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CHAPTER 1 Introduction
Classical methods for designing turbomachinery are based on scaling relations for non-
dimensional numbers, like the flow number and the head coefficient, and experimental
correlations to correct for the limitations of one-dimensional flow-analysis methods. One
approach to improving the design of turbomachinery is formed by more detailed analyses
of the flow phenomena that occur in such machinery. The results of such analyses indi-
cate what part of the geometry of the machine must be modified in order to improve its
performance. Preferably, such analyses also give a quantification of the performance. In
addition, such simulations can enhance the qualitative understanding of the flow. Of
course, experimental validation is always required, but an analysis tool makes it possible
to greatly reduce the required number of experiments: the analysis tool forms a “compu-
ter wind tunnel”. Furthermore, computer simulations can generally be performed much
more rapidly than real, physical experiments. Hence, the cost (in time and money) of
such “computer experiments” is usually much smaller than that of the corresponding
physical experiments.
The objective of this course is therefore to give more detailed knowledge of the flow in
turbomachinery, in particular of pumps and fans for which the compressibility of the fluid
can be neglected. Hence, this course goes beyond the simple one-dimensional methods
that are discussed in the course Turbomachinery I. These one-dimensional methods give
a thorough qualitative understanding of the basic physics, and of the energy transfer in
particular.
Generally the flow field in turbomachines is very complicated, due to its three-dimen-
sional nature and the rapidly changing curvature of the passages in rotating impellers. In
addition, turbomachines exhibit unsteady behaviour as a result of the interaction between
rotating and stationary parts. Considering these complexities, most analyses of the flow
fields are based on numerical methods for solving the simplified governing equations.
This chapter gives some mathematical notations and mathematical theorems that will be
used subsequently.

Mathematical notation
The magnitude (or length) of a vector  is defined by

(1.1)

The inner product of two vectors  and  is a scalar
defined by

inner product (1.2)

The inner product equals , where  is the angle between the vectors
 and . Note that the two vectors are perpendicular (or orthogonal) when .

The cross product (or outer product) of two vectors  and
 is a vector defined by

a ax ay az, ,( )T=

a ax
2 ay

2 az
2+ +=

a ax ay az, ,( )T= b bx by bz, ,( )T=

a b• axbx ayby azbz+ +=

a b• a b θcos= θ
a b a b• 0=

a ax ay az, ,( )T=
b bx by bz, ,( )T=
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Introduction
cross product
(1.3)

The cross product  is a vector that is perpendicular to the vectors ,  and its
magnitude is equal to , where  is the angle between the vectors  and .

divergence The divergence of a vector field 
is a scalar field defined by

(1.4)

where ,  and  are the (Cartesian) components of the velocity vector .

gradient, rotation (curl) The gradient  of a scalar field  and the rotation (or curl)  of a vector
field  are vector fields that are defined by

(1.5)

Now some examples will be given. Consider the first velocity field

(1.6)

This velocity field, corresponding to a two-dimensional source of strength  at the ori-
gin, has zero divergence, except at the origin where the velocity is singular. The rotation,
or curl of this velocity field is zero, i.e. .

In the second example the velocity field is

(1.7)

This velocity field corresponds to a rigid-body rotation around the -axis with angular
speed . It has zero divergence and its rotation (or curl) equals .

Stokes theorem is

Stokes theorem
(1.8)

where C is a closed contour around surface S.

Gauss theorem, or divergence theorem, for an arbitrary function  is

Gauss theorem; divergence 
theorem (1.9)

where V is a volume with closed boundary S and the outward unit normal vector on sur-
face  is .

a b× aybz azby– azbx axbz– axby aybx–, ,( )T
=

c a b×= a b
a b θsin θ a b

v x y z t, , ,( ) vx x y z t, , ,( ) vy x y z t, , ,( ) vz x y z t, , ,( ), ,( )T=

∇ v•
x∂

∂vx

y∂
∂vy

z∂
∂vz+ +=

vx vy vz v

∇φ φ x y z t, , ,( ) ∇ v×
v x y z t, , ,( )

φ∇

x∂
∂φ

y∂
∂φ

z∂
∂φ

= ∇ v×

y∂
∂vz

z∂
∂vy–

z∂
∂vx

x∂
∂vz–

x∂
∂vy

y∂
∂vx–

=

v
q

2π
------ x

x2 y2+
---------------- y

x2 y2+
---------------- 0, ,

 
 

T
=

q

∇ v× 0 0 0, ,( )T=

v Ω y– x 0, ,( )T=

z
Ω ∇ v× 0 0 2Ω, ,( )T=

v sd•
C

∫° v∇×( ) Ad•
S

∫=

φ x( )

φ∇ Vd

V

∫ φn Sd

S

∫=

S n
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CHAPTER 2 Flow equations
This chapter deals with the conservation laws of physics. Then these conservation laws
are made nondimensional. By a closer analysis of conditions prevalent in turbomachines,
the conservation laws are simplified. Firstly, the definition of vorticity will be introduced.

Vorticity

vorticity A quantity of great interest in fluid dynamics is vorticity , which is defined as

, (2.1)

where  is the velocity vector. This can be interpreted as twice a local angular velocity of
a fluid element [1]. For instance, for a rigid body motion with angular velocity , the
velocity is given by  with position vector  and hence the vorticity is indeed

.

Material derivative

material derivative
convective derivative

Here the time derivative, when following a fluid particle, of a quantity like temperature
will be determined. This is the material derivative, or convective derivative.

Now consider the change in  οf a fluid particle. This quantity changes due to the time-
dependent change and due to the movement of the fluid

(2.2)

The second step in this derivation follows from a Taylor expansion. Note that after a time
interval of  the fluid particle that is at position  at time  will have moved to posi-
tion . The material derivative consists of two terms, a local time derivative and
a convective term.

ω

ω v∇×=

v
Ω

v Ω r×= r
ω 2Ω=

φ

Dφ
Dt
------- φ x v∆t+ t ∆t+,( ) φ x t,( )–

∆t
--------------------------------------------------------------

∆ t 0→
lim=

φ x t,( )
t∂

∂φ∆t ∆tv φ∇•+ + φ x t,( )–

∆t
---------------------------------------------------------------------------------------

∆ t 0→
lim=

t∂
∂φ

v φ∇•+=

∆t x t
x v∆t+
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Flow equations
Reynolds transport theorem
Consider an arbitrary extensive quantity  of a system (i.e. consisting of moving fluid
particles) with corresponding intensive quantity  (per unit mass)

(2.3)

Then Reynolds transport theorem [2] states

Reynolds transport theorem

(2.4)

where the second equality follows from Gauss theorem (1.9) and the definition (2.2) of
the material derivative.

Conservation laws
The general conservation equations of fluid mechanics will be given here. These are [1]

• conservation of mass

• conservation of momentum

• conservation of angular momentum

• conservation of energy

Conservation of mass
The conservation law of mass, or continuity equation, is

conservation of mass; conti-
nuity equation (2.5)

where  is the density,  is the velocity vector. 

Conservation of momentum
The conservation laws of momentum, or Navier Stokes equations are

conservation of momentum; 
Navier-Stokes equations

(2.6)

where  is the total stress tensor,  is the pressure,  is the deviatoric stress tensor
and  denotes body forces like gravity. The deviatoric stress tensor is the part of the
stress tensor excluding the hydrostatic part (pressure). Hence the total stress tensor and
the deviatoric stress tensor are related by

deviatoric stress (2.7)

Φ
φ

Φ
system

ρ x t,( )φ x t,( ) Vd

V system( )
∫=

td
dΦ

system

ρ x t,( )
t∂

∂ φ x t,( ) Vd

V
∫ ρ x t,( )φ x t,( ) v x t,( ) n•[ ] Sd

S
∫+=

ρ x t,( )
Dφ x t,( )

Dt
------------------- Vd

V
∫=

Dρ
Dt
------- ρ v∇•+ 0=

ρ v

ρDv
Dt
------- σ∇• ρ f+=

p∇– σ′∇• ρ f+ +=

σ p σ′
f

σ pI– σ′+=
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Conservation laws
where  is the identity tensor 
For the Newtonian fluids that are considered here the deviatoric stress  is related line-
arly to the strain rate 

Newtonian fluid
(2.8)

index notation In index notation a summation over repeated subscripts is implied. For example

. (2.9)

Another example is

(2.10)

In index notation, the expression (2.8) for the deviatoric stress tensor becomes

(2.11)

dynamic viscosity; kine-
matic viscosity

where µ is the dynamic viscosity of the fluid and  is the Kronecker symbol:
 if  and  otherwise. The last term in between the brackets is

such as to make . The kinematic viscosity  is defined by .

Conservation of angular momentum
The conservation law of angular momentum is

conservation of angular 
momentum (2.12)

which means that the deviatoric stress tensor , and hence the total stress tensor , is
symmetric.
Note that this conservation law is automatically satisfied for a Newtonian fluid.

Conservation of energy
The conservation law of energy of energy, or the first law of thermodynamics, can be
stated as follows: for a system composed of fluid particles, the change of the sum of the
kinetic energy and the internal energy equals the sum of work done on the system (per
unit time), , and the heat added to the system (per unit time), . The kinetic energy
of the system  and the internal energy  are defined by

(2.13)

In this section index notation is used once more, implying a summation over repeated
subscripts. For example, in the term  a summation over the  index is implied.
The work done on the system, , consists of work done by volume forces and of work
done by surface forces

I
σ′

σ′ µ v∇ v∇( )T 2
3
---I v∇•–+=

xi∂
∂vi

x1∂
∂v1

x2∂
∂v2

x3∂
∂v3+ + v∇•= =

∂2φ
∂xj∂xj

--------------- ∂2φ
∂x1

2
--------- ∂2φ

∂x2
2

--------- ∂2φ
∂x3

2
---------+ + φ∇ 2= =

σ'ij µ
xj∂

∂vi

xi∂
∂vj 2

3
---δij xk∂

∂vk–+
 
 
 

=

δij
δij 1= i j= δij 0=

σ'ii 0= ν ν µ ρ⁄=

σ' σ'
T

= σ'ij σ'ji=

σ' σ

W Q
K E

K ρ1
2
---vivi Vd

V system( )
∫= E ρe Vd

V system( )
∫=

vivi i
W
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Flow equations
(2.14)

The heat added to the system is given by

(2.15)

where  is the heat-flux vector at the boundary. The minus sign for the heat-flux term is
present since the normal vector  is directed outward. 

The conservation of energy equation, , now becomes upon
use of Reynolds transport theorem (2.4)

(2.16)

Using Gauss theorem (1.9) for the surface integrals and noting that the result must hold
for any volume  we obtain

(2.17)

The term inside the brackets equals zero, as follows from the conservation law of
momentum (2.6). The conservation law of energy becomes

conservation of energy

(2.18)

The heat-flux vector  is defined by Fourier’s law

Fourier’s law
(2.19)

where  is the absolute temperature and  is the heat-conduction coefficient, which is
assumed to be constant (and isotropic).

Using the Gibbs thermodynamic relation  (with  the specific vol-
ume, i.e. ), the decomposition of stress (2.7) and the continuity equation
(2.5), we obtain the dissipation equation 

dissipation equation
(2.20)

The term on the left-hand side gives the increase in entropy , the first term on the right-
hand side gives the conduction of heat, while the second term on the right-hand side
gives the dissipation due to viscosity. In index notation this second term is ,
where again a summation over the  and  subscripts is implied.

In the energy equation a number of thermodynamic quantities are present. To complete
the system of equations, a thermodynamic equation of state is required that describes the
thermodynamic properties of the fluid. In general, relations for the temperature , pres-
sure  and internal energy  are necessary

W ρvifi Vd
V
∫ vi σijnj( ) Sd

S
∫+=

Q qjnj Sd

S
∫–=

qi
ni

K E+( )d dt⁄ W Q+=

ρ D
Dt
------ 1

2
---vivi e+ 

  Vd

V
∫ vifi Vd

V
∫ vi σijnj( ) Sd

S
∫ qjnj Sd

S
∫–+=

V

ρ D
Dt
------e σij xj∂

∂vi–
xj∂

∂qj+ vi xj∂
∂σij ρfi ρ D

Dt
------vi–+

 
 
 

=

ρ D
Dt
------e σij xj∂

∂vi

xj∂
∂qj–=

qi

qi λ
xi∂

∂T
–=

T λ

Tds de pdυ+= υ
υ 1 ρ⁄=

ρT
Ds
Dt
------- λ T∇ 2 σ′ v∇:+=

s

σ'ij vj∂ xi∂⁄
i j

T
p e
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Dimensional analysis
(2.21)

ideal gas For an ideal gas with constant specific heat coefficients  and  

(2.22)

where  is the gas constant (with ) and ,  and  are entropy,
temperature and pressure at a reference state.

Dimensional analysis
dimensional analysis In general the governing equations are (hardly) solvable due to their complicated and

nonlinear character. A suitable means to investigate whether a simplification is feasible
in specific circumstances is by dimensional analysis.
Firstly, all variables are made nondimensional by scaling them with a quantity that is
characteristic for the situation at hand. The new, nondimensional variables will then be
of order of magnitude 1. For instance, the velocities  are written as , where

 is the nondimensional velocity and  is a characteristic velocity scale.
The variables of interest are made nondimensional as follows:

(2.23)

Nondimensional variables are denoted with a *.  is a characteristic velocity,  is a
characteristic length,  is a characteristic density,  is a characteristic temperature.
The nondimensional equations for a Newtonian fluid that result are

(2.24)

(2.25)

(2.26)

where the nondimensional variables are denoted without a * for the sake of convenience!
The nondimensional numbers present in these equations are respectively the Reynolds,
Prandtl, Péclet and Eckert numbers

Reynolds number
(2.27)

(2.28)

e e s ρ,( )= T
s∂

∂e
 
 

ρ
= p

1
ρ
---

 
 ∂

∂e

 
 
 
 
 

s

–=

cp cv

e cvT=
p
ρ
--- RT= s sref– cp

T
Tref
--------ln R p

pref
--------ln–=

R R cp cv–= sref Tref pref

v v Uv∗=
v∗ U

v Uv∗= ∇ ∇ ∗
L

-------= t
L
U
---- t∗= ρ ρ0ρ∗=

T T0T∗= p ρ0U2p∗= s cps∗=

U L
ρ0 T0

Dρ
Dt
------- ρ v∇•+ 0=

Dv
Dt
------- 1

ρ
---– p∇ 1

Re
------ σ'∇•+=

ρT
Ds
Dt
------- 1

RePr
------------- T∇ 2 Ec

Re
------σ′ v∇:+=

Re
ρ0UL

µ
-------------- inertia forces

viscous forces
----------------------------------= =

Pr
cpµ
λ

-------- viscous dissipation
thermal dissipation
---------------------------------------------= =
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Flow equations
(2.29)

(2.30)

Two limiting cases can be distinguished: (i) creeping flows with  where inertia
terms can be neglected relative to viscous terms and (ii) inviscid flows with 
where viscous terms can be neglected relative to inertia terms.
The flow conditions in turbomachinery are usually such that . Typical values for
the characteristic scales are L = 1 m, U = 1 m/s, νair = 1×10–5 m2/s, νwater = 1×10–6 m2/
s, corresponding to Reynolds numbers .
The Prandtl and Eckert numbers are usually of the order of magnitude 1, so

(2.31)

This implies that for flows with large Reynolds number the viscous terms can be
neglected from the momentum equations.
A similar consideration of the dissipation equation shows that for large Reynolds num-
bers the flow can be considered as isentropic

isentropic flow
(2.32)

boundary layers A consequence of neglecting the viscous terms is that, in mathematical terms, the order
of the governing partial differential equations is reduced. This means that not all bound-
ary conditions can be enforced. The stick condition (or no-slip condition) at solid walls
can not be enforced, but only that there is no flow through solid walls. This means that
the assumptions made are not valid near a solid wall, where a boundary layer will be
present. The same applies to wakes. Hence, regions near the wall and in wakes have to be
analysed differently. This is the subject of boundary-layer theory, see also Chapter 8.

Inviscid flow

inviscid flow When the viscous terms are neglected we speak of inviscid flow. Note that these are not
only a property of the fluid, but also of the flow conditions. The governing equations of
inviscid flows are

(2.33)

Euler equations
(2.34)

(2.35)

These equations can not be used when viscous terms are important, such as in boundary
layers, wakes and turbulence.

Pe RePr
entropy increase
heat conduction
---------------------------------------= =

Ec
U2

cpT0

----------- kinetic energy
thermal energy
------------------------------------= =

Re 1«
Re 1»

Re 1»

Re 105 106–=

1
Re
------ 1«

1
RePr
------------- 1«

Ec
Re
------ 1«

Ds
Dt
------- 0=

Dρ
Dt
------- ρ v∇•+ 0= conservation of mass

Dv
Dt
------- 1

ρ
---– p∇ g+= Euler equations

Ds
Dt
------- 0= isentropic flow
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Turbulence
Turbulence

Most of the flows in turbomachines are turbulent, with laminar and transitional regimes
occurring near the leading edges of impeller and diffuser blades. Turbulence is character-
ised by irregular fluctuations. Its origin is often the result of instability of the laminar
flow. 
In most theories of turbulence the so-called Reynolds averaging is employed, see [30].
The velocity is decomposed into a time-averaged value and a fluctuating part. Substitu-
tion of this decomposition into the Navier-Stokes equations leads to an extra term in the
Navier-Stokes equations. This extra term, the Reynolds stress, consists of the correlation
between the fluctuations. The problem is that this correlation is not related (directly) to
the time-averaged velocity, which is the primary variable in the Reynolds-averaged
Navier-Stokes equations. Thus, there is a closure problem in turbulence. Assumptions
have to be made for this correlation term, i.e. extra equations relating the correlations to
primary variables like the time-averaged velocity. The subject of turbulence modelling is
a vast and important field in itself, but it is beyond the scope of this course.
An overview of turbulence modelling in the context of turbomachinery is given in [14].

Irrotational flow

A further simplification of inviscid flow is obtained by considering irrotational flows.
Before proceeding with a discussion of these, Kelvin’s (or Thompson’s) theorem of con-
servation of circulation for inviscid flows will be derived. Circulation around a closed
contour C is defined by

circulation
(2.36)

The material derivative of the circulation is

(2.37)

The second term of the right-hand side equals zero, since  and
. Using Stokes theorem (1.8), the first term can be

written as

(2.38)

From the Euler equation (2.34) it follows that this equation can be rewritten as

, (2.39)

since  for an arbitrary scalar function . The result is Kelvin’s circulation
theorem

Kelvin’s circulation theorem
(2.40)

Γ C( ) v sd•
C
∫°=

D
Dt
------Γ C( )

D
Dt
------v sd•

C
∫° v

D
Dt
------ sd•

C
∫°+=

Dds Dt⁄ vd=
v vd•

C∫° 1 2⁄( ) v2( )d
C∫° 0= =

D
Dt
------v sd•

C
∫°

D
Dt
------v∇× 

  Ad•
S
∫=

D
Dt
------v∇×

 
  Ad•

S
∫

1
ρ
--- p∇∇×( ) Ad•

S
∫– 0= =

φ∇∇× 0= φ

D
Dt
------Γ 0=
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Flow equations
In words this means that, when moving with the flow, circulation does not change in
inviscid flows.
Application of Stokes theorem gives

(2.41)

when following the flow.
An important consequence of this theorem is that when the inflow is irrotational for
inviscid flow, the flow remains irrotational. Then the flow is irrotational everywhere!

irrotational flow (2.42)

Potential flow

potential flow In this section deals with the simplifications that are possible by considering irrotational
flows. For irrotational flows it is possible to define a velocity potential  such that the
gradient of the potential gives the velocity

velocity potential (2.43)

For instance, in the two-dimensional case with velocity vector , the
only non-zero component of  is in the third direction with component

. With  and  this component of  is
always zero.
Note that the number of unknown quantities is greatly reduced. Instead of three unknown
components of the velocity, only the velocity potential is unknown.
The law of conservation of mass now becomes

(2.44)

The Euler equations can be simplified using the vector identity

(2.45)

Note that the last term on the right-hand side is zero for irrotational flows, see (2.42).
From the thermodynamic relation  for isentropic flows
( , see (2.35)), we find . Hence

(2.46)

and we obtain the unsteady Bernoulli equation

unsteady Bernoulli equation
(2.47)

Note that this result is also valid for compressible flow.
For an ideal gas we have

(2.48)

Γ v sd•
C
∫° v∇×( ) Ad•

S
∫ constant= = =

v∇× 0=

φ

v φ∇=

v u v 0, ,( )T
=

v∇×
v∂ x∂⁄ u∂ y∂⁄– u φ∂ x∂⁄= v φ∂ y∂⁄= v∇×

1
ρ
---

t∂
∂ρ 1

ρ
--- φ∇ ρ∇• φ∇ 2+ + 0= conservation of mass

v v∇• 1
2
--- v v•( )∇ v∇×( ) v×+=

hd T sd 1 ρ⁄( ) pd+=
sd 0= 1 ρ⁄( ) p∇ h∇=

Dv
Dt
------- h∇+ 0=

t∂
∂ φ∇ 1

2
--- v v•( )∇ h∇+ +⇒ 0=

t∂
∂φ 1

2
---v v• h+ + c t( )=

h cpT= p constργ=
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Incompressible potential flow
where the second relation is a form of the Poisson relations for isentropic processes, with
 is the ratio of the specific heat coefficients.

Incompressible potential flow
In this section the case of incompressible flow is considered, for which the density  is
constant. Now we will investigate when this is the case. For isentropic flows there is a
relation between density  and pressure . Hence

(2.49)

where a is the speed of sound. For inviscid flows pressure differences , as
follows from the Bernoulli equation. Hence the relative change in density is given by

Mach number
(2.50)

where  is the nondimensional Mach number, the ratio of a characteristic velocity of
the flow over the speed of sound. For an ideal gas the sped of sound is given by

.
In many cases the assumption of incompressible flow is valid, such as in pumps and fans.
In other cases, such as compressors and gas turbines, this assumption is invalid. A rule of
thumb is that the flow may be considered as incompressible when .
For incompressible flow the conservation of mass equation (2.5) reduces to .
Using the expression (2.43) for the velocity in terms of the velocity potential, the conser-
vation of mass equation results in the Laplace equation

Laplace equation (2.51)

and the unsteady Bernoulli equation is

(2.52)

Note that the actual value of  is not relevant when determining pressure differences.
superposition principle An important observation is that the Laplace equation (2.51) is linear. This is a major

advantage of the simplifications that were introduced (besides the reduction in the
number of variables). Linear equations satisfy the superposition principle: for two solu-
tion  and  that satisfy the Laplace equation we have that the linear combination

 (with arbitrary  and ) also satisfies the Laplace equation, as
can be easily verified.

Summarising, the equations that describe incompressible potential-flows are

(2.53)

Firstly, the velocity potential  has to be determined by the first equation of (2.53) (with
appropriate boundary conditions). Secondly, the velocity field  is computed from the
second equation of (2.53). Finally, the pressure is determined from the last equation of
(2.53).

The assumptions that lead to the equations (2.53) that describe incompressible potential
flows are summarised by
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Flow equations
overview of assumptions • Inviscid flow corresponding to  (does not apply in attached boundary layers 
and wakes; boundary layers should not separate, since the vorticity present in the 
boundary layers is then introduced in the main flow)

• Incompressible flow corresponding to 

• Irrotational inflow

Potential flow in the rotating frame
absolute frame of reference; 
rotating frame of reference

Up to now, the equations have been formulated with respect to an absolute frame of ref-
erence (or inertial frame of reference), i.e. one where the observer does not move. In
many cases it is more natural to consider the flow in the rotating frame of reference, i.e.
the frame of reference that rotates with the rotor. The observer of the flow would then see
the relative velocity, while an observer in an absolute frame of reference sees the abso-
lute velocity. For instance, at the design point the flow in the impeller may be assumed to
be steady in the rotating frame of reference, while it is unsteady in the absolute frame of
reference.
The absolute velocity  and the relative velocity  are related by

relative velocity; absolute 
velocity

(2.54)

where  is the angular velocity of the rotating frame of reference and  is the position
vector. The second term on the right-hand side gives the (local) blade velocity.
Since

(2.55)

it follows that

(2.56)

The second of these equations implies that the relative velocity is not irrotational when
the absolute velocity is irrotational! Therefore it is not possible to define a potential ξ
such that .
Since the change of scalar variable when following a fluid element, which is the meaning
of the material derivative, is identical in the relative and the absolute frame of reference,
it follows that

(2.57)

where the subscript R denotes that the time derivative is to be taken relative to the rotat-
ing frame of reference. Note that the expression for the material derivative in the rotating
frame of reference involves the relative velocity.
Now the Bernoulli equation in the rotating frame of reference becomes

(2.58)

Using the definition of potential and the relations between absolute and relative veloci-
ties, this equation can be expressed in terms of relative velocities as
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v w
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R
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Dφ
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-------≡
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Rothalpy
Bernoulli equation in the 
rotating frame (2.59)

In an impeller with a vaneless diffuser, where there is no influence of the stationary parts
on the rotating parts, one would have a steady flow field in the rotating frame of refer-
ence. This is the so-called “free impeller” assumption. Hence

“free impeller” assumption
(2.60)

free impeller case This means that the potential field is stationary for an observer that rotates with the
impeller. This is the “free impeller” case. In this case the flow in each of the channels
formed by two consecutive blades will be identical.

Rothalpy
For flows that are steady in the rotating frame, it follows from the Bernoulli equation in
the rotating frame of reference (2.59) that the rothalpy  is constant

(2.61)

For incompressible flow rothalpy is defined by

rothalpy
(2.62)

Counter vortex
If the flow in the inlet is irrotational, this has important consequences for the flow in the
impeller. For an irrotational absolute velocity, the relative velocity is not irrotational, see
(2.56).
These consequences are analysed in more detail for a simple model problem. This is the
case of the two-dimensional flow between straight infinitely-long impeller blades. This
geometry is sketched in Figure 2.1
The relative velocity then satisfies (2.56). In polar coordinates  these equations
become [1]

(2.63)

where  and  are the radial and circumferential components of the relative veloc-
ity.
The boundary conditions are that for small ,  and for

 and  , where b is the height of the channel and Z is
the number of blades.
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Flow equations
stream function These equations are simplified by introducing a stream function ψ [1], [2]

(2.64)

The physical meaning of the stream function is that it is constant along streamlines.
By substituting these equation into (2.63), it follows that the first of (2.63) is automati-
cally satisfied (that is exactly the advantage of introducing a stream function!), while the
second of (2.63) becomes

(2.65)

Since  is a stream function the boundary conditions at the impeller blades become
 at  and  at . Note that

only the difference in value of the stream function is important.
It follows from the physical meaning of the stream function that the difference between
the value of the stream function at two stations equals the flowrate through any curve
connecting these stations.
It is easily verified that for the case of a large number of impeller blades ( ) the
first two terms of (2.65) can be neglected. The corresponding solution for the stream
function and the corresponding velocities is given by

(2.66)

counter-vortex The expression for radial velocity  is a combination of a term increasing linearly with
angle and a uniform flow corresponding to the flowrate. The first term signifies the coun-
ter vortex. It corresponds to a vortex that rotates in the direction opposite to the impeller

+

Ω
∆θ 2π

Z
------=

FIGURE 2.1. Geometry of infinitely long straight impeller blades.
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Counter vortex
rotation. Therefore the radial velocity is not uniform from pressure side to suction side of
the blades, contrary to what is assumed in the basic, one-dimensional theory of turboma-
chinery flow that is described in the course “Fluid Mechanics of Turbomachines I”. 
In the case studied here the radial velocity equals the through-flow (or meridional) veloc-
ity. Hence, the throughflow velocity it is not uniform from blade to blade: the through-
flow velocity is higher at the suction side than at the pressure side. An example of the
relative velocity field (2.66) is shown in Figure 2.2. 
This pattern for the through-flow velocity has been obtained for the simple case of
straight blades, but it holds qualitatively in general for irrotational flow in rotating chan-
nels.

FIGURE 2.2. Relative velocity field: counter vortex.

Pressure side

Suction side
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CHAPTER 3 Circulation and wakes
In this chapter it will be shown how circulation can be incorporated into the potential-
flow model by introducing slit lines (for two-dimensional problems) or slit surfaces (for
three-dimensional problems). In aerodynamics circulation is directly related to the lift of
an airfoil, while for turbomachinery circulation is related to the work input. The condi-
tions that are valid on these slits depend on the nature of the problem (steady or unsteady;
two-dimensional or three-dimensional). 

Circulation in potential flows
It is well known ([1], §6.7) that the lift force L (per unit span) acting on an airfoil is
closely related to the presence of circulation around this body

(3.1)

where U is the velocity of the airfoil.
The equivalent of a lift force acting on an airfoil is a moment acting on a blade of a tur-
bomachine. In the course “Fluid Mechanics of Turbomachines I” it was shown that, for
pumps without pre-rotation at the inlet, the specific work input W is given by the Euler
relation

(3.2)

where the subscript 2 denotes conditions at the trailing edge. The circulation  for a
circular contour just beyond the trailing edge is , using the one-dimensional flow
model adopted in course “Fluid Mechanics of Turbomachines I”. Hence the circulation is
directly related to the work input.
With the flow model as described so far, it is not possible to predict lift forces, since it
gives zero circulation. This can be seen the definition of circulation and the relation for
the velocity potential (2.36)

(3.3)

slit line if the potential φ is continuous. By letting the potential be discontinuous over a line, cir-
culation can be introduced. The line over which this discontinuity occurs is called a slit
line. A slit line is also called a cut (in the domain).
This idea is illustrated in Figure 3.1 in which an airfoil is depicted. A slit line is shown
emanating from the airfoil to the outer boundary of the domain of interest. In order to
identify the two sides of the slit line, they are denoted by a ‘+’ and a ‘−’. Since the posi-
tion of the slit line is artificial (and arbitrary), the velocity must be continuous over the
slit line. Note that if the velocity is continuous over the slit line, then the pressure is also
continuous over the slit line, as follows from (2.52). Now it follows the continuity of the

L ρUΓ=

W Ωr2cθ2=

Γ pump
2πr2cθ2

Γ C( ) φ∇ sd⋅
C

∫° s∂
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sd⋅
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∫° φd

C
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Circulation and wakes
velocity vector over the slit line and from the expression (2.43) for the velocity in terms
of the velocity potential  that

 (3.4)

where n denotes the outward normal direction and s denotes the counter-clockwise tan-
gential direction. The minus sign is present since the normal and tangential directions are
opposite on the ‘+’ and ‘−’ sides.

The so-called jump relation for the potential along the cut follows from the second equa-
tion of (3.4) by integration in s-direction

(3.5)

The circulation around a closed contour C1 that does not cross the slit line equals zero,
while the circulation around a closed contour C2 that does cross the slit line equals

. This means that the jump over the slit line equals the circulation around
the airfoil! The reader is advised to check that the circulation around the contour C3, that
crosses the slit line twice, equals zero.

Kutta condition

Kutta condition By introducing the slit line it has become possible to introduce circulation around the air-
foil into the potential-flow model. The problem then arises of how to determine the
unknown value of the circulation. For any value of the circulation, a flow field can, in
principle, be determined. Each of these flow fields will be different. The condition that
determines the actual value of the circulation is the so-called Kutta condition (or Jou-
kowski condition) [1].

Observations have shown that wedge-shaped or cusp-shaped trailing edges have a large
influence on the overall flow behaviour. The Kutta-Joukowski hypothesis, or Kutta

φ

s
n

s

n

+−

Slit line

Airfoil

FIGURE 3.1. Airfoil geometry with slit line.
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Unsteady case
hypothesis for short, states that the rear dividing streamline leaves the airfoil at the trail-
ing edge. 

To make this plausible the flow is considered near the trailing edge as shown in Figure
3.2a. In this figure the stagnation point (SP) is located on the upper side of the airfoil.
Consider the streamline that starts near the lower surface of the airfoil. Near the trailing
edge the streamline changes direction abruptly and it continues in the direction of the
stagnation point where the pressure is maximum. This deceleration and change of direc-
tion must be caused by a large pressure-gradient with low pressure near the trailing edge
and high pressure near the stagnation point. It is expected that such an adverse pressure-
gradient will lead to boundary-layer separation, until the separation point is located at the
end point of the trailing edge and the flow is as depicted in Figure 3.2b. In this situation
the rear dividing streamline leaves the airfoil at the trailing edge. The Kutta condition
requires that the flow leaves “smoothly” from the trailing edge (te) of the airfoil.
The Kutta condition can be formulated mathematically in many ways. Here it is formu-
lated by

Kutta condition , (3.6)

where  is the normal vector at the trailing edge of the airfoil. 
As has been sketched, the Kutta condition is related to boundary-layer separation that
would occur if the Kutta condition were violated. This means that the Kutta condition is
closely related to viscous phenomena: in a way the Kutta condition describes a viscous
effect within an inviscid theory.

Unsteady case

From Kelvin’s circulation theorem it follows that a change in the circulation around an
airfoil must result in the shedding of vorticity from the airfoil. This time-dependent vor-
tex shedding results in a wake behind the trailing edge. The vorticity shed is equal in

FIGURE 3.2. Flow near the trailing edge of an airfoil, without and with Kutta
condition.

nte
nte

SP

SP

With Kutta conditionWithout Kutta condition

v n⋅( )
te

0=

n
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Circulation and wakes
magnitude to the bound vorticity, but of opposite sign. The vortices in the wake move
away from the airfoil. 
Since the pressure and normal velocity are continuous across the wake, it follows from
the unsteady Bernoulli equation that

(3.7)

After linearisation we obtain

(3.8)

where  is the coordinate along the wake and  is the mean velocity along the wake.
This means that vortices shed the trailing edge are convected downstream with the mean
velocity along the wake. This equation describes the evolution with time of the jump dis-
tribution on the wake.
Note that in the unsteady case the tangential velocity will not be continuous: the jump in
tangential velocity is equal to , as follows from the definition of potential
(2.43), which is not zero in unsteady flow according to (3.8).

Three-dimensional case

slit surface In the three-dimensional case the circulation will in general vary along the span of the
trailing edge. The wake behind the trailing edge, see Figure 3.3, will now be represented
by a slit surface. The distribution of the jumps (discontinuities) in the potential on wake
surfaces is given by

(3.9)

where ‘+’ and ‘–’ denote the upper and lower sides of the wake, s1 and s2 are coordinates
along the wake (  is in streamwise direction) and  is the potential jump distri-
bution. The blade circulation  at spanwise station  is related to the potential jump
distribution by

(3.10)
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FIGURE 3.3. Representation of a wake behind a blade. Coordinate s1 is in
streamwise direction.
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CHAPTER 4 Potential flows in pumps
This chapter deals firstly with potential-flow computations of the flow in an impeller
channel without volute. The superposition method that is used to enforce the Kutta condi-
tion is explained in detail.

This is followed by a brief exposition of an (exact) analytical solution that was developed
for the two-dimensional potential-flow field in impeller channels formed by logarithmic
blades.

Finally, the emphasis is on some aspects of potential-flow computations that are different
for pumps in comparison to airfoils.

Superposition method

free impeller case In this section the method is described that can be used to solve the potential-flow prob-
lem in turbomachines. For simplicity the “free impeller” case, where there is no influence
of the stationary parts on the rotating parts (volute or diffusor), is discussed. In this (ide-
alised) case the influence of the volute on the flow field in the impeller channels is negli-
gible. Then only the flow in a single impeller channel needs to be considered, because of
the symmetry of the impeller flow channels. The geometry of the channel is shown in
Figure 4.1. 

The boundary conditions that apply to this channel are given in Table 1. These boundary
conditions are

Inlet

Pressure Suction

Outlet

side side

Periodic
boundary

Periodic
boundary

+
−

Trailing edge

Leading edge

FIGURE 4.1. Geometry of impeller channel.

Slit line

Slit line
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Potential flows in pumps
• Inlet: Uniform inflow at a velocity that is determined from the flowrate Q; this is an
assumption that is valid “far away” from the leading edge of the impeller;

• Outlet: Uniform inflow at a velocity that is determined from the flowrate Q; this is an
assumption that is valid “far away” from the trailing edge of the impeller;

• Impeller blades: the blades are impermeable, so the normal component of relative
velocity equals zero;

periodic boundary condi-
tions

• “Periodic” boundaries and slit lines: the velocities are “periodic” on the two surfaces
(‘+’ and ‘−’ sides). This means that the normal velocity and the tangential velocity on
corresponding points on the two surfaces are equal

(4.1)

The second of these implies

(4.2)

On the periodic boundary near the leading edge this constant equals zero for inflow with-
out pre-rotation (check this by considering a contour around the rotation axis!), while on
the periodic boundary near the trailing edge this constant equals the (unknown) circula-
tion around a blade.

• A so-called essential boundary condition (prescribed value for the potential) in a
point is required to fix the level of the potential; otherwise if  were a solution, then

 would also be a solution (i.e. the solution is not unique).
Note that in the potential-flow model, like with the Euler equations, the “stick” condition
of (relative) zero velocity can not be enforced on the impeller blades: only the imperme-
ability condition can be prescribed! 
The flowrate  and the rotation rate  are given as process parameters, but the circula-
tion around the impeller blades is not yet known. Its value has to be determined from the
Kutta condition. As discussed before, the Kutta condition requires that the flow leaves
“smoothly” from the trailing edge of the impeller blades. For a rotating trailing edge the
Kutta condition is 

(4.3)

where the relative velocity  is defined by

(4.4)

From these equations it follows that in a rotating system the Kutta condition can be for-
mulated as

(4.5)

The governing Laplace equation (2.51) for potential flow can not be solved directly,
since the boundary conditions contain the unknown value for the circulation.

superposition principle; 
subpotentials

The method to be used to determine the unknown circulation is based on the superposi-
tion principle, which can be employed since the governing Laplace equation (2.51) is lin-
ear. Here three subpotentials are distinguished: a unit subpotential corresponding to the
through-flow (flow subpotential ), a unit subpotential corresponding to the rotation of
the impeller blades (rotation subpotential ) and a unit subpotential corresponding to
the circulation around an impeller blade (circulation subpotential ). The complete
solution  can be expressed in terms of the three subpotentials as 
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Superposition method
(4.6)

Terms like  in the denominator have been added for dimensional consistency.
The boundary conditions for the complete solution and the three subpotentials are given
in Table 1. It is easily verified that the superposition in (4.6) satisfies all boundary condi-
tions for the complete solution. Note that the three subpotentials are unit potentials: for
example the flow subpotential corresponds to ,  and .
The three subpotentials can be determined with the boundary conditions listed in Table
1. From these three subpotentials the velocity at the trailing edge can also be determined.
Then the unknown circulation can be computed from

(4.7)

With the value of the circulation thus determined, the complete solution can be computed
since all parameters in the boundary conditions are now known.
Summarizing, with the known boundary conditions the three subpotentials can be com-
puted. Then the Kutta condition gives the value for the unknown circulation. This value
of the circulation, which is unknown at start, is present in the boundary conditions.
Finally, the complete solution can be computed. This solution gives the pressure and
velocity field in the impeller channel. 

Relation between process parameters and circulation
For the free-impeller case the relation between process parameters flowrate , angular
velocity  and head  will be investigated. The starting point is the angular-momen-

TABLE 1. Boundary conditions for the complete solution and for the three 
subpotentials for a free impeller computation.
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Potential flows in pumps
tum principle as discussed in the course “Fluid Mechanics of Turbomachines I” (but see
also [1]). In integral form this principle states 

(4.8)

where  is the torque exerted on the control volume by the axis and  is the control
surface enclosing the control volume under consideration. Note that in this formulation
of the angular-momentum principle surface forces have been neglected and steady con-
ditions are considered (this latter assumption is actually not necessary: what we are actu-
ally considering is the torque averaged over a revolution, and then time-averages cancel
out).
With the condition of uniform inflow and uniform outflow that is applicable to the free-
impeller case, we have  (independent of position at inflow and outflow
surfaces). Hence, using the fact that  is constant, the expression for the torque becomes

(4.9)

where  and  are the outlet and inlet regions of the control surface. For cases
without inlet-swirl, , and with two-dimensional outlet surfaces this becomes

(4.10)

where  is the average tangential velocity at the outlet and  is the radius at the out-
let. For circular outlet surfaces this average tangential velocity at the outlet is related to
the circulation  around the impeller by , as follows from the defi-
nition of circulation (2.36). The circulation around the impeller  is related to the cir-
culation around a single blade  by  where  is the number of blades. The
torque  now is given by

(4.11)

The power transferred from the pump axis to the fluid, , is given by . The
net power that is transferred to the fluid as pressure rise,  is given by .
Assuming the efficiency is 100%, , we find the relation between circulation
around the blade and head

(4.12)

Note that this relation is only valid for two-dimensional free-impeller cases!

Potential flow in logarithmic channels

The special case of potential flow in the channels of a two-dimensional impeller consist-
ing of  logarithmic blades with constant blade angle  has been studied in detail [33].
Process parameters of the flow are the flowrate  and the rotation rate of the impeller

. The two-dimensional velocity and pressure field corresponding to potential flow in
the impeller channels were studied analytically, using the method of conformal mapping
and asymptotic expansions. This section summarizes their main results for the case that
the inlet flow has no pre-rotation.
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Potential flow in logarithmic channels
The geometry of logarithmic blades will first be described. Then the results for the head
and the condition of “shock-free” approach according to one-dimensional theory (as dis-
cussed in the course “Fluid Mechanics of Turbomachines I”) and according to the two-
dimensional theory of [33] will be given.
Contrary to the two-dimensional theory, the one-dimensional theory does not account for
the non-uniformity in the flow field that is caused by the presence of the counter vortex,
as discussed on page 13. The results of the two-dimensional theory show the nature of
the required corrections, but it is only valid for the simple geometry of logarithmic
blades: it does not apply to more general, realistic blade geometries. The results of the
two-dimensional theory are also very useful for verifying numerical solutions. Note that
only numerical methods are suitable for computing the flow field in general geometries!

Geometry of logarithmic blades

blade angle The geometry of the flow channel is defined by the radius of the leading edge , the
radius of the trailing edge , the constant blade angle , the height of the impeller 
and the number of blades . In the two-dimensional case considered here, the blade
angle is the angle between the radial direction and the tangent to the blade (see Figure
4.2). Note that often another convention is used where the blade angle is defined as the
angle between circumferential direction and the tangent to the blade. 
From Figure 4.2 it follows that 

(4.13)

By integrating this equation (using that  is constant!) with initial condition  for
, we obtain the equation describing the shape of the logarithmic blades

(4.14)

Here  and  are the polar coordinates of a point on the blade, while  and  are the
polar coordinates of the leading edge. Note that  is negative for backswept (or back-
ward curved) blades! This means that they are curved in the direction opposite to the
direction of rotation of the blades.
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FIGURE 4.2. Definition of blade angle β.
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Potential flows in pumps
One-dimensional theory
The results according to the one-dimensional theory (as discussed in the course “Fluid
Mechanics of Turbomachines I”) for the condition of “shock-free” flow and the head
imparted to the fluid by the impeller are briefly recapitulated here for the case without
pre-rotation. The one-dimensional theory assumes that

(4.15)

It follows that the head imparted to the fluid by the impeller is given by

(4.16)

and the condition of “shock-free” approach is given by

(4.17)

Two-dimensional theory
Based on the Laplace equation (2.51) corresponding to potential flow, the method of
conformal mapping and asymptotic expansions was used in [33] to obtain, after rather
lengthy algebra, the head  that is imparted to the fluid by the impeller according to the
two-dimensional theory

(4.18)
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Potential flow in complete pumps
slip factor The slip factor  is plotted in Figure 4.3. Note that this slip factor is not an empiri-
cal fit, like the expressions for the slip factor that were given in the course “Fluid
Mechanics of Turbomachines I”. Equations that can be used to compute the slip factor
are given in the Appendix. For free impellers the relation between head  and the circu-
lation  around a single impeller blade is given by (4.12). The circulation around the
complete impeller is of course .
According to [33] the condition of “shock-free” flow of the impeller is given by

(4.19)

where the “correction factor”  for “shock-free” flow is given approximately by

(4.20)

and  is given in the Appendix. The function  is plotted in Figure 4.4.

Potential flow in complete pumps
Special complications arise when computing potential flows in complete pump configu-
rations. One complication is that the flow is time-dependent, due to the presence of rotat-
ing and stationary parts. Only in the design point (best efficiency point) can one expect
that time-dependent phenomena are not very significant.

rotor-stator interface; slid-
ing surface

The presence of rotating and stationary parts creates additional problems with mesh gen-
eration, since the computational domain changes continuously due to the movement of
the blades. One attractive solution is to have separate meshes for the rotating part and the
stationary part. By rotating the mesh for the rotor the topology of this mesh remains
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Potential flows in pumps
intact. Of course, interface over which the meshes “slide” must be a conical surface, see
also Figure 4.5. This artificial rotor-stator interface is called the “sliding surface” (not to
be confused with the “slit surfaces” where a jump, i.e. a discontinuity, in the potential is
present). As discussed in Chapter 3 the slit surfaces were introduced to account for circu-
lation, while the sliding surfaces are introduced for computational efficiency. 

Since the wakes behind the trailing edges of the rotor are expected to move with the
rotor, the slit lines or slit surfaces must be part of the mesh for the rotor. Therefore the
mesh for the rotor must be large enough to capture sufficient detail of the wakes, but on
the other hand it may not exceed the stator wall. A compromise between these has to be
made.
Since the wakes are located in the rotor part (and not in the stator part), the jumps at the
rotor-stator interface must become constant over the height. This means that some sort of
smoothing has to be applied to the jump distribution on the wake. If this were not done,
than the velocity at the rotor-stator interface, which is a non-physical, computational fea-
ture, would not be continuous.

Appendix: slip factor

The slip factor  can be computed using complex numbers. The equation for
 is

(4.21)

where  denotes the conjugate of a complex number w and the Beta-function 
[11] is defined by

(4.22)
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FIGURE 4.5. Rotor-stator interface.
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Appendix: slip factor
and

(4.23)

where  denotes the Euler Gamma function [11] (here Γ is not the symbol for circula-
tion!). Note that  in (4.21) always is a real number!
The “correction factor”  for “shock-free” flow of straight blades is given approxi-
mately by

(4.24)
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CHAPTER 5 Numerical method 
This chapter describes the numerical method that was developed especially for computa-
tions of time-dependent potential flows in pumps with rotating and stationary parts.

Wakes

unsteady computation The correct description of the evolution of the jump distribution on the wake is given by
(3.8). This is used in unsteady computations.

quasi-steady computation In quasi-steady simulations the convection of vortices in the wake is neglected, and the
potential jump over the wake surface is taken constant in streamwise direction

(5.1)

Summarising, in quasi-steady computations (without unsteady wakes) the potential jump
distribution in the wake is given by (5.1), while in unsteady computations (with unsteady
wakes) the potential jump distribution satisfies (3.8).

Boundary conditions

On the inlet and outlet surfaces of the turbomachine, a uniform normal velocity is pre-
scribed

(5.2)

where Q is the flowrate and A is the area of the surface. 
At the impermeable blade surfaces (both pressure and suction sides), where , the
Neumann boundary condition takes the form

(5.3)

At the hub and the shroud of the rotor and at the stator walls, the normal velocity van-
ishes

(5.4)

Wakes are present behind trailing edges. These wakes are a result of both nonuniform
blade loading (variations of the circulation along the blade's span) and time-dependent
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Numerical method
variations of the blade circulations. Within the potential-flow model, wakes are modelled
by the boundary conditions

(5.5)

The second equation of (5.5) states that the normal velocity is continuous on the wake
surface. Note that wakes should coincide with stream surfaces. In general an iterative
method is needed to meet this requirement.

Rotor-stator interface
When considering configurations of complete pumps or turbines, special care has to be
taken of the presence of both rotating and stationary parts, see also Figure 4.5. In order to
achieve this without having to create a new mesh for each time step (as was done in
[26]), the rotor and the stator are separated by a cylindrical or conical surface, the so-
called rotor-stator interface, or “sliding surface”. “Connections” between nodes at both
sides of this interface are changing over time due to the rotation of the rotor. In this way
the rotor is allowed to rotate freely while “sliding” along the stator.

Multi-block approach
The presence of a rotor and a stator part with their separate coordinate systems naturally
suggests using a multi-block approach. In such a multi-block approach the flow region of
interest is divided into subdomains or blocks, all having a topologically cubic shape. The
subdomains are non-overlapping, with nodal coincidence at the interfaces. For a free
rotor computation one block will usually suffice, although a division into more blocks is
possible. However, for a flow computation inside a complete pump or turbine (rotor and
stator) a number of blocks is required (see Figure 5.1).
An advantage of the multiblock approach is the greater ease in creating a good mesh for
the complex three-dimensional geometries that are considered here. It also constitutes an
important component of the numerical method that is described in the next section.
In the multiblock approach additional boundary conditions have to be formulated that
apply to the artificial internal boundaries between blocks. The velocity field at these
internal boundaries should be continuous. Therefore the values of the potential at corre-
sponding nodes can differ only by a fixed amount and the normal velocities are opposite.
This means that the boundary conditions for such internal boundaries are the same as
those for wakes (see equation (5.5)), with  constant. Periodic boundary conditions, as
apply for a free rotor computation, are also of this type.
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Numerical method

Outline

superelement technique; 
substructuring technique

The flow field is solved by means of a finite element method using an extension of the
superelement technique [35]. In the superelement technique (or substructuring tech-
nique) internal degrees of freedom (DOFs for short) are eliminated from the discretized
governing (Laplace) equation. The extension of the superelement method developed
deals with an analogous elimination of the internal DOFs from the discretized Kutta con-
ditions. The detailed description of the method is given in [25].

The method consists of two steps: 

• elimination of internal DOFs from the system of equations (Laplace equation and
Kutta conditions), for all blocks separately. This leads to the formulation of the
superelements.

• assemblage of the superelements. After solving the resulting global system of equa-
tions, the previously eliminated DOFs are obtained.

Superelement formulation: elimination step

For each block, the Laplace equation for the velocity potential together with the natural
and essential boundary conditions (if any) is discretized according to the standard finite-
element method, resulting in a system of linear equations

(5.6)

FIGURE 5.1. Example of a pump geometry divided into blocks and cross-section
of pump.

L[ ] φ{ } F{ } R{ }+=
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Numerical method
where  is a positive-definite matrix reflecting the discretized Laplace operator, 
is the vector of DOFs and  is the vector corresponding to flowrates through block
boundaries resulting from Neumann type boundary conditions. Vector  is related to
(unknown) flowrates at internal block boundaries.
For each block, the discretized Kutta conditions (equation (4.5)) can be expressed in
terms of potential values in the block using the modified gradient operator  (K stands
for Kutta)

(5.7)

Using the values of the potential, operator  gives the normal velocities at the trailing
edges.
The basic idea of the superelement technique is to express (5.6) and (5.7) in terms of
DOFs at internal block boundaries (called the “master” DOFs), by eliminating the
remaining interior “slave” DOFs. For this purpose (5.6) and (5.7) are partitioned as fol-
lows

(5.8)

(5.9)

Superscripts s and m denote “slaves” and “masters” respectively. Vector  denotes
the non-zero part of vector  in (5.6). 
By solving for the slave DOFs from (5.8), it follows that

(5.10)

The resulting “super system”, formulated exclusively in terms of the “master” DOFs, is
obtained after substituting (5.10) into (5.8) and (5.9)

(5.11)

where

(5.12)

(5.13)

Note that column i of  in (5.12) can be interpreted as the values of the
“slave” potentials corresponding to master DOF i equal to 1 and all other “master” DOFs
equal to zero. Similarly, the term  in (5.13) represents the effect of Neu-
mann boundary conditions on “slave” DOFs, while keeping the “master” DOFs equal to
zero. Note that these potentials can be computed by simple backsubstitutions once the
matrix  has been decomposed.
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Numerical method
This section describes how the reduced set of equations is obtained, in terms of DOFs at
block interfaces only. In principle this procedure must be carried out for all blocks that
form the entire geometry. However, an important observation is that the supermatrices
and vectors are invariant under rotation for the scalar equations considered. Therefore
the symmetry of the rotor can be exploited, as in general all rotor channels are geometri-
cally identical. This means that the superelement formulation step has to be performed
for the block(s) of a single rotor channel only! Furthermore, in a time-dependent compu-
tation, the superelement formulation step has to be carried out only once.
The assemblage of blocks, which can be regarded as superelements, is part of the second
step. This is described in the following subsection.

Assemblage of superelements: global solution step

In the global solution step, the values of “master” DOFs of all participating blocks are
determined by assembling and solving the global system of equations. 
A complicating factor in the computation of the “master” DOFs is the fact that blade cir-
culations and, as a consequence, the potential jumps at nodes on the wakes are still
unknown. Therefore the values of blade circulations are regarded as additional variables
to be determined along with the nodal DOFs (see also [12]). The vector of unknowns in
the global problem is now denoted by

(5.14)

where nΦ is the number of nodes in all block connections (coinciding nodes are counted
as one), nΓ is the number of unknown blade circulations (i.e. the total number of nodes at
trailing edges),  is the vector of unknown “master” DOFs for the potential and 
is the vector of unknown blade circulations.
The “master” DOFs can now be expressed in terms of global DOFs. Note that master
DOFs may also involve potential jumps, see (5.5). These jumps are composed of known
and unknown potential jumps (see also the appendix). 
All “master” DOFs of block b are now written formally as

(5.15)

where
= matrix which gives the transformation of global equation numbers of

nodal DOFs to the local numbering of “master” DOFs in block b. Each
row contains exactly one nonzero coefficient, having the value 1.

= matrix which gives the equation numbers of global blade circulation DOFs
for the “masters” of block b. It also accounts for the “averaging” of poten-
tial jumps on the wakes (see the appendix).

= known values of potential jumps at boundaries of block b. These jumps are
present in computations including unsteady wakes (see the appendix).

Similar to the way in which element matrices and right-hand side vectors are assembled
to form the large system of equations, the superelement matrices and right-hand side vec-
tors of (5.11) are assembled into a global system of equations for the Laplace equation
and for the Kutta conditions

(5.16)
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Numerical method
where matrices  account for the transformation of the global blade circulation DOFs
to the equation numbers of the local numbering of trailing edge nodes and nb is the total
number of participating blocks. Note that the contribution of the vectors  in (5.11)
cancel out at internal block boundaries.

Substituting  from (5.15) into (5.16) gives the global system of equations

(5.17)

where

(5.18)

(5.19)

Once the global system is solved, the solution for the potential for a block is obtained by
first computing the values for the ”master” DOFs (using (5.15)) and subsequently per-
forming a backsubstitution to determine the slave DOFs from (5.10). This procedure is
carried out using the decomposed matrix  which is stored on disk during the elimi-
nation step.

Advantages of the method

Here the main advantages of the method are summarized:

• The presented method exploits the geometrical symmetry of the flow channels in the
rotor. Only the superelements of a single flow channel need to be computed, since
they are identical.

• The superelement matrices have to be computed only once during an unsteady com-
putation.

• The Kutta conditions are imposed implicitly. Therefore the need no longer exists to
determine a large number of subpotentials in order to impose the Kutta condition at
all trailing edge nodes. This is especially important in three-dimensional computa-
tions where the number of subpotentials increases rapidly, since the circulation varies
along the span of the trailing edges.

• The elimination of internal DOFs results in a major reduction of computing time for
unsteady computations, since these computations are performed with a greatly
reduced number of DOFs.
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Implementation
Implementation

The developed numerical method has been implemented in the parametric hydraulic
analysis system COMPASS [24]. Second-order accuracy for potential, velocities and
pressures is obtained by employing linear elements in combination with the SPR-tech-
nique [36] for the determination of the gradient of the potential, i.e. the velocity. In the
global solution step the system of equations is solved using a direct method. The profile
width of the sparse global matrix is reduced using a spectral renumbering technique [22],
[29].

The various forms of modelling the wakes have been implemented.

Implementation of wake models

This appendix deals with some aspects of the implementation of the wake models. A
detailed account is given in [18]. The value of the potential jump on the wake depends on
the type of computation. Two types are distinguished: quasi-steady computations (with-
out unsteady wakes) and unsteady computations (with unsteady wakes). The wake repre-
sentation is shown in Figure 3.3. As explained below, these computations differ in the
nature of the jump distribution on the wake: known versus unknown jumps. 

Quasi-steady computations

The flow field in a rotor-stator configuration of a pump will in general be unsteady.
Especially at off-design conditions, the blade circulations will vary in time. One way of
computing this unsteady flow would be to incorporate the variation of blade circulations
along the span, but to neglect the convection of shed vortices in the wake. This is called
the quasi-steady approach. If wake surfaces could extend from the trailing edges down to
the exit pipe of the pump, the potential jumps would be described properly by (5.1).
However, these surfaces cannot be extended beyond the cylindrical or conical rotor-sta-
tor interface. Therefore the varying potential jump on the wake must become constant
upon reaching this interface. In other words, the varying potential jump on the wake
must eventually be averaged out. The value of the potential jump on the wake is now
described by

(5.20)

where  is the spanwise average of the blade circulation. The factor α is dependent on
the position in the wake and varies between the value 0 at the trailing edge and the value
1 at the rotor-stator interface. The second term at the right hand side can be considered as
a deviation from Kelvin’s circulation theorem. However, when averaging this deviation
over all wake nodes at constant s1-coordinate, this averaged deviation reduces to zero. At
the rotor-stator interface, the averaged value of the potential jump is guided to the outer
wall of the pump, along part of the cylindrical or conical rotor-stator interface and some
block boundaries located in the stator region of the pump. This type of averaging of the
jump distribution is depicted in Figure 5.2.

In this type of wake modelling the jump distribution is determined completely by the
unknown blade circulations. 

γ s1 s2,( ) Γ s2( ) α s1 s2,( ) Γave Γ s2( )–[ ]+=
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Unsteady computations
Contrary to the former approach, a (fully) unsteady computation of the flow field in a
rotor-stator configuration requires the convection of vortices according to (3.8) to be
taken into account as well. Once again, the varying potential jump will have to be aver-
aged out at the rotor-stator interface. Suppose that the potential jump distribution at a
given time step is given by . An averaging procedure very similar to that for
quasi-steady flow is now introduced

(5.21)

where factor  depends on the position of the vortex in the wake and varies between the
value 0 at the trailing edge and the value 1 at the rotor-stator interface. The average value
of the potential jumps  along the line with constant s1 is denoted by .
The deviation from the exact solution reduces to zero when averaging over nodes at con-
stant s1-coordinate. As was the case in the quasi-steady approach, the potential jump is
equal to the local blade circulation at nodes on the trailing edge. Upon reaching the rotor-
stator interface, the potential jump becomes equal for all s2. This averaged value is
guided to the outer wall of the pump.
In this type of wake modelling the jump distribution is determined by the unknown blade
circulations and the known jump distribution on the wake corresponding to previously
shed vortices.

Γavg

s2

s1

γ(s1 , s2)

FIGURE 5.2. Schematic representation of the potential jump distribution γ(s1 , s2)
on a wake in quasi-steady computations. The average blade circulation is Γavg.

Trailing edge Rotor-stator interface

Γavg

γ* s1 s2,( )

γ s1 s2,( ) γ* s1 s2,( ) α s1 s2,( ) γavg
* s1( ) γ* s1 s2,( )–[ ]+=

α

γ* s1 s2,( ) γavg
* s1( )
38 Turbomachines II



CHAPTER 6 Loss models
In the basic potential-flow model viscosity is neglected. Since viscosity is the main
source of losses, the basic potential-flow model can not be used to predict realistic head-
capacity curves. In fact, the model would always predict a hydraulic efficiency of 100 %.
This seems to make the potential-flow model almost useless.
However, it is important to realize that the potential-flow model is valid for the core flow
(i.e. the flow in the region between the blades, but outside of boundary layers and wakes),
provided no boundary-layer separation occurs. Then the core flow can be considered as
inviscid. The viscous effects are restricted to thin zones along the walls of the rotor and
stator, and in wakes behind trailing edges. In these thin zones viscosity dissipates energy.
By developing separate models for these zones, viscosity can be accounted for very effi-
ciently. 
Sources of loss are dissipation by viscous stresses in boundary layers at solid walls, mix-
ing losses in wakes, disk friction, leakage flows, tip losses, mechanical losses. Mechani-
cal losses are not specified here, but they can be included by multiplying the efficiency
by the mechanical efficiency. 
Models are given for each of these sources of losses. Many of these models use the
potential-flow field as input.
An overview of the various losses is given by Denton [17], while this chapter closely fol-
lows the exposition of [18]. 

Power balance

Only part of the power that is applied at the axis is transferred to the fluid. The power at
the shaft is denoted by , while the increase of fluid power is . Then the power
losses ∆P are

(6.1)

The shaft power  is related to the shaft torque  by

(6.2)

The increase in fluid power  is used to define the pump’s head 

(6.3)

The efficiency of the pump η is defined by

(6.4)

The power lost ∆P is the sum of the various loss contributions

Pshaft Pnet

Pshaft Pnet ∆P+=

Pshaft Mshaft

Pshaft ΩMshaft=

Pnet H

Pnet ρgHQ=

η
Pnet

Pshaft

------------
Pshaft ∆P–

Pshaft

-------------------------= =
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Loss models
(6.5)

where ∆Phydr is the hydrodynamical loss of power, ∆Pleak is the power lost due to the
leakage flow and ∆Pdf is the power lost by disk friction. The hydrodynamical loss consist
of mixing loss and frictional loss in the boundary layers. For each of these losses, models
will be given in the following sections.

Shaft power

From the conservation of angular momentum (see also [2]) for the control volume shown
in Figure 6.1 it follows

(6.6)

The term with the time derivative can be ignored, since its time-averaged contribution
(over a period of revolution of the impeller) equals zero for the periodic situation consid-
ered. The term  is a wall-shear surface force in circumferential direction. It can be
neglected for the inlet and outlet surfaces  and .

The effect of the boundary layers on the velocity profiles at entrance and exit are
neglected. Then

(6.7)

where

(6.8)

The inviscid Euler moment  is the torque exerted by the impeller blades on
the internal fluid by pressure forces. The larger flowrate due to the leakage flow has to be
taken into account. The torque , acting in the direction opposite to the shaft torque

, is the torque exerted by frictional shear stresses at the surfaces external to the
impeller

∆P ∆Phydr ∆Pleak ∆Pdf+ +=

blade

shroud

hub

A4

A2

A1

A4A3

FIGURE 6.1. Control volume enclosing the impeller.
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Boundary-layer losses
(6.9)

Boundary-layer losses

Due to the presence of solid walls, boundary layers form in which (generally) the flow
adjusts from the core velocity to the slip condition at the wall, see Figure 6.2. 

According to [17], the power loss in boundary layers ∆Pbl is

(6.10)

dissipation coefficient The coefficient  is a dissipation coefficient. A representative value is 0.004. Its value
is not very sensitive to the state of the boundary layer, although it may very from 0.002
for boundary layers in accelerating flow, to 0.005 for boundary layers in decelerating
flow.
Note the analogy of (6.10) with the expression for the shear stress at the wall 

(6.11)

where  is a friction coefficient.

Expansion and contraction losses

A sudden change in through-flow area may lead to dissipation of kinetic energy, see for
example [18] for more information. The magnitude of this source of loss is usually of
minor importance.

Wake mixing

An important type of loss is the mixing of the boundary layers in the wake behind a
blade, see Figure 6.3. According to [17] this mixing loss is given by 

Mdf rτw θ, Ad

A3 A4+

∫–=

δ

FIGURE 6.2. Velocity profile in the boundary layer.
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1
2
---ρcfw
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(6.12)

where  is the blade thickness,  is the blade pitch. The sum of the momentum thick-
nesses of the boundary layers on the pressure and suction sides of the blades is denoted
by . The sum of the displacement thicknesses is . The so-called base pressure coeffi-
cient  is defined by

(6.13)

where  is the static pressure acting on the blunt trailing edge,  and  are refer-
ence values for the pressure and velocity. A typical value for the base pressure coeffi-
cient  is –0.15.

The first term in (6.12) represent the loss due to the low pressure acting on the blunt trail-
ing edge, the second term is the actual mixing loss, while the third term signifies the
effect of blockage by the blade and the boundary layers.
A detailed overview of various theories for predicting the base pressure is given in [31].

Disk friction

Consider a disk with radius  that is rotating with angular velocity  in a cylindrical
container. At the bottom of the container a thin layer of liquid is present with thickness

. Due to viscous stresses at the bottom of the disk power is required to keep the disk
spinning. This disk friction power  that continuously has to be provided to the system
equals

(6.14)

where the frictional torque  acting on a rotating radial disk is given by (neglecting
shear stresses at the top of the disk by air, for example)

(6.15)

FIGURE 6.3. Control volume behind trailing edge.
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Disk friction
where  is the shear stress in circumferential direction. The shear stress can be expressed
as

(6.16)

For a disk of radius  this leads to

(6.17)

where .

Correlations for  were obtained by [16]. Four different regimes were identified,
depending on the type of flow, laminar or turbulent, and whether separate boundary lay-
ers exist on both sides of the solid surfaces, or the boundary layers have merged.

These regimes are characterised by a nondimensional Reynolds number 
and a nondimensional gap parameter .

• Regime I: laminar flow, boundary layers have merged

(6.18)

• Regime II: laminar flow with two separate boundary layers

(6.19)

• Regime III: turbulent flow, boundary layers have merged

(6.20)

• Regime IV: turbulent flow with two separate boundary layers

Ω

R

h

FIGURE 6.4. Geometry for disk friction. 
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(6.21)

The regimes are shown in Figure 6.5. 

Leakage flow

Many hydraulic turbomachines are equipped with (rotating) shrouds. In order to mini-
mize leakage flow, various types of seals are used. Without seals between the shaft and
the pump housing, the fluid would squirt out of the pump, due to its high pressure.

Here a model is given for the mixing loss due to the leakage flow joining the main flow
and a model is given for determining the leakage flowrate. This latter bulk flow model
also provides the contribution of disk friction associated with the leakage flow.

Mixing loss

Due to the mixing of the leakage flow with the main flow, the flow incurs a loss. From
conservation of axial momentum for the control volume depicted in Figure 6.6 it follows
that

(6.22)

Assuming that the main flow is irrotational, the final circumferential velocity of the
mixed-out flow is determined from conservation of angular momentum

(6.23)

cm 0.051G1 10/ Re 1 5/–= G 0.402Re 3 16/–>
Re 1.58105>


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FIGURE 6.5. Regimes for disk friction.
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Leakage flow
The factor 1 / 2 follows from the reduction in average radius. Since A1 = A3, the loss in
total pressure is 

(6.24)

where .
The power loss through mixing  then becomes

(6.25)

Bulk-flow model for conical leakage area

In most cases the leakage flow is through a narrow conical gap with a constant height .
Hence, in relation to the geometry sketched in Figure 6.1, a conical gap for the leakage
flow corresponds to a shroud that is straight. The steady momentum equations in the con-
ical coordinate system, see Figure 6.7, are

(6.26)
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FIGURE 6.6. Control volume at the impeller inlet.
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for the throughflow direction  and the circumferential direction .
For a thin film the derivatives of the shear stresses in the -direction are

(6.27)

(6.28)

where the superscripts R and S denote values at the rotating and stationary walls.
The shear stresses are expressed as

(6.29)

(6.30)

(6.31)

(6.32)

where  and  are the magnitudes of the bulk velocities relative to the rotating and
stationary walls

(6.33)

Various empirical relations can be employed for the various friction factors, see [18].
For a given leakage flow , corresponding to known distribution of  from mass
conservation, the equations (6.26) can be solved for the circumferential velocity  and
the pressure . The leakage flow has to be adjusted such that it gives the pressure drop
corresponding to the head increase of the impeller.
The power loss associated with the leakage flow consists of two parts. The first part is
disk friction, which can be computed once the velocity distribution in the gap is known,
since the shear stress is determined from the velocities and the friction coefficients. The
second part is due to the fact that in the impeller the pressure increases, but the pressure
increase of the leakage flow is lost. Hence

(6.34)

where  is the head increase over the impeller.
Examples of results for the pressure distribution in seals are given in [18].
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CHAPTER 7 Cases
This chapter shows various examples of the methodology described in preceding chap-
ters: the potential-flow model is used to describe the core flow and additional models for
the various sources of losses are employed that use the potential-flow field as input. The
examples vary in range of specific speed from a low specific-speed centrifugal pump to a
high specific-speed axial cooling fan.

Centrifugal pump, free impeller

In order to study the flow in centrifugal impellers, detailed measurements of velocity and
pressure have been performed for the SHF impeller (Societé Hydraulique de France).
This is a low specific speed, nω = (Ω Q1/2)/(g H)3/4 = 0.58, centrifugal impeller with
seven blades. Its inlet diameter is 220 mm and its outlet diameter is 400 mm. The blade
outlet angle is 67.5° with respect to the radius. At 1200 rpm, the nominal flowrate Qn is
0.1118 m3·s-1 and the corresponding head is 31 m. The geometry is shown in Figure 7.1. 

The results of Laser Doppler Velocimetry measurements are reported in [15] and the
results of pressure measurement are given in [27]. Since a detailed description of the
geometry is available, this impeller was analysed with the present code [19]. In the com-
putation the thickness of the impeller blades was taken into account. Here the main
results are recapitulated.

The computed head  equals 33 m in comparison with the measured head of 31 m. The
computed and measured pressure distribution on the blade is plotted in Figure 7.2; good
agreement is observed. A detailed comparison of computed and measured velocities is
given in [19]. 

FIGURE 7.1. Geometry of SHF impeller.

H
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Centrifugal pump, volute

This section is based on [23]. This example deals with the flow in a low-specific speed
pump consisting of an impeller with logarithmic blades and a volute. The emphasis of
this case is on the flow in the volute. 

Measurements were performed at a centrifugal pump with a low specific-speed nω =
(Ω Q1/2)/(g H)3/4 of 0.4. The impeller (see Figure 7.3) has seven blades with a constant
blade angle of 70° with respect to the radius and a thickness of 2 mm. The impeller inner
diameter is 320 mm, its outer diameter 640 mm, and the axial width is 25 mm. The
volute, see Figure 7.4, has a trapezoidal cross-section and is designed to approximately
match the impeller at design condition (Q = 0.008 m3/s, Ω = 4.2 rad/s), according to the
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FIGURE 7.2. Computed and measured pressure distribution on SHF impeller.

FIGURE 7.3. Centrifugal impeller (cross-section). All dimensions in mm.
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Centrifugal pump, volute
method of constant angular momentum [5] (see also Chapter 7). The Reynolds number
 is 1.7·106, where ν is the kinematic viscosity of water. The tongue has a cylin-

drical shape with a diameter of 2 mm. During construction special attention was paid to
the minimization of leakage flows. Measurements are presented for flowrates of 82.5 %,
100 % and 117.5 % of the design flowrate.

Velocity measurements were performed using LDV. The LDV configuration is
described in detail in [32] and [33]. It employs a dual reference beam forward scattering
system, capable of parallel detection of two perpendicular velocity components. Two
Bragg cells were used to effectuate preshifts between main beam and the two reference
beams, thus enabling the determination of the direction of the velocity components. Two
detectors measured the Doppler frequency. These signals were sampled and stored on
disk. Time-averages and RMS-values could be computed. Information on the axial
velocity component could not be obtained. U-tube manometers were used to obtain val-
ues of the static pressure. Figure 7.5 shows the locations in the volute where velocity and
static pressure measurements were obtained. 
The head-capacity curve was derived from the static pressure difference between inlet
and outlet of the pump and the assumption of uniform velocity in these regions. It is not
possible to measure the hydraulic efficiency of the pump with the current experimental
setup.
Air-bubble visualization was used to investigate the flow near the tongue of the volute.

Results
In this section the results of measurements and computations are compared. These results
deal with velocities, pressures and overall characteristics. The computational mesh is
shown in Figure 7.6. It contains a total of 168,000 nodes, of which 14,500 are located in

ΩD2( ) ν⁄

F

F

cross-section F-F

75°

FIGURE 7.4. Spiral volute (plane view and cross-section) All dimensions in mm.
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each of the seven impeller channels Computations are performed with 105 timesteps per
shaft revolution. Although the computations yielded time-dependent quantities, only
time-averaged quantities are presented.

Velocity

Radial and circumferential velocity components were measured in a plane at half the
axial width of the volute. Several trajectories (see Figure 7.5) were scanned for the three
flowrates 82.5 %, 100 % and 117.5 % of the nominal flowrate. 

Typical results are shown in Figure 7.7, together with the computed values. In a large
region of the volute (60°-285° from the tongue) computed circumferential velocities
agree very well with measurements at optimum flow conditions. At low flowrate this
excellent agreement is restricted to a smaller region (150°-285° from the tongue). At
high flowrate the agreement is not very good except for a small region 60°-150° from the
tongue. The agreement between computed and measured radial velocities is very poor. 

This discrepancy was further investigated by performing traverses over the height of the
volute. Results are given in Figure 7.8 which shows the variation of radial and circumfer-
ential velocity over the height of the volute for two radial positions on traverse F (see
Figure 7.5). The circumferential velocity is practically constant over the height of the
volute, while the (much smaller) radial velocity shows severe secondary flow. 

pressure tap

velocity trajectory

    Cross section

FIGURE 7.5. Measurement locations in the laboratory centrifugal pump. LDV
measurements are performed along trajectories A to H. Static pressure
measurement locations are indicated with solid markers. Hatched area shows
region which is not visually accessible.

FIGURE 7.6. Plane view of the computational mesh for the centrifugal pump with
spiral volute. Only one of the seven impeller channels is shown.
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Centrifugal pump, volute
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Pressure

The static pressure difference ∆p between the inlet of the pump and locations in the
volute is measured using U-tube manometers. It is made nondimensional with the blade
tip speed according to

(7.1)

In Figure 7.9 results of measurements and computations are shown for locations just out-
side the impeller and along the volute outer wall, for three different flowrates. The
(inviscid) computations lead to pressure values which, on the average, are too high.
However, in a large region, not too near to the tongue, the qualitative agreement is quite
good. A constant static pressure around the impeller can be observed at design flowrate. 
The computed static pressure values can be corrected for viscous losses in the impeller 

(7.2)

where the hydraulic head loss in the impeller is denoted by HL,h,imp. By doing so, the
agreement is improved, although considerable deviations still occur at off-design condi-
tions. 

Head curve

Figure 7.10 shows the head-capacity curve. The methods described in Chapter 6 are used
to quantify the effects of boundary-layer dissipation and wake mixing. The fraction that
wake mixing contributes to the total head loss ranges from 10% at high mass flow to
25% at low mass flow. 

Discussion

An investigation of the axial distribution of radial velocities at a number of radial posi-
tions in the impeller and the volute revealed that a region of severe secondary flow is
located in the volute. Typical radial velocity profiles are sketched in Figure 7.11. The
observed convex radial velocity profile in the volute region, with negative velocities near
the upper and lower surfaces, can easily be explained by an analysis of pressure forces
and centrifugal forces (due to curvature) in the boundary layers and the main flow. It is
equivalent to the secondary flow encountered in the flow through a pipe bend. A similar
analysis for the flow through the impeller can be made, where account should be given of
the additional centrifugal force due to rotation and the Coriolis force. The equilibrium
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Centrifugal pump, volute
between pressure forces and Coriolis forces in the main flow is lost in the boundary lay-
ers at hub and shroud surfaces, leading to a secondary flow in the boundary layers
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directed from pressure to suction side. In the main flow a reverse secondary flow direc-
tion is observed. This leads to the observed concave radial velocity profile for impellers
with backwardly curved blades. Secondary flows are discussed in more detail in Chapter
9. 

The secondary flow does not seem to influence the static pressures. Except at the high
flowrate, the agreement between measurements and potential-flow computations (after
correcting for viscous losses in the impeller) is quite good. It can be observed from the
difference between both that viscous losses build up as the fluid is flowing along the
volute wall from the tongue to the volute throat. 
Similar results are obtained for the head-capacity curve. The good agreement at low and
optimum flowrate imply that other sources of viscous losses are not very important in
this pump. At high flowrate, however, a larger deviation is observed between computa-
tions and experiments. 
A possible cause for the disagreement between measurements and computations is
boundary has been experimentally observed at high flowrate (Figure 7.12). 

The blockage effect resulting from the separated boundary-layer could well be related to
the observed tangential velocity profiles at high flowrate, which deviate considerably
from the computations. A homogeneous distribution of tangential velocity was seen to
cover the major part of the volute extending from trajectories B to G (Figure 7.5). It is
suggested that measured velocity profiles like these have inspired Stepanoff [6] to put

FIGURE 7.11. Cross section of impeller and volute, showing measured radial
velocity profiles. Average velocities are indicated with dotted lines

blades

pressure tube A

pressure tube B

FIGURE 7.12. Photograph of flow near the tongue of the volute at high flowrate
showing boundary layer separation. Air bubbles inserted through pressure tube
A are used for flow visualization.

streakline

tongue

streakline
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Mixed-flow pump
forward his method of constant mean velocity for constructing volutes. A similar flow
field can emerge at design flowrate if the volute is designed somewhat too small. It is
known that volutes designed according to the method of Stepanoff are smaller than those
designed according to the method of constant angular momentum [5].

Mixed-flow pump 

This section summarises the description in [20] and [21]. Experiments were performed at
the test facility of Flowserve Hengelo, The Netherlands. The model contains a shrouded
mixed-flow impeller with four blades and has a specific speed nω of 1.6, see Figure 7.13. 

The volute is unvaned with a trapezoidal cross-section, see Figure 7.14. It is designed
according to the method of constant angular momentum [5] (see also Chapter 9). 

The pump is a scale model of a much larger pump used for cooling-water transportation
in power stations. Two types of measurements were carried out; overall performance
measurements and detailed pressure measurements in the volute. The pressure measure-
ments and their comparison to the computational results are given in [20].

Overall performance characteristics include the head-capacity curve and the efficiency
curve. Figure 7.15 shows both the experimental and computed values. Results of inviscid
computations are corrected for viscous losses, using the models described in Chapter 6.
In contrast to the laboratory centrifugal pump, boundary-layer dissipation is by no means
the only source of loss. The ratios Qleak / Q were found to be quite high, varying from
1.7% at high flowrate (Q = 1.4 Qn) to 6.4% at the lowest flowrate considered
(Q = 0.6 Qn). A small portion of the total loss is accounted to mixing losses, an even
smaller portion to expansion losses. Large deviations at very low and high flowrates may
be attributed to secondary flow like stall and surge, or to boundary-layer separation.

Cavitation

This section summarises some results from [28]. To be added.

FIGURE 7.13. Geometry of impeller of mixed-flow pump.
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Cases
FIGURE 7.14. Geometry of volute of mixed-flow pump.
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FIGURE 7.15. Head-capacity and efficiency curves of mixed-flow pump.
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Axial fan
Axial fan

This section deals with axial cooling fans from Howden Cooling Fans, Hengelo, The
Netherlands. Various configurations have been considered, see Figure 7.16. A detailed
account is given in [13]. 

For axial cooling fans the nondimensional quantities of interest determining the perform-
ance characteristics are the flow coefficient Cf, the pressure coefficient Cp and the power
coefficient λ

(7.3)

+

+

FX: 8 blades

FIGURE 7.16. Geometry of FX and SX cooling fans.

SX: 4 blades
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Cases
Note that the pressure coefficient is the nondimensional difference between the static
pressure at outlet and the total pressure are inlet.
The comparison between measured and computed performance characteristics is shown
in Figure 7.17. 
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FIGURE 7.17. Measured and computed performance characteristics of FX and
SX axial cooling fans.
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CHAPTER 8 Boundary layers
This chapter deals with basic boundary-layer theory (textbooks on boundary-layer theory
are [8], [9] and [10]). The focus is on two-dimensional wall-bounded boundary layers
and incompressible flows. The emphasis is on the effect of pressure gradients outside the
boundary layers, since this effect is important in applications to turbomachines. 
This chapter deals with basic boundary-layer theory (textbooks on boundary-layer theory
are [8], [9] and [10]). The focus is on two-dimensional wall-bounded boundary layers
and incompressible flows. The emphasis is on the effect of pressure gradients outside the
boundary layers, since this effect is important in applications to turbomachines. 
For turbines the pressure gradient is generally favourable (accelerating flow), while for
pumps and compressors the pressure gradient is generally adverse (decelerating flow).
Firstly, the boundary-layer concept is described, followed by the formulation of the
boundary-layer equations in the two-dimensional case of incompressible flow. A distinc-
tion is made between the laminar and the turbulent case.
Basic boundary-layer methods are described for calculating laminar and turbulent bound-
ary-layers. These methods take into account the pressure gradient, or equivalently the
variation of the velocity, outside the boundary layer. 

Boundary-layer concept

As was shown in Chapter 2, in many cases the core flow may be considered as inviscid
for the high Reynolds-numbers that are typical for turbomachinery flows. Hence, viscous
shear stresses can be neglected in the main flow. Close to solid walls this assumption
generally does not hold, since at the wall the no-slip condition applies. So there will be a
rapid change in velocity in the direction normal from the wall, with zero velocity at the
wall, to the main flow velocity at a small distance from the wall. This large gradient in
velocity corresponds to (non-negligible) shear stresses. Thus, close to the solid walls the

FIGURE 8.1. Sketch of the boundary layer near a solid wall.

Boundary layer

Main flow

x

y

Solid wall
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Boundary layers
assumption of inviscid flow is not correct. Inside the thin boundary-layer viscous shear-
stresses can not be neglected. However, by taking into account that boundary layers are
thin, other simplifying assumptions can be made that lead to simplified forms of the
Navier-Stokes equations that are appropriate to the flow in boundary layers.

Boundary-layer thicknesses

boundary-layer (distur-
bance) thickness

Inside the boundary-layer the velocity component parallel to the wall,  with  the
coordinate along the solid wall and  the distance normal to the wall, changes from zero
towards the main-flow velocity . The boundary-layer disturbance thickness  is
usually defined as the distance from the wall to the point where the velocity is within 1%
(or another percentage) of the freestream velocity of the core flow. This point is difficult
to measure, since the velocity profile merges smoothly with the main flow. Furthermore,
the 1% criterion is arbitrary. Therefore, two other boundary-layer thicknesses are intro-
duced.

The viscous forces that are important in the boundary layer result in a retardation of the
flow in comparison with the main flow. Thus, the mass-flow rate adjacent to the solid
wall is smaller than that in the main flow. The mass-flow rate (per unit depth) is given by

. The decrease in mass-flow rate, relative to the corresponding mass-flow
rate of a uniform inviscid flow (that would not approach zero at the wall) is given by

. The boundary-layer displacement thickness  is defined as the
distance over which the solid wall would have to be displaced to give the same mass-
flow deficit as that which exists in the boundary layer. Thus, the boundary-layer dis-
placement thickness  is defined by

boundary-layer displace-
ment thickness

(8.1)

Besides leading to a reduction of the mass-flow rate, the boundary layer also results in a
reduction of the momentum transport. The momentum deficit of the actual mass-flow,

, through the boundary layer is . If viscous
forces were absent, it would be necessary to move the solid wall outwards to obtain a
momentum deficit. Denoting this distance, the boundary-layer momentum thickness, by

, this deficit is equal to . Thus the momentum thickness is defined as the
thickness of a layer of fluid with velocity , for which the momentum flux is equal to
the deficit of momentum flux through the boundary layer. Thus, the boundary-layer
momentum thickness  is defined by

boundary-layer momentum 
thickness

(8.2)

Since the displacement thickness and the momentum thickness are defined as integrals
with an integrand that vanishes in the main flow (where ), they are appre-
ciably easier to determine experimentally than the boundary-layer disturbance thickness

.

With constant density  the displacement thickness  and the momentum thickness 
can be written as

(8.3)
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Boundary-layer equations
Hence these thicknesses involve the shape of the non-dimensional velocity profile within
the boundary layer. A non-dimensional parameter related to the shape of the velocity
profile within the boundary layer is the shape factor  defined by 

shape factor
(8.4)

For example, with a (often used) power-law velocity profile,
, we find that .

Boundary-layer equations
The equations governing two-dimensional, incompressible and steady flows are the con-
tinuity equation and the two-dimensional Navier-Stokes equations. The case considered
is that of the flow near a flat, solid wall. The essential assumption made in boundary-
layer theory is that the boundary layer is thin, and that changes in the -direction, along
the wall, are much slower than changes in the -direction, perpendicular to the wall.
With characteristic length scales  for the -direction and  for the -direction, this
assumption requires

(8.5)

Laminar flow
The continuity equation (2.5) for incompressible flow is

(8.6)

where  and  are the velocity components along the wall and perpendicular
to the wall, respectively.
For laminar flow the steady, two-dimensional Navier-Stokes equations (2.6), with (2.8)
for the shear stress, for incompressible flow are

(8.7)

Now the order of magnitude of the various terms will be investigated. Characteristic
velocity scales for  and  are  and , respectively. The order of magnitude of the
first term in the continuity equation is , while that of the second is .
Hence it follows that .
Now an order of magnitude analysis of the Navier-Stokes equation for the -direction is
performed, using the result for the velocity scale . The order of magnitude of the first
two terms on the left-hand side is , as is that of the term with the pressure gra-
dient. The order of magnitude of the two viscous terms are  and

, respectively. Hence the first viscous term is smaller, by a factor
, than the second viscous term.

Similarly, the order of magnitude analysis of the Navier-Stokes equation for the -direc-
tion is performed. The order of magnitude of the first two terms on the left-hand side is

, while that of the term with the pressure gradient is
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Boundary layers
. The order of magnitude of the two viscous terms is
 and , respectively. Hence the

first viscous term is smaller, by a factor , than the second term.
From this analysis of the order of magnitude it follows that the two viscous terms con-
taining derivatives with respect to  can be neglected. Since viscous terms are, almost by
definition, important in boundary layers it follows that the order of magnitude of the
terms on the left-hand side of the Navier-Stokes equations for the -direction,

, must be equal to the magnitude of the second viscous term, .
This means that . From these results it follows that the domi-
nant term, by a factor , in the Navier-Stokes equation for the -direction is
the term with the pressure gradient. The resulting, simplified equation is thus

, which means that inside of the boundary layer the pressure does not
change in the direction perpendicular to the wall. Hence the pressure inside the boundary
layer is equal to that outside the boundary layer, which (is assumed to) satisfy the Ber-
noulli equation, so .
The resulting steady, two-dimensional boundary equations for incompressible laminar
flow become

(8.8)

Note that, unlike in the Navier-Stokes equations, the pressure no longer is an unknown.
The pressure inside the boundary layer is equal to that outside the boundary layer. In
turn, this pressure is determined from the Bernoulli equation for the inviscid, irrotational
main flow.

Turbulent flow
Turbulent flow is characterised by irregular, time-dependent fluctuations. Since these
high-frequency variations are generally not of interest, it is common to employ a so-
called Reynolds decomposition. The instantaneous velocity vector  is decom-
posed into a mean, time-independent velocity vector  and a fluctuation 

(8.9)

Similarly, the pressure is decomposed into a mean and a fluctuation pressure.
The fluctuation is chosen such that its time-average value (over a long period ) is zero

(8.10)

Here the overbar denoted the time average. For an arbitrary quantity  this average is
defined by

(8.11)

The steady, two-dimensional Reynolds-averaged Navier-Stokes equations (RANS for
short) for incompressible flow become after some algebra

Reynolds-averaged Navier-
Stokes equations

(8.12)
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Momentum integral equation
where ,  are the components of the time-averaged velocity vector in -direction and
-direction, respectively, and ,  are the components of the fluctuating velocity vec-

tor in -direction and -direction, respectively. The terms on the right-hand side involv-
ing the fluctuating velocities are effectively additional stresses, the so-called Reynolds
stresses  (and similar terms), due to momentum transfer that is the result of the ran-
dom fluctuation velocities. These terms are a result of the nonlinear character of the
Navier-Stokes equations.

A central problem in the study of turbulence is that, by the process of Reynolds averag-
ing, extra unknowns, such as , have been introduced into the equations. Now the
number of unknowns exceeds the number of equations. Therefore these additional
unknowns have to be related to the primary unknowns. This is the closure problem in
turbulence. It forms one of the major unsolved (unsolvable perhaps) problems in fluid
mechanics. An advanced textbook on turbulence is [30].

Using the Reynolds decomposition (8.9), the continuity equation (8.6) becomes

(8.13)

Now an order of magnitude analysis is made of the Reynolds-averaged Navier-Stokes
equations. It is assumed that all fluctuating terms ( ,  and ) are of the same
order of magnitude. From the order of magnitude of the continuity equation, it follows

, just as in the laminar case. Similarly to the analysis of laminar boundary-
layers, the terms involving derivatives with respect to  of viscous and Reynolds stress
can be neglected in comparison to the terms involving derivatives with respect to . The
order of magnitude of the inertia terms on the left-hand side is the same as in the laminar
case. On the right-hand side, the terms with derivatives with respect to  will be smaller,
by an order of magnitude , than the terms involving derivatives with respect to .
Hence these smaller terms will be neglected. Except very close to the wall the viscous
stresses will be smaller than the Reynolds stresses for turbulent boundary layers. Thus
we find

(8.14)

From detailed experimental studies it is known that the Reynolds stress  does not
vary significantly over the boundary layer. From the previous equation it follows that

. Hence the pressure inside the boundary layer is equal to that outside the
boundary layer, which (is assumed to) satisfy the Bernoulli equation, so

, just as in the laminar case. Finally, we obtain

(8.15)

Momentum integral equation

The boundary-layer equations for laminar and turbulent boundary layers (8.8) and (8.15)
both can be written as 

u v x
y u' v'

x y

ρu'v'

u'v'

x∂
∂ u

y∂
∂ v+ 0=

u'u' u'v' v'v'

V δ L⁄( )U=
x

y

x
δ L⁄ y

u
x∂

∂ u v
y∂

∂ u+
1
ρ
---–

x∂
∂ p ν∂2u

y2∂
--------

y∂
∂ u'v'( )–+=

0
1
ρ
---–

y∂
∂ p

y∂
∂ v'v'( )–=

ρv'v'

p∂ y∂⁄ 0=

p∂ x∂⁄ 1 ρ⁄( )U Ud xd⁄–=

u
x∂

∂ u v
y∂

∂ u+ U
Ud
xd

------- ν∂2u
y2∂

--------
y∂

∂ u'v'( )–+=

0
1
ρ
---–

y∂
∂ p=
Turbomachines II 63



Boundary layers
(8.16)

where the overbars for the velocities and pressure have been dropped in the turbulent
case to simplify the notation. The total shear stress , consisting of laminar shear-
stress and turbulent Reynolds-stress, is defined as

(8.17)

By adding  times the continuity equation to (8.16) we obtain

(8.18)

Integrating from  to , with  arbitrary but independent of , gives
after using the no-slip condition at the wall, , and that the shear stresses are
zero, , outside the boundary layer

(8.19)

where  is the shear stress at the wall, i.e. . By integrating the continuity
equation from  to  and using the no-slip condition at the wall, ,
we find that . At , outside the boundary layer, we have

. Thus we obtain

(8.20)

After some rewriting of the left-hand side we find

(8.21)

Since  for , both parts on the left-hand side contribute only for ,
and hence are independent of . Thus

(8.22)

and hence

(8.23)

Using the definitions (8.3) of the displacement boundary-layer thickness  and the
momentum boundary-layer thickness , we obtain the von Karman momentum integral
equation
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Entrainment equation
momentum integral equa-
tion (8.24)

This equation can be rewritten as

(8.25)

where  is the shape factor defined in (8.4) and  is the friction coefficient defined by

friction coefficient
(8.26)

The momentum integral equation (8.25) shows that accelerating outer flows (as fre-
quently encountered in turbine flows) tend to reduce the momentum thickness , while
decelerating outer flows (as frequently encountered in pump and compressor flows) tend
to increase the momentum thickness . Thick boundary layers, with lower wall shear-
stress, are more prone to separation than thin boundary layers.

Entrainment equation

The entrainment velocity  is defined as the velocity component that is normal to the
“edge”  of the boundary layer, see also Figure 8.2. From the mass conservation
equation (with constant density ) applied to the control volume CV sketched in Figure
8.2, it follows that 

entrainment velocity

(8.27)

The meaning of  is the rate at which fluid from outside the boundary-layer (which is
effectively inviscid) is “entrained” into the boundary layer where viscous effects are
important. Note that the edge of the boundary layer is not a streamline! 

Since  is the velocity component normal to the edge  of the boundary layer it
follows that  where  is the (inward) unit vector nor-
mal to the edge of the boundary layer. Since , the normal vector is given by

 (the approximation made is that the length of this vector is not
exactly equal to 1). Hence we obtain
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Boundary layers
(8.28)

From the definition (8.3) of the displacement thickness  and assuming that the inte-
grand equals zero for , it follows that

(8.29)

By splitting the terms on the right-hand side we obtain

(8.30)

Using the definition (8.27) of the entrainment velocity , it follows that

(8.31)

Laminar flow: Pohlhausen’s method

A method for predicting the characteristics of laminar boundary-layers that uses the
momentum integral equation is Pohlhausen’s method. 
Firstly, a velocity profile is postulated, based on some observations of ‘suitable’ velocity
profiles. The velocity is defined for . At the edge of the boundary layer, ,
it must smoothly match the velocity  outside the boundary layer. Hence we require

(8.32)

At the wall, , we have

(8.33)

The latter condition follows from (8.8) for , where  and . A polyno-
mial form for the non-dimensional velocity  in terms of the non-dimen-
sional coordinate  is postulated

(8.34)

The coefficients can be determined from the conditions (8.32) and (8.33). The result is (a
nice Maple exercise?)

(8.35)

where the non-dimensional pressure-gradient parameter  is given by

(8.36)
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Laminar flow: Pohlhausen’s method
with  for a decelerating outer flow,  for an outer flow with constant veloc-
ity and  for an accelerating outer flow. This velocity profile is shown in Figure 8.3
for various values of . Note that for , the shear stress at the wall,

, becomes zero, which is indicative for boundary-layer separation. 
With the velocity profile thus expressed in terms of , its derivative  and the
boundary-layer (disturbance) thickness , the boundary-layer thicknesses  and  can
be determined from (8.3), as well as the friction coefficient  from (8.26), since

. The results are

(8.37)

With these relations an ordinary differential equation is obtained for , which can be
solved (numerically) with an initial condition.
For an outer flow with constant , i.e. , we find

(8.38)

The ‘exact’ solution (based on the solution of the boundary-layer equations in differen-
tial form, i.e. not integrated over the boundary layer) is the so-called Blasius solution, see
[2]. For the friction coefficient  it gives . So the simplified
Pohlhausen method gives accurate results.
Note that other assumptions for the velocity profile within the boundary layer lead to dif-
ferent numerical values for ratios like . Generally, the results are not extremely
sensitive to the shape of the velocity profile. Some examples are given in [2].
Another integral method for laminar boundary-layers, which uses using empirical rela-
tions, is that of Thwaites, see for example [8]. 
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Boundary layers
Turbulent flow: Head’s method

For turbulent flow the method of assuming a velocity profile  does not
work as in the laminar case, since the turbulent boundary-layer has a composite structure
that accounts for the different scaling behaviour of the viscous-dependent part of the pro-
file very close to the wall and the remaining Reynolds-stress part of the profile further
away from the wall. 
In order to use the momentum integral equation (8.27) without assuming a velocity pro-
file, (empirical) relations involving the friction coefficient  and the shape factor 
must be formulated.
In the method of Head (see for example [8] and [9]) the empirical relation due to Lud-
wieg & Tillmann is used for the wall-friction coefficient  

(8.39)

where .
In this method it is assumed that the nondimensional entrainment velocity, , see
(8.27), is solely a function of the shape factor  

(8.40)

Defining another shape factor  by

(8.41)

then the right-hand side equality in (8.40) can be written as

(8.42)

This other shape factor  is assumed to be a function of the shape factor  only

(8.43)

Based on experimental data, a fit for the functions  and  was formulated

(8.44)

(8.45)

The resulting method consists of two ordinary differential equations (8.25) and (8.42) for
 and . These differential equations can be solved (numerically) with initial condi-

tions for  and .

Transition and separation

Separation of laminar boundary layers can be predicted with Thwaites criterion
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Transition and separation
(8.46)

An empirical relation for predicting transition, from laminar to turbulent, of the state of
the boundary layer is Michel’s criterion

(8.47)

where ,  and the subscripts “trans” denote values at transi-
tion.
Other factors affecting transition, such as level of freestream turbulence, surface rough-
ness and surface curvature, are discussed in [9].
The criterion for separation of the turbulent boundary layers in Head’s method is that the
shape factor  exceeds a certain threshold value , typically . Note
that according to (8.39),  corresponds to .

λ θ2

ν
-----

xd
dU≡ 0.082–≤

Reθ trans, 1.174 1
22400

Rex trans,
-------------------+

 
  Rex trans,

0.46
=

Reθ Uθ ν⁄= Rex Ux ν⁄=

H Hsep Hsep 1.8 2.4–=
cf 0→ H ∞→
Turbomachines II 69



Boundary layers
70 Turbomachines II



CHAPTER 9 Design aspects
This chapter deals with elementary considerations of some design methods for impellers
and volutes and an outline of some advanced topics.

Impeller
Here two aspects of the design of impellers will be discussed. The first deals with the
shape of the inlet to optimise the cavitation characteristics, while the second deals with
considerations that are used to determine the blade shape.

Cavitation
cavitation inception In the vicinity of the leading edge of the impeller the fluid has to accelerate in order to

follow the rotating movement of the blades. This acceleration leads to a drop of the static
pressure which may lead to the static pressure dropping below the vapour pressure. When
this happens, vapour bubbles will form. The instant where the first vapour bubbles form
is called cavitation inception. A simple, one-dimensional analysis will be given that gives
the inlet stagnation pressure at which cavitation inception occurs.
Upstream of the impeller the static pressure equals

(9.1)

At the point of cavitation inception the local pressure equals the vapour pressure pv

(9.2)

blade coefficient where the empirical blade coefficient σb depends on the blade shape and flow incidence.
The latter term is the static pressure drop due to the fluid being accelerated by the rotation
of the blade near the leading edge.

Thus at cavitation inception

(9.3)

Or, using 

(9.4)

where Hsuct is the net positive suction head and it is implied that this is measured at the
shroud where the blade speed is highest.
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Design aspects
suction specific speed The optimum inlet conditions are now considered. The suction specific speed Nsuct is
defined as

 (9.5)

where

 (9.6)

Now we obtain, with 

(9.7)

The optimum cavitation condition is now determined by finding the maximum suction
specific speed Nsuct by differentiating this equation with respect to  and setting the
result to zero. A maximum for Nsuct means that the minimum inlet stagnation pressure is
obtained that corresponds to operation without cavitation. The optimum conditions
become

(9.8)

Blade shape
meridional view The full, three-dimensional geometry of impellers is generally very complicated. Usually

they are represented in the form of a meridional view (see Figure 9.1) and a planar view
(see Figure 9.2).     

blade loading coefficient Most design methods are based on a blade loading coefficient. Here the blade loading
coefficient ξ is defined by
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Impeller
(9.9)

where  and  are the magnitudes of the relative velocity at the suction and pressure
side of the impeller blade, and  is their average, i.e. . From the
definition of rothalpy (2.62) it follows that the blade loading coefficient is directly
related to the pressure difference on the blade, and hence to the power input to the fluid

(9.10)

In most design methods it is recommended that the blade loading coefficient ξ should not
exceed values in the range of 0.7 – 1.0. 

For an irrotational absolute velocity, the vorticity of the relative velocity is given by
(2.55). The circulation of the relative velocity along the contour defined by the outline of
the three-dimensional (nonplanar!) shaded area in Figure 9.3 is 

(9.11)

The term  arises because the vectorial surface  is at an angle to the rotation axis.
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The meridional distance ∆m is related to the distance ∆s in the planar view and the radial
distance ∆r by

(9.12)

The relative circulation can also be evaluated by integration of the velocity around the
contour. This gives

(9.13)

or

(9.14)

Combining the previous equations gives

(9.15)

The mass flow through the impeller channel is constant . Hence,
for incompressible flow this equation can be simplified, after some algebra, to 

(9.16)

The left-hand side is related to the blade loading coefficient, which is assumed to be
specified. Hence this equation is a differential equation for the blade angle . An initial
condition is needed for . This can be obtained from the specified head and a slip factor,
using a one-dimensional model.

Volute
The volute is one of the different types of diffusers that are used to collect the fluid and
guide it to the exit pipe. An important function of the volute is to (try to) convert the high
kinetic energy of the fluid leaving the impeller into pressure. The major velocity compo-
nent of the fluid leaving the impeller is the tangential component, which is proportional
to the blade tip speed.

method of constant angular 
momentum; Pfleiderer’s 
method

The two most frequently used methods for the design of volutes are Stepanoff’s method
of constant circumferential velocity [6] and the method of constant angular momentum
[5], [34]. Only the latter will be treated here. It is also known as Pfleiderer’s method.
In this method it is assumed that the tangential and radial velocities are uniform around
the impeller.
The moment exerted on the fluid by the impeller  is

(9.17)

With a impeller efficiency  the impeller moment can be related to the head gener-
ated by the impeller 

(9.18)

Note that the quantities  and  refer to the design point!
The tangential velocity becomes
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Secondary flows
(9.19)

Now a radial cross-section of the volute at angle θ is considered, see Figure 9.4. The
flowrate through this cross-section equals 

(9.20)

where  is the radius of the “tongue”. Note that there must be some clearance
between impeller and volute, so the radius of the tongue  must be larger than the
radius of the trailing edge .
Assuming that the outflow around the impeller is uniform 

(9.21)

From this equation the size of the volute as described by  can be determined. 
In the two-dimensional case with constant width of the volute, i.e. , the
resulting form of the volute, , becomes

(9.22)

which is a logarithmic spiral.

Secondary flows

In many cases the flow entering a blade channel is not uniform. A prime example is the
nonuniformity due to the presence of boundary layers on the blades, on the hub and on
the shroud.
Consider a flow as sketched in Figure 9.5. The streamwise direction is denoted by ,
while the blade-to-blade direction is  and the hub-to-shroud direction is . In the
region of uniform flow a typical streamline is indicated by , while the streamline in
the boundary layer is . Outside of the boundary layers viscous effects may be
neglected. If it is also assumed that the flow is steady and incompressible (constant den-
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Design aspects
sity) and that there is no variation of the flow in the -direction, then the pressure gradi-
ent in the -direction must be balanced by the centripetal acceleration. Hence

(9.23)

where  is the radius of curvature of the streamline at  and the streamwise velocity is
.

When employing the usual boundary layer assumptions, it follows that the pressure gra-
dient in -direction should be constant in the boundary layer. Hence we obtain

(9.24)

secondary flow Because  and , there is an imbalance between the pressure gradient in
-direction and the centripetal acceleration. Thus the streamline  will deflect more

from that shown in Figure 9.5. The fluid particle originating at B would follows the path
, with , instead of . The cross-flow , which is the deviation from

the main flow, is called the secondary flow.
From continuity considerations it follows that there are also spanwise velocities : for a
flow with constant streamwise direction , we find . This
explanation provides a clear physical reasoning for the occurrence of secondary flow in a
blade passage. Hence the secondary flow leads to vorticity in streamwise direction

.
A similar reasoning can be presented to explain the occurrence of secondary flow due to
Coriolis forces. 
A more detailed description of secondary flows and of how they can be analysed quanti-
tatively is given in [4].
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Laser Doppler Velocimetry
Laser Doppler Velocimetry

For non-intrusive measurements of fluid velocities Laser Doppler Velocimetry (LDV) is
often used. This method is based on Doppler effect, i.e. the change in wave length seen
by a stationary observer when light reflects on a moving object. The frequency shift is
proportional to the velocity of the object. Direct observation of this frequency shift is not
possible, since it is far too small. Therefore a comparison is made between the original
light and the reflected light.

When the object is a small particle that is carried with the fluid flow (negligible slip
velocity), it becomes possible to measure the fluid velocity using LDV.

In LDV measurements a coherent light beam from a laser is split into two beam. These
beams are focused into a “point”, the measurement volume, by a lens. The shift in fre-
quency, the Doppler frequency, and its relation to the fluid velocity can be obtained from
wave theory and from interference theory. The latter theory is explained here.

As shown in Figure 9.6 in the region where the two beams come together an interference
pattern of light and dark lines (fringes) arises. The distance  between the fringes
depends on the wave length  of the laser light and on the angle  between the two
beams

(9.25)

A particle in the fluid that moves through the measurement volume will light up and
extinguish with a certain frequency, depending on its velocity. This is the Doppler fre-
quency shift  referred to before. It is related to the component of the velocity perpen-
dicular to the fringes, , by

(9.26)
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To be added.
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FIGURE 9.6. Interference pattern in the measurement volume.
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Rotor dynamics
To be added.

Inverse-design methods
To be added.
78 Turbomachines II



CHAPTER 10 Literature
This chapter gives some references to text books on fluid mechanics, material for further
reading and the list of references.

Text books on fluid mechanics
[1] Batchelor, G.K. (1967)

An introduction to fluid dynamics 
Cambridge University Press, Cambridge, UK.

[2] Fox, R.W. & McDonald, A.T. (1998)
Introduction to fluid mechanics
John Wiley & Sons, New York, NY, USA.

Further reading on turbomachines
[3] Cumpsty, N.A. (1989)

Compressor aerodynamics
Longman Scientific & Technical, Harlow, UK.

[4] Lakshminarayana, B. (1996)
Fluid dynamics and heat transfer of turbomachinery
John Wiley & Sons, New York, NY, USA.

[5] Pfleiderer, C. (1949)
Die Kreiselpumpen für Flüssigkeiten und Gase, third edition
Springer Verlag, Berlin, Germany.

[6] Stepanoff, A.J. (1948)
Centrifugal and axial flow pumps: theory, design, and application
John Wiley & Sons, New York, NY, USA.

[7] Tuzson, J. (2000)
Centrifugal pump design
John Wiley & Sons, New York, NY, USA.
Turbomachines II 79



Literature
Further reading on boundary layers

[8] Cebeci, T. & Bradshaw, P. (1977)
Momentum transfer in boundary layers
McGraw-Hill, New York, NY, USA.

[9] Cebeci, T. & Cousteix, J. (1999)
Modeling and computation of boundary-layer flows
Springer Verlag, Berlin, Germany.

[10] Schlichting, H. (1968)
Boundary-layer theory
McGraw-Hill, New York, NY, USA.

Other references

[11] Abramowitz, M. & Stegun, I.A. (1972)
Handbook of mathematical functions
Dover Publications, New York, NY.

[12] Baskharone, E. & Hamed, A. (1981)
A new approach in cascade flow analysis using the finite element method
AIAA Journal 19 65-71 (1981).

[13] Baren, M. van (1998)
Flow computations of axial fans (in Dutch)
M.Sc. Thesis, Department of Mechanical Engineering, University of Twente, The
Netherlands.

[14] Bradshaw, P. (1996)
Turbulence modelling with application to turbomachinery
Progress Aerospace Science 32 575-624.

[15] Combès, J.F. & Rieutord, E. (1992)
Numerical and experimental analysis of the flow in a centrifugal pump at nominal
and partial flowrate
Proceedings International Gas Turbine and Aeroengine Congress and Exposi-
tion, Paper 92-GT-284.

[16] Daily, J.W. & Nece, R.E. (1960)
Chamber dimension effects on induced flow and friction resistance of enclosed
rotating disks
Journal of Basic Engineering 82 217-232.

[17] Denton, J.D. (1993)
Loss mechanisms in turbomachines
Journal of Turbomachinery 115 621-656.

[18] Esch, B.P.M. van (1997)
Simulation of three-dimensional unsteady flow in hydraulic pumps
Ph.D. Thesis, Department of Mechanical Engineering, University of Twente, The
Netherlands.
80 Turbomachines II



Other references
[19] Esch, B.P.M. van & Kruyt, N.P. (1995)
Analysis of the flow in a centrifugal pump using a multi-block finite element
method for computing three-dimensional potential flows
ERCOFTAC Seminar and Workshop on 3D Turbomachinery Flow Prediction III,
part III, pp.19-25, Val d’Isère, France.

[20] Esch, B.P.M. van & Kruyt, N.P. & Jonker, J.B. (1997)
An inviscid-viscous coupling method for computing flows in entire pump config-
urations. 
Proceedings Third ASME Pumping Machinery Symposium FEDSM97-3373, June
1997, Vancouver, BC, Canada.

[21] Esch, B.P.M. van & Kruyt, N.P. (2001)
Hydraulic performance of a mixed-flow pump: unsteady inviscid computations
and loss models
Journal of Fluids Engineering (Transactions of the ASME) 123 256-264.

[22] Hendrickson, B. & Leland R. (1995)
An improved spectral graph partitioning for mapping parallel computations
SIAM Journal of Scientific Computing 16 452-469.

[23] Kelder, J.D.H. & Dijkers, R.J.H. & Esch, B.P.M. van & Kruyt, N.P. (2001)
Experimental and theoretical study of the flow in the volute of a low specific-
speed pump
Fluid Dynamics Research 28 267-280.

[24] Kruyt, N.P. (2004)
COMPASS User Manual
Department of Mechanical Engineering, University of Twente, Enschede, The
Netherlands.

[25] Kruyt, N.P. & Esch, B.P.M. van & Jonker, J.B. (1999)
A superelement-based method for computing unsteady three-dimensional poten-
tial flows in hydraulic turbomachines
Communications in Numerical Methods in Engineering 15 381-397.

[26] Miner, S.M. & Flack, R.D. & Allaire, P.E. (1992)
Two-dimensional flow analysis of a laboratory pump
Journal of Turbomachinery 114 333-339.

[27] Morel, P. (1993) 
Ecoulements décolles dans une roue de pompe centrifuge. Conception et réalisa-
tion d’un banc d’essai. Analyse des pressions pariétales
Ph.D. Thesis University of Lille, Lille, France.

[28] Os, M.J. van (1998)
On the flow and cavitation inception of mixed-flow impellers
Ph.D. Thesis, Department of Mechanical Engineering, University of Twente,
Enschede, The Netherlands.

[29] Paulino, G.H. & Menezes, I.V.M & Gattass, M. & Mukherjee, S. (1994)
Node and element resequencing using the Laplacian of a finite element graph
International Journal of Numerical Methods in Engineering 37 1511-1555.

[30] Pope, S.B. (2000)
Turbulent flows
Cambridge University Press, Cambridge, UK.

[31] Tanner, M. (1998)
Theories for base pressure in incompressible steady base flow
Progress Aerospace Science 34 423-480. 
Turbomachines II 81



Literature
[32] Visser, F.C & Brouwers, J.J.H. & Jonker, J.B. (1999)
Fluid flow in a rotating low specific-speed centrifugal impeller passage
Fluid Dynamics Research 24 275-292.

[33] Visser, F.C. (1996)
On the flow in centrifugal impellers
Ph.D. Thesis, Department of Mechanical Engineering, University of Twente,
Enschede, The Netherlands.

[34] Worster, R.C. (1963)
The flow in volutes and its effect on centrifugal pump performance
Proceedings Institution Mechanical Engineers 117 843-861.

[35] Zienkiewicz, O.C. & Taylor, R.L (1989)
The finite element method
McGraw-Hill, Maidenhead, UK.

[36] Zienkiewicz, O.C. & Zhu, J.Z. (1992)
The superconvergent patch recovery and a posteriori error estimates. Part I: the
recovery technique
International Journal of Numerical Methods in Engineering 33 1331-1364.
82 Turbomachines II



INDEX

A
absolute frame of reference 12
absolute velocity 12

B
Bernoulli equation

unsteady 10, 11
blade angle 25
blade coefficient 71
blade loading coefficient 72
boundary condition

periodic 22
boundary layers 8
boundary-layer displacement thickness 60
boundary-layer disturbance thickness 60
boundary-layer losses 41
boundary-layer momentum thickness 60
boundary-layer thickness

disturbance 60

C
circulation 9
coefficient

blade 71
blade loading 72
dissipation 41
friction 41, 65
heat conduction 6

condition
Joukowski 18
Kutta 18

conservation of
angular momentum 5
energy 5, 6
mass 4
momentum 4

continuity equation 4
convective derivative 3
counter vortex 13, 14, 25
cross product 1
curl 2

D
derivative

convective 3
material 3

design of volutes 74
deviatoric stress 4
dimensional analysis 7
disk friction 42
disk friction losses 42
displacement thickness

boundary-layer 60
dissipation coefficient 41
dissipation equation 6
divergence 2
divergence theorem 2
dynamic viscosity 5

E
Eckert number 7
entrainment velocity 65
Euler equations 8
expansion and contraction losses 41

F
factor

shape 61
flow

inviscid 8
irrotational 10
secondary 76

Fourier’s law 6
free impeller case 13, 21
friction coefficient 41, 65

G
Gauss theorem 2
gradient 2

H
heat conduction coefficient 6

I
index notation 5
inner product 1
inviscid flow 8
irrotational flow 10
isentropic flow 8

J
Joukowski condition 18

K
Kelvin’s theorem 9
Kutta condition 18

L
Laplace equation 11
Laser Doppler Velocimetry 77
LDV 77
leakage flow 44
leakage-flow mixing-losses 44
logarithmic blade 25
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boundary-layer 41
disk friction 42
expansion and contraction 41
leakage flow 44
leakage-flow mixing 44
wake mixing 41

M
Mach number 11
material derivative 3
mixing losses

leakage flow 44
wake 41

momentum integral equation 64
momentum thickness

boundary-layer 60

N
Navier-Stokes equations 4

Reynolds-averaged 62
Newtonian fluid 5
nondimensional number

Eckert 7
Mach 11
Péclet 7
Prandtl 7
Reynolds 7

P
Péclet number 7
periodic boundary condition 22
potential 10
potential flow 10
Prandtl number 7
product

cross 1
inner 1

R
RANS 62
relative velocity 12
Reynolds number 7
Reynolds stress 63
Reynolds transport theorem 4
Reynolds-averaged Navier-Stokes equations 62
rotating frame 12
rotation 2
rothalpy 13
rotor-stator interface 27, 32

S
secondary flow 76
shape factor 61
shock-free flow 26, 27
sliding surface 27, 32
slip factor 27
Stokes theorem 2
stream function 14
stress

deviatoric 4
Reynolds 63

subpotential 22
substructuring technique 33
suction specific speed 72
superelement technique 33
superposition principle 11, 22

T
theorem of

Kelvin 9
Thompson 9

Thompson’s theorem 9
transport theorem

Reynolds 4

U
unsteady Bernoulli equation 10, 11

V
velocity

absolute 12
relative 12

velocity potential 10
viscosity

dynamic 5
volute

design 74
vortex

counter 13, 14, 25
vorticity 3

W
wake-mixing losses 41
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