}}{p}+\frac{v_{4}^{2}}{2}+g_{3}^{(6)}
$$

(Eq.8.45) $\quad\left(\frac{p}{\rho}+\alpha \frac{\vec{V}^{2}}{2}+g z\right)_{\text {discharge }}-\left(\frac{p}{\rho}+\alpha \frac{\vec{V}^{2}}{2}+g z\right)_{\text {suction }}=\frac{\dot{W_{p u m p}}}{\dot{m}}=\Delta h_{p u m p}$
Assume water is at $T=60^{\circ} \mathrm{F}$, Then $v=1.21 \times 10^{-5} \mathrm{ft}^{2} / \mathrm{s}$ (Table A.7)
Assumptions: (1) Steady flow
(2) Incompressible flow
(3) Fully developedtiow from (2) to (3)
(4) F ow along a streamline in nozzle
(5) No friction in nozzic
(6) Neglect elevation Changes
(7) Uniform flow at each section across CV
(8) Neglect Kinetic energy change across CV

For the hose,

$$
\frac{\Delta p}{\rho}=\frac{p_{2}-p_{3}}{\rho}=f \frac{L}{D} \frac{\bar{v}^{2}}{2} \text { or } \bar{V}=\left[\frac{2 \Delta p D}{\rho f L}\right]^{\frac{1}{2}} ; \Delta p=99 \rho s i
$$

Since Re is not known, f is not known. Guess $f \simeq 0.015$. Then

$$
\begin{aligned}
& \bar{V}=\left[2 \times 99 \frac{16 \mathrm{f}}{\mathrm{in}^{2}} \times 115 \operatorname{in} \times \frac{\mathrm{ft}^{3}}{1.94 \mathrm{slceg}} \times \frac{1}{0.015} \times \frac{1}{300 \mathrm{ft}^{2}} \times \frac{12 \mathrm{in}}{\mathrm{ft}} \times \frac{5 / \mathrm{mg} \cdot \mathrm{ft}^{2}}{16 \mathrm{f} \cdot \mathrm{~s}^{2}}\right]^{\frac{1}{2}}=20.2 \mathrm{ft} / \mathrm{s} \\
& R Q=\frac{\rho \overline{V D}}{C C}=\frac{\bar{V} D}{\nu}=20.2 \frac{\mathrm{ft}}{S \mathrm{Cc}} \times \frac{1.5}{12} f t_{\times} \times \frac{5}{1.21 \times 10^{-5} \mathrm{ft}}=2.09 \times 10^{5}
\end{aligned}
$$

Checking Eq. 8.37 gives $f=0.016$ (using Excel's Solver or Goal Seek). Then

$$
\nabla=\sqrt{\frac{0.015}{0.014}} 20.2 \mathrm{ft} / \mathrm{s}=19.6 \mathrm{ft} / \mathrm{s} \text {, and } R e=\frac{19.6}{20.2} \times 2.09 \times 10^{5}=2.03 \times 10^{5}
$$

This is satisfactory convergence.

$$
Q=\nabla A=19.6 \frac{\mathrm{ft}}{\sec } \times \frac{\pi}{4}\left(\frac{1.5}{12}\right)^{2}+t^{2} \times \frac{7.48 \mathrm{gal}}{\mathrm{fz}^{3}} \times \frac{60 \mathrm{sec}}{\mathrm{~min}}=108 \mathrm{gpm}
$$

For the nozzk,

$$
\frac{v_{4}^{2}}{z}=\frac{p_{3}-p_{4}}{f}+\frac{v_{3}^{2}}{2} \quad \text { or } \quad v_{4}=\sqrt{\frac{2\left(p_{3}-p_{4}\right)}{f}+v_{3}^{2}}
$$

Thus

Applying Ea 8.45 across the pump,

$$
\Delta h_{\text {pump }}=\frac{p_{2}-p_{1}}{\rho}
$$

$$
\begin{aligned}
& p_{1}=50 \text { psid } \\
& p_{2}=p_{3}+3 \times 33 \text { psi }
\end{aligned}
$$

(This is the head added to the fluid.)

$$
p_{2}=100+3(33)=199 \text { psig }
$$

The theoretical power input to the pump is Wpump $=$ in Δ pump
The actual power input to the pump is $\theta_{\text {act }}=\dot{W}$ pump $/ \eta=\dot{m} \frac{\Delta \text { pump }}{\eta}$
Thus

$$
\begin{aligned}
P_{\text {act }} & =\frac{\dot{\eta}}{\eta} \frac{\left(p_{2}-p_{1}\right)}{\rho}=\frac{Q\left(p_{2}-p_{1}\right)}{\eta} \\
& =108 \frac{\mathrm{gai}}{\min ^{2}} \times(199-50) \frac{16 \mathrm{f}}{1 \mathrm{~m}^{2}} \times \frac{1}{0.7} \times \frac{\mathrm{ft3}}{7.48 \mathrm{gai}^{2}} \times \frac{144 \mathrm{in}^{2}}{f^{2}} \times \frac{\mathrm{min}}{60 \mathrm{~s}} \times \frac{\mathrm{hp.s}}{550 \mathrm{ft} \cdot 1 \mathrm{bf}} \\
P_{\text {act }} & =13.4 \mathrm{hp}
\end{aligned}
$$

Given: Fountain on Plerdue's Engineering Mall has

$$
Q=550 \mathrm{gpm} \text { and } H=10 \mathrm{~m}(32.8 \mathrm{ft})
$$

Find: Estimate of annual cost to operate the fountain.
Solution: Model fountain as a vertical jet (this will give maximum cost).

Computing equations:

$$
\left.c\left(c^{\frac{t}{t}}, y_{r}\right)=C_{e} \frac{\frac{1}{3}}{k \omega \cdot h r}\right) \times \text { motor }(k \omega) N(h r / y r)
$$

Assume $C_{e}=\frac{5}{10.12 / k w \cdot h r ~}$

$$
\begin{aligned}
& \text { Pretor }=\frac{\text { Pnydraulic }}{\text { pump motor }} ; \text { motor }=0.9, \text { pump }=0.8 \\
& \text { Onydracelic }=Q 4 p \\
& N=365 \frac{\text { days }}{\text { hr }} \times 24 \frac{\text { hr }}{d a y}=8,760 \text { hr loo }
\end{aligned}
$$

The minimum required Δp is $\rho g H$, so

$$
\Delta p=1.94 \frac{\mathrm{~s} / \mathrm{ug}}{\mathrm{ft}^{3}} \times 32.2 \frac{\mathrm{ft}}{\mathrm{~s}^{2}} \times 32.8 \mathrm{ft} \times \frac{\mathrm{bf} \cdot \mathrm{~s}^{2}}{\mathrm{slng} \cdot \mathrm{ft}^{2}}=2.05 \times 10^{3} 16 \mathrm{f} / \mathrm{ft}+2
$$

Combining,

$$
\begin{aligned}
C= & \frac{50.12}{\mathrm{kw} \cdot \mathrm{hr}} \times \frac{1}{0.8(0.9)} \times 550 \frac{\mathrm{gal}}{\mathrm{~min}} \times 2.05 \times 10^{3} \frac{\mathrm{lbf}}{\mathrm{ft}} \times 8.760 \frac{\mathrm{hr}}{\mathrm{gr}} \\
& \times \frac{\mathrm{ft}}{7.48 \mathrm{gai}} \times \frac{\mathrm{hp} \cdot \mathrm{~min}}{33,000 \mathrm{ft} \cdot \mathrm{lbf}} \times 0.746 \frac{\mathrm{kw}}{\mathrm{hp}} \\
C= & \$ 4980 \mathrm{gr}
\end{aligned}
$$

The fountain does not operate year-round. It might be more fair to say $c \approx \approx^{\$ 13}$ per day of operation.

Given: Petrokurn products transported long distances by pipeline, e.g., the Alaskan pipeline (see Example Problem 8.6l.

Find: (a) Estimate of energy necced to pump typical petroleum product, expressed as a fraction of throughput energy carried by pipeline.
(b) Statement and critical assessment of assumptions.

Solution: From Example Problem 8.6, for the Alaskan pipeline, $Q=1.6 \times 10^{6}$ bp.
Thus $Q=1.6 \times 10^{6} \frac{b b 1}{d a y} \times 42 \frac{g a l}{b b 1} \times \frac{f+3}{7.48 g a,} \times \frac{d a y}{24 h r} \times \frac{h r}{36005}=104 \mathrm{ft} 3 / \mathrm{s}$
and

$$
\dot{m}=P Q=s 6 \rho_{H 20} Q=0.93 \times 1.4+\frac{5 \mu g}{4+5} \times \frac{104 \frac{43}{3}}{}=188 \text { skeg } / \leq
$$

The energy content of a typical petroleum product is about 18,000 Btu $/ \mathrm{lbm}, \leq 0$ the throughput energy is

From Example problem 8.6, each pumping station require 36,800 hp, and they are located $L=120$ mi apart.

The entire pipeline is about 750 mi long. Thus there must be $N=751 / 120$ or about $N=7$ pumping stations. Thus the to teal energy required to pump must be

$$
\theta=N \dot{W}=7 \text { stations } \times 36,800 \frac{\mathrm{hp}}{\text { station }}=258,000 \mathrm{hp}
$$

Expressed as a fraction of throughput energy

$$
\frac{\theta}{\dot{E}}=258,000 h P_{\times} \frac{s}{\sqrt{1.09 \times 10^{8} B+w}} \times 2545 \frac{\text { Btu }}{h p_{10}} \times \frac{h r}{3600 \mathrm{~s}}=1.67 \times 10^{-3} \text { or } 0.00167
$$

Thus about 0.167% of energy is used for transporting petroleum.
The assumptions outlined above appear reasonable. The complete of result is probably accurate within \pm to $\%$.

A more universal metric would be energy per unit mass aid distance, e.g., energy per ton-mile of transport.

Thus

$$
e \Rightarrow \frac{\rho}{\dot{m L}}=71.6 \mathrm{Btu} / \mathrm{ton} \cdot \mathrm{mi}
$$

This specific metric allows direct comparison with other modes of transport.

Problem 8.151 (In Excel)

The pump testing system of Problem 8.110 is run with a pump that generates a pressure difference given by $\Delta p=750-15 \times 10^{4} Q^{2}$ where Δp is in kPa , and the generated flow rate is $Q \mathrm{~m}^{3} / \mathrm{s}$. Find the water flow rate, pressure difference, and power supplied to the pump if it is 70 percent efficient.

Given: Data on circuit and pump

Find: Flow rate, pressure difference, and power supplied

Solution

Governing equations:

$$
\begin{aligned}
& \operatorname{Re}=\frac{\rho \cdot \mathrm{V} \cdot \mathrm{D}}{\mu} \\
& \left(\frac{\mathrm{p}_{1}}{\rho}+\alpha_{1} \cdot \frac{\mathrm{~V}_{1}^{2}}{2}+\mathrm{g} \cdot \mathrm{z}_{1}\right)-\left(\frac{p_{2}}{\rho}+\alpha_{2} \cdot \frac{\mathrm{~V}_{2}^{2}}{2}+\mathrm{g} \cdot \mathrm{z}_{2}\right)=\mathrm{h}_{\mathrm{T}}=\sum_{\text {major }} \mathrm{h}_{\mathrm{l}}+\sum_{\text {minor }} \mathrm{h}_{\mathrm{lm}} \\
& \mathrm{~h}_{\mathrm{l}}=\mathrm{f} \cdot \frac{\mathrm{~L}}{\mathrm{D}} \cdot \frac{\mathrm{~V}^{2}}{2} \\
& \mathrm{~h}_{\mathrm{lm}}=\mathrm{f} \cdot \frac{\mathrm{~L}_{\mathrm{e}}}{\mathrm{D}} \cdot \frac{\mathrm{~V}^{2}}{2} \\
& \mathrm{f}=\frac{64}{\operatorname{Re}} \\
& \frac{1}{f^{0.5}}=-2.0 \cdot \log \left(\frac{\frac{e}{D}}{3.7}+\frac{2.51}{\operatorname{Re} \cdot f^{0.5}}\right)
\end{aligned}
$$

The energy equation (Eq. 8.29) becomes for the circuit ($1=$ pump outlet, $2=$ pump inlet)

$$
\frac{\mathrm{p}_{1}-\mathrm{p}_{2}}{\rho}=\mathrm{f} \cdot \frac{\mathrm{~L}}{\mathrm{D}} \cdot \frac{\mathrm{~V}^{2}}{2}+4 \cdot \mathrm{f} \cdot \mathrm{~L}_{\text {elbow }} \cdot \frac{\mathrm{V}^{2}}{2}+\mathrm{f} \cdot \mathrm{~L}_{\text {valve }} \cdot \frac{\mathrm{V}^{2}}{2}
$$

or

$$
\begin{equation*}
\Delta \mathrm{p}=\rho \cdot \mathrm{f} \cdot \frac{\mathrm{~V}^{2}}{2} \cdot\left(\frac{\mathrm{~L}}{\mathrm{D}}+4 \cdot \frac{\mathrm{~L}_{\text {elbow }}}{\mathrm{D}}+\frac{\mathrm{L}_{\text {valve }}}{\mathrm{D}}\right) \tag{1}
\end{equation*}
$$

This must be matched to the pump characteristic equation; at steady state, the pressure generated by the pump just equals that lost to friction in the circuit

$$
\begin{equation*}
\Delta \mathrm{p}=750-15 \times 10^{4} \cdot \mathrm{Q}^{2} \tag{2}
\end{equation*}
$$

Finally, the power supplied to the pump, efficiency η, is
Power $=\frac{\mathrm{Q} \cdot \Delta \mathrm{p}}{\eta}$

Given data:

$$
\begin{array}{rlcl}
L & = & 20 & \mathrm{~m} \\
D & = & 75 & \mathrm{~mm} \\
& & 70 \% &
\end{array}
$$

Tabulated or graphical data:

$$
\begin{aligned}
& e=0.26 \mathrm{~mm} \\
& \text { (Table 8.1) } \\
& \mu=1.00 \mathrm{E}-03 \mathrm{~N} . \mathrm{s} / \mathrm{m}^{2} \\
& \rho=999 \mathrm{~kg} / \mathrm{m}^{3} \\
& \text { (Appendix A) }
\end{aligned}
$$

Gate valve $L{ }_{\mathrm{e}} / D=8$
Elbow $L{ }_{\mathrm{e}} / D=30$
(Table 8.4)
Computed results:

$\boldsymbol{Q}\left(\mathbf{m}^{\mathbf{3}} / \mathbf{s}\right)$	$\boldsymbol{V}(\mathbf{m} / \mathbf{s})$	$\boldsymbol{R e}$	\boldsymbol{f}	$\Delta \boldsymbol{p}(\mathbf{k P a})$ $(\mathbf{E q} \mathbf{1})$	$\Delta \boldsymbol{p}(\mathbf{k P a})$ $(\mathbf{E q} \mathbf{2})$
0.010	2.26	$1.70 \mathrm{E}+05$	0.0280	28.3	735
0.015	3.40	$2.54 \mathrm{E}+05$	0.0277	63.1	716
0.020	4.53	$3.39 \mathrm{E}+05$	0.0276	112	690
0.025	5.66	$4.24 \mathrm{E}+05$	0.0276	174	656
0.030	6.79	$5.09 \mathrm{E}+05$	0.0275	250	615
0.035	7.92	$5.94 \mathrm{E}+05$	0.0275	340	566
0.040	9.05	$6.78 \mathrm{E}+05$	0.0274	444	510
0.045	10.2	$7.63 \mathrm{E}+05$	0.0274	561	446
0.050	11.3	$8.48 \mathrm{E}+05$	0.0274	692	375
0.055	12.4	$9.33 \mathrm{E}+05$	0.0274	837	296
0.060	13.6	$1.02 \mathrm{E}+06$	0.0274	996	210

Error

0.0419	9.48	$7.11 \mathrm{E}+05$	0.0274	487	487	0

Power $=\quad 29.1 \quad$ kW \quad (Eq. 3)

Problem 8.152 (In Excel)

A water pump can generate a pressure difference $\Delta p(\mathrm{kPa})$ given by $\Delta p=1000-800 Q^{2}$, where the flow rate is $Q \mathrm{~m}^{3} / \mathrm{s}$. It supplies a pipe of diameter 500 mm , roughness 10 mm , and length 750 m . Find the flow rate, pressure difference, and the power supplied to the pump if it is 70 percent efficient. If the pipe were replaced with one of roughness 5 mm , how much would the flow increase, and what would the required power be?

Given: Data on pipe and pump
Find: Flow rate, pressure difference, and power supplied; repeat for smoother pipe

Solution

Governing equations:

$$
\begin{align*}
& \operatorname{Re}=\frac{\rho \cdot \mathrm{V} \cdot \mathrm{D}}{\mu} \\
& \left(\frac{p_{1}}{\rho}+\alpha_{1} \cdot \frac{\mathrm{~V}_{1}^{2}}{2}+\mathrm{g} \cdot \mathrm{z}_{1}\right)-\left(\frac{\mathrm{p}_{2}}{\rho}+\alpha_{2} \cdot \frac{\mathrm{~V}_{2}^{2}}{2}+\mathrm{g} \cdot \mathrm{z}_{2}\right)=\mathrm{h}_{\mathrm{IT}}-\Delta \mathrm{h}_{\mathrm{pump}} \\
& \mathrm{~h}_{\mathrm{IT}}=\mathrm{f} \cdot \frac{\mathrm{~L}}{\mathrm{D}} \cdot \frac{\mathrm{~V}^{2}}{2} \tag{8.34}\\
& \mathrm{f}=\frac{64}{\operatorname{Re}} \tag{8.36}\\
& \frac{1}{\mathrm{f}^{0.5}}=-2.0 \cdot \log \left(\frac{\frac{\mathrm{e}}{\mathrm{D}}}{3.7}+\frac{2.51}{\operatorname{Re} \cdot f^{0.5}}\right) \quad \text { (8.37) } \quad \text { (Tarbulent) }
\end{align*}
$$

The energy equation (Eq. 8.49) becomes for the system $(1=$ pipe inlet, $2=$ pipe outlet $)$
$\Delta h_{\text {pump }}=\mathrm{f} \cdot \frac{\mathrm{L}}{\mathrm{D}} \cdot \frac{\mathrm{V}^{2}}{2}$
or
$\Delta p_{\text {pump }}=\rho \cdot f \cdot \frac{L}{D} \cdot \frac{\mathrm{~V}^{2}}{2}$
This must be matched to the pump characteristic equation; at steady state, the pressure generated by the pump just equals that lost to friction in the circuit

$$
\begin{equation*}
\Delta \mathrm{p}_{\text {pump }}=1000-800 \cdot \mathrm{Q}^{2} \tag{2}
\end{equation*}
$$

Finally, the power supplied to the pump, efficiency η, is

$$
\begin{equation*}
\text { Power }=\frac{Q \cdot \Delta p}{\eta} \tag{3}
\end{equation*}
$$

Tabulated or graphical data:

$$
\begin{array}{cc}
\mu= & 1.00 \mathrm{E}-03 \\
\mathrm{~N} . \mathrm{s} / \mathrm{m}^{2} \\
\rho= & 999 \\
\mathrm{~kg} / \mathrm{m}^{3} \\
& (\text { Appendix A) }
\end{array}
$$

Given data:

$$
\begin{array}{rlrl}
L & = & 750 & \mathrm{~m} \\
D & = & 500 & \mathrm{~mm} \\
& = & 70 \% &
\end{array}
$$

Computed results: $\quad e=10 \mathrm{~mm}$

$\boldsymbol{Q}\left(\mathbf{m}^{\mathbf{3}} / \mathbf{s}\right)$	$\boldsymbol{V}(\mathbf{m} / \mathbf{s})$	$\boldsymbol{R e}$	\boldsymbol{f}	$\boldsymbol{p} \mathbf{p} \mathbf{(k P a})$ $\mathbf{(E q} \mathbf{1})$	$\Delta \boldsymbol{p} \mathbf{(k P a})$ $(\mathbf{E q} \mathbf{2})$
0.1	0.509	$2.54 \mathrm{E}+05$	0.0488	9.48	992
0.2	1.02	$5.09 \mathrm{E}+05$	0.0487	37.9	968
0.3	1.53	$7.63 \mathrm{E}+05$	0.0487	85.2	928
0.4	2.04	$1.02 \mathrm{E}+06$	0.0487	151	872
0.5	2.55	$1.27 \mathrm{E}+06$	0.0487	236	800
0.6	3.06	$1.53 \mathrm{E}+06$	0.0487	340	712
0.7	3.57	$1.78 \mathrm{E}+06$	0.0487	463	608
0.8	4.07	$2.04 \mathrm{E}+06$	0.0487	605	488
0.9	4.58	$2.29 \mathrm{E}+06$	0.0487	766	352
1.0	5.09	$2.54 \mathrm{E}+06$	0.0487	946	200
1.1	5.60	$2.80 \mathrm{E}+06$	0.0487	1144	32.0

Error

0.757	3.9	$1.93 \mathrm{E}+06$	0.0487	542	542	0

Power $=\begin{array}{lll} & 586\end{array}$
(Eq. 3)

Repeating, with smoother pipe

Computed results: $\quad e=5 \mathrm{~mm}$

$\boldsymbol{Q}\left(\mathbf{m}^{\mathbf{3}} / \mathbf{s}\right)$	$\boldsymbol{V}(\mathbf{m} / \mathbf{s})$	$\boldsymbol{R e}$	\boldsymbol{f}	$\Delta \boldsymbol{p}(\mathbf{k P a})$ $\mathbf{(E q ~ 1)}$	$\Delta \boldsymbol{p}(\mathbf{k P a})$ $\mathbf{(\mathbf { E q } 2)}$
0.1	0.509	$2.54 \mathrm{E}+05$	0.0381	7.41	992
0.2	1.02	$5.09 \mathrm{E}+05$	0.0380	29.6	968
0.3	1.53	$7.63 \mathrm{E}+05$	0.0380	66.4	928
0.4	2.04	$1.02 \mathrm{E}+06$	0.0380	118	872
0.5	2.55	$1.27 \mathrm{E}+06$	0.0380	184	800
0.6	3.06	$1.53 \mathrm{E}+06$	0.0379	265	712
0.7	3.57	$1.78 \mathrm{E}+06$	0.0379	361	608
0.8	4.07	$2.04 \mathrm{E}+06$	0.0379	472	488
0.9	4.58	$2.29 \mathrm{E}+06$	0.0379	597	352
1.0	5.09	$2.54 \mathrm{E}+06$	0.0379	737	200
1.1	5.60	$2.80 \mathrm{E}+06$	0.0379	892	32.0

Error

0.807	4.1	$2.05 \mathrm{E}+06$	0.0379	480	480	0

Power $=\quad 553 \mathrm{~kW} \quad$ (Eq. 3)

Pump and Pipe Pressure Heads

Given: Fan with attlee dimensions of $8 \times 16 \mathrm{in}$. Head us Capacity curve is approximately

$$
\text { s approximately }{ }^{-1}\left[Q\left(\mathrm{in}^{-7} / \mathrm{H}_{2} \mathrm{O}\right)=30^{2}-1\right]^{2}
$$

Find: Air flow rate delivered into a 200 ft . length of straight 8×6 in. duct.
Solution:
Basic equation:

$$
H_{k T}=f \frac{2}{\operatorname{Sn}} \frac{V^{2}}{2 g}+h_{\mathrm{lm}} ; \lambda_{h}=\frac{4 A}{P_{w}}
$$

Assumptions: (i) $\overline{V_{1}}=\mathcal{V}_{2}, \alpha_{1}=\alpha_{2}=1$

$$
\text { (a) } z_{1}=z_{2}
$$

(3) $h_{e_{m}}=0$

Duct $\vec{a}=8 \mathrm{in}$.

$$
A=a b=\frac{8}{12} \mathrm{ft} \times \frac{16}{12} f=0.889 \mathrm{ft}^{2}
$$

$$
D_{h}=\frac{4 A}{P_{w}}=\frac{4 A}{2(a+b)}=\frac{2 \times 0.889 \mathrm{ft}^{2}}{\left(2(3+4)_{3}\right) c t a_{-2}}=0.889 \mathrm{ft}
$$

 where H^{\prime} dun is the pressure drop in head of water
$H_{\text {dits }}=1.81 \times 10^{-5} \mathrm{fa}^{2}$ (where H is in in. H_{2}) \qquad
For a smooth duct, $f=f\left(R_{e}\right)$

$$
\begin{aligned}
& R_{e}=\bar{V} \frac{D h}{V}=\frac{D h Q}{\nabla A} . \quad \text { For } T=68^{\circ} F, \text { from Table } A Q, V=1.62 \times 0^{-4} \mathrm{ft}^{2} \mathrm{I}_{\mathrm{s}} \\
& R_{e}=\frac{0.889 \mathrm{ft}}{0.889 \mathrm{ft}^{2}} \times 1.62 \times 10^{-4} \frac{\mathrm{~S}}{\mathrm{ft}^{2}} \times \frac{\mathrm{ft}^{3}}{\mathrm{~min}} \times \frac{\text { Mn }}{60 \mathrm{~s}}=103 \mathrm{Q}
\end{aligned}
$$

To determine the air flow rate dalivered, we need to determine the operating paint of the fan.

Te operating paint is at the nitersection of the

- fan head capacity curve, and the
- system carve (t read loss in the duct)
his is shown on the plot below.
No be Rat the friction factor f is determined from the Colebroor equation (8.37 a) using Eq. $8.37 b$ for the initial estimate of f.

Problem *8.154 (In Excel)

A cast-iron pipe system consists of a 50 m section of water pipe, after which the flow branches into two 50 m sections, which then meet in a final 50 m section. Minor losses may be neglected. All sections are 45 mm diameter, except one of the two branches, which is 25 mm diameter. If the applied pressure across the system is 300 kPa , find the overall flow rate and the flow rates in each of the two branches.

Given: Data on pipe system and applied pressure

Find: Flow rates in each branch

Solution

Governing equations:
$\left(\frac{p_{1}}{\rho}+\alpha_{1} \cdot \frac{V_{1}^{2}}{2}+g \cdot z_{1}\right)-\left(\frac{p_{2}}{\rho}+\alpha_{2} \cdot \frac{V_{2}^{2}}{2}+g \cdot z_{2}\right)=h_{1}$
$h_{I T}=f \cdot \frac{L}{D} \cdot \frac{V^{2}}{2}$
$\mathrm{f}=\frac{64}{\operatorname{Re}}$
(Laminar)
$\frac{1}{\mathrm{f}^{0.5}}=-2.0 \cdot \log \left(\frac{\frac{\mathrm{e}}{\mathrm{D}}}{3.7}+\frac{2.51}{\operatorname{Re} \cdot \mathrm{f}^{0.5}}\right) \quad$ (Turbulent)
The energy equation (Eq. 8.29) can be simplified to
$\Delta p=\rho \cdot f \cdot \frac{L}{D} \cdot \frac{V^{2}}{2}$

This can be written for each pipe section
In addition we have the following contraints

$$
\begin{align*}
& \mathrm{Q}_{\mathrm{A}}=\mathrm{Q}_{\mathrm{D}} \tag{1}\\
& \mathrm{Q}_{\mathrm{A}}=\mathrm{Q}_{\mathrm{B}}+\mathrm{Q}_{\mathrm{B}} \tag{2}\\
& \Delta \mathrm{p}=\Delta \mathrm{p}_{\mathrm{A}}+\Delta \mathrm{p}_{\mathrm{B}}+\Delta \mathrm{p}_{\mathrm{D}} \tag{3}\\
& \Delta \mathrm{p}_{\mathrm{B}}=\Delta \mathrm{p}_{\mathrm{C}} \tag{4}
\end{align*}
$$

We have 4 unknown flow rates (or, equivalently, velocities) and four equations

The workbook for Example Problem 8.11 is modified for use in this problem

Pipe Data:

Pipe	$\boldsymbol{L}(\mathbf{m})$	$\boldsymbol{D}(\mathbf{m m})$	$\boldsymbol{e}(\mathbf{m m})$
A	50	45	0.26
B	50	45	0.26
C	50	25	0.26
D	50	45	0.26

Fluid Properties:

$$
\begin{array}{lcl}
\rho= & 999 & \mathrm{~kg} / \mathrm{m}^{3} \\
\mu= & 0.001 & \mathrm{~N} . \mathrm{s} / \mathrm{m}^{2}
\end{array}
$$

Available Head:

$$
\Delta p=\quad 300 \quad \mathrm{kPa}
$$

Flows:

$\boldsymbol{Q}_{\mathrm{A}}\left(\mathbf{m}^{\mathbf{3}} / \mathbf{s}\right)$	$\boldsymbol{Q}_{\mathrm{B}}\left(\mathbf{m}^{\mathbf{3}} / \mathbf{s}\right)$	$\boldsymbol{Q}_{\mathrm{C}}\left(\mathbf{m}^{\mathbf{3}} / \mathbf{s}\right)$	$\boldsymbol{Q}_{\mathrm{D}}\left(\mathbf{m}^{\mathbf{3}} / \mathbf{s}\right)$
0.00396	0.00328	0.000681	0.00396

$V_{\mathbf{A}}(\mathbf{m} / \mathbf{s})$	$V_{\mathbf{B}}(\mathbf{m} / \mathbf{s})$	$V_{\mathbf{C}}(\mathbf{m} / \mathbf{s})$	$V_{\mathbf{D}}(\mathbf{m} / \mathbf{s})$
2.49	2.06	1.39	2.49

$\boldsymbol{R} \boldsymbol{e}_{\mathbf{A}}$	$\boldsymbol{R} \boldsymbol{e}_{\mathbf{B}}$	$\boldsymbol{R} \boldsymbol{e}_{\mathbf{C}}$	$\boldsymbol{R} \boldsymbol{e}_{\mathbf{D}}$
$1.12 \mathrm{E}+05$	$9.26 \mathrm{E}+04$	$3.46 \mathrm{E}+04$	$1.12 \mathrm{E}+05$

$\boldsymbol{f}_{\mathrm{A}}$	$\boldsymbol{f}_{\mathrm{B}}$	$\boldsymbol{f}_{\mathrm{C}}$	$\boldsymbol{f}_{\mathrm{D}}$
0.0325	0.0327	0.0400	0.0325

Heads:

$\Delta p_{\mathrm{A}}(\mathrm{kPa})$	$\Delta p_{\mathrm{B}}(\mathrm{kPa})$	$\Delta p_{\mathrm{C}}(\mathrm{kPa})$	$\Delta p_{\mathrm{D}}(\mathrm{kPa})$
112	77	77	112

Constraints:
(1) $Q_{\mathrm{A}}=Q_{\mathrm{D}}$
0.03%
(2) $Q_{\mathrm{A}}=Q_{\mathrm{B}}+Q_{\mathrm{C}}$
(3) $\Delta p=\Delta p_{\mathrm{A}}+\Delta p_{\mathrm{B}}+\Delta p_{\mathrm{D}}$
(4) $\Delta p_{\mathrm{B}}=\Delta p_{\mathrm{C}}$
Error: $\mathbf{0 . 0 6 \%}$ Vary $Q_{\mathrm{A}}, Q_{\mathrm{B}}, Q_{\mathrm{C}}$, and Q_{D}
using Solver to minimize total error

Problem *8.155 (In Excel)

The water pipe system shown is constructed from 75 mm galvanized iron pipe. Minor losses may be neglected. The inlet is at 250 kPa (gage), and all exits are at atmospheric pressure. Find the flow rates Q_{0}, Q_{1}, Q_{2}, and Q_{3}. If the flow in the 400 m branch is closed off ($Q_{1}=0$), find the increase in flows Q_{2}, and Q_{3}.

Given: Data on pipe system and applied pressure

Find: Flow rates in each branch

$\left(\frac{p_{1}}{\rho}+\alpha_{1} \cdot \frac{V_{1}^{2}}{2}+g \cdot z_{1}\right)-\left(\frac{p_{2}}{\rho}+\alpha_{2} \cdot \frac{V_{2}^{2}}{2}+g \cdot z_{2}\right)=h_{1}$
$h_{I T}=f \cdot \frac{L}{D} \cdot \frac{V^{2}}{2}$
$\mathrm{f}=\frac{64}{\operatorname{Re}}$
(Laminar)
$\frac{1}{\mathrm{f}^{0.5}}=-2.0 \cdot \log \left(\frac{\frac{\mathrm{e}}{\mathrm{D}}}{3.7}+\frac{2.51}{\operatorname{Re} \cdot \mathrm{f}^{0.5}}\right) \quad$ (Turbulent)

The energy equation (Eq. 8.29) can be simplified to
$\Delta \mathrm{p}=\rho \cdot \mathrm{f} \cdot \frac{\mathrm{L}}{\mathrm{D}} \cdot \frac{\mathrm{V}^{2}}{2}$

This can be written for each pipe section

In addition we have the following contraints

$$
\begin{align*}
& \mathrm{Q}_{0}=\mathrm{Q}_{1}+\mathrm{Q}_{4} \tag{1}\\
& \mathrm{Q}_{4}=\mathrm{Q}_{2}+\mathrm{Q}_{3} \tag{2}\\
& \Delta \mathrm{p}=\Delta \mathrm{p}_{0}+\Delta \mathrm{p}_{1} \tag{3}\\
& \Delta \mathrm{p}=\Delta \mathrm{p}_{0}+\Delta \mathrm{p}_{4}+\Delta \mathrm{p}_{2} \tag{4}\\
& \Delta \mathrm{p}_{2}=\Delta \mathrm{p}_{3} \tag{5}
\end{align*}
$$

(Pipe 4 is the 75 m unlabelled section)

We have 5 unknown flow rates (or, equivalently, velocities) and five equations

The workbook for Example Problem 8.11 is modified for use in this problem

Pipe Data:

Pipe	$\boldsymbol{L}(\mathbf{m})$	$\boldsymbol{D}(\mathbf{m m})$	\boldsymbol{e} (mm)
0	300	75	0.15
1	400	75	0.15
2	100	75	0.15
3	100	75	0.15
4	75	75	0.15

Fluid Properties:

$$
\begin{array}{lcl}
\rho= & 999 & \mathrm{~kg} / \mathrm{m}^{3} \\
\mu= & 0.001 & \mathrm{~N} . \mathrm{s} / \mathrm{m}^{2}
\end{array}
$$

Available Head:

$$
\Delta p=\quad 250 \quad \mathrm{kPa}
$$

Flows:

$\boldsymbol{Q}_{\mathbf{0}}\left(\mathrm{m}^{3} / \mathbf{s}\right)$	$\boldsymbol{Q}_{\mathbf{1}}\left(\mathrm{m}^{3} / \mathbf{s}\right)$	$\boldsymbol{Q}_{\mathbf{2}}\left(\mathrm{m}^{3} / \mathbf{s}\right)$	$\boldsymbol{Q}_{\mathbf{3}}\left(\mathrm{m}^{3} / \mathbf{s}\right)$	$\boldsymbol{Q}_{4}\left(\mathrm{~m}^{3} / \mathbf{s}\right)$
0.00928	0.00306	0.00311	0.00311	0.00623

$V_{\mathbf{0}}(\mathbf{m} / \mathbf{s})$	$V_{\mathbf{1}}(\mathbf{m} / \mathbf{s})$	$V_{\mathbf{2}}(\mathrm{m} / \mathbf{s})$	$V_{\mathbf{3}}(\mathbf{m} / \mathbf{s})$	$V_{\mathbf{4}}(\mathrm{m} / \mathbf{s})$
2.10	0.692	0.705	0.705	1.41

$\boldsymbol{R} \boldsymbol{e}_{\mathbf{0}}$	$\boldsymbol{R} \boldsymbol{e}_{\mathbf{1}}$	$\boldsymbol{R} \boldsymbol{e}_{\boldsymbol{2}}$	$\boldsymbol{R} \boldsymbol{e}_{\mathbf{3}}$	$\boldsymbol{R} \boldsymbol{e}_{\mathbf{4}}$
$1.57 \mathrm{E}+05$	$5.18 \mathrm{E}+04$	$5.28 \mathrm{E}+04$	$5.28 \mathrm{E}+04$	$1.06 \mathrm{E}+05$

$\boldsymbol{f}_{\mathbf{0}}$	$\boldsymbol{f}_{\mathbf{1}}$	$\boldsymbol{f}_{\mathbf{2}}$	$\boldsymbol{f}_{\mathbf{3}}$	$\boldsymbol{f}_{\mathbf{4}}$
0.0245	0.0264	0.0264	0.0264	0.0250

Heads:

$\left.\Delta \boldsymbol{p}_{\mathbf{0}} \mathbf{(k P a}\right)$	$\boldsymbol{\Delta \boldsymbol { p } _ { \mathbf { 1 } } (\mathbf { k P a })}$	$\boldsymbol{\Delta \boldsymbol { p } _ { \mathbf { 2 } } (\mathbf { k P a })}$	$\boldsymbol{\Delta \boldsymbol { p } _ { \mathbf { 3 } } (\mathbf { k P a })}$	$\boldsymbol{\Delta \boldsymbol { p } _ { \mathbf { 4 } } (\mathbf { k P a })}$
216.4	33.7	8.7	8.7	24.8

Constraints:

(1) $Q_{0}=Q_{1}+Q_{4}$
0.00%

(3) $\Delta p=\Delta p_{0}+\Delta p_{1}$ 0.03%
(2) $Q_{4}=Q_{2}+Q_{3}$
0.01%
(4) $\Delta p=\Delta p_{0}+\Delta p_{4}+\Delta p_{2}$
0.01%
(5) $\Delta p_{2}=\Delta p_{3}$ 0.00%

Error: $\mathbf{0 . 0 5 \%}$ Vary $Q_{0}, Q_{1}, Q_{2}, Q_{3}$ and Q_{4} using Solver to minimize total error
problem *8.156

Given: Partial-flow filtration system:
Pipes are $3 / 4$ in nominal puce (smooth plastic) with $0=0.824$ in.

Pump delivers 30 gpm at $75^{\circ} \mathrm{F}$.

Fitter pressure drop is $\Delta p(p s i)=0.6[Q(g p m)]^{2}$.
Find: (a) Presscure at pump outlet.
(b) Flow rate through each branch of system.

Solution: Apply the energy equation for steady, incompressible pipe flow.
Computing equation: $\frac{p_{1}}{\rho}+\alpha_{1} \frac{\bar{v}_{1}^{2}}{2}+g z_{1}=\frac{p_{2}}{\rho}+\alpha_{2} \frac{\bar{v}_{2}^{2}}{2}+g z_{2}+h_{e_{T}} ; h_{C_{T}}=\left[f\left(\frac{L}{D}+\frac{L e}{D}\right)+k\right] \frac{\bar{v}^{2}}{2}$
Assumptions: (1) $\alpha_{1} \bar{v}_{1}^{2}=\alpha_{2} \bar{v}_{2}^{2} ;(2) z_{1}=z_{2},(3)$ hem $=0$ for $1 \rightarrow 2,(4)$ Ignore "tee "at (2)
The flow rate is $Q_{12}=30 \operatorname{gom}(0.0668 \mathrm{ft} 3 / \mathrm{sec})$, so $\bar{V}=\frac{Q}{A}=18.0 \mathrm{ft} / \mathrm{sec}$. Then

$$
\begin{aligned}
& \operatorname{Re}=\frac{\bar{V} D}{\nu}=18.0 \frac{\mathrm{ft}}{\sec } \times\left(\frac{0.824}{12}\right) \frac{\mathrm{ft}}{\times} \frac{\sec }{1.0 \times 10^{-5} \mathrm{~A}^{2}}=1.24 \times 10^{5} \text { so } f=0.017 \\
& \Delta p_{12}=f \frac{L}{D} \frac{P \bar{V}^{2}}{2}=0.017 \times \frac{10 \mathrm{ft}}{0.824 \mathrm{in}} \times \frac{1}{2} \times 1.94 \frac{\mathrm{sing}}{\mathrm{ft}^{3}} \times(18.0)^{2} \frac{\mathrm{ft}^{2}}{\mathrm{sec}^{2}} \times \frac{16 \mathrm{f} \cdot \mathrm{~s}^{2}}{\mathrm{sing} \cdot \mathrm{ft}} \times \frac{\mathrm{ft}}{12 \mathrm{in}}=5.40 \mathrm{psi}
\end{aligned}
$$

Branch flow rates are unknown, but flow split must produce the same drop in each branch. Solve by iteration to obtain

$$
\begin{aligned}
& Q_{23}=5.2 \mathrm{gpm} ; \bar{V}_{23}=3.12 \mathrm{ft} / \mathrm{s} ; R R^{2}=2.15 \times 10^{4} \text {; and } f=0.025^{*} \\
& \Delta p_{23}=f\left(\frac{L}{D}+2 \frac{L_{D}}{D}\right) \frac{P \vec{V}^{2}}{2}+0.6 Q^{2} \\
& \Delta p_{23}=0.025\left[\frac{240}{0.824}+z(30)\right] \frac{1}{2} \times 1.94 \frac{\operatorname{siceg}}{f+3} \times(3.12)^{2} \frac{f+2}{s^{2}} \times \frac{16 f \cdot s^{2}}{\operatorname{sing} . f t^{2}} \times \frac{f+2}{144.1 .^{2}}+0.6(5.2)^{2} \frac{16 f}{10.8^{2}}=16.8 \mathrm{psi} \\
& Q_{24}=24.8 \mathrm{gpm} ; \bar{V}_{24}=14.9 \mathrm{ft} / \mathrm{s} ; \quad R C=1.03 \times 10^{5} \text {; and } f=0.018 \\
& \Delta p_{24}=f\left(\frac{L}{D}+\frac{L E}{D}\right) \frac{\rho V^{2}}{2}=0.018\left(\frac{480}{0.824}+30\right) \frac{1}{2} \times 1.94 \frac{\operatorname{sing}}{f+3} \pi(14.9)^{2} \frac{f t^{2}}{s^{2}} \times \frac{16 f \cdot 5^{2}}{5 \operatorname{lug} \cdot 4 t^{2}} \times \frac{f+2}{144 \mathrm{~m}^{2}}=16.5 \text { psi }
\end{aligned}
$$

The pump outlet pressure is

$$
\Delta p_{p \text { emp }}=\Delta p_{12}+\Delta p_{23}=(5.4+16.8) \text { psi }=22.2 \text { psi }
$$

The branch flow rates are
$Q_{23} \approx 5.2 \mathrm{gpm}$
$Q_{24} \approx 24.8 \mathrm{gpm}$

* Value of f obtained from Eq 8.37 using Excel's solve (or Goalsrah)

Open-Ended Problem Statement: Why does the shower temperature change when a toilet is flushed? Sketch pressure curves for the hot and cold water supply systems to explain what happens.
Discussion: Assume the pressure in the water main servicing the dwelling remains constant. The hot and cold water flow rates reaching the shower are controlled by valve(s) in the shower. Assuming a water heater temperature of $140^{\circ} \mathrm{F}$, a cold water temperature of $60^{\circ} \mathrm{F}$, and a shower water temperature of $100^{\circ} \mathrm{F}$, the hot and cold flow rates must be equal. The two water streams mix before reaching the shower head, then spray out into the shower itself at $100^{\circ} \mathrm{F}$.

Supply curves and system curves for the hot and cold water streams are shown below. Diagram a is the cold water system and diagram b is the hot water system. The numerical values are representative of an actual system.
In general the supply curves for the hot and cold streams are not the same. The difference is caused by the two systems having different pipe lengths and different fittings.
Each stream operates at the flow rate where the curves intersect. An equal flow split is accomplished by adjusting the shower valves to vary their resistances.
Flushing the toilet temporarily increases the flow rate of cold water to the bathroom. This reduces the cold water supply pressure reaching the shower. The system curves do not change because the valve settings stay the same. Therefore the flow rate of cold water must decrease to again match the supply and system curves (diagram c).
When the flow rate of cold water decreases the shower temperature increases, as experience testifies!
(a) Cold water system:

	System Curve	Supply Curve
Q (gpm)	p (psig)	p (psig)
0	0.00	50.0
0.2	0.53	49.6
0.4	2.13	48.6
0.6	4.80	46.8
0.8	8.53	44.3
1.0	13.3	41.1
1.2	19.2	37.2
1.4	26.1	32.6
1.6	34.1	27.2
1.7	38.5	24.3
1.8		21.2

(b) Hot water system:

	System Curve	Supply Curve
Q (gpm)	P (psig)	p (psig)
0	0.00	50.0
0.2	0.71	49.8
0.4	2.84	49.3
0.6	6.40	48.4
0.8	11.38	47.2
1.0	17.78	45.6
1.2	25.60	43.6
1.4	34.84	41.3
1.6	45.51	38.6
1.7		37.2
1.8		

(c) Cold water system: toilet flush

	System Curve	Old Supply Curve	Now Supply Curve
Q (gpm)	ρ (psig)	ρ (psig)	ρ (psig)
0	0.00	50.0	50.0
0.2	0.53	49.6	49.6
0.4	2.13	48.6	48.2
0.6	4.80	46.8	46.0
0.8	8.53	44.3	42.9
1.0	13.3	41.1	38.9
1.2	19.2	37.2	34.0
1.4	26.1	32.6	28.2
1.430	27.27	31.8	27.28
1.6	34.1	27.2	21.6
1.7	38.5	24.3	
1.8			

Given: Water flow at $300 \mathrm{gpm}\left(150^{\circ} \mathrm{F}\right)$ through a 3 in . diameter orifice installed in a 6 in i id. pipe.

Find: Pressure drop across corner taps.
Solution: Apply analysis of Section 8-10; data from Fig. 8.21 apply. Computing equation:

$$
\begin{equation*}
\dot{m}_{a c t u a l}=K A_{t} \sqrt{2 p\left(p_{1}-p_{2}\right)} \tag{8,51}
\end{equation*}
$$

Flow coefficient is $K=K\left(R e_{D_{1}}, \frac{D_{t}}{D_{1}}\right)$. At $150^{\circ} \mathrm{F}, \nu=4.64 \times 10^{-6} \mathrm{ft}^{2} / \mathrm{s}($ Table A.7).
Thus,

$$
\begin{aligned}
& V_{1}=\frac{Q}{A}=300 \frac{\mathrm{gat}}{\mathrm{~min}} \times \frac{4}{\pi(0.5)^{2} \mathrm{ft}^{2}} \times \frac{\mathrm{ft}}{7.48 \mathrm{ga} /} \times \frac{\mathrm{min}}{5}=3.40 \mathrm{ft} / \mathrm{s} \\
& R e_{D_{1}}=\frac{V_{D}}{2}=3.40 \frac{\mathrm{ft}}{\mathrm{~s}} \times 0.5 \mathrm{ft}_{\times} \frac{\mathrm{s}}{4.69 \times 10^{-6} \mathrm{f}^{2}}=3.62 \times 10^{5} \\
& \beta=\frac{D_{t}}{D_{1}}=\frac{3 \mathrm{in}}{6 \dot{\mathrm{n}} .}=0.5
\end{aligned}
$$

From Fig. 8.21, $K=0.624$. Then, from E9. 8.51,

$$
\begin{aligned}
& \Delta p=\left(\frac{\dot{m}}{K A_{t}}\right)^{2} \frac{1}{2 \rho}=\left(\frac{P Q}{K A_{t}}\right)^{2} \frac{1}{2 \rho}=\frac{\rho}{2}\left(\frac{Q}{K A_{t}}\right)^{2}
\end{aligned}
$$

$$
\begin{aligned}
& \Delta t=462 \mathrm{lbf} / \mathrm{ft}^{2}(3.21 \mathrm{psi})
\end{aligned}
$$

Problem 8.159

Gwen: Square-edged orifice, $d_{t}=100 \mathrm{~mm}$, used to meter air fou in a 150 mld . line. The pressure upstream of the orifice is $p_{1}=600$ kia. The pressure drop across the orifice is $\Delta P=750 \mathrm{mmHit}$. The air temperature is $25^{\circ} \mathrm{C}$
Find: the volume flow rate of air in the line
Solution: Apply analysis of section 8-10; data from Fig. 8.23 apply
Computing equation:

$$
\begin{equation*}
r_{\text {actual }}=K A_{t} \sqrt{2 p\left(p_{1} \cdot p_{2}\right)} \tag{8.56}
\end{equation*}
$$

Since $\dot{m}=p Q$, then

$$
p_{1} \cdot p_{2}=750 \mathrm{~mm} H_{20}=p g \Delta h_{H_{20}}=999 \frac{\mathrm{~kg}}{\mathrm{~m}^{3}} \times 9.81 \frac{\mathrm{H}}{\mathrm{~s}^{2}} \times 0.75 \mathrm{~m} \times \frac{\mathrm{k} \mathrm{~s}^{2}}{\mathrm{~kg}^{\mathrm{m}}}=7.35 \mathrm{RR}
$$

For the small $A-P$. the assumption of incompressible flow is certainty valid

$$
p=\frac{P_{1}}{k T}=701 \times 10^{3} \frac{\mathrm{~N}}{\mathrm{H}^{2}} \times \frac{\mathrm{kg}}{2} \frac{\mathrm{~J}}{\mathrm{~J}}=\frac{1}{298 k} \times \frac{\mathrm{J}}{\mathrm{~N} \cdot \mathrm{~m}}=8.20 \mathrm{~kg} / \mathrm{m}^{3}
$$

The flow coefficient $k=k$ (hen, $\frac{2 t}{i}$)
Assume $R_{e}>2+10^{5}$. For $\beta=\frac{\lambda_{2}}{9}=\frac{2}{3}$, from Fig. $8.20, k=0.675$

$$
\begin{align*}
& Q=k a_{+} \sqrt{\frac{2\left(\rho_{1} \cdot f_{2}\right)}{p}}=0.625 \frac{\pi}{4}(0.1 \mathrm{~m})^{2}\left[2 \times 7350 \frac{\mathrm{~N}}{M^{2}} \times 8.20 \frac{\mathrm{~m}^{2}}{\mathrm{~kg}} \times \frac{\mathrm{kg} \cdot \mathrm{M}}{\mathrm{~N}} \mathrm{~s}^{2 / 2}\right]^{1 / 2} \\
& Q=0.224 \mathrm{~m}^{3} / \mathrm{s}
\end{align*}
$$

Geek Re. $T=25^{\circ} \mathrm{C} \quad \mu=1.84 \times 10^{-5} \mathrm{N.s} / \mathrm{m}^{2}$ (Table A. CO)

$$
\begin{aligned}
& R_{e}=\frac{P D V}{\mu}=\frac{P Q Q}{\mu H}=\frac{P Q Q \frac{H}{\mu \pi \nu^{2}}=\frac{4 P Q}{\pi \mu \nu}}{R_{t}=\frac{4}{\pi} \times 8.2 \frac{\mathrm{ta}_{2}}{\mu_{2}} \times 0.224 \frac{m^{3}}{5} \times \frac{1}{1.84 \times 10^{-5}} \frac{\mu^{2}}{\sqrt{3}} \times \frac{1}{0.15 r^{2}} \times \frac{A .5^{2}}{\sqrt{2 g} \cdot M}}
\end{aligned}
$$

$R_{e}=8.47 \times 10^{5}$, assumption is valid

Problem 8.160 (In Excel)

A smooth 200 m pipe, 100 mm diameter connects two reservoirs (the entrance and exit of the pipe are sharp-edged). At the midpoint of the pipe is an orifice plate with diameter 40 mm . If the water levels in the reservoirs differ by 30 m , estimate the pressure differential indicated by the orifice plate and the flow rate.

Given: Data on pipe-reservoir system and orifice plate

Find: Pressure differential at orifice plate; flow rate

Solution

Governing equations:

$$
\begin{align*}
& \left(\frac{p_{1}}{\rho}+\alpha_{1} \cdot \frac{\mathrm{~V}_{1}^{2}}{2}+\mathrm{g} \cdot \mathrm{z}_{1}\right)-\left(\frac{\mathrm{p}_{2}}{\rho}+\alpha_{2} \cdot \frac{\mathrm{~V}_{2}^{2}}{2}+\mathrm{g} \cdot \mathrm{z}_{2}\right)=\mathrm{h}_{\mathrm{IT}}=\mathrm{h}_{\mathrm{l}}+\Sigma \mathrm{h}_{\mathrm{lm}} \tag{8.29}\\
& \mathrm{~h}_{\mathrm{l}}=\mathrm{f} \cdot \frac{\mathrm{~L}}{\mathrm{D}} \cdot \frac{\mathrm{~V}^{2}}{2}
\end{align*}
$$

There are three minor losses: at the entrance; at the orifice plate; at the exit. For each
$\mathrm{h}_{\mathrm{lm}}=\mathrm{K} \cdot \frac{\mathrm{V}^{2}}{2}$
$\mathrm{f}=\frac{64}{\mathrm{Re}} \quad$ (Laminar)
$\frac{1}{f^{0.5}}=-2.0 \cdot \log \left(\frac{\frac{\mathrm{e}}{\mathrm{D}}}{3.7}+\frac{2.51}{\operatorname{Re} \cdot \mathrm{f}^{0.5}}\right) \quad$ (Turbulent)

The energy equation (Eq. 8.29) becomes $(\alpha=1)$
$g \cdot \Delta H=\frac{\mathrm{V}^{2}}{2} \cdot\left(\mathrm{f} \cdot \frac{\mathrm{L}}{\mathrm{D}}+\mathrm{K}_{\mathrm{ent}}+\mathrm{K}_{\text {orifice }}+\mathrm{K}_{\mathrm{exit}}\right)$
(ΔH is the difference in reservoir heights)
This cannot be solved for V (and hence Q) because f depends on V; we can solve by manually iterating, or by using Solver

The tricky part to this problem is that the orifice loss coefficient $K_{\text {orifice }}$ is given in Fig. 8.23 as a percentage of pressure differential Δp across the orifice, which is unknown until V is known!

The mass flow rate is given by
$m_{\text {rate }}=K \cdot A_{t} \cdot \sqrt{2 \cdot \rho \cdot \Delta p}$
where K is the orifice flow coefficient, A_{t} is the orifice area, and Δp is the pressure drop across the orifice
where K is the orifice flow coefficient, A_{t} is the orifice area, and Δp is the pressure drop across the orifice

Equations 1 and 2 form a set for solving for TWO unknowns: the pressure drop Δp across the orifice (leading to a value for $K_{\text {orifice) }}$ and the velocity V. The easiest way to do this is by using Solver

Given data:

ΔH	$=$		30
	$=$	m	
L	$=$	200	
D	$=$	100	
mm			
D_{t}	$=$		40
β	$=$		mm
		0.40	

Tabulated or graphical data:

$$
\begin{array}{rlll}
K_{\text {ent }}= & 0.50 & (\text { Fig. } 8.14) \\
K_{\text {exit }} & = & 1.00 & (\text { Fig. } 8.14) \\
\text { Loss at orifice } & = & 80 \% & (\text { Fig. } 8.23) \\
\mu= & 0.001 & \mathrm{~N} . \mathrm{s} / \mathrm{m}^{2} \\
\rho= & 999 & \mathrm{~kg} / \mathrm{m}^{3} \\
& (\text { Water }- \text { Appendix A) }
\end{array}
$$

Computed results:

Orifice loss coefficient:

$$
K=0.61
$$

(Fig. 8.20
Assuming high $R e$)

Flow system:

$$
\begin{array}{rlr}
V & =2.25 & \mathrm{~m} / \mathrm{s} \\
Q & = & 0.0176 \\
\mathrm{~m}^{3} / \mathrm{s} \\
R e & = & 2.24 \mathrm{E}+05 \\
f & =0.0153
\end{array}
$$

Orifice pressure drop

$$
\Delta p=\quad 265 \quad \mathrm{kPa}
$$

Eq. 1, solved by varying V AND Δp, using Solver :

Left (m$\left.{ }^{2} / \mathbf{s}\right)$	Right $\left(\mathrm{m}^{2} / \mathbf{s}\right)$	Error
294	293	0.5%

Eq. 2 and $m_{\text {rate }}=\rho Q$ compared, varying V AND Δp

$\boldsymbol{m}_{\text {rate }}(\mathbf{k g} / \mathbf{s})=$| (From $Q)$ | (From Eq. 2) | Error |
| :---: | :---: | :---: |
| 17.6 | 17.6 | 0.0% |

Procedure using Solver:
a) Guess at V and Δp
b) Compute error in Eq. 1
c) Compute error in mass flow rate
d) Minimize total error
e) Minimize total error by varying V and Δp

Given: Venturi meter with 75 mm throat, installed in 150 mm diameter line carrying water at $25^{\circ} \mathrm{C}$. Pressure drop between upstream and throat taps is 300 mm Hg .

Find: Flow rate of water.
Solution: Apply analysis of Section 8-10.3.
computing equation:

$$
\begin{equation*}
\dot{m}_{a c t u a l}=\frac{C A_{t}}{\sqrt{1-\beta^{4}}} \sqrt{2 p\left(p_{1}-p_{2}\right)} \tag{8,52}
\end{equation*}
$$

For $R e_{0,}>2 \times 10^{5}, 0.980<c<0.995$. Assume $c=0.99$, then check Re.

$$
\begin{aligned}
& \beta=\frac{D_{t}}{D_{1}}=\frac{75 \mathrm{~mm}}{150 \mathrm{~mm}}=0.5 \\
& \Delta p=p_{1}-p_{2}=\rho_{\mathrm{Hg}} g \Delta h=56 \rho_{\text {tho }} g \Delta h \\
& \dot{m}=\rho Q, s 0 \\
& Q=\frac{C A_{t}}{\sqrt{1-\beta^{4}}} \sqrt{2 S G g \Delta h} \\
& Q=\frac{0.99}{\sqrt{1-(0.5)^{4}}} \frac{\pi}{4}(0.075)^{2} \mathrm{~m}^{2} \sqrt{2 \times 13.6 \times 9.8 \frac{\mathrm{~m}}{s^{2}} \times 0.3 \mathrm{~m}}=0.0404 \mathrm{~m}^{3} / \mathrm{s}
\end{aligned}
$$

Thus

$$
\begin{aligned}
& \text { us }=\frac{Q}{\vec{A}_{1}}=0.0404 \frac{\mathrm{~m}^{3}}{\mathrm{~s}^{-}} \times \frac{4}{\pi(0.15)^{2} \mathrm{~m}^{2}}=2.29 \mathrm{~m} / \mathrm{s} \\
& R_{D_{1}}=\frac{\vec{V} D_{1}}{v}=2.29 \frac{\mathrm{~m}}{\mathrm{~s}} \times 0.15 \mathrm{~m} \times \frac{\mathrm{S}}{8.93 \times 10^{-7} \mathrm{~m}^{2}}=3.85 \times 10^{5} \quad(\nu \text { from Table A.8) }
\end{aligned}
$$

Thus $\operatorname{Re}_{D_{1}}>2 \times 10^{5}$. The volume flow rate of water is

$$
Q=0.0404 \mathrm{~m}^{3} / \mathrm{s}
$$

Given: Flow of gasoline through a venter meter.

$$
S G=0.73, D_{1}=2.0 \mathrm{in}, D_{t}=1.0 \mathrm{in}, \Delta h=380 \mathrm{~mm} \mathrm{Hg}
$$

Find: Volume flow rate of gasoline.
Solution: Apply the analysis of Section 8-10.3.
Computing equations:

$$
\begin{align*}
& \text { mactual }=\frac{C A_{t}}{\sqrt{1-p^{4}}} \sqrt{2 \rho\left(p,-p_{2}\right)} \tag{8,52}\\
& C=0.99 \text { for } R_{C_{D_{1}}}>2 \times 10^{5}
\end{align*}
$$

For the manometer, $\Delta p=\rho_{H g} g \Delta h=s G_{H g} \rho_{H_{2} O} g \Delta h$
Then

$$
\begin{aligned}
& Q=\frac{\dot{m}}{\rho}=\frac{C A_{t}}{\sqrt{1-\beta^{4}}} \sqrt{\frac{2 \Delta p}{\rho}}=\frac{C A_{t}}{\sqrt{1-\beta^{4}}} \sqrt{\frac{2 S G_{H g} \rho_{H_{0} 0} g \Delta h}{S G_{g a_{1}} \rho_{t+0}}}=\frac{C A_{t}}{\sqrt{1-\beta^{4}}} \sqrt{\frac{2 S G_{H g} g \Delta h}{S G_{g} a_{s}}} \\
& Q=\frac{0.99}{\sqrt{1-(0.5)^{4}}} \frac{\pi}{4}(0.0254)^{2} \mathrm{~m}^{2} \sqrt{2 \times \frac{13.6}{0.73} \times 9.81 \frac{\mathrm{~m}}{s^{2}} \times 0.38 \mathrm{~m}}=0.00611 \mathrm{~m} 3 / \mathrm{s}
\end{aligned}
$$

Now check key notes number:

$$
\bar{V}_{1}=\frac{Q}{A_{1}}=0.00611 \frac{\mathrm{~m}^{3}}{\mathrm{~s}} \times \frac{4}{\pi(0.0508)^{2} \mathrm{~m}^{2}}=3.01 \mathrm{~m} / \mathrm{s}
$$

Assume viscosity midway between octane and heptane at $20^{\circ} \mathrm{C}$. From Fig. A. ls

$$
\begin{aligned}
& \mu \approx 5.0 \times 10^{-4} \mathrm{~N} \cdot 3 / \mathrm{m} \\
& R_{E_{D_{1}}}=\frac{P \bar{v}_{1} D_{1}}{\mu}=(0.73) 1000 \frac{\mathrm{~kg}}{\mathrm{~m}^{3}} \times 3.01 \frac{\mathrm{~m}}{\mathrm{~s}^{2}} \times 0.0588 \mathrm{~m} \frac{\mathrm{~m}^{2}}{5.0 \times 10^{-4 N \cdot 3}} \times \frac{N . \mathrm{s}^{2}}{\mathrm{~kg} \cdot \mathrm{~m}}=2.23 \times 10^{5}
\end{aligned}
$$

Thus assumption that $C=0.99$ is okay

$$
Q=0.00611 \mathrm{~m}^{3} / \mathrm{s}
$$

Given: Flow of water through venturi meter.

$$
D_{1}=2 \text { in. } \quad D_{t}=1 \text { in. } \quad \Delta p=20 \text { psi }
$$

Find: Volume flow rate of water.
Solution: Apply the analysis of Section 8-10.3.
Computing equations:

$$
\begin{align*}
& \dot{m}_{\text {actual }}=\frac{C A_{t}}{\sqrt{1-\beta^{4}}} \sqrt{2 \rho\left(p_{1}-p_{2}\right)} \tag{8.52}\\
& C=0.99 \text { for } R e_{D_{1}}>2 \times 10^{5}
\end{align*}
$$

Then
Then $Q=\frac{\dot{m}}{\rho}=\frac{C A_{t}}{\sqrt{1-\beta^{4}}} \sqrt{\frac{2 \Delta p}{\rho}}$

$$
\begin{aligned}
& Q=136 \mathrm{gal} / \mathrm{min}
\end{aligned}
$$

The Reynolds number (with v from Table A.7) is

$$
\begin{aligned}
R C_{D_{1}} & =\frac{\bar{\nabla}_{1} D_{1}}{\nu}=\frac{Q}{A} \frac{D_{1}}{\nu}=\frac{4 Q}{\pi D_{1}^{2}} \frac{D_{1}}{\nu}=\frac{4 Q}{\pi \nu D_{1}} \\
& =\frac{4}{\pi} \times 136 \frac{9 a 1}{m i n} \times \frac{5}{1.08 \times 10^{-5} 4^{2}} \times \frac{1}{(2 / 12) f^{\prime}} \times \frac{4+3}{7.48901} \times \frac{m i n}{603} \\
R e_{D_{1}} & =2.14 \times 10^{5}
\end{aligned}
$$

Therefore $c=0.99$ may be used,

Problem 8.164

Given: Test of 1.6ℓ internal combustion engine at 6000 rpm . Meter air with flow nozz/c, $\Delta h \leqslant 0.25 \mathrm{~m}$. Ma, 10 niter reads to $\pm 0.5 \mathrm{~mm}$ of water.

Find: (a) Flow nozz/< diameter required.
(b) Minimums rate of air flow that can be measured $t 2$ percent.

Solution: Apply computing equation for flow nozzle.
computing equation: $\dot{m}=k A_{t} \sqrt{2 \rho\left(p_{1}-p_{2}\right)}$
Assumptions: (1) $K=0.97$ (section 8-10.26.)
(2) $\beta=0$ (nozzle inlet is from atmosphere)
(3) Four-stroke equele engine with 100 percent volumetric efficiency (\forall /rev $=$ displacement $/ 2$)
(4) standard air

Then

$$
\dot{m}=\rho Q=1.23 \frac{\mathrm{~kg}}{\mathrm{~m}^{3}} \times \frac{1.6 \mathrm{l}}{2 \mathrm{rev}} \times 6000 \frac{\mathrm{rev}}{\mathrm{~min}} \times \frac{\mathrm{m}^{3}}{1000 e^{2}} \times \frac{\mathrm{min}}{60 \mathrm{~s}}=0.0984 \mathrm{~kg} / \mathrm{s}
$$

Solving for A_{4},

$$
\begin{aligned}
& A_{t}=\frac{\dot{m}}{K \sqrt{2 \rho \Delta p}}=\frac{\dot{m}}{K \sqrt{2 \rho \rho_{H_{L} \Delta g \Delta h}}} \\
& A_{t}=0.0984 \frac{\mathrm{~kg}}{S} \times \frac{1}{0.97}\left[\frac{1}{2} \times \frac{m^{3}}{1.23 \mathrm{~kg}} \times \frac{m^{3}}{999 \mathrm{~kg}} \times \frac{5^{2}}{9.81 \mathrm{~m}^{2}} \times \frac{1}{0.25 \mathrm{~m}}\right]^{\frac{1}{2}}=1.31 \times 10^{-3} \mathrm{~m} \\
& A_{t}=\frac{\pi D_{t}^{2}}{4} ; D_{t}=\sqrt{\frac{4 A_{t}}{\pi}}=40.8 \mathrm{~mm}
\end{aligned}
$$

The allowable error is ± 2 percent, or $\pm 0.0 z$. As discussed in Apppodid $E_{\text {, }}$ the square-root relationship halves the experimental! uncertainty: Thus

$$
e= \pm 0.02 \text { when } e_{\Delta h}= \pm 0.04 ; \Delta h_{\min }=\frac{ \pm 0.5 \mathrm{~mm}}{ \pm 0.04}=12.5 \mathrm{~mm}
$$

$$
\dot{m}_{\min } \simeq \dot{m} \sqrt{\frac{\Delta h_{\min }}{\Delta h}}=0.0984 \frac{\mathrm{~kg}}{\mathrm{~s}} \sqrt{\frac{12.5 \mathrm{~mm}}{250 \mathrm{~mm}}}=0.0220 \mathrm{~kg} / \mathrm{s}
$$

The air flow rate could be meas wired with \pm percent accuracy down to above

$$
\omega=6000 \mathrm{rpm} \frac{0.0220}{0.0984}=1340 \mathrm{rpm} .
$$

with this setup.

Problem 8.165

Given: Venturi meter with 75 mm diameter throat installed in a 150 mp diameter line. Upstream impressure is 400 kPa and the temperature is $20^{\circ} \mathrm{C}$.

Find: (a) Maximuen mass flow rate for incompressible assumption. (b) Corresponding pressure drop on mercury manometer.

Solution: use analysis of section 8-10.3.
Computing equation: $\dot{m}_{a c t i a}=\frac{c A_{t}}{\sqrt{1-\beta^{4}}} \sqrt{2 p\left(p_{1}-p_{2}\right)}$
Assumptions: a) Neglect change in density
(2) Teal gas

Then

For incompressible flow, $v \leqslant 100 \mathrm{~m} / \mathrm{s}$ at the throat. This

$$
\begin{aligned}
& \dot{m}=\rho V_{2} A_{1}=476 \frac{\mathrm{~kg}}{\mathrm{~m}^{3}} \times 100 \mathrm{~m} \\
& \dot{m} \times \frac{\pi}{4}(0.075)^{2} m^{2} \\
& \dot{m}=2.10 \mathrm{~kg} / \mathrm{s},(\text { maximum mass flow rate) }
\end{aligned}
$$

The pressure drop may be calculated by solving Eq. 8.52:

$$
\Delta p=p_{1}-p_{2}=\rho_{H g} g \Delta h=\frac{1}{2 \rho}\left(\frac{\dot{m}}{c A_{t}}\right)^{2}\left(1-\beta^{4}\right)
$$

Thus

$$
\Delta h=\frac{\Delta p}{\rho+g g}=\frac{1}{2 \rho \rho_{\operatorname{Hg}} g}\left(\frac{\dot{h}}{C A_{t}}\right)^{2}\left(1-\beta^{4}\right)
$$

For $R C_{D_{1}} \geqslant 2 \times 10^{5}, C=0.99$ may be used. Substituting,

$$
\begin{aligned}
& \Delta h=\frac{1}{2} \times \frac{m^{3}}{4.76 \mathrm{~kg}} \times \frac{\mathrm{m}^{3}}{(13.6) 1000 \mathrm{~kg}} \times \frac{\mathrm{s}^{2}}{9.81 \mathrm{~m}}\left[2.10 \frac{\mathrm{~kg}}{3} \times \frac{1}{0.79} \times \frac{4}{\pi(0.075)^{2} \mathrm{~m}^{2}}\right]^{2}\left[1-(0.5)^{4}\right] \\
& \Delta h=0.170 \mathrm{~m}(170 \mathrm{~mm} \mathrm{Hg})
\end{aligned}
$$

Checking the Reynolds number ($u=1.81 \times 10^{-5} \mathrm{Nis} / \mathrm{im}^{2}$, Table A. to

$$
\begin{aligned}
& R e_{D_{1}}=\frac{\bar{V} D_{1}}{\nu}=\frac{\rho \bar{V} D_{1}}{\mu}=\rho \bar{V} \frac{\pi D_{1}^{2}}{4} \frac{4}{\pi \mu D_{1}}=\frac{4 \mathrm{~m}}{\pi \mu D_{1}} \\
& R e_{D_{1}}=\frac{4}{\pi} \times 2.10 \frac{\mathrm{~kg}}{\mathrm{~s}} \times \frac{\mathrm{m}^{2}}{1.81 \times 10^{-5} \mathrm{~N} \cdot 3} \times \frac{1}{0.15 \mathrm{~m}} \times \frac{\mathrm{N} \cdot \mathrm{~s}^{2}}{\mathrm{~kg} \cdot \mathrm{~m}}=9.85 \times 10^{5}>2 \times 10^{5}
\end{aligned}
$$

Therefore use of $C=0.99$ is appropriate.

Given: Water at $70^{\circ} \mathrm{F}$ flows through a ventura.

Find: Estimate the maximuers flow rate with no cavitation. (Express answer is cis.)
Solution: Apply flow meter equation.
computing equation: $\quad \dot{m}=\frac{C A_{t}}{\sqrt{1-\beta^{4}}} \sqrt{2 p\left(p_{1}-p_{2}\right)} ; \quad \beta^{2}=A_{t} / A_{1}$,
Assure e $C=0.99$ for $R e_{D_{1}} \geqslant 2 \times 10^{5}$.
Cavitation occurs when $p_{2} \leqslant p_{v}$. From steam table, $p_{v}=0.363$ psia at 70 F . Thus

$$
p_{1}-p_{2}=(14.7+5.0)-0.363=19.3 p s i
$$

and

$$
\begin{aligned}
& \dot{m}=0.99 \times 0.025 f^{2} \frac{1}{\sqrt[x]{1-(0.025 / 0.1)^{2}}}\left[2 \times 1.94 \frac{\operatorname{sing}}{f t^{3}} \times 19.3 \frac{16 f}{1 n e^{2}} \times \frac{144}{\left.\frac{1 n^{2}}{f f^{2}} \times \frac{s / u g \cdot f}{16 f \cdot s^{2}}\right]^{1 / 2}}\right. \\
& \dot{m}=2.65 \mathrm{~s} / \mathrm{ug} / \mathrm{s}
\end{aligned}
$$

But $\dot{m}=\rho \bar{V}_{A}=\rho Q$, so

$$
Q=\frac{\dot{m}}{\rho}=2.65 \frac{\mathrm{~s} / \mathrm{hg}}{\mathrm{sec}} \times \frac{\mathrm{f}^{3}}{1.94 \mathrm{~s} / 4 \mathrm{~g}}=1.37 \mathrm{ft} 3 / \mathrm{s}
$$

$\left\{\right.$ Note $\left.Q=1.37 \frac{\mathrm{ft}^{3}}{\mathrm{~s}} \times 7.48 \frac{\mathrm{gal}}{\mathrm{ft}^{3}} \times 60 \frac{\mathrm{~s}}{\mathrm{~min}}=613 \mathrm{gpm}.\right\}$
At $70 \mathrm{~F}, \nu=1.05 \times 10^{-5} \mathrm{f} \mathrm{t}^{2} / \mathrm{s}($ Table $A .7) . \therefore R_{D_{1}}=\frac{\bar{v}_{1} D_{1}}{\nu} A_{1}=\frac{\pi D_{1}}{4}$; so

$$
D_{1}=\sqrt{\frac{4 A_{1}}{\pi}}=\sqrt{\frac{4}{\pi} \times 0.1 \mathrm{fr}^{2}}=0.357 \mathrm{ft}(4.28 \mathrm{in}): \bar{V}_{1}=\frac{Q_{1}}{A_{1}}=1.37 \mathrm{ft}^{3} \times \frac{1}{0.1 \mathrm{ft}^{-}}=13.7 \mathrm{ft} / \mathrm{s}
$$

Then

$$
R_{D_{1}}=13.7 \frac{\mathrm{ft}}{\mathrm{~s}^{5}} \times 0.357 \mathrm{ft} \times \frac{\mathrm{s}}{\frac{1}{05} \times 10^{-5} \mathrm{fr}^{*}}=4.66 \times 10^{5} \text {, so } C=0.99 \text { is okay, } \mathrm{vr}
$$

Given: Flow nozzle installation in pipe as shown.

Find: Head loss between sectors (1) and (3), expressed in coefficient form, $c_{l}=\frac{p_{1}-p_{3}}{p_{1}-p_{2}}$, show $c_{l}=\frac{1-A_{2} / A_{1}}{1+A_{2} / A_{1}}$
Plot: C_{l} vs. $D_{2} D_{1}$
Solution: Apply the Bernoulli, continuity, momentum and energy equations, using the CV shown.
Basic equations: $\quad \frac{p_{1}}{f}+\frac{\bar{v}_{2}^{2}}{2}+g \hat{y}_{1}^{(4)}=\frac{p_{2}}{p}+\frac{\bar{v}_{2}^{2}}{2}+g z_{2}^{(\psi)}$

$$
\begin{aligned}
& 0=\frac{\partial}{\partial t} \int_{c v}^{o(t)} \rho d t+\int_{C S} \rho \vec{v} \cdot d \vec{A} \\
& F_{s_{X}}+F_{f_{k}}^{=\alpha(s)}=\partial^{0} \int_{c v}^{=o(1)} u \rho d t+\int_{c s} u f \vec{v} \cdot d \vec{d} \\
& \dot{Q}+\dot{w}_{s}^{=(s)}=\frac{\partial}{\dot{1}} \int_{C V}^{=o(1)} c f d t+\int_{C S}\left(u+\frac{\bar{v}^{2}}{2}+g^{(4)}+\vec{p}\right) \rho \vec{v} \cdot d \vec{A}
\end{aligned}
$$

Assumptions: (i) Steady flow.
(a) Incompressible flow
(3) No friction between (1) and (2
(4) Neglect elevation terms
(s) $F E_{x}=0$
(b) $\dot{W}_{s}=0$
(7) Uniform flow at coach section

From continuity,

$$
Q=\bar{V}_{1} A_{1}=\bar{V}_{2} A_{2}=\bar{V}_{3} A_{3}
$$

Apply Bernoulli along a streamline from (1) to (2), noting $A_{1}=A_{x}$,

$$
\frac{p_{1}-p_{2}}{\rho}=\frac{\bar{V}_{2}^{2}-\nabla_{1}^{2}}{2}=\frac{\nabla_{2}^{2}}{2}\left[1-\left(\frac{A_{2}}{A_{1}}\right)^{2}\right]=\frac{\nabla_{2}^{2}}{2}\left[1-\left(\frac{A_{2}}{A_{3}}\right)^{2}\right]
$$

From momentum, and using continuity,

$$
F_{s x}=\phi_{2} A_{1}-p_{2} A_{3}=\nabla_{2}\left\{-\left|\rho \bar{V}_{2} A_{2}\right|\right\}+\nabla_{3}\left\{+\left|\rho \nabla_{3} A_{3}\right|\right\}=\left(\bar{V}_{3}-\bar{V}_{2}\right) \rho \bar{V}_{3} A_{3}
$$

or $\quad \frac{p_{3}-p_{2}}{\rho}=\bar{V}_{3}\left(\bar{V}_{2}-\nabla_{3}\right)=\bar{V}_{2} \frac{A_{2}}{A_{3}}\left[\nabla_{2}-\nabla_{2} \frac{A_{2}}{A_{3}}\right]=\bar{V}_{2}^{2} \frac{A_{2}}{A_{3}}\left(1-\frac{A_{2}}{A_{3}}\right)$
From energy,

$$
\dot{Q}=\left(u_{2}+\frac{\nabla_{2}^{2}}{2}+\frac{p_{2}}{\rho}\right)\left\{-\left|\rho \bar{v}_{2} A_{2}\right|\right\}+\left(u_{3}+\frac{\bar{v}_{3}^{2}}{2}+\frac{p_{3}}{\rho}\right)\left\{\left|\rho \bar{v}_{3} A_{3}\right|\right\}
$$

or $h_{e_{23}}=u_{3}-u_{2}-\frac{\dot{Q}}{\dot{m}}=\frac{\bar{V}_{2}^{2}-\bar{V}_{3}^{2}}{2}-\frac{p_{3}-p_{2}}{\rho}=\frac{\bar{V}_{2}^{2}}{2}\left[1-\left(\frac{A_{2}}{A_{3}}\right)^{2}\right]-\frac{p_{3}-p_{2}}{\rho}$
But $h_{e_{12}} \simeq 0$ by assumption (3), so $h_{c_{13}}=h_{e_{23}}$ and using momentum

$$
h_{C_{13}} \simeq \frac{\bar{V}_{2}^{2}}{2}\left[1-\left(\frac{A_{2}}{A_{3}}\right)^{2}\right]-\bar{V}_{2}^{2} \frac{A_{2}}{A_{3}}\left(1-\frac{A_{2}}{A_{3}}\right)
$$

After a little algebra, this may be written

$$
h_{e_{13}} \simeq \frac{\bar{V}_{2}^{2}}{2}\left(1-\frac{A_{2}}{A_{3}}\right)^{2}
$$

Dividing by $\left(p_{1}-p_{n}\right) / f$, a loss coefficient is derived as

$$
C_{l}=\frac{h_{1 / 3}}{\left(p_{1}-p_{2} 3 / p\right.}=\frac{\frac{\nabla_{2}^{2}}{2}\left(1-\frac{A_{2}}{A_{3}}\right)^{2}}{\frac{V_{2}^{2}}{2}\left[1-\left(\frac{A_{2}}{A_{3}}\right)^{2}\right]}=\frac{\left(1-A_{2 / A_{3}}\right)^{2}}{\left[1-\left(A_{2} / A_{3}\right)^{2}\right]}
$$

But $1-\left(\frac{A_{2}}{A_{3}}\right)^{2}=\left(1+\frac{A_{2}}{A_{3}}\right)\left(1-\frac{A_{2}}{A_{3}}\right)$, so

$$
c_{l}=\frac{h_{1} / 3}{\left(p_{1}-p_{2}\right) / \rho}=\frac{1-A_{2} / A_{3}}{1+A_{2} / A_{3}}
$$

Plotting:

Open-Ended Problem Statement: In some western states, water for mining and irrigation was sold by the "miner's inch," the rate at which water flows through an opening in a vertical plank of $1 \mathrm{in}^{2}$. area, up to 4 in . tall, under a head of 6 to 9 in . Develop an equation to predict the flow rate through such an orifice. Specify clearly the aspect ratio of the opening, thickness of the plank, and datum level for measurement of head (top, bottom, or middle of the opening). Show that the unit of measure varies from 38.4 (in Colorado) to 50 (in Arizona, Idaho, Nevada, and Utah) miner's inches equal to $1 \mathrm{ft}^{3} / \mathrm{s}$.
Analysis: The geometry of the opening in a vertical plank is shown. The analysis includes the effect on flow speed of the variation in water depth vertically across the opening.

Aspect ratio, ar $\frac{H_{0}}{\omega} ;$ area, $A=\omega H_{0}=1 \mathrm{in}^{2}$
$\alpha=0,1 / 2,1$
$Q_{g \operatorname{com}}=\int v d A=\int_{a}^{b} \sqrt{2 g y} \omega d y=\omega \sqrt{2 g}\left[\frac{2}{3} y^{3 / 2}\right]_{a}^{b}=\frac{2}{3} u \operatorname{ra} \sqrt{2 g a}\left[\left(\frac{b}{a}\right)^{3 / 2}-1\right]$
For ar $=1, \alpha=0, a=H=9 \mathrm{in}, b=10.0 \mathrm{in}, w=1.0 \mathrm{in}$.

$$
Q_{\text {geom }}=\frac{2}{3} \times 1.0 \mathrm{in} \times 9 \text { in }\left[2 \times 32.2 \frac{\mathrm{ft}}{\mathrm{~s}} \times 9 \mathrm{in} \times \times \frac{f+}{12 \mathrm{~m}}\right]^{\frac{1}{2}}\left[\left(\frac{10}{9}\right)^{3 / 2}-1\right] \frac{\mathrm{ft}^{2}}{144 \mathrm{~m}^{2}}=0.0496 \frac{\mathrm{ft3}}{\mathrm{~s}}
$$

$Q_{\text {actual }}=0.6$ Qgeam $=0.0297 \mathrm{f3} / \mathrm{s} ;$ thes $1 / 0.0297=33.6 \mathrm{MI}=1 \mathrm{cfs}$

Numerical results are presented in the spread sheet on the next page.
Discussion: All results assume a vena contracta in the liquid jet leaving the opening, reducing the effective flow area to 60 percent of the geometric area of the opening.

The calculated unit of measure varies from 31.3 to 52.4 miner's inch per cubic foot of water flow per second. This range encompasses the 38.4 and 50 values given in the problem statement.
Trends may be summarized as follows. The largest flow rate occurs when datum H is measured to the top of the opening in the vertical plank. This gives the deepest submergence and thus the highest flow speeds through the opening.
When $a r=1$, the opening is square; when $a r=16$, the opening is 4 inches tall and $1 / 4$ inch wide. Increasing ar from 1 to 16 increases the flow rate through the opening when H is measured to the top of the opening, because it increases the submergence of the lower portion of the opening, thus increasing the flow speeds. When H is measured to the center of the opening $a r$ has almost no effect on flow rate. When H is measured to the bottom of the opening, increasing ar reduces the flow rate. For this case, the depth of the opening decreases as ar becomes larger.

Plank thickness does not affect calculated flow rates since a vena contracta is assumed. In this flow model, water separates from the interior edges of the opening in the vertical plank. Only if the plank were several inches thick might the stream reattach and affect the flow rate.

The actual relationship between $Q_{\text {flow }}$ and $Q_{\text {geom }}$ might be a weak function of aspect ratio. The flow separates from all four edges of the opening in the vertical plank. At large $a r$, contraction on the narrow ends of the stream has a relatively small effect on flow area. As ar approaches 1 the effect becomes more pronounced, but would need to be measured experimentally. Assuming a constant 60 percent area fraction certainly gives reasonable trends.
\qquad

Computation of "Miner's Inch" in Engineering Units:

a	$=$ depth to top of opening	
$a r$	$=$ aspect ratio of opening	$\left.(--)^{-}\right)$
A	$=$ area of opening	$1 \mathrm{in}^{2}{ }^{2}$
b	$=$ depth to bottom of opening	(in.)
H	$=$ nominal head	(in.)
H_{0}	$=$ height of opening	(in.)
$M I$	$=$ "miner's inch"	(mixed)
Q	$=$ volume flow rate	($\left.\mathrm{ft}^{3} / \mathrm{s}\right)$
W	$=$ width of opening	(in.)

Assume $Q_{\text {flow }}=0.6 \times Q_{\text {geometric }}$ to account for contraction of the stream leaving the opening.
(a) Measure H to top of opening:

H	$a r$	H_{0}	a	b	w	$Q_{\text {geom }}$	$Q_{\text {flow }}$	$M / / c f s$
9	1	1.00	9.00	10.0	1.00	0.0496	0.0297	33.6
9	2	1.41	9.00	10.4	0.707	0.0501	0.0301	33.3
9	4	2.00	9.00	11.0	0.500	0.0509	0.0305	32.8
9	8	2.83	9.00	11.8	0.354	0.0519	0.0311	32.1
9	16	4.00	9.00	13.0	0.250	0.0533	0.0320	31.3
6	1	1.00	6.00	7.00	1.00	0.0410	0.0246	40.6
6	2	1.41	6.00	7.41	0.707	0.0416	0.0250	40.0
6	4	2.00	6.00	8.00	0.500	0.0425	0.0255	39.2
6	8	2.83	6.00	8.83	0.354	0.0437	0.0262	38.1
6	16	4.00	6.00	10.0	0.250	0.0454	0.0272	36.7

(b) Measure H to middle of opening:

\boldsymbol{H}	$\boldsymbol{a r}$	\boldsymbol{H}_{0}	\boldsymbol{a}	\boldsymbol{b}	\boldsymbol{w}	$Q_{\text {geom }}$	$Q_{\text {now }}$	MI/cfs
9	1	1.00	8.50	9.50	1.00	0.0483	0.0290	34.5
9	2	1.41	8.29	9.71	0.707	0.0483	0.0290	34.5
9	4	2.00	8.00	10.0	0.500	0.0482	0.0289	34.6
9	8	2.83	7.59	10.4	0.354	0.0482	0.0289	34.6
9	16	4.00	7.00	11.0	0.250	0.0482	0.0289	34.6
6	1	1.00	5.50	6.50	1.00	0.0394	0.0236	42.3
6	2	1.41	5.29	6.71	0.707	0.0394	0.0236	42.3
6	4	2.00	5.00	7.00	0.500	0.0394	0.0236	42.3
6	8	2.83	4.59	7.41	0.354	0.0393	0.0236	42.4
6	16	4.00	4.00	8.00	0.250	0.0392	0.0235	42.5

(c) Measure H to bottom of opening:

H	$a r$	H_{0}	a	b	w	$Q_{\text {geom }}$	$Q_{\text {now }}$	$M I / c f s$
9	1	1.00	8.00	9.00	1.00	0.0469	0.0281	35.5
9	2	1.41	7.59	9.00	0.707	0.0463	0.0278	36.0
9	4	2.00	7.00	9.00	0.500	0.0455	0.0273	36.7
9	8	2.83	6.17	9.00	0.354	0.0442	0.0265	37.7
9	16	4.00	5.00	9.00	0.250	0.0424	0.0254	39.3
6	1	1.00	5.00	6.00	1.00	0.0377	0.0226	44.2
6	2	1.41	4.59	6.00	0.707	0.0370	0.0222	45.1
6	4	2.00	4.00	6.00	0.500	0.0359	0.0215	46.4
6	8	2.83	3.17	6.00	0.354	0.0343	0.0206	48.6
6	16	4.00	2.00	6.00	0.250	0.0318	0.0191	52.4

Given: Fipe-flow experiment with flow straight ene made from straws.
Find: (a) Reyna ids number for flow in each straw.
(b) Friction factor for flow in each straw.

$$
\begin{aligned}
& K_{e \cap t}=1.4 \\
& \alpha=2.0
\end{aligned}
$$

(c) Gage pressure at exit from straws.

Solution: Apply energy equation for steady, incompressible pipe flows.

Computing equation:

$$
\begin{aligned}
& \frac{p_{1}}{\bar{p}}+\alpha_{1}{\overline{\bar{p}_{1}}}^{2}+g(1) \hat{z}_{1}=\frac{p_{2}}{p}+\alpha_{2} \frac{\bar{v}_{2}^{2}}{2}+q \hat{p}_{2}+h_{\angle T} \\
& h_{L T}=h_{l}+h_{l m}=f \frac{L}{D} \frac{\bar{V}^{2}}{2}+K_{\text {end }} \frac{\bar{V}^{2}}{2}=\left(f \frac{L}{D}+k_{\text {end }}\right) \frac{\bar{V}^{2}}{2}
\end{aligned}
$$

Assumptions: (1) Flow from atmosphere: $p_{1}=$ pate $\bar{V}_{1} \approx 0$
(2) Horizontal
(3) Neglect thickness of straws

Then

$$
\begin{aligned}
& \bar{V}_{2}=\frac{Q}{A}=100 \frac{\mathrm{~m}^{3}}{h r} \cdot \frac{4}{\pi(0.0635)^{2} \mathrm{~m}^{2}} \times \frac{h r}{36003}=8.77 \mathrm{~m} / \mathrm{s} \\
& \operatorname{Re}_{d}=\frac{\bar{V}_{2} d}{v}=8.77 \frac{\mathrm{~m}}{\mathrm{sec}} \times 0.003 \mathrm{~m} \times \frac{\mathrm{sec}}{1.46 \times 10^{-5} \mathrm{~m}^{2}}=1800
\end{aligned}
$$

For laminar flow,

$$
f=\frac{64}{R_{e}}=\frac{64}{1800}=0.0356
$$

The gage pressure at (2) is

$$
\begin{aligned}
p_{2 g} & =-\frac{p_{\mathrm{V}}^{2}}{2}\left(\alpha_{2}+K_{e n t}+f \frac{L}{D}\right) \\
& =-\frac{1}{2} \times 1.25 \frac{\mathrm{~kg}}{\mathrm{~m}^{3}} \times(8.77)^{2} \frac{m^{2}}{\mathrm{~s}^{2}}\left(2.0+1.4+0.0356 \times \frac{230 \mathrm{~mm}}{3 \mathrm{~mm}}\right) \frac{\mathrm{N} \cdot \mathrm{~s}^{2}}{\mathrm{~kg}_{\mathrm{g}}} \\
p_{2 g} & =-290 \mathrm{~N} / \mathrm{m}^{2}(g a g \mathrm{l})
\end{aligned}
$$

This pressure drop is equivalent to

$$
\Delta h=\frac{\Delta t}{\rho_{H_{1}} g}=290 \frac{\mathrm{~N}}{\mathrm{~m}^{2}} \times \frac{\mathrm{m}^{3}}{999 \mathrm{~kg}} \times \frac{\mathrm{s}^{2}}{9.81 \mathrm{~m}^{2}} \times \frac{\mathrm{kg} \cdot \mathrm{~m}}{\mathrm{~N} \cdot \mathrm{~s}^{2}}=29.6 \mathrm{~mm} \mathrm{H}_{2} \mathrm{O}
$$

Comments: (1) This pressure drop is targe enough to meascine readily. The straws could be used as a flow meter.
(2) straws would eliminate anejswiri from the flow.

Given: Volume flow rate in a circular duct is to be measured using a "Pitot traverse," by measuring the velocity in each of several area segments across the duct, then summing.
Find: Comment on the way the traverse should be set up. Quantify and plot the expected error in measurement of flow rate as a function of the number of radial locations used in the traverse.
Solution: First divide the duct cross section into segments of equal area. Then measure velocity at the mean area of each segment.

Assume flow is turbulent, and that the velocity profile is well represented by the $1 / 7$ power profile. From Eq. 8.24 the ratio of average flow velocity to centerline velocity is 0.817 .

Distinguish two cases, depending on whether velocity is measured at the centerline.
Case 1: Measure velocity at the duct centerline, plus at $(k-1)$ other locations.
For $k=1$, the sole measurement is at the duct centerline. This measures the centerline velocity U, which is $1 / 0.817=1.22$ times the average flow velocity ${ }^{-}$. Thus the volume flow rate estimated by this 1-point measurement is 22 percent larger than the true value.

For $k=2$, the duct is divided into two segments of equal area. The centerline velocity is measured and assigned the half of the duct area surrounding the centerline. The second measurement point is located at the midpoint of the remaining half of the duct area. Thus this point is located at the radius that encloses $3 / 4$ of the duct area, or $r_{2} / R=(3 / 4)^{1 / 2}=0.866$, as shown on the attached spreadsheet. The velocity ratio at this point is $\bar{u} / U=0.92$. Averaging the segmental flow rates gives $(1.22+0.92) / 2=1.07$. Thus the volume flow rate estimated by this 2 -point measurement is 7 percent high.

For $k=3$, the duct is divided into three portions of equal area. The centerline velocity is measured and assigned the one-third of the duct area surrounding the centerline. The second measurement point is located at the midpoint of the second one-third of the duct area. This point is located at the radius that encloses half the duct area, or at $r_{2} / R=(1 / 2)^{1 / 2}=0.707$. The third measurement point is located at the midpoint of the third one-third of the duct area. This point is located at the radius enclosing $5 / 6$ of the duct area, or at $r_{3} / R=(5 / 6)^{1 / 2}=0.913$.

Results of calculations for $k=4$ and 5 are also given on the spreadsheet.
Case 2: Measure velocity at k locations, not including the centerline.
For $k=1$, the radius is chosen at half the duct area. Thus $r_{1} / R=(1 / 2)^{1 / 2}=0.707, \bar{u} / U=$ 0.839 , and $\bar{u} I^{-}=1.03$, or about 3 percent too high, as shown on the spreadsheet.

For $k=2$, the duct is divided into two equal areas. The first measurement is made at the midpoint of the inner area, where the radius includes one fourth of the total area. The second is made at the midpoint of the outer area, where the radius includes three fourths of the total duct area. The results are shown; the flow rate estimate is high by about 1.4 percent.

For $k=3$, the duct is divided into three equal areas. The first measurement is made at the midpoint of the inner $1 / 3$ of the duct area, where the radius includes $1 / 6$ of the total area. The second is made at the midpoint of the second $1 / 3$ of the duct area, where the radius includes $1 / 2$ of the total duct area. The third is made at the midpoint of the third $1 / 3$ of the duct area, where the radius includes $5 / 6$ of the total duct area. The results are shown; the flow rate estimate is high by about 0.9 percent.

Results of calculations for $k=4$ and 5 also are given on the spreadsheet.
Remarkably, Case 2 gives less than 2 percent error for any number of locations.
$V_{\text {bar }} U=0.817 \quad n=7 \quad k=$ Number of measurement points

Case 1: Measure at centerline plus at $(k-1)$ other locations

	Case 1	Case 2
\boldsymbol{k}	e(\%)	e(\%)
1	22.4	2.7
2	7.2	1.4
3	3.9	0.9
4	2.5	0.7
5	1.8	0.5

Open-Ended Problem Statement: The chilled-water pipeline system that provides air conditioning for the Purdue University campus is described in Problem 8.140. The pipe diameter is selected to minimize total cost (capital cost plus operating cost). Annualized costs are compared, since capital cost occurs once and operating cost continues for the life of the system. The optimum diameter depends on both cost factors and operating conditions; the analysis must be repeated when these variables change. Perform a pipeline optimization analysis. Solve Problem 8.140 arranging your calculations to study the effect of pipe diameter on annual pumping cost. (Assume friction factor remains constant.) Obtain an expression for total annual cost per unit delivery (e.g., dollars per cubic meter), assuming construction cost varies as the square of pipe diameter. Obtain an analytic relation for the pipe diameter that yields minimum total cost per unit delivery. Assume the present chilledwater pipeline was optimized for a 20 -year life with 5 percent annual interest. Repeat the optimization for a design to operate at 30 percent larger flow rate. Plot the annual cost for electrical energy for pumping and the capital cost, using the flow conditions of Problem 8.140 , with pipe diameter varied from 300 to 900 mm . Show how the diameter may be chosen to minimize total cost. How sensitive are the results to interest rate?
(From Problem 8.140: The pipe makes a loop 3 miles in length. The pipe diameter is 2 ft and the material is steel. The maximum design volume flow rate is $11,200 \mathrm{gpm}$. The circulating pump is driven by an electric motor. The efficiencies of pump and motor are η_{p} $=0.80$ and $\eta_{m}=0.90$, respectively. Electricity cost is $\$ 0.067 /(\mathrm{kW} \cdot \mathrm{hr})$.)
Analysis: From Problem 8.140, the electrical energy for pumping costs $\$ 714,000$ per year for 11,200 gallons per minute circulation. The present lirie, with $D=24$ in., is optimized for this flow rate, $w=Q \Delta p$, so $\omega / Q=\Delta p$.

The optimum pipe diameter minimizes total annualized cost, for constraction and operation of the pipeline, $c_{t}=c_{c}+c_{p}$. construetion cost c_{c} is a one-time cost. Annualized purmping cost $C p$ is computed by surrming the present worth of each annual pumping cost over the liftime of the pipeline. For 20 sears at 5 percent per year, spwt $=13.1$ (see spreadsheet). Costs may be expressed in thrms of dianuter as

$$
\begin{equation*}
C_{t}=C_{C}+C_{p}=K_{C} D^{2}+\frac{K_{P}}{D^{5}} \tag{1}
\end{equation*}
$$

For the optrinusi diameter, $d K_{t / d D}=2 K_{c} D-5 K_{p} D^{-6}=0$, 3o

$$
K_{c}=\frac{5 K_{p}}{2 D}=\frac{5 C_{p}}{2 D^{2}}=\frac{5}{2} \times(13.1)^{\frac{1}{4} / 78,000 \times \frac{1}{(24)^{2} i^{2} 2^{2}}}=\frac{\$ 9890 / \mathrm{in}^{2}}{}
$$

From Eq.,

Calculations with these values are shown on the spreedshet.

Thus
To optimize at a new, larger fowrate, note $C_{P} \sim \Delta p \sim f \frac{L}{D} \frac{P \bar{v}^{2}}{2}=f \frac{L}{D} \frac{P}{2}\left(\frac{Q}{A}\right)^{2} \sim f \frac{Q^{2}}{D^{5}}$
$K_{p}($ new $)=k_{p}(a(d))\left(Q_{\text {new }}\right)^{2}=(1.3)^{2} K_{p}($ ord $)=3.06 \times 10^{13}$ s.in, 5 The new optirition is at
$D \approx 25.9 \mathrm{in}$, as shown on the second plot.
Results are not too sensitive to interest rate; only Kpvaries. Dopt $\rightarrow 25$ in, for $i=15 \%$.

Annual interest rate (\%)

	Annual interest rate (\%)			
Year	5	10	15	20
1	$p w f$	$p w f$	$p w f$	$p w f$
2	0.952	0.909	0.870	0.833
3	0.907	0.826	0.756	0.694
4	0.864	0.751	0.658	0.579
5	0.823	0.683	0.572	0.482
6	0.784	0.621	0.497	0.402
7	0.746	0.564	0.432	0.335
8	0.711	0.513	0.376	0.279
9	0.677	0.467	0.327	0.233
10	0.645	0.424	0.284	0.194
11	0.614	0.386	0.247	0.162
12	0.585	0.350	0.215	0.135
13	0.557	0.319	0.187	0.112
14	0.530	0.290	0.163	0.0935
15	0.505	0.263	0.141	0.0779
16	0.481	0.239	0.123	0.0649
17	0.458	0.218	0.107	0.0541
18	0.436	0.198	0.0929	0.0451
19	0.416	0.180	0.0808	0.0376
20	0.396	0.164	0.0703	0.0313
Sum:	13.1	9.4	7.2	5.8

$K_{c}=9,890 \quad \$ / \mathrm{in}^{2} \quad$ Cost of construction per diameter squared
$K_{p}=$

Pipe Piameter,	Cost of Pumping, D (in.)	Cost to Construct,	Total Cost, $C_{p}\left(10^{6} \$\right)$
15	23.9	2.23	26.1
$C_{c}\left(10^{6} \$\right)$	$C_{t}\left(10^{6} \$\right)$		
16	17.3	2.53	19.8
17	12.8	2.86	15.6
18	9.59	3.20	12.8
19	7.32	3.57	10.9
20	5.67	3.96	9.62
21	4.44	4.36	8.80
22	3.52	4.79	8.30
23	2.82	5.23	8.05
24	2.28	5.70	7.97
25	1.86	6.18	8.04
26	1.53	6.69	8.21
27	1.26	7.21	8.47
28	1.05	7.75	8.81
29	0.884	8.32	9.20
30	0.746	8.90	9.65

$K_{c}=9,890 \quad \$ / \mathrm{in} .^{2} \quad$ Cost of construction per diameter squared $K_{p}=3.06 \mathrm{E}+13 \$^{*} \mathrm{in}^{5} \quad$ Present worth $20-\mathrm{yr}$ cost of pumping $14,600 \mathrm{gpm}$

[^0]: * Compared to the negligible aerodynamic drag in air.

[^1]: * Note effect of roundofferror.

