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Chapter 1 

General Flow 

1.1 Introduction Fluid mechanics is concerned with the behaviour 
of fluids (liquids or gases) in motion. One method, due to Lagrange, traces 
the progress of the individual fluid particles in their movement. Each 
particle in the continuum is labelled by its initial position vector (say) 
a relative to a fixed origin 0 at time t = 0. At any subsequent time t > 0 
this position vector becomes r = r(a, t )  from which the particle's locus or 
pathline is determined. In general, this pathline will vary with each fluid 
particle. Thus every point P of the continuum will be traversed by an 
infinite number of particles each with its own pathline. In Figure 1.1 let 
A,, A , ,  A, be three such particles labelled by their position vectors 
a,  ,a,;a,. respectively, at time t = 0. Travelling along their separate 

Figure I .  I 

pathlines, these fluid particles will arrive at P at different times and 
continue to move to occupy the points A;, A;, A ; ,  respectively, at some 
time t = T. These points, together with P, lie on a curve called the streak- 
line associated with the point P. If a dye is introduced at P a thin strand of 
colour will appear along this streakline PA; A; A j  at time t = T. It is 
obvious that this streakline emanating from P will change its shape with 
time. A fourth fluid particle A, which at time t = 0 lies on the pathline 
A,P will, in general, have a different pathline A, A: which may never pass 
through P. The situation created by the 1,agrangian approach is com- 
plicated and tells us more than we normally need to know about the fluid 



motion. Finally, the velocity and acceleration of the particle at any instant 
are given by ar/at and a2r/dt2 respectively. 

The method of solution mainly used is due to Euler. Attention is paid 
to a point P of the fluid irrespective of the particular particle passing 
through. In this case the solutions for velocity q, pressure p and density p 
etc are expressed in the form q = q(r, t), p = p(r, t), p = p(r, t) respectively 
where r = OP is the position vector of the point P referred to a fixed 
origin and t is the time. If these solutions are independent of time t, the 
flow is said to be steady, otherwise the flow is unsteady and varies with 
time at any fixed point in the continuum. In the Eulerian approach the 
pathline is replaced by the streamline defined as follows. 

Definition. A line drawn in the fluid so that the tangent at every point is 
the direction of the fluid velocity at the point is called a streamline. 

In unsteady flow these streamlines form a continuously changing 
pattern. If, on the other hand, motion is time independent, i.e. steady, the 
streamlines are fixed in space and in fact coincide with the pathlines. 

Definition. A stream surface drawn in a fluid has the property that, at 
every point on the surface, the normal to the surface is perpendicular to 
the direction of flow at that point. 

A stream surface, therefore, contains streamlines. 
Definition. Given any closed curve C, a streamtube is formed by drawing 

the streamline through every point of C. 
DeJinition. A stream filament is a streamtube whose cross-sectional 

area is infinitesimally small. 
To obtain the equation of the streamlines or, as they are sometimes 

called, the lines of flow we write 

q(r, t) = u(r, t)i + v(r, t)j + w(r, t)k 

where i, j and k are the unit vectors parallel to the fixed coordinate axes 
OX, OY and OZ respectively. Since, by definition, q is parallel to dr = 

dxi+ dyj fdzk  we have 
dx dy dz 

- 
~ ( r ,  t) v(r, t) ~ ( r ,  t) 

"3 
Any integral of these equations must be of the form f (r,t) = constant, 
which is a stream surface. Its intersection with a second independent 
solution, g(r, t) = constant, give.s the streamline at any t. 

Problem 1.1 Given that the Eulerian velocity distribution at any time t 
in a fluid is q = i A r + j cos at + k sin at where a is a constant ( #  f I), 
find the streamlines and pathlines. Discuss the special case a = 0. 

w = y + sin at. So the streamlines at any given time t are determined by 
the equations 

One solution is x = F where F is arbitrary, i.e. a family of planes. The 
solution of (y + sin at)dy = (- z + cos at)dz is the family of circular 
cylinders forming the second system of stream surfaces whose equation is 
y2 +z2 + 2y sin at - 22 cos at = G where G is arbitrary. The intersections 
are circles, the required streamlines. When a # 0 these form a continuously 
changing pattern, the motion being time dependent. In the special case 
a = 0, the flow is steady with q = ( -  z+ l ) j  + yk and the streamlines are 
fixed circles given by the equations x = constant, y2 +z2 - 22 = constant. 
The pathlines are the solutions of 

u = a x p t  = 0, v = aylat = -z+ cosat, w = azlat = y+ sinat 
from which we obtain x = constant. Eliminating azlat by differentiating, 
the equation for y is 

Since we are given that a # -t 1, the solution is 

where A and B are arbitrary constants and C = l/(a - 1). Also, from the 
equation for v we have 

ay z = --+cosat = Asint-Bcost-Ccosat 
at 

In the special case a = 0, C = - 1, cosat = 1, sinat = 0, and 
y2 +(z- = A2 + B~ = constant. Since also x = constant, the path- 
lines are circles coincident with the streamlines in steady flow. 

Next we consider the concept of pressure in a fluid. Referring to Figure 
1.2, let P be any point in the fluid and 6A any infinitesimally small plane 
area containing the point with PQ = n representing the unit normal from 

Solution. Writing q = ui + vj + wk, we find that u = 0, v = - z + cos at, Figure 1.2 



one side 6A+ of 6A into the fluid. Let 6F denote the force exerted by the 
fluid on FA + . 

The fluid is defined to be inviscid when 6F has no component in the 
plane of 6A for any orientation of n. If in addition 6F is anti-parallel to n 
and has a magnitude 6F = ( 6 F (  which in the limit as 6A+ -, 0 is in- - 
dependent of the direction of'n, the fluid is said to be perfect. Moreover, 
the pressure at P is p = p(r, t) where 

pn = lim FFIGA, 
d A + - + O  

When motion is steady p = p(r) instead. 

1.2 The mobile operator DID2 In the Eulerian system where the velocity 
q = q(r, t), aq/at does not represent the acceleration of a particle but is 
simply the rate of change of q at a fixed point r which is being traversed 
by dgerent particles, To evaluate this acceleration we need to find the rate 
of change of the velocity q momentarily following a labelled particle. We 
write this rate of change as Dq/Dt. Similarly, if any other quantity, such as 
temperature T, is carried by a fluid particle its rate of change would be 
DTIDt. 

Suppose x = X(r, t )  denotes any differentiable vector or scalar 
function of r and t then we may write, in Cartesian terms, 

2 = X(r,  t) = X(x,  y, z ;  t) 

Hence, at time 6t later the increase 6% in X is 

6 X  = x(x+6x,y+6y,z+6z;t+6t)-x(x,y,z;t) 

However, when we follow the fluid particle we must write 6x = u6t, 
6y = v 6t, 6z = w 6t (correct to the first order in 6t) where u = u(x, y, z ;  t) 
etc. are the Cartesian components of the velocity q so that 

6% = x ( x + u 6 t , y + v 6 t , z + w 6 t ; t + 6 t ) - X ( x , y , z ; t )  

It follows that in taking limits, 

D.Y~  - . x a . x  ax ax ax 
- - 11m- = -+u- +v-+w- 
Dt d t + o  6 t  dt 2x dy ?Z 

In vector terms, since V = i a/ax + j a/ay + k a/az, we have 
~ a / a ~ + ~ a / a ~ + w a / a ~  = q . ~ ,  

therefore, 

The first term on the right-hand side is the time rate of change at a fixed 
point P and the second term (q .V)% is the convective rate of change due 
to the particle's changing position. In particular, the fluid acceleration f is 

Moreover, it can now be seen that in terms of this mobile operator the 
fluid velocity in the Eulerian system is simply 

since here a r p t  = 0. 

Problem 1.2 A fluid flows steadily from infinity with velocity - Ui past 
the fixed sphere J r J  = a. Given that the resultant velocity q of the fluid at 
any point is q = - U(l + a 3 F 3 ) i +  3a3r-'xUr, find the acceleration f at 
any point r = bi (b > a) and evaluate the maximum value of Jfl for 
variation in b. 

Solution. Since the motion is steady f = (q.V)q. At r = bi, q = 

- U(l + ~ ~ b - ~ ) i +  3a3bP3ui = (2a3b-3 - 1)Ui. Hence, q .  V = y a/ax, 
f = U(2a3b- - 1) aq/dx. Differentiating q, 

But ar/ax = x/r and ar/dx = i so that at r = bi 

- aq - - - f j ~ ~ ~ ~ h - ~ i  and f = 6Uz(b3-2a3)a3b-7i ax 
The maximum value of f = If ( occurs when (dldb) (bP4 - 2a3b- 7, = 0 
for which b = (72)fa: it is a maximum because (d2/db2)f is negative. 
Finally, f ,,, = 9(2/7); U2/a. 

1.3 Flux through a surface Given that % = %(r, t )  is some physical 
(scalar or vector) quantity per unit volume which is carried by the fluid 
particles in their motion, the flux (rate of flow) of the quantity outward 
through a fixed geometrical (nonsolid) surface S is j %(q. dS), where dS 

F 

is an outward normal elemental vector area of S. Choosing 2 = 1, 
the volumeflux through S is j q . dS. With ,If = p, the massflux is 1 pq . dS 

8 S 
and the momentum flux is j pq(q . dS) when % = pq. 

S 



1.4 Equation of continuity This states that the total fluid mass is con- 
served within any volume V bounded by a fixed geometrical surface S 
provided V does not enclose any fluid source or sink (where fluid is 
injected or drawn away respectively). Adding the contributions of mass 
change due to density variation within V to the outward flow across S we 
have 

where Gauss's theorem has been applied to the surface integral with dz 
representing an element of volume. In the absence of sources and sinks the 
result is true for all subvolumes of V in which case 

This is called the equation of continuity or the mass-conseruation equation. 
It must be satisfied at every point of a source-free region 9,. An alternative 
form is found by appeal to the identities V . (pq) = pV . q + (q . V)p and 
aplat + (q . V)p = Dp/Dt leading to 

This simplifies to 
V.q = divq = 0 (1.8) 

in the case of an incompressible liquid for which Dp/Dt = 0 because here 
the density change of an element followed in its motion is zero. In Cartesian 
coordinates, where r = xi+ yj +zk, and q = ui +uj + wk for all time t 
we have 

at every point P E 9, Whenever this relation is not satisfied, say at a set 
of points Q, liquid must be inserted or extracted. 

Problem 1.3 Find an expression for the equation of continuity in terms 
of cylindrical coordinates r, 8, z defined by x = r cos 8, y = r sin 8, z = z. 

Solution. Here we write the velocity q = ur+vO+wk where r, 0 are 
the radial and transverse unit vectors in the plane whose normal is 
parallel to 02, the k-axis. We recall equation 1.7 for which we evaluate 

Using suffixes to denote partial derivatives (a/&) (ur) = U, r + urr etc and 
since rr = 0, = kr = r, = 0, = k, = k, = 0, whilst r - 0, 0 = -r 0 -  0 
(proved in elementary textbooks on vectors) it follows that 

+k.(uzr+vz8+w,k) 
= ur + ((0, + u)lr) + W, 

From equation 1.7 the equation of continuity is 

or, since DplDt = p, + (q . V)p = p, +upr + (v/r)p, + wp,, we have 

rp, + r(up), + up +(UP), + ~(WP), = 0 (1.11) 

Problem 1.4 If A is the cross-section of a stream filament show that the 
equation of continuity is 

where ds is an element of arc in the direction of flow, q is the speed and p 
is the density of the fluid. 

Solution. If P is the section at s = s and Q the neighbouring section at 
s = s + ds, the mass of fluid which enters at P during the time 6t is Apq 6t 
and the mass which leaves at Q is Apq 6t + (212s) (Apq 6t)6s. The increase 
in mass within PQ during the time t is therefore -(d/ds)(Apq)Gt6s. 
Since at time t the mass of fluid within PQ is Ap 6s the increase in time 6t 
is also given by (d/at)(ApGs)6t = (?i?t)(Ap)dsGt. Hence 

Problem 1.5 Evaluate the constants a, b and c in order that the velocity 
q = {(x + ar)i + (y + br) j + (z + cr)k)/{r(x + r)), r = J(x2 + y2 + z2) may 
satisfy the equation of continuity for a liquid. 

Solution. Writing q = ui+uj+ wk, the equation of continuity is 
(aulax) + ( 8 ~ 1 8 ~ )  +(aw/az) = 0. Using ar/ax = x/r etc., 

1 + c(z/r) 



Hence, Similarly, with z = 0 = x, DFIDt = 0 for all y and t if 

v = 3y (1 + cot (t +in))  

and finally, with x = 0 = y, we find the third velocity component 

= r ( x + r ) ( r + a x + r + b y + r + c z ) - ( x + r ) { x ( x + a r ) + y ( y + b r ) + z ( z + c r ) )  w = ztan 2t. 

- r{(x + r) (x + ar) + y(y + br) + z(z + cr)) For these components on the boundary we find that for all t 

This expression will be identically zero if and only if a = 1 and b = c = 0. 

Problem 1.6 Show that the variable ellipsoid 

x2 y2 z2 + +------ = 1 
a2e-' cos (t +in)  b2ef sin (t +in)  c2 sec 2t 

au a v  aw -+-+- = --{ 1+  tan(t+$n)) +${I+ cot ( t+ in) )+  tan 2t 
ax ay a~ 

- - 1 - tan2 (t +in)  + tan 2t 
2 tan (t + in )  

= cot (2t +$n) + tan 2t = 0 

so that the equation of continuity is satisfied on the boundary. Moreover, 
the total volume within this ellipsoid is V where 

V2 = n2a2e-' cos (t +$n)b2e' sin (t + in)c2 sec 2t 
= $n2a2b2c2 sin (2t +in)  sec 2t 

is a possible form of boundary surface of a liquid for any time t and = :n2a2b2c2 = constant 
determine the velocity components u, v and w of any particle on this i.e. continuity is satisfied within. 
boundary. Deduce that the requirements of continuity are satisfied. 

Solution. Since any boundary surface with equation F(x, y, z, t )  = 0 is 1.5 Rate o e n g e  of momentum The momentum M at time r of the ( 1  
made up from a time-invariant set of liquid particles we must have -7. 

particles IFng within a volume V contained by a closed geometrical surfae 
DFIDt = 0 for all points on the boundary at any time t. Hence, S is M = pq dr. Following these particles the rate of change of M is 

But 

x2 2 z2 by an extension of Gauss's theorem (see Table 2). Invoking the equation 
Y -  F(x,y,z,t) = -etsec(t+in)+-e fcosec(t+$n)+-cos 2t -1 = O 
b2 

of continuity (1.6) the integrand on the right-hand side of this last expres- 
a2 c2 sion is simply p DQIDt so that DM/Dt = p(DqlDt) dz. 

so that 

DF x2 
- E -et{sec(t+$n)+ sec(t+$n)tan(t+in)} 
Dt u2 

1' 

To obtain an equation of motion we equate this rate of change of 
momentum to the total force acting upon the particles within V. If p 
denotes the pressure and F the force per unit mass we have 

2z2 2ux 2uy - 2wz 
--sin 2t + ---ef sec (t +in)+--e 'cosec (t cos 2t In a continuum this is true for all subvolumes of V in which case we 
c a2 b2 c arrive at the equation of motion 

Putting y = 0 = z, DFIDt = 0 for all x and t if 

u =  -I ,x{l+ tan (t +in)) (sec (t +in)  cannot be zero) 
Dq p- = Fp-Vp 
Dt 



Problem 1.7 By integrating the equation of motion find an expression 
for p when p = constant, F = 0, assuming that flow is steady with 

q = o A r where o is a constant vector. 

Solution Since aqjat = 0 and p = constant, 

Now (4.V)q = V ( h 2 ) - ~ A ( V A ~ )  

where 
V A ~  = V ~ ( o r \ r )  

E ( r . V ) o - ( o . V ) r - r ( V . o ) + @ . r )  

= 2 0  
Hence 

- V(p/p) = V(h2)  + 2 0  A (o A r) 
= V(h2)  + 2(o. r) o - 202r 

Taking the scalar product with dr 
- V(p/p) . dr = - d(p/p) = d(iq2) + d(o  . r)' - d(02r2) 

Integrating 
p/p = -tq2 +02r2  - (o. r)' + constant 

or, since 02 r2  -(a. r)' = (o A r1 = lqI2 = q2, we have, finally, 

(@~otion of n fluid element Let (x,y,z) denote the Cartesian co- 
ord~nates of a v d  at which point the velocity is q = ui+ 
vj+wk where u = u(x, y, z) etc. Let Q be a neighbouring point whose 
coordinates are (x + 6x, y + 6y, z + 6z). Assuming the velocity field is 
continuous the corresponding velocity at Q will be of the form q+6q 
where 6q = 6ui + 6v j + 6wk 

1 

( n u  =, cur l  q m1 

Figure 1.3 

and 

where 

(aw av) (au aw) (av a,) 
Moreover, since curl q = - - - i +  --- j+ --- k, ay az az ax ax ay 

o, = k.  o ,  oy = j . o where o = $ curl q 
and 

oy6z-w,6y = j .o6z-k .o6y  = ( 6 r ~ i ) . o  

= i . ( o ~ 6 r )  
Hence 6u = 6us + 6uR where 

6u, is the contribution to 6u from the local rate of strain (change of shape) 
of the element whereas 6uR is the contribution due to the local angular 
velocity o = 3 curl q. In fact, if the element were frozen it would rotate 
with this angular velocity o which varies throughout the medium with 
the velocity curl. 

The vorticity vector 5 is defined by 5 = 2 0  = curlq. Motion is said to 
be irrotational when the vorticity 5 is zero in which case the local angular 
velocity o is zero. 

Denoting the whole of fluid space by W, the vortex-free space by 9, 
the remainder 9: = W - WV is the space occupied by particles possessing 
vorticity, i.e. C # 0 when P E 9': and 4 = 0 when P E W,. The rest of physi- 
cal space may either be empty or occupied by solids. 

A circuit (closed curve) V E W, is said to be reducible if it can be con- 
tracted to a point without passing out of the region W,. If in the contraction 
the circuit %? intersects W,*, or a solid, or empty space the circuit is termed 
irreducible. 
A region Wv for which every circuit %? E 9, is reducible is said to be 

simply connected. A region W,, in general, can be made simply connected 
by inserting barriers to prevent circuits having access to 9: or solids. 



The necessary and sufficient condition for the irrotationality of a 
region 9, is the existence of a scalar point function cp from which the 
velocity can be derived by grad cp = -q. This function cp is called the 
velocity potential. 

0 
Figure 1.4 

Proof. The condition is evidently sufficient for, when cp exists with 
q = -grad cp, curl q = -curl grad cp r 0. To prove that the condition 
is also necessary, let 0 be a fixed point (Figure 1.4) and P variable in the 
vortex-free region 9, in which curlq = 0. We assume also that B, is 
simply connected. Join 0 to P by two paths OAP, OBP, both in 9, and 
construct a surface S in 9, having the circuit OAPBO as rim. This circuit 
OAPBO is denoted by % and is reducible. The circulation r in % is defined 
by r = Jw q.dr. By Stokes's theorem applied to % and its spanning 
surface S, on which curlq = 0, we have 

r = l q.dr = l cur1q.a  = 0 
% S 

Hence, 

J q.dr = f q.dr = -cp(OP) 
OAP OBP 

because, through the independence of the paths OAP, OBP, the integrals 
are scalar functions of the point P only. If now we choose a second point 
Q close to P with PQ = q (Iq( = 1, E + 1) provided PQ E W, 

1 q.dr- J q.dr = J q.dr = -cp(OQ)+cp(OP) 
0 AQ 0 A P  PQ 

= -Eq.Vcp+O(E2) 

Denoting the fluid velocity at P by qp, on PQ we can write q = qp + O(E) 
so that 

J q.dr = J {qp+O(&)}.dr = E ~ . ~ ~ + o ( E ~ )  
PQ pQ 

Equating the two evaluations of J q . dr, 
PQ 

q. qp = - E q. Vcp + 0(s2) 
Allowing E+O with q arbitrary, we find that 

qp = -vcp 
i.e. we have shown that the condition is necessary. For the given reducible 
circuit % the circulation r is zero. In a simply connected region 9" not 
only does cp exist, it is also single valued and the ensuing fluid motion is 
termed acyclic. 

To discuss vortex fields we first define a vortex line by the property 
that its tangent at every point is parallel to the vorticity vector 5 at the 
same point. It follows that every particle on this line is instantaneously 
rotating about an axis coincident with the tangent. The equation of this 
line will be of the same form as equation 1.1 with u(r, t )  etc. replaced by 
the Cartesian components of 6. 

A vortex tube of finite cross-section with boundary C at some station 
is constructed by drawing a vortex line through each and every point of 
C (if they exist). If the area enclosed by C has negligible dimensions, the 
tube becomes a vortex filament. 

We can show that vortices cannot originate or terminate anywhere 
other than on fluid boundaries or else they form closed circuits. Applying 

Figure 1.5 

Stokes's theorem to the vortex space 9: within the vortex tube (Figure 
1.5) enclosed by the sections whose boundary curves are C and C' 

jq.dr = cur1q.B = j<.dS 
C I S 

where S spans C, i.e. S is the area A' enclosed by C' plus the vortex surface 
between C and C'. However, by construction, < .dS = 0 on the vortex 
(curved) surface so that the circulation r* around C satisfies 

r* = Lq.dr = j4.S 
A' 



Since the section C' is arbitrary j c. dS is constant along the vortex tube 
A' 

and is referred to as the strength of the tube. This result implies that 5 
cannot vanish in the interior of the fluid space 9. 

Any circuit %' (Figure 1.6a) which encircles a vortex ring or similarly 

?ex ring 

Plan 

Figure 1.60 
Figure b# 

shaped obstacle is irreducible since the circuit cannot be contracted 
beyond (inside) C without moving outside 9Pv. This region 9, can be 
made simply connected by the insertion of a barrier B with two sides 
B,, B- bridging C with %' as shown in Figure 1.6b representing a plan 
through %. The shaded area A enclosed by C is the intersection of the 
vortex ring with the plane. Consider the circuits 9 made up as follows 

9 =_ %'t + B - t + C J + B + J  

9 E 9, and ---- does not cross - -  the barrier B, therefore the &c_uhtio_n_ & 2' 
is zero. Consequently, - 

jq .dr  = 0 = { j  + j + j + j )q.dr  
9' '(1 B-T CJ B + &  // 

In the limit when B+ coincides with B- the sum of the contributions bf 
these bridge passages to 1 q .  dr is zero. Hence the circulation in %' is 

where r *  is the vortex strength. Alternatively, writing q = -gradcp 
-3 q.dr = -gradcp.dr = -d$, i.e.(rg [-dcp = -[cp]z; 1 c p + - 0 1 "  - - 

crossing the barrier, cp increases by T* in d i c h  case w is not-ued 
for an irreducible circuit. TPe motion is termed c clic + It should be noticed that we obey the right- an screw rule for the 
sense of integration for the line integral over C in relation to the sense of 
direction of 5. Hence, for the circuit C' on the other arm of the vortex ring 

we have 

consequently the circulation I" in %' is 

We note also that the s .  of t ~ ~ r c u l a t i _ o ~ ? ~ f ~  the circuits %' and %' is -- r+rl = r * - r *  = o . ,  
Suppose Z is a circ6t (Figure 1.6a) which lies outside both arms of the 

vg r e  ring without threading either arm. using br id~es  L G ~ M -  it % 
seen that 

b q . d r  = /I< + i ) q . d r  = 
-, 

This is precisely what should have been expected since Z is a reducible 
circuit whose circulation is therefore zero. 

We have stated that the necessary and sufficient condition for irrota- 
tional motion is the existence of a scalar point function cp such that 
grad cp = -q. When the fluid is incompressible the equation of con- 
tinuity for a source-free region is divq = 0 so that cp, when it exists, 
satisfies Laplace's equation, 

div grad cp E V2cp = 0 (1.15) 
If on the other hand t = constant then curlq = constant = 2 0  (say). 

Writing q = w A r + q,, since curl w A r = 20, we find that curl q, = 0, 
therefore q = o A r - grad cp, where cp, is any scalar point function. 

.Problem 1.8 Show that cp = xf(r) is a possible form for the velocity 
potential of an incompressible liquid motion. Given that the liquid speed 
q+Oas r-t co,deduce that the surfaces ofconstant speed are (r2 + 3x2)r- = 
constant. 

&tion., When cp = xf (r), q = -grad cp = - f (r) grad x - x grad f (r). 
Hence, with primes denoting differentiation with respect to r, 

q = -fi-xf'rlr f -  f(r) (1.16) 
and 

div q = - div f i - (xf '/r)div r - r . grad(xj'/r) 



For an incompressible liquid div q = 0, consequently, 

Integrating, f' = A F 4  where A = constant. Integrating again 
f = - fArP3 + B where B = constant. Hence by equation 1.16, 

. Axr 
4 = ( $ - ~ ) l - ~  

When r -t a, q --+ - Bi so that B = 0 leaving 

and 
6rxr . i  9x2rZ 

q2 = q.q = g(l 9r6 -_;i-+-) r4 . 

Hence q2 = constant when r -  8(r2 + 3x2) = constant. 

- Problem 1.: Examine the liquid motions for which cp the velocity 
~otential,  equals : 

m m m 
( i )  ( i i ) l + A  (iii) 

Ir-rlI Ir-r2I2 ax r 

where m, m,, m,, p are constant scalars and r, and r, are constant vectors. - 
Solution. (i) cp = m/r, q = - grad(m/r) = mr/r3, div q = m(3r2 - 3r. r)/r5 

= 0. Motion is irrotational everywhere except at r = 0 and the equation 
of continuity is satisfied everywhere except at r = 0. Velocity is radial 
from r = 0 with magnitude q = (ql + 0 as r + cc and q + cc as r + 0. 
Moreover, the flux of volume flow across the sphere Irl = a equals 

Q = J q.dS = ma-3 Jr.dS dS = (r/a)dS 
r = a  

= ma-4 j r . rdS  = mad2 jdS = 4nm. 

I The flux is independent of the radius a;  this fact follows directly from the 1 equation of continuity for 

0 i fV $ r = 0 forthendivq = Oforall V 
Jq .dS  = Sdivqdz 

v 4xm if V c r = 0 (just proved) 

1 Thus cp = mlr corresponds to the liquid motion induced by a source 
I 

of output 4xm at r = 0; this source is said to be of strength 
negative the source becomes a sink of strength - m. 

Figure 1.7 1 I 

(ii) In Figure 1.7 let S, and S ,  be two nonintersecting spheres centred 
at r = r ,  and r = r, respectively and enclosing volumes V, and V2 
respectively. C is a surface enclosing a volume S2 containing both Vl and 
5. We have 

q = -gradq = ql+q2 
where 

3 q1 = m l ( ~ l - ~ l ) / J ~ - r l l  , 42 = m2(r-r2)1r-r213 

Using the results proved in (i), div q, = 0 except at r = r ,, and div q, = 

0 except at r = r, : hence, i 
div q dz = 4xm, because V, c r = r ,, but Vl $ r = r2, 

v, 

1 divq ds = 4nm2 because V2 c r = r,, but V2$ r = r, 
"2 

It follows that this flow corresponds to a source of output 4nm, at r, and 
a source of output 4xm2 at r,. 

(iii) When t = 1 ~ 1  is very small, neglecting t2, we have for constant m 

m m _ _  N 
m m m€.r - - - %  ------- - I T + € (  r ( r 2 + 2 r . ~ ) +  r r3 - me. v (i) 

Now put E = d and m = p/t, then 



The right-hand side is the limit as 6 + 0 of a source of strength p/6 at Solution. From q = -Vq+AVp, < =  V A ~  = VA(AV~)  = i . v ~ V p +  
r = -4 together with a sink of equal strength p / ~  at r = 0. This limit VA A Vp or, since V A Vp is identically zero, = VA A Vp. This means that 
is termed a doublet of strength p with its axis parallel to i. vortex lines lie at the intersections of the surface A = constant with 

p = constant. Using the equation of motion from Section 1.7 in the form 

1.7 Pressure equation From equation 1.13 the equation of motion is r G._--- 

or using 

(9. V)q = V(h2)  -q A (V A q) 
we have 

aq -- 
1 

at  ~ A ~ = F - V ( $ ~ ~ ) - - V ~ ,  P r = v n q  
At constant entropy, p is a function of p only so that Vp/p = V 1 dplp. 
If also F is derivable from a potential 52, F = -grad 52, and 

aq/at - q A 5 = - VX, since 

and 

q A 5 = q A (vl. A vp) = (q . vp)vI, - (q . v).)vp 
we have 

In steady motion q A 5 = VX in which case the surfaces x = constant 
contain both streamlines and vortex lines. When flow is irrotational 
I: = curl q = 0 so that q = -grad cp, a/&(- Vcp) = -VX or nr 

V( - acp/ai+ x) = 0. Integrating 

acp -- 
at 

A(t), A(t)isarbitrary (1.18) 

For steady motion acplat = 0, A(t) = constant leading to Bernoulli's 
equation 

J' dp/p + tq2 + 52 = constant (1.19) 

Problem 1 .I0 The velocity q at any point is expressed by q = -Vcp + 
AVp where cp, A and p are independent scalar point functions of position. 
Show that vortex lines are at the intersections of surfaces A = constant 
with p = constant. From the equation of motion deduce that when 

H = aq/dt -Adplat -x, and x = 1 dpIp +iq2, 

Now, since 5 = VA A Vp, we have 6. VH = 0 so that for each instant of 
time H is constant along a vortex line. Also, from the identity V A VH = 0, 

then 
VH = Vp(DA/Dt) - VA(Dp/Dt) 

and prove that H is constant along a vortex line. Show also that 
C. V(Dl./Dt) = 0 = (. V(Dp/Dt) and deduce that D3,/.!lt, DpIDt and VH 
are all identically zero. Interpret this result. 

, , \ I 

Multiplying scalarly in turn by Vp and VA we have 

~, 
We have already shown that a vortex line lies on a surface p = A = 

constant but, by equation 1.21, this line is contained at the same time in 
the surface p+  Dp /Dt = A which is possible only if DplDt = 0; similarly 
we have DAlDt = 0 and equation 1.20 reduces to VH = 0. Thus H is a 
function of time t only and any surface p = constant or A = constant 
contains the same fluid particles, which leads to the fact that any vortex 
line also contains the same fluid particles as it moves throughout the 
fluid. 

Problem 1.11 An open-topped tank of height c with base of length a and 
width b is quarter filled with water. The tank is made to rotate with uniform 
angular velocity w about the vertical edge of length c. To ensure that there 
is no spillage show that w must not exceed :{cg/(a2 + b2))*. 



Solution. Take axes O X  and OY along the base edges of lengths a and 
b respectively with OZ along the vertical axis of rotation. Assuming that 
in the steady motion any liquid particle at (x ,  y, z )  at some instant describes 
a horizontal circle with centre on O Z  and radius R = J (x2  + y2), the 
liquid acceleration DqlDt = - 0 2 R  where R = xi+yj. The body force 
F = -gk so that the equation of motion becomes 

- 0 2 R  = gk- Vplp 

Figure 1.8 

Multiplying throughout scalarly by dr  = dxi + dy j + dzk and using 
V p  . d r  = dp we have 

- 0 2 ( x  dx + y dy) = - g dz - dp/p 

Integrating, 
1 2 2  p/p = ~o ( x  + y2) - gz + A 

where A = constant because motion is steady. On the liquid surface 
p = the constant atmospheric pressure, in which case its equation is 

$02(x2  + y2)  - gz = constant = B (say) 

The minimum value of z(= h) on this surface will occur on the axis at 
L where x = y = 0 and the maximum value of z (= H) will be reached 
when x2 +y2 is maximum, i.e. on the vertical edge x = a, y = b. Hence, 
the constant B = - gh = $w2(a2 f b2) - gH. We can evaluate H and h 
in terms of w using the condition that volume is conserved in the absence 
of spillage. 

But 
volume V = aabc =k zdxdy  

where A is the base of the tank, z = h + A(x2 + y2), A = 0 ' / 2 ~ ,  i.e. 

V = 1; dx I b  {h  + i ( x2+  y2)}dy = {(h + i x2 )b  +j;lb3)dx 
0 

= ab{h + $,?(a2 + b2)} 
1" 

Since 

V = aabc and h = H - ;l(a2 + b2), 

H = $c+$A(a2+b2) 
To prevent spillage H d c, hence 

;l = 02/2g d 9c/{8(a2 + b2))  
or 

o d ${cg/(a2+b2))f 

Problem 1.12 A shell formed by rotating the curve ay = x2 about a 
vertical axis OY is filled with a large quantity of water. A small horizontal 
circular hole of radius aln is opened at the vertex and the water allowed 
to escape. Assuming that (i) the flow is steady, (ii) the ensuing jet becomes 
cylindrical at a small depth c below the hole, (iii) this cylinder has a vertical 
axis and cross-sectional area a(< 1 )  times the area of the hole, show that 
the time taken for the depth of water to fall from h to $h when h is very 
large is approximately 

eu 

Figure 1.9 

solution. Since the radius of the hole H is a/n it is cut at a height y = 
( ~ / n ) ~ / a  = a/n2 above the vertex. The ensuing jet has area aza2/n2 at level 

21 



J, a depth c below H. When the upper surface S of water is at a height 
y-a/n2 above the hole, assuming y is great enough, the surface will 
remain plane and fall steadily with vertical speed v = - dyldt. At the 
same instant at J, where the exist jet becomes cylindrical, the vertical 
speed is u. Applying the equation of continuity at levels S and J we have 

nx2v = ana2u/n2 
The pressures at levels S and J are equal to the atmospheric pressures 
at those levels and we shall assume they are the same, i.e. the air density will 
be neglected in comparison with the liquid density p. Hence Bernoulli's 
equation gives 

I7/p + jv2 + gy = l7/p + +u2 - g(c - a/n2) 

where IZ is the common atmospheric pressure. Eliminating u we have 

Hence the time from y = h+ a/n2 to y = :h + a/n2 is T where 
+h+nfn2  

= - 1 { 
n4y2-a2a2 

2 2qa2a2(y + c - aln2) 

(n2z + a)' - a2a2)+ 
dz where z = y-a/n2 

Using z / J ( z  + c) = J ( z  + c)  - c/ J ( z  + c) and neglecting the term O(n) we 
have, approximately, 

- - 2n2 
{ ( h  + c)' - ( i h  + c)' - 3c(h + c)'+ 6c($h + c)' j 

3aa J(2g) 

Problem 1.13 A liquid of constant density p flows steadily with speed 
U under constant pressure P through a cylindrical tube with uniform circu- 
lar section of area A. A semi-infinite axisymmetric body is placed in the 
cylinder with its axis along the axis of the tube. Given that the area of the 
section of the body tends asymptotically to a show that the force on the 
body is U ( P  - $ p ~ 2 a / ( ~  -a)) .  

Solution. From the equation of continuity the liquid speed downstream 
will tend to a value V where AU = (A-a )V .  Moreover, by Bernoulli's 
equation the pressure downstream tends to P' = p+$p(U2-  V 2 ) .  The 
force on the body is, by symmetry, parallel to the common axis. If F 
denotes this force in the downstream direction the reaction force on the 
liquid is - F so that the total force on the liquid is P A -  P1(A-a)-  F 
where the first two terms are the contributions from the upstream and 
downstream pressures respectively. Equating this force to the momentum 
flux we have 

PA-P ' (A-a ) -F  = ~ V ~ ( A - ~ ) - ~ U %  
Using V = AU/(A -a)andP1 = P+ 3u2- v2) = P +$u2[1 - {A/(A -a))'] 
we have, 

1.8 One-dimensional gas dynamics We assume that a gas moves steadily 
in an axisymmetric tube with OX as axis and A = A(x)  is the normal 
circular cross-sectional area of the tube at any station x. Using primes to 
denote differentiation with respect to x we also assume that A'(0) = 0 ,  
A f (x ) / x  > 0 for all 1x1 > 0 with A1(x) everywhere small. In this case we 
may neglect any component of velocity perpendicular to OX compared 
with the parallel component u = u(x)  so that q = u(x)i. Henceforth we 
shall refer to such a tube as a Lava1 tube. To solve any problem we need 
the following equations : 

(i) Equation of continuity. From equation 1.12 when flow is steady we 
have 

a 
- (puA)  = 0 or mass flux puA = constant = Q 
ax 

(1.22) 

(ii) Bernoulli's equation. For steady flow with zero body force, equation 
1.19 becomes 

dplp +$u2 = constant or dp+ pu du = 0 ( 1.23) 



(iii) Thermodynamic equations. For unit mass of gas 
p = RpT, R = gas constant = cp-c, (1.24) 

where cp, c, are the specific heat capacities at constant pressure and 
constant volume respectively. The acoustic speed is a where 

a = J(dp/dp) (1.25) 
If entropy is constant along a line of flow then p and p are related by the 
adiabatic law 

p = kpY (k = constant, y = cp/cv) (1.26) 

Such a flow is said to be isentropic. 

Problem 1.14 Find an expression for the local acoustic speed in terms 
of the fluid speed. 

Solution. When p = kpY, 
a2 = dpldp = kypY-' = Y P ~ P  

Also, by equation 1.23, 
1 dplp +:u2 = constant = 1 kypy-2 dp +iu2 

= kyp~-'/(y - l)+$u2 

i.e. a2/(y - 1) +iu2 = constant = A 
If a = a, when u = 0, A = at/(y - 1) and 

= a2 -'( - l)u 2 
o 2~ (1.27) 

Problem 1.15 Prove that if a gas moves unsteadily in a Laval tube 
(described in Section 1.8) then a2p/at2 = (a2/ax2)(p + pu2). 

Solution. In this tube we have u = u(x, t), p = p(x, t) and p = p(x, t). 
With suffixes denoting partial differentiation, the equations of motion and 
continuity are 

U, +uux = -P,/P (1.28) 

PI f (P) ,  = 0 (1.29) 

Adding p times equation 1.28 to u times equation 1.29 we have 

(w), + (pu2 +PI, = 0 (1.30) 

Differentiating equation 1.29 partially with respect to t and equating with 
the result of differentiating equation 1.30 partially with respect to x we 
have 

(PU),, = (PU),, = - P I ,  = - (P + pu2),, 

Problem 1.16 Deduce that for a steady isentropic flow of a gas in a 
Laval tube t.he mass flux density j = pu is maximum when the fluid speed 

is sonic. Prove that this maximum in terms of stagnation values is 
poao{2/(y + l))f(Y+ - '). 

Solution. In steady flow we can regard pu as a function of u, hence, 
differentiating and using Bernoulli's theorem in the form dp + pu du = 0, 
we have 

For an extremum either p = 0 (ignored) or u = a, i.e. the speed is sonic. 
Since d(pu)/du is positive or negative according as u is < or > a, j = pu 
is a maximum jmax when u = a. Since a2 = dpldp = yplp = ykpY-' 
(p = kpY, k = constant), a2/ai = (p/po)Y-l so that jmax = pa = poa x 
(a/ao)2i(Y- l). Again, using equation 1.27 with u = a, a2  = a; -$(y - l)a 2 

or aZ = 2ag/(y + 1). Finally, in terms of the stagnation values, 

Problem 1.17 Investigate the variation of fluid speed u for steady flow 
along a Laval tube. 

Solution. From equation 1.22, (d/dx)ln(puA) = 0, i.e. pt/p + u'lu + 
A1/A = 0 where primes denote differentiation with respect to x. From 
Bernoulli's equation and the definition of a, we have dp = - pu du = a2dp 
so that pf/p = - u u'/a2. Substituting we have 

where M = u/a is the local Mach number. At the throat of the tube x = 0 
where A1(x) = 0, either u' = 0 (an extreme value of u) or u = +a, i.e. 
the fluid speed is sonic. It is convenient to assume that when x < 0, u + 0 
(*A -+ co) so that p -, p, and p -+ po, the stagnation values. As Q = puA, 
the constant mass flux (as far as variation in x is concerned), is slowly 
increased from zero, initially, we would have u < a for all x (flow is 
entirely subsonic). The condition is expressed by 

u2 < az = az-L( 0 Z Y  -1)u 2 

or u2 < 2 a i / ( ~  + I).  
In this case, at the throat, x = 0 where A' = 0 the only possible root is 



u' = 0. Moreover, since u' and A' have opposite signs (because u < a) 
this extreme value of u is a maximum urn. This subsonic regime is ensured 
by u2 < u i  < + 1). 

As Q is further increased urn will increase until urn = a (for u = a can 
occur only when A' = 0). The channel is now choked because Q has 
reached its maximum p,u,A, (see Problem 1.16, suffix t denoting values at 
the throat). For x > 0 the flow will be supersonic (u > a) or subsonic 
(u < a) according to the exit pressure. For this region A' > 0 so that 
u'(M2- 1) > 0. If M > 1 (supersonic) u' > 0, i.e. u increases with x 
while (from Bernoulli's equation) p and p decrease. If, on the other hand, 
M < 1 (subsonic) in x > 0, u' < 0, p' > 0 and p' > 0. Finally if the 
external pressure cannot be adjusted to the correct value in terms of the 
shape of the tube the continuous flow will break down and shocks will 
occur. 

Problem 1.18 A perfect gas flows steadily with subsonic speed in an 
axisymmetric tube formed by rotating the curve y = 1 +~(x ) ,  It-(x)l << 1 
for all x, c(0) = 0 about the axis OX. Neglecting second-order terms prove 
(i) u = u,{l-2t/(l-Mi)), (ii) M = M1{1- t (2+(y -1 )~~) / (1 -~ : ) )  
where u and M are the fluid speed and Mach number respectively at any 
point, the suf f i  1 denoting their values at x = 0. Find also an expression 
for the temperature. 

Solution. We write u = ul(l +A) and the acoustic speed a = a l ( l  + 6), 
where A and 6 will each be of order c so that, to a first-order approximation, 
we may neglect A2, d2 compared with unity. From equation 1.27, 

2 a2 +i(y - 1)u2 = constant = a: +$(y - l)u, 

Neglecting 6' and A2, aZ = a:(l+26), u2 = u:(l+2A) so that 

a:(l+ 26)+$(y - 1)(1+ 2A)u: = a: + i ( y  - 1)u: 

i.e. 

26a: + A(y - 1)u: = 0 

26 + A(y - 1 ) ~ :  = 0 where M, = u,/a, (1.31) 

By equation 1.22, the equation of continuity is puA = constant where 
A = ny2 = n(1+2c) neglecting c2. Also a2 = yplp = kypY-', k = 

constant. Therefore, 
aZKY - "(1 + 2c)u = constant = "u 1 

Neglecting second-order terms, 

1 +A+2€+26/(y-1) = 1 
Solving for 6 and A using equation 1.31, subject to M, < 1 (the motion is 
defined as subsonic), 

A = - 2c/(l- M:), 6 = cM:(y - 1)/(1- M:) 
Hence 

The corresponding expression for the temperature is found by combining 
equation 1.24 with a2 = yplp. Hence a2  = yRT or 

1.9 Channel flow In problems of shallow channel flow with gravity 
the nondimensional Froude number, F = U(gL)-I plays a dominant role. 
The two following problems serve as illustrations. 

Problem 1.19 An open-channel flow is confined between two vertical 
planes z = f c and a horizontal bed y = 0. Upstream the flow has uniform 
velocity u,i with constant depth y,. A hydraulic jump causes this stream 
to attain a greater height y2 and uniform velocity u2i. Deduce that (i) 
y2 = iy,{(l+ 8F:)*- 1) where F l  = ul(gyl)-*, the upstream Froude 
number, exceeds unity, (ii) the downstream Froude number F2 = u2(gy2)-* 
as a consequence is less than unity, (iii) the speed of a tidal bore ofamplitude 
y2 - y, into still water of depth y, is {:(gy,)(A + A2)}+ where A = y2/yl. 
Using (iii) prove that the speed of infinitesimal waves on shallow water of 
depth y, is (gy1)*. 

Solution. With liquid density p everywhere constant, the equation of 
continuity states that the volume flux Q parallel to i, the direction of flow, 
is 

Q = 2by,u, = 2by2u2 (1.32) 

The mean hydrostatic pressure at a cross-section of area 2by, normal 
to the flow upstream is p, = $pgy1 whereas downstream the corresponding 
area and pressure values are 2by2 and p2 = tpgy2 respectively. The 
momentum flux equation is therefore 

p , ( 2 b ~ , ) - ~ , ( 2 b ~ ~ )  = pQu2 - P Q ~ ,  



or, using the preceding expressions, 

This is a cubic equation in y, of which y, = y ,  is one solution representing 
the case of uniform flow without discontinuity. For the jump solution the 
residual quadratic equation in y, is g(y,  +y2)y2 = 2 u : ~ ,  . Ignoring the 
unacceptable negative root we have 

so that y2 > y, ,  u ,  > u,  when F ,  > 1. To evaluate the downstream 
Froude number F,, we interchange y,  and y, in equation 1.33 resulting 
in y,  = $y , { ( l+8F: ) f - l ) .  Since y, > y,, (1+8F:)%-1 < 2 giving 
F,  < 1. 

To prove (iii) we first find an expression for u ,  in terms of y ,  and y,. 
Using equation 1.33 we have 

8F1 =A= 8u2 ( 2 2 + 1  , )' - I = 4(A2 + A ) ,  where A = y,/y, 
gy1 

Consequently, u ,  = { $ ( g y , ) ( ~ 2  + A))* and represents the upstream speed 
relative to a stationary hydraulic jump. If this discontinuity in height moves 
it is called a tidal bore. Its speed relative to the upstream value remains the 
same as if it were stationary and so u ,  is the speed of progress of a bore 
into still water. Furthermore, if the height y, - y, tends to zero, A + 1 and 
u ,  -+ (gy,)f  which is then the speed of an infinitesimal wave on water of 
constant depth y,  (provided that this depth is small compared with the 
wavelength). 

Problem 1.20 Choosing axes OX, OZ horizontal and OY vertically 
upwards, an open waterway is cut with vertical sides defined by the 
equations z = + b(x)  and possesses an almost level bed y = h(x) z 0 
for all x.  It is assumed that the curvatures of both b(x)  and h(x) are negligible 
and that water flows steadily in this canal with a velocity which, to a first 
approximation, is everywhere parallel to OX and has speed u = u(x). Find 
the differential equation for the surface profiles and discuss these profiles 
when h(x) = 0 ,  b(x) = a(1- t cos i n x ) ,  6 4 1 when Ix 1 < 1 ,  b (x)  = a 
when I x I 2 1 given that the flux of volume flow is J(108ga5). 

Solution. For steady flow p+gy+$u2 = constant while on the free 
liquid surface y = y(x), the pressure p has a constant atmospheric value 
so that y + u2/2g = constant. The equation of continuity for steady motion 

is Su = constant = Q, where Q is the volume flux and S(x )  = 2b(y - h) is 
the sectional area normal to the flow at a station x.  Eliminating u we have, 

n 2 x 
+ +8(y - h)'g 

= constant 
Differentiating 

2(y1 - h') ) = o  

where y' = dyldx etc, i.e. 

which is the required differential equation of the profiles. The different 
shapes are generated by varying the upstream or downstream values of 
y and u. 

If h(x) = O for all x 

from which it appears that y' is undefined when Q2 = 4gb2y3. We denote 
this critical flow profile % by y = yc(x) where 

Y: = Q2/(4gb2) (1.36) 
For this profile u = uc where uz = Q2/S2 = Q2/(4b2yz) = gyc SO that 
uc is the wave speed referred to in the last problem. Thus for all points on 
%,the Froude number F = 1. From the equation of continuity at any fixed 
station x ,  QZ = 4b2uZy2 = 4b2u:y2 or F2 = u2/gy = (yc/y)2,  i.e. F < 1 
ify > y c a n d F  > l i f y  < y c .  

In the given canal for which QZ = 108ga5, yf = 27a3(1 - t c o s f ~ ? c ) - ~  
for 1x1 < 1 or, correct to the first order in c, yc = a(3+2tcos$ix) for 
I x I < 1 with yc = 3a otherwise. We can rewrite equation 1.35 in the form 

~ ' ( 1  - .v;/y3) = y;b'/(y2b) (1.37) 

Figure I. 10-Plan 

Figures 1.10 and 1.11 (not drawn to scale) illustrate the plan and eleva- 
tion respectively of the canal for 1x1 < 1 ,  the broken line %%' in the latter is 



Figure I. l l -Elevation 

the critical flow profile for which the Froude number F = 1. This profile 
intersects 0 Y in the point I(0, a(3 + 26)). Using equation 1.37 and Figure 
1.1 1 the various cases are: 
1 Profile HH' (when depth is sufficient): y > yc (F < 1) for all x. By 

equation 1.37, y' = 0 at x = 0 where bl(x) = 0 and y' and b' have the 
same sign. 

2 Profile LL: (low depth): y < yc (F  > 1) for all x. Here y' and b' have 
opposite sign with y' = 0 at x = 0. 

3 Profile AIA': y > yc (F < 1) for x < 0, y < yc (F  > 1) for x > 0. At 
the interchange y = yc, unless y' = co, b' = 0 so that the profile passes 
through I. 

4 Profile BIB': y < yc (F > 1) for x < 0, y > yc (F < 1) for x > 0 
With y' # co the profile passes through I. 

5 Profile U U ' :  intersects %? orthogonally without passing through I. This 
profile is not physically possible since there would be two values of y 
for one of x. 

There are obviously an infinite number of profiles according to the 
conditions upstream or downstream. For profile HH' any change down- 
stream will propagate upstream since F < 1. If y is steadily decreased 
downstream the profile will eventually attain the form AIA' when con- 
ditions downstream will not penetrate beyond I. For profile LL: the shape 
is entirely dependent upon the upstream values. 

1.10 Impulsive matJon If m == m (x) is the impulsive pressure generated 
at any point P (OP = r) of a liquid of constant density p the impulsive 
equation of motion applied to the liquid of volume V enclosed by a 
geometric surface S is 

Spq d r  = - J w dS = - J' Vw d z  (by Gauss's theorem) 
V S v 

Since V is arbitrary, 

q = - V(w/p) - - v cp, where q = wlp + constant (1 38)  
so that the resulting motion is irrotational. 

1.11 Kinetic energy Suppose that liquid of constant density moving 
irrotationally with a single-valued velocity potential q contains a solid 
body of surface B moving with velocity U. The kinetic energy Y of volume 
V of the liquid, which is external to B and internal to some geometrical 
surface C is 

F= i p  q2 d r  = $p ( V V ) ~  d r ,  where q = - V q  
v 

By Green's theorem since V2q = 0 

Figure I. 12 

If as Irl = R -, m, q - ( ~ . r ) r - ~  where p is a constant, choosing Z 
as ( r  I = R, we have qVq. dS = o ( R - ~ )  for large R. In this case, for an I 
infinite liquid (R + a), the kinetic energy is 

Y= :p 1 qvq. ds 
where dS is into the solid. R 

1.12 The boundary condition If n is the unit normal to any point of 
B, the body, the boundary condition is simply 

n . U  = n.q = -n.Vq (1.41) 
In this case the kinetic energy Fof the infinite liquid surrounding B, using 
equation 1.40, is 

T =  -' S qu.ds 
2p B 

(1.42) 

Problem 1.21 Find the kinetic energy of liquid lying in the region 
a < Irl< b when motion is induced entirely by a source of output 4xm 
located at the origin r = 0. 

3 1 



Solution. Using equation 1.39 the kinetic energy .T is 

where E is the inner (nonsolid) boundary r = Irl = a and C the outer 
boundary r = b. Now Vcp.dS = (acp/dn)dS where n - r on C and 
n = - r on E, n being the outward normal from the liquid. Now for the 
source cp = m/r so that on C 

whilst on E 

acplan = -acp/ar = m/r2 = m/a2 

Hence, 

Problem 1.22 A sphere of radius a moves with velocity U in an infinite 
liquid at rest at inifinity. Show that cp =' $a3(U. r)/r3 is a possible velocity 
potential of irrotational motion and find the kinetic energy of the liquid 
in this case. 

Solution. Withcp = $a3(U. r)rw3,q = -Vcp = $a3{3(U. r)r-5r- UrP3) 
and -V2v = divq = +a3 {3(U. r ) r - 5 + 9 ( ~ .  r)r-5 - 15(U .r)(r . r )r-7+ 
3(U. r)r-5) = 0 fulfilling the equation of continuity. Since q -+ 0 as 
r -* co the condition of rest at infinity is also satisfied. On the sphere 
the boundary condition is q .n = U . n or, since n = r/a, q . r = U . r. 
From the above q .  r = a3(U. r)r-3 SO that when r = a we have the 
correct relation. Hence the given cp is a possible solution. 

To find an expression for the kinetic energy we use equation 1.42. 
On the sphere r = a, cp = i (U . r), dS = - (r/a)dS, therefore 

/ \  n 

B 

Choosing theaxis OX parallel to U, U . r = Ux so that LT= (ipU2/a)jx2 dS. 
n " 

By symmetry of the sphere B, J xZ dS = J y2 dS = f z2 dS = 

32 

1 j (x2 + y2 + z2) dS = $nu4, since x2 + y2 + z2 = a2. Hence 

= UZa3 = "M'U2 
3 P 4 

where M' = mass of liquid displaced by B. 

1.13 Expanding bubbles Gas occupies the region ( r 1 < R, where R 
is a function of time t, and liquid of constant density p lies outside in 
lr 13 R We assume that there is contact between gas and liquid at all 
time, and that all motion is symmetric about the origin r = 0. Hence, the 
liquid velocity q at any point P, where 6b = r, is of the form q = q(r)i, 
(r 2 R). The equation of continuity, implying that the flux of volume 
flow across Ir 1 = r is independent of r but not necessarily independent 
of time t, is given by 

4nr2q = constant = 4nm 

q = m/r2 

q = mr/r3 (1.43) 

Here curlq = 0 (the vorticity is zero everywhere by symmetry), i.e. cp 
exists with q = - Vcp where cp = m/r and m = m(t). This source strength 
m can be expressed in terms of R and dR/dt - R, for at the gas-liquid 
interface continuity of velocity means that q = R when r = R, i.e. 
m/R2 = R. 

The liquid pressure is found from equation 1.18 with S2 = 0 and 
acp,lZt = (d/dt)(R2k)/r giving 

Problem 1.23 Given that a liquid extends to infinity and is at rest there 
with constant pressure l7, prove that the gas-interface pressure is n+ 
$ p ~ - 2 ( d / d ~ ) ( ~ 3 ~ 2 ) .  If the gas obeys the law pV1+" = constant (a is a 
constant) and expands from rest at R = a to a position of rest at R = 2a, 
deduce that its initial pressure is 7an/( l-  2-3"). 

Solution. From equation 1.44 with r -+ oo, A(t) = Il/p = constant. 
When r = R 



To find the gas pressure we use pV1+a = constant where volume V = 

4nR3. If p = pO when R = a, then pR3+3a = constant = p0a3 + 3". Apply- 
ing continuity of pressure between the gas and liquid at the interface 

Multiplying throughout by 2R2 and integrating, 

- 2pOa3 + 3" 
= $IZR3 + + C, C = constant 

3aR3" 

R = 0 when R = a gives 

R = 0 when R = 2a gives 

Subtracting, to eliminate C, we obtain the result 

Problem 1.24 A solid sphere centre 0 and radius a is surrounded by 
liquid of density p to a depth (a3 + b3)j - a. IZ is the external pressure and 
and the whole lies in a field of attraction pr2 per unit mass towards 0. 
Show that if the solid sphere is suddently annihilated the velocity R of the 
inner surface when its radius is R is given by 

~ R ' R ~ { ( R ~  +b3)-f- R )p  = 2(3ZI+ppb3)(a3 - R3)(R3 + b3)f- 

Solution. The volume of liquid is $n(a3 +b3)-:nu3 = 4nb3. Hence at 
time t > 0 when the internal radius is R < a the extreme radius is E 
where E3 - R3 = b3. We shall apply the principle of energy starting at 
time t = 0 after annihilation of the sphere. 

The kinetic energy of the liquid at time t using the result of Problem 1.21 
is 

since m = R ~ R .  The work done by the external pressure when E, the 

external radius, reduces from E, = (a3 + b3)* to E is 

The work done by the attractive force pr2 per unit mass in a displacement 
from r = 0 to r = r is -$pr3. The total work done by this force to produce 
the initial configuration of the liquid is f p  I", 4nr5p dr. Similarly the work 
done to produce the configuration at time t is i p l :  4nr5p dr so that the 
difference is 

since E3 - R3 = b3 = Ei - a3, the energy balance is finally F= W,  + W2, 
i.e. 

1 1  
2npl?'~' (- - -) = :nn(E; - E3)+)nppb3(a3 + Ei - R3 - E3) 

R E 

= $nn(a3 - R ~ )  + $nppb3(2a3 - 2R3) 

so that 

~ R ' R ~ { ( R ~  + b3)?-- ~ } p  = 2(31Z+llpb3)(a3 - R ~ ) ( R ~  + b3)+ 

EXERCISES 

1. In a given fluid motion every particle moves on a spherical surface 
on which its position is defined by the latitude a and longitude P. If o 
and l2 denote the corresponding angular velocities deduce that the equation 
of continuity may be written in the form 

a p  a a - cos a + -(PO cos a) + - ( ~ Q c o s ~ )  = 0 
at aa @ 

2. A gas for which p = kp moves in a conical pipe. Assuming the particle 
paths are straight lines radiating from the vertex reaching an exit speed 
v where the diameter is D, show that the particle speed is a2v when the 
diameter is (D/a) exp {(a4 - l)v2/4k). 

3. Show that when the velocity potential c$ exists the fluid acceleration 
may be expressed in the form V{-(acp/at)+$q2). Using this result show 
that for a source of variable strength m moving with variable speed along 
the OX axis the fluid acceleration at a point distant x ahead of the source 
is ~ - ~ ( d / d t ) ( m x ' )  - 2m2x- 5 .  



4. The gas within an expanding spherical bubble surrounded by liquid 
at rest at infinity obeys the law p v 4  = constant. If initially its radius R is 
a with R = 0 and p = Apm where pa, is the liquid pressure at infinity, 
show that R will oscillate between a and pa where p is the positive root of 11 ~ ~ ~ ; n V o n a l  Steady F l a y  

the cubic p(p2 + p + 1 )  = 3A. 
3tx&2.l Jundamental~ In this chapter we shall assume that everywhere 

in the fluid p o w  is steady (slat = O), @the fluid density p is constant, 
and independent of the z-coordinate 

such as volume flux, forces on two- 
etc. which do involve the z-dimension 

are measured in terms of unit thickness parallel to OZ. Using suffixes 
to denote partial differentiation, the main features of flow are: 

the velocity vector 

the lines of flow V or streamlines, from equation 1 . 1 ,  are integrals of 

or v d x - u d v  = 0. 

In any source-free region Wq the mass-conservation equation or equation 
of continuity from equation k.9 is 

This is the necessary and sufficient condition that v dx - u dy  is the exact 
.total differential of some function $ = $(x, y), for then 

~ d x - u d y  = d$ = + ,dx+$ , , dy  forallx,y 
implies . 

The lines of flow V are then given by v dx - u d y  = 0 = d$, i.e. 

$(x,  y )  = constant R 
IL is called the stream functiw (or specifically, the Earnshaw stream 
function). p h e n  it exists, the equation of continuity is automatically 
satisfied and conversely $ exists at all points P of a source-free region Ws. 
Since, by assumption, the motion is steady, the streamlines $ = constant 
are fixed curves in two-dimensional space and coincide exactly with the 
pa th l iney  
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The flux of volume flow Q across any plane curve joining A (a, b) to 
P (x, y) in Figure 2.1 is 

Figure 2.1 

9 is positive when measured in the sense right to left with respect to an 
observer at A looking towards P. In particular, the locus of points P . . 

I satisfying the condition Q = P i s  $(x, y) = $(a. b) = constm&AuAu 
. simply the streamline passing through A. 

For two-dimensional flow the vorticity vector 5 is given by 

V is the two-dimensional nabla operator because all quantities are 
independent of z. 

( = c u r l q =  Ii j k 

0 

.. 
In a vortex-free region(Wv)& = curl q = 0 and motion is irrotational, 

or all points P of this regzn a velocity potential cp = cp(x, y) exists and 
the velocity components are derived from it by q = -grad 9, which, for *- 

= (ox- uy)k 
J 

two dimensions, gives 

u =  -cp v =  -cp 
"2 li (2.7) 

To summarise, we have : 

i.e. 5 = 5k where 5 = ox - uy. If $ exists 5 may be expressed in terms of it, 
for- 

1 FG all P E B, ,*  exists, u = - $y, v = $x, V2$ = 5. 
2 F o r a l l P ~ ~ , , c p e x i s t s , u =  - c p x , ~ = c p , [ = 0 , V 2 c p =  -(ux+t)). 

CCI Y Y 

These constitute the ~ a u c h r ~ i e m a n ~  equatiog whicg form the neces-. 
sary and sufficient conditions that the harmonic functions cp and $ are 
g e  real and imaginary parts of (some) complex function w of the comulei 
variable z = x + iy, i.e. 

Defining W, as the region which is both source-free and vortex-free, 
i.e. the intersection of regions We and Wv, we have, 
3 For all P E % both cp and $ exist, V2$ = 5 = 0, b2cp = - (ux + v )  = 0, . 
bykquation 2.3, i.e. cp and $ are harmonic functions and 

c/ 

-u = cpx = - v = c p  = -  
+Y > Y *x/ (2.8) 

W(Z) = cp(x. y )  + i$(x, y!, z = x + iy for all P E Wsv (2.9) 
-is called the complex potential of liquid motion; it ceases to exist 
at points occupied by sources, sinks or vortices for which P $ WSV. Dif- 

1 

ferentiating with respect to z, 

- - -u+iv 
= - q  e - 2  where u = q cos 1, v = q sinl (2.10) d/ 

is the magnitude of the liquid velocity and l is its inclination 
axis. At points of liquid stagnation u = v = 0, given by 

dwldz = 0 = diT~ld.2. The fact t h a t z c o m p l e x  function w(z) represents 
some liquid motion produces a convenient method of generating liquid - 
motions. 

It should be noticed that the level curves cp = constant and $ = 
constant are. Their gradients are respectively 

- - -- *x 

*Y J 
At the points of intersection, by the Cauchy-Riemann equations (2.8) 
we have 

In terms ofplane polar coordinates r and 8, z = re'' cp = cp(r, e), $ = L A  - m. We aenote the radial and transverse components of the velocrty 
nd diagram of velocity representa- 
ce taking the complex conjugate .-, -". - - - 

and using eq$ation 2.10, 



Again, from q = -grady, we have q, = - acp/a$ and q, = - 8cplr38. v 
Next, we exfiess these velocity components in terms of $ as follows. 
In Figure 2.2 let T (r + 6r, 0 + 68) be a point neighbouring P (r, 8) such 

b 

Figure 2.2 

that if * is the value of the stream function at P, I) + 611/ is the correspond- 
ing value at T. By equation 2.5, the flux of volume flow across any curve 
P T  is 614. Complete the elemental polar triangle PNT where N T  = 6r is 
drawn radially and PN = r 68 is drawn transversely. The flux, to the first 
order, out of this triangle across NT is 6rq, and across NP the flux is 
- r 60qr. Therefore, in the absence of sources or sinks within PNT, for 
all r, 8, we have 

leading to 

2.2 Elementaw com lex potentials 
9 2.2. Uniform stream Here u = h ~ c o s a  v = Usina where U and a - 

are e e n t i n g  the magnitudS and inclxtion respect~vely 
of the stream. Since 

integrating and acknowledging the physical insignificance of the constant 
of integration, 

The real and imaginary parts are 

The lines of equipotential and sceamlines form mutually orthogonal 
networks of parallel straight lines. 

ensional sourcq Given that- is a source of yolume 
svmmetry on the circle z = r, the velocity components due 

the z-plane excluding except at 

- z = 0. Using equations 2.1 1 and 2.12 

Integrating 
cp = -mlnr, II/ = -m0 

or / / 

w = cp+i$ = -mlnz 
9 

(2.1 3) 
The singularity at z = 0 is due to the source there. The test for the presence 
of a source at any point is given by evaluating 4 d* = [*] where C is a 

C 1 
circuit enclosing the point. For z = 0, ih this particula 

we have [*] = -2mn corresponding to a source of outp 
-rn+ 

Similarly, a source of equal strength m at z = z, has a complex potential 
L~ = - m 1" (Z - zo) from which - 

rp = -mlnIz-zol and 1(1 = -marg(z-z,). 

~ " ( 2 )  
v' 

B (-ueia) 
Figure 2.3 



2.2.3 Source and sink of equal strengths The complex potential of 
a source of strength m at A k= ela) with an equal sink at B (z = - aeia) 
is TW = -mln(z-aeia)+mln(z a e q  Writing arg(z-aeia) = B and 
ara(z+aeia) = y it follows that $ = m(y -8 )  = - m u  where o = - \ I .. . . 

L B P A  (hgure 2 9 T h e  streamlines I,b = constant are circles through 
A and B. If (u, v)  are the Cartesian velocity components at P, 

- 
. dw m m -u+l" = - = - - 2maeia 

- 
/ d% z + ae" z - aeia (z + aeia) (z - aeia) 

from which the magnitude of the velocity is 

since I z- aeia 1 = AP etc. We can show that the uniform stream is the 

I limiting case of this source-sink pair when both a and m tend to infinite 
Z s  with 2mla remaining constant. When a is large compared with 

5 I z I the above complex potential w is written in the form, 

@ m In {(z/a)eia + 1) - m In { 1 - (z/a)eia) + constant - m{(~/a)e-'~- ...)- m{-(z/a)e-"-...)+constant 

-- 2m(z/a)e- '" + constant& 

If a -t oo and m + oo such that 2m/a = constant, we obtain the uniforq 

9 2.2.4 Two-dimenswnd doublet A two-dimensional doublet at z = z, 
irection a is defined as the limit, in which2 + 0, of strength B, and ,d. 

' . , 
m + oo with ma = p, of a sink of strength m at z, with a source of equal 

! strength at z, + aeia The complex is, therefore, & 
@= Fi { - @/a) ln (z - zo - aeia) + (p/a) ln (z - zo )} 

/- 
= p lim a-to --ln I-- 

When z, = 0 we have 
w = cp + ill/ = p(cos a + i sin a)/(x + iy) 

from which 

p(x cos a + y sin a) p(x sin u - y cos a) 
cp = x2 +y2 Q * =  x2 +y2 v' 

The equipotentials and streamlines form mutually orthogonal systems 
of circles. - 
2.2.5 Two-dimensional vortex Consider w = ik ln z k rea . Putting -\,I I 
z = rei8 and taking real and imaginary parts, 

cp = -k8, I,b = klnr (2.15) 
The streamlines are the circles and the equipoten- 

tials are their radii 8 = point in the finite 
z-plane is the possibly this point, 
the flow is everywhere source-free and vortex-free. The volume flux 
across r = constant = a is zero since I) = constant on r = a for all a. 

u ! 
Hence W is the whole of the z-plane. On r = a, v 

- 
z = 0 occupied by the vortex @ 

so that for the circuit r = a q, a d8 = 2xk. This result, which 
is independent of a howeve ies a circulation r = 2xk about 
any circuit containing the origin z = 0. This denotes the presence of a 

Problem 2.1 Prove that for the complex potential tanP'z the stream- 
lines and equipotentials are circles. Determine the velocity at any point 
and examine the singularities at z = + i. 

Solu_tion. From w = cp + iI,b = tan- ' z, w = cp - iI,b = tan- ' Z, we have - 
2i$ = tan-'z-tan-'2 = tan-' {(z-Z)/(l+zZ)} 

or 
2-5 = 2iy = (l+zZ)tan2i$ = (1+x2+y2)itanh21,b 

The streamlines I,b = cohstant are the circles x2 + y2 + 1 = 2y coth 21(/ 
or, in complex terms, 1 z - i coth 2I,b1 = cosech l2I,b). Similarly, 

2cp = tan-'z+tan-'2 = tan-'{(z+Z)/(l-22)) 
or 

1-x2-y2=2xcot2cp i.e. Jz+cot2cpJ=cosecl2cp) 
Consequently the equipotentials cp = constant are also circles which are 

vortex of s t r e n g t h E z  = cause cp exists and is single valued every- . . where else, alrother circuits nclosino -will have zero circula- 1 
tion. Consequently 1" is t v  , ' - 



orthogonal to + = constant and form a coaxial system with limit points 
at z = f i. The velocity components (u, v) are given by 

. dw 1 -u+1v = - = - 
dz z2+1/J 

Since the denominator is zero at z = f i, there are singularities at these 
points. Near z = i put z = i+zr where lz'l is very small. Neglecting 

. dw dw . 1 -u+1v = - = - = - 1 - -  
dz dz' 1 + (- 1 + 2iz') 2iz' 

Integrating, w = -filnzr. From equation 2.15 the singularity at z = i 
is a of strength k = -f with circulation -ak. Similarly, near 
z = - i putting z = - i + z", w x fi ln z" so that the singularity at 
z = - i is a yortex of strength k = - 2/ 

Show that when ws = Vf(z) - a l  ln f (z), where f (z) = 
a real), part of the streamline + = - a l a  is a parabola. 

and prove that provided 0 < V < 21, the pressure 
p(V - 212)' (4V + l)/54l to prevent cavitation on 1 

w a z  Im z = 
Putting z = reie, 

have + = Im w = V Im f (z) - aA arg f (z). When 
"(z) = 0 or a according as Re f(z) is positive or negative. 
f (rei8) = r(cos 6 + i sin 6) - 2 J(ar) (cos i 6  + i sin fe), so 

that Im f (z) = 0 implies r sin 6 = 2 J(ar) sin $6, i.e. sin f 6  = 0 (6 = 0) or 
r3 cos40 = a*, a parabola with focus at r = 0. When r3cos $8 = a*, 
Re f(z) = r cos 2 J(ar) cos f 6  = a cos 8 sec2 $6-2a = -a sec2 t < 0, 
in which case arg f (z) = R leaving I) = - a h  on the parabola. 

/' Figure 2.4 

4+ 
To interpret the motion, we have, for large lzl, dw/dz - V, i.e. the 

flow at infinity behaves like a uniform stream u = - V, v = 0. The 
singularities of w coincide with the zeros of f (z) which are (i) z = 0, 

inside the parabola, (ii) z = 4a, a point outside. Near z = 4a, put z = 

4a + 6eie, where 6 is small. Then 

f (z) = 4a + 6ei8 - 2J(4aZ + a6eie) = $6ei8 + 0(d2) 
and 

I) = Imw = VIm f(z)-aLarg f(z) = $6Vsin8-ilaO. 

For constant 6 and variation of 8 from 0 to 2a, 4 dI) = - 2nLa in which 
case the singularity at z = 4a is a simple source of strength La. We ignore 
the singularity at z = 0 inside the parabola. To find an expression for 
the liquid speed on the parabola we have dwldz = Vf(z) - aLf (z)/ f '(z), i.e. 

On the parabola, r* cos$6 = a*, z = rei8 = a(secz$6)ei8, hence 

dw A(cos2 $6)e-fie 
--  - (1 - e-*" cos $8) 
dz efi8 - 2 cos $6 1 
so that q = Idwldzl = s(V+L -isz), s = sini6. The maximum speed 
qm on the parabola occurs when s = J{(~+L)/3il), (dqlds = 0). Since 
0 < V < 2l, Is/ < 1 in which case 8 is real and qm = J { ~ ( v +  A)3/27A). 
At this speed the pressure will be a minimum pm = pm+tp(V2-q;) = 
- P(V- 23,)2 (4V+ 3.)/543, by Bernoulli's theorem where pm is the 

pressure at infinity. To prevent cavitation pm > 0 or 

pm > p(V- 23J2 (4V+ 3,)/541,. 
-4 

u r n  23 Prove that for incompressible flow in a conservative force 
field a(c, +)/ax, y) = 0,and deduce that when [ = constant, the pressure 
J satisfies 

// 

1 (PIP) + q 2  + Q - cI) = constant,) where R is the field potential_ -- - 

Solution. By equation lJ, for steady motion the equations are 
_1_ ey z$(q2)x-vi = -Rx-p-lpx 

c s f 8  1 2  (2.16) uvX+~vy 2(q ) y + ~ [  = -Q -pP1py 
where qZ = uZ + v2, [ = vl- u,, and (- Ql ,'- Q,) are the bodyforce 
compon~nts for the c~nse r~a t iv i  field. We can elihinate qZ, Q and p by 
taking partial derivatives, giving 

(vl), + (uC), = 0 
or, since u = -I) , v = 

Y 

(WX )y +(- )x = 0, 
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+)la(x, Y )  = 0 
If we multiply the first of equations 2.16 by d x  and the second by dy and 
add we have 

Integrating, after using the fact that 5 is constant and that u dy - o dx  = 
- d+, gives the result 

1 2 -  2q 5+ = - SZ - (dplp) + constant 

Liquid in the annular - region a < kl < b has constant 
the liquid outside is at rest. The streamlines arethe con- 
lzl = r = constant with the liquid speed zero on r = b , 8 

and a constant, V ,  on r = a. Show that c = 2aV/(a2-b2) and deduce 
that the pressure difference between the two regions at rest is 

$pV2 {b4 - a4 - 4a2 b2 In (b/a))/(b2 -a2)' 
/ 

Solution. Here q = q0 where q = q(r), 0 being the transverse unit 
vezor, anzc  = curlq = r- '(d/dr)(rq)k, where k is the unit vector normal 
to the plane. Since c = c . k is constant, 

But q = 0 when r = b, hence 
2 rq = $[(r2 - b ) 

Since q = V when r = a, the result c = 2aV/(a2 - b2) follows. 
+ is a function of r only; therefore, 

d+ q =-=ic(r-F) dr and + = d[r2 -$cb2 1, r 

ignoring the irrelevant constant of integration. Using equation 2.17 the 
pressure p with SZ = 0 is given by 

p - + $pq2 = constant 

For a < r < b, - pc2(ir2 - ib2  In r) +$pc2(r - b2/r)2 = constant. De- 
noting the pressures at r = a and r = b by pa and pb respectively 

pa - pc2(ia2 - ib2 In a) + $pc2(a - b2/a)' = p, - pc2($b2 - +b2 1n b)  

pb-pa = p['{3b2 - a2) + 3 b 2  - a2)2/a2 - fb2 In (bla)) 

= $pV2 {b4 - a4 - 4a2b2 In (b/a))/(b2 -a2)' 

Assuming continuity of pressure across the boundaries the result follows. - ---. .- 

Let f (z)  be the complex potential of motion in a liquid and 
losed curve enclosing a domain A of the liquid 
singularity off ( z )  inside. The hydrodynamic image 

in C is the complex potential g(z) such that f (z)+g(z) is real on C 
the singularities of g(z) are contained in ApA 

Consequently, writing the total cornvex potential w = f ( z )  + g(z), 
$ = 0 on C (i.e. C can represent a rigid boundary) and all the singularities 
of w outside A coincide with those off (z). 

Case I .  C is the line Re z = a with A the domain Re z < a. Here, - 
When a = 0 and f ( z )  = - m ln ( z  
i.e. the image of a source in _Re z 

c ' I )  @nt@of@ the imaginary 
Case 2. C is ihe line Im z = b with A the domain Im z < b. Here - 

g(z) = f ( z  - 2bi), 1 w = f ( z )  ( z  -2bi) (2.19) -@ 
Case 3. C is the circle lzl = a with A the domain lzl < a. Here - - 

sc.1 = f ( a 2 / n  I\. = f (4 + i ( a 2 / z )  -/... 
This is the circle theorem. 

Problem 2.5 Liquid occupies the reginn.lmz > L r i ? u  t -- -"/-- v- 
o a rigid 

a s m z  = 0. Motion is due to a uniform stream of magnitude 
U flowing parallel to the real axis and at z = ai there is a doublet of 
strength 4a21U inclined at an angle x to the stream. Show that when 
A < 1 the minimum and maximum speeds on the wall are respectively 
( 1  -A)U and ( 1  +8A)U. In the case A = 1 show that the circles ) z f  ail = 2a 
are dividing streamline9 

I I ! 
j/ *I 

The complex potential of the uniform stream flowing parallel* 
real axis is - Uz. Using equation 2.14 with a = x the 

complex potential of the doublet is 
stream contains the rigid boundary Imz = 0 as a 

- is needed for this part of the motion. The image of the doublet, however, is 
- 4a%u/(z + ai) by equation -2. Consequently, the final compiex 
potential is - 



The velocity components are given by 

. dw 8a2 U(z2 - a') 
-u+1v = - = - U +  

dz (z2 + a2)' / 
On the wall z = x+Oi, on which v = 0 (proving that the wall is a rigid 
boundary) and 

Since A < 1, u is a minimum when {2a2/(x2 +a2)-i)  = 0, i.e. when 
x = + a  J3. This minimum is U(l -A). The maximum value of u occurs 
when x = 0 and has a magnitude 41U(3/2)2+U(1-1) = (1+8A)U. 
When 1 = 1 the streamlines are determined by t,h = (w -E)/(2i) = 
constant = A.(say). Substituting, 

Factorising, 
8a2zZ - 8a4 

(z - Z) 
(zZ + a') (ZZ + a') 

The streamline for which A = 0 will divide into separate branches on 
which either z-Z = 0, i.e. Im z = 0, the rigid boundary, or 

z5- 3a2 = +ia(z-5) 
leading to the result 

(z+ai)(Zf ai) = )z+ai12 = 4a2 - 
O, ,Y~Q?~~?J 

---. .-\ .. Find the comp ex po$.n_tig of motion due to 
z = zo (Re z, > a) s s q  boundary C consisting 
cle 1 zl = a, - fx  < arg z < zx and part of the imaginary 
IIm zl > a. Find an 9 r e s s i o n  for the liquid speed on the 

hen z, is real and equal to k m  rnha>fiXi$ -urnd 
- - 

he source alone is represented by the complex potential 
(z-z,). Using e-its image in JzJ  = a is 

f(a2/z) = -mIn{(a2/z)-5,) = -mln(z-a2/Zo)+mlnz+~ 

where A = - m In ( - 5, ) is a constant which can be ignored. The image 
./' 
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,, s & 5 (7 - / Figure 2.5 
' 5  u 

system consists of a source of strength m at the inverse point a2/,T0 together 
with an equal sink at the o a n .  The new complex potential - is 

i - m ln {(z - zo ) (z + 5, ) (z - a2/to) (z + a2/z0 ) z 2 }  [J 
,- 

This complex poten a1 continues to fuJiJJthe condition t h a . i s  a. 
streamline because, in ,$kGiniP6 p-,.~, the ,sink at the origin m m  we have 
ensured that &e algebraic sum of x? strengths of th? sources within 
thk ciriclar boundary is zero so that this se&ircBcan r e m a i n s  

To find an expression for the :peed - with z, =kglre& we have / A 4 
w = - mln(z2 - a2k2)-m ln(z2 -a2k-')+2m lnz I\ i 

so that 
dw 2mz - 2mz 2m ,'sdC3 - = - +- 

>n' dz zZ-a2k2 z2-a2k-2 
-- 

On t h e e  w h e r e ~ ~ '  ? 

2mk2 e-~B(e2~8  - e- 218) 
- 4m ik2(sin 28) e-Ie 

= (7) (e218 - k2) (e-"8 - k2) - a(l + k4 - 2k2 cos 28) 
,* h 

QIB I 

,&q = 4mk2 sin 20/a(l+ k4 - 2k2 cos 28) > 0 for 0 < 8 < is the 
liquid speed inclined at an angle. A = f x + 8  (for -ie-le = e-1c3n+8) = 

' 

e-'9 ~ h i c h  is tangent to the ~emicircle.~When - in  < 8 < 0 we replace 
q by - q and> by -A. To find the maximum value of q put 28 = a. Since 
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(d/da) {sin d ( l +  k4 - 2k2 cos a)) = 0 when3 cos a (1 + k4 - 2k2 cos a) = ' 
2k2 sin2 a, &an extremum cos a = 2k2/(k4 + I), sin a = k (k4 - 1)/(k4 + l), 
the angle; being real because k > 1. The speedshas a&- -- value 
4mk2/a(k4 - 1) at points on the semicircle for which .- 

0 = $ cos- ' {2k2/(k4 + 1)). // 
Y # Problem 2.7 Find the complex potential for a source of strength m 

placed at, z = aiJbetween two rigid walls Im z = k b, I b 1 > 1 a 1. Express I 
the answer in a closed form when a = 0. !I--- - 

Y 

Wall -R L L 1 ~ b  

g.= 
Figure 2.6 

The source at z = ai has a complex potential f,(z) = 
whose image 1, in the wall YIm z = b) is - m ln(z + ai - 2bi) - and its image m, in the  wall^ (Im z = - b) is - m ln(z + ai + 2bi). This is 

, the first approximation to the flow for m, disturbs the condition on Land I ,  
disturbs the condition on M. To rectify this, as a second approximation, 

* 0 we add on the image 1, of m, in L, namely - m ln(z - ai - 4bi) and the 
) image m, of 1, in M which is - m ln(z - ai +4bi). Similarly, in the third 

approximation we must add the image 1, of m2 in Land the image m, of 
1, in M, and so on. The nth approximation for the complex potential is, 
therefore, 

n 

wn(z) = - m ln(z-ai)-m C ln{(z -ai)2 +4'k2b2} 
k =  1 

n 

- m In {(z + ai)' + 4(2k - 1)2b2) 
k =  1 

All the image singularities are outside the walls and as n increases the 
compensating images move further from the region of flow. Moreover 
the magnitude of the difference in fluid velocity between the two successive 

approximations is 

which tends to zero as n -t co ; in this sense the approximations converge. 
k 

Before taking the limit we add to wn the constant m ln(43k2(2k- 1)2b4) 
k = l  

which does not affect the flow so that 

w = lim wn 
n.-+ m 

When a = 0 

m 

Since z n (1 + z2/n2rc2) = sinh z, we have, ignoring the constant, 
n =  1 

w = - m ln sinh (7cz/2b) 

= a inserted into 'a flow I 
Here vx-uY = $xx+ $ = constant = 5, i.e. for general 

yY nstant shear 5, $ = tC(x + y2)+$, where $, is any solution 
of ),+ $, = 0. Alternatively, we seek a solution for $ kxpressed in the 
equivalent form 

$ = ~ C Z Z +  Im f (z) (2.21) 

Before inserting the cylinder, 
u = -$ = Qcosa- iy, v = $x = Qsina 

Y 

i.e. 
$ = ~ ( x s i n a - ~ c o s a ) + $ C y ~  

or 
$,, = Im f (z) = Q(x sin a - y cos a) + $C(y2 - x2) 

so that f(z) = -Qze-"-$[z2 and 

$ = $[zZ+Im(- Qz e-'° -$i[z2) (2.22) 

when the cylinder 1 zl = a is introduced, no image is required for the term 
$cz2, since it is a constant $la2 on the boundary. By the circle theorem 



(equation 2.20), the image of the term Im f(z) is Imf(a2/z). The final + 
after adding the cylinder to the flow expressed by equation 2.22 is 

II/ = l[zZ+ 4 Im( -Qz e-ia-$i[~2 - Q(a2/z) eia+$iC(a2/z)2) 
which is in the form of equation 2.21. In terms of polar coordinates 
(r, 0) putting z = r eio 
$ = $cr2 - Qr sin(0- a) + Q(a2/r) sin(0 - a) -$[r2 cos 28+$C(a4/r2)cos28 

The radial component of the velocity (= -r-'+,) is zero on r = a and 
the transverse component ( = II/J is 

q = ica(1- 2 cos 20) - 2 4  sin(0 - a) (2.23) 
The pressure at any point on r = a is p where p = constant -$pq2 and 
the force components on the cylinder are (X, Y) given by 

X = - jZr p( 
0 

cos 0)a d0 = iap  J2' q2 cos 8 d0 
0 

y = -  2n dsin O)a d0 = iap  1'' q2 sin 0 d0 
0 0 

To evaluate the integrals, by equation 2.23, 
q = Co+C,cos0+S,sin0+C2cos20 

where C,, C, , S ,  , C2 are respectively *[a, 2Q sin a, - 2Q cos a, -[a, 

4 t 

q2 = A, + {A,, cos n8 + B, sin no} 
n= 1 

in which case, using the theory of Fourier coefficients, 
I .  ! 

X = iapnA, and Y = iapnB, 

But A, = 2C0C, + C,C2 = C1(2C0+ C,) = 0, 

i.e. 
X = O  

and B, = 2C0S, -SIC2 = S1(2C0 - C,) = -4Qa[ cos a 

i.e. 

Y = -2nQpa2[ cos a 81 

i +ipq2 = ,consta&Also the moment M about z = 0 of 
rces on AB is 

L 

To prove this result, consider a point P E AB (Figure 

P 
A P  = s and the tangent to AB at P makes an angle 1 with 
on ds is pds where p is the liquid pressure attQThe elemental force 
components on d$are, therefore, 

x 
4 4  

v 
since dx = ds cos l, dv = ds sin l or dz = d s e i h n d  dZ = dse-'! %~v / . !  

m o u l l i ' s  the0 hile on the solid 
dary AB, q e-'" 

Hence, integrating the expression for dF, 
I 

The elemental moment about 0 (z = 0) of the force p ds is 

dM = (x cos l+ y sin l)p ds = Re(p e - ' 5  ds) = Re(p e-"% dz) 

d.Z - $p(dw/d~)~ z dz) 
t/ 



/& Since Re(z di) = x dx + y $y = W x 2  + y'l = Ylzl' the given expression for 
M follows by inregration over the arc ~ e (  f l  fl-f'd 

* 

plex potential of the uniform stream i 
hen the circle 1 z 1 = a is added, the - -- 

tial becwe's r w --_- = - ~l?_+_a-'/_zJ, Using equation 2.24, the force com- 
ponenti (X, Y) on the q u a d r a n t 5 ~  are given by @i&,~ 1 %  1 J Lk 

P = l7+;puz "1 <fi -+ " -/ 
l e a  

Putting z = aeio, z, = aazB = ai, f 

givi 
./ 

'/ 'I 

on a closed solid cylinder whose section 
e licicyid motion is defined by the complex 

k =  1 

is a constant, the i,g.tj~i@ _sy,m is convergent, the vortex lies 
source lies &C. what is the result when further) 
outside . ~9,- 

I" 
t ' d/ w~~ equation 2.24-with i, = i, the conjugateuunplex iorce - 

F on C is ,ip f, (dw/x)'dz. 
!G Let y bea G a l l  circle Jz - a = 6 centred-at the source (see _F&ure 2.81 

i g p a n d  let E be a large circl hhffZi%ng both C and y. Since t h r e  are 
no singularities in the do am enc osed by E but excluding the interiors of 
both C and y, Cauchy's theorem gives 

Figure 2 8 // 

tal contou{~ 1 + y T + a ~ e n c e  - 
Now 7 d 

", l 
dw - -  - ik m Ue-'"+--- - z k j u k z - k - l  

,4& GK?, - 3uKH dz z z-a 
~ W U W U  

Therefore o wh-#e I z 1 is arge, dwldz = U e-'" + (ik - m)/z + O(z-') I ' &d ( d w / P U 2  e-""+ZU e-ia(ik-m)z-!+O(z-') so that 

Y T --- 
H e n c e V 3 - % > =  2np(m - ik)U e- '" + 2rrpmf (a) where l/(a)-= urn - 
iv-1 the conjugate complex velocity at z = a mitting the s o u r ~ r ~ i ~  
2 a- 

X = 2npm(U cos a + urn) - 2npkU sin a 
Y = 2npm(U sin a + urn) + 21tpkU cos a (2.26) JC/ 

When further sources are added w e  to enclose each of them with a 
circle yrn centred on the singularity. The extension to the result is obviously 

X = 271p m(U cos a+  urn) - 2npkU sin a 



using equation 2.20, is 

~ ( z )  = - m, ln(z - b,) - m, ln(z - b,) - ml ln(z - a2/bl) - m2 ln(z - a2/b2) 

+ (m , + m,) lnz 

so that 

dw - - - - - m1 - - m2 - - m1b1 - - m2b2 rn,+m2 
dz z-b, z-b, biz-a2 b,z-aZ z 

If ( u , , ~ , )  are the velocity components at z = bl excluding the source 
there 

m, +m2 +- 
I .  bl ,, . Similarly if (u,, v,) are the velocity components at z = 6, excluding its 

source, 

from which u,  = v, = 0. Using equation 2.26 w i t b l w \ w e  hHve 
Y = 0 and 

wK 2.5 grthwonal coordinates A flow in the z-plane is defined by the 
I complex potential w = cp + it,b = f (z), z = x + iy so that (p = ~ ( x ,  y), . . - . .  + = *(x, y). Using the function z = g([), [ = 5 Tirl we transform to the 

[-plane with w taking the same values at corresponding points. The new 
shapes of the streamlines and equipotentials are determined by 

Since dw/dz = (dw/d[)(d[/dz) except at points where dz/d[ or d[/dz vanish, 
in general the fluid will have different velocities at the corresponding points 
of the transformation. The -equations are 

(i) 5, = fly, ty = - vx from 2 = g(i) 

(ii) cpt = $,, q, = -$< from w = F(i) 

(i i i) (P, = $y, qy = -$, from w = .f(z) (2.28) 

Moreover, when V2q = qxx+ qyy = 0 we have qsr+ q,,,, = 0 and simi- 
larly $rr + $,,, = 0 except at the singular points of the transformation, 
namely, the zeros of dz/d[ or d [ / d v  

H 2 . 6  B o u n d a ~  condition on a movbv cvlinder In Figure 2+C represents 
the cross-section of a cylinder moving with velocity (U, ) and angular 
velocity Q referred to fixed axes Oxy. With ds the element of C at a point 
P(x, y) on it, the boundary condition states that the velocity component 
of P normal to C equals the liquid velocity component in the same direc- 
tion, i.e. 

Figure 2.9 
#+ 

By integration along the boundary, on C, $ satisfies 
I) = Vx - U y  +$Q(xZ + yZ) + constant (2.29) 



)(XY 2.7 Kinetic ener Using the result in Section l.&the kinetic energy e per uni ic ness of two-dimensional liquid motion is 

where 9 is the total boundary surrounding the liquid (Figure 2.10), ds = 
dsn, n being the unit outward normal to 9 and ds an element of 9'. 

Figure 2.10 

The total length 9 is made uv of the followine c a p o n e n  

( ) g= :ody(~~)  + enveloPe(~t) + bridge  out(^+:) + bridie in(B - ?) 6 
from which the separate contributions to LT are respectively sc,LT,, 

, Y E -  - 
(i) If cp is univalent (one-valued) then sB+ + Y E -  = 0. 
(ii) If cp is not univalent then, denoting by cp+ the value of cp on B+ etc. 

we have cp+-cp- = 2nk, the circulation, so that F B + + F B -  = 

npk 1 Vcp .ds. 
B +  

(iii) If the liquid extends to infinity and is at rest there, then YE = 0. 
(iv) When conditions (i) and (iii) hold together, we have 

- 1 - IP [ cp d$ = -fp [ $ dcp (integration by parts) 

since w dB = id(cp2 + $2) + i($ dcp - cp d$). 

Problem 2.22 The elliptic cylinder ( ~ / a ) ~ + ( ~ / b ) ~  = 1 moves with 

il constant velocity components (Q cos a, Q sin a) through a liquid at rest 
at infinity. Find the stream function of the motion. I 

From the transformation z = c cosh 5 where z = x + iy and 
5 e w e  have x = c cosh 5 cos q, y = c sinh t sin q. Eliminating q, 
{x/(c cosh ()I2 + {y/(c sinh ()I2 = 1, i.e. ( = constant are ellipses. The 
given ellipse is defined by ( = 5, where c cosh 5, = a, c sinh (, = b, 
c2 = a2-b2. Using Sections 2.5 and 2.6 we seek a solution $ = $((,q) 
such that (i) $5t + $,,,, = 0, whilst (ii) on the ellipse 5 = t o ,  

$ = Vx-Uy = Vccosh~cosq-Ucsinh(sinq 

or $ = Qc(cosh to sin a cos q - sinh 5, cos a sin q) for all q. Finally, (iii) 
as lzl + oo, dwldz + 0 since the liquid is at rest there. However, from the 
transformation formula, lz l  -+ oo corresponds to taking ( + co (for 
both cos q and sin q are bounded) and dwldz -+ 0 corresponds to dwldc + 0. 
Condition (ii) suggests that we seek a solution of (i) of the form $ = 
f ( ( ) ( A  cos q + B sin q), A, B constants. Substituting into (i) we find this 
equation identically satisfied when f(() = CeS+De-C. To satisfy (iii) 
we must choose C = 0 and when both A and B are arbitrary we may 
choose D = 1 so that $ = eCt(A cosq+ B sinq). Finally, to satisfy (ii) 
putting ( = 5, and equating coefficients of cosq and sin? respectively, 
A ~ - < o  = Qc cosh sin a, Beet0 = - Qc sinh 5, cos a so that the required 
solution for $ is 

$ = Q ~ e - ( ~ - ~ ~ ) ( c o s h  5, sin a cos q - sinh 5, cos a sin q) (2.32) 

Problem 2.13 Find the kinetic energy of the liquid motion in the p r e  11 *ceding problem. 

Solution. The kinetic energy is given by formula 2.31. For this we need 
totevaluate w, complex potential the imaginary part of which is given by 
equation 2.32. Now e-c = e-{(cos q - i sin q), i.e. e-5 cos q = Im (ie - <), 
e-5 sin q = Im (- e-5) so that 

w = Qce'~(ie-~ cosh (, sin a + e-5 sinh 5, cos a) 

= Qce-c+50(sinh 5, cos a + i cosh 5, sin ci) 

= Q(a + b)e-c sinh (5 ,  + ia) (2.33) 
since cecO = c(cosh (, + sinh 5,  ) = a + b. 

The kinetic energy of the liquid is s = -+pi ct J w dw where on C ( = 5,  



and q increases from 0 to 2x. Using equation 2.33 
w diS = ~ ' ( a +  b)'sinh (5, +ia)sinh ((o-ia)e-5(-e-rdr) 

where, on C, < = 5, + iq, dr = - i dq. Hence, 

I = QpQ2(a + b)'(cosh 25, - cos 2 a ) e 2 b  i dq 

= ixpQ2(a + b)'(cosh 25, - cos 2a)e-'50 
Using, a + b = cetO, c2 cosh 25, = c2(cosh2 5, + sinh2 5,) = aZ + bZ, and 
cZ cos 2a = (aZ - bZ) (cosZ a - sinZ a), we have, finally, 

%#+ 2.8 Rotatin c linders By equation 2.29 the boundary condition on a 
cylin -* er rotating wit angular velocity 52 is IC/ = ~ Q z z .  If the equation of 
C can be expressed in the form z5 = f (z)+ f (Z) this boundary condition 
is satisfied by taking IC/ = Im w where 

w = iQf(z (2.35) 
When fl(z) has no singularities inside will represent the complex 
potential of liquid motion inside C,(for in this case there are no singu- 
larities of the velocity due to sources or vortices etc.) whereas if ff(z) 
has no singularities outside C, w will represent the motion outside C. 

Exam le I .  When f (z) = {$(a2 - b2)z2 + a2b2)/(aZ + bZ), C, represented + by t e equatlon z5 = f (z) + f (z), is the ellipse (x/a)' + (y/b)' = 1. 
Exam~le 2. When f (z) = (4a3 - z3)/6a, C has the equation x3 - 3xyZ + 

3 a T w # a 3  = (x - y J3 + 2a) (x + y J3 + 2a) (x - a) = 0 the three sides 
of an equilateral triangle of side 2aJ3 with centroid at z = OH 

6 

,Problem 2.14 A prism whose section is an equilateral triangle of side 
2a J3 contains liquid and rotates about a generator through a vertex. 
Find the effective radius of gyration of the liquid. 

Figure 2.11 

Solution. With the centroid G as origin, the equation of the triangular 
s e w e f i n e d  by z i  = f(z)+f(Z) where f ( z )  = (Q3 - z3)/6a. Choosing 
a vertex 0 as origin where OG = 24  the equation becomes 

i.e. zZ = g(z) + g(Z) where g(z) = zZ - (z3/6a). 
By Section 2.8 the complex potential of the liquid motion when the 

prism rotates with angular velocity 0 about 0 is w = iQz2(6a-z)/6a. 
Using equation 2.31 and changing the sign because the liquid lies within 
the boundary, the kinetic energy of the liquid is 

On OA, z = re-*"'; on AB z = 3a+iy and on BO, z'= re*"'. We denote 
these respective contributions to J by I , , ,  FA, and I,. Writing 
o = e*"' on OA, z = r/o, Z = rw, 

Similarly, inverting o and the limits of integration, 

Adding, 

Since o - o- ' = 2i sin in = i. Again 

-0J3 

(odd powers of y give no contribution) 
= ypa4Q2 J3 

Adding, the final I is (33/5)pa4QZ J3 = +mk2Q2 where m = 3 J3aZp is 
the liquid mass within C per unit thickness. Hence, k, the effective radius 
of gyration, is 
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! 

lmilari of corresponding is a singularity and argc = n arg z, r is described n times for a single 
is applied to this representation. circuit of C in which case n J d$ = - 2?crn0 or the corresponding source 

Suppose w = g(r)  is the complex potential of a liquid motion in thq at [ = 0 has strength m, /n. 
rt 

i 
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2.9 Co formal ma in A mapping from the z-plane to the C-plane,is 
*-e f (z) is fmite and single valued in some domain 

(-plane. We can construct a corresDondina motion in the z-plane by 
defin - 

arranging that w takes the same (complex) value at corresponding points 
A enclosed by a contour C in the z-plane. Any point P within A is trans- P and 52. The new motion in the z-plane is then described by w = q( f (z) 
formed ni uel into a definite point Q of the [-plane. We write this as - 

 since,^, = w, implies $, = i,bp, a streamline in A maps into a stream11 
P + a w e r e  corresponds a contour i. in the [-plane enclosing a along-the corresponding curve h l  
domain A. We shall assume that the mapping is one-to-one between C,would also be a streamline. *, 

domains so that in the inverse transformation for which z = g([), 52 -, P q f  q5 is the liquid speed at 52 and qZ the speed at P, we have = Idw/dc) ,, 
uniquely. This implies conditions (which cannot be proved in the space q: = I dw/dzI SO that 4 

available here) on the derivative df/dz = ff(z), namely, for all z in A, 
fl(z) must be finite and nonzero. The zeros of l/f '(z), f'(z) are singu- 
rarities of the transformation and i r e  normally cut off from the domaiy  

/ 
except at the singular points of the transformation where either speed is 

Y zero/The kinetic e n e r a  is preserved in transformation, for if dS5, and 
dS, are corresponding elements of area at Q and P, we have dSs/dS, = 

dS, implying conservation of kinetic energy 
(QQ1 /PP1 )' = I f  '(z)I2 since the elements are geometrically similar. 

* 

I 

\ 
\ 

of strength m, and m, are placed at points -- CI - _-- _- -.- of the z-plane respectively. Examine the cor- 

0 < responding motion in the [-plane when c = z" (n is a positive integer). 
0 

z- lane 4 5-plane Solution. For the source m, at z = z, in the z-plane d$ = -2xm, 
4 - :Z C t  

where C is the circle Iz-z, I = t ;  E is small. Under the transformation Figure 2.1P 
[ = z" this circle becomes the circle r: 1 [ - [, 1 = 6 in the [-plane with 

Let P(z), P, (z, ), P, (z, ) be three neighbouring points in A. Under trans- radius 6 = q t )  and centre at [ = [, = zl. Moreover, J d o  = J d$ since ! formation P -, Q([), P, + Q, (C, ), P, + 52, (5, ), where C1 = f (zl) etc ct K t / When 1 z, - zl is small, r corresponds to C and by definition $ takes the same values at corres- 

C z - c  
ponding points of the two planes. The singular points of the transformation 

- - f z  f z  = z + z l z ,  - - - f'(z)+O(lz,-zl). are the zeros of d[/dz = nz"-' and dz/d[ = z1 -"In, i.e. z = 0 = [ and zl-v zl-z 
P 22 -Z/ the points at infinity in the two planes. When z, is finite and nonzero 

Taking moduli and argument, provided I f  '(z)l < m and f '(z) # 0 we -- - i.e. a nonsingular point of the transformation, unit description of C 
have to a f a  order of approximation, produces unit description of T.  Hence f d$ = -2?cm, meaning that a 

r t 
52Rl RQ2 - 

Iff(z)I - source of strength m, at z, transforms into a source of equal strength 
PP, PP, @ m1 at [, = 4 .  

arg 5252, - arg PP, = arg 5252, - arg PP, = arg f For the source m, at z = 0, j d$ = - 2nmO where C is the circle lzl = E ,  
LP, PP,. Hence, subject to the stated CT 

1 t e angles between elemental 6 is small for which the corresponding circle r is Ill = 6". Since z = 0 = 5 



Problem 2.16 Liquid in the z-plane is contained in the sector with * .  - - - - ? -  - 
v d e x  at z = 0 and bounded by lines arg z = &ix/n (n is a positive 
integer) and an arc of the circle lzl = a. A source of strength 2nm is 
placed at the vertex together with a sink of strength m at z = b(<a) on 
the real axis. Find an expression for the velocity on the curved 

Figure 2.13 

Solution. The total volume output into the sector due to the source 
2 n m w 2 x ( 2 n m ) ( l / 2 n )  = 2 m  which balances the input of the sink 
inside; hence the sector boundary can be rigid. Applying the transforma- 
tion ( = z" where arg ( = n argz, the lines arg z = +$x/n become 
arg ( = f $c and the arc of lzl = a becomes the semicircular arc of the 
circle = an = c. The inside of the sector is mapped onto the inside of 
the semicircle of radius c in the (-plane. 

Using the results of Problem 2.15 the source 2nm at z = 0 is trans- 
formed into a source of strength 2nm/n = 2m at [ = 0 and the sink of 
strength m at z = b is transformed into an equal sink at [ = bn. In the 
[-plane, to make Re( = 0 a rigid boundary, we introduce the image 
sink -m at [ = - bn. This makes the complex potential 

f(() = -2mln(+mln( ( -b")+mln( (+bn)  = mln(l-b2n[-2). 

To find its image in the circle ( ( 1  = c = a" we use the circle theorem 

(!) ( 

2.20) which gives the final complex potential 

w = f(()+f(c2/() = mln(1-bzn(-2)+mln(1-b2nc-4[2) 
In terms of z, 

w = m ln ((1 - b2nz-2n)(1 - b2na-4n~2n)} 

= m ln {I  - (z/a)'" - ( a / ~ ) ~ " }  +constant, where I = (alb)'" + (bla)'" 

Consequently, on the arc, where z = aeie, 
dw 2nm(a2nz-2n- 1 -a -2n  
- -  - 
dz I - z2na- Zn - a2nZ- Zn a s(8) 

where ,- Znie - e2nie 2i sin 2n6 
do)  = ~ - ~ 2 n i t 1 -  e- 2ni0 = - A -2 cos 2n8 

On writing dwldz = -(u-iv) = -(qr -iq,)e-" where qr and qe are 
respectively the radial and transverse components of the liquid velocity 
we find that 

4nm sin 2n6 
qr = Oy qe = - a(l  - 2 cos 2n8)' 

I = (a/b)'" + (bla)'" 

ICj) 2.10 Joukowski transformation , or (5 - 2c)/(( + 2c) = 

{(z - &(z + c)}' is called the mapping function. 
The singulariiies 5 = co, & 2c, co. The inverse 
transformation that one value of ( corres- 

positive sign associated with 
the square root then for large 5, z - ( so that infinities in the two planes 
will correspond. Choosing the negative sign, z - 2c2/(, i.e. the infinity 
of the 5 plane will transform into the neighbourhood of z = 0. 

Case L If C : circle z = f e" (f > c) then r  : ellipse (</a)' + (qlb)' = 1 ; 
a = f +c2/f, b = f -c2/f. 

Case 2. If C : circle z = ceie then r  : straight line < = 2c cos 8, q = 0. 
-1f~:circleIz-z,I = rwherelc-z,I = r,i.e.z = cliesoncand 

I --I < r, i.e. z = -c lies inside C then r :  aerofoil section with 
a cusp at ( = 2c ./ 

utta conditi In C of the last section the liauid speed 
' v w h - =  w i l l  be infinite (see equation 2.36) A at the cusp 

unless the speed q = Idwldzl at thccorresponding point z = c on C 1 !! 
is zero. Normally it is possible' to achieve this condition by introducing a ) 
circulation about C and adjusting its strength accordinglyfl. 1 

< . " 
ere z = -c&on C and z = c lies w i t h h e  (Figure 2.14). 
I)e" +I the Joukowski transformation [ = < + iq = z + c2/z 

S \ ~  



produces the y e i r & i l  profile- with a-at c = - 2c 
c2{(c+A)e-"+A) c = j+iq  = (c+A)ei0+3,+ 

@ {(c + 3,)ei0 + 3,) {(c + A)e- " + 3,) 

Figure 2 14 7 

4' ..,by 

n 
To make the infinities in the two planes correspond we choose the 

jgyerse transformation as z = +{c+,/(c2 -4c2)). thkn z - [ for large 
in tbz-plane with complex 

w(Z) = uei"( + 1); Ue-'"{(c +A)2Z- +Ib) +(iK/2a) In Z 

Hence, -1. // 

V v 
To satisfy the Kutta conditiop, 

- y w  QW*. ]JO'& = b ~ ( c  + A) s&hich determines t h e k &  of the c i rcu la tk$  
m o = x e  c T - n e  is found by eliminating z using z = +{C+ 

,/(C2 - 4c2)}. The complex -- f o r ~  F on this aerofoil is given by the Blasius 
formula (2.24). Writing F = A + if2, we have - 

6&rSj%' u&l*,d*a 
? v@ rp- 

there are ,p,o~sg~t@ outside C we can deform this circle into 
the circle E defined by lzl = R where R is large. F o r w e J z l  

-.. .c- 

dw iK dz 
- =  dz Ue'a+--+O((~l-2), IJ/ 2x.zfi / and - =  dl  1+o(IZI-2& 

(,\O 1' I.' 

- iK 
F = *-if2 =+p$Ueia+-+O(lzl-2) 2 7 ~ ~  dz T + p i ( 2 n i ) ( F ) e i  ($ 

so that 

P' 
?4?t I.., 2 25 I // 

A=pUKsina ,  Q = p U K  

k which give a mulhnt-jft  force- . o f z a p $  
the uniform stream 
- -----a- # 

)( 2.12 The Schwarz-Christoffel transformation Here the boundary of a 

I polygon in the z-plane with vertices z, , z, , . . . , zn and internal angles 
a,a, a,n, . . . , aria is mapped onto Im C = 0 by 

where the vertices of the polygon become the <, , <,, . . . , Cn, 
respectively on Imc = 0. Furthermore when the polygon is simple its 
interior is mapped onto Im c > 0 // - . - 
Problem 2.161 Liquid streams & the region Im z > 0 with velocity U 
parallel to the real axis. Assuming that the real axis is solid together 
with that part of the imaginary axis for which 0 < Imz < a, find the 
complex potential of motion // 

eferring to ~ i g u r e  2.15, A, A, A, is an isosceles triangle of 
in Imz 2 0 with its base A, A, on the real axis, AIO = 

OA, where 0 is the origin, L A,A2A, = (2- a2)n, and LA,A,A, = 
LA,A,A, = (1-al)n. 

I-plane (-plane 
Figure 2.15 
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The domain of the actual liquid motion is the region Im z > 0 outside 
the triangle whose base is then allowed to shrink to zero into coincidence 
with the origin 0 ,  i.e. a, + and a, -, 2. This domain is mapped by the 
Schwarz-Christoffel transformation onto Imc > 0 where A; (c = - l), 
A; (c = O), Aj (c = 1) are the points on Imc = 0 corresponding re- 
spectively to the limits of the points A, (z = 0 -), A, (2, = ai), A, (z = 0+). 
By equation 2.37 the mapping function is 

dz/dc = L(c - l)-'c(c + 1)-f 

which, integrated, gives 

z = Ye2 - 1)+ + M, L, M are constants. 

Since c = 1 when z = 0+, M = 0 and c = 0 when z = ai gives L = a. 
Hence z = a(['- 1)f and c = (a2+z2)+/a. For large Ill, z - a[ so that 
w = - Uz, the uniform stream in the z-plane, becomes w = - U 4  in the 
c-plane or ,the streaming speed here is aU. Moreover, since Im c = 0 
is a rigid boundary w = - Uac. In terms of z, w = - U(z2 + a2)i. El 

)tJ(+2.13 Im ulsive motion The impulsive pressure m at any point of a 

I liqui +=--- set m motion impulsively from rest is pcp , where q = -grad cp. 
Since divq = 0 by the equation of continuity, V2cp = 0. Therefore, in 

N 

polar coordinates, cp = cp, (r, 6) where 
n =  1 

I cpn(r, 6) = (A, cos n6 + B, sin n6)rn + (C, cos n6 + D, sin n6)r-". 1 1 A,, B,, c,, D, are constants // I 
Problan 2.1 9 A circular c$linder 1.z 1 = a lies at rest in a liquid which is 1 
set in motion from rest with the velocity potential cp defined in Section 
2.13. Show that the component of the impulsive liquid thrust (per unit 
thickness) on the cylinder in the direction 6 = a is -xpacp, (a, a). 

4+ 

The impulsive thrust on an element ad6 of the cylinder at 
is -pacp(a, 8)d6 along OP where 0 is the centre z = 0. If 

I, J are the components of the total thrust parallel to the real and imaginary 
axes respectively, we have, on integration, I + i J 

= - pa 1; (cos 6 + i sin 6) ~ ( a ,  0) dB 
N 

= -pa lZn (cos 6 + i sin 6) {(A, cos n6 + B, sin n6)an 
0 c =  1 

+ (C,cos n6 + D, sin n6)a-"} do 

Inverting the order of summation with integration and using 

1'' cos n6 sin 6 d6 = 0 = sin n6 cos 6 do for all n 
0 
2n J:n 2n 

cos n6 cos 6d6 = 0 = ! sin n6 sin 6 d6 for all n except n = l 
0 0 1 cos2 6 d6 = n = 1;' sin26d6 
0 

we have, 

The impulsive thrust component along 6 = a is, therefore, 

- Problem 2.20 Liquid of density p lies at rest in the annular region 
')external to the uniform cylinder lzl = a of mass m and internal to the 
uniform shell lzl = b > a of mass M. (Both masses are measured per 

given a velocity (u,O) and at the same time the outer shell is given a 
unit thickness perpendicular to the z-plane.) The inner cylinder is suddenly 

velocity (0, v). Show that the liquid motion is initially of the form 

cp = (A cos 6 + B sin 6)r + (C cos 6 + D sin 6)/r. 
4 

Figure 2.16 

The given cp satisfies V2cp = 0. At P(z  = aeie) the boundary 
the initial motion is 

for all 6. Hence, 
-A+Ca-' = u, -B+Da-' = 0 



Similarly at Q(z = beie) the boundary condition is -!!?I = - ~ c o s 8 - ~ s i n 8 + ( ~ c o s 8 + ~ s i n 8 ) b - ~  = vsin8, 
ar ,=, 

for all 8. Hence, 
- A + c ~ - ~  = 0, - B + D ~ - ~  = v 

Referring to the general expression for cp given in Section 2.13, only the 
c p ,  (r, 8) so chosen can possibly satisfy these boundary conditions. Solving 
for the four unknown constants and writing b2 -a2 = A we see that all 
conditions are satisfied by the given cp with 
A = ua2/A, B = -vb2/A, C = ua2b2/A, 

D = -va2b2/A (2.39) 

Problem 2.21 Find the external impulses which must be applied to 
produce the motion of Problem 2.20 .d 

I' 
+!+ Let I , ,  J ,  be the ext&nal impulse components (per unit 

t h ~ c  ness applied to the cylinder lzl = a. The corresponding components 
of the impulsive liquid thrust, using equation 2.38, are {-npacp(a,O), 
- xpacp(a, h)}. The impulsive equations of motions of the inner cylinder are 

I ,  - npacp(a, 0 )  = mu, J ,  -xpacp(a, 9) = 0 
Using equation 2.39, 

I ,  = mu+npa(Aa+Ca-') = mu+npua2{(a2+b2)/(b2-a2 )> 
J ,  = npa(Ba+ Da- ') = - 2npvab2/(b2 - a2 ) 

Similarly if I,, J,  are the external impulsive components on z = b, we 
have 

I ,  = xpbcp(b, 0 )  = xpb(Ab + Cb- ') = 2npua2b/(b2 - a2) 

J ,  = Mv + xpbcp(b, i x )  = Mv - xpvb2 {(a2 + b2)/(b2 - a')} / 
EXERCISES - 

1 Given a complex potential w = - m ln {(z2 - b2)(b2z2 - a4)/(b2z2)), 
<> a, show that t,b = 0 when x = 0, y = 0, or x2+y2 = a' where 
z = x +iy. Interpret the motion, express dw/dz in a closed form and 
hence show that the magnitude of the liquid speed at z = aeie is 
1(2m/a) sin 28/(cos 28- 111 where 2a2b21 = a4 + b4. 

3 Prove that the impulse on the solid cylinder lzl = a due to the 
&den application of a source of strength m at a point z = b outside on 
the real axis is 2nmp2/b away from the source. 

4. Obtain the relations between the constants a, h, b, A, H, B, in order that -4 ax2 + 2hxy + by2 Ax2+2Hxy+ By2 
U = 

(x2 + y 2)2  
V = 

(x2  + y2)2 
may represent a possible liquid motion. Show by any means that this 
motion is also irrotational and the streamlines are circles. 

/ 

F A  solid cylinder 121 4 a is placed in a liquid whose velocity potential 
Awo-dimensional motion is originally i ( x 2  + x - y2). Show that the 
force on the cylinder is 4npa2i2. 



Chapter 3 

Two-Dimensional Unsteady Flow 

3.1 Fundamentals In this chapter we adopt the same assumptions (ii), 
(iii), and (iv) defined in the first paragraph of Section 2.1 of the previous 
chapter, but we replace (i) by the new condition that flow is, in general, 
unsteady. Consequently, all or some quantities are time dependent. Again 
suffixes are used to denote partial differentiation. The main features of 
flow are: 

The velocity vector is 

q = u(x, y, t)i + v(x, y, t) j + Ok (3.1) 
The equation of continuity, since p is constant, is the same as in the case 

of steady flow, i.e. u, + vy = 0. 
The equations of motion are derived from the results of Section 1.7. 

For two-dimensional motion we have q A & = (ui + v  j) A Ck = jvi- Cu j 
whilst Vx = x, i + xy j where x = p/p +q(u2 + v2) + SZ. Hence 

u, + x, = jv, v, + xy = -iu (3.2) 
are one form of the equations. 

Eliminating x from these equations using (x,)~ = (xy), we have 
(Cv), + (Cu),- uy,+ v,, = 0. Using the equation of continuity and C = 

vx -uy we arrive at the result 

5,+ uC, + vCy = DC/Dt = 0 (3.3) 
This means that vorticity following (i.e. attached to) any point which 

moves with the liquid remains invariant. In particular, a point vortex 
for which w = ik In (z - z, ) will, if free (i.e. not tied on a boundary), move 
with the liquid particle associated with the point z,. This principle is 
illustrated in the next problem. 

Problem 3.1 Discuss the motion of two vortex filaments in a uniform 
stream U. 

Solution. Choose the real axis parallel to the uniform stream and let 
the vortex filaments of strengths k, and k, occupy the points A, (z = z, ) 
and A,(z = z,) respectively at time t = 0. The complex potential at 
this instant is 

w = -Uz+ik, ln(z-z,)+ik,ln(z-z,) 

Note that this satisfies - j dq = 2nk, where y, is any small circle centre 
71 

A, and - 1 dq = 2nk2 where y, is any small circle centre A, . The particle 
Y 2  

at A, which carries the vorticity k, will have a velocity (u, , v, ) induced 
in it'by the uniform stream and by the vortex A, i.e. 

d ik, 
u1 -ivl = - - (w-ik, I n ( z - ~ , ) ) ~ = ~ ~  = U- -. 

dz z~ -zz (3.4) 

u,, u, are not constant since z, and z, will vary with time. Similarly, the 
velocity (u, , v, ) induced in A, is U- ik, /(z, - z, ). Hence 

k,(u,-iv,)+k,(~,-iu,) = (k l+kz)U 
or 

k,u,+k,u, = (k,+k,)U and k,v,+k,v, = 0. 

Since u, + iv, = i, ( = dz, /dt) and u, + iv, = 2, then k, z, + k, i, = 

(k, + k, )U. If z, is the centre of gravity associated with masses k, , k, at 
z, and z, respectively, provided k, + k, = 0, z, = (k, z, + k, z, )/(k, + k, ). 
Therefore, i, = U, i.e. the centre of gravity moves with constant velocity 
of magnitude U parallel to the real axis. It should be emphasised that the 
liquid velocity under z, is not i, but ( d w / d ~ ) ~ = ~ ,  . To find the positions of 
the vortices at any instant we use equation 3.4 et seq., giving 

ik, - ik, 
z1 = ul-lvl = U-- and P, = u, - iv, = U - - 

z1 -z2 z2-z1 
Writing z, - z, = reie, substituting and taking conjugates we have 

i, = U + i(k, /r)eie, i, = U - i(k, /r)eie 

from which 

i.e. 3 = 0 or r = A,A, = constant, and 0 = (k, + k2)/r2 = constant = o, 
so that 8 = ot + a where 8 = a when t = 0. Again, i, = U - i(k, /r)e""'+ "). 
Given z, = ( at t = 0, integration leads to the result 

z, = C + Ut - (k, /rw)eia(eiw' - 1) 
Also 

- + rei(wt+a). 
z l -  2 

In the special case when k, + k, = 0, referred to as a vortex couple, it 
follows from the above analysis that i = 0 = 8, i.e. both r and 8 are 
constant so that A, A, has constant velocity of translation only. Denoting 
the constant 8 by a we have o = 0 and i, = U - i(k,/r)eia from which 
Z, = j+ (U - ik, eia/r)t, z, = z2 + reia. Both vortices will remain at rest 
if rU = ik, eia or cos a = 0 (a = $ or ;K) and sin a = - rU/k, (a = in =. 
rU = - k, , a = ;n => rU = k, ). 



Problem 3.2 A sink of strength m is fixed at the origin r = 0 whilst 
two vortices of strengths k and -k are free to move in the liquid. If 
(r, , e l  ) and (r, ,8,) denote their respective polar coordinates of position 
at any instant, deduce that r: - r i  = constant. If initially r, = r, deduce 
the equation of the path of the vortex k. 

Solution. The complex potential of the motion at any instant is 

w = ikln(z-z,)-ikln(z-z,)+mlnz, z, = r,eiel, Z, = r2eie2 

The velocity of the vortex at z, has components u, , v, where 

But u, + iv, = z, = (d/dt)(r, eiel) = eie1(3, + ir, 8, ). Hence, 

Dividing throughout by e-"' followed by separating real and imaginary 
parts. 

m kr 3 = - - - Z s i n l  k 
I , r, 8, = -(r cos A-r, ), r, RZ RZ 

R' = r:+r:-2r,r2cosA 

Similarly, replacing k by - k and interchanging r, with r2 and 8, with 8, 
so that 1 becomes -A. 

It follows that r, 3, - r, 3, = 0, i.e. r: - r: = constant = A. If r, = r, 
initially, A = 0 or r, = r, permanently and R2 = 21: (1 - cos A). Hence 

r, 8, = kr, (cosl- 1)/[2r:(l -cosA)] or 8, = - f k r ~ ~  

Similarly 8, = ikr; = - 8, so that 8, + 8, = constant = 2a (say). 
We can now eliminate both r, and 8, terms from the above equations 
giving 

m y = --- k sin A 
1 r, 2r,(l-cosA)' 8 1 2 1  = 'kr-', A = 8,-8, = 2(a-8,) 

from which 
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3 1 dr, 2m 2m 
= -(@) )= k + ~ ~ t j A  = - - c o ~ ( ~ , - E )  

'181 '1 k 
Integrating, the path (r, , e l  ) of the vortex k is 

In r, = (2m8, /k) -In sin (8, -a) = constant 

i.e. r, sin (8, -a)e-2me11k = constant. 

Problem 3.3 n vortices each of strength k are placed at equal intervals 
along the circumference of a circle of radius a. Show that the configuration 
rotates as a rigid system with angular velocity j(n- l)k/a2. 

Solution. The complex potential w for n vortices at z = zr = aeZr"'ln is 
n n 

w = ik 1 In (z - zr ) = ik ln n (z - ae2'"'ln) = ik  ' In (z" - an). The velocity 
r = l  r =  1 

of the vortex at z = a (i.e. z = zn) is determined from 

w* = w-ikln(z-a) = ikln {(zn-an)/(z-a)) 

The velocity components u, v satisfy 

dw* ( n - l ) ~ " - ~ + ( n - 2 ) z " - ~ a +  ...+ an-' 
-u+iv = -1 = ik( 

dz = = a  +...+ an-' 

fn(n-1) ik(n-1) 
= ik(y) = -ib 

i.e. u = 0, v = 3 n -  l)k/a so that the vortex moves tangentially to 
Jzl = a with speed v or angular velocity f(n- l)k/a2. By symmetry the 
other vortices move with this same speed tangential to the circle and 
therefore the system of vortices moves as a rigid system on the circle 
I z I  = a with angular velocity $(n- l)k/az. 

Problem 3.4 At time t = 0, n vortices each of strength k occupy positions 
= = ae2wi/n (r = 1,2,. . . , n) whilst a similar set of n vortices are r 

placed at points z = zs = (s = 1,2,. . . , n). Show that members 
of the second set will remain equidistant from z = 0 and determine the 
initial values of db/dt and daldt. 

Solution. A vortex at zs has the tangential velocity f(n - l)k/b induced 
in it by the members of its own circle as proved in the previous problem. 
The vortices on z = a will also induce a velocity calculated from the 
complex potential w = ik ln (zn - an). Denoting this contribution by 
its radial and transverse components qr and q, respectively, we have, 
using equation 2.1 1, 



Since eZmi = 1, 
- 1 - it9 nikbn - le - nia nikbn- l(bn - ane-nia) 

4, +iq, = - - - 
2: - an bne - nia - a" R2 

where RZ = (bne-"'"- an)(bnenia - an) = aZn - 2anb" cos nu + bZn. Since qr + 
iq, is independent of s, each vortex of the ring has the same induced velocity, 
and will, therefore, remain equidistant from 0 (z = 0). This distance, 
however, changes with time t and initially 

db {nikbn- ' (:; ane-"a) nkbn- 'a" sin nu 
- = qr = Re 

R dt 
Again. - ,  

du q, (n- l)k 1 
- = -+- = -1m 
dt b 2b2 b 

- - 
nkbn-'(bn - an cos nu) (n - l)k 

R 
+- 

2bZ 

Problem 3.5 A thin plate of width 2a is placed perpendicular to a 
uniform stream of magnitude U. Assuming the absence of cavitation, 
show that two vortices of strengths k and - k can remain at rest down- 
stream of the plate and find their positions given that the liquid speed 
is nowhere infinite. 

Solution. Choosing the z-plane as the region of flow with the stream 
parallel to the positive real axis and the plate lying in the imaginary axis 
between z = ai and z = - ai, the flow in the absence of vortices is repre- 
sented by w = - U(zZ +aZ)* as solved in Problem 2.18. By symmetry, 
the vortices - k, + k will lie at the image points z, and 2, respectively, 
so that we need only consider the flow in Im z > 0. Referring to Figure 
2.15, provided z, is not a singular point, the hydrodynamic image of the 
vortex - k at z, is an equal vortex - k at the corresponding point (, . 
In order that the real axis in the (-plane remains a solid boundary in 
correspondence with the solid boundary in the z-plane, we must introduce 
an image vortex of strength k at 5. The complex potential of motion in 
the (-plane is then 

w = -Ua[-ikln((-(,)+ikln((-7,). 
The vortex at (, will remain at rest if 

Writing (, = 5,+iq0 this becomes 2Uaq0 = k. When this condition is 
satisfied the vortex - k at z, in the z-plane will also be stationary since 
5, is a nonsingular point. Again by Problem 2.18 the mapping function 
is z = a(('- 1 ) h h e r e  dz/dC = 0 when [ = 0. The velocity will be 
infinite at the point z = ai unless dw/d[ = 0 when [ = 0 (Kutta condi- 
tiori-Section 2.11). This implies - Ua + ikc; ' - ikr; ' = 0 or aU(ci + 
q:) = 2kqo. With k = 2Uaqo we have 5, = kJ3/(2~a), q? = k/(2Ua) 
from which z, = a([; - I)* is determined. Writing z, = x, + iy, we have 

z; = (x, + iy, )' = a'((; - q; - 1 + 2i5, I], ) 
i.e. 

x; -Y: = a2(5$ - q: - 11, x, yo = a25, q, 
from which 

x; = iaZ{(E2 +45; q;)*+ E), y; = $aZ((E2 +45: q;)*- E )  
where E = 5; - qi - 1. Substituting for 5, and q, the result follows. 

Problem 3.6 Liquid lying at rest in Rez > 0 is bounded by rigid walls 
coincident with the real and imaginary axes and Im z = rc/;l(;l > 0). Show 
that a vortex of strength k can remain at rest at a point midway between 
the two parallel walls. Find this point and evaluate the force on the wall 
Re z = 0 in this case. (Assume the stagnation pressure is p, .) 

z-plane 
Figure 3.1 

Solution. Referring to Figure 3.1, we use the Schwarz-Christoffel 
transformation of Section 2.12 to map the region Am BCD, occupied 
by the liquid in the z-plane onto the upper half of the [-plane with B(z = 
in/A) and C(z = 0) represented by [ = - 1 and + 1 respectively on 
Im ( = 0. By equation 2.37, with a, = a, = in,  (, = - 1 I = 1 we have .z 

Integrating, z = L cosh-'( + M or [ = cosh{(z - M)/L) where L, M 
are constants. Since [ = 1 when z = 0, M = 0 and with [ = - 1 when 
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z = in/l - 1 = cosh (in/lL) = cos (n/lL) or L = 112 giving 5 = cosh lz. 
A vortex of strength k placed at a nonsingular point z, (say) in the z-plane 
transforms into a vortex of the same strength at the corresponding point 
[ = [, = coshlz, of the [-plane. Since Am BCD, is a rigid boundary 
so is Im[ = 0. Therefore we must insert the image vortex of strength 
- k at $, in the c-plane so that the complex potential of liquid motion is 
w = ik In ([ -5,) -ikln (5 -7,) in the [-plane and in the z-plane where 
( = cosh lz, w = ik In (cosh l z  - cosh lz, ) - ik In (cosh l z  - cosh l Z ,  ). The 
velocity components u, v induced in the vortex at z, by the image system 
are given by 

I sinh l z  1 l sinh l z  
= ik lim 

l z  - cosh lz, z - z, cosh l z  -cash l Z ,  

1 sinh (lz, + E) 1 --- l sinh (lz, + E) 
= ik lim 

cosh (lz, + E) - cosh lz, E cosh (lz, + E) - cosh 15, 

sinh lz, 
cosh lz, - cosh 2-5, 

A point midway between the parallel walls can be represented by z, = 
(a +fni)/l for which cosh lz, = i sinh a and sinh lz, = i cosh a leading to 

- u + iv = ikl(tanh a - i coth a) 

Hence, u = 0 and the vortex will remain stationary provided tanh2 a = i .  
Since a > 0, sinh a = 1, cosh a = J2, a, = ln( J2+ 1). 

The velocity (u, v) on BC is given by 

dw 1 
-u+iv = - = iklsinhlz - 

dz cosh l z  - cosh lz, cosh l z  - cosh A$ 

with, z = iy. Since cosh lz, = cosh (a + $xi) = i sinh a = i, cosh l z  = 
cos ly, etc. 

2kli sinly 
-u+iv = -klsinAy 

cosly-i cosly+i ( I -  c0s2 l y  + 1 

or u = 0, v = -2klsinly/(cos21y+ 1). By Bernoulli's equation the 
pressure p on BC is p, - +pv2 where p, is the stagnation pressure. The 

thrust P on BC is, therefore, 

0 = l y  
To evaluate the integral consider 

" de dt - n I(a) = -- S, 1 +acos2 8 = 'I: 1 +a+t2  (I +a)" t = tan 8 

and 
cos2 8 dB - R 

-- 
da (1 + a  cos2 8)2 2(1 +a)* 

Hence 

3.2 Pressure and forces in unsteady flow When flow is unsteady, the 
pressure p = p(r, t )  is no longer given by Bernoulli's equation. Instead, 
the pressure is determined by integrating the equation of motion DQIDt = 

F - gradplp. Assuming that F = - gradS2 and curl q = 0, in which case 
cp exists with q = - grad4, we have 

PIP = (ac~iat) - iq2 - D + ~ ( t )  
where A(t) is an arbitrary function. 

Problem 3.7 Find the stream function $ and pressure p due to a vortex 
field in which the vorticity c = 0 for all lzl = r > a, and = r+2a for 
r < a. Discuss the incidence of cavitation within the vortex. 

Solution. Since $ = $(r), we have V2$ = $"+$'/r = c where $' 
d$/dr etc. For r < a, $ = $, where $;'+$;/r = (r$;)'/r = r+2a. Inte-- 
grating 

r$; = fr3 + ar2 +c, c = constant 
For finite speed (=el) at r = 0, c = 0, i.e. $; = i r2+ar  and $, = 
$r3 +iar2 +e, e = constant. For r > a, $ = $, where (r$b )' = 0. 
Integrating, r$b = constant = f and 

$, = f ln r +g, g = constant 
For no slip at r = a, $b = $',, i.e. fa3 + a3 = $a3 = f .  Also for continuity 
in $ (the absence of sources on r = a), $a3 +$a3 + e = f In a +g. Choosing 



g+ f lna = 0, we have e = - l la3/18.  Hence, when 
r > a, $, = 4a3 1n (rla) 

and for 
r < a, I), = (2r3+9ar2-lla3)/18 

Next we determine the pressure. Outside the vortex where r > a, cp 
exists and equals - Ja3 arg(z/a). Using Section 3.2, the pressure p, is 
given by p, = p{(acp/at)-$q2 + A(t)}, q = $; = 4a3/r, dcplat = 0. Given 
that as r + oo, p + p, = constant, A(t) = 0 ,  i.e. for 

When r < a, cp does not exist in which case we find the pressure p, 
directly from the equation of motion. An element at a distance r(<a) 
having a speed q = $; moves in a circle of radius r with acceleration 
q2/r towards r = 0. Hence, 

Integrating, 

p, = k p ( r 4  + 8ar3 + 18a2 r2) + h, h = constant 

For continuity of pressure across the boundary r = a 

po = pm -:pa4 = $pa4 + h 

which determines h, leading to 

p, = pm + k p ( r 4  + 8ar3 + 1 8a2r2 - 59a4) 

Finally, to consider the incidence of cavitation within the vortex, we 
need to evaluate the minimum pressure p, for r < a. We note that 
dp, /dr = pr(r+ 3a)'/9 and dZpl  /dr2 = $(r+a)(r + 3a) from which p, 
is a minimum at r = 0. This minimum value is p, = pm - 59pa4/36. TO 
prevent cavitation within r < a, p, > 0 ,  or, pm > 59pa4/36. If this 
condition is not fulfilled, cavitation of radius R < a could occur when 
p, = 0 at r = R ( <a) which is a root ofthe equation R2(R2 + 8aR + 1 8a2) = 
59a4 - 36pm/p. The vortex will be completely hollow if R = a, i.e. provided 
pm = llpa4/18. 

Problem 3.8 Find the pressure on a circular cylinder lzl = a due to an 
external vortex of strength 3k placed at a point z = 242 on the real axis 
given that the total circulation about the cylinder is 4nk. 

Solution. The complex potential ofthe vortex 3k at z = 2a is 3ik In ( z  - 2a). 
After inserting lzl = a, the complex potential is 

3ik In ( z  - 2a) - 3ik In {(a2/z)  - 2a) 

by the circle theorem (2.20). This result gives zero circulation about the 
circle since the algebraic sum of the vortices inside, i.e. -3k at z = $a 
and 3k at z = 0 ,  is zero. To produce the required circulation we add the 
term 2ik In z which does not upset the rigid boundary condition on z = a. 
Ignoring the constant term the complex potential w, at time t = 0 is then 

w, = 3ikln(z-2a)-3ikln(z-$a)+5iklnz 
This expression does not persist because the vortex at z = 2a has a 
velocity (u, v )  induced in it by the image vortices. We have 

Hence, u = 0 and u = k/2a or the vortex at z = 2a moves in a circle 
of radius 2a centred at z = 0 with angular velocity o = k/4a2. At time 
t 2 0, its position in the plane is defined by z = 2aei"' and therefore 
the complex potential of this external vortex for t 3 0 is 3ik In ( z  - 2aeiw'). 
Applying the circle theorem to find its image in lzl = a and adding the 
circulation term 2ik In z, the final complex potential for all t is 

ignoring the term independent of z. Putting t = 0 we obtain w, again. 
The pressure p = p{(acp/at)-$q2} + A(t). q is determined by (dw/dzl where 

dw - -  - 3 ik - 3 ik 5 ik 
dz z - e'"' z - La e'"' +- 

2 Z 

Also 

As I z I  + CO, q = Idw/dzl + 0, acp/at -, 0 so that A(t)  = ppm where pm is 
the pressure at infinity. Since we are evaluating the pressure on the circle 
when the vortex is in its initial position, we can put t = 0 and z = aeie 
in which case, 





Case 2. 1 = 2Ualk = 1. 
Here 

dx 
a x +  

- X - Xo - tanf6- tanfa - - 
(x+ 1) (x, + 1) (tanf8+ l)(tanfa+ 1) 

provided tania+ 1 # 0, i.e. a # :n. The point z = aei*" is a point of 
stagnation of the flow since 6 = 0 here. We must not allow tanib+ 1 = 0 
either. This means that the time to or from a point of liquid stagnation is 
infinite. 

Case 3 . 1  = 2 Ualk > 1 ; small circulation. 
Putting A2 - 1 = Q2 

provided neither tan f 6  + 1 + Q nor tan ;a + 1 + Q vanishes. From tan f 8 + 
1 + Q  = 0 we find that 

2 tanf8 
sin 8 = = - 2(1 L Q) 1 = -- - k 

1 + tan2i8 2 4 1  + Q) I - -2- 
Since 1 > 1, 8 is real. Assuming both k and U are positive, 8 = n+P, 
or -/I where p = sin-'(kl(2Ua)). These are the points of stagnation on 
the cylinder. Hence t, the time, is finite provided the liquid particle is not 
entering or leaving (when tan fa  + 1 +_ 52 = 0) either point of stagnation. 

3.4 Surface waves To examine the characteristics of small constant- 
amplitude waves propagated over the surface of still water of constant 

Figure 3.2 

depth h choose the axis OX in the horizontal bed (Figure 3.2) and let 
P  (x, h + q) be a point on the wave profile at any time t where q = q(x, t). 
In the case of a simple monochromatic wave of amplitude a, wavelength 
1 = 2n/m and period z = 2nln propagated with speed c = nlm, q will be 
of the form q = a cos (mx - nt). Let W denote the fluid region and R(x, y) a 
typical point within; W is bounded by the profile W and bed y = 0. We 
assume that due to the surface wave (i) liquid motion in W is irrotational 
with velocity potential cp = cp (x, y, t), (ii) the pressure on the profile W 
is a constant ll for all x and t, (iii) q, cp and speed q = I grad cp ( are all small, 
(iv) the profile slope is everywhere small. 

On the profile W applying (i) and (ii) to the pressure equation (1.18) 
with p = constant, 52 = gy = g(h+q), 

where A(t) is arbitrary. By (iii) we neglect qZ. Also we may replace cp by 
cp - B(t) where dB/dt = A(t)-gh-U/p since the velocity field q = 
-grad cp due to either cp is the same. In terms of the modified cp, 

- a9(x,h+q't)+gq = 0 for all P E W  
at 

When q is small 

Invoking (iv), the above surface condition on the unknown profile W can 
be replaced by an equivalent condition 

evaluated on the still water surface y = h, i.e. for all P' (x, h, t). Using (iv), 
dq/at is approximately - acp(x, h, t)/ay. Hence, 

is the final (equivalent) surface condition applied at joints P'(x, h, t). Using 
suffmes to denote partial derivatives, motion is solved by 

For all t and R(x, y) E 9, VZ& = &,, + 41,~ = 0 (3.7a) 

Condition 3.6 (3.7b) 

Normal velocity - acplay = 0 when y = 0 for all x, t, (3.7~) 

By equation 3.5, q = acp(x, h, t)/gat for all x, t. (3.7d) 



Problem 3.11 Using the above theory, find the speed of propagation 
of a monochromatic surface wave of wavelength 1 over still water of 
uniform depth h. Deduce the complex potential of motion relative to the 
wave. 

Solution. We assume that q = a sin (mx - nt) for which 1 = 2n/m and 
the speed c = nlm. Using (3.7d), for all x, t, 

acp(x, h, t) 
= gq = ag sin (m-nt) 

at 

from which we deduce that cp has the form cp = f (y) cos (mx - nt). Using 
(3.7a), V2cp = (f,, - m2f) cos (mx - nt) = 0 for all x, t, implies fyy - m2f = 
0 or f = A cosh my + B sinh my where A and B are arbitrary constants. 
Invoking condition (3.7~) we must have B = 0, giving cp = A coshmy x 
cos (mx - nt) and, by equation 3.8, nA cosh mh = ag. Finally, the surface 
condition (3.6) gives the speed for, when y = h, for all x,t, a2cp/at2 = 
- n2A cosh mh cos (mx - nt) = - g(acp/ay) = - gmA sinh mh cos(mx - nt) 

i.e. c2 = (nlm), = (glm) tanh mh, m = 2x/A (3.9) 

To find the complex potential of relative motion we have cp = 
A cosh my cos(mx - nt) = Re w where w = A cos(mz - nt) or w = 

Acosm(z - ct) with A = ac cosech rnh from equations 3.9. Replacing 
z - ct by z and imposing a velocity - ci on the whole system, the axes 
and wave profile are brought to rest whilst the liquid has a velocity -ci. 
Choosing the new origin z = 0 in the free surface, the required complex 
potential becomes 

w = cz + ac cosech mh cos m(z + ih) (3.10) 

Moreover it is easily verified that the corresponding $ is 

$ = cy - ac cosech mh sinh m(y + h) sin mx 

so that the bed y = -h is the streamline $ = -ch and neglecting a2 
(compared with a) the surface y = a sin mx corresponds to $ = 0. 

Problem 3.12 A liquid of density p, fills the region 0 < y < h, and 
flows with velocity U,i over an immiscible liquid of density p,(>p,) 
which fills the region - h, < y < 0 flowing with velocity U,i. Assuming 
that rigid walls lie along y = h, and y = - h,, find an expression for the 
speed of propagation of a small surface wave at the interface of the two 
liquids. 

Solution. We assume the wave has an elevation q = a sin(mx- nt) 
above the interface y = 0. Following the method of the last problem we 
superimpose on the whole system a velocity -ci which reduces the wave 

to rest and changes the streaming velocities to (U, - c)i, (U, - c)i. Using 
equation 3.10, the complex potential of the lower liquid in - h, < y < 0 
is 

w, = - (U, - c)z - a(U, - c) cosech mh, cos m(z + ih,) 

where q = a sin mx is the streamline rl/, = 0. The liquid speed is q, where 

' - (d2) (2) = (U, - c)' (1 -ma cosech mh, sin m(z + ih)} x q2 - - 

(1 -ma cosech mh, sin m(T - ih,)) 

= (U, - c),{1- 2ma cosech mh, cosh m(y + h,) sin mx) + 0(a2) 

Neglecting a', at the interface y = 0 the speed is q,, where 

q;, = (U, - c),(l- 2ma coth mh, sin mx) 

We find the corresponding result for the upper liquid by writing U, for 
U, and - h, for h,, i.e. the speed q:, is given by 

qio = (U, - c),(l+ 2ma coth mh, sin mx) 

Since the pressure must be continuous across the interface for all x 
p,, = ~ o n s t a n t - $ ~ , ~ ~ , - ~ , ~ a s i n m x  

2 = constant -$p2q2, - p,ga sin mx = p,, 

The coefficients of sin mx on either side must equate in which case 

mp,(U, - c), coth mh, +mp2(U2 - c), coth mh, = g(p2 - p , )  

the required result. 

EXERCISES 

1. A two-dimensional vortex of strength k is placed at the origin z = 0 
in a liquid confined between the two parallel walls Imz = f $a. Show 
that the complex potential of the liquid motion due to the vortex is 
w = ik In tanh (nz/2a). Prove that the vortex will remain at rest and that the 
streamline which passes through the point z = aai (0 < a < $) will 
intersect the real axis at the points z = f (a/n)ln(tan an + sec an). 

2. A vortex of circulation 2xk is at rest at the point z = a sec a (a is real 
and 0 < a < in) in the presence of the circular boundary lzl = a, around 
which there is a circulation 2nk'. Show that k' = k cot2 a. Prove that there 
are two stagnation points on the boundary z = aeie symmetrically 
placed about the real axis in the quadrants nearest to the external vortex 
given by 2 cos 8 = cos a (3 - cos2 a), and deduce that 8 is real. 
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3. Three vortex filaments, each of strength k are symmetrically placed 
inside a fixed circular cylinder of radius a, and pass through the corners 
of an equilateral triangle of side $a J3. Given that there is no circulation 
in the liquid apart from the effect of the vortices, prove that they will 
revolve about the axis of the cylinder with angular velocity 88k/21az. 

4. Find the complex potential for vortices of strengths k and -k at 
lo and -9, respectively outside the cylinder Ill = c at rest in uniform 
streaming motion of magnitude U parallel to the imaginary axis when 
there is no circulation about the cylinder. Apply the transformation 
iz = c+  c2/[, c = $a, to show that the complex potential of motion due 
to vortices + k at z,, 2, behind a plate of length 2a is 

w = - Ua(z)"+ ik ln{(a(z) - a(z,))/(a(z) - a(Z,))), a(z) = (zZ 't a2)+ 

Deduce that in order that the vortices remain at rest z;a(z,) must be purely 
imaginary. 

5. A source, of strength m, move along the axis OX with velocity U 
relative to the undisturbed liquid. Show that the equations to the paths 
of the liquid particles can be expressed in the form x- Ut = Rcos 8, 
y = R sin 8, R = {(x- Ut)' + yZ)+ = (U sin 8)/d = r(8-a)/sin 8, sinz8 = 
48-a)8 where r = m/UZ. Prove that 

t/r = - (8 - a) cot 8 +In sin 8 + constant 

Chapter 4 

1 Three-Dimensional Arisymmetric Flow / 
4.1 Fundamentals We assume that (i) density p is constant, (ii) the 
geometry of any immersed obstacle together with the flow is symmetrical 
about OX, the axis of symmetrb (iii) using ~vlindrical c o o r d i n w  
(x, m, elwhere x = x, y = m cos8, z = a sin 8, the flow is independent 
of 8, i . e a G 2 3 )  

The velocity vector is q = q i +  6 m + q,0 where i, m, 0, are the unit 
>&in the radial and transverse vect o r s ~ F a ~ t O ~ x ~ n n ~ r p e n d i  - 

directions respectively. These components q 
x and m onlv. , 

1 

-free region W s  the equation of continuity is 

aq, 1 c' 
0 = divq = -+ -,(mqm). 

ax mcm (4.1) 

The stream function $ = $(x,m) exists in Ws by virtue of equation 4.1 
and satisfies r 6, t- 

ap= L ?X I / '  a$ / a+ , 

-qm z9k9= - F ~ /  (4.2) 
3 

$ is called the Stokes stream functioq. ' 2  r -- 
Alternatively, we have q = curl(-$0) where $ is a component of a 

vector potential function. 
The vorticity 

l i  m m0I 

a 6 = c u r  = 1 - 0 1 
m ax am 

When q, = 0,6 = 50 where 

aqm aqx - a (1 a*) a (1 a*) 5 = -- - - - - - + - - - = - E )  (4.4) ax am ax ax am m am 

and / 

When flow is irrotational 6 = curlq = 0, for which cp exists with 



The flux of volume flow Q across the curved surf& formed by the 
complete rotation of the meridian plane curve joining A(a, b) to P(x, a) 
in Figure 4.1 (where ds is an element of AP and is inclined to OX at an 
angle I) is 

Figure 4.1 

P 

Q = [(q, cos i - q, sin 42nw ds 

where Q is taken as positive measured in the sense right to left for an 
observer at A looking towards P. When P lies on the stream surface 
through A, Q = 0 or t+bp = *,. 

To find the velocity in terms of II/ let P(x, w) and Q(x+ 6x, w + 6w) be 
neighbouring points belonging to surfaces I) = constant and = 
constant and respectively. The volume flux across the surface (a conical 
frustrum) formed by the revolution about OX of PQ = 6s is 2n($+ 
64b- I)) = 2n: 61). Referring to Figure 4.2 the a r e a s f r u s t r u m  is 
2xw 6s so that if qn is the average normal component of velocity across 
PQ we have 

2n:w 6s qn + 0(6s2) = 2n: 6+ 

Figure 4.2 

i.e. 
1 6* m 

qn = lim - - SS =L,= as normal velocity component 

Putting \\ 

6s Gw,+q -q 1 a*. 

which are the relations (4.2). 

- 4.2 Spherical polar coordinates .In terms of cylindrical coordinates 
(x, w). The polar coordinates (r, 8) are defined by -__ x = r cos &w = r sin 8 / 

=symmetrical flow we write the velocity q = qrr + q,0(, 0 being un< 
vec-dial and transverse directions. 'l'hese components can 
be expressed in terms o using equation 4.5. With 6s = r 68, - q, = 

= - r- '(cosec 8)(a+/ and with 6s = 6r, qn <q, = r-'(cosec8) x Cm)~~ a velonty p tial cp exists thecq = -grad @giving I q = 
-acp/ar, and q, = -acp/ra8. Replacing the variable 0 by p where p 
Aze have 2 

Lz 
r 2 q r =  - r  cpr = +, 

r sin 8 q, = (1 - ,uZ)(p, = + (4.6) 

- 3 G  
where the suffixes attached to cp and I) only denote partial differentiation. 
Eliminating y5 the equation for cp is (r2cpr )* + ((1 - ,u2)cpp ), = 0. A solution 
is 

. / a n \  

where n is a positive integer, A and B are constants and Pn(,u) is a Legendre 
&lr_nomial of order n. The equation for 11, is (1 - p2)$,, + r21ClVr = 0 with 
a s s = y i n g  e5uations 4.6 and 4.7 given by 



% 4.3 _Elementan r 
+- 4.3.1 Uniform 

and by 
the constant of integration) -- ___ - - -  

+4.3.2 Point source Apoint source at r = 0 has constant volume output 
f+ a i.e. of Here jsq .dS = 4mn for all sjmple surfaces S 

enc los in~-= l ) .  - Choosing S as the sphere Irl = r ?constant, on which, 
by symmetry, qr = qr (r) q, = a we have 
4.6, b 

2 r qr = m = -r2cpr = $ 
r sin 8 q, = 0 = ( 1  -p2)cp, = 

Solving, 

cp = m/l, and * = mp = mxlr = m(i .r)/r 
d d 

i e  except at the oriiin r = 0,1f the source is 
placed at a point- instead, we have 

cp = m/lr-a1 $ = mi.(r-a)/lr-a1 
5/i @ (4.9) 

The resultant - f l l v m m e t r i c  about an ~s through r = a/ 

doublet whose strength and axial direction is given by 
as the combination of a sink of strength m at r = 0 

with a source of equal strength at r = ~p where c + 0 and m -+ co with 
m6 = 1. Using equations 4.9 

m 1 p.r 
= lim (-6p.V)- = -(p.V)- = -  (4.10) 

m-m. € - t o  r r r3 

(Note that dr . V f = df (r) = f (r + dr) -- f (r) and the direction of dr is jl). 
Since, by equations 4.9, when cp = llr, $ = xlr, the corresponding 
solution for $ is, 

x (r2i - xr) * = - (p .V)-  = - p . v  - = p.- 
r (:) r3 

= [p, r, i A r]/r3 (4.1 1 )  

w 4 . 4  Butler's sphere theo $,(r,p) is the stream function of an axi- 
sy;metric irrotational flow devoid of rigid boundaries and *, = 0 at 
r = 0. If a rigid sphere Irl = a is introduced into this flow and none of 

its singularities is covered by the sphere, the new motion is represented 
by the stream function 

Denoting the image stream function -(r/a)$,(a2/r,p) by I), there are 
four steps to establish in the proof: 

1 Since motion is irrotational, by Section 4.2, $, satisfies ( 1  -p2)$ + "'! 
r2$rr = 0 in which case $, also satisfies this condition for irrotationality. 
(The verification is left to the reader.) 
2 $(a, p) = 0 for all p, i.e. the sphere Irl = a is a stream surface. 
3 Since r and a2/r are inverse points with respect to Irl = a all singu- 
larities of $, lie inside Irl = a given those of $, lie outside, i.e. no new 
singularities are introduced into the fluid by the image system. 
4 With +,'regular in Irl < a and I), = 0 when r = 0 we have 9,  = O(r) 
for small r so that $, = O(l/r)  + constant, or by equations 4.6, the velocity 
at infinity due to $, is 0 ( l / r3 )  which tends to zero as r -+ m. Moreover, 
the volume flux across the sphere at infinity is O(l/r)  which vanishes as 

The verification is therefore established. 

- + P r o b l e m s  Find the liquid speed on a solid sphere due to an external 1 
source. I 

olution. We assume that a source of strength m lies at r = bi outside 
the "wl sp ere r I = a. The axis OX is the axis of symmetry. Using equations 
4.9 the stream function of this source is $, = m(x - b)/{(x- b)' +mz)*. 
However, near r = 0 this expression behaves like -m. Consequently, to 
ensure the correct conditions at infinity in Butler's theorem we must 
arrange that $ = 0 at r = 0 by adding a c o n s t a v n o t a t i o n  
of Section 4.4 with p = cos 8, x = rp, m = r(1 -p2)*, 

Hence, using equation 4.12, the final stream function in the presence of 
the sphere is 

mr m(rp- b) mr(a2p - br) 
$ = m--+ 

a (r2 - 2brp + b2)f-a(a4 - 2a2brp + b2r2)3 

The radial component of the liquid velocity on Irl = a must be zero so 
that the required speed is simply the transverse component q, = r-I x 
cosec 8+,. Now, writing (r2 - 2brp + b2)i  = A(r), (a4 -2a2brp + b2r2)) = 

B(r) 



When r = a, A(a) = (a2 - 2abp + b2)f ,  B(a) = aA(a), so that 

m 2mb m(b2 -- a2)(ap - b) 
*,.lr=a = --+- + , b-a g A(a) g b+a a aA(a) aA3(a) 

giving the speed q, on r = a as 

/ [ x  + J (x2  + w2)] )  is a 
stream u tion i and $,educe that it represents 
streaming motion en t h a q p r e s s u r e  at infinity . is zero show that t h e m  varies 
inversely with 20 - x/ \A J Y 7 tP7t .(;, 7 

By equation 4.5, IC/ _mu-st satisfy the equation 

a l a +  a l a *  

- (  ax )+ - ( -  ax am -) am =p,/ 
SW.UJ~'J 

"~3 - - { x  + J (x2  + w2))  - = { J ( x 2  + m2) - x)/m> the given t,b can be 
written as, = :Urn2 - ~ a { J ( x '  + m2)-x).&~-h which -- 
-uniform s t r e q 4 ; Y  of the equation and so is 9 ~ ~ a i n 2  writing J (x2  + w2) = X ,  % = x(x2 + m2)-+, X. = w(x2 + 
m2)- so that - 

, 

---- m(x2 + m2),>7 = O d /  
. 'V  " V 

in - .  which c a k @ n d ~ ~ i o n s  ie. the 

To interpret the motion m = 0, the axif, @ 
* x +  J (x2  + m2) = 2a so or m2 = -4a(x-a),+$ 
a i c h  is the eauation of at (0,O) and vertex at 

M%f&owivhen , / (x2  + m2) is large, - :Urn< i.e. $ behaves like 
a uniform stream - Ui at 

The pressure p is given by,p + :pq2 4 'constan! where from the evalua- 
tions at infinity, the constant is $pU2 ' On the ~ a r a b  

41 - oloid where m2 = 
- 4a(x - ah 

and 
f =  
4, = 

so that 
I/ 

2Ua a - x  -- 
w (2a-x)v  

\ 

-u  - 
4p+A4,,'4 

(") V (  &'" 
\ 'J 

Thus 
\ 

Problem 4.3. A uniform straight-line sink of total volume flux input 
12xa2U lying on OX between x = -a to x = 0 is followed by a com- 
pensating uniform line source of total output 12na2U stretching from 
x = 0 to x = a. If a uniform stream - Ui is introduced, show that the 
resultant flow is equivalent to a streaming motion past a solid of revolu- 
tion of length 4a which is symmetrical about the equatorial plane x = 0. 
Prove also that the radius of the equatorial section is aa where o is a 
root of a3(o + 24) = 144 and deduce that the liquid speed on the equator 
is U(18 + o)/(12 + o). 

Solution. For the line source of total output 12na2U in 0 g x < a, 
the- per unit length is i = 12na2U/(4na) = 3Ua. By equations 4.9 
the stream function d+ for an element of this source of length dg at x = 5 
is l ( x  - <) { ( x  - 5)' + w 2 )  -*  dg. Hence integrating, the stream function 
$+ due to the line source is 

++ = 1; i ( x - ~ ) { ~ - ~ ) ~ + r n ' ) - * d ~  = - ~ [ { x - ~ ) ~ + w ' ) * ] ~  

Similarly the stream function due to the line sink is 

+- = i[{(x-5)2+w2)*]O_a = i { ( ~ ~ + w ~ ) * ~ - ( ( x + a ) ~ + w ~ ) * ) ,  A = 3Ua 

adding to the stream function iUw2  of the uniform stream the final IC/ is * = ;urn2+*+ +*- 
= ~ U ~ ~ + 3 L J a { 2 ( x ~ + w ~ ) * - ( ( x + a ) ~ + w ~ ) + - ( ( x - a ) ~ + ~ ~ ) ~ )  



It is important to realise that all the square roots must be given their 
positive values, e.g. when m = 0 

for x > a, $ = 3Ua{2(x)-(x+a)-(x-a)) = 0 

for x < --a, I) = 3 U a { 2 ( - x ) - ( - x - - a ) - ( a - x ) )  = 0 

for -a < x < a, rl/ = 3 ~ a { 2 1 ~ 1 - ( a + x ) - ( a - x ) )  = 6 ~ a { l x l - a )  # 0 

t+h = 0 is a dividing stream surface giving the axis of symmetry as one 
branch (provided 1x1 > a) and a closed surface as another. If ( x , ~ )  lies 
on this surface so does (-x ,m),  i.e. the surface is symmetrical about the 
plane x = 0. The equation of the body is, 

$/$Ua2 = 0 = 1 + 6a{2(x2 + m2)* -- ( ( x  + a)' + m)* - ((x  + m2)*)/m2 

It'meets the axis at the value of x for which m = 0. For small m and 
x > a we have 

In the limit as a + 0, x satisfies 

or x(x2-a2)  = 6a3, giving one real root x = 2a, which is a half length 
of the body. Alternatively, we could find this point from the condition 
that it must be a point of liquid stagnation, i.e. qx = - w-'d$/am = 0 
when m = 0 and x = 2a. 

At x = 0, the radius of this equatorial section is oa. From the body 
equation putting m = oa with x = 0, 

By symmetry, q, = m-I a$/ax = 0 at x = 0 so that the equatorial 
liquid speed is (in the negative sense), 

But ( 1  + a2)+ = a( 1 + &a), hence 

Problem 4.4 In the case of steady axisymmetric motion show that the 
vorticity C and stream function t+b satisfy the Jacobian a($, [/m)/a(x, a) = 0. 
Deduce that there exists a solution C: = Am with t+b = {B+ A(x2 +m2)/ 
10)m2 where A and B are constants. Interpret this solution when B = 

-a2A/10. 

Solution. From equation 1.17 of Section 1.7 for steady flow - 
q ~ 5  = VX  where^ = I p - '  dp+$q2+S2 

so that curl (q A 5 )  = curl grad x = 0. In the case of axisymmetric motion 
q = qx i + q, m. From equation 4.3, 

and 

Thus 

which is 

The Jacobian is obviously zero when [/m = constant = A. Using 
equation 4.4 I )  must then satisfy the equation 



Substituting t,b = C(x2w2+w4) where C is constant as a trial solution, 
we have E(+) = C(2w2 + 12w2 - 2x2 - 4w2) = 10Cw2. Hence, choosing 
C = A/10, we have a particular integral. Substituting t,b = B W ~ ,  E(t,b) = 0, 
so that t,b = (B+ A ( X ~  +w2)/10)w2 is a solution for arbitrary constants 
A and B. Choosing B = -a2A/10 and writing x = r cos 8, w = r sin 8, 
we have t,b = -(A/10)(a2-r2)r2 sin2 8 for which t,b = 0 when r = a. 
Consequently, a vortex for which I = Am = Ar sin 8 can be contained. ! within the sphere r = a, This is known as Hill's spherical 

+ Problem 4.5 An inviscid incompressible liquid moves irrotationally 
with velocity potential cp, = Ux where U is constant. Verify that the 
perturbation in cp, when a sphere r = a is introduced with its centre 
at the origin r = 0 is $U(~ / r )~x .  If the sphere is divided into two hemi- 
spheres by a plane passing through the axis OX prove that the force on 
either portion due to the liquid pressure is ((1 1/32)pU2 - pm)xa2 where 
pm is the liquid pressure at infinity. 

Solution. If cp, denotes the perturbation potential then cp = cp, +cpo  
m w Y  the conditions (i) V2cp = 0 in the liquid, (ii) acplar = 0 when 
r = a,(iii)q = --gradcp = - U i a s r  +a. 

Since cp, = Ux = Ur cos 8, V2cpo = 0, avo Jar = U cos 8, grad cpo = 

- Ui. Hence we seek a solution cp, of V2q ,  = 0 where gradcp, + 0 as 
r + oo and acp, Jar = - U cos8 when r = a for all 8. Using equations 
4.7 the first two conditions are fulfilled by choosing cp, = C B,,r-"-l x 
Pn(cos 8). Finally, to satisfy the boundary condition on the sphere, we 
must have n = 1 and 2B, = Ua3 giving cp, = $Ua3r-2 cos 8, as the 
result. 

On the sphere, r = a(cos Bi + sin 8 cos o j + sin 8 sin wk), dS = a2 sin 8 x 
dodo. We choose the hemisphere for which z = r .  k 2 0, 0 6 8 < x, 
0 6 o < x. By symmetry the force on this hemisphere is -Z along the 
z-axis and is given by Z = - JJ pn . k dS evaluated over the surface where 
p is the liquid pressure and n = r/a the unit outward normal to the surface 
at the element dS. Using Bernoulli's equation we have p+ipq2 = 

pm +ipU2 = P where q is the liquid speed on r = a, i.e. 

q = qg = (r-1acp/a8)r=a = -:U sin 8, 

from cp = U cos 8(r +$a3r- 2). Hence 

= -.a' jn In 
m = o  B = O  

(P -:pU2 sin2 8) sin2 8 sin w dB dw 

= 4a2 I ~ ( : p ~ ~ s i n ' 8 - ~ )  sin2 8d8 = xa2(zpU2 -P) 

= n a 2 ( E p ~ 2  .-pm -$pu2) = x a 2 ( f i P ~ 2  -pm) 

& Problem 4.6- A sphere with centre 0 and radius a moves through an 
infinite inviscid liquid of constant density p at rest at infinity. The velocity 
of 0 at any instant t is V(t)i where i is a unit vector in a fixed direction. 
Show that when there are no body forces, the pressure p at a point P on 
the sphere whose position vector is r referred to the centre 0 is given by 

where x = r .i, and 1 = (2/9)(a2/v2) (dV/dt), po being the pressure at 
infinity. Obtain conditions that ensure the absence of cavitation on the 
sphere. 

Solution. Using the result proved in the previous problem and denoting 
thFP=n vector of the centre 0 referred to a fixed origin by R, the 
velocity potential of the liquid motion is 

$a3V .(r-R) 
cp = lr-R13 

where V = Vi 

The pressure anywhere in the liquid is p = p{(acp/at) - iq2 + A(t)) where 
A(t) is some function of time to be determined. Writing r - R = d, Jd 1 = d 

q = -gradcp = $a3{d-3V-3(V.d)d-5d) 

acp/dt = $ ~ ~ { # . d ) d - ~ - v ~ d - ~ + 3 ( V  .d)2d-5) 

AS r = Irl + a ,  d -+ co so that both q = lql and acplat + 0 giving 
A(t) = po/p. Moreover, on the sphere Id 1 = a or d = an where In 1 = 1, 

V-3(V.n)n), q = r (  q2 = q.q = t{V2+3(V.n)2) 
and acp/at = ~ { u v .  n - V2 + 3(V. n)2). Therefore, 

(p-po)/p = ${a$'.n-~~+3(V.n)~)-${~~+3(V.n)~) 

= $ z ~ . n - ; ~ ~ + : ( V . n ) ~  

a result which is true for all V and V. In the given problem V and v have 
the same fixed direction. Writing V = Vi, v = Gi, n .  i = x/a we have 
with V = 91V2/2a2, the result 

(P -po)/p = - $V2(5a2 - 9x2 - 1 8;lx)/a2 



To ensure no cavitation the pressure p must be positive everywhere. 
To find the minimum value of p on the sphere we have, differentiating 
dp/dx = 9v2(x + 1)/4a2, d2~/dx2 = 9v2/4a2. Provided that )I[ < a, p is a 
minimum pm when x = -1 and pm = po - $ p ~ ~ ( 5 a ~ + 9 1 ~ ) / a ~ ,  which is 
positive provided po > p(45V4+4a2~2)/72~2.  When (I)  2 a, p is a 
minimum pm when x = -a, with pm = po -tpVL(91- 2a)Ia which is 
positive when p, > ip(av-  VZ) / 
4.5 Impulsive motion The method is illustrated in the following problem 
and solution. 

Problem 48 Liquid at rest is bounded externally by a spherical shell 
Irl = b an Internally by the spherical shell Irl = a < b. If the shells 
are instantaneously given velocities V and U respectively, verify that 
the resulting irrotational motion is described instantaneously by a velocity 
potential cp of the form p . r  +(L .r)lrl -3. Prove also that the impulse 
experienced by the internal shell from the liquid is -$np(a3p+ A), and 
write down an expression for the external impulse which must be applied 
to this shell of mass M to produce the motion. 

,htiOF he given cp does satisfy Laplace's equation V2q = 0 since 
the first rm p . r  corresponds to a uniform stream and the second to a 
doublet whose strength and direction is L. The liquid velocity q determined 
from cp is 

q = -gradcp = -{p+Lr-3--3(L.r)rr-5}, r = Irl 
The boundary condition on the shell (r  ( = a is n . q = n . U where n is the 
unit normal to the shell. Since n = r/a the equivalent condition is r.q = 
r.Uforallrwhen Irl = a,i.e. 

r.qIv=a = - p . r + 2 L . r ~ - ~  = r . U  forallr  

This is satisfied when - ~ + 2 L a - ~  = U. Similarly, the boundary con- 
dition on the outer shell is r . q = r .V  for all r when Irl = r = h This is 
satisfied when - p + 2Ab- = V. Solving, we have, 

This solution is of course only instantaneously true for the symmetry 
is instantly destroyed by the ensuing motion. 

The impulse of the liquid on the internal shell is 

The simplest way to evaluate the surface integral is to convert it into a 
100 

volume integral using the Gauss divergence theorem. We have 

Hence 
4 I = -p{pa3p+-n :: 1 = -471: 3 P( a3 P+L) 

If J is the external impulse we have 

J + I = M U  
i.e. 

4.6 Miscellaneous examples In conclusion two examples will be 
considered in which motion of the liquid is not necessarily axisymmetric. 

Problem 4.8 Given a closed geometrical surface S within a moving 
liquid show that the integral H = h2 dS -q(dS. q) has the same value 

S 

for every surface S' reconcilable with S. Interpret H when S is a fixed 
solid surface. Also, evaluate H for a sphere S centred on r = 0, where 
there is a source of output 4nm, given that (i) the sphere encloses no other 
singularity and (ii) the liquid velocity at r = 0 due to all other effects 
excluding the source is U. 

Solution. We shall assume that S' is a nonintersecting surface reconcil- 
able with S and V is the volume enclosed between. By Gauss's theorem 
and its extension we have, integrating over the total surface S + S' enclos- 
ing V, 

Since S and S' are reconcilable surfaces, no singularities of the liquid 
motion exist within V. In the absence of vortices and sources V A  q = 0 
and V.q = 0 respectively. Consequently, since the volume integral 
is zero, the total surface integral is zero so that the component integrals 
of H over S and S' are equal. 

From Bernoulli's equation for steady motion, p+ipq2 = P where 



P is a constant. For any closed surface S, f P d!3 = 0, hence we can write 
S 

pH = -J [p dS + pq(dS . q)].For any solid surface, - 1 'p dS is the force F 
S S 

on it whilst q . dS = 0 by the boundary condition when S is a fixed surface. 
Hence in this case H = Flp. 

On a sphere Ir 1 = E we can write the liquid velocity q = mc- 'n + U +O(E) 
where n is the unit outward normal to S the sphere, the first term being 
the source velocity and the third term, O(E), the correction to U due to the 
evaluation on S. Again qZ = m ' ~ - ~  + U2 + 2mc- 'n . U + O(E- so that 

,m E +$UZ +m6-'(n. U)) dS H = S{" ' -4  

where the integrals are taken over the surface of the sphere Irl = E. 
For any closed surface S, j dS = 0, j U . dS = 0. Also, j(n . dS)n = j dS n = 

j dS  = 0. For the given S, j n.dS = j dS  = 4x6'. Again J (n .U)dS-  
j n(U . dS) = 1 U(dS A n) = 0 since dS = dSn. Hence, 

H = -m~-'U4x6'+0(~) = -4xmU+O(c) 

However, by the result proved in the first part of the problem, H must be 
independent of E, i.e. the termO(6) must be identically zero or H = - 4xmU. 

Problem 4.9 Using the results of the previous problem prove that the 
force on a sphere Irl = a due to an external point source of output 4xm 
placed at r = bi is 4xpm2a3i/b(bz -a2)'. 

Solution. In Figure 4.3, B denotes the solid sphere Irl = a, S the sphere 
Ir- bi( = E of small radius E enclosing the source of output 4xm at r = bi 
and E is an enclosing envelope Ir 1 = R where R is large. If V is the volume 
of liquid internal to E and external to both B and S, there are no singu- 
larities of the liquid motion within V. By the extension to Gauss's theorem 
we have 

Using the results of Problem 4.8, H, = Flp where F is the required 
force on B and Hs = - 4xmU where U is the velocity at r = bi due to all 
effects excepting the source there, i.e. U is the velocity at r = bi due to the 
image of the source in the sphere B. Hence 

F = pH, = 4xmpU -pHE 

We now show that HE -t 0 when R -+ co. For large R the velocity q 
at a point r = R on E due the source at r = bi is of the form 
q = mR/R3+O(R-3). Since the image in the solid sphere B can have 
no resultant source inside (i.e. the sum of the source and sink there must 
be zero or else there will be a flow across B), the q due to this image 
system will behave, at most, like 0(R-3)  on E. On the envelope we may, 
therefore, write q = mR/R3+O(R-3) and since dS = O(RZ), HE = 
O(R-') at most. (In fact HE = 0(R-3)). It appears that HE -+ 0 as 
R -t co so that F = 4xmpU. To evaluate U we use Problem 4.1 from 
which the image of the source in r = a has a Stokes stream function 
given by 

mr mr(aZP - br) * = *-* = --- 
1 0 a a(a4 - 2a2brp + b2r2)f 

Figure 4.3 

where p = cos f-4 U =mi(qi)ib, = where 

a2p - br 
q = - - = - - -  r2 ap ar  dp (b2r2 - 2 ~ ' b r p + a ~ ) ~  

a2(b2r2 - 2aZbrp + a4) + (a2p - br)a2br 
ar (bZr2 - 2a2brp + b2r2)* 

to the square root, since b > a, 
When p = 1 and r = b, remembering that we choose the positive value 

a2(b2 -a2)' - (b2 - a2)a2b2 
r 

ma3 q = -- 
ab (b2 - b(b2 -aZ)' 



so that finally we have the result for the force as 

EXERCISES 

1. Show that $ = w2(ArZ + Bx)rP5 is a possible Stokes stream function. 
Given that 0 < E Q 1 verify that IC/ = $Umz(r5 - r2 + 3 ~ x ) r - ~  represents, 
to a first approximation in E, the streaming motion past an ellipsoid of 
revolution. 

2. A source and sink of equal strengths m are placed on the axis OX a 
distance 2a apart. A uniform stream of magnitude 8m/(9a2) flows parallel 
to the axis from source to sink. Show that the flow corresponds to a 
streaming motion past a solid of revolution which is symmetrical about 
an equatorial section and is of length 4a. Deduce that the radius of the 
equatorial section is aAt where A is a root of the equation 4A2(1 + A )  = 81 
and prove that the liquid speed at the equator is 1 +2A3/81 times the 
magnitude of the uniform stream. 

3. Prove that a solid sphere of radius a moving with velocity Ui sin wt 
through a liquid otherwise at rest experiences a resistance $7c poa3 U cos wt. 

4. A doublet pi is placed at S(r = bi) in the presence of a fixed sphere 
Irl = a. Find the stream function and show that the speed at a point P 
on the surface of the sphere is 

3pr- '(bZ -az) sin 19 

where r = S P  and 8 = L SOP. 
Deduce that the resultant force on the sphere is 

24pzp7ca3 b(b2 - 

towards S. 

Table 1. List of the main symbols used 

i j , ,  constant unit vectors parallel to fixed Cartesian axes, OX, OY, 
OZ respectively 

r = xi+ yj+zk position vector 
Q = ui + vj + wk velocity vector 
5 = curl q vorticity vector 
P pressure 

fluid density 
adiabatic constant 
= J(dp/dp) acoustic speed 
fluid space 
source-free fluid region 
source field of W 
vortex-free fluid region 
vortex field of W 
source-free and vortex-free region, i.e. intersection of 9, with WV 
belongs to 
contains 
velocity potential where q = --grad cp 
stream function 
mobile operator 

Table 2. Some useful results in vector calculus 

Gauss's theorem : 

[ ~ . s = j v . ~ d r  or j p d ~ = j v c p d i  
S v S v 

(Surface S encloses volume V, dz is an element of V, dS is an elemental 
vector area outward from V) 
Extension to Gauss's theorem: 

Green's theorem : 

Stokes' theorem: 

~ c u r l ~ . d S  = 1 F.dr 
S 'g 

(S is a surface spanning %') 

grad cp = cp, i + cpy j + cpZ k (cp, = acp/ax etc.), grad cp . dr = dq~ 

grad cp+ = cp grad + + I) grad cp, grad f (r) = f '(r)r/r 
div q = u, + vy + wZ , (u = i . q, ux = au/dx etc.), div r = 3, 

w' 

divcpF=cpdivF+F.gradcp, (q.V)q=V($qZ)-q~curlq 

V A ( F A G )  = 
./ 
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Boundary condition 3 1, 32, 57, 60, 70 
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56, 59-62, 64, 67, 68, 70, 72, 7476, 78, 
81, 82, 86-88 

Conformal mapping 62 
Continuity equation 6-9, 16, 22, 23, 26, 

29, 32, 33, 37, 72, 89 
Convection 5 
Critical flow 29, 30 
Cyclic motion 14 
Cylindrical coordinates 6, 8, 9 

D/Dt operator 4, 10, 18, 19 
Density 2 
Doublet 18, 42, 47, 92 

Earnshaw 37 
Elliptic cylinder 59, 60 
Entropy 18,24 
Equation of continuity (see continuity) 
Equations of motion 9, 10, 18, 19, 20, 24, 

72 
Equipotentials 41, 43, 56 
Euler 2 

Fluid element 10, 11 

Flux 
Mass 5, 24 
Momentum 5,9, 23, 27 
Volume 5, 16, 27-29, 33, 38, 40, 90, 95 

Froude number 27-30 

Gas 23, 24, 26, 33, 34, 35, 36 

Harmonic function5 39 
Hydraulic jump 27, 28 

Image 47,49-52, 76, 81,93 
Impulsive pressure (motion) 30, 68, 70 
Incompressible 6 
Inviscid 4 
Irreducible circuit 1 1, 14 
Irrotational (motion) 11, 12, 15, 16, 18, 30 

32, 38, 85, 89, 93, 94 
Isentropic 24 

Joukowski 65 

Kinetic energy 31, 32, 34, 35, 58,59, 61-63 
Kutta 65, 66, 77 

Lagrange 1 
Laplace equation 15 
Laval tube 23-25 
Legendre polynomial 9 1 

Mach number 25,26 
Mass conservation (see continuity 

equation) 
Mass flux (see flux) 
Mobile operator D/Dt (see D/Dt) 
Momentum flux (see flux) 

Orthogonal coordinates 56 

Pathline 1, 3, 82, 83, 88 
Perfect fluid 4 
Pressure 2, 3, 4, 10, 20-22, 23, 26, 33, 34, 

45, 52, 53, 78-80, 85, 87, 95 
Equation 18, 33, 80, 85 

Reducible circuit 1 1, 13, 15 
Rotating cylinders 60 

Schwarz-Christoffel 67, 77 
Shear flow 51 
Shock 26 
Simply connected 1 1-1 4 
Singular points 43, 57, 60, 62, 63, 65, 93 
Sink (see source) 
Sonic 25, 26, 27 
Source 

Three dimensional 6, 1G18, 31-33, 41, 
63,92 

Two-dimensional 3942, 45, 47, 49, 50, 
54-56, 63, 64, 71 

Specific heats 24 
Spherical coordinates 9 1 
Stagnation 25, 39, 84 
Strain 11 
Streakline 1 
Steady flow 2, 37 
Stream 

Filament 2. 7 
Function (two dimensionsEarnshaw) 

37,40, 41, 79 
Function (three dimensions-Stokes) 

89,93-95 
Line 2, 3, 18, 37, 41-43, 46, 48, 56, 71, 

83, 86 
Surface 2, 3, 90, 93 

Tube 2 
Uniform 40, 42, 44, 51 

Strength of 
Doublet 18, 92 
Source 17, 41 
Vortex tube 14 

Thermodynamic equations 24 

Unsteady flow 2,24, 72, 79 

Velocity 2, 37-39, 89 
Velocity potential 12, 15, 16, 31, 32, 35, 

38, 68, 70, 85, 91 
Volume flux (see flux) 
Vortex 

Couple 73 
Filament 13 
Line 13, 18, 19 
Ring 14, 15 
Tube 13 
Twcdimensional 39, 43, 44, 54, 72-81. 
87, 88 

Vorticity 11, 13, 33, 38, 46, 89 

Waves 27, 28, 84, 85 
Wavelength 85, 86 


