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CHAPTER 1

|ntroduction

inner product

Classical methods for designing turbomachinery are based on scaling relations for non-
dimensiona numbers, like the flow number and the head coefficient, and experimental
correlations to correct for the limitations of one-dimensional flow-analysis methods. One
approach to improving the design of turbomachinery isformed by more detailed analyses
of the flow phenomena that occur in such machinery. The results of such analyses indi-
cate what part of the geometry of the machine must be modified in order to improve its
performance. Preferably, such analyses also give a quantification of the performance. In
addition, such simulations can enhance the qualitative understanding of the flow. Of
course, experimental validation is always required, but an analysis tool makes it possible
to greatly reduce the required number of experiments: the analysis tool forms a “compu-
ter wind tunnel”. Furthermore, computer simulations can generally be performed much
more rapidly than real, physical experiments. Hence, the cost (in time and money) of
such “computer experiments’ is usually much smaller than that of the corresponding
physica experiments.

The objective of this course is therefore to give more detailed knowledge of the flow in
turbomachinery, in particular of pumps and fans for which the compressihility of the fluid
can be neglected. Hence, this course goes beyond the simple one-dimensional methods
that are discussed in the course Turbomachinery I. These one-dimensional methods give
a thorough qualitative understanding of the basic physics, and of the energy transfer in
particular.

Generally the flow field in turbomachines is very complicated, due to its three-dimen-
sional nature and the rapidly changing curvature of the passages in rotating impellers. In
addition, turbomachines exhibit unsteady behaviour as a result of the interaction between
rotating and stationary parts. Considering these complexities, most analyses of the flow
fields are based on numerical methods for solving the simplified governing equations.
This chapter gives some mathematical notations and mathematical theorems that will be
used subsequently.

Mathematical notation

The magnitude (or length) of avector a = (a,, a,, a,)T isdefined by

la| = JaZ+aj+aZ 11

The inner product of two vectors a = (a,, a,, a,)"T and b = (b, by, b,)T is a scalar
defined by
asb=ab+ab, +ab, (1.2)

Theinner product equalsa+ b = |al bl cos6 , where 6 isthe angle between the vectors
a and b . Note that the two vectors are perpendicular (or orthogonal) when a< b = 0.
The cross product (or outer product) of two vectors a = (a, a, a,)T and
b = (b, by, b,)T isavector defined by
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Introduction

cross product

divergence

gradient, rotation (curl)

Sokes theorem

Gauss theorem; divergence
theorem

axb = (ab,—ab, ab,—ab,ab —ab)’ (1.3)
The cross product ¢ = a x b isavector that is perpendicular to the vectors a, b and its
magnitude is equal to ||a|||bl|sin®, where 6 isthe angle between thevectors a and b .

The divergence of a vector field v(x,y,z,t) = (VX ¥, 2, 1), (X, ¥, Z,1), V(X ¥, Z, )T
isascalar field defined by

vy + a_vy + @z (1.4)

Uev = 5% y 0z

where v, , v, and v, are the (Cartesian) components of the velocity vector v.

Thegradient [ of ascalar field @(x, y, z,t) and therotation (or curl) 0 x v of avector
fidd v(x, y, z,t) arevector fieldsthat are defined by

_5(1; ov, vy
% dy 0z
U = a_(p Oxy= @x_a_vz (1.5)
ay - 0z 0X
elo) avy vy
02| 0x  dy |

Now some examples will be given. Consider the first velocity field

v = _q_( X_ _Y 0)T 16)

2\x2 + y2' x2 + y2'

This velocity field, corresponding to a two-dimensional source of strength q at the ori-
gin, has zero divergence, except at the origin where the velocity is singular. The rotation,
or curl of thisvelocity field is zero,i.e. O xv = (0,0,0)T.

In the second example the velocity fidd is

v =0(-y,x0)T7 (L7

This velocity field corresponds to a rigid-body rotation around the z-axis with angular
speed Q . It has zero divergence and its rotation (or curl) equals O xv = (0,0,2Q)T.

Stokes theorem is

Ve ds = I(B v) « dA (1.8)
S

O~

where C is aclosed contour around surface S

Gauss theorem, or divergence theorem, for an arbitrary function ¢(x) is
ID(pdV = Iwnds (1.9)
\% S

where V is a volume with closed boundary Sand the outward unit normal vector on sur-
face Sisn.
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Flow equations

CHAPTER 2
This chapter deals with the conservation laws of physics. Then these conservation laws
are made nondimensional. By a closer analysis of conditions prevalent in turbomachines,
the conservation laws are simplified. Firstly, the definition of vorticity will be introduced.
\orticity

vorticity A quantity of great interest in fluid dynamicsisvorticity W, which is defined as

material derivative
convective derivative

(i') =[x Vv, (2.1)

where V isthe velocity vector. This can be interpreted as twice aloca angular velocity of
afluid element [1]. For instance, for arigid body motion with angular velocity Q , the
velocity isgivenby V = £_) X I with position vector I' and hence the vorticity isindeed

@:29.

Material derivative

Here the time derivative, when following a fluid particle, of a quantity like temperature
will be determined. Thisis the material derivative, or convective derivative.

Now consider the changein (¢ of afluid particle. This quantity changes due to the time-
dependent change and due to the movement of the fluid

DO _ iy, X+ VAL t+ AL — (X, 1)

Dt at-o At
0]
[(p(x, )+ JAt+ Aty e Dcp} - Q(x, 1)
- ot (2.2)
= lim
At~ 0 At
_00, ..
=5 +ve o

The second step in this derivation follows from a Taylor expansion. Note that after atime
interval of At the fluid particle that is at position X at time t will have moved to posi-
tion X + VAt . The material derivative consists of two terms, alocal time derivative and
aconvective term.
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Flow equations

Reynolds transport theorem

conservation of mass; conti-

nuity equation

conservation of momentum;
Navier-Sokes equations

deviatoric stress

Reynolds transport theorem

Consider an arbitrary extensive quantity ® of a system (i.e. consisting of moving fluid
particles) with corresponding intensive quantity (¢ (per unit mass)

| gam = j p(x, ) @(x, t)dV (23)
V(system)
Then Reynolds transport theorem [2] states
d—“" = [p(x 92 0(x )V + [p(x, o0, v(x, 1 * n]dS
dt ot
system v S

(2.4)

where the second equahty follows from Gauss theorem (1.9) and the definition (2.2) of
the material derivative.

Conservation laws

The general conservation equations of fluid mechanicswill be given here. These are [1]
e conservation of mass

e conservation of momentum

e conservation of angular momentum

* conservation of energy

Conservation of mass

The conservation law of mass, or continuity equation, is
—9 +pllv=0 (2.5)

where P isthedensity, V isthe velocity vector.

Conservation of momentum

The conservation laws of momentum, or Navier Stokes equations are

Dv
=0 f
th L (2.6)

=-lp+E o f
where O is the tota stress tensor, P is the pressure, ' is the deviatoric stress tensor
and f denotes body forces like gravity. The deviatoric stress tensor is the part of the

stress tensor excluding the hydrostatic part (pressure). Hence the total stress tensor and
the deviatoric stress tensor are related by

o =-pl+0’ (2.7
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Conservation laws

Newtonian fluid

index notation

dynamic viscosity; kine-
matic viscosity

conservation of angular
momentum

where | isthe identity tensor
For the Newtonian fluids that are considered here the deviatoric stress O' isrelated line-
arly to the strain rate

o' = H[D\_H(D\_/)T—%IE \_/J 28)

In index notation a summation over repeated subscripts isimplied. For example

ov, 0vy 0v, 0v,
— = —t+_—"+_" =[]V (2.9)
0X; 0%y 0X, 0Xg

Another exampleis

2 2 2 2
X0%  ox] 0x; 0xg

In index notation, the expression (2.8) for the deviatoric stress tensor becomes

. [y +0vj 25 vy

where | is the dynamic viscosity of the fluid and 6i' is the Kronecker symbol:
6ij = 1ifi =] and §;; = O otherwise. The last term in between the brackets is
such asto make 0";; = 0. Thekinematic viscosity V isdefinedby Vv = U/p.

Conservation of angular momentum
The conservation law of angular momentum is

ij = Oiji
which means that the deviatoric stress tensor C_f' , and hence the total stresstensor O, is
symmetric.

Note that this conservation law is automatically satisfied for a Newtonian fluid.

1 IT
g =0 o 2.12)

Conservation of energy

The conservation law of energy of energy, or the first law of thermodynamics, can be
stated as follows: for a system composed of fluid particles, the change of the sum of the
kinetic energy and the internal energy equals the sum of work done on the system (per
unit time), W, and the heat added to the system (per unit time), Q. The kinetic energy
of the system K and the internal energy E are defined by

1
K = I pévividv E = I pedv (2.13)
V(system) V(system)
In this section index notation is used once more, implying a summation over repeated
subscripts. For example, in the term V;V; asummation over the I index isimplied.

The work done on the system, W, consists of work done by volume forces and of work
done by surface forces
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Flow equations

conservation of energy

Fourier'slaw

dissipation equation

W = Ipvi dV+Iv (0” ])dS (2.14)
The heat added to the system is given by
= —Iande (2.15)

where (; isthe heat-flux vector at the boundary. The minus sign for the heat-flux termis
present since the normal vector I; is directed outward.

The conservation of energy equation, d(K + E)/dt = W+ Q, now becomes upon
use of Reynolds transport theorem (2.4)

Ith(ZvlvI + e) av = [vfidv+[vi(o;n)dS-[gndS e
S

Using Gauss theorem (1.9) for the surface integrals and noting that the result must hold

for any volume V we obtain

avi+6q] _ (99 ¢
th 'lax 0%, Vi ax TP _th @47

The term inside the brackets equals zero, as follows from the conservation law of
momentum (2.6). The conservation law of energy becomes

D : .
the = O'ija—x—ax (2.18)

The heat-flux vector Q; isdefined by Fourier’s lawv

oT

a = _)\G_Xi

(2.19)

where T is the absolute temperature and A is the heat-conduction coefficient, which is
assumed to be constant (and isotropic).

Using the Gibbs thermodynamic relation Tds = de+ pdu (with U the specific vol-
ume, i.e. U = 1/p), the decomposition of stress (2.7) and the continuity equation
(2.5), we obtain the dissipation equation

pT%f = A02T+0o': Ov (2.20)

Theterm on the left-hand side gives the increase in entropy S, the first term on the right-
hand side gives the conduction of heat, while the second term on the right hand side
givesthe dissipation due to wscosty In index notation this second termis G GV /OX
where again a summation over the | and | subscriptsisimplied.

In the energy equation a number of thermodynamic quantities are present. To complete
the system of equations, a thermodynamic equation of state is required that describes the
thermodynamic properties of the fluid. In general, relations for the temperature T , pres-
sure P and internal energy € are necessary
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Dimensional analysis

e = ¢S p) T= (6—3 p = - de (2.21)
05 p (;)
ol =
S
ideal gas For an ideal gas with constant specific heat coefficients CID and C,
e=c,T B =Rt S—Sg = cpln—T——RIn—P— (2.22)
p Tref pref

where R isthe gas constant (with R = Cp—Cy)and Sy, T, and P, areentropy,
temperature and pressure at a reference state.

Dimensional analysis

dimensional analysis In general the governing equations are (hardly) solvable due to their complicated and
nonlinear character. A suitable means to investigate whether a simplification is feasible
in specific circumstances is by dimensional analysis.
Firstly, all variables are made nondimensional by scaling them with a quantity that is
characteristic for the situation at hand. The new, nondimensiona variables will then be
of order of magnitude 1. For instance, the velocities V are writtenas V = U\_/D, where
vU is the nondimensional velocity and U is acharacteristic velocity scale.

The variables of interest are made nondimensional as follows:

O
vV = U\_/D ] = .D__ LtD p = popD
L U (2.23)

T=T,TU p = pyU2pt = cpsD

Nondimensional variables are denoted with a*. U is a characteristic velocity, L is a
characteristic length, Py is a characteristic density, T0 is a characteristic temperature.
The nondimensional equations for a Newtonian fluid that result are

Dp -
Dt +pllv=0 (2.24)

Dv_ 1, ,1..
Dt~ pr+ReEG (2.25)

Ds 1 Ec

= = ——[12T+ =0": v 2.26

Dt _ RePr Re. = (2:20)
where the nondimensional variables are denoted without a* for the sake of convenience!
The nondimensional numbers present in these equations are respectively the Reynolds,
Prandtl, Péclet and Eckert numbers

Reynol ds number _ PoUL _ inertiaforces
Re = = — (2.27)
M viscous forces
cu , .
pr = —pH _ viscousdissipation (2.28)

A thermal dissipation
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Flow equations

isentropic flow

boundary layers

inviscid flow

Euler equations

entropy increase

Pe = RePr = heat conduction

(2.29)

2 N

Ec = U< _ Kinetic energy 230
CpTo  thermal energy

Two limiting cases can be distinguished: (i) creeping flows with Re « 1 where inertia

terms can be neglected relative to viscous terms and (ii) inviscid flows with Re» 1

where viscous terms can be neglected relative to inertia terms.

The flow conditions in turbomachinery are usually such that Re » 1. Typical valuesfor

the characteristic scalesare L = 1 m, U = 1 m/s, V4, = 1X107° M?/s, Uy aer = 1X1070 m?/

s, corresponding to Reynolds numbers Re = 10ag —106,

The Prandtl and Eckert numbers are usually of the order of magnitude 1, so

1 1 Ec
— «1 —«1 —«1 2.31
Re RePr Re @30
This implies that for flows with large Reynolds number the viscous terms can be
neglected from the momentum equations.
A similar consideration of the dissipation equation shows that for large Reynolds num-
bersthe flow can be considered as isentropic

Ds
Dt 0 (2.32)
A consequence of neglecting the viscous terms is that, in mathematical terms, the order
of the governing partial differential equations is reduced. This means that not all bound-
ary conditions can be enforced. The stick condition (or no-slip condition) at solid walls
can not be enforced, but only that there is no flow through solid walls. This means that
the assumptions made are not valid near a solid wall, where a boundary layer will be
present. The same appliesto wakes. Hence, regions near the wall and in wakes have to be
analysed differently. Thisisthe subject of boundary-layer theory, see also Chapter 8.

Inviscid flow

When the viscous terms are neglected we speak of inviscid flow. Note that these are not
only a property of the fluid, but also of the flow conditions. The governing equations of
inviscid flows are

%% +pll v = conservation of mass (2.33)
Dv 1 .
—_— = - +
Dt 5 Op+g Euler equations (2.34)
%f =0 isentropic flow (2.35)

These equations can not be used when viscous terms are important, such as in boundary
layers, wakes and turbulence.
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Turbulence

circulation

Kelvin's circulation theorem

Turbulence

Most of the flows in turbomachines are turbulent, with laminar and transitional regimes
occurring near the leading edges of impeller and diffuser blades. Turbulence is character-
ised by irregular fluctuations. Its origin is often the result of instability of the laminar
flow.

In most theories of turbulence the so-called Reynolds averaging is employed, see [30].
The velocity is decomposed into atime-averaged value and a fluctuating part. Substitu-
tion of this decomposition into the Navier-Stokes equations leads to an extraterm in the
Navier-Stokes eguations. This extra term, the Reynolds stress, consists of the correlation
between the fluctuations. The problem is that this correlation is not related (directly) to
the time-averaged velocity, which is the primary variable in the Reynolds-averaged
Navier-Stokes equations. Thus, there is a closure problem in turbulence. Assumptions
have to be made for this correlation term, i.e. extra equations relating the correlations to
primary variables like the time-averaged velocity. The subject of turbulence modelling is
avast and important field in itself, but it is beyond the scope of this course.

An overview of turbulence modelling in the context of turbomachinery isgivenin [14].

Irrotational flow

A further simplification of inviscid flow is obtained by considering irrotational flows.
Before proceeding with a discussion of these, Kelvin's (or Thompson's) theorem of con-
servation of circulation for inviscid flows will be derived. Circulation around a closed
contour C is defined by

rc = f\_/ * ds (2.36)
C
The material derivative of the circulation is

D - ¢L2,. D
pt' (@) = iDty d—“iy Dt @30

The second term of the right-hand side equals zero, since Dds/Dt = dv and
A dv = (1/2)§~Cd(V2) = 0. Using Stokes theorem (1.8), the first term can be
Written as

S o= [(B 5y

—veds = || =vVv]e*dA 2.38

foive o = [(B o) - oA #39)
C S

From the Euler equation (2.34) it follows that this equation can be rewritten as

% 2y)eda = (1= Op)eda = 0. (2.39)
J( Dt) — Ip( p) .
S S

since X [J@ = O for an arbitrary scalar function (. The result is Kelvin's circulation
theorem

—[ =0 (2.40)
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Flow equations

irrotational flow

potential flow

vel ocity potential

unsteady Bernoulli equation

In words this means that, when moving with the flow, circulation does not change in
inviscid flows.
Application of Stokestheorem gives

M= f\_/- ds = I(B v) « dA = constant 2.41)
% s

when following the flow.
An important consequence of this theorem is that when the inflow is irrotational for
inviscid flow, the flow remainsirrotational. Then the flow isirrotational everywhere!

X v = Q (2.42)

Potential flow

In this section deals with the simplifications that are possible by considering irrotational
flows. For irrotational flows it is possible to define a velocity potential (@ such that the
gradient of the potential givesthe velocity

v = Uo (2.43)

For instance, in the two-dimensional case with velocity vector V. = (U, V, O)T, the
only non-zero component of X V is in the third direction with component
0v/0x—0u/9dy. With U = d@/0X and V = 0@/ Yy this component of [X V is
always zero.

Note that the number of unknown quantitiesis greatly reduced. Instead of three unknown
components of the velocity, only the velocity potential is unknown.

The law of conservation of mass now becomes

%%) + %D(p- P +0% =0 conservation of mass (2.44)

The Euler equations can be simplified using the vector identity

ve Oy = %D(\_/- V) +(® V) xv (2.45)

Note that the last term on the right-hand side is zero for irrotationa flows, see (2.42).
From the thermodynamic relation dh = Tds+ (1/p)dp for isentropic flows
(ds = 0, see(2.35)), wefind (1/p)Up = Uh.Hence

Dv 0 1
— + = — + = . + =
5+ 0h 0= =09 S0(vev)+0h = 0 (2.46)
and we obtain the unsteady Bernoulli equation
op ., 1
YT+ Zyev+h =
3t 2\_/ v+h = c(t) (2.47)

Note that this result isalso valid for compressible flow.
For an ideal gas we have

h = cpT p = constpY (2.48)

10
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Incompressible potential flow

Mach number

Laplace equation

super position principle

where the second relation is a form of the Poisson relations for isentropic processes, with
y = Cp/ C, istheratio of the specific heat coefficients.

Incompressible potential flow

In this section the case of incompressible flow is considered, for which the density P is
constant. Now we will investigate when this is the case. For isentropic flows there is a
relation between density P and pressure p = p(p) . Hence

op = (S—E) Sép = a_26p (2.49)

where a is the speed of sound. For inviscid flows pressure differences op [ pUZ, as
follows from the Bernoulli equation. Hence the relative change in density is given by

2
QE O (g) = Ma? (2.50)

where Ma is the nondimensional Mach number, the ratio of a characteristic velocity of
the flow_over the speed of sound. For an idea gas the sped of sound is given by
a = JyRT.

In many cases the assumption of incompressible flow isvalid, such asin pumps and fans.
In other cases, such as compressors and gas turbines, thisassumption isinvalid. A rule of
thumb is that the flow may be considered asincompressiblewhen Ma < 0.3.

For incompressible flow the conservation of mass equation (2.5) reducesto [¢ v = 0.
Using the expression (2.43) for the velocity in terms of the velocity potential, the conser-
vation of mass equation results in the Laplace equation

O2p = 0 conservation of mass (2.51)
and the unsteady Bernoulli equationis

op, 1
at T 2Y

Note that the actual value of C(t) is not relevant when determining pressure differences.
An important observation is that the Laplace equation (2.51) is linear. This is a major
advantage of the simplifications that were introduced (besides the reduction in the
number of variables). Linear equations satisfy the superposition principle: for two solu-
tion @, and @, that satisfy the Laplace equation we have that the linear combination
@ = C,@, + C,(, (with arbitrary C; and C, ) also satisfies the Laplace equation, as
can be easily verified.

eV+ E = c(t) unsteady Bernoulli equation (2.52)

Summarising, the equations that describe incompressible potential-flows are

_ _ dp 1 p_
2 FIye v+
%2 = 0 v = Oo St oYY c(t) 2.53)

Firstly, the velocity potential (p has to be determined by the first equation of (2.53) (with
appropriate boundary conditions). Secondly, the velocity field V is computed from the
second equation of (2.53). Finally, the pressure is determined from the last equation of
(2.53).

The assumptions that lead to the equations (2.53) that describe incompressible potential
flows are summarised by
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Flow equations

overview of assumptions

absolute frame of reference;
rotating frame of reference

relative velocity; absolute
vel ocity

* Inviscid flow corresponding to Re » 1 (does not apply in attached boundary layers
and wakes; boundary layers should not separate, since the vorticity present in the
boundary layersisthen introduced in the main flow)

* Incompressible flow corresponding to Ma2 « 1
* Irrotational inflow

Potential flow in the rotating frame

Up to now, the equations have been formulated with respect to an absolute frame of ref-
erence (or inertial frame of reference), i.e. one where the observer does not move. In
many cases it is more natural to consider the flow in the rotating frame of reference, i.e.
the frame of reference that rotates with the rotor. The observer of the flow would then see
the relative velocity, while an observer in an absolute frame of reference sees the abso-
lute velocity. For instance, at the design point the flow in the impeller may be assumed to
be steady in the rotating frame of reference, whileit is unsteady in the absolute frame of
reference.

The absolute velocity V and therelative velocity W are related by

vV=w+Qxr (2.54)

where Q isthe angular velocity of the rotating frame of reference and I is the position
vector. The second term on the right-hand side gives the (local) blade velocity.

Since

[ (Qxr)=0 X (Qxr) =2Q (2.55)

it follows that

fw=0 X w = —2£_2 (2.56)

The second of these equations implies that the relative velocity is not irrotational when
the absolute velocity is irrotational! Therefore it is not possible to define a potential &
suchthat w = [I§ .

Since the change of scalar variable when following afluid element, which is the meaning
of the material derivative, isidentical in the relative and the absolute frame of reference,
it follows that

0Q

ot

- Do_09¢

D
+we Op=7P Dt ot

+ve [] .
- Dt V (p (2.57)

R

where the subscript R denotes that the time derivative is to be taken relative to the rotat-
ing frame of reference. Note that the expression for the material derivativein the rotating
frame of referenceinvolves the relative velocity.

Now the Bernoulli equation in the rotating frame of reference becomes

0

ot

+(w-v)e D<P+l\_/' v+ = ) (2.58)
R 2 P

Using the definition of potential and the relations between absolute and relative veloci-
ties, this equation can be expressed in terms of relative velocities as

12
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Rothalpy

Bernoulli equation in the
rotating frame

“freeimpeller” assumption

free impeller case

rothalpy

1

op +-w'w+g—%(£_2><[)' (Qxr) = c(t) (2.59)

2

R

In an impeller with a vanel ess diffuser, where there is no influence of the stationary parts
on the rotating parts, one would have a steady flow field in the rotating frame of refer-
ence. Thisisthe so-caled “free impeller” assumption. Hence

0Q

3t =0 (2.60)

R

This means that the potential field is stationary for an observer that rotates with the
impeller. This is the “free impeller” case. In this case the flow in each of the channels
formed by two consecutive blades will be identical.

Rothalpy

For flows that are steady in the rotating frame, it follows from the Bernoulli equation in
the rotating frame of reference (2.59) that the rothalpy | is constant

| = constant (2.61)

For incompressible flow rothalpy is defined by

| = E+%w'w—%(£_2><[)'(9><t) (2.62)

Counter vortex

If the flow in theinlet isirrotational, this has important consequences for the flow in the
impeller. For an irrotational absolute velocity, the relative velocity is not irrotational, see
(2.56).

These consequences are analysed in more detail for a simple model problem. Thisisthe
case of the two-dimensional flow between straight infinitely-long impeller blades. This
geometry is sketched in Figure 2.1

The relative velocity then satisfies (2.56). In polar coordinates (I, 8) these equations
become[1]

1 10w,

_i(rwr) + —_9 =

ror roo

(2.63)

1 10w

—i(rwe) —=_"

ror roo
where W, and Wy are the radial and circumferential components of the relative veloc-
ity.
The boundary conditions are that for smal r, w, = Q/(2bTr) and for

= -T/Zad® = T/Z wy = 0, where bisthe height of the channel and Z is
the number of blades.

-2Q
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Flow equations

stream function

counter-vortex

Impeller blade

Impeller blade

FIGURE 2.1. Geometry of infinitely long straight impeller blades.

These equations are simplified by introducing a stream function @ [1], [2]

T

W, = ——%
" ra0 " or

The physical meaning of the stream function is that it is constant along streamlines.

By substituting these equation into (2.63), it follows that the first of (2.63) is automati-

cally satisfied (that is exactly the advantage of introducing a stream function!), while the

second of (2.63) becomes

(2.64)

2 2
oY _ 1oy 1oy _
674- oy +r2692 = 2Q (2.65)

Since | is a stream function the boundary conditions a the impeller blades become
= —-Q/(2b2) a8 = —TVZ and Y = Q/(2bZ) & 6 = T/ Z. Note that

only the difference in value of the stream function isimportant.

It follows from the physical meaning of the stream function that the difference between

the value of the stream function at two stations equals the flowrate through any curve

connecting these stations.

It is easily verified that for the case of a large number of impeller blades (Z » 1) the

first two terms of (2.65) can be neglected. The corresponding solution for the stream

function and the corresponding velocitiesis given by

g = Qr{@h@z] + ZQT[%

2
W= 20r0+53  w, = —2Qr[e2—@ J

(2.66)

The expression for radial velocity W, isacombination of aterm increasing linearly with
angle and auniform flow corresponding to the flowrate. The first term signifies the coun-
ter vortex. It corresponds to a vortex that rotates in the direction opposite to the impeller

14
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Counter vortex

rotation. Therefore the radial velocity isnot uniform from pressure side to suction side of
the blades, contrary to what is assumed in the basic, one-dimensional theory of turboma-
chinery flow that is described in the course “Fluid Mechanics of Turbomachines 1”.

In the case studied here the radial velocity equalsthe through-flow (or meridional) veloc-
ity. Hence, the throughflow velocity it is not uniform from blade to blade: the through-
flow velocity is higher at the suction side than at the pressure side. An example of the
relative velocity field (2.66) is shown in Figure 2.2.

This pattern for the through-flow velocity has been obtained for the simple case of
straight blades, but it holds qualitatively in genera for irrotationa flow in rotating chan-
nels.

Suction side

FIGURE 2.2. Relative velocity field: counter vortex.
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CHAPTER 3

Circulation and wakes

dit line

In this chapter it will be shown how circulation can be incorporated into the potential-
flow model by introducing dlit lines (for two-dimensional problems) or dlit surfaces (for
three-dimensional problems). In aerodynamics circulation is directly related to the lift of
an airfoil, while for turbomachinery circulation is related to the work input. The condi-
tions that are valid on these slits depend on the nature of the problem (steady or unsteady;
two-dimensional or three-dimensional).

Circulation in potential flows

It is well known ([1], §6.7) that the lift force L (per unit span) acting on an airfoil is
closely related to the presence of circulation around this body

L = pUr (3.1)

where U is the velocity of the airfoil.

The equivalent of alift force acting on an airfail is a moment acting on a blade of a tur-
bomachine. In the course “Fluid Mechanics of Turbomachines I” it was shown that, for
pumps without pre-rotation at the inlet, the specific work input W is given by the Euler
relation

W = Qr,Cy, (3.2)

where the subscript 2 denotes conditions at the trailing edge. The circulation I ., for a
circular contour just beyond the trailing edge is 211r,Cq, , using the one-dimensional flow
model adopted in course “ Fluid Mechanics of Turbomachines |I”. Hence the circulation is
directly related to the work input.

With the flow model as described so far, it is not possible to predict lift forces, since it
gives zero circulation. This can be seen the definition of circulation and the relation for

the velocity potentia (2.36)
0
re = §D(p [ds = §£ [ds = fd(p = Qeng— Pstar = 0 (3.3)
C C C

if the potential (p is continuous. By letting the potential be discontinuous over aline, cir-
culation can be introduced. The line over which this discontinuity occurs is called a dlit
line. A dlitlineisalso called acut (in the domain).

Thisideaisillustrated in Figure 3.1 in which an airfoil is depicted. A dlit line is shown
emanating from the airfoil to the outer boundary of the domain of interest. In order to
identify the two sides of the dlit line, they are denoted by a‘+' and a‘~'. Since the posi-
tion of the slit line is artificial (and arbitrary), the velocity must be continuous over the
dit line. Note that if the velocity is continuous over the dlit line, then the pressure is also
continuous over the dlit line, as follows from (2.52). Now it follows the continuity of the

Turbomachines||

17



Circulation and wakes

Kutta condition

velocity vector over the dit line and from the expression (2.43) for the velocity in terms
of the velocity potential ¢ that

Slitline

Airfoil

FIGURE 3.1. Airfoil geometry with dlit line.

o9
Js

09

on

d9

on|,

_9%
os|_

(3-4)

+

where n denotes the outward normal direction and s denotes the counter-clockwise tan-
gential direction. The minus sign is present since the normal and tangential directions are
oppositeonthe‘+’ and ‘-’ sides.

The so-called jump relation for the potential along the cut follows from the second equa-
tion of (3.4) by integration in s-direction

®'(s) —@ (s) = constant (3.5)

The circulation around a closed contour C; that does not cross the dlit line equals zero,
while the circulation around a closed contour C, that does cross the dit line equals
(p+(s) —@ (). This means that the jump over the dit line equals the circulation around
the airfoil! The reader is advised to check that the circulation around the contour C, that
crosses the slit line twice, equals zero.

Kutta condition

By introducing the dlit line it has become possibl e to introduce circulation around the air-
foil into the potentia-flow model. The problem then arises of how to determine the
unknown value of the circulation. For any value of the circulation, a flow field can, in
principle, be determined. Each of these flow fields will be different. The condition that
determines the actual value of the circulation is the so-called Kutta condition (or Jou-
kowski condition) [1].

Observations have shown that wedge-shaped or cusp-shaped trailing edges have a large
influence on the overall flow behaviour. The Kutta-Joukowski hypothesis, or Kutta

18
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Unsteady case

Kutta condition

hypothesis for short, states that the rear dividing streamline leaves the airfoil at the trail-
ing edge.

Without Kutta condition With Kutta condition

FIGURE 3.2. Flow near the trailing edge of an airfoil, without and with Kutta
condition.

To make this plausible the flow is considered near the trailing edge as shown in Figure
3.2a. In this figure the stagnation point (SP) is located on the upper side of the airfoil.
Consider the streamline that starts near the lower surface of the airfoil. Near the trailing
edge the streamline changes direction abruptly and it continues in the direction of the
stagnation point where the pressure is maximum. This deceleration and change of direc-
tion must be caused by alarge pressure-gradient with low pressure near the trailing edge
and high pressure near the stagnation point. It is expected that such an adverse pressure-
gradient will lead to boundary-layer separation, until the separation point islocated at the
end point of the trailing edge and the flow is as depicted in Figure 3.2b. In this situation
the rear dividing streamline leaves the airfoil at the trailing edge. The Kutta condition
requires that the flow leaves “smoothly” from the trailing edge (te) of the airfoil.

The Kutta condition can be formulated mathematically in many ways. Here it is formu-
lated by

(vh)|,, = 0, (36)

where n isthe normal vector at the trailing edge of the airfail.

As has been sketched, the Kutta condition is related to boundary-layer separation that
would occur if the Kutta condition were violated. This means that the Kutta condition is
closely related to viscous phenomena: in a way the Kutta condition describes a viscous
effect within an inviscid theory.

Unsteady case

From Kelvin's circulation theorem it follows that a change in the circulation around an
airfoil must result in the shedding of vorticity from the airfoil. This time-dependent vor-
tex shedding results in a wake behind the trailing edge. The vorticity shed is equa in
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Circulation and wakes

dlit surface

magnitude to the bound vorticity, but of opposite sign. The vortices in the wake move
away from theairfoil.

Since the pressure and normal velocity are continuous across the wake, it follows from
the unsteady Bernoulli equation that

0, + .1 H2 |2y
5@ -¢)+ 509" -0l = o (37)

After linearisation we obtain

9, + - 9, + -
il — | — =0 .
at((p o)+ Sas(tp 9) (38)

where s is the coordinate along the wake and Uy is the mean velocity along the wake.
This means that vortices shed the trailing edge are convected downstream with the mean
velocity along the wake. This equation describes the evolution with time of the jump dis-
tribution on the wake.

Note that in the unsteady case the tangentia velocity will not be continuous:. the jump in
tangential velocity isequal to a((p+ — @ )/ ds, asfollows from the definition of potential
(2.43), which is not zero in unsteady flow according to (3.8).

Three-dimensional case

In the three-dimensional case the circulation will in general vary along the span of the
trailing edge. The wake behind the trailing edge, see Figure 3.3, will now be represented
by aslit surface. The distribution of the jumps (discontinuities) in the potential on wake
surfacesis given by

Trailing edge

FIGURE 3.3. Representation of a wake behind a blade. Coordinate s; is in
streamwise direction.

¢'(51,5) = G (S1,S) + V(51 S) (39)
where‘+ and ‘—' denote the upper and lower sides of the wake, s, and s, are coordinates
along the wake (s, isin streamwise direction) and y(s;, s,) is the potential jump distri-
bution. The blade circulation '(s,) at spanwise station s, isrelated to the potential jump
distribution by

r(sy) = v(O0,s,) (3.10)
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CHAPTER 4

Potential flowsin pumps

free impeller case

This chapter deals firstly with potential-flow computations of the flow in an impeller
channel without volute. The superposition method that is used to enforce the K utta condi-
tion isexplained in detail.

Thisisfollowed by abrief exposition of an (exact) analytical solution that was devel oped
for the two-dimensional potential-flow field in impeller channels formed by logarithmic
blades.

Finally, the emphasisis on some aspects of potential-flow computations that are different
for pumpsin comparison to airfails.

Superposition method

In this section the method is described that can be used to solve the potential-flow prob-
lem in turbomachines. For simplicity the “freeimpeller” case, where thereis no influence
of the stationary parts on the rotating parts (volute or diffusor), is discussed. In this (ide-
alised) case the influence of the volute on the flow field in the impeller channelsis negli-
gible. Then only the flow in asingle impeller channel needs to be considered, because of
the symmetry of the impeller flow channels. The geometry of the channel is shown in
Figure4.1.

The boundary conditions that apply to this channel are given in Table 1. These boundary
conditions are

Leading edge
Trailing edge

——hougd

Outlet

FIGURE 4.1. Geometry of impeller channel.
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Potential flows in pumps

periodic boundary condi-
tions

super position principle;
subpotentials

e Inlet: Uniform inflow at a velocity that is determined from the flowrate Q; thisis an
assumption that is valid “far away” from the leading edge of the impeller;

e OQutlet: Uniform inflow at avelocity that is determined from the flowrate Q; thisisan
assumption that is valid “far away” from the trailing edge of the impeller;

* Impeller blades: the blades are impermeable, so the normal component of relative
velocity equals zero;

* “Periodic” boundaries and dlit lines: the velocities are “ periodic” on the two surfaces
(‘+" and ‘-’ sides). This means that the normal velocity and the tangential velocity on
corresponding points on the two surfaces are equal

Rl0) 09 dp| _ 09
an|, " "an|.  as|,  as|. @
The second of these implies
@|, —|_ = constant (4.2)

On the periodic boundary near the leading edge this constant equals zero for inflow with-
out pre-rotation (check this by considering a contour around the rotation axis!), while on
the periodic boundary near the trailing edge this constant equals the (unknown) circula-
tion around a blade.

* A so-called essential boundary condition (prescribed value for the potential) in a
point is required to fix the level of the potential; otherwise if @ were a solution, then
@ + constant would aso be a solution (i.e. the solution is not unique).

Note that in the potential-flow model, like with the Euler equations, the “ stick” condition

of (relative) zero velocity can not be enforced on the impeller blades: only the imperme-

ability condition can be prescribed!

Theflowrate Q and the rotation rate Q are given as process parameters, but the circula-

tion around the impeller blades is not yet known. Its value has to be determined from the

Kutta condition. As discussed before, the Kutta condition requires that the flow leaves

“smoothly” from the trailing edge of the impeller blades. For a rotating trailing edge the

Kuttacondition is

wih| =0 (4.3)

e

where the relative velocity w is defined by

V=w+Qxr (4.4)

From these equations it follows that in a rotating system the Kutta condition can be for-
mulated as

0p

on

= (Qxr) DJL (4.5)

te €

The governing Laplace equation (2.51) for potential flow can not be solved directly,
since the boundary conditions contain the unknown value for the circulation.

The method to be used to determine the unknown circulation is based on the superposi-
tion principle, which can be employed since the governing Laplace equation (2.51) islin-
ear. Here three subpotentials are distinguished: a unit subpotential corresponding to the
through-flow (flow subpotential (pQ ), aunit subpotential corresponding to the rotation of
the impeller blades (rotation subpotential (pQ) and a unit subpotential corresponding to
the circulation around an impeller blade (circulation subpotential (pr ). The complete
solution ¢ can be expressed in terms of the three subpotentials as

22
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Superposition method

Q R, Q2 o, I r
o-1* "o=1° "r=1® 46

Termslike Q = 1 inthe denominator have been added for dimensional consistency.
The boundary conditions for the complete solution and the three subpotentials are given
in Table 1. It is easily verified that the superposition in (4.6) satisfies all boundary condi-
tions for the complete solution. Note that the three subpotentials are unit potentias: for
example the flow subpotential correspondsto Q = 1, Q = 0 andl' = 0.

The three subpotentials can be determined with the boundary conditions listed in Table
1. From these three subpotentials the velocity at the trailing edge can also be determined.
Then the unknown circulation can be computed from

(p:

Q
+ Q2 09
Q=10n

;
+ 09

_Q ag° a9
[=10n

Q=10n = @x0th

Q ‘te (4.7)

te te te

With the value of the circulation thus determined, the compl ete solution can be computed
since all parameters in the boundary conditions are now known.

Summarizing, with the known boundary conditions the three subpotentials can be com-
puted. Then the Kutta condition gives the value for the unknown circulation. This value
of the circulation, which is unknown at start, is present in the boundary conditions.
Finally, the complete solution can be computed. This solution gives the pressure and
velocity field in the impeller channel.

TABLE 1. Boundary conditionsfor the complete solution and for thethree
subpotentials for a freeimpeller computation.

Complete solution Subpotentials
Flow Rotation Circulation

nlet %:i a_(p:_—l a_(p:O a_(p:O

on Ainlet an Ainlet an an
Ourlet a_(pzﬁ— a_(p: 1 a_(p:O a_(p:O

on A on A on on
Impeller
blades | gp | |° %:0 w0 |[° %:

% =Q 0 xr|[Ch % - 0 xXr DJ

1 1

Periodic” | |, —¢|_ =0 ¢,-¢_=0 ¢.-¢_=0  ¢,-¢_=0
boundaries

o9l _ 09 op| - 09| O¢ _ 09 o9l _ 09

on|, n| on|, ni_ anj, nj_ on|, on
Slitfine 1l ¢, —¢|_=T 0,-¢. =0 @,-¢. =0  ¢,-¢_=1

o9l - 99 op| - 09| O¢ _ 09 o9l ~ 99

on|, nl_ on|, nl_ on|, ni_ on|, on
Essentid || ¢ = 0 inP @=0inP @=0inP @=0inP
point P

Relation between process parametersand circulation

For the free-impeller case the relation between process parameters flowrate Q, angular
velocity Q and head H will be investigated. The starting point is the angular-momen-
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Potential flows in pumps

tum principle as discussed in the course “Fluid Mechanics of Turbomachines |” (but see
also[1]). Inintegra form this principle states

M = Irvep(\_/ [h)dA (4.8)
CS

where M is the torque exerted on the control volume by the axis and CS is the control
surface enclosing the control volume under consideration. Note that in this formulation
of the angular-momentum principle surface forces have been neglected and steady con-
ditions are considered (this latter assumption is actually not necessary: what we are actu-
ally considering is the torque averaged over arevolution, and then time-averages cancel
out).

With the condition of uniform inflow and uniform outflow that is applicable to the free-
impeller case, we have v[h = £+Q/A (independent of position at inflow and outflow
surfaces). Hence, using the fact that p is constant, the expression for the torque becomes

M = %L I rvgdA — I rvedAJ (4.9)

CS,out CSiin

where CS,out and CS,in are the outlet and inlet regions of the control surface. For cases
without inlet-swirl, vy = 0, and with two-dimensiona outlet surfaces this becomes

M = pQry,Ve (4.10)

where v, isthe average tangential velocity at the outlet and r, isthe radius at the out-
let. For circular outlet surfaces this average tangential velocity at the outlet is related to
the circulation I"j,, around the impeller by I, = 21T Vg » 8 follows from the defi-
nition of circulation (2.36). The circulation around theimpeller ;.. isrelated to the cir-
culation around asingle blade I by I';,,, = ZI' where Z is the number of blades. The
torque M now isgiven by

_ pQzr
M o (4.11)

The power transferred from the pump axis to the fluid, P;,, isgivenby P;, = QM. The
net power that istransferred to the fluid as pressurerise, P, isgivenby P, = pQgH .
Assuming the efficiency is 100%, P, = P;,, we find the relation between circulation
around the blade and head

_zar
H = S (4.12)

Note that thisrelation is only valid for two-dimensional free-impeller cases!

Potential flow in logarithmic channels

The special case of potential flow in the channels of atwo-dimensional impeller consist-
ing of Z logarithmic blades with constant blade angle B has been studied in detail [33].
Process parameters of the flow are the flowrate Q and the rotation rate of the impeller
Q . The two-dimensional velocity and pressure field corresponding to potentia flow in
the impeller channels were studied analytically, using the method of conformal mapping
and asymptotic expansions. This section summarizes their main results for the case that
theinlet flow has no pre-rotation.
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Potential flow in logarithmic channels

blade angle

The geometry of logarithmic blades will first be described. Then the results for the head
and the condition of “shock-free” approach according to one-dimensional theory (asdis-
cussed in the course “Fluid Mechanics of Turbomachines 1”) and according to the two-
dimensional theory of [33] will be given.

Contrary to the two-dimensional theory, the one-dimensional theory does not account for
the non-uniformity in the flow field that is caused by the presence of the counter vortex,
as discussed on page 13. The results of the two-dimensional theory show the nature of
the required corrections, but it is only valid for the simple geometry of logarithmic
blades: it does not apply to more general, realistic blade geometries. The results of the
two-dimensional theory are also very useful for verifying numerical solutions. Note that
only numerical methods are suitable for computing the flow field in general geometries!

Geometry of logarithmic blades

The geometry of the flow channel is defined by the radius of the leading edge r,, the
radius of the trailing edge r,, , the constant blade angle 3, the height of the impeller B
and the number of blades Z. In the two-dimensiona case considered here, the blade
angle is the angle between the radia direction and the tangent to the blade (see Figure
4.2). Note that often another convention is used where the blade angle is defined as the
angle between circumferential direction and the tangent to the blade.

From Figure 4.2 it follows that

Origin
FIGURE 4.2. Definition of blade angle 3.

de _

ra = tanp (4.13)
By integrating this equation (using that (3 is constant!) with initial condition 6 = 6, for
r = r,, weobtain the equation describing the shape of the logarithmic blades

6 =+ tanpin(-) (4.19)
le
Here 6 and r are the polar coordinates of a point on the blade, while 6,, and r|, arethe
polar coordinates of the leading edge. Note that B is negative for backswept (or back-
ward curved) blades! This means that they are curved in the direction opposite to the
direction of rotation of the blades.
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One-dimensional theory

The results according to the one-dimensional theory (as discussed in the course “Fluid
Mechanics of Turbomachines |I”) for the condition of “shock-free’” flow and the head
imparted to the fluid by the impeller are briefly recapitulated here for the case without
pre-rotation. The one-dimensional theory assumes that

Wp
— = = = (4.15)
w, tenf W, o Vel 0
It follows that the head imparted to the fluid by the impeller is given by
tan
gH = (Qry)?%+ E@Qg (4.16)
and the condition of “shock-free” approach is given by
_ B
—tanP = 2nr,2e£26 (4.17)

Two-dimensional theory

Based on the Laplace equation (2.51) corresponding to potential flow, the method of
conformal mapping and asymptotic expansions was used in [33] to obtain, after rather
lengthy a gebra, the head H that isimparted to the fluid by the impeller according to the
two-dimensional theory

Slip factor
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FIGURE 4.3. Slip factor.

t
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Potential flow in complete pumps

dip factor

rotor-stator interface; slid-
ing surface

Theslip factor a(Z, B) isplotted in Figure 4.3. Note that this slip factor is not an empiri-
cal fit, like the expressions for the dip factor that were given in the course “Fluid
Mechanics of Turbomachines I”. Equations that can be used to compute the slip factor
are given in the Appendix. For free impellers the relation between head H and the circu-
lation ' around a single impeller blade is given by (4.12). The circulation around the
complete impeller is of course ZI" .

According to [33] the condition of “shock-free” flow of the impeller is given by

—tanB = 14(Z, [3)27Tr|zng (4.19)
where the “correction factor” t4(Z, B) for “shock-free” flow is given approximately by

T5(Z, B) = 1+ (14(2) —1)cosp (4.20)

and t4(2) isgiveninthe Appendix. The function t4(2) isplotted in Figure 4.4.

Correction factor
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FIGURE 4.4. “Correction factor” for “shock-free” approach for straight-bladed
impellers.

Potential flow in complete pumps

Special complications arise when computing potential flows in complete pump configu-
rations. One complication is that the flow is time-dependent, due to the presence of rotat-
ing and stationary parts. Only in the design point (best efficiency point) can one expect
that time-dependent phenomena are not very significant.

The presence of rotating and stationary parts creates additiona problems with mesh gen-
eration, since the computational domain changes continuously due to the movement of
the blades. One attractive solution is to have separate meshes for the rotating part and the
stationary part. By rotating the mesh for the rotor the topology of this mesh remains
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Potential flows in pumps

intact. Of course, interface over which the meshes “slide” must be a conical surface, see
also Figure 4.5. This artificial rotor-stator interface is called the “sliding surface” (not to
be confused with the “dlit surfaces” where ajump, i.e. a discontinuity, in the potentia is
present). As discussed in Chapter 3 the dlit surfaces were introduced to account for circu-
lation, while the sliding surfaces are introduced for computational efficiency.

Rotor-stator interface

Stator casing
Rotor blade

Rotation axis

Stator tongue

Stator
Outlet

FIGURE 4.5. Rotor-stator interface.

Since the wakes behind the trailing edges of the rotor are expected to move with the
rotor, the dit lines or dit surfaces must be part of the mesh for the rotor. Therefore the
mesh for the rotor must be large enough to capture sufficient detail of the wakes, but on
the other hand it may not exceed the stator wall. A compromise between these has to be
made.

Since the wakes are located in the rotor part (and not in the stator part), the jumps at the
rotor-stator interface must become constant over the height. This means that some sort of
smoothing has to be applied to the jump distribution on the wake. If this were not done,
than the velocity at the rotor-stator interface, which is anon-physical, computational fea-
ture, would not be continuous.

Appendix: dip factor

The dlip factor o(Z, 3) can be computed using complex numbers. The equation for
o(Z,B) is

Bsin2p
-2
e Z

o(Z,B) =

4.21)
cos?B -
(1 + 4%@) (2cos[3)4 Z B(3(Z, B), 8(Z, B))

where w denotes the conjugate of a complex number w and the Beta-function B(x, y)
[11] is defined by

_ [y
B(x,y) = F(x+Y) (4.22)
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Appendix: slip factor

and
o
52Z,B) = 1+ 2%9 " i%ﬁ 4.23)

where I'(2) denotesthe Euler Gammafunction [11] (hereT isnot the symbol for circula
tion!). Note that B((Z, B), 8(Z, B)) in (4.21) alwaysisarea number!

The “ correction factor” 14(Z) for “shock-free” flow of straight blades is given approxi-
mately by

r-4/z
1~(2) = 24/ZJ—l 4.24
ol&) r@-2/2)72 @29
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CHAPTER 5

Numerical method

unsteady computation

guasi-steady computation

This chapter describes the numerical method that was developed especially for computa-
tions of time-dependent potential flowsin pumps with rotating and stationary parts.

Wakes

The correct description of the evolution of the jump distribution on the wake is given by
(3.8). Thisisused in unsteady computations.

In quasi-steady simulations the convection of vortices in the wake is neglected, and the
potential jump over the wake surface is taken constant in streamwise direction
Y(s1,S) = T(s) (5.1)

Summarising, in quasi-steady computations (without unsteady wakes) the potential jump
distribution in the wake is given by (5.1), while in unsteady computations (with unsteady
wakes) the potential jump distribution satisfies (3.8).

Boundary conditions

On the inlet and outlet surfaces of the turbomachine, a uniform normal velocity is pre-
scribed

299 _ .Q
5 = Fa (5.2)

where Q isthe flowrate and A is the area of the surface.
At the impermeabl e blade surfaces (both pressure and suction sides), where w,, = 0, the
Neumann boundary condition takes the form

00 _
3, = (@x0)h (5.3)
At the hub and the shroud of the rotor and at the stator walls, the normal velocity van-
ishes
00 _
an - 0 (5.4)

Wakes are present behind trailing edges. These wakes are a result of both nonuniform
blade loading (variations of the circulation along the blade's span) and time-dependent
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variations of the blade circulations. Within the potential -flow model, wakes are modelled
by the boundary conditions

¢'(51,5) = G (Sy,S) V(51 S)
d + _ 9 - (55
%(P (sps) = = %(P (s1,s)
The second equation of (5.5) states that the normal velocity is continuous on the wake
surface. Note that wakes should coincide with stream surfaces. In general an iterative

method is needed to meet this requirement.

Rotor-stator interface

When considering configurations of complete pumps or turbines, specia care has to be
taken of the presence of both rotating and stationary parts, see also Figure 4.5. In order to
achieve this without having to create a new mesh for each time step (as was done in
[26]), the rotor and the stator are separated by a cylindrical or conica surface, the so-
called rotor-stator interface, or “dliding surface”. “Connections’ between nodes at both
sides of this interface are changing over time due to the rotation of the rotor. In this way

the rotor is allowed to rotate fredy while “sliding” along the stator.

Multi-block approach

The presence of arotor and a stator part with their separate coordinate systems naturally
suggests using a multi-block approach. In such amulti-block approach the flow region of
interest is divided into subdomains or blocks, all having atopologically cubic shape. The
subdomains are non-overlapping, with nodal coincidence at the interfaces. For a free
rotor computation one block will usually suffice, although a division into more blocksis
possible. However, for a flow computation inside a complete pump or turbine (rotor and
stator) a number of blocksis required (see Figure 5.1).

An advantage of the multiblock approach is the greater ease in creating a good mesh for
the complex three-dimensional geometries that are considered here. It also constitutes an
important component of the numerical method that is described in the next section.

In the multiblock approach additional boundary conditions have to be formulated that
apply to the artificia internal boundaries between blocks. The velocity field at these
interna boundaries should be continuous. Therefore the vaues of the potentia at corre-
sponding nodes can differ only by a fixed amount and the normal velocities are opposite.
This means that the boundary conditions for such internal boundaries are the same as
those for wakes (see equation (5.5)), with y constant. Periodic boundary conditions, as
apply for afreerotor computation, are also of thistype.
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superelement technique;
substructuring technique

FIGURE 5.1. Example of a pump geometry divided into blocks and cross-section
of pump.

Numerical method

Outline

The flow field is solved by means of a finite element method using an extension of the
superelement technique [35]. In the superelement technique (or substructuring tech-
nique) internal degrees of freedom (DOFs for short) are eliminated from the discretized
governing (Laplace) equation. The extension of the superelement method devel oped
deal swith an analogous elimination of the internal DOFs from the discretized Kutta con-
ditions. The detailed description of the method is given in [25].

The method consists of two steps:

e dimination of internal DOFs from the system of equations (Laplace equation and
Kutta conditions), for all blocks separately. This leads to the formulation of the
superelements.

* assemblage of the superelements. After solving the resulting globa system of equa
tions, the previously eliminated DOFs are obtained.

Superelement formulation: elimination step
For each block, the Laplace equation for the velocity potential together with the natural

and essential boundary conditions (if any) is discretized according to the standard finite-
element method, resulting in a system of linear equations

[LI{e} ={F +{R (5.6)
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where [L] is a positive-definite matrix reflecting the discretized L aplace operator, { @}
is the vector of DOFs and {F} isthe vector corresponding to flowrates through block
boundaries resulting from Neumann type boundary conditions. Vector { R isrelated to
(unknown) flowrates at internal block boundaries.

For each block, the discretized Kutta conditions (equation (4.5)) can be expressed in
terms of potential valuesin the block using the modified gradient operator [K] (K stands
for Kutta)

[KI{e} ={€Q xr)hj4 (5.7)

Using the values of the potential, operator [K] givesthe normal velocities at the trailing
edges.

The basic idea of the superelement technique is to express (5.6) and (5.7) in terms of
DOFs at internal block boundaries (called the “master” DOFs), by eliminating the
remaining interior “slave’ DOFs. For this purpose (5.6) and (5.7) are partitioned as fol-
lows

LT I (9} ] _ {FY
[[Lms] [me]]{ ( } = { (EM +(R) } (5.8)
ml) {0} | = raxr |
K7 [K ]H (o } {(Qxr) | 59

Superscripts s and m denote “slaves’ and “masters’ respectively. Vector {R*} denotes
the non-zero part of vector { R in (5.6).
By solving for the slave DOFs from (5.8), it follows that

{¢} = [LST{ F —[Lsﬂ_l[Lsm]{tp"} (5.10)

The resulting “super system”, formulated exclusively in terms of the “master” DOFs, is
obtained after substituting (5.10) into (5.8) and (5.9)

L7 ¢0 = (F*% +({R)

(5.11)
[KeP{¢"} = {G™%}
where
supy m m sl s
[L7 = (L™ - [L™[L 1 (L] (5.12)
[K3P] = [K™ —[KI[LS (LM
(R = (F™ — (L™ (L% Y
(5.13)

{G™ = {@Q x1)[h|,d —[KIILS] " {FY

Note that column i of <IL™T[L] ™ in (5.12) can be interpreted as the values of the
“dave” potentias corresponding to master DOF i equal to 1 and al other “master” DOFs
equal to zero. Similarly, the term [L%] {F3 in (5.13) represents the effect of Neu-
mann boundary conditions on “slave’ DOFs, while keeping the “master” DOFs equal to
zero. Note that these potentials can be computed by simple backsubstitutions once the
matrix [L*%] has been decomposed.
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This section describes how the reduced set of equations is obtained, in terms of DOFs at
block interfaces only. In principle this procedure must be carried out for all blocks that
form the entire geometry. However, an important observation is that the supermatrices
and vectors are invariant under rotation for the scalar equations considered. Therefore
the symmetry of the rotor can be exploited, asin genera all rotor channels are geometri-
cally identical. This means that the superelement formulation step has to be performed
for the block(s) of asingle rotor channel only! Furthermore, in atime-dependent compu-
tation, the superelement formulation step hasto be carried out only once.

The assemblage of blocks, which can be regarded as superelements, is part of the second
step. Thisis described in the following subsection.

Assemblage of superelements: global solution step

In the global solution step, the values of “master” DOFs of all participating blocks are
determined by assembling and solving the global system of equations.

A complicating factor in the computation of the “master” DOFsis the fact that blade cir-
culations and, as a consequence, the potentia jumps at nodes on the wakes are still
unknown. Therefore the values of blade circulations are regarded as additional variables
to be determined along with the nodal DOFs (see also [12]). The vector of unknownsin
the global problem is now denoted by

{07 = {@ oy, Tyaln} = (@31} (5.14)

where ng, is the number of nodesin al block connections (coinciding nodes are counted
asone), nr is the number of unknown blade circulations (i.e. the total number of nodes at
trailing edges), { ®} isthe vector of unknown “master” DOFsfor the potential and {I" }
is the vector of unknown blade circulations.

The “master” DOFs can now be expressed in terms of global DOFs. Note that master
DOFs may aso involve potential jumps, see (5.5). These jumps are composed of known
and unknown potential jumps (see also the appendix).

All “master” DOFs of block b are now written formally as

(@} = [ToH{®} +[WI{T} +y (5.15)
where

[Tg’] = matrix which gives the transformation of globa equation numbers of
nodal DOFs to the loca numbering of “master” DOFs in block b. Each
row contains exactly one nonzero coefficient, having the value 1.

[W,] = matrix which gives the equation numbers of global blade circulation DOFs
for the “masters’ of block b. It also accounts for the “averaging” of poten-
tia jumps on the wakes (see the appendix).

{vst = known values of potential jumps at boundaries of block b. These jumps are

present in computations including unsteady wakes (see the appendix).
Similar to the way in which element matrices and right-hand side vectors are assembled
to form the large system of equations, the superelement matrices and right-hand side vec-
tors of (5.11) are assembled into a global system of equations for the Laplace equation
and for the Kutta conditions

STV L = S T (R
bn:l bn:l (5.16)
ST = Y [ (e
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where matrices [TZ] account for the transformation of the global blade circulation DOFs
to the equation numbers of the local numbering of trailing edge nodes and n,, is the total
number of participating blocks. Note that the contribution of the vectors { R} in (5.11)
cancel out at internal block boundaries.

Substituting {(pb"} from (5.15) into (5.16) givesthe globa system of equations

(M*°) M) { () }_ {HY
[[M“"] Ly S { {H" } o
where
(M®] = ST ILATT IM®T = ST LMW
brTl bn:l (5.18)

= ST KT [w] = 3T KGR v

— 1
<
e
LS,
|

3T S (L7 )

b=1
nb (5.19)

3 [Tl (G2 -IKE" v )

b=1

{HY

{H"

Once the global system is solved, the solution for the potential for a block is obtained by
first computing the values for the "master” DOFs (using (5.15)) and subsequently per-
forming a backsubstitution to determine the slave DOFs from (5.10). This procedure is
carried out using the decomposed matrix [LSSJ which is stored on disk during the elimi-
nation step.

Advantages of the method

Here the main advantages of the method are summarized:

* The presented method exploits the geometrical symmetry of the flow channelsin the
rotor. Only the superelements of a single flow channel need to be computed, since
they areidentical.

* The superelement matrices have to be computed only once during an unsteady com-
putation.

* The Kutta conditions are imposed implicitly. Therefore the need no longer exists to
determine a large number of subpotentials in order to impose the Kutta condition at
all trailing edge nodes. This is especialy important in three-dimensional computa-
tions where the number of subpotentialsincreases rapidly, since the circulation varies
along the span of the trailing edges.

* The dimination of internal DOFs results in a major reduction of computing time for
unsteady computations, since these computations are performed with a greatly
reduced number of DOFs.
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| mplementation

The developed numerical method has been implemented in the parametric hydraulic
anaysis system COMPASS [24]. Second-order accuracy for potential, velocities and
pressures is obtained by employing linear el ements in combination with the SPR-tech-
nique [36] for the determination of the gradient of the potential, i.e. the velocity. In the
global solution step the system of equationsis solved using a direct method. The profile
width of the sparse global matrix is reduced using a spectral renumbering technique [22],
[29].

The various forms of modelling the wakes have been implemented.

| mplementation of wake models

This appendix deals with some aspects of the implementation of the wake models. A
detailed account is given in [18]. The value of the potential jump on the wake depends on
the type of computation. Two types are distinguished: quasi-steady computations (with-
out unsteady wakes) and unsteady computations (with unsteady wakes). The wake repre-
sentation is shown in Figure 3.3. As explained below, these computations differ in the
nature of the jump distribution on the wake: known versus unknown jumps.

Quasi-steady computations

The flow field in a rotor-stator configuration of a pump will in general be unsteady.
Especially at off-design conditions, the blade circulations will vary in time. One way of
computing this unsteady flow would be to incorporate the variation of blade circulations
along the span, but to neglect the convection of shed vortices in the wake. Thisis called
the quasi -steady approach. |f wake surfaces could extend from the trailing edges down to
the exit pipe of the pump, the potential jumps would be described properly by (5.1).
However, these surfaces cannot be extended beyond the cylindrica or conical rotor-sta-
tor interface. Therefore the varying potential jump on the wake must become constant
upon reaching this interface. In other words, the varying potential jump on the wake
must eventually be averaged out. The value of the potential jump on the wake is now
described by

Y(S1, S) = T(sy) + a(sy, $)[ Nae =T (8)] (5.20)

where I, isthe spanwise average of the blade circulation. The factor a is dependent on
the position in the wake and varies between the value 0 at the trailing edge and the value
1 at the rotor-stator interface. The second term at the right hand side can be considered as
adeviation from Kelvin's circulation theorem. However, when averaging this deviation
over all wake nodes at constant s;-coordinate, this averaged deviation reduces to zero. At
the rotor-stator interface, the averaged value of the potentia jump is guided to the outer
wall of the pump, along part of the cylindrical or conica rotor-stator interface and some
block boundaries located in the stator region of the pump. This type of averaging of the
jump distribution is depicted in Figure 5.2.

In this type of wake modelling the jump distribution is determined completely by the
unknown blade circulations.
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M avg
CH SZ)T T
M avg
I =
| <
Trailing edge oL Rotor-gtator interface

FIGURE 5.2. Schematic representation of the potential jump distribution y(s; , s,)
on awakein quasi-steady computations. The aver age blade circulation isT 5q.

Unsteady computations

Contrary to the former approach, a (fully) unsteady computation of the flow field in a
rotor-stator configuration requires the convection of vortices according to (3.8) to be
taken into account as well. Once again, the varying potential jump will have to be aver-
aged out at the rotor-stator interface. Suppose that the potential jump distribution at a
given time step is given by y'(s;, s,) . An averaging procedure very similar to that for
guasi-steady flow is now introduced

Y(s1, Sy = V* (s sy +a(sy, 52)[V;\/g(51) _V* (sp $9)] (5.21)

where factor a depends on the position of the vortex in the wake and varies between the
value 0 at the trailing edge and the value 1 at the rotor-stator interface. The average value
of the potential jumps y(s;, S,) aong the line with constant s; is denoted by Yavg(S) -
The deviation from the exact solution reduces to zero when averaging over nodes at con-
stant s;-coordinate. As was the case in the quasi-steady approach, the potential jump is
equal to the loca blade circulation at nodes on the trailing edge. Upon reaching the rotor-
stator interface, the potential jump becomes equal for all s,. This averaged value is
guided to the outer wall of the pump.

In this type of wake modelling the jump distribution is determined by the unknown blade
circulations and the known jump distribution on the wake corresponding to previously
shed vortices.
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Lossmodds

In the basic potential-flow model viscosity is neglected. Since viscosity is the main
source of losses, the basic potential-flow model can not be used to predict realistic head-
capacity curves. In fact, the model would always predict a hydraulic efficiency of 100 %.
This seems to make the potential-flow model almost useless.

However, it isimportant to realize that the potential-flow model is valid for the core flow
(i.e. theflow in the region between the blades, but outside of boundary layers and wakes),
provided no boundary-layer separation occurs. Then the core flow can be considered as
inviscid. The viscous effects are restricted to thin zones along the walls of the rotor and
stator, and in wakes behind trailing edges. In these thin zones viscosity dissipates energy.
By developing separate models for these zones, viscosity can be accounted for very effi-
ciently.

Sources of loss are dissipation by viscous stresses in boundary layers at solid walls, mix-
ing losses in wakes, disk friction, leakage flows, tip losses, mechanical |osses. Mechani-
cal losses are not specified here, but they can be included by multiplying the efficiency
by the mechanical efficiency.

Models are given for each of these sources of losses. Many of these models use the
potential-flow field asinput.

An overview of the various lossesis given by Denton [17], while this chapter closely fol-
lows the exposition of [18].

Power balance

Only part of the power that is applied at the axis is transferred to the fluid. The power at
the shaft is denoted by Py, , while the increase of fluid power is P, . Then the power
losses AP are

Poait = Pre + AP (6.1)
The shaft power Py, isrelated to the shaft torque My, by

Poait = QMgpnait (6.2)

Theincreasein fluid power P, is used to define the pump’s head H

P = POHQ (6.3)
The efficiency of the pump n is defined by
Pnet Pshaft —-AP

n= = (6.4)
P snat P shat

The power lost AP is the sum of the various |oss contributions
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AP = APy + AP gy + APy (6.5)

where APy is the hydrodynamical loss of power, APjey is the power lost due to the
leakage flow and AP isthe power lost by disk friction. The hydrodynamical loss consist
of mixing loss and frictional lossin the boundary layers. For each of these losses, models
will be given in the following sections.

Shaft power

From the conservation of angular momentum (see also [2]) for the control volume shown
in Figure 6.1 it follows

7

///

FIGURE 6.1. Control volume enclosing the impéller.

Mshaft+J‘rFSYedA = %Iprvedv+jprve(y- n)dA (6.6)
A \ A

The term with the time derivative can be ignored, since its time-averaged contribution
(over aperiod of revolution of theimpeller) equals zero for the periodic situation consid-
ered. Theterm Fg 4 is awall-shear surface force in circumferential direction. It can be
neglected for the inlet and outlet surfaces A; and A, .

The effect of the boundary layers on the velocity profiles at entrance and exit are
neglected. Then

Mshaft = MEuIer,Q+Q|eak + Mdf (6.7)
where
Meye 0+0u = | PIVo(v* MAA ©8)
At A,

Theinviscid Euler moment Mg e o+ ., iSthetorque exerted by the impeller blades on
theinternal fluid by pressure forces. The larger flowrate due to the leakage flow hasto be
taken into account. The torque M, acting in the direction opposite to the shaft torque
Mg+ IS the torque exerted by frictional shear stresses at the surfaces external to the
impeller
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Boundary-layer losses

dissipation coefficient

My = — I rty, gdA (6.9)

Boundary-layer losses

Due to the presence of solid walls, boundary layers form in which (generally) the flow
adjusts from the core velocity to the slip condition at the wall, see Figure 6.2.

U

FIGURE 6.2. Velocity profilein the boundary layer.

According to [17], the power loss in boundary layers APy, is

APy, = %pIch3dA (6.10)

A

The coefficient ¢y, is a dissipation coefficient. A representative value is 0.004. Its value
is not very sensitive to the state of the boundary layer, although it may very from 0.002
for boundary layers in accelerating flow, to 0.005 for boundary layers in decelerating
flow.

Note the analogy of (6.10) with the expression for the shear stress at thewall T,

T, = %pcfw2 (6.11)

where c; isafriction coefficient.

Expansion and contraction losses

A sudden change in through-flow area may lead to dissipation of kinetic energy, see for
example [18] for more information. The magnitude of this source of loss is usually of
minor importance.

Wake mixing

An important type of loss is the mixing of the boundary layers in the wake behind a
blade, see Figure 6.3. According to [17] this mixing lossis given by
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FIGURE 6.3. Control volume behind trailing edge.

1 Cpp , .0 , (8 +b?

AP = (Q+ Q|eak)§PWr2ef [— _Vl\)7 2t (—W ) J (6.12)
where b isthe blade thickness, W is the blade pitch. The sum of the momentum thick-
nesses of the boundary layers on the pressure and suction sides of the blades is denoted
by 0. The sum of the displacement thicknessesis & . The so-called base pressure coeffi-
cient C,, is defined by

Pp—P
Cpp = % (6.13)
EPWrzer

where p,, isthe static pressure acting on the blunt trailing edge, p,4 and w, are refer-
ence vaues for the pressure and velocity. A typical value for the base pressure coeffi-
cient C;, is—0.15.

Thefirsttermin (6.12) represent the loss due to the low pressure acting on the blunt trail -
ing edge, the second term is the actual mixing loss, while the third term signifies the
effect of blockage by the blade and the boundary layers.

A detailed overview of various theories for predicting the base pressureis givenin [31].

Disk friction

Consider a disk with radius R that is rotating with angular velocity Q in acylindrica
container. At the bottom of the container a thin layer of liquid is present with thickness
h. Due to viscous stresses at the bottom of the disk power is required to keep the disk
spinning. This disk friction power P that continuously has to be provided to the system
equals

Pyt = QMg (6.14)
where the frictional torque My; acting on a rotating radial disk is given by (neglecting

shear stresses at the top of the disk by air, for example)

My = IrrdA (6.15)

A
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Disk friction

Fluid

FIGURE 6.4. Geometry for disk friction.

where T isthe shear stressin circumferential direction. The shear stress can be expressed
as

T = %pcfv2 = %pCf(Qr)2 (6.16)

For adisk of radius R this |leads to

My = %anfQZR5 = %pCmQZR5 (6.17)

where C,, = 21/ 5C;.

Correlations for C,, were obtained by [16]. Four different regimes were identified,
depending on the type of flow, laminar or turbulent, and whether separate boundary lay-
ers exist on both sides of the solid surfaces, or the boundary layers have merged.

These regimes are characterised by a nondimensional Reynolds number Re = QR2/v
and a nondimensiona gap parameter G = h/R.

* Regimel: laminar flow, boundary layers have merged

5/11
¢ = MG-IReL { G <1.62Re 6.18)

G < 188Re9/10

* Regimell: laminar flow with two separate boundary layers

G > 1.62Re>11
C, = 1.85GY/10Re1/2 G > 0.5710-6Rel5/16 (6.19)

Re< 1.5810°

* Regimellll: turbulent flow, boundary layers have merged

G < 0.57106Rel5/16
C, = 0.040G1/6Re1/4 G < 0.402Re-3/16 (6.20)

G > 188Re9/10

* RegimeV: turbulent flow with two separate boundary layers
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—3/16
¢, = 0.051G1/10Re-1/5 { G >0.402Re (6.21)

Re > 1.5810°

The regimes are shown in Figure 6.5.

Flow regimes

0.100
0.075 | v
I
©0.050
0025 /m
T~

0000 L—— e

1000 10000 100000 1000000

Re

FIGURE 6.5. Regimesfor disk friction.

Leakage flow

Many hydraulic turbomachines are equipped with (rotating) shrouds. In order to mini-
mize leakage flow, various types of seals are used. Without seals between the shaft and
the pump housing, the fluid would squirt out of the pump, due to its high pressure.

Here amodd is given for the mixing loss due to the leakage flow joining the main flow
and a model is given for determining the leakage flowrate. This latter bulk flow model
also provides the contribution of disk friction associated with the |eakage flow.

Mixing loss
Due to the mixing of the leakage flow with the main flow, the flow incurs a loss. From
conservation of axial momentum for the control volume depicted in Figure 6.6 it follows
that

(P2 +PVZ2)A; = (P3tPVi3)As (6.22)

Assuming that the main flow is irrotational, the fina circumferentia velocity of the
mixed-out flow is determined from conservation of angular momentum

1
Vo, leak Queak = EVe,a(Q + Qleak) (6.23)
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FIGURE 6.6. Control volume at the impeller inlet.

The factor 1/ 2 follows from the reduction in average radius. Since A; = Ag, theloss in
total pressureis Ap,

2 2
1 (2e+¢2) , 4¢ (6.24)

> (1+£)2V23 ZP(1+£)2V9 leak

Apy =

wheree = Qu/ Q.
The power loss through mixing AP, then becomes

AP = (Q+ Qead)Apg = Qleak|:1 (2+JV22,3 %P(ﬁl_SJVg, Ieak:| (6.25)

Bulk-flow model for conical leakage area

In most cases the leakage flow is through a narrow conical gap with a constant height h.
Hence, in relation to the geometry sketched in Figure 6.1, a conical gap for the leakage
flow corresponds to ashroud that is straight. The steady momentum equations in the con-
ical coordinate system, see Figure 6.7, are

O

FIGURE 6.7. Conical coordinate system.

ov, V& ap 10
p("sas +sina r) = s rat '
(6.26)
ov BER'AY;
plugs - 9na=) = 2507y
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for the throughflow direction t and the circumferential direction @.
For athin film the derivatives of the shear stressesin the t -direction are

S R
0T TgtTg

Fri " (6.27)
S R
a_T‘Pt - Lot Tt (6.28)
ot h
where the superscripts R and S denote values at the rotating and stationary walls.
The shear stresses are expressed as
= CSl v,v° 6.29
ot - fzp ® ( . )
R _ CRl. ok
Ty = f2p(vq,— rv (6.30)
o= C%pvsvS (6.31)
= Cf%pvsvR (6.32)

where v° and V® are the magnitudes of the bulk velocities relative to the rotating and
stationary walls

S _ 2, 2

V7= VsV

R 2

Vo= Vs + (v, —Qr)?

Various empirical relations can be employed for the various friction factors, see [18].

For a given leakage flow Q. , corresponding to known distribution of v, from mass
conservation, the equations (6.26) can be solved for the circumferential velocity v,, and
the pressure p . The leakage flow has to be adjusted such that it gives the pressure drop
corresponding to the head increase of the impeller.

The power loss associated with the leakage flow consists of two parts. The first part is
disk friction, which can be computed once the velocity distribution in the gap is known,
since the shear stress is determined from the velocities and the friction coefficients. The
second part is due to the fact that in the impeller the pressure increases, but the pressure
increase of the leakage flow islost. Hence

(6.33)

APy = QieaPIHimp (6.34)

where H;.,, isthe head increase over the impeller.
Examples of results for the pressure distribution in seals are given in [18].
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CHAPTER 7

Casss

This chapter shows various examples of the methodology described in preceding chap-
ters: the potential-flow model is used to describe the core flow and additional models for
the various sources of losses are employed that use the potential-flow field as input. The
examples vary in range of specific speed from alow specific-speed centrifugal pump to a
high specific-speed axial cooling fan.

Centrifugal pump, free impeller

In order to study the flow in centrifuga impellers, detailed measurements of velocity and
pressure have been performed for the SHF impeller (Societé Hydraulique de France).
This is a low specific speed, n, = (Q Q¥?)/(g H)¥* = 0.58, centrifugal impeller with
seven blades. Its inlet diameter is 220 mm and its outlet diameter is 400 mm. The blade
outlet angle is 67.5° with respect to the radius. At 1200 rpm, the nominal flowrate Q,, is
0.1118 m®st and the corresponding head is 31 m. The geometry isshown in Figure 7.1.

W

nrni

=

FIGURE 7.1. Geometry of SHF impéller.

The results of Laser Doppler Velocimetry measurements are reported in [15] and the
results of pressure measurement are given in [27]. Since a detailed description of the
geometry is available, thisimpeller was analysed with the present code [19]. In the com-
putation the thickness of the impeller blades was taken into account. Here the main
results are recapitul ated.

The computed head H equals 33 m in comparison with the measured head of 31 m. The
computed and measured pressure distribution on the blade is plotted in Figure 7.2; good
agreement is observed. A detailed comparison of computed and measured velocities is
givenin [19].
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Pressure distribution
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FIGURE 7.2. Computed and measured pressure distribution on SHF impeller.

Centrifugal pump, volute

This section is based on [23]. This example deals with the flow in a low-specific speed
pump consisting of an impeller with logarithmic blades and a volute. The emphasis of
this case is on the flow in the volute.

2370

‘ 2160 ,

| |
@V @26
Q?§3 Agl

38

25

2

—ff—

FIGURE 7.3. Centrifugal impeller (cross-section). All dimensionsin mm.

M easurements were performed at a centrifugal pump with a low specific-speed n,, =
(Q Q” 2)/(g H)3/4 of 0.4. The impeller (see Figure 7.3) has seven blades with a constant
blade angle of 70° with respect to the radius and athickness of 2 mm. The impeller inner
diameter is 320 mm, its outer diameter 640 mm, and the axial width is 25 mm. The
volute, see Figure 7.4, has a trapezoidal cross-section and is designed to approximately
match the impeller at design condition (Q = 0.008 m¥s, Q = 4.2 rad/s), according to the
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Centrifugal pump, volute

method of constant angular momentum [5] (see also Chapter 7). The Reynolds number
(QD?)/v is 1.7-108, wherev isthe kinematic viscosity of water. The tongue hasacylin-
drical shape with a diameter of 2 mm. During construction special attention was paid to
the minimization of leakage flows. M easurements are presented for flowrates of 82.5 %,
100 % and 117.5 % of the design flowrate.

303

490

208

338 ‘\
12
X

320

384 LT

F

cross-section F-F
i 25 60

384

557

FIGURE 7.4. Spiral volute (plane view and cross-section) All dimensionsin mm.

Velocity measurements were performed using LDV. The LDV configuration is
described in detail in [32] and [33]. It employs a dua reference beam forward scattering
system, capable of parallel detection of two perpendicular velocity components. Two
Bragg cells were used to effectuate preshifts between main beam and the two reference
beams, thus enabling the determination of the direction of the velocity components. Two
detectors measured the Doppler frequency. These signals were sampled and stored on
disk. Time-averages and RMS-values could be computed. Information on the axia
velocity component could not be obtained. U-tube manometers were used to obtain val-
ues of the static pressure. Figure 7.5 shows the locations in the volute where vel ocity and
static pressure measurements were obtained.

The head-capacity curve was derived from the static pressure difference between inlet
and outlet of the pump and the assumption of uniform velocity in these regions. It is not
possible to measure the hydraulic efficiency of the pump with the current experimental
setup.

Air-bubble visualization was used to investigate the flow near the tongue of the volute.

Results

In this section the results of measurements and computations are compared. These results
dea with velocities, pressures and overall characteristics. The computational mesh is
shown in Figure 7.6. It contains atotal of 168,000 nodes, of which 14,500 are located in
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= pressure tap
—: velocity trajectory

FIGURE 7.5. Measurement locations in the laboratory centrifugal pump. LDV
measurements are performed along trajectories A to H. Static pressure
measurement locations are indicated with solid markers. Hatched area shows

region which is not visually accessible.

each of the seven impeller channels Computations are performed with 105 timesteps per
shaft revolution. Although the computations yielded time-dependent quantities, only
time-averaged quantities are presented.

e
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FIGURE 7.6. Plane view of the computational mesh for the centrifugal pump with
spiral volute. Only one of the seven impéller channelsis shown.

Velocity

Radial and circumferential velocity components were measured in a plane at half the
axial width of the volute. Several trgjectories (see Figure 7.5) were scanned for the three
flowrates 82.5 %, 100 % and 117.5 % of the nominal flowrate.

Typical results are shown in Figure 7.7, together with the computed values. In alarge
region of the volute (60°-285° from the tongue) computed circumferential velocities
agree very well with measurements at optimum flow conditions. At low flowrate this
excellent agreement is restricted to a smaller region (150°-285° from the tongue). At
high flowrate the agreement is not very good except for asmall region 60°-150° from the
tongue. The agreement between computed and measured radia velocitiesis very poor.

This discrepancy was further investigated by performing traverses over the height of the
volute. Results are given in Figure 7.8 which shows the variation of radial and circumfer-
ential velocity over the height of the volute for two radial positions on traverse F (see
Figure 7.5). The circumferential velocity is practically constant over the height of the
volute, while the (much smaller) radial velocity shows severe secondary flow.
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Centrifugal pump, volute
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FIGURE 7.7. Nondimensional radial and circumferential velocity in the volute along different trajectories
for three flowrates. Comparison between measurements (symbols) and computations (solid line). The
scaled local coordinate along thetrajectory is denoted by s, ranging from 0 at the impeller outer radius
to 1 at the volute wall. Velocities are scaled with blade tip speed.
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FIGURE 7.8. Variation of radial and circumferential velocities with height for two
radial positionson trajectory F (blade tip radius denoted by rtg). Velocities are

scaled with bladetip speed.

Pressure

The static pressure difference Ap between the inlet of the pump and locations in the
volute is measured using U-tube manometers. It is made nondimensional with the blade
tip speed according to

Ap — pvol_pin;et
p(Qry,)

In Figure 7.9 results of measurements and computations are shown for locations just out-
side the impeller and along the volute outer wall, for three different flowrates. The
(inviscid) computations lead to pressure values which, on the average, are too high.
However, in alarge region, not too near to the tongue, the qualitative agreement is quite
good. A constant static pressure around the impeller can be observed at design flowrate.
The computed static pressure values can be corrected for viscous losses in the impeller

(7.1)

Apoorr = Apinvisc_pg HL,h,imp (7.2)

where the hydraulic head loss in the impeller is denoted by H himp- BY doing so, the
agreement is improved, athough considerable deviations still occur at off-design condi-
tions.

Head curve

Figure 7.10 shows the head-capacity curve. The methods described in Chapter 6 are used
to quantify the effects of boundary-layer dissipation and wake mixing. The fraction that
wake mixing contributes to the total head loss ranges from 10% at high mass flow to
25% at low mass flow.

Discussion

An investigation of the axial distribution of radial velocities at a number of radial posi-
tions in the impeller and the volute revealed that a region of severe secondary flow is
located in the volute. Typical radial velocity profiles are sketched in Figure 7.11. The
observed convex radial velocity profile in the volute region, with negative vel ocities near
the upper and lower surfaces, can easily be explained by an analysis of pressure forces
and centrifugal forces (due to curvature) in the boundary layers and the main flow. It is
equivalent to the secondary flow encountered in the flow through a pipe bend. A similar
analysis for the flow through the impeller can be made, where account should be given of
the additional centrifugal force due to rotation and the Coriolis force. The equilibrium
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Centrifugal pump, volute
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FIGURE 7.9. Static pressure difference in the volute of the laboratory centrifugal
pump as a function of orientation 6 (degrees) from the volute tongue, for three
flowrates. See Figure 7.5 for locations at the impeller periphery and the volute
wall. Pressure difference Ap isdefined in (7.1) and (7.2).
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FIGURE 7.10. Head-capacity curve for the centrifugal pump, showing measured
and computed values, both inviscid and corrected for viscous losses.

between pressure forces and Coriolis forcesin the main flow islost in the boundary lay-
ers at hub and shroud surfaces, leading to a secondary flow in the boundary layers
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directed from pressure to suction side. In the main flow a reverse secondary flow direc-
tion is observed. This leads to the observed concave radia velocity profile for impellers
with backwardly curved blades. Secondary flows are discussed in more detail in Chapter
9.

FIGURE 7.11. Cross section of impeller and volute, showing measured radial
velocity profiles. Average velocities are indicated with dotted lines

The secondary flow does not seem to influence the static pressures. Except at the high
flowrate, the agreement between measurements and potential-flow computations (after
correcting for viscous losses in the impeller) is quite good. It can be observed from the
difference between both that viscous losses build up as the fluid is flowing along the
volute wall from the tongue to the volute throat.

Similar results are obtained for the head-capacity curve. The good agreement at low and
optimum flowrate imply that other sources of viscous losses are not very important in
this pump. At high flowrate, however, a larger deviation is observed between computa
tions and experiments.

A possible cause for the disagreement between measurements and computations is
boundary has been experimentally observed at high flowrate (Figure 7.12).

pressure tube B

blades

. tongue

streskline

K pressure tube A
FIGURE 7.12. Photograph of flow near the tongue of the volute at high flowrate

showing boundary layer separation. Air bubblesinserted through pressure tube
A areused for flow visualization.

The blockage effect resulting from the separated boundary-layer could well be related to
the observed tangential velocity profiles at high flowrate, which deviate considerably
from the computations. A homogeneous distribution of tangential velocity was seen to
cover the major part of the volute extending from tragjectories B to G (Figure 7.5). It is
suggested that measured velocity profiles like these have inspired Stepanoff [6] to put
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Mixed-flow pump

forward his method of constant mean velocity for constructing volutes. A similar flow
fiedld can emerge at design flowrate if the volute is designed somewhat too small. It is
known that volutes designed according to the method of Stepanoff are smaller than those
designed according to the method of constant angular momentum [5].

Mixed-flow pump

This section summarises the description in [20] and [21]. Experiments were performed at
the test facility of Flowserve Hengelo, The Netherlands. The model contains a shrouded
mixed-flow impeller with four blades and has a specific speed n,, of 1.6, see Figure 7.13.
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FIGURE 7.13. Geometry of impeller of mixed-flow pump.

The volute is unvaned with a trapezoida cross-section, see Figure 7.14. It is designed
according to the method of constant angular momentum [5] (see also Chapter 9).

The pump is a scale model of a much larger pump used for cooling-water transportation
in power stations. Two types of measurements were carried out; overall performance
measurements and detailed pressure measurements in the volute. The pressure measure-
ments and their comparison to the computational results are given in [20].

Overall performance characteristics include the head-capacity curve and the efficiency
curve. Figure 7.15 shows both the experimental and computed values. Results of inviscid
computations are corrected for viscous losses, using the models described in Chapter 6.
In contrast to the laboratory centrifugal pump, boundary-layer dissipation is by ho means
the only source of loss. The ratios Q5 / Q Were found to be quite high, varying from
1.7% at high flowrate (Q=14Q,) to 6.4% at the lowest flowrate considered
(Q=0.6 Q). A smal portion of the total loss is accounted to mixing losses, an even
smaller portion to expansion losses. Large deviations at very low and high flowrates may
be attributed to secondary flow like stall and surge, or to boundary-layer separation.

Cavitation

This section summarises some results from [28]. To be added.
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FIGURE 7.14. Geometry of volute of mixed-flow pump.
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FIGURE 7.15. Head-capacity and efficiency curves of mixed-flow pump.

56

Turbomachines||



Axial fan

Axial fan

This section deals with axia cooling fans from Howden Cooling Fans, Hengelo, The
Netherlands. Various configurations have been considered, see Figure 7.16. A detailed
account isgivenin[13].

FX: 8 blades

7
e 2
| 20

vy

¢///

N

N
IS

NN

\‘\\\ N
SsSa\
RN

R
N

oy \
NN
AR N
N S
AR N
NN A\
\\\\:\E\E\E\EE‘E = (i 0:0:’?
=
gy
NSl
N~
=

FIGURE 7.16. Geometry of FX and SX cooling fans.

For axial cooling fans the nondimensional quantities of interest determining the perform-
ance characteristics are the flow coefficient Cy, the pressure coefficient C, and the power
coefficient A

pout - pO, in Q Mshaft

Cf:— C. = —m— A=

7.3
tip P 1‘ 0OR,. )2 1‘ OR. )3 9
Zp( tip) Zp( tip)
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Note that the pressure coefficient is the nondimensional difference between the static

pressure at outlet and the total pressure are inlet.

The comparison between measured and computed performance characteristics is shown
inFigure7.17.
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FIGURE 7.17. Measured and computed performance characteristics of FX and
SX axial cooling fans.
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CHAPTER 8

Boundary layers

This chapter deals with basic boundary-layer theory (textbooks on boundary-layer theory
are [8], [9] and [10]). The focus is on two-dimensional wall-bounded boundary layers
and incompressible flows. The emphasisis on the effect of pressure gradients outside the
boundary layers, since this effect isimportant in applications to turbomachines.

This chapter deals with basic boundary-layer theory (textbooks on boundary-layer theory
are [8], [9] and [10]). The focus is on two-dimensional wall-bounded boundary layers
and incompressible flows. The emphasisis on the effect of pressure gradients outside the
boundary layers, since this effect isimportant in applications to turbomachines.

For turbines the pressure gradient is generally favourable (accelerating flow), while for
pumps and compressors the pressure gradient is generally adverse (decelerating flow).
Firstly, the boundary-layer concept is described, followed by the formulation of the
boundary-layer equations in the two-dimensional case of incompressible flow. A distinc-
tion is made between the laminar and the turbulent case.

Basic boundary-layer methods are described for calculating laminar and turbulent bound-
ary-layers. These methods take into account the pressure gradient, or equivalently the
variation of the velocity, outside the boundary layer.

Main flow

Boundary layer

Solid wall

FIGURE 8.1. Sketch of the boundary layer near a solid wall.

Boundary-layer concept

As was shown in Chapter 2, in many cases the core flow may be considered as inviscid
for the high Reynolds-numbers that are typical for turbomachinery flows. Hence, viscous
shear stresses can be neglected in the main flow. Close to solid walls this assumption
generally does not hold, since at the wall the no-slip condition applies. So there will bea
rapid change in velocity in the direction normal from the wall, with zero velocity at the
wall, to the main flow velocity at a small distance from the wall. This large gradient in
velocity corresponds to (non-negligible) shear stresses. Thus, close to the solid walls the
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Boundary layers

boundary-layer (distur-
bance) thickness

boundary-layer displace-
ment thickness

boundary-layer momentum
thickness

assumption of inviscid flow is not correct. Inside the thin boundary-layer viscous shear-
stresses can not be neglected. However, by taking into account that boundary layers are
thin, other simplifying assumptions can be made that lead to simplified forms of the
Navier-Stokes eguations that are appropriate to the flow in boundary layers.

Boundary-layer thicknesses

Inside the boundary-layer the velocity component paralel to the wall, u(x, y) with x the
coordinate along the solid wall and y the distance normal to the wall, changes from zero
towards the main-flow velocity U(x). The boundary-layer disturbance thickness o is
usually defined as the distance from the wall to the point where the velocity iswithin 1%
(or another percentage) of the freestream velocity of the core flow. This point is difficult
to measure, since the velocity profile merges smoothly with the main flow. Furthermore,
the 1% criterion is arbitrary. Therefore, two other boundary-layer thicknesses are intro-
duced.

The viscous forces that are important in the boundary layer result in a retardation of the
flow in comparison with the main flow. Thus, the mass-flow rate adjacent to the solid
wall is smaller than that in the main flow. The mass-flow rate (per unit depth) is given by
pu(x, y)dy . The decrease in mass-flow rate, relative to the corresponding mass-flow
e of a uniform inviscid flow (that would not approach zero at the wall) is given by
p[U(X) —u(x, y)] dy . The boundary-layer displacement thickness & isdefined asthe
ftance over which the solid wall would have to be displaced to give the same mass-
flow deficit as that which exists in the boundary layer. Thus, the boundary-layer dis-
placement thickness & isdefined by

PUX)E () = j';” PIU) — u(x, y)] dy (8.1)

Besides leading to a reduction of the mass-flow rate, the boundary layer also resultsin a
reduction of the momentum transport. The momentum deficit of the actual mass-flow,

pu(x, y)dy, through the boundary layer is | pu(x, y)[U(X) —u(x, y)]dy. If viscous

ces were absent, it would be necessary to miove the solid wall outwards to obtain a
momentum deficit. Denoting this distance, the boundary-layer momentum thickness, by
0, this deficit is equal to pU(x)26(x) . Thus the momentum thickness is defined as the
thickness of alayer of fluid with velocity U(x) , for which the momentum flux is equal to
the deficit of momentum flux through the boundary layer. Thus, the boundary-layer
momentum thickness 0 is defined by

pPU(X)20(x) = jj pu(x, Y)[U(X) —u(x, y)] dy (8.2)

Since the displacement thickness and the momentum thickness are defined as integrals
with an integrand that vanishesin the main flow (where u(x, y) = U(X)), they are appre-
ciably easier to determine experimentally than the boundary-layer disturbance thickness
0.

With constant density p the displacement thickness & and the momentum thickness 0
can bewritten as

s=] -85l
. (8.3)
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Boundary-layer equations

shape factor

Hence these thicknesses involve the shape of the non-dimensional velocity profile within
the boundary layer. A non-dimensional parameter related to the shape of the velocity
profile within the boundary layer is the shape factor H defined by

H== (8.4)

For example, with a (often used) power-law  velocity  profile,
u(x, y)/UX = [y/8]1Y", wefindthat H = (n+2)/n.

Boundary-layer equations

The equations governing two-dimensional, incompressible and steady flows are the con-
tinuity equation and the two-dimensional Navier-Stokes equations. The case considered
is that of the flow near aflat, solid wall. The essential assumption made in boundary-
layer theory is that the boundary layer is thin, and that changes in the x -direction, along
the wall, are much slower than changes in the y-direction, perpendicular to the wall.
With characteristic length scales L for the x-direction and & for the y -direction, this
assumption requires

=«l (8.5)

Laminar flow

The continuity equation (2.5) for incompressible flow is

ou  ov _
X + ay (8.6)
where u(x,y) and v(x, y) are the velocity components aong the wall and perpendicular
to the wall, respectively.
For laminar flow the steady, two-dimensiona Navier-Stokes equations (2.6), with (2.8)
for the shear stress, for incompressible flow are

ou  Qu _ lop  (0%u  o%u
uﬁ“’ﬁ/_ p5<+v(ax2+6y2)

ov, Qv _ _1op  (0%v 0%
Yox " Vay T T +V(ax2+ay2)

8.7)
ox dy  pdy

Now the order of magnitude of the various terms will be investigated. Characteristic
velocity scaesfor u and v are U and V, respectively. The order of magnitude of the
first term in the continuity equation is O(U/L), while that of the second is O(V/9) .
Henceit followsthat V = (&/L)U.

Now an order of magnitude analysis of the Navier-Stokes equation for the x -directionis
performed, using the result for the velocity scale V. The order of magnitude of the first
two terms on the left-hand side is O(U 2y L), asisthat of the term with the pressure gra-
dient. The order of magnitude of the two viscous terms are O([v U]/LZ) and
O([vU]/62) , respectively. Hence the first viscous term is smaller, by a factor
O([6/L] 2) , than the second viscous term.

Similarly, the order of magnitude analysis of the Navier-Stokes equation for the y -direc-
tion is performed. The order of magnitude of the first two terms on the left-hand side is
O([UZ/ L][6/L]), while that of the term with the pressure gradient is
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Reynolds-averaged Navier-
Sokes equations

O([UZ/ L][L/8]). The order of magnitude of the two viscous terms is
O([UZ/L] [6/L][v/(UL)]) and O([UZ/ L][L/d][v/(UL)]), respectively. Hence the
first viscous term issmaller, by afactor O([d/ L] 2) , than the second term.

From this analysis of the order of magnitude it follows that the two viscous terms con-
taining derivatives with respect to x can be neglected. Since viscousterms are, amost by
definition, important in boundary layers it follows that the order of magnitude of the
terms on the left-hand side of the Navier-Stokes equations for the x-direction,
O(UZ/ L), must be equa to the magnitude of the second viscous term, O([vU] /62) .
This means that 8/L = oqwguu]“) . From these restits it follows that the domi-
nant term, by a factor O([d/L] "), in the Navier-Stokes equation for the y -direction is
the term with the pressure gradient. The resulting, simplified equation is thus
op(x, y)/ady = 0, which means that inside of the boundary layer the pressure does not
changein the direction perpendicular to the wall. Hence the pressure inside the boundary
layer is equal to that outside the boundary layer, which (is assumed to) satisfy the Ber-
noulli equation, so dp/0x = —(1/p)UdU/dx.

The resulting steady, two-dimensional boundary equations for incompressible laminar
flow become

ou, Oou _  dU 0%
u5(+v® = U& +vayz
= _10p

pay

Note that, unlike in the Navier-Stokes equations, the pressure no longer is an unknown.
The pressure inside the boundary layer is equal to that outside the boundary layer. In
turn, this pressure is determined from the Bernoulli equation for the inviscid, irrotational
main flow.

(8.8)

Turbulent flow

Turbulent flow is characterised by irregular, time-dependent fluctuations. Since these
high-frequency variations are generally not of interest, it is common to employ a so-
called Reynolds decomposition. The instantaneous velocity vector V(x, t) is decom-
posed into a mean, time-independent velocity vector ¥(x) and afluctuation v'(x, t)

V(x, 1) = U(X) + V(X 1) (8.9)

Similarly, the pressure is decomposed into a mean and a fluctuation pressure.
The fluctuation is chosen such that its time-average vaue (over along period T) is zero

vVi(x,t) =0 (8.10)

Here the overbar denoted the time average. For an arbitrary quantity ¢(x) thisaverageis
defined by

)
o®) = lim 2 [o(x, t)at
T_.ooT
0

The steady, two-dimensional Reynolds-averaged Navier-Stokes equations (RANS for
short) for incompressible flow become after some algebra

(8.11)

S0, 0 10 _ 920 , a2y 9 0
—a+v—0 = —"—"p+Vv|—+—| ——_(Uu'U)—-—-—(uv
“ax“ Vay“ paxIO V(ax2 ayz) ax(”“) ay(“ )
(8.12)
S0, 0 10 _ 0%v 0%y 0 0
—VvV+V—V = —D+ — +— | =2 (uV)=-(VV
“axv ayV payIO V(ax2 ayz) ax(“ ) ay( v)
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where G, v are the components of the time-averaged velocity vector in x -direction and
y -direction, respectively, and u', v' are the components of the fluctuating velocity vec-
tor in x -direction and y -direction, respectively. The terms on the right-hand side involv-
ing the fluctuating velocities are effectively additional stresses, the so-caled Reynolds
stresses pu'v' (and similar terms), due to momentum transfer that isthe result of the ran-
dom fluctuation velocities. These terms are a result of the nonlinear character of the
Navier-Stokes eguations.

A central problem in the study of turbulence is that, by the process of Reynolds averag-
ing, extra unknowns, such as u'v', have been introduced into the equations. Now the
number of unknowns exceeds the number of equations. Therefore these additional
unknowns have to be related to the primary unknowns. This is the closure problem in
turbulence. It forms one of the major unsolved (unsolvable perhaps) problems in fluid
mechanics. An advanced textbook on turbulenceis[30].

Using the Reynolds decomposition (8.9), the continuity equation (8.6) becomes

l
+
<
1
o

(8.13)

2|
S

Now an order of magnitude analysis is made of the Reynolds-averaged Navier-Stokes
equations. It is assumed that all fluctuating terms (u'u’, u'v' and v'v') are of the same
order of magnitude. From the order of magnitude of the continuity equation, it follows
V = (&/L)U, just asin the laminar case. Similarly to the analysis of laminar boundary-
layers, the terms involving derivatives with respect to x of viscous and Reynolds stress
can be neglected in comparison to the termsinvolving derivatives with respectto y . The
order of magnitude of the inertiaterms on the left-hand side is the same as in the laminar
case. On theright-hand side, the terms with derivatives with respect to x will be smaller,
by an order of magnitude &/L , than the terms involving derivatives with respectto y .
Hence these smaller terms will be neglected. Except very close to the wall the viscous
stresses will be smaller than the Reynolds stresses for turbulent boundary layers. Thus
wefind

9.0 _ 14...0% a,.,
So+vio==p+rvi—=—
O Vot = oot T Vayz Ty 1Y)
19 0 ©19
= = D— \Vava
v ay( )

From detailed experimental studies it is known that the Reynolds stress pv'v' does not
vary significantly over the boundary layer. From the previous equation it follows that
0p/0dy = 0. Hence the pressure inside the boundary layer is equa to that outside the
boundary layer, which (is assumed to) satisfy the Bernoulli equation, so
0p/ox = —(1/p)UdU/ dx, just asin the laminar case. Finally, we obtain

. .d_ _,du_ 9% 9,
O 0+ Wu— il ¥ W(UV)
(8.15)
:—li_
poy

Momentum integral equation

The boundary-layer equations for laminar and turbulent boundary layers (8.8) and (8.15)
both can be written as
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u@ Va_u = Ud—U+l'a_TXy

ox o0y dx pady
1op
pay
where the overbars for the velocities and pressure have been dropped in the turbulent
case to simplify the notation. The total shear stress T1,,, consisting of laminar shear-
stress and turbulent Reynolds-stress, is defined as

(8.16)

Xy !

ugy puv (8.17)

By adding u times the continuity equation to (8.16) we obtain

du , 10T,

ax * pdy (8.18)

0 0 _
)+ () =

Integrating fromy = 0 toy = A>9, with A arbitrary but independent of x, gives
after using the no-dlip condition at the wall, v| = 0, and that the shear stresses are

Zero, Txy| = 0, outside the boundarylayer
JAY
9 2 du
I&(u )dy + (uv)|y:A = IU Ix dy p (8.19)
0
where 1, isthe shear stress at thewall, i.e. T, = T y| . By integrating the cont|nU|ty
equation fromy = O toy = A and using the no- sl|p condition at the wall, v| =0,
we find that v| au/ oxdy. At y = A, outside the boundary Iayer We have
u| _, = U. Tﬁusweo tin
JAY
du 1
2 yu_ - _=
Ha (u?) - U Ud de prw (8.20)

0

After some rewriting of the left-hand side we find

J[-2uu-w-u-ug ey = ., ©.21)
0

Since U—-u = 0 for y>9, both parts on the left-hand side contribute only for y<9,
and hence are independent of A . Thus

j [u(U-u)ldy = —j [u(U — u)] dy (8.22)
0 0
and hence
j[u(U—u)] dy+—j(U—u)dy = ;W (8.23)

Using the definitions (8.3) of the dlsplacement boundary-layer thickness & and the
momentum boundary-layer thickness 0, we obtain the von Karman momentum integral
equation
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Entrainment equation

momentum integral equa-
tion

friction coefficient

entrainment velocity

du _T

d 2 - Tw

dX(U 0)+0 de =5 (8.24)
This eguation can be rewritten as

o _ 1 1du

ax 2 (H+ 2)dee (629

where H is the shape factor defined in (8.4) and c; is the friction coefficient defined by

Tw

c = (8.26)

1 .2
=pU
ZP

The momentum integral equation (8.25) shows that accelerating outer flows (as fre-
guently encountered in turbine flows) tend to reduce the momentum thickness 0, while
decelerating outer flows (as frequently encountered in pump and compressor flows) tend
to increase the momentum thickness 6. Thick boundary layers, with lower wall shear-
stress, are more prone to separation than thin boundary layers.

Entrainment equation

The entrainment velocity vg is defined as the velocity component that is normal to the
“edge” y = &(x) of the boundary layer, see also Figure 8.2. From the mass conservation
equation (with constant density p ) applied to the control volume CV sketched in Figure
8.2, it follows that

o(x)

VE(X) = %(I u(x, y)dy (8.27)
0

The meaning of vg isthe rate at which fluid from outside the boundary-layer (which is
effectively inviscid) is “entrained” into the boundary layer where viscous effects are
important. Note that the edge of the boundary layer is not a streamline!

VE

)
R
Ccv

L.

FIGURE 8.2. Definition of entrainment velocity.

Since v isthe velocity component normal to the edge 1y = d(X) of the boundary layer it
follows that ve = u| _,n; + vy = 5Nz where (ny, n,)  isthe (inward) unit vector nor-
mal to the edge of the boundary layer. Since dd/dx « 1, the normal vector is given by
(ny, n2)T O(dd/ dx, —1)T (the approximation made is that the length of this vector is not
exactly equal to 1). Hence we obtain
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dd

VE = u|y:6&_v|y:5

(8.28)

From the definition (8.3) of the displacement thickness 5 and assuming that the inte-
grand equals zero for y = 0, it follows that

doysy = d o
(U8 = Zfu-udy (8.29)
0

By splitting the terms on the right-hand side we obtain

o
d * d d
—(Ud) = —(Ud)——|ud 8.30
2(U8) = £ (U8) - fudy (8.:30)
0
Using the definition (8.27) of the entrainment velocity vg, it follows that

SruE-80 = ve (3.31)

Laminar flow: Pohlhausen's method

A method for predicting the characteristics of laminar boundary-layers that uses the
momentum integral equation is Pohlhausen’s method.

Firstly, avelocity profile is postulated, based on some observations of ‘ suitable’ velocity
profiles. The velocity isdefined for 0 <y < §. At the edge of the boundary layer,y = d,
it must smoothly match the velocity U(x) outside the boundary layer. Hence we require

du d°u
ul,_s=U —_— = — =0 (8.32)
y=9% dyy:6 dy2y:6
Atthewadl,y = 0, we have
d’u 1, .du
u,_.,=0 — = —=U— (8.33)
y=0 dy2y:0 v dx

The latter condition follows from (8.8) fory = 0, whereu = 0 and v = 0. A polyno-
mial form for the non-dimensional velocity u(x, y)/U(X) in terms of the non-dimen-
sional coordinate { = y/d(x) is postulated

u

= aotal+ a,* +az’ +a, (8.34)
The coefficients can be determined from the conditions (8.32) and (8.33). Theresult is (a
nice Maple exercise?)

a, =0 a1:2+/€\ aZ:—/—\ a3:—2+/§\ a4:1—%\ (8.35)

where the non-dimensional pressure-gradient parameter A isgiven by

_ &°du

A v i (8.36)
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with A <0 for adecelerating outer flow, A = 0 for an outer flow with constant veloc-
ity and A >0 for an accelerating outer flow. Thisvelocity profile is shown in Figure 8.3
for various values of A. Note that for A = —12, the shear stress at the wall,
Hou/dy|, _ ., becomeszero, which isindicative for boundary-layer separation.

With the'velocity profile thus expressed in terms of U, its derivative dU/dx and the
boundary-layer (disturbance) thickness &, the boundary-layer thicknesses & and 6 can
be determined from (8.3), as well as the friction coefficient c; from (8.26), since
Ty = uau/ay|y:0.The results are

_ 2 p2

A
37-31m _2_\;(2 /\)

& _3_ A 8

5 10 120 o 315 = 35U

5 (8.37)

With these relations an ordinary differential equation is obtained for d(x) , which can be
solved (numerically) with an initial condition.
For an outer flow with constant U ,i.e. A = 0, wefind

2 = 5.g5( 2 e 0.68( 2 " (6.38)
X Y Y

The ‘exact’ solution (based on the solution of the boundary-layer equations in differen-

tial form, i.e. not integrated over the boundary layer) isthe so-called Blasius solution, see

[2]. For the friction coefficient c; it gives ¢; = 0.66[(Ux)/Vv]¥/2. So the simplified

Pohlhausen method gives accurate results.

Note that other assumptions for the velocity profile within the boundary layer lead to dif-

ferent numerical values for ratios like & /8. Generally, the results are not extremely

sensitive to the shape of the velocity profile. Some examples are givenin [2].

Another integral method for laminar boundary-layers, which uses using empirical rela

tions, is that of Thwaites, see for example [8].
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uyyu

FIGURE 8.3. Pohlhausen velocity profile for various values of the pressure-
gradient parameter A.
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Turbulent flow; Head's method

For turbulent flow the method of assuming a velocity profile u/U = f(y/d) does not
work asinthe laminar case, since the turbulent boundary-layer has a composite structure
that accounts for the different scaling behaviour of the viscous-dependent part of the pro-
file very close to the wall and the remaining Reynolds-stress part of the profile further
away from thewall.

In order to use the momentum integral equation (8.27) without assuming a velocity pro-
file, (empirical) relations involving the friction coefficient ¢; and the shape factor H
must be formulated.

In the method of Head (see for example [8] and [9]) the empirical relation due to Lud-
wieg & Tillmann is used for the wall-friction coefficient c;

—0.678H

¢ = 0.246x10 2%

Re; (8.:39)

where Re; = (UB)/v.
In this method it is assumed that the nondimensional entrainment velocity, vg/U , see
(8.27), issolely afunction of the shape factor H

o

Ve _ 1d g < 19 1u5_50 <
== U&Iudy SSIU(E-8)] = F(H) (8.40)
0
Defining another shape factor H; by
_8-3
Hy A (8.41)

then the right-hand side equality in (8.40) can be written as

d
—[UBH,] = UF(H 8.42
T UoH] (H) (8.42)
This other shape factor H, is assumed to be afunction of the shape factor H only
H; = G(H) (8.43)
Based on experimental data, afit for the functions F and G was formulated

F = 0.0306(H, —3.0) %% (8.44)

187133 H<16

+33 H>1.6

{ 0.8234(H - 1.1) 6.5)

1.5501(H —0.6778)>%*

The resulting method consists of two ordinary differential equations (8.25) and (8.42) for
0 and H. These differentia equations can be solved (numerically) with initial condi-
tionsfor 6 and H.

Transition and separation

Separation of laminar boundary layers can be predicted with Thwaites criterion
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02duU
=—_" <
A DX S 0.082 (8.46)
An empirical relation for predicting transition, from laminar to turbulent, of the state of

the boundary layer is Michel’s criterion

Req uams = L1741+ 22 2 REY T ©47)

ex, tran
where Re; = UB/v, Re, = Ux/v and the subscripts “trans’ denote values at transi-
tion.
Other factors affecting transition, such as level of freestream turbulence, surface rough-
ness and surface curvature, are discussed in [9].
The criterion for separation of the turbulent boundary layersin Head's method is that the
shapefactor H exceedsacertain threshold value H, , typically He, = 1.8-2.4. Note
that according to (8.39), ¢; — O correspondsto H — .
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CHAPTER 9

Desgn aspects

cavitation inception

blade coefficient

This chapter deals with elementary considerations of some design methods for impellers
and volutes and an outline of some advanced topics.

lmpeller

Here two aspects of the design of impellers will be discussed. The first deals with the
shape of the inlet to optimise the cavitation characteristics, while the second deals with
considerations that are used to determine the blade shape.

Cavitation

In the vicinity of the leading edge of the impeller the fluid has to accelerate in order to
follow the rotating movement of the blades. This acceleration leads to adrop of the static
pressure which may lead to the static pressure dropping below the vapour pressure. When
this happens, vapour bubbles will form. The instant where the first vapour bubbles form
iscalled cavitation inception. A simple, one-dimensional analysiswill be given that gives
the inlet stagnation pressure at which cavitation inception occurs.

Upstream of the impeller the static pressure equals

1
Py = Por— Epcfx (9.1

At the point of cavitation inception the local pressure equals the vapour pressure p,

1
p,=p = pl—cbsz% (9.2)

where the empirical blade coefficient oy, depends on the blade shape and flow incidence.
The latter term is the static pressure drop due to the fluid being accel erated by the rotation
of the blade near the leading edge.

Thus at cavitation inception

1 1
P1 = Por—5PCE = Pyt OpzpWE (93)
Or, using Wi = cix + Ui

Pon—Py _ 1 1 1 1
OHget = Olp Y = Ec%x + Gbéwf = Ec%x(l +0y,) + Ecbu%s (94
where Hg  is the net positive suction head and it is implied that this is measured at the

shroud where the blade speed is highest.
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suction specific speed

meridional view

blade loading coefficient

The optimum inlet conditions are now considered. The suction specific speed Ng g iS
defined as

Nget = (QQY2)/(gHg) ¥4 (9.5)

where

2 di
Q = U, /rq; Q =cpAL = nrs(l—r—i)clx (9.6)

S

Now we obtain, with ¢ = ¢,/ U,

UZc 1
- Is“~1x - () 9.7)

N2
r 1 1 P 3/2 1 1 3/2
"(1 _r_:z) |:§C%x(l +0p) + EGbUls:| [E‘P’Z(l +0p) + Eo-b:|

The optimum cavitation condition is now determined by finding the maximum suction
specific speed Ng ot by differentiating this equation with respect to ¢' and setting the
result to zero. A maximum for Ng .t means that the minimum inlet stagnation pressureis
obtained that corresponds to operation without cavitation. The optimum conditions
become

(p:(z(lchGb))l/Z

_3 (1 2)
gHsuc’( - Zcb 2UlS (9.8)

r
3.420(1 - —2)
rS

N2, = ———=
T op(1+0p)t2

Blade shape

Thefull, three-dimensional geometry of impellersis generally very complicated. Usually
they are represented in the form of ameridiona view (see Figure 9.1) and a planar view
(see Figure 9.2).

JTraiIing edge

FIGURE 9.1. Meridional view of an impeller.

Most design methods are based on a blade loading coefficient. Here the blade loading
coefficient € isdefined by
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== = (9.9)

where W, and W, are the magnitudes of the relative velocity at the suction and pressure
side of the impeller blade, and W is their average, i.e. W = (W, +W,)/2. From the
definition of rothalpy (2.62) it follows that the blade loading coefficient is directly
related to the pressure difference on the blade, and hence to the power input to the fluid

Ap

1 1 —
5 - S(W2—W2) = Z(We+ W) (W= W) = W(W;—W,) (9.10)

In most design methodsiit is recommended that the blade loading coefficient & should not
exceed valuesin therange of 0.7 - 1.0.

W,

FIGURE 9.2. Planar view of impeller.

For an irrotational absolute velocity, the vorticity of the relative velocity is given by
(2.55). Thecirculation of the relative velocity along the contour defined by the outline of
the three-dimensional (nonplanar!) shaded areain Figure 9.3 is

FIGURE 9.3. Section of part of an impeller.

Mg = fv_v- ds = IB we dA = —2QAsiny = —2QsinyrA6Am (9.11)
C A

Theterm siny arises because the vectorial surface dA isat an angle to the rotation axis.
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method of constant angular
momentum; Pfleiderer’s
method

Themeridiona distance Amisrelated to the distance Asin the planar view and the radial
distance Ar by

Ar = Amsiny = Assinycosp (9.12)

The relative circulation can also be evaluated by integration of the velocity around the
contour. This gives

Mg = WpAs—WSAs—dis[WsinBrAe]As (9.13)
or
W.—W. = —@_dr\wenprag] (9.14)
s P As ds '

Combining the previous equations gives

W,—-W '
s—Wp _ . _sinycosB d .
0 2Qsinycosf ") a[WsmBrAE)] (9.15)

The mass flow through the impeller channel is constant AM = pbrA6Wcosp . Hence,
for incompressible flow this equation can be simplified, after some algebra, to

W,—W, . dp .~ 1db
S P _ _wl 2P _ =49
Y 2Qsinycosf W[dm cosBsande (9.16)

The left-hand side is related to the blade loading coefficient, which is assumed to be
specified. Hence this equation is a differential equation for the blade angle . Aninitial
condition is needed for 3. This can be obtained from the specified head and a dlip factor,
using a one-dimensiona model.

\olute

The volute is one of the different types of diffusers that are used to collect the fluid and
guide it to the exit pipe. An important function of the voluteisto (try to) convert the high
kinetic energy of the fluid leaving the impéller into pressure. The magjor velocity compo-
nent of the fluid leaving the impeller is the tangential component, which is proportional
to the blade tip speed.

The two most frequently used methods for the design of volutes are Stepanoff’s method
of constant circumferential velocity [6] and the method of constant angular momentum
[5], [34]. Only the latter will be treated here. It is also known as Pfleiderer’s method.

In this method it is assumed that the tangential and radial velocities are uniform around
theimpeller.

The moment exerted on the fluid by the impeller My, is

Mimp = PQrvg (9.17)

With aimpeller efficiency n;q, the impeller moment can be related to the head gener-
ated by the impeller H;.,

NimpR2Mimp = PIQH (9.18)

Note that the quantities n;,, and H;,, refer to the design point!
The tangential velocity becomes
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H.
rvg = Iimp (9.19)

n ime

Now a radia cross-section of the volute at angle 6 is considered, see Figure 9.4. The
flowrate through this cross-section equals

Rotation axis
y R(6)
[«
|
[« >
;
| B(r, 6)
[P [
[« »
| Riongue \v
| N
|

FIGURE 9.4. Cross-section of volute at angle 6.

R(v) R(v)
gH; B(r, 6)
0) = B(r, O)vydr = —™2 —d )
Q) = | B(r.B)vper mmej Ly (9.20)

Rmngue Rmngue
where Rygnge is the radius of the “tongue”. Note that there must be some clearance
between impeller and volute, so the radius of the tongue Ry, Must be larger than the
radius of thetrailing edge R .
Assuming that the outflow around the impeller is uniform Q(8) = Q(8 — 8,,4.e)/ (2T1)

R(v)
(6- 9tongue) n imeQ - I Mdl’ (9.21)
2n Himp r
R(ongue

From this equation the size of the volute as described by R(8) can be determined.
In the two-dimensional case with constant width of the volute, i.e. B(r, 0) = B, the
resulting form of the volute, R(8) , becomes

R! ) — exp(e_etongue)nimeQ

R

(9.22)
tongue 2mn BgH imp

which is alogarithmic spiral.

Secondary flows

In many cases the flow entering a blade channel is not uniform. A prime example is the
nonuniformity due to the presence of boundary layers on the blades, on the hub and on
the shroud.

Consider a flow as sketched in Figure 9.5. The streamwise direction is denoted by s,
while the blade-to-blade direction is n and the hub-to-shroud direction is b. In the
region of uniform flow atypical streamlineisindicated by AAA, while the streamlinein
the boundary layer is BBB. Outside of the boundary layers viscous effects may be
neglected. If it is also assumed that the flow is steady and incompressible (constant den-
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secondary flow

Secondary vorticity

| Velocity  pro-
)/ file and stream-
lines in the
absence of sec-
Qudary flow

FIGURE 9.5. Secondary flow phenomenon.

sity) and that there is no variation of the flow in the n -direction, then the pressure gradi-
ent in the n-direction must be balanced by the centripetal acceleration. Hence

op

anA

_ PUZ

R, (9.23)

where R, istheradius of curvature of the streamlineat A and the streamwise velocity is
Up-

When employing the usua boundary layer assumptions, it follows that the pressure gra-
dient in n-direction should be constant in the boundary layer. Hence we obtain

op
on A

op

n

_ PUi_pug
- RA RB

(9.24)

B

Because ug <u, and Rz = R,, thereis an imbalance between the pressure gradient in
n -direction and the centripetal acceleration. Thus the streamline BBB will deflect more
from that shown in Figure 9.5. The fluid particle originating at B would follows the path
BB'B", with Ry <Ry, instead of BBB. The cross-flow v, which is the deviation from
the main flow, is called the secondary flow.

From continuity considerationsit follows that there are also spanwise velocities w : for a
flow with constant streamwise direction du/ds = 0, we find ow/db = —dv/dn. This
explanation provides aclear physical reasoning for the occurrence of secondary flow ina
blade passage. Hence the secondary flow leads to vorticity in streamwise direction
W, = —0v/0b+ow/dn.

A similar reasoning can be presented to explain the occurrence of secondary flow due to
Coriolisforces.

A more detailed description of secondary flows and of how they can be analysed quanti-
tatively isgivenin[4].
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Laser Doppler Velocimetry

For non-intrusive measurements of fluid velocities Laser Doppler Velocimetry (LDV) is
often used. This method is based on Doppler effect, i.e. the change in wave length seen
by a stationary observer when light reflects on a moving object. The frequency shift is
proportional to the velocity of the object. Direct observation of this frequency shift is not
possible, since it is far too small. Therefore a comparison is made between the original
light and the reflected light.

When the object is a small particle that is carried with the fluid flow (negligible slip
velocity), it becomes possible to measure the fluid velocity using LDV.

In LDV measurements a coherent light beam from a laser is split into two beam. These
beams are focused into a “point”, the measurement volume, by alens. The shift in fre-
guency, the Doppler frequency, and its relation to the fluid velocity can be obtained from
wave theory and from interference theory. The latter theory is explained here.

FIGURE 9.6. Interference pattern in the measurement volume.

Asshown in Figure 9.6 in the region where the two beams come together an interference
pattern of light and dark lines (fringes) arises. The distance Ax between the fringes
depends on the wave length A of the laser light and on the angle a between the two
beams

A
Zsin(%)

A particle in the fluid that moves through the measurement volume will light up and
extinguish with a certain frequency, depending on its velocity. This is the Doppler fre-
guency shift Af referred to before. It isrelated to the component of the velocity perpen-
dicular to the fringes, v, by

AX =

(9.25)

Af = — (9.26)

Vaned diffuser

To be added.
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Rotor dynamics

To be added.

I nver se-design methods

To be added.
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CHAPTER 10
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