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Abstract

Direct numerical simulations of heat transfer in a fully developed turbulent pipe flow with isoflux condition imposed at the wall are
performed for a Reynolds number based on pipe radius Re = 5500. Main emphasis is placed on Prandtl number effects on turbulent heat
transfer in pipe flow. The scaling of mean temperature profiles is investigated in order to derive correct logarithmic law for various Pr.
The rms of temperature fluctuations and turbulent heat fluxes are found to increase when increasing Prandtl number. The turbulent Pra-
ndtl number, Prt, is almost independent of the molecular Prandtl number Pr for Pr P 0.2. The radial distributions of higher order sta-
tistics (skewness and flatness) confirm the intermittent behaviour at the close vicinity of the wall; this intermittent behaviour is more
pronounced with an increase in Pr. The Nusselt number is in good agreement with the findings of the literature. Probability density func-
tions and joint probability density functions of velocity and temperature fluctuations are used to describe the characteristics of the tur-
bulent flow and heat transfer. The instantaneous flow and thermal fields are plotted in order to analyse the turbulent structures. To
explore the impact of the wall curvature on turbulent heat transfer, predictions were compared to available results for channel flow.
These comparisons show a slightly more intense temperature fluctuations in the pipe flow.
� 2007 Elsevier Inc. All rights reserved.
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1. Introduction

The problem of heat transfer in turbulent pipe flow is of
importance in mechanical and engineering fields, and is
encountered in a variety of engineering applications.
Among these are, for instance, the flow in cooling passages
of gas turbine blades, flow in turbomachines, heat exchang-
ers, combustion chambers, nuclear reactors, etc. Many
experimental and numerical studies of heat transfer in fully
developed turbulent pipe flow have been performed during
the past decades. Most of the earlier research works were
based on the analogy between fluid friction and heat trans-
fer, and turbulent heat transfer was examined by postulat-
ing that the laws governing momentum and heat transfer
are similar (Von Karman, 1939; Martinelli, 1947).
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Some measurements have been made to determine the
Prandtl number effects in turbulent pipe flow. Gowen and
Smith (1967) presented results of a systematic study of
the Prandtl effects over the range 0.026 6 Pr 6 14.3 on
temperature profiles, for turbulent flows in a smooth tube
for the Reynolds number range [104–5 · 104]. These profiles
were represented by the universal distribution:

Tþ ¼ As ln yþ þ Bs where Bs ¼ 5 ln
5Pr þ 1

30
þ 8:55þ 5Pr

The authors concluded that the value of constant As

appears to be relatively insensitive to Prandtl and Reynolds
numbers.

The equations derived by Kader (1981) are based on
interpolation arguments and permit evaluation of the tem-
perature profiles in a turbulent tube flow at many values
of Prandtl number (or in plane channel, or in a boundary
layer above a smooth plane). It was shown that the predicted
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Nomenclature

D pipe diameter
F(H 0) flatness of temperature fluctuations
h heat transfer coefficient
k thermal conductivity
L length of the computational domain
Nu Nusselt number, Nu = hD/k
Pr Prandtl number, Pr = m/a
Re Reynolds number Re = UpR/m
r dimensionless coordinate in radial direction

scaled by the pipe radius
R pipe radius
S(H 0) skewness of temperature fluctuations
T temperature
Tb bulk temperature
Tr reference temperature, Tr = qw/qCpUb

Tw wall temperature
Ts friction temperature, Ts = qw/qCpus

us friction velocity

Ub bulk velocity
Up centreline streamwise velocity of the laminar

Poiseuille flow
y+ distance from the wall in viscous wall units,

y+ = (R � r)us/m
z coordinate in axial direction

Greeks

h coordinate in circumferential direction
H dimensionless temperature, H = (hTwi � T)/Tr

m kinematic viscosity

Superscripts

ð�Þ statistically averaged
(Æ)+ normalized by us, m and Ts

hÆi averaged over the pipe section
(Æ) 0 fluctuation component
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temperature distributions are in quite satisfactory agree-
ment with experimental data. Yakhot et al. (1987) used an
expression for the turbulent Prandtl number (Prt) obtained
from the renormalization group procedure to describe heat
transfer in turbulent pipe flow. They showed that the pro-
posed relation between turbulent viscosity and turbulent
diffusivity gives accurate predictions for Nusselt number
and temperature distributions in wide ranges of Prandtl
and Reynolds numbers (1 < Pr < 106 and 2.5 · 104 < Re <
2 · 105).

There is an extensive litterature on heat transfer coeffi-
cients in pipes (Petukhov, 1970; Kays and Perkins, 1973;
Sleicher and Rouse, 1975; Musschenga et al., 1992; Tricoli,
1999). These investigations provide correlations for pre-
dicting heat transfer for constant and variable property flu-
ids. Tricoli (1999) indicated that over several decades, two
approaches have been widely used to model heat transfer at
wall boundary: the eddy diffusivity model and the surface
renewal model (Musschenga et al., 1992). He pointed out
that the concepts and quantities involved in these models
have no well-based relationships with the correlated turbu-
lent fluctuations which are the fundamental quantities
underlying turbulent transport. Thus a rational approach
to transport in turbulent flow must be based on turbulence
fluctuations as well as on molecular viscosity, heat or mass
diffusivity. The analysis of Tricolli, which was derived from
these first principles, gives a new analogy between heat and
momentum transport in turbulent incompressible pipe flow
(and arbitrary shaped duct), for Pr� 1. The analogy could
be used to infer correlations for heat transfer in some sys-
tems with complex geometry, just from pressure drop
measurements.

Accurate predictions of the flow field in the near wall
region being a prerequisite for correct predictions of the
heat transfer rate, low Reynolds-number models could lead
to good agreements with experimental data when RANS-
approaches are used. The most frequently adopted models
are the k � � models (Myong et al., 1989; Takagi and Hirai,
1998, Thakre and Joshi, 2000). Twelve versions of low Rey-
nolds k � � models and two low Reynolds number for Rey-
nolds stress turbulence models were analyzed by Thakre
and Joshi (2000). The heat transfer predictions were com-
pared with the experimental data of Gowen and Smith
(1967), Kader (1981), Bremhorst and Bullock (1973) and
Hishida et al. (1986). Thakre and Joshi (2000) showed that
the k � � models performed relatively better than the Rey-
nolds stress models for predicting the mean axial tempera-
ture and the Nusselt number in pipe flows, for different
Prandtl numbers. They concluded that the predictive abil-
ity of the k � � models is expected to improve when turbu-
lent Prandtl number variations near the wall are included.
The authors pointed out that the overall discrepancy
observed in both the k � � and the RSM models for heat
transfer can be attributed to the incorrect near-wall model-
ing of the dissipation term. They pointed out also the lack
of detailed near-wall temperature and scalar flux measure-
ments at higher Prandtl numbers.

In view of the above literature review, it clearly appears
a need of quantitatively credible information on heat and
momentum transport near the wall. Experiments which
reveal the mechanistic picture of heat and momentum in
the wall region are only few, owing to the difficulty in mea-
suring the Reynolds stress and turbulent heat flux fluctua-
tions very close to the wall. Hishida et al. (1986) have
developed techniques for turbulence measurements near
the wall with specially devised, symmetrically bent V-
shaped hot-wires, and investigated the structural similarity
between momentum and heat transfer. The transport of
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heat and momentum near the wall was found to be very
intermittent and strongly associated with the coherent tur-
bulent structures. The profiles of turbulence energy compo-
nents, temperature variance, Reynolds shear stress and
turbulent heat fluxes were well displayed in the wall region
so that the measurements are useful to assess currently used
models and for new developments.

With the advent of supercomputers, direct numerical
simulation (DNS) offers valuable data for turbulent heat
transfer. The literature survey reveals that most DNS stud-
ies have been performed for channel and annulus flows and
that DNS of heat transfer in turbulent pipe flows are very
scarce. DNS of turbulent heat transfer in fully developed
pipe flow was performed by Satake and Kunugi (2002)
and by Piller (2005) for only one Prandtl number
(Pr = 0.71). Many attempts have been made to explore
the effect of Pr on turbulent heat transfer in channel flows
with DNS (Kawamura et al., 1998, 1999; Na and Hanratty,
2000). To our best knowledge, there is no DNS of turbu-
lent heat transfer in pipe flows at various Prandtl numbers.
The present work is the first DNS which investigate the
effects of low to intermediate Pr on turbulent heat transfer
in pipe flows under isoflux wall condition. Turbulent ther-
mal statistics and wall thermal behaviour are analyzed and
compared with published experimental and numerical
results. The DNS predictions are also compared to those
obtained in the channel flow.
2. Governing equations and numerical procedure

The flow configuration investigated is a forced, fully
developed, incompressible pipe flow of a Newtonian fluid
heated with a uniform heat flux qw imposed at the wall
(Fig. 1). The fluid properties are assumed constant and
the viscous dissipation term is neglected. Therefore, tem-
perature may be considered as a passive scalar. The dimen-
sionless temperature H is defined as:

H ¼ ðhT wi � T Þ=T r ð1Þ
R

z

r
Heat flux

Heat flux

Flow

L=15R

Fig. 1. Schematic of the computational domain.
where Tr = qw/qCpUb is the reference temperature and
hTwi denotes the wall temperature averaged in time and cir-
cumferencial direction. Using the dimensionless variables
qr = r Æ vr, qh = r Æ vh, qz = vz, the energy equation writes
as follow:
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where r and the velocity components are scaled by the pipe
radius R and the centreline streamwise velocity of the lam-
inar Poiseuille profile Up, respectively. The Reynolds num-
ber Re is defined as Re = UpR/m.

The heating condition imposed on the wall implies a lin-
ear increase of the bulk temperature hTbi in the streamwise
direction. For fully developed flows, the following equali-
ties are satisfied:

ohT i
oz
¼ ohT bi

oz
¼ ohT wi

oz
¼ 2qw

qCpU b

¼ 2T r ð3Þ

The wall temperature fluctuations are assumed to be
zero and the dimensionless temperature boundary condi-
tion is H = 0. This condition corresponds to the mixed-
type boundary condition described by Piller (2005). In this
case, the time-averaged wall heat flux is uniform in space,
and the wall temperature is not time-dependent and varies
linearly along the streamwise direction.

The governing equations were discretized on a staggered
mesh in cylindrical coordinates with a computational
length in the axial direction L = 15R. The numerical inte-
gration was performed by a finite difference scheme, sec-
ond-order accurate in space and in time. The time
advancement employed a fractional step method. A third-
order Runge–Kutta explicit scheme and a Crank–Nicolson
implicit scheme were used to evaluate the convective and
diffusive terms, respectively. Uniform computational grid
and periodic boundary conditions were applied to the cir-
cumferential and axial directions. In the radial direction,
non-uniform meshes specified by hyperbolic tangent func-
tions were employed. The momentum and continuity equa-
tions were solved as described in the paper by Feiz et al.
(2005). Computations were carried out on (Nh · Nr ·
Nz) = (129 · 95 · 129) grid for Pr = 0.026 and (Nh · Nr ·
Nz) = (129 · 129 · 257) grid for higher Prandtl numbers,
corresponding to the spatial resolution (RDh+,Dr+,Dz+) =
(10,0.01–7,20) and (RDh+,Dr+,Dz+) = (10, 0.01–5,10),
respectively. The turbulent heat transfer was solved with
the same grid points than fluid turbulence. Indeed the
thickness of the conduction region, dT, depends on the Pr

value: for Pr < 1 the ratio of the thermal boundary layer
to the dynamic boundary layer varies as dT/dU = Pr�1/2

while it varies as dT/dU = Pr�1/3 for Pr > 1. Consequently,
for high Prandtl numbers, the grid resolution which cap-
tures the viscous sublayer can be inadequate and insuffi-
cient for the thermal conduction region. For small
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Prandtl numbers, the opposite behaviour is observed
(Montreuil, 2000). Owing to the grid requirement, the
DNS of turbulent heat transfer becomes thus much difficult
to handle for Pr� 1. Since the present DNS of turbulent
heat transfer are conducted for Pr 6 1, less grid resolution
is required. Consequently, we ran DNS on a grid mesh
finer than the one required for fully developed turbulent
flow and adequate for turbulent heat transfer, with care
taken so that the computational domain is enlarged to cap-
ture larger thermal scales. Moreover, the above grids were
found to provide an accurate prediction of turbulence sta-
tistics (in agreement with the available data of the litera-
ture) and to give a good compromise between the
required CPU-time and accuracy. It is also noted that the
streamwise spectra of temperature near the wall (y+ = 5)
for different Pr, drop several orders of magnitude without
energy accumulation at high wave numbers. The two-point
correlations of fluctuating streamwise velocity and temper-
ature fall off to zero when the separation approaches half
the pipe length. These observations indicate an adequate
spatial resolution of the present simulations.
3. Results and discussion

3.1. Mean velocity profile and root mean square

The streamwise mean velocity profile is plotted in Fig. 2
versus the distance from the wall in wall units at Re = 5500
(Res = 186). The viscous sublayer and the buffer region are
well resolved in the present DNS. The predicted profile
coincides with the numerical data by Eggels et al. (1994)
obtained in a pipe flow. In the logarithmic region, far from
the wall, the agreement with the universal logarithmic law
is not good for the present DNS as well as for Eggel et al.
data, because of the small value of Reynolds number.
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Fig. 2. Mean velocity profile (Re = 5500).
Indeed, the logarithmic law is only justified at large Re

(Tennekes and Lumley, 1972). The friction factor
(Cf = 9.25 · 10�3) is in good agreement with the DNS
results reported by Eggels et al. (1994) (Cf = 9.22 · 10�3)
and Piller (2005) (Cf = 9.32 · 10�3). Fig. 3 illustrates the
root mean square (rms) of velocity fluctuations as a func-
tion of y+ ((y+ = usy/m)). They are compared to the data
by Eggels et al. (1994) obtained at (Res = 180). The overall
agreement between present predictions and those obtained
by Eggels et al. is satisfactory. The present DNS, however,
underpredicts slightly the rms of streamwise velocity
fluctuations.
3.2. Mean temperature profiles

The dimensionless mean temperature distributions nor-
malized by the friction temperature (Ts = qw/qCpus) are
shown in Fig. 4a as a function of the wall distance for var-
ious Prandtl numbers at Re = 5500. The predicted profile
for Pr = 0.71 is in good agreement with Satake and Kunugi
(2002) who performed DNS of turbulent heat transfer in
pipe air flow at Re = 5283. The temperature profile for
the highest Prandtl number considered (Pr = 1) reveals
that the thermal resistance is mainly concentrated in the
conductive sublayer which is immersed in the viscous sub-
layer. Beyond the conductive sublayer there is a rapid
transport of heat in the pipe. When the Prandtl number
decreases, the conductive sublayer spreeds from the wall
to the core region. The temperature profile for the smallest
Prandtl number (Pr = 0.026) indicates that the molecular
heat transfer dominates.

It should be noted that the logarithmic region can be
better distinguished from the buffer region when the Pra-
ndtl number increases. For small Prandtl numbers, the log-
arithmic part of the temperature profile appears only at
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high Reynolds numbers (Re > 105). It is generally reported
that the temperature profile in the vicinity of the wall can
be expanded as H+ = Pry+ + � � �. Fig. 4b displays clearly
such an asymptotic behaviour, within the near wall region,
and confirms that the conductive sublayer is deeply
immersed in the viscous sublayer for small Prandtl
numbers.

3.3. Scaling of the mean temperature profile

Written in terms of the inner variables, the logarithmic
law for the mean temperature distribution reads:

Hþ ¼ 1

jH
ln yþ þ bH

where the von Karman constant of mean temperature dis-
tribution, jH, is usually assumed independent of Prandtl
and Reynolds numbers. Direct numerical simulations allow
an accurate determination of the quantities jH and bH in
the logarithmic region. To provide a correct value for these
constants, it is useful to consider the relationship:

jH ¼
1

yþ
dHþ

dyþ

� ��1

ð4Þ

and, just replacing it in the logarithmic law, one can obtain
the value of the bH from

bH ¼ Hþ � 1

jH
ln yþ ð5Þ

Fig. 5a and b gives the distribution of jH and bH for vari-
ous Pr. These quantities have to be constant in the loga-
rithmic region. For the smallest Prandtl numbers, the
plateau in jH is not observed, probably due to the low
Re considered. For higher Prandtl numbers (Pr > 0.2), jH
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exhibits a plateau. It is also clear that the extend of the log-
arithmic region becomes smaller as Pr decreases. The pla-
teau value of jH = 0.347 agree well with Piller’s result for
Pr = 0.71 (jH = 0.34) and is smaller than the DNS predic-
tion by Kawamura et al. (1999) in channel flow (jH ’ 0.4).
From Fig. 5a, no Prandtl number dependence is evidenced
for Pr P 0.2. This is not seen in the distribution of bH.
Fig. 5b shows that bH increases with increases in Pr. There-
fore, the Prandtl number affects the value of bH more than
that of jH.
3.4. RMS of temperature fluctuations

The rms-distribution of temperature fluctuations nor-
malized by the friction temperature is shown in Fig. 6a.
For comparison purpose, the results by Satake and Kunugi
(2002) for Pr = 0.71 are also included. The present DNS is
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Fig. 6. RMS of temperature fluctuations (Re = 5500).
in good agreement with their results and the maximum of
temperature fluctuations is also located at y+ ’ 18. When
the Prandtl number increases, the peak of the temperature
fluctuations moves towards the wall and a noticeable rise in
this peak can be observed. For Pr = 1, the peak is located
at y+ ’ 16. Note that the maximum of the rms temperature
fluctuations is close to the maximum of rms of streamwise
velocity fluctuations y+ ’ 14. When Pr = 0.026 the con-
ductive sublayer dominates, the peak of temperature fluc-
tuations being located at y+ ’ 78.

The rms temperature fluctuations are compared with the
previous results obtained by Kawamura et al. (1998) in
channel flow for Res = 180. There is a good agreement with
the DNS data of Kawamura et al. at wall distances y+

smaller than a certain value yþ1 (Fig. 6a). For Pr = 0.71,
we found yþ1 ’ 20, in accordance with Piller’s estimation.
With a decrease in Pr, yþ1 shifts towards the pipe axis. At
yþ > yþ1 , the present DNS is slightly larger than the rms
temperature fluctuations of the channel flow, supporting
thus Piller’s (2005) observation for Pr = 0.71.

The temperature fluctuations H0þ can be expanded in
the immediate vicinity of the wall as:

H0þ ¼ PrðbHyþ þ cHyþ2 þ � � �Þ ð6Þ
where bH is a function of Prandtl number which decreases
with Pr. As the wall is approached, the evolution of the rms
temperature fluctuations confirms the asymptotic behav-
iour H

0+ ’ bHPry+, as it can be seen in Fig. 6b. It appears
also that the coefficient bH becomes independent of Pr for
the highest values of Pr considered here. These trends con-
firm the Kawamura et al. (1998) predictions for channel
flows. The asymptotic value of bH (i.e. the wall value) is
about 0.4 for Pr = 0.71 which is slightly larger than the
predicted value of Kawamura et al. (1999) in channel flow
(bH ’ 0.38). This discrepancy may be due to the difference
in the Re-values as well as in the wall curvature effect.
However, for the smallest Prandtl number (Pr = 0.026),
the wall value which is about 0.16 agrees well with the re-
sult of Kawamura et al. (1999).

3.5. Turbulent heat fluxes

The streamwise turbulent heat flux normalized by the
friction velocity and temperature is reported in Fig. 7a
for different Prandtl numbers. The agreement between the
predicted streamwise turbulent heat flux at Pr = 0.71 and
the one by Satake and Kunugi (2002) is remarquably good.

For Pr = 0.71, the maximum in the streamwise turbu-
lent heat flux occurs at y+ ’ 16. This value is located
between the maximum of rms streamwise velocity fluctua-
tions (y+ ’ 14) and the maximum of rms temperature fluc-
tuations (y+ ’ 18). Similar observation has been found in
the DNS of heat transfer in turbulent channel flow by
Kawamura et al. (1998). Fig. 7a indicates that, irrespective
of the Prandtl number, the flow geometry has practically
no effect on the streamwise turbulent heat flux. The behav-
iour of the peak in the streamwise turbulent heat flux is
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similar to that of the rms temperature fluctuations: when
the Prandtl number increases, the conductive sublayer
becomes thinner and the peak value in the streamwise tur-
bulent heat flux increases and shifts towards the wall. The
position of the peak moves from y+ ’ 57 for Pr = 0.026 to
y+ ’ 22 for Pr = 0.2, and y+ ’ 14 for Pr = 1.

To analyze the near-wall asymptotic behaviour of the
turbulent thermal statistics, the velocity fluctuations can
be expanded in terms of y+ as follows:

v0þz ¼ bzyþ þ czyþ2 þ � � � ð7Þ
v0þr ¼ bryþ2 þ cryþ3 þ � � � ð8Þ

Considering the expansions of the temperature and velocity
fluctuations, the turbulent streamwise heat flux is given by:

v0þz H0þ ¼ Pr bzbHyþ2 þ czbHyþ3 þ � � �
� �

ð9Þ
which indicates that, in the vicinity of the wall, the axial
turbulent heat flux varies as:

v0þz H0þ=Pr ’ bzbHyþ2; yþ ! 0 ð10Þ

Fig. 7b displays clearly this asymptotic behaviour when the
wall is approached, with bzbH ’ 0:13 for Pr = 0.71 and
Pr = 1. This predicted bzbH is consistent with the one in
channel flow (bzbH ’ 0:12, Kawamura et al., 1998). The va-
lue of the coefficient bzbH is reduced for Pr = 0.026 because
bH decreases. These results confirm that the coefficient bH is
almost independent of Pr when Pr > 0.2.

The profile of the wall-normal turbulent heat flux is
plotted in Fig. 8a for different Prandtl numbers. In compar-
ison to the streamwise turbulent heat flux, the wall-normal
heat flux is smaller and reaches a maximum farther away
from the wall. The present DNS is in close agreement with
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the wall-normal heat flux of Satake and Kunugi (2002).
Fig. 8a reveals that, irrespective of Pr number, the radial
turbulent heat flux is affected by the duct curvature. The
radial turbulent heat flux in the pipe is more important
than in channel flow. This supports Piller’s conclusion.
Moreover, the distributions of the radial turbulent heat
flux and total heat flux are curvilinear as in the case of total
shear stress in Feiz et al. (2005).

The total heat flux, sum of the conductive (molecular)
heat flux and turbulent heat flux, is given by:

qtotal ¼
1

Pr
dHþ

dyþ
� v0þr H0þ ð11Þ

When the Prandtl number increases, the radial turbulent
heat flux increases. It is balanced by the decrease in the
conductive heat flux. The peak of the wall-normal turbu-
lent heat flux increases and moves towards the wall, from
y+ ’ 55 for Pr = 0.026, to y+ ’ 40 for Pr = 0.71, and
y+ ’ 35 for Pr = 1. Our predictions agree with the asymp-
totic behaviour of the turbulent wall-normal heat flux:

v0þr H0þ ¼ Pr crbHyþ3 þ drbHyþ4 þ � � �
� �

ð12Þ

which indicates that, in the vicinity of the wall, the radial
turbulent heat flux varies as:

v0þr H0þ=Pr ’ crbHPryþ3; yþ ! 0 ð13Þ

For highest values of Pr, the distributions of the wall-nor-
mal heat flux develops as y+3 up to y+ ’ 6 and tends to
zero when approaching the wall (Fig. 8b). It is, however,
relevant to note that the coefficient crbH is almost indepen-
dent of Pr for Pr P 0.2. Its value is about crbH ’ 7� 10�4

and confirms the Kawamura et al. (1998) results for a chan-
nel flow. Note that Chapman and Kuhn (1986) found that
this asymptotic behaviour is valid up to y+ ’ 3. Myong
et al. (1989) showed that the y+3 behaviour near the wall
holds up to y+ ’ 5 and that the coefficient crbH varies be-
tween 5 · 10�4 and 7 · 10�4.
Fig. 9. Cross-correlation coefficients: (a) RvrH and (b) RvzH.
3.6. Cross-correlation coefficients

For Pr = 0.71, the cross-correlation coefficient of the
streamwise turbulent heat flux, RvzH, is larger than the
cross-correlation coefficient of the wall-normal turbulent
heat flux, RvrH, throughout the pipe section as it can be seen
in Fig. 9a and b. This result means that the temperature
fluctuations are better correlated with streamwise velocity
fluctuations than the transverse ones. The maximum value
reached by the coefficient RvzH (’0.95) is almost twice the
one reached by the coefficient RvrH, (’0.5), confirming that
the streamwise turbulent heat flux reaches much larger val-
ues than the wall-normal heat flux. These trends agree well
with those of Kawamura et al. (1999) and Piller (2005) for
Pr = 0.71. When Pr is close to unity, the Reynolds shear
stress coefficient Rvrvz coincides with the coefficient RvrH.
Far from the wall, RvrH decreases significantly with an
increase in Pr (Fig. 9a) while RvzH presents a completely dif-
ferent trend when Pr increases. The coefficient RvzH

increases if Pr is smaller than unity. The predicted RvrH

agree well with Piller’s DNS for 30 6 y+
6 70 (plateau),

and is slightly larger for the other wall distances. The pre-
dicted RvzH is also in fair agreement with Piller’s result. The
wall values of RvzH compare fairly well with those for chan-
nel flow (Kawamura et al., 1999) at various Pr: RvzH ’ 0:34
for Pr = 0.026, RvzH ’ 0:65 for Pr = 0.2 and RvzH ’ 0:95 for
Pr = 0.71.

3.7. Turbulent Prandtl number

The knowledge of Prt is used to predict heat transfer
(thermal field) from known velocity field, and particularly
in the near-wall region where the profile of Prt has been
a matter of conjuncture. In Fig. 10, the results of Piller
are included for comparison. The present predictions for
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Pr = 0.71 coincide well with the results of Piller, although
there is a slight discrepancy far away from the wall. The
best agreement is obtained near the wall. In the near-wall
region, Prt is consistent with the well known limiting
behaviour for Pr P 0.2 and reaches a value from about
Prt = 0.98. For Pr < 0.2, the turbulent Prandtl number
increases (Prt ’ 1.4 for Pr = 0.1, Prt ’ 2.7 for
Pr = 0.026). Far from the wall y+ > 50, Prt decreases.
These trends indicate that near the wall, the momentum
diffusion is much larger than heat diffusion.

For Pr P 0.2, the influence of the flow geometry on Prt

is quite small. However, for smaller Pr, the turbulent Pra-
ndtl number is noticeably affected by the flow geometry,
suggesting that the wall curvature has a significant influ-
ence on turbulent heat transfer. The influence of Pr on
Prt is more pronounced with decreasing Prandtl number,
in accordance with the values of Nusselt number (Table
1) which indicates larger differences between Nu in pipe
and Nu in channel as Pr decreases. The present predictions
agree well with the wall values of Kawamura et al. (1998)
for Pr P 0.2. It should be noted that the asymptotic behav-
iour of Prt, as approaching the wall, is practically insensi-
tive to the molecular Prandtl number for Pr P 0.2, which
Table 1
Nusselt number for various Prandtl numbers

Pr Pipe Channel

Present Gnielinski
(1976)

Piller
(2005)

Sleicher and
Rouse (1975)

Kawamura
et al. (1998)

0.026 6.78 – – 5.82 5.4
(Pr = 0.025)

0.1 9.43 – – 7.82 –
0.2 11.4 – – 10.22 10.32
0.4 15.28 – – 14.75 14.18
0.71 19.36 18.17 18.54 20.32 18
1 22.3 21.06 – 24.72 –
shows that Prt is independent of Pr, as reviewed by
Kawamura et al. (1998) and Myong et al. (1989). This also
supports the usual assumption of a constant Prt in many
engineering calculations (for Pr P 0.2).
3.8. Higher-order statistics

Indications of the intermittent character of the wall
region are high-order statistics such as skewness and flat-
ness. Fig. 11 display the radial distributions of skewness
ðSðH0Þ ¼ hH03i=hH02i

3
2Þ and flatness (F(H 0) = hH 04i/hH 02i2)

coefficients, respectively, for various Prandtl numbers.
For Pr = 0.026, the skewness of the temperature fluctua-
tions is about 0.8. For higher Prandtl numbers, the skew-
ness grows rapidly at the wall and is much larger. The
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Fig. 11. (a) Skewness of temperature fluctuations and (b) flatness of
temperature fluctuations.
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intermittent behaviour of the wall region is thus more
pronounced.

For Pr = 0.71, the present wall value (S(H 0) ’ 1.4) is
slightly larger compared to Piller’s result (S(H 0) ’ 1.2).
However, the predicted behaviour of (S(H 0)) for Pr =
0.71 is in general agreement with the one obtained in pipe
by Piller (2005). The skewness of the temperature fluctua-
tions at the wall, (S(H 0)), is different from the skewness
of the streamwise velocity fluctuations at the wall
(Sðv0zÞ ’ �0:25, not shown here) owing to the different
boundary conditions (the wall velocity equal to zero while
the mixed-type boundary condition is used for the scalar).
The non-zero value of S(H 0) in the near wall region indi-
cates that the temperature fluctuations are asymmetric in
this region. This confirms the intermittent character at
the close vicinity of the wall, while the turbulence is nearly
homogeneous far from the wall. The value of S(H 0) tends
rapidly to the Gaussian value (S(H 0) = 0) towards the pipe
center.

Similar behaviour is observed for the radial distribution
of the flatness factor F(H 0) of the temperature fluctuations.
The flatness and skewness temperature fluctuations behave
in quite similar manner: near the wall, a steep increase of
F(H 0) is seen, identifying the existence of an intermittent
region. Intermittency is more pronounced for Pr larger
than Pr = 0.026, meaning that the probability of observing
large variations from the mean temperature in the vicinity
of the wall is much higher than in the center of the pipe,
especially when the Prandtl number increases. For
Pr = 0.71, F(H 0) = 7 in the viscous wall region, which is
slightly higher than Piller’s prediction (F(H 0) = 5) for a
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Fig. 12. Streamwise two-point correlations at y+ = 5: (a) Pr = 0.71 and
(b) Pr = 0.026.
slightly smaller Re. Around y+ ’ 20, where S(H 0) is zero,
the flatness F(H 0) presents a minimum value in accordance
with Piller’s finding. The value of this minimum increases
with a decrease in Pr and disappears for Pr 6 0.2. In the
core region, F(H 0) exceeds 3. Unfortunately, no experimen-
tal or numerical data of the skewness and flatness factors at
different Prandtl numbers for pipe flow as well as for chan-
nel flow are available in the literature for comparison
purpose.
3.9. Nusselt number

Sleicher and Rouse (1975) proposed an empirical law for
the effect of Prandtl number on Nusselt number, in a fully
developped turbulent pipe flow. This law is applicable for
0.1 6 Pr 6 105 and 104

6 Re 6 106. Gnielinski (1976)
k
100 101 10210-7

10-6

Pr=0.71
y+=5

k

E
z

100 101 10210-7

10-6

10-5

10-4

10-3

10-2

10-1

100

vθ
vr

Vz

Θ

Pr=0.026
y+=5

b

Fig. 13. Energy and temperature spectra at y+ = 5: (a) Pr = 0.71 and (b)
Pr = 0.026.



L. Redjem-Saad et al. / Int. J. Heat and Fluid Flow 28 (2007) 847–861 857
proposed constant property correlations for the friction
coefficient and the Nusselt number valid for 2300 6 Re 6

5 · 106 and Pr > 0.7. Table 1 is prepared to show compar-
isons of the present Nusselt numbers, Nu = hD/k, for var-
ious Prandtl numbers at Re = 5500 (Res = 186). Also
included are the simulations by Kawamura et al. (1998)
(for a channel flow with constant heat flux at Res = 180).
The agreement between the predicted Nusselt numbers
and results of the literature is satisfactory, although the
Reynolds number is smaller than the applicable range of
the correlation given by Sleicher and Rouse (1975). It can
be also seen that the present Nusselt number is slightly
over-predicted in comparison with the correlation pro-
posed by Gnielinski. However, the differences does not
exceed the limits usually ascribed to the heat transfer coef-
ficient in turbulent flows.

3.10. Two-point correlations

The streamwise two-point correlations of velocity and
temperature fluctuations at y+ = 5 are displayed in
Fig. 12 for Pr = 0.026 and Pr = 0.71. For the axial veloc-
ity, the self-correlations Rvzvz fall off to zero at a separation
less than half the length of the computational domain
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(Fig. 12a and b), indicating that the length is sufficiently
large to simulate adequately the largest eddies in the flow.
The two-point correlations of the other two velocity com-
ponents are characterized by a shorter length scale.

The streamwise two-point correlations of temperature
fluctuations tend to zero at y+ = 5 when the separation
approaches half the pipe length, and the computational
domain leads to adequate prediction of the temperature
field. Since the results are not changed by increasing its
length, the computational domain appears to be adequate
to capture the largest thermal structures. The correlations
of temperature fluctuations show an appreciable Prandlt
number effect. These correlations extend to larger separa-
tions when Pr increases, suggesting that the effect of ther-
mal structures become more prominent with increasing
Pr, and essentially that the domain length used for the sim-
ulations with Pr = 0.71 is adequate for the simulations with
smaller Prandtl numbers.

3.11. Energy and temperature spectra

The one-dimensional energy streamwise spectrum,
defined as the Fourier transform of the corresponding
self-correlation functions, is displayed in Fig. 13 at
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y+ = 5. The spectra are normalized by their own mean-
square values. The streamwise energy spectra indicate an
adequate spatial resolution of the present simulations, since
the spectra drop by several orders of magnitude. The energy
spectra show a decrease in energy density when the wave
number increases, and an absence of energy accumulation.
For Pr = 0.71, the normalized spectra of the axial velocity
component and temperature are nearly the same.

The streamwise spectrum of temperature at y+ = 5 is
shown in Fig. 13a and b for Pr = 0.71 and Pr = 0.026.
We can note that the spectra still drop several orders of
magnitude and thus the resolution is adequate. In the
streamwise direction, the spectra increase significantly with
increasing Pr at intermediate and high wave numbers, sug-
gesting that the contribution of small and intermediate
scales to the mean square value decreases in the near-wall
region with decrease in Pr. Indeed, the small scales are
gradually damped by the enhanced conductive effect with
decreasing Pr (Abe et al., 2004).

3.12. Probability density function

In turbulent flows, probability density functions (pdfs)
of velocity and scalar are fundamental in studying and
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modelling statistical characteristics of flow and heat trans-
fer. The pdfs of streamwise, radial and azimuthal velocity
components are depicted in Fig. 14, at different positions
from the wall. In the vicinity of the wall (Fig. 14a), the dis-
tribution of the streamwise fluctuation v0z deviates signifi-
cantly from the Gaussian shape, denoting intermittency
in flow. In the buffer region (y+ ’ 14), the skewness of v0z
tends to zero, indicating that the distribution of v0z presents
large positive fluctuations as much as large negative fluctu-
ations, while the flatness of v0z reaches its minimal value.
That means that the largest streamwise velocity fluctuation
amplitudes occur at y+ ’ 14, as one would expect from the
predictions of the rms values of v0z, shown in Fig. 3 (posi-
tion of the maximal production of turbulent energy).

From the distance y+ ’ 15 and up to y+ ’ 100
(Fig. 14c), the pdfs shape of velocity components changes
and approaches gradually a Gaussian distribution.

The pdfs of temperature fluctuations are also shown in
Fig. 14a–d for two Prandtl numbers and two distances
from the wall. Due to the significant similarity between
the flow and the thermal field for Pr = 0.71, the distribu-
tion of temperature from the near-wall region (y+ = 5) to
the limiting edge of boundary layer, develop similarly to
the distribution of streamwise velocity component. For
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y+ < 18, the most probable temperature are less than the
mean temperature, while the opposite is found at y+ >
18. Note that the pdf of v0z is nearly symmetrical at
y+ = 14, while the pdf of temperature becomes symmetrical
at larger values of y+ (y+ = 18). These predictions are in
accordance with the experimental results of Antonia et al.
(1988). At all distances from the wall, the Prandtl number
Fig. 16. Instantaneous temperature and velocity fluctuations at y+ ’ 5
effect is evident in the negative and positive tails of temper-
ature pdfs. In the positive tails, the temperature pdfs show
more and more larger values when Pr increases, suggesting
that temperature distribution is more and more positively
skewed. This trend is more pronounced when approaching
the wall. In the negative tails, the temperature pdfs extend
to larger negative values when Pr decreases.
: (a) Pr = 0.026, (b) Pr = 0.2, (c) Pr = 0.71, and (d) v0zðRe ¼ 5500Þ.



860 L. Redjem-Saad et al. / Int. J. Heat and Fluid Flow 28 (2007) 847–861
3.13. Joint probability density function

The joint pdfs (jpdfs) are very useful to describe the
physics of turbulent flows. The jpdfs at y+ = 5 of the
streamwise and radial velocity component, v0z and v0r, are
given in Fig. 15a. The fluctuating quantities used for the
joint pdfs are scaled with repect to the rms value.
Fig. 15a demonstrates that ejections (second quadrant:
v0z < 0; v0r > 0) and sweeps (fourth quadrant: v0z > 0; v0r <
0) have large contributions to the Reynolds shear stress
hv0rv0zi and hence to the turbulent energy production. The
joint pdfs in Fig. 15b show similar symmetries. Both corre-
lations hv0rv0hi and hv0zv0hi have a symmetry around vh. This
symmetry indicates that the Reynolds stresses
hv0rv0hi and hv0zv0hi are zero. To better analyse the correlation
between the flow and thermal fields, the joint pdfs between
temperature and velocity component have been calculated
at different distances from the wall (Fig. 15c and d). For
Pr = 0.71, the predicted jpdfs denote a stronger correlation
between temperature and vz away from the wall. These
trends support the DNS predictions by Hojin et al.
(2000) in a turbulent boundary layer (in case of isoflux con-
dition). Near the wall, the correlation is weaker when Pr

decreases (Fig. 15c) indicating that temperature is less well
correlated with vz when decreasing Pr, because of the
strong conductive effects. Moreover, a decrease in Pr leads
to a decrease in the correlations at higher magnitude fluc-
tuations. As the core region is approached, the difference
between the jdpfs ðH0; v0zÞ at Pr = 0.71 and at Pr = 0.026
practically disappears (Fig. 15d). The maximum which
was localised in the third quadrant is now close to the ori-
gin. The contributions to hv0zH0i are more significant in the
first and third quadrants for both Prandtl numbers. This
reflects the results of the positive value in hv0zH0i, as shown
in Fig. 7.

3.14. Instantaneous flow and temperature fields

To explore the effects of the Prandtl number on the ther-
mal structures, instantaneous temperature and streamwise
velocity fluctuations are visualized in Fig. 16. Note that
the velocity fields are the same for the various Prandtl num-
bers since the temperature behaves as a passive scalar. In
the case of a low Prandtl number (Pr = 0.026), a regular
distribution of the temperature fluctuations is observed.
A visualization of the temperature fields in a (r,h)-plane
(not shown here) reveals a rather uniform distribution of
the thermal field, denoting a large width of the conductive
sublayer. For Pr = 0.2, streaky structures are observed in
the temperature fluctuations (Fig. 16b). The conductive
region becomes thinner leading to a reduction of the molec-
ular heat flux and an enhancement of the turbulent heat
flux normal to the wall. These trends are more pronounced
for higher Prandtl numbers.

In the case of Pr ’ 1, a similarity between the velocity
and thermal streaky structures is observed. However, the
similarity between temperature (Fig. 16c) and streamwise
velocity (Fig. 16d) is expected to be better in the case of iso-
thermal wall (as compared to the isoflux-wall case).
Fig. 16c and d clearly exhibits that the fluid temperatures
are correlated with the fluid speeds. These predictions are
in accordance with the DNS results obtained by Hojin
et al. (2000) in a turbulent thermal boundary layer.
4. Conclusion

In the present work, DNS of turbulent heat transfer pipe
flow under isoflux conditions have been performed at low
Reynolds number (Re = 5500) and various Prandtl num-
bers. Different statistical turbulence quantities including
the mean and fluctuating temperatures, the heat transfer
coefficients and the turbulent heat fluxes are obtained and
analyzed. An effort to reveal the Prandtl number effects
on turbulent heat transfer is sketched. The validation of
the present approach (DNS) has been achieved by compar-
ing our predictions with some available results of the liter-
ature. The present results are in reasonably good
agreement with the findings of the literature: the rms of
temperature fluctuations and turbulent heat fluxes are
increased when increasing the Prandtl number. Their
near-wall behaviours are accurately predicted. The Nusselt
number is in satisfactory agreement with the correlation by
Sleicher and Rouse (1975) and in fair agreement with the
numerical predictions of Kawamura et al. (1998) and Piller
(2005). At all distance y+ < 18, the most probable temper-
ature is less than the mean temperature, while the opposite
is found at y+ > 18. Near the wall, the correlation between
H 0 and v0z is weaker when Pr decreases, because of the
strong conductive effects. As the core region is approached,
the differences between the jdpfs ðv0z;H0Þ for Pr = 0.026 and
Pr = 0.71 are very small. Visualizations of the intantanea-
ous temperature and velocity fields exhibit streaky struc-
tures and show that temperature and streamwise velocity
fluctuations are highly correlated for Pr ’ 1. The streaky
structures in the temperature fluctuations are more pro-
nounced for the highest Prandtl numbers considered in this
work. One objective of this research was also to explore the
curvature effects on turbulent heat transfer in duct flows,
by comparing our DNS predictions for axisymmetric pipe
flow to the findings for plane channel flow. There are only
slightly differences between the turbulence statistics of the
two flow configurations. The wall curvature is seen to
slightly enhance the temperature fluctuations. This indicate
that, irrespective of Pr, the wall curvature does not have a
major impact on turbulent heat transfer. An other interest-
ing outcome of the present DNS is to establish databases of
various turbulence statistics of turbulent transport phe-
nomena at different Prandtl numbers (Pr 6 1). These dat-
abases will be undoubdtedly helpful for evaluating and
developing turbulence models (for example improving the
empirical laws used in classical models of turbulence),
and especially for describing heat transfer in turbulent pipe
flow with Pr 6 1.
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